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The two graduate students supported by this augmentation award have graduated and started Post- 
Doctoral studies in two outstanding laboratories. I will first summarize the data collected by these 
students and then consider some of the fascinating theoretical observations that arise from this data. 
Finally the publications arising from the studies by these students will be listed at the end of this 
document. 

Photoentrainment in mammals - Summary of Results. In mammals the circadian clock is 
located within the SCN and is regulated by photoreceptors within the eye. Loss of the eyes blocks all 
circadian responses to light in every mammal examined (cf. all other vertebrates) (Foster, Provencio, 
Hudson, Fiske, De Grip, & Menaker, 1991; Nelson & Zucker, 1981). While we know that the 
entraining photoreceptors are ocular, the few studies undertaken all show that there are significant 
differences between the processing of light information for image-forming visual responses and 
photoentrainment. The route by which light information reaches the circadian system (the 
retinohypothalamic tract RHT) is anatomically, developmentally and physiologically distinct from the 
visual projections (Moore & Klein, 1974; Pickard, Turek, Lamperti, & Silverman, 1982) Moore, 1995 
#1474. In addition, circadian responses to light seem to differ from visual responses; the threshold for 
phase shifting circadian rhythms is relatively high, and intensity-duration reciprocity holds for stimuli 
of very long durations (up to 45 minutes) (Takahashi, DeCoursey, Bauman, & Menaker, 1984). 

The photoentrainment pathway constitutes a minute portion of the eye, obscured by the large 
number of photoreceptors and inner retinal neurons devoted to image formation. As a result, the role of 
rods, cones and other retinal neurons in entrainment has been difficult to study. In recent years we 
have used retinally degenerate models as "reduced preparations". Studies have correlated the loss of 
retinal elements with any effects on photoentrainment. Our first experiments in this area used mice 
homozygous for retinal degeneration (rd/rd). These mice experience a massive degeneration of the rods 
and cones. By 60 days of age all rod cells have degenerated, and between 90 and 150 days of age even 
the crudest electrophysiological and behavioral responses to bright light have disappeared (Provencio, 
Wong, Lederman, Argamaso, & Foster, 1994). In the mouse retina, approximately 97-98% of all 
photoreceptors are rods, and although all rods degenerate in the rd/rd retina a few cone cells remain in 
animals over one year of age. These cones lack outer segments and constitute only 2-5% of the cone 
cells found within the normal (+/+) retina. As a result, the rd/rd eye at about one year of age contains 
approximately 0.09% of its original number of photoreceptor cell bodies (perhaps 4,500 cells), and 
with increasing age, cone cell loss continues. To determine the impact of photoreceptor loss on the 
circadian system, the effects of a standardized light pulse on phase shifting the freerunning locomotor 
rhythm were determined in three genotypes of mice (rd/rd, rd/+, +/+) from the same C57BL strain. 
Despite the loss of visual photoreceptors in rd/rd mice, these animals show circadian responses to light 
that were indistinguishable from mice with phenotypically normal retinas (rd/+, +/+). The irradiance 
required to produce both saturating and half-saturating responses was the same for all groups. It is 
important to stress that not only does some photosensitivity remain in mice with degenerate retinas, but 
the circadian photosensitivity shown by these animals is not different from the sensitivity of animals 
with normal retinas. Significantly unattenuated sensitivity is maintained in animals greater than two 
years of age, demonstrating that the sensitivity of the circadian system to light does not parallel 
photoreceptor loss in the rd/rd mouse (Provencio, et al., 1994). 



Another retinal mutation, retinal degeneration slow (rds/rds) has provided a second approach to 
the question of which elements in the eye mediate circadian responses to light. In rds/rds mice, the 
retina undergoes normal development until the first postnatal week, then both rod and cone 
photoreceptors fail to develop outer segments and then gradually degenerate. In rds/rds mice 
approximately half of all the rods and cones have degenerated by 3 months, and most photoreceptors 
seem to have degenerated by 1 year of age, for review see (Argamaso, Froehlich, McCall, Nevo, 
Provencio, & Foster, 1995). Our recent studies have shown that circadian responses to light are 
identical in rds/rds, rd/rd and +/+ genotypes (Argamaso, et al., 1995). This provides overwhelming 
evidence that the photoreceptive elements mediating circadian responses to light do not require an outer 
segment. 

Until the studies on rd/rd mice it had been assumed that rods regulate circadian responses to 
light in mammals. This belief was based upon an action spectrum for phase shifting of locomotor 
activity rhythms in the golden hamster (Mesocricetus auratus) (Takahashi, et al., 1984). These data 
show a spectral maximum (Xmax) around 500 nm, which correlates well with the absorbance (Xmax = 
502 nm) of the extractable rod photopigment in this species. More recent studies in rodents, however, 
have demonstrated the existence of cones with spectral sensitivities near 500 nm (Jacobs, Neitz, & 
Deegan, 1991), including hamsters, in which a single cone sensitivity has been identified between 505 
- 506 nm (Calderone & Jacobs, 1995). Because the action spectrum for phase shifting locomotor 
rhythms cannot resolve differences between sensitivities at 502 nm (rod) or 506 nm (cone), the roles 
of rods and/or cones, therefore, remains uncertain in this species. Two types of cones have been 
identified in the normal mouse retina. Electroretinogram (ERG) and behavioral studies have shown 
two sensitivity maxima, a green-sensitive cone near 510 nm and an ultraviolet sensitive cone near 360 
nm (Jacobs, et al., 1991). Our Action spectra for phase-shifting in aged (80 - 90 days) rd/rd (rodless) 
and +/+ mice show two spectral sensitivities around 510 nm and 360 nm, corresponding well with the 
absorption maxima of the two known mouse cone types (Provencio & Foster, 1995). By using RT- 
PCR techniques, followed by cloning and sequencing of the amplified cDNAs, low levels of both the 
green and UV cone opsin have been isolated from the aged rd/rd retina (animals > 2 years). However, 
rod opsin mRNA was not detected beyond approximately 1 year of age (Argamaso-Hernan & Foster, 
manuscript in preparation). On the basis of the molecular analysis, and the similarity of the action 
spectrum results with the spectral sensitivity of the known cones, the cones become strong candidates 
for circadian regulation. However it is worth stressing that although cone opsins and cell bodies 
remain in the rd/rd retina, most of the cones have been lost and the remaining cones lack outer 
segments. If the remaining cones do mediate circadian responses to light then one must propose a 
mechanism that can compensate for massive photoreceptor loss and loss of outer segments. 

Theoretical Considerations: Perhaps the most surprising observation to emerge from our studies 
outlined above is that mammals which lack classical visual responses are still capable of regulating 
their circadian rhythms by light with unattenuated sensitivities. These data have led to the realization 
that two functionally distinct systems exist for processing light information in the mammal eye (and 
perhaps the other vertebrates). The "image-forming" photoreceptor system, which constructs a 
representation of the environment (classical vision) and the "non-image-forming" photoreceptor 
system, which instead detects changes in the overall quality of light at different times of day. In view 
of the different sensory demands of image detection and the regulation of biological clocks it is not 
surprising that two systems for processing light information have evolved. Support of this comes from 
recent studies which show that certain "blind" individuals can still regulate their circadian rhythms by 
light (Czeisler, Shanahan, Klerman, Martens, Brotman, Emens, et al., 1995). 

The sensory ecology of photoentrainment. Our research effort to understand photoentrainment 
in mammals has concentrated on the search for the photoreceptors and their projections to the clock. As 
a result of this work however we began to consider in much greater detail the sensory ecology of the 
entrainment pathway and the features of the light environment at dawn and dusk that may be important 
for circadian regulation. During twilight, the quality of light changes in three important respects: 1) the 
amount of light, 2) the spectral composition of light, 3) and the source of light (i.e. the position of the 
sun). These photic parameters all change in a systematic way, and could be used by organisms to 
detect the phase of twilight. For example: 



1) The amount of light. The unique anatomical and physiological features of the photic 
input to the SCN seem to protect the circadian axis from stimuli incapable of serving as reliable time 
cues. The circadian and visual systems occupy different regions of a theoretical plane where the x 
dimension is sensitivity and the y dimension is integration time (Figure 1). It is striking that in those 
animals studied the threshold for phase shifting circadian rhythms is significantly higher than that 
required to elicit visual responses. For example, hamsters can recognize optical gratings at a luminance 
level 200 times less than the level necessary to elicit phase shifts in locomotor rhythms (Emerson, 
1980). This relative insensitivity of the circadian system may function to filter out "photic noise" 
(Nelson & Takahashi, 1991). The irradiance of starlight is approximately 9.3 x 108 photons.cm-2, s1 

(total irradiance between 400 and 700 nm) while the irradiance of the full moon is approximately 32- 
fold greater (3 x 1010 photons.cnr2. s1 total irradiance between 400 and 700 nm) (Munz & McFarland, 
1977). Both of these "photic noise" sources fall below the threshold for photoentrainment, and 
therefore cannot interfere with circadian function. Lightning could potentially "confuse" the circadian 
system. It can be 50 times greater than that of direct sunlight. In addition, shading by vegetation or 
cloud cover can greatly alter the amount of light falling upon an organism. As a result, any reliable 
measure of light level (and hence time of day) must compensate for local fluctuations. In view of these 
considerations, it is not surprising that the circadian system of those animals examined is very 
insensitive to light stimui of short durations. For example, the circadian system of the hamster is 
relatively insensitive to stimulus durations of less than 30 seconds (Nelson & Takahashi, 1991). 

The circadian system needs to measure overall light levels in the environment (irradiance) and 
ignore brightness in particular areas of the sky (radiance). For image detection, the visual system 
maintains complete retino-topographic order. The eye focuses light onto a particular region of the 
retina, and this radiance information is then mapped to a specific position in the brain. By contrast, the 
circadian system requires measures of irradiance. Photoreceptors located beneath the skull or in the 
brain are unable to extract any image information, the overlying tissues scatter light to such an extent 
that all features are lost. By their very nature the pineal and deep brain photoreceptors of non-mammals 
are excellent irradiance detectors. But mammals lack extraretinal photoreceptors and are "forced" to use 
their eyes for photoentrainment, and the question has been how do mammals attempting to extract 
irradiance information compensate for a lens? The answer seems to be as follows. The retinal ganglion 
cells (RGCs) projecting to the SCN are relatively scarce and have extensive dendritic arbors. This 
reduces spatial resolution and increases sampling area. In addition, there is an absence of retinotopic 
order in RHT. RGCs project randomly to the retinorecipient areas of the SCN, which further blurs any 
image. These combined effects provide the SCN with irradiance information. 

2) The spectral composition of light. In addition to large changes in irradiance, there are 
very precise spectral changes associated with twilight. Primarily there is an enrichment of the shorter 
wavelengths (< 500 nm) relative to the mid-long wavelengths (500 - 650 nm) at twilight. If the 
circadian system was capable of some form of spectral discrimination, and able to ratio changes in the 
relative amounts of short and long wavelength radiation, then it could determine the phase of twilight 
very accurately. Whether any animal circadian system uses spectral information remains unclear, but it 
is striking that mice seem to use at least two photopigments (Xmax at 511 nm and in the near-UV) to 
regulate their circadian responses to light. If wavelength discrimination is used by the mammalian 
circadian system for photoentrainment, and based on the assumption that photoentrainment evolved 
before image detection, then it is possible that multiple photopigments and wavelength discrimination 
may have evolved originally as a means of detecting changes in twilight. These mechanisms only later 
became specialized for contrast detection in the image-forming visual systems. 

3) The position of the sun in the sky. The position of the sun in the sky is used by 
many different animals for time compensated sun-compass orientation, for review see (Wallraff, 
1981). Whether this information is also used by organisms to entrain circadian systems remains a 
mystery. For this task radiance detection, and topographic mapping, would be required to determine 
the position of the sun. In this way perhaps the "classical" visual system does contribute to 
photoentrai nment. 
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