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Abstract 

This report explores the possibility of actively controlling a projectile with four canard lifting 
surfaces, equally spaced radially, with the end goals of extending range, improving terminal accuracy, 
and shaping the trajectory of a projectile. A description of a general mathematical model used to 
predict the dynamic behavior of a canard-controlled projectile in atmospheric flight is given. The 
model is exercised in prediction of the response of an advanced projectile currently under 
development. For the projectile used in this study, it is shown that the maximum range can be 
extended by 148% using controlled canards. It is also shown that projectile trajectories can be shaped 
to follow a predetermined and significantly different path than the nominal trajectory. 
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1    Introduction. 
Traditionally, field artillery target effects are produced by firing a sufficient number of rounds with known 
accuracy at a given target so that, statistically, the target is neutralized. While this methodology is certainly 
successful for eliminating targets on the battlefield, it is not without several undesirable side effects that 
degrade overall effectiveness. Unless you are able to increase the lethality of the munitions, the goal o 
improving field artillery systems generally boils down to increasing achievable range and improvmg terminal 

accuracy of the projectile. 
It is obvious that a round with extended range enjoys the flexibility of being able to engage a greater 

number of targets over a larger land area. A less obvious, yet equally important advantage of extended 
range is that the system with greater range requires fewer repositionings on the battlefield and can provide 
fire support for a higher percentage of time. This becomes particularly important in today's highly mobi e 
battle environment, where a significant portion of time is spent moving into position. In a highly mobile 
battle environment, the commander seeks to minimize decision cycle time. That is to say, he is attempting 
to minimize the time needed to gather information, analyze the data, make a decision, publish the course 
of action, and execute the plan. The friendly commander's goal is to operate inside the enemy's decision 
cycle in other words, to make decisions and execute operations faster than the enemy can react to these 
operations, thus introducing confusion and disarray into the enemy's actions. Since a long-range projectile 
can cover a large area of land, rounds can be fired at many different targets on the battlefield in a short 
period of time. While the enemy is repositioning to react to artillery fire at a particular target, the long 
range artillery system can quickly engage the repositioned unit or other targets on the battlefield. Thus, a 
long range projectile adds increased flexibility to the field artillery commander, allowing him to influence a 
much greater portion of the battlefield, for longer periods of time. 

The intensity of Army operations dictates that the field artillery optimize target effects with every round 
fired One method of improving target effects is to increase the terminal accuracy of each round [1]. Current 
field artillery doctrine requires large numbers of rounds to be fired in order to neutralize a particular target. 
Statistically, only a small percentage of these rounds actually produces effects on the target. Increased 
accuracy provides that the 'extra' rounds, those not having effects on target, are never fired. If more rounds 
than necessarv are fired, the firing unit accepts an unnecessary risk of being acquired by enemy target 
acquisition assets and subsequently engaged with counter fire. When the firing unit comes under steady 
counter fire, the unit will reposition and be rendered unavailable for other missions while m transit. Also, 
firing more than the minimum number of rounds needed to eliminate a target wastes expensive munitions and 
burdens the resupply system. Every extra round expended on a particular target represents an opportunity 
cost that could have been directed at another objective on the battlefield. More importantly, target effects 
decrease exponentially as a function of the number of projectiles fired at a particular target due to the lack of 
surprise The first volley fired is by far the most important volley to achieve maximum target effectiveness. 
Furthermore, if rounds are inaccurate, targets will reappear on the battlefield. Potentially, this will require 
additional artillery engagements and negatively affect the outcome of the overall battle plan. Thus, increased 
terminal accuracy increases target effects by landing more first hits, reduces vulnerability by firing less shots, 
and uses less material, which reduces the burden on the supply system - all contributing to a more effective 

and lethal field artillery unit. 
Generally the line between a target and an artillery cannon determines the angle at which a target is 

engaged. Once positioned, the commander has little ability to effect the angle or direction which a target 
is attacked. If the commander desires to attack a target from a different direction, the firing unit must 
be repositioned to an area located on the same line as the desired engagement direction. As a matter of 
practicality, this is seldom done, since the benefits associated with attacking a target in the optimal line of 
fire seldom outweigh the disadvantages of taking a firing unit out of action for repositioning. Obviously, some 
directions are not possible, such as attacking the enemy from behind the enemy's front line. With active 
control the trajectory of a projectile can be drastically altered so that targets can be attacked from a wide 
variety of angles of inclination as well as different directions. An actively controlled projectile allows the field 
artillery commander to engage difficult targets due to the ability to attack targets from different directions 
and renders the unit available for missions for a greater percentage of time due to reduced repositioning 

requirements. ^^^ ^ ^ ^^ exploreg the possibility of actively controlling a projectile with four 



canard lifting surfaces, equally spaced radially, with the end goals of extending range, improving terminal 
accuracy, and tailoring the trajectory of a projectile. The report begins with a description of a generic 
mathematical model used to predict the dynamic behavior of a canard-controlled projectile in atmospheric 
flight. Next, the model is exercised in prediction of the response of an advanced projectile currently under 
development. 

2    Projectile Mathematical Modeling. 

The following sections describe the equations used to simulate a canard-controlled projectile. It is assumed 
that the projectile is a rigid body modeled by a fully coupled six-degree-of-freedom nonlinear set of ordinary 
differential equations. Aerodynamic forces and moments of the projectile body and canard lifting surfaces 
are functions of both angle of attack and local Mach number. Air density and the local speed of sound are 
computed using the standard atmosphere modified to allow for variation in the sea level temperature. The 
control system uses inertial position and velocity, roll rate, and attitude feedback to track an inertial position 
trajectory using the movable canard lifting surfaces. 

2.1    Atmosphere Model 

The trajectory of a projectile depends on the density of air in which it is flying. Since air density varies with 
atmospheric conditions, measurements of the trajectory of a projectile taken during different atmospheric 
conditions can be compared with one another only after having been reduced to certain standard conditions. 
For this purpose, a standard atmosphere was developed and is used regularly in the Aerospace community. 
Expressions for air density, p, and speed of sound, a, as a function of altitude, z, are given by Equations 1 
and 4, respectively. See Von Mises [2] for a complete development of the standard atmosphere equations. 

p = 0.00237847(1 + 0.00000688z)4'258 if 0 > z > -35,332 feet (1) 

a = 49.0124^518.4+0.003566z (2) 

If z < —35,332 feet, then the value of air density at an altitude of —35, 332 feet is used. Note that projectile 
altitude is defined as positive downward so that flight above the ground plane results in a negative value of 
z. One of the assumptions in the standard atmosphere is that air temperature at sea level is 59° F. For a 
nonstandard day, temperature at sea level is given by Equation 3. 

T0 = 1.8 OAT+ 518.4 (3) 

In Equation 3, OAT is the outside air temperature and is the difference from the standard temperature 
given in units of Celsius. OAT = 0 is the standard day temperature at sea level. Expressions for air density 
and speed of sound as a function of altitude and outside air temperature can be derived and are given by 
Equations 4 and 5. 

„=1|33        M0356,    a68 if 0 > 2 > _35,332 feet (4) 

a = 49.0124 v/r0 + 0.003566z (5) 

The Earth's atmosphere generally fosters air velocity perturbations that can significantly modify the trajec- 
tory of a projectile. It is common to separate the atmospheric air velocity perturbations into steady and 
fluctuating components, typically called mean wind and atmospheric turbulence, respectively. The atmo- 
spheric wind velocity model adopted in the current effort includes only a mean wind component and assumes 
that the atmospheric wind flows parallel to the Earth's surface. The magnitude of the atmospheric mean 
wind velocity vector, given by Equation 6, is modeled as an arc tangent function in order to account for the 
Earth's boundary layer. Figure 1 depicts the atmospheric mean wind velocity as a function of altitude with 
a = 100. 
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Figure 1: Mean wind velocity versus altitude (a = 100). 

Because the arc tangent function approaches TT/2 at infinity, Equation 6 approaches a as altitude increases. 
The atmospheric mean wind flows over the Earth's surface at an arbitrary angle, ipw. A value of ipw - 0 
implies an initial headwind on the projectile, ipw = 90° implies an initial right cross wind, iPw = 180° implies 
an initial tailwind, and iPw = 270° implies an initial left cross wind acting on the projectile. Note that the 
atmospheric mean wind model is quite crude and is merely a simple method for introducing trajectory errors 

due to atmospheric wind. 

2.2    Projectile Dynamic Model. 
The motion of a projectile in atmospheric flight is assumed to be adequately described with six rigid body 
degrees of freedom comprised of three body inertial position coordinates as well as three Euler angle body 
attitudes. Figure 2 illustrates the inertial and body coordinate systems used in the current effort. The 
inertial coordinate system, in its most pure form, is fixed or in uniform translation relative to the stars. For 
the present study, the Earth is presumed to be a flat surface. Thus, the inertial coordinate system is defined 
as an earth surface fixed coordinate system denoted by subscript /. The inertial system's origin is located 
at the end of the gun tube with i> and j> forming a plane parallel to the Earth's surface. The */ axis points 
down into the Earth's surface. The projectile body system, denoted with subscript B, is fixed to the center 
of gravity of the projectile. The iB axis points out the nose of the round. If the quadrant elevation angle 
were zero, then the TB and i> axes would initially be aligned [3]. Looking down on the projectile with roll 
angle equal zero, the jB axis points out the right canard wing and kB axis points down. The equations of 
motion are written with respect to body coordinates with appropriate kinematic equations relating body 
translational and rotational rates with inertial translational and Euler angle rotational rates, respectively. 
The resulting 12 nonlinear differential equations are given by Equations 7 through 18. See References [3,4] 

for a detailed derivation. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

x = u cos 9 cos ip + v(sin <f> sin 9 cos ip - cos <j> sin ip) + w(cos <p sin 9 cos ip + sin <f> sin ip) 

y = ucos9smip + v(sin <j> sin 9 sin ip + cos <j> cos ip) + w{cos <p sin 9 sin ip - sin <j> cos ip) 

z — -u sin 9 + v sin <p cos 9 + w cos <j> cos 9 

<p = p + q sin <j> tan 9 + r cos <f> tan 9 

9 — q cos 4> — r sin <p 

ip — q sin (j> sec 9 + r cos <j> sec 9 



Figure 2: Coordinate system description. 

ü = X/m + rv — qw 

v = Y/m + pw — ru 

(13) 

(14) 

w = Z/m + qu — pv (15) 

P = L/Ixx (16) 

q   =   M/Iyy   + rP(Iyy   -  IXX)/Iyy (17) 

r  =   N/Iyy   + Pq(Iyy   -   Itx)/Iyy (18) 

Note the following variable definitions utilized in the previous equations: x, y, and z are the measure numbers 
of the inertial position vector expressed in the inertial reference frame; <f> is the Euler roll angle, 6 is the Euler 
pitch angle, r/t is the Euler yaw angle; u, v, and w are the translational velocity components of the center 
of gravity of the projectile resolved in the body axis system; p, q, and r are the components of the angular 
velocity vector of the projectile with respect to inertial space expressed in the body frame; m is the projectile 
mass; Ixx and Iyy are the roll and pitch moments of inertia about the center of gravity, respectively. The 
applied forces X, Y, and Z and moments L, M, and N are given by Equations 19 through 24. 

X = —Fp — mg sin 6 + Xw 

Y = 
Vwi + vl 

Fn + mg sin <f> cos 9 + Yw 

Z = 
—w. 

-—Fn + mg cos <f> cos 6 + Zu 

L = Mr + L 
w, 

M = 
y/wl + vl 

Mv + Mw 

(19) 

(20) 

(21) 

(22) 

(23) 



FP 

Figure 3: Projectile body aerodynamic forces. 

N=    I  al  2M? + N™ 
(24) 

Note the following variable definitions used in Equations 19 through 24: Fp and Fn are the drag and 
normal body aerodynamic forces acting at the projectile center of gravity and are detailed in the following 
section; Mp and Mr are the pitching and rolling body aerodynamic moments and are also detailed m the 
following section; ua, va, and wa are the body aerodynamic velocity components at the center of gravity of 
the projectile including the effect of atmospheric mean wind; Xw, Yw, and Zw are the total canard force 
components expressed in the body axis; and Lw, Mw, and Nw are the total canard moment components 
expressed in body coordinates. Note that the total canard forces and moments include contributions from 

all four canard lifting surfaces. 

2.3    Body Aerodynamic Model. 

A basic assumption in developing aerodynamic force and moment equations is that only two unique aerody- 
namic body force and moment components are generated, a drag and normal force, Fp and Fn, as well as a 
rolling and pitching moment, Mp and Mr. The body aerodynamic forces act at the center of gravity of the 
projectile. These forces can be visualized on the projectile in Figure 3. The projectile body aerodynamic 
force and moment expressions are given in Equations 25 through 28. 

FP = \p{u2
a +v2

a + wl)^-CFP(a, Ma) 

Fn = \p{ul +v2
a +w2

a)^CFN(a,Ma) 

1 7rD3 

Mr = -p{u\ + vl + V%)—CMR{*,Ma) 

(25) 

(26) 

(27) 



Mp = ±p(ul + vl + wl)^CMp(«,Ma) (28) 

The reference diameter, D, used to nondimensionalize the projectile aerodynamic force and moment data is 
typically the cross-sectional diameter. As shown in Figure 3, the angle of attack of the projectile is defined as 
the angle between the relative wind velocity vector and the %B axis. Using Figure 3 as a guide, the projectile 
angle of attack can be developed and is given by Equation 29. 

a = tan"1 ^+^ (29) 
ua 

The local Mach number, Ma, at the projectile center of gravity is computed using Equation 30, which utilizes 
Equation 5 for the local speed of sound. 

ii y ii               \/ui + u? + w"~ Ma = ^^ = V   a-»-   q^    a  30 
a        49.012VTo + 0.003566z v    ; 

The body aerodynamic velocity components expressed in the body reference frame including the effect of 
atmospheric mean wind are given by Equations 31 through 33. 

ua = u + Vmw cos 0 cos ifi cos ipw + Vmw cos 6 sin ip sin tpw (31) 

va = v + Vmw (sin <j> sin 6 cos ip — cos <f> sin if>) cos ißw + Vmw (sin <j> sin 6 sin ip + cos <f> cos ip) sin rjjw (32) 

wa = w + Vmw (cos <f> sin 6 cos ijj — sin <j> sin tp) cos tpw 4- Vmu, (cos ^ sin 6 sin V> — sin <j> cos ^) sin ^        (33) 

As was previously defined, Vmw is the mean wind velocity at altitude and rpw is the azimuth angle at which 
the mean wind originates. See section 2.1 for a discussion of the atmosphere model. The projectile body 
aerodynamic force and moment coefficients are a function of both the local Mach number, Ma, and the angle 
of attack, a. 

CFN = cfnl(Ma)a + cfn3(Ma)a
3 + cfn5{Ma)a

5 (34) 

CFP = cfp0(Ma) + cfp2(Ma)a
2 (35) 

/„2 _j_ r2£) 
CMP = cmpl{Ma)a + cmp3{Ma)a

3 + cmp^{Ma)a
5 + cmpq(Ma)     Y, == (36) 

Wul + vl + wl 
pD 

CMR = Cmrd{Ma) + Cmrl{Ma)—-       * (37) 

The aerodynamic coefficients, c/„i, c/n3, c/n5, c/p0, c/p2, cmpi, cmp3, cmp5, cmpg, cmrd, and cmr/, are obtained 
through linear interpolation of a table of data that is a function of Mach number, Ma. 

2.4    Canard Aerodynamic Model. 

Both the total canard aerodynamic force vector, Fc = XwiB+YwjB+ZwkB, and the total canard aerodynamic 
moment vector, Mc = LwtB + MwjB + Nwkß, are summations of individual force and moment contributions 
from each canard lifting surface. 

j(w = y j Au; (3o) 
i=l 

Nc 

YW=J2Y^ (39) 

Zw=J2zwi (40) 
J=I 

ivc 

Lu, = y ^ Lwi (41) 
i=i 
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Figure 4: Canard geometry. 

Mw 

1=1 

Nc 

N,„ = y NU 

«=i 

(42) 

(43) 

In Equations 38 through 43, JVC is the number of canard lifting surfaces. The current work uses four canards 
so that Nc = 4. The basic geometry of the canard lifting surfaces is shown in Figure 4. When the angular 
rates of the projectile are nonzero, each canard experiences a different aerodynamic velocity since each canard 
is located at a different position on the projectile body. Equations 44 through 47 provide generic formulas 
for the relative aerodynamic velocity components and the local Mach number of the ith canard needed for 
subsequent computation of canard aerodynamic forces and moments. 

(44) V,ni       Un rryi + qrz 

vai = va + rrxi - przi 

wai — wa- qrxi + pryi 

\/u 
Mi = *— 

2  +vi- + u>i: 

(45) 

(46) 

 ;   (47) 
49.0124vTo + 0.003566z 

In Equations 44 through 46, rsi, ryi, and rzi are components of the vector from the projectile center of 
gravity to the computation point on the ith canard lifting surface expressed in body coordinates. 

Note that small differences in each canard's altitude create very small differences in atmospheric mean 
wind velocity magnitude, which, ultimately, also modifies the relative velocity experienced by a canard. 
However, this effect is believed to be very small and not taken into account. It is assumed that each canard 
experiences the identical atmospheric velocity field and density as the projectile center of gravity. In other 
words, at any time instant, the density and atmospheric velocity are assumed constant over the projectile 
and equal to that experienced by the projectile center of gravity. 



As shown in Figure 4, the canards are not swept. Although in a general flight condition, the canard lifting 
surfaces encounter skewed flow, this effect is not modeled. Instead, it is assumed that canard aerodynamic 
lift and drag forces always lie in a plane parallel to the canards airfoil section. General formulas for the lift 
and drag forces generated by the ith canard are given in Equations 48 and 49. 

Li = ~p(nli + vli + wli)SiCL (48) 

Di = ^p(uli + v2
ai + wli)SiCD (49) 

In Equations 48 and 49, S, represents wing surface area of the ith canard, and the aerodynamic lift and drag 
coefficients are given by Equations 50 and 51. 

CL = cia{Mi)ai (50) 

CD = cd0(Mi) + cd2(Mi)al + c,-(Af,-)C2 (51) 

The aerodynamic coefficients, c;a, Cdo, Cd2, and c,-, are obtained through linear interpolation of a table of 
data, which is a function of the local canard Mach number, M;. It is important to note that due to the simple 
expansion of Equations 50 and 51 in a,-, the equations are only valid for small angles of attack. Because 
of slight differences in the formulas for computing aerodynamic forces and moments about the projectile's 
center of gravity, each canard lifting surface is developed separately in the following four subsections. 

2.4.1 Canard 1. 

As shown in Figure 5, the aerodynamic angle of attack of Canard 1 is given by Equation 52. 

a1=81+t!ai-1(^\ (52) 

The aerodynamic force and moment components are given by Equations 53 through 58. 

Xwi = Li    .     a £>! —F    
a (53) 

V<1 + wal Vual + wal 

Ywl = 0 (54) 

Zwl = -Li a      =-£>!—=" (55) 
V<1 + K\ Vual + K\ 

Lwi = Zwlryl - Ywirzi (56) 

Mwl = Xwlrzl - Zwirxl (57) 

Nwl = Ywlrxl - Xwlryl (58) 

2.4.2 Canard 2. 

As shown in Figure 6, the aerodynamic angle of attack of Canard 2 is given by Equation 59. 

a2 = S2 - tan"1 (—\ (59) 

The aerodynamic force and moment components are given by Equations 60 through 65. 

xw2 = -L2  ;°2   - D2   ;°
2 (60) 

y      _  j ua2 J-. ^a2 /fi,^ 

\Aa2 + v2a2 \/ua2 + ^2 
Zw2 = 0 (62) 

Lw2 = Zw2ry2 - Yw2rz2 (63) 

MW2 - Xw2rz2 - Zw2rx2 (64) 

Nw2 — Yw2rx2 - Xw2ry2 (65) 



(66) 

2.4.3     Canard 3. 

As shown in Figure 7, the aerodynamic angle of attack of Canard 3 is given by Equation 66. 

Q3 = <^3 + tan-1 I —— 
\«o3/ 

The aerodynamic force and moment components are given by Equations 67 through 72. 

X , - r Wa3        _ p,    ,   Ua3 (67) 
Vua3 + "4 V Ua3 + <3 

(68) 

(69) 

™a3 p             ««3 

Vuf3 + <3 
0   r~n 9 

V««8 + wa3 

y»3 = o 
,               «a3 p            W°* 

"^ V^aS + Wls Vuls + wiz 
LwZ — Zw3ryZ ~ Y%u3rZ3 

MW3 = XW3rz3 - - ZW3rX3 

Nw3 = Yw3rx3 - Xw3Ty3 

■'wZ 
VuaZ + wa3 Vua3^wäz 

(70) 

(71) 

(72) 

2.4.4     Canard 4. 

As shown in Figure 8, the aerodynamic angle of attack of Canard 4 is given by Equation 73. 

a4 = *4-tan-1f^>) (73) 
\Wo4/ 

The aerodynamic force and moment components are given by Equations 74 through 79. 

v T Vai n "a4 .._ (74) ATO4 —       ^4      /-= r-        -^4     /—x ; 5~ V 

VUa4 + Wa4 V <4 + Va4 

Yw4 = L4^^-D4-^L== (75) 
Vua4 + Ua4 V wa4 + vaA 

ZwA = 0 (76) 

LW4 = ZwATyA — YwirZ4 (77) 

Mw4 = Xm4rz4 - Zw4rX4 (78) 

N«/4 = ^tu4»'ar4 ~ -Xu>4»V4 ('^J 



Figure 5: Canard 1 geometry. 

A K 

Figure 6: Canard 2 geometry. 

<fr 

Figure 7: Canard 3 geometry. 
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Figure 8: Canard 4 geometry. 

2.5    Control System Model 

There are three options when computing projectile trajectory simulations using the movable canards. The 
first option is to eliminate the canards from the simulation. In this case, the simulation becomes a standard 
six-degree-of-freedom projectile simulation. The second option is to allow the canards to be set at predeter- 
mined deflection angles as a function of time. Because the canard angular deflections would not depend on 
the state of the projectile, this type of control does not involve sensor feedback and is denoted the open loop 
control case. The third option is to compute the canard deflection angles using an automatic flight control 
system that utilizes sensor feedback to drive the trajectory of the projectile toward a prespecified desired 
trajectory. This third case is denoted the closed loop control case. 

The purpose of the closed loop projectile control system is to first generate a desired trajectory and 
second to command the controllable canard lifting surfaces in such a way as to follow the desired path. The 
trajectory command methodology and projectile feedback control laws are presented in the following two 
subsections, respectively. 

2.5.1    Command Trajectory Model 

A desired trajectory can be prescribed by a set of inertial guidance points that the projectile should fly 
through. Figure 9 shows an example desired trajectory as specified by six points in space. For the present 
study, only two-dimensional command trajectories were used. However, the methodology can be extended 
to three-dimensional trajectories in a straightforward manner. The commanded inertial position at some 
instant in time is computed such that it leads the projectile by some buffer distance, Bu, along the desired 
path. It is analogous to a "donkey chasing hay" scenario. Figure 10 illustrates the geometry involved in 
solving for the command coordinates. Noting Figure 10, along a particular line segment, the trajectory line 

is given by Equation 80. ' 
Ax zT - Az xT - bT = 0 (8U) 

In Equation 80, Az and Az are changes in the trajectory line segment coordinates from the end edge point to 
the start edge point. Obviously, Aar and Az can be different for each trajectory line segment. A projection 
line can be formed, which passes through the current position of the projectile and at the same time is 
perpendicular to the current tracking line. The projection line is given by Equations 81 and 82. 

Az   ZT + Ax   XT — O-T = 0 

a,T . Az z + Ax x 

(81) 

(82) 

Recall that x, y, and z are components of the inertial position vector of the projectile center of gravity. The 
projection point (xp,zp) is defined as the point of intersection between the tracking and projection line. It 
is arrived at by equating the tracking line and the projection line. Equations 83 and 84 provide formulas for 

computing xp and zp, respectively. 
_ aT Az ~ br ^z (83) 

Xp ~~      Ax2 + Az2 
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_ aT Az + bx Ax /g4\ 
Zp ~ Ax2 + Az2 

The commanded inertial position leads the projection point by the distance Bu along the tracking line. 
There are two cases that must be considered. The first case is where the distance from the projection point 
to the tracking line segment edge point is greater than the buffer distance. In this case the inertial position 
command, xc and ze, will be on the same line as the projection point and Equations 85 and 86 provide the 

formulas for computation. 

\A + (£) 
Zc = Zp+ *" (86) 

The second case that must be considered is where the distance from the projection point to the tracking 
line segment end edge point, which we shall denote as dT, is less than the buffer distance, Bu. In this case, 
the current tracking line segment is incremented and the command point is now along the new tracking line 
segment Denote the new tracking line segment start point as {xs,zs). The command point is computed 
starting from (i„ zs) and using an equivalent buffer distance equal to Bu-dt. Equations 87 and 88 provide 

formulas for computation. 

Xr — xs -r 

z, = z. + 

Bu - dT (g7) 

\A+(£)2 

Bu - dT (88) 

>A+(£)2 

Note that in either case the cross range command, yc, will be identically zero, since only two-dimensional 
command trajectories are being considered. 

2.5.2    Feedback Control Law Model 

In section 2.4, expressions for canard aerodynamic forces and moments exerted on the projectile body 
were developed. These forces and moments are a function of canard rotation angles, Sx, S2, S3, and S4, 
corresponding to the four canards. Judicious rotation of the canards can modify the path of the projectile m 
a desirable fashion. The purpose of the feedback control laws is to command canard rotation angles so that 
the projectile does, in fact, follow the commanded inertial path to within a specified accuracy. The feedback 
control law mathematical model used in the current effort utilizes inertial position and velocity feedback, roll 
rate feedback, and Euler angle feedback. Thus, x, y, z, x, y, i, p, <S>, 9, and $ are assumed available for use 
in the control law model. The basic control law philosophy is to eliminate the angle between the projectile 
velocity vector and the position vector from the projectile center of gravity to the trajectory command point. 
To this end, the inertial position error vector, {ex ey ez}, is expressed in projectile body coordinates using 

Equations 89 through 91. 

ex = cos 9 cos Tp(xc - x) + cos 6 sin ip{yc - y) - sin 6{zc - z) (89) 

ey = (sin </> sin 6 cos r/> - cos <j> sin i>) {xc -x) + (sin cj> sin B sin ip + cos <f> cos V>) (ifc - v) + sin 0 cos B{zc - z) (90) 

ez = (cos<!>smecosTP+sm<f>sin^){xc-x) + {cos(!>sm6smil;-sm<t>cosil;){yc-y)+cos4>cos6{zc-z) (91) 

Equations 92 through 94 provide expressions for the control system estimate of the projectile velocity vector 

expressed in body coordinates. 

ucs = cos 6 cos i>x + cos 6 sin ipy - sin 9z (92) 

vc$ = (sin <f> sin Bcosip- cos <j> sin i>) x + (sin <f> sin 6 sin ip + cos <f> cos i&) y + sin cj> cos 6z (93) 

wcs = (cos <f> sin 61 cos V + sin <f> sin i/>)i + (cos <j> sin 9sin i> - sin <j> cos 4>)y + cos <j> cos 9z (94) 
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Note that ucs, vcs, and wcs are computed by the control system but are in fact equal to u, v, and w, 
respectively. Using Equations 89 through 94, the pitch and yaw error angles are formed. 

ÖERR = tan-1 (^-) - tan-1 (^\ (95) 

4>ERR = tan-1 (£) - tan-1 ^) (96) 

The quantities uju, vju, and wju are low pass filtered versions of ucs, vcs, and wcs governed by Equations 
97 through 99. 

TuUfu + uju = ucs (97) 

TyVfH +vjii = vcs (98) 

TwWjil + WfU - wcs (99) 

In the previous equations, ru, rv, and rw are time constants chosen to optimize overall system performance. 
The control laws also utilize integrated roll rate ( pi ), integrated pitch angle error ( OERRI ), and integrated 
yaw angle error ( ipERRl ) as given by Equations 100 through 102. 

Pi=P (100) 

OERRI = ®ERR (101) 

TpERRI = i>ERR (102) 

The basic control laws are angular rate commands, ep, eq, and er, given by Equations 103 through 105. 

ep = Kpp + KpiPi + K^<j> (103) 

eq = Ke9ERR + KeieERRi (104) 

er = K^tpERR + K^^ERRI (105) 

In the previous equations, Kp, Kpi, K$, Kg, Kgt, K$, and K$t are feedback control law gains and are set 
to optimize system performance. To form the final canard rotation angles, Equations 106 through 109 are 
used. 

Si = eq - ep (106) 

S2 = er+ ep (107) 

Sz = eq+ ep (108) 

8A = er- ep (109) 

The canard rotation angles are limited to lie between a predetermined constant, ±SHMIT- 

2.6    Solution Technique. 

The mathematical equations developed previously represent an initial value problem comprised of 18 coupled 
ordinary differential equations. Due to the difficulty in obtaining a closed form analytic solution to these 
equations, a numerical approach is taken to compute both time simulation and linear dynamic models of 
the system. A computer program was developed to perform the computations. The code, dubbed BOOM, 
is written in portable FORTRAN and has no calls to routines not contained in the source code file. 
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2.6.1 Time Simulation. 

To simplify the discussion to follow, vector notation will be utilized.   Define ( as a vector containing the 

state variables of the problem. 

£=[xyz<f>6il>uvwpqrpi 9ERRI ipERRl Ufil vfU wfu] (110) 

Let i? be a vector containing the canard control deflections. 

d = [61 62 S3 <54] (HI) 

The initial value problem previously developed can be cast in the form shown in Equations 112 and 113. 

C = /(C,tf) <112) 

0 = 0) = Co (113) 
For time simulation, Equation 112 is integrated numerically in time using Newton's method with initial 
conditions specified through Equation 113. The recursion formula is given in Equation 114. 

C(* + At) = C(i) + A</(C(<),0(<)) (114) 

The time simulation software was verified by a hand calculation through one time step using a random, 
nonzero state and nonzero input parameters. 

2.6.2 Linear Models. 

At any time step in the simulation described previously, denote the current state as C-  A linear dynamic 
model can be formed that is valid in a small neighborhood around £• 

ÖC Of Of m (ii5) 
W-LäcF) + 

The state variables and control deflections can then be constructed using Equations 116 and 117. 

cw = c+cw (116) 
0(*) = ä + d(t) (117) 

The matrices §£ and % are the system dynamics and control matrices, respectively. Eigenvalues of the 
system dynamics matrix yield the modes of the system, which include stability information, while the 
control matrix is useful in determining initial control system gain values. Notice that the linearization is 
not performed about a steady state condition as is usually the case in aircraft linear models but rather an 
instant in time where the system state is changing. Thus, information derived from the linear model, such 
as frequency and damping of projectile modes, is valid for the instant in time at linearization. The system 
dynamics and control matrices are computed using a forward difference. Equations 118 and 119 provide the 
formulas for computing the (i, j) components of the dynamics and control matrices, respectively. 

(118) 

(119) 

In Equations 118 and 119, ej and ed are perturbation vectors such that all components are zero except the 
jth component, which is a small perturbation value. 

3    Results. 
Time simulation results were generated for an extended range projectile, which is currently under develop- 
ment. Basic technical data on the projectile is given in Table 1. The body aerodynamic coefficient data 
is given in Figures 11 through 21. The body aerodynamic was generated using the computer code PRO- 
DAS. Note that the PRODAS generated body aerodynamic data is an estimation based on theoretical and 
empirical data sources. It is not the results of the projectile in a firing range or in a wind tunnel. 
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Table 1: Extended Range Projectile Parameter Values 
Parameter Symbol Units Value 

Projectile Reference Diameter D ft 0.5 
Mass of Projectile m slug 3.98 

Roll Moment of Inertia J« slug ft2 4.13 
Pitch Moment of Inertia hy slug it1 352.0 
Yaw Moment of Inertia Izz slug ft2 352.0 
Canard 1 Wing Area Si ft2 0.1052 

Canard 2 Wing Area s2 ft2 0.1052 
Canard 3 Wing Area s3 ft2 0.1052 
Canard 4 Wing Area 54 ft2 0.1052 

Component of Distance from C.G. to Canard 1 rxi ft 2.37 
Component of Distance from C.G. to Canard 1 ryl ft 0.51 
Component of Distance from C.G. to Canard 1 rz\ ft 0.00 
Component of Distance from C.G. to Canard 2 Vxl ft 2.37 
Component of Distance from C.G. to Canard 2 r2/2 ft 0.00 
Component of Distance from C.G. to Canard 2 rZ2 ft -0.51 
Component of Distance from C.G. to Canard 3 rx3 ft 2.37 
Component of Distance from C.G. to Canard 3 ry3 ft -0.51 
Component of Distance from C.G. to Canard 3 Vz3 ft 0.00 
Component of Distance from C.G. to Canard 4 rXA ft 2.37 
Component of Distance from C.G. to Canard 4 ry4 ft 0.00 
Component of Distance from C.G. to Canard 4 rZ4 ft 0.51 

Roll Rate Gain Kp nd -1.00 
Integrated Roll Rate Gain nd 0.00 

Roll Angle Gain k<f, nd -0.70 
Pitch Angle Error Gain ke nd 0.04 

Integrated Pitch Angle Error Gain ket nd 0.002 
Yaw Angle Error Gain k^ nd 0.04 

Integrated Yaw Angle Error Gain kin nd 0.002 
Canard Deflection Limit ÖLIMIT rad 0.17 

Forward Velocity Time Constant Tu nd 0.1 
Side Velocity Time Constant Ty nd 0.1 

Vertical Velocity Time Constant Tw nd 0.1 
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Figure 11: Projectile body aerodynamic coefficient c/ni vs. Mach number. 
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Figure 12: Projectile body aerodynamic coefficient c/„3 vs. Mach number. 
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Figure 13: Projectile body aerodynamic coefficient c/„5 vs. Mach number. 
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Figure 14: Projectile body aerodynamic coefficient c/p0 vs. Mach number. 
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Figure 15: Projectile body aerodynamic coefficient c/P2 vs. Mach number. 
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Figure 16: Projectile body aerodynamic coefficient cmpi vs. Mach number. 
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Figure 17: Projectile body aerodynamic coefficient cmp3 vs. Mach number. 
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Figure 18: Projectile body aerodynamic coefficient cmp<z, vs. Mach number. 
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Figure 19: Projectile body aerodynamic coefficient cmpq vs. Mach number. 
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Figure 20: Projectile body aerodynamic coefficient cmrd vs. Mach number. 

Figure 21: Projectile body aerodynamic coefficient cmr; vs. Mach number 
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Time simulation results were generated for the extended range projectile in both partially closed and fully 
closed loop configurations. The 128-lb projectile is 79 in long, has a diameter of 6 in, and is similar in shape 
to a standard projectile fired from a 155-mm gun. Four canards, each with a surface area of 15 in2, were 
used to control the projectile. For this projectile, a canard surface area of 15 in2 represents a practical upper 
limit on what could be installed in a production round. Time histories of all the state variables are plotted 
for the partially closed loop configuration in Figures 22 through 27. At the apex of flight, the partially closed 
loop configuration injects a pitch command of 5.7° to effect a pitch up maneuver. Note that prior to the 
apex of flight a closed loop roll channel control system using roll rate, roll angle, and integrated roll rate 
eliminates both roll rate and roll angle of the projectile. Initial conditions for the simulation results shown 
in Figures 22 through 27 are as follows: x = y = z = (f> = ip = v = w = q = r = 0, u = 2788 fps, 6 = 45°, 
p = 31 r/s. Figure 22 shows the range, altitude, and cross range of the projectile in the partially closed loop 
configuration. The range time history in Figure 22 compares the range of the projectile with and without 
the movable canards installed. Under the conditions mentioned previously, the estimated range extension 
is 148%. The small discrepancy between the baseline and controlled time histories before the onset of the 
pitch command is due to the drag of the canards, which are not present on the baseline projectile. From the 
altitude plot, it can be seen that the time of flight of the projectile dramatically increases from 79 s to 351 s. 
The cross range of the projectile is slightly over 1.6 km at the terminal point. Subsequent to the execution 
of the pitch command, a slight steady state yaw rate develops that alters the azimuth of the projectile hence 
creating a dispersion in the cross range. 

Figure 23 shows the body attitudes for the partially closed loop simulation set. From the roll angle 
trace, it is seen that the roll channel control system eliminates the projectile roll rate and roll angle within 
10 s. Also in Figure 23, the pitch attitude of the baseline trajectory is compared with the controlled 
trajectory. At launch, both trajectories have a 45° pitch attitude; however, the baseline trajectory pitch 
attitude monotonically decreases with time, whereas the controlled trajectory experiences some transient 
oscillations immediately after the pitch command is executed. After the transient oscillations die out, the 
controlled trajectory pitch attitude settles to a value of -2.3° in the steady state glide portion of flight. 
Figure 23 also plots the yaw attitude as a function of time. From the yaw attitude plot, it is seen that yaw 
attitude remains very small until the pitch command is executed at which time a small steady state yaw 
rate develops, which induces a continuously increasing yaw attitude response with time. 

Figure 24 shows the three components of the body velocity vector for the partially closed-loop case. 
The forward velocity trace is interesting as it compares the baseline and controlled simulation results. The 
baseline trajectory arrives at the terminal point ( z = 0 ) at t — 79 s which corresponds to a terminal 
velocity of 309.6 m/s, while the terminal point ( z = 0 ) of the controlled trajectory occurs at t = 351 s, 
which corresponds to a terminal velocity of 105.7 m/s. Thus, the controlled trajectory has a significant 
decrease in forward velocity at the impact point. Furthermore, the decreased velocity is present throughout 
a large portion of the flight. The body side velocity shown in Figure 24 remains very small throughout 
the entire trajectory with some small transient vibration occurring at launch and at the onset of the pitch 
command at t = 38 s. The body vertical velocity is also shown on Figure 24. While not shown on Figure 
24, the baseline vertical velocity is very small, since the angle of attack of the baseline trajectory is also very 
small. In contrast, the vertical velocity of the controlled trajectory attains a maximum velocity of 75 m/s 
at the onset of the pitch maneuver. The controlled trajectory vertical velocity is due to the pitch command 
maneuver, which causes an angle of attack to be developed on the projectile, which, in turn, dictates that 
the relative velocity have nonzero components along the axis of symmetry of the projectile and along the kß 
axis. As the projectile angle of attack increases, a commensurate increase in the vertical velocity is to be 
expected. 

Figure 25 plots the components of the angular velocity vector for the partially closed loop projectile 
configuration. It is seen from the roll rate time history that the action of the canards is to very rapidly 
eliminate the roll rate from 31 rad/s to 0 within 10 s. This is absolutely necessary for the partially closed- 
loop configuration, since the pitch attitude commands assume the projectile will maintain zero roll rate and 
angle from the start of pitch commands to the terminal point. Pitch rate of the projectile is also plotted 
in Figure 25 and shows that pitch rate jumps to 17.3°/s at the onset of the pitch command and eventually 
damps to zero approximately 200 s after launch. Figure 25 also plots yaw rate of the controlled projectile. 
At launch, yaw rate jumps to 0.7°/s due to yaw/roll coupling, but as roll rate decreases, the yaw rate settles 
to a small value of 0.02°/s. At t = 38 s, a transient in yaw rate is caused by the abrupt pitch command. It 
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is the small yaw rate which persists throughout most of the flight, that causes monotonically increasing yaw 
attitude and significant cross range dispersion at the terminal point. 

Figure 26 shows the aerodynamic angle of attack of the projectile body as a function of time for the 
partially closed loop configuration. While the baseline trajectory angle of attack is not overlaid on this plot, 
it is very small (less than 1° over the entire time history). The angle of attack of the projectile body is shown 
to be very small initially until the pitch command is executed, at which time, the angle of attack increases 
to a maximum of 18.8°. Note that the canard model used in the current effort is only valid for small angles 
of attack below 15°. As the canard angle of attack will basically follow the projectile body angle of attack, 
the canards will be stalled during the high angle of attack portions of the transient response. This effect 
is not modeled and may influence the results. Figure 26 plots the canard deflection for the partially closed 
loop case. To zero roll rate and roll angle, canards 2 and 3 deflect identically, while canards 1 and 4 also 
deflect identically but in the opposite direction as canards 2 and 3. Since canards 1 and 3 are in the pitch 
plane of the projectile and effect pitch maneuvers, they are deflected by 5.7° ± the canard deflection to null 
roll rate. A nonzero canard deflection is necessary to null roll rate in the steady state, because the aft fins 
on the projectile have an effective cant of 0.29°. 

Figures 22 through 26, show that the range of a projectile can be significantly increased by using body 
lift achieved by pitching the projectile upward using the movable canard lifting surfaces. While a dramatic 
increase in range is achievable, an equally dramatic increase in the time of flight and decrease in the impact 
point velocity is realized. Thus, the action of the movable canards is to facilitate a transfer of kinetic energy 
to potential energy, allowing the projectile to stay aloft longer. If a higher impact velocity or a shorter time 
of flight is desired, then a subsequent decrease in the maximum range will follow. 
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Time histories of the projectile and control system state variables are plotted in Figures 28 through 34 for 
a fully closed loop tracking trajectory simulation. Initial conditions for the simulation shown inFigurra 28 
through 34 are as follows: x = y = z = <f> = ip = v = w = q = r = Pi = 9ERRI = ^ERRI = «/« = u>f« - °> 
u - Ufu = 2788 fps, 6 = 45°, p = 31 r/s. The fully closed loop simulations use an automatic flight control 
system'that utilizes sensors which feedback the signals x,y,z, x, y, z, rj>, M. P. q, and r (full state feedback) to 
guide the projectile onto a prespecified desired trajectory. The desired trajectory is specified in advance by a 
set of way points. Figure 28 plots range, altitude, and cross range for case 1 of the fully closed loop tracking 
simulation. In Figure 28, the dotted trace represents the commanded position, while the solid line represents 
the projectile position. The desired trajectory represents a range extension from 21.06 km to 34.9 km. This 
range extension is significantly less than the partially closed loop case shown previously. From the range 
time history, it is shown that the projectile flight control system is able to track the desired trajectory to 
attain a moderate extension in range. Around the apex of flight, the projectile does not track the desired 
path particularly well, and it is believed that this is due to the sharp gradients in the desired path and the 
reduction in control power that occurs at high altitude. Figure 28 also shows altitude vs. time and shows 
that the time of flight increases from approximately 79 s in the uncontrolled case to 133 s in the closed-loop 
case. Recall that for the partially closed loop case the overall time of flight was 351 s. The lateral range vs. 
time plot in Figure 28 shows that the lateral range is regulated within ±5 m. In contrast to the partially 
closed loop case, lateral range is small, since the projectile flight control system commanded cross range to 

zero ( yc = 0 ) at all times. 
Figure 29 shows the body attitudes for the closed loop trajectory simulation. From the roll angle trace, 

it is seen that the roll channel control system eliminates the projectile roll rate and roll angle within 10 s. 
Also in Figure 29 the pitch attitude of the projectile is shown. Unlike an uncontrolled projectile where pitch 
attitude decreases monotonically, the pitch attitude decreases from an initial attitude of 45° and begins to 
oscillate at t = 40 s. The oscillation in pitch attitude is caused by the projectile maneuvering to track the 
desired trajectory. Figure 29 also plots yaw attitude vs. time, and it is shown that yaw attitude remains 
small throughout the time of flight. This is in contrast to the partially closed loop case where yaw angle 
was unregulated and monotonically increased due to a small persistent yaw rate. Figure 30 shows the three 
components of the body velocity vector for case 1 of the closed loop tracking simulation. From the range time 
history in Figure 28, it is seen that the terminal point (z-0) occurs at a time of 133 s, which corresponds 
to a terminal velocity in Figure 30 of 235.3 m/s. While the moderate range extension profile reduces the 
terminal velocity by 24%, the decrease in terminal velocity is far less than the partially closed loop case 
shown earlier. The side velocity time history in Figure 30 is small throughout the time of flight except for 
some high-frequency transient oscillations at launch. The body vertical velocity shown in Figure 30 attains 
a maximum value of 27 m/s during maneuvering. As in the partially closed loop simulation, the vertical 
velocity is due to pitch commands that purposefully cause an angle of attack on the projectile, which, in 
turn, dictates that the relative velocity have nonzero components off the projectile axis of symmetry. 

Figure 31 plots the three components of the body angular velocity vector for case 1 of the closed loop 
tracking simulation. It is seen from the roll rate time history that the action of the canards is to rapidly 
eliminate the roll rate from 31 rad/s to 0 within 10 s. Pitch rate is also plotted in Figure 31, and it shows 
oscillations between +2 and -5°/s, which are necessary for maneuvering. Yaw rate is shown in Figure 31 and, 
unlike the partially closed loop case, yaw rate settles to zero. Figure 32 plots the flight control system state 
variables p/, 6ERRI, i>ERRi- Figure 33 plots the projectile body angle of attack, projectile body aerodynamic 
forces, and projectile body aerodynamic moments. From the angle of attack time history in Figure 33, it is 
seen that the maximum body angle of attack is 6.63°, which is a relatively low angle of attack, indicating 
that the desired trajectory did not exceed the maneuver limits of the canard controlled projectile. Figure 34 
plots the canard control surface deflection angles, and the total canard forces and moments. Comparing the 
projectile body aerodynamic forces with the total forces generated by the canards, it is seen that both the 
canards and the projectile body contribute vertical forces, which are used to keep the projectile aloft longer, 
hence extending range. In Figure 34, the canard deflection angle chart shows the deflections to be within 
±3°, which is well within the imposed limits of ±10°. To zero roll rate and roll angle, canards 2 and 3 deflect 
identically while canards 1 and 4 also deflect identically, but in the opposite direction as canards 2 and 3. 
Since canards 1 and 3 are in the pitch plane of the projectile and effect pitch maneuvers, they are deflected 
by the pitch command ± the canard deflection to null roll rate. A nonzero canard deflection is necessary to 
null roll rate in the steady state because the aft fins on the projectile have an effective cant of 0.29°. 
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Figures 28 through 34 show that the trajectory of a canard-controlled projectile can be significantly 
altered from the baseline uncontrolled projectile in a predetermined manner. The prespecified command 
trajectory represented a moderate range extension profile, and the projectile tracked the desired trajectory 
well, particularly in the terminal portion of flight. Thus, actively controlled canards provide a suitable 
method for increasing artillery projectile accuracy. The simulation also shows that for a moderate range 
extension profile, the time of flight increases and the terminal velocity decreases but not as much as in the 
partially closed loop case where dramatic range extension was realized. This reaffirms the notion that any 
increase in range with canard control will come at the expense of time of flight and terminal velocity of the 
round. 
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Figure 29: Closed-loop tracking 1, Euler angles. 
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Figure 30: Closed-loop tracking 1, body velocity. 
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Figure 31: Closed-loop tracking 1, body angular velocity. 
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Figure 32: Closed-loop tracking 1, integrated roll rate, theta error, and psi error. 
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Figure 33: Closed-loop tracking 1, angle of attack, body forces and moments. 
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Time histories of the projectile and control system state variables are plotted in Figures 35 through 41 for 
a fully closed loop tracking trajectory simulation. Initial conditions for the simulation shown in Figures 35 
through 41 are as follows: x = y = z = (p = ip = v = w = q = r = pi = ÖERRI = IPERRI = vju = Wfii = 0, 
u = Uju = 2788 fps, 9 = 45°, p = 31 r/s. The fully closed loop simulations use an automatic flight control 
system that utilizes sensors which feedback the signals x, y, z, x, y, z, tp, 9, <f>,p, q, and r (full state feedback) 
to guide the projectile onto a prespecified desired trajectory. The desired trajectory is specified in advance 
by a set of way points. Figure 35 plots the range, altitude, and cross range for case 2 of the fully closed loop 
tracking simulation. In Figure 35, the dotted trace represents the commanded position, while the solid line 
represents the projectile position. The desired trajectory commands the projectile to a terminal range equal 
to the uncontrolled range, however, the projectile approaches the target from the opposite direction of fire. 
Thus, the projectile passes the desired target and subsequently returns to the target to attack the target 
from the rear in the terminal portion of the flight. The simulation results shown in Figures 35 through 41 
represent a dramatically altered projectile trajectory. From the range time history in Figure 35, it is shown 
that the projectile flight control system is able to track the desired trajectory fairly well, at least as well as 
in the first closed loop simulation set, except in the area from 100 to 140 s into the flight. 

From Equation 12, it can be seen that the i> and <f> differential equations are singular when the Euler 
pitch attitude is 90°. When the rj) differential equation is singular, erroneous large projectile yaw attitudes 
are computed, which, in turn, generate erroneous large projectile angles of attack that create large erroneous 
aerodynamic forces and moments. While the simulation will run on the computer, the results are incorrect. 
In the case of the controlled projectile, matters are even worse, because the automatic flight control system 
uses yaw attitude to compute the canard deflection angles, so the pitch and yaw commands are erroneously 
large as well. For simulation set 2, shown in Figures 35 through 41, the Euler pitch attitude must go through 
90°, since the desired trajectory has an infinite gradient in the pitch plane. In the simulation results this 
occurs at approximately t = 100 s and the results can be seen throughout all the state variables plotted in 
Figures 35 through 41. This problem is only due to the method of simulation and does not represent an 
inherent problem with the automatic flight control system, since in an implemented flight control system, the 
yaw angle signal would be generated from a sensor measuring the actual value and not a simulation. Further 
studies of desired trajectories which will force the projectile to attain a 90° pitch attitude will need to be 
simulated in another manner that does not entail a singularity at 9 = 90°. Such a simulation is possible by 
using quaternions to define the attitude of the projectile. 
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Figure 35: Closed-loop tracking 2, position (solid = actual, dotted = commanded). 
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Figure 36: Closed-loop tracking 2, Euler angles. 
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Figure 38: Closed-loop tracking 2, body angular velocity. 
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Figure 39: Closed-loop tracking 2, integrated roll rate, theta error, and psi error. 
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4    Summary. 

A mathematical model of a controllable artillery projectile has been developed and coded in FORTRAN. The 
projectile is modeled as a rigid body possessing six degrees of freedom. Aerodynamic forces and moments of 
the projectile body and canard lifting surfaces are a function of both angle of attack and local Mach number. 
A modified standard atmosphere is used for modeling air density and the speed of sound. By numerically 
integrating the equations of motion, trajectories can be generated for an unguided projectile, for a partially 
closed loop projectile (roll channel closed) with open loop pitch and yaw commands, or for a fully closed 
loop projectile system. In the fully closed loop configuration, a projectile automatic flight control system is 
used to first generate a desired trajectory and second to command the controllable canard lifting surfaces in 
such a way as to follow the desired path. The control system uses inertial position and velocity, roll rate, and 
attitude feedback to track an inertial position trajectory using the movable canard lifting surfaces. Besides 
time simulation, the computer code can also generate linear dynamic models of the projectile system at 
prespecified time points along the trajectory. The software was verified by comparing code results to hand 
calculation results from a single time step. The model has not been validated against range or firing table 
data. 

The model was exercised in prediction of the response of an advanced projectile currently under de- 
velopment. For the projectile used in this study, it is shown that the range can be extended by 148% by 
commanding a full authority pitch maneuver at the trajectory's maximum altitude. While the canard pro- 
jectile configuration can significantly increase range, it also has a large increase in overall time of flight from 
approximately 79 to 351 s. Another outcome of extending range is a significant reduction in impact velocity 
from approximately 309.6 to 105.7 m/s. 

From closed loop simulation set 1, it was shown that the projectile automatic flight control system was 
capable of tracking a moderate range extension trajectory profile well, particularly in the terminal portion 
of the trajectory profile. Since the projectile tracked the desired trajectory well, impact point errors can 
be eliminated using a fully closed loop projectile control system. From closed loop simulation set 2, it was 
established that the current simulation technique has problems when the Euler pitch attitude goes through 
90° due to a singularity in the equations of motion. It is recommended that the simulation be modified to 
use quaternion parameters to define the orientation of the body. 
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