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Introduction 

In many cases vertices are being generated en the aircraft 

surface: on the upper wing and body surfaces, in the vicini- 
ty of the deflected fins. They can essentially influence 

pressure distribution and heat transfer. The vortex genera- 

ted on  the upper surface of a body or a wing can encounter 
,   tmt  „f  the  fin,  located downstream 

the shock wave in  front  of  tne  nn, 
i„ 4=. interaction of the vortex, ge- (Fig.la). Another example is. interaction o 

^ r,i     -fraka or a nose  flap  intended nerated by a canard [1],  a straKe or neratea ay shock waye 
for  aircraft  trimming with the wing 

(Fig lb). A case important for practical purpose is descri- 

bed in [2] <Fig.lC: interaction between the vortex and in- 

let shock waves gualitatively changes the m!et entry flow 

pattern. A similar phenomenon can be observed in "»«»«* 
Interaction of the vortex generated in the inlet wi h the 
pylon of the air-breathing jet combustion chamber (Fig.Id). 

Z this context it is worthwhile to investigate the vortex 

structure and its interaction with the streamlined body. 

Wing flow at an angle of attack, followed by a flow separa- 

tion and vortices formation, have been investigated in many 

studies. in so,e papers vortices structure is investigated 

in detail. Most works deale with flows of incompressib e 

fluid A vortex layer, shedding from a wing surface, rolls 

up into a spiral. Its shape and velocity distribution are 
■ t = i„ described by ,the equations of motion for m- 

approximately descrioeu UJ . av-0 
compressible fluid [3,4]. At high Reynolds numbers the expe- 

rimental  [5,6]  and  theoretical results are in *««>**" 
„.„t.  However ve!ocity tangential discontinu! y on the sp 
ral  surface  typical  for  an incompressible fluid flw a e 

smoothed due to the influence of  viscous  diffusion  [5 ',   ■ 
The influence of viscousity is still greater in thj internal 

vortex core. It was discovered by the experiment [5] and in 

vestigated  theoretically for a laminar flow in works [7,3]. 
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A n survey of these investigations is given in [9]. In 1957 

peckham and Atkinson discovered a vortex burst [10] . They 

observed it in the flow field in the vicinity of the wing in 

the region of a positive pressure gradient. The vortex burst 

is also observed in the swirling nozzles and diffusers 

flows. After the discovery of the vortex burst a great vari- 

ety of theoretical investigations of this phenomenon was 

carried out. 

A supersonic vortex structure was thoroughly investigated in 

the work [1]. Using modern measurement techniques the rese- 

archers obtained the data concerning the influence of the 

swirl strength and pressure gradient on the velocity and gas 

pressure in the vortex at Mach numbers from 1.6 to 2.28. 

in 1975 research [2] discovered a vortex breakdown in front 

of the inlet due to the influence of a strong shock wave. 

The investigation was carried out at Mach number from 1.4 to 

3.0. It was shown that a vortex breakdown is followed by 

formation a dead region which induces a cone shock. The inc- 

lination angle of the dead region borderline and pressure 

increase in it are close to similar values for a separation 

region of the turbulent boundary layer. The formation of the 

dead region reduces the pressure recovery coefficient in the 

supersonic inlet. This investigation was continued in works 

[1,11,12]. 

Paper [1] determines the parameters, influencing the vortex 

burst when interacting with the normal shock: vortex streng- 

th and Mach number (shock pressure difference). The vortex 

breakdown conditions are specified for Mach number up to 

2.5. In this paper on the basis of the Euler equations are 

also theoretically determined the conditions under which the 

vortex breakdown occurs. The calculation results and the ex- 

perimental data are in good agreement. In paper [11] similar 

analysis of interaction between  a  vortex  and  an  oblique 
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shoclc past which .a supersonic flew is retained was earned 

out at Mach numbers of 2.28 and 5.0. In calculations a vor- 

tex breakdown was not obtained.  In paper [2] it is shown 
i~    ^v-^m o   R to 4 0 a vortex breakdown  oc- that at Mach numbers from 2.5 x.o  4 

curs at a rather high angle of attack of the wing generating 

a vortex (at a > 5-10°). In paper [12] a vortex burst was 

also observed during' interaction between a vortex and a 

central shock in the under-expanded jet. It occurred at ang- 

les of attack of the wing-vortex generator  greater than 8 

in the known papers a stagnation temperature distribution in 

a supersonic vortex was not investigated. At the same txme 

measurements performed at subsonic speeds in the Ranque tube 

indicate that vortex temperature can essentially change 

[13]. This property of vortex flows is applied in the simp- 

lest refrigerators. 

None of the studies familiar to the authors deals with the 

investigations of the vortex influence on the heat exchange 

on the frontal surfaces of a body. At the same time the ob- 

tained data about the vortex breakdown indicate that this 

influence can be essential. 

The aim of this paper is as follows: 
1) To obtain additional data about the vortex structure in 

supersonic  flow by means of experiment and theoretical in- 

vestigations. 
2) To obtain experimental data about the vortex influence on 

the heat transfer on the frontal surface of the blunted bo- 

dy. 
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Nomenclature for the part A 

thermodiffusion coefficient, 

b   = chord of vortex generator, 

c   = heat capacity, 

d  = vortex diameter, 

dr  = reference vortex diameter (at the begin of 

the vortex's straight portion), 

D   = sphere diameter, 

Fo  = at/Ö2, Fourier number, 

h   = q/(T0-Tw), heat transfer coefficient, 

i  = enthalpy, 
1   = length of separation region in front of sphere, 

M = Mach number, 

p = pressure, 

q = heat flux, 
qo = theoretical value of the heat flux in the stagnate 

point of the sphere, 

R   = D/2, sphere radius, 

Re  = p^ u^ D / M^ >   Reynolds number, 
Re  = p^ u^ / JU^ , unit Reynolds number (per 1 m) , 

s ' = distance Tlong sphere surface from its center, 

t   = temperature, 

T   = temperature, 

u   = velocity, 
x  = coordinate in free stream direction, 

= distance from trailing edge of vortex generator xc 
to sphere, 

y,z = coordinates in the directions perpendicular to a free 

stream, 
a  = angle of attack of a vortex generator, 

ß  = inclination angle of shock wave, 

"\       =  azimuthal angle, 

5  = model wall thickness, 
9  = angle of borderline inclination of separation region, 



- 9 - 

1       = thermal conductivity coefficient, 

M 
P 

= viscosity coefficient, 

= density, 

X       = time, 
<p  = angle between the x-axis and the probe axis 

Subscripts 

oo       = free stream conditions, 

0  = wind tunnel settling chamber, 

i   = initial conditions, 

= maximum value, 

= stagnation point past normal shock wave, 

= on the model surface. 
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A. Experimental investigation of the vortex structure 

and its interaction with a sphere 

1. Experimental facility 

1.1. Description of the T-33 wind tunnel 

The T-33 facility is an intermittent, blowdown wind tunnel 

(Fig.2). It is often used at TsAGI for investigation of heat 

transfer and pressure distribution on the bodies surface in 

supersonic gas flows as well as for flow visualization. This 

wind tunnel was being used for similar investigations in the 

subsonic flow. 

The scheme of the T-33 wind tunnel is shown in Fig.3. In the 

majority of experiments an electrical resistance heater (1) 

is used for air heating. Its power is up to 1000 kW. When 

the experiment purpose is a flow visualizaton another heater 

is used wherein heating occurs due to combustion of kerose- 

ne. It represents a modified combustion chamber of the tur- 

bojet engine. 

The maximum temperature of the air in both heaters is about 

500°C. However in the majority of experiments the temperatu- 

re doesnot exceed 200°C. In settling chamber (2) the flow is 

straightened by a honeycomb and a system of grids. The maxi- 

mum pressure in the settling chamber reaches 8*10 Pa. For 

developing a supersonic flow axisymmetric nozzles (3) conto- 

ured to produce uniform Mach 3, 4 or 5 flow are used. There 

is also a convergent nozzle generating a subsonic flow. In 

this investigation the nozzle intended for Mach number of 3 

was used. The nozzle exit section diameter is 304.5 mm. 

The wind tunnel test section (4) (see Figs. 3 and 4) pre- 

sents itself the Eiffel chamber. Its diameter is 800 mm, the 

distance between the nozzle and the diffuser is 550  mm.  In 
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the walls of the test section there are 5 windows for illu- 

mination and observation of models. For fixing the models 

there are 2 supporting mechanisms in the wind tunnel test 

section (above and below). They can inject a model and a me- 

asuring unit or two parts of a compound model into the flow 

simultaneously or one after the other. The lower supporting 

device can be moved in the axial direction during the expe- 

riment. Furthermore it is possible to change the model angle 

of attack during the experiment. 

Below on the test section wall a thermostatic chamber is mo- 

unted. During the heat transfer investigations this chamber 

prevents the model installed on the lower supporting mecha- 

nism from heating at the period when the flow becomes stea- 

dy. After obtaining a prescribed steady regime a flap of the 

thermostatic chamber is moved aside and the-model is quickly 

injected into the flow. A maximum model length is 350 mm. 

For obtaining the required air rarefaction in the test sec- 

tion a two-stage supersonic ejector is applied. 

A great number of investigations of heat transfer by means 

of thermosensitive coatings and discrete thermocouples was 

carried out in the T-33 wind tunnel. Furthermore, a flow vi- 

sualization by a shadowgraph technique, a laser knife and a 

calibrated oil points is often performed in the tunnel. Some 

results obtained in the T-33 wind tunnel are presented in 

papers [14,15]. 

1.2. Vortex generators 

Different ways of vortex generation are known. In a number 

of works for generation of a vortex a swept or a strainght 

wing at an angle of attack is used. Delery [1] used for vor- 

tex generation in subsonic flow a wing-type generator  along 
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w 
_ ith a vane-type generator. The vane-type generator presen- 

ted itself an axisymmetric body'on which two vanes were ins- 

talled at a certain angle of attack. In Ref.[16], a vortex 

produced also by swirl-vanes being placed into axisymmetric 

caSing , is described. The investigation [1] has shown that 

the velocities distributions in the vortices produced by a 

wing and swirl-vanes differ substantially. In a supersonic 

flow vanes without external casing evidently were not used 

up till now. 

in the current investigation three generators of both type 

were used: 2 generators in the form of a rectangular wing 

and one generator of a vane type. In designing the wing-type 

generator the investigation results of Ref.[17] were used. 

In this paper information about vortex dimensions and its 

position at different wing angles of attack was obtained. 

Figures 5, 6 and 7 show the schemes of the generators which 

were used. Generators 1 and 2 have an rectangular shape. The 

leading and lower edges are sharp and the trailing edge is 

blunt. Over a greater part of the wing span a cross section 

profile has a triangular shape. Generators 1 and 2 differ 

only by the chord length. The wing chord of generator 1 is 

almost 3 times greater than that of generator 2. Generator 1 

is designed mainly for investigating a total pressure and 

total temperature distribution in a vortex and generator 2 - 

mainly for investigating a vortex development and its inte- 

raction with a sphere. 

Generator 3 (Fig.7) presents itself an axisymmetric body 

with a diameter of 6 mm, on which 4 rectangular vanes are 

fixed at an angle of attack of 30° (there are also genera- 

tors with the vane setting angles of 10° and 20° but they 

were not used). A potential advantage of generator 3 as com- 

pared with two other generators consists in a less flow per- 

turbance because the plate on which the generator is mounted 

is installed at a zero angle of attack. 
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1.3. Total pressure and stagnation temperature probes 

and device for their positioning 

A stagnation pressure probe (Fig.8a) presents itself a ca- 

pillary tube fabricated from a stainless steel with an ex- 

ternal and internal diameters 0.8 and 0.48 mm respectively. 

A capillary with a straight section length 12 mm was bent in 

a manner as shown in Fig.8a and went through a positioning 

device rod. The end of the capillary was connected with a 

miniature pressure probe with a measuring range from 0 to 10 

bar, by means of a flexible pipe. The inertia of the total 

pressure probe did not exceed 0.1 s. 

A stagnation temperature probe (Fig.8b) presented itself a 

tube made of a stainless steel with external and internal 

diameters 2 and 1.5 M respectively and straight section 

length 20 mm. Inside this tube a thermocouple junction from 

chromel-copel alloys with a wire thickness of 0.1 mm was 

placed. The rear end of the tube had a plug and there were 2 

holes 0.5 mm in diameter in the side surface behind the 

thermocouple junction. A signal from the thermocouple was 

recorded by a data acquisition processing system. A tempera- 

ture recovery coefficient of this probe design at specified 

flow paramemeters according to literature data was estimated 

t 
Ts " T 

L0 

0.965 ± 0.025 

The real values of the recovery coefficient were estimated 

in the tests. 

For moving the probes a positioning device was developed and 

fabricated (Figs.9,10). Probe 1 is fixed inside the rod 2 

(Fig.9).  Miniature  cooled engines 4 and 10 move the rod in 
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the vertical direction and rotate it relative to the axis. 

The positioning device is mounted on the lower supporting 

mechanism of the T-33 tunnel and can be moved along the tun- 

nel axis. 

The positioning device allows the probe to be moved along 

the y-axis (in vertical direction) at the distance up-to 120 

mm with the minimum spacing of 0.05 mm. At every specified 

station along the y-axis the positioning device can stop the 

probe and rotate it up to the angle ±90° with the minimum 

setting 0.5°. 

The positioning device is controlled by a computer. A cont- 

rol code allows to change movement and rotation steps Ay and 

Aip, respectively, as well as duration of maintaning the pro- 

be in stop position necessary for conducting reliable measu- 

rements. For the current investigation the code was develo- 

ped in such a way in order to obtain maximum information 

about flow characteristics in the vortex region during mini- 

mum wind tunnel running time. 

1.4. Models of sphere 

For investigating a vortex blunt body interaction two sphe- 

res with a diameter D=60 mm were fabricated. One sphere was 

made of steel and intended for a flow visualization. Another 

sphere was made of glass-fibre' plastic and intended for in- 

vestigation of heat transfer. 43 heat flux sensors were mo- 

unted on it (Fig.11a). A scheme of sensors location is shown 

in Fig.lib. 
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1.5. Heat flux sensors. Method of heat flux measurement 

in this investigation the surface thermocouples were used as 

heat flux sensors [18]. They are fabricated from chromel-co- 

pel alloys. A diameter of thermocouple wires is 0.1 mm. In 

the measurement position they are being rolled-off into the 

ribbons of 0.02 mm thickness, 0.2 mm width and 4.0 mm long. 

The ribbons are bonded flush with the model surface. The 

thermocouples ends are brought into the model through dril- 

lings. 

Estimation of a heat flux from a surface temperature is a 

problem of the boundary condition conversation. This problem 

may be considered as a limited inverse heat conduction prob- 

lem which occurs in processing temperature data measured on 

the body surface. In such formulation the inverse heat con- 

duction problem is correct. 

As the model wall thickness 5 is sufficiently large, the 

thermal conductivity coefficient and testing time are small 

(i.e. the Fourier number Fo«l), the semi-infinite body model 

can be used for investigating a process of heat transfer. In 

this case the boundary inverse heat conduction problem may 

be formulated as follows: using the known solution T(0,T)= 

=f(X) of the heat conduction equation 

6T(z,T)     '  52T (z,T) 
    =  a  ■   ,  t<0, z>0 

ÖT S 
,2 

(here z is the coordinate directed inside the body perpendi- 

cular to the surface) 
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w ith the boundary conditions 

ÖT(«,T) 

5z 
= 0; 

and the initial condition 

T(z,0)=Ti 

T(O0,T)=T1 

to determine a heat flux to the heated surface 

q(T) = - I 
OT(0,T) 

02 

The problem solution takes the following form [19] 

l/Xcp     d       X     f(t)dt 

q(T)   = /       

j/TT       dz     0       |/T-t 

l/Xcp     X     f' (t)dt 

      /       
|/5T     o        [/t-t 

For smoothing and functional presentation of heating curves 

K-spline approximation by the least squares method is appli- 

ed [20] . 

The thermal activity coefficient value |/Xpc~ incoming into 

the above expression was specified for every sensor at a 

special calibration setup (Fig.12a) wherein an air jet of 

2.0 mm diameter, producing a known heat flux is directed to 

the sensor perpendicularly to the model surface. The heat 

flux action period is approximately the same as in the wind 

tunnel model tests. Using the measured surface temperature 

and known heat flux value one can estimate the value of \/'kpc 

using  the solution of one-dimensional heat conduction prob- 
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lern for a semi-infinite body.  The typical calibration curve 

is shown in Fig.12b. 

1.6. Flow visualization methods 

For flow visualization a laser knife method [15,17] was used 

along with a shadowgraph technique.  This method is similar 

to a vapour screen method and allows to observe a flow cross 

section.  For  flow  visualization by the laser knife method 

kerosene was burned up in the T-33 wind tunnel heater.  Car- 

bon  dioxide  and  water vapour containing in the combustion 

products transit to a solid phase during  air  expansion  in 

the  nozzle.  In addition there are particles of soot in the 

combustion products.  Laser with a power of 6 W and  a  wave 

length  of 5150 A was used as a light source.  A plane light 

sheet 2 mm thickness was formed by means of cylindrical  op- 

tics. This light sheet crossed the gas flow in the perpendi- 

cular direction to the free stream flow.  The  flow  pattern 

pictures  were  taken  by  a camera located behind the laser 

knife plane. Prior to the experiment, pictures of a template 

located  in  the  laser knife plane were taken.  By means of 

this template image scales along the x and y-axes  were  de- 

termined. During the experiment a vortex generator moved re- 

lative to the laser knife plane and in this way a flow visu- 

alization  at the different distances from the generator was 

carried out. 

i 

For flow visualization on the sphere surface oil paint was 

iused. The paint was applied on the surface in the form of 

discrete points [15,21]. Under the influence of a hot air 

flow the paint is being softened and carried away by the 

flow. The lines appearing on the model surface are useful in 

visualization of the flow direction and viscous stress va- 

lue . 
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2. Investigation results and their analysis 

2.1. Free stream flow parameters 

The investigation was conducted at a Mach number 3. The to- 

tal pressure was the same p0 = 5*105 Pa in all experiments, 

and the temperature was different: in one part of the expe- 

riment air was heated up to T0 = 410 K (by flow visualizati- 

on, by investigation of heat transfer), in another part of 

the experiment the stagnation temperature was close to nor- 

mal T0 = 280 K (by measuring pressure and stagnation tempe- 

rature distribution). In the first case the unit Reynolds 

number was Re1 = 1.1*107 1/m, in the second case - Re1 

=3.7*107 1/m. 

2.2. Flow pattern past vortex generator 

2.2.1. Flow pattern 

At first let us consider a flow past wing-type generators 

and then past a vane-type generator. Figures 13 and 14 show 

pictures of vortex cross sections past generator 1 at angles 

of attack CC = 10° and 20°. The image scale was 2:1 relative 

to the real one. Origin of the x-coordinate coincides with 

the rear generator edge. When analysing the pictures obtai- 

ned by a laser knife method it should be taken into conside- 

ration that in the flow regions corresponding to slightly 

curved streamlines brightness of the images is proportional 

to gas density. It is confirmed by comparison measuring re- 

sults of the image density and stagnation pressure in the 

Prandtl-Mayer flow region [17]. Due to this one can see 

shock waves, rarefaction areas, and a wing wake in these 

pictures. The results of digital processing of the pictures 

are presented in Fig.15. This processing was carried out to 

obtain more comprehensive information about the gas  density 
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distribution in  the flow field.  At the bottom of Fig.15 a 

, scale is shown.  Every gradation on the  scale  corres 
graL  to a certain gas density.  In the region with a large 
P°nvature of the streamlines and particularly in the vortex, 

Tese  Pictures are not useful for visualization of the den- 

•tv distribution: due to the large curvature of the stream- 

" ns  solid and liquid particles flow away from the vortex 

gion under the influence of centrifugal forces.  So  these 

Jtices  are  seen as black spots in the pictures.  Similar 

materials about the vortex formed by generator 2 are presen- 

ted in Figs. 16-19. 

Figures 20  and 21 present a flow visualization past genera- 

tor 3 which has the four-vanes form. The vanes present them- 

selves rectangular finite span wings. Each vane produces two 

tip vortices.  Altogether 8 vortices are formed:  4 vortices 

in  the  vicinity  of the axis of symmetry and 4 vortices m 

the periphery.  All eight vortices and covering  them  shock 

waves are clearly seen directly past the generator (Fig.20, 

x = 20 mm,  Fig.21a).  Four central vortices are joined into 

one  central  vortex at the distance x - 100 mm and four pe- 

ripheral ones are retained throughout the whole region avai- 

lable for observation (xmax = 160 mm).  Further, for the in- 

vestigations only the wing-type generators were used because 

"they produce only one concentrated vortex. 

Let us address to the analysis of the flow past the wing-ty- 

pe vortex generators. In papers [14,17] a scheme of the flow 

in the vicinity of the rectangular wing is presented.  It is 

reproduced in slightly distinguished form in  Fig.22a.  Ele- 

ments  of  this scheme are seen also in Fig.14,  x=2 mm (1 

bow shock wave,  2 - internal shock wave,  3 - vortex,  4 

Prandtl-Mayer flow).  In the vicinity of the wing the vortex 

has a cone shape. A cone angle of the vortex is close by its 

°rder of magnitude to the wing angle of attack.  There is an 

expansion of the vortex in the wing region due to the inflow 
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of"the inviscid gas into the rotation region. The flow past 

°he Wing is shown in a schematic presentation in Fig.22b and 

Past the wing the flow expands only due to the viscous 

dissipation. A vortex expansion angle is not high (see be- 

low) • A free vortex 5 induces a weak conical compression wa- 

6 (Fig. ,22c). It is seen in the picture at a large dis- 

tance from the generator (Fig.13b, x=135 mm; Fig.14b, x=100 

mm) . Analysis of the pictures show that far from the tip 

section past the wing a viscous weak expanding wake 7 is 

formed. It also induces a weak compression wave 8 (Fig.22b). 

Analysis of the pictures taken at different distances from 

the generator shows that the M-lines (Fig.22b) and the 

N-lines (Fig.22c) are approximately linear and located at 

the same angle relative to a free stream flow direction. It 

is close to the value of arcsin 1/M at M=3. This confirms 

that lines 6 and 8 observed in the laser pictures are weak 

compression waves. 

2.2.2. Vortex dimensions 

Let us continue the analysis of the laser pictures. The vor- 

tex axis past the wing is curved, the vortex centre is disp- 

laced towards the windward generator surface (in the positi- 

ve direction along z-axis) by the distance up to 0.4 b at 

the angle of attack up to 20-30 deg. The curved portion 

length of the vortex axis is about 1.5 b. At a larger dis- 

tance from the generator the vortex axis is approximately 

parallel to a free stream flow direction. 

Figure 23 shows variation of the vortex diameter versus the 

distance from the generator. Linear dimensions are related 

to the wing chord. The vortex has a spiral shape. It is cle- 

arly seen in Fig.18 as well as in some pictures of Fig.24. 

The vortex core has an oval shape and its axes are rotated 
with increase of the distance from the  generator  (Fig.24). 
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The core boundaries- become gradually, blurred and the core 

itself becomes not so black. This is due to deceleration of 

rotation and increase of gas density in the core. Because of 

insufficient sharpness of the core boundaries its dimensions 

can be determined only approximately by means of the pictu- 

res. In Fig.23 dimensions of the vortex cross section in the 

y and z directions (dy , dz) are shown. At a =10° and 30° 

vortex dimensions change according to the linear law throug- 

hout the range and at a =20° only when x > 1.5 b. The rela- 

tive vortex diameter value d/b practically does not depend 

on the wing dimensions: the experimental points obtained 

with generators 1 and 2 are on the general curve when the 

angle of attack growth. The vortex diameter d=l/2(dy+dz) 

sharply increases (Fig.25). 

When analysing vortex dissipation it is reasonable to neg- 

lect the generator dimensions. So in Fig.26 linear dimensi- 

ons are related to some conditional reference vortex diame- 

ter dr. For each experiment value dr=1/2(dy+dz) was determi- 

ned at the distance x=1.5 b, where a transitional curviline- 

ar vortex portion ends and its straight portion starts. From 

Fig. 26, it can be seen that at CL < 20° all experimental data 

regardless to a generator dimension and angle of attack are 

described by a general function: the vortex linearly ex- 

pands. An expansion vortex angle is about 1 deg. At Ct=30° 

this angle increases up to 3° . 

2.2.3. Pressure and stagnation temperature profiles 

Pressure and temperature were measured past generator 1 

(b=58 mm) at angle of attack (X = 20° in two transverse sec- 

tions X} =2 mm and x2 =110 mm as shown in Fig.27. The laser 

Pictures evidence that the vortex centre in section 1 is 

displaced relative to the plane z=0 towards the leeward sur- 

face by 13 mm. Besides, the generator is bent under the inf- 



- 22 - 

luence of aerodynamic force and the vortex centre is additi- 

nally displaced in the direction of the negative z-axis 

approximately by 5 mm. Taking into account the data obtained 

in the preliminary experiments the probes axes were set at a 

certain angle to the direction of the y-axis (Fig.27a). In 

section one this angle was about 5° and in section two 4° . 

The total pressure probe was rotated in the plane y=const in 

the angle range of (p = ± 45° in increments of 15° . Rotating 

Was carried out relative to the probe entry, i.e., the probe 

entry position did not change during probe rotatings 

(Fig-27c). At each position the probe was kept for 1-2 s, 

that provided a sufficient measurement accuracy. The results 

of all pressure measurements are presented in Tables 1 and 

2. 

In Fig. 28, as an example measurements results of the stag- 

: nation pressure in section 1 and 2 at different distances 

from the vortex centre are shown. In a free stream flow 

(y'=20 mm for section 1 and y'=15 mm for section 2) as ex- 

pected the probe indications are approximately symmetric to 

the flow direction. The probe is practically insensitive to 

a flow deflection up to the angle cp ~ 15° , this agrees with 

literature data [22]. In the region of the vortex influence 

the flow is swirled in the clockwise direction: above the 

vortex axis (y'=107 mm in section 1 and y'=118 mm in section 

2) the flow is displaced in the direction of the positive 

z-axis and below the vortex axis (y'=96 mm in section 1 and 

y'= 93 mm in section 2) in the opposite direction. Judging 

by the stagnation pressure measurements angle of flow swirl 

in section 2 is significantly less than in section 1. 

The influence of the rotation angle of the stagnation tempe- 

rature probe on its indications can be seen in Fig. 29 and 

tables 3 and 4. The stagnation temperature probe indications 
are practically insensitive to a flow deflection also in the 
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range ± 15° (Fig.29,  y'=15 mm).  The stagnation temperature 

measurements confirm the presence of the  flow  swirl  in  a 

clockwise direction if to consider it in the flow direction. 

At each probe position y=const from all results of measuring 

pressure  or temperature at different rotation angles of the 

probe (p the maximum value was chosen (it is marked by an as- 

terisk in tables 1-4). It was assumed that this indication 

gives the stagnation pressure value (ps=p*) and the stagna- 

tion temperature value (TS=T,) past a shock wave. 

In Fig.30 a, b and c the stagnation pressure measurement re- 

sults are presented. At the bottom of Fig.30 a and b , pic- 

tures of the vortex cross section, with denoted the shock 

wave S1 , S2 and the vortex boundaries Vj and V2 , are pre- 

sented. It is seen that the stagnation pressure measurement 

results are adequate to the flow pattern presented in the 

corresponding picture of the flow cross section. In fact, in 

a free stream flow the stagnation pressure is approximately 

constant; it sharply increases in the point S when crossing 

a bow shock wave of the generator. Then it gradually decrea- 

ses while approaching to the generator, that agrees with the 

results of the digital pictures processing, Fig.15. This 

stagnation pressure decrease continuously transit to a pres- 

sure drop induced by a flow swirl. So the measurement re- 

sults presented in Fig.30 do not allow to determine the vor- 

tex boundary. It can be determined by the value of a flow 

deflection: outside the vortex dependence of the pressure p 

on the angle <p is approximately -symmetric to the free stream 

direction. In section 1 the vortex boundaries are in the po- 

ints y=95-96 mm and y = 106-107 mm. This agrees with the bo- 

undaries determined by the pictures and proves the use of 

laser pictures for investigating a vortex development. In 
Flg-30c it is also can be seen that directly past the gene- 
rator (in section 1) the stagnation pressure at the vortex 

axis is 16 times less of that in the free stream flow. In 
Section 2 these values differ only by 2-3 times (in  Fig.30c 
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the points corresponding to the nimimum pressure values  are' 

superposed). Hence, with growth of the distance from the ge- 

nerator the vortex diameter increases slowly but  the  flow 

swirl  decreases  sharply and  the vortex core is filled up 

with a significantly denser gas. 

In Fig.31 a and b the stagnation temperature measurement re- 

sults are presented. The shock wave, as expected, unlike 

stagnation pressure, does not cause increase of stagnation 

temperature. However, in the region of rotational motion the 

stagnation temperature significantly decreases. At the vor- 

tex axis this decrease was 18° in section 1 and approximate- 

ly 3° in section 2 as compared to the stagnation temperature 

in front of the shock wave. The noted decrease of temperatu- 

res difference is caused by deceleration of gas rotation in 
the vortex. 

In the  book  by  Gupta  [13] the measurement results of air 

temperature in the Ranque tube,  described in paper [23] are 

presented.  in this experimental setup air swirl is produced 

by a tangential air jet injection into a cylindrical chamber 

at one its end. The minimum air temperature was in the vici- 

nity of the chamber axis at the same end,  where air jet in- 

jection  is performed.  The minimum air temperature in paper 

[23] was by 25° lower than the  injection  air  temperature, 

this  agrees with the results of the current experiment.  in 

the book [23] gas cooling at the vortex axis is explained by 

energy transfer due to turbulent fluctuations.  in this in- 

vestigation the air flow was laminar.  Apparently,  air coo- 

ing in the vortex can be explained in the following way: at 
flrst in the vicinity of the wing a vortex with high circum- 

ferential  speeds is formed and herein speed increases while 
aPproaching to the axis,  except low vicinity of  the  axis. 
TIL 

e internal fast rotational layers due to gas viscosity 

(molecular or turbulent) transfer a moment of momentum to 
the external layers and increase their circumferential spe- 
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d This leads to decrease of the internal layers temperatu- 

d increase of the external gas layers temperature.  As 
re and increase 01 external  layers 
.,.,, internal layers mass is less than 
'involved  into the accelerated rotation,  temperature 

rl ea  o the internal layers is essentially  higher  than 

Ir  perature increase of the external layers.  Loca  tem- 

r.ture increase of the external layer is seen  in  Fig^lla 

^ the vicinity  of the vortex boundaries V, and V, and in 

Fig.31b in the vicinity of the vortex boundary Vt . 

Fig 32 the measured stagnation temperature Ts is related 

» Le'settling chamber temperature T„ (T0 - 275-280 K. The 

?ortex centres in sections 1 and 2 (Fig.32) are conditiona - 
Z superposed. The maximum stagnation temperature drop di- 

rectly Past the generator constitutes only 11%. As a first 
■ ,• „ne can neglect the influence of stagnation 

approximation one can neyie*, 
temperature variation on gas density and heat transfer. 

2.3. Vortex-sphere interaction 

i 

• 

2.3.1 Gas flow pattern in front of sphere 

For investigating vortex-sphere interaction a sphere with 

the diameter D=60 mm was located past generator 2 (b-20 mm) 

at the different distances xs from its trailing edge. The 

sphere centre was situated approximately along the vortex 

axis. The investigation was carried out at the total pressu- 

re P0 = 5«105 Pa and stagnation temperature T„ - 410 K. For 

flow visualization a kerosene heater was used. 

Figure 33a shows a picture of the sphere in the absence of a 

vortex generator. This picture as well as the other is obta- 

ined by a straight shadowgraph method. Dimensions in the 

picture coincide with the real ones if not to take into ac- 

count small distortions due to the light rays deviation.  In 

■i 
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II 

Fia 33b a picture of the flow past the generator installed 

t the angle of attaok a = 20° is presented. Throughout the 

* qion available for observation the flow remains laminar 

Jd the vortex diameter weakly changes, as noted in the pre- 

vious chapter. 

Figures 34 and 35 present shadow pictures of the vortex cord 

interaction with the sphere at the generator angle of attack 

a - 10° and 20° (xs=xs/D). Analysis of these pictures shows 

the following. At some distance in front of the sphere a 

vortex breakdown occurs, i.e., the vortex sharply expands 

and in front of the sphere "a liquid cone" is formed, which 

aenerates a cone shock wave. Similar effect was observed 

earlier by ' interaction of the vortex with the inlet shock 

wave [2], with the shock wave in front of the cone and the 

barrel shock wave in the under-expanded jet [12], with the 

shock wave in front of two-dimensional wedge [24]. 

Figure 36 shows a supposed flow pattern.  The  gas  involved 

into  rotational motion in the vortex has a lower stagnation 

pressure ps than the gas in the external  flow  outside  the 

vortex.  Still  a greater difference is observed in the cor- 
1 responding values of the axial momentum component.  The  gas 

with  low  value of the axial momentum component can not pe- 

netrate into the high pressure region past the bow shock wa- 

ve.  So during  flow formation gas accumulation occurs in 

front of the sphere,  followed by a vortex expansion i.e., a 

vortex breakdown. The flow region which can be conditionally 

called as a dead zone because in  the  significant  part  of 

this area (in the vicinity of the symmetry axis) gas speeds 

are low,  is formed in front of the sphere. The dead zone is 

a region  of approximately constant pressure.  So it should 

have a conical shape.  In the point of intersection  of  the 

shear  layer separating the dead zone from the flow past the 

shock wave with the sphere surface a closing shock  wave  is 

formed. The dead zone length should be sufficiently large in 

] 
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der the axial momentum component in the  vortex  flow  can 

oW due to the momentum transfer from the external flow to 

the level which is sufficient for gas penetration  into  the 

high pressure region past the closing shock wave. 

The described concept is confirmed not only by analysis of 

the pictures and also by results of calculations based on 

the Euler equations [1]. Certainly, such calculations do not 

allow the liquid cone formation to be described. However, 

they allow to determine the critical relation of the flow 

swirl and pressure ratio in the shock wave under which a 

vortex breakdown occurs. 

The sphere shock wave-vortex interaction is similar to the 

interaction of the sphere shock wave with the boundary layer 

of the pin installed on the sphere [25]. In the case with 

the pin the boundary layer is separated from the pin surface 

in front of the bow shock wave and displaced from the axial 

direction to periphery in front of the bow sphere shock wa- 

ve. In the case with the vortex a solid surface is absent 

but streamlines are also displaced to periphery in front of 

the bow shock. Having reached the sphere surface a portion 

of gas is deviated inside the dead zone and forms a slow re- 

verse flow and the rest portion continues moving in the main 

direction. On the sphere surface the attachment line R is 

formed (Fig.37). In Fig.37 departure from the axial symmetry 

attracts attention: the separation point S is displaced re- 

lative to the sphere centre 0 to the right side. This is due 

to eccentricity of the sphere relative to the vortex axis. 
At the same time the attachment line R has approximately a 

shape of circle with the centre at the sphere axis (in the 

Point o). it also attracts attention such a fact that the 

flow rotation in the periphery and in the centre of the 

sphere is weakly expressed. 

Anal ysis of Figs.34 and 35 indicates to a turbulent flow be- 
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haViour in the larger part of the dead zone: in the pictures 

(exposure  about  5  mcs) large vortices are seen as well as 

compression waves exited by them.  The separation shock wave 

is an envelope of these waves.  Location of the laminar-tur- 

bulent transition along the x-axis changes depending on  the 

angle  of attack and accidental factors.  The transition oc- 

curs either inside the dead zone or at the beginning of  the 

dead  zone.  In  the  first case the dead zone boundary is a 

broken line (Fig.36 b),  through to this point the boundary 

is  inclined at the angle about 6° relative to the flow axis 

and past it at the angle about 20° .  In the second case  the 

boundary is at the angle of 17° . At (X = 20° a laminar-turbu- 

lent transition probably occurs in  the  vortex  before  the 

breakdown point.  It is displayed in vortex expansion.  From 

the transition point a weak compression wave  spreads  (see 

e.g.  Fig.35 b).  Evidently, disturbances from the dead zone 

are transferred upstream over the  vortex  core.  Due  to  a 

complex  character  of the vortex-shock wave interaction the 

interpretation of the pictures is rather difficult  and  the 

above considerations about location of the laminar-turbulent 

transition should be verified. 

The separation shock angle induced by the dead zone is app- 

roximately 25° . It is close to the calculated cone shock 

angle ß = 23°, formed in flow over a circular cone with the 

apex angle 6 = 12° at Mach number of 3. 

At a small distance between the sphere and generator the de- 

ad zone can appear between the leading and trailing edges of 

the generator as shown in Fig.34 a, in the other cases it 

appears past the vortex generator. In some cases it is dif- 

ficult to determine unambiguously the dead zone length beca- 

use of its complex shape. It can be assumed that at Xs/D > 

!-15 the dead zone length was approximately the same and 

constituted 1.05 D in all experiments. 
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2.3.2. Heat transfer on the sphere surface 

Heat transfer measurements on the sphere surface were carri- 

ed out at xs = 70 mm (xs/D=1.17) and three angles of attack 

of the vortex generator 2: <X =10°, 20° and 30°. The measure- 

ments on the sphere surface were also carried out without  a 

vortex generator. The experements were performed at T0 
400 

K. An electrical air heater was used, 

The sphere was located in the wind tunnel test section in 

such a way that the generatrix with thermocouples 1-34 was 

in the plane z=0, and the generatrix with thermocouples 

35-43 - in the plane y=0. The experiments were performed in 

the following way. During the period of setting a flow regi- 

me in the wind tunnel the model was in the thermostatic 

chamber and was separated from the flow by a special flap. 

Airflow over the model surface was performed by a cool air 

through the pipe, situated near the frontal surface. After 

setting a prescripted flow regime the model was injected in- 

to the flow by means of the fast-acting mechanism. The model 

has been in the flow for 3 seconds. During this period re- 

cording of thermocouples signals was carried out with samp- 

ling rate of 100 1/s, then the model was took out from the 

flow and the wind tunnel operation was stopped. 

The results of the measurements are presented in Tables 5-8. 

The following parameters are presented in the tables: the 

generator angle of attack a, the Mach number M, the Reynolds 

number Re, the stagnation temperature T0, the total pressure 

Po- The time X = 1 s is also presented there, for this time 

the obtained data processing was being carried out. The cho- 

sen time is essentially larger than the period of injection 

of the model into the flow and it is quite small to avoid of 

noticeable heat spreading in the region of the maximum heat 

transfer on the sphere surface.  In the first column of  the 
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tabXes the thermocouple number is pointed out, in the second 

one - its coordinate s/R, further - the actual surface tem- 

perature T at X = 1 s, the smoothed temperature Tsmo, the 

heat flux q, the calculated value of a heat flux in the 

stagnation sphere point q0 at the temperature T and the re- 

lation q/q0 • 

The heat flux in the stagnation sphere point was calculated 

from the Fay-Riddell formula [26] which for the perfect gas 

takes form 

q0 = 0.94(PwJLlw)
0-1 (psMs)°-

4(io-cTw)R-0-5(Öu/ös)0-5 

In hypersonic flow over the sphere for calculation of the 

velocity gradient in the stagnation point we can use the 

formula obtained under condition of the Newton pressure 

distribution on the surface 

Öu/Ö£ l/R(2(ps-p„J/ps) 
0 . 5 

(1) 

• 

In the current paper for improving accuracy of the pressure 

gradient calculation at M=3, calculation results for invis- 

cous flow over the sphere were used [27]. The difference in 

the value öu/ös as compared to formula (1) was 7.5 %. 

Distribution of the relative heat flux q/q0 over the sphere 

surface in the case with a laminar flow was calculated by 

the equation [28] 

q/q0 = 9o + gi Cos ((DTI) + g2Cos(2ü)Tl) + g3Cos(3ü)Tl) 

Here T\ =$? (s/s, ) , s„ is a sonic point coordinate; n=0.5; 
w=l; g0 =0.452; g1 =0.499; g2 =0.049; g3 =0; 3e=1.4. Due to acco- 

unt for the influence of the Mach number on the sonic point 

location this formula gives a higher accuracy than a simple 
ar>d often used equation 
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q/q0 = 0.55 + 0.45Cos(2s/R) 

In this paper a sonic point coordinate was determined by the 

tables [27]. 

• 

In Fig-38 calculated and experimental heat flux distributi- 

ons over the sphere surface in the absence of a vortex gene- 

rator are compared. The heat flux values are presented for 

the surface temperature TW=290K. It is seen that under these 

conditions a laminar flow over the whole sphere surfaces was 

retained. Some divergence of the heat flux values at the 

differente generatrics of the sphere as well as the diffe- 

rence of a calculated and experimental values in the vicini- 

ty of the stagnation point are due to the experimental er- 

ror. Furthermore, excess of the experimental value over the 

calculated one in the vicinity of the stagnation point can 

be associated with incoming flow turbulence: according to 

the measurements carried out by a laser Doppler Velocity Me- 

asurement System (DLA) the flow turbulence in the T-33 wind 

tunnel constitutes approximately 1%. 

Figure 39 shows the influence of the vortex cord-bow 

wave interaction on the heat flux distribution over the 

sphere surface. In Fig.39 both calculated and experimental 

heat flux values are related to the calculated heat flux in 

the stagnation point of the sphere. The vortex causes a qua- 

litative variation of the heat flux distribution: in the vi- 

cinity of the sphere axis the heat flux is substantially 

less than on the isolated sphere. In the vicinity of the at- 

tachment line R the heat flux in the presence of a vortex 

essentially increases not only as compared to the heat flux 
lri the same point and in comparison with the heat flux in 

the stagnation point of the isolated sphere (Fig. 39b, CC 

~20 )• Such a significant heat flux increase can be explai- 
ned by two things: 
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Dsubsequent gas compression in the oblique and normal shock 

waves leads to a greater pressure increase at the attachment 

line R than the gas compression in the normal shock in the 

vicinity of the stagnation point of the isolated sphere; 

2)vortex-bow wave interaction leads to a flow turbulation in 

the vicinity of the sphere. The flow turbulence also leads 

to a significant increase of the heat transfer downstream of 

the line R on the cylindrical part of the model (compare 

q/qo at s/R*2.5, Fig.38b and 39b). As a result of the vortex 

influence, an integral heat flux to the blunt body surface 

increases as well. 

The heat flux distribution on the sphere interacting with a 

vortex is similar to the heat flux distribution on the spi- 

ked sphere [25]: in case two the heat flux in the vicinity 

of the symmetry line also decreases.and increases at the at- 

tachment line and behind it. 

From Fig.39 it is seen that the heat flux distribution over 

the sphere surface interacting with a vortex was asymmetri- 

cal at all investigated values of the generator angles of 

attack. Probably, it is associated with that fact that the 

vortex and sphere are not coaxial. Judging by Fig.39 at all 

angles of attack the vortex was essentially displaced rela- 

tive to the sphere axis in the vertical plane: at "K = 180° the 

heat flux maximum is substantially less and displaced by a 

greater distance from the axis of symmetry than at K=0 (Fig. 

39). It can be the consequence pf that fact that the vortex 

axis goes below the sphere axis. 

In Fig.40'the heat flux distributions at different angles of 

attack of the generator are compared for each sphere gene- 

ratrix. The maximum relative heat flux values qm/q0 versus 

the generator angle of attack are presented in Fig. 41. From 

Figs. 40 and 41 it is seen that qm/q0 changes against the 

angle  in  nonmonotonous manner:  at a < 20° the value qm/q0 
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'rows with increase of the angle and at a higher  angle  of 

ttack it decreases. However, this effect can not be unambi- 

*   ly associated either with the flow  swirl  increase  or 

L vortex  diameter  increase against the angle of attack. 

Apparently, the value qm/q0 was greatly influenced by the 

nrtex axis displacement relative to the sphere axis. At a 

20° the eccentricity was the least one (coincidence of heat 

nux distributions at ^=0  and K=900 is an evidence of this). 

Probably,  it was the reason that the maximum relative  heat 

flux value was obtained at (X=20 . 

For quantitative comparison of heat transfer on the sphere 

interacting with the vortex and on the sphere with the pm 

on the ordinate axis of Fig. 41, the maximum value from the 

paper by Crawford described in [25] is presented. The maxi- 

mum values obtained in this investigation are close to Craw- 

ford results. 

Thus, the measurements have shown that due to the vortex 

influence the flow over the blunt body is being reconstruc- 

ted and on its surface a significant heat transfer increase 

is observed, that is very important for practical applicati- 

ons. 
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To 
=  total   temperature 

subscripts 
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2 
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= free stream conditions, 

= first term in asymptotic expansion, 

= second term in asymptotic expansion, 

= dimensional values, 

= external flow, 

= initial conditions, 

= stagnation point past normal shock wave 

_ '  L 
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B. *»alitical a»a numerical study of vortex deveiop-ent 

1. problem formulation 

• theoretical approaches used for description of the 
Therndevm and "breaKdown in incompressible «uid 

4 1 are generalized here to indude compressibility. The 
'cvndrcal approximation is derived as asymptotic 
qMZl or L Slender, smoothly developing vortex. Smail 
aTu bat ons of the cylindrical flow are considered to ge- 

S. wen-Known classification of the vortex flows on 

subcritical and supercritical [30]. 

1.1. Governing equations 

•i~i~  flow of oerfect gas having axial, asymmetric compressible  flow of per    g _ 
radial and azimuthal components of velocity 

iscosity ,1 and the bulx viscosity fe are the functions 

temperature,  the Prandt! number 6 and S=Cp/Cv are  on^ 
tants  The Navier-StoKes  eguations for axia!,  radtal and 
azimuthal momentums and the mass-conservation eguatxon are 

represented correspondents as: 

du 

P — 
dt 

6P 
5D 

— + /lV2u + - (M+2/l2) — 

Öx Öx 
(1.1-1) 

5M   6u  2    5fi 5v  6u   2 ÖM2 

+ _ (2_--D) + - (—-> 
+-"-D 

5x   6x   3     6r  5x   5r    3 6x 
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dv w2 Öp 

P   ( 
—   +   /I   (V2v   -  —)   +  -   (V+2h) 

dX       r 5r 

5D 

Ör 

(1.1.2) 

ÖJLL        5v        6u 6)i       Öw        2 2   6^2 

+   —   (   —   +  —)    +  —   (2—   -   -D)   + D 

5x       5x       5r 6r       5r        3 3   Or 

;   1 

P ( 

dw w 

— + v—) = M (VLw 

dX r 

w ÖJUL 6w       6jU     Öw       w 

e,„ _ —)   + + —  ( ~)   >   (i-l-3) 

r
2 ox 5x       6r     6r       r 

dp 
—   +   pD   =   0    , 

dX 

(1.1.4) 

lindrical   axial   and  radial   coordinates;     u,v,w 
ts     of     velocity; 

where x,r - cy 
-  axial,  radial  and  azimuthal  componen 

p-pressure; p - density, 

■I, .! 

:!!■ It 

d   5    5     5 
— = — + u —  +v — 

dt   6X     Ox     5r 

5u  i 6 

D =  div V = — + (vr) ' 
5x   r 5r 

52   62   i 5 

V2 =   +   +  
6x2   Ör2   r 5r 
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We reproduce 

and pressure: 

here also equations for enthalpy h=T(p/( ("K-l )p) 

dh  dp       M 
p — = — + div( - Vh) + N 

dt   dT       Ö 

(1.1-5) 

dp M 
— = - "tfpD + CK-l)div( - Vh) + (K-l)N 

6 dt 

■2    6w 5u      5v     v" 

N = M [2( —)2  + 2(~)2 + 2 - + (-)
! 

5x       Or r2    5x 

(1.1.6) 

gv   5u      5w   w      2 

(— + —)2 + (— - -)2] - - (M-M2)D
2 

Ox  6r Ör  r 

The equations (1.1.1)-<1•1•4) together with any of equations 

(1.1.5), (1.1.6) and with stated functions /1(h), ^2 (h) compo- 

se the complete system which is to be analyzed. 

1.2 Inviscid  axisymmetric steady flow 

The inviscid counterparts of the equations considered  above 

are obtained setting jUL-O, Jig =0. Then, the well-known consequ- 

ences of the equations are: 

Öhr Öhr i0      «"o 

u   + v   = 0 , 

Or 
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ÖS     ÖS 

u _ + v — = 0 , (1.2.1) 

Öx    Ör 

ög   ög 

u — + v — =0 , 

Öx    Ör 

where h0=h+(u
2+v2+w2)/2 - total enthalpy; S=S0+cvln(p/p>) - 

entropy; g=wr - circulation. The mass-conservation equation 

(1.1.4) is integrated by introducing of the stream function 

5i|) 

pur = — ,' 

Or 
(1.2.2) 

pvr = - — . 

Ox 

The equations (1.2.1)-(1.2.2) demonstrate that the functions 

h0 , s, g are convected along streamsurfaces. Therefore, 

three integrals exist for the inviscid  axisymmetric  steady 

flow: h0=h0ci|)), s=s(\p), g=g(i|J). 

We notice, that entropy is always convected together with 

gas particles, total enthalpy is convected along the stream- 

lines only in steady flows. The circulation in arbitrary 

three-dimensional flow is described by  following  equation 

dr 

— = / (VTXVs)n dA , 

dX 
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where r - - circulation along a closed curve formed by moving 

"articles, T-temperature, dA - area element of the surface 

based on this closed curve, T- unit vector normal to this 

element. Therefore, in contrast to incompressible flow, the 

circulation is conserved, and the conservation equation 

f1.2.1) is a consequence of axisymmetry. 

using the momentum equation represented in the Lamb's form 

-» 

V2        - ->    1 

V(—) + (rot V)XV = - - Vp , 

2 P 

and the thermodynamic correlation TVs - Vh 

lowing relation is found: 

- Vp , the fol- 

P 

VXrot V = Vhc TVs (1.2.3) 

The right-hand side vector in (1.2.3) is normal to the stre- 

am surfaces. Therefore, the vorticity Q = rot V has zero 

component in this normal direction, its component along the 

meridian section of the stream surface Q, = pqÖ(wr)/ölp, q = 

(u2 + v2ji/2^ and azimuthal component Qv= öv/5x - 6u/6r. The 

velocity vector is decomposed as Vc= q, Vn =0, V^ =w. Using 

these coordinates, (1.2.3) is represented as: 

5v     5u dS         dh0          1     dg* 

—     -     + ) —   _  —  =   pr(T —     -  — 
Ox       6r dip dip 2r2   dip 

(1.2.4) 

We use the following identities to transform  the  left-hand 

Part of (1.2.4) into adapted form: 
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6v 46u   6(pv)  5(pu)   öp   öp 

p( —) =   (v— - u—) , 

Sx  Or    5x     6r      5x   6r 

6p       5p      i       öp       5P i    ds     öip öip 

v u— = —   (v—  -  u—)   + [( — f   +   ( —)2] 

6x 6r       a2        öx 5r cpr dip       Ox Or 

Using  the  conservative  form  of   the  momentum  equation  we     fo- 

und 
6p öp 1 Ö2ip ö2ip 

v u— =   - -   [u2   - 

ox 5r r Sx2 6x6) 

52lp 

+   2uv   +  v2         +  puw2 ] 

6r2 

Finally,   the   equation   (1.2.4)   is   represented  as 

u2      52tp       2uv  62l|) v2      621|3       1   Ö1p 

(1   -  —) +   (1 
a2      5x2        a2      öxör 5r£ 6r 

(1.2.5) 

dhr 

=   p2r2    [■ 

1     dg^ dS 

 T—(1 + Of-l) 

2       2 U    +V 

•)]     + 

dip 2r2   dip dip 

pug 

2    2 a  r 

Three arbitrary functions h0 (lp) , S(lp), g(lp) must be determi- 

ned on all stream surfaces entering the region of interest. 

Then, u, v, p, p, a, T are expressed as functions of 

"ty.   r,   ötp/ör,   5lp/6x  using  the  relations   (1.2.2)   and 

%     p       u2 +v2 

h0(lp)   = —  + 

K-i'P 2r£ 
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" 

S(l|)) = S0 + cvln- , 

p' 
P 

a2 = v- , T = a2/[(^-Dcp] 

(1.2.6) 

-2 , r = c 

P 

Therefore, the inviscid axisymmetric compressible steady 

flow is described by single quasilinear second-order equati- 

on (1 2.5). As far as the shocks may be formed in the flow, 

the equations must be supplemented by the conditions on the 

shock We do not concern this question here and only note, 

that the functions h0 0|)) , g(i|J) do not change through the 

shock,  while S(i|)) has a jump. 

The simplist application of equations (1.2.5), (1.2.2), 

(1.2.6) is the investigation of the cylindrical vortex res- 

ponce on the changes of the external pressure. 

Let the axial scale is large compared with the radial one 

and v « u. The small terms are discarded in (1 . 2 . 5) and 

the second-order ordinary differential equation is obtained: 

2 
d 1   dip dh0 1     dg^ (1|)) 

r  _( }   =p2r
2[ (1|)) 

dr  r  dr 
2 dl|) 2r^        dlj3 

(1.2.7) 

2 riiir-f^ dS(i|)) u2 pugMi|)) 
_ T  (1 + (^_1)_)]   + • 

2 =2 „2 
dl|) a a   r 

Let the initial profiles ul(r)>0, gi(r), Mr), and the 

pressure at ifinity Pl (») are determined at some section. 

The pressure and stream-function are found by integration: 
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co   pl9l' 

>i (r)   = Pi C00)   " / dr   , 

r     r 

(1.2.8.) 

V 

l|)   (r)   = /   pi^rdr 

0 

The 

ons 

n,   the   inverse   function  r(\|))   is  obtained  and  the     functi- 

g(ojj)   =  gj (r(\|))) 

S(i|J)   =  S0   +  cvln 
r=r(l|)) 

(1.2.9) 

1  Pi    ui2    gi2<1» 

h0 (op)   =   (" 

Tf-1   Pi 2 2r* r=r(ip) 

are determined. 

The profiles p, u, p, T are found  at v=0 from  (1.2.2), 

(1.2.6), like it was mentioned above,  and are the functions 

of i|j, r, dO|)/dr. 

The profiles g, S, h0 are considered tending to constants as 

1|) - oo, i.e. the vortex is surrounded by potential flow. Let 

the external pressure changes from Pl(») to p(»). Then, the 

velocity and density at infinity are obtained from 
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Tf   PiC00) 

u2(~)    =   Ui* (">)   +   2- 

■y-i pi (°°) 

r P(°°) 
1- 

L Pi (M) 
_ 

(K-D/K 

? I: 

p(oo)     =    p1 (CO) 

p(°°) 

Pi (°°) 

i/Tf (1.2.10) 

The responce  of the vortex on this external pressure change 

is found by solving of (1.2.7) at boundary conditions 

1 öl|) 

ijj(O) = 0, *  p(oo)u(oo)  at  r 

r or 

-> 00 

It is  easy to show that the profile l)J(r) found from (1.2.8; 

is a solution of (1.2.7) for boundary conditions 

1 5l|) 

lp(0) = 0, » pi ("JUi (°°)  at  r 

r 5r 

-» 00 

Do other solutions of (1.2.7) exist at the same boundary 

conditions ? Such solutions were found in incompressible 

flows and were called "conjugate" to the basic one [30]. The 

existence of conjugate flows allowes spontaneous jumps bet- 

ween them which were treated as vortex breakdown. 

1.3 Small perturbations of the cylindrical flow 

The analysis of steady small perturbations of the cylindri- 

cal vortex performed for incompressible flow resulted in an 

important  division of the vortex flow  on  subcritical  and 
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supercritical. We generalize this  analysis for the compres- 

sible vortex. 

The governing equation may be derived from (1.2 5). However, 

it is useful to perform the derivation directly from the Eu- 

ler equations: 

6u   6u 

p (u— + v—) = 

6x   or 

6g   ög 
u— + v— = o , 

Ox   Or 

5P 

Sx 

op   5p      6u   1 6(vr) 
u— + v— = -"Kp(— + ) , 

5x   5r      5x  r 5r 

(1.3.1) 

6(pu)   1 5(pvr) 

= o , 
r  öi 

„2 ^„2^2 Ö(vr)    ö(vr)    g^+v^r*     öp 

p (u  + v   -  ) = -r— 

Ox       or       r2        Or 

The small perturbations of the basic  cylindrical  flow  are 

considered: 

u  =  u0 (y)   +   Euj (x,y)   +   . . .      , 

g = g0 (y) + £9i (x^y) + • • •    > 

p = Po (y) + EPI (x>y) + (1.3.2) 
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p = Po(y) + EPi (x,y) + 

V = EVj (x,y) + . . .  , 

where 8^0,  V=vr,  y=r /2  and the base cylindrical profiles 

are correlated by the equation 

dPo   PoSo' 

dy    4y2 
(1.3.3) 

The equations for perturbations are 

5ut op! 
Po (uo  + Vju0 ') = -   , 

Öx Öx 

5gt 
u o _ + Vj g0 ' = o , 

Öx 

-i 
ÖUj     ÖPi      ÖVj 

Po  + "o  + Po   + vlPo ' = 0 , 
öx     öx      öy 

(1.3.4) 

Öpj ÖUj   ÖVj 

  + vlPo ' = -yPo (  +  ) , 

öx öx   öy 

Svj  g0 gi ÖPi 

2y 

Po(uo' ■2y- 

Öx öy 

where the prime means the y-derivative. 

The axial  derivatives  of  the perturbations are found from 
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»■"the  former   four  equations  of   (1.3.4) 

1        ÖPi Po ' 

    =   (   f   +   f')/(l-M0
2)    , 

p0u0
2   5x yPo 

1     5uj u0 ' 

u0   5x u0 

Po' 
f   -   (  f   +  f')/(l-M0

2)    , 

YPo 

5gi 

6x 

g0 'f   , 

(1.3.5) 

1     Spl Po ' Po ' 
    =-       f-f    +    (    f   +   f')/(l-M0

2)    , 

Po   Öx p0 "Kp0 

where  f   =  Vt/u0 ,   M0 
2   =  p0u0

2/(Kp0)    . 

Using   (1.3.5)   and  the   last  equation  of   (1.3.4),      the     follo- 

wing  second-order   linear  equation   is  obtained: 

p0u/f    '      p0u/   52f 

(" )   + +   [(" )   +  - Pc ■]f   =0. 
1-M„ 2y       5x2 

1-Mr ^Pod-Mo2) 

(1.3.6) 

The ordinary differential equation is found for the  pertur- 

bations having a form  f = exp(Ctx) F(y) : 
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Pouo 

1-Mo' 

Pouc Po ■        '.     2 Po 
,2 

-F' ) '    +    t" a?  + (■ •)    +  -  Po 
 ]F   =0 

2y l-Mo' y KPo(l-Mofc) 

(1.3.7) 

•       noint    M =1     is    a    singular    point    of     equation 

r/r We    It   -estate  «.i.  .In-l-ity.     especiaUy 
(i •J ■ ' ' ' . /4»*2\j-     =     denominator 
taking   into  account   that  the  term   (1-M0    )   is     a 

in   (1-3.5). 

•     M.-1   at y.y0   and 4-y-y..     The  equation   (l.3.7,   Is  repre- 

sented  near   0 = 0   as 

*< 
1+A*+...)F"   "   (1+B«+...)F'    +   (C+D«+...)F   -   0    , 

A   = 

M, 

M, 

2 „ 

2 , 

t :" 

3 Po 

B   =  -  A   -    

2 Po 

(M/) 
(1.3.8) 

iil 

C   =   - 

KPc 

D   =   (^(-1)C2    -   C(-  A   -    (Mo^)1) 

2 

where the coefficients A,B,C,D are calculated at fl=0 

According to the method of Frobenius 
two linearly indepen- 

H 



3&  f- 

I 

- 49 - 

dent solutions of (1.3.7) near 9=0 have the form: 

Fl = dz i anr  , 
n = o 

F2   =   QF1lnUI+     I   bnfln    , 
n = 0 

where coefficients an, bn , Q are determined from (1.3.7): 

1 

a0 = 1, aj = - -(2(A-B)+C), ... , 

3 

b0 = l, b! = c, . . . , 

l 

Q = - -[D+(B-C)b1 ] . 

2 

In general case, the solution has infinite second derivative 

at fl=0. However, direct calculation showed that Q=0, and all 

derivatives are finite. Moreover, the generally singular 

term (fp0 '/^pQ+f')/(1-M0
2) is regular. . 

An arbitrary jump of the second derivative is allowed by the 

equation (1.3.7) at y=y0. But in this case, the functions 
ui ' Pi , Pi would have a jump too, and we exclude this possi- 

bility. This requirement makes the problem closed. 

The another question is the asymptotic behaviour of the so- 

lutions of (1.3.7) at y -» oo. For this purpose we must know 
m°re details about structure of the basic cylindrical flow. 
We consider the vortex surrounded by potential flow with 

h0=const, S=const, g=const. The deflexion of these functions 
from constants is caused inside the vortex by diffusion  and 
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is usually exponentially small far from the- vortex core. The 

potential vortex has its own dimensional scale 

g^-1' 
1/2 r* 

y* = 

2 J 

where a^ - the sound velocity far from the core. The soluti- 

is "easily  found from  (1.3.3)  and  the   conditions on 
h =const, S=const, g=const: 

u0 = U^' 

Mn
2 = nj/(i  -  y./y)  , 

= l 
(1.3.9) 

y* 

l - - 

y 

VCX-D 

X'" 

ar 

Po 

P~ 

y* 

l - - 

y 

l/Of-i) 

This solution represents a vortex having the vacuum core at 

y=y* M -* ~ as y -» y, . The solution has not counterparts in 

incompressible fluid (a rather remote analogue is the vortex 

with cavitation). The expansion of the solution(1.3.9 ) at y 

» y, is the general representation of the flow around a 

compressible vortex. Using this representation, the asympto- 

tic behaviour of the solutions of (1.3.7) at y» » is found: 
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F = (2y)1/2exp(6l/2y)[l - C(2y)~1/2 + 0(y-1)]  , 

ß = ± ((X
2
(MJ - 1))1/2 y (1.3.10) 

C = 

M, 

— + ßy. (—; 
sß     y-i 1-M~ 

Two signs in (1.3.10) correspond to two different linearly 

independent solutions. The positive eigenvalues CC2>0 descri- 

be the upstream influence of the profile perturbed at some 

position, while CC2<0 describe the standing waves. In two ca- 

ses: Ct2>0, MO0>l and CC2<0, M«J <1, one of two functions incre- 

ases exponentially as y->°° and obviously must be excluded. 

The following physical examination is usefull for understan- 

ding of possible solutions of (1.3.7). We consider the vor- 

tex confined into finite cylinder (0<y<yR). The boundary 

conditions for (1.3.7) in this case are: F(0)=0, F(yR)=0. 

Only monotonous profiles of M0 are considered. The asserti- 

ons are not rigorously proved and are obtained from asympto- 

tic analysis of the solutions for | (X |»1. 

1. In the case M0
2<1 the infifnite discrete spectrum exists 

such that CC0 
2 <0C1 

2 <CL2 
2 < ••• • The positive CCn

2>0 are conden- 

sed into continuous spectrum as yR -* °°. In this limit only a 

finite number of discrete eigenvalues 0Cn
2<0 may exist. If at 

least one CC2 <0 exist - the flow supports standing waves and 

is called "subcritical", in opposite case - "supercritical". 

This is direct generalization of the classification adopted 

for incompressible flows. 

2- In the case M0
2>1 the infifnite discrete spectrum is or- 

dered as 010 
2 >CC1 

2 >tt2 
2 > ••• • The standing waves are always 

supported in the confined supersonic flow. They are caused 

simply  by reflection from the boundaries. For physical rea- 
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sons all Or are negative (however, we did not prove it di- 

rectly for the equation (1.3.7)). All negative eigenvalues 

are condensed into continuous spectrum as yR -* oo. is there a 

positive eigenvalue possible ? 

3. in the case M^ >1, M0 (0)<1, the discrete spectrum covers 

whole real axis: . . . «X_ x 
2 <(X0

2 <CL1 
2 <... . Its negative part 

is condensed into continuous spectrum as yR -» co. The infini- 

te discrete positive spectrum always exists for unbounded 

flow. From this spectrum we can determine how the profile 

perturbations propagate upstream. 

4. In the case M^ <1, M0 (0)>1 the discrete spectrum covers 

whole real axis too. Its positive part is condensed, however 

infinite discrete negative spectrum remains as yR -* oo. Such 

unbounded flow always supports standing waves attributed to 

the reflection inside the inner supersonic part. 

Therefore, two problem statements concerning discrete spect- 

ra in unbounded flow are formulated: if Moe><l - to find all 

a2<0, and if M00>1 - to find all (X2>0, such that the equation 

(1.3.7) and boundary conditions F(0) = 0, F'(°o)=o are satis- 

fied. 

The most important finding possible during the discrete 

spectra analysis is the detection of an eigenvalue which 

tends to zero as some profile parameter changes. The exis- 

tence of the eigenvalue close to zero means that the pertur- 

bations propagate far upstream. 

The asymptotic behaviour of the solutions at (X2=0, y -^ oo 

differs from (1.3.10). Two linearly independent solutions 

have the form: 
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m 

ai     1 

- = i + — + o( —) 
1 v2 y y 

lny 

F = y + bjlny + 0(   ) 

y 
(1.3.11) 

KR»Me 

ai - 
— y* 

(^-l)(l-M*2) 

Mc 

■)y. 

l-mj      %-i 

1.4 Quasi-cylindrical approximation 

The quasi-cylindrical approximation is an asymptotic appro- 

ach for description of the slender vortex smoothly regrou- 

ping under the action of viscosity or pressure gradient. It 

is similar in its nature to the boundary-layer approach. 

^et the vortex has a radial scale 6 in its initial section. 

Nondimensional variables are introduced by the scaling: 

rd=ör, xd=R56x, ud=u„u, vd = (u„/R5)v, wd=u„.w, Pd=P-P^ Pd =P~U~ 

'p.  Md=M~M- The index »d» corresponds to dimensional variab- 

les   index "co" - to the flow in the initial section at r 

«. R^p.u.ö/^is the Reynolds number.The analysis of the Na- 

vier-Stokes equations at the limit Rs- », r=0(l), x=0(l) al- 

lows to find the first-approximation equations: 

6u   5u     5p   1 5   6u 

p (u— + v—) = - — +     (^r  ) 
6x   Or     5x  r 6r  5r 
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6g   5g    5  l 5g   2 5/i. 

p (u— + v—) = r — (/l ) -     g 

öx   Ör     ör r ör   r 5r 

5(pu)   1 ö(pvr) 
= o  , 

öx r  Or 

» 

l 5p  g 

- — = p— , 

r  5r    r4 

6h   5h   5p   5P i 5 /i  öh 

p (u— + v—) = u— + v— +     (- r —) + 

6x    5r     Öx    5r r 6r 6   Ör 

(1.4.1 

r öu 

M 

i 5g   g 

(—)2 + (  2—)' 

Ör     r ör    r2 

t    P 
h = ,  M = M(h)  , 

K-l P 

where g=wr. 
The equation for h may be changed by the equation for p: 

6p   Op       5u  1  5(vr)        1  Ö M  öh 

u_ + v- = _ Yp(— ) + a-1*- —f r ~} + 

6x    Or Öx   r   Or 

öu 

Or 6   5r 
(1.4.2) 

+ a-i)M 

i 5g   g 

( — )2 + (" — - 2—)' 

5r 6r    r< 
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The system (1.4.1) is a nonlinear parabolic system. We for- 

mte the problem statement for the vortex surrounded by 

potential flow. 

L.t the initial profiles „, , g, , h, are determined at the 

ection x=0 (ul(-).l, 9l (»J-^.hi (-»)-V(K-D"-
8 ) ■ The pres- 

se profile Pl(r) is restored by integration with the boun- 

dary oondition Pl (»j-l/VU
2 ■ « the external pressure dist- 

ribution p(x,«)-p.(x) is determined, the axial velooity and 

enthalpy at infinity are found: 

! 

- 

h(x,°°)   =  he (x) 

(Tf-1)MÖ 

tVlJ Pe 

(K-D/K 

(1.4.3) 

u2(x,~)   =   ue
2(x)=   1   + 

a-DM0 

(I-D/l 
l-OfM^fPe) 

Then,   the  boundary  conditions  are  formulated  as  follows: 

u(0,r)   =  Ul(r),   g(0,r)   =  gt(r).   h(0,r)   =  h,(r); 

u(x,oo)   = ue(x),  g(x,co)   = g^,  h(x,~)   = he(x); (1.4.4) 

g(x ,0)   =   0,    |u(x,0)|   < »,    Ih(xf0)|   < »,   v(x,0)   =   0   . 

An interesting example of the problem is the development of 

the potential vortex (1.3.9) caused by viscous effects. The 

choise 5 = r, results in the following boundary conditions: 

1/2 

Ui (r) = 1,  gt (r) = g. 
M. -Tf-i- 
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h.(r) = M1 - —>' Pi(r) = P- 
1 - — 

L    r2 

, r >   1, (1.4.5) 

Ue(x)=l, he(x)=const, pe(x)=const . 

The problem at fixed gas model 0(,6,M) contains the only pa- 

rameter - V±. However, this problem has a singular inner bo- 

[ndary  - the" vacuum core, and requires special treatment. 

The equations (1.4.1) may be represented in the form resol- 

ved relatively x - derivatives. The procedure is similar to 

those used in derivation of (1.3.5), (1.3.7) results in: 

pu* 

L -L-M* 

p'       2p'     P 

( )' +  

,2 

1-IC y   KP(I-M^) 
f = Dr (1.4.6) 

i 5u 

u 5) 

u' 

= - f- 

u 

p. D3/u - D1 

(f— + f')/(l-M2) + 
vp KP(I-M

2
) 

p-           p'                 D3/u - Dj 

_ — = - f— - f + (f— + f')/(l-M2) -   

p       t* KP(I-M
2
) 

i 5p 

p 5x 

1   Öp 
= (f— + f ' )/(l-M2 ) + 

pu2 5x   KP 

DI /M2 - D3 /u 

^P(I-M') 

(1-4.7) 

i 5g    g'  D2 

g 5x    g   "9 
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Di = 

5   öu       l r 5  6g   ö/i 

— (2My—) , D2 = - Uy—(P-—) - 2— 9 
6y   5y       P L öy 5y   öy 

D3 

5  M 5h 

= —(2- y—) + (K-l)M 
5y 6 5y 

5u 5g    g   1 
2 

2y( —)2 + (—--) 
5y    öy  y 

Do = 

M2 (Dg/uJ-Di' 

1-Vf 

i     ri ' 

KP 

•D3/U-Ü! 

1-M* 

pgo2 

2y2 u 

where f=(vr)/u, y=r2/2 and the primes denote the y-derivati- 

ves.  The  boundary  conditions  for the first equation are: 

f(x,0)=0, 

dPe 

f'(x,co) = (1-Me
2) /(Peue) • 

dx 

If the profiles u, g, h, P are known at some section, the 

coefficients of (1.4.6) are determined. The problem for 

(1 4 6) is inhomogeneous and coinside at f (»)=(>, D0 = 0 with 

the problem (1.3.7) at O=0. Therefore, if the spectrum of 

the problem (1.3.7) does not contain tt=0, the problem 

(1.4.6) has unique solution, the right-hand sides of (1.4.7) 

can be calculated and the profiles may be continued on. In 

opposite case, the problem has singularity or bifurcation at 

the section and the solution either can not be continued on 

at all, or may be continued in various ways. 

At presence of sonic point M=l, the special correlations 

must be satisfied in it to avoid the singularity in the dif- 

fusion terms. In this case, the equations (1.4.6), (1.4.7) 

may be found unsuitable for  numerical  implementation,  and 
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the original statement (1.4.1), (1 ._4 .4) with implicit method 

0f integration is to be used. 

The equations (1.4.7) may be also used for description of 

the inviscid vortex development under the action of the ex- 

ternal pressure changes. In this case, the axial scaling is 

determined by the scale of the external pressure pe and all 

diffusion terms are to be discarded. This approach is equi- 

valent to the solving of the nonlinear problem (1.2.7) 

step-by-step from the initial section. 

2. The structure of flow at the initial 

region of vortex 

Expressions (1.4.5) cannot be used directly as initial con- 

ditions for numerical integration of equations (1.4.1.) be- 

cause of presence of the singular vacuum core at 0 C r < 1 . 

Near it's boundary relation pu/jl decreases so that effects 

of viscous forces are significant at small distance from the 

initial section. Hence singular layer appears near the cy- 

lindrical surface at r=l. This layer reveals essential pro- 

perties of the classical mixing layer but in our case it is 

more properly to name it "penetration layer". 

2.1. Representation of the solution 

in the penetration layer 

Let us  consider the flow in the neighbourhood of the vacuum 

core and introduce new variable: 

r2-l 

K   =   x(1-Y)7y     . (2.1.1) 
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Expans 
ions of the solutions are represented as 

u  =   1   +   x(K-1}/K  ul<U   + 

g = g + x(rn/K 9i(^> + 

h = x(rn/K MO + 

P = xpi d) + • • • ' 
(2.1.2.) 

p   =   x17K   MO   +   • 

vr= x-iz-y Vi(^)  + 

M = x(*x-n/<xh- hi + 

where the dots denote higher terms. 
Substituting (2.1.2) in the equations (1.4.1) and performing 

the limit x -» 0, we obtain 

Tf-i K-i 

Pit (Ui-^u'j+V^/ ]= -Pi + £Pi ' + h^1 (hlUl ')% 

Tf-i 
Pit  (gi-Ui') + v^!'] h"i((higi ')' - 2hi 'gi) 

:*l 
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p[  (ht-Ui')  +  V1h1']=p1-    

1 * 

iPl - + Vi Pl • + 

h"'^^')', 

(2.1.3) 

1      1-1 

— p! £Pi ' +  (PlVt)' = 0 

Pi ,=Pig^ >     Pihi 

Tf-i 
Pi 

where the prime denotes derivatives on variable £, . 

t= System (2.1.3) is the system of ordinary differential equa- 

tions with boundary conditions obtained from matching with 

the functions in the exterior, £, "* +Pd> and interior, £, -* -Po, 

fields. We suppose that pi(£) tends to zero as. £ -» -*> more 

quickly than 1/ £ , i.e. Pj£ -* 0, £ -^ -w. Than, from the 

latter three equations (2.1.3) we obtain 

i 
PiVi=Pi (■ )   . (2.1.4) 

hi   g„ 

Using (2.1.4) we see that (2.1.3)  may be written as 

2 i _ (hjhi ' ) • +   Pi (hi '-g£J = 0, 
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"•;:. 

ü:' 

I 

"w,: 

Ä 

p 

hjPi' -       g~ Pi 

TT-i 

=   0, 

g«. 

(2.1.5) 

u. u< 

- Pl( — 
2 h. 

+   1   - «2 
9w •)   =   0, 

a2 

gi,       gi 

(hj gj ')   + hi '   (gi ' -2g,,,)   -   Pi (  gi ■) = o 
«2 

The solution of the first and second equations in (2.1.5) 

is found by means of confluent hypergeometric functions M, U 

[42]: 

6     K-l      1                            2"K-1                6        1-1     P] 

hj    =   exp[- Pi ]    (C]M(       ,   1, ) + 

2        K     qi 
«2 
g» 

2^-1 6   K -i   Pi 

+   C2U( ,1, 

a2 
)), (2.1.6) 

']_   were c1 and C2 are arbitrary constants. 

We consider that pt   -» 0 at £ -» -00.  Therefore, for small va- 

lues of p1 from (2.1.6.) we obtain 

6   1-1    1 
  (  

2    H 

hi = q (1+  ( )2   Pi  + 0(Pl
2)) 
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6  Y -i l 

[ln(- 

T ((2K-1)/K) 

Pi ) + 0(1)],     (2.1.7) 

g2- 

were T is the Gamma function. 

If C2 * 0,  expression (2.1.7) contains logarithmic singula- 

rity: 

- C5 

r((2K-l)K) 

6  K -l  l 
ln( pj ) + ... , 

Y  g 
2 

and hence  the asymptotic behavior of the solutions of first 

and second eguations in (2.1.5) at £ -* -*>  is 

2  Y Y -i i- Co 
Pi 

6 Y -i 

gL exp[g„(2r ( ) 

Y-i «o 1/2 

1 /2 

)    ], 

(2.1.8) 

hi * ga0(2r(—) ) 

T((2Y-i)/Y) t      c2 

where £,0 is the constant of integration.   From  (2.1.8)  we 

find that ht   -» +<*  at  £ -» -<*», so that heat flux 

M 

l öh  l 

r ör  h 

hi hi ' ~ 2C2( ) 

Y-i  r((Y-i)/Y) 

tends to the constant value. 

The absence  of  the  heat flux inside the vacuum core means 
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that-in 

5e  at i 

Pi 
are 

(2.1.6.) it is necessary to assume C2=0. In this ca- 

-» -oo the main terms in asymptotic expansions for ht , 

6 1-1 

hj   ~ q (l  + -( ) — Pi )   , 

2    1   ' g 2~ 
(2.1.9) 

«o 

Pl   ~  exp[- "]   '. 

Y-i 

ft* 

8* 

if 

Let us investigate the behavior of the function gt (i) at £, ~> 

-co. After considerable manipulation we obtain from (2.1.5) 

the  equation 

d2
gi 

Pi 

dp. 

1     1-1 clgj 

+   (1   + Pl )  

2gL    K dPl        2gi    y 

1     'V-l 
—(—)2gi 

2  1-1  dhj 

g~ "K     dpj 

(2.1.10) 

= The  general   solution  of   (2.1.10)   is  represented   in  the   form: 

gi   =    I AkP!k   +  lnpj   I BKP/   , 
k=o k=o 

(2.1.11) 

were Ak,  Bk are constants to be found. 

!f B0=o in (2.1.11),  the solution .of the equation  (2.1.10) 

tends to constant at pt -» 0: 

9i - C< 

26 1-1 

g» y 
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This asymptotic behavior of circulation does not match with 

boundary  condition at r=0. 

The second solution of (2.1.10) has a logarithmic singulari- 

ty 

gi ~ B0lnPl 

that, using (2.1.9), reduces to linear dependence 

t   i 
9i ~ Bo9, '<?*> 

(2.1.12) 

if-i q 

Substituting   (2.1.12)   into  the  expansion   (2.1.1),    (2.1.2)   we 

find 
r2 -1 

ilk ■«. 

,| 
:tj ~" 

■■?'■&-■ 

■f 

* 
"# 

5 
■* 

■ ^ 

-j 

.( v-i )/ ( 1 -v) /' g(x,r) = g^+ x^r1J/Y gi (x^"K;/K) 

*)(     r2-l 

- g^+  B0g
£ 

K-i    2q 

Boundary condition g(x,0)   =   0  determines  the  coefficient  B0: 

2q   K-l 

Bo   = 

9-0    a 

Therefore, the  circulation distribution in the initial sec- 
tion of the vacuum core is following 

g(0'r) = g^r2 ,  at  0 < r < 1 (2.1.13) 

ndeed, such circulation means that the vacuum core is spin- 
ning around the vortex axis like a solid body. Its angular 
Velocity of rotation is 
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6wd   1    2      u^, 

— = - ( —)1/2 — 

6rd   M«, K-l      rd* 

Function u^) satisfies the equation  that may be obtained 

from (2.1.5): 

d2Ul       1 K-i   dUl   1 K-i 

— + (1 + Pi )  -    (   ) ul = 
Pi 

dPl
2       2g5, t dPl   2g^ K 

1  Tl 
— ( )2(h!-gJ. I)   ■   (2.1.14) 3o° 

2g2 * 

Left hand- side  in (2.1.14) is similar to that in (2.1.10) 

The solution of (2.1 .14) at Pl - 
w is expanded as a series: 

CO oo 

Ul =  I DkPl
k + lnPl I EkPl

k (2.1.15) 
k=o k = ° 

Absence of an infinite term in (2.1.15), E0 = 0, means that 

in the whole region 0 < r < 1 the axial velocity slightly 

differs from the initial value. The difference between them 

tends to zero as x -♦ 0 : u(0,r) - u(x,r) = 0(x( T1 } /%) • In 

this case the total enthalpy h0(0,r) in the initial section 

of core is a parabolic function of r: 

2    at  0 < r < 1 . (2.1.16) h0 (0,r) = 1/2 + h^r 

In contrast to this, if the vortex generator does not produ- 

ce considerable changes of the total enthalpy, we must take 

into account  the initial axial velocity profiles different 
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„nstant  At constant initial total  enthalpy  Profile 
fr„m constant oirculation distribution obtained 

C0"f ;;;ntbeaaxial velocity profile is  -pletaly deter.i- 
(2-1-l   ' 

ned: 

u(0,r) = d + 2h«,(l " rÄ)) 
2 v xl/2 0 < r < 1 (2.1.17) 

Matching ing (2.1.17) with (2.1.15) yields 

K-i 
= - C, 

(2.1.18) 

t       •       (?   1   9)       (21.12),    (2.1 -18) 
The unknown  constants  q ,     U   in   ^    '    '      ; 

are    defined     *» .atchino  *-  ^^   <   ; ^ ^ 

functlons   in  :r:;    • »^    rf  ;ypergeometrlc  functlon 

(2.1.6)   we   find: 

Ci       6i-i  i     a-±)rt 
h. * ■— [ — pi] 

(2.1.19) 

J2 

Subs 

obtain 

Pi   ~ 

r((2*K-i)/T()  2    K    9c 

tituting (2.1.19) into the second equation  (2.1.5),  we 

2  1 
«2 

6 1-1 

g2   2K-1 • 

— T( ) 
c,    K 

ii-Ki) >  (2-1-20) 

where f, is arbitrary constant. 
« <N  o 1 4 1 (2   1.19) and (2.1.20) cons- 

From (1.4.5),  (2.1.1)* (2.1.4), (Z.I.L   ) 

tants Cl and ^ are determined: 
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(2-v)/ V'Tf 4   1 

L 6 

(v-1) rn/K 
(2.1.21) 

3§L: 

■•«fe 

II' 

•"*i 

4i = °- 

AS a result,  -at  £  - «, we  have: 

K-i i/(rn inr" 

Pi 

1/(v-l)     1/(^-1) 

* 2 i 

(2.1.22) 

2.2 Numerical study of the flow at the initial region 

The finite  difference method was used for integration equa- 

tions in (2.1.5) to calculate vortex development at the ini- 

tial region of flow. The independent variable I  was conside- 

red in the range -3.5 <  £ < 3.5. The second order method of 

Keller was  used  to approximate derivatives.  At the first 

stage the Caushe problem for the first and second  equations 

in (2.1.5) was solved with initial conditions (2.1.9) stated 

at fc = -3.5.  The form of equations (2.1.5) does not  change 

if an arbitrary constant is added to independent variable . 

Therefore, constant ^0 in (2.1.9) may be chosen so that ^ = 

0 in (2.1.20). On each step of the iteration procedure cons- 

tant i,   was being found from (2.1.20) by solving the  Coushe 

Problem with given value i0    . Then the value of ^0 was chan- 

ged to provide the condition ^ = 0.  The process was finis- 

hed when appropriate accuracy was reached.  It is clear that 

such iteration procedure is necessary because  of  desagree- 
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t between  asymptotic character  of expansions (2^1.9), 

"  ,   22) and the finite interval for independent variable. 
(2-!,z ; 

soon as function^ (t.) and Mt> are found the latter 
A£" nations in (2.1.5, are solved. These equations are H- 
tW r with respect to u, and 9l . and no iteration precede e 

" enuired to satisfy the boundary conditions. On the right 
15 Jary of interval conditions „, - 0. g, - 0 were conside- 

T on the left boundary the derivative ,■ was given: g, -g 

function u(t) was calculated in two cases corresponding to 

JTouLry cLditicns on the left boundary of the interval 

<oO 

< = 0 
(2.2.1) 

and 

(2.2.2) 

~ The results of the calculations of functions  h, (U ,  Pl (U , 
&-   >     ,t*  4.*_n7  M=3  If = 1.4 are presented in Fi 

gures 42-45 respectively. 

.solution ull(s) satisfying the condition (2.2.!)  is  repre- 

sented in Fig.46.  The solution u12(U for condition (2.2.2) 

is shown in Fig•47 . 

Representations (2.1.1), (2.1.2) and functions hl(£), Pi(i) > 

9i(Ü ul(U obtained above determine behavior of the flow 

in the initial region of vortex. Thus, pressure, density and 

enthalpy increase monotonously inside the vortex as axial 

coordinate x increases. 
The enthalpy on the vortex axis has non-zero value: 
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h(x,o) **<riui ci = 

K   Tf        6 

turning to dimensional variables we  obtain  from  (2.2.3) 

the following correlation of vortex parameters: 

hd(xd/(M),0) xd 
(l-v)/ TTK 

^doo 

r 4 

L
6R$

J 

L 6 

( v-i ) / rK-1' 

(K-l)M^   l 
L t 

(2-v) / V'K 
(2.2.4) 

4-V-14     6   =   0.7,   (2.2.4)   reduces   to Particularly,   at]  -  1.4,   o       u./,v 

hd(xd/(R  5),0)        7.56 
(xd/R56) 0 . 29 

h, w M^ 

in the case when the initial axial velocity profilers cons- 

tant condition (2.2.1) results in negative values for func- 

tion ull(U (see Fig.46). Therefore, the flow xs retarded t 

least for that distance from the initial sectxon where ex- 

pansion (2.1.2) is valid. 

If the initial total enthalpy profile is constant,  i.e. the 

initial velocity distribution is given by (2.1.7),  the  r 
tardationof  the  flow  is less significant and velocxty on 

the axis stays constant in the first approximatxon: 

u(x,0) = (1 + 2h„J 
1/2 

• I: i 

-UlLl 
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#•■» 

, om expansions (2.1.2) and'calculated functions h,   Pl , * 
from eAH __    . ^ frir. thp_ numerical 

„ u all initial profiles required for the numer 
ana ui 
cedure may be  found     . 

pro- 

#ÜM 

3 Numerical solution of the quasi-cylindrical 

approximation system for compressible flow 

t„   n   4 1)  is non-linear parabolic,  just as the system 

^S  n  r/iayer equations.  Effective numerical methods to 

lve such  equations with given initial and boundary cond,- 

Zl  are Known. Ml programme and computing was performed 

using VAX-780 computer. 

3.1. Problem statement. Numerical method 

The system (1.4 .1) was solved numerically using variables x 

max 

rmax•  
The uPPer 

=10.  To  avoid 
Dounuciiy ^i.-xw^w.. .        reaion of calculation the follo- 
the errors caused by finite region 

wing asymptotic expansionswere used: 

y = r2/2 inside the region x > 0,  0 < r < 

boundary condition was stated at point r 

h(0,rmax) = he(l- )> 

r2 r max 

P(0,rmax) = Pe(1_ 
) X'Lrti   , 

max 

(3.1.1) 

u(0,rmax) = ue ,  g(o,rmax)  gt 
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solution  musj 

nditions [43]: 

t  be bounded on the ax 
is and it results in 

]Xr- 

5u 

6r 
-» 0, Jir- 

5h 

6r 

0, r -* 0 (3.1.2) 

.-  « M 4 1) with conditions (3.1-2) the  fol- 
the equations (1.4.1) w      ^ ^ ^ ^ ^ .g found; 

^co-elation of functions „ and 

*sfr p' 

rit" 

f 
I 

r    -//(/-I)-, 
[P h J 

1   5h   I 

dx 

+   h" 

6u 

r=o 

//(/-I) H 
5r 

= o, 

|r = 0 

(3.1.3) 

d    u 

p   [   + h 1 
dx   2 

- 2JUL [" 

i  5h     l  5u 

6r   6r      r   Or 

= 0 

|r=0 
r=0 

in addition to the conditions (3.1-1), 

cms for v and y on the axis 

v (x,o) = g(x,o) - o 

(3.1.3) the conditi- 

(3.1-4) 

are satisfied. 

Initlal prcfileS „<0.r,. «0.r,. «^^J^Z. 
r,¥   problem statement.  We conbiu 

cified for correct problem different condi- 
*■■!«« Tiro r) corresponding to aineiei 

of initial profiles u(U,r; 

tions of vortex generation 

u(0,r) = 1, 0 < r < 00 

(3.1.5) 
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'ÖK. 

■#• 

jnd 

u(0,r)   =   1,     r   >   1 , 

u(0,r)   =   [1   +   2haB(l-r2)]1'2 

initial  profiles  of  h,     p,   g 

sidered: 

p(0,r) = h(o,r) = 0, 

0 < r < 1 .        (3.1.6) 

are the same in both cases con- 

I 

•;&? 

g(0,r) = g^r< 

it 0 < r < 1, 
(3.1.7) 

P<0.r, -PA1-— )"«-"> 

h(0,r) = hjl' 

r 

1 

■). 

'me 
9(0,r) = g, 

at r >   1. 

The absolutely stable finite-difference method with se- 

cond-order approximation of the radial derivatives and vari- 

able grid size in radial direction was used for numerical 

solution of equations (1.4.1). A second order implicit sche- 

me was used for approximation in axial direction. 
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3.2 Numerical results 

■ -tial  profiles were found using asymptotic expansions 
The mitial  Prof      The   prof.ies    of    functaons 

,2.1-1).   (/.!■)•_ .,   p(Xl,r)=P<Xi-r)/i^, 

, are —rated_ n   9ur ^ ^ ^ ^ 

rr;j;:axr;re iva^:-M...rf .---;- 
fin in figure H at -^J^ ÜJf' "nUial 

(This prof He corresponds to the  ease ^ ^ 
f -4.,,  Th<= distribution ot axiai 
axial  velocity.  The di demonstrated  in 
case of constant initial total entnaipy 

figure 53. 

4- „f rhP nrofiles  downstream  from 
The subsequent development of the profi ^ 

the initial section was «elated a  vTs isity , was consi- 

the numbers and axial positions is shown x„ the ^« ^ 
+.-,1 ziatfl the Table contains ctj. 

For comparison with •«P«1»"*'1^^ the vortex radius 
so the ratio xd/6 of the axial positron to 

at Reynolds number R^ = 2" 10 . 

II 

Li 
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Table 

N 

X 

Xd/5 

l 2 3 4 5 

2.5" 10" 2 5.5-10"2 9.5- 10~2 0.18 0.29 

5.2- 103 1 . 1- 104 2.0- 104 3.5' 104 6.0- 104 

N 6 7 8 

X 0.43 0.73 1 .1 

xd/5 8.9- 104 1.5- 105 2.4- 105 

The profiles h, p, p, "g, u, h0 at various axial positions 

are demonstrated in figures 54-59. The profile of the total 

pressure ps calculated taking into account the local Mach 

number is shown in figure 60. All these functions are scaled 

by their values in the external flow at r-*». Radial and azi- 

muthal components of velocity (v,w) and local Mach number M 

are represented in figures 61-63. Swirl angle (p=arctg(w/u) 

between velocity vector and the axis of the vortex is shown 

m figure 64 (tp is measured in degrees) . 

The numerical results represented in figures 54-64 were ob- 

tained at initial conditions correspondent to constant axial 

velocity at the initial section. The results demonstrate 
tnat the axial velocity inside the vortex is reduced near 

the initial section. This tendency is obvious in figure 65 

(curve l), where the axial velocity on the axis is shown. 
rhe retardation of the axial flow is caused by  increase  of 
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M- 

ssure downstream from the initial section. The reason of 
6
S pressure increase is diffusion of gas having small azi- 

\al  velocity towards the vortex core resulted in reducing 

the radial pressure overfall. The distribution of the to- 

essure on the axis is represented in figure 67 

pre 

th 
putha 

of 

tal Pr 

Numerical calculations  were  performed also-for the case of 

onstant total enthalpy in the initial section. It was found 
C
that the distributions of h,  P,  g are quite close to those 

btained at constant axial velocity in the initial  section. 

Significant  difference  is observed only for axial velocity 

and total enthalpy on the relatively  small  distance  down- 

stream  of the initial position.  The distributions of axial 

velocity u(x,0),  scaled total enthalpy  h0(x,0)  and  total 

pressure  ps(x,OJ   Mach number M(x,0) along the vortex axis 

are shown in figures 65-68.  The curves 1 correspond to  the 

caSe  of  constant axial velocity in the initial section and 

curves 2 - to the case of constant total enthalpy.  It could 

be seen that distributions of the total pressure in both ca- 

ses almost coinside.  The retardation of the flow inside the 

vortex  found  in  the first case was observed in the second 

case too.  However,  the difference between the flows caused 

by different initial conditions decreases quickly downstream 

from the initial section.  It is interesting that in the se- 

cond case the total enthalpy quickly drops almost to the va- 

lues found in the first case. Moreover, positions of minimal 

axial  velocity  and  total  enthalpy on the axis are rather 

close in both cases. 

It may be concluded that development of the vortex downstre- 

am from the initial position is caused by two diffusion pro- 

cesses. The first process is spreading of the gas towards 

the vortex core. This process determines the profiles at -re- 

latively small distance from the initial section. The second 

Process is regrouping of the profiles under action of visco- 

sity.This process is relatively slow and determines profiles 
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large  distance  from the   initial     section.     Two     functions 
a 

ch characterize  radial size of the vortex were conside- 

The size 5U was determined as the radial position where 
re-al velocity u=0.99. The second size Ö, was detemined as 

^radial position where the swirl angle <p is maximal (fi- 

gure 64) . 

nistributions of these values along the vortex is demonstra- 

ted in figure 69. It could be concluded that the vortex de- 

velops smoothly and its radial size monotonously increases. 

4. Solutions describing the flow far 

downstream from initial section 

The asymptotic expansion for dissipating incompressible tra- 

iling vortex far from aircraft was obtained in Batchelor's 

work [29]. It was shown by Batchelor that an arbitrary cons- 

tant appears in his asymptotic expansion. We extended the 

expansions and found terms which contain two arbitrary cons- 

tants else. 

4.1. Generalization of the Batchelor's expansi 

Let us introduce a new independent variable: 

T\ = r2/(4x) . 

The asymptotic expansions of the solution are: 

lnx        1 

U =   1 +   Uj (T\) + ~ u2 (V   +    • • ■    ' 
X x 

on 

(4.1.1) 

X   ! 

-J 
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lrix 

g/g. 
. i - exp(-n) ♦ —*<n> + -*<n) + 

lnx 

h/hc 
= i + — hi <n>' + - h* <n) + • • ■ > 

p/p* 

lnx 

=   1   +    Pi (TV) - +  —  P2 C^>   +    • " '    ' 

X 

(4.1.2) 

lnx 

= i + — pi<n> + _ P2(n) + ■•• ' 

v r 

lnx -1 

  Vi(tl)   +  " V2(T1)   + 

x 

-iHS5! 

■ y 

dfl 

M =   1 

lnx 1 

(  hx   + _ h2   +   • • * *   ' 

dh   |h=hop      x 

where the dots denote terms which have 

for all k, 1. 

the form 0(xk(lnx) ), 

(1.4.1) 

Af 
tA   1 n   M.1.2) into equations  li-"-A 

t„ substitute  . .1 ■  <        Qf matching we flnd: 

in the first approxi mation as a r 

g^, exp(-n) 

M 
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9i 
n exp(-n) [g£6M-(G12(0)-G11(Tl))+ i/2+46/(i-6)] 

h = - 6 exp(-6tl) > 
(4.1.3) 

Pi = 0 ,     Pi - 6 exp(-6r\) > 

v. - T\[6 exp(-6tl) + - gL exp(-Tl)] > 

where 

liL = — 
dh h=h, 

and 

Gll(T\) =/exp(-6n)[exp(n)-n-i]_ 

o if 

00 

Gi2(n) = /neu (n)exp(-n)cm 
n 

i.  o   <-   r     annpar in the second terms Arbitrary constants Cu, Cg, Ch appear in 

II 
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u2 
=  -  g2   exp(-6Tl)[U(n)   +   cul    ' 

g2 
= - Tl  exp(-Tl)    [6M1,(9&G21(T1)   +   4CHGÜ (T\))   + 

+ (g«/2 + 46/(i + 6))G22(n) + cg] (4.1.4) 

ho = - 6 exp(-6r\)[H(tl)  + crJ   > 

i    * 

p2 = pen) > 
4 K-i 

i   Tf 
p2 = peu)  -   - 6 exp(-6r\)[H(n)  + 2ch/g* j 

4 K-i 2 

v2   = - gj, [l-exp(-n)]   + _  [l-exp(-ÖTl)]   + 
4 2 

+ - g^n exp(-T\)[U(T\)   +  Cu] 

•I  ! ' 

1 * 

6T\  exp(-6T\)[H(Tl)   +   2ChACJ T\P(T\)    > 

2   K-l 
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,'here 

00 

P(n) = /t1 - exp(-n)]' 
n 

n 

dT\ 

n< 

dT\ 

U(T\)   = /(TlP(n)-1   +   exp(-T\))exp(Tl) > 
o n 

i r\ 
H(n) = - / [exP(-2Ti) - exP(-6n) - wn) + 

2   0 

dT\ 

■J- 
+   2(1   -   exp(-Tl))2/n]exp(6T\)- 

n 

n 
G21(n) = /[2H(n)(exp(n)- i - n)exP(-6n) + 

:üSSfci 

dn 
+   G12(0)(1   +  n)   -   G12(Tl)exp(Tl)]]- 

n< 

G22(n) = /[exp(-n) + n - i]-   • 
o n2 

Using the exponential integral Ei(T\) [42] we may produce so- 

me calculations: 

P(0) = 2ln2, 

G12(o) = 6/(l+6)+(l-6)ln((l+6)/6) , 
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order 

to obtain correlations 

h(x,0) « ^ + 

6 lnx   6 
_ —■ + — ch) 

4  X 2X 

*:■■• 

«2 

M ~ i - — (lnx - Cu ) , 

8X 

p(X,0) ~ Po^1 

t ln2 

K-i 2: 

r=0   2x 

lnx 

— [1 - ■—(JCg£6(    + 

8x      1+6 

1 + 6  gi _«_ 
(l-6)ln  + — + 

6   26  1-6 

(4.1-5) 

)) — Ce] 

8X 

m 

NiS 

4.2 Caparison of the numerical results with 

asymptotic solutions 

To perform comparison with asymptotic "^»^ ^ 

sary to determine constants C >. «^ ^ ^^ so as 
at large enough values of x wer . h(x,0)  and 

•  1  »nd  asymptotic solutions of  u(x,0), 
numerical  ana  atoymn 
8g(x,0)/(r5r) were coinside at x=10. 

nr\   -7R   The profiles of 
Results are demonstrated in "£»" ""^ shown ln figures 

function h=h/h   U;ai
g;9o

/
s^:ons. soUd curves correspond to 

70-73 at various axiax P 

i f 
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numerical" profiles, dashed curves correspond to the first 

approximation (4.1.3) and dashed curves with symbols corres- 

pond to expansions including both first (4.1.3) and second 

(4.1.4) terms. 

we remind that the first approximation does not depend on 

constants Cu, Ch , Cg . 

Distributions of axial velocity u(x,0), scaled enthalpy 

h(x,0) and pressure p(x,0) along the vortex axis are repre- 

sented in figures 74-76 respectively. 

The distributions of total enthalpy h0(x,0) and Mach number 

M(x,0) along the vortex axis are shown in figures 77-78, 

where the total enthalpy scaled by value in the external 

flow. Numerical and asymptotic solutions are shown by solid 

and dashed lines correspondently. 

A good agreement between numerical and asymptotic results is 

observed at large values of x. 

5. Comparison of the numerical results 

with experimental data 

The comparison was performed using profiles of the total 

pressure and stagnation temperature measured experimentally 

in two radial section of the vortex. At the first step nume- 

rical and experimental profiles were correlated in the down- 

stream section. The ratio of the total pressure on the axis 

(Y=H3mm) to the. total pressure on the conventional boundary 

Pse (Y=83mm) was found from the Table 2, and then the nume- 

rical data from figure 67 were used to determine position z 

where this ratio is close to its numerical prediction. The 

radius of the vortex was approximately determined using pho- 

tographs taken in experiment. Thorough adjustment of parame- 
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rs uas perform visually on the display  of  computer  to 
" h good correspondence between numerical and experimental 
reacn y ,_i_._4._j.  rDforpnr.e  total 

Pr 

'-____*'■_»- 

*-■ 

,rh quuu <_.._<-- a- «-•-<r  4-_4-__i 
Ues.  Two parameters were  ad.usted:  reference  total 

Lure and initial radius of the vortex vacuum core 5. Fi- 
Pr!   ult was found taKen into account possible deflection 
nf the probe from real position of the vortex axis.  The re- 
°lt is represented in figure 79.  The total pressure ob al- 

:  n erillly and referenced to its vaiue in external  ow 

shown by solid line and experimental data -  by  cross s. 

e following values of parameters were found: inltia radl- 

„f the vacuum core 8=5.5mm,  the ratio of the total pres- 

sure on the vortex boundary to the total pressure in exter- 

Z  «o- P../P.-0.273.  position of the vortex axis MM-, 

and position of the section considered x=l.l . 

Ad„itional information about the flow in this section may be 
obtained from figures 54-64 (curves,. In particular, the 

dependence of the swirl angle . shewn in figure 64 indicates 
„r the anale is observed at radial position r~3 that maximum of the angle is uu 

from the axis. Analysis of the experimental data (Table 2) 

results in rather close value of <p and radius (rd^16mm) whe- 

re the measured total pressure is maximal. 

The parameters found were used also for comparison of the 

numerical and experimental profiles of the stagnation tempe- 

rature. Both profiles shown by solid line and crosses cor- 

respondent^ are represented in figure 80. The stagnation 

temperature decreases toward the axis and quolitative agree- 

ment between numerical and experimental results is observed. 

Significant discrepancy  is  probably  caused by relatively 

large size of the probe, resulting in space averaging of the 
4. -, J .-__   Furthermore  both profiles  are rather experimental data.  Furtnermore, w^      t> 

close to unity and relative discrepancy is small. 

Us ing values of the parameters found, the Reynolds number Re, 
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5 and dimensionless coordinate x-,correspondent to the 

f-rSt section where the profiles were measured are determi- 

eCj. However, the dimensionless distance Ax between the 

first and second sections turned out so small that the total 

pressure practically does not change (Ax=4-10~6) . On the ot- 

her hand, the experimental data reveal rather appreciable 

change of the total pressure between two sections (Table 

i 2)- Therefore, strong disagreement between the theoretical 

model and experimental data is observed. The experimental 

data indicate that radial diffusion is really more intensive 

than those caused by molecular viscosity. 

Two reasons may be considered to explane this disagreement: 

a: Rather high level of acoustical and vortical fluctuations 

is observed in the work-section of the wind-tunnel. The dis- 

turbances will obviously increase the diffusion of the ave- 

raged flow. These fluctuations may be taken into account by 

additional "eddy viscosity" using some kind of turbulence 

model. The level of the eddy viscosity will be evaluated be- 

low. 

b: Additional diffusion may be caused by spiral tangential 

discontinuities in the vortex which were not taken into ac- 

count within axisymmetrical model considered. However, radi- 

al distance between the discontinuities in this case must be 

very small (Ar<0.1mm). Experimental measurements result in 

spatial averaging of the profiles on much bigger distance. 

We think, the discontinuities can not completely explain 

high diffusion, because the averaged profiles again will 

regroup slowly. 

Diffusion coefficient was estimated by comparison of numeri- 

cal and experimental profiles of the total pressure in two 

sections. Numerical and experimental values of the total 

Pressure on the axis coincide if the first section is situa- 

.! :i 
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ted at x=0.115. 

Numerical and experimental profiles of the total pressure in 

the first section are shown in figure 81. The parameters S, 

„ /pn were not adjusted and were taken the same as in figu- 

re 79. Therefore, only value x was specially chosen and this 

jS equivalent to choise of the diffusion coefficient. The 

agreement is not so good as in the second section. Indeed, 

the first section is situated very close to the wing and the 

flow can not be consider as quasicylindrical. The profiles 

of the stagnation temperature at X=0.115 are shown in figure 

82. 

Taking into account that Ax=l.l - 0.115 ~ 1,  effective Rey- 

nolds number may be evaluated: Re ef f . ;110mm/5.5mm=20.   Corres- 

pondent     diffusion     coefficient     jLlT      turned  out  very  high   in 
comparison  with  molecular  viscosity:   jIT   ~   104jLl. 
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Conclusions 

the course of the research the devices and models neces- 

;ir
h
fc vortex investigation and its interaction with df - 

/rent bodies were developed.  The vortex investieren and 

'   nteraction with a spherica! blunt body at Mach number 3 

Reynolds numbers fro, 1.1 to  3.7-10'  1/- was  carrfed 

I. The experimental investigation has shown the followxng: 

x From the two types of the investigated vortex ^-ators 

rectangular wing-type  and  4-vanes-tyPe  generators,  the 

ret  type  of the generator was chosen for the expert t 

ectangular wing produces one vortex in the invest.gated 

pa t of the flow.  The vane-type generator produces four pa- 

Z  of vortices <one vortex at  the  internal  and externa 

Ines of each vane, .  The internal vortices situ«> ed «: ose  o 

each other flow together into one vortex whUe the four  ex 

^al vortices stay apart even at a large distance from the 

generator. 

2.   variation of the vortex diameter with the increase ol: the 

distance fro™ the generator is described by a «»-or, funct 
,   ^ *     i= the reference vortex  diameter) on d/dr=f(x/dr)  where dr is the rereren 

-i   H  „nri dearee of the flow swirl (the regardless to the value dr and degree 
-i  ~-F at-t-ark 0Ü in the range CC C  20 . ine vor generator angle of attacK u) in       ^ 

tex diameter increases ^^^^^T3Q'J1.^- 
the vortex expansion angle is about 1 . At a 

le increases up to 3 . 

3. The expanding vortex induces in a supersonic flow a weaR 

compression wave as well as an expanding v1Soous waKe past 

the wing (vortex generator). 

• J „T,4- at rt  = 20° have shown that 
4. The  measurements  carried out at a 

li 
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. ^he initial cross section of the vortex in the vicinity 

"! the vortex axis a region of the low stagnation pressure 

is formed. The minimum value ps/p0 is approximately 0.06 
PS

f the free stream value. At a distance about 40dr from the 

°litial section the value Ps/Po at the vortex axis increases 

„p to 0.35. The laser knife pictures also show the fast inc- 

rease of density in the vortex core. 

5 The stagnation temperature in the vortex also changes. In 

the initial vortex cross section the stagnation temperature 

at the vortex axis is lower approximately by 20 degrees than 

in the free stream. However, the relative value of the stag- 

nation temperature Ts/T0 at the vortex axis in the initial 

section is about 0.90. A still weaker influence of the flow 

swirl on the relative stagnation temperature is observed in 

the remote section. Such a decrease of the relative stagna- 

tion temperature cannot produce a great influence on heat 

transfer. 

„ By interaction of the vortex with the spherical blunt bo- 

dy a vortex breakdown occurs. The vortex breakdown is follo- 

wed by its expansion, formation of a dead zone in front of 

the blunt body and flow turbulation. This flow is similar to 

the flow in front of a spiked body. 

7 The vortex which is coaxial with the spherical blunt body 

causes a heat flux decrease in the vicinity of the symmetry 

axis. At the end of the dead zone in the vicinity of the at- 

tachment line the heat flux increases almost doubles as com- 

pared with the heat flux in the stagnation point of the 

sphere in the absence of the vortex. This effect should be 

taken into account in analysis of heating bodies interac- 

ting with -the vortex. 

8. Taking  into account the drastic influence of the vortex 

on the heat transfer it is reasonable to investigate the in- 
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ction  of the vortex with a cylinder and a plate at dif- 
P ter"a -, ,.    4-v,^ w^r-i-ov avis  and the  streamlined m ent angles between the vortex axis  dnu 

body surface. 

The theoretical model describing viscous diffusion of the 

asymmetric trailing vortex in compressible flow was sug- 
3 sted and developed. The main problem of the model concerns 

^relation of the profiles in the initial section. The pro- 

ves of axial velocity, temperature and circulation were 

hosen on the basis of the classical model of the vortex in 

expressible gas: the flow was considered as isoenergetic 

and isoentropic with constant circulation. At these conditi- 

ons the vortex contains vacuum core in the initial section. 

Tne experimental results demonstrate that the vortices in 

supersonic flow really contain strongly decompressed cores. 

10 Under action of viscous diffusion the vacuum core is fil- 

!ed by gas downstream of the initial section. This process 

was thoroughly analyzed and self-similar solutions near the 

I boundary of the vacuum core were obtained. Two types of so- 

lutions were found: the solution with constant axial veloci- 

ty and another one with constant total enthalpy in the ini- 

tial section. Numerical calculations demonstrated strong 

influence of the layer on the flow inside the vortex. 

11. The asymptotic expansions of the solutions far downstre- 

am from the initial section were also found. These solutions 

are a generalization for compressible gas of well known so- 

lution obtained by Batchelor (1964) for the vortex in in- 

compressible fluid. The asymptotic and numerical results we- 

re compared and good agreement between them was demonstra- 

ted. 

12. systematic numerical calculations of the vortices regro- 

uping under action of viscosity in supersonic flow were per- 

formed on the basis of the suggested theoretical model. Qua- 
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.tatlve agreement of the nuclei and experimental results 

Hi  «Ltea for prof 11..  of  the  total  pressure  a„a 

stagnation temperature. 

nf   the total pressure between initial and 
13. strong  change of the total p be exp_ 

tion. 

14. TWo factors midht strong increase the diffusion of the 

ir^rreflrlcoustica! an, vortical fluctuations in the 
; j/iiHnnal "eddy viscosity". 

wind tunnel produces ^
ddl^™1  ^ fcy spiral tangential 

b, Additional diffusion may be produce J    * 

discontinuity in the vortex whxch was not taken 

within axisymmetrical model considered. 

15  Taking  into account the discrepancy between theoretical 
15. Taking  i worthfull to perform additio- 
and experimental results 1 L. . rlude 

.   4. i  ctudv of the vortex structure and include 
n,i  exoerimental  study 01 me 

surelents of fluctuations.  This study will .U»^ " 

lu.t.  turbulent diffusion and develop further the theoretx 

cal model of the vortex in supersonic flow. 
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Appendix 

Tables of the measurements results 



p-    Table 1 
-— 

Run N37 
T^nfirator N1 .* Aloha = 20°, Ps/Po = f(Phi,Y) 

X = 2mm 
—— Y, mm 
phTdegr. 0 20 40 60 72 76 80 

-         -45 0.232 0.226 0.228 0.237 0.314 0.305 0.285 

"^      -30 0.263 0.26 0.261 0.272 0.355 0.338 0.318 

"""      -15 0.271 *    0.268 *    0.27 0.28 0.37 0.352 0.325 

0 *   0.272 0.267 0.269 *    0.281 *    0.372 *   0.355 *    0.328 

"            15 0.271 0.266 0.268 0.28 0.369 0.35 0.323 

30 0.253 0.241 0.245 0.255 0.339 0.32 0.291 

""""         45 0.191 0.18 0.177 0.187 0.248 0.229 0.202 

-— 90 95 96 97 98 99 100 

-45 0.163 0.087 0.06 *    0.034 0.02 0.016 0.015 

-30 0.173 0.088 *     0.06 0.032 0.02 0.02 0.017 

-15 *    0.179 *    0.088 0.057 0.029 0.02 0.019 0.017 

0 0.177 0.085 0.052 0.028 *    0.021 *    0.019 *    0.017 

15 0.174 0.077 0.045 0.022 0.021 0.018 0.016 

30 0.147 0.057 0.03 0.019 0.02 0.017 0.015 

45 0.093 0.034 0.019 0.014 0.016 0.015 0.013 

102 103 104 105 106 107 

-45 0.01 0.01 0.012 0.017 0.024 0.031 

-30 0.013 0.013 0.017 0.027 0.042 0.054 

-15 0.016 0.019 0.03 0.051 0.075 0.091 

0 0.019 0.026 0.045 0.072 0.095 0.118 

15 0.019 0.029 0.05 0.075 0.102 *    0.124 

30 0.021 0.032 *    0.054 0.079 0.099 0.122 

45 *    0.022 *    0.033 0.053 *    0.081 *    0.107 0.123 

110 117 120 

-45 0.039 0.03 0.031 

-30 0.068 0.051 0.055 

-15 0.109 0.079 0.082 

0 0.137 0.091 0.091 

15 *   0.142 *    0.093 *    0.093 

30 0.138 0.093 0.092 

45 0.138 0.091 0.093 
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Sphere 

Table 5 

Run 2 8 

M=3.0  Re=6.70*10- = 413 K  Pn=4.834*10
ö Pa  T=1.0 s 

,3a- 
Thermo- 
couple 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

S/R 

1. 
1 . 
1. 
1. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
0, 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
0 
0 
0 
0 
0 
1 
1 
1 
1 

508 
340 
173 
005 
838 
670 
503 
335 
168 
000 
084 
168 
251 
335 
419 
,503 
,586 
,670 
,754 
,838 
,922 
.005 
.089 
.173 
.257 
.340 
.424 
.508 
.591 
.758 
.925 
.091 
.258 
.425 
.168 
.335 
.503 
.670 
. 838 
.005 
.173 
.340 
.508 

T K 

7 
3 
4 
.7 
.5 
,6 
,4 
,0 
.2 

6 
9 

7 
2 
1 
6 

301 
306 
309 
313 
319 
325 
331 
336 
338 
340.8 
339.8 
337 
333 
333 . 0 
332 . 1 
327 
326 
322 
317 
315.0 
312.7 
307.8 
308.2 
306 
302 
300 
299 
298 
299.0 
297.8 
298.1 
299.0 
299.9 
301 .0 
338 
330 
330 
325 
314 
309 
303 
297 

0 
4 
5 
7 
6 

Tsmo ^ 

7 
2 
.3 
,7 
,5 
,6 
.3 

9 
9 
7 

292.0 

1 
6 

301 
306 
309 
313 
319 
325 
331 
336.0 
338.3 
340 
339 
337 
334.0 
333 .0 
332 . 2 
327.8 
326.2 
322 
317 
315.0 
312.8 
308.0 
308.3 
306 
302 
300 
299 
298 
299 
297.8 
298.1 
299 
299 
301 
338 
330. 8 
330.8 
325.9 
314 
309 
303 
297.8 
292 .0 

kW/nf 

0 
3 
6 
6 
.6 
,0 

0 
9 
0 
5 

6 
7 
9 

7.595 
14.44 
21 
29 
37 
45 
50 
50 
55 
52 
56 
56 
57 
55 
51 
52 
49 
50 
44 
38 
35 
30 
26 
22 
17 
13 
11 
8. 
5. 
4. 
4. 
4. 
4. 
4. 
54 
56 
50 
46 
41 
32 
25 
16 
11 

.54 

.32 

.19 

.94 

.09 

.83 

.36 

.59 

.29 

.86 

.60 

.81 

.80 

.32 

.82 

.59 

.19 

.90 

.17 

.41 

.29 

.86 

.87 

.84 

. 32 
158 
534 
710 
404 
139 
124 
128 
14 
78 
72 
34 
28 
77 
99 
09 
33 

qo >9 
kw/nr 

76. 
73. 
71. 
68. 
64. 
60. 
56. 
53. 
51 . 
49. 
50, 
52 
54 
55 
55 
58 
59 
62 
65 
67 
69 
72 
72 
73 
76 
77 
78 
79 
78 
79 
79 
78 
78 
77 
51 
56 
56 
60 
68 
71 
75 
79 
83 

95 
79 
63 
63 
62 
39 
41 
19 
57 
76 
44 
02 
58 
22 
82 
85 
.93 
.78 
,88 
.69 
.26 
.59 
.36 
.96 
.48 
.71 
.37 
.04 
.80 
.63 
.42 
.78 
.17 
.42 
.44 
.77 
.73 
.16 
.02 
.38 
.42 
.63 
.63 

q/qo 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
1. 
1, 
1. 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 

0987 
1957 
3007 
4272 
5755 
7607 
8879 
9556 
0735 
0569 
1160 
0932 
0552 
0107 
9279 
8891 
,8312 
,8058 
,6707 
.5748 
.5077 
.4190 
.3633 
.3091 
.2337 
.1781 
.1445 
. 1032 
.0702 
.0592 
.0555 
.0525 
.0528 
.0533 
.0524 
.0002 
.8940 
.7703 
.6069 
.4590 
.3446 
.2020 
.1354 

#*? 



Table 6 

Run 29 
Sphere with vortex generator (X=20 

1=3.0  Re-6.86.10*  T0 - 410 K  P0 -4.889*lo5 pa  t=1.0s 



m. 
Table 7 

Run 30 

1=3.0  Re=6.69*l 

Sphere with vortex generator <X=10 

58*105 Pa  t=1.0 s 
05  T  = 415 K  P0=4.8i 

0.227' 
0.3725 
0.5394 
0.7341 
1.0128 
1.0968 
0.8132 
0.6472 
0.5683 
0.6203 
0.7441 
0.9501 

1758 
3173 
4314 
3579 
2958 
0270 

0 .8690 
0.7347 
0.6050 
0.4907 
0.3979 
0.2789 
0.1934 
0.1380 
0 .0815 
0.0423 
0.0311 
0.0354 
0.0543 
0.0863 
0.1164 
0.5203 
0.5169 
0.5227 
0.5392 
0.5494 
0.4467 
0.3297 
0.1801 
0.1112 



Table 8 

4Sphere with vortex gener ator 0C=3Cr 
Run 4 3 

1=3.0  Re=6.76*10 414 K Pn=4.891*10
5 Pa  t=1.0 s 

0.0796 
0.1536 
0.2320 
0.3152 
0.4139 
0.5262 

5747 
0.6087 
0. 6332 
0.6102 

6185 
0.5875 
0.5809 
0.5571 
0.5097 
0.5222 
0.4952 
0 .4889 
0.3971 
0.3516 

3110 
0.2570 
0.2256 
0.1903 
0.1498 
0.1181 
0.0986 
0.0722 
0.0514 
0.0494 
0.0596 
0.0722 
0.0891 
0.0971 
0.5774 
0.9365 
0.9279 
0.5942 
0.3253 
0.3018 
0.3813 

2805 
0.2095 
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