
PB96-152764
NflSi,
Information is our business.

CONTINUOUS VERIFICATION BY DISCRETE
REASONING

^ggj^y^xigg ms^mmm a

DEPARTMENT OF COMPUTER SCIENCE

STANFORD, CA

SEP 94
19970505 045

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

"DISTRIBUTION STATEMENT 1

Approved for public release;
Distribution Unlimited

September 1994 Report No. STAN-CS-TR-94-1524

PB96-152764

Continuous Verification by Discrete Reasoning

by

Luca de Alfaro and Zohar Manna

Department of Computer Science

Stanford University
Stanford, California 94305

REPRODUCED BY: NTIS
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

Continuous Verification by Discrete Reasoning

Luca de Alfaro and Zohar Manna*

Abstract

Two semantics are commonly used for the behavior of real-time and hybrid
systems: a discrete semantics, in which the temporal evolution is represented
as a sequence of snapshots describing the state of the system at certain times,
and a continuous semantics, in which the temporal evolution is represented by
a series of time intervals, and therefore corresponds more closely to the physical
reality. Powerful verification rules are known for temporal logic formulas based
on the discrete semantics.

This paper shows how to transfer the verification techniques of the discrete
semantics to the continuous one. We show that if a temporal logic formula has
the property of finite variability, its validity in the discrete semantics implies
its validity in the continuous one. This leads to a verification method based on
three components: verification rules for the discrete semantics, axioms about
time, and some temporal reasoning to bring the results together. This approach
enables the verification of properties of real-time and hybrid systems with respect
to the continuous semantics.

"This research was supported in part by the National Science Foundation under grant CCR-92-23226, by
the Defense Advanced Research Projects Agency under contract NAG2-892, and, by the United States Air
Force Office of Scientific Research under contract F49620-93-1-0139.

1 Introduction

In order to use temporal logic to specify and verify properties of real-time and hybrid
systems, some semantics must be chosen for the temporal behavior of the systems. There
are two common choices [2, 18]. The first is a continuous semantics, in which the system
evolution is represented by a series of time intervals, together with a mapping that associates
to each point in time a state of the system. The second is a discrete semantics, in which the
temporal evolution of the system is represented as an enumerable sequence of snapshots,
each describing the state of the system at a certain time. Each of these semantics has its
advantages and weaknesses.

The continuous semantics corresponds closely to the physical behavior of the system [8,
18]. System specifications describe the physical behavior, and therefore refer more directly
to the continuous semantics than to the discrete one.

The discrete semantics enables the use of powerful verification rules to draw conclusions
about the behavior of the system from premisses about its structure [6, 20]. The proof of the
soundness of these rules depends in an essential way on the discreteness of the semantics,
and in particular on reasoning by induction on the enumerable sequence of states. On the
other hand, the discrete semantics corresponds less directly to the physical behavior of the
system, and its relevance is in its relationship to the continuous semantics [8].

This paper shows that the advantages of the discrete semantics can be transferred to
the continuous one. We show that if a temporal logic formula has the property of finite
variability, its validity in the discrete semantics implies its validity in the continuous one.
Most of the formulas that arise in practice have this property, and we give a series of simple
criteria to characterize them.

This allows us to adapt the verification rules for temporal logic on the discrete semantics
to the continuous one: if the conclusion of the verification rule is a formula with the finite
variability property, it will also holds in the continuous semantics. In this way, we are
spared the work of devising new verification rules for the continuous semantics.

We therefore propose a recipe for the verification of temporal logic properties of real-
time and hybrid systems that consists of three ingredients: verification rules coming from
the discrete semantics, axioms stating some basic properties of time, and a small amount
of temporal reasoning to bring the two together. Temporal reasoning in the continuous
semantics can be kept to a minimum, if desired.

In our representation, we follow closely the approach of [20], modeling real-time and
hybrid systems by timed and phase transition systems respectively, and using a temporal
logic containing both explicit time and age functions. As clocks are closely related to age
functions, the results can be easily transferred to logics that use clocks as the basic timing
construct.

We first present the case for real-time systems in some detail, and then we show the
changes needed to adapt the results to hybrid systems.

2 Real-Time Systems

Real-time systems will be modeled by timed transition systems [7, 18]. A timed transition
system S = (V, E, 0, T, L, U) consists of the following components.

1. A set V of variables called state variables, each with its type.

2. A set E of states: each state s G S is a type-consistent interpretation of all the
variables in V: we indicate with s(x) the value at state s of x, for x G V.

3. A set 0 C S of initial states. 0 has an associated assertion 0/(V), such that 0 =
{s | s (= 0/}, where s interprets iGVas s(x).

4. A set T of transitions, where r C S x S for all r G T. Each transition r € T has
an associated assertion pT(V,V) such that r = {(s,s') | (s,s;) |= Pr}5 where (s,s')
interprets x G V as s(x) and x' as s'(x).

5. Two sets L, 17 of minimum and maximum delays of transitions. For all r G T it is
0 < lT < «T < oo.

We denote with c,- the enabling condition of transition r, defined by c,- = {s | 3s'.(5,«') G r}.
For simplicity, we will assume that transitions are self-disabling: (s, s') G r ->• s' 0 cv.

The temporal behavior of a real-time system will be represented by traces. Correspond-
ing to the discrete and the continuous views of the semantics, the formal representation of
the behavior is given in terms of discrete and continuous traces.

2.1 Discrete Semantics

In the discrete semantics, each behavior is represented by a discrete trace, which is an
enumerable sequence of observations. Each observation is a pair consisting of a snapshot
of the system state and a timestamp indicating the time at which the snapshot was taken
[8, 18, 7, 20].

Definition 1 (discrete trace) A discrete trace ad is an enumerable sequence of observa-
tions (so, to)> {$i,ti), (s2»*2)> ■ ■ ■; with sn G S, tn G H+ for n G IN, such that

to = 0, limtn = oo, Vn G IN : tn < <n+i.

A position of a trace is simply an integer n G IN. If a trace represents a possible behavior
of a system, we say that the system admits the trace.

Definition 2 (admission, discrete traces) A timed transition system S admits a dis-
crete trace a^: (soi^o), (si,t{), (S2J*2)J ■■■> written S> aa, if the following conditions are
satisfied.

1. All the state changes are due to transitions that have been enabled at least for their
minimum delay: for all n G IN,

Sn — Sn+l V tn = tn+iA3reT (sn,sn+i) G TAVA; \k < nAtk > tn—lT -» Sk G Cr

2. Transitions are never enabled for longer than their maximum delay: for all T £ T,
n, k G IN with k > n,

tk~in<uTy 3j [n < j < k A sk & cvj.

2.2 Continuous Semantics

In the continuous semantics, the behavior of the system is represented by a mapping from
intervals of time to states of the system, and time is modelled by the set of real numbers. A
trace is no more a sequence of snapshots, but a continuous representation of the evolution
of the state of the system. Here, the word "continuous" is used in a different way than in
calculus: it means that there are no gaps in the temporal description of the systems, such
'as the gaps between snapshots of the discrete semantics. It is this absence of gaps that
makes the continuous semantics closer to physical reality.

Formally, a continuous trace is a sequence of pairs consisting of a state of the system and
an interval of time spent by the system in that state. The intervals of time can overlap at
most at the endpoints [8, 10, 2]. This semantics closely resembles the superdense semantics
of [18]. If A is a linearly ordered set, we will indicate with IntA the set of intervals (i.e.
convex sets) of A.

Definition 3 (continuous trace) A continuous trace ac is a sequence of pairs ac: (7*0, Jo),
(ri) h), (T"2, h), ■■■, with In G IntjR and rneS for all n G IN, such that:

Vn (sup I„ = inf 7n+1), [j In = JR+.
n£lN

A continuous trace is closed if all its intervals IQ, I\, I2, ... are; it is open otherwise.

Definition 4 (moment) A moment of a trace ac: (ro,io), (ri,ii), {r2,h), ■■■ is a pair
(n, t) such that t G In [18] ■ The ordering < of moments is the expected one:

(n,t) < (n',«/) iff n<n'v(n = n'At<t').

In the following, when we write a pair (n, t) relative to a trace ac we will always assume
that it is a moment of ac. We give the definition of admission only for closed traces. We
define I^~ = inf Jn, 1^ = sup/„. The definition of admission is then similar to the one
given for discrete traces.

Definition 5 (admission, continuous traces) We say that a timed transition system S
admits a trace ac: (ro,Io), (ri,I\), {r2,h), ••• if crc is closed, and the following conditions
are satisfied.

1. All the state changes are due to transitions that have been enabled at least for their
minimum delay: for all n G IN,

rn = rn+i V 3r G T (rn, r„+i) G T A V7c k < n A If > 1^ - lT ->■ rk G cv] .

2. Transitions are never enabled for longer than their maximum delay: for all r G T,
n, k G IN with k>n,

I? -I£ <uTV 3j [n<j<kArkgcr

3 Temporal Logic

To express temporal properties of the behavior of the system, we use a multi-sorted temporal
logic similar to the one proposed in [5, 6, 20].

Syntax. Our language contains flexible and rigid constants, rigid variables, rigid function
symbols and predicates, the propositional connectives -•, —>, the future temporal operators
D, U and the past ones B, S, and the symbols = for equality and V for quantification.
Prom this basic set of symbols, additional ones can be defined as usual. Note that there is
no next-time O operator in the logic.

The variables of the logic are rigid, meaning that they have the same value at all times;
'thus, quantification is allowed on rigid variables only [4]. The state variables of the system,
whose value can change in time, are represented instead by flexible constants. This is
different from the approach followed by [19], where quantification is allowed also on flexible
variables, and where flexible variables (instead of flexible constants) are used to represent
the state variables of the system. The approach followed here is such that a trace of the
system will determine the model, and the variable assignment is used to deal with variables
and quantification. To avoid confusion, for the rigid variables of the logic we use greek
letters like f, C, and for the flexible state variables of the system latin ones like x, y.

Our language also contains the special flexible constant T of type real, whose value
represents the time, and the interpreted predicate < over the reals. Moreover, the language
includes the age function T. For a formula <f>, the term T(<j>) indicates the length of the
most recent interval in which (f> has been continuously true [20]. We will assume that the
argument <f> of T(4>) does not contain occurrences T or nested age functions.

Semantics. The truth of temporal logic formulas is evaluated with respect to a model M
and a variable assignment X. A model M = {W, <,a) is composed of a frame T — {W, <)
and an assignment function a. The frame is a set W of worlds together with a relation of
reflexive linear order <. Each world represents an instant of time, and the order relation <
represents the temporal succession of worlds. We assume that there is a least world WQ in
the ordering, called the initial world.

The function a is a type-consistent assignment of values to predicates, functions and
constants. We indicate with a{w)(a) the value of the symbol a at world w € W. The
assignment to rigid symbols does not depend on the world w.

We indicate with X, M. \=w 4> the fact that the formula <f> is true at world w of model
M with variable assignment X. Truth is computed by induction on the structure of <fi in
the usual way; as an example, the cases for D and V are:

X, M K D(f> iff Vu/ € W : w < w' -> X, M \=w> (f),
X,M^w\/£<j> iff \/deDr.X[d/Z],M\=w<f>,

where D^ is the domain corresponding to the type of £, and X[d/(\ is the variable assignment
obtained from X by assigning the value d to £.

Temporal logic and traces. We can use temporal logic to specify properties of traces
by associating a model to each trace. We assume that functions and predicates have some
predefined assignment.

To the discrete trace c^: (so,to), (si,<i), (s2)^2), ...we associate the model Mad =
(IN, <,a„d), where aad is the assignment defined by, for x G V and n G IN:

a{n)(x) = sn(x), a{n)(T)=tn.

Instead of I, M.Cd l=n <j>, we will usually write X, ad \=n <t>-
In the model Mac corresponding to a continuous trace ac: (r-0, Jo), (r\,I\), (ri, J2), . ■.,

we take as frame (W, <) the set of moments of ac together with their linear ordering; the
initial world is (0,0). The assignment is then defined, for x € V and n € IN, by

a(n,t)(x) = rn(x), a(n,t)(t) = t.

Again, we usually write X,ac \=(n,t) 4> instead of X, M.a<. t=(n,t) 4>-
We can thus define two temporal logics: TLD over discrete traces, and TLc over con-

tinuous ones. A formula <j> is valid in TLD, written j= 0, if X, Od \=n 4> for all J, ad, n.
Similarly, § is valid in TLc, written \= 4>, if X,ac \=(n,t) 4> for all J, all ac, and all moments
(n, t) of ac. In general, if one or more of the symbols X, a, w are omitted from I, a ^=w <f>,
the truth of <f> is required for all possible values of the omitted symbols.

Thus, (= <f> means that 4> is true in all the worlds of all the models. This semantics is
called floating semantics, and is different from the anchored semantics presented in [19], in
which (= (j) means that <f> is true in the first world of all models. This semantics has been
chosen as it has simpler proof-theoretical properties, in the absence of a next-time operator.

We can also define the validity of formulas with respect to a system S by restricting the
set of traces considered in the above definitions to those admitted by S. Correspondingly,
we have the notions of a formula (j> being S-valid in TLD or TLc, indicated respectively
with S |=D 4>, S \=c <p.

3.1 Specification and Verification

The logics TLD and TLc have different properties, reflecting the difference in the two
underlying semantics.

Example 1 (density of time) The two logics TLD, TLC have different sets of valid
formulas. For example, the formula

4>: V£VC 0(T = 0 A 0(T = C) -> O (T = -i^-)

expressing the density of time is such that (=° <f>, ^=D -><p. I

While the continuous semantics corresponds closely to the physical behavior of the
system, the discrete semantics gives only an approximate description in terms of a series of
snapshots. System specifications, being ultimately a specification of the physical behavior,
can be more faithfully expressed in the continuous semantics. For hybrid systems this is

even truer, as the state can change continuously in time and continuous changes are not
represented in the discrete semantics [18].

However, the verification of the properties of a system is simpler in the discrete se-
mantics. The methods proposed in [7, 18, 20] to verify properties written in TLD rely on
two concepts: verification conditions and verification rules. If 0 and ip are arbitrary past
formulas, that is, formulas not containing future temporal operators, it is possible to define
the verification conditions {</>} r {ip}, {4>} tick {ip} having the following intuitive readings.

{</>} r {ip}: if 4> is true, and the transition r can be taken, ip will be true in the resulting
state.

{(f)} tick {V>}: if 4> is true, and the time advances, ip will be true in the resulting state.

The verification conditions allow in turn the statement of verification rules that relate the
structure of the system to its temporal properties. An example of verification rule is the
ubiquitous invariance rule:

S f {{<f>} r {<P}}reT S h-D {<£} tick {J>}

The proof of the soundness of the verification conditions and of the verification rules makes
an essential use of the discreteness of the semantics, so that the approach cannot be easily
transferred to the continuous semantics.

3.2 Verification in the Continuous Semantics

In this paper we will show how the advantages of the discrete semantics can be transferred
to the continuous one. The key idea consists in defining a property, finite variability, or
FV, and showing that if <p is FV, then 5 (= <f> implies S \= (f>.

To verify that a system satisfies a specification written in TLc, we therefore propose a
methodology consisting of three main ingredients.

The first one consists in the use of verification rules for TLD, whose conclusion can be
transferred to TLc- This will enable us to go from the description of the structure of the
system in terms of transitions to the properties it satisfies, expressed in temporal logic.

The second one is a series of axioms about time. These axioms state properties that are
at the same time fundamental and not derivable in TLD-

The third ingredient is a deductive system for TLc- This will enable us to bring together
the results of the verification in TLD and of the axioms about time, leading to the desired
real-time properties of a system. If it is desired, temporal reasoning in TLc can often be
kept to a minimum.

A related approach to proving S \= <j) has been proposed in [8] for similar semantics and
logics. It consists in rephrasing the property <p into a form <f>' better suited to the discrete
semantics. If the rephrasing is perfect, then S \= </>'■<-» S j= </>; otherwise, it is sometimes
possible to find a stronger property 0' such that S \= <j>' —> S |= 0. In [8] it is explained
how to rephrase some formulas, and how to approximate others with stronger conditions.

Our approach extends the one based on rephrasing by considering general formulas.
Moreover, since temporal reasoning in TLc is allowed, we can prove the validity of formulas

that have no useful rephrasing. Our strategy applies also to hybrid systems, where not only
time but also other parameters of the state of the system can vary in a continuous way.

To show the soundness of our approach, we need a careful analysis of the relationship
between the discrete and continuous semantics, to which we will now turn our attention.

4 From Discrete to Continuous Reasoning

4.1 Refinement

Each behavior of the system can be represented in more than one way by discrete or con-
tinuous traces, corresponding to the different ways of sampling the state of the system in
time.

Example 2 The two discrete traces

0 1 2

ad: (x=0,i=0),(z=l,i=0), <s=l,*=10),- • •

a'd : (x=0, t=0), (g=l, t=0), (x=l, t=5), (g=l, fc=10); • • •

0 12 3

intuitively represent the same behavior of the system, but a'd contains one more sampling
of the state of the system, (x=l,<=5). I

Specifically, we say that a trace is a refinement of another if it has been obtained by
sampling the state of the system more frequently in time [15, 16, 2]. To give a formal
definition of refinement, we introduce partitioning functions, that are closely related to the
event-stretching functions of [13, 12].

Definition 6 (partitioning function) A partitioning function \i is a function TN »->■ Int]N
such that the intervals /i0> Mi, M2 • • • are adjacent and disjoint. Formally, UnelN Mn = 1N> and
Vn G IN : max//,- = min//i+i — 1.

Intuitively, a trace ad: (s'Q,t'a), (si,*i)» (s'2,t'2), ... is a refinement of ud: (s0,<o), (*i,*i>,
(s2, £2), •-■ if many observations of a'd correspond to a single observation of ad. We use the
partitioning function to specify the correspondence: all the pairs (s^tj) with j € /Xj will
correspond to {si:U). Similarly, if ac: (r'0J^), (ri,7{), (r'2,I2), ... is a refinement of ac:
(^o,io), (ri,h), {r2,h), ■••, all the intervals Ij with j G m will correspond to the single
interval 7^.

Definition 7 (refinement) A discrete trace a'd: {sQ,t0), («i,^), {s'2,t'2), ... is a refine-
ment ofad: (so, t0), (si, <i), («2, *2), ■■■by the partitioning function ß, indicated by a'd >^ ad,
if for all i: t'minß. = t{, and Vj G m : s'j = Si.

A continuous trace ac: (r0,7£), (ri,J{), {r'2,I'2), ... is a refinement of ac: (r0,70),
iri,h), (T"2, 72), ...by the partitioning function /j,, denoted a'c y? ac, if for all i G IN:

Ii= \Jlj, Vi(iGW->rJ = ri).
je^i

i x = 0 i ' x = 3 i
*•■ T—: T x = i T—: T

i Jo • • h •-
I I ' r I I
i i n ii
! I II

a,' : ♦ ♦ re "C , , * ! , ji
i i0 i w i * 3
i i h i , i i
I I I Jo I I
I I 1^1 I

f = 0 i= 1 i = 2 <= \/TÖ t = 4

Figure 1: A closed continuous trace ac and one of its open refinements a'c: a'c y ac.

Example 3 For crd, a'd as in Example 2, we have CT^ ^ a^ with /L*0 = {0}, pi = {1,2},
^2 = {3}, Figure 1 gives an example of refinement of continuous computations. I

Note that the definition for continuous traces is independent of the fact that the trace
is closed or not. In the following, we write a to denote a generic trace, either discrete or
continuous. We call sample equivalent two traces that have a common refinement [12].

Definition 8 (sample equivalence) Two discrete (resp. continuous) traces a, a' are
sample equivalent, written a « a', if there is a discrete (resp.- continuous) trace a" such
that a" t a, a" £. a''.

Two sample equivalent traces are two different representations of the same behavior of
the system. It is no surprise then that we have the following theorem, stating that systems
do not distinguish between sample equivalent traces [15, 16].

Theorem 1 If Od~ o~'d, then St>ad iff S>c'd. If ac and a^ are both closed, and ac « a'c, then
Sx>aciffS»a'c.

In fact, it could be argued that a better representation of the behavior of the system
can be obtained by considering equivalence classes of admitted traces modulo sampling
equivalence. This equivalence classes, called sample equivalence classes, would be similar to
the closure under stuttering of [2]. This is generally not done, as reasoning about equivalence
classes of traces can be harder than reasoning about a single trace at a time.

Since sample equivalent traces correspond to the same behavior of the system, it is
desirable that temporal logic does not distinguish among them. We say that a temporal
logic is sample invariant if a « a' implies J, o (= <f> ++ X, a' \= 4> [15]. The logic TLc is
sample invariant, TLrj is not. The result for TLc is given by the following theorem, that
establishes that if a trace is a refinement of another, the same formulas hold at corresponding
moments.

Theorem 2 (sample invariance of TLc) If v'c h
ß vc and j £ m, then

Z> °'c \=(j,t) 4> <r+ l,0-c f=(i>t) (j).

If a'c äS ac, then a'c (= <p <->■ ac (= (j).

ad : {x = 0,t = 0), (x - l,i = 0), (x = l,t = 5), (x = l,i = 10),...
> v ' N v ' > v ' V v <

0 12 3

i x — 0 i x = 1 i
T(OB): I * = 1 * •

I -«1 I ,

t = 0 t = 5 t = 10

Figure 2: A discrete trace e^ and its continuous translation T(ac).

4.2 Translations between Discrete and Continuous Semantics

To set up a correspondence between discrete and continuous traces that represent the same
behavior of the system, we will use two translation functions: from discrete traces to con-
tinuous ones, and vice versa. These translations are uniquely determined between sample
equivalence classes of traces, but we have some freedom to choose the trace that corresponds
to a given one within a sample equivalence class.

The translation T from discrete traces to closed continuous traces associates to each
(sn,tn) a closed interval stretching from tn to tn+\.

Definition 9 (T : od H4 ac) We define the translation function X from discrete traces to
continuous ones as the function associating to o~d: (so,t0), (si,ti), (s2,t2), ... the closed
trace ac: (r0Jo), {nJi), (r2,/2), ••• defined by, for all n E IN: rn = sn, /♦" = tn,
In =tn+i-

In the opposite translation, Q, the idea is that each interval of the continuous trace is
represented in the discrete trace by two observations, one for each endpoint. We define the
translation so that also nonclosed traces can be translated, and some care must be taken
to handle the case of open and half-open intervals.

Definition 10 (O : ac i-> ad) The translation function Q associates to ac: (r0,Io), (ri,h),
(T2,h), •■■ the discrete trace ad: {sQ,t0), (si,*i), (s2,i2), ••• defined in the following way,
for all n € IN.

1. 52n = s2n+i = rn.

2. (a) If In is closed, t2n = It, hn+i =1?.

(b) If In is left open, t2n = t2n+i = It-

(c) Ifln is right open, t2n = t2n+l = It-

(d) Ifln is open, t2n = t2n+x = (It + 0/2.

Figures 2 and 3 show examples of traces and their translations. The following lemma
shows that the translations are one the inverse of the other, modulo sampling equivalence,

10

fi(ofc) : (x=0,t=0), (x=0,t=l), <x=l,t=4), (x=l,t=4), (:r=7,i=5),<z=7,i=5), (x=2,t=6>,.

i

x = 3 ' ' x r * *
i x = 0 i 11 i £ = 7 i
• * i 1

t = 0 t = l t = A t = 6

Figure 3: An open trace oc and its discrete translation ü(ac). Note that ac is not the
refinement of any closed trace.

and that they preserve for closed traces the partial order of refinement of traces. It also
suggests that traces related by the translation functions represent the same behavior of the
system.

Lemma 1

1. For any ad, ad, ac, a'c, with ac closed, we have:

tihcrd^ T{a'd) h ?(ad), fi(T(ad)) >: ad,

o'c ho-c^ fi(o^) >: ß(ofc), T(n(ofc')) t ofc.

2. For any S, ad and closed ac, S>ad iff S> T(crd), and S>ac iff S> £l(ac)-

3. If S> ac and a'c >z ac, then S > fi(crc').

4.3 Finite Variability

Consider the formula T > 3 Vrr. = 4. In every finite interval of a continuous trace, the truth
value of its subformulas can change at most a finite number of times. Thus, given a trace
ac, it seems possible to refine it into a (possibly open) trace ac: {r'0,Ib), (r[,I[), {r'^I^i
... such that each subformula has constant truth value throughout all intervals Jj, j € IN.
This is the idea underlying the definition of finite variability.

The set of subformulas of <j>, denoted by sb(4>), is defined by induction on the structure
of 0:

sb(Pui ...un) = {Pu1...un}U Ur=isb(uj)

sb(ui = «2) = {«1 = U2} U sb(«i) U sb(u2)

sb(-i^) = {-»$ U sb(4>)

sb(<£ -»• ip) = {4> -»• ip} U sb(<£) U sb(V0

sb(D<?i) = {a<p} U sb(<£)

11

sb{4>Uip) = {<t>Ui)} Usb(<£) Usb(^)

sb(Vx4>) = {Vx<£}Usb((£)

and similarly for the other prepositional connectives and temporal operators. The set of
subformulas of a term is deHned by:

sb(c) = 0 sb(£) = 0

sb(/Ul ...«„) = U?=isb(«i) sb(r(0)) = sbfa),

where c denotes a constant, flexible or rigid. Finite variability can then be defined as follows.

Definition 11 (finite variability) A formula 4> has the property of finite variability, or
FV, if for every closed ac and every I there exists a a'c y ac such that

for all subformulas vb € sb(^). The trace a'c with the above property can be open, and is
called a ground trace for <$>, ac and I.

Example 4 Many common formulas used in the specification and verification of systems
are FV. On the other hand, an example of a formula which is not FV is the following:

T<4-K> cos^-I>0

The reason why the above formula is not FV is that it is not possible to subdivide H+ into
a finite number of intervals in which the subformula cos(l/(T - 4)) > 0 has constant value.

Example 5 Another, more subtle, example of a formula which is not FV is given by the
formula <f> of Example 1. The reason why it is not possible to refine a given ac into a o'c such
that the values of the subformulas are constant in the intervals of a'c has to do with the way
quantification interacts with time. Specifically, for each value of £ and C it is possible to
find a a'c such that the subformulas f = T, £ = T and T = (f + 0/2 have constant value in
the intervals. However, it is not possible to find a <7C' that has this property for all possible
values of f and £. I

The importance of the concept of finite variability lies in the fact that if all subformulas
have constant truth value throughout an interval, then the ground continuous trace is
faithfully represented by its discrete translation. The necessity of considering formulas that
have constant truth value in the intervals had already been recognized in [20], where the
set of important events was introduced purposely to prevent certain formulas from changing
truth value in an interval. The definition of finite variability provides a more general
solution: it gives an account of the behavior of quantification, and it allows to change the
temporal logic specifications without also having to change the set of important events.

For FV formulas, the connection between TLC and TLD is expressed by the following
results.

12

Theorem 3 If o'c is a ground trace for <f>, ac, X, with ac closed, then

This theorem enables us to make a connection between the formulas that are valid, or
S-valid, in the two logics.

Theorem 4 (transfer of validity) If S \= <f> and <fi is FV, then S f= 4>. If j= <f> and <f>
is FV, then f= 4>.

Proof. We prove only the first statement, as the proof of the second is similar. We prove
the counterpositive: assume S \fc <f>. Then there are X, ac and a moment (n, t) of ac such
that S>ac, X, ac ^(n,t) <t>- As 4> is FV and ac is closed, there is a trace a'c >? ac that is ground
for <fi, ac, X. There is a k E ßn such that (k, t) is a moment of CTC', and from Theorem 2 we
have that J, a'c \£(k,t) 4>- As a'c is ground for J, <f>, by Theorem 3 we have X, 0(<7C') ^2fc 4>-

Lemma 1 ensures that S > Cl(o£), and we finally get S ^ <f>, which concludes the proof. I

Note that the converse of this theorem does not hold, i.e. if 4> is FV and S \= 0, it does
not follow that S |= <f>. A simple example is provided by <f> : 0(T = 5), which is valid in
the continuous semantics, but is not necessarily valid on a discrete trace of a system (see
Example 2).

4.4 From Discrete to Continuous Validity

Finite variability is a semantic property of a formula: to be able to use the result of the
last theorem in a proof system for TLc, we need to replace it by some syntactic criterion.

To obtain a sufficient syntactical condition for FV, we first define well-behaved functions
that are analytical along the real axis in some of their variables. Here, the word "analytical"
is used in the calculus sense.

Definition 12 (well-behaved function) We say that a function f(zo,... ,zn,vi,..., Vk)
is well-behaved if, for all 1 < i < n, and for all real Zj^a, vm (1 < j < n, 1 < m < k),
f when considered as a function of Zi only is analytical in a region of the complex plane
containing the real axis.

Example 6 Examples of well-behaved functions are

J{ZQ,ZX,VQ) = ZQ + Zy +VQ,

f(ZQ,V0) = \V0\+Z0,

/(zö) = l/(2 + sg),

f(z0,zi,vo,vi) = sm(v0zo)cos{vizi).

The function f(zo) = ZQsm(l/zo), on the other hand, is not well-behaved, as when consid-
ered as a function of ZQ it is not analytical in ZQ = 0. I

Definition 13 (syntactic finite variability (SFV)) We call SFV the formulas that are
constructed in the following inductive way.

13

1. Ifui, ..., un are terms not containing T or T, then Pu\ ...un is SFV.

2- If f(zQ,..., zm v\,..., Vk) is a well-behaved function, then

/(r,r(01),...,r(^n),ci,...Jqfe)=o,

/(r,r(01),...,r(0n),Cl,...,Cfc)>o,

where c\, ..., Ck are either constants different from T or variables, and <j}\, ...<pn do
not contain T or T, is a SFV formula. We call this type of SFV formulas T-atoms.

3. A formula constructed from SFV formulas using propositional connectives or temporal
operators is a SFV formula.

4- Ifd> is a SFV formula, and (does not occur in any T-atom of <f>, then V£0 is a SFV
formula.

Within an interval of a continuous trace crc, the a, ..., ck of the above definition have
constant value. The requirement that /(z0, • ■ •, zn, vx,..., vk) is well-behaved insures that
within each interval of uc the inequalities change truth value at most finitely often. This is
a consequence of a well-known theorem of calculus stating that a function can have at most
a finite number of zeroes in a finite region of the complex plane where it is analytical.

We will say that a formula is SFV even if it is not in a form described by the above
definition, but can be easily transformed and put in such a form. As an example, T > x + y
is not in the form defined above, but it can be transformed into T - x - y > 0, and
will thus also be called SFV. In a similar way, T > T(x = 2) + 4 can be transformed in
[T - T{x = 2) - 4 = 0] V [T - r(x = 2) - 4 > 0] which is of the above form. It is possible
to give a more general definition of SFV that encompasses directly all these cases, but it
would be far less concise.

Example 7 The formula <j> of Example 4 is not SFV, as the function cos(l/(x - 4)) is
not analytical in x = 4, a point of the real axis. The formula of Example 1 is not SFV as
it quantifies over f and C that appear in the T-atoms T = f, T = £ and T = (£ + C)/2. I

We have that SFV implies FV, as the theorem below states.

Theorem 5 (SFV implies FV) If <f> is SVF, it is also FV.

Corollary 1 If 4> is SFV, S \= <f> implies S |=° <j>. Similarly for initial validity. Therefore
the inference rules

, D , , D

C , I , C ,)

with the proviso that <j) is SFV, are sound.

14

Using syntactic finite variability, we can also establish a connection with prepositional
temporal logic. Let PTL be the propositional temporal logic of discrete linear time, on
the frame (IN, <), with temporal operators U, S, D, B, O, $>, and based on the floating
semantics. This logic is the same as the one presented in [17], apart for the absence of O,
e. The following results hold.

PTL
Theorem 6 (from PTL to TLc) // f= ot\p\,.. .pn], where pi, ..., pn are propositional
letters, then \= a[fa,...,<f>n] provided fa, ..., <f>n are FV. Similarly for initial validity.
Therefore, the following inference rules

h a\pi,...pn] h0 a\pi,...pn]
, c
I- a[fa,...,<j>n] r-(0j0) a[fa,...,<f>n]

with the proviso that fa, ..., <pn are SFV, are sound.

It is well known that a similar result holds for TLp, for which FV is not required [19].
This result is of relevant practical importance, because deductive systems for PTL are
well-studied [17], and efficient decision algorithms for the problem of initial validity exist
[11].

4.5 Reasoning in the Continuous Semantics

Sometimes it is necessary to carry out a small part of the reasoning in the continuous seman-
tics, to put together the results of the verification rules and reach the desired conclusion.
In practical verification examples, most of this reasoning is limited to using simple axioms
about the completeness and divergence of time along any continuous trace. It is possible
to give an axiomatization for TLc. As temporal logic with past, future and explicit time is
incomplete [4, 1, 2], this axiomatization will also be incomplete for the first-order case, but
nonetheless it will allow the proof of many formulas that arise in practice. The axioms can
be divided in three categories: propositional, first-order and about time.

Propositional axioms. The frame (W, <) of a model MCc derived from a trace ac is
neither discrete, nor dense, nor complete. In fact, in each interval the set of moments
is complete, but there is no moment between the two endpoints of two adjacent closed
intervals. We will therefore use an axiomatization for the general frame (W, <) with the
only hypothesis that it is a reflexive linear order with initial world.

Unfortunately, there is no complete set of axioms available in the literature for temporal
logic with U, S and the other temporal operators over the frame (W,<). A complete
axiomatization for U and S over the frame (W, <) has been presented in [3], and it is
possible to adapt those axioms Schemas to a reflexive frame, but no claim of completeness
is made at this point. The adapted axioms Schemas are fisted in Table 1. Of all these axioms,
except the one marked with (£), also the specular image should be taken as an axiom [21].
The specular image of a temporal formula is the formula obtained by substituting the future
operators with the corresponding past operators, and vice versa. For example, the specular
image of D<3>(T = 5) is BO(T = 5).

15

All propositional logic tautologies. 4>Uip -» Oip

n(<f> -» -0) -> (00 -> □V') 0(<A -> ^) -> (0W7) ->• {ipU'y)

<j) -*• D<S><£ D(0 -> ^) ->• (7 w<j>) -» (7 w VO

D<f>AB<f>-¥DB<f> ^Uip ^ <j>U{4>Utp)

0(B0VB-«#) (t) 0<f)^)-(il;V-vil))U<j>

4>/\{i>U~t)->ipU 7 A (^v 7)50]

Table 1: Propositional axiom Schemas for TLc-

7T = 7T PTTI . . . 7Tn -> DPTT! . . . 7Tn (ff)

7Ti = 7T2 -*• «/>(7Ti) -» 0(7T2) -iP7Tl . . . 7Tn -> D-nPTTl . . . TTn (ff)

ff! = 7T2 ->• D(7Tl = 7T2) (ft) Vx D0 -» OVrr ^

-.(TTi = 7T2) -*■ D->(7T! = 7T2) (ff)

Table 2: First-order axiom Schemas for TLc. The axioms denoted by (ff) have the proviso
that 7Ti, 7T2, ..., 7rn are terms not containing any flexible constant.

Another way of proceeding consists in defining the reflexive operators in terms of the
irreflexive ones, that is, recursively rewrite each pUq inp A (pUq), and similarly for S (the
other operators can be defined from these two), and then use the original axiomatization
proposed in [3] on the translation. Some additional axiom is still necessary to account for
the presence of an initial world.

First-order axioms. The set of first-order axioms we will use is entirely classical. They
account for rigid and flexible constants and equality, and they include the Barcan Formula,
as the domains of quantification are rigid. A list of axiom Schemas is given in Table 2. In
the table, if <P{TT\) is a formula containing the term 7ri, ^(TT2) denotes a formula obtained
from <j){-Ki) by replacing some occurrences of 7Ti with 7r2, provided no free variable of 7r2 is
captured in the process.

Moreover, we the additional axiom S f-C
(00) Qf states that all traces of a system start in

an initial state.

16

HC
(0i0)T = 0 T = t-*D(T>0

T > 0 £ > T -»■ 0(T = cf)

-10 -»■ r(^) = o o < r(<£) < T

T(<f>) = £ A c > £ -» o(<£ -* r(0 = c)
T = e + CA^5(T = eAr(^) = y) ->r(^) = u + c

r = eAB-.[^w(T = o]-»r(^) = o

Table 3: Time axiom Schemas for TLc-

l-c 0 -)• ^, f-c 0 l-(o,Q) <ft -» V>» h(0,0) 0 I- 0

H%-»V> (f) ^(0,0)^"^^ (t)
h°(o,o) Dl^

hc 0 -»■ Vcf V ^C(o,o) 0^ V£ </> H° D0

HC a[^i,.. -, <£n] H(00) a[fa,...,<f>n] ^ 4> ^(o.o) ^

H%
HCB0

H°0
h(0,0) ^

,h°* m

Table 4: Inference rules. The rules denoted by (f) have the proviso that £ must not occur
free in <f>. The rules denoted by (§) have the proviso that fa fa, ..., 4>n are SFV. In all of
them, if the premiss(es) is (are) S-valid, the conclusion is S-valid.

Time axioms. A final set of axioms, listed in Table 3, are used to reason about time. As
usual, we list an axiom 4> to mean I- fa. in the case where we claim only the initial validity
of the axiom, as in the case of the first one, we write it explicitly.

Inference rules. The inference rules we propose are listed in Table 4. Note that these
rules are based on the floating semantics. On the other hand, the verification rules that
have been proposed in [6, 20] are based on the anchored semantics. To transfer the results
from the anchored to the floating semantics, it suffices to use the rules:

where H a is the provability relation in the anchored version of TLD-

17

5 An Example of Verification

We will now present a simple example of how the verification methods for TLD can be used
together with the time axioms and temporal reasoning to prove simple properties of systems
expressed in TLc- We will choose a property that does not hold in TLD, to demonstrate
the use of the time axioms for TLc-

We will not enter in the details of how the verification rules for TLD are used to prove
properties of a system, as this topic is dealt with in detail in [18, 9, 20].

Imprecise Oscillator

Consider a system OSC, consisting of an oscillator whose state is represented by the variable
x. The oscillator can be in any of two states, x = 0 and x = 1, and it can stay in each of
them for 3 to 5 seconds before switching to the other one. The oscillator start in the state
x = 0. The system can be described by:

er. x = 0 Pro '■ I = 0AI' = 1

T: {70,Tl} Pn ■ I = 1AI' = 0

'TO) 'Tl : 3 un , uTl : 5

We want to verify that OSC satifies the following property:

"The oscillator is in the state x = 1 some time between 6 and 7 seconds after it
is started."

This specification can be written as

OSC |=°0i0) o(x = 1 A 6 < T < 7). (1)

It is not difficult to see that the corresponding specification in TLD, OSC f=° 0(x = 1A 6 <
T < 7), does not hold. To prove (1), define the abbreviations

%l> : x = 0 A Y{x = 0) = T A T < 3, . (2)

0: T<8-+[i = lAr(i = l)<r-3]. (3)

The following implications hold:

0->(r = 6.5-»x=l), V-> (T = 6.5->Z = I). (4)

The proof of the specification (1) proceeds as follows.

D
OSC h0 ip W <f> from wait-for verification rule for TLD (5)

D
OSC I- <f> -*• u<f> from invariance verification fule for TLD (6)

OSC H0 ij> W acf> from (5), (6) by temporal reasoning in TLD (7)

OSC hD D(T = 6.5 -)• x = 1) from (4), (5), (6) by temporal reasoning in TLD(8)

18

OSC hC
(00) D(T = 6.5 -> x = 1) from (8), as it is SFV (9)

OSC h,0 0) o(T = 6.5) from the time axioms of TLc (10)

OSC K0 0) 0(T — 6.5 A x = 1) from (9), (10), temporal reasoning in TLc (H) (0,0)

c
"(0,0) OSC Hc,0 0) 0(x = 1 A 6 < T < 7) from (11) (12)

It is also possible to eliminate from this proof all temporal reasoning in TLc, apart from
the application of the time axioms. This is done by introducing antecedents of implications
in TLD that will be discarded by time axioms of TLc- This transformation shows how
reasoning in TLc can be kept to a minimum. The final steps of the previous proof can be
modified as follows.

OSC Ho 0(T = 6.5) -» 0(T = 6.5 A x = 1) from (8) by temp. reas. in TLD(13)

OSC HD
0 o(T = 6.5) -> 0(x = 1 A 6 < T < 7) from (13) (14)

OSC H°f0 0) 0(T = 6.5) ->• 0(x = 1 A 6 < T < 7) from (14), as it is SFV (15)

H/0 0s 0(T = 6.5) from the time axioms of TLc (16)

OSC H°,0 0) 0(x = 1 A 6 < T < 7) from (15), (16) (17)

6 Hybrid Systems

The results obtained for real-time systems can be transferred to hybrid systems, provided
that a proper relationship can be set up between the discrete and continuous semantics. In
particular, we need to give a new definition of SFV for hybrid systems, to account for the
fact that the state can change continuously in time, and we need to show how to define the
traces and the translations in such a way that we can prove the analogous of Theorem 4.

6.1 Phase Transition Systems

We will model hybrid systems by phase transition systems similar those of [18, 20]. A phase
transition system (PTS) 5 = (V, S, V, T, L, U, 0) consists of the following components.

1. A set V of variables, called state variables, each with its type. V is partitioned into
two disjoint subsets: V& and Vc. The variables in 1^ are called discrete variables,
they can be of any type and they can change only in an instantaneous way. The
variables in Vc are called continuous variables, have type real, and can change both in
an instantaneous and in a continuous way.

2. A set S of states: each state is a type consistent interpretation of the variables. Again,
we write s(x) to denote the interpretation of i € V at state s. We write s|yd, s\yc

to denote the restrictions of the interpretation s to discrete and continuous variables
only, respectively.

3. A set 6 C E of initial states.

19

4. A set V of phases. V is partitioned into disjoint subsets, one for each variable in Vc.
The subset corresponding to x G Vc will be denoted by Vx.

5. A set T of transitions, where r C E x E for each TES. T is partitioned into two
disjoint subsets 7T and %. The set X is the set of immediate transitions, that must be
executed no later than the time at which they become enabled. The set % iS the set
of delayed transitions, whose enabling does not depend on the continuous variables.

6. Two sets L, U of minimum and maximum delays for the transitions in %.

Phases. For each x G Vc, every phase p G Vx is composed of an enabling condition cpCS
.and of a phase function fp : E *-¥ JR. The phase p is used to represent a differential equation
governing x: the intended meaning is that if cp holds, then it must be x = fp(s) in each
state s where the state changes continuously. The enabling condition cp can depend on the
discrete variables only: formally, for all s,s' G E, s\vd = s'|yd ->■ (s G cp <4 s' G cp).

We say that a phase p is /«near if the function fp is a linear function of the continuous
variables. It is not required that fp is linear in the discrete variables as well.

Transitions. We define the enabling condition Cr of a transition r G T as the set of states
that have a successor according to the transition, or cv = {s | 3s'[(s, s') G r]}. Transitions
must be self-disabling, that is, (s, s') G r —> s' £ c,-.

If an immediate transition becomes enabled at time t, it has to be taken or disabled by
some other transition before time advances past t. There is no restriction on the enabling
condition of immediate transitions: it can depend on both the continuous and the discrete
part of the state.

Each delayed transition r €% has an associated minimum delay lT G L and maximum
delay uT G U, with 0 < lT < uT < oo. After r is enabled, it can wait for a time t^. lT < td <
uT before being taken. The enabling condition of delayed transitions can depend only on
the discrete component of the state: for all s, s' G E, it is s\vd = s'|vd ->• (s G cp -H- s' G cp).

6.2 Continuous Semantics

The continuous semantics of hybrid systems is defined in terms of hybrid traces. They
differ from the continuous traces used for real-time systems, as the value of the continuous
variables can vary in the intervals composing the trace. The definition is as follows.

Definition 14 (hybrid trace) A hybrid trace a^ is a sequence of pairs Ob,: (go,Io),
(gi,h), (g2,h), ■■■, with In G Int©., gn : In i-> E, for all n G IN. The intervals can
overlap at most at the endpoints, and they cover all JR+: for all n,

sup In = inf In+i,

Each function gn assigns a state gn(t) G E to each time t G In. The discrete variables cannot
change their value in an interval: for all n el and all <i,<2 G In, 9n(h)\vd = 9n(t2)\vd-

20

The value of variable x at time t of interval In is thus gn{t){x). Again, we define
admission only for closed traces, for simplicity.

Definition 15 (admission, hybrid traces) A PTS S admits a trace ah: {go,Io), (gi,h),
(g2,h), ■■■, written S > o/j, if a^ is closed and the following conditions are satisfied:

1. The phases are respected: for each x € Vc and n G IN, if I£" ^ I£, there is a p G Vx

such that, for all t G In:

9n(t) G cp,

dgn(u)(x)
fp9n(t) =

du u=t

where it is assumed that for 7£" < t < 1^ the derivative dgn(u)(x)/du\u=t exists, and
for t = I£~, t = In, the left-hand and right-hand derivatives, respectively, exist.

2. No immediate transition is skipped: for all n and T eli, I£~ <t < 1^ ->■ 9n(t) G" Cr-

3. All discrete state changes are due to a transition: for alln, either gn(I^) = gn+i(I£)
or (gn(I^),gn+i(I£~1)) G T for some r G T- If such a r is a delayed transition, we
also require that it has been enabled for at least lT: for all k G IN,

k<nAl?>I?-lT^ gk{Ik) G Cr-

4- Delayed transitions never wait for longer than their maximum delay: for all r € %
and ni,ri2 G IN with 712 > n\,

7^ -/^ < «T V 3n3 [ni < n3 < n2 A p„3 (i^) ^ Cr] •

6.3 Discrete Semantics

The discrete semantics of hybrid systems is defined in terms of discrete traces, exactly as
it was done for real-time systems in Definition 1. However, we do not define admission
of discrete traces directly: we will define it through hybrid traces, using the translation
functions.

6.4 Temporal Logic

Temporal logic is then defined for discrete and hybrid traces in the same way it was defined
for discrete and continuous traces, respectively, for real-time systems. The logic correspond-
ing to discrete traces is TLD, as before. The logic corresponding to hybrid traces will be
called TLH, its satisfaction relation will be denoted with (= and its provability relation
with hH. We use a different name for TLH, as we do not wish to imply that TLc and TLH

are the same. A deductive system for TLH will be discussed later.

21

7 From Discrete to Continuous Reasoning

Refinement of discrete traces was defined in Definition 7. Refinement of hybrid traces is
defined as follows.

Definition 16 (refinement, hybrid traces) A hybrid trace o^: {go,h), (gi,h), (92ih),
... is a refinement of an: {g'o,I'o), (g[,I[), {g'2-,I2), ••• by the partitioning function \i,
denoted a'h y

ß <%, if Ii = Ujg/i; Ip and for every i,j € IN such that j € fo, it is Vt €

Ij[9j(t) = 9i(t)].

Sampling equivalence is then defined as before. The definition of the translation func-
tions has to be modified, and we denote the new versions with T ,0 .In particular, a
discrete trace no more encodes all the information required to reconstruct a hybrid trace:
it contains the information about the state at the beginning and at the end of each closed
interval, but it does not represent the evolution of the state in the interior of the inter-
val. Therefore, to a single discrete trace correspond many hybrid ones that agree with the
discrete one at the endpoints of the intervals.

Definition 17 (T : c^ M- ah.) The translation function T associates to ad: (so,to),

(
S
1J*I)J (S2>*2)> • • • a set of closed hybrid traces T (aj), such that, for every a^ (g(j,Io),

(91 Ji), (52,/2)
gn(In) = Sn+l-
{91 Ji), (92, h), ...G T (ad), and for every n, it is If = tn, If = tn+x, gn(If) =-*n,

Definition 18 (fi : ah •-»■ ad) The translation function Q, associates to ah: {go,Io),
(SIJ-TL); (52,-^2); ••• the discrete trace ad: (so,to), (si,*i), {s2,t2), •■- defined in the follow-
ing way, for all n € IN.

1. (a) If In is closed, t2n = It, Wi = I?•

(b) If In is left open, t2n = t2n+i = In '■

(c) If In is right open, t2n - t2n+i = If-

(d) Ifln is open, t2n = t2n+i = (If + If)/2.

2. s2n = gn{If), s2n+i = gn(If)-

A PTS S admits a discrete trace if the discrete trace describes a hybrid trace admitted
by S. This is the implicit meaning of the definition given in [20].

Definition 19 (admission, discrete traces) A PTS S admits a discrete trace ad, writ-
ten S > ad, if there is a ah € T (ad) such that S>ah-

In defining finite variability for hybrid systems, it is essential to define it with respect
to a given PTS, to constrain somehow the behavior of the continuous variables.

Definition 20 (HFV) A formula <fi is hybrid finite variability, or HFV, with respect to
a PTS S if for every ah admitted by S and every X, there exists a a'h > o~h such that:
Z> uc r=(i,t) i> +* xi °c N(*,f) V> for all ip € sb(<p).

22

With these definitions, we can prove the corresponding of Theorem 4.

Theorem 7 (transfer of validity, hybrid case) If S \= 4> and <f> is HFV with respect
HD H

to S, then S |= <f>. If (= <f> and 4> is HFV with respect to S, then S (= 4>.

Again, we present a sufficient condition for a formula to be HSFV with respect to a PTS S.

Definition 21 (simple age function) We say that an age function r(<f>) is simple with
respect to a system S if its argument <f> does not contain occurrences of continuous state
variables of S.

Definition 22 (syntactic finite variability, hybrid (HSFV)) A formula is HSFV
with respect to a PTS S if the phases of S are linear, and if the formula is constructed
in the following inductive way.

1. If u\, ..., un are terms not containing T, T, or continuous variables, then Pu\ ...un

is HSFV.

2. If f(zQ,... ,zn,vi,... ,Vk) is a well-behaved function, then f(bo,... ,bn,ci,..., cjt) = 0,
f(bo, ■ ■ ■, bn, c\,..., Cfc) > 0 are HSFV formulas, provided bo, ..., bk are constants of
the logic or simple age functions, and c\, ..., c^, are variables of the logic, or constants
different from T and from continuous state variables. We call this type of HSFV
formulas T-atoms.

3. A formula constructed from HSFV formulas using propositional connectives or tem-
poral operators is a HSFV formula.

4- If (f) is a HSFV formula, and £ does not occur in any T-atom of <f>, then Vf <f> is a
HSFV formula.

Theorem 8 (HSFV implies HFV) // 4> is HSFV with respect to a PTS S, it is also
HFV with respect to it. Therefore, the inference rules

5H° 4> Sfptf}

S I- 4> S h(00) <f>

with the proviso that <f> is HSFV with respect to S, are sound.

The restriction requiring the linearity of the phases is important, and cannot be lifted
without being substituted by some other kind of condition insuring that the solutions of
the differential equations are well-behaved in the sense of Definition 12.

A deductive system for TLH- Since the definition of syntactic finite variability is now
relative to a PTS, we need to modify slightly the deductive system proposed for TLc- We
take the same set of axioms, and all the inference rules listed in Table 4 apart from the last
four, denoted by (§). Those four are replaced by the following rules:

h a\pi,...pn] t-0 a\pi,...pn] S\-J> S^0cf)

S\- a[<j>i,...,<f)n] S h(00) a[0i,..., cj)n] S\- (f> ^ ^(0,0) ^

with the proviso that <f>, <j>\, ..., <f)n are HSFV with respect to S.

23

Acknowledgments. We wish to thank Nik0laj Bjorner, Amir Pnueli and Henny Sipma
for their valuable comments and suggestions.

References

[1] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. In Proc.
10th ACM Symp. Princ. of Dist. Comp., pages 139-152, 1991.

[2] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In J.W.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory
in Practice, Lecture Notes in Computer Science 600, pages 74-106. Springer-Verlag,
1992.

[3] J.P. Burgess. Axioms for tense logic I. "since" and "until". Notre Dame journal of
Formal Logic, 23 (4):367-374, October 1982.

[4] J.W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2, chapter 5. D. Reidel Publishing Company,
1984.

[5] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In Proc. 5th
IEEE Symp. Logic in Comp. Sei., pages 402-413, 1990.

[6] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time
systems. In Proc. 18th ACM Symp. Princ. of Prog. Lang., pages 353-366, 1991.

[7] T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proc. of the REX Workshop
"Real-Time: Theory in Practice", volume 600 of Lect. Notes in Comp. Sei., pages
226-251. Springer-Verlag, 1992.

[8] T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In W. Kuich,
editor, Proc. 19th Int. Colloq. Aut. Lang. Prog., volume 623 of Lect. Notes in Comp.
Sei., pages 545-558. Springer-Verlag, 1992.

[9] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for timed
transition systems. Inf. and Comp., 1994. To appear.

[10] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, (lll):193-244, 1994.

[11] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full prepo-
sitional temporal logic. In Computer Aided Verification, 5th International Workshop,
Lecture Notes in Computer Science. Springer-Verlag, 1993.

[12] Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification of simulation and refine-
ment. In Proc. of the REX Workshop "A Decade of Concurrency", volume 803 of Lect.
Notes in Comp. Sei, pages 273-346. Springer-Verlag, 1994.

24

[13] Y. Kesten and A. Pnueli. TLR: Having your next and eating it too. Technical report,
Weizmann Institute, 1992.

[14] L. Lamport. What good is temporal logic? In R.E.A. Mason, editor, Proc. IFIP 9th
World Congress, pages 657-668. Elsevier Science Publishers (North-Holland), 1983.

[15] L. Lamport. The temporal logic of actions. Technical Report 79, DEC SRC, Palo Alto,
CA, December 1991.

[16] L. Lamport. Verification and specification of concurrent programs. Technical report,
DEC SRC, Palo Alto, CA, 1993.

[17] 0. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Conf. Logics
of Programs, volume 193 of Lect. Notes in Comp. Sei., pages 196-218. Springer-Verlag,
1985.

[18] 0. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker,
C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proc. of the REX Workshop
"Real-Time: Theory in Practice", volume 600 of Lect. Notes in Comp. Sei., pages
447-484. Springer-Verlag, 1992.

[19] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

[20] Z. Manna and A. Pnueli. Models for reactivity. Ada Informatica, 30:609-678, 1993.

[21] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2, chapter 4. D. Reidel Publishing Company,
1984.

25

Reproduced by NTIS

Ü
So
tf)"0

Ei

i.
OS

(A4)
ES
£ o © o
M- a*" ™

O 0
E

c
0

OS
E u
0) 0

+* 0.0)0
0£,£o

fl). c
0"U-

(0
.3T5

D)
(0
E

w o 'S <S

zS<2 =

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Technical Information Service
Springfield, VA 22161 (703) 487-4650

