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Abstract 
The purpose of the work done under this contract has been to develop a general approach to the analy- 

sis of quantum transport in mesoscopic structures, allowing the extension to the quantum case of the metho- 
dologies assessed in the field of semiclassical electron transport. This aim has been pursued in the frame of 
the Wigner function formalism. The main feature of the chosen approach is to include the potential profile 
in the unperturbed Hamiltonian, leaving to the perturbed one the scattering terms only. This goal has been 
already partially achieved in the one-dimensional case, while for the two-dimensional one, only the coherent 
(unperturbed) dynamics has been investigated so far. As for the one-dimansional case, the dynamics of a 
travelling wave packet subject to a single phonon scattering has been investigated. Furthermore, the iterati- 
ve solution at first-order in the electron-phonon interaction of the resulting Wigner dynamics has been 
analyzed for an open-boundary one-dimensional system. Finally, coherent transport in open-boundary two- 
dimensional system has been widely investigated. In this report we will illustrate the principal theoretical 
achievements obtained during this contract period, together with the main application results. 

keywords: quantum transport, Wigner function, mesoscopic systems. 
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1.        Introduction 

Mesoscopic systems have been widely investigated in recent years. This increasing interest is mainly 
related to the fundamental physical problems involved in their description, as to possible future utilization 
of such structures in the electronic devices production. Being that mesoscopic dimensions are comparable to 
the typical electron coherent length, a correct analysis of transport phenomena in mesoscopic devices requi- 
res detailed quantum mechanical treatment. 

To this purpose, the Wigner function is a suitable tool, since it provides a rigorous quantum mechani- 
cal approach, and constitutes the more direct link between quantum and the semi-classical descriptions of 
the phase-space evolution in terms of a distribution function f(r,k,t). 

The Wigner function is defined as the Weil-Wigner transform of the density operator: 

1  r +~ 
fw(K,z) = — J   dr]    eiKr>    {z-JTjraOCFIz + JTj) 

in -°° 
and it has several interesting properties. When integrated with respect to K or z, it gives the correct 

probability for the different values of the coordinates and momentua, respectively. Furthermore, one may get 
for the state*? the correct expectation values of any function of its coordinates or momenta. 

In the following section, we will illustrate some theoretical details concerning the Wigner function ap- 
proach as we applied it to our general problem. 

2.       Wigner function theory for electron-phonon interaction 

In this section the developed theory of quantum electron transport based on the extension of the Wi- 
gner function including electron-phonon coupling will be briefly reviewed. 

We used an interaction scheme, where the electron potential profile (band engineering plus external 
applied voltage) is included in the unperturbed dynamics. 

Let us consider a three-dimensional system of independent electrons (with translational invariance 
along x and y directions), interacting with phonons. The unperturbed Hamiltonian H0 of the system is: 

P2 >r      . 
H0 = He+Hp=—+V(z)+2. a/a?ft©? 

where p and m are the electron momentum and mass, respectively, V(z) is the electron potential profi- 
le (including the applied voltage), aq and aq

+ are the annihilation and creation operators of the phonon mode 
q with frequency eo,. He.p is the electron-phonon interaction: 

Q 

where F(q) is a function that depends on the type of electron-phonon interaction. In our case polar op- 
tical phonons have been considered. 

The present theoretical approach starts from the definition of the Wigner function, generalized to in- 
clude phonons in the system, together with one electron: 

/(r,p,n,,n;) = -^-Jdr'e-"M-/ftp(r+r72,«<?;r-r72,«;) 

where p is the density matrix of the electron-phonon system. 

If we consider the density-matrix operator in the interaction picture with respect to the unperturbed 

hamiltonian H0, its corresponding Wigner function f satisfies the equation of morion 



—hr,P,nq\j)=^jdr'e-ipT,h(r + r/2,nll\[§i(t),P(t)]\r-r'/Znq') 

where %'=He_p/ih. 

Analytical elaborations allow to obtain a Neumann series for the problem, whose zero and second or- 
der terms yield the ballistic evolution of the Wigner function and contributions corresponding to one pho- 
non scattering, respectively. The solution of the resulting problem can be obtained, for a generic potential 
profile, only through a numerical procedure. 

First, the Schrödinger equation is numerically solved to determine the system eigenbasis. Since we are 
dealing with a one-dimensional problem, this numerical step doesn't present relevant inherent difficulties. 
However, particular care has to be devoted to the mesh refinement, in order to recover the orthogonality of 
the eigenstates. Then, the numerical integration of the Wigner function is performed. However, an analycal 
extension of the integration procedure is required to insure the normalization conditions in the asymptotic 
space region. The choice of the system boundary condition is a crucial problem itself. It is in fact known 
that the boundary conditions can drastically alter the dynamical evolution of a system, driving its behavior 
from stability to instability. An original treatment of the integration over the boundary conditions has been 
developed. As in all boundary problems, initial and boundary conditions are mandatory: the inital condition 
requires the knowledge of the unknown function in any point of the space at t = 0, while boundary condi- 
tions require, at any t, its knowledge over the boundaries. However, since the definition of the Wigner 
function is clearly non-local in space, a correlation between the Wigner function inside and outside the sy- 
stem boundaries (where it is not known) is inherent to the Wigner formalisms. This implies a specific trea- 
tement of the boundary integration, consisting in the integration back in time over the boundaries to get the 
proper Wigner function boundary values at each needed time (see Fig. 2.1.). 

♦ t 

r,P,t 
ri,p+,t'<t r2,p-,t'<t 

r',p\t' = 0 ri<r<r2,p,t' = 0 

Fig. 2.1: Sketch of the boundary conditions treatment. 

Results for the unperturbed Wigner function and for the perturbation corrections have been obtained 
for simple cases of interest. 



As a side achievement, the study of the density of states in an open-boundary system has been carrier 
out. In this frame, the problem of the orthonormalization of scattering states with different limits for the 
potential term at +°° and -«> has been critically reviewed, and the fundamental relationship between the wa- 
ve function normalization and the density of states has been clarified in the limit of a box of infinite length. 

As implicitely stated above, the numerical difficulties related to the solution of the problem are very 
relevant. Therefore, a straightforward implementation of the algorithms is not satisfactory from the compu- 
tational point of view. To this purpose, the analysis of the variance of the results has shown the necessity of 
importance sampling techniques to improve the computational efficiency of the numerical procedure. Such 
techniques are currently under development. 

To provide a comparison with the quantum results, and a suitable hint to their interpretation, a semi- 
classical Monte Carlo code has been realized. To maintain as strong as possible the analogy with the quan- 
tum solution of the Wigner transport equation, the semiclassical code is based on the series expansion of the 
Boltzmann equation. In such a way it is possible to make a direct comparison between classical and quan- 
tum perturbative corrections to the distribution function (order by order). This procedure proves to be very 
succesfull in driving the quantum code development on the correct path, providing a quantitative insight on 
the quantum correction to expect 

To give an example of the obtained results, Fig. 2.2 shows the unperturbed (ballistic) Wigner function, 
as obtained from the scattering states entering a device with a Maxwellian distribution. The potential profile 
of the device is a ramp of uniform electric field. 

POSITION ^llip^       MOMENTUM 

Fig. 2.2: Unperturbed Wigner function obtained with scattering states entering with a Maxwel- 
lian distribution a region with a potential ramp. 
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Fig. 2.3: Sample of second-order perturbation correction corresponding to a real and virtual 
phonon emission process. 

Fig. 2.3 shows, for the case above, the second-order correction to the Wigner function due to a real and 
virtual eletron-phonon scattering process. 

3.       Wigner function of a step potential 
From the anaytical side, the solution of the perturbed Wigner function has been derived for an open- 

boundary system in presence of an abrupt potential step. Since the system is open, the eigenstates above a 
certain energy are degenerate, and a proper linear combination of such eigenstates has to be chosen. It has 
been recognized that a natural basis is provided by the so called "scattering states". The proof of the degene- 
rate scattering states orthonormality, very important for their use as a basis set, has been subject of discus- 
sion in the literature, and has been presented following a quite involved and indirect way. For the case of a 
step potential profile, we have derived such a proof in a straightforward way, performing the direct calcu- 
lation on the scattering states, with the use of the formal expression 

f~0(±4 \eikxdx = 7i8(k)±iP\- 

where P means principal value and 0 is the step function. The result shows that the scattering states are 
normalized to a 5-function. 



One of the advantage of the Wigner function representation is that the mean value of any observable A 
is given, as in classical mechanics, by phase-space integrals with the Weil-Wigner transform of the corre- 
sponding operator 

(A)=fdKJdzA{K,z)fw{K,z) 

where 

r{K,z) = ^\eiK* p{z-T1/2,z + T]/2)dV. 

The Fourier transform included in the Wigner function definition imposes some requirements on the 
behavior of the density matrix p as a function of 7]. It can be shown that this Fourier transform can be 
justified if the eigenstates are normalized to unity. As stated before, scattering states are normalized to a 8- 
function, meaning that the required behavior for p can be provided only by the weight function g included 
in the density matrix definition for a mixture of states. Furthermore, we have shown that it is possible to 
define a Wigner function for pure states and to use it to evaluate an observable expectation value. 

In fact, using an appropriate converging procedure, it is possible to write 

r{K,z) = jg(k')f0
w{z,k',K)dk' 

where 

f0
w{z,k',K) = lim JV°V p,{z,ri)dTi 

a-»0+ 

is the pure state Wigner function, and a is a convergency factor. 

In this frame, the observable expectation value is redifined in terms of a mixture of pure state expecta- 
tion values, i.e. 

(A) = jg(k)U(K)f0
w{z,k',K)dKdk' 

4.        Wave packet dynamics 
The investigation has also faced the study of the dynamics of a wave packet subject to a single scatte- 

ring process. A wave packet, obtained as a superposition of the system eigenstates, is studied while it under- 
goes a single phonon scattering process. Also in this case, the developed Wigner-function formalism has 
been used. As a case study, propagation through a resonant-tunneling double-barrier structure has been cho- 
sen. 

A symmetrical double-barrier potential profile of height 0.2 eV has been considered, with barrier 
width of 20 A and a well width of 100 Ä. The eigenstates and the eigenvalues of the potential profile have 
been determined through the numerical solution of the associated Schrödinger equation. 

The system is located in a "universe" infinite well of lenght 104 Ä, which still allows to deal with 
normalized electron states, but is large enough not to influence the electron dynamics under investigation. 

We have analyzed the influence on the unperturbed wave packet Wigner function of a single phonon 
back-scattering event. The unperturbed Wigner function is damped away to leave the perturbation term 
only. Fig. 4.1 shows the evolution of the unperturbed electron wave packet, where the probability density as 
a function of the z coordinate is reported. 

The associated Wigner function is shown in Fig. 4.2. Notice how the wave packet peaks inside the 
quantum well after about lps and then how it smeares out. 



Fig. 4.3 shows the evolution of the Wigner function of the scatterd wave packet during the scattering 
process. 
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Fig. 4.1: Evolution of the electron wave packet propagating across a double barrier. The energy 
of the wave packet is centered around a resonance value of the doubl barrier. 
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Fig. 4.2: Evolution of the wigner function for the wave packet shown in Fig. 4.2. 
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Fig. 4.3: Wigner function of the scattered wave packet during the scattering process. 

5.        Coherent transport in two-dimensional systems 

Also for the two-dimensional case, the final goal is the determination of the Wigner function evolu- 
tion, as described for the one-dimensional case. However, the numerical problems, already severe for that 
case, are in this case amplified. For this reason, for the time being only 2D coherent analysis have been 
performed, waiting to borrow the theoretical results and the numerical techniques from the ID case once 
they will be assessed. 



Fig. 5.1: Schematic representation of a 2D open-boundary system. 

In the 2D case the time independent envelope-function equation has been solved in a generic 2D open 
boundary system. Fig. 5.1 shows a generic 2D open-boundary system. It consists of a 2D internal region 
where a 2D potential profile is present. The system boundary are all closed except those with the system 
leads, i.e. the channel of infinite length and finite width through which the system exchanges charge with 
the external world. 

x coord. (Ä) 

x coord. (A) 

500 

x coord. (Ä) 

-y-, r 
500 1000 

x coord. (A) 

Fig. 5.2: Wave function propagation through rough channels of different length. 



The solution is computed imposing zero wave function at the border of the region and a superposition 
of incoming and reflected plane waves and evanescent modes at each lead boundary.The finite elements 
scheme over a triangular mesh has been used. 

The simulator has been applied to the study of the transmission properties of a resonant cavity with a 
localized screened Coulomb potential, simulating the presence of a dopant impurity, and of rough channels 
of different lengths. 

As an example, in Fig. 5.2 and Fig. 5.3 the propagation through rough channels of different length is 
reported. Fig. 5.2 shows the localization effect occurring in a quantum channel (i.e. a MOSFET one) due to 

1 

0.0 0.2 0.4 0.6 
energy (eV) 

Fig. 5.3: Transmission coefficients vs. energy for the quantum channels of Fig. 5.2. 

the surface roughness. This directly reflects in the transmissivity of the channel, as can be seen in Fig. 5.3. 

Furthermore, the analysis of the transit time of a coherent wave has been carried out. The goal is to 
find a figure of merit to compare the performance of different structures when coherent transport takes pla- 
ces. A generalization to the two-dimensional case of the "phase time" has been developed: 

AT 
m 

~h 

i  a 

~b 
+ 

2> h ß'i 
i  

b        ^JTi b 
J 

where I and i indicate the mode entering and exiting the system, respectively; T; is the transmission 
coefficient; k are the wave vectors; ß;' the derivative of the phase of the outgoing wave with respect to k;; a 
and b are the system limits. 
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We have applied the derived definition of phase time to simple cases of study, namely the determina- 
tion of the propagation delay of electrons transiting through a quantum wire and a double-barrier resonant- 
tunneling diode, in presence of a single Coulomb scatterer. 
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Fig. 5.4: Phase time through a double barrier resonant diode. 

As an example, Fig. 5.4 shows the phase time behavior through a double barrier resonant diode. 
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Fig. 5.5: Geometry of the investigated 2D tunneling device. 

Still concerning the 2D coherent transport, the transmissivity of 2D tunneling structures has also been 
investigated. As a result, a new resonant condition has been discovered. In principle, the phenomenon is 
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similar to what observed in double-barrier resonant diodes, but in this case the resonance condition is de- 
termined by the 2D geometrical features of the system. 
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Fig. 5.6: Resonance transmissivity peaks for different geometrical configurations of the system 
of Fig. 5.6. 

Fig. 5.5 shows the 2D gemetry of a resonating tunneling cavity, while Fig. 5.6 its transmissivity beha- 
vior for different values of the geometrical parameters of Fig. 5.5. We have found that the resonant energy 
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Fig. 5.7: Simulation of an electrostatic lens. Note the focusing effect taking place on the tran- 
smitted wave function. Arrows indicate the current density vectors. 
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corresponds to the energy of the corresponding closed boundary system at which the eigenstate peaks inside 
the resonating cavity just before the transverse potential barrier. 

Another interesting 2D effect we have simulated is that of electron focusing through the use of a bo- 
concave-shaped potential barrier. Fig. 5.7 shows one of the simulation results. 

6.      Conclusions 

In this final report we have illustrated the main results achieved under this contract. 

On the theoretical side, the Wigner function formalism for quantum dynamics in mesoscopic systems 
has been developed. 

From the application standpoint, one-dymensional systems dynamics has been analyzed including the 
effect of a single phonon scattering event. This as been done both for a wave packet and for scattering sta- 
tes. 

As for the case of two-dimensional open-boundary systems, only coherent dynamics has been investi- 
gated so far. Interesting mesoscopic systems, such as rough quantized channels, elecroscatic lenses, and re- 
sonant tunneling cavities have been studied. 
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