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AFIT/GOR/ENS/97M-12 

Abstract 

This thesis presents an algorithm based on the expanding algorithm 

(Jones[44]) to solve spatial price equilibrium problems for three different models: 

perfect competition, monopoly, and oligopoly. The expanding algorithm is used to 

solve the linear single commodity spatial price equilibrium (LSSE) problem for 

perfectly competitive markets. In order to reach the goal of this thesis effort, the 

mathematical software MATHCAD and operational research software GINO were 

used. As we mentioned above, the expanding algorithm is used to solve LSSE 

problems, i.e., the supply function, the demand function are linear, and the shipping 

cost per unit is constant. In this thesis, we also consider the general multi-commodity 

spatial price equilibrium (GMSPE) problems with all nonlinear functions, and 

variable shipping cost. We also show that more commodities in total are shipped, and 

there is more congestion, especially in oligopoly model. That means, transportation 

costs have much more impact in an oligopoly than in the other two models. 

IX 



ALTERNATIVE IMPLEMENTATIONS OF 

EXPANDING ALGORITHM FOR 

MULTI-COMMODITY SPATIAL PRICE EQUILIBRIUM 

I. Introduction 

Equilibrium is defined as a state of balance due to the equal action of opposing 

forces. Equilibrium problems, in contrast to optimization problems, involve 

competition among agents for scarce resources. For example, in general economic 

equilibrium problems, the agents are producers and consumers, who trade 

commodities so as to maximize their utility, subject to their initial endowments and a 

production technology, until prices are established that clear the market. In the case of 

congested urban transportation systems, users of a transportation network seek to 

determine their cost-minimizing routes of travel, until their respective path costs 

cannot be reduced by unilateral action. 

The development of activity analysis models by Koopmans [27] and Dantzig 

[12] opened up a new approach to the spatial pricing and allocation problem. 

Samuelson [44] pointed out that there exists an objective function whose 

maximization guarantees fulfillment of the conditions of perfectly competitive 

equilibrium among spatially separated markets. Later, Takayama and Judge [50] 

presented two versions of the spatial pricing and allocation models : a perfectly 

competitive market model and a monopoly model. However, markets of most primary 

commodities and manufactured goods lie somewhere between these two extremes, 

taking on some form of oligopoly. Therefore, neither version of the Takayama-Judge 



model is able to provide appropriate solutions for the equilibrium conditions in the 

actual markets of most commodities. 

1.1 Background 

Since the paper by Samuelson[44] and advanced by Takayama and Judge[49, 

50], the concept of a spatial price equilibrium has found many applications. Tobin 

and Friesz [15] showed that the spatial price equilibrium problem on a network with 

transshipment may be formulated and solved without difficulty as a convex 

mathematical programming problem, provided all functions employed are separable ( 

or have symmetric Jacobian matrices). Their formulation follows the tradition, 

beginning with Samuelson [44] and extending through Takayama and Judge [50] to 

Rowse [43], of expressing such problems as extremal problems. 

An alternate school, typified by MacKinnon[28], has sought to treat various 

special cases of the spatial price equilibrium problem as a fixed point or 

complementary problem rather than employing an extremal formulation. Following 

this tradition Friesz et al. [52] shows that the spatial equilibrium problem on a general 

network with nonseparable functions (or functions without symmetric Jacobians) may 

be readily handled as a nonlinear complementary problem and that the iterative use of 

a linear complementary algorithm provides an efficient and practical solution. For the 

single commodity linear case, Glassey[7], Pang and Lee[21], and Jones, Saigal and 

Schneider[41] have presented algorithms which exploit the network structure of the 

problem. Pang[23] developed a network based algorithm for linear, multi-commodity 

problems. For the case of nonlinear excess demand functions, Ahn and Seong[3] have 



developed a parametric network-based method. All of the network-based methods 

listed above require constant transportation costs that satisfy the triangle inequality. 

Schneider[41] and Udomkesmalee[57] discuss nonlinear transportation costs which 

allow us to remove the triangle inequality constraint. 

Diagonalization methods that were originally developed to deal with 

nonseparable Wardropian network equilibrium problems (Abdulaal and LeBlanc [1]) 

are now recognized as able to apply to any variational inequality (see, e.g., Dafermos 

[8]). Florian and Los [14] formulated the general spatial price equilibrium problem as 

a variational inequality, a finding which allows general results, such as those due to 

Dafermos [8], regarding the global convergence of diagonalization algorithms to be 

applied in order to develop convergence criteria specific to the spatial price 

equilibrium problem. 

These general formulations include multi-commodity equilibrium models in 

which there are interactions among commodities, equilibrium models with 

transportation networks in which there are interactions among the markets in addition 

to the interactions due to the transportation of commodities. General methods for 

solving variational inequalities and nonlinear complementary problems can be applied 

to solve these formulations. For examples of these methods, see Dafermos[8] and 

Pang and Chan[20]. 

Theise and Jones [47] discuss issues related to microcomputer implementation 

of the import equilibration algorithm working directly on the equilibrium conditions. 

It was found that the expanding equilibrium algorithm was superior to the 

equilibration algorithm in all areas - solution time, memory requirements, numerical 



accuracy - except ease of implementation. It has been shown that it can be modified 

to efficiently process nonlinear, single commodity problems and linear, multiple 

commodity problems (Theise and Jones [48]) having similar structure. However, 

there appears to be no simple way of modifying the algorithm so that it can solve 

congestion problems: those having non-constant per-unit shipping costs. 

Tobin [55] has proposed a variable dimension solution approach for the 

general spatial price equilibrium problem. In its most general form, spatial price 

equilibrium may have nonlinear demand and supply functions, nonlinear shipping cost 

functions, inter-commodity congestion effects; his algorithm is capable of solving 

models that include these complicated relationships. While numerical examples 

provided by Tobin [55] are five region problems trading in two commodities, and 

CPU times are not given. There are definite trade-offs between general-purpose and 

special-purpose algorithms: Tobin' s algorithm can be used to solve models very rich 

in detail, but the number of regions and/or commodities in any one model is limited 

due to large computational demands for CPU time and data storage. The results 

presented by Theise and Jones [47] suggested that some large-scale nonlinear, 

multiple commodity spatial price equilibrium problems could be solved using the 

expanding equilibrium algorithm. But such problems cannot, at present, include 

certain modeling features that Tobin's algorithm can: nonlinear shipping cost 

functions. 



1.2 Problem statement: 

The problem of finding regional prices and interregional trade flows at the 

equilibrium of an n region economy trading in m homogenous commodities is known 

as the multiple commodity spatial price equilibrium (MSPE) problem. In this thesis 

I consider solution techniques for MSPE where the excess demand function in each 

region is nonlinear, and the cost of shipping a unit of commodity from one region to 

another region is dependent on the quantity shipped. Mathematically, the problem is 

to find values for 6/ and V^ which satisfy the following equilibrium 

conditions(Theise[48]) : 

S,r-D,r = 0   VLandr (1.1) 

iel (t'J)eA jeI(l,j)eA 

I2>/-£ZA'=o (1.3) 
r=\ lei r=\ lei 

y/'t+c^O'j  V r (1.4) 

v!W+cr.-e;) = o      vr (i.5) 

V',0},V;>O Vi,j,andr (1.6) 



where 

I: the full set of regions of the network. 

A: the full set of flows of the network, each flow in A represents an origin - 

destination pair (O-D) connecting two regions, 

m : the number of commodities in the economy ; r indexes these commodities, 

n : the number of economic regions; i,j, and 1 index these regions, 

Dir: the demand quantity of commodity r at region 1, 

6i': the demand price per unit of commodity r at region 1, 

Sir: the supply quantity of commodity r at region 1, 

Cir(Sir): the total cost of producing Sir at region 1, 

v|/ir: the supply price per unit of commodity r at region 1, 

Vy : the units of commodity r shipped from region i to region j, and 

c[j: the cost of shipping a unit of commodity r from region i to region j. 

The first condition ensures that total demand equal total supply. This condition is 

redundant, since summing (1.2) over all 1 e I will yield the same result. However, 

Eq.(l. 1) will play an important role in the network flow programming solution 

algorithms. The fourth condition guarantees that there is no further incentive to trade. 



The fifth condition guarantees either that no profits will be made when trade between 

two regions exists or that no trade will occur between two regions if a loss will be 

taken. 

1.3 Research Objectives 

As we mentioned before, Samuelson [44] pointed out that there exists an 

objective whose maximization guarantees fulfillment of the conditions of perfectly 

competitive equilibrium among spatially separated markets. Takayama and Judge 

[50] presented another version of spatial pricing model: the monopoly model. 

However, markets of most primary commodities and manufactured goods lie 

somewhere between these two extremes, taking on some form of oligopoly. It is able 

to provide appropriate solutions for the equilibrium conditions in the actual markets of 

most commodities. In this thesis, we show how to formulate the equilibrium 

conditions for these three different models and how to solve the MSPE problem by 

using the same algorithm. 

We also wish to indicate how transportation influences these three markets, 

since transportation not only affects the availability of goods, but it also has a major 

impact on the prices of goods sold on the market. 

1.4 Assumption 

In the expanding algorithm Theise[47], it shows that if the shipping costs obey 

the triangle inequality ( cyr + cjk
r > cik

r, V i, j, k, and r ), an equilibrium solution, if one 

exists, can always be found whose trade flows form a forest with alternating arcs, that 



is , no market will simultaneously be both an exporter and importer. Therefore, for n 

markets in equilibrium there will be at most k - 1 arcs carrying trade. In Theise [47], 

they use the Manhattan distances between regions as shipping costs. In the real world, 

there are lots of routes that do not obey the triangle inequality. For this reason, we 

remove this constraint. That means, we consider the shipping cost is variable. 

The existence and uniqueness of a solution to SPE is assured by assuming that 

(i) the feasible set formed from (1.1) - (1.6) is nonempty, 

(ii) 0ir is a strictly decreasing function, 

(iii) Qr(S|r) is a strictly convex and nondecreasing function (or that \\f{ is strictly 

increasing function), and (iv) Cjjr(Vijr) is a strictly increasing function, and that all 

functions are continuously differentiable. 

The assumption that Cjjr(Vijr) is a strictly increasing function is somewhat 

troublesome in that freight systems tend to exhibit economies of density, and thus, 

average costs are U-shaped. However, Cj/ represents economic price ( rate plus level 

of service ) and this factor tends to be less U-shaped than the rate alone. Furthermore, 

motor carriers tend to exhibit little or no economies of density, whereas the railroad 

industry does indeed exhibit these economies (Harker [18]). Thus , strictly increasing 

economic prices of transportation may indeed be the case in the motor carrier industry, 

and elsewhere this assumption may not be a bad approximation. 



1.5 Approach 

The basic approach to this thesis effort consists of the following steps : 

Step 1 : An overview of market structure; perfect competition, monopoly, and 

oligopoly. We also provide formulation of all three of these models. These 

are presented in Chapter II. 

Step 2 : An overview of the expanding equilibrium algorithm for linear single spatial 

price equilibrium. This is presented in Chapter III. 

Step 3 : We present the alternate algorithm for multi-commodity spatial price 

equilibrium (MSPE). We also want to prove the existence and uniqueness of 

the solution. This is represented in Chapter IV 

Step 4 : Computation experience, including numerical example. This is represented in 

Chapter IV. 



II. Market structure and formulation 

2.1 Introduction 

Market structure describes the competitive environment in the market for any 

good or service. A market consists of all firms and individuals who are willing and 

able to buy or sell a particular product. This includes firms and individuals currently 

engaged in buying and selling a particular product, as well as potential entrants. 

Market structure is typically characterized on the basis of four important 

industry characteristics: the number and size distribution of active buyers and sellers 

and potential entrants, the degree of product differentiation, the amount and cost of 

information about product price and quality, and the conditions of entry and exit. In 

the following sections, we will discuss three major market models: perfect 

competition, monopoly, and oligopoly. Before discussing these three models, we 

would like to discuss equilibrium conditions. The basic equilibrium condition of the 

spatial price equilibrium problem is conservation of flow in every region and it is 

formulated as Eq.(2.1). 

^'-A'+E^/-ISK;=0 Vr (2.1) 
iel (j,l)eA jel (IJ)eA 

Similarly, the market clearing condition (i.e., total demand equal total supply) 

is formulated as Eq.(2.2). 

EA'-ES^O Vr (2.2) 
lei /e/ 

As mentioned before, this condition is redundant, since summing Eq.(2.1) over all I 

will yield the same result. 

However, Eq.(2.2) will play an important role in the network-flow-programming- 

10 



solution-algorithm. 

2.2 Perfect competition 

Perfect competition is a market structure characterized by a large number of 

buyers and sellers of essentially the same product, where each market participant's 

transactions are so small that they have no influence on the market price of the 

product. Therefore, individual buyers and sellers are price takers. This means that 

firms take market prices as a given and devise their production strategies accordingly. 

Free and complete demand and supply information is available in a perfectly 

competitive market, and there are no meaningful barriers to entry and exit. As a 

result, vigorous price competition prevails, and only a normal rate of return on 

investment is possible in the long run. Economic profits are possible only in periods 

of short-run disequilibrium before rivals mount effective competitive responses. The 

The Classic Spatial Price Equilibrium (CSPE) is formulated as follows: 

Objective function : 

MAX 

ti:^(yw-izc;\sn+i I \^y)dy (2.3) 
'=1 1*1   0 r=\ lei r=\ (iJ)eA o 

Subject to 

^  ^"'    ^   ^'"     " (2-4) 

!>/-I>/= 0 Vr (2.5) 

.y;-A'+E IX-I 5X=o vr 
Jel (/,/)e/) jeI(l,j)eA 

Jet Jel 

11 



r=\ lei y=l /e/ (.2.0; 

Sir, Dir, Vyr      > 0      V (i,j) e A, 1 e I, and r (2.7) 

If 

of 
(i) the revenue  J0/ (y)üy is concave and nondecreasing for all 1, and r, 

0 

(ii) the market price 0|r(D|r) is strictly decreasing and continuously differentiable, 

(iii) the total cost of production Qr(Sir) is convex , nondecreasing, and continuously 

differentiable, 

(iv) the total transportation cost is convex and nondecreasing, 

(v) the cost of transportation is strictly increasing and continuously differentiable, 

(vi) no interaction between commodities, 

then the Karash-Kuhn-Tucker (KKT) conditions of this problem are necessary and 

sufficient for a solution. 

Let nl : denote the dual variable of constraint (2.4) 

KKT conditions : 

(0/-*/)/?; =0 

0;-^<O,D;>O  VleLr (2.8) 

Condition (2.8) states that if there is demand in region 1, the shadow price %{ will 

equal the average revenue 9|rin region 1. Similarly, if there is supply in region 1, 

(-c; +<)5,;=o 

-C] +< <0,^/ >0   VleLr (2.9) 

12 



Condition (2.9) states that the shadow price n] equals the average cost of production 

(-^ + *-;-<)K;=O 

-4+^;-<<0,^r>0   V(i,j)eA,r (2.10) 

Condition (2.10) states that if there is flow between regions i and j, the average 

economic cost of transportation, cyr, plus the average production cost C- equals the 

average revenue, 0/. 

or 

(a)       if   V'>0 

then    c/^/H^Cn-) = <?;(/?;)       V(i,j)eA,andr 

(b)    if   cf(s;y+cr
e{vp>0;(D;) 

then     Vy = 0 V (i j) e A, and r 

Then, the original problem for pure competition can be rewritten as : 

MAX 

ml tn m *u 

ZZKOO^-ZZC/GS/HZ Z }c^y)dy 
r=\ lei   0 r=\ lei r=] UJ)<=A o 

Subject to 

tf-A'+Z Z^'-Z Zn-=o 
iel (i,l)eA jel (IJ)eA 

ZA'-Z#=O 

13 



Ill  111 

r=\ I el r=l lei 

Sir, D,r, Vjjr > 0 V (i,j) e A, 1 e I, and r 

2.3 Monopoly 

Monopoly is a market structure characterized by a single seller of a highly 

differentiated product. Because a monopolist is the sole provider of a desired 

commodity and it has perfect information concerning the demand behavior in each 

region and fully controls the transportation system, the monopolist is the industry. 

Therefore, the monopolist can simultaneously determine price and output for itself. It 

is a price maker. 

In this case, the firm's profit-maximization problem is formulated as follows: 

MAX 

■" i"   ____ Jtl          

EE^WW-EEC/CSTVJ; I^(^)F; <2.ID 
r=l lei r=\ lei r=\ (iJ)eA 

subject to 

•y/'-A'+X  5X'-E  Z^;=0        Vr (2.12) 
ieI(i,I)eA JeI(]J)eA 

lAr-E^=0 Vr (2.13) 
lei lei 

111  lit        

r=\ lei r=\ lei (2.14) 

S,r, D,r, Vjjr > 0 V (i,j) e A, 1 e I, and r (2.15) 

14 



If 

(i) the revenue 0ir(Dir)Dir is concave and nondecreasing for all 1, r, 

(ii) the market price 9ir(Dir) is strictly decreasing and continuously differentiable, 

(iii) the total cost of production C|r(Sir) is convex, nondecreasing, and continuously 

differentiable, 

(iv) the total transportation cost is convex and nondecreasing, 

(v) the cost of transportation is strictly increasing and continuously differentiable, 

(vi) no interaction between commodities, 

then the Karash-Kuhn-Tucker (KKT) conditions of this problem are necessary and 

sufficient for a solution. 

Let 7i\ : denote the dual variable of constraint (2.12) 

KKT conditions : 

(0; + z?;V-<W=o 

0;+D;'0'J -^<O,D;>O viei,r (2.16) 

Condition (2.16) states that if there is demand in region 1, the shadow price n{ will 

equal the marginal revenue in region 1, 0/ + £>/#/ . Similarly, if there is supply in 

region 1, 

(-c/+<).?; =0 

-C; +^<Q,S;>0   Vlel,r (2.17) 

Condition (2.17) states that the shadow price n\ equals the marginal cost of 

r 

production C/ 

15 



-c]-V]c]  + <-<<0,^>0  V(i,j)eA,r (2.18) 

Condition (2.18) states that if there is flow between regions i and j, the marginal 

economic cost of transportation MTCyr, c] + VyC] , plus the marginal production 

cost Cj equals the marginal revenue MR] ,9] + Dr6r . 

or 

(c) if v; > 0 then C] +MTC^ = MR] 

(d) if C] + MTC'y > MR] then V] = 0 

The equilibrium conditions (c) and (d) are very similar to the CSPE conditions (a) and 

(b) except that the average transportation-costs and the average revenue are replaced 

by their marginal values. 

Then, the original problem for monopoly can be rewritten as : 

MAX 

r=\ I el r=\ lef r=\ (i,j)eA 

subject to 

lei lei 

16 



Ill  ill     

SZ^-EEAr=o 
r=\ /el r=\ lei 

C; +c;+V;c; -W+Dtf) V!;    = 0 V 

S{, D,r, Vjjr > 0 V (i j) e A, 1 e I, and r 

2.4 Oligopoly 

In between perfect competition and monopoly is a model consisting of a few 

firms operating in spatially separated markets, which is often the more realistic case 

for discrete facility- location. With few competitors, economic incentives often exist 

for firms to devise illegal agreements to limit competition, fix prices, or otherwise 

divide markets. Under oligopoly, the price and output decisions of firms are 

interrelated in the sense that direct reactions from leading rivals can be expected. As a 

result, decisions of individual firms are based in part on the likely responses of 

competitors. 

We assume that at most one firm operates in each region, and that each firm 

has knowledge of the demand behavior in each region and is neither a monopolist nor 

controls the transportation system as in the monopoly model. Instead, it takes the 

economic price of transportation service as given, resulting in the average economic 

price of transportation being used rather than the marginal values as in the monopoly 

model. Finally, let us assume that the producing firms behave in a Cournot-Nash 

manner in which each firm takes the other firm's production decisions as fixed when 

deciding upon its own supply/distribution strategy. 

17 



Let 

Q : denote the set of firms operation in the market, 

J   : denote the set of production sites or regions under firm q's control, 

Diq
r: the amount of commodity r supplied by firm q to region 1, 

Djg: the amount of commodity r supplied by all other firms to region 1, 

JzQ 
J*Q 

Dr = Dr + Dr 

The optimal strategy vector of firm q consisting of the total-amount supplied 

locally to region 1 e J q , the amount supplied by firm q to consumers elsewhere in the 

network and the specific shipment between production site i and consumer site j,can 

be written as 

y (S; 1 ejg )XDjt leI),(V;\j sjg J el,(lj) eA , and 

firm q's profit-maximization can be written as: 

MAX 

j" ~ m m 

r=\ lei r=\ 1*J« =1    leJ« 
UJ)eA 

The set of constraints 

n«r=M 

it faces are: 

(2.19) 

18 



tf-Ar+L IX-I Znf=o    Vr 
iel U,I)eA jef(/,j)eA 

(2.20) 

!>;-2>;=o 
/e/ /e/ 

Vr (2.21) 

ZE*;-XEA'=O 
/-=! 7e/ r=\ le/ 

(2.22) 

57 < sr, < sf 

3; < D; < D; 

vr. < v. < v.r 
V    ~      U    ~      I! 

Notice that firm q takes D\ and c-. are fixed according to a Cournot - Nash 

assumption and is a price taker in the market. 

If 

(i) the total revenue 6ir(Dir)Dir is a strictly concave and nondecreasing function, 

(ii) the market price 0ir(Dir) is a strictly decreasing function, 

(iii) the total cost of production Qr(S|r) is a convex and nondecreasing function, 

(iv) no interaction between commodities, 

(v) the feasible region Qq
r is nonempty, 

then problem (2.19) is completely equivalent to the following variational inequality 

problem: 

Find the optimal vector of commodity r for firm q 

y W 1 eJ9 \{Dr; 1 e/),(K/1/ sjq JeI,(iJ) eA 

such that 
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F; (yr
qXz'q-y'q) = 

IsJq /6/ leJAl,j)<=A 

MR\ : the marginal revenue of commodity r in region 1 for firm q 

MR]q{D\) = —e\{b\q+D\q)D<lq=e](b]q+Dt
lq)+D'q    

,K*      k) 

vL) i„ OjJv 

cij and Dlg were taken as fixed when calculation the gradient of Eq.(2.19). It can be 

shown (Chapter IV) that a unique equilibrium exists in this model when these 

conditions are satisfied : 

(i) Cir(S)r) is a strictly convex, continuously differentiable function for all 1 

(ii) cyr(Vijr) is a monotone (nondecreasing), continuous function for all (i,j) 

(iii) - MR (Dr ) = (...,- MR/q {Dr),...)T  is a strictly monotone, continuous function 

then the Karash-Kuhn-Tucker (KKT) conditions of this problem are necessary and 

sufficient for a solution. 

Let: 7ijq
r denote the dual variable of constraint (2.20) 

KKT conditions : 

(#; ( A; + D]q)+ A; -^7-0/ (ö;q + D]q)- n\q )v;q=o 

0{(D;g+D;q)+D;q-^-0f(D;q+D;q)-^<O,D;q>O\/\eI,qeJq,r (2.23) 
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Condition (2.23) states that if there is demand in region 1, the shadow price 7Ciq
r will 

equal the average revenue in region 1,9] (Dr
lq + Dr

lq)+ Dr,q —- 9] (Dr
Iq +Dr

h). 
dDlq 

Similarly, if there is supply in region 1, 

-C; + < <0,5*/ >0  V 1 e I, r (2.24) 

Condition (2.24) states that the shadow price n\ equals the marginal cost of 

r 

production Cr
} 

-c's-Vfö +<-<<0,^>0   V(i,j)eA,r (2.25) 

Condition (2.25) states that if there is flow between regions i and j, the average 

economic cost of transportation, Cy + Vj-Cy , plus the marginal cost of production 

C- equals the marginal revenue MRr
M, 9] (Dr

ß + D- )+ Dr
M 7 0] (3-, +D'ß). 

or 

(e) if v; > 0 then cf + (4 + V^Cy') = MRr
ß 

(f)ifC/ +{c'y+Vyrc'y)>MR'ji&mV;=0 

Then, the original problem for oligopoly can be rewritten as: 
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MAX 

r=l /e/ y=l /e/, r=l     /e/„ 
UJ)eA 

The set of constraints 

it faces are : 

;'e/(/,/)e/l j<=I(l,j)<=A 

r=l ye/ r=l ye/ 

c/+«+^/)-(^(^+^H^^7^(^+^))  =0 

s; < s; < sf 

b; < D] < D; 

V;<V;< VJ for (i,j) € A, 1 e I, q € Jq, andr 
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III. The Expanding Algorithm 

3.1 Introduction 

In this section we provide an overview and illustrate the use of the expanding 

equilibrium algorithm for single commodity spatial price equilibria. Theoretical 

justification of the algorithm may be found in Jones, Saigal and Schneider [41] and 

Schneider[30]. This algorithm follows an intuitively appealing path to solving LSSPE 

(Linear Single Spatial Price Equilibrium) and, in fact, its heritage may be traced to the 

first published article on spatial price equilibrium (Enke[46]). 

The algorithm begins by determining the equilibrium prices and trade flow 

between two of the n regions in the economy. During each subsequent iteration of the 

main loop a new region, k , is brought into equilibrium by modifying the existing (k- 

1) region equilibrium. The algorithm derives its name from this region-at-a-time 

expansion of the economy. 

Samuelson [44] made the observation that when shipping costs obey the 

triangle inequality ( c^ + cjk > cik ,V i, j, and k), an equilibrium solution, if one exists, 

may always be found whose trade flows form a forest with alternating arcs. Glassey 

[7] formalized this property much later. An n region economy needs to have at most 

(n-1) arcs carrying flow at equilibrium. This allows SPE problems to be represented 

economically by using network data structures. In perfect competition, it is very 

useful. But, it is not going to work with the other two models. Mathematically, the 

problem solved by expanding algorithm is to find values of pi and Vy, for all 1 e I, 

(i,j) e A , which satisfy the following equilibrium conditions : 
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*/-</,■/>,-+5X-IX-*o (3.1) 
J*I     J*I 

P1(b1-d1p1+YJVv-HVJ1) = 0 
J*I        J*I 

(3.2) 

Pt+Cs-pjZO (3.3) 

V^p.+Cg-pj^O (3.4) 

P,,Viy>0 (35) 

where 

n      : the number of regions; i and j index these regions, 

Pi       : the commodity price at region i, 

Vjj        : the quantity of commodity r shipped from region i to j, 

bj - dj pi: the linear excess demand function of commodity r at region i, and 

Cjj : the cost of shipping a unit of commodity from region i to j . 

3.2 Network data structure 

The expanding equilibrium algorithm is inextricably bound to the network data 

structures used to represent the problem. Solutions are represented by rooted trees. 

Any node in a tree may be designated the root, although in this application the region 

currently being brought into equilibrium is always made the root. Once a root is 

chosen, all nodes and arcs in the tree have a specific orientation in relation to the root. 

We define the following labels for each node: 
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1. thread of node i: threads points to the next node in a circular list that passes 

through every node in the network. 

2. predecessor of node i: pred; is the first node encountered on the path beginning 

at node i and ending at the root; predroot = 0 

3. number of successors of node i: nosj. 

4. slopes of successors of node I: SOSJ=   /  d j 
j e succcj 

+1 if region i imports 

5. trade status of node i: tSj  =      0   if region i does not trade 

-1   if region i exports. 

6. flow of node I: flows is the flow between node I and pred;; flowroot = 0 ; 

flow; has the same sign as tSj and the following relationship with VJJ: 

if fiowj < 0 , then x pred = fiowj 

otherwise if flow; > 0 , then x.     . =flow; 1 ' i, pred j 1 

The first three labels are standard network data structures; see Appendix B of 

Kennington and Helgason [25] for a concentrated introduction to these structures in 

the context of the network simplex algorithm. The slopes of successors label is 

carried in order to reduce the amount of work performed in the critical step of the 

algorithm.   The flow label measures the quantity of commodity shipped along the 

unique arc between every nonroot node and its predecessor. 
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The following additional notation is needed for this algorithm : 

Let Tk be the tree containing node k, Tj   be the tree containing any node j  <£ Tk , 

and   Si be the subtree consisting of the successors of node I. The algorithm follows. 

3.3 Expanding Algorithm for LSSPE (Linear Single Spatial Price Equilibrium) 

Given an ordering of regions from 1 to n and parameters b;, dj, and Cy , solve 

for the values of pi and flow; at equilibrium. 

EEL [Initialize. ] (Isolated prices : the equilibrium prices in the absence of trade) 

Set pj<-bi/di,tSj<-0 for l<i<n. Set k<-2 . 

EE2.[Main loop] (Determine which, if any, region currently in equilibrium trades 

with region k. If region k trades, set its price equal to the price at which 

trade could begin, and root Tk at k.) 

Set L <-,£?>> ~c*> 

s*u<-,<g^-c*> 

If pk < L , set pk <- L , tsk <- -1 , update Tk , and go to Step EE3a. 

Otherwise. If pk > U , set pk <- U , tsk <- 1 , update Tk, and go to 

Step EE3b .   Otherwise, set k <- k+1 and go to Step EE2. 

EE3a. [Ratio test for exporters.] (Determine feasible price decrease.) 

Set dl <- (bk - dk pk) / sosk 

For(i e Tk : tSj = -l ) 
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Set d2 <— max i (flow; / sos;) 

Set d3 <- max(/? - c, - /?,) 

Set 5 <- max (dl,d2,d3 ) and go to Step EE4 . 

EE3b. [Ratio test for importers .] (Determine feasible price increase.) 

Set dl «- (bk - dk pk) / sosk 

For (i G Tk : tSj = 1 ) 

Set d2 <- min; (flow; / SOSJ ) 

Set d3 <- min(/?  + c,,. - pi) 
U)€Tk 

Set 5 <r- min (dl,d2,d3 ) and go to Step EE4 . 

EE4. [Price and flow update ] 

Set pi <- pi + 8 and update flow; for i e Tk . 

If 8 = d2 , split Sj from Tk where fiowj has become zero, root Si at i, 

and return to that version of Step EE3 from whence you 

came. 

Otherwise, if 8 = d3 , root Tj at j, splice Tj into Tk , and return to 

that version of Step EE3 from whence you came. 

Otherwise, if k = n , stop with a solution to LSSPE. Otherwise, set 

k <r~ k + 1 and go to Step EE2. 
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The algorithm is initialized by setting regional prices equal to the isolated 

prices : the equilibrium prices in the absence of trade. Step EE2 uses equilibrium 

condition (3) to determine if incentive to trade with region k exists in the current 

(k-1) region economy. If an incentive does not exist, the expansion moves on to 

the next region. If it does, pk is set to the price at which region k and its trade 

partner would be indifferent to trade. Not satisfying the market clearing conditions 

(1), pk must then be adjusted until this condition is met. 

The purpose of steps EE3a and EE3b is to determine the feasible change that 

may be made to pk . The value of dl represents the price change necessary for market 

clearing within Tk . Adjusting pk by this value may result in infeasibility of two types. 

The value of d2 represents the price change that would result in flow on a basic arc 

within Tk hitting zero, requiring a change (pivot) in the forest structure of the solution. 

Note the similarity with dl; d2 is found by measuring the market clearing price 

change over certain subtrees Sj c: Tk. The value of d3 represents the price change that 

would result in a nonzero flow on a currently nonbasic arc from some node j g Tk to a 

node ie Tk. This would require a change (pivot) in the forest structure of the 

solution. Calculating values for dl,d2, and d3 is straightforward, but time - 

consuming;this is where the algorithm spends the majority of its time. Naturally, pk may 

be changed by as much as the most restrictive value allows. Step EE4 is where updates of 

prices, flows, and forest structure take place. After a finite number of ratio tests and price 

and flow updates, the market clearing price will be reached and the expansion may 

proceed to the next region. 

28 



IV. Implementation 

4.1 Introduction 

In this section, we are going to prove the uniqueness of the solution of spatial 

price equilibrium problem for an oligopoly model. The proof builds upon Harker[l 8] 

for single commodity spatial price equilibrium problem.   First of all, we assume that 

the feasible set in nonempty, then, we prove the existence and uniqueness of the 

solution to spatial price equilibrium problems. Before we prove this, there are some 

characters below that we should point out. 

As is typical, we all know that a reduction in price increases the quantity 

demanded and, conversely, an increase in price decreases the quantity demanded. So 

,we are very sure that 0ir(Dir) is a strictly decreasing (nonincreasing) function. It also 

shows us that 6ir(Dir )Diq
r is a strictly concave function. It is well known that the 

supply curve is always strictly increasing. That is , \\i\(Si) is a strictly nondecreasing 

function,it also means that Cir(Sir) is a strictly convex function. The shipping cost, 

c'jr(vijrX is monotone (nondecreasing) with no doubt. In order to make sure that there 

is nonempty feasible set, existence, and uniqueness to solution. Again, we assume 

that there is no interaction between commodities and all the firms behavior in 

Cournot-Nash manner. 

4.2 Existence of solution 

The following theorem presents the conditions under which a solution to this 

model will exist and will be unique. 

Theorem l.(Harker [18]) 
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If Q is nonempty and all decision variables are bounded away from infinity 

for all q e Q, 1 e Jq , (i,j )e A, and 

(i) There is no interaction between commodities, 

(ii) Cir(Sir) is a strictly convex, nondecreasing, and continuously differentiable 

function for all le I, 

(iii) Cjjr(Vjjr) is a monotone (nondecreasing), continuous function for all (i,j) e A, 

and 

(iv) - MRr(Dir) = (...,- MRiq
r(Dir),... )l is a strictly monotone, continuous 

function, then a solution to (4.1) exists and is unique. 

X>7 (<* )(<-<* ) for all xr e Qr, r (4.1) 
qeQ 

Proof. As is well known (Kinderlehrer and Stampachia), if a variational inequality is 

defined over a nonempty, compact, convex set and if the function 

Fr {xr) = (Fg' {xr
g))' is continuous, then a solution exists. By assumption, Qr is 

nonempty and by the assumption of finite bounds, it is bounded, Furthermore Fr is 

assumed to be contiguous, and by inspection, Qr is affine ( and hence convex) and 

closed. Thus, a solution must exist. 

4.3 Uniqeness of solution 

For the uniqueness of the solution, it is well known that Fr being a strictly monotone 

function will suffice. Relabeling xr and Fr, we can rewrite Fr as 

30 



Fr(xr) = 

VCr(Sr) 

-MRr{Dr) 

cr{Vr) 

where VCr (S') = (...,Cf (Sf ),...)'. 

and      cr(Vr) = (...,4 {Vr. )„..)'. 

As is well known, if VFr(xr) is positive definite, then Fr is a strictly monotone 

function. Writing VFr(xr), we have 

VFrU'') = 

V    x     V 

diag(C; (<>/)) 

0 

0 

-VMRr{Dr) 

0 

0 

0 0            diak '(c;; 

Thus,we have 

xrtVFr(xr)xr=^Sfc;  (S[)+ Yyü2^(VP-Dr'VMRr(Dr)D! 

le/ («HA 

By assumptions 

(i) there is no interaction between commodities, 

(ii) we have C,   (S'j) >0 for all 1 e I, 

(iii)4(^)^0forall(i,j)eA,and 

(iv) we have - MRr(Dr) is strictly monotone, which implies 

Dr'VMRr(Dr)Dr <0   forallDr*0. 
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Thus, xr VFr (xr )xr > 0 for xr * 0 , and for all r. Therefore, Fr(xr) and 

m 

^] Fr (xr ) are strictly monotone increasing, and the solution is unique. 

In order to interpret condition (iv), we shall state the following set of sufficient 

conditions: 

Corollary 1. 

If all conditions of Theorem 1 hold except that (iv) is replaced by, 0ir(Dir) is a 

continuous, concave, strictly monotone decreasing function, for all 1 e I, then the 

conclusion of Theorem 1 holds. 

Proof. For MRr(Dr) to be strictly monotone decreasing , it is sufficient that 

Dr' VMRr (Dr) Dr < 0   for all Dr * 0. Writing VMRr(Dr) = MR'lgJI, where 

MRU 

d 

d 
dD-\ 

[qm^U^U%)]=26{WyrDtfm)=m,,lg   &r  l=l,g=J (4.2) 

&,{I71)+DS' m)\ = ff; m)^-^' m) = W,^       akmse      (4.3) 

Calculating Dr VMRr (Dr)Dr,v?ehave 

Dr'VMRr(Dr)Dr=Y< 
1,Q 

Di {MR^H^Djff MR'k 

J*Q 

(4.4) 

By the assumption that 9jr(D]r) is strictly monotone decreasing we have 

Of (Dj)<0 ,and by the assumption that 6|r(Dir) is concave we have öf (D]) < 0 for 

all 1 el. Thus, by Equations (4.2) and (4.3), MRT
lqJj < Ofor all 1, q, I, j, and r and by 
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(4.4) we must haveDr' VMRr {Dr)Dr < 0 for all Dr * 0.   therefore, MRr(Dr) is 

strictly monotone decreasing and the conclusion of Theorem 1 holds. 

Note that 0ir(Dir) can be a linear function since it is a concave function. 

Furthermore, the proof of the preceding corollary illustrates that 0ir(Dir) can be convex 

as long as certain relationships between Of (D]) and Of (Dr, ) hold. For example, 

by replacing Diq
rby Dir in (4.3) , we derive the following sufficient condition: 

Corollary 2 . 

If 8ir(D)r) is strictly monotone decreasing and strictly convex for all lei, then 

MRr(Dr) will be a strictly monotone decreasing function if 

Of (Dr, )+ Dr,0f < 0     for   lei (4.5) 

Proof. Since 6ir(Dir) is strictly monotone decreasing Of (D\) < 0 and since 6|r(Dir) 

is strictly convex,. Of (D/)>0 If (4.5) holds, it must be the case that: 

Of (D;)+ Dr
lq0f (D]) < 0 for all q e Q since D] = YQsQ Df > 0 for all q € Q. 

Thus, we must have MR'lg _. < 0 for all l,q. Furthermore, if (4.5) holds, it must be the 

case that 

20;'(D;)+D;Of(D;)<0     for   lei 

since Of (Dr,)<Q. Thus MRflg < Ofor all l,q and Dr' VMRr (Dr) Dr as defined by 

(4.4) must be less than zero and hence MRr(Dr) must be strictly monotone decreasing. 
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4.4 Algorithm 

In this section, we provided an algorithm based on the expanding algorithm to 

solve these three different models;perfectly competitive, monopoly, and oligopoly. 

The solution of the original nonlinear programming problem is found by solving a 

series of linear system problems. Each linear system problem is generated by 

approximating the nonlinear constraint functions using first-order Taylor series 

expansions about the current point (vector), Xj. The resulting linear system problem 

is solved using the expanding algorithm to find the new vector Xi+i. If Xj+i does not 

satisfy the stated convergence criteria and meet all the constraints, the linear system 

problem is relinearized about the point X+i and the procedure is continued until the 

optimum solution X is found. 

Original Problem : MIN    f(X) 

subject to   gj(X) < 0 j = l,2,...,m 

hk(X) = 0 k=l,2,...,p 

Algorithm. 

Step 1. Start with an arbitrarily initial vector X] and set the iteration number 

as i = 1. The vector Xi need not be feasible. 

Step 2. Linearize the objective and constraint functions about the vector Xj an 

as 

f(X)sf(Xi) + Vf(X1)
T(X-Xi) 

gjCX^gjCXD + VgjtXifcx-xo 

hk(X) - hk(Xi) + Vhk(Xi)T(X - Xi) 
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Step 3. Formulate the approximating linear programming problem as 

Min   f(Xi) + Vf(Xi)T(X - Xj) 

subject to 

gj(Xi) + Vgj(X0T(X - Xj) < 0 j = l,2,...,m 

hk(X0 + Vhk(X0T(X - XO = 0 k = l,2,...,p 

Step 4. [Solve the approximating linear system problem using Expanding 

Algorithm to obtain the solution vector Xi+i] 

Step 4.a. Set k = 2 

Step 4.b. [Determine which market (if any) trades with market k, and form the 

approximation linear system] 

^;-Ar + 2X-lX''=o vr 
ij<k l,j<,k 

r=l i,l<k l,j<k 

(C-   +cr
ik) = 6r

k    for some i < k, and all r (for perfect competition ) 

(C[ + cr
kj ) = Gj    for some j < k, and all r (for perfect competition) 

' i i 

(C; +cr
ik+V1'kc

r
ik ) = 6[^D[6[  for some i <k, and all r( for monopoly) 

' i i 

{C[ +cr
kj+V[jCr

kj ) = Gr
j+DjGr

J   for somej <k, and all r( for monopoly) 

' ' dGr 

Wi   + c'ik + Vlkc
r

ik ) = Gk+ Dr
ki —

k
T for some i< k, and all r (for oligopoly) 

(Ck  + cr
kj + V[jCr

kj ) = Grj + Dr
jk —^r for some j< k, and all r (for oligopoly) 

Step 4.C. [Solve the approximating linear system above, and 
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go to Step 4.b, if k < n (number of regions), 

go to Step 5 , otherwise. 

Step 5. Evaluate the original constraints at Xj+i; that is, find 

gj(Xi+i),   j = l,2,...,m  and   hk(Xi+i),   k=l,2,...,p 

If gj(Xi+i) < s for j =l,2,...,m, and |hk(Xi+1)| < e, k =l,2,...,p, and 

max I Xj+i - Xj I  < s, 

where e is a prescribed small positive tolerance, all the original 

constraints can be assumed to have been satisfied. Hence stop the 

procedure by taking   Xopt = Xj+i 

If gj(Xi+i) > s for some j, or I hk(Xi+i)| > s, for some k, find all the 

elements which are negative, reset them 0. Then, set the new iteration 

number as i = i + 1, and go to Step 2. 

4.5 Computational experiment 

In order to make any meaningful statements about the performance of the 

proposed algorithm, we performed a computational experiment. As there are 

currently no benchmark problems in the spatial price equilibrium, we resorted to 

random generation of problem parameters. We followed an approach similar to 

Harker(1984) in the generation of the parameters. Parameters were generated in this 

fashion to ensure that an equilibrium existed in each region in the absence of trade. 

The production cost functions, inverse demand functions and O-D transportation cost 

functions are given by Cj (Sr, ) = ar,S^ + ß]Sf , 0] (£>/) = < - S\D\, and 
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^ = ^+/W2+£«W- 
k*r 

The numerical example we solved is three regions and two commodities. 

Table 1 lists the coefficients used for this example. In order to prove the convergence 

and uniqueness of the solution, we provide three initial starting vectors for every 

model. Tables II, III, and IV represent the convergence of three different initial 

starting vectors for perfect competition, respectively. Tables V, VI, and VII represent 

the convergence of different initial starting vectors for monopoly, respectively. Tables 

VIII, IX, and X represent the convergence of different initial starting vectors for 

oligopoly, respectively. As we mentioned before, we would like to show how 

transportation is used to influence market. We also provide the equilibrium solution 

for each commodity when they are single commodity in the market. Table XI lists 

the equilibrium solution for each commodity before they compete in the same market. 

Table XII lists the equilibrium solution when these commodities are in the same 

market. Table XIII summarizes the results of congestion 

of various models. 

As we can see, the best initial starting vector is always based on the isolated 

flows (i.e., the absence of flows between regions; no export and no import). It always 

reduces a lot of iterations and computation. We also notice that the more 

commodities in total are shipped, the more congestion there is( see Table XIII), 

especially in an oligopoly model. Therefore,the transportation has much more impact 

in oligopoly than the other two models. 
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Table I Coefficients 
Region aj1 ß,1 a,2 ß.2 a,1 8,1 a,2 5,2 

1 1.0 0.5 2.0 0.3 19.0 0.2 27.0 0.3 

2 2.0 0.4 1.5 0.5 27.0 0.01 30.0 0.2 

3 1.5 0.3 1.0 0.4 30.0 0.3 19.0 0.01 

O-D 
Pair 

(i,j) 

«hi1 iV «hi2 W.i2 ©ij1 
CDjj2 

(1,2) 1.0 0.1 2.0 0.4 0.02 0.02 

(1.3) 2.0 0.4 1.0 0.1 0.03 0.03 

(2,1) 1.0 0.2 3.0 0.3 0.01 0.01 

(2,3) 3.0 0.3 1.0 0.2 0.04 0.04 

(3,1) 1.0 0.1 4.0 0.4 0.03 0.03 

(3,2) 4.0 0.4 1.0 0.1 0.02 0.02 
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Table II Perfect Competition (initial starting vector based on isolated flow) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 

Vn1 2.306 8.018 6.146 6.362 6.373 6.373 

V121 9.048 7.917 8.873 8.849 8.85 8.85 

VB
1 5.105 2.382 1.752 1.517 1.502 1.502 

V211 2.454 -7.086 0 0 0 0 

V221 24.859 40.211 30.726 30.728 30.729 30.729 

V231 3.448 -2.515 0 0 0 0 

Vai1 2.947 -2.519 0 0 0 0 

V321 5.254 3.041 2.282 2.145 2.139 2.139 

V331 23.348 31.363 29.562 29.731 29.74 29.74 

V.,2 18.578 25.468 32.274 26.089 26.101 26.101 

V,22 5.404 3.102 2.859 2.533 2.515 2.515 

Vl32 4.337 0.364 -7.787 0 0 0 

V212 3.609 -1.307 0 0 0 0 

V222 15.857 25.197 22.242 22.286 22.289 22.289 

V232 3.343 -2.22 0 0 0 0 

v31
2 

4.511 1.305 -3.633 0 0 0 

V322 7.193 5.85 6.187 6.248 6.25 6.25 

V332 10.568 15.178 19.796 16.051 16.049 16.049 
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Table III Perfect Competition (all initial starting elements are 200) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 It. 7 It. 8 It. 9 It. 10 

Vn1 -185.115 -85.331 -35.737 -11.438 0.158 6.662 6.051 6.345 6.373 6.373 

V121 100.215 50.554 26.163 14.734 10.068 8.254 8.829 8.847 8.85 8.85 

VB
1 99.996 50.007 25.034 12.576 6.352 3.075 1.91 1.539 1.502 1.502 

V211 99.843 49.622 24.234 10.994 3.206 -5.04 0 0 0 0 

V221 -168.874 -68.531 -17.937 8.202 23.09 36.801 30.725 30.728 30.729 30.729 

V231 99.89 49.758 24.537 11.61 4.458 -1.119 0 0 0 0 

V311 99.79 49.558 24.202 11.089 3.748 -1.578 0 0 0 0 

V321 100.001 50.016 25.051 12.623 6.514 3.616 2.447 2.16 2.139 2.139 

V331 -168.157 -67.971 -17.692 7.792 21.222 29.656 29.399 29.713 29.74 29.74 

Vn1 -172.128 -72.049 -21.941 3.263 16.227 23.781 28.544 26.092 26.101 26.101 

V121 100.022 50.06 25.128 12.748 6.679 3.715 2.804 2.528 2.515 2.515 

Vn1 99.903 49.83 24.743 12.082 5.465 1.332 -3.268 0 0 0 

V2.1 99.912 49.791 24.579 11.682 4.666 -0.181 0 0 0 0 

V221 -176.072 -75.875 -25.551 0.051 13.766 23.106 22.249 22.287 22.289 22.289 

V231 99.857 49.695 24.437 11.465 4.297 -1.041 0 0 0 0 

V311 99.956 49.908 24.835 12.202 5.7 2.08 -1.37 0 0 0 

V321 100.085 50.259 25.594 13.705 8.413 6.259 6.199 6.249 6.25 6.25 

V331 -177.815 -77.937 -28.192 -3.656 8.163 13.982 17.493 16.051 16.049 16.049 
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Table IV Perfect Competition (all initial starting elements are 0.1) 

Variable It.  1 It. 2 It. 3 It. 4 It. 5 It. 6 It. 7 It. 8 It. 9 It. 10 It. 11 

V,,1 7.352 4.186 5.807 6.435 6.575 6.583 6.583 6.295 6.367 6.373 6.373 

V121 7.838 8.667 8.814 8.883 8.899 8.9 8.9 8.834 8.849 8.85 8.85 

Vis1 8.768 8.309 2.218 1.395 1.211 1.201 1.201 1.6121 1.511 1.502 1.502 

V211 -35.824 0 0 0 0 0 0 0 0 0 0 

V22' 154.008 30.757 30.755 30.755 30.754 30.754 30.754 30.722 30.728 30.729 30.729 

V231 -88.284 0 0 0 0 0 0 0 0 0 0 

V311 -1.319 0 0 0 0 0 0 0 0 0 0 

V321 -53.839 0 0 0 0 0 0 2.677 2.189 2.14 2.139 

V331 94.944 30.23 30.927 31.202 31.263 31.266 31.266 29.345 29.704 29.74 29.74 

Vn2 124.436 27.778 27.778 27.778 27.778 27.778 27.778 25.567 26.044 26.1 26.101 

Vi22 -19.419 0 0 0 0 0 0 3.316 2.601 2.517 2.515 

Vl32 -76.14 0 0 0 0 0 0 0 0 0 0 

V212 -52.661 0 0 0 0 0 0 0 0 0 0 

V222 27.214 2.168 13.454 19.68 25.023 22.655 '22.655 22.171 22.277 22.289 22.289 

V232 43.794 21.477 9.915 3.284 -2.809 0 0 0 0 0 0 

V312 -46.196 0 0 0 0 0 0 0 0 0 0 

V322 42.97 22.109 12.201 8.002 6.404 6.569 6.567 6.16 6.24 6.25 6.25 

V332 25.808 0.121 10.05 14.279 15.932 15.734 15.736 16.138 16.059 16.049 16.049 
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Table V Monopoly (initial starting vector based on isolated flow) 

Variable It.  1 It. 2 It. 3 It. 4 It. 5 

Vn1 7.357 7.944 8.721 8.788 8.788 

V121 10.887 6.879 5.791 5.697 5.697 

Vn1 -0.58 0 0 0 0 

V211 -6.344 0 0 0 0 

V221 41.686 30.266 30.293 30.295 30.295 

V231 -5.458 0 0 0 0 

V311 -0.176 0 0 0 0 

V321 2.065 2.195 2.196 2.196 2.196 

V331 25.825 22.653 22.652 22.652 22.652 

Vn2 21.862 18.698 18.799 18.801 18.801 

Vi22 0.967 1.729 1.598 1.594 1.594 

V.32 1.799 2.542 2.472 2.472 2.472 

V2.2 -2.926 0 0 0 0 

V222 22.806 19.241 19.322 19.324 19.324 

V232 -1.374 0 0 0 0 

V312 -1.899 0 0 0 0 

V322 1.21 2.179 2.027 2.023 2.023 

V332 22.613 19.763 19.914 19.917 19.917 
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Table VI Monopoly (all initia startin g elements are 400) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 It. 7 It. 8 It. 9 It. 10 It. 11 It. 12 It. 13 It. 14 

V,.1 -387.147 -187.171 -87.228 -37.342 -12.558 -0.407 5.556 11.522 9.129 8.788 8.788 8.788 8.788 8.788 

V.21 200.04 100.107 50.235 25.482 13.451 8.018 6.011 4.809 5.688 5.697 5.697 5.697 5.697 5.697 

Vis1 199.994 99.99 49.988 24.985 12.477 6.203 3.005 1.102 0.063 0 0 0 0 0 

V211 199.968 99.924 49.846 24.697 11.907 5.075 0.618 -11.17 0 0 0 0 0 0 

V221 -369.452 -169.378 -69.253 -19.014 6.454 19.902 28.32 45.06 30.294 30.295 30.295 30.295 30.295 

V231 199.97 99.936 49.881 24.778 12.075 5.41 1.363 -3.945 0 0 0 0 0 0 

V311 199.963 99.933 49.895 24.834 12.226 5.796 2.395 1.067 -1.012 0 0 0 0 0 

V321 200.003 100.011 50.029 25.065 12.636 6.523 3.64 2.312 2.25 2.196 2.196 2.196 2.196 2,196 

V331 -376.215 -176.185 -76.147 -26.081 -0.958 11.782 18.549 23.482 25.163 22.652 22.652 22.652 22.652 22.652 

Vn2 -379.146 -179.134 -79.123 -29.108 -4.078 8.496 14.969 19.028 26.92 17.549 18.54 18.78 18.801 18.801 

V122 200.003 100.011 50.025 25.053 12.606 6.448 3.46 2.002 0.725 1.631 1.555 1.591 1.594 1.594 

Vl32 199.988 99.994 50.022 25.084 17.705 6.668 3.858 2.527 0.364 4.938 3.031 2.516 2.472 2.472 

V2!2 199.983 99.96 49.92 24.845 12.198 5.666 1.978 -1.031 0 0 0 0 0 0 

V222 -379.611 -179.583 -79.545 -29.477 -4.348 8.405 15.182 19.696 24.289 19.235 19.327 19.324 19.324 19.324 

V232 199.974 99.953 49.924 24.876 12.285 5.865 2.424 0.274 -6.252 0 0 0 0 0 

v31
2 199.985 99.97 49.945 24.9 12.313 5.894 2.434 0.113 -13.262 0 0 0 0 0 

V322 199.993 99.999 50.02 25.066 12.654 6.557 3.648 2.208 1.144 2.295 2.049 2.024 2.023 2.023 

V332 -378.027 -178.017 -78.014 -28.015 -3.07 8.498 15.864 19.619 33.917 15.592 19.878 19.915 19.917 19.917 
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Table VII Monopoly (all initial starting elements are 0.5 ) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 

Vn1 6.936 6.947 8.519 8.78 8.788 8.788 

V.21 14.493 8.274 6.074 5.707 5.697 5.697 

Vn' -2.018 0 0 0 0 0 

V211 -10.12 0 0 0 0 0 

V221 49.343 30.232 30.286 30.295 30.295 30.295 

V231 -9.617 0 0 0 0 0 

V311 -0.342 0 0 0 0 0 

V321 1.896 2.203 2.194 2.196 2.196 2.196 

V33' 28.79 22.649 22.653 22.652 22.652 22.652 

Vn2 25.053 17.499 18.571 18.784 18.801 18.801 

V122 0.177 3.334 2.01 1.632 1.594 1.594 

Vl32 0.58 3.335 2.516 2.466 2.472 2.472 

V212 -5.257 0 0 0 0 0 

V222 25.775 18.464 19.159 19.313 19.324 19.324 

V232 -2.474 0 0 0 0 0 

V3I
2 -3.94 0 0 0 0 0 

V322 0.188 3.291 2.183 2.021 2.023 2.023 

V332 25.658 18.659 19.76 19.92 19.917 19.917 
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Table VIII Ol gopoly (initial starting vector based on isolated flow) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 

v./ 1.654 4.965 4.223 4.27 4.285 4.285 

V121 9.203 8.7 9.141 9.127 9.124 9.124 

VB1 5.196 3.166 2.742 2.714 2.707 2.707 

V211 2.376 -6.245 0 0 0 0 

V22' 24.453 37.19 30.33 30.331 30.331 30.331 

V23* 3.623 -0.783 0 0 0 0 

V311 4.052 2.163 1.019 0.903 0.851 0.851 

V321 5.635 3.952 3.765 3.765 3.769 3.769 

V331 16.702 20.096 20.672 20.738 20.763 20.763 

Vn2 13.124 16.263 17.164 18.17 17.389 17.394 

Vi22 5.64 3.939 3.256 3.411 3.523 3.522 

Vl32 5.512 3.877 3.651 3.058 3.365 3.356 

V212 3.996 0.912 0.832 -1.01 0 0 

V222 12.983 18.268 25.517 19.758 19.017 19.017 

V232 3.828 0.039 -9.711 0 0 0 

V3,2 4.541 1.738 0.03 -1.273 0 0 

V322 6.863 5.933 5.024 5.834 5.858 5.858 

V332 10.712 14.419 17.094 17.465 16.195 16.196 
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Table IX Oligopoly ( all initial starting elements are 200 ) 

Variable It. 1 It. 2 It. 3 It. 4 It. 5 It. 6 It. 7 It. 8 It. 9 It. 10 It. 11 It. 12 

Vu1 -243.288 -114.365 -50.195 -18.663 -3.839 2.491 8.651 3.982 4.253 4.284 4.285 4.285 

V.21 -149.433 74.343 37.18 19.326 11.637 9.247 7.523 9.322 9.133 9.124 9.124 9.124 

V131 149.551 74.355 36.812 18.144 8.991 4.709 2.663 2.768 2.72 2.707 2.707 2.707 

V2,1 149.553 74.242 36.415 17.162 6.848 0.002 -25.801 0 0 0 0 0 

V221 -264.959 -116.224 41.624 -3.863 15.951 28.083 57.415 30.329 30.331 30.331 30.331 30.331 

V231 149.54 74.274 36.569 17.573 7.786 2.279 -1.939 0 0 0 0 0 

V31' 148.541 72.821 34.984 16.129 6.886 2.782 4.311 1.674 0.97 0.853 0.851 0.851 

V32' 149.824 74.768 37.303 18.694 9.624 5.487 3.682 3.698 3.759 3.769 3.769 3.769 

V331 -200.205 -87.201 -30.739 -2.591 11.301 17.868 19.572 20.372 20.705 20.762 20.763 20.763 

Vn2 -203.373 -90.518 -34.173 -6.159 7.558 13.956 16.613 17.922 17.9 17.392 17.394 17.394 

V122 149.686 74.569 37.089 18.499 9.473 5.38 3.823 3.426 3.477 3.522 3.522 3.522 

VB
2 149.208 73.868 36.31 17.744 8.847 4.998 3.715 3.174 3.127 3.362 3.356 3.356 

V212 149.358 74.017 36.308 17.384 7.811 2.882 0.433 -1.663 0 0 0 0 

V222 -235.869 -106.823 -42.27 -9.94 6.319 14.634 19.314 20.239 19.02 19.017 19.017 19.017 

V232 149.548 74.29 36.6 17.639 7.945 2.704 -0.9 0 0 0 0 0 

V312 149.681 74.515 36.92 18.1 8.651 3.871 1.373 0.107 -1.474 0 0 0 

V322 149.367 74.157 36.762 18.462 10.012 6.751 5.818 5.714 5.881 5.858 5.858 5.858 

V332 -273.446 -124.902 -50.822 -14.151 3.538 11.495 14.901 16.233 17.613 16.195 16.196 16.196 
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Table X Oligopoly (all initial starting elements are 0.1 

Variable It.  1 It. 2 It. 3 It. 4 It. 5 It.6 

Vn1 -6.787 -1.606 3.246 4.234 4.285 4.285 

V121 29.699 15.866 10.431 9.197 9.125 9.124 

Vn' 0.203 3.979 2.807 2.703 2.707 2.707 

V211 -16.006 0 0 0 0 0 

V221 51.191 30.223 30.311 30.33 30.331 30.331 

V231 -5.718 0 0 0 0 0 

V3.' 4.001 2.014 1.087 0.864 0.851 0.851 

V321 10.509 5.823 4.095 3.78 3.769 3.769 

V331 17.874 18.836 20.457 20.752 20.763 20.763 

Vn2 14.828 16.878 17.929 17.391 17.394 17.394 

V122 8.034 4.668 3.551 3.521 3.522 3.522 

V,32 3.439 3.045 3.085 3.364 3.356 3.356 

V212 2.769 0.395 -1.656 0 0 0 

V222 19.639 18.449 30.211 19.017 19.017 19.017 

V232 -5.513 0 0 0 0 0 

V312 -1.695 0 0 0 0 0 

V322 10.712 6.715 5.755 5.858 5.858 5.858 

V332 13.179 15.363 16.298 16.195 16.196 16.196 

47 



Table XI: Equilibrium solutions before commodities compete in the market 
Variable Pure -competition Oligopoly Monopoly 

v,,1 
6.358 4.252 8.785 

v,2' 8.862 9.136 5.701 

v13' 1.509 2.741 

V2I1 

v22' 30.728 30.330 30.295 

V231 

V311 0.852 

v32' 2.204 3.806 2.203 

V331 29.694 20.736 22.648 

Vu2 26.077 17.332 18.796 

v,2
2 

2.551 3.537 1.605 

Vis' 3.465 2.47 

v21
2 

v22
2 

22.279 19.008 19.313 

v23
2 

v31
2 

v32
2 

6.276 5.905 2.05 

V332 16.023 16.148 19.891 
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Table XII: Equilibrium solutions when commodities compete in the market 
Variable Pure -competition Oligopoly Monopoly 

v,,1 
6.373 4.285 8.788 

V.21 8.85 9.124 5.697 

V.31 1.502 2.707 

V211 

v22' 30.729 30.331 30.295 

V231 

V3,1 0.851 

V321 2.139 3.769 2.196 

V331 29.74 20.763 22.652 

.v„* 26.101 17.394 18.801 

V,2
2 2.515 3.522 1.594 

Vi32 3.356 2.472 

V2,
2 

V22
2 22.289 19.017 19.324 

V23
2 

V3l
2 

V32
2 6.25 5858 2.023 

v33
2 

16.049 16.196 19.917 
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Table XIII: Result of Competition 
Variable Pure -competition Oligopoly Monopoly 

v,,1 
0.2% 0.8% 0.035% 

V.21 -0.1% -0.1% -0.076% 

Vis1 -0.5% -0.13% 

v2,
! 

V221 0.0017% 0.019% 0.001% 

V23 

V3,1 -0.095% 

V321 -2.9% -1% -0.3% 

V331 0.2% 0.1% 0.018% 

V,,2 0.092% 0.3% 0.025% 

V12
2 -1.4% -0.5% -0.7% 

V13
2 -2.2% 0.065% 

V212 

V22
2 0.045% 0.048% 0.056% 

V23
2 

v31
2 

V322 -0.4% -0.8% -1.3% 

V332 0.2% 0.3% 0.1% 
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V. Conclusion 

5.1 Introduction 

This thesis has demonstrated that the same basic solution algorithm can be 

used to solve three conceptually different models of spatial competition. As we all 

know, the modeling involves lots of simplification of reality. Thus, all models are 

flawed. Besides, no one set of economic assumptions completely describes the 

workings of the economic system under study; the market may exhibit traits of both 

perfect and imperfect competitions. Thus, in making predictions about the future state 

of such an economic system, we cannot rely on any one model. 

5.2 Research Summary 

• Analysis of the problem domain. 

Before developing the algorithm, an intensive study was accomplished to 

gain an understanding of the terms, concepts, and philosophies for spatial 

price equilibrium problem. 

• Market Structure 

We provided an overview of market structure in order for the reader to have 

better understanding, and clear concepts for the difference among these three 

different models. 

• Detailed Expanding Algorithm 

The algorithm we developed was based on the expanding algorithm for single 

linear spatial price equilibrium[47]. Our algorithm uses Expanding 
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Algorithm as a series subproblera. We also offered the most important tool, 

network data structure, with which we can solve large-scale problems. 

• Implementation and testing 

The implementation stage was to create an algorithm for General spatial price 

equilibrium problem(could be multi-commodity, and nonlinear shipping cost 

function), and provided numerical examples for all three of these models to 

test the alorithm. 

5.3 Future research 

First, the models presented in this thesis are static, and hence do not introduce 

entry/exit issues. If firms are making economic profits, it is very likely that new firms 

will enter the market and perturb the established economic equilibrium of supplies, 

demands and flows. Introducing entry/exit issues is a fruitful area of research in that 

it not only impacts policy modeling, but is also useful in facility location decisions. 

Second, all of the spatial models that are currently available assume Cijr(Vyr) is 

a constant or increasing function. But, in reality, there exists shipping cost function, 

as freight rate discounts for large shipments make this a decreasing function of V,/, 

which leads to nonconvex optimization problems. Can uniqueness be assured with a 

weaker condition than strict monotonicity? Can convergence of the solution 

algorithms be shown under weaker conditions than those presented? 

Third, the simple supply and demand functions that are used in GSPE may not 

be capable of capturing complex market behaviors, Future research must be directed 

towards the inclusion of more sophisticated supply/demand models. 
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Fourth, besides theoretical challenges, clearly the equilibrium process is 

computationally intensive. Further research could possibly reduce the computational 

complexity of the solution of GSPE by a large amount. 

Finally, we cannot help but emphasize the importance of transportation, 

especially in an oligopoly market. Transportation is a vital part of all economy. It not 

only affects the availability and prices of goods sold at market, but it also has a major 

impact on energy usage, national defense matters, and many other national concerns. 

The growth of any economy is limited without adequate transportation support. 

5.4 Conclusion 

In conclusion, this thesis documented an algorithm based on the expanding 

algorithm (Jones[47]) to solve general spatial price equilibria for all three models. 

This work forms the baseline for future efforts for different models. This algorithm 

has shown that it not only solves all three of the models without any change, but it is 

also easy to implement. 

It is very helpful to develop an algorithm on MATHCAD. It not only provides 

me everything that I need, but it is also visible. That is the reason why I picked it, 

especially, in my personal situation. MATHCAD has made it possible for me to 

implement the algorithm in urgent time. It indeed bought me a lot of time. 

53 



Appendix A Data Structures for Network Program (Kennington[25]) 

Labels for Rooted Trees 

Let 3=[5R, p] be a rooted tree with root node 1. There is a unique path linking any 

node i ^ 1 to node 1, and we denote this path by P( i). Node i will be called a 

successor of node n, if n is in P( i). We denote the set of successors of node n by 

U( n) and the number of successors of node n by tn. 

We define a label for 3 to be a mapping with domain 9J. The distance 

label,denoted by d,, is given as follows : 

*-(     ° >f '=' 
[length   of    P(i) otherwise 

The predecessor label, denoted by Pj, is given by 

f      0        if   /.I 

[/*(/) otherwise 

For any one-to-one mapping from 9? onto 5R, say s;, we define the family of maps by 

the recursion 

s'( i) = si, 

si+1(i)==si(si). 

Then s; is called a thread label if U( i) = {si(i):j = l,..., tj}, when t; *■ 0. For a 

given rooted tree, many such maps can typically be defined. Given a thread label, the 

preorder distance label, denoted by g;, is a mapping from SJ? to 9? such that 

|      1        i = l 
81     [j + l   i = sJ(I) 

Given a thread label, the last successor label, denoted by n;, is given by 
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ft, = 
i        if   U{i) = <t> 

sJ (/')   otherwise;   sJ (/') e U(i), and si+x (/') <£ U(i) 

To illustrate these mappings, Table A.l gives the labels for the rooted tree of Figure 

B.l. 

the data structures that follow all represent 3 using the predecessor and the thread 

labels plus various combinations of the other labels. Note 

Table XIV  Labels for The Rooted Tree of Figure I 

Node Distance Predecessor Thread Last Successor No. of Successor Preorder 
i di P. Si rii ti & 

1 1 11 2 10 10 2 
2 2 1 3 10 9 3 
3 3 2 4 7 5 4 
4 4 3 5 4 1 5 
5 4 3 6 6 2 6 
6 5 5 7 6 1 7 
7 4 3 8 7 1 8 
8 3 2 9 8 1 9 
9 3 2 10 10 2 10 
10 4 9 11 10 1 11 
11 0 0 1 10 11 1 

Figure I Sample rooted tree. 
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that each label used in the data structure requires a node-length array, furthermore, in 

general it is true that an efficient implementation using a data structure with k+1 node 

-length arrays will result in faster solution times than one with only k such arrays. 

Hence, in the absence of budgetary and other design restrictions, the appropriate data 

structure for a given problem is a function of the core storage available. We now 

present the data structures and corresponding algorithms for implementation using 

two,three,and four node-length arrays for representing 3 has 7-1 arcs and the root 

arc. Therefore the pertinent information about the arcs is also carried in node-length 

arrays, where for i * 1 the information concerning the arc connecting nodes i and Pj is 

associated with node i. Suppose arc ek connects nodes i and Pj. To facilitate the 

computations, we make use of an oriented arc identifier, mi, which is defined to be k 

if ek = (Pj ,i ) and -k if ek = (i,P; ). The flow on ek is denoted by a,. To implement the 

pricing operation, it is desirable to maintain the values of the dual variables. Thus 

three additional node-length arrays are required, which may also be considered as 

labels. 
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Appnedix B . Convex & Concave & Positive Definite 

Bl. Convex and Concave Functions 

Convex and concave functions play an important role in optimization problems. 

These functions naturally arise in linear optimization problems when dealing with 

parametric analysis. A function f of the vector (x,, x2,..., xn) is said to be convex if 

the following inequality holds for any two vectors xi and X2 : 

f(Ax]+(l-A)x2)<Af(x]) + (l-A)f(x1)   for all    X e [ 0, 1 ] 

Figure II shows an example of a convex function. Note that the foregoing inequality 

can be interpreted as follows : Af(xi) + (1 - A)f(x2) where X e [ 0, 1 ] 

represents the height of the chord joining (xi, f(xi)) and (x2, f(xi)) at the point 

Axx + (1 - A)x2. Since f(Axl + (1 - A)x2) < Af{xx) + (1 - A)f(x2), then the height of 

the chord is at least as large as the height of the function itself. 

A function f is concave if and only if -f is convex. This can be restated as follows : 

f(Axl+(l-A)x2)>Af(xl) + (l-A)f(x2)   for all    Xe[0,\]. 

for any given xi and X2 Figure III shows an example of a concave function. An 

example of a function that is neither convex nor concave is depicted in Figure IV 

xi x2 Xl x2 

Figure II Figure III Figure IV 
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B.2 Positive Definite 

It is known from matrix algebra that the quadratic form of Eq.(B.l) or (B.2) 

will be positive for all h if and only if [J] is positive definite at X = X*. This means 

that a sufficient condition for the stationary point X* to be a relative minimum is that 

the Hessian matrix evaluated at the same point be positive. This completes the proof 

for the minimization case. By proceeding in a similar manner, it can be proved that 

the Hessian matrix will be negative definite if X* is a relative maximum point. 

d2i 
Q=yyhihi 

Q = hTJh|x = x* 

where 

(B.l) 

(B.2) 

J lx = x - 
d2f 

dX;   dX; x=x (B.3) 

is the matrix of second partial derivatives and is called the Hessian matrix of 

f(X). 

Note: A matrix A will be positive definite if all its eigenvalues are positive; 

that is , all the values of A, that satisfy the determinantal equation 

IA - XI I = 0 (B.4) 

should be positive. Similarly, the matrix [A] will be negative definite if its 

eigenvalues are negative. 

Another test that can be used to find the positive defmiteness of a matrix A of 

order n involves evaluation of the determinants 

A] = Un I A, 
an    an 

a2\       a21 
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A3- 

an an «13 

a2X #22 a23 

a31 a32 «33 

A„ = 

a, «12       «13 

'21       "22 *23 

«32       «33 

«Hi       ««2       ««3 

a, 

a In 

*3n 

The matrix A will be positive definite if and only if all the values Ai, A2, A3,. 

.. ., An are positive. The matrix A will be negative definite if and only if the sign of 

Aj is (-iy for j = 1,2,..., n. If some of the Aj are positive and the remaining Aj are 

zero, the matrix A will be positive semidefinite. 
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Appendix C. Variational Inequality & Complementarity Problems 

C.l Varational Inequality Problem 

The problem of finding x* e k such that 

F( x* )T( x - x*) > 0 for all x e k 

where F(x): k -> Rn, k c Rn , is a variational inequality problem (VIP) 

Let F : Rn -> Rn be continuous, g : R" -> Rm be differentiate, and h : Rn -» Rp 

be linear affine. Let 

k= {x<ER"\g(x)>0,h(x) = 0} 

We then want to find a solution x* to the variational inequality 

F( x* )T( x - x*) > 0 for all x e k (C.l) 

Theorem 1 (Necessary conditions for solution). If the vector x* e k is a solution to 

the variational inequality (C.l) and the gradientsVgj(x*) ,for i such that g(x*) = 0", and 

Vhj(x ) ,for i = 1,..., p, are linearly independent, then there exists X e Rm and \i e Rp 

such that 

F( x* ) - Vg(x*)\ - Vh(x*)V = 0 (C.2) 

A.Tg( x*) = 0 (C.3) 

^ 0 (C.4) 

Theorem 2 (Sufficient conditions for solution). If g;(x) for i = 1,..., m are concave 

and x* G k, X* € Rm and u* e Rp satisfy (C.2), (C.3) and (C.4), then x* is a solution to 

the variational inequality (C.l). 
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Theorem 3 (Sufficient conditions for a locally unique solution). If the conditions of 

Theorem 2 hold and in addition if F is differentiable and 

yTVF(x*)y > 0   for all y * 0 

such that 

Vgi(x*)y^0   for all i such that g;(x*) =0 

Vgi(x*)y = 0   for all i such that X* >0 

Vhi(x*)y = 0    for i=l,...,p, 

then x is a locally unique solution to variational inequality (C.l). 

C.2 COMPLEMENTARITY PROBLEM 

The problem of finding xeR" such that 

F(X)TX= 0 

F(X) >0 

X >0 
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Appendix D.   GINO & GRG2 ( general reduced gradient 2 ) 

D.l GINO 

GINO is a modeling program which can be used to solve optimization 

problems and sets of simultaneous linear and nonlinear equations and inequalities. 

Thus, GINO can be used to solve problems in many areas such as resource allocation, 

strategic planning, economic analysis, and engineering design and analysis. GINO has 

the capability to not only evaluate formulate but also to run a formula backwards. 

Actually, GINO can solve simultaneous equations, inequality relations, and in 

addition can maximize or minimize the value of a specified variable (so-called 

optimization). 

D.2 GRG2 (General Reduced Gradient 2 ) 

GRG2, the portion of GINO which solves the model, uses a version of the 

generalized reduced gradient (GRG) algorithm. GRG was first developed in the 

late 1960's by Jean Abadie, and has since been refined by several other researchers. 

This section discusses the fundamental ideas of GRG and describes the version of 

GRG that is implemented in GRG2. More complete information regarding GRG 

ideas and the structure of GRG2 is contained in the following references: Abadie 

(1978), Lasdon,Waren, Jain, and Ratner (1978), 

The generalized reduced gradient (GRG) method is an extension of the 

reduced gradient method that was presented originally for solving problems with 

linear constraints only[D.l 1]. To see the details of the GRG method, consider the 

nonlinear programming problem: 
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Minimize f(X) (D.l) 

subject to 

hj(X)<0, j = l,2,...,m (D.2) 

lk(X)=0, k=l,2 1 (D.3) 

Xi(1) < Xj < Xi(u) i=l,2,...,n (D.4) 

By adding a nonnegative slack variable to each of the inequality constraints in 

Eq.(D.2), the problem can be stated as 

Minimize f(X) (D.5) 

subject to 

hj(X) + xn+1 = 0, j = l,2,...,m (D.6) 

hk(X) = 0,      k=l,2,...,l (D.7) 

Xi(1) < Xj < Xi(u) i=l,2,...,n (D.8) 

xn+, > 0, j = l,2,...,m (D.9) 

with n + m variables (xi, X2,..., xn, xn+i,..., xn+m). The problem can be rewritten in a 

general form as: 

Minimize f(X) (D.10) 

subject to 

gj(X) = 0,       k=l,2,...,m+l (DM) 

Xj(1) < Xj < Xj(u) i = l,2,...,n+m (D.12) 

where the lower and upper bounds on the slack variable, Xj are taken as 0 and a large 

number (infinity), respectively (i = n+l,n+2,...,n+m). The GRG method is based on 

the idea of elimination of variables using the equality constraints. Thus, theoretically, 

one variable can be reduced from the set Xj (i = l,2,...,n+m) for each of the m +1 
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equality constraints given by Eqs. (D.6) and (D.7). It is convenient to divide the n+m 

design variables arbitrarily into two set as 

X = 

Y-. 

Y 

Z 

y2 

yn-\ 

= design or independent variables 

Z = 

"m+\ 

state or dependent variables 

(D.13) 

(D.14) 

(D.15) 

and where the design variables are completely independent and the state variables are 

dependent on the design variables used to satisfy the constraints gj(X) = 0, 

j = l,2,...,m+l. Consider the first variations of the objective and constraint functions: 

n-\ 

df{X) = YM-dy* + Z-fA = vrfdY+ v?fdz (D.16) 

or        dg = [C]dY+[D]dZ 

(D.17) 

(D.18) 

where 
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vy/ = 

A. 
4Vl 

(D.19) 

Vz/ (D.20) 

% 

dz. »i+i 

[c] 

*, 4?, 
^1 4V1 

<%«+! <%„,+. 

#1 4VI 

(D.21) 

M = 
ßk, 

m+l 

n-i 

* 
& 

m+l 

n-1 

(D.22) 

JF: 

^1 

^2 (D.23) 
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dZ 

dz} 

dz~, 

dzm+x 

(D.24) 

Assuming that the constraints are originally satisfied at the vector X, (g(X) = 0),any 

change in the vector dX must correspond to dg = 0 to maintain feasibility at X+dX. 

Eq.(D.17) can be solved to express dZ as 

dZ =-[D]~l[C]dY (D.25) 

The change in the objective function due to the change in X is given by Eq.(D.16), 

which can be expressed, using Eq.(D.24), as 

df(X) = (Vj/ - Vr
z[D}-X[C\)dY (D.26) 

df 
or 

dY 
{X) = GR (D.27) 

where GR = VYf - ([Df[C])Vz/ (D.28) 

is called the generalized reduced gradient. Geometrically, the reduced gradient can be 

described as a projection of the original n-dimensional gradient onto the (n-m) 

dimensional feasible region described by the design variables. 

We know that a necessary condition is that the components of the gradient vanish. 

Similarly, a constrained function assumes its minimum value when the appropriate 

components of the reduced gradient are zero. This condition can be verified to be the 

same as the Kuhn-tucker conditions to be satisfied at a relative minimum. In fact, the 

reduced gradient GR can be used to generate a search direction S to reduce the value of 

the constrained objective function similar to the gradient Vf that can be used to 

generate a search direction S for an unconstrained function. A suitable step length X 

66 



is to be chosen to minimize the value of f along the search Z is updated using 

Eq.(D.24). Noting that Eq(D.24) is based on using a linear approximation to the 

original nonlinear problem, we find that the constraints may not be exactly equal to 

zero at X, that is, dg * 0. Hence, when Y is held fixed, in order to have 

gl(X) + dgi(X) = 0 i = 1,2,..., m+1 (D.29) 

we must have 

g(X) + dg(X) = 0 (D.30) 

Using Eq.(D.17) for dg in Eq.(D.29), we obtain 

dZ = [D]-\-g(X)-[C]dY) (D.31) 

The value of dZ given by Eq.(D.30) id used to update the value of Z as 

Zupda,c  =ZcurreM+dZ (D-32) 

The constraints evaluated at the updated vector X, and the procedure [of finding dZ 

using Eq. (D.31)] is repeated until dZ is sufficiently small. Note that Eq.(D.31) can be 

considered as Newton's method of solving simultaneous equations for dZ. 

Algorithm : 

1. Specify the design and state variables. Start with an initial trial vector X. Identify 

design and state variables (Y and dZ) for the problem using the following 

guidelines. 

(a) The state variables are to be selected to avoid singularity of the matrix, [D]. 

(b) Since the state variables are adjusted during the iterative process to maintain 

feasibility, any component of X that is equal to its lower or upper bound 

initially is to be designated a design variable. 
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(c) Since the slack variables appear as linear terms in the (originally inequality) 

constraints, they should be designated as state variables. However, if the 

initial value of any state variable is zero (its lower bound value), it should be 

designated a design variable. 0 

2. Compute the generalized reduced gradient. The GRG is determined using 

Eq.(D.27) can be evaluated numerically, if necessary. 

3. Test for convergence. If all the components of the GRG are close to zero, the 

method can be considered to have converged and the current vector X can be taken 

as the optimum solution of the problem. For this , the following test can be used: 

GR\\<£ 

where s is a small number. If this relation is not satisfied, we go to step 4. 

4. Determine the search direction. The GRG can be used similar to a gradient of an 

unconstrained objective function to generate a suitable search direction, S. The 

techniques such as steepest descent, Fletcher-Reeves, Davidon- Fletcher-Powell, 

or Broydon-Fletcher-Goldfarb-Shanno methods can be used for this purpose. For 

example, if a steepest descent method is used, the vector S is determined as 

S = - GR (D.33) 

5. Find the minimum along the search direction. Although any of the one-dimensional 

minimization procedures can be used to find a local minimum of f along the search 

direction S, the following procedure can be used conveniently. 

(a) Find an estimate for X as the distance to the nearest side constraint. When 

design variables are considered, we have 
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A = 

ylu)-(y,)old 

,(0 yr-(y,) old 

if 

if 

s( >0 

s, <0 
(D.34) 

where Si is the ith component of S. Similarly, when state variables are 

considered, we have from Eq.(D.24) 

dZ =-\D\\c]dY (D.35) 

Using dY = A,S, Eq.(D.35) gives the search direction for the variables Z as 

T = -[D]~l[C]S (D.36) 

Thus 

A = 

rz(.) 
-(* )old 

*? -(z )old 

*l 

if        tt>0 

if        t,<0 

(D.37) 

where t, is the ith component of T. 

(b) The minimum value of A, given by Eq.(D.34), A,j; makes some design variable 

attain its lower or upper bound. Similarly, the minimum value of X given Eq. 

(D.34), A/2,will make some state variable attain its lower or upper bound. The 

smaller of X\ or X2 can be used as an upper bound on the value of X for 

initializing a suitable one-dimensional minimization procedure. The quadratic 

interpolation method can be used conveniently for finding the optimal step 

length X . 

(c) Find the new vector Xnew: 

69 



*„„4l"+rfIW5"+r.i (D.3S) ""     [ZM+dZ\     \ZoU+XT 

If the vector Xnew corresponding to X is found infeasible, the Ynew is held 

constant and Znew is modified using Eq.(D.31) with dZ = Znew - Z0id. Finally, 

when convergence is achieved with Eq.(D.31), we find that 

and go to step 1. 
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Appendix E. Numerical Example for Oligopoly ( Regions: 3; Commodities: 2 ) 

ORIGIN = 1 

parameters: 

/l      2 \ /19  27 \ 

2    1.5 o ; = 27  30 

\1.5    1  1 30   19/ 

0   .1   .4 

.2   0   .3 

\.l   .4   0 

/0 1 2 

1 0 3 

1   4   0 

/.5   .3^ '.2 3\ '0   .4   .1\ /0   2   l\ / 

ß: = .4   .5 5: = .01 .2 ^2   = .3   0   .2 *2 : = 3   0   1 fi> : = 

1-3   .4, \.3 .01/ U .1 o/ ,4   10/ 

0     0.01   0.03! 

0.01     0     0.04 

0.03   0.02     0   / 

Reg : amount of regions, 

Com : amount of commodities, 

''.j 

(sr)i 

(e j.   : demand price per unit of commodity r at region i, 

(cr);  : total production cost of commodity r at firm i, 

(cr)f j   : shipping cost per unit of commodity r form firm i to region j, 

:supply price per unit of commodity r at firm i, 

: amount of supply of commodity r from firm i, 

(Dr);  : amount of demand of commodity r at region i, 

(er).=(or)    (sr).-(Dr).       demand function 

supply function 

(cr)jJ=((j.r}iJ+ (/)iJ{(vr)iJ]
2+ ^] {u).j(V)u    shipping cost function 

(i*r) 

(C'^la'Ji-CSV ^{(S^ 

Reg -" rows( a) Com - cols( a) r :-1.. Corn-Reg       s :- 1.. Corn-Reg 
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Problem : 
MAX 

Com    Reg Com    Reg Com    Reg    Reg 

E E (^<D'>, - z E («, -SEE «\, <vr),, 1,J 
r=l    i=l r=l    i=l r=l    i=l   j = l 

subject     to 

Com    Reg Com    Reg 

E S (sr)i - E E ^=o 
r=l    i=l r=l    i = l 

Reg Reg 

2 (sr); -  Y, (Dr)i=°        for all r 
i= 1 

(Vr)iJ-[[(MR\. + (cr).ijJ-(MRr)j>.j-0 

(vr)fj>o    for all (ij), and r 

where 
Reg 

(sr),= 2 (vr)M 

j = l 
Reg 

<*).- 2  (Vr). . 
i= 1 

(MRr). .= 
dV. (eV>jJ 

'.j 

-'aV.-W.jd/).,^. 

(MR^j-ia1) +2-(ßrj,(SrV ifi=j 
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Initial gueSS :   flows ■- Isolated_initial 

Iteration 1 

flows = multi( flows) 

flows = 

1.654 9.203 5.196 0 0 0 

2.376 24.453 3.623 0 0 0 

4.052 5.635 16.702 0 0 0 

0 0 0 13.124 5.64 5.512 

0 0 0 3.996 12.983 3.828 

SOL_2  -SOL(flows) 

4.541      6.863      10.712 

Iteration 2 

flows -multi(flows) 
SOL_22    SOL(flows) 

flows 

Iteration 3 

flows =multi( flows) 

4.965   8.7       3.166 

0 37.19   0 

2.163   3.952   20.096   0 

0 0 

0 0 

0 0 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

16.263 3.939 3.877 

0.912 18.268 0.039 

1.738 5.933 14.419 

SOL2   =SOL( flows) 

flows : 

4.223   9.141 2.742 0 0 0 

0          30.33 0 0 0 0 

1.019   3.765 20.672 0 0 0 

0          0 0 17.164 3.256 3.651 

0          0 0 0.832 25.517 0 

0.03 5.024      17.094 
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Iteration 4 

flows    multi( flows) 

flows = 

4.27 9.127 2.714 0 0 0 

0 30.331 0 0 0 0 

0.903 3.765 20.738 0 0 0 

0 0 0 18.17 3.411 3.058 

0 0 0 0 19.758 0 

5.834      17.465 

SOL_24:=SOL( flows) 

Iteration 5 

flows     multi( flows) 
SOL_2   =SOL( flows) 

flows = 

4.285 9.124 2.707 0 0 0 

0 30.331 0 0 0 0 

0.851 3.769 20.763 0 0 0 

0 0 0 17.389 3.523 3.365 

0 0 0 0 19.017 0 

5.858      16.195 

Iteration 6 

flows -multi(flows) 
SOL_2,:=SOL(flows) 

4.285 9.124 2.707 0 0 0 

0 30.331 0 0 0 0 

flows = 
0.851 

0 

3.769 

0 

20.763 

0 

0 

17.394 

0 

3.522 

0 

3.356 

0 0 0 0 19.017 0 

0 0 0 0 5.858 16.196 

' 1    1 r I1 ] M 
Flag(l, flows) = 0    1 0 Flag(2,flows) = 0    1    0 | 

U  i 1/ \0    1    1/ 

Flow M = flows 
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Iteration(SOL2)  ^rows(SOL2) Iteration(SOL2) = 6 

Tab2 =Tab(SOL_2,Iteration(SOL_2)) Conv2  ^Conv(percent(Tab(SOL_2,Iteration(SOL_2)))) 

Table XV. Results of Iterations 

20.096 

20.672 

20.738 

20.763 

20.763 

20.763 

Tab2 = 

12         3         4 5 ■•■ M: '■ 7         8 
1 4.965 8.7      3.166 -6.245 37.19 -0.783 2.163 3.952 

2 4.223 9.141 2.742 0 30.33 0 1.019 3.765 

3 4.27    9.127 2.714 0 30.331 0 0.903 3.765 

14.285 9.124 2.707 0 30.331 0 0.851 3.769 

5 4.285 9.124 2.707 0 30.331 0 0.851 3.769 

6 4.285 9.124 2.707 0 30.331 0 0.851  3.769 

Tab2 

10        11       12       13 14         15 16 Al 7 • 
I  16.263 3.939 3.877 0.912 18.268 0.039 1.738 5.933 

2 17.164 3.256 3.651 0.832 25.517 -9.711 0.03 5.024 

3 18.17    3.411 3.058 -1.01 19.758 0 -1.273 5.834 

4 17.389 3.523 3.365 0 19.017 0 0 5.858 

5 17.394 3.522 3.356 0 19.017 0 0 5.858 

6 17.394 3.522 3.356 0 19.017 0 0 5.858 

Tab2 ,<9> 

Tab2 :18> 

14.419 

17.094 

17.465 

16.195 

16.196 

16.196 

Tab( SOL2, Iteration( SOL2)) 
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Table XVI. Results of Convergence 

Conv2 = 

1         2 3       4 1    5 1 6 |    7    |    8         9 
1 0.149 0.051 0.134 -1 0.184 -1 0.529 0.047 0.029 

2 0.011 0.002 0.01    0 0 0 0.114 0         0.003 

3; 0.003 0 0.003 0 0 0 0.057 0.001 0.001 

lo       0 0         0 0 0 0         0         0 

li o      o 0         0 0 0 0         0         0 

Conv2 = 

10       11       12       13 14 15 16       17 
1 0.055 0.173 0.058 0.088 0.397 252.368 0.982 0.153 

2 0.059 0.047 0.162 2.214 0.226 -1 42.76 0.161 

3 0.043 0.033 0.101 -1 0.037 0 -1        0.004 

§0         0         0.003 0 0         0 0         0 

lo       0       0       0 0         0 0         0 

Figure VI. Results of Convergence 

200— 

1 OO- 

F'S?'! 

Conv( percent( Tab( SOL2, Iteration( SOL2)))) 
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Flows of commodities 1 and 2 (before they compete in the market) 

Flow S 

Z4.252   9.136    2.741 \ 

J    0      30.330       0 
\0.852   3.806    20.736/ 

Flow_S2 

/17.347   3.539    3.433 

0       19.008       0 

0        5.904    16.149/ 

Pre(Flow_S) 

4.252   9.136   2.741      0 0 0 

0 30.33   0 0 0 0 

0.852   3.806   20.736   0 0 0 

0 0 

0 0 

0 0 

0 17.347   3.539     3.433 

0 0 19.008   0 

0 0 5.904     16.149 
P =Pre(Flow_S) 

Comparsion: 

Commodity 1 : Commodity 2 : 

Single Multi Single Multi 

Profit(l ,P) = 835.616Profit(l ,Flow_M) =836.656   Profit(2,P) =726.317     Profit(2,Flow_M) =727.286 

Total( 1 ,P) =71.853   Total( 1 ,Flow_M) =71.83     Total(2,P) =65.38 Total(2,Flow_M) =65.343 

S(1,P) 

/ 16.129 '' 

30.33 

25.394 i 

S(l,Flow_M) = 

16.116 

30.331 

, 25.384, 

/ 24.319 ' 

S(2,P) = j 19.008 

, 22.053 / 

I 24.272 

S(2,Flow_M) = 19.017 

\ 22.053 

D(1,P) 

5.104 

43.272 

23.477 / 

D(l,Flow_M) 

/ 5.136 

43.224 

23.47 

D(2,P) 

17.347 \ 

28.451 

19.582 

D(2,Flow_M) = 

17.394 \ 

28.397 

19.552/ 

¥(1,P) 

17.129' 

26.264 

\ 16.736/ 

i|/(l,Flow_M) = 

17.116 

26.264 

16.73 / 

¥(2,P) 

16.591 

20.508 

18.642/ 

Y(2,Flow_M) = 

16.563 

20.517 

18.643 

j 17.979 / 17.973 ' 

9( 1 ,P) = | 26.567  9( 1 ,Flow_M) = 26.568 

\ 22.957 / \ 22.959 / 

6(2,P) 

/ 21.796 

24.31 [ 

\ 18.804/ 

9(2,Flow_M) 

/ 21.782' 

24.321 

18.804, 
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Results of Congestion: 

Congestion( 1, Flow_M, Pre( Flow_S)) 

0.008 0.001 0.013 

1.866-10 0 

-9.471* 10       -0.01 0.001 

Figure VII. Congestion for commodity 1 

-o.o 

Congestion( 1, FlowM, P) 

Congestion( 2, Flow_M, Pre( FlowS)) 

0.003    0.005 -0.022 

0 4.842*10 4      0 

0 -0.008 0.003 

Figure VIII. Congestion for commodity 2 

-0.02- 

Congestion( 2, FlowM, P) 
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