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Summary of the Transducer-Baffle Interaction Study 
(ONR Contract No. N00014-91-J-4173) 

The main features and results of the study are as follows: 

• A finite element (FE) code was used to model the radiation of sound from a piezoactive 
ceramic (PZT) projector located near an elastic baffle (a cylindrical shell). The use of a 
finite element code allows, for the first time, to simultaneously model the elastic response 
of the baffle, the piezoelectric response of the projector, and their interaction. 

• The present study was limited to two projector-baffle configurations - a plane strain 
configuration and an axisymmetric finite shell configuration. Both of these configurations 
could be modeled with the two dimensional (2D) version of the SARA finite element code 
using a reasonable number of finite elements. The SARA 2D code was available, and had 
allready been extensively tested, when the present study was begun. 
A convenient feature of the SARA code is the calculation of the far-field pressure. This 
pressure is determined by numerically evaluating the Helmholtz integral over all vibrating 
surfaces. In the present study this allows one to separately determine the far-field pressure 
due to the sound scattered from the baffle and the pressure due to direct propagation of 
sound from the source. 

• The radial dimensions of the cylindrical shell baffles were chosen to be similar to the 
dimensions of shells used in experimental underwater acoustics studies at Georgia Tech. 
However, the shell thickness in the numerical simulations was chosen to be relatively large 
(inner radius/outer radius = 0.9) to avoid very thin finite elements. Thinner shells can be 
modeled in the future, but this will require a larger number of finite elements and larger 
computer facilities. All calculations were made at two frequencies - one frequency (ka=2) 
below the ring resonance of the shell, and the second frequency (ka=5) above the ring 
resonance. The projector was located close to the baffle, separated from the baffle by a 
thin (less than one tenth of the acoustic wavelength) layer of water. 

• The FE calculations and the analysis of the data were arranged under the following main 
topics: 

(1) The normal velocity and the acoustic pressure at the surface of the baffle and the use 
of this data to determine what elastic waves are excited in the baffle by the adjacent 
projector. 

(2) The far-field pressure directivity patterns for the projector-baffle system and 
comparison with the directivity patterns for the same projector under free-field conditions. 

(3) The transmitting voltage response (TVR) of the projector in the vicinity of the baffle 
and comparison with the corresponding TVR of the projector under free-field conditions. 



(4) Comparison of the ideal source to the finite piezoelectric source. Previous studies 
approximated the projectors as acoustically transparent, ideal point or line sources. It is of 
interest to determine under what conditions (frequency range, source dimensions) is the 
above approximation valid. 

• The main results for each of the above topics are as follows: 

(1) Analysis of the normal velocity pattern at the surface of the baffle shows that the 
projector excites mainly flexural waves in the baffle. There is some evidence of weak 
excitation of the fast, extensional wave at ka=5. 

(2) The main differences between the far-field pressure from the projector near the baffle 
and the projector in the free field are probably due to interference between the direct 
sound from the projector and the sound reflected from the baffle. 

(3) Three different sizes of piezoelectric projector were modeled, with 4.5°, 9.0°, and 18° 
angular extent. For the 4.5° and 9.0° projectors the TVR in the forward direction is not 
significantly affected by the presence of the baffle. This indicates that the source strength 
of the projector is not significantly changed by the presence of the baffle. The main 
differences between baffle and free-field conditions along other directions are probably 
due to interference between the direct and reflected sound signals. 

(4) The 18° projector was the only source which showed significant deviations from ideal 
source performance. In particular, the TVR for this projector in the vicinity of the baffle is 
significantly different from the TVR under free field conditions. The 18° projector is the 
only source modeled whose dimensions (width) are comparable to the flexural (shortest) 
wavelength in the baffle, and in the PZT projector. Therefore, the present calculations 
suggest that the projector near a baffle can be modeled as an ideal, acoustically transparent 
source as long as its dimensions are less than about one quarter of the shortest elastic 
wavelength in the system (baffle or projector). The above conclusion is tentative and 
further studies are needed over a range of values of the relevant parameters. In particular, 
the above conclusion applies for projectors at the single, fixed distance from the baffle 
which was used in this study. The distance of the projector from the baffle is an important 
parameter which should be investigated. 
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SUMMARY 

The main features and results of the study are as follows: 

• A finite element code (SARA) was used to model the radiation of sound from a 

piezoactive ceramic projector located near an elastic baffle (a cylindrical shell). The 

use of a finite element code allows, for the first time, to simultaneously model the 

elastic response of the baffle, the piezoelectric response of the projector, and their 

interaction. 

• The present study was limited to two projector-baffle configurations-a plane strain 

configuration and an axisymmetric finite shell configuration. Both of these 

configurations could be modeled with the two dimensional (2D) version of the SARA 

finite element code using a reasonable number of finite elements. The SARA 2D code 

was available, and had already been extensively tested and bench marked by the 

NAVY, when the present study was begun. A convenient feature of the SARA code 

is the calculation of the far-field pressure. Thesis pressure is determined by 

numerically evaluating the Helmholtz integral over all vibrating surfaces. In the 

present study this allows one to separately determine the far-field pressure due to the 

sound scattered from the baffle and the pressure due to direct propagation of sound 

from the source. 

• The radial dimensions of the cylindrical shell baffles were chosen to be similar to the 

dimensions of shells used in experimental underwater acoustics studies at Georgia 

Tech. However, the shell thickness in the numerical simulations were chosen to be 

relatively large (inner radius/outer radius=0.9) to avoid very thin finite elements. 

Thinner shells can be modeled in the future, but this will require a larger number of 
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finite elements and larger computer facilities. All calculations were made at two 

frequencies-one frequency (ka=2) below the ring resonance of the shell, and the 

second frequency (ka=5) above the ring resonance. The projector was located close 

to the baffle, separated form the baffle by a thin (less than one tenth of the acoustic 

wavelength) layer of water. 

The finite element calculations and the analysis of the data were arranged under the 

following main topics: 

• The normal velocity and the acoustic pressure at the surface of the baffle and the use 

of this data to determine what elastic waves are excited in the baffle by the adjacent 

projector. 

• The far-field pressure directivity patterns for the projector-baffle system and 

comparison with the directivity patterns for the same projector under free-field 

condition. 

• The transmitting voltage response (TVR) of the projector in the vicinity of the baffle 

and comparison with the corresponding TVR of the projector under free-field 

conditions. The TVR of the transducer-baffle system. 

• Comparison of the ideal source to the finite piezoelectric source. Previous studies 

approximated the projectors as acoustically transparent, ideal point or line sources. It 

is of interest to determine under what conditions (frequency range, source dimensions) 

is the above approximation valid. 
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The main results for each of the above topics are as follows: 

• Analysis of the normal velocity pattern at the surface of the baffle shows that the 

projector excites mainly flexural waves in the baffle. There is some evidence of weak 

excitation of the fast, extensional wave at ka=5. 

• The main differences between the far-field pressure from the projector near the baffle 

and the projector in the free-field are probably due to interference between the direct 

sound from the projector and the sound reflected from the baffle. 

• Three different sizes of piezoelectric projector were modeled, with 4.5 °, 9.0 °, and 

18.0 ° angular extent. For the 4.5 ° and 9.0 projectors the TVR in the forward 

direction is not significantly affected by the presence of the baffle. This indicates that 

the source strength of the projector is not significantly changed by the presence of the 

baffle. The main differences between baffle and free-field conditions along other 

directions are probably due to interference between the direct and reflected sound 

signals. 

• The 18.0 ° projector was the only source which showed significant deviations from 

ideal source performance. In particular, the TVR for this projector in the vicinity of 

the baffle is significantly different from the TVR under free-field conditions. The 

18.0° projector is the only source modeled whose dimensions (width) are comparable 

to the flexural (shortest) wavelength in the baffle, and in the piezoelectric projector. 

Therefore, the present calculations suggest that the projector near a baffle can be 

modeled as an ideal, acoustically transparent source as long as its dimensions are less 

than about one quarter of the shortest elastic wavelength in the system (baffle or 

projector). The above conclusion applies for projectors at the single, fixed distance 
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from the baffle which was used in this study. The distance of the projector from the 

baffle is an important parameter which should be investigated. 

xx 



CHAPTER I 

INTRODUCTION 

A. Introduction 

Transducer-baffle interactions play a critical role in the design of transducers used 

in underwater applications, because receiving and transmitting transducers are often 

mounted on the hull of a ship, which acts as an elastic baffle. The baffle can change the 

fluid loading on the transducer which may greatly affect the operation of the transducer, 

e.g., altering its directivity. For the present research the behavior of a transducer in the 

vicinity of a fluid-loaded elastic baffle will be investigated, using finite element and 

analytical techniques. This research focuses primarily on two questions: (1) how does the 

baffle affect the transducer and (2) how does the transducer affect the baffle. A 

secondary focus will be to determine how best to model the transducer, i.e., under what 

conditions can it be treated as an ideal source. 

The investigation of the baffle's effect on the transducer will be accomplished by 

studying the transducer's directivity pattern and transmitting voltage response (TVR) and 

comparing it to the free-field results.   The investigation of the transducer's effect on the 

baffle will be accomplished by examining the normal velocity and total pressure on the 

surface of the baffle and the displaced shape of the baffle. In determining how to model 

the transducer, the results obtained using ideal sources will be compared to those obtained 

using finite (realistic) sources. 



Previous studies of transducer-baffle interactions either approximated the 

transducer as an ideal line or point source, or approximated the baffle as a rigid boundary 

condition. The present work employs a baffle geometry that is realistic for underwater 

acoustic applications and is unique because it models the elastic response of the baffle, the 

piezoelectric processes in the transducer, and the transducer-baffle interaction through the 

surrounding water. In this study the above effects are modeled by using finite elements. 

The finite element code used in this study is SARA [1], developed at Bolt, Beranek 

and Newman (BNN). There are two-dimensional (2D) and three-dimensional (3D) 

versions of this code, both of which include piezoelectric elements. The 3D version was 

developed only recently and experience with the use of this code is limited.   Therefore, in 

planning the present study it was decided to start with simple transducer-baffle 

configurations which could be modeled with the 2D code. Also, one of the configurations 

chosen could be independently modeled with an analytical modal expansion. Comparisons 

between the modal expansion and finite element results were a very useful check during 

the initial development of the finite element program. 

The two transducer-baffle configurations chosen for the present study are a plane 

strain configuration in which the baffle is an infinite cylindrical shell, and an axisymmetric 

configuration in which the baffle is a finite cylindrical shell with hemispherical end caps. 

For the plane strain model two different sources were used. One source is a piezoelectric 

transducer configured as a segment of an infinite cylinder parallel to the shell (Figure 1.1a) 

while the other is an ideal line source (Figure 1.1b). For the axisymmetric model there 

were also two sources. One is a finite ring transducer (Figure 1.2a) while the other is an 

ideal ring source (Figure 1.2b). All of the sources are driven continuously. Although in 

practice sources are generally pulsed, it is advantageous to have a continuous drive on the 

sources in the models because it allows one to look at the normal velocity and total 



pressure profiles on the surface of the baffle as standing wave patterns. In each case the 

cylindrical shell has an outer to inner radius ratio=1.08. The total length to outer radius 

ratio of the axisymmetric configuration was selected to correlate with an experimental 

effort currently taking place at Georgia Institute of Technology, but the baffle thickness 

was increased for modeling simplicity. 

B. Background 

Sound that is radiated from transducers mounted on or near elastic baffles will be 

influenced by the baffle. The radiated energy which strikes the baffle will then be 

reflected, transmitted, or absorbed. The fate of the incident acoustic wave when it strikes 

the baffle depends on many parameters, one of which is the material of the baffle. A wave 

incident upon an elastic baffle may excite the structure. An elastic structure has many 

natural modes of vibration, and if the structure is excited at a natural mode, large 

displacements will occur for even a small excitation. If the elastic structure is excited at a 

frequency other then a natural mode, the structure will still vibrate but with much smaller 

displacements. Sound will be radiated into the surrounding medium from both the 

vibrating transducer and the vibrating structure. The pressure-field resulting solely from 

the vibration of the structure is referred to as scattered pressure, whereas that radiated and 

scattered by the combination of the vibration of the structure and the motion of the 

transducer is referred to as total pressure. There will be interaction between the 

transducer and the baffle that may affect the directivity pattern and the transmitting 

voltage response of the source. The amount of interaction between the source and the 

structure depends on many parameters, such as: the source size, the source's location in 

reference to the structure, the driving frequency of the source, the geometry of the 

structure, the material of the structure, and the size of the structure. In determining the 



amount of interaction between the source and the structure all of the above parameters are 

initially defined; however, several different source sizes are investigated. 

To investigate this problem, it is important to understand the concept of scattering 

because the sound radiated by the transducer will be scattered by the baffle. Scattering 

means multiple reflections in many directions. For an elastic body, there are four basic 

contributions to the scattered field: diffraction echo (creeping waves), specular reflection, 

elastic echo (reflection-transmission inside the scatterer), and scattering due to elastic 

waves in the shell. To have a good understanding of what is happening, we can use the 

example of a wave propagating in the medium and then striking a cylinder in a direction 

perpendicular to the circumference (Figure 1.3). Upon impact the wave splits into two 

waves, one traveling counterclockwise and the other traveling clockwise, both around the 

circumference of the cylinder in the external fluid. These circumferential waves travel at a 

slightly slower speed then the speed of sound in the external fluid and are called creeping 

waves. The creeping wave radiates into the external fluid as it travels around the shell, 

although this radiation is usually smaller than the specular echo.   A specular reflected 

wave is a wave that propagates in a single direction. It is a direct reflection from the point 

of impact on the cylinder. An elastic echo is a reflection from the interior of the cylinder. 

An elastic echo only occurs if the incident wave penetrates the cylinder and then re-exits. 

The percentage of incident wave that penetrates the interior of the cylinder is determined 

by the impedance mismatch between the two mediums.   For this study, there is a large 

impedance mismatch between the cylinder and the enclosed vacuum therefore, the 

contribution of the elastic echo is virtually insignificant. Finally, there will be elastic waves 

in the shell. For a thin shell two waves will exist: a fast, extensional wave, and a slow, 

flexural wave. When the speed of the elastic wave is greater than the speed of sound in 



the surrounding medium (water), this wave will radiate back into the water as it travels 

around the shell. 

Although the baffle will scatter sound when the transducer excites it, the sound 

waves may be evanescent, i.e., they may decay exponentially with distance, so that no 

energy reaches the far-field. The amount of far-field radiation produced by the baffle, due 

to the propagating waves in the baffle depends on the wave speeds.   When the speed at 

which the wave travels is faster than the speed of sound in the surrounding fluid, the wave 

is said to be supersonic. Supersonic waves tend to be good radiators. When the speed at 

which the wave travels is slower than the speed in the surrounding fluid, the wave is said 

to be subsonic. Subsonic waves tend to be poor radiators. 

Another parameter that is of equal importance as the wave speed, in determining 

the efficiency of a radiator, is the mode of vibration, i.e., the displaced shape of the 

structure. For a transducer to radiate efficiently, it has to be well coupled to the 

surrounding fluid.   An example of a mode that is well coupled is a monopole, which is 

also referred to as a breathing mode. A monopole moves uniformly in phase and is a good 

radiator because it produces a net volume change. 

The modes of vibration of the baffle depend on the types of waves that propagate 

in it. Because the baffle is an elastic material, it can support two waves, a longitudinal 

wave and a shear wave. A longitudinal wave (also called a dilatational wave) produces a 

particle displacement in the same direction as that in which the wave is traveling. A shear 

wave (also known as a transverse wave) produces a particle displacement that is 

perpendicular to the wave propagation direction. The longitudinal and shear waves will 

combine in the thin cylindrical structure to form two distinct modes of vibration, a flexural 

and an extensional mode. The thin cylindrical structure acts as a waveguide. Any 

waveguide mode in a thin plate is referred to as a Lamb mode. For a cylindrical shell the 



phase velocity for the lamb modes is a function of the direction of propagation. For 

propagation around the circumference, the extensional and flexural phase velocities can be 

approximately determined from the equivalent expressions in a flat plate [2]. However, 

propagation along the axial direction is much more complicated. Only the symmetric 

Lamb (extensional) mode exists below the ring frequency of the cylindrical baffle.   Above 

the ring frequency both Lamb modes exist, and the cylindrical shell may be approximated 

as an equivalent flat plate [3]. For a thin plate, the two lowest Lamb waves are the 

extensional wave (also known as a quasi-longitudinal wave) and the flexural wave. The 

extensional wave is a symmetric Lamb wave; it has a particle displacement that is in the 

plane of the plate and produces a stretching, motion. The extensional wave is a fast 

propagating wave in steel. The speed at which this wave propagates is a function of the 

modulus of elasticity of the material. The flexural wave is the first antisymmetric Lamb 

wave; it has a particle displacement that is out of plane and produces a bending motion. 

The flexural wave is dispersive and propagates at a much slower speed than that of the 

quasi-longitudinal wave. The speed at which the flexural wave propagates in the plate is a 

function of frequency, Young's modulus and Poisson's ratio of the material; as well as the 

thickness of the plate. 

C. Finite Elements 

Finite elements will be used in this study to model the behavior of a transducer in 

the vicinity of a baffle. The two types of models used are a plane strain model and an 

axisymmetric model, both of which are two-dimensional. A plane strain model is one in 

which there is no variation of strain (displacement) along the length of the geometry, an 

example of this is a plate that is very long in one dimension. A plane strain model is 



informative for examining the combined radial and circumferential motion. An 

axisymmetric model, on the other hand, has no variation of strain around the 

circumference. This model is informative for studying the combined radial and axial 

motion. 

D. Configuration 

To examine both the axial and circumferential vibration using two-dimensional 

models, two different configurations are required. The first configuration (Figure 1.1a and 

Lib) is a plane strain model in which the baffle is an infinite, homogeneous, isotropic, 

elastic, hollow steel cylinder enclosing a vacuum and surrounded by water. The cylinder 

has an inner radius a=31.75 cm and an outer radius b=34.29 cm, with an outer to inner 

radius ratio of 1.08. The diameter was selected to correlate with an experimental effort 

currently taking place at Georgia Institute of Technology. However, the baffle thickness 

was increased from b/a= 1.008 to b/a=1.08 for modeling simplicity. The material losses 

will be neglected. The plane strain model is infinite in the z-direction; therefore all 

parameters are independent of the z coordinate. For the plane strain model, several 

different sound sources will be investigated, all of which are infinite in the z-direction. 

The first sound source is an ideal line source located 36.83 cm from the center of the 

cylinder. It is dimensionless and has a prescribed volume velocity. The volume velocity is 

specified as that required to give a root mean square (rms) pressure of 20 Pa at 1 m in the 

free-field for a 1000 Hz signal. The three other sources are made of a piezoelectric 

material and are driven with a voltage. Each of the piezoelectric sources is a cylindrical 

segment that is specified by the angle it subtends at the cylinder axis, with an inner radius 

of 36.83 cm and a wall thickness of 1.27 cm (these dimensions were arbitrarily chosen). 



The three sources modeled are 4.5, 9.0, and 18.0 degrees in arc. From this choice of 

angles, it is hoped to determine a limiting arc dimension at which the source behaves 

ideally. All sources are symmetric about zero degrees.   Each piezoelectric source is 

driven by the voltage required to produce the same volume velocity as the ideal line source 

in the free-field. The models will be exercised at two frequencies: 1376 Hz (ka=2, where 

k is the wave number and a is the radius of the cylinder), and 3439 Hz (ka=5). 

Verification of the finite element model based on an ideal line source will be accomplished 

by comparing the magnitude of the normal velocity of the outer surface of the cylinder and 

the total pressure on the outer surface of the cylinder to results obtained from an analytical 

model. Upon establishing the validity of the finite element model, comparisons will be 

made between the results obtained with piezoelectric sources and the ideal line source, 

both in the near-field and in the far-field. In the near-field, the real and imaginary normal 

velocity and the total pressure on the outer surface of the cylinder will be compared for 

the different sources. In the far-field the scattered pressure and the total pressure will be 

compared for the different sources. In addition, the displaced shape of the baffle will be 

displayed. With the finite element models, the electromechanical transduction process is 

modeled directly. In addition, both compressional and shear waves are included in the 

elastic cylinder. 

The second geometrical configuration (Figure 1.2a and 1.2b) that will be used in 

the study of transducer-baffle interaction is an axisymmetric model. In the axisymmetric 

model the baffle is a finite cylindrical shell with hemispherical end caps made of a 

homogeneous, isotropic, elastic material (steel). Like the previous configuration the finite 

baffle is submerged in water and encloses a vacuum and again all material losses will be 

neglected. The total length of this baffle is 195.58 cm, while each end cap has an outer 

radius of 34.29 cm. The axisymmetric baffle has a length to outer radius ratio of 5.7. The 
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ratio of the total length to the outer radius of the axisymmetric baffle was chosen to 

correlate with an experimental structure at Georgia Institute of Technology. As in the 

plane strain model the baffle thickness was increased to 2.54 cm.   Although the structure 

thickness has been increased, it is still relatively thin because the baffle thickness is much 

less than the wavelength in steel. For this configuration two kinds of sound sources will 

be investigated. The first is an ideal (dimensionless) ring source. The ideal ring source 

has a unit volume velocity. The ideal ring source will be located 36.83 cm from the axis of 

symmetry of the cylinder, and at three different locations along the length of the baffle 

(marked Pi, P2, and P3 in Figure I.2b). All locations will be referenced to the center of 

the baffle. They are defined as follows: (PI) center of the length, (P2) just prior to the 

intersection of the cylinder and the end cap, 58.42 cm off the center, and (P3) the center 

of the end cap. The other source will be a finite piezoelectric ring source that is also 

located 36.83 cm from the axis of symmetry of the cylinder. The dimensions of the 

piezoelectric source are arbitrarily chosen to be: length=5.08 cm and thickness=2.54 cm. 

The source is driven with a unit voltage. The ideal ring source and the finite piezoelectric 

ring source do not produce the same volume velocity, however, direct comparisons can be 

made between the two sources because everything is linear and can be normalized. As 

before, the models will be exercised at two frequencies, 1376 and 3439 Hz. Comparisons 

of the finite piezoelectric source to that of the ideal ring source will be made both in the 

near-field and in the far-field. In the near-field the magnitude and phase of the normal 

velocity and the total pressure on the outer surface of the baffle will be compared for the 

two situations. In the far-field, for the two sound sources, the scattered pressure and the 

total pressure will be compared. To help understand the effects of the baffle on the 

transducer, it is important to look at the individual sources both in the vicinity of the baffle 

and also under free-field conditions. 



E. Summary 

By using finite element and analytical models this study will show the interaction 

that takes place between the sound source and the baffle. The baffle is a homogeneous, 

isotropic, elastic steel structure. Several piezoelectric sound source geometries will be 

used at two distinct frequencies. Two baffles will be investigated: an infinite cylindrical 

shell and a finite cylindrical shell with hemispherical end caps. In both cases a cylindrical 

geometry was chosen for the baffle, for it best simulates the hull of a ship or a submarine. 

Both the effects of the source on the baffle and the effects of the baffle on the sound 

source will be explained. For a better understanding of how the baffle affects the sound 

source, the study will show how the structure affects the transducer's directivity pattern 

and the transmitting voltage response of the transducer. Also, because the piezoelectric 

sound sources are driven with a fixed voltage and are not assumed to move in a specified 

manner, the source's performance in the free-field will be compared to the performance 

when the source is near the structure. For a better understanding of how the source 

affects the baffle, the scattered far-field pressure will be presented along with the displaced 

shapes of the baffle for the different sources. 
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Figure 1. la Plane strain model of a piezoelectric source in the vicinity of the 
cylindrical structure. 
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Figure 1. lb Plane strain model of an ideal line source in the vicinity of the cylindrical 
structure. 
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Figure 1.2a Axisymmetric model of piezoelectric source located in the vicinity of a 
cylindrical structure with hemispherical end caps. 

13 



0=0 

water 

line of symmetry. 

. y 
A 

s« 

ideal ring source 

steel cylindrical baffle 

Figure 1.2b Axisymmetric model of an ideal ring source located in the vicinity of a 
cylindrical structure with hemispherical end caps. 
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Figure 1.3 All of the components that will make up the scattered pressure field for the 
case of an incident cylindrical wave on an elastic cylindrical structure. 
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CHAPTER II 

LITERATURE REVIEW 

Much insight may be gained into transducer-baffle interaction by studying past 

publications on similar problems and investigating the method of solution. Perhaps the 

simplest elastic scattering problem is the scattering of a plane wave by curved elastic 

geometries. There have been many publications on this topic, and most have focused on 

cylindrical geometries. In 1951 Faran [4] looked at the scattering of a plane wave by a 

solid elastic cylinder. Ten years later Doolittle and Überall [5] investigated scattering of a 

plane wave incident on an elastic cylindrical shell. The study presented general solutions 

for the sound fields obtained from a modal expansion. In 1967, Ugincius and Überall [6] 

investigated scattering of a plane incident wave by a cylindrical shell immersed in a fluid 

and enclosing another fluid. The methodology that Ugincius and Überall used in 

determining the scattered field is as follows: first they used a modal expansion [7] to 

obtain the normal mode solution for the scattered pressure, then they applied the 

Sommerfeld-Watson transformation [8] to the normal mode solution. Borovikov and 

Veksler [9] used a different approach in their study of scattering of sound waves by 

smooth elastic cylindrical shells. In determining the scattered field, the combination of 

two waves, the specular reflected wave and the symmetrical Lamb wave of zero order 

(also referred to as the quasi-longitudinal wave) were accounted for, and all other waves 
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were neglected.   The authors used the Geometrical Theory of Diffraction [10] to obtain 

the far-field scattered pressure. All of the above references assumed that the cylinder 

(baffle) was infinite in length and that the source was located in the far-field, so the 

incident sound wave was planar. 

Another class of research related to the present study is that of acoustic radiation 

from a source on a cylinder. In 1964 Greenspon and Sherman [11] derived expressions 

for the sound pressure generated by rectangular pistons on a rigid cylinder at large wave 

numbers. In this research the authors simplified the problem by neglecting the thickness of 

the pistons. In 1966, Junger [12] conducted a study of surface pressures generated by 

pistons on large cylindrical baffles for large ka. Junger also employed the Sommerfeld- 

Watson transformation for far-field calculations but for the analysis in the near-field he 

used the Kirchhoff approximation [13] because of the slow convergence of the 

Sommerfeld-Watson series for small distances from the source. In 1981, Liu and 

Rumerman [14] published a report on the effects of adjacent elastic structures on radiation 

by acoustic volume sources. In this report they investigated both point sources and line 

sources on several different baffle configurations. Their investigation of a point source on 

an infinite cylindrical shell relates directly to the present study. In the above reference, 

they mathematically modeled the pressure field as the sum of the pressure radiated when 

the shell is considered to be rigid and the pressure radiated due to the vibration of the 

shell. Their mathematical model began with the equations of motion for a thin elastic 

cylindrical shell. A displacement for the cylindrical shell was assumed, then substituted 

back into the equation of motion upon which a Fourier Transform [15] was applied. Their 

research was not concerned with the effects of the baffle on the source but investigated 

only the effects of the source on the baffle. More recently, in 1991, Butler and Porter [16] 
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studied the acoustic radiation from a source on the surface of an elastic cylinder. The 

authors used a Fourier Transform solution that was specialized for the case of "a 

transparent source or a transducer source small compared to the wavelength of sound in 

the medium" [16].   Numerical results for a 3-D study of a small source on a thin walled 

elastic infinite cylindrical tube were given. They studied the far-field scattered pressure for 

two primary source configurations: the first solution assumed that the source was 

transparent (this totally ignores the source's dimensions); the second solution assumed a 

small rigid source (this ignores the thickness of the source). Note that in all of the 

references mentioned above, many assumptions were made in order to solve the problem. 

The research presented here includes a piezoelectric source that has finite dimensions. 

The piezoelectric source is driven with a voltage and no assumptions were made about its 

vibration. 

Although the above references were all concerned with infinite shells, many studies 

have been published on scattering from submerged finite shells. However, these studies 

do not include a realistic model for the acoustic source. A fairly recent publication in this 

group is that by Miller, Bao, and Überall [17] in which they investigated acoustic 

scattering from elastic cylinders and cylindrical shells of finite length. Their investigation 

was both theoretical and experimental. For their theoretical model, they used a finite 

element code called SIERRAS that solved the coupled fluid-structure interaction problem. 

This study did not attempt to model any transduction process in the source or transducer- 

baffle interaction. 

These are only a sampling of the publications on the scattering of a plane wave by 

a cylindrical elastic target, radiation from acoustic sources located on cylindrical 

geometries, and acoustic scattering from elastic cylindrical geometries of finite length. 
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Several different methods have been developed for determining the scattered pressure, 

and these methods may also be employed to solve the current transducer-baffle interaction 

problem.   Four methods commonly used for determining the scattered pressure are: 

Modal Expansion, the Sommerfeld-Watson transformation, Fourier Transforms, and the 

Geometrical Theory of Diffraction. 

A. Methodology 

The modal expansion method begins with a modal decomposition of the incident 

wave in the coordinate system of the structure in which the wave is incident upon. 

Specifically for the plane strain model, each mode is a particular solution of the wave 

equation in cylindrical coordinates, with the coordinates r and 0 separated. The 0 

dependence can also be considered as a Fourier series [18] which is the result of the 

periodic nature in the 0 direction. With general expressions for the incident, scattered and 

transmitted pressure, which are in the form of modal expansions, the appropriate 

boundary conditions are applied and the unknown coefficients are solved for explicitly. 

The scattered pressure is a summation over the number of modes and an exact solution 

may be obtained with the aid of a computer. Additional terms are included in the 

summation until convergence is reached. 

The Sommerfeld-Watson transformation converts the modal expansion for the 

scattered pressure into a residue series [19] at poles located at the zeroes of a determinant 

in the complex plane. This technique is used particularly at high frequencies where it takes 

many modes in the scattering summation for the function to converge while it only 

requires the contribution of a few poles in the residue series for convergence. 

19 



The Fourier Transform solution is similar to the modal expansion in that the 

radiated and scattered sound is expanded in a cylindrical coordinate system. A Fourier 

Transform with respect to the axial z coordinate is applied to the three-dimensional 

differential Helmholtz equation [20]. Upon integration over z, the transformed differential 

Helmholtz equation becomes two-dimensional. Taking advantage of the angular 

periodicity, the two-dimensional problem is further reduced to one dimension. Similar 

Fourier Transforms can be performed with respect to the z and 0 coordinates for the 

elastic waves in the cylindrical shell. The boundary conditions can then be applied 

separately for each 8 Fourier component. The inverse Fourier Transform is then used to 

obtain the scattered pressure. 

The Geometrical Theory of Diffraction (GTD) is based on geometrical optics 

which describes the rays along which waves travel. When constructing the pressure field 

with a ray representation, one must determine all of the rays from the source location to a 

field point, including the direct ray, refracted rays, and reflected rays.   The direct ray, 

refracted rays, and reflected rays are directly analogous to rays in optics. The Geometrical 

Theory of Diffraction introduces additional waves to approximately describe the spreading 

of waves, for example, GTD includes creeping waves. The laws of reflection and 

refraction are derived from Fermat's principle [21], also known as the Least Path principle 

and for each ray the optical length must be determined. This method gives insight into the 

behavior of the radiated and scattered fields; however, it is limited to high frequencies. 
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C. Summary 

It has been shown that a lot of interest lies in this area of research and that in the 

past much effort has been placed on investigating the scattering of a plane wave by a 

cylindrical elastic target, radiation from acoustic sources located on cylindrical geometries, 

and acoustic scattering from elastic cylindrical geometries of finite length. Although much 

has been gained from the past works, there is still more to be gained from the present 

research. 
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CHAPTER in 

MODELS 

A. Introduction 

In the study of transducer-baffle interactions two types of models will be utilized, 

an analytical model and a finite element model. Several configurations will be considered, 

but only the plane strain case of an ideal line source located in the vicinity of a water- 

loaded, thin, hollow, steel, cylindrical baffle will be solved with both an analytical and a 

finite element model. A confirmation of the finite element model will be accomplished by 

investigating the above case using the two different solution methods and comparing the 

results. The results predicted by the analytical model are used to verify the finite element 

results because this method of solution has been applied to similar geometries (as shown in 

the literature review) and the predictions were experimentally verified. All of the other 

configurations will be investigated with finite element models only. The following is a 

description of the theoretical basis of the analytic model: 

B. Theory 

The general wave equation for elastic waves in an extended homogeneous 

isotropic solid is expressed by Love [22] as: 

(A + 2G)VV. Z-G(Vx$=pJ-4 (1) 
° dt1 
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where X and G are the first two Lame coefficients, £ is the displacement vector and p0 

is the density of the material. The second Lame coefficient, G, is the shear modulus. 

The displacement is assumed to be the sum of two displacements, one associated 

with dilatational waves and the other associated with shear waves. Thus the displacement 

is of the form: 

£=-V$}+VxA (2) 

where 0 is a scalar potential and A is a vector potential. From the Helmholtz theorem 

[23] which states that a vector field can be expressed as the sum of an irrotational field 

having a vanishing curl and a solenoidal field having a vanishing divergence, the wave 

equation can be separated into two components: 

-> 
(a) irrotational waves for which V x £ = 0 

-> 
(b) solenoidal waves for which V • B, - 0 

For the irrotational wave one obtains 

VV = 7^f (3) 

where the dilatational wave speed in the solid is 

Po Po 
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and B is the bulk modulus. This equation states there can be no transverse motion in the 

medium. For the solenoidal wave one obtains 

?'A = ±4 (5) 
Ct dt2 

f~< 
where C) = — (6) 

is the shear wave speed. This equation says that there will be no displacement in the 

direction in which the wave travels, i.e., the wave is entirely transverse. This wave is also 

referred to as a dilatationless wave. 

For the line source in water, the sound field is a simple cylindrical wave which is 

expressed as a function of distance from the axis. However, in order to apply the 

appropriate boundary conditions later on, the equation for the field pressure must be 

translated to a (cylindrical) coordinate system whose axis coincides with the axis of the 

cylindrical baffle. The incident cylindrical wave and the scattered wave can each be 

expressed as a Fourier series in the polar angle 0 as follows: 

P = >P0iy^ V)cosM/w(Ar)cos(H0) (7) 
n 

P=PTe C H^{kr)coin0) (8) 
n 

where 
e„=2, n>\ 
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and d is the distance from the center of the cylinder to the location of the line source, k is 

the wave number in the surrounding fluid, r is the distance to some field point referenced 

to the center of the cylinder, n is the number of modes of vibration, H^2' is the Hankel 

function of the second kind, Jn is the cylindrical Bessel function, and Cn is an unknown 

coefficient to be determined from the boundary conditions. P0 is the pressure amplitude 

and is related to the source volume velocity, QL, by: 

P' = QL<°P (9) 

where co is the angular frequency and p is the fluid density. 

In the cylindrical layer there can exist both dilatational and shear waves. The 

scalar potential 0 is symmetric about 6= 0 degrees and is independent of z, as follows: 

</>= P0Z
er[K^(kLr) + BaYn{kLr)]coin9) (10) 

n 

where A„ and Bn are unknown coefficients, kL is the dilatational wave number, and Yn is 
-> 

the cylindrical Neumann function. The vector potential A is antisymmetric about 0-0 

degrees so that the displacement derived from it will be symmetric about 0=0 degrees 

and is represented as follows: 

A= PoZer[DnJn(fc/) + EJ„{k/)]MnO) (11) 
n 

where Dn and En are unknown coefficients and kt is the shear wave number. Inside the 

cylinder (in the enclosed fluid medium) there is a compressional wave expressed as: 
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pf=polLer'KJ.Mwfati (12) 

where M, is an unknown coefficient and kf is the wave number in this fluid. The 

coefficient associated with the Neumann function (also referred as the Bessel function of 

the second kind) is zero because the origin is in the sound field domain and the solution 

must be bounded at r=0. The following boundary conditions are applied at the inner (r=a) 

and outer (r=b) surfaces of the cylinder. 

(i) normal displacements are continuous 

(ii) normal stresses are continuous 

(iii) tangential stresses are zero 

After the boundary conditions are applied, there will be six equations and six unknowns 

(An, Bn, Cn, Dn, En, and Mn), and Cramers rule [24] may be employed to solve for the 

system of linear equations for the unknown coefficients. Once Cn is known the scattered 

pressure will be fully defined. 

The scattered pressure is as follows: 

P =P If C #(2)(Ar)cosM o     n n  n 
n 

(13) 

Cn can be written as the quotient of two 6x6 determinants, C„ = The expressions 

for these coefficients can be found in Neubauer*s text on Acoustic Reflection from 

Surfaces and Shapes [25]. 
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C. Analytical Model 

For an ideal line source located near a hollow cylindrical baffle (figure 1.1b), an 

analytical model was developed based on the modal expansion technique. Existing 

FORTRAN code for back scattering of a plane incident wave from a hollow cylinder with 

air backing (written at Georgia Institute of Technology) was altered to describe a 

cylindrical incident wave because a line source is located near the baffle and the wave 

front curvature cannot be ignored. The analytical model assumes a time dependence of 

e~     . From the analytical model one obtains the normal velocity on the outer and inner 

surface of the cylinder, far-field scattered pressure, far-field total pressure, and the 

pressure at any specified location, all as a function of 6. The following is the information 

necessary for the analytical model: 

the inner radius of the cylinder, 31.75 (cm) 

the outer radius of the cylinder, 34.29 (cm) 

the shear speed in the steel cylinder, 31060 (cm/s) 

the dilatational speed in the steel cylinder, 55940 (cm/s) 

the density of the inner fluid (air), 0.001293 (g/cm3) 

the density of the outer fluid (water), l(g/cm3) 

the sound speed in the inner fluid (air), 34400 (cm/s) 

the sound speed in the surrounding fluid (water), 148200 (cm/s) 

excitation frequencies, f, of 1376 and 3439 (Hz) 

the location of the ideal line source referenced to the cylindrical axis, 36.83 (cm) 

the pressure amplitude of the source, P0 = (Pa) 

6 start, finish and step are 0.0, 360.0, and 5.0 (deg), respectively 
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D. Finite Element Model 

The finite element program SARA-2D [1] is used for the combined modeling of 

the finite baffle and the piezoelectric source, including the interaction between the two. 

The following description of SARA-2D is taken from information contained in a user's 

manual.   SARA-2D solves the time harmonic problem of a structure submerged in an 

infinite fluid subjected to incident traveling waves or to displacements and/or forces within 

the structure. SARA stands for Structural Acoustics Response Analysis and the 2D refers 

to the two-dimensional version of the program. Finite elements are used to model both 

the structure and a portion of the fluid field (see appendix A); conventional displacement 

elements are used for the structure, and pressure-type acoustic elements are used for the 

external near-field. The remaining unbounded external fluid is modeled with infinite 

elements that include in their formulation the outward traveling and decaying wave. The 

coupled fluid-structure model results in a complex, symmetric, banded set of equations 

that can be efficiently solved by Gaussian elimination [26] for the structural displacements 

and fluid pressures. From the normal velocities and pressures at the fluid-structure 

interface, the near-field and far-field response is obtained using the Helmholtz integral 

equation [20]. All loading and response quantities are represented in a Fourier series [18] 

with a time dependence of <?"*. The equations for the Fourier modes are uncoupled and 

each is solved separately for the coefficients of the response quantities. The actual 

response is obtained using superposition of modes. A frontal solver is used to process the 

equations element by element, alternating the assembly and elimination phases. 

28 



E. Elements 

In both the axisymmetric and plane strain models quadrilateral elements were used 

for the baffle. Each node of a quadrilateral element has two translational degrees of 

freedom. For the near-field fluid and the infinite fluid, fluid and infinite fluid elements 

were used, each of these have only one degree of freedom, pressure. The sources are 

modeled with piezoelectric elements, each node of which has three degrees of freedom, 

two translations and one electric potential. Coupling elements were used at the fluid- 

structure interfaces. A coupling element translates between the displacement degree of 

freedom of the structure and the pressure degree of freedom of the fluid. 

When constructing a finite element model it is important that the model contain 

enough elements to simulate the problem. On the other hand, if there are too many 

elements, the model is unnecessarily inefficient. As a rule of thumb, the number of 

elements required to accurately model the behavior is eight elements per wavelength at the 

highest frequency of interest. The current configurations contain several wavelengths and 

the acoustic wavelength will be used in determining the number of elements, then a mesh 

convergence study will be conducted to determine if the model accurately simulates the 

problem. The mesh convergence study is important because the acoustic wavelength is 

not the shortest wavelength in the system. In determining the number of elements needed 

for the plane strain model, first it is necessary to compute the mean circumference, c 

c = 2nr (14) 

where r is the mean radius of the cylinder. In this model, r = 0.3302 m, thus c = 2.075 

m. To have eight elements per wavelength at 3439 Hz, 
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1500.0        nncAe    ,, 
= 0.0545 m/elements 

8     (3439.0)8.0 

Thus the necessary number of elements to accurately model the cylindrical baffle is 

^1 - 39 etements. The method of determining the nnmher of elements for the 
0.0545 ö 

axisymmetric model is the same as above only there are two different regions to consider: 

the length of the cylinder wall, and the end caps. For this model, it was determined that 

39 elements were needed for each end cap and 24 elements were needed for the cylindrical 

body. The results of the mesh convergence study are shown in Table 3.1 which represents 

the number of elements per every wavelength in the system for both the plane strain and 

axisymmetric models. 
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TABLE 3.1 

Number of elements/wavelength used in the finite element models. 
Plane Strain Model: 

WAVE TYPE CIRCUMFERENCE 
OF STRUCTURE 

RADIALLY   | 

Acoustic in water 16 6 
Flexural in structure 10 1 

Extensional in 
structure 

59 

Flexural in projector 5 
Extensional in 

projector 
37 

Axisymmetric Model: 
|       WAVE TYPE CIRCUMFERENCE OF 

END CAPS 
RADIALLY LENGTH OF 

STRUCTURE 
1     Acoustic in water 33 6 6 

Flexural in structure 20 4 
Extensional in 

structure 
117 23 

Flexural in projector 6 

1       Extensional in 
1           projector 

39 
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For the plane strain and axisymmetric finite element models, the following 

assumptions were made: 

• material properties were linear 

• no losses 

In addition to the above assumptions, the plane strain model assumed no variation of 

displacement along the length (z-axis)- zero axial displacement and the axisymmetric 

model assumed no variation of displacement in x-direction at x =0 for any y position. 

F. Material Properties 

For the finite element model each piezoelectric source is Navy Type I, with 

material properties taken to be those found in Wilson [27]. The properties specified in the 

models that defined the piezoelectric sources are shown in Table 3.2. In Table 3.2, dy are 

the piezoelectric constants, sjj are the elastic compliance constants measured at constant 

electric field, p is the density, e0 is the permittivity of free space (8.85 X 10~12 

farads/meter), and — are the relative dielectric constants measured at constant strain. 

The directivity of the 4.5 °, 9.0 °, and the 18.0 ° piezoelectric line sources in the free-field 

and driven with the voltages specified in Table 3.1 are shown in Figure 3.1, both for ka=2 

and 5 respectively. All of the sources are omnidirectional at ka=2 and 5, except for the 

18.0 ° piezoelectric line source which begins to show some directivity at ka=5. The 

introduction of directivity is due to the arc length of the source, it is a quarter of the 

acoustic wavelength. The free-field directivity was obtained from the plane strain finite 

element model in which the cylindrical baffle was replaced with fluid and the interior 

vacuum was filled in with fluid (see appendix A for drawing). 
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TABLE 3.2 

The material properties of Navy Type I used in the finite element model. 

PARAMETER VALUE UNITS 

<hi -123X10-12 C/N 

«hi 289X10"12 C/N 

du 496X10*12 C/N 

4 12.3X10-12 m2/N 

4 -4.05X10"12 m2/N 

4 -5.31X10-12 m2/N 

4 15.5X10-12 m2/N 

<5 39.0X10"12 m2/N 

So 
730 unitless 

So 
635 unitless 

p 7500.0 kg/nv* 
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The other materials used in the finite element model were found in Kinsler and Frey [28]; 

these values are shown in Table 3.3. 

TABLE 3.3 

The material properties of steel and water used in the finite element model. 

MATERIAL PARAMETER VALUE UNITS 

Steel E 19.5X1010 Pa 

V 0.28 unitless 

P 7700.0 kg/m-* 

Water P 1000.0 kg/m-3 

c 1500.0 m/s 

G. Source Drive 

For the plane strain finite element model one of the sound sources is an ideal line 

source that is infinite in length, radially dimensionless, and uniformly pulsating. In the 

free-field, there will only be an outward traveling wave. The magnitude of the pressure at 

any distance r from the source in the free-field is expressed as: 

\P(r)\ = 
QLc°P Hf\kr) (15) 

where #(2)(*r) = -]=eikr, 
o VT 

found to be 

so that the magnitude of the pressure in the far-field is 
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M'j; QL®P (16) 

Extrapolating the far-field pressure to a reference distance of r = 1 meter gives 

|Pr(l»0| = QL<°P (17) 

The volume velocity of the line source, QL, required to produce a specified sound 

pressure at 1 meter (extrapolated from the far-field) for a 1000 Hz signal is determined as 

follows: 

m- 4P, 
(up 

(18) 

where P0 is the extrapolated pressure at r=l meter. A pressure of 20 Pa was chosen to 

define QL because it is a typical pressure used in the experimental work at Georgia Tech. 

Resulting in a value of QL = 31.73 x 10"06 m3 / s. This volume velocity is used to define 

the ideal line source in both the analytical and finite element model. The following 

information will be used to determine the required voltage for each piezoelectric source to 

produce the same volume velocity as that of the ideal line source. 

• the angular frequency co (rad/sec) 

• the change in volume, AV0 = — (m3) 
co 

• the mean radius of the source, R = 0.3302 (m) 

• the angle the source subtends, 0S, (the three cases observed are 4.5, 9.0, and 18.0 deg 

• the thickness of the sources, t=0.0127 (m) 
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• the arc \ssA of the source, s = (m) 
—~™ lg0 0     , 

• the averse «oss-sectional area of each source, a = st (m2) 

• the volumeper unit length of each source, V0=a*\ (m3) 

• the electric Mi in the poled direction, £T3 = -^ (C/m2) 

• the piezoelectric coefficients, d3l = -123 x 10~12 and d33 = 289 x 10~12 (C/N) 

• the strain in iex, y, and z direction, S, = d^Ey, S2 = rf31£3, and S3 = </33£3 

AV 
• the volumetric strain —^ = £, + 5^ + Sj 

Definition (II) assumes that the stresses and corresponding strains due to the fluid loading 

are negligible. TMs is a reasonable assumption since the strain is predominately due to the 

electric field. He voltage is determined to be 

<f>o = 

AV 
 o 
V .   o . 

2d3l+d33 
(volts). (19) 

The required voltage to produce the same volume velocity as that of the ideal line source 

is shown for each finite piezoelectric source at the two frequencies of interest in Table 3.4. 

Note that the ideal line source is specified by a volume velocity and the piezoelectric 

sources are driven with a voltage. The velocity of the piezoelectric surface and the 

applied voltage are related by 

vetocity^j^y'ü) (20) 
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where Fa is the voltage amplitude. The relationship between the ideal line source drive 

and tk£of the finite piezoelectric drive shows a 90 ° phase difference. This 90 ° phase 

difference will be taken into account in presenting the results. 

TABLE 3.4 

The respired voltage for each source to produce the same volume velocity as the ideal line 
source. 

INCLUDED ANGLE OF 

SOURCE (degrees) 

ELECTRIC DRIVE 

(Volts) 

FREQUENCY 

(Hertz) 

4.5 1706.0 1376 

4.5 682.0 3439 

9.0 853.0 1376 

9.0 342.0 3439 

18.0 427.0 1376 

18.0 172.0 3439 

H. Verification of the Finite Element Model 

Comparisons are made between the analytical model and the finite element model, 

which is plane strain, that contains the ideal line source. The following data will show the 

normal velocity and the total pressure on the outer surface of the cylinder due to the line 

source «station. All of the above mentioned results are at the two frequencies, 1376 and 

3439 Hz. The geometry for both the analytical and finite element model is shown in figure 

1. lb, which shows that the source is symmetric about zero degrees. The line source used 

to predict the following data is dimensionless, it is an ideal line source. Figures 3.2 

through 3.5 show the normal velocity on the outer surface of the cylinder, Figures 3.6 
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through 3.9 stow the total pressure on the outer surface of the cylinder. The finite 

element and analytical results differ the most at zero degrees and this percent difference 

remains within 1 dB. A good error estimate for the analytical and finite element models is 

not known hraace an explanation of the difference at zero degrees between that of the finite 

element and analytical results cannot be given. However, this error is small and the results 

from the finite dement model correlate well with the results from the analytical model. 

Therefore, from the data it is safe to say that the finite element model is accurate and the 

remainder of the research will be based on the finite element results. 
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90 
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Figure 3.1 Directivity pattern of three piezoelectric line sources under free-field 
conditions at ka=2 (a) and ka=5 (b). The piezoelectric line sources are: 4.5 ° (solid 
line), 9.0 ° (dotted line), and an 18.0 ° (dashed line). 10 dB/division. 
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Figure 3.2 Magnitude of normal velocity on the outer surface of the cylinder versus 
theta at ka=2, for an ideal line source excitation located at zero degrees.  The solid 
line is the analytical solution and the dotted line is the finite element solution. 
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Figure 3.3 (a) real normal velocity on the outer surface of the cylinder (b) imaginary 
normal velocity on the outer surface of the cylinder, both are at ka=2 and are due to 
an ideal line source excitation located at zero degrees.  The solid line is the analytical 
solution and the dotted line is the finite element solution. 
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Figure 3.4 Magnitude of normal velocity on the outer surface of the cylinder at ka=5 
for an ideal line source excitation located at zero degrees.  The solid line is the 
analytical solution and the dotted line is the finite element solution. 
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Figure 3.5 (a) real normal velocity on the outer surface of the cylinder, (b) imaginary 
normal velocity on the outer surface of the cylinder, both are at ka=5 for an ideal line 
source excitation located at zero degrees.  The solid line is the analytical solution and 
the dotted line is the finite element solution. 
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Figure 3.6 Magnitude of total pressure on the outer surface of the cylinder at ka=2 for 
an ideal line source excitation located at zero degrees. The solid line is the analytical 
solution and the dotted line is the finite element solution. 
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Figure 3.7 (a) real total pressure on the outer surface of the cylinder, (b) imaginary 
total pressure on the outer surface of the cylinder, both are at ka=2 for an ideal line 
source excitation located at zero degrees.  The solid line is the analytical solution and 
the dotted line is the finite element solution. 
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Figure 3.8 Magnitude of total pressure on the outer surface of the cylinder at ka=5 for 
an ideal line source excitation located at zero degrees.  The solid line is the analytical 
solution and the dotted line is the finite element solution. 
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Figure 3.9 (a) real total pressure on the outer surface of the cylinder, (b) imaginary 
total pressure on the outer surface of the cylinder, both are at ka=5 for an ideal line 
source excitation located at zero degrees. The solid line is the analytical solution and 
the dotted line is the finite element solution. 
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CHAPTER IV 

RESULTS and DISCUSSION 

A. Introduction 

The results and discussion presented in this chapter for the plane strain model are 

arranged under the following main topics: 

(1) The normal velocity and the acoustic pressure at the surface of the baffle, and 

the use of this data to determine what elastic waves are excited in the baffle by the 

adjacent projector, 

(2) The far-field pressure directivity patterns for the projector-baffle system and 

comparison with the directivity patterns for the same projector under free-field conditions; 

(3) The transmitting voltage response (TVR) of the projector in the vicinity of the 

baffle and comparison with the corresponding TVR of the projector under free-field 

conditions; 

(4) Comparison of the ideal source to the finite piezoelectric source. 

B. Plane Strain Model 

The elastic waves excited in the baffle are determined from analysis of the 

calculated normal velocity on the baffle surface. Plots of the velocity data show a standing 

wave pattern which is analyzed as follows: 

(1) The separation between adjacent velocity magnitude peaks is determined and 
X 

compared with estimated values of — forflexural and extensional waves in the baffle. 
2 
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(2) The wavenumber spectrum for the normal velocity is calculated and peak 

wavenumbers in the spectrum are related to elastic waves in the baffle. 

It is useful for this analysis to estimate the flexural and extensional wavelengths in 

both the baffle and the projector. Here we assume that the flexural and extensional waves 

have approximately the same phase speeds in the cylinder as in an equivalent thin plate. 

This approximation was introduced in chapter I, section B. The phase velocity of 

extensional and flexural waves in a thin plate [2] are: 

cE=\ 
.PO-"

2
), 

(21) 

Eh2 

Vn/tX-if). 
[a1 (22) 

where E is Young's modulus, v is Poisson's ratio, p is the density, and h is the plate 

thickness. The wavelengths calculated from cE and cF are presented in Table 4.1 in which 

the material properties from Table 3.2 and 3.3 were used. 

Calculated wavelengths. 

TABLE 4.1 

WAVE TYPE ka=2 ka=5 

acoustic in water 1.09 (m) 0.436 (m) 

flexural (in structure) 0.419 (m) 0.265 (m) 

extensional (in structure) 3.81 (m) 1.52 (m) 

flexural (in projector) 0.242 (m) 0.153 (m) 

extensional (in projector) 2.51 (m) 1.00 (m) 
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In Figure 4.1 one fkds the angle between two adjacent magnitude peaks in the cylinder to 

be approximately 35 °, which gives an arc length of 0.209 meters. The arc length is 

equivalent to a haffcwavelength because it is the distance between two peaks on a 

magnitude plot. Tie corresponding real and imaginary velocities are shown in Figure 4.2. 

For the case of ka=5 the angle between two velocity peaks in Figure 4.3 is found to be 

approximately 20 °, which gives an arc length of 0.120 meters. Again the arc length 

represents a half-wavelength and the corresponding real and imaginary velocities are 

shown in Figure 4.4. By doubling these values, we find that the wavelength at each of the 

two frequencies is approximately equivalent to the flexural wavelength calculated in a one- 

inch thick, infinite steel plate. 

Another factor to investigate in the results obtained from the velocity profile is the 

number of wavelengths along the circumference. By dividing the circumference of the 

cylinder by the appropriate wavelength we can determine the number of flexural and 

extensional wavelengths that can exist in the cylinder. For ka=2, there can be five flexural 

wavelengths and one-half of an extensional wavelength around the circumference. For 

ka=5, there can be eight flexural and one-and-one-half extensional wavelengths. From the 

data presented, it is seen that the real normal velocity for ka=2 and 5 (Figures 4.2 and 4.4) 

contains five and eight wavelengths respectively. The above analysis could also be done 

with the total pressure on the baffle surface (Figures 4.5 through 4.8). Therefore, it is 

believed that the dominant waves propagating in the cylinder are flexural. 

An alternate way of analyzing the velocity data is to determine the wavenumber 

spectrum for the normal velocity standing wave pattern. The wavenumber spectrum is a 

result of wave vector analysis and is determined by taking the spatial Fourier Transform 

[15] of the normal velocity profile. A wavenumber spectrum is a representation of wave 

amplitude versus wavenumber and may be used with any type of wave that is a function of 
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space. The tesdt of the wave vector analysis is a wavenumber spectrum in which the 

peaks represent the dominant propagating waves. This analysis was only performed for 

the plane strain case, in which the Fourier Transform is carried out with respect to the 

circumference of the shell. Figures 4.9 through 4.14 show the results of the wave vector 

analysis. At ka=2 theflexural and the extensional wavenumbers are 14.9 and 1.73 m"* 

respectively. From Figures 4.9,4.10, and 4.11 it is seen that the greatest wavenumber is 

approximately 15m"* and that the extensional wave is not significant. At ka=5 the 

flexural and the extensional wavenumber are 23.7 and 4.32 (m"l) respectively; Figures 

4.12, 4.13, and 4.14 show that the flexural wave is definitely the dominant propagating 

wave. When comparing the wave amplitude as a function of wavenumber for ka=2 and 5 

it is seen that the extensional wave is significant at ka=5 and hardly detectable at ka=2. 

This is because at ka=5, the circumference of the cylinder can support a complete 

extensional wavelength and at ka=2, it cannot. A wavenumber of zero corresponds to the 

breathing mode. The modes of vibration in the cylinder are only a function of 

circumferential length because the model is plane strain and therefore there will be no 

coupling between axial and circumferential modes. At both frequencies there are other 

small peaks appearing with k values that lie between that of the extensional and flexural 

waves. The small peaks in the wavenumber spectrum do not correspond to physical 

waves. These peaks are side lobes in the Fourier transform due to the finite length of the 

data window, where the finite length is the circumference of the shell. It should be noted 

that the spectrum is not symmetrical about the main peak. The wavenumber amplitudes 

are larger in the low k region. Therefore it is possible that in this region the spectrum 

includes other physical waves such as the fast, extensional wave, or an evanesent wave. 

The loss in resolution due to the side lobes is a limitation of the Fourier transform. 

Possibly a better resolution for the wavenumber spectrum can be obtained by using a 
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different signal processing procedure, for example, the Prony method. The present 

analysis is limited to only investigating the dominant waves. It is concluded that the waves 

propagating circumferentially in the cylinder are predominantly flexural. 

The modes of vibration of the baffle depend on the types of waves that propagate 

in it.   The combination of flexural and extensional waves (which are the two lowest 

Lamb waves) in the baffle provide its displaced shape. To have a basis for comparison of 

the displaced shape of the cylinder for the different finite sources, the undisplaced mesh is 

presented in Figure 4.15. Figures 4.16 through 4.21 show the displaced shape of the 

cylinder. The predominant motion of the cylinder is bending, although some stretching is 

detectable. The bending motion of the cylinder is due to the flexural wave, which is 

subsonic. The stretching motion of the cylinder is due to the extensional wave, which is 

supersonic. As was discussed in chapter I, section B, subsonic waves decay exponentially 

with distance. Although the extensional wave is supersonic, it produces a much smaller 

displacement than the flexural wave, hence, an extensional mode is not very good at 

producing a large net volume change. The relative contributions of these elastic waves in 

the cylinder, to the scattered far-field pressure cannot be concluded from these results. 

The scattered far-field pressure can be seen in Figures 4.22 and 4.23 for ka=2 and 

5, respectively. At ka=2 the scattered far-field pressure is somewhat omnidirectional. The 

scattered far-field pressure at ka=5 is directive. As shown in Figure 4.23, it is seen that 

the majority of the sound is in the back (0= 180") and there is no significant nulls. To 

understand what portion of the scattered far-field pressure is due to the elasticity of the 

cylinder two additional directivity patterns are included (Figures 4.24 and 4.25). These 

figures show the scattered far-field pressure due to an ideal line source excitation from an 

elastic cylinder and from an equivalent rigid cylinder at ka=2 and 5 respectively. From 

these figures it is concluded that the scattered far-field pressure is dominated by the 
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elasticity of the cylinder. In both cases there is symmetry about zero degrees and the 

scattered far-field pressure is relatively the same for each source excitation. 

The total far-field pressure (Figures 4.26 and 4.27) is the combination of the 

scattered pressure and that radiated from the source in the far-field, extrapolated to one 

meter. For comparison, the directivity patterns of the finite projectors are relatively 

omnidirectional (see Figures 3. la and 3. lb). At ka=2 there is a null at 0= 0°. This is 

caused by the cancellation of the source radiation and the structure scattering in this 

direction. The total far-field pressure at ka=5 is directive, as shown in Figure 4.27. It is 

seen that the 4.5 ° and the 9.0 ° piezoelectric sources have essentially the same effect on 

the cylinder; however, the results for the 18.0 ° piezoelectric source are different. This is 

caused by the interaction between the baffle and the transducer. The transducer's size is 

now apparent; the 18.0 ° piezoelectric source cannot be considered to be transparent. 

In the process of studying the effect of the structure on the source it is important 

to observe the Transmitting Voltage Response (TVR) because it is an important parameter 

for a projector transducer. The TVR describes how efficient the transducer is in radiating 

sound in any specified direction. The Transmitting Voltage Response is 

^    _  Far - field sound pressue in specified direction   _ Pff (R0,0, <ß) 

Voltage applied across electrical input terminals Vd 

where the far-field pressure.?^ is extrapolated from the far-field to a reference distance 

R0. Usually R0=\ meter. The angles 6 and <f> specify the direction along which the 

pressure is measured. For the plane strain model, the TVR is presented in Tables 4.2 

through 4.7. The tables show the TVR of the source radiation only as a function of the 

size of the source, for the source under both free-field conditions and while in the vicinity 
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of the cylinder. Also included in the tables is the TVR of the combined radiation and 

scattering of the source and baffle. 
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TABLE 4.2 

Transmitting voltage response of a 4.5    piezoelectric source under free-field conditions, 

while in the vicinity of the structure, and of the source-baffle system, at ka=2. 

THETA 
(degrees) 

TVR (dB re lPa/V @ lm) 
source-baffle system 

TVR (dB re lPa/V @ 
lm) 

source near structure 

TVR (dB re 
lPa/V @ lm) 

source in free- field 
0 -33.970 -37.707 -37.644 
15 -34.056 -37.701 -37.639 
30 -34.107 -37.687 -37.625 
45 -34.257 -37.669 -37.607 
60 -34.869 -37.652 -37.591 
75 -36.058 -37.641 -37.579 
90 -38.158 -37.638 -37.576 
105 -42.559 -37.646 -37.581 
120 -55.273 -37.661 -37.595 
135 -47.901 -37.681 -37.613 
150 -40.945 -37.700 -37.630 
165 -37.967 -37.713 -37.642 
180 -37.170 -37.717 -37.646 

TABLE 4.3 

Transmitting voltage response of a 9.0 ° piezoelectric source under fre 

while in the vicinity of the structure, and of the source-baffle system, a 

e-field conditions, 

t ka=2. 

THETA 
(degrees) 

TVR(dBrelPa/V@lm) 
source-baffle system 

TVR (dB re lPa/V @ 
lm)so 

source near structure 

TVR (dB re lPa/V 
@lm) 

source in free- field 
0 -27.490 -31.730 -31.678 

15 -27.569 -31.714 -31.664 
30 -27.833 -31.671 -31.624 
45 -28.081 -31.613 -31.570 
60 -27.939 -31.556 -31.517 
75 -27.638 -31.516 -31.478 
90 -27.478 -31.505 -31.465 
105 -27.613 -31.527 -31.480 
120 -28.571 -31.576 -31.520 
135 -30.651 -31.642 -31.574 
150 -33.418 -31.706 -31.629 
165 -35.870 -31.754 -31.669 
180 -36.877 -31.771 -31.684           | 
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TABLE 4.4 

Transmitting voltage response of a 18.0 ° piezoelectric source under free-field 

conditions, while in the vicinity of the structure, and of the source-baffle system, at ka=2. 

THETA 
(degrees) 

TVR (dB re lPa/V @ lm) 
source-baffle system 

TVR (dB re lPa/V @ 
lm) 

source near structure 

TVR (dB re lPa/V 
@lm) 

source in free-field 
0 -22.616 -25.697 -25.821 
15 -22.543 -25.650 -25.767 
30 -22.646 -25.522 -25.621 
45 -23.473 -25.351 -25.426 
60 -24.910 -25.182 -25.236 
75 -25.893 -25.063 -25.099 
90 -25.775 -25.026 -25.047 
105 -25.456 -25.081 -25.092 
120 -25.771 -25.216 -25.223 
135 -26.501 -25.399 -25.407 
150 -27.457 -25.581 -25.596 
165 -28.707 -25.715 -25.739 
180 -29.363 -25.764 -25.792 

TABLE 4.5 

Transmitting voltage response of a 4.5 ° piezoelectric source under fre 

while in the vicinity of the structure, and of the source-baffle system, a 
e-field conditions, 

t ka=5. 

THETA 
(degrees) 

TVR(dBrelPa/V@lm) 
source-baffle system 

TVR (dB re 1 Pa/V @ 
lm) 

source near structure 

TVR (dB re lPa/V 
@lm) 

source in free-field 

o -22.920 -26.125 -25.953 
15 -23.434 -26.086 -25.917 
30 -24.461 -25.911 -25.832 
45 -22.880 -25.869 -25.724 
60 -21.760 -25.753 -25.621 
75 -22.641 -25.674 -25.551 
90 -26.006 -25.655 -25.534 
105 -27.873 -25.699 -25.574 
120 -36.352 -25.798 -25.662 
135 -32.817 -25.927 -25.778 
150 -24.998 -26.053 -25.890 
165 -22.855 -26.141 -25.969 
180 -21.938 -26.167 -25.993 
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TABLE 4.6 

Transmitting voltage response of a 9.0 ° piezoelectric source under free-field conditions, 

while in the vicinity of the structure, and of the source-baffle system, at ka=5. 

THETA 
(degrees) 

TVR(dBrelPa/V@lm) 
source-baffle system 

TVR (dB re 1 Pa/V @ 
lm) 

source near structure 

TVR (dB re lPa/V 
@lm) 

source in free-field 
0 -16.515 -20.493 -20.152 

15 -16.720 -20.365 -20.057 
30 -17.795 -20.024 -19.804 
45 -17.616 -19.580 -19.473 
60 -16.043 -19.163 -19.159 
75 -15.502 -18.874 -18.942 
90 -17.181 -18.777 -18.873 
105 -18.673 -18.892 -18.969 
120 -21.220 -19.196 -19.213 
135 -29.838 -19.624 -19.555 
150 -29.433 -20.072 -19.912 
165 -23.376 -20.413 -20.184 
180 -21.164 -20.483 -20.285 

TABLE 4.7 

Transmitting voltage response of a 18.0 ° piezoelectric source under free-field conditions, 
while in the vicinity of the structure, and of the source-baffle system, at ka=5. 

THETA 
(degrees) 

TVR(dBrelPa/V@lm) 
source-baffle system 

TVR (dB re 1 Pa/V @ 
lm) 

source near structure 

TVR (dB re lPa/V 
@lm) 

source in free-field 
0 -19.474 -9.352 -14.974 
15 -14.886 -9.437 -14.556 
30 -11.079 -9.669 -13.525 
45 -7.787 -9.989 -12.326 
60 -7.624 -10.306 -11.311 
75 -8.984 -10.497 -10.658 
90 -12.450 -10.439 -10.436 
105 -13.199 -10.107 -10.658 
120 -16.711 -9.604 -11.331 
135 -17.847 -9.081 -12.326 
150 -12.004 -8.649 -13.524 
165 -10.449 -8.370 -14.554 
180 -10.412 -8.273 -14.972           1 
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At ka=2, the source in the free-field and the source when operating near the structure for 

all three piezoelectric sources result in approximately the same sound pressure (+/-.2 dB). 

At ka=5, the TVR of the 4.5° and the 9.0 ° piezoelectric sources, under free-field 

conditions and while in the vicinity of the baffle, produce the same sound pressure (+/-1.0 

dB). The TVR of the 18.0 ° piezoelectric source is significantly different when operating 

under free-field conditions and in the vicinity of the baffle. This difference again points 

out the effect of the baffle on the transducer. The sound scattered from the baffle "sees" 

the projector. In all cases, the TVR originating from the source radiation and the baffle 

scattering is unlike the TVR of the source under free-field conditions. The combined 

radiation of the source and the baffle is directive; this directivity is induced by the 

scattering of the baffle. 

The last topic to be discussed involves the modeling of the source, i.e., under what 

conditions can a finite source be treated as an ideal source. To determine if there exists a 

limiting condition in which the source may be idealized, we review the data once again and 

take note of any trends. One very noticeable trend in the magnitude of the normal velocity 

versus theta and the magnitude of the total pressure versus theta (Figures 4.1, 4.3, 4.5, 

and 4.7) for both frequencies, is that as the source increases in size, the peaks are 

amplified. The magnitude data does not show the entire picture; we must also look at the 

real and imaginary data individually. Figures 4.2, 4.4, 4.6, and 4.8 show the real and 

imaginary normal velocity and total pressure at ka=2 and 5. The real and imaginary results 

are similar for all of the sources. 

To determine the conditions in which the source can be modeled ideally, a 

comparison is made of each source size to the wavelengths within the system. Table 4.8 

presents the arc length of each source. 
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TABLE 4.8 

Sources' arc lengü. 

SOURCES' fiCLUDED ANGLE (deg) ARC LENGTH (m) 

4.5 0.027 

9.0 0.054 

18.0 0.108 

Tables 4.1 and 4.8 show that the arc length of the 4.5 ° and the 9.0 ° piezoelectric 

sources are mue&iess than (an order of magnitude) all of the defined wavelengths 

calculated in the system. Because the 4.5 ° and the 9.0 ° piezoelectric sources influence 

the baffle in the same manner as the ideal line source and these piezoelectric sources have 

the same TransnaSting Voltage Response when operating in the free-field and while in the 

vicinity of the structure, it is concluded that the 4.5 ° and the 9.0 ° piezoelectric sources 

can be modeled as an ideal line source. On the other hand, when comparing results from 

the 18.0° piezoelectric source and that of the ideal line source, the only discrepancy is 

seen in the total far-field pressure at ka=5. This difference is because the 18.0 ° source 

produces a significantly different sound field when operating under free-field conditions 

compared to operating in the vicinity of the baffle as was shown in the TVR tables. The 

18.0 ° piezoelectric source was significantly influenced by the baffle and therefore it 

cannot be modeled ideally. Thus, the determining criteria for when one may model the 

source ideally is tiie arc length of the piezoelectric source. For a source located a fixed 

distance of 2.54 em out from the outer surface of the baffle, the arc length of the source 

must be at least a» order of magnitude smaller then the shortest wavelength in the system 

at the highest frapency of interest in order to be modeled ideally. Note the above 

conclusion on modeling a finite source ideally is based on that source being held at a fixed 
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distance «ä from the baffle and that the variation of distance between the source and the 

baffle has set been included in this study. 

. C. Axisymmetric Model 

He results and discussion presented in this section are arranged under the 

following sain topics: 

(l)The normal velocity and the acoustic pressure at the surface of the baffle, and 

the use oftfss data to determine what elastic waves are excited in the baffle by the 

adjacent projector; 

(2} The far-field pressure directivity patterns for the projector-baffle system; 

(3) The far-field pressure directivity patterns of the finite piezoelectric ring 

projector aid comparison with the directivity patterns for the same projector under free- 

field contusions. 

The standing wave pattern of the vibrations generated by the projector transducer 

in the axisymmetric baffle is more complicated than the vibration pattern generated in the 

plane strain case. This is partly due to the difference in phase velocities of the bending 

waves in the straight, cylindrical and the end, spherical portions of the baffle. Also, there 

may be some mode conversion, from bending to extensional waves, at the junction 

between tfee straight and the spherical regions of the baffle. 

For a cylindrical shell the phase velocity for the Lamb modes is a function of the 

direction of propagation as was introduced in chapter I, section B. Propagation along the 

axial direction is much more complicated than that around the circumference. The waves 

that propagate axially depend on whether you are operating above or below the ring 

frequency of the structure. The ring frequency [4] is defined as 
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E,p 

LTta 

where a is the mean radius of the baffle. Well below the ring frequency, the structure 

vibrates equivalently to low frequency vibrations in a thin bar, the displacement caused by 

this longitudinal wave is predominantly axial but is coupled to the radial direction by 

Poisson's ratio. In the proximity of the ring frequency there is no simple expression for the 

phase velocity in the shell c       because the vibration is undergoing a transition, and Cr 

is determined by numerically solving the shell equations. Above the ring frequency both 

Lamb modes exist, and the plate approximation can be used to estimate cF. and c f c. £,»,s J >s 

The baffle in the current study has a ring frequency of 2527 Hz. Therefore at ka=2 we are 

operating below the ring frequency and at ka=5 we are operating above the ring 

frequency. 

The elastic waves excited in the baffle are determined from analysis of the 

calculated normal velocity on the baffle surface. The separation between adjacent velocity 
X 

magnitude peaks is determined and compared with estimated values of — for flexural and 
2 

extensional waves in the baffle. Although torsional modes are also supported, at our 

frequencies, there displacements are small and there contribution is insignificant, so they 

will not be discussed. The flexural and extensional wavelengths determined from 

numerically solving the axisymmetric shell equations are tabulated in Table 4.9, these 

values were obtained from the mechanical engineering department at Georgia Institute of 

Technology [29]. 
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TABLE 4.9 
Wavelengpls in the cylindrical baffle determined from the axisymmetric shell equations. 

WAVELENGTH ka=2 ka=5 
flfflqgai wavelength not present 0.223 (m) 

extensmal wavelength 1.75 (m) 1.60 (m) 

Tfee axisymmetric model (Figure 2) was used to investigate: 

(1) The effects of an adjacent ring source on an elastic cylindrical structure with 

hemispherical end caps as a function of vertical position. 

(2) The effects of a finite piezoelectric ring projector located at position PI on an 

elastic cylindrical structure with hemispherical end caps. 

(3) Comparisons between the ideal ring projector to that of the piezoelectric ring 

projector located at position PI. 

The normal velocity and total pressure on the outer surface of the baffle for different ideal 

ring source locations are shown in Figures 4.28 through 4.39, where z=0 corresponds to 

the position midway along the axis of the baffle. At ka=5 there are substantial standing 

waves in the baffle with which one can determine the wavelength. At ka=2, the normal 

velocity data shows one complete wavelength in the baffle for an ideal ring source 

excitation located at PI. At ka=2, the normalized distance between two adjacent peaks is 

0.7, i.e., 70 % of half the total length of the baffle (0.684 m). The wavelength at ka=2 is 

therefore found to be 1.37 m, this is 22% different than the numerical value of the 

extensions! wavelength. This large percent difference is due to the coupling between the 

extensional and radial modes, the velocity profile of the structure does not contain a pure 

extensional mode. At ka=5, the distance between two adjacent peaks was determined to 

be approximately 0.12, which corresponds to 0.117 meters. This was the same for the 

three different source locations. The wavelength at ka=5 was determined to be 0.235 

meters, which is within 5% of the value for the flexural wavelength determined 
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numerically. lmka=5, the data shows 8 wavelengths when the source excitation is 

located at posÄ© PL Numerically the baffle may support 8 complete wavelengths of an 

axially propapÄg flexural wave. It is concluded that the dominant wave in the baffle is 

an axial propajgäing flexural wave when the source is driven above the ring frequency of 

the structure The amplitude of the data shows that the largest displacement is at the point 

closest to theamrce location. Each source induces a standing wave with a varying 

amplitude, this fluctuation in amplitude is do to the interference of the flexural and 

extensional was«. 

The scattered far-field pressure data is shown in Figures 4.40 through 4.45. The 

structure can be thought of as many point sources each with its own complex vibration 

and the far-field pressure is due to the contributions of all the sources. The far-field 

pressure is determined both by the pressures and the velocities on the surface of the 

structure and k computed using the Kirchoff Helmholtz integral. All of the data displayed 

for the ideal rij^* source located at PI is symmetric about z=0 due to the symmetry of the 

configuration. For the ring source located at P2 and P3, the greatest vibration is seen at 

the top and bottom of the end caps. The large pressure seen at the top and bottom of the 

end caps is due to the end caps acting as reflectors, this is caused by the symmetry in the 

structure, there are no displacements in the x direction at the symmetry line. 

In the second part of the axisymmetric analysis, a finite piezoelectric ring projector 

was located at position PI. The effect of this source on the structure was compared to 

that of the ideal ring source located at the same position. The effect of the structure on 

the piezoelectric ring source was also investigated. Figures 4.46 and 4.47 show the total 

far-field pressure and the scattered far-field pressure due to a finite piezoelectric ring 

source excitation. The scattered pressure is made up of the specular reflection, elastic 

echo, diffraction echo, and scattering due to the elastic waves inside the shell. While the 
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total pressure is the scattered pressure plus the radiation of the source. When comparing 

the above data to the free-field directivity of the finite piezoelectric ring projector, in 

Figure 4.48, one can see the effect of the structure on the output of the projector. At 

ka=2, the scattered pressure is more directive than the total pressure. The nulls in the 

scattered pressure occur at the beginning of the end caps and these nulls are absent in the 

total pressure because the source is adding a pressure here. At ka=5, the scattered 

pressure is basically the same shape as that at ka=2, however, the length of the cylindrical 

body is beginning to approach that of the acoustic wavelength which gives rise to the two 

dips in the center lobe. The total pressure at ka=5 again shows the combined radiation of 

the source and the scattering of the structure. 
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Figure 4.1 Magnitude of normal velocity on the outer surface of the cylinder versus 
theta at ka=2, for four different sources located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.2 (a) real normal velocity on the outer surface of the cylinder versus theta, (b) 
Imaginary normal velocity on the outer surface of the cylinder versus theta; both are at 
ka=2 for four different sources located at zero degrees: an ideal line source (solid 
line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source (dashed 
line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.3 Magnitude of normal velocity on the outer surface of the cylinder versus 
theta at ka=5, for four different sources located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.4 (a) real normal velocity on the outer surface of the cylinder versus theta, (b) 
imaginary normal velocity on the outer surface of the cylinder versus theta; both are at 
ka=5 for four different source excitations located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.5 Magnitude of the total pressure on the outer surface of the cylinder versus 
theta at ka=2, for four different sources located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.6 (a) real total pressure on the outer surface of the cylinder versus theta, (b) 
imaginary total pressure on the outer surface of the cylinder versus theta; both are at 
ka=2 for four different source excitations located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.7 Magnitude of the total pressure on the outer surface of the cylinder versus 
theta at ka=5, for four different sources located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.8 (a) real total pressure on the outer surface of the cylinder versus theta (b) 
imaginary total pressure on the outer surface of the cylinder versus theta; both are at 
ka=5 for four different source excitations located at zero degrees: an ideal line source 
(solid line), a 4.5 ° piezoelectric source (dotted line), a 9.0 ° piezoelectric source 
(dashed line), and an 18.0 ° piezoelectric source (dash-dot line). 
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Figure 4.9 Wave number spectrum for the normal surface velocity. The spectrum was 
determined from the normal velocity versus theta on the outer surface of the cylinder 
which was excited by a 4.5 ° piezoelectric source located at zero degrees for ka=2. 

73 



.X10" 

o •o 
3 

1 
01 

I 
10 20 30 40 SO 60 70 80 

Wave Number (m"l) 

90 too 

Figure 4.10 Wave number spectrum for the normal surface velocity. The spectrum 
was determined from the normal velocity versus theta on the outer surface of the 
cylinder which was excited by a 9.0 ° piezoelectric source located at zero degrees for 
ka=2. 
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Figure 4.11 Wave number spectrum for the normal surface velocity. The spectrum 
was determined from the normal velocity versus theta on the outer surface of the 
cylinder which was excited by a 18.0 ° piezoelectric source located at zero degrees for 
ka=2. 
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Figure 4.12 Wave number spectrum for the normal surface velocity. The spectrum 
was determined from the normal velocity versus theta on the outer surface of the 
cylinder which was excited by a 4.5 ° piezoelectric source located at zero degrees for 
ka=5. 

76 



4) 
3 

I 

10        20        30        40        SO        60        70        80        90       100 

Wave Number (m~ *) 

Figure 4.13 Wave number spectrum for the normal surface velocity. The spectrum 
was determined from the normal velocity versus theta on the outer surface of the 
cylinder which was excited by a 9.0 ° piezoelectric source located at zero degrees for 
ka=5. 
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Figure 4.14 Wave number spectrum for the normal surface velocity. The spectrum 
was determined from the normal velocity versus theta on the outer surface of the 
cylinder which was excited by a 18.0 ° piezoelectric source located at zero degrees for 
ka=5. 
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Figure 4.15 Static shape of the plane strain cylinder with each element numbered. 
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Figure 4.16 Displaced shape (magnified 20 times) of the cylinder due to a 4.5 ° 
piezoelectric source excitation at ka=2. 
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Figure 4.17 Displaced shape (magnified 20 times) of the cylinder due to a 9.0 ° 
piezoelectric source excitation at ka=2. 
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Figure 4.18 Displaced shape (magnified 20 times) of the cylinder due to a 18.0 ° 
piezoelectric source excitation at ka=2. 
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Figure 4.19 Displaced shape (magnified 20 times) of the cylinder due to a 4.5 ° 
piezoelectric source excitation at ka=5. 
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Figure 4.20 Displaced shape (magnified 20 times) of the cylinder due to a 9.0 ° 
piezoelectric source excitation at ka=5. 
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Figure 4.21 Displaced shape (magnified 20 times) of the cylinder due to a 18.0 ° 
piezoelectric source excitation at ka=5. 
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Figure 4.22 Far-field scattered pressure (dB) at ka=2, due to four different sources 
located at zero degrees: an ideal line source (solid line), a 4.5 ° piezoelectric source 
(dotted line), a 9.0 ° piezoelectric source (dashed line), and an 18.0 ° piezoelectric 
source (dash-dot line).  10 dB/division 
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Figure 4.23 Far-field scattered pressure (dB) at ka=5, due to four different source 
excitations located at zero degrees: an ideal line source (solid line), a 4.5 ° 
piezoelectric source (dotted line), a 9.0 ° piezoelectric source (dashed line), and an 
18.0 ° piezoelectric source (dash-dot line).  10 dB/division 
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Figure 4.24 Far-field scattered pressure at ka=2 from an elastic cylindrical shell (solid 
line) and from a rigid cylindrical shell (dotted line) due to an ideal line source 
excitation located at zero degrees. 
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Figure 4.25 Far-field scattered pressure at ka=5 from an elastic cylindrical shell (solid 
line) and from a rigid cylindrical shell (dotted line) due to an ideal line source 
excitation located at zero degrees. 
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Figure 4.26 Far-field total pressure (dB) at ka=2, due to three different sources located 
at zero degrees: a 4.5 ° piezoelectric source (solid line), a 9.0 ° piezoelectric source 
(dotted line), and an 18.0 ° piezoelectric source (dash-dot line).  10 dB/division 
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Figure 4.27 Far-field total pressure (dB) at ka=5 due to three different source 
excitations located at zero degrees: a 4.5 ° piezoelectric source (solid line), a 9.0 ° 
piezoelectric source (dotted line), and an 18.0 ° piezoelectric source (dash-dot line). 
10 dB/division 
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Figure 4.28 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position PI. 
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Figure 4.29 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position PI. 
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Figure 4.30 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position P2. 
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Figure 4.31 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position P2. 
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Figure 4.32 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position P3. 
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Figure 4.33 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=2. The excitation is due to an 
ideal ring source located at position P3. 
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Figure 4.34 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=5. The excitation is due to an 
ideal ring source located at position PL 
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Figure 4.35 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=5. The excitation is due to an 
ideal ring source located at position PI. 
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Figure 4.36 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=5. The excitation is due to an 
ideal ring source located at position P2. 
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Figure 4.37 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical sell with hemispherical end caps, at ka=5. The excitation is due to an ideal 
ring source located at position P2. 
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Figure 4.38 Magnitude and phase of the normal velocity on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=5. The excitation is due to an 
ideal ring source located at position P3. 
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Figure 4.39 Magnitude and phase of the total pressure on the outer surface of the 
cylindrical shell with hemispherical end caps, at ka=5. The excitation is due to an 
ideal ring source located at position P3. 
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Figure 4.40 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=2. The excitation is due to an ideal ring source located at position PI. 
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Figure 4.41 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=2. The excitation is due to an ideal ring source located at position P2. 
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Figure 4.42 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=2. The excitation is due to an ideal ring source located at position P3. 
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Figure 4.43 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=5. The excitation is due to an ideal ring source located at position PI. 
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Figure 4.44 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=5. The excitation is due to an ideal ring source located at position P2. 
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Figure 4.45 Far-field scattered pressure from the cylindrical shell with hemispherical 
end caps at ka=5. The excitation is due to an ideal ring source located at position P3. 
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Figure 4.46 Total far-field pressure (solid line) and scattered far-field pressure (dotted 
line) at ka=2. The finite cylindrical structure with hemispherical end caps is excited 
by a finite piezoelectric ring source located at position PI.  10 dB/division. 
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Figure 4.47 Total far-field pressure (solid line) and scattered far-field pressure (dotted 
line) at ka=5. The finite cylindrical structure with hemispherical end caps is excited 
by a finite piezoelectric ring source located at position PI. 10 dB/division. 
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Figure 4.48 Free-field directivity pattern of a finite piezoelectric ring source at ka=2 
(solid line) and at ka=5 (dotted line). 
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CHAPTER IV 

CONCLUSIONS 

Analysis of the normal velocity pattern at the surface of the baffle shows that the 

projector excites mainly flexural waves in the baffle. There is some evidence of weak 

excitation of the fast, extensional wave at ka=5. 

The main differences between the far-field pressure from the projector near the baffle 

and the projector in the free-field are probably due to interference between the direct 

sound from the projector and the sound reflected from the baffle. 

• Three different sizes of piezoelectric projector were modeled, with 4.5 °, 9.0 °, and 

18.0 ° angular extent. For the 4.5 ° and 9.0 °projectors the TVR in the forward 

direction is not significantly affected by the presence of the baffle. This indicates that 

the source strength of the projector is not significantly changed by the presence of the 

baffle. The main differences between baffle and free-field conditions along other 

directions are probably due to interference between the direct and reflected sound 

signals. 

• The 18.0 ° projector was the only source which showed significant deviations from 

ideal source performance. In particular, the TVR for this projector in the vicinity of 

the baffle is significantly different from the TVR under free-field conditions. The 

18.0° projector is the only source modeled whose dimensions (width) are comparable 

to the flexural (shortest) wavelength in the baffle, and in the piezoelectric projector. 
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Therefore, the present calculations suggest that the projector near a baffle can be 

modeled as an ideal, acoustically transparent source as long as its dimensions are less 

than about one quarter of the shortest elastic wavelength in the system (baffle or 

projector). The above conclusion applies for projectors at the single, fixed distance 

from the baffle which was used in this study. The distance of the projector from the 

baffle is an important parameter which should be investigated. 
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PLANE STRAIN CASE 
PROJECTOR UNDER FREE FIELD CONDITIONS 

flul<l flnlt« «l«m«< qroj«ctor 
pl*zo*<*ctrlo flnlt* a>i «m*nu 

fluid Infinit« «laiTHinta 

PLANE STRAIN CASE 
PROJECTOR IN THE VICINITY OF THE BAFFLE 

\ 
■\. 

A. 
"':.•:. v 

•      projector 
pl«io«l»amc fin 

»t*a< eyllnci«-. 
quadrolatsral «nit« •l«m««it» 

fluid Infinit* «Kmaot» 
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AXISYMMETRIC CASE 
PROJECTOR UNDER FREE FIELD CONDITIONS 

lino of symmetry 

fluid finite elements 

fluid infinite elements 

{   ^-projector 
|   piezoelectric finite elements 

fluid finite elements 

AXISYMMETRIC CASE 
PROJECTOR UNDER FREE FIELD CONDITIONS 

vacuum 
no elements 

fluid finite elements 

fluid infinite elements 

line of symmetry. 
^ 

projector 
piezoelectric finite elements 

steel cylindrical baffle 
quadrolateral finite elements 
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S sara 2-D cylinder plane strain model for ka=2 
S thin hollow cylindrical shell in water driven by a piezoelectric 
$ 9 deg cylindrical segment source acting perpindicular to the shell. 
$ the piezoelectric source is driven with 853. volts. 

plane,strain 

ngrids=161., nelem=80. 
e2m=0.0254,r=12.5 *e2m 
r2=r+1.0*e2m 
r3=r2+1.0*e2m 
r4=r3+0.5*e2m 
r5=r4+.3 
fstart=1376.0,fend=137 6.0.finc=l.0 

volt=853. 
young=19.5el0,nu=0.28,rhos=7700. 
rhof=1000., cf=1482. 

ell=730.0.,e33=635.0 
sll=12.3,sl2=-4.05,sl3=-5.31 
s33=15.5,s44=39.0 
d31=-123.0,d33=289.0,dl5=496.0 
rhop=7500.0 

setup 

iso.qq,1,young,nu,, rhos,, 
extflu,water,2,cf,rhof,0,0,0 
fluid,water,3,cf,rhof 
iso,couple,4,cf,,,rhof 
iso,couple,5,cf,,,rhof 
iso,couple,6,cf,,.rhof 

piezo,pzt4,7,sll,s33,s44,sl2,sl3,d31,d33,dl5/ 
ell,e33,,,rhop,,,,,,,,,, 

end,materials $ 

1,1, 3,ngrids,,,,.polar, 0.0, 0. 
r,r2.r2,r 
0,0,360.360 

4,1,6,ngrids,,..,polar,0.0,0.0 
r2, r3, r3, r2 
0,0.360.360 

$cylinder grids 

$first fluid layer 

6,1,8,ngrids,,,,.polar,0.0,0.0 
r3, r4, r4, r3 
0,0,360,360 

$second fluid layer 

8,1,14,ngrids,,,,,polar,0.0,0.0 
r4,r5,r5,r4 
0,0,360.360 

$infinate fluid layer 

*pzt4 points* 

p, 38, l,r3,0,polar,0,0 
p.38,2,r3,2.25,polar.0,0 
p,38,3,r3,4.5,polar,0,0 
p,3 9,1,rm,0,polar,0,0 
p.39.3,rm,4.5,polar,0,0 
p,40,l,r4,0,polar,0,0 
p,40,2,r4,2.25,polar,0,0 
p,40,3,r4,4.5,polar,0,0 
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p. 38,159, r3,355.5,polar,0,0 
p,38,160,r3,357.75,polar,0,0 
p, 39,159, rm,355.5,polar,0,0 
p,40,159, r4,355.5,polar,0,0 
p,40,160, r4,357.75,polar,0,0 

end,grids $ 

jloop,expr(nelem-1) 
qq,quad,1,1,1 
fqq,water,3,4,1 
couple,,4,1,1,2,4,1,4 
jend 

jloop,expr(nelem-2) 
fqq,water,3,6,3 
iff,extflu,2,8,3 
jend 

$cylinder elements 
$first fluid layer 

$coupling elements for cylinder & first fluid 

$second fluid layer 
$infinate fluid elements 

qq,,1,1,159,3,159,3,1,1,1,2,159,3,160,2,1.1,160 $last element in cylinder 

pqq.piezo,7,38,159,40,159,40,1,38,1,39,159,40,160,39,1,38.160  $source 
pqq,piezo,7,38,1,40,1,40,3,38,3,39,1,40,2,39,3,38,2 $source 

fqq,water,3,4,159,6,159,6,1,4,1.5,159,6,160,5,1,4,160 Slast fluid ele. 
couple,,4,1,159,2,4,159,4 $last couple on struct. 

iff,extflu,2,8,159,10,159,10,l,8.1,9,159,10,160,9,l,8,160$last inf. fluid elemen 
iff.extflu,2,8,1,10,1,10,3,8,3,9,1,10.2,9,3,8,2 

couple.,5,38,1,38,2,38,3,6,1,6,2,6,3 
couple,.5,38,159,38,160,38,1,6,159,6,160,6,1 
couple,,6,40,159,39,159,38,159,8,159,7,159, 6,159 

couple,,5,40,1,40,160,40,159,8,1,8,160,8,159 
couple,,5,40,3,40,2,40,1,8,3,8,2,8,1 
couple,,6,38,3,39,3,40,3,6,3,7,3,8,3 

be,v,38,159,,volt 
bc,v,38,160,,volt 
be,v,38,1,,volt 
be,v,38,2,,volt 
be,v,38,3,,volt 

bc,v,40,159,, 
bc,v,40,160, , 
be,v,40,1,,0. 
be,v,40,2,,0. 
be,v,40,3,,0, 

$nodal boundary conditions for sorce 

end,elements $   

fsweep,,fstart,fend,fine,2 

post,,38,1,40,3,,,4,, 
post,,38,159,40,160,,,4, 
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$post,,l,l,3,ngrids,, ,4, 

$post,wet_nodes,4,4 
$wet_vp,4,4,,1 ' 
$contours,pressure,r2,1.0,,360.0,1.0,,l,,,,,.l 

stop 
end 
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S sara 2-D cylinder with hemispherical end caps model - axisymetric 
S thin hollow cylindrical shell with hemispherical end caps submerged in water 
$ has a ring source boundary condition where grid in fluid is a source 

axisym 
begcyl=81.,endcyl=131. 
ngrids=211.,nelem=105. 
e2m=0.0254,r=12.5*e2m 
r2=r+1.0*e2m 
r3=r2+l.*e2m 
r4=r3+0.5*e2m 
r5=r4+.3 

l=50.*e2m,a=l/2 
b=-a 
fstart=1376.0,fend=1376.0,finc=l.0 

young=19.5el0,nu=0.28,rhos=7700. 
rhof=1000., cf=1482. 

setup 

iso.qq,1,young,nu,, rhos,, 
extflu,water,2,cf,rhof,0,0,0 
fluid,water,3,cf,rhof 
iso,couple,4,cf,,,rhof 

end,materials $ 

1,1, 3,begcyl,,,,.polar, 0.0,b 
r,r2,r2,r 
270,270,360,360 

1,begcy1,3,endcyl 
r,r2,r2,r 
b,b,a,a 

1,endcyl,3,ngrids,,,,,polar,0,a 
r,r2,r2,r 
0,0,90,90 

Sbottom end cap 

$cylinder 

$top end cap 

4,1,6,begcy1,,,,,polar,0.0,b 
r2, r3, r3, r2 
270,270,360,360 

4,begcyl,6,endcyl 
r2, r3 , r3, r2 
b,b,a,a 

4,endcyl,6,ngrids,,,,,polar,0,a 
r2, r3, r3, r2 
0,0,90,90 

6,1,8,begcyl««••,polar,0.0,b 
r3, r4, r4, r3 
270,270,360,360 

6,begcyl,8,endcyl 
r3,r4,r4,r3 

—end of structure 

$bottom end cap 

$cylinder 

$top end cap 

 end of first fluid layer 

$bottom end cap 

Scylinder 
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b,b,a,a 

6,endcyl,8,ngrids...,.polar,0,a     $top end cap 
r3, r4, r4, r3 
0.0,90,90 

5 end of second fluid layer 

8,l,10,begcyl,,.,.polar,0.0,b     $bottom end cap 
r4,r5,r5,r4 
270.270,360.360 

8,begcyl,10.endcyl $cylinder 
r4,rS.r5,r4 
b.b.a.a 
8.endcyl,10,ngrids.....polar.0,a      $top end cap 
r4, r5, r5, r4 
0,0.90,90 

5 end of infinate fluid layer 

end,grids $   

" jloop.nelem 
qq,quad, 1,1,1 f^11?0?? elements 
fqq,water.3.4.1 $first fluid layer 
fqq,water.3.6.1 $second fluid layer 
couple,,4,1.1,2,4.1,4 Scoupling elements 
iff,extflu,2,8,l $infinate fluid elements 
jend 

be.source,6,106...00003173 

end,elements $   

fsweep,.fstart,fend,fine,1 

Spost,,1,1.3,ngrids,,,4, 
$post,wet_nodes,4,4 

wet_vp,,4,. * 
contours,pressure,r2,1.0,,180.0.1.0..1.,1,.,. 

$source boundary condition 

stop 
end 
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