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AFIT/GOR/ENS/96M-18 

Abstract 

Program management concerns the long-term planning, coordination 

and control of major technological, engineering, scientific, and/or 

developmental activities.  In general, programs tend to be exceptionally- 

large, consisting of several parallel or sequential projects or groups 

of projects. While many of the approaches developed for projects have 

been used in program management, there are critical differences between 

programs and projects.  A key difference is the magnitude of programs, 

both in program duration and number of tasks to be coordinated.  In 

addition, project parameters are driven by program decisions. 

While a large number of modeling efforts have focused at the 

project level, very little optimization literature deals directly with 

aspects of initial program design and development.  This thesis effort 

looks at the application of optimization techniques to the initial 

design and development of multi-project programs.  The classic work 

breakdown structure is used as a framework to provide an aggregate model 

to investigate the effects of funding levels, resource allocation, and 

program durations. 

At the aggregate, program manager/planner level, the classic 

Dantzig-Wolfe block angular structure may be derived directly from the 

work breakdown structure.  By varying program and project funding levels 

and durations, the program manager is provided with a decision support 

tool for designing and initializing the program and its projects.  With 

the solution of a particular funding/duration scenario, sensitivity 

analysis is conducted to provide the program designer with insight into 

the inter-relations found in the system. 

vi 11 



"OPTIMIZATION ANALYSIS FOR DESIGN AND PLANNING 

OF MULTI-PROJECT PROGRAMS" 

I-  Introduction 

Background 

The United States Air Force (USAF) conducts and contracts out a 

vast array of programs composed of multiple projects.  Air Force 

Materiel Command (AFMC) is responsible for managing every aspect of the 

USAF's weapon systems, from their inception on the drawing board through 

support during their operational lives, to final disposition.  Because 

of this responsibility, AFMC conducts a majority of the multi-project 

programs within the USAF.  To meet this and its other responsibilities, 

AFMC's fiscal budget for 1996 is $35.6 billion, approximately 49% of the 

USAF's total budget.  The Aeronautical Systems Center (ASC) is one of 

four product centers within AFMC.  ASC, as of May 95, had approximately 

110 acquisition programs accounting for $10-12 billion dollars. 

Clearly, a material portion of the USAF resources are committed to large 

programs.  To maintain our technological edge in the face of decreasing 

funding levels, it is imperative that the USAF's resources are well 

managed. 

However, such large scale technological, development, and 

acquisition programs involve a vast number of activities and can be 

extremely complex.  For example, Dowden describes a plant construction 

program that consists of thousands of activities, most requiring 

resources, constructed from detailed work breakdown structures (18:15). 

Complex R&D efforts such as a missile sytem or an aircraft could easily 

have millions of components and activities. 



Introduction, 

Program management concerns the long term planning, coordination 

and control of major technological, engineering, scientific, and/or 

developmental activities.  In general, programs tend to be exceptionally 

large, consisting of several parallel and/or sequential projects or 

groups of projects. While many of the approaches developed for project 

scheduling and control have been applied to program management, there 

are critical differences between establishing a program and scheduling a 

project to meet pre-established due dates with predetermined resource 

allocations.  One key difference is the magnitude of programs, both in 

duration and the total number of tasks to be coordinated, when compared 

to a project.  In addition, project parameters are driven by program 

decisions; these program decisions dictate due dates, resource levels, 

priority levels, and establish individual project funding levels. 

While a large number of modeling efforts have focused at the 

project level, very little optimization literature deals directly with 

aspects of initial program design, planning, and development.  This 

paper looks at the application of optimization techniques to the initial 

design, planning, and development of multi-project programs.  The 

classic work breakdown structure (WBS) is used as a framework to provide 

an aggregate model to investigate the effects of funding levels, 

resource allocation, and program and project durations. 

Aggregate Program Planning Wjth i-ho wp^ 

According to the Project Management Institute, program management 

involves the planning, organizing, staffing, directing, and controlling 

of a program to achieve its objectives (44:142).  The responsibility for 

the program's planning, resource allocation, direction, and control are 

the duties of the program manager, who must determine the proper 

information and control system for coordinating all project activities 

(6:118).  m production and operational settings, aggregate level 

planning is a hierarchical structure that parallels the management 



decision process, reduces the amount of detailed information needed for 

planning purposes, and increases the accuracy of forecasts (5:22).  This 

hierarchical planning structure utilized in production parallels the 

Work Breakdown Structure utilized in program and project management. 

The Work Breakdown Structure (WBS) used in project management is defined 

as the framework relating statements of work, contract line items, 

configuration items, technical and management reports, and the hardware, 

software, and data elements of the system (16:88).  The WBS translates 

the results of the systems engineering analysis of the system 

requirements into a structure of the products and services which 

comprise the entire work effort (16:88), just as the aggregate 

production plan translate aggregated requirements into material, 

workforce, and capacity requirements in a production environment. 

Kerzner states that the Work Breakdown Structure serves as the 

initial control from which all planning emanates (see Figure 1). 

Planning 
Work 

Authorization 
and Release 

Cost Data 
Collecting 

and Reporting 

Ü. 
Work Breakdown Structure 

I£ 
Work Planning Authorization 

Master Production Schedule 

Detailed Schedule 

3£ 
Program Plan 

MCCS Budget 

Cost 
Accounting 

Customer and 
Reporting 

Figure 1.  The Planning Cycle (31:604) 



In this study, we have created a program aggregate planning model, 

based upon the WBS, to establish project parameters.  We assume the 

analysis is being conducted in the early portion of the initiation stage 

of the program and is to be used to aid the program manager and his or 

her staff to establish program and project requirements.  As in 

conventional production hierarchical planning, the variables will be 

assumed to be continuous at this aggregate level. 

At the aggregate, program manager/planner level, the classic 

Dantzig-Wolfe block angular structure may be derived directly from the 

work breakdown structure.  Program level requirements and resources 

serve as the overall binding constraints, while the individual project 

requirements provide the distinct blocks within the structure.  By 

varying program and project funding levels and durations, the program 

manager is provided with a tool which supports the decisions undertaken 

in designing and initializing the program and its projects.  With the 

solution of a particular funding/duration scenario, sensitivity analysis 

is conducted to provide the program designer with insight into the 

inter-relations found in the system. 

If the cost and duration of each project, and the activities 

within the projects, are deterministic and fixed, then (assuming a 

feasible solution exists) the solution to the multi-project program 

involves simply minimizing the makespan till delivery of the program 

end-product, assuming there is adequate resources, flexibility, and 

funds to meet any program deadlines.  However, project costs and 

activity durations for programs in the USAF tend to be dynamic as 

decision makers trade-off funds against activity durations. 



Problem Statement-. 

Kerzner lists 14 typical reasons why plans fail: 

1. Corporate goals are not understood at the lower 

organizational levels, 

2. Plans encompass too much in too little time, 

3. Financial estimates were poor, 

4. Plans were based on insufficient data, 

5. No attempt was made to systematize the planning 

process, 

6. Planning was performed by a planning group, 

7. No one knows the ultimate objective, 

8. No one knows the staffing requirements, 

9. No one knows the major milestone dates, including 

written reports, 

10. Project estimates are best guesses, and are not based 

on standards or history, 

11. Not enough time was given for proper estimating, 

12. No one bothered to see if there would be personnel 

available with the necessary skills, 

13. People are not working toward the same specifications, 

and 

14. People are consistently shuffled in and out of the 

project with little regard for schedule (31:605). 

Kerzner points underscore the need for an analysis tool that 

provides the program decision makers with the ability to generate 

feasible program schedules, determine appropriate funding levels for 

each project, and to conduct sensitivity analysis on these schedules and 

funding levels before  the establishing of a multi-project program.  The 

need for this tool increases as the number of projects and the number of 

feasible project schedules within a program increases.  With the large 



number of possibilities available in setting up a program, a method for 

determining an effective resource allocation and schedule for all the 

projects within the program is desired.  The method chosen should be 

able to deal with this large interconnected problem, as well as provide 

useful information to the decision maker.  This useful information would 

include information such as the solution's sensitivity to funding levels 

and the ability to review effects of alternative program strategies. 

This thesis provides a review of the literature associated with 

program management, aggregate level planning, multi-project and (large) 

single-project modeling, hierarchical planning, and decomposition in 

Chapter 2.  Chapter 3 discusses the benefits to the decision maker of 

knowing information about feasible program schedules, appropriate 

funding levels, time/cost trade-offs, and sensitivity analysis.  Chapter 

3 presents the model and utilizes the Work Breakdown Structure to 

decompose the model into smaller more tractable problems.  Chapter 4 

presents an illustrative example of the model developed in Chapter 3, 

applies the decomposition methodology to this model, and discusses the 

results of decomposition on the model.  Chapter 5 summarizes this 

paper's work and its conclusions and considers possible extensions to 

the model presented. 



II-     Literature Review 

Introduction 

Chapter I introduces the need for analytical tools to provide 

decision makers with the ability to generate feasible program schedules, 

determine appropriate funding levels for each project within a program, 

and to conduct sensitivity analysis upon these schedules and funding 

levels. While this study concentrates on the analytical techniques for 

program management, it is necessary to review literature from a number 

of areas to address the following: 

1) What are the responsibilities of a program manager in 

establishing and directing a multi-project program? 

2) What are the existing techniques for project scheduling?  How 

have they been applied to the multi-project scheduling problem? 

3) What analytical techniques have been developed for solving 

large-scale multi-project scheduling problems? 

For this purpose, it is essential to survey the works to date on 

program management, aggregate level planning, multi-project and (large) 

single-project modeling, hierarchical planning, and decomposition. 

Program Management 

According to the Project Management Institute, program management 

involves the planning, organizing, staffing, directing, and controlling 

of a program to achieve its objectives (44:142).  The responsibility for 

the program's planning, resource allocation, direction, and control are 

the duties of the program manager, who must determine the proper 

information and control system for coordinating all project activities 

(6:118) . 

The Department of Defense (DOD) defines a program manager as one 

who manages a directed, funded effort that is designed to provide a new 

or improved materiel capability in response to a validated need 

(16:279,292).  Each program manager is responsible for making program 



decisions and resource commitments based on plans for, and progress in, 

controlling risk using acquisition strategies and program plans (15:6). 

An acquisition strategy provides an event-driven master schedule 

designed to achieve program objectives, within the resource constraints 

imposed, while explicitly linking major contractual commitments and 

milestone decisions with demonstrated accomplishments in development and 

testing (16:279, 15:6).  DOD Directive 5000.1 states that "program plans 

must provide for a systems engineering approach to the simultaneous 

design of the product and its associated manufacturing, test, and 

support processes" (15:6). 

Program planning converts goals, objectives, demands, or problems 

into schemes, decisions, stated intentions, or solutions (37:1-1). 

Program planning influences the success, satisfaction, and 

productiveness of the item being planned during its useful life for a 

relatively small cost (37:1-6).  Program planning permits the manager to 

see projects as parts to the whole program and provides a mechanism for 

the interrelated parts to be coordinated; thus, avoiding suboptimization 

of parts at the expense of the whole (43:36,37). 

Managers make decisions on program planning through intuitive 

and/or analytical means.  Analytical decision making techniques aid the 

intuitive-based decisions and situations where intuition fails (i.e. a 

program too large and complex to be handled without the support of 

analytical techniques).  They do not, however, replace insight or 

experiences, rather they supplement it.  By providing a structure for a 

situation, analytical techniques aid in making the best choice clearer 

to the decision maker (2:9) . 

The responsibilities ascribed to program managers for multi- 

project programs are akin to aggregate planning in operational settings. 

The following section reviews the use of aggregate level planning to 

develop a top-down hierarchical approach to program and project 

planning. 



Aggregate Level Planning 

The most complex problem can be divided into manageable terms by 

establishing a starting point, the precedence relationships of the 

critical variables, and the integrating stages of the problem (2:3). 

Aggregate level planning provides a means of generalizing a large 

detailed program into distinct levels to simplify the analysis procedure 

(5:21).  Bitran and Tirupati state that aggregation provides three 

advantages: 1) substantial savings in the costs of data collection for 

demand forecasting, 2) reduced variance in the aggregate demand 

forecast, and 3) increased managerial understanding of the key tradeoffs 

involved in the production decisions (4:532). 

Candea states that aggregate level planning viewed as a 

hierarchical structure parallels the management decision process, 

reduces the amount of detailed information needed for planning purposes, 

and increases the accuracy of forecasts (5:22).  Further, Iyer, Jarvis, 

and Ratliff state that a structure providing initial guidelines for 

aggregation, utilizing detailed plans for revising the aggregate plan, 

and iterating until an acceptable overall plan is obtained is necessary 

for coordinating the efforts of all participants and the decision making 

hierarchy (29:1) . 

Bates and Eldridge provide basic steps in dividing programs into 

distinct levels to include: 

1) Divide the program activities into projects 

2) Note the relationship between projects and any necessary 

sequences 

3) Decide who is responsible for accomplishing each project 

4) Determine the resources required by each project 

5) Estimate the length of time for each project 

6) Assign definite dates for each project (2:215) 

Aggregate level planning has been shown to have many applications 

in manufacturing, production, and other operational settings, but very 



little work has applied aggregate level planning directly to project 

scheduling, other than that captured in the Work Breakdown Structure. 

Dincerler provides an example of aggregate level planning being 

applied to project scheduling for a multi-project environment (17:6). 

He applies a heirarchical approach to the problem because of its 

suitability to organizational structure and its ability to make the 

planning and scheduling of the individual projects within the multi- 

project environment easier to handle (17:31). 

This section reviewed the similarities between aggregate level 

planning and hierarchical decision making and how these similarities 

have applied to the multi-project scheduling problem.  The next section 

reviews the Work Breakdown Structure form and its similarities to both 

aggregate level planning and hierarchical decision making. 

Work Breakdown Structure 

According to Muther, "A simple breakdown of tasks constitutes a 

plan" (37:8-4).  The Department of the Air Force's Acquisition 

Fundamentals course states "The common thread that ties all plans and 

documents together is the Work Breakdown Structure" (15:1-4-19). 

The DOD describes the Work Breakdown Structure (WBS) as the 

framework relating statements of work, contract line items, 

configuration items, technical and management reports, and the hardware, 

software, and data elements of the system (16:88).  The WBS translates 

the results of the systems engineering analysis of the system 

requirements into a structure of the products and services which 

comprise the entire work effort (16:88).  The WBS shall: 

1) Define the total system to be developed or produced; 

2) Display it as a product oriented family tree composed of 

hardware, software, services, and data; and 

3) Relate the elements of work to each other and to the end 

product (16:89) . 
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The DOD requires a WBS for each program and for each individual contract 

within the program (16:89). 

Work  Breakdown  Structure 
Managerial 

levels 

Technical 
levels 

Level of 
Effort 

Figure 2.  Work Breakdown Structure (31:592) 

As described above, the WBS at the top levels (see Figure 1) 

generalizes a program into a hierarchical structure like aggregate level 

planning.  The WBS defines the association between all of the elements 

within the program in much the same way as Bates and Eldridge (2) 

described in their basic steps for hierarchical decision making. 

Despite the DOD requirement for WBSs and the similarities between 

aggregate level planning, hierarchical decision making, and the WBS, a 

review of the available literature has found virtually no documentation 

of project scheduling analysis efforts making use of the WBS with the 

exception of Deckro, Hebert, and Verdini (8). 

Deckro et al illustrate the use of the WBS to facilitate the 

construction of a mathematical programming model (8:172).  Their model 

assumes a linear time/cost tradeoff function for activity durations 

along with completion time requirements and budget limitations to find 

the least cost project schedule (8:171,172).  Deckro and Hebert suggest 

11 



that the least cost schedule may be found by allowing some of the 

activities' durations to be reduced, or "crashed", by applying 

additional resources (money, personnel, equipment, and so forth) to the 

activities (11:72).  Kelley discusses the mathematical basis of activity 

crashing in Critical Path planning and scheduling (30:298).  Wiest and 

Levy also discuss project "crashing" and provide a simple example 

(47:62-70).  Deckro et al suggest that the WBS can be used in the 

planning/proposal stage to aid in developing the schedules for large 

projects by using the higher levels of the WBS (program, project, 

component) to set the overall parameters for the lower levels (task, 

sub-task, activity) (8:177).  Deckro et al also note that the WBS 

provides a model in a form (block diagonal) that decomposition 

techniques can effectively utilize (8:177).  This suggestion will be 

built upon in this work. 

This section reviewed the similarities of the WBS to aggregate 

level planning and hierarchical decision making.  The next sections 

discusses multi-project and (large) single-project models. 

Multi-Proiect and (Large) Single-Project Models 

A large number of project scheduling and modeling techniques have 

been developed over the years.  While all these approaches will not be 

explicitly discussed here, the key factors of these types of models will 

be reviewed. 

Although different, most project scheduling techniques consider 

the overall program objective and the inter- and intrarelationships of 

the projects as well as the activities that make up the projects. 

Examples of the types of objective functions include: 

1) Minimize the completion time of the program (40:94) 

2) Minimize the total program cost (8:176). 

12 



Examples of the types of inter- and intrarelationships between the 

projects include: 

1) Limited resources (40:94) 

2) Precedence relationships (40:94) 

3) Project and Activity due dates (40:94). 

The two objective functions above describe the classic time/cost 

trade-off that occurs when planning any program.  The trade-off between 

time and cost creates a number of alternatives between the optimum 

strategies of minimizing program cost versus minimizing program duration 

(6:132).  In a linear programming model, the time/cost trade-off is 

represented by a linear function that weights the benefits of decreasing 

program duration versus the costs associated with attaining the shorter 

program duration (47:79).  Weist and Levy also describe the use of 

nonlinear time/cost trade-off curves (47:81).  Deckro and Hebert also 

discuss various representational forms of the time/cost trade-off 

function (9). 

The following sections will provide a brief description of several 

different approaches to solving project scheduling problems.  While some 

of the older techniques described were developed before the advent of 

today's high speed computers, they are still valid and in use today. 

If, however, a program is of any significant size, the use of these 

older approaches becomes intractable without computerized mathematical 

programming techniques (47:73). 

Program Evaluation and Review Technique (PERTM .  PERT, originally 

designed to plan and accelerate development of the Polaris ballistic 

missile, was an early attempt to capture the risk inherent in innovative 

technological development programs.  PERT has been traditionally applied 

to research and development programs (47:41).  PERT takes the 

uncertainties involved with research and development programs and 

calculates a weighted average of the expected duration of a project 

(47:42).  PERT uses this weighted average along with its estimated 

13 



variance to determine the expected length of the program and the 

probability of completing the program by a certain date (47:51). 

Critical Path Method (CPM)■  CPM, unlike PERT, tends to be applied 

to project scheduling problems where deterministic activity duration 

times are available (47:62).  With the activity durations known, CPM 

focuses on the costs, both direct and indirect, associated with the 

completion of the program (47:62).  CPM based models searches for the 

least costly schedule by utilizing time-cost trade-off functions for 

shortening or lengthening the durations of the various projects and 

activities within a program (47:64). 

0-1 Integer Programming.  Pritsker, Watters, and Wolfe suggest a 

model utilizing the types of objective functions and constraints 

discussed previously.  They limit the decision variables within a 

project to be 1 if an activity ends during a particular time period, 0 

otherwise (40:94).  Pritsker et al. also describe a project level 

variable that contains a value of 1 when all the activities in a project 

are completed, 0 otherwise (40:95).  This approach has the advantage of 

limiting the decision variables to 0-1 variables, but has the potential 

disadvantage of having to declare a 0-1 variable for each possible time 

period that a activity/project could be completed.  If the time window 

for an activity completion is wide, many 0/1 variables are required. 

Sweeney and Murphy have noted that when a large number of integer 

variables are involved in a problem, the user is usually forced to 

accept a "good", rather than optimal, solution (45:1128). 

Branch and Bound-  Branch and Bound methods efficiently implicitly 

enumerate the combinations of values that the decision variables can 

obtain (48:502).  Patterson describes a branch and bound procedure 

developed by Stinson that looks at precedence and resource constraint 

feasibility for subsets of the activities within a project (39:857). 

Stinson's procedure utilizes a series of tie-breaking rules for 

selecting the next candidate solution to enumerate and establishes 

14 



search origins based on the generation of complete schedules and 

improved bounds on the completion time (39:857). 

Demeulemeester, Herroelen, Simpson, Baroum, Patterson, and Yang 

review a branch and bound procedure presented by Christofides, Alvarez- 

Valdes, and Tamarit that makes use of delay arcs for resolving resource 

conflicts for specific time periods within a schedule duration (12:219). 

The delay arcs result from the use of partial schedule sets that 

consider, for an instant in time, those activities still in process and 

their resource requirements conflicts (12:220).  Demeulemeester et al. 

note that this procedure is highly effective but cite by counterexample 

that the procedure does not guarantee optimality (12:222). 

Demeulemeester et al. provide a modification to the Christofides, 

Alvarez-Valdes, and Tamarit procedure to ensure that all appropriate 

partial schedules are contained in the solution space (12:223). 

Demeulemeester and Herroelen offer another branch and bound 

procedure similar to the Christofides, Alvarez-Valdes, and Tamarit 

procedure; however, Demeulemeester and Herroelen's branch generation and 

node selection differ significantly (13:1807).  The difference involves 

the evaluation of a set of minimal delaying alternatives to compute a 

critical sequence lower bound that allows for the fathoming of a 

relatively large number of nodes during backtracking (13:1808). 

Heuristic; Solution Prpcednrps.  Kurtulus and Davis list 9 

scheduling rules for the multi-project problem (32:165).  These rules 

provide a means to schedule jobs within the various projects based on 

their durations and resource requirements (32:165).  Kurtulus and Davis 

also devised two summary statistics, Average Resource Load Factor (ARLF) 

and Average Utilization Factor (AUF), to measure and compare the 

performance of the 9 scheduling rules against each other while solving 

the same problem set (32:162,163).  These statistics, ARLF and AUF, 

account for the differences between single-project and multi-project 

problems by measuring the resource profiles obtained by scheduling each 
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activity at its early start time (32:162).  A resource-constrained 

single-project scheduling problem consists of a number of activities 

scheduled according to the appropriate resource limitations, 

precedences, and objective function.  A resource-constrained multiple- 

project scheduling problem consists of two or more single-project 

scheduling problems that have additional precedence relationships and 

competition over resources that must be accounted for in the overall 

schedule produced. 

These sections reviewed just a few of the existing project 

scheduling techniques and how they have been applied to the scheduling 

problems.  The following section reviews some of the various 

decomposition techniques for solving large-scale problems. 

Decomposition 

The need to solve large mathematical programs that could not be 

effectively solved by direct methods, i.e. simplex, led to the 

development of indirect methods such as decomposition (33:105). 

Although the computational power of computers has dramatically improved, 

there still exist very large problems which are intractable, for 

practical purposes, without the use of decomposition.  In addition, if 

the purpose of mathematical programming is insight, not numbers as 

Geoffrion points out, decomposition can provide a synergy in its 

analysis steps which may be lost in direct methods (22:81) 

Geoffrion describes various decomposition manipulations 

(Projection, Inner Linearization, Outer Linearization) and strategies 

(Piecewise, Restriction, Relaxation) to overcome the size problem of 

large mathematical programs (21:657,665).  Geoffrion also compares these 

manipulations and strategies to existing decomposition techniques 

(21:676).  A review of more recent literature shows work with two of the 

techniques mentioned by Geoffrion, Dantzig-Wolfe and Benders', as well 

as Lagrangean, Cross, and Time-based decomposition techniques.  Each of 

these methods and their applications will be briefly outlined. 
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Time-Based Decomposition. Time-based decomposition approaches use 

time as a means of decomposing the original problem into smaller 

subproblems and a master problem.  Edmunds and Bard state that the need 

for time based decomposition in optimal control problems often arises 

from discrete approximations to continuous formulations (19:61). 

Nagurney and Kim use time-based decomposition to create subproblems with 

existing efficient solution algorithms and solve these subproblems using 

parallel processors (38:56).  Haurie focuses on time-based decomposition 

between part-surplus dynamics and operational state dynamics (24:350). 

These articles present the utilization of time-based decomposition as a 

result of the natural time related function in dynamic programming 

models (19:64, 38:59-60, 24:339). 

Lagrang ean Re 1 axa 1.1 on.  Lagrangean decomposition is a technique 

that shows, if the Lagrangean function of a problem is additively 

separable, the problem may be decomposed by LaGrange multipliers 

(33:396).  Michelon and Maculan use Lagrangean decomposition to solve 

integer nonlinear programming problems with linear constraints (36:303). 

Reinoso and Maculan show Lagrangean decomposition applied to integer 

linear programming to provide at least as good bounds as the classical 

Lagrangean relaxation with the use of just a small number of dual 

variables (41:5).  Of more importance to this thesis is the work of 

Vercellis, who extended Lagrangean decomposition to the constrained 

multi-project planning problem (46:271).  Vercellis demonstrated that 

Lagrangean decomposition provides for an explicit coordination between 

different projects to allocate resources, trade-off between the use of 

resources, and time and cost trade-offs for activity alternatives by 

interpreting the Lagrangean multipliers as marginal prices for the 

allocations of the resources to each project in each time period 

(46:274) . 

17 



Dantzig-Wolfe Decomposition.  Dantzig-Wolfe decomposition 

decomposes a problem into a number of subproblems and a master problem 

by separating the constraints of the original problem (33:153-154).  Ho 

and Loute suggested that, until fairly recently, the use of Dantzig- 

Wolfe decomposition could not outperform the simplex approach (26:304). 

They suggest that a decomposition code must be able to solve the master 

and subproblems, handle the updating and processing of the master and 

subproblems, and provide a number of computational strategies (26:307). 

Ho and Loute show the benefits of an advanced Dantzig-Wolfe 

decomposition implementation by applying the Dantzig-Wolfe technique to 

a variety of test problems (26:323-324).  They further test the 

robustness of their code and conclude that decomposition will provide 

better efficiency than the simplex approach when dealing with very large 

problems (25:289) . 

Benders' Decomposition.  The Benders' decomposition technique 

partitions a problem into two parts, usually determined by the variable 

type, i.e. discrete and continuous (33:371).  By fixing the discrete 

variables, the resultant problem is easier to solve (33:372).  Rewriting 

the problem in terms of a fixed set of discrete variables and taking the 

dual of this problem allows the problem to be expressed as a 

minimization (maximization) master problem with constraints defined by 

the extreme points and rays of the feasible set of solutions (33:374). 

For each fixed discrete variable set, the resultant linear subproblem 

solution is checked against an optimality test which, if failed, 

produces a new constraint within the master problem (33:378).  Benders' 

approach has been utilized in a number of settings.  For example, 

Geoffrion and Graves apply Benders' decomposition to determine the 

optimal location for distribution facilities (23:822).  Erengue, 

Tufekci, and Zappe modify Benders' decomposition to solve time/cost 

trade-off problems with discounted cash flows (20:30). 
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Cross Decomposition.  Cross Decomposition, introduced by Van Roy 

in 1983, combines the Benders' and Dantzig-Wolfe Decomposition 

techniques to solve a series of primal and dual based subproblems for 

block-angular linear problems (1:395).  Aardal and Ari compare cross 

decomposition and the Kornai-Liptak algorithm and note that the main 

difference between the two involves a weighting scheme employed by the 

Kornai-Liptak algorithm on the solution process (1:396).  Of interest is 

Aardal's and Ari's suggestion that the use of an arithmetic mean in the 

solution information may provide the convergence guarantee missing from 

cross decomposition (1:398).  Using this suggestion as impetus, Holmberg 

presents a method named Mean Value cross decomposition in which he 

proves convergence utilizing the mean value of the solutions found from 

the primal and dual subproblems (28:61).  Holmberg further extends the 

merits of cross decomposition by showing that it can be used to provide 

good lower bounds for pure integer programming problems (27:657).  Lee 

provides another application of cross decomposition in a specialized 

algorithm to the mixed integer problem associated with a multiproduct- 

multitype facility location problem (34:535).  Lee utilizes the same 

algorithm and approach to a location and allocation problem in 

distributed computer network systems (35:371). 

Applications to Program Management.  The amount of literature on 

decomposition techniques is extensive; however, very few of the works 

(10,46) found apply decomposition approaches directly to Program 

Management. 

In the establishing of a program, several advantages can be gained 

from using decomposition techniques.  Not only can an optimal or near- 

optimal solution to the project scheduling problem be found in a 

computationally tractable time, but sensitivity analysis can be 

conducted on this solution.  In addition, Baumöl and Fabian describe how 

the suboptimal solutions found during each iteration of the 

decomposition procedure can be used to gain further knowledge about the 
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cost tradeoffs being made (3:6).  Baumöl and Fabian's statement on 

marginal profitability suggest that the simplex multipliers can 

represent the decrease in program cost that results from an increase in 

the amount of a resource (3:6).  Similarly, their statement on 

provisional opportunity costs suggest that the simplex evaluators can 

represent the decrease in program cost that results from the 

introduction of a new schedule (3:6).  Both the simplex multipliers and 

evaluators provide the opportunity to determine what resources and what 

critical paths within the schedules are contributing the most to the 

program costs. 

These sections reviewed some of the decomposition approaches and 

their applications to the multi-project scheduling problem. 
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III.  Model Formulation 

Introduction 

The preceding chapters discussed the need for an analysis tool to 

support program design by generating feasible program schedules, 

determining appropriate funding levels, providing time/cost trade-off 

information, and conducting sensitivity analysis. 

Feasible Program Schedules.  Feasible program schedules are a 

result of resource (money, people, equipment and so forth), time, and 

precedence limitations imposed by the program. 

A Work Breakdown Structure (WBS) provides a simple means of 

identifying the network interrelations within a program. For any 

sizable DOD program, the WBS is required and available. 

The time limits, or due dates, on a program represent the urgency 

with which a program needs to be accomplished.  The time limits can be 

imposed at a number of levels.  Time limits can be placed on the program 

completion, on important milestones, or on critical activities. 

The resource limits on a program represent the fact that most 

resources are not available in unlimited supplies.  For DOD programs, 

there is a limit on the amount of funding that Congress will 

appropriate.  The funding limit can affect the time table of a program 

by reducing the amount of funding available for shortening critical 

activities. 

Appropriate Funding Levels.  Appropriate program funding levels 

need to be established in order to have enough funding to complete the 

program on time.  In addition, adequate reserves must be kept to deal 

with any problems that arise.  Also, appropriate program funding levels 

should not be set so high as to tie up funds that could be made 

available to other programs. 

Time/Cost Trade-off Information.  The time/cost trade-off 

information for a program is critical.  The time/cost trade-off curve 
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associated with an activity indicates the change in program cost as a 

function of activity duration (20:25).  In finding an optimal program 

schedule, the time/cost trade-off curves are used to determine the 

activity durations that minimize the overall cost to the program 

(20:26). 

The model developed in this chapter will make use of the time/cost 

trade-off information to answer questions like: 

1) How much shorter/longer will the program take if funding 

levels increase/decrease? 

2) How much does the cost profile (cash flow) change if the 

time table for the program is altered? 

Whichever question is being asked, the bottom line is if a program 

schedule can not be met with the current level of resources, either more 

resources are acquired (cost) or the program is delayed (time). 

Sensitivity Analysis.  Sensitivity analysis includes time/cost 

trade-off information, but also looks at how the program is affected by 

changes to the original constraints and coefficients of the model. 

Looking at the sensitivity of the original set-up of the program 

identifies areas that may require additional research, e.g. if the cost 

of overhead significantly affects the program schedule, then it may be 

worthwhile to invest additional time and money to determine the nearest 

approximation of the actual cost of overhead per time unit.  By the same 

token, if a particular activity is critical under a number of scenarios, 

the estimation of that activity's duration and resource needs may merit 

more careful analysis. 

An analysis tool that can investigate the questions outlined above 

could be utilized to estimate effects on program costs and duration due 

to funding and other resource constraints before a program has been 

established.  Such information would be valuable in setting contract due 

dates and funding levels on the individual projects and activities that 

make up the program.  "What if" questions could be addressed concerning 
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personnel, material, milestone, and funding questions all before 

establishing the program. 

Chapter II reviewed the works to date on program management, 

aggregate level planning, multi-project and (large) single-project 

models, hierarchical planning, and decomposition. 

A linear programming model, based on the works reviewed, will now 

be formulated to provide an analysis tool that meets the aforementioned 

needs.  A description of the model will first be presented, followed by 

the model assumptions and the basic notation of the model.  Next, the 

general form of the model will be constructed.  From the general form 

presented, the Dantzig-Wolfe Decomposition technique will be applied to 

form a Master problem and Subproblems. 

Model Description 

The model is a linear program that represents a multi-project 

program that could range from anything as simple as the illustrative 

example presented in Chapter IV to as complex as the development of a 

new aircraft or other weapons system.  From the basic model, the effects 

of various planning decisions required to establish a program may be 

investigated. 

Since we are looking at the pre-program planning stage, the model 

represents a top-level aggregate model of the first three levels of the 

Work Breakdown Structure (see Figure 2). 

The model objective is to minimize the overall cost of the program 

while meeting all of the program requirements and constraints. 

The program and project structures are precedence network 

relationships between the various activities that can be attained from 

the Work Breakdown Structure.  Activities within the project and program 

networks have normal duration times and costs associated with them as 

well as "crashed" duration times and costs. 

The normal duration of an activity occurs when the usual, or 

normal, amount of resources required by that activity are met.  The 
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normal cost of an activity is the cost of the normal amount of resources 

associated with an activity.  Activities that are "crashed" are 

activities that have had additional resources (funding, personnel, 

equipment, and so forth) allocated to them for the purpose of shortening 

the duration time of the activity. 

The model contains resource constraints at the program and project 

level.  The resource constraints provide an upper bound on the 

availability of each type of resource to the program and to each 

project.  The resources, at this aggregate level, are chosen to be 

represented by continuous linear variables to maintain the linearity of 

the model itself. 

The program has a defined target completion date {TCD)   and 

absolute completion date (T).  To meet these due dates and comply with 

the objective function, the model must determine the most cost efficient 

schedule for "crashing" activities. 

Model Assumptions 

In setting up the program planning model, the following 

assumptions are made: 

1) The normal activity duration times are known and 

constant, 

2) Activity crashing is allowed up to an upper bound (M±j) 

for each activity (i,j), 

3) The time/cost tradeoff function for activity "crashing" 

will be modeled as a linear relation at this aggregate 

level, and 

4) All variables will be nonnegative. 

Model Notation 

An adaptation of the notation presented by Wiest and Levy (45:80) 

will be used to set up the model.  The identification of an event node, 

X±,   to a project is given as part of the i subscript, i.e. i=Al 

represents the first event in project A.  Let: 
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Xt =  realization   time   of   node   i 

T±1 =  normal   duration   of   activity   (i, j) 

Dtj =  the   cost   of   activity   (i, j)  at   normal   duration 

Y±j =  number   of   time   units   activity   (i, j)  crashed 

K±j   =  cost   per   time   unit   activity   (i, j)  crashed   U^-) 

Mij   =  upper  bound  on   Ylj 

Bk = the  budget   for  project   k 

B = the  budget   for   the  program 

OH = overhead  cost   per   time  unit 

T = total   program  time   allowed 

TCD = target   completion   date   {TCD   <  T) 

n = the   terminal   node   for   the   program 

EB =      #    of   time   units   program   finishes   early 

eh = reward   bonus   per   time   unit   for   finishing   early 

J^ = the   set   of   connected   arcs   (i,j)   in   project   k 

I = the   set   of   connected   arcs   (i, j)   in   the   program 

PH1   =  the   program  upper   limit   on   additional   hours   for 

type   1   personnel 

PHkl   =  the   project   k  upper   limit   on   additional   hours 

per   type   1   personnel 

Sijl   =  the   type   1   personnel   cost   associated  with 

" crashing"    activity   (i, j) 

General Model 

Ob-iective Function.     The objective  function,   depending on the 

nature of the project,   can take several   forms.     The  first  objective 

function form determines  the  least  costly program schedule.     This   form 

includes a fixed overhead cost,   the cost  of  "crashing"  activities,   and a 

reward or bonus  for  finishing the program early.     The normal  activity 
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costs, 2^ 2^ Dij >   a fixed amount, have been excluded from this relation 

as it does not affect the optimization. 

1) Minimize the program cost 

=   OH   ■  Xn   + X X KijYij   ~ eb  •  EB 
i       J 

However, since EB=TCD-XN,   we have, in the objective function above, - 

eb(TCD-XN)=  -eb(TCD)   +  eb(XN).     The constant -eb(TCD)   does not affect 

the optimization and so will be eliminated to yield the following 

objective function form: 

z = (OH  + eb) ■ Xn   +  X X K^Y.j 

The first term represents the net of overhead and any early bonus when 

the program is completed by Xn while the second term represents any 

funds expended to accelerate or "crash" any particular activity j  of 

project i in the program. 

The second objective function form, unlike the first form, 

determines the shortest program duration possible without regard to 

cost. 

2) Minimize the program duration 

z   =   Xn 

Since the objective function will vary depending on the analysis to be 

conducted with the model, these relationships may also be constraints in 

the model. 
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Budget Constraints.  The budget constraints for each project limit 

the amount of total dollars spent on activity resources within that 

project.  The costs of applying additional resources to "crash" 

activities within a project  are limited by the project budget and the 

normal costs, £j Z-i Dij •   associated with performing the activities. 
i       3 

This  constraint will be of the following  form: 

EE*;^i;   + EE^ij   *  Bk        Vk  and   (i, j)  e  Ik. 
i      J i       J 

Since the normal costs of the activities are fixed amounts, we rewrite 

this constraint by moving the normal activity costs over to the right- 

hand side of the equation as follows: 

EE ^i^ii ^ Bk   - Y^D^        Vk  and (i,j)  e J, 
i  J' i       J 

Similarly, the overall program budget will put a limit on the total 

dollars spent by the program.  The program budget will limit the costs 

of performing the activities normally and "crashed" as well as the 

additional overhead.  The constraint, with normal activity costs placed 

on the right-hand side, will be of the following form: 

OH   ■  Xn   + X E KijYij   ^   B  -HYsDii    for (i, j)  e   I 
i       j i       j 

Personnel-Month Constraints.  The personnel-month constraints for 

the program and the projects will limit the amount of additional 

personnel-months available for "crashing" activities.  The number of 

personnel-months required by each activity for various classifications 
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of personnel when crashed is determined as a function of the "crash" 

cost associated with each activity.  The associated project constraint 

would be as follows: 

SIS^^ < PHkl,    Vk,l   and (i,j)  € Ik 
i      j      1 

The program personnel-month constraint will be similar to the 

project personnel-month constraint and will be as follows: 

XII^J^ * PHlt    VI and (i,j) e I 
i       3       1 

Due Date Constraints.  One of the main concerns of most programs 

is finishing the program by a set due date, TCD.     In establishing the 

program due date, the program can be solved using the second objective 

function, minimizing program duration.  Once the minimum possible 

program duration is known, an appropriate TCD  can be set.  Otherwise, if 

the constraint below is in the model and an infeasible solution occurs, 

it is unknown if the infeasibility was caused by this constraint or some 

other constraint.  To ensure that the solutions generated by the model 

occur on or before the TCD,   the following constraint is included in the 

model: 

Xn    <   TCD. 

Similarly, each project can be given a due date constraint based on the 

last node and activity(ies) associated with that project. 

Precedence Constraints-  In most programs, there are some projects 

or activities that must be completed before others can begin.  For 

example, in the production of an aircraft, the wings must be attached to 
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the fuselage before the engines are mounted on the wings.  To model 

finish-to-start relationships as described above, the event time of an 

activity j,  Xjt  beginning must occur after the event time of activity i, 

Xif  beginning plus the duration time of activity (i,j),   T±i.     When 

activity "crashing" is permitted, the amount of time an activity is 

•crashed", Yi:j,   is subtracted from the normal activity duration time, 

T±i.  The following constraint models this occurrence: 

- X±   + Xj   >  T±i   - Ytj   for (i, j)  e Ik   Vk 

Rewriting this constraint with all of the variables on the left side and 

the constant terms on the right hand side gives the following 

constraint: 

- X,   + Xj  + Yu   > Tu,      for (i, j)  e Ik   Vk. 

The program precedence constraints would contain the project 

network as well as any program specific precedence constraints.  The 

constraint for the model then becomes: 

- X±   + Xj   + Y.j   >   Tijt       for (i, j)  6 I 

At this point all of the constraints for the general model have 

been developed and we will put it all together.  We first repeat the 

notation and then give the model in its entirety. 
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X± = realization time of node i 

Ttj = normal duration of activity (i, j) 

D±j = the cost of activity (i, j) at normal duration 

Y±i =  number of time units activity (i,j)  crashed 

K±:j =  cost per time unit activity (i,j) crashed \Yi:j) 

M±j = upper bound on YiJ 

Bk = the budget for project k 

B = the budget for the program 
OH = overhead cost per time unit 

T = total program time allowed 
TCD = target completion date (TCD   <  T) 

n = the terminal node for the program 
EB = # of time units program finishes early 

eb = reward bonus per time unit for finishing early 

Ik = the set of connected arcs (i, j)   in project k 

I = the set of connected arcs (i,j) in the program 

PH-L   =  the program upper limit on additional hours for 

type 1 personnel 

PHkl   = the project k  upper limit on additional hours 

per type 1   personnel 

S±jl   = the type 1   personnel cost associated with 

"crashing" activity \i,j) 

Min  z = (OH  + eb) • Xa   +  X X KijYij d> 
i      3 

s.t.     OH   ■  Xn   + XS^ijyij   *   B  - ZS^ij    for   (i> j)  e   J        (2) 
i       3 i       3 

EE^Y-ii   <  Bk   - ESDi,        V*  and   (i,j) e  J,      (3) 
i       3 i       3 

ESZ^iji^j ^ pHi> Vl and (i/j)e x (4) 
i       3       1 
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XXSsijiyij   ^   PHki>    Vk.l   and   (i,j)  G  Jk (5) 
i       J       I 

Xn   <   TCD. (6) 

- X±   + Xj   + Y±j   >   T±jl       for   (i, j)  e   I (7) 

Xj.Yij   Z   0 (8) 

Linear Programming and Parametric Programming 

At this point, the model could be put into a linear optimization 

code and solved using direct methods such as the simplex method of 

linear programming. 

Direct methods such as the simplex method search for the optimal 

solution to a mathematical model by starting at an initial basic 

feasible solution.  The value of the current objective function at the 

initial basic feasible solution is compared with the values of the 

objective functions associated with the adjacent extreme points within 

the solution space for the model (33:31). 

For very large and complex problems, the time spent by the solver 

searching all of the possible adjacent extreme points at each new basic 

feasible solution can take an intractable amount of time.  Because of 

this, indirect methods for solving very large and complex methods 

provide a computational advantage over direct methods (33:105). 

However, linear programming does provide a feature that could 

provide additional useful information to a decision maker.  This feature 

is parametric analysis. 

At the beginning of this chapter, sensitivity analysis, in 

relation to the right-hand side values of the constraints, was described 

as the range that a right-hand side could be within without causing the 

optimal basis to change.  Parametric analysis determines how the optimal 

basis of a problem changes in response to changes in the right-hand side 

values beyond the bounds given by the sensitivity analysis (48:218). 

31 



The optimal bases associated with the new values of the right-hand 

sides provide additional information about the influence of program 

resource levels on the overall program.  The bases provide alternate 

feasible program schedules that a decision maker could to determine the 

best overall program schedule. 

Pantzig-Wolfe Decomposition Problem Formula Mop 

Background•  Decomposition is an indirect method for solving large 

scale problems.  Decomposition is used to partition large problems into 

smaller, more tractably solved problems.  Dantzig-Wolfe Decomposition 

separates a problem into a single master problem and several 

subproblems.  The classic problem style for Dantzig-Wolfe Decomposition 

is the Block Angular design (see Figure 3).  In the following 

paragraphs, the development of the Dantzig-Wolfe Master Problem and 

Subproblems will follow Lasdon's (33) presentation of Dantzig-Wolfe 

Decomposition. 

Block-Angular  Design 

Minimize       Z=cJx]+c2x2+...+cpxp 

subject  to  AJXJ+ A^+^.+A^ =b0        (Program) 
Bixi =bj (Project   1) 

B^2 =b2        (Project  2) 

BpXp^p        (Project p) 

where    JC^O, for t=l,...,p 

Xu,bua.x&  column vectors for u=0,...,p 
Ct are row vectors 

Ap Btare matrices 

Figure 3.  Block-Angular Design Structure 
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The Dantzig-Wolfe Subproblems contain sets of constraints from the 

original problem (Base Model) that are unique to each subproblem, i.e. 

the constraints for each subproblem do not contain variables included in 

any other subproblem.  For a multi-project program being represented at 

the Managerial level of the Work Breakdown structure, a Dantzig-Wolfe 

Subproblem would contain the variables and constraints associated with a 

particular project of the program and only that project.  The project 

itself would consist of an activity network with project level 

requirements and constraints. 

The objective function for a subproblem (project) contains the 

original cost coefficients, from the program objective function, 

associated with the variables of that subproblem (project).  These 

coefficients are adjusted at each iteration by subtracting off the 

multiple of the dual (shadow) prices from the Master Problem current 

optimal solution and the coefficients of the subproblem's (project's) 

variables located in the common (program) constraints of the Master 

Problem.  While the common constraints will be defined in the next 

paragraph, the objective function form of the subproblems, using Figure 

3, will be as follows: 

Minimize  (ct - n\ jxt 

where 

K   = the dual (shadow) prices associated with the 

common constraints 

The Dantzig-Wolfe Master Problem contains the common (program 

level) resource constraints that are to be shared among the distinct 

subproblems (projects).  These constraints, however, have been 

transformed using the following convexity theorem: 
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Let X ={x  IA x =b ,   x >0}  be nonempty and bounded for t=l,...,p  and 

let x ,i=2,...,r be extreme points (finite #) . 

Then any element of X   may be written as a convex combination of the 

i 
extreme points, x  (32:146). 

In the theorem, the x  term represents the ith extreme point, or 

basic feasible solution, associated with subproblem t.  For this model, 

i 
x  represents the ith bid, or proposal, for utilizing program resources 

from project t to the program coordinator (the Master Problem). 

This theorem states that any point in a set can be defined by the 

set's extreme points.  This is similar to being able to define any point 

on a line as a combination of line's endpoints.  To maintain the 

convexity conditions being utilized, a number of additional convexity 

constraints equal to the number of subproblems have been introduced to 

the Master Problem.  Using the Block-Angular Design from Figure 3 and 

implementing this theorem allows us to rewrite the program-level 

constraints of Figure 3 as: 

£(A*/XJ = Jb0 
for t   =  1,2,3 

The xt
J are the extreme points (proposals) generated by the Subproblems 

(projects) and the J\.x^   are merely constant terms in the Master 

Problem.  These constant terms represent the amount of program resources 

used by the jth proposal of project t.  The Xjc's  in the rewritten 

constraints above are variables which represent the weights associated 
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with each of the extreme points from a given subproblem.  To maintain 

the convexity requirement for these constraints, the following convexity 

constraints, mentioned above, are added to the Master Problem: 

X Kj   =1 for t = 1,2,3 
3 

Kj > o 

Similarly, the objectives coefficients associated with the Subproblems 

variables are transformed into the following: 

X(ctx/Xj 
f°r t = 1,2,3 

where Ctx^   are merely constant terms in the Master Problem.  Thus, the 

general form of the Dantzig-Wolfe Master Problem would be as shown below 

in Figure 4. 

Minimize Z, Z;- (ctx/)Xi 'tj 

subject to X, Xj (ApcJ)\j=b0 

Zj\j=l    for t=l,...,p 

Figure 4.  Master Problem General Form 

35 



Master Problem.  The Master Problem construction follows the 

classic style presented by Dantzig and Wolfe (7) and reiterated above. 

One exception from the original form presented by Dantzig and Wolfe will 

be the allowance of < or > signs in the common constraints.  The 

original form of the Dantzig-Wolfe Master problem contained strictly 

equality constraints; however, current linear solvers automatically 

convert inequality constraints into equality constraints by adding 

slack, excess, and artificial variables as necessary.  Therefore, the 

use of inequality constraints is permitted.  The initial solutions 

generated from the Subproblems will be entered as columns in the Master 

Problem.  The Master Problem is then solved to find the new level of 

prices for candidate solutions.  These prices are then passed back to 

the Subproblems, creating a new objective function which is then 

resolved. 

However, the implementation of Dantzig-Wolfe decomposition in the 

Master Problem requires a starting basic feasible solution which may not 

always be easily attained.  In a large program, the combination of 

feasible project schedules that provides a feasible program schedule may 

not be readily available.  In fact, the process of finding a feasible 

starting program schedule may be as difficult as finding the optimal 

program schedule.  To account for this, a "deviational" variable, dev, 

has been added at an appropriately high objective function cost (Big M 

for example) to the overall budget constraint to drive the subproblem 

solutions generated at each iteration toward feasibility until a basic 

feasible solution is obtained.  In effect, dev has relaxed the budgetary 

constraint.  As long as the precedence relations and activity durations 

will allow the program to complete by T, a solution (which may not be 

budgetarily feasible) will be attained.  This addition avoids the 

necessity of searching for feasible solutions to the subproblems to 

initiate the decomposition process as the objective function weight will 

force dev out if possible.  As we will see, by adding the deviation to 
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the budget, it also provides an opportunity to examine potential 

schedules which are not feasible for the current proposed funding level. 

Once a basic feasible solution is identified, the deviational variable 

is forced out of the basis by the Master Problem.  Thus, continuing 

Lasdon's (33) presentation, the initial form of the Dantzig-Wolfe Master 

Problem will be as follows: 

Minimize      z   =  XXt^Kt  + (0H  + eb) • X
N(+ M  • dev) 

k       i 

subject to 

ll(akx
1

k)sik{+ dev){<=>)bm,    for  m   = 1, ... , p 

Z sik   =  1, \/k 
k     i 

sik   *  0 

where 

p = the number of coupling constraints 

ck    =   the objective function coefficients associated 

with project k 

a^    =   the coupling constraint coefficient matrix 

associated with project k 

xk    =   the ith proposal associated with project k 

sik    ~   tJie weight associated with x^ 

dev   =   the "deviational" variable associated with the 

mth coupling constraint as needed 

bm    -   the RHS associated with the mth coupling constraint 

M   =   the cost per unit of dev   (a very large number) 

See Appendix C for a complete listing of the initial Master Problem 

using CPLEX Version 3.0. 
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Subproblems.  The structure of the subproblems matches the 

classical form for subproblems originally presented by Dantzig and Wolfe 

(7).  The project based subproblems would each contain the following 

constraints obtained from the original problem and the adjusted 

objective function presented earlier in this section: 

Minimize z   =  (ck   - Kak)xk 

subject to 

XX*iÄ   ^  Bk   - XS^ij        V^   and   (i, j)  €   J, 
1       i i        3 

EE^J   <   PHkl Vk,l   and   (i,j)  e   Ik 
i    J 

Xd   + Z,   + Ytj   >  Tij for   (i, j)  e   lk 

0  <  Y±1   <  Mtj for   (i, j)  G  Ik 

where 

ck    = the objective function coefficients 

associated with project k 
ak    = the coupling constraint coefficient matrix 

associated with project k 

xk    =   the variables associated with project k 

%   =   the shadow prices associated with the common 

constraints received from the Master Problem 

During the first iteration of the Dantzig-Wolfe decomposition 

technique, the subproblems will be solved using the zero vector as the 

shadow prices passed from the Master Problem.  Thus, the Subproblems 

objective functions in the first iteration are simply the normal costs 
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for each project.  These proposed candidate solutions will then be 

forwarded to the Master Problem to become columns for the convex 

combination.  By solving the combination, a new set of "prices" is 

established which represents the updated net value of the resources vis 

a vis their costs.  See Appendix D for a complete listing of the initial 

subproblems provided by CPLEX version 3.0. 

Proposal Criteria.  At each iteration, a subproblem produces a new 

solution based on the updated prices.  However, the newly generated 

solution may not provide any additional benefit to the Master Problem. 

To determine whether a newly generated solution should be introduced to 

Master Problem, the following test is used: 

If the objective function value, zk,   associated with the optimal 

solution generated by the subproblem k  is less than the cost of all the 

previous solutions accepted by the Master Problem, then it enters the 

Master Problem.  The measure for the cost of all the previous solutions 

comes from the dual (shadow) prices associated with the convexity 

constraints of the Master Problem.  Let nk  be the shadow price 

associated with the convexity constraint of subproblem k.     Then the test 

can be written as follows: 

If (zk   - Kk) <  0, then proposal xk   enters the 

Master Problem. 
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Stopping Criteria-  The stopping criteria that have been proposed 

include the following: 

1. If every subproblem fails the test listed above, then the 

optimal solution to the Master Problem and the original problem 

has been found (33:154). 

2. If the difference between iterative solutions of the master 

problem is less than a given amount then the procedures ends. 

(i.e. zui-zs<e,   then stop.) 

Dual Interpretation-  The stopping criteria listed above represent 

the use of Strong and Weak Duality, respectively.  However, as the 

Dantzig-Wolfe Decomposition technique is employed, the dual variables 

associated with each master problem, as Baumöl and Fabian suggest, have 

an economic interpretation as well (3). 

At optimality, the dual variables associated with the Master 

Problem represent the normal dual (shadow) prices and (dual slack) 

opportunity costs (3:6).  However, before optimality is achieved, the 

dual variables can be interpreted slightly differently. 

At each iteration of the Master Problem, the dual variables 

associated with the current solution represent: 

1) Dual (shadow) prices or the marginal profitability of 

introducing more of a given resource into the problem 

without changing the current basic solution to the problem. 

2) Opportunity costs (dual slack) or the profitability of 

introducing another proposal to the current solution of the 

problem. 

3) Dual (shadow) prices associated with the convexity 

constraints of each subproblem of the worth of the current 

proposals from each subproblem. 

The dual prices of the program constraints represent the cost per 

unit of program resources that a project must pay for submitting a 

proposal that utilizes the program resources.  The dual prices of the 
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convexity constraints represent the current value of the project's 

proposals to the total program.  At each iteration, a project determines 

its best proposal based on the current "prices" of program resources and 

compares its value with the dual price of its associated convexity 

constraint.  This difference of these values represent the opportunity 

cost (or gain) to the program if that proposal were included as part of 

its optimal schedule. 

The dual variable values provide insight into what variables and 

resources are important within the model. 

Conclusion 

In this chapter, the basic multi-project model was presented and 

then converted into a Dantzig-Wolfe Master Problem and several 

Subproblems.  These models serve as the cornerstone in proposing 

feasible multi-project scheduling solutions and in conducting 

sensitivity analysis in the next chapter. 
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IY.  Computational Results 

Introduction 

In Chapter III, the structure of the original Base Model was 

established.  From this structure, the Dantzig-Wolfe Master Problem and 

Subproblems were formed.  In this chapter, a simple illustrative example 

using the Base Model is presented, decomposed, and the results obtained 

from solving the Dantzig-Wolfe Master Problem and Subproblems are 

reviewed.  The review of the Dantzig-Wolfe Master includes the program 

schedule, the program cost, and the required program resources 

determined at each iteration of the Dantzig-Wolfe Decomposition 

algorithm.  Reviewing this information will provide the decision maker 

with insight on how the program schedule and cost are affected by the 

availability of resources. 

In addition to the review of the Dantzig-Wolfe Decomposition 

results, the optimal solution to the model obtained from the 

decomposition procedure is compared to the optimal solution obtained by 

a linear solver.  Once the equivalency of the two solutions is shown, 

the optimal program schedule is then used to perform parametric analyses 

individually on the program budget and personnel months constraints, 

respectively. 

Example 

The network given in Figure 5 represents the illustrative program 

planning problem being evaluated.  The network represents a three- 

project program with event nodes represented by the circles.  The event 

nodes corresponding to a particular project are labeled with the project 

identifier (A, B, or C) listed first.  The arrows represent a precedence 

relationship with the arrowhead pointing to node j  from node i.  The 

dotted arrow represents an interproject relationship between Project A 

and Project B; that is, Activity (B4,B14) of Project B can not start 

until Activity (Al,A3) of Project A is completed.  For example, Project 

42 



A might be an Analytical Study with activity (Al,A3) a cost 

effectiveness analysis. Project B could be the Design and Layout with 

activity (B4,B14) a product processing sketches.  The milestone, event 

A3, of completing the cost effectiveness analysis and choosing a design 

based on the cost effectiveness analysis must take place before the 

product processing sketches activity begins. 

The program end node, x„,   represents the latest finish time 

between the three projects.  The program's time of completion date, TCD, 

is 84 months, with a planning horizon, or drop-dead completion date, T, 

of 90 months.  Projects A, B, and C have budgets of $11,800,000, 

$16,350,000, and $13,700,000, respectively.  The program has an overall 

budget of $41,850,000. 

Appendix A describes the data generation technique used to 

establish the appropriate activity, program, and project information for 

the illustrative Base Model. Table 1 provides the project and program 

variables information results while Table 2 provides the appropriate 

activity information results.  Table Al, located in Appendix A, provides 

the additional program and project parameters.  See Appendix B for the 

Linear Program (LP) form of the Base Model from CPLEX Version 3.0. 
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Project A 

Project B 

-M x n 

Project  C 

FIGfURE 5.  Program Activity Network 

TABLE 1 

Project 

A 
B 
C 

Overall 

PROJECT AND PROGRAM INFORMATION 

Budget (BJ 
(in tens of 
thousands of 

dollars) 

""W»VWVWVVW»VWW»VVYYWVVVVYYWVWVVWV» 

1180 
1635 
1370 
4185 

Over-head 
cost (OH) (in 

tens of 
thousands of 

dollars) 

0.305 

Upper Bound 
on additional 

engineer 
months 

(PH.,, PH.) 

Upper Bound 
on additional 

manager 
months 

 (PH»„PHJ 
325 75 
125 25 
200 50 
650 150 
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TABLE 2 

ACTIVITY INFORMATION 

Activity Normal      Normal Cost    Upper Bound     Cost of 
.Duration (Ti.il .(Du) crashing.. JMU) crashing...JKU_)_ 

A1,A2 3.0 
Al, A4 4.4 
Al, A3 20.2 
A2,A5 2.8 
A4,A7 11.1 
A3,A10 26.0 
A5,A6 32.8 
A6,A8 27.8 
A7,A10 8.1 
A8,A9 13.8 
A9,A11 5.9 
AlO.All 1.5 
B1,B2 27.1 
B1,B8 35.4 
B1,B5 2.5 
B2,B3 25.3 
B2,B6 9.0 
B3,B4 9.1 
B3,B7 25.5 
B4,B14 32.7 
B5,B9 6.2 
B5,B10 24.8 
B6,B7 3.3 
B6,B8 15.6 
B7,B11 5.3 
B8,B14 27.4 
B9,B12 14.0 
B10,B13 18.1 
B11,B14 32.7 
B12,B15 21.0 
B13,B15 15.4 
B14,B15 3.4 
C1,C2 20.3 
C1,C3 32.5 
C1,C6 24.2 
C2,C3 2.7 
C2,C5 19.2 
C3,C4 25.8 
C4,C5 16.2 
C4,C7 18.9 
C5,C8 9.6 
C6,C8 21.2 
C6,C10 28.7 
C7,C12 2.4 
C8,C9 9.5 
C9,C11 6.8 
C10,C12 2.4 
C11,C12 28.8 

71.8 
15.1 
73.3 

.2 

.6 

.6 

.2 

.1 

.5 

.6 

.7 

.4 

.7 

.5 

.4 

.5 

63 
19 
17 
99 
73.8 
71.0 
42 
83 
45 
52 
60 
42 
4 

33 
82 
21 
40 
49 
68 
20.8 
85.6 
27.7 
35.2 
95.0 
17.0 
62.7 
69.5 
37.6 
25.0 
75.7 
94.4 
36.9 
53.8 
95.8 
34.5 
39.0 
87.0 
8.1 

64.3 
61.6 
23. 
8. 
9. 

73. 
17. 

2.2 
1.0 
9.7 

22.8 
1.7 

17.7 
8.9 
8. 
3. 
8. 
3. 
8. 

.7 

.6 

.3 

.4 

.5 
0.8 
3.3 
4.8 

16 
6 
6 

18 
15.0 
14.5 
2, 
1. 

14. 
11. 
2. 

10. 
4. 

13 .9 
10. 
9. 
4. 

11. 
1. 
3. 
3. 
1.7 

15.2 

.5 

.5 

.2 

.7 

.5 

.6 

.5 

15. 
2. 

17. 
11. 
1. 
1. 

23.7 
16.9 
12.6 

15.8 
10.3 

7.3 
5. 
7. 

11. 
3. 
3. 
9. 
2. 
4. 
2. 
1. 
6. 
1. 
0. 
0. 
5. 

11. 
4. 
1. 

23. 
1. 
1. 
6. 
1. 
7. 
5. 
3, 
1.0 
1.3 

12.1 
1.5 

.1 

.5 

.1 

.4 

.2 

.8 

.3 

.5 

.4 

.3 

.3 

.3 

.4 

.6 

.2 

.3 

.6 

.5 

.1 

.1 

.8 

.0 

.5 

.5 

.9 

.2 
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Implementation 

In order to produce files readable by most commercially available 

solvers, a short program written in Visual Basic for Microsoft Excel 

Version 5.0.  This program allowed the creation of Mathematical 

Programming Standard (MPS) format files from Microsoft Excel 

Spreadsheets.  The program code and a sample spreadsheet can be found in 

Appendix E. 

The created MPS format files (including the Base Model, the 

Dantzig-Wolfe Master Problem and Subproblems) were then read into CPLEX 

Version 3.0 and solved via CPLEX's linear optimization solver on a Sun 

Sparestation.  CPLEX was chosen as a platform for the simple 

illustrative example because of its unlimited variable capacity for 

solving real-world problems of much greater size and complexity (42:52). 

For the Dantzig-Wolfe Master Problem and Subproblems the dual 

(shadow) prices were transferred to a MATHCAD 6.0 Plus worksheet where 

the new objective function coefficients for the Subproblems were 

calculated (See Appendix F for an example of the equations used).  These 

new coefficients were transferred back to CPLEX for resolving the 

Subproblems.  The Subproblem solutions were transferred back into 

MATHCAD and used to generate new proposals for the Master problem.  The 

new proposals were entered into the Master problem and the cycle begun 

again with the generation of a new updated Master MPS format file. 

Results 

Dantzig-Wolfe Initial Schedule.  The results of the Dantzig- 

Wolfe Master Problem in the first iteration are presented in Table 3. 

The objective function value has been rounded to the nearest dollar for 

display purposes only. Calculations for each iteration reflect use of 

the actual values. 
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TABLE 3 

DANTZIG-WOLFE MASTER PROBLEM INITIAL RESULTS (ITERATION 1) 

Dantzig-Wolfe Variables Non-zero Values 
Objective Function   (z) $52,060,613,286 

XN 129.2 
1 

x> 1 
* 1 
x.1 1 

Remember that the x/ represent the j'th proposal (the first in 

this case) from project t. 

The values obtained from the first iteration by the Master Problem 

correspond to each project minimizing its additional resource costs. 

Thus, the Subproblem proposals passed to the Master Problem represent 

each project's normal activity schedule (no activity "crashing" occurs). 

See Table 4 for the project's normal activity schedule. 

The critical path for this first iteration comes from Project C 

and is C1-C3-C4-C5-C8-C9-C11-C12. 

Under normal conditions, the program length would be 129.2 months, 

the completion time of the last project.  The cost of this solution, the 

cost of the overhead plus the normal activity costs, is $47,047,286. 

This solution provides the most flexibility in coping with problems to 

the decision maker.  If any activities experience delays, the succeeding 

activities can still be crashed to make up the time lost; however, this 

solution is unfortunately over the allowed budget of $41,850,000 and  the 

drop-dead date of 90 months.  While mathematically feasible to the 

"relaxed" model, it is not operationally feasible for the due date or 

budget requirements. 
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TABLE 4 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM INITIAL RESULTS 

(ITERATION 1) 

Event Node Time of Event Activity crashed   Amount Crashed 
XA1 
XA2 
XA3 
XA4 
XA5 
XA6 
XA7 
XA8 
XA9 
XA10 
XA11 
XB1 
XB2 
XB3 
XB4 
XB5 
XB6 
XB7 
XB8 
XB9 
XB10 
XB11 
XB12 
XB13 
XB14 
XB15 
XC1 
XC2 
XC3 
XC4 
XC5 
XC6 
XC7 
XC8 
XC9 
XC10 
XC11 
XC12 

.5 

.4 

.2 

.2 

.1 

0 
3 

20.2 
4.4 
5.8 
38.6 
15. 
66. 
80. 
46. 
86. 

0 
27.1 
52.4 
61.5 
2.5 
36.1 
77.9 
51.7 
8.7 
27.3 
83.2 
22.7 
45.4 
115.9 
119.3 

0 
20. 
32. 
58. 
74. 
24. 
77, 
84. 
93. 
52. 
100.4 
129.2 

.3 

.5 

.3 
,5 
.2 
.2 
.1 
.6 
.9 
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Dantzjq-Wolfe Interim Schedules.  The interim results of the 

Dantzig-Wolfe Master Problem are plotted in Figure 6.  Detail schedules 

can be found in Appendix G. 

The interim results represent additional program schedules that 

could be implemented by the decision maker.  At each iteration, the 

overall cost of the program is decreases while the program duration 

decreases or stays the same.  However, as activities are "crashed" the 

decision maker's schedule and resource flexibility decreases. 

Although these solutions are not optimal for the full requirements 

set, they provide additional time/cost trade-off information to the 

decision maker. 

Dantzig-Wolfe Final Schedule.  The results of the Dantzig-Wolfe 

Master Problem in the final iteration are presented in Table 5.  The 

objective function value has been rounded to the nearest dollar and the 

program duration to the nearest tenth for display purposes only. 

Calculations for each iteration reflect use of the actual values. 

TABLE 5 

DANTZIG-WOLFE MASTER PROBLEM FINAL RESULTS 

Dantzig-Wolfe Variables Non-zero Values  
Objective Function (z)              $56,380,286 

XN 79.5 
XA

5 .372638 
XA

7 .6273 62 
x„5 1.000000 
xr

3 .997488 
x' .002512 

The values obtained from the final iteration by the Master Problem 

correspond to the program minimizing its overhead and additional 

resource costs.  Thus, the Subproblem proposals chosen by the Master 

Problem represent the best combination of solutions for the whole 

program.  See Table 6 for the project's final activity schedule. 
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TABLE 6 

TRANSLATION OF DANTZIG- -WOLFE MASTER PROBLEM FINAL RESULTS 

Event Node Time of Event Activity crashed Amount Crashed 
XA1 0 (A1,A2) 1.7 
XA2 1.3 (A2,A5) 1.1 
XA3 20.2 
XA4 4.4 
XA5 3 
XA6 35.8 (A6,A8) 1.6 
XA7 15.5 
XA8 62.0 
XA9 75.8 (A9,A11) 2.2 
XA10 46.2 
XA11 79.5 
XB1 0 (B1,B2) 9.7 
XB2 17.4 (B2,B3) 17.7 
XB3 25 (B3,B7) 3.6 
XB4 45.8 
XB5 21.2 
XB6 26.4 
XB7 46.9 (B7,B11) 4.8 
XB8 42 
XB9 44.5 
XB10 46.0 
XB11 47.4 (B11,B14) 1.6 
XB12 58.5 
XB13 64.1 
XB14 78.5 (B14,B15) 2.4 
XB15 79.5 
XC1 0 
XC2 29.8 
XC3 32.5 (C3,C4) 4 
XC4 54.3 (C4,C5) 13.9 
XC5 56.6 (C5,C8) 9.5 
XC6 24.2 
XC7 77.1 
XC8 56.7 (C8,C9) 3.6 
XC9 62.6 (C9,C11) 3.5 
XC10 52.9 
XC11 65.9 (C11.C12) 15.2 
XC12 79.5 
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The critical paths associated with this final iteration are as 

follows: 

Project A:  A1-A2-A5-A6-A8-A9-A11 

Project B:  B1-B2-B3-B7-B11-B14-B15 

Project C:  C1-C3-C4-C5-C8-C9-C11-C12 

At optimality, the program length would be 79.5 months.  The cost 

of this solution (the cost of the overhead plus the normal and crashed 

activity costs minus the early completion bonus) is $38,274,286.  This 

optimal solution is approximately $10,000,000 less than the first 

solution obtained by the Master Problem. While this solution is less 

expensive and finishes early, it provides the least amount of schedule 

and resource flexibility. 

With most of the critical path activities already planned to be 

"crashed", if any delays occur along the critical path, the entire 

program will be delayed.  Also, since we are "crashing" a large number 

of activities, the number of critical path activities that have no slack 

to absorb delays increases as well. 

If delays do occur, since the optimal solution makes use of the 

additional resources available, the optimal solution may leave the 

program with no additional resources left to deal with problems.  The 

benefit of a planning tool such as the one discussed here is that the 

key decision makers can review these conditions and determine if the 

risk is acceptable, if additional resources must be acquired, and/or if 

program deadlines should be relaxed. 

The decision maker at this point may ask what is being done with 

the activities that are not along the critical path. The activities not 

along the critical path could, if allowed by the nature of the activity, 

be "extended." "Extending" an activity occurs by applying less than the 

normal resource level to the activity in order to lengthen its duration. 

See Appendix H for the extension of the Base Model to include activity 
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"extending" and the results of the Dantzig-Wolfe Decomposition Technique 

on the extended Base Model. 

As mentioned in the discussion of the Dantzig-Wolfe Interim 

Schedules, the Base Model provides a range of options in the form of 

solutions for the decision maker to apply their own insight and 

experience.  This range of solutions can aid the decision maker in 

considering these key questions.  Figure 6 represents the range of 

solutions provided by the Dantzig-Wolfe Master Problem.  Note that any 

schedule after iteration 2 is budgetarily feasible. 
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Figure 6.  Dantzig-Wolfe Master Problem Iteration Results 

Dantzig-Wolfe Master Problem Sensitivity Analysis.  A classic 

sensitivity analysis of the right-hand sides for the constraints was 

conducted at each iteration of the Dantzig-Wolfe Master Problem.  The 

results of these sensitivity analyses are provided in Table 7. 

The ranges shown in Table 7 represent the bounds for each right- 

hand side (while all other right-hand sides remain fixed).  As long as 
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the values of the right-hand side remain within these bounds, only the 

value of the objective function and the values of the basic (typically 

non-zero) variables within the Master Problem will change.  If a right- 

hand side is changed beyond the bounds given, the value of the objective 

function and the actual set of basic variables and their associated 

values will change. 

The sensitivity analysis from each iteration of the Dantzig-Wolfe 

Master Problem provides additional information about the feasible 

solution at each iteration.  The sensitivity analysis shows project 

slack, establishes additional required resource levels, and the sets the 

minimum program budget needed for the current feasible schedule. 

Looking at the results for the first iteration of the Dantzig- 

Wolfe Master Problem provides the decision maker with the following 

information (remember that in the first iteration, no activities were 

"crashed", so it represents the normal program schedule): 

1. The lower/upper bounds of the Program End constraints 

represent how much shorter/longer a project's duration 

can be without affecting the optimal basis 

2. The lower/upper bounds of the program precedence 

constraint, (A3,B4), represent the time frame that event 

A3 can take place in without affecting the optimal basis 

and the time of event B4. 

3. The lower/upper bounds of the Program Budget constraint 

represent the amounts that additional funding dollars 

(above the normal program activity costs) can be changed 

without affecting the optimal basis. 

4. The lower/upper bounds of the Personnel Months 

constraints represent the amounts that additional 

personnel months (above the normal program activity 

costs) can be changed without affecting the optimal 

basis. 
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TABLE 7 

RIGHT HAND SIDE SENSITIVITY RANGES - 

DANTZIG-WOLFE MASTER PROBLEM COUPLING CONSTRAINTS 

Constraint Identifier Dual Down Current IIB 
Name Price 

Iteration 1 
row2 Link AB zero -infinity zero 41.3 
row3 Program End A zero -infinity zero 43.1 
row4 Program End B zero -infinity zero 9.9 
row5 Program End C 179272 -9.9000 zero +infinity 
row6 Program Budget -10000 -infinity 1795 6000 2315.3286 
row7 Eng. Months zero zero 650 0000 +infinity 
row8           Mgr. Months     zero         zero       150.0000     +infinity 

Iteration 2 
row2 Link AB zero -infinity zero 41.3 
row3 Program End A zero -infinity zero 33.2 
row4 Program End B 156190 -23.3894 zero 9.9 
row5 Program End C 23082 -9.9000 zero 44.2584 
row6 Program Budget -10000 -infinity 1795 6000 2160.7653 
row7 Eng. Months zero 34.2745 650 0000 +infinity 
row8 Mgr. Months zero 9.1399 150 0000 +infinity 

Iteration 3 
row2 Link AB zero -infinity zero 28.2212 
row3 Program End A 64.8474 -6.5651 zero 9.1432 
row4 Program End B 1.5717 -33.2000 zero 6.5651 
row5 Program End C 1.5014 -43.1000 zero 6.6000 
row6 Program Budget zero 1659.8472 1795 6000 +infinity 
row7 Eng. Months zero 175.3382 650 0000 +infinity 
row8 Mgjr. Months zero ^^+rnfi^Tity 

Iteration 4 
row2 Link AB zero -infinity zero 25.6349 
row3 Program End A 16.9551 -6.5651 zero 4.4936 
row4 Program End B 49.1654 -0.0349 zero 6.5651 
row5 Program End C 1.8000 -13.8651 zero 0.0349 
row6 Program Budget zero 1673.6740 1795 6000 +infinity 
row7 Eng. Months zero 372.5526 650 0000 +infinity 
row8 Mgr. Months zero 99.3474 150 0000 +infinity 

Iteration 5 
row2 Link AB zero -infinity zero 25.6349 
row3 Program End A 15.5924 -6.5651 zero 2.6349 
row4 Program End B 50.5281 -0.0349 zero 6.5651 
row5 Program End C 1.8000 -13.8651 zero 0.0349 
row6 Program Budget zero 1664.5853 1795 6000 +infinity 
row7 Eng. Months zero 359.1336 650 0000 +infinity 
row8 Mgr. Months zero +infinity^ 

Iteration 6 
row2 Link AB zero -infinity zero 25.6349 
row3 Program End A 16.5219 -3.7651 zero 2.6349 
row4 Program End B 49.5986 -0.0349 zero 3.7651 
row5 Program End C 1.8000 -13.8651 zero 0.0349 
row6 Program Budget zero 1662.1612 1795 .6000 +infinity 
row7 Eng. Months zero 355.4600 650 .0000 +infinity 
row8 Mgr. Months zero 94.7893 150 .0000 +infinity 

Iteration 7 
row2 Link AB zero -infinity zero 25.6349 
row3 Program End A 16.9000 -1.5651 zero 2.6349 
row4 Program End B 49.2205 -0.0349 zero 1.5651 
row5 Program End C 1.8000 -13.8651 zero 0.0349 
row6 Program Budget zero 1661.2080 1795 .6000 +infinity 
row7 Eng. Months zero 353.9655 650 .0000 +infinity 
row8 Mgr. Months zero +infinity 
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First Iteration.  In the first iteration, the project durations of 

Project A and Project B can be shortened as much as desired (lower 

bounds are -infinity) but will not change the optimal basis since these 

projects are not critical to the end time of the program.  The upper 

bounds of the Program End constraints for Project A and Project B 

represent the amount of time the projects can be delayed (slack) 

compared with the current program duration. 

Since Project C is the critical path for the program in the first 

iteration of the Dantzig-Wolfe Master Problem, the bounds have a 

different interpretation.  The lower bound of the Program End constraint 

for Project C represents the amount of time Project C can be shortened 

before a different project becomes part of the critical path.  The upper 

bound states that Project C can be lengthened by any amount and it will 

still be on the critical path. 

The Program Precedence constraint bounds simply represent time 

window that event A3 can occur in without affecting the current optimal 

solution.  The lower bound states that event A3 can occur as soon as 

possible.  The upper bound represents the amount of time event A3 can be 

delayed (slack) without affecting event B4 or the program. 

The Program Budget lower bound in the first iteration states that 

no matter how little money is budgeted, the current optimal basis will 

not change. The upper bound, however, represents, in this problem, the 

amount the additional funding level needs to be set at to make the 

current solution feasible. Remember that the "deviational" variable is 

relaxing the Program Budget constraint so that the Dantzig-Wolfe Master 

Problem believes a feasible basic solution exists. 

The Personnel Months constraint bounds in the first iteration 

simply state that additional personnel months play no part in the 

current optimal solution. 

Interim and Final Iterations.  The lower and upper bounds on the 

Program End constraints for the interim Dantzig-Wolfe Master Problem 
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solutions provide, for critical path projects, the time frame that the 

projects can be shortened or lengthened.  The lower bound represents the 

point at which a shorter project duration that would require a change in 

the project set of activities "crashed" to attain.  The upper bound 

represents a point at which a longer project duration relaxes the need 

for as much activity "crashing", and changes the activity "crashed" set 

within the project. 

For non-critical path projects, the bound representation does not 

change from that described by the first iteration.  For this problem, 

the same can be stated for the Program Precedence constraint linking 

Project A to Project B. 

Until a feasible program solution is attained, the Program Budget 

constraint bounds description remains the same as that described in the 

first iteration.  However, once a feasible program schedule has been 

established and the "deviational" variable is no longer needed to relax 

the Program Budget constraint, the interpretation of the bounds changes. 

The lower bound of the Program budget constraint represents the 

minimum amount of additional funds necessary to implement the current 

program schedule.  While this bound provides the least amount of 

additional funding required to complete the program based on the current 

program schedule, it also represents the least flexible funding profile 

for the program.  Any delays or problems that occur will have no reserve 

funds to utilize, other than any cushion built into the target due date 

itself. 

The upper bound of the Program Budget constraint, once the 

solution is budgetarily feasible, now represents the amount of 

additional funds that could be applied before a different optimal 

solution could be attained.  In this simple illustrative example, once a 

feasible program schedule was found, the Program Budget constraint was 

no longer critical (upper bound +infinity). 
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The bounds on the Personnel Months constraints are similar to the 

Program Budget constraint bounds in representation.  The lower bound 

represents the minimal amount of additional personnel months for 

engineers and managers required to implement the current feasible 

program schedule without affecting the basis.  The upper bounds 

represent the how many additional personnel months can be added before 

the current optimal basis changes (+infinity for this simple 

illustrative example).  See Figure 7 for a listing of the program 

minimum personnel hours required at each iteration of the Dantzig-Wolfe 

Master Problem. 

Analyzing the Base Model.  One of the reasons for using the 

Dantzig-Wolfe model is to make the solution time of very large complex 

problems tractable.  Once an optimal solution to the Dantzig-Wolfe 

Master Problem is attained and translated back into the Base Model 

variables, the basis associated with this optimal solution can be used 

to "jump start" the linear solver. 

For example, CPLEX is limited only by available memory in the 

number of variables allowed within a problem; however, the number of 

variables in a problem is only one factor that causes solution times to 

problems to be intractable (others factors including complexity and the 

number of constraints). By providing CPLEX with an optimal basis start, 

the solution time of the program is minimized. 
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Figure 7.  Dantzig-Wolfe Master Problem Minimum Personnel Months 

Base Model Sensitivity Analysis.  A classic sensitivity analysis 

of the right-hand sides for the constraints was conducted on the Base 

Model.  The results of this sensitivity analysis are provided in Table 

8. 

Constraint 
Name 
row66 
row55 
row56 
row57 
row54 
row64 

TABLE 8 

RIGHT HAND SIDE SENSITIVITY RANGES - 

BASE MODEL CONSTRAINTS 

Identi tier Dual 
■wvvvvwiri«vvvvw«www 

Link AB 
Program End A 
Program End B 
Program End C 

Program Budget 
Eng. Months 

 Mgr. Months 

zero 
16.9000 
49.2205 
1.8000 

zero 
zero 

Down 

-infinity 
-1.5651 
-0.0349 

-13.8651 
1661.2825 
353.9655 
94.3906 

Current 

zero 
zero 
zero 
zero 

1795.6000 
650.0000 

HE 

25.6349 
2.6349 
1.5651 
0.0349 

+infinity 
tinfinity 

 ■'""■HMd'iWAYfffnnfim ******■*■*****«****"' wrninnAnnjQUAAi 
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Comparing the results of Table 7, Iteration 7 and Table 8 reveals 

that the sensitivity analysis conducted on the final Dantzig-Wolfe 

Master Problem is the same as that of the optimal solution in the Base 

Model.  The only difference between the two tables occurs in the lower 

bound for the program budget, with a difference of $745, which is 

typical of standard computer round-off error. 

If the decision maker is only concerned with the sensitivity of 

the optimal solution, then the sensitivity analysis obtained from the 

Dantzig-Wolfe final Master Problem should, in this aggregate level, be 

sufficient and there is no need to solve the Base Model.  However, if 

the decision maker desires more information on the sensitivity of the 

Base Model to specific changes then the Base Model should be solved and 

a parametric analysis of the optimal solution conducted for the specific 

information desired. 

Parametric Analysis of the Base Model.  Linear programming 

sensitivity analysis provides the bounds for the right-hand sides at 

which the optimal basis remains optimal if only a single change is made. 

A parametric analysis of the right-hand side values looks at varying 

right-hand sides over defined sets of change.  The defined sets of 

change can be for a single right-hand side or for a combination of 

right-hand sides.  For the Base Model, a single right-hand side will be 

changed at a time using the linear programming solver HyperLindo. 

HyperLindo was chosen because CPLEX does not provide a parametric 

analysis function.  In varying a single right-hand side over the 

specified range, the values of that right-hand side that cause a change 

in the optimal basis are identified.  For the Base Model, we are 

concerned with the effects of varying the levels of resources available 

to the program.  Figure 8 shows a parametric analysis of the program 

budget over the range of [0, 4185] . 
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Parametric Analysis of Program Budget 
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Figure 8.  Parametric Analysis of Program Budget 

Figure 8 displays how, as the program budget is decreased, the 

overall program cost and duration increase.  The increase in overall 

cost, even though the budget is being reduced, results from fewer 

resources ($) being available for "crashing" activities, causing the 

program to take longer.  The longer program duration creates more 

overhead and keeps the program from realizing its bonus for finishing 

ahead of schedule.  This type of overall budgeting profile will be 

invaluable to the decision maker in determining appropriate trade-offs 

between funding levels and program duration. 

Figure 9 provides a look at the parametric analysis results of 

individually varying the amount of additional Engineering and Managerial 

Months available to the program. 
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Parametric Analysis of Personnel Months 
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Figure 9.  Parametric Analysis of Personnel Months 

Figure 9 displays how, as the number of available engineering and 

managerial months decreases, the overall program cost and duration 

increase.  The increase in program cost, once again, occurs due to lack 

of available resources to "crash" activities. 

For the Base Model, the parametric analyses provide additional 

schedule possibilities.  These possibilities provide additional 

information to the decision maker on how sensitive the program is to 

changes in resources.  Other changes, such as the estimated normal 

duration of a critical activity (i.e., one that shows up as critical a 

majority of the time in a number of simulation runs), the project 

budgets, and the project personnel months, are candidates for parametric 

analysis. 

Parametric analyses provide additional information for the 

decision maker to use in planning a new program. 
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Conclusion 

This chapter provided the results from implementing the Dantzig- 

Wolfe Decomposition technique on the Base Model.  The results included a 

range of scheduling and planning possibilities and a comparison of 

sensitivity analyses from the final Dantzig-Wolfe Master Problem and the 

Base Model.  This chapter also demonstrated the usefulness of conducting 

parametric analyses for producing additional scheduling and planning 

information. 

62 



3L,—Conclusions  and Future Rss^rnh 

Summary 

The specific problem addressed in this study is to provide 

decision makers a decision support tool that generates feasible multi- 

project program schedules, determines appropriate funding levels for 

each project, and conducts sensitivity analysis upon these schedules and 

funding levels. 

This study has demonstrated a method utilizing the Work Breakdown 

Structure and Dantzig-Wolfe Decomposition for generating feasible 

aggregate level multi-project program schedules.  To implement the 

Dantzig-Wolfe Decomposition technique, this study presented the use of 

"deviational" variables to relax some of the constraints in the Dantzig- 

Wolfe Decomposition Master Problem until a starting basic feasible 

solution could be attained. 

Upon generating the optimal solution in the Dantzig-Wolfe 

Decomposition procedure, a traditional sensitivity analysis was 

conducted on this solution.  The traditional sensitivity analysis 

provided information on how variable the optimal assignment of resources 

would be to changes in a single factor.  To validate the results of the 

sensitivity analysis conducted on the Dantzig-Wolfe optimal solution, a 

sensitivity analysis was conducted on the Base Model optimal solution 

and the two sensitivity analyses compared. 

If the information from the Dantzig-Wolfe Decomposition technique 

(schedules, funding levels, and sensitivity analysis) pointed to the 

need for more information about certain parameters within the model, a 

method for using an optimal solution generated by the Dantzig-Wolfe 

Decomposition technique to "jump-start" a linear solver was presented. 

Once an optimal solution to the linear model was obtained, an 

individual parametric analysis was conducted on the program budget, 

engineering hours, and managerial hours constraints of the Base Model. 
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The parametric analyses conducted provided additional information to the 

decision maker about the interaction between program cost and duration 

as the individual resource levels varied. 

Conclusions 

Implementing the Dantzig-Wolfe Decomposition procedure by 

utilizing the Work Breakdown Structure appears to be an intuitive 

approach to determining initial schedules for multi-project programs. 

The Dantzig-Wolfe procedure provides a means of generating interim 

solutions and their appropriate funding profiles.  The decision maker 

could then choose any one of these solutions besides the optimal 

solution based upon his/her own experience and risk tolerance. 

Future Research 

Some natural extensions to this research would involve stochastic 

activity durations, nonlinear activity "crashing" functions, discrete 

resource modeling, and implementation of Benders' Partitioning in the 

subproblem solution phase. 

Stochastic Activity Durations.  One of the simplifying assumptions 

made in initially demonstrating this concept was fixed activity 

durations.  However, in any planning stage, the actual activity times 

may not be accurately known.  Therefore, an activity duration should be 

modeled by some known distribution (beta, normal, exponential, and so 

on) or by an established activity duration estimation technique such as 

PERT.  Stochastic programming approaches may be considered. 

The inclusion of stochastic activity durations may require the use 

of simulation modeling to determine the criticality of the various 

program and project paths.  Determining the criticality of a particular 

path would identify to the decision maker the activities that are most 

likely to affect the program duration. 

The simulation modeling would most likely occur at the project 

level, with each project being simulated to determine its individual 

project duration.  The criticality of each individual project's 
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activities could then be used as part of a heuristic for determining the 

order with which to "crash" activities.  An example of just such a 

heuristic might be the criticality divided by the cost of crashing. 

Nonlinear Activity "Crashina".  Another simplifying assumption 

that was made in establishing this model was to assume all activity 

"crashing" functions to be linear.  However, a nonlinear activity 

"crashing" function would provide a realistic account of the theory of 

diminishing returns.  This economic theory states that as more and more 

resources are applied to an activity, the per unit return decreases. 

For example, on an aircraft assembly line, the addition of personnel for 

assembling the aircraft may reduce the amount of time to produce the 

aircraft, but as more and more personnel are added, congestion of 

personnel will decrease the benefit of the additional personnel. 

Baumöl and Fabian demonstrated that the inclusion of convex 

nonlinear constraints in the subproblems do not affect the performance 

of the Dantzig-Wolfe Decomposition technique.  Since the nonlinear 

constraints are not contained in the objective function or the corporate 

constraints, they only apply to the subproblems (3:18-20).  The now 

nonlinear subproblems could be solved using commercially available 

nonlinear solvers. 

Discrete Resource Modeling.  The model presented in this study 

represented resources (dollars and personnel hours) as continuous 

functions of cost.  In the aggregate model, it may be possible to 

represent every resource as a function of cost.  However, once the 

aggregate model has provided general bounds on the required resources, 

it may be necessary to use discrete variables in a disaggregate model. 

For example, in the aggregate model it may have been enough to say that 

we need $x for aircraft assembly personnel.  In establishing the actual 

project schedule, the exact number of aircraft assemblers required needs 

to be determined. 
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If the project is small enough, the problem may be solved using an 

integer programming solver.  However, for large projects, the number of 

integer variables may make the solution time intractable.  Several 

techniques for dealing with large integer programs have been developed. 

These techniques include Sweeney-Murphy Decomposition for Integer 

Programs (45), Deckro and Hebert's resource bundle method (9), and 

Benders' Decomposition (33). 

An initial look at utilizing Benders' Partitioning to generate a 

series of proposals from the Dantzig-Wolfe Decomposition Subproblems at 

each iteration was made. While the results were not favorable in this 

application (the continuous linear variable restriction presented no 

advantage to the partitioning over standard linear programming), the use 

of Benders' Partitioning appears to have promise for models that include 

other types of variables. 

For example, if the original problem contained integer variables 

and, subsequently, the subproblems became integer programming problems, 

Benders' Decomposition could be utilized to generate more than one 

feasible solution per iteration from each subproblem as candidate 

solutions in the master problem.  Since we would now be dealing with 

integer variables, we would use Sweeney-Murphy Decomposition for Integer 

Programs to solve for the optimal integer solution to the program as a 

whole. 

The use of Benders' Decomposition in the subproblems is not 

necessary for Sweeney-Murphy Decomposition; however, the fact that 

Benders' Decomposition would provide a number of feasible solutions to 

select from at each iteration, the overall convergence rate of the 

Sweeney-Murphy Decomposition technique may be improved to warrant the 

use of Benders' Decomposition at the Subproblem level. 
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APPENDIX A;  BASE MQDRT, DATA rrawERflTT^N 

Data Generation.  The data generation method used for determining the 

data points in Tables 1 and 2 follows.  The following additional 

variables are introduced as part of the data generation effort: 

W   = 

w, = 

= the percentage of KXj   assigned to personnel costs 

= the percentage of P for type 1   personnel 

= average wage rate for personnel 

scaling factor for personnel classification 
type J rates 

Activity Duration.  The activity duration amounts for normal 

duration (in months), Tti,   were generated from a Uniform [0,36] 

distribution.  The elements were truncated to 1 decimal place with 

rejection of any actual 0 element generated. 

Activity Crashing FoundP.  The activity crashing upper bounds, 

M„, were generated by the formula, TW * Pt, where Pt  ~ u[0,l] with the 

same truncation protocol as used in the activity duration times 

generation. 

Activity Coptp.  The costs (in tens of thousands of dollars) 

associated with each activity at normal duration, Dijt   were generated 

from a Uniform [0,100] distribution.  Given the data in Table 1, at 

normal duration, the total program cost of activities is $2389.4, for 

project A is $675.4, for project B is $931.7, and for project C is 

$782.3. 
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Crashing Costs.  The costs associated with crashing an activity , 

Ki:j,   were generated using the formula, Dld  *  Pc, where Pc ~  U[0, 0.25]. 

Program and Project Budgets. The program and project budgets were 

generated by taking 175% of the normal duration costs and rounding up to 

the nearest 5. 

Personnel Costs and Months.  The personnel costs, P, associated 

with each activity are taken to be 60% of the normal or "crash" cost of 

the activity.  Of this set percentage, the amount that goes to the 

various classifications of personnel will be split out (P;).  The 

personnel cost split for this program will be 75/25 for engineers and 

managers, Px  and P2, respectively.  To determine the actual number of 

additional months needed by each classification of personnel, an average 

wage rate, W,  multiplied by a scaling coefficient, wlt   is divided into 

the "crash" cost of an activity.  For this model, the personnel months 

required for activity "crashing" are determined using as an average wage 

rate W=.3 (in tens of thousands of dollars).  The scaling factor for 

engineers and managers is w,=l and w2=1.25,   respectively.  These values 

are used to calculate the type 1  personnel costs associated with an 

activity, Sin,   in the following manner: 

ijl    "   Wl   ■ W 

Substituting this expression into the project personnel-hour constraint 

gives the following form: 

P  •  Pi   "EX KijYtj 
  < PHkl,    Vk,l   and {i,j)  e Ik wx   • W 
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The program personnel-hour constraint will be similar to the 

project personnel-hour constraints and will be as follows: 

p ■ pi • XXv« 
 ^T  PH-  Vl and (i^') e J- 

For example, let the "crash" cost for a single activity be 10 per time 

unit "crashed", the percentage applied to personnel costs be P=60%, the 

split for two classifications of personnel be P1=75% and P2=25%, the 

wage rate be W=.3, and the scaling factor be w=l.     Then the left side of 

the constraint above for type 2 personnel would be: 

(0.6 • 0.7 5 • 10)Y„ 
    = 15Y.. 

1 • 0.3 1J 

To determine the total number of personnel months required for 

each classification of personnel within each project and for the 

program, add the normal activity costs, Dijt   to the numerator above to 

create the following equation: 

p ■ ^zso^i, + Dti) 
^ m w  VI and (i,j) e I   (or Ik) 

Overhead Costs.  The overhead cost associated with the program is 

formulated by taking .75% of the normal activity costs per month, 

OH=(ZDi3.)*0.0075. 

TABLE Al 

ADDITIONAL PROJECT AND PROGRAM INFORMATION 
VAAAM^4AWAMAUAUUMWWMMAUMUWW 

^Parameter Value 
 w '."3  

w, l 
w, 1.25 
P .6 
P, .75 
P,  .25 
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APPENDIX B;  BASE MODEL FORMULATION 

\Problem name: all.lp 

Minimize 
OBJ: 15 YA1A2 +17.4 YA1A3 + 2 YA1A4 +11.1 YA2A5 +1.8 YA4A7 +1.5 YA3A10 
+ 23.7 YA5A6 + 16.9 YA6A8 + 12.6 YA7A10 + 15.8 YA9A11 + 10.3 YA10A11 
+1.7 YB1B2 + 0.7 YB1B5 +8.1 YB1B8 +0.3 YB2B3 +0.6 YB2B6 +7.3 YB3B4 
+5.1 YB3B7 +7.5 YB4B14 +11.1 YB5B9 +3.4 YB5B10 +3.2 YB6B7 +9.8 YB6B8 
+2.3 YB7B11 +4.5 YB8B14 +2.4 YB9B12 +1.3 YB10B13 +6.3 YB11B14 
+ 1.3 YB12B15 + 0.4 YB13B15 + 0.6 YB14B15 + 5.2 YC1C2 + 11.3 YC1C3 
+4.6 YC1C6 +1.5 YC2C3 +23.1 YC2C5 +1.1 YC3C4 +1.8 YC4C5 + 6 YC4C7 
+ 1.5 YC5C8 + 7.5 YC6C8 + 5.9 YC6C10 + 3.2 YC7C12 + YC8C9 + 1.3 YC9C11 
+ 12.1 YC10C12 + 1.5 YC11C12 + 67.9205 XN 

Subject To 
row2:  YA1A2 
row3: 
row4: 
row5: 
row6: 
row7: 
row8: 
row9: 
rowlO: 
rowll: 
rowl2: 
rowl3: 
rowl4: 
rowl5: 
rowl6: 
rowl7: 
rowl8: 
rowl9: 
row20: 
row21: 
row22: 
row23: 
row2 4: 
row25: 
row2 6: 
row27: 
row2 8: 
row29: 
row3 0: 
row31: 
row32: 
row33: 
row34: 
row3 5: 
row3 6: 
row3 7: 
row3 8: 
row3 9: 
row40: 
row41: 
row42: 
row43 : 
row44: 
row45: 
row4 6: 
row47: 
row4 8: 
row49: 
row50: 
row51: 

row52: 

row53: 

YA1A4 - 
YA1A3 - 
YA2A5 - 
YA4A7 - 
YA3A10 
YA5A6 - 
YA6A8 - 
YA7A10 
- XA8 + 
YA9A11 
YA10A11 
- XA3 + 
YB1B2 - 
YB1B8 - 
YB1B5 - 
YB2B3 - 
YB2B6 - 
YB3B4 + 
YB3B7 - 
YB4B14 
YB5B9 - 
YB5B10 
YB6B7 - 
YB6B8 + 
YB7B11 - 
YB8B14 - 
YB9B12 - 
YB10B13 
YB11B14 
YB12B15 
YB13B15 
YB14B15 
YC1C2 
YC1C3 
YC1C6 
YC2C3 
YC2C5 
YC3C4 
YC4C5 
YC4C7 
YC5C8 
YC6C8 
YC6C10 - 
YC7C12 - 
YC8C9 - 
YC9C11 
YC10C12 

XA1 + XA2 >= 3 
XA1 + XA4 >= 4.4 
XAl + XA3 >= 20.2 
XA2 + XA5 >= 2.8 
XA4 + XA7 >= 11.1 

- XA3 + XA10 >= 26 
XA5 + XA6 >= 32.8 
XA6 + XA8 >= 27.8 

- XA7 + XA10 >= 8.1 
XA9 + YA8A9 >= 13.£ 

- XA9 + XA11 >= 5.9 
- XA10 + XA11 >= 1. 
XB4 
XB1 
XB1 
XB1 
XB2 
XB2 
XB4 
XB3 

■ XB4 
XB5 

■ XBS 
XB6 
XB8 

= 0 
XB2 
XB8 
XB5 
XB3 
XB6 
XB3 
XB7 

>= 
>= 
>= 
>= 
>= 
>= 
>= 

XB7 + 
XB8 + 
XB9 + 
XB10 
XB14 
XB12 
XB13 
XB14 

+ 

27.1 
35.4 
2.5 
25.3 
9 
9.1 
25.5 

+ XB14 >= 32.7 
XB9 >= 6.2 

+ XB10 >= 24.8 
XB7 >= 3.3 
XB6 >= 15.6 

+ XB11 >= 5.3 
+ XB14 >= 27.4 

XB12 >= 14 

XC1 + XC2 
XC1 + XC3 
XC1 + XC6 
XC2 + XC3 
XC2 + XC5 
XC3 + XC4 
XC5 - XC4 
XC4 + XC7 
XC5 + XC8 
XC6 + XC8 
XC6 + XC10 
XC7 + XC12 >= 2 

XC8 + XC9 >= 9.5 
XC9 + XC11 >= 6 

- XC10 + XC12 >= 

XB13 
XB11 
XB15 
XB15 
XB15 
>= 
>= 
>= 
>= 
>= 
>= 
>= 
>= 
>= 
>- 

>= 
>= 
>= 
>= 
>= 

20.3 
32.5 
24.2 
2.7 
19.2 
25.8 
16.2 
18.9 
9.6 
21.2 
= 28.7 

4 

18.1 
32.7 
21 
15.4 
3.4 

2.4 
YC11C12 + XC12 - XC11 >= 28.8 
15 YA1A2 +17.4 YA1A3 + 2 YA1A4 +11.1 YA2A5 +1.8 YA4A7 +1.5 YA3A10 
+23.7 YA5A6 +16.9 YA6A8 +12.6 YA7A10 +15.8 YA9A11 +10.3 YA10A11 
<= 504.6 

YB2B3 +0.6 YB2B6 +7.3 YB3B4 
3.4 YB5B10 +3.2 YB6B7 
2.4 YB9B12 +1.3 YB10B13 

1.7 YB1B2 +0.7 YB1B5 +8.1 YB1B8 +0.3 
+5.1 YB3B7 +7.5 YB4B14 +11.1 YB5B9 + 
+9.8 YB6B8 +2.3 YB7B11 +4.5 YB8B14 + 
+ 6.3 YB11B14 + 1.3 YB12B15 + 0.4 YB13B15 + 0.6 YB14B15 <= 703.3 
5.2 YC1C2 + 11.3 YC1C3 + 4.6 YC1C6 + 1.5 YC2C3 + 23.1 YC2C5 + 1.1 YC3C4 
+1.8 YC4C5 + 6 YC4C7 +1.5 YC5C8 +7.5 YC6C8 +5.9 YC6C10 
+ 3.2 YC7C12 + YC8C9 + 1.3 YC9C11 + 12.1 YC10C12 + 1.5 YC11C12 
<= 587.7 

row54:   15  YA1A2   +17.4  YA1A3   +   2   YA1A4   +11.1   YA2A5   +   1. YA4A7   +1.5  YA3A10 
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row55: 
row5 6: 
row57: 
row58: 

XN - 
XN - 
XN - 
22.5 
+ 2 

23.7 YA5A6 + 
1.7 YB1B2 + 
7.3 YB3B4 + 
3.2 YB6B7 + 
1.3 YB10B13 
5.2 YC1C2 + 
1.1 YC3C4 + 
3.2 YC7C12 
17.9205 XN 

XA11 >= 
XB15 >= 
XC12 >= 
YA1A2 + 

25 YA3A10 

16.9 YA6A8 + 
0.7 YB1B5 + 8 
5.1 YB3B7 + 7 
9.8 YB6B8 + 2 
+6.3 YB11B14 
11.3 YC1C3 + 
1.8 YC4C5 + 6 

+ YC8C9 +1.3 
<= 1795.6 
0 
0 
0 
26. 
+ 

12.6 YA7A10 +15.8 YA9A11 +10.3 YA10A11 
1 YB1B8 +0.3 YB2B3 +0.6 YB2B6 
5 YB4B14 +11.1 YB5B9 +3.4 YB5B10 
3 YB7B11 +4.5 YB8B14 +2.4 YB9B12 
+ 1.3 YB12B15 + 0.4 YB13B15 + 0.6 YB14B15 
:.6 YC1C6 +1.5 YC2C3 +23.1 YC2C5 
YC4C7 

YC9C11 
1.5 YC5C8 + 7.5 YC6C8 + 5.9 YC6C10 
12.1 YC10C12 +1.5 YC11C12 

YA2A5 +2.7 YA4A7 
+18.9 YA7A10 +23.7 YA9A11 

0.72 YA4A7 +0.6 YA3A10 
YA9A11 +4.12 YA10A11 

.1 YA1A3 + 3 YA1A4 + 16.65 
35.55 YA5A6 + 25.35 YA6A8 

+ 15.45 YA10A11 <= 325 
row59: 6 YA1A2 +6.96 YA1A3 +0.8 YA1A4 +4.44 YA2A5 i 

+9.48 YA5A6 +6.76 YA6A8 +5.04 YA7A10 +6.32 
<= 75 

row60: 2.55 YB1B2 +1.05 YB1B5 + 12.15 YB1B8 +0.45 YB2B3 +0.9 YB2B6 
+ 10.95 YB3B4 + 7.65 YB3B7 + 11.25 YB4B14 + 16.65 YB5B9 + 5.1 YB5B10 
+4.8 YB6B7 +14.7 YB6B8 +3.45 YB7B11 +6.75 YB8B14 +3.6 YB9B12 
+ 1.95 YB10B13 + 9.45 YB11B14 + 1.95 YB12B15 + 0.6 YB13B15 
+0.9 YB14B15 <= 125 

row61: 0.68 YB1B2 +0.28 YB1B5 +3.24 YB1B8 +0.12 YB2B3 +0.24 YB2B6 
+2.92 YB3B4 +2.04 YB3B7 + 3 YB4B14 +4.44 YB5B9 +1.36 YB5B10 

.92 YB7B11 + 1.8 YB8B14 + 0.96 YB9B12 
0.52 YB12B15 + 0.16 YB13B15 

row62: 

row63: 

row64: 

1.28 YB6B7 + 
0.52 YB10B13 
0.24 YB14B15 
8 YC1C2 + 16 
1.65 YC3C4 + 
8.85 YC6C10 + 

2.04 YB3B7 + 3 
3.92 YB6B8 + 0. 
+ 2.52 YB11B14 
<= 25 
95 YC1C3 +6.9 YC1C6 +2.25 YC2C3 + 34.65 YC2C5 
2.7 YC4C5 + 9 YC4C7 +2.25 YC5C8 + 11.25 YC6C8 
4.8 YC7C12 + 1.5 YC8C9 + 1.95 YC9C11 + 18.15 YC10C12 

YC2C3 +9.24 YC2C5 
6 YC5C8 + 3 YC6C8 
0.52 YC9C11 +4.84 YC10C12 

YA2A5 +2.7 YA4A7 
18.9 YA7A10 + 23. 

row65: 

+ 2.25 YC11C12 <= 200 
2.08 YC1C2 +4.52 YC1C3 +1.84 YC1C6 +0.6 
+ 0.44 YC3C4 + 0.72 YC4C5 + 2.4 YC4C7 + 0. 
+ 2.36 YC6C10 + 1.28 YC7C12 + 0.4 YC8C9 + 
+0.6 YC11C12 <= 50 
22.5 YA1A2 +26.1 YA1A3 + 3 YA1A4 + 16.65 
+2.25 YA3A10 + 35.55 YA5A6 + 25.35 YA6A8 +18.9 YA7A10 +23.7 YA9A11 
+ 15.45 YA10A11 + 2.55 YB1B2 + 1.05 YB1B5 + 12.15 YB1B8 + 0.45 YB2B3 
+ 0.9 YB2B6 + 10.95 YB3B4 + 7.65 YB3B7 + 11.25 YB4B14 + 16.65 YB5B9 
+ 5.1 YB5B10 + 4.8 YB6B7 + 14.7 YB6B8 + 3.45 YB7B11 + 6.75 YB8B14 
+ 3.6 YB9B12 + 1.95 YB10B13 + 9.45 YB11B14 + 1.95 YB12B15 
+ 0.6 YB13B15 + 0.9 YB14B15 + 7.8 YC1C2 + 16.95 YC1C3 + 6.9 YC1C6 
+ 2.25 YC2C3 + 34.65 YC2C5 + 1.65 YC3C4 + 2.7 YC4C5 + 9 YC4C7 
+ 2.25 YC5C8 + 11.25 YC6C8 + 8.85 YC6C10 + 4.8 YC7C12 + 1.5 YC8C9 
+ 1.95 YC9C11 + 18.15 YC10C12 + 2.25 YC11C12 <= 650 

row66: XB4 
Bounds 
0 <= YA1A2 <= 1.7 
0 <= YA1A3 <= 5.7 
<= YA1A4 <= 2.5 
<= YA2A5 <= 1.1 
<= YA4A7 <= 3.5 
<= YA3A10 <= 5 
<= YA5A6 <= 7.8 

YA6A8 <= 4.2 
YA7A10 <= 1.8 
YA9A11 <= 2.2 
YA10A11 <= 1 

YA1A2 +6.96 YA1A3 + 0. 
9.48 YA5A6 +6.76 YA6A8 
0.68 YB1B2 + 0 
2.92 YB3B4 + 2 
1.28 YB6B7 + 3 
0.52 YB10B13 + 
0.24 YB14B15 + 
9.24 YC2C5 + 0 
3 YC6C8 +2.36 YC6C10 +1.2 
4.84 YC10C12 + 0.6 YC11C12 

XA3 >= 0 

YA1A4 +4.44 YA2A5 +0.72 YA4A7 +0.6 YA3A10 
+5.04 YA7A10 +6.32 YA9A11 +4.12 YA10A11 

28 YB1B5 + 3.24 YB1B8 + 0.12 YB2B3 + 0.24 YB2B6 
04 YB3B7 + 3 YB4B14 +4.44 YB5B9 +1.36 YB5B10 
92 YB6B8 +0.92 YB7B11 +1.8 YB8B14 + 0.96 YB9B12 
2.52 YB11B14 + 0.52 YB12B15 + 0.16 YB13B15 
2.08 YC1C2 +4.52 YC1C3 +1.84 YC1C6 +0.6 YC2C3 
44 YC3C4 +0.72 YC4C5 +2.4 YC4C7 +0.6 YC5C8 

YC7C12 +0.4 YC8C9 +0.52 YC9C11 
150 

YB1B2 <= 9.7 
YB1B5 <= 1.7 
YB1B8 <= 22.8 
YB2B3 <= 17.7 
YB2B6 <= 8.9 
YB3B4 <= 8.7 
YB3B7 <= 3.6 
YB4B14 <= 8.3 

<= YB5B9 <= 3.4 
<= YB5B10 <= 8.5 
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0 <= YB6B7 <= 0.8 
0 <= YB6B8 <= 3.3 
0 <= YB7B11 <= 4.8 
0 <= YB8B14 <= 16.6 
0 <= YB9B12 <= 6 
0 <= YB10B13 <= 6.8 
0 <= YB11B14 <= 18.1 
0 <= YB12B15 <= 15 
0 <= YB13B15 <= 14.5 
0 <= YB14B15 <= 2.4 
0 <= YC1C2 <= 1.9 
0 <= YC1C3 <= 14.6 
0 <= YC1C6 <= 11.1 
0 <= YC2C3 <= 2.6 
0 <= YC2C5 <= 10.2 
0 <= YC3C4 <= 4 
0 <= YC4C5 <= 13.9 
0 <= YC4C7 <= 10.5 
0 <= YC5C8 <= 9.5 
0 <= YC6C8 <= 4.2 
0 <= YC6C10 <= 11.7 
0 <= YC7C12 <= 1.5 
0 <= YC8C9 <= 3.6 
0 <= YC9C11 <= 3.5 
0 <= YC10C12 <= 1.7 
0 <= YC11C12 <= 15.2 

YA8A9 = 0 
End 
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APPENDIX  C:      INITIAL  MASTER   PROBLEM  FORMULATION 

\Problem name:  mOl.lp 

Minimize 
OBJ: 67.9205 XN + 10000 dev 
Subject To 
row2:  - 20.2 alphal +61.5 betal >= 0 
row3:  XN - 86.1 alphal >= 0 
row4:  XN - 119.3 betal >= 0 
row5:  XN - 129.2 gammal >= 0 
row6:  17.9205 XN - dev <= 1795.6 
row7:  <= 650 
row8:  <= 150 
row9:  alphal = 1 
rowlO: betal = 1 
rowll: gammal = 1 

End 

where 

alphal represents the proposal from Project A in the first 

iteration, x\ , 

betal represents the proposal from Project B in the first 

iteration, x* , 

gammal represents the proposal from Project c in the first 

iteration, x* , 

and M =  10,000. 
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APPENDIX D;     INITIAL SUBPROBT.EM FORMUT.ATTON.C: 

SUfrprpfrlem   1; PROJECT   A 

\Problem name:   aOl.lp 

Minimize 
OBJ:   15  YA1A2   +17.4  YA1A3   +   2   YA1A4   +11.1  YA2A5   +1.8  YA4A7   +1.5   YA3A10 
+23.7  YA5A6   +16.9  YA6A8   +12.6  YA7A10   +15.8  YA9A11   +10.3   YA10A11 

Subject To 
row2 
row3: 
row4: 
row5: 
row6: 
row7: 
row8: 
row9: 
rowlO 
rowll 
rowl2 
rowl3 
rowl4 

rowlS: 

rowl6: 

- XA1 
- XA1 
- XA1 
- XA2 
- XA4 
- XA3 
- XA5 
- XA6 
- XA7 
- XA8 
- XA9 
- XA10 

>=  3 
>=   4.4 
>=  20. 
>=  2.8 
>=  11. 

XA2 + YA1A2 
XA4 + YA1A4 
XA3 + YA1A3 
XA5 + YA2A5 
XA7 + YA4A7 >= 11.1 
XA10 + YA3A10 >= 26 
XA6 + YA5A6 >= 32.8 
XA8 + YA6A8 >= 27.8 
XA10 + YA7A10 >= 8.1 
XA9 + YA8A9 >= 13.8 
XA11 + YA9A11 >= 5.9 

h  XA11   +   YA10A11   >=   1.5 
15  YA1A2   +17.4   YA1A3   +   2   YA1A4   +11.1   YA2A5   +1.8   YA4A7   +1.5  YA3A10 
+   23.7  YA5A6   +   16.9  YA6A8   +   12.6   YA7A10   +   15.8   YA9A11   +   10.3   YA10A11 
<=   504.6 
22.5 YA1A2 +26.1 YA1A3 + 3 
+2.25 YA3A10 + 35.55 YA5A6 
+23.7 YA9A11 + 15.45 YA10A11 <= 
6 YA1A2 +6.96 YA1A3 +0.8 YA1A4 

YA1A4 + 16.65 YA2A5 +2.7 YA4A7 
+ 25.35 YA6A8 +18.9 YA7A10 - 0 YA8A9 

9.48 YA5A6 +6.76 YA6A8 
4.12 YA10A11 <= 75 

325 
+4.44 YA2A5 + 0.72 YA4A7 +0.6 YA3A10 

+5.04 YA7A10 - 0 YA8A9 +6.32 YA9A11 

Bounds 
0 
0 
0 < 

< 
< 
< 
< 
< 
< 

<= YA1A2 <= 1.7 
<= YA1A3 <= 5.7 

YA1A4 
YA2A5 
YA4A7 

2.5 
1.1 
3.5 

0 • 
0 ■ 

End 

<= 
<= 
<= 

YA3A10 <= 5 
YA5A6 <= 7.8 
YA6A8 <= 4.2 
YA7A10 <= 1.8 
YA8A9 = 0 
YA9A11 <= 2.2 
YA10A11 <= 1 
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Subproblem 2: PROJECT B 

\Problem name:  bOl.lp 

Minimize 
OBJ:   1.7  YB1B2   +   0.7  YB1B5 
+5.1  YB3B7   +7.5  YB4B14   + 
+2.3  YB7B11   +4.5  YB8B14   - 

+8.1 YB1B8 +0.3 YB2B3 + 
11.1 YB5B9 +3.4 YB5B10 + 
2.4 YB9B12 +1.3 YB10B13 

0.6 YB2B6 +7.3 YB3B4 
3.2 YB6B7 +9.8 YB6B8 
+ 6.3 YB11B14 

+1.3 YB12B15 
Subject To 

+ 0.4 YB13B15 + 0.6 YB14B15 

row2: 
row3: 
row4: 
row5: 
row6: 
row7: 
row8: 
row9: 
rowlO 
rowll 
rowl2 
rowl3 
rowl4 
rowl5 
rowl6 
rowl7 
rowl8 
rowl9 
row20 
row21 
row22 

row23: 2 

XB1 
XB1 
XB1 
XB2 
XB2 
XB3 
XB3 
XB4 
XB5 
XB5 
XB6 
XB6 
XB7 
XB8 
XB9 
XB10 
XB11 
XB12 
XB13 
XB14 
.7 
5 

+ XB2 + YB1B2 >= 27.1 
+ XB8 + YB1B8 >= 35.4 
+ XB5 + YB1B5 >= 2.5 
+ XB3 + YB2B3 >= 25.3 
+ XB6 + YB2B6 >= 9 
+ XB4 + YB3B4 >= 9.1 
+ XB7 + YB3B7 >= 25.5 
+ XB14 + YB4B14 >= 32.7 
+ XB9 + YB5B9 >= 6.2 
+ XB10 + YB5B10 >= 24.8 
+ XB7 + YB6B7 >= 3.3 
+ XB8 + YB6B8 >= 15.6 
+ XB11 + YB7B11 >= 5.3 
+ XB14 + YB8B14 >= 27.4 
+ XB12 + YB9B12 >= 14 

XB13 
XB14 
XB15 
XB15 
XB15 

YB1B2 + 0. 
1 YB3B7 + 

>= 
>= 
>= 
>= 
>= 
8.1 

9.8 YB6B8 + 
6.3 YB11B14 
.55 YB1B2 +1.05 
10.95 YB3B4 + 7 
4.8 YB6B7 + 14. 
1.95 YB10B13 + 
0.9 YB14B15 <= 

YB10B13 
YB11B14 
YB12B15 
YB13B15 
YB14B15 
YB1B5 
5 YB4B14 +11.1 YB5B9 +3.4 YB5B10 +3.2 YB6B7 
3 YB7B11 +4.5 YB8B14 +2.4 YB9B12 +1.3 YB10B13 
1.3 YB12B15 + 0.4 YB13B15 + 0.6 YB14B15 <= 703.3 
YB1B5 + 12.15 YB1B8 +0.45 YB2B3 +0.9 YB2B6 
65 YB3B7 + 11.25 YB4B14 + 16.65 YB5B9 + 5.1 YB5B10 
YB6B8 +3.45 YB7B11 +6.75 YB8B14 +3.6 YB9B12 

18.1 
32.7 
21 
15.4 
3.4 
YB1B8 0.3 YB2B3 +0.6 YB2B6 +7.3 YB3B4 

9.45 YB11B14 
125 

+ 1.95 YB12B15 + 0.6 YB13B15 

row24: 68 YB1B2 + 0. 
2.92 YB3B4 + 
1.2 8 YB6B7 + 
0.52 YB10B13 

YB14B15 
Bounds 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

End 

YB1B2 
YB1B5 
YB1B8 
YB2B3 
YB2B6 
YB3B4 
YB3B7 
YB4B14 

24 

<= 
<= 
<= 
<= 
<= 
<= 
<= 

28  YB1B5   +3.24   YB1B8   +0.12   YB2B3   +0.24   YB2B6 
2.04  YB3B7   +   3   YB4B14   +4.44   YB5B9   +1.36  YBSB10 
3.92   YB6B8   +0.92   YB7B11   +1.8   YB8B14   +0.96  YB9B12 
+2.52   YB11B14   +0.52   YB12B15   +0.16   YB13B15 
<=  25 

9.7 
1.7 
22.8 
17.7 
8.9 
8.7 
3.6 

= 8.3 
YB5B9 <= 3.4 

<= YB5B10 <= 8.5 
<= YB6B7 <= 0.8 

YB6B8 <= 3.3 <= 
<= YB7B11 <= 
<= YB8B14 <= 
<= YB9B12 <= 

YB10B13 
YB11B14 
YB12B15 
YB13B15 
YB14B15 

4.8 
16.6 
6 
6.8 
18.1 
15 
14.5 
2.4 
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SubProblem 3:  PRQJKCT r 

\Problem name: cOl.lp 

Minimize 
OBJ: 5.2 YC1C2 +11.3 
+1.8 YC4C5 + 6 YC4C7 
+ YC8C9 +1.3 YC9C11 - 

Subject To 

YC1C3 + 4.6 YC1C6 +1.5 YC2C3 +23.1 YC2C5 + 1 1 YC3C4 
+ 1.5 YC5C8 + 7.5 YC6C8 + 5.9 YC6C10 + 3.2 YC7~6l2 
12.1 YC10C12 + 1.5 YC11C12 

row2 
row3 
row4 
row5 
row6 
row7 
row8 
row9 
rowlO 
rowll 
rowl2 
rowl3 
rowl4 
rowl5 
rowl6 
rowl7 
rowl8 

XC1 
- XC1 
- XC1 
- XC2 
- XC2 
- XC3 
- XC4 
- XC4 
- XC5 
- XC6 
- XC6 
- XC7 
- XC8 
- XC9 
- XC10 + 

XC2 
XC3 
XC6 
XC3 
XC5 
XC4 
XC5 
XC7 
XC8 
XC8 
XC10 + 
XC12 + 
XC9 
XC11 + 
XC12 

YC1C2 
YC1C3 

20 
32 

+ YC1C6 >= 24.2 
YC2C3 
YC2C5 
YC3C4 

>= 2.7 
19.2 
25.8 

- XC11 + XC12 
5.2 YC1C2 + 11 
+1.8 YC4C5 + 
+3.2 YC7C12 + 
<= 587.7 

rowl9: 7.8 YC1C2 + 16 
+1.65 YC3C4 + 
+8.85 YC6C10 
+ 2.25 YC11C12 

row20: 2.08 YC1C2 + 4 
+ 0.44 YC3C4 + 
+ 2.36 YC6C10 
+0.6 YC11C12 

YC4C5 >= 16.2 
YC4C7 >= 18.9 
YC5C8 >= 9.6 
YC6C8 >= 21.2 
YC6C10 >= 28.7 
YC7C12 >= 2.4 

YC8C9 >= 9.5 
YC9C11 >= 6.8 

+ YC10C12 >= 2.4 
• YC11C12 >= 28.8 
3 YC1C3 +4.6 YC1C6 

6 YC4C7 +1.5 YC5C8 H 
YC8C9 + 1.3 YC9C11 H 

+1.5 YC2C3 +23.1 YC2C5 +1.1 YC3C4 
7.5 YC6C8 + 5.9 YC6C10 
12.1 YC10C12 + 1.5 YC11C12 

<= 

Bounds 
0 <= YC1C2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.95 YC1C3 +6.9 YC1C6 +2.25 YC2C3 + 34.65 YC2C5 
2 7 YC4C5 + 9 YC4C7 + 2.25 YC5C8 + 11 25 YC6C8 

+<='Ioo°     + 1-5 YC8C9 + 1-95 YC9CU + 18-15 YC10C12 
.52 YC1C3 +1.84 YC1C6 +0.6 YC2C3 + 9 24 YC2C5 
0.72 YC4C5 +2.4 YC4C7 +0.6 YC5C8 + 3 YC6C8 

+ 1^28 YC7C12 + 0.4 YC8C9 + 0.52 YC9C11 + 4.84 YC10C12 

<= 1.9 
YC1C3 <= 14.6 

<= YC1C6 <= 11.1 
<= YC2C3 <= 2.6 
<= YC2C5 <= 
<= YC3C4 <= 

YC4C5 <= YC4C5 <= 
<= YC4C7 <= 
<= YC5C8 <= 

YC6C8 <= 
YC6C10 <: 

10.2 
4 
13.9 
10.5 
9.5 
4.2 
11.7 

0 <= YC7C12 <= 1.5 
YC8C9 <= 3.6 
YC9C11 <= 3.5 
YC10C12 <= 1.7 

0 
0 
0 
0 <= YC11C12 <= 15.2 

End 
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APPENDIX  E;      MPS   PROGRAM  CODF 

Visual  Basic  for MS Excel V5.0  Code 

Option Base 1 
Option Explicit 

Sub MakeMPSO 

Dim filename,  problem_name,   signcol,   MPS_data,   obj_row As String 
Dim num_MPS_data,   i,   r,   c As  Integer 

c =  1 
r = 2 
filename = InputBox("Enter a valid path and filename for the file (*.mps):") 
Open filename For Output As #1 

MPS_data = InputBox("Enter the number of the data sheet to be used:") 
num_MPS_data = CInt(MPS_data) 
problem_name = lnputBox("Type an identifier (name) for the problem:") 
signcol = InputBox("Enter the column of number of the signs column:") 
obj_row = InputBoxl"Enter the row number of the objective coefficients row:") 

Print #1, "NAME"; Tab(15); problem_name 
Print #1, "ROWS" 
Print #1, Tab(2); "N"; Tab(5); "OBJ" 
Do While (Worksheets(num_MPS_data).Cells(r, CInt(signcol)).Value) <> "" 

Print #1, Tab(2); Worksheets(num_MPS_data).Cells(r, CInt(signcol)).Value; 
Tab(5); "row" & CStr(r) 

r = r + 1 
Loop 
Print #1, "COLUMNS" 
Do While (Worksheets(num_MPS_data).Cells(1, c).Value) <> *■ 

If (Worksheets(num_MPS_data).Cells(CInt(obj_row), c).Value) <> "0" Then 
Print #1, Tab(5); Worksheets(num_MPS_data).Cells(1, c).Value; Tab(15); "OBJ"; 

Tab(25); Worksheets(num_MPS_data).Cells(CInt(obj_row), c).Value 
End If 
For i = 2 To r - 1 

If Worksheets(num_MPS_data).Cells(i, c).Value <> ■• Then 
Print #1, Tab(5); Worksheets(num_MPS_data).Cells(1, c).Value; Tab(15); 

"row" &  CStr(i); Tab(25); Worksheets(num_MPS_data).Cells(i, c).Value 
End If 

Next i 
c = c + 1 

Loop 
r = 2 
Print #1, "RHS" 
Do While (Worksheets(num_MPS_data).Cells(r, CInt(signcol + 1)).Value) <> "" 

Print #1, Tab(5); "RHS"; Tab(15); "row" &  CStr(r); Tab(25); 
Worksheets(num_MPS_data).Cells(r, CInt(signcol + 1)).Value 

r = r + 1 
Loop 
Print #1, "BOUNDS" 
Do While (Worksheets(num_MPS_data).Cells(r, 1).Value) <> ■■ 

Print #1, Tab(2); "LO"; Tab(5); "BOUNDSET"; Tab(15); 
Worksheets(num_MPS_data).Cells(r, 3).Value; Tab(25); _ 
Worksheets(num_MPS_data).Cells(r, 1).Value 

Print #1, Tab(2); "UP"; Tab(5); "BOUNDSET"; Tab(15); 
Worksheets(num_MPS_data).Cells(r, 3).Value; Tab(25); _ 
Worksheets(num_MPS_data).Cellsjr, 5).Value 

r = r + 1 
Loop 
Print #1, "ENDATA" 
Close #1 

End Sub 
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Example Spreadsheet 

XA1 XA2 XA3 XA4 XA5 XB1 XB2 XB3 XB4 
-1 1 G 3 
-1 1 G 4.4 
-1 1 G 20.2 

-1 1 G 2.8 
-1 G 11.1 

-1 G 26 
-1 G 32.8 

-1 1 G 0 
-1 1 G 27.1 
-1 G 35.4 
-1 G 2.5 

-1 1 G 25.3 
-1 G 9 

-1 1 G 9.1 
-1 G 25.5 

-1 G 32.7 
0 <= XA1 <= 1.7 
0 <= XA2 <= 5.7 
0 <= XA3 <= 2.5 
0 <= XA4 <= 1.1 
0 <= XA5 <= 3.5 
0 <= XB1 <= 5 
0 <= XB2 <= 7.8 
0 <= XB3 <= 4.2 
0 <= XB4 <= 1.8 

1 2 3 4 5 1 2 3 4 
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APPENDIX F;  MATHCAP TEMPLATE 

For each project, the program constraint matrix At  was 

constructed.  These matrices were used in calculating the new project 

objective functions at each iteration.  See below for a partial view of 

each matrix. 

|o   io    lo   !o 
So   io    !o   io 
io 

A = 

foslj's-TifiiviI 

lo    lo   lo 
lo   io    lo lo 
12    111.1 il.8 

|3 1.16.63.2.7 

|0.8J.4.44 JO.721 

m±ji,l%il2üjzljxl 
0 lo 
o lo 
0  10 
0  0 

1.5 23.7 116.9 

2.25! 

0.6 

0 lo lo lo 
0 |0 jo jo 
0 10 10 10 
0 lo 10 jo 
12.610 115.8! 10.3 

35.55125.35 18.9J0 123.7; 15.451 

9.48 16.76 5.0410    J6.32j4.12l 

Ij7j   ft 1 )Q|>0|  31, 122 1  V | H3 Vt'n'fll'l # i't'tftTit'l 

io   lo o    o o   io   io o   io    io 
go   jo 0    jO      10    !0    10      i0    |0      10      1 

l-i lo 
B = S" 

0   io     io   10   10 lo 0      |0 

io 12 0    JO      10    10    10      10 0 0 

lo 
44+  

lo 
11.7 

12.55 

0.7 |8.1    jO.3 JO.6 17.3    15.1 

1.05112.1510.4510.9 110.95! 7.65! 

7.5 

11.25! 

11.1 I 
 i 

16.651 

lO    10.68 0.2813.24 I0.12l0.24l2.92 12.041 4.44 ! 

(- — äl 

1- pii 111 |flll It.     17 fill pllpii:; !II[ 
lo 1° o io o   |o io io io 0  ! 

io 
io 

10 

lo 
o 
0 

lo 
lo 

0   jo 
0    |0 

10 

10 

|o   So 
lo   lo 

3 

0   ! 

0   i 

1-1 10 0 10 0    10 10 io io 0   1 
!o |5.2 11.3 U.6 1.5 123.1 ! l.i 11.8 J6 1.51 
lo 17.8 16.9516.9 2.25! 34.6511.65 |2.7 19 2.25! 

io J2.08 4.52 11.84 0.6 19.24 10.44 10.72! 2.4 0.6 1 

The shadow prices from the Master Problem were entered as a column 

vector at each iteration and the new project objective function 
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determined.  See below for an example of a shadow price column and the 

equations for determining the objective function coefficients. 

0 

0 

0 

172972.920! 

-10000 

0 

0 

T   T , 
C A - 7li    A :B *2 B cc -n2  C 

Once the subproblems were solved,   the extreme points  generated,   if 

beneficial to the program,  were converted  into columns  for the Master 

Program.     See below for examples  of  this  conversion. 

(A-XA4
T

)   =(-20.2-75.04135 0   0   187.500005 281.250007 75.000002) i cA-XA4
T = 187.500005i 

fB-XB4
T)   =(65.5  0-99.2 0   6.75   10.125 2.7 ) i cB-XB4

T = 6.75 i 

(c-XC4
TJ   =(0   0   0-93.4 49.6  74.4   19.84) ■ cc-XC4

T =49.6 i 
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APPENDIX G:  DANTZIG-WOLFE MASTER PROBLEM RESULTS 

TABLE Gl 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 1 

Dantzig-Wolfe Variables Non-zero Values  
Objective Function (z)       $52,060,613,286 

KN 129.2 

K 1 
xH\ 1 
*■ 1 

TABLE G2 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 1 

Event Node Time of Event   Activity crashed   Amount Crashed 
XA1 0 
XA2 3 
XA3 20.2 
XA4 4.4 
XA5 5.8 
XA6 38.6 
XA7 15.5 
XA8 66.4 
XA9 80.2 
XA10 46.2 
XA11 86.1 
XB1 0 
XB2 27.1 
XB3 52.4 
XB4 61.5 
XB5 2 .5 
XB6 3 6.1 
XB7 77 .9 
XB8 51.7 
XB9 8.7 
XB10 27.3 
XB11 83.2 
XB12 22.7 
XB13 45.4 
XB14 115.9 
XB15 119.3 
XC1 0 
XC2 20.3 
XC3 32.5 
XC4 58.3 
XC5 74.5 
XC6 24.2 
XC7 77.2 
XC8 84.1 
XC9 93.6 
XC10 52.9 
XC11 100.4 
XC12 129.2 
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TABLE G3 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 2 

Dantzig-Wolfe Variables Non- -zero Values 
Objective Function (z) $36 597,786,445 

XN 119.3 

< 1 
* 1 

< .182797 
* .817203 

TABLE G4 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 2 

Event Node Time of Event   Activity crashed   Amount Crashed 
XA1 0 
XA2 3 
XA3 20.2 
XA4 4.4 
XA5 5.8 
XA6 38.6 
XA7 15.5 
XA8 66.4 
XA9 80.2 
XA10 46.2 
XA11 86.1 
XB1 0 
XB2 27 .1 
XB3 52.4 
XB4 61.5 
XB5 2 .5 
XB6 3 6.1 
XB7 77.9 
XB8 51.7 
XB9 8.7 
XB10 27.3 
XB11 83.2 
XB12 22.7 
XB13 45.4 
XB14 115.9 
XB15 119.3 
XC1 0 (C1,C3) 3.6 
XC2 24.4 
XC3 28.9 (C3,C4) 3.3 
XC4 51.4 (C4,C5) 11.4 
XC5 56.2 (C5,C8) 7.8 
XC6 24.2 
XC7 73.5 
XC8 58.1 (C8,C9) 2.9 
XC9 64.6 (C9,C11) 2.9 
XC10 52.9 
XC11 68.6 (C11,C12) 12.4 
XC12 84.9 
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TABLE G5 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 3 

Dantzig-Wolfe Variables Non-zero Values 
Objective Function (z) $59,648,472 

XN 86.1 
x/ 1 
x„J .165097 
* .834903 
x; .132797 
x.J .867203 

TABLE G6 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 3 

Event Node      Time of Event   Activity crashed   Amount Crashed 
 XÄT o  

XA2 3 
XA3 20.2 
XA4 4.4 
XA5 5.8 
XA6 38.6 
XA7 15.5 
XA8 66.4 
XA9 80.2 
XA10 46.2 
XA11 86.1 
XB1 0               (B1,B2)              8.1 
XB2 19.0            (B2,B3)            14.8 
XB3 29.5            (B3,B7)             3.0 
XB4 48.4 
XB5 18.1 
XB6 35.6 
XB7 52.0             (B7,B11)             4.0 
XB8 51.2 
XB9 38.6 
XB10 42.9 
XB11 53.3            (B11,B14)             1.3 
XB12 52.6 
XB13 61.0 
XB14 84.7           (B14,B15)            2.0 
XB15 86.1 
XC1 0 
XC2 28.5 
XC3 32.5            (C3,C4)             3.5 
XC4 54.8            (C4,C5)            12.0 
XC5 59.0            (C5,C8)             8.2 
XC6 24.2 
XC7 77.1 
XC8 60.3            (C8,C9)             3.1 
XC9 66.7            (C9,C11)            3.0 
XC10 52.9 
XC11 70.5           (C11,C12)           13.2 
XC12 86.1 
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TABLE G7 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 4 

Dantzig-Wolfe Variables Non-zero Values 
Objective Function (z) $56,504,200 

XN 79.5 
x/ .406340 
x/ .593660 
x„3 1 
V .997488 

.002512 

TABLE G8 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 4 

Event Node      Time of Event   Activity crashed  Amount Crashed 
 XA1 0 (Ai7Ä2) l"."Ö  

XA2 2.0 (A2,A5) 0.7 
XA3 20.2 
XA4 4.4 
XA5 4.1 (A5,A6) 1.1 
XA6 3 5.8 (A6,A8) 2.5 
XA7 15.5 
XA8 61.1 
XA9 74.9 (A9,A11) 1.3 
XA10 46.2 
XA11 79.5 
XB1 0 (B1,B2) 9.7 
XB2 17.4 (B2,B3) 17.7 
XB3 25.0 (B3,B7) 3.6 
XB4 45.8 
XB5 21.2 
XB6 35.5 
XB7 46.9 (B7,B11) 4.8 
XB8 51.1 
XB9 44.5 
XB10 46.0 
XB11 47.4 (B11,B14) 1.6 
XB12 58.5 
XB13 64.1 
XB14 78.5 (B14,B15) 2.4 
XB15 79.5 
XC1 0 
XC2 29.8 
XC3 32.5 (C3,C4) 4 
XC4 54.3 (C4,C5) 13.9 
XC5 56.6 (C5,C8) 9.5 
XC6 24.2 
XC7 77.1 
XC8 56.7 (C8,C9) 3.6 
XC9 62.6 (C9,C11) 3.5 
XC10 52.9 
XC11 65.9 (C11,C12) 15.2 
XC12 79.5 
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TABLE G9 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 5 

Dantzig-Wolfe Variables Non-zero Values 
Objective Function (z) $56,414,740 

XN 19.5 
x/ .286404 
x/ .713596 

5 
x» 1 
xr .997488 
X* .002512 

TABLE G10 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 5 
^*M^AftftAAMMMAM**MAM*MMMft« ■ ■ ■ ll»ww«*Y^YtfiVVWWWW|WV|V>V|Vf^lWlinPAAfjmV^ 

,..?.Y.e.n.t..Node Time of Event   Activity crashed   Amount Crashed 
XA1  0 '("Äl',"Ä2J l"."2  
XA2 1.8 (A2,A5) 0.8 
XA3 20.2 
XA4 4.4 
XA5 3 .8 
XA6 3 6.6 (A6,A8) 3.0 
XA7 15.5 
XA8 61.4 
XA9 75.2 (A9,A11) 1.6 
XA10 46.2 
XA11 79.5 
XB1 0 (B1,B2) 9.7 
XB2 17.4 (B2,B3) 17.7 
XB3 25.0 (B3,B7) 3.6 
XB4 45.8 
XB5 21.2 
XB6 26.4 
XB7 46.9 (B7,B11) 4.8 
XB8 42.0 
XB9 44.5 
XB10 46.0 
XB11 47.4 (B11,B14) 1.6 
XB12 58.5 
XB13 64.1 
XB14 78.5 (B14,B15) 2.4 
XB15 79.5 
XC1 0 
XC2 29.8 
XC3 32.5 (C3,C4) 4 
XC4 54.3 (C4,C5) 13.9 
XC5 56.6 (C5,C8) 9.5 
XC6 24.2 
XC7 77.1 
XC8 56.7 (C8,C9) 3.6 
XC9 62.6 (C9,C11) 3.5 
XC10 52.9 
XC11 65.9 (C11,C12) 15.2 
XC12 79.5 
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TABLE Gil 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 6 

Dantzig -Wolfe Variables      Non-zero Values 
Objective Function 

XN 
*/ 

(z) $56,390,249 
79.5 

.588294 

.411706 
1 

.997488 

.002512 

TABLE G12 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 6 

...?.y.S5L.Node Time of Event   Activity crashed   Amount Crashed 
XA1  0 '(Äi","Ä"2) l"."7  
XA2 1.3 (A2,A5) 1.1 
XA3 20.2 
XA4 4.4 
XA5 3 
XA6 3 5.8 (A6,A8) 2.5 
XA7 15.5 
XA8 61.1 
XA9 74.9 (A9,A11) 1.3 
XA10 46.2 
XA11 79.5 
XB1 0 (B1,B2) 9.7 
XB2 17.4 (B2,B3) 17.7 
XB3 25.0 (B3,B7) 3.6 
XB4 45.8 
XB5 21.2 
XB6 26.4 
XB7 46.9 (B7,B11) 4.8 
XB8 42 .0 
XB9 44.5 
XB10 46.0 
XB11 47.4 (B11,B14) 1.6 
XB12 58.5 
XB13 64.1 
XB14 78.5 (B14,B15) 2.4 
XB15 79.5 
XC1 0 
XC2 29.8 
XC3 32.5 (C3,C4) 4 
XC4 54.3 (C4,C5) 13.9 
XC5 56.6 (C5,C8) 9.5 
XC6 24.2 
XC7 77.1 
XC8 56.7 (C8,C9) 3.6 
XC9 62.6 (C9,C11) 3.5 
XC10 52.9 
XC11 65.9 (C11,C12) 15.2 
XC12 79.5 
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TABLE G13 

DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 7 
fMMvwvwvvvvwvwwwvM«wwvwvvwvvwvvwww>ivnvinnivvv^ nrtvwvwv*>l"»vv*viArtrtrtrt«vvwvvYvvv*wirtrtVw 

Dantzig-Wolfe Variables Non-zero Values 
Objective Function (z) $56,380,285 

XN 79.5 
xA

s .372638 
x/ .627362 

5 
1 

xr .997488 
.002512 

TABLE G14 

TRANSLATION OF DANTZIG-WOLFE MASTER PROBLEM RESULTS - ITERATION 7 

 .?.Y.e.nL.Node .T.i5l®..of...Event   Activity crashed   Amount Crashed 
XA1 Ö       '('ÄlTÄIj l"."7  
XA2 1.3 (A2,A5) 1.1 
XA3 
XA4 
XA5 
XA6 35.8 (A6,A8) 1.6 
XA7 
XA8 
XA9 75.8 (A9,A11) 2.2 
XA10 
XA11 
XB1 0 (B1,B2) 9.7 
XB2 17.4 (B2,B3) 17.7 
XB3 25 (B3,B7) 3.6 
XB4 
XB5 
XB6 
XB7 46.9 (B7,B11) 4.8 
XB8 
XB9 
XB10 
XB11 47.4 (B11,B14) 1.6 
XB12 
XB13 
XB14 78.5 (B14,B15) 2.4 
XB15 
XC1 
XC2 
XC3 32.5 (C3,C4) 4 
XC4 54.3 (C4,C5) 13.9 
XC5 56.6 (C5,C8) 9.5 
XC6 
XC7 
XC8 56.7 (C8,C9) 3.6 
XC9 62.6 (C9,C11) 3.5 
XC10 
XC11 65.9 (C11,C12) 15.2 
XC12 79.5 

0 
1. 3 
20 .2 
4. 4 
3 

35 .8 
15 .5 
62 .0 
75 .8 
46 .2 
79 .5 

0 
17 .4 
25 

45 8 
21 2 
26 4 
46 9 
42 

44 5 
46 0 
47 4 
58 5 
64 1 
78 5 
79 5 

0 
29 8 
32 5 
54 3 
56. 6 
24. 2 
77. 1 
56. 7 
62. 6 
52. 9 
65. 9 
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APPENDIX H:  ACTIVITY "EXTEMDTNC:" 

DANTZIG-WOLFE MARTER PROBLEM REfiTTT.T.c: 

Introduction 

The inclusion of activity "extending" in the Base Model involves 

the introduction of some additional variables in the Base Model.  These 

additional variables are incorporated into the Subproblems of the 

Dantzig-Wolfe Decomposition Model.  The Dantzig-Wolfe Decomposition 

algorithm operates in the same manner as that described in Chapter III. 

To develop the Extended Base Model, the assumptions, notation, and 

general form of the Base Model are retained.  This Appendix describes 

the additional assumptions, introduces the new variables, and presents 

the results of the Dantzig-Wolfe Master Problem on this Extended Base 

Model. 

Extended Model Assumptions 

The following assumption has been added to the Base Model 

Assumptions of Chapter III. 

5) Activity "extending" is allowed up to an upper bound 

(JN^) for each activity (i,j) 

6) The time/cost tradeoff function for activity "extending" 

will be modeled as a linear relation at this aggregate 

level 

While "extending" is allowed as a possibility for all activities, 

it may be applied to only a subset of activities is operationally 

required.  Such a restriction would have the added benefit of reducing 

the model size. 



Extended Model Notation 

To incorporate activity  "extending,"  the  following variables are 

introduced.     Let: 

Zii   =  number   of   time   units   activity   (i, j)   extended 

K1:l   -  cost   per   time   unit   activity   (i, j)   extended   (zi:j) 

■dij2   =  personnel   months   per   time   unit 

activity   (i, j)   extended   (z^.) 

Ni:j   -  upper  bound  on   Za. . 

Extended Model 

Objective Function.  The extended model's new variables change 

only the form of the minimum cost objective function in the Base Model. 

The second objective function form, minimizing program duration, remains 

unchanged.  Introducing the Extended Model variables into the Base Model 

objective function gives the following: 

z = (OH   + eb) ■  Xn   +  X X KijYij   -  XlKijZj, 

The negative coefficient in front of the activity "extending" 

variables represent the program being rewarded for using less than the 

normal amount of resources for an activity.  This reward is not a 

justification for the extension of a program, rather it allows a program 

decision maker to take resources away from non-critical path activities 

and apply those resources to critical path activities.  In this model, a 

critical path activity would be extended only if the cost savings gained 

by extending the activity outweighed any potential additional overhead 

and bonus opportunity loss incurred by lengthening the overall program 

duration. 
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Budget Constraints.  The budget constraints, both project and 

program level, for the Extended Model include the same summation term 

introduced in the Objective Function section above.  Again, the negative 

coefficient represents the additional funds being made available to the 

project and program budgets.  The budget constraints then have the 

following forms for project and program, respectively: 

SS^i^ii   - IEKi;Zi;   *  Bk   - X5>ij   Vk   and   (i,j)  €  Ik 
i      J i      i i      J 

i   J i   J i       j 

Note that the Yti  and Zi:j  columns form dependent vectors in the 

constraint matrix. 

Personnel-Month Constraints.  The changes in the personnel-month 

constraints reflect the additional months made available by not applying 

the normal personnel-month requirements to "extended" activities.  The 

equations for the personnel-month constraints for the project and the 

program, respectively, are given as follows: 

111^/^   -XSE^iji^   ^   PHkl,    Vk.l   and   {i,j)  €  J, 
i    j    i i    j    i 

ZEE5^;   -EZE^jiZi;   ^  PHi>    V-Z   and   (i, j) e  J 
i      3      1 i      j      1 

Due Date Constraints.  The due date constraint of the Base Model 

remains unchanged.  However, it now represent the absolute date that the 

program can not be extended beyond.  If the activity extension 

variables, Zijt   are not all bounded above by the Nijt   then this 

constraint acts as the limiting factor as to how long an activity can be 

extended. 
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Precedence Constraint's.  The precedence constraints now reflect 

the additional activity extension variables.  If an activity is 

extended, then the number of time units extended is added to the normal 

duration time of the activity.  The precedence relation constraints for 

the project and the program, respectively, are as follows: 

- Xd   + Xj   +  Yii   - Zdj    >   Tijl        for (i, j) 6 Ik    V*. 

- X,   + Xj   + Ytj   - ztJ   >   TiJt       for (i, j) e j. 

Pantzig-WQlfe Decomposition Problem Formular inn 

Extended Model Master Problem.  The Dantzig-Wolfe Master Problem 

follows the development discussed in Chapter 3 and is of the same form 

as given in Chapter 3.  The changes to the program level constraints 

presented in this Appendix are reflected in the coupling constraint 

coefficient matrix variables, ak,   introduced in Chapter 3. 

Extended Model Subproblems-  The Dantzig-Wolfe Subproblems for the 

Extended Model reflect the changes made to the constraints of the Base 

Model as would be as follows: 
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Minimize z   =  (ck   - nak)xk 

subject to 

ZX^i^ij - ZZ*^ * Bk -  ZZ^j V* and (i, j) e J, 
1      J i      J J  j 

EXI^,^ "ZZZ^i.i^, < Pi^, VJc,l and (i,j)  e J, 
i  J  -I i  j  J 

- X, + X:. + Ytj   - Zu >   Tijt       for (i, j) e J, VJc. 

0 < Yi7. < Mu for (i, j) e Ik 

0 < Zi:/ < Ni0. for (i, j) e Jk 

where 

ck    =   the objective function coefficients 

associated with project k 

ak    =   the coupling constraint coefficient matrix 

associated with project k 

xk    =   the variables associated with project k 

it   = the shadow prices associated with the common 

constraints received from the Master Problem 
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Extended Example 

The illustrative example presented in Chapter 4 serves as the Base 

Model for the Extended Model.  The coefficients for the activity 

"extending" costs are half of the coefficients for activity "crashing" 

nCi ■ = 0.5 • Kij] .  The personnel-months coefficients are similar 

idfjj = 0.5 • Sij!)-     The upper bound on the activity "extending" 

variables is twice the upper bound of the "crashing" variables 

\Ni:J    =   2 • Mij).     Of course, actual cost and savings would be utilized 

in an operational setting. 

Results 

The results from the Dantzig-Wolfe Decomposition Algorithm are 

similar to those presented in Chapter 4.  In the solving of the 

subproblems, the activities are either "crashed", "extended", or left 

alone.  However, the initial Master Problem iteration results provide 

convex combinations of activities that may have activities being both 

"crashed" and "extended."  This occurs until an initial basic feasible 

solution is found in the Master Problem (remember we used a deviational 

variable to relax the budget constraint).  See Figures 10 to see the 

Master Problem Iteration Results and Figure 11 to see the minimum 

personnel-months requirement at each iteration of the Dantzig-Wolfe 

Master Problem.  Clearly, extending can be applied to the type of 

formulation, if it is justified by the operational setting. 
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Dantzig-Wolfe Master Problem Iteration 
Results - Extended Model 
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Figure 10.  Dantzig-Wolfe Master Problem Iteration Results - Extended 

Model 

Figure 10 lists the cost (vertical bars) and the program duration 

(in parentheses) at each iteration.  However, the first two iterations 

bases contain the deviational variable introduced previously.  At 

iterations 3, 4 and 5, the program schedules generated by the master 

program contain convex combinations of dependent vectors; therefore, 

these program schedules are meaningless in the extended model solution 

space.  However, in iterations 6 to 9, the master problem solutions 

correspond to feasible program schedules in the extended model solution 

space. 
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Dantzig-Wolfe   Master   Problem   Minimum   Personnel 
Months   -   Extended   Model 
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Extended Model 
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