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4th    Interim Report 

Electron transport through a combination of different superlattices 

In this report we summarize the results obtained by hot electron spectroscopy of 
combinations of field free undoped superlattices. The study was carried out using a 
modified tunneling hot electron transfer amplifier, with an injector consisting of a tunneling 
barrier embedded within two highly doped GaAs contact layers. An energy tunable electron 
beam is injected into the structure under investigation. The measured static transfer ratio is 
defined by the ballistic electron current measured at the collector of the three terminal device 
devided by the emitter current (a=Ic/IE). Since the transfer ratio is proportional to the 
transmittance of the structure, which is grown between the base and the collector contact, 
we get important informations of the transport mechanism in such sophisticated quantum 
mechanical systems. 

cm 

14 cm-1), in 

The samples grown by Molecular 
Beam Epitaxy we have studied consist of the 
following common features: A highly doped 
n+-GaAs collector contact layer (n=lxlO^^" 
3) is grown on a semiinsulating GaAs 
substrate. Followed by the heterostructure 
under investigation and the drift regions 
which are slightly n-doped (-5x10 
order to avoid undesired band bending. This 
layers are followed by a highly doped 
(2xlOl8cm-1) n+-GaAs layer (base) of 13 nm 
width. On top of the base layer a 13 nm 
undoped Ga()7Al03As barrier is grown 
followed by a spacer and a n+-GaAs layer, 
nominally doped to n=3xl017 cm"1. Finally, a 
n+-GaAs contact layer (n=lxlOl8cm3) is 
grown on top of the heterostructure to form 
the emitter. The full width at half maximum 
(FWHM) of the injected energy distribution was measured to be 17 meV in width using a 
resonant tunneling diode in the drift region. It should be noted that the FWHM limits the 
energy resolution. 

85 Ä GaAs well 
25 Ä AlGaAs barriei 
5 wells, x= 33% 

Figure 1. Three terminal device 

The fabrication (Fig. 1) of the three terminal device includes the following steps: 
SiCl4/SF6 reactive ion etching (REE), unselective etching to the collector layer, metallization 
of the AuGeNi ohmic contacts, Si3N4 isolation of the emitter mesa (PECVD), and finally the 
metallization of the CrAu bonding pads. More details can be found elsewhere1. 

We have grown two samples with different combinations of five period 
superlattices. The superlattice growth parameters are given in table 1. 

sample No. 

1 

superlattice 1 
barrier (A) 
35 
35 

well (A) 
42.5 
42.5 

superlattice 2 
barrier (A) 
25 
25 

well (A) 
120 
120 

superlattice 3 
barrier (A) 

15 

well (A) 

85 
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Sample No. 1 consist of two 
superlattices. The parameters were chosen in 
such way that the lowest miniband of the first 
superlattice is aligned with the second 
miniband of the second superlattice. Injected 
electrons with energies high enough to 
traverse into the lower miniband of the first 
superlattice have two output channels. One 
channel is defined by transport through the 
second miniband of the second superlattice 
without scattering. Electrons which are 
scattered in the second miniband can be 
collected via transport through the first 
miniband of the second superlattice. 
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Figure 2. Bandstructure of a combination of 
three different superlattices 

0.025 

Sample No. 2 consist of three 
different superlattices as noted in the table.. 
The conduction band structure is sketched in 
Figure 2. The first and the second superlattice have the same parameters as the superlattices 
in sample No. 1. The third superlattice is designed such that the minigap between the first 
and the second miniband is aligned with the second miniband of superlattice 2. The first 
minibands of superlattice two and three are aligned as well. Consequently only electrons 
which are scattered in the second superlattice can be collected and measured in the collector 
current. Electrons that are reflected by the minigap and not scattered into the first miniband 
will be bounced back and collected at the base layer. 

In figure 3 the transfer ratio a 
versus injection energy is shown. A sharp 
increase of the transfer ratio is evident at 
about 90 meV which corresponds to the 
position of the first miniband of 
superlattice 1. It can be seen that the 
transfer ratio of sample No. 2 is about 50 
% of the transfer ratio of sample No. 1. 
Consequently we assume that about half of 
the electrons injected into the second 
miniband of the second superlattice are 
scattered into the first miniband. Since the 
energy gap between the second and the 
lowest miniband is of the order of an 
longitudinal optical (LO) phonon, we 
know that the interminiband transition is 
mainly governed by LO-phonon scattering 
which is the most effective scattering 
process at low temperatures. If the minigap 
is smaller than 36 meV one might achieve 
inversion and consequently a light emitting 
more sophisticated. A prototype of a sample 
characterized soon. 

,gl94 
SL 1: 42.5Ä/35Ä (5 per.) 
SL 2: 120Ä/25Ä (5 per.)' 

g202 
SL 1: 42.5Ä/35Ä (5 per.), 
SL 2: 120A/25Ä (5 per.) 
SL 3: 85Ä/15Ä (5 per.) 

0.22     0.24 

injection energy (eV) 
Figure 3. Comparison of the transfer ratio of two 
different combinations of superlattices 

device. The design of such structure is even 
mentioned above is already grown and will be 
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Future work: 

Detection of plasmon emission in a4-terminal device (spontaneous emission). 

Stimulated by the work on laser-pulse induced THz emission from plasmons 
observed recently by the Vienna group (to be published), an experiment is proposed and 
designed in cooperation with Prof. Bakshi and Kempa from Boston College to observe 
directly the relaxation of hot carrier distribution via plasmon emission. This is similar to an 
experiment which demonstrated the LO phonon replica. The fundamental question here is 
weather a well defined energy spectrum due to bulk plasmon relaxation can be observed. 

A new four-terminal device scheme is designed which might be capable ot 
demonstrating the above process. We are aware that several groups have toed to 
demonstrate plasmon relaxation as an efficient energy relaxation channel. However, no 
conclusive results have been published, to our knowledge, so far. 

The suggested four terminal device which is based on the growth on n+ substrate 
and application of several etch-stop layers, allows for an independent yanation of the 
injection energy and the analyser (both consisting of a resonant tunnelling filters). The open 
question here is weather it will be possible to grow structures of sufficient quality (long 
enough mean free path for impurity scatterings) to provide the necessary energy resolution 

require T^demonstmüon ^ a contwued plasmon relaxation is a bench- mark experiment 

on the way to a plasmon mediated THz source. 

1 C. Rauch, G. Strasser, K. Unterrainer, and E. Gornik, Appl. Phys. Lett. 70 (1997) 

B. Brill and M. Heiblum, Phys. Rev. B 49, 14762 (1994) 

Enclosure 2 


