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§1    Introduction 

Computer systems continue to grow in complexity and the distinctions between 

.hardware and software keep on blurring. Out of this has come an increasing 
awareness of the need for behavioral models suited for specifying and reasoning 

about both digital devices and programs. Contemporary hardware description 

languages (for example [1,15,19]) are not sufficient because of various conceptual 

limitations: 

• Most such tools are intended much more for simulation than for math- 

ematically sound reasoning about digital systems. Many compromises 

are made so that the descriptions can be executed. 

• Difficulties arise in developing circuit specifications that out of necessity 

must refer to different levels of behavioral abstraction. 

• What formal tools there are for such languages cannot in general deal 

with the inherent parallelism and nondeterminism of circuits. 

The formalism presented in this paper overcomes these problems and unifies 

in a single notation digital circuit behavior that is generally described by means of 

the following techniques: 

• Register transfer operations 

• Flowgraphs and transition tables 

• Tables of functions 

• Timing diagrams 
• Schematics and block diagrams 

The notation is based on discrete time intervals and combines aspects of stan- 

dard temporal logics [12,17] with features of dynamic logic [7]. Halpern et al. 

[6] shows that useful subsets of the logic are decidable and of relatively reason- 
able computational complexity. This indicates that partial automation of reason- 

ing may be practical. The formalism's applicability is by no means limited to 

the goals of computer-assisted verification and synthesis of circuits. This type of 

notation, with appropriate "syntactic sugar," could provide a fundamental and 

rigorous basis for communicating, reasoning or teaching about digital concepts and 

devices. Simulation-based languages could for example use such a logic as a vehicle 

for describing the intended semantics of delays and other features. Thus, semi- 

automated correctness checking is really only one part of a much bigger picture. 



Before outlining the formalism, the paper discusses related work. The temporal 
logic is then informally introduced by way of sample properties. Following this, the 
formalism serves as a basis for specifying and reasoning about various aspects of a 
simple delay element as well as of a hardware multiplication circuit. Quantitative 
timing as well as algorithm development are discussed. 

§2    Related Work 

Gordon's work [4] on register-transfer systems uses a denotational semantics to 
provide a concise means for reasoning about clocking, feedback, instruction-set im- 
plementation and bus communication. No quantitative timing properties are con- 
sidered and the notation has some difficulties in describing operations occurring over 
multiple cycles. Wagner [20] presents a semi-automated proof development system 
for reasoning about signal transitions and register transfer behavior. Unfortunately 
the notation suffers from a lack of formality that is difficult to remedy. Malachi and 
Owicki [11] utilize a temporal logic to model self-timed digital systems by giving 
a set of axioms. No indication is included on how to generalize the work to the 
entire domain of digital circuits. The work of Bochmann [2] describes and verifies 
properties of an arbiter, a device for regulating access to shared resources. The 
presentation, by means of a temporal logic, reveals some tricky aspects in reasoning 
about such components although the concepts used are not as rigorously developed 
as they may appear to be and do not easily generalize. As in the previous works, 
no quantitative timing issues are examined. 

Leinwand and Lamdan [9] use a type of Boolean algebra to model signal tran- 
sitions. Applications include systems with feedback and critical timing constraints. 
The use of the notation for non-trivial examples is very unintuitive. Patterson [16] 
explores the verification of firmware. This work views the problem from the sequen- 
tial programming standpoint without describing the underlying digital circuitry and 
related issues of concurrency and timing. There is also work by Meinen [13] on 
register transfer behavior and McWilliams [10] on worst-case time constraints. 

Eveking [3] uses predicate calculus with an explicit time variable to explore 
verification in the Conlan language. Although such an approach can in principle 
describe circuits, the proliferation of variables representing explicit time points 
becomes a major hindrance from a practical as well as theoretical standpoint. Many 
high-level temporal concepts become easily obscured amid all the notation. 

A number of people have used temporal logics to describe computer communica- 
tion protocols [5,8,18].   However, the precise connections between protocols and 



the underlying hardware and software are still rather unclear as are the relative 

advantages of the different techniques employed. 

§3    Notational Preliminaries 

Before the logic is introduced, it is necessary to say a little about the kinds of 

mathematical entities used here for modelling digital signals. 

Data Values 

Values are limited to natural numbers, J_ (read "bottom"), and finite-length 

vectors constructed using these elements. Both 0 and 1 as well as J_ serve as bits, 

with 0 standing for low voltage, 1 for high voltage and ± representing voltages that 
are out of range. Finite-length vectors can be formed containing natural numbers 

and JL. The following are sample values: 

0,     3,     ±,     (0),     (1,2),     (),    (±,1,1) 

Bit Operations 

Four basic operations defined on bits are complement (©), and (©), or (©) and 

exclusive-or (©). The symbols 0, © and © are used instead of -*, A and v in order 

to distinguish notationally between bit expressions and formulas in the underlying 
predicate calculus. Here are corresponding truth tables extended to include _L: 

© 
0 1 

1 0 
J_ _L 

© 0 1 _L 

0 0 0 0 

1 0 1 JL 

_L 0 _L J_ 

© 0 1 ± 
0 0 1 ± 
1 1 1 1 

J_ _L 1 J_ 

© 0 1 _L 

0 0 1 J_ 

1 1 0 J_ 

J_ ± ± J_ 

§4    Informal Overview of Temporal Operators 

The temporal logic provides a basis for describing periods of time such as 

in timing diagrams.   Concepts such as signal response and oscillation are readily 



expressible. Examples serve to introduce the various operators used later in this 
paper. This presentation has been kept rather informal although the entire logic is 
explored in detail in Halpern et al. [6] and Moszkowski [14]. 

Time is modeled as being discrete and finite. The following figure is a typical 

timing diagram: 

l 
X o 

l ■ 
Y o 

l 
Z o 

± 

0      10      20      30      40      50 units 

This represents the behavior of the signals X, Y and Z over a period of 50 units 
of time. The signal X goes up and down twice, while Y is stable with the value 1. 
Initially Z equals 0 for over 20 units, after which it equals _L. Notice that all times 
are relative. This approach is used because the properties to be examined depend 
solely on distances between points, independent of any absolute times. 

The group of signals can be modeled as a finite temporal interval a mapping 
variables and times to values. The behavior of intervals is concisely expressible by 
temporal formulas presented below. Given such a formula p, the construct a h p 
means p is true for the interval a. The notation t= p signifies that the formula p 
is true of all intervals. Please keep in mind that all operators discussed can be 
expressed in terms of a small collection of fundamental notions. The properties 
shown are deducible from a basic set of logical rules. 

4.1     Initial and Terminal Equality 

The formula beg{X = Y) is true for an interval o if within a the two signals 
X and Y have equal starting values. Similarly, the construct fin(X = Y) is true 

for an interval a if X and Y end up equal in a. 

Examples for a given interval a: 

Concept Formula 

X and Y start equal and end complements a l= \beg[X = Y) A fin(X — QY)\ 

X ends equal to 1 and Y ends equal to 0 a (= fin(X = 1  A 7 = 0) 

5 



Properties that are true for all intervals: 

N    -ifin[X = Y) =  fin{-<{X = Y)) 
The signals X and Y do not end equal if and only if they end up not equal. 

h    fin((XQY) = l) D  fin{X=l A Y = 1) 
If the bit-and of X and Y ends up equaling 1, both X and Y end up equal to 1. 

4.2     Temporal Equality 

Two signals X and Y are temporally equal in an interval a if they have the 
same values at all times. This is written I«7 and differs from the constructs for 
initial and terminal equality, which only-examine signals' values at the extremes of 
the interval. 

Examples: 

Concept Formula 

The signal X is 0 throughout the interval a 1= X pa 0 

The bit-and of X and Y everywhere equals 0 a N (X © Y) P=: 0 

X agrees everywhere with the complement of Y a NX pa 07 

Properties: 

^  X^Y => /(x)«/(y) 
If two signals are temporally equal, then any function applied to one of them 
temporally equals the same function applied to the other. 

l=    XpaO => Z07«O 
If X temporally equals 0, then the bit-and of it with another signal also equals 0 
everywhere. 

i=   (x,y)«(o,i) = [i^o A Ypaij 
The pair (X, Y) temporally equals (0,1) exactly if the signal X temporally equals 
0 and Y temporally equals 1. 



4.3     Temporal Stability 

A signal X is stable if it has a constant, defined value.  The notation used is 
stbX. In the case of a bit signal, this means that the signal is always 0 or always 

1, that is 
stbX = [I«0vI«l] 

Example: (this and further examples will omit the symbols "er h") 

Concept Formula 

The complement of X is stable        stb OX 

Properties: 

N    [X«l] '== [stbX A beg{X = l)} 
The signal X always equals 1 if and only if X is stable and initially equals 1. 

t=     stbX =   stbQX 
A bit signal is stable if and only if its complement is. 

N    [st&X A stbY] 3   si6(X©y) 
If two bit signals are stable, then so is their bit-or. The converse is not always true. 

N     stb{X,Y) = [sf&X A stbY) 
A pair is stable exactly if the two individual signals are. 

4.4    Temporal Length 

Quantitative timing properties are handled by a special object len whose value 
for any interval a equals the length of a. 

Examples: 

Concept Formula 

The interval is at least m units in length len > m 

The signal X is stable -and c measures at least m units stb X A len > m 

The predicate empty is true exactly if the interval has length 0. The predicate 
skip is true if the interval has length exactly 1. Since time is discrete, this is the 
minimum nonzero width. 



4.5     Examining Subintervals 

For a formula p and interval a, the construct Bp is true if p is true in all 
subintervals of time contained within a including a itself. Note that the "a" in E 
simply stands for "all" and is not a variable. The formula <$> p is true if the formula 
p itself is true in at least one subinterval of a. 

Examples: 

Concept Formula 

In some subinterval of length > m + n, X is stable        <S>([/en > m + n] A stbX) 

In all subintervals < m units, X is stable E([Zen < m] => stb X) 

Properties: 

t=     Ep 3 p 
If a formula p is true in all subintervals then it is true in the primary interval. 

t=     <§> p = -> El -"p 
A formula is true in some subinterval if and only if the formula is not everywhere 
false. 

N     E(p A q) =  [0p A 0?] 
The logical-and of two formulas p and g is true in every subinterval if and only if 
both formulas are true everywhere. 

t=     <^p =   <§> <§>p 
A formula is somewhere true exactly if there is some subinterval in which the formula 
is somewhere true. 

t=     [Bp A ♦?]  ^   <&>(p A q) 
If p is true in all subintervals and q is true in some subinterval then both are 
simultaneously true in at least one. 

l=   [X^Y] = s(x = y) 
Two signals are temporally equal in an interval exactly if they are equal in every 

subinterval. 

N     stbX =>   BstbX 
If X is stable in the overall interval, X is also stable in every subinterval. 

8      - 



4.6    Initial Subintervals 

The operators CD and O axe similar to El and <§> but only look at initial 

subintervals starting at time 0. 

Example: 

Concept "   Formula 

X is initially stable for at least the first m units        0(si6 X A len > m) 

4.7    Temporal Dependence 

It is useful to specify that a signal X remains stable as long as another signal 
Y does. X is said to depend on Y, written X dep Y. This can be expressed using 

the temporal formula 
X dep Y i=   m{stb Y 3 stb X) 

Examples: 

Concept Formula 

X and Y remain stable while Z does (X, Y) dep Z 

X remains stable as long as the pair (Y, Z) does X dep (Y, Z) 

Properties: 

N    [XdepY A stbY]  3   stbX 
If X depends on Y and Y is stable, then so is X. 

N    [X dep Y A Y dep Z]  3 X dep Z 
Dependence is transitive. 

1=     beg(X = 0)  3 {X®Y)depX 
If X initially equals 0, then the bit-and of X and Y depends on X. 

N    [X dep Z A Y dep Z] == {X,Y) dep Z 
The variables X and Y depend on Z exactly if the pair {X,Y) does. 



4.8    Adjacent Subintervals 

Given a time interval, the formula p; q is true if there is at least one way to 
divide the interval into two adjacent subintervals a and a' such that the formula p 
is true in the first one, a, and the formula q is true in the second, <r'. In particular, 
a rising signal can be described by the predicate \X: 

|X = [(X « 0); skip; (X « 1)] 

This says that X is 0 for a while and then jumps to 1. The gap of quantum length 
represented by the test skip is necessary here since a signal cannot be 0 and 1 at 
exactly the same instant. Falling signals are analogously described by the construct 
IX: 

JX = [(X « 1); skip; (X » 0)] 

Examples: 

Concept Formula 

X is stable and Y goes up stb X A \Y 

The bit-or of X and Y falls |(X © Y) 

In every subinterval where X rises, Y falls E(|X => \Y) 

X goes up and then back down |X; JX 

Properties: 

¥   (|X A ]Y) => [t(x©y) A \(X®Y)} 
If two bit signals rise, so do their bit-and and bit-or. 

1=    IX = t©x 
A bit signal falls exactly if its complement rises. 

t=    [TX A beg(Y = 0) A {Y dep X)}  => j(X ©Y) 
If X rises and in addition Y initially equals 0 and depends on X, then the bit-or of 
X and Y also rises. 

These operators can be extended to include quantitative information specifying 
minimum periods of stability before and after the transitions. For example, timing 
details can be added to the operator |: 

tm,nX = [(X & 0 A len > m); skip; (I«l A len > n)} 

10 



A negative pulse with quantitative information can be described as shown 

below: 

[(X «1A len- > I); skip; 
(X « 0 A len > m); skip; (I « 1 A /en > n)] 

4.9     Temporal Assignment . 

The formula X -»• Y is true for an interval if X's initial value equals Y's final 

value. 

Example: 

Concept Formula 

Z ends up with the complement of Y's initial value        0 Y -*■ Z 

Properties: 

N     stbX => (X-+X) 
A stable signal's initial and final values agree. 

ü  [pr - n or - £)] => (*-£) 
If Y gets X's value and then Z gets Y's, the net result is that Z gets X's initial 

value. 

N    (0X-Y) == (X^OY) 
The bit signal Y gets the complement of X's value exactly if Y's complement gets 

the value of X itself. 

H     [(OZ-Z);(OZ-Z)]  =>  (Z-Z) 
If a signal is twice complemented, it ends up with its original value. 

4.10    Repetition 

An interval can be broken up into an arbitrary number of successive subin- 
tervals, each satisfying some formula p.  The construct pn has the same meaning 

11 



r,    .    .    •    ;P 
» „ / 

n times 

For the case of n = 0, an interval a satisfies the operator exactly if a's length is 0. 

Examples: . 

Concept Formula 

The signal Y twice goes.up and down        (\Y; jY")2 

Z is complemented n times (0 Z —► Z)n 

Properties: 

i=    (QX-»X)n => [ie(nmod2)4X] 
After a series of n complements, X ends up with the initial value of the exclusive-or 
of X and (nmod2). For instance, if n is even, X ends up unchanged. 

N    (pm)n == pmn 

If a formula p is repeated m times within a further repetition of n cycles, the net 
result is the same as iterating p a total of mn times. 

§5    Simple Delay Element 

Delay is of fundamental importance in digital systems.   One of the simplest 
types of delay elements has the following structure: 

In- Out 

n-unit delay 

Here In is the input bit signal and Out is the associated output. The variable 
n is a fixed natural number indicating the time delay between a value appearing 
on the input and later on the output. The following statement uses intervals to 
characterize this behavior: 

In every subinterval of length exactly n units, the initial input value 
agrees with the final output one. 

12 



The next predicate Delay captures the required interaction: 

Delay(In, Out,n)     =def     B[(/en = n) => (In —*■ Out)] 

Properties: 

• A delay element is also a delay element in every subinterval: 

t=    Delay(In, Out,n) "3   EH Delay (In, Out, n) 

• Zero delay is the same as temporal equality: 

N    Delay(In, Out, 0) = (In tt Out) 

• Two connected delays result in a combined delay: 

f    [Delay(Inl,Outl,nl) A Delay(In2, Out2,n2) A  Outl « In2] 

=>  Delay(Inl, Out2, nl + n2) 

Note that the total delay nl + n2 is the sum of the delays nl and n2. 

An alternative delay model can be given containing an internal state of n + 1 
bits that are shifted as in a queue. The two distinct models are formally equivalent 

as can be expressed and* demonstrated with the temporal logic. 

The object len is used in the definition of Delay to measure time. Actually, 

other metrics seem possible. For example, some variable might represent the number 
of clock cycles or machine instructions executed in each interval. The properties of 

delay remain basically the same. 

§6    Multiplication Circuit 

The hardware multiplier considered here is motivated by one discussed in 

Wagner's work on hardware verification [20]. The desired device behavior is first 

described followed by a look at implementation techniques. The multiplier has the 

following general structure: 

13 



Inl[Oton-l]=* 

Jn2[0ton-1]=> 

Ck-* 

Ld-> 

=*Out[0u>2n-l] 

n, count', 
cl,c2,c3 

The circuit accepts two numbers and after a given number of clock cycles yields 
the product. The numbers are represented as unsigned n-bit vectors Inland In2 
while the output Out is a 2n-bit one. In addition to the vector inputs and output, 
there are two input bits Ck and Ld which control operation. The signal Ck serves 
as the clock input and Ld initiates the loading of the vectors to be multiplied. The 
field count tells how many clock cycles are required. The values cl, c2 and c3 are 
timing coefficients used in the behavioral description. 

6.1    Additional Notation 

Because the multiplier deals with numbers and their representation as bit 
vectors, it is convenient to introduce some extra notation before giving the device's 
formal description: 

• Subscripts on a vector V = (vo,..., vn) normally range from 0 on the left to n on 
the right. The construct V[i] follows this style. However, to simplify reasoning 
about the correspondence between a bit vector and its numerical equivalent, a 
slightly different convention is adapted. The alternative notation V{i) indexes V 
from the right with the right-most element having subscript 0. For example: 

(1,0, _L){0} = ±,     (1,0, ±){1} = 0,     (1,0,±){2}=1 

t t t 

For a vector V and i > j, the expression V{i to j) forms a new vector out of the 
elements indexed from i down to j. If i < j, the empty vector is returned. For 
example, 

(0,9, J., 2){3 to 1} = (0, 9, _L),    (0,1){0 to 0} = (1),     (±, 1,0,1){1 to 2} = () 

• The predicate de} X is true for a scalar value X if X does not equal J_. In this 
case, X is defined.   A vector is defined exactly if all its components are.   For 

14 



example, the following values are defined: 

0,     3,     (1,0),     () 

The values given below are not defined: 

_L,     (±,±),    (±,0) 

• The function nval converts a bit vector to its unsigned numeric value.    For 

example, 
nval{{0,1,1)) = 3, nval({l, 1, 0, 0» =. 12 

If any element of the vector is undefined, nval yields _L as the result. Thus, 

ntmf((l, ±,0,0,1)) =-L 

6.2 Overview of Description Techniques 

In what follows, the predicate Multiplier(M) specifies that desired behavior of a 
multiplication circuit. The device's various inputs, outputs and timing coefficients 
are represented as fields of the single parameter M. An iterative, timing-independent 
multiplication algorithm is then presented which computes a product by a series 
of successive additions. Later, the predicate Implementation^) characterizes a 
device which computes sums and in fact has the algorithm's steps embedded within 
it. A logical implication is then given, showing how Implementation(H) realizes 

Multiplier (M). 

6.3 Formal Specification of Multiplication Circuit 

The predicate Multiplier formally characterizes the circuit's desired structure 
and behavior. The single parameter M is a tuple representing the multiplier. For 
example, the expression M.Ck equals the clock input. The predicate's definition 

makes reference to other predicates given later: 

Multiplier{M)     =def 

MultStructure(M) 

A S Calculate(M) 

The predicate MultStructure presents M's fields. The predicate Calculate gives the 
control sequencing required to perform a multiplication. The operator 13 indicates 

that Calculate must be true in all sub'intervals. 

15 



Definition of MultStructure: 

The definition below of MultStructure contains information on the physical 
structure of the multiplier. Variables starting in upper case represent signals while 
lower-case ones are constant. Labels such as "Inputs:" are comments included to 
classify the various circuit fields. For example, M.Inl is an input bit vector. 

MultStructure[M)     =def 

Inputs: 
{Ck,Ld):Bit, 
Inl{n - 1 to 0}: Bit, 
In2{n-1 to 0}: Bit 

Outputs: 
Out{2n -1 to 0}: Bit 

Parameters: 
n: nat, 
count: net, 
c 1, c2, c3: time 

For brevity, the prefix "M." is omitted when a field is referenced below. 

Definition of Calculate: 

If the inputs behave as specified by the predicate Control, the output Out ends 
up with the product of the initial values of Inl and In2. Recall that the function 
nval converts a bit sequence to the corresponding numerical value. 

Calculate(M)     =def 

Control(M) => 
[nval(Inl) • nval{In2)] -* nval(Out) 

Definition of Control: 

The predicate Control describes the required sequencing of the inputs so that 
a multiplication takes place. The computation first loads the circuit and then keeps 
the load line inactive while the clock is cycled. 

Control{M)     =def     Load{M); {[Ld « 0] A Cycling(M)) 

16 



Definition of Load: 

Loading is done as indicated by the predicate Load. The clock is cycled as 
given by the predicate SingleCycle. The control signal Ld starts with the value 1 

and together with the other inputs Inl and In2 remains initially stable as long as 

the clock input Ck does. 

Load{M)     =def 

Single Cycle(M) A  beg(Ld = 1) A {Ld,Inl,In2) dep Ck 

Definition of SingleCycle: 

An individual clock cycle consists of a negative pulse: 

SingleCycle{M)     =def     lV
1,c2,c3Ck 

The clock signal falls from 1 to 0 and then rises back to 1. The three times given 
indicate the minimum widths of the levels during which the clock is stable. 

Definition of Cycling: 

The overall cycling of the clock is as follows: 

Cycling{M)     ==def     {Single Cycle{M))count 

A total of count individual cycles must be performed one after the other, where 

each is a negative pulse satisfying the predicate SingleCycle. 

Variants of the Specification 

The predicate Multiplier does not represent the only way to describe the mul- 

tiplier circuit. Alternative approaches based on an internal state can be shown to 
be formally equivalent to the one given here. A useful extension to this description 

specifies that once the output is computed, it remains stable as long as the control 

inputs do. If desired, additional quantitative timing details can readily be included. 

6.4    Development of Multiplication Algorithm 

The specification predicate Multiplier intentionally makes no reference to any 

particular technique for multiplying.   Since the process of multiplication does not 
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generally depend on any specific circuit timing, it is natural to separate algorithmic 

issues from other.implementation details. The temporal logic now serves as a basis 

for deriving a suitable circuit-independent algorithm for determining the product 

and in the next section as a means for describing hardware that realizes this method. 

The synthesis process can be viewed as a proof in reverse, starting with the goal 

and ending with the necessary assumptions to achieve it. 

The aim here is to obtain an algorithm describing some way for doing the 

multiplication. The variables n, Inl, In2 and Out are represented as fields of a 

variable A. The predicate Goal below specifies the desired result: 

Goal{A)     =def 

beg{deflnl  A def In2) => 

[nval(Inl) • nval(In2)] nval(Out) 

If the data inputs Inl and In2 are initially defined, the output Out should end up 

with their product. The presentation given here reduces the problem of multiplying 

the two n-bit vectors to that of using repeated additions to determine successively 
larger partial products. The algorithm consists of initialization followed by n 
successive iterations. After i iterations of the loop, for i < n, the initial product of 

Inl and the least significant i bits of In2, that is, 

nval(Inl) • nval(In2{i — 1 to 0}) 

is computed and available in the upper n + i bits of Out. Neither Inl nor In2 is 
guaranteed to remain stable once initialization is complete. However, their initial 
values must be used throughout the calculation. The lower n — i bits of Out hold 
the unexamined bits of In2 (i.e., In2{n - 1 to {}). In addition, an extra n-bit variable 
Temp is introduced in order to remember the original value of Inl. The following 

figure informally depicts the situation after i steps: 

Out: 

Temp: 

partial product rest of In2 

nvdl(Inl) • nval(In2{i — 1 to0}) In2{n — 1 to i) 
2n—1             •             •             •             n—i n-i-l   ...    0 

n + i bits 
value of Inl 

n — i bits 

Inl 
n-l     ...     0 

n bits 

After n steps, Out equals the desired '2n-bit multiplication result. 
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Thepredicate Assert below precisely specifies this behavior over * iterations 
for t < n. Note that both inputs Inl and In2 must be initially defined for the 

operations to properly take place. 

Assert{A, i)     =def 

beg{def Inl  A def In2) 3 
[nval{Inl) ■ nval(In2{i - 1 toO})] -*• nval(0ut{2n - 1 ton - i}) 

A Jn2{n — 1 to i] -*• Oui{n — t — 1 to 0} 

A Inl —► Temp 

After n steps, the product must be computed. For t = n, Assert indeed 

observes this requirement: 

Assert{A,n) -D  Goal{A) (*) 

Expressed in the logic, the algorithm takes the following form: 

Init{A); {Step{A))n 

In the next two subsections, the predicates Mt and Step are given in detail. Both 
Init and Step are derived so as to maintain Assert after looping i times for any 

i < n: 

[i<n A 7mY(A);(^ep(A))1"]  ~=> Assert{A,i) (**) 

The properties (*) and (**) together ensure that n iterations of the loop calculate 

the product: 

Init{A); {Step{A))n =>   Goal{A) 

Deriving the Predicate Init 

The initialization requirement can be obtained by making sure Init satisfies 

Assert for i = 0: 

Init(A) P Assert(A,0) 
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Simplification of Assert yields the constraint 

Init(A) => 

beg(deflnl A def In2) => 
0 -*■ nval{Out{2n — 1 ton}) 

A In2 -+ Out\n - 1 to 0} 
A Inl —► Temp 

This can be achieved by the definition 

Init(A)     =def 

beg{deflnl  A def In2) => 
(0,..., ())->• Out{2n-lton} 

A In2 -*■ Out\n - 1 to 0} 
A Inl —► Temp 

Deriving the Predicate Step 

The iteration step should be constructed so that after i iterations for any * < n, 
Step can inductively widen the scope of the assertion to i + 1 increments: 

[i < n A Assert(A, t); Step(A)]  3 Asserf(A, t + 1) 

Each step achieves this by selectively adding Temp's n bits to Out, depending on 
Out's least bit, Out{0}. Only the top n bits of Out are actual inputs for the sum. 
The top n + 1 bits store the result. The remaining n - 1 bits of Out are simply 
shifted right. For Temp the requirement reduces to the formula 

Step{A) => 

beg{def Temp) 3  {Temp-* Temp) 

This guarantees that Temp continues to remember the initial value of In 1. 

The constraint for Out is 

Step(A) 3 

beg(def Out A def Temp) 3 
[nval{Out{2n - 1 ton}) + Out{0] • nval{Temp)] 

-> nval(Out{2n — 1 ton — 1}) 
A  Out{n - 1 to 1} -> Out\n - 2 to 0} 
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Thus the overall incremental step can be realized by the definition 

Step(A)     =def 

beg(def Out A def Temp) ^> 

[nval(Out{2n - 1 ton}) + Out{0] ■ nval[Temp)] 

—► nval[Out{2n — 1 to n — 1}) 

A Out{n - 1 to 1} -+ Out{n - 2 to 0} 

A  Temp —► Temp 

6.5     Description of Implementation 

The circuit specified below performs the iterative algorithm just given. The 
definition includes relevant timing information and is broken down into parts describ- 
ing the implementation's physical structure and behavior. The primary predicate 
Implementation overviews operation. The device's fields are shown by ImpStructure. 

The predicate LoadPhase specifies device operation for initially loading the inputs. 

Once this is achieved, the predicate MultPhase indicates how to perform the in- 

dividual multiplication steps. 

Implementation[H)     =def 

ImpStructure(H) 

A B(LoadPhase(H) A MultPhase{H)) 

Definition of Imp Structure'. 

The structure of the implementation differs from that of the original specification 

by the addition of the internal state Temp for maintaining the value of Inl and by 

the omission of a count field giving the required number of clock cycles for comput- 

ing a product. 
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ImpStructure{H)     =def 

Inputs: 
(Ck,Ld):Bit, 
Inl{n -1 to0}: Bit, 
In2{n -1 to 0}: Bit 

Outputs: 
Out{2n -1 to 0}: Bit 

Internal: 
Temp{n - 1 to 0}: J?# 

Parameters: 
n: naf, 
ci, c2, c3: time 

Definition of LoadPhase: 

The body of LoadPhase specifies how to load the inputs as described in the 
algorithm: 

LoadPhase(H)     =def 

Load(H) 3 Init{H) 

The predicate Load, gives the required loading sequence for the circuit inputs. The 
predicate Init refers to algorithm's initialization predicate. The definition of Load 
is identical to that of its namesake in Multiplier: 

Load(H)     =def 

SingleCycle{H) A beg{Ld = 1) A (Ld, Inl, In2) dep Ck 

Individual clock cycles are also defined as in Multiplier: 

SingleCycle{H)     =def     |T
cI'c2'c3C/; 

Definition of MultPhase: 

When the load signal is inactive at 0, the circuit can be clocked to perform a 
single iteration. The algorithm's predicate Step takes place over two clock cycles. 

MultPhase(H)     =def 

[Ld « 0 A {SingleCycle{H)f\  3 Step(H) 
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Implementation Theorem 

The correspondence between the implementation Implementation and the original 

multiplier device specification Multiplier is now given by the theorem 

1=    Implementation(H) 3 Multiplier(M) 

where the mapping from iJ's fields to M's is 

M.field « H.field,        for the fields Inl, In2 and Out 

M.n = H.n 

M. count = 2H.n 

M.field = H.field;        for the fields cl, c2 and c3 

The value of M. count corresponds to the 2n clock cycles needed for doing the 

iterative computation. 

The behavioral description Implementation can itself be realized by some even 
lower-level specification containing further details about the timing and using a still 
more concrete algorithm. For example, the iterative steps are decomposible into 
separate adds and shifts. If desired, the development ultimately examines such 
things as propagation through gates. 

§7    Conclusion and Future Plans 

Compared with conventional hardware description languages, the approach 
used here permits direct reasoning about signal, device and algorithm behavior 
at various levels of detail. ' In addition, the concepts relating specifications with 
implementations and hardware with register-transfer operations can be rigorously 
expressed within a single mathematical framework. A disadvantage arises from the 
inability to directly execute arbitrary descriptions. 

Standard temporal logics and other such notations have not been designed to 
concisely handle the kinds of quantitative timing properties and signal transitions 
found in the examples considered. The intervals of time provide a unifying means 

for presenting various features. 

The material presented only scratches the formalism's surface. Halpern et al. 
[6] and Moszkowski [14] cover many details of the logic, describing and comparing 
devices ranging from delay elements up to the Am2901 ALU bit slice developed by 
Advanced Micro Devices, Inc. Future work will examine microprocessors, buses and 
protocols, DMA, firmware and instruction sets, as well as the combined semantics 

of hardware and software. 
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