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Introddction

in many cases vortices are being generated on the aircraft
surface: on the upper wing and body surfaces, in the vicini-
ty of the deflected fins. They can essentially influence
pressure distribution and heat transfer. The vortex dgenera-
ted on the upper surface of a body or a wing can encounter
the shock wave in front of the fin, ljocated downstream
(Fig.la). Another example is: interaction of the vortex, dge-
nerated by a canard [1], a strake or a nose flap intended
for aircraft trimming with the wing or fin shock wave
(Fig.1b). A case important for practical purpose is descri-
ped in [2] (Fig.1c): interaction between the vortex and in-
let shock waves qualitatively changes the inlet entry flow
pattern. A similar phenomenon can be observed in the case of
intéraction of the vortex generated in the inlet with the
pylon of the air-breathing jet combustion chamber (Fig.1d).
In this context it is worthwhile to investigate the vortex

structure and its interaction with the streamlined body.

Wing flow at an angle of attack, followed by & flow separa-
tion and vortices formation, have been investigated in many
studies. In some papers vortices structure is investigated
in detail. Most works deale with flows of incompressible
fluida. A vortex layer, shedding from a wing surface, rolls
up into a spiral. Its shape and velocity distribution are
approximately described by the equations of motion for in-
compressible fluid [3,4]. At high Reynolds numbers the expe-
rimental [5,6] 'and theoretical results are in good agree-
ment. However velocity tangential discontinuity on the spi-
ral surface typical for an incompressible fluid flow are
smoothed due to the influence of viscous diffusion [5,6]-
The influence of viscousity is still greater in the internal
vortex core. It was discovered by the experiment [5] and in-

vestigated theoretically for a laminar flow in works [7,8].
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A survey of these investigations is given in [9]. In 1957
peckham and Atkinson discovered a vortex burst [10]. They

observed it in the flow field in the vicinity of the wing in
the region of a positive pressure gradient. The vortex burst
is also observed in the swirling nozzles and diffusers
flows. After the discovery of the vortex purst a great vari-
ety of theoretical investigations of this phenomenon was

carried out.

A supersonic vortex structure was thoroughly investigated in
the work [1]. Using modern measurement techniques the rese-
archers obtained the data concerning the influence of the
swirl strength and pressure gradient on the velocity and gas

pressure in the vortex at Mach numbers from 1.6 to 2.28.

In 1975 research [2] discovered a vortex breakdown in front
of the 1inlet due to the influence of a strong shock wave.
The investigation was carried out at Mach number from 1.4 to
3.0. It was shown that a vortex breakdown is followed by
formation a dead region which induces a cone shock. The inc-
lination angle of the dead region borderline and pressure
increase in it are close to similar values for a separation
region of the turbulent boundary layer. The formation of the
dead region reduces the pressure recovery coefficient in the
supersonic inlet. This jinvestigation was continued in works

{1,11,12].

Paper [1] determines the paraneters, influencing the vortex
burst when interacting with the normal shock: vortex streng-
th and Mach number (shock pressure difference). The vortex
breakdown conditions are specified for Mach number up to
2.5. In this paper on the basis of the Euler equations are
also theoretically determined the conditions under which the
vortex breakdown occurs. The calculation results and the ex-
perimental data are in good agreement. In paper [11] similar

analysis of interaction between a vortex and an oblique
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shock past whlch .a supersonlc flow is retained was carried
out at Mach numbers of 2.28 and 5.0. In calculations a vor-
tex breakdown was not obtained. 1In paper [2] it is shown
that at Mach numbers from 2.5 to 4.0 a vortex breakdown oOC-
curs at a rather high angle of attack of the wing generating
a vortex (at O > 5- 10°). In paper [12] a vortex burst was
also observed during’ interact1on petween a vortex and a
central shock in the under-expanded jet. It occurred at ang-

1es of attack of the wing-vortex generator greater than 8°

In the known papers a stagnation temperature distribution in
a supersonic vortex was not investigated. At the same time
measurements performed at subsonic speeds in the Ranque tube
indicate that vortex temperature can essentially change
[13]. This property of vortex flows is applied in the simp-

lest refrigerators.

None of the studies familiar to the authors deals with the
investigations of the vortex influence on the heat exchange
on the frontal surfaces of a body. At the same time the ob-
tained data about the vortex preakdown indicate that this

influence can be essential.

The aim of this paper is as follows:

1) To obtain additional data about the vortex structure in
supersonic flow by means of experiment and theoretical in-
vestigations.

2) To obtain experimental data about the vortex influence on

the heat transfer on the frontal surface of the blunted bo-

dy .
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Nomenclature for the part A

thermodiffusion coefficient,

chord of vortex generator,

heat capacity,

vortex diameter,

reference vortex diameter (at the begin of

the vortex's straight portion),

sphere diameter,

at/8%, Fourier number,

a/(To-Ty ) heat transfer coefficient,

enthalpy.,

length of separation region in front of sphere,
Mach number,

pressure,

heat flux,

theoretical value of the heat flux in the stagnation
point of the sphere,

D/2, sphere radius,

pw,u,,D / Ko Reynolds number,

Poe Upo / Moo s unit Reynolds number (per 1 m),
distance along sphere surface from its center,
temperature,

temperature,

velocity,

coordinate in free stream direction,

distance from trailing edge of vortex generator
to sphere,

coordinates in the directions perpendicular to a free
stream,

angle of attack of a vortex generator,
inclination angle of shock wave,

azimuthal angle,

model wall thickness,

angle of porderline inclination of separation region,




A = thermal conductivity coefficient, -
i = viscosity coefficient, '

p = density,

1 = time,

(0 = angle between the x-axis and the probe axis.
subscripts

oo = free stream conditions,

0 - wind tunnel settling chamber,

initial conditions,

-
I

= maximum value,

stagnation point past normal shock wave,

s n =B
I

= on the model surface.
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A. Experimental investigatioh of the vortex structure

and its interaction with a sphere

1. Experimental facility
1.1. Description of the T-33 wind tunnel

The T-33 facility is an intermittent, blowdown wind tunnel
(Fig.2). It is often used at TsAGI for investigation of heat
transfer and pressure distribution on the bodies surface in
supersonic gas flows as well as for flow visualization. This
wind tunnel was being used for similar investigations in the

subsonic flow.

The scheme of the T-33 wind tunnel is shown in Fig.3. In the
majority of experiments an electrical resistance heater (1)
is used for air heating. Its power is up to 1000 KkW. When
the experiment purpose is a flow visualizaton another heater
is used wherein heating occurs due to combustion of kerose-
ne. It represents a modified combustion chamber of the tur-

bojet engine.

The maximum temperature of the air in both heaters is about
500°C. However in the majority of experiments the temperatu-
re doesnot exceed 200°C. In settling chamber (2) the flow is
straightened by a honeycomb and a system of grids. The maxi-
mum pressure in the settling chamber reaches g*x10° Pa. For
developing a supersonic flow axisymmetric nozzles (3) conto-
ured to produce uniform Mach 3, 4 or 5 flow are used. There
is also a convergent nozzle generating a subsonic flow. In
this investigation the nozzle intended for Mach number of 3

was used. The nozzle exit section diameter is 304.5 mm.

The wind tunnel test section (4) (see Figs. 3 and 4) pre-
sents itself the Eiffel chamber. Its diameter is 800 mm, the

distance between the nozzle and the diffuser is 550 wmm. In
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the walls of the test section there are 5 windows for illu-
mination and observation of models. For fixing the models
there are 2 supporting mechanisms in the wind tunnel test
section (above and below). They can inject a model and a me-
asuring unit or two parts of a compound model into the flow
simultaneously or one after the other. The lower supporting
device can be moved in the axial direction during the eXxpe-
riment. Furthermore it is possible to change the model angle

of attack during the experiment.

Below on the test section wall a thermostatic chamber is mo-
unted. During the heat transfer investigations this chamber
prevents the model installed on the lower supporting mecha-
nism from heating at the period when the flow becomes stea-
dy. After obtaining a prescribed steady regime a flap of the
thermostatic chamber is moved aside and the -model is quickly

injected into the flow. A maximum model length is 350 mm.

For obtaining the required air rarefaction in the test sec-

tion a two-stage supersonic ejector is applied.

A great number of investigations of heat transfer by means
of thermosensitive coatings and discrete thermocouples was
carried out in the T-33 wind tunnel. Furthermore, a flow vi-
sualization by a shadowgraph technique, a laser knife and a
calibrated oil points is often performed in the tunnel. Some
results obtained in the T-33 wind tunnel are presented in

papers [14,15].

1.2. Vortex generators

Different ways of vortex generation are known. In a number
of works for generation of a vortex a swept or a strainght
wing at an angle of attack is used. Delery [1] used for vor-

tex generation in subsonic flow a wing-type generator along
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with a vane-type generator. The vane-type generator presen-
ted itself an axisymmetric body'on which two vanes were ins-
talled at a certain angle of attack. In Ref.[16], a vortex
produced also by swirl-vanes being placed into axisymmetric
casing , 1is described. The investigation [1] has shown that
the velocities distributions in the vortices produced by a
wing and swirl-vanes differ substantially. In a supersonic
flow vanes without external casing evidently were not used

up till now.

In the current investigation three generators of both type
were used: 2 generators in the form of a rectangular wing
and one generator of a vane type. In designing the wing-type
generator the investigation results of Ref.[17] were used.
In this paper information about vortex dimensions and its
position at different wing angles of attack was obtained.
Figures 5, 6 and 7 show the schemes of the generators which
were used. Generators 1 and 2 have an rectangular shape. The
leading and lower edges are sharp and the trailing edge is
blunt. Over a greater part of the wing span a cross section
profile has a triangular shape. Cenerators 1 and 2 differ
only by the chord length. The wing chord of generator 1 is
almost 3 times greater than that of generator 2. Generator 1
is designed mainly for investigating a total pressure and
total temperature distribution in a vortex and generator 2 -
mainly for investigating a vortex development and its inte-
raction with a sphere.

Generator 3 (Fig.7) presents itself an axisymmetric body
with a diameter of 6 mm, on which 4 rectangular vanes are
fixed at an angle of attack of 30° (there are also genera-
tors with the vane setting angles of 10° and 20° but they
were not used). A potential advantage of generator 3 as com-
pared with two other generators consists in a less flow per-
turbance because the plate on which the generator is mounted

is installed at a zero angle of attack.
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1.3. Total pressure and staénation temperature probes

and device for their positioning

A stagnation pressure probe (Fig.8a) presents itself a ca-
pillary tube fabricated from a stainless steel with an ex-
ternal and internal diameters 0.8 and 0.48 mm respectively.
A capillary with a straight section length 12 mm was bent in
a manner as shown in Fig.8a and went through a positioning
device rod. The end of the capillary was connected with a
miniature pressure probe with a measuring range from 0 to 10
par, by means of a flexible pipe. The inertia of the total

pressure probe did not exceed 0.1 s.

A stagnation temperature probe (Fig.8b) presented 1itself a
tube made of a stainless steel with external and internal
diameters 2 and 1.5 mm respectively and straight section
length 20 mm. Inside this tube a thermocouple junction from
chromel-copel alloys with a wire thickness of 0.1 mm was
placed. The rear end of the tube had a plug and there were 2
holes 0.5 mm in diameter in the side surface behind the
thermocouple Jjunction. A signal from the thermocouple was
recorded by a data acquisition processing system. A tempera-
ture recovery coefficient of this probe design at specified

flow paramemeters according to literature data was estimated

The real values of the recovery coefficient were estimated
in the tests.

For moving the probes a positioning device was developed and
fabricated (Figs.9,10). Probe 1 is fixed inside the rod 2

(Fig.9). Miniature cooled engines 4 and 10 move the rod in
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the vertical direction and rotate it relative to the axis.
The positioning device is mounted on the lower supporting
mechanism of the T-33 tunnel and can be moved along the tun-

nel axis.

The positioning device allows the probe to be moved along
the y-axis (in vertical direction) at the distance up-to 120
mm with the minimum spacing of 0.05 mm. At every specified
station along the y-axis the positioning device can stop the
probe and rotate it up to the angle *90° with the minimum

setting 0.5°.

The positioning device is controlled by a computer. A cont-
rol code allows to change movement and rotation steps Ay and
Ap, respectively, as well as duration of maintaning the pro-
be in stop position necessary for conducting reliable measu-
rements. For the current investigation the code was develo-
ped in such a way in order to obtain maximum information
about flow characteristics in the vortex region during mini-

mum wind tunnel running time.

1.4. Models of sphere

For investigating a vortex blunt body interaction two sphe-
res with a diameter D=60 mm were fabricated. One sphere was
made of steel and intended for a flow visualization. Another
sphere was made of glass-fibre plastic and intended for in-
vestigation of heat transfer. 43 heat flux sensors were mo-
unted on it (Fig.11a). A scheme of sensors location is shown
in Fig.11b.
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1.5. Heat flux sensors. Method of heat flux measurement

In this investigation the surface thermocouples were used as
heat flux sensors [18]. They are fabricated from chromel-co-
pel alloys. A diameter of thermocouple wires is 0.1 mm. In
the measurement position they are being rolled-off into the
ribbons of 0.02 mm thickness, 0.2 mm width and 4.0 mm long.
The ribbons are bonded flush with the model surface. The
thermocouples ends are prought into the model through dril-

lings.

Estimation of a heat flux from a surface temperature is a
problem of the poundary condition conversation. This problem
may be considered as a limited inverse heat conduction prob-
lem which occurs in processing temperature data measured on
the body surface. In such formulation the inverse heat con-

duction problem is correct.

As the model wall thickness § is sufficiently large, the
thermal conductivity coefficient and testing time are small
(i.e. the Fourier number Fo<1), the semi-infinite body model
can be used for investigating a process of heat transfer. In
this case the boundary inverse heat conduction problem may
be formulated as follows: using the known solution T(0,T)=

=f(T) of the heat conduction equation

8T(z,1) ©8%T (2,71)
= a ———— , T<0, z>0

0T 8z

(here z is the coordinate directed inside the body perpendi-

cular to the surface)
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with the boundary conditions
OT(%,T)

= 0; T(%,T)=T;
0z

and the initial condition
T(z,0)=T4
to determine a heat flux to the heated surface
OT(0,T)
a(t) = - A

0z

The problem solution takes the following form [19]:

Vkep 4 T f(t)dt Vhcp T £ (t)dt
a(t) = - [ = J
YT dz O T-t VT o T-t

For smoothing and functional presentation of heating curves
K-spline approximation by the least squares method is appli-
ed [20].

The thermal activity coefficient value J/Apc incoming into
the above expression was specified for every sensor at a
special calibration setup (Fig.12a) wherein an air jet of
2.0 mm diameter, producing a known heat flux is directed to
the sensor perpendicularly to the model surface. The heat
flux action period is approximately the same as in the wind
tunnel model tests. Using the measured surface temperature
and known heat flux value one can estimate the value of [/Apc

using the solution of one-dimensional heat conduction prob-




lem for a semi-infinite body. The typical calibration curve

is shown in Fig.12b.

1.6. Flow visualization methods

For flow visualization a laser knife method [15,17] was used
along with a shadowgraph technique. This method is similar
to a vapour screen method and allows to observe a flow cross
section. For flow visualization by the laser knife method
kerosene was burned up in the T-33 wind tunnel heater. Car-
bon dioxide and water vapour containing in the combustion
products transit to a solid phase during air expansion 1in
the nozzle. 1In addition there are particles of soot in the
combustion products. Laser with a power of 6 W and a wave
length of 5150 A was used as a light source. A plane light
sheet 2 mm thickness was formed by means of cylindrical op-
tics. This light sheet crossed the gas flow in the perpendi-
cular direction to the free stream flow. The flow pattern
pictures were taken by a camera located behind the laser
knife plane. Prior to the experiment, pictures of a template
located in the laser knife plane were taken. By means of
this template image scales along the x and y-axes were de-
termined. During the experiment a vortex generator moved re-
lative to the laser knife plane and in this way a flow visu-
alization at the different distances from the generator was
carried out.

For flow visualization on the sphere surface oil paint was
iused. The paint was applied on the surface in the form of
discrete points [15,21]. Under the influence of a hot air
flow the paint is being softened and carried away by the
flow. The lines appearing on the model surface are useful in

visualization of the flow direction and viscous stress va-

lue.
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2. Investigation results and their analysis
2.1. Free stream flow parameters

The investigation was conducted at a Mach number 3. The to-
tal pressure was the same py = 5%10° Pa in all experiments,
and the temperature was different: in one part of the expe-
riment air was heated up to T; = 410 K (by flow visualizati-
on, by investigation of heat transfer), in another part of

the experiment the stagnation temperature was close to nor-

mal T, = 280 K (by measuring pressure and stagnation tempe-
rature distribution). 1In the first case the unit Reynolds
number was Rey = 1.1*107 1/m, in the second case - Rey

=3.7*10" 1/m.

2.2. Flow pattern past vortex generator
2.2.1. Flow pattern

At first 1let us consider a flow past wing-type generators
and then past a vane-type generator. Figures 13 and 14 show
pictures of vortex cross sections past generator 1 at angles
of attack O = 10° and 20°. The image scale was 2:1 relative
to the real one. Origin of the x-coordinate coincides with
the rear generator edge. When analysing the pictures obtai-
ned by a laser knife method it should be taken into conside-
ration that in the flow regions corresponding to slightly
curved streamlines brightness of the images is proportional
to gas density. It is confirmed by comparison measuring re-
sults of the image density and stagnation pressure in the
Prandtl-Mayer flow region [17]. Due to this one can see
shock waves, rarefaction areas, and a wing wake in these
pictures. The results of digital processing of the pictures
are presented in Fig.15. This processing was carried out to

obtain more comprehensive information about the gas density
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o gistripution in  the flow field. At the bottom of Fig.15 a
gray scale is shown. Every gradation on the scale corres-
ponds to a certain gas density. In the region with a large
curvature of the streamlines and particularly in the vortex,

these pictures are not useful for visualization of the den-

sity distribution: due to the large curvature of the stream-

lines, solid and liquid particles flow away from the vortex

region under the influence of centrifugal forces. So these

yortices are seen as black spots in the pictures. Similar

materials about the vortex formed by generator 2 are presen-

ted in Figs. 16-19.

g e T TR e, stk s 4. v

. Figures 20 and 21 present a flow visualization past genera-
# tor 3 which has the four-vanes form. The vanes present them-
selves rectangular finite span wings. Each vane produces two

tip vortices. Altogether 8 vortices are formed: 4 vortices

in the vicinity of the axis of symmetry and 4 vortices in
the periphery. All eight vortices and covering them shock
waves are clearly seen directly past the generator (Fig.20,
- x = 20 mm, Fig.2la). Four central vortices are joined into
_one central vortex at the distance x = 100 mm and four pe-
5 ripheral ones are retained throughout the whole region avai-
??}1ab1e for observation (Xpax = 160 mm). Further, for the in-
 VéStigations only the wing-type generators were used because

" they produce only one concentrated vortex.

'7Let us address to the analysis of the flow past the wing-ty-
.. Pe vortex generators. In papers [14,17] a scheme of the flow
in the vicinity of the rectangular wing is presented. It is
reproduced in slightly distinguished form in Fig.22a. Ele-
ments of this scheme are seen also in Fig.14, x=2 mm (1 -

bow shock wave, 2 - internal shock wave, 3 - vortex, 4 -

Prandtl-Mayer flow). In the vicinity of the wing the vortex
has a cone shape. A cone angle of the vortex is close by its
o . . .

rder of magnitude to the wing angle of attack. There is an

ey : . . . .
¥pansion of the vortex in the wing region due to the inflow
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f the inviscid gas 4into the rotation region. The flow past
the wingd is shown in a schematic presentation in Fig.22b and
c. Past the wing the flow expands only due to the viscous
dlsslpatlon A vortex expansion angle is not high (see be-
low). A free vortex 5 induces a weak conical compression wa-
ve 6 (Fig. .22c). It is seen in the picture at a large dis-
tance from the generator (Fig.13b, x=135 mm; Fig.14b, x=100
mm) - Analysis of the pictures show that far from the tip
section past the wing a viscous weak expanding wake 7 is
formed. It also induces a weak compression wave 8 (Fig.22b).
Analysis of the pictures taken at different distances from
the generator shows that the M-lines (Fig.22b) and the
N-lines (Fig.22c) are approximately linear and located at
the same angle relative to a free stream flow direction. It
is close to the value of arcsin 1/M at M=3. This confirms
that lines 6 and 8 observed in the laser pictures are weak

compression waves.

2.2.2. Vortex dimensions

Let us continue the analysis of the laser pictures. The vor-
tex axis past the wing is curved, the vortex centre is disp-
laced towards the windward generator surface (in the positi-
ve direction along z-axis) by the distance up to 0.4 b at
the angle of attack up to 20-30 deg. The curved portion
length of the vortex axis is about 1.5 b. At a larger dis-
tance from the generator the vortex axis 1is approximately

parallel to a free stream flow direction.

Figure 23 shows variation of the vortex diameter versus the
distance from the generator. Linear dimensions are related
to the wing chord. The vortex has a spiral shape. It is cle-
arly seen in Fig.18 as well as in some pictures of Fig.24.
The vortex core has an oval shape and its axes are rotated

With increase of the distance from the generator (Fig.24).
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The core boundaries- become gradually blurred and the core
ijtself becomes not so black. This is due to deceleration of
rotation and increase of gas density in the core. Because of
insufficient sharpness of the core boundaries its dimensions
can be determined only approximately by means of the pictu-
res. In Fig.23 dimensions of the vortex cross section in the
y and z directions (dy, d,) are shown. At =10° and 30°
vortex dimensions change according to the linear law throug-
hout the range and at & =20° only when x > 1.5 b. The rela-
tive vortex diameter value d/b practically does not depend
on the wing dimensions: the experimental points obtained
with generators 1 and 2 are on the general curve when the
angle of attack growth. The vortex diameter d=1/2(dy+d;)
sharply increases (Fig.25).

When analysing vortex dissipation it is reasonable to neg-
lect the generator dimensions. So in Fig.26 linear dimensi-
ons are related to some conditional reference vortex diame-
ter d,. For each experiment value dr=1/2(dy+d; ) was determi-
ned at the distance x=1.5 b, where a transitional curviline-
ar vortex portion ends and its straight portion starts. From
Fig.26, it can be seen that at O ¢ 20° all experimental data
regardless to a generator dimension and angle of attack are
described by a general function: the vortex linearly ex-
pands. An expansion vortex angle is about 1 deg. At 0=30°

this angle increases up to 3°.

2.2.3. Pressure and stagnation temperature profiles

Pressure and temperature were measured past denerator 1
(b=58 mm) at angle of attack O = 20° in two transverse sec-
tions x,; =2 mm and X, =110 mm as shown in Fig.27. The laser
Pictures evidence that the vortex centre in section 1 is
displaced relative to the plane z=0 towards the leeward sur-

face by 13 mm. Besides, the generator is bent under the inf-
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luence of aerodynamic force and the vortex centre is additi-
onally displaced in the direction of the negative z-axis
approximately by 5 mm. Taking into account the data obtained
in the preliminary experiments the probes axes were set at a
certain angle to the direction of the y-axis (Fig.27a). 1In

section one this angle was about 5° and in section two 4°%.

The total pressure probe was rotated in the plane y=const in
the angle range of ¢ = * 45° in increments of 15° . Rotating
was carried out relative to the probe entry, i.e., the probe
entry position did not change during probe rotatings
(Fig.27c). At each position the probe was kept for 1-2 s,
that provided a sufficient measurement accuracy. The results

of all pressure measurements are presented in Tables 1 and

2.

In Fig. 28, as an example measurements results of the stag-
nation pressure in section 1 and 2 at different distances
from the vortex centre are shown. In a free stream flow
(y'=20 mm for section 1 and y'=15 mm for section 2) as ex-
pected the probe indications are approximately symmetric to
the flow direction. The probe is practically insensitive to
a flow deflection up to the angle ¢ = 15°, this agrees with
literature data [22]. In the region of the vortex influence
the flow is swirled in the clockwise direction: above the
vortex axis (y'=107 mm in section 1 and y'=118 mm in section
2) the flow is displaced in the direction of the positive
z-axis and below the vortex axis (y'=96 mm in section 1 and
Yy'= 93 mm in section 2) in the opposite direction. Judging
by the stagnation pressure measurements angle of flow swirl

in section 2 is significantly less than in section 1.

The influence of the rotation angle of the stagnation tempe-
rature probe on its indications can be seen in Fig. 29 and
tables 3 and 4. The stagnation temperature probe indications

are practically insensitive to a flow deflection also in the
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range T 15° (Fig.29, y'=15 mm). The stagnation temperature
measurements confirm the presence of the flow swirl in a
clockwise direction if to consider it in the flow direction.
At each probe position y=const from all results of measuring
pressure or temperature at different rotation angles of the
probe ¢ the maximum value was chosen (it is marked by an as-
terisk in tables 1-4). It was assumed that this indication
gives the stagnation pressure value (pg=p.) and the stagna-

tion temperature value (T¢=T,) past a shock wave.

In Fig.30 a, b and c the stagnation pressure measurement re-
sults are presented. At the bottom of Fig.30 a and b , pic-
tures of the vortex cross section, with denoted the shock
wave Sy, S, and the vortex boundaries V; and V, , are pre-
sented. It is seen that the stagnation pressure measurement
results are adequate to the flow pattern presented in the
corresponding picture of the flow cross section. In fact, in
a free stream flow the stagnation pressure is approximately
constant; it sharply increases in the point S when crossing
a bow shock wave of the generator. Then it gradually decrea-
ses while approaching to the generator, that agrees with the
results of the digital pictures processing, Fig.15. This
stagnation pressure decrease continuously transit to a pres-
sure drop induced by a flow swirl. So the measurement re-
sults presented in Fig.30 do not allow to determine the vor-
tex boundary. It can be determined by the value of a flow
deflection: outside the vortex dependence of the pressure p
on the angle ¢ is approximately'symmetric to the free stream
direction. .In section 1 the vortex boundaries are in the po-
ints y=95-96 mm and y = 106-107 mm. This agrees with the bo-
Undaries determined by the pictures and proves the use of
laser pictures for investigating a vortex development. 1In
Fig.30c it is also can be seen that directly past the gene-
Fator (in section 1) the stagnation pressure at the vortex
axis is 16 times less of that in the free stream flow. In

SeCtion 2 these values differ only by 2-3 times (in Fig.30c

e e e
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the points corresponding to the nimimum pressure values are

superposed) . Hence, with growth of the distance from the ge-
nerator the vortex diameter increases slowly but the flow
swirl decreases sharply and the vortex core is filled up

with a significantly denser gas.

In Fig.31 a and b the étagnation temperature measurement re-
sults are presented. The shock wave, as expected, unlike
stagnation pressure, does not cause increase of stagnation
temperature. However, in the region of rotational motion the
stagnation temperature significantly decreases. At the vor-
tex axis this decrease was 18° in section 1 and approximate-
ly 3° in section 2 as compared to the stagnation temperature
in front of the shock wave. The noted decrease of temperatu-
res difference is caused by deceleration of gas rotation in

the vortex.

In the book by Gupta [13] the measurement results of air
temperature in the Ranque tube, described in paper [23] are
presented. 1In this experimental setup air swirl is produced
by a tangential air jet injection into a cylindrical chamber
at one its end. The minimum air temperature was in the vici-
nity of the chamber axis at the same end, where air jet in-
jection is performed. The minimum air temperature in paper
[23] was by 25° lower than the injection air temperature,
this agrees with the results of the current experiment. 1In
the book [23] gas cooling at the vortex axis is explained by
€nergy transfer due to turbulentlfluctuations. In this in-
vVestigation the air flow was laminar. Apparently, air coo-
ling in the vortex can be explained in the following way: at
first in the vicinity of the wing a vortex with high circum-
ferential speeds is formed and herein speed increases while
abproaching to the axis, except low vicinity of the axis.
The internal fast rotational 1layers due to gas viscosity
(molecular or turbulent) transfer a moment of momentum to

the external layers and increase their circumferential spe-
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ed. This leads to decrease of the internal layers temperatu-
re and increase of the external gas layers temperature. AS
the internal layers mass is less than the external layers
mass involved into the accelerated rotation, temperature
gecrease of the internal layers is essentially higher than
the temperature increase of the external layers. Local tem-
perature increase of the external layer is seen in Fig.31la
in the vicinity of the vortex boundaries Vi and V, and in

Fig.31b in the vicinity of the vortex boundary Vi -

n Fig.32 the measured stagnation temperature Tg is related
‘it the settling chamber temperature Ty (Tg = 275-280 K). The
vortex centres in sections 1 and 2 (Fig.32) are conditional-
ly superposed. The maximum stagnation temperature drop di-
rectly past the generator constitutes only 11%. As a first
approximation one can neglect the influence of stagnation

temperature variation on gas density and heat transfer.

2.3. Vortex-sphere interaction

. >.3.1. Gas flow pattern in front of sphere
For investigating vortex-sphere interaction a sphere with
the diameter D=60 mm was located past generator 2 (b=20 mm)
at the different distances xg from its trailing edge. The
sphere centre was situated approximately along the vortex
axis. The investigation was carried out at the total pressu-
re Py = 5«10° Pa and stagnation temperature T = 410 K. For

flow visualization a kerosene heater was used.

Figure 33a shows a picture of the sphere in the absence of a
vortex generator. This picture as well as the other is obta-
ined by a straight shadowgraph method. Dimensions in the
picture coincide with the real ones if not to take into ac-

count small distortions due to the light rays deviation. 1In
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Fig.33b @ picture of the flow past the generator installed
at the angle of attack A = 20° is presented. Throughout the
region available for observation the flow remains laminar
and the vortex diameter weakly changes, as noted in the pre-

vious chapter.

Figures 34 and 35 present shadow pictures of the vortex cord
interaction with the sphere at the generator angle of attack
o = 10° and 20° (Xg=x%g5/D)- Analysis of these pictures shows
the following. At some distance in front of the sphere a
vortex breakdown occurs, i.e., the vortex sharply expands
and in front of the sphere '"a liquid cone" is formed, which
generates a cone shock wave. Similar effect was observed
earlier by‘ interaction of the vortex with the inlet shock
wave [2], with the shock wave in front of the cone and the
parrel shock wave in the under-expanded jet [12], with the

shock wave in front of two-dimensional wedge [24].

Figure 36 shows a supposed flow pattern. The gas involved
into rotational motion in the vortex has a lower stagnation
pressure py than the gas in the external flow outside the
vortex. Still a greater difference is observed in the cor-
responding values of the axial momentum component. The gas
with low value of the axial momentum component can not pe-
netrate into the high pressure region past the bow shock wa-
ve. So during flow formation gas accumulation occurs in
front of the sphere, followed by a vortex expansion i.e., a
vortex breakdown. The flow region which can be conditionally
called as a dead zone because in the significant part of
this area (in the vicinity of the symmetry axis) gas speeds
are low, is formed in front of the sphere. The dead zone is
a region of approximately constant pressure. So it should
have a conical shape. In the point of intersection of the
shear layer separating the dead zone from the flow past the
shock wave with the sphere surface a closing shock wave is

formed. The dead zone length should be sufficiently large in
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order the axial mementum component in the vortex flow can
grov due to the momentum transfer from the external flow to
the level which is sufficient for gas penetration into the

high pressure region past the closing shock wave.

The described concept is confirmed not only by analysis of
the pictures and also by results of calculations based on
the Euler equations [1]. Certainly, such calculations do not
allow the liquid cone formation to be described. However,
they allow to determine the critical relation of the flow
swirl and pressure ratio in the shock wave under which a

vortex breakdown occurs.

The sphere shock wave-vortex interaction is similar to the
interaction of the sphere shock wave with the boundary layer
of the pin installed on the sphere [25]. In the case with
the pin the boundary layer is separated from the pin surface
in front of the bow shock wave and displaced from the axial
direction to periphery in front of the bow sphere shock wa-
ve. In the case with the vortex a solid surface is absent
but streamlines are also displaced to periphery in front of
the bow shock. Having reached the sphere surface a portion
of gas is deviated inside the dead zone and forms a slow re-
verse flow and the rest portion continues moving in the main
direction. oOn the sphere surface the attachment line R is
formed (Fig.37). In Fig.37 departure from the axial symmetry
attracts attention: the separation point S is displaced re-
lative to the sphere centre 0 to thHe right side. This is due
to eccentricity of the sphere relative to the vortex axis.
At the same time the attachment line R has approximately a
Shape of circle with the centre at the sphere axis (in the
Point 0). It also attracts attention such a fact that the
flow rotation in the periphery and in the <centre of the

Sphere is weakly expressed.

Analysis of Figs.34‘and 35 indicates to a turbulent flow be-
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naviour in the larger part of the dead zone: in the pictures
(exposure about 5 mcs) large vortices are seen as well as
compression waves exited by them. The separation shock wave
is an envelope of these waves. Location of the laminar-tur-
pulent transition along the x-axis changes depending on the
angle of attack and accidental factors. The transition oc-
curs either inside the dead zone or at the beginning of the
dead zone. In the first case the dead zone boundary is a
proken line (Fig.36 b), through to this point the boundary
is inclined at the angle about 6° relative to the flow axis
and past it at the angle about 20°. In the second case the
poundary is at the angle of 17°. At O = 20° a laminar-turbu-
lent transition probably occurs in the vortex before the
preakdown point. It is displayed in vortex expansion. From
the transition point a weak compression wave spreads (see
e.g. Fig.35 b). Evidently, disturbances from the dead zone
are transferred upstream over the vortex <core. Due to a
complex character of the vortex-shock wave interaction the
interpretation of the pictures is rather difficult and the
above considerations about location of the laminar-turbulent

transition should be verified.

The separation shock angle induced by the dead zone is app-
roximately 25°. It is close to the calculated cone shock
angle p = 23°, formed in flow over a circular cone with the

apex angle @ = 12° at Mach number of 3.

At a small distance between the sphere and generator the de-
ad zone can appear between the leading and trailing edges of
the generator as shown in Fig.34 a, in the other cases it
appears past the vortex generator. In some cases it is dif-
ficult to determine unambiguously the dead zone length beca-
use of its complex shape. It can be assumed that at Xs/D 7
1.15 the dead zone length was approximately the same and

constituted 1.05 D in all experiments.
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2.3.2. Heat transfer on the sphere surface

Heat transfer measurements on the sphere surface were carri-
ed out at Xg = 70 mm (XS/D=1.17) and three angles of attack
of the vortex generator 2: @ =10°, 20° and 30°. The measure-
ments on the sphere surface were also carried out without a
vortex generator. The experements were performed at Ty = 400

K. An electrical air heater was used.

The sphere was located in the wind tunnel test section in
such a way that the generatrix with thermocouples 1-34 was
in the plane z=0, and the generatrix with thermocouples
35-43 - in the plane y=0. The experiments were performed in
the following way. During the period of setting a flow regi-
me in the wind tunnel the model was in the thermostatic
chamber and was separated from the flow by a special flap.
Airflow over the model surface was performed by a cool air
through the pipe, situated near the frontal surface. After
setting a prescripted flow regime the model was injected in-
to the flow by means of the fast-acting mechanism. The model
has been in the flow for 3 seconds. During this period re-
cording of thermocouples signals was carried out with samp-
ling rate of 100 1/s, then the model was took out from the

flow and the wind tunnel operation was stopped.

The results of the measurements are presented in Tables 5-8.
The following parameters are presented in the tables: the
generator angle of attack O, the Mach number M, the Reynolds
number Re, the stagnation temperature Ty, the total pressure
Py. The time T = 1 s is also presented there, for this time
the obtained data processing was being carried out. The cho-
sen time is essentially larger than the period of injection
of the model into the flow and it is quite small to avoid of
noticeable heat spreading in the region of the maximum heat

transfer on the sphere surface. In the first column of the
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tables the thermocouple number is pointed out, in the second
one - its coordinate s/R, further - the actual surface tem-
peratufe T at T = 1 s, the smoothed temperature Tg,,, the
neat flux g, the calculated value of a heat flux in the

stagnation sphere point q; at the temperature T and the re-

ljation 4/dg -

The heat flux in the stagnation sphere point was calculated
from the Fay-Riddell formula [26] which for the perfect 'gas

takes form
qo — 0'94(pwpvw)01 (psps)o4(iO_CTW)R"0.5(6u/5S)05

In hypersonic flow over the sphere for calculation of the
velocity gradient in the stagnation point we can use the
formula obtained under condition of the Newton pressure

distribution on the surface
Su/ds = 1/R(2(ps-P.)/Ps)®° (1)

In the current paper for improving accuracy of the pressure
gradient calculation at M=3, calculation results for invis-
cous flow over the sphere were used [27]. The difference in

the value du/0s as compared to formula (1) was 7.5 %.

Distribution of the relative heat flux g/q; over the sphere
surface in the case with a laminar flow was calculated by
the equation [28]

'

4/dp = dgp + 9;Cos(WN) + gpCos(20N) + gzCos(3WN)

Here M =%"(s/s,), s, is a sonic point coordinate; n=0.5;
W=1; g;=0.452; g,;=0.499; g,=0.049; g3=0; ®=1.4. Due to acco-
Unt for the influence of the Mach number on the sonic point
location this formula gives a higher accuracy than a simple

and often used equation




q/qy = 0.55 + 0.45Cos(2s/R)

In this paper a sonic point coordinate was determined by the

tables [27].

In Fig.38 calculated and experimental heat flux distributi-
ons over the sphere surface in the absence of a vortex gene-
rator are compared. The heat flux values are presented for
the surface temperature T,=290K. It is seen that under these
conditions a laminar flow over the whole sphere surfaces was
retained. Some divergence of the heat flux values at the
differente generatrics of the sphere as well as the diffe-
rence of a calculated and experimental values in the vicini-
ty of the stagnation point are due to the experimental er-
ror. Furthermore, excess of the experimental value over the
calculated one in the vicinity of the stagnation point can
be associated wiﬁh incoming flow turbulence: according to
the measurements carried out by a laser Doppler Velocity Me-
asurement System (DLA) the flow turbulence in the T-33 wind

tunnel constitutes approximately 1%.

Figure 39 shows the influence of the vortex cord-bow

wave interaction on the heat flux distribution over the
sphere surface. In Fig.39 both calculated and experimental
heat flux values are related to the calculated heat flux in
the stagnation point of the sphere. The vortex causes a qua-
litative variation of the heat flux distribution: in the vi-
cinity of the sphere axis the heat flux is substantially
less than on the isolated sphere. In the vicinity of the at-
tachment 1line R the heat flux in the presence of a vortex
€Ssentially increases not only as compared to the heat flux
In the same point and in comparison with the heat flux in
the stagnation point of the isolated sphere (Fig.39b, «
=20°).  Ssuch a significant heat flux increase can be explai-
ned by two things:
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)subsequent gas compression in the oblique and normal shock
waves leads to a greater pressure increase at the attachment
1ine R than the gas compression in the normal shock in the
vicinity of the stagnation point of the 1isolated sphere;
2)vortex-bow wave interaction leads to a flow turbulation in
the vicinity of the sphere. The flow turbulence also leads
to a significant increase of the heat transfer downstream of
the line R on the cylindrical part of the model (compare
q/dp at s/Rx2.5, Fig.38Db and 39b). As a result of the vortex
influence, an integral heat flux to the blunt body surface

increases as well.

The heat flux distribution on the sphere interacting with a
vortex is similar to the heat flux distribution on the spi-
ked sphere [25]: in case two the heat flux in the vicinity
of the symmetry line also decreases.and increases at the at-

tachment line and behind it.

From Fig.39 it is seen that the heat flux distribution over
the sphere surface interacting with a vortex was asymmetri-
cal at all investigated values of the generator angles of
attack. Probably, it is associated with that fact that the
vortex and sphere are not coaxial. Judging by Fig.39 at all
angles of attack the vortex was essentially displaced rela-
tive to the sphere axis in the vertical plane: at ¥=180° the
heat flux maximum is substantially less and displaced by a
greater distance from the axis of symmetry than at Y=0 (Fig.
39). It can be the consequence of that fact that the vortex

axis goes below the sphere axis.

In Fig.40 the heat flux distributions at different angles of
attack of the generator are compared for each sphere gene-
ratrix. The maximum relative heat flux values dp/dg versus
the generator angle of attack are presented in Fig. 41. From
Figs. 40 and 41 it is seen that q;/qp changes against the

angle in nonmonotonous manner: at O < 20° the value qy/dy
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:growS with increase of the angle and at a higher angle of
attack it decreases. However, this effect can not be unambi-
guously associated either with the flow swirl increase or
the vortex diameter increase against the angle of attack.
Apparently, the value qp/dgp was greatly influenced by the
yortex axis displacement relative to the sphere axis. At
=20° the eccentricity was the least one (coincidence of heat
flux distributions at ¥=0 and ¥=90° is an evidence of this).
probably., it was the reason that the maximum relative heat

flux value was obtained at a=20° .

For quantitative comparison of heat transfer on the sphere
interacting with the vortex and on the sphere with the pin
on the ordinate axis of Fig. 41, the maximum value from the
paper by Crawford described in [25] is presented. The maxi-

mum values obtained in this investigation are close to Craw-

ford results.

Thus, the measurements have shown that due to the vortex
influence the flow over the blunt body is being reconstruc-
ted and on its surface a significant heat transfer increase
is observed, that is very important for practical applicati-

ons.
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Nomenclature fof the part B

= speed of sound,

- specific heat at constant pressuré,

= specific heat at constant volume,

= velocity circulation in axisymmetric flow,

= Xp/((X—l)/p), enthalpy per unit mass,
= h+(u2+v2+w2)/2, total enthalpy per unit mass,

- Mach number,

= pressure ’

AN AT,

- radial coordinate,

|

|

|

oo Uoo O/ Mo Reynolds number, |
- entropy per unit mass, 5
l

|

- apsolute temperature,

<

= axial, radial and azimuthal components of velocity,

= V*r,

= coordinate along free stream direction,
= r?/2,

= ¢ /Cy, ratio of specific heats,

= vacuum core scale,
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= effective vortex thicknesses
= r? /(4x),

= viscosity coefficient,

= second viscosity coefficient,
X(l_j)/i (r2_1)/2’
= density,

= Prandtl number,
= time,
= swirl angie,

= stream function,

TR

= circulation, enthalpy, pressure, temperature scaled

by external values at r = co,
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B. Analitical and numerical study of vortex development

1. Problem formulation

The main theoretical approaches used for description of the
vortex development and preakdown in incompressible fluid
(30-41] are generalized here to include’compressibility. The
quasi—cylindrical approximation is derived as asymptotic
approach for the slender, smoothly developing vortex. Small
perturbations of the cylindrical flow are considered to de-
neralize @ well-known classification of the vortex flows on

subcritical and supercritical [30].
1.1. Governing equations

Axisymmetric compressible flow of perfect gas having axial,
radial and azimuthal components of velocity 1is considered.
The viscosity JL and the bulk viscosity M, are the functions
of temperature, the Prandtl number 6 and X=Cp/cv are cons-
tants. The Navier-Stokes equations for axial, radial and
azimuthal momentums and the mass-conservation equation are

represented correspondently as:

du op 1 oD
p— = - — + PWPu + — (r2pp) 7
at dx 3 ox
(1.1.1)
g du 2 Su &v  du 2 QMo
+ — (2 — - — D) + 7 (—— + —) + —— D,

dx 0x 3 5 6&x Or 3 0x




av W op v 1 oD 1;
o (— - ) = -k (Vv oy e T () T
at  r or r? 3 Or L
(1.1.2) i
sp ov  du op  Ow 2 2 Opy ﬁ;f
+ — ( — + 4—-) + — (2— - Dy + 7 7 D , [llli!

§x oOx  Or &r Or 3 3 Or

. dw W W Su dw O Ow W

p(——+v—>=u<\72w———)+———+—(————),<1.1-3>
art r r? §x &x Or Or r

dp

— + pD = 0, (1.1.4)

at

where x,r - cylindrical axial and radial coordinates; u,v,w

- axial, radial and azimuthal components of velocity;

. p-pressure; p - density,

a 5 S 0
— = — +u— + VvV,
dat 0Tt 0x or
- du 10
D=divv=—+="(vr),
dx r Or

5% 5% 19
Ve = +
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we reproduce here also equatiohs for enthalpy h=Yp/((¥-1)p)

and pressure:

dh dp Y
p— =— +div( — Vh) + N, (1.1.5)
at 4t 6
dp i
— = - ypD + (¥-1)daiv( — Vh) + (Y-1)N, (1.1.6)
art 6
ou oV V2 ow
No= B f2(—)F o+ 2()P w2 ()
ox or r? ox
dv  0u ow W 2
e (— /)2 4 (— - )R - = (hpe)D”
Ox or or r 3

The equations (1.1.1)-(1.1.4) together with any of equations
(1.1.5), (1.1.6) and with stated functions M(h), Ky (h) compo-

se the complete system which is to be analyzed.

1.2 Inviscid axisymmetric steady flow

The inviscid counterparts of the equations considered above

are obtained setting M=0, M>,=0. Then, the well-known consequ-

ences of the equations are:

oh, dh,
+ Vv

0x or

1]
()
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U—+v—=o0, (1.2.1)
ox or
09 09
u— +v-—=0,
ox or

where ho=h+(u2+v2+w2)/2 - total enthalpy; S=So+cvln(p/p3) ~
entropy; g=wr - circulation. The mass-conservation equation

(1.1.4) is integrated by introducing of the stream function

P

oY
pur = — ;
or
(1.2.2)
oY
pvr = - —
Ox

The equations (1.2.1)-(1.2.2) demonstrate that the functions
h,, S, g are convected along streamsurfaces. Therefore,

three integrals exist for the inviscid axisymmetric steady
flow: hy=hy (V), S=S(¥), g=9(V).

We notice, that entropy is always convected together with
gas particles, total enthalpy is convected along the stream-
lines only in steady flows. The circulation in arbitrary
three-dimensional flow is described by following equation

ar -

— = [ (VrxVs)n aA ,

at
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where T .~ circulation along a closed curve formed by moving
particles, T-temperature, dﬁa: area element of the surface
pased on this closed curve, n - unit vector normal to this
element. Therefore, in contrast to incompressible flow, the
circulation 1is conserved, and the conservation equation

(1.2.1) is a consequence of axisymmetry.

Using the momentum equation represented in the Lamb's form

-

V@ - - 1
V(—) + (rot V)xV = - — Vp ,
2 p
' 1
and the thermodynamic correlation ™Vs = Vh - — Vp , the fol-
lowing relation is found: p
'Vxrot V = Vh, - TVS , (1.2.3)

The right-hand side vector in (1.2.3) is normal to the stre-
am surfaces. Therefore, the vorticity Q@ = rot V has zero
component in this normal direction, its component along the
meridian section of the stream surface Q= pad (wr) /0y, a =
(¥ + v¥)1/2  and azimuthal component Q,= Ov/0x - 0u/dr. The
velocity vector is decomposed as Vo= g, Vq =0, V,=w. Using

¢
these coordinates, (1.2.3) is represented as:

v 8u as dh, 1 ag®
— - — = pr (T — - + ) (1.2.4)
dx  Or ap Ay 2r? Ay

We use the following identities to transform the left-hand
part of (1.2.4) into adapted form:
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i | §v du  8(pv) B(pw) &p  &p
s | p(— - 7)) = - - (v/— - uT)
dx  Or 0x Or 0x or
op op 1 0op Op 1 ds oY oy
v— - u— = — (v - uT) ¢ — (/) + (P
0x §r  a® ox or cpr Ay 0x or
Using the conservative form of the momentum equation we fo-
und
5p dp 1 &% &y &
v— - Ut = - T [u2 + 2uv + V& — o+ puwz]
Ox or r Ox? Ox0r &r?
Finally, the equation (1.2.4) is represented as
W’ Yy 2uv &Y vi 8%y 1 o
(1L -—) —-—— + (1 -—7)— -~ 7 =
a® Ox% a®  Jxdr a?® or? r Or
(1.2.5)
" dhg 1 dg2 as u? +v? pug2
= pPr® [ - - T—(1+(¥-1) )1+
ap  2r® Ay ay a? a?r?

Three arbitrary functions hgy (V), S(V¥), g({P) must be determi-
ned on all stream surfaces entering the region of interest.
Then, u, v, p, P, a, T are expressed as functions of
Y, r, 8y/8r, 6Y/dx using the relations (1.2.2) and

'X p u2 + V2 g2

ho(§) = — — + + ,
Y-1p 2 2r

1
,‘ J P e




P . ,
s(YP) = So + cyln— , (1.2.6)
¥
P
p
a2 =Y, T=2a/0[(¥-1)c]
p

Therefore, the inviscid axisymmetric compressible steady
flow is described by single quasilinear second-order equati-
on (1.2.5). As far as the shocks may pbe formed in the flow,
the equations must be supplemented by the conditions on the
shock. We do not concern this question here and only note,
that the functions h, (P) ., g(y) do not change through the
shock, while S(¥) has a jump.

The simplist application of equations (1.2.5), (1.2.2),
(1.2.6) 1is the investigation of the cylindrical vortex res-

ponce on the changes of the external pressure.

Let the axial scale is large compared with the radial one
and v € u. The small terms are discarded in (1.2.5) and

the second-order ordinary differential equation is obtained:

a 1 day dhg 1 dg® (V)
r —(— —) =pfrf— () - -
dr r dr ay 2r? ay
(1.2.7)
ds (V) u? pug” ()
- T (L+(Y-1)—)1 + —
ay a? a? r?

Let the initial profiles uj (r)>0, 9;i(r), p; (r), and the
pressure at ifinity pj(®) are determined at some section.

The pressure and stream-function are found by integration:

\




R
B

3
A
2
Y
Eod
i

i1

© p;g;®
p; (r) = py (@) - J dr , (1.2.8.)
' r rd
Y
¢ (r) = [ pyuprdr
0

Then, the inverse function r(Vy) is obtained and the functi-

ons

g(y) = g (r(¥)) -
P
S(P) = S + cy ln— , (1.2.9)
py¥ lr=r(P)
Y op ow? g1 % ()
hy (¢) = (— — * + )

Y-1 P31 2 2r? r=r ()
are determined.

The profiles p, u, p, T are found at v=0 from (1.2.2),

(1.2.6), like it was mentioned above, and are the functions

of Y, r, dy/dr.

The profiles g, S, h, are considered tending to constants as
Y = o, i.e. the vortex is surrounded by potential flow. Let
the external pressure changes from p; (®) to p(«®)  Then, the

velocity and density at infinity are obtained from




- 1(¥-1) /%
Y pi(®) p(®) -
u? (W) = uy? (W) + 2—— 1-f — )
Y-1 Py (®) pi (®)
p(®) 71/% : (1.2.10)

p(®) = Pi(®) .
p;i (®)

The responce of the vortex on this external pressure change

je found by solving of (1.2.7) at boundary conditions

1 0V
Y(o) = 0, — — = p(®)u(®) at r 7 ®
r or

It is easy to show that the profile Y(r) found from (1.2.8)

is a solution of (1.2.7) for boundary conditions

109
Y(o) = 0, — — 2 py(®)y; (®) at r 7 ®
r Or

Do other solutions of (1.2.7) exist at the same boundary
conditions ? Such solutions were found in incompressible
flows and were called "conjugate" to the basic one [30]. The
existence of conjugate flows allowes spontaneous jumps bet-

ween them which were treated as vortex breakdown.

1.3 Small perturbations of the cylindrical flow
The analysis of steady small perturbations of the cylindri-
cal vortex performed for incompressible flow resulted in an

important division of the vortex flow on subcritical and
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supercritical. We generalize this analysis for the compres-

sible vortex.

The governing equation may be derived from (1.2.5). However,
it is useful to perform the derivation directly from the Eu-

ler equations:

ou ou op
p (u— + vV—) = - T/,
0x or ox
09 0g
u— + v— = 0 ,
0x or
op op du 1 O(vr)
u— + v— = -Yp(— + — ) (1.3.1)
0x or 0x r Or
d(pu) 1 d(pvr)
+ - =0 ,
6X r 6r
d(vr) o (vr) g2+v?r2 op
p (u + v - ) = -r—
ox or r? or

The small perturbations of the basic cylindrical flow are

considered:

U = u,(y) + €uy(x,y) + ... ,

Q2
]

o (y) + €9y (X,y) + -0

P = po(y) + Epy(X,y) + ... (1.3.2)




% p = Po(y) * EpPy(x,y) +
Vo= £V (x,y) + ,
& where €70, V=vr, y=r?/2
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and the base cylindrical profiles

are correlated by the equation

2
dpy Po Yo
= (1.3.3)
2
ay 4y
The equations for perturbations are:
oyy Op4
Po (g™ + Vyu,') = - — ,
Ox 0x
59’1
Uy + Vigy' =0,
5x
4 Ouy op; 0V,
; Po U T+ Po * Vipo' =0, (1.3.4)
‘é Ox 0x oy
E 5p1 6U1 6V1
o + Vipy ' = -¥Po ( + )
ox 0x oy
902 6V1 9091 6pl
P4 + Py (Ug - ) = -2y s
2y dx y oy

where the prime means the y-derivative.

The axial

derivatives

of

the perturbations are found from
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.the former four equations of (1.3.4):

— = (— £+ £1)/(1-M%) ,
pou02 6X 'Xpo
1 6U1 u0| po'
— —— = - — f - (— £+ £)/(1-M?) ,
u, 6X U, Xpo
(1.3.5)
094 :
— = go'f ,
dx
1 0py Po ' Po '
—— - £ - f + (— £+ £')/(1-M%)
pO 6X po Xpo

where £ = V,/u,, My® = pouy,?/(¥p,)

Using (1.3.5) and the last equation of (1.3.4), the follo-

wing second-order linear equation is obtained: 1

pouozf' ' pouo2 5% £ Po ' b2 p0'2 ;
( ) + + [( ) * TPy - —]f =0. ﬁ
1-M, 2 2y 0P 1-M,2 y Ypo (1-M, %) |

(1.3.6)

The ordinary differential equation is found for the pertur-

bations having a form f = exp(dx) F(y):




- ‘| ' |2
pou02 pouo2 Po .2 Po
(—F ol o+ ) + 7 Po' 1F =0.
2
1-My? 2y 1-M2 Y Ypo (1-M,°)
(1.3.7)

The sonic point My=1 is a singular point of equgtion
(1.3-7) - We must investigate this singularity, especially

taking into account that the term (1—M02) is a denominator

in (1.3.5)-

.et M,=1 at ¥Y=Y¥o and 7=y-y,. The equation (1.3.7) is repre-

sented near }=0 as

§(r+eAd+. . )F" - (1+B+...)F' + (c+Dd+...)F = 0,
My 2 "
A = ,
M2
3 Po '
B=—aA-— - (M%), (1.3.8)
M. 2 Po
Po '
CcC = - — ,
¥Po
3
D= (Y-1)c% - C(— A - (M°)")
2

where the coefficients A,B,C,D are calculated at ¥=0.

According to the method of Frobenius , two linearly indepen-
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solutions of (1.3.7) near ? = 0 have the form:

dent
0
= 9% 2 o
F1 - an ’
n=20
0
Fo = QF11n|0|+ "2 bnﬁn ,
n=0 -

where coefficients a,, b,, Q are determined from (1.3.7):

1
a, = 1, a; = - —(2(A-B)+C), ... ,
3
bO = 1; bl = C: »
1
Q = - _[D+(B—C)b1]
2

In general case, the solution has infinite second derivative

at #=0. However, direct calculation showed that Q=0, and all

~derivatives are finite. Moreover, the generally singular

term (fpo'/Xpo+f')/(1—M02) is regular.

An arbitrary jump of the second derivative is allowed by the
equation (1.3.7) at y=y,. But in this case, the functions
U, p;, p; would have a jump too, and we exclude this possi-

bility. This requirement makes the problem closed.

The another question is the asymptotic behaviour of the so-
lutions of (1.3.7) at y = ©. For this purpose we must know
More details about structure of the basic cylindrical flow.
We consider the vortex surrounded by potential flow with
ho=const, S=const, g=const. The deflexion of these functions

from constants is caused inside the vortex by diffusion and
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1

potential vortex has its own dimensional scale

Jdo 'X_l 1/2 r*2
ry = ——l:_—] ’ Y = ’

where a, - the sound velocity far from the core. The soluti-

on 1is easily found from (1.3.3) and the conditions

h0=const, S=const, g=const:

u, = U,
M2 = ME/(1 - y./Y)
a,” Ve
-1 - = (1.3.9)
2
apn y

’

Po { Vs }X/(X-l)
1 —

Po Vs 1/(%-1)
[

This solution represents a vortex having the vacuum core at
y=y,, My, @ © as y @ y,. The solution has not counterparts in
incompressible fluid (a rather remote analogue is the vortex
with cavitation). The expansion of the solution(1.3.9) at y
» 'y, is the general representation of the flow around a
compressible vortex. Using this representation, the asympto-

tic behaviour of the solutions of (1.3.7) aty 7 @ is found:

¢ usually exponentially small far from the vortex core. The.
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!

(2y)' Fexp(6/2y)[1 - c(2y) /% + o(y" 1)1 ,

= T (0F (M2 - 1))t/% (1.3.10)
3 2 M2

= - — t BY*( T )
8P Y-1  1-M2

Two signs in (1.3.10) correspond to two different linearly
independent solutions. The positive eigenvalues a?>0 descri-
pe the upstream influence of the profile perturbed at some
position, while 0°<0 describe the standing waves. In two ca-
ses: 02>0, M,>1 and 0% <0, Mw <1, one of two functions incre-

ases exponentially as y~® and obviously must be excluded.

The following physical examination is usefull for understan-
ding of possible solutions of (1.3.7). We consider the vor-
tex confined into finite cylinder (0<y<yr). The boundary
conditions for (1.3.7) in this case are: F(0)=0, F(yg)=0.

only monotonous profiles of M, are considered. The asserti-

ons are not rigorously proved and are obtained from asympto-

tic analysis of the solutions for |0f[»1.

~ 1. In the case M02<1 the infifnite discrete spectrum exists

~such that a02<a12<a22< ... . The positive dn2>0 are conden-
sed into continuous spectrum as yp 2 ®. In this limit only a
finite number of discrete eigenvalues an2<0 may exist. If at
least one 0?°<0 exist - the flow supports standing waves and
is called "subecritical", in opposite case - "supercritical".
This is direct generalization of the classification adopted

for incompressible flows.

2. In the case M02>1 the infifnite discrete spectrum is or-
dered as a02>a12>a22> ... . The standing waves are always
Supported in the confined supersonic flow. They are caused

Simply by reflection from the boundaries. For physical rea-
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sons all a® are negative (however, we did not prove it di-
rectly for the equation (1.3.7)). All negative eigenvalues
are condensed into continuous spectrum as yp — ®. Is there a

positive eigenvalue possible ?

3. In the case My >1, M, (0)<1, the discrete spectrum covers
whole real axis: ...<a_12<a02<a12 <... . Its negative part
is condensed into continuous spectrum as yp — ®©. The infini-
te discrete positive spectrum always exists for unbounded
flow. From this spectrum we can determine how the profile

perturbations propagate upstream.

4. In the case My, <1, M, (0)>1 the discrete spectrum covers
whole real axis too. Its positive part is condensed, however
infinite discrete negative spectrum remains as yp — ®. Such
unbounded flow always supports standing waves attributed to

the reflection inside the inner supersonic part.

Therefore, two problem statements concerning discrete spect-

ra in unbounded flow are formulated: if My,<1l - to find all
d2<0, and if M_>1 - to find all a2>0, such that the equation
(1.3.7) and boundary conditions F(0) = 0, F'(®)=0 are satis-
fied.

The most important finding possible during the discrete
spectra analysis is the detection of an eigenvalue which
tends to zero as some profile parameter changes. The exis-
tence of the eigenvalue close to zero means that the pertur-

bations propagate far upstream.

The asymptotic behaviour of the solutions at 0f=0, y @ ©
differs from (1.3.10). Two linearly independent solutions

have the form:




ay 1
F, = 1 + — * 0(——2_) ’
Yy y
1lny
FQ ——y+b11ny+ 0(__——) ’
y
(1.3.11)
Yoo M
ay = y:x )
(Y-1) (1-MS)
ML 1
b, = -2a4 -~ ( - )Y

1-M 2 ¥-1

1.4 Quasi-cylindrical approximation

The quasi—cylindrical approximation is an asymptotic appro-
ach for description of the slender vortex smoothly Tregrou-
ping under the action of viscosity or pressure gradient. It
is similar in its nature to the boundary-layer approach.

Let the vortex has a radial scale § in its initial section.
Nondimensional variables are introduced by the scaling:
rq=0r, xd=R56x, Ug =UwU, Vg=(Uw/Rs )V, Wg=UeW, Pg =P=P » pd=pwua
P, Mg=Mo]. The index "d" corresponds to dimensional variab-
les, index "o" - to the flow in the initial section at r 7
@, R;=Qwuw6/pwis the Reynolds number .The analysis of the Na-
vier-stokes equations at the limit Rg~ ®, r=0(1), x=0(1) al-

lows to find the first-approximation equations:

du du p 10 du
P(u——+v——)=———+——(}lr—) ,

0x or §x r O0r Or




| -

09 09 & 109 2 8
p (u— ¥ v—) =r — (0~ —) -~ —9
0x or or r Or r or

§(pu) 1 8(pvr)

—_— = 0
0% r or
1 op &
- —=p— (1.4.1)
r Or r?

dh oh op Sp 186 M oh
p (u— + v—) = u— * VvV + — —(—r —/) *

ox or ox & r O6r 6 Or

du 1 99 g
STl NG K el 2—)*? } ’ |
or r or r? ]
¥ p
h=—-, K= HMKh) ,
-1 p _
il
where g=wr. .
The equation for h may be changed by the equation for p: :
i

Op dp du 1 O(vr) 1 & p Oh ;
u— + v = - Yp( T )+ (¥-1)m (- ) ¥
0x or dx r Or r & 6  Or 3
(1.4.2) %

ou 1 09 g 2

+ (x—lm[(—)z P (- - 2—)2} {

or r Or r? %%
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The system (1.4. 1) is a nonlinear parabolic system. We for-

nulate the problem statement for the vortex surrounded by

potentlal flow.

Let the initial profiles u;, 9. h; are determined at the
_ection x=0 (uy (®)=1, gy (%)=, 0y (*)=1/ (1" 1)M.2). The pres-
sure profile p; (r) is restored by integration with the boun-
dary condition pj (®) 1/XM If the external pressure dist-

ribution p(x,0)=pg (x) 1is determined, the axial velocity and

enthalpy at infinity are found:

1 (Y-1)/%
h(x,®) = hg(x) = {Xmsfpe}
(X_l)Modz
(1.4.3)
B (Y-1)/%
uf (x,®) = Uez(x)= 1 + {1—(XMv§pe) }
(y-1IM2

Then, the boundary conditions are formulated as follows:
u(o,r) = u;(r), g(o,r) = gi (r). h(o,r) = h; (r);
U(x,®) = Ug (X), 9(X,%) = G h(x,©) = hg(x); (1.4.4)
g(x,0) = 0, lu(x,0)| < =, lh(x,0)] < ®, v(x,0) =0

An interesting example of the problem is the development of

the potent1a1 vortex (1.3.9) caused by viscous effects. The
choise § = r, results in the following boundary conditions:

1 2 1/2
u(r) =1, gi(r) = 9. = 7" {f‘_} )
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g 1 : 1 1¥/(¥-1)
n; (r) = Bea(l = ), Py(X) = Qﬁ[1 - ——} , r 21, (1.4.5)
r2 r2

ue (¥)=1, h, (x)=const, pe(x)=const

s model (Y¥,6,M) contains the only pa-

The problem at fixed ga
this problem has a singular inner bo-

rameter - M_. However,

undary - the vacuum core, and requires special treatment.

The equations (1.4.1) may be represented in the form resol-

ved relatively x - derivatives. The procedure is similar to

those used in derivation of (1.3.5), (1.3.7) results in:

2

pu2 1] p' 2pf p|
{ f'} + {( Yo - }f=DO ) (1.4.6)
2 y  Yp(1-M)

1-M? 1-M
1 du u' p' Dz /u - Dy
e - f— - (£ £1)/(M) :
u 8x u Yp Yp(1-M°)
1 0p p' p' D3/u - Dy
o g - £ (o £1)/(1M) - :
p Ox p Yp Yp(1-M?)
1 op p' D1/M2 - D3 /u
o (f— + £)/(1-M) + , (1.4.7)
pu® Ox ¥p Yp(1-M°)
1 8g g' Dy
e —

g 0x g ug

ST

ST




-

8 Su 1 ¢ & dg Su

= —(2fy—) , Dz =7 {23/——(}1——) - 2— g] )
Sy Sy p 8y Oy oy
8 B on du dg 9

= — (27 y—) * (X“l)P[ZY(”—)Z + (T - —)2} ,
dy 6 Oy oy oy ¥

M? (D3 /u)-Dy7" p' D3 /u~Dy pgD;
Dy, = { } - {——————} + ,

1-M? Yp 1-M? 2y2u

where f=(vr)/u, y=r2/2 and the primes denote the y-derivati-

ves. The Dboundary conditions for the first equation are:

f(x,0)=0,
dpe
£1(x,0) = (1-MZ)—/(Peul)
dax
If the profiles u, J, h, p are known at some section, the
coefficients of (1.4.6) are determined. The problem for

(1.4.6) is inhomogeneous and coinside at f'(®)=0, Dy= 0 with
the problem (1.3.7) at 0=0. Therefore, if the spectrum of
the problem (1.3.7) does not contain 0=0, the problem
(1.4.6) has unique solution, the right-hand sides of (1.4.7)
can be calculated and the profiles may be continued on. In
opposite case, the problem has singularity or pifurcation at
the section and the solution either can not be continued on

at all, or may be continued in various ways.

At presence of sonic point M=1, the special correlations
must be satisfied in it to avoid the singularity in the aif-
fusion terms. In this case, the equations (1.4.6), (1.4.7)

may be found unsuitable for numerical implementation, and

e e AT om e
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the original statement (1.4.1), (1.4.4) with implicit method
of integration is to be used.

The equations (1.4.7) may be also used for description of
the 1inviscid vortex development under the action of the ex-
ternal pressure changes. In this case, the axial scaling is
determined by the scale of the external pressure p, and all
diffusion terms are to be discarded. This approach is equi-
valent to the solving of the nonlinear problem (1.2.7)
step-by-step from the initial section.

2. The structure of flow at the initial

region of vortex

Expressions (1.4.5) cannot be used directly as initial con-
ditions for numerical integration of equations (1.4.1.) Dbe-
cause of presence of the singular vacuum core at 0 { r < 1.
Near it's boundary relation pu/p decreases so that effects
of viscous forces are significant at small distance from the
initial section. Hence singular layer appears near the cy-
lindrical surface at r=1. This layer reveals essential pro-
perties of the classical mixing layer but in our case it 1is

more properly to name it '"penetration layer".

2.1. Representation of the solution

in the penetration layer

Let us consider the flow in the neighbourhood of the vacuum

core and introduce new variable:

r? -1
Eoo x(1Typ 7y i (2.1.1)
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sions of the solutions are represented as

Expan

=1+ xXYUVY e ) o

g = gur XYY e @) o

no=x Y hy(g) F o

(2.1.2.)

p = xpg(§) + .- s

p=x"Yp &)+ -

vr= x VY vy (g) + oo . I

M= x(Xﬂi)/X nlngo+ o

where the dots denote higher terms.

substituting (2.1.2) in the equations (1.4.1) and performing 33
i

the limit x > 0, we obtain il

| Rne
- s o
Pl (ug -, 0’ )+vyuy” 1= =Py Ep; ' + hy (hyup )’y i |

¥ Y

pyI— (gy-kgy ') + Vigr 'l = hol((hygy ') - 20y '91),




Y-1 ¥-1 .
py [ (hy- Ehy ') + Vihy'l=pp - T &py! o+ Vipy '+
¥ Y
1
+ —— hl(hh '),
6
(2.1.3)
1 ¥-1
— P b (PiVe) = 0,
¥ ¥
¥
P '=P19% ,  Pihy= T Pr,
Y-1
where the prime denotes derivatives on variable £ .

System (2.1.3) is the system of ordinary differential equa- ;
tions with boundary conditions obtained from matching with
the functions in the exterior, { - +%, and interior, §{ - -%,
fields. We suppose that p; ({) tends to zero as § - -* more
‘quickly than 1/ & , i.e. ps& = 0, & = -%. Than, from the

latter three equations (2.1.3) we obtain ;

3 1
pP1Vi=py (— - — ) . (2.1.4)
hy gﬁa

Using (2.1.4) we see that (2.1.3) may be written as

6
(hyhy ") '+ p1(h1‘-g§°) = 0,
2
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¥
hyps' - —— 9% py =0, (2.1.5)
Y-1
Yoo Uy uy ! g
(hyug ") '+ hyuy — p(— +1-—""-dgp— ) =0,
2 h, 9% h,
g 9y 1
(hygy ') + hy' (91 '-29y) — py(— - —gy') =0
2 hy gi

The solution of the first and second equations in (2.1.5)
is found by means of confluent hypergeometric functions M, U

[42]:
6 Y-1 1 2Y-1 6 Y -1 p;
hy = exp[-— —— — p; ] (C1M( , 1, )+
2 Y 9% Y 2 Y &
2Y-1 6 Y -1 p;
+ CU( —— L1, — —— T 1)), (2.1.6)
¥ 2 Y 9% .

were C; and C, are arbitrary constants.

We consider that p; @ 0 at § = -®. Therefore, for small va-

lues of p; from (2.1.6.) we obtain

-




Co
- [1n( p;) + 0(1)1], (2.12.7)
[ ((2Y-1)/%) 2 Y A

vere [ is the Gamma function.
If Coc # 0, expression (2.1.7) contains logarithmic singula-

rity:

-C 6 Y -1 1
1n( Py) + ..,
[(2Y-1)Y) 2

=
2

ol
i

and hence the asymptotic behavior of the solutions of first

{
|
and second equations in (2.1.5) at § - -% is jt;f
|
Q
|

2 Y -1 ok g, P A
py & — —— g2 explg.(2[ ¢ ) ) 1,
6 Y -1 ¥ Co

(2.1.8)
C2 X'l i_io 172 , o
oo (20 (—) ) , |
L2¥-1)/%) Y | i

o
e
Q

where {, is the constant of integration. From (2.1.8) we
find that h; = +¥ at §{ = -%, so that heat flux

16n 1 Y 2 1 ﬂ};i
ror h -1 Tey-n/m !

tends to the constant value. ' H

The absence of the heat flux inside the vacuum core means
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in (2.1.6.) it is necessary to assume C,=0. In this ca-

:Zazt § » -» the main terms in asymptotic expansions for hy,
p, are
6 Y-1 2 1
hy ® G (1 + —(—) — p1) ,
2 ¥ d
(2.1.9)
¥ £-&,
p; = expl— d% I
¥-1 Cy

Let us investigate the behavior of the function g, ({) at § -

-w. After considerable manipulation we obtain from (2.1.5)

the equation

a* g, 1 Y-1 dg, 1 Y-1 2 Y-1 dn,

P, + (1 + — p;) - (—)fgy =~ — —

dp, 2 2d5% Y dp;  2d9% Y Yo ¥ dp;
(2.1.10)

- The general solution of (2.1.10) is represented in the form:

co oo
9 = I Agp X + 1np; I Byp K, (2.1.11)
K=0 k=0
were A, , By are constants to be found.

If B,=0 in (2.1.11), the solution of the equation (2.1.10)

tends to constant at p; — O:
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This asymptotic behavidér of circulation does not match with
poundary condition at r=0.
rhe second solution of (2.1.10) has a logarithmic singulari-

ty
gy = BO lnp1 »

that, using (2.1.9), reduces to linear dependence

¥ &

g, ¥ Bpgh — — . (2.1.12)
¥-1 ¢

Substituting (2.1.12) into the expansion (2.1.1), (2.1.2) we

find
r2—1
g(x,r) = g.+ xY Y gy (x1TYY) ) =
2
Y orf-1
=~ goc-+ Bogi-’
M Boundary condition g(x,0) = 0 determines the coefficient B, :
By = — ——
g ¥

Therefore, the circulation distribution in the initial sec-

tion of the vacuum core is following
9(0,r) = gr® , at 0<r <1 (2.1.13)

Indeed,such circulation means that the vacuum core is spin-
NIng around the vortex axis like a solid body. Its angular

Velocity of rotation is




6Wd 1 2 udw!
1/72

6rd Mo Y-1 rg

— = ()

Function u, (§) satisfies the equation  that may be obtained
from (2.1.5): '

&% uy 1 Y-1 du, 1 ¥-1
Ps £ (1 + — — p;) - (—)Fu, =
dp; 2 292 Y dp; 295 Y
1 Y-1
e \2 e
= ( )*(hy-g-. &) - (2.1.14)
292, Y

Left hand - side in (2.1.14) is similar to that in (2.1.10).

The solution of (2.1.14) at p;y ~ % is expanded as a series:

o] 0
k=0 k=0
Absence of an infinite term in (2.1.15), E, = 0, means that

in the whole region 0 ¢ r ¢ 1 the axial velocity slightly
differs from the initial value. The difference between them
tends to zero as x - 0: u(0,r) - u(x,r) = O(X(X—l)/X). In
this case the total enthalpy h,(0,r) in the initial section
of core is a parabolic function of r:

h,(0,r) = 1/2 + hr® , at 0<r < 1. (2.1.16)

In contrast to this, if the vortex generator does not produ-
ce considerable changes of the total enthalpy, Wwe must take

into account the initial axial velocity profiles different
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At constant initial total enthalpy g;ofile
distribution obtained y

completely determi- o ;
. 3

from constant.

(2,1.13) the axial ve

ned:

and with circuiation

locity profile is

w(0,r) = (1 + 2he(l - Zyt’2 , o< r <1 (2.1.17)
Matching (2.1.17) with (2.1.15) yields
¥-1 Rt
: (2.1.18) B

£, in (2.1.9), (2.1.12), (2.1.18)
utions of (2.1.3) with
For this

The unknown constants Cq,
determined from matching the sol

ions in inviscid external flow region (1.4.5)-
of hypergeometric function

- o [42]. Then, from

are

funct

R e R el . .

. purpose Wwe Uuse the expansion

m((2y-1)/%, 1, 6(¥-1) p, /(2Y9%)) at P
(2.1.6) we find:

c 6 ¥-1 1 (Y- /%

hy ~——— [ 7 7 Py |

Co2y-1)/%) 2 ¥ 9%

(2.1.19)

) into the second equation (2.1.5), we

‘Substituting (2.1.19

d
!

obtain
2 Y g 2¥-1 /(1) ¥/ (¥-1) i
- [ — F(————)} (£-€1) , (2.1.20) B
6 7Y -1 Cy ¥ ?ﬁ

where {, is arbitrary constant.
(2.1.4), (2.1.19) and (2.1.20) cons-

From (1.4.5), (2.1.1),
tants ¢, and §,; are determined:




c, = hel () |7 — , (2.1.21)
¥ Y 6
£, = 0.
ps a result, at { - o we have:
y-1 1Dy
h, ® 2hwl , P ¥ 9o 2 £ ,
Y
(2.1.22)
1/ (=1 1/ (1)
py * 2 3 .

5.2 Numerical study of the flow at the initial region

The finite difference method was used for integration equa-
tions in (2.1.5) to calculate vortex development at the ini-
—-tial region of flow. The independent variable { was conside-
‘red in the range -3.5 ¢ & < 3.5. The second order method of

“ Keller was used to approximate derivatives. At the first

":Stage the Caushe problem for the first and second equations

in (2.1.5) was solved with initial conditions (2.1.9) stated
at { = -3.5. The form of equations (2.1.5) does not change
if an arbitrary constant is added to independent variable

Therefore, constant §{, in (2.1.9) may be chosen s0 that §; =
0 in (2.1.20). On each step of the jteration procedure cons-
tant il was being found from (2.1.20) by solving the Coushe
Problem with given value §, . Then the value of {, was chan-
ged to provide the condition §; = 0. The process was finis-
hed when appropriate accuracy was reached. It is clear that

Such iteration procedure is necessary because of desagree-

PN
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petween asymptotic character of expansions (2.1.9),

- ment .
‘ e interval for independent variable.

(2,1.22) and the finit

soon as functionsp; (§) and h, (£) are found, the latter

AS
lved. These equations are li-

two equations in (2.1.5) are sO

with respect to U and g; , and no jteration procedure

ired to satisfy the boundary conditions. On the right
- 0 were conside-

near
is requ

poundary of interval conditions u; = 0, 9

he left boundary the derivative g' was given: dg; '=9,
) was calculated in two cases corresponding to

nditions on the left poundary of the interval

red. on t
Function u(g
two poundary CcO

uy b= 0 (2.2.1)
and
u11 P gi‘; . (2.2-2)

The results of the calculations of functions hy (§), py (£),
P1(€): 91(£) at 6 = 0.7, M= 3, Y = 1.4 are presented in Fi-

gures 42-45 respectively.

Solution uyq (§) satisfying the condition (2.2.1) is repre-
sented in Fig.46. The solution uyp (§) for condition (2.2.2)

is shown in Fig.47.

Representations (2.1.1), (2.1.2) and functions h; (§), py (£),
gy (), u (§) obtained above determine behavior of the flow
in the initial region of vortex. Thus, pressure, density and
enthalpy increase monotonously inside the vortex as axial

Coordinate x increases.
The enthalpy on the vortex axis has non-zero value:

e e

r.m;;.w“ﬂ




~ 1)/
nh(x,0) * XYY e =

y-1 Y-1 (2= /7y g Yy
xy /Y nr ) () (—) . (2.2.3)
v :

geturning to dimensional variables we obtain from (2.2.3)

the following correlation of vortex parameters:

hy (%a/(Rg8),0) [*a (1= 7y
/——__-————— e =

d

hduo

(2.2.4)

- r(—)

{4 (x—l)/'x 1 'x_l {X_l}(Q—'X)/'X
GRS (Y-ome, X

Y

1.4, 6 = 0.7, (2.2.4) reduces to

]

particularly, at ¥

hy (g /(R 0),0) 7.56

(xq/Rg8)° 7

2

Ny ME

In the case when the initial axial velocity profile is cons-

~ tant condition (2.2.1) results in negative values for func-
tion u;4 (§) (see Fig.46). Therefore, the flow is retarded at

least for that distance from the initial section where ex-

pansion (2.1.2) is valid.

If the initial total enthalpy profile is constant, 1i.e. the
initial velocity distribution is given by (2.1.7), the re-
tardation of the flow 1s less significant and velocity on

the axis stays constant in the first approximation:

u(x,0) = (1 + on_)t/?

b s

™

e ———— D MR S
) T v

presmasmmempnet——_—

e
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1.2) and calculated functions hy, P1. J9; T

files required for the numerical pro-

rom expansions (2.
all initial pro

F
and Ui
cedure may pe found

3. Numerical solution of the quasi-cylindrical : ﬂ

approximation system for compressible flow

is non-linear parabolic, just as the system

gystem (1.4.1)
of boundary layer equations. Effective numerical methods to i

ations with given initial and boundary condi- .

solve such equ
per formed

tions are known. All programming and computing was

using VAX-780 computer. . 5
i

3.1. Problem statement. Numerical method

numerically using variables X,

The system (1.4.1) was solved
The upper

y = r? /2 inside the region x > 0, 0 < 7T { TYpax-
boundary condition was stated at point rpayx = 10. To avoid o

the errors caused by finite region of calculation the follo-

' wing asymptotic expansiongwere used:

1
h(0,rpax) = he(l- )
r2max
i
1
P(0,rpayx) = Pe(l- y e (3.1.1)
r2max

U(O,rmax) = Ug g(orrmax) = Juo
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ghe colution must be pounded on the axis and it results in

Conditions [437]:

ou oh
pr,.—————eo’ Pr - 0, r 2 0. (3.1.2)
or or

) with conditions (3.1.2) the fol-

N 3 m the equations (1.4.1
B tions u and h on the axis is found:

Fro
ing correlation of func

oW
d 2 1 0Oh
(p A AR B A A R R = 0,
dx 6u r or
r=0 r=0
(3.1.3)
a u? 1 oh 1 du
p — | + h ] -2p + — =0
ax 2 6r Or r or
r=0 r=0

In addition to the conditions (3.1.1), (3.1.3) the conditi-

ons for v and y on the axis

v(x,0) = g(x,0) = 0 (3.1.4)

are satisfied.

Initial profiles u(o,r), h(o,r), p(0,r), g(0,r) must be spe-

roblem statement. We consider two types

cified for correct p
different condi-

of initial profiles u(0,r) corresponding to

tions of vortex generation

u(o,r) =1, O {r < (3.1.5)

s B b R
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and « " :
w(o,r) =1, r 721, §
w(o,r) = [1 + 2h(1-r?)1'/%, o< r <1, (3.1.6)

e,

nitial profiles of h,' p, g are the same in both cases con-
sidered:
p(0,r) = h(o,r) = 0,
B
it
- 2 il
g(o:r) - ggr ]*
at 0 ¢ r <1, (3.1.7) i
1 x
- j
p(0,r) = po(1- ——) &I,
r?
1
h(o,r) = h_(1- —),
r? |
g(0,r) = 9o aEH &
atr ) 1. i‘
The absolutely stable finite-difference method with se-
i
cond-order approximation of the radial derivatives and vari- e
S
able grid size in radial direction was used for numerical A
solution of equations (1.4.1). A second order implicit sche- i
me was used for approximation in axial direction. |
l
|
Rl
i
Bl
| i
B
e
o . [ K




3.2 Numerical results

The initial profiles were found using asymptotic expansions

(2,1,1), (2.1.2). The profiles of functions
’h(xi,l’):'h(xi,r)/h.‘,o; _g-(xi ,r)=g(xi :r)/g.,er _ﬁ(xi )r)=p(xi rr)/pv.) j

£ P(Xi'r) are demonstrated in figures 48-51 respectively at N
I 607, ¥4 M=3, xy=4.4710"%. The profile of total ent-
°© halpy scaled by the value (1/2+nﬂ):'Eo(xi,r)=ho(xi,r)/(1/2+nf)

shown in figure 52 at the same values of 6, ¥, M, Xi-

T e

is
this profile corresponds to the case of constant initial UM

axial velocity. The distribution of axial velocity in the

case of constant initial total enthalpy is demonstrated in

figure 53.

The subsequent development of the profiles downstream from

the initial section was calculated at M.=3, Y=1.4, 6=0.7 and |

- constant external pressure Pe =Pes- The viscosity M was consi-

dered as a linear function of the temperature.

The numerical resultls obtained are shown in figures 54-64.
Each curve in figures 54-64 has the number which indicates
the correspondent axial position. The correspondence between
the numbers and axial positions is shown in the Table below.
For comparisoh with experimental data the Table contains al-
so the ratio xq/0 of the axial position to the vortex radius

at Reynolds number Rg = 2-10°.
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Table '1

1 2 3 4 5 5,?

i

2.5°1077 5.5°107%| 9.5-107% | 0.18 0.29 i

5.2°10° 1.1-10% 2.010* (3.5 10%|6.0 10%

A f!

N 6 7 8 |

;

X 0.43 0.73 1.1 A

xq3/8| 8.9 10% 1.5 10° 2.4-10° ’
The profiles E, P, P, 9, u,'ﬁo at various axial positions

are demonstrated in figures 54-59. The profile of the total

e A R o

‘pressure ps calculated taking into account the local Mach

- number is shown in figure 60. All these functions are scaled
~by their values in the external flow at r—®o. Radial and azi-
muthal components of velocity (v,w) and local Mach number M
are represented in figures 61-63. Swirl angle (P=arctg(w/u)
between velocity vector and the axis of the vortex is shown f;

in figure 64 (¢ is measured in degrees). l,

The numerical results represented in figures 54-64 were ob-

tained at initial conditions correspondent to constant axial

Velocity at the initial section. The results demonstrate
that the axial velocity inside the vortex is reduced near
the initial section. This tendency is obvious in figure 65

(curve 1), where the axial velocity on the axis is shown. i

The retardation of the axial flow is caused by increase of ' iy
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pressure downstream from the initial section. The reason of
’ this pressure increase is diffusion of gas having small azi-
uthal velocity towards the vortex core resulted in reducing

of the radial pressure overfall. The distribution of the to-

tal pressure on the axis is represented in figure 67.

yumer ical calculations were performed also.for the case of
constant total enthalpy in the initial section. It was found
that the distributions of h, p, 9 are quite close to those
obtained at constant axial velocity in the initial section.
significant difference 1is observed only for axial velocity
and total enthalpy on the relatively small distance down-
stream of the initial position. The distributions of axial
velocity u(x,0), scaled total enthalpy .BO(X,O) and total
pressure BS(X,O)) Mach number M(x,0) along the vortex axis
are shown in figures 65-68. The curves 1 correspond to the
case of constant axial velocity in the initial section and
curves 2 - to the case of constant total enthalpy. It could
be seen that distributions of the total pressure in both ca-
ses almost coinside. The retardation of the flow inside the
vortex found in the first case was observed in the second
case too. However, the difference between the flows caused
by different initial conditions decreases quickly downstream
from the initial section. It is interesting that in the se-
cond case the total enthalpy quickly drops almost to the va-
lues found in the first case. Moreover, positions of minimal
axial velocity and total enthalpy on the axis are rather

close in both cases.

It may be concluded that development of the vortex downstre-
am from the initial position is caused by two diffusion pro-
Cesses. The first process is spreading of the gas towards
the vortex core. This process determines the profiles at re-
latively small distance from the initial section. The second
Process is regrouping of the profiles under action of visco-

Sity.This process is relatively slow and determines profiles
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ge distance from the initial section. Two functions

at l1ar .
radial size of the vortex were conside- |

characterize

which
was determined as the radial position where

red. The size Oy
velocity u=0.99. The second size 0y was detemined as

ition where the swirl angle ¢ is maximal (fi-

the radial pos

gure 64) .

Distributions of these values along the vortex is demonstra-

It could be concluded that the vortex de-

ted in figure 69.
velops smoothly and its radial size monotonously increases.

4. Solutions describing the flow far
downstream from initial section

The asymptotic expansion for dissipating incompressible tra-

iling vortex far from aircraft was obtained in Batchelor's
work [29]. It was shown by Batchelor that an arbitrary cons-
extended the

tant appears in his asymptotic expansion. We
d terms which contain two arbitrary cons-

expansions and foun

tants else.

4.1. Generalization of the Batchelor's expansion ' y

- Let us introduce a new independent variable:

N = r?/(4x) (4.1.1)

The asymptotic expansions of the solution are:

Inx 1
u (M) + —w M) * o !

X X

RO IR
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- 1nx ' 1 ; g
1 - exp(-N) * g (M) +~ g, (M) *+ --- % l
X X n
Inx 1
1+ hl(T\)‘+—h2(Tl)+.---,
X X '
Inx 1 :
= 1 + pl(‘r\)_+—-p2(‘n)+... , (4.1.2) é
X X |
|
I
1l
1nx 1 Rl
1+ P1(T\)+"P2(T\)+--- , \
X X
Inx 1
= V1(“)""‘V2(T\)+--o1
X pd
[T 1nx 1
1+ — | (— hy + ~ hp ¥ oY)
dh lh=h, X X s
where the dots denote terms which have the form O(XK(lnx)l), '
for all k, 1. :
After substitution (4.1.1), (4.1.2) into equations (1.4.1)
in the first approximation as & result of matching we find: .
Al
il
v il
uy = - — oo exp(-N) i
8
|
il
H




- 78 -~

— 1 exp(-M) [GB6Ma(Gyp (0)-Gyy (M))+ 95/2+46/(1-6)1,

(4.1.3)

9%, exp(-M)1

1
g, T 7
8
1
hl = = 6 exp(—6'ﬂ) .'-
4
v 1
py = 0 py = - — 6 exp(-ON) .,
4
1 1
v, = - — N6 exp(-6M) + —
2 2
where
du
ne = —
dh |h=hy
and
n an
G, (M) = fexp(-6n)[exp(M)-N-1]17—
0 Nn%
[06]
Gyp (M) = /MGy y (M)exp(-M)AN

n

Arbitrary constants Cy, Cg,

C, appear in the second terms:

e i———— bt .« s b s st oh




up

g

P2

P2
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— & exp(-6M)[UM) + Cyl

—  exp(-N) [6He(cbGzq (M) + 4CyGiq (M) +
¢ (B2 + 46/(1 + 6))G (M) + Cgl

— 6 exp(-6M)[H(M) + Cyl

[S=Y
24

- - — PM) ,
4 Y-1

1y 1

o —p(m) - — 6 exp(-6M)[H(M) + 2Cy/95] ,

4 Y-1 2
1 1
— & [1-exp(-N)] + — [1-exp(-OM)] +
4 2
1
+ — g2 exp(-M)[UM) + Cyl -
4
1Y
- 6N exp(-6M)[H(M) + 2Cy/gs] - — — MP(M)
2 Y-1

b4

P E———
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where .
[e] d‘n
pn) = JI1 - exp(-M1¥ —
n 0
l ' an
gy = S(MPM)-1 + exp(-MN))exp(M) —
0 1
1M
o) = — J [exp(-2n) - exp(-6M) - MP(M) +
2 0
dn
+ 2(1 - exp(-M))%/Mlexp(6M)—
n
ul
Goy (M) = S[2H(M) (exp(M)- 1 - N)exp(-6M) +
0
an
+ Gp(0)(1 + M) - Gp(Mexp(M)II—
. ' n2
n an
Gop (M) = Jlexp(-M) + N - 11—
0 "2

Using the exponential integral Ei(M) [42] we may produce so-

me calculations:
P(0) = 21ln2,

G2 (0) = 6/(1+6)+(1-6)1n((1+6)/6) ,




to obtain correlations

n order
6 1lnx 6
n(x,0) % he(l + 7 + — Cy) o
4 X 2X
9%
u(X,O) ~ 1 - — (lInx - Cy) -
8x (4.1.5)
Y 1n2
p(x,0) % po(l - T )
Y-1 2%
1 8g(x,Tr) o 1nx 6
-— v 1 - ——(pags O +
r Or r=0 2X 8x 1+
.6 g% 4 1
+ (1-6)1n y — + — )) * — Cgl
6 26 1-6 8x

4.2 Comparison of the numerical results with

asymptotic solutions

n with asymptotic solutions it is neces-
s Cy, Cn» Cg- correlations (4.1.5)
sed for this purpose so as
u(x,0), - h(x,0) and

To perform compar iso
sary to determine constant

at large enough values of x were U

numerical and asymptotic solutions of

6g(X,O)/(rﬁr) were coinside at x=10.

demonstrated in figures 70-78. The profiles of

Results are
P=p/pw, are shown in figures

function E=h/hw, u, a":g/goor

70-73 at various axial positions. gsolid curves correspond to

W T

. e &W’ " AT e

N

T

A
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dashed curves correspond to the first

and dashed curves with symbols corres-
second

numerical'profiles,

approximation (4.1.3)
pond to expansions including both first (4.1.3) and

(4,1.4) terms.

we remind that the first approximation does not depend on

constants Cy, Cp, Cg-

pistributions of axial velocity u(x,0), scaled enthalpy

E(x,o) and pressure B(X,O) along the vortex axis are repre-

sented in figures 74-76 respectively.

The distributions of total enthalpy h, (x,0) and Mach number

M(x,0) along the vortex axis are shown in figures 77-78,

where the total enthalpy scaled by value in the external

flow. Numerical and asymptotic solutions are shown by solid

and dashed lines correspondently.

A good agreement between numerical and asymptotic results is

observed at large values of X.

5. Comparison of the numerical results

with experimental data

The comparison was performed using profiles of the total

pressure and stagnation temperature measured experimentally
in two radial section of the vortex. At the first step nume-

rical and experimental profiles were correlated in the down-

stream section. The ratio of the total pressure on the axis

(Y=113mm) to the. total pressure on the conventional boundary

Pse (Y=83mm) was found from the Table 2, and then the nume-
rical data from figure 67 were used to determine position =z

where this ratio is close to its numerical prediction. The

radius of the vortex was approximately determined using pho-

tographs taken in experiment. Thorough adjustment of parame-

el ane g

PO
s . e,
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ters was performed visually or the display of computer to
reach good correspondence between numerical and experimental

profiles. Two parameters Wwere adjusted: reference total

pressure and initial radius of the vortex vacuum core 0. Fi-
pal result was found taken into account possible deflection

of the probe from real position of the vortex axis. The re-

sult is represented in figure 79. The total pressure obtai-

ned numerically and referenced to its value in external flow
js shown by solid line and experimental data - by crosses.
The following values of parameters were found: initial radi-
us of the vacuum core §=5.5mm, the ratio of the total pres-
sure on the vortex boundary to the total pressure in exter-
nal flow pse/p0=0.273, position of the vortex axis Y=114mm,

and position of the section considered x=1.1

Additional information apout the flow in this section may be
obtained from figures 54-64 (curve 8). In particular, the
dependence of the swirl angle ¢ shown in figure 64 indicates
that maximum of the angle is observed at radial position r=3
from the axis. Analysis of the experimental data (Table 2)
results in rather close value of ¢ and radius (rg~16mm) whe-

re the measured total pressure is maximal.

 The parameters found were used also for comparison of the
numerical and experimental profiles of the stagnation tempe-
rature. Both profiles shown by solid line and crosses CcoOr-
respondently are represented in figure 80. The stagnation
temperature decreases toward the axis and quolitative agree-

ment between numerical and experimental results is observed.

Significant discrepancy is probably caused by relatively
large size of the probe, resulting in space averaging of the
experimental data. Furthermore, both profiles are rather

close to unity and relative discrepancy is small.

Using values of the parameters found, the Reynolds number Reg
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:2-105 and dimensionless coordinate x.torrespondent to the
first section where the profilés were measured are determi-
ned. However, the dimensionless distance Ax between the
first and second sections turned out so small that the total
pressure practically does not change (Ax=4'10'6). Oon the ot-
ner hand, the experimental data reveal rather appreciable
change of the total pressure between two sections (Table
1,2). Therefore, strong disagreement between the theoretical
nodel and experimental data is observed. The experimental
data indicate that radial diffusion is really more intensive

than those caused by molecular viscosity.
Two reasons may be considered to explane this disagreement:

a: Rather high level of acoustical and vortical fluctuations
is observed in the work-section of the wind-tunnel. The dis-
turbances will obviously increase the diffusion of the ave-
raged flow. These fluctuations may be taken into account by
additional "eddy viscosity" using some kind of turbulence
model. The level of the eddy viscosity will be evaluated be-

low.

"b: Additional diffusion may be caused by spiral tangential
‘discontinuities in the vortex which were not taken into ac-
count within axisymmetrical model considered. However, radi-
al distance between the discontinuities in this case must be
very small (Ar<0.1mm). Experimental measurements result in
spatial averaging of the profiles on much bigger distance.
We think, the discontinuities can not completely explain
high diffusion, because the averaged profiles again will

regroup slowly.

Diffusion coefficient was estimated by comparison of numeri-
cal and experimental profiles of the total pressure in two
Sections. Numerical and experimental values of the total

Pressure on the axis coincide if the first section is situa-

[N




ted at x=0.115.

yumerical and experimental profiles of the total pressure in
the first section are shown in figure 81. The parameters 0,
pse/Po Were not adjusted and were taken the same as in figu-
re 79. Therefore, only value x was specially chosen and this
is equivalent to choise of the diffusion coefficient. The
agreement is not so good as in the second section. 1Indeed,
the first section is situated very close to the wing and the
flow can not be consider as quasicylindrical. The profiles

of the stagnation temperature at X=0.115 are shown in figure

82.

Taking into account that Ax=1.1 - 0.115 = 1, effective Rey-
nolds number may be evaluated: Reerlelomm/5.5mm=20, Corres-
pondent diffusion coefficient N turned out very high in

comparison with molecular viscosity: U ~ io4p.




conclusions

in the course of the research the devices and models neces-
gary for vortex investigation and its interaction with dif-
ferent bodies were developed. The vortex investigation and
its interaction with a spherical plunt body at Mach number 3
and Reynolds numbers from 1.1 to 3.7*107 1/m was carried

out. The experimental investigation has shown the following:

1. From the two types of the investigated vortex generators
(rectangular wing-type and 4-vanes-type generators) the
first type of the generator was chosen for the experiment.
The rectangular wing produces one vortex in the investigated
part of the flow. The vane-type generator produces four pa-
irs of vortices (one vortex at the internal and external
ends of each vane). The internal vortices situated close to
each other flow together into one vortex while the four ex-

ternal vortices stay apart even at a large distance from the

generator.

5. variation of the vortex diameter with the increase of the
distance from the generator is described by a common functi-
on d/d,=f(x/dr) (where 4, is the reference vortex diameter)
regardless to the value d, and degree of the flow swirl (the
generator angle of attack @) in the range 0 ¢ 20°. The vor-
tex diameter increases linearly along the x-axis. At a4 ¢ 20°
the vortex expansion angle is apbout 1°. At O = 30° this ang-

le increases up to 39.

3. The expanding vortex induces in a supersonic flow a weak
compression wave as well as an expanding viscous wake past

the wing (vortex generator) .

4. The measurements carried out at o = 20° have shown that
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ijn the initial cross section of the vortex in the vicinity
of the vortex axis a region of the low stagnation pressure
Ps is formed. The minimum value pg/py 1is approximately 0.06
of the free stream value. At a distance about 40d; from the
jnitial section the value pg/Pg at the vortex axis increases
up to 0.35. The laser knife pictures also show the fast inc-

rease of density in the vortex core.

5. The stagnation temperature in the vortex also changes. In
the initial vortex cross section the stagnation temperature
at the vortex axis is lower approximately by 20 degrees than
in the free stream. However, the relative value of the stag-
nation temperature Ts/To at the vortex axis in the initial
section is about 0.90. A still weaker influence of the flow
swirl on the relative stagnation temperature is observed in
the remote section. such a decrease of the relative stagna-

tion temperature cannot produce a great influence on heat

transfer.

6. By interaction of the vortex with the spherical blunt bo-
dy a vortex breakdown occurs. The vortex breakdown is follo-
wed by its expansion, formation of a dead zone in front of
" the blunt body and flow turbulation. This flow is similar to

" the flow in front of a spiked body.

7. The vortex which is coaxial with the spherical blunt body
causes a heat flux decrease in the vicinity of the symmetry
axis. At the end of the dead zone in the vicinity of the at-
tachment line the heat flux increases almost doubles as com-
pared with the heat flux in the stagnation point of the
sphere in the absence of the vortex. This effect should be
taken into account in analysis of heating bodies interac-

ting with -the vortex.

8. Taking into account the drastic influence of the vortex

on the heat transfer it is reasonable to investigate the in-




ter

feren

action
t angles ‘between the vortex axis and the streamlined

pody surface.

9. The theoret
axlsymmetrlc trailing vortex in compressible flow was sug-

ge

correlatlon of
files of axial velocity, temperature and circulation were

chosen on the
compressible gas: the flow was considered as isoenergetic
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of the vortex with a cylinder and a plate at dif-

jcal model describing viscous diffusion of the

sted and developed. ‘The main problem of the model concerns

the profiles in the initial section. The pro-

pasis of the classical model of the vortex in

and isoentropic with constant circulation. At these conditi-

on

s the vortex contains vacuum core in the initial section.

'The experimental results demonstrate that the vortices in

supersonic flow really contain strongly decompressed cores.

10.

Under acti

on of viscous diffusion the vacuum core is fil-

led by gas downstream of the initial section. This process

‘was thoroughly analyzed and self-similar solutions near the

boundary of the vacuum core were obtained. Two types of so-

ty and

- tial section.
influence of the layer on the flow inside the vortex.

“lutions were found: the solution with constant axial veloci-

another one with constant total enthalpy in the ini-

Numerical calculations demonstrated strong

11. The asymptotic expansions of the solutions far downstre-

am from the initial section were also found. These solutions

are

a generalization for compressible gas of well known so-

lution obtained by Batchelor (1964) for the vortex in in-

compressible fluid. The asymptotic and numerical results we-

re compared and good agreement between them was demonstra-

ted.

12.

Systematic numerical calculations of the vortices regro-

uping under action of viscosity in supersonic flow were per-

formed on the basis of the suggested theoretical model. Qua-
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litative agreement of the numerical and experimental results

was demonstrated For profiles " of the total pressure and

stagnation temperature.

13. Strong change of the total pressure petween initial and
jownstream section observed in the experiment cannot be exp-
1janed as action of molecular viscouse forces. Experimental

gata indicate very high level of diffusion in radial direc-

gion.

14. Two factors might strongly increase the diffusion of the
averaged profiles:

a) High level of acoustical and vortical fluctuations in the
wind tunnel produces additional "eddy viscosity".

b) Additional diffusion may be produced by spiral tangential
discontinuity in the vortex which was not taken into account

within axisymmetrical model considered.

15. Taking into account the discrepancy petween theoretical
and experimental results it is worthfull to perform additio-
nal experimental study of the vortex structure and include
measurements of fluctuations. This study will allow to eva-
luate turbulent diffusion and develop further the theoreti-

cal model of the vortex in supersonic flow.
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-
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Appendix

Tables of the measurements results




Table 1
Run N37 i
Generator N1, Alpha=20°, Ps/Po =f(Phi,Y)
X=2mm
Y, mm
phi, degr. 0 20 40 60 72 76 80
-45 0.232 0.226 0.228 0.237 0.314 0.305 0.285
-30 0.263 0.26 0.261 0.272 0.355 0.338 0.318
15 0.271 0268] * 0.27 0.28 0.37 0.352 0.325
0| * 0.272 0.267 0269 * 0.281] * 0.372] * 0.355 0.328
T 15 0.271 0.266 0.268 0.28 0.369 0.35 0.323
30 0.253 0.241 0.245 0.255 0.339 0.32 0.291
45 0.191 018 0.177 0.187 0.248 0.229 0.202
90 95 96 97 98 99 100
-45 0.163 0.087 0.06| * 0.034 0.02 0.016 0.015
-30 0173 0.088! * 0.06 0.032 0.02 0.02 0.017
B 15/ * 0179 0.088 0.057 0.029 0.02 0.019 0.017
0 0177 0.085 0.052 0028] * 0.021] * 0.019 0.017
15 0.174 0.077 0.045 0.022 0.021 0.018 0.016
20| 0.147 0.057 0.03 0.019 0.02 0.017 0.015
45 0.093 0.034 0.019 0.014 0.016 0.015 0.013
102 103 104 105 106 107
-45 0.01 0.01 0.012 0.017 0.024 0.031
30 0.013 0.013 0.017 0.027 0.042 0.054
15 0.016 0.019 0.03 0.051 0.075 0.091
0 0.019 0.026 0.045 0.072 0.095 0.118
15 0.019 0.029 0.05 0.075 0.102] * 0.124
30 0.021 0.032] * 0.054 0.079 0.099 0.122
45| * 0.022 0.033 0.053] * 0.081| * 0.107 0.123
110 117 120
-45 0.039 0.03 0.031
-30 0.068 0.051 0.055
15 0.109 0.079 0.082
0 0.137 0.091 0.091
15| * 0.142 0.093| * 0.093
30 0.138 0.093 0.092
45 0.138 0.091 0.093




Table 2

| |
| |
Run N36 . i | |
Generator N1, Alpha=20°, Ps/Po = f(Phi,Y) ‘ I‘
!
x=11omm | | | |
phi, degr. i
£ Y | | —
-30 3
a1/ —
o 0273  0266]  0.267 0.2% 0.328& 0.324] 0321
15 0.272_:@ | :!
30 0256  0.244 | | | |
a5 0194 0175 | \ 1 [
- } l \ !
39 a3 45| 47| 48| 49] 51
o 0313 0209 0293 0289 O 283| 0276|0274, -
I \ | |

61 68

78]

88

0.24

0.241

58]
e
98

0.271
93

0.183

0.245 0.234]
i

|
108

118

0154 0.414]

0.105

750206
-30

15 0.218] *

0.194
0.195

0.164] 0.127]

0.162]

04166] * 0.133 |

0.178]

0| 7.0.222

0.195| * 0.167

0132 * 0119 | * 0.187 |

15 0.219
30 0.188
45 0.126

0.189

0.105

0.157

0.128|

0.118]

0.184

0.131 0.116]

0.11]

0.174

0.086 0.081]

0.101]

0.17
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Table 3

=f(Phi,Y), degrees

|
|
20°, to

, Alpha

prator N1




Table 4 |
]
I
296 311
o087 071
189  1.60
[ 1.60]
037
623 7
I
86 . 88
ﬂa -3.47 -3,
—ot 000 0.
o089 077
1]+ 087
o076 056
.20
I N
—_9g] 100
416 381
051 0.80

0.14 0.20
o7 [ 0%
023
233 1.87
[ -7.56 7.74
|
108l 110
ﬂ:’ 9.01
A0 377
[+ 067|  -1.46|
__-070]* 039

1.49
 -2.84]
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116/ 118]
10.30 9.17
3.26
1.56] *
139 |
3.30

y.mm__|
359
 1.09]
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 1.90]
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|
- 84
327,
0.9
o 1.06]
077
077
|
96
4.24
027
023
 0.07]
| -2.00]
823
106
[ -5.50]
153
* 023
| 0.29]
766
|
14
__-001]
A7
| -2.03]
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57
| 3.4

Y), degrees C
110mm

0
267
2.01]
291
321
287
154
319
I
80
[ -3.60
026
1.6
097
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I
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| 213
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013
¥ 049]
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216
_-7.00
o
901
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* 09]
]

f(Phi,

Run N41
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Table 5 5 1
Sphere Run 28
M=3.0 Re=6.70%*10° Ty = 413 K Py=4.834%10° Pa T=1.0 s
Thermo- S/R T K Tsmo K 9, %+, d/dp
couple KW/m kW/m i
1 1.508 301.7 301.7 7.595 76.95 0.0987
2 1.340 | 306.3 | 306.2 | 14.44 | 73.79 | 0.1957
3 1.173 | 309.4 | 309.3 | 21.54 | 71.63 | 0.3007
4 1.005 | 313.7 | 313.7 | 29.32 | 68.63 | 0.4272
5 0.838 319.5 319.5 37.19 64.62 0.5755
6 0.670 325.6 325.6 45.94 60.39 0.7607
7 0.503 331.4 331.3 50.09 56.41 0.8879
8 0.335 | 336.0 | 336.0 | 50.83 | 53.19 | 0.9556
9 0.168 | 338.2 | 338.3 | 55.36 | 51.57 | 1.0735
10 0.000 340.8 340.9 52.59 49.76 1.0569
11 0.084 339.8 339.9 56.29 50.44 1.1160
12 0.168 | 337.6 | 337.7 | 56.86 | 52.02 | 1.0932
13 0.251 333.9 334.0 57.60 54.58 1.0552
14 0.335 | 333.0 | 333.0 | 55.81 | 55.22 | 1.0107
15 0.419 | 332.1 | 332.2 | 51.80 | 55.82 | 0.9279
16 0.503 | 327.7 | 327.8 | 52.32 | 58.85 | 0.8891
17 0.586 | 326.2 | 326.2 | 49.82 | 59.93 | 0.8312
18 0.670 | 322.1 | 322.1 | 50.59 | 62.78 | 0.8058
19 0.754 317.6 317.6 44 .19 65.88 0.6707
20 0.838 | 315.0 | 315.0 | 38.90 | 67.69 | 0.5748
21 0.922 | 312.7 | 312.8 | 35.17 | 69.26 | 0.5077
22 1.005 | 307.8 | 308.0 | 30.41 | 72.59 | 0.4190
23 1.089 | 308.2 | 308.3 | 26.29 | 72.36 | 0.3633
24 1.173 | 306.0 | 306.0 | 22.86 | 73.96 | 0.3091
25 1.257 | 302.4 | 302.3 | 17.87 | 76.48 | 0.2337
26 1.340 300.5 300.6 13.84 77.71 0.1781
27 1.424 | 299.7 | 299.6 | 11.32 | 78.37 | 0.1445
28 1.508 | 298.6 | 298.6 | 8.158 | 79.04 | 0.1032
29 1.591 | 299.0 | 299.0 | 5.534 | 78.80 | 0.0702
30 1.758 297.8 297 .8 4.710 79.63 0.0592
31 1.925 298.1 298.1 4.404 79.42 0.0555
32 2.091 | 299.0 | 299.0 | 4.139 | 78.78 | 0.0525
33 2.258 299.9 299.9 4.124 78.17 0.0528
34 2.425 | 301.0 | 301.0 | 4.128 | 77.42 | 0.0533
35 0.168 | 338.4 | 338.5 | 54.14 | 51.44 | 1.0524
36 0.335 | 330.7 | 330.8 | 56.78 | 56.77 | 1.0002
37 0.503 | 330.9 | 330.8 | 50.72 | 56.73 | 0.8940
38 0.670 | 325.9 | 325.9 | 46.34 | 60.16 | 0.7703
¢ 39 0.838 | 314.6 | 314.6 | 41.28 | 68.02 | 0.6069
40 1.005 | 309.7 | 309.7 | 32.77 | 71.38 | 0.4590
: 41 1.173 | 303.9 | 303.9 | 25.99 | 75.42 | 0.3446
42 1.340 297.9 297.8 16.09 79.63 0.2020
~ 43 1.508 292.0 292.0 11.33 83.63 0.1354




Table 6
Sphere with vortex generator a=20° Run 29
M=3.0 Re=6.86%10° Tg = 410 K Po -4.889%10° Pa T=1.0 S

,__’_’_————”——-‘
couple KW/m kW/m
|

1 1.508 311.8 311.8 11.94 68.07 0.1755
2 1.340 320.3 320.3 23.21 62.14 | 0.3736
3 1.173 329.7 329.7 34.13 55.60 | 0.6139
4 1.005 339.3 339.4 | 43.72 48.82 | 0.8956
5 0.838 347.3 347 .4 52.62 43.30 1.2152
6 0.670 354.3 354.3 66.13 38.51 1.7171
7 0.503 351.3 350.9 | 72.61 40.84 1.7780
8 0.335 338.4 338.2 56 .54 49.68 1.1382
9 0.168 331.9 | 331.9 | 43.67 54.04 | 0.8081
10 0.000 335.1 335.0 | 39.06 51.88 | 0.7528
11 0.084 335.2 | 335.0 | 42.97 51.92 0.8277
12 0.168 335.4 335.5 | 48.31 51.54 0.9373
13 0.251 335.8 | 336.0 | 59.03 51.21 1.1527
14 0.335 339.6 340.1 68 .64 48.39 1.4186
15 0.419 346.1 346.5 | 70.24 43.91 1.5997
16 0.503 345.9 346.3 79.17 44.09 1.7956
17 0.586 346.2 346.6 | 77.46 | 43.84 1.7669
18 0.670 343.2 | 343.5 80.06 45.99 1.7406
19 0.754 339.4 339.8 69.69 48.59 | 1.4344
20 0.838 336.4 336.7 61.13 50.69 1.2059
21 0.922 332.7 333.0 53.48 53.29 1.0035
22 1.005 328.9 | 329.1 45.95 55.98 | 0.8209
23 1.089 326.8 326.9 38.77 57 .50 0.6742
24 1.173 321.8 | 322.0 33.51 60.95 | 0.5498
25 1.257 317.2 317.2 25.73 64.30 | 0.4002
26 1.340 313.5 313.6 19.35 66.80 | 0.2897
27 1.424 310.5 | 310.5 15.46 68.92 0.2243
28 1.508 308.0 | 308.0 10.42 | 70.69 | 0.1474
29 1.591 306.8 306.8 | 6.367 71.52 0.0890
30 1.758 306.1 306.1 5.322 72.00 0.0739
31 1.925 306.9 307.0 6.207 21.40 | 0.0869
32 2.091 308.9 | 309.0 | 7.951 70.02 | 0.1136
33 2.258 310.9 | 311.0 | 9.814 68.63 0.1430
34 2.425 312.6 | 312.7 11.03 67.44 | 0.1635
35 0.168 | 332.4 | 332.5 37.61 53.65 | 0.7010
36 0.335 326.0 326.0 | 41.17 58.16 | 0.7079
37 0.503 324.3 324.3 41.68 59.31 0.7027
38 0.670 321.0 | 321.1 44.99 61.59 | 0.7305
39 0.838 314.0 | 314.3 51.10 | 66.33 | 0.7704
40 1.005 310.3 310.4 47.29 68.99 | 0.6855
41 1.173 305.3 305.5 39.27 72.46 0.5420
42 1.340 301.6 301.7 24.13 25.05 | 0.3215
t 43 1.508 | 297.2 | 297.4 17.13 78.09 | 0.2193




Table 7

Sphere with vortex generator a=10° Run 30
M=3.0 Re=6.69%10° To = 415K p,=4.858%10° Pa T=1.0 S
Thermo- S/R T K Tsmo a,, do +, a/dg
couple kW/m kW/m
1 1.508 304.6 304.7 7.761 76.55 0.1014
2 1.340 311.9 312.0 16.25 71.48 0.2274
3 1.173 318.7 318.9 24.84 66.69 0.3725
4 1.005 326.5 326.7 33.05 61.27 0.5394
5 0.838 332.3 332.6 41.96 57.16 0.7341
6 0.670 337.3 337.7 54.31 53.62 1.0128
7 0.503 335.8 336.1 60.06 54.76 1.0968
8 0.335 327.9 327.4 49.41 60.76 0.8132
9 0.168 322.4 322.1 41.73 64.48 0.6472
10 0.000 325.3 324.9 35.54 62.54 0.5683
11 0.084 325.4 324.9 38.77 62.51 0.6203
12 0.168 326.3 325.8 46 .03 61.87 0.7441
13 0.251 328.8 328.3 57.15 60.15 0.9501
14 0.335 335.9 335.5 64 .88 55.18 1.1758
15 0.419 342.5 342.4 66.37 50.39 1.3173
16 0.503 342.9 343.1 71.42 49.90 1.4314
17 0.586 343.2 343.1 67.68 49.84 1.3579
18 0.670 339.9 339.9 67.51 52.10 1.2958
19 0.754 334.6 334.6 57.30 55.80 1.0270
20 0.838 331.7 331.7 50.21 57.77 0.8690
21 0.922 328.9 329.0 43.84 59.67 0.7347
22 1.005 324.4 324.5 38.00 62.81 0.6050
23 1.089 321.9 321.9 31.68 64.56 0.4907
24 1.173 317.8 317.9° 26.81 67.39 0.3979
25 1.257 312.0 312.0 19.94 71.48 0.2789
26 1.340 308.7 308.7 14.27 73.75 0.1934
27 1.424 305.4 305.5 10.49 76.03 0.1380
28 1.508 302.7 302.7 6.350 77.94 0.0815
29 1.591 302.2 302.2 3.311 78.28 0.0423
30 1.758 301.1 301.1 2.456 79.06 0.0311
31 1.925 300.9 300.9 2.802 79.22 0.0354
32 2.091 303.2 303.2 4.210 77.57 0.0543
33 2.258 304.6 304.6 6.607 76.60 0.0863
34 2.425 306.9 306.9 8.728 75.00 0.1164
35 0.168 321.9 321.8 33.63 64.63 0.5203
36 0.335 316.2 316.0 35.50 68.66 0.5169
37 0.503 313.0 312.9 37.03 70.85 0.5227
38 0.670 309.4 309.4 39.52 73.30 0.5392
39 0.838 303.5 303.6 42 .49 77.34 0.5494
40 1.005 302.7 302.9 34.75 77.79 0.4467
41 1.173 300.1 300.3 26.25 79.62 0.3297
42 1.340 296.8 297.0 14.74 81.88 0.1801
ﬂ; 43 1.508 294 .4 294.5 9.301 83.64 0.1112




Table 8

‘sphere with vortex generator 0=30° Run 43

M=3.0 Re=6.76%10°  Tp= 414 K p,=4.891%10° Pa Tz1.0 s

3 Thermo- S/R T K Temo K q,z do ’o a/d0 i
couple kW/m kW/m |
1 1.508 | 299.9 | 299.8 | 6.333 79.54 0.0796 !
2 1.340 | 304.5 | 304.5 11.72 | 76.30 | 0.1536
3 1.173 | 309.0 | 309.0 | 16.97 73.16 | 0.2320
4 1.005 | 312.9 | 312.8 | 22.22 70.51 | 0.3152
5 0.838 | 317.6 | 317.5 | 27.82 67.21 | 0.4139
6 0.670 | 322.2 | 322.1 33.70 | 64.05 | 0.5262
7 0.503 | 324.4 | 324.1 | 35.98 62.61 | 0.5747
. 8 0.335 | 329.3 | 329.3 | 35.91 58.99 | 0.6087 |
9 0.168 | 327.4 327.2 38.27 60.44 0.6332 ‘
10 0.000 | 330.1 | 330.0 | 35.72 58.55 | 0.6102 |
11 0. 084 | 328.4 | 328.4 | 36.88 | 59.62 0.6185 |
12 0.168 | 327.7 | 327.6 | 35.38 60.21 | 0.5875 l
13 0.251 | 326.7 | 326.5 | 35.39 | 60.93 0.5809 |
14 0. 335 | 323.2 | 323.2 | 35.26 | 63.28 0.5571 |
15 0.419 | 320.3 | 320.3 33.26 | 65.25 | 0.5097 !
16 0.503 | 318.7 | 318.8 | 34.65 | 66.35 0.5222 1
17 0.586 | 316.8 | 316.7 | 33.55 | 67.75 0.4952 |.
18 0.670 | 314.3 314.3 | 33.97 | 69.48 | 0.4889
19 0.754 | 306.9 | 306.8 | 29.65 | 74.67 0.3971
20 0.838 | 307.2 | 307.2 | 26.17 | 74.41 0.3516 |
21 0.922 | 306.3 | 306.2 | 23.36 | 75.10 0.3110 l
22 1.005 | 301.7 | 301.7 | 20.11 | 78.24 0.2570 .
23 1.089 | 303.8 | 303.7 | 17.33 | 76.82 0.2256 ;
24 1.173 | 300.6 | 300.5 | 15.05 | 79.08 0.1903 |
25 1.257 | 298.7 | 298.6 | 12.04 | 80.38 0.1498 l
26 1.340 | 297.9 | 297.8 | 9.569 | 81.00 0.1181 ;
27 1. 424 | 299.9 | 299.8 | 7.845 | 79.55 0.0986 S
28 1.508 | 296.5 | 296.4 | 5.914 | 81.93 0.0722 w;\
29 1.591 | 298.1 | 298.0 | 4.154 80.81 | 0.0514 1k
30 1.758 299.6 299.5 3.943 | 79.79 0.0494 1
31 1. 925 | 302.4 | 302.2 | 4.645 | 77.90 0.0596 ¥
32 2.091 503.5 | 303.3 | 5.570 | 77.11 | 0.0722 1
33 > o258 | 306.6 | 306.4 | 6.679 | 74.98 0.0891 Ik
34 > 425 | 306.0 | 305.8 | 7.315 | 75.37 0.0971
35 0.168 | 329.0 | 328.3 34.49 | 59.72 | 0.5774 !
36 0.335 | 335.2 | 333.5 | 52.51 | 56.07 0.9365 5
37 0.503 | 333.2 | 333.0 | 52.36 | 56.43 0.9279 -H
38 0.670 | 318.3 | 318.5 | 39.51 | 66.50 0.5942 |
39 0.838 | 304.5 | 304.7 | 24.78 | 76.18 0.3253 i
40 1.005 | 305.8 | 305.5 | 22.82 | 75.62 0.3018 i
41 1.173 | 309.8 | 309.5 | 27.75 | 72.78 0.3813 !
42 1.340 | 308.5 | 308.4 | 20.64 | 73.58 0.2805 !
43 1.508 | 300.4 300.4 | 16.59 | 79.18 | 0.2095
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