Miscellaneous Paper CHL-97-2 March 1997

US Army Corps of Engineers Waterways Experiment

Station

Evaluation of Wave Transmission Characteristics of OSPREY Wave Power Plant for Noyo Bay, California

by Jeffrey A. Melby, WES William Appleton, San Francisco District

Approved For Public Release; Distribution Is Unlimited

19970430 048

DTIC QUALITY INSPECTED 3

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

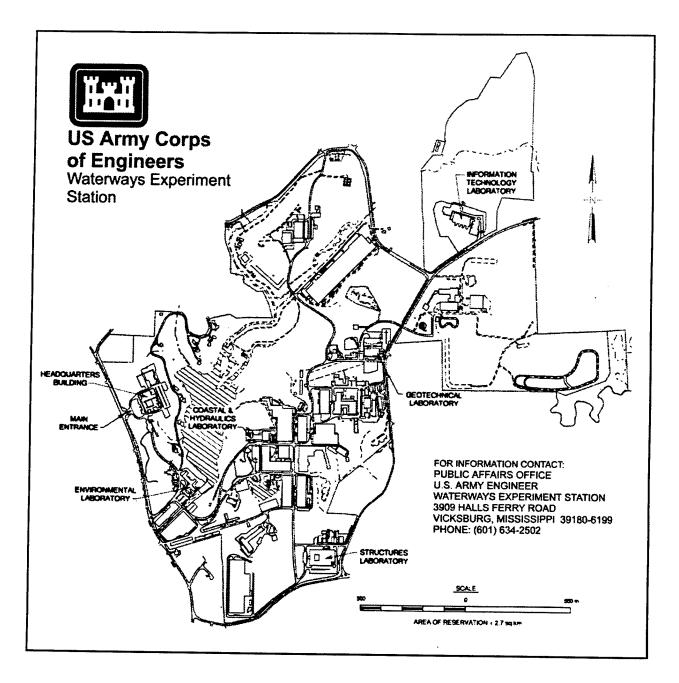
Miscellaneous Paper CHL-97-2 March 1997

Evaluation of Wave Transmission Characteristics of OSPREY Wave Power Plant for Noyo Bay, California

by Jeffrey A. Melby

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

William Appleton


U.S. Army Engineer District, San Francisco 333 Market Street San Francisco, CA 94105-1905

Final report

Approved for public release; distribution is unlimited

DTIC QUALITY INSPECTED 3

Prepared for U.S. Army Engineer District, San Francisco San Francisco, CA 94105-1905

Waterways Experiment Station Cataloging-in-Publication Data

Melby, Jeffrey A.

Evaluation of wave transmission characteristics of OSPREY Wave Power Plant for Noyo Bay, California / by Jeffrey A. Melby, William Appleton ; prepared for U.S. Army Engineer District, San Francisco.

42 p. : ill. ; 28 cm. — (Miscellaneous paper ; CHL-97-2)

Includes bibliographic references.

1. Ocean waves — California — Noyo Bay — Testing. 2. Water waves — California — Noyo Bay — Testing. 3. Rubble mound breakwaters. 4. Hydraulic models — Analysis. I. Appleton, William. II. United States. Army. Corps of Engineers. San Francisco District. III. U.S. Army Engineer Waterways Experiment Station. IV. Coastal and Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Title. VI. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station) ; CHL-97-2. TA7 W34m no.CHL-97-2

Table of Contents

Prefacev
1—Introduction 1 Purpose 1 Goals 1
Background 1
2—Experiment 6 Experimental Setup 6 Wave Data Analysis 9 Wave Transmission Characteristics 16
3-Conclusions 21
References
Appendix A: Experimental Results Summaries A1
SF 298

List of Figures

Figure 1.	OSPREY 1
Figure 2.	Elevation view of OSPREY 1 showing OWC and turbines 2
Figure 3.	Idealized schematic of OWC 3
Figure 4.	Wells turbine/generator 4
Figure 5.	Conceptual drawing showing "antenna focussing"

Figure 6. Wave flume plan and elevation views
Figure 7. Plan 2: Three OSPREY in flume
Figure 8. Plan 3: Four OSPREY in flume
Figure 9. Wave gauge time series for 13-sec, 6-m regular wave test 11
Figure 10. Wave gauge time series for 20-sec, 4-m regular wave test 12
Figure 11. Measured versus expected incident regular wave height with no structure in flume for various analysis methods
Figure 12. Measured versus expected incident irregular wave height with three OSPREY in flume for various analysis methods
Figure 13. Incident versus transmitted regular wave height for 13-sec period. Three OSPREY compared to rubble mound
Figure 14. Incident versus transmitted regular wave height for 20-sec period. Three OSPREY compared to rubble mound
Figure 15. Incident versus transmitted irregular wave height for 9-sec period. Three OSPREY compared to four OSPREY
Figure 16. Incident versus transmitted irregular wave height for 13-sec period. Three OSPREY compared to four OSPREY
Figure 17. Incident versus transmitted irregular wave height for 20-sec period. Three OSPREY compared to four OSPREY

List of Tables

Table 1.	Spacing of OSPREY Arrays as Tested for Wave Transmission 9
	Approximate Transmission Coefficients for Regular me Tests, 16-m Prototype Depth 18
	Approximate Transmission Coefficients for Irregular PREY Flume Tests 20
Table A1.	Experiment Log
Table A2.	Experiment Results at Prototype Scale

Preface

Funding for the Noyo Bay Breakwater Study, as discussed in this report, was provided by the U.S. Army Engineer District, San Francisco (SPN).

The work was carried out between October, 1995 and June, 1996 by Mr. Jeffrey A. Melby, Research Engineer, U.S. Army Engineer Waterways Experiment Station, Coastal and Hydraulics Laboratory (CHL) and Mr. William Appleton, Project Engineer, SPN. The CHL was formed in October 1996 with the merger of the WES Coastal Engineering Research Center and Hydraulics Laboratory. Dr. James R. Houston is the Director of the CHL and Messrs. Richard A. Sager and Charles C. Calhoun, Jr., are Assistant Directors. The flume tests were funded by Applied Research and Technology (ART), Inverness, Scotland, and carried out at the ART laboratory by ART engineers and technicians during the period 17 through 24 March, 1996. These tests were supervised, the data analyzed, and this report written by Messrs. Melby and Appleton. Mr. Melby was under the direct supervision of Mr. C. Gene Chatham, Chief, Wave Dynamics Division, and Mr. D.D. Davidson, Chief, Wave Research Branch, CHL. Mr. Appleton was under the Supervision of Mr. Carlos Hernandez, Section Chief, Mr. Ken Kuhn, Chief of Design Branch, and Mr. Thomas Kendall, Acting Chief of Engineering, all of SPN. Mr. Davidson and Mr. George Hagerman, Seasun Technologies, provided technical review of this report.

At the time of preparation of this report, Dr. Robert W. Whalin was Director of WES and COL Bruce K. Howard, EN, was Commander.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Purpose

Between 17 and 24 March 1996, the authors traveled to Inverness, Scotland. The purpose of the travel was to visit the Applied Research and Technology, Inc. (ART) laboratories and evaluate the ART OSPREY (Ocean Swell Powered Renewable EnergY) wave power plant as an alternative to the proposed rubblemound breakwater at Noyo Bay, California.

Goals

The goals of this trip were primarily focussed on testing the new OSPREY design in the ART wave flume to obtain relevant data to aid in the evaluation of the technology. The wave transmission characteristics of the OSPREY were measured and are evaluated in this report. Transmission tests were conducted in the ART flume for a variety of regular and irregular wave conditions. The regular wave test results are compared to the transmission test data of Smith and Hennington (1995), who tested several rubble-mound alternatives for the proposed Noyo Bay detached breakwater.

The trip reported herein also included measurements of the oscillating water column free surface displacements within the OSPREY along with air pressure from inside the chamber. These data can be used to determine the power output of the OWC. Forces on the unit were measured using pressure transducers mounted on the face and a load table mounted under the model OSPREY. The power output and force data will be reviewed in a separate report.

Background

The OSPREY concept was developed by ART of Inverness, Scotland. The OSPREY I was a steel caisson fitted with electrical power generating turbines (Figures 1 and 2) Hagerman (1995a,b). The main power generation is based on the oscillating water column (OWC) concept, idealized in Figure 3.

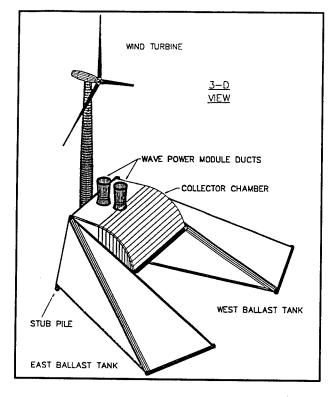
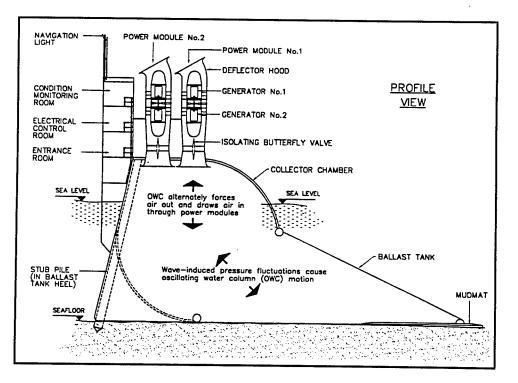



Figure 1. Osprey

.

Figure 2. Elevation view of OSPREY 1 showing OWC and turbines

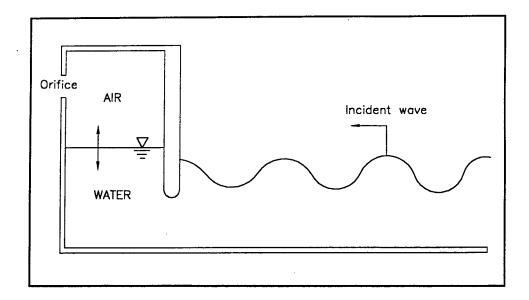


Figure 3. Idealized schematic of OWC

Incident waves force the rise and fall of the water column inside the caisson which drives air back and forth through a turbine. The OSPREY design utilized a steel superstructure integrating ballasting chambers and a capture chamber into a stand-alone, electrical power generation plant. The capture chamber geometry closely resembled the "harbor OWC" design which Koola, Ravindran, and Aswathanarayana (1994) reported as being optimal for environments with waves of varying frequencies. The OSPREY 1 design allowed the attachment of two Wells turbines for power generation. The Wells turbine is designed with symmetric aerofoils that have no inclination to the plane of rotation such that the turbine will be driven in the same rotational direction regardless of the direction of axial flow (Figure 4). As a result, the turbine is able to generate power independent of the direction of air flow through the device. Although the Wells turbine has a low efficiency due to the small magnitude of the force vector driving the turbine, the efficiency can be enhanced by what has been coined an "antenna focusing" effect. Although this focusing effect has not yet been supported by prototype data, the theory suggests that wave energy can be extracted from a broader length of wave crest than the width of the capture chamber opening (Figure 5). The interference of the incident wave train and waves radiating away from the OWC is believed to produce wave focussing. Capture ratios, defined as the ratio of the length of wave crest from which energy is being extracted to the chamber width, can be greater than one, but typically are not. The theory assumes some resonance between the OWC and the incident wave; so the degree of wave focussing is wave period dependent.

In 1995, a prototype OSPREY was constructed; the OSPREY 1. The structure was towed to and deployed off the north coast of Scotland. But, deteriorating weather conditions coupled with foundation and ballasting complications during the filling of the ballast tanks led to structural failure of the device before the unit could be brought on-line.

3

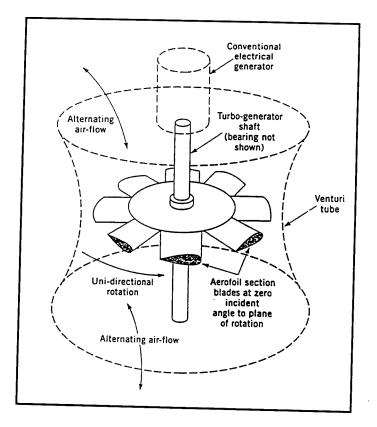


Figure 4. Wells turbine/generator

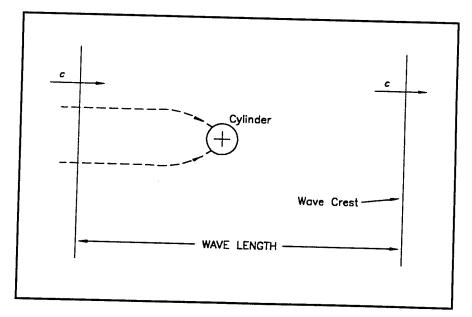


Figure 5. Conceptual drawing showing "antenna focussing"

Following failure of the OSPREY I prototype, and in light of its high construction costs, ART began testing new model configurations. The OSPREY model units as tested during the visit described herein differed significantly in geometry from the design shown in Figure 2. Some aspects of the new design were proprietary and cannot be shown; but the new design was simpler, being constructed of four cylinders connected in the shape of an 'A' to make two adjacent symmetrical chambers. The 'A' shape was open at the bottom of one leg which was oriented into the incident wave. The design tested used the two front inclined cylinders as OWCs and the rear two as ballasting chambers. The turbine ports were generally at the apex of the device. This new unit can be constructed of either concrete or steel, depending on which is less costly. Details of the new OSPREY design have not been finalized and variations, including inclined rectangular-shaped chambers rather than cylindrical chambers, continue to be investigated by ART. Therefore, it should be pointed out that, despite the deployment of a prototype unit in the summer of 1995, OSPREY technology is still in the developmental stage.

2 Experiment

Experimental Setup

The experiment consisted of both regular and irregular wave flume tests in the ART wave flume. The undistorted model-to-prototype length scale ratio was 1:48.7, and temporal parameters were computed based on Froude similitude. The flume measured 20 m long by 3 m wide by 2 m deep (Figure 6). The waves were generated with an electro-mechanical flap-type paddle hinged at the bottom and controlled by a PC. The wave paddle drive program included an algorithm for reflected wave absorption at the paddle. This was done by measuring forces on the paddle push-rod, which were monitored in real time. The control PC computed a compensating signal which was fed back into the primary control signal. The Bretschneider spectrum was used as a model for the irregular waves generated. The plywood flume bottom slope was generally 1V:25H, but steepened to 1V:20H in the vicinity of the structure. Synthetic fiber mats were placed at the flume end opposite the paddle to absorb waves.

Four resistance wire gauges were used to measure the free surface displacements seaward and shoreward of the structure. These wave gauges were set in two two-gauge arrays so that the incident and reflected waves could be separated (Figure 6). Also, for a number of tests, a single wave gauge was placed inside the OSPREY to measure the free surface oscillations within the unit. All of the wave gauges were calibrated prior to each test series by stepping the gauge in increments of approximately 1 cm using pre-cut plexiglass templates. The water depth was monitored between tests using a hand-held rule. Additional instrumentation included a load table mounted under the center of the flume to measure forces on the OSPREY, and pressure transducers mounted on the outside of the OSPREY to measure the pressure distribution on the seaward face of the caisson. A pressure transducer was also installed at the end of a small tube routed to the inside of the OWC to provide measurements of the OWC air pressure. The internal pressure measurements can be used, along with the internal free surface measurement, to calculate the maximum power output of the OS-PREY. Free surface and pressure measurements were all sampled at 20 Hz. The model A-shaped OSPREY units were firmly attached to the plywood tank bottom with wood screws.

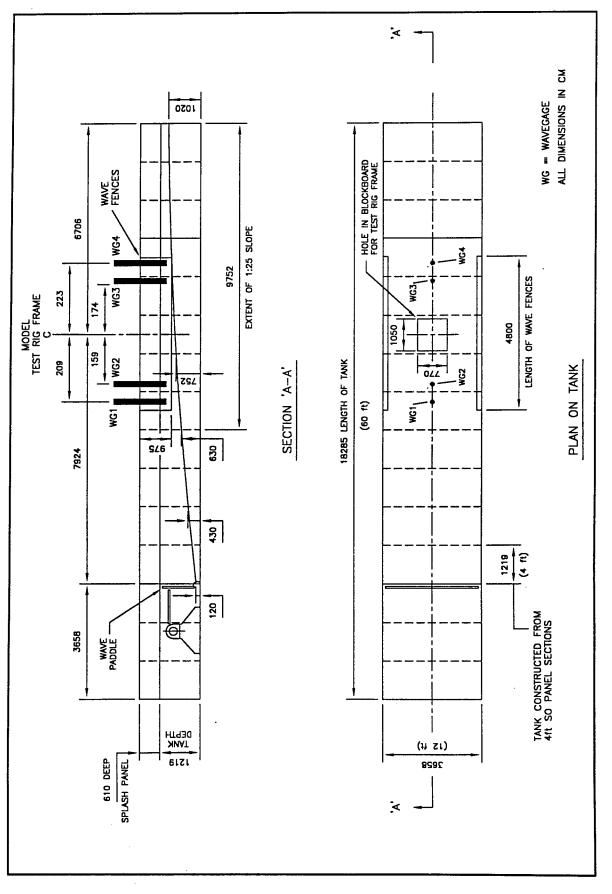


Figure 6. Wave flume plan and elevation views

The tests accomplished during the week of the trip are summarized in Appendix A in prototype scale units (Tables A1 and A2). As can be seen in Table A1, the following plans were tested.

Plan 1: Measured water surface elevations at four locations with no structure in flume for several test series of both regular and irregular waves.

Plan 2: Similar waves to Plan 1 except three OSPREY units were placed equidistant across flume midway between wave gauge pairs. Figure 7 shows a plan view of the structures in the flume in model units.

Plan 3: Similar waves to Plans 1 and 2 except four OSPREY units were placed equidistant across flume. Figure 8 shows a plan view of the structures in the flume in model units. Plan 3 also tested a high-tide condition.

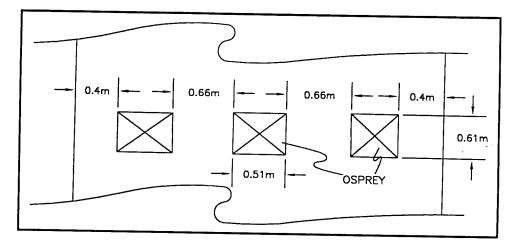


Figure 7. Plan 2: Three OSPREY in flume

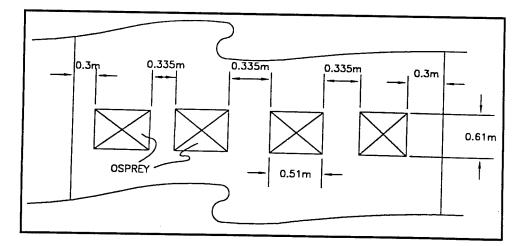


Figure 8. Plan 3: Four OSPREY in flume

The length along the axis of the footprint of the proposed rubble-mound breakwater, excluding the toe berm, is approximately 140 m (prototype). The approximate length along the crest of the structure is 122 m. Because the entire rubble mound will dissipate wave energy, the toe length was used to compute the necessary minimum length of the OSPREY array. Thus for the two arrays of OSPREY units tested, the array consisting of three units was spaced at 32.5 m while the array consisting of four units was spaced at 16 m. Following the visit by Corps personnel, an array consisting of five units spaced at both 4 m and 8 m was tested and transmission coefficients calculated. But these five-unit array tests will not be discussed herein. Table 1 summarizes array spacing utilized in the wave transmission tests conducted to date, along with the required capture ratio for 100 percent attenuation to be achieved.

Table 1. Spacing of OSP	REY Arrays as Tested for	or Wave Transmission
Number of Units in Array	Spacing (m)	Required Capture Ratio for 100% Wave Attenuation
31	32.5	2.30
4 ¹	16	1.64
5 ²	8	1.32
5 ²	4	1.16

¹ Tested while Corps personnel were present.

² Tested with only ART personnel present.

Honeycomb-filled PVC pipes were used as dampers. These dampers were fitted to the top turbine port of the caisson to simulate the amount of damping due to viscous losses provided by the turbines. The dampers had been previously calibrated by ART to provide realistic levels of damping. As listed in Table A1, the number of dampers was varied to simulate various degrees of turbine power take-off.

Wave Data Analysis

The free surface oscillations measured in the two pairs of wave gauges were analyzed using several different methods, depending on the type of test. For all wave conditions, data from gauges 1 and 2 were used to compute the incident wave height and period. Data from gauges 3 and 4 were used to compute the transmitted wave height parameters.

Resolution of incident wave height and period

For regular waves, the incident waves were determined using two different time domain techniques:

R1. Compute average wave height H_1 for each wave gauge, where H_1 is the average of all peak-to-peak wave heights in the data file.

R2. Compute incident and reflected wave heights by least-squares fit of sinusoidal wave form to data and determining phase differences between two time series from pair of wave gauges (Mansard and Funke 1980). This method assumes the linear dispersion relations are valid. A modification of the basic technique also accounted for higher harmonics in the wave train, which are phase locked to the fundamental frequency.

ART technicians had previously calibrated the wave generation so that a variety of pre-specified prototype wave heights could be generated for several wave periods. These intended values are listed in the second two columns of Table A2. Because a new wave generation system had been installed, Plan 1 included several test series to verify this calibration with no structure in place. Figure 9 shows a typical regular wave time series with an intended 13-sec period and 6-m wave height (test RS136 in Tables A1 and A2). Method R1 average wave height H_1 for gauge 2 was 7.7 m. Using method R2 with data from wave gauges 1 and 2, the incident average wave height was 6.9 m and the reflection coefficient was 0.02. Figure 10 shows a typical 20-sec regular wave with an intended wave height of 4 m (test RS204 in Tables A1 and A2). The average wave height for gauge 2 for this test was 4.4 m and the resolved incident wave height for gauges 1 and 2 was also 4.4 m with a reflection coefficient of 0.11. Figure 11 shows a plot of intended incident wave height versus measured for the regular wave test plans. As can be seen in the figure, the previous calibration was not as accurate as necessary to determine wave transmission. Therefore each wave data set was individually analyzed.

Figure 11 also shows that the two computation methods, R1 and R2, generally showed appreciable differences for smaller periods and converged for longer periods. The single gauge average wave heights of method R1 underpredicted wave heights determined using method R2. For many tests without the structure present, the reflection coefficients determined using method R2 were non-negligible, varying between 1 and 27 percent (Table A2). Method R1 can either under- or over-estimate the wave height, depending on where the wave gauge is in the reflected wave node field. Method R2 will tend to underestimate the wave height as the wave becomes more nonlinear. Because method R2 was generally greater than R1, it was determined that method R2 was generally more accurate than R1. Therefore, all regular wave heights listed in Table A2 were calculated using method R2. Note in Table A2 some reflection coefficients are not listed for 5-sec waves. This is because the gauges were spaced such that waves of this frequency could not be resolved. Inspection of Table A2 also reveals that several wave transmission coefficients exceeded one. This is most likely due to the wave shoaling between gauge pairs, particularly for waves that were breaking near the shallow gauge pair.

In order to match Smith and Hennington's (1995) previous transmission tests, prototype wave periods of 13 and 20 sec were intended to be generated.

Additionally, wave periods of 5 and 9 sec were desired. Prototype wave heights up to 9 m and 10 m were desired for the 13 and 20 sec waves; but the paddle was stroke limited for the higher periods. The largest regular waves measured at the structure produced an average wave height of 7 m for the 20-sec waves.

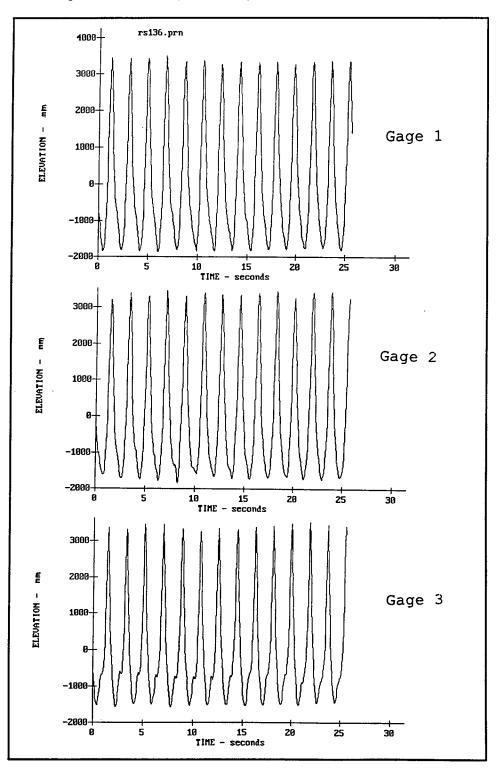


Figure 9. Wave gauge time series for 13-sec, 6-m regular wave test

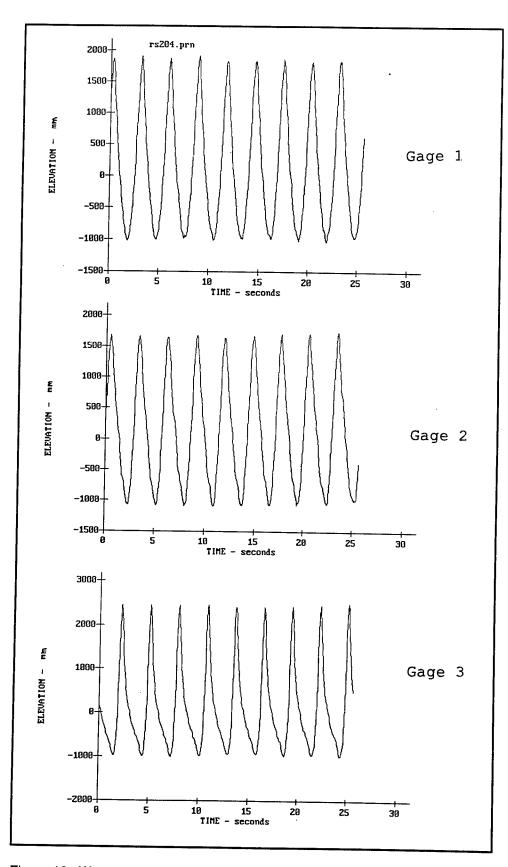
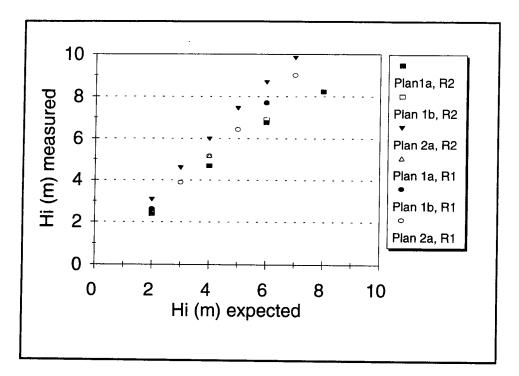
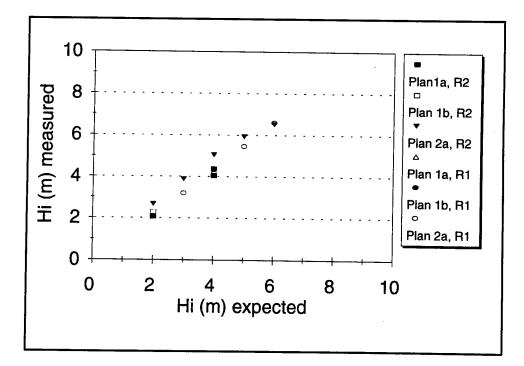




Figure 10. Wave gauge time series for 20-sec, 4-m regular wave test

a. 13-sec period

b. 20-sec period

Figure 11. Measured versus expected incident regular wave height with no structure in flume for various analysis methods

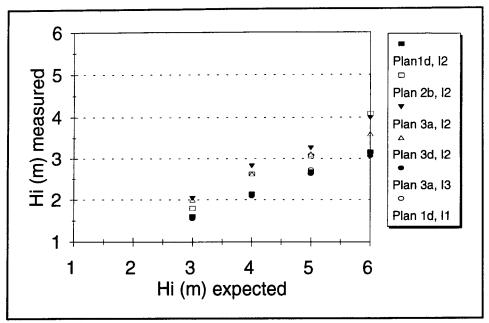
For irregular waves, three methods for computing incident wave height were used, as follows:

I1. Compute zeroth moment wave height H_{mo} for each wave gauge using spectral analysis of the individual gauge signal.

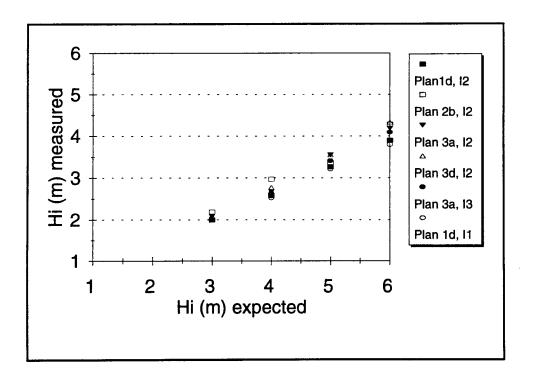
I2. Compute incident and reflected wave heights using method of Mansard and Funke (1980) using data from pair of wave gauges.

I3. Compute incident and reflected wave heights using method of Goda and Suzuki (1976) using data from pair of wave gauges.

Here H_{mo} is the spectral wave height statistic defined as four times the square root of the zeroth moment of the wave energy density spectrum. This statistic is roughly equivalent to the average of the highest third of the wave heights, for irregular waves.

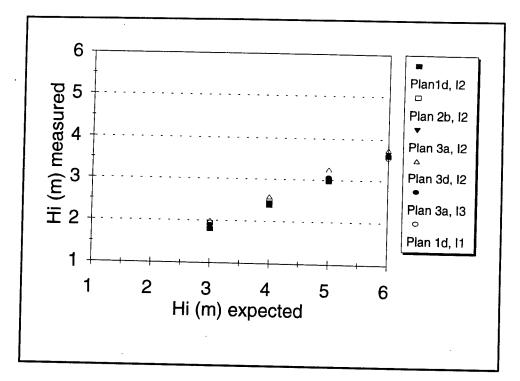

The spectral wave height was computed using the 1-percent cutoff values of the spectra. Using methods I2 and I3, the portion of the spectra where the coherence fell below 30 percent was discarded. If no coherence cutoff is used, the incident and reflected wave heights can be in error by more than 20 percent. This is primarily due to the large amount of energy in higher frequencies where the coherence is low. The sensitivity of the method to the coherence cutoff value was checked and there was no variability in the output for cutoff values between 20 and 80 percent. Thus, the cutoff coherence of 30 percent was used for all reflected wave analyses.

Irregular wave heights H_{mo} were limited to 4 m in height for both the 13 and 20 sec periods, due to stroke limitations.


The individual gauge values agreed well with the reflected wave analysis results for plans when no structure was present. Figure 12 shows *intended* wave height versus measured for irregular wave tests using the analysis methods 11, 12, and 13. Method I2 was remarkably reliable, evidenced by the fact that results with and without structures present agree. Method I3 was unreliable under these conditions. Because method I1 cannot be used when appreciable reflected waves are present, only results from method I2 are shown in Table A2 for irregular wave height data.

Resolution of transmitted wave height and period

The transmitted wave height was determined from gauge 3 data for both regular and irregular waves using method R1 or I1, respectively. This is because waves were often breaking around gauges 3 and 4, making the output from the linear analyses of methods I2 and I3 unreliable.



a. 9-sec period

b. 13-sec period

Figure 12. Measured versus expected incident irregular wave height with three OSPREY in flume for various analysis methods (continued)

c. 20-sec period

Figure 12. (concluded)

Wave Transmission Characteristics

Comparison of rubble-mound breakwater and OSPREY regular wave transmission characteristics

Figures 13 and 14 show incident versus transmitted regular wave heights for 13- and 20-sec periods. The wave heights are computed as averages from the time series. The figures compare data from the OSPREY experiment and from Smith and Hennington (1995). The OSPREY data are from Plan 2a where there were three OSPREY in the flume. The rubble-mound transmission characteristics are approximately the same for the two wave periods; but the OSPREY array shows considerable variation. The OSPREY transmitted wave height for the 20-sec wave is approximately 30 percent higher than for the 13-sec wave for the smaller waves, ranging to 75 percent higher for the larger waves. This is a characteristic of segmented breakwaters and is due to gap diffraction.

Comparing the rubble mound with the OSPREY, Table 2 lists the approximate transmission coefficients for the two breakwater options. Based on these results, the three-OSPREY array allowed approximately 54 and 69 percent more transmitted energy than the rubble-mound breakwater for 13- and 20-sec period waves, respectively. This additional transmitted energy was in general passed between the separated OSPREY units in the array. The transmission coefficient of 1.0 for Plan 2 with 20-sec waves was probably due to the combined effects

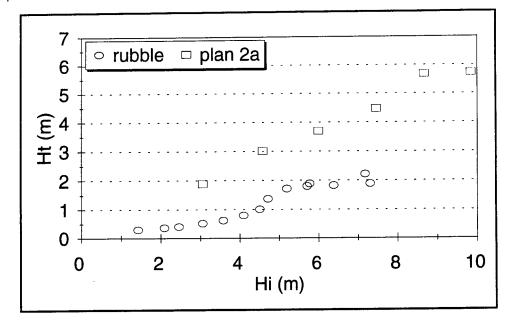
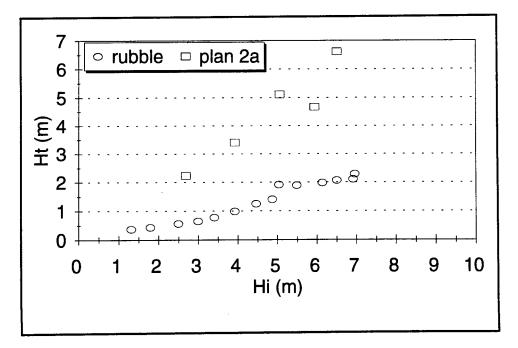
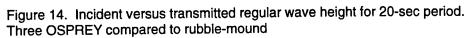




Figure 13. Incident versus transmitted regular wave height for 13-sec period. Three OSPREY compared to rubble mound

of a large fraction of the incident wave energy being transmitted and shoaling between the gauges.

Table 2. Approximate Transmission Coefficients for RegularWave Flume Tests, 16 m Prototype Depth							
Wave Period sec	Transmission Co	efficient, Ht/Hi					
	Rubble-Mound Breakwater	Plan 2: Three-Unit OSPREY Array					
13	0.29	0.63					
20	0.31	1.0					

Irregular wave transmission characteristics

Figures 15 through 17 show the results of the irregular wave transmission tests for the three-unit and four-unit OSPREY arrays. The approximate transmission coefficients are summarized in Table 3. It is clear that the four-unit array is more effective than the three-unit array. Changing the number of dampers produced very little noticeable effect on the transmitted wave height.

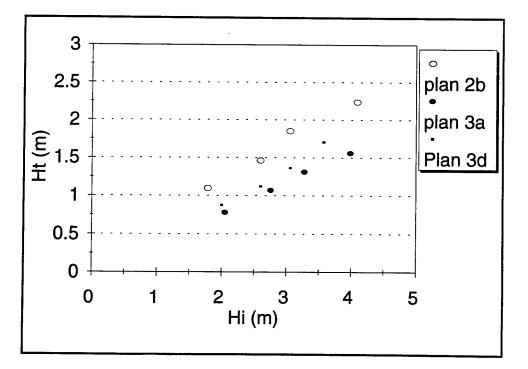
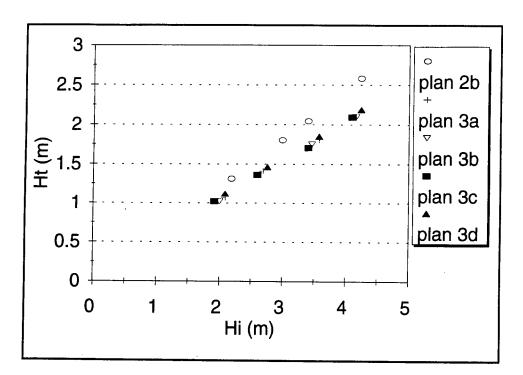
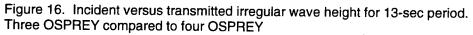
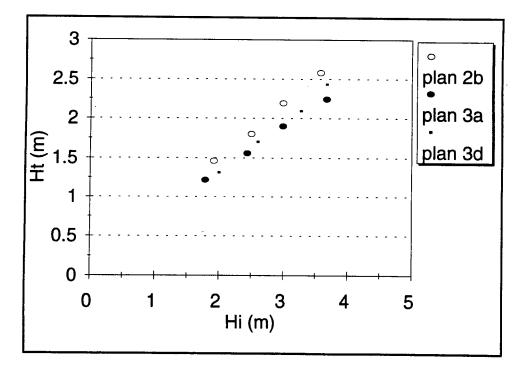
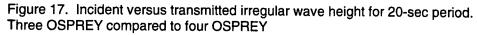






Figure 15. Incident versus transmitted irregular wave height for 9-sec period. Three OSPREY compared to four OSPREY

19

Table 3. Approximate Transmission Coefficients for Irregular WaveOSPREY Flume Tests									
Period Three	Plan 2b: Three-	Plan 3: Four	-Unit OSPRE	Y Array					
sec	Unit OS- PREY Array	Plan 3a: 1 damper, 16 m depth	Plan 3b: 2 damper, 18 m depth	Plan 3c: 3 damper, 18 m depth	Plan 3d: 1 damper, 18 m depth				
9	0.56	0.40			0.47				
13	0.62	0.52	0.52	0.52	0.52				
20	0.72	0.61			0.66				

.

.

.

,

3 Conclusions

Applied Research and Technology (ART), of Inverness, Scotland, previously developed and deployed the OSPREY 1, a stand-alone, electrical power generating steel caisson. The OSPREY 1 utilized an oscillating water column chamber fitted with Wells turbines. The device failed structurally before it could be made operational and ART proceeded to develop several new OSPREY designs. The OSPREY concept has been proposed as an alternative to the rubble-mound breakwater at Noyo Bay, California.

This report discusses wave flume tests of a newly designed OSPREY wave power generating caisson to assess its suitability and efficiency. The tests were carried out in the newly commissioned ART wave flume. Data from both regular and irregular wave tests are shown. Wave transmission test results are plotted and compared with previous tests of a proposed rubble-mound alternative.

For regular wave tests, the three-unit OSPREY array produced transmission coefficients 117 and 226 percent greater than the rubble-mound breakwater, for similar tests at periods of 13 and 20 sec, respectively. The rubble-mound transmission was not measured directly for irregular waves.

For irregular wave tests, the three-unit OSPREY array transmission coefficient was similar in magnitude to the OSPREY regular wave transmission coefficient for the 13-sec waves; but decreased by 28 percent for the 20 sec waves. Adding an additional OSPREY to the array reduced the OSPREY transmission coefficient by 15 to 30 percent. The higher reduction was for the 9-sec period waves while the lesser reduction was for the 13- and 20-sec waves, as expected. Additional damping using baffles on the turbine port of the OSPREY produced little noticeable effect on the transmitted wave height.

Based on the test results described above, and as would be expected, the three-unit and four-unit OSPREY arrays allowed significantly more wave energy transmission than the rubble-mound breakwater. It appears that in order to satisfy the basic requirements for wave sheltering at this site, the OSPREY units would have to be placed closer together, integrated within the rubble mound, or spaced using integrated inactive caissons.

References

- Goda, Y., and Suzuki, Y. (1976). "Estimation of incident and reflected waves in random wave experiments." *Proc of the 15th Coastal Engineering Conf.*, American Society of Civil Engineers, New York.
- Hagerman, G. (1995a). "Record-setting wave power plant deployed off Northern Scotland." Sea Technology, Sep 1995.
- Hagerman, G. (1995b). "OSPREY update." submitted to *Hydro Review Worldwide*, Nov 1995.
- Koola, Ravindran, and Aswathanarayana (1994) "Studies of the relative performance of three oscillating water column wave energy devices." *Journal of Energy Resources Technology*, v. 116, p.287-289.
- Mansard, E. P., and Funke, E.R. (1980). "The measurement of incident and reflected spectra using a least squares method." *Proc. of the 17th Coastal Engineering Conf.*, American Society of Civil Engineers, New York.
- Smith, E.R., and Hennington, L. (1995). "Noyo Harbor, California, breakwater stability and transmission tests." Technical Report CERC-95-17, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Appendix A Experimental Results Summaries

	A1. Experiment Log			-		+		
General	Experiment Notes	1					-	
Wave flu	me is approximately	20m lona.	3m wide, a	nd 2m dee	n			
The aver	age slope from gage	1 to 3 was	s 1:20 but t	ne slone wa	s flat at the	structure		<u> </u>
The slope	e from gage 3 to 4 w	as 1:25.	at gages	1.2 it was 1	V-20H			
There wa	is no point gage so th	he water de	enth could	not be mea	sured acccu	rately		+
The dept	h at the gages was n	neasured o	aily, but the	e water leve	al varied			
So the de	epth at the gages was	s not gene	rally known	with any n	ecision			
The load	table was giving a lo	t of noise.	spikes and	would resp	ord to move	ment anywhore	in the built	ding
So the loa	ad table runs made o	turing the y	veek of 3/1	8 were of n	o value	inent anywhere		ung.
The numb	per of dampers was	not varied	until the las	t counte of		ly the units had	ono damo	
	1				lans. Osual			1
						1	+	
Experime	ent Notes Specific	To Each To	est Series					<u> </u>
3/18/96								
	CALMONO1.ZIP	1	+	<u> </u>		+		
Wave trar	nsmission tests			+				
	Jres in tank							
sampling								
amping	all measuring water			<u>+</u>				:
Tooth at y	vave board - 91.8 cm	SUNACE ER	evation					
	es are 1.5ft or cm se	Π (3.012 Π)						
wave yay	es are 1.5it or cm se	ep was	45.72	1 cm				
. <u> </u>								
channel	Denth			Along-flu		Along Flume		
channei	Depth			Along-flu Location	Depth	Location	contents	
	cm			Along-flu Location m	Depth ft	Location ft		
1	cm 43.01			Along-flu Location m 0.00	Depth ft 1.41	Location ft 0.00	deepest w	ave gage
1 2	cm 43.01 40.20			Along-flu Location m 0.00 0.46	Depth ft 1.41 1.32	Location ft 0.00 1.50	deepest w wave gage	∋2
1 2 3	cm 43.01 40.20 24.51			Along-flu Location m 0.00 0.46 3.84	Depth ft 1.41 1.32 0.80	Location ft 0.00 1.50 12.60	deepest w wave gage wave gage	ə 2 ə 3
1 2	cm 43.01 40.20 24.51			Along-flu Location m 0.00 0.46	Depth ft 1.41 1.32 0.80	Location ft 0.00 1.50 12.60	deepest w wave gage wave gage	∋2
2	cm 43.01 40.20 24.51			Along-flu Location m 0.00 0.46 3.84 4.30	Depth ft 1.41 1.32 0.80 0.74	Location ft 0.00 1.50 12.60 14.10	deepest w wave gage wave gage shallowes	e 2 e 3 t wave gage
1 2 3 4	cm 43.01 40.20 24.51	Wave	Number	Along-flu Location m 0.00 0.46 3.84 4.30 Number	Depth ft 1.41 1.32 0.80 0.74 Target	Location ft 0.00 1.50 12.60 14.10 Target	deepest w wave gage wave gage shallowes Target	e 2 e 3 t wave gage Target
1 2 3 4 un	cm 43.01 40.20 24.51 22.40		Number of Data	Along-flu Location m 0.00 0.46 3.84 4.30 Number of	Depth ft 1.41 1.32 0.80 0.74 Target Prototype	Location ft 0.00 1.50 12.60 14.10 Target Prototype	deepest w wave gage wave gage shallowes Target Model	e 2 e 3 t wave gage Target Model
1 2 3 4 un	cm 43.01 40.20 24.51	Wave	Number	Along-flu Location m 0.00 0.46 3.84 4.30 Number	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height	deepest w wave gag wave gag shallowes Target Model Period	e 2 e 3 t wave gage Target Model Wave Heigh
1 2 3 4 un umber	cm 43.01 40.20 24.51 22.40	Wave	Number of Data	Along-flu Location m 0.00 0.46 3.84 4.30 Number of	Depth ft 1.41 1.32 0.80 0.74 Target Prototype	Location ft 0.00 1.50 12.60 14.10 Target Prototype	deepest w wave gage wave gage shallowes Target Model	e 2 e 3 t wave gage Target
1 2 3 4 un pumber	cm 43.01 40.20 24.51 22.40 run name	Wave Type	Number of Data Points	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m	deepest w wave gag wave gag shallowes Target Model Period sec	e 2 e 3 t wave gage Target Model Wave Heigh cm
1 2 3 4 un number PLAN1a 1	cm 43.01 40.20 24.51 22.40 run name 052.pm	Wave Type mono	Number of Data Points 1800	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72	e 2 e 3 t wave gage Target Model Wave Heigh cm 4.
1 2 3 4 un umber PLAN1a 1 2	cm 43.01 40.20 24.51 22.40 run name 052.pm 054.pm	Wave Type mono mono	Number of Data Points 1800 1800	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72	e 2 e 3 t wave gage Target Model Wave Heigh cm 4. 8.2
1 2 3 4 un umber 2 LAN1a 1 2 3	cm 43.01 40.20 24.51 22.40 run name 052.pm 054.pm 056.pm	Wave Type mono mono mono	Number of Data Points 1800 1800	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72	2 3 t wave gage Target Model Wave Heigh cm 4. 8.
1 2 3 4 un umber 2 LAN1a 1 2 3 4	cm 43.01 40.20 24.51 22.40 run name 052.pm 054.pm 056.pm 132.pm	Wave Type mono mono mono mono	Number of Data Points 1800 1800 1800 4000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86	2 3 t wave gage Target Model Wave Heigh cm 4. 8.1 12.1
1 2 3 4 un umber 2 LAN1a 1 2 3 4 5	cm 43.01 40.20 24.51 22.40 run name 052.pm 054.pm 056.pm 132.pm 134.pm	Wave Type mono mono mono mono mono	Number of Data Points 1800 1800 1800 4000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00 4.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86 1.86	2 3 3 1 wave gage Target Model Wave Heigh cm 4. 8.1 12.1 4.
1 2 3 4 9 umber 9 LAN1a 1 2 3 4 5 6	cm 43.01 40.20 24.51 22.40 run name 052.pm 054.pm 056.pm 132.pm 134.pm 136.pm	Wave Type mono mono mono mono mono mono	Number of Data Points 1800 1800 1800 4000 4000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00 13.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86	2 3 1 wave gage Target Model Wave Heigh cm 4. 8. 12. 4. 8. 8. 12. 8. 12. 8. 12. 8. 12. 12. 12. 12. 14. 14. 14. 14. 14. 14. 14. 14
1 2 3 4 9 9 9 1 2 2 3 4 5 6 7	cm 43.01 40.20 24.51 22.40 7un name 052.pm 054.pm 056.pm 132.pm 134.pm 136.pm	Wave Type mono mono mono mono mono mono mono	Number of Data Points 1800 1800 1800 4000 4000 4000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00 4.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86 1.86	2 3 1 wave gage Target Model Wave Heigh cm 4. 8.3 12.3 4. 8.2 12.3 4. 12.3
1 2 3 4 un umber 2 LAN1a 1 2 3 4 5 6 7 8	cm 43.01 40.20 24.51 22.40 7un name 052.pm 054.pm 056.pm 132.pm 134.pm 136.pm 138.pm 202.pm	Wave Type mono mono mono mono mono mono mono mon	Number of Data Points 1800 1800 1800 4000 4000 4000 4000 3000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Prototype Period sec 5.00 5.00 5.00 13.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00 4.00 6.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86 1.86	e 2 e 3 t wave gage Target Model Wave Heigh cm 4.
1 2 3 4 un umber 2 LAN1a 1 2 3 4 5 6 7 8	cm 43.01 40.20 24.51 22.40 	Wave Type mono mono mono mono mono mono mono	Number of Data Points 1800 1800 1800 4000 4000 4000	Along-flu Location m 0.00 0.46 3.84 4.30 Number of Dampers N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Depth ft 1.41 1.32 0.80 0.74 Target Period sec 5.00 5.00 5.00 13.00 13.00 13.00	Location ft 0.00 1.50 12.60 14.10 Target Prototype Wave Height m 2.00 4.00 6.00 2.00 4.00 6.00 8.00	deepest w wave gag wave gag shallowes Target Model Period sec 0.72 0.72 0.72 0.72 1.86 1.86 1.86	2 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5

	I. Experiment Log	(Continue	d)					
I ADEL A								
3/19/96								
PI AN 15.	1c, CALMONO1.ZIF	and RAN3	3 19.ZIP					
Wave tran	smission tests							
	res in tank							
sampling a								
4 gages -	all measuring water	surface ele	vation in ar	n				
Depth at v	ave board - 91.8 cm	(3.012 ft)						
Dopuratio								
				Along-flui	me	Along Flume		
channel	Depth			Location	Depth	Location	contents	
	cm			m	ft	ft		
1	43.01			0.00	1.41	0.00	deepest w	ave gage 1
2	40.20			0.46	1.32		wave gage	
3	24.51			3.84	0.80	12.60	wave gage	3
4	22.40			4.30	0.74	14.10	shallowest	wave gage
		Wave	Number	Number	Target	Target	Target	Target
run		Туре	of Data	of	Prototype	Prototype	Model	Model
number	run name		Points	Dampers	Period	Wave Height	Period	Wave Height
					Sec	m	Sec	cm
PLAN 1b.	1c							
1	RAN001.PRN	random	4400	N/A	12.92	5.00	1.85	10.27
2	RS052	mono	600	N/A	5.00	the second s	0.72	4.11
3	RS056	mono	600	N/A	5.00		0.72	
4	RS132	mono	600	N/A	13.00		1.86	
5	RS136	mono	_600	N/A	13.00		1.86	
6	RS202	mono	600	N/A	. 20.00		2.87	4.11
7	RS204	mono	600	N/A	20.00		2.87	8.21
8	RS1794	mono	600	N/A	17.00	the second se	2.44	19.30
	RAN002.PRN	random	4400	N/A	8.95		1.28	
10	RAN003.PRN	random	4400	N/A	12.92	5.00	1.85	10.27

.

1								
	1. Experiment Log	(Continue	ed)	·				
TABLE A		Continu			ł			
3/19/96			· · · · · ·					
	CS1DAT01.ZIP	<u> </u>						
	smission/attenuatio	n and now						
2 etructure	es in tank, 0.4m fron		er capture t	esis tion bobuoc	n modele			
	prey width is 0.5133		om separa	tion betwee				
sampling		111		+		· · · · · · · · · · · · · · · · · · ·		
	4 measuring water s		unting and					
vayes -	e and pressure tran	suitace ele	valion, redu	indant gage	3.			
	vave board - 91.8 cr			=1 			ļ	
Depinar	ave boald - 91.0 cl	1 (3.012 1)		<u> </u>				
		<u> </u>		Al	l		ļ	
obarrel	Depth			Along-flu		Along Flume		
channel	Depth			Location		Location	contents	
4	cm		·	m	ft	ft		[
.1	43.01	-		0.00	1.41		wave gage	
2	40.20			0.46		1.50	wave gage	2
3			L	3.84	0.80	12.60	wave gage	93
5							redundant	wave gage 3
							chamber pressure in pa	
6							chamber p	pressure in pas
7							chamber p chamber v	
7								
7		Wave	Number	Number	Target	Target		and the second s
7 0 run		Wave Type	Number of Data	Number		Target Prototype	chamber v	vater level
7	run name				Prototype		chamber v Target Model	vater level Target
7 0 run number	run name		of Data	of	Prototype	Prototype	chamber v Target Model	vater level Target Modei
7 0 run number PLAN 28		Туре	of Data Points	of	Prototype Period	Prototype Wave Height	chamber v Target Model Period	vater level Target Model Wave Height
7 0 number PLAN 2a 1	TT132	Type mono	of Data Points	of Dampers	Prototype Period sec 13.00	Prototype Wave Height	chamber v Target Model Period	vater level Target Model Wave Height cm 4.1
7 0 run number PLAN 2a 1 2	TT132 TT133	Type mono mono	of Data Points 1200 1200	of Dampers 1	Prototype Period sec 13.00 13.00	Prototype Wave Height m 2.00 3.00	Chamber v Target Model Period sec 1.86 1.86	vater level Target Model Wave Height cm 4.1
7 0 number PLAN 2a 1 2 3	<u>ТТ132</u> ТТ133 ТТ134	Type mono mono mono	of Data Points 1200 1200 1200	of Dampers 1 1	Period sec 13.00 13.00 13.00	Prototype Wave Height m 2.00 3.00 4.00	Chamber v Target Model Period sec 1.86 1.86 1.86	vater level Target Model Wave Height cm 4.1 6.1 8.2
7 0 run number PLAN 2a 1 2 3 4	TT132 TT133 TT134 TT135	Type mono mono mono mono	of Data Points 1200 1200 1200 1200	of Dampers 1 1 1	Period sec 13.00 13.00 13.00 13.00	Prototype Wave Height m 2.00 3.00 4.00 5.00	Chamber v Target Model Period sec 1.86 1.86 1.86 1.86	vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3
7 0 number PLAN 2a 1 2 3 4 2	TT132 TT133 TT134 TT135 TT135c	Type mono mono mono mono mono	of Data Points 1200 1200 1200 1200 1200	of Dampers 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00	Chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2
7 0 number PLAN 2a 1 2 3 4 2 3 4 2 5	TT132 TT133 TT134 TT135 TT135c TT136	Type mono mono mono mono mono mono	of Data Points 1200 1200 1200 1200 1200 1200	of Dampers 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3
7 0 number PLAN 2a 1 2 3 4 ? 5 6	TT132 TT133 TT134 TT135 TT135c TT136 TT137	Type mono mono mono mono mono mono mono	of Data Points 1200 1200 1200 1200 1200 1200 1200	of Dampers 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3
7 0 number PLAN 2a 1 2 3 4 2 5 6 7	TT132 TT133 TT134 TT135 TT135c TT135c TT136 TT137 TT202	Type mono mono mono mono mono mono mono mon	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3
7 0 number PLAN 2a 1 2 3 4 7 5 6 7 8	TT132 TT133 TT134 TT135 TT135c TT136 TT137 TT202 TT203	Type mono	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1
7 0 number PLAN 28 1 2 3 4 2 5 6 7 8 9	TT132 TT133 TT134 TT135 TT135c TT136 TT137 TT202 TT203 TT204	Type mono	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1
7 0 number PLAN 28 1 2 3 4 2 5 6 7 8 9 9	TT132 TT133 TT134 TT135 TT136 TT137 TT202 TT203 TT204 TT205	Type mono mono mono mono mono mono mono mon	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 2.87 2.87	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2
7 0 7 7 9 1 2 3 3 4 7 5 6 7 7 8 9 10 11	TT132 TT133 TT134 TT135 TT135c TT136 TT136 TT137 TT202 TT203 TT204 TT205 TT206	Type mono mono	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00 4.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 2.87 2.87 2.87	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2 10.2 12.3 14.3 10.2 12.3 14.3 10.2 12.3 14.3 10.2 10.3 10.2 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.
7 0 number PLAN 2a 1 2 3 4 2 5 6 6 7 8 9 10 11 12	TT132 TT133 TT134 TT135 TT135c TT136 TT136 TT137 TT202 TT203 TT204 TT205 TT206 BRET93	Type mono mono mono mono mono mono mono mon	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 20.00 20.00 20.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00 4.00 5.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 2.87 2.87 2.87 2.87	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2 10.2 12.3 14.3 4.1 1.2 12.3 14.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
7 0 number PLAN 2a 1 2 3 4 2 5 6 6 7 8 9 10 11 11 12 13	TT132 TT133 TT134 TT135 TT135c TT136 TT137 TT202 TT203 TT204 TT205 TT206 BRET93 BRET94	Type mono mono	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 20.00 20.00 20.00 20.00 20.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00 4.00 5.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2 10.2 12.3 6.1
7 0 number PLAN 2a 1 2 3 4 2 5 6 6 7 8 9 10 11 11 12 13 14	TT132 TT133 TT134 TT135 TT135c TT136 TT137 TT202 TT203 TT204 TT205 TT206 BRET93 BRET94 BRET95	Type mono mono mono mono mono mono mono mon	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 20.00 20.00 20.00 20.00 20.00 20.00 9.00	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 7.00 2.00 3.00 4.00 5.00 6.00 3.00	Chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2
7 0 number PLAN 2a 1 2 3 4 2 5 6 6 7 8 9 10 11 11 12 13 14	TT132 TT133 TT134 TT135 TT135c TT136 TT137 TT202 TT203 TT204 TT205 TT206 BRET93 BRET94	Type mono mono mono mono mono mono mono mon	of Data Points 1200 1200 1200 1200 1200 1200 1200 120	of Dampers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 9.00 9	Prototype Wave Height m 2.00 3.00 4.00 5.00 5.00 6.00 2.00 3.00 4.00 5.00 6.00 3.00 4.00	chamber v Target Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Vater level Target Model Wave Height cm 4.1 6.1 8.2 10.3 10.2 12.3 14.3 4.1 6.1 8.2 10.2 12.3 6.1

۰.

· · · · · · · · · · · · · · · · · · ·		1	1	1	1			1
TADLEA	1 Experiment Log) (Continue	nd)	+			<u> </u>	
TABLE A	1. Experiment Log	Continu	= a)		+			
0/00/00								
3/20/96				· · · · · · · · · · · · · · · · · · ·				
	RAN3_20.ZIP			1		+		
	smission/attenuatio							
	es in tank, 0.4m from		om separa	tion betwee	n models			
	prey width is 0.5133	m			<u> </u>			
sampling a			1	1				
	4 measuring water s				e 3,			
wave gag	e and pressure tran	saucer in c	enter mode	3				
			<u> </u>					
					L			
				Along-flu		Along Flume		
channel	Depth			Location		Location	contents	
	cm	ļ		m	ft	ft		
1	44.00			0.00			wave gage	
2	41.50			0.46			wave gage	
3				3.64			wave gage	
4	23.10			4.09	0.76	13.43	wave gage	
5								wave gage 3
6								pressure in pasc
7							chamber v	vater level
		Wave 🤉	Number	Number	Target	Target	Target	Target
run		Туре	of Data	of		Prototype	Model	Model
number	run name		Points	Dampers	Period	Wave Height	Period	Wave Height
					sec	m	sec	cm
PLAN 2b								
	RSBRET93	random	4200	1	9.00	3.00	1.29	6.16
	RSBRET94	random	4200	1	9.00	4.00	1.29	8.21
	RSBRET95	random	4200	1	9.00	5.00	1.29	10.27
	RSBRET96	random	4200	1	9.00	6.00	1.29	12.32
	RBRET133	random	4200	1	13.00	3.00	1.86	6.16
	RBRET134	random	4200	1	13.00	4.00	1.86	8.21
	RBRET135	random	4200	1	13.00	5.00	1.86	10.27
ام			1		10.00	6.00	1.86	12.32
0	RBRET136	random	4200	1	13.00	0.00	1.00	12.02
	RBRET136 RBRET203	random random	4200	1	<u>13.00</u> 20.00	3.00	2.87	6.16
9								
9 10	RBRET203	random	4200	1	20.00	3.00	2.87	6.16

A5

				1	1	1	T	T
TABLE A	1. Experiment Log	(Continue	ed)					
			T					
3/21/96		1					<u> </u>	
PLAN 1d	CS1DAT03.ZIP						<u> </u>	
	nsmission/attenuatio	n and pow	er capture t	ests				
	ures in tank							
sampling	a second characteristic second s						<u></u>	
	neasuring water surf	ace elevat	on					
			1	h				
						·····	·	
			1		-			
				Along-flu	me	Along Flume		
channel	Depth			Location		Location	contents	
	cm			m	ft	ft		
1	44.00			0.00	1.44	0.00	wave gag	a 1
2	41.50			0.46			wave gag	
3	25.00		1	3.64			wave gag	
4	23.10			4.09			wave gage	
				4.00	0.70	10.40	wave yay	
		Wave	Number	Number	Target	Target	Target	Target
run		Туре	of Data	of	Prototype	Prototype	Model	Model
number	run name		Points	Dampers	Period	Wave Height	Period	Wave Height
				Bampers	sec	m	sec	cm
PLAN 1d					300		300	
1	NMBRE93	random	4400	0	9.00	3.00	1.29	6.16
	NMBRE94	random	4400	0	9.00	4.00	1.29	8.21
	NMBRE95	random	4400	0	9.00	5.00	1:29	10.27
	NMBRE96	random	4400	0	9.00	6.00	1.29	12.32
	NMBRE133	random	4400	0	13.00	3.00	1.86	6.16
	NMBRE134	random	4400	0	13.00	4.00	1.86	8.21
	NMBRE135	random	4400	0	13.00	5.00	1.86	10.27
	NMBRE136	random	4400	0	13.00	6.00	1.86	12.32
	NMBRE203	random	4400	0	20.00	3.00	2.87	6.16
	NMBRE204	random	4400	0	20.00	4.00	2.87	8.21
	NMBRE205	random	4400	0	20.00	5.00	2.87	10.27
401	NMBRE206	random	4400	0	20.00	6.00	2.87	12.32

		Continue	d)					
TABLE A	1. Experiment Log	Commue	u)					
3/21/96			CEIDATO	7 7 ID				
PLANS 3a	,b,c,d: CS1DAT04.Z	IP Inrough	COIDATO					
Wave tran	smission/attenuation	and powe		tion botwo	on models			
4 structure	es in tank, 0.3m from	walls, 0.33	som separa		en modela			
sampling a	at 20 hz							
6 gages -	4 measuring water s	unace elev	allon j					
wave gag	e and pressure trans	saucer in c	enter mode	·				
				Along-flui		Along Flume		
				Location	Denth	Location	contents	
channel	Depth				ft	ft	vontonto	
	cm			m	π	n		
				0.00	1.44	0.00	wave gage	1
1			1	0.00	1.44		wave gage	
2	41.50			0.46	0.82		wave gage	
3				3.64	0.82		wave gage	
4				4.09	0.76	13.43		pressure in pasc
5							chamber y	
6							Chamber v	aler lever
					Townsh	Target	Target	Target
		Wave	Number	Number	Target	Prototype	Model	Model
run		Туре	of Data	of		Wave Height	Period	Wave Height
number	run name		Points	Dampers	T		Sec	cm
					Sec	<u>m</u>	300	0111
PLAN 3a			4400	1	9.00	3.00	1.29	6.16
	4BRE93	random	4400	1			1.29	
	4BRE94	random		1			1.29	
	4BRE95	random	4400	1	9.00		1.29	12.32
	4BRE96	random	4400	1			1.86	
	4BRE133	random	4400	1			1.86	
	4BRE134	random	4400				1.86	+ · · · · · · · · · · · · · · · · · · ·
	4BRE135	random	4400		13.00		1.86	
	4BRE136	random	4400				2.87	6.16
	4BRE203	random	4400		20.00			
	4BRE204	random						and the second sec
	4BRE205	random	4400					
12	4BRE206	random	4400	11	20.00	0.00	<u> </u>	12.02

.

TABLE	A1. Experiment L	og (Contin	ued)	+				
3/21/96								+
Wave tra	insmission/attenua	tion and pov	wer capture	tests, high	water (+1.8r	n). variable dan	ipers	<u> </u>
4 Structu	res in tank, 0.3m fr	om walls, 0	.335m sepa	ration betw	een models	, rangero dan		1
sampling	at 20 hz				T			
6 gages ·	 4 gages measurir 	ng water sur	face elevati	on				
wave ga	ge and pressure tr	ansducer in	center mod	el				<u> </u>
		_	_					
						L		
channel	Depth			Along-flu		Along Flume		
Viluinier	cm			Location		Location	contents	
				m	ft	ft		
1	47.7	70						
2				0.00			wave gag	e 1
3				0.46			wave gag	92
3				3.64		11.93	wave gage	93.
5			+	4.09	0.88	13.43	wave gage	94
6							chamber r	pressure in pa
							chamber v	vater level
			. 1					
		Wave	Number	Number	Target	Torret	T	
run		Wave Type	Number of Data	Number	Target Prototype	Target Prototype	Target	Target
run number	run name	Wave Type	Number of Data Points	of	Prototype	Prototype	Model	Model
number	run name		of Data		Prototype	Prototype Wave Height	Model Period	Model Wave Height
number PLAN 3b			of Data Points	of Dampers	Prototype Period	Prototype	Model	Model
number PLAN 3b 1	4BRE133A	Type random	of Data Points 4400	of Dampers 2.00	Prototype Period	Prototype Wave Height	Model Period sec	Model Wave Height cm
number PLAN 3b 1 2	4BRE133A 4BRE134A	Type random random	of Data Points 4400 4400	of Dampers 2.00 2.00	Prototype Period sec	Prototype Wave Height m	Model Period sec 1.86	Model Wave Height cm 6.1
number PLAN 3b 1 2 3	4BRE133A 4BRE134A 4BRE135A	Type random random random	of Data Points 4400 4400 4400	of Dampers 2.00 2.00 2.00	Period sec 13.00 13.00 13.00	Prototype Wave Height m 3.00	Model Period sec	Model Wave Height cm 6.1 8.2
number PLAN 3b 1 2 3 4	4BRE133A 4BRE134A	Type random random	of Data Points 4400 4400	of Dampers 2.00 2.00	Prototype Period sec 13.00 13.00	Prototype Wave Height m 3.00 4.00	Model Period sec 1.86 1.86	Model Wave Height
number PLAN 3b 1 2 3 4 PLAN 3c	4BRE133A 4BRE134A 4BRE135A 4BRE136A	Type random random random	of Data Points 4400 4400 4400	of Dampers 2.00 2.00 2.00 2.00	Prototype Period sec 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00	Model Period sec 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B	Type random random random random	of Data Points 4400 4400 4400 4400	of Dampers 2.00 2.00 2.00 2.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00	Model Period sec 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3
number PLAN 3b 1 2 3 4 PLAN 3c 5 6	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B	Type random random random random random	of Data Points 4400 4400 4400 4400 4400 4400	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B	Type random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE136A 4BRE133B 4BRE133B 4BRE135B	Type random random random random random	of Data Points 4400 4400 4400 4400 4400 4400	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE135B 4BRE136B 4BRE136B 4BRE93H	Type random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 2 LAN 3d 9 10	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE135B 4BRE136B 4BRE136B 4BRE93H 4BRE94H	Type random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE135B 4BRE136B 4BRE136B 4BRE93H 4BRE93H 4BRE95H	Type random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 4.00 5.00 6.00 3.00 4.00 4.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE135B 4BRE136B 4BRE93H 4BRE94H 4BRE95H 4BRE96H	Type random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 3.00 3.00 3.00 3.00 1.00 1.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 4.00 5.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 12.3 10.2 10.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE135B 4BRE136B 4BRE93H 4BRE93H 4BRE95H 4BRE96H 4BRE96H 4BRE133H	Type random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 5.00 6.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 12.3 12.3 10.2 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14	4BRE133A 4BRE135A 4BRE135A 4BRE135A 4BRE133B 4BRE134B 4BRE136B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE96H 4BRE133H 4BRE133H	Type random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 9.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 5.00 6.00 3.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14 15	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE133B 4BRE134B 4BRE134B 4BRE136B 4BRE93H 4BRE93H 4BRE94H 4BRE96H 4BRE96H 4BRE133H 4BRE133H	Type random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14 15 16	4BRE133A 4BRE134A 4BRE135A 4BRE135A 4BRE136A 4BRE134B 4BRE136B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE95H 4BRE95H 4BRE133H 4BRE133H 4BRE134H 4BRE135H 4BRE136H	Type random random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Heigh cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 12.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14 15 16 17	4BRE133A 4BRE133A 4BRE135A 4BRE135A 4BRE133B 4BRE134B 4BRE135B 4BRE136B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE96H 4BRE133H 4BRE133H 4BRE133H 4BRE135H 4BRE136H 4BRE136H	Type random random random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 6.00 5.00 6.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Heigh cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14 15 16 17 18	4BRE133A 4BRE133A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE134B 4BRE135B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE95H 4BRE133H 4BRE133H 4BRE135H 4BRE135H 4BRE136H 4BRE136H 4BRE136H 4BRE203H	Type random random random random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Heigh cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 LAN 3d 9 10 11 12 13 14 15 16 17 18 19	4BRE133A 4BRE133A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE134B 4BRE135B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE95H 4BRE133H 4BRE133H 4BRE135H 4BRE135H 4BRE135H 4BRE136H 4BRE203H 4BRE203H	Type random random random random random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 20.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 12.3 6.1 8.2 10.2 10.2 12.3 6.1 8.2 10.2
number PLAN 3b 1 2 3 4 PLAN 3c 5 6 7 8 PLAN 3d 9 10 11 12 13 14 15 16 17 18 19	4BRE133A 4BRE133A 4BRE135A 4BRE135A 4BRE133B 4BRE133B 4BRE134B 4BRE135B 4BRE93H 4BRE93H 4BRE95H 4BRE95H 4BRE95H 4BRE133H 4BRE133H 4BRE135H 4BRE135H 4BRE136H 4BRE136H 4BRE136H 4BRE203H	Type random random random random random random random random random random random random random random random random	of Data Points 4400 4400 4400 4400 4400 4400 4400 44	of Dampers 2.00 2.00 2.00 2.00 2.00 3.00 3.00 3.00	Prototype Period sec 13.00 13.00 13.00 13.00 13.00 13.00 13.00 9.00 9.00 9.00 9.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00	Prototype Wave Height m 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00 5.00 6.00 3.00 4.00	Model Period sec 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86	Model Wave Height cm 6.1 8.2 10.2 12.3 6.1 8.2 10.2

				Measured	Measured	Measured	Trans-	
	Intended	Intended	Measured		reflected	transmitte		Reflectio
File	wave	wave	wave	wave	wave	wave	Coeff.	Coeff.
Name	period	height	period	height	height	height	Ht/Hi	Hr/Hi
Name	s	m	s	m	m	m		
, ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··								
PLAN1a: C/	LMONO1.Z	IP, no struc	, regular					
052.pm	5	2	4.9					
054.pm	5	4	4.9	2.9				
056.pm	5	6	4.9	1.1				
132.pm	13	2	12.6	2.4	0.1	2.3	0.98	0.06
134.pm	13	4	12.6	4.7	0.2	4.7	1.00	0.04
136.pm	13	6	12.6	6.8	0.3	7.3	1.08	0.04
138.pm	13	8	12.7	8.2	0.2	7.9	0.96	0.03
202.pm	20	2	20.5	2.1	0.1	2.1	1.02	0.06
204.pm	20	4			0.2	4.6	1.14	0.06
PLAN1b: CA	LMONO2.Z	IP, no struc	. regular					
RS052	5	2	5.0	2.2				
RS056	5	6	5.0	2.4				
RS132	13	2	13.0	2.6	0.1	2.7	1.04	0.03
RS136	13	6	13.0	6.9	0.1	7.5	1.08	0.02
RS202	20	2	20.0	2.3	0.3	2.4	1.06	0.11
RS204	20	4	20.0		0.5	5.5	1.26	0.11
PLAN 1c: R	AN3_19.ZIP	no struc, i	rreg					
RAN001.PRN	3	14	13.3	3.0	0.5	2.9	0.97	0.18
RAN002.PRN	2.4	9	5.4	2.5	1.6	2.3	0.90	0.63
RAN003.PRN	3.4	13	12.6	3.4	1.1	3.2	0.94	0.33
PLAN 1d: C	S1DAT03.ZI	P, no Struc	, irreg					
NMBRE93	9	. 3	9.6	1.6	0.4	1.6	0.97	0.27
NMBRE94	9	4	9.6	2.1	0.4	2.1	0.98	0.21
NMBRE95	9	5	8.8	2.7	0.5	2.7	1.02	0.20
NMBRE96	9	6	9.6	3.2	0.5	3.1	0.98	0.16
NMBRE133	13	3	12.8	2.0	0.2	1.9	0.95	0.11
NMBRE134	13	4	12.8	2.6	0.3	2.4	0.94	0.12
NMBRE135	13	5	12.8	3.3	0.5	3.0	0.91	0.16
NMBRE136	13	6	12.8	3.9	0.7	3.6	0.91	0.17
NMBRE203	20	3	19.5	1.8	0.1	1.8	0.97	0.06
MBRE204	20	4	19.5	2.4	0.1	2.2	0.92	0.06
NMBRE205	20	5	18.1	3.0	0.2	2.7	0.92	0.07
NMBRE206	20	6	16.7	3.6	0.2	3.2	0.89	0.07

•

.

	Experiment	icouits at P	rototype S	cale (Contir	ued)			
			+	Measured	Maggurod	Measured		
	Intended	Intended	Measured	incident	reflected	Measured	Trans-	
File	wave	wave	wave	wave	Wave	transmitte		Reflection
Name	period	height	period	height	height	wave	Coeff.	Coeff.
	8	m	S	m	m	height	Ht/Hi	Hr/Hi
·····					101	m		·
PLAN 2a: C	S1DAT01.ZI	P Three et						
TT132	13							
TT133	13	2	12.9	3.1	1.2	1.9	0.62	0.3
TT134	13	3	12.9	4.6	1.7	3.0	0.66	0.3
TT135	13		12.9	6.0	2.2	3.7	0.62	0.3
TT136	13	5	12.9	7.5	2.6	4.5	0.60	0.3
TT137	13		12.9	8.7	2.9	5.7	0.66	0.33
IT202	20	7	12.9	9.8	3.0	5.7	0.58	0.3
TT203	20	2	19.8	2.7	1.0	2.2	0.84	0.36
T204	20		19.8	3.9	1.4	3.4	0.88	0.35
T205	20	4	19.8	5.1	1.7	5.1	1.01	0.33
T206	20	5	19.8	5.9	1.8	4.7	0.79	0.30
	20	6	19.8	6.5	1.6	6.6	1.01	0.25
								0.20
LAN 2b: RA	N3_20.ZIP,	Three struc	irrea					
SDHE193	9	3	9.6	1.8				
SBRET94	9	4	9.6	2.6	0.6	1.1	0.61	0.35
SBRET95	9	5	8.8	3.1	1.4	1.5	0.56	0.52
			0.0	3.1	1.1	1.9	0.60	0.37
SBRET96	9	6	9.6	4.1				
		_	0.0		2.3	2.2	0.55	0.56
BRET133	13	3	12.8	2.2				
BRET134	13	4	12.8	3.0	0.9	1.3	0.60	0.40
BRET135	13	5	12.8	3.4	1.2	1.8	0.61	0.39
BRET136	13	6	12.8	4.3	1.4	2.0	0.61	0.41
BRET203	20	3	19.5	1.9	0.7	2.6	0.60	0.40
BRET204	20	4	19.5	2.5	0.9	1.5	0.75	0.38
BRET205 BRET206	20	5	18.1	3.0	1.1	1.8	0.73	0.37
	20	6	16.7	3.6	1.2	2.2	0.73	0.35

ſ			1		Γ			[
Table A2. E	xperiment F	esults at P	rototype Sc	ale (Contin	ued)			
							-	
		later de d				Measured		Deficition
P !!	Intended	Intended wave	Measured		reflected wave	transmitte wave	Coeff.	Reflection Coeff.
File	wave	height	wave	wave height	height	height	Ht/Hi	Hr/Hi
Name	period s	m	period s	meigni m	m	m		пит
· · · · · · · · · · · · · · · · · · ·	<u> </u>		3					
PLAN 3a: C	S1DAT04 - (CSIDAT07.	ZIP, Four St	ruc, irreg				
4BRE93	9	3		2.0	1.6	0.8	0.38	0.76
4BRE94	9	4	9.6	2.8	2.1	1.1	0.38	0.74
4BRE95	9	5	8.8	3.3	1.9	1.3	0.40	0.60
4BRE96	9	6	9.6	4.0	2.7	1.6	0.39	0.68
4BRE133	13	3	12.8	2.1	1.1	1.1	0.51	0.53
4BRE134	13	4	12.8	2.7	1.3	1.4	0.53	0.47
4BRE135	13	5	12.8	3.6	1.8	1.8	0.51	0.51
4BRE136	13	6	12.8	4.2	1.9	2.1	0.50	0.44
4BRE203	20	3	19.5	1.8	0.9	1.2	0.68	0.49
4BRE204	20	4	19.5	2.4	1.2	1.6	0.64	0.48
4BRE205	20	5	18.1	3.0	1.5	1.9	0.63	0.48
4BRE206	20	6	16.7	3.7	1.7	2.2	0.61	0.45
PLAN3b								
4BRE133A	13	3	12.8	2.0	1.0	1.0	0.51	0.51
4BRE134A	13	4	12.8	2.6	1.0	1.4	0.51	0.46
4BRE135A	13	5	12.8	3.5	1.6	1.4	0.52	0.40
4BRE136A	13	6	12.8	0.5	1.0		0.01	0.40
PLAN3c								
4BRE133B	13	3	12.8	1.9	1.0	1.0	0.53	0.53
4BRE134B	13	4	12.8	2.6	1.3	1.4	0.52	0.48
4BRE135B	13	5	12.8	3.4	1.7	1.7	0.50	0.49
4BRE136B	13	6	12.8	4.1	1.8	2.1	0.51	0.43
PLAN3d								
4BRE93H	9	3	9.6	2.0	1.3	0.9	0.44	0.66
4BRE94H	9	4	9.6	2.6	1.5	1.1	0.43	0.57
4BRE95H	9	5	8.8	3.1	1.7	1.4	0.44	0.53
4BRE96H	9	6	0.6	0.6	1.0	4 7	0.47	0.45
4BRE133H	13	3	9.6	3.6 2.1	1.6 1.0	1.7	0.47 0.53	0.45
4BRE133H	13	3	12.8 12.8	2.1	1.0	1.1	0.53	0.49
4BRE135H	13	4	12.8	2.8	1.5	1.5	0.53	0.45
4BRE136H	13		12.8	4.3	2.0	2.2	0.52	0.45
4BRE203H	20	3	19.5	2.0	0.9	1.3	0.66	0.47
4BRE204H	20	4	19.5	2.6	1.2	1.7	0.66	0.40
4BRE205H	20	5	18.1	3.3	1.6	2.1	0.64	0.49
4BRE206H	20	6	16.7	3.7	1.7	2.4	0.65	0.45

,

	REPORT D	OCUMENTATION P	AGE		Approved No. 0704-0188
the	data needed, and completing and reviewing the	ion is estimated to average 1 hour per response, i a collection of information. Send comments rege ers Services, Directorate for Information Operati fuction Project (0704-0188), Washington, DC	ons and Reports, 1215 Jefferson Da 20503.	vis Highway, Suite 1	204, Arlington, VA 22202-4302, and to the
	AGENCY USE ONLY (Leave blan		3. REPORT TYPE AN Final report	D DATES CO	/ERED
	TITLE AND SUBTITLE Evaluation of Wave Transmiss Plant for Noyo Bay, California	ion Characteristics of OSPREY	Wave Power	5. FUNDIN	G NUMBERS
	AUTHOR(S) Jeffrey A. Melby, William App	pleton			
	PERFORMING ORGANIZATION I U.S. Army Engineer Waterway 3909 Halls Ferry Road, Vickst U.S. Army Engineer District, S 333 Market Street, San Francis	ys Experiment Station ourg, MS 39180-6199 San Francisco		REPOR	RMING ORGANIZATION FNUMBER aneous Paper CHL-97-2
9.		ENCY NAME(S) AND ADDRESS(San Francisco	ES)	10. SPONS AGENO	SORING/MONITORING CY REPORT NUMBER
11.	SUPPLEMENTARY NOTES Available from National Tech	hnical Information Service, 528	5 Port Royal Road, Spri	ngfield, VA	22161.
12a	Approved for public release			12b. DISTI	RIBUTION CODE
13.	power generating caisson to a by Applied Research and Tech shown. Wave transmission te Test results indicate that three pubble mound breakwater. In	rds) flume tests of a newly designed ssess its suitability and efficient hnology (ART), of Inverness, S est results are plotted and compa e-unit and four-unit OSPREY ar order to satisfy the basic require d closer together, integrated with	cy. Tests were carried of cotland. Data from both ared with previous tests trays allow significantly rements for wave shelter	ut in a new w n regular and of a proposed more wave e ring at this sit	rubble-mound alternative. nergy transmission than the e, it would appear that the
14.	SUBJECT TERMS Electrical-power-generating Noyo Bay OSPREY	caisson Rubble-mound Wave transmis	sion	1	5. NUMBER OF PAGES 42 6. PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT	OF THIS PAGE	N 19. SECURITY CLASS OF ABSTRACT	SIFICATION 2	0. LIMITATION OF ABSTRACT
	UNCLASSIFIED	UNCLASSIFIED		Stand	ard Form 298 (Rev. 2-89)

Ţ

NCN	7540.01	200	EE00
NSN	7540-01	-200-	2200

1