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Abstract 

Our goal is to understand and build comprehensive agents that function effectively in 
challenging niches. In particular, we identify a class of niches to be occupied by 
"adaptive intelligent systems (AISs)." In contrast with niches occupied by typical AI 

agents, AIS niches present situations that vary dynamically along several key dimensions: 

different combinations of required tasks, different configurations of available resources, 

contextual conditions ranging from benign to stressful, and different performance criteria. 
We present a small class hierarchy of AIS niches that exhibit these dimensions of 
variability and describe a particular AIS niche, ICU (intensive care unit) patient 
monitoring, which we use for illustration throughout the paper. To function effectively 
throughout the range of situations presented by an AIS niche, an agent must be highly 
adaptive. In contrast with the rather Stereotypie behavior of typical AI agents, an AIS 
must adapt several key aspects of its behavior to its dynamic situation: its perceptual 
strategy, its control mode, its choices of reasoning tasks to perform, its choices of 
reasoning methods for performing chosen tasks; and its meta-control strategy for global 
coordination of all of its behavior. We have designed and implemented an agent 
architecture that supports all of these different kinds of adaptation by exploiting a single 
underlying theoretical concept: An agent dynamically constructs explicit control plans to 
guide its choices among situation-triggered behaviors. The architecture has been used to 

build experimental agents for several AIS niches. We illustrate the architecture and its 
support for adaptation with examples from Guardian, an experimental agent for ICU 

monitoring. 



1. Toward More Comprehensive AI Agents 

"Intelligent agents" continuously perform three functions: perception of dynamic 
conditions in the environment; action to affect conditions in the environment; and 

reasoning to interpret perceptions, solve problems, draw inferences, and determine 
actions. Conceptually, perception informs reasoning and reasoning guides action, 
although in some cases perception may drive action directly. This abstract definition 
allows for a great variety of biological and artificial agents whose capabilities range from 

extremely limited and stereotyped behavior to extremely sophisticated and versatile 

behavior. Why should different agents exhibit different behavioral capabilities and what 
underlies these differences? 

Differences in their behavioral capabilities allow different classes of agents to 
function effectively in different niches. A "niche" is a class of operating environments: 
the tasks an agent must perform, the resources it has for performing tasks, the contextual 
conditions that may influence its performance, and the evaluation criteria it must satisfy. 
Human beings are the most sophisticated existing agents. Given their broad range of 
potential behavior, individual human beings can function effectively in many challenging 
niches. By contrast, typical AI agents are extremely limited. Given their narrow range of 
potential behavior, individual agents can function effectively only in a small number 
(usually one) of severely restricted (usually highly engineered) niches. 

We hypothesize that, to a large degree, an agent's architecture determines its potential 
behavior and, therefore, the niches in which it potentially can function: 

Agent Architecture => Potential Behavior => Suitable Niches. 

By "architecture" we mean the abstract design of a class of agents: the set of structural 
components in which perception, reasoning, and action occur, the specific functionality 
and interface of each component, and the interconnection topology among components. 
Under this hypothesis, human beings function effectively in many niches that no other 
animal or existing AI agent could fill~certainly because only human beings have 
acquired the necessary knowledge and skills, but more fundamentally because only the 
complex and powerful architecture embodied in the human nervous system [Albus, 1981] 
supports such a broad range of knowledge and skills. 



Conversely, to function effectively in a particular niche, an agent must exhibit the 
range of behavior required in that niche and, therefore, must have an architecture that 
supports the required behavior: 

Intended Niche => Required Behavior => Sufficient Architectures. 

Typical AI agents have simple architectures for good reason: simple architectures are 

sufficient to support the behavior required in their intended niches. In fact, for restricted 

niches, architecture often plays a relatively small role in an agent's effectiveness, many 

alternative architectures may suffice, and architectural design is a relatively insignificant 

part of the agent-building enterprise. As the intended niche increases in complexity, 

however, architecture plays a larger role in the agent's effectiveness, fewer alternative 

architectures will suffice, and architectural design becomes a more critical and expensive 
part of the agent-building enterprise. 

Thus, we argue that present AI agents are "niche-bound" both because they are 
"knowledge-bound" [Lenat and Feigenbaum, 1991] and because they are "architecture- 
bound." Increasing only agents' knowledge can expand the very narrow niches in which 
they currently function. However, it will have diminishing returns as the intended niches 
increase in complexity and agents' ability to exploit the necessary knowledge and skills 
runs up against architectural limitations. 

Our goal is to provide an architecture for more comprehensive AI agents that function 
effectively in more challenging niches. Thus, we are working very much in the spirit of 
Newell's call for "unified theories of cognition" [Newell, 1990]; see also: [Albus, 1991; 
Laird, et al, 1987]. We focus on a class of "adaptive intelligent systems (AISs)," which 
operate in a class of niches that is intermediate between the severely restricted niches of 
typical AI systems and the effectively unrestricted niches of human beings. As discussed 
below, AIS niches present dynamic variability in their required tasks, available resources, 
contextual conditions, and performance criteria. As a result, to function effectively in AIS 
niches, agents must possess a pervasive property of human behavior: adaptation. We 
have designed an agent architecture to support the several dimensions of adaptation 
required in AIS niches and used it to build experimental agents for several of the domain- 
specific niches in Figure 1. To ground the discussion, we take examples throughout the 

paper from a particular niche, patient monitoring in an intensive care unit (ICU), and an 



experimental agent called Guardian [Hayes-Roth, et al, 1989; 1992], which was built with 

our agent architecture. 
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Figure 1. Excerpt from the Class Hierarchy of AIS Niches. 

Let us begin by using the ICU monitoring niche to illustrate important shared 
properties of AIS niches. Intensive care patients are critically ill and depend on life- 
support devices (e.g., a ventilator) to perform vital functions until their own impaired 
organs heal and resume normal function, usually a period of several days. The high-level 
goals of ICU monitoring are to wean the patient from the devices as soon as possible (to 
minimize cost, discomfort, and undesirable side effects), while detecting and treating any 
additional problems that arise along the way. Effective patient-management involves: 
interpretation of many continuously, periodically, or occasionally sensed physiological 
and device variables; planning and comparative evaluation of many interacting therapy 
alternatives; detection, diagnosis, and correction of unanticipated problems; control of 
many patient-management and device-control parameters; and reporting and consulting 
on patient progress with other members of the ICU team. The complexity of ICU 
monitoring can overwhelm even skilled clinicians. 



Table 1. Shared Properties of AIS Niches versus Typical AI Niches 

AIS Niches Typical AI Niches 

Required Tasks 

Available Resources 

Typical Context 

Evaluation Criteria 

Diverse, concurrent, interacting   Single isolated task 

Variable methods, data, models,   Single correct method, relevant 
facts available data, and appropriate model 

Competing: 
Percepts, tasks, actions 

Effective, timely, robust 

No competition 

Correct, efficient, complete 

As illustrated by ICU monitoring and summarized in Table 1, AIS niches are 

considerably more demanding than the niches occupied by typical AI agents. First, AIS 

niches require performance of several diverse tasks, sometimes concurrently and often 

interacting. For example, ICU monitoring requires tasks such as condition monitoring, 

fault detection, diagnosis, and planning. Second, AIS niches provide variable resources 

for performing tasks. For example, Guardian has both associative and causal modeling 

methods for performing diagnosis tasks. It may or may not have the particular class 

hierarchies or causal relations needed to apply these methods to a given diagnosis 

problem. Third, AIS niches entail complex and variable contextual conditions. For 

example in ICU monitoring there may be 100 variables sensed automatically several 

times per second (e.g., blood pressure, pulse), as well as other variables that are sensed 

irregularly (e.g., laboratory results, x-ray analyses). Data representing these variables 

differ in criticality and criticality is context-dependent. A patient may manifest several 

problems simultaneously and therapies for simultaneous problems may interact. Finally, 

AIS niches impose more qualitative performance criteria, replacing the usual 

correctness, efficiency, and completeness criteria with effectiveness, timeliness, and 

robustness. For example, if an ICU patient manifests several problems simultaneously, 

any critical problems must be treated well enough and soon enough to save the patient's 

life, even if such treatment is sub-optimal and regardless of how many other problems go 
untreated. 



Table 2. Behavioral Adaptations Required of an AIS 

versus the Static Behavior of a Typical AI Agent 

Required AIS Adaptations Typical AI Agent Behaviors 

Perception Strategy      Adapt to information requirements Fixed 
and resource limitations 

Control Mode Adapt to goal-based constraints      Fixed 
and environmental uncertainty 

Reasoning Tasks Adapt to perceived and inferred      Single Task 
conditions 

Reasoning Methods      Adapt to available information       Single Reasoning Method 
and current performance criteria 

Meta-Control Strategy Adapt to dynamic configurations    Unnecessary 
of demands and opportunities 

To function effectively in AIS niches, an agent must be highly adaptive (Table 2): it 

must modify its behavior on each of several dimensions, depending on the situation in 

which it finds itself. First, an agent must adapt its perceptual strategy to dynamic 

information requirements and resource limitations. For example, when Guardian is 

monitoring a stable patient, it may divide its perceptual activities among all available 

patient data in order to maintain a good overview of the patient's condition and remain 

vigilant to possible problems. However, when it detects a serious problem, Guardian must 

perceive more selectively, focusing on patient data that help it diagnose the problem and 

identify an appropriate therapeutic action in a timely manner. Second, an agent must 

adapt its control mode to dynamic goal-based constraints on its actions and uncertainty 

about its environment. For example, when the patient has a critical, but slowly evolving 

problem, Guardian can plan and execute an optimal course of therapeutic actions. 

However, when urgent conditions arise, Guardian must be prepared to react immediately. 

Third, an agent must adapt its choices among potential reasoning tasks to dynamic local 

and global objectives. For example, when Guardian is monitoring a stable patient, it need 

only track patient data. When it detects a problem, it must perform a diagnosis task, along 

with its ongoing monitoring task. After completing its diagnosis, it must perform a 

therapy planning task, along with its ongoing monitoring task. Fourth, an agent must 

adapt its reasoning methods to the currently available information, and performance 

criteria. For example, Guardian can use clinical experience to recognize commonly 



occurring problems and select standard therapeutic responses. However, when faced with 
unfamiliar problems, it must fall back on models of the patient's underlying 

pathophysiology to perform a more systematic diagnosis and design an appropriate 

therapy. Finally, an agent must adapt its meta-control strategy to its dynamic 

configuration of demands, opportunities, and resources for behavior.   For example, 

Guardian ordinarily interleaves several unrelated or loosely-coupled activities, but may 

decide to suspend competing activities if a critical problem arises. An effective meta- 
control strategy may emerge from Guardian's independent decisions regarding co- 

occurring problems; in other cases it may decide to impose a particular meta-control 

strategy on a challenging configuration of competing demands and opportunities for 
behavior. 

We have designed and implemented an agent architecture to support the several forms 
of adaptation required of an AIS. It enables an agent to modify its perceptual strategy, its 
control mode, its reasoning tasks, its reasoning methods, and its meta-control strategy, 
depending on relevant features of its dynamic situation. Moreover, our architecture has an 
important theoretical strength, a kind of architectural parsimony. Its support for all five 
dimensions of adaptation derives from a fundamental theoretical concept and its 
architectural embodiment [Hayes-Roth, 1985; 1993a,b]: An agent dynamically constructs 

explicit control plans to guide its choices among situation-triggered behaviors. 

The remainder of the paper is organized as follows. Section 2 presents our agent 
architecture. Sections 3-7 examine the requirements for each of the five dimensions of 
adaptation in more detail and show how our architecture supports them. Section 8 
discusses evaluation of the architecture, summarizes the status of experimental agents 
built with the architecture, and contrasts the architecture with others in the literature. 
Section 9 presents conclusions. 

2. The Agent Architecture 

Our agent architecture (Figure 2) hierarchically organizes component systems for 
perception, action, and cognition processes. Perception processes acquire, abstract, and 
filter sensed data before sending it to other components. Action systems control the 
execution of external actions on effectors. Perception can influence action directly 
through reflex arcs or through perception-action coordination processes. The cognition 
system interprets perceptions, solves problems, makes plans, and guides both perceptual 
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strategies and external action. These processes operate concurrently and asynchronously. 
They communicate by message passing. Perception-action operations occur at least an 

order of magnitude faster than cognitive operations. 

Scheduling 

Triggering Execution 

Perception 

sEHsEE 

Fast Reflex Arcs 
Action 

■"TOT |E|E||E|E|JE 

Dynamic Environment 

Figure 2. The Agent Architecture. 

The cognition system, which is the architecture's most substantial component, is 
realized as a "blackboard architecture" [Erman, et al, 1980], extended to support dynamic 
control planning [Hayes-Roth, 1985; 1990; 1993b]. For present purposes, we emphasize 
these features: (a) Perceptual inputs and internal reasoning operations produce changes to 
a global memory, (b) Each such event triggers some number of possible reasoning 
operations, (c) Possible operations are scheduled for execution based on active control 
plans, (d) Control plans are themselves constructed and modified by reasoning 
operations, (e) Possible actions and control plans are represented in an English-like 
machine-interpretable language that supports semantic partial matching of actions to 
plans. 



For example, here is one of Guardian's reasoning operations for model-based diagnosis: 

Name: Find-Generic-Causes 

Trigger: Observe condition, C; where C exemplifies Generic-fault, F 
Action: Find generic-faults that can-cause F 

Find-Generic-Causes is triggered and its parameters are instantiated whenever a prior 

reasoning operation indicates that a newly observed patient condition, C, "exemplifies" 

some generic-fault, F. For example, if C were a decrease in the patient's urine output or 

inspired air, it would exemplify the generic fault: decrease in the flow of a flow process. 

When executed, the action of this reasoning operation consults the factual knowledge 

base and identifies all generic-faults that "can-cause" F (e.g., blockage or leakage of an 
upstream flow structure can cause a decrease in the flow of a flow process). By recording 
each such possible cause in the global memory, this operation creates internal events that 
trigger other reasoning operations. For example, some triggered operations might 
instantiate possible generic causes with respect to the observed condition, C (e.g., 
blockage or leakage of various structures in the urinary or respiratory system). Others 
might continue the backward chaining to identify other generic-faults that "can-cause" 
those currently hypothesized. Others might attempt to discriminate among alternative 
hypotheses by examining relevant patient data. To perform a reasoning task such as 
diagnosis, Guardian triggers and executes a sequence of such reasoning operations, under 
the control of an appropriate control strategy, incrementally building a solution to the 
diagnosis problem. 

Here is an example of Guardian's control reasoning operations: 

Name: Respond-to-Urgent-Problem 
Trigger: Observe critical condition, C 
Action: Record control decision with 

Prescription: Quickly respond to C 
Criticality: Criticality of C 

Goal: Diagnosed problems related to C are corrected 

Respond-to-Urgent-Problem is triggered and its parameter, C, is instantiated whenever 
the perception system delivers an observed condition with a high criticality. When 
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executed, it creates a control decision to quickly respond to the condition and gives this 

decision a priority that is proportional to the criticality of C. While active, this control 
decision focuses (some of) Guardian's perception, reasoning (e.g., diagnosis and therapy 
planning), and action resources on activities related to quickly responding to C. For 
example, Respond-to-Urgent-Problem could produce a control decision to: Respond 
quickly to the observed decrease in the patient's inspired air. To identify possible 
operations that semantically match its control plans, an agent uses explicit knowledge of 
its own competence as well as its domain: (a) type hierarchies of actions and domain 
concepts; (b) other relations among actions and concepts; and (c) attached procedures for 
evaluating modifiers of actions and concepts. Thus, continuing the present example, 

Guardian would favor execution of possible operations that "quickly" (fast, relative to 
other operations) "respond to" (monitor, diagnose, correct) the observed decrease in 
inspired air. A control decision is deactivated when its goal is achieved, in this case, 
when all diagnosed problems related to C have been corrected. Using a small set of 
general control reasoning operations to generate a variety of specific control decisions, an 
agent such as Guardian can construct control plans (including plans that have sequential 
or hierarchical structure) that are appropriate to its situation and it can change those plans 
as the situation changes [Johnson and Hayes-Roth, 1987]. 

Figure 3 illustrates the characteristic behavior of agents implemented in this 
architecture with a simplified episode from Guardian's monitoring of a simulated ICU 
patient. 

At the start of the episode, Guardian has two active control plans: plan A, to update 
the control plan whenever possible with priority 5; and plan B, to monitor patient data 
whenever possible with priority 3. Because patient data are always available, the 
perception system filters continuously sensed patient data and sends selected values to the 
cognition system at a manageable global data rate. These perceived patient data 
repeatedly trigger monitoring operations for several variables, including blood pressure 
and heart rate, all of which match plan B. No events trigger any operations that match 
plan A. Therefore, for a time, Guardian executes various monitoring operations. 

Soon, however, an executed monitoring operation reveals that the patient has 
abnormally low blood pressure. This observation triggers three new operations, one 
operation to update the control plan and two alternative operations to begin diagnosing 
the low blood pressure, all of which compete with recently triggered monitoring 

11 



operations. Guardian chooses to update the control plan because that operation matches 
plan A, its highest priority active control plan. This operation produces control plan C, to 
respond quickly to the low blood pressure, with priority 3, and lowers the priority of plan 
B to 1. As a result of the latter change, which is designed to focus resources on the more 
urgent blood pressure problem, the perception system filters sensed patient data more 
severely and sends values to the cognition system at a lower global data rate. 

Control Plan 

A. Update control plans - P=5 

B. Monitor all patient data 
P=3 P=l P=3 

C Quickly respond to low BP - P=3 

Possible Actions - Top Row Chosen for Execution 

M:hrM:bp U:cp Dl:bp fcfi   M:bp U:cp M:hr M:bp 

M:bpM:hrM:hr M:hr M:nrM:bx M:hr M:bp M:hr 

M:bp ML-bp M:bp        M:bp 

Dl:bpD2:bp 

D2:bp 

U  = Update 
M = Monitor 
I   = Increase 

Dl = Diagnose Type 1 
D2 = Diagnose Type 2 

Time 

pd = Patient Data 
bp = BkMd Pressure 
hr = Heart Rate 
E  = Ftoid Intake 
cp = Control Pbn 

P = Priority 
—= Active Interval 

  

Figure 3. Illustrative Guardian Reasoning Behavior. 

Now Guardian executes a series of actions that match plan C, temporarily ignoring 
repeatedly triggered monitoring actions because of plan B's lower priority. First, 
Guardian executes one of its pending diagnostic operations-types 1 and 2-for 
diagnosing the observed low blood pressure. Although both diagnostic operations 

"respond to low blood pressure" and, therefore, match plan C, diagnosis type 1 matches 
better because it embodies a "quicker" diagnostic method. Although Figure 3 abstracts 
Guardian's diagnostic reasoning as a single executed action, in fact diagnosis involves 
execution of a sequence of reasoning operations. The result of each operation triggers the 
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next, until the last operation identifies the cause of the high blood pressure, in this case 
low fluid intake. Identification of this underlying fault triggers an operation to take 

corrective action (via the action subsystem) by increasing the patient's fluid intake. 
Guardian executes this operation and, in so doing, triggers an operation to monitor blood 
pressure, which it expects to rise. This is the last operation Guardian executes under plan 

C. (Although this simple example involved only a single corrective action, Guardian is 
capable of performing several corrective actions in parallel-coordinated actions to 
address a single problem or separate actions to address different problems.) 

Confirmation of normal blood pressure indicates that the goal of plan C has been 
achieved, which triggers a new operation to update the control plan. Guardian executes 
this operation because it matches plan A, the highest priority active plan. It deactivates 
Plan C and returns the priority of Plan B to 3. As a result, the perception system filters 
sensed patient data less severely and sends values to the cognition system at its original 
higher global data rate. Guardian returns to executing monitoring operations repeatedly 
triggered by perceived patient data and chosen for execution under plan B. 

This example illustrates the architectural mechanism underlying our fundamental 
theoretical concept: that an agent dynamically constructs explicit control plans to 
constrain and guide its choices among situation-triggered possible behaviors. Guardian 
always has some number of active control plans, varying in priority. Some control plans 
are quite general and favor the execution of a large class of potential operations. Others 
are more specific and distinguish operations that will help Guardian achieve well-defined 
objectives. Although the example of Figure 3 shows only simple one-sentence control 
plans, the architecture allows (and Guardian typically employs) more complex control 
plans having sequential and hierarchical structure. Similarly, Guardian always has some 
number of possible behaviors. Some are triggered by inputs from its perception system, 
while others are triggered by the results of prior reasoning operations. Different 
operations, if executed, could change Guardian's knowledge of the environment, initiate 
or extend its performance of particular reasoning tasks, initiate performance of external 
actions by its action system, or modify its active control plans. At each opportunity, 
Guardian performs behaviors that best match its highest priority active control plans. 

In the following sections, we show how this key architectural mechanism enables an 
agent to adapt its perceptual strategy, control mode, reasoning tasks, reasoning methods, 
and meta-control strategy to its dynamic situation. 

13 



3. Adaptation of Perceptual Strategy 

In order to perform effectively in AIS niches, an agent must adapt its perceptual 
strategy to changing cognitive requirements. 

In theory, we might like an agent to perceive all events in its environment and to 
reason about them in all promising ways, so that it can determine and carry out optimal 

courses of action. However, AIS niches present high, variable data rates for many 

environmental conditions; a resource-bounded agent cannot realize unbounded 

perception. In addition, AIS niches permit many different reasoning tasks and sometimes 

different methods for performing particular tasks. Each perceived event initiates a 
potential cascade of reasoning activities; the event itself triggers a number of possible 
reasoning operations, each of which produces new events, each of which triggers new 
operations, and so forth. Even if unbounded perception were feasible, the high and 
cascading demand for reasoning would swamp the cognitive resources of an agent such 
as Guardian (or a human being, for that matter). 

In general, a resource-bounded agent ordinarily cannot—and, equally important, need 
not—perceive, reason, or act on every condition in its environment. Instead, the agent 
must be highly selective in its perception of the environment and it must adapt its 
perceptual strategy to balance two objectives. First, from a purely quantitative 
perspective, the agent must maximize its vigilance, perceiving as much information as 
possible about as many environmental conditions as possible, while avoiding perceptual 
overload. Second, from a qualitative perspective, the agent must maximize goal-directed 
effectiveness, readily acquiring data that are relevant to its currently important reasoning 
tasks, while avoiding distraction by irrelevant or insignificant data. 

In our architecture, the perception system's basic functions (Figure 4) are to abstract, 
prioritize, and filter sensed data before sending it to the cognition system. Five 

parameters determine how the perception system performs these functions. Two static 
compile-time parameters identify the domain variables to be sensed and ranges of critical 
values for those variables. Three dynamic run-time parameters (sent asynchronously by 
the cognition system) specify requested data abstractions, relevance values for different 
variables, and the desired global data rate. The perception system processes and sends to 
the cognition system all requested data abstractions at appropriately high rates and sends 
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unrequested data at appropriately low (but usually non-zero) rates. It dynamically 

determines the "appropriate" rates at which to send each requested and unrequested 

observation by distributing the current desired global data rate among them in proportion 

to their current relevance values. There is one exception to this rule: The perception 
system sends critical values for all sensed variables, regardless of their current relevance 
values. Note that, since many variables are not sensed continuously, this provision does 
not guarantee perception of every critical value that occurs, but only every critical value 
that is sensed. 

Cognition 

Interpretiation 
Reasoning 
Planning 

Perception Informs Cognition: 

Requested observations 
Base rate observations 
Critical observations 

Perception 

Abstraction 
Prioritization 

Filtering 

IS I IS I IS IIS Ms 

Cognition Focuses Perception: 

Global data rate 
Data relevance 
Desired data abstractions 

Dynamic Environment 

Figure 4. Coordination of Cognition and Perception. 

An agent dynamically adapts its perceptual strategy by modifying its three run-time 
parameters based on both feedback control and predictive control from the cognitive 
system. 
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The agent adapts its global data rate based on feedback control from activities in its 
cognitive system's limited-capacity event buffer. The event buffer is designed to insure 

that the cognitive system always retrieves the most important, up-to-date perceptions 
available. Events are ordered in the buffer by priority and recency, with best-first retrieval 
and worst-first overflow. (In theory, the buffer mechanism also uses a decay factor to 
remove unretrieved, out-of-date events, but we have not yet implemented a decay factor.) 

The specific function used to integrate priority and recency factors to order events in 

the buffer should be tailored to characteristics of the agent's niche. For example, 

Guardian's niche presents events that vary widely in priority, with very high priority 

events occurring infrequently. Important features of its environment change relatively 
slowly and its deadlines are relatively long compared to the speed of its perception. 
Therefore, Guardian orders perceptual events by priority and then by recency. It always 
retrieves the most recent of the most important events and, in case of overflow, loses the 
least recent of the least important events. In practice, when critical events occur, Guardian 
retrieves and reasons about them immediately. When multiple critical events co-occur 
during a brief time interval, Guardian handles them promptly in priority order. Most of 
the time, however, no critical events occur and Guardian processes all of the incoming 
events within a few retrieval cycles of their arrival in the buffer-the exact order has no 
effect on the overall utility of its performance. 

Regardless of the specific event-ordering function used, the buffer mechanism is 
designed for steady-state operation in which: (a) perceptual events enter and leave the 
buffer at roughly equal rates; and (b) all of the entering events ultimately are retrieved for 
reasoning. However, steady-state operation assumes that the perception system has been 
parameterized with a global data rate that is appropriate for the agent's reasoning rate. If 
there is a decrease in the pace of the agent's reasoning or an increase in the rate of critical 
sensed events, the event buffer will overflow-this is the architecture's "last line of 
defense" against perceptual overload. When the event buffer overflows, it means that the 
agent's reasoning cannot keep pace with perceptual events and, although it is still 
reasoning about up-to-date events, the agent is losing potentially important information. 
Conversely, when the buffer underflows (i.e., is empty), it means that the agent is 
waiting for perceptual events to reason about and, in the meantime, wasting cognitive 
resources. In either case, the agent corrects the imbalance between perception and 
reasoning rates by modifying the desired global data rate used by the perception system. 
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An earlier version of this feedback mechanism implemented a "bang-bang" control 
response to actual over(under)flow. The current version implements an adaptive control 

response by monitoring trends in the number of items in the buffer and adjusting the 

global data rate in anticipation of over(under)flow occurs. As in conventional control 
applications, the adaptive control gives a smoother correlation between desired and actual 
global data rates. 

The agent also adapts its global data rate predictively. It analyzes newly created or 
modified control plans to estimate its own future demand for cognitive resources and, 
complementarily, its future capacity to process perceptual events. Based on this estimate, 
it may increase or decrease its global data rate. For example, when Guardian adopts plan 
C in Figure 3, to respond quickly to the patient's low blood pressure, it knows: (a) that the 
associated reasoning tasks will consume computational resources previously consumed 
by monitoring a variety of patient data; and (b) that the new tasks are more important 
than the monitoring task (priority 3 versus 2). It lowers its global data rate. Conversely, it 
raises its global data rate after achieving the goal of plan C. With a little knowledge 
about the computational properties of different reasoning methods, an agent can 
predictively modulate its global data rate more precisely. 

The agent also analyzes control decisions to identify useful data abstractions and to 
determine the context-specific relevance of different variables. For example, in plan B of 
Figure 3, Guardian's decision to monitor all patient "data" implies that the perception 
system should send the raw numeric data available from its sensors for all patient 
variables. Alternatively, given appropriate definitions for various data abstractions, 
Guardian might decide to monitor "criterial changes in value," "hourly high and low 
values," "running averages," etc. Plan B's initial priority of 3 translates into a mid-range 
relevance value for all patient variables. Guardian's subsequent reduction of plan B's 
priority translates into a reduction in relevance. However, Guardian's simultaneous 
introduction of plan C, to respond to the patient's low blood pressure with priority 3, 
preserves the medium relevance value for blood pressure. Although we do not illustrate it 
in Figure 3, Guardian also could identify other variables that are relevant to its reasoning 
under plan C, either based on explicit domain knowledge or in the course of the reasoning 
itself. 

In summary, our architecture enables an agent to adapt its perceptual strategy to its 
cognitive requirements in two ways. First, the agent maximizes its vigilance, while 
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avoiding perceptual overload, by using feedback control and predictive control (based on 

control plans) to manage the global data rate underlying in its perceptual strategy. 

Second, the agent acquires useful data, while avoiding distraction, by using dynamic 

control plans to adapt the relevance and abstraction parameters underlying its perceptual 
strategy. In an early experiment [Washington and Hayes-Roth, 1989], Guardian's 
adaptation of its perceptual strategy reduced its input data rates to less than 10% of the 
original sensed data rates, with no degradation in the quality of its performance. 

4. Adaptation of Control Mode 

In order to function effectively in AIS niches, an agent must adapt its control mode to 
changing features of its control situation. 

We can characterize control situations on several dimensions, including the 
uncertainty of events in the task environment, the degree of constraint on which 
sequences of actions will be effective in achieving goals, and the availability and cost of 
off-line and on-line computational resources. In simple niches, a characteristic control 
situation-representing a particular configuration of values on these several dimensions- 
may predominate. In that case, an agent should adopt the control mode that is most 
effective in its predominant situation. For example, the most effective control mode for 
some niches may be to plan and then execute carefully coordinated sequences of actions 
[Fikes and Nilsson, 1971; Sacerdoti, 1975; Wilkins, 1984], while in other niches the most 
effective control mode may be to prepare and then execute more localized reactions to a 
range of possible run-time events [Agre and Chapman, 1987; Nilsson, 1989; Rosenschein 
and Kaelbling, 1986; Schoppers, 1987]. 

However, AIS niches do not present characteristic control situations; they present 
control situations that vary over time on several dimensions. Two salient dimensions of 
variability, which we analyze here, are environmental uncertainty and constraint on 
effective actions. Environmental uncertainty determines how much monitoring an agent 
must do to determine run-time conditions. For example, a cold post-operative ICU 
patient presents low uncertainty; the patient is probably cold as a natural consequence of 
the surgery and quite likely to warm up gradually to normal body temperature, with no 
lingering after-effects. By contrast, a patient whose blood pressure is falling presents high 
uncertainty; it is unknown how long or how far the blood pressure will fall, what is 

causing the change, and what related effects may occur. Constraint on effective actions 
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determines how many alternative courses of action the agent can pursue to achieve its 
goals. For example, there are many ways to help a cold post-operative patient regain 

normal body temperature, but there is only one way to enable a patient with a severe 
Pneumothorax (a hole in the lung) to breathe: surgically insert a chest tube to allow 
accumulated air in the chest cavity to escape and thereby enable the lungs to inflate. As 
illustrated in Figure 5, these two dimensions define a space of control situations. 

To function effectively in AIS niches, therefore, an agent must possess and exploit a 

corresponding variety of control modes. 

Like control situations, we can characterize control modes along several dimensions. Two 
salient dimensions, which we analyze here, are: the agent's sensitivity to run-time events and 
its advance commitment to specific actions. Sensitivity to run-time events measures how 
much the agent monitors its run time environment. Commitment to specific actions measures 
how much the agent restricts in advance the actions it will execute at run time. (Control 
modes also vary, for example, on their demands for off-line and on-line computational and 
real-time resources; however these variables are not included in our analysis.) As illustrated 
in Figure 5, these two dimensions, sensitivity and commitment, define a space of control 

modes. 

By superimposing the spaces of control modes and control situations in Figure 5, we 
suggest that particular control modes are appropriate for particular control situations—and, 
more importantly, that an agent could use a similar dimensional analysis to identify its 
dynamic control situation and adapt its control mode as appropriate. Let us consider the four 
corners of the space of control modes. 

In a pure planning mode, an agent commits in advance to a sequence of actions, perhaps 
with limited conditionality, and then executes it at run time with minimal monitoring of run- 
time events. Planning mode is appropriate for control situations with low environmental 
uncertainty and high constraints on the selection and sequencing of effective actions. At the 
cost of preparation time, the agent exploits predictability in its environment to construct and 
execute an effective, efficient plan. For example, when requested to make patient 
presentations for physicians on rounds, Guardian should follow a standard protocol for 

presenting the relevant information in the correct order. 
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In a pure reactive mode, the agent commits in advance to a set of specific actions and 

conditions for their execution, but monitors run-time events to control invocation of 

particular actions from the set. Reactive mode is appropriate for control situations with high 

uncertainty and high constraints on effective actions. At the cost of preparation time and run- 

time resources, the agent can exploit its monitoring capabilities to respond flexibly to an 

uncertain environment. For example, Guardian should operate in reactive mode when 

responding to critical problems under time pressure, such as reacting to an observed increase 

in a patient's peak inspiratory pressure (a potentially life-threatening condition) by 

monitoring relevant data closely and using them to choose among a small set of 

predetermined diagnoses and associated therapeutic actions . 
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Figure 5. Different control modes for different control situations. 

In both planning and reaction modes, an agent commits in advance to specific executable 

actions in order to meet strong constraints imposed by its goals. Planning mode exploits 
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predictability of environmental events to minimize monitoring while following a single 

globally coordinated action sequence; thus it streamlines run-time performance. Reaction 
mode copes with greater uncertainty of environmental events by preparing a larger number of 
actions for a larger number of contingencies; run-time performance is less streamlined, but 
more robust. In intermediate modes between these two extremes, the agent modulates the 
amount of run-time monitoring and the conditionality of actions. In all regions along this 
border, however, the agent pays a high cost in advance preparation to choose the specific 
conditions it will monitor and the specific actions it will perform. The agent is maximally 
committed and can not respond to a truly unanticipated event or perform a truly unanticipated 
action. 

In what we might call a pure "dead reckoning" mode, an agent commits to a rough 
sequence of a few classes of actions and executes any sequence of specific actions within 
each successive class at run time. Dead reckoning mode is appropriate for control 
situations with minimal uncertainty of the environment and minimal constraints on 
actions. The agent can produce satisfactory behavior with a low cost of advance 
preparation. For example, Guardian should operate in dead reckoning mode when it has 
weak goals for non-critical conditions and plenty of time, such as improving the comfort 
and condition of cold post-operative patients by taking any of several different actions to 
help them warm up during their first couple of hours in the ICU. 

In what we might call a pure "reflex" mode, the agent commits to a large class of 
actions, without specifying any of them individually, and monitors a similarly large set of 
runTtime conditions to control its selection of actions for execution. Reflex mode is 
appropriate for control situations with high uncertainty and low constraint on effective 
actions. The agent can maximize its flexibility with a low cost of advance preparation. 
For example, Guardian should operate in reflex mode when a patient is very volatile, 
monitoring a broad class of patient data and letting observed irregularities elicit corrective 
actions. 

In both dead reckoning and reflex modes, an agent is positioned implicitly to perform a 
larger number of specific actions and action sequences, compared to planning and reactive 
modes, respectively. Dead reckoning mode exploits predictability in environmental events to 
predetermine only the general shape of behavior, which the agent can instantiate as any of 
many alternative appropriate courses of action at run time. Reflex mode copes with greater 
environmental uncertainty by relying on run-time monitoring to invoke appropriate actions. 
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In the intermediate modes between these two extremes, the agent modulates the amount of 
run-time monitoring and the balance of top-down versus bottom-up control of actions. In all 
modes on this border, however, the agent pays a minimal cost of advance preparation by 
identifying arbitrarily large classes of events to monitor and arbitrarily large classes of 
actions to perform. It does not commit to monitor any specific events or to perform any 
specific actions at all. Thus, unlike planning and reaction modes, the agent is always 
responding to "unanticipated" events and performing "unanticipated" actions. 

Our analysis assumes that an agent has adequate monitoring and preparation 

resources for any control mode, but that, other things equal: (a) it prefers to spend 

resources on preparation rather than on monitoring in order to maximize the efficiency 

and global structure of run-time performance; and (b) it prefers to spend less resources 
when that will not compromise its goals. Alternatively, if we assume variations in 
availability or cost of these resources, the superimposed spaces show how run-time 
performance may be degraded in order to conserve particular resources. A more 
comprehensive analysis would introduce availability and demand for monitoring and 
preparation resources as higher-order dimensions of the superimposed spaces. The 
purpose of our analysis in the present context is to partially characterize the variability of 
control situations and differences in the situation-specific efficacy of alternative control 
modes. 

To function effectively in AIS niches, an agent must continually identify its control 
situation, choose an appropriate control mode, and implement the chosen mode. We use 
examples from Guardian's niche to illustrate how our architecture supports this kind of 
adaptation. 

First, an agent must identify its control situation. The agent can assess the uncertainty 
of its environment by recognizing that it is in states with known uncertainty. For 
example, Guardian might know that certain surgical procedures are more likely than 
others to be followed by recovery problems (higher uncertainty) in the ICU. The agent 
also can assess uncertainty empirically at run time, tracking the variance in its 

observations over time, noticing that planned actions are not having their expected 
effects, etc. The agent can assess the constraint on effective actions based on domain 

knowledge or on measurements of the search space associated with a particular goal. For 
example, Guardian might know that physicians want all patient presentations to follow 
the standard protocol (high constraint). As mentioned above, control situations also vary 
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along other dimensions, such as the availability of computational and real-time resources 
during and prior to run time. As discussed in section 3, an agent can estimate current and 

future demand for computational resources by analyzing its current and future control 

plans. It can estimate the availability of real-time resources based on domain knowledge. 
For example, Guardian might know that some ICU problems evolve slowly, while others 

quickly become life-threatening. 

Next, the agent must choose an appropriate control mode. The superimposed spaces 

in Figure 5 provide one framework for making this choice. As mentioned above, control 
modes also vary along other dimensions, such as their demand for computational and 
real-time resources during and prior to run time. An agent can have qualitative knowledge 
of the resource requirements associated with generic control modes, such as those in 
Figure 5. In addition, it might be able to quantify the requirements for a particular control 
mode in a particular parameterized situation. 

Having identified its control situation and chosen an appropriate control mode, the 
agent must effect the chosen mode. Figure 6 summarizes how our architecture enables an 
agent to adapt its control mode, modulating its sensitivity to run-time events and its 
commitment to specific actions by manipulating two properties of its control plan: the 
specificity of action classes indicated in each component control decision and the degree 
of sequential organization among control decisions. Again we illustrate this capability 
with the control modes in the four corners of the space. 

The agent goes into a pure planning mode by constructing a control plan that comprises 
a sequence of decisions, each identifying a specific executable action. It monitors only 
those events that are necessary to trigger the current next action in the plan. It tries to 
trigger only each successive next planned action. As a result, the agent triggers and 
executes the planned sequence of specific actions very quickly and reliably. 

The agent goes into reactive mode by constructing a control plan that comprises an 
unordered set of decisions, each identifying a specific condition-action contingency. It 
monitors only those events necessary to evaluate the specified conditions. It attempts to 
trigger only the specified actions and executes whichever ones it triggers. As a result, the 
agent executes a less predictable sequence of a reliable set of planned actions. It is a little 
slower than in planning mode because it monitors all conditions all the time. 
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The agent goes into dead reckoning mode by constructing a control plan that comprises 

a sequence of a few general action classes. It monitors only those events that might trigger 

any member of the current planned action class. It attempts to trigger only actions that are 

members of the current planned action class and executes whichever ones it triggers until 

the local goal of the current planned action class is met. As a result, the agent executes a 

roughly predictable sequence of certain kinds of actions, with variability the number and 

specific identities of executed actions within each successive class. 
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Figure 6. Varying Control Plan Properties to Effect Different Control Modes. 

The agent goes into reflex mode by constructing a plan that comprises an unordered set 

of decisions, each identifying a class of condition-action contingencies. It monitors only 

those events that might trigger any member of any of the action classes and executes 
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whichever ones it triggers. As a result, the agent's behavior is quite unpredictable in the 

number, identities, and sequence of specific actions it executes. 

Our analysis can potentially be translated into the language of classical control theory. 
For example, the border between plans and reactive systems corresponds to the control 
theoretic distinction between open-loop and closed-loop policies. Techniques for 
choosing optimal control modes also exploit our concept of uncertainty. Thus, it is known 
that in a deterministic environment, an optimal open-loop policy exists, while in a 
stochastic environment there exists a closed-loop policy that performs better than any 

open-loop policy. To our knowledge, adaptive control theory does not exploit our concept 
of constraint on actions (which corresponds to the control theoretic concept of solution 
density) as a basis for prescribing control modes. In addition, although there exist control 
theoretic approaches to run-time switching of control modes [Rugh, 1990], these 
approaches typically switch among a much more homogeneous set of alternative 
controllers in the context of much simpler task environments. Finally, control theoretic 
approaches do not provide a framework for smooth transitions in a continuous space of 
controllers.2 

In summary, our architecture enables an agent to adapt its control mode among a 
diverse set of control modes, based on its environmental uncertainty and internally 
determined constraints on its actions by modifying two key parameters of its control plans: 
specificity and sequential organization of component control decisions. 

5. Adaptation of Reasoning Tasks 

In order to function effectively in AIS niches, an agent must adapt its reasoning 
tasks to dynamic environmental conditions. 

In general, AIS niches demand performance of multiple component reasoning tasks. 
We define a task in terms of the types of domain entities it takes as inputs and produces 
as outputs and the relationships that must hold between particular instances of inputs and 
outputs. For example, in a diagnosis task, inputs are observed symptoms in a monitored 
system, outputs are conditions within the system, and the relationship is that the 
conditions caused the symptoms. For example, Guardian might diagnose the 

2 I am grateful to Satinder Pal Singh for calling my attention to the relationship between the present 
analysis and the classical control-theoretic analysis. 
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physiological condition that is causing a patient's observed low blood pressure. As a 

second example, in a prediction task, inputs are initial conditions in a monitored system, 
outputs are subsequent conditions in the system* and the relationship is that the 

subsequent conditions have a high conditional probability given the initial conditions. For 
example, Guardian might predict the consequences of leaving the patient's low blood 
pressure untreated. As a third example, in a planning task, inputs are initial conditions 
and desirable subsequent conditions, outputs are specifications for a pattern of actions, 

and the relationship is that performing the planned actions in the context of the initial 

conditions is expected to bring about the desirable subsequent conditions. For example, 

Guardian might plan therapeutic actions to raise the patient's low blood pressure back to 

normal range. An agent such as Guardian has many opportunities to perform different 

instances of each of these tasks and to perform sequences of related tasks, for example 

perceiving a problem, diagnosing it, then planning and executing a corrective response. 

Our agent architecture provides a natural platform for realizing and integrating 
performance of diverse, potentially interacting tasks. As discussed in section 2, each of an 
agent's reasoning methods is operationalized as a set of event-triggered reasoning 
operations, including some that construct control plans to organize the reasoning process 
appropriately in particular situations. Execution of each reasoning operation contributes 
to an incrementally growing solution in global memory and produces events that may 
trigger other reasoning operations. This "blackboard model" for reasoning is extremely 
general; it can support the inferential processes underlying many different reasoning tasks 
and potential interactions among tasks based on intermediate, as well as final results 
[Jagannathan, et al, 1989; Engelmore and Morgan, 1988]. 

Within the architecture, any perceptual or cognitive event potentially can trigger 
operations involved in any known task. All triggered operations are placed on a global 
agenda, where they compete to be scheduled and executed. Depending on its control plan, 
the agent may execute all of the operations in a given reasoning task prior to beginning a 
new one or it may interleave the operations of several tasks. In either case, the 

intermediate and final results of different tasks are recorded in the global memory, where 
they can influence one another. In section 2 above, we illustrated how Guardian initiates, 
performs, and terminates a single task in response to a perceptual event: it reactively 
diagnosed and corrected a problem signaled by perceived low blood pressure. More 
generally, the event-based triggering of task-specific operations allows an agent to adapt 
its selection and sequencing of reasoning tasks to perceived conditions in the external 
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environment and to internally generated conditions reflecting the intrinsic relations 
among reasoning tasks. 

Figure 7 illustrates Guardian's performance of a series of interacting perception, 
reasoning, and action tasks in which each task is triggered by preceding perceptual or 

cognitive events and produces cognitive events of its own that may trigger subsequent 
tasks. Figure 7 does not show the triggering, execution, and results of each task's 
component reasoning operations. And it does not show the many triggered tasks that 
Guardian does not choose to execute. 

In step 1, Guardian is observing a variety of patient data. It intends that the patient it 
is monitoring should be in a "normal" state (normal for a particular class of post-surgical 
patients) and, because it is not aware of any problems, expects that all patient data will be 
normal. As we shall see, much of Guardian's reasoning is driven by discrepancies 
between phenomena it observes, expects and intends. Our agent architecture makes these 
distinctions explicit and automatically detects mismatches to trigger reasoning activities. 

In steps 2-3, Guardian detects an oxygen delivery problem and partially diagnoses it. 
In step 1, Guardian perceives patient data available from its sensors and produces a 
number of observations. In step 2, one of the new observations, the new value of PIP 
(peak inspiratory pressure), triggers a task to assess the dynamic state of the patient's PIP. 
The assessment task produces a new observation, that the patient's PIP is high and has 
been rising during the time interval tl-t3. This observation violates Guardian's 
expectation of normal patient data and so, in step 3, triggers a task to diagnose the cause 
of the discrepancy. The diagnosis task itself produces two results: a hypothesis that the 
patient is suffering from a compliance problem (inability to inhale sufficient air; as 
opposed to a sensor error in PIP measurement or a mechanical problem in the ventilator, 
for example); and an expectation that, as a result, the patient's arterial oxygen will be low. 

At this point, the diagnosis is not complete: Guardian does not know what is causing 
the compliance problem. However, because the expected low arterial oxygen violates 
Guardian's intention that the patient should be in a normal state and because arterial 
oxygen is a life-critical physiological parameter, it does not immediately continue the 
diagnosis task. Instead, in step 4, the expectation of low arterial oxygen triggers a 
planning task to improve the patient's arterial oxygen now. The planning task produces an 
intention to raise the FI02 now (increasing the fraction of inhaled oxygen delivered by 
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the ventilator), with the conditional expectation that doing so will raise the patient's 
arterial oxygen gradually. In step 5, the intention to raise FI02 now triggers the 
corresponding action and an associated perceptual task to confirm successful execution of 

the action. Guardian observes that it has indeed raised the patient's FI02 and, as a result, 
expects the arterial oxygen to rise. Note that, in the present scenario (without an oximeter 
in place), Guardian cannot observe the arterial oxygen directly and so must rely on the 
expected effects of its action of raising the FI02. 

Triggering Events Tasks Performed Resulting Events 

1. Sense: Patient data 

2. Perceive: PIP value 
3. Observe: PIP high, rising tl-t3 

4. Expect: Low arterial 02 
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7. Expect: Falling arterial 02 
Expect: Possible death > t8 
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Expect: Falling arterial 02 
Expect: Possible death > t8 
(a) Step 1 
Intend: Insert chest tube now 
Conditionally Expect: 

Lower PIP now 
Conditionally Expect: 

Raise arterial 02 promptly 
Observe: Chest tube inserted 
Observe: Lower PIP now 
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9. Observe: Lower PEP Plan: Normalize arterial 02        (b) Step 2 
Intend: Lower FI02 now 

Conditionally Expect: 

Normal arterial 02 
10. Intend: Lower FI02 now Do: Lower FI02 Observe: Lower FI02 

Perceive: FI02 setting Expect: Normal arterial 02 

Figure 7. Illustrative Chain of Reasoning Tasks Initiated by 
Cognitive and Perceptual Events. 

In step 6, Guardian continues its diagnosis of the oxygen delivery (compliance) 
problem. The previous hypothesis of a compliance problem (produced in step 3), which 
violates Guardian's intention of normal patient state, triggers a task to diagnose the 
underlying cause. This task produces three results: a more specific hypothesis, that the 
patient suffered a pneumothorax (a hole in the lung that allows inhaled air to rush out into 
the chest cavity, compressing the lungs and preventing subsequent inhalation) at time tl; 
an expectation that, as a result of the pneumothorax and despite Guardian's having raised 
the FI02, the patient's arterial oxygen will continue to fall; and a second expectation that, 
as a result of the falling arterial oxygen, the patient may die after time t8. 

In step 7, these two expectations, which dramatically violate Guardian's intention of 
normal patient state, trigger a two-part planning task: (a) to lower the patient's PIP now so 
that any oxygen at all can be delivered; and (b) to normalize the patient's arterial oxygen. 
The first part of the planning task produces step 1: an intention to insert a chest tube 
immediately (to relieve pressure in the chest cavity and enable the lungs to inflate), with 
the conditional expectation that doing so will lower the patient's PIP immediately and, as 
a result, raise the arterial oxygen promptly. 

At this point, the plan is not complete: Guardian has not determined how to normalize 
the patient's arterial oxygen. However, because the patient is in a life-threatening 
condition, it does not immediately continue its planning task. Instead, in step 8, the 
intention to insert a chest tube now triggers the corresponding action and associated 
perceptual tasks to confirm the insertion of the chest tube and the expected lowering of 
the patient's PIP. Again, Guardian cannot observe the expected rise in arterial oxygen 
directly and must rely on the expected effects of lowering the patient's PIP in the presence 
of a pneumothorax. 
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In step 9, Guardian's confirmation of the expected lower PIP triggers resumption of 
its interrupted planning task, producing step 2: an intention to lower the FI02 (back to its 
previous level), with the conditional expectation that arterial oxygen will gradually return 
to normal. In step 10, this intention triggers the corresponding action and an associated 
perceptual task to confirm the new FT02 setting. Again, Guardian expects, but cannot 
observe directly, that the patient's arterial oxygen gradually will return to normal. At this 

point in the scenario, with the crisis apparently resolved and the time pressure eased, 

Guardian may decide to place an oximeter so that it can monitor the patient's arterial 

oxygen directly or, alternatively, to send a blood sample to the laboratory for a gas 
analysis after twenty minutes or so. 

As this scenario illustrates, our architecture allows an agent to perform a variety of 
reasoning tasks and, more importantly, to adapt its selection, ordering, and interleaving of 
reasoning tasks to dynamic perceived and inferred conditions in its environment. 
Triggering tasks with perceptual events enables the agent to adapt to exogenously 
produced changes in the world. Triggering tasks with cognitive events enables the agent 
to follow the intrinsic logical relations among tasks-where the intermediate or final 
results of one task provide the input to another. Explicit representation of the initial, 
intermediate, and final results of reasoning tasks allows the agent to interrupt and resume 
tasks deliberately. 

6. Adaptation of Reasoning Methods 

In order to function effectively in AIS niches, an agent must adapt its reasoning 
methods to the available information. 

Given our input-output definition of tasks, there may be alternative methods for 
performing particular tasks. For example, an agent might perform a diagnosis task by 
means of a "model-based" method, in which it instantiates structure/function models of 
phenomena observed in the monitored system and follows causal links to identify and 
instantiate hypothesized precursors. Alternatively, an agent might apply a "structured 
selection" method [Clancey, 1985], in which it abstracts the observed data, performs a 
heuristic mapping into the hypothesis space, and refines the identified hypothesis back 
into the problem context. Alternatively, the agent might use a case-based method 
[Simoudis, 1990], in which it retrieves cases manifesting problems similar to the 
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observed problem and hypothesizes that the diagnoses associated with those cases may 

explain the observed problem. Similarly, alternative methods may be applicable to other 

tasks, such as monitoring, prediction, and planning. 

Following our analysis of situation-appropriate control modes (section 4), we offer a 

similar analysis of situation-appropriate reasoning methods. Again, reasoning situations 

and methods vary along complementary dimensions: availability versus consumption of 

resources (e.g., domain knowledge, environmental data, real time, and computation); 

demand versus provision of performance properties (e.g., interruptability, potentially 

useful intermediate results); and requirement versus provision of response features (e.g., 

precision, certainty, quality, and justification). 
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Figure 8. Different Methods for Different Contexts. 
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Taking a subset of the dimensions defined by these variables for illustration, Figure 8 
superimposes two two-dimensional spaces, mapping methods that vary in then- 
consumption of domain knowledge and run-time data onto situations that vary in the 

availability of these two resources. Methods in particular regions of the superimposed 
spaces are "appropriate" for situations in corresponding regions, based on two 
simplifying assumptions: (a) as more knowledge and data are brought to bear, the agent's 
response improves monotonically on all features; and (b) the agent prefers to expend 

whatever resources are available in order to produce the highest quality response. A more 

complete analysis would incorporate information about the actual cost of resources and 

the utility of particular performance and response features as higher-order dimensions of 

the superimposed spaces. But even with our simplifying assumptions, the present analysis 
illustrates the need and potential for agents operating in AIS niches to choose and use 
appropriate reasoning methods in different reasoning situations. 

For illustration, we consider methods representing the four corners of the space in 
Figure 8, applied to a prediction task. 

Applying a quantitative simulation method [Iwasaki and Simon, 1986] to a prediction 
task, an agent uses observed numeric data to instantiate parameters representing the initial 
conditions and other important variables in a set of differential equations and calculates 
the predicted values of the variables of interest after variable time t. Quantitative 
simulation produces precise, reliable, temporally specific quantitative results and 
explanatory justification in terms of the instantiated equations. Computation time may be 
high. Other things equal, quantitative simulation is appropriate when the reasoning 
context includes an appropriate set of differential equations and the run-time data 
necessary to instantiate the necessary parameters. For example, Guardian should use 
quantitative simulation to predict whether current values of FI02 (amount of oxygen 

provided by the ventilator on each breath) will maintain normal blood gases for the 
patient over some time period. 

Applying a causal modeling method [Pearl, 1986] to a prediction task, an agent uses 
qualitative observations to instantiate variables in a causal network with the initial 
conditions and follows causal links to identify predicted conditions. Causal modeling 
produces reliable, qualitative results, but no specific temporal information. It provides 
explanatory justification in terms of the instantiated conditions and causal links in the 
model. Run-time computation depends on the branching factor and depth of the model. 
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Other things equal, causal modeling is appropriate when the reasoning context includes 
an appropriate causal model and when either: (a) the data, knowledge, or resources 

necessary to instantiate a more precise quantitative model are not available; or (b) the 

precision of quantitative simulation is not needed. For example, Guardian should use 

causal modeling to predict that aspirin given to a post-operative patient for pain will also 

thin the patient's blood (a side-effect) and, therefore, might also cause internal bleeding. 

With both quantitative simulation and causal modeling, an agent exploits strong 
models to make predictions (or perform other tasks) and to explain its conclusions. 
Quantitative simulation also exploits larger amounts of run-time data to produce more 
specific, temporally constrained, quantitative predictions. Causal modeling compensates 
for a lack of relevant run-time data by producing more general, qualitative predictions 
with less specific temporal properties. Applying intermediate methods between 
quantitative simulation and causal modeling, the agent uses whatever data are available to 
quantify its model-based predictions as much as possible. With all methods along this 
border, however, the agent pays a high cost in run-time computation to reason out its 
predictions (or other conclusions). In addition, the agent's ability to perform its task with 
these methods is limited by the availability of appropriate models-which tend to be in 
short supply in some domains, such as ICU monitoring, but more available in other 
domains such as device monitoring. 

Applying a pattern extrapolation method [Shahar, 1992] to a prediction task, an agent 
incrementally instantiates time-varying patterns in observed data values and extrapolates 
their completion to identify predicted conditions. Pattern extrapolation can produce 
predictions where no models are available, but with high uncertainty and no explanatory 
justification at all. Run-time computation depends on the number and complexity of 
known pattern definitions. Pattern extrapolation is appropriate when the reasoning 
context provides a lot of run-time data for developing and distinguishing among different 
potential patterns. For example, Guardian could use pattern extrapolation to predict that a 
monitored patient's rising temperature might continue to rise at its current rate, eventually 
reaching a dangerous region. 

Applying a case-based method [Hammond, 1989; Kolodner, 1984; Riesbeck and 
Schänk, 1989] to a prediction task, an agent retrieves a previous case in which conditions 
similar to those in the present case occurred and predicts that subsequent conditions in the 
present case will be similar to those in the previous case. Case-based reasoning can 
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produce predictions in a broad range of situations, but with high uncertainty and no 
explanatory justification at all. Computation time depends on the agent's repertoire of 
cases and indexing mechanism. Case-based reasoning is appropriate when the task 
context includes a representative sample of cases and the run-time data necessary to index 
into the "right" prior case. For example, Guardian could use case-based reasoning about 
previous lung surgery patients to predict that a post-operative patient who is performing 
his breathing exercises very vigorously might develop a pneumothorax (a hole in the 
lung) in the area of a lung incision. 

With both pattern extrapolation and case-based reasoning, an agent compensates for 

the absence of good models by using other kinds of knowledge (abstract pattern 

definitions or previous cases) to make predictions (or perform other reasoning tasks). 
Pattern extrapolation also exploits the availability of large amounts of run-time data to 
compensate for the absence of relevant cases. With all methods along this border, the 
agent pays a minimal cost in run-time computation. Its ability to perform its task is 
limited primarily by its repertoire of abstract pattern definitions and prior cases, which are 
readily available in medical domains such as ICU monitoring (often called "clinical 
experience"), as well as in engineering domains. 

Our architecture provides a natural environment for representing, selecting, and 
applying situation-appropriate reasoning methods. Alternative methods for performing a 
given task can be represented as different collections of reasoning operations, all of which 
might be triggered by events signaling a need for that task to be performed. For example, 
Guardian's decision to give a patient aspirin to relieve pain might trigger a control decision 
to predict possible side effects, along with the initial reasoning operations underlying 
quantitative simulation, causal modeling, and case-based reasoning methods for performing 
prediction tasks. At that point, Guardian is free to apply any, all, or none of the triggered 
methods. Because reasoning skills are represented explicitly, an agent can determine what 
run-time data and models are required by a given method in a situation, and which of the 
required data and models are available in the situation. Continuing the example, Guardian 
could follow the analysis of Figure 8 (or a similar analysis that incorporates other 

situational variables) to determine that, for the effects of aspirin, it has a very large number 
of potentially relevant cases varying on many dimensions, no quantitative models at all, 
and a simple causal model with a modest demand for run-time data. Under these 
circumstances, it would be appropriate to use the causal model. By modifying its initial 
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control decision, so that it now intends to causally predict the side effects of giving aspirin, 

Guardian insures the selection of causal reasoning operations to perform its task. 

In summary, our architecture allows an agent to adapt its reasoning methods to the 

availability of resources by representing a diverse collection of reasoning methods as sets 
of event-triggered reasoning operations, explicitly storing method-specific resource 
requirements, and allowing the agent to construct run-time control plans that reflect its 
assessment of situation-specific resource availability. 

7. Adaptation of Meta-Control Strategy 

In order to function effectively in AIS niches, an agent must adapt its meta-control 
strategy to dynamic configurations of demands and opportunities for activity. 

An agent's meta-control strategy places global constraints on its allocation of 
computational and physical (e.g., sensors, effectors) resources among competing activities. 
As a result, it determines which goals the agent achieves, to what degree, and with what 
side effects. As illustrated throughout this paper, our architecture permits an agent to adapt 
its perceptual strategy, control mode, reasoning task, and reasoning method to the 
requirements of a given activity. However, AIS niches characteristically present demands 
and opportunities for multiple activities during overlapping time intervals. For example, an 
ICU patient may manifest several simultaneous problems, varying in criticality. While 
Guardian is responding to one set of problems, it must continue to monitor other aspects of 
the patient's condition and, quite possibly, respond to newly occurring problems along the 
way. In addition, Guardian may perform other tasks not directly concerned with patient 
monitoring, such as describing a patient's progress during the preceding eight hours to a 
physician on rounds, explaining its diagnostic reasoning to a medical student, or advising a 
nurse of anticipated changes in the patient's condition. How should Guardian respond to 
each new demand or opportunity as it arises? How should its responses to new events 
impact on its prior commitments to ongoing activities~and vice versa? Thus, in AIS niches, 
the meta-control problem is: How should an agent allocate its limited computational 
resources among dynamic configurations of competing and complementary activities so as 
to achieve a high overall utility of its behavior? 
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Our architecture provides a natural framework for dynamic adaptation of explicit meta- 
control strategies for global coordination of its behavior. Working within the basic 

architectural mechanism, an agent can trigger meta-control operations based on changes to 

its control plans. It can use some meta-control operations to monitor its activity-specific 
control decisions, their implications for resource consumption, and its actual progress 
toward associated objectives-all as they evolve over time. It can use other operations to 

revise activity-specific control decisions in light of global considerations. For example, 

Guardian might notice that it has made a series of control decisions to diagnose and treat a 

series of unanticipated problems. Although each of these decisions may be individually 

justifiable, together they may exhaust Guardian's computational and perceptual resources 

and, as a result, compromise its vigilance. Even worse, the division of available resources 
among the several problems may preclude treating any of them before its deadline. Having 
made this assessment, Guardian could makea meta-control decision to postpone its 
diagnosis and treatment of the least important of its pending problems to conserve 
resources for monitoring and to insure treatment of the most critical problems by deadline. 

The architecture also allows an agent to use meta-control decisions prospectively to 
establish the desired global character of its intended behavior by constraining subsequent 

meta-level and activity-specific control reasoning. For example, in the episodes illustrated 
in Figures 9 and 10, Guardian is monitoring a patient who develops two problems, first low 
blood pressure and then high PIP (peak inspiratory pressure). In both cases, 

Guardian diagnoses the low blood pressure as resulting from dehydration and treats it by 
increasing fluid intake. In both cases, it diagnoses the high PIP first as a hypoxia problem, 
which it treats by increasing the patient's oxygen, and then more specifically as the result of 
a pneumothorax, which it treats by inserting a chest tube. However, in the two Figures 
these problems and treatments occur in different meta-level contexts, producing subtle, but 
significant differences Guardian's behavior and, under some value models, in the overall 
utility of its behavior. 

The two episodes differ in meta-control decision B versus B'. In Figure 9, Guardian has 
made meta-control decision B, to give its highest priority to urgent problems, its next 
highest priority to monitoring, and its third highest priority to other problems. As a result, 
when it observes and decides to respond quickly to the patient's high PIP, Guardian 
maintains its current monitoring activity, but decides to suspend its activities related to the 
patient's low blood pressure, a less important problem, until it has resolved the patient's 
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high PIP. In Figure 10, Guardian has made a different meta-control decision B', to respond 
to perceived problems immediately. As a result, when it observes and decides to respond 
quickly to the patient's high PIP, Guardian continues its activities related to the patient's 

low blood pressure, but reduces its monitoring activities until it has resolved the patient's 
high PIP. A comparison of corresponding elements of Figures 9 and 10 reveals other 

consequences of the difference in meta-level strategy. Under strategy B in Figure 9, 

Guardian completes its diagnosis and treatment of the high PIP problem faster than under 
strategy B' in Figure 10, but completes its diagnosis and treatment of the low blood 
pressure problem later. Under strategy B in Figure 9, it remains sensitive to patient data not 
directly related to its current activities (e.g., heart rate), while under strategy B' in Figure 
10, its attention to patient data is depressed by its attention to immediate problems. 
Depending on Guardian's value model, each of these meta-control strategies could produce 
a higher overall utility of behavior. 

Control Plan 

A. Update control plans - P=5 

|B. Priority Ordering: Urgent problems, Monitoring, Other problems 

C. Monitor all patient data 
P=3  r 

D. Quickly respond to low BP~P=3 

E. Quickly respond to high PIP ~ P=10 

I F.SuspendD-P=10 

Possible Actions Chosen for Execution 

U:cp Dx:op M:bp M:pip U:cp U:cp Dx:pip I:o2 Dx:pip It:ct D:o2|vi:pip M:hr M:pip U:cp fcfi Dx:bp | 

[Many Possible Actions Related to Tasks, A, B, C, DJ 

Time 

V = Update pd = Patient Data 
M = Monitor bp = Blood Pressure 
I = Increase hr = Heart Rate 
D = Decrease K   = Fhrid Intake 
Dx = Diagnose Type 1 pip = Peak Insp. Pressure 
It = Insert ct   sChestTube 

cp = Control Plan 

P = Priority 
— = Active Interval 

— — = Suspended Interval 

f~*| => Contrast 
Figure 9 

Figure 9. Illustrative Behavioral Effects of Meta-Control Strategy B. 
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Control Plan 

A. update control plans - P=5 

JB'. Respond to perceived problems immediately - P=10 

C. Monitor all patient data 
P=3 CEL 3 P=3 

D. Quickly respond to low BP-P=3 -e 
E. Quickly respond to high PIP -P=10 

I F. Reduce monitoring - P=10 

Possible Actions -Chosen for Execution 

U:cp Dx:bp M:bp M:pip U:cp U:cp Dxrpip I:o2 Dxrpip It:ct D:o2Jl:ri M:pip Dx:bp M:pip U:cp M:hr| 

[Many Other Possible Actions Sot Chosen for Execution] 

Time 

U   = Update 
M = Monitor 
I    = Increase 
D   = Decrease 

Dx = Diagnose 
It   = Insert 

pd = Patient Data 
op = Blood Pressure 
hr = Heart Rate 
fi   = Fluid Intake 
pip = Peak Insp. Pressure 
ct   sCbestTube 
cp = Control Plan 

P = Priority 
^^™ = Active Interval 

— — = Suspended Interval 

I     | => Contrast 
Figure 8 

Figure 10. Illustrative Behavioral Effects of Meta-Control Strategy B'. 

As these simple examples illustrate, our architecture uses the same underlying 

mechanism to enable an agent to represent, reason about, and use both activity-specific 
control plans and meta-control plans. An agent can adapt its meta-control strategy to its 
dynamic configuration of potential activities by: (a) analyzing control plans representing 
intended activities to estimate their resource requirements; (b) assessing the availability of 
required resources in the prospective situation; and (c) making or modifying meta-control 
decisions that establish appropriate constr aints on the constructions of activity-specific 
control plans. From the agent's point of view, meta-control plans are no different from other 
control plans, all of which simply establish local preferences for performing different 

classes of reasoning operations-which may include different classes of task-level reasoning 
operations, control operations, and meta-control operations. Similarly, the agent need not 
treat meta-control planning any differently from its other reasoning activities, all of which 
occur through the scheduling and execution of event-triggered reasoning operations. 

8. Evaluation 

8.1 Evaluation Paradigm 
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How can we evaluate the proposed architecture for adaptive intelligent systems? 

Given the complexity of the behavior we aim to support, we emphasize empirical 
evaluation. Following Simon's observations on computer systems in general, we believe 
that the problems we are trying to address more closely resemble those of biology or 
psychology than physics and therefore so should our methods: 

We are never going to have three laws of motion in computer science.... Now 
computing systems may or may not be as complicated as living organisms, but 
that are pretty complicated, and the principal way in which we are going to learn 
about them is to go into a laboratory and find facts. We do that by building 
systems and testing them. [Simon, 1991, p. 128] 

Moreover, we believe that challenging real-world domains (rather than artificially 
structured games or toy problems) offer a rich experimental testbed for investigating 
adaptive intelligent systems, their architectures, arid their behavior. In fact, it is difficult to 
define an artificial task domain that can simulate all of the dimensions of adaptation we 
observe in real-world AIS niches. Thus, for example, Feigenbaum explains how working 
on the DENDRAL project [Feigenbaum, et al, 1971] played a critical role in the discovery 
that production rules could be used for knowledge representation: 

Buchanan succeeded where Waterman failed because Buchanan was immersed in 
the details of the chemistry, the knowledge representation problem, and the 
programming of the reasoning process. Waterman was only an onlooker. The 
immense importance of the experimental method in AI, and more broadly in CS, 
is that it provides the necessary mental data in sufficient detail to stimulate 
innovation and discovery. Perhaps it's easier to discover new ideas than to invent 
them! [Feigenbaum, 1992, p. 197] 

Our goal is to develop an architecture that meets a sufficiency criterion, supporting 
adaptive intelligent systems throughout a large class of AIS niches. Thus, it is less 

important that any particular aspect of the architecture should embody the optimal approach 
to achieving any particular form of adaptation than that the architecture should gracefully 
integrate all of the required forms of adaptation-and that it should demonstratively be able 
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to produce those behavioral adaptations as required by the operating environment. As 
Newell remarks on how best to evaluate unified theories of cognition: 

"Necessary characteristics are well and good, but they are substantially less than 
half the story. Sufficiency is all-important" [Newell, 1990, p. 158] 

Finally, other things being equal-in particular, given that the sufficiency criterion has 
been met, we prefer architectural parsimony- A compelling architecture should minimize 

the number of component mechanisms with which it supports the several required forms of 
adaptation. 

8.2 Current Status of Experimental Agents 

Our architecture has been implemented in an application-independent form and used 
to build experimental agents in several of the specific AIS niches in Figure 1. 

Guardian is the most substantial of our experimental agents. Guardian demonstration 
4 [Hayes-Roth, et al, 1992] monitors on the order of twenty continuously sensed patient 
data variables and several occasionally sensed variables. Its tasks include monitoring, 
fault detection, diagnosis, prediction, explanation, and planning. It has relatively fast 

reasoning methods based on clinical knowledge of commonly occurring problems, then- 
typical symptoms, and their standard treatments. It also has relatively slow, but more 
comprehensive reasoning methods based on symbolic knowledge of the underlying 
anatomy, physiology, and pathophysiology. Guardian demonstration 4 has been applied 
to a small number of simple, but realistic ICU scenarios. As illustrated in examples 
throughout the paper, this version of Guardian performs rudimentary versions of all of the 
different kinds of adaptation discussed above. Guardian demonstration 5, which is 
currently under development, will monitor on the order of 100 variables. It will perform 
the same set of tasks performed in demonstration 4, but with a more comprehensive set of 
methods. It will have a much larger medical knowledge base. Most important in the 
present context, Guardian demonstration 5 will provide a richer environment for 
evaluating the claimed architectural support for adaptation. 

In addition to Guardian, several other experimental monitoring agents have been 
developed in the architecture. In our laboratory, we have developed experimental agents 
to monitor power plant equipment [Sipma and Hayes-Roth, 1993] and semi-conductor 

40 



manufacturing equipment [Murdock and Hayes-Roth, 1991]. Both of these agents possess 
symbolic representations of the structure, function, and behavior of the equipment being 
monitored. They perform model-based process tracking, diagnosis, prediction, and 

explanation. Each one has been demonstrated on two or three simple, but realistic 
scenarios. A similar agent has been developed to monitor materials processing [Pardee, et 
al, 1990]. These applications demonstrate the generality of our agent architecture across 
diverse domains within the AIS monitoring niche. 

More recently, we have begun studying the application of our architecture to a class 
of niches for adaptive intelligent robots, which we call "Albots." In a first demonstration 
[Hayes-Roth, et al, 1993], we developed a simulated robot that plans surveillance 
destinations and routes, gathers information from the environment, and responds to 
unanticipated alarms. Despite its simplicity, this agent exhibits several of the kinds of 
adaptation discussed in this paper. It uses reasoning to select and parameterize perceptual 
strategies and navigation strategies. It uses dynamic control plans to decide which high- 
level task to perform (e.g., situation assessment, planning, information gathering) and 
which method to use for a given task (e.g., a classical planner versus a case-based 
planner). In a second demonstration, we developed a simulated robot that acts as a 
general office factotum. It can deliver messages personally or electronically, fetch and 
deliver objects, and learn unanticipated features of its environment. It accepts 
asynchronous requests for instances of these message and object goals and generates 
learning goals for itself. It plans and executes behavior to achieve goals in various 
sequences and combinations, based on their priorities, deadlines, and interactions with 
one another. This agent continuously adapts whatever pending goals and plans it has in 
light of newly perceived information about its environment, new goals, or the 
unanticipated details of progress on current goals and plans. Finally, in a third 
demonstration, we have demonstrated the above-described behaviors on an actual Nomad 
200 robot [Zhu, 1992] operating in our offices. 

The intelligent monitoring niches exemplified by Guardian and the intelligent 
robotics niches exemplified in our Albots demand the array of behavioral adaptations 
characteristic of all adaptive intelligent systems, but they emphasize complementary 
subsets of these demands. The Guardian niche emphasizes broad and deep domain 
knowledge and reasoning, important requirements for adaptive selective perception (but 
no real signal processing), and minimal requirements for action control. The Albots niche 
emphasizes signal interpretation as well as selective perception, important requirements 
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for controlling physical action, and simpler cognitive behaviors. For this reason, we find 
them to be an interesting combination of niches to which to evaluate our architecture. 

8.3 Comparison with Other Architecture 

Although our architecture is not the only one that supports adaptation, it is one of a 
small set of candidate architectures currently in the literature. However, most of these other 
architectures focus on selected aspects of adaptation, as illustrated by the following 

examples. Soar [Newell, 1990; Laird, et al, 1987] provides a very general search 

mechanism that can be applied to a variety of reasoning tasks and a learning mechanism 

that automatically moves the agent from search to a more reactive control mode based on 

experience. However, it does not provide a mechanism for perceptual adaptation or a 

mechanism for deliberately choosing reasoning tasks, reasoning methods, or control modes. 
The subsumption architecture [Brooks, 1986] embodies a layered control model in which 
each layer adapts its behavior continuously to relevant perceptual information and imposes 
constraints on the responsiveness of the layer below itself. However, it has been applied 
primarily to the perceptual-motor behavior of mobile robots. It has not yet been extended to 
support reasoning and it does not provide a mechanism that allows an agent to dynamically 
choose among its own capabilities. CIRCA [Musliner, et al, 1993] and a similar 

architecture based on the Maruti real-time operating system [Hendler and Agrawala, 1990] 
offer a two-layer architecture in which unpredictable AI methods are used to set goals and 
priorities for a real-time scheduler that guarantees to meet hard deadlines (assuming that is 
feasible) and to use slack resources effectively. This architecture adapts its real-time 
schedule to available resources and current priorities, but it does not provide other forms of 
adaptation, particularly within its use of the AI methods. 

A caveat: We do not mean to suggest that these architectures are not capable of 
providing all of the required forms of adaptation, but only that their ability to do so has not 
yet been demonstrated and is not immediately obvious to us. 

8.4 Other Related Work 

Several researchers are working on particular forms of adaptation independent of 
architectural context. Notable examples are: anytime algorithms that trade reasoning time 
for solution quality [Boddy and Dean, 1989], design-to-time scheduling algorithms for 
maximizing the use of available resources while meeting deadlines on critical tasks 
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[Garvey and Lesser, 1993], reactive systems that provide bounded response times for 
specified events [Rosenschein and Kaelbling, 1986] or flexible adaptation to 
unanticipated event orderings [Agre and Chapman, 1987; Nilsson, 1989], approximate 

processing techniques that provide acceptably degraded responses when resources are 
short Pecker et al, 1990]. We view these approaches as useful capabilities that we would 

strive to integrate within our architecture. 

9. Conclusions 

We have characterized a class of AIS niches. They require performance of diverse 
competing, and complementary tasks. They provide variable, possibly inadequate, 
resources for performing tasks. They present variably stressful contextual conditions. They 
impose conflicting performance criteria, which often cannot be satisfied completely. 
Therefore we have argued that, to function effectively in AIS niches, an agent must be 
highly adaptive. It must adapt its perceptual strategy to its dynamic cognitive requirements. 
It must adapt its control mode to uncertainty in its environment and constraints on its 
actions. It must adapt its reasoning tasks to demands and opportunities presented by its 
environment. It must adapt its reasoning methods to the available resources. It must adapt 
its meta-control strategy to its dynamic configuration of potential activities. 

We find AIS niches motivating for three reasons. First, AIS niches represent a 
substantial increment in behavioral requirements compared to niches occupied by typical 
AI agents. They stress our science. They force us to deal with uncertainty and resource 
limitations. They force us to balance traditional efforts to design optimal solutions to 
isolated problems with efforts to design integrated solutions to complex problems. Second, 
AIS niches appear to represent an achievable objective. They do not overwhelm us with the 
complexity of all of human behavior, but focus our investigation on a powerful and 
pervasive property of human behavior: adaptation. Third, AIS niches represent significant 
real applications (e.g., intelligent monitoring systems, intelligent surveillance systems, 
intelligent associate systems). Agents that function effectively in these niches would have 
real practical and social utility. 

In this paper, we argue on behalf of a particular agent architecture for AIS niches. 

However, as noted above, there are other sophisticated agent architectures that could be 
candidates for AIS niches. The success criteria for an AIS architecture are sufficiency, not 
necessity, followed by parsimony. It is quite possible that further evaluation of these 

43 



candidates will identify several sufficient architectures. In the meantime, we have had a 

modest success in using our own architecture to build experimental agents in several AIS 
niches and in demonstrating the required kinds of adaptation. Moreover, we have been able 
to support the several required dimensions of adaptation parsimoniously, by means of a 
single architectural concept: An agent dynamically constructs explicit control plans to 
guide its choices among situation-triggered possible actions. 
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