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Georgia Tech College of Computing 

July 9, 1996 Georgia Institute of Technology 
Atlanta. Georgia 30332-0280 

Dr. Michael O. Shneier L.SA
on   21„ 

Chief of Navel Research "o4*85>9378 FAX 
Ballston Centre Tower I, Room 607 
800 North Quincy Street 
Arlington, VA 22217-5660 

Dear Dr. Shneier, 

This letter and the attached documents will serve as my final report on project N00014-92- 
J-1234, "A Case-Based Approach to Creative Design". Our goals were to explore and gain 
a better understanding of creativity in design so as to be able to create more interesting and 
creative automated design and problem solving systems and so as to be able to create 
interactive systems to aid human design and problem solving. Our work has therefore 
addressed several threads: (1) what constitutes interesting or creative design, (2) 
designing and testing a variety of software models of processes such as these, and (3) 
based on these explorations, proposing and implementing tools to aid human designers. 
What follows will be a summary and bibliography of each area. The papers will flesh that 
out. If you'd like a longer, more compact report than this, please let me know, and I will 
work on it during the fall. 

1. What constitutes interesting or creative design? We began by observing 
students in a design class to understand what allowed them to be creative. While they are 
surely not experts at design, our belief was that by watching them we would learn much 
about what experts do as well. We believe our observations bear us out. The students, we 
found, engaged in an iterative cycle that includes three kinds of processes: interpretation or 
analysis processes, in which the design problem is elaborated and fleshed out and its 
constraints better defined; generation processes, in which ideas and alternative solutions are 
generated and refined, and evaluation processes, in which problem descriptions and ideas 
are critiqued for consistency, completeness, and fulfillment of constraints. Out of this 
critiquing process, which often includes mental simulation, new constraints are generated 
and passed on to interpretation processes, and problems are discovered, providing 
guidance to generation processes on their next cycle. Each type of process might be carried 
out in several different ways, and we identified several of these. For example, evaluation 
is sometimes a check of constraints, sometimes carried out by projecting effects using 
cases, sometimes carried out through mental simulation, and so on. The major differences 
between novices and experts in addressing problems in a creative way, we believe, are the 
(1) the tactics available for carrying out each type of process, (2) the available knowledge 
that the tactics use, and (3) control strategies for deciding which of many possible 
directions should be followed. 

Our case-based approach led us to investigate, in particular, the role that memory and 
previous experience (whether one's own or that of others) play in interesting design. In 
our observations, we noticed cases being used by all three types of processes. We also 
noticed that the process of attempting to recall something from memory sets up cues for 
recognizing items in the world that might address reasoning needs. For example, the 
process of trying to remember devices with collapsible tubes as parts led the students we 
observed to construct in their minds a description of what one of these things might look 
like if they had ever encountered one. While the devices they were able to recall from their 
memories were all inappropriate as exemplars for the new design, the description allowed 
them to easily recognize a toilet-paper holder as one of these when they encountered it in 
the environment (in this case, a hardware store they were perusing). 
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Papers: 

Kolodner, J.L. and Wills, L.M. (In Press). "Case-Based Creative Design". In Dartnall, T. 
(Ed.), Creativity and Computation, AAAI/MIT Press. 

Kolodner, J. L. & Wills, L. M. (1993) Paying Attention to the Right Thing: Issues of 
Focus in Case-Based Creative Design. AAAI-93 Case Based Reasoning Workshop. July 
1993, Washington, D.C. pp. 347-353. 

2. What cognitive computational models have we derived from these and 
other observations? Based on these observations and other observations of experts 
done outside of this grant, we have developed several cognitive computation models of 
creativity in design. 

In IMPROVISOR, we focused on deriving a computational model that would explain the 
behavior we saw in the students we observed and that would, at the same time, be 
consistent with other extant models of memory and problem solving. The model has long- 
term and working memories that reasoning processes interact with. Its major reasoning 
processes are the three listed above: interpretation processes, solution generation 
processes, and evaluation processes. There are several of each kind. Opportunistic and 
strategic control modules help the system decide what to do next. Each of these modules 
and their integration is described in the enclosed papers. Perhaps most interesting about 
the model is that it has allowed us to propose an integrated and parsimonious set of 
processes that explain how a designer or problem solver can (1) hold some problematic 
subgoals in abeyance until they can be fruitfully addressed, (2) notice when each of the 
subgoals has potential to be fruitfully addressed, and (3) notice unexpected opportunities 
for moving forward both in the results of its reasoning and in the environment. This is 
accomplished through a combination of a working memory processes that keep track of 
both active and suspended subgoals along with conditions under which suspended 
subgoals might become active and perceptual processes that notice when those conditions 
are met. The processes for noticing opportunities in the environment are interesting in they 
that build on and use the representations produced by the very processes that allow problem 
solving and design to proceed, i.e., those that propose what to look for in long-term 
memory to solve a problem and those that keep track of active, pending, and suspended 
subgoals. We do not have to propose a new set of processes for noticing the environment; 
rather, in our model, perceptual processes are informed by memory and reasoning 
processes already at work. With a model such as this, scheduling goals and tasks 
associated with unexpected opportunities, whether they are opportunities generated by 
remembering something, by having some outcome arise from reasoning, or from noticing 
something in the world, is done by the same scheduler that schedules planned goals and 
tasks. 

The second computer program we have been developing to explore issues in creative 
design is IDEAL. While IMPROVISOR focused on the architecture that would allow 
multiple processes to communicate with each other to effect creativity in design, IDEAL 
focuses in particular on analogical and case-based reasoning processes, with an emphasis 
on creativity accomplished through non-local modifications to previous designs, cross- 
domain transfer of design knowledge, and reformulation of problem specifications. Non- 
local modifications are changes in the arrangement of elements in a design. They are 
difficult and require ingenuity because in some domains the design elements interact 
strongly, making changes in their arrangement seem undoable. In cross-domain transfer, 
experience gained in solving design problems in one domain (e.g., electrical circuits) is 



used to solve problems in another (e.g., heat exchangers). Necessary to such cross- 
domain reasoning is knowledge representations that point out the functional components of 
designs in the old domain, allowing for recognition of how the components in one domain 
might match to components in the other. The combination of these processes has been 
referred to as "constructive analogy." IDEAL proposes such constructs. Problem 
reformulation means revisions to problem specifications. IDEAL solves these problems 
through interacting representations and processes. First, it defines the kinds of high-level 
abstractions, or design patterns, that are useful in facilitating these kinds of reasoning. In 
particular, it proposes two such patterns as useful: generic physical processes, which 
capture relationships between design elements, and generic teleological processes, which 
capture functional relationships. Second, it defines ways in which such abstractions can be 
learned as part of the cycle of solving a design problem. 

These two pieces of work are being followed up in a third computational model called 
ALEC. In this part of the project, we are looking at the uses of constructive analogy and at 
the interactions between memory stores and processes and reasoning processes over the 
course of a long-term design experience. We take as our model Alexander Graham Bell 
and his invention of the multiple telegraph. As he was inventing this device, he was also 
engaged in work on several other devices with both acoustic and electrical capabilities. His 
reasoning moved back and forth between projects, and he was able to use what he learned 
in working on one project to address the issues in the others. This is a brand new project 
deriving from our ONR grant and is not specifically funded by it. We include preliminary 
papers on it because we have come to believe that in order to really understand creativity in 
design we must look at design as it is happening over a long period of time, and that that 
requires an understanding of the interactions between the designer and his/her/its world. 

While neither of these computer programs is a fully-automated creative designer, each 
suggests processes, control mechanisms, and memory stores needed in such an automated 
system. We have published and are about to publish our work in several venues read by 
those who engage in the design of such systems. 

Papers: 

Kolodner, J.L. (1994). Understanding Creativity: A Case-Based Approach. In S. Wess, 
K.D. Althoff and M.M. Richter (eds.), Topics in Case-Based Reasoning, selected papers 
from the First European Workshop on Case-Based Reasoning. Kaiserslautern, Germany. 
Springer-Verlag, 1994. Lecture Notes in Artificial Intelligence, pp. 3-20. 

Wills, L. M., Kolodner, J. L. (1994). Explaining Serendipitous Recognition in Design. 
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society , 
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 940-945. 

Wills, L.M. & Kolodner, J.L. (1994). Towards More Creative Case-Based Design 
Systems. In Proceedings of the Twelfth National Conference on Artificial Intelligence 
(AAAI-94), Seattle, Washington, pp. 50-55, August. 

Ram, A., Wills, L., Domeshek, E.A., Nersessian, N. & Kolodner, J.L. (1995). 
Understanding the Creative Mind. Artificial Intelligence, Volume 79, Number 1, pp. 111- 
128, November 1995. 

Kolodner, J.L. & Wills, L.M. (submitted). Powers of Observation in Creative Design. 
Submitted to Design Studies, Special Issue on Design Cognition and Computation, Rivka 
Oxman (Ed.). 



Griffith, T.W., Nersessian, N.J., Goel, A. (1996) The Role of Generic Modeling in 
Conceptual Change. Submitted to the 18th Annual Conference of the Cognitive Science 
Society, San Diego, CA, 1996. 

Nersessian, N.J., Griffith, T.W., Goel, A., (1995). Constructive Modeling in Scientific 
Discovery. Submitted to AI Journal special issue on Scientific Discovery, Dec. 1995. 

Simina, M.D. & Kolodner, J.L. (1995). Opportunistic Reasoning: A Design Perspective. 
In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. 
Lawrence Erlbaum Associates (pp. 78—83). 

Simina, M. & Kolodner, J.L. (1996). Cases, Reasoning and Bell's Telephone. Submitted 
to the Eighteenth Annual Conference of Cognitive Science Society, La Jolla, CA, July, 
1996. 

Bhatta, S.R., (1995). Model-Based Analogy in Innovative Device Design. Georgia 
Institute of Technology Technical Report No. GIT-CC-96/14. 

Goel, A.K., Bhatta, S.R., Stroulia, E. (1996). KRITIK: An Early Case-Based Design 
System, to appear in Issues in Case-Based Design, Maker and Pu (Eds)., MIT Press, 
1996. 

Peterson, J., Mahesh, K, and Goel, A., (1994) International Journal of. Human- 
Computer Studies, Vol. 41, pp. 881 -913. 

3. Based on these studies, what kinds of tools should we be building to 
aid human designers? We answer this question based on observations of expert 
designers (done outside of the context of this grant), observations of student designers, and 
what we have learned about design processes from the model development and software 
development we have been doing. First and foremost, creative design requires insight into 
the ways in which some targeted function has been carried out previously, both successes 
and failures. This suggests making available to designers libraries of design cases. Each 
design case should include, as much as possible, the special issues it addressed, how it 
solved each of those problems, why it did it that way, what else was considered, and what 
resulted. But we notice that creative use of old designs is different than rote use of them. 
So it is necessary as well to teach users how to use old designs creatively and to provide 
"scaffolding," or help, in the software to push them towards using old designs well. Older 
work suggests that a computer system that can carry out adaptations would be useful. 
Work on this grant adds to that. IDEAL suggests that we need to help designers develop 
strategies for rearranging design elements in novel ways, strategies for extracting useful 
kinds of abstractions from their design experiences, and strategies for mapping design 
elements in one domain to those in another. IDEAL, IMPROVISOR, and ALEC suggest 
that case libraries we make available to designers should be broader than just cases in the 
domain designers are working in. IMPROVISOR and ALEC go farther in suggesting that 
we should help human designers articulate what their subgoals are, what is holding them 
up with achieving each, and the circumstances in which each might be revisited profitably. 

We are carrying this out in a series of case libraries that we have built and a set of case 
library authoring tools. DesignMuse was created as an authoring tool before we received 
the ONR grant. It has been used to implement several case libraries, originally for expert 
use, in architectural design and airplane design.  We discovered, based on research on 



creative design, that DesignMuse was insufficient as both a case library and an authoring 
tool in some ways, especially for design novices. We have therefore designed a new case 
library tool for design novices. To date, it goes beyond DesignMuse in helping designers 
understand the relationships between the functions they are trying to achieve in their 
designs and the ways in which they can be carried out. It still needs to be augmented in the 
other areas mentioned above. We are trying it in middle school classrooms, and under a 
current contract, continuing with its development. Canah-Chab concentrates on helping 
novice designers keep track of the design strategies and problem solving methods they have 
used and that are potentially available. It is in preliminary form, and its implications are 
being integrated into the new case library tools we are developing. 

Second, our research suggests that designers would profit from aid in keeping track of all 
of the alternative problem formulations and solutions derived along the way and the 
different possibilities for moving forward. To that end, we have created a software 
environment called McBAGEL (soon to be changed to PABLO due to licensing issues), 
which we have tried in several middle school classrooms, our first attempt at creating such 
an environment. McBAGEL helps designers keep track of the relevant facts of a situation, 
ideas for moving forward in solving the design problem, what they still need to learn to 
move forward, and an action plan. Under a current contract, we are working on 
augmentations of this piece of software that help them to articulate the pros and cons of 
different ideas they come up with, play them off against each other, and gain feedback on 
trying things in several different ways. 

Papers: 

Narayanan, N.H., Hmelo, C.E., Petrushin, V., Newstetter, W.C., Guzdial, M., 
Kolodner, J.L. (1995). Computational Support for Collaborative Learning through 
Generative Problem Solving, CSCL Proceedings, 95, ACM Press, pp. 247-254. 

Hmelo, C.E., Narayanan, N.H., Newstetter, W. & Kolodner, J.L. (1995). A Multiple- 
Case-Based Approach To Generative Environments For Learning. Presented at the 2nd 
Annual Symposium on Cognition and Education, Varanasi, India, December, 1995. 

Narayanan, N. H. & Kolodner, J.L. (1995). Case Libraries in Support of Design 
Education: The DesignMuse Experience. In Proceedings FIE'95 (Frontiers in Education), 
American Society for Engineering Education (ASEE), Atlanta, GA, November. 1995, pp. 
2b2.1.2, IEEE Press. 

Goel, Ashok, K., de Silva Garza, A.G., Grue, N, Recker, M.M., Govindaraj, T, (1995). 
Beyond Domain Knowledge: Towards a Computing Environment for the Learning of 
Design Strategies and Skills, Cognitive Science Technology Technical Report (Georgia 
Institute of Technology) No. GJT-COGSCI-95/02. 

In addition to work on design creativity over the long term, my newer work concentrates in 
the areas of education and educational technology, especially helping students learn from 
design experience. Ashok Goel's newer work concentrates on constructive analogy and 
scientific discovery. We continue to build on what we've learned from work on our ONR 



grant in all of these projects, and I think you would be pleased to see how our work on 
creative design is influencing and contributing to those investigations. We receive inquiries 
from around the world on our creativity work; there is much interest in it. We will be 
happy to have you visit us to see the creative software we've designed and to discuss our 
latest work. 

L. Kolodner, 
Professor Computing and Cognitive Science 

Ashok Goel 
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CASE-BASED CREATIVE DESIGN 

Janet L. Kolodner and Linda M. Wills 

College of Computing 
Georgia Institute of Technology 

Atlanta, Georgia 30332-0280 

jlk@cc.gatech.edu, linda@cc.gatech.edu 

Abstract. Designers across a variety of domains engage in many of the same creative activities. Since much 
creativity stems from using old solutions in novel ways, we believe that case-based reasoning can be used to 
explain many creative design processes. 

1. Introduction 
Designers across different domains perform many of the 
same creative activities, whether they are involved in 
designing artifacts or processes. These activities can be 
described by contrasting them to routine design activ- 
ities. In general, routine design repeats old designs in 
obvious ways, adapting them by well-known and often- 
applied adaptation strategies. Routine design assumes a 
completely specified problem is given and little effort is 
applied to elaborating or designing a feasible specifica- 
tion. 

The kind of design we call creative, on the other hand, 
includes a process of "designing the design specification" 
(Tong, 1988), going from an incomplete, contradictory, 
and underconstrained description of what needs to be 
designed to one with more detail, more concrete specifi- 
cations, and more clearly defined constraints. Creative 
design also often includes a process of generating and 
considering several alternatives, weighing their advan- 
tages and disadvantages, and sometimes incorporating 
pieces of one into another. It involves using well-known 
design pieces in unusual ways or modifying well-known 
designs in unusual ways. Creative designers frequently 
engage in cross-domain transfer of abstract design ideas. 
They also often recognize alternative uses or functions 
for common design pieces (e.g., using a styrofoam cup as 
a boat). 

Figure 1 gives a rough sketch of the main processes 
we hypothesize to be involved in creative design and how 
they interact with one another. The designer continu- 
ally updates the design specification as well as a pool of 
design ideas under consideration. Each alternative gen- 
erated is evaluated to identify its advantages and disad- 
vantages and to check that it satisfies the constraints in 
the current design specification. A key part of evalua- 
tion is "trying out" the alternative (e.g., through experi- 
mentation or mental simulation). This generates a more 
detailed description of the alternative, including the con- 
sequences of its operation and how environmental factors 
affect it. 

Evaluation drives both the updating of the design 

specification and the modification and merging of design 
alternatives. It raises questions of legality or desirable- 
ness of features1 of a design alternative and it detects 
contradictions and ambiguities in the specification. The 
resolution of these questions, contradictions, and ambi- 
guities serves to refine, augment,,and reformulate the 
design specification. On the generative side, evaluation 
identifies advantages and disadvantages of alternatives 
which often suggest interesting adaptations or ways of 
merging alternatives. Also, sometimes the description of 
a problem noticed during evaluation can be easily trans- 
formed to a description of how its solution would look. 

The three processes interact opportunistically. The 
generative phase, guided by critiques from the evalua- 
tion phase, watches for opportunities to merge or adapt 
design ideas to create new alternatives. The design spec- 
ification is incrementally updated as ideas are tested and 
flaws or desirable features become apparent. 

The continual elaboration and reformulation of the 
problem (i.e., the design specification) derives abstract 
connections between the current problem and similar 
problems in other domains, facilitating cross-contextual 
transfer of design ideas. Continual redescription of what 
the solution (i.e., the evolving design) looks like primes 
the designer for opportunistic recognition of alternative 
functions of objects. 

This paper describes the nature of these processes 
and proposes ways of modeling them. Since all three 
processes rely heavily on previous design experiences, 
case-based reasoning (Kolodner, 1993) can play a large 
role in modeling them. Research in case-based reasoning 
has provided extensive knowledge of how to reuse solu- 
tions to old problems in new situations, how to build 
and search case libraries (for exploration of design al- 
ternatives), and how to merge and adapt cases. Many 
of the activities of creative designers can be modeled by- 
extending routine problem solving processes that exist 
in current case-based systems. 

The features of a design alternative are not only its structural 
characteristics and physical properties, but also relations between 
combinations of features. 
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Figure 1: Rough sketch of creative design processes. 

We give examples to illustrate these activities, which 
we have collected in studying the problem solving re- 
ports and protocols of designers in a variety of design 
disciplines. These include software design, meal plan- 
ning, science lesson planning, architectural design, and 
mechanical design. Many of the anecdotes related in this 
paper come from an exploratory study we conducted of 
a student mechanical engineering (ME) design project. 
The design task was to build a device to quickly and 
safely transport as many eggs as possible from one loca- 
tion to another. The device could be constructed from 
any material, but had to satisfy a set of size, weight and 
cost restrictions. The initial description of the problem 
was vague, ambiguous, and incomplete, requiring a great 
deal of elaboration and reformulation. One of us partic- 
ipated in the seven-week project as a member of a four- 
person team. Active participation in the project allowed 
us to become immersed in the issues the students were 
dealing with and to openly converse with the students at 
all stages of the design as a useful team member, rather 
than as an outside observer. This led to many of the 
insights described in this paper. 

2. Specification Refinement 

Design specifications are rarely well-defined. In general, 
they are incomplete, leave many different ways to solve 
a problem, and are often unnecessarily overconstrained. 
An important part of design is redefining the design spec- 
ification. This includes elaborating the constraints and 
criteria the design should satisfy and extensively restruc- 
turing the problem (Goel and Pirolli, 1989). 

2.1 ELABORATION 

In general, a designer has goals and guidelines that are 
not in the initial design specification itself but whose vi- 
olation or achievement can be noticed. For example, a 
meal planner might like meals to be easy to prepare, but 
may not include this in every design specification. Goel 
and Pirolli (1989) identify several classes of constraints 
that are of this nature, including domain-specific tech- 
nical constraints (such as structural soundness), legisla- 
tive constraints (such as building codes), common sense, 
pragmatic constraints (for example, "short construction 
time" or personal safety), and self-imposed, personal 
preferences (such as "not spicy"). 

Elaboration involves making these constraints and cri- 
teria explicit, consistent, complete, and unambiguous. 
We hypothesize that this is driven in part by the process 
of evaluating each alternative generated so far. Eval- 
uation drives elaboration by satisfaction or dissatisfac- 
tion with an alternative and by an inability to evaluate. 
Elaboration is also driven by an inability to generate 
satisficing alternatives, and by opportunity. These are 
discussed in this section. 

Many design alternatives arise from remembering or 
looking for solutions to old design problems. Such design 
cases are, in general, similar to the new situation on im- 
portant dimensions, but are more complete. Additional 
aspects fuel elaboration by bringing up new constraints 
or criteria to consider. They are evaluated for applicabil- 
ity to the current design problem. The results are used 
to update the design specification: if the case is appli- 
cable, more detailed constraints are added; if the case is 
rejected, constraints are added to prohibit the aspects 
that were unacceptable. 



For example, while designing a manufacturing re- 
search center on the Georgia Tech campus, Terry Sar- 
gent visited existing manufacturing centers and precision 
engineering laboratories around the world. Examining 
these options helped him decide what criteria and con- 
straints were important and how to prioritize them. One 
technical center he visited has flexible utilities which can 
be tapped into at any location in the building (e.g., an 
air duct can be added anywhere). On the other hand, all 
of its research laboratories are internal and the building 
is too dark. From his examination, Sargent formed a 
wishlist of constraints for his building to satisfy, includ- 
ing having flexible utilities, external offices, and letting 
in plenty of sun. 

This illustrates two of the ways evaluation drives elab- 
oration: by satisfaction and by dissatisfaction with an 
alternative. A third way is by an inability to evaluate. 
This occurs when there is a lack of information in the 
specification to confirm or reject the legality and desir- 
ableness of features. It suggests new constraints and 
criteria to add or existing constraints to disambiguate. 

An example arose in the ME design project, where 
a possible starting location of the device was from the 
center of a wading pool of water. The team discussed the 
idea of launching an egg-carrying device from a model 
battleship. To determine whether this was legal, they 
needed to know whether it was all right to leave parts 
of the device behind as it operated. The answer to this 
question added to the problem description. 

Elaboration is also driven by an inability to generate 
satisficing alternatives. In general, this results in relax- 
ing constraints (i.e., making a compromise). In the ME 
project, the students originally wanted to carry more 
than than a dozen eggs, but could think of no design 
ideas that would allow a large number of eggs to be car- 
ried safely, given the amount of protective cushioning 
required and the space restrictions. This led the stu- 
dents to relax their preference for the device to have a 
high egg-carrying capacity. 

Finally, elaboration is driven by opportunity. If the 
evaluation process is aware of the designer's other goals, 
it can be opportunistic. For example, a meal planner 
whose immediate goals were to use leftover rice for din- 
ner remembered a breakfast dish. Since she needed to 
eat breakfast too, she decided to relax the dinner goal 
and use the rice for breakfast. This required reasoning 
about priorities and alternative ways of doing things. If 
rice is the only thing of substance available for dinner, 
then using the rice for tomorrow's breakfast is a poor 
idea. If, on the other hand, there are plenty of other 
things available for dinner and/or the eater didn't re- 
ally want to eat rice anyway, then using it for breakfast 
solves two problems. So, evaluation may allow a reasoner 
to opportunistically realize that a solution is good, even 
though it does not fit the design specification. This can 
lead to a change in the relative importance of goals and 
constraints in the current problem description. 

2.2 REFORMULATION 

Another major activity in designing the design specifi- 
cation is reformulating the problem - redescribing the 
problem so that the solution is easier to find. There 
are several ways alternative views of a problem can be 
generated. 

One way stems from making a design alternative more 
concrete, e.g., by mentally visualizing it or acting it out. 
The more detailed description of the solution sometimes 
suggests a new description of the problem. For exam- 
ple, in the ME design project, while considering how to 
move eggs out of a pool of water, one student made an 
analogy to submarines launching missiles. He acted out 
the launch with his pen as he spoke. His description re- 
minded another student that submarines launch missiles 
one at a time. This led to reformulating the problem 
from one of moving all eggs as a group to moving eggs 
individually. 

It is an open question exactly how a more detailed 
description of a solution can suggest a reformulation. It 
may be that the visualization of the submarine launching 
is making assumptions explicit. It is challenging con- 
straints that have been inherited from previously con- 
sidered options, but which are not essential, e.g., the 
constraint on how many eggs should move at once. 

Another problem reformulation technique is to ex- 
plore and stretch the problem constraints and exploit 
any loop-holes found. For example, a designer trying 
to "design a building between two buildings" (Goel and 
Pirolli, 1989) might ask how close the middle building 
can be to the two adjacent buildings. By taking closeness 
to the limit, the designer can reformulate the problem as 
"connect two buildings together." 

Finally, a third way an alternative view of a problem 
sometimes arises is from realizing part of a solution and 
then reducing the problem to making that happen. For 
example, Maier (1931) describes an experiment in which 
subjects were given the problem of connecting together 
two strings that hung vertically a large enough distance 
apart that the person could not hold one string and reach 
the other. The solutions depend on describing the prob- 
lem in different ways: "how to make one string longer," 
"how to make one string stay in middle and bring the 
other string to it," "how to extend my reach to pull one 
string to the other," and "how to make one string move 
to the other." Maier showed that subtly giving the hint 
of making one string sway often helped the subjects come 
up with the fourth reformulation (which led to the solu- 
tion of tying a weight to the string, making it swing like 
a pendulum toward the other string). 

Turner (1991) provides an initial attempt to model the 
problem reformulation process, which he implemented in 
a program called MINSTREL. Turner proposes a case- 
based model of creative reasoning in which a given prob- 
lem is transformed into a slightly different problem and 
then used as a probe to a case library. A recalled solution 
to the new problem is then adapted back to the original 



problem (using solution adaptations that are associated 
with the problem transformations). A set of "creativity 
heuristics" is used to transform the problem. Examples 
include generalizing a constraint (and perhaps suspend- 
ing it altogether), and adapting a constraint to require 
a related, but slightly different outcome (e.g., injuring 
instead of killing). 

Unfortunately, MINSTREL does not address impor- 
tant focus of control problems. For example, what guides 
the problem reformulation? Which features or con- 
straints should be varied? Figuring out what to change 
and how seems to be a major part of recasting prob- 
lems. We believe that incorporating feedback from the 
evaluation of proposed alternatives can provide focus. 

3. Idea Exploration 
Generating design alternatives is an incremental, oppor- 
tunistic process that is tightly interleaved with specifi- 
cation refinement and evaluation. Three primary ways 
in which ideas are put on the table for consideration are 
retrieval of previous design experiences, recognition of 
current experiences or design pieces in the current envi- 
ronment as potential solutions, and modifying or com- 
bining existing options to produce new ones. 

3.1 REMINDING 

An expert designer knows of many design experiences, 
accumulated from personally designing artifacts, being 
given case studies of designs in school, and observing 
artifacts designed by others. Our observations and anal- 
yses lead us to propose that reminding of these experi- 
ences is crucial to generating design alternatives. When 
a design experience is recalled, it suggests a potential 
solution that can be critiqued with respect to the new 
problem, adapted to meet the needs of the new situation, 
or merged with other proposed solutions. 

Designers frequently choose an already well-known 
framework (or generic case) for a problem and then fill it 
in. Reusing solution structures in this way allows design- 
ers to avoid recomputing useful compositions of design 
pieces. We call this process "framing a solution." The 
framework provides the glue holding the pieces of the 
design together. The creativity comes in filling in de- 
tails and in dealing with inconsistencies when merging 
alternative pieces. 

Such framing occurs in domains, such as bridge de- 
sign and engine design, where well-known frameworks 
exist and where constraints holding the pieces of prob- 
lems together are quite complex. In software engineer- 
ing, frameworks exist as widely-used computational frag- 
ments, called cliches (Rich and Waters, 1990). Johnson 
and Foote (1988) have defined a similar notion of "frame- 
works" for reuse of object-oriented software. In other do- 
mains, such as architectural design, creating the frame- 
work is a primary piece of the creative process. This 
involves deciding which aspects of a problem specifica- 
tion are most important, to deal with first and inferring 
structural aspects of a solution from them. 

We hypothesize that unorthodox design alternatives 
tend to come from non-obvious remindings. Some 
are based on abstract similarities, resulting in cross- 
contextual remindings. Other remindings are based on 
derived or computed features rather than available ones. 

If reminding is so important to generating alternatives 
and if it requires derived or abstract features, we must 
determine which kinds of derived features tend to be 
most useful for design, whether there is a set of derived 
features that is common to design across domains, and 
when those features get derived. 

In her investigation of story writing, Dehn (1989) 
stresses the importance of reusing old ideas in new ways. 
Of particular importance is having processes that are 
able to generate multiple alternatives for several parts of 
a problem and put them together in unusual ways. This 
requires processes that can search memory for things 
that might be represented in a way that is different from 
the representation of the current problem. Old cases 
must be seen in a new light. 

Recent studies of creative problem solving protocols 
(Kolodner and Penberthy, 1990) suggest that anticipa- 
tory indexing is not sufficient to fully explain retrieval. 
Features that were not salient at the time a case was 
experienced might be important for retrieval in the cur- 
rent situation. Drawing new, abstract connections might 
be a result of re-indexing cases in terms of what is now 
relevant or important. We hypothesize that by contin- 
ually updating the design specification, designers derive 
abstract connections between the current problem and 
similar problems (possibly in other domains). These ab- 
stractions can be used to see previous cases differently. 

Selfridge (1990) claims that people tell stories to re- 
index them under new generalizations that have been 
learned since the story was first acquired. A key open 
question he identified is how does a person know what 
stories to tell? One possibility is that they are the ones 
the person is reminded of or has experienced recently. 
The person may have been reminded of them through 
a different set of features than the generalized features 
they are re-indexed under. While working on a design 
problem, designers often perform sensitized recognition 
of current design options and objects in their environ- 
ment and they continually re-examine and re-index all 
ideas recently brought up or experienced. This is dis- 
cussed further in the next section. 

Retrieval can be automatic or strategic (i.e., based 
on intentional elaboration strategies that help jog a de- 
signer's memory). Strategic retrieval is promoted by 
design team communication. Team members describe 
abstract ideas to each other in terms of concrete ex- 
amples, analogies, and metaphors. Trying to recall an 
appropriate example often involves applying elaboration 
strategies to an index. For example, the person might 
reflect on "where have 1 seen something like this before?" 
and "in what situations might I have seen something like 
this?"  This often results in identifying opportunities to 



reuse existing objects or devices in the current design. 
Team communication plays an additional role in idea 

generation: ambiguity in communication is generative. 
In general, when working together, team members try 
to recognize and understand each others' ideas, plans, 
and goals from their actions, words, and sketches. Some- 
times there is ambiguity in the interpretations which of- 
ten helps generate more ideas (increases fluidity of con- 
cepts) and can lead to function sharing optimizations. 
Goel (1992) studied the generative role ambiguity plays 
in informal sketching. In our informal study, we have no- 
ticed that interaction among multiple designers amplifies 
its effects. 

3.2 SENSITIZED RECOGNITION 

As designers become deeply involved in design problems, 
they start to recognize objects in their environment as 
solutions to parts of the design problem. Often the ob- 
jects are seen as having alternative, unusual functions or 
uses. 

For example, in the ME design project, the students 
were considering using a spring launching device and 
went to a Home Depot (a home improvement store) 
to look into materials. While comparing the strengths 
of several springs by compressing them, they noticed 
that the springs bent. One student mentioned that if 
they were to use springs, they would have to encase the 
springs in collapsible tubes to prevent bending. Later, as 
they walked through the bathroom section of the store, 
they saw a display of toilet paper holders. They imme- 
diately recognized them as collapsible tubes that could 
be used to support the springs. 

The key to sensitized recognition is refining the de- 
scription of the solution. The process of critiquing pro- 
posed ideas often yields descriptions of what an improved 
solution would look like: what properties it would have, 
what function it should provide, and what criteria it sat- 
isfies. This primes the designer to opportunistically rec- 
ognize possible solutions in observations of the external 
world and in recently considered design options. 

3.3 ADAPTATION 

Previous work has looked at adapting old solutions to fit 
new problems. In creative design, it sometimes makes 
sense, in addition, to adapt one's goals to fit an old solu- 
tion rather than changing the old solution to fit the new 
problem (e.g., using rice for breakfast rather than din- 
ner). Previous work (Hinrichs 1992) has looked at rou- 
tine adaptation strategies (e.g., deletion, addition, sub- 
stitution) but not at use of "off-the-cuff" ones (i.e., those 
developed in response to a particular problem). Some of 
these arise from examining a causal model, some from 
adapting well-known adaptation strategies, and some 
from applying well-known adaptation strategies in novel 
ways. For example, novelty can result from substituting 
something different than the usual tiling or from relaxing 
well-known structural constraints. 

3.4 MERGING 

In routine design, parts of several designs are often 
merged, but in general, the parts are non-overlapping 
(e.g., dessert from one meal might be used with a main 
dish from another meal). In more novel design, several 
suggestions for solving the same part of a problem might 
be merged to come up with a solution (e.g., in deciding 
to have salmon fettuccine and salad for dinner, a meal 
planner might have remembered three previous cases, a 
meal with fish, a one-dish meal and a pasta meal, and 
merged desirable features from each). 

Merging pieces of several solutions into one design is 
relatively simple if the pieces are consistent with each 
other. Either a previous case will suggest a way of com- 
bining them, an adaptation heuristic will know how or 
combination will be obvious. Merging is more complex 
when the pieces are not obviously consistent. We have 
two hypotheses about how creative merging of several al- 
ternative solutions might work. First, some adaptation 
heuristics might exist that can provide general guidelines 
and suggestions for non-routine merging. Second, cases 
from other domains may provide guidelines and sugges- 
tions for non-routine merging. The challenges here are 
to find the adaptation heuristics and to discover the de- 
scriptive vocabulary that allow cross-contextual remind- 
ings of the appropriate kinds to take place. 

3.5 FUNCTION SHARING 

Often function-sharing optimizations arise from merging 
within the same design. This occurs when an existing 
part of the design can be seen to fulfill another purpose. 
(This is a special case of sensitized recognition.) An in- 
teresting form of this type ofmerging occurred in the ME 
design project. The students had decided to use a cylin- 
der to carry the eggs. One student related an episode 
from the children's science TV show Beakman's World 
that had caught her eye as she was flipping through chan- 
nels. The episode showed how to make a coffee can that 
rolled back to you when you rolled it away. It attached 
batteries as weights to rubberbands, strung through the 
center of the can. The weights caused the rubberbands 
to get wound up as the can rolled. As the rubberbands 
unwound, they caused the can to roll back to the start- 
ing location. The students discussed whether this could 
be modified for use in their design (e.g., wind the rub- 
berbands up and let their unwinding launch the device). 
They criticized the rubberband and battery part for tak- 
ing up too much space and for adding too much weight, 
since the task had strict space and weight restrictions. 
One student then suggested the interesting optimization 
of letting the eggs themselves be used as the weights. 
This alleviated both the space and the weight problem. 
One aspect that was non-routine about this is that the 
student looked beyond the structure of the device to its 
cargo to find what to share. 

4. Evaluation 
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Figure 2: Processes involved in evaluation. 

The evaluation process checks each design option that 
is generated against the current design specification. It 
forms a critique, identifying how well the option satis- 
fies the constraints or how badly it fails. It also notices 
questionable features whose desirableness or legality are 
unknown. In addition, it raises evaluative issues and 
guidelines that are not found in the current specification, 
but which are based on the designer's experience. Some 
of these are always raised. For example, in algorithm de- 
sign, issues of correctness, completeness, and time and 
space efficiency are routinely considered. Others (e.g., 
elegance) are recalled or derived based on features of the 
alternatives examined. 

This information is used by both the specification 
refinement process (elaborate and reformulate) and 
the idea exploration process (generate, elaborate, re- 
describe). The issues raised point out opportunities to 
augment or refine the design specification. The pros and 
cons that are described in the critique of a design idea 
are used by the idea exploration process to compare the 
idea to other options, merge and adapt alternatives, and 
improve promising ideas. 

We view evaluation as consisting of two interacting 
processes, as shown in Figure 2. One process critiques 
the design alternative on the basis of the current specifi- 
cation and the evaluative issues. The features examined 
in this critique are not only the structural characteris- 
tics of the design artifact, but also information about 
how it behaves, the consequences of its operation, and 
how environmental factors affect it. The second process 
collects this information by performing simulations and 
experimentation. 

In the ME design project, the students often mentally 
simulated proposed options and checked the results. For 
example, when the idea of launching each egg individ- 
ually rather than as a group was considered, the stu- 
dents imagined that the eggs would all land on top of 

each other which could cause breakage and an unstable 
target spot. Identifying this problem through mental 
simulation led to an adaptation of the proposed solution 
which was to rotate the launch mechanism so that the 
eggs would each land in a different location. 

In addition to simulating the proposed option in the 
general case, designers also propose hypothetical situa- 
tions to simulate. For example, the ME students asked, 
"What if it is raining on the day of the competition?" 
and "What if the terrain the device must traverse is 
rough or steep?" Simulations of hypothetical situations 

. test the robustness of the solution. The hypothetical sit- 
uations pertain to all phases of a design artifact's lifecy- 
cle, including its construction and maintenance, as well 
as its use'. For example, a designer might try to imagine 
someone trying to repair some part of the design that 
is vulnerable to failure and consider whether the part is 
accessible for maintenance. 

Concrete experimentation of design alternatives is 
a valuable way of collecting data. Some aspects and 
outcomes of an option only become apparent through 
real-world testing. For example, during the ME design 
project, the students tested the ability of potting sponge 
(used in floral displays) to cushion eggs. When an egg 
was placed in it and dropped, the sponge compressed to 
a powder, decreasing its protective ability and reusabil- 
ity. This led the students to search for a material that 
did not permanently compress and was reusable. 

Some simulations or experiments might be proposed 
by the critiquing process when it requires additional in- 
formation about the design option to judge its strengths 
and weaknesses. Some hypothetical situations used in 
simulation might be associated with evaluative issues 
raised in critiquing the design option. 

4.1 EVALUATIVE ISSUES 

While critiquing a given design option, a designer con- 
siders general evaluative issues that the designer's expe- 
rience recommends looking into, in addition to how well 
the option fits the current design specification. There are 
at least three classes of evaluative issues that designers 
routinely raise (Kolodner and Penberthy, 1990). 

One is function-directed. For example, the purpose of 
recipe creation is to create something that can be eaten, 
so some questions arise from the concept of edibility. 
These focus on the taste and appeal of a dish to see if it 
is edible. 

Another class is derivation-driven: previous solutions 
provide a rich and important source of issues if the 
considerations taken into account in creating them are 
saved. Consider, for example, the task of trying to decide 
if tofu can be substituted for cheese in tomato tart. One 
way the right evaluative issues can be derived is by re- 
calling another case where tofu was to be substituted for 
cheese. Concerns in that case are likely to be concerns 
in the current one, too. For example, if in the previous 
case, the texture of tofu was compared with the texture 



of the original ingredient, the reasoner might then ask 
about texture in the current case. 

Finally, some questions are outcome-related. Previous 
design cases can be used to project or derive the outcome 
of the current one. For example, as part of the ME design 
project, a proposed launch mechanism was considered 
that consisted of a plastic fish tank base and two toi- 
let paper holders (which provided a spring mechanism). 
The two holders were attached to the base via plastic 
prongs protruding from one side of the base. One of the 
students was concerned that the prongs were vulnerable 
to breaking, particularly if the springs inside the holders 
were replaced with stronger springs. She recalled simi- 
lar plastic prongs had held a protective covering on her 
stereo speakers, but they had broken off of one speaker 
when it fell at an angle. The proposed design option was 
used as a probe to memory to see if instances are already 
known of it or a similar solution failing. By recalling the 
stereo speaker case, the students raised the question of 
whether the proposed design was vulnerable in the same 
way. It also suggested a hypothetical situation in which 
to simulate the proposed design: what happens if we 
provide a large side-ways force to the prongs? Think- 
ing about how this could arise led the students to think 
about what would happen if stronger springs were re- 
quired. 

Case-based projection can bring up outcome-related 
issues relevant to any phase of a design's lifecycle, be- 
sides its normal use, including its construction and main- 
tenance phases. For instance, one of the buildings 
Terry Sargent examined when designing the Georgia 
Tech manufacturing research center was the Pompadeau 
center, which has all of its mechanical systems show- 
ing. He wanted to borrow this idea for its symbolism, 
but in talking with the managers of the center, he found 
out that this feature made it difficult to maintain the 
building. This led him to question whether the same 
maintenance problems will come up in his design. 

5. Discussion 

Creative designers operate in a rich context of ideas, 
some recalled from previous experiences, some recog- 
nized in the current external environment, and some gen- 
erated from adapting or putting together recently con- 
sidered ideas. An important part of this rich context is 
concreteness. Details fuel evaluation, which is central 
to elaborating and redescribing both the problem and 
the solution. These come from reasoning about specific 
design cases, which include many additional details be- 
sides those aspects that originally brought the case to 
mind. They also come from experimentation, testing, 
visualizing, and simulating the solutions. 

This suggests three important ways to assist creative 
design. One is by placing the designer in a rich en- 
vironment containing concrete design artifacts or de- 
tailed descriptions and simulations of existing design ar- 
tifacts.  Another is by facilitating evaluative procedures 

and proposing hypothetical situations covering the arti- 
fact's entire lifecycle. The third is by assisting the de- 
signer in reformulating and redescribing what is needed, 
what constraints or criteria need to be satisfied, and 
what the solution would look like. 

5.1 OPEN CONTROL ISSUES 

Our exploratory studies of designers have given us in- 
sights into the primary activities involved in creative de- 
sign. However, many open issues remain. Most center 
around the underlying control of the various processes 

• and their interactions. 
Specification refinement. A key activity in de- 

signing the design specification is incrementally bringing 
evaluation criteria and new problem constraints into fo- 
cus. This is largely driven by evaluation. An open ques- 
tion is how does noticing a feature of a design option 
that is either satisfactory, undesirable, or whose status 
is unknown (due to failure to evaluate) lead to an elab- 
oration of the current specification? One possibility is 
that it can be guided by the mechanism that detected 
the questionable feature. For example, one way to de- 
tect a problem in a proposed solution is by case-based 
projection: recalling a failure in a similar solution. This 
previous case might provide suggestions for fixing the 
current problem specification. Failure to determine the 
legality of a feature could point to augmentations to the 
specification that would push the confirmation or rejec- 
tion through to completion. 

Another important question is: during problem refor- 
mulation, how is the designer's attention drawn to par- 
ticular constraints to explore and stretch? There seems 
to be give and take between reformulation and evalua- 
tion. Evaluation can home in on what is ambiguous or 
vague in the problem specification and try to take advan- 
tage of new views that result from relaxing or pushing 
the limits of the constraints. Also, when the need to 
compromise arises, conflicting constraints come into fo- 
cus and the designer considers how they can be varied. 
On the other hand, reformulation of the specification 
can provide additional or improved evaluative measures 
to strengthen evaluation. 

Idea exploration. The critique of proposed solu- 
tions guides idea exploration. Of several solutions under 
consideration, one might be more appropriate than the 
others or several might each contribute to a solution. 
Evaluative procedures must be able to evaluate each in- 
dividual alternative by itself as well as in light of the 
others. Several open questions arise: How is relative 
importance among the criteria decided? How are prefer- 
ences among alternatives made? How does weighing ad- 
vantages and disadvantages suggest useful adaptations 
and mergings? 

Recalled cases seem to be important here. They sug- 
gest solutions, frameworks, design strategies and design 
philosophies, which can provide constraints with which 
to evaluate a solution and the preference criteria with 



which to prioritize the constraints. This also facilitates 
reformulating the specification, making trade-offs, and 
relaxing constraints. There may also be general and 
domain-specific strategies for setting priorities that we 
haven't discovered yet. 

Evaluation. An important and open question is how 
does the evaluation process know which aspects of a de- 
sign alternative to focus on? Of all the data collected 
during simulation and experimentation, which subset is 
interesting? For example, which data is likely to suggest 
updates to the design specification or adaptations that 
lead to new ideas? 

Evaluative issues that designers always raise tend to 
focus on particular features. At the same time, some 
features seem to draw attention to particular evaluative 
issues that might not have been considered otherwise. 
Some of the features are more distinctive or odd and 
these seem to index directly into the set of implicit cri- 
teria held by the designer. An example arose in the ME 
design project. While testing how well various types 
of spongy material cushioned eggs when dropped from 
two stories, a person walked by who had done a design 
project which also involved protecting an egg from break- 
ing on impact. He said he wrapped the egg in a sponge 
soaked in motor oil and then stuffed it in a Pringles can 
(a narrow cardboard cylinder in which potato chips are 
stacked). One of the aspects that was new about this 
case, compared to the ideas the students had been con- 
sidering is the idea of soaking the sponge in motor oil. 
Focusing on the motor oil aspect reminded the students 
of their personal preference that the device be clean. The 
motor oil aspect seemed to index directly into the clean- 
liness criterion. 

Overall Control. Other open questions pertain to 
how designers decide when to expend effort in one pro- 
cess versus another. For example, when should quick 
adaptations of existing solution ideas be tried and when 
should the designer step back and reformulate the prob- 
lem. One observation we made in the ME student design 
project was that when flaws were noticed, the students 
usually preferred to redescribe the solution rather than 
elaborate or reformulate the problem specification. The 
students described what was needed in terms of how the 
structure of the device should be modified to fix the prob- 
lem (e.g., "the launch mechanism must rotate" or "the 
springs should be in a collapsible tube") as opposed to 
describing what function or behavior is desired (e.g., "the 
eggs should each land at different target locations" or 
"provide side-to-side support to springs"). The students 
usually tried to adapt the offending feature, before refor- 
mulating the problem. Only when quick adaptations to 
the solution were not sufficient did they step back, look 
at the essential problem constraints these specific struc- 
tural solutions were solving, and then reformulate the 
problem or find other solutions that could also satisfy 
these constraints. This is reasonable, since it is cheaper 
to make small changes to an evolving design solution 

than to completely reformulate the problem. We need 
to look for additional types of heuristics people use to 
control their reasoning processes. 
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Abstract 

Case-based reasoning can be used to explain many 
creative design processes, since much creativity stems 
from using old solutions in novel ways. To under- 
stand the role cases play, we conducted an exploratory 
study of a seven-week student creative design project. 
This paper discusses the observations we made and 
the issues that arise in understanding and modeling 
creative design processes. We found particularly in- 
teresting the role of imagery in reminding and in 
evaluating design options. This included visualiza- 
tion, mental simulation, gesturing, and even sound 
effects. An important class of issues we repeatedly 
encounter in our modeling efforts concerns the focus 
of the designer. (For example, which problem con- 
straints should be reformulated? Which evaluative is- 
sues should be raised?) Cases help to address these 
focus issues. 

Introduction 
Designers across different domains perform many of the 
same creative activities, whether they are involved in 
designing artifacts or processes. These activities can be 
described by contrasting them to routine design activ- 
ities. In general, routine design repeats old designs in 
obvious ways, adapting them by well-known and often- 
applied adaptation strategies. Routine design assumes 
a completely specified problem is given and little ef- 
fort is applied to elaborating or designing a feasible 
specification. 

The kind of design we call creative, on the other 
hand, includes a process of "designing the design spec- 
ification" (Tong, 1988), going from an incomplete, con- 
tradictory, and underconstrained description of what 
needs to be designed to one with more detail, more 
concrete specifications, and more clearly defined con- 
straints. Creative design also often includes a pro- 
cess of generating and considering several alterna- 
tives, weighing their advantages and disadvantages, 
and sometimes incorporating pieces of one into an- 
other. It involves using well-known design pieces in 
unusual ways or modifying well-known designs in un- 

usual ways. Creative designers frequently engage in 
cross-domain transfer of abstract design ideas. They 
also often recognize alternative uses or functions for 
common design pieces (e.g., using a styrofoam cup as 
a boat). 

Figure 1 gives a rough sketch of the main processes 
we hypothesize to be involved in creative design and 
how they interact with one another. The designer con- 
tinually updates the design specification as well as a 
pool of design ideas under consideration. Each alter- 
native generated is evaluated to identify its advantages 
and disadvantages and to check that it satisfies the 
constraints in the current design specification. A key 
part of evaluation is "trying out" the alternative (e.g., 
through experimentation or mental simulation). This 
generates a more detailed description of the alterna- 
tive, including the consequences of its operation and 
how environmental factors affect it. 

Evaluation drives both the updating of the design 
specification and the modification and merging of de- 
sign alternatives. It raises questions of legality or de- 
sirableness of features1 of a design alternative and it 
detects contradictions and ambiguities in the specifi- 
cation. The resolution of these questions, contradic- 
tions, and ambiguities serves to refine, augment, and 
reformulate the design specification. On the genera- 
tive side, evaluation identifies advantages and disad- 
vantages of alternatives which often suggest interest- 
ing adaptations or ways of merging alternatives. Also, 
sometimes the description of a problem noticed during 
evaluation can be easily transformed to a description 
of how its solution would look. 

The three processes interact opportunistically. The 
generative phase, guided by critiques from the eval- 
uation phase, watches for opportunities to merge or 
adapt design ideas to create new alternatives. The de- 
sign specification is incrementally updated as ideas are 
tested and flaws or desirable features become apparent. 

The continual elaboration and reformulation of the 
problem  (i.e.,  the  design specification)  derives  ab- 

The features of a design alternative are not only its 
structural characteristics and physical properties, but also 
relations between combinations of features. 
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Figure 1: Rough sketch of creative design processes. 

stract connections between the current problem and 
similar problems in other domains, facilitating cross- 
contextual transfer of design ideas. Continual re- 
description of what the solution (i.e., the evolving de- 
sign) looks like primes the designer for opportunistic 
recognition of alternative functions of objects. 

These processes rely heavily on previous design expe- 
riences and knowledge of designed artifacts. An expert 
designer knows of many design experiences, accumu- 
lated from personally designing artifacts, being given 
case studies of designs in school, and observing arti- 
facts designed by others. Our observations and anal- 
yses lead us to propose that reminding of these ex- 
periences is crucial to generating design alternatives. 
When a design experience is recalled, it suggests a po- 
tential solution that can be critiqued with respect to 
the new problem, adapted to meet the needs of the new 
situation, or merged with other proposed solutions. 

We believe that case-based reasoning (Kolodner, 
1993) can play a large role in modeling these processes. 
Research in case-based reasoning has provided exten- 
sive knowledge of how to reuse solutions to old prob- 
lems in new situations, how to build and search case 
libraries (for exploration of design alternatives), and 
how to merge and adapt cases. Many of the activi- 
ties of creative designers can be modeled by extending 
routine problem solving processes that exist in current 
case-based systems. 

Design cases provide a rich collection of details that 
are used in several ways in addition to generating ideas, 
including 

• reformulating and elaborating the problem specifi- 
cation or proposed solutions, 

• predicting the outcome of making certain design de- 
cisions, 

• enabling visualization and simulation of proposed 
designs, and 

• communicating abstract ideas in concrete terms. 

What cases seem to do is to help the reasoner de- 
termine how to productively continue reasoning. The 
question we ask is how? How does the designer know 
which details to pay attention to? Which aspects of 
an old design can suggest problem reformulations or 
can fill in missing details of the specification? Dur- 
ing problem reformulation, which constraints should 
be relaxed or strengthened? How are evaluative ques- 
tions and criteria incrementally raised to critique the 
proposed design options? 

We call this problem "focus." These issues are rel- 
evant in understanding what knowledge must be cap- 
tured in case libraries, the form this knowledge should 
be in, arid what types of indices are needed to allow re- 
trieval of relevant cases. At the same time, cases help 
address many of these focus-related issues, particularly 
raising evaluation criteria and suggesting interesting, 
useful problem reformulations. 

Example Design Episode 
We concentrate primarily on an example design 
episode from an exploratory study we conducted of a 
student mechanical engineering (ME) design project. 



The design task was to build a device to quickly and 
safely transport as many eggs as possible from one loca- 
tion to another. The device could be constructed from 
any material, but had to satisfy a set of size, weight and 
cost restrictions. The initial description of the prob- 
lem was vague, ambiguous, and incomplete, requiring 
a great deal of elaboration and reformulation. One of 
us participated in the seven-week project as a mem- 
ber of a four-person team, rather than as an outside 
observer. Active participation in the project allowed 
us to become immersed in the issues the students were 
dealing with and to observe a great deal of the design 
process, including "official" as well as informal team 
meetings (e.g., while choosing materials at a store or 
while attending class). 

The following is a short excerpt from a discussion 
early in the project concerning how to launch the eggs 
from the center of a child's wading pool. This excerpt 
was chosen because it involves a reformulation of the 
original problem statement. It illustrates the types of 
design experiences and artifacts the students typically 
recalled and the variety of ways they used these re- 
mindings. It also gives us some insight into the basis 
upon which design experiences are remembered. 

1 S2: Think about how heavy eggs are.... 
2 S4: Yeah, we need something that's going to 

propel this thing. I mean it's only going this 
far but if you think about it, it's gotta lift up 
12 inches and land over there. I've got a feeling 
it's really gotta propel you know [motor noise] 
and then just go [splat noise] with a thud. 

3 SI: I've got this picture in my mind of this 
really dramatic missile. If it's in the water, 
it... it could sink and it would be like a missile 
coming out of a submarine.  [He demonstrates, 
pretending his pen is a missile, makes fizzing 
noise] ... coming out of the water, ... splashing 
water out. 

4 S3: That reminds me cause you see those 
missiles come out one at... What if we did 
something where we sent eggs over one at a time? 

5 S3: So we could have something over there to 
catch them like a big pillow or something I don't 
know, but that way you wouldn't have to launch the 
whole set of them. You just launch one at a time. 

6 S2: Put that down: launching individually. 
[S3 records idea on post-it.] 
[Unrecorded conversation while flipping tape: 

7 S4: We can put them each in a tennis ball. 
8 S4 mentioned ping-pong ball shooters. 
8 SI didn't know what S4 was talking about.] 

8 S4: Well, they're actually little springs some 
of them. 

8 SI: Are they? 

8 S4: Yeah, you know how when we were kids we 
could take those things that would shoot ping-pong 
balls and pull them back... 

8 S2: I remember those!  I loved those! 
8 S4: ... and shoot them? Yeah. You were a 

deprived child. 
8 SI: Were they guns? 

8 S4: Yeah. 

9 S4: That's actually, hmmm. That would be 
about the size of an egg. If we were to send it 
over one at a time. 

10 S2: Yeah, a lot heavier, though, the eggs. 
11 Later (after this meeting), S3 visualized 

how the idea would work and imagined that the eggs 
would all end up landing at the same target spot 
and smash each other. So S3 thought of rotating 
the launch mechanism so that it throws the eggs in 
all directions. S3 noted one interesting 
consequence of this was that the eggs could be 

, thrown all at once, each in a different direction. 
12 The rotating launch reminded S3 of a recently 

suggested idea: "flinging motion where the device 
is spun around and around and then let go." This 
had been recorded externally on a post-it. 

13 This was then adapted (generalized) from 
having a group of eggs at the end of the string to 
a single egg. 

14 [Two days later, this idea was discussed 
further while the students were going through each 
idea proposed so far (recorded on post-its).] 

15 S3: What I was thinking was that you could 
just have a pole and you could have all these 
strings just like a May Day dance, you know where 
you have all the eggs hanging from strings and you 
spin that and the eggs all fly out and then you 
just let go and then they all fly. 

16 S4: Now I like... that's actually pretty 
interesting there, cause you could .. tie them all 
to something like a Softball...No. 

17 S4: Maybe something like... I'm trying to 
think of something that... What about something 
that's squishy? 

18 S4: It's gotta have... What if it has some 
kind of fluid, like an orange? If you put an egg 
inside a hollowed out orange, half hollowed out 
orange, each of those little things would squash, 
you know inside of an orange.  (I just ate an 
orange for lunch... I bring real-life experiences 
to this.) 

19 SI: Well, that's the concept of a shock 
absorber. And the way it works is... If you just 
have a sealed shock.  If you have... What a sealed 
shock would be would just be a balloon. If we had 
the eggs sitting on top of this big balloon and it 
went down, whenever the balloon squashed, there'd 
be pressure inside the balloon and it would jump 
back up again, so it would bounce. 

But if you have a shock absorber that has a 
little seal out, whenever it... it's like a balloon 
w/ a little tiny hole, so whenever it hits the 
ground, it squashes and the air shoots out so it 
doesn't recoil. And an orange, whenever it's 
squashed, the juices would go squirting out and it 
wouldn't rebound. 

During this design episode, the students recalled 
many cases, most of which are devices, some in ac- 

tion. Two different aspects of cases seemed to get the 

most attention: how a device works and what are its 

results (i.e., what it accomplishes, how it might fail, its 

pros and cons). Often, what was remembered seemed 



to get embellished through a sort of mental simulation, 
sometimes causal (e.g., the operation of ping-pong ball 
shooter 8) and sometimes imagistic (e.g., the subma- 
rine launch 3, 4). 

These remindings are used in many different ways. 
1. They generate design ideas that can be re-used di- 

rectly, adapted to the current situation, or merged 
with other design pieces. For example, tennis balls 
(7) and softballs (16) are recalled to be reused for 
the new purpose of protecting eggs. 

2. They predict the outcome of proposed solutions. For 
example, the leaky shock absorber (19) is used to 
predict that an orange would not be a resilient egg 
protector. This is useful in evaluating proposed so- 
lutions. 

3. They communicate ideas. For example, the May Day 
dance (15) is used to quickly communicate the struc- 
ture of a design alternative. 

4. They help simulate or visualize the behavior of a pro- 
posed design alternative. This is useful in elaborat- 
ing both proposed solutions and vague, incomplete 
specifications. For example, Si's mental picture of 
a submarine submerging and launching a missile (3) 
is used to help simulate the desired behavior of the 
device being designed. Simulation and visualization 
are also key ways of collecting data to be used to 
evaluate a proposed solution. For example, the prob- 
lem with the initial proposal to launch eggs individu- 
ally, like a submarine does, was detected by mentally 
simulating the launch and realizing that all eggs end 
up at the same spot and could break each other (11). 

5. Remindings can also lead to a complete reformula- 
tion of the problem. For example, remembering that 
submarines launch missiles one at a time (4) led to 
converting the problem from launching a group of 
eggs in a single launch to launching each egg indi- 
vidually in multiple launches. 

Focus Issues 
A number of focus-related issues come up as we exam- 
ine the design episode above. We describe each here 
and discuss what seems to provide the necessary focus. 
In many instances, previous design cases themselves 
help direct the designer's attention. 

Which cases are recalled? 
Of all the design experiences each student designer has 
had, why are these particular ones recalled? In other 
words, on what basis are the cases recalled? For ex- 
ample, what made SI recall a shock absorber (19) and 
use it to analyze the effectiveness of an orange as a 
structure to protect an egg? 

A hallmark of a creative designer is variety. Given 
the same problem to solve several times, the creative 
designer might come up with several qualitatively dif- 
ferent solutions. We hypothesize that this happens be- 
cause on each occasion, the designer is reminded of 

different cases, knowledge, or principles for solving the 
problem. Each time, the designer has different cues 
available to use for retrieval, despite the fact that the 
problem itself is the same. That is, the probe to mem- 
ory that recalls previous designs or design knowledge 
includes not only the problem specification but also as- 
pects of the context the designer is in or has been in 
recently. 

In the given design episode, there are a variety of 
types of features that form the basis for reminding. 
Many remindings were based on a description of the 
problem, i.e., the function or behavior desired. The 

.submarine launching a missile (3) was recalled as an 
example of a device that launches from water. 

The ping-pong ball shooter (8) may have been re- 
called by looking for a device with the desired behav- 
ior of multiple launches of individual objects. In addi- 
tion to the desired behavior, prominent visual cues may 
have played a role: the rounded shape and white color 
of the objects to be launched could have contributed 
to the memory probe if S4 visualized the desired be- 
havior. 

Structural cues describing the proposed solution, or 
structural constraints the solution should have, often 
remind students of an existing device that shares those 
features. For example, the structure of the proposed 
design that flings all eggs at once on strings reminded 
S3 of the maypole used for May Day dances (15). 

Also, background cues can have an effect. S4 used 
not only structural cues (squishy, containing fluid) to 
recall an orange (18), but also cues from recent or cur- 
rent experiences (what S4 ate for lunch). Background 
interests provide additional cues. SI is planning on be- 
coming an automotive engineer and is often reminded 
of designs from the automobile domain, such as the 
shock absorber (19). 

Understanding the basis for recalling design experi- 
ences is crucial to organizing a library of design cases 
and choosing indices to allow access to the cases. This 
is discussed further in the last section. 

Which features of cases are examined? 
Once a relevant design case is recalled, which aspects 
are examined? Some lead to problem reformulations 
or fill in missing details of the problem specification 
Some are undesirable features that suggest new con- 
straints that should be added to the problem specifica- 
tion to prohibit them. Some help elaborate a proposed 
solution. But how is the designer's attention drawn to 
those aspects that can do these things? 

For example, there are numerous facts associated 
with submarines. What drew S3's attention to the fact 
that they launch missiles one at a time (4), as opposed 
to facts about how missiles are aimed at their target or 
about the cramped, claustrophobic interior? Focusing 
on this aspect led to a complete reformulation of the 
problem from launching a group of eggs to launching 
eggs individually. 



When SI used a mental picture of a submarine 
launching missiles (3) to elaborate the desired behav- 
ior of the mechanism being designed, why did SI focus 
on sinking and then launching, but not on other as- 
pects of the submarines operation, such as spying on 
or targeting other ships using a periscope? 

When S4 brought up a ping-pong shooter, first the 
spring mechanism responsible for shooting was consid- 
ered (8). Then the weight and size of the ping-pong 
balls shot was considered and compared to eggs (9,10). 

The reasoning goal plays a significant role in focus- 
ing attention. When SI recalled the submarine missile 
launch, the team was elaborating the problem specifi- 
cation by describing what the mechanism should do. It 
was also considering the problem of launching a heavy 
object out of water. 

In pursuing the problem elaboration goal, SI was 
interested in filling in details of the behavior of the 
mechanism to be designed and was focused on what 
aspects of the submarine's launching behavior trans- 
fer over to the egg-carrying device. So SI was drawn 
to coarse-grained, high-level behaviors of the subma- 
rine and missile performed when launching from water 
(submerging, shooting, coming out of the water). On 
the other hand, S3 was viewing the submarine missile 
launch case from the perspective of trying to borrow its 
solution to the launching problem. So S3's attention 
was drawn to the solution detail that multiple, rela- 
tively small missiles are launched one at a time. (At- 
tention to the small nature of the missiles may have 
been additionally emphasized by the hand gestures S3 
made in acting out the launch.) 

The ping-pong ball shooter was also considered from 
two different viewpoints. The team considers how the 
gun works as part of the goal of borrowing its solution 
and focuses on the spring mechanism: how the spring 
is loaded and released. Then S4 seemed to be consider- 
ing whether the gun can be reused directly. The goal 
of evaluating the applicability of this existing design 
to the current one focused S4 and S2 on the size and 
weight of the ping-pong balls shot, compared to eggs. 

Which evaluative issues are raised? 
The evaluation process checks each design option that 
is generated against the current design specification. It 
forms a critique, identifying how well the option satis- 
fies the constraints or how badly it fails. It also notices 
questionable features whose desirableness or legality 
are unknown. In addition, a designer has goals and 
guidelines that are not in the initial design specifica- 
tion itself but whose violation or achievement can be 
noticed. For example, a meal planner might like meals 
to be easy to prepare, but may not include this in every 
design specification. Goel and Pirolli (1989) identify 
several classes of constraints that are of this nature, in- 
cluding domain-specific technical constraints (such as 
structural soundness), legislative constraints (such as 
building codes), common sense, pragmatic constraints 

(for example, "short construction time" or personal 
safety), and self-imposed, personal preferences (such 
as "not spicy"). 

Not all of the evaluation criteria and problem con- 
straints are explicit at the start of the design. They 
gradually surface as ideas are proposed and criticized. 
A key focus-related issue is: of all the.evaluative is- 
sues that could be raised, why do certain ones come 
to mind? In the ME design project, some issues were 
always raised. For instance, the issue of egg safety was 

, a primary consideration, based on the initial problem 
.statement. Others are derived from primary goals of 
the designers. For example, the team was to design 
an egg-carrying device for at least two eggs, but one 
student (S2) strongly advocated that the device have a 
high egg-carrying capacity. This meant that S2 often 
brought up issues concerning how well the proposed 
designs accommodated the'weight and space required 
for several eggs (1, 10). 

Other evaluative issues had to be discovered as ideas 
were proposed. One way this sometimes occurred is 
that features of a proposed alternati-ve seemed to draw 
attention to particular issues that might not have been 
considered otherwise. Some of the features are more 
distinctive or odd and these seem to index directly into 
the set of implicit criteria held by the designer. For 
example, during the ME design project, the students 
were testing how well various types of spongy material 
cushioned eggs when dropped from two stories. A per- 
son walked by who had done a design project which 
also involved protecting an egg from breaking on im- 
pact. He said he wrapped the egg in a sponge soaked 
in motor oil and then stuffed it in a Pringles can (a 
narrow cardboard cylinder in which potato chips are 
stacked). One of the aspects that was new about this 
case, compared to the ideas the students had been con- 
sidering is the idea of soaking the sponge in motor oil. 
Focusing on the motor oil aspect reminded the students 
of their personal preference that the device be clean. 
The motor oil aspect seemed to be directly associated 
with the cleanliness criterion. 

A second way evaluative issues are discovered is 
through case-based projection. Previous design cases 
can be used to project or derive the outcome of the cur- 
rent one. In the design episode, SI recognized the simi- 
larity of.the orange as a cushioning "device" to a shock 
absorber with a leak (19) and could predict the prob- 
lem of not being able to bounce back upon impact. (SI 
could also explain why, based on the causal model as- 
sociated with the knowledge of shock absorbers.) This 
helped raise the issue of resiliency (the cushioning de- 
vice must be able to bounce back) upon which to crit- 
icize the orange idea (18). Navinchandra (1991) refers 
to this as criteria emergence and he models the use of 
cases to raise new criteria in CYCLOPS, a landscape 
design program. 



Which problem constraints are 
reformulated? 
During problem reformulation, how is the designer's 
attention drawn to particular constraints to relax or 
strengthen? 

Turner (1991,1993) provides an initial attempt to 
model the problem reformulation process, which he im- 
plemented in a program called MINSTREL. Turner pro- 
poses a case-based model of creative reasoning in which 
a given problem is transformed into a slightly different 
problem and then used as a probe to a case library. A 
recalled solution to the new problem is then adapted 
back to the original problem (using solution adapta- 
tions that are associated with the problem transforma- 
tions). A set of "creativity heuristics" is used to trans- 
form the problem. Examples include generalizing a 
constraint (and perhaps suspending it altogether), and 
adapting a constraint to require a related, but slightly 
different outcome (e.g., injuring instead of killing). 

However, MINSTREL does not address important fo- 
cus questions, such as what guides the problem re- 
formulation? Which features or constraints should be 
adapted? We believe that incorporating feedback from 
the evaluation of proposed alternatives can provide fo- 
cus. Evaluation can home in on what is ambiguous 
or vague in the problem specification and try to take 
advantage of new views that result from relaxing or 
pushing the limits of the constraints. Also, when the 
need to compromise arises, conflicting constraints come 
into focus and the designer considers how they can be 
changed. 

In the example episode, trying to understand how 
a recalled design solves a pending problem (launching 
a heavy projectile from the water) draws attention to 
a constraint that can be relaxed. S3 realized that the 
submarine doesn't launch one heavy object, but several 
relatively small missiles one at a time. This revealed 
a constraint in the current problem (launch all eggs at 
once) that could be relaxed (launch each egg one at a 
time). 

Note that the problem of focus in reformulation is 
not just how does a designer know which constraint of 
several given constraints can productively be changed. 
It is also one of revealing the constraint in the first 
place. The students did not think of their problem in 
terms of moving a group of eggs in a single launch. 
They assumed the eggs would be launched all at once 
as a group, but this assumption was not explicit. Con- 
trasting problems solved by previous designs with the 
current problem is an important way to make explicit 
the underlying assumptions so that the designer can 
decide whether the assumed constraints are essential 
or can be lifted. 

Which problem constraints are of primary 
importance? 
Of several solutions under consideration, one might be 
more appropriate than the others or several might each 

contribute to a solution. Evaluative procedures must 
be able to evaluate each individual alternative by itself 
as well as in light of the others. Several focus ques- 
tions arise: How is relative importance among the cri- 
teria decided? *How are preferences among alternatives 
made? 

Recalled cases seem to be important here. They sug- 
gest solutions, frameworks, design strategies and de- 
sign philosophies, which can provide constraints with 
which to evaluate a solution and the preference cri- 
teria with which to prioritize the constraints. This 
also facilitates reformulating the specification, making 

•trade-offs, and relaxing constraints. There may also 
be general and domain-specific strategies for setting 
priorities that we haven't discovered yet. 

Priorities must be set flexibly, however. It is inter- 
esting that in the design episode, the reformulation 
of the original problem to one of launching eggs indi- 
vidually was proposed in response to the problem of 
launching a heavy object from water which would re- 
quire a large launch force. However, the design at the 
end of the episode (flinging all eggs at once) lost this 
advantage of individual weaker launches, since it re- 
quires just as strong a launch force'to launch all eggs 
as a group as it does to launch them individually, but 
in parallel. The designer must be able to opportunis- 
tically realize that a solution is good, even though it 
might not fit the original goals or address concerns that 
were primary earlier. If a positive aspect of a proposed 
solution makes a new constraint or goal explicit (e.g., 
"be entertaining" or "look neat") or solves some other 
pending problem, then the designer must be able to 
weaken the relative importance of the conflicting goals 
or constraints. 

Summary: Lessons Learned and Open 
Issues 

Our seven-week exploratory study broadened our un- 
derstanding of the role cases can play in.design. Not 
only are previous designs useful in generating design al- 
ternatives and in predicting the outcomes of proposed 
designs. They also aid evaluation, visualization, and 
simulation. These are key to performing the kinds of 
complex elaborations and reformulations of both solu- 
tions and problem specifications that are characteristic 
of creative design. In particular, previous design cases 
help address many focus issues that permeate these 
activities. 

Understanding the role previous design cases play, 
the aspects that designers pay attention to, and on 
what basis cases are recalled helps determine a) the 
content of design cases and b) how to index them. 

Case Content 

From our observations of creative designers, we are 
starting to identify the types of information cases 
should contain. These include symbolic descriptions of 



a device's common functions and behaviors, its struc- 
tural composition, causal descriptions of how it works, 
and the results of its operations, how it fails, and its 
pros and cons. Many of these can be encoded straight- 
forwardly in the familiar framework of typical case de- 
scriptions, which in general capture a problem, its solu- 
tion, and the outcome of the solution (Kolodner, 1993). 
However, there are key representational issues to be 
solved. One is how to encode the imagistic information 
that seems to be a prominent part of what is recalled 
and reasoned about with respect to a device. Another 
issue is how to capture both abstract, general knowl- 
edge about devices and more specific experiences with 
particular devices. The design cases must be repre- 
sented on several levels of abstraction, perhaps having 
abstract device representations associated with several 
more concrete cases that represent specific experiences 
with the device. 

Indexing 

The effective use of design cases depends crucially on 
being reminded of the appropriate cases at the right 
time. By investigating the types of features that re- 
mindings are based on, we are beginning to understand 
how to index these design cases. Useful indices include 
not only the function of the associated device, its be- 
havior, and its structure, but also prominent visual, 
auditory and other sensory features. 

In addition, non-obvious, cross-contextual remind- 
ings (which often lead to unorthodox design alterna- 
tives) are sometimes based on abstract similarities. 
Other remindings are based on derived or computed 
features rather than available ones. An important open 
problem is determining which kinds of derived features 
tend to be most useful for design, whether there is a 
set of derived features that is common to design across 
domains, and when those features get derived. 

Recent studies of creative problem solving protocols 
(Kolodner and Penberthy, 1990) suggest that antici- 
patory indexing is not sufficient to fully explain re- 
trieval. Features that were not salient at the time a 
case was experienced might be important for retrieval 
in the current situation. Drawing new, abstract con- 
nections might be a result of re-indexing cases in terms 
of what is now relevant or important. We hypothesize 
that by continually updating the design specification, 
designers derive abstract connections between the cur- 
rent problem and similar problems (possibly in other 
domains). These abstractions can be used to see pre- 
vious cases differently. 

While working on a design problem, designers of- 
ten perform sensitized recognition of current design 
options and objects in their environment as they re- 
examine and re-index ideas recently brought up or ex- 
perienced. For example, in the ME design project, the 
students were considering using a spring launching de- 
vice and went to a home improvement store to choose 
materials.   While comparing the strengths of several 

springs by compressing them, they noticed that the 
springs bent. One student mentioned that if they were 
to use springs, they would have to encase the springs in 
collapsible tubes to prevent bending. Later, they saw 
a display of toilet paper holders in the store's bath- 
room section. They immediately recognized them as 
collapsible tubes which could be used to support the 
springs. 

What is interesting is that the toilet paper holders 
were not immediately retrieved by the abstract index 
"collapsible tube." The holders had to be re-indexed 
under this description when they were recognized. A 

.key to sensitized recognition is refining the description 
of the solution. The process of critiquing proposed 
ideas often fields descriptions of what an improved so- 
lution would look like: what properties it would have, - 
what function it would provide, and what criteria it 
satisfies. This primes the designer to opportunisti- 
cally recognize solutions in observations of the external 
world and in recently considered design options. 
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1    Background 

Several years ago, one of my students, Hong Shinn, wrote a program called 
JULIANA that planned meals for institutions, such as nursing homes and schools 
[8]. JULIANA, like any standard case-based program of its time, solved problems 
by remembering an old case and adapting it to fit the new situation. One of 
JULIANA'S solutions got me thinking about creativity in a way I hadn't thought 
about it up to then. 

When asked to plan a breakfast for a nursing-home patient with no teeth, JU- 
LIANA proposed serving orange juice, scrambled eggs (left runny), toast, (ground 
in the blender), milk and coffee. 

My reaction: Yuk. Surely, I thought, our case-based programs could do better 
than this. 

He told me that's the way dieticians in a nursing home do it. They must plan 
meals for patients with a wide variety of nutritional, physical, and medical needs. 
For each meal, they devise a general-purpose menu and adapt it in routine and 
easy-to-handle ways to make it fit each specialized diet. A standard breakfast, 
for example, always has fruit, milk, a protein food, a carbohydrate, and a hot 
drink. Patients on a normal diet receive orange juice, scrambled eggs, toast and 
butter, milk, and coffee. A patient on a low-fat diet gets skim milk instead of 
milk and jelly instead of butter. A patient with no teeth gets a wetter portion 
of scrambled eggs and ground-up toast. 

JULIANA matched what dieticians do. But I still wasn't satisfied. Not only 
was the program not interesting enough, but the solutions of human dieticians 
were also disappointing. This made me want to analyze both dieticians and our 
programs. What is each doing to come up with solutions? What do I like and not 
like about their solutions? What, if any, deficiencies in their reasoning generate 
mundane solutions rather than interesting ones? Could that be alleviated? How? 
How would I like them to solve the problem? One thing I was sure of was that 
I wanted them to evaluate whether a planned meal was sufficiently appetizing 
and to continue trying to come up with a better solution if it wasn't. 

1.1     An Introspective Analysis 

I began trying to answer these questions by looking at my own solution to the 
problem, and I attempted to analyze my own reasoning. My solution began 
by evaluating JULIANA's solution and considering alternatives based on that 
evaluation. 

Evaluate:    runny eggs and ground toast is boring, has lousy 
texture, and tastes bad. 

Question:    what can someone without teeth eat. that tastes better? 
Elaborate specifications:    perhaps something liquid. 

Based on this, I thought of serving "Instant Breakfast," a flavored powder 
with vitamins and nutrients that one mixes with milk and eats instead of break- 
fast. Perhaps I thought of this because it is made in the blender (as is the ground 
toast) and is liquid. I evaluated this suggestion. 



Evaluate:    easy to make, texture right, but taste is uninteresting; 
also, nutrition is wrong — it should come from real 
foods rather than being artificially created. 

Elaborate specifications:    use real foods. 

I now thought of serving yogurt milkshakes, made of real food, nutritious, 
and made in the blender. I drank them as nutritional supplements when I was 
pregnant. I evaluated again. 

Evaluate:    easy to make, texture is good:    in addition to being 
liquid,  there's a slight crunch;    nutrition might still 
be insufficient, might need more iron or protein for 
older people. 

Elaborate specifications: be nutritious. 

The need for extra nutrition made me think of a friend who was a health nut. 
He used to add brewer's yeast for extra protein and vitamins to everything he 
ate. I also thought of the way I added extra nutrients to these milkshakes when 
I was pregnant - by adding a raw egg. I evaluated again. 

Evaluate:    can't use raw eggs because of the possibility of 
salmonella poisoning; brewer's yeast  is easily 
available. 

Elaborate specifications: no raw eggs. 

I adapted the yogurt milkshake recipe by adding brewer's yeast and evaluated 
again. 

Evaluate:    easy to prepare,  liquid texture with slight crunch, 
flavorful taste, good nutrition. 

I had a solution. I was finished. 

There were several differences I noticed between the reasoning JULIANA did 
and what I did to solve this problem. 

- I considered many cases and proposed many solutions, and solutions were 
often made up of combinations of features from several cases. 

- Evaluation of proposed solutions was a primary process in my reasoning. 
- Problem solving was incremental; problem solutions as well as descriptions 

were updated based on evaluations. 
- During evaluation, I was willing to consider odd proposals for what they 

might contribute rather than disregarding them outright because they wouldn't 
work. 

In short, there were two important processes I was carrying out that JU- 
LIANA did not: 

1. evaluation of possibilities (leading to additional adaptation sometimes) be- 
yond just checking to make sure given constraints were fulfilled and 



2. intentional search for alternative solutions by a combination of elaborating 
and fleshing out a framework for a solution and searching to find something 
with that specification. 

JULIANA was content with whatever it could come up with that fulfilled given 
constraints (so were the dieticians), but I was aiming toward a kind of quality or 
interestingness (whatever that is) that required going beyond given specifications 
and discovering and adding in additional ones that seemed relevant. 

1.2    Creative JULIA - our earliest computer model of creative 
problem solving 

Based on the analysis above and observations and analysis of several other peo- 
ple solving simple problems, one of my students built a computer program called 
Creative JULIA [3] that exhibited the reasoning outlined above. Creative JU- 
LIA focused on three major processes: memory search and retrieval, evaluation 
of alternatives, and updating a problem specification. Its task was another meal 
planning task - to come up with a dish that satisfied a given specification. It did 
this by iteratively elaborating and refining its initial specification as it recalled 
and evaluated possible dishes. For example, given the goal (an initial problem 
specification) of coming up with a dinner dish to use up some leftover white rice, 
it considered fried rice, decided that it didn't want Chinese food, and updated 
its problem specification to rule out Chinese cuisine. When it thought of making 
yeasted rice bread, it decided that was too time-consuming and added to its 
specification that the dish be easy to make. When it thought of macaroni and 
cheese, which it deemed appropriate if rice could be substituted for macaroni, it 
updated its solution specification with the framework for macaroni and cheese 
and substituted rice into the recipe. Since it still had rice leftover, it contin- 
ued looking for something else it could use. When it thought of rice frittata, a 
breakfast dish, it decided that its goal of using the rice for dinner wasn't all that 
important, deleted that goal from its specification, and added rice frittata to its 
solution. Creative JULIA's reasoning framework is listed below. 

- Retrieve a set of cases (initially, use the original problem specification as a 
guide) 

- For each case: 

• Evaluate the solution proposed by the case for its applicability to the 
new problem 

• Evaluate the solution proposed by the case for its adaptability to the 
new problem 

• Based on evaluations, update the problem solution and 
• update the problem specification appropriately 

- Repeat until a satisfactory solution is created or found 



1.3     Back to real-world dieticians 

Let me return again to the breakfast for the man with no teeth. Remember 
that I wanted to feed him a yogurt milkshake. Creative JULIA implemented the 
process I used to come up with this solution. But I want to return to this example 
because there's an issue I left out - some readers will say I cheated in coming 
up with my solution. I wasn't adhering to the same constraints a dietician in a 
nursing home adheres to - that the.variety of meals it has to make be similar 
enough to each other that the kitchen staff can efficiently make all the variations. 
I was only trying to come up with one interesting meal. 

I've addressed that problem too, and I've came up with several different 
methods for coming up with more interesting solutions, each of which would 
result in something different than the standard solution, but would adhere to 
efficiency constraints of the kitchen staff. 

- Instead of 5 separate meal parts, use a different meal structure that combines 
parts. Sample result: french toast, yogurt with fruit and granola, milk and 
coffee. 

- Use a different design plan - create a dish appropriate for nearly everyone 
and augment it for those it can't satisfy. Sample result: Yogurt milkshake 
with wheat germ in it is low-fat, low-calorie, balanced, and includes all of the 
food groups; it can be eaten by everyone except those allergic to particular 
ingredients; it can be augmented for those on a high-calorie diet with some 
additional dish. 

- Attempt different adaptations - instead of replacing foods that violate some 
constraint with a "typical" substitute (e.g., milk with skim milk), use a more 
novel substitute (e.g., replace milk with low fat yogurt); instead of changing 
the texture of a food for someone who cannot cope with the normal texture 
(grinding the toast), substitute something of the right texture (oatmeal) or 
delete that part of the meal, or come up with a new dish that is of the right 
texture (e.g., yogurt milk shake with wheat germ instead of ground solids). 

There are several things to notice: 

1. There are many different ways to go about solving the problem in interesting 
ways - focusing on the individual problem and then making sure it fulfills 
broader constraints, focusing on constraints and seeing how they can be 
stretched and adapted, focusing on the framework from which the constraints 
are derived and seeing if it can be changed, and so on. 

2. There are many different qualities of answer. We don't all agree on which 
answers are better than others. All might fulfill stated constraints, but which 
ones we believe are better depends on our own individual preferences, un- 
stated constraints, and other things we know. 
Several people, in fact, have told me that they thought grinding the toast in 
the blender was quite creative and that yogurt milkshakes, available every- 
where now (in the US), were rather mundane. And for these people, who are 
not experienced in the kitchen and who have no experience planning meals 



for the disabled, the original solution might indeed seem creative, while the 
yogurt milkshake solution, created before there were frozen yogurt stores on 
every corner, might seem more mundane. Quality of solution is in the eyes 
of the beholder. It depends very much on what one already knows and what 
techniques are routinely used. 

3. Simple methods of solving a problem can yield interesting solutions, e.g., 
making non-standard substitutions. It is not necessary for the process to be 
complex in order to come up with interesting solutions." 

1.4    What we've learned from these early investigations 

This all happened in 1989 and 1990. JULIANA got me thinking about two things: 
the deficiencies in our current case-based reasoning methods and the processes 
involved in creative problem solving. Creative JULIA was a first attempt at 
dealing with those issues. 

Creativity, we hypothesized, often derived from brainstorming procedures 
involving enumeration of the realm of possibilities (through memory search), re- 
description and elaboration of problem specifications (facilitating enumeration 
and memory search), and evaluation of proposed solutions that went beyond 
the stated constraints on a solution. Deriving evaluation criteria was part of the 
evaluation process. In addition, we identified several attitudes that seem to be 
taken when people are solving problems creatively: an intent to provide novelty 
and go beyond the usual, and comfort with and consideration of risk taking. 
These attitudes led to carrying out adaptation in more interesting ways - mak- 
ing non-standard substitutions, applying adaptation strategies in circumstances 
other than the ones they were meant for, and attempting to merge pieces of 
solutions with each other. 

While case retrieval and adaptation, the primary processes of case-based 
reasoning were still playing a large role in the derivation of solutions, it became 
clear that we still didn't know everything about the framework that supports 
those processes and the real power they could wield. 

So there were three problems I set for myself: 

1. to understand better the processes of creating interesting solutions, where 
an interesting solution is one that goes beyond the obvious and is generated 
in interesting (non-obvious) ways; 

2. to investigate the role of cases and case-based reasoning processes in this 
kind of interesting problem solving; 

3. to find out more about the framework that supports this more interesting 
kind of case-based reasoning. 

2 Standard Case-Based Reasoning and Creative Problem 
Solving: Similarities and Differences 

The standard CBR framework has several parts [2]. First comes situation as- 
sessment, the process of understanding a situation well enough to begin to solve 



a problem. In most of our problem solving CBR programs, we forget about this 
step completely, assuming that, the representation we have is sufficient for solving 
a problem. But. this is one of the places identified as an important component 
of creative reasoning. Respecification and elaboration of problem specifications, 
as Creative JULIA does, is a kind of situation assessment. In this step, we de- 
rive previously unspecified features, both concrete and abstract, and we make 
hypotheses about what a solution might look like. 

Retrieval happens in a second step. What we found in looking at the pro- 
tocols we collected as we were building Creative JULIA was that people tended 
to take more risks in this step when trying to be creative - their preferences 
seemed to change - when given a choice of several cases to use, they preferred 
to use the one that aimed them toward a more unusual solution. 

Case manipulation and adaptation, which comes next, seems to be more 
interesting when people are aiming toward novelty. Non-standard substitution, 
discussed earlier, is one more novel way of adapting an old solution to fit a 
new situation. Using an adaptation strategy in a non-standard way is another. 
Consider, for example, how the architect Frank Lloyd Wright might have thought 
of including the waterfall and boulder in the design of the house Falling Water. 
Perhaps he applied the adaptation strategy, "incorporate obstacles," used widely 
in engineering design, to architecture. 

These steps are followed by taking action and getting results, evaluation 
of results, and learning. I don't want to spend time on these steps. But I 
do want to point out that although we give lip service to evaluation, it doesn't 
show up very well in the standard process. It has been seen as part of case 
manipulation, before a solution is executed in the world, and has been little 
addressed. 

Recall, however, that-we found that evaluation was a key in creative problem 
solving. Issues for evaluation are derived in the course of evaluating. One does 
not merely depend on constraints that have already been specified. 

There are two big lessons to take from this, I think. One is that creative 
problem solving seems to require reflection in a way that more mundane prob- 
lem solving doesn't. Second is that these processes play against each other an-d 
interact in very interesting ways. Retrieval depends on the specification of the 
problem, and can therefore be only as good as situation assessment allows it to 
be. Situation assessment depends on guidance from evaluation procedures about 
what might be changed in a specification. It can only be as good as evaluation 
allows it to be. And evaluation depends on being able to derive interesting eval- 
uation criteria. We'll see later what that depends on. And, of course, retrieval 
can only be as good as the experiences that are stored in the case library. 

In other words, a combination of processes, including problem elaboration, 
construction of alternative solutions, solution evaluation, and remembering all 
work in conjunction with each other to produce interesting solutions, and a set 
of control processes control their application. Our programs, taking the standard 
approach, stuck to known solutions and routine ways of adapting old solutions 
to come up with new ones, neglecting exploration of alternatives if something 



good enough was found. This results in robust, but usually uninspired, solutions 
- not just in JULIANA, but in nearly every existing CBR program at that time 
(1989) and today. 

3    An Exploratory Study of Mechanical Engineers 

Our introspective studies and modeling attempts with Creative JULIA provided 
us with a general framework for creative problem solving, but we needed more 
specifics. To glean insights into how to flesh out our framework, my associate, 
Linda Wills, and I began carrying out another investigation. In Fall, 1992, we 
observed a seven-week mechanical engineering design project at Georgia Tech 
[4, 5]. Each team of four students designed an airline emergency egress system. 
As an analogy to aircraft evacuation, they had to design and build a device that 
quickly and safely transported as many eggs as possible as far away as possible 
from the aircraft, which was stuck in a pool of water. They were allowed to 
spend up to $100, and the device could be constructed of any material but had 
to satisfy a set of constraints on weight and size. Linda was an active participant 
in one of the teams, audio-recording all of their conversations and keeping copies 
of their drawings. 

3.1    The Protocols 

The following is a short excerpt from a discussion early in the project about 
mechanisms for propelling the eggs away from their stranded vehicle. This ex- 
cerpt includes a redescription of the original problem statement, it illustrates 
the types of design experiences and artifacts the students typically recalled and 
the variety of ways they used these remindings, and it provides some insight into 
the basis for remembering design experiences. 

In this excerpt, the students were discussing how to launch their device from 
the water. 

1 S2: Think about how heavy eggs are.... 

2 S4: Yeah, we need something that's going to propel this thing. 

I mean it's only going this far but if you think about it, it's gotta 

lift up 12 inches and land over there. I've got a feeling it's 
really gotta propel you know [motor noise] and then just go 

[splat noise] with a thud. 

Notice that S4 actually acted out with his pen and with sound effects how 

the device would behave. 

3 SI: I've got this picture in my mind of this really dramatic 

missile. If it's in the water, it... it could sink and it would be 

like a missile coming out of a submarine. [He demonstrates, 

pretending his pen is a missile, makes fizzing noise] ... coming 

out of the water, ... splashing water out. 

4 S3: That reminds me cause you see those missiles come out 



one at... What if we did something where we sent eggs over one 
at a time? 

5 S3: So we could have something over there to catch them 

like a big pillow or something I don't know, but that way you 

wouldn't have to launch the whole set of them. You just launch 
one at a time. 

6 S2: Put that down: launching individually. 
[S3 records idea on post-it.] ' 

Several things should be noticed here. First, the students seem to be doing a 
mental simulation of egg launching. How? They begin by simulating a device they 
are familiar with (a submarine missile launcher) that performs the function they 
need to design for (launching out of water). The desired behavior is elaborated 
by visualizing the recalled device in action. This allows one student to notice 
that missiles are launched one at a time from a submarine. It allows another to 
imagine the landing, to realize that a hard landing would break the eggs, and to 
suggest a pillow to catch them. 

The results of this simulation should also be noticed. The mental simulation 
of the submarine draws attention to a constraint that was not explicit'in the 
original specification - that the eggs must be launched as a group. The simulation 
also points out that this constraint can be lifted, resulting in a reformulation of 
the problem to one of launching the eggs individually. 

[Unrecorded conversation while flipping tape: 
7 S4:  We can put them each in a tennis ball. 
8 S4 mentioned ping-pong ball shooters. 
8 SI didn't know what S4 was talking about.] 

8 S4:  Well,  they're actually little springs some of them. 
8 SI:   Are they? 
8 S4: Yeah, you know how when we were kids we could take 

those things that would shoot ping-pong balls and pull them 
back. . . 

8 S2: I remember those! I loved those! 

8 S4: ... and shoot them? Yeah. You were a deprived child. 
8 SI: Were they guns? 
8 S4:  Yeah. 
9 S4:  That's actually, hmmm.     That would be about the size of 

an egg.     If we were to send it over one at a time. 
10 S2:  Yeah, a lot heavier, though, the eggs. 

Once the idea of catching the eggs in a big pillow was suggested, focus shifted 
to the problem of protecting the eggs. Someone suggested putting them each in 
a tennis ball. But then attention shifted back to multiple individual egg launches 
and a ping-pong ball shooter was suggested. Ping-pong balls, like eggs, are white 
and round. We think ping-pong ball shooters were recalled, at least partially, on 
the basis of this visual cue. Next, ping-pong balls and eggs were compared, 
leading to the realization that eggs are heavy. The need to deal with the weight 
of the eggs is added to the problem specification. 



Later (after this meeting), S3 visualized how one-at-a-time launch would work 
and imagined that the eggs would all end up landing at the same target spot 
and smash each other. So S3 thought of rotating the launch mechanism so that 
it throws the eggs in all directions. S3 noted one interesting consequence of this 
was that the eggs could be thrown all at once, each in a different direction. The 
rotating launch reminded S3 of a recently suggested idea: "flinging motion where 
the device is spun around and around and then let go." This had been recorded 
externally on a post-it. This was then adapted (generalized) from having a group 
of eggs at the end of the string to a single egg. 

Two days later, this idea was discussed further while the students were re- 
viewing the ideas proposed so far (recorded on post-its). In communicating the 
structure of the idea to the rest of the team, S3 referred to the May Day dance. 

15 S3: What I was thinking was that you could just have a pole 
and you could have all these strings just like a May Day dance, 
you know where you have all the eggs hanging fron strings and 
you spin that and the eggs all fly out and then you just let go 
and then they all fly. 

16 S4: Now I like... that's actually pretty interesting there, 
cause you could ..  tie them all to something like a Softball...No. 

17 S4:  Maybe something like...  I'm trying to think of something 
that...  What about something that's squishy? 

18 S4:  It's gotta have... What if it has some kind of fluid, like 
an orange?    If you put an egg inside a hollowed out orange, half 
hollowed out orange,  each of those little things would squash, 
you know inside of an orange.     (I  just ate an orange for lunch...  I 
bring real-life experiences to this.) 

Once they considered flinging the eggs separately, the issue of cushioning 
came up again, this time focusing on cushioning each egg separately. The same 
person who had earlier suggested using a tennis ball to protect the eggs (S4) 
this time suggested putting each egg in a softball and tying the strings to the 
softball-protected eggs. He elaborated what he wanted for egg protection mate- 
rial, drawing on recent experiences - this time the orange he ate for lunch. 

It is interesting to note that the students' priorities changed flexibly as they 
made tentative design decisions, backed out of them, and recognized good or 
bad features of the proposed designs. For example, an idea like throwing the 
eggs in parallel might be pursued because it is "different" or "looks cool" even 
though it doesn't satisfy the original goal that the launch force be small. The 
students seemed to opportunistically decide when a solution had the potential 
to be good, even though it didn't fit the original goals or address concerns that 
were primary earlier. If a positive aspect of a proposed solution made a new 
constraint or goal explicit (e.g., "be entertaining" or "look cool") or solved some 
other pending problem, they were willing to weaken the relative importance of 
the conflicting goals or constraints. 

19 SI:  Well,  that's the concept of a shock absorber.    And the 
way it works is...  If you just have a sealed shock.    If you have... 



What a sealed shock would be would just be a balloon.    If we 
had the eggs sitting on top of this big balloon and it went down, 
whenever the balloon squashed, there'd be pressure inside the 
balloon and it would junp back up again, so it would bounce. 

But if you have a shock absorber that has a little seal out, 
whenever it...  it's like a balloon w/ a little tiny hole,  so 
whenever it hits the ground, it squashes and the air shoots out 
so it doesn't recoil.    And an orange, whenever it's squashed, the 
juices would go squirting out and'it wouldn't rebound. 

One student knew automobiles well, and he seemed to be groping at this 
point for an explanation of whether the hollowed-out orange would cushion an 
egg well or not. A car's shock absorbers are used for cushioning, and he used his 
knowledge of shock absorbers to understand and predict how the orange would 
behave as a cushioning device. This analysis also allowed the students to refine 
the original constraint that their device provide effective cushioning. They now 
know that an answer to this question requires asking whether the egg protector 
has rebound and whether or not it loses its cushioning medium on impact. 

3.2    The Issues 

This excerpt brings up several interesting issues. 

1. What are the cases? Our subjects remembered experiences, certainly, but 
they also recalled examples of devices, some in action. How are devices in- 
dexed (made accessible)? What content do device descriptions have? 

2. The role of visualization. Sometimes visualization allows reminding. Other 
times it plays a role in simulation. What do cases need to have in their 
representations to allow them to guide visualization? What would such a 
representation look like? 

3. Gradual discovery of evaluative issues. Our subjects discovered evaluative 
issues eis they went along. The full set of evaluative issues was not known 
at the beginning. What is this emergence based on? Here, evaluative issues 
arise from comparing and contrasting proposed solutions with previous solu- 
tions and from envisioning solutions (especially how they work) and noticing 
problems. How else does emergence happen? 

4. The varied roles of cases. Cases play several significant roles, not only for 
suggesting solutions, but also for communicating (explaining), providing a 
basis for simulation, predicting the outcome of proposed solutions, and elab- 
orating vague, incomplete specifications. 

5. Control. So many things that could be reasoned about next; how is one 
chosen? 

6. The role of serendipity. What one is able to do depends so much on what 
one is able to remember, and that depends as much on what else is available 
in the environment as it does on what one is actually working on. 

I want to spend time on two big issues - first, the role of cases and case- 
based reasoning in creative problem solving, and second, what we now know 
about creativity. 



4    The role of cases and CBR in creative problem solving 

4.1     Roles Cases Play 

We already know that cases play a major role in generating ideas that are re-used 
directly, adapted to the current situation, or merged with other design pieces [2]. 
For example, in our excerpt, tennis balls (7) and softballs (16) are recalled to be 
reused for the new purpose of protecting eggs.. We also know that cases are useful 
in predicting outcomes of proposed solutions. For example, the shock absorber 
(19) is used to predict the behavior of an orange used as an egg protector. This 
is useful in evaluating proposed solutions. 

This study shows us that, in addition, cases facilitate the communication of 
ideas. For example, the May Day dance (15) is used to quickly communicate the 
structure of a design proposal. 

They also aid visualization and provide the basis for simulation. This is useful 
in elaborating both proposed solutions and vague, incomplete specifications. For 
example, Si's mental picture of a submarine submerging and launching a missile 
(3) is used to help simulate the desired behavior of the device being designed. 
This also led to a reformulation of the problem: from launching a group of 
eggs in a single launch to launching each egg individually in multiple launches. 
Simulation and visualization are also key ways of collecting data to be used to 
evaluate a proposed solution. For example, the problem with the initial proposal 
to launch eggs individually, like a submarine does, was detected by mentally 
simulating the launch and realizing that all eggs end up at the same spot and 
could break each other (11). 

4.2    What are the Cases? 

This brings us to another interesting question: what are the cases anyway? In 
the design situations we are investigating, there are several kinds of cases. Some 
are experiences with designs in the same domain (e.g., earlier high school egg 
drop competitions in which egg protection mechanisms were designed and tested 
against each other). Some are experiences in experimenting with proposed designs 
(e.g., mock-ups or prototypes of partial designs). Other cases are experiences 
with a common device, usually in some phase of its lifecycle, focusing on some 
slice of behavior or functionality - how it behaves in certain situations, what 
it accomplishes, how it fails (e.g., the ping-pong ball shooter). Sometimes the 
behavior or functionality considered is not its primary one. For example, in an 
excerpt not shown here, a yo-yo was suggested as a means of slowly lowering 
an object (the egg carrier) by converting potential energy to angular (versus 
linear) kinetic energy. Another time a rubber raft was suggested as something 
that could have a hole punched into it so that it could move something and 
provide cushioning. The raft with a hole in it and eggs riding in its dimples was 
suggested as a launch and transport device. 

But specific experiences with devices are not all that is remembered. Some- 
times, common objects and devices are recalled and reused directly, often for 



a new purpose. For example, the tennis ball, Softball, and orange fall into this 
category in our excerpt. 

4.3 Case Content 

Our studies of creative problem solving have also helped identify additional types 
of information cases should contain. We already knew from previous CBR work 
that cases should contain symbolic physical and causal descriptions of a problem, 
its solution or response, and the outcome of the solution [2]. For example, design 
cases should encode symbolic descriptions of a device's common functions and 
behaviors, its structural composition, causal descriptions of how it works, and 
the results of its operations, how it fails, and its pros and cons.. 

We also know now the importance of the visual component of cases. In this 
study, imagistic information seemed to be a prominent part of what was recalled 
and reasoned about. The visual component embellishes physical descriptions 
and enhances a reasoner's ability to simulate. Some reasoning observed in our 
design study could not have been done easily without visual representations 
being available. 

4.4 Access to Cases and Other Knowledge 

Access to cases and other knowledge is also something we learned about. We 
already knew some of the influences on retrieval and accessibility: 

- the closeness of the problem being addressed to other problems experienced 
by the reasoner, 

- the variety of experiences a reasoner has had and the ability to notice con- 
nections between them, 

- the reasoner's depth of knowledge of a domain (this effects the ability to 
index accurately), and 

- recent reasoning context. 

We've now discovered others. Cues available at retrieval time and contribut- 
ing to reminding also come from recent experiences, environmental cues, and 
personal interests. 

For example, in the example excerpt, S4 used not only structural cues (squishy, 
containing fluid) to recall an orange (18), but also cues from recent or current 
experiences (what S4 ate for lunch). SI is planning on becoming an automotive 
engineer and knows that domain well. He was often reminded of designs from 
the automobile domain, such as the shock absorber (19). 

Our subjects cued on perceptual properties - static ones (e.g., color and 
shape), as well as dynamic ones (e.g., motion trajectories). By themselves, these 
cues aren't sufficient for retrieval, but in conjunction with the more primary cues 
(those describing the problem situation), they help focus the retrieval process, 
determining preferences for what is retrieved. 



4.5     Evaluation 

We also learned about evaluation. Evaluation effects both the solution in progress 
and the problem specification. The issues raised point out opportunities to aug- 
ment or refine the design specification. The pros and cons that are described in 
the critique of a design idea are used by the idea exploration process to compare 
the idea to other options, merge and adapt alternatives, and improve promising 
ideas. _. . 

Our work on Creative JULIA had already allowed us to discover four classes 
of evaluative questions that designers routinely raise. Constraint-related ques- 
tions ask how well an alternative solution fits the current design specification. 
Function-directed questions evaluate how well the required function is achieved. 
For example, the purpose of recipe creation is to create something that xan be 
eaten, so evaluative questions arise from the concept of edibility, focusing on the 
taste and appeal of a dish to see if it is edible. Some evaluation questions are 
derivation-driven. Previous solutions provide a rich and important source of is- 
sues if the considerations taken into account in creating them are saved. Finally, 
some questions are outcome-related. Previous design cases can be used to project 
or derive the outcome of the current one. 

This new study gave us a better understanding of the ways in which these 
issues are incrementally raised or "revealed" as the evaluation proceeds. Navin- 
chandra [6] calls this criteria emergence and shows an example of how it can 
arise from case-based projection. In addition to criteria or evaluative issues, 
constraints [7], preferences, and relative priorities among them also gradually 
emerge. This type of evaluation is a key driving force within creative design, 
feeding back to situation assessment as well as guiding case manipulation. Case:- 
play a major role in evaluation and incrementally raising new issues. 

5    The nature of creativity: What have we learned? 

So far, this paper has discussed what we have found out about interesting prob- 
lem solving and about what we've learned about CBR processes. We're at a point 
now where we can begin to answer some important questions about creativity 
itself. 

1. The problem of control: what step comes next? How can creative exploration 
be guided? 

2. What is the nature of insight? How are opportunities recognize? 
3. Where do ideas come from? 

5.1     Control 

The designers we observed did not follow a rigid, methodical plan detailing what 
to do next. Rather, they moved fluidly between various problem pieces and 
design processes (idea generation, adaptation, critiquing, problem refinement, 
elaboration, redefinition, etc.) in a flexible and highly opportunistic manner. 



Sequential composition of the basic CBR processes seems far too restrictive. 
Rather, these processes seem to be highly intertwined and to interact in interest- 
ing ways [9]. For example, problem elaboration and redescription tactics specify 
contexts for search that retrieval processes use, while evaluation of recalled or 
adapted alternatives feeds information back to these situation assessment tac- 
tics, resulting in even better contexts for search. In some cases, what suggests 
a particular problem refinement or-redescription results from trying to confirm 
the legality of a proposed solution during evaluation, and finding a loophole or 
ambiguity in the current problem specification. In addition, comparing and con- 
trasting a proposed solution with other proposals during assimilation can bring 
new evaluative issues into focus. 

CBR systems need to break out of their typically rigid control structure and 
allow more interaction and opportunism among processes. This requires making 
strategic control mechanisms explicit, so they can be easily modified, reasoned 
about, extended, and learned. More research needs to be directed at identifying 
and capturing the types of strategic control heuristics designers use. 

Our study has revealed several. For example, in strategically trying torchoose 
which piece of a problem to work on next, designers concentrate on parts of a 
problem that are still open after a previous solution is retrieved and partially 
reused. They make tentative hypothetical commitments for open design decisions 
to simplify the problem or make it more contextualized. They follow opportu- 
nities, dynamically changing their priority structure among constraints if very 
interesting or unexpectedly good solutions are stumbled upon. They put prob- 
lems on the back burner when an impasse is reached or if the problem involves 
issues that are too detailed for the current stage of design. The serendipitous 
appearance of a solution may bring the problem back up. 

Our designers employed a variety of strategic control heuristics, some of which 
are opportunistic. For example, when an alternative was proposed that satisfied 
some desired criteria extremely well compared to the other alternatives, they di- 
rected their efforts toward elaborating that alternative, optimistically suspending 
criticism or discounting the importance of criteria or constraints that were not 
satisfied as well. Sometimes this led to reformulation of the problem as con- 
straints were relaxed or placed at a lower priority. 

A key part of being able to take advantage of such opportunities was being 
able to judge whether progress was being made along a certain line of attack 
and to choose which ideas were more promising than others or more likely to 
lead to something unusual and novel. 

Some strategic control heuristics were more deliberate, based on reflection. 
For example, one heuristic our designers used was to try quick, easy adapta- 
tions of a proposed solution first before stepping back and reformulating the 
problem or relaxing constraints. Other deliberate heuristics attempted to make 
non-standard substitutions, apply adaptation strategies in circumstances other 
than the ones they were meant for, and merge pieces of separate solutions with 
each other in non-obvious ways. 

In many cases, the processes that are composed together leading to a novel 



redescribe a new problem in a way that is similar to something that we've seen 
before. 

5.3    Where Do Ideas Come From? 

Finally, I want to deal with where ideas come from - the big creativity question. 
Case-based reasoning itself gives us a variety of answers: 

- remembering 
- adapting known ideas 
- reinterpreting an idea 
- specializing an abstract idea (making it concrete) 
- elaborating known ideas 
- merging pieces of ideas with each other 
- explaining 
- evaluating 

We might call these tactics for creating ideas. Our investigation shows that 
the intent (or strategy) of going after novelty provides novel ways of carrying 
out tactics. When remembering, novel solutions are preferred. When adapting 
known ideas, non-standard substitutions and out-of-context use of adaptation 
heuristics are common. Ideas are reinterpreted by relaxing constraints, decom- 
posing differently than usual, and redescribing from a different point of view 
Redescribing may be based on the reasoner's personal interests or areas of ex- 
pertise. Ideas are elaborated by visualizing the details. Ideas are made concrete 
or specialized, through non-standard substitution and visualizing the abstra, . 
Evaluation is carried out after novel bases for evaluation have been derived. 

Another strategy in play at the same time also helps with going after the 
novel: Don't evaluate too much too soon. 

What is particularly interesting about this explanation of where ideas come 
from is that it shows the complex interactions between these various strategies 
and tactics - the same interactions we've pointed out earlier. The strategies and 
tactics work in conjunction with each other - elaboration and reinterpretation 
tactics specifying contexts for search that retrieval processes use. Evaluation 
feeds its results back to these situation assessment tactics, which in turn derive 
even better contexts for search. 

6    Methodological Coda and Conclusions 

Before ending, I want to go back to another pet issue of mine, a bit removed 
from what has been discussed so far - methodology. Most people view case-based 
reasoning as an approach to building intelligent systems; some people see it as 
an approach to building human-machine systems that interact with people in 
natural ways. But few people see case-based reasoning as a research paradigm 
for addressing new problems, as providing tools for investigation that go beyond 
what other research paradigms can provide. 



Maggie Boden [1] wrote a wonderful book about creativity, which I heartily 
recommend. She shows far better than I do how creativity emerges from the 
complex interactions of processes. She gives wonderful examples of the experi- 
ences of creative people and of computer programs that begin to show creativity, 
analyzing where the creativity comes from. She presents marvelous analogies to 
introduce and help readers understand topics. 

But as good as she is at analysis, Boden does not have the paradigmatic tools 
for finding detailed computational answers tö how the different processes work. 
Her paradigm can analyze and critique, discovering that one's experiences and 
what one knows play a large role in creative thought processes. It can explain 
some processes in terms of rules and heuristics. But more important than rules 
in addressing creativity are the ways in which experiences are used: how they 
are remembered and what makes them memorable; how they are manipulated, 
adapted, merged together; and how they help with evaluating proposed solutions, 
and so on. 

Case-based reasoning provides tools for investigating the role cases play in 
problem solving. What we knew already helped us to address these issues; what 
we found out in this investigation is helping us understand case-related processes 
and issues more deeply than we've been able to before. 

What is creativity? Certainly in this short paper I haven't been able to 
tell you all about how all its processes work and are interconnected. But by 
taking a case-based approach to studying these processes, their control, and the 
representations that underlie them, we can now specify them in ways that nobody 
has been able to do before. We can discuss the input, output, and processing 
of elaboration, evaluation, merging, adaptation, remembering, simulating, and 
more, and we can at least conjecture about the heuristics that control their 
application. We still have more work to do, clearly, in fully defining our theory. 
But through case-based reasoning, we've been able to get a handle on what needs 
to be addressed, and through addressing these issues, we're beginning to have a 
far more sophisticated notion of the power of case-based reasoning. 
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Abstract 

Creative designers often see solutions to pending design prob- 
lems in the everyday objects surrounding them. This can often 
lead to innovation and insight, sometimes revealing new func- 
tions and purposes for common design pieces in the process. 
We are interested in modeling serendipitous recognition of so- 
lutions to pending problems in the context of creative mechan- 
ical design. This paper characterizes this ability, analyzing 
observations we have made of it, and placing it in the context 
of other forms of recognition. We propose a computational 
model to capture and explore serendipitous recognition which 
is based on ideas from reconstructive dynamic memory and 
situation assessment in case-based reasoning. 

Introduction 
When creative designers have been deeply engaged in a prob- 
lem, they are often able to recognize solutions to it in their 
environment, even if they are not actively working on the 
problem at the time. The solutions recognized may be ob- 
jects, behaviors, processes, techniques - anything that they 
observe or examine. This can often lead to key insights, 
sometimes revealing new functions or purposes for common 
design pieces. This paper takes a step toward understanding 
this ability by focusing on the serendipitous recognition of ob- 
jects as solutions to pending (possibly suspended) problems 
during creative mechanical design. 

Serendipity often plays a significant role in creativity. Its 
accidental nature may seem to put it out of reach for creating 
computer-based design systems that can take advantage of 
serendipity, or for supporting people in serendipitous discov- 
ery of solutions. However, we believe that being in the right 
place at the right time is not the difficult part; we can put a de- 
signer (human or computer-based) into a rich environment of 
stimuli where "accidents" will happen. The creativity comes 
in the preparation that allows recognition of a solution when 
it is present (Seifert, et al., 1994). This requires becoming 
immersed in the problem, redescribing it and viewing it from 
multiple perspectives, considering, comparing, and critiquing 
several options, so that when a relevant solution is spotted, 
the way it fits into the problem can be immediately discerned. 

The following are typical examples of serendipitous recog- 
nition. They occurred during a mechanical engineering (ME) 
design project we observed in which a team of four students 
were to design and build a device to quickly and safely trans- 
port as many eggs as possible from one location to another. 
(The first author participated as a member of the team in order 
to become immersed in the design issues and observe as much 
of the design process as possible in a natural setting.) 

Our first example ("bending springs") occurred while our 
designers were considering using a spring launching device 
and went to a home improvement store to look into materials. 
While comparing the strengths of several springs by com- 
pressing them, they noticed that the springs tended to bend. 
One designer wrapped a hand around the spring to hold it 
straight as it was compressed and said the springs would each 
need to be enclosed in a tube to keep them from bending. 
Another added that the tube would need to be collapsible (to 
compress with the spring). The designers could not think of 
an existing collapsible tube and did not want to build one due 
to time pressure. They gave up on the springs and started 
thinking about egg protection. During their search for pro- 
tection material, they walked through the bathroom section 
of the store, where they saw a display of toilet paper holders. 
They immediately recognized them as collapsible tubes which 
could be used to support the springs. 

The second example ("weighted rubberbands") occurred 
later in the design, after the designers had decided to use a 
cylindrical egg carrier with a spring launch device. They 
were working on a homework assignment which involved 
formalizing the tradeoffs between egg capacity, weight, and 
launch force as a multi-goal optimization problem to help 
them make the best choice for these variables. They were 
having trouble and were easily distracted from the problem. 
One distraction came from a designer who described a trick 
involving a moving cylinder (coffee can) she had seen the 
night before on a children's science TV show (Beakman's 
World). The episode showed how to make a coffee can that 
rolled back to you when you rolled it away. Batteries were 
taped as weights to rubberbands, strung through the center 
of the can. The weights caused the rubberbands to become 
wound up as the can rolled. As the rubberbands unwound, 
they caused the can to roll back to the starting location. The 
designers discussed whether this could be modified for use 
in their design (e.g., wind the rubberbands up and let their 
unwinding launch the device). However, they rejected the 
design for adding too much weight, since the design task 
had strict weight restrictions. Then they went back to their 
homework. Suddenly, one designer suggested using the eggs 
as weights on the rubberbands. This alleviated the weight 
problem because the weight of the eggs did not count into the 
restricted weight constraint. 

There are three intriguing characteristics of this type of 
recognition. First, designers are able to recognize solutions 
to problems that have already been suspended. We call this 
serendipitous recognition. 



Second, they are often able to recognize objects as solu- 
tions, even though this requires the object to play a role or 
provide a function different from its usual role or function. 
In our bending springs example, the toilet paper holder is not 
used to hold a paper roll, but to keep a spring from bending 
upon compression. In the weighted rubberbands example, the 
eggs not only play their usual role of being cargo/passengers 
in the egg carrier, but also are used in a nonstandard way 
to provide weight to make the device move. This type of 
recognition requires overcoming functional fixedness (Maier, 
1931,1970; Duncker, 1945). 

Third, the solutions recognized are not always standard so- 
lutions to the problem. In the bending springs example, the 
problem was new to the designers and did not have standard 
solutions. In the weighted rubberbands example, the design- 
ers recognize a solution that is different from the existing 
standard solutions to the problem. In general, if a problem 
has standard solutions (or ones that are apparently applicable), 
fixation on these standard solutions must be overcome. 

These three characteristics make this type of recognition 
more difficult to model than types previously studied. Since 
the solutions are nonstandard, it is not addressed by object 
recognition work (e.g., (Grimson, 1990)) which typically 
searches a scene for particular models of existing standard 
solutions to problems. The type of recognition we are inter- 
ested in requires models of objects to be constructed on the fly. 
Jordan and Shrager (1991) model how people select objects 
for a nonstandard use, based on which object's physical prop- 
erties relate best to the desired function. However, they do not 
address how the salient properties are derived or determined. 

The opportunistic nature of serendipitous recognition 
makes research on predictive encoding (Patalano, Seifert, 
& Hammond, 1993) and opportunism (Hammond, 1989; 
Mueller, 1990) relevant to our research. However, they ad- 
dress opportunism in planning situations in which there are 
standard solutions to the problems at hand. The opportunities 
detected are those to fulfill suspended goals by recognizing 
that a standard plan for them can now be resumed. Our recog- 
nition involves recognizing objects that are not the standard 
solutions to the pending problems. 

Some important issues serendipitous recognition raises are: 
To what extent does problem and solution need to be described 
and elaborated for the recognition to take place? How is this 
description created? How is the opportunity to solve a sus- 
pended problem noticed? What allows the relevant problem 
context to be recalled when its solution is seen? 

This paper presents our analysis of the processes involved 
in serendipitous recognition of nonstandard solutions. Our 
hypothesis is that recognition arises from interactions be- 
tween two processes: problem evolution and assimilation of 
proposed ideas into memory. We propose a computational 
model of serendipitous recognition based on this hypothe- 
sis. Our model draws on and extends ideas from reconstruc- 
tive dynamic memory (Schänk, 1982; Kolodner, 1983) and 
case-based reasoning (Kolodner, 1993), particularly situation 
assessment and evaluation processes. 

Evolution and Assimilation 
A key activity of designers is to understand, refine, elaborate, 
and re-define the problem. They view the problem from multi- 

ple perspectives and redescribe it in more familiar terms. This 
process, which we call problem evolution, reveals constraints, 
features, and properties to look for in proposed solutions. As 
design alternatives are proposed and explored, they are assim- 
ilated into memory; they are compared and organized, based 
on the criteria and features the designer has become attuned to 
through problem evolution. Some serendipitous recognition 
may arise from assimilation activities. 

Problem evolution is driven primarily by the evaluation of 
proposed ideas, which, in addition to revealing flaws in the 
specification (such as contradictions and ambiguities), gener- 
ates new criteria, constraints, and preferences that go beyond 
those given in the original statement of the problem. Assimi- 
lation itself.can play a significant role in evaluation by drawing 
attention to features of proposed ideas that are unusual or par- 
ticularly good or bad compared to other proposed ideas. This 
in turn can trigger a complete problem reformulation. So, 
while problem evolution can "set up" the reasoner to recog- 
nize solutions when they are stumbled upon, the recognition 
itself can sometimes actually trigger a problem redescription. 
This occurred in the weighted rubberbands example, which 
we analyze in depth in the next section. 

These interacting processes fit well into a modd of dynamic 
memory and case-based reasoning. A key idea underlying dy- 
namic memory is that remembering, understanding, and learn- 
ing are all inextricably intertwined. The ability to determine 
where something fits in with what we already know (under- 
standing) is a key part of being able to assimilate objects in 
our environment into our problem solving. This may involve 
a useful reinterpretation of something already in memory and 
can result in a new way of indexing it in memory. 

The process of elaborating and redescribing the problem 
specification corresponds closely to the process of situation 
assessment in case-based reasoning: redescribing a problem 
situation in the vocabulary of problems solved in the past (i.e., 

. the indexing vocabulary of the reasoner's memory). These 
processes facilitate retrieval in compensating for the fact that 
we may not be able to anticipate how we might want to use 
some piece of knowledge when we enter it in memory. Situa- 
tion assessment aligns the vocabularies of the current situation 
with that of previous problems we have encountered. Also, 
by providing several different ways of describing a problem 
and what would count as a solution, it allows entities to be re- 
interpreted in the context of the problem and serendipitously 
recognized as relevant to solving it. 

Research into situation assessment and problem reformu- 
lation (e;g., in CASEY (Koton, 1988), CYRUS (Kolod- 
ner, 1983), MINSTREL (Turner, 1994), BRAINSTORMER 
(Jones, 1992), and STRATA (Lowry, 1987)), show different 
ways this can be done. Also, Sycara and Navinchandra (1989) 
have identified several index transformation techniques rele- 
vant to case-based design. We are building on and extending 
these ideas, exploring in particular how they can be synergis- 
tically integrated with evaluation, retrieval, adaptation, and 
assimilation processes. 

Analysis of Examples 
Bending Springs 

For the designers to recognize the toilet paper holder as a solu- 
tion to the problem of bending springs, they needed to create a 



description of what solutions to this problem would look like. 
This description evolved as they thought about the problem, 
proposed solutions to it, and critiqued these solutions. Here 
is a closer look at how this description evolved. 

As the designers were comparing the strengths of various 
springs, one designer compressed the springs between a thumb 
and forefinger and noticed that the spring bent, imposed lat- 
eral forces at the endpoints, and a variable longitudinal force. 
This was judged to be a problem. We hypothesize that this 
judgment was made based on a violation of the designers' ex- 
pectations about how the spring would behave and reasoning 
about the consequences of the actual behavior in the context 
of their proposed design. 

One designer wrapped a hand around the spring to hold 
it straight as it was compressed and said the springs would 
each need to be enclosed in a tube to keep them from bending. 
Wrapping a hand around something to make its shape conform 
to what you want is a standard technique. The subsequent 
tube proposal can be the result of a memory retrieval based 
on structural shape similarity. 

Another designer added that the tube would need to be 
collapsible (to compress with the spring). This adaptation 
may have been suggested as a result of noticing that the hand 
wrapped around the spring hindered the compression of the 
spring because it was too longitudinally rigid. This could be 
fixed by making the tube longitudinally flexible (collapsible). 

Weighting Rubberbands 

In the bending springs example, the designers derived a con- 
crete description of what they needed, which primed them to 
recognize it when they saw it. In our second example (the 
problem of weighting the rubberbands inside the cylindrical 
egg carrier), the description of what was needed did not fully 
evolve before the recognition (of eggs as weights) occurred. 
Rather, the recognition itself helped to redescribe the problem. 

The original design, in which batteries were used as 
weights, was rejected because the batteries would add weight 
to the device. Their problem description - "find something to 
act as a weight without adding weight"- was overconstrained. 
So the problem was abandoned. 

They went back to the optimization problem they were 
given for homework, which involved thinking about the trade- 
off between launch force and egg capacity (the more eggs, 
the more force required because the eggs would increase the 
weight). Considering the eggs as providing weight prompted 
one designer to suggest the clever idea of using the eggs as 
weights on the rubberbands. 

Our hypothesis is that the designer saw the relevance of 
the eggs to the weighting rubberbands problem due to its 
weight property, which they were focusing on in the home- 
work. The eggs were different than the previously proposed 
solution (batteries) with respect to the weight property, since 
egg weight does not count into the total weight limit of the de- 
vice. (The problem statement explicitly restricted the "weight 
of the device (not including the eggs).") This difference was 
noticed and seen to be a key advantage. It generated a refine- 
ment of the problem description. Instead of "provide weight, 
without adding weight," it became "provide weight, without 
adding weight that counts toward the weight limit." It is only 
by bringing the eggs into focus and re-interpreting them from 

the point of view of their weight that this other problem de- 
scription was created. If the designers had redescribed the 
problem in this way to begin with, they might have immedi- 
ately recalled eggs as a solution to this problem. However, the 
redescription seems to have been the result of the recognition 
rather than a prerequisite of it. 

Modeling Implications 

A number of interesting issues arise in considering how to 
model the problem evolution and assimilation occurring in 
these two examples. 

1. Experimentation plays an important role in problem evo- 
lution. Its results are used in evaluating proposed designs and 
in suggesting solutions and adaptations (e.g., wrapping hand 
led to tube suggestion; compression hindered by wrapped 
hand led to the "collapsible" adaptation). Simulating or ac- 
tually performing this type of experimentation (e.g., with a 
robot) is, of course, outside the scope of our modeling efforts. 
But we can provide the results of experimentation as input to 
our computational model. 

2. As proposed solutions are generated and explored (e.g., 
by collecting experimental data about them), an evaluation 
process notices their problems (e.g., constraint or expectation 
violations) or good features. New evaluative issues emerge 
that go beyond the stated constraints on the problem. Navin- 
chandra (1991) calls this criteria emergence. In addition, 
constraints in general (Bhatta, Goel, & Prabhakar, 1994) and 
relative priorities among them, also gradually emerge. This 
emergence is a major part of problem evolution. 

3. The designers in our examples generated descriptions 
that allowed immediate recognition of satisficing solutions to 
the pending problems. They were concrete enough to be eas- 
ily recognizable (for minimum inference at recognition-time) 
but abstract enough to be satisfied by a variety of different 
objects. They referred to both structural (cylindrical shape, 
length, radius, or weight) and behavioral (length varies) prop- 
erties of objects. Matching these properties against objects 
under consideration sometimes requires drawing on knowl- 
edge about the object (e.g., what configurations or shapes it 
can take, whether it can stand on end, or whether its length 
can vary). This in turn requires that the object being viewed 
has been recognized as its usual identity (e.g., toilet paper 
roll holder) so that the associated structural, behavioral, and 
functional knowledge of the object can be matched against 
the evolved description of what is needed. In our computa- 
tional model, the input from the environment is augmented 
by the equivalent of results of standard object recognition 
techniques, so that an object under view has both its current 
imagistic features and standard knowledge about its assumed 
structure, behavior, and function. 

Computational Model 
Based on our analysis of these examples and others from our 
exploratory study of the ME design project, we are construct- 
ing a computational model of serendipitous recognition. We 
are implementing this model in a system called IMPROVISER 

(invention Modeled by Problem Redescription, observation, 
and evaluation, interacting SERendipitously). 

IMPROVISER'S proposed architecture has a problem evolu- 
tion component which is modeled using situation assessment 



procedures co-routined with evaluation techniques. The out- 
put of this component (i.e., the evolving specification) feeds 
into memory retrieval and update processes.1 Retrieval in- 
terfaces with a library of design cases which models, in part, 
long-term memory. The specification is used as a probe to 
recall relevant design cases (for evaluation, elaboration, etc.). 

Memory update is the complement of retrieval. It accumu- 
lates design alternatives proposed (i.e., those retrieved, elab- 
orated, or viewed directly in the external environment) into a 
pool of design alternatives under consideration. It organizes 
and compares the alternatives with respect to each other, along 
the dimensions relevant to the problem specification. This is 
used to model the assimilation process. Recognition of a solu- 
tion results when an alternative is stored that is a close match 
to the desired solution. 

The data structure holding the set of design alternatives 
forms an extension of the long-term memory. We call this 
extension the problem context. It contains the set of explored 
design alternatives and the relevant set of descriptors from 
the specification. As the problem specification evolves, the 
focus changes on the relevant descriptors to be used for or- 
ganizing alternatives in the memory (e.g., shape, construction 
cost, personal safety). For complex problems, with many 
subproblems, there are several subproblem contexts, which 
might overlap, depending on interactions between subprob- 
lems. When an alternative is entered into memory, it is in- 
terpreted with respect to the descriptors in the subproblem 
contexts to find the best place(s) to store the alternative. 

The various subproblem contexts can be seen as dynam- 
ically constructed models of desired solutions, built during 
problem evolution. Recognition of instances of these models 
occurs as alternatives are entered into the most appropriate 
contexts through standard memory update techniques. 

A key part of this assimilation process is noticing "inter- 
esting" similarities or differences between alternatives being 
added to some context. For instance, in the weighted rubber- 
bands example, eggs were noticed to be different than previ- 
ous proposals to the moving cylinder problem with respect to 
the weight property - one of the descriptors in the problem 
contexts for both the homework assignment and the moving 
cylinder problem. Knowing that the weight of eggs is ex- 
empt from the weight restriction makes the noticed difference 
interesting; it is directly related to the conflicting weight con- 
straint, suggesting that this constraint should be re-evaluated 
with the eggs acting as weights. The success of this evaluation 
subsequently causes the weight constraint to be refined. 

A set of monitoring procedures are associated with each 
process and watch for opportunities for further processing to 
occur. The opportunities noticed are placed on an agenda, 
maintained and accessed by strategic control heuristics. 

A Proposed Scenario 
This section gives a scenario of how IMPROVISER will 
model our bending springs example, once fully implemented. 
IMPROVISER starts with a partial specification which includes 
specifications for each subproblem in the current partitioning 

'This section sketches only the main data flow relationships be- 
tween these processes, IMPROVISER has a flexible, opportunistic 
blackboard-style architecture which is guided by explicit strategic 
control mechanisms. 

of the problem (launching, moving, stopping, and protecting 
the eggs). The launch subproblem specification contains a 
partial specification for a spring launch mechanism. (In the 
following, "?T denotes incompletenesses due to pending 
decisions; "..." denotes parts of the specification not shown.) 

<Spec: 
Subproblem:   Launch 

Parts:   Spring,   Base 
Attached(Spring,   Base,   <position>) 
Spring: 

k:   ??   ;; force constant 
x:   ??'" ,7 spring displacement 

Launch-Force:    (-   (*  k x))    ;; Hooke'slaw 

Subproblem: Protect-Eggs   ... 
Subproblem: Transport   ... 
Subproblem: Stop   ... 
. . .> 

This specifies that the launch mechanism should consist of 
two parts, attached to each other in a particular configuration 
(given in <position>). There is a pending decision as to 
the choice of spring strength (k) and how much it should be 
compressed (x) to achieve a certain launch force. (There are 
several other constraints involving the launch force which are 
not shown, such as constraints relating striking distance and 
launch force or relating the type and amount of egg protection 
material with the launch force it must cushion.) 

IMPROVISER chooses to work on the pending decision con- 
cerning spring strength.2 It asks an oracle to perform a trial- 
and-error experiment for it to help choose a spring from a set of 
springs. The oracle compares several springs and feeds back 
experimental data to IMPROVISER. The data is augmented 
with causal information about how the data resulted from the 
properties of the partial design. The oracle reports that the 
spring bends, which causes it to exert a weak, variable force 
in the direction of its axis and additional forces of variable 
magnitude and direction. 

In general, there may be many results reported by the oracle. 
An important issue we are dealing with is how IMPROVISER 
directs its focus of attention to particular pieces of experimen- 
tal data. In this case, the focus was on the launch mechanism 
and its force, so it is natural that IMPROVISER would attend 
to facts related to forces from the spring. 

IMPROVISER notices that these results are not what is ex- 
pected. It derives their consequences based on causal con- 
nections between constraints in the specification. The force 
along the spring's axis is weaker than the ideal launch force 
(F = -kx), which will make the device move slower and not 
as far as desired. The additional forces in various directions 
may cause an inconsistent, unpredictable motion. 

IMPROVISER'S evaluation monitors detect the negative 
consequences and update the specification to prohibit their 
causes, specifying that the spring in the launch mechanism 
must stay straight. In general, discovering the constraints to 
add to the specification which will require or prohibit some 
observed feature of a device involves reasoning based on a 
causal model of the device (Bhatta, Goel, & Prabhakar, 1994). 

How this decision is chosen, and. in general, how IMPROVISER ■ s 
sequence of steps is controlled is an interesting modeling issue. 
However, it is not the subject of this paper, but see (Kolodner & 
Wills, 1993; Wills & Kolodner. 1994). 



A standard method of forcing a small object to maintain a 
desired shape is by holding it in that shape with your hand. 
IMPROVISER asks the oracle to do this and the oracle reports 
that this causes the spring to stay straight. 

IMPROVISER evaluates the results, judges the spring stay- 
ing straight as positive, and updates the specification with 
the characteristics of the wrapped hand that are responsible. 
This specification is used to retrieve a standard design object 
(RIGID-TUBE) to provide those characteristics. 

<Spec: 
Subproblem: Launch 

Parts: Spring, Base, RIGID-TUBE 
Attached(Spring, Base, <position>) 
ENCLOSED(S PRING, RIGID-TUBE) 
Rigid-Tube: 

SOLIDITY: HOLLOW 
RADIUS: (+ RADIUS(SPRING) DELTA) 
LENGTH: (- LENGTH(SPRING) SM-DELTA) 
SHAPE: CYLINDRICAL 
LENGTH-VARIABILITY: CONSTANT 
RADIUS-VARIABILITY: CONSTANT 

. . . > 

Further experimental data from the oracle reveals that the 
rigid tube hinders compression of the spring, causing the 
spring displacement limit to be much smaller than expected. 

ORACLE: 
Length-Variability:   Constant 

Causing 
,7 spring displacement is limited by tube length 

Actual-x(Spring)   <=  Rest-Length(Spring) 
- Length(Rigid-Tube) 

Causing 
;;... much less than ideal displacement 

Actual-x(Spring)   « Max-x(Spring) 

IMPROVISER detects the undesirable limit on spring dis- 
placement and derives the consequences that the launch force 
will be weaker than is ideal (F = -kx), which will affect 
device speed and striking distance. 

IMPROVISER reasons about the causes of the hindrance and 
updates the specification to require the tube to be collapsible 
(i.e., allow its length to vary). In other words, IMPROVISER 

refines the rigidity criterion to what is really needed - the 
radius to remain constant (lateral-rigidity) and the length to 
vary (longitudinal flexibility). This requires getting more 
detailed causal knowledge (not shown) from the oracle about 
what causes the spring to stay straight, to make sure it won't 
hurt to vary the length. 

<Spec: 
Subproblem: Launch 

Parts: Spring, Base, Rigid-Tube 
Rigid-Tube: 

LENGTH-VARIABILITY: VARIES 
Radius-Variability: Constant 

. . . > 

Using this specification as a probe to memory, IMPROVISER 

tries to recall a device that satisfies this specification. The 
retrieval fails. 

Since no viable options are found, IMPROVISER suspends 
work on the launch subproblem and switches to a different 
subproblem: how to protect the eggs. 

<Spec: 
Subproblem:   Protect-Eggs 

Parts:   Cushioning-Material 
Cushioning-Material: 

Pressure-Resistance:   Soft 
. . .> 

While looking for objects that satisfied this description, a 
toilet paper holder is observed through an oracle. The obser- 
vation is a mix of image features and knowledge about the 
holder, once it has been identified through object recognition. 

. .  EXTERNAL  OBSERVATION:   TPH 
Structural properties: 

Parts:   Cylinders  Cl and C2,   Spring  S 
Associated-Part:   Wall-Fixture 
Fits-Inside(Cl,   C2) 
Cl:   Solidity:   Hollow 

Length:   1/2(Rest-Length(S))... 
C2:   Solidity:   Hollow 

Length:   1/2(Rest-Length(S))... 
Composition  of Cylinders   (C1C2) 

Solidity:   Hollow 
Length:   Length(S)   + Delta3 
Shape:   Cylindrical   ..t 

S:   Rest-Length   > Width(Wall-Fixture)... 
Enclosed(S,   C1C2) 

Behavioral  properties: 
States:   Steady,   Squeeze,   Rest. 
Steady:    ;; btwn sides of wall fixture 

Length(S)   < Rest-Length(S) 
x(S)   = Length(S)   - Rest-Length(S) 
Force-Btwn-Endpts:    (-   (*  k(S)   x(S))) 
Length(C1C2)   = Width(Wall-Fixture)... 

Squeeze:    ;; being compressed 
Length(ClC2)   < Width(Wall-Fixture) 
Length(C1C2)   >= Max(Length(Cl) , 

Length(C2))    ... 
Rest:    ;; outside wall fixture 

Length(C1C2) > Width(Wall-Fixture) 
Length(S) = Rest-Length(S)... 

Functional properties: 
Use: Hold paper roll 

The most relevant problem context is retrieved, indexed by 
descriptors that are relevant to solving its pending problem 
(e.g., size and cylindrical shape of tube, spring enclosed in 
tube). The context contains the descriptors given in the speci- 
fication for the problem, the options that have been proposed, 
and the degree to which each matches the descriptors. In 
this case, the problem context associated with the launch sub- 
problem is retrieved and the paper holder is assimilated into 
it, based on the structural, imagistic properties of the paper 
holder and the knowledge associated with it. During this as- 
similation, IMPROVISER must check whether the tube length 
can vary by referring to the behavioral knowledge associated 
with the paper holder to see if the length of the composition 
of cylinders (C1C2) changes over the states. 

A monitor of the assimilation process notices that the pa- 
per holder fits the subproblem specification better than any 
previous option, particularly with respect to variable length. 

The results of this process are 1) a problem specification that 
has been elaborated (with the constraint that the spring must 
be enclosed in a tube) and refined (with finer-grain constraints 
on the rigidity properties of the tube), and 2) new knowledge 
learned about the functions of a common object (i.e., a toilet 



paper holder has a new, additional function of keeping its 
internal spring straight). 

Status and Open Issues 
Our system currently contains implemented procedures for as- 
similation of alternatives into a single problem context, evalu- 
ation based on specification constraints, and standard memory 
indexing and retrieval, as well as data structures representing 
the case library, problem contexts, the evolving problem spec- 
ification, and the opportunity agenda. Simple monitors sur- 
rounding the assimilation process have been implemented, but 
more are needed for this and the other processes. We currently 
do not have a general model for what makes some difference 
or similarity that is noticed "interesting." We are intrigued by 
the fact that objects can be noticed as being interesting and 
relevant to a pending problem before their relevance to the 
problem is fully understood. 

As we extend IMPROVISER to handle multiple problem 
contexts, we need to deal with issues about how to maintain 
them. For example, how do they decay? What influences 
which ones are active (e.g., recency, interaction between the 
problems)? How do they change as related problems are 
worked on? How does knowledge of functional properties of 
an object inhibit the retrieval of a relevant problem context in 
which the object can be used in a new way. (This is important 
in modeling functional fixedness.) 

More work is also needed to identify and define situation 
assessment procedures, elaboration techniques, and strategic 
control heuristics. We are also starting to understand how cri- 
teria, constraints, preferences, etc., emerge during evaluation, 
but more effort is needed in modeling this emergence. 

Our intention in building IMPROVISER is not to automate 
design, but to test our hypotheses about the cognition of cre- 
ative design. As we increase our understanding of creative 
processes, we will be better able to answer the question how 
best to assist human designers. This may include 1) aiding 
the formalization, reformulation, and refinement of specifi- 
cations (Reubenstein & Waters, 1991; Johnson, Benner, & 
Harris, 1993), 2) bringing up evaluative issues (Domeshek & 
Kolodner, 1993), 3) retrieving pending problem contexts to 
help recognize the applicability of solutions, or 4) proposing 
new control strategies. 
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Abstract 

Case-based reasoning (CBR) has a great deal to 
offer in supporting creative design, particularly 
processes that rely heavily on previous design ex- 
perience, such as framing the problem and evalu- 
ating design alternatives. However, most existing 
CBR systems are not living up to their potential. 
They tend to adapt and reuse old solutions in 
routine ways, producing robust but uninspired 
results. Little research effort has been directed 
towards the kinds of situation assessment, eval- 
uation, and assimilation processes that facilitate 
the exploration of ideas and the elaboration and 
redefinition of problems that are crucial to cre- 
ative design. Also, their typically rigid control 
structures do not facilitate the kinds of strate- 
gic control and opportunism inherent in creative 
reasoning. In this paper, we describe the types of 
behavior we would like case-based design systems 
to support, based on a study of designers working 
on a mechanical engineering problem. We show 
how the standard CBR framework should be ex- 
tended and we describe an architecture we are 
developing to experiment with these ideas.1 

Introduction 
Creativity in design derives from enumerating sev- 
eral solution alternatives, redescribing and elaborating 
problem specifications, and evaluating proposed solu- 
tions, based on criteria and constraints that go be- 
yond the stated constraints on a solution. It arises 
out of a confluence of processes (including problem 
redescription, remembering, assimilation, and evalua- 
tion), which interact with each other in complex ways. 
Often creativity arises from interesting strategic con- 
trol of these processes, which in themselves may be 
quite mundane (Boden 1990, Chandrasekaran 1990, 
Gero & Mäher 1993, Navinchandra 1992). 

These processes rely heavily on previous design ex- 
periences and knowledge of designed artifacts (Goel k 
Chandrasekaran 1992, Hinrichs 1992, Kolodner & Pen- 
berthy 1990, Kolodner k Wills 1993). An expert de- 

:This research was funded in part by NSF Grant No. 
IRI-8921256 and ONR Grant No. N00014-92-J-1234. 

signer knows of many design experiences, accumulated 
from personally designing artifacts, being given case 
studies of designs in school, and observing artifacts 
designed by others. The designer draws on these expe- 
riences to perform such activities as generating design 
alternatives, reformulating and elaborating the prob- 
lem specification or proposed solutions, and predicting 
the outcome of making certain design decisions. The 
experiences that are most valuable ere often those that 
are highly contextualized pieces of knowledge about ar- 
tifacts, such as how a device behaves in some context 
of use, circumstances in which it can fail, and knowl- 
edge about situations that might come up not only in 
use, but in all phases of its life cycle. 

Given the nature of these experiences, we believe 
case-based representations and reasoning techniques 
lend themselves to supporting creative design. Re- 
search in case-based reasoning (CBR) has provided ex- 
tensive knowledge of how to reuse solutions to old prob- 
lems in new situations, how to build and search case 
libraries (for exploration of design alternatives), ana 
how to merge and adapt cases. It has developed pow- 
erful techniques for partial matching and the formation 
of analogical maps between seemingly disparate situa- 
tions (Kolodner 1993). 

However, most existing CBR systems are not living 
up to their potential. They tend to adapt and reuse 
old solutions in routine ways, producing robust but 
uninspired results. They do not attempt to extend 
their exploration by deriving constraints and prefer- 
ences that improve or go beyond those stated in the 
original problem. (See (Kolodner 1993, appendix) for 
a recent survey.) 

Some of this potential is buried in processes that 
have been downplayed or even missing in most stan- 
dard CBR systems. In particular, little research effort 
has been directed towards the kinds of situation as- 
sessment, evaluation, and assimilation processes that 
facilitate the exploration of ideas and the elaboration 
and redefinition of problems that are crucial to cre- 
ative design. Also, to facilitate the kinds of oppor- 
tunism inherent in creative reasoning, CBR systems 
need to break out of their typically rigid control struc- 



ture to allow flexible interleaving and communication 
among processes. In addition, more research attention 
must be payed to the strategic control mechanisms that 
guide a creative designer in deciding what to do next. 

In this paper, we describe the types of behavior we 
would like case-based design systems to support, based 
on an exploratory study of designers working on a me- 
chanical engineering problem. We show how the stan- 
dard CBR framework should be extended and we de- 
scribe an architecture we are developing to experiment 
with these ideas. We end with a set of open issues. 

What Do Creative Designers Do? 
To gain insights into the knowledge and reasoning in- 
volved in creative design, we observed a four-person 
team engaged in a seven-week undergraduate mechan- 
ical engineering (ME) design project. The task was to 
design and build a device to quickly and safely trans- 
port several eggs from one location to another. The 
device could be constructed from any material, but its 
size, weight, and cost were restricted. 

After exploring several schemes for launching, mov- 
ing, stopping, and protecting the eggs, the team de- 
cided to use a cylindrical egg carrier (of radius 7 cm., 
length 22.5 cm.), with the eggs wrapped in pipe insu- 
lation to protect them inside the carrier. The carrier 
was dropped down (0.8 m.) from a starting platform 
and would roll into a target zone (within a 5 m. radius 
of the starting platform). The team had two possible 
launch mechanisms up until the final design demon- 
stration day: a spring mechanism and a simple ramp 
(the spring launch base could be inverted to become 
a ramp, which was the final choice). In both cases, a 
string, with one end attached to the launch base, was 
wrapped around the device, so that as the cylinder 
dropped, it spun down the string, hit the ground, and 
rolled into the target zone. The wrapped string gave 
the carrier momentum and it also prevented it from 
rolling beyond the target zone. 

One of us participated as a member of the team, 
allowing us to become immersed in the issues and to 
observe the design process in a natural setting, in both 
informal and "official" team meetings. We recorded 
the group's conversations on audiotapes and collected 
copies of all their design documents and drawings. 

We are particularly intrigued by a set of three pro- 
cesses we observed underlying many creative design ac- 
tivities: 1) generation of multiple descriptions or views 
of a problem, 2) gradual emergence of evaluative is- 
sues, constraints and preferences, and 3) serendipitous 
recognition of solutions to pending problems, some- 
times seeing new functions and purposes for common 
design pieces in the process. We are not claiming that 
this is a complete set. (For example, our design study 
has revealed a variety of influences on creativity from 
collaborative activity.) Rather, we are interested in 
these processes because they are key processes in de- 
sign that current case-based systems neglect. 

Problem    Redescription.    The    initial    problem 
statement given to our designers was ambiguous  in- 
complete, contradictory, and underconstrained. They 
spent a great deal of effort to turn it into something 
with more detail, more concrete specifications, and 
more clearly defined and consistent constraints.   An 
important part of this process involved attempting to 
understand the problem, view it from multiple per- 
spectives, and redescribe it in terms familiar to the de- 
signers. They had to refine and operatiorialize several 
vague or abstract constraints, while sometimes having 

,   to abstract constraints that were too specific. 
..    For example, many of the ideas of one designer, who 

had a keen interest in automobiles, came from recall- 
ing devices and concepts from the car domain, such as 
shock absorbers, unit-body vs. single-frame construc- 
tion, and air-bags. Being able to recall these required 
viewing the problem of protecting the eggs as one of 
absorbing shock or transferring energy and as a prob- 
lem of protecting passengers in general, not just eggs. 

Our designers also explored the given constraints, 
deliberately stretching or strengthening them to see 
what ideas became possible.   For example, the initial 
problem statement was ambiguous about whether or 
not the device could land (i.e., touch down) short of 
the target zone and then move into it.   The design- 
ers considered the extreme possibility of landing as far 
short of this zone as possible, in which case the device 
would not fly at all, but would be pushed off or low- 
ered to the ground, where it would then move itself 
into the safety zone.   Visualizing this possibility re- 
minded them of devices, such as elevators and yo-yo's, 
that could implement parts of this behavior. 

This continual elaboration and redescription of the 
problem helped the designers derive connections be- 
tween the current problem and similar problems in 
other domains, facilitating cross-contextual transfer 
of design ideas. It also primed them to serendipi- 
tously recognize relevant objects in the environment 
that might be reused for a new purpose.. 

Evaluation. One of the key forces driving evolution 
of the problem specification is the evaluation of pro- 
posed design alternatives. Evaluative issues emerge in 
the course of evaluating. Designers do not merely de- 
pend on constraints that have already been specified. 
Rather, they bring up additional constraints and cri- 
teria as proposals are examined. Proposed solutions 
often remind them of issues to consider. The problem 
and solution "co-evolve" (Fischer 1993). 

One interesting criteria that emerged in the course 
of the ME design project was versatility - the ability 
of the device to apply in more than one situation. This 
criteria was not mentioned or required in the original 
statement of the problem. It arose in response to ambi- 
guity in the initial problem statement, which described 
three similar problems but did not specify which one 
would be assigned. Each problem differed only in the 
device's starting position (from either the center of a 



child's wading pool or from a platform of one of two 
heights) and in its target destination distance. (This is 
similar in the real world to situations in which the en- 
gineers are designing for multiple potential customers 
with different needs). To deal with the uncertainty 
and reduce the complexity this variability introduced, 
the designers began searching for solutions that could 
be used to solve all three problems or could be easily 
adapted to apply to each. That is, they began to eval- 
uate proposals on the basis of versatility in addition to 
the other criteria already in the problem specification. 
Being able to do this is central to creative design. 

Assimilation. Problem redescription provides not 
only a means for recalling relevant solution alterna- 
tives, but also a vocabulary for describing and, in many 
cases, reinterpreting objects in the designer's environ- 
ment. This often leads to a new way of viewing the 
function of some object and facilitates the recognition 
of potential solutions to pending problems in the ex- 
ternal environment. 

For example, our designers went to a home improve- 
ment store for materials for a spring launch mecha- 
nism. While comparing the strengths of several springs 
by compressing them, they noticed that the springs 
tended to bend. One designer wrapped a hand around 
the spring to hold it straight as it was compressed and 
said the springs would each need to be enclosed in a 
tube to keep them from bending. Another added that 
the tube would need to be collapsible (to compress with 
the spring). The designers could not think of an ex- 
isting collapsible tube and did not want to build one 
due to time pressure. They gave up on the springs and 
started thinking about egg protection. During their 
search for protection material, they walked through 
the bathroom section of the store, where they saw a 
display of toilet paper holders. They immediately rec- 
ognized them as collapsible tubes which could be used 
to support the springs. 

By playing with the springs, noticing problems and 
suggesting fixes, the designers formed a specific, con- 
crete, and operationalized description of what a solu- 
tion would look like to the bending-springs problem. 
However, the toilet-paper holder was not recalled on 
the basis of this description. Instead, the description 
was used to reinterpret the toilet paper holder when 
it was encountered in the external environment and to 
recognize its additional function of preventing springs 
from bending upon compression. The designers were 
able to interpret objects seen in the environment, or 
recalled from memory, from a new viewpoint. This 
viewpoint was based on descriptions and feature di- 
mensions that had been revealed to be important in 
attempts to solve recent and pending problems. 

We refer to this process as assimilating the objects 
into a problem context. It not only involves reinter- 
preting solution alternatives under consideration, but 
also comparing and contrasting alternatives with one 
another, along the dimensions relevant to the problem 

context. This helps reveal those that are not really 
new ideas, so that they can be ignored. It can also 
cause new evaluative issues to emerge as new dimen- 
sions or criteria are generated to distinguish seemingly 
identical ideas. 

Strategic Control. The designers we observed did 
not follow a rigid, methodical plan detailing what to 
do next. Rather, they moved fluidly between various 
problem pieces and design processes (e.g., idea genera- 
tion, adaptation, critiquing, problem refinement, elab- 
oration, and redefinition) in a flexible and highly op- 
portunistic manner. 

Our designers employed a variety of strategic control 
heuristics, some of which are opportunistic. For exam- 
ple, when an alternative was proposed that satisfied 
some desired criteria extremely well compared to the 
other alternatives, they directed their efforts toward 
elaborating that alternative, optimistically suspending 
criticism or discounting the importance of criteria or 
constraints that were not satisfied as well. Sometimes 
this led to reformulation of the problem as constraints 
were relaxed or placed at a lower priority. 

Being able to take advantage ofrsuch opportunities 
requires being able to judge whether progress was be- 
ing made along a certain line of attack and to choose 
which ideas are more promising or more likely to lead 
to something unusual and novel. 

Some strategic control heuristics are more deliber- 
ate, based on reflection. For example, one heuristic our 
designers used was to try quick, easy adaptations of a 
proposed solution first before stepping back and refor- 
mulating the problem or relaxing constraints. Other 
deliberate heuristics attempted to make non-standard 
substitutions, apply adaptation strategies in circum- 
stances other than the ones they were meant for, and 
merge pieces of separate solutions with each other in 
nonobvious ways. 

In many cases, the processes that are composed to- 
gether leading to a novel idea are not in themselves 
novel and may be quite mundane. The trick is know- 
ing when to do them. 

How CBR Systems Can Do Better 
Most current CBR systems tend to stick to well-known 
interpretations of problems and routine ways of adapt- 
ing old solutions, neglecting exploration of alternatives 
if something good enough has been found. We believe 
the CBR paradigm can be extended to support more 
creative problem solving. 

Problem Redescription. Problem redescription 
corresponds closely to the process of situation assess- 
ment - redescribing a problem in the vocabulary of the 
indexing system. In most CBR systems, situation as- 
sessment is skipped; the assumption is made that the 
initial representation of the problem is sufficient for 
solving the problem. But, as our observations show, in- 
vestigating a problem in depth makes available a large 



set of relevant cues for retrieval. Generating multiple 
ways of describing a problem provides several differ- 
ent contexts for specifying what would be relevant, if 
remembered. 

Research on indexing has found that it is the combi- 
nation of setting up a context for retrieval and having 
already interpreted something in memory in a similar 
way that allows retrieval. When some case or piece 
of knowledge is entered into memory, it is not always 
possible to anticipate how it might be used. Situation 
assessment processes aim to bridge that gap by helping 
to redescribe a new problem in a way that is similar to 
something seen before. 

Research into situation assessment and problem re- 
formulation (e.g., in CASEY (Koton 1988), CYRUS 
(Kolodner 1983), MINSTREL (Turner 1994), BRAIN- 
STORMER (Jones 1992), and STRATA (Lowry 1987)), 
show different ways it can be done. However, these 
techniques have not yet made it into widespread use 
in practical CBR systems. They should certainly be 
included in any system aimed at reuse of experience 
across domains. 

Evaluation. CBR systems currently evaluate solu- 
tions by checking a set of constraints that have been 
given to the system. Evaluative procedures are typ- 
ically buried within case manipulation to predict or 
test whether a modified case satisfies the specified 
constraints. Observations of our designers suggests 
that evaluation should play a more prominent role in 
case-based design systems, allowing evaluative issues 
to emerge in the course of evaluating. Navinchandra 
(1991) calls this criteria emergence and shows an ex- 
ample of how it can arise from case-based projection. 
In addition to criteria, constraints in general (Prab- 
hakar & Goel 1992) and relative priorities among them 
also gradually emerge. This type of evaluation is a key 
driving force within creative design, feeding back to 
situation assessment and guiding case manipulation. 

Assimilation. A key idea underlying dynamic mem- 
ory (Schänk 1982), one of the principle foundations 
of case-based reasoning, is that remembering, under- 
standing, and learning are all inextricably intertwined. 
The ability to determine where something fits in with 
what we already know (understanding) is a key part 
of being able to assimilate objects in our environment 
into our problem solving. This environment includes 
not only external objects, but also cases that have been 
retrieved, elaborated and adapted. Understanding how 
these fit into a problem context may involve a useful 
reinterpretation of something already in memory, sug- 
gesting in a new way of indexing it. 

Strategic Control. Our exploratory study suggests 
that a linear, sequential composition of CBR processes 
is much too simple. In reality, these processes are 
highly intertwined and interact in interesting ways. For 
example, problem elaboration and redescription tac- 

tics specify contexts for search that retrieval processes 
use, while evaluation of recalled or adapted alternatives 
feeds information back to these situation assessment 
tactics, resulting in even better contexts for search. In 
some cases, what suggests a particular problem refine- 
ment or redescription results from trying to confirm the 
legality of a proposed solution during evaluation and 
finding a loophole or ambiguity in the current problem 
specification. In addition, comparing and contrasting 
a proposed solution with other proposalsduring assim- 
ilation can bring new evaluative issues into focus. 

CBR systems need to break out of their typically 
rigid control structure and allow more interaction and 
opportunism among processes. This requires mak- 
ing strategic control mechanisms explicit, so they can 
be easily modified, reasoned about, extended, and 
learned. More research needs to be directed at identify- 
ing and capturing the types of strategic control heuris- 
tics designers use. 

Proposed Architecture 
We are developing an experimental case-based system 
that emphasizes the processes of situation assessment, 
evaluation, and assimilation, integrating them with 
the usual CBR processes of retrieval, elaboration (case 
manipulation, adaptation, merging, prediction), and 
learning. It has a flexible, opportunistic control struc- 
ture which allows us to keep control tactics separate, 
explicit, and modifiable. 

The processes within our system are not applied in 
a strictly linear succession. Rather, the system has a 
blackboard-style architecture. The processes are cen- 
tered around and act upon data structures that repre- 
sent the evolving problem specification and the set of 
design alternatives under consideration. 

Situation assessment procedures act on the prob- 
lem specification to evolve it along multiple direc- 
tions. Evaluation examines design alternatives, check- 
ing them against the current specification, to reveal in- 
consistencies, ambiguities, and incompletenesses in the 
specification that suggest new redescriptions. Evalua- 
tion also brings up new criteria, and constraints which 
are incorporated into the problem specification. 

Elaboration procedures transform alternatives under 
consideration into new alternatives by applying a vari- 
ety of adaptation and merging strategies. These strate- 
gies are typically suggested by the critique formed by 
an evaluation of some alternative. Elaboration proce 
dures also augment alternatives with information de- 
rived about their consequences and expected behavior. 
These "data collection" elaborations are currently ac- 
complished by manual augmentations of alternatives 
with experimental data, but in general can be achieved 
by case-based projection, simulation, actual experi- 
mentation, or visualization. 

The evolving problem description is also used by 
both the retrieval and the assimilation processes. Re- 
trieval interfaces with a library of cases which models, 



in part, long-term memory. The problem description 
is used as a probe into memory to pull relevant design 
cases into consideration (for evaluation, elaboration, 
etc.). The assimilation process is the dual of retrieval. 
It accumulates design alternatives proposed (i.e., those 
retrieved, elaborated, or viewed directly in the exter- 
nal environment) into the pool of design alternatives 
under consideration, organizing the alternatives with 
respect to each other. 

The data structure holding the set of design alterna- 
tives forms an extension of the long-term memory. We 
call this extension the "problem context." The evolv- 
ing problem description determines the focal vocabu- 
lary of the current problem context. As the specifica- 
tion evolves, the focus changes on the relevant vocabu- 
lary to be used for organizing alternatives in the mem- 
ory (e.g., shape, construction cost, personal safety). 
In a sense, the problem context is providing a point of 
view with respect to which objects in the environment 
and cases recalled can be interpreted and organized by 
the assimilation process. 

The coordination of the various processes is con- 
trolled by explicit strategic control mechanisms. There 
are a set of monitoring procedures, associated with 
each of the processes, which watch for opportunities for 
some task to be performed. The opportunities noticed 
are placed on an "opportunity agenda." Opportuni- 
ties are chosen and pulled from the agenda by strategic 
control heuristics. For example, a monitor associated 
with the assimilation process watches for an alterna- 
tive to be added that is much better than any other 
alternative proposed so far, with respect to some de- 
sired criterion. This yields an opportunity to change 
the problem description by increasing the priority of 
that criterion and/or by relaxing constraints that are 
not met by that proposal. This simulates the behav- 
ior of changing the relative importance among criteria 
to accommodate an unexpectedly good solution that is 
stumbled upon. An example strategic control heuristic 
would be to pursue elaboration opportunities for alter- 
natives that satisfy a desired criteria extremely well 
before pursuing evaluative processes that would nega- 
tively critique the alternatives. This simulates the be- 
havior of optimistically pursuing an idea, suspending 
all but constructive criticism. 

Status, Limitations and Open Issues 
Our system currently has implemented procedures for 
evaluation, assimilation, and retrieval, as well as data 
structures representing the case library, pool of design 
alternatives, evolving problem specification, and the 
opportunity agenda data structure. We have standard 
agenda management routines. However, these routines 
currently do not model the ephemeral nature of op- 
portunities (which can either expire or be forgotten). 
Several monitors surrounding the assimilation process 
have been implemented, but we still need to define and 
capture those relevant to the other processes. 

Much more work is needed to identify and define 
strategic control heuristics, situation assessment proce- 
dures, and elaboration techniques. Also, not all strate- 
gic control mechanisms are triggered by noticing an op- 
portunity. Some may become applicable due to some 
complex condition that must be inferred through re- 
flection. (For example, realizing that you are reason- 
ing in circles might cause you to make an effort to try 
a brand new technique.) More research needs to focus 
on how to represent and infer these kinds^>f conditions 
and also how the application of these more reflective 
strategic control mechanisms can be interleaved with 
the triggering-of opportunistic ones. 

We are starting to understand how criteria, con- 
straints, preferences, etc., emerge during evaluation, 
but more" effort is needed in modeling this emergence. 

There are a number of interesting open issues con- 
cerning how assimilation is managed when the design 
problem is complex, having several interacting sub- 
problems, each of which have different sets of alter- 
natives and requirements. Assimilation must find the 
appropriate problem context for interpreting and eval- 
uating a given design alternative. The ability to do this 
facilitates the serendipitous recognition of solutions to 
pending problems, as we saw in the bending-springs 
problem. (See also (Seifert et al. 1994).) 

Another open issue is that the designers we studied 
were not expert mechanical engineers. An interesting 
empirical question is: would experts, having knowledge 
of "design principles," behave differently? It may not 
be the expert vs. novice distinction, but how open- 
ended the problem is, that is important. After all, the 
students were familiar with and experienced in solving 
everyday mechanical problems using objects in their 
world. We believe that for open-ended, nonroutine 
problems, expert designers are likely to display the 
same sorts of behaviors as do our students. 

Finally, there are some aspects of creative design 
that we have not yet explored. In particular, we would 
like to analyze more carefully the influences collabo- 
ration had on creativity in the design project. Our 
agenda-based model of opportunity management lends 
itself to simulating the exploration of several oppor- 
tunities in parallel, and employing multiple control 
strategies at once. This will allow us to simulate these 
aspects of collaborative activity and use computational 
experiments to explore hypotheses about the role of 
collaboration in creative design. 

Conclusion 
Our intention in building our system is not to auto- 
mate design, but to test our hypotheses about the cog- 
nition of creative design. We are trying to understand 
creative processes better, using a case-based cognitive 
model. As we increase our understanding (and in the 
process, push CBR technology), we will be able to an- 
swer the question how best to assist human designers. 
This may include 1) aiding the formalization, reformu- 



lation, and refinement of specifications (Reubenstein 
& Waters 1991, Johnson, Benner, k Harris 1993), 2) 
bringing up evaluative issues (Domeshek & Kolodner 
1993), 3) retrieving pending problem contexts to help 
recognize the applicability of solutions, or 4) proposing 
new control strategies. 

We are taking a case-based approach to understand- 
ing creative design for two reasons. One is that many 
creative design activities are highly memory-intensive 
and rely on past design experiences, so case-based rea- 
soning has much to offer in this study. The other is 
that we hope to make case-based systems themselves 
more creative. By using the paradigmatic tools CBR 
provides, we are starting to find computational mod- 
els of the behaviors and processes we observed in our 
exploratory study. At the same time, our modeling at- 
tempts have deepened our understanding of case-based 
processes and memory issues and have suggested ex- 
tensions that will yield more creative design systems 
in the future. 
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Abstract 

We review Margaret Boden's book The Creative Mind, an excellent survey and syn- 
thesis of current computational theories of creativity. Boden's stated goal is to explain 
how creativity (as a psychological phenomenon) is possible, where an explanation of 
possibility is taken to be a computational process. Although Boden does not deliver a 
full-fledged computational explanation and leaves most details of the underlying pro- 
cesses unexplicated, she provides a strong argument that such an explanation is possible. 

As part of our critique, we sketch our preferred (case-based) framework for model- 
ing creativity, in which much of mental life depends on the retrieval and manipulation 
of past experiences. We focus on five major influences on cognition (and thus on cre- 
ativity): inference, knowledge, task, situation, and strategic control. We also highlight 
"constructive modeling" which integrates analogical reasoning with visual reasoning and 
thought experimentation. 

Our framework, while broadly compatible with Boden's, is more specific in its sug- 
gestions for integrating multiple types of interacting and interactive processes. We, 
emphasize issues of control and the role of experience. By focusing on how mental ac- 
tivity is directed towards a task in some situation, we ensure that the resulting theory 
addresses pragmatic issues in thinking and control of thinking. 

To appear jn Artificial Intelligence journal. In addition, a shorter review of Boden's book 
by the same authors wtH appear in the journal Behavioral and Brain Sciences. 



1     Computational Creativity 

Margaret Boden, a master at bringing ideas from artificial intelligence and cognitive science 
to the masses, has done it again. In The Creative Mind (Boden, 1990), she has produced 
a well-written, well-argued review and synthesis of current computational theories relevant 
to creativity. This book seems appropriately pitched for students in survey courses and 
for the intelligent lay public. And if ever there were a topic suitable for bridging the gap 
between the researchers and the layperson, this is surely it: What is creativity, and how is 
it possible? Or, in computational terms (the terms that Boden argues ought to be applied): 
what are the processes of creativity? 

Boden's stated goal is to explain how creativity is possible, where creativity is taken 
to be a psychological phenomenon, and an explanation of possibility is taken to be a com- 
putational process. As computationalists with active interests in creativity, we find this 
perspective congenial. But while offering many examples of creativity and surveying many 
approaches to creativity, the book leaves most details of the processes of creativity and their 
interactions unexplicated. Nevertheless, although Boden does not deliver a full-fledged com- 
putational explanation of the phenomenon, she does provide a strong argument that such 
an explanation is possible. 

The early motivational sections of the book enthusiastically play up the notion that 
creativity, as opposed to "mere novelty," is somehow paradoxical. The middle section 
offers broad but shallow coverage of existing computational models with some emphasis on 
connectionist approaches. The exposition is studded with excellent examples of creativity 
drawn from the worlds of high culture and epochal science. Major chapters are devoted 
to "Unromantic Artists" and "Computer Scientists" - that is, to computer programs that 
have been built to simulate artistic and scientific creation and interpretation (e.g. AARON, 
BORIS, TAIL-SPIN, ARCS, DENDRAL, BACON, AM, and so on). The final section dwells 
on a grab-bag of ancillary issues such as the relationship of randomness to creativity, the 
degree to which creativity is reasonably conceived as a special gift limited to the chosen few, 
and the nature of computational theories and explanations of phenomena such as creativity 
(including a round in Searle's Chinese Room). 

Our interest is primarily in the examples, implementations, and theories that comprise 
the middle section of the book, but it is important to spend a bit of time understanding the 
problem as Boden has laid it out. As noted, Boden's goal is a computational account of the 
psychological phenomenon of creativity. Her achievement is to make the possibility of such a 
theory seem more probable (or, perhaps, at least conceivable). Both goal and achievement, 
however, must be contrasted with other possible ends. Boden designates the object of her 
study as "P-creativity" (or psychological creativity), distinguishing it from at least two other 
related concepts: "mere novelty" and "H-creativity" (or historical creativity). 

P-creativity is a cognitive notion. By asking how some individual came up with an 
idea that seems beyond what they ought to be able to think, one concerns oneself with 
thought processes, and can deploy all the tools of computational modeling to understand 
these processes. In contrast, H-creativity refers to judgments that are made by a culture 
about the novelty and worth of ideas. Boden downplays the value of this standard, arguing 
convincingly that H-creativity is overly restrictive, and that P-creativity is the more signif- 
icant in that H-creativity typically results from it. Boden chooses many H-creative ideas as 



glamorous examples, but the assumption remains that most instances of H-creativity must 
in the end be explained in terms of some individual's P-creative act. We agree that the 
important scientific question is how P-creativity could happen and that the right kind of 
answer to this question is a computational one. After all, no one has much of a handle on a 
computational model of culture. The key distinction between P-creativity and H-creativity 
is Boden's position that creativity is an attribute of mental processes rather than mental 
products. Although there is consensus that historically significant innovations are creative, 
Boden holds that what is creative when thought by one individual may not be so when 
thought by another. As computationalists, we like this emphasis on process over product 
in defining creativity. 

Furthermore, we believe that a creative outcome is not the outcome of extraordinary 
mental processes, but of mechanisms that are on a continuum with those used in ordinary 
thinking. In our view (and Boden's), extraordinary outcomes arise from the application of 
ordinary mechanisms, enhanced and applied with conscious (strategic) control. For exam- 
ple, later in this review we describe Maxwell's use of analogy in deriving the electromagnetic 
field equations. In doing so, Maxwell constructed a hybrid analogical source model for elec- 
tromagnetism that draws physical and mathematical constraints from two mechanical source 
domains: continuum mechanics and machine mechanics. It is not ordinary to construct a 
hybrid hypothetical analogy as Maxwell did, but analogy is an ordinary mechanism. To 
understand creativity, we need to understand what is different about the employment of 
ordinary mechanisms in creative problem solving. The focus on the outcome, for example, 
as in historical creativity, may provide criteria for what counts as a creative idea, but not an 
understanding of what is a creative reasoning process. (We will return to this point later.) 

Boden's distinction between psychological and historical creativity is important (in fact, 
indispensable) in establishing the book's focus. Opposing P-creativity to mere novelty is also 
important. It serves to rule out easy, boring cases of new ideas that are not interestingly new. 
How Boden makes this distinction, however, strikes us as somewhat problematic. Boden 
argues that true creativity (as opposed to mere novelty) occurs when a person thinks a 
thought that is outside the space of thoughts that are even conceivable to that person - 
outside, as it were, their knowledge level (Newell, 1982). To clarify this idea, she invokes 
representations, rules, and search spaces, noting that fixing these constructs limits what 
can be generated by the thought processes of the reasoner. Creativity, then, requires the 
modification of these structures in order to expand their generative capacity. 

■Notice, however, that these clarifications have the effect of building aspects of a par- 
ticular computational account of mental life into the definition of creativity. The effect 
is to limit the range of computational explanations up for consideration to those that are 
expressible within the particular computational paradigm chosen to model the mind. We 
believe the choice of constructs playing a role in mentation (and thus up for modification) 
are subject to debate; as will be elaborated below, we would invoke constructs such as cases, 
indexing structures, adaptation rules, and control strategies. 

The balance of this review is organized as follows. In the next section we offer an 
initial critique of Boden's approach to characterizing creativity, and raise a set of questions 
we believe must ultimately be addressed (though we certainly do not claim to be able to 
answer all of them). In Section 3. we lay out our preferred framework for thinking about and 
modeling creativity - a framework in which much of mental life depends on the retrieval 



and manipulation of past experiences. Within this case-based reasoning framework, we 
focus on five major influences on cognition (and thus on the potential for creativity); each 
of these five influences is illustrated using examples of mechanical design, the first of three 
different domains we have studied, and is related to some of Boden's observations. Section 
4 takes up some of the issues raised in our early critique of Boden's model, using examples 
of everyday creative interpretation (our second domain) to argue against the notion of 
special creative processes. Section 5 focuses on "constructive modeling," which integrates 
analogical reasoning with visual reasoning and thought experimentation. The value of this 
process and how it fits into our framework is illustrated by an example of historically (and 
psychologically) important scientific creativity (our third and final domain). Section 6 
concludes this review by summarizing our approach to modeling creativity and relating it 
to Boden's position. 

2    Characterizing the "Thinkable" 

Although we disagree with Boden's choice of constructs, one needs some characterization 
of the space of thoughts that are ordinarily thinkable by the computational model, and 
the set of modifications to the thought-generating elements in the model that modify this 
space in an interesting manner. Ideally, what counts as an interesting modification should 
be specified in a manner independent of the particular computational modeling paradigm, 
although the modification mechanisms themselves can, of course, only be specified in the 
chosen formalism. In other words, the issue is: whatever the constructs involved in menta- 
tion, be they cases, rules, or search spaces, what counts as the "ordinarily thinkable," and 
what counts as a "creative" (as opposed to mundane) modification of the space of ordinarily 
thinkable thoughts? 

We agree with Boden in that she refrains from defining the thinkable in terms of what is 
derivable through deduction from the reasoner's knowledge (as, for example, is often done in 
formalizations of "knowledge levels" (Dietterich, 1986; Newell, 1982)). Instead, the search 
space includes everything derivable from all the available reasoning operators (which could, 
and usually do, go beyond deduction). However, this leads to the paradox that, in some 
sense, every thought must be part of the set of thoughts that could be generated through 
available reasoning operators; if one comes to think a thought, it must have been thinkable. 
Boden's answer to this is that some operators carry out conceptual change (Carey, 1985; 
Nersessian, 1992; Ram, 1993; Thagard, 1992) and thus fundamentally modify the search 
space. 

This account falls short in two ways: first, conceptual change is as elusive a notion as cre- 
ativity itself (Nersessian, 1992), and second, it is not obvious why the search space generated 
by application of conceptual change operators is not considered part of the thinkable. An 
independent (and operationalized) characterization of what makes these conceptual change 
operators different from all the other more ordinary inferential operations is needed. 

In particular, consider Boden's formulation of thought as a search over a given search 
space defined by a set of constraints, operators, and representations. Boden implies that 
creative search involves changing or extending the constraints, operators, or representation, 
using an additional set of operators (with associated constraints and representations) whose 
job it is to modify the first set. Thus, ordinary thought is a search over an ordinary (albeit 



non-deductive) search space, whereas creative thought is a meta-search using a separate set 
of operators. While such an account, in principle, is perfectly acceptable, it is unclear what 
theoretical principles would license the placement of a given operator (or piece of knowledge) 
into one or the other of the search or meta-search categories. As we will elaborate below, 
we do not believe there are special meta-search operators that are different from ordinary 
inferential mechanisms. 

Furthermore, we are skeptical that those individuals noted for producing many interest- 
ing ideas undergo radical conceptual change in order to produce each idea. Although this 
may be true of many historically significant ideas, we would prefer a model of long-term con- 
ceptual development in which the individual evolves a search space, that, when explored by 
normal thought processes, still includes many thoughts that would be considered creative. 

These objections notwithstanding, we are fully sympathetic with Boden's goal of ex- 
plaining creativity by appeal to computational processes. We were, therefore, most inter- 
ested in the particular set of processes suggested: heuristic search (as in BACON), multiple 
levels of representation (as in BORIS), fuzzy matching (using an unspecified connectionist 
implementation), and most notable, conceptual change (unimplemented). 

We agree with the idea of creativity emerging through multiple interacting" processes, 
but we think that Boden's account leaves open several questions. First, the discussion of 
the mechanisms, though suggestive, is more descriptive than computational. Second, it 
is unclear what the overall process model is: How do all these mechanisms fit together? 
How do they interact? Do they operate on the same representations? If not, how do 
they communicate, and what do they communicate about? A third set of issues relates to 
Boden's suggestion that these processes are not unique to specially endowed individuals. 
It is never quite clear whether these processes are unique to creative thought, or, if not, 
what distinguishes those thoughts that are creative from those that are not, within a single 
individual. 

3    Five Aspects of Thought 

Parallel to and independent of Boden's analysis, we have been studying creative reasoning 
in several different domains, with a similar goal of producing computational process models 
of creativity. Much of what we have found concurs with Boden's observations and proposals, 
but we are seeking more specifics and more coherence in our models. We believe that in 
order to analyze creative reasoning, one needs a theoretical computational framework in 
which to model thinking. To this end, we propose using a computational approach rooted 
in case-based reasoning (Kolodner, 1993). This paradigm is fundamentally concerned with 
memory issues, such as remindings from partial matches at varying levels of representation 
and the formation of analogical maps between seemingly disparate situations - exactly the 
kinds of phenomena that researchers up to, and including, Boden have highlighted as central 
to creativity. 

Accordingly, we see creative thought, like all thought, as involving processes of problem 
interpretation and problem reformulation, case and model retrieval, elaboration and adap- 
tation, and ultimately, evaluation. Interpretation and reformulation are part of situation 
assessment- the process of redescribing a problem in the vocabulary of a memory's indexing 
scheme.   Elaboration and adaptation include standard analogical processes as well as the 



more general process of constructive modeling, discussed at length in Section 5. Evaluation 
includes outcome determination, be it by simulation or by case-based prediction. All of 
these processes follow from our enriched case-based reasoning model (Kolodner, 1994), and 
fit together into a coherent whole within that framework. Research in case-based reasoning 
has provided extensive knowledge of how to analyze and reformulate problems, how to reuse 
solutions to old problems in new situations, how to build and search libraries of experience, 
how to merge and adapt experiences, and how to evaluate candidate solutions. 

Our examples of creativity are drawn from three disparate domains: We are studying 
creativity in the everyday activities of average people by studying the design of mechanical 
devices (Kolodner & Wills, 1993a; Wills & Kolodner, 19.94a, 1994b) and by looking at the 
processes involved in reading and understanding science fiction stories (Moorman & Ram, 
1994a, 1994b; Ram, 1993). At the same time, we are examining and analyzing what led 
to the significant scientific discoveries of Maxwell and Faraday (Nersessian, 1984, 1992, 
1993). Examples drawn from these studies, as well as Boden's own examples, will be used 
to illustrate our points. 

Our research suggests that creativity is not a process in itself that can be turned on 
or off; rather, it arises from the confluence and complex interaction of inferences using 
multiple kinds of knowledge in the context of a task or problem and in the context of a 
specific situation. Much of what we think of as creativity arises from interesting strategic 
control of these inferences and their integration in the context of a task and situation. These 
five aspects - inferences, knowledge, task, situation and control - are not special or unique 
to creativity but are part of normal everyday thinking. They determine the thinkable, the 
thoughts that the reasoner might normally have when addressing a problem or performing 
a task. 

To give a taste of what we mean by each of these five aspects, the next five sections give 
examples of each aspect in the context of design. Design is a pervasive form of thinking 
which most people do every day, not just in specific engineering contexts. All five aspects of 
thought are involved in design reasoning along the entire continuum from routine to creative 
design. The goal of this section is to give examples of the five aspects that determine the 
thinkable. The next section discusses what it means to go beyond the thinkable with respect 
to these five aspects. 

3.1    Inferential Mechanisms 

We have performed an exploratory study in which we observed a four-person team engaged 
in a seven-week undergraduate mechanical engineering (ME) design project (Kolodner & 
Wills, 1993a; Wills & Kolodner, 1994a). The task was to design and build a device to 
quickly and safely transport several eggs from one location to another. In this study, we 
observed that designers move fluidly between a variety of inferential methods. Typical ones 
include problem understanding, decomposition, elaboration, and redescription, as well as 
remembering, adapting, and merging design artifacts previously seen. 

For example, while trying to think of ways of launching a heavy transport device, carry- 
ing several eggs from a pool of water, our ME designers recalled the behavior of a submarine 
submerging and launching a missile. This helped them to visualize the desired behavior of 
the device being designed and to elaborate the problem specification. While visualizing and 



acting out the missile launch, the students noticed that submarines launch missiles one at a 
time. This led to a redescription of the problem from launching a group of eggs in a single 
launch to launching each egg individually in multiple launches. The students went on to 
merge this idea with other ideas they had earlier, such as enclosing each egg in a tennis ball 
for protection (an adaptation of an earlier idea to enclose several eggs in a NERF football). 

Such inferences are driven and guided by the evaluation of proposed design ideas through 
critical analysis, as well as by experimentation and mental simulation. The generative 
mechanisms, guided by critiques, respond to opportunities to create new alternatives by 
merging or adapting proposed ideas. The design specification is incrementally updated as 
ideas are tested and flaws or desirable features become apparent. 

The types of inferential methods we observed (e.g., problem elaboration and redescrip- 
tion, solution remembering, adapting, and merging) were applied throughout the design 
process to produce routine (thinkable) as well as innovative ideas. They were applied in 
a flexible and highly opportunistic manner, with their application heavily influenced by 
the other four aspects of thought. Computational models of several inferential mechanisms 
exist, which exemplify the inferential aspect of thought. These include: 

• reinterpretation of an idea in terms of a different but familiar idea (e.g., Jones (1992) 
shows how this can lead to useful problem reformulations which facilitate the opera- 
tionalization of abstract advice (in the form of proverbs) during planning situations), 

• visualization, mental simulation, and thought experimentation, which we have seen to 
be useful in evaluating and elaborating ideas, and in reformulating problems in design 
(Kolodner & Wills, 1993b) and scientific reasoning (Nersessian, 1992, 1993), 

• constraint relaxation and substitution, which is useful in problem reformulation and 
elaboration (e.g., Moorman & Ram (1994a) show how new concepts can be formed 
or understood, while reading science fiction stories, by systematically tweaking con- 
straints on known, familiar objects), 

• relaxing constraints during memory search, which facilitates problem reformulation 
and retrieval (e.g., Turner (1994) calls this imaginative retrieval and shows how it can 
be used to retrieve ideas for writing short stories), 

• relevance assessment, which is useful, for example, in retrieval and evaluation (Ram 
• & Leake, 1991), and 

• explanation of anomalies, which is also useful in retrieval and evaluation (e.g., (Ram, 
1994; Schänk, 1986)). 

3.2    Knowledge Sources 

Our second aspect of thought is knowledge. Designers draw on a variety of knowledge 
sources, particularly previous design experiences, accumulated from personally designing 
artifacts, studying case studies of designs in school, and observing artifacts designed by 
others. Designers typically work within a "design culture" (Navinchandra, 1992) of common 
engineering practices, design styles, techniques, and technologies. Innovation often arises 
when ideas from one culture are applied in another. In our ME design study, one designer 



drew much inspiration from automotive engineering, a design culture in which he is intensely 
interested. Many of his ideas came from recalling devices and concepts from the car domain, 
such as shock absorbers, unit-body versus single-frame construction, and air-bags. 

A crucial part of what makes this transfer possible involves understanding, elaborating, 
and redefining the given problem specification to make connections to domains with which 
they are familiar. Designers often build on their knowledge of previous, similar problems 
(and their solutions) to derive new constraints and priority structures that improve or go 
beyond those stated in the original problem description. For example, our ME designers 
redefined their launch problem, based on recalling how submarines launch missiles. They 
derived evaluative issues and new criteria and constraints, based on their experiences with 
devices such as cars, toys and sports equipment, as well as designs for previous high-school 
egg-drop projects. 

Many of the aspects of constraint exploration we observed in our designers can be 
experienced by Boden's reader when, in Chapter 4, she encourages the reader to play a 
game of necklace building within a set of rules. As Boden points out, the construction and 
exploration of conceptual spaces is often facilitated by drawing analogies to familiar concepts 
so that knowledge and reasoning techniques can be transferred to the current pfoblem. As 
we will show later, the same sorts of redescription and construction of conceptual structures 
occur in the other two areas we have studied - science fiction reading (in which new concepts 
must be invented to understand the stories) and scientific discovery (in which new hybrid 
models are designed by merging pieces of knowledge from multiple source domains). We call 
this process constructive modeling (Clement, 1989; Moorman & Ram, 1994b; Nersessian, 
1992, 1993, in press; Nersessian & Greeno, in process). Other existing mechanisms for 
accessing and manipulating knowledge sources include redescription and abstraction, such as 
reinterpretation of data at a higher level (for example, symbolic interpretation of numerical 
data (Ram, 1993; Kuipers & Byun, 1991)), and cross-contextual analogy (e.g., (Ram, 1993; 
Schänk, 1982)). 

Transferring knowledge from one design culture (or domain, in general) to another is not 
necessarily P-creative. However, identifying a domain as relevant, figuring out which pieces 
of knowledge or which strategies can be transferred to a new problem, and how to adapt 
and combine them to solve the new problem can be a creative process. These are important 
questions of focus which Boden does not address, but which are central to understanding 
what guides exploration within a generative system. (Boden is concerned more with how- 
creativity is possible than with what guidance can make it more probable.) We believe 
many of the answers to these focus-related questions come from the task at hand and the 
situational context. 

3.3    Tasks 

A third aspect influencing what is thinkable is the task. Design is a complex task, involving 
several subtasks, such as brainstorming, critiquing, gathering information about and elab- 
orating ideas, and finding, constructing, and integrating design pieces. Which aspects of 
a remembered design experience or a proposed design alternative the designer focuses on 
depend on what is relevant to the task at hand. This can greatly influence the strategic 
control of the design process, as well as which new constraints or criteria are added to the 



design specification and which elaborations or adaptations of ideas are suggested. 
For example, there are numerous facts associated with submarines, but our designers 

were drawn to the fact that they launch missiles one at a time, as opposed to, for example, 
facts about how missiles are aimed at their target or about the cramped, claustrophobic 
interior. They were viewing the submarine missile launch from the perspective of trying to 
borrow its solution to the problem of initiating a powerful launch from water; thus, what 
was relevant was the detail that multiple, relatively small missiles are launched one at a 
time. This focus on individual launches helped suggest a new,way of looking at the problem 
(Kolodner k WiUs, 1993b). 

3.4    Situation 

Situation is our fourth aspect of thought. Design does not typically occur in a vacuum. 
Rather, designers usually try to experiment with their design (e.g., a mock-up, simulation, 
prototype, or partial construction) in a real-world situation (e.g., the typical operating envi- 
ronment, a potential maintenance situation, a worst-case scenario). This provides concrete 
feedback that can refine the problem specification to require any positive features noticed 
and to prohibit any flaws that were detected. At the same time, the evolving specification 
can be used to reinterpret entities in the environment and realize their relevance to the 
problem at hand. 

Designers operate in a rich context of ideas, which are not only recalled and adapted 
from previous experiences, but also recognized in the current external environment. (That 
is, the environment can be a source of inspiration, in addition to knowledge and experiences 
recalled.) The continual elaboration and reformulation of the problem and desired solu- 
tion primes the designer to recognize good ideas when they are stumbled upon. Problem 
redescription often enables the designer to overcome functional fixedness and notice new, 
alternative functions and uses for common design pieces. This leads to insights into new 
ways of solving pending problems (thus facilitating serendipity). 

For example, at one point in the ME design project, the students were considering using 
a spring launch device, but had the problem that the springs bent when compressed. After 
generating, simulating, and critiquing a few proposals, they augmented their specification 
to require that each spring be enclosed in a collapsible tube. However, they could not 
immediately think of anything that could serve as a collapsible tube, so they temporarily 
gave up on designing the launch mechanism. Later, as they were looking for protective egg 
cushioning material, they came across toilet paper holders and immediately recognized them 
as the collapsible tubes they needed to keep springs straight (Wills & Kolodner, 1994b). By 
playing with the springs, noticing problems, and suggesting fixes, the designers formed a 
specific, concrete description of what they needed. This description was used to reinterpret 
the paper holder when it was seen and to recognize its additional function of preventing 
springs from bending upon compression. 

Being situated facilitated the designers' discovery by bringing to their attention objects 
that could solve their problem without requiring the objects to be recalled as relevant 
solutions. Playing with the springs in a concrete situation also provided feedback to help 
the designers elaborate and refine their description of what they needed. The designers 
became immersed in the problem - redescribing it and viewing it from multiple perspectives. 



considering, comparing, and critiquing several options - so that when a relevant solution 
was spotted, the way it fit into the problem was immediately discerned. 

The importance of becoming immersed in the problem situation is implicitly acknowl- 
edged by Boden when she interrupts Chapter 4 to encourage the reader to temporarily stop 
reading and to play the necklace-building game. She suggests that the reader practice build- 
ing necklaces (with pencil and paper), play around with the rules, record any interesting 
things that are noticed, etc. Although Boden does not analyze why this is so important, 
constructing specific necklace-building situations does provide feedback that can help the 
reader understand the problem constraints, their implications, and ways of modifying them. 

3.5    Strategic Control 

Finally, the fifth aspect of thought is the strategic control of inferences. Designers must 
make many decisions over the course of a design: which idea to elaborate or adapt next, 
which constraint to relax, how to set priorities. They also move between various tasks, 
subproblems, and design processes in a flexible and highly opportunistic manner. 

We observed a variety of strategic control heuristics used by our ME designers. Some 
were opportunistic. An example is letting extremes distract. When an alternative was pro- 
posed that satisfied some desired criteria extremely well compared to the other alternatives, 
our designers directed their efforts toward elaborating that alternative (Wills & Kolodner, 
1994b). They optimistically suspended criticism or discounted the importance of criteria 
or constraints that were not satisfied as well. Suspending criticism during brainstorming 
is a common strategic ideation technique which involves taking a cognitive risk. A similar 
mechanism is seen in creative interpretation, in which the reader must suspend disbelief 
in unfamiliar aspects of a story in order to understand it (see below). Sometimes, as con- 
straints are relaxed or placed at a lower priority, an opportunity to reformulate the problem 
is revealed (Kolodner & Wills, 1993b). Noticing invariants (Kaplan & Simon, 1990), as well 
as anomalies, can also aid in understanding a problem and reveal ways of redescribing it. 

Some strategic control heuristics are more deliberate, based on reflection. For example, 
one heuristic our designers used was to try quick, easy adaptations of a proposed solution 
first before stepping back and reformulating the problem or relaxing constraints (Wills & 
Kolodner, 1993a, 1994a). Other deliberate heuristics include making non-standard substi- 
tutions (Kolodner, 1994; Kolodner & Penberthy, 1990), applying adaptation strategies in 
circumstances other than the ones they were meant for (Kolodner, 1994; Navinchandra, 
1992), merging pieces of separate solutions with each other in nonobvious ways (Kolodner, 
1994; Kolodner & Penberthy, 1990), and goal-directed inferential control (Nersessian, in 
press; Ram, 1991; Ram & Hunter, 1992). 

Often, creativity arises when a set of "normal" strategies are applied to a situation in 
which a run-of-the-mill solution is not immediately forthcoming and the control heuristics 
allow the reasoner to devote more resources to the problem, looking further and further 
afield for possible knowledge and strategies until something results in a creative solution. 
Examples include a problem reformulation that takes several steps; an analogy to a far-off 
case or model; an analogy from a hybrid analog constructed incrementally from more than 
one source; a strategy imported from a different problem-solving culture; an unexpected 
and novel opportunity afforded to the reasoner by virtue of an unusual task context. Many 
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of these could happen during "ordinary thought," but most thought does not allow enough 
leeway to look that far or to play with ideas for that long or it does not occur in a context 
that affords such an opportunity. 

4    Beyond the Thinkable 

Based on this view of creative thought, we offer a very pragmatic definition of the normal 
search space. It is not the deductive (or other) closure of everything that is known - an 
inherently uncomputable concept. Rather it is the space of the thoughts one would usually 
explore in a pragmatic context. There may be cases where important possibilities are out- 
side the space of theoretically conceivable thoughts. (Perhaps rings of carbon atoms could 
never arise within the chemical theory prevailing at the time Kekule tackled benzene.) But, 
in other cases, thoughts that are within the theoretical space are nevertheless pragmatically 
inconceivable (e.g., the discoveries made by Swanson's (1990) program which are neverthe- 
less H-creative). In creative individuals, even the usual search space may be interestingly 
different or expanded so as to provide the basis for creative thought using the very same 
mechanisms that on other occasions would produce more mundane thoughts. 

Consider, for example, the problem of reading a science fiction story. Although creativity 
is usually thought of in the context of problem-solving or inventive tasks, we believe that 
creativity is an essential and ubiquitous component of other kinds of reasoning tasks as well, 
including explanatory and comprehension tasks. In point of fact, all these tasks involve 
understanding. Reading science fiction stories requires what we call creative understanding, 
in which the reader must learn enough about an alien world in.a short text in order to 
accept it as the background for the story and simultaneously must understand the story 
itself. Creative understanding requires the extrapolation, modification, or extension of 
existing concepts and theories to invent new ones (Moorman & Ram, 1994a, 1994b; Rani, 
1993). The extrapolation is constrained by the content of the story, by the system's existing 
concepts and theories, and by the requirements of the reading and understanding task. 

As an example, consider the following short story, Men Are Different by Alan Bloch 
(1963). 

I'm an archaeologist, and Men are my business. Just the same, I wonder if 
we'll ever find out about Men - I mean really find out what made Man different 
from us Robots - by digging around on the dead planets. You see, I lived with 
a Man once, and I know it isn't as simple as they told us back in school. 

We have a few records, of course, and Robots like me are filling in some of 
the gaps, but I think now that we aren't really getting anywhere. We know, or 
at least the historians say we know, that Men came from a planet called Earth. 
We know, too, that they rode out bravely from star to star; and wherever they 
stopped, they left colonies - Men, Robots, and sometimes both - against their 
return. But they never came back. 

Those were the shining days of the world. But are we so old now? Men had 
a bright flame - the old word is "divine," I think - that flung them far across 
the night skies, and we have lost the strands of the web they wove. 
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Our scientists tell us that Men were very much like us - and the skeleton of 
a Man is, to be sure, almost the same as the skeleton of a Robot, except that 
it's made of some calcium compound instead of titanium. Just the same, there 
are other differences. 

It was on my last field trip, to one of the inner planets, that I met the Man. 
He must have been the last Man in this system, and he'd forgotten how to talk 
- he'd been alone so long. I planned to bring him back with me. Something 
happened to him, though. 

One day, for no reason at all, he complained of the heat. I checked his 
temperature and decided that his thermostat circuits were shot. I had a kit of 
field spares with me, and he was obviously out of order, so I went to work. I 
pushed the needle into his neck to operate the cut-off switch, and he stopped 
moving, just like a Robot. But when I opened him up he wasn't the same inside. 
And when I put him back together I couldn't get him running again. Then he 
sort of weathered away - and by the time I was ready to come home, about 
a year later, there was nothing left of him but bones. Yes, Men are indeed 
different. 

In order to understand this story, the reader must infer that the narrator is a robot, 
that robots are the dominant lifeform in the future, that humans have practically died out, 
that robots are capable of making factual errors such as the ones that the narrator made, 
and so on. The reader must construct an appropriate model of this world, and interpret 
the story with respect to this model even as the model evolves. The reader must also be 
willing to suspend disbelief (Corrigan, 1979) to understand concepts which do not fit into a 
standard world view. This is another example of a strategic control mechanism that requires 
a willingness to take a cognitive risk. 

In Men Are Different, robots, which in the real world are physical objects used as tools 
in manufacturing, are conceptualized as independent volitional agents. The new concepts 
are constructed by merging and extending the existing concepts representing human agents 
and robotic artifacts, resulting in a novel view of the situation at hand (Moorman & Ram, 
1994a). The reader must adopt this view to build an appropriate story model. Interestingly, 
the irony in this story derives from the fact that the robot in the story performs what one 
might view as the reverse inference: conceptualizing the man as a physical object to be 
repaired in a manner that one might use to repair a physical robotic device (Moorman & 
Ram, 1994b). 

It would, of course, be unreasonable to assume a special purpose "meta-search space" 
generator for science fiction story understanding. The creative understanding processes re- 
quired to read Men Are Different are not unique to science fiction stories; understanding 
any fictional story requires similar kinds of processing. The same is true of nonfictional sto- 
ries as well as unfamiliar real-world scenarios, although the types and degree of conceptual 
modifications required may be different. 

Thus, reading a science fiction story is presumably accomplished within the same type 
of search space and using the same set of reading and comprehension operators as reading 
a mundane narrative. The example illustrates that these ordinary operators and processes 
can take the reasoner out of the space that would usually be explored. In fact, situations 
like this show just how fluid the movement is from the usual to the unusual. 
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The question, of course, is how the search space comes to be expanded to facilitate 
creative thought using ordinary mechanisms. If normal traversal of a search space depends 
on knowledge, inferential methods, and control methods, then interesting paths may result 
from modifying any of these three components. Most obviously, transformations of basic 
knowledge (e.g., conceptual change) can yield new results. But application of new inferen- 
tial methods can also produce novelty; for example, adopting a heuristic from a different 
task context, such as an architect adopting the engineer's heuristic of "incorporate the ob- 
stacle." Finally, differences in control methods will produce differences in results; consider 
methodological differences between scientists, such as the willingness to take cognitive risks, 
the willingness to explore a "silly" idea, the ability to evaluate and prune unlikely candi- 
dates. For example, we would rate AM+Lenat as a creative combination even though AM 
by itself was not. Analysis of the task and situation influences the knowledge, inferential 
methods, and control strategies that are available. 

5 Constructive Modeling 

Reading and understanding Men are Different requires the invention of a system of concepts 
and theories that represent a sentient, humanoid robot, through the extension of one's prior 
understanding of multiple concepts, such as volitional agents, men, and industrial robots 
(Moorman & Ram, 1994a). In creative design, too, new conceptual structures are formed 
from multiple sources. Problem descriptions are incrementally elaborated and reformulated, 
typically by analogy to pieces of several similar problems. New design ideas are generated by 
combining several ideas from experiences with existing devices. The behavior of a proposed 
design is predicted, simulated, and visualized based on multiple pieces of knowledge of how 
related devices or design pieces work. 

These are everyday instances of the constructive modeling process we have found to 
be central in significant scientific discoveries throughout the history of the sciences. For 
example, it figures centrally in the development of the field representation of electromag- 
netic forces by Michael Faraday and James Clerk Maxwell. Here we will illustrate our 
points by looking briefly at Maxwell's derivation of the electromagnetic field equations 
(Maxwell 1890). The Maxwell case reinforces Boden's contention that even in instances of 
H-creativity, explaining the episode demands an analysis of P-creativity. 

This case shows constructive modeling to be a dynamic process involving analogical and 
visual modeling as well as thought experimentation (mental simulation) to create sources 
where no direct analogy exists (Clement, 1989; Nersessian 1992, 1993, in press; Nersessian 
6 Greeno, in process). What distinguishes this process from the computational models of 
analogical reasoning Boden discusses is that they employ cases where the analogical base is 
ready to hand. Further, although Boden does note the importance of visual representation in 
some instances of analogy, neither she nor the computational models she discusses attempt 
to integrate it into their accounts. Indeed, we believe the constructive modeling processes 
identified in the Maxwell case show the need for an integrated account of analogy, visual 
representation, and mental modeling for understanding creative thinking. 

Finally, this case points to something missing entirely from Boden's analysis. The social 
context is crucial to understanding a creative episode in science - and we presume in more 
ordinary cases, too. Maxwell's location in Cambridge led to his training as a mathematical 
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physicist. This determined the nature of the theoretical, experimental, and mathematical 
knowledge and the methodological practices with which he formulated the problem and 
approached its solution. The work of Faraday and William Thomson (later, Lord Kelvin) 
contributed to these as weU.   Continental physicists working on electromagnetismat the 
same time employed quite different practices and drew from fundamentally different mathe- 
matical and physical representational structures. These kinds of social factors can be figured 
into the account without our being required to produce a computational model of culture. 

Maxwell's constructive modeling process' provides a good example of an instance in 
which all five of the aspects of creative thinking we have been discussing are employed. He 
used multiple knowledge domains and informational formats, in the context of solving a 
complex problem within specific cognitive and social situation. Maxwell exercised strategic 
control continually to evaluate the models and the inferences he drew from them, and to 
integrate the solutions to the sub-problems into a consistent mathematical representation. 
The modeling process involved adjusting multiple constraints drawn from 

• the physics of elastic fluids, 

• experimental data on electricity and magnetism, 

• Faraday's hypotheses about the lines of force that form when iron filings are sprinkled 
around magnets and charged matter (Faraday, 1835-55), 

• Faraday's visual lines of force model (shown in Figures la and lb), accounting for 
continuous transmission and interconversion of forces (Maxwell, 1890   vol    1   DD 
155-229), '       '     ' 

• Faraday's interlocking curves model (shown in Figures 2a and 2b), representing the 
dynamical balance between electricity and magnetism (Maxwell, 1890, p. 194n), and 

• William Thomson's hypothesis of rotational motion of magnetism and his analogies, 
and mathematical equations (Lamor, 1937). 

Maxwell's goal (MaxweU, 1890, vol. 1, pp. 451-513) was to provide a unified represen- 
tation of the continuous transmission of electric and magnetic forces that he hoped would 
encompass optical phenomena as well. The full model is an imaginary hybrid construction 
that integrates physical and mathematical constraints from two analogical source domains - 
continuum mechanics (fluids, elastic media, etc.) and machine mechanics - with constructs 
from magnetism and electricity. Unlike the cases customarily considered in the literature on 
analogy, where an existing problem solution in the source domain is transferred to the target 
domain, in this case, the source and target domains interact to create and modify a series of 
constructed models that become the objects with which MaxweU reasoned (Nersessian, in 
press; Nersessian & Greeno, in process). Further, reasoning with the models demands that 
they provide simulations and thus be animated in a manner similar to thought experiments 
(Nersessian 1993). In the text itself, MaxweU provided an extensive set of instructions for 
how the reader should visuaUze and animate the models. 

MaxweU's model construction proceeded as foUows. MaxweU first constructed a prim- 
itive model (Figure 3a) consistent with the constraints discussed above: a fluid medium 
composed of elastic vortices and under stress.   With this form of the model he was able 
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to provide a mathematical representation for several magnetic phenomena. Analyzing the 
relationships between current and magnetism required alteration of the model. We can see 
in Figure 3a that all the vortices are rotating in the same direction, which means that since 
they touch, friction is produced and they will eventually stop. Mechanical consistency, thus, 
requires the introduction of "idle wheels" (as in machine gears) surrounding the vortices, 
and Maxwell argued that their translational motion could be used to represent electric- 
ity. Figure 3b shows a cross section of the hybrid model. For the purposes of calculation, 
Maxwell now had to make the elastic vortices into rigid pseudospheres. We can see how 
the imaginary system provides a mechanical interpretation for electromagnetism: motion 
of the particles creates motion of the vortices and vice versa. In this model, as was known 
experimentally, electric current produces magnetic effects and changes in magnetic effects 
produce current. Using the model, he derived mathematical equations to represent these 
relationships. 

It then took Maxwell nine months to figure out how to represent the final - and most 
critical - piece of the problem: electrostatic actions. He found that if he made the vortices 
elastic and identified electrostatic polarization with elastic displacement, he could calculate 
the wave of distortion produced by polarization. That is, adding elasticity to-the model 
enabled him to show that electromagnetic actions are propagated with a time delay, i.e., 
they are field actions and not Newtonian actions at a distance. At this point, we have a 
fully mathematized representation of the electromagnetic field. There are significant sign 
"errors" in this part of Maxwell's analysis, but Nersessian (1984, in press) has argued that 
all but one (a minor substitution error) can be seen not to be errors when we view him as 
reasoning via the constructed model. 

This case study illustrates that it was through a process of embodying physical and 
mathematical constraints in a series of constructed models and reasoning about and with 
these that Maxwell generated the field equations for electromagnetism - an historically and 
individually creative process. 

6    Summary and Conclusions 

Inference and the control of inference, knowledge representation and representational change: 
these are the main interrelated pieces of the creativity puzzle. Each relies heavily on episodic 
and semantic memory. Together, they fit into a model of reasoning that is recognizable as 
(but looser than) case-based reasoning. A creative individual is one in whom these fac- 
tors combine to form a search space - a repertoire of thoughts - that is different from the 
usual and contains many creative ideas waiting to be constructed. Of course, the search 
space can only be explored in the context of a task or problem and a specific situation; 
thus, the repertoire is defined pragmatically, and serendipity (as Boden points out) plays 
an important role. 

In a specific individual, more creative thoughts will likely result when these pieces come 
together in a novel way to yield an unexplored and unexpected path through the search 
space. Creativity, as Boden points out, is not an all-or-none phenomenon. Every new 
thought is creative to some extent. Every new thought results from those same processes 
that, on occasion, produce results we value as creative. The more the search space is varied 
in a given context (through representational change, novel inferential methods, or strategic 
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control heuristics), the more creative the resulting thoughts are likely to be. Over time, 
an individual may become more expert as he or she acquires (or reformulates) knowledge, 
reasoning strategies, and methodologies that change the search space or how it is explored. 

The framework we have sketched here is broadly compatible with Boden's, but is more 
specific in its suggestions for integrating multiple types of interacting and interactive pro- 
cesses in a task context. In accounting for creativity, we emphasize issues of control and 
the role of experience (or cases). By focusing on how mental activity is directed towards 
a task in some situation, we ensure that the resulting theory-addresses pragmatic issues in 
thinking and control of thinking. As Boden would.require, our approach is computational. 
We believe, in fact, that the greatest contribution of The Creative Mind is the clear case it 
presents for the legitimacy of computational theories of creativity. Boden leads the reader 
to an understanding of that goal, and, having framed the question, suggests how research 
might proceed towards a meaningful answer. 

7 Acknowledgments 

This paper is based in part on research by Kenneth Moorman, who also provided us with 
helpful suggestions for improving this paper. We are grateful to our editors Mark Stefik 
and Stephen Smoliar for their many insights and helpful suggestions for improving this 
review. This work has been supported in part by the Advanced Research Projects Agency, 
monitored by ONR under contract N00014-91-J-4092, by NSF Grant No. IRI-8921256 and 
ONR Grant No. N00014-92-J-1234, by NSF Scholars Awards DIR8821442 and DIR9111779, 
and by the Georgia Institute of Technology. All views expressed are those of the authors. 

8 Bibliography 

Bloch, A. (1963). "Men are Different" in 50 Short Science Fiction Tales, Asimov, I. and 
Conklin, G. (eds.), New York: MacMillan Publishing Co. 

Boden, M.A. (1990). The Creative Mind: Myths and Mechanisms. London: Weidenfeld 
and Nicolson Ltd. (Expanded edition, New York: BasicBooks, 1992.) 

Carey, S. (1985). Conceptual Change in Childhood. Cambridge, MA: MIT Press. 

Clement, J. (1989). Learning via Model Construction and Criticism. In Glover, G., Ron- 
ning, R., & Reynolds, C. (eds.), Handbook of Creativity: Assessment, Theory and 
Research, pp. 341-381. New York: Plenum, 1989. 

Corrigan, R.W. (1979). The World of the Theatre. Glenview, IL: Scott, Foresman and Co. 

Dietterich, T.G. (1986). Learning at the Knowledge Level. Machine Learning, Vol. 1, pp. 
287-316. 

Faraday, M. (1835-55). Experimental Researches in Electricity. Reprinted, New York: 
Dover. 

Jones, E. (1992). Brainstormer: A Model of Advice Taking. PhD Thesis, Yale University. 

16 



Kaplan, C. & Simon, H. (1990). In Search of Insight. Cognitive Psychology, Vol. 22, pp. 
374-419. 

Kolodner, J. (1993). Case-Based Reasoning. San Mateo, CA: Morgan-Kaufmann. 

Kolodner, J.L. (1994). Understanding Creativity: A Case-Based Approach. In S. Wess, 
K.D. Althoff and M.M. Richter (eds.), Topics in Case-Based Reasoning, selected pa- 
pers from the First European Workshop on Case-Based Reasoning. Kaiserslautern, 
Germany. November 1993. Springer-Verlag. 

Kolodner, J. & Penberthy, T. (1990). A Case-Based Approach to Creativity in Problem 
Solving. In Proceedings of the Twelfth Annual Conference of the Cognitive Science 
Society, Cambridge, MA. August. 

Kolodner, J. & Wills, L. (1993a). Case-Based Creative Design. In AAAISpring Symposium 
on AI and Creativity. Stanford, CA. March 1993. Reprinted in AISB Quarterly, 
special issue (no. 85) on AI and Creativity, edited by Terry Dartnall, Autumn 1993. 

Kolodner, J. & Wills, L. (1993b). Paying Attention to the Right Thing: Issues of Focus in 
Case-Based Creative Design. In AAAI Case-Based Reasoning Workshop, (pp. 19-25). 

Kuipers, B.J. & Byun, Y.-T. (1991). A Robot Exploration and Mapping Strategy based on 
a Semantic Hierarchy of Spatial Representations. Robotics and Autonomous Systems. 
8(1-2): 47-63 

Lamor, J., ed. (1937). The Origins of James Clerk Maxwell's Electric Ideas. Cambridge: 
Cambridge University Press. 

Maxwell, J.C. (1890). The Scientific Papers of James Clerk Maxwell, W.D. Niven, ed. 
Cambridge: Cambridge University Press. 

Moorman, K. & Ram, A. (1994a). A Model of Creative Understanding. To appear in the 
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAJ-94)- 
Seattle, Washington. 

Moorman, K. & Ram, A. (1994b). Integrating Creativity with Reading: A Functional 
Approach. To appear in the Proceedings of the Sixteenth Annual Conference of the 
Cognitive Science Society. Atlanta, GA. 

Navinchandra, D. (1992). Innovative Design Systems: Where are we, and where do we go 
from here?. Parts I and II. The Knowledge Engineering Review, 7(3) pp. 183-213 and 
7(4) pp. 345-362. 

Nersessian, N. (1984). Faraday to Einstein: Constructing Meaning in Scientific Theories. 
Dordrecht: Kluwer Academic Publishers. 

Nersessian, N. (1992). How Do Scientists Think? Capturing the Dynamics of Conceptual 
Change in Science. In Volume XV: Cognitive Models of Science of R Giere, Ed., Min- 
nesota Studies in the Philosophy of Science 15 . Minneapolis: University of Minnesota 
Press. 

17 



Nersessian, N. (1993). In the Theoretician's Laboratory: Thought Experimenting as Mental 
Modeling. In Proceedings of the 1992 Meeting of the Philosophy of Science Associ- 
ation, Vol. 2, D. Hull, M. Forbes, and K. Okruhlik Eds. East Lansing Michigan: 
Philosophy of Science Association. 

Nersessian, N. (in press). Abstraction via Generic Modeling in Concept Formation in Sci- 
ence. In Cartwright, N. & Jones, M.R. (eds). Idealization in Science. Amsterdam: 
Editions Rodopi. 

Nersessian, N. & Greeno, J. (in process). Dynamic mental modeling in scientific reasoning, 
manuscript. 

NeweU, A. (1982). The Knowledge Level. Artificial Intelligence 18(1): 87-127. 

Ram, A. (1991). A Theory of Questions and Question Asking. The Journal of the Learning 
Sciences, 1(3-4): 273-318. 

Ram, A. (1993). Creative Conceptual Change. In Proceedings of the Fifteenth Annual 
Conference of the Cognitive Science Society, pp. 17-26, Boulder, CO. 

Ram, A. (1994). AQUA: Questions that Drive the Explanation Process. In R.C. Schänk, A. 
Ram, and C.K. Riesbeck (eds.), Inside Case-Based Explanation, Chapter 7. Lawrence- 
Erlbaum Associates. 

Ram, A. &; Hunter, L. (1992). The Use of Explicit Goals for Knowledge to Guide Inference 
and Learning. Applied Intelligence, 2(1): 47-73. 

Ram, A. & Leake D. (1991). Evaluation of Explanatory Hypotheses. In Proceedings of the 
Thirteenth Annual Conference of the Cognitive Science Society, pp. 867-871, Chicago, 
IL. 

Schänk, R. (1982). Dynamic Memory: A Theory of Learning in Computers and People. 
New York: Cambridge University Press. 

Schänk, R. (1986). Explanation Patterns: Understanding Mechanically and Creatively. 
Hillsdale, NJ: Lawrence-Erlbaum Associates. 

Swanson, D. (1990). Medical Literature as a Potential Source of New Knowledge. Bull. 
Med. Libr. Assoc, 78(l):29-37. 

Thagard, P. (1992). Conceptual Revolutions. Princeton, NJ: Princeton University Press. 

Turner, S.R. (1994). MINSTREL. Lawrence-Erlbaum Associates. Forthcoming. 

Wills, L.M., & Kolodner, J.L. (1994a). Towards More Creative Case-Based Design Sys- 
tems, to appear in the Proceedings of the Twelfth National Conference on Artificial 
Intelligence (AAAI-94). Seattle, Washington. 

Wills, L.M., & Kolodner, J.L. (1994b). Explaining Serendipitous Recognition in Design, to 
appear in the Proceedings of the Sixteenth Annual Conference of the Cognitive Science 
Society. Atlanta, GA. 

IS 



POWERS OF OBSERVATION IN CREATIVE DESIGN 

JANET L. KOLODNER AND LINDA M. WILLS 

College of Computing 

Georgia Institute of Technology 

Atlanta, Georgia 30332-0280 

(404) 894-3285 
Fax: (404) 853-9378 

jlk@cc.gatech.edu 

Abstract. Being perceptive is atrait highly valued in scientific and engineering professions. 
What a scientist or engineer notices while considering a problem, evaluating alternatives, 
or interpreting data has a profound impact on how a problem is viewed and solved. 

This paper focuses on the processes we believe underlie being perceptive: (^prepa- 
ration - becoming attuned to salient or important features; (2) assimilation - detection 
and exploration of patterns (invariants) as well as anomalies; and (3) strategic control - 
heuristic strategies for exploring and pursuing the implications of what has been observed. 

It shows that these processes help to explain important issues of focus in creative design 
and play an integral role in characteristic activities within creative design. These include 
problem reformulation, the emergence of properties and constraints on the solution, and 
the ability to incorporate into the design experimental feedback from the environment and 
from experiences with prototypes and previous designs. The paper presents a computa- 
tional model incorporating these ideas, which we have implemented in a system called 
Improviser. 

This research was funded in part by NSF Grant No. IRI-8921256 and in part by ONR 

Grant No. N00014-92-J-1234. 

Submitted to  Design Studies, Special Issue on Design Cognition and 
Computation, edited by Rivka Oxman. 



2 Janet L. Kolodncr AND Linda M. Wills 

1.  Introduction 

Being perceptive - noticing the relevance of features observed to a current or 

pending problem of interest- is a trait highly valued in scientific and engineering 

professions. What a scientist or engineer notices while considering a problem, 

evaluating alternatives, or interpreting data has a profound impact on how a prob- 
lem is viewed and solved. We consider three aspects of creative design in which 

perceptive observation plays an essential role: problem reformulation, augmenting 

the teleology of design pieces, and criteria emergence. 

These aspects are illustrated with examples we collected during an exploratory 

study in which we observed a team of four designers in a seven-week mechanical 

engineering (ME) design project (Kolodnerand Wills, 1994,1993a, 1993b). The 
design task was to build a device to quickly and safely transport as many eggs as 

possible from one location to another. The device could be constructed from any 
set of materials, as long as it satisfied a set of size, weight, and cost restrictions. 

Our analysis suggests that three key processes underlie being perceptive: 
preparation, assimilation, and strategic control. Based on these ideas, we have 
developed and implemented a computational model that uses case-based reasoning 
(Kolodner, 1993) as a theoretical framework. 

To better understand the phenomena we are interested in, consider how per- 

ceptive observation plays a role in the following three characteristic activities of 

creative design. 

PROBLEM REFORMULATION: NOTICING IMPLICIT ASSUMPTIONS 

In design, there are often default assumptions about the constraints of the problem. 

These come from previous solutions that have been applied to the problem or 
similar problems. In effect, the solutions provide implicit constraints on what is 

held constant in the space of solutions that can be considered. What is needed 
to break out of this rut is for the designer to realize that a feature that happens 
to be constant across previous solutions can actually vary. That is, a new design 
variable (Gero, 1990; Gero and Mäher, 1993) is added to the problem. 

One way that we have observed this happening is for designers to notice that a 

proposed solution violates a default assumption (or implicit problem constraint). 
This can dramatically change the problem description, as in the following example. 

In the ME design project, the designers were thinking of various ways of 
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Figure I.   Toilet paper holder recognized as collapsible tube for supporting a spring. 

launching a device containing all the eggs that needed to be transported. At one 

point, the designers were considering launch mechanisms for moving the eggs out 

of a child's wading pool filled with water (one of the possible launch locations). 

One designer said that the eggs would need to be launched like a missile from a 

submarine and acted out the launch with a pen. This reminded another designer 

that submarines launch multiple, relatively small missiles one at a time. Up until 
this point, all the solutions proposed treated the eggs as a single group that was 

moved all at once. 

Noticing this difference led to reformulating the problem from one of moving 

all eggs as a group to moving eggs individually. In essence, what was assumed to 
be a constant across all solutions (launch one group of all eggs) became a design 

variable whose assignment could be explicitly decided upon (some number of 

launches each launch some number of eggs). 

SERENDIPITOUS RECOGNITION: AUGMENTING TELEOLOGY 

What is noticed as being relevant not only influences what new design variables 

emerge, but it can also determine how an object is used and what functional 

properties are assigned to it. Creative designs often make use of design pieces in 
novel ways, overcoming fixation on their usual purpose or functional role. 

An example of this type of creative reuse occurred in the ME design project. 
Our designers were considering using a spring launching device and went to a 
home improvement store to look into materials. While comparing the strengths 

of several springs by compressing them, they noticed that the springs tended 
to bend. One designer wrapped a hand around the spring to hold it straight as 

it was compressed and said the springs would each need to be enclosed in a 

tube to keep them from bending. Another added that the tube would need to 

be collapsible (to compress with the spring). The designers could not think of 
an existing collapsible tube and did not want to build one due to time pressure. 

They gave up on the springs and started thinking about egg protection. During 
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their search for protection material, they walked through the bathroom section of 

the store, where they saw a display of toilet paper holders (see Figure 1). They 

immediately recognized them as collapsible tubes which could be used to support 

the springs. 

How the toilet paper holder was perceived and what properties were seen in 

it allowed it to be seen as being able to provide a function besides holding a roll 

of paper. It is assigned an additional function of laterally supporting the internal 

spring, while flexibly allowing it to compress and expand longitudinally. 

We call this process serendipitous recognition: seeing solutions to pending 

design problems in objects in the surrounding environment (Wills and Kolodner, 

1994a). It often involves noticing that ordinary design pieces have new functions 

or purposes in addition to their ordinary ones. 

CRITERIA AND CONSTRAINTS EMERGENCE: NOTICING ANOMALIES 

Noticing anomalies in experimental data is well-recognized as a powerful impetus 
of conceptual change in scientific discovery, where a new model or representation 
can result from the reinterpretation of data (Nersessian, 1992; Vosniadou, et al, 

1992). In design, too, noticing unexpected properties or behaviors in experimental 

prototypes is a key impetus for emerging evaluation criteria and constraints. 

In the bending spring example described above, for instance, the designers 

refined and elaborated the specification of their spring launch mechanism. This 
evolution was driven by quickly simulating partial, experimental prototypes, such 

as compressing a spring between a thumb and forefinger and wrapping a hand 

around the spring being compressed. As unexpected consequences occurred, such 

as the spring bending, additional constraints were added to the specification. 

This gradual emergence of evaluative criteria (Navinchandra, 1991), con- 
straints in general (Prabhakar and Goel, 1992), and the relative priorities among 
them is a key characteristic of creative design. Creative design involves deriving 
new constraints and priority structures that improve or go beyond those stated in 

the original problem description. 

PROCESSES UNDERLYING PERCEPTIVE OBSERVATION 

This paper focuses on the processes we believe underlie being perceptive. 

1. preparation - becoming attuned to salient or important features; 
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2. assimilation - detecting patterns or anomalies and exploring them; being 

attracted to or intrigued by invariants or anomalies that are noticed. 

3. strategic control - heuristic strategies for exploring and pursuing the im- 
plications of what has been observed. This includes being distracted by 

incongruities, extremes, and unexpected similarities. 

We first describe the two complementary processes: preparation and assimi- 

lation. We then discuss what guides and focuses these processes arid the strategic 
control that is involved. Throughout this discussion, we point but computational 

mechanisms that are relevant to modeling these processes. We then present an 

implemented system, called IMPROVISER, that brings these mechanisms together 

within a framework rooted in case-based reasoning (CBR) (Kolodner, 1993). The 
architecture of this system is first described and then a detailed scenario is given 

to demonstrate how it models perceptive observation in the context of a creative 

design situation. 

2.  Preparation 

To notice that an object has properties or behaviors that make it useful for a 
new purpose or that an unexpected behavior of an experimental prototype is 

interesting, a reasoner must learn what features to pay attention to in the problem 

solving environment.1 The designer needs to learn what to focus on and what is 

relevant. 

Researchers studying insight (e.g., (Wallas, 1926) and (Seifert, et a/., 1995)) 
refer to this learning process as preparation. It involves becoming immersed (Goel 
and Pirolli, 1989) in the problem, redescribing it and viewing it from multiple 

perspectives, redescribing it in familiar terms, and considering, comparing, and 

critiquing several solution options. 

During preparation, the specification of the problem evolves. It typically starts 

out ambiguous, incomplete, contradictory, and underconstrained. Through a con- 

fluence of interacting processes, a new problem specification emerges which is 

more detailed and concrete. It has more clearly defined and consistent constraints. 

Constraints that initially were vague and abstract are refined to more operational- 

ized conditions that are concrete, specific, and efficiently recognizable. At the 

'By "environment" we mean not only the external surroundings of the designer, but also the 
internal context of memories recalled and ideas, data, etc., about which the designer is currently 
reasoning. 
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same time, constraints that are too specific are generalized and made more ab- 

stract. New constraints and criteria emerge. 

What are the interacting processes? There is not a single specification evolution 

mechanism, but several evolutionary mechanisms that interact. Some examples of 

deliberate evolution mechanisms are the following: 

- reinterpretation of an idea in terms of a different but familiar idea (e.g., 

(Jones, 1992) shows how this can lead to useful problem reformulations 

which facilitate the operationalization of abstract advice (in the form of 
proverbs) during planning situations); 

- visualization, mental simulation, and thought experimentation, which are 

useful in evaluating and elaborating ideas, and in reformulating problems 

in design (Kolodner and Wills, 1993b) and scientific reasoning (Nersessian, 
1992; Nersessian, 1993); 

- constraint relaxation and substitution, which are useful in problem refor- 

mulation and elaboration (e.g., (Moorman and Ram, 1994a) show how new 

concepts can be formed or understood, while reading science fiction stories, 
by systematically tweaking constraints on known, familiar objects); 

- relaxing constraints during memory search, which facilitates problem refor- 

mulation and retrieval (e.g., (Turner, 1994) calls this imaginative retrieval 

and shows how it can be used to retrieve ideas for writing short stories). 

Specification evolution is not autonomous or independent. Evolutionary pro- 
cesses are interleaved with and interact closely with the processes of recalling 
potential solutions or similar past problems and evaluating proposed solutions. 
As proposals are considered, evaluation detects contradictions and ambiguities in 
the specification that prevent a proposed solution from being definitively accepted 

or rejected. The resolution of these questions, contradictions, and ambiguities 

serves to refine, augment, and reformulate the design specification. Reasoning 

about the causes of negative or positive design features that are identified during 

evaluation leads to the addition of constraints to the specification that prohibit or 

require these features (Bhatta, et al., 1994). In addition, proposed solutions often 
directly remind designers of issues to consider (Domeshek and Kolodner, 1993). 

The problem and solution co-evolve (Fischer, 1993). 

The evolutionary processes involved in preparation depend heavily on the 

retrieval and manipulation of past experiences. It is not surprising that several of the 

computational models that have been developed and studied within the theoretical 
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framework of case-based reasoning are relevant to modeling preparation in creative 
design. 

In particular, evaluation includes outcome determination, which may be achieved 

by simulation or by case-based prediction (Kolodner and Pcnbcrthy, 1990; Navin- 
chandra, 1991). 

Also, problem interpretation and reformulation correspond closely with the 
CBR process of situation assessment- redescribing a problem in the vocabulary 

of a memory's indexing scheme. Investigating a problem in depth makes available 
a large set of relevant cues for retrieval. Generating multiple ways of describing a 

problem provides several different contexts for specifying what would be relevant, 

if remembered. Research on indexing has found that it is the combination of setting 

up a context for retrieval and having already interpreted something in memory in a 

similar way that allows retrieval. When some case or piece of knowledge is entered 
into memory, it is not always possible to anticipate how it might be used. Situation 
assessment processes aim to bridge that gap by helping to redescribe a new 

problem in a way that is similar to something seen before. Research into situation 
assessment and problem reformulation (e.g., in CASEY (Koton, 1988), CYRUS 

(Kolodner, 1983), MINSTREL (Turner, 1994), and BRAINSTORMER (Jones, 

1992)) show various ways it can be done. In addition, Sycara and Navinchandra 

(Navinchandra, 1992; Sycara and Navinchandra, 1989) summarizes several related 
index transformation and elaboration techniques that have been developed. 

Research on predictive encoding (Patalano, et al., 1993; Hammond, 1989) is 
also relevant. The key idea is that when a reasoner (in this case, a planner) reaches 
an impasse (e.g., a resource needed for executing a plan is not available), the 
reasoner suspends the task (or plan), saving away an encoding of what would be 

needed to allow the task to resume. These encodings are in the form of memory 

indexing structures. They associate the suspended task goal with features that 

would be in the environment if it were favorable to achieving the goal. For example, 

suppose a planner were in the middle of making breakfast and found out that there 

was no orange juice. The planner would suspend the goal of having orange juice 
and index it with features that would exist in an environment in which obtaining 
orange juice were possible (e.g., the planner's location is a grocery store). 

This work is a step toward explaining preparatory processes. However, it is 
studied in the context of opportunistic planning situations in which there are stan- 

dard solutions to the problems at hand. Therefore, the choice of what features to 
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pay attention to (i.e., what features are used in the predictive encoding) is rela- 

tively straightforward. In creative design, on the other hand, suspended problems 

typically have unanticipated, nonstandard solutions. The choice of features to pay 
attention to that would signify an opportunity to resume and solve a pending 

problem must be dynamically derived. This occurs primarily during specification 

evolution as a description gradually emerges of what a potential solution to the 
problem would look like. ~ 

Throughout the process of specification evolution, the designer gradually be- 
comes attuned to what is needed to solve pending subproblcms and what evaluative 
criteria are relevant. The result is that when a relevant solution to the problem is 
spotted, the features that are necessary for achieving some new function or purpose 

are immediately discerned. Similarly, when experimental feedback is available, 

the designer knows which observations and data to focus on and which criteria to 
use to evaluate them. 

3.  Assimilation 

As the designers in our ME study considered each proposed solution, they com- 

pared and contrasted it to previous solutions that had been proposed. They clas- 

sified each and organized them according to differentiating properties, such as 

which subproblem it addressed (e.g., launch, transport, landing, protection), what 
energy source was involved (e.g., hydraulic, electric, combustion), and the shape of 

motion trajectory it took. The dimensions of comparison were usually the criteria 
and features the designers had become attuned to during preparation. The orga- 
nization of ideas was continually expanded, shrunk, and restructured throughout 
the design. 

In the process, distinctions between proposed solutions were pointed out and 

patterns of invariants across solutions were noticed. This was essential in deciding 

whether a proposed idea was novel or could be ignored. This often caused new 
evaluative issues to emerge as new criteria or dimensions of comparison were 
generated to distinguish seemingly identical ideas. Attention was drawn to features 

that were unusual or extremely good or bad compared to the properties of other 

proposed ideas (e.g., pine straw as cushioning material was "dirt cheap" and bottle 

rockets as launch devices were extremely dangerous and of questionable legality). 
A kind of "relative" evaluation was performed: each proposal is judged on how 

well it satisfies the specification constraints, compared to the other alternatives. 
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We refer to this process of organizing and detecting distinguishing features 

as assimilation. It includes "making sense of not only proposed solutions, but 

also data and observations coming from the design environment, such as feedback 
from experiments with prototypes. As our ME designers tried out prototypes 

such as small-scale spring launch mechanisms and various materials for egg 

protection, they had sets of expectations about how these prototypes would work. 

As feedback from real-world experimentation was collected, it was compared to 
these expectations and to feedback from earlier experiments or recalled design 

cases. In the process, generalized patterns of behavior were learned and anomalies 
were detected. 

A type of assimilation was also observed by (Kaplan and Simon, 1990) in an 
experiment to study insight problem solving. They observed that people working 

on the "mutilated checkerboard" problem2 detected invariants across specific 

instances of the problem while trying various ways of solving it. This led to a new 
way of describing the problem that made it easy to solve. 

A particularly useful model for studying assimilation is the dynamic memory 

model (Schänk, 1982; Kolodner, 1983; Ram, 1994), which is one of the principle 

foundations of case-based reasoning. The key idea underlying dynamic memory 

is that remembering, understanding, and learning are all inextricably intertwined. 

The ability to determine where something fits in which what we already know 

(understanding) is a key part of being able to assimilate ideas and observations 

into our problem solving. This may involve a useful reinterpretation of something 

already in memory and can result in a new way of indexing it in memory. 

A critical issue in modeling assimilation is where does the organizational struc- 

ture, including initial expectations, come from that is used to compare, contrast, 

and categorize ideas and observations? There are several sources. 

1. The problem framework provides one source of structure. This is the skele- 

ton of the problem which holds its hierarchical decomposition into subprob- 

lems and the interactions among the problems. For example, the ME design 
project had four main subproblems (launch, transport, land, protect) each 
with several subproblems of their own. There were relationships between 

the subproblems, such as decision dependencies (e.g., the form of trajectory 

2This is a famous insight problem in which two opposite corners of a checkerboard are removed 
and the problem is to either show that a set of dominoes, each covering two adjacent squares, can 
cover all the remaining squares of the checkerboard or prove that a complete covering is impossible. 



10 Janet L. Kolodncr AND Linda M. Wills 

initiated by the launch mechanism constrained the type of landing mecha- 
nism that was required). Designers frequently choose an already well-known 

framework (or generic case) for a problem and then fill it in. Reusing so- 

lution structures in this way allows designers to avoid recomputing useful 

compositions of design pieces. We call this process "framing a solution."The 

framework provides the glue holding the pieces of the design together. The 

creativity comes in filling in details and in dealing with inconsistencies when 

merging alternative pieces. Such framing occurs in domains, such as bridge 

design and engine design, where well-known frameworks exist and where 
constraints holding the pieces of the problem together are quick complex. 
In other domains, such as architectural design, creating the framework is" a 
primary piece of the creative process. The problem framework is likely to be 

dramatically restructured as solutions are proposed and structural aspects are 

inferred from them. 

2. The problem specification provides constraints and criteria that are a primary 
source of dimensions along which to compare and relatively evaluate solution 

alternatives. The constraints also provide a description of what behavior is 

expected of the solution. 

3. While the specification explicitly defines what dimensions are relevant, the 
solutions proposed so far implicitly determine what is expected. They im- 

plicitly form a baseline for comparison. The submarine missile launch ex- 

ample presented earlier is an instance of this. In this case, the dimensions of 

comparison emerge or become explicit only when an idea is considered that 

"breaks out of the mold" by being significantly different from the rest. 
4. Prototype predictions are another source of expectations used in compar- 

ison. When an experimental prototype is constructed and tried out, the de- 

signer usually has certain expectations about how it will behave. Or the 

designer might have questions about which of several possible behaviors it 
will exhibit. These expected behaviors form the basis for comparison when 

the prototype is actually run or simulated and the outcome is examined. 

The process of assimilation involves four main subtasks. One is setting up the 

organizational structure, based on the sources described above. Another is placing 

an entity in the structure - finding out where it fits. A third is doing the compare 

and contrast to detect significant differences and expectation violations. (This task 

is straightforward for all the sources of expectations except for those implicit in 
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the solutions proposed so far (number 3 above), which remains an open issue.) 

The fourth task is to resolve the interesting anomalies, perhaps by reformulating 

or refining the problem resulting in a change to the organizational structure. This 

fourth task is guided by strategic control heuristics that explore the implications 

of the detected anomalies, as described in the next section. 

The preparation and assimilation processes are complementary and feed on 

each other. Preparation helps determine what is expected. Resolving conflict dur- 

ing assimilation often changes the specification or view of the problem. 

4. Control 

Designers must make many decisions over the course of a design: which idea to 
elaborate or adapt next, which constraint to relax, how to set priorities. They also 

move between various tasks, subproblems, and design processes in a flexible and 

highly opportunistic manner. What a designer has noticed (e.g., incongruities, ex- 

tremes, unexpected similarities) can have a profound impact on what the designer 

can and should do next. 

We have identified several strategic control heuristics that guide a creative 

designer in deciding what to do next. Some strategic control heuristics are delib- 

erate, based on reflection. For example, one heuristic Our designers used was to 
try quick, easy adaptations of a proposed solution first before stepping back and 

reformulating the problem or relaxing constraints (Wills and Kolodner, 1994b). 
Other deliberate heuristics include making non-standard substitutions, applying 

adaptation strategies in circumstances other than the ones they were meant for, 

and merging pieces of separate solutions with each other in nonobvious ways 

(Kolodner, 1994). (See (Ram, et al., 1995) for others.) 

An example opportunistic control strategy is to let extremes distract. In the 
ME project, when an alternative was proposed that satisfied some desired criteria 

extremely well compared to the other alternatives, our designers directed their 
efforts toward elaborating that alternative (Wills and Kolodner, 1994a). They 

optimistically suspended criticism or discounted the importance of criteria or 

constraints that were not satisfied as well. Suspending criticism like this is a 

common strategic ideation technique which depends on willingness to take a 

cognitive risk.3 

3A similar mechanism is seen in creative story interpretation, in which the reader must suspend 
disbelief (Corrigan, 1979) in unfamiliar aspects of a story in order to understand it (Moorman and 
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The full set of influences we've discovered so far on what actions a designer 
takes are the following. 

- Letting extremes distract (described above). 

- Changes in the specification - the appearance of a new specification of a 

subproblem, newly emerged constraints, or noticing that certain constraints 

are not refined or operational enough - can direct the designers attention to 
trying hard to satisfy the new constraints or refine them. 

- Current environment - e.g., being at a hardware store provided our ME's 

with opportunities to buy, select, or test out materials, as well as search for 
potential solutions to pending problems. 

- Measures of progress can be used to prioritize areas needing attention. 
For example, pending problems that are resisting solution point out areas 

that might need special focus and more resources. The importance or relative 

priority of the constraints and goals involved also factors in here. This depends 
on how tightly coupled the constraint or goal is with other subproblems. For 

example, the ME designers had to decide on the spring strength constraint 

early since it was holding up decisions on other subproblems, such as how 

much egg protection was going to be needed and how much breaking force 

would be needed to stop the device at the appropriate location. 

Often, creativity arises when a set of "normal" strategies are applied to a 
situation in which a run-of-the-mill solution is not immediately forthcoming and 

the control heuristics allow the reasoner to devote more resources to the prob- 

lem, looking further and further afield for possible knowledge and strategies until 
something results in a creative solution. Examples include a problem reformula- 

tion that takes several steps; an analogy to a far-off case or model; an analogy 

from a hybrid analog constructed incrementally from more than one source; a 
strategy imported from a different problem-solving culture; an unexpected and 
novel opportunity afforded to the reasoner by virtue of an unusual task context. 

Many of these could happen during ordinary thought, but most thought does not 

allow enough leeway to look that far or to play with ideas for that long or it does 

not occur in a context that affords such an opportunity. 

5. Improviser: Experimental Implementation of Our Model 

Ram, 1994a; Moorman and Ram, 1994b). 
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Figure 2.   Architecture of Improviser. 

We are developing an experimental system to computationally model case-based 
creative design, concentrating in particular on the processes of preparation, as- 

similation, and control of focus underlying perceptive observation. We are imple- 
menting this model in a system called IMPROVISER (invention Modeled by Problem 

Redescription, observation, and evaluation, interacting SERendipitously). Its ar- 
chitecture (shown in Figure 2) has the following primary components: 

1. Problem evolution, which is key to preparation, is modeled using situation 

assessment procedures co-routined with evaluation techniques. For example, 
as an option is evaluated in accordance with the current problem specification, 

there might be a constraint that is not refined or operationalized enough for 

the evaluation process to check it. This would reveal an opportunity for the 

problem constraint to be refined in the context of a particular design option. 

Also as data is collected from experiments and desirable or undesirable 

features are noticed, new constraints are added to require, prefer, prohibit, or 
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avoid the observed feature. This involves performing blame assignment by 
tracing the causes and choosing what to constrain that will fix the problem. 

IMPROVISER uses knowledge about what can be constrained and what types 
of constraints can be possibly satisfied. It also uses knowledge about inverses 

of features in order to generate constraints to prohibit undesirable behavior 

or properties. 

2. Solution transformation is a set of mechanisms that modify proposed solu- 

tions, or "options", (which are either previous design cases that have been re- 

called, objects that are viewed in external environment, or previously adapted 

options). These typically elaborate the option by merging it with other op- 

tions, by augmenting it with experimental data or results of simulation or 
case-based projection, or by applying case adaptation strategies to it. They 

may also remove features from the option or create an approximation to it in 
the form of an experimental prototype that can be tested in limited, controlled 
fashion. 

3. The memory consists of a long-term component, a working memory compo- 

nent, and a focal store. The long-term memory contains a library of previous 

design cases. The working memory component holds the design options un- 

der consideration for the design problem and its various subproblems. These 

are held in structures called problem contexts, which are organized accord- 

ing to the current structure of the problem framework. The design of the 

problem contexts, including how they interrelate, is a key part of our model 

of assimilation and preparation processes and is described in more detail in 

Section 5.1. The focal store contains information about the current state of 
the reasoner, including the subproblem being considered, the task at hand, 
the options currently in focus. 
The two main operational components that work on the content of the memory 

are memory retrieval and update processes. The evolving specification is used 
as a probe to recall relevant design cases (for evaluation, elaboration, etc.). It 

also informs memory update. It is the main source of information about the 

current problem framework and what criteria and constraints are relevant. 

Memory update accumulates design options proposed (i.e., those retrieved, 
elaborated, or viewed directly in the external environment) into problem 

contexts. Within the problem contexts, design options are organized and 

compared with respect to each other, along the dimensions relevant to the 
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problem specification. This is described more fully in Section 5.1. . 
4. The control of IMPROVISER is quite flexible in order to facilitate the kinds of 

opportunism inherent in creative reasoning and allow the necessary interleav- 
ing and communication among the component processes. Rather than a rigid 

control structure IMPROVISER has a blackboard-style architecture, guided by 

explicit strategic control heuristics. In particular, a set of monitoring proce- 

dures, called "noticers," are associated with each process which watch for 

opportunities for a specific type of processing to occur. The opportunities 

noticed are placed on an "opportunity" agenda, maintained and accessed by 

strategic control heuristics. 

For example, a noticer associated with the assimilation process watches for an 
alternative to be added that is much better than any other alternative proposed 

so far, along some desired criterion. This yields an opportunity to change the 
problem description by increasing the priority of that criterion and/or by 
relaxing constraints that are not met by that proposal. This simulates the be- 
havior of changing the relative importance among criteria to accommodate 
an unexpectedly good solution that is stumbled upon. An example strategic 

control heuristic would be to pursue elaboration opportunities for alterna- 

tives that satisfy a desired criteria extremely well before pursuing evaluative 

processes that would negatively critique the alternatives. This simulates the 

behavior of optimistically pursuing an idea, suspending all but constructive 

criticism. 
5. Obtaining basic perceptual information about the environment, the running of 

experimental prototypes and providing feedback about their results is all done 
manually, through an oracle that provides canned responses to requests for 
experimental or environmental information. In other words, the oracle takes 

the place of an external agent (e.g., a human or robot) that physically interacts 
with the external environment to perform such activities as constructing actual 

prototypes, running them, and making observations. (External agents that are 

simulated by the oracle are shown as shaded boxes in Figure 2, since building 

them is outside the scope of this research.) This allows us to investigate in 

a highly controlled fashion what is the content and focus of a designer's 
interactions with the surrounding, physical environment. 
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5.1.  PROBLEM CONTEXTS 

In solving complex design problems, designers break the problem into parts 

and generate ideas for each. The subproblems might be related by dependencies 

between and sharing of constraints and by interactions among the variables of the 

design. A simple example is the cost constraint in the ME design which restricted 

the total cost of the device to be less than one hundred dollars. .This resource 

constraint is shared across all subproblems and the choice of. a certain solution 
to one subproblem, has an effect on how much of the resource can be expended 

in solving other subproblems. Likewise, the choice of spring strength, which is 

a variable in the spring launch device, has an effect on the launch force which 
effects the ultimate speed during transport and the amount of cushioning material 

needed in solving the passenger protection subproblem. 

We capture the structure of the design problem, including its component 
subproblems and their interrelationships, in a network of structures called problem 

contexts. The content, structure, and interrelationships of problem contexts play 

an important role in our models of the assimilation and preparation processes. 

Each problem context represents a subproblem of the overall design problem. 

It contains the constraints of the subproblem, the ideas that have been proposed 
so far for solving the subproblem, and information about how well these ideas 

satisfy the constraints. 

Problem contexts are organized along two orthogonal dimensions, which can 
be roughly characterized as "vertical" and "horizontal." Vertical relationships rep- 
resent either component relationships (i.e., that one problem is a subproblem or 

part of another) or conditional refinement relationships. Refinement relationships 

represent an extension or specialization of the problem that results from making 
some design decision. For example, if a decision is made to have a powerful, 
sudden launch, the constraints on amount and type of cushioning needed become 
more concrete. A child problem context resulting from a refinement has additional 

and/Or more specialized constraints than the parent problem context. It also in- 
herits all the constraints of the parent that are consistent with the decision made. 

The component relationships capture the hierarchical decomposition of the prob- 

lem, while the refinement relationships capture the successive refinement of the 

problem. 

In addition to these vertical relationships, there are horizontal ones that repre- 

sent interrelationships between the component subproblems of a problem. These 
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are encoded as relationships between design variables and the constraints on them. 

A key role these relationships play is in explaining and modeling the control of 

focus during design, experimentation (or testing), and interpretation. This is de- 

scribed in Section 5.2. 

Each problem context contains these pieces of information: 

1. One is a set of constraints that a solution to the problem must satisfy. Each 

constraint specifies a design variable that is being constrained and which 
concrete features of a solution it corresponds to (e.g., "launching spring 
strength" is a design variable, while Hook's constant ("k") of a given spring 
is a concrete, measurable feature of the solution object). In addition, the 

constraint specifies a range of desired values and a range of forbidden values 

for the design variable. These values need not be numeric. They may be 
specified by a general unary predicate that is used to determine whether the 
constraint is satisfied. 
There are two other important pieces of knowledge associated with con- 

straints. One is a binary comparator predicate which decides which of two 

values better satisfies the constraint. This is needed in doing relative compar- 

isons among design options. The other piece of knowledge is a unary function 

for determining "direction of improvement." It determines whether a given 

feature value is close to or better or worse than the ideal value satisfying the 

constraint. This is important in specifying which end of a range of satisficing 

values is preferred. This is needed to compute degree of match and to judge 

whether expectation violations are better or worse than what was expected. 
2. The problem context also contains a set of options which are the solution 

ideas considered so far for satisfying the problem's constraints. These may 
have come from a long-term memory of design cases, from externally viewed 

objects, or from adaptations of other options previously considered. Each 

option contains case-specific knowledge about the alternative, such as how it 

has succeeded or failed in the past, what evaluation criteria it satisfied well or 

failed to satisfy in the past, and consequences of using it in specific situations. 

It will also have any model-based knowledge about the alternative that has 

been learned in the past. For example, in our bending springs example, once 
the toilet paper holder, viewed in the external environment, was recognized, 

a model of its typical behavioral and functional properties was recalled. This 

model and specific experiences (cases) are part of the representation of the 
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paper holder. 

3. Finally, annotated relationships bidirectionally link each constraint with 

each option explored so far. The annotations rate how well the option satisfies 
the constraint. This graph structure makes it easy to compare options along 

a particular problem dimension as well as facilitating the evaluation of a 

particular option over all the constraints that bear on it. 

4. Each problem context also contains a priority structure specifying the 
current relative importance among the constraints. This is given in the form 

of a partial ordering of constraints. 

Problem contexts may overlap in that they may share constraints and/or op- 
tions. Our representation of problem contexts is similar to the question-option- 

constraint (or QOC) models used in capturing design decisions and rationale in 

user-interface design (Maclean, et al., 1991). 

Problem contexts are dynamically created and restructured with respect to 

each other as the problem specification evolves and as proposed solution options 

are explored. They are central to modeling preparation and assimilation. As the 

problem specification evolves, the focus changes on the relevant descriptors (the 

focus of constraints) to be used for organizing options in memory (e.g., shape, 

construction cost, personal safety). When an option is entered into memory, it is 

interpreted with respect to the descriptors in the subproblem contexts to find the 

best place(s) to store the option. 

Serendipitously stumbling across a solution and recognizing that it is relevant 

to a pending problem is the result of storing the option in a problem context, in 

relation to other previously collected options, and noticing that the new option is 

a much closer match to the desired solution than anything previously considered 
(Wills and Kolodner, 1994a). The structure of the problem context makes it easy 

to notice when a constraint is satisfied extremely well or poorly, relative to what's 

been explored so far. 

The various subproblem contexts can be seen as dynamically constructed 

models of desired solutions, built during problem evolution. Recognizing an option 

as a solution results when an alternative is stored that is a relatively close match 

to the desired solution model. 

The management of problem contexts in working memory is an interesting 

area of active research (Simina and Kolodner, 1995). The issues being investigated 

include: how are problems suspended when an impasse or interruption occurs; 
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how are they recalled when something relevant to solving them is found; how 

do they change as other related problems are addressed; when are suspended 

problems forgotten? Recently, (Simina and Kolodner, 1995) proposed anew model 

of working memory that augments previous models of opportunistic reasoning, 

combining predictive encoding ideas (Patalano, et al., 1993; Hammond, 1989) 
with active monitoring mechanisms (Birnbaum and Collins, 1984; Birnbaum, 
1986). 

5.2.  DESIGN VARIABLE DEPENDENCY GRAPH 

While working on a complex design problem, designers move fluidly between 

the various subproblems, often seeing the relevance of some design option to 

more than one problem at once. As decisions are made, their consequences are 
propagated to other subproblems. The way that one subproblem is reformulated or 
redescribed can have a profound influence on how another subproblem is viewed. 

IMPROVISER takes a step toward understanding and explaining these shifts 
in focus across subproblems as well as shifts in the focus of attention during 

experimentation and interpretation of results. It does this using a representation 

of relationships among design variables and the constraints on them, in the form 

of a design variable dependency graph. 

In this graph, the nodes each represent a design variable or parameter whose 

value the designer needs to decide. Example design variables in the ME design 

project were the "passenger capacity" (i.e., how many eggs would the device 
carry) and "striking distance" (i.e., how far would the device travel from its 

starting location). 

Edges in the design variable dependency graph represent information about 
which variables influence which others. The variable represented by the source 

of the edge influences the variable represented by its sink. Edges are annotated 
with information about the nature of the influence - direct or inverse. If x directly 

influences y, then a change in the value of x will cause the same direction of change 
to occur in y (e.g., if both are values, an increase in x will cause y to increase). 

Inverse influences, on the other hand, cause changes in opposite directions (e.g., 

if x and y are values, an increase in a; will cause y to decrease). 

Each design variable has a set of constraints on it, as described in the previous 

section. Multiple, possibly conflicting constraints often are imposed on a single 
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Figure 3. A design variable dependency graph. Nodes represent design variables. Solid edges 
represent direct influences; dashed edges represent inverse influences. Sobd circles merging multiple 
edges represent aggregate design variable influences. Small arrows adjacent to nodes illustrate 
current direction of improvement constraints on design variables that represent quantities. 

design variable. Figure 3 shows a portion of the design variable dependency graph 

capturing variable relationships at one point in the ME design project. 

IMPROVISER derives relationships between constraints based on the underlying 

design variable dependency graph and based on the direction of improvement the 
constraint specifies. (These are then cached in the representation of the constraints 
as the relationships are revealed.) The two primary constraint relationships that 

are derived are trade-off and concur relationships. 

Two constraints C\ and C% trade-off iff either 

1. there is a direct influence relationship between the design variables con- 

strained by C\ and Ci, but an opposite direction of improvement sought by 

the two constraints; or 
2. there is an inverse influence relationship between the design variables con- 

strained by C\ and C2, with the same direction of improvement sought by 
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the two constraints. 

Conversely, two constraints C\ and C2 concur iff either 

1. there is a direct influence relationship between the design variables con- 

strained by C\ and C2, with the same direction of improvement sought by 
the two constraints; or 

2. there is an inverse influence relationship between the design variables con- 
strained by C\ and C2, but an opposite direction of improvement sought by 
the two constraints. 

For example, there is a trade-off relationship between the energy required and the 

device speed in Figure 3. (Direct influence relationships are transitive.) 

Design variables may be aggregates in that they are a set of design variables 
that together influence other variables. The consequences of changing one of 

them cannot be derived or judged independent of knowledge of changes in the 

other. In the example graph shown in Figure 3, launching-spring-strength and 

launching-spring-displacement are aggregates, as are launch-force-magnitude 

and launch-force-direction. When one of these variables is in focus, so are 

those with which it is aggregated. 

The knowledge captured in the design variable dependency graph is useful 
for: 

- detecting trade-offs in constraints on the variables being reasoned about at 
any given point in the design process; 

- propagating consequences of design decisions; 

- capturing connections between problem contexts; 

- judging whether an expectation violation is good or bad (using the direction 
of improvement for the constraints involved); 

- deriving consequences of expectation violation (by following influences re- 

lations); and 

- defining the space of features that are relevant in a design problem and 
explaining attentional focus shifts as movement in this space. 

These features are best explained in the context of a demonstration scenario, which 

is provided in the next section. - 
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6.  Scenario 

To show how IMPROVISER uses the computational mechanisms described above to 

model the processes underlying observation, we present a demonstration scenario 

in this section. The focus of the scenario is the bending springs example described 
in the introduction. The key issues to keep in mind while considering this scenario 
are the following. 

- What observations are made at each point and how is focus directed toward 

them? That is, what is noticed and why is that noticed over other possibil- 

ities? This includes focus on specific pieces of experimental data, focus on 
particular consequences of what is observed, as well as focus on anomalies, 

invariants, and extremes. 

- Which mechanisms prepare the reasoner to interpret observations in the way 
it does? For example, how does it learn what features to pay attention to, 
what organizational structure and evaluative dimensions to use to compare, 
contrast, and organize ideas? 

- How are departures from the current organizational structure expectation 

violations detected? How are their consequences derived? How is their sig- 

nificance and relevance to the design judged? 

- Once "interesting" observations are made, how does the reasoner incorporate 

them into the design, for example, by refining, elaborating, or reformulating 

the problem specification? 

The IMPROVISER scenario highlights these issues and provides initial answers and 

explanations. 

IMPROVISER starts with a partial specification which includes specifications for 

each subproblem in the current partitioning of the problem (launching, moving, 
stopping, and protecting the eggs). The launch subproblem specification contains a 

partial specification for a spring launch mechanism. (In the following,"??" denotes 
incompletenesses due to pending decisions;"..." denotes parts of the specification 
not shown. IMPROVISER's output is shown in bold face, with typewriter font 

showing the data it is manipulating.) 

<Spec: ' " ' 

Subproblem: Launch 

Parts: Spring, Base 

Attached(Spring, Base, <position>) 

Spring: 
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k:   ??   ;; force constant 
x :   ? ?   ;; spring displacement 

Launch-Force:    (-   (*  k x) )    ;;Hooke'slaw 

Subproblem: Protect-Eggs   ... 
Subproblem: Transport   ... 
Subproblem: Stop   ... 
. . .> 

This specifies that the launch mechanism should consist of two parts, attached 
to each other in a particular configuration (given in <position>). There is a 

pending decision as to the choice of spring strength (k) and how much it should 
be compressed (x) to achieve a certain launch force. (There are several other 

constraints involving the launch force which are not shown, such as constraints 
relating striking distance and launch force or relating the type and amount of egg 

protection material with the launch force it must cushion.) 

Note that the expected behavior is incomplete; there are no constraints that 
ensure that the spring stays straight during compression (and release). Our design- 

ers did not think of the possibility that the spring would bend. They didn't even 

worry about gravity affecting its horizontal position. They had a misconception 

(or simplifying assumption) that the springs were laterally rigid. The pictures they 

drew didn't show any required support around springs in any of the spring launch 

mechanisms. The support requirement emerged later. 

Bringing a new design variable into focus: 
LAUNCHING-SPRING-STRENGTH    (K) 

IMPROVISER chooses to work on the pending decision concerning spring 
strength and to employ a experimental (trial-and-error) method to help make the 

decision (i.e., examine the springs that are available and compare their strengths 

to form a more refined constraint). These choices are based on the knowledge IM- 

PROVISER has about the design variables involved in the pending decisions, such as 
whether sensory feedback is useful in collecting data about which range of values 

would be applicable and whether the ultimate choice of values is dependent on 

what values are exist in available design pieces. These pieces of knowledge are con- 

tained in attributes on the design variables (e.g., sensory-feedback-useful and 

availability-dependent are attributes). IMPROVISER also bases these choices 

on information about its current environment (e.g., the current location, a hard- 
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ware store, is a place where design pieces are available with a range of relevant 
parameters). 

The standard way to refine a constraint using experimentation is to construct a 
set of nearly identical prototypes each of which uses a different value for the design 

variable whose value needs to be constrained. Each prototype consists of enough 

of the design to measure and compare design variable values. Automatically 

constructing these prototypes is an intriguing open problem which is beyond the 

scope of this research (see Section 7). For now, IMPROVISER asks the oracle to 
create the prototypes, run them, and report the results. 

Nature of Oracle: 

(PHYSICAL-MANIPULATION  SENSORY-OBSERVATION) 
Oracle has been asked to perform a[n] EXPERIMENT. 
The object is:  <OPTION   FINGER-SPRING-PROTOTYPE;-. 
It has been instructed to: 

1. "squeeze   spring  by moving   thumb  toward   finger;" 
2. "allow  spring  to push  apart   the  fingers;" 
3. "measure   force pushing   fingers  apart." 

In addition to LAUNCHING-SPRING-STRENGTH  (K) , these variables come into 
focus: 

Bringing new design variables into focus: 

LAUNCHING-SPRING-DISPLACEMENT (X) 

LAUNCH-FORCE-MAGNITUDE (FORCE-MAGNITUDE) 

LAUNCH-FORCE-DIRECTION (FORCE-DIRECTION) 

The design variable dependency graph is used to determine this, LAUNCHING- 

SPRING-DISPLACEMENT (X) is aggregated with LAUNCHING-SPRING-STRENGTH (K>, 

so it is automatically brought into focus, since the two act together, LAUNCH- FORCE- 

MAGNITUDE is directly influenced by spring displacement and strength, so it is 

brought into focus, LAUNCH-FORCE-DIRECTION is also brought in because it is 
aggregated with magnitude. 

This raises the issue: how much of what is influenced by spring strength gets 
pulled into focus? Blindly following influence relations will draw in nearly the 

entire variable dependency graph. What limits the focus is the experimentation 

task. IMPROVISER will only focus on those variables that are relevant to the exper- 

imental prototype. For example, striking-distance and amount of egg cushioning 
are not relevant. 

Part of the information the oracle provides IMPROVISER is the mapping from 
features and variables in the design to those in the experimental prototype. This 
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information is crucial in transferring and interpreting results from the experimental 
world to the design world. Given this mapping, IMPROVISER tells the Oracle what 
experimental prototype-features are currently in focus. 

Oracle should focus on the features: 
(FORCE-DTRECTED-AT-FINGERS FORCE-SEPARATING-FINGERS X K) 

The oracle compares several springs and feeds back experimental data to 

IMPROVISER. The data is augmented with causal information about how the data 

resulted from the properties of the partial design. The oracle reports that the spring 

bends, which causes it to exert a weak force in the direction of its axis. 

Oracle's observations: 
((BENT-SPRING SPRING-SHAPE BENT) 

(FORCE-MAGNITUDE FORCE-SEPARATING-FINGERS 23) 

(FORCE-DIRECTION FORCE-DIRECTED-AT-FINGERS 45)) 

Causes: 
BENT-SPRING -> FORCE-MAGNITUDE 

BENT-SPRING -> FORCE-DIRECTION 

IMPROVISER notices that these results are not what is expected. How does it 

do this? First of all, the expectations come from the constraints in the current 
specification. IMPROVISER notices that they are violated as it transfers data from 

the experiment back to the design and uses the data to elaborate the spring launch 

option. Note that only the data related to features currently in focus are transferred. 

Also, evaluation of the option with respect to specification is a by-product of this 

elaboration and assimilation process. 

Transferring experimental datum since feature is in focus: 
(FORCE-MAGNITUDE   FORCE-SEPARATING-FINGERS   23) 

Transferring experimental datum since feature is in focus: 
(FORCE-DIRECTION  FORCE-DIRECTED-AT-FINGERS   45) 

<OPTION   FINGER-SPRING-PROTOTYPE>   violatesa  SPECIFICATION   constraint: 
Feature  FORCE-DIRECTED-AT-FINGERS   has NONMATCHING   value  45. 

<OPTION  FINGER-SPRING-PROTOTYPE>   violatesa SPECIFICATION   constraint: 
Feature  FORCE-SEPARATING-FINGERS    has NONMATCHING    value  23. 

As the violations are detected, their significance is judged. This is based on 

how extreme the value is, compared to those of previously considered options 

(if any) and it's based on how different the actual value is from the expected 

one, which is determined using the constraint's binary comparator predicate and 

direction of improvement function. Differences from expectations are labeled as 

high, low, or uncertain and as having a positive or negative direction. 
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Significant differences detected: 
(<DIFF FORCE-DIRECTED-AT-FINGERS -H> 

<DIFF FORCE-SEPARATING-FINGERS -H>) 

Consequences of significant expectation violations are derived and used to 
further elaborate the design option. These are of the form of general characteriza- 

t ions of whether a particular design variable is influenced in a negative or positive 

way, based on how it is related to the variable involved in the expectation. For 

example, the force along the spring's axis is weaker than the ideal launch force 

(F = -kx), which will make the device move slower and not as far as desired. 

Derived consequences of experimental results on: 
«DPTION   FINGER-SPRING-PROTOTYPE>: 

As consequence of 
<DIFF   FORCE-DIRECTED-AT-FINGERS   -H>, 

noticing NEGATIVE   impact on: 
MOTION-PREDICTABILITY   (PREDICTABILITY) 
CARRIER-SPEED   (SPEED) 
CARRIER-STRIKING-DISTANCE    (STRIKING-DISTANCE) 

As consequence of 
<DIFF   FORCE-SEPARATING-FINGERS   -H>, 

noticing NEGATIVE   impact on: 
CARRIER-SPEED   (SPEED) 
CARRIER-STRIKING-DISTANCE    (STRIKING-DISTANCE) 

In addition, IMPROVISER traces the causes of unexpected features and updates 

the specification to prohibit (or require) them. To do this, IMPROVISER uses the 

causal information provided by the oracle. However, in general, discovering the 
constraints to add to the specification which will require or prohibit some observed 
feature of a device involves reasoning based on a causal model of the device 

(Bhatta, et al., 1994). IMPROVISER also makes use of knowledge about what can 

be constrained and what types of constraints can be possibly satisfied. It relies on 
knowledge about inverses of features in order to generate constraints to prohibit 
undesirable behavior or properties. 

Adding a newly emerged constraint: 
<C: LAUNCHING-SPRING-SHAPE=(STRAIGHT)> to <SPRING-4674> 

In addition to revealing new constraints, this process helps draw attention to 

existing constraints that need to be refined or satisfied. 

Constraint to try harder to satisfy: 
<C: LAUNCH-FORCE-DIRECTION=(ORTHOGONAL-TO-LAUNCHED-OBJ?)> 
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Given a set of constraints that are currently in focus, IMPROVISER chooses one 

lo pursue, using strategic control heuristics. These base the choice on temporal 

information (e.g., what major changes have been made to the problem speci- 
fication? which constraints have newly emerged? which constraints have most 

recently been pursued?), availability of methods for refining or satisfying the 

constraint, the dependencies among the constraints, and constraint priorities. In 

this case, IMPROVISER chooses to try to satisfy the.newly emerged constraint on 
spring shape, partly because it is a new constraint and partly because of constraint 

dependencies: the difference in shape caused the other observed data. 

Opportunity chosen: 
<OPP: SATISFY-CONSTRAINT 

(<C:   LAUNCHING-SPRING-SHAPE=(STRAIGHT)>)> 
Bringing a new design variable into focus: 

LAUNCHING-SPRING-SHAPE    (SPRING-SHAPE) 
DVars(Features) currently in focus: 
LAUNCHING-SPRING-SHAPE    (SPRING-SHAPE) 
LAUNCH-FORCE-DIRECTION   (FORCE-DIRECTION) 
LAUNCH-FORCE-MAGNITUDE    (FORCE) 
LAUNCHING-SPRING-DISPLACEMENT   (X) 
LAUNCHING-SPRING-STRENGTH    (K) 

A standard method of forcing a small object to maintain a desired shape: 

holding it in that shape with your hand. IMPROVISER asks the oracle to do this and 
determine whether the spring stays straight. 

Nature of Oracle: 
(PHYSICAL-MANIPULATION  SENSORY-OBSERVATION) 
Oracle has been asked to perform a[n] EXPERIMENT. 
The object is   <OPTION   WRAPPED-HAND-SPRING-PROTOTYPE> . 
It has  been  instructed  to: 
1. "wrap  one hand around  spring;" 
2. "with  other hand,   squeeze  spring  by moving  thumb  toward  finger,-" 
3. "hold  spring uniformly   snug;" 
A.   "determine whether  spring  stays  straight." 
Oracle should focus on the features: 

(SPRING-SHAPE   FORCE-DIRECTED-AT-FINGERS   FORCE-SEPARATING-FINGERS   X  K) 
This requires extending <LAUNCH- 4 67 3>   design w/ a subspec for 
additional structure:  <SPRING-SUPPORT- 4 7 2 0>. 

The results are that the spring stays straight, but its compression is hindered 
by the wrapped hand. 
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Oracle's observations: 

((STRAIGHT-SPRING SPRING-SHAPE STRAIGHT) 

(FORCE-MAGNITUDE FORCE-SEPARATING-FINGERS 10) 
(FORCE-DIRECTION FORCE-DIRECTED-AT-FINGERS 0) 
(LIMITED-DISPLACEMENT X 5) 

(LATERAL-RIGIDITY BEHAVIOR RADIUS-CONSTANT) 

(LONGITUDINAL-RIGIDITY BEHAVIOR LENGTH-CONSTANT) 
(SNUG-FIT-R RADIUS 25.1) 

(SNUG-FIT-L LENGTH 150) 

(SNUG-FIT-SHAPE SHAPE CYLINDRICAL)) 
Causes: 

STRAIGHT-SPRING -> FORCE-DIRECTION 

LIMITED-DISPLACEMENT -> FORCE-MAGNITUDE 
LATERAL-RIGIDITY -> STRAIGHT-SPRING 
SNUG-FIT-R -> STRAIGHT-SPRING 

SNUG-FIT-L -> STRAIGHT-SPRING 

SNUG-FIT-SHAPE -> STRAIGHT-SPRING 

LONGITUDINAL-RIGIDITY -> LIMITED-DISPLACEMENT 

Again, the relevant experimental data is transferred and assimilated. IMPRO- 
VISER notices both positive and negative unexpected results. The spring shape is 
now straight, but the spring displacement is undesirably limited. This will affect 
device speed and striking distance. 

Transferring experimental datum since feature is in focus: 

(STRAIGHT-SPRING   SPRING-SHAPE   STRAIGHT) 

(FORCE-MAGNITUDE   FORCE-SEPARATING-FINGERS   10) 

(FORCE-DIRECTION  FORCE-DIRECTED-AT-FINGERS   0) 

(LIMITED-DISPLACEMENT  X   5) 

Datum    (LIMITED-DISPLACEMENT   X   5)   VIOLATES 

<C:   LAUNCHING-SPRING-DISPLACEMENT=(MAX-SFRING-COMPRESSION?)> 
WORSE  than expected   ((100)). 

<OPTION  WRAPPED-HAND-SPRING-PROTOTYPE>    satisfies a 
SPECIFICATION   constraint: 

Feature  FORCE-DIRECTED-AT-FINGERS   has value 0,   rated  E. 

<OPTION  WRAPPED-HAND-SPRING-PROTOTYPE>    violates a 
SPECIFICATION   constraint: 

Feature  FORCE-SEPARATING-FINGERS   has NONMATCHING   value  10. 

<OPTION  WRAPPED-HAND-SPRING-PROTOTYPE>    satisfies a 
SPECIFICATION   constraint: 

Feature  SPRING-SHAPE   has value STRAIGHT,   rated  E. 

Significant differences detected: 

(<DIFF  X  -H> 

<DIFF   FORCE-DIRECTED-AT-FINGERS   +H> 

<DIFF   FORCE-SEPARATING-FINGERS   -H> 
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<DIFF   SPRING-SHAPE   +H>) 
Derived consequences of experimental results on: 

«DPTION WRAPPED-HAND-SPRING-PROTOTYPE;»: 
As consequence of 

<DIFF  X  -H>, 
noticing NEGATIVE   impact on: 

LAUNCH-FORCE-MAGNITUDE   (FORCE) 
As consequence of 

<DIFF   FORCE-DIRECTED-AT-FINGERS   +H>'," 
noticing POSITIVE   impact on: 

MOTION-PREDICTABILITY   (PREDICTABILITY) 
CARRIER-SPEED   (SPEED) 

CARRIER-STRIKING-DISTANCE   (STRIKING-DISTANCE) 
As consequence of 

<DIFF   FORCE-SEPARATING-FINGERS   -H>, 
noticing NEGATIVE   impact on: 
CARRIER-SPEED (SPEED) 

CARRIER-STRIKING-DISTANCE (STRIKING-DISTANCE) 

IMPROVISER adds new constraints to borrow features it views as positive (e.g., 
cylindrical shape) and to prohibit undesirable features (e.g., constant length). It 
reasons about the causes of the spring compression hindrance and updates the 
specification to require the tube to be collapsible (i.e., to allow its length to vary). 

Adding a newly emerged constraint: 

<C:   L-BEHAVIOR=(LENGTH-VARIES)>   to  <SPRING-SUPPORT-4720> 
Constraint to try harder to satisfy: 

<C:   LAUNCHING-SPRING-DISPLACEMENT=(MAX-SPRING-COMPRESSION?)> 
Adding a newly emerged constraint: 

<C:   SPRING-SUPPORT-SHAPE=(CYLINDRICAL)>   to  <SPRING-SUPPORT-4720> 
Adding a newly emerged constraint: 

<C:   SPRING-SUPPORT-RADIUS=(25.1)>   to  <SPRING-SUPPORT-4720> 
Adding a newly emerged constraint: 

<C:   R-BEHAVIOR=(RADIUS-CONSTANT)>   to  <SPRING-SUPPORT-4720> 
Constraint to try harder to satisfy: 

<C:   LAUNCHING-SPRING-DISPLACEMENT=(MAX-SPRING-COMPRESSION?)> 
Constraint to try harder to satisfy: 

<C:   LAUNCH-FORCE-MAGNITUDE=(LARGE-FORCE?)> 

Not only did several constraints newly emerge, but an entire new subspecifi- 

cation for the subproblem of supporting the spring was added. The opportunity to 
generate options for this specification is chosen next. 

Heuristic used to choose next opportunity: 
#<Compiled function CHOOSE-EXPLORE-NEW-SPEC 21010133733> 
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Opportunity chosen: 
<OPP: RECALL-OPTIONS 

(<SPRING-SUPPORT-4720>)> 
Constraints: 
<C: R-BEHAVIOR=(RADIUS-CONSTANT)> 

<C: SPRING-SUPPORT-RADIUS=(25.1)> 
<C: SPRING-SUPPORT-LENGTH=(150)> 

-X: SPRING-SUPPORT-SHAPE=(CYLINDRICAL} > 

<C: L-BEHAVIOR=(LENGTH-VARIES)> 

Using this specification as a probe to memory, IMPROVISER tries to recall a 

device that will satisfy it, but the retrieval comes up empty. 

Trying to recall options for current specification. 
Retrieval results: NIL 

Since no viable options are found, IMPROVISER suspends work on the launch 
subproblem and switches to a different problem context for the pending problem 
of how to protect eggs. How this other problem is chosen and how suspended 
problems are managed and resumed when an opportunity exists to solve them is 
an interesting area of active research. (It is not the subject of this paper, but see 
(Wills and Kolodner, 1994a; Siminaand Kolodner, 1995).) 

Switch problem context to egg protection. 
<Spec <CUSHIONING-MATERIAL-2984> 

Subproblem: Protect-Eggs 

Parts: Cushioning-Material 

Enclo9ed(Egg, Cushioning-Material) 

Cushioning-Material: 

Cost: cheap 
Pressure-Resistance: Soft 
Weight: Light 

. . . > 

While looking for objects that satisfied this description, the oracle reports that 
a toilet paper holder is observed. The observation is a mix of image features and 

knowledge about the holder, once it has been identified through object recognition. 

The most relevant, recent pending problem context is retrieved and the paper holder 
is assimilated into it, based on its structural, imagistic, and behavioral properties. 

ORACLE: An object is viewed and recognized as a TPH: 
OBSERVED-TPH 

Assimilating object into spec:  <SPRING-SUPPORT-4720> 



32 Janet L. Kolodner AND Linda M. Wills 

and managed in working memory. Some of these issues were mentioned at the 

end of Section 5.1. Additional issues include: What influences which problem 

contexts in working memory are active (e.g., recency, interaction between the 

problems)? How do they change as related problems are worked on? How do 

they decay? How does knowledge of functional properties of an object inhibit 

the retrieval of a relevant problem context in which the object can be used in a 
new way. (This is important in modeling functional fixedness (Duncker, 1945; 

Maier, 1931; Maier, 1970).) 

Another future direction concerns how we model opportunistic control and 

its relation to working memory. We currently maintain an agenda of pending 
opportunities for action, which keeps track of possible next steps IMPROVISER can 

take. This "opportunity agenda" is currently separate from the working memory. 

However, its access and maintenance are tightly coupled with the structure of 

the problem contexts that are in focus or that are pending. In fact, we have 

noticed that there is a striking similarity between the heuristics and processes 
used in recognizing an opportunity to resume a suspended problem and those 
used to detect goal satisfaction opportunities in general. We intend to merge the 

opportunity agenda into the working memory for a unifying treatment of both 

units of control and units of problem representation. 

In addition, our study of ME designers has pointed out the importance of 

real-world experimentation as a source of both evaluative feedback and solution 

ideas. In the process of constructing experimental, concrete prototypes and trying 

them out, new constraints on the problem and new problems to solve arose. Being 

able to do this experimentation requires being able to construct prototypes, each 
an approximation that focuses on some subset of functionality. (For example, our 
ME designers constructed cushioning devices for single eggs to try out various 
materials and become familiar with their properties.) But how people do this is 

not yet well understood. 

Prototype construction seems related to the problem of setting up thought 

experiments in scientific discovery (Nersessian, 1993). In fact, the process of iso- 

lating portions of behavior or functionality into an approximation or prototype of 

the design seems to have a great deal in common with the constructive modeling 

process (Clement, 1989; Nersessian, 1992; Nersessian, 1993), being studied in 

the context of scientific discovery. In constructive modeling, new hybrid analog- 

ical models are generated by merging pieces of knowledge from multiple source 
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domains, through a combined process of analogical reasoning, visual reason- 
ing, and thought experimentation. Exploring the connections between prototype 

construction and constructive modeling may shed light on both. 

Another interesting aspect of experimentation is that solutions often evolve 

during the experiment as problems are found and the prototype is "patched" 

or quickly modified to push it through the exercise. Sometimes this involves 

physical actions that respond to affordances in the experimental situation. These 

are typically primitive, physical actions similar to those observed by (Köhler, 
1925). For example, we observed this in the bending springs example when the 

ME designer wrapped a hand around the spring to keep it from bending. This 

suggested the partial solution of enclosing the spring in a tube. It would be 
interesting to investigate how research on affordances bears on idea generation in 

general. 
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1. Conceptual Change in Science 

In many instances, solving novel or difficult problems leads to conceptual change. Such 

conceptual change can range from minor changes in existing concepts to the radical kind of 

change one associates with "scientific revolutions".  Some philosophers and psychologists have 

provided coarse-grained constraints for the processes of conceptual change (See Nersessian 

1995a for an overview). To further our understanding, these modes of reasoning need elaboration 

and specification. One significant problem is how existing knowledge, often from remote 

domains, can be used in creating genuinely novel understandings. We contend that generic 

modeling of knowledge of properties, relations, principles, mechanisms, etc. play a key role in 

conceptual change in science. In the research discussed here we analyze the role of generic 

modeling in a problem solving protocol collected by John Clement (1989). Our analysis makes 

use of the cognitive-historical theory of constructive modeling (Section 3) to provide a conceptual 

analysis of the problem-solving session (Section 4). We then join this analysis with the 

computational theory of adaptive modeling (Section 5) that we believe provides the resources 

necessary to model the protocol as so analyzed. Together, the conceptual analysis and the AI 

theory provide sufficient constraints to implement an experimental system we call ToRQUE 

(Theory Revision through Questions, Understanding, and Evaluation)(Section 7). 

2. The Clement Protocol 

The problem posed in the Clement protocol is as follows: 

"... a weight is hung from a spring. The original spring 
is replaced with a spring made of the same kind of wire; 
with the same number of coild; but with coils that are 
twice a s wide in diameter. Will the spring stretch form 
ist natural length more, less, or the same amount under 
the same weight? (Assume the mass of the spring is 
negligible compared to the mass of the weight.) Why do 
you think so?" (Figure 1 a & b) 

In the study, subjects were asked to assess their confidence in 

their answer and in their understanding. We focus on one 

subject, S2, who changed his concept of a spring by 

incorporating the physical principle of torque into his 

understanding of how springs function. 
Figure 1 



Unable to solve the problem directly, S2 began by reasoning that a spring when it is unwound 

is like a flexible rod (Figure lc). He then reasoned that a spring of twice the diameter can be 

unwound into a longer rod, which will bend farther given equal force (Figure Id). From this he 

concluded (correctly) that a spring of twice the diameter will stretch farther given equal force. 

S2, however, unlike most of the participants in the study, was not confident of this answer, and he 

was even less confident in his understanding of the problem. He noticed that a significant 

difference between the stretched spring and the bent rod is that the bent rod has a varying slope, 

while the spring has a constant slope, i.e., the space between the coils is uniform both before and 

after the spring is stretched. At this point S2 constructed the models that are the primary focus of 

our modeling effort (Figure le-i). These models were constructed based on salient differences 

between the spring and the flexible rod, and are designed to resolve what S2 regarded as an 

anomaly: the nonuniform slope of the bending rod (see Darden 1991). He eventually constructed 

a model of a hexagonal coil (Figure lg) that led to the understanding that a spring maintains its 

constant slope through the twist of the coil wire during bending. The notion of torque was not 

present in S2's original model of spring, so we contend that S2's concept of a spring is changed in 

the problem solving process. Although we are modeling the whole protocol, given space 

limitations we will focus on just this final piece of 

reasoning and how we interpret it as exhibiting "generic 

modeling". 

3. Constructive Modeling 

Nersessian (1992, 1995a, in press) has argued that 

general modes of reasoning such as visual reasoning, 

thought experiment, analogy, and generic modeling play 

significant roles in scientific conceptual change. These 

various modes often are employed together in an iterative 

reasoning process we call "constructive modeling." 

Constructive modeling is a semantic process in which the 

models produced are proposed as interpretations of the 

target satisfying specific constraints. Figure 2 provides a 

schematic representation of such a process.   Constructing 
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a model starts with properties and relations of a target system that serve as constraints to be 

satisfied by the initial model. A source domain satisfying some initial target constraints is 

retrieved. From this domain an initial analog model is retrieved or is constructed in the case 

where no direct analogy. This initial model - and each constructed model - serves as a source of 

additional constraints that interact with those provided by the target system to create an enhanced 

understanding of the target, in particular by making explicit further target constraints. The 

constraints can be supplied in different informational formats, including equations, texts, 

kinesthetic, diagrams, pictures, maps, and physical models. The model construction process 

involves different forms of abstraction (limiting case, idealization, generalization, generic 

modeling), constraint satisfaction, adaptation, simulation, and evaluation. Additional source 

domains may be called upon throughout the iterations. This cycle is repeated until a satisfactory 

representation of the target problem is achieved. This representation is a model of the same type 

as the target problem with respect to the salient target constraints. We interpret S2's reasoning to 

be a case of constructive modeling (Figure 2). 

Clearly, to engage in constructive modeling the reasoner needs to know the generative 

principles and constraints for physical models in one or more domains. This is why analogy plays 

such a significant role in the constructive modeling process. On our account, the function of 

analogies is to provide constraints and generative principles for building models.  This view is in 

contrast to the direct transfer view of most computational models (see for example Falkenhainer 

et ah, 1989; Holyoak & Thaggard 1989) Thus we view relations between domains in terms of the 

constraints they share. These constraints and principles may be represented 

in the different informational formats and knowledge structures that act as 

explicit or tacit assumptions employed in constructing and adapting models 

during problem solving. Since these constraints are domain-specific they 

need to be understood at a sufficient level of abstraction in order for 

retrieval, transfer and integration to be possible. We call this level of 

abstraction "generic". 6 Figure 3 
What we mean can easily be conveyed by looking at a simple example taken from Polya 

(1954). Polya considered two cases, abstracting from an equilateral triangle to a triangle-in- 

general and from it to a polygon-in-general (Figure 3). Loss of specificity is the central aspect of 
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this kind of abstraction process. Polya called the process "generalization" in mathematics, but we 

prefer to call it "generic abstraction" in order to distinguish it from the process of "generalization" 

in logic. The generic triangle is understood to represent those features that all kinds of triangles 

have in common. Although the figure entertained by the mind is specific, some of its salient 

features, the lengths of the sides and the degrees of the angles, must be taken by the reasöner to 

be unspecified. In contrast to this, a logical generalization from one equilateral triangle to all 

equilateral triangles maintains the specificity of these salient aspects of "equilateral". In 

abstracting from the generic triangle to the generic polygon, additional features are left 

unspecified, viz., the number of sides and the number of angles of the figure. 

Generic modeling is a strategy that is commonly employed in solving physics problems. For 

example, in modeling a problem about a pendulum by means of a spring, the scientist understands 

the spring model as generic, that is, as representing the class of simple harmonic oscillators of 

which the pendulum is a member. We interpret much of the research in expert physics problem 

solving as demonstrating this (see for example Chi et ah, 1981).   Generic modeling has also been 

shown to play an important role in design (see Stroulia & Goel 1992 and Bhatta & Goel 1993). 

Further, we believe it facilitates analogical retrieval, mapping, and adaptation in the model 

construction process. This is exemplified in the psychological literature by Holyoak and 

collaborators (see for example Gick & Holyoak 1983).   Through the generic modeling process, 

knowledge from multiple domains is brought to bear on a problem and is capable of being 

transformed to such an extent that something truly novel is constructed, as is the case in 

conceptual change. 

There are several ways in which we interpret generic modeling as playing a role in S2's 

constructive modeling process: generic abstraction is employed to create models that incorporate 

constraints from multiple domains; generic adaptation strategies are employed to make changes 

to models, such as topological transformations; and knowledge of generic mechanisms and 

principles is used in model construction and adaptation. 

4. A Constructive Modeling Interpretation of S2's Reasoning 

S2 spent considerable time considering his "physical imagistic intuition" (025)1 about the 

slope of the bending rod. We begin at the point he claimed to have a visual experience that 

' These numbers are line numbers from John Clement's original protocol, (see also Clement, 1989) 



"expressed what [he was] thinking" (049) With the rod one "is always measuring in the vertical - 

maybe somehow the way the — the coiled spring unwinds, makes for a different frame of 

reference." (049) This insight would lead, though not immediately, to a model of the spring as an 

open horizontal (3-d) coil (Figure lg). This part of the session generated a target constraint that 

was salient in this and the final two models (le.i):  coiling is in the horizontal plane. 

At this point S2 was seeking to reconcile the rod (lc) and circular coil (lg) models. He 

achieved reconciliation by integrating the rod model with target constraints derived during the 

problem solving process: circularity, lying in the horizontal plane, and uniform distortion during 

stretching. S2 recognized that transmitting the force incrementally along the circle in the 

horizontal plane stretches it bit by bit, as though it had joints, but with even distribution. He now 

recalled an earlier idea of modeling a spring by means of wound square coils, i.e., that a "square is 

sort of like a circle". (117) We interpret him to mean that squares, considered generically are 

polygons and polygons approximate circles in the limit. He immediately considered bending up 

the rod into an approximation of the circle to create "a continuous bridge" between the two 

paradigmatic cases. We take this as his attempt to ascertain if a rod bent in a joint-like fashion in 

the horizontal plane and a circle bending under a force 

transmitted incrementally are of the same type with respect to 

the mechanism of bending. This interaction between the 

enhanced target (unfolding circle) and the initial source model 

(flexible rod) led to his constructing a series of generic 

polygonal models we have represented in Figure 4a. 

S2 first drew a picture of a horizontal hexagon (Figure lh) 

and saw immediately that the hexagonal model is a model of a 

different type from any considered before for how the constraints would interact in the dynamic 

case where the spring is stretched. S2's next statement described a simulation that provided a 

crucial insight: "Just looking at this [lh] it occurs to me that when force is applied here, you not 

only get a bend on this segment, but because there's a pivot here ['X' in lh], you get a torsion 

effect - around here." (121) He went on, "Aha! - Maybe the behavior of the spring has 

something to do with the twist forces .... that might be the key difference between this [flexible 

rod], which involves no torsion, and this [hexagonal coil]." (122) Finally, S2 constructed the last 
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model, drawing a square coil (li) in order to exaggerate the torsion effect and considered the 

possibility that torsion is what "stops the spring from - from flopping." (126). 

We interpret these steps in S2's problem solving as generic modeling of the relational 

structures and physical properties of the polygonal models.  Both the hexagon and the square 

models incorporate features of the rod because the straight-line segments can bend. However, in 

this orientation any polygonal model will localize the torsion at the corners, so that the motion in 

stretching is that of twisting rather than bending at the joints. Thus there is torsion plus bending 

in this stretching process. The square coil model or the hexagonal coil model or any polygonal 

model will provide a generic model of the spring coil with respect to the mechanism of stretching. 

The key difference between the polygonal models (lg-i) and earlier models we have not discussed 

here (le,f) is that in the former the bending segment does not have to change directions as it does 

in the latter models, where the bend cannot be spread out so as to occur continuously in the wire. 

When the wire is coiled in the horizontal plane, the bend is in the same relation to each piece and 

the springiness is distributed evenly, satisfying the target constraints. That the distribution of the 

twist would be even can be seen by extrapolating the polygon to the limit of a circle. Although 

these steps are not in the protocol, we interpret generic modeling to have enabled S2 to grasp 

immediately the move backwards from the square coil to the hexagon to intermediate 

extrapolations to the limit of the circular coil in which the torsion that is localized at the corners 

spreads itself out in such a way that it becomes a uniform property of the spring (Figure 4b). 

5. Adaptive Modeling 

Since we view constructing or designing models as central in conceptual change, we have 

chosen to start with AI theories of design for identifying language constructs and processing 

structures for building computational accounts of constructive modeling in science. In an 

independent line of research, Goel and collaborators have developed an AI theory of conceptual 

design of physical devices that views device design as model construction. This theory, called 

adaptive modeling, arose from work on the Kritik project (Goel 1991). A designer's 

comprehension of the functioning of a known device is represented in the form of a structure- 

behavior-function (SBF) model that provides a functional and causal explanation of how the 

structure of the device delivers its functions. New devices are designed by constructing SBF 

models for them, and new models are constructed by adapting the models of known devices. The 



SBF models of the new device designs are verified through a form of qualitative simulation, and, 

if needed, revised. 

Recent work along this line of research has led to a theory of creative conceptual design. This 

theory extends and expands Kritik's theory of adaptive modeling by incorporating analogical 

transfer as another family of adaptation strategies. It posits generic models for mediating the 

analogical transfer. In particular, it identifies two kinds of generic models: generic teleological 

mechanisms (GTMs) and general physical processes (GPPS) (Stroulia and Goel 1992; Bhatta and 

Goel 1993). A GTM specifies a pattern of functional and causal structure such as feedback while 

a GPP captures a pattern of behavioral and causal structure such as heat flow. The generic models 

are abstracted from the SBF device models of a known design situation, indexed by the 

functional/behavioral abstractions, and stored in memory. Given a new design situation, the stored 

generic models are accessed and instantiated to help create SBF models for the new-situation. 

The IDEAL system (Bhatta & Goel 1993) instantiates the extended theory of adaptive modeling. 

Thus, depending on the design situation presented to it and its relation to the available knowledge, 

IDEAL can use different model adaptation strategies ranging from incremental revision of known 

SBF models within the problem domain to cross-domain analogical transfer of modeling 

knowledge in the form of generic models. The SBF theory of device comprehension and the 

adaptive modeling theory of solving design problems together provide us with the representation 

and processing structures for beginning to build a computational account of the constructive 

modeling reasoning process in science. 

6. Synthesis of Theories 

By itself "constructive modeling" provides an outline for a process of scientific reasoning that 

results in conceptual change. In order to acquire a more specific understanding we have been 

developing of a computer system based on the principles of adaptive modeling to model our 

interpretation of the Clement protocol. This collaborative effort engages a problem central to 

cognitive science as an interdisciplinary research field: How can theories from different disciplines 

be synthesized to provide a richer understanding of reasoning processes? And how might a 

synthesis be utilized to develop computational systems for experimentation?   In this project we 

have a cognitive-historical theory of constructive modeling paired with the computational theory 

of adaptive modeling. The result of this pairing is that we are provided with 2 kinds of constraints 



for the choices we make in modeling the system. The first are cognitive constraints draw from a 

"cognitive- historical" synthesis of philosophical, historical, and psychological studies of human 

reasoning. These include both interpretive constraints for analyzing data and processing 

constraints in the form of coarse-grained commitments. The second are computational constraints 

drawn from computer science and theories of cognition which include tractability, inferencing 

capability, and representational adequacy.  Thus the choices we have made in building the 

ToRQUE system garner support from both theories and the interaction between them.  In the 

next section we justify some of the choices that we have made in the development of the 

ToRQUE system with respect to the computational and cognitive constraints of the these 

theories. In so doing we pave the way for a new cognitive theory of scientific reasoning which 

draws upon aspects of both. 

7. Computational Analysis 

For S2's reasoning the choice of adaptive modeling is particularly apt computationally for two 

reasons: there is a good match between the SBF formalism and the physical systems in question 

(i.e. springs, flexible rods, etc.) and, more importantly, SBF representations provide significant 

benefits with respect to the kinds of inferences available, and the speed with which those 

inferences are carried out. The structure (S) of S2's initial model of a spring is clearly one of 

multiple coil components that interact with one another.   This interpretation is supported by S2's 

simplifying the representation by reducing the spring to a single coil: "It occurs to me that a 

single coil of a spring wrapped once around is the same as a whole spring." (023) The inference is 

not that a coil is equivalent to a spring, but that it has the same basic function (F) as a spring, 

because in most respects a coil is not the same as a spring, (e.g. it does not look like a spring or 

have the same structure as a spring)  This inference provides evidence that S2 used separate 

notions of function (F) and structure (S). A spring and a coil can be "the same" functionally while 

not being the same structurally or topologically.   It also shows that S2 considered the spring as 

divided into multiple coil components. 

The task that S2 completed involves assessing the behavior (B) of a particular physical system 

with regard to its structure (S). Given a particular property of the spring's structure, e.g. the 

diameter value, how will the behavior of the spring be affected?   S2's attempt to solve this 

problem requires having a representation of the behavior in question or being able to generate one 



quickly.   One of the advantages of adaptive modeling is that the explicit storage of this behavior 

provides a significant computational advantage over the generation of the behavior.  The kind of 

inferences that can be made given the stored behavior are also important.   For example, when S2 

noticed the difference (change in slope in the flexible rod vs. uniform slope in the spring), he did 

so because the behavior shows this difference to be salient. By separating structure, behavior, and 

function into separately analyzable units, the SBF formalism prunes away differences that are 

irrelevant to the task, and makes it easier to target areas of significant difference.  Thus once the 

model is paired with a task it is possible to see the salient differences without being distracted by 

ontologically distinct kinds of differences. 

Once S2 considered a single coil in place of an entire spring we see that he began to focus on 

the topological feature of circularity.   At this point in the protocol he has already considered the 

behavioral and structural differences, and has made some adaptations with respect to these parts 

of the model.  The difference between the behavior of the flexible rod and the spring provided the 

initial set of salient differences and the structural adaptation from many coils to one coil allowed 

S2 to focus his attention on what turned out to be the most important differences: circularity and 

orientation. 

At this stage in the protocol ToRQUE's SBF model of a coil and the SBF model of a flexible 

rod each have a single component which has the function of providing a restoring force. Because 

"Structure" refers to components and the connections of components, the structures of two 

devices with a single similar component are necessarily the same. The topologies of these 

devices, however, may still be significantly different. That S2 addressed the differences in this 

order provides further support that SBF structures are a useful ontology for focusing inferences. 

Problems such as S2's that involve behavioral aspects of the physical system are handled best by 

focusing on behavioral differences first. Thus S2 is required to make use of the topological 

differences between the coil and the flexible rod, only after he has pruned away those differences 

which are presented by the behavior and structure. 

Just as IdEAL uses generic teleological mechanisms (GTMS) for adapting models, ToRQUE 

uses generic topological transformation mechanisms (GTTMS) for adapting models. Here we 

describe the use of these mechanisms with respect to S2's reasoning in the final insight section 

interpreted in Section 3. In ToRQUE, the "Reduce-Repeating-Components mechanism" is used 



to reduce the spring to a single coil (Figure 5c). The "Transform-Segment-to-Closed-Figure" and 

Transform-Planar-Orientation bend the rod into a coil (5d). We assume here with S2 that a coil 

"is a circle with a break in it". Figure 5e shows is the progression of closed-figure 

transformations, which lead to the hexagonal coil, the discovery of torque, and the exaggeration 

of the effect by the square coil model. By adapting the coil from a circle to a polygon, S2 was 

able to introduce new components into the model -structure.  Each side of the square, e.g., could 

now be treated as a flexible rod component, but with the significant change in orientation that 

now makes for twisting rather than bending at the joints. Thus a small topological change can 

result in a fairly large behavioral change, making new knowledge available from which to make 

inferences. 

The most important inference occurs in evaluating the square coil. S2 had recognized the 

generic physical principle (GPP) of torsion in the hexagonal coil and constructed the-square coil 

to examine it.   He was reminded of this principle because of the behavioral and structural 

similarities between the GPP and the polygonal 

models. In Section 3 we interpreted S2 as 

making a final series of inferences only implicit in 

the protocol that involve the generic abstraction 

of the square coil with respect to torsion. To be 

satisfied that he had solved the problem, he 

needed to hypothesize that if torsion is true of 

square coils, perhaps it is true of all coils and to 

make the appropriate extrapolation. ToRQUE 

incorporates the GPP into the circular coil model 

through the Transform-Discrete-to-Continuous 

GTTM, which depends upon a knowledge of 

limits which we know S2 possesses: A 

continuous shape such as a circle can be thought 

of as containing an infinite number of 

infinitesimally small segments. Figure 5(f) shows 

the transformations from the square coil back to 
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an adapted model of the circular coil that capture our interpretation. 

8. Conclusion 

Our conceptual analysis provides a plausible interpretation of S2's reasoning as relying 

significantly on generic modeling. Our computational analysis shows how generic modeling, 

through using models (e.g. generic coils), mechanisms (e.g., GTTM's), and principles (e.g., 

torque), can achieve conceptual change. Here we highlight two significant conclusions that show 

the synergy of our interdisciplinary collaboration: 

• An important issue in generic modeling is how to make the right inferences at the right 
times. SBF models enable and constrain these inferences. 

• In analyzing protocol and historical data there are places where the reasoning process is 
not explicit, as in the portion of S2's reasoning we examined here. Interpretations of these 
processes gain plausibility by their instantiation in computational systems such as 
ToRQUE that develop out of an interdisciplinary analysis of creative reasoning. 
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1. Background, Motivations, and Goals 
Scientific progress involves a complex interplay between data about the phenomenon 

under study, languages for describing the phenomenon, and content theories of the phenomenon. 

In particular, when there is a good match between interpretations of the modeling constraints 

represented in the data and the available languages for modeling the constraints, then it becomes 

possible to develop more precise and detailed content theories. Our goal is to develop new 

content accounts of significant processes involved in scientific discovery. This paper represents 

one step in a research program that merges a cognitive-historical model of historical discovery 

processes, verbal protocols collected from scientists, and AI languages for describing, analyzing 

and modeling scientific discovery. 

Bacon [Langley et al, 1987] is a good example of early AI systems that modeled scientific 

discoveries. Bacon uses the AI language of problem spaces, production rules and heuristic search 

for modeling the discovery of simple algebraic patterns in complex scientific data. Transgene 

[Darden, 1991a] is a more recent example of an AI system capable of scientific theory formation. 

It views a scientific theory as an abstract "device" and data-driven scientific theory formation as a 

kind of device "redesign." Transgene uses AI languages for device modeling for representing 

early theories of plant genetics in the form of a functional device model. Its redesign process is 

constrained by a prior analysis of the historical data on theory revision in plant genetics around 

1900. As additional cases of scientific discovery from different domains are analyzed, and as new 

AI representation and processing languages are developed, it becomes possible to develop richer 

computational models of various aspects of scientific discovery. 

We view scientific "discovery" as "design" or "construction" in the process of solving 

problems. This view links scientific understanding and explanation to problem solving and 



representation through a reasoning process that we call "constructive modeling" (Nersessian 

1992, 1995, in press). The quest for understanding, for possessing a satisfactory explanation of 

some phenomena are driving forces behind scientific discovery. We interpret Simon's claim that 

problem solving is representation as an expression of this aspect of scientific discovery. The 

problem solver represents and re-represents a problem until the answer is obvious, i.e. the solution 

is understood and a satisfactory explanation is in hand. Constructive modeling is an iterative 

reasoning process that employs analogical and visual reasoning and mental simulation to create 

and adapt representations of a target problem. 

We first identified the reasoning process in a case of creative scientific problem solving 

that resulted in major conceptual innovation in physics: James Clerk Maxwell's construction of the 

electromagnetic field equations (Maxwell 1861-2; Nersessian 1984, 1989, 1992, 1993, in press). 

In the process of constructing the equations, Maxwell added a new explanatory device to the 

conceptual and analytical resources of the physics community, the field representation of forces. 

As we have discussed in great detail in earlier work, Maxwell derived the field equations by 

constructing a series of models embodying the pertinent physical and mathematical constraints. In 

the process he used multiple knowledge domains, including, electromagnetism, continuum 

mechanics, and machine mechanics and various informational formats, including equations, 

linguistic representations, diagrammatic representations. Once identified, similar modeling 

practices can be seen to be widespread in science and engineering. Newton's modeling of the 

motion of the moon by means of an object falling from a mountain and Rutherford and Bohr's 

modeling of the motion of an electron by means planetary motion provide comparable cases of 

historic discovery. Additionally, we have identified instances of constructive modeling in studies 

of technological invention (Gorman & Carlson 1990). Further, we believe much of the informal 

modeling exhibited by expert subjects in protocols of problem solving experiments conducted by 

cognitive scientists can be interpreted as instances of constructive modeling (See, e.g., Chi et al. 

1981, Clement 1989, Larking al. 1980, Nersessian 1995). 

The analysis of constructive modeling developed initially as part of a philosophical theory 

of conceptual change in science. Drawing from historical data we hypothesized that the kind of 

modeling practiced by Maxwell, Newton, and others is not simply an "aid" to scientific reasoning 

but that it is in fact a central mechanism of conceptual change. Since the modeling process 



employs analogy, visual representation, and simulative reasoning we have investigated a cross 

section of cognitive science research in the areas of analogy, visual/diagrammatic reasoning, 

mental modeling, and expert/novice problem solving to assist in developing a cognitive-historical 

model of the process (Nersessian 1992,1995).  The theory views the constructive modeling 

process as highly productive of representational change because it requires synthesizing   ~ 

constraints from the problem domain with constraints drawn from one or more analogical sources 

into models that provide interpretations of the phenomena under investigation.   Further, 

constructive modeling brings to bear on the problem knowledge that is represented in different 

informational formats: some knowledge of constraints is expressed in language and equations; 

some is implicit in visual representations; some is either explicit or implicit in the analogies 

employed. We hypothesize that one major advantage of reasoning via model construction is that 

the models enable scientists to perform mental simulations that embody and operate with explicit 

and implicit constraints. These simulations provide an interplay between formal and informal in 

construction and evaluation. 

To explain how constraints from often disparate domains can be successfully integrated 

into a single model, the theory posits the central role of generic mental modeling in promoting 

analogical retrieval and transfer and in enabling model adaptation. The construction process 

continues until a model of the same type with respect to, e.g., the mechanism or process under 

investigation is constructed.   This generic model can then be reapplied to the problem to provide 

a domain-specific solution. For example, Newton's generic model of projectile motion can be 

reapplied to the domain of planetary motion to determine that the planets move nearly in ellipses 

around the sun. 

As part of a philosophical theory, constructive modeling is in the form of a cognitive- 

historical model which makes high level, coarse-grained representational and processing 

commitments that provide a framework for understanding representational change. We are 

developing a more precise understanding of this important reasoning process through interaction 

with the computational theory described in Section 4, beginning with a computational analysis of 

a problem solving protocol we interpret as exhibiting this process. 

Since we view scientific "discovery" as "design," it follows that we should start with AI 

theories of design for identifying language constructs and processing structures for building 
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computational accounts of constructive modeling in science. In an independent line of research, 

we have developed an AI theory of conceptual design of physical devices that views device design 

as model construction. This theory, called adaptive modeling, arose from our work on the Kritik 

project [Goel 1989, 1991a, 1991b; Goel and Chandrasekaran 1989, 1992]. A designer's 

comprehension of the functioning of a known device is represented in the form of a 

structure-behavior-function (SBF) model that provides a functional and causal explanation of how 

the structure of the device delivers its functions. New devices are designed by constructing SBF 

models for them, and new models are constructed by adapting the models of known devices. The 

SBF models of the new device designs are verified through a form of qualitative simulation, and, 

if needed, revised. The Kritik project led to the identification of a set of general adaptation 

strategies for modifying the models of known devices and for revising the models of new designs. 

Recent work along this line of research has naturally led us to a theory of creative 

conceptual design. This theory extends and expands Kritik's theory of adaptive modeling by 

incorporating analogical transfer as another family of adaptation strategies. It posits generic 

models for mediating the analogical transfer. In particular, it identifies two kinds of generic 

models: generic teleological mechanisms (GTMs) and general physical processes (GPPS) [Goel 

1989; Stroulia and Goel 1992; Bhatta and Goel 1993, 1994]. A GTM specifies a pattern of 

functional and causal structure such as feedback while a GPP captures a pattern of behavioral and 

causal structure such as heat flow. The generic models are abstracted from the SBF device models 

of a known design situation, indexed by the functional/behavioral abstractions, and stored in 

memory. Given a new design situation, the stored generic models are accessed and instantiated to 

help create SBF models for the new situation. The IDEAL system [Bhatta, 1995] instantiates the 

extended theory of adaptive modeling. Thus, depending on the design situation presented to it and 

its relation to the available knowledge, IDEAL can use different model adaptation strategies 

ranging from incremental revision of known SBF models within the problem domain to 

cross-domain analogical transfer of modeling knowledge in the form of generic models. The SBF 

theory of device comprehension and the adaptive modeling theory of solving design problems 

together provide us with the representation and processing structures for beginning to build a 

computational account of the constructive modeling reasoning process in science. 



As our first attempt at developing a computational model of constructive modeling in 

science we examine an expert problem-solving protocol obtained in a interview conducted by 

John Clement (1989). As we interpret this protocol the subject used constructive modeling to 

satisfy himself that his initial solution to a problem was the correct solution. This example is 

much more constrained than the historical cases of scientific discoveries, yet complex enough to 

require that we wrestle with many of the quite difficult modeling issues the historical discoveries 

present. We concur with Herbert Simon (Simon, 1981) in presupposing that the problem-solving 

strategies scientists have invented and the representational practices they have developed over the 

course of the history of science are sophisticated and refined outgrowths of ordinary reasoning 

and representational practices (Nersessian 1992). The solution to a specific problem may or may 

not be possible within the confines of existing conceptual and analytical resources in the problem 

domain. When the resources within the problem domain are inadequate, the scientist may have to 

bring additional resources from other domains or create new resources. "Scientific revolutions" 

are the most dramatic examples of this. In the protocol we analyze, the reasoning of the expert 

subject is within the domain of the given problem. But with this limitation, the reasoning manifests 

much of the complexity and power of constructive modeling. Modeling cross-domain reasoning 

naturally requires a much greater infusion of knowledge into our computational model. This is 

possible in principle but is feasible in practice only when the viability of the modeling framework 

has been demonstrated. 

In Section 2 we present a theoretical analysis of the constructive modeling reasoning 

process; in Section 3, a conceptual analysis of the experimental protocol as a case of 

constructive modeling; in Section 4, a discussion of the AI theory of adaptive modeling that 

informs our computational model, and in Section 5, a computational analysis that we are 

developing of the experimental protocol. 

2. Constructive Modeling 

For AI to make substantial progress in modeling creative scientific reasoning processes it 

needs to start from a rich understanding of what these processes are in actual scientific practice. 

On our interpretation of the historical records, constructive modeling is a reasoning process that 

has produced significant representational change in science. Thus we begin by laying out the 



framework of constructive modeling to provide at least a flavor of the nature of the 

representational and processing resources required of an AI system to perform this kind of 

scientific reasoning. This will assist in the argument we present later in the paper as to why we 

believe the choice of adaptive modeling theory appropriate for building a computational theory of 

the constructive modeling reasoning process. 

Most computational approaches have been taking formal reasoning as the prototype for 

scientific thinking, as have traditional accounts of scientific reasoning developed in the philosophy 

of science and employed at least tacitly by historians of science. The Maxwell case provides a 

particularly salient example of the novelty of our interpretation. On the "standard" interpretation 

the models Maxwell constructed were at best "merely suggestive" (Heimann, 1970) at worst, an 

"unproductive digression" (Chalmers, 1986) or fraudulent representations cooked up after he had 

derived the field equations through formal reasoning (Duhem 1902, 1914).   On the constructive 

modeling interpretation model construction constitutes the reasoning process through which he 

derived the equations. As will be discussed in Sections 4 and 5, it is the constructive modeling 

interpretation of such reasoning exhibited in the historical and protocol records that makes our 

choice of AI theory appropriate. 

2.1. The Maxwell Case 

Since we are beginning our computational analysis with the experimental protocol 

obtained by Clement, we will provide only a brief description of an historical case of constructive 

modeling.   We outline the reasoning Maxwell used in constructing a mathematical representation 

of the field conception of electromagnetic forces so that we may refer to it in theoretical analysis 

in the following sections on constructive modeling. 

Maxwell (1861-2) started his reasoning with the goal of constructing a unified 

mathematical representation of the production and transmission of electric and magnetic forces 

with a time delay; i.e., of constructing a field representation of electromagnetic phenomena. He 

began in a setting rich with conceptual and analytical resources, and significant experimental 

results. This environment provided, among other things, the initial constraints of the target 

problem: (1) electric and magnetic actions are at right angles to one another, (2) the plane of 

polarized light is rotated by magnetic action, (3) there is a tension along the lines of force, and (4) 



there is a lateral repulsion between the lines of force. Using these constraints, Maxwell first 

retrieved an elastic fluid medium as an analogical source. Note that, although we today view 

electromagnetism and continuum mechanical phenomena as different domains, from Maxwell's 

perspective the initial model was constructed using an intra-domain source because he believed 

the electromagnetic medium ("aether") to be a continuum mechanical system. He then 

constructed an initial model satisfying constraints drawn from the domains of electricity, 

magnetism, and continuum mechanics. This model describes the electromagnetic field as a fluid 

medium composed of vortices and under stress (Figure 1 a). In the initial phase of the analysis 

Maxwell concentrated on a single vortex and how its stresses and strains under motion represents 

the effects of various magnetic phenomena (Figure 1 b). 

In the next stage of the reasoning process Maxwell examined the dynamical interrelations 

between electricity and magnetism, i.e., electricity produces magnetism and vice versa. Thus, in 

the model he needed to examine the dynamical interactions among the vortices. But this 

presented him with a problem since the vortices are all spinning in the same direction and friction 

at the points of connection would make the system stop.   Thus, at this point he sought a different 

mode of connection among them. He made a cross-domain analogy to machine mechanics and 

introduced "idle wheel particles" between adjacent vortices, creating a hybrid model (Figure i .  . 

He derived the mathematical representations for the dynamical relations between current and 

magnetism by expressing these in terms of relations between the particles and the vortices. 

Finally, by endowing the vortices with elasticity and representing electrostatic polarization by 

elastic displacement of vortices, he was able to calculate the wave of distortion produced by the 

polarization. This completed the solution to the target problem solution in that he had a unified, 

quantitative representation of the of the continuous transmission of electromagnetic actions with a 

time delay. 

Maxwell formulated the laws of the electromagnetic field by abstracting from the models 

what continuum-mechanical systems, certain machine mechanisms, and electromagnetic systems 

have in common. We call this process "generic modeling" in the analysis below. In their 

mathematical treatment, these common dynamical properties, relations, and functions are 

separated from the specific systems in terms of which they had been made concrete. Once he had 

abstracted these properties, relations, and functions he was in a position to reconstruct the 



equations using generalized dynamics (Maxwell 1864). because he knew how to represent 

potential and kinetic energy in the medium. This analysis assumes only that the electromagnetic 

system is a generic "connected system" that possesses elasticity and thus energy. 

Figure 6 provides a schematic representation of Maxwell's constructive modeling process. 

In the construction process the analogical source domains provided constraints that were 

integrated with electric and magnetic constraints to create and enhance imaginary mechanical 

models which then could be mapped to the electric and magnetic systems. From Maxwell's 

writing it seems clear that his representations of the vortex medium and the intermediate 

abstractions such as fly wheels are largely visual. Further, reasoning with the models appears to 

require that they provide simulations. In the paper itself, Maxwell provided an extensive set of 

instructions for how his readers should visualize and animate the models in their own reasoning. 

2.2. Symbolic and Iconic Representations 

To clarify our analysis we will follow C. S. Pierce (1931-1958) by distinguishing two 

general kinds of representation, "symbolic" and "iconic". Symbolic representations include 

linguistic expressions and equations composed of symbols. These represent a physical structure 

or process by making propositional claims about it. Symbolic representations are interpreted as 

referring to objects, properties, and relations descriptively and can be evaluated as being true or 

false. Iconic representations include such things as diagrams, models, and gestures. Iconic 

representations are interpreted as representing objects, properties, and relations demonstratively 

and can be evaluated as being accurate or inaccurate. A model, thus, represents a physical 

structure or process by having surrogate objects with properties, relations, behaviors, or 

functions that are in correspondence to it. 

Symbolic and iconic representations support reasoning in different ways. They enable 

different kinds of operations that can be applied to the representations. Operations on symbolic 

expressions include the familiar operations of mathematics and logic. These are truth preserving if 

the symbols are interpreted in a consistent way and the properties they refer to are stable in the 

environment. Additional operations can be defined that support reasoning in limited domains 

provided the operations are consistent with constraints that hold in the domain. Operations on 

iconic representations involve transformations of the representations that change their properties 



and relations in ways consistent with the constraints of the domain (See, e.g., Hegerty 1992 on 

pulley systems).   Significantly, transformational constraints represented in iconic representations 

may be implicit, e.g., a person can simulate what happens when a rod is bent without having an 

explicit rule that says what happens, such as "given the same force a longer rod will bend farther." 

A simulation with an iconic representation involves constructing a model and running it, 

that is, produce new states. Constructing a model requires understanding the constraints 

governing the kinds of entities in the model and the possible structural, causal, and functional 

relations among them. Running a simulation requires understanding the constraints governing 

how those kinds of things behave and interact and how the relations can change. In a human 

reasoner the mental apparatus puts together constraints to achieve a causally coherent unfolding. 

Performing a simulation with a model supports inferences because the simulation complies with 

the same constraints as the system it represents. Further, changing the conditions of a model 

supports inferences about differences in the ways that a system behaves. Knowing a model means 

already having some facility with the constraints that are needed to construct and run it. A 

simulation creates new states of the system being modeled, which in turn create or make evident 

new constraints. A significant part of the creative process in scientific discovery is determining 

appropriate constraints for models in a domain. 

2.3. Reasoning via Constructive Modeling 

"Constructive modeling" is an iterative reasoning process of constructing and running 

iconic or mixed representations of a target problem. It is a semantic process in which the models 

produced are proposed as interpretations of the target satisfying specific constraints. Figure 4 

provides a schematic representation of the process.   Constructing a model starts with properties 

and relations of a target system that serve as constraints to be satisfied by the initial model (e.g., 

Maxwell's initial electromagnetic constraints). A source domain satisfying some initial target 

constraints is retrieved (e.g., the continuum mechanics of elastic fluids). From this domain an 

initial analog model is retrieved or is constructed in the case where no direct analogy exists (e.g., 

initial vortex model). This initial model - and each constructed model - serves as a source of 

additional constraints that interact with those provided by the target system to create an enhanced 

understanding of the target, in particular by making explicit further target constraints (e.g., 



mathematical constraints governing the interaction of electricity and magnetism). The constraints 

can be supplied in different informational formats, including equations, texts, kinesthetic, 

diagrams, pictures, maps, and physical models. The model construction process involves different 

forms of abstraction (limiting case, idealization, generalization, generic modeling), constraint 

satisfaction, adaptation, simulation, and evaluation. Additional source domains may be called 

upon throughout the iterations (e.g., machine mechanics). This cycle is repeated until a 

satisfactory representation of the target problem is achieved. This representation is a model of the 

same type as the target problem with respect to the salient target constraints (e.g., the vortex - 

idle wheel system and the magnetism and electricity systems are the same type with respect to 

dynamical structure). 

Constructive modeling draws on the conceptual, material and analytical resources of the 

community in which the problem solver is situated. Concepts supply families of constraints that 

provide resources for constructing models. The resources of concepts include both their 

constituent constraints and the conventions of representation of those constituents developed by 

communities of practice for referring to properties, relations, and regularities of systems discussed 

in terms of those concepts. The material environment provides such resources as iconic 

representations that are drawn, gestured, or otherwise constructed, symbolic representations that 

are written or spoken, and experimental equipment. The analytical resources of a community 

include various modeling tools that include, among others, mathematics, diagrammatic forms of 

representation,, and computer simulations. 

Clearly, to engage in constructive modeling the reasoner needs to know the generative 

principles and constraints for physical models in one or more domains. This is why analogy plays 

such a significant role in the constructive modeling process. On our account, the function of 

analogies is to provide constraints and generative principles for building models. Thus we view 

relations between domains in terms of the constraints they share. These constraints and principles 

may be represented in the different informational formats and knowledge structures that act as 

explicit or tacit assumptions employed in constructing and adapting models during problem 

solving. Since these constraints are domain-specific they need to be understood at a sufficient 

level of abstraction in order for retrieval, transfer and integration to be possible. We call this level 
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of abstraction "generic".   "Generic modeling" plays a central role in facilitating analogical 

retrieval, mapping, and adaptation in the model construction process. 

2.4. Generic Modeling 

There are several ways in which generic modeling plays a role in the constructive 

modeling process: generic abstraction is employed to create representations that incorporate 

constrains from multiple domains; generic adaptation strategies are employed to make changes to 

models, such as topological transformations; and knowledge of generic mechanisms and 

principles is used in model construction and adaptation. 

Consider the generic abstraction process. To integrate knowledge from a wide range of 

sources into a single a model requires a kind of abstraction in which the various representations 

function with some of their features unspecified.  In reasoning, e.g., about a triangld, one often 

draws or imagines a concrete representation. Indeed as Kant has pointed out, one cannot imagine 

a "triangle in general" but only some specific instance of a triangle. However, in considering what 

it has in common with all triangles, humans have the ability to view the specific triangle as lacking 

specificity in its angles and the sides. That is, when the reasoning context demands it, the 

interpretation of the specific iconic representation can be as generic. In viewing a specific 

representation generically, one takes it as representing features common to a class of phenomena. 

Generality in representation is achieved by interpreting the components of the representation as 

referring to object, property, and relation types rather than tokens of these. 

What we mean can be more easily conveyed by looking at a simple example taken from 

Polya (1954). Polya considered two cases, abstracting from an equilateral triangle to a triangle- 

in-general and from it to a polygon-in-general (Figure 3). Loss of specificity is the central aspect 

of this kind of abstraction process. Polya called this process "generalization" in mathematics, but 

we prefer to call it "generic modeling" in order to distinguish it from the process of "generaliza- 

tion" in logic. The figures presented are concrete, but the abstracted geometrical models are 

"generic". The generic triangle represents those features that all kinds of triangles have in 

common. The generic triangle has some of its salient features unspecified: the lengths of the 

sides and the degrees of the angles. The generic triangle is neither isosceles, scalene, nor 

equilateral. In contrast, a logical generalization from one equilateral triangle to all equilateral 

11 



triangles maintains the specificity of these salient aspects of "equilateral". In abstracting from the 

generic triangle to the generic polygon, additional features are left unspecified, viz., the number of 

sides and the number of angles of the figure. 

Maxwell's introduction of idle wheels particles into the vortex-fluid medium provides an 

especially good instance of generic abstraction on the interpretation provided by constructive 

modeling (Figure 2). First, Maxwell abstracted the generic model of spinning wheels from his 

initial model of the electromagnetic medium described as vortices (A). The generic model of 

spinning wheels reminded him of specific mechanical systems containing machine gears (B). He 

noticed the analogy between the vortices and the gears (C) but how this analogy would provide a 

new mode of connection for the vortices was not yet clear to him. Next, from the model of the 

machine gears, he abstracted the generic model of fly wheels (D), and then further abstracted the 

fly-wheel model into a model of dynamically smooth connectors (E). Finally, he instantiated the 

generic model of smooth connectors in his model of the electromagnetic field in the form of idle 

wheel particles (F),where the instantiation is guided by both the analogous case of fly wheels (G) 

and constraints of the continuum mechanical system. A detailed analysis of generic modeling in 

Maxwell's analysis can be found in Nersessian (in press). 

Generic modeling is a strategy that is commonly employed in solving physics problems. In 

modeling a problem about a pendulum by means of a spring, the scientist understands the spring 

model as generic, that is, as representing the class of simple harmonic oscillators of which the 

pendulum is a member. We interpret studies of expert physicists' problem-solving practices 

carried out by cognitive psychologists as exhibiting generic modeling as a means of subsuming a 

problem under a class of problems (See, e.g., Chi et al. 1981; Larkin et al. 1980, Clement 1989). 

Generic modeling could account for the expert's ease of transfer among problems, which is 

lacking in novice problem solving.. 

As we have said, we interpret the constructive modeling process as requiring the ability to 

represent, view, and utilize information generically. It is an open question in need of empirical 

investigation as to whether generic representations are stored in the human memory or whether 

specific representations are called upon and viewed as generic when the reasoning process 

demands. In either case, expertise seems to play a significant role in having facility with generic 

modeling.  This is supported by the research of Mary Gick and Keith Holyoak (1980) which 
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provides evidence that in the process of analogical problem solving - especially with repetition - 

people create an abstract representations, or "schema", that facilitates transfer to a new problem. 

Once identified as such, we can see how the practice of generic modeling has played a 

significant role in the development of modern science. It was only by generic modeling, e.g., that 

Newton could see the commonalities among the motions of planets and of projectiles which 

enabled his formulating a unified mathematical representation of motion. The generic model 

represents what is common among the members of classes of physical systems. Newton's inverse- 

square law of gravitation abstracts what the motion of a projectile and a planet have in common. 

The inverse-square-law model continued to served as a generic model of action-at-a-distance 

forces through the 19th century for those who tried to bring all forces into the scope of Newto- 

nian mechanics. 

In our philosophical theory of conceptual change, generic modeling provides an 

explanation of many instances of creativity. One puzzle about radical conceptual change has 

always been that given the implausibility of ex nihilo creation, how can fundamentally new 

conceptual structures emerge since we must always draw from existing representations?  Generic 

abstraction makes it possible to bring knowledge from multiple domains to bear on a problem and 

have it transformed to such an extent that something truly novel is constructed.   Our earlier work 

on Maxwell shows this in some detail (See Nersessian 1992, in press). Through using Newtonian 

mechanical systems as the sources of analogies, Maxwell abstracted generic representations of 

objects, processes, and mechanisms from these analogies and constructed a series of models 

satisfying salient electromagnetic constraints. The generic representations, when applied to the 

class of electromagnetic systems yield the laws of a non-Newtonian dynamical system. 

3. The S2 Protocol 
Our case study derives from problem solving protocols taken from an expert subject 

during a laboratory experiment designed by John Clement (1989). Clement's own analysis of S2's 

reasoning focuses on a process he calls modeling via "bridging analogies". He characterizes this 

process as one in which the subject "produces models via a successive refinement process of 

hypothesis generation, evaluation, and modification or rejection" (p.358). It is the specific nature 

of the construction and "successive refinement" process that leads to our interpretation of S2's 
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reasoning as a form of constructive modeling.  The modeling process consisted of integrating 

constraints drawn from multiple sources, i.e., springs, bending rods, and geometry, into a series of 

models.    During the process he spoke of visualizations, drew diagrammatic representations, and 

used gestures to simulate dynamical processes to be performed with the models and to provide a 

three dimensional perspective. Throughout the process, as Clement has argued, S2 critically 

evaluated the plausibility of the models and the inferences he drew from them. Figure 5 provides 

a schematic representation of S2's reasoning as constructive modeling. 

According to Clement, S2 was a computer scientist who had some training in physics. He 

had also passed comprehensive examinations in mathematics in the area of topology, which is 

highly significant on our interpretation of the protocol session. S2's problem solving is embedded 

in a community of background knowledge, including analytical practices and conceptual 

resources. Some of that knowledge will be made explicit in our analysis of the constraints 

figuring in the modeling process. 

On our interpretation, S2 began the problem-solving session with the understanding that 

the stretch of a spring is due to it's flexibility. Through the constructive modeling process he 

derived a new understanding that a spring maintains constant slope when stretched through both 

twisting and bending.   So, although this is a more modest outcome of constructive modeling that 

evidenced in historical cases of scientific discovery, for S2 it was an instance of highly creative 

problem solving. For S2 to find a satisfactory explanatory model for the problem solution, he had 

to construct a novel representation for himself of how a spring works. 

In the following conceptual analysis we interpret S2's reasoning, focusing on the 

constraints and their origin at each stage, productive instances of generic modeling, and the 

geometrical insights that underlie the model construction and adaptation process.   It is these 

features of the process that have guided our selection of the AI theory of adaptive modeling as the 

vehicle for exploring constructive modeling computationally. 

3.1. Initial Problem Formulation 

The problem to be solved is "a weight is hung from a spring. The original spring (Figure 7 

a) is replaced with a spring made of the same kind of wire; with the same number of coils; but 

with coils that are twice as wide in diameter (Figure 7 b). Will the spring stretch from its natural 
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length more, less, or the same amount under the same weight? (Assume the mass of the spring is 

negligible compared to the mass of the weight.) Why do you think so?" 

We assume the initial constraints provided by the target problem are: 

• springiness 
• constant number of coils 
• variable coil width 
• negligible mass 
• constant added weight 

3.2. Model 1: Flexible Rod 

S2, along with a number of other subjects, quickly retrieved an initial analogy with a 

flexible rod (Figure 7c, d). S2 stated that stretching the spring coil to the limit would produce a 

flexible straight rod, which he later refers to as a "straightened spring". (005) We take this as a 

proposal that for the purposes of the problem, S2 assumed the rod and the spring are of the same 

type; i.e., they can be subsumed under a generic model of flexible wires. As a model, in the static 

case, the rod satisfies the constraints: 

• variable coil width -> variable rod length 
• negligible mass = negligible mass 
• constant number of coils can be subsumed under variable length 

In the dynamic case the mapping of the constraints would be: 

• springiness -> flexibility 
• constant weight = constant weight 

For many subjects, including S2, this led directly to the correct conclusion that the wide 

spring would stretch further, i.e., under the dynamic condition of bending the rod under a constant 

weight, increasing the length of the rod would increase the amount it would bend. S2, however, 

expressed immediate dissatisfaction with this model because he saw that the rod "would — droop 

like that [we assume a gesture] and its slope would steadily increase as you — went away from the 

point of attachment whereas in a spring the slope of the spiral is constant." (005) That is, S2 

recognized a new constraint that slope of the stretched spring is constant. We consider it 

plausible that S2's physics knowledge enabled a mental simulation of a bending rod that supported 

the inference that its slope is greater at positions closer to the weight. He later drew pictures to 
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explore this phenomenon.   Additionally, the slope of a rod becomes greater as the rod increases 

in length. So, in the dynamic case: 

• for the spring, slope = constant 
• for the rod, slope = increasing with distance from attachment point 

3.2.1. Enhanced Target Understanding (Target*) 

S2 began to question his hypothesis that the rod provided model of the same type as the 

spring. He first expressed uncertainty that his intuition about the spring was correct, and spent 

several minutes trying to convince himself of it. This led him to the correct conclusion that the 

wider spring would stretch further, but not to an explanation for why this would be so. He stated 

that the conclusion came from imagining what would happen to the wider spring as it stretched, 

based in the "kinesthetic sense that somehow a bigger spring is looser." (005) 

During the time it took to convince himself of the intuition about the constant slope of the 

spring, he drew pictures of rods and springs "to help fix [them] visually".(007) His drawing of the 

rod has it rotated at approximately forty-five (later ninety) degrees in the vertical plane. From this 

perspective, a rod fixed at the top would clearly bend with increasing slope ("flop") under a 

constant weight. The spring, on the other hand, would be free to "pivot" and "something about 

that sustains the angle...of the coil." (021) 

S2 now had the understanding that springiness is different from flexibility ("bendiness"). 

Thus, for the purposes of this problem, the rod cannot provide a generic model of the spring 

because it violates the derived constraint for the dynamic case. That is, although S2 did not state 

this explicitly, we assume that he understood that if two objects are of the same type regarding a 

mechanism of distortion, they should be alike in whether the distortion is or is not uniform 

throughout the extent of the object. A this point, then, he added the derived constraint: 

• spring slope remains constant during stretching under weight 

His enhanced understanding of the target problem led him to express the need for an explanatory 

model of how a spring works before he could be satisfied with his answer. 
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3.3. Geometrical Insight 

Before constructing Model 2 he generated two intuitions that would later be used in 

finding the satisfactory model. First, he noted that "a single coil wrapped around is the same as a 

whole spring" (023). We interpret this as a proposal that the single coil provides a model for the 

spring. In this context he rejected the proposal because it led him back directly to the rod model 

(a "straightened spring" coil). Second, he speculated that coiling is an accidental feature which 

led to the insight "surely you could coil a spring in squares, lets say, and it wouldn't - it would 

behave more or less the same." (023) Later and in a different context these intuitions would lead 

to the critical insight that torsion is what keeps the spring slope constant. 

In the present context, the second insight led to two unsatisfactory models that are hybrid 

modifications to the flexible rod model. These models derive from an attempt to integrate the 

constant slope constraint with the constraint that a spring is coiled. 

3.4. Model 2: Zigzag Wire 

In Model 1 S2 had assumed that coiling was "an accidental feature of the situation" (023) 

in the target case, but thinking about the spring as coiled in squares led to considering it as a 

possibly salient constraint: 

• coiling (i.e., repeating coiled segment) 

S2 stated "Ah! From squares, visually I suddenly get a kind of zigzag spring rather than a 

coiled spring" (023) and drew a picture of the zigzag model (Figure 7e). He then stated that the 

drawing was to be viewed as a "2-dimensional spring", not as a "profile of a 3-dimensional 

spring." We interpret this and his drawing to indicate that he was making an adaptation to the 

spring that gave it the form of a series of repeating rod segments.   He endowed this model with 

the constraints: 

• rigid bars 
• bending at joints 

The model is an attempt to satisfy the possible constraint, in that 

• coiling -> zigzagging (i.e., repeating rod segment) 
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But he quickly saw that in the dynamic case it fails to satisfy his enhanced understanding of the 

target constraint of constant slope. 

3.4.1. Enhanced Target Understanding (Target++) 

In making the inference that the zigzag model does not satisfy the slope constraint, S2 

appears to be drawing on physics knowledge: 

• for the zigzag, the springiness is at the joints 
• for the spring, the springiness is distributed along it 

S2 understands bending at the joints is incompatible with uniform distribution of the stretch. This 

violation of type is a version of the one used to reject the rod model, i.e., the distortion of 

stretching is uniform throughout the helical spring, but is not in the zigzag model. Thus, the 

model and the spring cannot be alike with respect to the mechanism of stretching.    ' 

For S2 the target problem now contains the additional constraint: 

• in a spring there is a uniform distribution of the stretch 

3.5. Model 3: Rigid Connector Wire 

Model 3 is constructed by attempting to integrate the target constraint of distributed 

springiness with Model 2. S2 claimed to visualize a potentially satisfactory mechanism by making 

the rods flexible and connecting them via small rigid rods (Figure 7f). He expressed imagining 

"kinesthetically" (025) pulling it, seeing that it stretches and bounces, as does a spring. However, 

if they are to be of the same type, it should be possible to consider just one segment, just as one 

can consider a single segment of the spring. But one segment is similar to the single rod and that 

led him back to thinking about why Model 1 will not work. 

3.6. Geometrical Insight 

S2 next spent considerable time considering his "physical imagistic intuition" (025) about 

the slope of the bending rod.   He first called on mathematical knowledge of limits to consider 

what would happen by varying placement of weight along the rod and (after taking a phone call) 

"imagined" moving the weight along both the rod and the spring and drew pictures of what he 



was imagining . This was followed by a lengthy period of considering whether a spring with 

wider coils is the same as a longer spring, i.e., one with more coils. At the end of this reasoning 

segment he expressed more confidence in his answer, but he was still bothered by why the 

constant slope constraint of the spring is violated by straightening it into a rod. 

At that point he claimed to have a visual experience that "expressed what [he was] 

thinking" (049) With the rod one "is always measuring in the vertical — maybe somehow the way 

the — the coiled spring unwinds, makes for a different frame of reference." (049) This insight 

would lead, though not immediately, to Model 4, an open horizontal (3-d) coil (Figure 7g). First 

he again reassured himself that the spring has constant slope, calling this time on mathematical 

knowledge of differentials. He then noted that straightening the spiral of the spring vertically, as 

in the rod model, removes the curvature and observed that "all its curvature is sort of horizontal ~ 

or near horizontal as the coils curl around" (055). He then spent some time thinking about the 

geometry of unwinding the coil and the differences between spirals and helices, drawing a picture 

of a spiral and comparing it with his earlier drawing of unwinding springs. Clement records that 

during this process S2 traced a circle about 7 inches in the air in front of himself and claimed to 

"imagine a coil ~ a circle with a break in it. He drew (Figure 7g) an open single coil. 

3.6.1 Enhanced target Understanding (Target+++) 

This geometrical insight part of the session generated a target constraint that was salient in 

constructing Model 4: 

•     coiling is in the horizontal plane 

We hypothesize that the open horizontal coil enabled a different kind of mental simulation, in 

which simulating a downward pull produced a simulated vertical gap between corresponding 

points on a coiled wire. S2 then fixed his attention on that drawing and drew a straight line, 

commenting that the circle and the line are "paradigmatic" (117). We interpret him to understand 

that they are generic abstractions that capture what he now takes to be salient about the cases of 

the wound-up spring and the unwound spring, respectively. However, drawing the line as 

bending again revealed the increasing slope in that case. This reinforced his understanding that 

the rod and the spring coil are not of the same type with respect to the mechanism of bending. 
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At this point in the session S2 expressed the need to think about the problem "radically 

different way" (117) and decided to focus on the fact that the coils of a spring are circular. In the 

process he entertained as possibly salient the target constraint: 

•    the coils are circular in form 

3.7. Model 4: Polygonal Coil 

This was not such a "radically different" way of thinking about the problem since at this 

point S2 was seeking to reconcile the rod and circle models he had considered earlier. He 

achieved reconciliation by integrating the derived target constraints of circularity, of lying in the 

horizontal plane, and of uniform distortion with the rod model. This attempt at integration let to 

the key insight that there is twisting in addition to bending and this is what accounts for the 

constant slope of the spring. 

S2 recognized that transmitting the force incrementally along the circle in the horizontal 

plane stretches it bit by bit, as though it had joints, but with even distribution. At this point he 

recalled his earlier idea of modeling a spring by means of wound square coils, i.e., that a "square is 

sort of like a circle". (117) We infer him to mean that they are of the same type: squares, 

considered generically are polygons and polygons approximate circles in the limit. 

S2 immediately considered bending up the rod into an approximation of the horizontal 

circle to create "a continuous bridge" between the two paradigmatic cases. We take this as his 

attempt to ascertain if a rod bent in a joint-like fashion in the horizontal plane and a circle .bending 

under a force transmitted incremental are of the same type. This interaction between the 

enhanced target (unfolding circle) and the initial source model (flexible rod) lead to his 

constructing a series of polygonal models (Figure 16 a). 

S2 stated that for the purposes of the spring problem, circles and polygons (he noted 

triangles, squares and hexagons) cannot be that much different, i.e., are of the same type. He first 

drew a picture of a horizontal hexagon (Figure 7h) and saw immediately that the hexagonal model 

is a model of a different type from any considered before for how the constraints would interact in 

the dynamic case. S2's next statement described a simulation that provided a crucial insight: 

"Just looking at this (Figure 7h) it occurs to me that when force is applied here, you not only get a 

bend on this segment, but because there's a pivot here (pointing to' X' in Figure 7h), you get a 
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torsion effect ~ around here." (121) That is, in the horizontal plane, the force from the weight 

would create twisting at the joints - torsion - as the hexagon unfolds. He went on, "Aha! — 

Maybe the behavior of the spring has something to do with the twist forces [Clement recorded S2 

moved his hands as if twisting an object]. That's a real interesting idea — That might be the key 

insight - that might be the key difference between this [flexible rod], which involves no torsion, 

and this [hexagonal coil]." (122) Finally, S2 constructed the last model, drawing a square coil 

(Figure 7i) in order to exaggerate the torsion effect and considered the possibility that torsion is 

what "stops the spring from — from flopping." (126). 

We hypothesize that by employing generic modeling of the properties of the polygonal 

models S2 became convinced that unlike the rod model, these satisfy the constant slope 

constraint. Our interpretation of his reasoning process is as follows. Both the hexagon and the 

square models incorporate features of the rod because the straight-line segments can bend.   But 

because of their orientation, any polygonal models will localize the torsion at the corners, so the 

motion in stretching is that of twisting rather than bending at the joints. So there is torsion plus 

bending in the stretching process. Thus, the square coil model or the hexagonal coil model or any 

polygonal model provides a generic model of the spring coil with respect to the mechanism of 

stretching.  The key difference between the polygonal models and the zigzag and rigid connector 

models is that in the former the bending segment does not have to change directions as it does in 

the latter models, where the bend cannot be spread out so as to occur continuously in the wire. 

When the wire is coiled in the horizontal plane, the bend is in the same relation to each piece and 

the springiness is distributed evenly, satisfying the target constraints. The distribution of the twist 

would be even as seen by extrapolating the polygon to the limit of a circle.  Moving backwards 

from the square coil to the hexagon to intermediate extrapolations to the limit of the circular coil, 

the torsion that is localized at the corners spreads itself out in such a way that it becomes a 

uniform property of the spring (Figure 16b). 

S2 concluded the session by expressing that "I feel I have a good model of sp — of a 

spring ~ Now I realize the reason a spring doesn't flop is because a lot of the springiness comes 

from torsion effects rather than from bendy effects." (132) He went on to answer the problem. If 

the width of a coil is doubled, the increase in bending would also increase the torsion. Although 

the answer remains unchanged, i.e., the spring with wider coils will stretch further, the 
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understanding S2 has of a spring is considerably altered. With the spring-as-rod model, 

"springiness" is equated with bending. With the spring-as-horizontal-square model (or polygon), 

"springiness" is bending plus torsion. 

Clearly, S2's representation of a spring has changed and his constructive modeling process 

is generative ofthat change. The non-constant slope of the bending rod model cued S2 about the 

additional target constraint that the stretched spring has a constant slope. The zigzag and rigid 

connector models directed him to focus on the circular nature of the spring's coils and that they lie 

in the horizontal plane. And, most critically, simulating bending in the horizontally rotated 

segmented hexagonal coil model led him to recognize that there is an invisible twist distributed 

along the coils of a spring, keeping the slope constant when it is stretched. 

4. Adaptive Modeling 
So far in this paper we have developed the hypothesis of constructive modeling as a novel 

interpretation of a significant reasoning process found in many historical cases of scientific 

discovery. In addition, we have analyzed S2's reasoning in Clement's protocol as one example of 

constructive modeling in creative scientific problem solving. We now seek to understand this case 

in terms of a computational theory of conceptual design of physical devices. We believe this 

computational theory, called adaptive modeling, offers an AI language for developing describing, 

analyzing and modeling scientific discovery processes of the kind manifested in S2's reasoning 

under the constructive modeling interpretation of the data. 

The computational theory of "adaptive modeling" takes its name from the perspective it 

adopts on conceptual device design. Conceptual design generally refers to the preliminary phase 

of the design process. The problem-solving task in this phase takes a specification of the functions 

of the desired device as input. It has the goal of giving a high-level specification of a structure for 

the device as output, where the structure can deliver the desired functions. The perspective 

Adaptive Modeling adopts on device design is characterized by two views. First, it views device 

design as model construction. Thus the output of the problem-solving task is not just the device 

structure but a device model that specifies how the designed device is intended to work, how its 

structure delivers the functions desired of it. Second, it views device design as an evolutionär)' 

process in which new device models are constructed by adapting the known models of existing 
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devices. Depending on the differences between the specifications of the desired functions and the 

functions delivered by the known devices, adaptation strategies can range from revising the model 

of a known device, to generic modeling and use of generic models for transferring design patterns 

from one design problem to another. 

Kritik and IDEAL are operational knowledge systems that instantiate the theory of 

adaptive modeling, enable experiments with it, and provide well-defined AI languages. Built in 

the late eighties, Kritik integrated case-based and model-based reasoning for modeling 

evolutionary design of simple physical devices [Goel 1991a; Goel 1992; Goel and 

Chandrasekaran 1989,1992]. The key idea in the Kritik project was that evolutionary design 

involves both past design experiences (i.e., cases) and comprehension of how devices work (i.e., 

models) in creating new designs, that while the high-level process of design is largely case-based, 

device models give rise to both the vocabulary and the strategies for addressing the different tasks 

in the case-based process. The specific hypothesis in the Kritik experiments was that since the 

design task is a function —> structure mapping, the inverse structure —> function map of old 

designs may guide the adaptation of an old design to achieve a new functional specification. The 

structure —> function map of a device design in Kritik is specified as a Structure —> Behavior 

—> Function model. The SBF model of a device explicitly specifies the structure and the 

functions of the device as well as its internal behaviors that explain how the device functions are 

composed from the functions of its structural components. The behavior thus mediates between 

function and structure: it captures teleological and compositional knowledge of a device, and 

provides a functional and causal explanation of the how the structure of the device delivers its 

functions. 

Each design case in Kritik contains a case-specific structure-behavior-function (SBF) 

model, where the SBF models guide the adaptation of old designs to meet new functional 

specifications. The adaptation process result in the design of new devices and the construction of 

new SBF models that enable an evaluation of the new designs. In the Kritik experiments, we 

found that the SBF models not only give rise to adaptation strategies for modifying old designs 

and for evaluating whether the modified design achieves the desired function, but that they also 

provide a well-grounded vocabulary for indexing the design cases and enabling case retrieval and 

storage. Here we focus on the adaptation and evaluation tasks only. The SBF vocabulary enables 
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Kritik to note the differences between the specifications of a desired function and a similar 

function delivered by a design retrieved from the case memory. These differences between the 

functional specifications set up adaptation goals. The SBF model of the retrieved design enables a 

difference diagnosis that generates hypotheses about the structural elements responsible for the 

functional differences. Since the behaviors in the model capture teleological and compositional 

knowledge, they help in localizing diagnostic problem solving. The adaptation goals and the 

diagnostic hypotheses evoke repair plans, which, when instantiated in the context of the current 

SBF model lead to a revised model. The revised model enables a qualitative simulation to 

determine whether its behaviors can deliver the desired functions. If this evaluation fails, then the 

model is further repaired. This leads to device design and model construction by incremental 

model revision. 

The recently developed IDEAL system inherits all the representational and   . 

problem-solving capabilities of Kritik. In addition, it expands and extends the theory of adaptive 

modeling through the introduction of generic (i.e., case-independent) models for transferring 

design patterns from one design problem to another, where the target problem and the source 

analog may be in different domains. More specifically, IDEAL contains knowledge of two kinds 

of generic design patterns: generic teleological mechanisms and generic physical processes 

[Stroulia and Goel 1992; Bhatta and Goel 1993,1994]. A generic mechanism specifies a pattern 

of functional and causal structure, such as feedback, while a generic process captures a pattern of 

behavioral and causal structure, such as heat flow. The generic patterns are represented as 

behavior-function (BF) models, where a BF model is a functional and causal abstraction of over 

case-specific SBF models. When IDEAL succeeds in solving a design problem by constructing a 

SBF model for the desired device, it uses the new model, together with similar models in its 

analog memory, to acquire BF models of generic patterns. This kind of abstraction becomes 

possible because the SBF model provides a functional and causal explanation of the working of 

the new device. 

The generic models provide IDEAL with an enhanced set of adaptation strategies. As in 

Kritik, IDEAL uses differences between the specifications of a desired function and a similar 

function delivered by a design retrieved from the analog memory to set up adaptation goals. Also 

as in Kritik, its uses the SBF model of the retrieved design for difference diagnosis. Depending on 
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the specifics of the adaptation goal and the diagnostic hypothesis, IDEAL can evoke the repair 

strategies that involve use of generic models. Such a repair strategy specifies both a generic model 

represented declaratively in the form of a BF model and a skeletal plan represented procedurally. 

The repair plan instantiates the generic model in the context of the current SBF model. For 

example, one repair plan in IDEAL it inserts feedback loops in an electronic circuit by instantiating 

the corresponding generic teleological mechanism. Since the generic model of feedback was 

learned in the context of a different problem that may have been in a different domain, this is a 

process of analogical transfer. Since this kind of analogical transfer is mediated by generic models, 

and the generic models themselves are acquired through abstraction from case-specific models, 

we call this model-based analogy. 

5. Computational Modeling 

We turn now to the issue of computationally modeling S2's reasoning. Our conceptual 

analysis of the protocol described in Section 3 provides an interpretation of the protocol data as a 

form of constructive modeling. This provides the modeling constraints for our computational 

model and the theory of adaptive modeling briefly sketched in Section 4 provides the 

representational structures and problem-solving constructs for the task. We are presently 

developing a computer program called ToRQUE (for Theory Reconstruction through Questions, 

Understanding, and Evaluation) that accepts these modeling constraints and problem-solving 

languages as starting points. When complete, the program will enable detailed experimentation 

with, and potential refinement of, our conceptual analysis of S2's reasoning and both the AI and 

philosophical theories we are merging here. But, even in its current form, ToRQUE helps to 

make our conceptual analysis more precise and its assumptions more explicit. 

Current work on ToRQUE focuses on two elements of S2's reasoning: model revision and 

model evaluation. First, the issue of model revision: Given that scientists, such as S2, often 

possess incomplete mental models, i.e., models which are insufficient for answering certain 

questions, how are they able to construct more complete models which adequately answer those 

questions? S2 was placed in this position with the spring problem. He immediately realized this 

fact: "This is the first problem I've encountered - I note - where I had some doubt about being 

able to solve it." (001) S2 was aware that the knowledge needed to answer the question posed to 
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him is not readily available in his model of the spring, and therefore has some concern about being 

able to solve the problem. Second is the issue of model evaluation: once a model is retrieved or 

constructed, how does the scientist evaluate that model? That is, even when a mental model 

enables the scientist to answer a question, how does he evaluate the answer to the question? For 

example, S2 attempted to answer the spring question by making use of a model of an analogous 

system, the flexible rod. Even though he was able to answer the question, he was unsatisfied with 

his answer: "But then it occurs to me that there is something clearly wrong with that metaphor..." 

(005) What enabled S2 to know that his answer may not be correct? Model revision and 

evaluation represent two computationally significant problems that real scientists face, and by 

developing processes to model these problems, we come closer to modeling the more creative 

processes of science. 

5.1. Model Revision 

The theory of adaptive modeling suggests that one of the ways that incomplete models get 

completed is through adaptation, where the adaptation processes may involve analogical transfer. 

This is in contrast to other approaches to model completion (e.g. Gentner, 1983) in that the 

emphasis in our approach is on applying adaptation strategies to satisfy problem-solving goals and 

constraints, with analogical transfer representing one family of adaptation strategies. The 

adaptation goals and constraints originate from the overall reasoning goals of the agent (e.g., 

design, question answering, data modeling), the differences between the target problem and the 

source analog, and also the diagnosis of these differences. In our computational model of S2's 

reasoning, adaptation occurs between the initial model provided by the problem (the spring) and a 

retrieved Model 1 (the flexible rod), and also between this initial model and constructed Models 

2-4 (the zigzag spring, the rigid connector spring, and the polygonal coil).  This kind of model 

adaptation raises four important questions: 1) What is the knowledge content of the models? 2) 

How is a model searched for finding answers to questions? 3) How are the analog models 

retrieved? And 4) What parts of the analog (if any) provide the necessary constraints? In the 

following sections we focus primarily on questions 1, 2, and 4. We have put little emphasis on the 

retrieval issue (3) in developing ToRQUE, not because it is unimportant, but because we consider 

the other issues to be of greater relevance to this analysis. 
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5.1.1. Model Contents 

We begin by addressing the first of these questions. What is the knowledge content of 

S2's initial model of a spring? At the end of the protocol session when asked if he had done any 

past thinking about springs S2 replied: "Absolutely not, none of this resembles any thinking I 

remember doing, in fact I would say the most I ever did with springs was just coefficient of F=kx 

or F=kx or whatever it - type of stuff, where it doesn't have to be a spring at all, it can be anything 

elastic and the fact that it coils is irrelevant." (190) We can infer from the protocol that S2 had (or 

constructed) a generic model of springs. He knew that springs stretch in the sense that they are 

elastic, i.e., have a restoring force. We can also infer that he considered the spring to be made up 

of coils. He referred to the individual coils many times, e.g. "that is to say that the distances 

between the coils would be equal..." (013) and "I'm visualizing a single coil of a spring" (023). 

Thus the spring is a device having a function and made up of individual components. Also, there 

are structural, functional and causal relationships between these components. SBF models 

therefore are a logical choice for representing spring models 

In ToRQUE, we have made two modifications to Kritik's SBF models. First, while Kritii-V. 

SBF models were case-specific, ToRQUE uses the SBF language to represent more abstract 

models, e.g., springs in general as opposed to a specific spring. This allows us to adequately 

capture the generic concept of spring with which S2 works. Second, we have added spatial 

information to the SBF models. Since Kritik is interested in function —> structure conceptual 

design, the representation of structure in its SBF models was limited to topological relationships 

between components (e.g., connection, containment) that play a functional role in the working of 

the device. But the structural representation did not specify the spatial form of the components or 

the device. In the S2 protocol, however, the spatial form plays a much larger role, as he uses 

several topological transformations in model construction. The connection of components such as 

coils, for example, is dependent upon their orientation and the continuity of the connection. 

Figures 21, 22, and 23 illustrate the SBF model of a spring without the spatial information 

- we will return to spatial representation a little later. The model captures only the knowledge that 

we can safely assume S2 had about springs prior to problem solving. There are many inferences 
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which can be made from this model, but none which establish a relationship between the diameter 

of the spring and the stretch-function (as asked for in the question posed to S2). 

5.1.2. Model Search 

This leads us to our second question: How is a model searched for finding answers to 

questions such as "how does the diameter relate to the stretch function"? Questions in ToRQUE 

serve to set up initial reasoning goals. The question processing module accesses the particular 

function in question and can quickly determine if the diameter property effects or is effected by 

the stretch function. Depending on the question and the completeness of the initial SBF model, 

the model may explicitly specify the needed information. If this information is not explicitly 

specified, then ToRQUE attempts to establish paths of relationships between the variables that are 

specified in the model and that can answer the question. If this too fails to yield an answer to the 

question, as in S2's case, ToRQUE shifts to an alternative strategy for model adaptation based 

analogical transfer. 

5.1.3. Analog Retrieval 

Retrieval of a relevant model from memory involves the construction of a probe based 

upon the problem-solving context. Kritik uses functional specification of the target problem as 

the probe while IDEAL can use both functional and structural specifications for this purpose. The 

protocol on S2's reasoning provides some evidence for both kinds of probes. A flexible rod has a 

function nearly identical to that of a spring: they both provide a restoring force when an external 

force is applied. And S2 talks about how "springiness implies flexibility." Thus one might posit 

that S2 was looking for a device with a similar function, and thus uses the function of the spring 

as a probe into the analog memory. But one might also postulate that the retrieval is facilitated by 

a topological adaptation to the spring model, i.e. the stretching of the spring to its limit. When a 

spring is stretched to its limit it becomes a rod.  That the initial analog model was retrieved 

through this topological adaptation is supported by the protocol since S2 referred to the flexible 

rod as the "straightened out" (007) spring model. In this case, the structural form of the 

straightened out spring would serve as a probe to memory. In any case, as we stated previously 
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we have not yet implemented analog retrieval in ToRQUE; instead the system assumes that the 

model for the flexible rod is available in its working memory. 

5.1.4. Model Adaptation 

Given that we now have a source analog (flexible rod), what parts of the analog model 

should be used to construct a revised model for the target problem (Figure 8)? We break this 

question into two parts. First, what are the differences between the old model of the target 

problem (spring) and the initial analog model (flexible rod)? Second, given salient differences, 

what adaptations should one make to the target model? 

5.1.4.1. Difference Diagnosis 

Since S2's problem involves a particular function of the spring (stretch-function), and the 

SBF model for the spring explicitly specifies the behavior that accomplishes this function, the 

initial difference diagnosis involves only this behavior (see Figure 22) and the corresponding 

behavior in the SBF model of the flexible rod (see Figure 25). A search of these two behaviors in 

ToRQUE reveals that the varying slope in the flexible rod is not present in the spring. In trying to 

answer the question, "why should the fact that the spring is straightened out make any difference," 

S2 recognized that the spring has constant slope under the dynamical condition and took it to be a 

salient constraint of the target problem. A second difference, taken at this point to be only 

potentially salient, is that the flexible rod has only one component, while the spring has many. In 

the protocol S2 considered the possible salience of the repeating coiled segments in his 

construction of Models 2 and 3 (Section 4). ToRQUE recognizes this second difference both in 

the structural and behavioral representations of the spring and the rod. The stretch-behavior of 

the spring is caused in part by the behaviors of the individual coils (see Figure 23). But the bend- 

behavior of the rod does not have any corresponding components. 

The process ToRQUE uses to analyze these differences is graph-based. Behaviors in SBF 

models are represented as directed acyclic graphs in which the nodes represent behavioral states 

and the links represent state transitions. Differences between the models of target problem and 

the source analog are generated by tracing the behaviors and constructing a difference graph as 

each state and transition is traversed. When both behaviors have the same specific state (or 
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transition) then the corresponding difference node contains pointers to the two compared states 

(or transitions), as well as information about the slot-values in the particular states (or transitions). 

If the graphs are not isomorphic, then there may be states and transitions in either the source or 

the target which are not present in the other. The difference graph adds these nodes as well, and 

marks them as present in one behavior and not the other. Slot names are placed in one of the 

following categories in the difference node, depending upon their compared values: (1) in-A-not- 

B, (2) in-B-not-A, (3) A-and-B-type-equal, (4) A-and-B-value-equal, or (5) A-and-B-unequal. 

The various types of differences lead to significantly different types of inference. The 

varying slope and the transition difference described above are differences of type (1) and (2) 

respectively, which are treated as very significant, and which cause the reasoner to seek a way to 

eliminate them. Differences in value (4), however, are less important because analogs are 

expected to have different values. The issue of which features to consider important is greatly 

assisted by the SBF representations. This is because SBF models specify only those features that 

play a causal role in the functioning of the device. Surface level features such as color are not 

functional and therefore eliminated from consideration. 

5.1.4.2. Adaptation Strategies 

As in Kritik, the differences between the target and the source set up adaptation goals. 

These goals are accomplished using an array of adaptation strategies. And, as in IDEAL, some 

adaptation strategies may make use of generic mechanisms. But while IDEAL'S generic 

mechanisms represent functional and causal transformations (e.g., feedback), ToRQUE's generic 

mechanisms represent topological transformations. Because of this we first describe the spatial 

representations that they act upon. 

5.1.4.3. Spatial Representation 

ToRQUE captures the spatial aspects of models in the form of a volume of voxels 

(volume elements).   We use the notion that an object can be represented as a set of cubes. In the 

graphics literature this is know as a spatial-occupancy enumeration (see Foley et al, 1990; p. 549). 

In AI it has been utilized by Glasgow & Papadias (1992) as part of their visualization level of 

representation.   This volumetric representation is useful for capturing information which is not 
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represented descriptively by the model structure. Also, there are well know graphical techniques 

for transforming volumetric representations, which makes them convenient. 

A difficult issue with respect to any spatial representation is how to relate that information 

with the non-spatial content of the model. In ToRQUE this relationship is maintained by 

providing (x,y,z) values to the points of connection between components which correspond to 

points within the volume. A second means of connection is via equations. Geometrically a spring 

can be represented by a circular helix. The parametric equation [f(t) = r cos t i + r sin t j + d t k, 

where r is the radius of the helix and d is the displacement between coils] can be used to form the 

volumetric coordinates. Both r (actually 0.5 * diameter) and d are properties of the spring which 

are provided by the initial model. So while we can have a generic model of the spring, the volume 

must be a specific volume determined by particular values of the spring instance. This 

corresponds with the intuition that visual representations must capture some prototypical or 

exemplar case of the abstract model. 

5.1.4.4.   Constructing Intermediate Models 

Intermediate models are constructed by applying relevant adaptation strategies to a mode'. 

In S2's case, the relevant adaptation strategies make use of generic topological mechanisms. For 

example, by applying the generic topological transformation mechanism "Transform-3D-to-2D" to 

the spring model, the result is Model 2, a zigzag spring (Figure 9 a), which S2 says we are to 

consider "a..2-dimensional spring..It has no third dimension." (023) The generic mechanism when 

applied to the spring model performs an orthographic projection on the spring geometry to obtain 

a 2D picture of the spring. This 2D picture can then be analyzed for its particular geometrical 

features by simple image processing techniques. 

Currently we have identified eight GTTMs that S2 appears to use to construct 

intermediate models.  These mechanisms are: 

Reduce-Repeating-Components (behavioral) 
Transform-Closed-Figure (topological) 
Transform-3D-to-2D (topological) 
Transform-Planar-Orientation (topological) 
Transform-Continuous-to-Discrete (topological) 
Transform-Discrete-to-Continuous (topological) 
Transform-Segment-to-Closed-Figure (topological) 
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•   Transform-Closed-Figure-to-Segment (topological) 

The inverse of the first was identified by Bhatta (1995) as a Generic Transformation Mechanism 

(GTM) called cascading.  Cascading is an teleological mechanism used in design to increase the 

effects of a particular component.  For example, placing multiple batteries in serial progression 

will increase the current, while multiple resistors serially connected serve to increase resistance. 

We claim that when S2 reduced the spring to a single coil (Model 4), he was using a the reduce- 

repeating-components GTTM to carry out that adaptation.      S2 realized that the fundamental 

behavior of a single coil is the same as that of the whole spring: "I'm visualizing a single coil of a 

spring... Here's a good idea. It occurs to me that a single coil of a spring wrapped once around is 

the same as a whole spring" (023) Here S2 noticed that all the components are the same, and 

therefore might make sense to look at just one of the components.    The difference between 

Reduce-Repeating-Components and Cascading is that the cascading mechanism is used to change 

the function of the design, while the Reduce-Repeating-Components mechanism is used to 

simplify the model in question. 

5.1.4.5. Topology Transformations 

The seven remaining generic transformation mechanisms belong to a new class of 

adaptation strategies that we have begun to investigate in this work: generic topology 

transformation mechanisms (GTTMs)   GTTMs represent transformations to spatial forms of 

models.   They also represent knowledge of how topology transformations lead to structural and 

behavioral changes. In considering GTTMs we need to address how topological adaptations lead 

to structural and behavioral changes. 

The first GTTM that we have investigated is the "Transform-Closed-Figures" mechanism, 

(see Figure 10) S2 first brought up this mechanism at (023) when he asked: "Why does it have to 

be a coil? Surely you could coil a spring in squares, let's say, and it wouldn't ~ it would still 

behave more or less the same..."    Here S2 was calling the circularity into question.   He 

suggested that he could view the coils as squares.   We take this as evidence of a GTTM which 

allows S2 to transform closed figures such as circles into other closed shapes such as polygons. 
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At this point, however, thinking of square coils led S2 to have a visualization of the zigzag spring 

rather than following out the consequences of the Transform-Closed-Figures mechanism. 

Returning to this mechanism later in the session (117) led him to solve the problem.  The 

structural transformation of a circular component into a hexagon and then to a square involves 

replacing the coil component with a number of flexible-rod components. Thus, the topological 

change of transforming a circle into a polygon yields a structural change of replacing the coil 

components with bending rod components oriented at right angles to one another. Behavioral 

evaluation of this model leads to the discovery of torque in the coil (see Figure 19). 

The second topological GTTM is the "Transform-3D-to-2D" mechanism (see Figure 13). 

We hypothesize that there is a class of topological mechanisms for transforming the 

dimensionality of spatial representations. Currently we can only substantiate one member of this 

class, the "Transform-3D-to-2D" mechanism. This GTTM acts on the spatial occupancy array by 

taking an orthographic projection of the volume. An orthographic projection is performed by 

multiplying each point in the volume by a simple transformation matrix.   Figure 13 shows that 

there are 2 possible projections of a spring.   The projection from the x or y perspective, and the 

projection from the z perspective. Once a 2D diagram is obtained, a simple image processing 

algorithm is needed to identify the line segments and connection points in the figure. The 

segments are interpreted as flexible rod components within the system, and the connection poims 

as joints. Currently ToRQUE is supplied this information, i.e., it is given that coils when viewed 

orthographically from the x, y perspective are composed of two segments connected at a joint. 

Structurally, this topological mechanism replaces each coil component with 2 flexible rod 

components and a joint component.   Since the bendiness of the zigzag spring is all located at the 

joints, the behavior of this model under the dynamical condition is of the same type as that of 

flexible rod model and not of the spring. 

The "Transform-Segment-to-Closed-Figure" mechanism and its inverse (see Figure 12), 

"Transform-Closed-Figure-to-Segment" capture the idea that we are able to mentally transform 

simple line segments into closed figures and vice versa.  This topological transformation in the 

Clement case allows for the structural transformation from a coil component to flexible-rod 

component and vice versa. 
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The "Transform-Planar-Orientation" mechanism changes the orientation of a component 

by 90 or 180 degrees in some direction (see Figure 14).  This GTTM is especially useful for 

modeling the effects of force because force effects components differently depending upon their 

orientation with respect to the direction of application of the force. In ToRQUE we have captured 

the "orientation of force" as either: (1) perpendicular to the connection, (2) parallel to the 

connection, or (3) normal to the connection (see Figure 20). 

Topologically, the "Transform-Planar-Orientation" mechanism involves a rotation of the 

volume through multiplication by a simple rotation matrix (see Foley et al, p.215). For example a 

simple 90-degree rotation about the x axis is: 

Rx(90) = 
10 0 0 
0 cos 90 -sin 90  0 
0  sin 90 cos 90  0 
0    0 0 1 

10 0 0 
0 0-10 
0 10 0 
0  0  0 1 

If the force remains in its original direction, then structurally the model is adapted by changing the 

orientation of flow with respect to the components. So, for example, when S2 rotated the bent up 

rod, and thus the hexagonal coil, from the xy plane to the xz plane (117), we have the orientation 

of flow change from perpendicular to normal in ToRQUE. 

The "Transform-Discrete-to-Continuous" mechanism and its inverse "Transform- 

Continuous-to-Discrete" are both topological mechanisms.   S2 uses these mechanism in several 

ways: in simulating bending the rod into a series of polygons that would "produce a series of 

successive approximations to the circle" (117-118) to "construct a continuous bridge" between 

the rod and a spring coil; in recognizing that there is not "a lot of difference between the circle 

[series of rod segments taken to limit] and say a hexagon";   and in distributing the torsion 

discovered in the polygonal model the circular spring coil (Figure 9 c)  In the latter case, e.g., he 

correctly attributed this mechanism as a limiting case (see Weld, 1986):   "What I'm sorta 

wondering is what happens to the torsion in the limit... what happens to the respect of 

contribution of torsion and bend in the limit as one keeps making the segments smaller... " (162) 

The Transform-Discrete-to-Continuous GTTM adapts the structure of a model by 

replacing the connected segments of the polygon with one continuous component which contains 

the necessary differential information.  Thus given that the device is made up of multiple 

equivalent components that perform some discrete amount of a particular function. This 
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mechanism replaces those components with a single component which distributes that 

functionality evenly.   In S2's case this information is the uniform twisting along the length of the 

coils. 

The Transform-Continuous-to-Discrete GTTM is a mechanism whereby the system can 

break a component into small pieces. This is done by choosing a size of the infinitesimal and then 

creating enough infinitesimal pieces to equal the length, area, or volume of the original 

component.  Currently this strategy involves only lines and curves. Thus we can break a circle or 

line segment into many pieces (see Figure 11). In the Clement example, each of these line 

segments are interpreted as lengths of wire, which can be viewed as flexible rod components. 

5.1.5. Model Revision Summary 

In this section we have shown how models can be revised through a process of adaptation 

involving the use of generic topology transformation mechanisms.  We have shown how modified 

SBF Models capture the necessary content of the models, how a model can be searched when 

required, how the agent retrieves possible analog models, and finally how structural, behavioral, 

and topological generic adaptation mechanisms can be used to form intermediate models. 

Figures 17 and 18 show the progression of models and which adaptation mechanisms were used 

in the S2 protocol to adapt them. First (a) shows how S2 would uncoil a spring by use of the 

"Transform-Closed-Figure-to-Segment" mechanism. In (b) the "Reduce-Repeating-Components 

mechanism" is used to reduce the spring to a single coil. In (c) we see the formation of the zigzag 

wire, and in (d) is the coiling of the rod into a coil. In (e) is the progression of closed-figure 

transformations, which lead to the hexagonal coil and the discovery of torque (see Figure 19). 

Finally, (f) shows the transformations from the square coil back to an adapted model of the 

circular coil.   We claim that this progression of adaptations captures the reasoning which takes 

place in the protocols, and is a step towards a computational theory of scientific discovery 

through model revision. 

5.2. Model Evaluation 

The second major computational issue we address in this paper is how do scientists 

evaluate the models that they have constructed?  First we need to distinguish between two forms 
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of evaluation: internal and external (see Bhatta 1995, chapter 6).   External evaluation involves an 

experiment carried out in the world, while internal evaluation is a reasoning process which acts 

on currently held models.  The theory of constructive modeling developed in Section 2 

hypothesizes that internal evaluation often involves some kind of mental simulation of the model. 

In the protocol situation S2 was not provided any springs with which to experiment, so we have 

focused only on internal evaluation.  To begin with, we can see that evaluation runs through the 

whole constructive modeling process - its goal is to assess the current state of the model and to 

adapt that model so that it can solve the current problems. As our research develops we will need 

to address three issues: (1) How does the scientist determine whether a model - constructed or 

retrieved - contains the content necessary to solve pending problems? (2) How does the scientist 

decide that a model adequately answers the problem at hand?  And (3) how does the scientist 

determine whether models are internally consistent and coherent? Thus far we have-only 

addressed the first two issues and will discuss them below. 

5.2.1. Evaluating Content 

Retrieving or constructing an analog model does not guarantee that the analog will have 

the content necessary for solving the problem.    For example, when S2 retrieved the model of the 

flexible rod, there was no guarantee that the flexible rod would provide an answer to the problem. 

In order for S2 to solve the problem, he must ask the same or a similar question of the flexible rod 

as was asked of the spring in the problem formulation. In ToRQUE we reformulate that question 

as   "how does the diameter relate to the stretch function? " A flexible rod, however, does not 

have a diameter.   Thus, computationally one may be tempted to give up on the flexible rod model 

as a possible analog.     But we know that S2 was able to propose a solution to the problem by 

referring to the flexible rod. Here we claim that past processing of the problem with regard to the 

spring allows S2 to answer the question using the flexible rod model. 

As S2 attempted to relate the diameter of the spring to its stretch function, he first looked 

for some direct relationship, which in this case is to look for the diameter property within the 

stretch-function of the spring.  When this attempt failed, he looked for a secondary relationship 

between the diameter and the stretch-function, i.e., is there anything about the rod that can be put 

in correspondence with the diameter of a spring?   And if so, are any of these properties contained 
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in the stretch-function?  We can assume that S2 knew that the diameter is directly related to the 

coiled length of the spring by a factor of PI.  The coiled-length, however, is not part of the 

stretch function either, which is why S2 failed to answer the question.   The flexible rod does not 

have a diameter, but it does have a length, and the coiled length of the spring corresponds with 

the rod length of the flexible rod. Thus the new question becomes "how does the rod length 

relate to the stretch function? "  Also, because the flexible-rod was retrieved via its function, we 

can replace the stretch function in the question with "bend function ".   So the final question for 

the flexible rod model is "how does the rod-length relate to the bend function? "  This question 

can be answered directly with the model of the flexible rod. 

In sum, ToRQUE evaluates intermediate models for their content by attempting to ask 

the same question of the analog as was asked of the source. If this fails to produce an answer, it 

adapts the question based on reasoning carried out when attempting to answer the question with 

the source model. Of course, the solution provided is not guaranteed to be correct with regard to 

the original model.   So we must now turn to second evaluation issue: how to evaluate solutions. 

5.2.2. Evaluating Solutions 

The first solution obtained by S2 was the flexible-rod - or "straightened spring " - model 

solution.   It was clear to S2 that a flexible rod of greater length will bend more given the same 

amount of force, yet he is unconvinced that this answer is relevant to the spring case because of 

salient difference in the constraints in the dynamical case.  Thus, the evaluation of the solution is 

dependent upon what differences the scientist finds to be salient.   It is quite possible that the 

scientist does not view any of the differences as salient, in which case the scientist will claim to 

have solved the problem.  This was the case with many of Clement's other subjects who were 

satisfied with the rod model.   S2, however, did notice a number of differences including the 

varying slope of the flexible rod and this led to further model construction. We maintain that the 

construction of intermediate models is a method of evaluation. The intermediate models are 

constructed to uncover and clarify the differences between the original model and the analog 

solution. ToRQUE evaluates solutions through a process of establishing the differences between 

the source and analog models (see section 5.1.4.1) and constructing models which attempt to 

eliminate those differences. 
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5.2.4. Model Evaluation Summary 

In this section we have shown how the construction of intermediate models is used to 

evaluate retrieved models and solutions.  We have shown how a scientist evaluates the content of 

a model to determine if it can help solve the problem.  We have shown how a scientist evaluates 

the solutions to models through the construction of intermediate models aimed at eliminating 

differences. We are just beginning in our research to address how a scientist evaluates a model 

through simulation and the retrieval of generic physical principles. 

5.3. Summary of Process 

ToRQUE employs the coarse-grained commitments of constructive modeling along with 

the design theories of adaptive modeling and model-based analogy, to construct models based on 

the differences between the source model and a retrieved analog model.   This process occurs 

within a problem-solving context, e.g., when a question is asked of the source, ToRQUE attempts 

to answer the question by finding relationships within the source model, (see Section 5.1.2)   If 

ToRQUE cannot answer the question directly, it retrieves an analog model.  The analog model is 

retrieved based upon a probe constructed from the problem solving context, e.g., a match 

between the function of the source model and the analog model, (see Section 5.1.3) A simiiar 

question is then asked of the analog model. If the analog model fails to provide an answer, 

another analog is sought. If it does return an answer, the differences between the source and 

analog models are assessed to verify that answer, (see Section 5.1.4.1) If the functions of the 

two models match, ToRQUE assumes that their behaviors will also have some amount of 

similarity. Thus, in this case, the behavioral differences help to constrain the number of choices 

for construction, even though there is no guarantee that the spatial and structural differences 

between the two models will be at all similar.  This is evidenced by the spring and the flexible rod, 

which vary on almost all structural and topological dimensions.   The differences between the 

behaviors then constrain ToRQUE to look at only specific spatial and structural differences based 

upon their differing behaviors.   (Notice that if retrieval is based on a topological similarity rather 

than a functional similarity, then the construction will follow a different path.   The Clement 

protocol, however, does not initially provide this kind of problem context.)    Once the 
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differences between the models have been established, GTTMs are retrieved based on those 

differences.   These GTTMs are then used to adapt the source model in some way.  The process 

then continues by evaluating the constructed models, and adapting them to construct new 

intermediate models. 

6. General Discussion 
As we stated in the introduction to this paper, two independently developed but closely 

related theories underlie our analysis of creative scientific problem solving of the kind exhibited in 

Clement's protocol. The first theory is a philosophical theory that posits "constructive modeling" 

as a productive form of reasoning in conceptual change in science. This theory is based on our 

prior analyses of reasoning in historical cases of scientific discovery. The second theory is an AI 

theory of "adaptive modeling" which provides a content account both of mental models of how 

physical devices work and of problem solving in constructing models for new systems. This 

theory arises from our earlier work on creative conceptual design.  We focus in this section on 

why we believe the AI theory of adaptive modeling is appropriate for analyzing the kind of 

reasoning posited by constructive modeling computationally both in general and in terms of our 

implementation thus far. 

A central piece of the philosophical theory is an hypothesis about a form of reasoning that 

is productive of representational change in science, i.e., constructive modeling.   We posited that 

in the S2 problem-solving session, the reasoning process is of the same type as the constructive 

modeling performed by historical scientists such as Maxwell. In it's present form this model 

enables a consistent conceptual analysis of S2's reasoning in solving the spring problem as 

exhibited in the protocol transcript. In the current phase of our research, the conceptual analysis 

of the S2 protocol provides a bridge between the philosophical and the AI theories. The data 

provided in the protocol transcript do not "speak for themselves". They could admit of more 

traditional interpretations than as an instance of constructive modeling. However, we have 

indicated, as in the historical cases, how constrictive modeling provides the best fit.   It is the 

nature of the constructive modeling interpretation of this kind of scientific reasoning that makes 

our selection of adaptive modeling the appropriate AI theory. 
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The constructive modeling hypothesis is in the form of a cognitive-historical model that 

makes high-level, coarse-grained representational and processing commitments that provide a 

framework for understanding representational change.  The AI theory takes the form of a 

computational model that makes specific representational commitments in the form of SBF 

models of device comprehension, and specific processing commitments in the form of MBA 

models of analogical reasoning.  The AI theory provides a language for construction of precise 

and detailed computational models of scientific discovery. The SBF models explicitly represent 

structures, functions, and behaviors of a device, where the behaviors mediate between the device 

structure and function, and capture teleological and compositional knowledge. This account also 

includes generic models, for example, generic topology transformation mechanisms. The latter 

content account is in the form of problem-solving goals and tasks, strategies and methods, 

inference and control. Thus, new device models are constructed by adapting known models, and 

adaptation strategies range from simple and direct revision of a known model to analogical 

transfer from other device models, where the transfer is mediated by generic models. The two 

content accounts are closely related: the knowledge content of the models enables the inferences 

required by problem solving. 

Interestingly, the theory of adaptive modeling appears to cover some earlier work on 

scientific reasoning, specifically Darden's work on the Transgene project [Darden 1991a, 1991b]. 

She represented early theories of plant genetics as a device model and viewed data-driven theory 

revision as a kind of device redesign or model revision. The correspondence between our theory 

of adaptive modeling and Darden's work on Transgene is not accidental. She used 

Chandrasekaran's functional representation scheme [Sembugamoorthy and Chandrasekaran 1986; 

Chandrasekaran, Goel and Iwasaki 1993] to represent models. Our SBF models too evolve from 

the functional representation scheme. Also, Darden's model revision strategies were closely 

related to Kritik's strategy for device redesign through model revision. The adaptive modeling 

theory evolves from our earlier work on the Kritik project. 

Constructive modeling makes commitments about how scientists use analogy, generic 

abstraction of various sorts, and visual/spatial reasoning to solve problems. It also holds that 

knowledge is contained in models. Adaptive modeling is a computational theory that can provide 

the requisite precision to many of the aspects of constructive modeling. Adaptive modeling 
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provides a precise account of how models are adapted through the use of generic abstraction, 

generic strategies, and generic mechanisms. Both constructive modeling and adaptive modeling 

are incremental strategies for constructing models of physical systems. The SBF models of the 

computational theory provide a precise means for representing causal and structural knowledge 

which are clearly necessary from the perspective of constructive modeling.  The constraints 

formulated within the framework of constructive modeling are given precision by the separation 

into structural, behavioral, and functional categories. So SBF models provide a computationally 

tractable way of assessing the constraints postulated by constructive modeling. 

Our conceptual analysis of S2's reasoning and our computational modeling in ToRQUE 

seem to suggest that SBF models can capture some key elements in S2's mental models of 

systems such as springs and flexible rods. For example, there appears to be ample evidence in the 

protocol that S2 has representations and processes which deal with the structure, behaviors and 

functions of these systems. This is noteworthy because other AI accounts of device models based 

on "naive physics" [Hayes 1979] and "qualitative physics" [de Kleer 1984] not only do not 

represent device functions, but explicitly forbid their representation. Further, these alternative 

accounts derive the system behaviors by qualitative simulation at problem-solving time. There is 

little evidence of this kind of simulation-based derivation of system behaviors in S2's protocol. 

Instead, S2 appears to either already have the behaviors compiled in his device models, as in SBF 

models, or adapts the behaviors of one system (e.g., flexible rod) to derive the behaviors of 

another (e.g., the spring), as suggested by the adaptive modeling theory.   Thus as in constructive 

modeling simulation is an evaluative tool rather than a derivational one. 

The resemblance between our conceptual analysis of S2's reasoning and the problem 

solving method in adaptive modeling is quite striking. One of the central issues in model 

construction through adaptation is the spawning of the adaptation goals: what problem constraints 

are instrumental in formulating adaptation goals? According to the theory of adaptive modeling, 

the differences between the models of the target problem and the source analog set up the 

adaptation goals [Goel 1991a, 1991b]. Much of the adaptation process is driven by these 

differences. We can see this is also a central feature of S2's reasoning. The difference in the 

change of slope in the models of the spring and the flexible rod drive his construction of Models 
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2, 3 and 4. These models are constructed primarily to either reduce the difference in the change in 

slope or explain it away as inconsequential for the problem at hand. 

Model-Based Analogy provides a precise theory of analogical transfer which coheres with 

the kind of analogical transfer required in constructive modeling.   As was mentioned above, the 

analogical process in MBA is significantly different from other models of analogy.  The primary 

difference is its use of generic abstraction, which is a central process in constructive modeling. 

An advantage of generic abstraction is that it provides a precise account of what should get 

transferred from the source to the target. By this we mean, What should be abstracted from the 

source as relevant to the problem at hand.   Other analogical systems such as SME (Gentner, 

1993) look for the deepest level of correspondence between source and target. But here the issue 

is what is generic to both source and target.    Another core issue in model construction through 

adaptation concerns problem-solving strategies: what adaptation methods are suitable for different 

kinds of adaptation goals? As mentioned earlier, according to the theory of adaptive modeling, 

the adaptation strategies range from simple revision of a known model to analogical transfer 

[Stroulia and Goel 1992; Bhatta and Goel 1993]. Further, analogical transfer is mediated by 

generic models. This too is present in S2's reasoning on the constructive modeling interpretaik 

In our conceptual analysis of S2's reasoning, there is also significant use of generic 

models as postulated by the adaptive modeling theory. In Section 5 we discussed how we started 

with generic models that captured functional, behavioral and causal structures, and had to 

complement them with generic mechanisms that capture topological structures and enable 

topological transformations. Similarly, we had to extend the SBF models with spatial 

representations in the form of voxels. This is primarily because the classes of conceptual design 

problems we had studied earlier did not require explicit spatial representations and topological 

transformations. In general, spatial representations and topological transformations appear to 

play an important role in creative problem solving both in the natural sciences and in engineering 

design. 

We have shown how adaptive modeling through SBF models and MBA theory can 

provide a plausible language for a constructivist account of scientific reasoning.   Of course, 

theories of scientific model construction represented by Transgene and ToRQUE always can be 

implemented in other, more general, AI languages such as that of problem spaces and production 
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rules. Indeed, Bacon uses precisely this language for recognizing algebraic patterns in scientific 

data. But irrespective of the language of implementation, first a content account is needed. Once a 

content account is available, it can be implemented in a variety of languages. The theory of 

adaptive modeling provides such a content account. For example, it provides the kinds of 

problem spaces that will need to be set up, the kinds of the domain and control knowledge that 

will need to be represented in any implementation. Therefore, by our analysis adaptive modeling 

is clearly the best fit. 
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Maxwell Figures 

jA    A cross section of the initial vortex medium 

b)     A single vortex. 

C)     Maxwell's drawing of idle-wheel particles within the vortex medium 

Figure 1 

Maxwell's Generic Models 
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Clement Figures 
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Transform-Closed-Figure 
(possible transforms) 
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Figure 10 

Transform-Segment-to-Closed-Figure 
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Figure 12 

Transform-Discrete-to-Continuous 

Transform-Continuous-to-Discrete 

Figure 11 

Transform-3D-to-2D 

Spring Volume 
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Figure 13 
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Figure 14 
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Rigid versus Flexible Joints 
Two Behaviors of Constructed 
Model (a). 

Figure 15 

Progression of Models 

a) 

b) 

a 

Figure 16 

Sequence of Generic Adaptations 
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Sequence of Generic Adaptations 
(continued) 
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The Discovery of Torque 

As recognized through the behavior of constructed model (d). 

^Z> 
x zip 

 v 

As exaggerated through the behavior of constructed model 
(e). 

As force is applied at y not only does rod 1 bend, rod 2 twists. 

This is torque. 

Figure 19 

Ontology of Connections 
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SBF Model of a Spring: 

Structure 
Components: coili, coil2>.... coiI„ 
Connections: continuous & serial & normal: eilcoilile2, e2lcoil2le3, e3lcoil3le4,..., e„lcoil„len+i 
Properties: 

n 
m 
usl 
si 
uss = usl/cl 
ss = sl/cl 
cl 
k 
d 
t 

number-of-coils: 
material: 
unstretched-length: 
stretched-length: 
unstretched-slope 
stretched-slope: 
coiled-length: 
constant-of-prop: 
diameter: 
tension: 

Components: coilj   (For all i = l,...,n) 
ends: eCOiii, ecni+i 
material: mom = m 
unstretched-length: uslcoiii = usl/n 
stretched-length: slcoiii = sl/n 
unstretched-slope usscoiii = uss 
stretched-slope sscoiii = ss 
coiled-length: clCOin = cl/n 
constant of prop.: k^M = k/n 
diameter: dcou* = d 
tension: tco^ = t/n 

STRETCH 

Functional abstraction: 
Given:   coil       unstretched 

length = uslcoui 
slope = usScoiH 
tension = 0 

Makes: coil       stretched 
length = SUJH 

slope = sscoiii 
tension = Tom 

Function i (Stretch-Function) 
Given: 

Makes: 

spring (Ei,E2)     unstretched 
length = usl 
slope = uss 
tension = 0 
spring (Ei, E2)    stretched 
length = si 
slope = ss 
tension = T 

By: Behavior STRETCH-BEHAVIOR 
Stimulus: Force F on E2 

Figure 21 
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Behavior STRETCH-BEHAVIOR of Spring 

SI 

S2 

spring: unstretched 
length = usl 
slope = uss 
tension = 0 

Due to stimulus: Force F on E2 

In accordance with parametric equations: 
F = kx 
si = usl + X 
ss = sl/cl 

By Behavior Bl 

spring: stretched 
length = si 
slope = ss 
tension = T 

Figure 22 
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.*<*    -** 

Behavior Bl 

Sl 

S2 

coili: unstretched 
length = uslcoin 
tension = 0 

Due to stimulus: Force F on E2 

In accordance with parametric equations: 
F - kcoillX 

Sl coill = USl coin + x 

coil i: stretched 
length = sl coin 

I   tension = Tcoui 

S2 

coil2: unstretched 
length = uslcojn 
tension = 0 

Under condition state s2 in t>i 
In accordance with parametric equations: 

F = kc0il2X 

Sl coil2 = USl coil2 + X 

coil2: stretched 
length = slcoii2 
tension = Tcoil2 

b„ 

Si 

coil„: unstretched 
length = uslcoiin 
tension = 0 

Under condition state s2 in bn.i 
In accordance with parametric equations: 

" — KcoilnX 

Si coiln ~ "SI coiln   '  X 

coiln: stretched 
length = slcoii„ 
tension = T at wall 

Figure 23 
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SBF Model for a Flexible Rod 

Structure 
Components: strip 
Connections: serial & perpendicular: Ei 1 
Properties: 

material: m 
bend-amount: ba 
unbent-slope ubs 
bent-slope: bs 
derivative-of-slope dslope 
constant-of-prop: k 
const-of-length kl 
tension: t 

Functional abstraction: 
Given:   strip      straight 

bend = 0 
slope = ubs 
tension = 0 

Makes: strip      bent 
bend = ba 
slope = bs 
tension = T 

strip IE2 

Function] = Bend-Function 
Given: flexible-rod (Ei ,E2)          straig 

bend = 0 
slope = ubs 
dslope = 
tension = 0 

Makes: flexible-rod (Eu E2)          bent 
bend = ba 
slope = bs 
tension = T 

By: Behavior BEND-BEHAVIOR 
Stimulus: Force F on E2 

Figure 24 

57 



Behavior BEND-BEHAVIOR of Flexible Rod 

SI 

S2 

flexible-rod: straight 
bend-amount = 0 
slope = ubs (an equation) 
tension = 0 

Due to stimulus: Force F on E2 

In accordance with parametric equations: 
F = kx 
ba= x 

^"K 

flexible-rod: bent 
bend-amount = ba 
slope = bs (an equation) 
tension = T 

k 

The slope both before and after is equal to an equation because it is varying. 
This equation is the following: 

Given that A<B: 

before: y = A z2 + c 
after:    y = B z2 + c 

dz/dy = 2A z 
dz/dy = 2B z 

Figure 25 
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Abstract 

An essential component of opportunistic behavior is oppor- 
tunity recognition, the recognition of those conditions that 
facilitate the pursuit of some suspended goal. Opportunity 
recognition is a special case of situation assessment, the pro- 
cess of sizing up a novel situation. The ability to recognize 
opportunities for reinstating suspended problem contexts (one 
way in which goals manifest themselves in design) is crucial 
to creative design. In order to deal with real world oppor- 
tunity recognition, we attribute limited inferential power to 
relevant suspended goals. We propose that goals suspended in 
the working memory monitor the internal (hidden) represen- 
tations of the currently recognized objects. A suspended goal 
is satisfied when the current internal representation and a sus- 
pended goal "match". We propose a computational model for 
working memory and we compare it with other relevant theo- 
ries of opportunistic planning. This working memory model is 
implemented as part of our IMPROVISER system. 

Introduction 
During a mechanical engineering project a group of students 
were asked to design and implement a mechanical device 
for the quick and safe transportation of a fragile cargo (some 
eggs). The students went to a Home Depot (a hardware store), 
where they started by choosing springs for the launching com- 
ponent. During the design process they made the following 
observations: 

Andy: ... hey, when I compress the spring it bends; 
this weakens the force of the springs ... 

Mary (wrapping her hand around the spring): ... yes, 
we have to enclose it in a tube ... 

Bill: ... the tube should be collapsible, otherwise the 
spring cannot be compressed ... 

The students began proposing mechanisms that fit this de- 
scription. One of them suggested a telescope, but it was 
rejected by the group because it was expected to be costly and 
it did not fit in the available budget. Another student proposed 
a collapsible camping tube, which unfortunately has a wrong 
shape. The designers were unable to think of where in the 
store they might look for a useful collapsible tube, so they 
moved to another part of their problem. They started thinking 
about load protection. Since sponges are a good way to pro- 
vide cushioning, they decided to go to the store's bathroom 
section. During the search for sponges, one of the students 
saw a toilet paper holder and exclaimed: 

Mary: Look! A collapsible tube! 

The whole group agreed that the toilet paper holder fulfilled 
the requirements of their previously suspended problem. 

The above example illustrates a rather mundane, but com- 
mon, experience in doing design. The students started by 
structuring the initial problem (launching, cushioning) and 
then they tried to elaborate the subcomponents, one at a time. 
When they were stuck with one subproblem, they suspended 
it, and they approached another related subproblem. When 
they saw the toilet paper holder, however, they recognized 
that an opportunity to address the suspended subproblem had 
presented itself in the environment. 

What processes are responsible for recognizing such oppor- 
tunities? How can a cognitive architecture handle this kind of 
processing? What constraints are there, if any, on the work- 
ings of these processes? We are studying these problems in the 
context of developing a cognitive model for creative design. 
Our computer program, IMPROVISER (Wills & Kolodner 
1994b), was extended in order to help us answer the above- 
questions. 

Our exploration of creative design (Kolodner & Wills 
1993a) suggests that the conceptual phase, in which the prob- 
lem is framed, plays a key role in designing. In this phase, 
which is interspersed throughout the design process, the prob- 
lem situation is assessed and the given problem is reformu- 
lated and restructured. While one can organize the subgoals 
involved in conceptual design in a hierarchical structure, the 
processing of these subgoals seems far more unstructured. 
Designers often begin by proposing a shallow hierarchical 
set of subgoals as they initially formulate the way they will 
solve a problem (e.g., the artifact we are designing has these 
n parts or mechanisms; we need to design each one). They 
continue by addressing each of the subgoals, one at a time. 
It is here where the organized reasoning breaks down. When 
the designer fails to solve one subproblem, he/she seems k 
suspend it and approach another related subproblem (as in the 
example above). Sometimes the next subproblem is simply a 
not-yet-considered sibling subgoal (as when the student de- 
signers moved from designing their spring launch mechanism 
to the cushioning for the eggs); sometimes the opportunity to 
go back to a suspended subgoal is recognized (as when the 
toilet paper holder was seen). 

When we consider the incremental and recursive nature of 
this reasoning process, we can identify one way of recogniz- 
ing that a previously-suspended subgoal might be successfully 
addressed. During consideration of a new subproblem. the de- 
signer has to consider interactions with related subproblems. 
some of which have been suspended previously.   This may 



provide a fresh view of the suspended problem and a new way 
to redescribe it. Redescription or new insights about a sub- 
problem gained during reasoning trigger the goal scheduler to 
unblock the suspended subproblem, allowing already-known 
solutions to be recalled or new means of solving it to be rec- 
ognized. This means of unblocking a suspended goal is com- 
pletely under the control of the reasoner, which knows which 
subproblems have been part of its most recent reasoning. 

But recognizing in the toilet paper holder the opportunity to 
address a suspended goal requires additional mechanisms that 
scan the environment and recognize when the environment is 
providing new insights into suspended goals. If the number 
of suspended goals, the complexity of the environment, or 
the amount of newness in the environment is high, such a 
mechanism could easily be overwhelmed. The mechanisms 
that provide this capability must be able to deal with such 
complexity. 

Opportunity Recognition 
The Problem 
The prerequisite for opportunistic behavior is the existence of 
suspended goals (problems), goals that cannot be pursued in 
the current context and are postponed. 

An essential component of opportunistic behavior is oppor- 
tunity recognition, recognition of those conditions that facil- 
itate the pursuit of some suspended goal. But opportunities 
seem to appear when they are not expected. The student de- 
signers, for example, had not previously thought about a toilet 
paper holder functioning as a collapsible tube. Recognizing 
the opportunity meant both noticing the toilet paper holder and 
recognizing that its mechanism (which is hidden) included a 
collapsible tube. More than a simple matching mechanism is 
needed. 

Birnbaum (1986) suggests two central problems that must 
be addressed by a theory of opportunistic behavior: (1) how 
to detect opportunities and (2) how to "activate" the goals to 
which they pertain. An important issue here is identifying 
how much and what kind of processing is required in order 
to recognize the presence of the features that constitute an 
opportunity. 

A Critical Review 
Hayes-Roth & Hayes-Roth (1979) proposed the first signifi- 
cant cognitive model of opportunistic behavior. Their model 
of opportunistic planning was inspired by protocols of sub- 
jects planning a hypothetical day's errands. But they were 
most concerned with planning methods and gave little atten- 
tion to recognition processes. In fact, the experimenter always 
mentioned opportunities to the subjects when they overlooked 
them, and the subjects never tried their plans in the real world, 
so they never really dealt with genuine opportunities and the 
problem of recognizing them. 

Birnbaum (1986) gave more attention to recognition issues. 
He proposed the mental notes model, in which whenever a 
goal cannot be immediately satisfied, it is indexed in terms of 
the unmet preconditions that prevented its satisfaction. How- 
ever, as he points out, if the goal is indexed too specifically, 
then there will be many cases in which it will not be recalled 
even though an opportunity for its satisfaction is present, and 
if the goal is indexed in terms of more abstract features, we 

cannot assume that the agent will automatically generate the 
abstract description that will activate the goal. 

In order to solve the above dilemma within the framework of 
the mental notes model, Birnbaum suggests1 spending some 
effort, when the goal is formed, to determine the range of 
situations in which it might easily be satisfied - for example, 
by constructing several incomplete plans for the goal in order 
to identify the relevant preconditions - and then indexing the 
goal in terms of the features that might arise in such situa- 
tions. Birnbaum & Collins (1984) also suggest an active goal 

• framework, where all the goals have the ability to examine 
• the current situation and to initiate inference to test their own 
relevance. . 

Patalano, Seifert and Hammond (1992) criticize the use of 
active goals proposed by Birnbaum & Collins, claiming that 
this approach to opportunistic behavior is an unlikely expla- 
nation of human cognitive processes because of its computa- 
tional demands. However, Patalano, Seifert and Hammond do 
pick up on Birnbaum's indexing scheme, calling it predictive 
encoding. Predictive encoding stresses the importance of en- 
coding blocked goals in memory in such a way that they will 
be recalled by conditions favorable for their solutions. Their 
experimental results show evidence of this process. 

However, the predictive encoding hypothesis seems incom- 
plete, because it does not enable a cognitive agent to recognize 
opportunities other than those which it is able to anticipate. 
In particular, it does not enable an agent to recognize novel 
opportunities, which by their very nature, cannot be easily 
anticipated. Recognition of the toilet paper holder as a col- 
lapsible tube, for example, is novel in that this is not the way 
a toilet paper holder is generally thought of. Similar issues 
caused Birnbaum & Collins (1984) to conclude that if an op- 
portunity is to be detected at all, inferential resources must be 
allocated to the goal recognition task. 

Ram & Hunter (1992) suggested a balance between back- 
ward chaining at the time of goal suspension and forward 
chaining at the time of opportunity recognition. In AQUA, a 
set of utility metrics have been proposed in order to make a 
tradeoff between predictive encoding and active goals. Un- 
fortunately, these utility metrics are very specific to story 
understanding. 

This suggests that we need active goals in order to recog- 
nize novel opportunities, but we need to control their power 
and number to make them computationally feasible. We need 
predictive encoding, but we also need more powerful infer- 
ential capabilities. We hope that an analysis of the exam- 
ple presented previously can provide insight in formulating a 
mechanism with these properties. 

A Possible Solution 
Why did the students fail to remember the toilet paper holder 
when they were trying to decide where they might find a 
collapsible tube, and what allowed them to recognize it as 
appropriate when they saw it? 

One possible reason why the toilet paper holder was not re- 
called and considered while thinking about collapsible tubes 
is that the probe that had been constructed (i.e., the item de- 
scription used for remembering) was incompletely specified. 
Consequently, they retrieved items that fulfilled primary but 

'Birnbaum credits Dehn (1989) with this idea. 



not secondary characteristics of the probe (e.g., a telescope 
costs too much and a camping cup has a wrong shape). Af- 
ter every retrieval and evaluation of a new device, the probe 
was respecified, taking into consideration the initially ignored 
constraints (e.g., we want something like a telescope, but 
cheaper). This process was suspended, however, before the 
toilet paper holder was recalled. 

But why was the probe inadequate for retrieving such a 
common object as a toilet paper holder? Our explanation is 
that the toilet paper holder is routinely associated with what 
its purpose is in the bathroom (holding toilet paper rolls) 
rather than with how this function is achieved (by means of a 
collapsible tube with a spring inside). It is not a particularly 
interesting device, and even though we see it every day, most 
of it is hidden by the roll of paper. Research shows that it is 
quite difficult to overcome such functional fixedness (Mayer 
1970), which associates everyday objects with their obvious 
function (holding a paper roll in the case of the toilet paper 
holder). Routinely, we ignore other potential uses that can 
be derived from the structure and behavior of such everyday 
objects. Once we have specified desired criteria in a probe, it 
is easy to check them against a specific object. But if those 
criteria are different than those used to describe an object in 
memory, recall won't happen. 

Case Index: Probe Description: 

Perceivable Properties: 

Cl C2 

Rigid-Tube: 
Shape = Cylindrical 
Length-Variability = 

varies 
Radius-Variability = 

constant 
Functional Properties: 

Use: Hold Paper Roll 

Case Content: 

L 

Structural Properties: 
Parts: Cylinders Cl and C2; Spring S 
Fits-Inside(Cl,C2) 
Cl: Solidity(Hollow) 
C2: Solidity(Hollow) 
Composition of Cylinders (C1C2) 

Solidity(Hollow) 
Length = Length(S) + delta 
Shape = Cylindrical 

Enclosed(S,ClC2) 

Behavioral Properties: 
States: Steady, Squeezed, Rest 
Steady: 

Length(S) < Rest-Length(S) 
Length(CIC2) = Width(Wall-Fixture) 

Squeezed: 
Length(ClC2) < Width(Wall-Fixture) 
Length(ClC2) < Length(C2) 

Rest: 
Length(ClC2) > Width(Wall-Fixture) 
Length(S) = Rest-Length(S) 

Figure 1: The many representations of a toilet paper holder 

Figure 1 shows this mismatch.   The collapsible tube, as 

described after manipulating the springs (see the PROBE DE- 
SCRIPTION in Figure 1), has the structural property that its 
shape is cylindrical and the behavioral property that its length 
can vary. The toilet paper holder, on the other hand, is indexed 
in memory by a combination of its Functional Properties and 
Perceivable Properties, shown as INDEX in Figure 1. Thus, 
we cannot retrieve the CASE CONTENT, namely the Structural 
Properties and Behavioral Properties of the toilet paper holder 
by using the PROBE DESCRIPTION. 

What facilitates recognition of the opportunity in the envi- 
ronment, i.e., recognition that the toilet paper holder can fulfill 

" the role of collapsible tube? On the store's shelf, one can see 
the shape of the device. Recognition procedures perceive that 
it is a collapsible tube, which matches the description from 
the retrieval probe and presumably the label that designates 
what needs to be encountered to unblock the suspended goal. 

But what processes direct recognition procedures to attend 
to the toilet paper holder on the store's shelf? And what 
mechanisms allow matching of something in the environment 
to a goal that is no longer active? We know that memory 
search is incremental and that when our memories can't re- 
trieve what we are asking them for, we redescribe what we are 
looking for and try again. But when we aren't making head- 
way, we postpone additional retrieval until more information 
is gathered and pursue other retrieval strategies or subgoals 
(Williams & Hollan, 1981, Norman & Bobrow, 1979, Kolod- 
ner, 1984). Similarly (and implied by predictive encoding), 
we suspend reasoning subgoals and subproblems that depend 
on postponed retrieval strategies and unmatched probes, mark- 
ing them with criteria that, if encountered, predict that they 
should be reopened (Patalano, Seifert and Hammond 1992). 

We propose that when an active subgoal (subproblem) is 
suspended, the subgoal and its criteria remain in working 
memory's working store for some limited time. We further 
propose that goals suspended in the working memory con- 
tinuously monitor the environment, looking for matches in 
the environment to the specified criteria. Furthermore, we 
suggest that there are only a small number of these active 
goals. A computational model will provide more detail on 
these limitations. 

A Memory Model 

The Memory Architecture 

The major component of our computational model (presented 
in Figure 2) is a working memory (WM), which communi- 
cates with both long-time memory (LTM) and perceptual pro- 
cesses and keeps track of recent reasoning context. As Barsa- 
lou (1992) suggests, the working memory mediates between 
short-term memory (STM) and the activated part of LTM. 
But we add significantly to Barsalou's conception. First, we 
give the WM a structure. Second, the structure integrates 
components of STM with activated portions of LTM and with 
perceptual mechanisms and stores. Third, this integrated com- 
ponent acts as a buffer for LTM. It is the place where LTM's 
components are manipulated and adapted. Fourth, we add a 
control unit (matcher), which can match (1) the current arti- 
fact being reasoning about or (2) all the suspended problems 
against the LTM representation of the current item presented 
to the Recognizer. 
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Figure 2: The Memory Architecture 

The working memory that emerges has three parts: (1) Fo- 
cal Store (FS), (2)WM Control unit (the only part of the control 
unit currently relevant is the Matcher), and (3) Working Store 
(WS). 

The Focal Store (FS) holds three items: (1) the current 
goal of the reasoner (THIS-PROBLEM-CONTEXT), (2) the current 
object, artifact or idea being reasoned about (THIS-SKETCHY- 
SPEC, which is similar to the PROBE DESCRIPTION in Figure 
1), and (3) the representation of the current item presented to 
the Recognizer, module (THIS-SBF-SPEC), which is retrieved 
from LTM according to the specification generated by the 
Recognizer. 

The working store is more interesting and has four parts. 

1. A connected graph of related unsolved subproblems, rep- 
resented as subgoals and the contexts in which they are 
applicable, called problem contexts (represented as small 
rectangles in the figure). This graph might be a subset of a 
problem decomposition stored in LTM when the problem 
was previously considered, it may have been created dur- 
ing the reasoning session, or it may be a combination of the 
two. The goal of the reasoning session is to find a solution 
for the whole group of related problems. 

2. Background cues, which provide a history of concepts, de- 
scriptions, features, and objects that have been considered 
during reasoning 

3. A list of Suspended Problems, each represented by a prob- 
lem context that includes the relevant subgoal, the context 
in which it is being considered, and the still-incomplete 
solution description (SKETCHY-SPECS).  More specifically, 

the representation of suspended subproblems is modeled 
after the content of problem contexts in design. A problem 
context in design, and a suspended subproblem in working 
memory, includes (1) a set of goals and partially ordered 
constraints that solutions should satisfy; (2) a set of op- 
tions, or alternatives for achieving those goals2 ; and (3) a 
set of relationships describing how the options satisfy the 
constraints. These sets are incomplete and contain as much 
as has been considered so far in addressing the goals. 

4. A list of Solved Problems, consisting of problem contexts 
for which solutions (SBF-SPECs) have been found. These 
problem contexts have the same structure as do suspended 
subproblems, but their solution descriptions are complete. 

This working memory structure, in effect, keeps track of the 
part of LTM activated during a reasoning session. At most, 
then, the retention time of working memory is a few hours, 
requiring only a limited capacity (more work is needed before 
speculating on how big). 

The working store accommodates several subproblems 
(PROBLEM-CTXs), which ideally are related, at the same time. 
These subproblems are approached one at a time, and if the 
current one cannot be solved, it is transferred to the list of 
Suspended Problems. Solved problems are transferred to the 
Solved Problems queue. A suspended problem is character- 
ized by a non elaborated specification (SKETCHY-SPEC), which 

:In our example the options set included a telescope, a camping 
cup and a slinky. This initial set of options was gathered by probing 
the LTM with a set of indexes relevant to the context eoals. 
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Figure 3: The Processing Algorithm 

cannot be used as a successful index in the LTM. A problem is 
considered solved when the Matcher module recognizes that 
something in the environment or created on the fly fulfills the 
requirements formulated in a SKETCHY-SPEC. 

The whole system is monitored by a global Control module, 
which is responsible for the flow of problem contexts between 
working memory, LTM, and the recognizer module, which 
perceives the world. When a reasoning session ends, the 
control module makes sure that relevant information from the 
WM updates the structures in LTM. 

The Processing Algorithm 
Mediation between working memory, long-term memory, and 
perceptual processes are key to working memory's function- 
ing. Four control components (see Figure 3) are important 
to using working memory well: (1) The task scheduler loads 
a graph structure (a set of related subproblems) in the Work- 
ing Store. (2) The goal-oriented scheduler uses the graph 
structure and the sets of suspended and pending problems to 
choose what to do next. Among other things, it suspends 
subproblems when no headway is being made; it reinstates 
them when their indexes (specs) are matched. (3) Opportu- 
nity recognition procedures notice opportunities to reinstate 
suspended goals and send messages to that effect to the sched- 
uler. This is accomplished by having perceptual functions 
(the object recognizer is the only one of these in the scheme 
presented) focus their attention based on the sketchy specs 
recorded in suspended subproblems. For example, the ob- 
ject recognizer seeks to identify objects whose descriptions 
partially match the sketchy specs associated with suspended 
subproblems. When such an object is seen, the recognizer 
asks inference procedures if they can quickly determine if the 
object has other properties specified in the sketchy spec. If so, 
the opportunistic component notifies the goal scheduler that 
a suspended goal ought to be reinstated. (4) Update mech- 
anisms update the structures in LTM based on recordings in 
WM. 

When a new problem is approached, a hierarchical structure 
is proposed for it. Sometimes the structure is already recorded 
in memory; sometimes it is on paper; sometimes it must be 
constructed - we don't consider that issue right now.   As a 

next step, a small group of related subproblems is brought into 
focus and loaded into WM. It is essential that this group is kept 
small, because potentially all of its components may become 
active during reasoning and the computational demand should 
be limited. Exactly how this choice of subproblems is made 
must still be discovered; one option is to bring in only the 
most connected set of related subproblems and only up to 
some small threshold. 

In our example, we assume that the full problem (design of 
a quick transportation device) has been considered previously 
and that there are a set of subproblems recorded in memory. 
In the session we focus on, two subproblems are brought to 
attention and loaded in WM: the launching device problem 
and the cushioning material problem. The graph structure in 
WM has the full problem at the top and these two subproblems 
hanging off of it as sibling subproblems. 

One of the subproblems is chosen for focus, and it is loaded 
into the Focal Store as the current problem (THIS-PROBLEM- 
CTX). Here, the launching device problem is chosen first. 
Reasoning procedures work on this problem until it is solved, 
in which case it is put into the solved problems queue, or until 
no progress can be easily made, in which case it is added 
to the queue of suspended problems. When the need for 
a collapsible tube emerged in solving the launching device 
problem, no useful device was recalled from LTM, nor was 
one seem immediately on the shelves of the store. Thus, 
this subproblem is suspended. The description created of the 
collapsible tube (the probe in Figure 1) is used as the SKETCHY- 
SPEC for this suspended problem. When a subproblem is 
suspended, a new problem is chosen to work on. Here, the 
cushioning subproblem is selected, and reasoning procedures 
begin working on it. 

At the same time, perceptual functions are scanning the en- 
vironment, looking particularly for things that partially match 
sketchy specs of suspended problems3. In our case, the object 
recognizer notices the toilet paper holder on the shelf of the 

3In fact, the sketchy specs are related with the visual images of 
the options considered so far (telescope, camping cup and slinky in 
our example). Priming processes recognize some of these options 
when the visual recognizer is scanning the environment (sometimes 
spuriously). Indirectly, the associated sketchy specs arc remembered. 



Store. The TPH matches the collapsible tube specification 
because it is cylindrical and a rigid tube. This is enough of a 
partial match to the recorded sketchy spec that it asks infer- 
ence procedures whether the TPH also has variable length. A 
simple scan of the full representation of a TPH (i.e., the one 
in LTM that includes behavioral and structural information) 
supplies a positive answer (we know that a TPH has to be 
compressed in order to be assembled to provide support). 

When a subproblem becomes unblocked due to new infor- 
mation becoming available, the goal scheduler unblocks the 
suspended problem and asks reasoning mechanisms to pro- 
ceed in reasoning about it. This is what happens with the 
launching device problem. 

Status and Open Issues 
The working memory model discussed here is implemented as 
part of the IMPROVISER system (Wills & Kolodner 1994a, 
1994b). Our original intent was to extend IMPROVISER to 
allow it to handle and maintain multiple pending problem 
contexts. However, we soon realized that handling multiple 
problem contexts was a memory problem and that the mech- 
anism that would allow that could also be used to explain at 
least some cases of opportunity recognition. We suspect that 
this approach will also provide us with ways of explaining for- 
getting during a long reasoning session and the "freshness" 
that reasoners feel when coming back to a problem after let- 
ting it rest for several hours or days. But more exploration is 
needed before we have good explanation for either of these 
phenomena. Indeed, we don't yet have a full explanation of 
the constraints on memory in handling multiple contexts and 
in maintaining control of the active goals involved in oppor- 
tunistic recognition. We do believe, however, that we have 
proposed a framework within which these questions can be 
answered quite nicely. We look forward both to continued 
computational modeling and continued experimentation on 
people to answer these questions. 
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This poster investigates memory issues that influence long- 
term creative problem solving and design activity, taking a 
case-based reasoning (Kolodner & Wills, 1993) perspective. 
Our exploration is based on a well-documented example: the 
invention of the telephone by Bell (1908). But to understand 
this act of creative design, we have to analyze Bell's earlier 
research goals. We abstract Bell's research method and the 
reasoning mechanisms he used that appear time and again in 
long-term creative problem solving. In particular, we identify 
an understanding mechanism used widely by those processes 
which rely on previous experience. Finally, we integrate the 
new mechanisms in a computer model, ALEC, which features 
creativity elements in case-based design. 

Retrospectively, the obvious question related to the inven- 
tion of the telephone is: what cognitive issues "delayed" the 
invention of the telephone till 1876? The basic principles 
of the telephone, electromagnetism and induction, had been 
known since 1831. Several inventors tried and failed to design 
the telephone, because they (1) relied too much on prevalent 
telegraphy practice, (2) ignored the basic principles of elec- 
tromagnetism, and (3) gave up too soon. It looks like these 
inventors applied case-based reasoning poorly: they stuck to 
minor adaptations of telegraphy rather than reassessing the 
problem and analyzing it from a new perspective. In contrast, 
Bell reassessed the telephone problem as being acoustical and 
not electrical. When Bell was stuck in electrical details, he 
analyzed his telephony experiments using acoustical experi- 
ences and expertise. 

Bell frequently interpreted and remembered his electrical 
experiments in terms of acoustics, that he could easily perceive 
without supplementary equipment. Consequently, in some 
cases he could recognize opportunities to solve suspended 
problems while pursuing other problems (i.e., the "undulatory 
current" was recognized while working on the multiple tele- 
graph problem, by noticing peculiar acoustical effects). But 
not all the recognized opportunities fell in the above category. 
Sometimes, working on several problems in the same period 
of time facilitated knowledge transfer among them without 
any special perceptual elaboration (i.e., interleaved work on 
both the telephone and phonautograph inspired the micro- 
phone design for the telephone). 

Our exploration of creative design (Kolodner & Wills, 
1993; Simina & Kolodner, 1995) provides an initial frame- 
work (i.e., the IMPROVISER system) for a more enriched and 
dynamic case-based reasoning able to explain some interest- 

'This research was was funded in part by NSF Grant No. 
8921256 and in part by ONR Grant No. N00014-92-J-1234. 

IRI- 

ing reasoning issues involved in the invention of the telephone. 
In this framework a designer evolves concurrently the design 
specification and a pool of alternatives under consideration, 
relying on his previous experience. But Bell's understanding 
and interpretation processes, exploring previous experience, 
seem far more complex than those handled by IMPROVISER. 
Bell used analogy when simple retrieval failed. When analogy 
also failed, Bell made new hypotheses by combining attributes 
of the (partial) design alternatives retrieved. This mechanism 
led to the famous hypothesis of the "undulatory current", by 
mixing properties of sound transmission and electrical cur- 
rents. We realised that understanding is a memory issue that 
should play a more important role in a framework for creative 
design. IDeAL (Bhatta & al., 1994) stresses also the role 
of understanding in design. IDeAL revises its understanding 
of the problem based on generalizations built from specific 
experiences. 

Based on Bell's case study, we are developing a computer 
model that integrates understanding and design problem solv- 
ing to test our hypotheses about the role of case-based reason- 
ing in long-term creative design. In our model the problem 
solving processes relying on previous experience call an un- 
derstanding process, adapted from Moorman & Ram's (1994) 
creative understanding algorithm. The understanding process 
in turn may call design problem solving processes to achieve 
a better artifact understanding. We hope that a good under- 
standing of creative design processes will help us build better 
tools to assist human designers. 
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Abstract 

This paper investigates memory issues that influence long-term 
creative problem solving and design activity, taking a case-based rea- 
soning perspective. Our exploration is based on a well-documented 
example: the invention of the telephone by Bell. But to understand 
this act of creative design, we have to analyze Bell's earlier research 
goals. We abstract Bell's research method and the reasoning mecha- 
nisms he used that appear time and again in long-term creative prob- 
lem solving and design. In particular, we identify an understanding 
mechanism used widely by those processes which rely on previous ex- 
perience. Finally, we integrate the new mechanisms in a computer 
model, ALEC, that acts creatively in case-based design. 

1    Introduction 

This paper investigates memory mechanisms that influence long-term cre- 
ative problem solving and design activity, from a case-based reasoning (CBR) 
perspective (Kolodner, 1993). Our exploration is based on a well documented 
example: the invention of the telephone (Bell, 1908). Retrospectively the 
obvious question related to the invention of the telephone is: what cognitive 
issues delayed' the invention of the telephone till 1876? The basic princi- 
ples of the telephone, electromagnetism and induction, had been known since 
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1831. Several inventors tried and failed to design the telephone, because they 
(1) relied too much on prevalent telegraphy practice, (2) ignored the basic 
principles of electromagnetism, and (3) gave up too soon. It looks like these 
inventors applied CBR poorly: they stuck to minor adaptations of telegraphy 
rather than reassessing the problem and analyzing it from a new perspective. 
In contrast, Bell reassessed the telephone problem as being acoustical and 
not electrical. When Bell was stuck in electrical details, he analyzed his 
telephony experiments using acoustical experiences and expertise. 

Bell's research plan, used to generate new learning goals, was much like 
that of other inventors. When Bell identified an unexpected function of a 
device, he tried to understand it in terms of his knowledge. When his under- 
standing process failed, he generated new learning goals (Ram, 1991). But 
Bell brought a new perspective to the analysis of telephony by relying on his 
acoustical knowledge to generate new hypotheses. In analogy with acous- 
tical sound transmission, Bell generated the electrical "undulatory current" 
hypothesis, essential for the design of the telephone. Bell frequently inter- 
preted and remembered his electrical experiments in terms of acoustics, that 
he could easily perceive without supplementary equipment. Consequently, in 
some cases he could recognize opportunities to solve suspended problems while 
pursuing other problems (i.e., the "undulatory current" was recognized while 
working on the multiple telegraph problem, by noticing peculiar acoustical 
effects). But not all the recognized opportunities fell in the above category. 
Sometimes, working on several problems in the same period of time facilitated 
knowledge transfer among them without any special perceptual elaboration 
(i.e., interleaved work on both the telephone and phonautograph inspired the 
microphone design for the telephone). 

Our exploration of creative design (Kolodner and Wills 1993a, Simina 
and Kolodner 1995) provides an initial framework (i.e., the IMPROVISER 
system) for a more enriched and dynamic CBR able to explain some of the 
reasoning issues involved in the invention of the telephone. In this framework 
a designer evolves concurrently the design specification and a pool of alter- 
natives under consideration, relying on his previous experience (see Figure 
1). Each new design alternative is evaluated mainly in relation to the cur- 
rent goal (i.e., the current design problem). But the evaluation process may 
serendipitously generate state information relevant to other suspended goals 
(i.e., some related problems which could not be pursued and were postponed), 
in addition to critiquing the design alternative and detecting ambiguities and 
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Figure 1: Framework for Case-based Creative Design 

contradictions in the design specification. Our model therefore has a mech- 
anism for detecting opportunities and for activating the suspended goals to 
which they pertain. 

Our previous framework handled most of Bell's control strategy during 
telephony work. Bell used to work on several open problems during the same 
period of time. When he got stuck on one problem, he switched to another 
one. Sooner or later Bell revisited the same problem, but this time from a 
new perspective. Indeed, working on other problems in the mean time seemed 
to "refresh" his memory: interleaved work generated new learning goals and 
new background cues that were used to approach the same old problem in 
a new way. But those three main processes in our framework did not use 
effectively the available previous experience since they used simple retrieval 
to explain some important part of Bell's reasoning. In particular, Bell's un- 
derstanding and interpretation processes seem far more complex than those 
handled by IMPROVISER. Bell used analogy when simple retrieval failed. 
When analogy also failed, Bell made new hypotheses by combining attributes 
of the (partial) design alternatives retrieved. This mechanism led to the fa- 
mous hypothesis of the "undulatory current", by mixing properties of sound 
transmission and electrical currents. We realized that understanding is a 
memory issue that should play a more important role in our framework for 
creative design. 

Based on Bell's case study, we are developing a model that integrates 
understanding and design problem solving, and building a computer program, 



ALEC1, to test our hypotheses about the role of CBR in long-term creative 
design. We characterize Bell's reasoning in terms of goals and plans, and 
we keep track of the active goals. The active goals can be triggered easily 
by small changes in the current state, while the reasoner is pursuing the 
current goal. Consequently, active goals can be satisfied opportunistically. 
Our computer model extends the memory architecture presented in Simina 
& Kolodner (1995). 

2    Creative Design 

2.1    Issues 

A designer is charged with specifying the structure of an artifact that de- 
livers some functions and satisfies some constraints (Chandrasekaran, 1990). 
Creative design adds two supplementary constraints: the designed artifact 
should be both novel and useful. But this simplistic characterization of the 
creative design task provides no clues in the processes involved. A novel 
artifact implies a novel design specification and it is difficult to separate the 
evolution of the design solution from the evolution of the design specifica- 
tion. The evolution of the design specification can be viewed as another 
design process (Tong, 1988) from an incomplete, contradictory and under- 
constrained specification to a better description, good enough for designing 
a novel artifact. 

But how can designers get to an initial design specification? The explo- 
ration of the design space without a design specification (i.e., "tinkering"), 
can produce novel artifact ideas, but designers should be able to recognize 
and assess the usefulness of those ideas. However, recognizing opportunities 
is hard, especially when the domain is not well understood. For example, 
Elisha Gray, another inventor involved in the quest for the telephone, put on 
paper a specification containing all the fundamental principles of the tele- 
phone but failed to recognize their real significance. In a letter to Bell, Gray 
confessed: 

/ do not, however claim even the credit of inventing it, as I do 
not believe a mere description of an idea that has never reduced to 
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practice - in the strict sense of that phrase - should be dignified 
with the name invention. (Bruce, 1973, page 221) 

The prerequisite of opportunistic behavior is the existence of suspended 
goals, goals that cannot be pursued in the current context and are postponed. 
As an example, Bell realized that he needed to produce an "undulatory 
curent" in order to design the telephone, but he had no clue of how to produce 
such a current. Later, he was able to recognize such an "undulatory current" 
while working on the multiple telegraph problem. 

The next question is: where these goals come from? Scientific curiosity 
is the main source of open problems and suspended goals. A designer may 
notice an anomalous situation, while pursuing a certain activity (e.g., un- 
derstanding an artifact). If the anomalous situation is "interesting" (i.e., it 
remembers him/hers about other goals), the designer may encode in memory 
a new goal to understand the anomaly. Later, he/she may recognize an op- 
portunity to better understand the anomaly. This is exactly what happened 
when Bell encountered Helmholtz's Apparatus (relevant to his acoustic re- 
search). Bell was unable to understand some electrical details of the appara- 
tus, but he returned to these details later when he recognized the opportunity 
to perform electrical experiments. By working on several related projects in 
the same period of time, creative designers incorporate "tinkering" oppor- 
tunistically in long-term design: while working on one project, they might 
recognize design ideas for new projects.   In Bell's case, he generated the 
telephone idea while working on the multiple telegraph. 

Once a designer has an initial design specification worth pursuing, he/she 
might generate and develop alternative design solutions. The most common 
methods for design use three subtasks: propose, critique, and modify (Chan- 
drasekaran, 1990). The issue here is how to implement these subtasks to 
explain creative behavior. We are interested to find how designers use well- 
known designs in novel ways or how they engage in cross-domain transfer 
of abstract design ideas. In particular, we want to identify the mechanisms 
that combine useful pieces of different artifacts in a new artifact. 

2.2    A Possible Approach 

Our approach to understanding long-term creative design was to use our 
previous framework (Wills and Kolodner 1994, Simina and Kolodner 1995) 
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new artifact. 

3.1    Memory Architecture 

The major component of our memory architecture (see Figure 2), is a working 
memory (WM) which communicates with both long-term memory (LTM) 
and perceptual processes(see Simina and Kolodner 1995). WM represents 
the activated part of LTM and keeps track of recent reasoning contexts. More 
precisely, the WM keeps track of: (1) the current problem context (i.e., the 
Evolving Specification and the pool of Alternatives), (2) the recent Suspended 
Problems (for simulating recency effects), (3) an Opportunity Agenda used by 
the control unit to select the next activity. 

WM LTM 

ambiguities 

Figure 2: Elaborated Framework for Creative Design 



The set of Suspended Problems is characterized by non-elaborated design 
specifications (sketchy-specs), which cannot be understood successfully by. 
our system (ALEC). A problem is considered solved when the Matcher mod- 
ule recognizes that something in the environment or created on the fly fulfills 
the requirements formulated in a sketchy-spec. 

The set of Background Problems contains problem contexts accessed re- 
cently. While devices in LTM are indexed normally by their function, alter- 
native designs for problems in Background Problems can be accessed also by 
structural and behavioral properties. Bell's case study showed" us that this 
is indeed the case. As an example, lets consider the episode when Bell had 
to design the microphone for the telephone: 

The problem that then arose in my mind was. how to move a- 
piece of steel in the way that the air was moved by the action of 
the voice. While this problem was in my mind, I was carrying on ex- 
periments with the phonautograph constructed from the human ear 
... and it occurred to me that if such a thin and delicate membrane 
could move bones that were, relative to it, very massive indeed, 
why should not a larger and stouter membrane be able to move 
a piece of steel in the manner I desired? At once the conception 
of a membrane speaking telephone became complete in my mind; 
for I saw that a similar instrument to that used as a transmitter 
could also be employed as a receiver. (Bell. 1908 p. 39). 

We notice here that the phonautograph design was recalled by a behav- 
ioral component (i.e. how to move heavy bones with a delicate membrane) 
which was not reflected in its function (i.e. record on paper the shape gener- 
ated by different sounds). This was possible since the phonautograph design 
was present in the Background Problems set, due to its recent processing. 
This mechanism provides also an explanation of how pieces from an artifact 
may be selected for building a new artifact. 

Each of the processes in Figure 2 (represented as gray rectangles) has the 
ability to inspect the Opportunity Agenda, to act upon relevant opportunities 
from the agenda, and to notice new opportunities for other processes, by 
recording them in agenda. The Opportunity Agenda contains a fixed set of 
generic opportunities which help to implement the standard CBR cycle. But 
once new opportunities are created by the External Recognizer (exogenous 
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opportunities) or by other internal process (endogenous opportunities), the 
flow of control may diverge from the standard CBR cycle. Since the control 
of our computational model is explicit (selection of opportunities from the 
agenda using heuristics), the model can keep a trace of the problem solving 
process and reflect on it, if necessary.  • " 

3.2    Processing Algorithm 

Creative design usually evolves incrementally, during several design sessions. 
During each session, we address some old issues (questions) and we raise 
other new issues (see Figure 3). 

TASK: incremental creative design 

INPUT: 
I   - an agenda of opportunity 
:   - an incomplete, contradictory and underconstrained 

design specification (to build a novel and useful artifact) 
represented as a set of constraints (K_current) 

;  - a set of design alternatives to build an artifact, 
satisfying the current set of constraints (K_current) 

OUTPUT: 
- an updated opportunity agenda 
- an evolved set of constraints (K_next) representing 
the evolved design specification 

;   - an updated set of design alternatives to build an artifact 
satisfying the (current) set of input constraints 
(K_next) 

METHOD: 

opportunity = pick the most relevant opportunity 
CASE(recipient of opportunity) OF 

eval: Evaluate an artifact (A) with respect to a goal (G) 
alt: Elaborate alternative solutions 
spec: Elaborate design specification 

Evaluate, Elaborate Solutions and Elaborate specification 
use the Creative Understanding subtask. 

Figure 3: Incremental Creative Design 

Our view of creative design includes two concurrent processes:  one for 
evolving alternative solutions and another one for evolving the design spec- 



ification. These two processes evolve under the control of a third process, 
evaluation. Evaluation questions the advantages and disadvantages of each 
alternative and also the contradictions and ambiguities in the specification. 
The resolution of these questions serves to refine both the design specifica- 
tion and the pool of partial design alternatives. The output of a creative 
design session becomes the input of the next session and the structure of 
input/output becomes an invariant of the process (see Figure 3). We call 
this invariant structure a problem context2. 

TASK: understanding 

INPUT: 
- artifact (A) 
- goal (G) 

OUTPUT: 
- solution (S) 

METHOD 

1. Perform memory retrieval 
2. if (1) fails, perform analogy 
3. if (2) fails, perform base constructive analogy 
4. if (3) fails, suspend the goal in memory, 

indexed by the predictive features 
of the artifact, and switch to another problem. 

Figure 4: The Understanding Algorithm 

In our view, the three main processes involved in creative design rely 
heavily on the use of previous experience. Each of these processes has to 
understand the current situation in order to act creatively. But if these 
processes perform only simple understanding based on classical memory re- 
trieval, our case-based reasoner will fail to generate novel artifacts. Other 
more complex reasoning is needed. 

As an example, when Bell tried to understand an electrical device (i.e., 
Helmholtz's Apparatus) without having enough electrical experience, sim- 
ple retrieval failed to retrieve useful electrical information from his memory. 
Next, he relaxed the constraints and looked for devices which performed 

2 A problem context extends the question, options, criteria (QOC) notation presented 
in MacLean et al. (1991). 
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the same acoustical functions (analogy). This time he could use his whole 
acoustical expertize in understanding the electrical device. But sometimes 
this was not enough since the analogical mapping failed. When Bell made 
an analogy between speech transmission through air and sound transmis- 
sion through electrical wires, standard analogy failed since electrical currents 
could transmit only the pitch of the voice, but not its amplitude. Sometimes 
it is possible to build dynamically a base within a given domain if the reasoner 
possesses some expertize in both target and intended base domain, by com- 
bining desirable attributes from several bases and evaluating the new base 
using knowledge from the target domain. Moorman and Ram (1994) call such 
a technique base-constructive analogy. Base-constructive analogy models the 
reasoning used by Bell in advancing the "undulatory current" hypothesis, by 
mixing properties of voice transmission through air and sound transmission 
through electrical wires. When base constructive analogy failed, Bell sim- 
ply encoded predictively the understanding problem in memory and started 
working on another problem. 

The new understanding algorithm, which supersedes our simple retrieval 
algorithm, is presented in Figure 4. It borrows from Moorman and Ram 
(1994), with some differences. The algorithm retrieves first all the devices 
that have all the attributes of the artifact to be understood. If retrieval is 
successful, then the new artifact may be understood in terms of one of the 
retrieved artifacts. Otherwise, the algorithm tries analogy, by relaxing the 
retrieval constraints (only the predictive attributes of the artifact's function 
are used in retrieval). If something is retrieved, then the algorithm performs 
understanding using structural mapping (Gentner, 1983). Otherwise, the al7 

gorithm tries base-constructive analogy. If base-constructive analogy fails, 
our understanding algorithm does not reformulate the problem (as in Moor- 
man and Ram's algorithm), but suspends the goal in memory (indexed by 
the predictive features of the artifact) and gives control to the goal scheduler 
to switch to another problem. Problem reformulation is a separate process 
in our framework, which is driven by an evaluation process. The evaluation 
process relies on real world interaction (i.e., experimentation), in order to 
decide how to reformulate the problem. A simple "mental" simulator, using 
structural mapping, cannot model the complex reasoning that lead to the 
invention of the telephone. 
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4 Discussion 

The proposed computational model makes explicit the role of understand- 
ing during design problem solving. Moorman and Ram (1994) have ad- 
dressed the complementary problem of making explicit the role of design 
during story understanding. In contrast with Moorman and Ram's model, 
our model stresses the importance of real-world evaluation (i.e., experimen- 
tation) for design problem solving. Clement (1989) emphasizes also the role 
of experimentation for problem solving via model construction,- but he does 
not propose a mechanism for constructing a new artifact by merging pieces 
from other candidate artifacts. But our model does not provide introspective 
reasoning on the reasoning trace (Ram and Cox, 1994), which also might be 
responsible for creative behavior. 

5 Conclusions 

We have presented a computational model for creative design, based on the 
utilization of an understanding algorithm for the ALEC's processes which 
rely on previous experience. The new model was able to offer a plausible 
explanation for some relevant episodes involved in the design of the tele- 
phone. In order to perform analogical reasoning, both the function of the 
base artifact and other behavioral attributes can be used to retrieve a po- 
tential target. The function of the artifact is used to retrieve artifacts from 
long-term memory, while the behavioral attributes may be used to retrieve 
artifacts in the working memory. 
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7    Appendix: A Case Study 

This case study analyzes some important reasoning steps involved in the 
telephone invention. Bell's education was important for his future scientific 
goals. The study of Helmholtz's apparatus introduced Bell to electricity and 
was also a prerequisite for the invention of the multiple telegraph. Bell's 
work on the multiple telegraph inspired the invention of the telephone. The 
design of the telephone was officially completed in March 7, 1876, when the 
U.S. Patent No. 174,465 was issued. 

7.1    Background 

Bell was specially educated by his father to be a teacher of articulation spe- 
cialized in the "visible speech" method (Bell 1908, page 7). The idea was to 
provide alternative forms of acoustic feedback for deaf mute students learn- 
ing to speak. Consequently, Bell set himself the following agenda of thematic 
goals for his teacher role: 

1. teach articulation  (based on the  ''visible speech'' method) 
plan:  provide visual feedback 

2. learn  ''everything''  about acoustics and speech 
to improve the  ''visible speech'' method 

3. publish  (communicate)   original research 

In 1864, Bell accepted a teaching position of articulation and music. As 
a teacher, Bell set himself the goal to understand the role of the articulatory 
system in the production of vowels. First, Bell noticed the existence of two 
cavities in the articulatory system. The two cavities had the acoustical func- 
tion of resonance chambers, each characterized by its own pitch. After an 
elaborate set of experiments, Bell identified that "the vowel quality was pro- 
duced by the resonance tones of the mouth-cavities mingling faintly with the 
tone of the voice". 

This is where the interesting part of Bell's story began. Bell communicated 
this original result (one of his goals as a teacher) to the relevant research 
community. Surprisingly, Bell found: 

... that the experiments had already been made by Helmholtz, 
and that Helmholtz had demonstrated the compound nature of the 
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Figure 5: Bell's Articulation Model 

vowel sounds by producing them artificially by a synthetical pro- 
cess. (Bell 1908, page 8) 

Bell considered the above information "interesting" for his goal learn "ev- 
erything" about acoustics and speech (more exactly, Bell could use the appa- 
ratus built by Helmholtz to test his own speech theory). In order to satisfy 
this goal, Bell set himself the subgoal to understand Helmholtz's Apparatus. If 
we want to understand how the subgoal was generated, we can ask ourselves: 
how an agent (Bell in particular) can learn "everything" about a specific area? 
As a general method (heuristic), the agent should detect potential challenging 
problems and next he should try to understand them. If the agent detects 
interesting anomalies during the understanding process (surprises), he can 
use them to generate new learning goals. We will refer to the above method 
as Bell's research method. 

7.2    Understanding Helmholtz's Apparatus 

7.2.1    Mapping 

Both Helmholtz's Apparatus and Bell's Speech Model performed the same 
acoustic function (vowel production). Consequently, Bell tried to understand 
Helmholtz's Apparatus by comparing and contrasting it to his speech model. 

The structure of both devices had little physical resemblance, but the 
function of the structural elements mapped straightforwardly: 

For example, he [Helmholtz] would cause the simultaneous vi- 
bration of three tuning-forks of different pitches - one of these 
would represent the pitch of the voice - and this fork he caused 
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ARTIFACT: Helmholtz's Apparatus (HA) 

FUNCTION: synthetical vowel production 
STRUCTURE: 
generator 

FUNCTION: intermittent current generator 
PARAMETERS: 
pitch = f 

fundamental receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = f 
amplitude = high 

receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = n1 *f ;n1 > 1 
amplitude = low 

receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = n2 * f ;n2 > 1 
amplitude = low 

BEHAVIOR: 
send intermittent current from the generator 
to the receivers through electrical wire 

generate synthetical vowels 

ARTIFACT: Bell's Speech Model (BSM) 

FUNCTION: vowel production 
STRUCTURE: 

vocal chords 
FUNCTION: sound generator and resonator 
PARAMETERS: 
pitch = f 
amplitude = high 

back mouth cavity (laryngx) 
FUNCTION: sound resonator 
PARAMETER: 
pitch > f 
amplitude = low 

front mouth cavity 
FUNCTION: sound resonator 
PARAMETER: 
pitch > f 
amplitude = low 

BEHAVIOR: 
send acoustical waves from the vowel chords 
to the two mouth cavities through air 

generate vowels 

TARGET BASE 

Figure 6: Mapping BSM and HA 

to vibrate in front of a resonator tuned to its own pitch, so as 
to cause it to produce a loud musical tone. The other two forks 
corresponded in pitch to the front and back cavities of the mouth 
in uttering some vowel sound. The effect upon the ear was as 
though someone sang a vowel sound. (Bell 1908, page 8) 

In Figure 6 we present the analogy between Bell's speech model and 
Helmholtz's Apparatus. The figure represents only the relevant elements 
for the analogical mapping. Initially, the target was identified as having 
the same function as the source. As a next step, the acoustical function 
of the structural components was mapped. Finally, individual parameters 
(attributes) have been mapped. 
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7.2.2 Surprises 

But Bell had also surprises in understanding the Apparatus. According to 
Bell's research method (see above), these surprises were used to generate fur- 
ther learning goals. First, Bell noticed that Helmoltz used a variable number 
of harmonic receivers (not necessarily two). This surprise generated a learn- 
ing goal: find why more harmonics are necessary in order to generate synthetical 
vowels. This learning goal was indexed by the structure of HA. The expla- 
nation provided by Helmholtz was that accurate (synthetical) reproduction 
of some vowel sounds needs a big number of harmonics (according to the 
Fourier analysis). The explanation was associated with the structure of HA. 

Next, by studying the behavior of HA, Bell had another surprise, namely 
that electrical wires can be used instead of air for transmitting sounds at 
distance. The creative understanding algorithm can provide some clues in 
Bell's reasoning. Bell hypothesized that electrical wires (in the context of 
HA) and air have the same function (both transmit sounds), but was unable 
to fulfill the mapping successfully. Initially, Bell found that he does not have 
the electrical knowledge to fulfill the mapping, so he suspended the problem: 

Helmholtz kept his forks in vibration by means of electro-magnets 
and a voltaic battery; but I found that I had not sufficient electri- 
cal knowledge to understand the arrangement used by Helmholtz. 
I therefore determined to study electricity. (Bell 1908. page 8) 

7.2.3 "Odds and ends" 

At the end of the compare and contrast between HA and Bell's Model, the 
generator used in HA did not have a counterpart in BM (so the mapping was 
not perfect). In order fully understand HA, Bell had to remember another 
relevant experience. First Bell had to assess the situation, namely to find 
quickly what (acoustical) peculiarities characterized the generator. Bell could 
notice the resonance phenomenon (same frequency at the generator and at 
the fundamental receiver). Using this cue, Bell was reminded of "the piano 
experience": 

... / was familiar with the fact that the strings of a piano could 
be set into vibration by the action of the voice. For example. 
depress the pedal of a piano so as to rise the dampers from the 
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strings, and then sing into the instrument. That string which 
corresponds in pitch to the note will respond. (Bell 1908, page 
36) 

The immediate goal was to use this experience to understand the role of 
the generator. However, since this experience was remembered in the service 
of the goal understand HA, Bell tried to map the past experience with HA as 
much as possible (opportunistic reasoning). The analogy between "the piano 
experience" and Helmholtz's Apparatus is presented in Figure 7. 

ARTIFACT: Helmholtz's Apparatus (HA) ARTIFACT: the Piano Resonance Case (PRC) 

FUNCTION: synthetical vowel production 
STRUCTURE: 

generator 
FUNCTION: intermittent current generator 
PARAMETERS: 
pitch = f 

fundamental receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = f 
amplitude = high 

receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = n1 *f ;n1 > 1 
amplitude = low 

receiver (tunning fork) 
FUNCTION: sound resonator 
PARAMETERS: 
pitch = n2 * f ;n2 > 1 
amplitude = low 

BEHAVIOR: 
send intermittent current from the generator 

to the receivers through electrical wire 
generate synthetical vowels 

TARGET 

FUNCTION: selective resonance 
STRUCTURE: 
vocal generator 

FUNCTION: sound generator 
PARAMETERS: 
pitch = f 

selected piano string 
FUNCTION: sound resonator 
PARAMETER: 
pitch = f 
amplitude = high 

other piano strings 
FUNCTION: sound resonator 
PARAMETER: 
pitch <> f 
amplitude = low 

BEHAVIOR: 
send acoustical waves (pitch = f) from the 
vowel chords to all the piano strings 
through air 

generate high amplitude sound only in the 
selected piano string (pitch = f) 

BASE 

Figure 7: Mapping PRC and HA 

This time the generator from HA mapped with the vocal generator and the 
fundamental receiver from HA mapped with the selected piano string. More- 
over, the nonresonating harmonic receivers from HA mapped with some non- 
resonating piano strings. The medium of transmission was electrical wire for 
HA and air for PEM, but this was not a surprise anymore. Since the map- 
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ping was successful, all the explanations about the role of the vocal generator 
from PEM could be carried over to the role of the generator in HA. 

In conclusion, Bell noticed that HA performs a/50 the function of selective 
resonance (or demultiplexer), depending on the frequency of its intermittent 
current generator. Bell learned a new index for HA, namely selective reso- 
nance. 

7.3    Aha! Multiple telegraph 

In 1870's, a challenging problem in the telegraphic industry was the invention 
of a "multiple telegraph", whereby several messages could be transmitted 
simultaneously over the same wire. In 1872 the telegraphic industry adopted 
the Stearns' duplex (two-message) system, and it was looking forward the 
invention of a four- or eight-message system. Fame and fortune awaited the 
inventor of a multiple telegraph. 

After reading a newspaper article3 about the quest for a multiple tele- 
graph, Bell realized that he could design a multiple telegraph based on his 
knowledge of Helmholtz's Apparatus. We present a possible analysis of this 
episode. 

While reading the newspaper article about the multiple telegraph, Bell 
tried to understand how the system worked. Bell assessed the problem as 
follows: (1) it involves electricity and telegraphic equipment and (2) a mes- 
sage is coded and transmitted over electrical wire to be received selectively 
only by one receiver. 

The first requirement (1) brought into WM Helmholtz's Apparatus (since 
this was the only electrical device in which he was interested in the past). 
Consequently this created a context to understand (2). While addressing 
the problem of transmitting messages through electrical wires, Bell recalled 
the similarity of sounds and electrical currents (in the context of HA). Since 
nothing else was recalled, the only chance to understand further the problem 
was to reformulate it in terms of acoustics, where Bell was expert. 

Bell reformulated the problem as involving selective resonance: a sound 
is coded and transmitted through air to be received selectively by only one 
recipient. The "piano experience" was remembered and it offered a solu- 
tion to the problem.   Namely, if a person sings intermittently close to the 

3In the newspaper where Bell advertised his speech lessons for deaf students. 
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piano strings at a particular pitch, only the piano string with corresponding 
pitch will respond intermittently. What about several people? Bell men- 
tally simulated that no interference will appear. Consequently, Bell assessed 
that the problem had a solution in the acoustical domain. By putting the 
electrical constraint in the context of the "piano experience", Bell retrieved 
Helmholtz's Apparatus. Since HA provided only a partial solution to the 
multiple telegraph problem, Bell had to guide the design of the multiple tele- 
graph by using the acoustical model developed in the context of the "piano 
experience". In order to send one message to a specific recipient, Bell had to 
introduce a telegraphic key in the HA generator's circuit. For sending several 
messages, several generators of different pitches had to be introduced in the 
circuit. Bell simulated mentally his design and concluded its validity. 

Bell developed the acoustic solution to MT in the context of understand- 
ing the newspaper article about the multiple telegraph. However, this solu- 
tion enabled a state that activated other goals. The result was "interesting" 
for Bell's thematic goal learning "everything" about acoustics and also for the 
more human goal goal to become rich and famous, mentioned in the newspaper 
article. Since there was no goal conflict, Bell decided to pursue further the 
goal design a multiple telegraph. After designing the theoretical model of the 
multiple telegraph, Bell generated the goal implement the multiple telegraph, 
but he needed to learn more electricity first. 

One plan to satisfy the goal learn more electricity is read electricity manuals. 
Bell found an electricity book by Baile and started to learn electricity to fulfill 
his goal to implement the multiple telegraph. In this book, he could read about: 

a series of vibrating plates, answering to the strings of a harp, 
... each of which vibrates when struck by a particular sound, 
and sends off electricity to create at the end of the line the same 
vibrations in a corresponding plate. (Bruce, 1973, page 122) 

Bell could recognize that the structure and the behavior of the above 
design was relevant for his active goal implement the multiple telegraph. Con- 
sequently, he added the Baile's design as a design alternative to the goal 
implement the multiple telegraph. Bell noticed also that the new design trans- 
forms sounds into vibrations via intermittent currents. This function was 
relevant to Bell's goal sf teach articulation by providing visual feedback (since 
the mechanical vibrations could be perceived visually). Consequently, Baile's 
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design became also a design alternative for the goal to build technology to 
provide visual feedback . But Bell simulated mentally that: (1) the vibrations 
of the transmitter's plates produced by human voice are too small to be per- 
ceived, and (2) the intermittent current's used cannot transmit the amplitude 
of the voice to the receiver's plates. These observations were attached to the 
Baile's design and to the goal visualize speech. 

ARTIFACT: electrical speech ARTIFACT: telegraph 

FUNCTION: transmit voice over electrical 
wires 

STRUCTURE: 
?transmitter 
electrical wire (medium) 
?receiver 

BEHAVIOR: 
transmit the pitch of the signal over 

electrical wires 

transmit the amplitude of the signal 
over electrical wires 

NEW BASE 

FUNCTION: transmit telegraphic pulses over 
electrical wires 

STRUCTURE: 
telegraphic key 
electrical wire (medium) 
telegraphic recorder 

BEHAVIOR: 
transmit the pitch of the signal over 

electrical wire 
do not transmit the amplitude of the signal 

over electrical wire 

ARTIFACT: speech communication 

FUNCTION: transmit voice over air 
STRUCTURE: 

mouth 
air (medium) 
ear 

BEHAVIOR: 
transmit the pitch of the signal over 

air 
transmit the amplitude of the signal over 

air 

OLD BASES 

Figure 8: Base constructive analogy 

In the summer of 1874 Bell started experiments with the phonautograph, 
a device built from a dead man's ear for visualizing speech4. Of course, this 
goal was generated in the service of the plan provide visual feedback for deaf 
people. During these experiments, Bell was struck by the way sound waves 
acting on a tiny membrane could move relatively heavy bones. This infor- 
mation contradicted his previous mental observation made for Baile's design. 

4 This involved fastening a delicate stick to a moving ear bone and recording traces of 
complex waves on smoked glass, while someone spoke into the ear membrane. 
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Since Baile's design was an alternative of the current active goal, Bell had an 
opportunity to revisit the design. Only one unsatisfied constraint remained, 
namely that the intermittent currents used in Baile's design could not trans- 
mit the amplitude of the voice. Based on the analogy between electrical 
currents and sound transmission, Bell supposed the existence of an "undula- 
tory current", by mixing relevant properties of electrical currents and sound 
transmission (see Figure 8), and simulated Baile's design again. This time, 
a new function of the device emerged5: transmission of voice at a distance 
(Bruce, 1973 p.122). The new function was considered acoustically "inter- 
esting" and Baile's design was mentally adapted into the "harp apparatus". 
The harp apparatus was indexed under the "undulatory current" hypothesis. 
The hypothetical design of the telephone was predictively encoded in LTM 
and Bell switched his focus of attention to the Multiple Telegraph design. 

7.4    Aha! Telephone 

In June 2, 1875, Bell was performing experiments with the Multiple Tele- 
graph. Due to an implementation mistake, Bell noticed that one of the reeds 
produced a sound which reproduced both the pitch and the amplitude of the 
generator, that is the device transmitted an "undulatory current" (produced 
by induction). The telephone design (harp apparatus) was retrieved imme- 
diately. Moreover, the incident proved that only one reed could transmit 
all the harmonics of a signal and that the induction currents generated are 
significant: 

These experiments at once removed the doubt that had been 
in my mind since the summer of 1874, that magneto-electric cur- 
rents generated by the vibration of an armature in front of an 
electro-magnet would be too feeble to produce audible effects that 
could be practically utilized for the purposes of multiple telegraphy 
and of speech-transmission. (Bell, 1908 p.59) 

The above experiment switched Bell's focus of attention to the telephone 
design. Bell had already the main structural components to implement the 
telephone behavior. The next step was the design of the microphone: 

5Baile's design was also an alternative for the Multiple telegraph, where the main 
function was transmission of information at distance. 
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The problem that then arose in my mind was, how to move 
a piece of steel in the way that the air was moved by the action 
of the voice. While this problem was in my mind, I was carry- 
ing on experiments with the phonautograph constructed from the 
human ear ... and it occurred to me that if such a thin and del- 
icate membrane could move bones that were, relative to it, very 
massive indeed, why should not a larger and stouter membrane be 
able to move a piece of steel in the manner I desired? At once the 
conception of a membrane speaking telephone became complete in 
my mind; for I saw that a similar instrument to that used as a 
transmitter could also be employed as a receiver. (Bell, 1908 p. 
39). 

We notice here that the phonautograph design was recalled by a behav- 
ioral component which was not reflected in its function (i.e. record on paper 
the shape generated by different sounds). This was possible since the phonau- 
tograph design was present in the activated part of the long-term memory. 
Standard analogy was good enough to generate the design of the microphone, 
based on the the human ear. 
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SUMMARY 

Design is a wide-ranging and open-ended information-processing task. A common method for 

generating designs is to adapt previously encountered designs. In this method, selected elements 

of a previous design are transferred to the new problem. Such adaptive processes are believed to 

play an important role in reasoning underlying innovation and creativity. But current theories 

of adaptive design are limited to routine design. That is, they cover only design problems with 

fixed problem specifications, local modifications to previous designs, and within-domain transfer 

of design knowledge. 

The goal of this research is to build a theory of innovative design that addresses these 

limitations. We characterize innovation in design as including (1) non-local modifications to 

previous designs, (2) cross-domain transfer of design knowledge, and (3) reformulation of problem 

specifications. Non-local modifications are changes in the topology of a past design, i.e., changes 

in the arrangement of elements in a design. Non-local modifications are needed in adaptive design 

because past designs with the required topology (for solving new problems) may not always be 

available. Non-local modifications are hard because in some domains the design elements can be 

strongly interacting and making changes to the arrangement of the design elements can globally 

affect the elements in different parts of the design. 

Cross-domain transfer of design knowledge is the transfer of experience gained in solving 

design problems in one domain (such as electric circuits) to solve a problem in another (such 

as heat exchangers). Cross-domain transfer is needed because the necessary designs may not 

always be available in the same domain as that of a given problem. Cross-domain analogies are 

hard to make because of the difficulty in recognizing the similarity between a target problem and 

a source analogue; the difficulty may also be in determining what knowledge to transfer from 

the source domain to the target and how to do the transfer. These tasks are hard because the 

source and target domains may refer to different design elements at a given level of abstraction. 

Problem reformulation means revisions to problem specifications, such as addition, deletion, 

or modification of constraints, after the design process begins. It is generally needed because of 

the late arrival of constraints into problems and the discovery of constraints later in the design 

process. Problem reformulation is hard because it requires a designer to reason about the current 

design and its failures, and then to formulate new constraints if necessary. 

To address the above issues, we investigate two related hypotheses. First, we hypothesize 

that high-level abstractions in device design enable non-local modifications to previous designs, 

cross-domain transfer of design knowledge, and reformulation of design problems upon evalu- 

ation of initial designs.   Our theory is that design patterns are a particularly useful class of 
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abstractions that enable innovative device design. Design patterns capture different kinds of 

relationships, for instance, functional and causal relationships, among design elements, and they 

can be represented as generic, case-independent models. This research focuses on two partic- 

ular types of design patterns: generic physical processes (e.g., heat-flow process) and generic 

teleological mechanisms (e.g., cascading and feedback mechanisms). The former captures causal 

relationships among design elements while the latter captures functional relationships. We study 

how design patterns enable non-local modifications, cross-domain transfer, and problem refor- 

mulation. 

Second, we hypothesize that design patterns can be acquired from specific design experiences 

including feedback from an oracle upon problem-solving failure. Since the particular types of 

design patterns considered in this research capture functional and causal relationships, the design 

experiences from which those design patterns can be learned need to also capture those types of 

relationships among specific design elements. A Structure-Behavior-Function (SBF) model of a 

device explicitly specifies how the device works, that is, how the functions of structural elements 

get composed into the functions of the device as a whole. SBF models of specific designs thus 

enable learning of the functional- and causal-type design patterns and also provide a language 

for representing them as models. 

The theory of innovative adaptive design based on design patterns also leads us to a general 

theory of model-based analogy. Model-based analogy integrates learning of useful abstractions, 

such as design patterns, with their use in analogical problem solving. A computational system 

called IDEAL (Integrated Design by Analogy and Learning) implements model-based analogy 

and evaluates it for device design. Detailed experiments with IDEAL, involving some 50 different 

designs from five different device domains verify and validate our hypotheses. 



CHAPTER I 

INTRODUCTION AND OVERVIEW 

Let us consider the problem of designing a structure that enables people to climb a small hill. 

Depending on the knowledge available, a designer may solve this problem in different ways. If 

the designer has access to a past design that achieves a similar function, he can adapt the design 

to the new problem. In this example, the previous design is from the same domain as the new 

problem, the domain of hills. Suppose that the previous design is a "staircase" whose structure 

is composed of stair steps of one-foot high each. If the terrains of the current and the past 

bills (for which structures are needed to climb) are similar, then the required modification may 

be small, simple, and local. Examples of simple modifications are increasing or decreasing the 

number of stair steps and changing the height of each stair step. These local modifications change 

only parameters of design elements but not their arrangement. Such local modifications to the 

structure in a past design sometimes can result in a new structure that meets the requirement 

of new problem. 

Suppose the terrains of the current and the past hills are different: the terrain of the past hill 

has a gentle slope, but the slope of the current hill is steep. Suppose that the stairs in the previous 

design are linear: the structure consists of a sequence of stair steps placed along a straight line 

from the bottom to the top of the elevation of the hill. The linear configuration of staircase 

does not solve the new problem because the slope of the current hill is steep. The issue becomes 

how to modify the past design so that the new design delivers the desired functionality and 

satisfies the constraint from the terrain. In this example, small, simple, and local modifications 

do not suffice. Instead, there is need for a non-local modification such as the modification of the 

linear staircase into a circular one. A circular staircase is a sequence of stair steps arranged in 

a manner that they spiral around a vertical axis. Non-local modifications, in general, are more 

innovative because they make changes to design topology, i.e., the arrangement of the design 

elements. 

Now consider the situation in which the designer does not have access to a past design for 

climbing hills. But suppose that he has seen the design of a flight of stairs used in a house 

that enables people to go from one floor to another. The designer might potentially use this 

knowledge to address the current problem. One possibility is that the designer is reminded of the 

staircase design from the domain of houses. This raises the hard issue of cross-domain reminding. 

Another possibility is that the designer may have already abstracted generic design knowledge 

from the past design. The generic design knowledge may enable the transfer of the "strategic 



concept" of staircase to the new problem. The designer may now solve the new problem by 

designing a staircase that enables people to climb the hill. 

Irrespective of the specific way in which the design is generated, it may fail. For instance, the 

use of a staircase for climbing the hill might reveal the difficulty of taking large, heavy objects to 

the top of the hill. The generated design for climbing the hill did not consider this requirement 

because it was not specified initially. But the design's evaluation may point out the failure of 

the design to support the initially unspecified constraint of taking heavy objects up the hill. In 

order to redesign the staircase to avoid the failure, the designer may form a causal explanation 

for the failure. The causal explanation may both reveal the unspecified constraint and help in 

the generation of a design. The designer may redesign the staircase into a ramp that satisfies 

both the original and the new requirements. 

This is an example of innovative design. Although it is now common to use circular roads 

around steep hills for easy climbing, it surely was considered an innovative solution for the 

problem when it was originally designed. 

1.1    Issues in Innovative Design 

In the above design example, we saw three key high-level issues in innovative design: 

1. non-local modifications to past designs, i.e., changes to design topology 

2. cross-domain transfer, i.e., transfer of design knowledge between distant domains such as 

houses and hills, or electric circuits and mechanical controllers 

3. reformulation of design problems, i.e., the revision of problem specifications during the 

design process 

1.1.1    Research Problem 

The goal of this research is to build a theory of innovation in design, where innovative design 

can be characterized as including one or more of the above three factors. We focus on 

1. device design, in particular, design of physical devices such as electric circuits, heat ex- 

changers, and mechanical controllers; 

2. conceptual design which involves producing a high-level specification of a desired artifact 

given the functional and structural constraints on the artifact; 

3. non-local modifications and cross-domain transfer. 



1.1.2    Research Hypothesis 

Our hypothesis is that high-level design abstractions in the form of generic design patterns enable 

non-local modifications, cross-domain transfer, and problem reformulation. A design pattern is 

a specific type of knowledge that encapsulates a specific kind of relationship among the design 

elements. One example of a design pattern is the replication of a design element. This pattern 

occurs in a linear staircase in which a stair step is replicated to achieve the needed height. In the 

example of designing a structure for climbing the hill, this pattern was used for making cross- 

domain transfer. Another example of a design pattern is the circular arrangement of design 

elements so that they form a spiral around a vertical axis. In the example of the structure for 

climbing a hill, this pattern was used for making non-local modification. 

Functional and Causal Design Patterns 

Design patterns are not specific to the domains of hills and houses. Instead, they occur in all 

design domains. In the domain of physical devices, we hypothesize that a specially useful class 

of design patterns capture functional and causal relationships among the design elements. For 

an illustration of the use of a functional design pattern, consider an example from the domain 

of electric circuits. Suppose that the problem is to design an electric circuit that produces light 

of 12 lumens. If the designer has access to a previously designed circuit that delivers light of 

6 lumens, he can adapt the past design to solve the new problem. Suppose the past design 

contains a bulb, a battery, and a switch connected in series so that the intensity of light is 

directly proportional to the voltage of the battery. If the voltage of the battery in the past 

design is 1.5 volts, then the designer may decide to simply replace the 1.5-volt battery with a 3- 

volt battery. But suppose that a 3-volt battery is not available. Then the simple modification of 

replacing the 1.5-volt battery with a 3-volt battery is not feasible. The issue then becomes how 

to modify the past design to produce light of 12 lumens. Suppose the designer knows the generic 

design pattern of replication of structural elements of a given functionality to achieve a larger 

functionality of the same type. Then the designer may instantiate this pattern and replicate the 

1.5-volt battery twice to obtain the needed voltage of 3 volts. The design pattern of replication 

(also called cascading in engineering) captures a specific kind of abstract relationship between 

the functions delivered and the causal structure of the design elements. This is the same pattern 

of replication used in the staircase example earlier. Indeed, the designer may acquire the design 

pattern from a different domain and use it in the domain of electric circuits. 

1.2    Conceptual Framework 

We will now elaborate on our research issues and hypotheses at three levels of description: 

conceptual framework, computational theory, and computer program. At the level of conceptual 

framework, we explore analogical reasoning in innovative design, where analogy is mediated by 



high-level abstractions such as generic design patterns. At the level of computational theory, 

we describe a specific mechanism of analogical reasoning for device design that we call model- 

based analogy. Model-based analogy uses the knowledge of qualitative device models and generic 

design patterns. At the level of computer program, we study the theory of model-based analogy 

in several engineering domains. 
Now, we begin our description of the conceptual framework along three dimensions: the task, 

the method, and the knowledge. 

1.2.1    The Task: Design 

Design is a very common, wide-ranging and open-ended information-processing task. Humans, 

laypersons as well as professionals, encounter design task in various complexities and perform 

it "everyday"—designing a picture, designing a symphony, designing a program and designing 

a device are only a few examples. In all these kinds of design activity, a design task can be 

routine or non-routine depending on the designer's knowledge and the design product. More 

specifically, a design task can be routine or non-routine depending on how similar or different 

the new design is from known designs. 

1.2.1.1 Conceptual Design 

Design process generally involves several different phases (or stages), such as conceptual design, 

configuration design, design realization, and design optimization. We focus on conceptual design, 

the preliminary phase of design. In this phase, the goal is to produce a high-level, qualitative 

specification of a desired design. 
The specification of a design problem may evolve during the design process. The conceptual 

design task generally takes as input a specification of desired artifact's function(s) and gives as 

output a high-level specification of the artifact's structure that achieves the desired function(s). 

Besides functional constraints, others such as constraints on structure and its realizability may 

also be specified. 

1.2.1.2 Adaptive Design 

Design tasks, in general, may be solved by different reasoning methods depending on the available 

knowledge. A common method for generating designs is to adapt previously encountered designs. 

In this method, a new design problem is solved by modifying an old design solution such that 

much of the old design's structure is preserved. Broadly speaking, current theories of adaptive 

design are limited to routine design as follows: 

1. Adaptations to previous designs are local and parametric such as the replacement of one 

design element in a past design by another. 



2. The transfer of designs is within-domain where new problems and past designs are from 

the same domain (at a given level of description of the domain). An example of within- 

domain transfer is in designing a new staircase for a house by transferring knowledge from 

the design of a staircase in another house. 

3. Problem specifications remain fixed during the design process. 

1.2.1.3    Innovative Design 

Within the context of adaptive design, we characterize innovative design in terms of how the 

new design is relative to known designs. Accordingly, a design task is innovative if the task 

involves modifications to a known design's elements and its topology. More generally, innovative 

design involves one or more of the following: 

1. non-local modifications to previous designs 

2. cross-domain transfer of design knowledge 

3. reformulation of design problems 

Non-Local Modifications 

Modifications to designs can range as follows: (1) changes to the parameters of the design 

elements (while preserving the design elements and the topology of the design), (2) changes to 

design elements (while preserving the design topology), and (3) changes to the design topology 

itself. Non-local modifications are changes to the design topology. The topology of a design 

refers to the arrangement of the design elements, that is, the configuration of the connections 

among the elements. Changes to a design's topology include addition or deletion of design 

elements, and connecting them in a different way. An example of a non-local modification is in 

modifying the design of a linear staircase for a hill into a circular staircase for another hill. 

Non-local modifications are generally needed in adaptive design for two reasons: past designs 

with the needed topology may not be available and thus simple, local modifications may not 

suffice; even when a design with the appropriate topology is available, specific design elements 

with the desired functions may not be available to replace elements in the known design. 

Making non-local modifications is hard because they can globally affect different elements in 

all parts of the design. Computing the effects of non-local modifications to a design can become 

intractable if the number of design elements is large and the elements are strongly interacting. 

The major issue is what knowledge might enable the control of inferences in making non-local 

modifications. 

Cross-Domain Transfer 
A design domain may be characterized by the design elements available in it. Batteries, bulbs, 

and wires are examples of design elements in the domain of everyday, simple electric circuits. 



They are different from design elements such as pumps and pipes available in the domain of 

heat exchangers. The notion of a "domain," in general, is fuzzy because it depends on the level 

of abstraction at which primitive design elements of the domain are described. For instance, 

engineering devices may be considered as belonging to the same domain as computer programs if 

design elements are described at a high level of abstraction where both programs and (physical) 

devices are viewed as abstract devices. Due to the fuzzy notion of domains, there lies a continuum 

between what is within-domain transfer and what is cross-domain transfer. In that sense, the 

domain of electric circuits is considered distinct from the domain of mechanical controllers, but 

more so from the domain of computer programs. Cross-domain transfer of design knowledge is 

transferring the experience gained in solving design problems in one domain (such as electric 

circuits) to solve a problem in another (such as heat exchangers). 

Cross-domain transfer of design knowledge is needed because the necessary designs may not 

always be available in the same domain as a given design problem. But cross-domain analogies 

are hard to make because of the difficulty in recognizing similarity between a target problem 

and a source analogue and the difficulty in determining what knowledge to transfer from the 

source to the target and how to do the transfer. These tasks are hard because at a given level of 

abstraction in the description of the source and target domains, the target problem and source 

analogues may refer to different kinds of design elements. 

Problem Reformulation 
We define problem reformulation as including addition, deletion, or modification of constraints 

in a given problem after the process of design begins. A constraint in a design problem is the 

specification of a value or a range of possible values for some design parameter desired in the 

new design. An example of a constraint from the problem of designing an electric circuit is 

specifying that the desired voltage is 3 volts. Another example is specifying that the height of 

a staircase needs to be same as that of the hill, which we saw in the scenario of designing a 

"staircase" for climbing a hill. 
Problem reformulation, in general, is needed because of the late arrival of constraints into 

problems and the uncovering of constraints later in the design process. That is, first, constraints 

on design problems may not be completely specified at the beginning of the design process but 

instead may be specified by an external agent later in the process. Second, some new constraints 

may be discovered and added to a problem specification when its initial designs are evaluated, or 

some old constraints may be deleted or modified after the designs are evaluated. In this research, 

we focus on the latter type of problem reformulation. In the scenario of designing a staircase for 

climbing a hill, we saw an instance of the discovery of new constraints—it was discovered late in 

the process that the slope of the hill needs be considered in the design of staircase for the hill. 

Reformulating problems by discovering new constraints and redesigning to incorporate the new 

constraints can lead to innovative designs. 



Problem reformulation due to the discovery of constraints is harder and more interesting than 

the one due to the late arrival of constraints because the former requires a designer to reason 

about the current design and its failures, and then to formulate new constraints if necessary. 

Such problem reformulation is needed because some constraints on a design are not uncovered 

until after the design is evaluated, for example, evaluated by its use in a real environment. 

The constraints that are generally discovered late in the process are about interactions of a 

design with its environment. The discovery of such constraints is late because the conditions 

of the environment may not be known completely at the beginning of the process. Even if the 

conditions were known, they might change from the time of initial problem specification to the 

time of design realization. Therefore, when the environments are thus dynamic, designs may 

fail, although they satisfy the constraints of initial problem specifications. This type of problem 

reformulation is hard because it requires the following: (a) evaluation of the design by realizing 

and using it in real environments, (6) understanding of external feedback on design failures, 

and (c) discovery of new constraints. Then the reasoning issues become what knowledge might 

enable the understanding of external feedback and the discovery of new constraints, and how it 

might enable the tasks. 

1.2.2    The Method: Analogical Reasoning 

Analogical reasoning plays an important role in human problem solving and learning (Gick 

and Holyoak, 1980, 1983; Gentner, 1983; Ross, 1984). Analogical reasoning is the process of 

retrieving knowledge of a familiar problem or situation (called source analogue) that is relevant 

to a given problem (called target problem) and transferring that knowledge to solve the given 

problem. In our characterization of innovative design, the ability to transfer knowledge across 

domains is one of the important aspects of innovation. Thus our theory of innovative design 

also leads to a theory of analogical reasoning in design. 

Analogies, in general, can be of different types (Vosniadou and Ortony, 1989)): (1) within- 

problem, (2) cross-problem but within-domain, and (3) cross-domain. As we noted before in 

Section 1.2.1.3, there can be a continuum between what is within-domain analogy and what is 

cross-domain analogy because boundaries of a domain are generally fuzzy and they depend on 

the level of abstraction at which design elements in the domain are described. Within-problem 

analogy involves transferring knowledge from one subproblem to another subproblem within 

the context of solving the same overall problem, e.g., designing a staircase by transferring the 

design of another staircase in the context of designing a structure for climbing between floors in a 

multi-storeyed house. Cross-problem but within-domain analogy (hereafter called within-domain 

analogy) involves transferring knowledge from one problem in a domain to another problem in 

the same domain, e.g., designing a staircase for climbing a hill by transferring the design of a 

staircase for climbing another hill. Many existing computational models of analogical reasoning, 

such as case-based reasoning (Kolodner, 1993), address this type of analogy.   Cross-domain 



analogy involves transferring knowledge from a problem in one domain to another problem in a 

different domain, e.g., designing a staircase for climbing a hill by transferring design knowledge 

from the domain of houses (not necessarily from the design of a specific staircase in a specific 

house). Cross-domain analogies are the hardest to make because of the issue of recognizing 

similarity between two problems from two different domains and transferring knowledge between 

them. Some of the important issues in analogical reasoning include the following: 

• What might be the content and representation of source analogues? 

• How can a target problem be specified? 

• Given a target problem, how does the retrieval of a source analogue occur? What kind of 

features in the target problem determine the retrieval? 

• Once a source analogue has been retrieved, how might knowledge from the source be 

transferred to the target problem? Whether the knowledge from the source analogue is 

directly mapped onto the target or some abstraction shared by the source and the target 

mediates the transfer process? 

• Since transferring knowledge from a source analogue to a target problem often may not 

satisfy the requirements of the target problem completely, how might the transferred knowl- 

edge enable inferences needed to complete the solution to the target problem? How might 

the transferred source analogue be modified? 

• How can a solution for a target problem be evaluated? That is, how can a solution be 

verified to determine if it satisfies the requirements of a target problem? 

• What might be learned from a target problem that may be 'useful' for future problem 

solving? What might be abstracted from the target and source analogues? How might 

this abstraction occur? When does this abstraction occur: at problem-solving time or at 

analogue-storage time? 

• How might a target analogue be stored for later use? Whether it is stored at all? If 

it is stored, how might it be indexed1 in memory? How might its indices be acquired 

dynamically? 

• How might the abstractions (if any were formulated from the source and target analogues) 

be stored in memory? How might they be indexed? 

Our theory of model-based analogy (MBA) attempts to address all the above issues. In our 

theory, each design analogue is associated with a model of the solution in the analogue (i.e., a 

indexing of knowledge can be generally viewed as "labeling" individual pieces of knowledge with appropriate 
information. That enables access of "a" particular piece of knowledge when a new situation specifies information 
similar to the label of that particular piece of knowledge. 



device model). The transfer of design analogues from a source domain to a target domain is 

mediated by higher-level abstractions over device models in the form of functional and causal 

patterns. 

1.2.3 The Knowledge: Device Models and Design Patterns 

At the level of conceptual framework, our theory of model-based analogy in design depends on 

the content of knowledge that supports reasoning tasks in applying analogy for design. Our 

hypothesis is that design analogues, models of specific design solutions in the analogues (i.e., 

device models), and abstractions over device models (i.e., design patterns) enable innovative 

design by analogy. In our theory, a design analogue consists of a design problem, its solution, 

and a device model. The model of a device specifies and explains how the parts of the device give 

rise to addressing a design problem. The knowledge of device models is important for the control 

of reasoning in innovative design because the models capture how behaviors of design elements 

mediate between their functions and structures. For instance, consider the staircase design we 

saw earlier. A model for that design may specify how functions of each design element, i.e., 1- 

foot stair-step, get composed into achieving the overall function of enabling people to climb the 

hill. We hypothesize that the useful design abstractions for innovative design are abstractions 

over models of specific designs that we call design patterns. (More details on design patterns 

will be given later in Section 1.3.3.1.) 

1.2.4 Issues and Research Hypotheses 

The above characterization of innovative design (as in Section 1.2.1.3) in terms of non-local 

modifications, cross-domain transfer, and problem reformulation raises the following important 

issues. We summarize our research hypotheses at the level of conceptual framework for each of 

the issues below. 

1. Content and Representation of Design Knowledge: What design knowledge might 

enable these three aspects of innovation? That is, what might be the content of design 

knowledge and how might it be represented? 

Hypothesis: High-level design abstractions enable innovative design, i.e., non-local modi- 

fications to previous designs, cross-domain transfer of design knowledge, and reformulation 

of design problems upon evaluation of designs. These design abstractions are abstractions 

over models of specific design analogues (or cases). The model of a design may be char- 

acterized by the kinds of relationships it captures about the elements of the design. In 

particular, we refer to a model that encapsulates functional, structural, and causal knowl- 

edge about design elements. We call such models of specific designs as device models and 

the abstractions over them as design patterns. 
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2. Access and Organization of Design Knowledge: How might such design knowledge 

(as in (1) above) be accessed/retrieved from memory when a new problem is given? What 

kind of organization and indexing might support better retrieval of relevant knowledge 

from memory? How might the design knowledge be related to other types of knowledge, 

if any? 

Hypothesis: Design knowledge, we refer to, can be of two types: (a) design analogues 

(and associated device models) and (6) design patterns (i.e., particular types of abstractions 

over device models). Design analogues and the associated device models can be retrieved 

by matching on problem specifications while design patterns can be retrieved by matching 

on types of functional relationships between designs. Design analogues need to be indexed 

based on the tasks for which they are used and they need to be organized hierarchically 

along those indices for an efficient and effective retrieval. Further, design analogues need to 

be associated with their models and the conceptual knowledge of design elements because 

that facilitates evaluation and elaboration subtasks in design. 

3. Use of Design Knowledge: How might the design knowledge in (1) be used for inno- 

vative design? That is, what might be the specific processes by which that knowledge 

enables the three aspects of innovative design? 

Hypothesis: Since the useful design knowledge is abstract (i.e., abstractions over models 

of designs such as design patterns), its use in new problems is through the instantiation 

of design patterns in the context of new problems. 

4. Origin and Acquisition of Design Knowledge: Where does such design knowledge 

(as in (1)) that enables innovative design come from? How might it be acquired? 

Hypothesis:  Useful design abstractions such as design patterns can be acquired from 

specific design experiences including feedback from an oracle upon problem-solving failure. 

1.3    Computational Theory 

At the level of computational theory, our hypotheses are refined and focused in all the three 

dimensions: the task, the method, and the knowledge. 

1.3.1    The Task: Device Design 

A device is an artifact that has both output functions and internal causal mechanisms that result 

in output functions. The device design task takes as input a specification of the functional and 

structural constraints on a desired device and gives as output a specification of the structure of 

the device that delivers the desired functions and satisfies the structural constraints. Innovation 

in device design is especially hard. Consider the two aspects of innovative design, namely, 

non-local modifications and cross-domain transfer. Making non-local modifications to a known 
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device design is hard because the structural elements of the device can be strongly interacting 

and modifications local to one part of the device can have non-local effects. The issue is how 

to control the reasoning about non-local effects in modifying a known device design. Similarly, 

cross-domain transfer is hard because of the difficulty in determining "what" to transfer between 

distant device domains. The issue becomes hard because at the level of specific structural 

elements used to describe domains, it may not be possible to see the relevance of a source design 

to the target problem. 

1.3.2 The Method: Model-Based Analogy 

Figure 1.1 shows the computational process we developed for model-based analogy in design.2 

This computational process includes the following different stages: (1) retrieval of a source 

analogue; (2) transfer and modification (i.e., adaptation) of relevant knowledge from a source 

analogue to the target problem—this is a multistrategy transfer mechanism in which specific 

adaptation goals determine whether simple adaptations are done or complex ones using design 

patterns are performed; (3) evaluation of a solution to the target problem—the computational 

process also accommodates understanding of external feedback on design failures and possible, 

subsequent reformulation of design problems; (4) learning from the source and target analogues 

by abstraction—the process also accommodates interaction with an oracle for acquiring the 

target solution in case of problem-solving failures; and finally (5) storage of the solution to the 

target problem and the learned knowledge (i.e., design patterns). This process covers not only 

cross-domain analogies but also within-domain analogies. This work builds on the model-based 

approach to case adaptation developed in (Goel, 1989) that covers within-domain analogies in 

device design. Goel used the theory of structure-behavior-function (SBF) models for exploring 

issues in within-domain adaptive design and for representing models of specific devices. 

In the process of model-based analogy, solving some classes of problems may involve the 

retrieval and instantiation of design patterns. But, for some other classes of problems in which 

adaptation goals are different, the transfer process may not involve the use of design patterns; 

instead, it may involve only simple modifications to known designs. The two specific types of 

design patterns, namely, Generic Physical Processes (GPPs) and Generic Teleological Mecha- 

nisms (GTMs), enable different subtasks of analogical reasoning in the computational process 

shown (Figure 1.1). 

1.3.3 The Knowledge: SBF Models of Devices and Design Patterns 

We adopt the theory of SBF models (Goel, 1989) to represent device models and design pat- 

terns. This theory takes the component-substance view in which devices are composed of com- 
2Our goal in this research was to develop a computational theory rather than a psychological theory. All our 

arguments are intended to be functional from a computational perspective. However, in the chapter on related 
work, we will relate some parts of our theory to psychological research on analogy and postulate psychological 
predictions from our computational theory. 
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ponents and substances that flow among the components. Since design elements in that view 

are components and substances, the model of a device in that view specifies how functions of the 

components in the device get composed into achieving the device's functions. We will now elab- 

orate on the structure-behavior-function (SBF) models of devices and of the two types of design 

patterns, which are the particular types of knowledge that enable innovative device design. 

1.3.3.1    Design Patterns: GPPs and GTMs 

Design patterns are a particularly useful class of abstractions that enable innovative device de- 

sign. We hypothesize that in order to reason about devices with non-local, often global, effects 

in a tractable manner, modifications need to apply across collections of structural elements; 

otherwise, it is difficult to reason about non-local interactions among locally modified elements. 

In our theory, design patterns facilitate such controlled reasoning because they encapsulate the 

inferences needed to make non-local modifications in device design. Design patterns encapsulate 

relationships between functions and behavior of design elements, which, in turn, enable con- 

trolling the reasoning in innovative design. We also hypothesize that the cross-domain transfer 

of design knowledge needs to involve the use of high-level abstractions shared between the do- 

mains. More specifically, we hypothesize that design patterns abstracted from a source domain 

are "what" need to be transferred to solve problems in a target domain. Furthermore, the same 

kinds of high-level abstractions as above would be needed in order to deal with the hard issue 

of understanding device failures in the context of problem reformulation. 

Different design patterns may capture different kinds of relationships among design elements, 

such as, spatial, temporal, functional, and causal relationships. Because of the kinds of rela- 

tionships they capture, they can be represented as generic, case-independent models. Design 

patterns can be spatial patterns as in certain domains (e.g., design of pictures and buildings), 

or temporal patterns as in some others (e.g., design of symphonies and music), or functional 

and causal patterns as in yet other domains (e.g., design of physical devices such as electric 

circuits and heat exchangers). We focus on the functional- and causal-type design patterns, in 

particular, GPPs and GTMs. 

A GPP is a causal-type design pattern which captures patterns of relations between the 

output and internal behaviors of physical devices. An example of a GPP is the process of heat 

flow—it specifies how heat flows from a hot body to a cold body when they are in contact. A 

GTM is both a functional- and causal-type design pattern which captures patterns of relations 

between functions (a subset of output behaviors) and internal behaviors of devices. An example 

of a GTM is a pattern which specifies how two or more devices with same functionality can be 

connected together to achieve a larger function—the mechanism is called "cascading." A specific 

instance of the cascading GTM appears commonly in connecting two batteries together to get 

more voltage than the voltage each battery provides. Other examples of GTMs are feedback and 

feedforward mechanisms—which specify how to control variations in the output and the input 
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of devices respectively. A common device where feedback mechanism is used (i.e., instantiated) 

is the room heater with a temperature-setting knob; given a temperature setting, this device 

turns the heater "on" or "off" depending on the room temperature. 

Design patterns can be viewed as concepts or strategies depending on the types of relationships 

the patterns capture. For instance, GPPs are concepts while GTMs are strategies. Since a GTM 

captures relationships between functions and internal causal behaviors of devices,3 it can be used 

to derive behaviors that achieve new functions, which is the task of design. Therefore, a GTM is 

a design strategy—more specifically, it is a design-adaptation strategy because it specifies how 

the behavior of an existing device needs to be modified to achieve new but similar function. On 

the other hand, GPPs capture the knowledge of physics concepts. 

We represent GPPs and GTMs using the language of SBF models. The SBF language 

provides primitives to represent three types of knowledge about devices: physical structure of 

devices, functions o'f devices, and internal causal behaviors of devices that explain how the 

functions of structural elements get composed into the functions of overall structure. Since the 

design patterns capture only "patterned" relationships (i.e., types of relationships as opposed 

to specific ones) among design elements, their SBF representations are devoid of information 

about any specific physical structure of devices. However, those representations still capture the 

causal structure in the behaviors of devices. Hence, the function and behavior aspects of the SBF 

language are especially useful for representing GPPs and GTMs. Figures 1.2 & 1.3 respectively 

illustrate the SBF representations of the Heat-Flow GPP and the Cascading GTM. Note that 
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these do not refer to any specific substances or components that constitute the physical structure 

of any particular device. The SBF model of the Heat-Flow GPP shown in Figure 1.2 specifies 

how heat-flow occurs between any two substances when they are in thermal contact; it specifies 

how the temperatures of the two substances change in the heat-flow process. The SBF model of 

the Cascading GTM shown in Figure 1.3 specifies how a particular type of functional difference 

between any two designs maps onto particular types of relationships between the behaviors of 

those designs; it specifies how to modify the behavior of a candidate design in order to achieve 

a desired function. 

1.3.3.2    Device Models and SBF Representations 

Our hypotheses about the design patterns are based on a theory of device models. We defined a 

device model earlier in Section 1.2.3. That is, a device model specifies how causal relationships 

among specific structural elements in the device result in the device's functions. Because of the 

kinds of relationships in device models, we chose to represent them in the form of SBF models. 

The SBF model of a device captures the designer's comprehension of how the device works, that 

is, how the structure of its design results in its output behaviors (i.e., functions). As the name 

SBF model indicates, its constituents are the structure of a device (i.e., the physical structure), 

the functions delivered by the structure, and the internal causal behaviors that explain how the 

functions of structural elements get composed into the functions of the overall structure. An 

SBF model of a device thus organizes knowledge about the functioning of the device as a whole 

in terms of the functions of its elements. 

We refer to the model of a device in a specific design analogue as a case-specific SBF model. In 

our theory, a design analogue not only encapsulates the problem (i.e., function(s) of the device) 

and its solution (i.e., the physical structure of the device) but also a model for the solution (i.e., 

the SBF model of the device). Figure 1.4, for example, shows a design for a simple electric 

circuit, EC1.5: Figure 1.4(a) presents a schematic of the device's structure; Figure 1.4(b) shows 

the device's function, which can be read as "given electricity with a voltage of 1.5 volts as input 

in the battery, the device produces light of intensity 6 lumens as output in the bulb when the 

switch is closed"; Figure 1.4(c) shows the device's causal behavior as a sequence of states and 

state-transitions that explains the internal causal process of the device. In SBF models, causal 

behaviors of devices can be represented at different levels of detail. For instance, Figure 1.4(d) 

shows the causal behavior of battery in the design at a more detailed level. 

1.3.4    Refined Issues and Hypotheses 

We now summarize the issues in innovative device design and our refined hypotheses at the level 

of computational theory. 

1. Content and Representation of Design Knowledge:   What knowledge of device 

design might enable the three aspects of innovation? That is, what might be its content 
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and how might it be represented? 

Hypothesis: Useful high-level design abstractions of a particular type that we call de- 

sign patterns enable innovative device design. Design patterns are useful because they 

encapsulate relationships between functions and behaviors of design elements, which, in 

turn, enable controlling the reasoning in innovative design. Two types of design patterns 

are specifically useful: GPPs and GTMs. GPPs capture patterns of relations between the 

output and internal behaviors of physical devices (e.g., heat-flow process). GTMs capture 

patterns of relations between the functions and internal behaviors of devices (e.g., cas- 

cading and feedback mechanisms). We adopt the theory of SBF models to represent not 

only the models of specific devices but also the GPP and GTM design patterns. Since the 

design patterns are abstractions over regularities in device models, the patterns can also 

be specified in terms of SBF models. 

2. Access and Organization of Design Knowledge: How might such device-design 

knowledge (as in (1) above) be accessed/retrieved from memory when a new problem is 

given? What kind of organization and indexing might support better retrieval of relevant 

knowledge from memory? How might the design knowledge be related to other types of 

knowledge, if any? 

Hypothesis: Since in device design, analogues are designs of specific devices and design 

problems consist of specifying different kinds of constraints, such as functional and struc- 

tural, the analogues need to be indexed by the respective types of knowledge about devices. 

In our theory, any piece of knowledge should be indexed depending on the tasks for which 

that might be used and the nature of relationships that knowledge might capture. Designs 

of devices need to be hierarchically organized along functional and structural indices for 

an efficient and effective retrieval. We hypothesize that using the indices based on the 

vocabulary of SBF models enables an efficient and effective retrieval. Device designs can 

be accessed by matching on the specification of functions and structural constraints in a 

design problem respectively with the functions and structures in the problems of stored 

designs. Design patterns such as GPPs and GTMs do not refer to specific structural ele- 

ments in devices. Since GPPs capture causal relationships and we use them for the task 

of understanding design failures in the context of problem reformulation, the GPPs are 

indexed by behavioral abstractions over causal behaviors in the GPPs. Similarly, since 

GTMs capture functional and causal relationships and are used as strategies for achieving 

design-adaptation goals, they are indexed by types of functional differences that the GTMs 

specify how to reduce. 

3. Use of Design Knowledge: How might the design knowledge (in (1)) be used for 

innovative device design? That is, what might be the specific processes by which that 

knowledge enables the three aspects of innovation in device design? 
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Hypothesis: The use of design patterns in adaptive design is by their instantiation in 

the context of specific designs and problems. Such process enables innovative device de- 

sign. When design patterns are instantiated in specific design analogues, they can enable 

non-local modifications in a tractable manner. When design patterns are acquired in one 

domain and problems are given in another, the design patterns can enable cross-domain 

transfer by being retrieved and instantiated in the new problem domain. Further, de- 

sign patterns can enable problem reformulation by facilitating the formation of causal 

explanations for device failures. In particular, we explored how GPPs enable problem 

reformulation, how GTMs enable non-local modifications to known designs, and how both 

enable cross-domain transfer. 

4. Origin and Acquisition of Design Knowledge: Where does such design knowledge 

that enables innovative device design come from? How might it be acquired? 

Hypothesis: Design patterns can be acquired from specific design experiences by ab- 

stracting over the SBF models of specific devices in those experiences. This process may 

include feedback from an oracle in case of problem-solving failures. SBF models of specific 

designs enable learning of design patterns by abstraction over patterns of regularities in 

the designs, and provide a language for representing the design patterns as generic models. 

The SBF models of devices may themselves be acquired in different ways: (1) by revision 

of known models of similar devices (Goel, 1991b), (2) by a combination of model revision 

and composition of behaviors of primitive structural elements, and (3) by instantiation of 

design patterns in the models of known devices. 

1.4    The Computer Program: IDEAL 

The most refined level of our theory is the level of the computer program that instantiates the 

theory. We implemented the proposed theory of model-based analogy in a system called IDEAL
4 

in the context of innovative design of physical devices. In addition to supporting the "compu- 

tational feasibility" test of our theory, IDEAL serves as an experimental testbed to evaluate the 

theory in several other dimensions that are described in a later section. IDEAL performs both 

within-domain analogies and cross-domain analogies in designing physical devices. It performs 

innovative design, i.e., non-local modifications to known designs, cross-domain transfer of design 

knowledge, and problem reformulation. In IDEAL, we implemented all stages of model-based 

analogy and integrated learning, memory, design problem solving, and comprehension of devices. 

IDEAL evaluates our theory in multiple domains such as electric circuits, heat exchangers, sim- 

ple electronic circuits, coffee makers, and mechanical controllers. Furthermore, it demonstrates 

how the specific types of design patterns, namely, functional- and causal-type design patterns 

(e.g., GPPs and GTMs), enable innovative design. 

4 IDEAL stands for Integrated "DEsign by Analogy" and Learning. 
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IDEAL evolved from another system called KRITIK (Goel, 1989) which implements a model- 

based approach to making within-domain analogies for designing physical devices. Thus IDEAL 

inherits most of its capabilities of within-domain analogy from KRITIK. The most important and 

novel aspects of IDEAL are (1) its abilities to learn abstractions from design analogues in one 

domain and transfer them to solve design problems in other domains and (2) its ability to make 

non-local modifications to known designs when necessary. 

1.4.1    An Illustrative Example 

We will now illustrate how design patterns enable innovation in design with the example of a 

particular design pattern, namely, cascading GTM, from IDEAL. Cascading means connecting 

multiple devices of same functionality together to get a similar but large function. For instance, 

a common way of obtaining a 6-volt supply is by connecting four 1.5-volt batteries together that 

involves applying the cascading mechanism. 

Figure 1.5 presents the complete story of our illustration. This story has two parts: as shown 

in the top half of the figure, one part concerns the learning of the cascading GTM, and as shown 

in the bottom half of the figure, the other part concerns the use of the cascading GTM in design 

adaptation. In this illustration, we first focus on how the cascading GTM enables non-local 

modifications to a known design in the domain of heat exchangers, and then present how the 

cascading GTM can be learned from specific designs in the domain of electric circuits. The 

specific examples of design problems and the GTM are from the computer program IDEAL. 

That is, in the following description, IDEAL is the designer solving the problems and learning 

the GTM. 
Suppose now that a designer is given a problem which specifies the desired function as one 

of transforming the temperature of Nitric Acid from T\ at one end of NAC-Device (an input 

location) to T2' (T2 < li) at the other end of the device (an output location). Suppose also that 

the design of a Nitric Acid cooler (see Figure 1.5 bottom-left) that changes the temperature of 

Nitric Acid from Ti to T2 (T2 < Tx; T2' « T2) is available in the designer's analogue memory 

and that the designer retrieves it. Figure 1.6 further shows the function and the partial behavior 

of the available design of Nitric Acid cooler. In model-based approach, a designer uses the 

model of a known design to determine which components (or substructures) in the design can 

be modified in order to achieve the desired function. In this example, suppose that the designer 

selects the entire device of Nitric Acid cooler to modify (because the device's model does not 

decompose the device behavior into behaviors of individual components). Consider that the 

designer's knowledge is in a state where no single component (or structure) available delivers 

the desired functionality. Then, under such knowledge state, simple modifications to a known 

design of Nitric Acid cooler such as replacing a substructure (e.g., heat-exchange chamber or 

the entire NAC-Device) by another will not result in a device that can solve the given problem 

because the required range of cooling is much more than Tx-T2. It is in such problem-solving 
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situations that the knowledge of design patterns can enable a designer to perform non-local, 

patterned modifications to the known design and thus solve the current problem. 

Suppose for a moment that the designer knows of the cascading GTM (shown schematically 

in Figure 1.5 center). Figure 1.7 further illustrates the designer's model of the cascading GTM 

in SBF representation.5 The cascading mechanism encapsulates when and how to use multiple 

devices with same, small functions in order to achieve a large function. If the designer can 

recognize that the functional difference between the known design and the new design problem 

is "similar" to the functional difference that the cascading mechanism reduces, it can use the 

cascading mechanism in the current context and thus solve the problem. The solution obtained 

by retrieving and instantiating the cascading mechanism in the context of the current design 

(i.e., the entire NAC-Device) is shown in Figure 1.5(bottom-right). Figure 1.8 further shows 

the behavior resulting from instantiating the cascading GTM in the behavior of the known 

NAC device. Thus the use of the cascading GTM can result in innovative design by enabling 

topological, non-local modifications to known designs. 

Let us now present the second part of our story in which we illustrate how a design pattern 

may be learned from design experiences. In particular, we describe how the designer may have 

learned the above cascading GTM from designs of electric circuits. Suppose first that the design 

of a 1.5-volt electric circuit (EC1.5) whose schematic is shown in Figure 1.5(top-left) is available 

in memory. Figure 1.4 shows the function and behavior of the design also. Consider now the 

scenario where the designer is presented with a problem of designing an electric circuit that 

delivers the function illustrated in Figure 1.9. The SBF representation in Figure 1.9 specifies 

that the desired function is to produce light of intensity 12 lumens as output in bulb, given 

electricity with a voltage of 3 volts as input in battery. Suppose an additional constraint is 

specified: there is no battery that can supply electricity with a voltage of 3 volts but there are 

batteries that can deliver electricity of 1.5 volts. 

The designer can use the desired function as a probe into its memory of past designs and 

retrieve the design analogue EC 1.5 because the given functional specification is similar to the 

function of EC1.5. Because there are differences in the desired function and the function of 

the retrieved design, the designer tries to adapt the retrieved design next. But if the designer 

knows only of simple modifications, then it may fail. (Note that the designer does not have 

the knowledge of the cascading GTM at this point.) The designer may then fail to solve the 

problem due to the additional structural constraint specified. Then, if the designer is given 

external feedback, such as a correct design that solves the new problem, it can learn adaptation 

knowledge (i.e., a strategy) that would be useful in problem-solving situations like the current 

one. 

A solution to the given problem above is a circuit in which two 1.5-volt batteries are cascaded 

5Note that this is a partial model of the cascading GTM compared to one shown in Figure 1.3. This repre- 
sentation specifies the behavior modification needed when the transformation in a desired function is an integral 
multiple of that in a candidate function, i.e., n is an integer. 
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Figure 1.10: Behavior of the 3-volt Electric Circuit (EC3) 

(see Figure 1.5 top-right). Given the correct structure of the new device, the designer can first 

learn how the device behaves (Figure 1.10) by revising the behavior of EC1.5, and then also 

learn a new strategy for adaptation (which we call cascading GTM).6 An SBF representation 

6 Based on the two design examples, one with a single battery and the other with two batteries, the designer 
can hypothesize a schema for replicating n components by comparing the models of the designs and abstracting 
over regularity in the designs. 
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of the learned (more precisely, hypothesized) cascading mechanism and its index are shown in 

Figure 1.7; the functional difference that the cascading mechanism reduces is the index for the 

mechanism.7 The description in Figure 1.7 is a partial model of the cascading mechanism. A 

more complete description for cascading would indicate that a behavior can be replicated as 

much as possible to achieve a desired function and then a goal can be formed to achieve any 

remaining function; such a residual function will be needed when the desired function is not 

an integral multiple of the function of each replicated segment. The complete description was 

shown in Figure 1.3 in this chapter. 

The designer can revise the hypothesized (partial) description of the cascading mechanism 

into a more complete description when it encounters a new design problem whose solution has 

an instance of the complete cascading mechanism. Suppose for instance that the designer later 

encounters a design problem with a functional specification of producing light of intensity 16 

lumens as output in bulb when the switch is closed, given electricity with a voltage of 4 volts in 

battery as input. In addition, suppose that there is a structural constraint: there is no battery 

that can deliver electricity with a voltage of 4 volts but there are batteries that can deliver 

electricity of 1.5 volts and one battery of 1 volt. A solution to this problem will have a physical 

structure where two 1.5-volt batteries and one 1-volt battery are cascaded. The designer can 

potentially revise the mechanism based on a design. Thus acquiring a complete model of the 

cascading mechanism may involve solving a number of design problems incrementally. We will 

revisit these examples and the learning process in more detail in later chapters. 

As illustrated in the above story, design patterns that enable non-local modifications to 

known designs in one domain may be learned from design experiences in another. Thus design 

patterns can also enable cross-domain analogical transfer and thereby enable innovative design. 

1.5    Methodology and Evaluation 

In general, addressing issues in a complex phenomenon such as innovative device design raises a 

number of questions. Our hypothesis that high-level design abstractions enable innovative device 

design raised many that we listed in the previous sections. Most of those complex questions often 

do not have unique answers. Therefore, in addressing such issues, we take a "design science" view 

(Simon, 1969). The idea is "not to commit" to a single answer (e.g., a particular architecture, 

a particular processing, or a particular content theory) but rather to explore different possible 

answers and to identify conditions under which those answers might be plausible and identify the 

behaviors that they result into. For instance, in this research we explored different interaction 

conditions in acquiring design patterns from design experiences and external feedback rather 

than commited to a particular type of interaction. 

7When a new piece of knowledge such as the cascading GTM is learned, its usefulness relies on the ability to 
also learn appropriate conditions under which it might be used. In other words, learning a piece of knowledge 
inevitably involves learning indices for the knowledge. 
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We believe that problem solving, learning, memory, and comprehension need to be closely 

integrated. For instance, learning of knowledge cannot be separated from the problem-solving 

tasks for which the learned knowledge might be used. It is also methodologically useful to 

consider several aspects of intelligence, such as problem solving and learning, together in building 

computational theories because theories of each aspect will be behaviorally constrained by those 

of the others. That is, the ways in which different abilities interact impose constraints on 

each ability. For example, learning can be constrained by the problem-solving task for which 

the product of learning might be used. Specifically, the problem-solving task can act as an 

evaluation of learning and can guide the selection of right indices for the learned knowledge. 

Our general research methodology is an iterative process: propose a computational theory 

for the chosen task(s); implement the theory in a computer program; evaluate the theory by 

running several types of experiments (see below); revise the computational theory and then go 

back to the first step. For instance, our initial theory of learning GTMs was too specific to 

learning of the cascading mechanism and it failed to meet the evaluation criterion of generality 

(of learning different types of generic mechanisms). We then revised (more precisely, generalized 

and expanded) our theory so that it can also account for several other generic mechanisms such 

as feedback, feedforward, and device composition. 

Evaluation 
In this research, we used the following dimensions of evaluation to test the theory as implemented 

in the computational system IDEAL. 

1. Computational feasibility:   We implemented the proposed theory in IDEAL and it 

works in the problem domain(s) considered. 

2. Generality: There are five different aspects to the criterion of generality. 

(a) Coverage of Different Design Tasks: The larger the coverage of specific problems 

or tasks in the domain(s) of consideration the better accepted and more general is 

the theory. We tested the proposed computational theory on a "representative" set 

of problems (i.e., different classes of problems) in the domains considered. 

(b) Coverage of Different Types of Design Adaptation: We have ensured that 

the theory is general enough to account for different types of design adaptation, for 

instance, adaptive design and redesign based on external feedback from an evaluation 

of designs. 

(c) Coverage of Different Tasks in Analogy: This means generality of the theory in 

that it covers multiple tasks in analogical reasoning. That is, we have ensured that 

our theory covers issues in multiple stages of analogical reasoning such as retrieval, 

transfer and modification, evaluation, learning, and storage. It is important to con- 

sider these different issues because solutions to each impose constraints on those for 

the others; otherwise, the resulting theories may be underconstrained. 
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(d) Coverage of Different Types of Analogies: A theory of analogy is more general 

if it covers multiple types of analogies, for instance, within-domain and cross-domain 

analogies. Our theory covers both types of analogies. 

(e) Coverage of Different Domains: This is to ensure that the theory is applicable in 

multiple domains. We tested the proposed computational theory on problems from 

different domains. This evaluation was also necessary to show cross-domain analogies. 

A major issue here is "how many different things" are sufficient to support any generality 

and whether the needed domain knowledge is easily accessible to the experimenter for 

testing. In the particular domains and tasks this research considered, it's been very hard 

to infuse the necessary knowledge into the system and conduct the evaluations. 

3. Different Interaction Conditions in Knowledge Acquisition from External Feed- 

back: This is to ensure that the theory is general enough to account for different inter- 

action conditions with an oracle that provides external feedback to the designer when 

problem-solving failures occur. We ensured that our theory covers multiple instances of 

the task of learning GTMs where the input information varies across different instances. 

4. Common Representations: This is to establish the adequacy of same representations, 

for instance, SBF models, in supporting a number of different processes and tasks such 

as generation of designs, evaluation of designs, and learning of different types of design 

patterns. 

(a) For Different Types of Models: In our theory, the same SBF language was 

sufficient to represent both device models and design patterns. 

(b) Across Different Processes in Analogical Reasoning: In our theory, same 

representations were used successfully to support inferences across different processes 

in analogy. 

5. Computational properties: 

(a) Efficiency: This criterion ensures that the proposed theory is computationally 

tractable and efficient. That is, for instance, the system that implements the theory 

solves problems in reasonable number of steps and reasonable time. In developing 

methods for various tasks, we made sure that they are efficient. We tested our theory 

of indexing designs for efficiency on retrieval task and compared alternative schemes 

of indexing and organization. 

(b) Scalability: This is to ensure that the theory can account for complexity in indi- 

vidual designs and also do so for a number of different designs and other types of 
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knowledge. We tested our representations and methods for designs of moderate com- 

plexity and size (i.e., for instance, designs consisting of orders of 10 design elements 

and 10 structural relations), 

(c) Comparison of Different Adaptation Strategies: This is to test the competence 

and the performance of alternative adaptation strategies for solving different design 

tasks and to identify conditions under which a given strategy may be more appropriate 

to use. Comparing the performance of different strategies is meaningful only if the 

strategies enable solving a common class of design tasks. In our theory, only two 

strategies (i.e., component addition and cascading GTM) satisfy these conditions 

and we compared them for efficiency at problem solving. 

1.6    Organization of the Thesis 

Chapter 2 describes the computational process of model-based analogy and its underlying theory, 

and gives a global picture of different subtasks in the process and the control of processing. It 

also introduces the different types of knowledge in the process and their content that enables 

the process(es). 
Chapters 3-8 present the technical details of this work. Chapter 3 describes the content 

theory of device models and of GPP and GTM design patterns. Chapter 4 presents the index- 

ing and organization of design analogues in memory, and describes how the analogues can be 

retrieved. This chapter also describes how different types of indices to new design analogues can 

be automatically learned and how the memory can be dynamically reorganized while storing the 

new analogues. Chapter 5 describes cross-domain analogical transfer in design and presents the 

model-based method that makes use of device models and design patterns. In particular, this 

chapter describes the use of GTMs in adapting source design analogues. Chapter 6 describes how 

new designs may be evaluated internally and externally, and how design failures can be explained 

using design patterns, in particular, GPPs. Chapters 7 & 8 describe the analogical learning tasks 

addressed in this research and the model-based methods proposed for them. Specifically, these 

learning tasks involve learning the two types of design patterns from design experiences and 

learning new device models. The former chapter covers learning of design patterns while the 

latter covers learning of device models. 
Chapter 9 describes our experimental evaluation of model-based analogy and a detailed 

analysis of some subtasks and alternative ways of solving them. It also presents the limitations 

of our current theory and sets pointers to further work. Chapter 10 compares this work with 

related research. Finally, Chapter 11 concludes the thesis with contributions of this work to 

several specific issues in the research problem. 



31 

CHAPTER II 

A COMPUTATIONAL THEORY OF MODEL-BASED 
ANALOGY 

In this chapter, we will present a detailed account of our computational theory of model-based 

analogy (MBA). Figure 2.1 reproduces the computational process of model-based analogical 

design from Chapter 1. In MBA, the task of analogical design is decomposed into the following 

subtasks; each of these subtasks has a corresponding process (or set of processes) as illustrated 

in Figure 2.1. 

1. Retrieval of a source analogue: this includes the elaboration of the target problem descrip- 

tion, the recognition of relevant source analogues, and the selection of the best matching 

analogue. 

2. Transfer and modification: this includes the identification of "what" knowledge in the 

source analogue to transfer to the target problem, the localization of differences between 

the source and the target to be fixed (i.e., spawning of adaptation goals—we also refer 

to this as diagnosis) and the elimination of those differences (i.e., achieving the adapta- 

tion goals by applying an adaptation strategy—we also refer to this task as repair), and 

completion of the solution (in case, the source analogue does not completely solve the 

target problem, a solution may be achieved by posing subproblems, solving for them, and 

composing their solutions). 

3. Evaluation of the solution: this involves the verification of the proposed solution for the 

target problem by simulating a model for the solution or by implementing and executing 

the solution in the real world; when the solution fails in either type of evaluation, it may be 

redesigned by understanding failures if necessary; if a solution cannot be generated at all, 

then an oracle can interact with the MBA process and provide the process with different 

kinds of feedback on the solution which enables the next subtask in MBA. 

4. Abstraction over the source and target analogues: this involves learning an abstraction (in 

particular, a design pattern) general enough to explain some aspects in both the source 

and target analogues; this also involves learning indices for the learned design pattern. 

5. Storage of the solution (i.e., the target analogue) and the learned design pattern: this 

involves learning proper indices for the analogue and placing the analogue and the design 

pattern in memory in the "right" place. 
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We will now consider each of the important aspects of MBA and describe the control of pro- 

cessing. First we will describe the task and the knowledge, and then describe each subtask in 

MBA. In the current implementation of the MBA process in IDEAL, each type of design pattern 

enables different aspects of innovative design. As shown in Figure 2.1, GTMs enable the subtask 

of achieving adaptation goals and GPPs enable the subtask of understanding design failures. 

2.1 The Conceptual Design Task 

We developed the MBA theory in the context of the conceptual design of physical devices. The 

conceptual design phase of the design task generally takes as input a specification of different 

types of constraints on a desired artifact, such as the functions desired of the artifact and the 

structural constraints on the artifact. It involves producing as output a high-level specification 

of the structure of the desired artifact. Therefore, in our theory, the design task takes as input 

a specification of the functional and structural constraints on a desired design (i.e., the target 

design problem), and gives as output a structure (i.e., the solution) that realizes the specified 

function and satisfies the structural constraints. However, in real world, problem specifications 

may not remain fixed during the design process; hence in MBA, the problems can be reformulated 

after the design process begins. Problem reformulation may be triggered by a number of different 

sources including the evaluation of candidate designs. (We refer to a potential solution for a 

target problem as a candidate design and the solution itself as a target design or desired design.) 

Our theory accounts for problem reformulation based on the evaluation of designs. Since a model 

of the designed artifact is an important source of knowledge for the model-based process, in our 

theory, the design task gives as output not only the structure of a new design but also an SBF 

model that explains how the structure realizes the desired function. 

2.2 Design Analogues, Device Models, and 
Design Patterns 

As shown in Table 2.1, a design analogue may consist of different constituents: a design problem, 

a design solution, a model of how the solution satisfies the requirements of the problem (i.e., 

a device model), an outcome of evaluating the solution, and a reasoning trace or a hint of the 

method(s) used. In principle, a design analogue may consist of any combination of these five 

constituents. In this research, we explore one combination in which a design analogue consists 

of a design problem, its solution, and a model of the solution (Goel, 1992). This combination is 

highlighted in Table 2.1. 
In device design, a typical problem consists of the specification of the functions desired of the 

device and a solution consists of the specification of the structure of the device that achieves the 

desired functions. In some domains (such as engineering domains), a comprehension or model 

of how the structure of a device delivers its desired functions is often available.   When such 
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Table 2.1: Different Constituents in A Design Analogue 

No. Constituent 
1 Design problem 

2 Design solution 

3 Device model 

Outcome 

Reasoning trace 

Its Description 
A specification of different types of constraints, such as 
functional and structural, on the desired artifact. 
A specification of the structural elements and their 
composition that solves the design problem. 
A model of the design solution, 
i.e., how the structure of the design achieves the desired function 
and satisfies the structural constraints in the problem. 
A specification of whether (and perhaps how) the solution 
succeeded or failed when implemented/simulated 
in an environment. 
A specification of the decisions made along the design process 
and their justifications.  
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knowledge is available, a design analogue can also consist of the model of the device. These 

models are designer's (human or machine) "mental models" of how the devices work. This 

research adopts the structure-behavior-function (SBF) representations (Goel, 1989) to describe 

the models of devices. Hence, a design analogue in MBA specifies (1) the functions delivered 

by a known design, (2) the structure of the design, and (3) an SBF model of the design. As 

we stated in Chapter 1, indexing is "labeling" individual pieces of knowledge with appropri- 

ate information for enabling their retrieval (efficiently and effectively) in new situations. In 

MBA, design analogues are indexed both by functions that the stored designs deliver and by 

the structural constraints they satisfy because the problem specifications consist of them. In 

indexing, an important issue is to determine what vocabulary (i.e., terms) to use for labels of 

knowledge. Note that labels need not be single terms such as "design-1," instead they can be 

knowledge structures themselves such as functional specifications. In our theory, the language 

of SBF models provides the indexing vocabulary for both design analogues and design patterns 

in MBA. The design analogues are organized along multiple dimensions of generalization where 

the dimensions pertain to the constituents of design functions and structural constraints. Such 

an organization is chosen in order to enable efficient retrieval based on partial match between 

the target problem and the source analogues. A source analogue is considered to be a partial 

match to the target problem if only some information in the index of the source is same as 

the information specified in the target. If everything in the index of the source is same as the 

information in the problem, then that source analogue is an exact match. 

Besides design analogues and device models, design patterns are also important source of 

knowledge in MBA. Design patterns are abstractions over functional and behavioral relationships 

in device models. Our hypotheses for different issues in analogy are based on a theory of design 

patterns and device models. Making cross-domain analogies requires abstractions that can be 

retrieved and instantiated in the context of the target problem. In design by model-based 

analogy, design patterns enable cross-domain analogies and other interesting issues in design 

such as non-local modifications and problem reformulation. Our theory, in particular, covers 

the content, representation, learning and use of the particular types of design patterns, which 

are generic teleological mechanisms (GTMs) and generic physical processes (GPPs). Hence, 

Figure 2.1 refers to only these two types of design patterns. We adopt and extend the SBF 

language for representing the design patterns; we chose the SBF language because of the specific 

types of relationships captured in the design patterns. 

2.3    The Subtasks of Model-Based Analogy 

We will now trace through the different paths of control in the process of MBA illustrated in 

Figure 2.1. 
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2.3.1    Retrieval of A Source Analogue 

The first task in the MBA process is to retrieve similar analogues given a new problem. The main 

issue here is how to decide on the similarity of an analogue to the given problem. Addressing 

this issue requires a language for specifying the new problem. It also requires a vocabulary 

for indexing the analogues. In our theory, SBF models provide such a language. Thus in the 

MBA process new problems are specified in SBF language. Given a target design problem, the 

process of MBA first uses the problem as a probe into the analogue memory and retrieves a 

matching source design analogue (and the SBF model associated with the source design). The 

MBA process tries to retrieve as specific a design analogue as possible by searching through 

the multiple hierarchies along those dimensions that are specified in the problem. If a single 

perfectly matching analogue (i.e., an exact match) is retrieved, then the target problem is solved 

by simply transferring the solution from the retrieved analogue to the new problem without any 

modification. But often multiple design analogues match the given problem partially. Then 

there is a need for selecting "an" analogue from the retrieved. In MBA, the best matching 

analogue is selected because we believe that the solution from an analogue that matches the 

best with a given problem would require the least modification to become a solution to the 

given problem. 
The issue then becomes how to determine the best matching analogue. One method for se- 

lecting the best matching analogue is to compute differences between the target problem and the 

problems of the retrieved analogues and order them by the differences. Then the best matching 

analogue is the retrieved analogue that is least different from the target problem. Comparing 

the differences with one another requires a uniform language to express those differences. In 

MBA, the SBF language provides the vocabulary to capture the differences between the target 

and source problems. But, the SBF language by itself does not provide enough guidance on 

the issue of ordering the differences. Therefore, MBA uses qualitative heuristics to address that 

issue and to select an analogue. 

Computing Differences between the Source and Target Problems: Since the SBF 

language provides the vocabulary for representing a variety of design problems, and it is a 

well-defined and uniform language across different problems, computing the differences between 

problems in MBA is not computationally complex. Computing the differences between two 

problems simply involves comparing the features of the functions in the problems and clas- 

sifying the differences in the values of the features into known types of functional differences. 

Examples of the types of functional differences due to the SBF language are substance difference, 

substance-property-value difference, and component difference (Goel, 1989). The differences be- 

tween problems computed for the purpose of ordering the retrieved analogues will also be useful 

in the next subtask of MBA, which is transfer and modification. In general, some differences 

between two problems may be more important than others and it may be useful to determine 
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the relative importance of differences. In our theory of MBA, this issue is not yet dealt with. 

But we addressed in MBA how multiple differences between two problems can be ordered among 

themselves (as described below) for the purpose of transfer and modification. 

2.3.2    Transfer and Modification 

This subtask is activated when the source analogue matches the given problem partially. This 

involves first setting up the adaptation goals given the differences between the source design 

problem and the target problem, and then achieving those goals. On the other hand, when the 

source analogue is an exact match to the target problem, this task is trivial: it only involves 

copying the solution and the model from the source analogue to the target problem and no 

adaptation of the solution from the source analogue is needed. Hence we will only discuss this 

task in case of a partially matching source analogue for the target problem. 

2.3.2.1    Spawning of Adaptation Goals 

When the functions specified in the target problem and the source analogue are different, MBA 

spawns the goal of adapting the partial design solution in the source analogue. The issue is how 

to form adaptation goals given the differences in the source and target problems. Addressing this 

issue requires a typology of differences that can be mapped to a typology of adaptation goals. 

Since in MBA the SBF language provides a typology of functional differences, the same typology 

can be viewed as indicative of adpatation goals. Different types of functional differences lead to 

different types of adaptation goals. Some functional differences may give rise to multiple goals to 

achieve. In these cases, MBA uses the heuristic of achieving simpler goals first and more complex 

ones later. The question then becomes how to determine which goals are simpler and which are 

complex. For addressing this question, the MBA process uses the same qualitative heuristics as it 

uses for ordering functional differences. As mentioned in Chapter 1, some functional differences 

in some domains may give rise to goals that require global changes to source designs. Depending 

on the complexity of the source design, making global changes can be computationally complex. 

Therefore, in order to keep the adaptation computationally tractable, it is desirable to localize 

the differences to smaller substructures in the source design as much as possible. Forming 

localized adaptation goals requires knowledge that decomposes the design not only structurally, 

but also both functionally and behaviorally. Such knowledge is necessary because the task is 

a complex task of mapping from the differences in the problems (i.e., the functions) onto the 

structure to be modified. SBF models exactly satisfy these knowledge needs. Hence the process 

of MBA uses the SBF model of the source design and the overall functional differences, and 

traces through the model to identify all possible, local differences to be reduced (i.e., basically 

the process of diagnosis). In solving certain classes of design problems under specific knowledge 

conditions (i.e., when specific types of designs are available and when models are incomplete), 

however, it may not be possible to localize the differences and hence the goals. In those situations, 
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to control the processing complexity in making non-local adaptations, MBA uses the knowledge 

of design patterns because design patterns encapsulate the inferences needed for making non- 

local modifications. 

2.3.2.2    Multistrategy Adaptation 

In general, different adaptation strategies are applicable for achieving different adaptation goals. 

Some goals may be achieved by strategies that make simple modifications (such as parameter 

tweaks) and some others may require strategies that make more complex modifications (such 

as topological changes). The need for some of the complex, non-local modifications may arise 

from the structural constraints which specify what components can be used in (or are available 

for) the new design. As shown in Figure 2.1, the process of MBA has multiple adaptation' 

strategies including model-based case adaptation. Some of these strategies are simple ones such 

as component replacement and some are more complex ones such as instantiation of GTMs. 

Given an adaptation goal, the process of MBA checks in a fixed order if the known adaptation 

strategies achieve the goal. The known strategies are assumed to be preordered from simpler 

ones to more complex ones. The typology due to the SBF language is not sufficient to enable 

the MBA process determine which strategies are simpler and which are complex. Thus in MBA, 

simple modifications to the source design are attempted first, and only if the simpler ones do 

not apply to the current adaptation goals or do not lead to a target solution, then more complex 

ones are considered. 
Some adaptation strategies use the knowledge of GTMs in making complex, non-local mod- 

ifications that involve changes to the device topology in the source analogue. The issue then 

is how to access GTMs given the adaptation goals. In the MBA process, GTMs are indexed 

by the patterned functional differences for which they suggest patterned modifications, and the 

adaptation goals are expressed in terms of specific functional differences to be reduced. The 

choice of the indexing scheme is also influenced by the specific task for which the GTMs are 

used in MBA. The MBA process uses the adaptation goal as a probe into its memory of GTMs 

in order to retrieve a GTM and instantiates the retrieved GTM in the context of the target 

problem. To use a retrieved GTM, it is necessary to check if its instantiation violates any given 

structural constraints (i.e., to check if the needed structural elements are available in memory). 

If the retrieved GTM satisfies these tests, it can then be instantiated in the target problem. 

GTMs specify the patterned modifications not in terms of the physical structure of devices but 

in terms of their causal behaviors. Therefore, a GTM is required to be instantiated in the causal 

behavior of the source design. The MBA process modifies the structure of the design only after 

verifying that the modification satisfies the target problem constraints by simulating the modi- 

fied behavior(s). Thus, it not only generates a solution to the new problem but also generates a 

functional and causal explanation (in the form of an SBF model) for how the solution satisfies 

the requirements of the problem. 
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2.3.3    Evaluation of the Solution 

We refer to a design solution proposed for the target problem as a candidate design while we 

refer to a solution for the target as a target or desired design. Since the modifications proposed 

to a source design may not always result in a design solution, it is best to first verify them 

before making them to the structure itself. The main issue is how to do the evaluation. One 

method for evaluating a candidate design is by qualitative simulation. The knowledge of the 

SBF model of the design enables this method in MBA. We call this method internal evaluation. 

Clearly, this method is limited by the knowledge the MBA process has. Another method for 

evaluating a candidate design is by implementing the design in the real world and verifying how 

the design meets the given constraints. This method requires interaction with an oracle to find 

the outcome of implementing the design. We call the second method external evaluation. 

2.3.3.1    Internal Evaluation and Design Failures 

Since in our theory, the structure of a design is modified only after verifying that the proposed 

modifications work, the internal evaluation of the design is interleaved with the transfer and 

modification. Therefore, once the behavior of the candidate design is generated, MBA evaluates 

the design by qualitative simulation of the SBF model of the design. Qualitative simulation, 

as in the KRITIK system, involves tracing through the states and transitions in the model from 

the modified state to the final state by substituting new values for the parameters and checking 

if the desired function is achieved. If MBA finds that the candidate design (i.e., the proposed 

solution) delivers the desired functions, it goes to the next step of learning from the source and 

the target designs. 

Suppose the process finds that the design does not satisfy the constraints of the given prob- 

lem. Then the question is where should the control go in the MBA process. There are several 

paths for the flow of control in the process. In IDEAL, we developed a particular control flow— 

that involves backtracking to the nearest previous decision point in the process in case of failure. 

Figure 2.1 shows the backward-flowing control paths from the evaluation task to the spawning 

of adaptation goals and to the retrieval of a source analogue. That is, when the qualitative 

simulation identifies that the candidate design fails, the MBA process in IDEAL first tries an 

alternative adaptation strategy if one is available for the same adaptation goal. An example 

would be applying the cascading GTM to the same substructure in a source design after trying 

component replacement. If no alternative strategies are applicable, then it tries to make a differ- 

ent modification to the source design if there are alternative modifications identified that could 

result in reducing the functional differences. An exmaple would be modifying bulb instead of 

battery in a simple electric circuit to deliver a different intensity of light. If no alternative mod- 

ifications are possible, then it tries to adapt a different source design. An example now would 

be given the problem of designing a high-acidity Sulfuric Acid cooler, making an analogy from 

the design of a high-acidity Nitric Acid cooler after having tried unsuccessfully from the design 
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of a low-acidity Sulfuric Acid cooler. When there are no alternative source designs available for 

the given problem or they do not lead to a target solution, the process fails. 

2.3.3.2    External Evaluation and Design Failures 

Since the MBA process uses the SBF model of the candidate design to verify if the design works 

and the SBF model may be incomplete, it may not be possible to detect some design failures by 

simulating the model (in internal evaluation). Also, some design failures may not be detected 

internally for various reasons: the initial problem specifications may not always be complete; 

they may not clearly indicate the constraints from the environments in which the designs are 

intended to work; and the intended environments may themselves have changed from the time of 

problem specification to the time of design use. However, if an oracle interacts with the process 

and presents feedback on failures of the design (i.e., the outcome of implementing the design), 

then the feedback can be interpreted and the solution redesigned. 

Knowledge Acquisition and Problem Reformulation: When the MBA process interacts 

with an oracle and acquires feedback on the design failures, then its first step is to interpret and 

understand the feedback. In MBA, the design failures are represented as failure behaviors, i.e., 

undesired behavioral state transitions, in the SBF language. One method for understanding the 

design failures is to form causal explanations for them. Then the question is what knowledge 

might the MBA process use for this purpose. We explored how GPPs, another interesting type 

of design patterns besides GTMs, can be retrieved and instantiated for this purpose because of 

the causal relationships that the GPPs capture. As in the indexing of GTMs, the task for which 

the GPPs are used determines the indexing scheme for the GPPs. In MBA, GPPs are indexed 

by their behavioral abstractions and are accessed by design failures as probes into the memory 

of GPPs. The causal explanations formed by instantiating GPPs enable the MBA process to 

reformulate the design problems if necessary. One way problems can be reformulated is by 

the discovery of new constraints and addition of those constraints to the problems. Problem 

reformulation may also involve deletion and modification of constraints in the problems. 

Once the target problem is reformulated, there are two possible approaches to complete the 

design: (1) abandon the failed candidate design and look for a new source design to adapt 

or (2) redesign the failed candidate design to incorporate the new constraints. In IDEAL, we 

explored the second approach. Generating a design for the reformulated target problem requires 

designing for the new constraints and composing the new sub-designs with the failed candidate 

design. Figure 2.1 shows the control flow from the external feedback to redesign via the task of 

understanding design failures and the task of reformulating problems—depending on whether 

there is any reformulation of the problem, the redesign task may involve recursively applying 

the step of analogue retrieval (i.e., the retrieval of a source analogue) and the subsequent steps 

of analogy. Thus the MBA process can acquire the knowledge of design failures from an external 
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agent, reformulate the problems of the failed designs, and redesign the failed designs. 

2.3.4    Learning from the Source and Target Analogues 

The MBA process relies on different types of knowledge. One issue is where does this knowledge 

come from. In MBA, different kinds of knowledge may be learned from the experience of solving 

a target problem—whether it be success or failure. The knowledge that can be learned may 

include the design solution itself, a model for the design solution, and an abstraction over the 

models of the source and the target design analogues (such as a design pattern). Learning 

in both successful and failed problem-solving situations is justified and useful—for instance, 

learning some design patterns under failure can enable the process to avoid similar failures in 

future; and learning some design patterns under both success and failure can enable the process 

to do cross-domain transfer in future. 

2.3.4.1    Problem-Solving Failures and Knowledge Acquisition 

When the MBA process evaluates a candidate design by simulating the SBF model of the design 

and finds that the design does not satisfy the constraints of the problem, it tries different 

alternatives for fixing the design (as described above in Section 2.3.3.1). If no alternatives result 

in solving the problem, the process fails. Then there is an opportunity for the MBA process to 

learn knowledge that can help the process to avoid similar failures in future. But the issue is 

where does it acquire knowledge that enables its learning. One method is interaction with an 

oracle. That is, at such a problem-solving failure, the process can interact with an oracle (i.e., an 

external agent) in different ways to acquire knowledge and learn from the failure. We explored 

different interaction conditions where the information presented by the oracle varies. The oracle 

can present the MBA process different kinds of information on a solution to the target problem: 

(1) the complete structure of the target design that satisfies the problem constraints and an 

SBF model for the design, (2) only the complete structure of the target design, or (3) only the 

localized structure for the target design (i.e., a solution to the specific, local adaptation goal). 

Under all these conditions, the MBA process can acquire a solution to the target problem and 

learn a new GTM from the source and the target design analogues. Because GTMs encapsulate 

strategic knowledge, the problem-solving failures (more precisely, the failures in adaptation) 

provide a good context for learning the GTMs. 

Comparing the source and target design analogues and abstracting the relevant functional 

and causal relationships to form a useful design pattern can be very complex. The complexity 

may be partly due to the dimensions along which the designs can differ and partly due to the 

complexity of the designs. The MBA process uses the SBF models of the source and target 

designs to keep the learning of design patterns computationally tractable. Since the learning of 

design patterns in MBA is thus model-based and in some of the above interaction conditions 

the SBF model for the new design is not available, there is a need for learning the SBF model 
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itself. In MBA, different methods are used for acquiring the SBF models of new designs. When 

the MBA process tries to modify a source design, it first generates the SBF model for the target 

design by revising the model of the source design. MBA has two different methods for that: 

(1) simple revision of the model of the source design (Goel, 1991b) and (2) complex revision of 

the model by the instantiation of design patterns in the model of the source design. These two 

methods are feasible when the modification of the source design is successful, i.e., it results in a 

design for the target problem. But when the MBA process fails to generate a design solution, 

it requires different methods to learn an SBF model of the target design. The MBA process 

interacts with an oracle and acquires the different kinds of information listed above. When the 

oracle directly gives the SBF model for the new design, the acquisition is trivial. But in the 

other two conditions, the MBA process uses a new method for learning SBF models. The new 

method we developed combines the methods of model revision and composition of behaviors of 

primitive structural elements. 

2.3.4.2    Model-Based Learning of Design Patterns 

The task of learning design patterns takes as input a target design analogue and a source design 

analogue and gives as output a design pattern such as GTM and GPP. When the target design 

that solves the given problem is available (whether generated automatically or given by an 

oracle), the MBA process can abstract over the source and the target analogues to acquire a 

new design pattern. The issue is what knowledge in the source and target enables the learning of 

design patterns. Because of the knowledge (i.e., relationships) captured in design patterns, the 

MBA process uses the SBF models of the source and target designs to learn the design patterns. 

It compares the SBF models of the two analogues along all dimensions of the representation and 

discovers patterns of regularity in the functions and behaviors of the two analogues. The MBA 

process does not have access to any a priori knowledge of the patterns it learns. Therefore, its 

goal is to identify what differences in the behaviors of the two designs might be responsible for 

the differences in the functions of the designs. Such a "blame-assignment" task can be quite 

complex depending on the complexity of the designs. Therefore, this comparison in MBA is 

constrained by the internal organization of the SBF models and the problem-solving context in 

which the learning occurs. For instance, if the MBA process failed in the context of modifying 

a substructure of the source design and received the target design from an oracle, then the 

behavior segments in the SBF models that correspond to the source and target substructures 

are relevant for comparison, and the process focuses on them. Once it finds some regularity 

between the designs, the MBA process abstracts over them along the dimension of structure 

and forms the relationships between functions and behaviors as design patterns. The reason for 

abstracting along the dimension of structure is that the structure characterizes and represents 

the specificity of a domain. 
Although in Figure 2.1 learning is shown as separate from the problem-solving steps (i.e., 
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transfer and modification, and evaluation of the solution), much of the work considered part of 

learning—for example, generating the explanation of how a solution satisfies the constraints of 

the given problem (i.e., the SBF model)—is actually done during problem solving, and thus the 

separation is only functional. 

Learning at Different Stages of Analogy: In Figure 2.1, learning is shown to occur at the 

time of storing a target design analogue. That is merely an artifact of the current implementation 

of the MBA process in the system IDEAL, but the theory makes no commitment to such an 

architecture. Learning could very well occur at the time of problem solving using the same 

model-based method, although it involves a different scheme of indexing design analogues and 

accessing them in the context of a target problem. When a source analogue is distant from the 

target problem, transferring knowledge from the source involves abstracting relevant information 

in the model of the source analogue and instantiating the abstract model in the target problem. 

The relevant information for abstraction would be the relations in the model of the source 

analogue that were functionally responsible for solving the source problem. The rationale is 

that the information that is functionally important in the source domain when abstracted and 

instantiated into the target domain would solve the target problem because the source problem 

and the target problem are similar. The same rationale underlies the above learning method. 

Abstractions necessitated by problem solving and formed during problem solving can also be 

stored in memory for later use. 

Yet another stage for learning abstractions is the retrieval of a source analogue itself! Al- 

though it may seem possible and useful in certain tasks such as explanation completion, it does 

not appear to lead to abstractions of the kind this research addresses in tasks such as design. 

If any, only the abstractions of target problems seem possible during retrieval because there 

would be no target analogues available at that stage! But, in general, abstractions can thus be 

learned at different stages in the process of analogical reasoning: during the retrieval of a source 

analogue, during the transfer and modification of a source analogue, and during the storage of a 

target analogue. In this research, we focused on learning of abstractions such as design patterns 

while storing target analogues in memory. 

When a design pattern is formed from the source and target design analogues, it is only 

postulated as a hypothesis which can be revised based on later experiences of using it. If the 

design pattern is used to generate a solution in a later problem-solving situation and the solution 

is evaluated to have failed, the design pattern may be revised based on feedback from an oracle. 

When the oracle presents the correct solution to the problem, following the same learning process 

described above, a new hypothesis for the design pattern could be postulated. The new design 

pattern can then be assimilated (i.e., merged or kept separate) with the old design pattern which 

may result in generalizing the old pattern further or refining it. 
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2.3-5    Storage of the Target Analogue and the Design Pattern 

Finally, the MBA process involves storing the target design analogue and the learned design 

pattern (if any) into its memory for potential reuse. In our theory, memory is an important 

component of the process of analogy. The organization and indexing of design analogues and 

design patterns in memory can influence whether some subprocesses of MBA occur or they do 

not occur. Since the utility of a piece of knowledge learned depends on learning the right indices 

for the knowledge so that it can be brought to bear at the right time, this subtask involves index 

learning too. Thus, the MBA process first identifies the appropriate indices for the target design 

analogue and the design pattern. In MBA, the SBF models together with the task context 

suggest what features should be used as indices for design analogues and design patterns, and 

enable automatic, dynamic acquisition of those indices. Since the MBA process has only a few 

design patterns, it currently does not organize them hierarchically (because the efficiency of 

their retrieval is not an issue). However, in order to enable an efficient and effective retrieval, it 

organizes design analogues in multiple hierarchies where each hierarchy is along a feature in the 

function or structure of the design analogues. 

2.4    Model-Based Analogical Design: An Illustrative 
Example 

We will now illustrate the process of MBA for design with an example of learning and use of 

a specific design pattern, i.e., one type of feedback GTM, from IDEAL. The specific examples 

of design problems and the GTM are from the computer program IDEAL. That is, the MBA 

process in this description refers to the process in IDEAL. Figure 2.2 presents the complete 

story of this illustration. The story has two parts. As we present the two parts, one describing 

how the feedback GTM is learned in the domain of electronic circuits and the other describing 

how the learned feedback GTM is used as an adaptation strategy in designing in the domain of 

mechanical controllers, we walk through the different steps of the process (that are relevant to 

the example) twice. The story goes through the following sequence. First, given a target problem 

in the domain of electronic circuits, the MBA process retrieves a past, similar design that is a 

partial match to the problem. It then identifies the differences between the functions in the 

target problem and the source design and tries to form the adaptation goal. The target design 

problem and the source design are such that the MBA process cannot localize the functional 

difference to making a modification to a component. Hence, its attempts to perform simple 

modifications such as component replacement or substance substitution fail. Suppose that the 

MBA process does not have the knowledge of any GTM that matches the functional difference 

to be reduced. (The particular GTM needed is the feedback GTM and the process does not have 

it at this time.) The process fails because it cannot make alternative modifications to the source 

design. Then the process can interact with an oracle to receive the design solution and an SBF 
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model of the design.1 The MBA process then learns a GTM (that we call feedback GTM) from 

the source design and the target design by abstracting over a regularity in their SBF models so 

that the GTM is useful to avoid similar failures in future. The process also learns an abstraction 

over the current functional difference as an index to the learned GTM and stores the GTM in 

its memory. 
In the second walk-through of the process, the MBA solves a problem in the design domain 

of mechanical controllers. This time, however, the process is able to access the learned feedback 

GTM when it tries to solve the adaptation goal (which is not local) and is able to apply the 

strategy of the GTM successfully. It instantiates the GTM in the context of the SBF model of 

the design of a mechanical controller (i.e., the source design) and generates first an SBF model 

of the target design. It simulates the SBF model to verify if the proposed design achieves the 

desired function and then modifies the structure of the design. Since there is no problem-solving 

failure at this time, the MBA process does not interact with the oracle and does not learn a new 

GTM. However, it identifies indices for the target design and stores the design in the memory 

of analogues. 
Let us now consider the first walk-through of the process of analogical design. Suppose 

that the MBA process is given the problem of designing an electronic circuit whose function is 

to produce an electricity with a voltage value, V'out (= Vavg ± *, where * represents a small 

fluctuation over an average value Vavg), taking an electricity of voltage Vin as input. Figure 2.3 

shows this desired function in the SBF language. 

GIVEN: 

ELECTRICITY 

voltage:   Vjn  volts 

MAKES: 

ELECTRICITY 

voltage: VQUt volts 

(Vava + t>) avg 

Figure 2.3: Desired Function of A New Electronic Circuit 

Given the above problem, the MBA process first probes its memory of design analogues to 

retrieve matching designs. Suppose that its memory contains the design of a simple amplifier 

whose structure is shown schematically in Figure 2.2(top-left). Figures 2.4 k 2.5 respectively 

illustrate the function and the behavior of the simple amplifier. The function of the design in 

*We are only considering one interaction condition for the simplicity of the illustration. 
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memory specifies that the device takes as input an electricity of voltage Vin volts at the location 

i/p and gives as output an electricity of voltage Vout volts (i.e., Vavg ± A where A is a large 

fluctuation around an average value and Vout > Vin) at the o/p location. The function also 

points to the internal causal behavior of the device shown as a sequence of states and state 

transitions in Figure 2.5.    The behavior explains how the structure of the device achieves the 

GIVEN: 

ELECTRICITY 

loc: i/p 
voltage:   Vjn   volts 

MAKES: 

ELECTRICITY 
loc: o/p 
voltage:   VQUt volts 

(Vavg ±A) 

BY-BEHAVIOR:    Behavior "Amplify 
Electricity" 

Figure 2.4: Function "Amplify Electricity" of A Simple Amplifier 

function, i.e., how the input electricity is amplified at the output. Note that each transition is 

annotated with the function of a structural component that contributes to that transition and 

with the 

qualitative relationships between state variables.2 MBA retrieves this design of a simple ampli- 

fier when it probes its memory with the desired function because the functions match on the 

property "voltage" specified in them. However, the match is only partial because the MAKES 

states in the two functions do not match on the voltage value. 

Since there are differences in the functions of the desired design and the source design, the 

MBA process now tries to form an adaptation goal. The functional difference is in the range of 

fluctuation of an output property value (i.e., while the source design's output fluctuates over a 

large range, the desired output fluctuation is small). The fluctuations in the output of a device 

can, in general, arise due to several reasons, for instance, due to the fluctuations in the input 

of the device or due to unstable device parameters. The MBA process, using the SBF model 

of the source design and the functional difference, tries to identify which structural components 

in the source design may be modified in order to reduce the overall functional difference. But, 

2In general, there can be many other types of information that may be specified in a transition and the SBF 
language provides primitives for that. We will see some of them in other examples in later chapters. 



48 

GIVEN: 
state. 

state. 

MAKES: 
state Q 

ELECTRICITY 

loc: l/p 
voltage V|n   volts 

USING-FUNCTION 
ALLOW electricity 
of R,n 

PARAMETER-RELATIONS 

V_o=  *+<Vin> 

ELECTRICITY 
loc: V_ 
voltage:   V_Q volts 

USING-FUNCTION 
ALLOW electricity 
of Op-Amp 

PARAMETER-RELATIONS 

Vout   =   f+(V_o> 

ELECTRICITY 

loc: o/p 
voltage:  VQUt volts 

(VaVg tA) 

Figure 2.5: Behavior "Amplify Electricity" of A Simple Amplifier 
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in this particular example, it cannot localize the needed modification to any single structural 

component because the SBF model of the source design does not indicate any relationships 

between the fluctuations and the component parameters.3 

Suppose that the MBA process only has simple strategies, such as replacing a component in a 

past design or substituting a new substance for one in a past design, to deliver new functions. In 

the current scenario, none of these simple strategies is applicable. That is, given the adaptation 

goal of reducing the specific functional difference, which is large vs. small fluctuation in the 

output property value, the MBA process cannot find any of the adaptation strategies to be 

applicable. Since there are no alternatives available for modification, including a different source 

design, the process fails. 

Next, the MBA process interacts with an oracle to receive the design solution for the target 

problem and an SBF model for the design. Figure 2.2(top-right) shows the structure of the 

target design schematically and Figure 2.6 shows the internal behavior of the design. 

Given the SBF models of the source design (i.e., the simple amplifier) and the target design, 

the MBA process compares them state-by-state and transition-by-transition along all possible 

dimensions in their SBF representation in order to identify the regularity between them. That 

is, it performs a differential diagnosis on the two models by which it determines (1) if there is a 

behavior segment in the SBF model of the target design that matches with the SBF model of the 

source, and (2) if so, what additional segments there are in the SBF model of the target and how 

they are related to the matching segment. Once the MBA process determines those relationships, 

it abstracts over the specific substances, properties and values in the relationships and forms 

a GTM that encapsulates the abstracted functional differences and the abstracted (causal) 

behavioral relationships. The mapping between the functional differences and the behavioral 

relationships in the new GTM will help the MBA process avoid failures similar to the current 

one. That is, they would suggest how to modify the behavior of a source (candidate) design in 

order to generate the behavior of a target (desired) design, and reduce the functional difference 

between them. 

Figure 2.7 illustrates the SBF representation of the new GTM that the MBA process learns. 

Note that this representation does not refer to any specific substances or components, or their 

properties. But the functional and causal relationships between the specific source design and 

the target design are preserved: the left half of the figure illustrates the functional differences 

and the right half the behavioral relationships. The MBA process indexes the new GTM by the 

functional differences the GTM reduces, and stores the GTM in a flat memory. 

Finally, in order to store the target design in analogue memory for later use, the MBA process 

first identifies the appropriate indices for the design. Using the knowledge in the SBF model of 

the target design, it selects only those features in the function of the design that are relevant to 

3Even if there is a relationship between the open-loop gain of the op-amp and the fluctuation, and if the 
op-amp can be selected as a localized component to modify, replacing the op-amp with another will not satisfy 
the constraint that the output fluctuation be small. 
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ELECTRICITY 

loc: i/p 
voltage:  Vjn volts 

USING-FUNCTION 
ALLOW electricity 
of Rin 

PARAMETER-RELATIONS 

V-o='+(Vin> 

ELECTRICITY 

loc: V_ 
voltage:  V_0 volts 

USING-FUNCTION 
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of Rf 

USING-FUNCTION 
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Figure 2.6: Behavior "Amplify Electricity" of the Desired Design 

the working of the device. In the current example, however, the process stores the target design 

along the dimension voltage which is the only property specified in the function. 

That completes our first walk-through of the MBA process. Let us now consider the second 

walk-through of the process. Suppose now that the MBA process is given the problem of 

designing a gyroscope control system whose function is to produce an angular momentum with 

a magnitude, L'0 (= Lavg±6, where 6 represents a small fluctuation over an average value Lavg), 

taking an input angular momentum of magnitude Lin. Figure 2.8 shows this desired function in 

the SBF language. 
Given the above problem, the MBA process first probes its memory of design analogues to 

retrieve matching designs. Suppose that its memory contains the design of a simple gyroscope 

4 We will describe a more interesting index learning situation from the MBA process in a later chapter on 
memory. 
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DESIRED DESIGN: 

GIVEN: 

F2 

MAKES: 

?SUB 

?prop1: ?val11 

?SUB 
?prop1: ?val22 

BY-BEHAVIOR:   Behavior B2 

CANDIDATE DESIGN: 

GIVEN: 

r1 

MAKES: 

?SUB 

?prop1:   ?val11 

?SUB 

?prop1:   ?val21 

BY-BEHAVIOR:   Behavior B1 
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?SUB 
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?SUB 
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?SUB 
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BY-BEHAVIOR 22 

B2 = Bl + B22 

where B22 achieves function f 

The relationships between B1 and B22 are such that: 

FINAL-STATE (B1) { INITIAL-STATES (B22) 

FINAL-STATE (B22) (■ STATES (B1) 

Figure 2.7: SBF Model of the Feedback GTM Learned from the Designs of the Simple 
Amplifier & the New Device 
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GIVEN: 

Angular Momentum 

magnitude: Lj 

MAKES: 

Angular Momentum 

magnitude: Lo 

(Lavg - o) 

Figure 2.8: Desired Function of the New Gyroscope Control System 

GIVEN: 

MAKES: 

Angular Momentum 
loc: gyroscope 
magnitude: Lj 

Angular Momentum 
loc: o/p-shaft 
magnitude: lo 

(Lavg ±A) 

BY-BEHAVIOR: Behavior "Transfer 
Angular Momentum" 

Figure 2.9: Function "Transfer Angular Momentum" of A Design Analogue (a simple 
Gyroscope Control System) 

control system whose structure is shown schematically in Figure 2.2(bottom-left). Figures 2.9 

& 2.10 respectively illustrate the function and behavior of the simple gyroscope control system. 

The function of the available design is similar to the desired function except that the output 

angular momentum fluctuates over a larger range. The function also points to the internal causal 

behavior of the device that explains how the structure of the device achieves the function. The 

MBA process retrieves this design of a simple gyroscope control system because the functions of 

the target problem and the source design are similar. But, of course, the match is only partial 

as it was in the previous scenario because the MAKES states in the two functions do not match 

on the magnitude of angular momentum. 

Like in the previous scenario, since there are differences in the functions of the target design 

and the source design, the MBA process now tries to form an adaptation goal. Again, using 

the SBF model of the source design, the process tries to localize the required modification but 

in vain. It first checks if any of the simple adaptation strategies applies in the current context 
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GIVEN state of Angular 
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USING-FUNCTION ALLOW 
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Figure 2.10:  Behavior "Transfer Angular Momentum" of the Design Analogue (a 
simple Gyroscope Control System) 
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and finds that none does. Unlike before, however, since the MBA process now knows a GTM, 

a more complex design adaptation strategy, the process tries to probe the memory with the 

current adaptation goal. It now finds that the adaptation goal (characterized in terms of the 

overall functional difference to be reduced) matches with the index of the feedback GTM it had 

learned from the designs of electronic circuits. The match is successful because the index of 

the GTM is specified in abtract, generic terms and the type of functional difference in both 

the adaptation goal and the GTM are the same (i.e., large vs. small fluctuation in the output 

property value). 
Then, in order to instantiate the GTM, the MBA process needs to match the decomposability 

condition on the desired function in the GTM (see Figure 2.7 for the condition F2 - ...) with the 

current desired function and find the subfunction / that needs to be designed for and composed 

with the function of the source design. From the initial match of the functions, the MBA process 

gets bindings for the two input states of the subfunction. But, in order to find the bindings for 

the output state of the subfunction, the process needs to backtrace the SBF model of the source 

design and find an intermediate state that can match the output state of the subfunction. In the 

current example, there are only two possible candidate states, state2 and state3 in Figure 2.10 

for this purpose. The choice between the two is very simple because state3 describes a different 

substance, namely, linear momentum, rather than angular momentum. Hence, the MBA process 

selects state2.
5 Now, instantiating the ''template" subfunction from the GTM with the bindings 

from statei, state4, and state2 of the behavior of the source design, the process formulates the 

specific subfunction shown in Figure 2.11. Note that the relationships in the subfunction come 

from the knowledge in the GTM. Informally, the subfunction is to produce an angular momentum 

with a different magnitude (L'ww) at the location of pivot, given the angular momentum (£;) 

at the gyroscope location and the angular momentum at the o/p-shaft location that fluctuates 

over a large range (L0 = Lavg ± A). 
To complete the instantiation of the GTM in the context of the source design, the MBA 

process needs to solve the subproblem, i.e., design for the subfunction, and compose the be- 

havior of the subdesign with the behavior of the simple Gyroscope Control System as per the 

relationships specified in the GTM. In the current design scenario, the subfunction for which 

the process needs to design really has two parts (because the subfunction specifies two inputs 

and one output). But the behavior of the source design already explains how one of those state 

transformations {state\ -> state2) is achieved, and hence the MBA process only needs to design 

for the other state transformation (i.e., the transformation from the state of angular momentum 

with magnitude L0 to the state of angular momentum with magnitude L'ww). Suppose now that 

the process has the knowledge of a component (called worm) whose function exactly matches 

the desired part of the subfunction. After substituting the appropriate parameters in the be- 

havior of the retrieved subdesign (i.e., worm), the process composes it with the behavior of the 

5But, in general, if there are multiple states all of which refer to the same substance, then the heuristic for 
selection is that the state causally nearest to the MAKES state should be chosen. 
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GIVEN: 

Angular Momentum 

loc: gyroscope 

magnitude: Lj 

Angular Momentum 

loc: o/p-shaft 

magnitude: LQ 

(Lavg M) 

MAKES: 

Angular Momentum 

loc: pivot 
> 

magnitude: L^ Lww < Lww 

Lww = HW 

Lww = f+^Li) 

Figure 2.11: The subfunction formed by the Instantiation of the Feedback GTM 

initial source design (i.e., simple Gyroscope Control System) as per the behavioral relationships 

specified in the GTM and produces the behavior of the target design shown in Figure 2.12. 

Next, the MBA process propagates the changes in the values of the state variables due to the 

behavior composition forward in the causal behavior (until the end of the behavior is reached or 

until the same state repeats) and verifies if the modified behavior achieves the desired function. 

Note that it also propagates the changes to the other behaviors in the model of the device that 

are dependent on the currently modified behavior. In the current example, the new value for 

the magnitude of angular momentum in state2 (i.e., L'ww) is propagated forward through the 

states states and state4. Once the MBA process thus simulates the behavior, it modifies the 

structure of the source design. The structure of the target design is shown schematically in 

Figure 2.2(bottom-right). 

Since the MBA process is now able to successfully use the GTM in solving the current design- 

problem, it does not learn any new abstraction. The process finally identifies the indices for 

the target design analogue and stores it in memory along the dimension magnitude of angular 

momentum. That of course completes our second walk-through of the MBA process for design. 

As illustrated in this two-part story, the MBA process can learn a GTM in one domain such as 

electronic circuits and use it in another such as mechanical controllers. Thus, the MBA process 

can do an interesting cross-domain transfer via GTMs. Note however that the SBF models of 

devices also play a significant role in different steps of the MBA process for design. 
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Figure 2.12: Behavior of the New Design Achieved by Composing the Behaviors of 
the Design Analogue (i.e., simple Gyroscope Control System) and the Subdesign 
(i.e., worm) 
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CHAPTER III 

THE CONTENT OF DEVICE MODELS AND DESIGN 
PATTERNS 

As we described in the previous two chapters, two different types of models play significant roles 

in different stages of analogical design: SBF models of specific devices and of design patterns. In 

addition, our theory of analogical design uses knowledge of primitive components, substances, 

and functions in design domains. In order to enable the three facets of innovative design, 

i.e., non-local modifications, cross-domain transfer, and problem reformulation, and address the 

complexity in reasoning required, the MBA process requires the knowledge of design patterns. 

Some useful design patterns in the context of device design are high-level design abstractions that 

capture relationships between functions and behaviors of devices (in particular, patterns of those 

relations). Therefore, to represent design patterns, we need primitives that capture functions and 

behaviors of devices and regularities in their relationships. We adopt the Structure-Behavior- 

Function (SBF) representations (Goel, 1989) for this purpose. 

In order to explore our hypothesis about the learning of design patterns, we need to represent 

device models too. A device model encapsulates functions and behaviors of the device in terms 

of its specific structure. The theory of SBF models was developed precisely to capture device 

models. We also represent device models in the form of SBF models. The SBF model of a device 

if available in a design analogue not only enables learning of design patterns, but also enables 

other subtasks of analogy such as adaptation (Goel, 1991a) and evaluation of a solution (Goel, 

1991b). 

In this chapter, we will first describe the content of device models in terms of SBF repre- 

sentations. The SBF representation in IDEAL is based on the previous work on KRITIK (Goel, 

1989) and KRITIK2 (Bhatta and Goel, 1992; Stroulia et al., 1992). Using the representation 

in this work has led us to add some new primitives to the original formulation of SBF (repre- 

sentation) language. We will indicate them in this chapter where appropriate. Then we will 

describe how the SBF language can be used and extended for representing the content of design 

patterns, which was our focus in this research with respect to knowledge representation. In 

addition, we describe other types of conceptual knowledge, i.e., primitive functions, substances, 

and components, which form the basis for the SBF representations of device models. 
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3.1    Structure-Behavior-Function Models of Devices 

SBF models of devices specify how the causal relationships between the specific structural el- 

ements in the devices result in the devices' functions (i.e., output behaviors). The primary 

characteristic of these models is that they capture teleological, causal, and structural knowledge 

of devices. The SBF model of a device captures the designer's comprehension of how the device 

works, that is, how the functions of structural elements get composed into the functions of the 

overall structure. These models are based on a component-substance ontology (Bylander and 

Chandrasekaran, 1985). This ontology gives rise to the SBF language (Goel, 1989,1991a) for de- 

scribing the model of a design that is a generalization on Sembugamoorthy and Chandrasekaran's 

(1986) functional representation scheme. The constituents of the SBF model—structure of the 

device (i.e., the physical structure), the functions delivered by the structure, and the internal 

causal behaviors—are described below. 
In addition to the schema-like descriptions of the constituents of SBF models, we also present 

a formal specification of them.1 In the formal notation, an n-tuple representation for a type of 

knowledge indicates that this type of knowledge has n constituents. For example, a case (or an 

analogue) is a 3-tuple where the elements are function F, structure S, and an SBF model M; 

it is also implicit that these three constituents for a case are "coherent" in that the model M 

specifies the internal causal behaviors that explain how the structure S delivers the function F. 

Each tuple here corresponds to a schema in the IDEAL system and each element in the tuple 

corresponds to a slot in the schema. 
Case = (F,S,M) 

Each of the constituents is recursively described/defined in terms of its lower-level con- 

stituents. In the following descriptions, all the enumerated entities are intended to be only 

partial sets that were necessary to deal with the class of devices IDEAL represents. In general, it 

is an empirical question as to how many different classes of devices these partial sets can cover. 

The constituents of the SBF models and their formal specification are now given below. 

3.1.1    Structure 

The structure of a design is expressed in terms of its constituent components and substances and 

interactions between them. Figure 3.1 shows a Sulf uric Acid Cooler (SAC) and Figure 3.2 its 

structure schema. Components and substances can interact both structurally and behaviorally. 

For example, in SAC, water can flow from if20-pipe to heat-exchange chamber only if they are 

connected, and Sulfuric Acid flows from pi to p2 due to the behavior allow of H2SO 4-pipe-l. 

Figure 3.3 shows the representation of schema for the device structure in the SBF language. 

The structure of a device is described hierarchically in terms of its constituent structural ele- 

ments. The constituent elements of a device may be primitive domain components, such as a 

2The foimalization was done in collaboration with Eleni Stroulia. 
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Pi P2 % P4 
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Figure 3.1: Sulfuric Acid Cooler 

STRUCTURE     SAC 

COMPONENTS:      (Heat-Exchange-Chamber 

H2S04plpe-1 

H2S04-plpe-2 

Water-pump 
...) 

STRUCTURE     Heat-Exchange-Chamber 

RELATIONS: (SERIALLY-CONNECTED 

Heat-Exchange-Chamber 

H^O^pipe-l   ) 

(INCLUDES 

Heat-Exchange-Chamber 

H2SO *pipe-2    ) 

PARAMETERS:       (volume v1) 

FUNCTIONS:        (ALLOW Water) 

CONNECTING-POINTS: (p2 p3 p5 p6) 

STRUCTURE    H2SO*plpe-2 

RELATIONS: (SERIALLY-CONNECTED 
H2SO^plpe-1 

H2S04>plpe-2   ) 

PARAMETERS:    (Capacity RO) 

FUNCTIONS:    (ALLOW   H2SO4) 

CONNECTING-POINTS:     (P2 P3) 

Figure 3.2: The Structure Schema for the Sulfuric Acid Cooler 

battery, or they may be complex structures, such as an air-conditioning unit, which can them- 
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selves be further described in terms of smaller constituent elements. Each structural element, 

except the overall structure of the device, points to another structural element of which it is 

a part. In addition to the part-of relation between structural elements, other structural rela- 

tions, such as connectivity, inclusion, and containment are explicitly represented in the structure 

schema. The structural relations can currently be one of the four enumerated types: contains, 

includes, serially-connected, and parallelly-connected. The structural relationships, contains and 

includes are different in that the former specifies a relationship between a component and a sub- 

stance while the latter specifies a relationship between two components. Serially-connected and 

parallelly-connected are also different: the former specifies a relationship between components 

such that the output of one becomes the input to the other, while the latter specifies that the 

two components share the same input and the same output. Figure 3.2 shows the structure of 

the Sulfuric Acid cooler and the specific components in it. 

structure: 
(components: A set of structural elements into which the structure under description 

can be decomposed, 
part-of: The larger device structure of which this is a part, 
structural-relations: A set of relations among the sub-elements of the structure 

under description.) 

Figure 3.3: Structure Schema 

Formally, a structure can be specified as 

S = Comp\\SA 

which means that the structure can be a primitive component Comp OR (denoted by ||) an 

assembly of substructures SA. 
An assembly of substructures itself can be specified formally and recursively as one or more of 

structures 5, that is, SA = {S}+. A primitive component Comp is anon-decomposable structure 

and is itself represented as a schema consisting of the slots: is-a, modes, parameters (component 

parameters and their values), structural-relations, functions, and connecting-points. A partial 

schema for the specific component battery-1 is shown in the dashed box in Figure 3.12. Is-a 

links a specific component to the general knowledge of its prototype component in IDEAL'S 

conceptual memory of components. Components are described in more detail in a later section. 

Formally, a Comp is a 6-tuple whose elements are is-a (e.g., #20-pipe is-a pipe), zero or more 

Modes (e.g., closed mode of a Switch and open mode of a Valve), Parameters (as shown below), 

structural-relations (like those described above), functions (i.e., primitive functions delivered by 

the component), and connecting-points (the points on the component where other components 

in a structure can be connected). Parameters is one or more of triplets of component Parameter, 
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its Value and Units (e.g., the parameter volume of a heat-exchange chamber may have a value 

of 1 cu. ft.). IDEAL'S knowledge about the primitive components in a specific device are linked 

to the general knowledge about the primitive components via the link is-a. Figure 3.12 shows 

IDEAL'S partial memory of components. 

Comp = 

(Is-a, {Mode}*, Parameters, Structural-Relations, Functions, Connecting-Points) 

Parameters = {(Parameter,Value,Units)}+ 

3.1.2    Function 

A function is represented as a schema that specifies the behavioral state the function takes as 

input, the behavioral state it gives as output, and a pointer to the internal causal behavior 

of the design that achieves the function. Figure 3.4(a) shows a function of the SAC, namely, 

heating water. The input state of this primary function specifies that water at location p5 

in the topography of the device (Figure 3.1) has the properties temperature and flow, and 

corresponding values t\ and r'. The input state also specifies that the water contains another 

substance heat whose magnitude is qi. Similarly, the output state specifies the properties and 

the corresponding values of the substance at location p6. 

This representation of functions gives rise to a typology of functions in the domain: trans- 

formation functions, control functions, maintenance functions, and prevention functions. In this 

work, we primarily focus on transformation functions, which themselves are of several types such 

as substance transformation, substance-property transformation, and substance-location trans- 

formation. For example, the function of SAC is both a substance-property transformation and 

a substance-location transformation because it specifies a change in the value of the substance 

temperature as well as a change in the substance location. A substance-transformation function 

is one where the substance in the input state changes to a different substance in the output state. 

In addition to transformation functions, we also consider control functions, although implicitly, 

in the context of devices with feedback and feedforward mechanisms. 

Figure 3.5 shows the schema for the representation of functions in IDEAL. Besides the input 

and output behavioral states (GIVEN and MAKES respectively), the schema for a functional 

specification contains a pointer to the internal causal behavior that transforms the input state 

into the output state, a stimulus that triggers the functioning of the device, and provided that 

specifies the environmental conditions necessary for the functioning of the device. In a specific 

schema for function, the slots given, stimulus, and provided may not be filled. The stimulus in a 

function schema is a primitive to capture the device's interaction with the environment external 

to the device. An example of stimulus is Force on Switch in the representation of the function 

of a flash-light circuit. 

Formally, in this work, a function F is a 6-tuple with the elements: type (the only type 

of functions considered here are of transformation type, indicated by ToMake, where a device 
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Figure 3.4: Function and Behavior of Sulfuric Acid Cooler 
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functional specification: 
(makes:output behavioral state 
{given: input behavioral state } 
by: causal sequence of behavioral states 
{stimulus: event in the external environment triggering the functioning of the device } 
{provided: conditions external to the device necessary for its functioning })* 

Figure 3.5: Functional Specification Schema 

transforms an input state into an output state), input state, output state, an internal causal 

behavior of this function, an external stimulus on which the function depends, and zero or more 

external conditions necessary for the function. That is, 

F = (Type(ToMake), {Stateix}, StateouT, BF, {Stimulus}, {Provided}*) 

where {States}, {Stimulus}, and {Provided} are optional. 

3.1.2.1    Behavioral State 

The behavioral states of a device can be characterized by the state variables whose values 

may be transformed causally. A behavioral state (input, output, or intermediate states of an 

internal causal behavior) can be of two types: component state (StatecoMp) which concerns a 

component in the device and substance state (Statesuß) which concerns the state of a substance 

in the device. Figure 3.6 shows the schema for a behavioral state in IDEAL. Both these types of 

states contain links to previous state, next state, preceding transition, and succeeding transition, 

and a component-state schema or a substance-state schema. 

The schema for a component state specifies the component under description and its mode 

of operation in that state. The component schema itself consists of several slots such as its is-a 

and its parameters (i.e., the properties of components and their values) as explained earlier in 

the description of the structure. An example of a component state is the state of switch when 

its mode is closed. 

The schema for a substance state specifies a partial description of the state of a substance at 

a particular point in the device topology. It consists of the slots for the location of a main sub- 

stance, the schema for the main substance, and any substances contained in the main substance. 

The schema for a substance itself consists of is-a and a PropertyList. The schema for a specific 

substance Nitric Acid is shown in the dashed box in Figure 3.10. In IDEAL'S memory of 

substances, is-a is a pointer through which a specific substance is linked to a general substance. 

Substances are described in more detail in a later section. In the description of a substance in a 

behavioral state, only some of the characteristic properties of the substance are of interest, and 

thus only their values will be specified. 

Formally, the behavioral state is specified as follows: 
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behavioral state: (previous: previous state 
next: next state 
enabled-by: preceding state-transition 
enabling: succeeding state-transition 
substance-state-schema: substance description at current state: 

location 
main-substance: the schema for the substance: 

is-a 
(property value unit)* 

{contained substances' description } 

OR 
component-state-schema: component description at current state: 

component: the schema for the component: 
is-a 
(parameter value unit)* 

mode ) 

Figure 3.6: Behavioral State Schema 
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State = StatesuB\\StatecoMP 

StatesuB is a 3-tuple consisting of the location of a main substance L, the schema for the main 

substance Sub, and zero or more of substances contained in the main substance Contained-Sub. 

That is, 

StatesuB = (L, Sub, Contained-Sub) 

Contained-Sub = {Sub}* 

The schema for a substance Sub is a pair consisting of Is-a (e.g., Nitric Acid is-a liquid) and 

a PropertyList. A PropertyList is one or more of triplets of Property, its Value and Units (e.g., 

the property temperature of Nitric Acid with a value of Tl degrees). That is, 

Sub = (Is-a, PropertyList) 

IDEAL'S knowledge of substances in a specific device is linked to its general knowledge of 

substances via is-a. IDEAL'S memory of substances is organized in a is-a hierarchy as shown in 

Figure 3.10. Note that in Figure 3.10 many properties for a substance Nitric Acid are shown 

as <no-specification> which means that IDEAL knows that these properties are relevant to 

this substance but in its general knowledge there are no values specified for these properties. 

However, a specific substance, for instance, Nitric Acid in the low-acidity NAC can have some 

more values specified (i.e., acidity: low; temperature: T\). 

StatecoMP is a pair consisting of the schema for a component Comp and its Mode in that 

state: 

StatecoMP = (Comp, Mode) 

3.1.3    Behavior 

The internal causal behaviors of a device are viewed as sequences (including cycles) of alternating 

state transitions between behavioral states. Annotations on the state transitions express the 

causal, structural, and functional context in which the transformation of state variables, such 

as substance, location, properties, and values, can occur. The causal context provides causal 

relations between the variables in preceding and succeeding states. The structural context 

specifies different kinds of structural information such as substances, components, structural 

relations among components and substances, and spatial locations in the device. The functional 

context indicates which functions of components in the device are responsible for the transition. 

Figure 3.4(b) shows the causal behavior that explains how water is heated from temperature 

*i to t-i . State$, the preceding state of transition^-?» describes the state of water at location 

p5 and state?, the succeeding state, at location p6. The different types of annotations on 

transitionß-j indicate the different types of context under which the transition can occur. For 

example, the annotation USING-FUNCTION in transition^-? indicates that the transition 

occurs due to the behavior allow of I^-SC^-pipe. 

Note that the function of a device in IDE AL is an abstraction over an internal causal behavior 

of the device, that is, the initial state and the final state in an internal causal behavior are 
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respectively the input state and the output state in the function (i.e., an observable, output 

behavior of the device). For instance, the input state and the output state of the "Heat Water" 

function of Sulfuric Acid cooler (Figure 3.4(a)) are respectively the same as the initial state 

(state&) and the final state (state?) in the internal causal behavior "Heat Water" of the Sulfuric 

Acid cooler (Figure 3.4(b)). However, a designer may not intend every output behavior of a 

device as a desired function of the device. For instance, in a Nitric Acid cooler device, an 

abstraction over the internal causal behavior "Heat Water" may not be intended as a function 

of the device; instead, an abstraction over the internal causal behavior "Cool Acid" may be 

intended as its function. Thus, the functions of a device are a subset of its output behaviors 

which were actually intended by its designer. 

A model Min a design case (or analogue) is an n-tuple consisting of a causal behavior Bp that 

delivers the function Fin the case and zero or more behaviors exhibited by the structure 5in the 

case. Like states can be of two types, causal behaviors can also be of two types corresponding 

to the types of states the behaviors contain. For instance, a causal behavior BSUB is a sequence 

of alternating states (Statesuß) and state transitions (Transsuß)- 

B = BSUB\\BCOMP 

BSUB = {State SUBTT ans SUB}
+StatesuB 

BCOMP = {StatecoMpTranscoMp}+StatecoMP 

3.1.3.1    Behavioral State Transition 

A behavioral state transition is a partial description of a transformation of some device element 

during the functioning of the device. Figure 3.7 shows the schema for representing such a 

transformation in the SBF language. In addition to the links to the previous and next states, 

the behavioral state transition schema contains the slots by-behavior, using-function, as-per- 

domain-principle, parameter-relations, and conditions of different kinds that need to hold good 

in order for the transition to occur. 

state-transition: 
(previousjstate: preceding state 
next-state: succeeding state 
{ by-behavior: pointer to a more detailed behavior explaining the transition } 
{ using-function: component's function }* 
{ as-per-domain-principle }* 
{ parameter-relations }* 
{ condition }*) 

Figure 3.7: Behavioral State Transition Schema 
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A behavioral transformation of a device element may be explained at several levels of abstrac- 

tion and detail. Thus, the state-transition schema may include a pointer to another behavior 

(i.e., by-behavior slot) which explains in greater detail the transformation described by that 

transition. The by-behavior pointer results in the hierarchical organization of the device internal 

behaviors. 

In addition to pointing to a more detailed behavior, a state transition may explain a be- 

havioral transformation in terms of the functions of structural elements of the device (i.e., 

using-function slot), or in terms of a domain principle (i.e., as-per-domain-principle slot) such 

as the physics laws (e.g., the law of conservation of momentum). The using-function slot of 

a behavioral state transition schema is filled with a list of Schemas each of which refers to a 

component in the device and a primitive function of that component. A partial set of primitive 

functions consists of allow, pump, create, and destroy. 

Moreover, the transition schema may be annotated with qualitative equations (i.e., 

parameter-relations slot) describing the changes to the values of different substance properties 

and component parameters because of the transition. Qualitative equations may be based on 

physics principles, but they are specific to the device parameters. The parameter-relations slot 

of the state-transition schema is filled with a list of qualitative equations, where each qualitative 

equation itself consists of a qualitative relation between values of two substance properties or 

between values of a substance property and a component parameter. A qualitative relation is 

an enumerated type and can currently have one of the two values: directly-proportional-to and 

inversely-proportional-to. In addition, the SBF representations have been extended to include 

a specification of quantitative equations involving simple operators (addition, subtraction, divi- 

sion, multiplication, and exponent). These equations are useful in enabling simple quantitative 

simulations. 

Often, the occurrence of a state transition in a device behavior is conditioned upon the co- 

occurrence of other behavioral states in the device (a pointer to the state via under-condition- 

state), or the co-occurrence of other state transitions (a pointer to the transition via under- 

condition-transition), or specific structural relations among the device elements (a list of struc- 

tural relations via under-condition-structure), or specific property values of a substance (a pointer 

to the partial description of the substance via under-condition-substance), or specific parameter 

values of a component (a pointer to a partial description of the component via under-condition- 

component). Thus there can be five different types of conditions described in a state transition 

schema in the SBF language. 

A transition between two substance states TranssuB is a 5-tuple consisting of zero or more 

qualitative equations (Qual-Equation), zero or more principles (Principle), zero or more condi- 

tions (Condition), zero or more functions of components (Using-F), and an optional behavior 

(B) all of which form different kinds of context under which the transition can occur. 

TranssuB = ({Qual-Equation}*, {Principle}*, {Condition}*, {Using-F}*, {B}) 

Similarly, a transition between two component states TranscoMP is specified as: 
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TranscoMP = ({Principle}*, {Condition}*, Stimulus) 

A qualitative equation Qual-Equation is a 3-tuple consisting of a qualitative relation Relation 

between values of two substance properties or between values of a substance property and a 

component parameter. Relation can be one of the two enumerated types, directly-proportional- 

to and inversely-proportional-to. In general, there may be other types of relations but in the 

class of devices we have dealt with, they were sufficient. A Qual-Equation captures a qualitative 

relationship between two properties of a substance, or between properties of different substances, 

or between properties of substances and parameters of components. Whereas a Principle refers 

to domain principles such as physics laws (e.g., conservation of momentum). That is, 

Qual-Equation = (Relation, LHS, RHS) 

Relation e { directly-proportional-to, inversely-proportional-to } 

LHS = (Sub, Property, Value) 

RHS = (Sub, Property, Value)\\(Comp, Parameter,Value) 

Using-F in a transition is a pair consisting of a component Comp in the device and a 

primitive function FP achieved by that component. An FP can be one of the four enumerated 

types: allow,pump, create, and destroy. 

Using-F = (Comp, FP) 

FP € {allow, pump, create, destroy} 

A Condition under which a transition can occur can be of five types: a condition on a 

structural relation (ConditionSTRUCT)-, a condition on a substance property (ConditionSUB), a 

condition on a component parameter (ConditionCOMp), a condition on the existence of a state 

(ConditionsTATE), and a condition on the occurrence of a transition (ConditionTRANs)- That 

is, 

Condition = 

ConditionSTRUCT\\ConditionsuB \ \ ConditioncoMP 11 ConditionSTATE\\ConditionTRANS 

where each of these conditions is a tuple as shown below. 

ConditionsTRUCT = (Struct-Relation, Comp, {Comp}+) 

Struct-Relation € { contains, includes, serially-connected, parallelly-connected } 

ConditionsuB = (Sub, Property,Value) 

ConditioncoMP = (Comp, Parameter, Value) 

ConditionsTATE — (State) 

ConditionTRANs = (Trans) 
In the above structural relationships, contains and includes are different in that the former 

specifies a relationship between a component and a substance while the latter specifies a rela- 

tionship between two components. The relations serially-connected and parallelly-connected are 

also different: the former specifies a relationship between components such that the output of 

one becomes the input to the others, while the latter specifies that the two components share 

the same input and the same output. 
For instance,  in transition6-7  (shown in  Figure 3.4(b)),  the UNDER-CONDITION- 
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STRUCTURE annotation specifies that the behavior allow of l^SO-i-pipe can allow the flow of 

heat only if the -H2S'04-pipe CONTAINS Sulfuric Acid with a temperature of Ti that is greater 

than ti. The qualitative parameter relations on the substance properties, such as those shown 

for temperature in Figure 3.4(b), are a crucial part of describing the causal process underly- 

ing a transition. Annotations may also include conditions on other transitions as indicated by 

UNDER-CONDITION-TRANSITION. For example, transition6-7 refers to another transition 

in which the temperature of H2SO4 changes from T\ to T2 . In addition, a transition may be 

annotated by the knowledge of deeper domain principles and qualitative equations. 

The state transitions, in addition to being causal transitions, capture an implicit temporal 

ordering of events in the device functioning. Since, in general, the cause temporally precedes the 

effect, the antecedent state temporally precedes the consequent state. Moreover, the conditions 

on the transition implicitly capture temporal co-occurrence, i.e., if two state transitions are 

dependent upon each other, then they occur at the same time. 

3.2    Primitive Functions 

Bylander and Chandrasekaran (1985) have proposed a few primitive functions, such as allow, 

pump, and create, for the domain of physical devices, though not intended as a complete set. 

Unlike any higher-level function, primitive functions cannot be further decomposed into any 

subfunctions or associated internal behaviors, and thus a primitive function is also a primitive 

behavior. 
A primitive function, like any other function, is represented in terms of an input state, 

an output state, and a set of behavioral requirements under which such a transformation is 

possible. For example, Figure 3.8 shows a representation of the primitive function allow. KRITIK 

(Goel, 1989) has primitive functions such as allow, pump, create, and destroy for the domain 

of physical devices. The functional context of transitions in behaviors of devices index into 

these primitive functions. Thus these primitive functions are the building blocks to compose 

higher level functions. Govindaraj (1987), in his Qualitative Approximation Methodology to 

model large dynamic systems, has proposed primitives to describe components in a system; but 

those primitives are primitive components and not primitive functions. However, the primitive 

components are closely related to "primitive" functions as they are responsible for the basic 

functions performed by the components. For example, the primitive conduit from his set of 

primitives has a function similar to the primitive function allow. 

Primitive functions are also useful to classify functional differences between designs so that 

classes of designs can be discriminated at the top-level in a functionally organized memory of 

design analogues (explained later in Chapter 4). 

Dealing with a variety of devices from new domains and mechanisms such as feedback and 

feedforward in this research has necessitated us to introduce two new primitive functions in the 

SBF theory: transform and sense. Transform is used to describe the behavior of a component 
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GIVEN: 

MAKES: 

?SUB 
loc: ?end1 

?SUB 
loc: ?end2 

UNDER-CONDITION-SUBSTANCE: 

?SUB 
flow: ?M 
state: liquid 

has 
relations: 

?r1 > 0 

Figure 3.8: Primitive Function (and Behavior) ALLOW 

that causes a transformation in a property value of an input substance when such change cannot 

be described by any of the other primitives. It is because the other primitives capture semantics 

of changes in specific properties of substances—for instance, the primitive allow specifies changes 

only in the location loc of a substance.2 Sense is used to describe the behavior of a component 

that generates a signal (or some substance, in general) proportional to fluctuations in the value 

of some property of an input substance. The primitive function sense is necessary to capture the 

functioning of a class of devices that have feedback control or feedforward control mechanisms. 

3.3    Substance Knowledge 

Since the function of a device can be specified as a pair of input and output states of a substance 

in the device, general knowledge of substances is essential and useful in determining partial 

matches between functions during the retrieval of an analogue. In other words, it helps to 

index and organize design analogues hierarchically based on substances. In our theory, each 

substance is represented as a schema that consists of a name, its category information (i.e., 

is-a), and properties and corresponding values (default or ranges). To address the issue of 

what should be represented in a substance, we take a functional approach, that is, represent 

only that much required by the class of tasks and the domains considered. An analysis of 

some specific designs in the domain of physical devices suggests certain properties for specific 

substances; only those properties are included in the representation. For example, an analysis 

of designs of reaction-wheel assembly indicates that the properties of the substance angular 

momentum, namely, magnitude and direction, are important to describe their function.   Hence 
2In the current implementation of IDEAL we expanded the semantics of allow to include that of the new 

primitive transform. _ 
3In component-substance ontology, things such as angular momentum, heat, and electricity which cannot be 

"seen" are also viewed as substances that can flow through components in realizing a behavior of a device. But in 
order to distinguish them from all those things that can be "seen" and/or that have one or more of the properties 
of shape, state of matter, and form, substances like angular momentum are categorized as abstract substances. 
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Angular momentum Nitric Acid 
is-a:      abstract-substance     is-a: acid 
property-list:  property-list: 

magnitude:   state: liquid 
direction: <positive acidity: — 

or negative> temperature:   
flow:   

> »  indicates <no-specification> 

Figure 3.9: Representation of Substances: Examples 

a general representation of angular momentum should specify these properties. For example, the 

representations of two substances, angular momentum and nitric acid, are given in Figure 3.9. 

Note that in Figure 3.9 many properties for the substances Angular Momentum and Nitric 

Acid are shown as <no-specification> which means that IDEAL knows that these properties are 

relevant to this substance but in its general knowledge there are no values specified for these 

properties. However, a specific substance, for instance, Nitric Acid in low-acidity NAC may 

have some more values specified (i.e., acidity: low; temperature: Ti). 

Substances are organized in a taxonomy (is-a hierarchy), with substances at the top-level 

divided into two categories: abstract substances and concrete substances. Figure 3.10 illustrates 

a partial memory of substances in IDEAL. Under the two top-level categories, substances are 

distinguished among them based on their properties. For example, concrete substances can 

have three subcategories based on their state of matter corresponding to solid, liquid, and gas. 

These distinctions are important in design-analogue adaptation because a component such as 

pipe can allow only liquids and gases to go through; hence the pipe can be substituted for a 

component only under certain substances. Further, liquids are divided into acids, alkalis, and 

neutral liquids. Abstract substances are divided into categories such as angular momentum, 

heat, and electricity. 

Substances are indexed by specific substances used in design analogues. The representation of 

a specific substance in a design includes a pointer to the corresponding conceptual representation. 

For example, a specific substance Sulfuric Acid in the design of a high-acidity Sulfuric 

Acid cooler will have a pointer to the substance schema describing its general properties. 

Although this is a primitive way of indexing, it provides a way of linking conceptual information 

of substances and design analogues in which specific substances are used. This also helps in 

finding a substance for replacement during the adaptation of a design analogue. 
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Substance Memory j  name: Nitric Acid 

■  is-a: liquid 

i  property-list: 

i     state: liquid 

<by-default> 

•      color: - 

temperature: • 

acidity: ■ 

Concrete Substances Abstract Substances 

Solids Liquids Electricity 

- indicates 

Nitric Acid 
<no-specification> 

Figure 3.10: A Partial Memory of Substances in IDEAL 

3.4    Component Knowledge 

Components are the building blocks of structure of any physical device. Like some functions 

can be specified as pairs of substance states, some other functions may be specified as pairs of 

component states. Therefore the general knowledge of components is also useful in determining 

partial matches between functions during analogue retrieval. In our theory, each component is 

represented as a schema that consists of a name, its category information (i.e., is-a), its structural 

relations, its modality (i.e., modes of operation because a component can have multiple modes), 

its parameters and corresponding values (default or ranges), its functions, and its connecting 

points.  For example, the representations of two components, namely, switch and battery, are 

given in Figure 3.11. 
Structural-relations slot of a component specifies a list of structural relations between the 

component and the other components in the device. Modes in a component schema specifies 

one or more modes of operation of the component. Parameters contains a list of characteristic 

parameters of the component and the corresponding values and units. For example, the volume 

of a heat-exchange chamber has a value of 1 cu. ft. The functions slot of a component contains 

the set of primitive functions that the component delivers and the connecting-points specifies the 

structural points in the component where the other components can be connected. Note that 

the general representation of a component does not specify values to all these different slots. 

But a specific component in a device would have most of these slots specified. 

Similar to substances, components can also be organized in a is-a hierarchy. Figure 3.12 

illustrates a partial memory of components in IDEAL. In addition, components may also be 

functionally organized because in a design task, components are accessed and grouped together 

primarily based on the functions they deliver. Within a functional group of components, however, 

further distinctions may be drawn based on component categories.   For example, electrolyte 
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Switch 
name:    switch 
is-a:    control-device 
parameters: 

mode:  <open or closed> 

Battery 
name: battery 
is-a: electric-source 
parameters: 

type:        <electrolyte or Ni-Cd> 
voltage:  <no-specification> 

Figure 3.11: Representation of Components: Examples 

batteries and nickel-cadmium batteries have the same function (i.e., pump electricity) and are 

batteries. Within electrolyte batteries, there can be subclasses based on voltage they deliver such 

as low-voltage electrolyte batteries and high-voltage electrolyte batteries (or, 1.5-volt electrolyte 

batteries, 3-volt electrolyte batteries, and 9-volt electrolyte batteries). 

name: Battery-1 

is-a: battery 

parameters: 

capacity: high 

modes:- 

- indicates 
<no-specification> 

Figure 3.12: A Partial Memory of Components in IDEAL 

Like substances, components can also be indexed by specific components used in the design 

analogues. The representation of a specific component in a design includes a pointer (via is-a) 

to the corresponding conceptual representation. This indexing scheme coupled with functional 

indexing for components helps in some adaptation processes, for example, in structure modifi- 

cation due to the instantiation of component-replacement. An appropriate new component to 

replace a component in a design analogue can be found by accessing the general knowledge of a 

component whose instance the current component is. 
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3.5    Structure-Behavior-Function Models of 
Design Patterns 

Design patterns, in general, capture different kinds of relationships between design elements, 

such as spatial, temporal, functional, and causal relationships. Design patterns are generic 

and case-independent because of the nature of the relationships and the level of abstraction 

of those relationships. They can be of different types depending on the kinds of relationships 

they capture. For instance, design patterns can be spatial patterns in certain domains (e.g., the 

design domains of pictures and buildings) because they capture spatial relationships. Or they 

can be temporal patterns in some other domains (e.g., the domains of designing symphonies and 

music), or functional and causal patterns in yet other domains (e.g., the domains of designing 

physical devices such as electric circuits and heat exchangers). In this research, we focus on 

the functional- and causal-type design patterns because the task context is design of physical 

devices. 
The functional- and causal-type design patterns themselves may be of different types. We 

focus on two specific types of design patterns, namely, generic physical processes (GPPs) and 

generic teleological mechanisms (GTMs), and provide a content theory for them in terms of 

the SBF language. The same SBF language we used to represent device models can be used 

to represent models of GPPs and GTMs. Although the SBF language provides primitives for 

the physical structure of devices, the functions of devices, and the internal causal behaviors of 

devices, since design patterns capture only patterned relationships between design elements, the 

SBF representations of design patterns are devoid of information about devices' specific physical 

structure. However, those representations still capture the causal structure in the behaviors of the 

classes of devices. Hence, the function and behavior aspects of the SBF language are especially 

useful for representing the GPPs and GTMs. We wiU describe their SBF representations in the 

following two sections. 

3.5.1    Generic Physical Processes 

A Generic Physical Process captures causal relationships between the output behaviors and the 

internal behaviors of physical devices. Depending on the level of abstraction of the specific 

substances and components in these relationships, GPPs can be represented at different levels 

of abstraction. For instance, at lower levels of abstraction, the causal relationships in a GPP 

may refer to prototypical structural elements that characterize the class of devices to which the 

GPP applies. An example of such a GPP from IDEAL is the SBF model of a heat exchanger 

(Figure 3.13) that is general enough to provide explanations of how a cooling device works as 

well as how a heating device works. Thus the primary characteristics of a lower level GPP are 

as follows: 
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Figure 3.13: An SBF Model of a Heat Exchanger 
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• Overall structural topology can be same as in its specializations but there is no information 

of specific components (instead of specific components, classes of components may be 

described as in, for example, Figure 3.13—note that the component pipe is not a specific 

component in a device but rather is a prototype component). 

• The function is more general than in its specializations (for example, the range of trans- 

formation in a property is higher than in the specializations, or parameters in the function 

are variablized, that is, variables are substituted for the values of properties). 

• At least one of the several types of context in a transition in the causal behavior of the 

device is more general than the context in its specializations (for example, in Figure 3.13, 

relations between the values of temperature cover changes in both directions, that is, 

increase in temperature and decrease in temperature). 

Note that the representation of the GPP of heat exchange process shown in Figure 3.13 uses 

the same primitives as described earlier for the SBF models of devices, such as behavioral states, 

state transitions and the different types of annotations for transitions. But instead of referring 

to specific substances and property values, this representation specifies variablized or parame- 

terized substances, property values, and conditions. This representation of the GPP specifies 

that the transformation of the temperature of some substance Uuh flowing with some flow rate 

?£ from a location p2 to another location p3 is mutually dependent on the transformation of 

the temperature of some other substance 1sub2 flowing with some flow rate ?r from a location 

p5 to another location p&. The direction of the transformation in one substance is opposite to 

that in the other as indicated by the relations on substance temperatures annotating the tran- 

sitions. In addition, it specifies (using the UNDER-CONDITION-STRUCTURE annotations) 

the structural relations that need to hold good in order for the two behavioral state transitions 

to occur. 
GPPs at higher levels of abstraction typically encapsulate causal processes that underlie a 

larger class of devices and describe physical principles. They explain how certain properties of 

substances and parameters of components undergo transformation or how they are maintained 

in a particular state without referring to any specific structural information. Examples of such 

GPPs are the process of heat flow and the process of electric flow which are also abstract 

descriptions of behaviors, often associated with a corresponding physical principle. That is, the 

Heat-Flow GPP is essentially the behavior that the zeroth law of thermodynamics epitomizes; 

the Electric-Flow GPP is the behavior that Ohm's law epitomizes. The SBF model of the 

Heat-Flow GPP shown in Figure 3.14 is also a representation of the physical principle of the 

zeroth law of thermodynamics. Note that, in general, physical processes may have more than 

one causal transition in their descriptions. This representation of the Heat-Flow GPP specifies 

that the transformation of the temperature of some substance tsubx is mutually dependent on 

the transformation of the temperature of some other substance 1sub2 that is in thermal contact 
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with Isubi. The direction of the transformation in one substance is opposite to that in the other 

as indicated by the relations on substance temperatures annotating the transitions. Note also 

that unlike the lower-level GPP of heat exchange, the Heat-Flow GPP does not refer to the 

flow of the substances Isubi and ?su&2> nor does it refer to the change of locations, because the 

Heat-Flow GPP is a higher-level abstraction. 

Physical principles such as the zeroth law of thermodynamics and Ohm's law are abstract and 

cryptic descriptions of behaviors that a large class of devices exhibit and obey. For example, the 

behavior of a cooling device includes a specialization of the zeroth law of thermodynamics and 

the behavior of a simple electric circuit obeys Ohm's law. Physical principles typically capture 

relations and dependencies between properties of substances and parameters of components 

without referring to any specific structural information. For example, Ohm's law relates the 

properties voltage, current, and resistance that certain classes of substances have and 

that may be delivered by some functions of components in the domain of electrical devices. 

3.5.2    Generic Teleological Mechanisms 

GTMs capture functional and strategic relationships between differences in functions of devices 

(i.e., a subset of output behaviors) and differences in their internal causal behaviors. A few 

examples of GTMs are cascading, feedback, feedforward, and device composition. GTMs are 

teleologicalin that they result in specific functions. For example, the cascading mechanism takes 

as input the desired function and the function (with a lesser range) of any single component 

available and suggests a behavioral pattern where the behaviors of several components of the 

lower-range functionality are replicated in a functional additive manner (that is, they are com- 

posed such that the overall function is a sum of the individual functions) and which results 

in the desired higher-range function. These mechanisms are generic in that they are device 

independent. The cascading mechanism, for example, can be instantiated in any specific device 

that satisfies its applicability conditions (that is, the change in a property value is additive with 

respect to the replication of a device that delivers a smaller change). 

Since GTMs do not refer to any specific physical structure, they are also represented using 

the behavior and function aspects of the SBF representations. The SBF representation of a 

GTM encapsulates two types of knowledge: knowledge about the patterned difference between 

functions of known designs and desired designs that the GTM can help to reduce, and knowledge 

about modifications to the internal causal behaviors of the known designs that are necessary to 

reduce this difference. For example, Figure 3.15 shows an SBF model of the cascading mechanism 

from IDEAL: Figure 3.15(a) illustrates the former type of knowledge for the cascading GTM and 

Figure 3.15(b) illustrates the latter type of knowledge for the GTM. The behavior modification 

that the cascading GTM suggests is to replicate end-to-end the internal causal behavior of the 

known design from the initial state of the desired function n times and form a goal to achieve 

the residual transformation, the behavior of which needs to be composed at the end state of 
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the replicated segment. The number of replications n is the integer dividend of the ratio of 

the desired functional transformation to the functional transformation achieved by the known 

design (i.e., n = [ desired functional transformation / candidate functional transformation J). 

Note that this representation captures only the serial cascading of causal behaviors in order to 

achieve larger transformations. 
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Figure 3.15: A Complete Description of the Cascading Mechanism in SBF Represen- 
tation 
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CHAPTER IV 

ANALOGUE MEMORY: MODEL-BASED INDEXING, 
ORGANIZATION, RETRIEVAL AND STORAGE 

The theory of MBA raises three sets of issues concering the analogue memory. The first set of 

issues concern the indexing and organization of analogues in memory. The indexing and organi- 

zation of analogues is important precisely because the successful retrieval of a right analogue is 

closely tied with the way analogues are indexed and organized in memory. The issues here are: 

How might the design analogues be indexed in memory? Whether they need to be indexed in 

one way or multiple ways? How might they be organized in memory? The overall task (such as 

design) for which a source analogue needs to be retrieved partly determines the nature of indices 

for the analogues in memory because the task really determines what is specified in the problem 

and in turn what is available to match with the indices. Similarly, the types of information 

specified in problems determine whether the analogues need to be indexed in multiple ways. 

The second set of issues relate to the retrieval of analogues from memory. Given a target 

problem and a set of source analogues, what are the processes of retrieval? What kind of 

features in the target problem might determine the retrieval of analogues? What are the criteria 

for measuring similarity between a problem and a design analogue in memory? Since retrieval 

is the first step in model-based analogy, and an important one for the method of analogical 

reasoning, one of the issues is how can it be made efficient and effective? The retrieval of a 

"right" source analogue for a given problem is important for the success in subsequent steps in 

model-based analogy. 
The third set of issues relate to storage of analogues in memory for later use. It is important 

to assimilate a new analogue with the other analogues in memory appropriately. The issues here 

are: How can the memory be dynamically re-organized when new design analogues are stored? 

Where do the indices for a new design come from? How might they be acquired automatically? 

This chapter is organized in 3 parts: first, we describe the model-based indexing and multiple 

organizations of design analogues; then we describe the retrieval task and its subtasks; and finally, 

we describe how new design analogues are stored and how models help in learning indices for 

the analogues. Our descriptions will be at 3 levels of abstraction: english narrative, algorithms, 

and specific examples (in particular, sulfuric acid cooler and nitric acid cooler designs). 
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4.1    Indexing and Organization of Design Analogue 
Memory 

In model-based analogy, the issues of indexing and organization of analogues in memory are 

important because the subtask of analogue retrieval is dependent on the particular indexing and 

organization. Given a new problem, the task of retrieving a similar analogue is to bring out the 

"best" matching analogue from memory. Since tasks can be sent as probes into memory, indexing 

schemes and methods of index learning depend on the functional requirements of the tasks if not 

specific to a task. Since in the context of design problem solving, a problem involves specifying 

functions desired of the new device and sometimes the structural constraints that the new 

design should satisfy, the stored design analogues in IDEAL are indexed both by their functions 

and structure. Thus it uses multiple types of indices for its design analogues. Furthermore, 

the indexing scheme thus reflects the reasoning tasks addressed in our computational process. 

IDEAL'S functional indexing scheme is similar to that in KRITIK (Goel, 1992b), but the latter 

does not index designs structurally. Also, KRITIK organizes its designs only in a fiat memory, 

unlike IDEAL. 

4.1.1    Functional Indexing and Organization 

In order to enable successful, efficient and effective retrieval of analogues from memory, in IDEAL 

we organize them hierarchically along the specific types of indices. We chose the generalization- 

specialization relationship between the values of features in device functions as the principle of 

hierarchical organization because that supports the need of retrieving a source analogue that 

may match partially but as close as possible with the given functional specification in the target 

problem. Thus the design analogues in IDEAL are organized in generalization-specialization hi- 

erarchies. A generalization-specialization hierarchy of design analogues contains designs whose 

functional specifications are generalized at the higher levels and designs whose functional specifi- 

cations are specialized at the lower levels in the hierarchy. As described in Chapter 3, a function 

in model-based analogy is expressed in terms of substance Schemas. Since the substance schema 

specifies properties of substances, IDEAL uses them as dimensions along which design analogues 

are generalized/specialized. For example, designs of acid coolers are organized along the dimen- 

sion of property acidity, and discriminated on the corresponding values low vs high as shown in 

Figure 4.I.1 The HNO3 cooler case in Figure 4.1 is a design of low-acidity nitric acid cooler 

and hence stored under the category that refers to low-acidity coolers. 

The functions at the higher-level nodes are more general than those at the lower-level nodes 

in the sense that the values of the property (that is the dimension of generalization in this 

hierarchy) in the functions of design analogues associated with a node at a higher level subsume 

the values of the property in the functions of design analogues associated with a node at a lower 

1For instance, the property acidity is important because the choice of pipe in the design depends on whether 
it has to allow a low-acidity substance or a high-acidity substance. 
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level. For instance, the higher-level node Acid-Coolers in Figure 4.1 has both classes of designs, 

low-acidity coolers and high-acidity coolers, associated with it. In contrast, the lower-level node 

Low-Acidity-Coolers has only the designs of acid coolers with low acidity. Formally, the set 

of analogues associated with a node in the hierarchy is a superset (D) of those associated with 

any of its immediate child nodes. 

Design Case Memory 

Dimension of 
generalization: Acidity Momentum    •    •    • 

Angular-Momentum 
Controllers 

Acidity:low 

Figure 4.1: A snapshot of a functionally organized analogue memory 

4.1.2    Organization Based on Primitive Functions 

Figure 4.2 illustrates a snapshot of IDEAL'S memory organized around primitive functions of 

devices at the top level of the hierarchy and along the properties of substances in device functions 

at the lower levels. This type of organization is useful in tasks where the probes specify the 

primitive functions of a desired design and not the functional specifications. That is, for instance, 

a design adaptation subtask of the process of MBA spawned by reasoning from the behavior of 

a source design could specify the primitive functions of a desired component (or in general, a 

desired substructure) to replace an old one in the source design. Suppose that the memory is 

organized around primitive functions (as illustrated in Figure 4.2). Since the desired functions in 

the input to the overall design task are specified in terms of input and output states (substance 

or component state Schemas), retrieval from this type of memory incurs an additional inferential 

burden necessary to infer what may be the primitive functions that compose into the given 

function. Therefore, to support the retrieval tasks triggered from the different stages of MBA, 

it is desirable to organize analogues both by the primitive functions and by the device functions 

(i.e., substance properties in the input and output states of the device functions). 
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Design Case Memory 

Primitive Function 

(ALLOW acid) 

Dimension of 
generalization Acidity State 

Acid-Coolers 

(CREATE light) 

State-Spec-Root-Node9 Light-Bulb-Circuits 

Acidity:low Acidity:high   State:liquich 

Low-Acidity-Coolers Acidity-High-Node8 State-Liquid-NodelO 

HNO3 Cooler Case 

Figure 4.2: A Snapshot of A Memory Organized by Primitive Functions 
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4.1.3    Structural Indexing and Organization 

The design problems in device design generally specify the functions desired of the new devices. 

But some class of problems may also specify structural constraints besides functional ones. The 

output of the design task for a problem in that class is the device structure that delivers the 

desired function and also satisfices the given structural constraints. Since the mapping between 

desired functions and the device structures (that can deliver the desired functions) is many-to- 

many in some domains, neither the function not the structural constraints alone are sufficient 

to retrieve a small set of source design analogues. Therefore in order to constrain the retrieval 

subtask and solve such class of design tasks by analogy, it is useful to index past designs by the 

structure of the devices in addition to their functions. 

In device design, the structural constraints are specified in terms of the structural relations 

desired in the design, types of components (or substructures) to be used, and values or ranges 

desired for component parameters. Therefore in MBA we use the structural relations between 

different components in a design structure and the parameters of components in the design 

as dimensions of generalization-specialization for organizing design analogues structurally. For 

example, Figure 4.3 illustrates how acid coolers are organized in IDEAL along the dimensions 

of structural relations INCLUDES and CONTAINS at one level, and further discriminated between 

them based on values of component parameters. The HN03 cooler case in Figure 4.3(a) is 

stored under the structural relation (INCLUDES Heat-Exchange-Chamber JH"iV"03-pipe-2) and 

along the parameter capacity of the pipe. 

(INCLUDES 
Heat-Exchange-Chamber 
nine! 

Component) 

pipe 

Dimension ot 
generalization: 
capacity 

capacity:R1 

B1 -capacity 

HNQj Cooler Case 

(«)   Bafoar«   fcfa«  n«w daaign   ±m   ptorad 

Design Case Memory 

Set of Components 

(Heat-Exchange-Chamber 
nine numcJ  

(INCLUDES 
Heat-Exchange-Chamber 
°io«> 

(CONTAINS 
pipe    H gO J, 

Components 

pipe 

Dimension of 
generalization: 
capacity 

capacity:R1 

R1 -capacity 

HNQ, Cooler Case H JS04 Cooler Case 

(to)   A£t:*ar   t:b*   ttmw A«ai.gzi   ±m   itorwj 
und«   tto»   lunnl   isuUaa» 

Figure 4.3: Snapshots of IDEAL'S structurally organized analogue memory 
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4.2    Retrieval of Design Analogues 

The first step in solving problems by model-based analogy is the retrieval of a best matching 

design analogue from the memory given the target design problem. This subtask is important 

in the computational process because the output of the retrieval partly determines whether a 

solution to the given problem can be generated or not. The desirable properties of a process 

for the analogue retrieval are that it is successful, efficient and effective. Some of the important 

issues in the retrieval of analogue are: how to index the source analogues in memory in order to 

enable quick and effective retrieval; what features in the target problem may be used to probe 

the memory of analogues; whether and how any additional features may be derived from what 

is specified in the target problem so that it facilitates retrieval of "a" source analogue (i.e., 

elaboration of the target problem); and when there are multiple partial matches, how they can 

be ordered. 
The information available for the retrieval subtask to probe the memory is determined by 

the overall task being solved by the computational process and the indexing scheme used. If, 

for a given problem, no analogues can be retrieved then it results in an immediate failure of the 

process of MBA to solve the problem. The reasons may be that there is no design analogue in 

the memory that is relevant for the given problem by any means, or that the problem features 

and the indices are not of the same type or same level. In such situations, it is desirable to 

have a process that elaborates the given problem and transforms the features or derives other 

features because the features resulting from such a process may give rise to retrieving a source 

analogue. Under the condition that the retrieval of "a" source analogue, even if it becomes hard 

to adapt, is more desirable than a failure at retrieval, then a process of problem elaboration is 

useful. 
When there are multiple analogues that match with the target problem, then there is a need 

for ordering them by some criteria so that the best analogue can be selected for adaptation. 

In MBA, we use a qualitative estimate of the ease of adaptation of the retrieved analogues for 

satisfying the requirements of the new design as the ordering criterion (Kolodner, 1989). The 

best matching source analogue is first selected for transfer k modification, and when using that 

analogue does not lead to a satisficing design for the target problem, then the next best matching 

analogue is selected, and so on. 
The retrieval subtask thus has three further subtasks in our computational process of MBA: 

elaboration of design problems, selection of candidate design analogues, and ordering of can- 

didate design analogues. We will illustrate these three subtasks in the following three sections 

with an example from IDEAL. Consider, for instance, the task of designing a device that deliv- 

ers the function of cooling a high-acidity sulfuric acid. IDEAL accepts representations of target 

problems in the SBF language. The specification of the desired function in the SBF language is 

shown in Figure 4.4. 
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H2S04 
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temperature:T-| 
flow: R 
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H2SO4 

loc: p4 

temperature:T2 
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(T2< Ti) 

Figure 4.4: Function of Cooling High-Acidity Sulfuric Acid 

4.2.1 Elaboration of Design Problems 

The elaboration task takes as input a possibly incompletely specified problem. It has the goal of 

giving as output a more complete specification of the problem so that the given problem can be 

compared with the problems of past analogues. For instance, in design, it takes an incomplete 

functional specification and gives as output a functional specification with more properties and 

values specified. 
Since the functions of devices may be specified as substance Schemas, elaboration in design, 

for instance, could involve specifying more properties of the substances. General knowledge of 

substances in the domain (e.g., an is-a hierarchy of substances as described in Chapter 3) helps 

in deriving/implying unspecified properties for a substance. For example, even if the functional 

specification of sulfuric acid cooler (Figure 4.4) did not mention the property acidity, IDEAL 

could have elaborated the specification to include the property inferring the same from the 

knowledge that sulfuric acid is an acid. However, the values for the properties that it could 

infer would only be the default values (or no values) specified in the general knowledge of acids. 

Nevertheless, identifying the unspecified properties in this way helps in retrieving analogues 

that are stored under those properties. For instance, given the function shown in Figure 4.4 

without any specification of acidity, IDEAL'S elaboration process enables it to retrieve analogues 

organized in memory along the dimension of acidity. 

4.2.2 Selection of Candidate Design Analogues 

The selection task takes as input the specification of a target problem and gives as output a set 

of past design analogues whose problem specifications match at least partially with the target 

problem. Since a perfect match for a given problem may not always be available, we allow partial 

matches to be retrieved in the process of MBA. The selection of a candidate analogue is based on 
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its usefulness for solving the given problem. The analogues are selected such that the differences 

in the functions of the target problem and the selected analogues are in the known type of 

functional differences. For instance, in the SBF representation of device functions, two functions 

can differ only in their input states, or only in their output states, or in both. Furthermore, 

two substance states (input or output) from two different functions can differ in these ways: 

substances can differ (i.e., substance difference), the values of a common substance-property can 

differ (i.e., substance-property-range difference), the variations or fluctuations in the values of a 

common substance-property can differ (i.e., substance-property-value-fluctuation difference), a 

substance property may be specified only in one of the states (i.e., substance-property-unspecified 

difference and substance-property-additionally-specified difference). Similarly, two component 

states can differ in their respective properties and corresponding values. 

In design task, the functional specification of the desired design is matched with the func- 

tions of the stored design analogues in order to retrieve any matching analogues. That is, the 

properties in the component-substance schemas in the input and output states of the functional 

specification of the desired design are matched with the properties in the component-substance 

schemas in the corresponding input and output states of functions of the design analogues stored 

in memory. If the functions of the desired design and a stored design analogue match at least 

partially, then the stored design analogue is judged as potentially useful for realizing the function 

of the desired design and is selected as a candidate analogue. Figure 4.5 shows the algorithm that 

IDE AL uses for selecting matching analogues. It searches through the functionally organized 

memory of analogues along the dimensions of generalization that correspond to the properties 

specified in the component-substance schemas in the desired function. Along each dimension of 

generalization, it goes as far specific as possible comparing the value ofthat property specified in 

either the input state or the output state of the desired function. It collects the design analogues 

associated with the most specific value it could reach along each dimension. 

The matching of the functional specification of the high-acidity Sulfuric Acid Cooler (SAC; 

Figure 4.4) with the functions of the designs in the memory of analogues (Figure 4.1) results in 

the selection of the design for the low-acidity NAC (Figure 4.6). The design of low-acidity NAC 

is retrieved because of a partial match between its function and the function of high-acidity SAC 

along the dimension of acidity. Consider a hypothetical situation where analogue memory had 

both low-acidity NAC and a neutral-acidity motor-oil cooler (i.e., a design for cooling motor oil 

which has neutral acidity). In such a situation, IDEAL would have selected both these designs 

because both of them match the desired function partially on the property, acidity. 

4.2.3    Ordering of Candidate Design Analogues 

Since in the selection of candidate design analogues partial matches with the target problem are 

also selected, often there can be more than one candidate design analogue. And, when multiple 

candidate design analogues are selected, there is a need for ordering them so that the "best" 
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Input: • Desired function, Fdesired- 
Output: • A set of design analogues Setcases whose functions partially match Fdesired- 
Assumptions:   • root-list contains the root nodes of all the hierarchies 

along with the dimensions of generalizations, and 
dimension-list contains all the dimensions of generalization. 

Procedure: 
SELECTCfrfe.irei); 

begin 
Setcases = {}; 
selected-nodes = {}; 
tobe-seen-nodes = {nodei \ nodei 6 root-listh 

function associated with nodei and Fdesired have at least one common 
property specified. } 

while not-empty(tobe-seen-nodes) do 
begin 
child-nodes = MATCHING-CHILDREN (Fdesired, first(tobe-seen-nodes)); 
if empty(child-nodes) 

then selected-nodes = first(tobe-seen-nodes) U selected-nodes; 
else tobe-seen-nodes = tobe-seen-nodes U child-nodes; 

tobe-seen-nodes = rest (tobe-seen-nodes); 
end; 

Setcases = {caset \ nodei G selected-nodesA caset is associated with nodei }; 
return (Setcases); 

end. 
MATCHING-CHILDREN(Fd„ired, node-in-hierarchy); 

begin 
child-nodes = {}; 
foreach (dimension £ dimension-list) do 

begin 
child = DISCRIMINATE (dimension, Fdesired, 

get-children(dimension, node-in-hierarchy)); 
if not-empty (associated-cases(child)) 

then child-nodes = {child} U child-nodes; 
end; 

return (child-nodes); 
end. 

DISCRIMINATE(property, Fdesired, children); 
begin 

foreach (child £ children) do 
begin 

if (value-of(property, i/p-state(F«je„>e<0) = value-of(property, i/p-state(F(child)))) 
V (value-of(property, o/p-st&te(Fdesired)) = value-of(property, o/p-state(child))) 
then return(child); 

end; 
return (nil); /* as failure */ 

»end. 
Figure 4.5: The Selection Algorithm 
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matching analogue based on whatever criteria used can be chosen as the source analogue for 

further processing. The ordering task thus takes as input a set of candidate analogues and 

gives as output an ordered set of analogues based on some measure of their ease of transfer and 

modification (i.e., adaptation). In MBA, the ordering of analogues is based on the ordering of 

differences between the target problem and the problems of the candidate design analogues. 

Computing Differences between the Source and Target Problems: Computing the dif- 

ferences between a source design problem and the target problem requires that the two problem 

specifications be in a uniform representation and at the same level of abstraction. Otherwise, 

the comparison between the problems becomes hard or even impossible. In MBA, we use the 

SBF representations to specify the design problems. Since the SBF language provides primi- 

tives for representing a variety of design problems, and it is a well-defined and uniform language 

across different problems, identifying differences between problems in MBA is not computation- 

ally complex. The SBF language provides a taxonomy of functional differences between design 

analogues. The measures used in model-based analogy are based on a qualitative, heuristic 

estimate of how easy it might be to reduce the difference. 
A Typology of Functional Differences: The SBF language provides a vocabulary for ex- 

pressing certain types of functional differences between design analogues. Since the device 

functions are expressed in certain ways in the SBF language, there are a small number of 

dimensions along which two functions can differ; the differences can be many along each di- 

mension. The typology of functional differences includes the categories of substance difference, 

substance-property-value difference, substance-location difference, component difference, and 

component-parameter difference (Goel, 1989). These differences are along the dimensions of 

all possible constituents of the representation of functions in SBF language. Modeling devices 

with the control mechanisms such as feedback and feedforward and the task of designing such 

devices in this work has brought out another important type of functional difference that we 

call substance-property-value-fluctuation difference.2 That is, the difference between a desired 

function and the function in a retrieved design is in the range of fluctuation of a property value 

for the input or output substance. For instance, the difference between the function of a device 

without feedback mechanism and that of a device with feedback is in the fluctuation in a value 

of the output substance property such as large vs. small fluctuation. 
There can be several different types of matches possible upon the retrieval of a set of candidate 

analogues: (1) the set contains an exact match in which case the target problem is solved; (2) 

the set is empty in which case the target problem cannot be solved by analogy; (3) the set is a 

singleton in which case there is no need for ordering (but the differences between the source and 

target problems are computed for use in the task of transfer and modification); and (4) the set 

contains multiple partial matches in which case the ordering is performed. 

In the current example (i.e., retrieving based on the functional specification shown in Fig- 

2Thus, this list is not intended as an exhaustive or complete set of functional difference types for the domain 

of physical devices. 
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ure 4.4), the situation is single partial match because the stored design of Nitric Acid Cooler is 

the only design analogue that matches partially with the desired function of high-acidity sul- 

furic acid cooler. But, for the purpose of illustrating how IDE AL orders analogues, consider a 

different situation where two low-acidity cooler designs, a low-acidity NAC and a low-acidity 

Sulfuric Acid cooler, were selected. 

IDE AL adopts its metrics of ordering from KRITIK. The measure of how "large" is a functional 

difference is dependent on the following two aspects: matching of behavioral states and matching 

of behavioral state features. IDEAL'S heuristic estimate for ordering is based on how many of 

the input and output behavioral states match, and which state features and how many of them 

match in the target functional specification and the function of the candidate design analogue. 

In the situation where both a low-acidity NAC and a low-acidity Sulfuric Acid cooler were 

selected, IDEAL would order the latter as a better match than the former because the Sulfuric 

Acid cooler matches with the desired function on the substance also. 

Although the above description of the selection and ordering tasks focused on probing the 

memory of analogues with a desired functional specification, those methods for matching on 

structural constraints of the given problem are very similar. Since the structural organization of 

analogues in memory is also similarly hierarchical, the same kind of search down the hierarchy 

as in Figure 4.5 works except that the matching now is on structural relations, components 

and substances, and their properties, as opposed to input and output states of a desired func- 

tion. Similarly, the ordering of analogues is based on structural differences as suggested by 

the SBF language, and the heuristic estimate of the degree of match is based on how many of 

the structural relations, and component-parameters and substance-properties in the structural 

constraints of the target design problem match with those of the candidate design analogue. 

4.3    Storage of the Target Design Analogues 

When a new problem is solved and the target design solution is generated (or is acquired from 

an oracle in case of problem-solving failure), it needs to be stored in analogue memory for future 

use. Thus the final task in solving problems by analogy is to store the target analogues. For 

instance, IDEAL stores the new designs it has generated in its analogue memory for later use. 

In order for a new design analogue to be useful in later problem solving, it needs to be stored in 

"right" place. That is, the new design needs to be appropriately indexed by its functions and 

structural constraints because device-design problems specify both the desired functions and 

the structural constraints that the desired designs should satisfy. Since the analogue memory 

may not have all the indices predetermined, storing a new analogue requires the indices to be 

determined for the analogue. If the analogue memory is hierarchically organized, then learning 

of new indices and even the addition of the new analogue causes the need for re-organizing the 

memory; it is necessary in order for the future retrievals to be efficient and effective. Since in 

the representation of analogues in MBA the design analogue points to the SBF model of the 
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design, the newly learned case-specific SBF model of the device is also stored in the memory. 

(Adaptation of design analogues and learning of SBF models will be discussed in later chapters.) 

4.3.1    Learning of Indices to Target Design Analogues 

Generalization-Specialization hierarchies provide a very general model for organizing the ana- 

logue memory. Since analogues can be discriminated along multiple dimensions, the analogue 

memory in general may contain multiple generalization-specialization hierarchies. In order to 

be able to retrieve an analogue when a new problem is specified, the vocabulary used for index- 

ing the analogues has to match the dimensions of generalization/specialization. In addition, the 

level of generalization at which an analogue is stored also determines whether it will be retrieved 

when a new problem is given. Storing an analogue in such an analogue memory thus implies two 

distinct issues in index learning: learning the indexing vocabulary and learning the right level of 

generalization. Deciding on the indexing vocabulary generally requires some notion of what is 

important about the new analogue and the task for which it is likely to be reused. The level 

of generalization depends in part on the analogues already stored in memory and the inductive 

biases that can be generated at storage time. 
In model-based analogy, we explored the hypothesis that the SBF model of a design, together 

with a specification of the task for which the design analogue may be reused, provides the 

vocabulary for indexing the design analogue in memory. Furthermore, we explored how the 

model-based method, together with similarity-based learning (using earlier design analogues in 

memory) helps to determine the level of index generalization. 

4.3.1.1    Functional Indices 

Recall that the design analogues in IDEAL are indexed by their functions and are organized 

in generalization-specialization hierarchies along the dimensions of properties of substances. In 

order to illustrate IDEAL'S learning of indices, let us suppose that its memory has a snapshot 

as shown in Figure 4.9(a). 
Now consider the task of identifying indices for the design of high-acidity SAC (Figure 4.7(a)), 

whose structure, function, and behavior are shown in Figures 4.7(b), 4.7(c), and 4.7(d) respec- 

tively, before storing it in memory. This design may have been generated by adapting the 

similar design analogue, for instance the design of low-acidity NAC, currently available in mem- 

ory (Goel, 1991a) or it may have been given directly by an oracle. Although the analogue 

memory presently has designs of acid coolers organized only along the dimension of property 

acidity, the new design analogue may better be indexed along other dimensions also so that it 

is more useful in future design episodes. In general, there are two different issues concerning 

the selection of functional indices for the new design analogue. First, if a new design is stored 

only along the substance properties specified in its function, the retriever would not be able to 

make use of knowledge of other substance properties relevant to the design. Second, if the new 
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design is indexed by all the properties of the substance in its functional specification, then the 

analogue retriever may retrieve a design based on a match with an unimportant property, which 

can make adaptation hard or even impossible. Hence, the issue becomes how to determine the 

substance properties that are relevant to the functioning of the design. Therefore, the important 

issue is how to learn new indexing vocabulary.3 

4.3.1.2    Model-Based Learning of Functional Indices 

In MBA, SBF models provide the knowledge to constrain these tasks of index learning. The 

process of MBA capitalizes on the knowledge of the causal behavior in the SBF model of the 

new analogue. In particular, it uses the behavioral requirements on the substance expressed 

under UNDER-CONDITION-SUBSTANCE to identify the substance properties relevant to the 

functioning of the design. These behavioral requirements of a substance specify that in order for 

the transition to take place the properties of the specified substance should satisfy certain con- 

ditions and hence are important to the design. Thus they help to learn new indices appropriate 

for the new design. 
IDEAL'S algorithm for selecting useful indices to a new analogue is shown in Figure 4.8. 

Given a new design analogue and the type of indexing (i.e., functions), this method traverses 

through the causal behaviors in the SBF model of the design to identify substance properties 

on which the working of the design is predicated. Since the SBF model can specify multiple 

behaviors, the outer loop in the algorithm analyzes each causal behavior in the model. The 

second loop is for analyzing the transitions of a causal behavior. If a substance property is a 

part of the causal context of a transition,4 then the algorithm adds it to the set of indexing 

features if it is a property of the containing substance in the functional specification; and, it 

adds it to the set of alternative indexing features if it is also in the parameter-relations on the 

transition. Since the causal behaviors in IDEAL'S SBF model are specified at different levels of 

detail, the algorithm searches the space of behaviors in a breadth-first manner. If a higher level 

behavior does not lead to the identification of any useful substance properties, then the more 

detailed behavior, indicated by by-behavior, is added to the list of plausible sources of indexing 

features. 
For example, given the functional specification of high-acidity SAC (Figure 4.7(c)) and its 

causal behavior (Figure 4.7(d)), the above method results in acidity and state as the indexing 

features for storing this analogue in memory. This is because the annotation on transitions 

specifies that the transition can occur only under certain conditions on properties state and 

acidity of the substance flowing through H2S04-pipe-2. The initial analogue memory (Fig- 

ure 4.9(a)) did not have the property state as part of its indexing vocabulary. The SBF model 

3By new indexing vocabulary, we do not mean that the vocabulary is new to IDEAL but rather it is new for 
the purpose of indexing. 

4get-under-conditions in the algorithm gets the annotations such as UNDER-CONDITION-SUBSTANCE and 
UNDER-CONDITION-COMPONENT from the given transition corresponding to the type of indexing used. 
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Input: 
• Design analogue, C, that needs to be stored. 
• Functional specification of the design, F. 
• Type of indexing, T, that is, functional. 
• One causal behavior (subset of model), M, corresponding to F. 

Output: Exact vocabulary for indexing C, i.e., the set of useful features from F. 

Procedure : 

initialize 
containing-substance-props P = get-containing-substance-properties(F); 
indices = alternative-indices = plausible-sources-of-indices = {}; 

while true do 
1. foreach causal behavior B € M do 

• foreach transition t £ B do 

- conditions-on-features = get-under-conditions(T, t); 

- indices = indices U {f | feature f G conditions-on-features A f € P}; 

- alternative-indices = alternative-indices U {f | feature f € conditions-on-features A f € P 
A parameter-relations(t)}; 

- if indices = P then exit(indices); 
- if conditions-on-features = {} then plausible-sources-of-indices = 

plausible-sources-of-indices U get-detailed-behavior(t); 

end 

end 
2. if plausible-sources-of-indices = {} then 

• if indices ^ {} then exit(indices); 

• if alternative-indices ^ {} then exit(alternative-indices); 

• indices = {p | p € P A input-state-value(p) ^ output-state-value(p)}; 
if indices ^ {} then exit(indices); 

• indices = {p | p € get-contained-substance-properties(F) A 
input-state-value(p) ^ output-state-value(p)}; 
if indices ^ {} then exit(indices); 

• exit(P); 

3. M = plausible-sources-of-indices; 
4. plausible-sources-of-indices = {}; 

end 
Figure 4.8: A model-based method to obtain functional indices for design analogues 
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however suggests that state is a useful index to the new design analogue, and so IDEAL indexes 

the new analogue by state also. A snapshot of the analogue memory after storing this design 

is shown in Figure 4.9(b). 

Dimension of 
generalization:   Acidity 

(a)   Bafora tha naw dasign is atorad 

Design Case Memory 

Dimension of 
generalization:   Acidity 

Dimension of 
generalization:    State 

Acidity-Spec-Root-Node7 
Acidity: qualitative-value 

State-Spec-Root-Node9 
State:liquid 

Low-Acidity-Coolers 
Acidity:low 

Acidity-High-Node8 
Acidity:high  

HNOgCooler Case 

(b) Aftar tha naw daaign ia atorad 
undar tha laarnad indicaa 

Figure 4.9: Snapshots of IDEAL'S functionally organized analogue memory 

Once the indexing features are selected, IDEAL uses similarity-based learning to general- 

ize them. Under each property, IDEAL organizes the analogues in a binary tree discrimi- 

nated on values of the property in the analogues. It uses the differences in the values of a 

given property that constitute a type of functional difference between two designs to deter- 

mine whether the two designs belong to the same category or to different categories. For ex- 

ample, the design of high-acidity SAC is stored under the category of Acidity-High-Node8 

that is different from that of Low-Acidity-Coolers (Figure 4.9(b)) because their values of 

acidity differ. The level to which the indices are generalized depends on how similar are the 

corresponding values in the new and old analogues in memory. For instance, a more gen- 

eral category Acidity-Spec-Root-Node7 is created that covers both low and high values of 

acidity.5 Note that H2SOA Cooler Case is stored in multiple levels corresponding to the nodes 

Acidity-Spec-Root-Node7 & Acidity-High-Node8 under the property acidity and at one level 

corresponding to the node State-Spec-Root-Node9 under the property state. 

4.3.1.3    Structural Indices 

IDEAL uses the structural relations between different components in a design structure and the 

parameters of components in the design as dimensions for organizing design analogues struc- 
5The general value of acidity at this higher-level node comes from IDEAL'S knowledge of qualitative values 

and quantitative values. If the values are qualitative, it is determined by climbing up a known value hierarchy. 
And, if the values are quantitative, a new value range is created that spans from the lowest of the two child nodes 
in the discrimination tree to the highest of the two. 
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turally. That is because some class of design problems involve specifications of structural re- 

lations desired and values or ranges desired for parameters of components to be used in the 

designs. For example, as shown in Figure 4.3(a), it organizes acid coolers along the dimension 

of structural relation (INCLUDES Heat-Exchange-Chamber ^TiV03-pipe-2) at one level, and 

further discriminates between analogues based on values of component parameters. The HNO3 

cooler case that cools HNO3 from Ti to T2 is stored under the structural relation (INCLUDES 

Heat-Exchange-Chamber ITiV03-pipe-2) and along the parameter capacity of the pipe in 

Figure 4.3(a). 

4.3.1.4    Model-Based Learning of Structural Indices 

Now consider the task of identifying structural features as indices for the design of high-acidity 

SAC (Figure 4.7). This task is analogous to, but different from, that of learning functional 

indices. The same issues as we have seen in learning of functional indices arise in this task as 

well. Again, IDEAL capitalizes on the knowledge of the causal behavior in the SBF models 

in order to address these issues. It uses the behavioral and structural requirements on the 

structure expressed under UNDER-CONDITION-COMPONENT and UNDER-CONDITION- 

STRUCTURE respectively to identify the structural features relevant to the functioning of the 

design. 
IDEAL'S algorithm for selecting useful structural indices to a new analogue is shown in Fig- 

ure 4.10. Given a new design analogue and the type of indexing (i.e., structural features), 

this method traverses through the causal behaviors in the SBF model of the design to identify 

structural relations and component parameters on which the working of the design is predi- 

cated. Note that the method in Figure 4.10 is very similar to that in Figure 4.8—the major 

difference is in the types of context captured in the transitions of SBF models that come to 

bear upon the task; context stored in UNDER-CONDITION-SUBSTANCE is used for learning 

functional indices while the contexts in UNDER-CONDITION-COMPONENT and UNDER- 

CONDITION-STRUCTURE are used for learning structural indices. 

For example, given the structure of high-acidity SAC (Figure 4.7(b)) and its causal 

behavior (Figure 4.7(d)), this method results in the structural relations (INCLUDES 

Heat-Exchange-Chamber F25
,04-pipe-2) and (CONTAINS H2S04-ipiTpe-2 H2SO4), 

and the component parameters capacity of H2S04-pipe-2 and volume of Heat-Exchange- 

Chamber as structural indices for storing the design of high-acidity SAC. This is because the 

annotation on transition23 specifies that the transition can occur only under certain struc- 

tural relations between components and certain conditions on parameters of components. Note 

that the structural organization of analogue memory after storing this design (Figure 4.3(b)) 

has new indices, namely, the structural relation (CONTAINS H2S04-pipe-2 H2SOA) and the 

parameter volume of Heat-Exchange-Chamber. 
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Input: 
• Design analogue, C, that needs to be stored. 
• Structural description of the design, S. 
• Type of indexing, T, that is, structural. 
• All causal behaviors (model), M, including one for the function. 

Output: Exact vocabulary for indexing C, the set of useful features from S. 

Procedure : 

initialize 
component-parameters P = get-component-parameters(S); 
component-structural-relations R = get-component-structural-relations(S); 
indices-strl-relations = indices-comp-params = {}; 
plausible-sources-of-indices = {}; 

while true do 
1. foreach causal behavior B 6 M do 

• foreach transition t 6 B do 

- indices-strl-relations = indices-strl-relations 
U get-under-conditions(T, t); 

- indices-comp-params = indices-comp-params U {(p, c) | p is a parameter of component 

c A 
p G (parameter-relations(t) U get-under-conditions(T, t))}; 

- if ((indices-strl-relations = R) A (indices-comp-params = P)) then 
exit(indices-strl-relations, indices-comp-params); 

- if ((indices-strl-relations = {}) A (indices-comp-params = {})) then 
plausible-sources-of-indices = 
plausible-sources-of-indices U get-detailed-behavior(t); 

end 

end 
2. if plausible-sources-of-indices = {} then 

• if ((indices-strl-relations ^ {}) A (indices-comp-params ^ {})) then 
exit(indices-strl-relations, indices-comp-params); 

• if indices-strl-relations = {} then indices-strl-relations = R; 

• if indices-comp-params = {} then indices-comp-params = P; 

• exit(indices-strl-relations, indices-comp-params); 

3. M = plausible-sources-of-indices; 
4. plausible-sources-of-indices = {}; 

end 

Figure 4.10: A model-based method to obtain structural indices for design analogues 
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CHAPTER V 

NON-LOCAL MODIFICATIONS AND CROSS-DOMAIN 
TRANSFER: USE OF GTMS 

In the previous chapter, we described the memory issues in the MBA process such as indexing and 

organization of analogues, retrieval of analogues, index learning, and storage. In this chapter, 

we discuss the issues of non-local modifications and cross-domain transfer that arise in the 

transfer and modification subtask of the MBA process. This subtask is to transfer the solution 

in the retrieved source analogue to the target problem and modify the solution to fit the target 

problem. Retrieval of a source analogue can lead to one of several conditions: no match, exact 

match, and partial match. If no analogue is retrieved for the target problem, the MBA process 

fails to solve the problem. If the match between the target problem and the retrieved source 

analogue were exact, then the transfer of the solution from the source analogue to the target 

problem is trivial because no aspect of the solution needs to be modified. On the other hand, 

adaptation (i.e., transfer and modification) becomes necessary in the MBA process when the 

source analogue is a partial match to the given problem. This task raises two issues. 

The first issue is to identify "what" in the source design analogue needs to be modified, 

given the differences in the source problem and the target problem. That is, the task is to set 

up adaptation goals. Differences between the source and the target problems are computed in 

the retrieval stage of the MBA process. In some domains such as the design of physical devices, 

since a single difference in the problems can map onto multiple differences in the solutions (i.e., 

a one-to-many relationship), the reasoning required to solve this task can be very complex. The 

reasoning can become very expensive especially when there are multiple differences in the source 

and target problems. It is even harder in analogical reasoning because the target solution is not 

available yet at this stage and the modifications to the source design solution need to be identi- 

fied. Therefore, the issue becomes how to control this reasoning. In MBA, our solution is to use 

the knowledge of device models to guide the process. The SBF representations of device models 

are especially useful because they explicitly capture how the functions of structural elements 

get composed into the overall device function and what aspects of the device are important 

for its functioning. That is, the knowledge of composition encapsulated in the device model 

helps in decomposing the device and thus controlling the inferences in identifying structural 

modifications for the given functional differences. 

The second issue is how to actually make the modification to the solution in the source design 

analogue given a difference in the problems. That is, the task is how to achieve adaptation goals. 
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To make the modification computationally tractable, it is desirable of a computational process 

to localize the modification to a small structural element when possible. In device design, once 

a structural element is localized for modification for a given functional difference, there can be 

multiple ways of realizing the modification to reduce the difference. The selection of a strategy 

depends on the specific functional difference, the structural elements available, and the very 

knowledge of making modifications (i.e., the strategic knowledge). A simple modification such 

as replacing a selected structural element with a new one is not always sufficient and may not 

even be possible due to the above dependency. Moreover, it may not always be possible to localize 

the functional difference to a modification to a structural element. Therefore, there is a need for 

multiple strategies for handling all these different types of modifications (for instance, local and 

non-local). In the MBA process, we use different strategies for achieving different adaptation 

goals. One of the central foci in this work is on making non-local modifications. Making non- 

local modifications can be hard because of the reasoning required to infer interactions between 

non-local elements and take care of their effects. Therefore, to control the reasoning, there 

is a need for design knowledge that encapsulates the relationships and dependencies between 

non-local modifications and their effects. In MBA, our solution to this issue is to use design 

patterns. In this chapter, we describe how GTMs are used for this purpose in the MBA process. 

But first, let us indicate how the MBA process integrates two different types of transfer. 

Multiple Types of Transfer: Depending on the level of abstraction of the retrieved knowledge 

(i.e., a source design analogue or a design pattern) and the source of strategic knowledge for 

adaptation, there are two different types of transfer mechanism possible in the MBA process: 

(1) modification of the retrieved design to achieve the functionality of the desired design and (2) 

transfer of design knowledge from a different design domain. The first type of transfer assumes 

that an adaptation strategy that makes the needed modification is available in the domain of 

the target problem. This type of transfer is possible when the retrieved knowledge is a specific 

design from the same domain as the target problem. We call the process involved in this type 

of transfer model-based adaptation. The second type of transfer is possible when the retrieved 

knowledge is an abstraction such as a design pattern learned in a different domain. 

In this chapter, we will describe the two types of transfer processes at two levels in a nested 

manner: at the outer level, we describe the process of model-based adaptation between specific 

designs (i.e., transfer process-1); and at the inner level, we describe the process of instantia- 

tion of a design pattern such as GTM (i.e., transfer process-2) to solve a subtask of transfer 

process-1. Thus transfer process-2 supports transfer process-1 in MBA. Figure 5.1 illustrates 

this relationship between the two types of transfer processes. The transfer of design patterns 

occurs for achieving the adaptation goals that arise in transferring between specific designs. This 

will become clearer as we walk through the process(es) in the following sections. 
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Figure 5.1: Illustration of The Relationship Between Two Types of Transfer Processes 
in IDEAL 

5.1    Spawning of Adaptation Goals 

When there are differences between the functions specified in the target problem and the source 

analogue, IDEAL sets up the task of spawning the adaptation goals—the specific goals for adapt- 

ing the partial design solution in the source analogue. (Computation of functional differences 

was described in the previous chapter in the context of ordering retrieved analogues.) This task 

involves localizing (if possible) the possible "faults" in the source design that when fixed can 

help to deliver a solution to the target problem, given the functional differences to be reduced. 

In other words, this task is to propose candidates for modification that can help to deliver the 

desired function. That is, this task of diagnosis takes as input the desired function, a source 

design analogue, and the functional differences between the source and the desired, and gives 

as output a set of possible faults. Each possible fault can be described as a triple consisting of 

either a substance or a component in the source design, a property of that substance or compo- 
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nent, and a relation between that property and some property in the output state of the desired 

function. In order to control the complexity of reasoning in this task, we use the knowledge of 

device models in the process for MBA. That is, in the model-based approach, the device model 

indexed off the source analogue guides the localization and identification of the faulty parts that 

need to be repaired.1 

The task of mapping a given set of functional differences to the candidate structural modi- 

fications is in general very hard, especially when there are multiple differences and the needed 

modifications are non-local, many, and interacting. In order to deal with the computational 

complexity of this task, IDEAL uses the knowledge of device models to constrain the process. 

That is, it uses the algorithm shown in Figure 5.2, which given the functional differences and 

the SBF model of the source design traces through the model and identifies specific structural 

elements (components or substances) that need to be modified.2 The functional differences to 

be reduced and a selected modification together constitute an adaptation goal. 

If the function desired of a design and the function delivered by the device in the source 

design analogue differ in more than one feature, then IDEAL heuristically ranks the differences 

in order of the difficulty of reducing them. For instance, in the domain of physical devices 

that can be modeled in terms of the flow of substances between components, reducing the 

difference substancel -*• substance2 is heuristically believed to be less difficult than reducing 

valuel —> value2 of a property. 
Let us now trace through the algorithm given in Figure 5.2 in order to understand IDEAL'S 

process of identifying possible faults in the source design. IDEAL first accesses the SBF model 

of the source design using the function of that design, that is, using the pointer by-behavior in 

the function schema. Then it traces the behavior backwards starting from the final state and 

identifies the substance properties or component parameters that are related to the property in 

the output state of the candidate design function. In the traversal, it finds the transitive closure 

of the property that needs to change, that is, all the properties that are either directly related 

to this property or that are related to this property through one or more properties.3 In order 

to avoid infinite traversals through the causal behaviors with loops, IDEAL keeps track of all 

the visited states and checks if it has already visited the current state; and if the answer is 'yes' 

then it stops. 
The loop in the BACKTRACE procedure essentially considers if the knowledge encapsulated 

^DEAL'S method for diagnosis basically comes from its predecessor system KRITIK2. The original algorithm 
has been reported in (Stroulia et al., 1992). In this work, we have adapted it to apply for diagnosing "non-linear" 
causal behaviors that involve causal loops, and forks and joins in a causal sequence. 

2In this and the subsequent algorithms, the notation slot-name(schema) denotes the value of a slot in a 
schema. For example, PropertyList(State0UT{F)) denotes the value of the slot PropertyList in the schema for 
StateiN which in itself is a slot of the schema for function F. All these notations are similar to those introduced 
in the formal descriptions of SBF models in Chapter 3. 

3Suppose that P is the property to change. If there is a relationship between P and another substance property 
or component parameter Q, then Q is added to the set. Similarly, if there is a relationship between Q and another 
property R, then R is also recursively added to the set. 
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Input:      • Desired function, Fnew. 
• Source design analogue, C. 
• Functional difference, FD = Fnew - F„id, where F0u is the function in C. 

Output:   • A set of possible faults (or candidate modifications), Sp0Ssibie-faults- 
Procedure: 
initialize 

F0id = functional-spec(C); 
SPo„ibie-fauits = {(E, Pt, Relation) where 

E G {Sub,Comp},Pi G PropertyList(E), and 
IP' E PropertyList(State0UT{Fnew))s.t.P'RelationPi holds good 
and P' is the property whose value needs to be changed, 
and Relation G {directly-proportional-to, inversely-proportional-to}}; 

Bold = function-by-behavior(ir0/(j);    visited-states = {}; 
begin 

Spossibie-faulu = BACKTRACE(behavior-final-state(.B0M), Spossibie-faults, visited-states); 
end. 

BACKTRACE (state, Sp0ssibie-faults, visited-states) 
current-state = state; 
LOOP: previous-state = state-previous-state (current-state); 

if previous-state = NIL V current-state G visited-states, then exit LOOP; 
case : 
(1) if there is a qualitative equation in state-previous-transition(current-state), 

and property Pi G SpossibU-faults such that P?uRelationP, , where 
Pi is a parameter of a component or a property of another substance E, 
and P°,d is a property in the current design, 

then Spossibie-fauits = SPo,sibie-fauits U {(E, Pi, Relation)} 

where P,nvZueR^ion-\PP.Zue), and 
PLvaiue is the value of Pi in the desired design; 

(2) if there is a functional abstraction of a component E (i.e., Comp in 
USING-FUNCTION) and a condition on the substance properties on which 
E operates (i.e., Condition SUB) in state-previous-transition(current-state), 
and property Pi G Spoa,iue-fauits such that P?ld = Pi, where 
Pi is a property of the substance in ConditionsuB, and 
Pfld is a property in the current design, 

then Spo,sibie-fauits = Spossitie-faults U {(E, Pi, directly-proportional-to)} 
where P,n*™luedeterminesthetypeofcomponentE, and 
pinvaiue is tne value of P' in the desired design; 

(3) if there is a pointer to a new behavior sequence B' such that the transition 
state-previous-transition(current-state) depends on a transition, tr, of B' 

then BACKTRACE (transition-next-state(<r),5p<J„i6/e-/au/t«, visited-states); 
end-case 
visited-states = visited-states U {current-state}; 
current-state = previous-state;    goto LOOP; 

end. 
Figure 5.2: IDEAL'S Method for Spawning Adaptation Goals 
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in the previous transition of the current state indicates whether any of the current possible faults 

are related to some substance property or component parameter; if the transition does indicate 

so, then the particular property is added to the set. There are three different types of knowledge 

in the transition that may lead to adding a new property to the set of possible faults: (1) if there 

is a qualitative equation in the transition that relates a property in the current set of possible 

faults to a substance property or a component parameter, then that property is added to the 

set (i.e., actually, the triple consisting of substance/component, its property/parameter that is 

related to one in the current set, and the relationship between the properties/parameters); (2) 

if a component contributes a function to the transition, and there is a condition on the property 

of a substance on which the component operates, and if that property is related in an equality 

relationship to a property in the current set of possible faults, then that property is added to 

the set (the relationship between the properties is treated as directly-proportional-to); and (3) if 

the transition is dependent on a transition in another internal behavior of the device, then that 

behavior is also traversed in the same way as the current one, starting from the next state of 

the transition in that behavior. 
At the end of the process described above, IDEAL finds all the possible candidates (substances 

and components) for modification. But, it is not necessary that for all types of functional differ- 

ences IDEAL would find the set that is a proper subset of the substances and components in the 

entire structure of the candidate design (that is, it may not be able to localize the modifications 

to a subset of the structural elements.). For instance, when the functional difference is of the 

type substance-property-value-fluctuation difference, IDEAL cannot localize the modification 

because such a difference is not localizable. We will present an example with such a functional 

difference later in this chapter. 
When there are multiple candidates for modification to reduce the functional differences, 

IDEAL tries them one-by-one until either it is able to successfully modify the candidate design 

to deliver the desired function or it exhausts all the possible modifications (and it fails). When 

none of the modifications to the current candidate design lead to a solution, then IDEAL tries 

to adapt a different source design, if there is one; otherwise, it fails. 

5.2    Multiple Adaptation Strategies 

Once a set of possible candidate modifications is identified for the candidate design, the task 

is to choose one and execute it in the candidate design. In general, different types of modifi- 

cations require different kinds of adaptation knowledge. Therefore, to facilitate selection of an 

appropriate strategy for a given modification, we need a typology of modifications. 

A Typology of Structure Modifications: The SBF language provides a vocabulary for ex- 

pressing certain types of modifications to the structure of a design. The typology of structure 

modifications (or, in other words, adaptations) includes the categories of substance substitu- 

tion (including substance generalization and specialization), component replacement, substance- 
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property modification, component-parameter modification, and component (or in general, device 

substructure) composition (i.e., component addition), and instantiation of a GTM (including 

structure replication or cascading, feedback control, and feedforward control mechanisms). In 

this work, the central focus is on the adaptation strategy that uses the knowledge of GTMs. 

Recall that in IDEAL the functional differences to be reduced and a selected modification 

together constitute an adaptation goal. The adaptation goals are used as probes into the memory 

to retrieve the applicable adaptation strategies (otherwise also known as repair strategies). The 

task of "repair" is to execute a candidate modification given a set of possible modifications 

and strategies. In the context of design, it involves modifying the candidate design so that the 

possible faults are eliminated. That is, it takes as input the desired function, the candidate design 

analogue, functional difference between the desired and the candidate, and a set of possible 

faults, and gives as output a modified model and the corresponding function.4 It uses two 

types of knowledge: knowledge of functional differences and knowledge of adaptation strategies. 

In model-based analogy, the application of an adaptation strategy includes both repair and 

evaluation of the candidate solution. (Hence, these strategies may also be referred to as repair 

& evaluation strategies.) In IDEAL, these two steps are interleaved because that helps in avoiding 

the modification of the device structure in case it would not achieve the desired function. 

Given a functional difference, there may be more than one potential structural modification 

possible, any of which when applied can result in reducing the difference. And, similarly, given a 

selected modification, there may be multiple strategies applicable to achieve that modification. 

When such multiple strategies are applicable, IDEAL chooses the simpler ones (i.e., those that 

make local modifications, for instance, the strategies of substance substitution and component 

replacement) prior to the more complex ones (i.e., those that make non-local modifications, 

for instance, the strategies corresponding to the instantiation of different GTMs). Furthermore, 

when a functional difference involves differences in multiple constituents (for instance, in multiple 

properties of the input substance or output substance), reducing the functional difference may 

require application of several strategies one after another. 

We will now briefly describe each of the above modifications and the corresponding strategies 

in IDEAL, and then later focus on the strategy of instantiation of GTMs. For details on the 

types of modifications, see (Goel, 1989). 
Substance Substitution: In this type of structure modification, a substance in the candidate 

design analogue is substituted by another substance. This is one of the simplest modifications in 

design, and it does not result in any changes to the structural topology of the candidate designs. 

Substance-Property Modification: This type of modification is applicable when the func- 

tional difference is of the type substance-property-value difference. That is, when the desired 

function differs from the function in a candidate design in the value of a substance property. 

Making this modification may require modifying a component that affects the substance prop- 

4The structure of the candidate design analogue is modified only after evaluating the modified behavior by 
simulation. 
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erty. Such component modification may be simply a component-parameter modification or 

component replacement, or it may even involve component addition or instantiation of cascad- 

ing GTM in the particular component. Thus even achieving substance-property modification 

may result in changes to the structural topology of a candidate design under the additional 

structural constraints on the available components. 
Component Replacement: In this type of modification, a component in the candidate design 

analogue with a specific function is replaced by another component that achieves the new, 

different, localized function as determined by the desired function. 

Component-Parameter Modification: This type of modification is applicable when the 

overall functional difference maps onto the difference between the value of a parameter of a 

component in the desired design and the corresponding value in the candidate design. For 

instance, a substance-property-value difference in the desired and candidate functions may map 

onto changing the parameter value of a component in the candidate design. 

Component Addition (or Device Composition): This type of modification involves insert- 

ing (adding or composing) a component whose function is less than or equal to the local desired 

function in a candidate design. That is, when the component is (serially) added, the functional 

difference between the desired and the candidate designs reduces. In general, this modification 

may be repetitively applied to solve an adaptation problem. Further, the revision of the SBF 

model of the candidate design involves inserting the behavior segment that corresponds to the 

function of the added component after the state resulting as output of the component in the 

candidate design. Suppose that the problem is to adapt a simple electric circuit that produces 

light of intensity 6 lumens taking electricity of voltage 1.5 volts as input for generating a design 

to produce light of 12 lumens. That adaptation may involve the addition of a 1.5-volt battery 

when the battery is selected for modification. The component addition is a special case of the 

more general strategy of device composition. While component addition involves adding only a 

primitive structural element at a time, the more general device composition involves adding a 

device that may be composed of multiple structural elements to the candidate design. 

Instantiation of GTMs: The instantiation of GTMs is applicable for achieving different 

types of structure modifications depending on the particular GTM instantiated and the par- 

ticular functional difference to be reduced. For instance, this is applicable for reducing both 

the substance-property-value difference and the substance-property-value-fluctuation difference. 

While cascading GTM is applicable for reducing substance-property-value difference when there 

are structural constraints on the available components, the feedback GTM and feedforward GTM 

are applicable for reducing substance-property-value-fluctuation differences. More specifically, 

the feedback GTM is applicable when the fluctuation in the output substance property value 

of a device needs to be reduced, and the feedforward GTM is applicable when the fluctuation 

in the input substance property value needs to be reduced. We will describe the strategy of 

instantiating GTMs in much detail in the next section. 
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5.3    Adaptation by Instantiation of GTMs 

GTMs can be used in the transfer process by their instantiation in the context of target problems 

and candidate designs. GTMs can also play other roles in analogical design: act as indices to 

different analogues and help in the retrieval process; and mediate the mapping between the source 

analogue and the target problem and help in the transfer process. In IDEAL'S computational 

process, GTMs are learned from design analogues (as explained in the Chapter 7), stored in 

an abstraction memory, and used for solving new design problems by instantiation, where the 

original designs and the new problems might be from different device domains. 

Source 
Analogue 

Target 
Design   ' 
Problem 

Retrieval of 
Source Analogue 

(case/model) 

Analogical Transfer 
(Spawning of Adaptation 
Goals) 

jcrx 
"Adaptation" 
Strategy-1 

GTM 

Target 
Analogue 

Storing of Target 
Analogue and 
SBF Model of GTM 

Adaptation 
Goal! 

Abstraction 
(SBF Model of GTM) 

Generalization over 
Source and Target 
Analogues 

••"'Adaptation' 
.   Strategy-n 

Retrieval of 
GTMs 

Instantiation 
of GTMs 

Composition 
of Behaviors 

Target 
Analogue 

Evaluation of 
the Solution 
(case/model) 

Figure 5.3: IDEAL'S Partial Process of Analogical Design via GTMs 

Figure 5.3 illustrates the IDEAL'S partial process of analogical design via GTMs. (Compared 

to the process of model-based analogy in Figure 2.1, this figure excludes the stages that use GPPs 

and perform problem reformulation.) When a target design problem is presented, IDEAL first 

uses it as a probe into its analogue memory and retrieves a best matching source design analogue 

(and its SBF model). When there are differences between the functions specified in the target 

problem and the source analogue, it spawns the goal of adapting the design solution in the source 

analogue.  Different types of functional differences lead to different types of adaptation goals, 
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some requiring only simple modifications (such as parameter tweaks) and some others requiring 

more complex modifications (such as topological changes). IDEAL first tries to perform simple 

modifications to the source design and considers more complex ones only when the simpler ones 

do not lead to a target solution. In order to control the reasoning involved in making complex, 

non-local modifications in design, a computational process such as in IDEAL needs knowledge 

that can encapsulate the relationships between non-local modifications and their effects; in 

device design, such relationships really are relationships between functional differences and the 

differences in causal behaviors, which exactly is the type of knowledge GTMs encapsulate. 

Therefore, IDEAL uses the knowledge of GTMs in making some types of complex modifications 

that involve changes to the device topology in the source analogue. It uses the adaptation goal as 

a probe into its memory of GTMs in order to retrieve a GTM and and instantiates the retrieved 

GTM in the context of the target problem. By instantiating a retrieved GTM, it first modifies 

the behaviors in the SBF model of the candidate design and then modifies the structure of the 

design. 

An Example GTM: Feedback Mechanism 
Recall that in model-based analogy, the GTMs are also represented using the same SBF lan- 

guage as that used to represent device models. The SBF representation of a GTM encapsulates 

two types of knowledge: knowledge about the patterns of differences between the functions of 

known designs and desired designs that the GTM can help reduce; and knowledge about the 

patterns of modifications to the internal causal behaviors of the known designs that are neces- 

sary to reduce the differences. That is, it specifies relationships between patterns of functional 

differences and patterns of behavioral modifications to reduce those functional differences. For 

example, Figures 5.4(a) & (b) respectively show these two types of knowledge for a partial model 

of the feedback mechanism.5 Figure 5.4(a) shows the patterns of functions fi and F2 respec- 

tively of a candidate design available and the desired design, and the conditions underwhich the 

mechanism is applicable. Because of the tasks for which they are used in model-based analogy, 

the GTMs are indexed by the patterned functional differences such as shown in Figure 5.4(a) 

(i.e., the fluctuations in the output substance property values are large vs. small). The model of 

the feedback mechanism indicates that the desired behavior (B2) can be achieved by modifying 

the candidate behavior (Bi) through setting up the indicated causal relationships between the 

latter and the additional behaviors (that achieve the subfunctions of F2 other than fi charac- 

terized in the applicability conditions of the mechanism). In particular, the feedback mechanism 

suggests the modification of looping back some output to the input and modifying the effective 

input to the device.  Figure 5.4(b) shows (both diagrammatically and textually) the relation- 

s Feedback can be open loop or closed loop in devices. Closed-loop feedback itself can be of 4 different types 
depending on the relationships between the output substance and feedback substance, and between the feedback 
substance and the input substance. The feedback mechanism described here is only one type of closed-loop 
feedback in which the output substance, feedback substance, and the input substance are all same. Also, there is 
no claim that there are only 4 types of feedback mechanisms; in general, there may be more. 
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ships in a partial model of the feedback mechanism that IDEAL indeed learns from the designs 

of amplifiers (as explained in Chapter 7). 

SIRED DESIGN: 

?SUB 
GIVEN: ?prop1: ?val11 

»2 
?SUB 

MAKES: ?prop1: ?val22 

BY-BEHAVIOR:   Behavior B2 

CANDIDATE DESIGN: 

GIVEN: 
?SUB 

?prop1:  ?val11 

F, 
1 

MAKES: 
?SUB 

?prop1:  ?val21 

?SUB 

?prop1: ?val11 

BY-BEHAVIOR B 22 

?val11' = f+(?val11) 

?val11' = f-(?val21) 

BY-BEHAVIOR:   Behavior B1 

?SUB 
?prop1: ?val11' 

I [BY-BEHAVIOR B11 

?SUB 
?prop1: ?val22 

BY-BEHAVIOR 122 

CONDITION: 

?val22 4 ?val21 ;?val21=?val +A 

?val22 = ?val ± b 

F2 =f:(?val11,?val21)  -► ?val11' 

+ Fn :(?val11) -► ?val21 

B2 = Bl + B22 

where B22 achieves function f 

The relationships between B1 and B22 are such that: 

FINAL-STATE (B1) { INITIAL-STATES (B22) 

FINAL-STATE (B22) (■ STATES (B1) 

Figure 5.4: The SBF Representation of A Feedback Mechanism 

5.3.1    Retrieval of GTMs 

We will now illustrate the IDEAL'S use of GTMs in design by analogy. Consider a design 

problem it solves in the domain of mechanical controllers.6 Suppose that the new problem has a 

functional specification that given the substance angular momentum with a magnitude of X,- and 
6The representations of the designs of gyroscope control system here are shown in more detail than their 

corresponding ones in Chapter 1. 
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clockwise direction at an input location (gyroscope), the device needs to produce the angular 

momentum with a magnitude L0' proportional to the input and the same direction at a specified 

output location. In addition, it specifies the constraint that the output cannot fluctuate much 

around an average value (i.e., L0' needs to be Lavg ± S, where 6 is a small fluctuation). This is 

the problem of designing a gyroscope follow-up (Hammond, 1958). 

Let us also suppose that the design of a device (shown in Figure 5.5 (a), (b), & (c)) which 

transfers angular momentum from a gyroscope to an output shaft location is available in IDEAL'S 

analogue memory (or is given explicitly as part of the adaptive design problem). The functional 

specification of the available device is that given an input angular momentum of magnitude I; 

and clockwise direction at the input (gyroscope) location, it produces a proportional angular 

momentum of magnitude L0 and of clockwise direction at the output shaft location; however, 

L0 fluctuates over a large range, i.e., L0 = Lavg ± A, where A is large. Figure 5.5 shows the 

design of the available device: Figure 5.5(a) presents the functional specification of the device; 

Figure 5.5(b) shows the structure of the device schematically; and finally, Figure 5.5(c) shows 

the causal behavior of the device as a sequence of alternating states and state-transitions that 

explains the internal causal process of the device. IDEAL retrieves (if not given explicitly) the 

design of gyroscope control system available in analogue memory because the desired function 

matches with the function of this design. 
Now, the task for IDEAL is to transfer and modify the candidate design of gyroscope control 

system to deliver the desired function. (Here, we are referring to the transfer process-1 illustrated 

in Figure 5.1.) Simple modifications such as replacing a component in the given design analogue 

will not result in a device that can solve the new design problem. It is because there is no single 

component in the device that seems responsible for the large fluctuations and that which may be 

selected for modification. Then the issue becomes if and how IDEAL can solve such a non-local 

adaptation problem using the knowledge of GTMs. 
The first step for IDEAL in this process of analogical transfer is to retrieve the GTM. It 

uses the difference in the functions of the candidate and desired designs as a probe into its 

memory because it indexes the mechanisms by the functional differences and the decomposability 

conditions on the desired functions. It retrieves the feedback mechanism because the current 

functional difference, namely, the fluctuation in the output property is large vs. small (i.e., A 

vs. 6), matches with the difference that the feedback mechanism reduces which is specified in 

a device-independent manner. Then, it tries to match the decomposability condition on the 

desired function in the feedback mechanism (see Figure 5.4(a) for the condition F2 = ...) with 

the current desired function in order to find the subfunctions / (or g) that need to be designed 

for and composed with the candidate function. By performing this match, as guided by the 

language of SBF models, IDEAL finds the subfunction /:(!;, L0') -+ LWJ, that is, it needs to 

design for a structure that takes two inputs, angular momentum with a magnitude of £,- and 

angular momentum with a magnitude of L0', and gives as output an angular momentum of Lww 
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MAKES: 

Angular Momentum 
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direction: clockwise 

Angular Momentum 
loc: o/p-shaft 
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USING-FUNCTION ALLOW 
Angular Momentum of Llnkage-AB 
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Angular Momentum of Lever-BC 

UNDER-CONDITION-STRUCTURE 
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magnitude: \-mt 
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USING-FUNCTION CREATE 
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JL 
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(c) Behavior "Transfer Angular Momentum" 
of the 'Gyroscope Follow-up w/o 
Feedback' 

Figure 5.5: The Two Designs of Gyroscope Follow-up before and after instantiating 
the Feedback Mechanism 
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in the opposite direction at the location of pivot in the candidate design.7 

5.3.2    Instantiation of GTMs 

The next step for IDEAL in this process is to transfer the retrieved GTM to the target design 

problem by instantiating it in the context of the target problem. (Now, we are referring to the 

transfer process-2 illustrated in Figure 5.1). The algorithm for IDEAL'S process of instantiating 

the GTMs is shown in Figure 5.6. Some of the bindings for the state variables in the subfunctions 

of the GTM are obtained while doing the matching itself. But, some others need to be determined 

by tracing the relevant behavior of the candidate design backwards and identifying the possible 

states in the behavior that can be part of the subfunctions. For instance, in the example of 

gyroscope follow-up design, tracing back from state4 in the behavior shown in Figure 5.5(c), 

IDEAL selects the state2 as a possible candidate for instantiating the MAKES state of the 

subfunction /. State3 is not a possible candidate because it specifies a different substance than 

what is already bound to the substance in the subfunction (i.e., linear momentum vs. angular 

momentum). Although in this example, there is only one candidate state for modification, in 

general, there can be multiple candidates. When there are multiple intermediate states that can 

be candidates for modification by composing with the subfunctions, the nearest from the final 

state is selected. The rationale behind such a selection heuristic is that the later the modification 

done in a causal sequence, the lesser the disturbance caused in it (i.e., the lesser the distance 

the disturbance needs to be propagated before it reaches the output state). 

Once a state in the causal behavior of the candidate design is selected for modification, then 

the template states in / and g are instantiated with the corresponding state-variable values in 

the selected states. The desired values in the selected state themselves are computed based on 

the overall functional differences and by regressing through the parameter relations annotating 

the transitions between the selected state and the final state. For instance, the magnitude of 

angular momentum in state2 of the behavior of the candidate design of gyroscope follow-up 

can be determined to decrease if the output angular momentum rises due to fluctuations, given 

the specific qualitative relationships between state variables. Once the subfunctions are thus 

instantiated, the process involves designing for them and composing the new sub-behavior(s) 

with the behavior of the candidate design as per the relationships specified in the retrieved 

mechanism. 
In the current design scenario, the subfunction IDEAL needs to design really has two parts 

(as it takes two inputs and produces one output): one that specifies the need for transferring 

angular momentum from the input location to the pivot location, and the other for transferring 

angular momentum from the output shaft location to the pivot location. In such cases where / 

or g have multiple GrVEN or multiple MAKES states, the behavior of the candidate design is 
7These specific substances, their properties and values, and their locations are coming from the current design 

and are thus bound to the template specifications in the SBF representation of the feedback mechanism during 

matching. 
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first checked to see if any of the desired state transformations are already achieved by a segment. 

If so, the effective subfunctions to be designed for will have these states removed from the spec- 

ification. That is, in the gyroscope follow-up design example, the first part of the subfunction 

formed is already designed for in the candidate design as the behavior segment state\ —♦• state2 

(Figure 5.5(c)) achieves it. Therefore, in successfully instantiating the mechanism in the candi- 

date design of gyroscope follow-up, IDEAL only needs to find a behavior (and a structure) that 

accomplishes the second part of the subfunction.8 

Consider the concrete scenario from IDEAL in which it has the knowledge of a component 

(called worm) whose function is to transfer an input angular momentum to an output location 

with the magnitude proportional to the output component and the direction dependent on 

the direction of threading on the worm. This component reverses the direction of the input 

angular momentum. IDEAL retrieves that component because the desired part of the subfunction 

matches with its function. It substitutes the appropriate parameters in the behavior of the 

retrieved design (i.e., worm) to generate a behavior for the desired subfunction. 

5.3.3    Composition of Behaviors 

In order to complete the modification of the candidate design and generate new causal behaviors, 

IDEAL needs to compose the behavior of the candidate design with the behaviors for achieving 

the subfunctions. Therefore, in the next step, IDEAL composes that behavior (i.e., B22) with 

the behavior of the candidate design (i.e., Bi) as per the specification of the causal relationships 

in the feedback mechanism (as in Figure 5.4(b)) to propose a behavior (shown in Figure 5.5(f)) 

for achieving the desired function. In general, it needs to compose two sub-behaviors, each 

corresponding to one of the subfunctions / and g. Finally, the changes in state variables due to 

the composition of behaviors need to be propagated forward in the causal behavior (until the end 

of the behavior or until the same state repeats) and any other behaviors in the model of the device 

that are dependent on the currently modified behavior. Note that the resulting modification 

in the design of gyroscope follow-up is a non-local modification because the topology of the 

candidate design changed. Thus the instantiation of GTMs can enable non-local modifications 

in device design. 

*Of course, the existing partial design in the candidate design imposes constraints on what kind of design 
IDEAL can come up with for the part of the subfunction. For instance, the new component needs to be 
compatible with the worm-wheel if it were to be connected there. 
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Input:      • Mi, the SBF Model of the Design Analogue, and its Function F\. 
• i<2, the desired function. 
• G, a GTM (retrieved by matching F2 ~ Fi). 

Output:   • M2, the SBF Model of the new device that achieves F2. 
Procedure: 

begin 
(1) Select the behavior B\ in M\ relevant to F\. 
(2) Bind the initial k. final states of ßi to the appropriate GIVEN and MAKES states 

of the subfunctions / and g in G. 
(3) if 3 an unbound state variable in / or g 

then backtrace 5i to find states in Bi that may be modified, 
considering the bindings from step 2. 
(3.1) if 3 multiple candidate states for modification 

then Select the state that is nearest to the final state in J5i. 
(3.2) Compute values of unbound state variables in / and g based on 

the selected state, (F2 ~ Fj), and PARAMETER-RELATIONS in Bx. 
(4) if 3 multiple GIVEN or MAKES states in / or g 

then Check if 3 b € Bi that achieves the transformation 
from any of the GIVEN states to any of the MAKES states in / or g. 
(4.1) if yes 

then /' = rest of the transformation in /. 
(i.e., < (GIVEN-states(/) - initial-state(6)), 

(MAKES-states(/) - final-state(6)) >.) 
g  = rest of the transformation in g. 

(i.e., < (GIVEN-states(fif) - initial-state(6)), 
(MAKES-states(ff) - final-state(fc)) >.) 

(5) Retrieve subdesigns for / and g . 
(5.1) if 3 no subdesigns for /' or g then FAIL. 
(5.2) else 

(5.2.1) Adapt the retrieved subdesigns for /' and g  (if necessary). 
(5.2.2) Compose B}>, the behavior for /', and Bg>, the behavior for g , 

with Bi as per the relationships in G. 
(5.2.3) Propagate the resulting changes in state variables forward in Bi 

and in the dependent behaviors in Mi. 
end. 

Figure 5.6: IDEAL'S Method for Instantiating A GTM 
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CHAPTER VI 

PROBLEM REFORMULATION: USE OF GPPS 

In the previous chapter, we described how the computational process of model-based analogy 

addresses different issues in the subtask of analogical transfer. The output of that subtask is a 

candidate solution to the target problem. More specifically, the proposal is in terms of a model 

for the candidate solution. The next issue is whether the candidate solution for the target 

problem really meets the constraints of the problem. The issues then become how to evaluate 

a candidate solution, and what knowledge may be needed to enable the evaluation and control 

the reasoning involved. 

In general, there are two ways of evaluating a candidate design for the target problem: 

(1) verification by simulating a model of the device, which we call internal evaluation and (2) 

implementing the design in a real world and observing its behavior, which we call external 

evaluation. Since the output of the transfer step in the MBA process is a model for the target 

design, the process uses a model-based method for evaluating candidate designs internally. The 

crucial idea in this method is that the SBF model of the source analogue can be modified 

and simulated to verify if the proposed modifications indeed result in a solution for the target 

problem without actually making the modifications to the solution (i.e., the structure of the 

design). Designs may fail for several reasons. When the evaluation is done by simulating the 

model, if the MBA process finds that the design fails, the process tries to make a different 

modification to the source analogue and the control goes back to the transfer step. 

When the evaluation is done externally by an oracle, if the design fails, there is an oppor- 

tunity for the computational process to interact with the oracle and acquire feedback on the 

design failures. When design failures are observed in external evaluation, the interpretation (or 

understanding) of those design failures is a hard issue and subsequent redesign is yet another 

hard issue. Understanding the design failures is hard because it involves finding a cause for the 

failure in the context of the failing design. The model of the design alone is not sufficient for 

doing this task because it may not be complete. Therefore an issue is what knowledge might be 

needed to interpret design failures and finding their causes. 

In this chapter, we will first describe how designs may be evaluated internally by simulating 

their SBF device models. Then we will describe how design failures in an external evaluation of 

designs can be understood, how their design problems can be reformulated and how the failed 

designs can be subsequently redesigned. 
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6.1    Internal Evaluation and Design Failures 

We described in the previous chapter how the causal behaviors of a source design are modified 

according to the selected adaptation strategy to generate an SBF model for the desired design. 

Once the SBF model for the desired design is generated, the model is modified appropriately 

by propagating the changes to all parts of the behavior. Then the model is simulated to verify 

if the candidate design indeed achieves the desired function. Only then, the structure of the 

candidate design is modified to reflect the changes in the behavior and to generate a new design 

solution. In this section, we will focus on how localized changes are propagated throughout the 

behavior of a candidate design and how the design is internally evaluated. 

In IDEAL, simulation of the effects of candidate modifications on the functions of the design 

involves tracing through the states and transitions in the model from the modified state to the 

final state by substituting new values for the parameters and checking if the desired function is 

achieved. Thus IDEAL uses the method of model revision and learns a new device model as a 

by-product. The types of knowledge required for revising the SBF model of the candidate design 

depend on the type of candidate modification to be executed on it. For instance, the method for 

model revision corresponding to the candidate modification of component replacement requires 

knowledge of how to compose causal behaviors, specifically, how to compose the causal behavior 

of the retrieved component with causal behavior segments from the candidate design. Similarly, 

each of the GTMs, the cascading, feedback and feedforward GTMs, specify different ways of 

revising the behaviors of candidate designs. Figure 6.1 shows the algorithm that IDEAL uses for 

revising the model of an old design and evaluating the proposed modifications by simulating the 

behavioral effects (i.e., the substeps of behavior modification and behavior verification). The 

original model-revision methods were developed outside the context of GTMs and were reported 

in (Goel, 1991b). In this research, we adapted and expanded them to deal with non-linear causal 

behaviors and new adaptation strategies such as the instantiation of GTMs. The function update 

in the algorithm updates the value of a given property in a given state or a given qualitative 

equation. At the end of SIMULATE, comparing the initial and final states of the new modified 

behavior with those in the desired function verifies whether the modifications worked. 

Let us now trace through the algorithm given in Figure 6.1 in order to understand IDEAL'S 

process of model revision. First, given a new state inserted or modified in the behavior of the 

candidate design, it stores all those properties whose values have changed from old to new. 

Then, it traces the behavior forward starting from the newly added state and propagates the 

changes to subsequent states and dependent behaviors. 

The loop in the SIMULATE procedure essentially considers if the knowledge encapsulated in 

the next transition of the current state indicates whether any of the current changed properties 

are related to some substance or component property; if so, all those dependent properties are 

also modified and added to the set of changed properties (i.e., triples consisting of the property, 

its old value, and its new value). There are four different types of knowledge in the transition 
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Input:      • Behavior in new design, Bnew, in which a chosen property from the diagnosis has 
been changed. 

• Model of the old design, M0u- 
Output:   • Model of the new design, Mnew, modified to be consistent with the changes in Bnew- 
Procedure: 
initialize 

Sam, = {(fiÄ/„.. PZZue), where
M 

Pi is a property whose value Pivalue in state state?* 
has changed to P?™lue in state?™ and 
statefd and state?™ are respectively from B0u and Bnew.} 

visited-states = {}; 
SIMULATE (state?™,5*-//., visited-states) 

SIMULATE (state, Sdiffs, visited-states) 
current-state = state 
LOOP 

next-state = next-state (current-state); 
IF next-state = NIL U current-state G visited-states, THEN Exit LOOP 
CASE: 
(1) IF P{ is mentioned in next-state 

THEN update(P,-, next-state, current-state) 
(2) IF there is a qualitative equation qe in state-next-transition(current-state), 

such that P, = f(Pi) where (Pi,P?'v
d

a,ue,Pr.Zue) e Sdiffs 
and Pi is mentioned in next-state 

THEN update(P,,ge) 
Sdiffs = Sdiffs U {(Pi, P,°vaiue, Pivalue)) 

(3) IF there is a functional abstraction of a component E 
(i.e., Comp in USING-FUNCTION) 
and a condition on the substance properties on which E operates 
(i.e., Conditionsuß) in state-previous-transition(current-state) 
such that Pi = Pi, where 
Pi is a property of the substance in Conditionsuß, and 

\Pi>Pi.value' °i.»alue) ^ Sdiffs 
THEN update(P;, Conditionsuß) 

Sdiffs = Sdiffs U {(Pi, Pl0
valUe< ^lvalue)} 

(4) IF there is a pointer to a new behavior sequence B' such that 
the transition state-next-transition(current-state) 
affects a transition trans of B' 

THEN spawn 
SIMULATE (transition-prev-state(trans), Sdiffs, visited-states) 

END-CASE 
visited-states = visited-states U {current-state} 
current-state = next-state 
goto LOOP 

END-LOOP 
Figure 6.1: IDEAL'S Method for Model Revision 
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that may lead to revising the next state: (1) if the property is specified in the next state, then the 

next state is updated according to the changed value of the property; (2) if there is a qualitative 

equation in the next transition that relates a property in the current set of changed properties 

to a substance or component property, then the property value is updated and added to the 

set; (3) if a component contributes a function to the transition, and there is a condition on the 

property of a substance on which the component operates, and if that property is related in an 

equality relationship to a property in the current set of changed properties, then that property 

is also modified and added to the set; and (4) if the transition is dependent on a transition in 

another internal behavior of the device, then that behavior is also traversed and modified in the 

same way as the current one, starting from the previous state of the transition in that behavior. 

At the end of the process described above, IDEAL would have modified all the behaviors by 

propagating the changes in the properties due to the application of a strategy. It then compares 

the output behaviors (i.e., functions) of the new design to the desired function to see if the 

design solution achieves the desired function. If IDE AL finds that the candidate design (i.e., 

the proposed design) delivers the desired functions, it considers that design as the target design 

and goes to the next step of learning from the source and the target designs. Suppose it finds 

that the design does not satisfy the constraints of the given problem. Then, it first tries an 

alternative adaptation strategy if one is available (i.e., for instance, applying the mechanism of 

cascading after trying component replacement to the same substructure in the source design). 

If no alternative strategies are applicable, then it tries to make a different modification to the 

source design if there are alternative modifications available that could result in reducing the 

functional differences (i.e., for instance, modifying the bulb instead of the battery in a simple 

electric circuit to deliver a different intensity of light). If no alternative modifications are possible, 

then it tries to adapt a different source design (i.e., for instance, given the problem of designing 

a high-acidity sulfuric acid cooler, it draws the analogy from the design of a high-acidity nitric 

acid cooler after having tried from the design of a low-acidity sulfuric acid cooler unsuccessfully). 

When there are no alternative source designs available or they do not lead to a target solution, 

IDEAL fails. 

6.2    External Evaluation and Design Failures 

Since IDEAL uses the SBF model of the candidate design to verify if it works and the SBF model 

may be incomplete, the system may not be able to detect some design failures by simulating the 

model. Also, some design failures may not be detected internally because the initial problem 

specifications may not always be complete, they may not indicate clearly the constraints from 

the environments in which the designs are intended to work, and the intended environments 

may themselves have changed from the time of problem specification to the time of design 

use. However, if an oracle presents the external feedback on failures of the design, IDEAL can 

understand the feedback and redesign the device. Figure 6.2 illustrates IDEAL'S partial process 
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of model-based analogical design that centers around the evaluation task. A candidate design 

may fail due to a variety of reasons, e.g., it may not deliver the function desired of it, it may 

produce an undesirable behavior, etc. When a candidate design fails for some reason, several 

new tasks are set up: (1) understanding the feedback from evaluation of a candidate design 

(for instance, by forming a causal explanation for the undesired behaviors), (2) reformulating 

the problem (for instance, by discovering and incorporating new design constraints), and (3) 

redesigning the candidate design. When the candidate design fails, there are several ways of 

generating a new design: repair the failed candidate design to meet the new problem constraints 

or generate an alternative candidate design. 
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the Design Problem 
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Figure 6.2: IDEAL'S Partial Process (Evaluation and Redesign) of Analogical Design 

We will consider the design of a coffee maker in order to illustrate this process model. This 

example has been adopted from (Prabhakar and Goel, 1992). Informally, the function of a coffee 

maker may be described as automatic brewing of hot coffee from coffee powder and hot water. 

Suppose that the designer generates a candidate design for achieving this function as illustrated 

in Figure 6.3(a). This design has two containers and a filter in between these two containers. 

Initially, Container-1 contains coffee powder. When hot water is added to it, the coffee powder 

dissolves in the water, forming a mixture of coffee powder, water and coffee decoction as indicated 

in Figure 6.3(a). Coffee decoction permeates through the filter and gets collected in container-2 

as illustrated in Figure 6.3(b). 

Suppose that the candidate design is implemented in a real device. Suppose further that an 
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evaluation of the device in a real environment shows that while this coffee maker achieves the 

function desired of it, two problems occur: (1) coffee-decoction formed in Container-2 is only 

lukewarm and (2) coffee-decoction does not stay warm in Container-2. 
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Figure 6.3: Failed and Redesigned Coffee Makers 

Then the issue becomes how might a designer understand such feedback from evaluation 

and incorporate it in a new design for the coffee maker? One way a designer might understand 

this is by forming a causal explanation for the observed, undesired behaviors. The plausible 

causal explanations for the undesired behaviors in the coffee maker are (1) the coffee-decoction 

in Container-2 is only lukewarm because coffee making process is taking a long time during 

which heat escapes from the coffee-decoction in Container-1 to the environment and (2) coffee- 

decoction does not stay warm in Container-2 because it loses heat to the environment over time, 

which lowers its temperature. 
Such causal explanations might enable a designer to discover new constraints on the design 

that introduce new variables and thereby change the design problem space. For instance, the 

causal explanations for the two undesired behaviors respectively suggest these two new con- 

straints: (1) need to reduce the time for brewing coffee and (2) need to either reduce the time 

coffee stays in Container-2 (which is not under designer's control) or supply heat to Container-2 

to compensate for the heat loss. 
Given the reformulated problem with new constraints, a designer can either redesign the 

failed coffee maker or generate a new candidate design altogether. The failed design of the coffee 

maker may be redesigned, for example, by introducing a Plunger into Container-1 and a Hot- 

plate beneath Container-2, where these design modifications address the two newly discovered 

constraints. Figure 6.3(b) illustrates the redesigned coffee maker. 
The above computational process requires two kinds of knowledge: (1) comprehension of 

how the coffee maker works and (2) comprehension of the process of flow of heat from hot object 
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to cold ones (i.e., the zeroth law of thermodynamics). In IDEAL, these two types of knowledge 

are represented in SBF language. Figures 6.3(a), 6.4(a) k 6.4(b) respectively illustrate the 

structure of the coffee maker, its function, and its internal causal behavior. 
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Figure 6.4: Function and Behavior of An Initial Design of Coffee Maker 

6.2.1    Knowledge Acquisition: External Feedback on Design Failures 

Since all failures cannot be determined automatically by means of simulating a model, knowl- 

edge of some of them may have to be acquired externally from an oracle. That is, if an oracle 

presents the external feedback on failures of the design, IDEAL can understand the feedback 

and redesign the device. One of the important issues in providing external feedback on designs 

concerns with the language in which the design failures may be described. In IDEAL, they are 

described in the same SBF language used to describe the comprehension of devices. Therefore, 

the primitives for describing the device failures include undesired states and undesired behav- 

ioral state transitions. For instance, the second failure of coffee maker mentioned earlier can 

be described as an undesired behavioral state transition illustrated in Figure 6.5, while the first 



failure is described as an undesired state. Note that a true representation of the English de- 

scription of the second failure needs to include a notion of time and a process extended over 

time. But IDEAL'S representations are limited in that they do not represent time explicitly, and 

neither do they capture the notion of a process extending over time. 
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Figure 6.5: A Failure of Coffee Maker 

6.3    Understanding Design Failures by Forming Causal Expla- 
nations 

Once the design failures are provided externally, in order to redesign the device, IDEAL needs 

to first understand those failures in the context of the current design so that it can identify 

the causes for them and rectify the failures. Then the issue is how can IDEAL understand the 

feedback from the evaluation. It understands the feedback from the evaluation of a candidate 

design by forming causal explanations of the undesired behaviors described in the feedback. 

The question then is what knowledge of IDEAL enables it to make the inferences needed to form 

causal explanations for design failures. It uses the knowledge of generic physical processes for 

this task. Recall that IDEAL represents GPPs using the same SBF language that it uses for 

device models. It forms causal explanations of device failures by retrieving and instantiating the 

relevant GPPs. 

6.3.1    Retrieval of GPPs 

IDEAL accesses the GPPs by their behavioral abstractions. Since GPPs capture device- 

independent (or abstract) behaviors, IDEAL indexes them by their behavioral abstractions. 

Given the undesired behaviors in the candidate design, IDEAL uses them as a probe into its 

memory of GPPs and retrieves the physical processes whose behavioral abstractions match with 

the given behaviors. As mentioned above, it provides the SBF language for a user to specify 
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the undesired behaviors of a device in terms of states and state transitions. The use of this 

vocabulary allows it to access the relevant knowledge of physical processes. For instance, given 

the second failure of coffee maker design, IDEAL uses a description of the undesired behavior 

(Figure 6.5) as a probe into memory and retrieves the SBF representation of the GPP of heat 

flow (i.e., the zeroth law of thermodynamics) because the behavioral abstraction of the pro- 

cess (i.e., temperature change in a substance) matches with the specified undesired behavior 

(i.e., change of temperature of coffee-decoction from high to low). The retrieved model of the 

heat-flow process and its index are illustrated in Figure 6.6. 
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Figure 6.6: The GPP of Heat Flow 

6.3.2    Instantiation of GPPs 

Once a GPP is retrieved as match for the given undesired device behavior, IDEAL forms a causal 

explanation of why and how the given undesired behavior arises by instantiating the retrieved 

GPP in the context of the undesired behavior and the candidate design. The annotations on 

the transitions in the SBF representation of a GPP provide an explanation for the behavioral 

abstraction of the process used as an index for it. For instance, IDEAL instantiates the retrieved 

GPP of heat flow in the context of the second failure of coffee maker to form a specific causal 

explanation for the failure as illustrated in Figure 6.7. That is, it substitutes the specific sub- 

stances and the values of their properties from the given undesired behavior into the retrieved 

process, according to the correspondences set up in retrieval. 
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Figure 6.7: A Causal Explanation for One Failure of Coffee Maker 
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Figure 6.8: A New Function (subfunction) Desired of Coffee Maker 

6.4    Problem Reformulation and Redesign 

6.4.1    Discovery of New Constraints 

Once the causal explanation for the failure has been formed, IDEAL can find the causes for 

the failure from the annotations on transitions in the explanation. It then hypothesizes new 

constraints on the design problem in the form of violation (or negation) of the causes for the 

failure. For instance, it finds from the causal explanation illustrated in Figure 6.7 that the cause 

for the second failure of coffee maker is due to the flow of heat from coffee-decoction in Container- 

2 to some substance outside the coffee maker (that is, in the device environment). Hence, it 

formulates a new constraint: avoid the loss of heat from coffee-decoction in Container-2. 

In general, problem reformulation may involve one or more of the addition of new constraints 

and the deletion or modification of some old constraints. IDEAL reformulates the design problem 

of the coffee maker by adding the discovered constraints to the initial set of design constraints. 

6.4.2    Designing for the New Problem 

Once the design problem has been reformulated, IDEAL redesigns the failed design to generate a 

new candidate design. This involves two steps: (1) formation of behaviors for satisfying the new 

constraints (which might involve the addition of substructures in the design) and (2) composition 



125 

of the new behaviors with the behaviors of the failed design to generate a revised model. 

For each new constraint, IDEAL postulates a new device function and posits it as a new design 

subproblem to be solved. For instance, it generates the new subfunction illustrated in Figure 6.8 

for the new constraint it discovered from the explanation of the second failure of coffee maker. 

It generates this subfunction by reasoning that the transformation of the temperature of coffee- 

decoction from high to low (see Figure 6.7) needs to be reversed in order to eliminate the failure. 

IDEAL does so because the type of redesign it performs in this case is compensatory redesign. 

In this type of redesign, the goal is to introduce new behaviors into the device behavior such 

that they achieve the desired states from the undesired states. An alternative type of redesign 

is corrective redesign in which the current device behaviors are modified such that the undesired 

states or behaviors do not even occur. These types of redesign are discussed well in (Prabhakar 

and Goel, 1992). 
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Figure 6.9: Function and Behavior of A Design Analogue of Hot-Plate 

IDEAL then uses the subfunction as a probe into its memory of analogues to retrieve a 

matching design. Let us suppose that its memory contains the design of a HOT-PLATE whose 

function and behavior are illustrated in Figure 6.9. Informally, the function of this HOT-PLATE 

is to heat water contained in a Beaker. IDEAL indexes the design of HOT-PLATE by its function. 

Given the subfunction as a probe into the memory of analogues, it retrieves the designs whose 

functions match with the subfunction. In this example, it retrieves the design of HOT-PLATE 

because its function (Figure 6.9(a)) matches with the new subfunction to be achieved by the 

coffee maker (Figure 6.8). Since the retrieved design differs from the given subfunction in the 

substances involved, IDEAL adapts the retrieved design by a repair strategy called substance 

substitution (Goel, 1991a; and Section 5.2 in this chapter), that is, it substitutes the substances 

in the given subfunction for the corresponding substances in the function and behavior of the 

retrieved design. Similarly, it replaces the substance locations in the given subfunction for the 

corresponding ones in the retrieved design. By substituting coffee-decoction for water and 
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Container-2 for Beaker in the behavior of the HOT-PLATE, it generates a new behavior, 

illustrated in Figure 6.10, that satisfies the constraint specified in the subfunction (Figure 6.8). 

By this process, it proposes that the loss of heat from coffee-decoction in Container-2 can 

be compensated by supplying heat to coffee-decoction by introducing a HOT-PLATE below 

Container-2. 
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Figure 6.10: A new sub-behavior of Coffee Maker that achieves the new subfunction 

6.4.3    Composition of Behaviors 

Next, the behavior thus formed for the new subfunctions (Figure 6.10) is composed with the 

behavior of the failed design of coffee-maker (Figure 6.4(b)) to generate a behavior for the new 

coffee-maker design. In general, this process of model revision involves identifying the behavior 

segment (i.e., a transition and its preceding and succeeding states) or a state in the old behavior 

where the new behavior is to be added. In general, the composition may involve addition of old 

and new behaviors end-to-end (i.e., serial composition), in parallel, or merging of behavioral state 

transitions from both behaviors. IDEAL matches the initial and final states in the new behavior 

against the states in the old behavior, and selects a behavior segment where the new behavior 

can be added. For instance, it finds that the final state in the old behavior (Figure 6.4(b)), 

which is an undesired state, matches with the initial state of the new behavior, and hence it 

needs to add the new behavior at the end of the old behavior. For instance, the new behavior 

(Figure 6.10) is appended at the end of the behavior segment state2 -»■ state3 of the behavior 

of the failed coffee maker (Figure 6.4(b)). This process results in the revision of the behavior 

of failed coffee maker into the behavior of a new design of coffee maker, which is illustrated in 

Figure 6.11. 

In a similar process, IDEAL redesigns the coffee maker to eliminate the first failure described 

earlier. It first forms a causal explanation for the failure by instantiating an SBF model of the 

heat exchange process and finds the cause for the failure as: the flow-rate of coffee-decoction 
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Figure 6.11: A Fragment of the Behavior of The Redesigned Coffee Maker 
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from Container-1 to Container-2 is small. It then postulates a new device subfunction which is 

to increase the flow-rate of coffee-decoction. It uses this subfunction to retrieve the design of a 

PLUNGER from its memory and adapts it to achieve the new subfunction of the coffee maker. 

Then it composes the adapted behavior of PLUNGER with the new behavior of coffee maker as 

illustrated in the behavior segment state2 -> state3 in Figure 6.11. In this case, the composition 

involves merging the new behavioral state transitions with the relevant state transitions in the 

old behavior, and modifying the rest of the old behavior accordingly. This redesign for the first 

failure of coffee maker is an example of corrective design. 

IDEAL now evaluates the redesigned candidate design by qualitatively simulating (Goel and 

Prabhakar, 1991) the revised device model (Figure 6.11), generated by the above procedure. If 

the simulation reveals inconsistencies between the new functions of the device and its output 

behaviors, the redesign step needs to be repeated. In the case of the new coffee-maker, however, 

the simulation of the new SBF model (Figure 6.11) verifies that the candidate design indeed 

satisfies the new set of constraints (i.e., make coffee as well as keep it warm). 

Nevertheless, the new design of coffee-maker may again fail when deployed in a real envi- 

ronment just like the initial design did, due to new interactions with the environment. And, in 

some cases, the environment may itself need to be adapted to suit the constraints of the device. 

A related project outside the realm of this thesis explores various issues in explicit modeling of 

environments and reasoning about their interactions with devices (Prabhakar, Goel and Bhatta, 

1995). 
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CHAPTER VII 

LEARNING DESIGN PATTERNS 

In the previous two chapters we have discussed the use of design patterns in the tasks of analogical 

transfer and design modification, and the evaluation of candidate solution and its redesign. The 

next step in the MBA process is learning of design patterns from the source and target analogues. 

This step is triggered when a solution is available for the target problem, whether it is generated 

by the previous steps or is given directly by an oracle upon problem-solving failure. This step 

raises a number of issues such as: What might be learned from the target analogue that may 

be 'useful' for future problem solving? What might be abstracted from the target and source 

analogues? How might this abstraction occur? 

Answers to these issues depend on the specific overall task being solved and the specific 

content theory of the SBF models in the task context. In the context of the design of physical 

devices and the theory of SBF models of devices, the pattern abstraction task involves a number 

of different learning tasks, each corresponding to a different type of design pattern that can 

be abstracted from a given source and target design analogues. We have explored the pattern 

abstraction task for learning of models of GPPs and GTMs. Each of these learning tasks takes 

as input the target design analogue and produces as output the respective type of model at a 

higher level of abstraction. 
Our central hypothesis in addressing these two learning tasks is that the SBF models of 

specific devices provide the content for the abstraction, and they, together with the problem- 

solving context, provide the constraints for addressing the different issues in the abstraction 

process. In general, different methods such as similarity-based learning and explanation-based 

learning may be applicable for solving each of these learning tasks. Or, an integration of two 

or more methods may be more appropriate for the tasks. In this work, we have developed an 

approach that integrates model-based learning and similarity-based learning in which the model- 

based learning method is used first to focus on the relevant part and then the similarity-based 

learning is used to abstract over the selected part. 

7.1    Issues in Learning by Abstraction 

Abstraction over design experiences raises three important issues: 

1. The issue of relevance: This is the issue of deciding what to abstract from an experience. 

We show that the problem-solving context in which learning occurs together with the 
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specification of the function of a new device and the hierarchical organization of the SBF 

model of the device helps in determining what to abstract from the model. Further, 

the SBF models lead to a typology of patterns of behavioral regularity over which the 

abstraction process can result in learning each type of abstract model. However, the 

computational process of MBA does not have a priori knowledge of what the regularities 

are, but rather, given two design experiences (one without an instance of the physical 

process or generic mechanism that might be learned and another with the instance of the 

respective model), it can discover the appropriate regularity by comparing and analyzing 

the given designs. Also, note that the SBF models define the dimensions and thus constrain 

the comparison of any two given behaviors (in the form of directed graphs that can include 

cycles). 

2. The issue of level of abstraction: This is the issue of determining how far to abstract 

a chosen aspect of the device. We show that the similarities in the SBF models of the 

current design analogue and related design in a memory of analogues can help to determine 

how far to abstract. The knowledge of design objects, such as components and substances, 

help in determining the similarity between two design analogues. 

3. The issue of method selection: This is the issue of deciding what methods to use for 

abstraction. This is especially relevant when there are multiple, specialized methods for 

learning different classes of abstractions. We show that a typology of device functions 

can help not only to determine what strategy to use but to determine whether physical 

processes (or principles) or models of prototypical devices (i.e., lower-level descriptions of 

physical processes) are formed. Furthermore, the typology of the patterns of regularity 

suggested by SBF models can help to determine what strategy to use. 

We will now describe our model-based approach for each of the two learning tasks and present 

our explorations with different situations in which the learning tasks might occur. 

7.2    Learning of GTMs 

The task of learning generic teleological mechanisms takes as input a design analogue and forms 

an SBF representation of the GTM that is instantiated in the structure and behavior of the 

specific SBF model associated with the given design analogue. The input knowledge structure 

for the learning task is the SBF model of the given design analogue (which is case-specific) 

and the output knowledge structure is the case-independent model of a GTM. The learned 

generic mechanism is such that it is an abstraction over certain patterns of behavioral regularity 

(explained later) observed in the given SBF model and the model of the most similar design in 

analogue memory (i.e., the source design analogue). A formal characterization of the learning 

task is shown in Figure 7.1. We have explored the learning of different generic mechanisms such 

as cascading, feedback, feedforward, and device composition mechanisms. 
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• 

• 

Input: • Design Analogue [consisting of design problem (i.e., function), 
solution (i.e., structure), and explanation (i.e., SBF model)], 
e.g., design of a sulfuric acid cooler. 

Output:        • Generic teleological mechanism (represented in SBF language), 
e.g., cascading mechanism. 

Method:       • Model-based learning and similarity-based learning. 
e.g., function of a design determines what parts of the experience to focus on, 
and similarities between the given design analogue and the source design 
analogue determine how far to abstract the focused part. 

Knowledge: • Typology of primitive functions in the domain. 
e.g., ALLOW, PUMP, 

i Typology of functions in the domain (consisting of primitive functions). 
e.g., substance-parameter transformation. 

> Typology of behavioral regularities in SBF representations. 
e.g., causal loops, forks, and joins. 

• Substances in the domain, 
e.g., nitric acid, water. 

• Components in the domain, 
e.g., pipe, chamber. 

• Past design analogues in memory, 
e.g., design of a nitric acid cooler. 

Figure 7.1: Task of Learning Generic Teleological Mechanisms from Design Analogues 

7.2.1    An Illustrative Learning Task: Learning of Cascading GTM 

Since in our theory, learning is closely integrated with problem solving and memory, it is nec- 

essary to preface our description of the learning method with the appropriate problem-solving 

context and the state of memory. Suppose, for instance, IDEAL'S analogue memory has the 

design of a 1.5-volt electric circuit (EC1.5) reproduced in Figure 7.2 from Chapter 1. 

Figure 7.2(a) shows the structure of the circuit schematically. Figure 7.2(b) shows the function 

"Produce Light" of EC1.5. Informally, the function specifies that the device takes as input 

electricity with a voltage of 1.5 volts in Battery and gives as output light with an intensity of 6 

lumens in Bulb. Figure 7.2(c) shows the internal causal behavior that explains how electricity 

in Battery is transformed into light in Bulb. The causal behaviors can be specified at different 

levels of detail. For instance, state! is an aggregation of a sequence of several states and state 

transitions at a different level as shown in Figure 7.2(d). 

Let us now consider the scenario where IDEAL is presented with a problem of designing a 

3-volt electric circuit (EC3). The problem specifies that the desired function of the device is to 

produce light of intensity 12 lumens in the bulb when the switch is closed, given an electricity 

with a voltage of 3 volts in the battery.  In addition, it also specifies a structural constraint 



132 

Switch Battery Bulb 

(a) 1.5-volt Electric Circuit (EC1.S) 

GIVEN: 
state. 

MAKES: 

ELECTRICITY 
loc: Battery 
voltage: 1.5 volts 

LIGHT 
loc: Bulb 
intensity: 6 lumens 

STIMULUS:    Force on Switch 

BY-BEHAVIOR:    pointer to the behavior 
''Produce Light" 

(b) Function "Produce Light" of EC1.5 

8tate-| 
"GIVEN" state of Function of EC1.5 
BY-BEHAVIOR: 

pointer to the behavior "Deliver 1.5 volts" 

USING-FUNCTION ALLOW electricity of Switch 

UNDER-CONDITION-STATE 
state2 of Behavlor-Close-Switch 

AS-PER-DOMAIN-PRINCIPLE Klrchoff's Law 

I state 2 I 

3   jUSING-FUNCTION      CREATE  light of Bulb 

ELECTRICITY 
loc: Bulb 
voltage: 1.5 volts 

LIGHT 
intensity: 6 lumens 

AS-PER-DOMAIN-PRINCIPLE 
intensity = Efficiency * Current * Current * Resistance 

| state; 

(c) Behavior "Produce Light" of EC1.5 

l8tat«1-1 I 
ELECTRICITY 

loc: T3 
voltage: 0 volts 

USING-FUNCTION   PUMP electricity of Battery 

lstate1-2 I 
ELECTRICITY 

loc: T2 
voltage: 1.5 volts 

(d) Behavior "Deliver 1.5 volts" of Battery 

Note: All locations are with reference to components 
tn this design. All labels for states and 
transitions are also local to this design. 

Figure 7.2: Design of A 1.5-volt Electric Circuit (EC1.5) 
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that the design cannot have a single 3-volt battery. IDEAL retrieves the design analogue EC 1.5 

because the given functional specification is similar to the function of EC 1.5. However, IDE AL 

may know only how to replace a component in a past design to solve the current problem. The 

component-replacement strategy specifies how to replace the component that is responsible for 

the functional difference by a new component that reduces the functional difference and thus 

enables the overall device to deliver the desired function. In such cases, IDEAL fails to solve 

the current problem due to the structural constraint specified. Then an oracle can interact 

with IDEAL and provide feedback so that it can learn. Suppose that an oracle presents the 

correct solution that both delivers the desired function and satisfies the structural constraint 

(the schematic of the structure of the new device is shown in Figure 7.3(a)). Then IDEAL 

first learns how the new device behaves (a segment is shown in Figure 7.3(b)) by revising the 

behavior of EC1.5. This problem-solving context enables IDEAL to focus on the substructure 

that delivers the required voltage for comparing with the corresponding substructure in the 

source design EC1.5. By abstracting over the pattern of regularity in the behavioral segments 

of the corresponding substructures in the two designs, it learns the cascading mechanism. We 

will now focus on the learning of the cascading mechanism. 

Switch Batteryl    Battery2 

(a) 3-volt Electric Circuit (EC3) 

Note: The behavior "Produce Light" of EC3 at 
toplevel Is similar to that of EC1.5 
except for the parameter values of 
voltage and Intensity. Also, the slot 
BY-BEHAVIOR In statel points to the 
behavior "Deliver 3 volts* of Battery 
shown in Figure (b). 

state- '1-1 
ELECTRICITY 

loc: T3 
voltage: 0 volts 

USING-FUNCTION   PUMP   electricity of Battery2 

|state1.2 
ELECTRICITY 

loc:TJ> 
voltage: 1.5 volts 

USING-FUNCTION   PUMP   electricity of Batteryl 

state '1-3 
ELECTRICITY 

loc:T2 
voltage: 3.0 volts 

(b) Behavior "Deliver 3 volts" of Battery 

Figure 7.3: Design of A 3-volt Electric Circuit (EC3) 
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7.2.2 Different Interaction Conditions and Learning Situations 

As mentioned above, when IDEAL fails, an oracle can provide it with different kinds of feedback 

so that it can learn. We have in fact explored several different learning situations here. The 

external feedback from an oracle may have different kinds of information: (1) all the three 

constituents of a design analogue, i.e., the function, structure and behavior for the new design; 

(2) only the function and structure for the new design; or (3) only the function and the localized 

substructure in the context of the failure (i.e., a solution for the specific, local adaptation goal). 

Alternatively, IDEAL may not even fail but rather produce a design for the given problem by 

exploring with the knowledge of alternative strategies such as the component-addition strategy. 

In this case, IDEAL may take more modification steps than necessary. 

In this chapter, we assume that the oracle presents the desired design and its SBF model, the 

simplest of the interaction conditions. We will consider the other interaction conditions in the 

next chapter, and describe how the SBF model of the new design itself is first learned. Given 

the SBF models of the retrieved design and the desired design, IDEAL compares the respective 

behaviors in the two models and forms any generic mechanisms it can discover. 

7.2.3 The Model-Based Learning Method 

The learning method is model-based in that the SBF models of the design analogues provide 

the content for abstracting over the patterns of regularity in the device structure and device be- 

havior. The method is shown in Figure 7.4. The representation vocabulary of the SBF models 

further defines the dimensions along which two behaviors can be compared and leads to sev- 

eral classes of regularity based on the "cause-effect" relationships between behavior segments.1 

For instance, behavioral states, transitions, and behavioral segments (state-transition-state) are 

some dimensions at a top level along which two behaviors can be compared. Within comparing 

two behaviors along these dimensions a few of the lower level dimensions are substances and 

components, their properties and values, and primitive functions and their ranges of transfor- 

mation. A few patterns of regularity in device behaviors, say, B\ and B2, are illustrated in 

Figure 7.5; Bi is the behavior of an available or candidate design (i.e., a source design analogue) 

and B2 is the behavior of the desired design (i.e., the target design analogue). In the following 

discussion, Fi denotes the function of the candidate design and F2 that of the desired design. 

The learning method first traverses the two focused behaviors and compares them for sim- 

ilarity. When the behavior of the source design analogue (J5X) matches with (or is similar to) 

some segment in the new device behavior (B2), then there is an opportunity for IDEAL to learn 

a generic mechanism that specifies how to modify a behavior like f?i to get a behavior like B2 

that achieves the function like F2. Suppose that B2 = -B21 + B22, a composition of two behavior 

segments, and that B\ matches with B2\.  Under such conditions, IDEAL can form a generic 

1A behavior segment is a partial sequence of states and transitions in a behavior. The smallest behavior 
segment will have just two states and a transition between them. 
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Input:      • Fi, Function of Devicel and Mu its SBF Model. 
• F2, Function of Device2 and M2, its SBF Model. 

Output:   • G, the SBF representation of a GTM (whose instance is in Device2's model). 
Assumptions:   1. Bx, the internal behavior of Fi, is without an instance of a GTM. 

2. B2, the internal behavior of F2, has an instance of only one GTM. 
3. Length(5i) < Length(52), where Length is measured in terms of 

number of state transitions. 
Procedure: 

begin 
(1) Select internal behavior segments Bx k B2 respectively in Mx k M2 

relevant to Fx k F2 and (F2 ~ Fi). 
(2) Compare 5i k B2 to find (B2 ~ Bi) along all dimensions of the representation 

by traversing B\ k B2 state by state. 
Termination conditions for traversal: 

(B2 reaches FINAL-STATE) U (a state is revisited). 
(2.1) if 5i g B2 then NO LEARNING. 
(2.2) else 

(2.2.1) Separate matching segments and unmatching segments in B2 into 3 sets. 
B2\     = {B2i | B2i matches Bi} 
B22-\ = {B2j | B2j precedes B2\ in B2} 
B22-2 = {B2j I B2j succeeds B2\ in B2} 

(2.2.2) Form a functional abstraction over each of these behavior segments, 
and record the causal relationships among them. 
/ = <INITIAL-STATES(S22-i), FINAL-STATES(522_i)> 
g = <INITIAL-STATES(S22_2), FINAL-STATES(522_2)> 
if I Bail  >1 

then F2 = f + n*Fi + g, where n = \F2\/ \Fi\ 
else  F2 = f + Fi+g 

(where a + b denotes composition of behaviors that achieve functions a, b.) 
(2.2.3) Generalize all the states in these subfunctions as per 

the similarities and differences in B\ k B2. 
end. 

Figure 7.4: A model-based method for abstracting GTMs over regularities in design 

analogues 

mechanism only on the basis of its analysis of differences between Bx and B2, in particular, the 

relationships between Bx and B22- IDEAL'S hypothesis is that the difference in the functions of 

the two devices (F2 - Fi) can be attributed to the difference in the behaviors (B2 - Bi, which is 

the additional behavior B22) and the relationships between Bx and B22. The basic idea is to de- 

compose B2 in terms of Bx as much as possible because that informs how to modify a design that 

achieves Bx into achieving B2. While comparing Bx and B2, when the traversal of Bx reaches 

the end (i.e., its final state), then Bx is compared again from its initial state with the remaining 
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I    is a transition or 
T   a behavioral sequence is a state 

(   denotes set containment and     (   its negation 

Suppose     Bo   = ^21    + ^22     (a composition of two behavior segments) 

B2i =BX 

B 22 

A behavior segment B i 
reoccurs in traversal ofB 

B, (    B22 

' ' ^ 
B22 

B21 =Bl       . 

Single Cause - 
Multiple Effects   in &2 

Bx(   B22 

K^ 
B21=Bi 

A state reoccurs in 
traversal of B 2 

Bj(   B22 

B21=Bi 

l22 

i\   t 

>22 

A state (final state) reoccurs 
in traversal of B 2 

Bx(   B22 

Figure 7.5: A Few Patterns of Regularity in Device Behaviors 

states and state-transitions in B2 (i.e., B22 after the first traversal of Bx when Bi matches with 

Z?2i). And, this process is repeated until all the states of B2 have been traversed at least once. 

While traversing the two focused behaviors, IDEAL can recognize the end of a behavior, re- 

currence of states, single cause-multiple effects (i.e., a fork in the directed graph representation 

of causal behavior), and multiple causes-single effect (i.e., a join in the directed graph), and 

repetition of a behavior segment, without an explicit a priori knowledge of them. Recognition 

of these basic patterns is necessary for a terminable traversal of a behavior! From these basic 

patterns, IDEAL discovers the regularities in the relationships between Bi and B22 and forms 

mechanisms such as cascading, feedback, and feedforward. It then abstracts over the specifics of 

these relationships so that the learned mechanism is useful in different problem-solving contexts. 

In addition, in order for a new mechanism to be useful, IDEAL needs to identify the appli- 
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cability conditions for the mechanism. Because IDEAL believes that the relationships between 

Bx and B22 to be responsible for the difference in the candidate and desired functions, it forms 

the decomposability condition on the desired function as one of the applicability conditions. 

For instance, when a desired function, F2, is specified, and a candidate design delivers Flt one 

applicability condition for using "a" generic mechanism is to check if F2 can be decomposed in 

terms of Ji and any other subfunctions and precisely what those additional subfunctions are. 

Hence it finds the subfunctions besides the candidate function (Ji) that the desired function 

can be decomposed into (i.e., F2 = f + n * Ji + g or F2 = f + n * f\ or F2 = n * Ft + g where 

n (> 1) is the number of different behavior segments in B2 that match J?i). Since, in general, 

segments in B22 can be distributed partly preceding B21 and partly succeeding B21, there can 

only be at most two subfunctions other than Fx (or multiples of it)—one subfunction / that is an 

abstraction over the behavior segments that precede B21 (i.e., 522-i) and the other subfunction 

g that is an abstraction over the behavior segments that succeed B2X (i.e., #22-2)- By tracmS 

B22 back from the initial state of B21 and tracing it forward from the final state of B2X in B2, 

IDEAL can identify the segments B22-1 and B22-2 and find their functional abstractions / and 

g in order to learn an applicability condition for the new mechanism. IDEAL analyzes in this 

manner because it would enable discrimination among competing mechanisms in terms of these 

subfunctions of a desired function, while using the mechanisms in later problem solving. For 

instance, / and g would be different for feedback and feedforward mechanisms. Thus IDEAL 

describes all the generic mechanisms it learns in a uniform representation, that is, in terms of 

relationships between candidate and desired functions and the corresponding behaviors. In sum, 

a generic mechanism specifies in a pattern-like, device-independent manner, yet using the SBF 

representation language how to compose the candidate behavior (that achieves F\) with the 

behaviors that achieve the subfunctions / and g to generate a behavior that achieves the desired 

function F2 where F2 can be decomposed into /, Fx (or multiples of it), and g. 

In addition to the higher level dimensions of comparison described above, there are two 

important variables of interest that are provided by the representation vocabulary of the SBF 

models: primitive functions and their ranges of transformation in each behavior segment (r) 

and the number of different behavior segments in B2 that match with Bx (n). The possible 

outcomes of interest for comparing r's are whether the range of transformation for Bx is equal to 

the range of transformation in each matching behavior segment in B2 or they are not equal, and 

the values of interest for n are whether n = 1 or n > l.2 Given the task of learning from two 

design analogues and the above values for the two variables, four different situations are possible 

as shown in Table 7.1. An SBF representation of the cascading mechanism can be learned when 

the regularity in the source and target design analogues is as in situation 2. 
In the problem-solving scenario of designing EC3 from EC1.5, the problem-solving context 

indicates that the behavioral segments to focus on for learning are those that correspond to 

2Only these two values of n are of interest because they define qualitatively different kinds of modifications to 

B\ in order to make it into B2. 



138 

Table 7.1: Situations of Regularity Between Similar Behavior Segments in Two De- 
sign Analogues 

Situation Range of Input-Output 
Transformation in both 
behavior segments, r 

Number of 
Repetitions 
of Bi in B-i, n 

What can be Learned? 

1. equal n = l Abstracted Behavior-Function 
relationships between B\ and 
B2. (e.g., generic mechanisms 
such as feedback, feedforward, 
and device composition) 

2. equal n > 1 Abstraction over n. 
(e.g., cascading mechanism) 

3. not equal n = l Abstraction over r. 
(e.g., prototypical 
device models) 

4. not equal n > 1 None due to lack of regularity. 



139 

the function of Battery in the two designs, EC1.5 and EC3. They are respectively states -+ 

statei-2 shown in Figure 7.2(d) (i.e., Bx) and state^ -»■ staters shown in Figure 7.3(b) (i.e., 

B2). Applying the above learning method, it is easy to identify that the regularity is as in 

situation 2 shown in Table 7.1. That is, Bi matches with more than one behavior segment, 

namely, «tatei_i -> states and state^ -> staters, in B2; and the range of parameter 

transformation in Bx as well as each matching behavior segment from B2 is same (i.e., 1.5 volts 

and the primitive function is "PUMP electricity"). Abstracting over the number of repetitions 

of J9i in B2 (which is > 1) and variablizing the range of parameter transformation, IDEAL 

hypothesizes a generic mechanism that would help in a problem-solving context similar to the 

current one. The model of the hypothesized cascading mechanism and its index are shown in 

Figure 7.6 (representations in (a) and the shaded region of (b)); the functional difference that 

the cascading mechanism reduces is the index for the mechanism.3 In addition, the index for 

the cascading mechanism consists also of the decomposability condition, which is F2 = n * Fi', 

since there are no preceding or succeeding segments in B2 that do not match with B\, both / 

and g are null functions. 

7.2.4    Incremental Revision of the Learned Mechanisms 

Forming an initial hypothesis for a mechanism based on the current source and target design 

analogues is itself a difficult task and involves the kind of comparative analysis described and 

illustrated above. But revising an already formed hypothesis based on the new set of source and 

target design analogues is a harder task and brings up several new issues: (1) at any given time, 

will there be only one description of the mechanism or several alternative descriptions held? 

(2) if only one description is held, how is a new hypothesis unified with the existing one? (3) 

if multiple descriptions are held, how is it decided whether the new hypothesis gets added as 

yet another alternative description or it gets unified with one of the existing descriptions? (4) 

how is a new hypothesis unified with an existing one? (5) how many problem-solving situations 

(i.e., training examples) does it take to arrive at a stable description of a generic mechanism (or 

multiple stable descriptions as the case may be)? and (6) whether the order of problem-solving 

situations presented matters, and if so, how does it affect learning? 
In this work we take the approach of maintaining minimal number of alternative descriptions 

for a mechanism at any time. The decision of whether the new hypothesis is unified with an 

existing one or is held as yet another alternative is predicated upon whether their indices can be 

unified seamlessly. By seamless unification we mean that the two indices are transformed into 

a single entity (and not merely as a disjunctive set). Since the generic mechanisms are indexed 

by the functional differences between the candidate design and the desired design, and by the 

decomposability condition of the desired function, the representation vocabulary of the SBF 

language used provides a way of determining (and unifying if possible) whether two given indices 

3A new piece of knowledge learned is futile unless its applicability conditions (or indices as we call them) are 

also learned. 
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DESIRED DESIGN 

GIVEN: 

MAKES: 

7SUB 
?prop1:     ?val12 

?SUB 
?prop1:     ?val22 

BY-BEHAVIOR:        Behavior B2 

CANDIDATE DESIGN: 

GIVEN: 

MAKES: 

7SUB 
?prop1:     ?val11 

?SUB 
?prop1:     ?val21 

BY-BEHAVIOR: Behavior B1 

CONDITION: 
?va!22 - ?val12 » ?val21 - ?val11 

(a) Functional Difference the 
Cascading Mechanism Reduces 

>- 
en . 

7SUB 
?prop1:     ?val12 

! BY-BEHAVIOR   B1 

7SUB 
?prop1:    ?val12 - (?val11 - ?val21) 

\i BY-BEHAVIOR   B1 

7SUB 
?prop1:     7val12 - n * (7val11 - 7val21) 

Form New Goal 
"•"•r* 

7SUB 
7prop1:    ?val22 

Partial model hypothesized 
from the designs of EC1.5 
and EC3. An assumption In 
the partial model is: ?val22 
= ?va!12 - n * (?val11 - ?va!21). 

(b) Behavior Modification the 
Cascading Mechanism Suggests 

Figure 7.6: A Complete Description of the Cascading Mechanism in SBF Represen- 
tation 
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can be unified seamlessly. Suppose that two indices for two different descriptions of a mechanism 

specify the decomposability conditions as F2 = /i + «1 * F\ + 9\ an<i F2 = h + n2 * -Fi + 92- 

Then, in order for these indices to be unifiable, the corresponding constituents (/i and /2, nx 

and n2, and g\ and g2) must all be unifiable. We should note that a null constituent unifies with 

a non-null constituent and their unified description will be same as the non-null constituent. 

Since the /'s and #'s are functional abstractions and are represented using the SBF language, 

it is easy to determine whether two given functions can be unified into a single function. The 

unifiability of two functions can be recursively defined by the conjunctive unifiability of the 

corresponding constituents of the functions. That is, two functions can be unified if their input 

states can be unified as well as their output states. Similarly, two states can be unified if both are 

of the same type (substance state or component state) and both refer to the same substance or 

the same component (or variablized place-holders for them). When unifying two substances or 

components, if both of them specify a property, then the corresponding values are unified (that 

is, they are replaced by a single value that is more general than each individual value and that 

covers both). As far as n's are concerned, since our theory makes a commitment to distinguish 

between n = 1 and n > 1, considering them to be qualitatively different, the same commitment 

has to be respected in any inference that concerns n. Therefore, two n's are unifiable if both 

are 1 or both are > 1. Once the given two indices are unified, it is easy to unify the parts of 

the mechanism that specify the behavior modification along the same lines as the functions are 

unified. 
An analysis of our learning method suggests that the order of design problem-solving situ- 

ations only affects how fast a stable description of a generic mechanism can be arrived at. For 

any given order of presentation, the number of training situations needed to arrive at a stable 

description of a generic mechanism is different for different types of generic mechanisms. For 

instance, learning feedback mechanism (all different types of feedback) requires more training 

situations than learning cascading mechanism. Overall, however, even in the worst case, it 

requires only a few (< 10) design situations to learn the most complex type of generic mech- 

anism; this is because the case-specific SBF models of the design analogues together with the 

problem-solving context constrain the learning process by providing focus. 

Let us now consider the revision of the initially hypothesized model of the cascading mech- 

anism in order to illustrate our theory. That learned model of the cascading mechanism is a 

partial model in that it specifies that it can be used only when the larger functionality desired 

is an integral multiple of the smaller, candidate functionality. IDEAL can revise the hypothe- 

sized model into a more complete one when it solves a new design problem whose model has 

a behavioral pattern that is an instance of the complete cascading mechanism. For instance, 

such a design problem will specify a desired function and a structural constraint as follows. 

The desired function is to produce light of intensity 16 lumens in the bulb as output when the 

switch is closed, given as input an electricity with a voltage of 4 volts in the battery. And, the 

structural constraint is that there is no battery which can deliver electricity with a voltage of 4 
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volts but there are batteries that can deliver electricity of 1.5 volts and one battery of 1 volt. 

The solution to this problem will have a structural pattern where two 1.5-volt batteries and 

one 1-volt battery are cascaded. Thus acquiring a complete model of a generic mechanism may 

involve solving a number of design problems incrementally. 

Given this new problem, both the designs EC1.5 and EC3 are retrieved because both of them 

are functionally similar to the new desired function. Suppose that EC1.5 is selected for transfer 

and modification. Both the component-replacement and the learned cascading mechanism are 

applicable in this situation in order to modify the retrieved design; but the latter is more 

applicable than the former because of the structural constraints specified. Nevertheless, since 

the learned cascading mechanism is only partial, applying it in the current situation does not 

lead to a successful design for the new problem. Recall that the learned cascading mechanism 

is partial: it does not specify that a candidate design which achieves a smaller function Fi can 

be replicated as many times as possible (say, n) so that the composite function is < the desired 

function F2 and that an additional design can be composed to achieve the residual function 

(F2 — n * Fi). Under such failure conditions, if the correct solution (Figure 7.7) to the new 

problem is provided to IDEAL (either directly or when knowledge of component addition is 

available IDEAL itself generates a design by using an available component repetitively), it can 

revise the previously learned model of the cascading mechanism into a more complete one. 

Switch Battery3      Batteryl 
y      -            1,1, 

Battery2     «g Bulb 
11 -   llr    . 

T,                    T2           1 '    T^    1 '      T •   1 '     T3                           T4 
1.0 V         1.5 V          1.5 V 

(a) 4-volt Electric Circuit (EC4) 

Note: The behavior "Produce Light" of EC4 at 
toplevel Is similar to that of EC1.5 
except for the parameter values of 
voltage and Intensity. Also, the slot 
BY-BEHAVIOR In statel points to the 
behavior "Deliver 4 volts'' of Battery 
shown In Figure (b). 

ELECTRICITY 
loc: T3 
voltage: 0 volts 

I8tat°1-ll 

USIN« 3-FUNCTION    PUMP electricity of Battery2 

} ' ELECTRICITY 
loc: T£ 
voltage: 1.5 volts 

|state.,_2| 

USINC S-FUNCTION    PUMP electricity of Batteryl 

1 ' ELECTRICITY 
loc: T2' 
voltage: 3.0 volts 

l»tate1-3l 

USINC 3-FUNCTION   PUMP  < ilectrlclty of Battery3 

I ' ELECTRICITY 
loc:T2 
voltage: 4.0 volts 

|state1-4| 

(b) Behavior "Deliver 4 volts" of Battery 

Figure 7.7: Design of A 4-volt Electric Circuit (EC4) 
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IDEAL'S revision of a learned mechanism involves first, forming a new hypothesis from the 

current source and target design analogues using the method described in Section 7.2.3, and 

then unifying (merging or assimilating) the new hypothesis with the so far learned mechanism. 

Following the learning method described, IDEAL focusses on the behavioral segments that cor- 

respond to the function of Battery in the two designs EC1.5 and EC4, and finds by comparing 

the two that the regularity is as in situation 2 (Table 7.1). That is, Bx (the behavior segment 

in EC1.5) matches with more than one segment in B2 (the behavior segment in EC4). It also 

finds that there is a behavior segment in B2 that does not match with Bx and a functional 

abstraction ofthat segment (i.e., g) needs to be noted in the decomposability condition of the 

desired function F2. Hence, the newly hypothesized model of cascading mechanism specifies a 

more general decomposability condition, which is F2 = n * i^i + g; since there is no preceding 

segment in B2 that does not match with Blt f is a null function. Note that IDE AL could have 

found / to be the functional abstraction over the preceding segment in B2 and g to be null if 

the new design were as shown in Figure 7.8. (The two designs in Figures 7.7(a) k 7.8 differ 

in the way 1-volt battery is composed with the other two batteries.) Once a new model of the 

cascading mechanism is hypothesized, IDEAL compares it with the previous model and unifies 

the two (as per the process described in the beginning of this section); the result is a model as 

shown in Figure 7.6 (including both shaded and unshaded representations shown in the figure). 

Switch       Batteryl Battery2 Battery3 

y 

Figure 7.8:  An Alternative Design of the 4-volt Electric Circuit (alternative with 
respect to the configuration of batteries) 

7.2.5    Learning of Feedback GTM 

Let us now consider a scenario in which IDEAL learns one type of feedback mechanism. The 

scenario is that given two designs from the domain of electronic circuits, one without an instance 

of the feedback and the other with an instance, IDEAL compares their models and abstracts over 

a pattern of regularity to learn the feedback mechanism. We have described the same scenario 

of learning feedback GTM in Chapter 2. But there is a subtle difference in the representation 
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of fluctuations of output values. In that scenario, we assumed that the fluctuations are already- 

specified in qualitative, abstract terms (e.g., large vs. small) in the representation of the specific 

designs while in the current scenario we relax that assumption. A more realistic representation 

of specifying fluctuations in device design is in terms of a specification of quantitative/numerical 

tolerance limits (e.g., the output property value is 100 ± 10). The question then would be 

how might the qualitative values be defined and inferred from the quantitative specifications of 

fluctuations in the learning of feedback or feedforward GTMs. One way to address this issue is 

to define them in specific domains for specific properties in terms of a threshold for tolerance 

limits. In order for the threshold to be not dependent on the specific values, it can be specified 

as a percentage of fluctuation in the average value of the property. For instance, a threshold 

may be defined as follows: if the fluctuation in a property value is < 5% of the average value of 

the property, then it may be considered qualitatively small; otherwise, large.4 

Similar to the scenario of learning cascading mechanism, IDEAL forms the initial hypothesis 

for the feedback mechanism from the two design examples. Suppose that IDEAL'S analogue 

memory contains the design of a simple amplifier as illustrated in Figure 7.9(a, b). The structure 

of the device is shown schematically, its function as the pair of initial and final states of the 

behavior (indicated by GIVEN and MAKES in the Figure 7.9(b)), and the behavior itself as the 

sequence of states and transitions that explains how the structure achieves the function. The 

pair of states indicated by GIVEN and MAKES in Figure 7.9(b) shows the function "Amplify 

Electricity" of the simple amplifier. Informally, the function specifies that the amplifier takes as 

input electricity with a voltage of V;n volts (i.e., 1) at i/p and gives as output electricity with 

a voltage of Vout volts (i.e., 100 ± 20 where 100 is the average value and 20 is the fluctuation 

around the average value) at o/p. Figure 7.9(b) shows the causal behavior that explains how 

electricity applied at the input location i/p of the simple amplifier is transformed at the output 

location o/p. Note that the output of op-amp (operational amplifier, one of the components of 

the device) is dependent on the open loop gain (Av0, a device parameter) of the op-amp and is 

typically very high (ideally oo) and unstable. 

Let us now consider the scenario where IDEAL is presented with a problem of designing an 

electronic circuit. For instance, the function specifies that the desired output is electricity with 

a voltage value, V'out volts (i.e., 100 ± 3 where 100 is the average value and 3 is the fluctuation 

allowed around the average value) given an input electricity of 1 volt. See MAKES and GWEN 

states in Figure 7.9(d).5 IDEAL retrieves the design of the simple amplifier (Figure 7.9(a, b)) 

because the given functional specification is similar to the function of the simple amplifier. But 

the difference is that the output fluctuations in the retrieved design are more than those allowed 

4In the current version of IDEAL, we use such a characterization. 
5This is basically the problem of designing a device whose output is controlled and does not fluctuate much. A 

typical solution in electronics is to use an op-amp with feedback control. An op-amp is always used with feedback, 
whether it be in inverting or non-inverting configurations (Sedra and Smith, 1991). In the inverting configuration 
the input is given at the negative terminal of op-amp, and in the non-inverting configuration it is at the positive 
terminal. 
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(f) Behavior Modification that 
the Feedback Mechanism suggests 

Figure 7.9: Learning of Feedback Mechanism 
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in the desired. The fluctuations in the output of a device can in general arise due to several 

reasons, for instance, due to fluctuations in the input of the device or due to unstable device 

parameters. In the case of the design of a simple amplifier with op-amp, for example, the 

fluctuations in the output voltage could be due to the device parameter, open-loop gain, Ay0 of 

the op-amp. 
Suppose that IDEAL only has simple strategies such as replacing a component in a past design 

or substituting a new substance for one in a past design to deliver new functions. In the current 

scenario, given the model of the simpler amplifier as shown in Figure 7.9(b), IDEAL cannot 

localize the functional difference (i.e., more fluctuations than can be allowed) to any subset of 

components in the design because the model does not indicate any source of fluctuations. In 

that case, any component in the design could be a potential candidate for modification. Suppose 

that op-amp is chosen. Then IDEAL would only suggest that the op-amp needs to be replaced 

with another one that has a different Ay0 because that is the parameter of op-amp on which 

its output depends. But such replacement is not feasible in general because op-amps with any 

arbitrary Ay0 are not available! Even if the op-amp can be replaced, doing so will not satisfy 

the constraint on the output fluctuation. Therefore, IDEAL fails to modify the retrieved design 

to generate a design for achieving the new function. 

Now the question is whether and how IDEAL can learn a model of the feedback mechanism if 

it is given the correct design for the current problem. When IDEAL thus fails to solve a problem 

due to its knowledge conditions, the additional constraint specified (i.e., the output fluctuations 

to be in certain limits), and due to the fact that some components are not available with arbitrary 

parameters, it has an opportunity to learn. Then, if an oracle presents the correct design that 

both delivers the desired function and satisfies the additional constraint (the schematic of the 

structure of the new device is shown in Figure 7.9(c)) and the SBF model of the new device 

(shown in Figure 7.9(d)), IDEAL can form the initial hypothesis for a model of the feedback 

mechanism. 

Given the SBF models of the retrieved design (i.e., the simple amplifier) and the desired 

design, IDEAL compares them state-by-state and transition-by-transition along all possible di- 

mensions in their SBF representation in order to identify the regularity between them. That is, 

it performs a differential diagnosis on the two models by which it determines (1) if there is a 

behavior segment in the new SBF model that matches with the retrieved SBF model, and (2) if 

so, what additional segments there are in the new SBF model and how they are related to the 

matching segment. Once IDEAL determines those relationships, it abstracts over the specific 

substances, properties and values in the relationships and forms a GTM that encapsulates the 

abstracted functional differences and the abstracted behavioral relationships. We will now focus 

on the learning of the feedback mechanism. 

Recall from Section 7.2.3 that our model-based learning method involves first traversing the 

two focused behaviors and comparing them for similarity. When the behavior of the source 

design analogue [B\) matches with (or is similar to) some segment in the new device behavior 
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(B2), then there is an opportunity for IDEAL to learn a generic mechanism that specifies how 

to modify a behavior like B\ to get a behavior like B2 that achieves the function like F2. Also, 

suppose that B2 = B2i + B22, a composition of two behavior segments, and that Bi matches 

with B2\. 
In the current problem-solving scenario, applying the model-based learning method (de- 

scribed earlier in Section 7.2.3), IDEAL finds that the behavior segment (statei -* state2 -* 

statez in Figure 7.9(d), excluding the transition from statez to state2) in B2, the behavior 

of the inverting amplifier, matches with B\, the behavior of the simple amplifier (statei -»• 

state2 -»• statez in Figure 7.9(b)). Continuing to traverse the additional segments in B2, it 

discovers that there is a cycle (or loop) in B2 and picks out the relationships between the 

matching segment B2i (i.e., statei -* state2 -> statez) and the succeeding behavior segment 

(i.e., (statez, statei) -»■ state2 which constitutes B22) in B2. The functional abstraction over 

this segment is / and it becomes part of the decomposition of F2. Since in the specific behavior 

of the new design there are no additional states besides those in the matching segment that are 

not already taken into account in B22, there is no subfunction g in the decomposition of F2. 

IDEAL then abstracts over the specific substances, properties and values, and the relationships 

to form an initial hypothesis for a generic mechanism, which is the mechanism of feedback. In 

order for it to abstract over the quantitative specifications of fluctuations, IDEAL needs to have 

a characterization of what ranges of numerical values constitute different qualitative values such 

as large and small. It uses the specific characterization we described in the beginning of this 

section. That is, it computes the percentage of fluctuation with respect to the average value and 

considers the fluctuation to be small if the percentage is < 5% or large otherwise. In general, the 

5% threshold will not work for all devices or all domains; in IDEAL we use it only as a heuristic. 

Based on this, the fluctuation in the retrieved design of simple amplifier is abstracted to large 

and that in the new design to small. The model of the hypothesized feedback mechanism and 

its index are shown in Figure 7.9(e, f). 
Note that the feedback mechanism IDEAL learned in the current scenario (Figure 7.9(e, f)) 

is only a partial model of the feedback mechanism because it assumes that the controlling or 

feedback substance is same as the controlled or output substance (?Sub)), which is not true in 

general.6 A more complete model of the feedback mechanism as illustrated in Figure 7.10 needs 

to distinguish between the feedback substance (ISubc) and the controlled substance (?Sub) as 

well as consider the more general decomposition of F2 in terms of /, F\, and g. When the 

feedback substance and the controlled substance are different, the subfunction g would involve 

sensing the fluctuations in a property value of the controlled substance. 

Note also that the feedback mechanism IDEAL had learned does not capture the subtleties of 

open loop feedback and closed loop feedback. Even Figure 7.10 shows only a model of closed loop 

feedback. In order to learn those distinctions, however, IDEAL requires more design experiences 
6In fact, IDEAL does not even recognize that the feedback and controlled substances could be different because 

the current design experiences do not indicate that. 
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Figure 7.10: A Complete SBF Model of the Feedback Mechanism 

in which the substances fed back are different and the points in the device topology to where 

they are fed back are different. Thus acquiring a complete model of the feedback mechanism 

(or, in other words, all the different types of feedback mechanism) may involve solving a number 

of design problems incrementally and revising the hypothesized mechanism. 
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7.3    Learning of GPPs 

Now, let us consider the task of learning a different type of design pattern. Informally, the 

learning task here is: given a design analogue, form a GPP underlying the causal mechanism 

involved in the behaviors of the specific device model associated with the given design experience. 

A formal characterization of the learning task is shown in Figure 7.11. 

Input: • Design Analogue [consisting of design problem (i.e., function), 
solution (i.e., structure), and explanation (i.e., SBF model)], 
e.g., design of sulfuric acid cooler. 

Output:        • Generic physical processes (represented in SBF language), 
e.g., the GPP of Heat Flow and the Heat Exchange. 

Method:       • Model-based abstraction with inductive biasing. 
e.g., function of a design determines what parts of the experience to focus on. 

Knowledge: • Typology of primitive functions in the domain, 
e.g., ALLOW, PUMP. 

• Typology of functions in the domain (consisting of primitive functions), 
e.g., substance-parameter transformation. 

• Substances in the domain, 
e.g., nitric acid, water. 

• Components in the domain, 
e.g., pipe, chamber. 

• Past design analogues in memory, 
e.g., design of nitric acid cooler. 

Figure 7.11: Task of Learning Generic Physical Processes from Analogues 

7.3.1    An Illustrative Learning Task: Learning of GPP of Heat Flow 

In this section, we iUustrate the task of learning GPPs with an example task of learning the 

GPP of Heat Flow from specific design analogues. The GPP of Heat Flow specifies how heat 

flows from a hot body to a cold body when they are brought in thermal contact.7 We describe 

how the models of GPPs can be acquired by a gradual removal of structural information (i.e., 

physical structure) from the SBF models of specific devices. This process of abstraction occurs 

while storing a design analogue for potential reuse. 

Consider, for example, the situation in which IDEAL finds multiple (e.g., two) analogues 

to be similar in their functions while it is storing a new design in the functionally organized 

7The physical principle of the Zeroth Law of Thermodynamics also captures the same (Fermi, 1937). 
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Figure 7.12: Sulfuric Acid Cooler 

analogue memory. We will consider the designs of sulfuric acid cooler (Figure 7.12) and nitric 

acid cooler whose function and behavior are shown respectively in Figures 7.13 & 7.14 for the 

purpose of illustrating the task and methods. (In this illustration, we consider the "Heat Water" 

function of sulfuric acid cooler (SAC) and the "Cool Acid" function of nitric acid cooler (NAC).) 

The similarity between two functions is determined by comparing the input state and output 

state in them. Furthermore, similarity between two states is determined by comparing different 

slots in the Schemas, such as substance, location, and other properties. For instance, a 

function F\ is more similar to another function F2 than it is to F3 if the substance in both Fi 

and F2 is same while it is different in F3. For example, the function of a nitric acid cooler that 

cools nitric acid from T\ to T2 is more similar to another nitric acid cooler that cools nitric acid 

from T\ to T3 than it is to a sulfuric acid cooler that cools sulfuric acid from T\ to T2. This is 

based on the heuristic that changing a substance altogether in a design is harder than changing 

a property of a substance. These similarity measures are based on those used in KRITIK for 

accessing cases from memory (Goel, 1992b). In addition to abstracting the functions of similar 

design analogues, IDEAL can also abstract the associated SBF models for use in solving problems 

by analogy in a different domain with the experience gained in one domain. However, IDEAL 

does not know a priori what the target "concept" will be; hence, it formulates the abstracted 

model as a hypothesis. 

As mentioned earlier, the function of a device determines what parts of its model to abstract. 

If the function is a transformation function (e.g., substance transformation, substance-parameter 

transformation, substance-location transformation) then any relations in the different types of 

context annotating the transitions in the behavior that describe the corresponding change and 

the transitions themselves can be abstracted to form meaningful abstractions of behaviors. For 

example, since the function "heat water" of sulfuric acid cooler is to transform the temperature 

of the substance water from one value to another, the transition transitions^ in Figure 7.13(b) 

is useful to focus on. The relations on the parameters of temperature describing the change 

can be abstracted along with the similar behavior of another cooler or heater. In addition to 
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USING-FUNCTION    ALLOW Water of Heat-Ex-Chamber 

USING-FUNCTION    ALLOW heat of H2S04-plpe 

UNDER-CONDITION-STRUCTURE 
CONTAINS    H2S04-plpe 

H2S04 

temperature:T1 

has relations:   T-j> t-j 

t2> t-, 

UNDER-CONDITION-TRANSinON 
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(b) Behavior "Heat Water" of SAC 

Note: All locations are with reference to components in this design. 
All labels for states and transitions are local to this design. 

Figure 7.13: Function and Behavior of Sulfuric Acid Cooler 

the parametric relations, other aspects of the context, such as conditions on substance and 

conditions on structural relations that involve the parameter being transformed, also form an 

important part of the content to be abstracted. 
After identifying what parts of the specific models to focus on, the issue is to determine what 

kinds of changes along a dimension are meaningful for abstraction. In other words, the issue is 

what similarities between the two models (in the focused segments of the behaviors) are retained, 

as they are, in the abstraction and what differences are abstracted. The same kind of similarity 

metrics as those for comparing functions are used for this purpose as well, because a focused 

segment of behavior includes a sequence of states and state-transitions. However, in addition 

to comparing states, the annotations on the transitions are also compared as guided by the 

functions (explained above). Since abstractions tend to deal with more qualitative parameters 

than specializations, we consider positive changes (i.e., increase) and negative changes (i.e., 

decrease) in the parameter of the chosen property for abstraction. The changes across different 

models under consideration suggest the level of abstraction. Since SBF models specify different 

kinds of structural information (e.g., locations, structural relations, components etc.), successive 

removal of each kind leads to the formation of models at different levels of abstraction. By 

removal we mean two things: (1) substitution of specific values (e.g., low and medium) by a 

value from a more general class of values (e.g., qualitative-value) in a value hierarchy and (2) 

a complete deletion of specific structural information (e.g., deleting the information that some 

substance moves from one location to another). These will become clearer from the example 
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Figure 7.14: Function and Behavior of Nitric Acid Cooler 

illustrated below. 

7.3.1.1    Learning to Different Levels of Abstraction: Heat Exchange and Heat Flow 

GPPs 

Since some functions such as that of a sulfuric acid cooler can be classified in multiple 

ways, multiple subtasks of abstraction can be performed—abstraction over parameter changes 

and abstraction over changes in location. Depending on which abstraction is performed on given 

experiences, different types of abstract models will be formed. However, in some cases, both 

might be applicable; in such a case of multiple subtasks, abstraction occurs to multiple levels. 

IDEAL applies both methods, when applicable, in a specific order, that is, it abstracts over 

parameter changes prior to changes in location. Models at intermediate levels of abstraction are 

models of prototypical devices (similar to design prototypes (Gero, 1990)) such as the model of 
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a heat exchanger that is applicable to both coolers and heaters. Models at still higher levels of 

abstraction are such as the model of a physical principle "the zeroth law of thermodynamics" 

or the physical process "heat flow." 

7.3.2    The Model-Based Learning Methods 

Consider the design of a sulfuric acid cooler (Figure 7.12) and its function of heating water for 

the purpose of illustrating the methods. The type of this function (i.e., substance-parameter 

transformation as well as substance-location transformation) suggests two methods for abstrac- 

tion: (1) abstraction over substance-parameter transformation (Figure 7.15) and (2) abstraction 

over substance-location transformation (Figure 7.16). The transitions transitions in the be- 

havior "cool acid" of NAC (Figure 7.14(b)) and transition6-7 in the behavior "heat water" 

of SAC (Figure 7.13(b)) are selected for abstraction because they transform parameters of the 

substance temperature and the substance location. 

The application of the method shown in Figure 7.15 to these two behaviors results in the 

description of an abstracted model as shown in Figure 7.17, which is the SBF model of the GPP 

of Heat Exchange (i.e., the model of a heat exchanger which is a prototypical device).   Note 

Input:      • Ei, the new design experience. 
• E2, a design experience found to be similar to E\ under the same node in memory. 

Output:   • Abstracted model from E\ and E2. 
Procedure: 
if (function of E\ is substance-parameter-transformation) 

then 
begin 
(1) Get transitions, TR\ and TR2, corresponding to the transformed parameter 

in Ei and E2 respectively. 
(2) Compare the change in parameters in TR\ and TR2 qualitatively. 

if (direction of change is same in TRi and TR2) 
then abstract over "range" of the parameters; 
else  abstract over the direction of change; 

(3) Modify other context in TRi and TR2 that specifies this parameter. That is, 
if (any "inequalities" exist on the parameter-relations) 

then abstract the inequalities to conditional inequalities; 
(4) Propagate this abstraction to other dependent parameters and transitions, 

and then repeat step (3) until all the context is abstracted. 
(5) Store the abstracted model from E\ and E2. 
end. 

Figure 7.15: A model-based method for abstracting over parameter transformation 

that the structural information in the behaviors of SAC and NAC is abstracted and so are the 
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parametric relations in the corresponding transitions (Figure 7.17). For instance, the specific 

components 7f2S04-pipe and #iV03-pipe that achieve the function "allow heat" are abstracted 

to the abstract component pipe achieving the same function, which is prototypical of a heat 

exchanger. 

IDEAL'S knowledge of components that f^SO^pipe and if JV03-pipe belong to the class of 

pipes helps in doing this abstraction. Also, the parametric relations in Figure 7.17 cover both 

possibilities, that is, increase and decrease in the substance temperature, unlike those in the 

behavior of either SAC or NAC alone. This is essential to describing the behavior of a heat 

exchanger. Further, the abstractions are propagated to the behaviors of those substances on 

which the transitions depend, which is indicated by UNDER-CONDITION-TRANSITION in 

the Figures 7.13(b) & 7.14(b). That is, in step 4 of the method (Figure 7.15), for instance, the 

abstractions performed on the behavior segment (say, "heat water" of sulfuric acid cooler) are 

propagated to the dependent transition (i.e., "cool acid" of sulfuric acid cooler) which results in 

the abstracted segment "cool substance" shown in Figure 7.17. 

Input:      • Ei, the new design experience or newly abstracted experience. 
• £'2, a design experience (perhaps abstracted before) found to be similar to Ei, 

if any, under the same node in memory. 
Output:   • Abstracted model from E\ (and E2). 
Procedure: 
if (function of E\ is substance-location-transformation) 

then 
begin 
(1) Get transitions, TRi and TR2, corresponding to the location in £iand Ei respectively. 
(2) Compare the causal context that involves location in TR\ and TR2. 

if (causal context is similar in TRi and TR2) 
then abstract/variablize locations; 
else  abstract over the associated structural elements; 

(3) Modify other context that involves locations and associated structural information. 
That is, 
if (any structural conditions exist in TRi and TR2 and they are similar) 

then remove the structural conditions; 
else  check for similarity at a more abstract level of components involved; 

(4) Propagate this abstraction to other dependent parameters and transitions, 
and then repeat step (3) until all the context is abstracted. 

(5) Store the abstracted model from Ei and E2. 
end. 

Figure 7.16: A model-based method for abstracting over location transformation 

The application of the method shown in Figure 7.16 to the result of applying the first method, 

that is, to the model of the heat exchanger, leads to the formation of an even further abstracted 
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model as shown in Figure 7.18. This is a partial description of the generic physical process "heat 

flow" or the principle that we call the zeroth law of thermodynamics.8 However, the system, 

conforming to the classical "term problem" in learning, does not realize that this is the zeroth 

law of thermodynamics nor does it realize that this is a partial description of the process "heat 

flow," but rather considers it simply as an abstract model possibly applicable to a wider class of 

devices. Again, note that the structural information in the behavior of heat exchanger is further 

abstracted in the behavior of heat flow. For instance, the component pipe that achieves the 
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temperature: ?Ti 
flow: ?R 

contains 
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magnitude: ?Q \ 
state. 
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flow: ?r  

contains 
HEAT 
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magnitude:   ?q, 

Behavior "Heat Substance" of Heat Exchanger 
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Note: Symbols prefixed with ? denote variables. 
All locations are with reference to components in this design. 
All labels for states and transitions are local to this design. 

Figure 7.17: Behavior of a Heat Exchanger (i.e., the GPP of Heat Exchange) ab- 
stracted from SAC and NAC 

function "allow heat" is abstracted to an abstract component connector achieving the same 

function. 
In addition to the result of abstraction over structure, the abstracted parametric relations in 

Figure 7.18 that cover both increase and decrease in the substance temperature are also crucial 

to representing the heat flow GPP. These relations are represented as conditions on substance 

properties indicated by the annotation UNDER-CONDITION-SUBSTANCE in Figure 7.18 be- 

cause the structural conditions (in Figure 7.17) are removed by the application of step 3 in 
8A complete description should also indicate that heat continues to flow from a hot body to a cold body only 

until an equilibrium temperature is reached. 
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Figure 7.16.   Again, step 4 in the method shown in Figure 7.16 leads to the propagation of 

abstractions performed in one behavioral segment to the dependent ones. 
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AU labels for states and transitions are local to this design. 

Figure 7.18: The Zeroth Law of Thermodynamics (i.e., the GPP of Heat Flow) 
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CHAPTER VIII 

LEARNING DEVICE MODELS 

In the previous chapter, we considered four different interaction conditions (3 under problem- 

solving failure, and 1 when there are no problem-solving failures) for knowledge acquisition. In 

brief, the three conditions under problem-solving failure were (1) oracle provides all the three 

constituents of the target design analogue, i.e., the function, structure and behavior for the new 

design; (2) oracle provides only the function and structure for the new design; and (3) oracle 

provides only the function and the localized substructure in the context of the failure (i.e., a 

solution for the specific, local adaptation goal). The fourth condition was when there was no 

problem-solving failure, i.e., the MBA process generates a design by exploring with alternative 

strategies, perhaps taking more modification steps than necessary. 

In all the four conditions, an SBF model of the new device is acquired. The learning of 

an SBF model of the device is important because the SBF model, in turn, enables several 

subprocesses in MBA including learning of design patterns, learning of indices, and transfer and 

modification of this device in future problem solving. In the first condition above, since the 

oracle directly gives the SBF model of the new device the acquisition is trivial. But in the other 

conditions, acquiring a new device model can be computationally hard. The fundamental issue 

common to learning in all those conditions is how to derive the internal causal behaviors of the 

new device given its structure. This task is hard because in some domains structural elements 

may have multiple behaviors and selecting the appropriate behavior(s) for each element in the 

given structure and composing them to generate the behaviors for the entire structure can be 

very complex. It is more so when the given structure is complex. Therefore, the computational 

issue is how to control the inferences needed in achieving this task. 

The models of devices can be generally acquired in a number of ways: acquisition from a 

teacher, acquisition from natural language descriptions of devices and their behaviors (Peterson 

et al., 1994), acquisition by composition of primitive structural elements (i.e., consolidation 

(Bylander, 1991)), and acquisition by revision of models of similar devices (Goel, 1991b). We 

introduce two new methods for the acquisition of device models. In our theory, new device models 

may be acquired by the following three methods: (1) revision of models of known devices as 

in KRITIK (Goel, 1991b), (2) a combination of model revision and composition of behaviors of 

primitive structural elements, and (3) instantiation of design patterns in the models of known 

devices. All three methods involve revising the models of known, similar devices. By avoiding 

the need for composition of behaviors of each primitive element in the structure, they control 
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the inferences. 

IDEAL uses methods (1) k (2) for acquiring a new SBF model under the interaction con- 

ditions (2) & (3). But IDEAL uses all three methods under condition (4). Since we already- 

described method (3) in Chapters 5 k 6, we focus here on methods (1) k (2). In particular, we 

will describe how IDEAL acquires a new SBF model using method (1) under condition (4) and 

using method (2) under conditions (2) k (3). 

8.1    Learning by Model Revision and Primitive-Behavior Com- 
position 

IDEAL uses this method in two of the interaction conditions under problem-solving failure: when 

it receives only the desired design (i.e., the structure) and when it receives only the solution to 

the specific adaptation goal. This new method is necessary because of the following reasons. 

Although the method of behavior composition can be used for deriving behaviors from most 

structures, it is computationally expensive and hence not desirable. Although the method of 

model revision addresses the complexity issue, it alone is not sufficient for solving all classes 

of structure-to-behavior generation problems. For instance, when the given structure has new 

components and the known devices do not have them, then revising the model of a known device 

requires composition of the behaviors of the new components. Therefore, we developed this new 

method that combines model revision and composition of primitive behaviors. 

8.1.1    When Oracle presents only the Desired Design upon 
Problem-Solving Failure 

Since IDEAL uses a model-based method that requires the SBF models of the source and target 

design analogues for it to learn any abstractions, under this condition of interaction, it requires 

the additional inference step of deriving the behavior for the given structure of the new design. 

Therefore, given the structure and the function (available as part of the problem specification) of 

the new desired design, IDEAL first derives the internal causal behaviors of the given structure 

in order to comprehend how the given structure achieves the desired function. It uses the 

method of model-revision and primitive-behavior composition for this task; that is, it revises 

the behavior of the retrieved design analogue by mapping the components in the given structure 

onto those in the structure of the retrieved design and by composing the behaviors of any 

additional components in the new structure with the behavior of the retrieved analogue. 

Once IDEAL comprehends the functioning of the given structure in terms of the internal 

causal behaviors of the structure, it can learn design patterns as described in the previous 

chapter. We have tested IDEAL for its learning of SBF models under these knowledge conditions 

in the domains of electric circuits, heat exchangers, and electronic circuits (with operational 

amplifiers) in the context of learning cascading and feedback mechanisms. We will now illustrate 

its learning of the SBF model for EC3 (the 3-volt Electric Circuit that produces light; Figure 7.3) 
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from that of the design, EC1.5 (the 1.5-volt Electric Circuit that produces light; Figure 7.2) 

under the current knowledge conditions. 

STRUCTURE Circuit EC3 

COMPONENTS:       (Batteryl. Battery2, Switch, Bulb) 

STRUCTURE       Batteryl 
RELATIONS:     (SERIALLY-CONNECTED 

Switch  Battery2) 

PARAMETERS:    (voltage  1.5volts) 

FUNCTIONS:     (ALLOW   electricity) 
(PUMP   electricity) 

CONNECTING-POINTS:      (T2'  T2) 

STRUCTURE        Battery2 
RELATIONS:    (SERIALLY-CONNECTED 

Batteryl   Bulb) 

PARAMETERS:    (voltage   1.5volts) 

FUNCTIONS:      (ALLOW   electricity) 
(PUMP   electricity) 

CONNECTING-POINTS:      (T3  T2') 

STRUCTURE    Switch 
RELATIONS:     (SERIALLY-CONNECTED 

Batteryl   Bulb) 

MODES:     (open    closed) 

STRUCTURE     Bulb 
RELATIONS:    (SERIALLY-CONNECTED 

Switch  Battery2) 

PARAMETERS:    (resistance 5 ohms) 
(efficiency 6.66) 
(wattage 20) 

FUNCTIONS:      (CREATE    light) 
(ALLOW   electricity) 

CONNECTING-POINTS:       (T3 T4) 

Figure 8.1: Structure of the 3-volt Electric Circuit in Schema Form 

Recall from Chapter 7 (Section 7.2.1) the situation in which IDEAL fails to generate a design 

for the problem of EC3 by modifying the retrieved design analogue EC1.5. Suppose that IDEAL 

is now given the structure of a correct design for achieving the function of EC3 as shown in 

Figure 8.1. As a first step, IDEAL copies the behavior of EC1.5 and modifies each unitary 

behavior segment (i.e., single state-transition-state) by mapping a similar component in the new 

structure onto the one in the behavior. For mapping these components, it uses the structural 

context (i.e., what other components to which the particular component is connected and how it 

is connected) and the functions of the particular components. For instance, the Bulb in EC1.5 is 

mapped only onto the Bulb in EC3 (and not onto any other component) because the structural 

context (i.e., a serial connection with a battery at a particular end and a serial connection with 
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switch at a particular end) and functions of Bulb in EC1.5 (in general, all its functions) are 

respectively similar to the structural context and functions of Bulb in EC3. These principles of 

mapping are similar to the systematicity principle of the structure-mapping theory of (Gentner, 

1983). These principles however do not guarantee a single, unique mapping between the structure 

of the retrieved design and the new design. For instance, either of the batteries in EC3 can map 

onto the battery in EC1.5, but both mappings are equivalent in this particular case because 

of symmetry in the connections. In general, IDEAL can work with any of these multiple valid 

mappings, but it chooses one randomly and proceeds with it. Hence, let us suppose that it maps 

the battery in EC1.5 onto Battery2 in EC3. The incomplete and incoherent behavior for the 

new structure before adding the behavior of the additional component (i.e., Battery 1 in EC3) 

will be as shown in Figure 8.2. 

state-i 
"GIVEN" state of Function of EC3 
BY-BEHAVIOR: 

pointer to the behavior "Deliver 3 volts" 

USING-FUNCTION ALLOW electricity of Switch 

UNDER-CONDITION-STATE 
state2 of Behavior-Close-Switch 

AS-PER-DOMAIN-PRINCIPLE        Klrchoff's Law 

state 2 I 

c o 

ELECTRICITY 
loc: Bulb 
voltage: 1.5 volts 

jUSING-FUNCTION      CREATE  light of Bulb 

LIGHT 
Intensity: 6 lumens 

AS-PER-DOMAIN-PRINCIPLE 
Intensity m Efficiency * Current * Current * Resistance 

| state3 

(a) Behavior "Produce Light" of EC3 

state- '1-1 
ELECTRICITY 

loc: T3 
voltage: O volts 

USING-FUNCTION    PUMP electricity of Battery     2 

state. '1-21 

ELECTRICITY 
loc: T2 
voltage: 1.5 volts 

(b) Behavior "Deliver 3 volts" of Battery Structure 

Note: AH locations are with reference to components 
in this design. All labels for states and 
transitions are also local to this design. 

Figure 8.2: Incomplete & Incoherent Behaviors of the 3-volt Electric Circuit in the 
middle of the process of generating behavior from structure 
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In order to revise the incomplete behavior to include the behaviors of any additional com- 

ponents in the new structure, for each additional component IDEAL first needs to determine 

where to compose the component behavior. That is, it needs to determine at which point in 

the incomplete behavior it should add the new component behavior. This task requires that 

the states in the behavior be specified at the locations between components (i.e., the structural 

points at which components are connected). So, for instance, IDEAL finds that the behavior of 

Batteryl in EC3 needs to be added after the state at location T2' in the incomplete behavior 

of EC3 (Figure 8.2). For each component, its behavior is specified as a transition between two 

states, the states at the input end and output end of the component. Based on the points at 

which the component behavior will be added in the incomplete behavior of the given structure 

and the input and output ends of the component, first the input and output states of the com- 

ponent behavior are generated. Then one of the functions of the component that best describes 

the transformation between those input and output states is selected to describe the transition 

between them. That is necessary because a component can have multiple functions, only one 

of which may be relevant in the current device. In the specification of components, each of its 

functions also specifies qualitative relations between parameters at the input end and the output 

end. When a function of the component is selected to describe the transition, the corresponding 

qualitative relations are also selected. Then those relations are modified to reflect the parame- 

ters in the input and output states of the component behavior, and added in the transition. For 

instance, the component behavior thus generated for Batteryl in EC3 is shown in Figure 8.3. 

Then this behavior of Batteryl is added after the state at location T2' (i.e., statei-2) in the 

incomplete behavior of EC3, and the parameter changes due to this insertion are propagated 

to the subsequent states and transitions in the incomplete behavior to generate a complete and 

coherent behavior for the given structure of EC3 as shown in Figure 8.4. 

state-) _2 

ELECTRICITY 
loc: T2 
voltage: 1.5 volts 

USING-FUNCTION   PUMP  electricity of Batteryl 

state !1-3 

ELECTRICITY 
loc: T2 
voltage: 3.0 volts 

Figure 8.3: Behavior of Batteryl in the context of the 3-volt Electric Circuit 



162 

18tate-| 
"GIVEN" state of Function of EC3 
BY-BEHAVIOR: 

pointer to the behavior "Deliver 3 volts" 

USING-FUNCTION  ALLOW  electricity of Switch 

UNDER-CONDITION-STATE 
state2 of  Behavior—Close—Switch 

AS-PER-DOMAIN-PRINCIPLE Klrchoff's Law 

I »tateg I 

2   (ÜSYNG'-FUNCTVÖNi"  CREATE   light of Bulb    ] 

■e 
CO c 
s 

ELECTRICITY 
loc: Bulb 
voltage: 3.0 volts 

LIGHT 
Intensity:   12 lumens 

AS-PER-DOMAIN-PRINCIPLE 
Intensity = Efficiency * Current * Current * Resistance 

state 3 | 

(a) Behavior  "Produce Light" of EC3 

|state.,_i| 
ELECTRICITY 

loc: T3 
voltage: O volts 

USING-FUNCTION    PUMP  electricity  of  Battery 

1 ' ELECTRICITY 
loc: T2 
voltage: 1.5 volts 

|statei_2| 

USIN« 5-FUNCTION    PUMP 

' ' ELECTRICITY 
loc:T2 
voltage: 3.0 volts 

Ist! ite1-3l 

(b) Behavior "Deliver 3 volts" of Battery Structure 

Note: All locations are with reference to components 
In this design. All labels for states and 
transitions are also local to this design. 

Figure 8.4:  Complete Behaviors of the 3-volt Electric Circuit generated from the 
given structure 

8.1.2    When Oracle presents only the Solution to the Specific 
Adaptation Goal upon Problem-Solving Failure 

This section describes our exploration of IDEAL'S learning under a different situation. The input 

knowledge conditions in this situation are such that when IDEAL fails to generate a design for 

a new problem it is given only the localized structure for a correct design. Recall that the 

computational process of MBA (Chapter 2) that IDEAL uses is such that it localizes, whenever 

possible, its modifications to a retrieved design analogue while solving a new design problem. 

Therefore, when it fails to generate a design, it has the knowledge of the localized structure 

in the retrieved design that it could not modify.   In such a situation, if IDEAL is given the 
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correct localized structure,1 then in order to learn any generic mechanism it needs to do two 

additional inference steps. The first is to revise the structure of the retrieved design to include 

the given new localized structure, and the second is to revise the behavior of the retrieved design 

to generate the internal causal behaviors for the new structure. 

Once IDEAL generates the structure for the new design problem, it can generate its internal 

causal behaviors as described in the previous section, and then learn design patterns as described 

in the previous chapter. We have tested IDEAL for its learning of SBF models under these 

knowledge conditions in the domains of electric circuits, heat exchangers, and electronic circuits 

(with operational amplifiers) in the context of learning cascading and feedback mechanisms. 

Since we have described in the previous section IDEAL 'S process for going from the structure 

of the new design to form its SBF model, we will now focus on the generation of the structure 

from a given localized structure. We will illustrate its process with the designs of EC1.5 and 

EC3 from the overall context of learning cascading mechanism under the current knowledge 

conditions. 
Recall from Chapter 7 (Section 7.2.1) that when IDEAL failed to generate a design for the 

problem of EC3 by modifying the design of EC1.5, the localized structure it was trying to modify 

was the Battery. Now let us suppose that IDEAL is given the new localized structure (i.e., just 

the part of the structure of EC3 that contains Batteryl and Battery2) to replace the Battery 

in EC1.5. Since IDEAL knows which localized structure in the retrieved design to replace and 

what is the new localized structure, it can very easily revise the structure of the retrieved design 

to reflect the new localized structure as its part and correspondingly revise all the structural 

relations that are involved. That is possible precisely because its learning is situated in its 

problem-solving context. However, one important, necessary inference it needs to draw before 

revising the structure of the retrieved design is to determine the mappings between the ends 

(the input and output ends) of the old and new localized structure (i.e., the connecting-points 

at which these structures are connected to the remaining structural elements in the design). 

The SBF language for structure enables IDEAL to perform this mapping consistently. That is, 

IDEAL maps the input end of the old structure onto the input end of the new structure, and so 

it does for the output ends also.2 This is to make sure that the direction of flow of substance(s) 

in the new structure is consistent with that in the old structure. Figure 8.5 illustrates the 

structure of the design of EC1.5, the new sub-structure that generates 3 volts, and the structure 

of the design of EC3 that IDEAL generates from the former two. Once the structure of the new 

design is available, IDEAL can generate its internal causal behaviors as described in the previous 

section. 

Hhe overall desired function is known as it is part of the problem specification and the function of the localized 
structure is also known as the problem-solving context provides that. 

2In general, it is more difficult and not clear how to infer the mappings when there are multiple input ends 
(for instance, there are two input ends for an op-amp) or multiple output ends. That remains as an open issue. 
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Old Sub-Structure 

Switch   ,/"Battery'"\ @)Bulb 

(a) 1.5-volt Electric Circuit (EC1.5) 

Batteryl Battery2 

liV T2   ÜV 

Switch      Batteryl Battery2 

(c) 3-volt Electric Circuit (EC3) 
(Note that the connecting points 
A in new sub-structure is mapped to 
T2, and B to T3) 

(b) New Sub-Structure 

Figure 8.5: Illustration of Generating the Structure of EC3 from EC1.5 and the New 
Sub-Structure (all structures shown only diagrammatically) 

8.2    Learning by Model Revision 

IDEAL uses this method for generating the behavior of a new design when the modifications to 

the retrieved design are simple and when there are no problem-solving failures. In this section, 

we illustrate how it can use this method repetitively to make a complex modification to the 

behavior of the retrieved design. 

8.2.1    When there are no Problem-Solving Failures 

Until so far, we have only considered how IDEAL could learn in a failure situation (i.e., it ei- 

ther cannot generate a design for the given problem or it generates an incorrect design) under 

different interaction conditions. We will now describe how it can learn a new SBF model com- 

pletely autonomously. Obviously, this task requires IDEAL to be endowed with some alternative 

strategies so that it can use them in solving new design problems successfully; it may have to 

do some exploration with this alternative source of knowledge in order to be able to solve the 
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new problems.3 

To the extent this research has explored, there were no alternative strategies for the mecha- 

nisms of feedback, feedforward, and device composition. But, for the cascading mechanism, an 

alternative is component-addition strategy. Hence, the discussion here will concentrate on how 

the strategy of component addition and the exploration to repetitively apply it in a problem- 

solving context enable IDEAL to solve the design problems and generate the new SBF model in 

which the cascading mechanism can be learned. 
The strategy of component addition suggests that a component, whose functional transforma- 

tion is < the difference between the desired transformation and that of a candidate component, 

can be added (serially) to the candidate component in order to reduce the difference.4 Therefore, 

when a component whose function is same as the difference between the desired and that of a 

candidate in a retrieved design analogue can be found, component addition leads to generating 

in one step a design that achieves the new function; it will require more than one step to gener- 

ate a design if the available components only achieve functions that are < the difference. That 

is, for instance, when the desired function is to achieve 2.5 volts and a candidate component 

achieves 1.5 volts, component addition suggests that a component that achieves 1 volt can be 

added to the candidate. Similarly, when the desired function is to achieve 4.5 volts and a can- 

didate component achieves 1.5 volts, it suggests to add in two steps two 1.5-volt components to 

the candidate; that is when there is no single 3-volt battery available. With the knowledge of 

component addition, IDEAL can solve all those problems under which it can learn the cascading 

mechanism. 
Let us now consider how the repetitive use of the component-addition strategy in a problem- 

solving context leads to a design (that further enables IDEAL to learn a model of the cascading 

mechanism). Recall from Chapter 5 that IDEAL'S adaptation process involves first revising the 

model of the retrieved design and only then its structure. To make the discussion concrete as 

well as related to the earlier discussions of learning models, we will consider the same problem 

of designing EC3. Furthermore, we suppose that IDEAL has retrieved the design of EC1.5. 

IDEAL recognizes that the component-addition strategy is applicable in this context because the 

functional difference between the problems of EC3 and EC 1.5 matches with what the component 

addition can reduce and there is a component available (a battery with 1.5 volts) whose function 

is < to the functional difference to be reduced (which is 1.5 volts). Hence applying the component 

addition with a battery of 1.5 volts to the design of EC 1.5 involves adding the battery in series 

with the one already in EC1.5. As per the computational process of model-based analogy, 

the modification suggested by the strategy is instantiated first in the behavior of the retrieved 

3This implies that the alternative mechanisms provide IDEAL with the same competence as would any "new" 
generic mechanisms that may be learned with oracle interaction under failure after learning the new SBF model. 
But the new generic mechanisms learned in this situation may make a difference in the performance of IDEAL, 
that is, they enable it to solve similar design problems faster. Thus IDEAL'S learning of GTMs in these situations 
is equivalent to knowledge compilation. 

4along the same motivations as means-ends analysis suggests. 
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design. Then the behavior is simulated to make sure that the local modification is consistent 

with the overall function and that it reduces the functional difference. Finally, the structure 

of the retrieved design is revised. It generates the behavior of the new design by revising that 

of EC1.5 (Figure 7.2) with the addition of the behavior of 1.5-volt battery (Figure 8.3) after 

the state state\-2- The resulting behavior is same as shown in Figure 8.4. Since in the current 

context, IDE AL finds by simulating the model that the addition of the 1.5 volt battery to the 

one in EC1.5 reduces the functional difference to null, the generation of a design for the problem 

of EC3 is considered complete. 

In the above example, only one application of the component-addition strategy was sufficient 

to complete the design problem. But in general, it may require several repetitive applications of 

the strategy. In order to illustrate such an exploratory process, let us consider a different design 

problem, namely, that of designing a 6-volt Electric Circuit (EC6). The function of the new 

desired design can be informally specified as producing light of intensity 24 lumens in the bulb 

as output when the switch is closed, given an electricity with a voltage of 6 volts in the battery 

as input. Similar to the earlier problems we considered, the new design problem also specifies a 

structural constraint that the desired design cannot have a single 6-volt battery. Furthermore, 

suppose that a constraint from the memory of available batteries is that there are only 1.5-volt 

batteries to use. Supposing that IDEAL has the design of EC1.5 in its memory of analogues, 

given the new problem, it can retrieve the design of EC 1.5 because their functions are similar. 

IDEAL recognizes that the component replacement will not work in this problem due to 

the structural constraint, but instead, the component addition would. The component-addition 

strategy is applicable because the functional difference between the problems of EC6 and EC1.5 

matches with what the component addition can reduce and because there is a component avail- 

able (a battery with 1.5 volts) whose function is < to the functional difference to be reduced. 

When testing the applicability of the strategy, IDEAL first looks for a component with a function 

exactly equal to the difference to be reduced (i.e., a battery with 4.5 volts); if such a component 

cannot be found, then it looks for a component that reduces the difference most (i.e., the battery 

with the most voltage capacity < the difference to be reduced). In the current context, such a 

component would be a battery with only 1.5 volts because of the constraints from the memory 

of available components. Hence, applying the strategy with the 1.5-volt battery in the design of 

EC1.5 will only produce a design as shown in Figure 8.6(a). The behavior of EC1.5 (Figure 1.4) 

is revised by adding the behavior of 1.5-volt battery (similar to one shown in Figure 8.3) result- 

ing in the behavior shown in Figure 8.7(a). IDEAL can recognize by simulating the behavior of 

this design that it does not achieve the desired function. Then, IDEAL starts to explore with 

the partial design thus far generated. That is, it views the partial design as a retrieved design 

analogue and applies the strategy of component addition to it. The second application of the 

strategy results in the partial design shown in Figure 8.6(b). The resulting behavior due to the 

second application of component addition is shown in Figure 8.7(b). Note that although the 

second partial design is closer to achieving the desired function than the first one, it does not 
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completely achieve the desired function. IDEAL thus continues to explore with the partial design 

until either it arrives at a design that achieves the desired function or it reaches any resource 

limitations (such as an upper bound on the number of repeated steps of transfer & modification). 

In the current context, the third application of the strategy results in the complete design for the 

given problem as shown in Figure 8.6(c). The behavior of the final design after revising that in 

the previous step is shown in Figure 8.7(c). Thus by making a simple modification to the model 

of a retrieved design in each step, IDE AL can make a complex modification in multiple steps 

that is equivalent to the one due to the instantiation of cascading mechanism in the retrieved 

design. 
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Figure 8.6:   Evolving Design for EC6 with repeated Applications of Component- 
Addition Strategy on the Design of EC1.5 
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CHAPTER IX 

EVALUATION AND ANALYSIS 

IDEAL provides an experimental testbed to evaluate our theory of innovative design. In this 

chapter, we describe the evaluation of our theory at two levels: the theory as a whole and the 

individual "components" of the theory. 

At the level of the theory as a whole, our theory of innovative design concerns with three 

core issues: (1) non-local modifications to known designs, (2) cross-domain transfer of design 

knowledge, and (3) reformulation of design problems. The evaluation question at this level 

is how well our theory accounts for these three issues. That is, (1) what classes of non-local 

modifications can it cover and what it cannot, (2) what classes of cross-domain transfer can it 

account for and what it cannot, and (3) what classes of problem reformulations can it cover and 

what it cannot? We have evaluated our theory along the following dimensions: 

• Computational feasibility 

• Generality in the sense of coverage of different tasks and domains, in particular, the fol- 

lowing 4 types of coverage: 

- Coverage of different types of design adaptation 

- Coverage of different tasks in analogy 

- Coverage of different types of analogies 

- Coverage of different domains 

• Common representations in two different ways: 

- For different types of models 

- Across different processes in analogical design 

• Scalability 

For the purpose of evaluating the theory at the level of individual components, our theory 

can be considered to have four main components: problem solving, learning of design patterns, 

qualitative modeling and learning of device models, and memory (i.e., its organization, indexing, 

and index learning). We have evaluated each of these components along different dimensions. 

Table 9.1 shows the dimensions of evaluation for each of these four components of our theory. 

We have used five different methodologies of evaluation listed below: 
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Table 9.1: Individual Components of Our Theory and The Dimensions of Evaluation 
for Each 

Component of Our Theory Dimensions of Evaluation 
Problem Solving Coverage of different design tasks 

Comparison of different adaptation strategies for efficiency 
Quality of solutions 
Use of the problem solver for a completely different task 

Learning of Design Patterns Coverage of different types of design patterns 
Expanded coverage of design problems 
Different interaction conditions in knowledge acquisition 
from external feedback 
Interactions of learning with other components of the theory 

Qualitative Modeling and 
Learning of Device Models 

Coverage of different types of models 
Different methods of acquiring device models 
Use of the same representations for a completely different 
task 

Memory: Organization, 
Indexing, and Index Learning 

Efficiency (of retrieval) 
Use of the indexing scheme for retrieval in a completely 
different task 
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• Testing the computational feasibility—where we not only make sure that different 

parts of the theory are implemented and operational in a computer program, but also 

include the testing involved in establishing the coverage of different classes of problems, 

tasks, and domains. 

• Mapping of design decisions to program (system) behavior—that is, various kinds 

of ablation studies where we also include the comparative evaluations between different 

strategies and different types of knowledge. 

• Changing the interaction conditions—with the external world as well as among the 

different components of the theory. 

• Changing the input conditions—for different components of the theory, especially 

learning. 

• Trying the program on a completely different task (than it is originally designed 

for) such as Knowledge Acquisition from Natural Language—in other words, subjecting 

the theory to new constraints arising from new task contexts. 

9.1    Evaluation of the Theory as a Whole 

In this section, we will describe how our theory is evaluated along specific dimensions that are 

applicable to the theory as a whole. We will defer our discussion of how well our model-based 

theory of innovative design accounts for the three facets of innovative design until the end of 

the chapter. 

9.1.1 Computational Feasibility 

Our model-based theory of innovative device design is computationally feasible as it is imple- 

mented in IDEAL. IDEAL has been tested with 50 different designs from 5 different domains for 

different aspects of the theory: 28 designs were used to test the learning of 6 different GTMs and 

the use of 3 of them; 4 designs were used to test the learning and use of GPPs (at different levels 

of abstraction); and 20 designs were used to test the model-based indexing, index learning, and 

retrieval. These designs were also used to test the other components of the theory in IDEAL 

along the specified dimensions of evaluation. 

9.1.2 Generality 

By generality of a theory, we mean how well it covers different types of tasks, different types of 

knowledge, and different domains. In particular, we describe below how our theory is general 

along four different dimensions: 

1. Coverage of Different Types of Design Adaptation 
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2. Coverage of Different Tasks in Analogy 

3. Coverage of Different Types of Analogies 

4. Coverage of Different Domains 

9.1.2.1 Coverage of Different Types of Design Adaptation 

IDEAL'S theory covers not only adaptive design tasks but also redesign based on external feed- 

back from an evaluation of designs. IDEAL demonstrates the use of GTMs in adaptive design 

task and the use of GPPs in redesign based on evaluation. 

9.1.2.2 Coverage of Different Tasks in Analogy 

This means generality of the theory in that it covers multiple tasks in analogical design. For 

instance, IDEAL addresses both learning and use of design patterns in analogical design; it also 

addresses the tasks of retrieval of source analogues, evaluation of new designs, and learning of 

indices for design analogues and design patterns for storing them in memory. Thus an important 

aspect of IDEAL'S evaluation is that it addresses several interesting and hard issues in analogical 

design. It is important to consider different issues because solutions to each imposes constraints 

on the others; otherwise, the resulting theories may be under constrained. For example, the 

memory processes impose constraints on the kinds of problem solving that can be supported, 

problem-solving processes impose constraints on the kinds of learning that are needed, and the 

learning processes impose constraints on what is available in memory. 

More specifically, the indexing scheme for design analogues in memory strongly constrains 

the class of design problems that can be solved and also constrains the retrieval processes. 

For instance, indexing only by functions of designs limits the class of problems to one where 

functional specifications are given. Since the next step is the transfer of source design analogue 

to the target problem, the types of source designs that can be retrieved puts constraints on the 

processes of transfer and modification by specifying the types of modifications that are needed 

for successful problem solving. Similarly, the processes of transfer also put constraints back on 

the retrieval. In addition, covering both retrieval and transfer brings out the issue of interaction 

(and control) between the two stages which will not surface if only either stage alone were 

modeled; and thus it constrains our theory more. Similarly, covering the stage of evaluation 

of the target analogue puts different requirements on the previous stage of transfer and vice 

versa. IDEAL also covers the issue of learning abstractions from the source and target design 

analogues, and as a result, it imposes constraints on the stages of transfer and modification, 

and evaluation in terms of the information that those stages have to generate as input to the 

learning stage. Finally, if the storage of target design analogue and learning of indices are also 

covered, they bring out the interactions with both indexing of design analogues in memory and 
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their organization. For instance, index learning can relax certain assumptions about memory, 

such as not requiring the complete knowledge of indices to source analogues a priori. 

9.1.2.3 Coverage of Different Types of Analogies 

Within a given characterization of what a "domain" is, IDEAL covers different types of analogies 

ranging from within-domain to cross-domain. For instance, it can use its design patterns learned 

in one domain (say, electric circuits) to solve adaptive design problems in the same domain and 

to solve problems in a different domain (say, heat exchangers) as well. We have varied the 

domains in which IDEAL learns the design patterns and tested whether it could successfully 

use the learned patterns in the others (including the one in which it learns). As we describe 

in the next section, IDEAL could learn the design patterns in different domains and use them 

successfully in different, other domains as well as it could in the same domains. 

9.1.2.4 Coverage of Different Domains 

This is to ensure that the theory is applicable in multiple domains. IDEAL has been tested in 

five different domains, namely, the domains of simple electric circuits, heat exchangers, elec- 

tronic circuits, mechanical devices (including momentum controllers and velocity controllers), 

and coffee makers for both learning and use of design patterns. IDEAL can learn the design 

patterns in different domains and also use them in different domains. For instance, it can learn 

the feedback mechanism in the domain of electronic circuits and use it in the domain of mechan- 

ical controllers, and vice versa. Similarly, IDEAL could equally use the cascading mechanism in 

the domains of simple electric circuits, heat exchangers, and electronic circuits (with op-amps), 

irrespective of the source domains (i.e., simple electric circuits including devices of flashlight 

circuits and electric heaters, and heat exchangers) in which it had learned the mechanism. 

9.1.3    Common Representations 

This is to establish the adequacy of the same representations, for instance, SBF models, in sup- 

porting a number of different processes and tasks such as the generation of a design, evaluation 

of a design, and learning of different types of design patterns. 

9.1.3.1 For Different Types of Models 

IDEAL uses the same SBF language to represent both models of devices and models of design 

patterns. The representation of design patterns is a graceful extension of SBF models. 

9.1.3.2 Across Different Processes in Analogical Design 

An important aspect of IDEAL'S evaluation is the uniformity of its representations across dif- 

ferent stages of analogical design.   IDEAL uses the same representations of device models for 
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supporting different stages. Of course the inferences drawn, and, therefore, the functional role 

played by the models changes from one stage of processing to another. The functional part 

of SBF models acts as index into the memory of analogues, and this enables IDEAL to infer 

similarity between the target problem and the stored analogues in the retrieval stage. The SBF 

model of a source design provides the functional and causal explanations of how the design 

works and this enables IDEAL to infer the parts of the design that need to be repaired in the 

transfer and modification stage. SBF models enable design verification by qualitative simulation 

in the evaluation stage. The functional and causal explanations that an SBF model provides of 

how the target design works enables IDEAL to learn abstractions in the next stage of analogical 

design, and so on. 

9.1.4    Scalability 

IDEAL now contains 50 design analogues from 5 different domains. It learns eight different 

design patterns that fall into two different types. The largest design in IDEAL has the orders of 

10 structural elements and 10 structural relations, and the order of 3 inter-dependent behaviors 

in its SBF model. That is the design of a gyroscope control system with feedback. Although 

IDEAL is thus not-a-small system, the scalability of the model-based approach still remains an 

open issue. 

9.2    Evaluation of the Individual Components of the 
Theory 

In this section, we will describe how the individual components of our theory are evaluated along 

different dimensions (Table 9.1) that are appropriate for each. 

9.2.1    Problem Solving 

In the problem-solving component of our theory, we include from our computational process 

of model-based analogy (Figure 2.1) the stages of analogical transfer and modification, and 

evaluation of the solution. We describe our evaluation of this component of our theory along 

four different dimensions: 

1. Coverage of Different Design Tasks 

2. Comparison of Different Adaptation Strategies for Efficiency 

3. Quality of Solutions 

4. Use of the Problem Solver for a Completely Different Task 

An analysis of our methods for the tasks in problem solving indicates that they are efficient. 

For instance, our method for the spawning of adaptation goals (i.e., the diagnosis of the source 
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design analogue) is efficient because the organization of the SBF model of the source design 

enables quick localization of the search for "faults" in the given design to a small portion of the 

SBF model, yet enabling non-local modifications due to the instantiation of appropriate GTM. 

9.2.1.1 Coverage of Different Design Tasks 

Under this dimension, we are interested in finding and characterizing the classes of design prob- 

lems that our theory of adaptive design covers. In our theory, the ability to make modifications 

to known designs is determined by the knowledge of the adaptation strategies (whether those 

strategies are learned or given). Some of the adaptation strategies make use of the knowledge 

of design patterns (in particular, GTMs) and some others do not. While describing how our 

theory covers different non-local modifications, we will later give in Table 9.2 a characterization 

of the types of non-local modifications that each of the GTMs enables. In addition, we will also 

indicate what type of non-local modifications that the component-addition strategy can enable. 

That, we hope, will indicate to some extent the classes of adaptive design problems covered in 

our theory. We will now try to characterize for each GTM the class of problems it enables in 

a more formal specification. That is, we specify the class of problems in terms of templates 

for the functions of candidate designs and desired designs, and the conditions under which the 

particular GTM is applicable. Figures 9.1, 9.2, and 9.3 respectively show such characterization 

of the classes of problems for component-replacement strategy, GTM of one type of feedback, 

and GTM of another type of feedback. 
In addition to being able to make non-local modifications, IDEAL can also do some simple 

modifications to known designs. Although the class of problems that the simple adaptation 

strategies enable are not as interesting, they nevertheless contribute to the coverage of design 

problems. Just to reiterate from Chapter 5, IDEAL has these four simple adaptation strate- 

gies: Substance Substitution, Substance-Property Modification, Component Replacement, and 

Component-Parameter Modification. Each of these strategies enables IDEAL to solve a different 

class of adaptive design problems. 

9.2.1.2 Comparison of Different Adaptation Strategies for Efficiency 

When there are multiple, alternative types of knowledge that can be used to solve the same 

class of problems, problem-solving efficiency is one criterion that may be used to compare those 

alternatives for their merits and demerits. Of the different GTMs this research has explored, only 

the cascading mechanism has an alternative strategy that can be used to solve the same class of 

problems. That is the strategy of component addition. Hence this discussion centers around only 

the cascading mechanism and component addition. We measure the problem-solving efficiency 

in terms of the number of steps of modification (and evaluation) required to successfully generate 

a solution. Each step involves both making the modification to the source design and verifying 

if that modification results in the desired function. 
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We have tested IDEAL for the comparison of these two adaptation strategies: instantiation 

of cascading mechanism and component addition. In this testing, we found that these two 

adaptation strategies have equal competence in solving the same class of design problems but 

different performance. The use of the cascading mechanism enables IDEAL to solve any problem 

from the same class in one step of modification (and evaluation), while the use of component 

addition requires n steps (where n is a measure of the size of the adaptive design problem). 

Therefore, by learning the cascading mechanism, IDEAL becomes more efficient at solving the 

same class of problems. 

We have described in Chapter 8 how the component addition strategy can enable IDEAL 

to solve the design problems from which it can learn the cascading mechanism. In applying 

the component addition strategy, generating a design for a new desired function requires only 

one step when there exists a component whose function is same as the difference between the 

desired and that of one in the retrieved design analogue; but it will require more than one 

step to generate a design if the available components only achieve functions that are < the 

difference. That is, for instance, when the desired function is to achieve 3 volts and an available 

component achieves 1.5 volts, component addition suggests that a component that achieves 1.5 

volts can be added to the available one; similarly, as we illustrated in Chapter 8, when the 

desired function is to achieve 6 volts and an available component achieves 1.5 volts, it requires 

three steps, adding one 1.5-volt battery in each step. Thus, with the knowledge of component 

addition, IDEAL could solve the same class of problems as it could with the cascading mechanism 

when all the following conditions hold good: (1) there exists a design analogue in which the 

component selected for modification has a parameter value that is smaller than the parameter 

value desired, as determined by the new range of transformation in the desired function; (2) 

there are components whose parameter values are < the difference (new parameter value - the 

smaller parameter value); (3) such components can be selected in some combination so that 

the sum of their parameter values is equal to the difference (new parameter value - the smaller 

parameter value); and (4) the component parameter values are additive when connected in series 

and so are their ranges of functional transformation. 

From the above description of the component addition strategy, it is clear that for all the 

problems to which the cascading mechanism applies the component addition also applies. How- 

ever, generating a design for a problem in this class using the component addition strategy 

requires n iterations of its application and evaluation (i.e., n steps of modification and evalua- 

tion) where n is the number of replications of a component needed (that is, the desired function 

F2 = n * Fi + F3 where JFi is the function of a component being modified in the retrieved design 

analogue and F3 is the function of a similar type component that specifies a smaller range of 

transformation than what Fi does). Whereas, generating a design for every problem in the same 

class using the mechanism of cascading requires only one step of its application and evaluation, 

independent of n. Therefore, learning the cascading mechanism (and using it) significantly im- 

proves IDEAL'S problem-solving efficiency for the same class of problems in comparison to using 
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the component addition strategy. 

In the above comparison, we only considered the common class of problems to which both the 

strategies apply. But there are differences in the coverage of problems each strategy potentially 

provides! Since, in general, for any iterative approach (i.e., repeated application of a strategy) 

there needs to be a finite upper bound on the number of iterations one could do using the 

same knowledge, there could be design problems (for which n > the finite upper bound) that 

may not be solvable using the component addition strategy alone. However, using the cascading 

mechanism for those problems could lead to successful designs. At the same time, the component 

addition strategy facilitates solving certain design problems that the cascading mechanism alone 

cannot. Those problems have a desired function F2 in relation with the function of the available 

component such that F2 = Fi + F3 where F3 is smaller than Ft; in other words, there is no 

replication of the available component required at all in solving these problems! This class may 

also include problems where F3 is smaller or larger than Fx and the structural constraints specify 

that there is only one component available to achieve Fi (i.e., the structural constraint inhibits 

replication of the component for Fi even when F3 > Fi). 

9.2.1.3     Quality of Solutions 

In adaptive design, one way the quality of a solution can be measured is in terms of the number 

of components used in the design for a given problem. In our theory, the quality of a solu- 

tion generated depends on the available knowledge in device models and what inferences that 

knowledge can enable. For instance, a model described in detail can enable localization of a 

needed modification to a primitive component while a model that describes the behavior of a 

device only at a high level cannot. When a modification to a known design in order to achieve 

new functions can be localized to a primitive component, the resulting solution can be of better 

quality (i.e., it can be more parsimonious in terms of the number of components used); of course, 

it also depends on the particular adaptation strategy used. For example, using the component 

addition strategy may result in more parsimonious designs than using the instantiation of the 

cascading mechanism because the latter suggests the use of several components to achieve a 

function while the former suggests the addition of one component. 

KRITIK2, the earlier version of IDEAL, has been specifically evaluated for the quality of 

solutions as follows (Stroulia and Goel, 1992): the question was how is the quality of solutions 

affected by the detail in the known device model when the adaptation strategy available is the 

instantiation of the cascading GTM. That evaluation led to the finding that the more detailed 

the known device model is, the more the quality of solutions generated by using the cascading 

GTM. 
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9.2.1.4    Use of the Problem Solver for A Completely Different Task 

Initially, the theory of our problem-solving component has been developed for the task context of 

design. In this task context, the design problems are specified in SBF representations. But, later 

in a companion project called KA (Peterson et al., 1994), we have used the same problem solver1 

for solving problems specified in Natural Language and for understanding design descriptions in 

Natural Language. We found that the same theory was equally applicable in that task context 

as well. 

9.2.2    Learning of Design Patterns 

We evaluated this component of our theory along the following different dimensions: 

1. Coverage of Different Types of Design Patterns 

2. Expanded Coverage of Design Problems 

3. Different Interaction Conditions in Knowledge Acquisition from External Feedback 

4. Interactions of Learning with Other Components of the Theory 

An analysis of our methods for learning indicates that they are efficient because the orga- 

nization of the SBF models together with the problem-solving context provides constraints on 

learning of design patterns and the comparison of design analogues takes place only on small, 

focused behavior segments in their models. 

9.2.2.1    Coverage of Different Types of Design Patterns 

Learning and Use of GTMs: IDEAL covers six different GTMs: one cascading GTM, four 

types of feedback GTM, and one type of feedforward GTM. It could learn all these six differ- 

ent GTMs using the same model-based learning method—it could learn them by abstracting 

over the patterns of regularity in device models of the design analogues. Furthermore, IDEAL 

could recognize the relevance of the appropriate GTM (of the three on which it was tested), 

retrieve it, and instantiate it in the context of adaptive design scenarios. By instantiating the 

retrieved GTMs in the SBF models of the source designs, IDEAL produced solutions to the 

target problems. 

Learning and Use of GPPs: IDEAL covers two different GPPs (the physical process of heat 

exchange at a lower level of abstraction and the physical process of heat flow at a higher level 

of abstraction—the difference between them being in the specification of the amount of specific 

structural information from the devices of cooler and heater from which it learns them). Using 

the same model-based approach as above, but using a different strategy/algorithm as suggested 

by the type of regularity in the given design analogues, IDEAL could learn both GPPs from two 

1actually KRITIK2 which is an earlier version of IDEAL 
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designs, one of acid cooler and the other of water heater. We have tested IDEAL then for its 

use of the learned physical processes in the task of redesigning a failed coffee maker. It could 

successfully recognize the relevance of these GPPs and use them for forming causal explanations 

of the observed undesired behavior in the coffee maker. It could subsequently redesign the coffee 

maker to compensate for the failures. Although both the physical processes (heat exchange 

and heat flow) were applicable in the context of the coffee maker redesign, using the process of 

heat exchange required more specific elements (such as heat-exchange chamber, pipes and the 

relationships among them) in the model to be adapted to the target design of coffee maker than 

those in using the process of heat flow. Thus, the higher the level of abstraction of a GPP, the 

lesser the adaptation needed in order to transfer it to a new design situation. 

9.2.2.2    Expanded Coverage of Design Problems 

The larger the coverage of tasks in the domain(s) of consideration the better accepted and 

more general is a theory. Since IDEAL'S design task is really adaptive design, the design tasks 

can be characterized by the differences in the functions of the known, retrieved design and the 

desired design that need to be reduced. Under the knowledge conditions that IDEAL knows 

only simple adaptation strategies such as component replacement and substance substitution, 

it can only solve the class of problems that involve simple, parametric differences. However, its 

acquisition of each new GTM enables it to solve a different class of problems, where each class 

is characterized by a different type of functional difference. That is, learning of GTMs increases 

the coverage of problems in IDEAL. 

Consider for instance the cascading mechanism. Before learning it (or in general without the 

knowledge of the cascading mechanism), under the above knowledge conditions, IDEAL could 

only solve a simple class of design problems. A design problem in this class has a functional 

specification of the form shown in Figure 9.1, which is of type substance-property transformation. 

The state of analogue memory is such that it has a design analogue whose range of functional 

transformation (Vi ~ V2, where Vi, V2 are respectively the input and output values of the 

substance in the function) is dependent on some parameter of a component in the design. 

Without the knowledge of the cascading mechanism, IDEAL could solve this class of design 

problems only if the range of transformation desired is same as the range of transformation 

in a matching design analogue or there exists a component of the desired parameter value as 

determined by the new range of transformation. For instance, a device to achieve 0-3 volt 

transformation function can be designed only if there exists a battery with a 3-volt capacity. 

After learning the cascading mechanism, however, IDEAL could solve a larger class of de- 

sign problems (including the above shown in Figure 9.1) whose specifications may also involve 

structural constraints of the kind that specific components with specific parameter values are 

not available (or are non-standard). In general, these structural constraints can be part of the 

2In general, the memory can have a class of design analogues each of which satisfies this condition. 
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Figure 9.1: The Class of Problems IDEAL Can Solve BEFORE It Learns the Cascad- 
ing Mechanism 
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problem specification, or they can also come from the memory of available components. That 

is, for instance, a design problem may specify that the new design to achieve 3 volts cannot 

use a 3-volt battery. Alternatively, the memory of available components may not have a 3-volt 

battery because it is non-standard. With the knowledge of the cascading mechanism, IDEAL 

could solve this new, larger class of design problems under certain conditions: (1) there exists a 

design analogue in which the component selected for modification has a parameter value that is 

smaller than the parameter value desired as determined by the new range of transformation in 

the desired function; (2) there are sufficient number (= [ (new parameter value / smaller param- 

eter value) J) of components of the smaller parameter value; (3) when the residue of the ratio 

(new parameter value / smaller parameter value) is non-zero, there exists a component of the 

parameter value equal to the residue; and (4) the component parameter values are additive when 

the components are connected in series and so are their ranges of functional transformation. 

Similarly, we can specify for each of the other GTMs, namely, feedback, feedforward, and 

device composition, the class of problems "before" and "after" learning. It is clear for each 

of these generic mechanisms that the class of problems IDEAL could solve after learning that 

generic mechanism is larger than those that it could solve before. For instance, Figure 9.2 

illustrates the class of problems that the feedback mechanism of one type enables. In this type 

of feedback mechanism, the input, output, and feedback substances are all the same. Before 

learning this type of feedback mechanism, IDEAL cannot solve the illustrated class of problems. 

Similarly, Figure 9.3 illustrates the class of problems for a second type of feedback; in this type, 

although the input substance and the feedback substance are the same, the output substance 

is different from the feedback substance. Again, IDEAL cannot solve the illustrated class of 

problems before learning the second type of feedback mechanism. 

9.2.2.3    Different Interaction Conditions in Knowledge Acquisition from 

External Feedback 

IDEAL has been tested for its learning of design patterns under different interaction conditions 

with an oracle that provides external feedback upon a problem-solving failure. When IDEAL 

fails to solve design problems, it is given external feedback from which it learns the GTMs. 

We have varied the information presented as feedback and observed in those different learning 

situations what processes might be involved in IDEAL'S learning and whether it can learn at all. 

In all the four different interaction conditions with which IDEAL was tested, we found that it 

could learn the GTMs. However, it required to make more inferences as the information in the 

external feedback reduced. Three interaction conditions involved presentation of 

1. desired design for the target problem and an SBF model for the solution or 

2. only the desired design for the problem or 

3. only the solution to the local, specific adaptation goal. 
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Figure 9.2: The Class of Problems IDEAL Can Solve AFTER It Learns One Type of 
Feedback Mechanism 
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Type of Feedback Mechanism 
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The fourth condition, in contrast, involved no interaction with the oracle; instead, IDEAL is 

given alternative adaptation strategies such as component addition that enabled it to solve the 

problems but it took more modification steps than necessary for some problems. In the following 

sections we use the cascading mechanism as an example GTM to describe the evaluation under 

these conditions. 

Interaction Condition 1: When Oracle presents the Desired Design and its SBF 

Model This is the simplest condition in terms of the inferences needed on IDEAL'S part in 

order to learn the GTMs. Since the SBF model for the desired design is also given by the oracle, 

IDEAL only needs to compare the models of the source design (that it was modifying) and the 

desired design. We have described this process in sufficient detail in Chapter 7. IDEAL could 

learn all the cascading, feedback, and feedforward mechanisms under this condition. 

Interaction Condition 2: When Oracle presents only the Desired Design Since IDEAL 

requires the SBF models of the source and target design analogues in order to form any abstrac- 

tions, under this condition, it requires an additional inference step that involves deriving the 

behavior for the given structure of the desired design. Hence, given the structure and the func- 

tion (which is already available as part of the problem specification) of the target/desired design, 

IDEAL first derives the internal causal behaviors of the given structure in order to comprehend 

how the given structure achieves the desired function. Once it comprehends the functioning of 

the given structure in terms of internal causal behaviors of the structure, it compares the new 

behavior with the behavior of the source design analogue and forms any generic mechanisms 

it can discover. We have tested IDEAL for its learning of the cascading and feedback mech- 

anisms under these knowledge conditions in the domains of electric circuits, heat exchangers, 

and electronic circuits (with operational amplifiers). We have described IDEAL'S method and 

illustrated its generation of an SBF model in the context of learning the cascading mechanism 

in Chapter 8. 
Interaction Condition 3: When Oracle presents only the solution to the local, spe- 

cific adaptation goal In this interaction condition, the information presented to IDEAL by 

the oracle upon problem-solving failure is much less compared to the information in Conditions 

1 & 2. As a result, IDEAL has an additional inferential burden in learning generic mechanisms. 

The input knowledge conditions in this situation are such that when IDEAL fails to generate 

a design for a new problem it is given only the localized structure for a correct target design. 

When IDEAL fails, it will also have the knowledge of the old, localized structure that it could 

not modify. However, in order to learn a generic mechanism in this situation, IDEAL needs 

to make two additional inferences. The first is to revise the structure of the source design to 

include the given new localized structure, and the second is to revise the behavior of the source 

design to generate the internal causal behaviors for the new structure. Once IDEAL generates 

the structure for the target design problem, it can generate its internal causal behaviors and 

then compare the behaviors of the source design analogue and the target design to form any 

generic mechanisms it can discover.   We have tested IDEAL for its learning of the cascading 
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and feedback mechanisms under these knowledge conditions in the domains of electric circuits, 

heat exchangers, and electronic circuits (with operational amplifiers). We have described and 

illustrated IDEAL'S process for the generation of structure of a new design from a given localized 

structure in the context of learning the cascading mechanism in Chapter 8. 

Interaction Condition 4: When there are no problem-solving failures This condition 

is quite distinct from the other three on which we have tested IDEAL because it involves no 

interaction with the oracle and no problem-solving failure. That is, IDEAL need not receive any 

information from the oracle in order to learn some generic mechanisms under certain conditions. 

Also, it need not fail and receive feedback for learning. Instead, it can also learn from successful, 

but inefficient, problem solving. Obviously, IDEAL needs to be given some alternative strategies 

for adaptation using which it can solve the given design problems. However, using this alternative 

knowledge, it may take more modification steps than necessary. This implies that the alternative 

strategies provide IDEAL with the same competence as would any "new" generic mechanisms that 

may be learned. But the new generic mechanisms learned in this situation may make a difference 

in the performance of IDEAL, that is, they enable IDEAL to solve similar design problems faster. 

Thus IDEAL'S learning task in this situation is equivalent to knowledge compilation. 

To the extent this research has explored, there were no alternative strategies for feedback, 

feedforward, and device composition. But for the cascading mechanism, an alternative is com- 

ponent addition. Therefore, we have tested IDEAL only on learning of the cascading mechanism 

under this interaction condition. In Chapter 8, we have described and illustrated how IDEAL 

generates the new design and its SBF model by taking a number of inference steps where the 

number is proportional to the size of the problem with respect to the source analogue (i.e., n 

is the ratio of the desired component parameter and the available component parameter where 

the parameters are determined by the difference in the functions of the candidate and desired 

designs). 

9.2.2.4    Interactions of Learning with Other Components of the Theory 

In this section, we describe our evaluations of IDEAL'S learning of design patterns (in particular, 

the learning of the cascading GTM) for the interactions with other subtasks of analogical design 

and knowledge conditions. We have evaluated along six different dimensions: 

1. Influence of Design Analogue Selection on Learning 

2. Influence of the Order of Presentation of Design Situations on Learning 

3. Learning from Different Sets of Specific Design Situations 

4. Learning from Design Examples with Different Structural Configurations 

5. Influence of the Representation of SBF models on Learning 

6. Influence of the Internal Organization of SBF models on Learning 



186 

All the following descriptions are in the context of examples presented in Chapter 7, i.e., learning 

of the cascading mechanism from the designs of 1.5-volt electric circuit (EC1.5) and 3-volt electric 

circuit (EC3), and learning of the feedback mechanism from the designs of a simple amplifier 

and an inverting amplifier. 

9.2.2.4.1 Influence of Design Analogue Selection on Learning Recall from Chapter 7 

(Section 7.2.4) that when the problem of EC4 was presented,3 both designs EC1.5 (Figure 7.2) 

and EC3 (Figure 7.3) were retrieved because their functions were all similar. In that section, 

we supposed that EC 1.5 was selected and described how the initially hypothesized cascading 

mechanism (Figure 7.6: representation in (a) and the shaded region of (b)) would be revised 

based on EC1.5 and EC4. It is however interesting to explore what the processing would 

have been and what the outcome would have been if EC3 were selected. Using the functional 

difference between the problems of EC3 and EC4 and diagnosing the SBF model of EC3 (as per 

the process described in Chapter 5) results in either of the batteries in EC3 as possible candidates 

for modification. Selecting either of the batteries for modification is equivalent. Hence let us 

suppose that Batteryl is selected. The functionality of Batteryl can be informally described 

as producing electricity with a voltage of 1.5 volts. The new desired voltage is 2.5 (i.e., 4 - 

1.5) volts because Battery2 already provides 1.5 volts. Both the component-replacement and 

the learned cascading mechanism are applicable in this situation to modify the retrieved design; 

but the latter is more applicable than the former because of the structural constraints specified. 

The difference between the functions of Batteryl and the new desired component match the 

functional-difference index of the cascading mechanism, but the decomposability condition on 

the desired function cannot be satisfied (i.e., 2.5 ^ n * 1.5 for any integer n). Therefore IDEAL 

fails to generate a design for the new problem. 

Suppose now that a correct solution for the new problem (Figure 7.7) is given. Then, 

IDEAL'S learning is triggered. The above problem-solving context enables IDEAL to focus on 

the behavior segments statei-2 -*■ stateis which is Bi (in Figure 7.3(b)) and statei-2 -*■ 
statei-4 which is B2 (in Figure 7.7). By comparing these two segments according to the model- 

based learning method described in Chapter 7, IDEAL finds that B\ matches with the segment 

siaiei_2 —► stateis in B2 and that there is a succeeding segment in B2 that does not match 

with B\. Note that n, the number of segments in B2 that match with B\, is now 1. As it can be 

seen, the regularity situation is as in 1 in Table 7.1. Therefore, IDEAL learns a different generic 

mechanism as shown in Figure 9.4, which is a device-composition mechanism. This will not unify 

with the existing cascading mechanism, as it should not be, according to our theory because 

their indices won't unify. (See Section 7.2.4 for a description of when two GTMs unify.) That 

is, the decomposability conditions of F2 in the two mechanisms won't unify because they specify 

qualitatively different values for n (n = 1 vs. n > 1). It is interesting to note that although both 

3That is the problem of designing a circuit that takes 4 volts of electricity as input and produces 16 lumens of 
light. 
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EC3 and EC4 have instances of the cascading mechanism, the current problem-solving context 

and the focus have led to learning a different generic mechanism. Thus the selection of a design 

analogue can potentially influence what GTMs may be learned. 

DESIRED DESIGN: 

GIVEN: 
F2 

MAKES: 

7SUB 
7prop1: 7val11 

7SUB 
?prop1: 7val22 

BY-BEHAVIOR:     Behavior B2 
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GIVEN: 
7SUB 

7prop1: 7val11 
R. "l 
MAKES: 

7SUB 
7prop1: 7val21 

BY-BEHAVIOR:     Behavior B1 

CONDITION: 
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F2 -   F]: ?val11 -+~ 7val21 
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Device-Composition Mechanism suggests 

7SUB 
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I BY-BEHAVIOR  B1 j 

7SUB 
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' 

BY-BEHAVIOR B22 

' 
7SUB 
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B2 = Bl + B22      where 
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The relationships between B1 and B22 are such that: 

FINAL-STATE (B1) m INITIAL-STATE (B 22 ) 

(b) Behavior Modification that the 
Device—Composition Mechanism suggests 

Figure 9.4: An SBF Representation of the Device-Composition Mechanism 

Suppose that the focus was on the entire substructure consisting of both batteries in EC3 

and all three batteries in EC4.   In such conditions also, IDEAL'S learning process results in 
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learning the device-composition mechanism as opposed to learning the cascading mechanism! 

This is because the comparison of the two focused behaviors was at the level of the entire 

focused behavior of the existing design (battery substructure in EC3) against the entire focused 

behavior of the new design (battery substructure in EC4). In contrast, if an external bias were 

given to compare at the level of a unitary behavior segment (i.e., a state-transition sequence 

consisting of two states and a single transition between them), then IDEAL could learn the 

cascading mechanism (as shown in Figure 7.6)! Then one might wonder why such a bias is 

not incorporated in our design of the model-based learning method! There are at least two 

reasons why it is not part of the method: (1) In general, for any two given design analogues, 

comparing at the level of a unitary behavior segment is computationally expensive and it results 

in a number of pairs of matches that can be combinatorial—the learner can be overwhelmed 

with the number of regularities! and (2) Even if the learner were to go through all possible 

regularities, it will postulate either the same set of generic mechanisms again and again, or such 

generic mechanisms that may never be useful in later design problem solving! 

9.2.2.4.2 Influence of the Order of Presentation of Design Situations on Learning 

Let us consider the effects of presentation ordering in just two design situations, i.e., the problems 

of EC3 and EC4. Suppose now that the design problem of EC4 is presented before that of EC3. 

Given the knowledge conditions as they were at the time EC3 was presented (Section 7.2.1) in 

the previous order of presentation, and given the problem of EC4, IDEAL would retrieve the 

design of EC1.5. Furthermore, it fails to generate a design due to the knowledge conditions and 

the structural constraints specified in the design problem. Given the correct solution for the 

problem of EC4 like earlier, IDEAL would hypothesize by following the process of model-based 

learning the model of cascading mechanism shown in Figure 7.6 (including both the shaded and 

unshaded representations in the figure). Now, presenting the problem of EC3 does not change 

the learned model of the cascading mechanism because (1) the learned cascading mechanism 

becomes applicable and its application results in a correct design for the problem of EC3 and 

(2) the cascading mechanism that can be hypothesized from EC 1.5 and EC3 is anyway subsumed 

by the model learned from EC1.5 and EC4. Note that one design situation would be enough 

to learn the same description of the cascading mechanism if the right design situation were 

presented first, while it would require two situations in a different order! These are only specific 

situations, but the general point is that the model-based learning method provides the necessary 

competence which can result in the highest performance under the right situation(s). Thus the 

order of presentation of design situations can affect the speed of learning GTMs. 

9.2.2.4.3 Learning from Different Sets of Specific Design Situations Of course, the 

training examples do determine what exactly can a learner learn. But, the question is how 

dependent is the learner on the specifics of the examples. Within each source domain in which 

IDEAL learns the generic mechanisms, we have tested it for learning from different sets of specific 
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design situations. Consider, for instance, the design situations for the learning of the cascading 

mechanism. The different sets of design examples, we have tried, varied in the specific component 

that was repeated in the design, that is, battery in one set, resistor in another, and so on. We 

have tested IDEAL with the minimal number of training examples in each set. At the minimum, 

for each learning session, one design problem is presented and IDEAL learned from the target 

design and a source design analogue. The two design examples in each set are such that one 

does not have an instance of the mechanism to be learned and the other has an instance of the 

mechanism (e.g., a design of 1.5-volt electric circuit with one 1.5 volt battery and a design of 

3-volt electric circuit with two 1.5 volt batteries connected in series).4 

We have tested IDEAL with 10 different sets: four in electric flashlight circuits, one in electric 

flashlight circuits with explicit resistors, two in electric heaters with resistors, and three in heat 

exchangers. In all these situations except when the electric flashlight circuits with explicit 

resistors were presented did IDEAL learn the same partial model of the cascading mechanism! 

When the designs of electric flashlight circuits with explicit resistors were presented, it could 

not learn the cascading mechanism because the functions of the resistors in the two designs (i.e., 

the ranges of voltage transformation each resistor causes) were different. That is, in order for 

IDEAL to learn the cascading mechanism, the function of the particular component (in terms of 

a substance property value transformation) in one design should repeat more than once in the 

other with the same range of value transformation in each of the repetitions. 

Thus, IDEAL's learning is independent of the specific components that repeat in the design 

examples but it is dependent only on the regularity in the SBF models of the designs. If the 

given designs do not have any of the regularities, obviously enough, it does not learn any generic 

mechanisms. 

9.2.2.4.4    Learning from Design Examples with Different Structural Configurations 

Design examples with certain regularities such as those for feedback and feedforward cannot 

have much flexibility in changing the structural configuration, but those with the replication of 

a component can have equivalent alternative structural configurations. Hence, we have tested 

IDEAL for how independent its learning of the cascading mechanism can be of the specific 

structural configuration in the design examples. For instance, we have tested if IDEAL could 

learn the same cascading mechanism from EC1.5 (Figure 7.2) and the design of EC3 with 

an alternative structural configuration (as shown in Figure 9.5) as it would learn from the 

design of EC1.5 and EC3 (Figure 7.3). Note that the two batteries in the alternative structural 

configuration of EC3 are not "contiguous," that is, they are not connected right next to one 

another. IDEAL indeed can learn the same cascading mechanism from two designs irrespective 

of the structural contiguity of the repeated components in the designs. 
4That is, they have the structural regularity that can enable learning the cascading mechanism. 
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1.5 V 

Figure 9.5: An Alternative Structural Configuration for the Design of EC3 

9.2.2.4.5 Influence of the Representation of SBF models on Learning We have 

explored how important the representations of SBF models of the design examples are to learning 

of the generic mechanisms. In particular, we have experimented with the representation of 

states in the SBF models: states represented at the locations of structural connections vs. 

states represented at the level of components. All the examples so far presented have the 

representations of the former kind. The design analogue of EC1.5 is shown in the latter form 

of representation in Figure 9.6. Note that there are no states represented at the connections 

between Battery and Bulb, and between Battery and Switch; instead, a state is represented at 

the Battery specifying that electricity has a voltage of 1.5 volts. 

As we have explained and illustrated before, with the SBF models represented in the first 

form, IDEAL could learn the appropriate generic mechanisms from the given design examples. 

With the second form of representations of SBF models, however, it could not learn the generic 

mechanisms. It is because in the second form of representing SBF models, the functions of the 

particular components that participate in the regularity are not explicit as a transformation 

of substance-property value. For instance, the representation of the SBF model of EC1.5 in 

Figure 9.6 does not indicate that the function of Battery is a transformation of voltage from 0 

volts to 1.5 volts. This experiment establishes that in order for IDEAL to be able to learn, an 

important aspect of the representation of SBF models is that the functions achieved by each 

component in the design (that participates in the instance of the mechanism to be learned) need 

to be explicit in terms of a property value transformation. 

9.2.2.4.6    Influence of the Internal Organization of SBF models on Learning    We 

have tested IDEAL for how the internal organization of SBF models of the design examples 

affects learning of generic mechanisms. That is, in particular, we have experimented with two 

different internal organizations of SBF models: organization of behaviors of all the components 

in the device at the same, single level of detail (i.e., a fiat organization) vs. organization of 

behaviors in a hierarchy with behaviors of substructures at a lower level of detail (i.e., in a 
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Figure 9.6: An Alternative Specification of the Behavior of EC1.5 
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two-level organization, behaviors of the substructures of a device are at the lower level and the 

overall behavior of the device is at the higher level). 
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state < 
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Figure 9.7: Flatly Organized Behavior of the Design of A 3-volt Electric Circuit 

We have done this experiment with the design examples for learning of the cascading mech- 

anism. The internal organization of the SBF models in EC1.5 and EC3 presented earlier are, 

for instance, in the second category. A flat organization of the behavior in the SBF model of 

EC3 is shown in Figure 9.7. We found that IDEAL can learn the cascading mechanism in the 

same way in both cases of the internal organization of SBF models.   One would expect that 
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it may take much longer to find regularities in a flatly organized complex behavior of an SBF 

model, compared to that in a hierarchically organized behavior. However, since IDEAL exploits 

not only the internal organization of SBF models but also the problem-solving context to focus 

on the parts of the behaviors for abstraction, it only takes a little longer to focus in on the 

sub-behaviors in a flatly organized model than it would in a hierarchically organized model! 

9.2.3    Qualitative Modeling and Learning of Device Models 

This component of our theory has been evaluated in the following three dimensions: 

1. Coverage of Different Types of Models 

2. Different Methods of Acquiring Device Models 

3. Use of the Same Representations for a Completely Different Task 

9.2.3.1 Coverage of Different Types of Models 

Our theory of qualitative models accounts for the content and representation of two different 

types of models: models of devices and models of design patterns. As mentioned earlier too, 

the SBF language we adapted from (Goel, 1989) is adequate to represent both these types of 

models. 

9.2.3.2 Different Methods of Acquiring Device Models 

Our theory accounts for multiple methods of acquiring device models: 

1. by revision of known, similar models (Goel, 1991b) 

2. by instantiation of design patterns in known models (while solving problems as explained 

in Chapter 5) 

3. by a combination of model revision and primitive behavior composition (when structural 

specifications are given in the interaction with an oracle) 

Earlier in our description of the evaluation of the learning component, we have indicated four 

interaction conditions for knowledge acquisition. In three of the four conditions, the SBF model 

of the new device needs to be generated, and it is done by method (3). 

In addition, the SBF models of new devices may also be acquired directly from Natural 

Language descriptions of devices. In a companion project called KA (Peterson et al., 1994), 

such acquisition of SBF models has been modeled. KA can acquire the SBF models similar to 

the ones used in IDEAL. Moreover, the earlier versions of retrieval and problem-solving modules 

of IDEAL (i.e., KRITIK2 system) have been used in KA. 
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9.2.3.3    Use of the Same Representations for a Completely Different Task 

The content theory of qualitative device models has been initially developed for the context 

of design task. But we have subjected this to the constraints of a completely different task. 

In particular, we refer again to the KA project in which the same SBF representations were 

used but for a different task. KA's task is understanding of Natural Language descriptions of 

designs and design problems. This indicates that our theory of qualitative modeling is flexible 

and general to support multiple functionalities (i.e., tasks). 

9.2.4    Memory: Organization, Indexing, and Index Learning 

We have evaluated this component of our theory along the following two dimensions: 

1. Efficiency of Retrieval for Different Indexing and Organization Schemes 

2. Use of the Indexing Scheme for Retrieval in a Completely Different Task 

IDEAL uses model-based indexing of design analogues and design patterns. It could learn 

multiple types of indices, functional and structural, for design analogues automatically as design 

analogues were acquired and learn functional indices for design patterns as they were acquired. 

It organized the design analogues in multiple hierarchies. In our evaluation with 20 designs, 

IDEAL'S model-based index learning was found to be more effective in the performance task 

of retrieval of design analogues than its indexing without the knowledge of models. With the 

addition of design analogues to memory, the average retrieval time typically increases irrespective 

of the memory organization, but in IDEAL it increases slower if model-based indexing and 

organization were used than otherwise. IDEAL'S model-based indexing and organization are 

such that the addition of more and more analogues in a given domain affects the retrieval of 

analogues only within that domain. 

9.2.4.1    Efficiency of Retrieval for Different Indexing and Organization Schemes 

The model-based approach is quite efficient because the organization of analogue memory and 

the functional indexing scheme enable a quick retrieval of analogues relevant to the current 

problem. We have measured the effect of model-based indexing on the efficiency of analogue 

retrieval and the measurements as described below support this conclusion. 

We used 20 different designs from two different domains (electric circuits and heat exchang- 

ers) to test the effect of model-based index learning on the retrieval of analogues. The indepen- 

dent variable is the number of analogues added to memory and the dependent variable is the 

normalized average time for retrieving any of the analogues in memory. The retrieval time is 

measured in terms of the number of comparisons needed between a specified problem and the 

stored analogues along each dimension (i.e., property of substance in functional specification) 

common to the problem and the stored analogues. The retrieval time is normalized with respect 

to the time it takes to retrieve an analogue when only that analogue is in memory. 
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As analogues are added to any memory, the subsequent retrieval time increases. In the first 

set of experiments, the question was whether model-based index learning has any useful effect 

on the growth of the retrieval time. Within each domain, we compared the retrieval times 

on 10 problems as the 10 analogues are added to memory under three different conditions: (1) 

analogues are stored using model-based index learning, (2) analogues are stored along all possible 

features in the respective problems (i.e., models are not used to select the relevant indices), and 

(3) analogues are stored without any organization in memory (i.e., the bottom-line condition 

in which the retrieval requires an exhaustive search through a list). The results are shown in 

Figure 9.8(a). It is evident from the graph in Figure 9.8(a) that the rate of growth of retrieval 

time in the model-based index learning condition is the slowest. The next best is condition 

(2), with condition (3) being the worst. The reason condition (1) is better than condition (2) 

is precisely because the SBF models help to store the analogues in a relevant, smaller number 

of features in the problems. In this experiment, new indices are added to memory when the 

first analogue is stored. The difference in the number of features selected under conditions (1) 

and (2) is just one. The difference in the retrieval times in these two conditions when only one 

analogue is stored hence indicates the advantage due to pruning out merely one feature. In 

condition (2), the retrieval time grows faster as analogues are added because of the addition of 

analogues along irrelevant feature(s) which in turn increases the retrieval cost due to matching 

on those features also. This experiment is controlled such that there is no confounding effect 

due to retrieval on partial match (because a partial match requires less number of comparisons 

in a hierarchy, as the search would stop at a higher level, than a perfect match requires). That 

is, for each of the problems used to measure the retrieval time, there is a perfect match in the 

stored analogues, and the retrieval under all three conditions results in the retrieval of the same 

analogues. 
We have also tested another effect of model-based indexing on the analogue retrieval. The 

question here was how the addition of analogues to memory under this indexing scheme in one 

domain affects the retrieval of analogues in another domain.5 We first stored the 10 analogues in 

the domain of electric circuits. There are two features under which IDEAL stored these analogues 

hierarchically based on the feature values. Then, we measured the normalized average retrieval 

time on the retrieval of these 10 analogues as 10 more analogues from the domain of heat 

exchangers are stored. IDEAL stores the second set of 10 analogues under different features 

than those for the first 10 (as the different sets of features in the problems characterize the 

domains to be different). The results are shown in Figure 9.8(b). As evident from the graph in 

Figure 9.8(b), the retrieval of analogues in the domain of electric circuits is unaffected with the 

addition of analogues in the domain of heat exchangers except for the spike in the retrieval time 

once when a new feature is added to memory as an index. The spike in the retrieval time is 

due to the comparisons required at the root node in analogue memory to discriminate between 
sTwo domains are considered distinct if the structural elements (e.g., batteries, pipes) in the domains are 

different. 
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the features (for instance, to select the hierarchy under voltage and weed out the hierarchies 

under acidity and state). Thus model-based indexing is effective in grouping analogues based on 

their content, and this in turn enables the retrieval of only semantically relevant analogues for 

given problems. Although this suggests a useful effect of model-based indexing on the quality of 

retrieval in restricting the retrieval to a relevant domain, it is yet to be empirically determined 

how exactly it affects the quality of retrieval within a given domain. 

9.2.4.2    Use of the Indexing Scheme for Retrieval in a Completely Different Task 

Initially, we developed our theory of indexing and index learning for retrieval in the context of 

design task. In this task context, the problems are specified in the SBF language and can involve 

both functional constraints and structural constraints. Later, we have subjected this theory to 

the constraints of retrieval task in a completely different task context. In particular, we refer to 

the KA project (Peterson et al., 1994) in which one task is to design for problems specified in 

Natural Language. Our indexing scheme worked equally well for the retrieval in that context. 

In fact, the KA project indicated that the structural indexing scheme is essential for covering 

some classes of design problems because their descriptions in Natural Language may only refer 

to the structure and none about the functions. 

9.3    Limitations 

Although our theory covers a number of issues in innovative design in sufficient depth as il- 

lustrated in the evaluation, there are some limitations. Like the evaluation of the theory, the 

limitations can also be stated at two different levels of the theory: the theory as a whole and the 

individual components of the theory. Unlike the descriptions of the evaluation, we will describe 

first the limitations of the components of the theory and then the limitations of the theory as a 

whole. 

9.3.1    Limitations Of Components of the Theory 

Recall that our theory has four main components: problem solving, learning of design patterns, 

qualitative modeling and learning of device models, and memory (i.e., its organization, indexing, 

and index learning). In the following sections, we will describe the limitations of these four 

components of our theory. 

9.3.1.1    Problem Solving 

In our theory, the problem-solving component includes the stages of analogical transfer and 

modification (i.e., spawning of adaptation goals and achieving them), and evaluation of the 

solution. As we have already mentioned, the coverage of this theory depends on the adaptation 

strategies that are assumed to be known or that can be learned.   Those strategies determine 
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the classes of design problems that can be solved. Currently, our theory can deal with only a 

limted number of different types of functional differences, for instance, only substance difference, 

substance-property-value difference, and substance-property-value-fluctuation difference. More 

specifically, the differences between the functions of a target design and a source design can be 

only in the output states (i.e., MAKES states of the functions); however, when the difference is 

substance-property-value-fluctuation type of difference, then it can be either in the input states 

of the functions or in the output states. While our theory can deal with differences in components 

that are due to the substance-related differences, it cannot cover differences in functions that 

are expressed in terms of component states. Neither can it cover design of devices with fields 

(for instance, electro-magnetic devices with electric field and magnetic field). Similarly, it is not 

clear whether our theory is applicable outside the design of physical devices, for instance, design 

of pictures (or buildings) where spatial reasoning may be more predominant than functional and 

causal reasoning. 

Furthermore, our theory is applicable only when the SBF model of a design to be modified 

is available. And, in particular, the SBF model needs to specify the qualitative or quantitative 

relationships between different properties of substances and components. That type of knowledge 

is needed in the device model in order for the diagnosis to work as well as for the repair and 

evaluation. If the relationships are qualitative, they can be only directly-proportional-to or 

inversely-proportional-to. On the other hand, if the relationships are quantitative, they can be 

simple algebraic equations relating one or more variables that conform to these constraints: if 

there is only one term in the equation, then it can have multiple variables, but otherwise, each 

term in the equation can have only one variable.6 These assumptions are important because 

the inferences required in problem solving regarding the changes in values of variables and the 

inter-dependencies between variables are limited by the assumptions. 

9.3.1.2    Learning of Design Patterns 

Although our theory of learning of design patterns has been evaluated extensively and has been 

made to be flexible, there still are some limitations, because the issues it addresses are hard. 

While the theory covers a reasonable variety of GTMs (in exact, six of them), its coverage of 

GPPs is poor—learning of only two GPPs has been explored. Even for the specific GTMs, 

learning has not been explored for some specializations of the GTMs. For instance, the current 

theory has been tested only for serial cascading but not for parallel cascading. Similarly, there 

are only four different types of feedback mechanism and only one type of feedforward mechanism 

for which our theory has been tested. 

The current theory only accommodates learning at the time of storing a target analogue. 

That is, design patterns are learned when a target analogue is available (either generated auto- 

6An example of the acceptable equation with one term is x = ai * y/z. An example of the acceptable equation 
with multiple terms is x = ai*y±a2/z±a3 *p2. This analysis has benefited from discussions with Bill Murdock. 
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matically or given by an oracle upon problem-solving failure) for storage. But, in general, design 

patterns may very well be acquired at the time of solving a problem in a different domain. A 

preliminary analysis has indicated that the same learning methods would be useful for learning 

at the problem-solving time also but different indexing and organization of design analogues 

would be necessary because the specific design analogues from a different domain would need to 

be accessed. 
Also, the issues in the incremental revision of learned design patterns have not been explored 

in sufficient depth. It is not clear yet, when and whether a new GTM is altogether formulated 

in a learning situation, or whether an existing GTM is revised. In the current theory, a new 

GTM is first formed in each learning situation. Then the new GTM is checked to see if it 

"merges" with an already acquired (or available) GTM—if so, the available GTM is revised to 

incorporate the additional content from the new GTM; otherwise, the new GTM is stored as a 

separate GTM. 
In our theory, the learning of design patterns involves comparing the SBF models of two 

designs, one without an instance of the GTM to be learned and the other with an instance of 

that GTM. The current theory assumes that the behaviors in both the SBF models are described 

at the same level of detail. Ideally, the theory should cover the comparison of two behaviors 

described at two different, arbitrary levels of detail. The theory also assumes that there is only 

one GTM instantiated in the behavior of the new design from which learning occurs. That is, for 

instance, the new design example cannot have both the cascading mechanism and the feedback 

mechanism, at least not in the same, single behavior. 

9.3.1.3    Qualitative Modeling and Learning of Device Models 

In our theory, new SBF models are acquired by three different methods: (1) revision of known, 

similar devices, (2) instantiation of design patterns in known models, and (3) a combination 

of model revision and primitive-behavior composition (given a partial or complete structural 

specification of the new device). The first method is limited by the kinds of revision strategies 

that our theory currently accommodates. That is, those revisions are simple and local as deter- 

mined by the adaptation strategies: substance substitution, substance-property modification, 

component replacement, and component-parameter modification. Similarly, the second method 

is limited by the kinds of design patterns the theory accounts for, namely, cascading, feedback, 

and feedforward GTMs. But these revisions are more complex and non-local, which involve 

changes to the structure of the known models. 
Since the third method involves an additional dimension of processing from structure and 

composing the behaviors of primitive structural elements, the limitations of the method are 

characterized by the kinds of input structural specifications relative to the structures of known 

devices it can handle (i.e., the classes of structural differences for which it can revise the known 

models).  Currently, this method accounts for learning new device models only under the fol- 
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lowing conditions: (1) the new device structure can have one or more new structural elements 

compared to those in a known device structure, but there cannot be less; (2) the new structural 

elements are only serially connected to those that map onto the structural elements in the known 

device (but can handle circular connections of the structural elements also when the direction of 

flow of substances through each element is known); (3) the primitive behavior of each new struc- 

tural element needs to specify the input substance and the output substance (if they are different) 

and the direction of flow for the substances through the structural element; (4) the primitive 

behavior of each new structural element needs to also specify the qualitative/quantitative re- 

lationships between properties of the input substance and those of the output substance; (5) 

each new structural element can have only one input and only one output; and (6) the SBF 

model of the known, similar device needs to represent the internal causal behaviors such that 

the behavioral states are specified at the locations that are the connecting points between the 

structural elements. 

9.3.1.4    Memory: Organization, Indexing, and Index Learning 

In our current theory, all the knowledge is indexed in a task-directed manner. This, of course, 

implies that the indexing schemes may be limited only to those tasks for which they are designed. 

While the design analogues are organized hierarchically in multiple ways, the organization of 

design patterns is poor and only flat. In general, a theory perhaps needs to have a better account 

of the organization of design patterns. Moreover, the two types of design patterns the theory 

covers, i.e., GPPs and GTMs, are not currently cross-indexed, and they themselves are not 

connected to design analogues. But, in general, to enable a wider class of tasks, cross-indexing 

of the design analogues and design patterns may be necessary. 

As pointed out in the description of evaluation of indexing, the theory is limited in its char- 

acterization of the quality of retrieval of design analogues. As a result, the effects of particular 

indexing schemes on retrieval quality are not yet clear. 

Our theory of model-based index learning too is limited in that it is applicable only when 

specific types of knowledge are available in the SBF models of design analogues. For instance, 

learning of functional indices is better only when the transitions in the SBF models explicitly 

specify conditions on the properties of substances in the functions. Similarly, learning of struc- 

tural indices is better only when the transitions in the SBF models explicitly indicate conditions 

on the properties of components and structural relations among components. Although our 

theory accounts for how the new SBF models may be acquired in different ways, it does not 

indicate how these specific types of knowledge in a new SBF model may be acquired. 

9.3.2    Limitations Of the Theory as a Whole 

Our evaluation at the level of the theory as a whole concerns with the three facets of innovative 

design, namely, non-local modifications, cross-domain transfer, and problem reformulation. We 
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will now give the long-deferred description of how well our model-based theory of innovative 

design accounts for these three facets of innovative design, i.e., we will give for each of the three 

facets, what classes our theory covers and what it cannot. 

9.3.2.1    Coverage of Non-Local Modifications 

The question here is what classes of non-local modifications does our theory cover, and how 

well does it cover them. Since in our theory, the non-local modifications to known designs are 

primarily done by instantiation of design patterns, the coverage is limited to the kinds of design 

patterns known (or that can be learned). That is, the design patterns are the GTMs of cascading, 

feedback, and feedforward. However, there is also an adaptation strategy called "component 

addition" that can be applied to make non-local modifications by adding a component in the 

structural topology of known devices. Each of these different GTMs enables a different type of 

non-local modification, and so does the component-addition strategy. Table 9.2 summarizes the 

types of non-local modifications that the theory can account for and the limitations. 

Table 9.2: The Types of Non-Local Modifications that our Theory can Account for 
and its Limitations 

Design Pattern 
or Adaptation 
Strategy 

Type of Non-Local Modification Limitation 

Cascading GTM Serial addition of one or more 
device elements with the same 
function into the structural 
topology of a known device. 

Cannot account for Parallel 
addition of device elements 
to the known structure. 

Feedback GTM Addition of a causal loop, 
that is, the addition of a device 
element in parallel to the known 
device but with the reverse flow 
of substances. 

Cannot account for Open Loop 
Feedback, and those types of 
Closed Loop Feedback that 
require both a Sensing element 
and a Comparator element. 

Feedforward GTM Addition of a device element 
in parallel to the known device 
with the same flow of substances. 

Cannot account for those 
types of feedforward that 
require both a Sensing element 
and a Comparator element. 

Component Addition Serial addition of a single 
component to the structural 
topology of a known device. 

Cannot account for non-serial 
and non-parallel additions 
of components such as inclusion. 

A complement to the component-addition strategy is component deletion. Application of 

component-deletion strategy can also enable non-local modifications to known devices. But 

IDEAL is limited in that it does not have this strategy and hence it cannot currently make such 

non-local modifications as in component deletion. 
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9.3.2.2 Coverage of Cross-Domain Transfer 

The question here is, of course, what types of cross-domain transfer does our theory account for, 

and how well does it account for them. In our theory, cross-domain transfer occurs via design 

patterns. That is, the design patterns may be learned in one domain and used in another. In 

fact, the design patterns themselves are the knowledge that gets transferred. Therefore, in that 

sense, our theory accounts for only abstraction-based cross-domain transfer. Furthermore, it 

covers such transfer only in the context of design of physical devices where a design analogue 

consists of the problem specification (i.e., the desired function), its solution (i.e., the structure 

of the device), and a model of the solution (i.e., an SBF model that explains how the structure 

delivers the desired function). 

Another type of cross-domain transfer may also involve design patterns, but the transfer 

may occur between two specific designs. In this type of transfer, the design patterns are learned 

at the time of problem solving (as opposed to the time of storing a new design). Our current 

theory of analogical design does not cover this type of cross-domain transfer. 

Yet another type of cross-domain transfer may not even involve design patterns or any 

abstractions. Instead, the transfer might occur directly between a source analogue and a target 

problem. However, the applicability of such transfer is not clear for the situations where a 

source analogue and the target problem are from two distant domains. An example of a theory 

that covers only direct transfers is Structure-Mapping Theory (Gentner, 1983). Our theory of 

analogical design currently does not cover this type of cross-domain transfer either. 

9.3.2.3 Coverage of Problem Reformulations 

The third important issue in our theory of innovative design is problem reformulation. The 

evaluation question here is what classes of problem reformuations does our theory account for. 

In our theory, problems are reformulated when the designs fail in hew environments. Design 

patterns, in particular, GPPs, help in understanding design failures by forming causal expla- 

nations and in formulating new constraints. Our theory is limited to covering a small class of 

design failures that can be specified as undesired behavioral state transformations. An example 

of such a failure is the undesired cooling of hot coffee in a coffee-making device. Moreover, our 

theory is limited to the class of problem reformulations that involve addition of new functional 

constraints to the problem (i.e., addition of new sub-functions to the problem specifications); 

these new constraints are assumed not to interact with the old constraints. 

In general, problem reformulations may also involve deletion of constraints from the problem 

specifications and modification of constraints. But, our theory currently does not cover these 

types of problem reformulations. 
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CHAPTER X 

RELATED WORK 

Our work intersects with several lines of research in AI: qualitative modeling, design, case/model- 

based learning (of abstractions, strategies, and indices), and analogical reasoning. It builds upon 

previous work in these areas but also explores new issues in new directions. Here we relate our 

work to previous work along the following dimensions: tasks addressed in a computational model 

(i.e., types of design tasks, types of learning tasks, etc.); methods used for each of the tasks 

(i.e., analogy for design, model-based method for learning, etc.); types of knowledge used and 

learned (i.e., types of design cases or analogues, device models, design patterns, indices, etc.); 

inferences and control of processing; domains covered by a computational model (i.e., single 

domain vs. class of domains); class of problems solved in a domain (i.e., complete generation of 

designs as in the function-to-structure mapping task, design completion, etc.); and autonomous 

vs. interactive (i.e., whether the agent is completely autonomous or needs human intervention 

during the process). 

10.1    Qualitative Modeling 

AI research in qualitative modeling goes at least as far back as Hayes (1979). Much work on 

naive physics and qualitative reasoning (e.g., Hayes, 1979; Hayes, 1985; de Kleer and Brown, 

1984; Forbus, 1984; Kuipers, 1984; Iwasaki and Simon, 1986) has focused on the representation 

of the physical world (including devices) and the simulation of causal processes. Similarly, some 

work in human-machine systems (e.g., Govindaraj, 1987; Rasmussen, 1985,1987) has dealt with 

the representation of plant operators' mental models of large, dynamic, physical systems. Yet 

other work in psychology has also considered how models capture other types of relations such 

as structural relations between electrons and the nucleus in an atom (Gentner, 1983). Our 

work differs from the past work in qualitative modeling in a number of different dimensions: (1) 

content and representation, (2) indexing and organization, and (3) acquisition of particular kinds 

of models. An important difference between our work and most previous work in qualitative 

modeling is in the organization of models: we emphasize hierarchical and functional organization 

of behaviors. In particular, our work emphasizes that the way device models are organized in 

memory and linked to other types of knowledge significantly affects their use in various problem- 

solving tasks and their acquisition. 
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10.1.1    Content and Representation of Device Models 

Goel's SBF models, Sembugamoorthy and Chandrasekaran's Functional Represen- 

tation, and Bylander's Consolidation: Our work borrows from KRITIK (Goel, 1989) the 

representation of device models in the form of SBF models and extends it to represent different 

types of abstract, generic models of design knowledge—models of design patterns such as GPPs 

and GTMs. IDEAL'S SBF representations are based on the same component-substance ontology 

as developed by Bylander and Chandrasekaran (1985). The difference is in the methods of ac- 

quisition as we describe later as well as the internal organization of device models. That is, the 

SBF models organize the internal causal behaviors hierarchically based on functions of substruc- 

tures. Both IDEAL and KRITIK share Sembugamoorthy and Chandrasekaran's (1986) notion of 

an explicit representation of internal causal behaviors and their indexing by functions. That is, 

the SBF models share the principles of functional representation framework (Chandrasekaran 

et al., 1993). But Sembugamoorthy and Chandrasekaran's work does not use a well-defined on- 

tology for behaviors. In fact, SBF models combine the good aspects of functional representation 

scheme and component-substance ontology. 

Rieger's Commonsense Algorithms: Rieger's work (Rieger, 1975; Rieger and Grinberg, 

1978) on commonsense algorithmic representations emphasizes the explicit representation of 

causal knowledge of how to do things and how things (e.g., physical devices) work. In his work, 

the internal behaviors are represented as compiled sequences of behavioral state transitions. The 

SBF representations are similar to that in capturing causal knowledge explicitly in sequences 

of behavioral state transitions. Like in Rieger's work, a behavioral state in SBF models too is 

represented in terms of state variables describing the partial state of a device. While the rep- 

resentation of transitions in SBF models is also motivated by the commonsense representations 

of Rieger, the specific types of structural and causal relations that annotate the transitions are 

different. The differences are partly due to the difference in the use of the representations (for 

instance, design vs. language comprehension). 

Forbus' Qualitative Process Theory: Our work concerning models of devices and physical 

processes is related and similar to Forbus' work (1984) on modeling physical processes, yet quite 

distinct from it. In Qualitative Process Theory (QPT), Forbus provides a formalization of pro- 

cess that can be used in qualitative dynamics. In QPT, the explicit representation of a process 

is for a generic physical situation, and it captures all possible behaviors. In that sense, the rep- 

resentation of a physical process in an SBF model of a device is different as it captures a specific 

process. However, our representations of GPPs are similar to the representations of processes in 

QPT, although the specific content theory is different. That is, our theory has representational 

analogues to constructs that Forbus has proposed. For instance, the "quantity conditions" and 

"relations" in the representation of a process in QPT capture a similar type of knowledge as 

do our representational primitives "under-condition-substance" (i.e., behavioral requirements 

on the properties of substances) and "parameter-relations."  Although QPT distinguishes be- 
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tween relations and influences, our representations do not make such a distinction. Instead, our 

representation explicitly captures the individual state changes and sequences of state changes, 

and causes for those changes, which immediately indicates what relations are important in a 

particular state change. In QPT, processes need to be applied to specific instances of individuals 

to generate behaviors, while they are explicitly represented in SBF models. IDEAL'S represen- 

tations are different partly because it takes an adaptive approach to modeling devices while 

QPT takes a compositional, generative approach. And, the differences are also due to the tasks 

IDEAL addresses being different from those QPT does. Further important differences between 

QPT and SBF models are that the former does not have any explicit notion of function and it 

does not capture quantitative relationships. In the SBF representations of GPPs a function is a 

behavioral abstraction. 
deKleer's Qualitative Differential Equations: Similarly, our work on modeling devices 

with feedback control is well related to deKleer's (1984) work on representations of circuits 

with feedback using qualitative differential equations and confluences. (His system was called 

EQUAL.) But there are a number of differences on several aspects in the two representations, 

which we believe are important for enabling certain classes of design problems. First, IDEAL 

not only represents the causal processes in specific devices with feedback but also (acquires and) 

represents them in generic terms. IDEAL'S representation of feedback enables it to solve design 

problems that involve devices with feedback and enable cross-domain transfer of that knowledge. 

While IDEAL'S representations explicitly capture the global causal pattern in the behavior of 

a device with feedback, deKleer's representations of the feedback only specify the relationships 

between individual variables. Furthermore, deKleer's representations do not capture the notion 

of fluctuations in the input/output values, although we believe that if the representations of 

feedback were to support design of devices with feedback, they need to capture the notion of 

fluctuations explicitly. 
Govindaraj's Qualitative Approximation Methodology: KRITIK's primitives for functions 

of components, and hence those of IDEAL, are related to but not the same as the primitives 

proposed in Qualitative Approximation Methodology (Govindaraj, 1987). Govindaraj, in his 

methodology to model large dynamic physical systems, has proposed primitives to describe 

components in a system; but those primitives are primitive components and not primitive func- 

tions. However, the primitive components are closely related to "primitive" functions as they 

are responsible for the basic functions performed by the components. For example, the prim- 

itive conduit in Govindaraj's set of primitives has a function similar to the primitive function 

allow. He developed the representations in the context of simulation of physical systems and 

tutoring the operators of the systems, both very different from the design task. He has applied 

the methodology to model very large systems, consisting of the order of 500 components, but 

IDEAL'S representations are not yet shown to be scalable to that level of complexity. The hierar- 

chical organization of the physical system in his work follows the principles of Rasmussen's (1985) 

hierarchical knowledge representation (and representation at multiple levels of abstraction), and 
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is also similar to our functional organization of behaviors. 

Gero et al.'s Function-Behavior-Structure Models: IDEAL'S SBF models are also related 

to the function, behavior, and structure representations of design knowledge and design pro- 

totypes developed by Gero and his colleagues (Gero, 1990; Gero et al., 1991). However, their 

representations are generalized models as opposed to specific SBF models of devices in IDEAL. 

While in their work, design prototypes are intended to capture generalized design knowledge, 

in ours, GPPs and GTMs capture two very different kinds of generalized knowledge, one about 

devices and the other about design strategies. In contrast to IDEAL, their representation of 

behaviors is only in terms of variables linked to structural elements. In fact, by behavior, Gero 

refers to the output behavior of an artifact/device, while behavior in IDEAL'S representations 

refers to the internal causal behavior of a device. As a result, in IDEAL, the representation 

of behavior explicitly captures the states, state changes and their causes, and thus provides a 

functional organization for behavior variables. 

10.1.2    Content and Representation of Generic Models 

Our work on modeling design patterns such as GPPs and GTMs is related to previous work on 

generic models as in modeling of qualitative processes (Forbus, 1984), modeling of causal patterns 

(Pazzani, 1991), and modeling of scientific discovery (Darden, 1991; Nersessian, 1995a). As we 

have already discussed in the previous section, GPPs are similar to Qualitative Processes yet 

different in the specific content theory. Also, Forbus' work does not cover modeling of generic 

mechanisms. 
IDEAL'S causal patterns, namely, the generic models of physical processes, are similar to the 

general patterns of causality used in OCCAM (Pazzani, 1991). However, the specific content 

of the patterns is different because their domains are very distinct. While IDEAL'S domain is 

physical devices, OCCAM dealt with the patterns of causality in social domain (i.e., volitional 

agents' goals, actions, and events in the context of story understanding). AQUA (Ram, 1989) 

also has patterns of causality in social domains represented as explanation patterns that it uses 

for story understanding. OCCAM cannot learn its causal patterns while IDEAL and AQUA can 

learn their respective patterns from experiences. In addition, IDEAL also has another type of 

design patterns, namely, the generic models of engineering mechanisms (i.e., GTMs). 

IDEAL'S generic models of engineering/physical mechanisms are also similar to some of the 

concepts postulated in some recent work in scientific discovery. For instance, Darden's (1990) 

work on modeling Mendelian's theory of genetics has found models to be useful in theory revision 

or redesign; and Nersessian's (1995a, 1995b) work on analyzing historical records of Maxwell's 

discovery of electromagnetic field equations suggests that Maxwell used generic models in his 

reasoning by analogies. In addition to generic mechanisms, our theory also covers the content, 

representation and acquisition of other types of generic models such as physical principles and 

processes. We have also shown how those other types of generic models facilitate discovery of 
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new constraints in a problem and thereby support innovative adaptive design (Bhatta, Goel and 

Prabhakar, 1994). 
Darden's work views scientific theories as devices and theory revision as design-adaptation 

task. In some personal communication (Darden, 1991), she has conjectured that the content 

theory of GTMs and their use for design adaptation might provide a basis for modeling the 

formation of early theories of heredity and genetics. Thus the use of GTMs could be a very 

general domain-independent innovative method of case adaptation. 

Similarly, Nersessian's (1995a, 1995b) analysis of Maxwell's discovery of electromagnetic field 

equations starting with the theories of Newtonian or continuum mechanics suggests the use of 

generic models or abstracted models in the theory formation. However, Maxwell's represen- 

tations of those models were often diagrammatic or visual. But, nevertheless, the kinds of 

relationships captured in those models are similar to the kinds of relationships in the generic 

models of physical processes such as the process of heatflow (and generic models of physical 

principles such as the zeroth law of thermodynamics), and the generic models of the engineering 

mechanisms such as cascading. 
Generic Tasks? Since IDEAL'S knowledge of generic telelogical mechanisms is strategic knowl- 

edge for solving some classes of design adaptation tasks, the models of GTMs seem similar to 

Chandrasekaran's Generic Tasks (Chandrasekaran, 1983) for any problem solving in general. 

Chandrasekaran analyzed that all problem solving tasks may be classified in terms of generic 

tasks. The advantage of such a classification, he suggested, is that the generic tasks can then 

become building blocks for systems to solve any problem-solving task in specific domains. Then 

an arbitrary problem-solving task can be solved by a combination of the methods/strategies in 

generic tasks. Similarly, GTMs are such "generic" tasks for some classes of design adaptation. 

That is, given a design adaptation task, we believe, it can be solved by applying one or more 

of GTMs. Like generic tasks, GTMs specify the tasks—the task is specified in terms of the 

functional difference a GTM reduces. Like generic tasks are strategies for tasks, GTMs too are 

strategies for design adaptation tasks—the strategy is specified in terms of the patterned mod- 

ification a GTM suggests to a behavior in order to achieve an instance of the task it represents. 

AUTOGNOSTIC (Stroulia, 1994) is a model-based reflective system that can learn new 

knowledge and new strategies for problem solving from failures. It uses models represented in 

a similar language as IDEAL'S (i.e., SBF representations) for capturing the functioning of a 

problem solver, which is an abstract device. In addition, it uses models of generic tasks that 

enable AUTOGNOSTIC to redesign the problem solver itself to include new subtasks. That in 

turn enables it to expand the class of problems it can solve. Similarly, IDEAL'S models of GTMs 

enable it to expand the class of design adaptation tasks it can solve, although it does not do a 

reorganization of its own task structure. (We will compare AUTOGNOSTIC with IDEAL on 

other dimensions also in later sections.) 
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10.1.3    Indexing and Organization 

Most previous work on qualitative modeling has ignored the issues of indexing models and 

organizing them in memory. In fact, none of them (perhaps with one or two exceptions that 

are direct precedents of this work) advocate explicit, declarative representations of models, let 

alone their indexing and organization. But we consider those issues as important as the issues of 

representation, because we take a memory-based view of qualitative modeling. IDEAL'S indexing 

of causal behaviors in SBF models by the device functions is similar to Sembugamoorthy and 

Chandrasekaran's (1986) scheme. But like KRITIK, IDEAL also organizes the causal behaviors 

hierarchically both by functions and structure. In our theory, the cross indexing among several 

different types of knowledge that constitute SBF models is considered very important because 

such indexing not only enables a number of inferences but enables them efficiently too. For 

instance, in IDEAL, (1) functions index into internal causal behaviors, (2) behaviors themselves 

index into functions at lower level of structural detail (i.e., substructures), (3) behaviors also 

index into structural elements and relations among the elements, and (4) behaviors further index 

into other behaviors in a device (i.e., for instance, temporal simultaneity of two causal behaviors 

is captured by representing mutual dependency between them). Thus in IDEAL the internals of 

a model are hierarchically organized. A few examples of the inferences where the cross-indexing 

and organization of models play a role are retrieval of a known model, localization of needed 

modifications in a model, and localization of simulation of the model. Such inferences are much 

more computationally expensive for modeling of physical devices if the representations were as 

in most qualitative physics work (e.g., de Kleer and Brown, 1984; Forbus, 1984; Kuipers, 1984; 

Iwasaki and Simon, 1986). 

Similar to IDEAL, AUTOGNOSTIC (Stroulia, 1994) also considers the indexing and organi- 

zation of SBF models serious and exploits those aspects in its reflective reasoning and learning 

from failures. AUTOGNOSTIC organizes its SBF model of the problem solver hierarchically 

and indexes the model by a functional characterization of the information-processing task its 

problem solver solves. 
Our memory-based view is closely related to other work on memory-based approaches, for 

example, (Minsky, 1975), and especially (Schänk, 1982) and (Kolodner, 1984), although these 

are not in the context of qualitative modeling. In Dynamic Memory Schänk (1982) proposed 

Memory Organization Packets (MOPs) for organizing certain kinds of information, for example, 

the goals of volitional actors, and the sequences of actions performed to achieve the goals. He 

described how MOPs can facilitate story interpretation and enable generalization and learning 

from past experiences. We adopt a similar view towards qualitative models—that is, device 

models, represented in the form of SBF models, organize teleological, causal, and structural 

information underlying the functioning of devices. They facilitate such tasks as interpretation 

of design descriptions, designing of new artifacts, and learning of design patterns from design 

experiences. 
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10.1.4    Acquisition 

Although most previous work on models of physical phenomena has concentrated on their rep- 

resentation and use in reasoning, there is some previous work on their learning as well. For 

instance, KRITIK itself addresses some forms of model acquisition. 

KRITIK: In KRITIK, new models are acquired by revising the models of known similar devices 

(Goel, 1991b). IDEAL inherits the same method of model revision from KRITIK. But IDEAL also 

has two additional methods of acquiring new models: (1) a combination of the methods of model 

revision and primitive-behavior composition and (2) instantiation of design patterns in known 

models. Both these new methods in IDEAL enable non-local, patterned modifications to known 

models (i.e., changes to the topology of the causal structure in internal behaviors of known 

devices) while KRITIK'S model revision method is only capable of simple, local modifications 

(such as substance substitution and component replacement). IDEAL'S combined method (i.e., 

model-revision + primitive-behavior composition) is capable of non-local modifications to known 

models because it can reason about new device structures that have new components (relative 

to a known device structure) connected to the other components in different structural relations: 

in series, in parallel with same substance flow, and in parallel with opposite substance flow.1 Of 

course, that is possible only when the behaviors of new components are known and the direction 

of substance flow through each new component is also known. IDEAL'S second method that 

uses the knowledge of design patterns is capable of non-local modifications precisely because the 

design patterns encapsulate when and how to make such modifications to known models. 

Although both KRITIK and IDEAL build on the same component-substance ontology de- 

veloped by Bylander and Chandrasekaran (1985), they both share a critical difference with the 

latter on model acquisition. That is, in Bylander and Chandrasekaran's work, the internal causal 

behaviors of devices are constructed at runtime from primitive behaviors by consolidation, while 

in both the former systems, they are generated by revising the models of similar known devices. 

Learning of Qualitative Processes: Forbus and Gentner's (1986) work on learning of Quali- 

tative Processes (QPs) is especially relevant to the task of learning GPPs in this research. They 

are similar in that the output of the learning task is the same type of knowledge, namely, phys- 

ical processes such as heat flow. But the inputs to the learning tasks are quite different, and so 

are the learning methods. In Forbus and Gentner's work, the task is to learn a specific QP from 

a given specific physical situation (such as an observation that the temperature of some object 

decreases) in a new domain by mapping the explanation of a similar QP (such as liquid flow) 

in a different domain. However, in our work, the task involves learning a generic description 

of a physical process (such as the Heat-Flow GPP) from two specific design examples involving 

different instances of the GPP by abstraction over the similarities and differences in the specific 

models of the designs. 
PHINEAS: Similarly, Falkenhainer's work (1990) on learning of theories of physical behaviors 

xThe parallel connection with opposite substance flow creates a cycle of substance flow in the device. 
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in his PHINEAS system is also related to the tasks of learning of specific SBF models of devices 

and GPPs. However, similar to Forbus and Gentner's work, the task that Falkenhainer addresses 

involves learning of a theory of a specific physical behavior by a similarity-driven explanation 

mechanism. This mechanism involves analogical mapping of the explanation of a similar physical 

situation. Keeping aside the differences in the representations, this task is similar to IDEAL'S 

task of learning a specific SBF model of a device from that of a similar device. But, IDEAL goes 

beyond this in that it also addresses the task of learning abstractions such as GPPs. 

PhysicslOl: IDEAL also has some similarities to Shavlik's (1985) PhysicslOl system with 

respect to learning of physical processes and principles. PhysicslOl's learning task is to form new 

formulas (in some sense, principles) for physics concepts such as momentum as output, given a 

single solved example such as that of a 2-body collision problem as input. In contrast, IDEAL'S 

learning task takes as input two design examples of specific devices and produces as output 

physical processes that are not just formulas. But rather, the output of IDEAL'S learning task 

captures relationships between internal causal behaviors of devices and their output behaviors. 

The methods that PhysicslOl and IDEAL use for these similar tasks are also different. While 

PhysicslOl uses EBL method along with in-built bias to generalize a specific formula for 2 objects 

to N objects, IDEAL uses a combination of model-based method and similarity-based method 

to abstract over specific processes in the two given designs. Since the methods are different, 

the knowledge they both assume are also different. For instance, unlike PhysicslOl, IDEAL 

does not assume any in-built bias as to what to generalize but instead it uses the knowledge 

of functions and differences between the two input designs to guide the process of determining 

what to learn. Furthermore, PhysicslOl assumes the knowledge of Newton's laws and calculus 

to form explanations of the solutions and to rewrite formulas. Since IDEAL'S inferences are 

different (i.e., it does not need to generate explanations from scratch, nor does it need to rewrite 

formulas), it does not require the knowledge similar to physics laws or calculus. The interaction 

conditions under which PhysicslOl learns are limited compared to those IDEAL can handle. 

That is, PhysicslOl acquires its input to the learning task when it tries to solve a given problem 

and fails at it (i.e., applying any of the known knowledge does not lead to finding a value for 

the desired, unknown variable). While PhysicslOl can handle only this interaction condition, 

IDEAL, in addition to this, can handle three other conditions (as we have described in Chapter 

9). The interaction conditions in IDEAL differ among themselves with respect to the information 

presented as input to the learning task. 

BAGGER: IDEAL'S task of learning the cascading mechanism is very related to Shavlik's later 

work (Shavlik and DeJong, 1987) on learning rules generalized to N. Shavlik's BAGGER system 

learns generalized rules that capture repeated applications of a rule from a single example. This 

is similar to IDEAL'S task of learning the cascading mechanism when it solves a design problem 

by repeatedly applying the component-addition strategy Although Shavlik and DeJong's work 

and our work apparently look similar as both tasks involve generalization to N, there are some 

interesting differences in both the input and the output knowledge structures of the learning 
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tasks addressed. For instance, IDEAL'S learning task takes as input two design examples, one 

without an instance of the cascading mechanism and the other with an instance, while BAGGER 

takes only a single example as input. The methods and hence the knowledge that BAGGER and 

IDEAL use are also different. Like Shavlik's earlier system PhysicslOl, BAGGER also uses EBL 

method with an in-built bias to generalize to N; it explicitly looks for rules in a plan that match 

the syntactic form of an extended rule (focus rule). In contrast, IDEAL does not need such 

knowledge because it learns from a comparative analysis of two design examples, and instead, 

uses the knowledge of function and behavior in the SBF models of the devices. Thus IDEAL 

uses a combination of model-based method and similarity-based method. 

While IDEAL learns abstractions from specific designs, BAGGER learns rules that are more 

specific than the focus rule (that is, the learned rule is generalized to N, but contains specific 

information from the explanation of the specific example such as objects and actions). In 

contrast, IDEAL'S output knowledge structure such as the cascading mechanism is not only 

a generalization to N replications of a component/device but also a domain-independent, and 

hence generic, description of the concept. In addition, IDEAL learns other types of strategic 

concepts such as feedback and feedforward mechanisms that are not in the class of concepts 

BAGGER learns. Furthermore, our method involves much more than simple generalization, 

namely, abstracting relationships between functions and behaviors. Finally, the interaction 

conditions for BAGGER are same as those for PhysicslOl, and hence are much different and 

limited compared to those for IDEAL. 

10.2    Design 

Tong and Sriram (1992) have compiled an extensive list of design systems and classified them 

along different dimensions such as the types of design tasks they perform, the methods they use, 

and so on. We basically follow the same classification and compare our system IDEAL (or the 

process of model-based analogy) with related systems. 

10.2.1    Adaptive Design 

Research on design problem solving has led to the development of a number of design methods 

ranging from heuristic association (McDermott, 1982), to constraint satisfaction (Sussman 

and Steele, 1980), to plan instantiation (Mittal and Araya, 1992; Mittal et al., 1986; Brown 

and Chandrasekaran, 1989), to reasoning from first principles (Williams, 1991). For instance, 

Rl (later called XCON), one of the earliest design systems, used forward chaining over rules 

for configuring computer systems (McDermott, 1982). AIR-CYL (Brown and Chandrasekaran, 

1989) and PRIDE (Mittal et al., 1986) designed mechanical devices by selecting and instan- 

tiating plans and procedures. All these systems used only a single method of reasoning, and 

did not reuse the designs they created. Instead, they used a synthetic approach. Further, they 

performed only very routine design. 
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The case-based (adaptive) approach is fundamentally different from these synthetic methods. 

Although the synthetic methods may (and do) play an important role in design adaptation, 

the adaptive approach views design problem solving in terms of "design evolution" in which 

new designs are created by modifying, perhaps combining, earlier designs. For the most part, 

previous work on adaptive design has generally followed the two main computational models 

of case-based reasoning, namely, transformational approach and derivational approach. Thus, 

some case-based design systems (e.g., Barletta and Mark, 1988a; Dyer et al., 1986; Hinrichs, 

1992; Navinchandra, 1991; Maher and Zhao, 1987) generally follow the first computational model 

of case-based reasoning (Kolodner and Simpson, 1984; Riesbeck and Schänk, 1989; Kolodner, 

1993) in which the solutions to previous, similar problems are transferred and "tweaked" to 

solve new problems. While some others (e.g., Kambhampati, 1993; Mostow, 1989) closely follow 

the second computational model (Carbonell, 1983) in which the derivational trace by which the 

previous, similar problems were solved is "replayed" and "tweaked" to solve new problems. 

Although the initial work in adaptive design has only focused on routine design and adap- 

tive methods, much of the recent work has attempted to model innovative design as well as 

routine design, and addressed issues such as design reuse and integration of multiple sources 

of knowledge and multiple types of reasoning. For example, KRITIK (Goel, 1989; 1991) inte- 

grates case-based reasoning and model-based reasoning; CADET (Sycara and Navinchandra, 

1992; Navinchandra et al., 1991) also integrates case-based reasoning and behavior-preserving 

problem-transformation techniques (that enable cross-contextual design retrieval and synthesis 

of cases); JULIA (Hinrichs, 1991; 1988) integrates case-based reasoning and constraint posting; 

BOGART (Mostow et al., 1992) uses design reuse via replay of design plans for supporting inno- 

vative design; ARGO (Huhns and Acosta, 1992) also uses previous design plans and macrorules, 

which are learned and stored at different levels of abstraction; and ALADIN (Rychener et al., 

1992) uses multiple knowledge sources, such as cases, rules, mathematical models and statistical 

methods. 

Our approach to adaptive design falls under the transformational approach to CBR, but 

extends it by integrating it with model-based reasoning as in KRITIK. In particular, our work 

borrows from KRITIK the ontology and representation of device comprehension, that is, SBF 

models. However, our work goes much further in integrating learning of abstract models with 

analogical design and explores different types of design tasks, ranging from routine to innova- 

tive to creative. Also, IDEAL'S theory covers non-local adaptations in design while KRITIK is 

limited to simple, local adaptations. Furthermore, our work also includes developing behavior- 

function models, although using the same language as that of SBF models, for representing 

design patterns. 

In addition, while KRITIK deals with purely function-to-structure mapping design tasks, our 

work accommodates design problems that include structural constraints besides functional ones. 

Like KRITIK, our work also considers design in the domain of physical devices. 

AUTOGNOSTIC (Stroulia, 1994) shares some common themes with IDEAL in the dimen- 
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sion of adaptive design. While IDEAL'S task is design of physical devices, AUTOGNOSTIC 

does design of problem solvers such as a route-planning system or a device-design system. AU- 

TOGNOSTIC views a problem solver as an abstract device and views its learning from failures 

as a redesign task. Thus, while AUTOGNOSTIC redesigns abstract devices, IDEAL redesigns 

physical devices. Both view their respective candidate designs as failed designs and use SBF 

models of those designs to diagnose possible faults. That is, both do a similar model-based 

blame assignment. One crucial difference is that AUTOGNOSTIC uses a trace of the problem- 

solving episode in addition to the SBF model of the problem solver in its diagnosis while there 

is no equivalent of that in IDEAL'S world. AUTOGNOSTIC needs such a trace because it's 

task is to redesign the problem solver itself. Some of the repairs these two systems perform to 

their respective designs are also interestingly similar. As we discussed in the context of generic 

models earlier, AUTOGNOSTIC's knowledge of generic tasks is similar to IDEAL'S knowledge 

of GTMs. Furthermore, their use of the respective generic knowledge is also similar: AUTOG- 

NOSTIC uses its knowledge of generic tasks and instantiates a generic task in its failed design 

to reorganize the task structure, while IDEAL uses its knowledge of GTMs and instantiates a 

GTM in its failed design to reorganize the device structure. An important difference, however, 

is that IDEAL can learn its knowledge of GTMs while AUTOGNOSTIC assumes its knowledge 

of generic tasks. 

10.2.2    Analogical Design 

Most of the existing design systems that use analogies perform only within-domain analogies. 

A few design systems that fall into this category are KRITIK (Goel, 1989), CADET (Sycara 

and Navinchandra, 1992), BOGART (Mostow et al, 1989; 1992), ARGO (Huhns and Acosta, 

1988; 1992), STRUPLE (Maher and Zhao, 1987) and JULIA (Hinrichs, 1991; 1988). All these 

systems operate in the domain of engineering design with the exception of JULIA which is in 

the domain of meal planning: JULIA designs menus of meals that satisfy multiple, interacting 

constraints. 
KRITIK solves design problems in multiple domains but can transfer knowledge only between 

problems within the same domain. CADET is a case-based design tool that provides retrieval 

and adaptation techniques for combining parts of cases in mechanical engineering domain. In 

solving a large design problem, it can retrieve parts of cases from different domains to solve 

subproblems and combine them to solve the given problem. However, given a subproblem, it 

can only retrieve a case from the domain of the subproblem. 
BOGART is a partially autonomous design system that helps students learn design process in 

the domain of digital circuit design. Although it has been tested in different domains, it can only 

"replay" previous design plans (that are very specific to a domain) in solving problems from the 

same domain. ARGO also uses previous design plans to solve design problems in VLSI digital 

circuit design. Although it can also do only within-domain analogies it can transfer design plans 
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between far-apart problems in the same domain. ARGO's abstract plans are similar in terms of 

the level of abstraction to our prototype-device models. STRUPLE uses within-domain analogies 

to solve design problems from the domain of building design. More recently, the architects of 

STRUPLE (Zhao and Maher, 1992) have proposed a scheme for creative design by analogy and 

mutation. 

Very few design systems perform cross-domain analogies. In CADET, behavior-preserving 

analogy (Sycara and Navinchandra, 1991) involves using an abstract description of the desired 

behavior as an index (or its transformation) to retrieve a relevant case from a different design 

domain and mapping the specific case thus retrieved to the target problem. Our approach 

involves using the desired function to retrieve an abstract model and solving the design problem 

by instantiating the retrieved abstract model in the target domain. More importantly, behavior- 

preserving analogy assumes a priori knowledge of high-level abstractions while our approach 

learns them from design experience. 

DSSUA (Qian and Gero, 1992) is a design support system that uses design prototypes 

to capture design knowledge and performs analogical mappings between designs from different 

domains. It retrieves a source analogue by analyzing the given design requirements and using 

any combination of the function, behavior, structure, or operation requirements. It finds map- 

ping to the target problem through causal links represented in design prototype retrieved as 

source analogue. The mapping process is domain-independent but causation-type dependent. 

Its mapping process is syntactic like in structure-mapping theory (Gentner, 1983) and involves 

matching behavior graphs to establish correspondences between the source and target domains. 

For complex design problems, behavior graphs tend to be large and finding graph isomorphism 

is NP-complete! Our approach avoids this problem because mapping in our theory simplifies to 

instantiating a retrieved abstraction to the target problem. 

10.2.3    Innovation and Creativity in Design 

Although, as mentioned earlier, most early design systems addressed issues in only routine de- 

sign, there have been some attempts recently towards modeling innovative and creative design. 

Some of the work mentioned in the context of adaptive design and analogical design has also 

looked at the issues of innovation. For instance, Hinrichs in his work on JULIA (1991) has 

explored how case-based reasoning can be integrated with constraint posting to solve design 

problems in open worlds, where the innovation arises due to the ability to deal with interactions 

among multiple constraints. JULIA's domain is meal planning and its task is to design menus 

of meals. Although JULIA's domain is much different from IDEAL'S, they both share in the 

characterization of innovation—at least along the dimension of problem reformulation. However, 

the problem reformulations in JULIA and IDEAL are driven by different sources and they use 

different methods. That is, while in JULIA the problem reformulation is due to the late arrival of 

constraints in the problem specification, in IDEAL it is evaluation-based. JULIA uses constraint 
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posting and constraint relaxation methods to incorporate late specifications of constraints and 

take them into account in its design process (which is hierarchical refinement of a general de- 

sign). In contrast, IDEAL reformulates design problems by discovering new constraints; the new 

constraints arise from the causal explanations of design failures that are identified in an external 

evaluation. 
Some of the recent work towards innovative design also involved developing exploratory mod- 

els. For instance, DONTE (Tong, 1992) uses exploration and problem-reformulation techniques 

in planning the design process for innovative design. In a similar vein, we have looked at the 

issue of problem reformulation driven by performance of the designs in real environments and 

considered how that leads to innovation in design (Prabhakar and Goel, 1992; Bhatta, Goel and 

Prabhakar, 1994).2 

Williams (1991) describes an approach called interaction-based design in which new designs 

are created by reasoning from first principles. This approach views design as a process of building 

interaction topologies—networks of qualitative interactions between quantities, used by a device 

to achieve its desired behavior. It also proposes a search method for focusing the design of novel 

devices among the large space of possibilities. 
Navinchandra's (1991) work is also another example of these exploratory models, but it 

evolves from work on case-based design. In his work on CYCLOPS, Navinchandra (1991) used a 

case-based approach to architectural design in which new design ideas are generated by exploring 

the memory for appropriate cases. In this, new designs are generated by composing subcases 

from multiple cases. New constraints are discovered through the process of demand posting 

where a problem with the present case is posted to the case base, requesting the previous cases 

to solve the problem. If a matching case is not found, then the causes of the problem are 

retrieved and new demands are posted. CYCLOPS shares IDEAL'S view of the importance of 

discovery of new constraints in innovative design. 
Some other recent work in design has even attempted to model creative design using such 

methods as analogy and mutation. For example, Zhao and Maher (1992) have proposed the 

COMBINE operator that purports to do both analogy and mutation for creative design. They 

retrieve design prototypes from a case memory in the domain of building design and then apply 

mutation operators (e.g., COMBINE) to change the retrieved prototype to include portions of 

other designs. Qian and Gero (1992) have proposed a method for between-domain analogy that 

uses design prototypes for creative design, and have implemented it in a system called DSSUA. 

More recently, Wills and Kolodner (1994) have also looked at such issues in creativity with in 

the context of case-based design as situation assessment, evaluation, and problem redefinition. 

Their model called IMPROVISER is based on their observations of designers solving a mechan- 

ical design problem. Our work on IDEAL shares the central theme of their work which is that 
2Most recently, in collaboration with Prabhakar, we have begun to apply IDEAL'S theory to cover the adaptive 

modeling of environments and devices alike, and consider how their interactions lead to design innovation in 
complex domains (Prabhakar, Goel and Bhatta, 1995). 
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past design experiences and memory processes play an important role in facilitating processes 

of creative design. While there are some common hypotheses in our work such as that the 

evaluation and problem reformulation are some of the key processes of creativity in design, the 

specific computational processes in IDEAL and IMPROVISER are quite different. For instance, 

in IDE AL, these processes are enabled by not only past design experiences but also device models 

and design patterns. In addition, IDEAL addresses the issue of learning the knowledge it relies 

on for use in the other processes. In contrast to IMPROVISER, IDEAL covers both internal 

evaluation of designs and their external evaluation, but covers problem reformulation only due to 

feedback from external evaluation. While both computational models incorporate flexible con- 

trol of processes, the specific ways by which they are achieved are very different: IMPROVISER 

uses an opportunistic model of reasoning (in a blackboard-style architecture) while IDEAL uses 

multiple strategies and iterative flow of control (with a possibility to explore alternatives). 

10.3    Learning 

We organize our discussion of related work in learning into the following different parts: (1) 

index learning (covering Kolodner's, Hammond's, Ram's, and Barletta and Mark's work); (2) 

learning abstractions from experience (covering Wisniewski and Medin's, Winston's, Shinn's, 

and Roverso et al.'s work); (3) learning of strategies (covering Waterman's, Mitchell et al.'s, and 

Birnbaum and Collins' work); (4) model-based learning (covering Winston's, Kedar-Cabelli's, 

Mitchell et al.'s, DeJongand Mooney's, and Dietterich's work); (5) multistrategy learning (cov- 

ering Pazzani's, Stroulia's, and Cox's work); (6) multistrategy reasoning (covering Goel et al.'s 

work); and (7) learning by discovery (covering Langley et al.'s, Falkenhainer's, Rajamoney's, 

and Karp's work). 

10.3.1    Index Learning 

Although the issue of indexing has been for long central to AI theories that emphasize the 

role of memory in reasoning (e.g., Kolodner, 1984; Lebowitz, 1983; Schänk, 1982) , there are 

relatively very few models that address the issue of automatic acquisition of indices to learned 

pieces of knowledge. CYRUS (Kolodner, 1984) was one of the earliest systems that addressed 

the selection of indices to a new episode. It used primarily the discriminability and the previous 

predictive power of features to select a subset of features as indices. However, it could only 

choose indices from the predetermined context-dependent feature lists and could not learn the 

indexing vocabulary itself. 
CHEF (Hammond, 1989) uses explanation-based techniques to learn indices to plans from 

planning failures; in particular, it learns features in its domain that are predictive of negative 

interactions between plan steps. By learning predictive features, it can select plans that avoid 

problems. It also indexes plans by the goals that the plans satisfy. 
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AQUA (Ram, 1989; 1993) uses a content-based approach to index learning and uses 

explanation-based methods within this approach. AQUA learns particular kinds of knowledge 

that make good indices to explanatory cases by selecting the indices from the predetermined 

classes of stereotypical concept descriptions that constitute good indices in its domain. But it 

cannot learn new classes of indices; it can only learn new indices within the known classes. 

Our earlier work (Bhatta and Ram, 1991) has also addressed the issue of learning indices 

to scripts and causal Schemas such as XPs (Schänk, 1986; Ram, 1990) in the domain of story 

understanding. In that context, we developed two methods that enable index learning while 

processing a story, more specifically, while accessing a schema: either by deferring the selection 

until necessary cues are found in the story, or by inferring necessary indices from the story, 

or both. The inferencing is done by explaining the given story using any available domain 

knowledge; the results of the inferencing that enable retrieval of a schema are hence learned as 

new indices to the schema. We believe that similar methods might be needed for learning new 

indices to existing cases during retrieval in model-based analogy. Broadly speaking, our current 

work shares the same assumptions—indexing schemes and methods of index learning depend on 

the functional requirements of tasks, if not specific to a task—as in  (Bhatta and Ram, 1991). 

AUTOGNOSTIC (Stroulia, 1994) also performs knowledge reorganization as part of its re- 

design of a failed problem solver. It uses the SBF model of its problem solver to determine how 

to reorganize its knowledge and can learn new indices for it. IDEAL'S index learning task is 

similar but not the same. IDEAL also uses the knowledge of SBF models but it learns indices 

for a different type of knowledge, i.e., design analogues. AUTOGNOSTIC does not have cases 

of its own problem solving. Instead, the knowledge types for which it may learn indices depend 

on the specific problem solver it monitors and represents. Furthermore, IDEAL not only uses a 

model-based method but also integrates it with a similarity-based approach for generalizing its 

potentially new indices for analogues. 
Another example of similar work is Barletta and Mark's (1988) explanation-based index- 

ing (EBI), which provides an account of how explanations can be used to select a subset of 

predetermined indexing features to index diagnostic cases from the domain of assembly-line 

manufacturing. Hammond and Hurwitz (1988) also use a similar approach for the selection of 

features as indices to diagnostic failures (i.e., failures in diagnosis). We use explanations in the 

form of SBF models to learn indices (both new indexing vocabulary and right level of general- 

ization) to not only design analogues but to learned abstractions as well. EBI does not account 

for learning new indexing vocabulary. While both Barletta and Mark's work and Hammond 

and Hurwitz's work address only learning of one type of indices, our work accounts for learning 

of multiple types of indices, i.e., IDEAL learns both functional and structural indices to design 

analogues. The explanations in EBI are similar to those in EBL and EBG; the distinctions 

between these explanations and SBF models will be explained later. Explanations in EBI refer 

to the malfunctions of devices while SBF models are explanations of the functioning of devices. 

In addition to the above differences, our model-based approach is also different from EBI in 
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the learning method itself although both use explanations for learning indices to cases. First, 

EBI assumes that a pre-enumerated set of indexing features is available, and its learning task 

is to select some subset of the set of features. In contrast, our approach assumes knowledge 

only about the types of features that are to be used as indices (e.g., knowledge that functions 

expressed in substance properties are used as indices) but identifies the exact indices from 

the SBF models. Second, EBI necessarily determines both irrelevant and relevant indexing 

features. In our approach, in contrast, one needs to determine only the relevant features. This 

is because the SBF model generated by its problem solver automatically rules out all irrelevant 

features. Third, our approach integrates model-based learning with similarity-based learning 

(SBL). Specifically, it uses the model-based approach to learn the indexing features and the 

SBL to generalize over the learned features. 

10.3.2    Learning Abstractions from Experience 

Many psychological studies in human learning show that people learn abstractions (generaliza- 

tions) as they acquire experiences in a domain. For example, Wisniewski and Medin (1991) have 

found that people use domain theories in unsupervised learning of concepts from examples. In 

our approach, the case-specific models play a role analogous to domain theories in that they 

constrain the process of learning abstractions. In our theory, an agent predominantly performs 

unsupervised learning because it generalizes over its own problem-solving experiences. However, 

if the agent fails to create a successful solution to a design problem, then we provide the correct 

solution (and no other information) as feedback to the agent. 

The proposal that learning from experience is facilitated by explanations of specific expe- 

riences dates at least as far back as Winston (1980). Winston's model assumed knowledge of 

"what" is the concept being learned and relied on information concerning whether an example 

is a positive instance or negative instance of the concept. Winston's later models (1982, 1986) 

show that learning can be done by analogically transferring causal links in the explanation of 

an example to the target concept. Winston's work addressed learning of a different type of ab- 

stractions than what IDE AL learns. His FOX and MACBETH systems learn rules from specific 

situations by climbing up a known classification hierarchy for objects and chunking over causal 

inference chains. The generalization process in this learning is constrained by making sure that 

the exercise (i.e., the new situation) is "close" to the rule to be learned. Similarly, in his early 

system ARCH which learns concepts from specific examples, Winston (1975) assumes that the 

difference between two successive examples is very small (i.e., difference in one feature). But, in 

IDEAL, we do not make such a simplifying assumption. 

There are many AI models of learning from experience but most of them focus on the process 

of specializing some general knowledge to specific problems and making problem solving more 

efficient. Some other experience-based systems learn generalizations of indices but not of cases. 

Two exceptions are AQUA (Ram, 1993) and OCCAM (Pazzani, 1991) which make generaliza- 
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tions over specific cases. But few models have addressed learning of high-level abstractions of 

the types we described earlier. JULIANA (Shinn, 1989) and ASIS (Roverso et al, 1992) that 

we have already discussed learn different types of abstractions. We will discuss Birnbaum and 

Collins' work under "strategy learning" later as both our work and theirs deal with learning of 

abstract strategies. 
ASIS discovery system (Roverso et al., 1992) also learns abstract models of specific situations. 

But these models are structural models and they are different from functional and causal models 

of generic mechanisms or processes. Further, ASIS's method retains the entire model of a specific 

situation for the abstract model and simply replaces each object and link by the corresponding 

abstract object and link. Moreover, these abstract models are not stored in memory for reuse; 

but in our approach, the abstract models are stored in memory for potential reuse in future. 

Another model that addresses learning of abstractions from problem-solving experience is 

SOAR (Laird et al, 1987). However, the generalizations learned by SOAR are simple rules and 

are specific to types of subgoals in the problem. 

10.3.3    Learning of Strategies 

The problem of learning strategies has been studied by several researchers in AI since 1970s. 

For instance, (Waterman, 1970), (Mitchell et al., 1981), (Amarel, 1968), (Banerji and Ernst, 

1972), (Ernst and Goldstein, 1982), (Mostow, 1982) and (Birnbaum and Collins, 1988). Keller 

(1982) analyzes some of these research efforts towards strategy acquisition in terms of the four 

important issues within the strategy learning problem. In his words, they are (1) learning 

strategic components from examples or problem-solving traces, (2) recognizing the applicability 

of a strategy, (3) customizing or instantiating an abstract strategy, and (4) transforming an 

existing strategy. From Keller's analysis, we can say that none of these research efforts have 

addressed all these four issues in strategy learning. In contrast, our work cuts across all these 

major issues, although not addressing so deeply into all these issues. IDEAL'S task of learning 

GTMs from specific design experiences is an instance of the task of learning strategic components. 

Once an initial hypothesis for a new strategy has been formulated, the subsequent revision due 

to new design experiences is an instance of the strategy-transformation task. Of course, when 

IDEAL learns a new strategy, it needs to also acquire the applicability conditions for the strategy. 

And, finally, when it uses a strategy, since its strategies are abstract, it needs to instantiate the 

strategy in the context of a specific problem. Thus, IDEAL attempts to address all the above 

major issues in strategy learning. However, IDEAL'S theory of how a new strategy is formulated 

from experience is the most interesting part to compare with earlier work. 
Waterman (1970) used a self-modifying production system to address the issue of learning 

of heuristics for poker game-playing. His system has production rules that are composed of 

state vectors as conditions, and game decisions as actions. It can take input from two different 

sources: training information from a human or that generated by a machine from poker-playing 
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experience. IDEAL also handles input from multiple sources including these two. But, the 

content of input information is different in the two systems. The input to Waterman's program 

consists of specifying a game state vector, what is an acceptable game decision, what state 

variables are relevant to the decision, and why the decision is a good one in terms of constraints 

on the variables. Whereas IDEAL'S input consists of specifying only a design that achieves a given 

function and how it achieves that function. Waterman's program uses the training information 

and modifies the existing rules (i.e., changes to the constraints on the variables in the condition 

part of the rules) or adds new rules so that they comply with the given data. Whereas IDEAL'S 

output is a design pattern (in particular, GTM) that is abstracted over regularities in the given 

design and the retrieved similar design. 

Mitchell et al. (1981) have followed up on Waterman's work and developed a system called 

LEX. Like Waterman's program, it also learns heuristics but for solving problems in a different 

domain, i.e., integral calculus. LEX knows a priori all the operators needed to solve calculus 

problems and also the conditions under which each operator can be applied. What it learns are 

control heuristics for operators that specify when they should be applied. In that sense, IDEAL 

is quite different because it does not know any thing about the strategies it learns; it not only 

learns the applicability conditions for a strategy but learn the strategy itself. There are two 

interesting aspects of LEX that are worth noting: (1) it generates its own training problems 

and analyzes its performance on them and (2) it represents the partially learned heuristics in 

version spaces (Mitchell, 1977). IDEAL differs from LEX on both these aspects—IDEAL cannot 

generate its own training problems and it does not represent versions of a strategy but rather 

it commits to one level of generalization. Such commitment in IDEAL is guided partly by 

the vocabulary of device models and partly by the similarities and differences between design 

experiences. Other important differences between LEX and IDEAL are that LEX uses meta- 

knowledge and problem-solving trace in its learning while IDEAL does not use either. Instead, 

IDEAL handles the difficult issue of determining what to learn by situating the learning task in 

problem-solving context (failure + feedback from oracle) and using the device models. 

Of those models that have addressed learning of strategies, Birnbaum and Collins' (1988) 

work probably comes closest in sharing our goals—modeling the acquisition of abstract strate- 

gies that enable transfer of expertise from one domain to another. Their work concerns the use 

of EBL techniques in failure-driven learning of abstract strategies for planning in several do- 

mains by transfer of experience. GTMs in our work are similar to their abstract strategies such 

as "fork" in chess in that GTMs act as abstract plans for solving design-adaptation problems 

(Stroulia and Goel, 1992). Also, IDEAL'S process of their use is similar to that of (Birnbaum 

and Collins, 1988). However, Birnbaum and Collins view the abstract strategies to be useful 

primarily in accessing a relevant experience, that is, they view cases to be indexed by these ab- 

stract concepts. Furthermore, IDEAL'S method of learning the abstract strategies is completely 

different. Birnbaum and Collins' program uses problem-solving traces to reason about plan fail- 

ures and to abstract strategies such as "fork." In contrast, IDEAL uses models and explanations 
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of how devices function to learn the abstractions. Also, we model the acquisition of other types 

of "abstract concepts" such as the models of GPPs in addition to those of GTMs. 

10.3.4    A Model-Based Approach to Learning 

As discussed earlier under "learning of abstractions from experience," Winston's model of learn- 

ing (1982, 1986) is one of the earliest to advocate a "model-based" approach. In his theory, the 

causal relationships in an explanation of the experience are transferred to the target concept to 

be learned. Similar approach was used in Kedar-Cabelli's (1988) work on purposive explanations 

in learning concepts. Her work however emphasized that the functional roles of elements in a 

plan are what need to be transferred in order to explain a new instance of a target concept and 

learn the target concept. The theory in IDEAL that concerns learning of models (by revision) 

is similar to these two. However, in IDEAL, both functional and causal relationships from the 

model of a known device are transferred and modified to learn the model of a new device. 

Our model-based approach to abstraction is similar to explanation-based generalization 

(EBG) (Mitchell et al., 1986) and explanation-based learning (EBL) (DeJong and Mooney, 

1986) in using explanations (SBF models) to constrain the learning of "concepts." However, 

most EBL systems.assume some knowledge of the target concept a priori; our model-based 

approach attempts to discover them. The learning task in IDEAL is further different from the 

tasks in EBG and EBL in that the latter address the task of learning from a single example 

while IDEAL learns from two examples, more similar to mEBG (multiple example EBG) (Co- 

hen, 1988; Flann and Dietterich, 1989). The learning methods are also different in that EBG 

and EBL involve merely "chunking" over an explanation while IDEAL does abstraction over 

regularities in specific explanations. The distinction between these two processes is similar to 

the one drawn between generalization and abstraction by Michalski (1983). 

Also, our model-based approach differs from EBG and EBL in the kind of explanations it 

uses. First, while the explanations in EBG and EBL are general such as a resolution proof in 

First-Order Logic (FOL) that can be of any type depending on context, the explanations in 

SBF models are of a specific kind, that is, the latter are functional and causal, and thus provide 

how causal processes result in the achievement of specific functions. Second, the explanations 

in EBG and EBL specify how an example is an instance of a target concept while SBF models 

are explanations of the functioning of devices. Third, the explanations in EBG and EBL are 

constructed at run-time from domain-specific rules whereas SBF models are formed by revising 

old models (or by a combination of model-revision and primitive-behavior composition) as part 

of the problem solving. Fourth, SBF models are grounded in a well-defined component-substance 

ontology. 
Dietterich (1992) presents a model-based approach to learning models of plant physiology 

useful for the task of predicting how climate determines the location and distribution of plant 

ecosystems (biomes). The model of a plant is represented as an augmented finite state machine. 
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These representations are similar to ours to the extent that a behavior is represented as a chain 

or cycle of alternating states and transitions. Dietterich's approach assumes an initial model, 

although incomplete but general, and subsequently refines the models based on examples of 

plant ecosystems so that the refined models are more accurate for later predictions. In our 

approach, the direction of learning is from specific models (of given experiences) to generalized 

models of different kinds. We also give an account of how the specific model of a new device is 

formed by revising that of a source analogue. Also, Dietterich assumes that the examples are 

available in batch in contrast to our incremental approach. 

10.3.5    Multistrategy Learning 

Our work integrates the model-based approach with the similarity-based method for learning 

abstractions. Pazzani's OCCAM (1991) also integrates SBL, EBL, and theory-driven learning 

(TDL) for learning of concepts. OCCAM assumes knowledge of general patterns such as that 

of causality. It uses them for learning concepts, domain-specific causal relationships, and for 

acquiring explanations that help make a shift from relying on SBL to using EBL. The types of 

abstractions learned in our approach fall into the same class as these general causal patterns 

but are different; the major difference is that they are learned from experience in our approach. 

OCCAM uses general patterns of causality to acquire specific explanations; our approach uses the 

abstractions to form explanations (SBF models) of specific devices as it solves design problems 

by model-based analogy. 

When multiple strategies are used for learning or reasoning, there is a need for strategy 

selection. IDEAL uses the model-based and similarity-based methods at one level and uses 

different, more-specific strategies at another level for its learning. At the top level, it does not 

make a selection between the model-based and similarity-based methods, instead, it uses these 

two methods for different subtasks of its learning of abstractions. But at more specific levels, 

it selects a strategy (such as abstraction over substance parameter transformation or substance 

location transformation for learning GPPs) dynamically depending on the type of functional 

transformation in the device models it compares. 

In addition to OCCAM, these are a few other systems that do strategy selection for learning: 

AUTOGNOSTIC (Stroulia, 1994), Meta-AQUA (Ram and Cox, 1994), and Meta-TS (Ram 

et al., 1995). All these systems do meta-reasoning while IDEAL does not because its task is 

different and it does not need reasoning at that level. However, the strategy selection in those 

systems is relevant here. As we already discussed in earlier sections, AUTOGNOSTIC uses 

a common framework in several dimensions with IDEAL. AUTOGNOSTIC performs different 

learning tasks such as learning of new tasks in the problem solver it is associated with, learning 

indices to the domain knowledge of its problem solver, and learning new domain concepts for its 

problem solver. Its learning is driven by problem-solving failures and guided by the meta model, 

the model of its problem solver. It uses different strategies for different learning tasks. Given a 
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learning task, it chooses a learning strategy based on the conditions of knowledge availability in 

the failed episode. In that sense, it does a dynamic selection based on the specific conditions, 

similar to IDEAL. 

Meta-AQUA is a reflective failure-driven learning system in the domain of story understand- 

ing. Its story understander uses cases and explanation patterns (XPs) to understand stories 

it reads. Some of the failures it recognizes are conflicts between the input and the expecta- 

tions that are set up by its cases and XPs. It uses meta-level XPs (Introspective Meta-XPs), 

which capture prototypical error patterns, to find causes for the failures. Once it identifies 

the potential causes, it formulates a set of knowledge goals which specify "what" needs to be 

learned and "why" in the specific context. Then its task is to select an appropriate strategy 

from a set of learning strategies that can be used to achieve the knowledge goals. It uses a 

non-linear planner to accomplish this selection task. Thus Meta-AQUA's strategy selection is 

much different from IDEAL'S. Meta-TS explores the same theory as that of Meta-AQUA in the 

context of trouble-shooting electronic circuits. It also uses the same kind of strategy selection 

as Meta-AQUA. 

10.3.6    Multistrategy Reasoning 

In this section, we compare our use of multiple strategies in reasoning and dynamic selection of 

strategies in IDEAL with other work. IDEAL uses multiple strategies for several different tasks 

in its computational process for analogy. For instance, it uses multiple strategies for design 

adaptation and selects them automatically at runtime. Its flexible control of strategy selection 

is motivated from and similar to the one used in another system called ROUTER, although the 

latter work is in a different task context. That is, ROUTER solves a route-planning task and 

not a design task (Goel et al., 1991; Goel and Callantine, 1992; Goel and Callantine, 1991). 

ROUTER's task is to produce a path connecting two given locations in a geographical region. 

It describes a path in terms of a sequence of connected locations intermediate to the given initial 

and final locations. Each location is an intersection between two streets in a map. ROUTER uses 

two different methods of reasoning, namely, model-based reasoning and case-based reasoning. 

Its model-based reasoning method uses a hierarchical topographic model of the geographical 

region and does search within the parts of the region called neighborhoods. Its case-based 

reasoning uses cases of previously planned paths between locations. Given a path planning 

task, it dynamically selects between these two methods using some criteria for selection. In 

its application of either of these methods, ROUTER decomposes the given path-planning task 

into smaller path-planning tasks. For the recursive invocation of these subtasks again it uses the 

dynamic selection of the two methods. Thus, for a given task it may combine different sequences 

of applications of these two methods resulting in flexible control flow. IDEAL also uses a similar 

control of architecture for its selection of adaptation strategies for the given adaptation goal(s) in 

design. In IDEAL too, when subproblems are generated as part of adaptation, the subproblems 
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are solved by selecting appropriate adaptation strategies and combining the solutions of the 

subproblems. 

10.3.7    Learning by Discovery 

Discovery can be characterized as learning without knowing a priori what is being learned. In 

this sense, the learning tasks we are modeling can be viewed as discovery tasks because we do 

not assume ö priori knowledge of the abstractions being formed from experiences. Since some 

abstractions can be physical principles and processes, our approach can be compared to work 

in scientific discovery such as BACON (Langley et al., 1987), FAHRENHEIT (Zytkow, 1987), 

and ABACUS (Falkenhainer and Michalski, 1986). These systems require a large amount of 

data because they use inductive approaches to discover regularities and form laws. In contrast, 

our approach involves incremental discovery of physical principles using models at lower levels 

of abstraction (e.g., device models) to guide the discovery process. Hence, it requires fewer 

examples for discovering useful principles. Most of the above systems use predesigned exper- 

iments to test their hypotheses.3 On the other hand, our approach takes a different stance 

on experimentation—it views problem solving using hypothesized "concepts" as testing the hy- 

potheses. Thus experimentation is not planned but rather is a consequence of solving problems 

in the real world. 

Learning of abstract models from several specific designs is also related to the tasks of the- 

ory formation and hypothesis formation—an abstract model is a theory of the functionality 

of the specific designs. In this context, our work can be compared to several systems such as 

PHINEAS (Falkenhainer, 1990), COAST (Rajamoney, 1988; 1990) , and HYPGENE (Karp, 

1989; 1990) . PHINEAS is a discovery system that forms theories of time-varying physical 

behaviors by a single similarity-driven explanation mechanism, that is, by analogy to the ex- 

planation of a similar situation. The representations in PHINEAS are based on Forbus' (1984) 

qualitative process (QP) theory. To the extent that the device-specific model of a new design 

is formed by revising the model of a similar experience (or by instantiating an abstract model 

in the experience), our work is similar in spirit to PHINEAS. PHINEAS uses the behavioral 

abstraction of a given situation to access a source analogue but assumes that the behavioral 

abstractions are known a priori. Our work differs from PHINEAS in modeling not only how 

abstract models can be used for accessing a source analogue but also how they can be learned 

by generalizing over experiences. 

COAST models theory revision but not theory formation. COAST's domain theories are 

also represented in QP and they capture processes in the domain of naive physics; hence they 

are of the same type of knowledge as device models in our work, more specifically, a device 

model corresponds to a component of theory in COAST. In our work, once a hypothesis (for 

the specific type of abstract model) based on experiences is formed, the subsequent revision 

'Hypothesis formation and hypothesis testing (or experimentation) are two phases of discovery. 
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(generalization or refinement) of the hypothesis is similar to the task of COAST. COAST uses 

an explanation-based method for revising a theory when it encounters an anomalous observation. 

COAST's method of testing a proposed theory, namely, exemplar-based theory rejection, is very 

appropriate in our framework as well because in our approach prior experiences (or prototypes 

formed from them) play an important role in learning as well as other reasoning processes. 

HYPGENE is a system that generates hypotheses in the discovery of attenuation, a mech- 

anism of gene regulation in bacteria. HYPGENE views the task of hypothesis formation as a 

design task. HYPGENE uses qualitative representations for biological theories; the represen- 

tations of models in our work also are primarily qualitative but can accommodate quantitative 

representations as well. HYPGENE generates a hypothesis by synthesizing from the primitives 

used to describe theories and the initial conditions of experiments. In contrast, our approach 

uses a model-based method to generate hypotheses by generalization over experiences. 

10.4    Analogical Reasoning 

Psychological data indicates that people often use analogies in solving problems of various kinds 

(Gick and Holyoak, 1980, 1983; Gentner, 1983; Ross, 1984). Computational models of analogy 

date as early as Kling (1971) though these early models were only approximate. Later com- 

putational models such as (Winston, 1982; 1986), (Gentner, 1983; Falkenhainer et al., 1989), 

(Kedar-Cabelli, 1988), (Carbonell, 1986), and (Holyoak and Thagard, 1989a) are more complete 

but still address only some stages of analogical reasoning, mostly the mapping and transfer 

stages. For instance, SME (Gentner, 1983; Falkenhainer et al., 1989), PDA (Kedar-Cabelli, 

1988), and ACME (Holyoak and Thagard, 1989a) do not model analogue retrieval. Other the- 

ories such as ARCS (Thagard et al., 1990) focus only on the retrieval stage. In contrast, we 

consider all stages of analogy in this work. 
Psychological studies also show that people transfer relationships between objects in the 

source domain and not their attributes (Gentner, 1983). Most theories of analogical reasoning 

also involve transferring relationships directly from a source analogue to the target problem: 

relationships that conform to systematicity principle as in (Gentner, 1983), or causal relation- 

ships as in (Winston, 1982; 1986), or functional relationships as in (Kedar-Cabelli, 1988) are 

transferred. Our work is similar to both (Winston, 1982; 1986) and (Kedar-Cabelli, 1988) in 

that IDEAL also transfers causal and functional relationships in a source domain to the target 

domain, although the tasks we model are quite different. 

We organize our discussion of related work in analogy into four different parts: (1) purpose- 

directed analogy (covering Kedar-Cabelli's, Winston's, and Holyoak's work); (2) model-based 

analogy (covering Winston's, Falkenhainer's, and Roverso et al.'s work); (3) case-based approach 

(covering Hammond's, Koton's, Navinchandra's, and Shinn's work); and (4) psychological theo- 

ries (covering Gentner's SMT, Holyoak's pragmatic schema model, and Ross's and Hintzman's 

exemplar models). 
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10.4.1    Purpose-Directed Analogy 

IDEAL'S analogical process that involves transfer between specific designs via specific SBF mod- 

els is very much similar to the transfer process in Purpose-Directed Analogy developed by 

Kedar-Cabelli (1985, 1988), although the overall task in the latter is different. The task in her 

work is refining a known goal concept by explaining how a given instance achieves the purpose 

of the goal. The core idea in Purpose-Directed Analogy is to use the purpose for which the 

analogy was being made to determine what relations in a source analogue to transfer to the 

target problem. Similarly, in our model-based approach, the purpose of the target problem (i.e., 

the function of the desired device) plays an important role in analogical transfer: the transfer is 

based partly on the functional differences between the source and the target designs. 

Purpose-Directed Analogy involves forming an explanation for the purpose of a source ex- 

ample using EBL and mapping the explanation over to the new example. One question is why 

can't the explanation for the new example be generated using the same EBL method to begin 

with?! Purposive explanation constrains what features in the example are relevant for revising 

the concept. Purpose-Directed Analogy assumes that the domain theory available is complete 

and correct, while IDE AL does not. In Purpose-Directed Analogy, the transfer is not only 

within-domain but also assumes that the purposes of the source and target are the same. Like 

Winston's work (1980, 1982, 1986) but unlike ours, purpose-directed analogy also covers only 

simple modifications to source explanations and assumes much prior knowledge of the target 

problem and domain. Purpose-Directed Analogy does not address the issues of retrieval and 

storage of analogues. In contrast, our model-based approach addresses several stages of analogi- 

cal reasoning and makes few assumptions about the target problem. The latter difference is due 

in part to the design task we are modeling—design generation is much more open-ended than 

explanation completion and allows for fewer assumptions about prior knowledge. 

IDEAL also shares the most with another cognitive model, that is the pragmatic schema 

model (Gick and Holyoak, 1983; Catrambone and Holyoak, 1989). In this model, the pragmatic 

structure of the source analogue (i.e., sub-goals that contribute to the solution of the problem) 

guides the transfer. An analogous situation for IDEAL is that the functional structure and 

decomposition of an SBF model of a device guide the transfer process in IDEAL. Their work 

involves strategic learning of the Schemas, which are different from IDEAL'S abstractions. IDEAL 

shares the ideas that the learning occurs from comparison of two analogues, and that the schema 

induction is important for cross-domain transfer. Some of their experiments show that explicit 

hints facilitate better schema induction and higher rates of transfer. However, in IDEAL such 

bints are not given. Holyoak and Thagard's (1989) PI system is a computational model that 

incorporates some of these findings and covers schema induction and learning of general rules. 



227 

10.4.2    Model-Based Analogy 

Winston's FOX and MACBETH: Our theory is similar to Winston's (1980, 1982, 1986) 

cause-directed analogy in that both models emphasize that the causal relationships in a source 

analogue determine and constrain what is transferred from the source to a target prob- 

lem/situation. However, Winston's work focuses on the task of explanation completion and 

query answering that are much less open-ended than design generation task we address in 

IDEAL. It is because in the prior task, there is a lot more information directly available in 

the input to the task than that in the design generation task. Whereas the output information 

to be inferred in the explanation completion and query answering task is much less compared to 

that in the design generation task. Although IDEAL shares the motivation that the knowledge 

to be transferred from a source to a target is the causal relationships in the source analogue, it 

does focus, in addition, on the functional relationships between the source and target. 

The transfer task in Winston's systems (FOX and MACBETH) is to identify the mappings 

between the individual items in the source and target situations by a process of exhaustive 

matching and transfer the causal relationships between the matched individuals in the source 

to the corresponding ones in the target. By that process, his systems infer values for unknown 

variables (which could be physical variables such as voltage or volitional such as an agent de- 

pending on the domain), typically only one in an instance. In contrast, IDEAL'S task does not 

involve identification of mappings explicitly because that occurs as a by-product of retrieval 

itself. And, it is because of the uniform representations of functions in SBF ontology in all the 

analogues and because of using a structured matching on those functions for retrieval. Unlike 

in Winston's systems, IDEAL'S task involves inferring values for multiple unknowns, as it does 

design generation. The transfer task in IDEAL however involves copying the functional and 

causal relationships in the model of the source analogue over to the target problem, and then 

modifying them according to the differences in the functions. While Winston's systems too can 

handle modifications to source analogues, they are much simpler than those that IDEAL can 

handle. For instance, his work addressed only how simple modifications (such as substitution of 

relations and class specialization in a source analogue by corresponding ones from target) can 

be done to a source analogue in order for it to fit the target situation. In his work, the distance 

between a source and a target is typically very small. In contrast, IDEAL addresses the issue 

of complex, non-local modifications that involve patterned insertions of new design elements 

into the source analogue. Recall from the Chapter 5 that IDEAL performs two different kinds 

of transfer: (1) transfer from a specific source situation to a specific target situation and (2) 

transfer from an abstraction to a specific target situation. Although Winston's work primarily 

looks at the first kind of transfer, that is, transfer between specific situations, his theory ac- 

commodates the possibility of general rules themselves being transferred as source analogues. 

While IDEAL'S theory attempts to address the issue of cross-domain retrieval, Winston's theory 

does not. We have discussed Winston's work earlier with respect to the relationship between 
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the learning tasks he addressed and that IDEAL covers. 

In contrast to (Winston, 1982; 1986) and (Kedar-Cabelli, 1988), our theory of model-based 

analogy (MBA)—access an abstract model in the source domain and instantiate it in the target 

domain—is also based on transferring functional and causal relationships via shared mental 

models at higher levels of abstraction. In this respect, our theory is more similar to NLAG 

(Greiner, 1988), PHINEAS (Falkenhainer, 1990), JULIANA (Shinn, 1989) and ASIS (Roverso 

et al., 1992). However, both NLAG and PHINEAS assume that the abstractions are known 

a priori and do not address the issue of acquiring them. NLAG views a source analogue as 

an instance of one of its domain-independent abstract models and instantiates the relevant 

abstraction in the target domain. 

PHINEAS: PHINEAS is an analogy-based machine-discovery system that learns qualitative 

explanations for time-varying physical behaviors. PHINEAS uses the behavioral abstraction of 

a target situation to retrieve a similar abstraction and the specific experiences stored under that 

abstraction. It selects one of the experiences based on further matching to the target situation 

and maps the selected one. Therefore, our work is similar in some respects but interestingly 

distinct in some others. For instance, while PHINEAS thus uses the known abstractions for 

accessing a relevant specific experience and its explanation, IDEAL uses the abstractions them- 

selves for transfer. Recall that IDEAL'S process involves two kinds of transfer: one between the 

specific designs and the other from an abstraction to a specific design situation. The first of 

these two transfers is similar to PHINEAS's task. And, the second is not addressed in PHINEAS 

at all. Although the first kind of transfer task is similar, PHINEAS uses a very different kind of 

method, which is a syntactic, content-independent approach that relies on systematicity principle 

(Gentner, 1983; Falkenhainer et al, 1989). In this approach, PHINEAS constructs all possible 

mappings between the source situation and the target situation, while IDEAL establishes the 

appropriate correspondences not by explicit mapping but rather by structured matching on uni- 

form representations during retrieval itself. Thus the correspondence problem is not a major 

issue in IDEAL while it is so in PHINEAS. Also, while PHINEAS explores issues in analogy in 

the context of the task of explanation completion which is a much less open-ended task than 

design generation that IDEAL uses. Finally, PHINEAS does not address the issue of learning of 

abstractions. 

ASIS: Model-Driven Analogy, as implemented in ASIS, is another approach that also accounts 

for the acquisition of abstract models. ASIS forms abstractions from target descriptions while 

accessing a source analogue. Our approach, on the other hand, covers both learning of ab- 

stractions while storing experiences in source domain and during solving problems in a target 

domain. The rationale is that it seems implausible that an agent always can form abstractions 

before solving problems in a domain, especially for the complex problems such as design tasks. 

It appears more plausible that an agent may have ability to recognize the applicability of an 

already acquired abstraction to the current problem. Further, it appears more plausible that an 

agent can learn abstractions from experiences in a familiar domain, and acquire experiences in 
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a new domain by analogical transfer. 

10.4.3    Case-Based Approach 

IDEAL covers both within-domain analogies and cross-domain analogies.4 IDEAL performs two 

different kinds of transfer: (1) transfer from a specific design to a specific problem and (2) transfer 

from an abstraction (i.e., a design pattern such as cascading GTM) to a specific problem. The 

first type of transfer task is equivalent to the task of case adaptation in case-based reasoning 

(Kolodner, 1993). For that reason, IDEAL views the transfer task as the modification of the 

source analogue to meet the specifications of the target problem. Several researchers (Ashley and 

Rissland, 1988; Hammond, 1989; Kolodner and Simpson, 1989) have developed computational 

models for case-based reasoning that posit different methods for adapting previous cases for 

solving new problems. For example, heuristic search (Stallman and Sussman, 1977) and heuristic 

association (Hammond, 1989). The case-based method itself has been recursively used to adapt 

cases (Kolodner and Simpson, 1989). 
In addition, several researchers have used model-based methods for case adaptation. For 

example, Koton (1988) has used causal domain models for comprehending diagnostic problems in 

internal medicine and retrieving appropriate diagnostic cases from memory; Simmons and Davis 

(1987) have used causal domain models for debugging plans but only for testing modifications 

to a plan, not for generating the modifications; and Sycara and Navinchandra (1989) have 

proposed the use of causal domain models for elaborating engineering design problems, retrieving 

appropriate cases from memory, and adapting them. Unlike them, we advocate the model-based 

approach for several subtasks in analogical reasoning: retrieval of similar analogues from memory, 

generation of modifications to the retrieved analogue, execution and evaluation of the generated 

modifications, and finally, storage of new analogues in memory. Furthermore, IDEAL'S SBF 

models are different from the causal models of Simmons and Davis, Koton, and Sycara and 

Navinchandra. The behavioral states and the state transitions in their models are grounded 

neither in the function nor in the structure of the system. In contrast, the SBF model explicitly 

relates the internal causal behaviors to both the function and the structure of a device, and thus 

constrains them both from the top and the bottom. 
The second type of transfer in our theory is similar to Shinn's (1989) work on abstractional 

analogy in several respects. That is, our work shares the basic assumption of JULIANA that 

an analogy between the source and the target can be performed through a common abstraction, 

especially when the source and the target domains are far apart. JULIANA emphasizes that 

common abstractions, if they do not already exist in memory, are learned during the mapping 

process while our work accommodates learning during transfer as well as storage. However, 

the current version of IDEAL implements and tests only learning during storage. Although 

Anderson's psychological data (1986) denies a separate learning process after analogical problem 

4 Of course,   it  inherits   its  basic   ability   to  do  within-domain   analogies   from  its  predecessor  systems 
KRITIK/KRITIK2. 
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solving, we propose that discovery of the kind we are modeling might occur as an "after-the-fact" 

process (or, in retrospect), more specifically, while storing an experience in memory. 

Further, JULIANA assumes that given a target problem, a source case, however partially 

it might match, can be retrieved. This seems plausible only in two situations: either there is 

already a common abstraction (in terms of indices) engineered into its memory or the distance 

between the target problem and the source case is very "small." In contrast, our approach takes 

a different view in which initial abstractions are hypothesized from experiences that might be 

close to one another or that are from the same domain. These abstractions may be retrieved 

and instantiated in different target domains to make cross-domain analogies. Furthermore, they 

may be subsequently revised based on feedback when they are used in later situations. 

Within the case-based approaches, although Hammond's (1989) work concerns with a dif- 

ferent task and a different adaptation method compared to our work, some of the subtasks of 

CHEF relate to those in IDEAL. In particular, IDEAL'S tasks of understanding failures com- 

ing from an external evaluator and reformulating problems in order to redesign are related to 

CHEF's tasks of understanding plan failures and replanning. There are, of course, some simi- 

larities and some differences between the specific tasks, methods, and knowledge assumptions in 

IDE AL and the corresponding ones in CHEF. First, while CHEF has a built-in plan simulator 

that is equivalent of real-world execution, IDEAL does not have any such. But, IDEAL does 

have an internal evaluator that uses its knowledge of the device model to "mentally" simulate 

a candidate design, which is different from CHEF's real-world simulator. IDEAL however relies 

on an external agent to provide feedback on the outcomes of executing the candidate design in 

the real world. IDEAL'S policy is more valid than CHEF's because one could criticize CHEF 

rightfully as follows: if CHEF's simulator already has the necessary knowledge to verify the 

plan, why can't it use the same to produce a correct plan in the first place and why does it have 

to deal with failures at all? 
Second, both IDEAL and CHEF share the same argument that it is not enough to identify or 

know a failure in a candidate design/plan, but rather there is a need for explaining the failure. 

While in CHEF, a failure is described only as an undesired final state, the design failure in IDEAL 

can be either an undesired state or an undesired state transition. IDEAL and CHEF use different 

methods for forming explanations of failures. IDEAL uses its knowledge of generic models (in 

particular, GPPs) to form causal explanations of the failures in the context of the candidate 

design. In contrast, CHEF uses a set of inference rules that relate plan steps and domain objects 

to chain through the plan steps and states and forms a causal explanation (much like in the way 

explanations are formed by goal regression in EBL/EBG). 

Third, both IDEAL and CHEF fix the failures, but each differently. CHEF uses the causes 

of the failure to describe the planning problem in terms of general causal vocabulary and uses 

that description to access plan-debugging strategies. CHEF uses TOPs (Thematic Organization 

Packets) to encapsulate mappings between planning problems and applicable set of repair strate- 

gies. In contrast, IDEAL uses the causes of the failure to reformulate the problem by discovering 
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any new constraints that are still in the specific vocabulary of the problem. It is because IDEAL 

uses those new constraints to access designs for composing with the failed design. Although 

IDEAL too has knowledge similar to TOPs in its GTMs, it does not use them to repair the 

failed designs, instead, it uses them for adaptation. 
Fourth, while CHEF learns from its failures to anticipate them in future and avoid, IDEAL 

does not do so. CHEF is able to learn because it assumes that the failures are such that it 

can find features in the initial problem that are predictive of the failure. But in the kinds of 

failures IDEAL deals with, such a "blame assignment" is not possible because the failures may 

be due to interactions of the device with new environments and the initial problem may not 

specify anything about the environment. But since IDEAL has reformulated the problem, it can 

store the new design indexed by the reformulated problem so it would be used only in the right 

situations. In contrast, CHEF indexes its new plan by the failures as well as goals, and thus 

restrict the use of the plan for the right situation. 

10.4.4    Psychological Theories 

In this section, we compare IDEAL with the three major psychological theories of analogical 

transfer, which are Gentner's (1983, 1989) Structure-Mapping model, Holyoak (1984,1985) and 

Holyoak and Thagard's (1989) pragmatic schema model, and Ross's (1987) and Hintzman's 

(1986) exemplar models (Ross's remindings theory and Hintzman's multi-trace model). We 

compare on the three issues in analogical transfer that are considered important in psychological 

theories (Reeves and Weisberg, 1994). In addition to the basic papers on the three models, we 

draw on Reeves and Weisberg's (1994) extensive survey of the psychological theories of analogy. 

Before considering the three issues, let us list the three types of knowledge that may have 

different roles in analogical transfer: 

1. Problem Content: The problem content consists of the semantic domain and the surface 

elements of a problem. The semantic domain is defined as the superordinate classification 

of a problem topic. But the inclusion of semantic domain in problem content is debatable. 

In IDEAL, the surface elements are specific substances and components, and the semantic 

domain is the functional classification of the design problems. 

2. Abstract Information or Structural Details: This consists of solution principles (that can 

be stated as either formulas or propositions in formal domains; or Schemas (Gick and 

Holyoak, 1983) or deep structure (Gentner, 1983, 1989) in nonformal domains). Schemas 

are also considered to have information about how to classify problems. In IDEAL, the 

abstractions can be design patterns such as generic physical processes or generic teleological 

mechanisms. The classificatory information in IDEAL'S abstractions are their indices. 

3. Experimental Context: This includes the setting, the experimenter, and the tasks in the 

experiment (in a psychological study).  Since work on IDEAL does not involve any psy- 
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On the other hand, when IDEAL learns GPPs, it does store the new analogues because these 

learned abstractions are of a different kind, used for a different task, and when applied to the 

source analogue do not produce the needed solutions. But instead, they themselves can be used 

as "analogues" and can be instantiated in a target problem. 

Issue 3. What is the relative importance of surface and structural-schematic elements of base 

and target problems in retrieval and application processes? 

Most of the models under discussion suggest that both surface and structural-schematic 

features play a role in retrieval except the remindings theory which says that only surface features 

are important. We should note however that Gentner, Ratterman and Forbus (1993) tease out 

the relative importance of the two types of features in the subtasks of retrieval, namely, selection 

of all matching analogues and ordering them to choose the best. They indicate that surface 

features determine the selection of analogues but the structural-schematic features determine 

the ordering of analogues. In IDEAL too, both types of features are considered important. 

In IDEAL, the indices to design analogues are provided by the vocabulary of SBF models 

which are "deep" (or semantic). But the problems themselves (i.e., the desired functional speci- 

fications), although specified in this vocabulary, contain surface elements (which we refer to also 

as domain-specific features) such as substances and their properties, and components and their 

properties. Thus, these surface elements determine the retrieval of source analogues. However, 

an alternative indexing scheme in IDEAL is based on "deep" features such as primitive func- 

tions (e.g., ALLOW, PUMP, CREATE etc.), which are part of the same vocabulary. Although 

this alternate indexing enables retrieval of analogues from a different domain, it imposes the 

requirement of eliciting "deep" features (i.e., these primitive functions) from the given problem 

specification that specifies only "surface" elements before retrieval can be done. 

With respect to the question of which features are important in application of a retrieved 

analogue to the target problem, majority of the models agree that the structural (deep) features 

are more important than the surface features. The exception, of course, is the exemplar model— 

while multi-trace model is silent about this issue, remindings theory suggests that it is largely 

surface features that play a role in application. 

Although IDEAL agrees with structure-mapping and pragmatic schema models on the second 

part of the question, what IDEAL considers as structural features is different from that in the 

other two models. In IDEAL, the knowledge of device models (that relate function, structure and 

behavior) is considered deep knowledge. The application of source analogue to target problems 

in IDEAL is guided by the "deep" knowledge of device models and the functional differences 

between the source and target problems.6 

Table 10.1 reproduces the summary of the comparison of the three major psychological 

models from (Reeves and Weisberg, 1994). But it also shows IDEAL'S position on the particular 

issues in comparison to the other models. 
6 But, of course, the surface elements in the two problems also matter in the specific modifications done to the 

source analogue. 
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Table 10.1: How each of the above models of analogical transfer (including IDEAL 

which is a computational model) answers the critical theoretical questions 

Theoretical issue Structure 
mapping 

Pragmatic 
schema 

Multiple 
trace 

Remindings 
theory 

IDEAL 

Automatic vs. 
Strategic 

Automatic 
discernment 
of structure 
(not really 
abstraction; 
no schema 
induction) 

Strategic Both Strategic Both 

conservative vs. 
eliminative 

probably 
conservative 

Conservative Cons. Cons. Both 
(different 
in different 
contexts) 

Does conservative 
induction include 
preserving episodic 
or contextual cues? 

No Posthoc 
explanation 

Yes Yes Yes (only in 
the form of a 
partial spec, 
of the problem- 
solving task.) 

Surface vs. 
structural features 
more important in: 

Retrieval? 

Application? 

Both 
(Surface in 
selection 
subtask and 
structural 
in ordering) 

Structural 

Both 

Pragmatic 
structure 

Both Surface 

Largely 
surface 

Both 

Models 
(semantic 
structure) 
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chological studies, the equivalent of this in IDEAL would include the "state" of IDEAL'S 

memory at any given time and the particular problem-solving task (for instance, a charac- 

terization of the adaptive design task in terms of functional differences between a known 

design and a desired design). 

The three major issues in analogical transfer are (1) whether schema induction occurs in 

analogical problem solvers, and if so, whether it is automatic or strategic? (2) whether any 

induction from examples (or problem-solving experiences) that occurs is conservative (with 

respect to retaining surface details and episodic details) or eliminative (i.e., those details are 

discarded)? and (3) what is the relative importance of surface and structural-schematic elements 

of source and target problems in retrieval and application (i.e., transfer) processes? 

Issue 1. Many theories agree that schema induction from exemplars can occur. But the issue 

is whether it is automatic or strategic? In automatic induction, the cognitive system automat- 

ically tabulates the degree of overlap among several similar problems presented, and stores the 

composite of overlapping features as a separate problem representation. While in strategic in- 

duction, the schema induction is based on (a) explicit comparison of two or more analogues for 

likeness, (6) active processing of the schematic principle of one or several exemplars, or (c) the 

use of one problem to solve another. 

In structure-mapping model, there is really no abstraction or schema induction, but rather 

the process involves extracting structural details from specific examples. The structure-mapping 

theory considers that process to be automatic. Whereas, the pragmatic schema model does con- 

sider schema induction that involves abstracting over the pragmatic goal structure in achieving 

the solution to a specific problem. This model considers schema induction as a strategic process 

that occurs during problem solving. Although the exemplar models do not give importance to 

schema induction, they nevertheless admit the possibility that abstractions may be formed after 

a large number of exemplars are seen. Multi-trace model suggests that schema induction can be 

both automatic and strategic, but the remindings theory suggests that it can be only strategic. 

In contrast to these theories, we suggest that the induction can be automatic or strategic in dif- 

ferent, particular conditions. IDEAL'S theory enables us to predict clearly what those conditions 

are that perhaps can be tested for psychological validity. 

In IDEAL, an analogous issue is whether learning of abstractions occurs at storage time 

(which is automatic) or at problem-soving time (which is strategic). But, it is not clear whether 

learning at storage time is really automatic in IDEAL, because it involves an explicit comparison 

of two analogues for similarities and differences, which can be triggered by both "failure" at 

problem solving or "success" at it! Or, perhaps, learning triggered by failure is strategic, and 

that triggered by success is automatic? 

Hence, one prediction IDEAL makes is as follows. Failure at problem solving may be the 

trigger for explicit comparison of analogues which leads to strategic abstraction, even if it occurs 

at storage time; if it occurs at problem-solving time, it is strategic anyway (following the Holyoak 
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et al's pragmatic schema model). Furthermore, IDEAL proposes that abstraction from analogues 

after successful problem solving is automatic because there is no "strategic" point to that learning 

(i.e., by this abstraction, it is not trying to avoid a failure in future problem solving nor is it 

trying to get better at problem solving later on). 

Issue 2. Is the induction conservative (i.e., the surface details of exemplars and the episodic 

details of the learning situation are maintained after schema abstraction) or eliminative (i.e., 

those details are discarded)? 
All the three major models agree on their answer to this issue and all of them suggest 

that it is conservative. But they differ on the related question as to whether conservative 

induction include preserving episodic or contextual cues. While exemplar models indicate that 

the contextual cues are preserved in induction, structure-mapping model suggests that they are 

not. Pragmatic schema model admits on a posthoc basis that the contextual information is 

perhaps maintained in the induction. In contrast to all these models, IDEAL'S theory suggests 

that the induction can be both conservative and eliminative in different contexts. 

There is one thing not clear in this conservative vs. eliminative induction. That is, it is 

not clear from these definitions whether the exemplars themselves are discarded in eliminative 

induction, or it means that the surface details are "not included" in the abstracted schema but 

the exemplars may be available as independent representations? In IDEAL, when learning at 

failure, it has been eliminative induction, and is in the sense that the specifics of analogues 

are discarded from the abstraction and also that the new analogue may or may not be stored.5 

But, when learning from successful problem solving, it has been conservative induction, and is 

in the sense that the specifics are maintained separately from the abstractions. That is, both 

specific analogues and the abstractions are available, but they are accessed for different subtasks 

in IDEAL: analogues when a design problem is given, and abstractions when a retrieved design 

is being adapted. 
The rationale behind the decisions in the current implementation of IDEAL is as follows. 

IDEAL learns GTMs when failed (i.e., either it was not able to produce a solution or it took 

more than one step of adaptation). It does not need the new analogue later on because it can 

apply the learned GTM to the source analogue and produce the needed solutions. One question 

that might arise is how will IDEAL know whether to discard the exemplar or not. One way 

by which IDEAL can decide this is by trying to use the abstraction immediately to solve the 

current problem and checking if it can generate the current exemplar—if yes, it can store only 

the abstraction, else it can store both the abstraction and the exemplar. This, we believe, follows 

the principle of cognitive economy. But, we are also finding that if learning were to occur at the 

problem-solving time rather than at the storage time, it is necessary to store the new analogue 

(with different indices as well as the functions)—because that would need to be accessed in later 

problem solving at the time of which the abstractions may be learned. 
5In the current implementation, the new analogue is not stored, but in general, there is no commitment to not 

storing it. 
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IDEAL seems to share more ideas with the Pragmatic schema model than the others. But it 

differs from this too on some of the major issues in analogical transfer as indicated in the table. 

In all the three major models, the application involves transferring solution from a "specific" 

exemplar to the target problem (i.e., a direct transfer), although different abstractions help in 

different ways in these models. But, IDEAL similar to the pragmatic schema model acknowledges 

the possibility that the application may be directly from an abstraction to the target problem (by 

instantiation), which is important in cross-domain transfer. None of the empirical evidence on 

which the major psychological theories are based really "rule out" this possibility; it is perhaps 

a worthy psychological prediction to test! Nevertheless, our theory also accommodates the other 

possibility where the abstractions act as indices to specific exemplars and the application is from 

specific to specific (via learning the abstraction at problem-solving time rather than the direct 

transfer).7 The continuum between these two ends, i.e., transferring from specific to specific vs. 

transferring by instantiation of a shared abstraction, will determine the kind of transfer possible 

in the continuum from within-domain to cross-domain analogies. 

On Empirical Evidence: 
There is quite a bit of empirical evidence for the theoretical issues listed in Table 10.1. It is 

no surprise that there was evidence for contrasting positions, but it is surprising that the studies 

cited, even put together, have not ruled out some possibilities in arriving at their conclusions; 

these other possibilities seem to fall out of IDEAL so naturally! It was also surprising to me to 

see that most evidence was for the support of remindings theory, which we don't see having a 

potential to explain cross-domain transfer, because in this theory mostly surface features matter 

in various stages of analogical transfer!8 

Regarding the issue of whether the schema abstraction can occur from a single example or 

whether it requires more examples, most researchers believe for the latter. However, there is 

some evidence for the former to occur under specific conditions, i.e., abstraction from a single 

example can occur when an explanation of the solution is available (e.g., Elio and Anderson, 

1981) or when it is being mapped onto a target problem. We would claim, however, that in some 

tasks like design, it may not be possible to abstract from one example (i.e., a single design) even 

though an explanation is available. (Note that IDEAL learns from two or more design examples.) 

This is true especially for the kinds of abstractions such as generic mechanisms that capture 

regularities among examples. In such tasks, it is also not possible to map the source analogue 

onto a target problem across domains without having the abstraction. Another issue is whether 

the abstraction is automatic or strategic. Most evidence appears to be in favor of strategic 

abstraction, but automatic abstraction is not completely ruled out; automatic abstraction may 

be possible with a large enough number of base analogues. 

Many experiments (e.g., Catrambone and Holyoak, 1989) have found that providing a 

schematic statement (i.e., a priori knowledge of what Schemas may be learned) or diagram 

7This part of the theory is only analyzed, but not implemented yet. 
8This has been confirmed in a conversation with Brian Ross. 



237 

along with several problem exemplars leads to both better schema induction and higher rates 

of transfer than supplying source analogues alone. But an alternative way of facilitating better 

schema induction from source analogues alone (as done in IDEAL) might be to provide the ana- 

logues in the context of solving problems within a domain, in particular, when problem-solving 

failures occur. Hence, no explicit schematic statement may be needed to enable better schema 

induction. 
Many experiments show that surface details influence retrieval and application of source 

analogue to target problems, even after some schema induction, which shows that they are 

retained. Some experiments (e.g., Keane, 1987) show that similarity of surface elements and 

semantic domain influence retrieval of source analogues in an additive manner. It was also found 

that surface elements did not need to be identical, but rather only similar, to facilitate retrieval. 

Most researchers agree that lack of surface similarity between source and target problems in 

cross-domain transfer which deters retrieval of a source analogue is one reason why cross-domain 

analogies are rare—this is considered a good indication of maintaining surface details. But, in 

those cases of successful cross-domain transfer, the source analogue may not be retrieved, but 

instead the abstraction may be retrieved and instantiated in the target problem, as in IDEAL! 

Then it is possible that the surface details need not be maintained at all or that the source 

analogue may be remembered through the abstraction. Also, that the transfer may not occur 

directly from the source analogue but instead might occur from the abstraction. 

Some experiments show that contextual factors also affect the retrieval and transfer of a 

source analogue, i.e., the similarity in the contextual features between the source and target 

problems determines the retrieval. In design (or perhaps any task), the subtask in which the 

source analogue was acquired can be a "contextual cue" as well as the conditions of failure at 

that time can be. In IDEAL, if learning of abstractions were to occur at the time of problem 

solving, it appears that the similarity in contextual features (i.e., a partial characterization of 

the problem-solving task in terms of functional differences) are important for the retrieval of 

the source analogue. The three different types of cues for the retrieval of source analogues are: 

surface cues, structural cues, and contextual cues. 

While many studies indicate that both surface and structural details affect retrieval of source 

analogues, they affect different substages of retrieval—surface details in "accessing" (i.e., select- 

ing in our terminology) source analogues and structural details in "selecting" (i.e., ordering to 

choose the best, in our terminology) a source analogue for mapping. It also appears that their 

effect may be different in different domains—Bassok and Holyoak (1989) found that the rate of 

transfer from algebra domain to physics was much more than the transfer in the other direc- 

tion. The explanation given for those observations is that the students realize algebra formulas 

are meant to be abstract and applicable to several different topics and so they represent them 

accordingly. Anyhow, the point we would like to draw from here in support of IDEAL is that it 

is the abstractions that are important to facilitate cross-domain transfer. 

There is contrasting evidence for the role of surface details vs.   structural details in the 
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mapping stage—Gentner et al. (1993) found that structural details matter most while Ross 

(1989) found that surface details matter most. However, there seems to be a shift in using the 

surface details to using the structural details as one gains expertise. In IDEAL, the issue of shift 

from novice to expert is not addressed. But, both surface and structural details matter in the 

application of a source analogue to a target problem in IDEAL. 
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CHAPTER XI 

CONCLUSIONS 

We revisit each of the major issues this research poses and addresses, and summarize its contri- 

butions to those specific issues. We begin by reviewing the overall problem we addressed. The 

research problem is to investigate the following dimensions of innovation in design: 

1. non-local modifications to previous designs, i.e., changes to the topology of the device 

structure 

2. cross-domain transfer, i.e., transfer of design knowledge between distant domains such as 

electric circuits and mechanical controllers 

3. reformulation of design problems, i.e., the revision of problem specifications during the 

design process by modifying initial constraints and adding new ones 

This characterization of innovative design raised the following issues: 

1. Content and Representation of Design Knowledge: What design knowledge might 

enable these three aspects of innovation? That is, what might be the content of design 

knowledge and how might it be represented? 

2. Access and Organization of Design Knowledge: How might such design knowledge 

(as in (1) above) be accessed/retrieved from memory when a new problem is given? What 

kind of organization and indexing might support better retrieval of relevant knowledge 

from memory? How might the design knowledge be related to other types of knowledge, 

if any? 

3. Use of Design Knowledge: How might the design knowledge (as in (1)) be used for 

innovative design? That is, what might be the specific processes by which that knowledge 

enables the three aspects of innovative design? 

4. Origin and Acquisition of Design Knowledge: Where does such design knowledge 

(as in (1)) that enables innovative design come from? How might it be acquired? 

We addressed these issues by developing a theory of design patterns, a useful class of design 

abstractions, and representing design patterns using SBF models. In addition, taking a memory- 

based view and model-based approach also led us to address the issues of the acquisition of device 
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models, indexing and organization of design knowledge (in particular, design analogues, device 

models, and design patterns) in memory, and retrieval of those types of design knowledge. 

11.1 Issues Addressed 

In this research, we have addressed the following eight major issues within the overall goal of 

developing a theory of innovative adaptive device design. Put together, these issues cover the 

different stages in the computational process we proposed for design by analogy, i.e.,.the MBA 

process (see Figure 2.1). 

1. What might be some useful high-level abstractions in device design that enable non-local 

modifications, cross-domain transfer, and problem reformulation? What might be the 

content of those abstractions and how might it be represented? 

2. How can the useful abstractions such as design patterns enable non-local modifications to 

known designs in solving adaptive design problems? 

3. How can those design patterns enable cross-domain analogies in design? 

4. How might those design patterns enable understanding of external feedback on the evalu- 

ation of designs and enable problem reformulation based on that? 

5. How can those design patterns be acquired automatically? 

6. How might the SBF models of new designs be acquired automatically? 

7. How might a new design analogue and a design pattern be indexed and organized in 

memory for later use? How can their indices be acquired dynamically? 

8. How can design analogues and design patterns be retrieved from memory? What features 

in design problems determine the retrieval of design analogues and design patterns? 

11.2 Contributions 

We now present the contributions of this research to the specific issues addressed. 

1. Content Theory of Design Patterns: The first question in building a theory of inno- 

vative design was what might be some useful abstractions in device design that enable the 

three aspects by which we characterized design innovation. In response to this question, 

we developed a theory of a particularly useful class of abstractions that we call design 

patterns. Then the question became what might be the content of those design patterns 

and how might it be represented? 
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Design patterns capture design knowledge in abstract, generic or case-independent terms. 

Depending on the specific type of knowledge, such as spatial, temporal, functional, and 

causal relationships among design elements, there can be different types of design patterns. 

Within the focus of this research (i.e., design of physical devices), we identified two dif- 

ferent types of functional- and causal-type design patterns. Specifically, they are generic 

teleological mechanisms (GTMs) and generic physical processes (GPPs). 

Furthermore, in this research, we provided a content theory of these design patterns and 

showed that the SBF language (Goel, 1989) is sufficient to represent these patterns as 

generic models. A GPP is a causal-type design pattern which captures patterns of relations 

between the output and the internal behaviors of physical devices. An example of a GPP 

is the process of heat flow. A GTM is both a functional- and causal-type design pattern 

which captures patterns of relations between the functions (a subset of output behaviors) 

and the internal behaviors of devices. Examples of GTMs are cascading and feedback 

mechanisms. Since design patterns capture only patterned relationships between design 

elements that do not refer to any specific device's physical structure, the function and 

behavior aspects of the SBF language were especially useful for representing GPPs and 

GTMs. Finally, this research provided a process account of how these two types of design 

patterns enable innovative design—a process that involves retrieval and instantiation of 

design patterns in the context of new problems. 

Non-Local Modifications: Our characterization of innovative adaptive design includes 

the ability to make non-local modifications to known designs as one of the defining elements 

of our theory. There were three issues with respect to a theory of non-local modifications: 

(1) what are non-local modifications? (2) why are they necessary and important? and (3) 

how can they be enabled in device design? 

First, non-local modifications are changes in the structural topology of devices. In contrast, 

the device topology remains the same before and after a local modification. The topology 

of a design refers to the arrangement of the design elements, that is, the configuration of 

the connections among the elements. Changes to a design's topology include addition or 

deletion of design elements, and connecting them in a different way. 

Second, since most current theories of adaptive design address only local modifications 

(i.e., parametric tweaks) to known designs, the need for non-local modifications may be 

questionable. This research shows that they are necessary and important for two reasons 

and under specific conditions: past designs with the needed structural topology may not be 

available and thus simple, local modifications may not suffice; and even when a design with 

the appropriate topology is available, specific design elements with the desired functions 

may not be available to replace elements in the known design. 
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Third, the knowledge of design patterns can enable non-local modifications to known 

designs in solving adaptive design problems. This research, in particular, demonstrates 

the use of GTMs for the purpose of making non-local modifications in device design. We 

described a computational process in which the GTMs can be retrieved and instantiated 

in the target problems to solve different classes of design problems that require non-local, 

structural changes to the device topology in known designs. More specifically, the MBA 

process involves instantiating GTMs in the content of SBF models of known designs and 

modifying the designs to the target problems. That is, GTMs are used to solve the subtask 

of achieving adaptation goals in the MBA for device design. 

Cross-Domain Transfer: The second dimension in our characterization of innovation in 

design is the ability to perform cross-domain transfer of design knowledge. Similar to the 

three issues raised with respect to a theory of non-local modifications, there were three 

issues with respect to cross-domain transfer as well: (1) what is cross-domain transfer? 

(2) why is it necessary and important? and (3) how can it be enabled in device design? 

First, the notion of cross-domain transfer is dependent on what we mean by a "domain." 

The notion of a domain is fuzzy and there is no good characterization of domain in the 

analogy literature. In this research, we attempted to provide a working definition for 

domain. We characterize a design domain in terms of the structural elements available in 

it, such as pipes and pumps, and wires and batteries, at a given level of abstraction. Due to 

the fuzzy notion of domains, there is a continuum between what is within-domain transfer 

and what is cross-domain transfer. Cross-domain transfer in design involves the transfer 

of design knowledge obtained from experience in solving problems in a source domain to 

solve problems in a different domain. 

Second, in this research we argued that cross-domain transfer is needed because knowl- 

edge of past designs generally may not be available in the same domain as a given target 

problem. Often it may be necessary to solve new problems by transferring expertise from 

a different domain. Although there was some previous work on analogical reasoning, much 

of it focused only on within-domain transfer or only on cross-domain transfer. Even that 

past work which focused on cross-domain transfer explored only some methods while some 

others are possible and necessary. For instance, the transfer of a design in one domain 

directly to solve a problem in a different domain (i.e., a domain that refers to different 

structural elements than those in the available design) is not possible or is difficult when 

the elements are distant in the known classification hierarchy (because the matching of 

elements depends on finding a common class for the elements). An alternative method 

that was also explored to some extent in the past involves transfer mediated by high-level 

abstractions shared between the source and target domains. However, in this method, al- 

though the abstractions play an important role, a specific design is nevertheless accessed in 

a source domain and the transfer still occurs from the specific design to the target problem. 
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Furthermore, in the previous work, there was no account of where the abstractions come 

from. Our research not only provides a different method that is based on abstractions but 

also accounts for their learning. 

Third, this research provides a different theory of analogy that is based on device models 

and design patterns in which design patterns enable cross-domain transfer in design—that 

is, it proposes that the design knowledge that needs to be transferred between domains 

is the knowledge of high-level abstractions such as design patterns and not the specific 

designs in a source domain. This is not to claim that the specific designs will never get 

transferred to solve new problems, but rather to say that such transfer may occur only 

within a domain. In fact, this theory was built on model-based case adaptation (Goel, 

1991a) and hence covers within-domain analogies also. This research provides the MBA 

process for analogy in which design patterns are learned from design analogues in a source 

domain, and are retrieved and instantiated in different target domains for solving design 

problems (both adaptive design and redesign). More specifically, this research shows how 

GTMs enable cross-domain transfer in the context of design by analogy and how GPPs 

enable cross-domain transfer in the context of redesign. 

Problem Reformulation: The third dimension in our characterization of innovative 

design is the ability to reformulate design problems. Again, similar to the issues that 

concern non-local modifications and cross-domain transfer, there were three issues with 

respect to a theory of problem reformulation: (1) what is problem reformulation? (2) why 

is it necessary and important? and (3) how can it be enabled in device design? 

First, by problem reformulation, we mean addition, deletion, or modification of constraints 

in a given problem after the process of design begins. Problem reformulation can be due 

to the specification of constraints by an external agent later in the design process or due to 

the discovery of constraints based on the evaluation of a design for the initial specification 

of the problem. We focused on the latter type of problem reformulation. 

Second, problem reformulation is necessary because some constraints on a design are not 

uncovered until after the design is evaluated, for example, evaluated by its use in a real 

environment. The constraints that are generally discovered late in the process are about 

interactions of a design with its environment. The discovery of such constraints is late 

because the conditions of the environment may not be known completely at the beginning 

of the process. Even if the conditions were known, they might change from the time of 

initial problem specification to the time of design realization. When the environments are 

thus dynamic, designs may fail, although they satisfy the constraints of initial problem 

specifications. Then redesigning the failed design involves interpreting (or understanding) 

the design failures and identifying new constraints to be solved (Prabhakar and Goel, 

1992). 
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Third, this research provides a theory of problem reformulation in which design patterns 

enable understanding of design failures (given as external feedback on evaluation of designs) 

by forming causal explanations. The design failures are specified in terms of undesired 

behavioral states and undesired behavioral state transitions using the SBF language. We 

described the MBA process in which GPPs can be retrieved and instantiated in the context 

of a design to understand the design failures by forming causal explanations for the failures. 

In this process, the causal explanations then facilitate the discovery of new constraints and 

thus enable reformulation of the design problem to include the discovered constraints. 

Acquisition of Design Patterns: One of the important aspects of our theory of innova- 

tive design is that it not only accounts for the use of design patterns to enable innovation, 

but also accounts for their acquisition. The questions then were (1) what may be the 

origin of design patterns (i.e., what may be the knowledge from which the design patterns 

can be acquired), (2) why is acquisition necessary and important to a theory of innovative 

design, and (3) how can they be acquired? 

In general, there may be different origins for the knowledge of design patterns: direct 

acquisition from a teacher, direct acquisition from natural language descriptions, learning 

from experience alone, learning from experience and interaction with a teacher under fail- 

ures. We explored how design patterns can be acquired from design experiences including 

feedback from an oracle upon problem-solving failure. The task of learning design pat- 

terns in this research is really a discovery task because there is no assumption of a priori 

knowledge of the target concepts learned. 

The acquisition of design patterns is important and necessary in a theory of innovative 

design for two reasons. First, a theory that accounts not only for the use of a proposed type 

of knowledge but also for its acquisition is more interesting and it accepts more constraints 

than one which cannot account for both learning and use. Second, cross-domain transfer 

is an important aspect in our characterization of innovative design. Our theory of cross- 

domain transfer is abstraction-based, in particular, it is based on design patterns, and 

under some conditions, successful transfer depends on the acquisition of design patterns. 

This research provides a process account of how design patterns can be acquired from 

design experiences under different interaction conditions for feedback from an oracle upon 

problem-solving failure. In particular, it provides model-based methods for learning two 

types of design patterns (i.e., GPPs and GTMs) incrementally by abstraction over regu- 

larities in design experiences. This research proposes specific answers to issues in learning 

by abstraction from experience: device models together with the problem-solving context 

in which learning occurs suggest "what" to abstract from experiences and device models 

together with similarities and differences in experiences suggest the level of abstraction. 

Because of the type of knowledge captured in design patterns, we argued in this research 

that their acquisition from design experiences requires knowledge of device models in the 
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design experiences.   More specifically, this research shows how SBF models of devices 

provide the content for abstracting design patterns and also provide constraints on that 

process. 

Since GPPs can be viewed as concepts and GTMs as strategies, and both can be learned 

from design experiences, our learning theory covers both concept learning and strategy 

learning. 

6. Acquisition of SBF Models of Devices: Since in our theory of innovative design, 

several processes are model-based in that they make use of qualitative models of specific 

devices, the acquisition of device models is as important as that of design patterns. In 

this research qualitative device models are represented in the SBF language. There are 

three questions here just like in the case of the acquisition of design patterns: (1) what 

may be the origin of device models? (i.e., what may be the knowledge from which device 

models can be acquired) (2) why is their acquisition necessary and important to a theory 

of innovative design? and (3) how can they be acquired? 

Like design patterns, device models may also have different origins such as direct acquisi- 

tion from a teacher, direct acquisition from natural language descriptions, learning from 

experience alone, learning from experience and interaction with a teacher under failures. 

We explored the last possibility while some previous work (Goel, 1989) on which this re- 

search is built explored learning from experience alone and some contemporary work in a 

related project called KA (Peterson et al., 1994) explored the direct acquisition of device 

models from natural language descriptions. Similarly, some previous work in qualitative 

device modeling (Bylander, 1991) has also considered the generation of new device models 

by a composition of primitive behaviors (i.e., consolidation). 

Some reasons for why the acquisition of device models is important and necessary in a 

theory of innovative design are same as those for the importance of acquisition of design 

patterns. For instance, a theory is better constrained if it accounts for both acquisition 

and use of a particular type of knowledge. In addition, it is a fundamental question in 

qualitative device modeling and addressing that is an important task because our theory 

of innovative design relies on the availability (or acquisition) of specific device models. 

Now the question is how might the SBF models of new designs be acquired automatically? 

In general, there can be different methods for the acquisition of new SBF models, partly 

depending on the origin of the SBF models. A few methods are (1) composition (or 

consolidation) of behaviors of primitive structural elements (Bylander, 1991), (2) revision 

of known models of similar devices (Goel, 1991b), (3) a combination of model revision and 

composition of behaviors of primitive structural elements, and (4) instantiation of design 

patterns in the models of known devices. In this research we took an adaptive modeling 

approach and proposed methods (3) and (4). The basic model-revision method is inherited 
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from the work of Goel (1991b) on which methods (3) and (4) are built. 

Organization, Indexing, and Index Learning: Since we take a memory-based view of 

design, the questions regarding organization and indexing of different types of knowledge 

in memory are very relevant. Similarly, since our theory of design accounts for learning 

of new knowledge, the question about learning indices for the new knowledge also became 

important. In particular, we addressed the question of how a new design analogue and 

a design pattern might be indexed and organized in memory for later use, and how their 

indices can be acquired dynamically. 

In general, there may be different ways of organizing the memory of design analogues and 

indexing them. In this research we took a task-directed approach and indexed the design 

analogues by functions and structural constraints, because the analogues were used for 

the task of design that involves specifying functional and structural constraints as input. 

However, within a given indexing scheme, there can be selection on the specific features 

that are used to index the designs. That is, for instance, the choice may be between 

indexing by all the features in the input specification of a design (i.e., exhaustive indexing) 

and indexing by only some features in the input specification that are important to the 

solution (i.e., selective indexing). This research provides an empirical comparison on the 

effectiveness of these two indexing schemes for retrieval of design analogues. The result is 

that the selective indexing is more efficient than the exhaustive indexing for retrieval of 

designs if the selection of indices is based on device models. 

Similarly, within a given indexing scheme, the organization of designs can differ: flat or- 

ganization vs. hierarchical organization. In the hierarchical organization scheme, design 

analogues are actually organized in multiple, parallel hierarchies because (1) design ana- 

logues are indexed both by functions and structure and (2) both function and structure 

consist of multiple features and not just a single feature. This research provides an em- 

pirical comparison on the effects of these two organization schemes for retrieval of designs 

under different indexing schemes. The result is that the hierarchical organization under 

selective indexing is more efficient for retrieval than the hierarchical organization under 

exhaustive indexing. Further, the latter itself is more efficient than the flat organization. 

Thus this research provides an account of how design analogues are stored in memory. For 

design patterns too, we took a task-directed approach for indexing them. That is, GPPs 

are indexed by their behavioral abstractions while GTMs are indexed by the patterned 

functional differences because GPPs are used for explaining failures (i.e., undesired states 

and behaviors) and GTMs are used for achieving adaptation goals (i.e., reduce functional 

differences between a candidate function and a desired function). In this work, since there 

were not many GPPs and GTMs, we did not organize them hierarchically. This research 

also provides an account of how these different types of knowledge might interact in the 

context of design tasks. 
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For all the different types of knowledge acquired, i.e., design analogues and design patterns, 

this research provides model-based methods for acquiring their indices and organizing the 

knowledge in memory dynamically. In particular, this work shows that the SBF language 

provides an organization and indexing scheme for storing design analogues and design 

patterns in memory. 

8. Retrieval of Design Analogues and Design Patterns: In a memory-based view of 

design, just like indexing and organization of knowledge are important, their retrieval is an 

equally important and complementary issue. The specific questions we addressed are how 

design analogues and design patterns can be retrieved from memory and what features in 

design problems determine their retrieval. 

The retrieval mechanisms in a theory are, of course, closely tied with the indexing and 

organization of the knowledge. This research provides a mechanism for the retrieval of 

design analogues from a memory indexed in multiple ways and organized in multiple, par- 

allel hierarchies. For the issue of what features might determine the retrieval of analogues, 

different theories have different answers: some suggest that only surface features of the 

problem matter (Ross, 1989; Gentner, 1989) while some others suggest that deep, semantic 

features of the problem are also equally important (Holyoak and Koh, 1987; Hintzman, 

1986, Gentner, Ratterman and Forbus, 1993); yet others indicate that both surface and 

deep features may have their role but under different conditions (cf. this thesis). In our 

theory, the retrieval of design analogues is primarily based on partial match between spe- 

cific features in the design problems (i.e., surface features) and the problems of design 

analogues. In addition, we also explored how deep, semantic features in terms of primi- 

tive functions may determine the retrieval when such features are available in the input or 

when they can be easily inferred. Since initial problem specifications may not refer to deep 

features, semantic retrieval at that stage of design would require an additional inference to 

go from surface features to semantic features. However, when the retrieval of a design is 

necessary while analyzing a source design analogue (an already retrieved design) and the 

SBF model of the source design (perhaps a subdesign is being sought in order to compose 

with the source design), the semantic features of the new desired design can be available 

from the model of the source design; and in such cases, semantic retrieval may be very 

useful. 

This research also provides a method for the retrieval of design patterns from a memory 

indexed by behavioral abstractions (for GPPs) and patterned functional differences (for 

GTMs) and organized in a flat memory. 
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11.3    Model-Based Analogical Design 

Although the overall goal of this research was to develop a theory of innovative design, since 

we characterized innovative design to include cross-domain transfer of design knowledge, this 

work also led to a theory of analogical design. In our theory of innovative design, high-level 

abstractions such as design patterns (in particular, those that capture functional and causal 

relationships among design elements) enable the three facets of design innovation, i.e., non-local 

modifications, cross-domain transfer, and problem reformulation. 

Since in our theory of innovative design the design patterns can be learned from design 

experiences in one domain and get used to solve problems in a different domain, design patterns 

thus enable cross-domain transfer. We showed in particular how the two specific types of design 

patterns, namely, GPPs and GTMs, enable cross-domain transfer of design knowledge. Thus 

our theory of innovative design based on design patterns and SBF models of devices also leads 

us to a theory of model-based analogical design. This theory also accounts for model-based 

within-domain transfer of design knowledge in which the SBF models of devices constrain and 

guide the transfer process. 

Our theory of model-based analogical design is in much contrast with and complementary to 

earlier theories of analogy that advocate direct transfer (i.e., transfer of a source analogue directly 

to a target problem irrespective of the domains they belong to) or abstraction-mediated transfer 

(i.e., transfer mediated by high-level abstractions but which nevertheless involves accessing a 

source analogue and transferring knowledge from it). Our theory is complementary to the 

earlier theories in three respects: first, it provides a different account of cross-domain transfer 

in which the transfer occurs from high-level abstractions to specific target problems; second, it 

not only advocates the use of high-level abstractions, but also accounts for their learning from 

experience in source domains; and third, it covers both within-domain transfer and cross-domain 

transfer in a seamless process. 
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Abstract: In the late 1980s, we developed one of the early case-based design 
systems called Kritik. Kritik autonomously generated preliminary (conceptual, 
qualitative) designs for physical devices by retrieving and adapting past designs 
stored in its case memory. Each case in the system had an associated structure- 
behavior-function (SBF) device model that explained how the structure of the 
device accomplished its functions. These case-specific device models guided the 
process of modifying a past design to meet the functional specification of a new 
design problem. The device models also enabled verification of the design 
modifications. Kritik2 is a new and more complete implementation of Kritik. In 
this paper, we take a retrospective view on Kritik. In early papers, we had 
described Kritik as integrating case-based and model-based reasoning. In this 
integration, Kritik also grounds the computational process of case-based 
reasoning in the SBF content theory of device comprehension. The SBF models 
not only provide methods for many specific tasks, in case-based design such as 
design adaptation and verification, but they also provide the vocabulary for the 
whole process of case-based design, from retrieval of old cases to storage of new 
ones. This grounding, we believe, is essential for building well-constrained 
theories of case-based design. 
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1. Introduction 

Design is a very common, wide-ranging and open-ended activity. It 
includes not only the design of physical artifacts but also abstract 
artifacts, such as software interfaces, and conceptual artifacts such as 
causal explanations. It can vary from everyday to specialized, naive to 
expert, and routine to creative design. While design sometimes is original, 
even revolutionary, much of design is evolutionary in that new designs are 
generated by adapting old designs. Evolutionary design includes both 
variant design, in which new designs locally differ from old designs in the, 
values of specific parameters of the design elements, and adaptive design, 
in which new designs locally differ from old designs in the specific design 
elements. 

Case-Based Reasoning (CBR) is a cognitively inspired computational 
theory in which new decisions are made by retrieving and modifying the 
decisions made in similar situations encountered in the past, and new 
problems are solved by retrieving and modifying the solutions to similar, 
previously encountered, problems. CBR thus views decision making and 
problem solving as memory tasks in that the memory supplies an answer 
in the neighborhood of the right answer, an „almost right" answer that 
need only be tweaked to get to the right answer (Riesbeck and Schänk, 
1989). The memory is not only rich but also dynamic since new cases with 
potential for future use may enter the memory. 

In the late 1980s, Goel and Chandrasekaran at the Ohio State 
University developed one of the earliest case-based design systems called 
Kritik (Kritik in Sanskrit roughly means „designer." ) (Goel, 1989; Goel 
and Chandrasekaran, 1989a; Goel and Chandrasekaran, 1989b; Goel and 
Chandrasekaran, 1992). Kritik was an autonomous system that addressed 
Function-to-Structure design tasks in engineering domains. In particular, 
it generated, adapted and evaluated preliminary (conceptual, qualitative) 
designs for physical devices such as simple electrical circuits and heat 
exchange devices. The Kritik experiment showed that CBR provides a 
good process account of the variant and adaptive aspects of preliminary 
design. But it also raised a number of content and strategic issues' that 
appear to occur in all case-based systems: 
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1. What might be the content, representation and organization of a 
case? - 

2. How might a case be indexed? What, might be the indexing 
vocabulary? How might the case memory be organized? 

3. How might a new problem be specified? What might be the problem 
specification language? 

4. Given a new problem, how might a similar case be retrieved from 
the case memory? How might a probe for exploring the case 
memory be prepared? What kinds of features in the new problem 
determine the similarity? 

5. Once a case has been retrieved from memory, how might it be 
modified to address the new problem? What knowledge might guide 
the modification? 

6. How might the candidate solution for new problem be evaluated? 
What knowledge might enable the verification of the candidate 
solution for new problem? 

7. What might happen if the verification fails? 
8. If the verification succeeds, how might the new case be stored in 

memory for potential use in future? How might it be indexed in 
memory and how might the indices be acquired dynamically? 

In their work on Kritik, Goel and Chandrasekaran developed a model- 
based framework for addressing some of these issues. The key idea was 
that evolutionary design involves not only through past design experiences 
(i.e., cases) but also through comprehension (i.e., models) of how the 
designs work. While the high-level processes of variant and adaptive 
design are largely case-based, the design models give rise to both the 
vocabulary and the strategies for addressing the different tasks in the case- 
based process. The specific hypothesis was that since preliminary design 
is a Function~to~Structure mapping, the inverse Structure~to~Function 
map of old designs may provide guidance in adapting an old design to 
achieve anew functional specification. The Structure~to~Function map of 
a device design in Kritik is specified as a Structure-Behavior-Function 
model. The SBF model of a device explicitly specifies the structure and 
the functions of the device as well as its internal causal behaviors that 
explain how the structure delivers the functions, how the device functions 
are composed from the functions of its structural components. 

Kritik was one of the earliest systems to integrate case-based and 
model-based reasoning. Experiments with Kritik showed that the SBF 
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models not only give rise to model-based adaptation strategies for making 
local modifications to old designs (Goel, 1991a) but that they also give 
rise to model-based simulation strategies for verifying whether the new 
design achieves the functions desired of it (Goel, 1991b; Goel and 
Prabhakar, 1991), and, in addition, provide the vocabulary for indexing 
the design cases (Goel, 1992). 

In the early 1990s at Georgia Institute of Technology, we 
reimplemented Kritik's theory in a new system called Kritik2 (from 
InterLisp-D/Loops on Xerox Lisp to Symbolics CommonLisp/CLOS on 
Symbolics Lisp machines) and reproduced the earlier experiments for a 
larger class of devices (Bhatta and Goel, 1992; Stroulia and Goel, 1992; 
Stroulia et ai, 1992). While Kritik designed simple electrical circuits and 
heat exchange devices, Kritik2 also designs electromagnetic devices and 
electronic circuits containing operational amplifiers. Also, while Kritik's 
case memory was non-hierarchical (or „flat"), Kritik2's design cases are 
organized multiple hierarchies. Experiments with Kritik2 show that the 
SBF device models not only provide the vocabulary for indexing design 
cases but that they also enable the learning of new indices in order to 
better index new designs in the case memory (Bhatta and Goel, 1995). 
This chapter describes Kritik2's integrated theory of adaptive design, using 
examples inherited from Kritik. 

2. An Illustrative Example 

Let us consider the problem of designing an electrical circuit that will 
produce light of intensity 20 lumens, when a circuit known to produce 
light of intensity 10 lumens is available in the case memory. The 
following two subsections use this illustrative example to introduce 
Kritik2's device models and its process model for case-based design. 

2.1. DEVICE MODELS 

Kritik2's structure-behavior-function (SBF) model of a device, explicitly 
represents (i) the function(s) of the device (i.e., the problem), (ii) the 
structure of the device (i.e., the solution), and (iii) the internal causal 
behaviors of the device. The internal causal behaviors express Kritik2's 
comprehension of how the device works: they specify how the functions of 
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the structural components of the device are composed into the device 
functions. 

Structure: The structure of a device in the SBF language is expressed 
in terms of its constituent components and substances and the interactions 
between them. Figure 1(b) shows the specification of the structure of the 
red light bulb circuit illustrated in Figure 1(a) Components and substances 
can interact with each other structurally and behaviorally. For example, 
electricity can flow from battery to bulb only if they are structurally 
connected, and due to the function allow electricity of the switch that 
connects the battery and the bulb. For simplicity, we ignore the wires in 
the circuit in the rest of our discussion, assuming that the other 
components are connected directly. 

Function: The function of a device in the SBF language is represented 
as a schema that specifies the input behavioral state of the device, the 
behavioral state it produces as output, and a pointer to the internal causal 
behavior of the design that achieves this transformation. Figure 1(c) 
illustrates the function of the electrical circuit. Both the input state and the 
output state are represented as substance Schemas. The input state 
specifies that the substance electricity at location battery in the 
topography of the device (Figure 1(a)) has the property voltage and the 
corresponding parameter 2 volts. The output state specifies the properties 
intensity and color, and the corresponding parameters 10 lumens and 
red, of a different substance, light, at location bulb. Finally, the slot by- 
behavior points to the causal behavior that achieves the function of 
producing light. 

In Kritik2's memory, the design cases and their associated SBF models 
are indexed by the functions delivered by the devices. Thus the existing 
electric circuit is indexed by the function illustrated in Figure 1(c). The 
functions, in turn, act as indices into the internal causal behaviors of the 
SBF model through their by-behavior slot. 



A. GOEL, S. BHATTA, AND E. STROULIA 

•witch Rettery          ( 

■       ||        ■       ' 
T2     1'       Tj 

Talb 
Tl T4 

(a)  ScheMtic of A Red Light Rulb circuit 

STRUCTURE    Red Light Bub Circuit 

COMPONENTS:      (Battery. Swncti. But) 

STRUCTURE   Battery 

RELATIONS:    (SERIALLY-CONNECTED 
Switch Bub) 

PARAMETERS:    (voltage 2.0volts) 
(type alkaline) 

FUNCTIONS:    (ALLOW electricity) 
(PUMP   electricity) 

CONNECVNG-POINTS:      <T2 T3) 

STRUCTURE   Switch 

RELATIONS:    (SERIALLY-CONNECTED 
Battery Bub) 

MODES:    (open  ctosed) 

STRUCTURE   Bub 

RELATIONS:    (SERIALLY-CONNECTED 

Battery Switch) 

P/W/WE7ERS: 

FUNCTIONS: 

(resistance 5 ohms) 

(efficiency 6.66) 

(wattage 20) 

(CREATE   kght) 
(ALLOW   electricity] 

CONNECTING-POINTS:      (T3 T4) 

(b)   fltructure of  Red Lieht  Rulb Ciccuit 
is Ichaaa Fora 

GIVEN: 
state, 

ELECTRICITY 
loc: Battery 
voltage: 2 volts 

MAKES: 
state 2 

LIGHT 
loc: Bulb 
intensity: 10 lumens 
color red 

STIMULUS:    Force on Switch 

BY-BEHA VIOR:   pointer to the behavior 
'Produce Red Light' 

(c) Function 'Produce Red Liebt" of 
Red Liebt Rulb Circuit 

sfare,     'GIVEN' state in the Function 

USING-FUNCTION ALLOW electricity ol Switch 

UNDER-CONDITION-STRUCTURE 

SERIALLY-CONNECTED Battery 
Switch 
Bulb 

ELECTRICITY 
loc: Bulb 
voltage: 2 volts 

USING-FUNCTION CREATE light of Bulb 

UGHT 
intensity: 10 lumens 
color red 

i UNDER-CONDITION-COMPONENT 

BULB 
resistance: 5 ohms 
efficiency: 6.66 

state j | 'MAKES' state in the Function | 

(d) RehftTlor "Produce Rod Lieht- of 
Rod Lieht Rulb Circuit 

Figure 1: Design of A Red Light Bulb Circuit 

Behavior: The SBF model of a device also specifies the internal causal 
behaviors that compose the functions of device substructures into the 
functions of the device as a whole. In the SBF language, the internal 
causal behaviors of a device are represented as sequences of transitions 
between  behavioral states.  The  annotations  on  the  state  transitions 
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express the causal, structural, and functional contexts in which the state 
transitions occur and the state variables get transformed. The causal 
context specifies causal relations between the variables in preceding and 
succeeding states. The structural context specifies different structural 
relations among the components, the substances, and the different spatial 
locations of the device. The functional context indicates which functions of 
which components in the device are responsible for the transition. Figure 
1(d) shows the causal behavior that explains how electricity in the battery 
is transformed into light in the bulb. State-1 describes the state of 
electricity at location battery and state-2 specifies the state of the same, 
substance at location bulb; state-3 describes the state of a different 
substance, light, at location bulb. The annotation using-function on 
transition2->3 between state-2 and state-3 indicates that the transition 
occurs due to the primitive function create light of bulb. Similarly, the 
annotation under-condition-structure in transition\->2 specifies that the 
components battery, switch, and bulb need to be serially connected in 
order for the transition to occur. 

GIVEN: 
ELECTRICITY 

loc: Battery 
voltage: 2 volts 

MAKES: 

LIGHT 
loc: Bulb 
intensity: 10 lumens 
color: red 

STIMULUS: Force on Switch 
BY-BEHAVIOR: "Produce Red Light- 

Figure 2: Function of the know red-light circuit 
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GIVEN: 
ELECTRICITY 

loc: Battery 

MAKES: 

LIGHT 
loc: Bulb 
intensity: 20 lumens 
color: red 

Figure 3: Desired function of a higher-intensity red-light circuit 

Before we end this introduction to Kritik2's device models, it is useful 
to note that new problems are presented to Kritik2 in the SBF language. 
The specification of the new problem of designing an electric circuit 
producing light of higher intensity is shown in Figure 3. Note, that the two 
functions, the function of the known circuit (Figure 2) and the function of 
the desired one (Figure 3) are similar except for the value of the property 
intensity of the substance light at the output behavioral state. 

2.2. COMPUTATIONAL PROCESS 

Figure 4 illustrates Kritik2's processing. Given the problem of designing 
an electric circuit that will produce light of a specific intensity, the first 
step is to retrieve a relevant design case from memory. One issue here is 
how to index the design cases in memory and what features in the new 
problem to use to probe the case memory. New problems for Kritik2 are 
specified by the functions desired of a device, for example, the desired 
function of the new circuit illustrated in Figure 3. The cases are indexed 
by the functions delivered by the known designs, for example, the function 
delivered by the existing low-intensity circuit illustrated in Figures 1(c) 
and 2. The functional specification of the new problem is used as a probe 
into the case memory, and the cases whose functional specifications at 
least partially match the probe are selected. If more than one design is 
selected, then they are heuristically ordered by their „ease of adaptation". 
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The second step in this process is to adapt the relevant parts of the 
design solution in the retrieved case to fit the new problem and the third 
step is to evaluate the modified design. Kritik2 interleaves these two steps. 
(The dotted lines between different steps in Figure 4 indicate that they are 
interleaved.) It first diagnoses the „faulty" parts in the retrieved design so 
that the modified design satisfies the requirements of the new problem. 
That is, it views the retrieved design as having „failed" to satisfy the 
requirements of the new problem, and „diagnoses" and „repairs" the 
failure. The important issue then becomes the identification of what to 
modify, i.e., the diagnosis of the „faulty" parts in the retrieved design that 
need to be repaired in order to meet the functional specification of the new 
problem. In Kritik2's model-based approach, the device model indexed off 
the design case guides the localization and identification of the faulty parts 
that need to be repaired. In our example, the SBF model of the existing 
circuit (Figure 1(d)) suggests that the voltage of the battery is responsible 
for the difference in the functions of the known and the desired device (i.e., 
light intensity 10 lumens vs. 20 lumens). This results in the candidate 
modification of replacing the battery with a new one of higher voltage. 

The next step in this process is to evaluate the candidate solution for 
the new problem, that is, to verify whether the proposed design satisfies 
the functional requirements of the new problem. In Kritik2, first, the 
changes due to the proposed modification of battery replacement are 
propagated to the other parts of the SBF model of the existing circuit (i.e., 
the substep of behavior modification). This results in a revised SBF model 
for the candidate design for the desired circuit (but without any structural 
changes as yet). Next, the revised SBF model is qualitatively simulated to 
verify if its causal processes result in the functions specified in the new 
problem (i.e., the substep of behavior verification). In our example, the 
simulation of the revised circuit model indeed results in the achievement of 
the function specified in the new problem. If the evaluation succeeds, then, 
in the repair step, the candidate modification is actually executed on the 
structure of the candidate design (i.e., the substep of structure 
modification). If the evaluation fails, then an alternative modification can 
be generated if possible. If an alternative candidate modification is not 
available, then an alternative candidate design (i.e., a different retrieved 
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case) can be selected for adaptation: In this way, Kritik2 interleaves the 
diagnosis, repair and evaluation steps. 

Problem 
Specification 
F 

Candidate 
Modifications 
c 
^possible-faults 

Repair & 
Evaluation 

Behavior 
Modification 

Behavior 
Verification 

Structure 
Modification 

Repair 
Evaluation 
Plan 

New Case 

M 

Figure 4: Kritik! 's Process Model of Design 

In the final step, the design that satisfies the requirements of the new 
problem is stored in the case memory potential reuse in future problem 
solving. In order for the new case to be useful in future, it needs to be 
stored in the „right" place in memory, that is, its indices need to be 
selected appropriately. The device model of the new design case indicates 
what features of the problem specification are crucial in the functioning of 



KRITIK: AN EARLY CASE-BASED DESIGN SYSTEM 11 

the new design, and thus the model helps learn the „right" indices for the 
new case. 

3. Structure-Behavior-Function Models 

In this section, we specify the SBF language for representing design cases 
and device models using as examples the above electric circuit and a nitric 
acid cooler (NAC) (Figure 5), a simple device which cools nitric acid by 
exposing the pipes through which it flows to contact with cold water. 
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Figure 5: Design case of low-acidity nitric acid cooler 
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The schema for representing a design case in the SBF language (shown 
in Figure 6) consists of three slots: function, structure, and behaviors. The 
fillers for these slots are „coherent" in that the behaviors specifies 
internal causal behaviors that explain how the structure delivers the 
function. Each slot in any SBF schema may be filled with one of three 
entities: an element from an enumerated set of primitive entities in the SBF 
language, another schema, or a list of other Schemas. 

design: 
function: the intended output behavior of the device 
behaviors: the internal causal behaviors of the device 
structure: the device components and their structural relations 

Figure 6: Design Case Schema 

3.1. STRUCTURE 

Figure 7 shows the schema for representing a design structure in the SBF 
language. The structure of the device is described hierarchically in terms 
of its constituent structural elements. The constituent elements of a device 
may be primitive components (i.e., the components assumed by Kritik2 to 
be primitives of the design domain), such as a battery for example. 
Alternatively, they may be substructures, such as an operational amplifier 
in an electronic circuit, which can be further described in terms of smaller 
constituent elements. Each structural element in this hierarchy (except for 
the overall structure of the device) points to the structural elements of 
which it is a part. In addition to the part-of relation, the structure schema 
can also specify the following structural relations: containment of a 
substance in a component or in another substance, inclusion of a 
component within another component, and connection between two 
components. Consider the example of the low-acidity nitric acid cooler 
(NAC) schematically shown in Figure 5(a). In this design, heat can flow 
from the nitric acid to the water only when the nitric-acid-pipe is included 
in the heat-exchange chamber. The connection between two components 
can be of two types: serial and parallel. The two connectivity relations 
differ in that the former specifies a relation between two components'such 
that the output of one component becomes the input to the other, while the 
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latter specifies that the two components share the same input and same 
output. • - 

structure: 
components: a set of structural elements into which the 

element under description can be decomposed 
structural-relations: a set of relations between the sub- 

elements of the structure under description 

Figure 7: Structure Schema 

3.2. BEHAVIORAL STATE 

In the component-substance ontology of SBF device models, a behavioral 
state (input, output, or intermediate state) can be of two types: component 
state, which concerns the state of a component, and substance state, which 
concerns the state of a substance in the device. The component and 
substance behavioral states are characterized by the variables 
characteristic of the respective component and substance specified in the 
states. Figure 8 shows the schema for a behavioral state in the SBF 
language. 

behavioral state: 
previous: previous state 
next: next state 
enabled-by: preceding state-transition 
enabling: succeeding state-transition 
substance-state-schema: substance description at this state: 

location: the location of the substance in the device 
main-substance: the schema for the substance: 

is-a : pointer to a prototype substance 
(property value unit)* 

(contained-substances: their description at the state } 
OR 
component-state-schema: component description at this state: 

component: the schema for the component: 
is^a : pointer to prototype component 
(parameter value unit)* 

mode: the mode of the component's operation at this state 

Figure 8: Behavioral State Schema 
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The behavioral state schema contains links to previous and next states, 
preceding and succeeding state transitions, and either a component-state 
schema or a substance-state schema. The schema for a component state 
(partially) specifies the component under description, its mode of 
operation in the state, and points to the component schema. An example of 
a component state is the state of the switch in the electrical circuit when 
its mode is closed. The component schema itself specifies the type of 
component with the is-a slot, and a partial list of the component 
parameters along with their values. Similarly, the schema for a substance 
state (partially) specifies the state of the substance under description at a 
particular point in the device topology. It contains the slots for the 
location of the substance, and other substances contained in the main 
substance under description, and it points to the schema for the main 
substance. Again, the schema for a substance itself specifies the type of 
substance with the is-a slot, and a partial list of substance properties along 
with their values. We explain the representation of components and 
substances in detail a little later. 

3.3. FUNCTION 

Functions of devices can be of different kinds, such as transformation 
functions, control functions, maintenance functions, and prevention 
functions. Kritik2 currently deals with transformation functions only, in 
which the device transforms an input behavioral state into a different 
behavioral output state. Figure 9 shows the schema for the representation 
of transformation functions in the SBF language. In addition to the input 
and output behavioral states ( given and makes respectively), the function 
schema contains the by-behavior slot for specifying the internal causal 
behavior that transforms the input state into the output state, the stimulus 
slot for specifying the interaction of the device with its environment that 
triggers its functioning, and the provided slot for specifying the 
environmental conditions necessary for the functioning of the device. An 
example of stimulus is force on switch, as shown in the functional 
specification of the electric circuit in Figure 1(c). In the specification of a 
desired function in a new design problem, the slot by-behavior would not 
be filled, and the slots given, stimulus, provided too may not be filled (see 
for example the specification of the new desired electric circuit in Figure 
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3). This schema for representing device functions is borrowed from 
Sembugamoorthy and Chandrasekarari 1986. 

functional specification: 
makes: output behavioral state 
{given: input behavioral state } 
by: causal behavioral-state sequence 
{stimulus: event in the external environment triggering the 

functioning of the device } 
{provided: external to the device conditions necessary for the 

functioning of the device }* 

Figure 9: Functional Specification Schema 

Figure 5(b) shows the function „Cool Nitric Acid" of the low-acidity 
NAC. Both the given and makes behavioral states of this function are 
substance states. The former specifies the state of in-flowing nitric acid, 
while the latter specifies the state of the nitric acid as it flows out of the 
device. In addition, the by-behavior slot points to the Cool Acid internal 
causal behavior that explains the above transformation. 

Note that the function of a device in SBF models is an abstraction of 
the internal causal behaviors of the device. For transformation functions, 
the initial state and final state in an internal causal behavior are 
respectively the input state and output state in the function. For instance, 
the given and make states of the function of nitric acid cooler (Figure 5(b)) 
are respectively the same as the initial state (state-1) and the final state 
(state-4) in the internal causal behavior Cool Acid of the nitric acid cooler 
(Figure 5(c)). Note also that the functions of a device in SBF models are a 
subset of the set of its observable, output behaviors. In particular, a 
function is an output behavior of the device intended by the designer. For 
instance, the abstraction of the internal causal behavior „Heat Water" of 
the nitric acid cooler (Figure 5(d)) is an output behavior of the device. 
But, in SBF models, this output behavior is included under the device 
functions only if it was actually intended by the designer. 

3.4. BEHAVIORAL STATE TRANSITION 

A behavioral state transition is a partial description of a transformation of 
one behavioral state into another during the functioning of the device. 
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Figure 10 shows the schema for representing such a transition in the SBF 
language. In addition to the links to the previous and next states, the 
behavioral state transition schema contains the slots by-behavior, using- 
function, as-per-domain-principle, parameter-relations, and conditions 
of different kinds that have to be true in order for the transition to occur. 

state-transition: 
previous-state: preceding state 
next-state: succeeding state 
{ by-behavior: pointer to a more detailed behavior explaining 

the transition} 
{ usina-function: component's function }* 
(as-per-domain-principle }* 
(parameter-relations }* 
f condition }* 

Figure JO: Behavioral State Transition Schema 

A behavioral transformation of a device element may be explained at 
several levels of causal abstraction and structural aggregation. Thus, the 
specification of a state transition may include a pointer to another 
behavior (through the by-behavior slot) which explains in greater detail 
the transformation described by that transition. The by-behavior pointer 
results in a hierarchical organization of the device internal behaviors. In 
addition to pointing to a more detailed behavior, a state transition may be 
explained in terms of the functions of structural elements of the device 
(i.e., using-function slot), or in terms of a domain principle (i.e., as-per- 
domain-principle slot) such as physics laws (e.g., the law of conservation 
of momentum). The using-function slot of a behavioral state transition 
schema is filled with a list of Schemas each of which refers to a component 
in the device and a primitive function of that component. 

.Moreover, the transition schema may be annotated with qualitative 
equations (i.e., parameter-relations slot) describing the changes to the 
values of different substance properties and component parameters 
because of the transition. Qualitative equations may be based on physics 
principles but are specific to the device parameters. The parameter- 
relations slot of the state-transition schema is filled with a list of 
qualitative equations, where each qualitative equation itself consists of a 
qualitative relation between values of two substance properties or between 
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values of a substance property and a component parameter. A qualitative 
relation is an enumerated type and' can have one of the two values: 
directly-proportional-to and inversely-proportional-to. 

Often the occurrence of a state transition is conditioned upon the co- 
occurrence of other behavioral states in the device (the representation of 
this condition by a pointer to the state via under-condition-state), or the 
co-occurrence of other state transitions (a pointer to the transition via 
under-condition-transition), or specific structural relations among the 
device elements (a list of structural relations via under-condition- 
structure), or specific property values of a substance (a pointer to the 
partial description of the substance via under-condition-substance), or 
specific parameter values of a component (a pointer to partial description 
of the component via under-condition-component). The SBF language 
provides the vocabulary for specifying all five different types of conditions 
in a state transition. 

For instance, in transition2->3 (Figure 5(c)), the annotation under- 
condition-substance specifies that the behavior allow of nitric-acid-pipe-2 
can allow the flow of only some substances: the substance should be in 
liquid state and should have low acidity (i.e., behavioral or causal 
context). Further, the annotation under-condition-structure specifies the 
structural relation that Heat-Exchange-Chamber includes nitric-acid-pipe- 
2 in order for the transition to occur (i.e., structural context). Annotations 
may also include conditions on other transitions as indicated by under- 
condition-transition. For example, transition2->3 refers to transition6->l 
in another behavior (the behavior „Heat Water") of NAC shown in Figure 
5(d). In addition, a transition may be annotated by knowledge of deeper 
domain principles and qualitative equations as indicated in Figure 5(c). 

3.5. BEHAVIOR 

An internal causal behavior is a sequence of alternating behavioral states 
and behavioral state transitions. Figure 5(c) shows a fragment of the 
causal behavior that explains how nitric acid is cooled from temperature 
T1 to T2. State-2 is the preceding state of transition2->3 and state-3 is its 
succeeding state. State-2 describes the state of nitric acid at location p2 
and so does state-3 at location p3. The different types of annotations on 
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transition2->3 indicate the different types of causal contexts under which 
the transition can occur. For example, the annotation using-function in 
transition2->3 indicates that the transition occurs due to the primitive 
function allow of nitric-acid-pipe-2. 

3.6. OTHER KNOWLEDGE 

In addition to design cases and their associated device models, Kritik2 has 
knowledge of the primitive functions, and the generic components and 
substances of the design domain. While Kritik2's SBF models are case- 
specific, its knowledge of components and substances is generic, i.e., case- 
independent. But all domain knowledge, from case-specific SBF models to 
generic components and substances, is represented in the same SBF 
language. In addition, the different types of knowledge are cross-indexed 
in Kritik2 as indicated in Figure 11. For instance, design cases index into 
their SBF device models, and a SBF device model is described in terms of 
the participating substances, components, and primitive functions. The 
partial specification of a substance or a component in the SBF model 
contains pointers to the more complete specifications of generic substances 
and components as indicated in the discussion of the behavioral state 
schema above. 

based on 

Design 
Case 

1— 

Substance 

SBF Model 

explained by based on 

1 

Component 

based on 

1 
Primitive 
Function 

Figure 11: Types of Knowledge in Kritik2 



KRITIK: AN EARLY CASE-BASED DESIGN SYSTEM 19 

A primitive function in the component-substance ontology of SBF 
models can be one of the following: allow, pump, create, and destroy. 
This typology of primitive functions is directly borrowed from Bylander 
(1991). 

Unlike a device, a primitive component is a structure assumed to be 
non-decomposable by Kritik2. A component is represented as a schema 
consisting of the slots: is-a, structural-relations, parameters, modes, 
functions, and connecting-points. Figure 12 shows a portion of Kritik2's 
memory of primitive components organized in a taxonomic hierarchy. The 
schema for a specific component, battery-1, is shown in the dashed box.' 
Is-a is a pointer through which a specific component is linked to a 
prototypical component in Kritik2's conceptual memory of components. 
For instance, battery-1 is-a battery in Figure 12. The structural- 
relations slot specifies a list of structural relations between this 
component and the others in the device. The modes slot in a component 
schema specifies one or more modes of operation of the component. The 
parameters slot contains a list of characteristic parameters of the 
component and their corresponding values and units. For example, the 
volume of a heat-exchange chamber has a value of 1 cu. ft. The functions 
slot of a component contains the set of primitive functions that the 
component delivers and the connecting-points slot specifies the structural 
points in the component where the other components can be connected. 

Co mponent Memorv 

/ V 
P P* Pump                  Battery 

/ \ / \ 
Pipe-1 Pipe-2 Battery-1 Battery-2 

! name: battery-1 

I is-a: battery 

I property-list: 

|        capacity nigh 

j modes: - 

Figure 12: A Snapshot ofKritik.2 's Component Memory1 

Figure 13 shows a portion of Kritik2's conceptual memory of 
substances organized in a generalization-specialization hierarchy. The 
schema for representing a specific substance nitric acid is shown in the 
dashed box. Is-a is a pointer through which a specific substance is linked 
to a more general substance. For instance, nitric-acid is-a liquid in Figure 
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13. Property List contains a list of characteristic properties of the 
substance and the corresponding values and units. For example, the 
temperature of nitric acid in a specific behavioral state of a given device 
may have a value of T1 degrees. In the description of a substance in a 
behavioral state of a specific device, only some of these characteristic 
properties are of interest, and thus only their values are specified. Note 
that in Figure 13 many properties for a substance nitric acid are shown as 
„—" which means that Kritik2 knows that these properties are relevant to 
this substance but in its generic knowledge there are no values specified 
for these properties. However, a specific substance in a specific device, for, 
instance, nitric acid in low-acidity NAC may have additional values 
specified (i.e., acidity: low; temperature: T1) as shown in Figure 5(b). 

Substance Memory 

Concrete 
Substances 

z. 
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Liquids 

x 

X 
Abstract 
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\ 
Electricity 

! name: nitric acid 

i is-a: liquid 

property-list: 

state: liquid 

< by-default > 

color: - 

temperature: - 

acidity: - 

- indicates 

<no-specification> 

Figure 13: A Snapshot ofKritik2's Substance Memory 

4. Case-Based Adaptive Design 

Figure 4 illustrates Kritik2's computational process for case-based 
adaptive design. In this section, we describe how the SBF models give rise 
to the vocabulary and strategies for addressing the different subtasks of 
case-based adaptive design. 

In the domain of physical devices, a typical problem in preliminary 
design is to design a device that achieves specific functions. This 
Function~to-Structure design task takes as input a specification of the 
functions desired of a device, and has the goal of giving as output a 
specification of a structure that delivers the desired functions. Consider, 
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for instance, the task of designing a sulfuric acid cooler, a device that 
delivers the function of cooling sulfuric acid of high acidity. Kritik2 
accepts representations of new problems in the SBF language. The 
specification of the desired function in the SBF language is shown in 
Figure 14. 

GIVEN: 

H2S04 

loc: p1 

temperature:T1 

flow: R 
acidity: high 

contains 
HEAT 

magnitude:Q1 

H2SO4 
loc:p4 

temperature^ 
flow: R 
acidity: high 

contains 
HEAT 

magnitudes 2 
MAKES: 

Figure 14: Function of cooling high-acidity sulfuric acid 

4.1. CASE RETRIEVAL 

The task of case retrieval takes as input (i) the functional specification of a 
desired design, and (ii) the functional specifications of design cases stored 
in memory. It has the goal of giving as output an ordered set of known 
design cases that can potentially be adapted to satisfy the functional 
specifications of the desired design. The retrieved cases are ordered by a 
qualitative estimate of their ease of adaptation for satisfying the functional 
specification of the desired design. The computational advantage of 
retrieving and ordering a set of known designs is that if adaptation of one 
design fails, then another design can be selected without again probing the 
case memory. 

4.1.1. Organization and Indexing of the Case Memory 

The retrieval of appropriate design cases raises the issues of indexing the 
design cases, matching the design problem with the problems in past 
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design cases, selecting a set of candidate design cases (when there are 
many „partial matches"), and finally ordering the selected designs. The 
case indexing in Kritik2 is task-specific: since Function-to-Structure 
design problems are specified by the functions desired of the new device, 
the stored design cases in Kritik2 are indexed by their functions. The SBF 
language provides the vocabulary for representing the functions delivered 
by the stored designs. 

The design cases are organized in a generalization-specialization 
hierarchy. The properties of the substances specified in the device 
functions are used as dimensions along which the designs are' 
generalized/specialized. For example, designs of acid coolers are 
organized along the dimension of property acidity and discriminated on the 
corresponding parameters low vs. high, as shown in Figure 15. The 
property acidity is important because the choice of pipe in the design 
depends on whether it has to allow a low-acidity substance or a high- 
acidity substance. The exact dimensions of generalization depend on the 
past design experiences of Kritik2. The nitric-acid cooler case (see 
Figure 15) is the design of the low-acidity nitric acid cooler that we 
described in the last section and it is stored under the category of low- 
acidity coolers. 

Design Case Memory 

Dimension of 
generalization: Acidity Momentum     •     • 

Angular-Momentum 
Controllers 

Acidity: low 

HNOjCoolerCase J   ( Red-LBC-Case1   J ( Sue-LBC-Case1  J ( Blue-LBC-Case2 

Figure 15: A Snapshot of Kritik2's functionally organized case memory 
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The functions at the higher-level. nodes in this hierarchy are more 
general than those at the lower-level nodesof the hierarchy. That is, along 
a single dimension defined by a particular property, the values of this 
property in the functions of designs associated with a higher-level node 
subsume the values of this property in the functions of cases associated 
with a lower-level node. For instance, the higher-level node acid-coolers 
in Figure 15 has both classes of designs, low-acidity coolers and high- 
acidity coolers, associated with it. In contrast, the lower-level node low- 
acidity-coolers has only the designs of acid coolers with low acidity. 
Formally, the set of cases associated with a node in the hierarchy is a 
superset of the set of cases associated with any of its immediate child 
nodes. 

4.1.2. Case Retrieval: Selection of Known Designs 

The task of case retrieval is decomposed into the subtasks of selection and 
ordering. The selection subtask takes as input (i) the functions specified in 
the new problem, and (ii) the functions delivered by the stored cases. It has 
the goal of giving as output a set of known design cases that can be 
potentially modified to satisfy the requirements of the new problem 
specification. 

The selected cases are such that the differences between their functions 
and the functions in the new problem are of a type that Kritik2 knows how 
to reduce. The SBF vocabulary for representing device functions gives rise 
to a taxonomy of functional differences, i.e., a taxomony of differences 
between two functions. For example, two functions may differ only in 
their input states, or only in their output states, or in both. Further, two 
substance states (input or output) from two different functions may differ 
in several ways: their substances can differ (i.e., substance difference), the 
values of a common substance-property can differ (i.e., substance- 
property-value difference), or a substance property may be specified only 
in one of the states (i.e., substance-property-unspecified difference and 
substance-property-additionally-specified difference). Kritik2 knows how 
to reduce substance and substance-property-value (for a single or multiple 
properties) differences between the output behavioral states of two 
designs. Thus it selects only these designs whose functions differ from the 
function in the new problem in these ways. 
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Ixiput: • Desired function. Fdtt^rd- * 

Output: • A set of design cases Setc*,t* whose functions partially match /"^„red- 
Assumptions:   • root-list contains the root nodes of all the hierarchies 

along with the dimensions of generalizations, and 
di»«nsion-liit contains all the dimensions of generalization. 

Procedure: 
SELECT( F4t,irt4); 

begin 

selected-nodes = {}; 
tobe-seen-nodes = {nodti \ node, € root-list A. 

function associated with nodti *nd Fdfirtd 
have at least one common properly specified. } 

while not-empty(tobe-seen-nodes) do 
begin 
child-nodes = MATCHING-CHILDREN (f*e„re* first(tobe-seen-nodes)); 
if empty(child-nodes) 

then selected-nodes = firet(tobe-seen-nodes) U selected-nodes; 
else tobe-seen-nodes = tobe-seen-nodes U child-nodes; 

tobe-seen-nodes = rest (tobe-seen-nodes); 
end: 

Setcat., — {case, \ node, € selectcd-nodesA case, is associated with node,, }; 
return (Setc«*tt)', 

end. 

MATCHING-CHILDREN[F,ieiired. node-in-hierarchy); 
begin 

child-nodes = {}; 
foreach (dimension € dimension-list) do 

begin 
child = DISCRIMINATE (dimension. Fjei,>ed, get-children(dimension, node-in-hierarchy)); 
if not-empty (associated-cases(child)) 

(hen child-nodes = {child} U child-nodes; 
end: 

return (child-nodes); 
end. 

DISCRIMINATE(property, Fde„rtd. children); 
begin 

foreach (child € children) do 
begin 

if (value-of(property, inpul-stateffrfenVej)) = vaiue~of( property, input-state(F(child))) ) 
V (value-of(property, output-state(fd«„re(()) = value-of{property. output-state(child)) ) 
then return(child); 

end; 
return (nil); /* as failure */ 

end. 

Figure 16: The Selection Algorithm 

Figure 16 shows the algorithm that Kritik2 uses for selecting design 
cases. It searches through the functionally organized case memory along 
the dimensions of generalization that correspond to the properties specified- 
in the desired function. Along each dimension of generalization, it goes as 
far specific as possible comparing the value of that property specified in 
either the input state or the output state of the desired function. It collects 
the design case associated with the most specific value it could reach along 
each dimension. Note, that in this and subsequent algorithms, the notation 
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slot-name(schema) denotes the value*of a slot in a schema. For example, 
Property List(State-IN(F)) denotes the value of the slot Property List in the 
schema for State-IN which in itself is a slot of the schema for function F. 

For example, the matching of the functional specification of the high- 
acidity sulfuric acid cooler (Figure 14) with the functions of the. designs 
stored in the case memory (Figure 15) results in the selection of the design 
for the low-acidity nitric acid cooler (Figure 5). Consider a hypothetical 
situation where the memory contained both the low-acidity nitric-acid 
cooler and a neutral-acidity motor-oil cooler (i.e., a design for cooling 
motor oil which has neutral acidity). In such a situation, Kritik2 would 
have selected both these cases because both of them match the desired 
function partially on the property of acidity. 

4.1.3. Case Retrieval: Ordering of Selected Designs 

Several situations are possible on the retrieval of a set of stored cases 
relevant to a given problem: 

1. Exact Match: The set of selected design cases includes a design 
whose functional specification exactly matches that of the desired 
design. In this situation, the structure of the exactly matching 
design is the solution, and problem solving is terminated. 

2. No Match: The set of selected design cases is empty. In this 
situation, no solution to the design problem by the case-based 
method, and problem solving can be terminated (or, in principle, 
some other method for the design task can be selected). 

3. Single Partial Match: The set of selected design cases contains no 
exactly matching design and exactly one partially matching design. 
In this situation, there is no need for ordering the selected design 
cases. 

4. Multiple Partial Matches: The set of selected design cases contains 
no exactly matching design and more than one partially matching 
designs. In this situation, there is a need for ordering the selected 
design cases for further processing. 

As mentioned above, for the sulfuric-acid cooler example the selection 
subtask results in a single partial match because the design of the nitric 
acid cooler is the only stored design whose functional specification 
partially matches with the desired function of high-acidity sulfuric-acid 
cooler. But, for the purpose of illustrating Kritik2's method for ordering 
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cases, consider a hypothetical situation where two low-acidity cooler 
designs, the low-acidity nitric-acid cooler and a low-acidity sulfuric-acid 
cooler were selected. 

The ordering subtask takes as input (i) the desired design specification, 
and (ii) a set of selected design cases and has the goal of giving äs output 
the same set of cases ordered according to some measure of their ease of 
adaptation. In Kritik2, the ease of adaptation of a partially matching 
design is measured by the qualitative „distance" between the function it 
delivers (which represents the current state in the design adaptation space), 
and the function desired of it (which is the goal state). There are two 
aspects to the estimation of this distance between the goal state from the 
current state: 

1. Behavioral States: The distance of the goal state from the current 
state depends on the degree of match between the functional 
specification of the desired design and that of the candidate design 
case. 

For instance, if the input behavioral state in the function of the desired 
design exactly matches the input behavioral state in the function of 
the retrieved design, while the output behavioral states match only 
partially, then the distance between the goal state and the current 
state is smaller than if both the input and output states were to 
match only partially. Similarly, if both the input and output 
behavioral states in the function of the desired design partially 
match with the input and output behavioral states in the function of 
the retrieved design respectively, then the current state is closer to 
the goal state than if only the input states match partially or if only 
the output states match partially. 

2. Behavioral State Features: the distance of the goal state from the 
current state depends on which features in the function of the 
candidate design case match with the corresponding features in the 
function of the desired design. That is, the distance depends on 
which features in the input and output behavioral states in the 
function specification of the candidate design need to be 
transformed to match with the corresponding features in the input 
and output behavioral states in the functional specification of the 
desired design. 

For example, it is in general easier to transform the value of a property 
of a substance into another value than to transform one substance 
into another. Thus, if the function of one partially matching design 
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differs from that of the desired design in the value of some property 
only, while the function of another partially matching design differs 
in the substance itself, then the former design is probably closer to 
the desired design than the latter. Similarly, it is in general easier to 
transform the value of one property of a substance into another 
value than to transform values of two properties, and so on. Of 
course, these heuristics for determining the distance between the 
goal state and the current state can only provide an estimate, and 
not an accurate measure, of the distance between them. Also, these 
heuristics can be domain specific. 

In sum, Kritik2's heuristic estimate for case ordering is based on how 
many of the input and output behavioral states, and which state features 
and how many of them, match in the functional specification of the new 
problem and the function delivered by the candidate design. In the 
hypothetical situation where both a low-acidity nitric-acid cooler and a 
low-acidity sulfuric-acid cooler were selected, Kritik2 would order the 
latter as a better match than the former because the sulfuric acid cooler 
matches with desired function on the substance also. 

4.2. DESIGN ADAPTATION 

The task of design adaptation involves, first, the mapping of the 
differences between the desired function of the new problem and the 
function delivered by the candidate design into potential modifications to 
the structure of the candidate design (functional differences=>structural 
modifications), and second, the evaluation and execution of the candidate 
modifications. The generation of useful candidate structural modifications 
is computationally complex because the differences between the function 
desired of and delivered by the retrieved design can be large and many, the 
needed structural modifications can be large and many, there may be no 
simple correspondence between the functional differences and the 
structural modifications, and the needed structural modifications can 
interact with one another and with the components in the structure of the 
known design. 

Kritik2 decomposes the adaptation into the subtasks of diagnosis and 
repair. It views the retrieved design as a „faulty" solution to the new 
problem and „repairs" it appropriately. Solving the diagnosis and repair 
tasks effectively and efficiently requires knowledge that constrains and 
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focuses the processes of identifying possible faults and generating 
potentially useful modifications. In this section we will discuss how the 
SBF model of the retrieved design provides Xritik2 with the needed 
knowledge. 

4.2.1. Diagnosis 

The task of „diagnosis" in the context of adaptive design is to identify 
possible „faults" in the known design that, if fixed, can help to deliver a 
solution to the new problem. The diagnosis task takes as input (i) the new 
desired function, (ii) a retrieved design, and (iii) the differences between' 
the desired function and the function delivered by the retrieved design. It 
has the goal of giving as output a set of plausible faults in the retrieved 
design. Each possible fault is described as a three-tuple consisting of either 
a substance or a component in the retrieved design, a property of that 
substance or component, and a relation between that property and some 
substance or component property in the output state of the desired 
function. 

The SBF model of the known design specifies how the internal causal 
mechanisms of the device compose the functional abstractions of its 
structural components into the functions of the device as a whole. Thus, 
Kritik2 uses that knowledge to identify the causes that prevent the solution 
of the retrieved case to satisfy the new problem. In particular, it uses the 
algorithm shown in Figure 17, which given the functional differences and 
the SBF model of the known design traces through the model and identifies 
specific structural elements (components or substances) that can 
potentially be modified in a way that will result in the accomplishment of 
the function desired of the new design. 
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Input:      • Desired function. FMw _ 
• Source design case. C. 
• Functional difference. FD = Fntv - Fcij. where F44 is the function in C. 

Output:   • A act of possible fauiLs (or candidate modifications). SfCt*nit-jauiif 
Procedure: 
initialize 

F0\i — functional-spec(C): 
SpotfUe-jauiti = {(E. P,. Relation) where 

E € {Sub.Comp}. Pt € PropertyList(E). and 
3P' € Property List(State0VT(Fnev))s i.P'Relation P, 
and P' is the property whose value needs to be changed, 
and Relation € {Hirecily-proportional-to. tnvtrsely-proporitonal-lo}}; 

Boij = function-by-behaviorffoij): 
begin 

SpoiMtiu-jauit» — BACKTRAGE(behavior-final-state(fl0fj). SpaHU-ja^it,). 
end. 
BACKTRACE (state. £^„«ie_/„,i„) 

current-state = state 
LOOP 

previous-state = state-previous-state (current-state); 
IF previous-state = ML. THEN Exit LOOP 
CASE : 
(1) IF there is a qualitative equation in state-previous-transition(current-state). 

and property P, £ Sp<,*inu-j*utn such that P°'dRelation Pi . where 
Pi is a parameter of a component or a property of another substance E. and 
P°u is a property in the current design. 

THEN SpOI,tb,e.Jeu,t, = Spe,,^~fauit, U {(E. Pi. Relation)} 

where P™XtReiaUon'l(p™?t«t)> *"<* 
PPva'ive ls tne va'ue °f property Pj in the desired design. 

(2) IF there is a functional abstraction of a component E (i.e.. Comp in using-funciion) 
and a condition on trie substance properties on which E operates 
(i.e.. Condition SVB) in stale-previous-transition^ cur rent-state), 
and property Px € 5p0IMije_/flu(i. such that Pfld = Pi, where 
Pi is a property of the substance in ConditionsuB* and 
Pfi4 is a property in the current design. 

THEN Spot,nu-fault* = Spouitu-fauif U {(E. Pi,directly - proportional — to)} 
where P***\vtdetermincsthctypeofcomponentE. and 
Pfvoivt 's tne va'ue of property Pi in the desired design. 

(3) IF there is a pointer to a new behavior sequence B' such thai 
the transition state-previous-transition(current-state) 
depends on a transition, trans, of B' 

THEN spawn 
BACKTRACE (transition-next-state(trons).5pe,,t*^-/aUii.) 

END-CASE 
current-state = previous-state 
goto LOOP 

END-LOOP 

Figure 17: The Diagnosis Algorithm 

In our example, since the substance-property-value difference low- 
acidity=>high-acidity occurs in the function of cooling low-acidity nitric 
acid, Kritik2 uses this function to access the internal causal behavior 
responsible for it, a fragment of which is shown in Figure 5(c) (recall that 
in the SBF model, functions act as indices to the behaviors responsible for 
them). Then, it traces through the retrieved, starting from the final state of 
the behavior and checking each state transition in the behavior to 
determine whether reducing the substance-property-value difference low- 
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acidity=>high-acidity requires any component in „the transition to be 
modified (or replaced). If so, it identifies a potential fault, which could be 
eliminated by the corresponding structure modification. 

For example, when Kritik2 arrives at the transition transition2->3 
shown in Figure 5(c), it finds that nitric-acid-pipe2 allows the flow of only 
low-acidity substances (i.e., some property of this component is related to 
the property acidity of the substances that it can allow). It therefore 
generates the structure modifications of (i) component-parameter 
adjustment (in case nitric-acid-pipe2 can allow the flow of high-acidity 
substances in a different parameter setting), (ii) component-modality 
change (in case nitric-acid-pipe2 can allow the flow of high-acidity 
substances in a different mode of operation), and (iii) component 
replacement (in case the first two modifications are not possible and nitric- 
acid-pipe2 has to be replaced with some sulfuric-acid-pipe2 which can 
allow the flow of high-acidity substances). 

In this way, Kritik2 uses the SBF model for NAC to generate 
structural modifications that can help reduce the functional difference low- 
acidity=>high-acidity. Similarly, given the functional difference of 
substance l=>substance2 (nitric acid=>sulfuric acid) Kritik2's diagnosis 
results in the generation of the structure modification of substance 
substitution nitric acid=>sulfuric acid. 

4.2.2. Repair 

The task of „repair" is to execute a candidate modification given a set of 
possible modifications. In the context of adaptive design, this involves 
modifying the old design so that the possible faults are eliminated. It takes 
as input (i) the desired function, (ii) the retrieved design, (iii) the 
functional difference between the desired and the retrieved, and (iv) a set 
of possible faults as identified by 'he diagnosis task, and gives as output a 
modified model and its corresponding function. 

As mentioned in section 4.1.2, the SBF language provides a 
vocabulary for expressing certain types of functional differences between 
design cases, such as substance difference, substance-property-value 
difference, substance-location difference, component difference, 
component-modality difference, and component-parameter difference. In 
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addition, it provides the vocabulary for expressing certain types of 
modifications to the structure of a design, such as substance substitution 
(including substance generalization and specialization), component 
modification (including component replacement, component-modality 
change, and component-parameter adjustment), relation modification (for 
example, series-to-parallel and parallel-to-series conversion), substructure 
deletion (for example, component deletion), and substructure insertion (for 
example, substructure replication). 

Given the function desired of a design (e.g., to cool high-acidity 
sulfuric acid) and the function delivered by the selected design case (e.g.; 
to cool low-acidity nitric acid), Kritik2 classifies the differences between 
the two functions into its typology of functional differences. If the desired 
and the delivered functions differ in more than one feature, then it 
heuristically ranks the differences in order of the difficulty of reducing 
them. In the NAC example, for instance, the desired function and the 
delivered function differ in two features: substance 1 =>substance2 (nitric 
acid=>sulfuric acid), and valuel=>value2 of property acidity (low- 
acidity=>high-acidity). Since, in the domain of physical devices that can 
be modeled in terms of flow of substances between components, reducing 
the difference substanceJ=>substance2 is in general less difficult than 
reducing valuel=>value2 of a property, Kritik2 reduces the latter before 
the former. 

Given the substance-property-value difference between the retrieved 
design of low-acidity NAC and the desired function of cooling high-acidity 
sulfuric acid, Kritik2's ontology suggests that such a difference can 
potentially be reduced by the structural modifications of (i) component- 
parameter adjustment, (ii) component-modality change, and (iii) 
component replacement. Kritik2, prior to diagnosis however, does not 
know what components in the given design need to be modified. This is 
determined by the diagnosis of the NAC SBF model, which we have 
already seen in section 4.2.1. 

In Kritik2 the repair step is interleaved with the evaluation step. This 
interleaving includes two further subtasks: (i) repair-and-evaluation plan 
selection, and (ii) repair-and-evaluation plan instantiation. During the 
former, the functional difference and the structure modification are used to 
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retrieve an applicable repair & evaluation plan from Kritik2's repair & 
evaluation plan memory. During the latter, the selected plan is applied first 
to the behavior of the known case. The structure of the known design is 
modified only after verifying (by simulation of the SBF model) that the 
modification will result in the achievement of the desired function, 

4.3. EVALUATION OF THE CANDIDATE MODIFICATIONS 

Since modifications in general are done to some localized parts of the 
solution in the known design case, it is essential to evaluate whether each, 
initial modification, and the subsequent ones it may invoke in other parts 
of the device, are leading towards the satisfaction of the requirements of 
the new problem. An important element in Kritik2's integrated theory is 
that the SBF model of the known design can be modified and simulated to 
verify if the proposed modifications indeed result in a solution for the new 
problem without actually making modifications to the solution (i.e., the 
device structure in design problem solving). The task of repair & 
evaluation in Kritik2 takes as input (i) the functional specification of a 
desired design, (ii) the functional and structural specification of a 
candidate design, (iii) the SBF model of the candidate design, and (iv) the 
specification of a candidate modification to the structure of the candidate 
design. It has the goal of modifying the behavior of the retrieved design 
and giving as output an evaluation of whether the candidate modification, 
upon execution, would result in satisfying the functional specification of 
the desired design. 

4.3.1. A Model-Based Method for Repair & Evaluation 

The evaluation of a candidate modification, such as component 
replacement for example, involves two subtasks. The first task is to 
determine whether a design that satisfies the functional specification of the 
needed component (e.g., the functional specification of the sulfuric-acid- 
pipe, that is, a pipe which can allow high acidity substances) is available 
in memory. Recall that in the previous section, we described how Kritik2 
determines that one candidate modification in adapting a low-acidity N'AC 
to cool high-acidity sulfuric acid is the component replacement of nitric - 
acid-pipe2 with a component that allows high-acidity substances. If the 
needed design is not available in memory, then the candidate modification 
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of component replacement is not feasible. Thus, one,subtask of repair & 
evaluation is to determine the feasibility of the candidate modification. 

Let us suppose that there exists such a component as the one required 
by the modification plan. Then, the second subtask of repair & evaluation 
is to determine whether, upon execution, the candidate modification would 
result in satisfying the functional specification of the desired design. This 
involves the simulation of the effects of (the execution of) the candidate 
modifications on the output behaviors of the candidate design. The 
availability of the SBF model for the known design and the localization of 
the candidate modification gives rise to the method of model revision. In 
this method, the causal and output behaviors of the modified design are 
obtained by revising the causal and output behaviors of the known design 
(i.e., behavior modification). If the revision succeeds, i.e., if the revised 
causal behavior results in the desired output behavior of the desired 
design, then the candidate modification may be executed on the candidate 
design (i.e., structure modification). If the revision fails, then an 
alternative candidate modification may be evaluated. 

The types of knowledge required for revising the SBF model of the 
known design depend on the type of candidate modification to be executed 
on it. For instance, the method for model revision corresponding to the 
candidate modification of component replacement requires knowledge of 
how to compose causal behaviors. More specifically, it requires 
knowledge about how to compose the causal behavior of the new 
component with causal behavior segments from the known design. For 
adaptation problems in which the „distance" between the known and the 
desired design is „small", the candidate modifications are local, and 
knowledge is available for revising the model for the candidate design, the 
method of model revision is a computationally attractive method for 
evaluating whether the behavioral effects of a structure modification 
would result in satisfying the behavioral specification of a given desired 
design (i.e., behavior verification). 

Kritik2 uses a plan- and model-based method for the task of 
modification evaluation, that is, it uses repair & evaluation plans which in 
turn make use of the SBF model of the candidate design to perform the 
interleaved steps of repair and evaluation. A skeletal repair & evaluation 
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plan embodies knowledge of how the.causal and output behaviors of the 
new design can be composed from the causal and output behaviors of the 
known design and the causal and output behaviors of other substructures 
such as components. The operations specified by such a plan are at two 
levels. At the first level, it specifies the tasks of design retrieval and model 
revision. At the second level, the subplan for model revision specifies the 
operations for modifying the causal and output behaviors of the known 
design. 

The relation between the types of knowledge required for model, 
revision and the types of candidate modification implies a family of model- 
revision plans, and, hence, a family of repair & evaluation plans, with 
particular methods applicable to specific candidate modifications. The 
need for a set of stored skeletal plans for the modification-evaluation task 
implies yet another subtask of the task, namely, the task of selection of the 
particular plan applicable to a given candidate modification. 

Thus, in general, the plan-based method decomposes the task of repair 
& evaluation into three subtasks: plan selection, design case retrieval, 
and simulation of behavioral effects. The task of design case retrieval has 
been discussed in Section 4.1. The other two tasks can be characterized as 
follows. 

1. Plan Selection: The task of plan selection takes as input the 
specification of a candidate modification, and has the goal of giving 
as output a specific repair & evaluation plan applicable to the 
given candidate modification. (Note again that the repair and 
evaluation are interleaved in our computational model.) 

2. Simulation of Behavioral Effects: The task of simulation of 
behavioral effects takes as input (i) the function of the desired 
design, (ii) the SBF model of a candidate design, and (iii) the 
specification of a candidate modification. It has the goal of giving 
as output an evaluation of whether the effects of (the execution of) 
the candidate modification on the output behaviors of the known 
design result in satisfying the function of the desired design. 

4.3.2. Selection of Repair & Evaluation Plans 

The repair & evaluation plan memory contains a plan for each type of 
structural difference that corresponds to a structural modification. The 
stored plans are indexed by the types of structural modifications to which 
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they are applicable as well as the functional differences they can reduce. 
The retrieval of a plan applicable to a given structure modification is 
performed by the associative method. In this method, elementary structure 
modifications are directly mapped onto the stored plans. 

Once a repair & evaluation plan corresponding to an elementary 
structure modification is retrieved, it can be instantiated and executed. 
This section describes one type of repair & evaluation plans that 
corresponds to substructure modification, i.e., substance-modification 
plans. The other types are component-modification plans, relation- 
modification plans, and substructure-deletion plans. The discussion' 
assumes the availability of the causal behaviors of the known design, and, 
in particular, the specific causal behavior to be revised (as determined by 
the task of localization of structure modifications, a subtask of diagnosis.) 

Substance-Modification Plans: In this type of structure modifications, 
a substance in the known design case is substituted by another substance. 
The substance-substitution plan does not involve design case retrieval as a 
subtask. Instead, model revision is performed directly. For instance, if the 
design problem is to modify the design of the low-acidity NAC to cool 
high-acidity sulfuric acid (Figure 18), the substitution of nitric acid by 
high-acidity sulfuric acid is generated as a candidate modification. Then 
the causal behavior for the SAC is obtained by a substitution of nitric acid 
by high-acidity sulfuric acid in the causal behavior segments one of which 
was shown in Figure 5(c). 

Also, in the example of designing a high-acidity SAC, the under- 
condition-transition pointer in transition2->3 is used to retrieve the 
causal behavior „Heat Water" of the NAC. This behavior is traced to find 
the pointer to the behavior segment of cooling nitric acid (Figure 5). The 
pointers are modified to point to the corresponding behavioral states and 
state transitions in the behavior segments of the behavior „Cool Sulfuric 
Acid." 

Finally, the schema for the desired output behavior (i.e., the function) 
of the high-acidity SAC (shown in Figure 18) is revised. A pointer to the 
causal behavior „Cool Sulfuric Acid" composed above is placed in the by- 
behavior slot of the function. The other slots are filled by copying their 
values from the schema for the function of the NAC shown in Figure 5. 
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Figure 18: Design case of high-acidity sulfuric acid cooler 

4.3.3. Simulation of Behavioral Effects 

This task involves instantiating a repair & evaluation plan in the localized 
behavior, propagating those changes to the other parts of the same 
behavior and to the dependent behaviors, and finally simulating the 
behavior (from the input state to the output state) to determine if the 
revised model results in the achievement of the desired function. Kritik2 
instantiates the retrieved plan in the context of the SBF model of the 
known case, and executes it on the model to produce an SBF model for the 
new design. 

The model-revision process (pointed to by the retrieved repair & 
evaluation plan) specifies a compiled sequence of abstract operations. 
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Figure 19 shows the algorithm that Kritik2 uses forj-evising the model of 
an old design and evaluating the proposed modifications by simulating the 
behavioral effects (i.e., the substeps of behavior modification and behavior 
verification). The function update in the algorithm updates the value of a 
given property in a given state or a given qualitative equation. At the end 
of simulate, comparing the initial and final states of the new modified 
behavior with those in the desired function verifies whether the 
modifications worked. 

To illustrate the model-revision process, let us return to the example of 
designing the high-acidity sulfuric acid cooler (SAC) shown in Figure 18. 
Recall that the retrieval task resulted in the selection of the design for the 
nitric acid cooler (NAC), where the two devices differ in that (i) while 
SAC cools high-acidity sulfuric acid, NAC cools low-acidity nitric acid, 
and (ii) while the pipes through which sulfuric acid flows in SAC need to 
allow high-acidity liquids, the pipes through which nitric acid flows in 
NAC allow only low-acidity liquids. The first of these two differences, 
nitric acid=>sulfuric acid, is an instance of the substance substitution 
type of structural differences; the second, pipe(allow low-acidity 
substances)=>pipe(allow high-acidity substances), is an instance of the 
component replacement type of structural differences. The structures of 
SAC and NAC differ in more than one way, and, in the class of domains 
of interest, revising a SBF model to accommodate the structural difference 
of component replacement is in general more difficult than revising it to 
accommodate the difference of substance substitution. Therefore, Kritik2 
ranks the two differences between the structures of SAC and NAC so that 
the model for NAC is first revised for the difference of pipe(allow low- 
acidity substances)=>pipe(allow high-acidity substances), and then for 
the difference of nitric acid=>sulfuric acid. 
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Input:       . Behavior in new design. £)„,,., in which a chosen property from the diagnosis 
has been changed. 

• Model of ihe old design. MM. 

Output:   . Model of Ihe new design, .V„«, modified lo be consistent With the changes in fl,. 
Procedure: 
initialize 

St.,,, = { lP„P;H,u„P?Zu,h wh«« 
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SIMULATE Watt*™.St.,,,) 

SIMULATE (state. Si,,,,) 
current-stale = state 
LOOP 

nexl-state ='next-stale (current-stale); 
IF next-slate = NIL. THEN Exit LOOP 
CASE : 
(1) IF P, is mentioned in next-state 

THEN updated, next-state, current-slate) 
(2) IF there is a qualitative equation qc in state-next-lransition(current-slale) 

such thai P, = /(/> ) where (P„ P,"J'.lll„ P,"~lw,j € Si,,,. 
and Pi is mentioned in next-state 

THEN update)P,.?e) 

Si,,,, - Si,,,, u UP,, P,°;i,„„ P?™,„J) 
(3) IF there is a functional abstraction of a component £ (i.e.. Comp in using-function) 

and a condition on the substance properties on which E operates 
(i.e., ConditionsvB) in 6tale-previous-transition(current-stale) 
such that P, = P(, where 
Pi is a property of the substance in Conditions^ B   and 
c..p.,:.1.,.p.,vr,„,)€5J.//. 

THEN update) P,, Condition SUB) 

St.,,, = Si.,,, u {(«, P,'J<lw„ P,"-,„J} 
(4) IF there is a pointer to a new behavior sequence b" such that 

the transition state-next-transilion(currenl-state) 
affects a transition trans of B' 

THEN spawn 

SIMULATE (Iransition-prev-state(lrans), SA.H.\ 
END-CASE " 
current-state = next-slate 
goto LOOP 

END-LOOP 

Figure 19: The Model Revision Algorithm 

Let us consider the revision of the model for NAC, given the structure 
difference of pipe(allow low-acidity substances)=>pipe(allow high- 
acidity substances) between the structures of NAC and SAC. This 
structural difference can suggest as one of the candidate repair & 
evaluation plans the one that corresponds to component-replacement. The 
model-revision process for component-replacement revises the SBF model 
for NAC in several steps. First, from the specification of the old pipe 
(nitric-acid-pipe2) in NAC, it determines that the nitric-acid-pipe2 plays a 
functional role in transition2->3 of the behavior „Cool Nitric Acid" of 
NAC. Then, it decomposes the behavior into three segments: (i) the 
transition   in   which   the   old   component   (nitric-acid-pipe2)   plays   a 
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functional role (in the present example, transition2->3 in the behavior 
„Cool Nitric Acid" shown in Figure 5(c), (ii) the sequence of state 
transitions preceding it (not fully shown here), and (iii) the sequence of 
state transitions succeeding it (also not fully" shown here). Next, the 
transition in which the old component (nitric-acid-pipe2) plays a role is 
revised by replacing the functional abstraction of nitric-acid-pipe2 (which 
allows the flow of low-acidity liquids) by the behavioral abstraction of the 
new pipe (sulfuric-acid-pipe2) in SAC (which allows the flow of high- 
acidity liquids). Then, the revised transition is composed with the 
preceding and succeeding segments of the original behavior to obtain the 
revised behavior. Finally, the constraints introduced by the new 
component, represented by changes in the values of the parameters 
characterizing the old and new components (nitric-acid-pipe2 and sulfuric- 
acid-pipe2), are propagated forward through the newly composed behavior 
to obtain the revised internal behavior and function. Also, the schema for 
the function is revised by associating with it a pointer to the revised 
internal causal behavior. 

Similarly, the structural difference nitric acid=>sulfuric acid between 
the structures of NAC and SAC is used to access the repair & evaluation 
plan for substance-substitution. The model-revision process for substance 
substitution further revises the (already revised) internal behaviors and 
functions in the model for NAC by replacing the old substance (low- 
acidity nitric acid) by the new substance (high-acidity sulfuric acid). This 
produces an SBF model for the SAC as shown in Figure 18 (only partial 
behaviors are shown). Then, the revised model is simulated (i.e., traced 
forward from the input state to the output state) to verify if it indeed 
results in the output behavior (i.e., the function) desired. 

4.4. STORAGE OF NEW CASES 

The final task in Kritik2's computational process is to store the new case 
in the case memory for later use. In order for a new design case to be 
recalled in later problem solving, Kritik2 needs to store it in the „right" 
place. That is, it has to index the new design by its functions since Kritik2 
solves Function—to-Structure mapping type of design tasks. Since the 
design case points to the SBF model of the design, the newly learned case- 
specific SBF model is also stored in Kritik2's memory. 
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4.4.1. Learning Indices to New Cases 

In general, there are two different issues pertaining to the selection of 
functional indices for the new design case. First, If a new design is stored 
only along the substance properties specified in its function, case retrieval 
would not be able to make use of knowledge of other substance properties 
relevant to the design. Second, if the new design is indexed by all the 
properties of the substance in its functional specification, then case 
retrieval may result in a design based on a match with an unimportant 
property, which can make adaptation hard or even impossible. So, the 
issue becomes how to determine the substance properties that are relevant 
to the functioning of the design. 

Kritik2 capitalizes on the knowledge of the causal behavior in the SBF 
models to address the above issues. In particular, it uses the behavioral 
requirements on the substance expressed under under-condition-substance 
to identify the substance properties relevant to the functioning of the 
design. These behavioral requirements of a substance specify that, in order 
for the transition to take place, the properties of the specified substance 
should satisfy certain conditions and hence are important to the design. 

Kritik2's algorithm for selecting useful indices to a new case is shown 
in Figure 20. Given a new design case and the knowledge that functions 
are used to index the case, this method traverses through the causal 
behaviors in the SBF model of the design to identify substance properties 
on which the working of the design is predicated. 

Since the SBF model can specify multiple behaviors, the outer loop (in 
step 1) in the algorithm analyzes each causal behavior in the model. The 
second loop is for analyzing the transitions within a causal behavior. If a 
substance property is a part of the causal context of a transition, then the 
algorithm adds it to the set of indexing features if it is a property of the 
containing substance in the functional specification, and to the set of 
alternative indexing features if it is a property of a contained substance. 
This results in using the properties of a contained substance (e.g. heat in 
Figure 18(b)) in the function as indexing features only when none of the 
properties of the containing substance (e.g. sulfuric acid in Figure 18(b)) 
are central to the design. Since the causal behaviors in Kritik2's SBF 
model are specified at different levels of detail, the algorithm searches the 
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space of behaviors in a breadth-first' manner. If a higher level behavior 
does not lead to the identification of any useful substance properties, then 
the more detailed behavior, indicated by by-behavior, is added to the list 
of plausible sources of indexing features. 

Input: 
t Design case, C, that needs to be stored. 
• Functional specification of the design. F. 
• Type of indexing, T, that is, functional. 
• One causal behavior (subset of model). M, corresponding to F. 

Output: Exact vocabulary for indexing C. i.e.. the set of useful features from F. 

Procedure : 

initialize 
containing-substance-props P = get-containing-substance-properties(F); 
indices = alternative-indices = plausible-sources-of-indices = {}; 

while true do 
1. foreach causal behavior B € M do 

• foreach transition t € B do 

- conditions-on-features = get-under-conditions-from-transition(T, t); 

- indices = indices U {f | feature f € conditions-on-features A f S P}; 

- alternative-indices = alternative-indices U {f | feature f € conditions-on- 
features A f $ P}; 

- if indices = P then exit(indices); 
- if conditions-on-features = {} then plausible-sources-of-indices = 

plausible-sources-of-indices U get-detailed-behavior(t): 

end 

end 
2. if plausible-sources-of-indices = {} then 

• if indices jf {} then exit(indices); 

• if alternative-indices ^ {} then exit(alternative-indices): 

• indices = {p | p € P A  input-state-value(p) # output-state-value(p)}; 
if indices ^ {} then exit(indices): 

• indices = {p | p € get-contained-substance-properties(F) A 
input-state-value(p) # output-state-value(p)}; 
if indices i {} then exit(indicesl: 

• exit(P); 

3. M = plausible-sources-of-indices: 
4. plausible-sources-of-indices = {}; 

end 

Figure 20: A model-based method to obtain functional indices for design cases 

For the purpose of illustrating how Kritik2's model-based index- 
learning method addresses these issues, let us now consider the task of 
identifying indices in our example, namely, the newly designed high- 
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acidity SAC (Figure 18), before storing it in memory. Although the case 
memory presently has the designs of acid coolers organized only along the 
dimension of property acidity (as shown in Figures 15 and 21(a)), the new 
design case may better be indexed along other dimensions also, so that it is 
more useful in later design problem solving. So, an important aspect of 
index learning task is to learn new indexing features. This results in the 
introduction of new dimensions of generalization/specialization of cases in 
the memory, and, thus, in a reorganization of the case memory. 

Given the functional specification of high-acidity SAC (Figure 18(b)) 
and its causal behavior (Figure 18(c)), the above method results in acidity 
and State as the indexing features for storing this case in memory. This is 
because the annotation on transition2->3 specifies that the transition can 
occur only under certain condition relation to the State and acidity of the 
substance flowing through sulfuric-acid-pipe-2. The initial case memory 
(Figure 21(a)) did not have the property State as part of its indexing 
vocabulary. The SBF model however suggests that state is a useful index 
to the new case, and so Kritik2 indexes the new case by State also. The 
case memory after storing this design is shown in Figure 21(b). 

Dimenaonof 
genefabzabat Aaüty 

la) »afora tba aw daaigB It itorad 

Design Case Memory 

Dimension 
generaiatcn: Aodity 

(b) lftar tha am rkilss li ttorad 
narfcr tha laaxnad ljidicai 

Figure 21: Snapshots of Kritik2's functionally organized case memory 

Once the indexing features are selected, Kritik2 uses similarity-based 
learning to generalize the indices to the design cases. It uses the differences 
in parameters of a given property that constitute a type of functional 
difference between two designs to determine whether the two designs 
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belong to the same category or to different categories. For example, the 
design of high-acidity SAC is stored under the category of acidity-high- 
node8 that is different from that of low-acidity coolers (Figure 21 (b)). 
The level to which the indices are generalized depends on how similar are 
the corresponding parameters in the new and old cases in memory, 

5. Evaluation of the Integrated Theory 

In principle, Kritik2's integration of case-based and model-based reasoning 
can be evaluated in a number of dimensions such as (i) computational' 
feasibility and efficacy; (ii) computational efficiency and scalability; (iii) 
generality in terms of domain independence; (iv) generality in terms of 
addressing different issues and tasks in case-based design; and (v) 
generality in terms of supporting case-based reasoning in the context of 
different tasks. We have built a growing family of systems for evaluating 
the integrated theory along many of these dimensions. 

5.1. COMPUTATIONAL FEASIBILITY AND EFFICACY 

Kritik (Goel, 1989, 1991a, 1991b, 1992) and Kritik2 (Bhatta and 
Goel, 1992; Stroulia and Goel 1992; Stroulia et al., 1992) are working 
systems that integrate case-based and model-based reasoning for designing 
physical devices just as described here. These systems demonstrate that 
the integrated theory is computationally feasible. 

They also demonstrate that the theory is quite effective in solving a 
range of problems in adaptive design. Kritik started with the designs of six 
devices stored in a flat case memory, along with their corresponding SBF 
models. Four of the initial designs were from the domain of electric 
circuits and two were from the domain of heat exchange devices. Kritik 
autonomously used the known designs and their models to solve four new 
design problems. Two of the new problems were in the domain of electric 
circuits including the one described here, and two in the domain of heat 
exchangers again including the one discussed above. For each of these 
four new problems, Kritik not merely solved the new problems presented 
to it, it also automatically acquired new designs and the associated SBF 
models for potential reuse. In one of these four experiments, Kritik reused 
its newly acquired design and SBF model for solving another problem. 
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Kritik2 is a newer, bigger and more complete implementation of Kritik. 
It incorporates both the theoretical and practical lessons we learned from 
Kritik. It presently contains some twenty five design cases and associated 
SBF models, and organizes them in a multi-dimensional hierarchy as 
outlined above. These cases are from five engineering domains including 
the domains of electric circuits and heat exchange devices in which Kritik 
operates. It also contains more repair plans than Kritik (such as the 
structure replication plan). Our experiments with Kritik2 indicate that the 
integrated theory is effective because the case-specific SBF models 
explicitly represent the internal behaviors of the known device, which 
specify not only the behavioral states and the state transitions, but also the 
functional role played by each structural component in these states and 
state transitions. In addition, it shows that SBF models also address the 
tasks of case retrieval and storage, and provide answers to the related 
issues of index learning and memory reorganization. 

5.2. COMPUTATIONAL EFFICIENCY AND SCALABILITY 

Our experiments with Kritik2 also indicate that the integrated theory is 
quite efficient due mainly to two reasons. First, the organization of the 
case memory and the functional indexing scheme enable the retrieval of 
cases relevant to the current problem, and second, the organization of the 
SBF models enable rapid localization of the search for „faults" in the 
known case to a small portion of the SBF model. For instance, in the 
example of low-acidity nitric acid cooler, the substance-property-value 
difference plan needs to search only the internal causal behavior 
responsible for the function of cooling low-acidity nitric acid and can 
ignore all structural components that do not play any functional role in this 
behavior. This becomes possible because the functions in a SBF model act 
as indices to the causal behaviors responsible for them. 

As we mentioned above, Kritik2 contains about twenty five design 
cases and device models. Therefore, while bigger than Kritik and many 
other case-based reasoning systems, it is a relatively small system. The 
scalability of the integrated theory thus remains an open issue. The main 
problem is in obtaining a large number of real designs, building SBF 
models for each of them, and entering them into Kritik2's case memory to 
bootstrap the design process. This is possible in principle but very 
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expensive in practice—the building öf Kritik and Krjtik2 has taken some 
six to seven years. A massive infusion of knowledge into these systems 
could be justified only after the feasibility of systems like Kritik2 had been 
demonstrated. 

5.3. GENERALITY IN TERMS OF DOMAIN INDEPENDENCE 

As mentioned above, Kritik designs simple electric circuits and heat 
exchange devices of the kind described here. Kritik2 operates in the 
additional domains of simple mechanical assemblies such as reaction 
wheels, electromagnetic devices, and electronic circuits such as 
operational amplifiers, and computer networks. This suggests that the 
integrated theory is not limited to any specific device domain. Our 
experiments with Kritik2, however, also indicate that the current version 
of the SBF language is inadequate for covering certain kinds of 
engineering devices. For example, the SBF language presently is well 
suited for representing devices whose function is to transform a behavioral 
state but needs additional primitives for representing devices whose 
function is to prevent the occurrence of a given behavioral state (e.g., a 
steam release valve in a steam chamber whose function is to prevent the 
pressure from becoming too high). Similarly, since the SBF language is 
based on a component-substance ontology, it presently does not provide 
primitives for drawing the needed inferences about fields such as the 
magnetic field (but see Goel, Stroulia, and Luk, 1994). 

5.4. GENERALITY IN TERMS OF ADDRESSING DIFFERENT TASKS OF 
CASE-BASED REASONING 

Kritik2 addresses all major tasks of case-based reasoning, not just the 
tasks of case retrieval and adaptation. This is important because each 
stage imposes constraints on the others. For example, the memory 
processes impose constraints on the kinds of problem solving that can be 
supported, problem-solving processes impose constraints on the kinds of 
learning that are needed, and the learning processes impose constraints on 
what is available in memory. We believe that simultaneously satisfying the 
constraints of memory, problem solving and learning is a critical aspect of 
the evaluation of any case-based system. 
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Note that Kritik2 uses the same representations of cases and their 
models for supporting the different tasks of case-based reasoning. Of 
course the inferences drawn, and therefore the role of the models, change 
from one stage of processing to another. The functional part of SBF 
models acts as index into the cases, and this enables Kritik2 to.establish 
the similarity between the new problem and the cases in the retrieval stage. 
The language of the SBF models, that of the functional part in particular, 
provides a typology of functional differences between a known case and a 
new problem. The SBF models provide the functional and causal 
explanations of how the retrieved design works and this enables Kritik2 to 
infer the parts that need to be repaired in the adaptation stage. For 
instance, our experiments with Kritik2 indicate that SBF models are 
effective in solving the class of adaptation problems that can be 
characterized by the types of functional differences, such as, substance 
difference (i.e., the substances being transformed by the known design 
function and the new desired function are different), single substance- 
property-value difference, and multiple substance-property-value 
differences. The SBF models also enable the verification of the new design 
(i.e., behavior verification) by qualitative simulation in the evaluation 
stage. In addition, they provide the functional and causal explanations of 
how the candidate design works and this enables Kritik2 to learn new 
indices while storing the new case, and so on. 

5.5.    GENERALITY    IN    TERMS    OF    SUPPORTING    CASE-BASED 
REASONING IN THE CONTEXT OF DIFFERENT TASKS 

Recently we have started experimenting with the integration of case- 
based and model-based reasoning in different tasks and domains. In the 
Router project, for example, we are investigating the integration of case- 
based and model-based reasoning for navigation and planning (Goel et al, 
1994). While the results from this project are still preliminary, they 
indicate that the benefits of integrating case-based and model-based 
reasoning are not limited to design. 
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6. Related Research . 

Our work on the Kritik and Kritik2 systems is related to several lines of 
research in design and problem solving, case-based reasoning and 
learning, and qualitative models and model-based reasoning. The following 
discussion focuses on AI research on these topics. 

Design and Problem Solving 

AI research on design has led to the development, use and application 
of a number of knowledge-based problem-solving methods ranging from 
heuristic association (McDermott, 1982) to constraint satisfaction 
(Sussman and Steele, 1980) to plan instantiation (Mittal and Araya, 1992; 
Mittal et al, 1986; Brown and Chandrasekaran, 1989), to reasoning from 
first principles (Williams, 1991). (Tong and Sriram (1992) provide a 
useful anthology of many important papers on knowledge-based design.) 
The adaptive approach of case-based reasoning is fundamentally different 
from these synthetic methods. Although the synthetic methods can and do 
play an important role in design adaptation, the adaptive approach views 
design in terms of evolution, in which new designs are created by 
modifying, perhaps combining, earlier designs. 

AI research on case-based design has taken two distinct though related 
branches. In one branch, the emphasis has been on the theoretical 
development of case-based reasoning. This work has focused on 
developing and analyzing vocabularies and strategies for case 
representation, indexing, retrieval, adaptation, evaluation and storage. 
Kritik and Kritik2 are examples of this line of research; Hinrichs and 
Kolodner's (1991) Julia system is another prominent example. In the other, 
more popular branch, the emphasis has been on development and 
exploitation of case-based technology for aiding human designers in their 
tasks. This work has focused on developing and analyzing vocabularies 
and strategies for case representation, indexing, retrieval, and presentation. 
CADSYN and CASECAD (Mäher et al., 1995), CADET (Sycara et al., 
1991), CADRE (Hua and Faltings, 1993), and FABEL (Voss et a/., 1994) 
are some examples of this work. In our own work along this line, we have 
explored the use of case-based technology for aiding architects in the 
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preliminary design of office buildings-(Pearce et a/.,* 1992) and for aiding 
software engineers in the task of interface design (Barber et al., 1992). 

Case-Based Reasoning and Learning 

Several researchers (Ashley and Rissland, 1988; Hammond, 1989; 
Kolodner and Simpson, 1989) have developed computational models for 
case-based reasoning that posit different methods for adapting previous 
cases for solving new problems. The adaptation methods include heuristic 
search (Stallman and Sussman, 1977) and heuristic association 
(Hammond, 1989). The case-based method itself has been recursively used 
to adapt cases (Kolodner and Simpson, 1989; Goel et. al, 1994). 

Research on case adaptation has generally followed the two main 
computational models of case-based reasoning, namely, transformational 
approach and derivational approach. Some case-based design systems, 
(e.g. Barletta and Mark, 1988; Dyer et al., 1986; Hinrichs, 1992; 
Navinchandra, 1991; Maher and Zhao, 1987) generally follow the first 
computational model of case-based reasoning (Kolodner, 1993) in which 
the solutions to previous, similar problems are „tweaked" to solve new 
problems. Some other case-based design systems, (e.g., Kambhampati, 
1993; Mostow, 1989), closely follow the second computational model 
(Carbonell, 1983) in which the derivational trace of the problem solving in 
a previous design situation guides the adaptation process in the current 
situation. 

Kritik and Kritik2 offer an alternative and complementary approach to 
case adaptation. A design case contains the specification of the design 
problem, the design solution, and a SBF model of how the design delivers 
the functions desired of the device. The SBF model gives rise to adaptation 
strategies and guides the adaptation process. This choice is due to both 
pragmatic and theoretical reasons. In real design situations, the design 
outcome, and especially the derivational record, often are not available, 
and are hard to encode when available. But a case-specific model of how 
the device works often is available, or can be reconstructed from the 
functional and structural specifications of its design, and Kritik2 provides 
a language for encoding it. From a theoretical perspective, Kritik2 
provides an alternative account of how to automate case-based design in 
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which much of the design reasoning is in terms of the internal causal 
processes of physical devices. 

Some other researchers too have explored model-based methods for 
case adaptation. For example, Koton (1988) has used causal domain 
models for comprehending diagnostic problems in internal medicine and 
retrieving appropriate diagnostic cases from memory, and Sycara and 
Navinchandra (1989) have proposed the use of causal domain models for 
elaborating engineering design problems, retrieving appropriate cases from 
memory, and adapting them. Simmons and Davis (1987) too have used 
causal domain models for debugging plans but only for testing 
modifications to a plan, not for generating the modifications. In contrast, 
Kritik2 system uses the model-based approach for all subtasks of case- 
based reasoning: case indexing and retrieval of similar cases from 
memory, generation of modifications to the retrieved design, evaluation 
and execution of the generated modifications, and index learning and 
storage of new cases in memory. In addition, Kritik2's SBF models are 
different from the causal models of Simmons and Davis, Koton, and 
Sycara and Navinchandra. The behavioral states and the state transitions 
in their models are grounded neither in the function nor in the structure of 
the system. In contrast, the SBF model explicitly relates the internal causal 
behaviors to both the function and the structure of a device, and thus 
constrains them both from the top and the bottom. 

Interestingly, recent work on case-based design aiding (e.g., Hua and 
Faltings, 1993; Mäher et al., 95; Sycara et al., 1991; Voss et al., 1994) 
too has been moving towards the use of case-specific models to support 
the tasks of case retrieval and adaptation. Mäher et al. use case-specific 
FBS models that are very similar to SBF models. 

Qualitative Models and Model-Based Reasoning 

Since our work uses a model-based approach, we will briefly compare 
it to some related research on device qualitative models and model-based 
reasoning. Research on naive physics and qualitative reasoning, (e.g., 
deKJeerand Brown, 1984; Forbus, 1984; Kuipers, 1984), has focused on 
qualitative modeling and simulation of the physical world. The emphasis 
of this work has been on the content, representation and use of qualitative 
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models of physical systems, and the focus has been on the derivation of the 
system's behaviors at problem-solving time. In contrast, our work seeks to 
address the issues of organization, indexing,; and acquisition of the 
qualitative models in addition to their content, representation and use. This 
has led us to the structure-behavior-function (SBF) models of physical 
devices. 

Our memory-based view of device models is related to other work on 
memory-based approaches to comprehension, for example Minsky (1975) 
and especially Schänk (1982). Schänk (1982) describes Memory, 
Organization Packets (MOPs) for representing and organizing certain 
kinds of information in a compiled form, for example, the goals of 
volitional actors, and the sequences of actions performed to achieve the 
goals. He also describes how MOPs can facilitate story interpretation and 
enable generalization and learning from past experiences. We adopt a 
similar view towards device models: SBF models organize functional, 
causal, and structural information underlying the functioning of devices. 
They facilitate tasks such as interpretation of design descriptions, design 
generation and evaluation, and learning from design experiences. They 
also provide the indexing vocabulary for organizing design cases in 
memory and enable automatic learning of the indices to new cases. 

As mentioned earlier, SBF models are based on a component-substance 
ontology. They integrate and generalize two earlier device representations: 
the functional representation scheme (Sembugamoorthy and 
Chandrasekaran, 1986; Chandrasekaran, Goel and Iwasaki 1993) and the 
behavioral primitives of the consolidation method (Bylander and 
Chandrasekaran, 1985; Bylander, 1991). In addition, the SBF models are 
related to the commonsense algorithms of Rieger and Grinberg (1978). 
The representation of behavioral states and state transitions in our scheme 
is similar to their representations. The internal organization, the indexing 
scheme, and the typology of structural, causal, and behavioral relftions in 
SBF models complement those used in the commonsense algorithms. 

7. Conclusions 

The  Kritik and  Kritik2 experiments  lead  us  to the  following  four 
conclusions: 
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1. The computational process of case-based reasoning provides a good 
account of the  variant  and  adaptive  aspects  of preliminary 
conceptual design of physical devices. 

2. While case-based reasoning provides a-high-level computational 
process, it also raises a number of issues pertaining to case content, 
representation, indexing, organization, retrieval, adaptation, 
evaluation and storage. The different issues and tasks in the case- 
based reasoning process impose constraints on one another. It is 
important to address all the different tasks and issues in order to 
develop a well-constrained theory of case-based design. 

3. Structure-Behavior-Function device models capture a reasoner's 
comprehension of how a device works, i.e., how the structure of the 
delivers its functions, how the internal behaviors of the device 
compose the functions of the structural components into the 
functions of the device as a whole. The SBF language is expressive 
enough to cover a large domain of physical devices and precise 
enough to support the inferences needed to address a large range of 
design tasks and subtasks. 

4. The SBF theory provides a grounding for case-based design. In 
particular, the SBF theory provides an account of the case content, 
and vocabularies for case representation, indexing and 
organization. In addition, it provides strategies for the tasks for 
case retrieval, adaptation, evaluation and storage, including index 
learning, and memory reorganization. 
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Building useful systems with an ability to understand "real" natural language input 
has long been an elusive goal for Artificial Intelligence. Well-known problems such 
as ambiguity, indirectness, and incompleteness of natural language inputs have 
thwarted efforts to build natural language interfaces to intelligent systems. In this 
article, we report on our work on a model of understanding natural language design 
specifications of physical devices such as simple electrical circuits. Our system, called 
KA, solves the classical problems of ambiguity, incompleteness and indirectness by 
exploiting the knowledge and problem-solving processes in the situation of designing 
simple physical devices. In addition, KA acquires its knowledge structures (apart 
from a basic ontology of devices) from the results of its problem-solving processes. 
Thus, KA can be bootstrapped to understand design specifications and user feedback 
about new devices using the knowledge structures it acquired from similar devices 
designed previously. 

In this paper, we report on three investigations in the KA project. Our first 
investigation demonstrates that KA can resolve ambiguities in design specifications 
as well as infer unarticulated requirements using the ontology, the knowledge 
structures, and the problem-solving processes provided by its design situation. The 
second investigation shows that KA's problem-solving capabilities help ascertain the 
relevance of indirect design specifications, and identify unspecified relations between 
detailed requirements. The third investigation demonstrates the extensibility of KA's 
theory of natural language understanding by showing that KA can interpret user 
feedback as well as design requirements. Our results demonstrate that situating 
language understanding in problem solving, such as device design in KA, provides 
effective solutions to unresolved problems in natural language processing. 

1. Introduction and overview 

It has long been recognized that language understanding requires abilities far 
beyond what pure linguistic knowledge permits (Kintsch, 1974; Charniak & 
McDermott 1985; Grishman, 1986; Rich & Knight, 1991; Winston, 1992). In the 
past, two approaches have been pursued to endow natural language understanding 
systems with such abilities as inference and problem solving. One approach has been 
to endow systems with a variety of domain and world knowledge as well as a range 
of inference, explanation and reasoning capabilities (e.g. BORIS: Lehnert, Dyer, 
Johnson, Yang & Harley, 1983). All of the system's capabilities, in this approach, 
are solely employed in the service of "Understanding" natural language. Unfortun- 
ately, this approach to language understanding has not been particularly successful, 
since the linguistic methods typically used for "Understanding" do not work well 
with the various types of non-linguistic knowlege that are required to understand 
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language. Moreover, the specialized types of knowledge that these systems require 
for understanding a natural language text (Lehnert et ai, 1983) are not readily 
available, nor has it been demonstrated that they can be acquired by established 
methods. As a result, this approach has only resulted in prototype language 
understanding systems that show little promise of scalability or bootstrapping. 

Another approach has been to make some other cognitive task (such as robot 
planning or expert decision making) the main task and add a natural language 
"Front-end" to the system. The front-end works in service of the rest of the system 
and has limited abilities to translate natural language inputs into a conceptual 
representation that is comprehensible to the rest of the system (e.g. Hendrix, 
Sacerdoti, Sagalowicz & Slocum, 1978; Simon & Hayes, 1979). Such natural 
language front-ends are unable to solve many linguistic problems because they 
neither possess the requisite non-linguistic knowledge nor get any useful feedback 
from the other task. The linguistic problems remain hidden in the intermediate 
representation and are not resolved satisfactorily by the rest of the system with its 
non-linguistic methods and knowledge. 

Our work on natural language understanding takes a third approach, a more 
modular one, in which language understanding and problem solving interact by 
communicating the results of their decision-making with each other. Language 
understanding uses the results of problem-solving operations to resolve linguistic 
problems such as ambiguities. Problem solving in turn uses the decisions made by 
language understanding to direct the course of its own problem decomposition and 
problem-solving process. A major difference between this approach to language 
understanding and previous approaches is that the language understander need not 
possess either the knowledge or the abilities to solve problems in reasoning. Nor 
does problem solving need to know how to solve linguistic problems left unsolved by 
a natural language front-end. All that the two need is to solve their own problems 
partially, be able to communicate their decisions and results with each other, and 
cooperate in an integrated architecture to arrive at a negotiated solution to the 
overall problem. 

In this approach to building natural language understanding systems, we are not 
simply adding additional types of knowledge to a linguistic processor in the hope of 
making language understanding a feasible task. Nor are we passing on linguistic 
problems to a non-linguistic reasoning system in the hope that the reasoning system 
will somehow solve the problems in the natural language input. Instead, we are 
"Situating" natural language understanding in another task to make it more 
achievable—to exploit the knowledge and the reasoning processes running in the 
situation of another task to solve classical problems in natural language processing. 

We have chosen to investigate the "situatedness" of natural language understand- 
ing within the design of simple physical devices such as electrical circuits. Design, 
like natural language understanding, is an oft-studied problem in AI, and many 
types of knowledge structures and reasoning methods have been developed for 
automating design, both in our own research and that of many others. More 
importantly, the knowledge of physical devices and their design that we are 
proposing to use in language understanding has been shown to be obtainable from 
prior problem-solving experiences (Goel, 1989, 1991a, b). Thus, the choice of 
physical device design for situating natural language understanding has a real 
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promise of scalability and bootstrapping if the knowledge that can be acquired in the 
problem-solving process can be used to solve classical problems in natural language 
such as ambiguity. 

Taking this approach, we have built a natural language understanding system, 
called KA, for (1) understanding device specifications written in natural language 
(English) in the context of designing new devices and (2) understanding user 
feedback in natural language in the context of device design. KA embodies an 
integrated model-based and case-based approach to design problem solving that we 
have been developing for many years now (Goel, 1989,1992; Goel & Chandraseka- 
ran, 1989, 1992). KA uses the same approach to address well-known problems of 
natural language understanding such as resolving ambiguity, interpreting indirect 
statements and inferring unspecified information. We have conducted several 
investigations to demonstrate that KA's design situation provides viable solutions to 
the problems of ambiguity, indirectness and omission. 

In this article, we describe three investigations in solving natural language 
understanding problems with KA. Our first investigation demonstrates that KA's 
models of physical devices and its reasoning for their design helps resolve 
ambiguities in design specifications as well as infer unarticulated requirements. 
Briefly, our approach was to construct an initial, tentative interpretation of the 
design specification using KA's language processing capabilities, locate a similar 
design in KA's case memory using model-based retrieval, and then use the retrieved 
design to countermand erroneous decisions made in the resolution of ambiguities. 
These retrieved designs were also used to augment the interpretation of require- 
ments with those that were not articulated in the natural language specification. Our 
results in this first investigation indicate that, among other benefits, models of 
physical devices and the ability to reason about the function of devices aid ambiguity 
resolution in two specific ways. First, the ontology of physical devices employed in 
KA grounds the semantic representations of language processing, ensuring that 
decisions about the consistency of interpretations are made in accordance with the 
ontology of device design. Second, by allowing previous problem-solving ex- 
periences to be factored into linguistic decision-making, interpretations that are 
most compatible with past experience are produced. 

The second investigation demonstrates that KA's problem-solving capabilities 
help ascertain the relevance of indirect design specifications, and identify unspecified 
relations between detailed requirements. Our approach to these problems relied 
extensively on KA's memory of design cases, case-specific models of devices, and 
model-based methods for design adaptation. Our results indicate that a memory of 
design cases and device models as well as the ability to adapt these descriptions in 
accordance with a deep understanding of the structure, function and behavior of 
devices provides considerable leverage when dealing with indirect and ill-specified 
English descriptions of design problems. Using device descriptions in memory as 
baseline interpretations and the information extracted from the text as constraints 
on interpretation, model-based adaptation proves to be an effective means of 
producing both an interpretation of the text and a successful design solution. This 
result, along with those of the first investigation, demonstrates that situating natural 
language understanding in design problem solving provides tractable solutions to 
problems in understanding natural language specifications of design problems. 
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understanding  This presentation will include sample texts used in our work   an 
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describe the strengths and limitations of our work and compare ft toth*^f V 
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2. The design situation 

SfnlfnVnW^? We arC $itUating natUral lanSuaSe understanding is the desien of 
simple physical devices such as electrical circuits and computer networks (Pe erson 
Mahesh, God & Eiselt, 1994). Our work evolves from previous woTon  hS 

^^XTJffVTand associated de4e ££Z^X% aevice designs (God, 1989). Such prior experiences in design are stored in KA's 
memory m the form of cases and case-specific models (Goel,^989 1991a 61992) 
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components. These behaviors are articulated in terms of the various substances* 
contained in the components, the states of the substances, and the flow of substances 
between components. 

Given a functional specification of a device to be designed, previous designs of 
functionally similar devices are retrieved from the cases and models in memory. The 
models in the previous cases are adapted to the present problem using model-based 
methods (Goel, 1991a, b). KA's design capabilities extend, however, far beyond 
mere case-based adaptation of prior designs. It can diagnose faulty designs, identify 
the components at error, and redesign the device by applying various design repair 
?ianV,™!   T™ ab0Ut'SUch as comP°nent replacement and component cascading 
(Goel, 1991a, b; Stroulia & Goel, 1992; Stroulia, Shankar, Goel & Penberthy 1992) 
Interestingly, it can also acquire new experiences and store away the new cases and 
models in its memory by learning appropriate indices to the cases and models (Goel, 
1991a, b; Bhatta & Goel, 1992, 1993). 

2.1. THE SBF LANGUAGE 

Since our investigations will be using examples described in the SBF language we 
make a brief digression in this section to describe the salient terms in the language 
Models of physical devices are represented in terms of their structure, behavior and 
function (SBF). These models are based on a component-substance ontology In this 
ontology, the structure of a device is constituted of its components and substances 
Substances have locations in reference to the various components of the device 
lney also have behavioral properties, such as voltage of electricity, and correspond- 
ingparameters, such as 1.5 volts, 3 volts, and so on. This ontology gives rise to the 
bBF language. 

2.1.1. Structure 
The structure of a design is expressed in terms of its constituent components and 
substances and the interactions between them. Figure 1(a) shows the structure of a 
1.5-volt electric circuit (EC1.5) schematically. 

2.1.2. Function 

A function is represented as a schema that specifies the behavioral state the function 
takes as input, and the behavioral state it gives as output. Figure 1(6) shows the 
function "Product Light" of EC1.5. Both the input state and the output state are 
represented as substance Schemas. The input state specifies that electricity at 
location Battery in the topography of the device [Figure 1(a)] has the property 
voltage and the corresponding parameter 1.5 volts. The output state specifies 
the property intensity and the corresponding parameter 6 lumens of a different 
substance, light, at location Bulb. A third aspect of a functional specification is 

t The term substance as used here not only includes material substances such as air and water but also 
abstract substances and forms of energy such as heat, electricity, information, force, and so on (Byla„S 
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(a) 1.5-volt Electric Circuit (EC1.5) 

Input: Subatanca: Electricity 

Location: Battery 

VolUge: 1.5 volta 

OUtpilt: Subttane«: Ught 

Location: Bulb 
intanalty: 6 lumeni 

Stimulus: Subatanca: Forca 

Location: Switch 

By-Behavior:   -Produce ugw 

(b) Function of Circuit EC1.5 

Subatanca: Electricity 

Location: Battery 

Voltage: 1.5 volta 

Ualng-Functton ALLOW of Switch 

Under-Condition-State  

Subatanca: Electricity 

Location: Bulb 

Voltage: 1.5 volta 

Uelng-Functlon CREATE light of Bulb 

Ae-Per-Domain-Prlnclple 2 
Intanalty » Efficiency i Voltage / Realatance 

Subatanca: Light 

Location: Bulb 
Intanalty: 6 lumena 

(c) Behavior "Produce Light" of EC1.5 

FIGURE 1. SBF model of a 1.5-volt electric circuit (EC1.5). 

the stimulus which initiates the behaviours of the device. For example, the force on 
the switch is the stimulus to the electrical circuit in Figure 1. In addition, the slot 
by-behavior acts as an index into the causal behavior that achieves the function of 
producing light. 

2.1.3. Behavior 
The internal causal behaviors of a device are viewed as sequences of state transitions 
between behavioral states. The annotations on the state transitions express the 
causal,  structural,  and functional context in which  the  transformation  of state 
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variables, such as substance location, properties and parameters, occur. Figure 1(c) 
shows the causal behavior that explains how electricity in Battery is transformed into 
light in Bulb. State2 is the preceding state of transition^ and state3 is its succeeding 
state. Statei describes the state of electricity at location Battery and state2 at location 
Bulb. State3 however describes the state of light at location Bulb. The annotation 
USING-FUNCTION in transition2_3 indicates that the transition occurs due to the 
primitive function "create light" of Bulb. 

3. Situating natural language understanding 

We now return to the task of natural language understanding and show how 
situating it in the design situation redefines classical problems such as ambiguity, 
indirectness and incompleteness. We also show how the design situation suggests 
workable solutions to these linguistic problems. Real world tasks such as designing 
physical devices from written requirements specifications provide a context which 
refocuses many of the linguistic problems that have been central to the field, 
allowing us to consider novel solutions to time-worn yet unresolved problems. It also 
allows us to consider problems particular to texts that are currently hampering 
efforts to develop robust text understanding systems. 

In taking this situated approach to language understanding, we have found that 
linguistic problems and the problems of large texts that are inherent to written 
design requirements actually become problems which require reasoning about the 
design of the device. Requirements specifications are notoriously confusing and 
incomplete, providing poor articulations of the design requirements. In the KA 
project, we have encountered the following problems in requirements specifications: 

• Ambiguity. The natural language surface form has multiple mappings into a 
conceptual representation of the device. 

• Incompleteness. The natural language surface form fails to articulate a design 
requirement. 

• Indirectness. The natural language surface form indirectly refers to a design 
requirement. 

• Underspecification. The natural language surface form does not indicate certain 
relationships between design requirements. 

Because research in natural language understanding has so decidedly separated the 
problems of linguistic analysis and sentence understanding from the other problems 
that must be resolved in the meaningful interpretation of texts, the linguistic 
solutions that have been proposed in most text understanding systems have been 
severely limited. For quite some time, the conventional wisdom has been that 
problems in natural language understanding are best addressed by constraint-based 
methods that employ a knowledge of natural language's distributional structure and 
rules of combination (Chomsky, 1957). In KA, we take a different approach, where 
the design situation provides the knowledge and results of applying its reasoning 
methods that are then used to solve the above problems in language understanding. 
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Below, we take each of these problems individually, identifying the conditions under 
which they occur and elaborating on their consequences. 

In general, the mapping of language form to design requirements is ambiguous. 
For example, words as seemingly clear as "input" have multiple mappings into an 
SBF representation of function. The "input" to a device may refer to either an 
external stimulus (e.g. a force on a switch that initiates some causal behavior) or 
some entity that is transformed by the device (e.g. a substance like electricity 
consumed by an electrical device such as a light bulb). Because such ambiguities 
crop up often, requirement specifications written in natural language frequently 
specify several devices, rather than a single, unambiguous device. Leaving these 
ambiguities unresolved or failing to resolve them correctly cause a system to waste 
its resources pursuing a number of fruitless design efforts. 

In general, requirement specifications written in natural language are also 
incomplete. For example, although electrical devices require a source of power, 
design problems can fail to mention how this power is to be derived. The device 
could use batteries, plug into an electrical outlet, or resort to some other electrical 
power source. It is critical that the system infer the appropriate design requirement 
because each of these designs would entail different structures and would be 
operable under differing conditions. 

In general, requirements specifications state the design requirements indirectly. 
They refer to aspects of the device that are only distantly related to its principal 
features. For example, specifications for computing devices often identify principal 
components, specify the inputs and outputs of these components, and delineate their 
connectivity, but fail to define the big picture, viz. the general functions of the 
device. The writers of such requirements specifications can usually point out specific 
statements about the inputs and the outputs of the components, for example, that 
indicate the general functions of the device, but in no way are these requirements 
indicated in the natural language surface form. The system must be able to use the 
indirect statements given to infer the design requirements because, failing to do so, 
it would be unable to pursue a design solution. 

In general, natural language specifications are underspecified. They identify 
detailed device requirements without articulating how these requirements relate to 
one another. For example, although baud rate, size of an information packet and 
frequency of transmission have a well-defined relationship to one another in a 
computer network, requirements specifications for computing devices rarely, if ever, 
mention this relationship. A superficial analysis of the natural language surface form 
would produce three separate requirements (one for the baud rate, one for 
information pack size and one for the frequency of transmission), entailing an 
extremely inefficient problem decomposition. If the system is to pursue designs 
efficiently, it must combine these disparate requirements into a coherent specifica- 
tion of the design. 

In order to map requirement specifications to useful functional descriptions in the 
SBF language, KA must effectively resolve ambiguity, fill in missing details, identify 
the relevance of indirect statements, and combine related information. To do so 
efficiently, KA uses memory, comprehension and problem-solving processes in 
addition to purely language processes. In this way, the design situation in KA 
provides a robust context in which effective comprehension of natural language 
becomes feasible. 
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Lexicon 

design 

problem 

specification 

FIGURE 2. KA system architecture. 

4. The KA architecture 

KA is a case I model-based text interpretation and design problem-solving system 
which accepts a requirements specification written in English and produces a design 
expressed as a structure-behavior-function (SBF) model, which meets the design 
requirements. The functional architecture for KA is illustrated in Figure 2. It 
consists of several knowledge sources containing syntactic, conceptual and episodic 
knowledge, and employs memory, comprehension and problem-solving processes in 
addition to a language process. 

4.1. KNOWLEDGE SOURCES IN KA 

The component processes in KA use different knowledge sources to bring about the 
capabilities of the system. The knowledge sources are, 

• The Lexicon, which contains knowledge of the words in the language. It 
provides such information about words as their grammatical category, other 
linguistic markers such as number and person, and their conceptual meaning. 

• Syntactic knowledge, which is knowledge of the grammar of the natural 
language. This is used by the language process to break up the input sentences 
into grammatical units such as phrases and clauses. 

• Conceptual knowledge, which in KA is the knowledge of substances, com- 
ponents, their properties, states and functions. Conceptual knowledge is 
essentially the content of the domain of physical devices and is expressed in the 
SBF ontology. 
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• Case/Model Memory, which is the episodic memory of past design cases and 
case-specific structure-behavior-function (SBF) device models. Like conceptual 
knowledge this knowledge is represented in the SBF ontology and indexed by 
items m the ontology such as functions and properties of substances and 
components. 

4.2. PROCESS IN KA 

Below, we describe in detail each of the processes in KA that utilize the knowledge 
sources to accomplish the task of KA. 

4.2.1. Language 

If the KA system is to effectively comprehend natural language texts, it must be able 
o resolve the different types of ambiguities (e.g. lexical and structural ambiguities) 

that arise in written texts. The language process in KA uses an early-commitment 

&^9^™^^1™T'T^ l° reS0,Ve W°rd SeHSe ambiSuities 
tüiseit, 1WJ7, 1989). This mechanism has proved itself to be quite effective   Its 
early-commitment strategy provides the system with the ability to pursue a tentative 
interpretation of the discourse. This allows the system to discover the entailments of 
his line of interpretation, bringing other processes on-line early in the course of 

language understanding. In situations where the early decision is incorrect the 
error-recovery mechanisms may use feedback from the comprehension (or problem- 
solving) process to reactivate a previously retained alternative interpretation. The 
output of the language processor serves both as a set of cues for the memory process 
and as a tentative interpretation for the comprehension process 

The language process consists of two components: a parser which produces 
syntactic structures and a semantic network that produces conceptual interpreta- 
tions. Consistent with the early-commitment processing strategy, the semantic 
network resolves word-sense ambiguities by considering processing choices in 
parallel, selecting the alternative that is consistent with the current context, and 
deactivating but retaining the unchosen alternatives for as long as space and time 
resources permit. If some later context proves the initial decision to be incorrect  ' 

£SS IS)"" reaCtiV3ted With°Ut reaCCeSSing thC 1CXiCOn °r rePrOCeSsinS 
4.2.2. Memory 

The memory process retrieves and stores design knowledge from an episodic 
memory that contams both design cases and case-specific device models. Design 
cases specify a design problem encountered by KA in the past and its corresponding 
solution A case-specific SBF model of a known device specifies the causal behaviors 
hat explain how the structure of the device produces the devive functions. In order 

to ensure effective retrieval, the cases are indexed by the functional specification of 
the stored design and the SBF models are indexed by the cases. 

4.2.3. Comprehension 
The comprehension process provides feedback to the language process based on the 
retrieved cases and associated SBF models. It also generates new SBF device models 
by retrieving and adapting previously encountered design cases and their SBF 
models. Based on information provided by the language process, the retrieved 
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design and its model are adapted using generic design repair plans. The comprehen- 
sion process selects these modification plans by using the differences between the 
functions of the new device and the functions of the retrieved design as an index. 

4.2.4. Problem solving 
The problem-solving process performs function-to-structure design tasks. It accepts a 
functional specification of the desired design as input and produces a structural 
specification that realizes the specified function as output. Both the specification of 
function and the specification of structure are articulated in terms of the SBF 
language. 

The problem-solving process begins its task by soliciting the memory process for a 
case that most closely matches the functional specification of the desired design. The 
memory process returns an SBF model which problem solving uses to adapt the 
design's structure so as to meet the gievn functional specification. Model-based 
diagnosis is used to identify the modifications needed to the retrieved design, and 
repair plans are used to perform these modifications to the design's structure. Once 
the structural modifications are completed, this new design is verified by a 
qualitative simulation of its SBF model and produced as a solution to the design 
problem. 

It may be noted from Figure 2 that the language process is neither a front-end to 
the problem-solving or comprehension processes, nor does it perform the entire 
understanding task by itself. What we have in KA is a highly interactive architecture 
in which language, memory, problem-solving and comprehension processes, each 
with its own sources of knowledge and its own capabilities, cooperate with each 
other, feeding back one's results and decisions to others, in order to arrive at an 
iterative solution to the overall problem of designing physical devices given their 
natural language specifications. 

5. Investigation 1 

In our first investigation, we examined whether KA's design situation and ability to 
reason about the design of physical devices could help resolve ambiguities in design 
specifications as well as infer unarticulated requirements. In this investigation, we 
sought to take advantage of the SBF ontology and KA's memory of past design 
cases and associated case-specific SBF models. Our results were very positive. They 
indicated the following benefits: 

• Grounding the language process' conceptual knowledge in the SBF representa- 
tion guarantees that decisions about the consistency of conceptual interpreta- 
tions are made on the basis of their consistency as designs represented in the 
SBF ontology. 

• Providing feedback to the language process in the form of past design cases, 
represented in the SBF language, ensures that the conceptual interpretations 
are compatible with past design experience and allows unarticulated design 
requirements to be inferred from previous design problems. 

In  this section, we discuss how each of these  benefits was  accrued  in  the 
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Consider a flashlight circuit. The function of the circuit is to produce light. 
The input is a small force on the switch. The output is light of eighteen 
lumens intensity and blue color. 

FIGURE 3. Text 1—sample requirements specification. 

implementation of KA. First, we present a sample text that is both ambiguous and 
incomplete along with its desired mapping into the SBF representation. Then, we 
demonstrate how KA performs the mapping from the natural language description 
to the functional specification of the desired design. 

5.1. THE TASK 

Figure 3 shows a sample input specification and Figure 4 shows its corresponding 
mapping, an SBF description of the desired design. 

This simple example illustrates two general problems of natural language 
understanding that KA must solve. First, the requirement specification in Figure 3 is 
ambiguous. It states that the "input" to the device is a "small force on the switch", 
but in this domain, "input" can refer to one of two things, either an external 
stimulus (i.e. a force on a switch that initiates some causal behavior) or some entity 
that is transformed by the device (e.g. a substance, such as electricity, consumed by 
an electrical device). To produce the correct interpretation in Figure 4, KA must 
determine that in this instance "input" referes to an external stimulus by successfully 
resolving this lexical ambiguity. 

Second, the requirement specification in Figure 3 is incomplete. There is no 
mention of how the device is to be powered. The description could be specifying a 
design which uses batteries or one which plugs into an outlet. In order to produce 
the functional specification in Figure 4, KA must infer that the design should use 
batteries. KA must effectively resolve the ambiguity and fill in the missing 
requirement in order to perform the mapping from the requirements specifications 
in Figure 3 to the functional description in Figure 4. 

FUNCTIONAL SPECIFICATION 

STIMULUS: SUBSTANCE: force 
LOCATION: switch 

INPUT: SUBSTANCE: electricity 
LOCATION: battery 

OUTPUT: SUBSTANCE: light 
INTENSITYL: 18 lumens 

COLOR: blue 

FIGURE 4. The output for Text 1—SBF functional specification. 
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5.2. THE PROCESS 

Briefly, KA achieves this mapping by performing the following actions iteratively. 
First, it reads a text word by word and sentence by sentence, building a syntactic and 
conceptual interpretation of the text. Structural and lexical ambiguities encountered 
along the way are resolved by combining information from lexical, syntactic and 
conceptual knowledge. The results of this language process is a representation of the 
meaning of the text in the ontology of the domain captured by the SBF language. 
For the text in Figure 3, for example, the interpretation is a representation of a 
tentative functional specification of the device. 

Second, the functional specification is sent to the memory process and the 
comprehension process. The memory process searches the case memory and 
retrieves a set of cases which at least partially match the tentative functional 
specification. These retrieved cases are sent to the comprehension process. The 
comprehension process uses the differences between the tentative specification of 
the new device and the specification of the retrieved cases (if any) to provide 
feedback to the language process. This feedback is in terms of the differences 
between the two specifications. 

Third, this feedback is sent to the language process. The language process 
combines the feedback with its current tentative interpretation, filling missing 
details. The parts of the current interpretation that are inconsistent with the 
feedback are re-examined and other alternatives are considered. It is in this way that 
the recovery from erroneous decisions in the resolution of ambiguities can be made. 
The language process communicates the results of its decision-making in the form of 
a new functional specification. 

Once this text interpretation is consistent with the design experience, a complete 
interpretation is produced and sent to the problem solver. Below, we discuss these 
steps in further detail. 

5.2.1. Producing a tentative interpretation 
The language process begins by performing a syntactic parse of a sentence in the 
input. Parsing resolves any ambiguities in the word's syntactic categories and the 
sentence's syntactic structure. Once this parse has been completed, the concepts 
denoted by the content wordsi found in the lexicon are sent to the semantic 
network. Choosing the syntactic categories of words, the parser, in effect, selects the 
word meanings that will be considered by conceptual processing. Only those 
concepts that are consistent with the syntactic categories chosen are sent to the 
semantic network. 

After receiving all of the concepts denoted by the content words in the sentence, 
the semantic network begins by activating a semantic node for each concept. Since 
lexically-ambiguous words such as "input" denote multiple concepts, multiple nodes 
are activated by the appearance of words such as "input" in the sentence. 

t Words are partitioned into two classes: Function words and Content words. Function words (e.g. 
Prepositions, Articles, Conjunctions, etc.) are also called closed class words because the addition of new 
words to the class is rare. Content words (e.g. Nouns, Verbs, etc.) are also called open class words 
because the addition of new words occurs frequently. 
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active 

retained 

FIGURE 5. Resolving ambiguity in the semantic network. 

The semantic network identifies relevant conceptual relations between these 
active concepts (nodes) by marker passing, a standard method of inference used in 
semantic networks (Charniak, 1981; Hendler, 1986; Norvig, 1989). Marker passing 
identifies complex conceptual relations (paths) in the semantic network that connect 
active concepts (nodes), producing them as inferences. Marker passing is achieved 
by (1) initializing a marker for each active node, (2) sending copies of the market to 
all of the nodes that maintain semantic links with the active node, and (3) continuing 
semantic link traversal until a maximim path length is reached. Semantic links 
correspond to primitive conceptual relations between concepts (e.g. part-whole 
relations, instance relations, property relations) and are the basic elements from 
which complex conceptual relations are formed. Inferences are produced when 
"marked" sequences of primitive conceptual relations (paths) that connect active 
nodes are identified. For example, in the network in Figure 5, an inference is 
generated for the "marked" sequence (Circuit, instance, Device, part, Function, 
part, Input, subject, Be, object, Force) which connects the active nodes Circuit and 
Force. 

After a set of inferences (paths) has been proposed by marker passing, the 
semantic network begins resolving ambiguities in the interpretation. Ambiguities are 
marked by the words that evoke them. For example, "input" specifies that any 
interpretation may include either the concept input or the concept stimulus but 
cannot include both. In other words, either the node input or the node stimulus can 
appear in the paths that make up the final interpretation, but both cannot. These 
ambiguities are resolved by consistency -checking.^ Consistency-checking is done in 
accordance with the SBF ontology. The semantic network identifies inferences that 
are deemed inconsistent by its SBF representation, resolves the inconsistency in 
favor of the inference that has the most in common with the current interpretation, 
and places the other on the retained list. Retained inferences can be recalled if the 
situation warrants it. 

tSee Wilks (1973) for a discussion of how semantic consistency-checking may be used to resolve 
ambiguity. 
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To illustrate how this works, consider the network in Figure 5. In this network, 
there are two inferences that relate the active concepts Circuit and Force Each 
contains a concept denoted by "input". The path (Circuit, instance, Device, part, 
Function, part, Input, subject, Be, object, Force) contains the concept Input, and the 
path (Circuit, instance, Device, part, Function, part, Stimulus, subject, Be, object 
Force) contains Stimulus. As denned by the SBF ontology and representation, a 
force cannot be both the input and stimulus to the. circuit, so these inferences are 
deemed inconsistent. The semantic network recognizes this by noting that the paths 
relate the same two active nodes. This simple method of inconsistency recognition is 
made possible by the fact that the network is specified in such a way that it conforms 
to the SBF ontology. The network resolves this ambiguity in favor of the input 
inference because a number of inferences proposed by the network involve the 
concept of input but only a few include stimulus. The language process has a set of 
such heuristics for resolving semantic ambiguities by selecting between paths in the 
semantic network (Eiselt, 1989). Finally, input is kept in the current interpretation, 
and the inference containing stimulus is retained as noted by Figure 5. 

Once consistency-checking has been completed and the ambiguities resolved, the 
inferences articulate a tentative functional specification which is consistent, where 
consistency is defined by the principles of the SBF representation and ontology. 

5.2.2. Model-based retrieval and comprehension 
The tentative functional specification produced by the language process is sent to 
both the memory and comprehension process. The memory process searches the 
case/model memory for a case that most closely matches the given specfication. 
Given the tentative specification discussed in this example, the memory process finds 
acase that describes a device producing light with color blue and intensity 8 lumens. 
This is a partial match of the desired device since the specifications differ only in the 
intensity of light produced. This case is sent to the comprehension process. 

The comprehension process compares the tentative specification and the retrieved 
specification and notes the difference in light intensity. In an attempt to explain what 
about the behavior of the device causes this difference in intensity, the comprehen- 
sion process performs a diagnosis on the retrieved case to determine the factors 
which contribute to the intensity of the output. In doing this diagnosis, the 
comprehension process uses the causal model of the device, that is, the behaviors 
that are included in the SBF description of this device. 

During the diagnosis, the comprehension process notes the inconsistency between 
the input described in the retrieved case, "Electricity", and the input described in 
the functional specification produced by the language process, "force on a switch". 
It suggests to the language process that it is more likely that the "input is 
electricity". It also feeds back the suggested functional requirement that "electricity 
is provided by a battery". 

5.2.3. Recovery from error 
The language process accepts feedback from the comprehension process and 
attempts to incorporate it into its interpretation. For example, in the case of the 
suggestion that the "input is electricity", it activates the concept electricity and the 
path of conceptual relations that connect electricity to input. This is illustrated in 
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FIGURE 6. Recovering from error in the semantic network. 

Figure 6. Once the feedback has been activated, the semantic network checks the 
consistency of the new interpretation and resolves any conflicting inferences. 

Consider how this works given the network in Figure 6. The semantic network 
identifies an inconsistency between the "input is force" inference denoted by the 
path that travels from Circuit through Input to Force and the "input is electricity" 
inference denoted by the path from Circuit through Input to Electricity. Under the 
SBF representation, devices may have only one input. Both this inconsistency and 
the inconsistency between the retained inference "stimulus is force" and the "input 
is force" inference serve to make the "input is force" inference unlikely. To recover 
from this erroneous inference, the semantic network places the "input is force" 
inference on the retained list, recalls the "stimulus is force" inference, and keeps the 
"input is electricity" active, successfully resolving the lexically ambiguous word 
"input". In a similar way, the inference "electricity is provided by a battery" is also 
incorporated into the current interpretation. 

Finally, the language process sends the new functional specification to the 
comprehension process, which completes its diagnosis and produces a design that 
satisfies the new functional description of the device. 

6. Investigation 2 

In the second investigation, we examined whether KA's design situation and 
problem-solving methods could help infer the relevance of indirect statements as 
well as identify relationships between design details underspecified in the natural 
language surface form. In this investigation, we sought to take advantage of (1) 
KA's memory of case-specific SBF models, (2)  KA's  model-based  adaptation 
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The system shall consist of two computer elements interfaced to each 
other over an XXXX link. Computer A shall send a K byte request packet 
to Computer B every M seconds. In response to the request packet 
Computer B shall send a L byte response packet back to Computer A. 
Packet encoding is N bit ASCII. •   

FIGURE 7. Text 2—sample requirements specification. 

capability, and (3) KA's model-based diagnosis capability in extracting both a 
functional and a structural specification from a requirements specification. Our 
results indicate the following benefits: 

• Using case-specific SBF models as the starting point for the interpretation of a 
requirements specfication enables the language process to identify the relevance 
of statements that, on the surface, appear to be irrelevant to the design 
requirements. 

• Model-based adaptation prevents missing "the big picture" by fashioning a 
functional specification from a disparate set of requirements that do not directly 
make statements about the function of the device to be designed. 

• Using KA's SBF models and diagnosis capability ensures that critical relation- 
ships between design details that are left unarticulated in the written require- 
ments are identified and that these relations impact the structural specification 
extracted from the text. 

6.1. THE TASK 

In the current investigation, we focused on extracting the critical features from 
ill-specified texts such as that in Figure 7.+ Its corresponding SBF description 
appears in Figure 8. 

FUNCTIONAL SPECIFICATION 

INPUT: SUBSTANCE: request-message 
SIZE: K byte 

OUTPUT: SUBSTANCE: response-message 
SIZE: L byte 

STRUCTURE 
COMPONENT: computer A 

COMPONENT: computer B 

COMPONENT: link 
BAUD-RATE: Z 

FIGURE 8. The output for Text 2—SBF functional specification. 

I Specific desien details have been masked to protect proprietary information of our sponsor. Northern 
Telecom, who supplied this example as a test case. 
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To successfully understand the passage in Figure 7 as a design specification, one 
must be able to determine the function of the device being described, its inputs, and 
its outputs. However, none of these characteristics are explicitly described in the 
text. The text describes the device (referred to as "the system") in terms of its 
components (e.g. "computer A", "computer B"), their connectivity (i.e. "Computer 
A shall send... to Computer B") and types of information they transmit (e.g. 
"request packet"). Nothing is stated about- the function of "the system". Its inputs 
and outputs are not even referred to. To achieve the mapping from the English 
description in Figure 7 to the functional specification in Figure 8, KA must be able 
to generate functional requirements from alternate information sources, using the 
information provided in the text (e.g. K byte request packet, L byte response 
packet) as constraints on the generation. 

Before KA can use this information to constrain generation, however, it must 
determine its relevance to the function of the device. In the text, it is unclear what a 
"request packet" and a "response packet" have to do with the function of the 
device. On the face of it, they appear to have no relevance to the device's inputs and 
outputs, being simply relegated to its internal workings. An understanding of 
"requests" and "responses" reveals, however, that these information packets are the 
inputs and outputs of the device, as indicated in Figure 8. If KA is to make use of 
such indirect statements about functional requirements, it must use its specific, 
episodic knowledge about computing networks to infer that a request message 
passed from one computer to another is the input to the system, and the message 
sent in response is the output. 

Although the text devotes significant attention to design details such as the 
frequency of transmission "every M seconds", the size of the request packet "K 
byte", and the size of the response packet "L byte", it leaves the relationship 
between these details unspecified. Identifying the relationships between these design 
details is critical to producing a successful design. Using the frequency of 
transmission in combination with the size of the information packets, KA can infer 
the appropriate baud rate for the link between the system's two computers. Without 
this baud rate specification, KA may select a link that is too slow, producing an 
unusable design, or it may select a link that is much faster than needed, producing 
an expensive and possibly unbuildable design. If a competent interpretation of this 
text and a successful design solution are to be produced, these design details must be 
combined into a coherent specification of the "XXXX" link's baud rate. 

6.2. THE PROCESS 

To produce the specification in Figure 8 from the text in Figure 7, KA must generate 
a functional specification that is constrained by the information provided in the text. 
To make use of this information, KA must infer the relevance of indirect statements, 
and combine detailed design requirements into coherent specifications. 

Briefly, KA performs the mapping from the text in Figure 7 to the functional 
specification in Figure 8 in the following manner. First, using its memory of past 
design cases and case-specific SBF models, KA employs a complete SBF model as a 
baseline from which the relevance of indirect statements about the function of the 
device can be inferred. The memory process extracts a relevant model from its 
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case/model memory using the bits and pieces of a tentative interpretation produced 
by the language process and sends it to the comprehension process. This model is 
fed back to the language process. Using this model, as baseline, the language process 
employs its inference generation capability (i.e. marker passing) to identify the 
relations between the feedback and the concepts specified by the text. Once the 
language process has finished its inference generation, it produces a tentative 
functional specification of the design which is sent to the comprehension process. 

Second, KA performs model-based adaptation on the SBF model, generating a 
new case-specific SBF model that is consistent with the information provided in the 
tentative functional specification. The comprehension process identifies distinctions 
between the tentative functional specification and the SBF model. Then, it uses 
these distinctions to modify the SBF model. During adaptation, the comprehension 
process modifies only those aspects of the stored model that conflict with the 
tentative specification. This leaves a significant number of design details unaffected. 
In effect, design details are transferred from the stored SBF model to the new device , 
model. 

Third, during adaptation, KA identifies those distinctions that require changes to 
the new device's structure and adapts the tentative design specification accordingly. 
The comprehension process notes differences between the stored device model and 
the tentative functional specification, such as a difference in output and input that 
may require changes in the structure of the new device. To accommodate these 
changes, it selects generic modification plans that modify the device structure. 
Model-based diagnosis is performed on the stored device model, and the necessary 
modifications to the device structure are determined. Using the products of 
model-based diagnosis and the selected generic modification plans, the comprehen- 
sion process adapts the tentative design specification such that it includes a structural 
description that is consistent with the functional specification. 

Once this process of adaptation is completed, the new design is sent to the 
problem-solving process for verification and possibly further design. Then this new 
case is stored in KA's memory of case-specific models for later reuse. Below, we 
discuss each of these steps in detail. 

6.2.7. Inferring the relevance of indirect statements 
The memory process begins by sending a relevant SBF model to the comprehension 
process which feeds it back to the semantic network in the language process. The 
semantic network activates the model's corresponding concepts and conceptual 
relations. For example, in the subsection of the semantic network displayed in 
Figure 9, the concepts Old-Device, Y Byte, Response message and Response and 
the primitive conceptual relations that relate these concepts (e.g. parameter, 
instance, part) are activated by feedback from the Comprehension process. 

Much like the previous example, the input is then parsed and the content words of 
each sentence are passed to the semantic network, which initiates marker passing at 
each word's corresponding concept. Using the feedback as a bridge, the semantic 
network identifies conceptual relations between the concepts activated by the text 
and constructs a new set of inferences. The new inferences relate concepts specified 
in the text to the functional specification of the new device. Finally, a tentative 
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FIGURE 9. Identifying the relevance of response and L Bvre. 

functional specification of the new device is produced from these new inferences and 
sent to the comprehension process. 

To see how the feedback acts as a bridge between the concepts activated by the 
text, consider the subsection of the semantic network displayed in Figure 9. In this 
semantic network, the concept L Byte is activated by the appearance of "L Byte" in 
the input text in Figure 7, Response is activated by the appearance of ■•response" 
and New-Device is activated by the appearance of "system". Using only these active 
concepts, the semantic network would be unable to identify critical conceptual 
relations such as those between L byte and the Output of the New Device because 
the active concepts L byte and New Device are only distantly related to each other. 
Basing its decision on the length of the path between the two concepts, the semantic 
network would deem it unlikely that the text intends to relate these concepts 
without further evidence. 

However, when the semantic network begins with feedback-activated concepts 
such as Response message, conceptual relations such as those between L byte and 
New Device, as well as those between Response and New Device, can be identified 
The concepts activated by the text are more closely related to the concepts activated 
by feedback than they are to each other, so the semantic network can identify 
conceptual relations between the text-activated concepts and feedback-activated 
concepts (as indicated by the active paths in Figure 9). This produces inferences that 
serve to relate the text-activated concepts, inferences that identify the relevance of 
concepts such as Response and L byte to the function of the New device. 

6.2.2. Generating a new functional specification 
Given a tentative and underspecified functional specification produced by the 
language process, the comprehension process compares the SBF model and this 
underspecified functional specification to determine the distinctions between the two 
device descriptions. It notes distinctions that are extremely significant, such as the 
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distinction between the sizes of the response package (L bytes vs. J bvtes), and those 
that are less significant, such as the difference in the names of the components (A vs. 

Once all of these distinctions have been collected, the comprehension process 
begins adapting the stored SBF model. It modifies the component names such that 
they are consistent with the new functional specification, changes the sizes of the 
response package and request package, etc. In doing so, -it transfers a large amount 
of the SBF model of the known device to the SBF model of the new device. For 
example, it transfers the types of the components in the old device to components of 
the new device. The result is that all of the design details are filled in. and a 
significant number of assumptions are made. The comprehension process assumes 
that the new device has the same behavioral descriptions as the stored device and 
the same structural description. 

6.2.3. Identifying relationships between design details 
During the adaptation of the stored SBF model, the assumption that the structural 
specifications of the new and stored designs are equivalent is examined. The 
comprehension process considers each of the differences it has identified between 
the new specification and the stored specification, looking for those differences that 
may require modifications to the device structure. Differences that are particularly 
relevant are differences in device inputs and outputs. For example, in this example, 
the distinction between the size of the new design's output and the stored design's 
output (i.e. L bytes vs. J bytes) imposes new constraints on the structure of the new 
design. The comprehension process collects these differences and orders them with 
respect to their priority. 

Examining them in order of their priority, the comprehension process retrieves 
generic modification plans that rectify the differences between the new design 
specification and the stored design specification by adapting the stored SBF model. 
Generic modification plans are selected by the type of differences thev reduce. In 
achieving their ends, generic modification plans manipulate, delete and augment 
device structure. They include component replacement, substance substitution, 
parametric modification, component deletion and component insertion and 
cascading. 

After the comprehension process has received the generic modification plans from 
the memory process, it begins to diagnose the new model's failure, in this particular 
example, its failure to produce the desired output. It is during diagnosis that the 
comprehension process recognizes the relationship between the design details every 
M seconds and L byte response packet. The comprehension process correctly 
assumes that since the new design specification identifies an output which differs 
from the stored specification, the new design's current structural specification will 
fail to produce its specified output. The design produces the output of the stored 
design because the comprehension process has assumed that they have equivalent 
structural specifications. While investigating the causes of the new design's failure, 
the comprehension process identifies the relationship between the frequency of 
transmission (i.e. every M seconds), the size of the response packet (i.e. L bvtes) 
and the baud rate of the link component. Using the qualitative relations specified in 
the stored SBF model, it notes that the baud rate of the link component limits the 
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amount of information that can be transferred at a particular frequency. It concludes 
that the baud rate of the current link component is too low and that increasing the 
baud rate of this component would provide for the size of the response packet in the 
new design and the desired frequency of transmission. 

Given the diagnosis and the generic modification plans, the comprehension 
process "repairs" the structural specification of the new design, using component 
replacement. It replaces the link component in the stored SBF model with a link 
component that has a higher baud rate. This modification appears in the specifica- 
tion of structure in Figure 8. 

7. Investigation 3 

Natural language texts are used to achieve a variety of communication goals at 
different stages in the design process. For example, at later stages in the design, 
customers use English texts to communicate feedback to designers. Understanding 
these texts is essential for redesigning a product to meet customer needs. In keeping 
with our goal of "situating" natural language within design, our third and most 
recent investigation examined whether KA could interpret design feedback as well 
as design requirements. 

We chose a problem in the design of a reaction wheel assembly for the Hubble 
space telescope and examined KA's abaility to understand user feedback. We 
demonstrated that KA was in fact able to understand such user feedback and use the 
information it could extract from the feedback to redesign the reaction wheel 
assembly. This cost effective redesign was made possible by: 

1. KA's repertoire of plans for incremental redesign to correct the manfunction; 
and 

2. KA's ability to precisely identify the part of the design that is to blame for the 
malfunction. 

This investigation demonstrated that KA's theory of situated natural language 
understanding that was effective in understanding initial design requirements also 
serves to accomplish interaction with the customer and iterative redesign to meet 
customer requirements. This successful demonstration shows the extensibility of 
KA's theory of situated understanding. 

7.1. THE TASK 

In this investigation, we focused on interpreting and acting upon user feedback. The 
task is to redesign a malfunctioning component given feedback written in English 
text. This overall task decomposes into language interpretation and redesign. Given 
a description of an undesired output of the device and a model of the device's 
structure, function and behavior, the redesign task is to modify the structure of the 
device so that it does not produce the undesired output. So as to successfully 
interpret a passage as a redesign problem, the system must be able to identify the 
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FIGURE 10. The reaction wheel assembly. 

relevant device and produce a description of the undesired output. A description of 
the undesired output includes identifying the device component that produces this 
output and a description of the output in terms of the relevant substance properties. 

Let us consider the specific problem we examined in this third investigation: 
redesigning the Reaction Wheel Assembly (RWA) aboard the Hubble Space 
Telescope (Keller, Manago, Nayak & Rua, 1988). The Hubble Space Telescope 
contains four RWAs; a small portion of one is shown in Figure 10. The desired 
function of the RWA is to make the telescope point at a chosen area of the universe. 
The structure of the RWA consists of a rapidly spinning rotor mounted on a shaft. 
The functioning of the RWA is based on the law of conservation of angular 
momentum. The direction of the telescope is changed via a signal from Earth sent to 
the motor which changes the amount of power supplied to the motor. This causes a 
change in the motor's angular momentum which in turn affects the angular 
momentum and angular velocity of the shaft. Due to the conservation of angular 
momentum, the angular momentum of the telescope as a whole changes in the 
opposite direction. When the telescope nears its desired orientation, a change in the 
angular momentum of the telescope in the opposite direction reduces the telescope's 
angular velocity to zero. The vector sums of the angular momentum imparted by the 
four RWAs enable a rotation of the telescope about any axis. 

A common problem in the operation of devices like the RWA arises due to 
friction in the bearing assemblies. The load on the bearings due to the rapid spin of 
the rotor causes deformation of the bearing balls which results in increased frictional 
forces in the bearing assembly. This causes generation of heat in the bearing 
assembly. The increased temperature in the bearing assembly is an extremely 
undesirable behavior. 

In our third investigation, we examined this redesign problem, taking the text in 
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The ball bearings in the RWA generate an excessive amount of heat. 

FIGURE 11. Text 3—sample requirements specification. 

Figure 11 as the typical type of feedback that a user would provide. To produce the 
appropriate redesign specification given the sentence in Figure 11, KA must identify 
that: 

1. The relevant device is the RWA. 
2. The components producing the undesired output are the ball bearings. 
3. The undesired output is heat, whose magnitude is too high. 

7.2. THE PROCESS 

KA performs the mapping from the user feedback in Figure 11 to the specification 
of the undesired behavior. It reads the sentence word by word and builds a syntactic 
and conceptual interpretation of the sentence. The result of this language process is 
a representation of the meaning of the text in terms of the SBF language. 

Next, diagnosis determines the component parameter that is responsible for the 
undesired behavior and the parameter modification desired. In the RWA example, 
the diagnosis accepts as input a specification of excessive heat at the bearing 
assembly and returns as output the component parameter, the size of the ball 
bearings, and the parameter modification desired, an increase in the size of the ball 
bearings. 

Third, the repair task replaces the component with a component that has the 
desired parameter value. In the RWA example, this task replaces the old ball 
bearings, thereby redesigning the RWA to eliminate the problem of excessive heat 
in the bearings, which was noted by the user in the feedback. 

8. Discussion 

The current implementation of KA is able to extract both functional and structural 
specifications from design requirements or from user feedback written in English. To 
do so effectively, it overcomes many of the difficult problems that face any natural 
language understanding system. It can resolve semantic and syntactic ambiguities, 
correctly infer unarticulated statements, identify the relevance of indirect state- 
ments, determine the unspecified topic/theme of a passage from its constituent 
statements, and combine disparate statements into coherent interpretations. 

We have tested the KA system with examples of design specifications and user 
feedback in several different domains, including electrical circuits, computer 
networks and mechanical dynamic systems. Many of the texts used in these tests, 
such as the one in Investigation 2, came from real-life examples from the industrv. 
We have investigated similar domains in our ongoing work on design (Goel, 
1991a. b\ Bhatta & Goel, 1992, 1993), where we have demonstrated that our design 
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system can acquire knowledge about new devices in the form of cases and models as 
a result of design problem solving. Since KA has been shown to provide solutions to 
problems (such as ambiguity) in understanding design specifications of new (yet 
related) devices by using such previously acquired design knowledge, its methods for 
language understanding in the design situation show a strong promise of bootstrap- 
ping and scalability. 

Apart from providing a new approach to attacking the natural language 
understanding problem, the task that KA addresses is also a problem of high 
practical relevance. There is a great need to build automated systems that can take 
design specifications for both physical hardware and software "devices" and 
represent them in formal ontologies that are comprehensible to the designers no 
matter whether they are human design teams or automated design systems or 
computerized design aids. KA is a demonstration that it is possible to build such 
systems. In addition, KA's ability to infer unarticulated requirements from its cases 
and models makes it a useful model of making sure that the "common" design 
knowledge that is supposed to be shared between customers and designers in each 
domain is included in the design process, thereby reducing customer dissatisfaction 
and the need for expensive redesign at later stages. 

8.1. A CRITIQUE OF KA 

However, our work also raises certain issues, the addressing of which is part of 
ongoing work in the KA project. These issues are representative of the open 
problems that exist in the field of natural language understanding and, more 
generally, artificial intelligence. They involve limitations in both the input that KA 
can accept and the outputs that it can produce. The system's representations also 
have some limitations. In addition, restrictions on interaction limit the extent to 
which system components can avail themselves of the system's resources. In the 
hope of clearly eluciding the capabilities of our work, as well as its limitations, in this 
section we discuss each of these problems and their impact. We close with a short 
summary of recent work within our research group that has sought to remedy these 
problems and outline our research plans for addressing them in the future. 

8.1.1. Input 
While KA is able to master many of natural language's lexical and structural 
ambiguities and ascertain aspects of meaning that are left unarticulated in texts, 
certain classes of natural language discourse remain beyond its reach. KA's method 
of resolving ambiguity relies on a text that is internally consistent. Single 
interpretations are produced when their alternatives are found to be inconsistent 
with a combination of linguistic evidence and the evidence provided by KA's 
memory of case-specific models. It is certainly possible, however, for the text to be 
internally inconsistent. Design specifications may describe a conflicting set of 
requirements that prevent a consistent interpretation. In this case, KA should 
communicate these inconsistencies to the user, and possibly pursue an interpretation 
that reflects a consistent subset of the text's content. Such a capability is beyond the 
current scope of our work. 
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8.1.2. Output 
Although KA is able to produce both functional and structural design specifications 
given design specifications written in natural language, there are some types of 
design information that it is unable to deal with. Examples include design 
requirements, which are typically part of design specifications that customers 
provide. 

8.1.3. Representation 
The semantic network representation used in the language process gives it the ability 
to precisely articulate the SBF representation and ontology in such a way that 
inconsistencies in the interpretations can be easily recognized. However, this 
precision has its associated cost. The representation affords little generativity. All of 
the concepts and the relations that hold between them must be explicitly articulated. 
We would like KA to be able to extract automatically some of this knowledge in the 
semantic network from the cases and models it acquires through its design 
problem-solving experiences. 

8.1.4. Interaction 
The KA architecture ensures that productive interaction occurs between the system 
components. The memory process lends its ability to select the appropriate 
case-specific device models to the language, comprehension and problem-solving 
processes; the language process provides cues that assist the comprehension process; 
both the comprehension and problem-solving processes share many of the same 
methods. However, the architecture does still maintain a few well-demarcated 
boundaries that decrease the effectiveness of the system. For example, communca- 
tion between syntactic parsing and semantic inference is overly restricted. We would 
like semantic inferences to have a greater effect on syntactic decision-making, and to 
increase the influence that syntactic decision making has on semantic inferences. 

8.2. RECENT WORK 

In recent work in natural language processing, we have sought to rectify some of the 
problems above. Members of our research group have developed a model of 
sentence understanding that uses semantic inferences to avoid and recover from 
errors in syntactic parsing (Eiselt, Mahesh & Holbrook, 1993; Mahesh, 1994; 
Mahesh & Eiselt, 1994). Others have developed a model of sentence understanding 
that uses syntactic evidence to infer semantic interpretations (Peterson & Billman, 
1994). 

9. Related work 

Our work is related to five different bodies of research in natural language 
understanding: situated natural understanding, integrated representations for natural 
language understanding and problem solving, Conceptual Information Processing, 
the understanding of natural language descriptions of physical devices, and the 
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modularity of "Mind". Below, we describe the relationships between these bodies of 
work and our own. 

9.1. SITUATED NATURAL LANGUAGE UNDERSTANDING 

Our research was inspired in part by Winograd's SHRDLU system (Winograd, 
1973), which was one of the first successful systems to situate language understand- 
ing in problem solving. SHRDLU formed plans for actions in a simulated blocks 
world based on its interpretation of external commands expressed in English. It 
explored certain interactions between language understanding and planning, and 
demonstrated the methodological usefulness of exploiting the constraints imposed 
by planning on language understanding, and vice versa. Of course, SHRDLU also 
suffered from a number of well-known problems. For example, it assumed a closed 
world, it represented knowledge procedurally, it lacked the capability of abstract 
reasoning, and it also lacked sufficient control over processing. 

Since the construction of the SHRDLU system in the late 1960s, research in 
Artificial Intelligence has led to a large collection of new results in the areas of 
representation of knowledge and control of reasoning. For example, languages for 
descriptively and explicitly representing models of a physical situation, and methods 
for revising stored models to meet the specifications of new situations, are of 
relatively recent origin. We believe that the necessary technologies are now ripe for 
once again investigating situated language processing in the context of problem 
solving. Specifically, our research seeks to explore and exploit the use of the design 
situation for natural language understanding. 

9.2. INTEGRATED REPRESENTATIONS FOR NATURAL LANGUAGE UNDERSTANDING 
AND PROBLEM SOLVING 

Several attempts have been made to integrate natural language and problem solving 
using a common representation for both language comprehension and reasoning 
(Rieger, 1976; Simon & Hayes, 1979; Charniak, 1981; Wilensky, 1983; Beck & 
Fishwick, 1989). Our work continues in this direction by applying functional models 
and reasoning to the understanding process. The same ontology is used for 
understanding natural language and reasoning about devices. It is noteworthy, 
however, that in the past, common representations for language understanding and 
problem solving have generally implied a unified process for the two tasks. That is, 
the same process over the same representations is used for both language- 
understanding and problem-solving tasks. Our work differs in that, while we use a 
common ontology, the processes for language understanding and problem solving 
are not identical nor even equivalent. While the language-understanding and 
problem-solving tasks in KA support each other and share some subtasks and 
subprocesses (e.g. memory retrieval), they are distinct in the subtasks they set up 
and the processes they use. 

The goals of Grishman's PROTEUS system (Ksiezyk & Grishman, 1989), which 
comprehends failure reports, are not unlike our own goals. PROTEUS, however, 
did not implement diagnosis and repair. More importantly, language understanding 
in PROTEUS is driven merely by the templates they wish to fill. We are developing 
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a more general theory of language and applying it to extract the information we 
need for the design process. 

9.3. CONCEPTUAL INFORMATION PROCESSING 

Many language understanding theories have used high-level knowledge structures to 
guide the understanding process. Schänk and Abelson (1977), for example, 
described the use of stored scripts. The script theory represented knowledge about 
stories as well as story interpretations in terms of temporally-ordered sets of events. 
It was employed in a story understanding system called SAM (for Script-Applier 
Mechanism; Cullingford, 1978). SAM identified the temporal relation between two 
events by assuming that the linear sequence of sentences in a story corresponded to 
the temporal ordering of events. SAM's ability to apply scripts and produce 
interpretations depended critically upon this seemingly simple assumption. In KA, 
we make no such assumption about temporal correspondences between the 
discourse and the knowledge structures. 

In her work, Lehnen proposed an object representations called "Object Primi- 
tives" which assist in making inferences about objects described in natural language 
texts (Lehnert, 1978). Although there is merit in this object-centered representation, 
in our work we have found causal relations between substances and components as 
well as the casual behaviors of devices to be much more effective aids in resolving 
problems in natural language understanding. 

Other work in conceptual information processing has proposed theories of 
language understanding with an even stronger reliance on specific knowledge 
structures (Wilensky, 1978; Lebowitz, 1980; Dejong, 1983; Ram, 1989). While these 
systems have demonstrated deep understanding abilities in small domains, they have 
not shown how each of the many types of knowledge structures they need for 
language understanding (Lehnert, 1978; Martin, 1990) can be acquired without being 
hand-coded. As a result, this class of systems for language understanding shows little 
promise for bootstrapping or scalability. 

9.4. UNDERSTANDING NATURAL LANGUAGE DESCRIPTIONS OF PHYSICAL SYSTEMS 

While we believe that our approach to language understanding in the design 
situation is quite novel, it is not the first time that researchers have tied text 
understanding to models of physical systems. Lebowitz's RESEARCHER (Lebo- 
witz, 1983), for example, read natural language texts in the form of patent abstracts, 
specifically disk drive patents, and updated its long-term memory with generaliza- 
tions made from these texts. What RESEARCHER stored in its memory was a 
generalized representation of a disk drive, consisting of a topographic model of the 
disk drive which specified its components and the topographic relationships among 
them. RESEARCHER'S knowledge representation scheme was oriented toward 
objects and their topographic relationships, which was a departure from most 
natural language understanding systems of that time, which had typically focused on 
actors, events and causal relationships. RESEARCHER then used this knowledge 
to aid in the top-down understanding of additional patent texts. However, 
RESEARCHER'S emphasis on components and topographic relationships left it 
unable to build causal  models of the  mechanisms described.  In other words. 
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RESEARCHER effectively knew how a disk drive was constructed, but it did not 
know how it worked. 

Dyer, Hodges and Flowers (1987) and Hodges (1993) describe EDCA, a 
conceptual analyser which serves as a natural language front-end for EDISON, a 
naive design problem solver. ECDA uses knowledge of the function of physical 
devices to produce an episodic description of a device's behavior as described by an 
input text. This episodic description can then be used to generate a new device 
model to be integrated into long-term memory. The result is a much more 
comprehensive understanding of the device's functionality than was possible with 
RESEARCHER, but EDCA's analysis of the device description is not fully 
integrated with the process for generating new device models and incorporating 
them into memory. EDCA, in other words, is but a front-end to EDISON. 

As Selfridge (1989) notes, separating the process of analysing the input from 
generating and incorporating the new model is misguided—the process of under- 
standing a device description is the process of building and incorporating a causal 
model of that device. This is the approach that we have followed in our work, and 
this approach led us to the KA system which, we believe, corrects the shortcomings 
of both RESEARCHER and EDCA. 

9.5. MODULARITY OF MIND 

As well as providing a viable model for solving problems in natural language 
understanding, our work also addresses a contentious issue in cognitive science, viz. 
the modularity of "mind". Although it seems clear that language understanding 
requires cognitive abilities far beyond those that pure linguistic knowledge permits, 
it is unclear in what manner, if any, linguistic and non-linguistic processes interact. 
Advocates for the modularity of "mind" have argued for a very limited form of 
interaction (Fodor, 1983; Jackendoff, 1987). Others have contended that the 
interaction is so open-ended as to make any boundaries between linguistic 
processing and the other cognitive processes insignificant (Marslen-Wilson & Tyler, 
1989). We propose a modular processing architecture that contains separate 
language-understanding and problem-solving components. These components inter- 
act in at least two significant ways. They share common knowledge, and they 
communicate the results of their reasoning to each other. 

What lessons regarding the modularity of •'mind", even tentative ones, can be 
drawn from our work on KA? KA certaintly is modular, but the nature of the 
modularity depends on the level at which it is analysed. Modularity in KA can be 
viewed at the levels of task, process and knowledge, and representation. At the task 
level, "language processing" and "problem solving" are distinct modules, charac- 
terized by the types of information they take as input and give as output. At the next 
level, some of the processes are task-specific but others are shared. Language 
processing and problem solving, for example, are both informed by the same 
memory processes which retrieve episodic and conceptual information. Similarly, 
some of the knowledge is task-specific and some of it is shared. Only the language 
processes use lexical and syntactic knowledge, and only the problem-solvin° 
processes use knowledge of the repair plans used for redesigning devices. On the 
other hand, both the language and problem-solving processes emplov functional 
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and causal knowledge of devices. Finally, at the level of representation, the language 
and problem-solving processes share the same SBF ontology for representing 
conceptual knowledge. Thus, from the viewpoint of KA, the issue of modularity is 
much more complex than either the.orthodox "modularists", such as Fodor and 
Jackendoff, or the "non-modularists", such as Marien-Wilson and Tyler, suggest. 

10. Conclusions 

At one level of abstraction, our work on KA leads to the following conclusions 
regarding the use of the design situation for natural language understanding: 

• Ontologies and knowledge structures available in the design situation (and in 
intelligent design systems) can be used to resolve ambiguities in natural 
language inputs to the design system. 

• Unarticulated design requirements can be inferred from past design problems 
described in case-specific SBF models. 

• The relevance of indirect statements to design requirements can be inferred by 
using case-specific SBF models as the starting point for the interpretation of a 
requirements specification. 

• A coherent functional specification can be produced from a disparate set of 
written structural requirements by applying model-based adaptation to case- 
specific SBF models. 

• The above solutions can all be implemented in an integrated yet modular 
architecture in which different "modules" interact with each other by com- 
municating their results and decisions with each other. Natural language 
understanding requires such an iterative cooperation between language-specific 
and non-linguistic reasoning processes. 

• All of the knowledge structures needed for the above solutions (apart from the 
basic ontology of devices and the lexical entries and meanings of new words) 
can be acquired from previous design problem solving experiences of the 
system. 

Our work on KA provides solutions to the classical problems of language 
understanding. Building useful systems with an ability to understand "real" natural 
language input has been an elusive goal for many years now. Well-known problems, 
such as ambiguity, indirectness and incompleteness of natural language inputs, have 
thwarted efforts to build natural language front-ends to intelligent systems. KA 
solves these problems by exploiting the knowledge and problem-solving processes in 
the situation of designing simple physical devices. In addition, since the types of 
knowledge structures used by KA can in fact be acquired by the results of the very 
problem-solving processes that the system performs, we have shown that KA can be 
bootstrapped to understand design specifications and user feedback about new 
devices using the knowledge structures it acquired for similar devices it designed 
previously. We strongly believe that such an approach to situated natural language 
understanding, where a problem-solving situation, such as device design, provides 
the knowledge that is needed for language understanding, is the right way to pursue 
research in building scalable intelligent systems with useful abilities to interact in a 
natural language. 
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Abstract 
In this paper we present a vision of computer- 
supported collaborative learning through solving 
generative problems - problems that promote open- 
ended inquiry and have multiple solutions. This vision 
stems from a novel and evolving approach to 
collaborative learning that we are developing at the 
EduTech Institute. This approach is based on the 
following premises: that learning is facilitated by 
generative problem solving, collaborative work and use 
of multiple cases; that learning and skill acquisition 
need to be, and can be, scaffolded through software; 
and that a computer environment which integrates a 
shared and structured electronic workspace with a full 
variety of functionalities can effectively support all of 
the above. We describe this approach and the 
architecture of the corresponding computer 
environment. This environment is designed to serve 
three critical functions: provide a shared workspace for 
students, facilitate inter- and intra-group collaborative 
work, and make available the tools and resources that 
students need for problem solving and learning. The 
software components of the environment that have 
already been implemented are described. In the final 
section we frame ongoing and planned research and 
development efforts in terms of the characteristics 
desired of such an environment and ways of assessing 
its impact. 

Keywords — case-based methods of instruction, 
educational groupware, instructional strategies and 
approaches. 

1. Introduction 
Too often, classroom instruction provides students with 
many bits of knowledge that they are never able to 
assemble and apply in productive ways, particularly 
outside the classroom walls. One reason for this is the 
focus of traditional schooling on learning isolated facts 
in compartmentalized disciplines. Not surprisingly, this 

knowledge often cannot be transferred to real-world 
problems. Theories of constructivism and situated 
cognition suggest that for learning to be useful the 
learner needs to be actively involved in constructing 
new knowledge within meaningful contexts, not 
merely absorbing it. Furthermore, learning is enhanced 
by group-oriented collaborative work, reflection and 
articulation. These are therefore the central premises of 
a multidisciplinary approach to structuring learning 
within the context of case-based instruction that we are 
developing at the EduTech Institute. This approach is 
called Multiple Case-Based Approach to Generative 
Environments for Learning (McBAGEL). 

Three factors distinguish this approach: (1) The 
use of generative problems to promote learning. 
Generative problems are those that motivate open- 
ended inquiry, whose solutions require synthesis, 
which have multiple solutions, and which, therefore, 
promote the generation, evaluation and combination of 
ideas in the course of problem solving. The type of 
generative problems that we use are design problems. 
(2) The use of multiple cases provided by computer- 
based case libraries as knowledge sources to aid 
problem solving. (3) The emphasis on software- 
scaffolded and group-oriented collaborative work in 
and out of the classroom. 

We are designing a computer-based learning 
environment that we expect students to use as a 
workspace for conducting work as part of this 
approach. The architecture of this environment and its 
components is the main topic of this paper. However, 
since the environment's role is to support collaborative 
learning in the context of generative problem solving, a 
discussion of the approach and the educational 
philosophy behind it precedes the description of the 
computer environment. Then, software components of 
the environment that have already been designed, 
implemented and used in classrooms of Georgia Tech 
are described. In the final section we frame ongoing 
and planned research and development efforts in terms 
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of the characteristics desired of such an environment 
and ways of assessing its impact. 

2. Educational Framework 
Our approach is based on a synthesis of ideas on 
learning and problem solving from the fields of 
education, cognitive psychology and artificial 
intelligence. This approach is based on the following 
five central tenets. 

(1) Learning is enhanced by problem solving. 
Learning is more effective when it occurs through 
activities associated with solving generative problems 
(e.g., identifying and formulating the problem, 
generating alternatives, evaluating, decision making, 
reflecting, and articulating) rather than through 
transmission models of instruction. Design, by its very 
nature, is a generative activity. Therefore, design- 
oriented problems are particularly effective for 
technical domains like engineering and architecture 
and may well provide effective anchors for math and 
science learning. 

(2) Collaborative work is central to learning. 
Students are expected to solve problems and do 
assignments in groups. Group-oriented work, in and 
out of the classroom, is important both in facilitating 
learning and in preparing students for today's 
multidisciplinary team-oriented workplaces. As 
students work in collaborative groups, they are forced 
to articulate and reflect upon their thinking, leading to 
an appreciation of the importance of distributed 
cognition [14] as well as enhancing learning and 
subsequent transfer [3]. Collaborative work allows 
students to successfully tackle problems more complex 
than what any one group member could do alone. 

(3) Access to multiple cases will facilitate flexible 
learning. Providing students with access to multiple 
cases that contain information-rich and contextualized 
descriptions of specific situations set within the 
broader context of a course can significantly impact 
learning and transfer. The availability and use of 
multiple cases during problem solving facilitates 
learning new knowledge, and supports the adaptation 
and transfer of previous solutions to the current 
problem [11]. It is expected that by revisiting design 
skills through numerous cases, flexible transfer of 
these skills will be supported [20]. Intelligent 
computer-based case libraries can provide students 
with not only such access but also means of flexibly 
navigating among cases and parts of cases. 

(4) Learning and the acquisition of problem- 
solving skills need to be scaffolded. The experiences 
implementing effective problem-based learning 
environments teach us that solving real-world 
problems requires scaffolding, i.e., help from 
facilitators, knowledgeable experts, and the learning 
environment [12. 18]. The goals of scaffolding are to 
enable students to carry out a reasoning process or 

achieve a goal that they would not be able to do 
without help, and to facilitate learning to achieve the 
goal without support. The scaffolding of different skills 
can be provided through software, by appropriately 
utilizing multimedia and tools such as collaboration 
software, simulation and visualization programs, 
decision-support systems and smart case-libraries. 

(5) A shared electronic workspace that seamlessly 
integrates a full variety of functionalities for the above 
will enhance learning. This workspace will tie 
together tools that students will use while solving 
problems, collaborating, and perusing multiple cases. 
It is also an ideal vehicle for providing adaptive 
software-realized scaffolding of various skills. Finally, 
it will encourage both synchronous and asynchronous 
collaborative work among students. Such an integrated 
yet flexible computer-based learning environment that 
the students use as a "professional workspace" is a 
central component of our approach. 

We want to situate classroom learning in 
information-rich contexts that afford opportunities for 
problem formulation, exploration and discovery. 
Students will work on problems for extended periods 
of time,.reflecting and articulating on both the process 
and the product. Case libraries will provide them with 
both relevant data and specific solution strategies in the 
domain of instruction, all within the context of 
complex and realistic real-world problems. The 
problems students have to solve and the cases that are 
made available to them serve as anchors for learning. 
Collaborative, reflective and articulative activities, 
aided by the tools and cases provided by the computer- 
based learning environment, should improve the 
students' knowledge, problem solving skills, and self- 
directed learning skills. Cases, being rich knowledge 
structures that explicate both conceptual and strategic 
knowledge, will allow the students to master concepts, 
principles and strategies in the course of attempting to 
solve problems. The collaborative nature of student 
activities should facilitate the construction of new 
knowledge since it encourages articulation and intra- 
group communication. Our approach is designed in 
particular to address the following three issues. 

Cognitive Flexibility and Transfer. Consideration 
of a single case leads to inflexibility of the acquired 
knowledge and strategies [22]. Rather than having 
students focus on a single case, our intention is to have 
students revisit ideas from multiple cases both through 
the design problems that students work on and the 
design cases in the case libraries. We believe that by 
having students analyze multiple cases, and by having 
them reflect on how these cases are similar and 
different to the problems they are solving, more 
flexible knowledge should be constructed. The 
cognitive flexibility theory [20] supports this 
prediction. 

Collaboration. Collaboration is a key piece of our 
approach.   Research on collaborative learninc shows 

CSCL '95 Proceedings September 1995 



that learning while solving problems in groups 
facilitates the learning of articulation skills, makes 
learning more effective for all group members, and 
allows students to successfully tackle problems more 
complex than any one group member could 
individually solve [3, 14, 17]. Moreover, the 
collaborative discussion that occurs is important for 
student learning because it activates prior knowledge, 
thus facilitating the processing of new information [2, 
19]. On the other hand, Blumenfeld et al. [1] suggest 
that students may have more motivation to learn but 
make less use of learning and metacognitive strategies. 
In addition students may not have the skills to benefit 
from collaborative work. Therefore it is important to 
help students to collaborate well together in order to 
make collaborative learning work well. Aspects of our 
approach - the division of the student body into small 
groups, the complexity of the design problems that the 
groups will tackle, and the use of collaboration 
software to scaffold communication and cooperative 
work - are all intended to overcome these limitations 
and enhance the benefits of group-oriented learning. 

Reflective Articulation. Two important aspects of 
our approach are articulation and reflection. There are 
several forms of reflective articulation including 
generating analogies [10], predicting outcomes of 
events or processes [21], developing questions about 
the learning materials [10], and self-explanations [4]. 
Studies suggest that reflective articulation can enhance 
retention, elucidate the coherence of current 
understanding of the problem being solved, develop 
self-directed learning skills, and provide a mechanism 
for abstracting knowledge from the content in which it 
was learned, thus facilitating transfer. It is very 
important to provide two levels of articulation - 
individual and group - in a collaborative learning 
environment. Also, it is not just articulation by itself 
that is important, but it is the specific kinds of 
articulations that engenders reflection - reflective 
articulations - that lead to enhanced understanding. 
The goal of reflection is to analyze and evaluate one's 
knowledge, learning and problem solving strategies. 
Several researchers have demonstrated the importance 
of articulation and reflection in learning. Pirolli and 
Recker [15] suggest that reflection on problem 
solutions that focuses on understanding the abstract 
relationships between problems is related to improved 
learning. Lin [13] has found that reflection on problem- 
solving processes leads to enhanced transfer and that 
technology can be used to scaffold appropriate kinds of 
reflections. One way that reflection can be enhanced is 
through the articulation of meta-cognitive knowledge 
and skills that typically occurs in collaborative 
discourse. 

3. Computer Support for Collaborative 
Learning in McBAGEL 
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Figure 1. Software Architecture 

Figure 1 is ä schematic diagram of the architecture 
of a software environment that we are developing to 
complement the McBAGEL approach in classrooms. 
This environment provides an external memory for 
keeping track of problem specifications, important 
facts and constraints, ideas about how to deal with the 
specifications, and learning requirements. The main 
screen provides several fields for keeping track of 
multiple sources of information, design alternatives, 
and further actions to be taken. Space is provided to 
record the facts and constraints that are important, to 
record ideas about how to deal with the specifications, 
and to keep track of what else needs to be learned, 
what information needs to be collected, and what 
actions need to be taken. Together, these windows 
allow the student to see where s/he is now, where s/he 
has been, and where s/he is going. This screen can be 
used as an individual workspace or as a shared 
workspace for the group. The main screen also 
provides access to other resources and tools that 
students need to solve the design problems: case 
libraries and other information resources; tools for 
simulation, visualization, decision making etc.; a tool 
for inter- and intra-group communication, 
collaboration, and multimedia document sharing; and a 
set of basic tools such as document processing 
programs, drawing/painting programs and 
spreadsheets. 

The problem screen provides easy access to the 
evolving problem description. This screen begins with 
a minimal description of the design problem presented 
to the students. Details emerge as they inquire about 
additional information about constraints, material 
resources and functional issues regarding the design. 

The collaboration window allows students to enter 
into a collaboration environment that provides much 
more than mere communication facilities. It will 
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provide an ability to enter into structured discussions 
on different topics pertaining to the class and the 
problem at hand as well as to share multimedia 
resources with other members of the group and class. 
A user will be able to browse through past and ongoing 
discussions which are presented in a structured format 
to allow easy topic-based, time-based or author-based 
browsing, and to contribute to those discussions by 
constructing and sending different types of messages. 
This collaboration facility will be made available to not 
only students, but also to teachers. It will provide 
teachers with a means to collaborate in conducting a 
course and to share experiences and learn from each 
other. It can also be a vehicle for student assessment 
based on their collaborative interactions. 

In addition to providing a work environment, this 
system makes available scaffolding to help novices 
with design, collaboration and reflection. Design 
scaffolding will vary as a function of the design stage 
students are working on. For example when the 
students are working on problem formulation, the 
software will provide coaching to help them 
understand what is involved in this stage: e.g., 
identifying the problem, formulating the problem, 
partitioning/decomposing the problem, and framing the 
problem. The collaboration software will provide 
procedural facilitation to aid in the development of 
collaboration skills. Reflection will be facilitated 
through the articulation that occurs during 
collaborative problem solving and learning activities. 

In summary, this environment will provide means 
to organize and manage projects from the students' 
perspective (e.g., the main screen provides for 
explicitly listing organizational and learning issues) 
and the teachers' perspective (e.g., tracking student 
progress and keeping records of student work). In 
addition, we envision that the environment will be used 
for research purposes (e.g., archiving data such as the 
inter- and intra-group communications and resource 
sharing that took place during a course for later 
assessment, collecting data to be used for 
student/group modeling in order to devise better 
course- and student-specific on-line scaffolding and 
coaching methods, etc.). An initial prototype of this 
environment has been developed with HyperCard on 
the Macintosh platform, but it has not yet been tested 
in a classroom. Borrowing from the metaphor of the 
white board workspace of problem-based learning 
found in medical schools, this prototype provides an 
electronic workspace that is split into four regions. It 
also allows easy access to other tools and resources. 
Figures 2 and 3 show the workspace and problem 
screens of this prototype. 
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Figure 3. McBAGEL Problem Screen 

Here is a brief scenario to illustrate how we 
imagine the students will use this environment. 
Students, who will be working in small groups, enter 
the environment at the main window shown above. 
which represents their shared electronic workspace. 
They are provided with relevant information on the 
design problem they need to solve via the button "new 
problem". In this case, it is to design an archery 
stadium for the Olympics. As students are initially- 
formulating and understanding the problem, they will 
be encouraged to identify data relevant to the problem 
from the information they have been provided with. 
and to articulate this by recording those in the "facts" 
space. Similarly, as they consider alternative solutions. 
they will make use of the "ideas" space. The problem- 
based learning methodology that this environment 
embodies explicitly prepares students for self-directed 
learning by requiring them to identify their knowledge 
deficiencies in the "need to learn" space and the 
actions they plan to take to remedy those deficiencies 
in the "action plan" space. Several buttons are found 
on the bottom of the screen thai provide access to 
different tools that they will need to solve the problem. 

CSCL '95 Proceedings Sepiember 1W5 



"Stage" is a pull-down menu which acts as a gateway 
to various kinds of software-realized scaffolding 
tailored to different stages of problem solving. 

While the structure of this environment is still 
evolving, some of its components have already been 
designed, implemented and individually fielded in 
classrooms. In the following two sections we elaborate 
on these implemented components and describe future 
directions for our research. 

4. Implemented Components 
• Case Libraries: Research on case-based reasoning 
[11] provides guidelines for indexing and making 
available resources needed while problems are being 
solved, especially case materials. Case libraries 
organize cases in ways that make it easy to access their 
most interesting parts, understand their implications, 
and recognize the range of problems needing solving 
and the range of solution methods available. Case 
studies are structured in terms of overviews, problems, 
stories, and responses. Each story discusses some 
problem that arose in designing some artifact, the way 
that the problem was addressed, and the outcomes that 
resulted. To make it easy for users to extract from 
stories their important points, stories are presented with 
illustrative graphics, and several kinds of contextual 
information is associated with each story. Students can 
examine the full artifact that some story is associated 
with, can see a general description of the problem the 
story addresses, a general description of the kind of 
solution it provides, and can ask to follow links to 
other stories that illustrate a similar problem or 
solution. The stories help students discover which 
issues they should be considering during design and 
help them to anticipate the results of carrying out their 
proposed designs. We have developed a number of 
case libraries in support of design problem solving. 

• Case Library Authoring Tool: ■ DesignMUSE [5] 
is a case library authoring tool that has been developed 
to allow easy construction of case libraries. During the 
1995 Winter Quarter it was used to create a library of 
environmental cases for use in our sustainable 
technology classes. Thus, while existing case libraries 
act as intelligent information resources, this authoring 
tool will allow students to construct their own case 
libraries to record the design problems that they solve. 
Both the authoring tool and the case libraries are built 
on Common Lisp for Macintoshes. 

• CaMlLE: Our collaboration software CaMDLE 
[8], based in principle on CSILE [18], integrates 
information-gathering tools, communication tools, and 
applications into a collaborative environment. CaMILE 
provides a discussion environment into which the full 
range of text, graphics, spreadsheets, video, and so on 
that reside locally or on the Internet can be 
incorporated. It is designed to meet two goals. First, it 
serves as a collaboration and information indexing 
tool. Discussions are structured and annotated with 

links to material anywhere across the network. Second, 
it serves as a design support tool. Discussions about 
design problems can be annotated with links to actual 
ongoing designs. The discussion trace can then serve as 
a design rationale and a case study of a design. It 
allows students to collaborate in learning and problem 
solving by providing a facility for structured inter- 
group and intra-group communications that are 
archived, and by providing a way to share multimedia 
documents easily among collaborators. Like CSILE, 
CaMILE scaffolds collaboration through procedural 
facilitation. While electronic mail merely allows team 
members to share ideas, CaMILE helps them to 
organize their ideas into coherent arguments, relate 
their ideas to one another, and use resources across the 
network to support their arguments. CaMILE was built 
with HyperCard on Macintosh computers. 

• Exploratory Simulations: We have developed a 
range of exploratory simulations [16] that enable 
students to learn through simulated experience. Key to 
these simulations are tight integration with real world 
problems and activities, and flexible specification of 
simulation choices to allow for creative and 
sophisticated simulation problem solution. These 
simulations have been constructed using the Smalltalk 
language. 

5. Future Directions 
Learning from case libraries: As students are solving 
problems, several kinds of resources are needed to help 
them. Clearly, they need access to documentation, of 
the kind found in books and encyclopedias. But 
another significant but often overlooked resource is 
codified prior experience: e.g., cases that describe 
solutions to similar problems. Our approach to 
supporting learning from prior experience is to make 
on-line case libraries available from within the 
software environment. Cases help with understanding a 
problem better, suggesting solutions and parts of 
solutions, and evaluating proposed solutions, thereby 
helping a student to know where to focus his/her 
attention. Our research on case libraries will proceed in 
two directions. One is generating content: creating the 
kinds of cases with which to populate these libraries in 
order to have maximum impact on learning. The other 
concerns issues of information organization, 
presentation and navigation. How can cases be 
organized and presented in ways that make it easy to 
access their most interesting parts, understand their 
implications, and recognize the range of problems and 
the range of solutions available? While the existing 
case libraries provide one answer to this question 
(another, for example, is provided by [9]), we are 
currently revisiting this issue from the perspective of 
students, who are novice practitioners. From this 
perspective we believe that additional capabilities such 
as access to definitions of the terms used by experts, 
access  to  explanations  of what  experts   find  it 
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appropriate to focus on, guidance in choosing what to 
focus on next, and allowing students to extend the 
libraries (or create new ones) are also required. 

Supporting collaborative problem solving and 
learning: Support for group communication and 
sharing will be provided by facilitating collaborative 
work through the software environment. CaMILE was 
used during the past two quarters in a junior-level 
design foundations course, taught in mechanical 
engineering (ME 3110; Creative Decisions in Design). 
We have collected data on the system's usage and its 
effects, and are in the process of analyzing this data. A 
World Wide Web version, WebCaMELE, is also under 
development. We plan to link case libraries and 
WebCaMELE so that students engaged in a design- 
activity might use WebCaMILE to discuss and 
exchange case-study materials. Cases provide the kinds 
of information that a student might point to as 
justification for some argument presented to others, as 
a potential alternative to a design decision, or as a 
rebuttal to someone else's design decision. Tailoring 
CaMILE's procedural facilitation to reflect more 
closely the content and nature of the problems students 
will be solving and investigating new ways of 
scaffolding collaboration are other topics of ongoing 
research. 

Software-realized scaffolding: Of particular 
importance in making this integrated software 
environment work for students is providing software- 
realized scaffolding to support student use of the 
environment for learning. We have identified several 
specific areas in which we can provide facilitation. 

• Scaffolding collaborative design and problem- 
solving: Our environment will provide scaffolding for 
design and problem-solving using several techniques: 

- By structuring the kinds of entries which can be 
made in a group discussion, e.g., new theories or ideas, 
alternatives, comments, rebuttals, and questions. 
When a student chooses one of these kinds of entries, 
an editor opens for their comments and a prompting 
window opens with suggestions for useful entries to 
make, e.g., for a rebuttal, suggestions might include 
"The strengths of this idea are..." and "But the key 
weakness is...". This scaffolding guides the discussion 
in useful directions defining the kinds of entries to be 
made, asking students to choose one before entering an 
item into the discussion, and suggesting appropriate 
things to say. 

- By providing agents to actively review student 
work and suggest better ways to design and solve 
problems. For example, agents may identify where 
connections might be made between efforts, where 
additional resources exist that might aid an effort, and 
where efforts may be going astray [6]. 

- By providing menus of glossaries of relevant 
vocabulary and their definitions. 

- By providing means of visualization and making 
explicit the design process. 

• Scaffolding reflection and learning: We want to 
support two kinds of reflection in the environment 
because we believe that reflection can significantly 
facilitate learning. 

- Reflection-in-action: The students' articulations 
in the discussion, the declaration of item type, and the 
linking of cases to discussion are all forms of 
reflection-in-action. These are kinds of reflection 
which are integral to the design process and which 
support both the execution of a good design process 
and the learning about that process. Reflection-in- 
action helps to make strategies explicit and learnable. 
develops an expanded repertoire of strategies, and 
improves student understanding and control of the 
design process. 

- Reflection-as-summary: Student summarization 
at the end of a design process is an important learning 
activity for students and an important resource for 
future groups of students. Our plan is for students to 
summarize their group design projects such that 
summaries from one class become cases in the library 
for the next class. Thus, students summarize not just 
for their own benefit but to help a future audience. 

• Scaffolding resource identification and use: 
Case libraries support student exploration by providing 
multiple indices into cases. Students might begin by 
looking at one case of interest and then explore related 
cases by a number of different dimensions, or begin by 
browsing all cases related to a problem. Students can 
gain perspective on what problems they are facing, 
what the parameters of the problems are, and how 
these parameters are explored in the cases in the library 
from case overviews. We want case libraries to 
provide support for all these kinds of searching and 
browsing, but coupled with support that helps in 
applying the found information to the task at hand 
(e.g., linking cases that highlight an important 
alternative solution to the discussion on that 
alternative). In addition, we envision 'the use of 
visualization tools to aid in resource identification and 
use. 

Integration: As many of the critical components 
of the software environment are being implemented 
and used in classrooms, the most significant task ahead 
of us is integrating the different pieces into a single 
environment. This integrated environment supporting 
the McBAGEL approach has to play several roles: 
facilitation of design problem solving and its 
constituent components, facilitation of learning, access 
to resources, and access to teachers and fellow 
learners. The software environment has to serve as 
both an electronic workspace and a learning 
environment providing help with a variety of 
intellectual activities as students collaborate on design 
projects. We see a need for this environment to 
promote reflection and summarization as well. 
Software-guided reflection is particularly important in 
facilitating skill transfer between different problem 
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domains. The construction of such an environment on 
Macintosh computers is currently underway. 

Assessment: The next step, slated to begin in Fall 
1995, is to use and assess both the approach and the 
concomitant software environment in a series of design 
courses at Georgia Tech. We will use assessments to 
determine what kind of learning has occurred and how 
well students apply what they have learned. The goals 
of learning involve not merely acquiring a set of static 
facts to be recalled on a test but rather involve 
constructing a coherent understanding of a domain that 
can be flexibly transferred to new situations. The 
extent to which learning can be used in new situations 
(i.e., transfer) allows assessment of how flexibly the 
students have learned the content and are able to apply 
it to complex problems. Students' learning will be 
evaluated on mastery, near-transfer, and far-transfer 
problem-solving. Cognitive research suggests that 
because problem-based instruction is geared towards 
complex curricular objectives, assessments need to 
include open-ended questions in which students 
explain what approaches they have to a problem and its 
solution [7]. A variety of methods will be used to 
collect this data including interviews and paper-and- 
pencil short answer tests. This allows measurement of 
the products and processes of the students' learning. 
Some authentic performance assessments will also be 
devised. Students' presentations will be assessed to 
examine how they define the problems and justify their 
solutions as well as the quality of their solutions. 
Because transfer is not an all-or-none phenomenon, 
different types of transfer will be assessed and 
measures will be developed that assess this. We will 
use measures of knowledge, skills, planning, and 
qualitative understanding as students are asked to 
justify their solutions. This will assess the flexibility of 
the knowledge that the students construct. For 
example, because of the emphasis on problem solving, 
we would expect increased integration of the content 
they are learning into their problem-solving on transfer 
problems. Because students are using the collaborative 
environment and gaining experience and feedback in 
articulating their plans for problem-solving, we expect 
improvement in the students' planning skills as well. 

6. Conclusions 
Collaborative learning environments have the potential 
for helping students to construct usable knowledge and 
to learn strategies that prepare them for a lifetime of 
learning. To afford generative learning, such 
environments need to contain rich sources of 
information. In addition, opportunities for student 
collaboration, articulation and reflection must be 
provided to help students think deeply about the 
problems they are working on and to learn to go 
beyond the given problems. The McBAGEL approach 
is designed to meet these requirements. Providing 

computational support to this approach requires the 
design of a software architecture that integrates 
multiple tools and information resources with a 
structured electronic workspace. This paper describes 
our efforts on developing the theoretical and practical 
aspects of such an architecture. The focus of our 
current research is on refining and testing the 
components further, and on fully implementing the 
integrated environment. Future research will focus on 
deploying it in classrooms and conducting assessments 
of its impact on student learning. 
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Abstract 
In this paper we present a vision of learning through solving generative problems - problems that promote open-ended inquiry 
and have multiple solutions. This vision stems from a novel and evolving approach to learning that we are developing at the 
EduTech Institute. This approach is based on the following premises: that learning is facilitated by generative problem 
solving, collaborative work and use of multiple cases; that learning and skill acquisition need to be, and can be, scaffolded 
through software; and that a computer environment which integrates a shared and structured electronic workspace with a full 
variety of functionalities can effectively support all of the above. We describe this approach and the architecture of the 
corresponding computer environment. This environment is designed to serve three critical functions: provide a shared 
workspace for students, facilitate inter- and intra-group collaborative work, and make available the tools and resources that 
students need for problem solving and learning. The software components of the environment that have already been 
implemented are described. Finally, issues and questions driving current research are outlined. 

1.   Introduction 

Too often students learn bits of knowledge that they are unable to assemble and apply in productive ways. Modern theories of 
learning suggest that for learning to occur and to be useful, the learner needs to be actively involved in meaningful contexts 
(e.g.. Brown. Collins, & Duguid, 1989). Situating learning in rich problems or cases is one way of accomplishing this. 
Case-based learning (CBL) means that, as students solve a problem or study a case, they construct knowledge at the same time 
(Williams, 1993). In this paper we present a multidisciplinary approach to structuring learning environments within the 
framework of CBL, called Multiple Case-Based Approach to Generative Environments for Learning (McBAGEL). At the 
EduTech Institute, we are developing McBAGEL for use in a variety of engineering and middle school courses that involve ill- 
structured problem-solving. Several factors characterize our approach: (1) the use of design problems to promote generative 
learning; (2) using design cases provided by computer-based case libraries as resources to aid problem solving and foster deep 
understanding; (3) scaffolding the acquisition of knowledge and skills through a combination of software support and careful 
orchestration of classroom activities; (4) providing feedback in a variety of forms; (5) emphasizing group-oriented collaborative 
work in and out of the classroom; (6) encouraging reflective articulation; (7) making available to students an electronic 
sharable workspace integrated with tools and resources as the medium for work; and (8) redefining the role of the teacher as a 
facilitator of learning. Because we are dealing with design-oriented problems, there is a great deal of complexity to be managed. 
The pedagogy and software support is geared towards supporting learners in managing the complexity and emphasizing 
learning as well as doing. 

McBAGEL comprises both a pedagogical approach and a software architecture designed to complement and support effective 
classroom practice of this approach. We are engaged in implementing this approach both at the college level (engineering 
undergraduates) and at the middle school level. We are currently developing design problems and case libraries for engineering 
design and middle school math and science curricula, as well as prototyping the computer-based electronic workspace. In this 
paper, we discuss the theoretical foundations of our approach, the architecture of the electronic workspace, and its software 
components. 

2.   Foundations  of Case-Based   Learning:   A  Multidisciplinary  Perspective 

Case-based learning (CBL) uses cases or problems as stimuli for learning and foci for organizing what has been learned 
(Barrows, 1994). This means that students learn while solving a problem or studying a solved case. Characteristics of CBL 
environments include: 

• Emphasis on collaborative student-centered learning. 
• Emphasis on learning knowledge and strategies. 
• Students solve the problem and make their thinking visible by justifying their solution process 

using theory, causal models, or other appropriate evidence. 
• Problems are ill-structured, the data are embedded in the problem itself, and are often emergent 



as the problem is explored. 
McB AGEL, our approach to CBL, draws from research in Cognitive Psychology, Education, and Case-based Reasoning. 
Relevant perspectives from these areas are discussed below. 

Cognitive Psychology. There is both cognitive theory and evidence supporting the benefits of case-based approaches to 
learning (Norman & Schmidt, 1992). The cognitive psychology literature provides support for CBL in three roles. First, the 
acquisition of factual knowledge in the context in which it will later be used should enhance later retrieval (Adams, et. al., 
1988; Perfetto et. al., 1983). Second, the mastery of concepts, principles, and strategies while attempting to solve a problem 
should promote transfer to new problems (Catrambone & Holyoak, 1989; Needham & Begg, 1991). Needham and Begg (1991) 
have demonstrated the importance of feedback in facilitating transfer to new problems, suggesting that this should be an 
important feature of CBL. Third, the acquisition of prior examples that can be used for problem solution on the basis of 
similarity is valuable. However, for exposure to earlier problems to be helpful the learner needs to see multiple examples and 
reflect on them (Brooks et. al., 1991; Chi et al., 1989; Gick & Holyoak, 1983). Moreover, the collaborative discussion that 
occurs in CBL is important for student learning because it activates prior knowledge, thus facilitating the processing of new 
information (Bransford & Johnson, 1972; Dooling & Lachman, 1971; Schmidt et. al., 1989). In CBL students are encouraged 
to think about problems with the underlying principles in mind rather thanjust collecting sets of features. Chi et al. (1989) 
note that during self-explanations cases get connected to domain principles and the learner begins to understand how knowledge 
can be applied to solving problems, leading to more flexible knowledge. 

Cognitive Flexibility Theory (CFT) provides evidence that suggests case-based learning methods are important for learning in 
complex, ill-structured domains (Spiro, Feltovich, Coulsen, & Anderson, 1988). A domain is ill-structured when cases are 
multidimensional and irregularly related to other cases and to the underlying causal models (if such models exist). By this 
definition, design is ill-structured. This means that, although the underlying science and mathematics used in a design problem 
may be well-structured, "'there is variability from case to case regarding which conceptual elements are relevant and in what 
pattern of combination" (Spiro et al., 1988, p.379). CFT also suggests that knowledge will be learned flexibly if students have 
the opportunity to explore the problem from multiple points of view. The implication of this is that for cases and concepts to 
be understood and useful as problem-solving tools, they need to be visited from a variety of different experiences. 

Education. Research in education provides us with two examples of case-based learning (e.g., Barrows, 1985. 1994; 
CTGV, 1990, 1993). Anchored instruction situates learning and problem-solving in rich contexts with meaningful goals. 
Students solve complex, realistic mathematics problems using a video-based story to present the problem. For example. The 
Adventures of Jasper Woodbury (CTGV, 1990;1993) video series depict realistic situations in which mathematical problem 
solving is required. To solve these problems, the students must formulate their problem-solving goals and plan how they will 
achieve those goals. They must identify the information relevant to solving the problem as is required in complex real-world 
problem-solving. Students initially brainstorm to determine the goals and data that would be needed to solve the problem. 
Then, students break into small groups to work on the subproblems or subgoals that they generate. Groups present the results 
of their problem solving to the class and get feedback from the class and teacher. While working in small groups, students can 
review the video to gather data and ask the teacher questions. They learn about mathematics in the course of solving the 
problem. 

Anchored instruction affords opportunities for problem finding, exploration, and discovery (CTGV, 1990;199'3). The stories 
provide for generative learning because the learners must complete the story through their problem-solving efforts. An 
important feature of the stories is that the data are embedded within them. The problem-solvers must learn to differentiate 
between relevant and irrelevant data. The problems used are much more complex than, for example, typical math word 
problems on the premise that children cannot learn to deal with complexity unless they have had the chance to experience it. 

Problem-based learning (PBL) is a CBL methodology developed originally for medical students (Barrows, 1985). Students in 
PBL learn through solving real patient problems. The PBL approach begins with the teacher presenting a problem to students 
by showing materials or facilitating a discussion that "brings the problem home" to students. The students are presented with 
an initial scenario that specifies a problem to be solved and the particular product or performance that they must achieve. As 
they try to better understand the problem, they question the facilitator to get additional case-information. At several points in 
their problem solving, the students pause to reflect on the data they have collected so far, to generate questions about the data, 
and to hypothesize about underlying causal mechanisms or solutions for the problems. Students identify issues that they do 
not understand and need to learn more about. After considering the problem with their naive knowledge, students research the 
learning issues they have identified, by going to the library, consulting an expert, interacting with a computer program, or in 
whatever way is appropriate. They later share what they've learned, attempting to apply their new knowledge in solving the 
problem. They might refine hypotheses or options or generate new ones based on their new knowledge. The cycle of 
deliberating together and separating to find out new things continues until the problem is solved. When finished, the students 
present their product and then intentionally reflect on what they have learned. In addition, they assess their own and other 
group members' contributions to the group's learning and collaboration. 

PBL has several goals. First, in order to make basic science knowledge available in a clinical context, students learn science 



by having it embedded in a patient problem. This should help students better integrate scientific and clinical knowledge, 
thereby improving their access to basic science information when they need it in the clinical context. A second goal is to 
facilitate the development of clinical reasoning skills. A third goal is to facilitate the development of skills in self-directed 
learning and self-assessment. An explicit objective of PBL is to increase students' sensitivity to their personal learning needs 
and their skill at locating and using appropriate information resources. Finally, PBL is expected to enhance student 
motivation. PBL provides an appropriate context for learning because all of the content is learned in the context of a problem 
which should enhance recall of this information when it is needed. Norman and Schmidt (1992) report several direct tests of 
the effect of PBL on recall. These studies indicate that PBL students' initial learning is not as good as students in a 
conventional curriculum but that their long term retention is superior. Research has shown that students in a PBL 
environment are more likely to use science in their problem-solving than traditional students (Hmelo, 1994).. 

Case-Based Reasoning. Case-Based Reasoning (CBR) provides insights that complement the CBL methodologies. It 
provides suggestions for sequencing problems to form a curriculum as well as the kind of reflection that is needed (Kolodner, 
1995). CBR means reasoning based on previous experiences (Schänk, 1982). It might mean solving a new problem by 
adapting an old solution or merging pieces of several old solutions, interpreting a new situation in light of old similar 
situations, or projecting the effects of a new situation by examining the effects of a similar old situation. In short, case-based 
reasoning means using the lessons learned in old situations to understand or navigate new ones. The basic premise underlying 
case-based reasoning is the preference to reason using the most specific and most cohesive applicable knowledge available. 
Inferences made using cohesive knowledge structures, i.e., those that tie together several aspects of a situation, are relatively 
efficient. Cases, which describe situations, are both specific and cohesive. In addition, they record what is possible, providing 
a reasoner with more probability of moving forward in a workable way than is provided by knowledge that is merely plausible. 

Research in CBR (Kolodner 1993) indicates several ways of enhancing CBL. It suggests that knowledge will be more 
accessible, flexible, deeply learned, and accurate if learners have the opportunity to encounter (first-hand or by report) multiple 
situations in which the knowledge is used and multiple ways in which similar situations are addressed, and if students have the 
opportunity to reuse and try out knowledge gained through experience. Further, CBR suggests that the experiences of others 
be made available to students to model successful reasoning, to help students get started, to point the way to issues that need 
to be addressed, and to fill in where the full range of real experience is impossible or infeasible. It also suggests that problems 
and products should afford failure of expectations and that the environment needs to afford the kinds of feedback that will allow 
successful analysis of failures. Finally, it suggests that reflection should focus on anticipating the uses of lessons learned 
through each experience and that facilitation should refer back to previous experiences of the students to help them notice 
similarities and abstract from the range of problems they've solved. 

3.   Synthesis 

When we put all that we have learned from research in cognitive psychology, education, and case-based reasoning together, four 
principles emerge: 

1. Learning is enhanced by generative problem solving. Learning is most effective when it occurs through generative 
activities associated with solving problems (e.g., identifying and formulating the problem, generating alternatives, evaluating, 
decision making, reflecting, and articulating). Design, by its very nature, is a generative activity. Therefore, design-oriented 
problems are particularly effective for technical domains like engineering as well as providing effective contexts for math and 
science learning. 

2. Collaborative work promotes knowledge building. Students are expected to solve problems and do assignments in groups. 
Group-oriented work, in and out of the classroom, is important both in facilitating learning and in preparing students for 
today's multidisciplinary team-oriented workplaces. As students work in collaborative groups, they are forced to articulate and 
reflect upon their thinking, leading to an appreciation of the importance of distributed cognition (Pea, 1993) as well as 
enhancing learning and subsequent transfer (Brown & Palincsar, 1989). -Collaborative work allows students to successfully 
tackle problems more complex than what any one group member could do alone. The collaborative discussion that occurs is 
important for student learning because it activates prior knowledge, thus facilitating the processing of new information 
(Bransford & Johnson, 1972; Schmidt et al., 1989). The dialogue among group members enriches and broadens the groups' 
problem solving process (Vye. Goldman, Means, Voss, Hmelo, & Williams, 1995). On the other hand, Blumenfeld et al. 
(1991) suggest that students may have more motivation to learn but make less use of learning and metacognitive strategies. In 
addition students may not have the skills to benefit from collaborative work. Therefore it is important to help students to 
collaborate well together in order to make collaborative learning work well. 

3. Articulation and reflection are central to learning. Several researchers have demonstrated the importance of articulation and 
reflection to learning. The goal of reflection is to analyze and evaluate one's knowledge, learning and problem solving 
strategies. Pirolli and Recker (1994) suggest that reflection on problem solutions that focuses on understanding the abstract 
relationships between problems is related to improved learning. Lin (1994) has found that reflection on problem-solving 
processes leads to enhanced transfer and that technology can be used to scaffold appropriate kinds of reflections. One way that 



reflection can be enhanced is through the articulation of metacognitive knowledge and skills that typically occurs in 
collaborative discourse. 

4. Access to multiple cases will facilitate flexible learning. Providing students with access to multiple cases that contain rich 
descriptions of specific situations can significantly enhance learning and transfer. The use of multiple cases as resources for 
learners' problem solving both facilitates learning new knowledge, and supports the skill of transferring previous solutions to 
the current problem. It is expected that by revisiting concepts and skills through numerous cases, flexible transfer will be 
promoted (Spiro, Coulsen, Feltovich, & Anderson, 1988). Consideration of a single case leads to inflexibility of the acquired 
knowledge and strategies (Williams, Bransford, Vye, Goldman, & Carlson, 1993). Therefore, it is important to provide 
students with access to multiple cases that are relevant to their activities during various stages of design problem solving 
Computer-based case libraries can provide students with not only such access but also means of flexibly navigating among 
cases and parts of cases. Such libraries are therefore information-rich and powerful resources for learning. Students will use case 
libraries in two significant ways. One is by searching for. analyzing, comparing and contrasting cases that are similar to the 
problems they are solving. The other is by constructing cases from domain knowledge and from their problem solving 
experiences and incorporating these into the case libraries. 

4.  McBAGEL 

Our approach, called McBAGEL, derives from these principles. McBAGEL proposes to situate classroom learning in 
information-rich contexts that afford opportunities for problem formulating, exploration, and discovery. Students work on 
problems for extended periods of time, reflecting and articulating on both the process and the product. Case libraries provide 
them with both relevant data and specific solution strategies in the domain of instruction, all within the context of complex 
and realistic problems. The problems students have to solve and the cases that are made available to them serve as anchors for 
learning. Collaborative, reflective and articulative activities, aided by the tools and cases provided by the computer-based 
learning environment, are expected to improve the students' knowledge, problem solving skills, and self-directed learning 
skills. Cases, being rich knowledge structures that explicate both conceptual and strategic knowledge, will allow the students 
to master concepts, principles and strategies in the course of attempting to solve problems. Students will revisit ideas from 
multiple cases both through the sequence of design problems that they work on and the design cases they access in the case 
libraries. We believe that by having students analyze multiple cases, and by having them reflect on how these cases are similar 
and different from the problems they are solving, more flexible knowledge should be constructed. Cognitive flexibility theory 
supports this prediction (Spiro et al.. 1988).The collaborative nature of student activities should facilitate the construction of 
new knowledge since it encourages articulation and intra-group communication. 

We take a holistic approach that includes development of curriculum-appropriate design problems, scaffolding the complexity 
software development and teacher involvement. Our approach is distinguished by the following features: 

1. Scaffolding. Solving real-world problems is hard. Others' experiences on implementing effective problem-based learning 
environments teach us that solving complex problems requires scaffolding, i.e., help from facilitators, knowledgeable experts 
and the learning environment, to help students manage the complexity of problem-solving and to promote learning 
(Koschman, Myers, Feltovich, & Barrows, 1994; Scardamalia, Bereiter, McLean, & Woodruff, 1989)  The goals of 
scaffolding are to enable students to carry out a reasoning process or achieve a goal that they would not be able to do without 
help, and to facilitate learning to achieve the goal without support (Brown, Collins, & Duguid, 1989)   In McBAGEL explicit 
scaffolding of different skills will be provided by expert teachers, through software, and by orchestrating appropriate uses of 
multimedia tools such as collaboration software, simulation and visualization programs, and decision-support systems  Use of 
case libraries can also scaffold skills of resource identification and use. Case libraries support student exploration by providing 
multiple ways of finding and navigating among cases. The skill of searching for relevant information will be scaffolded by   " 
presenung the library index in intuitive formats, and encouraging students to explore the library by constructing complex 
search queries with multiple index terms and conducting searches. 

2. Feedback. Providing appropriate feedback is important. One of the key features of problem-solving in the real world is that 
the problem-solver takes some action and receives feedback from the real world. Research in CBR and cognitive psychology 
also point out the importance of feedback in coaching (Lesgold, 1994) and in learning from experience. Individuals use    ~ 
feedback to judge how effective their problem-solving efforts were. Feedback can take many forms-for example it may come 
from the results of an experiment, the success (or failure) of building and testing working models, or modeling a process by 
constructing and running a simulation. Previously solved cases may be used to provide anticipatory feedback such as warning 
the problem solver of a potential problem with a solution that was tried previously. McBAGEL suggests providing students" 
with feedback in a variety of forms and range of fidelity - feedback from teachers, feedback from peer groups, feedback from 
prior experiences encoded as cases, evaluations by experts on-site or on-line, feedback from computer simulations and feedback 
trom the real world when working models are built and tested. 

3. Emphasis on design problems. Several aspects of design problems make them ideal for promoting learning (1) They -ire 
generally under-specified but might have some over-consirained parts, making understanding and problem definition cruc' lal lo 
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the solution. (2) They have specified clients or audiences who must be satisfied, making the relevance and human dimension of 
the problem clear. (3) Problems in design are not operational in that a clear-cut path through the problem space is not 
generally available. Multiple routes to differing destinations exist for the student and the way through is something they must 
address and navigate. Successful solution requires exploration, questioning, and evaluation. (4) Successful design is iterative 
Several to many alternatives are attempted, partial solutions are explored, dry-runs and evaluation occur in the process until 
several rounds result in a movement forward toward a solution. Students who tend to be task- or product-driven can benefit 
greatly from participating in such a process. (5) In moving through a design space, numerous criteria have to be managed 
simultaneously. In any manufacturing or construction problem, for example, cost, manufacturability, availability of 
materials, time, and environmental issues co-occur as constraints to be tackled. Managing this complexity mirrors what 
students often know about problems in the real world, lending a sense of authenticity to the tasks while distinguishing design 
problems from back of the book problem solving. (6) Real-world design problems often have several parts that interact in 
interesting ways and that require a variety of different kinds of domain knowledge to be solved. When parts of problems 
interact, there is usually no one right way to address the interaction; rather, successful solution depends on considering the 
many ways ot trading off interactions against each other and choosing between alternatives. (7) The need for interaction with 
the real world makes design problems nice as well; design problems are situated in the world we live in, making their relevance 
and the relevance ot the math and science needed to solve them clear. At the same time, making a solution operational requires 
interaction with the real world and thus affords feedback. 

4. Collaboration. Collaboration is a key piece of our pedagogy. Research on collaborative learning shows that learning while 
solving problems in groups facilitates the learning of articulation skills, makes learning more effective for all group members 
and allows students to successfully tackle problems more complex than any one group member could individually solve 
(Brown & Palincsar, 1989; Pea, 1993; Vye et al., 1995). Aspects of our approach - the division of the student body into small 
groups, the complexity ot the design problems that the groups will tackle, and the use of collaboration software to scaffold 
communication and cooperative work - are all intended to overcome these limitations and enhance the benefits of group- 
onented learning. In our approach, scaffolding will be provided to help students learn to collaborate as well as learn through 
collaboration.1 

5. Reflective articulation. An important aspect of our approach is promoting reflective articulation - articulation that 
engenders reflection, leading to enhanced understanding. There are several forms of reflective articulation including generatine 
analogies, predicting outcomes of events or processes, developing questions about the learning materials, and self-explanations 
(Uli et al., 1989; Weinstein & Mayer, 1985). Reflective articulation can enhance retention, elucidate the coherence of current 
understanding of the problem being solved, improve self-directed learning skills, and provide a mechanism for abstracting 
know edge trom the content in which it was learned, thus facilitating transfer. McBAGEL emphasizes two levels of reflective 
articulation - individual and group - within a collaborative learning environment. 

6. A shared electronic workspace. We believe that an electronic workspace which seamlessly integrates a full variety of 
functionalities, tying together tools that students will use for collaboration, communication and problem solving will 
significantly enhance learning. Such an environment is an ideal vehicle for providing adaptive software-realized scaffoldine of 
various skills. The functionalities that this workspace will provide include: an electronic notebook with both private and " 
sharable sections; case libraries and other information resources; tools for simulation, visualization etc • a tool for 
communication, collaboration, and multimedia document sharing; and a set of basic tools such as word processing programs 
and spreadsheets. Such an integrated computer-based learning environment that students use as a "professional workspace" is a 
central component of McBAGEL. It is not sufficient to confine such an environment to a laboratory or classroom Instead it 
needs to be made available to students across courses and across campus (e.g., available in all public computer labs) for 
providing easy access at all times as well as continuity across the curriculum. This availability should encourage both 
synchronous and asynchronous collaborative work among students. 

1-The.c?"t™lity of Rächers. Helping teachers leam to become expert facilitators and partners in the development process is 
critical (CTGV, 1993). With student-centered learning, the role of the teacher is increasingly important in facilitating student 
learning and orchestrating classroom activities. The commitment of teachers to student-centered learning is crucial (e e 
Barrows, 1994). Teachers have many roles in our approach - as expert facilitators of problem solving, learning and    " 
collaboration; as full partners in the orchestration of classroom activities; as integrators ensuring that the use of computers and 
software tools is naturally integrated with other activities; and as cognitive diagnosticians. 

There are many challenges in achieving the goals we have described. Students do not necessarily view issues from multiple 
perspectives nor do they collaborate well. They will often recall rather than reflect. An expert facilitator can help promote 
these processes but often large class size precludes the small group work that would afford these experiences We believe thai 
providing computational support - making the right kinds of software and on-line information available for use at the rieht 
times and seamlessly integrating the use of computers for communication and problem solving - can alleviate some of these 
difficulties. 



5.    Computer Support for Learning in McBAGEL 

The software environment for McBAGEL (Narayanan, et al., 1995) needs to address several key requirements: access to 
information resources such as case libraries; support for synchronous and asynchronous collaboration; support for reflective 
articulation; and provide tools to support problem solving. Figure 1 is a schematic diagram of its architecture. This 
environment provides an external memory for keeping track of problem specifications, important facts and constraints, ideas 
about how to deal with the specifications, and learning requirements. The main screen provides several fields for keeping track 
of multiple sources of information, design alternatives, and further actions to be taken. Space is provided to record the facts and 
constraints that are important, to record ideas about how to deal with the specifications, and to keep track of what else needs to 
be learned, what information needs to be collected, and what actions need to be taken. Together, these windows allow the 
student to see where s/he is now, where s/he has been, and where s/he is going. This screen can be used as an individual 
workspace or as a shared workspace for the group. The main screen (Figure 2) also provides access to other resources and tools 
that students need to solve the design problems: case libraries'and other information resources; tools for simulation, 
visualization, decision making etc.; a tool for inter- and intra-gfoup communication, collaboration, and multimedia document 
sharing; and a set of basic tools such as document processing programs, drawing/painting programs and spreadsheets. 
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The problem screen (Figure 3) provides easy access to the 
evolving problem description. This screen begins with a 
minimal description of the design problem presented to the 
students. Details emerge as they inquire about additional 
information on constraints, material resources and functional 
issues regarding the design. The collaboration window allows 
students to enter into a collaboration environment that provides 
much more than mere communication facilities. It will provide 
an ability to enter into structured discussions on different topics 
pertaining to the class and the problem at hand as well as to 
share multimedia resources with other members of the group 
and class. A user will be able to browse through past and 
ongoing discussions which are presented in a structured format 
to allow easy topic-based, time-based or author-based browsing, 
and to contribute to those discussions by constructing and 
sending different types of messages. This collaboration facility 
will be made available not only to students, but also to 
teachers. It will provide teachers with a means to collaborate in 
conducting a course and to share experiences and learn from each 
other. It can also be a vehicle for student assessment based on 
their collaborative interactions. 

Figure 1. Software Architecture 
In addition to providing a work environment, this system 
makes available scaffolding to help novices with desien. 

collaboration, and reflection. Design scaffolding will vary as a function of the design stage students are'working on. For 
example when the students are working on problem formulation, the software will provide coaching to help them understand 
what is involved in this stage: e.g., identifying the problem, formulating the problem, partitioning/decomposing the problem, 
and framing the problem. The collaboration software will provide procedural facilitation to aid in the development of 
collaboration skills. Reflection will be facilitated through the articulation that occurs during collaborative problem solving and 
learning activities. 

In summary, this environment will provide ways to organize and manage projects from the students' perspective (e.e.. the 
main screen provides for explicitly listing organizational and learning, issues) and the teachers' perspective (e.g.. tracking 
student progress and keeping records of student work). In addition, we envision that the environment will be used for research 
purposes (e.g., archiving data on inter- and intra-group communications and resource sharing for later assessment, collecting 
data to be used for student^group modeling in order to devise better course- and student-specific on-line scaffolding and coaching 
methods, etc.). An initial prototype of this environment has been developed with HyperCard on the Macintosh platform, but ft 
has not yet been tested in a classroom. Borrowing from the metaphor of the white board workspace of problem-based learning 
tound in medical schools, this prototype provides an electronic workspace that is split into four regions. It also allows easy 
access to other tools and resources. Figures 2 and 3 show the workspace and problem screens of this prototype. 

Here is a brief scenario to illustrate how we imagine the students will use this environment. Students, who will be working in 
small groups, enter the environment at the main screen (Figure 2), which represents their shared electronic workspace. TheyVe 
provided with relevant information on the design problem they need to solve via the button "problem information". In this 
case, it is to design an archery stadium for the Olympics. As students are initially formulating and understanding the problem, 
they will be encouraged to identify data relevant to the problem from the information they^have been provided with, and to 



articulate this by recording those in the "facts" space. Similarly, as they consider alternative solutions, they will make use of 
the "'ideas" space. The problem-based learning methodology that this environment embodies explicitly prepares students for 
self-directed learning by requiring them to identify their knowledge deficiencies in the "need to learn" space and the actions they 
plan to take to remedy those deficiencies in the "action plan" space. Several buttons are found on the bottom of the screen that 
provide access to different tools that they will need to solve the problem. "Stage" is a pull-down menu which acts as a gateway 
to various kinds of software-realized scaffolding tailored to different stages of problem solving (Guzdial, 1994). 
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While the structure of this environment is still evolving, some of 
its components have already been designed, implemented and 
individually fielded in classrooms. In the remaining two sections 
we elaborate on these implemented components and describe future 
directions for our research. 

6.     Implemented  Components 

• Case Libraries: Case libraries organize cases in ways that make 
it easy to access their most interesting parts, understand their 
implications, and recognize the range of problems needing solving 
and the range of solution methods available. Case studies are 
structured in terms of overviews, problems, stories, and responses. 
Each story discusses some problem that arose in designing some 
artifact, the way that the problem was addressed, and the outcomes 
that resulted. To make it easy for users to extract from stories their 
important points, stories are presented with illustrative graphics, 
and several kinds of contextual information is associated with each 
story. Students can examine the full artifact that some story is 
associated with, can see a general description of the problem the 
story addresses, a general description of the kind of solution it 
provides, and can ask to follow links to other stories that illustrate 
a similar problem or solution. The stories help students discover 
which issues they should be considering during design and help 
them to anticipate the results of carrying out their proposed 
designs. We have developed a number of case libraries in support of 
design problem solving. 

Figure 3. McBAGEL Problem Screen 
• Case Library Authoring Tool: DesignMUSE (Domeshek & 

Kolodner, 1992) is a case library authoring tool that has been developed to allow easy construction of case libraries. Student- 
faculty teams have used it to create case libraries in the domains of architectural design and sustainable technology. While 
existing case libraries act as information resources, this authoring tool will allow students to construct their own case libraries 
to record the design problems that they solve. 

• Collaboration support: The McBAGEL screens themselves provide support for synchronous collaboration by giving the 
students a shared context for discussion. Our asynchronous collaboration software CaMBLE (Guzdial, Rappin, & Carlson, 
1995), based in principle on CSELE (Scardamalia et al., 1989), integrates information-gathering tools, communication tools, 
and applications into a collaborative environment. CaMTJJE provides a discussion environment into which the full range of 
text, graphics, spreadsheets, video, and so on that reside locally or on the Internet can be incorporated. It is designed to meet 
two goals. First, it serves as a collaboration and information indexing tool. Discussions are structured and annotated with links 
to material anywhere across the network. Second, it serves as a design support tool. Discussions about design problems can be 
annotated with links to actual ongoing designs. The discussion trace can then serve as a design rationale and a case study of a 
design. It allows students to collaborate in learning and problem solving by providing a facility for structured inter-group and 
intra-group communications that are archived, and by providing a way to share multimedia documents easily among 
collaborators. Like CSILE, CaMELE scaffolds collaboration through procedural facilitation. While electronic mail merely 
allows team members to share ideas, CaMELE helps them to organize their ideas into coherent arguments, relate their ideas to 
one another, and use resources across the network to support their arguments. CaMELE can be accessed via the World Wide 
Web. 

• Exploratory Simulations: We are developing a range of exploratory simulations (e.g., Rappin. Guzdial. Ludovice. & 
Realff, 1995) that enable students to learn through simulated experience. Key to these simulations are tight integration with 
real world problems that the students will be solving, and flexible specification of simulation choices to allow for creative and 
sophisticated simulation problem solution with immediate feedback. Simulations linked to the middle school science and 
math problems we are developing are being built with applications like the Logo Microworlds- on Macintosh computers. 



7. Promises,   Pitfalls  and   Research  Directions 

Our approach facilitates the acquisition of factual knowledge in the contexts in which it is likely to be used later in 
workplaces. This is accomplished by both the use of real-world problems in classroom activities and the provision of 
multiple real-world cases. Cases, being rich knowledge structures that explicate both conceptual and strategic knowledge, will 
allow the students to master concepts, principles and strategies in the course of attempting to solve problems. This should 
promote transfer. As cases will be connected to domain principles, the learner will be able to understand how knowledge is 
applied to problems, and this should in turn lead to the acquisition of flexible knowledge. Case libraries also facilitate the 
acquisition of prior examples to apply in later situations. The collaborative nature of student activities should facilitate the 
assimilation of new knowledge since it encourages articulation and intra-group communication. All these factors should 
together also result in longer term retention, and successful application of the learned knowledge beyond the classroom. 

The major pitfall that has been identified in the use of CBL is the inflexibility of the knowledge and strategies acquired 
(Williams, et. al., 1993). In the anchored instruction environment, when students were asked to solve a related problem, they 
often used the original solutions and did not appropriately adapt it to the new situation. When students were asked to predict 
the solution to "what-if' variants of the problem and received feedback via a simulation of the problem situation, transfer 
became more flexible as students developed more accurate causal models of the problems (Williams, 1994). In the McBAGEL 
approach, rather than having students revisit a single case, we have students revisit ideas from multiple cases both through the 
design problems that students work on and the cases in the case libraries. Students will reflect on, and articulate, how different 
cases are similar and different to the problems. The problems that students solve are design problems which we believe require 
a different variety of reasoning strategies from the diagnostic problems traditionally used in PBL. The design cases that are 
made available to students to use during problem solving contain information both in the form of problem-solution pairings 
as well as elaborations such as causal models and theoretic justifications. All these factors ought to enable students to 
construct flexible and coherent knowledge structures and grasp multiple problem-solving strategies. McBAGEL also provides 
a long-term record of students' problem-solving thus allowing them to revisit their earlier experiences in later efforts. 

Issues of knowledge flexibility can be addressed by attending to the kinds of learning strategies encouraged in CBL. Bassok and 
Holyoak (1993) make a distinction between top-down and bottom-up learning. Top-down learning depends on prior knowledge 
of the domain coupled with active learning strategies that allow the learner to make principled judgments about the importance 
of features to the learner's goals. Bottom-up learning refers to inductive learning by examples. Bottom-up learning requires that 
students make generalizations from multiple examples. The learners do not engage in deep analysis of principles and may end 
up knowing sets of correlated features (including some that are irrelevant). To the extent that top-down learning enables 
learners to successfully identify relevant but non obvious features of a problem, more flexible transfer will be promoted 
(Bassok & Holyoak. 1993; Patel & Kaufman, 1993). Several studies have demonstrated that PBL students are likely to take a 
hypothesis-driven approach to their own learning and thinking (Hmelo, 1994; Hmelo, Gotterer, & Bransford 1994; Patel. 
Groen, & Norman. 1993). Research on learning and transfer suggests that a hypothesis-driven or top-down approach to 
learning may be advantageous (Chi, Bassok, Reimann, Lewis, & Glaser, 1989; Bassok & Holyoak, 1993). If the domain 
knowledge is fragmented however, students may need to have their attention directed to goal-relevant aspects of the problem. 

The McBAGEL approach, as it is being further refined and implemented, provides a research opportunity to test our theories of 
learning. There are two sets of interrelated issues: those related to knowledge and strategy use and those related to the 
technology that we will use to scaffold learning and transfer. The issues of flexible knowledge and strategy use are critical for 
understanding the success of this approach. Understanding the way that learners use cases to help them in problem-solving is 
an important research issue that will help us develop activities that facilitate using cases as effective learning tools. There are 
also technology issues related to the types of scaffolding and tools provided for the students. We need to better understand 
how these tools are best integrated and implemented from a cognitive perspective. Some of the related questions which we plan 
to address as pan of our ongoing research are the following. What are students learning? What are the different ways in which 
cases can be used most effectively in the classroom, in conjunction with student-centered problem solving activities? How can 
the influence of cases in promoting learning, integration, retention and transfer be accurately measured? What are the 
disadvantages of using cases and problems in instruction? What makes for an effective case? How can technology be used for 
effective and adaptive scaffolding? What kinds of student-teacher, student-student, student-computer and teacher-computer 
interactions should be supported? 

8. Conclusion 

Case-based learning environments have the potential for helping students to construct usable knowledge and to learn strategies 
that prepare them for a lifetime of learning. To afford generative learning, the environments need to contain rich sources of 
information. In addition, opportunities for student articulation and reflection must be provided to help students think deeply 
about the problems they are working on and to learn to go beyond the problems given. The McBAGEL approach addresses 
these issues by situating learning in design problems and by providing an integrated learning environment that contains case 
libraries, simulations, and other tools for learning. By combining the best aspects of other CBL models with new ideas, and by 



drawing from research in Education, Cognitive Psychology and Case-Based Reasoning, McB AGEL represents a multi- 
disciplinary approach to innovation in educational practice. 
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Abstract 

A major part of the reasoning designers do involves accessing old cases and using the lessons 
learned in those situations to address new problems. DesignMuse is a shell for creating on-line case 
libraries with built-in browsing capabilities that make cases available to design students in a natural 
way while they are designing. Archie-2 is the most extensive case library built with DesignMuse, 
and has been used in Georgia Tech's design studios. Archie-2 provides flexible access to 
multimedia case representations of buildings: libraries, courthouses and skyscrapers. Susie is a 
student-built library containing cases about sustainable technology and development. These two 
case libraries illustrate the two ways in which we believe case libraries can enhance learning in the 
classroom: (1) by using the case library to search for, analyze, compare and contrast cases that are 
similar to the problems students are solving, which will improve their problem solving skills, and 
(2) by constructing cases and building a library after doing research in a domain, which will help 
them learn domain knowledge. This paper describes our classroom experiences with these two 
DesignMuse-based case libraries and work in progress on enhancing various functionalities of these 
libraries based on feedback from students and informal classroom observations. 

1.  Introduction 

Design is an activity that requires not only knowledge of facts and fundamentals, but also the spark 
of creativity and insight. In order to generate innovative solutions to design problems, expert 
designers often turn to the history of failed as well as successful designs as an invaluable 
information resource. For novice designers, such information is even more valuable because for 
them it can serve not only as a source of ideas but also teaches them about the impact that good and 
bad designs have had in the past, different perspectives that were brought to bear on trend-setting 
designs, and the plethora of issues that arise during design. Thus, previous designs can be a rich 
source of ideas and inspiration in the early stage of design when the design problem is still open- 
ended and evolving. Another fact to note is that design in the real world has increasingly become a 
multi-disciplinary group-oriented process in which multiple perspectives converge - aesthetic, 
ergonomic, economic, technical and social, to name a few. Often, successfully addressing issues 
that arise during design requires an understanding of the interactions between those issues and an 
ability to arrive at appropriate tradeoffs. All these strongly suggest that collecting, organizing, 
indexing and presenting design cases structured in a way that highlights the relevant issues involved 
and lessons that can be learned from them, and making these available as an on-line library of 
design experiences, can be a very powerful aid for both design students and expert designers. 
Therefore, design case libraries and case library authoring tools have become an important part of 
the design education initiative of EduTech Institute, Georgia Tech. The use of case libraries for 
education derives from research on case-based reasoning [5], the use of past experiences to solve 
current problems. The central idea in case-based reasoning is that cases facilitate the solution of new 
problems by suggesting applicable past solutions, pointing the way out of quandaries, allowing 
potential failures and errors to be anticipated and avoided, and focusing attention on relevant issues. 

We believe that design cases can be used in two ways to help students become better designers and 
learn domain knowledge well: (1) Analyzing past cases while solving design problems can help 
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students do design better in a variety of ways: cases illustrate how design problems have been 
solved in the past, provide warnings about potential pitfalls, focus attention on significant issues, 
suggest potential solutions, and guide adaptation of earlier solutions to fit the current problem; (2) 
Constructing new case libraries for others to use helps students acquire deep knowledge of a 
domain - since cases are actual instances that illustrate the application of knowledge, knowledge 
thus learned should be transferable to new problems. Archie-2 and Susie are two case libraries 
which illustrate these two roles. In this paper we describe our classroom experiences with these two 
libraries and current work on enhancing various functionalities of these libraries based on feedback 
from students and informal classroom observations. 

2. DesignMuse and Case Libraries 
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Figure 1. Case Presentation Window 

DesignMuse [3] is a case library authoring tool that allows easy construction of structured, indexed 
and searchable databases of analyzed case studies for students to learn from. DesignMuse builds 
functionalities for indexing, organizing and presenting case information into the case libraries 
created from it. It also provides graphical user interfaces for specifying search probes, for 
presenting case information and for modifying/extending the case library. Cases are structured in 
terms of stories, problems, responses and design overviews. These four pieces of information are 
presented in four panes of a case presentation window as shown in Figure 1. Stories help students 
discover which issues they should be considering and help them to anticipate the results of carrying 
out proposed solutions. Stories are associated with general problems and responses they illustrate. 
The presentation format - a story flanked on the left by the problem and on the right by the response 
- is intended to help students take the abstraction step from specific stories to the general problem- 
solution pairs that the stories illustrate (and vice versa). Design overviews, appearing in the 
lowermost pane of the case presentation window, provide appropriate context for stories, problems 



and responses. Hypertext links between design overviews and stories, and among stories, 
problems and responses allow flexible navigation and browsing. 

DesignMuse has been used both by experts (faculty, graduate students and working engineers) to 
construct case libraries for use in design studios and by novice students to construct prototype case 
libraries. Archie-2, described in more detail later, is an example of the former. DesignMuse was 
also used by students in a graduate level case-based reasoning course in two quarters. In the first 
quarter (Winter 1994), groups of students produced six different sample case libraries: (1) a 
building design case library, (2) a re-design advisor that provides advice about replacing metal 
aircraft parts with composites, (3) a case guide to formulating design problems in the decision 
support problem framework, (4) an on-line failure catalogue for diagnosing satellite failures, (5) an 
advisor for car purchase decisions, and (6) a satellite command management system. During the 
second quarter of use (Winter 1995) DesignMuse was used.by three groups of students to create 
three parts of a single case library on the topic of sustainable technology and development. One 
group focused on cases of industrial pollution, another on issues of sustainable development and 
resource management, and the third on industrial accidents. Susie (SUStainable technology 
Interactive Education) is the case library that resulted from merging these three parts. 

Archie-2 [2] is a building design case library . It provides flexible access to multimedia 
representations of building designs. Each building has been evaluated in a post-occupancy 
evaluation, and is represented as a series of plans/montages, design issues/problems that came up 
during its design, construction and use, appropriate responses to those issues/problems, and stories 
that illustrate how various design issues/problems were addressed. Each such "chunk" of 
information is indexed by the physical or functional part of the building it is associated with and the 
design issues it addresses. This case library contains cases about the design of several existing 
libraries and courthouses in the Atlanta area. Its database currently consists of 6 library designs, 3 
courthouse designs, 67 problems, 187 stories, and 138 responses. Each story in this library 
discusses some problem that arose in a building design, the way that the problem was addressed, 
and the outcomes that resulted. Archie-2 was used once in a graduate-level design studio in the 
College of Architecture. A graduate level class on human-computer interface design at the College 
of Computing conducted a formal evaluation of the usability of Archie-2's interface. We are now in 
the process of extending the library by adding cases of tall building designs and building 
modifications for handicapped accessibility. This extended library will be tested in a graduate-level 
architectural design studio in the 1995-96 academic year. 

Susie is a library of cases about pollution, the natural environment and industrial accidents that 
highlight issues of sustainable technology and development. It illustrates a different use of case 
libraries in classrooms: learning, not by perusing an existing library, but instead by creating one. 
Graduate students in a course on case-based reasoning in the College of Computing built Susie in 
the Winter Quarter of 1995. It holds 11 large cases, with 30 problems, 41 stories and 28 responses. 
Its individual stories teach lessons about making technology and development decisions that take 
into account environmental and ethical concerns as well as the more traditional technological and 
economic issues. Figure 1 shows the case presentation window of Susie with a story and 
accompanying problem and response statements about the Three Mile Island accident. 

3. Lessons from Classroom Experiences 

3.1. Broadening the Content and Presentation of Information 

How can cases be organized and presented in ways that make it easy to learn from them'.' 
DesignMuse-based case libraries provide one answer to this question in terms of individual 
information chunks - design overviews, problems, stories and responses. Another, for example, is 
the "multimedia book" style of engineering design cases developed at the University of California. 
Berkeley [4]. The majority of information contained in our case libraries are specific instances - 



e.g., specific designs and stories. The only relatively abstract information provided are problem and 
response statements which generalize the lessons to be drawn from specific stories. During the 
course of extending Archie-2 for use in a tall building design studio, the faculty member in charge 
of this studio felt that having the case library also present introductory tutorial material as well as 
specific cases of existing taS buildings would make it more useful to students. This studio consists 
of two phases: introducing students to the methods, technologies, systems and issues of tall 
building design, followed by a design project. If tutorial materials were to be incorporated into 
Archie-2, it was felt that students could use the case library in both phases instead of only during 
the design project. Work is therefore currently underway to collect and structure introductory 
materials in the form of problems, stories, responses and designs connected to a "generic tall 
building case" in the library. In this case, explanatory materials "that further illustrate a problem- 
response pair will replace actual stories, and generic drawings and design guidelines for a building 
will replace the specific floor plans or montages that typically appear in the design pane (the lowest 
pane in Figure 1) of the case presentation window. Another extension to Archie-2 in progress is the 
addition of designs for handicapped accessibility as mandated by the Americans with Disabilities 
Act (ADA). The case information being added is about redesign of existing'buildings to conform to 
ADA regulations, not new building designs. This has prompted us to take a broader view of the 
design pane of the case presentation window and to use it to present information such as redesigns 
of building parts like entry ports and guidelines or regulations that governed the redesigns. 

While students were constructing Susie, the one aspect they had the most difficulty'with was the 
extraction of relevant information from the resource materials on sustainable development and 
technology they were provided with (e.g., newspaper articles, research papers, project reports, 
reports issued by agencies such as the EPA and Greenpeace) and structuring that information in the 
form of "chunks" that DesignMuse-based case libraries require - problems, stories, responses and 
designs. While problems, responses and illustrative stories lend themselves naturally to describing 
almost any situation, design information is not equally applicable or relevant. For example, one 
sustainable development case dealt with how to manage forested patches of land called 
"windbreaks" to prevent soil erosion as well as sustain game for sports hunters. This case has no 
design component to it; its focus is environmental management. Therefore it was decided to change 
the design pane to an overview pane that may contain any kind of contextual information - this 
could be an overview, a layout diagram, a time-line or similar graphical/textual device that provides 
sufficient context for the problems, stories and responses associated with a case. Thus, Susie 
displays pie-charts, tables and time-lines in this pane instead of the floor plans and montages of 
Archie-2. 

3.2. Indexing: Vocabulary, Organization and Presentation 

Case libraries use a structured indexing vocabulary for tagging information, usually created based 
on an expert's understanding of the domain. Users (e.g., students) use the indexes for two 
purposes - to construct a probe or query during database search and to construct a set of descriptive 
indexes for new cases during library construction. We have found that students are not always 
familiar with the necessarily technical terms appearing in the indexing vocabulary. This impedes 
their ability to conduct useful searches and to index new information appropriately. This is 
motivating the addition of a glossary to the library. 

Students' efforts in constructing Susie highlighted a need to broaden the indexing system. 
DesignMuse was originally buüt to author "design" case libraries. Therefore it was felt that the 
indexing system of these case libraries should reflect the salient dimensions of artifact design - 
where (physical and functional components), what (design issues), when (lifecycle of the artifact) 
and who (stakeholders). Accordingly, the indexing system classifies all index terms into these 
classes and organizes them in a hierarchical structure for efficient searching. However, cases of 
sustainable development and technology required a different cut on indexes. These cases needed to 
be characterized in terms of the type of a case, its spatio-temporal scope, the nature of problems 



encountered, the nature of possible solutions, affected parties, lifecycle stages (for technology 
related cases) and relevant issues. What we have discovered is that as case libraries expand into 
domains that go beyond design, the organizing structure and vocabulary of the indexing system can 
change drastically. So flexibility to change the structure of the indexing system as well as the 
vocabulary ought to be built into the case libraries. On the other hand, giving complete freedom to 
determine this structure to case library designers may result in the indexes reflecting the personal 
and professional idiosyncrasies of the designers which need not be apparent to the users. This will 
diminish the utility of the indexes. This is a tradeoff, the implications of which are yet to be 
investigated in classroom settings. 

At present, the system presents its indexing vocabulary to users as a series of nested pop-up menus 
that faithfully reflect its underlying hierarchical structure. We have observed that the students get 
confused by the organization of the hierarchy because they are not familiar with the search and 
matching algorithms that exploit this hierarchical structure. In fact, students do not need to see this 
structure at all. Besides, the multiple levels of nested menus that this hierarchical structure 
engenders result in a cluttered set of pop-up menus that students find difficult to maneuver in. The 
solution we are implementing is to hide the hierarchy (but leave an option to see it if someone wants 
to) and instead to present the indexes in a more familiar form such as the indexes in a book. 

3.3. Software Integration 

Educational tools like case libraries can be integrated into classroom practice by either making them 
available for optional use by students or making their use mandatory in assignments. Our 
experience has been that either of these strategies does not fully engage the students. In the former, 
many students do not attempt to use the system. In the latter, many students use the system to the 
minimum extent necessary to get the assignments done. In either case, students do not exploit the 
full potential of the case libraries to facilitate their learning. We believe that in order to motivate and 
engage the students so that they derive the maximum benefit from case libraries, it is necessary to 
integrate their use with the rest of classroom activities. We are currently pursuing this idea in two 
ways. One is to integrate case libraries with software that supports design problem solving in other 
ways. In one project we are building an interactive problem solving system that the students will 
use to solve design problems, and integrating a case library with it so that one kind of feedback the 
problem solver will give students is to bring up the case library with a set of cases relevant to the 
issue they are pursuing at the time feedback was requested. This way students get started off with a 
set of interesting cases relevant to their problem, which should motivate them to search and explore 
further in the library. Another project in the College of Architecture seeks to integrate a sketch-pad 
with case libraries so that an architect could make sketches to guide the search for relevant cases and 
annotate the retrieved information. A broader approach to integration is to embed case libraries in a 
larger computer-based learning and work environment with many other components. Integrating a 
case library into an electronic workspace that provides tools for communication, collaborative work, 
simulation, etc. as well, for example, will facilitate the use of cases for multiple purposes. Once 
relevant cases have been found by searching the case library, that information can be immediately be 
imported into the workspace and used to solve some aspect of the design problem at hand. Cases 
can also be imported into collaborative discourse or argumentation. For example, cases provide one 
type of information a student might point to as justification for some argument, as a potential 
alternative to a design decision, or as a rebuttal to someone else's design decision. 

3.4. Curriculum Integration 

There is ongoing work in terms of further curricular use of case libraries. Archie-2, the architectural 
case library, is currently being extended to include cases about handicapped accessibility and tall 
building designs. This extended library will be fielded in a graduate-level design studio in the 
College of Architecture in Fall 1995. Work on the creation of a new case library consisting of 
product design cases has just begun. This library will be used in early 1996 in a collaborative 



product development course being offered jointly by the Industrial Design Program and School of 
Management at Georgia Tech. Another case library documenting Olympics construction projects in 
the Tech campus, for use in a design course to be offered jointly by Architecture and Civil 
Engineering in 1996, is also underway. Finally, in the Spring of 1995, five groups of students in a 
sustainable technology course constructed five case studies on paper: disinfection of waste water, 
pulp fiction, the role of PVC, pharmaceuticals with chlorine, and sustainability of chlorine use with 
refrigeration. We plan to use these cases as seed materials for students to extend Susie during the 
next offering of this course. 

4. Case Libraries in Design Education 

How can students learn from case libraries? Cases, being rich knowledge structures that explicate 
both conceptual and strategic knowledge, will allow students to master concepts, principles and 
strategies in the course of attempting to solve problems. This will promote transfer. As cases will be 
connected to domain principles, learners understand how knowledge is applied to problems, and 
this should in turn lead to the acquisition of flexible knowledge. Students will analyze multiple 
cases from the case library and reflect on how these cases are similar and different to the problems 
they are solving. Case libraries also facilitate the acquisition of prior examples to apply in later 
situations. There are two different and equally important ways in which students will use case 
libraries. One is by searching for, analyzing, comparing and contrasting cases that are similar to the 
problems they need to solve. The other is by constructing cases from domain knowledge and from 
their problem solving experiences and incorporating these into the case libraries. 

Use of case libraries can also scaffold skills of resource identification and use. The goal of 
scaffolding is to help students to carry out a reasoning process or achieve a goal that they would not 
be able to do without help, and to facilitate learning to achieve the goal without support [1]. Case 
libraries support student exploration by providing multiple ways of finding and navigating among 
cases. Students might begin looking at one story of interest and explore related stories by a number 
of different dimensions (e.g., same subsystem being designed, similar challenges, similar 
solutions), or begin by browsing all the stories about the same subsystem, or one of a number of 
other dimensions. The skill of searching for relevant information can be further scaffolded by 
presenting the library index in intuitive formats and encouraging students to construct and 
experiment with complex search probes from the index terms. 
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TIXO^ m tt Vb,e andy,iCal SkilU that haW bw" >""*d   L appledJd «Ted The problem,. usually h,fhly structured and. there is little-freedom in developing neTdeSns' 

an     h T den". ■  Tf " '" T*"** ^ * »~»1 **» ÄÄ 

:P;ä^^ 
Altho,^ent,yearS' C°mpUters and Computer-based tools have entered the modern classroom 
Although interactive computing systems potentially offer a much more flexible envtnZt 

: e^tsigers ibave bad snrprisinfiittk imp*ct«** «*«°™ ioi leacning design skills.   Current computer-a ded methods for tMrhin« ct.u        u   • 
earning domain know.edge and analytical approaches, JitJl knotdg ' "l^ tauX 

me -lowletS" tT CTer;ia,'y aVailaWe «»>»«-'»«• d«ign tl   upp   "out; 
Zag   ::^      Vruf .Vesf "   f""?• » d J^ n™«^ ™»P™"S. and'constraj 

!nd refin r,H "T     " '"""^ desree of "«"^V * fetching, analyzing and refining design solutions, these tools do not suooort the "hi.k 1.™1» ■,anal>zmS; 

and   galnst spec]fi   design chojces ,n ^ g.ven ^ S^fÖGTTTMOstow 

and       h? Tra/"Ve S>'Stem thM Pr°VideS * <"«•*« «cess to a catalogofZ   leZ 
and enables the des.gner to replay the derivational traces of the past desfgns   In our own 

a"   fsed ^ntnt fo°   A8CH,ET"°R ^ - *  »^], an JSS^ case oased environment for supporting the teaching of architectural design. 

leJ"^ theSe,exPerimen,,id ^«™ apparently are very useful for supporting design pro*, 

learnin       A      "' '"""^ '° be USed by f'«**<™*>. their utility for the tea hfog Ind 

To? olr^iXT"51,mited Tb 7 systems essantiaJly ^ - «Ä.™ 
experienced  LH

8
   ('•»•.P"™"ve objects and relations in the domain), and design 

Taj, H« ^'      T caSeS tLat SpeCify the Problem' the ^lotion, and the outcome of a 
past design experience,. Some of these also provide a kind of rat,onale for the pal  de ,gn. 



For example, JANUS provides arguments for specific design choices in the past designs BOG 
ART provides the derivational traces of the past designs  and A«Tpr Qfsl&ns' Ü0G' 
theevo.ution of the des,gn through cycles of design ^ ^Ät^* 

memory of pa« designcases and associated design rationales evidently helps de i*ner in 
solv,ng new des,gn problems in a give» domain. Further, in contrast toLdfionJrnetnods 

context7 $TmS 0fa a,deSigMr <W*™«« '° l«m domain knowkdgT n the context of concrete design examples and problems. 8 

,i J^T"' 'hes\f stemf d° not Provide potential nsers with access to knowledge of de 

s?ttt2 n^be^::^ it- t££?%r 
verification, and what problem-solving methods are useful L\M e.g.   design 

»,ve .mnlation for the task JZ£$£Z£ This^Äes 'no ^ 
valid for all users.  In part.cular. it appears invalid in the case of novice desimers s uchl! 

addition to the learning of domain knowkdge t7des^n ca^s. ? "*"* " 

desienr^"1011811 ""*! S>S,emS ""^ aCCeSS t0 some ki°d °' ^»»ale for the past designs, they do not provide potential users with hieh-level !„„„,„ ,„ Pf 
reasoning activity involved in the creation of the curen« de  iTheJl Z^'"1 "T 
as a problem-solving activity and assume that the iJl^es^ZlZtr^JTT" 

expenences.   We beheve that a computing environment for teaching design must »rov de 

ah:Äl::,Ä=^^^^ 
add™ SrOUP 1 teVd-Ping an iDteractive imputing environment caüed CANAH-CHAB

1
 to 

thT H Jtr P">W«n-»lymg methods, and (a) enables reflection both durin« and after 

Ä u^0sC,esS;ha?TneolTtTk 7 "T*"*?"* ^ »PP«« ^«ems such L 

on   ? ■     T rStmg aut0nomous d-ign system called KRITIK [Goel 1991   ^9921 that 
operates in the domain of engineering devices. J 

svstlmfortalhlnLndT " " 7^ "™ °f ^ iMues in buÜdin* a computer-based 
«ue Thavl int   g ?\Tn* °r teSIgD StrategiCS aDd Skills' and t0 ascribe how these issues nave influenced the design of CAVAH PHAH  ,.,;,• ,.U ■ i , 

The next section hw.flx, H       t   0I
,
LA

T-;
AH

-
CHAB

' 
whicn is presently under development. 

_*Miext section briefly describes the KRITIK and ASKJEF systems from which CANAH- 

1 "Canah" and "chab" are Mayan words that roughly translate to -to learn" and "to des.gn," respectively. 



CHAB evolves. Section 3 discusses some of the issues that ,ri„ 
and leanung of design strategies and skills, ^S^t^ZZZ^"^ 
to these .ssues. Section 5 outlines the current status of ZZ, h^"« •■> regard 
We condnde with a discussion that relates „™ ^Ä^1^""<M* 
tentative cone usinn« Ier research and draws some 

mg 
ird 
os- 

tentative conclusions. ~~~"~ ~" ""* W'ia earUer research and draws some 

2    Background 

1993], [Pearce Ä^Ä^^ ? ^ ^ fGod " "' 
and autonomous design problem solving u ]' ^t™ "* Govind^J 1994]) 
Chandrasekaran H»? ÄX^ÄS T' -^ ^ ^ 
on the ASKJEF system, which interactively sup o£ oftite^in dest^ • "^ 
human-machine interfaces and the KRITTv . ""7*" engmeers m designing simple 
engineering devices.   W  " f^^ **« simple 
briefly describe the two systems in this section   w! " n KRITIK>n this paper, we 
in the next section. ^ ^ W'U fetUrn t0 our work on CANAH-CHAB 

2.1    KRITIK 

^-of e^ a°d ^ing system that operates in the 

the user's specification of th      net   n    l^if del"" "d        T*"*"" " ^ " ^ 
of the structure of a device that »1«        f r    ? * " °UtpUt a descriPti°n 
in solving design prob ems Vel^T^ T^ * "*> multiPle ^s of knowledge 
(SBF) models of iLÄÄ i     W     ^ T* ""* ^^"^^ 
case is indexed by the funclns dete^ '5 f .^ CMes ^^ work" A **i«n 
model for the storeddesign GilT * t- ^ aD<1 "** M an index iDt0 the SBF 
the functional specifica" 0^ othe nroM ^ ^ ' KRITIK "^ Jt by fim eIaboratinS » 
delivers the func^n s^ ^s^ £ ^ÄT ^T^ * *"* ^ 
the structure of the retrieved dein Z T tJ?t,

,deiltlfi« candidate modifications to 
required nu>difica^ ^ f *« d«^ executes the 

SBF model of the retrieved d^gn to produce aSßTmodT? t ^ "* ^ the 

system then evaluates the candidate de~« bv ouSft^vf ^ ^ date design' The 

the design fails then KRITIK at emnrfr       ^    q ly Slmulat,ng the SBF model.  If 
SBF model of theL de Jzn «aTal "f"*" ^ V* ^^ then KRITIK uses ^ 
design case and assorted SBF 11 exPlan^ion to learn the indices for storing the new 
future. m0del m mem0ry' aDd Stores the™ for potential reuse in the 

-^^^^^^s^^^Z^e aDtf S °n f31SD Pr°blem "^' A problem-solving task in thi, fr?™        t        the ^amework for analyzing problem solving. 

- the informal P" ^ ^ H^ o^S^e = TI 



methods, each of which decomposes it into a set of simpler subtasks. A method is specified 
by the subtasks it sets up, the control it exercises over their processing, and the knowledge 
it uses. The subtasks into which a method decomposes a task can, in turn, be accomplished 
by other methods, or, if the appropriate knowledge is available, they can be solved directly. 
This enables KRITIK to opportunistically select a problem-solving method depending on the 
current subtask it is addressing. Since the system may select different methods for different 
subtasks, this enables KRITIK to integrate several reasoning strategies such as case-based 
and model-based reasoning and to shift from one strategy to another depending on the needs 
of the current subtask. KRITIK's task structure for design is illustrated in Figure  1. 
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Figure 1: KRITIK 's Task Structure. 

KRITIK's SBF models of devices capture a different component of the design rationale 
trom the one provided by ASKJEF [Chandrasekaran, Goel, and Iwasaki 1993]. An SBF 
device model specifies the internal causal behaviors that explain how the structure of a 
dev.ce delivers its function. Figure 2 shows the SBF model of an electric circuit in KRITIK's 
memory.   Lee and Lai [1991] have noted that, in addition to the derivational component 



of the design rationale that provides a record of the design activity, the design rationale 
may also contain an explanation of how the designed artifact works. In other words one 
component of design rationale explains how the choices for the design components in the 
artifact and the relations between them together achieve the desired functionalities of the 
artifact. KRITIK'S case-specific SBF models express precisely this knowledge. We call this 
the behavior-centered component of the design rationale. 
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Figure 2: SBF Model of an Electrical Circuit in KRITIK's Memory. 

2.2    ASKJEF 

ASKJEF [Barber et al. 1992] is an interactive multimedia knowledge-based system for advis- 
ing software engineers on the design of human-machine interfaces. It uses text and graphics 
for acquiring information about design problems from the software engineer, and it uses 
text, graphics, animation, and voice for presenting several different kinds of knowledge to 



the engineer. In particular, the system provides a soft«»,. 
ory of design cases, feline, explanations, and tor£ Thesf 'dT ""th " "tt™1 m™" 
are cross-indexed in ASKjEfs memory „ „dicated m FiT, IT tyP'S o/kawl^ge 
au.« the useito uaviM'■ •'tou L '  .' •'--• r'gure  j.   1 bis cross-indexing ep 
':■•?« of !:ucvledge for nit^.^^'^l'^.:^ "*""** "*« *Ü 

• -v.'.rStäiiU   a  », %t; 
OV   (v derating and explaining previöus'des-gr -olmh^'^'-i^T"^ * »'••''■" "--urn by ,1 

engineer comprehend the principles of interfä d ; ° t f Pr°k'OTä- dn<i "" W»:«« '<* 
« —design gn,de,mes in the ^&%£Z5£Zfi?* " 

Figure 3: AsxJar's Knowledge Organization. 

prov,des a 'snapshot" in the temporal evltTon oi"th„V ," *"*■ Ent* v°™°° 
are annotated with design critiques that sp c"fv ± " ' ^ ^^ The diff««" ™™ns 
not work, and how these 'failures" were epa    J;"h '° * «""" VWSi°n' whlt did 

=gnhSe ;Ä^ÄS eich'inter! 
Erectly points to the need ;üt cmiL!« f n * ^^ 'Q PaSt ^ sit™'™< " 
the design rationale illustrates £^2 ' ^Tl ^ T"™' In ^^' «*« 
and the kinds of remedies used to fix ttm  it M "T*? m * PMt interface desi?n 

th,m. ,t helps to gu.de the critiquing of the current 



design. Secondly, des.gn rationale in ASKJEF supports design collaboration over time An 
interface design case specifies a design created by interface designers in the past and offers it 
for reuse m the present. It thus enables collaboration between the past and present interface 
designers. By making some of the reasoning behind the creation of a past interface design 
example more explicit, the design rationale for the past design enables the past designers 
to more effect.vely collaborate with the present designers in solving new interface design 
problems. 6 

3    Content of Learning 

C?^HRCHlKBanOnASKfJr " th€ baCkgr0Und' WC DOW tUrD t0 the maiD i5SUes in ^«ning 
rnn^nf   n , P"^ 1SSUCS in the desi«* <>f CANAH-CHAB is -what is the 
content of learning .n des.gn, i.e., what learning tasks should the system support?" Earlier 

1ST £K£I fF aDd A,RCHIET7°R ™^y «PP« the learning of domain 
knowledge. ASKJEF. for example, prov.des access to domain knowledge in the form of 
des,gn examples, design guidelines, and design rationales. This type of domain knowledge 

whT TTZ l\°: t0, aChifVe an>' degree °f design eXPertise iD a &™ domain. But 
what other kinds of des.gn knowledge should the interactive system enable a user to learn? 

CA^Tr^rimar-VSSUe V116 deSiSD °f an intCraCtive learnin« «vironment such as 
the Jv^m       ", "W    u,arVh? meth°dS °f learniDg in deS'1^ "•' what me^ods should 
ARCHIE??™ Y Tg °f design?"   EarIier systems such - ASKJEF «d ARCHIETlTOR take a two-pronged approach to this issue. First, they help a user learn 
domain knowledge in the process of solving design problems. They do not merely pr sent 
domain k       ledge f    memorization by the user   Instead) ^ dJ JJ^ 

oT xamTe §e " ^ "^ °f T^ * ^ ^^ S™^ ^ make tensive use of examples,   ases and stones to .llustrate and explain abstract domain concepts such as 

ÄTT f ldeliT T,hT meth°dS repreSeQt a *>«*« from the'tradit onal methods of learning domain knowledge. But what other methods of learning should the 
interactive system support? 8 snouia trie 

Of course  the design of an interactive system such as CANAH-CHAB also involves corn- 

er5      kDOwledSeJePu
resentati^ and organization, human-machine interaction and 

heset,, °rganiZatl0r1 and thuG USeu°f mUltimedia aDd »Wermedia. However, we believe that 
on ten TS    T^   7, " ^ ^^ be ade«uateIy ««wered until the issues of the 

content and methods of learning have been resolved to some degree. 

of tL^sZT^ !fT °u C°ntent an,d meth°dS °f learning dePeDd 0D the iDtende<* «sers of the svs em. Evidently both nov.ce and expert designers learn as they create new designs 
and they learn both rom their failed and successful design experiences   However, in general 
the content and methods of learning may differ depending on where a given user lies on the 
novice-expert continuum. Earlier systems such as ASKJEF and ARCHIETüTOR assume that 
tue user is an expert desIgn practitioner.  In contrast, CANAH-CHAB is intended for novice 
des.gners such as beginning design students in engineering colleges and its goal is to help 
the student make the transition from a novice designer to a design expert. Note that since 



4.1    Learning of Design Strategies 

The design of CANAH-CHAB incorporates more than on* m„,i, A t 
of functional knowledge of design Lks JZ^Z^?"££% ^ T* 
The first learning method is learning by observing [Winston 199»  t„ »?.'        K    u* ^""^ 
•he system illustrates and explains a design «ask or a nrohl''     , *^obsCT™S." 
an example. Design tasks and problem solv ne m«hod » K° "* rae'b°d by use of 

sometimes hard for design students to unte and ^ *■ ZlTjT" *" " 
environment to be able to illustrate a„,i       I •        • important for a computing 

this by using ^JlT^Z^Z^ ''7taSk °r Teth0d' WC Pr°POSe t0 d° 
examples because she can obser «them 71Z *"» ««. and methods from such 

to ground the acquired knowledge in cZe^xamp.eT ^ "**"• "^ ^ h" 

This brings us to the benefits of modeling Knnw. A..- 
CHAB. Since KH,TIK is an autonomous Sno^ ,"*" Pt°blem Solvin« in C*^H. 
its problem solving on different dein nrohlf P i « "' " e°ableS us s,ore "«« of 
indexed by the types of t J „tm^hods Z L In!,? 7^ ^ tt— «■ b* 
user asks the system to illustrate a gZd si tik or m"^i" £*"*"-«*"• W^en a 
to ,ts memory of traces of problem-solvin. „£d" • T ' CANAH

'
CHA

» «"■ refer 
appropriate example. .Vote that cZZCHA™ °,   " '° "^ the Us« with » 
problem-solving episode with wLch'o IsUate?^ "77^ ^ *"* '° Snd ^ rek™ 
it can give Kan« a problem to solve It run t me? 7 n 'gn '** " me'hod' In ,his ««. 
strategy, record the trace of how KR™ solved u" P°t«?i*U' iUuS,™e «"» «" « 
the user. This represents an a Id St hat s *1Ü 7K ^ ^ ^ this ««• "> 
as a model of a design problem solver I thtwl Km« " T* " ,aUt°°°™us s--tem 
be used to complement CANAH-CHAB'S knowledgT ProbI«»ol™>« capability can 

'«^ÄnterÄ^? °f fU°Cti0nJ Md "»««* "-»ledge is 
actually use a given problem-so.vL meldt r""?8 "*"»»»« <™»'« '^ user to 
method however raises «wo iss«     m?T 7 7 "T* °' " ^ Pr°b,em- This 'earning 
tasks and problem-solving methods  and ffi   bZ       " ^7"' "* kn°*d«e « W 
be accessed when needed   Clearly whhoui      r TT '*' kn°Wkd«e » ,bat !t <» 
cannot communicate a desfgnTask o   aIrZ   " ,    ^7'™ re"»«™««ion, a system 

project c^led AUTOCNOST.? taÄÄ " * T   '7 **«" 
as abstract devices and how their functioning r.ihA       1 7   V'eWd pr°Wem solvers 

behavior.function (SBF) models Ä"Äü^ ? "* """^ 
work on KRITIK led to the development of a SBF ?7       7     PbyS'Cal devices' Just Uke 

knowledge of the functioning of a phvs CJ1^ ' s *T! ** T""**'" «P*** 
led to the development of a related SBF7 r y ™rk °D A»TOGONOSTIC has 
tasks and methods empby^ *. !ZÄ" ^ SP,eCifyiag kn°""ed«e of th- —omng 
we are using this SBF Uua« to soecifv t e 7 " S°IV'°S * Pr°blem' ,n CANAR-CHAR* 
way, the design of CANAH^HT» ,!J     j SD strate8ies tbat KRITIK uses,  in this 

Of m 
CANAH-C"AB takes advantage of the task-structure analysis of KR"TIK 

The s "em^I^dt^tTa"kS ^^1^^ »«bod. is no. enough. 



•ng [God and Callamine 1991] [God er 2 S^A^T'T? a°d »«"■"««I -aso„. 
memory is indexed by the tasks for which is us^T ElcT T,™'hod in ,his ™hod 
«he snbtasks in turn act as probes into the m«hod rtm„ry "" "" "P ^^ ^ 

methods relevant to the design p ob.em spe^ed Ü^T TV "* <>roW- -Iving 
»ivtag method sets up its own subtasks ic!k l    if,   Further' since «*h Problem 
I™. As the student sets up sub a£T he y*„! tf f" "f^"* th< *™ «*£ 
— in a s.milar mannet, ,,, the taskT^ SÄ3^ * * 

4.1.1    Sample Interaction with CANAH-CHAB 

To illustrate how CANAH CHAR m J 
ütK« «• austräte them', J%!g£^!£ «■""? Prob.em-solv.ng methods. 

-;^crder,hehypotheticdsLatiool-U^=- 

'^Ä'Ä^-^ use, to understand and leatn 

method with a specific example, andITps^e stud t™ "V"^* «<« case-based 
her own problem. For example, it helps Z s.ude ", '° "^ ** ^'^^ method '»' 
Captation, evaluation and Lage ^^^Jl^^^ °< ~ «*«!. 

4-2    Learning of Design Skills 

The design oi CXNAU m *n < 

vironments because i?^S ^7 -ting systems and leatning en- 

knowledge as described in the previous section It *" T*"8," in a<Wition t0 d°main 
how to .nable a student to become mot skiUed * USTM7 ' *"" °Pen the '"» «f 
knowledge. By this we mean, how to eVab llh ' Td* deS'gn Strate«ies and «»main 
among design decisionSi t0 tacotpJ°J£* *eJf™ «• cognize intetdependencies 

ucts, eto These abilities are needed so hi 1 s^nf '° reC°gniZe !mUy d^" ^ 

«r.t.g.c and domain knowledge from thsv 1^"udeM'° herring CANAH-CHAB s 

of reference and contextudize this Jowtdje IThe, d™ "" "> h" °W° '- 
teflecon process would help the stud™ i„    '°   !  des'«n

1 «I*"™««.   Io addit.on. the 
student m generatmg explanations and justifications for 

10 



PfO«L«M «PeCOTCATtON 
I N«tO A OCVICa THAT WILL COOL NITRIC ACIO CWOM TBMP«R»TUH« T, -~, ,_ 
■ HAVK    HNO3  " l-OCATO* N, AMD T«M««ATU«, T^M,■,',ATU',■ T1 *> ^««..«ATU«. Ta. 
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SYSTEMi 
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SYSTEM: 
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Figure 4: User's interaction with CANAH-CHAB 

the design decisions, and strategies for recovering from reasoning errors and design failures 
This would help the student in making explicit knowledge of design ^liZ  J^Z 
errors, and deszgn failures, which otherwise may remain tacit and unsUted ' * 

The centrality of reflection to learning in problem-solving situations has been established 

heloXT 6-     mikrly' refleCtion °n iDStances of succes^l Problem solving 
help the designer to try to repeat this success in similar situations in the future^ Tn he 
context of des.gn Schoen [1987] has argued that reflection is a fundamental con i'tuent of 
des.gn problem solvmg and learning.   Reflection can help a student become aTo^e"kId 
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Figure 7: Task-centered component of design rationale (abstract). 
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Figure 8: Task-centered component of design rationale (example). 

the artifact-centered component potentially enables reflection on the processes of design 
criticism, redesign etc. 

The fourth, issue-centered view, is at "grain-size" smaller than the first three. While it 
specifies the design rationale at a finer level, it makes no distinction between the three senses 
of -'design," and provides no formal characterization of an "issue." The current design of 
CANAH-CHAB is intended to support the first three views of design rationale. 

5    Current Status 

We are currently developing the CANAH-CHAB system along the lines described above. We 
are constructing CANAH-CHAB on a Sun Sparestation using the Common Lisp Object Svstem 
and the Garnet interface development tool. Further, we are building CANAH-CHAB on "top"' 

14 
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of the already operational KRITIK w.t.m   TU-   • , 

CHAB with the capability olKTiJn^V, KR
"

1K
 ™ "^ C^"- 

envirouments typically are incapable of Ltn I?' """""S systems Md '<*r°ing 
typicaUy support only" the Ä^ÄEÄ^"1'**: ^ 'S ^ ** 
memory of this knowled contra.t  OTAH C"AB1I fo,   ?/""*' - « «ternal 
of des.gn strategies and skills i„ addition to the lew       , ! '" ,UPP°rt the IM™"<S 

cases Further, it ,s intended to use n, 1 "s tc^ZZtT^ ^'^ "" ^ 
Ming for some of these tasks. Hence it needs t„ h !^ £ 7 °bserv">Sand learning by 
designs on its own; ta pro^il J^ ^^'^ °' ^^ »*««<&£ 

6    Concluding Discussion 

^^tASA'TS^i'?* TV""* -~f« * 
m computing environments off«, op»Z£t fe T' ^ PaPer'" FleXibiliW ^««n« 
and growth. In addition, this Li bilk'enable "" °' "T *' n«TO*"«. *nd evolution 
and collaborative work environments   A I       ""* '"   °'h M'f"!>aced individualized 
potent.ally becomes «l^n»^"^^ "^'W mui,i™di' ™vi™ 
traditional classroom settings. "S^"5' md in some «** replaces, the 

These observations have recently led t„ tk. j i 
computer-based systems for supporting conceptualdf"T™", * Kmal ^-'mental 
own earlier work, e.g., ARCHIE ASKJEFlP1.gn ('*' JAKUS' BoGART. *»d our 
of design skills, these ystemsLm Urn ted in 7, ""^^ °f WaChi°« "d >«™ng 
to domain knowledge, but no to L UonlL' T' T "^ ^ "*' "ro"de -cess 
knowledge of generic design method Sei„ni^ T™ desisi1 tasks *>d ""<«*' 
solving activity, but no. afo 2 abating acuity   ' ""* **» O™^ " * *- 

Our experience with ASKJEF and ARCHTPTIT,-,,. 

pntmg environments for enabline I'tl        u     T" """ before we deve<op com- 
the issues of the content andmXds ^iZ       T^ S, *' « ^ <° "H ««nine 
lyzed some of these issues and have dtcibed bow ,       I" ^ P^ "« ^ »- 
C—CHAR. ,n parfcular our >»^™ ™C£Z£^^ **» * 
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