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ABSTRACT 

Energy compaction has proven to be an essential concept in 
signal-adapted data compression. In particular, optimiza- 
tion of orthonormal subband coders for a given power spec- 
trum directly leads to optimal energy compaction niters. In 
this paper, we consider some new design methods and prop- 
erties of optimal FIR energy compaction filters. In partic- 
ular, we propose a very efficient method called the window 
method for the general M-channel case. The method does 
not involve any sophisticated optimization tools and termi- 
nates in a finite number of elementary steps. Compaction 
gains achieved by the method are very close to the optimal 
ones. As the filter order increases the filters of the proposed 
method converge to the optimum ideal compaction filters. 

1.    INTRODUCTION 

The energy compaction problem has recently attracted con- 
siderable attention. It is shown that optimal orthonormal 
(paraunitary, PU) filter banks that maximize coding gain 
consist of optimal energy compaction filters [2, 8, 9, 12]. 
If the number of channels is higher than two, this connec- 
tion is made for the case where the filters are allowed to 
be ideal. In the special two-channel case however, even 
with FIR constraint, the optimal PU filter bank problem 
is equivalent to the optimal energy compaction problem. 
More recently a number of authors have considered the FIR 
energy compaction problem [1, 6, 7, 10, 13] (see [5] for fur- 
ther references). An M-channel FIR compaction filter can 
be considered as one filter of an M-channel FIR PU filter 
bank. 

In this paper we consider some new design methods for 
FIR compaction filters. In particular, we propose a method 
called the window method which has the advantage that 
no optimization tools or iterative numerical techniques are 
necessary. The solution is generated in a finite number of 
elementary steps, the crucial step being a simple comparison 
operation on a finite frequency grid. Combined with the 
fact that the solution is close to optimal, the method offers 
an attractive alternative to linear programming [6]. 
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2.    FIR ENERGY COMPACTION PROBLEM 

Let H(z) be an FIR filter of order N. Consider Fig. 1 where 
the input x(n) is a zero-mean WSS random process with 
power spectral density Sxx(ejiJ).  The output of the filter 

x(n) • H(z) |—MfÄTl—— yjn) 

Figure 1. The FIR energy compaction filter. 

is decimated by M to produce y{n).   The optimum FIR 
energy compaction problem is to maximize the variance 

•-L \H(en\2SXI(en^ (1) 

of y(n) subject to the Nyquist(M) condition [ll] on 
G(eilJ) = \H{eiu)\2. Let the impulse response of G(e-"") 
be p(n). Then, the Nyquist(M) condition is g{Mn) = S(n). 
Notice that by definition G(eJUI) > 0. Define the com- 
paction gain as 

Gcomp(M,N) = -% 
I      /:j^(e^)|25xx(e'w)^ 

$:j~^m (2) 

where a\ is the variance of x{n). The aim therefore is to 
maximize the compaction gain. As described in [5], the case 
where N < M and the case where ideal filters are allowed 
(AT = oo) are solved analytically. Our interest is therefore 
for the case where M < N < oo. Interestingly enough, the 
window method that we propose involves two stages that 
can be associated with the above two extreme cases. 

3.    OVERVIEW AND PROPERTIES 

Similar to the IFIR design techniques in conventional filter 
theory, one can design the compaction filters in multiple 
stages if M is composite, e.g., M = Mo Mi. This leads to 
efficiency in both design and implementation. The details 
of multistage compaction are presented in [4] (see also [5]). 

For the two-channel case, the optimal FIR compaction 
filter can be constructed analytically for some classes of 
WSS random processes. The method involves representa- 
tion of positive definite sequences and has connections to 
other mathematical tools such as line-spectral theory and 
Gaussian quadrature formula. The reader is referred to [5] 
for further details. 
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In the next section we propose a very efficient and fast 
algorithm (window method) to design M-channel FIR com- 
paction filters for any given input power spectra. This does 
not involve numerical optimization techniques such as linear 
programming or quadratic constrained optimization, and 
has finite number of elementary steps. Before describing 
the method in detail, let us briefly mention some properties 
of optimal FIR compaction filters: 
1. A necessary condition on the compaction filter 
for optimally. For an FIR compaction filter H(z) to 
be optimum it is necessary that the FT of the sequence 
r(n)g'(n) attains its maximum at the frequency w = 0, 
where p(n) is the impulse response of G(eJU) = \H(e]u)\2. 
2. Monotonie behaviour of the optimum FIR com- 
paction gain. Let Gopt(M,N) denote the optimum 
compaction gain for a given number of channels M and 
FIR filter order N. It is then clear that Gopt(M,N) < 
G0Pt{kM,N) and Gopt(M,N) < Gopt(M,N + l). 
3. Bounds in terms of eigenvalues. Let /t(n) be any 
Nyquist(M) sequence with nonnegative Fourier series coef- 
ficients. Assume L> N. Then, 

XmaI{r(n)fl(n)Yo < G0Pt(M,N) < Amar{r(n)}o .   (3) 

Here the notation Ama*{r(n)J stands for the maximum 

eigenvalue of the Hermitian Toeplitz matrix whose first row 
is[r(0)r(l) ... r(N)}. 
4. Upper bound by M.  For all FIR compaction filters 
we have 

-     Gopt{M,N)<M (4) 

with strict inequality as long as 5„(eJ") is not a line- 
spectral process, and Ar is finite. 

For all proofs, see [5]. 

4.    WINDOW METHOD 

The idea behind the window method is to represent the 
impulse response of G{ej") = \H(eju)f in the form 

g(n) =w(n)fL(n), (5) 

where the window w(n) has the same length as g(n), namely 
2Ar +1 and the sequence /t(n) is periodic with period L — 
KM > 2N for some K (see Fig. 2). 

•JJl     "M    o     TfJv      y -L 

Figure 2. Decomposition of g(n) as iu(n)/i,(n). 

Let Fi(fc) = EtZlh(nWtn be the Fourier series co- 
* e-^'L It can easily be efficients of /L(TI).  Here WL 

verified that if 

1. w{n) and /L(TI) are conjugate symmetric, i.e., w(n) = 
to'(-n), /t(n) = /£(-«), and to(0) = /L(0) = 1, 

2. the FT W{eju) of w{n) is nonnegative Vw, 

3. the FS coefficients FL(k) are all nonnegative, and 

4. the sequence fi.(n) is Nyquist(M), 

then g(Mn) = S(n) and G(eju) > 0. That is, any spectral 
factor Hie'"1) ofG(eju) is a valid compaction filter. 

Let us assume that the above conditions hold. If w(n) is 
fixed, what is the best /i(n) that maximizes the compaction 
gain? To answer the question we first note the following: 

Lemma.   A periodic sequence fi-in) with L = KM is 
Nyquist(M), if and only if 

Af-l 

^FL{k + iK)=M,    k = 0,...,K-l. (6) 

Let r(n) = w'(n)r(n) and let Si, (A:) be the FS coefficients 
of its periodic expansion fi,(n). For simplicity assume that 

L >2N. Then a] in 1 becomes a\ = $3„=o Mn)fi(_n) = 

rEfc=o FUk)SUk). Notice that both FL(k) and SL(k) 
are real. Now to incorporate the Nyquist(M) constraint we 
write the preceding as 

K-1M-1 

i Y^ Y^ F^k+iK^k+iK) (7) 

For a fixed k, let SUk + t'o#) be the maximum of the set 
{SL(k + iK), i = 0,..., M - 1}. Then by (6), and noting 
that Ft(fc) > 0, the objective (7) is maximized if we assign 
FL(k + i0K) = M, and FL(k + itK) = 0, / = 1,..., M - 1. 
The procedure is illustrated in Fig. 3. By repeating the pro- 
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Figure 3. The procedure to find FL(k): SL(0) is maximum 
among {SL(iK)}, hence FL(0) = M, FL{IK) = 0,1 # 0. 
5L(1 +K) is maximum among {5L(1 +iK)}, hence FL(1 + 
K) = M, Ft(l + IK) = 0,/ ± 1, and so on. 

cess for each k = 0,..., K -1, the Fourier series coefficients 
of the best fi.(n) is determined. The sequence fi.{n) can 

now be calculated by fL(n) = £ EkZl FL(k)W£nk. 

Algorithm for the window method 
Assume a window tv(n) of the same length as g(n) with 

nonnegative Fourier transform has been chosen. Let L = 
KM > 2N. Then the algorithm steps are 

1. Calculate Sx,(fc), the DFT coefficients of ft(n),n = 
0,..., L-1, where fi.(n) is the periodical expansion of 
f(n) = tu*(n)r(n). 



2. For each k = 0,..., K - 1, determine the index i0 for 
which 5t(fc + ioK) is maximum, and assign Ft(fc + 
t'oAT) = M and FL(fc + tiK) = 0, / = 1,..., M - 1. 

3. Determine /L(TI) and form s(n) = w(n)ft.(n). 

4. Spectrally factorize G(z) to find H(z). 

If the input is real, the above algorithm can be modified 
to produce real-coefficient compaction filters. In this case 
the window w(n) is chosen to be real. Let P = -5- if K is 
even, and P = ^f1 if it is odd. Then the algorithm for the 
real process replaces step 2 by the following two steps: 

1. For each k = 0,..., P, determine the index i0 for which 
SL (k + ioK) is maximum, 

2. If k + ioK = 0 or fc + i0K = \ then set FL[k + i0K) = 
M, else if k = 0 or k = y, then set F(k + i0K) = 
F(L -k- i0K) = f, else, set F(k + i0K) = F(L - 
k - ioK) = M. Set all the remaining values to zeros. 

Optimization of the window 
If we fix /z.(n), what is the best window w(n)? The 

objective (1) can be written as 

F sIX{enw(en 
du> 

2w 
(8) 

where Sxx{eiu) is the Fourier transform of /*(n)r(n) where 
/(TI) is one period of ft.(n) centered at n = 0. Letiy(eJU') = 

\A(e]u)\2, where A(z) = En=oa(n)0~n is the sPectral fac" 
tor of W(ej,J). The only constraint on Ai^) is that it has 
to have unit energy in view of w(O) = f*w \A(e3U)\ ■£ = 1. 
Hence, by Rayleigh's principle [3], (8) is maximized if A{z) 
is the maximal eigenfilter of P. The corresponding com- 
paction gain is the maximum eigenvalue of P. 

We have described how to optimize w(n) given /L(«), and 
vice versa. It is reasonable to expect that one can iterate 
and obtain better compaction gains at each stage. We have 
observed in most examples that two stages of iterations were 
sufficient to get near-optimal compaction gains. We started 
with a triangular window and found that /t(n) did hot 
change after the reoptimization of the window. Notice that, 
the use of an initial window is not necessary if one is willing 
to use a window after finding /L (n). However, in most of the 
design examples we considered, we have observed that using 
an initial window with nonnegative Fourier transform (in 
particular, the triangular window) and then reoptimizing 
the window resulted in better compaction gains. 
Example 1: MA(1) process. Let N = 5, M- 4, r(0) = 
1, r(l) = p, and r(n) = 0, n > 1. Assume the process is 
real so that r(-n) = r(n). Let the window be triangular, 

«,(„) = (!-¥'   »-0   ±l.-...,±5- (9) 
(_ 0, elsewhere. 

The Fourier transform of f(n) = tu(n)r(n) is S(e3IJ) = 
1 + f pcosw. Hence, the DFT coefficients St(fc) of f(n) in 

step 1 are SL(k) = 1 + fpcos(^fc), k = 0,...,L - 1. 
Now, assume L = 12 > 10, so that K = 3 and P = 
1. So we have the following sets to consider in step 2: 
{5i(0), Si(3), SL(6),&(9)}, {&(!),&(4), &(7), 5t(10)} 

which are evaluated as {1 + f p, 1,1 —fp, 1}, {1+ 6 Pi1_ 

|P) 1 _ $&p, 1 + f p}. First assume p > 0. The maximum 

of the first set is 5L(0) and the maximum of the second set 
is St(l). Hence applying step 3 of the algorithm we have 
{FL{k), k = 0,...,L-1} = {4,4,0,0,0,0,0,0,0,0,0,4}. 

This determines fL(n), and G{z) = ^z5 + £*3 + |^2 + 
5(l+%/3) .   ,    ,    ,    5(l+-/3).-l    ,    4-2    ,    1-3    ,    1-^-5 
"18 Z +  1 + 18       2        +   9Z        +   6Z        +      18.   2      ■ 

The corresponding compaction gain is 1 + ^^—V =i 
1 + 1.5178p. An optimum compaction filter H(z) is ob- 
tained by spectrally factorizing G(z). If p < 0, it can be 
verified that the resulting filter will be H(-z) where H{z) 
is the solution for the previous case. 

For comparison, we have also designed an optimum 
compaction filter using the linear programming technique. 
The corresponding compaction gain is approximately 1 + 
1.6657|p|. This is achieved by using L = 512 and a trian- 
gular window of order L - N - 1. The compaction gain of 
the window method is only slightly lower. Let us find the 
improvement we can get by optimizing the window when we 
fix /t(n). The compaction gain is the maximum eigenvalue 
of the 6 x 6 symmetric Toeplitz matrix with the first row 
[1 /L(l) p 0 0 0 0]. This eigenvalue is 1 + 1.8019/z.(l)|p|. 
Using /t(l) from the above calculations, the improved com- 
paction gain is l + 1.6410|p| which is very close to the linear 
programming compaction gain 1 + 1.6657|p|. 

Given this optimal window, can we improve the com- 
paction gain further by reoptimizing /L(")? In this and 
all the other design examples we considered, we used the 
triangular window and then found the optimum /L("), and 
then reoptimized w(n) for /i(n). Interestingly enough, the 
reoptimization of /L(TI) did not change it! 

Choice of the periodicity L 
Increasing L does not necessarily increase the resulting com- 
paction gain. For example using L = cc which corresponds 
to using optimum ideal filter /t(n) for the autocorrelation 
sequence rL{n) does not result in the best achievable com- 
paction gain using the algorithm. This is true even if no 
initial window w{n) is used. For the above example, we 
increased L to 16 and found that the compaction gain de- 
creased! When we used the ideal filter for /i(n) which cor- 
responds to L = co, the compaction gain was better than 
that of the case L = 16 but worse than that of the case 
L = 12. 

Until this point we assumed that L > 27V. If we use 
a period L that is the smallest multiple of M such that 
L > 2/V, then we obtain very good compaction gains. This 
choice can be compactly written as 

L = M\2N/M] (10) 

If L = 2Ar, the sequence ri,(n) has the following first period: 

{f (0), f (1),..., f (N) + f'(N),... ,f (1)}.        (11) 

In this case, we have fL(N) = 2f(AT). This will always be 
the case if M = 2, since L = 2N is a. multiple of M. 

Connection between the linear programming' and 
window methods 



As explained in [5], in the linear programming method, 
one finds a sequence whose Fourier transform is nonnega- 
tive only at a prescribed set of frequencies. To assure the 
nonnegativity of G{ej,J), one modifies this solution by win- 
dowing it. When L is a multiple of M, a periodic sequence 
gL(n) in the linear programming method, and a,periodic 
sequence /i(n) in the window method are found such that 
they are Nyquist(M) and their Fourier series coefficients 
are all nonnegative. For L > 2N, two problems are not the 
same because ffi(n) is necessarily zero for some n, while 
/i(n) can be nonzero for all n (except n = kM, of course). 
If however L = 27V, then the two problems are exactly the 
same! If windowing is done in the same way in both meth- 
ods, then we see that the resulting compaction gains should 
be the same. Hence, one can view the window method 
as an efficient and noni.erative technique to solve a linear 
programming problem when L .- 2N. If L is inreased, 
we saw that the window method does not necessarily yield 
better gains whereas this is the case for the linear program- 
ming method provided the window order is increased as 
well. However, optimization of the window becomes costly 
as the order increases. If one uses a fixed triangular window 
(with a high order) in the linear programming, and if the 
windows are optimized in the window method, then window 
method is very close and sometimes superior to the linear 
programming method as we demonstrate in the following 
example. 
Example 2: Comparison of linear programming and 
window methods. We have designed compaction filters 
for an AR(5) input. The psd and the magnitude square of 
a compaction filter for (M,/V) = (2,65) designed by linear 
programming are shown in Fig. 4. In Fig. 5(a) we plot for 

(a) (b) 
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Figure 4. The psd of an AR(5) process, and the magnitude 
square of an optimal compaction filter designed by linear 
programming (M = 2, N = 65). 

M = 2, the compaction gains of both the linear program- 
ming and the window method versus the filter order. 

The number of frequencies used in the linear program- 
ming method is L = 512 while the periodicity used in the 
window method is L =■ 2N. The windows used in the linear 
programming are triangular windows with order L — N — l. 
In the window method, the autocorrelation sequence is first 
windowed by a triangular window of symmetric order N to 
find /L(TI) and then the window is reoptimized. 

From the figure we observe that if the order is high, 
one has slightly better compaction gains using the window- 
method. This implies that, if one optimizes the window, 
there is no need to use large number of frequencies in the 
linear programming method! More importantly, there is no 
need to use the linear programming technique for high filter 
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Figure 5. Comparison of the window and linear program- 
ming methods, (a) Compaction gain vs. filter order, M = 2, 
(b) Compaction gain vs. number of channels, N = 65. 

orders. Notice that for high filter orders linear programming 
method has prohibitively large computational complexity. 

In Fig. 5(b), we show the plots of the compaction gains 
of the two methods versus M for N = 65. We observe 
that the window method performs very close to the linear 
programming method especially for low values of M. We 
show the upper bounds on compaction gains in both plots. 
The upper bound in the first plot is achieved by an ideal 
compaction filter and that in the second plot is achieved by 
a maximal eigenfilter [5]. 
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