
PB96-150826
NflSt
Information is our business.

A TEMPORAL LOGIC FOR MULTI-LEVEL REASONING
ABOUT HARDWARE

h:^TFin z

DEPARTMENT OF COMPUTER SCIENCE
STANFORD, CA

DEC 82
19970502 037

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

DISTRIBUTION STATEMENT A

Approved for public release;
[Distribution Unlimited

December 1982 Report No. STAN-CS-82-952

PB96-150826

A Temporal Logic for Multi-Level
Reasoning about Hardware

by

Ben Moszkowski

Department of Computer Science

Stanford University
Stanford, CA 94305

REPRODUCED BY: NTtS
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

BIBLIOGRAPHIC INFORMATION

PB96-150826

Report Nos: STAN-CS-82-952

Title: Temporal Logic for Multi-Level Reasoning about Hardware.

Date: Dec 82

Authors: B. Moszkowski.

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.

Sponsoring Organization: *National Science Foundation, Washington, DC.*Defense
Advanced Kesearcn projects Agency, Arlington, VA.*Air Force Office of Scientific
Research, Boiling AFB, DC.

■Contract Nos: DARPA-N00039-82-C-0250, NSF-MCS79-09495, NSF-MCS81-11586, AFOSR-81-0014

Supplemental Notes: Presented at the IFIP International Conference on Computer
Hardware Description Languages and Their Applications (6th), Pittsburgh, PA., May
1983.

NTIS Field/Group Codes: 62E (Information Theory), 62A (Computer Hardware), 62B
(Computer bouwarej

Price: PC A03/MF A01

Availability: Available from the National Technical Information Service, Springfield.
VA. 221bl

Number of Pages: 26p

Keywords: ^Mathematical logic, *Logic design, Learning machines, Artificial
intel ngence, Computer systems programs, Computer systems hardware, *Temporal logic,
*Multi-level reasoning.

Abstract: The paper describes a logical notation for reasoning about digital circuits.
I he Tormalism provides a rigorous and natural basis for device specification as well
as for proving properties such as correctness of implementation. Conceptual levels of
circuit operation ranging from detailed quantitative timing and signal propagation up
to functional behavior are integrated in a unified way. A temporal predicate calculus
serves as the forma'l core of the notation, resulting in a versatile tool that has more
descriptive power than any conventional hardware specification language. The logic has
been applied to specifying and proving numerous properties of circuits ranging from
delay elements up to the Am2901 ALU bit slice. Presentations of a delay model and a.
multiplication circuit illustrate various features of the notation.

A Temporal Logic for Multi-Level Reasoning about Hardware

Ben Moszkowski

Department of Computer Science
Stanford University

Stanford, California 94305

Abstract

This paper describes a logical notation for reasoning about digital circuits. The

formalism provides a rigorous and natural basis for device specification as well as

for proving properties such as correctness of implementation. Conceptual levels of
circuit operation ranging from detailed quantitative timing and signal propagation

up to functional behavior are integrated in a unified way.

A temporal predicate calculus serves as the formal core of the notation, result-
ing in a versatile tool that has more descriptive power than any conventional
hardware specification language. The logic has been applied to specifying and prov-
ing numerous properties of circuits ranging from delay elements up to the Am2901
ALU bit slice. Presentations of a delay model and a multiplication circuit illustrate

various features of the notation.

The work presented here was supported in part by the National Science Foundation

under a Graduate Fellowship, Grants MCS79-09495 and MCS81-11586, by DARPA

under Contract N00039-82-C-0250, and by the United States Air Force Office of

Scientific Research under Grant AFOSR-8I-OOI4.

This paper is part of the author's Ph.D. dissertation under the supervision of Professor

Zohar Manna and will appear in the IFIP Sixth International Conference on Computer

Hardware Description Languages and Their Applications, Pittsburgh, Pennsylvania,

May, 1983.

1 PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

§1 Introduction

Computer systems continue to grow in complexity and the distinctions between

.hardware and software keep on blurring. Out of this has come an increasing
awareness of the need for behavioral models suited for specifying and reasoning

about both digital devices and programs. Contemporary hardware description

languages (for example [1,15,19]) are not sufficient because of various conceptual

limitations:

• Most such tools are intended much more for simulation than for math-

ematically sound reasoning about digital systems. Many compromises

are made so that the descriptions can be executed.

• Difficulties arise in developing circuit specifications that out of necessity

must refer to different levels of behavioral abstraction.

• What formal tools there are for such languages cannot in general deal

with the inherent parallelism and nondeterminism of circuits.

The formalism presented in this paper overcomes these problems and unifies

in a single notation digital circuit behavior that is generally described by means of

the following techniques:

• Register transfer operations

• Flowgraphs and transition tables

• Tables of functions

• Timing diagrams
• Schematics and block diagrams

The notation is based on discrete time intervals and combines aspects of stan-

dard temporal logics [12,17] with features of dynamic logic [7]. Halpern et al.

[6] shows that useful subsets of the logic are decidable and of relatively reason-
able computational complexity. This indicates that partial automation of reason-

ing may be practical. The formalism's applicability is by no means limited to

the goals of computer-assisted verification and synthesis of circuits. This type of

notation, with appropriate "syntactic sugar," could provide a fundamental and

rigorous basis for communicating, reasoning or teaching about digital concepts and

devices. Simulation-based languages could for example use such a logic as a vehicle

for describing the intended semantics of delays and other features. Thus, semi-

automated correctness checking is really only one part of a much bigger picture.

Before outlining the formalism, the paper discusses related work. The temporal
logic is then informally introduced by way of sample properties. Following this, the
formalism serves as a basis for specifying and reasoning about various aspects of a
simple delay element as well as of a hardware multiplication circuit. Quantitative
timing as well as algorithm development are discussed.

§2 Related Work

Gordon's work [4] on register-transfer systems uses a denotational semantics to
provide a concise means for reasoning about clocking, feedback, instruction-set im-
plementation and bus communication. No quantitative timing properties are con-
sidered and the notation has some difficulties in describing operations occurring over
multiple cycles. Wagner [20] presents a semi-automated proof development system
for reasoning about signal transitions and register transfer behavior. Unfortunately
the notation suffers from a lack of formality that is difficult to remedy. Malachi and
Owicki [11] utilize a temporal logic to model self-timed digital systems by giving
a set of axioms. No indication is included on how to generalize the work to the
entire domain of digital circuits. The work of Bochmann [2] describes and verifies
properties of an arbiter, a device for regulating access to shared resources. The
presentation, by means of a temporal logic, reveals some tricky aspects in reasoning
about such components although the concepts used are not as rigorously developed
as they may appear to be and do not easily generalize. As in the previous works,
no quantitative timing issues are examined.

Leinwand and Lamdan [9] use a type of Boolean algebra to model signal tran-
sitions. Applications include systems with feedback and critical timing constraints.
The use of the notation for non-trivial examples is very unintuitive. Patterson [16]
explores the verification of firmware. This work views the problem from the sequen-
tial programming standpoint without describing the underlying digital circuitry and
related issues of concurrency and timing. There is also work by Meinen [13] on
register transfer behavior and McWilliams [10] on worst-case time constraints.

Eveking [3] uses predicate calculus with an explicit time variable to explore
verification in the Conlan language. Although such an approach can in principle
describe circuits, the proliferation of variables representing explicit time points
becomes a major hindrance from a practical as well as theoretical standpoint. Many
high-level temporal concepts become easily obscured amid all the notation.

A number of people have used temporal logics to describe computer communica-
tion protocols [5,8,18]. However, the precise connections between protocols and

the underlying hardware and software are still rather unclear as are the relative

advantages of the different techniques employed.

§3 Notational Preliminaries

Before the logic is introduced, it is necessary to say a little about the kinds of

mathematical entities used here for modelling digital signals.

Data Values

Values are limited to natural numbers, J_ (read "bottom"), and finite-length

vectors constructed using these elements. Both 0 and 1 as well as J_ serve as bits,

with 0 standing for low voltage, 1 for high voltage and ± representing voltages that
are out of range. Finite-length vectors can be formed containing natural numbers

and JL. The following are sample values:

0, 3, ±, (0), (1,2), (), (±,1,1)

Bit Operations

Four basic operations defined on bits are complement (©), and (©), or (©) and

exclusive-or (©). The symbols 0, © and © are used instead of -*, A and v in order

to distinguish notationally between bit expressions and formulas in the underlying
predicate calculus. Here are corresponding truth tables extended to include _L:

©
0 1

1 0
J_ _L

© 0 1 _L

0 0 0 0

1 0 1 JL

_L 0 _L J_

© 0 1 ±
0 0 1 ±
1 1 1 1

J_ _L 1 J_

© 0 1 _L

0 0 1 J_

1 1 0 J_

J_ ± ± J_

§4 Informal Overview of Temporal Operators

The temporal logic provides a basis for describing periods of time such as

in timing diagrams. Concepts such as signal response and oscillation are readily

expressible. Examples serve to introduce the various operators used later in this
paper. This presentation has been kept rather informal although the entire logic is
explored in detail in Halpern et al. [6] and Moszkowski [14].

Time is modeled as being discrete and finite. The following figure is a typical

timing diagram:

l
X o

l ■
Y o

l
Z o

±

0 10 20 30 40 50 units

This represents the behavior of the signals X, Y and Z over a period of 50 units
of time. The signal X goes up and down twice, while Y is stable with the value 1.
Initially Z equals 0 for over 20 units, after which it equals _L. Notice that all times
are relative. This approach is used because the properties to be examined depend
solely on distances between points, independent of any absolute times.

The group of signals can be modeled as a finite temporal interval a mapping
variables and times to values. The behavior of intervals is concisely expressible by
temporal formulas presented below. Given such a formula p, the construct a h p
means p is true for the interval a. The notation t= p signifies that the formula p
is true of all intervals. Please keep in mind that all operators discussed can be
expressed in terms of a small collection of fundamental notions. The properties
shown are deducible from a basic set of logical rules.

4.1 Initial and Terminal Equality

The formula beg{X = Y) is true for an interval o if within a the two signals
X and Y have equal starting values. Similarly, the construct fin(X = Y) is true

for an interval a if X and Y end up equal in a.

Examples for a given interval a:

Concept Formula

X and Y start equal and end complements a l= \beg[X = Y) A fin(X — QY)\

X ends equal to 1 and Y ends equal to 0 a (= fin(X = 1 A 7 = 0)

5

Properties that are true for all intervals:

N -ifin[X = Y) = fin{-<{X = Y))
The signals X and Y do not end equal if and only if they end up not equal.

h fin((XQY) = l) D fin{X=l A Y = 1)
If the bit-and of X and Y ends up equaling 1, both X and Y end up equal to 1.

4.2 Temporal Equality

Two signals X and Y are temporally equal in an interval a if they have the
same values at all times. This is written I«7 and differs from the constructs for
initial and terminal equality, which only-examine signals' values at the extremes of
the interval.

Examples:

Concept Formula

The signal X is 0 throughout the interval a 1= X pa 0

The bit-and of X and Y everywhere equals 0 a N (X © Y) P=: 0

X agrees everywhere with the complement of Y a NX pa 07

Properties:

^ X^Y => /(x)«/(y)
If two signals are temporally equal, then any function applied to one of them
temporally equals the same function applied to the other.

l= XpaO => Z07«O
If X temporally equals 0, then the bit-and of it with another signal also equals 0
everywhere.

i= (x,y)«(o,i) = [i^o A Ypaij
The pair (X, Y) temporally equals (0,1) exactly if the signal X temporally equals
0 and Y temporally equals 1.

4.3 Temporal Stability

A signal X is stable if it has a constant, defined value. The notation used is
stbX. In the case of a bit signal, this means that the signal is always 0 or always

1, that is
stbX = [I«0vI«l]

Example: (this and further examples will omit the symbols "er h")

Concept Formula

The complement of X is stable stb OX

Properties:

N [X«l] '== [stbX A beg{X = l)}
The signal X always equals 1 if and only if X is stable and initially equals 1.

t= stbX = stbQX
A bit signal is stable if and only if its complement is.

N [st&X A stbY] 3 si6(X©y)
If two bit signals are stable, then so is their bit-or. The converse is not always true.

N stb{X,Y) = [sf&X A stbY)
A pair is stable exactly if the two individual signals are.

4.4 Temporal Length

Quantitative timing properties are handled by a special object len whose value
for any interval a equals the length of a.

Examples:

Concept Formula

The interval is at least m units in length len > m

The signal X is stable -and c measures at least m units stb X A len > m

The predicate empty is true exactly if the interval has length 0. The predicate
skip is true if the interval has length exactly 1. Since time is discrete, this is the
minimum nonzero width.

4.5 Examining Subintervals

For a formula p and interval a, the construct Bp is true if p is true in all
subintervals of time contained within a including a itself. Note that the "a" in E
simply stands for "all" and is not a variable. The formula <$> p is true if the formula
p itself is true in at least one subinterval of a.

Examples:

Concept Formula

In some subinterval of length > m + n, X is stable <S>([/en > m + n] A stbX)

In all subintervals < m units, X is stable E([Zen < m] => stb X)

Properties:

t= Ep 3 p
If a formula p is true in all subintervals then it is true in the primary interval.

t= <§> p = -> El -"p
A formula is true in some subinterval if and only if the formula is not everywhere
false.

N E(p A q) = [0p A 0?]
The logical-and of two formulas p and g is true in every subinterval if and only if
both formulas are true everywhere.

t= <^p = <§> <§>p
A formula is somewhere true exactly if there is some subinterval in which the formula
is somewhere true.

t= [Bp A ♦?] ^ <&>(p A q)
If p is true in all subintervals and q is true in some subinterval then both are
simultaneously true in at least one.

l= [X^Y] = s(x = y)
Two signals are temporally equal in an interval exactly if they are equal in every

subinterval.

N stbX => BstbX
If X is stable in the overall interval, X is also stable in every subinterval.

8 -

4.6 Initial Subintervals

The operators CD and O axe similar to El and <§> but only look at initial

subintervals starting at time 0.

Example:

Concept " Formula

X is initially stable for at least the first m units 0(si6 X A len > m)

4.7 Temporal Dependence

It is useful to specify that a signal X remains stable as long as another signal
Y does. X is said to depend on Y, written X dep Y. This can be expressed using

the temporal formula
X dep Y i= m{stb Y 3 stb X)

Examples:

Concept Formula

X and Y remain stable while Z does (X, Y) dep Z

X remains stable as long as the pair (Y, Z) does X dep (Y, Z)

Properties:

N [XdepY A stbY] 3 stbX
If X depends on Y and Y is stable, then so is X.

N [X dep Y A Y dep Z] 3 X dep Z
Dependence is transitive.

1= beg(X = 0) 3 {X®Y)depX
If X initially equals 0, then the bit-and of X and Y depends on X.

N [X dep Z A Y dep Z] == {X,Y) dep Z
The variables X and Y depend on Z exactly if the pair {X,Y) does.

4.8 Adjacent Subintervals

Given a time interval, the formula p; q is true if there is at least one way to
divide the interval into two adjacent subintervals a and a' such that the formula p
is true in the first one, a, and the formula q is true in the second, <r'. In particular,
a rising signal can be described by the predicate \X:

|X = [(X « 0); skip; (X « 1)]

This says that X is 0 for a while and then jumps to 1. The gap of quantum length
represented by the test skip is necessary here since a signal cannot be 0 and 1 at
exactly the same instant. Falling signals are analogously described by the construct
IX:

JX = [(X « 1); skip; (X » 0)]

Examples:

Concept Formula

X is stable and Y goes up stb X A \Y

The bit-or of X and Y falls |(X © Y)

In every subinterval where X rises, Y falls E(|X => \Y)

X goes up and then back down |X; JX

Properties:

¥ (|X A]Y) => [t(x©y) A \(X®Y)}
If two bit signals rise, so do their bit-and and bit-or.

1= IX = t©x
A bit signal falls exactly if its complement rises.

t= [TX A beg(Y = 0) A {Y dep X)} => j(X ©Y)
If X rises and in addition Y initially equals 0 and depends on X, then the bit-or of
X and Y also rises.

These operators can be extended to include quantitative information specifying
minimum periods of stability before and after the transitions. For example, timing
details can be added to the operator |:

tm,nX = [(X & 0 A len > m); skip; (I«l A len > n)}

10

A negative pulse with quantitative information can be described as shown

below:

[(X «1A len- > I); skip;
(X « 0 A len > m); skip; (I « 1 A /en > n)]

4.9 Temporal Assignment .

The formula X -»• Y is true for an interval if X's initial value equals Y's final

value.

Example:

Concept Formula

Z ends up with the complement of Y's initial value 0 Y -*■ Z

Properties:

N stbX => (X-+X)
A stable signal's initial and final values agree.

ü [pr - n or - £)] => (*-£)
If Y gets X's value and then Z gets Y's, the net result is that Z gets X's initial

value.

N (0X-Y) == (X^OY)
The bit signal Y gets the complement of X's value exactly if Y's complement gets

the value of X itself.

H [(OZ-Z);(OZ-Z)] => (Z-Z)
If a signal is twice complemented, it ends up with its original value.

4.10 Repetition

An interval can be broken up into an arbitrary number of successive subin-
tervals, each satisfying some formula p. The construct pn has the same meaning

11

r, . . • ;P
» „ /

n times

For the case of n = 0, an interval a satisfies the operator exactly if a's length is 0.

Examples: .

Concept Formula

The signal Y twice goes.up and down (\Y; jY")2

Z is complemented n times (0 Z —► Z)n

Properties:

i= (QX-»X)n => [ie(nmod2)4X]
After a series of n complements, X ends up with the initial value of the exclusive-or
of X and (nmod2). For instance, if n is even, X ends up unchanged.

N (pm)n == pmn

If a formula p is repeated m times within a further repetition of n cycles, the net
result is the same as iterating p a total of mn times.

§5 Simple Delay Element

Delay is of fundamental importance in digital systems. One of the simplest
types of delay elements has the following structure:

In- Out

n-unit delay

Here In is the input bit signal and Out is the associated output. The variable
n is a fixed natural number indicating the time delay between a value appearing
on the input and later on the output. The following statement uses intervals to
characterize this behavior:

In every subinterval of length exactly n units, the initial input value
agrees with the final output one.

12

The next predicate Delay captures the required interaction:

Delay(In, Out,n) =def B[(/en = n) => (In —*■ Out)]

Properties:

• A delay element is also a delay element in every subinterval:

t= Delay(In, Out,n) "3 EH Delay (In, Out, n)

• Zero delay is the same as temporal equality:

N Delay(In, Out, 0) = (In tt Out)

• Two connected delays result in a combined delay:

f [Delay(Inl,Outl,nl) A Delay(In2, Out2,n2) A Outl « In2]

=> Delay(Inl, Out2, nl + n2)

Note that the total delay nl + n2 is the sum of the delays nl and n2.

An alternative delay model can be given containing an internal state of n + 1
bits that are shifted as in a queue. The two distinct models are formally equivalent

as can be expressed and* demonstrated with the temporal logic.

The object len is used in the definition of Delay to measure time. Actually,

other metrics seem possible. For example, some variable might represent the number
of clock cycles or machine instructions executed in each interval. The properties of

delay remain basically the same.

§6 Multiplication Circuit

The hardware multiplier considered here is motivated by one discussed in

Wagner's work on hardware verification [20]. The desired device behavior is first

described followed by a look at implementation techniques. The multiplier has the

following general structure:

13

Inl[Oton-l]=*

Jn2[0ton-1]=>

Ck-*

Ld->

=*Out[0u>2n-l]

n, count',
cl,c2,c3

The circuit accepts two numbers and after a given number of clock cycles yields
the product. The numbers are represented as unsigned n-bit vectors Inland In2
while the output Out is a 2n-bit one. In addition to the vector inputs and output,
there are two input bits Ck and Ld which control operation. The signal Ck serves
as the clock input and Ld initiates the loading of the vectors to be multiplied. The
field count tells how many clock cycles are required. The values cl, c2 and c3 are
timing coefficients used in the behavioral description.

6.1 Additional Notation

Because the multiplier deals with numbers and their representation as bit
vectors, it is convenient to introduce some extra notation before giving the device's
formal description:

• Subscripts on a vector V = (vo,..., vn) normally range from 0 on the left to n on
the right. The construct V[i] follows this style. However, to simplify reasoning
about the correspondence between a bit vector and its numerical equivalent, a
slightly different convention is adapted. The alternative notation V{i) indexes V
from the right with the right-most element having subscript 0. For example:

(1,0, _L){0} = ±, (1,0, ±){1} = 0, (1,0,±){2}=1

t t t

For a vector V and i > j, the expression V{i to j) forms a new vector out of the
elements indexed from i down to j. If i < j, the empty vector is returned. For
example,

(0,9, J., 2){3 to 1} = (0, 9, _L), (0,1){0 to 0} = (1), (±, 1,0,1){1 to 2} = ()

• The predicate de} X is true for a scalar value X if X does not equal J_. In this
case, X is defined. A vector is defined exactly if all its components are. For

14

example, the following values are defined:

0, 3, (1,0), ()

The values given below are not defined:

_L, (±,±), (±,0)

• The function nval converts a bit vector to its unsigned numeric value. For

example,
nval{{0,1,1)) = 3, nval({l, 1, 0, 0» =. 12

If any element of the vector is undefined, nval yields _L as the result. Thus,

ntmf((l, ±,0,0,1)) =-L

6.2 Overview of Description Techniques

In what follows, the predicate Multiplier(M) specifies that desired behavior of a
multiplication circuit. The device's various inputs, outputs and timing coefficients
are represented as fields of the single parameter M. An iterative, timing-independent
multiplication algorithm is then presented which computes a product by a series
of successive additions. Later, the predicate Implementation^) characterizes a
device which computes sums and in fact has the algorithm's steps embedded within
it. A logical implication is then given, showing how Implementation(H) realizes

Multiplier (M).

6.3 Formal Specification of Multiplication Circuit

The predicate Multiplier formally characterizes the circuit's desired structure
and behavior. The single parameter M is a tuple representing the multiplier. For
example, the expression M.Ck equals the clock input. The predicate's definition

makes reference to other predicates given later:

Multiplier{M) =def

MultStructure(M)

A S Calculate(M)

The predicate MultStructure presents M's fields. The predicate Calculate gives the
control sequencing required to perform a multiplication. The operator 13 indicates

that Calculate must be true in all sub'intervals.

15

Definition of MultStructure:

The definition below of MultStructure contains information on the physical
structure of the multiplier. Variables starting in upper case represent signals while
lower-case ones are constant. Labels such as "Inputs:" are comments included to
classify the various circuit fields. For example, M.Inl is an input bit vector.

MultStructure[M) =def

Inputs:
{Ck,Ld):Bit,
Inl{n - 1 to 0}: Bit,
In2{n-1 to 0}: Bit

Outputs:
Out{2n -1 to 0}: Bit

Parameters:
n: nat,
count: net,
c 1, c2, c3: time

For brevity, the prefix "M." is omitted when a field is referenced below.

Definition of Calculate:

If the inputs behave as specified by the predicate Control, the output Out ends
up with the product of the initial values of Inl and In2. Recall that the function
nval converts a bit sequence to the corresponding numerical value.

Calculate(M) =def

Control(M) =>
[nval(Inl) • nval{In2)] -* nval(Out)

Definition of Control:

The predicate Control describes the required sequencing of the inputs so that
a multiplication takes place. The computation first loads the circuit and then keeps
the load line inactive while the clock is cycled.

Control{M) =def Load{M); {[Ld « 0] A Cycling(M))

16

Definition of Load:

Loading is done as indicated by the predicate Load. The clock is cycled as
given by the predicate SingleCycle. The control signal Ld starts with the value 1

and together with the other inputs Inl and In2 remains initially stable as long as

the clock input Ck does.

Load{M) =def

Single Cycle(M) A beg(Ld = 1) A {Ld,Inl,In2) dep Ck

Definition of SingleCycle:

An individual clock cycle consists of a negative pulse:

SingleCycle{M) =def lV
1,c2,c3Ck

The clock signal falls from 1 to 0 and then rises back to 1. The three times given
indicate the minimum widths of the levels during which the clock is stable.

Definition of Cycling:

The overall cycling of the clock is as follows:

Cycling{M) ==def {Single Cycle{M))count

A total of count individual cycles must be performed one after the other, where

each is a negative pulse satisfying the predicate SingleCycle.

Variants of the Specification

The predicate Multiplier does not represent the only way to describe the mul-

tiplier circuit. Alternative approaches based on an internal state can be shown to
be formally equivalent to the one given here. A useful extension to this description

specifies that once the output is computed, it remains stable as long as the control

inputs do. If desired, additional quantitative timing details can readily be included.

6.4 Development of Multiplication Algorithm

The specification predicate Multiplier intentionally makes no reference to any

particular technique for multiplying. Since the process of multiplication does not

17

generally depend on any specific circuit timing, it is natural to separate algorithmic

issues from other.implementation details. The temporal logic now serves as a basis

for deriving a suitable circuit-independent algorithm for determining the product

and in the next section as a means for describing hardware that realizes this method.

The synthesis process can be viewed as a proof in reverse, starting with the goal

and ending with the necessary assumptions to achieve it.

The aim here is to obtain an algorithm describing some way for doing the

multiplication. The variables n, Inl, In2 and Out are represented as fields of a

variable A. The predicate Goal below specifies the desired result:

Goal{A) =def

beg{deflnl A def In2) =>

[nval(Inl) • nval(In2)] nval(Out)

If the data inputs Inl and In2 are initially defined, the output Out should end up

with their product. The presentation given here reduces the problem of multiplying

the two n-bit vectors to that of using repeated additions to determine successively
larger partial products. The algorithm consists of initialization followed by n
successive iterations. After i iterations of the loop, for i < n, the initial product of

Inl and the least significant i bits of In2, that is,

nval(Inl) • nval(In2{i — 1 to 0})

is computed and available in the upper n + i bits of Out. Neither Inl nor In2 is
guaranteed to remain stable once initialization is complete. However, their initial
values must be used throughout the calculation. The lower n — i bits of Out hold
the unexamined bits of In2 (i.e., In2{n - 1 to {}). In addition, an extra n-bit variable
Temp is introduced in order to remember the original value of Inl. The following

figure informally depicts the situation after i steps:

Out:

Temp:

partial product rest of In2

nvdl(Inl) • nval(In2{i — 1 to0}) In2{n — 1 to i)
2n—1 • • • n—i n-i-l ... 0

n + i bits
value of Inl

n — i bits

Inl
n-l ... 0

n bits

After n steps, Out equals the desired '2n-bit multiplication result.

18

Thepredicate Assert below precisely specifies this behavior over * iterations
for t < n. Note that both inputs Inl and In2 must be initially defined for the

operations to properly take place.

Assert{A, i) =def

beg{def Inl A def In2) 3
[nval{Inl) ■ nval(In2{i - 1 toO})] -*• nval(0ut{2n - 1 ton - i})

A Jn2{n — 1 to i] -*• Oui{n — t — 1 to 0}

A Inl —► Temp

After n steps, the product must be computed. For t = n, Assert indeed

observes this requirement:

Assert{A,n) -D Goal{A) (*)

Expressed in the logic, the algorithm takes the following form:

Init{A); {Step{A))n

In the next two subsections, the predicates Mt and Step are given in detail. Both
Init and Step are derived so as to maintain Assert after looping i times for any

i < n:

[i<n A 7mY(A);(^ep(A))1"] ~=> Assert{A,i) (**)

The properties (*) and (**) together ensure that n iterations of the loop calculate

the product:

Init{A); {Step{A))n => Goal{A)

Deriving the Predicate Init

The initialization requirement can be obtained by making sure Init satisfies

Assert for i = 0:

Init(A) P Assert(A,0)

19 •

Simplification of Assert yields the constraint

Init(A) =>

beg(deflnl A def In2) =>
0 -*■ nval{Out{2n — 1 ton})

A In2 -+ Out\n - 1 to 0}
A Inl —► Temp

This can be achieved by the definition

Init(A) =def

beg{deflnl A def In2) =>
(0,..., ())->• Out{2n-lton}

A In2 -*■ Out\n - 1 to 0}
A Inl —► Temp

Deriving the Predicate Step

The iteration step should be constructed so that after i iterations for any * < n,
Step can inductively widen the scope of the assertion to i + 1 increments:

[i < n A Assert(A, t); Step(A)] 3 Asserf(A, t + 1)

Each step achieves this by selectively adding Temp's n bits to Out, depending on
Out's least bit, Out{0}. Only the top n bits of Out are actual inputs for the sum.
The top n + 1 bits store the result. The remaining n - 1 bits of Out are simply
shifted right. For Temp the requirement reduces to the formula

Step{A) =>

beg{def Temp) 3 {Temp-* Temp)

This guarantees that Temp continues to remember the initial value of In 1.

The constraint for Out is

Step(A) 3

beg(def Out A def Temp) 3
[nval{Out{2n - 1 ton}) + Out{0] • nval{Temp)]

-> nval(Out{2n — 1 ton — 1})
A Out{n - 1 to 1} -> Out\n - 2 to 0}

20

Thus the overall incremental step can be realized by the definition

Step(A) =def

beg(def Out A def Temp) ^>

[nval(Out{2n - 1 ton}) + Out{0] ■ nval[Temp)]

—► nval[Out{2n — 1 to n — 1})

A Out{n - 1 to 1} -+ Out{n - 2 to 0}

A Temp —► Temp

6.5 Description of Implementation

The circuit specified below performs the iterative algorithm just given. The
definition includes relevant timing information and is broken down into parts describ-
ing the implementation's physical structure and behavior. The primary predicate
Implementation overviews operation. The device's fields are shown by ImpStructure.

The predicate LoadPhase specifies device operation for initially loading the inputs.

Once this is achieved, the predicate MultPhase indicates how to perform the in-

dividual multiplication steps.

Implementation[H) =def

ImpStructure(H)

A B(LoadPhase(H) A MultPhase{H))

Definition of Imp Structure'.

The structure of the implementation differs from that of the original specification

by the addition of the internal state Temp for maintaining the value of Inl and by

the omission of a count field giving the required number of clock cycles for comput-

ing a product.

21

ImpStructure{H) =def

Inputs:
(Ck,Ld):Bit,
Inl{n -1 to0}: Bit,
In2{n -1 to 0}: Bit

Outputs:
Out{2n -1 to 0}: Bit

Internal:
Temp{n - 1 to 0}: J?#

Parameters:
n: naf,
ci, c2, c3: time

Definition of LoadPhase:

The body of LoadPhase specifies how to load the inputs as described in the
algorithm:

LoadPhase(H) =def

Load(H) 3 Init{H)

The predicate Load, gives the required loading sequence for the circuit inputs. The
predicate Init refers to algorithm's initialization predicate. The definition of Load
is identical to that of its namesake in Multiplier:

Load(H) =def

SingleCycle{H) A beg{Ld = 1) A (Ld, Inl, In2) dep Ck

Individual clock cycles are also defined as in Multiplier:

SingleCycle{H) =def |T
cI'c2'c3C/;

Definition of MultPhase:

When the load signal is inactive at 0, the circuit can be clocked to perform a
single iteration. The algorithm's predicate Step takes place over two clock cycles.

MultPhase(H) =def

[Ld « 0 A {SingleCycle{H)f\ 3 Step(H)

22 •

Implementation Theorem

The correspondence between the implementation Implementation and the original

multiplier device specification Multiplier is now given by the theorem

1= Implementation(H) 3 Multiplier(M)

where the mapping from iJ's fields to M's is

M.field « H.field, for the fields Inl, In2 and Out

M.n = H.n

M. count = 2H.n

M.field = H.field; for the fields cl, c2 and c3

The value of M. count corresponds to the 2n clock cycles needed for doing the

iterative computation.

The behavioral description Implementation can itself be realized by some even
lower-level specification containing further details about the timing and using a still
more concrete algorithm. For example, the iterative steps are decomposible into
separate adds and shifts. If desired, the development ultimately examines such
things as propagation through gates.

§7 Conclusion and Future Plans

Compared with conventional hardware description languages, the approach
used here permits direct reasoning about signal, device and algorithm behavior
at various levels of detail. ' In addition, the concepts relating specifications with
implementations and hardware with register-transfer operations can be rigorously
expressed within a single mathematical framework. A disadvantage arises from the
inability to directly execute arbitrary descriptions.

Standard temporal logics and other such notations have not been designed to
concisely handle the kinds of quantitative timing properties and signal transitions
found in the examples considered. The intervals of time provide a unifying means

for presenting various features.

The material presented only scratches the formalism's surface. Halpern et al.
[6] and Moszkowski [14] cover many details of the logic, describing and comparing
devices ranging from delay elements up to the Am2901 ALU bit slice developed by
Advanced Micro Devices, Inc. Future work will examine microprocessors, buses and
protocols, DMA, firmware and instruction sets, as well as the combined semantics

of hardware and software.

23

§8 Acknowledgements

Many thanks go to the following people for discussions and suggestions con-
cerning the notation's readability (or lack thereof): Patrick Barkhordarian, Russell
Greiner, Kevin Karplus,. Amy Lansky, Yoni Malachi, Fumihiro Maruyama, Gudrun
Polak, Alex Strong, Carolyn Talcott and Pierre Wolper. Professors John McCarthy
and Zohar Manna gave much support and guidance as this research developed.
Joseph Halpern provided valuable insights with regard to the logic's theoretical
complexity. If it had not been for my friends at Siemens AG and the Polish Academy
of Sciences, it is unlikely I would have undertaken this investigation. Late-night
trans-Atlantic discussions with Mike Gordon helped provide a sense of intrigue.

Highest-quality chocolate and enthusiasm were always available from the Trischlers.

References
1. M. R. Barbacci. Instruction Set Processor Specifications (ISPS): The notation

and its applications. IEEE Transactions on Computers C-30, 1 (January

1981), pages 24-40.
2. G. V. Bochmann. Hardware specification with temporal logic: An example.

IEEE Transactions on Computers C-31, 3 (March 1982), pages 223-231.
3. H. Eveking. The application of Conlan assertions to the correct description of

hardware. Proceedings of the IFIP TC-10 Fifth International Conference on
Computer Hardware Description Languages and their Applications, Kaisers-
lautern, West Germany, September, 1981, pages 37-50.

4. M. Gordon. Register transfer systems and their behavior. Proceedings of
the IFIP TC-10 Fifth International Conference on Computer Hardware De-
scription Languages and their Applications, Kaiserslautern, West Germany,

September, 1981, pages 23-36.
5. B. T. Hailpern and S. Owicki. Verifying network protocols using temporal

logic. Tech. Rept. 192, Computer Systems Laboratory, Stanford University,

June, 1980.
6. J. Halpern, Z. Manna, and B. Mosizkowski. A hardware semantics based on

temporal intervals, forthcoming.
7. D. Harel. First-Order Dynamic Logic. Springer-Verlag, Berlin, 1979. Number

68 in the series Lecture Notes in Computer Science.
8. L. Lamport. Specifying concurrent program modules. Opus 60, Computer

Science Laboratory, SRI International, June, 1981.
9. S. Leinwand and T. Lamdan. Algebraic analysis of nondeterministic behavior.

Proceedings of the 17-th Design Automation Conference, Minneapolis, June,

1980, pages 483-493.

24

10. T. M. McWilliams. Verification of timing constraints on large digital systems.

Proceedings of the 17-th Design Automation Conference, Minneapolis, June,

1980, pages 139-147.

11. Y. Malachi and S. S. Owicki. Temporal specifications of self-timed systems.

VLSI Systems and Computations, Rockville, Maryland, 1981, pages 203-212.

This book is the proceedings of a conference held at the Carnegie-Mellon

University in October, 1981.
12. Z. Manna and A. Pnuelh The modal logic of programs. Tech. Rept. STAN-CS-

79-751, Department of Computer Science, Stanford University, September,

1979.
13. P. Meinen. Formal semantic description of register transfer language elements

and mechanized simulator construction. Proceedings of the 4-th Interna-

tional Symposium on Computer Hardware Description Languages, Palo Alto,

California, October, 1979, pages 69-74.

14. B. Moszkowski. Reasoning about Digital Circuits. Ph.D. Thesis, Dept. of Com-

puter Science, Stanford University, forthcoming.

15. A. C. Parker and J. J. Wallace. SLIDE: An I/O hardware description language.

IEEE Transactions on Computers C-30, 6 (June 1981), pages 423-439.

16. D. A. Patterson. Strum: Structured microprogram development system for
correct firmware. IEEE Transactions on Computers C-25, 10 (October

1976), pages 974-985. .
17. N. Rescher and A. Urquart: Temporal Logic. Springer-Verlag, New York, 1971.

18. R. L. Schwartz and P. M. Melliar-Smith. Temporal logic specification of
distributed systems. Proceedings of the Second International Conference on

Distributed Computing Systems, Paris, France, April, 1981, pages 446-454.
19. S. Y. H. Su, C. Huang and P. Y. K. Fu. A new multi-level hardware design

language (LALSD II) and translator. Proceedings of the IFIP TC-10 Fifth

International Conference on Computer Hardware Description Languages and

their Applications, Kaiserslautern, West Germany, September, 1981, pages

155-169.
20. T. Wagner. Hardware Verification. Ph.D. Thesis, Dept. of Computer Science,

Stanford University, September 1977.

25

Reproduced by NTIS

£ 0*0©
*fcS>
• •It)

£ 0

u
0

'S««*'0

»51«

0 0 0

■-ssfc*-

0)

0

0

o
o
E

£

3E

+- 0.0)0
0£.Eo

< = "ö
0). c
0^3'"

■nC© 13 3*0

0)
C8

E
C0o (0 (6

ZolE

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

off»*

)ürES c

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Technical Information Service
Springfield, VA 22161 (703) 487-4650

PB9B15082B

"BA*

BIN: M72 0
INVOICE: 424259
SHIPTO: 1*89997
PAYMENT: CSH*CPDAG

-25-97

