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Toetjes 

Tomas Feder* 
Computer Science Department 

Stanford University 
Stanford, CA 94305 

Abstract 

A number is secretly chosen from the interval [0,1], and n players try in turn to 
guess this number. When the secret number is revealed, the player with the closest 
guess wins. We describe an optimal strategy for a version of this game. 

1. Introduction 

The Toetjes Problem was posed at the Programming and Problem Solving Seminar [1] held   £ 
at Stanford University in the Winter of 1987.   It was suggested by Sape Mullender, who   j£    ö 
described it as follows: a.    c 

O    ö 
In Amsterdam, where I grew up, dessert is usually referred to as "toetje" j    ^ 
(Dutch for "afters").  The problem of allocating a left-over toetje to one of z    ög 
the children in my family became the Toetjes Problem. The algorithm was H    5 £j 
the following: First my mother would choose a secret number between one ^    of 
and a hundred. Then the children, in turn, youngest to oldest, could try to HQ-Z§ 

guess the number.  After the last guess my mother would tell whose guess ä > < o 
was closest to her secret number and the winner would get the toetje. Q UI Z £ 

z fß 3C w 

Now that I have a degree in mathematics, the problem still puzzles me: o OT |Ü g 
Given that the secret number is chosen randomly from the interval [0,1], kjijz"" 
what is the optimal strategy for choosing a number for the ith child in a k^cC 

family of n children? The zth child knows what the first i — 1 children chose, 
and knows that all the children choose optimally (i.e., choose to maximize 
their own chance without consideration for the chances of any other child in 
particular). 

We will study Mullender's "continuous" version of the problem, in which the secret number 
is chosen randomly from the interval [0,1]. Notice that the description we have given so far 
is in fact incomplete.  A first ambiguity arises because the optimal move for a player may 

g5^ KZ: 

'This research was primarily supported by a Bell Laboratories Scholarship, and in part by the National 
Science Foundation under grant CCR-86-10181, and by Office of Naval Research contract N00014-87-K-0502. 
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not be unique. If this is the case, the criterion that the player uses to choose among equally 
desirable moves can influence the strategy followed by earlier players. We will resolve this 
ambiguity by assuming that there is a given tie-breaking rule that all players must follow 
when choosing among several equally desirable moves. 

The choice of the tie-breaking rule affects the play quite drastically. To illustrate this, let 
xi,...,xn be the (distinct) numbers chosen by the players in the interval [0,1]. Suppose 
player n plays between two earlier players i and ; such that no other player has already 
played between them. Then his payoff (i.e., his probability of winning) is the same no 
matter where in the interval (*•,-,2,) he plays: it equals (Xj - x,)/2, half the interval size. 
However, his choice will affect the payoff (and hence the strategy) for players i and j. 

A second difficulty occurs because, in this continuous version of the problem, each player has 
an infinite number of choices, so there may not be an optimal move. Instead, it can happen 
that for each possible choice there is another choice that gives a slightly better payoff. For 
example, in the two-player game, suppose the first player chooses 1/2; then the second player 
will get a better payoff the closer he plays to the first player, so there is no "optimal" move, 
but instead a family of moves arbitrarily close to optimal. We will later see that there are 
situations where a player can obtain a better payoff the closer he plays to a certain number 
£, while playing exactly at £ would give him a very low payoff. We handle this difficulty by 
defining an optimal limiting play which is such that all players can obtain payoffs arbitrarily 
close to optimal by playing sufficiently close to this limiting play. 

In this paper we characterize the optimal strategy under two simple tie-breaking rules: the 
"closest to the first player" rule and the "rightmost" rule. In particular, we prove that under 
the first of these tie-breaking rules, the payoff for the first and last players is exactly half the 
payoff for each of the remaining players. Under the second tie-breaking rule, the last two 
players get a payoff equal to half the payoff of each of the other players. 

The remainder of the paper is organized as follows. In section 2 we give a rigorous definition 
of the game, which resolves the two ambiguities mentioned abvove. In section 3 we develop a 
plausible optimal playing strategy by making some assumptions about the tie-breaking rule. 
Then in section 4 we prove that the strategy of section 3 is in fact optimal under a simple 
tie-breaking rule, the "closest to the first player" rule. Section 5 extends the results of the 
previous section to the "rightmost" tie-breaking rule and explores the "random" tie-breaking 
rule. 

2. Definitions 

We now give a precise definition of the "optimal" playing strategy. Given the k distinct 
numbers xu...,xk chosen by the first k players, we consider limiting plays, of the form 
(xfc+i,. ..,xn, ■<), for the remaining n-k players. Intuitively, a limiting play of this form 
indicates that the last n - k players play arbitrarily close to xjt+1,...,xn and in such a 
way that the resulting ordering of the n players in the [0,1] interval is given by the total 
ordering -<. While the numbers played are all distinct, some of the n - k limiting values can 
in fact be equal to each other or to the numbers chosen by the first k players.  In the case 



(a)    • \miiMiiiimmiiiwmiiiiiiiimiih • 
X, Xi Xjfc 

(b) I///////////////////////M  • 
0 xi xk 

(c) • mmiimimmiiiimimmimiiimimmim 

Figure 1: Payoff for player i. 

where two or more values are equal, the left-to-right order of the n moves in the [0,1] interval 
needs to be specified: only then can the payoff for each player corresponding to this limiting 
play be evaluated. This is the reason for including in the limiting play (x*+i,... , xn, -<) an 
ordering -< that extends the partial ordering < on the numbers xx,..., xn to a total ordering. 

The winning probability (or payoff) p(i, Xi,..., xn, X) for player i under such a limiting play 
can now be easily computed [see Fig. 1]: (a) If the move x; is between Xj and Xk in the 
-< ordering, then the payoff is (x, — Xj)/2 + (xk — x,)/2 = (x^ — Xj)/2. (b) If x,- is the smallest 
move and is followed by x^-, then the payoff is (x^ —0)+(XA;—X;)/2 = (x,-fxt)/2. (c) If x^ is the 
largest move and is preceded by Xj, then the payoff is (xt —Xj)/2 + (l —x,) = 1 — (x, + Xj)/2. 

We use this payoff function to define the optimal limiting play opt(xi,... „x*) = 
(xfc+i,... ,xn, -<) for the last n — k players, given the k distinct numbers Xi,... ,x-k chosen 
by the first k players. The definition is by induction on the number n — k of players left to 
play. The base case k = n is simply opt(xi,... ,xn) = (-<), where -< is the < ordering on 
the distinct values xi,..., xn. Now we assume inductively that the function opt(x1?..., Xk) 
has been defined for a given k, and we define opt(xi,..., x^_i). 

So fix the numbers xl7..., Xk-\ chosen by the first k — 1 players. We say that (xjt,..., xn, <) 
is a limiting play available to player k if for all e > 0 there are numbers 7/jt,...,y„ with 
\yi — x,-| < e such that opt(xj,..., Xk-\,yk) — (j/i+ii - • •, Vn, -<)• In other words, the limiting 
play is available to player k if player k can play close to x^ so that the remaining players 
will then play close to x/.+i,..., xn. 

The optimal limiting payoff a for player k is now defined to be the least upper bound of the 
payoff p(k, xi,..., xn, -<) over all limiting plays (x^,..., xn, -<) available to player k. We can 
show that there exists a limiting play available to player k which achieves this maximum 
payoff a by considering a sequence of limiting plays available to player k that achieve payoffs 
arbitrarily close to a, and then using the Bolzano-Weier?trass theorem to obtain a limit 
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point (xk, ■ ■ ■, xn, -<) for this sequence. We let S be the set of limiting plays (xk,.... .rn. -<) 
available to player k which give player k this maximum payoff a; thus S is the set of optimal 
limiting plays for player k. It is not difficult to show that S is in fact a closed set l. 

We can now apply any chosen tie-breaking rule to pick an optimal limiting play (xk,..., xn, -<) 
from 5. We could, for example, always pick a limiting play from S that has a largest xk value 
(such a play exists because 5 is a closed set); this is in fact a particular case of the family of 
"rightmost" tie-breaking rules that we will consider in section 5. The chosen (xk,..., .r„, -<) 
is then the value of opt(cc1,..., xk-\), completing the inductive definition. 

Now, if all players play optimally and follow the given tie-breaking rule to choose among 
equally desirable moves, their numbers will be given in the limit by opt() = (xu ..., xn, -<), 
with corresponding winning probabilities p(i, Xi,..., in, -<). 

3. A candidate strategy 

Finding a constructive characterization of the optimal strategy opt(xi,... ,xk) is, under 
many tie-breaking rules, a difficult task. It turns out that for the "closest to the first player'' 
tie-breaking rule considered in the next section the optimal strategy is, surprisingly, fairly 
simple. However, instead of just giving the strategy and proving that it is optimal (we will 
do this in the next section), we would like to describe here the properties of the tie-breaking 
rule which can lead us to guess such a strategy. These properties might in turn be useful for 
finding optimal strategies under other possible tie-breaking rules. 

After examining the problem for small values of n, one observes that many tie-breaking rules 
seem to obey some form of the following optimality principle: 

A player who does not play optimally for himself only increases the chances of winning for 
the players that follow him. 

We use restricted versions of this principle to obtain a plausible playing strategy. When 
applied to the last player, this principle says that the chances for the last player are worst 
when the players before him play optimally (since his chances only increase when those 
players play suboptimally). We thus make the assumption that all players play so as to 
make the payoff of the last player as small as possible. 

The optimal payoff for the last player given the numbers chosen by the players before him is 
easy to compute. Suppose the moves of the first n — 1 players have partitioned [0,1] into n 
intervals of respective lengths au .:., an, from left to right. Then the optimal limiting move 
for the last player gives him a payoff of max(ai, a2/2,..., a„_i/2, a„), since the payoff when 
playing anywhere between two other players is half the distance between the two players, 
while the payoff when playing in the leftmost (rightmost) interval can be made arbitrarily 
close to the interval size by playing sufficiently close to the leftmost (resp. rightmost) player. 

xThat is, if for alle > 0 there are y,- with |j/i-Zj| < e such that (yk,..., yn, -<) £ S, then (xt, ■. .,xn,~<) £ S. 



Now suppose that the first k - 1 players have already played, for some k > 2. partitioning 
[0,1] into k intervals Ju...,Jk of respective sizes cu...,ck, from left to right. Given any 
real B > 0, the payoff of the last player can be forced to be B/2 or less by the n-k players 
before him that are left to play, provided that at least [>,] - 1 players move into the interval 
J, for each 1 < i < k. Here />, is the ratio 

c,/B if 1 < i < fc, ■    (1) 
d/B + 1/2   if i = 1 or i = k. 

This is so because in the case 1 < i < k the interval J, must be partitioned into subintervals 
of size B or less, while in the cases i = 1 and i = k the subintervals at both ends of [0,1] 
must be of size B/2 or less, to ensure that the payoff for the last player is at most B/2. This 
can be achieved if and only if 

£(M-l)<r, (2) 
i<i<Jt 

where r = n- k+1 is the number of players left to play. If, following the optimality principle, 
the players before the last play so as to make the payoff B/2 of the last player as small as 
possible, then B must be the least value of B satisfying (2). An equivalent definition for this 
key parameter is that B is the largest B satisfying 

E l*J > >■; (3) 
\<i<k 

in fact B is the only value of B which satisfies (2) and (3) simultaneously. Notice that the 
summands in (2) and (3) are equal unless />,- is an integer, in which case they differ by 1. 
Since only r players are left to play, it is natural in view of (3) to allocate at most [pt\ 
players to the interval Ji, including player n. Then if r; out of the last r players move into 
the interval J,, we will have 

|7>il - 1 < n- < [Pi\ for all 1 < i < k, with £i<t<* r,- = r. (4) 

Now we will try to determine more precisely where these r, players should play inside the 
interval J,-, for 1 < i < k. The first rt- - 1 players to play in J, partition this interval into r, 
subintervals. Furthermore, there must be a subinterval J/ among these of size at least B, 
since rt- < |_ct'/Aj by (4)- The last player p to play in J, should then be able to obtain a 
payoff of at least B/2 by playing inside J,'. Now the optimality principle applied to player 
p says that the r,- — 1 players that play in the interval J,- before player p will play so as to 
make the size of the subinterval J/ as small as possible. However, the other subintervals 
of J{ should not be made larger than B because otherwise player n could move into ./, and 
obtain a payoff greater than B/2. Thus the first r,- — 1 players in «/, should partition this 
interval into r,- — 1 subintervals of size B, and one subinterval .// of size at least B for player 
p. Now if we assume that player p plays in J/ so as to create a subinterval of size B as well, 
we obtain a simple playing strategy: 

The T{ players that play in J,-, 1 < i < k, partition this interval into r, subintervals of siz< 
B and a leftover subinterval K; of size at most B. 
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0 x4 xnX2 Xx x3 i 

Figure 2: Optimal play (xk, ...,xn,^) given (xu... ,x*_i) for n = 17 and Jfc = 5, under the 
"closest to the first player" tie-breaking rule. Here xn = x2 with xn -< x2. 

This is illustrated in Fig. 2. A subinterval of size B/2 (instead of B) is used at both ends 
of [0,1] to keep the potential payoff for the last player bounded by B/2. Also notice that 
we have placed the leftover subinterval K, in each Jt as close as possible to the number Xi 
played by player 1; this will be justified by the tie-breaking rule of the next section. 

4. Optimal strategy under the "closest to the first 
player" tie-breaking rule 

In this section we characterize the optimal playing strategy under the "closest to the first 
player" tie-breaking rule. This tie-breaking rule assumes that the optimal limiting play 
(xk,...,xn,^) chosen by a player k > 2 is such that no other optimal limiting play that 
has the first k players in the same relative order in the interval [0,1] as the chosen play 
can have player k closer to the first player. Notice that we make no assumptions about 
how the tie-breaking rule chooses among equivalent moves for the first player, or about how 
it chooses the relative position of a player k > 2 with respect to earlier players if several 
optimal alternatives are available: It turns out that the optimal strategy is essentially the 
same regardless of how these choices are made. Hence our solution applies not just to a 
single tie-breaking rule, but rather to a family of possible tie-breaking rules. 

We recall some definitions from the previous section. Suppose for now that k > 2. The 
numbers xu ..., .T^-I chosen by the first k-l players partition [0,1] into k intervals Ju...,Jk, 
from left to right, of respective lengths cu ..., ck. Let B be the unique value of B satisfying 
both (2) and (3), where the p{ are given as functions of B by (1), and r = n - k + 1; then 
B is also the smallest B satisfying (2) and the largest B satisfying (3). 

We define [Pi\ marked positions J,(l),..., J{( [Pi\) inside each J,. Let J,(0) and J,( [Pi\ +1) 
be the endpoints of J, which are farthest from and closest to xu respectively. Then the 
marked positions inside J, are given, for j = 1,2,..., |_#J, by 

I T / -\      T rr\\\      I JB if 1 < i < k, 
\Ji(j) ~ MO)] = <  J -        . .' (5) 

( [j - 1/2)0   if i = 1 or i = k. v ' 

We associate with each marked position J{(j) the payoff that a player at J{(j) would get if 
each marked position was played by one player. Therefore the payoff of every marked position 
equals 5, except for the last marked position J,( [Pij) of each interval J,-; this last position 1 ias 



apayoffof(£+/(i))/2 where l(i) is the size of the leftover interval A', = («/,( L/>d), ./.•(lAI+l)) 
and is given by 
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l(i) = it mod B 
i + B/2) mod B 

if 1 < i < k, 
if i = 1 or i = &. 

(6) 

We can now state our main result: 

Theorem 1 The optimal limiting play under the "closest to the first player" tie-breaking 
rule is given for k > 2 by opt(xi,..., i*_i) = (x^,..., xn, -<), where x*,..., xn are n — k + 1 
marked positions of highest associated payoff, in order of decreasing payoff. 

Proof. Let us first determine which marked positions will be played according to this 
theorem. Notice that the total number of marked positions is at least r, the number of 
players left to play, by equation (3). Among these marked positions, those of least payoff 
are the positions </,( [/><_!) with />, integer, which have l(i) = 0 and a payoff of B/2. The 
other marked positions will thus be used first; however, there are only \pi\ — 1 of these other 
marked positions in each J,, and hence less than r in total by (2), so the theorem implies that 
one or more of the marked positions of low payoff B/2 will have to be used as well. From 
these remarks, it follows that the number of players that will end up in each J, (according 
to the theorem) satisfies (4). 

We will prove the theorem by induction on the number n — k + 1 of players left to play. 
For the base case k = n. the marked positions are endpoints «/,-([/>;] + 1) of highest payoff, 
and these are also the optimal moves for the last player under the "closest to the first 
player" tie-breaking rule. For the inductive step, suppose without loss of generality that 
player k < n plays in an interval J, with the endpoint J,(0) to the left and the endpoint 
J,([pi\ + 1) to the right. Then J{ is split into a left interval L = (Ji(0),x*) and a right 
interval R = (xk, J;( [pi\ + 1)). The new set of k +1 intervals will then have a new parameter 
B' satisfying (2) and (3), and we can assume inductively that the last n — k players will play 
as indicated by the theorem for this new parameter B'. Notice that B' > B, since B is still 
a solution to (3) for this new set of intervals, while B' is by definition the largest solution to 
(3). 

Lemma 1 (Low payoff for unmarked positions) If player k plays between J,(j — 1) and J,{j) 
(or at Ji(j)), his payoff will be no greater than the payoff associated with marked position 
■hii), for 1 < j < [pi\, and smaller than B/2 for j = [p,J +1. 

Proof. We claim that if player k plays at xk, between J{{j - 1) and J,(j) (or at ./,•(;)), 
then for j > 1 some player will play in L at J{(j - 1) or higher, and for j < [pi\ some player 
will play in R at ./;(;' + 1) or lower. This claim implies the lemma: For 1 < j < [p.J, the 
payoff associated with marked position J,-(j) is at least as high, since this payoff corresponds 
to a situation where xk = J,(j) and no player plays between J,(j - 1) and J{(j + 1). For 
J = L°»J + 1' either j > 1, in which case the payoff is less than B/2 because l(i) < B. or 
j = 1, in which case the payoff is less than B/2 because [/>,J = 0 so that J; is a small interval. 

To prove the claim, we consider two cases. If B' - B, then some player after player k will 
play at J,(j -1), for j > 1. Also, some player will play at distance B from xk in R, and hence 



at Ji(j + 1) or lower, for j < [pt\. The remaining case is B' > B. Since the new parameter 
B' is greater than B, the number of players that can play in each interval is now at most 
j - 1 for L, at most [>,] - j for R, and at most f/>,-,] - 1 for each of the other intervals J,. 
with i' ^ i. By equation (2), these numbers can only add up to r - 1, the number of players 
left to play after player k, if exactly j - 1 players play in L, exactly |>,] -j in R, and exactly 
J/Vl - 1 in the remaining J,-«. Then, for j > 1, the (j - l)th player in L (from left to right") 
is above J,(; - 1). Also, for ;' < [Pi\, if the leftmost player in R were at J,(; + 1) or above, 
then there could be no more than \p,] - j -I players in R, since B' > B, so the leftmost 
player in R must in fact be below J,(j + 1). This proves the claim and completes the proof 
of the lemma. Q 

Lemma 2 (Preservation of marked positions) Let Ji(j) be a marked position of highest 
associated payoff. Then among the limiting moves (xk,..., zn, -<) available to player k then 
is one in which xk = J,-( j). and xk, .T„ are n - k +1 marked positions of highest associated 
payoff, in order of decreasing payoff. 

Proof. If player Ä: plays at a marked position J,(;') (this is feasible unless /(?) = 0), then 
B also satisfies (2) for the new set of k + 1 intervals, so B' = B. The new set of k + 1 
intervals therefore has a new marked position L{j) at J<(j), with L(j) -< J,(j). If none of 
the remaining players plays at L{j), then they will all play at the old marked positions in 
order of decreasing payoff, as desired. On the other hand, if one of them plays at L(j), then 
the condition of the lemma is not satisfied and in fact player k obtains a low payoff of B/2 
or less. 

However, it is still possible for player k to obtain the limiting play described in the lemma 
by playing just below J,-(j), at Jt{j) - e, where e < B - l(i). Now if B' = B, then the marked 
positions remain the same after player k has played, except for the marked positions ./,•(/) 
with j' > j, which change to R{j' - j) = «/,•(;') -e. Letting t go to zero gives a limiting play 
as stated in the lemma. The remaining case is B' > B. Then, as in the proof of Lemma I. 
we must have; - 1 players in L, \pi] -j players in R, and |>,<] - 1 players in the remaining 
J,/. As before, the leftmost player in R must be below J^j + l) (provided that \p,] - j > 0 so 
that R has at least one player), so B' < B + t; if we let c go to zero then B' approaches B and 
the positions of the players approach the marked positions of highest payoff. If \pi] -; = 0. 
then Ji(j) is a marked position with payoff B/2 and can only be a position of highest payoff 
if [/>,/] — 1 equals zero for all intervals ./,-. But |"/v] — 1 is the number of players in each ./,-. 
so player k would be the last player, contrary to the assumption that k < n. □ 

We use these two lemmas to prove the theorem. If a is the payoff associated with a marked 
position Ji(j) of highest payoff, then player k can obtain a payoff of a in the limit by playing 
at Ji(j) or just below «/,(./) as in Lemma 2. On the other hand, by Lemma 1, the only plays 
that could possibly give the same payoff a to player k involve playing between Ji{j — 1) and 
Ji(j), where Ji{j) is a marked position of payoff a, but then position «7,-(j) is closer to .?i 
and hence should be preferred by player k under the "closest to the first player" tie-breaking 
rule. Thus the optimal limiting play is the one given in Lemma 2, completing the induction 
and proving the theorem. [] 
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Figure 3: Optimal play (zi,... ,x„, X) for n = 10 under the "closest to the first player" 
tie-breaking rule. Here xn = x\ with X! -< xn. 

To complete the analysis, we must examine the optimal strategy for the first player. Consider 
the n - 1 positions p, = (2i - l)/2(n - 1) for 1 < i < n - 1. The above theorem implies 
that if player 1 plays at one of these positions, then the remaining n — \ players will play 
in the limit at these n — 1 positions (one of them coinciding with player 1), giving player 1 
a payoff of l/2(n - 1) [see Fig. 3]. If on the other hand player 1 does not play at one of 
these positions, the remaining n — 1 players will play near these n - 1 positions but closer 
to player 1, giving him a payoff smaller than l/2(n — 1). This gives: 

Corollary 1 In the optimal limiting play opt() = (zi,... ,z„, X) under the "closest to the 
first player" tie-breaking rule, the limiting moves xi, •.. ,zn_i of the first n - 1 players are 
the numbers l/2(n - l),3/2(n - 1),..., (2n - 3)/2(n - 1), in some order, and the limiting 
move xn of the last player equals x\. This gives a limiting payoff of l/2(n — 1) for the first 
and last players, and l/(n — 1) for the remaining players. 

Thus the youngest and the oldest children will be less likely to get the left-over toetje. 

The preceding analysis can in fact be carried through even if the choice among equally 
desirable intervals is made at random or nondeterministically (i.e., chosen arbitrarily by 
each player when it is his turn to play), and even if only the last players — those that are 
left to play once each interval has at most one marked position — use the "closest to the 
first player" tie-breaking rule to select a position inside the chosen interval. 

5. The "rightmost" and "random" tie-breaking rules 

We first consider the "rightmost" tie-breaking rule. This tie-breaking rule assumes that the 
optimal limiting play (z*,... ,zn, -<) chosen by a player k is such that no other optimal 
limiting play that has the first k players in the same relative order in the interval [0,1] as 
the chosen play can have player k further to the right. Again, we make no assumptions 
about how the tie-breaking rule chooses the relative position of a player with respect to 
earlier players if several optimal alternatives are available, so our solution actually applies 
to a family of tie-breaking rules. 

It turns out that the solution for the "rightmost" tie-breaking rule is very similar to the 
solution for the "closest to the first player" rule, provided that we make a few changes to the 
marked positions. We again consider the intervals Ji,...,Jfc, and define marked positions 
as follows. Let J,(0) and «7,(|_/>«J + 1) be the left and the right endpoints of J, respectively. 



If i < k. the [pi\ marked positions for J, and their associated payoffs are defined as before. 
For ,//t, on the other hand, we define [pk\ marked positions by letting Jk(j) = Jk(0) + jB if 
1 < J< [pk\ and Jk([pt\) = Jk{[pi\ + 1) — B/2. Therefore the associated payoff of every 
marked position in Jk equals B, except for the last two marked positions Jk{\_pk\ — 1) and 
Jk[[pk\); these two positions have a payoff of (B+l(k))/2, where l(k) is the size of the leftover 
interval A', = (Jk{\j>k\-l),Jk{[Pk\)) and is given by l(k) = {ck + B/2) mod B. In particular, 
if pk is an integer with ph > 2, then we have a double marked position Jk([pk\ — 1) = Jk([pk\) 
with Jk([pk\ — 1) -< Jk([pk\), and each of these two positions has an associated payoff of 
B/2. For the particular case pk = 2, we will also need to consider a special position Jk{) 
just to the right of .4(0), that is, Jk{) = Jk{0) with Jk{0) X Jjt(); this special position is not 
considered a marked position. 

Using this new set of marked positions, the results of the previous section for the "closest 
to the first player" tie-breaking rule can be extended to the "rightmost" tie-breaking rule as 
well, provided that the somewhat subtle situations that arise when a double marked position 
is present are properly treated. 

Theorem 2 The optimal limiting play under the "rightmost" tie-breaking rule is given for 
k > 2 by opt(xi,..., x*_i) = (x*,... ,xn, -<), where one of the following conditions holds: 

1. There is no double marked position, and £*,...,xn are marked positions of highest 
payoff, in order of decreasing payoff. 

2. There is a double marked position, two x, among xjt,... ,x„ are at the double marked 
position, and Xk,..., xn are marked positions of highest payoff, in order of decreasing 
payoff. 

3. There is a double marked position, only one xt among Xk, ■.., x„_i is at the double 
marked position, and Xk,..., x,_i, x,+i,..., xn are marked positions of highest payoff, 
in order of decreasing payoff. 

/,. There is a special position, x„ is at the special position, no x,- is at the double marked 
position, and xjt,..., x„_i are marked positions of highest payoff, in order of decreasing 
payoff. 

If we now consider, for each possible move of the first player, the optimal play for the 
remaining players described by the four cases in the theorem, we obtain: 

Corollary 2 In the optimal limiting play opt() = (xx,... ,xn, X) under the "rightmost" 
tie-breaking rule, the limiting moves xj,..., xn_x of the first n — 1 players are the numbers 
l/2(n — l),3/2(n — 1),..., (2n — 3)/2(n — 1), in some order, and the limiting move xn of the 
last player equals xn_!. This gives a limiting payoff of l/2(n — 1) for the last two players, 
and l/(n — 1) for the remaining players. 

For other tie-breaking rules, the situation is more complicated. To simplify things and avoid 
dealing with the special intervals Jj and and J/.., let us assume that for all the intervals 
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Ji, both endpoints of J, have been taken by earlier players. This will be the case if the 
numbers 0 and 1 are taken at the beginning of the game (or, alternatively, if the game is 

played on a circle). 

Under this simplifying assumption, there is no difference between the "closest to the first 
player" and the "rightmost" tie-breaking rules. We now examine the situation under the more 
equitable tie-breaking rule in which the choice among equivalent moves is made uniformly 
at random. 

If we follow the heuristic argument of section 3, we would expect that the number of players 
r,- in each J, would still satisfy (4). Under the "random" tie-breaking rule, however, the 
subintervals of size B would be taken by the first r,- - 1 players in Ji at random from either 
the left end or the right end of «/,-, leaving a subinterval J/ of size greater than B somewhere 
in between. Then the last player in Ji would play at random inside J/ but in such a way as 
to partition J/ into two subintervals of size at most B. 

This is indeed the optimal strategy when the total number of players in each interval is 
small. The inductive step, however, fails when the number of players is large. Thus, in the 
seven-player game with both endpoints taken, if all players follow the strategy we described, 
the expected payoff for the first player will be (1/7)(1 - (1/2)7) < 1/7* but if the first player 
chooses the midpoint of the [0,1] interval and the remaining six players follow the strategy 
we described, playing three to each side of the first player, the expected payoff for the first 
player will be 7/48 > 1/7 (see [1] for the details of these calculations). 

Nevertheless, since this strategy is optimal when the number of players is small, it may 
provide a good base case from which to extend the solution for the "random" tie-breaking 
rule to larger values of n. 

6. Conclusion 

We have shown that a simple zero-sum game in which all players play independently so as 
to maximize their own payoff can be viewed, under certain conditions, as a game in which 
the players cooperate to minimize the payoff of the last player. Furthermore, this approach 
is helpful in developing an optimal strategy for the game. An interesting question is whether 
this principle can be applied to a broader family of zero-sum games. 
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