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Abstract —A new texture classification algorithm 
using wavelet packet transform is proposed. It uses 
principal component analysis technique and statis- 
tical distance measurement to combine and select 
frequency channel features to give improved clas- 
sification performance. Comparison is also made 
between wavelet packet transform features and 
Fourier transform features on a set of eight optical 
texture images with several level of white noise 
added. Both algorithms are successfully applied to 
the classification of under-ice sidescan sonar imag- 
es. 

I. INTRODUCTION 

Texture analysis has found many important 
applications in such areas as medical imaging, 
computer vision, and remote sensing. Many 
successful algorithms have been proposed over the 
last few decades. Recently, multichannel analysis 
methods, including texture energy measurement [1], 
the eigenfilter method [2], and Garbor filter method 
[3], have been repetitively proved to perform better 
than other techniques. The newly developed wavelet 
analysis technique [4] [5] provides yet another useful 
framework for multiscale image processing. The 
texture research community is currently devoting 
considerable effort to wavelet applications in texture 
analysis. Henke-Reed and Cheng [6] applied wavelet 
transforms to texture images, using the energy ratios 
between frequency channels as features. Chang and 
Kuo [7] proposed a tree-structured wavelet transform 
algorithm for texture classification, which is similar 
to the wavelet packet best bases selection algorithm 
of Coifman [5]. Laine and Fan [9] used the wavelet 
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packet transform energy measurements directly as 
texture features in their texture classification 
approach. 

These researchers have demonstrated that the 
wavelet transform is a valuable tool for texture 
analysis. However, a common problem with these 
approaches is that they are all direct applications of 
existing wavelet processing algorithms, which are 
ideal for signal representation but not necessarily the 
best for signal discrimination. To fully utilize the 
power of a wavelet packet transform, new techniques 
tailored for extracting features of greater 
discrimination ability must be developed. Iff this 
paper we propose the use of principal component 
analysis technique and statistical distance 
measurement to combine and select frequency- 
channel features that give improved classification 
performance. 

We also compare this new approach with the 
Fourier transform texture classification method 
which we proposed in [9]. Just as the ideal tool for 
nonstationary signal analysis is a wavelet transform, 
the ideal tool for stationary signal is a Fourier 
transform. Since texture signals are mostly 
stationary, we should expect the Fourier transform to 
generate better results. 

The new algorithms are tested on two data sets. 
The first includes eight types of natural optical 
images obtained from the MIT Media Lab Vistex 
texture data base. We hope to get more conclusive 
result from this larger classes of data. For our real 
world application, we apply the algorithms on a 
second set of sidescan sonar images from a sonar 
survey of an Arctic under-ice canopy [10]. 

We first give a brief review of the wavelet 
transform and wavelet packet transform in section II. 
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The proposed feature selection methods are 
described in section III. The experimental results on 
vistex textures and the sidescan sonar images are 
reported in section IV. Finally, We draw the 
conclusion in section V. 

II. WAVELET AND WAVELET 
PACKET TRANSFORM 

For simplicity, a one dimensional discrete signal 

flk) of length n = 2n0 is used in this section. The 
wavelet transform can be thought of as a smooth 
partition of the signal frequency axis. First, a 
lowpass filter h(m) and a highpass filter g(m) of 
length M are used to filter the signal into two 
subbands, which are then downsampled by a factor 
of two. Let H and G be the convolution- 
downsampling operators defined as: 

M-l 

Hf{k)  =  ^h(m)f(2k + m) , (1) 
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Figure 1. Standard wavelet transform binary tree. 

m = 0 

M-l '0,0 

G/(*0  =  £g(m)/(2fc + m) (2) 
m = 0 

H and G are called perfect reconstruction 
quadrature mirror filters (QMFs), if they satisfy the 
following orthogonality conditions: 

HG* = GH* = 0, 

H*H + G*G = I, 

(3) 

(4) 

where H* and G* are the adjoint (i.e., upsampling-an- 
ticonvolution) operators of H and G respectively, and 
/ is the identity operator. This filtering and downsam- 
pling process is continued iteratively on the low-fre- 
quency subbands. At each level of the process, the 
high-frequency subband is preserved. When the pro- 
cess reaches the highest decomposition level, both the 
low- and high-frequency bands are kept. If the maxi- 
mum processing level is L, the discrete wavelet coeffi- 
cients of signal fik) are then {Gf, GHf, GH2f,..„ GHL, 
HL+If] of the same length n as the original signal. 
Due to the orthogonality conditions of H and G, each 
level of decomposition can be considered as a decom- 
position of the vector space into two mutually orthog- 
onal subspaces. Let V00 denote the original vector 
space R", and Vl0 and V1 j be the mutually orthogo- 
nal subspaces generated by applying H and G to V00. 
Then, the /th level of decomposition can be written as 
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Figure 2. Wavelet packet transform binary tree. 

V, ',o vui,o®vi+i.i- (5) 

for   /   =   0,   I    L.   Figure   1   shows   such   a 
decomposition process. Each subspace Vib with b=0 

or  1  is   spanned  by  2n0~l wavelet basis  vectors 

{\|/( b c} 2"    _', which can be derived from H, G, 

and their adjoint operators. 

From the above iterative filtering operations, we 
can see that the  wavelet transform partitions the 



frequency axis finely toward the lower frequency 
region. It is suitable for a smooth signal containing 
primarily low frequency energy, but not necessarily 
appropriate for other more general types of signals, 
such as textures. The wavelet packet transform is a 
much more generalized form of the standard wavelet 
transform. It decomposes both the high- and low- 
frequency bands at each iteration. Like the wavelet 
transform, two subbands, Hf and Gf, are generated in 
the first level of decomposition. However, the second 

level process generates four subbands, H f, GHf, 

HGf and G2f, instead of the two bands H2f and GHf 
in the wavelet transform. If the process is repeated L 
times, Ln wavelet packet coefficients are obtained. In 
orthogonal subspace representation, the /th level of 
decomposition is 

Vl,b =  Vl+l,2b®Vl+l,2b+l, (6) 

where / = 0, 1 L is the level index and b = 0,..., 2 - 
1 is the channel block index in each level. Figure 2 
illustrates the wavelet packet decomposition of the 
original vector space V00. Again, each subspace V[b 

-,nO-l is spanned by 2      basis vectors  {W, h c} 

For b = 0 and 1, W can be identified with \|/. 

As for two-dimensional images, the wavelet or 
wavelet packet basis function can be expressed by 
the tensor product of two one-dimensional basis 
functions in the horizontal and vertical directions. 
The corresponding 2-D filters are thus: 

hHH(m,n) = h(m)h(n) 

hHG(m,n) = h(m)g(n) 

hCH(m,n) = g(m)h(n) 

hGG(m,n) = g{rti)g(n) 

(7) 

(8) 

(9) 

(10) 

In Fig. 3, we show three sample textures and their 
wavelet packet coefficients for levels 1 to 4. 

III. METHODOLOGY 

We develop our algorithm by addressing the three 
main issues of multichannel texture classification: 1) 
feature extraction within each channel, 2) channel 
selection, and 3) channel relationships and feature 
combination among channels. 

Firstly, since the wavelet coefficients are shift 
variant, they are not suitable for direct use as texture 

Figure 3. Three sample textures (row 1) and their 
wavelet packet coefficients at decomposition levels 
1,2, 3, and 4 (rows 2-5). 

features. It is important to extract shift-invariant 
features within each channel. We choose to test the 
following shift invariant measurements: 
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where,  x(i.j)   denotes  an element of the  wavelet 
packet coefficient matrix x in each channel. To make 



our algorithm suitable for sidescan sonar images, the 
texture sample mean is removed before a feature 
vector is computed. Since the sidescan sonar image 
is usually cross-track range dependent even after the 
best effort to apply angle varying gain correction. 
Thus, the mean feature in equation (11) becomes 
zero. So the four features we use in our experiment 
are: 1) variance feature VAR with k = 2 in (12), 2) 
the entropy feature ENT in equation (13), 3) the third 
momentum MNT3, and 4) the fourth momentum 

MNT4. 

Note that the orthogonality condition of the 
wavelet transform means that the decomposition will 
preserve energy. Thus for the variance feature, the 
following relation holds for any node and its children 
nodes: 

vector, such as features in a higher level wavelet 
packet decomposition and the Fourier transform 
features, the computation of the eigenvectors of the 
covariance matrix could be prohibitively expensive. 
We use the dominant eigenvector estimation method 
described in [9] [1 l]to overcome this problem. 

However, as optimal representation features, KLT 
selected features may not be the best for 
classification. Additional feature class separability 
measurements are used to select KLT decorrelated 
features. We use the Bhattacharyya distance 
measurement in this study. 

The reason that Bhattacharyya distance is used is 
its direct relation to the error bound of the Bayes 
classifier and its simple form for features with 
normal distributions [11]: 

™Ku = i£(™*/ + iW-        (14) 
; = 0 

We clearly see the effect of this linear relationship on 
the classification accuracy of overcomplete wavelet 
packet features in our experiments described in the 
next section. 

After the features are computed within each 
channel, the second issue is how to select good 
features among channels. One possible approach is 
to apply a statistical distance measure to each feature 
and selecting the features with large distance 
measures. However, there are two drawbacks with 
this approach. The first is that neighborhood channel 
features tend to correlate with each other. Thus they 
contain similar information. If one has large 
distance, the other will also have a large distance 
measure, and both will be selected. Thus we will 
keep on selecting the same kind of features. The 
second problem is that for some very small energy 
channels, a small amount of unexpected noise may 
cause the result of a distance measure to be 
unrealistically large, which will be selected as a good 
channel. To avoid these problems, we propose to 
combine the channel selection step with the third 
step, i.e., the channel combination, into one feature 
selection step using the principal component analysis 
technique and the statistical distance measurement. 

The widely used Karhunen-Loeve transform 
(KLT) is an ideal feature reduction and selection 
procedure for our algorithm. Its decorrelation ability 
serves to decorrelate neighborhood channel features, 
and its energy packing property serves to remove 
noisy channels and to compact useful information 
into a few dominant features. But for a large feature 

ßitc^) =§0*1-^2)\-L2-2)   (^i-^X-15) 

+ im 
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Because of the large number of combinations of 
several features and the probability of covariance 
matrix singularity, computing the Bhattacharyya 
distance for several features at once is not a practical 
approach. The one-at-a-time method is adopted 
instead. The formula is the same as Equation (15), 
only with covariance matrix W replaced by variance 
and mean vector |J. replaced by class mean. As for 
multiclass problems, we select features with small 
values of 

M   M 

Sf =  SIeXP[^(c,,Cj)] (16) 

In the next section we test our algorithms on the 
following group of features: 

1. level 1: VAR, ENT, MNT3,MNT4, all, 

2. level 2: VAR, ENT, MNT3, MNT4> all, 

3. level 3: VAR, ENT, MNT3, MNT4> all, 

4. level 4: VAR, all, 

5. level 1&2: VAR, all, 

6. level 1&2&3: VAR, all, 

7. level 1&2&3&4: VAR, 



8. Wavelet: VAR, all, 

9. FFT: magnitude. 

The goal is to test the discrimination power of 
each feature type in each individual level, the effect 
of overcomplete representation, and the classification 
power of the standard wavelet transform. We also 
test the Fourier transform features, which can be 
considered as an extreme case of the wavelet packet 
transform, i.e., the highest possible level of wavelet 
packet decomposition. This fourier transform feature 
should not be confused with the traditional power 
spectrum method(PSM). To compare the difference 
between our approach and the traditional PSM, refer 
to [9]. 

The classification algorithm used in this study is 
the Gaussian classifier. There are two reasons for this 
choice. First, it agrees with the above error bound 
defined by the Bhattacharyya distance. Second, with 
our focus on feature extraction, we choose the 
simplest classification algorithm available. Again, 
we assume the feature vector x for each class i has a 
Gaussian distribution with mean \i; and covariance 
matrix Wt. Then, the distance measure is defined as 

[11] 

Dt = (x-.u/w-'c.-c-^+lnlW,]    ,(17) 

where the first term on the right of the equation is 
actually the Mahalanobis distance. The decision rule 
is 

xeCL      when   DL = miniDJ   .(18) 

IV.    EXPERIMENTAL 
AND DISCUSSION 

RESULTS 

We test our algorithms on a set of eight types of 
natural optical images obtained from the MIT Media 
lab Vistex texture data base (see Fig. 4). The original 
512x512 color images are converted to the same size 
gray scale images with 256 gray levels. Then, 
adaptive histogram equalization is applied. So all 
images have the same flat histogram and are 
indistinguishable from each other in terms first order 
statistics. To test the sensitivity of our algorithms to 
noise, we add several levels of white noise to the 
data. By choosing eight classes of images, doing 
histogram flattening, and adding noise, we try to 
make the classification task more difficult, so the 
difference in classification ability of various texture 

Figure  4.   Vistex   textures:   bark.0008,  brick.0004, 
buildings.0009. fabric.0001. fabric.0005, 
fabric.0013. fabric.0017. fiowers.0007, from top to 
bottom, then from left to risht. 

features becomes more apparent. We then select the 
most successful methods to test on noisy, real-world 
sidescan sonar images. The three classes of sidescan 
sonar texture images used are shown in Fig. 5. They 
are first-year (young) ice. multiyear undeformed ice, 
and multiyear deformed ice. For the two data sets, 
each class of image is divided into 225 half- 
overlapping samples of dimension 64x64. of which 
60 samples are used for training. Therefore, the total 
data sample number is 1800 for Vistex data and 675 
for the sidescan sonar data set. with 480 and 180 



(a) 

(b) 

(c) 

Figure 5. Sidescan sonar images of an Arctic under- 
ice canopy: (a) first-year (young) ice, (b) multiyear 
undeformed ice. and (c) multiyear deformed ice. 

samples for training, respectively. 

Table 1 shows the complete testing results from 
the Vistex data. It is somewhat overwhelming to 
make sense of these large amount of test results 
directly from this table. We point out only a few 
apparent features of this table, then use a few plots 
of the results from the table to illustrate our other 
findings. 

First, notice that for some feature groups, the 
differences in classification accuracy between 
training and testing data are very large, more than 
50% in some cases (SNR 1 data). In fact, except for 
the level one features, which have only four 
channels. almost all other training data 
classifications achieve more than 95% accuracy, 
including the SNR 1 noisy data. This is not the case 
for the testing data. Since only the simple Gaussian 
classifier is used here, we should expect these trend 
be even more apparent for the more sophisticated 

classifier, which can learn a more precise feature 
structure of the training data. The significance of this 
result is that it shows the widely used leave-one-out 
testing scheme can be rather deceiving for testing 
new algorithms. Since leaving one sample out does 
not affect much of the training process. In the case of 
the Gaussian classifier, the effect is minimal. This 
means that if the data set is too small, the results will 
not be conclusive. 

Also note in the table that the number of features 
used to achieve best results for each group of 
features is mostly about 10. The difference is not that 
large. A general trend is that noisier data tend to 
need more features to reach best classification. 

To help focus on the classification accuracy of the 
overall data set. Fig. 6 shows the comparison of the 
four types of features and their combinations in the 
first three decomposition levels. The MNT3 feature 
is the worst for all levels and all data sets. It is 
apparently not a useful measurement. Entropy also 
gives much less satisfactory results than the variance 
feature, and the classification accuracy drops sharply 
for noisy data. This contradicts the result given in 
[8], which shows that energy features perform only 
slightly better than entropy measures (within one 
percent). The MNT4 feature seems to give better 
results than the above two features but is still less 
successful than the variance feature. The 
performance differences between the MNT4 and the 
variance are consistent over all data sets and all 
decomposition levels, which is because they are very 
closely correlated features. 

The observation that variance features perform 
better than other features is consistent with Laws' [1] 
experiment with features extracted from empirical 
frequency channels. The remaining question is 
whether we need other measurements to add new 
information. We performed a union operation on the 
correct classification samples of the four types of 
features, and the correct classification rate increased 
by about 5%, nearing 100% accuracy. This 
demonstrates that each feature has its own distinct 
classification power. By combining all features 
together, we -get improved result for the lower 
decomposition level. Since the feature length is 
much smaller in these levels, an additional 
dimension will help more than in the higher level 
decomposition case. The improvement is not as 
impressive as the union of results. The reason is that 
besides the new information additional features bring 
in, there is also a great deal of added noise, which 
may overwhelm the benefit of additional features. 



Table 1: Complete 1 test results on eight Vistex texture images. 

data set original images SNR 15 dB SNR 5 dB SNR 1 dB 
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VAR 95.6 95.5 95.5 4 95.2 94.8 94.9 4 89.0 89.2 89.2 4 82.3 81.3 81.6 4 

2 ENT 87.7 86.7 87.0 4 86.7 84.3 84.9 4 64.4 58.0 59.7 4 49.8 42.7 44.6 4 

3 MNT3 62.9 58.0 59.3 4 61.5 58.1 59.0 4 49.4 41.3 43.4 4 39.4 32.7 34.4 4 

4 MNT4 89.2 91.1 90.6 4 92.3 91.8 91.9 4 89.2 87.5 87.9 4 81.3 80.7 80.8 4 

5 ALL 98.8 96.7 97.2 8 98.5 96.7 97.2 9 97.3 92.5 93.8 11 94.8 82.5 85.8 13 

6 

CN 

> 

VAR 96.5 96.9 96.8 6 96.3 95.8 95.9 5 96.7 93.0 94.0 9 97.9 89.8 92.0 12 

7 ENT 94.2 90.6 91.6 8 97.7 86.5 89.5 14 97.1 66.7 74.8 20 94.2 48.9 60.9 20 

8 MNT3 80.4 62.3 67.2 9 85.2 66.2 71.3 11 96.5 69.8 76.9 18 95.8 56.5 67.0 20 

9 MNT4 94.2 90.9 91.8 6 93.1 91.6 92.0 6 95.0 87.7 89.7 9 95.6 85.0 87.8 12 

10 ALL 98.8 97.8 98.1 12 99.4 97.7 98.1 12 95.8 90.5 91.9 9 97.5 84.1 87.7 16 

11 

"3 > 

VAR 97.7 98.1 98.0 6 97.5 98.0 97.9 7 95.8 95.7 95.7 6 96.7 90.3 92.0 13 

12 ENT 97.7 79.2 84.2 17 89.8 75.2 79.1 11 96.9 54.8 66.1 22 97.5 40.5 55.7 26 

13 MNT3 82.7 60.5 66.4 10 85.8 61.6 68.1 12 96.0 53.8 65.1 22 99.6 45.2 59.7 30 

14 MNT4 94.8 92.7 93.2 7 94.2 92.0 92.6 8 95.0 91.1 92.2 9 97.9 83.9 87.7 18 

15 ALL 98.5 97.8 98.0 16 97.7 97.3 97.4 6 97.5 93.2 94.3 10 96.5 90.9 92.4 13 

16 
> 

VAR 97.1 97.5 97.4 6 97.5 96.9 97.1 6 96.7 95.9 96.1 6 98.5 94.5 95.6 12 

17 ALL 97.7 97.9 97.8 8 97.9 96.4 96.8 9 99.2 93.9 95.3 18 95.4 93.0 93.6 6 
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19 ALL 99.4 98.3 98.6 10 99.2 98.2 98.4 10 99.2 93.3 94.8 17 93.3 85.8 87.8 10 
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VAR 98.5 98.6 98.6 7 98.3 98.6 98.6 7 96.9 95.3 95.7 9 97.9 90.5 92.4 13 

21 ALL 99.8 98.6 98.9 20 99.2 98.2 98.4 11 98.8 94.5 95.7 13 97.7 91.7 93.3 14 

22 levl234var 99.0 97.2 97.7 14 98.8 96.7 97.3 12 97.9 96.0 96.5 12 98.1 93.7 94.9 11 

23 3 
"3 

■   > 

VAR 98.1 97.0 97.3 10 97.9 96.7 97.1 10 97.7 95.0 95.7 11 97.9 94.2 95.2 12 

24 ALL 100 96.6 97.5 18 100. 96.4 97.4 18 97.9 93.8 94.9 14 98.1 90.2 92.3 19 

25 FFTMag. 99.8 98.4 98.8 26 99.4 97.9 98.3 15 99.0 96.4 97.1 10 99.8 95.8 96.8 17 
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Figure 6. Comparison of the four types of features in the first three individual decomposition 
levels. The index of the horizontal axis represent signal-to-noise ratio (SNR) level: 1. original 
images, 2. SNR 15dB, 3. SNR 5dB, 4. SNR ldB. 
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Figure 7. Comparison of variance features for individual decomposition levels, overcomplete 
levels, standard wavelet, and Fourier transform. The index of the horizontal axis represents the 
same SNR as in Fig. 6. 



We now look in detail at the variance 
measurement results shown in Fig. 7. From Fig. 7(a), 
for individual levels, the general trend is the higher 
the decomposition level the better the result. This is 
predictable from Equation (14), which shows that the 
lower level variance features are simply the average 
of their higher level children nodes. A KLT 
transform will do better than such a simple average 
operation in terms of extracting maximum 
information. To confirm this point, compare Fig. 7 
(a) and (b). It is easily seen that the following pares 
of results are almost identical: level 1&2 vs. level 2, 
level 1&2&3 vs. level 3, level 1&2&3&4 vs. level 4. 
This means that lower lever features are only a 
subset of higher level decomposition features. This is 
contrary to what Laine and Fan suggested in [8], that 
redundancy may provide additional discrimination 
power. Our experiments show that better 
discrimination ability is not added by 
overcompletion. Instead, it is extracted by applying 
KLT to higher levels of finer channel decomposition, 
so the channel nodes are combined in an optimal 
way, instead of by simple averaging. 

Continuing further along this path, we should 
expect that the Fourier transform may provide even 
more information. Because the Fourier transform is 
really the extreme case of a wavelet packet 
transform, i.e., the wavelet packet transform at its 
highest possible level. Figure 7(c) compares the 
performances of three levels of wavelet packet 
decomposition, the standard wavelet transform, and 
the Fourier transform. The Fourier transform indeed 
gives a consistently better performance over all other 
feature groups on all levels of noisy data sets. This 
result should not come as a surprise, since the 
wavelet transform is optimal for nonstationary signal 
analysis, whereas the Fourier transform is optimal 
for stationary signal analysis. Most texture images 
are stationary periodical signals. 

Next, notice in Fig. 7(c) that the Fourier transform 
and other higher levels of wavelet packet 
decompositions are very insensitive to noise. It is 
surprising to see that more than 95% accuracy is 
achieved at a noise level of ldB, compared with the 
results in [7], where the tree-structured wavelet 
algorithm collapses to 70% accuracy at a 5dB noise 
level. Noise insensitiviry is really the strength of 
subband image processing. Noise usually has a flat 
spectrum, so by dividing into more subbands, the 
noise energy usually decreases. Yet the energy of 
signals tend to concentrate in a small number of 
channels. Therefore, even when the total energy of 
the signal and noise are almost the same, as in the 
case of our testing data of SNR ldB, the signal-to- 

noise ratio will be much higher in channels 
containing most of the signal energy. Our feature 
selection algorithms are designed in such a way that 
they pick up and condense the signal channel with 
high SNR into a compact representation of the data, 
with the incoherent noisy channel neglected. 

Finally, we test our algorithms on the classification 
of sidescan sonar images. Only the feature groups 
that performed best in the above experiment are used 
on the sonar images. Table 2 shows the results, 
which are consistent with the Vistex data results. 
Although the image class number is smaller, each 
class of image is noisy and nonuniform. This added 
difficulty increases the accuracy difference between 
the wavelet packet and Fourier transform methods. It 
again shows the superiority of the latter approach. 

Table 2: Classification results on sidescan 
sonar images. 
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1 level 3 VAR 93.3 83.2 85.9 12 

2 level 4 VAR 96.1 81.4 85.3 20 

3 all levels VAR 98.3 85.3 88.7 23 

4 stand, wavelet 88.3 88.1 88.1 7 

5 ttT Mag. 98.9 92.5 94.2 9 

V. CONCLUSIONS 

Based on the above experiments, the following 
conclusions are drawn: 

1). Variance (energy) measurement is much better 
than entropy and higher order momentum. But there 
does exist additional information in the latter three 
features that is distinct from the energy information. 
Better feature selection algorithms have yet to be 
developed to fully employ this information. 

2). Higher levels of decomposition perform better 
than lower levels. This leads to the conclusion that 
Fourier transform features are better than wavelet 
packet features. 

3).      For     variance     features,     overcomplete 



representation   does   not  give   better  results   than 
individual level features. 

4).Wavelet packet features are very insensitive to 
noise. Features from higher levels are less sensitive 
than the lower level wavelet features. This noise 
insensitivity property makes wavelet packet features 
suitable for sidescan sonar images, which are usually 
noisy. 

5). The KLT and Bhattacharyya distance 
measurement methods are good feature selection 
methods to use on wavelet packet features. KLT is 
necessary, especially for higher level features. 

6). There are great differences between the 
training data and testing data classification accuracy. 
It casts doubt on results of the leave-one-out testing 
strategy used by many texture classification works. 
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