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Abstract 

Due to mechanical aspects of fabrication, launch, and operational environment, 

space telescope optics can suffer from unforeseen aberrations, detracting from their 

intended diffraction-limited performance goals. This dissertation gives the results 

of simulation and theoretical studies designed to explore how wavefront aberration 

information for such "nearly diffraction-limited" telescopes can be estimated via the 

Gonsalves (least-squares) phase diversity technique. 

Simulation studies utilized numerically simulated imaging models of both mono- 

lithic and segmented space telescope mirrors. The segmented case is a simplified 

model of the proposed Next Generation Space Telescope (NGST). The Monte-Carlo 

simulation results quantify the accuracy of phase diversity as a wavefront sensing 

(WFS) technique in estimating the pupil phase map. Simulation results give an in- 

dication of the minimum light level required for reliable estimation of a large number 

of aberration parameters under the least-squares paradigm. For weak aberrations 

averaging 0.10A RMS, the average WFS estimation errors obtained here range from a 

worst case 0.057A RMS to a best case of only 0.002A RMS, depending upon the light 

level as well as the types and degrees-of-freedom of the aberration present. These 

studies are unique in their incorporation of photon statistical considerations. 

Theoretical investigation of space telescope phase diversity imaging consisted 

of Cramer-Rao lower bound analysis. The CRLB expressions given here provide 

a novel computational tool for assessing the merits of particular phase diversity 

imaging configurations. One key result of such an analysis is the proposal that 

phase diversity WFS estimation might, under certain conditions, be carried out 

using symmetrically defocused images, as in the curvature sensing technique. In the 

xii 



test cases demonstrated here, such a symmetrically defocused configuration resulted 

in smaller minimum mean-squared estimation errors. 

Phase diversity was also applied to the estimation of fixed optical aberrations 

in an operational adaptive optics system. Nineteen Zernike modes of an aberration 

that was present in the image path of an operational adaptive optics system were 

successfully estimated. 



EVALUATION AND APPLICATION OF SPACE TELESCOPE 

ABERRATION SENSING USING PHASE DIVERSITY 

/.   Introduction and overview 

1.1    Problem overview 

Optical aberrations degrade the imaging performance of optical telescopes. In 

response, adaptive optical and space-based telescopes have been developed which can 

greatly reduce the effects of aberration from sources external to the telescope, such 

as the turbulent atmosphere in the case of astronomical imaging. These efforts have 

brought optical astronomical imaging into the realm of nearly diffraction-limited 

performance. It is obvious, however, that adaptive optics systems cannot respond 

with infinite speed or perfect accuracy, and that space telescopes can suffer from 

unforeseen aberrations, such as the infamous spherical aberration introduced into 

the fabrication of the Hubble Space Telescope (HST) (7, 9, 18). Is there some 

technique we can use to diagnose these "residual", weak aberrations? 

One candidate technique, which is the focus of this dissertation, is known 

as the phase diversity aberration sensing technique—an a posteriori image-based 

wavefront estimation method which was first presented for optical imaging by Gon- 

salves (26). The term "a posterior? is used here to denote the fact that phase di- 

versity is not generally a real-time wavefront sensing technique, but instead depends 

on post-processing of recorded image data. The technique can be contrasted against 

traditional wavefront sensor (WFS) devices which measure pupil-related quantities 

more directly. One such type of traditional WFS device is the Hartmann slope sensor 



that is often found in adaptive optics (AO) systems. In ground-based AO imaging 

systems aberration estimates need rapid updating in near-real-time—on the order 

of milliseconds—in order to allow for compensation of turbulence-induced aberra- 

tions (4, 32, 72, 77, 80). But such traditional WFS devices are in sharp contrast 

with the phase diversity technique. The phase diversity WFS method is more akin 

to the phase retrieval (17, 25) or blind deconvolution (5, 40, 46) families of post- 

processing techniques, a fact which will be discussed in subsequent chapters. 

The phase diversity approach is motivated by the fact that the mathemati- 

cal mapping from the set of all possible pupil phase screens to the set all possible 

point-spread functions (PSFs) is a many-to-one mapping. In order to invert this 

mapping, which is the goal of image-based aberration sensing, the phase diversity 

methodology requires simultaneous collection of multiple images, each formed via a 

slightly different pupil phase screen, such as in the simplified example configuration 

shown in figure 1. In that example, the second, defocused image is considered to 

be the "diversity" image, and the difference between the two pupil phase screens 

would be a quadratic, consistent with the physical defocus of the optical hardware 

setup. Phase diversity post-processing then consists of fitting the "best" unknown 

aberration estimate to this set of multiple, "phase-diverse" image measurements. 

This fitting is accomplished via the minimization of some appropriate cost func- 

tion. Recent example applications of the phase diversity technique can be found in 

references (2, 8, 23, 49, 63). 

1.2   Phase diversity in space telescopes 

Even though free of atmospheric turbulence effects, space-based telescopes can 

still suffer from their own fixed or quasi-static internal aberrations. These aberrations 

can originate from various thermal/mechanical stresses on the optics, or errors in 
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Figure 1. Simplified schematic diagram of one possible phase diversity setup. 

the fabrication of the optical system (48). Rapidly changing aberrations may also 

arise due to vibrations induced by spacecraft components such as reaction wheels or 

solar array drive motors (57). If knowledge of these pupil aberrations is somehow 

made available by way of some sort of wavefront sensing (WFS) technique, then 

the aberrations can be at least partially compensated through either active optical 

components (38, 53, 73, 77) or post processing (20, 65, 81). 

In this dissertation an analysis of the phase diversity method is combined with 

the space-telescope imaging problem. We connect these two topics because the phase 

diversity WFS technique offers a number of potential practical advantages over tradi- 

tional WFS methods in the case of space-based imaging. For example, the hardware 

implementation of the phase diversity technique is relatively straightforward, in com- 

parison to the complicated optical hardware systems of standard Hartmann sensors 

and shearing interferometers. These traditional WFS systems are also themselves 

subject to misalignment, misregistration, and aberration errors. Moreover, for tele- 

scopes with segmented primary mirrors, such as the proposed Next Generation Space 

Telescope (NGST), discussed in chapter 4 and refs. (1, 13, 79, 54, 14), conventional 



slope sensors would be ill-suited to measuring the sharp pupil phase discontinuities 

introduced by misaligned segments (10). 

The optical simplicity that phase diversity WFS offers is especially relevant 

to the space telescope problem, since spaceborne systems operate in a hostile, in- 

accessible environment, and the systems designers face significant cost, size, and 

weight constraints (3). Additionally, the phase diversity methodology is relatively 

immune to any systemic WFS system errors that may manifest themselves once 

that spacecraft is in orbit, since the technique uses the target object as a WFS ref- 

erence (62). Moreover, under the least-squares formalism developed in chapter 3, 

the phase diversity technique works regardless of the object being viewed—a bright, 

point-like reference beacon is not specifically called for. Traditional Hartmann and 

shearing-interferometric WFS systems, on the other hand, generally do require views 

of unresolved point source beacons to operate. The price paid for these phase diver- 

sity advantages is that phase diversity wavefront sensing (PDWFS) measurements 

require extensive post-processing in order to extract and reconstruct the aberration 

information, as opposed to the simple matrix multiplications used for reconstruction 

of Hartmann wavefront sensor measurements (62, 72). 

The primary goal of this dissertation is to show the development and imple- 

mentation of methods for quantifying the performance of phase diversity wavefront 

sensing. Simulation analyses of phase diversity performance are given, constrained 

to various space-telescope imaging models of interest, namely, systems with either: 

1. a monolithic mirror experiencing a quarter-wave RMS aberration or less, or 

2. a similarly aberrated segmented mirror, approximating the proposed configu- 

ration of the Next Generation Space Telescope discussed above. 



Theoretical analysis of phase diversity problem is given in terms of fundamental 

estimation accuracy limits. Finally, an example of a unique practical application of 

phase diversity is demonstrated for the case of aberration diagnosis in an operational 

adaptive optics telescope system. 

1.3    Chapter descriptions 

Before proceeding with an in depth analysis of some particular WFS method- 

ology such as phase diversity, the following question should be addressed: "would 

WFS information actually be of any significant value for a nearly-diffraction-limited 

space telescope?" To that end, chapter 2 presents the results of a Monte-Carlo feasi- 

bility study of deconvolution from wavefront sensing (DWFS), simulating a generic, 

unspecified, Zernike mode WFS with user-definable estimation performance. Exper- 

iments are carried out using an imaging simulation, to determine if anything useful 

can be done with noisy, imperfect WFS measurements in terms of post-processing of 

weakly aberrated images. These numerical experiments show that, given such WFS 

information, imaging resolution performance can be improved noticeably via phase 

deconvolution, which is also defined and discussed in that chapter. 

This positive result for a generic, unspecified WFS gives reason to believe 

that the specific PDWFS method, combined with deconvolution processing, may 

also prove similarly successful. Chapter 3 proceeds with a theoretical discussion of 

the phase diversity technique, as presented originally by Gonsalves (25, 26). This 

chapter also discusses the practical motivation for collecting multiple, diverse images, 

as opposed to a single image. The topic of inverse problem regularization is also 

covered. 



Chapters 4 and 5 provide an in-depth investigation of the performance of the 

specific Gonsalves phase diversity technique itself, first in terms of numerical, Monte- 

Carlo space telescope imaging simulations, chapter 4, and then in terms of fundamen- 

tal, estimation-theoretical performance limits, chapter 5, for various space telescope 

scenarios of interest. 

The Monte-Carlo analysis of optical aberration and misalignment sensing via 

phase diversity (chapter 4) is a research task that was first suggested in reference (61). 

However, such an analysis of PDWFS has never been given in any subsequent pub- 

lished literature, making this chapter a unique contribution to the field. The analysis 

in this chapter is especially relevant due to the fact that one group of the pupil simu- 

lations closely models a proposal for the Next Generation Space Telescope (NGST), 

a proposed follow-on to the HST that is currently on-orbit. 

The fundamental estimation-theoretic performance analysis of PDWFS, given 

in chapter 5, is likewise a generalization of previous work-specifically, the estimation- 

theoretical analysis of the Hubble Space Telescope problem developed in reference (18). 

But reference (18) tackles only the single-image phase retrieval problem, for point- 

source imaging; whereas the work shown in chapter 5 generalizes the estimation- 

theoretic analysis to include phase diversity imaging of any given target source. The 

work shown here appears to be the first to take the extra step of actually applying 

Cramer-Rao analysis to the the phase diversity problem, and the first to address 

some of the interesting questions that can be attacked using numerical analysis of 

the derived Cramer-Rao expressions. 

Chapter 6 details how the phase diversity technique could also have relevant 

application in the realm of ground-based adaptive optical imaging systems. First a 

novel re-interpretation of the the phase diversity methodology is presented, show- 



ing how it can be used to diagnose an image-path-only aberration in an operational 

adaptive optical system—an aberration that is not sensed by the Hartmann wave- 

front sensor. This idea is demonstrated using actual imagery and WFS data from 

an operational adaptive optics (AO) system, the USAF Phillips Laboratory Starfire 

Optical Range. The results shown there represent a potentially useful addition to 

the collection of tools available to the practicing astronomer who is using adaptive 

optical systems. The results are also significant in that they represent a validation 

of phase diversity methodology using real imagery. 

Chapter 7 presents relevant conclusions and recommendations for further re- 

search. The overall conclusion is that a space telescope system would be well served 

by the integration of the phase diversity aberration sensing technique into its opera- 

tional concept. The phase error estimates could be used to mechanically correct the 

phase errors, through adaptive optics if appropriate or possible. Alternatively, the 

phase error estimates could be integrated into a post-processing methodology, such 

as the Fourier phase filtering technique demonstrated in this dissertation. Ideas for 

follow-on research include the possibility of using a weighted least-squares method- 

ology for including model information into the phase diversity technique. Other 

research projects include numerical simulation of other space telescope aberration 

models, besides the examples given here. Similarly, the Cramer-Rao numerical eval- 

uations given in chapter 5 could be replicated for a large variety of phase diversity 

configurations and experiments not evaluated here. 

1-4    Key results 

The significant experimental and theoretical results of this dissertation are 

summarized below. 



1. The phase filtering technique of image restoration was validated for the case 

of nearly diffraction-limited, noiseless, point-source imaging. Even when using 

very noisy WFS data, WFS SNR = 2, to estimate OTF phases, a quantifiable 

improvement in deconvolved imagery was noted. For example, in a simulated 

case of 0.10A RMS aberration, the noise-effective cutoff frequency is increased 

from 0.8 to 0.9 normalized spatial frequency. 

2. In-depth numerical experimentation on the PDWFS technique for the case of 

space telescope point-source imaging showed that accurate pupil estimates can 

be obtained even under very low light conditions. One experimental case, for 

example, involved PDWFS estimation of 0.10A RMS piston errors for a seg- 

mented space telescope model from dim, photon-limited, point-source images 

(K = 1000). These simulation experiments yielded phase estimates with aver- 

age RMS errors of 0.012A. This represents a breakthrough, since such piston 

misalignments of a segmented telescope could not be estimated using standard 

slope sensor systems. 

3. A significant limitation to the example case discussed in item 2 above was 

noted. The experiment in question here dealt again with the simulated model 

of a segmented space telescope, with similar PDWFS estimates being made 

for both segment piston and tilt misalignment errors. Under the same low- 

light conditions as before, 20% of these higher degree-of-freedom Monte-Carlo 

PDWFS experimental cases ended in failure, the algorithm converging on WFS 

estimates that were incorrect by several orders of magnitude. One observation 

that may be consistent with these failure outcomes is the fact that Gonsalves 

PDWFS does not account for photon noise in a maximum-likelihood sense. 

Items 2 and 3 summarize the first such attempt at analysis of the photon-noise 

limitations of the Gonsalves technique. 



4. A unique Cramer-Rao lower bound analysis, presented here for general, photon- 

limited, phase diversity imaging, provides a novel computational tool for as- 

sessing the merits of particular phase diversity imaging configurations. One 

key result of this analysis is the proposal that phase diversity WFS estima- 

tion might be more appropriately carried out using symmetrically defocused 

images, along the same lines as the images collected in the curvature sensing 

technique. A variety of other modifications to the standard PDWFS imple- 

mentation are proposed and investigated via CRLB analysis. Furthermore, it 

is shown that the mean-squared error observed in previous PDWFS Monte- 

Carlo experiments approached their appropriate CRLBs to within a factor of 

2. 

5. Finally, an innovative re-interpretation of the phase diversity technique is 

shown to yield a powerful new technique for the estimation of fixed, image- 

path aberrations in an operational adaptive optics astronomical imaging sys- 

tem. The estimation of 19 Zernike modes of such an aberration is demonstrated 

using actual astronomical imagery provided by the USAF Phillips Laboratory 

Starfire Optical Range AO system. 



77.   Feasibility of using WFS data in space telescope image 

deconvolution 

2.1    Introduction 

Before proceeding with an in depth analysis of the phase diversity wavefront 

sensing (PDWFS) technique, this chapter addresses the question of whether or not 

wavefront sensor (WFS) information would actually be of significant value under 

a hypothetical, nearly-diffraction-limited space telescope imaging scenario. This 

chapter details a Monte-Carlo feasibility study of a generic, unspecified, Zernike 

mode WFS. The use of a "phase only" deconvolution estimator, first mentioned 

by Fried (20) is justified for the case of weakly-aberrated imaging. In order to 

find an upper bound on resolution performance, numerical simulation of noiseless, 

point-source imaging and deconvolution is performed. The goal of this chapter is 

to quantify the improvement gained by post-processing weakly aberrated images, 

given various levels of aberration and various levels of WFS accuracy. The over- 

all conclusion is that imaging resolution performance can be improved noticeably 

via WFS-supported phase deconvolution, even for relatively inaccurate WFS mea- 

surements. This positive result—for a first order, proof-of-concept analysis with an 

unspecified WFS — shows that PDWFS, combined with deconvolution processing, 

may prove similarly useful in improving imaging resolution. 

The remainder of this chapter is organized as follows. After reviewing ba- 

sic Fourier optics, the deconvolution from wavefront sensing (DWFS) paradigm is 

explained. Then the simulation feasibility experiments for this chapter, and repre- 

sentative results from these experiments, are presented and discussed. 

10 



2.2    Basic imaging relations 

This section reviews the linear systems imaging model and establishes the 

requisite mathematical notation. Fourier optics principles are used to derive the 

relation between wavefront phase aberrations and the image domain quantities. 

2.2.1 Linear systems imaging model. Isoplanatic, or shift-invariant (LSI) 

incoherent imaging will be assumed throughout this dissertation. In the noiseless 

limit, isoplanatic image formation is modelled by a two-dimensional convolution 

operation (28), 

(1) i(x) = o(x) * h(x), 

where x is a two dimensional position coordinate, i(x) and o(x) are image and object 

intensity distributions respectively, h(x) is the system point spread function (PSF) 

or impulse response, and the asterisk, *, denotes the convolution operation, 

c(x)   =   a(x) * b(x) 

(2) =       dx0a(x0)b(x - x0). 

Fourier transforming equation 1 gives 

(3) 1(f) = 0(f)H(f), 

where / is a two-dimensional spatial frequency coordinate, 1(f) and 0(f) are the 

image and object spectra respectively, and H(f) is the optical transfer function 

11 



(OTF). The two-dimensional Fourier transform of some function g(x) is defined as 

(4) G{f) = FT[g{x)} = J dxg{x) exp[-j2*f ■ x], 

where the notation FT[-] is used to denote the Fourier transform operator. The 

inverse transformation from the spatial frequency domain back to the image domain 

is given as 

(5) g{3) = IFT[G(/)] = J dfG(f) exp[j27r/• x], 

The notation IFT[-] is used to represent the inverse Fourier transform operator. 

Note that lower case symbols denote image-domain quantities, upper case symbols 

represent frequency domain quantities, and that j = y/—l. 

These quantities and relations are important because a linear, shift-invariant 

imaging system is completely specified by its impulse response, and therefore by its 

transfer function. The OTF is in turn dependent on the aberrations present in the 

imaging pupil, as reviewed next. 

2.2.2 Aberrations and OTFs. Throughout this research optical aberrations 

are treated as thin, near-field phase screens. The thin phase screen assumption 

corresponds to the "thin lens" assumption of ray optics (29, 34), where a ray entering 

the screen at some transverse pupil coordinate exits the screen at essentially the same 

coordinate. The near-field assumption implies that the values of a pupil phase screen 

across the telescope aperture correspond only to the phase delays in the incoming 

optical wavefronts, with no amplitude scintillation effects (29). 

In this effort it is generally presumed that undesired pupil phase delays are due 

to deformations and/or misalignment of the telescope mirror or associated optics, 

12 



which are in turn caused by vibration, mechanical flexing or bending of optical 

elements, or perhaps even optical fabrication and misalignment errors. The pupil 

phase aberration is denoted by (f>(x), a quantity given in units of radians or waves 

(27T radians) of angular phase delay. The aberration <f>(x) is the quantity which is to 

be estimated by a WFS procedure. 

The basic Fourier optical principles found in refs. (28, 72) can be invoked to 

determine the effects of these aberrations on an LSI imaging system. If we denote 

the imaging aperture by the unity indicator function, 

(6) W(x) 
1   for x E  pupil 

0      otherwise, 

and define the generalized pupil function as 

(7) GPF(x) = W(£)exp[Mx)], 

then we can write the system OTF as 

ACF [GPF(fXdi)] 
(8) H{f) = 

ACF [GPF{f\dij\ \M 

The symbol A refers to the (center) wavelength of the (quasi-monochromatic) light 

being detected, di is the distance between the exit pupil and the imaging detector 

array, and the ACF [•] operator notation represents the autocorrelation function, 

(9) ACF[/(f)] = J dx7(f - x)/*(f). 

The asterisk superscript denotes complex conjugation. 
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2.2.3 Zernike polynomial decomposition. It is often convenient to decom- 

pose a phase screen <f>(x) into a linear combination of basis functions. When (f>(x) is 

defined over a circular pupil of radius R, Zernike polynomials are often used: 

00 

(io) #iM) = X>^M). 
»=i 

where r is the radial component on the unit disk (i.e. \r\ < 1), and 0 is the angular 

coordinate. The Zernike polynomials (6), Zi(r,6), as normalized and ordered by 

Noll (58), are given by: 

(11) 

and 

^=even(r,0) = v^ + TW) cos(m0) 

Zi=odd(r,0) = Vri+lK(r)sm(me) 
im/O, 

(12) Zi(r,6) = R°n(r)m = 0. 

The radial polynomials R%(r) are in turn defined by 

(n-m)/2 /_■, w     _    \| 

(1*\ Rm(r)-    V     [     ' [  -^ rn~2s. [i6) Kn[r)~    L    s\[(n + m)/2-s]\[{n-m)/2-s]\ 

The indices m and n are non-negative integers such that m < n and (n - m) is even. 

The Zernike polynomials are orthonormal, or, 

SdxW(x)Z%(x)Zj(x) _ f        I   1   i=3 
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where 8^ represents the Kronecker delta function. The coefficients, a,, are therefore 

given by the inner product of <f>{x) with the various Z;'s (58): 

(lb} ai~ JdxW(x) 

Orthonormality also leads to the following useful property: 

jdxWjxMx))2 _ »   , 
(16) fdxW(x)       'h^ 

where again, (f>(x) is given in equation 10. Equation 16 is a generalized Parseval 

relation which states that the pupil-averaged root-mean-square (RMS) value of a 

phase screen is equal to the root-sum-squared value of the corresponding Zernike 

coefficients. This property is useful because aberrations and telescope "wavefront 

error budget" specifications are often given in terms of pupil-averaged RMS values. 

Zernike polynomials are widely used in the optics literature due to the correspon- 

dence of the first dozen modes with classical optical aberrations. For instance, Zx 

represents piston, Z2 and Z3 correspond to x and y tilt, and Zu corresponds to 

spherical aberration. The first 3 Zernike modes will be ignored throughout this dis- 

sertation whenever the Zernike basis set is used to decompose an aberrating phase 

screen. The first mode Z\ is neglected because imaging and WFS systems are in- 

sensitive to piston. Instantaneous image quality is unaffected by tilt, Z% and Z3, 

because they correspond to simple image displacement, but cause no other defect in 

the image. 

Although the Zernike polynomials given above are defined over a unit circle, 

the aperture functions of many common reflector telescopes configurations are annu- 

lar in nature, due to the central obscuration caused by a secondary mirror. It should 
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therefore be noted that corresponding Zernike polynomials, defined and orthonor- 

malized over an annulus, also exist (18, 51). However, when Zernike polynomials 

are used in this dissertation, we will limit ourselves to consideration of filled circular 

pupils. 

2.3   Monte-Carlo feasibility study 

The well known problem of incoherent astronomical imaging through the Earth's 

atmosphere has motivated the development of a host of techniques intended to 

mitigate the effects of random optical aberrations. Most of these techniques can 

be grouped into pre-detection techniques and post-detection techniques. In pre- 

detection - or adaptive optics (AO) - compensation, pupil phase aberrations are 

sensed with a wavefront sensor (WFS). This WFS information is used to drive ac- 

tive optical components to mechanically cancel the wavefront phase aberrations be- 

fore the image is detected (32). Post-detection compensation entails the recording 

of images for computational processing after the image is detected (74, 81). The 

goal of the post-processing is to exploit the mathematical and/or statistical proper- 

ties of the imaging situation in order to computationally compensate for the effects 

of the aberrations (45). AO systems are expensive and hardware intensive, while 

post-processing techniques usually incur intensive computational requirements. The 

remainder of this chapter will be devoted to exploration of the use of a hybrid 

method, which uses principles from both of these traditional categories, and apply 

the method to a space-based imaging scenario. 

Deconvolution from wavefront sensing (DWFS) refers to a relatively new class 

of aberration compensation techniques (81). As the name implies, this method in- 

volves the use of WFS information to sense the telescope pupil aberrations. But 

instead of using this information in real-time to drive AO hardware, the WFS data 
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are stored along with the corresponding image frames. Later, after the observ- 

ing session, the aberration information is used in a post-processing scheme, such 

as deconvolution. DWFS may result in improved image quality, but without the 

substantial hardware requirements of pure AO systems or the heavy computational 

requirements of pure post-processing methods. 

Post-detection, pre-detection, and DWFS techniques have all been analyzed 

for, and applied to the case of imaging in the presence of aberrations caused by 

atmospheric turbulence (55, 77, 72, 81). Similarly, post-detection (16, 18, 31, 82) 

and pre-detection (39, 53, 57, 83) techniques have been proposed and analyzed for the 

case of space-based telescope imaging. In this chapter we continue this parallel trend 

between ground-based and space-based imaging by extending the analysis of the 

DWFS technique mentioned above into a general simulated space-telescope scenario, 

with an eye towards the overall goal of evaluating a specific phase diversity wavefront 

sensing technique in the chapters which follow. 

The primary difference - and advantage - of space-based imaging is the lack 

of aberrations due to atmospheric turbulence. But, even though free of these at- 

mospheric turbulence effects, space telescopes can still suffer from their own aberra- 

tions (3, 7). Barring some catastrophic failure or miscalculation on the part of the 

telescope designers, these aberrations are usually expected to be orders of magni- 

tude weaker than aberrations imposed by the atmosphere (16,18, 57). However, even 

small aberrations can be significant if diffraction-limited performance was desired. 

With this in mind, the operative question for this section can be posed as: "What 

performance boost, if any, is gained in applying DWFS-style processing to space 

telescope imagery, given that the imagery is already 'nearly' diffraction-limited?" 
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If DWFS does indeed seem to promise measurable improvement in space tele- 

scope image quality, then several scenarios for exploiting the technique are possible. 

Space telescopes might, for example, suffer from unexpected aberrations due to fabri- 

cation errors, or mechanical aspects of the space environment or spacecraft operation. 

WFS-based post-processing might allow effective compensation of these aberrations. 

Image quality that would otherwise have been lost can be at least partially recov- 

ered, but without the cost of AO hardware or manned repair missions. Alternatively, 

the use of on-orbit aberration sensing in post-processing could permit designers to 

use less expensive optical manufacturing tolerances in the building of the telescope. 

Perhaps the image quality lost due to a less rigorous wavefront error budget could 

be made up through the use of DWFS. 

The above considerations motivate this effort to quantify the performance of 

DWFS methods under non-atmospheric, weakly aberrated conditions. 

2.3.1 Deconvolution from wavefront sensing. The purpose of a wavefront 

sensor (WFS) is to estimate the aberrating phase, <j)(x), present in the effective 

entrance pupil of an incoherent imaging system. Typical WFS techniques involve 

viewing a reference beacon with wavefront slope sensors such as Hartmann or shear- 

ing interferometry devices in order to estimate the gradient of <f>(x). An estimate of 

the phase screen, 4>(x) can then be reconstructed by fitting basis functions to the 

integrated slopes by least-squares fit (80, 72). More recently, as mentioned in chap- 

ter 1, phase retrieval methods such as least-squares phase diversity estimation are 

being investigated for use in aberration sensing (8, 25). This particular method, for 

example, has the advantage that a spatially restricted beacon and complex optical 

hardware systems are not required, two significant advantages for space telescope 

systems, an assertion that will be discussed in chapter 3. 

18 



Incoming object 
irradlance 
distribution 

beam 
splitter 

»vs. 

»VS, 

»v\ 

»v\ 

optics system 
plus aberrations 

aberrated 
wavefronts 

2E i detectoi 
I array 

wavefront 
sensor 
system 

wtsdata 

recorded 
image 

post 
processing 
computer 

^object 
"estimate 

Figure 2.    Simplified block diagram of the deconvolution from wavefront sensing 
technique. 

In the DWFS image reconstruction technique, this WFS information is recorded 

for later processing, along with corresponding image frames, as shown in figure 2. 

With an eye towards the phase diversity technique, discussed in the chapters which 

follow, note that the "wavefront sensor system" block of this block diagram is not 

confined only to "traditional" WFS devices such as a Hartmann slope sensor ar- 

ray. The WFS aspect of the diagram could stand for any auxiliary information that 

has been gathered for WFS purposes. In the case of phase diversity, this auxiliary 

information would take the form of defocused, or diverse images that can be col- 

lected simultaneously via the beamsplitter arrangement, such as shown in figure 1 

in chapter 1, and discussed in chapter 3. But since this chapter is serving as an 

initial feasibility study of the the DWFS technique in general, we will not restrict 

our consideration to any particular set of WFS characteristics. 
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2.3.2 Deconvolution estimators. Once the phase aberration estimate, (f>(x), 

is determined through some WFS technique, the (j>(x) quantity can then be substi- 

tuted for 4>{x) in equations 7 and 8. These relations yield an OTF estimate, H(f). 

In their paper on the DWFS technique, Primot et. al. (65) use H(f) in the following 

DWFS estimator: 

(17) 0(f) = W/W» (17) 0(l)      (|S(/)P) ■ 

where the tilde, ~ denotes an estimated quantity and the angle brackets indicate 

ensemble averaging of a set of realizations of an ergodic random process. Primot's 

estimator is a least-squares estimator under an LSI imaging model, as will be shown 

in chapter 3. If only a single realization is available, equation 17 reduces to 

ö(f)   =   I(f)H*(f) 

= M (18) 

commonly known as the inverse filter. Notice how the inverse filtering operation can 

also be written (suppressing / dependence) as 

ö = I 
H 

(19) =   ojSje**1*-*^. 
\H\ 

where $# and $^ denote the complex phasor angles of the H and H respectively. We 

see that this estimator involves a division of the OTF amplitudes, and a subtraction 

of their phasor angles. 
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Consider the quotient \H\/\H\. The denominator is generally an imperfect 

estimate of the numerator quantity. In the case under consideration here, for exam- 

ple, H is derived from noisy, reconstructed WFS data. For the spatial frequencies 

where this estimate has a low signal-to-noise-ratio, inverse filtering can result in 

amplification of noise, introducing unwanted variance into the deconvolved image 

estimate. In the worst case, if the estimated MTF modulus \H\ can take infinitesi- 

mally small values, there could be meaningless "infinite" values introduced into the 

DWFS estimate. 

Various ad hoc "remedies" for this variance problem are discussed in (71) and in 

chapter 3. For images that already have sufficient high spatial frequency information 

content, it may be possible to sidestep the amplitude division issue by correcting only 

the OTF phase, leaving the OTF amplitudes unchanged. This idea was originally 

proposed by Fried (20): 

- _    IH* 

\H\ 

(20) =   0\H\J{*H-**\ 

In Fried's formulation, the WFS-based OTF estimate is used to create a unit-phasor 

quantity which, in the limit of perfect wavefront-sensing, will provide the exact 

conjugate to the complex phase angle of the system OTF. The OTF modulus is 

not modified in this technique. Therefore, it has been suggested that this method 

would be useful for imaging systems where the OTF modulus already has sufficiently 

large value at high spatial frequencies, such as adaptive optics systems (68, 70) or 

space-based telescopes. For these reasons we adopt the Fried procedure of phase-only 

correction from wavefront sensing (PCWFS) in this dissertation. The performance 
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of this estimator on noiseless, point-source image measurements, given noisy WFS 

information, is analyzed by simulation in the next section. 

We have shown that reducing the variance of an estimate is a motivation for 

phase-only filtering, but is there actual justification for neglecting modulus correc- 

tion? References (33, 36, 59) all provide some insight into the relative importance 

of frequency domain phase information versus modulus information. Reference (33), 

for example, provides a mathematical theorem stating that a finite-extent discrete 

sequence is uniquely specified - to within a scale factor - by the phase of its Fourier 

transform, provided certain conditions on the z-transform of the sequence are met. 

Reference (59) provides informal discussion and heuristic examples supporting the 

idea that the frequency domain phase contains considerably more information about 

the visual content of an image than does the Fourier modulus. Finally, reference (36) 

presents results of statistical matched-filter experiments. Matched-filters which cor- 

related image Fourier phase information of alpha-numeric characters were vastly 

more successful in providing detection in the presence of noise than were the corre- 

sponding Fourier-amplitude matched filters. These citations lend some theoretical 

weight to the phase deconvolution concept. 

2.4    Simulation 

A simplified flowchart of the imaging and reconstruction simulation is shown 

in figure 3. In this section the relevant details of the various flowchart elements are 

discussed. 

The computer simulated pupil phases used here, and throughout this disserta- 

tion, are written as the arguments of complex exponentials to an N x N pixel array 

with a circular pupil aperture (equation 6), N/2 pixels in diameter, located at the 
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Figure 3. Computer simulation simplified block diagram. 

center of the array. Using Fourier optical relations (section 2.2.1) and Fast Fourier 

transforms (FFTs), these phase screens will yield "Nyquist sampled" point-source 

images, with 2 pixels across a resolution cell, X/D, with A = center imaging wave- 

length, D = physical aperture diameter (72). The pupil phases for the simulations 

used in this section are specified in terms of the Zernike polynomials as ordered 

and normalized by Noll (58). In this section, all simulated point source images are 

noise free. Chapter 4 will show simulations which include photon noise, introduced 
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by using a random-number generation routine and the Poisson photon probability 

density described in chapter 5. 

2.4.I Phase screen generation. These simulation experiments incorporate 

the assumption that the RMS wavefront error budget of a general space telescope 

can take on values anywhere from on the order of 2% of a wave (39, 41, 52) up to 

approximately 30% of a wave (37), and that the aberrations are usually expected to 

be confined to the first two dozen Zernike modes, (16, 50, 57). An order-of-magnitude 

confirmation on the reasonableness of the assumptions above is provided by the 

well-known Hubble Space Telescope aberration. In that space telescope example, an 

aberration was erroneously introduced during fabrication. The aberration consisted 

of 50% of a wave RMS, mostly concentrated in Zernike mode 11 (7, 18, 56). 

In this simulation scheme optical aberrations are modelled so that Zernike 

coefficients 4-22 are present. Piston and tilts are ignored as having no impact on 

the actual image quality of a single image realization. The remaining 19 coefficients 

are generated as independent, identically distributed, zero-mean Gaussian random 

variables. The pupil coefficients are all scaled by the same amount to give the desired 

ensemble-averaged, pupil-averaged RMS wavefront aberration. 

From the 19 randomly drawn and appropriately scaled coefficients, a,, a pupil 

phase screen is generated over a circular support: 

22 

(21) <f)(Rr,e) = YiaiZi(r,e). 

The simulated OTF is then calculated from this phase screen via equations 7 and 8. 
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2.4-2   Randomness considerations.     The pupil Zernike coefficients generated 

by our simulation are statistically uncorrelated, so that we have 

\aiaj)     =     ~&~ÖiJ 

foi i,j    €    {[4,5, •••,22]} 

(22) 

where 6i,- is the Kronecker delta function, defined as 

(23) Sij = < 
1     for i = j 

0   otherwise. 

Any non-zero correlation values between different Zernike modes (i.e. i # j) would 

imply additional statistical information about the structure of the aberrations. For 

the general space telescope problem such extra information is simply not available; 

often all that has been specified in the early proposal and design stages of some 

particular space telescope is the wavefront error budget. 

No assumptions regarding the temporal nature or ergodicity of the phase screen 

random process are incorporated into this simulation model. Each realization of the 

phase screen might represent a temporally "fixed" aberration. Alternatively, each 

simulated phase screen may represent one sample of a temporally varying aberration, 

perhaps induced by mechanical vibrations of the spacecraft bus due to thermal flexing 

or spacecraft attitude corrections. In either case, the essential point is that the 

state of the aberration is unknown, and therefore random. The results given in 

section 2.5 represent ensemble averages taken across these random realizations of 

telescope pupils, as is appropriate for the type of feasibility study undertaken here. 
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In order for this simulation to be as general and as useful as possible, the 

desired RMS wavefront error budget is distributed randomly across Zernike modes 

4 through 22. In this chapter, aberrations are modelled as being, on the average, 

equally distributed across all 19 of these Zernike modes, in a statistical sense. Of 

course, the actual aberration modal statistics of some given space telescope will 

be totally dependent on specifics such as how the mirror is built and mechanically 

supported. For example, at least one mechanical simulation study of a particular 

segmented space telescope mirror (57) revealed an approximate exponential falloff in 

aberration strength across the first 12 Zernike modes when the aberration is induced 

by mechanical vibrations of the satellite bus. A similar "modal falloff" model for 

Zernike aberration mode strength is adopted in chapter 4. 

In order to provide a performance upper bound, these particular simulation 

experiments are limited to noiseless, point-source imaging, with no photon noise or 

read noise introduced into the images. Point source images are simulated since the 

performance of an isoplanatic imaging system is characterized by its PSF behavior. 

2.4.3   Simulated wavefront sensing. Wavefront sensing is simulated by 

taking the known imaging pupil Zernike coefficients discussed in the previous sub- 

section, that is the a, values, and adding randomly drawn n; noise coefficients to 

them. The error coefficients are also scaled so that ewfs, the ensemble-average of the 

pupil averaged WFS error, equals the desired value for the particular simulation run. 

From these corrupted Zernike coefficients an "estimated" phase screen and OTF are 

calculated: 

22 

(24) 4>{Rr, 6) = £(0* + ni)Zi(r, 6), 
i=4 

26 



using the same symbol definitions as in equation 10 and 21. These random Gaussian 

WFS error coefficients n{ are used to account for such effects as WFS measurement 

noise, undersampling, and reconstruction error. The OTF, as measured by the sim- 

ulated WFS, is then calculated from this phase screen via equations 7 and 8. 

Notice that for this simulation, WFS estimation errors are, in an RMS sense, 

distributed equally across all of the 19 Zernike modes, regardless of order. In other 

words, the WFS system is simulated such that it will estimate Zernike coefficient 

a4 or a5 just as accurately, on the average, as it does ai7 or a22- This simulated 

approximation seems reasonable in light of results in reference (18), where an er- 

ror analysis of space telescope aberration sensing is presented. Their results show 

that the lower bounds on Zernike coefficient estimation errors were of roughly the 

same order of magnitude for the coefficients out to Zernike mode 22 for a particular 

simplified space telescope model. The results of chapter 4 also suggest that, for the 

specific case of the phase diversity WFS technique, all of the first two dozen Zernike 

aberration modes are also simulated with about equal fidelity or accuracy, with no 

modes particularly favored over any other. 

For convenience in describing the results which follow, let us define a "WFS 

SNR" quantity as 

(25) WFS SNR = ^^. 
Mil/« 

That is, the RMS wavefront sensor noise and error is expressed as a fraction of the 

RMS wavefront error budget. Recalling equation 24, the WFS SNR could be given 
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(26) WFS SNR = \ 

\ 

22 

i=4 

22 

E(^)2 

i=4 

A WFS SNR of 2 means that the average RMS error of the WFS estimates is equal 

to one half the average RMS error of the actual aberration being estimated. Note 

that WFS SNR is a simple measure of simulated WFS fidelity, and is not to be 

confused with another definition of an "SNR" quantity given below for OTFs. 

After the simulation has generated a truth-model OTF realization and the cor- 

responding WFS-based estimate of that OTF, deconvolution performance statistics 

can be gathered. The results given in the next section represent averages of various 

performance metrics for implementation of the Fried PCWFS estimator. 

2.5   Simulation results 

The performance of the phase-only correction from wavefront sensing, or PCWFS, 

technique is given for a simulated space-based imaging scenario. Performance is 

specified in terms of OTF signal-to-noise-ratio, OTF phasor angle, and image do- 

main Strehl ratios. These quantities are parameterized by various RMS wavefront 

error budget values and WFS error levels. Spectral quantities are given as radial 

averages, in terms of normalized spatial frequency. Radial averaging refers to a con- 

venient method of condensing surface plots depending on 2-dimensional independent 

variables such as /= {fx, fy} down to line plots depending on the overall spatial 

frequency amplitude, p = Jf% + /•*, by averaging the two-dimensional surface val- 

ues around circles of constant radius p, centered on the origin.  Spatial frequency 
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plotting variables are normalized to 

\6 I ) Pnorrn —    r-, > D 

where D is the physical diameter of the telescope aperture, meaning that pnorm — 1 

at the diffraction-limited cutoff. 

2.5.1 Signal-to-Noise Ratio. The signal-to-noise ratio (SNR) of any ran- 

dom quantity is defined (29) as the expected value of the quantity divided by the 

standard deviation. The variance of a complex random process X(f) is given by 

(28) var {*(/)} = (|x(/)|2) - |(X(/))|2 

where angle brackets denote the expectation value of random process, and so the 

SNR of this process is expressed as 

(29) SNRx(f) 
| (*(/)) | 

var {*</)}' 

a real-valued function, which, for this analysis, will be applied to Fourier transform 

spectra, and thus will be a function of spatial frequency /. Any unknown and/or 

randomly varying quantity or process introduced into a system model results in a 

decrease of the output SNR. The simulation model used here includes two sources 

of randomness in the imaging system: 

• uncertainty about pupil aberrations (except for their RMS strength); and 

• random wavefront sensor error. 
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The relative impact of randomness on spatial frequency domain quantities is indi- 

cated by the solid-line curves shown in figure 4. These curves depict radially-averaged 

profiles of estimates of the quantity SNRH(f), the SNR of the effective optical trans- 

fer function before any sort of image reconstruction processing. The rest of the curves 

show the effect of PCWFS processing on the SNR of the effective system OTFs. The 

SNR quantities are simulation sample-based estimates, each obtained by averaging 

over 200 independent simulated pupil and WFS realizations for a variety of values 

of tpupil and €wfs. 

An improvement in the OTF SNR is indicated even when very low quality 

WFS information is used. This improvement is evident in the two representative 

cases shown in figure 4, for pupils with RMS aberration strengths of (a) 0.05A, and 

(b) 0.10A. Consider, for example, the representative plot (a) of figure 4. That plot 

shows a PCPD improvement of at least a factor of 1.5 across all spatial frequencies 

out to cutoff, even when the WFS errors are half as strong as the aberrations being 

measured (WFS SNR = 2). This shows that rearranging image phases, even on 

the basis of relatively noisy WFS information, is still significantly better in terms 

of variance reduction than doing nothing at all. Similarly, the spatial frequency at 

which the average SNR drops below a threshold of 10 is shown to have been extended 

from 70% of cutoff out to 80% of cutoff, implying a corresponding improvement in 

average resolution (72). 

2.5.2 OTF phasor angle. Recall that the goal of PCWFS is to drive the 

phasor angle of the effective imaging system OTF to zero in the limit of perfect 

OTF estimation by the WFS. Ideally, the effective OTF should be an entirely real- 

valued quantity, with the complex phasor angle of each spatial frequency component 

equal to zero. Figure 5 gives a detailed picture of the RMS phasor angle behavior 
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for the effective PCWFS OTF is at various spatial frequencies. Once again, these 

representative curves are given for wavefront errors of 5% and 10% of a wave RMS. 

Specifically, each curve in figure 5 represents 

(30) curve(p) = Radial-average ^ ——, 
200 

£[^,(/)]2 

where p — Jff+f^, the amplitude of a particular spatial frequency, and $#<(/) 

represents the phase angle of the particular OTF in question, at spatial frequency 

/. In words, each curve is basically a radially-averaged profile of the RMS OTF 

phasor angle, as determined by averaging across 200 simulated realizations. This 

type of Fourier phase estimation error metric is commonly seen throughout the image 

reconstruction literature, e.g. ref. (69). 

These representative phasor angle error plots show quantitatively that, as ex- 

pected, the values of the effective PCWFS OTFs are driven towards the real axis. 

But more importantly, they also quantify the frequency domain impact of WFS es- 

timation error on the PCWFS technique. As in the previous subsection, we again 

see that even the use of relatively noisy WFS data yields a significant improvement 

in imaging performance. When the WFS SNR is 2, the OTF phasor angles are gen- 

erally reduced in amplitude by a factor of one-half. As expected, the lower curve 

of plot (a) shows that, given nearly perfect WFS information, we can correct the 

effective OTF such that it is essentially entirely real across all spatial frequencies. 

2.5.3 Effective Strehl ratios. The spatial frequency domain performance 

metrics mentioned above are important considerations in terms of image reconstruc- 

tion. But it may prove useful to tie these frequency domain results to more concrete 

effects in the image domain. The effects of PCWFS on the image domain are per- 
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Figure 5. Radial-average of RMS OTF phasor angles (radians). Original OTF val- 
ues are compared to PCWFS effective OTF values with WFS SNRs of 
2, 3, 5, 10 and 100, as shown. Each of the 200 simulated pupil real- 
izations represented by each curve had (a) 0.05A and (b) 0.10A RMS 
pupil-averaged aberration. 
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haps most conveniently expressed in terms of effective Strehl ratio, which is defined 

as the ratio of the peak of the system PSF to the peak of the PSF of an unaberrated 

system. (28, 72). 

Figure 6 shows a representative plot of the average effect the PCWFS process- 

ing has on the Strehl ratio of pupils with 0.10A or less ensemble-averaged, pupil- 

averaged, RMS aberration. Each data point on the plot represents the average of 

200 Strehl Ratios derived from 200 simulated realizations. Again, even for nearly 

diffraction-limited images, correcting the phase of the OTF using WFS information 

results in a quantifiable improvement in this traditional imaging performance metric. 

The WFS SNR was 10 in the PCWFS processed cases shown in figure 6. 

The effective Strehl ratio data are also listed in table 1. Further insight can be 

gained on the effects of PCWFS on imaging by way of Marechal's approximation, 

where the Strehl Ratio, SR, is related to the pupil-averaged mean-square wavefront 

error, which is denoted by the symbol e2, by the approximate relation 

(31) SR = exp{-e2}, 

a relation which holds for RMS wavefront errors up to about one-tenth of a wave (72). 

Notice that if P is defined as P E (percent-of-a-wave pupil-averaged RMS error), 

then 

(32) SR   =   -P{-(!£)
2
} 

(33) P   =   — J-In (SR) 

and 

50 
7T 
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Figure 6. The Effect of OTF Phase Correction on average Strehl ratio. Each datum 
represents the average of an ensemble of 200 (effective) Strehl ratios, 
each derived from simulated imaging pupils with with random Gaussian 
aberrating phase screens of the specified RMS aberration strength. The 
PCWFS processed images used WFS data with a WFS SNR of 10. 
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Table 1.    The effects of PCWFS on Strehl Ratio. See text for definition of quantities 
listed 

p ■ ± orig ö -Liorig SRPCWFS Peff 
1 0.996 0.996 0.977 
2 0.984 0.985 1.944 
3 0.966 0.967 2.904 
4 0.940 0.942 3.862 
5 0.908 0.912 4.815 
6 0.871 0.876 5.772 
7 0.829 0.838 6.702 
8 0.784 0.795 7.630 
9 0.737 0.750 8.530 
10 0.688 0.705 9.403 

So from the effective PCWFS Strehl ratio, SR, an effective RMS wavefront error 

Peff can be derived by inverting Marechal's approximation: 

(34) Peff     = 
50 
7T 

y/-)n{SR PCWFS 

Simulation results for this effective aberration strength measure, and the effective 

Strehl ratio after phase correction processing are summarized in table 1 

By inverting Marechal's approximation for the effective, phase-corrected Strehl 

ratios, table 1 tells us, for example, that a pupil that originally had 10% of a wave 

(RMS) of aberration acts like a pupil with 9.4 % of a wave of aberration, after 

PCWFS reconstruction, or a 6% reduction in effective RMS aberration in terms of 

an image plane quantity. 

The table also shows us that Strehl ratios, already near unity, are pushed 

further towards this asymptotic limit by up to about 3% by using PCWFS. 
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2.6    Conclusion 

Although the focus of this dissertation is the phase diversity wavefront sensing 

technique, derived in the next chapter, this chapter has first dealt with more generic 

simulation studies of wavefront sensor supported image post processing, using an 

unspecified simulated wavefront sensor, with user-definable error performance. The 

simulation analysis presented in this chapter thus serves as a feasibility study, or 

first-order "proof-of-concept" for the overall idea of using WFS information on space 

telescope imagery. This study is then a precursor to eventually using the phase 

diversity wavefront sensing technique in a deconvolution scheme similar the type 

shown here. 

Results show that even when relatively noisy wavefront sensor information is 

used on images with up to 0.10A RMS of unspecified wavefront error, the SNRs of 

image spectra can be boosted by a factor of 1.5 and RMS spectrum phasor angles 

can be approximately cut in half, across a wide range of spatial frequencies, for the 

simple case of noise-free point-source imaging. In the image domain, average effective 

Strehl ratios, already near unity, are pushed further towards this asymptotic limit 

by up to approximately 3%. This is achieved by straightforward, non-iterative post- 

processing manipulation of the Fourier phase of the image data, using information 

from some sort of wavefront sensing methodology. Furthermore, the complications 

inherent to inverse filtering, or expensive, complicated adaptive optics compensation 

are avoided. 
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III.   Phase diversity wavefront sensing: theoretical considerations 

The previous chapter was concerned with establishing the value of the method 

using WFS information in the deconvolution of weakly aberrated images. This treat- 

ment was general in the sense that no specific WFS methodology was considered. For 

the remainder of the dissertation the attention is focused on a single WFS method- 

ology. In this chapter the theory for the phase diversity technique of aberration 

sensing is presented. The derivation is presented in terms of non-linear least-squares 

minimization, after Gonsalves (26). A maximum-likelihood treatment can be found 

in ref. (62). After developing the basic aberration sensing procedure, we examine 

the uniqueness and object-independence properties of the phase diversity procedure. 

The remainder of the chapter explains and justifies the regularization technique used 

in this application. 

3.1    Least-squares phase diversity wavefront sensing 

The phase diversity wavefront sensing (PDWFS) technique is an a posteriori 

image-based wavefront sensing technique which was first presented for optical imag- 

ing by Gonsalves (26). PDWFS measurements consist of multiple images of the 

same scene, each formed via a slightly different pupil phase screen. For example, 

when two images are collected, as in the typical PDWFS implementation shown in 

figure 1 (seen in chapter 1), one image, the "conventional" image, is aberrated only 

by the phase screen which is to be estimated. The second image, referred to as the 

"diversity" image, is aberrated by a different phase screen that has been perturbed 

from the original, unknown aberration in a known manner, perhaps by defocus as 

in figure 1. This known pupil phase difference is referred to as the phase diversity, 
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hence the name of the technique. In general, N images can be collected: 

(35)     {in(x;an)}%=l   =   {h(x;a +A1),i2(x;a + A2),-■ ■ ,iN{x;a + AN)}, 

where in represents the nth diversity image, which is a function of image plane 

spatial coordinates, x, and pupil aberration, an. The an vector represents a set of 

aberration coefficients for some appropriate pupil phase basis set. For example, if 

j 

(36) MRr,e) = Y,a*Jzi(r>e) 
j=4 

as in equation 10, then the Zernike coefficients a4 through aj are arranged in a 

(J — 3)-element aberration vector an: 

(37) an = [aTO)4, an,5, • • • a„,j]  , 

with the T superscript denoting the transpose operation. This vector is in turn 

the resultant of two vector sub-components of interest: an = a + A„. The fixed 

aberration to be estimated is designated by the coefficient vector a, unsubscripted, 

and the known phase diversity aberration is symbolized by the coefficient vector A„. 

For the typical implementation of PDWFS (62) shown in figure 1, for example, the 

diversity for the defocused image would correspond to the a non-zero coefficient for 

the fourth Zernike polynomial, which corresponds to defocus (58). 

In general, N diversity images are collected, as implied in equation 35. But 

for the derivation which follows, without significant loss of generality, we consider 

a pair of images collected using the phase diversity setup in figure 1. Later, the 

Gonsalves cost function which results for the two image case can be easily generalized 

to accommodate the iV-image data set given by equation 35. Let the conventional 
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and diverse image data set be written as the output of an isoplanatic model in the 

image domain, as in equation 1: 

ii(x)   =   o(x) * hi(x; a + Ai) 

(38) i2(x)   =   o(x)*h2(x;ä + A2), 

where o(x) is again the unknown object irradiance pattern, hi(x;a + Ai) and 

h2(x;a + A2) are the conventional and diversity PSFs, respectively, and ix(x) and 

i2(x) are the conventional and diversity images, respectively. Assume, for illustration 

purposes, that the phase screen is decomposed into Zernike polynomials, as in equa- 

tion 36. In such a case, the phase screen quantities above could then be represented 

by (J — 3)-element vectors, whose first element is the 4th Zernike coefficient: 

(39) Ai   =   [0,0, • • • , 0]T = Ö, the zero vector 

(40) A2   =   [£,0, (),•••, Of, 

where the symbol 6 is used to represent the fourth Zernike coefficient of the second 

image collected by the system shown in figure 1, corresponding to the known defocus 

distance. 

If the noisy data corresponding to i\(x) and i2(x) are denoted as dx(x) and 

d2(x) then 

di(x)   —   o(x) * hi(x; a) + ni(x) 

(41) d2{x)   -   o(x) * h2(x;a + A2) + n2(x), 
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where ni and n2 represent the respective errors between the model and the data. 

Reference to the zero-valued Ai diversity vector has been dropped. The integrated, 

squared value of the error, (n2 + n2), is the quantity which is to be minimized under 

the least squares formalism: 

(42) J(a) = y^{|di-o* /n(a)|2 + \d2 - o* h2(a + A2)|
2}dx, 

where, for simplicity, the spatial dependence (x) of all d, o, and h quantities is now 

implied. The quantity J(a) is referred to as the phase diversity objective function 

or cost function. 

At this point Parseval's theorem (22) and the Fourier transform convolution 

theorem are invoked in order to write 

(43) J(a)   =   ^{{Dx-OHiWl2 + \D2 - OH2(a + A2)\2} df 

=    L{N2}df. 

—♦ 

Notice that the / spatial frequency dependence for all the D, O, and H quantities 

has been suppressed for simplicity of presentation. The symbol N2 is used to denote 

the integrand of J, the total sum-amplitude-squared of the noise at some spatial 

frequency: iV2 = N2 + N2, where JVi and N2 are the Fourier transforms of n\ and 

n2. Following (26, 43), the derivative of the integrand of J(a), with respect to the 

object quantity O is found at any given spatial frequency, and this derivative is set 

equal to zero, 

(44) 

^ = -2(DiÄj(5) + D2H*2(a + A2)) + 20(\H1(a)\2 + \H2(a + A2)|
2) = 0, 
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where the asterisk superscript represents complex conjugation. In writing 44, it is 

important to recall that the quantities being analyzed are complex in nature. This 

fact is accounted for by invoking the complex partial derivative identities shown in 

equations 2.69 and 2.70 of ref. (42). Solving for the least-squares object estimate 0 

yields the expression for the Wiener-Helstrom filtered data (61), 

(45) ö _ DrfZiä) + D2H*2(a + A2) 

\H1(a)\* + \H2(a + A2W 

Inspection of equation 44 reveals that a second partial derivative of with respect to O 

would yield a positive, real number, guaranteeing that O minimizes N2 at all spatial 

frequencies, thereby minimizing J. To obtain a suitable least-squares cost function 

for the inverse problem of estimating a from D\ and D2, O above is substituted 

back into J(a), yielding the Gonsalves phase diversity objective function, which 

after simplification is written as 

(46) 
D^W + DrfKa + A^ 

V JfV I#i(ö0l2 + \H2(a + A2W   / 

The solution to the wavefront sensing problem now consists of finding the aberration 

vector a which causes J(a) to reach its minimum value, or 

(47) aWFS = arg(min( J(a))). 
a 

With this goal in mind, notice that the first two terms of the integrand of equation 46, 

the modulus-squared data, represent a constant for a given phase diversity data set. 

In other words, the quantity (|Di|2 + I-D2I2) is not a function of a and need not 

be included for minimization purposes.   Hence, the following simplified objective 
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function can be minimized 

*w,ra D1H*1(a) + D2HZ(a + A2)f 

)|2 + |^2(a + Ä2))|2 
d/. 

This objective function was presented by Gonsalves in references (25, 26). It is not 

difficult to see that equation 48 takes the following form for the more general data 

set of N diversity images: 

(49) J(a) = _M ÖL,Ws+i)P jd/' 

As noted in ref. (62), the same objective function can be derived as the negative 

of the image log-likelihood function, corresponding to a Gaussian noise model. A 

more appropriate, but much harder to use, Poisson model derivation of a maximum- 

likelihood objective function is also presented in ref (62). 

Finally, note for the simulations used in the latter half of this chapter and in 

chapters 4 and 5 that all diversity phases will be due to defocus, introduced by adding 

known amounts of the fourth Zernike polynomial to the imaging pupil phase. With 

the exception of a single simulation case in chapter 5, all simulated phase diversity 

sets will consist of two images, one in-focus, conventional image and one defocused, 

diversity image. These two constraints will be relaxed in the novel application of 

phase diversity shown in chapter 6, where a more general interpretation of the overall 

technique is adopted—in chapter 6 the diversity phases are not confined to the family 

of parabolic phase screens, and the number of images is no longer restricted to 2. 
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3.2    Motivation for collecting diversity images 

In this section two important properties of the Gonsalves cost function method- 

ology are examined. First, an inspection of equation 49 shows that the objective 

function has no dependence on the original object 0(f) that is being imaged, which 

is a remarkable result. Second, the claim made previously regarding the uniqueness 

of PDWFS aberration estimates is discussed. These two properties stem from the 

fact that multiple, diverse images are collected, as opposed to a single image. 

3.2.1 Object independence. In order to motivate the collection of two phase 

diverse images, compare the Gonsalves procedure with the corresponding single im- 

age problem. Assume that a single, in-focus image has been collected by an imaging 

system. In order to find the aberration that gave rise to that image, let us now 

attempt to parallel the least-squares development from the previous section. 

Again, the goal is to minimize the modulus-squared error, this time for a single, 

in-focus image, 

(50) J(a) = hDi-OHiiStfdf, 
•* f 

by finding the aberration vector a which causes J(ct) to reach its minimum value, 

(51) a. = arg(min( J(a))). 
a 

These two expressions are the single-image version of equations 43, and a restatement 

of equation 47, respectively. 

In the derivation of equation 49 it was shown that by finding the least-squares 

optimum object, it was possible to explicitly remove the object quantity from the 
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phase diversity cost function. In attempting to do the same for the case of a single 

image, the derivative of the integrand of J(a) can again be found, where the partial 

derivative is still with respect to the object quantity O, on a per-spatial-frequency 

basis. As before, this partial can be set equal to zero, and the least-squares object 

estimate, 0, solved for. For the single image case, this yields the analagous, single- 

image Ö expression, which is given as (27, 43) 

(52) 0 = 
Diff?(cO 
\Hy(a)\ nT\|2 

This expression is the single-image version of equation 45, the Wiener-Helstrom or 

inverse-filtered data (65). Substituting this Ö back into J(a) yields 

(53) "min W = Jr D1 HM) d/. 

Inspection of this single-image version of equation 46 reveals a fatal flaw with this 

attempt at object independence for the cost function of a single image data set: 

(54) "min <*)      =     if ■Di 
'£>1tfl(c^)tf1*(5), 

,   Hi(a)m(a) 

=    [jDt-Dtfdf 

= o, 

d/ 

which is the trivial result. Clearly, any attempt to explicitly solve for the object and 

thereby remove object dependence—as for the Gonsalves cost function of multiple, 

diverse images—is destined to failure for the case of a single image. So, in order to 

solve the single-image aberration estimation problem, one must instead retreat back 

to equation 50, attempting to minimize that object-dependent expression using trial 
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values of both 0 and a simultaneously, which is a vast complication. This single- 

image, object-dependent problem is essentially the least-squares-penalized blind de- 

convolution problem as formulated in refs. (40, 46). Hence, it is seen that it is 

the collection of the diversity image that allows a mathematically tractable, object- 

independent error metric to be derived. 

3.2.2 Uniqueness and ambiguity in image-based WFS. Another motivation 

for collecting two or more diverse images stems from the fact that the mathematical 

mapping from the set of all possible phase screens to the set of all possible PSFs 

is, in general, a many-to-one mapping (24), as depicted in figure 7. This ambiguity 

causes the inverse WFS problem to be underdetermined when attempting to esti- 

mate pupil phase from a single image (24, 46, 47, 75). Ideally, the addition of a 

second, phase diverse image mitigates this uniqueness problem through overdetermi- 

nation. In other words, this auxiliary image data introduces additional "automatic" 

or physical constraints on the phase estimate. 

By way of comparison, notice that this uniqueness difficulty is also naturally 

manifest in the equivalent, single-image blind deconvolution/phase retrieval prob- 

lem. The body of literature in that field, such as refs. (46, 47, 75), show that the 

standard strategies for attacking this problem also generally involve imposition of 

constraints. One primary difference between these techniques and phase diversity 

is that these constraints are of a more "common sense" or ad hoc, knowledge-based 

form. Examples of blind deconvolution constraints include imposing image positivity, 

and function support limitations of both the image and the image spatial frequency 

spectrum. 

The concept of uniqueness in the general phase retrieval problem is difficult 

to attack quantitatively or analytically (75), except in special cases. A quantitative 
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Mapping of pupil phases 
to PSFs : h=h( a) 
is many-to-one 

Figure 7.    Conceptual diagram of the general phase retrieval uniqueness problem. 
Multiple phase screens can give rise to a single PSF/OTF. 

investigation of uniqueness and ambiguity for the phase retrieval problem is shown 

in ref. (75). The research there showed, in a somewhat quantitative manner, the 

relative impact of knowledge-based constraints upon the phase retrieval problem for 

a large number of simple, random, simulated imaging cases. In this section, a single 

illustrative demonstration of the impact of phase diversity constraints is given. 

The idea that multiple phase screens can give rise to the same PSF/OTF is 

easily demonstrated by the simple, computer generated point-source image shown 

in figure 8. In this figure the PSF shown in image (a) is due to phase screen (b), 

while the PSF shown in image (c) is due to phase screen (d). Phase screen (b) 

consists of 2.6 radians of Zernike mode 11, spherical aberration, while phase screen 

(d) exhibits -2.6 radians of the same aberration. Consequently, the two PSFs are 

identical to within the numerical roundoff error of the computer. The particular 

phase/image ambiguity exhibited here is a manifestation of a more general property 
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of PSFs which follows directly from Fourier optics. Specifically, a negation of the 

pupil phase causes a PSF to look as if it has been flipped about its spatial origin, or 

h(x) becomes h(-x). Of course, for a rotationally symmetric, spherically-aberrated 

example PSF, the flipped PSF looks exactly the same as the unflipped PSF. 

The effect of this ambiguity on the single-image least-squares objective function 

of equation 50 is demonstrated in figure 9 (a). In this graph the single-image squared 

error metric for image (a) of figure 8 are plotted against trial values of the spherical 

aberration coefficient, which is the independent variable along the x-axis. In order 

to carry out this demonstration, the function being plotted, J(a) of equation 50, 

was modified to incorporate an a priori assumption of point-source imaging: 

(55) J(a)= [jdi - h^atfdx. 

This simplified cost function is plotted versus trial values of the element of the a 

corresponding to the 11th Zernike coefficient, with all other aberration coefficients 

set to zero. The quantity d\ above is simply image (a) of figure 8. The ambiguity 

demonstrated qualitatively in figure 8 is now shown more quantitatively in this plot. 

Notice that the objective function plot (a) of figure 9 almost reaches a local minimum 

at an = —2.6 radians of spherical aberration. This false local minimum almost 

matches the true local minimum at an = +2.6, and in fact the two minima differ 

only by numerical round off error. 

A similar plot can be created for the phase diversity scenario, by introducing a 

diversity image, c^, shown as image (e) of figure 8. Now the phase diversity version 

of equation 55 is written as: 

(56) J(5) = Js{\dx - h(a)\2 + |da - h2(a + A2)|
2}d/, 
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80 100 120 

(e) 

Figure 8. The conventional image (a) and and original spherical aberration phase 
screen (b) used in the uniqueness demonstration described in the text. 
Image (c) is the ambiguous image which is due to the phase screen (d). 
Note that (d) is the negative of (b), yet (c) is identical to (a) to within 
round off error. Image (e) is the defocused, diversity version of image (a) 
used in the demonstration. 
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Single image case — Zernike mode 11 

-4-3-2-1 o 1 2 3 
Zernike mode a^ trial value — radians 

(a) 

Phase diversity case — Zernike mode 11 

-3 -2-1 o 1 
Zernike mode a^ trial value 

(b) 

2 3 
radians 

Figure 9. Single image (a) objective function (eq. 55), and phase diversity (b) ob- 
jective function (eq. 56), for various trial values of Zernike mode 11, using 
the demonstration setup depicted in figure 8. Notice how the minimiza- 
tion ambiguity has been at least partially alleviated for this simple case 
by using the phase diversity approach. 
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again adopting, for demonstration purposes, the a priori assumption of point-source 

imaging. This error metric is again plotted against the spherical aberration co- 

efficient in figure 9 (b). This plot shows that the ambiguity at an = -2.6 has 

been partially alleviated by the introduction of a second, defocused image into the 

squared-error cost function, equation 56. Figure 9 (b) still reveals what appears to 

be a stationary point present at an = —2.6, but the gradient of the cost function 

with respect to an is much less severe. This less-severe type of local minimum 

could be practically avoided through experimentation with various stopping criteria 

in the cost function minimizing routine, or even by executing multiple attempts at 

minimization, starting with a number of random initial guesses (30, 64). 

3.3    Stabilization of the inverse problem 

One final practical matter must be considered before minimizing equation 49, 

which is given again as: 

d/- (57) J{a) = -Jf[^=1\Hb(a + AbW 

Specifically, notice that 

• quantities in the denominator may approach zero, and 

• the recorded data are generally corrupted by noise. 

These two effects can cause the minimization of the objective function to become 

unstable, or impossible to accomplish. Strategies for dealing with such instability 

are known as regularization (12). 

3.3.1    Weighted least-squares noise suppression.      In this work the strategy 

suggested in ref. (71) for regularizing the classic inverse filter problem will be followed. 
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Specifically, division by zero is prohibited in equation 57, with the integrand of J(a) 

set equal to zero at any spatial frequency where its denominator is zero. Also, the 

noisy data are filtered in the frequency domain with a "cone filter", i.e. a circularly 

symmetric triangle filter with a user-selected cutoff frequency. The lowpass nature of 

the cone filter is a manifestation of the properties of photon noise, which dominates 

the higher spatial frequency content of a photon-limited image (29, 72). 

If the cone filter is denoted by the symbol F(f), and the set of all spatial 

frequencies within the union of the supports #i(/) and H^f) is written as %i, then 

the modified Gonsalves objective function becomes 

(58) J(S) = -[      fc'^^(a+-*fW 

A cone filter is shown in figure 10. The upper band limit of the cone filter is 

specified by a radial cutoff frequency pco, where the symbol p denotes the Euclidean 

length of a spatial frequency vector /. The equation of the cone filter is given, in 

terms of this radial frequency amplitude, as 

(59) F(p) = < 
1 for p < pco 

Pco 

0        otherwise, 

where pco remains to be specified. 

The cone-filtering technique can be put on firmer theoretical ground if it is in- 

terpreted as an implementation of the weighted least-squares variant of least-squares 

estimation theory. Under this interpretation, the cone filter is weighting the lower 

spatial frequency image information more heavily than the higher spatial frequency 

information. As stated in ref. (43), "[t]he rationale for introducing weighting factors 
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Figure 10. Mesh plot of a cone filter with some given cutoff frequency, showing the 
relative amplification performed by the filter in the spatial frequency 
domain. 

into the error criterion is to emphasize the contributions of those data samples that 

are deemed to be more reliable (pg. 225)." 

This reliability is quantified here in terms of sample-based estimates of the 

image spectrum signal-to-noise ratio (SNR) for the simulation-generated image en- 

sembles used in the particular experiment. Recall from chapter two that the SNR of 

a spatial-frequency domain quantity D(f) is defined as (29, 72): 

(60) SNRD(/) = 
\(D(f))\ 

>/(\D(f)\2)-\(D(f))\*' 

where the angle brackets (• • •) indicate ensemble averaging. The SNR is is seen 

to be the modulus of the mean image spectrum divided by the spectrum standard 

deviation. The cone-filter cutoff is chosen as that spatial frequency at which the 

radially averaged spectral SNR estimate drops below a value of 2. Implicit in this 
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choice is the assumption that frequency-domain information beyond this frequency 

limit is unreliable in a statistical sense (72). The low-pass nature of the cone filter 

means that the filter will act to exclude this noisy information at all higher spatial 

frequencies from the Gonsalves objective function minimization process. 

Clearly the selection of cutoff frequency for this type of noise rejection filter 

involves a tradeoff between letting in too much noise and rejecting valid image infor- 

mation. Therefore, in actual implementation of the phase diversity technique, the 

selection of a regularization technique is a matter that deserves careful consideration. 

This straightforward regularization technique is used throughout all of the PDWFS 

estimation experiments presented in this dissertation. This simplification is imposed 

since a full analysis of regularization techniques for the phase diversity problem is 

beyond the scope of this work; the regularization topic could form the basis of a 

research project in itself. 

There is support within the literature, however, for this simplified approach 

to noise suppression in inverse problems. For example, an SNR-based frequency 

domain weighting scheme is used in ref. (40) for filtering the least-squares penalty 

function of the penalized blind deconvolution technique — the single-image analog 

of the phase diversity problem. A data-driven approach to noise suppression filter 

design for PDWFS is given in ref. (49). Also note that the cone filtering stabilization 

approach can be interpreted as an implementation of the resolution kernel regular- 

ization method mentioned in ref. (76), where the inverse Fourier transform of the 

cone filter would represent the image-domain smoothing kernel referred to in that 

development. The idea of a noise-effective cutoff frequency in image reconstruction 

is also seen, for example, in ref. (72). 
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3.3.2 Demonstration of regularization. The utility of noise rejection fil- 

tering for Gonsalves phase diversity is demonstrated in figure 11. The plot shows 

coarsely sampled 1 dimensional slices of the Gonsalves objective function (equa- 

tion 58) using noisy image data obtained from the simulation codes discussed previ- 

ously. The two objective function curves are based on the same input image dataset; 

the only difference between the two situations is noise-suppression filtering. These 

two curves correspond to an objective function evaluation with the noise filter F(f) 

as either 

• a cone filter with a cutoff at 0.5 of the diffraction limit, or 

• a "top-hat", or unity-valued filter, which passes all spatial frequencies out to 

the diffraction limit. 

The latter case corresponds to no noise suppression at all. 

For this demonstration, the aberrated wavefront phase was characterized by 

a random A/4 RMS aberration of Zernike modes 4 through 36. Trial values of aj, 

the 7th Zernike mode coefficient, are allowed to vary along the x axis of the plot, 

while all other aberrations are held constant. The actual value of Zernike mode 7 

is 0.10 radians. The images were simulated as being very dim, 200 photons each, 

corresponding to a relatively high level of photon noise. This noise was simulated 

through a Poisson random number generator. The Poisson nature of photon noise is 

discussed in chapter 5. A defocused diversity image, with similar noise properties, 

was created by adding 2 radians of Zernike polynomial Z4. 

The example shows how unsuppressed photon noise can cause an objective 

function minimization procedure to converge on an incorrect aberration value. In 

this demonstration the correct value of Zernike a7 is 0.10 radians, a value which 

minimizes the filtered Gonsalves objective function, to within the sampling accuracy 
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Figure 11. Demonstration of the effectiveness of the noise-rejection filter for the 
Gonsalves objective function. The plot shows a coarsely sampled 1 
dimensional slice of the objective function both with and without a 
noise rejection filter. The original image suffered from approximately a 
quarter of a wave RMS Zernike aberration spread through modes 4 - 36. 
The actual value of Zernike mode 7, which varies along the x-axis of this 
plot, was 0.10 radians. The average number of photons was reduced to 
200 per image for demonstration purposes. Without noise rejection, the 
objective function reaches a minimum at an incorrect point. 
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of this one-dimensional slice. On the other hand, the unfiltered objective function 

reaches its minimum at an incorrect value of a7 « 0.15 radians. This trend is borne 

out in numerous trial simulation runs used in the development of this research. 

If the data are not filtered to suppress noise, the phase diversity algorithm will 

naturally attempt to fit the WFS estimates to the noise, often resulting in inaccurate 

results. In fact, unsuppressed photon noise can prevent some iterative search routines 

from converging altogether. This failure to converge occurs because the unfiltered 

noise prevents the search algorithms from meeting reasonable stopping criteria. The 

random, noisy nature of the data can, for example, introduce false local minima 

into the objective function. These noise-induced minima can act to trap the search 

routine at an invalid phase estimate that is more due to the random image noise 

than the original aberrating phase screen. 

3.4    Conclusion 

This chapter has given the theoretical background for the phase diversity wave- 

front sensing (PDWFS) technique, which forms the focus of this dissertation research. 

Notice that the scope of our problem has been limited to least-squares estimation, 

under a linear, shift-invariant, photon-limited imaging model. Practical responses 

to the question "why bother with the collection of multiple, phase diverse images?" 

have been given in terms of the uniqueness and object independence introduced by 

the automatic constraints of diversity images. The issue of stabilization of the inverse 

problem by noise suppression filtering was also addressed. 
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IV.   Monte-Carlo analysis of least-squares phase diversity: space 

telescope scenario 

The goal of this chapter is to investigate the accuracy of the PDWFS technique 

in estimating the aberrations exhibited by a space telescope system. The investi- 

gation is carried out via numerical imaging simulations which model two different 

photon-limited space telescope imaging scenarios. The key assumption for the sim- 

ulation models is that space telescopes are nearly diffraction-limited (16, 39, 41, 52, 

50, 57). PDWFS performance is investigated via Monte-Carlo simulation experi- 

ments, a research effort that was suggested in ref. (61), but that has not been seen 

in subsequent published literature. 

4-1    Introduction 

Previous work by Paxman et. al. (60, 61) has demonstrated the use of the 

phase diversity technique for a sparse-aperture, six-element phased-array telescope 

whose images are corrupted by additive, white Gaussian noise. Demonstrations of 

phase diversity estimation of a total of 18 misalignment parameters are given in those 

references, along with an example of post-processing in the form of Wiener-Helstrom 

deconvolution. 

This chapter expands on this previous work, moving from feasibility demon- 

stration to Monte Carlo simulation of a number of different photon-limited space 

telescope imaging scenarios. Two different general categories of space telescope op- 

tical aberrations are modelled in the simulation. The first aberration case deals with 

Zernike modal aberrations, corresponding to the aberrations that might be expe- 

rienced by a monolithic mirror that is vibrating or otherwise optically deformed. 
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The second case deals with segmented mirror misalignment aberrations for an ap- 

proximate model of the proposed Next Generation Space Telescope (NGST) which 

features a 9-segment, mostly-filled aperture (1, 13, 14, 54, 79), as opposed to the 

sparse-aperture phased array analyzed in refs. (60, 61). Photon-limited (Poisson) 

point-source imaging is modelled, at three different light levels. The imaging pupils 

exhibit phase aberrations with overall average strengths of one-tenth of a wavelength 

pupil-averaged RMS, which is in the realm off "nearly diffraction-limited" imaging. 

One of the most important aspects of this study is the inclusion of the effects of 

photon noise, an investigation which has not been addressed before in a Monte-Carlo 

sense. Key results from section 4.4 include an indication of a minimum acceptable 

light level for reliable PDWFS aberration sensing in the form of a noise-suppressed 

Gonsalves implementation. For point-source images averaging 1000 photons per 

image, the PDWFS estimation of NGST piston and tilt misalignment parameters 

proved unreliable in about 20 % of cases. Two cases with light levels at 104 and 

105 photons per image did not exhibit this problem, and both yielded much more 

accurate WFS estimates. In fact, there appeared to be little difference between these 

two brighter cases in terms WFS estimation performance. This aspect of PDWFS 

could have ramifications for the radiometric design of low-light imaging systems 

where photons are at a premium. Moreover, WFS accuracy also appears to be 

directly tied to the number of aberration parameters, or degrees-of-freedom (DOF), 

present in the problem. For instance, pupil-averaged RMS WFS errors nearly double 

when the NGST misalignment estimation problem is expanded to include segment 

tilt errors along with piston errors. The Zernike-aberrated case shows somewhat 

analogous WFS accuracy trends in terms of DOF. 
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Finally, a representative phase deconvolution example is shown, with results 

comparable to those of the generic WFS cases detailed in chapter 2. 

The remainder of this chapter is organized as follows. Section 4.2 describes 

the two different types of aberrations that were modelled for these simulation ex- 

periments. Section 4.3 gives details of the computer simulation used in this chapter. 

The results of the simulations are presented in section 4.4. 

4-2    Space telescope aberration bases 

In this simulation effort two different pupil basis sets are used to create and 

specify space telescope aberrations. The statistical interrelation of these aberra- 

tions is discussed in section 4.3.1. One aberration model gives aberrations as linear 

combinations of the standard Zernike polynomials: 

j 

(61) ^(JMHEonj^M), 
i=4 

as in the preceding two chapters. The underlying assumption is that the telescope 

system consists of a monolithic mirror which is experiencing aberrations that can be 

efficiently described by a relatively small number of Zernike modes. Such aberrations 

might, for example, be caused by spacecraft vibrations (11). The aberration vector 

is then given as the customary (J-3)-element vector 

(62) a = [0:4,0:5, •• -ctj \T 

as in the derivation of chapter 3. 

The second aberration case that we consider uses a zonal basis set correspond- 

ing to the pupil phase errors due to piston and tilt misalignments of the elements 
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of a segmented space telescope mirror. There has been some mention in the lit- 

erature of preliminary plans for what is referred to as the Next Generation Space 

Telescope (NGST), a larger, more capable follow-on to the Hubble Space Telescope 

(HST). This set of simulation models is based on one possible configuration for 

this proposed 8 meter space telescope primary mirror. The most commonly pro- 

posed configuration generally involves 8 deployable "petals" surrounding an annular 

central mirror. Figure 12 shows a drawing of such a configuration that is under 

consideration by the National Aeronautics and Space Administration (NASA), as in 

refs. (1, 13, 14, 54, 79). Figure 13 shows the simplified approximation of the NGST 

pupil used here. Pupils were generated on a 64 X 64 discrete grid, with a pupil diam- 

eter of 64 pixels. The various optical features are highlighted in a gray-scaled map 

shown in figure 13 (a), with the piston error of the petals indexed sequentially so 

that they can be seen. A small, 6-pixel diameter central obscuration is included; this 

obscuration is artificially highlighted in figure 13 (a) to show its location. The mesh 

plot of figure 13 (b) shows a phase map corresponding to NGST pupil components 

that are randomly misaligned using the aberration basis set described next. 

The 8 simulated petals are each allowed three degrees of freedom: piston and 

tip-tilt. The central annular mirror is allowed only two tilt degrees of freedom, 

making for an aberration vector a. of up to 26 elements. Notice that this means 

that any figure error within each individual mirror segment has been neglected. The 
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Figure 12.    Possible configuration of the proposed Next Generation Space Telescope. 

aberration vector for the NGST case, a, is arranged as follows: 

(63) 

«i_8 = 8 petal piston errors 

a9_16 = 8 petal x-tilt errors 

c*i7-24 = 8 petal y-tilt errors 

«25 26 = 2 central mirror tilts, x and y. 

The piston values represent the vertical phase displacement of the appropriate petal 

in radians. The various tilt parameters are proportional to the linear slope of a 

given segment in either one of two orthogonal directions. The phase map of figure 13 

corresponds to some 26 random elements of the a vector described above. 

Note that, for telescopes with segmented primary mirrors, such as this NGST 

proposal, conventional slope sensors would be ill-suited to measuring the sudden 

pupil discontinuities introduced by misaligned segments (10).    In this particular 
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Figure 13. Simplified approximation of the pupil of the proposed 8-petalled Next 
Generation Space Telescope (NGST). A gray-scaled layout of the pupil 
components is shown in (a). A randomly misaligned NGST pupil phase 
map is shown in mesh surface format in figure (b). The pupils are 
sampled on a 64 x 64 discrete grid. 
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reference, the authors discuss how such segmented mirror section misalignments 

are measured in the ground-based Keck telescope using a prism and camera array 

which measures a point-source diffraction pattern at each segment discontinuity. 

Such a system is certainly not practical for an orbiting space telescope. PDWFS 

would present a simple, attractive alternative, provided the measurement accuracy 

is acceptable. This question is investigated by computer simulation. 

4-3    Computer Simulation 

A simplified flowchart of the numerical computer simulation for this chapter is 

shown in figure 14. This simulation incorporates the typical PDWFS configuration 

depicted in figure 1, with two images, where the second image a defocused version 

of the first. In this section we discuss relevant details of the simulation model. 

4.3.1 Random aberration generation. In the setup portion of the program 

the various simulation parameters are determined. The aberration case is selected, 

either Zernike or NGST. Then the spatial covariance matrix for the appropriate 

aberration coefficients must be specified. The numerical Monte Carlo imaging simu- 

lation procedure consists of generating circular pupil phase screens that are random 

linear combinations of the N desired aberration basis functions. Second order spatial 

statistics of the simulated phase screens are also specified and generated. 

These second order statistics are specified and used as follows. For simplicity 

and generality of results, it was assumed that the various aberration coefficients are 

again zero-mean, statistically uncorrelated Gaussian random variables. In such a 

case, the standard method of generating correlated Gaussian random vectors, dis- 

cussed in ref. (72), is utilized by first specifying an N x N covariance matrix, [rQ], 

for the aberration coefficient vector a;. Since each aberration is simulated as being 
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Setup   - Read in sim parameters: 
- Aberration basis set 
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Form "infinite-signal" 
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image 

Form "infinite-signal" 
out-of-focus diversity 
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photon-limited image 

Poisson random 
number generator yields 

photon-limited image 

use filtered, noisy image 
spectra and iteratively 
minimize Gonsalves 

objective function 

Repeat 

Accumulate statistical 
data 

Figure 14. Computer simulation simplified block diagram. 

uncorrelated with every other, the covariance matrices will always be diagonal. A 

realization of the zero-mean random vector a. is generated by the following matrix 

multiply operation, 

(64) a = Rab 

where b is an JV-element, uncorrelated, zero-mean, unit variance, Gaussian random 

vector. The matrix Ra represents the Cholesky factor, or in the diagonal case, simply 

the square root, of rQ. 
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This Monte Carlo generation of aberration vectors is carried out primarily 

in order to provide a thorough look at WFS performance with large numbers of 

combinations of different aberration coefficients. As in chapter 2, no attempt is 

made in this experiment, or in this entire dissertation, to rigorously model temporal 

or spatial aberration statistics for any particular space telescope. For instance, we 

can not reasonably expect the spatial aberration covariance matrix Ta to be a simple 

diagonal for a certain space telescope system. The statistical imaging characteristics 

of a given space telescope depend on the operational and mechanical aspects of the 

optics, spacecraft bus, and the overall space environment in which the telescope 

operates. However, even given all of these caveats, such a model is not unreasonable 

in light of our goal of simply exploring the aberration space in a Monte-Carlo sense. 

Additionally, it may still be reasonable, at least to first order, to accept the aberration 

generation scheme described here and in section 4.3.2 below as an approximate, 

simplified model of how spacecraft bus vibration and jitter are coupled into the 

aberration basis functions, similar to refs. (11, 57). 

4-3.2 Simulation parameters. Two different general aberration cases were 

simulated for this chapter, each with two roughly analogous sub-cases: 

• Case la: 8 Zernike aberrations, modes 4-11, present in equal RMS strength. 

All 8 modes estimated by phase diversity. 

• Case lb: 8 NGST petal pistons present, all 8 estimated by phase diversity. 

• Case 2a: Zernike modes 4-36 are present, with the average RMS strength of 

each mode order decaying in an approximately exponential fashion as mode 

order increases, as might be expected for a realistic monolithic mirror (11). 

Only modes 4-22 are estimated by phase diversity. 
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• Case 2b: All 26 NGST aberrations present in roughly equal proportion. All 26 

aberrations are estimated by phase diversity. 

Cases la and lb represent "easier" phase-diversity estimation problems in that 

a relatively small number of degrees-of-freedom (DOF) are present and estimated. 

These cases are roughly analogous to the piston-only cases of refs. (60, 61). Cases 

2a and 2b represent more challenging and perhaps more typical phase diversity im- 

plementations, where a larger number of aberration DOF are present and estimated. 

Figure 15 shows a plot of the diagonals of the 4 different aberration coefficient 

covariance matrices Ta, for the cases discussed above. These plots show the expected, 

ensemble average of the pupil-averaged mean-squared values of the randomly-drawn 

aberration coefficients, as the number of simulated phase screens tends to infinity. 

Figure 15 depicts the relative differences between the cases discussed above in terms 

of mean-squared aberration strength. Plot (a) represents the Zernike monolithic mir- 

ror modal aberration sub-cases, while plot (b) represents the NGST-like segmented 

mirror zonal aberration sub-cases. In all simulations the ensemble average of the 

pupil-averaged RMS wavefront error is A/10. 

As noted in section 4.1 these experiments incorporate photon-limited point 

source imaging, employing the semi-classical photodetection model (29, 72). There- 

fore, the quantity K, the average number of photons present in each of the images, 

must also be specified in the simulation setup routine. The simulation model nu- 

merically incorporates a 50-50 beamsplitter assumption, with K, the average image 

photon count, set the same for both the conventional and diversity images. Each 

of the experimental cases above were implemented for K values of 1000, 10,000, 

and 100,000 photons. The total average number of photons incident on the entire 

imaging pupil is therefore 2K. Experimental runs consisted of 50 random imaging 
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Figure 15. Simulated aberration parameters—plots of the diagonals of the aber- 
ration coefficient covariance matrices Ta for the various experimental 
cases discussed in the text. These plots show the mean-squared val- 
ues of the various aberration coefficients as generated for the Monte 
Carlo simulation realizations. The Zernike sub-case is given in plot (a) 
and the NGST sub-case in plot(b). We can see graphically the average 
strengths of the various aberration types in relation to each other for 
various simulated cases. 
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realizations apiece for the low DOF case 1, and 100 realizations for the high DOF 

case 2. Three light levels for four different sub-cases gives a total of 12 different 

phase diversity imaging scenarios. 

Phase diversity estimation was accomplished via the modified Gonsalves algo- 

rithm discussed in section 3.3. Diverse images were perturbed by 2 radians times 

Zernike mode 4, (defocus), giving approximately the same quadratic diversity phase 

used in ref. (25), This choice of defocus parameter is discussed further in chap- 

ter 5. The regularized Gonsalves error metric was searched via a quasi-Newton 

method (30, 64, 66), starting with an initial aberration vector guess of the zero vec- 

tor. Iteration stopping criteria accuracy limits on the aberration vector components 

and error objective function were all set as 0.001. Using the regularization filter 

design scheme of section 3.3, the cone filter cutoff for all cases was set at 50% of the 

diffraction-limited spatial frequency cutoff. 

4-4    Simulation Experimental Results 

This section shows the performance of least-squares phase diversity as a WFS 

technique in terms of pupil-averaged RMS error values. Results are presented in 

terms of individual realization and ensemble-averaged error values, and the estima- 

tion accuracy of individual Zernike modes for the appropriate cases. After reporting 

on the overall accuracy of the aberration estimation, the effectiveness of using these 

aberration estimates is demonstrated in a phase deconvolution example. In this 

chapter, the deconvolution technique is referred to as phase correction via phase 

diversity (PCPD), since we have now adopted a particular WFS technique. 

4-4-1 Overall pupil-domain RMS WFS error. Figures 16 and 17 depict the 

pupil-averaged RMS wavefront sensing errors for the various cases simulated here, 
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on a realization-by-realization basis. The WFS error for the i'th realization is given 

as: 

[bb) ewfs,i-^        jdxw{x)        y 

where (f>(x) is the actual truth-model pupil phase screen, 4> is the estimated phase, 

and W(x) represents the telescope aperture function (equation 6). The data points 

in these figures are sorted in ascending order according to ewfs value, for clarity of 

presentation. 

The easiest general observation to be made from figures 16 and 17 is the spread 

of ewfs i values within any particular simulation case. For the ensembles simulated 

here, the WFS error values for a given case are distributed across approximately 

one-half to a full order of magnitude from lowest to highest. This sorted presen- 

tation shows, for example, that the technique can give noticeably different error 

performance when estimating two different wavefront phases of the same general 

statistical class. 

One important performance limitation of the phase diversity WFS technique, 

as implemented here, is immediately revealed by examining plot (b) of figure 17. 

Experiments revealed that in the low light situation (K — 1000) for case 2 b (the 

NGST 26 DOF case) the phase diversity search algorithm sometimes converged on 

a grossly incorrect aberration vector, with a phase estimation error several times 

larger than the actual A/10 RMS original aberration. In this plot we can see that 

20 of the 100 realizations exhibited a significant divergence of the phase diversity 

estimate from truth model phase screen values. These divergent cases indicate that 

when estimating a larger number of parameters, there is a certain threshold light 
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Figure 16. Pupil-averaged RMS phase diversity WFS estimation errors for the 50 
simulated realizations of Zernike case 1 and the 100 realizations of 
Zernike case 2 (sorted by error value). 
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Figure 17. Pupil-averaged RMS phase diversity WFS estimation errors for the 50 
simulated realizations of NGST case 1 and the 100 realizations of NGST 
case 2 (sorted by error value). Case 1 simulations exhibited and esti- 
mated 8 NGST petal piston errors. Case 2 simulations expanded upon 
case 1 by exhibiting and estimating segment tilt errors. 
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level below which photon noise can cause phase diversity aberration estimation to 

become unreliable. 

4-4-1.1 Photon noise limitations of the least-squares PDWFS method- 

ology. In order to discuss this result, let us note some facts about the Gonsalves 

technique. The least-squares formalism invoked in the section 3.1 is generally deter- 

ministic in nature — no probabilistic assumptions are made about the data. But, as 

shown in ref. (62), the Gonsalves objective function given in equation 49 can also be 

derived under the maximum-likelihood (ML) formalism, when it is assumed that the 

image data are Gaussian distributed random variables (43, 62) — in other words the 

Gonsalves objective function emerges as the negative of the Gaussian log-likelihood 

function. 

Thus the Gonsalves technique can be cast as either as either a least-squares 

or a Gaussian-ML (GML) problem. Under either interpretation, the Gonsalves for- 

mulation has the advantage of simplicity: the optimum object estimate O can be 

solved for implicitly, and does not appear in the equation 49, as discussed at length 

in chapter 3. But the disadvantage of this formulation is that, as an ML problem, 

photodetection is generally not accurately modelled as a Gaussian random process, 

but rather a Poisson process. A Poisson-ML (PML) formulation of phase diversity 

also exists (62). The PML formulation has the advantage of correctly modelling 

photon noise, but, incidentally, has the significant drawback of depending explicitly 

on the object irradiance distribution, and thus has none of the simplicity of the 

GML/least-squares technique. 

Finally, consider the well-known property of Poisson probability distributions 

where, in the limit of a large expected value (high light level), Poisson distributions 

(photon-limited images) asymptotically approach Gaussian distributions (44). This 

73 



statistical theorem leads to the conjecture that the Gonsalves and Poisson-ML tech- 

niques might give comparable performance when light is plentiful. This explanation 

is advanced in ref. (63) to explain experimental results that show a convergence of 

the Poisson-ML and Gonsalves (Gaussian-ML) techniques, when viewing the sun. 

From the above considerations it is inferred that the GML and PML estima- 

tors are asymptotically equivalent, in the limit that there is enough light to cause 

photon noise to exhibit approximately Gaussian statistics. The results of plot (b) of 

figure 17, involving dim, point-source imaging, could possibly be indicating the ap- 

proximate light level below which this GML approximation ceases to be acceptable. 

When imaging dimmer, and restricted or point-like objects—such as the simulated 

26 DOF, 1000 photon NGST case under scrutiny here—the signal-dependent, Pois- 

sonian photon noise does not mimic the behavior of simple additive Gaussian noise. 

Possible remedies for the low-light divergent behavior of least-squares PDWFS 

include: 

• using different noise filtering technique (12, 49, 63); 

• trying different amounts of defocus diversity (18), (chapter 5); 

• repeating the minimization routine with a variety of different random initial 

guesses (64) and observing if several of them converge to the same answer; and 

finally 

• utilizing the Poisson-ML technique (62). 

4-4-1-2 Ensemble-averaged, pupil-averaged RMS wavefront estimation 

error. The average value of each of the curves shown in figures 16 and 17 is now 

found, in order to allow a more meaningful comparison of these WFS error results. 

Figures 18 and 19 depict the ensemble average of the pupil-averaged RMS wavefront 
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sensing errors for the various cases shown in figures 16 and 17, averaged across the 

simulation ensemble: 

N / 1  \ 
(66) (£wfs) = (jv) S {ewfs,J • 

Notice for plot (b) of figure 19 that the 20 divergent WFS results discussed above 

have been excluded from averaging, and this data point should be compared to any 

others only provisionally. 

Figures 18 and 19 reveal that as light level decreases and/or the number of 

degrees-of-freedom (DOF) being estimated by phase diversity WFS increases, the 

overall trend is an increase in average RMS WFS estimation error. The (a) plots 

of these two figures show good WFS results as expected for the easier, low DOF 

estimation problems, and significant drops in error as light levels are increased. 

Moving to the high DOF cases shown in the (b) plots of figures 18 and 19, 

we see a jump in the WFS error corresponding to the increased difficulty of the 

high DOF problem. In the low light case the jump from the low DOF problems 

to the high DOF problems results in either a doubling (NGST/zonal) or tripling 

(monolithic/Zernike) of the WFS error. We also note a certain sensitivity of the 

NGST/zonal problem to light levels by observing the significant decrease in WFS 

error as we increase the average number of photons by a factor of 10 from 103 to 104 

average photons per image. 

Another important observation regarding light level in the high DOF cases can 

be made by comparing the K — 104 and 105 data points of figures 18 and 19. Once 

above what could arguably be called the dim "photon-starved" (K = 103) realm, 

it does not seem to make a significant difference for the WFS technique when the 

light level is increased, even by an order of magnitude, from K = 104 to 105. This 
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Figure 18. Averages of the curves in figure 16, giving ensemble averages of the 
pupil-averaged RMS estimation errors for (a) case 1 (b) case 2 of the 
Zernike aberration simulations. 
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Figure 19. Averages of the curves in figure 17, giving ensemble averages of the 
pupil-averaged RMS estimation errors for (a) case 1 (b) case 2 of the 
NGST aberration simulations. As noted in the text, the 20 divergent 
realizations for case 2b were excluded from averaging. 
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is a significant result in terms of system radiometry, when the technique is being 

considered for use in some low-light WFS application. 

Notice that, even for the worst, low-light estimation cases shown in figures 18 

and 19, there would still be a 40% reduction of the RMS pupil aberration if these 

estimates were used in adaptive optical mirror phasing scheme, as in ref. (10). This 

would represent a significant aberration correction, and corresponding boost in imag- 

ing capability, for a space telescope mirror that was originally aberrated by A/10 

RMS. When more light is available, the potential aberration correction would be 

even more substantial, as the WFS errors shown in figures 18 and 19 drop even 

further. The use of these phase estimates in post-processing, versus adaptive optical 

mirror phasing, is presented at the end of this chapter. 

44.2 Zernike mode WFS errors. It should be clear from the layout de- 

picted in figure 13 that any particular NGST petal is qualitatively indistinguishable 

from any other. In other words, it is clear that the petal basis functions differ from 

each other only in orientation. This means that the phase diversity WFS technique 

is on average no better in estimating the piston for petal 1 than it is for petal 5. 

The same can be said for NGST coefficients a9 through a24, the petal tilts of equa- 

tion 63. On the average, no particular NGST pupil zone will be favored over another 

in terms of WFS estimation accuracy. In contrast, each of the Zernike polynomials 

are unique, and no such general characterizations about individual aberration mode 

sensing performance can be made. 

In this section the distribution of WFS errors among the different Zernike 

modes is explored, as determined from the simulation. Specifically, the goal is to 

determine if there are any Zernike aberration modes that are estimated particularly 

well or particularly poorly by the phase diversity WFS technique. 
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Let us write the n'th Zernike coefficient of the i'th phase screen in an ensemble 

as ani. Then the ensemble-averaged RMS value of that coefficient is 

(67) {an)Tms = 
1*   N 

\\ \jfj E {<*»,<}' 
j=i 

If the phase diversity estimate of an^ is denoted as än^ then the desired RMS mode 

estimation error can be written as 

(68) (Srf,   ), 
\ 

(jy)E{ä'M-aW}2 

The solid line plotted quantities in figure 20 represent (aB)ms, while the errorbar 

extent represents (ewfs Jrm3 for the 8-mode and 19-mode cases. Only the K = 105 

cases are shown, with the other cases simply showing a correspondingly larger extent 

to the errorbars as expected from the data in figure 18. The WFS error seems to 

be approximately equally distributed across the Zernike modes in an RMS sense. 

These data support the hypothesis that there are no particular Zernike modes that 

are estimated any better or worse than any of the others, among the first 22 modes. 

4.4.3    Using PDWFS estimates in phase deconvolution. In this section 

we will refer to the phase deconvolution technique studied in chapter 2 as phase 

correction via phase diversity (PCPD). The PCPD object estimator was given in 

equation 20, where the OTF estimate is used in a conjugate unit phasor, which acts 

to correct the Fourier phases of the detected image spectrum D. Following chapter 

2, this section will show how the PCPD estimator performs given the phase diversity 

aberration estimates discussed above, specifically in terms of 

• improving the image spectral SNR, 
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Figure 20.    K = 105, sample-based average Zernike aberration mode strength and 
WFS RMS error bars, for (a) case la, and (b) case 2a. 
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• reducing the image spectrum phase errors, and 

• improving Strehl ratio. 

PCPD Spectral SNR Improvement 

The simulation model used here includes two sources of randomness in the 

original imaging system: 

1. randomness of the pupil aberrations from one realization to the next; and 

2. random photon arrival, as described by the semi-classical model of photo- 

detection. 

Item 2 manifests itself both in the original image that is being deconvolved, and in 

the error present in the WFS estimate, as discussed in great detail in section 4.4.1. 

The curves shown in figures 21 through 24 depict radially-averaged profiles 

of estimates of the quantity SNRH{p), the SNR of the effective optical transfer 

function before and after PCPD processing. The variable p, consistent with the 

radial-averaged nature of the plots, denotes the amplitude of the spatial frequency 

vector, and is normalized to 1 at the diffraction limit: 

(69) p=|/|=     V \      \ 

where D is the physical telescope aperture diameter, and A is the center imaging 

wavelength. 

The SNR quantities are simulation sample-based estimates, each obtained by 

averaging over ensembles of computer generated imaging realizations of the various 

experimental cases. In order to condense the presentation of the results, only the 

low and high light level cases are shown (K — 103, 105 per image) to illustrate the 
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trends. The SNR metric for the intermediate case of K = 104 per image provides no 

new qualitative information that cannot be gained from the other two extremes. 

The trend across all of the SNR plots (figures 21 through 24) clearly tracks the 

WFS performance trends of figures 18 and 19. Specifically, the degree of OTF SNR 

increase gained from PCPD seems to be clearly tied to the level of WFS estimation 

accuracy, as presented in the previous section. The more accurately the aberrated 

OTF is estimated, the greater the benefit obtained from using this information in 

frequency domain phase correction. 

The degree to which photon noise corrupts higher spatial frequency information 

in the phase diversity estimation process is shown dramatically by comparing the (a) 

and (b) plots in any of figures 21 through 24. A much greater degree of resolution 

improvement is seen, for example, in the K = 105 case of figure 21 (a), where the 

noise-effective cutoff (NECO) frequency, the frequency at which the SNR drops below 

2, is extended from 0.8 normalized in the original image, out to 0.97 normalized after 

PCPD processing. Compare this to the K = 1000 case of figure 21 (b), where the 

NECO is increased from 0.7 to 0.8 normalized. The PCPD SNRs fall off much 

more rapidly with spatial frequency for the low-light cases than for the cases with 

brightest light levels. The degree of SNR improvement corresponds with the level 

of WFS accuracy, as discussed in section 4.4.1.2. For the high K, low DOF cases 

shown in figures 21 and 22, for instance, the highly accurate WFS estimates enable 

the PCPD algorithm to boost the NECO out to nearly the diffraction limit. These 

results also generally correspond with the results of the feasibility study for a generic 

wavefront sensor in chapter 2. 
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OTF Signal-to-Noise-Ratios — K=100K 
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Figure 21. Case la — Zernike, low DOF. Radially-averaged profile of OTF Signal- 
to-Noise Ratios before and after PCPD processing, (a): K = 105/image; 
(b): K = 103/image; The expected values needed for each curve are es- 
timated by averaging over the entire ensemble of simulated realizations. 
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OTF Signal-to-Noise-Ratios — K=100K 
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Figure 22. Case 2a — Zernike, high DOF. Radially-averaged profile of OTF Signal- 
to-Noise Ratios before and after PCPD processing, (a): K = 105/image; 
(b): K = 103/image; The expected values for each curve are estimated 
by averaging over the entire ensemble of simulated realizations. 
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OTF Signal-to-Noise-Ratios — K=100K 
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Figure 23. Case lb — NGST, low DOF. Radially-averaged profile of OTF Signal- 
to-Noise Ratios before and after PCPD processing, (a): K = 105/image; 
(b): K — 103/image; The expected values for each curve are estimated 
by averaging over the entire ensemble of simulated realizations. 
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OTF Signal-to-Noise-Ratios — K=100K 
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Figure 24. Case 2b — NGST, high DOF. Radially-averaged profile of OTF Signal- 
to-Noise Ratios before and after PCPD processing, (a): K — 105/image; 
(b): K = 103/image; The expected values for each curve are estimated 
by averaging over the entire ensemble of simulated realizations, except 
for (b), where the divergent WFS realizations are excluded, as discussed 
in the text. gg 



PCPD Spectral Phase Error Reduction 

Recall that the goal of PCPD is to drive the phasor angle of the effective OTF 

to zero (equation 20) in the limit of perfect OTF estimation by the particular WFS 

technique (ewfs —> 0). Ideally, the effective OTF should be an entirely real-valued 

quantity, with the complex phasor angle of each spatial frequency component of the 

effective system OTF equal to zero. Figures 25 through 28 give a detailed picture of 

the RMS phasor angle behavior of the effective PC WFS OTF is at various spatial 

frequencies. Specifically, each of the curves represents a radially-averaged profile of 

the quantity <Evm5(p), where 

(70) $rms(p) — Radial Average ^X>*.(/)P 

and $#;(/) represents the phase angle of the particular OTF in question, at spatial 

frequency /. Again, the p variable represents the normalized amplitude of the spatial 

frequency vector, the independent variable that remains after radial averaging of a 

frequency-domain quantity. Each curve is a radially-averaged profile of the RMS 

value of the complex phasor angle error introduced into the image by effective OTF. 

All of these OTF phasor-based plots show quantitatively that, as expected, the 

values of the effective PCWFS OTFs are driven towards the real axis with varying 

degrees of effectiveness, again dependent upon the accuracy of the WFS estimation, 

as quantified in section 4.4.1, completely analogous to the results of chapter 2. 
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Ensemble-averaged RMS OTF phasor angles — K=100K 
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Figure 25. Case la — Zernike, low DOF. Radially-averaged profile of ensemble- 
averaged RMS OTF phasor angles before and after PCPD processing, 
(a): K = 105/image; (b): K = 103/image. 
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Ensemble-averaged RMS OTF phasor angles — K=100K 

0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
Normalized Spatial Frequency — p = (f Xd,)/D 

(a) 
Ensemble-averaged RMS OTF phasor angles — K=1000 

0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8 
Normalized Spatial Frequency -- p = (f M)ID 

(b) 

Figure 26. Case 2a — Zernike, high DOF. Radially-averaged profile of ensemble- 
averaged RMS OTF phasor angles before and after PCPD processing, 
(a): K = 105/image; (b): K = 103/image. 
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Ensemble-averaged RMS OTF phasor angles — K=100K 
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Figure 27. Case lb — NGST, low DOF. Radially-averaged profile of ensemble- 
averaged RMS OTF phasor angles before and after PCPD processing, 
(a): K = 105/image; (b): K - 103/irnage. 
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Ensemble-averaged RMS OTF phasor angles — K=100K 
TTT J. 

0.1        0.2        0.3        0.4       0.5       0.6       0.7       0.8       0.9 1 
Normalized Spatial Frequency — p = (f XdJ/D 

(a) 
Ensemble-averaged RMS OTF phasor angles — K=1000 

0.1 0.2        0.3        0.4       0.5        0.6       0.7       0.8 
Normalized Spatial Frequency — p = (f XdJ/D 

0.9 1 

(b) 

Figure 28. Case 2b — NGST, high DOF. Radially-averaged profile of ensemble- 
averaged RMS OTF phasor angles before and after PCPD processing, 
(a): K = 105/image; (b): K = 103/image. 
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Figure 29. Average point source image slices before and after phase filtering using 
phase diversity WFS data, for the ensemble of 50 images, as described in 
the text. These data come from the K — 105 NGST case 1, with average 
RMS aberration of A/10 due to 8 petal piston random misalignment 
errors. 

PCPD Strehl Improvement 

Figure 29 demonstrates a case where this phase filtering has been accomplished 

based on the OTF estimate obtained via the phase diversity technique. The figure 

shows x-axis slices of the central 21 pixels of the average point-source images from 

NGST case 1. Recall that this is the low-DOF case with 100,000 photons per point 

source image. The original images are formed on a 64 x 64 array, with 2 pixels per 

X/D. The central pixel intensity — essentially the unnormalized Strehl ratio — for 

the phase filtered ensemble average is 10% greater than that for the unprocessed 

ensemble average. The plot also shows a slightly tighter PSF, corresponding to more 

energy being concentrated in the central pixel. 
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Jf.,5    Conclusion 

This chapter presented results of a simulation study designed to investigate 

the performance of a least-squares phase diversity wavefront sensing technique. This 

effort was directed specifically towards investigation of the Gonsalves phase diversity 

wavefront sensing technique utilizing a straightforward regularization scheme. Simu- 

lation experiments exploring the photon-limited WFS performance of the technique 

were accomplished under a variety of wavefront sensing and aberration scenarios, 

specifically intended to approximate conditions of interest under the space-based 

(i.e. weakly-aberrated, nearly diffraction-limited) point source imaging scenario. 

Both a monolithic mirror with Zernike aberrations, and an NGST style mirror with 

zonal segment misalignment aberrations were simulated under 2 different conditions 

and 3 different light levels, giving a total of 12 different space telescope imaging 

scenarios. 

Under the lowest-light (average of 1000 photons per image), highest degree- 

of-freedom case (26 segmented telescope misalignment parameters), the estimated 

wavefront diverged from the truth model answer in 20% of the ensemble realizations, 

yielding WFS errors that were incorrect by a few orders of magnitude. This result 

suggests that a certain minimum light-level threshold is required in order to estimate 

this many piston and tilt parameters. A result like this is not unexpected since the 

Gonsalves metric is the Gaussian log-likelihood function, while dim photon-limited 

point source images are not accurately modelled as Gaussian random processes. 

For the other 11 scenarios, phase diversity WFS accuracy follows the expected 

downward trends as average light levels decrease and the number of aberration pa- 

rameters to be estimated increases. The average RMS WFS estimation errors may 

be small in absolute terms, but when compared to the original RMS aberrations of 
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the nearly diffraction-limited pupils, the errors in phase diversity aberration esti- 

mation can be relatively large in comparison. This is most noticeably true in the 

cases of low light and/or high number of aberration parameters. Given an average 

aberration strength of 10% of a wave RMS, the worst case average WFS error was 

5.7% of a wave RMS. 

Using these WFS estimates in the phase deconvolution scheme of chapter 2 

showed analogous improvements in the image quality metrics of Strehl ratio, and 

image spectral SNR and phase error. 

The types of results presented in this chapter represent a significant addition to 

the body of experience with this relatively new WFS technique. Whether the WFS 

estimates are to be incorporated into an adaptive optical mirror phasing scheme, or 

are used in post-processing, it appears that PDWFS estimates can provide significant 

improvement in imaging performance for weakly-aberrated imaging systems, such as 

space telescopes, both segmented and monolithic. 
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V.   Cramer-Rao analysis of phase diversity imaging 

5.1    Introduction 

The analysis presented in this chapter combines and expands upon expressions 

found in references (18, 62), in order to give the Cramer-Rao lower bound (CRLB) on 

the phase diversity estimation of aberration polynomial coefficients. This analysis 

specifically applies to a set of photon-limited images from which the aberration 

information is to be extracted using some unspecified estimator. The analysis allows 

for the isoplanatic imaging of an arbitrary extended object irradiance distribution. 

Whenever a parameter is being estimated using random data, the accuracy of 

the estimate is fundamentally limited by the randomness of the data. This straight- 

forward, intuitive idea is expressed more quantitatively in the Cramer-Rao theorem. 

The smallest possible inaccuracy or variance for a given estimation problem is given 

by the CRLB. The estimator variance lower bound for the phase diversity problem is 

derived here under the assumption that the aberration is fixed but unknown, where 

the only randomness in the problem is described by photon statistics. 

Section 5.2 gives the basic mathematical background, and section 5.3 derives 

the analytical form for the phase diversity CRLB. It turns out that the CRLB for 

estimating aberration coefficients is dependent on the actual, underlying values of 

the aberration coefficients being estimated, so in section 5.4 we give some phase 

diversity CRLB values for a number of representative aberration cases by way of 

computer simulation. 
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5.2    Notation and preliminary expressions 

This chapter begins by developing some preliminary expressions needed to de- 

rive the phase diversity CRLB. Specifically, the analysis will require partial deriva- 

tives of image domain quantities with respect to pupil-domain quantities. These 

partial derivative expressions will be used in developing the CRLB in section 5.3. 

5.2.1 Fourier optics revisited. The reader will recall that the linear, isopla- 

natic, Fourier optical imaging model has already been presented in chapter 2, based 

on refs. (29, 22, 72). Some of these results are presented again here, in more detail 

and slightly different form. The summary of Fourier optics presented again below 

will facilitate the development of the partial derivative expressions, which will be 

needed in order to proceed with the CRLB derivation. 

Recall from equation 6 of chapter 2 that the aperture of the hypothetical 

imaging system is denoted by the binary indicator function, given this time, with 

the symbol A, as 

(71) A(u) = 
1   for u 6  pupil 

0      otherwise. 

Notice the distinction between pupil coordinates ü, and later, image plane coordi- 

nates, x. In order to finally arrive at a point-spread function (PSF) of unit integrated 

volume below, we pre-normalize the aperture, and use a weighted aperture function 

W(u) that is a scaled version of A(u), such that 

(72) / W2(u) = 
Jv, 

1. 
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This means that if the total area of the aperture is denoted by a, then the weighted 

aperture is defined as 

(73) W(u) = < 
1/^/a   for u E  pupil 

0 otherwise. 

More detail on this pupil normalization is found in the appendix. 

The generalized pupil function, which is a scaled version of equation 7 of chap- 

ter 2, is again defined using the phase angles of complex exponentials in the pupil 

to represent optical path differences (OPDs) caused by aberrations cf>(u; a): 

(74) g(u; a) = W(u) exp[jcf)(u; a)]. 

Note that the vector a again refers to the the phase screen coefficients in some basis 

set, such as the Zernike polynomials, Zj. The Fourier transform of the generalized 

pupil function is the coherent PSF: 

(75) G(x; a) = FT g(u; a) 

The incoherent PSF is then given by 

(76) h(x;a) = \G(x;a)\2 = G(x;a)G*(x;a), 

where this quantity is automatically normalized to unit integrated volume via equa- 

tion 73. The deterministic, isoplanatic, Fourier optics image is a convolution of the 

PSF with the object irradiance distribution o(x), or 

(77) A(x; a) = o(x) * h(x; a.) 
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where, to be consistent with statistical optics notation conventions (29), the symbol 

i is replaced with A to denote the noiseless image. Since this effort is concerned solely 

with detection in the form of photon-counting, the integral of the received image is 

equated to the sum total number of photons counted, designated as K: 

(78) [\(x;a)dx = K. 
Jx 

Let the quantity onorm{x) be defined as a scaled version of o(x) such that 

(79) / onorm(x)dx = 1. 
Jx 

The image quantity can then be written as 

(80) A(z; a)   =   Konorm(x) * h(x; a) 

(81) =   Konorm(x) * (G{x; a)G*(x- a)) . 

This normalization explicitly presents the functional dependence of subsequent Cramer- 

Rao quantities on the total image photon level, K, a dependence which is obscured by 

the development found in the corresponding references (18, 62). In the semi-classical 

model of photodetection (29) which we invoke in section 5.3, note that the quantity 

K is actually the expected value of image photocount, K, a random quantity. 

5.2.2   Preliminary expressions: partial derivatives. The CRLB analysis 

which follows will require expressions for the derivatives of the image quantity A 

with respect to the individual pupil aberration coefficients. This section follows the 

derivation of such partial derivatives found in reference (18), generalizing to account 

for isoplanatic imaging of an extended source object—i.e. the convolution operation 
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of equation 77. Proceeding in stages starting with equation 80, the partial derivative 

can be written as: 

(82) 
9KliS>   =   Ko,^)Jh(1'S) 

dak dak 

where the linearity of the convolution and differentiation operations allows the order 

of the operations to be exchanged. Applying the product rule to equation 76 gives: 

dh(x] a) 
dak 

9G*^%{x-a) + ^^G*{x-a) 

(83) 

dak 

=   2 Real 
dG(x; a) 

dak 

dak 

G*(x;a) 

This equation in turn depends on the derivative of the coherent PSF: 

dG(x; a) d 

dak 

(84) 

dak 

d 
dak 

d 
dak 

FT 

FT 

g(u; a) 

WWexpljrEctiZiW)* 

/   W(u) exp Ij I J2 CLiZi(u) \ > exp {j2iru ■ x} du 

The full expansion shown in equation 84 enables us to isolate the single term of the 

integrand which contains ak, and the derivative of the coherent PSF is given as 

dG(x; a) 
dak 

(85) 

=    I I g(u; a) f jZk(u)) exp {j2iru ■ x} j du 

=   jFr\g(Ü;a)Zk(Ü) 
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Applying this result in equation 83 gives 

dh(x; a 
dak 

2 Real 

2 Real 

dG(x; a) 
dak 

G*(x;a) 

j   FT g(u;d)Zk(u) 

(86) =   —2 Imag FT g(u; a)Zk(u) 

G*{x;a) 

G*{x- a) 

The desired partial derivative is then given as 

(87) 
d\(x; a) 

dak 

-2KonOTm(x) * Imag FT g(u; a)Zk{u) G*(x;a) 

This result will be used in the Cramer-Rao lower bound analysis shown next. 

5.3    Phase diversity Cramer-Rao lower bound derivation 

We now use the expressions developed above, along with statistical optics con- 

cepts, to derive the minimum possible estimator variance for the phase diversity 

wavefront sensing technique, slightly generalizing the analysis shown in reference (18) 

to account for the phase diversity imaging situation. 

5.3.1 Cramer-Rao concept. The Cramer-Rao inequality is a fundamental 

concept of estimation theory, written symbolically (43) as 

(88) var(dfc) > [F l(a))kk, 

where the tilde denotes an unbiased estimate of ak, and [F(a)] represents the Fisher 

information matrix of the parameter vector a. In words, the inequality states that 

the mean-squared error (MSE) of an unbiased estimate of some element of a, is 
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bounded from below by the corresponding diagonal element of a Fisher information 

matrix inverse. The Fisher matrix is defined as the negative of the expected value of 

the second partial derivative matrix the log-likelihood function of the measurement 

data. This second partial derivative is taken with respect to all of the pairs the 

estimated parameters. This is shown symbolically as 

(89) F(5) = -E F0(5) 

and the observed Fisher information matrix is given by 

d2L(d; a) 
(90) [Fo(5)],-fc = 

da j dak 

where L(d; a) is the log-likelihood function of the data, described below. The Fisher 

information matrix is therefore a Hessian matrix, which means that the i, jth. element 

of the matrix is the second partial with respect to i,jti\i aberration parameters. 

5.3.2 Phase diversity semi-classical photodetection model. The noisy phase 

diversity data are symbolized by {dn(x)}, and are noisy realizations of {\n(x)}, by 

virtue of the fact that the dn's contain a finite, random number of photoevents, 

K. Notice also that, depending on the beamsplitting arrangement between the 

various phase diversity images, each of the N diversity images may receive different 

percentages of the incoming total irradiance. Since the phase estimates are based 

on noisy image data, the accuracy of the estimate is fundamentally limited by the 

randomness of the measured images, and it is the probability density of this data set 

that is of interest here. 

The symbol dn(x) represents the random variable for the number of photons 

striking a detector at location x in the nth diversity image. The probability density 
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function of this variable, PDF[dn(x)], follows the Poisson distribution, 

(91) PDF dn(x)\o\a 
(\n{x;a))d"Wexp{-\n(x;a)} 

dn(x)\ 

The quantity Xn(x; a) is often referred to as the mean, or "infinite-signal" image, 

or the rate function of the random photocount PDF, because of the well-known 

property of Poisson processes, 

(92) E[dm(x)] = Xn(x ; a), 

where E[- ■ •] symbolizes the expectation operator. 

Another statistical property of the semi-classical model is that photoevents at 

different locations x, and in different diversity images, are statistically independent. 

Statistical independence allows the density of the entire noisy diversity image data 

set to be written simply as a product of the individual event probabilities, or 

(93) PDF {dn(x)} n n PDF 
m=l   x 

dn{x) 

where the set brackets {• • • } refer to a particular set of phase diverse image data col- 

lected across all diversity images dn and across all image locations x. The logarithm 

of the above PDF gives the desired log-likelihood function: 

JV 

L(d;a)   =   In    nilPDF 

\m=l   x 

N 

=   £Em   PDF 

n=l 

dn(x) 

dn(x) 

(94) 
N / \ 

=    E E ( ~ A«(^ 5) + d^) Mxn(x; a)) - ln(dn(x)\) 
n=l   x     V / 
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Recall that the photocount random variable dn(x) is not dependent on a, and further, 

that the partial derivatives of L(d; a) with respect to a are the actual quantities of 

interest. Since the partial derivative of hi(dn(x)\) with respect to a will be zero, this 

last term in the summand of equation 94 is discarded, leaving 

(95) L(d] a) = E E ( - Xn& «) + dn(x) HXn(x; a))) , 
71=1     X       \ ' 

from which the Fisher information matrix will be derived. 

5.3.3 Phase diversity Fisher information matrix. The partial derivatives 

needed for equation 90 can now be found, beginning with the first partial derivative 

of equation 95: 

8L(d; a)       "^ d\n(x; a) 
(96) ^£^ = EE dak ~\  -       dak h. 71 = 1     X A 

dn{x) 
Xn(x; a) 

-1 

This expression is an extension of the corresponding expression found in refer- 

ence (18)—the image under consideration has been generalized from a point source 

to an extended image, and an extra summation is added to account for the multiple 

diversity images. These extensions will allow some interesting aspects of the phase 

diversity problem to be explored, as discussed in section 5.4. Similar expressions ap- 

pear in reference (62), related to the derivatives of photon-limited image likelihood 

functions with respect to pupil aberration parameters. 

At this point, equation 96 can be used to verify that the PDF satisfies the 

regularity condition for the Cramer-Rao theorem, given in reference (43). This 

condition dictates that in order for the CRLB theorem to hold the following condition 
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must be satisfied: 

(97) E 
dL(d; a) 

da 
= 0, 

the zero vector. Recalling equation 92, the quotient in equation 96 becomes 

E 
dn(x) 

_Xn(x;a)_ U* 
(98) 

Xn(x; a) 

K(x] a) 
Xn(x; a) 

dn(x) 

and so the expectation of equation 96 vanishes, and the regularity condition holds. 

To find the second partial derivatives needed for equation 90, equation 96 is 

differentiated with respect to a second aberration coefficient a^, written as 

Wo(ä)]jk = 
82L(d; a) 

da j dak 
N 

EE 
n=l   x 

d2Xn(x;a) 

da j dak 

dn{x)    _ 

Xn(x; a) 

(99) 
dXn(x; a) dXn(x; a)     dn(x) 

daj dak      (Xn(x; a)) 

The negative of the expected value of the above equation is actually the desired 

quantity. Again taking advantage of the property of Poisson shot processes shown 

in equation 92, it is easily seen that the expectation operator can be used to cause 

d quantities to become A quantities, thus annihilating the first summand term of 

equation 99 vanish.   By also slightly simplifying the second term of the summand 
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the following can be written: 

[F(a)k-   =   -E 

JV 

(100) EE 
71=1     X 

[Fo(a)]jk 

d\n(x; a) d\n(x; a)       1 
da, dak     Xn(x;a)/ 

Since no specific Fourier-optical aspects are yet embodied in equation 100, we note 

that it is essentially a re-statement of equation 2.62 of reference (76). This is a 

general result which is applicable to any estimation of a noisy parameter a. using 

noisy Poisson counting data. 

Using the partial derivative results of the previous section, equation 87, the 

Fisher matrix is written as 

[F(öO] jk E E ^T^onorm{x) * flmag \<?n{2; a)FT gn(u\a)Zj{u) x 

Onorm(x) * flmag I G*n(x; a)FT gn(u; a)Zk(u) 

= E 
4(Knf 

II onorm{x)* flmag JG;(s;a)FT 
a=j,k \ v 

A 

E^ 

gn(u; a)Za(u) 

zr^r x 

(101) II °norm(x) * (Imag j G;(£; a)FT 
a=j,k \ v 

^m(«;ö)Za(iT) 

Equation 101 is the final desired result, the Fisher information matrix for the extended- 

object, multiple-image, phase diverse data set. 

Note that the basis set {Zj(u)} has been taken to mean the Zernike polynomial 

basis set (58) for circular pupils, a basis set which will be used in the numerical 
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demonstrations in the latter section of this chapter. However, the selection of basis 

set was not crucial to the derivation. For the theoretical development given above, 

the shape of the aperture and the actual aberration basis set could have remained 

unspecified. Alternatively, the set symbolized by {Zj(u)} can be interpreted as 

denoting any given pupil basis set, up to and including discrete pupil domain delta 

functions. Before proceeding, it is also important to point out that the CRLB is 

only a theoretical lower bound for the unbiased estimation problem, and it is at least 

theoretically possible that there exists some biased estimator that exhibits better 

estimation performance (18, 43). 

The Cramer-Rao lower bound on the mean-squared error of an aberration pa- 

rameter estimate can now, in principle, be calculated. First, the Fisher information 

matrix is populated via equation 101. This matrix is then inverted, and the desired 

lower bounds are found in the appropriate diagonal elements of this inverse. One 

practical problem with this scheme is that some of the items needed to evaluate equa- 

tion 101 depend directly upon the aberrations a that are being estimated. Strictly 

speaking, there would be no reason to find the lower bound for an estimate if the 

quantity being estimated is already known exactly, as assumed in equation 101. Sim- 

ilarly, the original object irradiance distribution, onorm(x), is also not known exactly 

in most astronomical imaging situations. Once again, there would most likely be no 

reason to carry out the observation if the object were already known. 

Note that the object and aberration could be specified a priori in contrived sit- 

uations such as controlled laboratory experiments or computer imaging simulations. 

A CRLB analysis utilizing this latter approach might involve finding the Cramer- 

Rao lower bounds for a large number of objects and aberrations. For instance, an 

ensemble of phase screens belonging to certain statistical class of random aberrations 
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could be generated and used in equation 101, along with a certain type of imaging 

target object distribution. Estimation-theoretic conclusions might then be drawn 

from such an analysis which are approximately valid for aberrations of that certain 

statistical class. This approach to Cramer-Rao analysis is investigated in the next 

section of this chapter. 

5-4    Simulation examples 

To proceed with numerical evaluation of the expressions of the previous sec- 

tion, the computer imaging simulation from previous chapters was adapted to the 

numerical evaluation of equation 101 for numerically generated pupil phase screens 

and the corresponding PSFs and images. For this section, the pupil phases are again 

written to a 128 x 128 pixel grid with a circular pupil aperture 64 pixels in diameter 

located at the center of the array. The quantities needed for equation 101 are numer- 

ically obtained using Fourier optical relations and Fast Fourier transforms (FFTs). 

The pupil phases are again specified in terms of the Zernike polynomials as ordered 

and normalized by Noll (58). 

Average Lower Bounds—Monte-Carlo analysis of CRLBs 

As seen in the previous section, particularly equation 101, the Cramer-Rao lower 

bound for an aberration estimation problem depends upon the actual, underlying 

values of the aberration being estimated, and the bounds generally change as the 

aberrations change. Thus it is difficult to make any meaningful general quantitative 

statements about the behavior of the CRLB without reference to a given, specific 

aberration example. To overcome this difficulty, a "Monte-Carlo" style CRLB anal- 

ysis is presented. This analysis proceeds by averaging Cramer-Rao lower bounds 

across an ensemble of random pupils of a certain statistical class, as described below. 
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The purpose of this averaging is to obtain a more generic, CRLB-related quantity, 

which is more broadly applicable, at least illustratively. 

The intuitive idea of interpreting a single CRLB value as a figure of merit has 

been seen previously in the literature, refs. (18, 43), where lower the CRLBs are pre- 

sumed to be consistent with better estimation techniques. The idea of an "ensemble 

average" Cramer-Rao lower bound may at first glance seem controversial since, ob- 

viously, an "average lower bound" is no longer a true lower bound. However, the 

Cramer-Rao lower bound can also be re-interpreted as the mean-squared error (MSE) 

of some theoretical minimum-variance unbiased estimator (MVUE), an estimator 

which may or may not exist (43). The idea of ensemble averages of pupil averaged 

RMS phase errors—including phase estimation errors—is a common feature of much 

of the literature of adaptive optics for example, such as references (19, 58, 78, 80), 

and was also used to summarize the results of chapter 4. The approach presented 

below is therefore interpreted as the MSE performance of a hypothetical WFS esti- 

mator. Instead of averaging lower bounds, which may sound nonsensical, the mean 

squared error (MSE) of the hypothetical MVUE is being estimated by way of en- 

semble averaging. 

The concept of the Monte-Carlo analysis used here is depicted in block-diagram 

form in figure 30. The MVUE MSE for each randomly simulated phase screen is 

first determined via the trace of the inverse of the corresponding Fisher information 

matrix. Note that the MVUE MSE of the coefficients corresponds to the MVUE 

MSE of the actual pupil phases for the case of Noll-modified Zernike polynomials, 

because of basis set orthonormality (58). These N minimum mean-squared phase 

errors quantities are averaged across the ensemble to obtain the average CRLB metric 

of interest.   If the individual CRLB of the ith pupil is referred to as ef, then the 
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Monte-Carlo average metric discussed here is represented by 

N 

(102) Data Point = *-=j— = (e2) 

5.4.I Optimal defocus example. For each of the data shown in figure 31, 

fifty pupil phase screens were generated, with an ensemble-averaged, pupil-averaged 

RMS aberration phase of one-quarter of a wave. This was accomplished through 

random number generation of Zernike coefficients 4 through 11. All 8 of these co- 

efficients were generated as independent, identically distributed Gaussian random 

vectors. The requisite quantities for equation 101 are each determined Fourier opti- 

cally, and the Hessian Fisher matrix is populated by numerical quadrature. For this 

simulated pupil case the Fisher matrix is an 8 x 8 matrix corresponding to Zernike 

coefficients 4 through 11. 

The same set of 50 underlying pupil phase aberrations was used for all of 

the simulated cases summarized by figure 31. The simulated total K quantity was 

normalized to unity with 50 percent of the available light to each of two simulated 

images. The phase diversity imaging configuration of figure 1 is assumed in the 

calculation of equation 101. The amount of defocus was allowed to vary in the 

second image by adding the desired amount of Zernike mode 4 to the diversity 

image pupil phase. This diversity defocus parameter is the quantity denoted on the 

x-axis of the plot. Point-source imaging was simulated for these cases. For all of 

the CRLB data given in the rest of this chapter, the MSEs are given normalized for 

1 total photon. For an actual total photocount of K, over all diversity images, the 

Cramer-Rao answers given here must be divided by K to obtain the actual MSE, 

which is in units of radians squared. 
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Figure 31. Ensemble average of pupil-averaged theoretical minimum mean-squared 
phase diversity estimation error for 50 quarter-wave RMS aberrated 
pupils. Data points represent the ensemble averages of the traces of the 
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lated with 50/50 beamsplitter, total photocount normalized to K = 1. 
Traditional phase diversity setup with one image in focus and one im- 
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Any given data point of figure 31 is of interest by itself, since it gives an 

indication of the average minimum squared error of the phase diversity MVUE, 

normalized by photocount. But the plot also allows comparison of the various MVUE 

error values as the defocus of the second diversity image is allowed to vary. By these 

criterion, the trend appears to indicate that there may be an optimum diversity 

defocus distance, corresponding to approximately 2 radians of Zernike mode 4. 

5.4.2 Curvature sensing example. Curvature sensing (67) is another wave- 

front sensing technique that is amenable to the type of Cramer-Rao analysis shown 

above. As shown schematically in figure 32, the curvature sensing WFS method 

involves the collection of two symmetrically defocused images. Roddier (67) has 

shown that the difference between the two symmetrically defocused images contains 

information regarding the pupil phase screen's two-dimensional Laplacian. Solu- 

tion of Laplace's equation is the post-detection technique Roddier uses to extract a 

wavefront estimate. But equation 35 implies that these two symmetrically defocused 

images could very well also serve as a phase diversity data set and could be processed 

as any other PDWFS image set, using equation 47 of chapter 3, instead of Roddier's 

method. 

Note that Cramer-Rao analysis provides a fundamental theoretical lower bound 

on error, regardless of the specific technique used to process the photon-limited data, 

be it inverting a Laplacian operator or Gonsalves function minimization. Thus the 

analysis of the previous subsection can be repeated for the case of a symmetrical 

defocused pair of images, regardless of the ultimate estimation paradigm to be used. 

Incidentally, Roddier's method is limited to point-source images, while PDWFS is 

not. 
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Figure 32.    Schematic comparison of the curvature sensing and phase diversity tech- 
niques, in terms of the types of collected images. 

Moreover, it may be of interest to attempt to use symmetrically defocused 

image pairs in combination with the phase diversity style of post-processing (15). 

As stated previously, there is no compelling fundamental reason why such image 

pairs cannot be used in this manner. The question then becomes one of whether this 

image collection scheme has any information-theoretic advantage over the traditional 

PDWFS configuration of figure 1. The results presented in figure 33 are an example 

of a type of analysis that could be useful in trying to answer such a question, when 

compared to corresponding results like those shown in figure 31. 

The same ensemble of 50 quarter-wave aberrating phase screens used to create 

figure 31 were again used in making figure 33. In these curvature sensing cases, 

however, a pair of images was created by perturbing the phase screen by both ±a± 

radians of defocus. This is the s-axis variable of figure 33. For each pair of diversity 
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Figure 33. Ensemble average of pupil-averaged theoretical minimum mean-squared 
curvature sensing estimation error for 50 quarter-wave RMS aberrated 
pupils. Data points represent the ensemble averages of the traces of the 
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Table 2.    The summary of results of the various phase diversity CRLB experiments. 
Photocounts normalized to unity. 

experiment no. description (?) 
1 single pt. src. image 6.54 rad2 

2 beamsplit 30/70 6.37 rad2 

3 beamsplit 40/60 6.17 rad2 

4 3 phase div. images 6.48 rad2 

5 satellite object 227.5 rad2 

6 cone filtering 17.1 rad2 

7 chapter 4 case la 11.18 rad2 

8 best fig 31 section 5.4.1 6.05 rad2 

9 best fig 33 section 5.4.2 5.62 rad2 

images, the calculation of the Fisher information matrix again proceeded as before, 

via equation 101, with K again normalized to unity. The ensemble-averaged MSEs 

were found for each curvature sensing configuration using the procedure of figure 30. 

Figure 33 shows that out of the various configurations tested, a symmetric 

defocus of +/ — 1.5 radians appears to be the best curvature sensing configuration 

in an MVUE MSE sense, for this group of aberrating phase screens. Compare this 

to the corresponding best phase diversity configuration with 2 radians of diversity, 

as determined from figure 31. The best curvature sensing configuration appears to 

exhibit 7 percent less MSE than any standard phase diversity configuration. 

5.4-3 Other experiments. The results of various other CRLB experiments 

are summarized in table 2. These experiments are discussed in greater detail below. 

All except experiment 7 utilize the same ensemble of 50 underlying, quarter wave 

RMS aberrating phase screens for the averaging. The last two items give the best 

results shown in figures 31 and 33. The same type of analysis depicted in figure 30 is 

again used in the calculation of each quantity in the table. Unless otherwise stated, 

the diversity phase for all these simulated cases consisted of 2 radians of defocus, Z±. 
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Recall that the total K is normalized to unity, and the MSEs given above must be 

divided by a particular K to give a result for a specific light level. 

1. Single point source image 

It was stated in the introduction that the Cramer-Rao analysis given in this 

chapter is a generalization of the expressions found in ref. (18). The analysis shown 

in that paper addressed only the problem of a single point source image, from which 

a estimates were to be extracted, the so-called phase retrieval problem. For the 

purposes of comparison to the cases above and below, this single-image average 

CRLB is calculated for the experimental ensemble of 50 quarter-wave phase screens. 

This quantity was also calculated using equation 101, but with the summation over 

the index n constrained to a single, in-focus image,« = 1. This situation thus 

represents an estimate of the average minimum error performance for the phase 

retrieval or blind deconvolution problems discussed in chapter 3 and ref (18), for this 

class of phase screens. The average error for this case is 8% higher than the best 

standard phase diversity experiment, shown in item 8 of table 2. 

2 and 3. Non-symmetrical beamsplitting 

All of the phase diversity situations modelled throughout chapters 3 and 4 of 

this dissertation have incorporated the assumption that the beamsplitter divides the 

light equally among the two diversity images. Is this necessarily the optimal proce- 

dure? The defocused image of a point source is generally more spatially extended, or 

spread out, on the image plane. This general feature implies that, given a symmetri- 

cal beamsplitter, a larger detector area is being illuminated with the same number of 

photons. Would there be a benefit in diverting a greater share of the photons to this 

defocused, diversity image? This question can be investigated via equation 101, by 

simply modulating the percentages in the appropriate Kn quantities. The indication 
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here is that there is no advantage in diverting more light to the defocused image, 

in fact, just the opposite. The greater the deviation from 50/50 beamsplitting, the 

worse the performance, regardless of the speculations given above. For instance a 

40/60 beamsplit yielded 2% greater MSE than the 50/50 case. A 30/70 beamsplit 

yielded 5% greater MSE. 

4. Three-image phase diversity case 

Another interesting practical question is addressed by item 4 of table 2: given 

some finite ~K light level, would there be an advantage in splitting that light equally 

into three diversity images, as opposed to two? In this demonstration, the evaluation 

of equation 101 is altered to accommodate three images: 

• an in-focus point source image, 

• a defocused image with 2 radians of Z±, and 

• another defocused image with 3 radians of Z4. 

The normalized light level is split equally, with one-third of the light going to each im- 

age. Of course, there is a large number of permutations of defocus and beamsplitting 

arrangements to choose from. This particular demonstration reveals that, compared 

to the 2 radian defocused case of figure 31 (item 8), adding the third image resulted 

in 7% greater MSE. Of course, if a third image path also implied the inclusion of 

extra photons, this MSE would be reduced accordingly, as per equation 101. 

5. Two-image extended object phase diversity imaging 

One of the advantages touted for the derivation of equation 101 was the ability 

to account for the imaging of extended objects. In chapters 2 and 4, the assertion 

was made that phase estimation from point source images acts as a WFS perfor- 

mance upper bound, as compared to the use of images of extended objects (18). 
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The results of this demonstration bear this out. The gray-scaled data shown in 

negative in figure 34 represent a CAD rendering of a space object, a Russian Ocean 

Reconnaissance satellite, which served here as the target object. These data are used 

in equation 101 for the demonstration of experiment 5 above, to model the pristine 

extended object irradiance distribution that is convolved with the simulated PSFs. 

The Cramer-Rao MSE is seen to be almost two orders of magnitude worse for 

the imaging of this particular extended object, for the given set of random pupils. 

One conclusion drawn from this result is that images of extended objects would need 

to hundreds of times brighter than a corresponding point source to achieve the same 

theoretical minimum MSE performance. 

This result can be understood intuitively by inspecting equation 100. This 

expression shows that the Fisher information matrix depends on the rate of change 

of the noiseless image A with respect to an aberration a;. The more "sensitive" A 

is to changes in cu;, the lower the CRLB, roughly speaking. The image A consists of 

either the PSF h for point source imaging, or the object convolved with the PSF, 

o*h, for extended object imaging. Now, h by itself is a direct function of aberrations 

CKJ, through Fourier optics. On the other hand, the object irradiance distribution o is 

completely indpendent of the aberrations. Also recall that these images are photo- 

normalized to remove explicit K dependence. Thus a point source image h would 

reasonably be expected to be more sensitive to changes in a; than an image which is 

being convolved with some aberrations-independent o quantity. In extended-source 

imaging, the aberrations dependent quantity h is being "blurred" by an object o 

which does not depend on the aberrations at all. 
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Figure 34. CAD rendering of a Russian Ocean Reconnaissance satellite. The data 
shown are used to model the pristine "object" irradiance distribution, 
for imaging of a space object. 

119 



6. CRLB in the presence of cone filtering 

It was stated in chapter 3 that the noise suppression filtering—used throughout 

all phase diversity implementations in this research effort—could also be interpreted 

as the image-domain convolution of a so-called smoothing kernel with the original, 

unfiltered data, as per ref. (76). Whether noise suppression is interpreted as an image 

domain convolution, or a Fourier domain lowpass filtering, one obvious disadvantage 

of the technique is that valid image information is inevitably discarded, along with 

the noise. Using the various convolutions of equation 101, this experiment demon- 

strates the Cramer-Rao impact of noise suppression filtering on the same series of 

50 quarter-wave pupils used previously. The inverse FFT of the square root of the 

cone filter shown in figure 10 can be treated as the "object", similar to the satellite 

object in experiment 5 above. Remarkably, this allows the effect of noise suppression 

filtering to be quantified in a fundamental manner. For instance, the demonstration 

of figure 6 shows that the cone filtering causes the phase estimation MSE to ap- 

proximately triple. This comparison is with respect to item 8 of table 2, where cone 

filtering was not accounted for. 

7. CRLB for case la of chapter 4 

The ability to account for cone filtering in a Cramer-Rao sense has been demon- 

strated in experiment 6 above. Recall that this type of cone filtering was used 

throughout the simulations phase diversity estimation seen in chapter 4. Recall also 

that experiment la of chapter 4 utilized an ensemble of 50 Zernike aberration phase 

screens with an average aberration strength of one tenth of a wave. Thus experi- 

ment 6 can be replicated to find the CRLB for estimation experiment la of chapter 

4. Item 7 of table 2 can be used to compare the actual estimation performance seen 

in chapter 4, figure 18, with the theoretical minimum RMS error, by dividing the 
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item 7 quantity by ~K — 103,104, and 105 photons and taking the square root. Note 

that the quantities in chapter 4 were given in units of waves, or 2n radians. The 

minimum square root MSE (MRMSE) from the experiment 7 data above are thus 

compared to the actual root-mean-squared error (RMSE) from chapter 4: 

• K = 103; MRSME = 0.012waves; Chapter 4 actual RMSE = 0.018waves 

• K = 104; MRSME = 0.004waves; Chapter 4 actual RMSE = 0.005waves 

• K= 105; MRSME = O.OOlwaves; Chapter 4 actual RMSE = .0.002waves 

The actual chapter 4 RMSE values, from figure figure 18, approach their theoretical 

lower bounds to within a factor of 2, when those lower bounds are calculated to 

account for the information discarded by the cone filtering. 

5.5    Conclusion 

Previous expressions (18, 62, 76) regarding Cramer-Rao bounds on point-source 

phase retrieval were slightly generalized in this chapter, in order to account for the 

multiple images of a phase diversity (26) data set. The fact that phase diversity aber- 

ration sensing is not restricted to point-source beacon images is also accounted for in 

these expressions for the phase diversity Fisher information matrix. The CRLB ends 

up depending upon the actual, underlying value of the aberrations being estimated. 

Therefore a numerical, Monte-Carlo analysis of Cramer-Rao quantities was justified. 

Examples were given of the various types of estimation-theoretic analysis that can be 

addressed using this type of analysis, questions that have not been analyzed before 

in an estimation-theoretic sense. 

Lacking a specific aberration sensing problem to be evaluated in a CRLB sense, 

the next best approach appears to be a Monte-Carlo evaluation of a number of pupils 

of a specific class.  Some interesting conclusions can be provisionally inferred from 
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the particular numerical examples given here. Strictly speaking, the conclusions 

are only valid for the set of pupils used in the Monte-Carlo evaluations, but the 

results could point the way towards further research. For instance, there may be 

an advantage in performing phase diversity estimation on symmetrically defocused 

image pairs instead of the more traditional image set. 

Similarly, for the Monte-Carlo ensemble of quarter-wave aberrated pupils dis- 

cussed above, it appeared that a diversity defocus of 2 radians was measurably better 

in terms of minimum MSE than, say, a defocus of 3 radians. There also did not ap- 

pear to be any advantage to splitting a finite amount of light among 3 diversity 

images as opposed to only 2 for this aberration set. The assertion that extended 

objects are less advantageous phase diversity imaging targets than point sources was 

verified. 

It is important to stress that all of these conclusions are based on CRLB 

calculations using the same ensemble of 50 aberration phase screens. In the strictest 

sense, these conclusions apply only to those 50 pupils and no others. Whether or not 

50 screens is sufficient to allow meaningful generalization of these results remains an 

open question for future research. It may well be that many more than 50 pupils are 

needed to give results which can be generalized to an entire statistical class of pupils. 

Also, the numerical results shown here all involve theoretical minimum error levels 

which may never be attained by practical, realizable estimators. Finally, since these 

results were meant only for purposes of demonstration, it is important to realize that 

the aberration setup is highly contrived. It is unlikely that an optical situation could 

be found where only Zernike modes 4 through 11 could be found, in equal average 

RMS strengths. 
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The actual PDWFS average estimation errors for case la of chapter 4 were 

compared to their corresponding Cramer-Rao limits. All three cases were found 

to be within a factor of 2 or closer to their CRLBs. These generalized Cramer- 

Rao expressions also provide a tool for quantifying the estimation-theoretic impact 

of noise suppression filtering. None of these general, fundamental questions have 

been addressed before in the the existing body of phase diversity literature. 
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VI.   Applications of phase diversity to ground-based adaptive optical 

systems: Diagnosing image-path-only aberrations 

6.1    Problem introduction 

Adaptive optics (AO) systems are designed to correct the dynamically chang- 

ing optical phase delays introduced by the Earth's turbulent atmosphere. Under 

certain conditions, these systems can approach nearly diffraction limited imaging 

performance (21, 72, 77). The presence of a non-common optical aberration that 

is present only in the AO imaging path, as depicted in simplified, schematic form 

in figure 35, can result in a serious degradation of this performance. Clearly, a 

fixed image-path aberration like this would not be detected by the wavefront sensor 

(WFS) of the AO system. Therefore, there is no way for the AO system to apply 

appropriate correction to the deformable mirror (DM). One way of prescribing such 

an aberration would involve an actual hands-on diagnosis of the system hardware 

in the optical path of the imaging camera, an approach which may not be feasible 

given cost and operational constraints. Short of this manpower intensive approach, it 

would be advantageous to diagnose such an aberration using the information that is 

already available, namely, the image data and the system WFS measurements of the 

phase residual after the DM. This chapter outlines a novel extension and application 

of the phase diversity technique, applied to the problem of estimating this unsensed 

aberration. In implementing this method, outlined below, it will be shown that it 

is possible to diagnose this aberration using a collected ensemble of image data and 

corresponding WFS residual phase measurements. The initial inspiration for this 

novel application of phase diversity theory is due to Brent Ellerbroek, a scientist at 

the USAF Phillips Laboratory Starfire Optical Range. 
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Figure 35. Simplified block diagram of an adaptive optics imaging system, depict- 
ing an aberration that is present in the optical path that the imaging 
camera does not share with the WFS. 
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The remainder of this chapter is organized as follows. First the phase diversity 

technique, which has been discussed and analyzed extensively in preceding chapters, 

is re-interpreted such that it can be adapted to the problem of diagnosing the aber- 

ration of figure 35. Then an actual example of this extended aberration diagnosis 

method is presented, using data from an operational adaptive optics system: the 

USAF Phillips Laboratory Starfire Optical Range system. 

6.2    Adapting phase diversity to this problem 

The general PDWFS method involves the collection of multiple images of the 

same target, each image due to a slightly different pupil phase. Throughout previous 

chapters of this dissertation, these diversity phases have been simulated as varying 

amounts of pupil defocus, because defocus is relatively easy to implement in optical 

hardware for an intentional phase diversity system, such as the concept shown in 

figure 1 in chapter 1. This traditional PDWFS formulation will later be contrasted 

with a so-called unintentional phase diversity setup. The required PDWFS data set 

consists of N noisy, phase diverse images, along with the corresponding knowledge 

of how the various pupil phases differ from each other. This data set was written 

symbolically in chapter 3 as: 

{dn(x;an)}    =    {dl{x;ä + Al),d2(x;a + A2), 

(103) •••    ,dN(x;ä + AN)}, 

where the dn quantities still represent the nth noisy collected image, while the an 

vectors represent aberration coefficients, which is the resultant of two different aber- 

ration components: an = a + An. The fixed aberration to be estimated is designated 
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by the coefficient vector a, and the known phase diversity aberrations are symbolized 

by the coefficient vectors An. 

For the purposes of this chapter, the most important fact to recall from this 

summary of the phase diversity principle is that the diversity phase screens are in 

no way restricted to the class of parabolic defocus aberrations. Also, the number 

of images is not restricted to only two. In order to use the Gonsalves technique 

to measure the fixed aberration depicted in figure 35, all that is needed is a set of 

images derived from different pupil phase screens, and knowledge of just how those 

phase screens differ from each other. Ideally, the images and WFS frames from an 

AO system will provide such a generalized, unintentional phase diversity data set, 

as discussed below. 

But recall the underlying problem depicted in figure 35, namely the presence 

of an unknown aberration in the imaging path of an AO system. This aberration 

means that the WFS phase estimates provided by the WFS system are all incorrect. 

But, assuming that this unknown aberration is temporally quasi-static, the WFS 

phase data are all incorrect by some fixed unknown additive constant. Therefore, the 

difference between any two phase estimates is unaffected by this unknown aberration. 

Thus the difference between any two phase screens gives information regarding the 

diversity phase between the corresponding images. These diversities are the An, 

referenced above in equation 103. 

For the ground-based AO case of figure 35 the required, unintentional, phase 

diversities arise from the temporal differences in residual pupil phase errors from one 

exposure to the next. These temporal differences are due to the dynamic aberrations 

caused by the turbulent atmosphere, combined with the imperfect compensation of 

the AO system.   Therefore an AO image ensemble and the corresponding WFS 
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Figure 36. Schematic for using phase diversity to diagnose an AO image aberration 
that is not present in the WFS optics path, by relying only on the dif- 
ferences in WFS measurements. The differences are due to the dynamic 
action of the atmosphere-adaptive optics system. 
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Figure 37. Example images frames from ensemble of SOR image and WFS data. 
Image-based PSF estimate is shown in (a), WFS-based PSF estimate is 
shown in (b). Images shown in negative for clarity. 

measurements of residual phase errors constitute a generalized phase diversity data 

set, consisting of a collection of N phase diversity image frames, as well as knowledge 

of the corresponding non-parabolic diversity phases. The diversity information is 

obtained through simple subtraction of the appropriate WFS-derived phase screen 

data. This concept is depicted graphically in figure 36. With this approach a phase 

diversity data set can be assembled without intentionally creating a phase diversity 

system like that shown in figure 1. The traditional phase diversity concept is now 

extended to encompass more than two total images, and non-quadratic diversity 

phases that are now due to the temporal differences between subsequent residual 

AO phase screens. 

6.3   Example application 

In the course of an experiment in a posteriori WFS-based deconvolution of 

AO imagery as in ref. (70), the U. S. Air Force Phillips Laboratory Starfire Optical 
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Range (SOR) provided this institution (AFIT imaging research consortium) with 

adaptive optics (AO) compensated image ensembles, where the target object was 

the star Harvard Reference no. 2286 listed in ref (35). The SOR also provided an 

ensemble of corresponding Hartmann WFS (H-WFS) slope measurements. The data 

were collected using the 1.5 meter AO system described in reference (21). With these 

sources of data, two different types of estimates of the system point spread functions 

(PSFs) were available: 

1. PSFs as shown in the star images; and 

2. PSFs as derived from the WFS data. 

In comparing the two types of PSF estimates for our data set, it became apparent 

that the image-PSFs exhibited an aberration that was not present in the Hartmann- 

PSFs. 

The presence of this image-path aberration is demonstrated in the various types 

of PSF estimates shown in figure 37. Each PSF estimate shows the 64 x 64 pixels of 

an original 64 x 64 pixel image, with negative images shown for clarity. The imaging 

setup for the telescope used to gather the data is such that the images were Nyquist 

sampled, 2 pixels per A/D. The two types of PSF estimates are shown side-by-side 

in figure 37 (a) and (b) for one typical image/WFS data frame pair. Figure 37 (a) 

shows the image detected by the camera 

(104) PSFim = di{£), 

while figure 37 (b) shows the PSF estimate obtained by the WFS 

(105) PSFwfs FT Wexp[j(j>i\ 
2 
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Figure 38. 50-element ensemble averages of PSF estimates: star image frame (a) 
and its corresponding original Hartmann WFS-based PSF estimate (b). 
These average estimates show how the Hartmann is not detecting the 
unknown aberration. 

where W is the aperture transmittance function of the telescope, and fa is the ith 

WFS estimate of the residual phase. 

An asymmetrical lobe feature extends from the lower center-left of the main 

PSF body shown figure 37(a). This feature clearly does not appear in the WFS-based 

PSF estimate of figure 37(b). The possibility that the lobe is caused by a companion 

star has been ruled out — the Yale Bright Star Catalog (35) lists HR2286 (13 fx 

Geminorum) as a 3 star system, but the secondary and tertiary stars are not within 

the field of view in these image ensembles. 

Figures 38(a) and (b), show that this aberration is not isolated to a single im- 

age, but rather is exhibited across the image ensemble of this particular observation 

run. Where figure 37(a) and (b) show images derived from a single data realization, 

figure 38(a) and (b) show 50-image ensemble averages of the same quantities, now 

zoomed in on the central 21 X 21 pixels, with contour lines overlayed. Figure 38(a) 
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depicts the quantity 

(106) 

while figure 38(b) shows 

50 

(PSFim) = -Y,di(ä), 

(107) 
-i     50 

<««■/.> = Jog FT W exp[j(ßi 

These images imply that the image-path aberration is apparent throughout the image 

ensemble, but the WFS consistently fails to detect this aberration, bolstering the 

hypothesis of figure 35. 

This hypothesis is also demonstrated in the frequency domain by figure 39. 

The lower 'o' curve represents the modulus of the radially-averaged profile of the 

Fourier transform of the average, image based PSF: 

(108) curve0 = Radial average I FT (PSFim) 

The upper '+' curve shows the same for the Hartmann WFS based average OTF 

estimate: 

(109) curve + Radial average I FT (PSFwfs) 

In order to estimate the image path aberration, the noise suppressed Gon- 

salves algorithm, using N = 10 sets of image/WFS data, was implemented. Before 

executing the algorithm, the two-dimensional Fourier transform image spectra were 

digitally filtered using a circularly symmetric, linearly tapered cone filter, which 

acted to include, but linearly attenuate, the contribution of image data spatial fre- 
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The lower curve represents the modulus of the radially-averaged profile 
of the Fourier transform of the average, image based PSF. The upper 
curve represents the same, but for the Hartmann-WFS derived PSF 
estimate. 
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quencies up to one-half of the diffraction-limited spatial frequency, and excluded all 

higher frequency image information. This suppression of upper frequency noise is re- 

quired in order stabilize the iterative minimization procedure and allow it to reliably 

converge, as discussed in chapter 3 (12, 49). 

The Gonsalves function was then minimized by searching, via a quasi-Newton 

method (30, 64) over the space of Zernike polynomials 4 through 22, using the Zernike 

polynomial conventions specified by Noll (58). 

The Zernike coefficients that minimize the Gonsalves objective function ideally 

represent the total aberration that is manifest on the image plane. Therefore, the 

unknown fixed image-path aberration can be obtained by subtracting the Hartmann 

WFS aberration estimate from the phase diversity estimate: 

(HO) aunknown = °pd ~ aHartmann' 

where the a are now 19-element vectors representing the Zernike coefficients for 

modes 4-22 of the appropriate phase screen. These Zernike coefficients for the diag- 

nosed aberration are presented in table 3, in units of radians. The table shows that 

the strongest contributors in this case was mode 10, corresponding to a triangular 

coma, or clover aberration. The phase screen represented by the 8 coefficient esti- 

mate is shown in table 3 is shown in figure 40 in gray scale, where gray level value 

corresponds to optical path-length difference across the pupil. 

Figure 41 represents the so-called "augmented" WFS estimate of the average 

PSF, where the phase diversity estimate of the aberration has been added to the 
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Table 3.    Noll-modified Zernike coefficients of the diagnosed image-path aberration 
phase screen, 19-mode estimate. 

Noll-Zernike mode no.    coefficient (radians) 
4 0.0036 
5 0.1310 
6 -0.2123 
7 0.2182 
8 -0.0532 
9 -0.0814 

10 -0.3567 
11 0.2461 

12 0.0326 
13 0.0797 
14 -0.0409 
15 0.1625 
16 0.0829 
17 -0.0465 
18 0.1049 
19 -0.2705 
20 -0.2986 
21 0.0951 
22 0.0103 
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Figure 40.    The phase diversity estimate of the image-path aberration, restricted to 
Zernike modes 4-22. Gray-level map is shown. 

H-WFS phase esimates: 

(111) 
i     50 

(PSFaug) = — Y, FT Wexp[j((f>i + (l)pd)} 

In comparing figure 41 to figure 38(a), the original average image, it appears that 

the the lobe feature extending from the lower central left of the main PSF in the 

image data has been somewhat recaptured by these augmented WFS data PSF 

estimates. The augmented estimate is not perfect, due probably to the limited 

number of aberration degrees-of-freedom estimated here. But there is good reason to 

believe that the significant fraction of the image path aberration has been estimated 

reasonably well in this case. 

Correspondingly, in the frequency domain, figure 42 shows that the phase 

diversity augmented average OTF estimate matches that for the image-based OTF 

estimate fairly well.   The lower 'o' curve represents the modulus of the radially- 

136 



average augmented WFS PSF Image 

Figure 41. Average phase-diversity-augmented, WFS-based PSF estimate, 19- 
mode case, as discussed in the text. Again, central 21 pixel squares 
are shown, in negative. Compare to figure 38(a), the original average 
image. 

averaged profile of the Fourier transform of the average, image-based PSF, as before 

in figure 39. And the upper '+' curve represents the same, but for the Hartmann- 

WFS derived PSF estimate. The third '*' curve corresponds to the phase-diversity- 

augmented average OTF, 

(112) curve* Radial average I FT (PSFaUg) 

showing how the overly optimistic H-WFS estimate has been driven back towards 

the image-based estimate. 

6.4    Remarks on practical application of the technique 

This novel technique represents a potentially powerful and valuable tool that is 

available to the practicing astronomer who is using an operational adaptive optical 

system.   Adaptive optical systems are complex, expensive pieces of hardware, de- 
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The lower 'o' curve represents the modulus of the radially-averaged pro- 
file of the Fourier transform of the average, image-based PSF. The up- 
per '+' curve represents the same, but for the Hartmann-WFS derived 
PSF estimate. The third V curve corresponds to the phase-diversity 
augmented average OTF, showing how the overly optimistic H-WFS 
estimate has been driven back towards the image-based estimate. 
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signed with the goal of attaining as close to diffraction-limited imaging performance 

as possible. If the effect of an image path aberration is later found to be present in 

a collection of imagery, as happened in the experimental case shown here, the hard- 

won imaging and resolution performance gains attained by the expensive AO system 

are at least partially negated. This chapter has shown a procedure for diagnosing 

that error, and possibly regaining the lost imaging performance. 

Assume, for example, that the cause of some fixed image-path aberration can- 

not be tracked down, or that such an aberration is an unavoidable side effect of 

some piece of science hardware on the telescope optics bench. The estimates ob- 

tained from the technique shown in this chapter could then be used for pre-emptive 

compensation of the aberration, in the following manner. The experimenters would 

first collect a series of calibration images, which, due to the flexibility of the Gon- 

salves phase diversity scheme, need not be point source images. Next, they would 

implement the procedure demonstrated in this chapter to estimate the unavoidable 

image-path aberration. Then the appropriate conjugate of this aberration estimate 

could be imposed as a fixed bias upon the AO deformable mirror. When collecting 

subsequent science images, the dynamic deformations needed for atmospheric com- 

pensation would be added to this fixed bias deformation by the AO system. This 

fixed deformation would act to pre-correct for the image-path aberration throughout 

the observing session. 

Alternatively, recall again, as just stated, that the phase diversity technique 

does not explicitly require point source imagery (62). One could therefore also use 

these fixed aberration estimates ex post facto, in a post-processing scheme. The 

procedure would be similar to the general DWFS scheme presented in chapter 2 or 

ref. (70). But now the WFS estimate would be augmented by the fixed aberration 
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estimate. One could then deconvolve the effects of a fixed image-path aberration on 

extended object imagery that has already been collected, assuming that the corre- 

sponding WFS data were also recorded during the observing session. 

6.5    Conclusion 

This chapter has outlined a potential technique for diagnosing non-common 

image-path aberrations in an AO system that are not sensed by the WFS. This 

technique was demonstrated using actual astronomical imagery from an operational 

adaptive optics system, along with the corresponding wavefront sensor measure- 

ments. The astronomical imagery appeared to exhibit an aberration that was not 

detected by the WFS system. Using the dynamic, temporal differences between WFS 

estimates as diversity phases, the Gonsalves technique was adapted to this novel sit- 

uation, and estimates of this unsensed aberration were obtained and demonstrated. 

Presumably, an even more accurate estimate could be have been obtained in the 

examples shown here, through refinement of the algorithm, which was not attempted. 

Estimation of even more Zernike coefficients might be found to be feasible by 

• optimizing the number N of images used, 

• refining the noise suppression method (12, 49), or 

• experimenting with the more complicated, object dependent Poisson maximum- 

likelihood technique discussed in reference (62). 

It is worthwhile to note that the straightforward, approach shown here yielded a 

reasonable aberration estimate even before such optimization or experimentation. 

Finally, this chapter represents another important validation of the phase di- 

versity concept, made all the more significant in the use of actual imagery obtained 
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from an operational telescope. This fact stands in contrast with the numerically 

simulated imagery of the type used in previous chapters, and used in a large fraction 

of the existing phase diversity literature. 
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VII.   Conclusion 

This chapter briefly summarizes the outcomes of this research effort, and 

presents ideas for follow-on research problems extending from the ideas studied here. 

This dissertation has presented an in-depth analysis of the phase diversity 

wavefront sensing (PDWFS) technique, applied to the special problem of astro- 

nomical imaging through space-based telescopes. The overall PDWFS problem is 

concerned with the estimation of pupil aberrations from pairs of in-focus and defo- 

cused images. The aberration estimation accuracy of the technique was investigated 

in terms of numerical, Monte-Carlo computer imaging experiments, incorporating 

photon noise, as well as in terms of fundamental, estimation-theoretic performance 

limits. Neither of these types of analysis have been applied to this problem in the 

existing published literature. 

7.1    Summary of results 

Feasibility of general, WFS-based deconvolution, as demonstrated in chapter 

2, along with the experimental and theoretical performance of PDWFS, lead to 

the conclusion that the integration of phase diversity into the operational design 

of a space telescope would be advantageous. The wavefront estimation accuracies 

achieved here are sufficient to cause an improvement in imaging performance whether 

the estimates are used to: 

1. mechanically correct the aberrations using mirror phasing actuators, or 

2. mathematically deconvolve the aberration effects in post-processing. 

The conclusion holds regardless of whether a monolithic mirror or a segmented mirror 

is used in the telescope. But PDWFS is especially relevant for a segmented mirror, 
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since the discontinuous nature of an aberrated phase screen, caused by misaligned 

segments, is not amenable to diagnosis by a standard slope-sensing WFS. 

Numerical experimentation on the PDWFS technique for the case of space tele- 

scope point-source imaging showed that accurate pupil estimates can be obtained 

even under very low light conditions. By way of illustration, in one set of experiments 

on estimating the 0.10A RMS petal piston errors of a segmented space telescope, us- 

ing very dim, photon-limited, point-source images with K — 1000, phase estimation 

RMS errors of 0.012A were found. The segmented mirror experiments here incorpo- 

rated a model of the Next Generation Space Telescope (NGST) proposal, an idea 

for a possible follow-on to the Hubble Space Telescope. 

Some of the photon noise limitations of the technique were also encountered. 

In one example case, estimates similar to those in the previous paragraph were made, 

but both segment piston and tilt misalignment errors were included. Under the same 

low-light conditions, 20% of these higher degree-of-freedom Monte-Carlo PDWFS 

experimental cases ended in failure, the algorithm converging on WFS estimates that 

were incorrect by orders of magnitude. These failure outcomes are consistent with 

the fact that the Gonsalves PDWFS estimator is not optimized to photon statistics. 

This appears to allow the least-squares error metric search to become trapped in 

invalid minima which are due to noise instead of actual aberrations. 

The Cramer-Rao lower bound analysis presented here represents a fundamental 

new approach towards assessing the advantages and disadvantages of any particular 

phase diversity imaging configuration. One key result of such an analysis, demon- 

strated in chapter 5, is the proposal that phase diversity WFS estimation might 

be more appropriately carried out using symmetrically defocused images. Another 

finding is that the optimal phase diversity defocus for a given set of quarter wave 

143 



aberrations appears to be approximately 2 radians. The optimal amount of defocus 

to use in phase diversity imaging is a fundamental practical question that has not 

been addressed before in any fundamental way. A variety of other modifications to 

the standard PDWFS implementation are proposed and investigated via CRLB anal- 

ysis, such as alternate forms of beamsplitting and target objects. The performance 

of PDWFS Monte-Carlo experiments was also analyzed in terms of this theoretical 

limit. 

In the course of this research, a novel method for prescribing adaptive optics 

aberrations was also addressed. A potentially useful new tool has been made avail- 

able to the AO astronomical imaging community through this novel re-interpretation 

of the phase diversity algorithm. The technique was demonstrated using actual im- 

agery from an operational AO system, with successful results. The first 22 modes 

of a troublesome image-path aberration appear to have been accurately captured by 

this technique. 

7.2    Follow-on research ideas 

Ideas for follow-on research include the interesting possibility of using a weighted 

least-squares methodology for including model information into the phase diversity 

technique. Preliminary calculations show that the inverse covariance matrix of the 

Fourier transform of a photon limited image spectrum, which incorporates knowledge 

of the object and optical transfer function, could serve as a least-squares weighting 

matrix. 

Other research projects include numerical simulation of other telescope aberra- 

tion models, besides the examples given here. These investigations could, of course, 

be expanded beyond the realm of space-based telescopes. Sparse, phased array tele- 
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scopes would be good candidates for phase diversity misalignment sensing (61), for 

example. 

Similarly, the Cramer-Rao numerical evaluations given in chapter 5 could be 

replicated for a large variety of phase diversity configurations and experiments not 

evaluated here. Sparse aperture systems and adaptive optical telescopes along the 

lines of the application in chapter 6 could all be analyzed under the CRLB paradigm, 

possibly allowing similar, fundamental types of questions to be addressed. CRLB 

analysis could also be used to determine whether, for instance NGST tilt parameters 

are more difficult to estimate than similar piston parameters. 

The uniqueness and ambiguity example shown in chapter 3 is also amenable 

to further study. One idea for quantifying the concepts embodied in the ambiguity 

demonstration of chapter 3 is to use a numerical, Monte-Carlo analysis, along the 

lines of the the analogous phase retrieval uniqueness study given in ref. (75). For 

instance, the single-image phase retrieval case could be compared with the phase 

diversity case, in order to determine if there is some way to quantify the improved 

ambiguity properties of the phase diversity problem, in light of the fact that PDWFS 

is automatically constrained by the collection of multiple, diverse images. 

Another straightforward problem waiting to be tackled involves quantifying 

the performance of the Poisson maximum-likelihood formulation of phase diversity, 

along the lines of the Monte-Carlo study of chapter 3. The object-dependence issue 

could be sidestepped for a preliminary study, wherein it could be assumed that the 

object distribution were known ahead of time, such as point-source imaging of a 

known single star, in order to diagnose pupil aberrations. Under this framework, the 

object dependence would cease to be a problem. 
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Appendix A.   Remarks on pupil weighting and PSF normalization 

The desired end result of the pupil "pre-normalization" mentioned in the 

derivation of chapter 5, the Cramer-Rao chapter, is 

(113) [h(x;a)dx = 1. 
Jx 

From Fourier identities, and the derivations shown in section 5.2.1 we therefore can 

work backwards to obtain 

(114) / h(x; a)dx   = 
Jx 

1 

(115) [\G{x;a)\2dx   = 
Jx 

1 

(116) [jg(u;a)\2du   = 
Jll 

1 

(117) lg(ü;ä)g*(ü]ä)dÜ   = 1 

(118) f WiUy^^WWe-W^du   = 
Ju 

1 

(119) fw2(u)   = 
Ju 

1 

using, for example, table 9-1 of reference (22). 
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