
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

MERGING VIRTUAL AND REAL EXECUTION LEVEL
CONTROL SOFTWARE FOR THE PHOENIX

AUTONOMOUS UNDERWATER VEHICLE

by

Michael L. Bums

September 1996

Thesis Advisors: Robert B. McGhee
Don Brutzman

Approved for public release; distribution is unlimited.

19970429 200 EEC QT-.r^ Kopsen i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
September 1996

REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE MERGING VIRTUAL AND REAL
EXECUTION LEVEL CONTROL SOFTWARE FOR THE PHOENIX
AUTONOMOUS UNDERWATER VEHICLE

6. AUTHOR(S) Burns, Michael L.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT

The Naval Postgraduate School (NPS) is developing an AUV, Phoenix. The Phoenix has the
capability of precise navigation, however too much time is needed to validate a new section of code.
NPS is also developing a virtual AUV, which has the capability of being networked, having flexible
missions, and having a quick feedback of results when validating new portions of code. The virtual
AUV has a drawback of never being tested for real world precision. This thesis discusses the steps
taken to combine these two sets of control code to obtain the maximum functionality that will drive
either the virtual or actual AUV and produce a faster feedback response to newly developed code.

As a result of this effort, the newly developed control code has successfully driven both the actual
and virtual AUVs and provides a means for readily validating new code. Also this new control code
has given the AUV research group the ability to perform distributed software development, test all
AUV hardware from either the onboard or offboard computers, conduct flexible missions, and test
missions in the virtual world prior to conducting them with the AUV.

14. SUBJECT TERMS Control Software, Under Robotics, AUV,
Combining Control Code,
Execution Level

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES 243

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

» '

11

Approved for public release; distribution is unlimited.

MERGING VIRTUAL AND REAL EXECUTION LEVEL
CONTROL SOFTWARE FOR THE PHOENIX
AUTONOMOUS UNDERWATER VEHICLE

Michael L. Burns
Lieutenant, United States Navy

B.S., United States Naval Academy, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
SEPTEMBER 1996

Author:
Michael L. Burns

Approved by: RftUr^.WSt VUUL

Robert B. McGhee, Thesis Advisor

Don Brutzman, Thesis Advisor

Ted Lewis, Chair
Department of Computer Science

in

IV

ABSTRACT

The Naval Postgraduate School (NPS) is developing an AUV, Phoenix. The

Phoenix has the capability of precise navigation, however too much time is needed to

validate a new section of code. NPS is also developing a virtual AUV, which has the

capability of being networked, having flexible missions, and having a quick feedback of

results when validating new portions of code. The virtual AUV has a drawback of never

being tested for real world precision. This thesis discusses the steps taken to combine

these two sets of control code to obtain the maximum functionality that will drive either

the virtual or actual AUV and produce a faster feedback response to newly developed

code.

As a result of this effort, the newly developed control code has successfully driven

both the actual and virtual AUVs and provides a means for readily validating new code.

Also this new control code has given the AUV research group the ability to perform

distributed software development, test all AUV hardware from either the onboard or

offboard computers, conduct flexible missions, and test missions in the virtual world

prior to conducting them with the AUV.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GOALS 1

B. MOTIVATION 2

C. ORGANIZATION 2

H. PREVIOUS WORK 5

A. INTRODUCTION 5

B. ACTUAL AUV 5

1. Physical Description 5

2. Further Software Development 9

C. RATIONAL BEHAVIOR MODEL (RBM) ARCHITECTURE 10

D. WHY DID ACTUAL AND VIRTUAL ORIGINALLY DIVERGE ... 12

E. VIRTUAL AUV 13

1. Pre-Mission Testing 17

2. Pseudo-Mission Testing 17

3. Post-Mission Playback 18

4. Execution Flow Chart 18

F. SUMMARY 18

vn

HI. PROBLEM STATEMENT 25

A. INTRODUCTION 25

B. WILL THE VIRTUAL WORLD BE HELPFUL? 25

C. WHICH VERSION (ACTUAL OR VIRTUAL) WILL BE THE BASE FOR

THE COMBINED ROBOT SOFTWARE? 25

D. MESSAGE PASSING TO TACTICAL 26

E. WHAT ABOUT 10 Hz STABILITY? 26

F. SUMMARY .27

IV. SOFTWARE INTEGRATION METHODOLOGY 29

A. INTRODUCTION 29

B. COMBINING THE SOFTWARE 29

C. COMPILING THE SOFTWARE 31

D. SUMMARY 33

V. SOURCE CODE DESCRIPTION 35

A. INTRODUCTION 35

B. PARSING COMMANDS 35

C. BEGIN THE MAIN PROGRAM 46

D. CLOSED_LOOP_CONTROL_MODULE 48

1. Hover Control Logic 53

2. The Death Spiral 56

viii

3. Waypoint Control Logic 58

4. Rudders and Planes 58

5. Thrusters 59

6. Clamp and Send Commands 60

7. Record, Timestep, and Loop 60

E. SHUTTING DOWN 61

F. SUMMARY 61

VI. EXPERIMENTAL RESULTS 63

A. INTRODUCTION 63

B. PRE-MISSION TESTING AND EVALUATION 63

C. PSEUDO-MISSION TESTING AND EVALUATION 64

1. Versatility in Running the Software 65

2. End-to-End Hardware Tests 66

3. Virtual to Actual Test Tank Mission 68

4. The Moss Landing Mission 77

D. SUMMARY 88

VH. CONCLUSIONS AND FUTURE WORK 89

A. INTRODUCTION 89

B. RESEARCH CONCLUSIONS 89

1. Will the Virtual World be Helpful? 89

ix

2. Which Version (Actual or Virtual) Will be the Basis for the

Combined Robot Software? 90

3. Message Passing to Tactical Level 90

4. What About 10 Hz Stability? 91

C. RECOMMENDATIONS FOR SHORT-TERM FUTURE WORK 91

D. RECOMMENDATIONS FOR LONG-TERM FUTURE WORK 92

E. SUMMARY 93

APPENDIX A - execution. c SOURCE CODE 95

APPENDIX B - parsefunctions . c SOURCE CODE 163

APPENDIX C - globals. c SOURCE CODE 193

APPENDIX D - statevector. c SOURCE CODE 199

APPENDIX E - external_f unctions. c SOURCE CODE 201

APPENDIX F-mission, script. HELP 217

APPENDIX G - OBTAINING AND OPERATING CURRENT SOFTWARE 223

x

LIST OF REFERENCES 225

INITIAL DISTRIBUTION LIST 227

XI

Xll

ACKNOWLEDGMENTS

I would like to take this time to recognize my classmates LT Bradley Leonhardt,

LT Michael Campbell, LT David McClarin, and LT Duane Davis. If not for the

perseverance and the support of the group as a whole none of our individual projects

would have been as successful. I would like to thank Russ Whalen for the support and

the time spent teaching me an assortment of "hands on" hardware issues. Next, I would

like to thank my thesis advisor, Professor Robert B. McGhee who initiated the idea of

joining the AUV research group and has also given me incredible support during the

research and writing of my thesis. Also, I would like to thank my other thesis advisor,

Professor Donald P. Brutzman who has taken me under his wing and answered every

possible question imaginable. He was always available to me and instead of just

discussing a concept, often we would both sit at a terminal for hours finding the best way

to employ ideas.

Lastly, but mostly, I would like to thank my wife Susan who has given me

complete support during this entire project. She has had to single handedly raise our first

son Tyler, who was born during the beginning of this project. I know she will be happy

to have me back full time so that we can raise our second child, that is due in the near

future, together.

This thesis was funded in part by the National Science Foundation under Grant

BCS - 9306252.

Xlll

I. INTRODUCTION

A. GOALS

An Autonomous Underwater Vehicle (AUV) is a self-contained unmanned

vehicle used for underwater missions such as surveying, pollution detection, or mine

detection and neutralization. In order to be deemed truly autonomous the vehicle must be

able to independently follow a mission plan, interact with its environment, accomplish a

goal and return to a predesignated destination.

The goal of this thesis is to merge two independent sets of control software for the

NPS autonomous underwater vehicle, Phoenix. One of the software control codes used in

this project is taken from an actual AUV that has been the work of Ph.D. candidate David

Marco (Marco 96). The AUV is computer driven and has run successful missions in a

test tank using this control code (Marco 96)(Marco, Healey, McGhee 96). The operating

system for this code is OS-9, running on a GESPAC 68030 microprocessor. The other

software control code is taken from a virtual AUV that has been the work of Professor

Donald Brutzman at the Naval Postgraduate School (NPS). This is a computer-generated

robust simulation of an AUV in a virtual environment. The robot control code runs on an

SGI computer system (Brutzman 94). Although each set of control code is run on

different operating systems, they are both written in C.

The intended result of this project is that the combined software for robot control

can run identically on all pertinent systems. In other words, the exact same source code

can be run in either the virtual or actual world and produce the same results. This is

intended to enable robot research that can be tested and refined in the virtual AUV in a

fraction of the time required to test the same ideas in the actual AUV. Once these ideas

have been refined in the virtual world, the same code can be put directly into the actual

AUV for real-world in-water verification and validation.

Different operating systems and issues of real-time performance present serious

obstacles against effectively merging the two systems. The final test for validation of this

project is an untethered "Moss Landing" mission. The Moss Landing mission is

explained in greater detail in Chapter VI. In short, the Moss Landing mission is a sea trial

designed to test navigation, sonar search, sonar classification and path replanning, all

performed by the AUV while it is free of an Ethernet connection. This thesis discusses

and provides solutions to the problems encountered while combining the two software

control systems to run in either the virtual or actual world. It also gives an assessment of

experimental results obtained during the Moss Landing mission testing. A copy of the

source code used for the Moss Landing mission is found in Appendix A-E and is

explained in Chapter V.

B. MOTIVATION

The motivation for this project stems from seeing a slow but steady progression in

the development of the actual NPS AUV Phoenix. Years have been spent refining small

portions of code in the Phoenix. If there was a way to visualize and correct the

refinements prior to taking the time required for testing the changes in the actual AUV,

development of the AUV should progress substantially faster. In a sense, many hours are

spent on small details with known or predictable solutions that are bottle-necked due to

the limited time that can be afforded to validate these solutions in-water with the Phoenix.

With the support of a virtual environment, most bugs can be worked out in a fraction of

the time that might normally be required if testing was done in the actual AUV. If this

project is successful the development of the Naval Postgraduate School AUV will

progress at a speed only imagined by those that have been developing it thus far.

Successful completion of this project can also ensure that the NPS research team will

remain on the leading edge of technology. In fact the work undertaken in this thesis has

been successful, and the hoped-for improvements in vehicle design methodology have

also occurred.

C. ORGANIZATION

This thesis is presented in much the same manner as it was performed. Chapter I

presents the motivation for taking on this project. Chapter II discusses previous work

done in three areas that are significant to this project: the robot software architecture used

for this project, the actual AUV, and the virtual AUV. Chapter HI states the research

problem, identifying a series of questions and concerns that need to be addressed prior to

accepting the project and that can ultimately be used to distinguish the validity of the

project. Chapter IV discusses the specific methodology of steps that were taken while

merging the control software. Chapter V gives an in-depth discussion on how the

combined software control code actually works. Chapter VI presents and evaluates the

logical progression of tests that were performed, as well as a basic analysis of test results

for the Moss Landing mission. Chapter VII provides conclusions regarding this project

and presents recommendations for future work.

II. PREVIOUS WORK

A. INTRODUCTION

Research on Autonomous Underwater Vehicle's (AUV) has been an ongoing

project at the Naval Postgraduate School (NPS) since 1987 (Healey 90,92) (Brutzman

96). The need to further technology in the underwater arena is realized by most Naval

officers serving at sea. A large contribution to the NPS AUV project development has

been by graduate student officers that have returned from sea to study. This level of

Naval experience applied to the design of underwater robots is unparalleled at any other

educational institution.

This chapter discusses how earlier NPS AUV research was split into two

categories, actual and virtual. It will also discuss the progression of each and the

common link between the two. After understanding this background it is clear why the

two entities need to merge.

B. ACTUAL AUV

1. Physical Description

The Naval Postgraduate School AUV Phoenix hull is approximately 2.4 meters

long, 0.46 meters wide and 0.31 meters deep. It has the general shape of a miniature

submarine with two aft propellers, two vertical thrusters, two horizontal thrusters, two

forward rudders, two aft rudders, two forward plane surfaces, and two aft plane surfaces

to control its movement through the water. It has a 2 psig pressurized hull with a free-

flooding nose cone that houses the AUV's sonars and depth cell. While submerged it

displaces approximately 197.3 Kilograms and is ballasted to be neutrally buoyant. Figure

1 and Figure 2 show the external components,and a snapshot of the AUV in the test tank

respectively.

FIN

DRAIN
PLUG-

PO WER PLUG

DIVE TRACKER
TRANSDUCER

GPS ANTENNA

ST725 SONAR

SIDE VIEW

ST1000 SONAR

TURBO PROBE

II
DIFFERENTIAL
GPS ANTENNA

u ©

THIN WIRE
ETHERNET PORT

REAR SCREWS ' THRUSTER > ACCESS HATCH

TOP VIEW

Figure 1 External components of the AUV (Marco 96)

Figure 2 AUV in the test tank (Leonhardt 96)

Some of the hardware and their general purposes are listed in the following Figure 3:

1). A computer for controlling the AUV's stability, execution level
2). A computer for data storage and running strategic and tactical levels
3). Turbo Probe for sensing water speed
4). Three sonars

a. downward looking (altimeter)
b. overall environment sensing (ST725)
c. obstacle classification (ST 1000)

5). GPS for tracking the vehicle's latitude and longitude in open water
6). DiveTracker for tracking the vehicle precisely in small areas.
7). Gyro's for sensing the vehicle's orientation about three degrees of rotational

freedom as well as three angular rates
8). Batteries to run the computer and motors
9). Depth cell to measure depth

10). A-to-D and D-to-A converters for computer-hardware interfaces

Figure 3 AUV internal hardware and brief description

Figure 4 depicts the internals of the AUV.

ST72S SONAR -

DEPTH CELL
TRANSDUCER-

BOW LEAK
DETECTOR
BOW LATERAL
THRUSTER

VERTICAL
GYRO

BOW VERTICAL
THRUSTER

COMPUTER POWER
SUPPLY (2)

MOTOR SERVO
CONTROLLER (6)

SUN VOYAGER
COMPUTER

STERN VERTICAL
THRUSTER—

FREE GYRO
POWER SUPPLT

STERN LATERAL
THRUSTER-

PSA900
UNIT

CONTROL FINS (8)

ST1000 SONAR

PSA 900 SONAR
TRANSDUCER

TURBO PROBE

FIN SERVO (S)

3 AXIS RATE GYRO

12 VOLT BATTERY (2)
FOR COMPUTER

GESPAC CARD CAGE

 DIVE TRACKER

12 VOLT BATTERY (2)
FOR GYROS/MOTORS

FREE GYRO

GPS UNIT

REAR LEAK DETECTOR

REAR SCREW MOTOR (2)

REAR SCREW (2)

Figure 4 AUV internals (Marco 96)

After many work hours, the actual AUV became capable of station keeping

(Healey 95). Station keeping is the ability for the actual AUV to be smoothly directed to

a point in a 3-dimensional environment and then maintain that position. This is an

essential milestone in the development of the AUV control. Because station keeping had

been achieved by the AUV, precise control in water was possible. This was a major

accomplishment for the research team. Expansion to make the actual AUV more robust

and flexible to changing scenarios was the next step in this progression. An issue that

remains a work in progress is accurate navigation when surfaced and submerged, using

dead reckoning, short-baseline acoustics and GPS (McClarin 96) (Bachmann 96).

2. Further Software Development

At the beginning of this thesis research, software had been written to support all

three levels of control, as explained in the RBM architecture section. However, the need

to have a stable foundation from which to work necessitated that the majority of time of

this thesis research be spent on the execution level. At the time this work began the

strategic and the tactical levels, although in place and functioning, were more or less only

in place to support the execution level. If an AUV can not maintain basic navigational

control in its environment, it is useless to attempt to make it perform other tasks. Thus

the execution level is indispensable.

The most advanced mission conducted in the test tank by the AUV was a test on

its ability to take station. This mission involved the execution level using its sonar system

to locate a target then drive to a point (i.e. station) close to that target. The following is a

description of how the test was conducted. For simplicity of explanation, because the

AUV operated at a constant depth of two feet and the target was at a depth of two feet,

the example will be explained using a 2-dimensional coordinate system with units being

measured in feet. Figure 5 gives a graphical display of the example mission. Again for

simplicity, Figure 5 is not to scale and merely illustrates the idea expressed in the

following paragraph.

The AUV's starting position is at a point [-5, -5] relative to the target that was

defined as the point [0, 0] and the AUV is told to face North. Next, the AUV submerged

two feet and remained stationary while the active sonar mapped out the test tank walls

and located a target. The target was a metal cylinder suspended by a rope and placed in

the test tank approximately two feet under the surface. It was required of the AUV to

distinguish the target from the walls of the test tank. Once the target had been acquired

the AUV was directed to a point close to the target and told to hover at that point for a

period of time. The point that is used in this example is the point [1,-1], relative to the

target. During the transition to the point, the AUV is restricted to maintaining its

Northerly heading. This was done to test if the thrusters and the propellers could function

together in transiting to a point. Once at the point [1, -1] the AUV was to remain there

for a period of 30 seconds facing North. At the end of this period the AUV would be told

to turn to its left 45 degrees but still maintain the point [1,-1]. From a birds-eye-view

this would now appear that the AUV is facing the target and hovering at a point 1.41 feet

from the target. Next the AUV would be told to transit to a point [-1,-1] while

maintaining its northwest heading then hold that position for 30 seconds. This test was

done to simulate the AUV's ability to navigate around a target. It was told to take the first

station at a particular heading then take another position close to the target at another

heading to simulate, if there was a fixed camera on the AUV, taking different angled

snapshots of the target. After the second position was reached and held the AUV was

programmed to return to the starting position, regain the Northerly heading and terminate.

This test validated both the AUV's ability use both the thrusters and propellers in

an stable effort of transit through the water, and the sonars' ability to interact with the

AUV's navigational software in finding contacts and holding positions relative to those

contacts. What was also shown by this exercise was that this entire missions was hand-

coded step-by-step and it is not easily adapted to other missions. (Marco 96)

C. RATIONAL BEHAVIOR MODEL (RBM) ARCHITECTURE

The notion of a tri-level architecture for the NPS AUV was first introduced in

1992 (Kwak 92). This idea was then further refined and expanded in later work

(Byrnes 93) (Byrnes 96). The RBM at its highest level of abstraction, the strategic level,

is concerned with goals to be accomplished without regard to precisely how they are

10

-5 -4 -3 -2 -1 0 1

0

-1

-2

-3

-4

-5

1 1 1 1 1 1 1
1 1 1 1 1 1

 rtr^Ä
^L v*^ 1 i i i i
—t-' i i i i i

i i ' ' ' ' 1111
i i i i

i i i i i
Trfr i i i i i

Figure 5 Non-scaled display of locating and operating around a target

achieved. Goals are then funneled down to an intermediate tactical level that can direct

(via the execution level) the necessary pieces of robot software and hardware in the

proper sequence to accomplish the directed goals.

The lowest {execution) level of the RBM software architecture is a real-time

closed loop that maintains stability through direct software-to-hardware interfaces. This

software level is able to accept commands from the intermediate level and have the

hardware respond to accommodate intermediate-level demands. This lowest level has no

idea of where it is going or why. It merely responds to the intermediate levels demands

while keeping the AUV stable in the water.

The strategic software level interfaces with the tactical level in strictly a boolean

fashion. A command is sent, and a "yes" or "no" answer is received. There are no

calculations performed at the strategic level and no timing restrictions; therefore the

strategic level operates in an asynchronous manner. The interface between the tactical

and execution levels is confined to orders being sent down and telemetry of the vehicle

11

being sent up. The tactical level has the ability to manipulate numbers but, like the

strategic level, is not required to meet hard time deadlines with its results. Therefore it

too operates in an asynchronous manner. The execution level is responsible for the

stability of the AUV and therefore functions synchronously through use of timed

interrupts. That is, in order to keep a stable platform, the execution level must conform to

hard real-time requirements. Also the execution level is given the ability, if needed, to

have absolute control. If a critical dilemma is sensed such as flooding, loss of depth

control, or loss of communications with the tactical level, the execution level has the

ability to override the tactical level and perform self-preservation tasks. A detailed

description of the RBM structure is provided in (Byrnes 96).

D. WHY DID ACTUAL AND VIRTUAL ORIGINALLY DIVERGE

Building an AUV to interact with its environment autonomously in six degrees of

freedom is a difficult and time-consuming task. Prior to the virtual world work reported

in (Brutzman 94), each time there was an advancement in the software, the AUV had to

be placed into a test tank to verify that portion of code. It quickly became apparent that if

there was a way to simulate AUV actions and reactions, the project would advance at a

faster pace. Simulation reduces the time and effort required to put the AUV in the water

for simple tests in control and logic. This simulation effort spawned a new research area

that was developed in parallel with the development of the AUV.

The simulated AUV development first lagged the actual AUV development. This

was due to the simulated AUV being required to reproduce all of the actual AUV's

movements. During that original period, high-speed graphics programs and other

technology tools were not available. However, capabilities of the simulated AUV in time

surpassed the actual AUV. Once the simple tasks of the actual AUV were mimicked, the

simulated AUV work went on to other maneuvers that the actual AUV could not yet

perform. Along with simulating the movements of the actual AUV, the simulated AUV

evolved into a fully operational virtual AUV. This was an early significant proof of value

of the simulation-based design (SBD) approach.

12

Although the pace of the virtual and actual control code development did not

progress at the same rate, they both shared a common link. The Rational Behavior Model

(RBM) (Byrnes 96) was the software architecture that both versions were designed to

accommodate. To facilitate adhering to this structure, the virtual world robot software

used the actual robot source code as a basis. This approach was intended to insure that

the virtual world AUV might perform the same tasks as the actual AUV. In early

development of the virtual world, whenever possible, this corresponding software

structure was maintained in order to minimize software divergence. In a relatively short

amount of time (about a year) the logic of the virtual AUV grew far more sophisticated

than that of the actual AUV. This was because it was far easier to test different ideas in

the virtual world. However, not having the opportunity to encounter the real world, the

control of the virtual AUV was not perfectly tuned for real world operation. Thus

significant capabilities and drawbacks existed side by side in the real and virtual versions

of the execution software.

E. VIRTUAL AUV

The early years of graphical simulators developed for the NPS AUV concentrated

on particular aspects of the AUV. Each of these simulators served as a building block to

investigate a different aspect. It was not until 1992 when multiple aspects of AUV

simulation were combined to form a NPS AUV Integrated Simulator (Brutzman 92).

The underlying goal in the development of the integrated simulator was to be able

to use the simulator as a tool for rapid development of the stand-alone AUV. In the

creation of such a tool, three areas were clearly defined. If a simulator could simply and

reliably demonstrate pre-mission testing, pseudo-mission testing, and post-mission

playback of a recorded mission, the simulator would exercise the essence of the actual

AUV (Brutzman 92). These three areas are discussed in subsections that follow along

with a general flow chart of the operation of the execution level.

The integrated simulator provided a solid foundation for the implementation of

the virtual world. However, the need became apparent for a networked 3-dimensional

13

(3D) virtual world allowing even more software engineers to test specific modules.

Accompanying that idea was the concept that, in order to properly test an actual mission

and reproduce it in a virtual world, hard-real-time response software must be developed.

The virtual world in Figure 6 includes a 3D graphical display of an AUV to scale,

a test tank to scale, and a hydrodynamics model that correctly reproduces the AUV's

movement through water.

Figure 6 Virtual AUV and test tank

The graphics view into an underwater environment also gives the user the ability

to see any aspect of the AUV. Because the virtual world is networked, it simultaneously

allows many observers to either watch a mission that is ongoing or run separate missions.

If many viewers are watching a single mission, each viewer is able to view a different

aspect of the AUV. In other words each viewer has their own camera and can point it

14

anywhere in the virtual world to see what ever they want to see. Figure 7 shows the AUV

diving while driving backwards. This is shown by the cones coming up from the vertical

thrusters and the inverted cones behind the aft propellers. Figure 8 shows the AUV

climbing and going forward. This is shown by the cones below the vertical thrusters and

the cones behind the aft propellers. Also, the plane surfaces in Figure 8 are angled for

ascending. The magnitude of the cones displays the amount of force being used.

iliiis ill

Figure 7 Virtual AUV backing down and descending

The virtual world developed in (Brutzman 94) was the turning point in simulation for the

Phoenix project. It was designed to meet all of the concepts depicted by the integrated

simulator; i.e. pre-mission testing, pseudo-mission testing, and post-mission playback.

Also, hard real-time constraints were added and the virtual world was made available to

all users over the NPS network. Nevertheless it is not bound to the NPS campus. As

predicted, if general ideas for the robot can first be visualized on a graphics computer

screen, implementation details can be worked out quickly and confidently. One particular

concept of note that was considered in the early years was the idea of first developing the

15

Figure 8 Virtual AUV propelling forward and ascending

physical AUV and then making the virtual AUV follow. "As the characteristics of the

NPS Model 2 AUV become more well defined, and the simulation systems are upgraded

to reflect these operating characteristics,..." (Rogers 89). It is now possible to incorporate

a new piece of hardware into the virtual world inexpensively (without a complete rebuild

of the actual AUV) in order to test its validity. Then if tests are successful, the research

group can spend the time and money necessary to incorporate the piece of equipment into

the actual AUV.

The source code for the AUV driving the virtual world was written in full

confidence that it would be integrated with the actual AUV. Also it was written to run

either on a SGI machine or a GESPAC OS-9 machine. Slots were created so that

integration of actual AUV control source code might be implemented independently. It is

the user's choice to either run the robot software on a networked SGI system, or the actual

16

AUV operated under the GESPAC OS-9 system.

1. Pre-Mission Testing

Pre-mission testing is most valuable because it gives several people the ability to

work on software modules simultaneously that will later be fitted together. This

distributed software development capability proved to be the integrated simulator's finest

asset in the early development of a fully functional AUV (Brutzman 96). Logic and data

flow throughout the software package can be developed and tested prior to the finished

product that will ultimately run the actual AUV. Timing, software functionality and

communications between processors can also be tested.

2. Pseudo-Mission Testing

Pseudo-mission testing in a virtual environment (e.g. a modeled test tank that is

the same scale as the actual one) provides the capability to run missions in the 3D world

while monitoring robot response to ensure mission tasks are completed as expected.

Along with software testing, the simulator also allows the actual AUV hardware to be

bench tested or end-to-end tested. The simulator was developed so that it could be run on

a variety of computers. This enables different levels of the architecture to be run together

in the boat, separately outside the boat, or some combination of inside and outside. Also

it enables the use of either (or both) of the AUV's computers to be run. An example of

this is the ability to run the tactical level on a networked SGI computer while using the

GESPAC/OS-9 that is in the AUV to run the execution level. With the onboard computer

running the execution level, the user is able to visually inspect the rudders, planes,

propellers and gyros to see if these components are rotating in the proper directions with

out actually immersing the AUV. With a powerful offboard computer running tactical or

strategic level code, computationally intensive artificial intelligence (AT) modules can be

tested and debugged quickly. By such means, all vehicle software and hardware can be

tested in the pseudo-mission environment.

17

3. Post-Mission Playback

Post-mission playback is most helpful for evaluation of the finished product. It is

instrumental in the fine tuning of the control constants used for the motion of the AUV.

Determining exactly how much voltage is required for components such as the thrusters

and propellers to obtain a desired motion is one of the most time-consuming areas in the

development of the AUV. Without post-mission playback, engineers fall into guess work

and eyeball approximations of how much voltage is needed to get a desired movement.

This often requires many immersed tests to get close to what is believed to be the correct

values. Post-mission playback in real time uses vehicle telemetry (system state values)

that were recorded during an actual mission. Because these are updated in a synchronous

manner, they depict exactly where the AUV was and its orientation at any interval of

time. With this knowledge of where the vehicle actually was and where the vehicle

thought it was, designers are better able to modify the control constants that govern

vehicle motion.

4. Execution Flow Chart

A detailed flow description for the combined execution level can be found in

Chapter V. Figure 9 is a block flow chart that generalizes the operation of the

preliminary virtual world execution level. This is the version that was obtained at the

start of this thesis research.

F. SUMMARY

During the development of the Phoenix AUV, virtual-environment and actual-

environment versions of the execution level control software were created. Although

stemming from a common architecture these two versions progressed at different rates.

This thesis describes building a software bridge between the AUV and its virtual world so

that the control and logic of the actual AUV uses the same control and logic as the virtual

AUV. With consistent control and logic for both worlds, the same code can be used to

run in either the virtual environment or the actual world. Therefore, changes to the code

in the virtual world can be tested and corrected in the virtual world. When modifications

18

1.) When the main execution
program is started, arguments can
be included. These arguments
are read and parsed by
parse_command_lirie_f lags

1.) Read and parse command-line arguments

2.) A virtual world host is
identified or a mission telemetry
file is identified for playback.

2.) Set virtual world host or identify playback
file

3.) The next operation that takes
place is a time step. This it the
amount of time between updates
to the "state vector" that is
explained later. The default value
for dt is .1 seconds or 10 Hz.
Going slower then this may cause
the vehicle to become unstable.
A faster time step is unnecessary
and promotes over kill.

3.)Setdt= .1 (default for
timestep)

4.) parse_command_line_flags
optionally sets numerous toggle
variables identified in Table 1.
Normally these values are set
to default values. Also prints a
list of valid keywords if help
is needed.

4.) parse_commarid_line_f lags

Figure 9a execution level flow chart

19

5.) get_control_constants allows
the user to set each of the control constants.
Alternatively, these constants can be read in
from the default file
control.constants.input.

5.) get_control_constants

6.) inialize_dacs takes the default
values and sets planes, rudders, motors, etc. to
zero and opens digital-analog (DA) channels
for communication.

6.) initialize_dacs

7.) initialize_adcs opens analog-digital
(AD) channels to make it possible to take
readings from planes, rudders, motors, etc...

7.) initialize_adcs

8.) opens GESPAC ports "tl" for a serial-
path or "tt" for a high baud rate. This is
opened for both reading and writing. If a
sonar is installed it also opens "t3" for sonar
communication.

8.) open_device_paths

9.) record_data_on opens two files to
write the telemetry vector or "state vector"
into, mission, output. telemetry
updates at a rate of dt.
mission. output. l_secorid updates
every second so that a shorter version is available.

9.) record_data_on

10.) opens the socket to the virtual
world. 10.) open_virtual_world_socket

11.) Gets an address to output a
recorded mission report. 11.) Get an E-mail address

Figure 9b execution level flow chart (continued).

20

12.) Time given to move the
in-water AUV to the starting position.

13.) parse_mission_script_
commands takes its inputs from the
movement orders. It opens a file to
output a state vector whenever a block
of data is collected. This block of data is
brought in one line at a time, or order at a
time, through the command_buf f er and
each time a line is read toggles are set and
variables are set pertaining to that
command. A block of data consists of a
series of orders followed by a time to
wait or a length of time given to
perform those tasks. When a block
of data is collected
parse_mission_script_com
mand is halted. It waits until it is
called upon again by the closed loop
module to alter another block.

12.) Position the AUV

13)parse_mission_script
commands

13a.) Open script file for reading

13b.) Set orders file for writing

13c.) get line, put in command_buf f er

13d.) Set toggles and move some variables

14.) Zero pitch, roll, roll_rate, pitch_rate,
yaw_rate, z_valO, and dg_offset according to
how the AUV is positioned.

15.) Centers the sonar relative to the AUV
longitunal centerline.

14) zero_gyro_data

15) center_sonar

16.) Used to set up the module that
actually sends the commands to the
hardware to make the AUV move.

16) initialize
closed_loop_control_module

17.) Get a clock time to reference
the waits or runs from parse_mission
_script_commands.

17.) clock ()

Figure 9c execution level flow chart (continued).

21

18.) Theclosed_loop_control
_module is the heart of the execution
level. This is where the AUV is actually
moved. It uses the variables and toggles
that were altered in the block of data by the
parse_mission_script_command.
These variables and toggles are manipulated
and passed to the lowest level of the program
The variables are then sent to the "dacs"
where they are converted to voltages.
These voltages are then applied to the
proper components of the AUV. The
AUV then moves.

Readings from the components are
then taken by "adcs" and compared to
what they should be. The errors are then
corrected and the AUV travels in manner
commanded. The AUV continues to
travel
as directed while the
closed_loop_control_module loops
until the time for the next command. When
this time is reached
parse_mission_script_command is
again called and the next block of data
replaces the block of data that is currently
be performed and the AUV carries out the
next command. This process continues
until the mission is completed.

19.) At the end of each scripted mission is the toggle
QUIT, STOP, or EXIT. This toggle sets the
end_test variable to TRUE and the program is
allowed to exit the closed_loop_
control_module. Gyro's are centered, sockets are
closed, device paths are closed, recorded data files are
closed and stored. If in keyboard mode
the user inputs one of these toggles.

18.) closed_loop_
control_module ()
(Described in detail in Chapter V)

19.) End_test

Figure 9d execution level flow chart end.

22

test satisfactorily in the virtual world, the same code with the corrections can be loaded

into the actual AUV and run. This enables most coding errors to be corrected prior to

taking the time and deployment effort necessary to repeat tests in the actual world.

Combining the codes ensures that the advancement in one domain will be an

advancement in the other. The intention of this thesis is to reintegrate both the control

and the logic of the virtual and actual AUV's so that, following this thesis, both versions

may advance together at a rapid pace.

23

24

III. PROBLEM STATEMENT

A. INTRODUCTION

This chapter discusses the different obstacles that had to be overcome in

combining virtual and actual robot control code. The question in section B was the most

important to answer and served as the basis for taking on the project. Design questions in

subsequent sections were posed prior to actually performing the project. It was originally

expected that if the robot control code for each domain (real and virtual) was properly

combined, the results of the project might answer and validate the first question. These

questions and potential answers provide the design criteria for this project.

B. WILL THE VIRTUAL WORLD BE HELPFUL?

At the root of this project is the question, "Will integrating the software control

system of a virtual world AUV and the software control system for an actual AUV be

beneficial to the ongoing AUV research being done at NPS?" Theoretically, if the virtual

world AUV can realistically perform the tasks described in Chapter II (pre-mission

testing, pseudo-mission testing, and post-mission playback) it might prove to be essential

to the research. In fact, if integrating the virtual world AUV software with the actual

AUV software might achieve any of these three capabilities, the project is well worth the

time and effort invested. This project attempts to utilize the pre-mission and pseudo-

mission testing capabilities in preparing the AUV for the Moss Landing mission

(Leonhardt 96).

C. WHICH VERSION (ACTUAL OR VIRTUAL) WILL BE THE BASE FOR
THE COMBINED ROBOT SOFTWARE?

A major consideration was which of the two execution control codes to use as a

base for the combined software. The actual AUV code (Marco 96) was working and

limited experiments on in-water stability were successful. Although the actual AUV code

was precise and operated in an optimal 10 Hz range, the code was very large,

25

unmodularized and hard to understand due to cryptic variable naming conventions. The

virtual AUV code (Brutzman 94) was also working and experiments in the virtual world

were successful. Although the virtual AUV code was robust and modularized, it was

untested in a real environment. Even though easier to read, the large size and overall

complexity of the virtual AUV execution level code also left it hard to understand.

Despite originating from a single code base, two years of separate incremental changes

led to significant differences within a similar structure. This led to the question "Which

code ought to be imported into the other code in order to complete the project?"

D. MESSAGE PASSING TO TACTICAL

Message passing between the tactical and execution level was a crucial

specification that needed to be addressed prior to the start of the project for two reasons.

The first reason was to free the other software developers to design their individual

modules without a need or dependency on the other engineers and students. The

individual developers might simulate inputs and outputs to their modules and test the

coherency of their code prior to integrating the code into the complete package. Because

of the large number of people in the group developing different portions of the software,

identifying exactly which people needed what information to run their code was essential.

The second reason was to quickly determine if the project is feasible in the sense

that message passing takes time, and in the execution level the total time needed to

complete a closed loop control cycle is critical. Too much message passing slows the

system and causes the AUV to become physically unstable. Not enough information

getting passed causes the AUV to operate blindly for excessively long intervals of time

which again causes the vehicle to become unstable. These ideas led to the question "How

will the tactical and execution levels communicate and what information will be passed?"

E. WHAT ABOUT 10 Hz STABILITY?

As shown empirically in previous tests, 10 Hz enables the execution level to

maintain vehicle stability. One of the biggest questions that needed to be answered

26

through testing was, "Will using the robust execution structure used in the virtual world

code allow the vehicle to maintain a 10 Hz execution level update rate?" This speed

problem alone might cause this project to fail. The only way to answer this question was

to combine the codes and run a mission experiment. This was a gamble justified by the

fact that each version had a similar structure, a common basis in source code (albeit two

years old), reliance on virtual world testability, and faith in the authors ability to write

effective source code. It was not expected that it would be possible to "buy out of slow

processor problems due to lack of research funding, time constraints, and a problematic

set of hardware interfaces and software drivers for analog components.

F. SUMMARY

There were many questions that needed to be addressed prior to taking on the

project. The biggest question remains "Will integrating the virtual world benefit the

ongoing AUV research?" These questions were addressed by the Phoenix research group

one by one until there was enough evidence to support combining the code. Once it was

agreed how the project was to be undertaken, these questions served as a guide on the

design of the new software package.

27

28

IV. SOFTWARE INTEGRATION METHODOLOGY

A. INTRODUCTION

There are many requirements for the real/virtual software integration challenge;

consequently the task was broken down into to distinct problems. The first problem was

to collate and integrate the combined software and get it to a stage that it might compile

and run using both SGI and OS-9/GESPAC operating systems and also act as a driver to

the virtual world. The second problem was to put the software into the actual AUV and

watch it control the boat hardware, first on a test bench then in the water. This chapter

discusses the process of integrating the combined software so that it will compile and run

on a GESPAC system. Chapter VI discusses in detail what later happens with the code

after it is generated and put into the AUV.

B. COMBINING THE SOFTWARE

As discussed in Chapter in, the decision was made to start with the virtual world

code and extend it using the actual world code. The virtual code was already organized in

such a way that sections of the actual AUV code might be transported and upgraded one

at a time in corresponding modules. Also prior to a flooding accident that delayed the

AUV project by a year in 1994, the majority of these slots already had actual functions

written that theoretically still sent the correct signals to the correct hardware (and visa

versa). However, during the rebuild of the physical AUV, additional components were

set into place and hardware had to be rewired to account for circuit boards that were lost

or upgraded as a result of the mishap. For these reasons many hardware interface

functions that were written in the virtual code structure were no longer valid and needed

to be updated so that the correct signals would go to the correct hardware components.

Also some of the functions in the virtual code did not account for the fact that an option

to run in either virtual or actual worlds needed to be present. Functions involving the

execution level sonar were excluded from the initial conversion. The sonar functions

were deferred due to a separate sonar residing in the tactical level that was being

29

developed at the same time. The tactical level sonar was able to produce all necessary

information needed for the AUV's initial voyages (Campbell 96). A sonar in the

execution level was planned to be developed after the basic tactical sonar code was

proved successful. These decisions were made in the interest of time and to help focus on

the overall goal. The ultimate conversion goal was to combine the software to run

identically in the virtual and actual world, then run the Moss Landing mission.

The first order of business was to obtain the complete reference versions of the

control source code for both the virtual and the actual AUV's . Once both sets of code

were gathered they were separately analyzed to get an understanding of information flow

(virtual source code is presented in block form in Figure 9). After there was a thorough

understanding of how each source code worked, the two were compared line-by-line in

order to get the maximum combined functionality; i.e. the best of both worlds.

The next step was to isolate individual functions in the actual code and abstract

them to a level of movement. For example, if rotating the rudders was the function at

hand, the function in the actual code that rotated the rudders was found, then all

supporting functions to accomplish that task were also isolated and as a package the

function and its support functions were brought into the virtual code. The abstracted

function went into the virtual rotate rudders function as a condition of the virtual

function, and the support functions went at the end of the source code as complete

functions. The support functions went to the end of the source code unchanged instead of

being inserted into the virtual abstracted function in order to minimize the amount of

code that needed to be rewritten or redesignated. This was done because often the

support functions would be called on by other abstracted functions. Working on one

function set at a time (e.g. rudder control) allowed for incremental testing of combined

results.

As actual code functions were being imported to the virtual code, the names of the

functions were improved for readability and consistency. After each function was

updated with the actual version of code, the function was marked with a comment as

being verified that a match had been found for it in the actual code. All other functions in

30

the virtual code were marked as "not yet updated." This was to ensure that all functions

were visited at least once during the combining stage. After each function had been

marked as being updated, the code was compiled under the SGI compiler (to ensure at

least in the static condition) all components of each function were present. At a

minimum of once at the end of each update session the new code was both compiled and

a mission was run in the virtual world to check for blatant run-time errors. Once all

essential functions had been updated compiled on a SGI computer and tested

satisfactorily in the virtual world, the time came to attempt to compile the code on a OS-

9/GESPAC computer. Table 1 gives a step by step approach to combining the software.

1) Obtain a complete set of both source codes.
2) Understand both source codes.
3) Maximize the functionality of both source code.
4) Mark all virtual functions as "not yet updated".
5) Isolate each abstracted movement function in the actual code with the

support functions that are needed.
6) Find the slot in the virtual code for that abstracted function then import it.
7) Improve the function name for clarity and consistency.
8) Change "not yet updated" to "verified match and updated" for the imported

function.
9) Compile on an SGI system to ensure all support functions are present,

updated, and variables are consistent.
10) Perform periodic run tests at the end of each update session to check for

blatant run time errors.
11) Ensure all necessary functions in the virtual world were updated.
12) Compile on an OS-9 system.
13) Run on an OS-9 system.

Table 1 Steps to combine the software

C. COMPILING THE SOFTWARE

Although the execution source code would ultimately have to run on an OS-

9/GESPAC operating system, it was thought best to get it to compile on an SGI system

31

first because it took significantly less time to access an SGI system and compile. If the

code compiles on the SGI system then it is at least syntactically correct. However,

because of some small differences between the SGI and OS-9/GESPAC systems there

would need to be minor adjustments made to allow the OS-9 system to execute the code.

Some of these small differences due to the operating systems are: OS-9 does not

recognize "rm" or "cp" as remove or copy a file therefore, "del" and "copy" need to be

used in their place. Other subtle differences are "cat" in SGI is "list" in OS-9, and the SGI

does not have the same tsleep () function as the OS-9 system, instead the SGI has the

sleep () function. A further set of complications were that the OS-9 C compiler is not

ANSI C compliant (e.g. library names are different, input format for reading a double is

"%F" instead of"% 1 f", etc.). Other details that had to be strictly observed: the OS-9-

specific code had to be kept completely isolated from the SGI-specific code or fatal

errors would occur. Such errors might be due to the virtual world version mistakenly

trying to take readings from GESPAC circuit boards in the actual AUV, instead of

calculating the readings via its virtual world resources. Similarly, if not completely

isolated, the virtual code might try to open paths of communication that were intended for

the OS-9 system that are not necessary and unavailable to the virtual world. Such

mistakes typically cause run-time system crashes.

The AUV research group had two OS-9/GESPAC systems at its disposal. One of

the systems was aboard the AUV and a second spare was networked in the AUV group

laboratory. The first attempt for compilation of the combined source code on the OS-9

system was done on the spare, because that system was networked (os9.me.nps.navy.mil)

and had a compiler installed. Initially the AUV GESPAC had neither network

connections nor a compiler. The thought here was that if a successful compilation of

executable code could be obtained from the spare OS-9, that code could then be loaded

directly via diskette into the OS-9 that was onboard the AUV and bench tests might then

be attempted.

For remote OS-9 compilation, the spare AUV was remotely logged onto and a

copy of the combined source code was downloaded to be compiled. Syntactic errors were

32

corrected and paths to store information were established. Despite OS-9 C compiler

noncompliance and poor documentation, eventually the source code was able to compile

successfully. Once successfully compiled, running the executable code on the spare OS-9

was attempted. This was to test for run time errors in the code prior to putting the code

into the actual AUV. The majority of errors that were found during this time were

expected since the lab GESPAC was not able to take readings from hardware that is

normally present when the code is in the actual AUV. Several runs on the lab GESPAC

were made replacing hardware reads with dummy values in order completely execute an

entire mission. Eventually, a mission with dummy input/output was completed

successfully using the spare OS-9 to run the execution level.

The work described in this chapter was extremely challenging, taking four months

to complete. The next step was to load this executable code into the OS-9 that was in the

AUV and begin bench tests. That sequence of events is described in Chapter VI.

D. SUMMARY

After separating software integration and verification tasks into two distinct

problems, combining the source code was started. The goal of this portion of the project

was to get the code to compile and run on the spare GESPAC operating system. After

many trial and errors due to dissimilar operating systems, the two source code versions

were successfully merged into one version which ran on the spare GESPAC OS-9 system.

The code was now at a point where it was ready for bench tests in the actual AUV.

This follow-on part of the project is explained in Chapter VI, Experimental Results. The

next chapter, Source Code Description, reviews in detail the combined execution level

source code produced by the software integration methodology presented in this chapter.

33

34

V. SOURCE CODE DESCRIPTION

A. INTRODUCTION

This chapter discusses in depth the integrated virtual world/real world software

that controls the AUV. At the heart of the execution level control code is the function

closed_loop_control_module. This is a closed-loop function that runs

continuously either in a real-time or non-real-time domain. This control loop calls oh

several smaller functions to read, update, and command the AUV's controlling hardware.

Once through each loop, the closed_loop_control_module allows commands to

be entered or other parameters to be updated by calling on the parse_f unctions

module.

As part of the execution source code prior to entering the

closed_loop_control_module the DiveTracker process is spawned. The

Dive_tracker process runs concurrent with the closed_loop_control_module and

receives navigational data that is passed up to the tactical level. This chapter is explained

by first introducing large functions called by the control loop, then gives definitions of

terms that will be used in this chapter. The last sections explain the progression of the

main program prior to the closed_loop_control_module, the

closed_loop_control_module itself, and what happens after the

closed_loop_control_module is exited.

B. PARSING COMMANDS

There are two large modules other than the closed_loop_control_module

that make up a majority of the execution program. The first module consists of several

functions that parse commands and update global variables. The second is the

DiveTracker process that runs concurrent with the closed loop.

The parsing functions are divided into two categories. Both categories operate on

the same principle. They take an input string, perform a keyword comparison against a

list of known commands, and when a match is made set toggle variables and/or update

35

system parameters as appropriate. A toggle variable is defined as a unique string

corresponding to a global flag variable that can either be set to a 0 (FALSE) or a 1

(TRUE). The difference between the two parsing functions is that

parse_command_line_f lags is performed once prior to the control loop at initial

program invocation, while parse_mission_script_commands is performed

repeatedly for each closed_loop_control_module loop.

The function parse_command_line_flags is used one time during a

mission. It sets up the initial conditions that are intended to be used during the mission

by parsing command line commands entered at invocation. It describes how the mission

is to be performed and where the orders will be coming from. For logical reasons,

parse_command_line_flags includes only a subset of the commands found in

parse_mission_script_commands . As an example, to start the execution level

the user might type: execution keyboard real-time silent, then the user would press

enter. The user needs to type execution first because it is the name of the execution level

program (executable code), and therefore starts the main program. After execution is

typed the user can add as many (or no) additional attributes desired for the intended

mission. If no attribute keywords are set by the user, default toggle variable values are

used. The attributes that are used in this example are: keyboard lets the system know

that the user will be inputting commands from the keyboard instead of the default

mission. script file, real-time lets the system know that a strict time schedule must

be adhered to by the closed_loop_control_module, and silent lets the system

know to turn off its added feature of having all orders echoed through the system

speakers via a Netherlands-based voice synthesis server (Brutzman 94). A list of possible

toggles that can be used in initializing a mission can be found in Table 2. This table gives

a listing of the commands used, toggles that are reset, globals that are updated, and a

brief description of what happens. All keywords and values are case insensitive.

Commands and default values are described in more detail in Appendix F,

mission. script. HELP.

36

Table 2 parse_command_line_flags keywords

Commands Toggle Variables

Reset

Other Global

Variables Updated

Description

HELP

?

N/A print_valid_keywords Offers possible toggles

KEYBOARD

KEY-BOARD

KEYBOARDINPUT «- TRUE N/A Commands will come

from the keyboard

TRACEOFF

TRACE-OFF

NO-TRACE

TRACE «- FALSE N/A Disables the ability to

trace a running program

TRACE

TRACE-ON

TRACE «- TRUE N/A Enables a trace of the

running program for error

correction

LOOPFOREVER LOOPFOREVER «-TRUE N/A Program cycles through

multiple times without

stopping

LOOPONCE

LOOP-ONCE

LOOPFOREVER «-FALSE N/A Program runs mission one

time

LOOPFILEBACKUP LOOPFILEBACKUP «- TRUE N/A Allows a backup copy of

the running program

results

ENTERCONTROLCONS

TANTS

ENTERCONTROLCONSTANT

S«-TRUE

N/A Allows the user to

manually enter the control

constants for AUV motion

TACTICAL

TACTICAL-HOST

TACTICAL «-TRUE

KEYBOARDINPUT «- FALSE

get tactical hostname/IP

address

Allows AUV execution

level to communicate with

tactical level

SILENT

SILENCE

AUDIBLE«- FALSE send SILENT to virtual world

buffer

Disables the audio

playback

TIMESTEP

TIME-STEP

N/A dt *- TIMESTEP Allows the user to alter the

time required for a single

closed-loop cycle

VIRTU ALHOST

REMOTE

DYNAMICS

N/A virtual_world_remote_host_na

me «- VIRTUALHOST

Identifies host running

dynamics (Virtual World)

37

Table 2 parse_command_line_flags keywords (continued)

Commands Toggle Variables

Reset

Other Global

Variables Updated

Description

REALTIME

REAL-TIME

REALTIME «-TRUE N/A Allows the mission to run

in real-time (busy/wait as

necessary)

NOREALTIME

NOPAUSE

NO-WAIT

REALTIME «-FALSE N/A Allows the mission to run

as fast as possible

LOCATIONLAB LOCATIONLAB *- TRUE N/A Allows AUV to be bench

tested (no gyros or sonars)

LOCATIONWATER LOCATIONLAB «- FALSE N/A Allows AUV to be fully

functional

The function parse_mission_script_commands is called at the end of

each of the closed_loop_control_module cycles. This is where the majority of

the toggles are changed. One time per cycle the control loop pauses to get its next

command. Once it has received a new order, it continues in the control loop to direct the

necessary functions to accomplish the new command. If input commands in the keyboard

mode are provided, this break in the control loop gives the user the ability to manipulate

any portion of the hardware. A list of possible toggles that can be used to direct the

AUV during a mission can be found in Table 3. This table gives a listing of the

commands used, toggles that are reset, globals that are updated, and a brief description of

what happens. All keywords and values are case insensitive. Commands and default

values are described in more detail in Appendix F, mission. script. HELP.

Table 3 parse_mission_script keywords

Commands Toggle Variables

Reset

Other Global

Variables Updated

Description

HELP

?

N/A print_valid_keywords Offers possible toggles

38

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated
WAIT read_another_line «- FALSE time_next_command = t + Stops orders for a

RUN parameter specified amount of time

TIME read_another_line «- FALSE time_next_command = t + Tells when the next

WAITUNTIL parameter

if parameter < t print warning

reset all velocities to 0

command will be accepted

TIMESTEP N/A dt *- TIMESTEP can alter the time required

for a single closed-loop

cycle

PAUSE N/A getchar () momentary stop of the

program

REALTIME REALTIME «- TRUE N/A Allows realtime mission

REAL-TIME (busy/wait as necessary)

MISSION KEYBOARDINPUT«- FALSE AUVSCRIPTFILENAME+- read the mission

SCRIPT parameter commands in from a script

FILE file

KEYBOARD KEYBOARDINPUT «- TRUE N/A Commands will come

KEYBOARD-ON from the keyboard

KEYBOARD-OFF KEYBOARDINPUT «- FALSE N/A keyboard will not be used

NO-KEYBOARD to get commands

NOWAIT REALTIME«- FALSE N/A allows the mission to run

NO-REALTIME as fast as possible

NO-PAUSE

ABORT HALTSCRIPT 4- TRUE N/A stop the program now

QUIT end_test «- TRUE N/A stop the program,
STOP read_another_line «- FALSE shutdown normally
EXIT

RPM WAYPOÜMTCONTROL «- port_rpm_command tell system how fast to
SPEED FALSE stbd_rpm_command rotate the shafts. 700
PROPS ROTATECONTROL«- FALSE RPM produces steady

HOVERCONTROL«- FALSE state speed of -1.5

feet/sec

39

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated
COURSE DEADSTICKRUDDER «- psLcommand a course the AUV will

HEADING FALSE psi_command_hover maintain, using current

YAW WAYPOINTCONTROL «- rotate_command = 0.0 control mode

FALSE lateral_command = 0.0

ROTATECONTROL «- FALSE

LATERALCONTROL «- FALSE

if (HOVERCONTROL is true)

set REPORTSTABLE

«-TRUE

TURN DEADSTICKRUDDER «- psi_command conduct a turn in degrees

CHANGE-COURSE
FALSE

WAYPOINTCONTROL «-

FALSE

ROTATECONTROL*- FALSE

relative to the heading,

using current control mode

RUDDER DEADSTICKRUDDER «- rudder_command turn rudders to a specified

TRUE angle

WAYPOINTCONTROL «-

FALSE

ROTATECONTROL«- FALSE

HOVERCONTROL«- FALSE

DEADSTICKRUDDER if an angle is sent then if an angle is included then keep rudder at a specified

DEADSTICKRUDDER «- rudder_command = parameter angle (open loop control)

TRUE else

WAYPOINTCONTROL «- rudder_command = 0.0

FALSE

ROTATECONTROL«- FALSE

HOVERCONTROL«- FALSE

else

DEADSTICKRUDDER «-

TRUE

WAYPOINTCONTROL «-

FALSE

ROTATECONTROL«- FALSE

40

Table 3 parse_rnission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated
DEPTH DEADSTICKPLANES *- z_command reach and maintain

FALSE ordered depth using

if (HOVERCONTROL) is true current control mode

then REPORTSTABLE «- TRUE

PLANES DEADSTICKPLANES «- TRUE command_planes turn planes to specified

angle

DEADSTICKPLANES DEADSTICKPLANES *- TRUE if an angle is sent then keep planes at a specified

command_planes angle (open loop control)

else

command_planes = 0.0

THRUSTERS THRUSTERCONTROL «-TRUE N/A allow the thrusters to be

THRUSTERS-ON used

NOTHRUSTERS THRUSTERCONTROL «- N/A discontinue thruster use

THRUSTERSOFF FALSE

ROTATECONTROL«- FALSE

HOVERCONTROL«- FALSE

LATERALCONTROL *-FALSE

ROTATE THRUSTERCONTROL «- rotate_command spin the vehicle around its

TRUE lateral_command = 0.0 z-axis using thrusters at a

ROTATECONTROL«- TRUE specified rate (open loop

HOVERCONTROL«- FALSE control)

LATERALCONTROL «-FALSE

WAYPOINTCONTROL «-

FALSE

NOROTATE ROTATECONTROL«- FALSE rotate_command = 0.0 stop rotating

ROTATE-OFF

LATERAL THRUSTERCONTROL «- rotate_command = 0.0 slide the AUV laterally

TRUE lateral_command using thrusters (open loop

ROTATECONTROL«- FALSE control)

HOVERCONTROL«- FALSE

LATERALCONTROL «- TRUE

WAYPOINTCONTROL «-

FALSE

41

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated
NOLATERAL LATERALCONTROL <- FALSE lateral_command = 0.0 stop sliding the vehicle

LATERAL-OFF laterally

DIVETRACKER 1 N/A DiveTrackerl_x world position of

DiveTrackerl_y divetracker transponderl

DiveTrackerl_z

DIVETRACKER2 N/A DiveTracker2_x world position of

DiveTracker2_y divetracker transponder 2

DiveTracker2_z

GPS if TACTICALPARSE ♦- FALSE if TACTICALPARSE «- get a GPS fix

GPS-FK then FALSE then

GPSFKINPROGRESS = TRUE previous_z_command =

z_command

time_gps_complete = t + 30.0

time_postgps_dive = t + 60.0

time_next_command =

time_gps_complete

GPS-COMPLETE if GPSFKINPROGRESS if GPSFKINPROGRESS finished getting a GPS fix

GPS-FK-COMPLETE read_another_line 4- FALSE z_command = before reading further

previous_z_command orders

time_postgps_dive = t + 30.0

time_next_command =

time_postgps_dive

time_gps_complete =

time_postgps_dive + 1

GYROERROR N/A gyro_error correct offset error in the

GYRO-ERROR gyro (gyro + error = true)

DEPTH-CELL-BIAS N/A depth_cell_bias an offset for the depth cell

DEPTHCELLERROR to obtain accurate readings

DEPTHERROR in saltwater and fresh

water (depth cell + error =

true)

42

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables

Reset

Other Global

Variables Updated

Description

LOCATIONLAB

LOCATIONVKTUAL

LOCATIONLAB «- TRUE N/A Allows the AUV to be

bench tested or run

virtually (No gyros or

sonars)

LOCATIONWATER

LOCATIONREAL

LOCATIONLAB ♦■ FALSE N/A Allows AUV to be fully

functional

LOCATION

POSITION

FTX

N/A X

y

z

reset vehicle position

estimate

ORIENTATION

ROTATION

N/A phi

theta

psi

reset vehicle orientation

estimate

POSTURE kal_init_z «- TRUE x, y, z, phi, theta, psi, start_psi how the vehicle is oriented

in a fixed position

OCEANCURRENT

OCEAN-CURRENT

N/A AUV_oceancurrent_x

AUV_oceancurrent_y

AUV_oceancurrent_z

set and drift estimated

value

CONTINUE

GO

N/A N/A continue the loop without

stopping

STEP read_another_line «- FALSE time_next_command = t + dt do only one closed loop

TRACE

TRACE-ON

TRACE «- TRUE N/A Enables a trace of the

program for error

diagnostics

TRACE-OFF

NOTRACE

TRACE «- FALSE N/A Disables the ability to

trace a running program

LOOP-FOREVER LOOPFOREVER «- TRUE N/A mission cycles through

multiple times without

stopping

LOOPONCE LOOPFOREVER «- FALSE N/A run the mission one time

LOOPFILEBACKUP LOOPFILEBACKUP «- TRUE N/A make a backup copy of the

mission results

43

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated
ENTERCONTROL- ENTERCONTROLCONSTANT get_control_constants () manually input new

CONSTANTS S«-TRUE control constants

CONTROL- LOADCONTROLCONSTANTS get_control_constants () read the control constants

CONSTANTS- ♦-TRUE in from a file

INPUT-FILE

SLIDINGMODECOURSE SLIDINGMODECOURSE «-

TRUE

ROTATECONTROL «- FALSE

HOVERCONTROL«- FALSE

WAYPOINTCONTROL «-

FALSE

N/A not yet implemented

SLIDINGMODEOFF SLIDINGMODECOURSE «-

FALSE

N/A not yet implemented

TACTICAL TACTICAL 4-TRUE get tactical hostname/IP Allows AUV execution

TACTICAL-HOST KEYBOARDINPUT «- FALSE address level to communicate with

tactical

NOTACTICAL TACTICAL «-FALSE N/A no orders will come from

the tactical level

SONARINSTALLED SONARINSTALLED «- TRUE N/A indicate that the sonar is

installed

AUDIBLE AUDIBLE «-TRUE send_buffer_to_virtual_world_ echo over the speakers a

AUDIO socket () voice representation of all

SOUND-ON orders

SILENT AUDIBLE «- FALSE send silent to virtual world Disables the audio

QUIET buffer playback

NO-SOUND

EMAIL-ON EMAIL «-TRUE N/A send a copy of mission

results to the recipient

EMAIL-OFF EMAIL «-FALSE N/A no email is sent after

mission completion

44

Table 3 parse_mission_script keywords (continued).

Commands Toggle Variables Other Global Description

Reset Variables Updated

WAYPOINT WAYPOENTCONTROL «- x_command go through a waypoint and

WAYPOINT-ON TRUE y_command carry on to the next one

FOLLOWWAYPOINTMODE - z_command when ordered

♦•TRUE port_rpm_command =

HOVERCONTROL «- FALSE fabs(port_rpm_command)

ROTATECONTROL «-FALSE stbd_rpm_command =

LATERALCONTROL ♦- FALSE fabs(stbd_rpm_command)

REPORTSTABLE «- TRUE detect_death_spiral (true)

DEADSTICKRUDDER «-

FALSE

WAYPOINTFOLLOW FOLLOWWAYPOINTMODE - N/A go through a waypoint and

WAYPOINT-FOLLOW «-TRUE

DEADSTICKRUDDER «-

FALSE

carry on to the next one

WAYPOINTFOLLOWOF FOLLOWWAYPOINTMODE - N/A do not go to next waypoint

F ♦-FALSE without being ordered

WAYPOINT-FOLLOW-

OFF

STANDOFF if (HOVERCONTROL) standoff_distance predetermined distance

STANDOFF-DISTANCE then REPORTSTABLE «- from a point to be reached

TRUE for hoverpoint/waypoint

success

HOVEROFF WAYPOINTCONTROL «- port_rpm_command = 0.0 Turn off the hover mode

HOVER-OFF FALSE stbd_rpm_command = 0.0

FOLLOWWAYPOINTMODE rudder_command = 0.0

♦-FALSE

HOVERCONTROL ♦- FALSE

read_another_line *■ FALSE

45

Table 3 parse_mission_script keywords end.

Commands Toggle Variables Other Global Description

Reset Variables Updated
HOVER HOVERCONTROL «- TRUE x_command use thrusters to get into

HOVER-ON REPORTSTABLE «- TRUE y_command position and stay there

WAYPOINTCONTROL +■ z_command

FALSE rudder_command = 0.0

ROTATECONTROL «- FALSE psi_command

LATERALCONTROL *■ FALSE psi_command_hover

THRUSTERCONTROL *• standoff_distance

TRUE

DEADSTICKRUDDER «-

TRUE

C. BEGIN THE MAIN PROGRAM

To begin the main program, the timestep variable dt is set to the default setting.

The timestep is the most important factor in maintaining real-time response. A timestep

is the maximum fraction of a second that is required to run one complete control loop.

As an example, through many iterations and tests it was found that the revised

closed_loop_control_module requires a maximum of .15 seconds to complete

the most complex loop. Because the control loop is never expected to take more than .15

seconds to complete, the timestep is then set to .15 seconds. If the REALTIME toggle is

set by the user, each time a loop is completed it is held idle in a busy-wait loop until .15

seconds has transpired. This is how the AUV maintains a 6.66 Hz control loop.

Therefore, all positioning and control algorithms and filters have a constant time duration

between loops in which they use to calculate how fast the AUV is moving in a given

direction and consequently where the AUV should be with respect to time. If the user

does not select the REALTIME option the computer is free to run without pausing

through the loops. Without pausing at the end of each loop, the overall mission takes a

shorter time to complete. This is ideal for testing logic in the 3D virtual world, because

the user does not have to wait as long for results.

46

Next the initial conditions for the mission are read by

parse_command_line_f lags (explained earlier). These initial conditions indicate

to the system all the appropriate paths and sockets to open for either transfer or storage of

recorded data.

If needed, the next step is to spawn the DiveTracker process. This is only used if

the AUV is in water and the user wishes to navigate via DiveTracker. The DiveTracker

process is a three- beacon acoustic interrogation system that is used for navigation

(Scrivener 96). It consists of a baseline of two beacons at a known distance from each

other and a third beacon that is mobile. The baseline pings the mobile unit and awaits a

response. The time required to receive a response is then translated into a distance. The

mobile unit receives the distances to each of the baseline beacons and by triangulation can

determine where it is in the relative coordinate system.

Continuing execution, the AUV begins its hardware initialization. Time cards are

first initialized and then the gyros are uncaged. Uncaging the gyros allows them to spin

freely. While uncaged the gyros are highly susceptible to damage, therefore whenever

they are not being used they are left caged. All rudder and plane surfaces are zeroed, and

propellers and thrusters are zeroed and turned off. This is to prevent accidentally starting

a piece of hardware due to uninitialized values left in registers. A source of power is then

given to the propellers and thrusters. Analog-to-Digital and Digital-to-Analog converters

are made ready and the gyros are zeroed. A set of control constants is next retrieved. All

of these control constants are parameterized. They are normally read in during the

initialization from the control. constants . input file. These constants are used

in the control response formulas that dictate the movement of the AUV.

A do-while loop is then entered. This gives the code between the "do" and the

"while" the flexibility to be executed multiple times (if necessary) but the loop is always

executed at least once. The LOOPFOREVER toggle is the condition of the while. If set

to TRUE this portion of code which includes the control loop will be executed

repetitively. The primary purpose of this loop is to test the AUV's logic endurance and

robustness, particularly with respect to memory leaks; i.e. failure to deallocate allocated

47

memory (garbage collection). The LOOPFOREVER toggle is normally used with a

prepared mission. script for the 3D world. In this mode the user can test how long

a mission will run continuously. Also, during these continuous runs, sockets, pipes and

networks are being established and terminated. This gives the user the ability to

repeatedly test all connections in the network. Such testing also exercises hardware for

extended periods and has proved very useful in improving vehicle robustness. While in

this mode, simulation time is reset to zero at the end of each mission so that multiple

mission results may be produced identically.

Next, if the user is working in the 3D world remotely and the correct toggles have

been set, the user is given the opportunity to be e-mailed a copy of the recorded data after

the mission. When prompted, the user need only enter an e-mail address.

If the sonar is installed it is centered at this time. The closed-loop control

parameters are also set. The principal parameter for the closed loop is "end_test" which

must be set to FALSE. The last thing done prior to entering the closed loop is to

calculate a time for the next loop. This will be used later. Once this is done, the closed-

loop commences and will continue to loop until end_test is set to TRUE.

D. CLOSED_LOOP_CONTROL_MODULE

This is the function that coordinates all motion and maintains the stability of the

AUV. Each function and logic sequence that is used either in or by the

closed_loop_control_module is written to accommodate two modes of

operation. These two modes are clearly separated by the toggle variable

LOCATIONLAB. If LOCATIONLAB is TRUE all readings are computer generated by

the virtual world and all commands go to the virtual world. If LOCATIONLAB is

FALSE readings are taken from the hardware components of the AUV and all commands

go to the hardware components of the AUV. Command results are viewed by looking at

the virtual world viewer when LOCATIONLAB is TRUE, or the actual AUV (either on a

test bench or in the water) when LOCATIONLAB is FALSE.

The first priority of the closed_loop_control_module is to test for

48

critical conditions that mandate mission termination. The loop first checks to see if the

AUV is in the water and a terminal condition has not already been cited. If it is in the

water and there is no previously triggered crisis, it then checks the computer battery and

the motor battery. If both of these voltages are above 20 volts, operation continues.

Next it checks a leak detector. If no moisture is sensed inside the hull of the AUV the

program checks the depth cell. The maximum depth is currently set at six feet for testing

purposes. Currently if the AUV goes deeper then six feet the mission will be terminated.

This prevents an uncontrolled or unordered dive as well as system shutdown if a

flooding casualty occurs. If the maximum depth has not been violated, the program then

makes a final critical check to determine whether or not the DiveTracker transducer has

lost communication with the baseline transponders. For testing purposes the code is

written so that if there is no DiveTracker update within 10 seconds, it is then assumed

communication with the base station has been lost. If communication with the base

station is lost the AUV can not reliably tell where it is under the water (due to current

unsatisfactory dead reckoning). If the AUV does not know its location in the water it

does not have a reference point from which to navigate, therefore the program terminates

for safety reasons. If any of these checks show that there is a problem, the program

automatically enters a shutdown script that forces the AUV to the surface. Figure 10

gives a quick reference to critical checks.

Computer Battery > More than 20 Volts

Motor Battery > More than 20 Volts

Leak Detector -> Must be dry

Depth Cell < Register less than 6 Feet

DiveTracker < Update less than 10 seconds

Figure 10 Critical checks for mission termination

49

If there are no critical problems encountered, the loop will continue and either

simulated or actual readings are taken from the appropriate functions. Each of these

functions have also been designed to test whether LOCATIONLAB is TRUE or FALSE.

These readings update the vehicles telemetry vector, and allow the vehicle to evaluate its

motion during the previous timestep. These readings are also used for dead reckoning

which predicts vehicle position based on course, speed and the current time. Functions

that update state variables are in Figure 11.

STATE VARIABLE SENSOR FUNCTION
speed 4- read_speed ()
port_rpm 4- read_port_motor_rpm ()
stbd_rpm 4- read_stbd_motor_rpm ()

X 4- XY_model_set ()
y 4- XY_model_set ()
z 4- read_depth ()
phi 4- read_roll_angle ()
theta 4- read_pitch_angle ()
psi 4- read_psi ()
u 4- XY_model_set ()
V 4- XY_model_set ()
w 4- z_dot_kal
kalman_z (z) - to smooth this transition and get other values
z_dot 4- z_dot_kal
P 4- read_roll_rate_gyro ()
q 4- read_pitch_rate_gyro ()
r 4- osi - last Dsi / dt

normally from read_yaw_rate_gyro (), but
yaw rate gyro is inoperative at present time.

Figure 11 State variables and sensor functions

The next operation that takes place allows the previously spawned DiveTracker

process to update the telemetry state vector. The DiveTracker ranges from beacon 1 and

beacon 2 are accepted only if the AUV depth is greater than 1 foot, since ranges may be

50

inaccurate when the vehicle is surfaced. The telemetry vector is then sent to the tactical

level. These ranges are filtered in the tactical level and passed back down to the

execution level as the vehicles updated x and y positions.

This portion of code (like many others) is encapsulated by # i f, #else,

#endi f preprocessor directives. These sections of code are setup to accommodate

variations in the different operating systems and compilers that are used in running the

combined source code. The OS-9 GESPAC system has a unique style and a different set

of reserved words than both the SGI and SUN systems. However, all three systems

recognize the left justified # i f, # then, # e 1 s e "C" language preprocessor

directives. Periodically in the execution code the format in Figure 12 is found.

#if (defined(sun) || defined(sgi)
«else

/* Dive Tracker Stuff */
if (DIVETRACKER)
{

createdmod () ,-

/* Fork Dive Tracker Process */
if((dt_pid =

OS-9fork("/rO/div_trac",0,dt_fork_parmptr,0,0,0/0)) > 0)
{

printf("[Dive Tracker Process %d forked]\n",dt_pid);
}
else
{

printf("[Can't Fork Dive Tracker Process]\n");

#endif

Figure 12 Operating system independence: permitting syntax variations
using preprocessor directives.

This means if the compiler is running on a SUN or SGI workstation compile the "if

portion of the source code (in this case do nothing), but if the compiler is not one of these,

compile the "else" portion of the source code (spawn the DiveTracker). This is one way

to segregate the source code so that it is accepted by all of the compilers.

The telemetry state vector (mentioned earlier), is an array containing 37 global

51

variables. Originally it was constructed to record the AUV's telemetry as the AUV

conducted a mission. At the end of a mission, the state vector can be played back in the

virtual world to determine if the AUV performed as expected. If a fault occurred during a

mission, the state vector would help determine the cause of the fault. Later the state

vector proved to be an even more valuable tool, by providing the means to transfer all

essential data from process to process and computer to computer. The information

contained in the state vector not only includes the vehicle telemetry, but also includes all

inputs and outputs needed by individual processes at the tactical level. All processes

needing to communicate with other processes get a continually updated copy of the state

vector. The individual processes receive the entire state vector and extract the information

they need. Thus from the perspective of the tactical level processes, the telemetry vector

is acting as though it is shared memory which is updated solely by the execution level.

The rationale of state vector communications is described in (Brutzman 96) (Leonhardt

96).

Next a waypoint_distance is calculated. A waypoint_distance is defined as the

distance between current AUV position, and the next waypoint the AUV is trying to

reach. This waypoint_distance is used by both HOVERCONTROL and

WAYPOINTCONTROL. Also used by these two modes of operation is the standoff,

distance. The standoff_distance is defined as a predetermined depth and radial distance

away from a waypoint or hoverpoint in a 3D coordinate system. When the vehicle comes

within the predetermined distance from the waypoint or hoverpoint it is trying to reach,

the control algorithm declares success in obtaining that point.

Although many toggles are set and many variables updated through the next

portion of code, for clarity this discussion focuses on the source code which updates

shaft rpm while in HOVERCONTROL or WAYPOINTCONTROL. The major

difference between these two modes of transit is that WAYPOINTCONTROL uses a

fixed positive rpm (clamped at a minimum of 200), and the HOVERCONTROL uses a

rpm amount that is nonlinearly proportional to how far away from the target the AUV is

located. The hover code is written so that while the next hoverpoint is far away from the

52

AUV, WAYPOINTCONTROL will be used to rapidly approach the goal.

HOVERCONTROL mode then resumes when the range to the hoverpoint becomes

practical.

1. Hover Control Logic

If there is a HOVER command and the waypoint_distance is greater than the

standoff_distance, an additional check is needed. This check is to see if the

waypoint_distance is greater than the standoff_distance by more than 15 feet. If such is

the case, the AUV temporarily switches from hover mode to waypoint mode. This switch

is made because longer distances can be traveled faster in WAYPOINTCONTROL

mode. Therefore the following toggles are temporarily set while HOVERCONTROL

remains TRUE:

WAYPOINTCONTROL is set to TRUE
DEADSTICKRUDDER is set to FALSE
DEADSTICKPLANES is set to FALSE
port_rpm_command = 700
stbd_rpm_command = 700
psi_command is set to psi_command_hover

Temporarily changing to waypoint mode ensures the AUV will efficiently travel to the

next point at maximum speed using rudders and planes to guide its way. Once the

waypoint_distance is less then standoff_distance plus 15 feet, the AUV switches the

WAYPOINTCONTROL mode off and makes its way to the point using

HOVERCONTROL and the following toggles are set:

WAYPOINTCONTROL is set to FALSE
DEADSTICKRUDDER is set to TRUE
DEADSTICKPLANES is set to TRUE

In this version of HOVERCONTROL, the AUV acknowledges that it is too close to the

point of destination to use a set rpm speed that would be produced by the

WAYPOINTCONTROL and therefore sets that toggle to FALSE. It then resumes

HOVERCONTROL to maneuver into position. HOVERCONTROL allows the rpms to

be varied proportionally to how far away from the target the AUV is located. Also the

53

AUV will be traveling slow enough that it may use cross-body thrusters to obtain cross-

track position and correction.

If in HOVERCONTROL and the waypoint_distance is not greater than the

standoff distance, this means the AUV is close to its target. If WAYPOINTCONTROL

prior to this was temporarily set to TRUE, it is now set to FALSE and

DEADSTICKRUDDER is set to TRUE
DEADSTICKPLANES is set to TRUE
rudder_command = 0.0
psi_command = psi_command_hover

This will ensure the AUV returns to a true HOVER mode using thruster and/or propellers

to maneuver.

The next check in the HOVER mode is the cylinder proximity check. This check

ensures that the AUV is close enough to the waypoint in three ways. The Figure 13

displays a graph that helps visualize the proximity check the AUV must comply with:

waypoint_distance < standoff_distance
ldepth_errorl < standoff distance
lpsi_errorl < 10.0 (degrees)

Cylinder Test

course—pii_em>r +/- 10 degreei

■Undoff diatancc

deptheuor
(»tindofr_duUnce)

- depth_cnor

(studoff_diitanec)

waypoint or hoverpoint

Figure 13 Cylinder test for waypoint/hoverpoint success

54

This states that the AUV is within standoff_distance in the radial-X-Y directions, within

standoff_distance in depth error, and that actual heading is within 10 degrees of

commanded heading. If these criteria are met, the AUV declares success in obtaining the

predetermined waypoint/hoverpoint. Thus the intercept target is a cylindrical volume

coupled with a direction requirement.

If the AUV is traveling using HOVERCONTROL, a track_angle is later

calculated. A track_angle is (waypoint angle - current heading), which is the difference

between the angle that the AUV needs to obtain waypoint and the AUV's actual heading.

This angle is split into its X and Y components and named along_track_distance and

cross_track_distance and shown in Figure 14.

along_track_distance
waypoint

I AUV H

cross track distance

AUV heading

track_angle = waypoint_angle - auv heading

along_track_distance = cos(track_angle) * waypoint_distance

cross_track_distance = sin(trackangle) * waypoint_distance

Figure 14 Closing waypoints independent of ordered heading.

55

These two components are used later as inputs to the formulas that drive the propellers

and lateral thrusters respectively. This method permits approaching the hoverpoint

satisfactorily independent of ordered AUV heading.

2. The Death Spiral

Before discussing the WAYPOINTCONTROL mode of operation it is important

to understand one of the possibilities that can happen while in WAYPOINTCONTROL

mode. A "death spiral" describes the behavior where the AUV drives continuous circles

around a point. This situation is caused by the AUV's inability to make a sharp enough

turn (using only rudders and planes while in WAYPOINTCONTROL) to get within a

standoff_distance and meeting waypoint success criteria. In this pathological scenario the

AUV continues to turn and propel itself at a constant rate towards the point but it will

never intersect the cylinder volume which produces waypoint success. Through many

tests it was determined that the AUV traveling at full speed (700 rpms), can acquire any

waypoint that was more than 15 feet away. Determining factors for the AUV to acquire a

point are how fast the AUV is traveling and how sharp of a turn it is able to make.

Although more testing in this area may be prudent, the general formula:

death_spiral_radius = abs (sin (waypoint_angle - heading) * (1/700) * rpms * 15)

will keep the AUV from entering into a death spiral. It is based on how far away from a

point (a radius of the point) the AUV is currently located. This distance is called the

death_spiral_radius and is updated on every cycle while in WAYPOINTCONTROL

mode. The death_spiral_radius represents the minimum circle radius that the AUV can

currently achieve. The execution level code uses this formula as an alternative to standoff

_distance to determine if it is possible for the AUV to achieve a waypoint. If the

waypoint is closer to the AUV than this number, it is assumed that the AUV will get

caught in a death spiral if it tries to acquire this point using WAYPOINTCONTROL.

Figure 15 illustrates a scenario that the AUV will not obtain a given waypoint.

56

waypoint distance

position and velocity

minimum AUV turn circle/'

AUV can not turn sharp enough to aquire the waypoint.

Figure 15 AUV can not reach waypoint

Therefore, in order to not get trapped in a death spiral, if the number that is produced

from this formula is more than the distance to a waypoint, the waypoint is assumed to be

achieved and the AUV continues on its mission. A further precaution is taken in addition

to this check. Prior to making a turn, the AUV's heading is stored. If at any time during

the turn the current heading varies more than 360 degrees from the stored heading, a

death spiral is sensed, the waypoint is assumed to be achieved, and once again the AUV

continues on its mission. The death spiral check is the reason that in the previous

section, Hover Control Logic, a switch from HOVERCONTROL to

57

WAYPOINTCONTROL only occurs if the waypoint distance is more than standoff

distance plus 15 feet.

3. Waypoint Control Logic

If in WAYPOINTCONTROL and the AUV is ordered to go less than 200 rpms,

200 rpms replaces that order. This ensures that the minimum rpms while in

WAYPOINTCONTROL is clamped to 200 rpms. This minimum requirement is set so

that the AUV will maintain adequate headway, i.e. be traveling fast enough to make

effective use of the rudders and planes. Next a waypoint angle is calculated. This angle

is converted to a turn direction that is needed to get from where the AUV is headed to

where the AUV is going. Next a death_spiral_radius calculation is made. This

calculation, as explained earlier in the Death Spiral subsection, is made to ensure that the

AUV can attain the commanded waypoint. There are four tests for properly achieving the

waypoint. Success for this cylinder test are identical to those explained previously in

Figure 13, with the exception that orientation test is replaced by the death spiral checks.

If these tests pass, the waypoint has been reached. Otherwise, the AUV continues to

make its way to the waypoint uninterrupted by other orders. These are the four tests:

ldepth_errorl < standoff_distance
waypoint_distance < standoff_distance
waypoint_distance < death_spiral_radius

detect_death_spiral (FALSE) - means that the AUV is not currently in a death spiral

When the waypoint has been reached, WAYPOINTCONTROL and

FOLLOWWAYPOINT are both set back to FALSE and the AUV is then ready to receive

its next order.

4. Rudders and Planes

Next delta_rudder, or the change in rudder angle needed to obtain the ordered

course, is calculated. Delta_rudder is calculated by multiplying a heading constant to the

difference between the ordered course and the current course. Factors of v and r are also

added to this multiple to account for the rate of movement in the lateral direction and rate

of turn of the AUV respectively. Then delta_rudder is modified as necessary to account

58

for the AUV rolling excessively in a turn. If too much roll is being encountered then

delta_rudder is reduced to help keep the AUV stable through sharp turns.

A depth_error is next calculated. The depth error is simply the difference between

the depth the AUV is at currently and the ordered depth it is trying to obtain. If the

absolute value of depth_error is greater than 15 feet, it is clamped to a corresponding +/-

15 feet. This clamp is a simple control law constraint to keep the AUV from ascending or

descending too steeply.

Next delta_planes is calculated by multiplying a z constant to the depth_error then

adding both a factor to account for theta, the angle of pitch, and a factor to account for q,

the rate of the pitch. Also taken into consideration is the rate at which the AUV is

ascending or descending. Delta_planes (like delta_rudder) is further governed by how

much roll the AUV is experiencing. If there is too much roll the angle of deflection for

the planes is reduced to help the roll subside. Once calculated, both delta_rudder and

delta_planes are clamped not to exceed H-/-22.5 degrees. This is done to keep stable

transitions through the water and to avoid excessive force on the AUV plane surfaces.

5. Thrusters

The lateral and vertical thruster voltages are set depending upon the mode of

operation. If in ROTATECONTROL the AUV to spins about a vertical axis through the

middle of the AUV in an open-loop mode. Therefore the lateral thrusters need a voltage

applied that is proportional to steady-state open-loop spin rate (e.g. +5 degrees/second or

-10 degrees/second). To arrive at the necessary voltage needed, the computer multiplies

how fast the user wants to rotate the AUV by an empirically determined coefficient.

If in LATERALCONTROL the user is ordering the AUV to slide laterally either

to the right or left. The user is given the opportunity to command steady-state lateral

speed, (e.g.+0.5 feet/second or -1.0 foot/second). This lateral command value is then

multiplied by an empirically determined movement coefficient and an open-loop control

voltage is applied.

If neither of these modes of operation are needed by the user, a default voltage is

given to the lateral thrusters. This voltage is derived by using the psi_error and the

59

turning rate. These two readings combine to influence the thrusters and maintain a

heading. Control equations are fully specified in (Brutzman 94).

The vertical thruster voltages derived from the depth_error and the rate that the

AUV is traveling in the z direction. These voltages are next manipulated depending on

which mode is in use. If THRUSTERCONTROL, HOVERCONTROL,

ROTATECONTROL, or LATERALCONTROL are in use, the vertical voltage is set for

both the bow and the stern vertical thrusters. The lateral thrusters depend on the

particular mode of operation, (one of the preceding four). If in LATERALCONTROL

the same voltage is applied to both bow and stern lateral thrusters at the same time and in

the same direction. If in HOVERCONTROL, the voltage given to the bow and stern

lateral thrusters is calculated using the heading error, the distance away from the point in

a lateral direction, ocean currents, and the rate the AUV is traveling in the lateral

direction. If in THRUSTERCONTROL or ROTATECONTROL, the lateral thrusters

are operated similarly. A voltage is applied to the bow lateral thruster and an equal but

opposite voltage is applied to the stern lateral thruster. This produces the spin about the

z-axis. A larger voltage while in ROTATECONTROL allows the AUV spin at a higher

rate. If none of the above four control mode toggles are set prior to getting to this portion

of the control loop, a zero voltage is applied to all thrusters to ensure they are turned off.

6. Clamp and Send Commands

The thrusters are clamped to +/-24 volts or 3820 rpms no-load and the propellers

are clamped to +/- 700 rpms no-load. These software governors ensure that the motors

will not be overdriven during a mission. Next all calculated voltages and rpms are sent to

their respective motors. Next the changes in the rudders and the planes that were

calculated earlier are sent to the surfaces. The AUV makes the appropriate changes and

continues on its way.

7. Record, Timestep, and Loop

At this point all of the commands that were passed to the hardware are recorded

and sent to the tactical level for evaluation and storage. A time step increment is added

to the current vehicle time. Next, a test is performed to see if the mission has been

60

completed. If the mission is not completed the control loop is repeated. If the mission

is completed all motors are zeroed, end_test is set to TRUE and the

closed_loop_control_module is exited.

E. SHUTTING DOWN

In shutting down the system, first there is a check made to see whether the AUV is

in water. If so, the gyros are centered, caged and locked so that they will not be broken

during handling of the AUV. Next, if the AUV is in water, the DiveTracker process that

was spawned is terminated and the memory that was allocated to that process is

reclaimed.

If the LOOPFOREVER mode was selected during virtual world operation, the

"do-while" loop resets the clock, gets a new set of control constants, and starts again from

the "do" prior to the control loop. If the user has also chosen the LOOPFILEB ACKUP

mode of operation, a counter is placed and incremented on each successful run. Also,

orders and telemetry files that were made during the mission are backed-up and stored.

This enables the user to have access to the telemetry files of the most current mission and

the previous mission. This information is then used for a comparison and analysis. After

all files are copied, control constants are then replaced, and the output files are ready to

record the next mission.

If LOOPFOREVER is not TRUE communication sockets are closed, all device

paths are closed, recorded data files are closed and stored in memory, and the program

terminates.

F. SUMMARY

This chapter describes the successfully integrated virtual world/real world AUV

software in detail, emphasizing vehicle control. The

closed_loop_control_module is the heart of the execution level. It maintains

stability of the vehicle while accomplishing the tasks that are sent down from the tactical

level. Commands that are sent to the execution level are first parsed in the execution

level parsing functions. At the end of each cycle the

closed_loop_control_module checks the parsing functions to see if there is a

61

new order waiting. If there is no new order, the cycle begins again using the same flags

that were sent by the previous command. These cycles continue until the ultimate goal is

reached, at which point the execution records all stored data and terminates.

62

VI. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter examines the test progression which validated the newly integrated

software. It discusses how pre-mission testing and pseudo-mission testing were used in

making the AUV ready to perform the Moss Landing mission. It also describes in detail

how the execution level software fared during the final Moss Landing mission

experiments.

B. PRE-MISSION TESTING AND EVALUATION

Pre-mission testing includes the ability to decouple the efforts of individual

software developers (i.e. students and staff) so that they are not constrained by the results

of other's progress prior to evaluating their own modules. The software structure used in

the virtual environment did allow the programmers to do their work individually and

independently. Over a period of five months, this structure permitted not only the

execution level, but also the tactical level to be simultaneously developed. It also

allowed for Sonar and a Navigation modules within the tactical level to be developed

along with the tactical level. Each of these software pieces were able to be constructed

and tested separately despite dependence on other students' work.

The tactical program is the lead process at the tactical level. After tactical is

started, it spawns the Navigation, Sonar, and the Execution level as separate processes

(Leonhardt 96). During development, each of these subordinate processes were "stubbed"

(i.e. replaced by dummy calls) by the tactical level so that they did not interfere with the

logic and construction of the tactical level. Once each process was tested satisfactorily,

the stub for that process was removed and the new process was then allowed to interact

with the tactical level. The key to this success was an approach that allowed for a natural

progression when merging processes, and communication between the software

developers prior to the completion of each package. The project team members spent a

great deal of time discussing exactly what information was needed and in what form that

63

information was useful, as well as how often information was needed and how often a

new result was produced from their calculations.

This methodology proved to be successful. The team members were free to write

code at their own pace with predefined knowledge of exactly what was expected as a

result of their efforts. This led to a rapid software development effort. Regularly

throughout the development, the coders would converse with each other to ensure that

none of the originally discussed ideas had changed, and also to ensure that no one was

getting left behind. If any of the developers were baffled by a particular problem within

their code, they were free to consult with any or all of the other students, staff and faculty

to work out any difficulties. This communication during development proved to be as

important as communication prior to development. Open dialog kept each of the writers

up-to-date on the others' status, so that when the time came to merge separate modules

each was ready. Because pre-mission testing successfully enabled rapid progress, the

originally posed thesis question about combining the control software and the benefits of

doing so was immediately answered. Although the work to this stage had nothing to do

with the actual control of the vehicle, the leap in software development was enough to

validate the effort attempting to combine the control structures. This distributed software

development idea was a large asset to the AUV research group efforts but only a small

part of the potential of the project. This effort to combine two execution level control

codes unquestionably benefitted the group. Even if no other portion of this project were

to be deemed successful, the AUV research group is now catapulted into a whole new

arena based on its new-found ability to perform distributed software development.

C. PSEUDO-MISSION TESTING AND EVALUATION

Pseudo-mission testing was the next hurdle that needed to be addressed. Now that

all of this code had been generated, did it work together and how could it be properly

tested to confirm that is working together?

64

1. Versatility in Running the Software

Fundamental to the approach of this thesis is the idea that the execution level code

and the tactical level code are separate, and each might run separately and independently

on either on the SGI systems or the GESPAC OS-9 systems. This assumption gave birth

to many testing ideas. Combinations of running this diverse architecture include

running the execution level alone on either the actual AUV via a GESPAC OS-9 system,

or in the virtual world via an SGI system. In either case, the inputs to the execution level

can come from a mission script file or from a keyboard input, and the outputs can be

viewed either by watching the actual AUV perform movements or by viewing the virtual

world AUV perform the movements. Another combination is to run the execution in

either machine, but have the input come from either the SGI operating system's tactical

level for the virtual world or the SUN operating system's tactical level from within the

actual AUV. Again these outputs can be viewed as above on either the actual AUV or the

virtual world. Prior to the start of this project it was known that the execution

level was able to run in the virtual world successfully using the SGI system. Also the

execution level had the capability of taking its input from the tactical level, a script file of

a mission, or directly from the keyboard. What was not known was if it was possible to

run a modified version of the execution level code on a GESPAC OS-9. When running

on the SGI system, the execution level could be used as a driver to a dynamics model that

could be observed on a viewer to the virtual world. The next test was to see if the

execution level running on the GESPAC could be used as the driver to the virtual world.

Many tries and modifications were needed due to a spare GESPAC system not being able

to make reads on components that would normally be attached and are attached in the

working AUV GESPAC. Eventually the GESPAC OS-9 system was able to drive the

dynamics model and be viewed in the virtual world. The key to success in debugging a

long and mysterious series of errors was the flexibility provided by distributed processes

and socket communications. This versatility provided fast compile cycles and improved

diagnostics in a variety of workstation environments. It is unlikely that success would

have been achieved without such flexibility.

65

2. End-to-End Hardware Tests

End-to-end hardware testing was one of the capabilities that the new execution

level software needed to conduct tests on the actual AUV. To this point, all that was

known was that the execution level was written, able to compile, and ran in the virtual

world as the driver to the dynamics model. The next step was to find out if the newly

developed code could actually move the intended components of the actual AUV by the

correct amounts and in the correct directions.

A copy of the execution level executable code was imported to the AUV research

center where the actual AUV was stored. It was rapidly sent via Airlan (wireless bridge),

but the process of recompiling remotely proved to be quite slow. The delay in compiling

the C source code came from having to send the source code back to the campus from the

remote test tank location, have it compiled on the (very slow) spare GESPAC system,

then retrieve it from the spare GESPAC as an executable code. Next the code was

downloaded into the AUV GESPAC while the AUV was on the test bench, not in the

water. There were minor complications that involved locating the correct working

directories within the actual AUVs GESPAC and where in the GESPAC to store data

that would be retrieved while doing testing. Although these complications were minor, a

great deal of time was used in making simple corrections to code then recompiling the

code on the compiler using the slow machine (68020 processor) on the other side of

campus. At this point it was learned that the compilation could be done locally in the

AUV center via a DOS-based cross compiler that was in the research centers' PC. Files

and scripts used to compile on the DOS-based compiler are found in (Marco 96). This

was the answer that was needed for making the minor software corrections. Tests from

this point went more rapidly. The compiler for the networked spare GESPAC had served

its purpose in getting the project to this point, but was no longer needed as long as

development took place next to the AUV. A series of minor corrections ensued and

eventually all communication paths to hardware devices were established reliably.

Next a series of tests were performed without the AUV being submerged. These

were open-loop order tests that included rotating the rudders, rotating the planes, rotating

66

the screws and rotating the thrusters. The open-loop order tests are defined as giving a

specific angle for the rudders and planes (such as rudders +20 degrees or planes -10

degrees). For these tests to be successful, the rudders or planes needed to come to these

predetermined angles and stop. For the screws and thrusters the criteria was that they had

to spin in the correct direction. These tests required small adjustments such as changing

the wiring polarity or the rotational directions in the rudder orders. Eventually, these tests

were satisfactorily completed.

The next series of simple tests involved the AUV's ability to operate in a closed-

loop manner. Once again these tests were conducted while the AUV was on the test

bench and not in the water. This series of tests determined if the AUV was able to come

to a particular heading (using as much rudder as necessary) then maintain that heading.

As the AUV approached the desired heading the rudders smoothly decreased the amount

of rudder angle needed to achieve the heading. To perform this test the AUV was placed

on a test bench that had wheels. A heading order was given to the AUV and the rudders

made the necessary deflections to bring the AUV to that heading. After a rudder

deflection was made the test table was manually moved in the correct direction to respond

to the vehicles rudder deflections as though the vehicle was actually in water and coming

to the new heading. As the bench was rotated into the turn, the rudders were closely

watched to ensure (as the vehicle came closer to its desired heading) that the amount of

deflection in the rudder angle decreased. After achieving the desired heading the vehicle

was rotated through the commanded heading to test if it might deflect the rudders

correctly to regain the heading. A similar test was done by lifting the nose of the AUV to

test if the planes might react to changes in depth. When these tests were satisfactorily

completed, both vertical and horizontal thrusters were tested in a similar fashion.

Similarly, while still on the bench, orders were given to move the AUV in a lateral

direction to see if the lateral thrusters would spin faster or slower depending on the

distance away from its desired location. The vertical thrusters were also observed in the

same fashion depending on how far away the vehicle was from the desired depth. These

tests were all completed satisfactorily.

67

3. Virtual to Actual Test Tank Mission

Although testing in the test tank might have proceeded more slowly, it was

decided that the first tank test should be the mini-Moss Landing mission. The mini-Moss

Landing mission was the Moss Landing mission, discussed in the next section, only

scaled down to fit into a test tank. Transit delay times were shortened to accommodate

the relative size of the test tank versus the size of the pier and slip at Moss Landing. To

successfully carry out the mini-Moss Landing mission, nearly all of the execution level

capabilities are exercised. However there were two particular areas in the execution level

that could not be tested during a mini-Moss Landing mission. These two areas were the

DiveTracker module and the positional update that is passed down from the tactical level.

The DiveTracker could not be tested because the area in the test tank was too small. The

beacon pings resonated the sides of the tank, making it impossible to get an accurate and

consistent reading on where the AUV was positioned.

The execution level also could not get positional updates from the tactical level

because these updates were based on GPS, DGPS, and DiveTracker readings (McClarin

96). The GPS and DGPS updates could not be retrieved because the test tank was located

inside a building so there was no chance of obtaining satellite fixes. Despite these major

portions of the code that were not tested, there was still a lot to gain by conducting the

mini-Moss Landing mission.

The first step in attempting the mini-Moss Landing mission test was to plan out

the exact course of the AUV. This was quickly agreed on. The group decided to make

this test as close the Moss Landing mission as possible. The AUV was to be placed in the

test tank at position 1 in Figure 16 and told its relative coordinates and given a start

heading of 180 degrees. Standoff distance was set at 1 foot, propellers were turned off

and thrusters were enabled. The first task was to have the AUV perform a GPS fix while

on the surface. Because the AUV was in the test tank it was impossible for the AUV to

obtain a fix, therefore it only went through the motions of getting a fix. The AUV was

then instructed to submerge to a depth of 3 feet and point towards position 2. When

stable, proceed to position 2 using 300 rpms. Once at position 2 the AUV was instructed

68

to hover at that point while changing its heading to face position 3. Once stable, again the

AUV was ordered to 300 rpms and told to go to position number 3. At position number

3 the AUV aligned with position number 4 then told to acquire position number 4. At

position number 4 the AUV would then normally conduct a sonar search and then get

another GPS fix. Because the sonar search code was not yet completed, the AUV

surfaced and went directly into a simulated GPS fix. Once stable from getting the GPS

fix and submerging back to 3 feet, the AUV was ordered to position number 5. Normally

the AUV would have to navigate around a target placed in the water between positions 4

and 5, but due size constraints of the test tank this replanning exercise was not done. At

position number 5 the AUV was to conduct two separate 360 degree turns. While

turning, the AUV would conduct a sonar search that would map out the test tank. The

first turn was to be done by giving course changes in 90 degree increments. After

stabilizing from that turn, the AUV conduct another turn by rotating at a rate of 10

degrees per second. After the second circle was completed and the AUV was again stable

it would do another simulated GPS fix. Next the AUV would align with position 6 (same

as 3) and transit to that point using 300 rpms for a propeller order. Positions 7 and 8 were

to be acquired in the same manner of aligning with the position first, then propelling

towards the position. Once at position 8 (same as position 1 where the mission started),

the AUV would obtain the correct starting heading get yet another simulated GPS fix and

terminate. This course was mapped out on paper as shown in Figure 16.

Next, the group was able to utilize one of the new features of the AUV. The

course that was mapped out by hand was then made into a script file that was later used

by the virtual world. A test tank was created to scale in the virtual environment, then the

virtual AUV was adapted to run in that test tank. Next, the script that was written was

used to drive the virtual AUV through the mini-Moss Landing mission. It was during this

time that the group could appreciate the use of the virtual environment. It was quickly

learned that the derived courses for the mini-Moss Landing mission were not sufficient.

Watching the virtual AUV drive the mission in the virtual test tank showed that the

courses and intermediate points needed be recalculated. At first the virtual AUV

69

Figure 16 The mini-Moss Landing mission conducted in the test tank

sometimes attempted to run out of the test tank (typically during turns). Although this

was not expected, the problem was easy to see and corrected in minutes using the virtual

world. The same simple corrections would have taken much longer to diagnose (perhaps

days) if the test were first performed in the actual test tank. Another benefit of having the

virtual world was improved AUV safety. If the actual AUV had attempted to run this

mission prior to the changes, the possibility of damage to the vehicle existed because it

would have tried to turn improperly and hit the sides of the test tank.

After the corrections were made to the script file and the virtual test was

70

successful, the actual AUV was placed in the test tank and the script was used to run the

mini-Moss Landing mission. Figure 17 is the script that was used to conduct the mini-

Moss Landing mission. In Figure 17 "blank" lines and lines that begin with "#" are not

used by the AUV. The results of this test showed weaknesses in three areas: the basic

navigation system that resided in the execution level, the function that dictated the

propellers revolutions, and the rate at which the batteries lost their charge. The

navigational shortcomings were of the greatest importance. Although the AUV attempted

to perform the mission, it had no accurate idea about where it was in the pool. The

formulas derived to calculate AUV location (based on a known starting position and

amount of propulsion used) were inaccurate and needed to be adjusted. Also contributing

to this problem was the fact that the execution closed loop control module was not

completing its cycles within the optimum 10 Hz rate. The latter problem was thought of

as being the single most likely culprit and explored first.

The AUV was then placed back on the work bench and code was added to

determine exactly how long each cycle was taking. It turned out that the rate of the closed

loop was closer to 5 Hz than 10 Hz. Thus, the next portion of testing was streamlining

and optimizing the execution level code to improve loop times. All unnecessary

calculations were taken out and trigonometric function calculations were grouped

together, calculated once and set aside in variables that were repeatedly used by all

necessary functions requiring them. Prior to this there were many cases that variables

were calculated repeatedly by different functions. This effort did not restore the 10 Hz

rating but it did achieve 6.67 Hz. This 6.67 Hz was then evaluated by the group that

designed the control filters, and was determined suboptimal but sufficient to run the

execution level stablely. This execution level optimization is left as an avenue for future

work. In order to consistently ensure hydrodynamic stability in all operational modes, the

control loop needs to achieve the optimal 10 Hz frequency.

The AUV was placed back in the tank with better results, but still far from what

was expected. The next changes were to import the actual navigational software and alter

71

mission.script.mini-moss-landing

#„„
16 December 95
" ,,,,

moss landing mission scaled down to test tank

dive tracker transducer locations

DIVE-TRACKER1 -10 10 44
DIVE-TRACKER2 -10-10 44

timeO

no-pause

test tank surface offset is
#41 feet deep in virtual world

posture-5-5 41 0 0 180

course 180

standoff distance for waypoint-hoverpoint success

standoff 1

propellers off
rpm 0

thrusters-on

start the clock
step

start point is
#hoverpoint 0

hover -5-5 41180

GPS-FIX
re-stabilize in case GPS-FIX recovery is poor

hover -5-5 41180

using thrusters
go to mission depth

Figure 17a Mini-Moss Landing script file

72

hover -5-5 44 180

rpm300

waypoint-follow

#waypoint 1
eliminated due to proximity in test tank
waypoint -5 -5 44

test tank is too small
for effective waypoint testing

therefore add a hoverpoint
to point at follow-on waypoints

line up for next waypoint
hover -5 -5 44 90
rpm 300 restore speed

waypoint 2
waypoint -5 5 44

line up for next waypoint
hover -5 5 44 0
rpm 300 restore speed

waypoint 3
waypoint -2 5 44

line up for next waypoint
hover -2 5 44 270

search phase

move to first search point

hoverpoint 4
hover -4 0 44 0

Figure 17b Mini-Moss Landing script file (continued)

73

rotate sonar
not yet implemented

wait 5

GPS-FIX

re-stabilize in case GPS-FIX recovery is poor
hoverpoint 4

hover -4 0 44 0

move to second search point

hoverpoint 5
hover +4 0 44 0

already aligned with north

course 90

course 180

course 270

course 0

fully stabilize prior to sonar search
wait 10

rotate full AUV search
rpm 0
rotate 10 degrees per second
wait 36

stop rotating
rotate 0
course 0

regain hoverpoint 5
rpm 300 restore speed
hover +4 0 44 0

GPS-FIX

re-stabilize in case GPS-FIX recovery is poor
still at hoverpoint 5

hover +4 0 44 0

Figure 17c Mini-Moss Landing script file (continued)

74

line up for next waypoint
hover +4 0 44 150

return transit phase

rpm 300 restore speed

waypoint-follow

waypoint 3
waypoint -2 5 44

line up for next waypoint
hover -2 5 44 180
rpm 300 restore speed

waypoint 2
waypoint -5 5 44

line up for next waypoint
hover -5 5 44 270
rpm 300 restore speed

waypoint 1
waypoint -5 -5 44

course 180

finish point is the same as the
start point

hover -5 -5 44 180

surface
hover -5 -5 41 180

GPS-FIX

re-stabilize in case GPS-FIX recovery is poor
hover -5-5 41180

all stop
rpm 0
thrusters-off

sonar off
#„„
mission complete
shutdown
#quit

Figure 17d Mini-Moss Landing script file end

75

the propeller rpms to account for interference and drag (shaft friction). Until this point

the propeller shafts operated on a linear basis. One rpm command would send one

voltage to the shafts. If the shaft was experiencing drag, the voltage sent would not be

enough move the propeller as predicted. Changes were made in the software to allow for

interference detection by the propeller shafts. A feedback loop was installed that

monitored shaft rpms and if they were not rotating at the proper speed more voltage

would be added until the unexpected drag was overcome. When placed back into the test

tank with these changes installed, the AUV's performance improved. Next, the

constants from the formulas that influenced the voltages sent to the propellers were

altered and the AUV got to a point in tank testing that was acceptable. It was thought that

during an actual test in Moss Landing these problems would not be visible because the

tactical level would be sending down updated positions for the execution level.

The last important finding that was revealed during tank testing was the batteries'

short lifetime. It was found that while operating in the water the AUV with a full charge

had at least one good hour and possibly a half of an hour additional endurance. If

problems occurred after the first hour of testing they were normally due to the batteries

dying prematurely. It was thought prior to the test tank missions that three hours could be

expected out of the batteries. This final problem had a simple solution of placing more

batteries in parallel to gain a longer life time. Although this was a simple answer, it

required a great deal of time to reconfigure the hardware inside of the AUV to make room

for additional batteries. It was then decided that added lifetime was more of a luxury than

a necessity at this point and future testing would be restricted to the shortened life time of

the batteries that were in place. In time all corrections were made, constants were

"tweaked" to the satisfaction of the AUV group, and the AUV ran successful mini-Moss

Landing missions both in the virtual world and the test tank. The last test that was

performed while still in the test tank was to run the mini-Moss Landing mission without

the Ethernet connection. This became known as "untethered" mode. The programs were

loaded into the SUN computer onboard for the tactical level and into the GESPAC

76

computer onboard for the execution level. A delay was set in the execution level prior to

starting the mission that allowed for the safe disconnection of the Ethernet. Eventually

this test (with adjusted operator expectations) ran successfully numerous times.

The concentration was on the fact that the AUV attempted to navigate to

individual waypoints. It was known that the execution level navigation system was not

developed enough to place the AUV in the tank with precision. Therefore, as long as the

correct movements of both the thrusters and the propellers were viewed, testing personnel

were allowed to physically assist the AUV in obtaining waypoints during the mission.

However, if the AUV did not produce the correct movement (disregarding the magnitude

of the movement), or if at any time the correct heading was not obtained, the test was

deemed a failure. Performance was judged adequate during these tests. Calibrating the

dead reckoning performance became a major goal for in-water testing.

4. The Moss Landing Mission

The next test was the one that all other tests were leading up to. This test would

prove exactly how successful the project was. Here again, as in the test tank, the entire

mission was tried instead of doing it in parts. This test initially failed for many reasons

both in the execution level and in the tactical level. The tactical level results are

discussed in (Leonhardt 96). The concentration of this thesis is strictly in the execution

level.

The test started the AUV at position 1 in Figure 18. At position 1 the AUV was

given a posture command that told it where it was in the new coordinate system and what

direction it was heading. Next the positions of the baseline DiveTracker beacons were

read. The standoff_distance for waypoint achievement was set to 1 foot and propellers

and thrusters were turned off. The next task given to the AUV was to wave its rudders.

This was done solely for the purpose of giving the test personnel a visual conformation

that the AUV is still active. Thrusters are next enabled and the AUV is told to hover at

the starting position on the surface and keep the prepositioned heading. Next the AUV is

commanded to get a GPS fix and remain hovering in the same location. Once the GPS

fix is obtained, the AUV is to submerge to a depth of 3 feet, hover at that the new depth

77

and point at the next waypoint. When the AUV is stable in this position, it is told to go to

position number 2 in Figure 18 using 300 rpms for propeller speed. When position

91
Available Operations:

Bf Specify Phase

□ Modify Phase

□ Delete Phase

□ Means End Help

jp r ow indows]
Output File Name:

IB

(Quit) (Generate Mission Code) (Clear Path) ChartX: 0_

Available Charts: @ Moss Landii

Chart V: 0

Figure 18 Moss Landing Mission

78

number 2 is acquired the AUV is to hover at that point while changing its heading to

point to position number 3. When the vehicle has completed this maneuver, 300 rpms are

again ordered to the propellers to in order to go to position number 4. Again the AUV is

aligned to make its way to position number 5. At position number 5, the AUV is

commanded to conduct a sonar search by rotating the sonar 360 degrees and holding the

AUV steady facing North. Due to problems in that portion of code, a different search was

conducted. Instead, the AUV was given course changes at 45 degree increments until a

full circle was completed. During this search the sonar was held facing the front of the

AUV. This task was done to map out the basin and find the target. After this search the

AUV was ordered to surface and take another GPS fix (to be used for comparison after

the mission). Once resubmerged and stable, the AUV was ordered to position number 6.

The reason for this transit was to test the AUV's ability to replan its path. During the

sonar search, the AUV was to find a target that was directly in the path of the AUV trying

to acquire its next waypoint. The AUV would then have to plan a new route to the next

position in order to avoid the target. Once at position number 6, the AUV would conduct

another sonar search then take another GPS fix (to be compared with the last search after

the mission). Next, the AUV was to align its heading with position number 7 (also #4)

then transit to that position. It was to then repeat aligning and transiting to positions 8, 9,

and 10. Position number 10 was adjusted away from the pier in order to account for

possible dead reckoning errors. Once at position number 10, the AUV was then allowed

to slowly make its way to the pier to position 1 where it had started the mission, and then

terminate. Figure 18 shows an illustration of the mission that was set out to be

accomplished and Figure 19 is a copy of the script file that the AUV used to try to

accomplish the mission. In Figure 19 "blank" lines and lines that begin with "#" are not

used by the AUV.

Many difficulties were encountered at Moss Landing. The first problem was due

to ballast. The AUV was too light and the thrusters were not strong enough to overcome

the buoyant effects of the salt water as opposed to the fresh water that was in the tank.

79

mission.script.moss-landing

27 January 96

moss landing mission
demonstrate transit, minefield map and return
launch position
#„„
x y z roll pitch yaw
«>>

posture 70 30 1 0 0 202
timeO
no-pause

dive tracker transducer locations

DIVE-TRACKER1 0 0 2
DIVE-TRACKER2 -17 40 2

set and drift current test
oceancurrent 0.0 0.0 0

GYRO-ERROR 0
course 202

standoff distance for waypoint-hoverpoint success

standoff 1

propellers off

rpm 0
thrusters-off

start the clock
step

waggle rudders

rudder 40
wait 1
rudder -40
wait 1
rudder 0
wait 1
thrusters-on

start point is
#hoverpoint 0

Figure 19a Moss Landing mission script file

80

hover 70 30 1 202

GPS-FIX

restabilize in case GPS-FIX recovery is poor
hover 70 30 1 202

using thrusters
go to mission depth

depth 3

for reliability
add a hoverpoint
to point at follow-on waypoints

line up for next waypoint
hover 70 30 3 190
rpm300
waypoint-follow

waypoint 1
waypoint 10 20 3

line up for next waypoint
hover 10 20 3 115
rpm 300 restore speed

waypoint 2
waypoint 0 40 3

line up for next waypoint
hover 0 40 3 70
rpm 300 restore speed

waypoint 3
waypoint 10 60 3

line up for next waypoint
hover 10 60 3 330

search phase
*f»»

move to first search point
hoverpoint 4

hover 30 50 3 0
sonar search

Figure 19b Moss Landing mission script file (continued)

81

already aligned with north
rotate while hovering

course 45
course 90
course 135
course 180
course 225
course 270
course 315
course 0

fully stabilize prior to sonar search
wait 10

rotate sonar
not yet implemented

wait 5

GPS-FIX

restabilize in case GPS-FIX recovery is poor
hoverpoint 4

hover 30 50 3 0

move to second search point

hoverpoint 5
hover 90 70 3 0
rotate_search
hover 90 70 3 0

rotate füll AUV search
rpm 0
rotate 10 degrees per second
wait 36

stop rotating
rotate 0
course 0

regain hoverpoint 5
rpm 300 restore speed
hover 90 70 3 0
GPS-FIX

restabilize in case GPS-FIX recovery is poor
still at hoverpoint 5

Figure 19c Moss Landing mission script file (continued)

82

hover 90 70 3 0

line up for next waypoint
hover 90 70 3 190

return transit phase

rpm 300 restore speed
waypoint-follow

waypoint 3
waypoint 10 60 3

line up for next waypoint
hover 10 60 3 250
rpm 300 restore speed

waypoint 2
waypoint 0 40 3

line up for next waypoint
hover 0 40 3 295
rpm 300 restore speed

waypoint 1
waypoint 10 20 3

line up for next waypoint
hover 10 20 3 10
rpm 300 restore speed

safety standoff prior to pier
hover 67 40 3 202

finish point is the same as the
start point
no waypoint due proximity to pier

hover 70 30 3 202

surface
depth 1
GPS-FIX

restabilize in case GPS-FIX recovery is poor
hover 70 30 1 202

all stop
rpm 0

Figure 19d Moss Landing mission script file (continued)

83

waggle rudders

rudder 40
wait 1
rudder -40
wait 1
rudder 0
wait 1

sonar off

mission complete

shutdown

quit

Figure 19e Moss Landing mission script file end

The vertical thrusters turned on when they were required to, but the program timed out

when the AUV did not reach its operating depth of three feet. This was an easy fix but as

testing continued from morning to afternoon and day to day, water temperature and

salinity changed significantly and the ballast had to be continually altered. Therefore,

before each mission in the morning or in the afternoon, weight was either added or taken

away so that the AUV might maintain a neutrally buoyant status.

The next problem was with the DiveTracker. Although the execution level did no

calculations with the data received by the DiveTracker, it still was responsible for

spawning that process and receiving all data from the base stations. This turned out to be

a three-part problem: intermittent signals received from the baseline, incorrect data

communication between software levels, and ambiguous symmetry of the DiveTracker

system. The first part of this problem was quickly realized. Often, at the beginning of a

mission the DiveTracker unit would not initialize and ping the mobile unit that was

located in the AUV. This caused a problem because if the tactical level does not receive

a DiveTracker update within an arbitrary period of time it shuts down the system

84

(Leonhardt 96). After many tests that isolated this problem to the DiveTracker baseline,

it was found that there was a possible bug in the software that the AUV research group

received when the DiveTracker unit was purchased. The manufacturer was called in to

assist and found that our group had an outdated version of the software that was likely

producing the problem. An updated version of this code was installed and the first part of

the problem was corrected.

The second problem, communications between the tactical and execution level,

was not as easy to find. After several tests it was determined that in some cases there was

not enough information getting passed and in other situations too much information was

getting passed. Specifically, initially there was not enough data getting passed to the

tactical level where the DiveTracker readings were filtered along with GPS readings from

satellites (McClarin 96). The satellite readings gave a large margin of error (+/- 300 feet)

while the AUV was on the surface. When the AUV submerged it began taking

DiveTracker readings and no longer had the GPS readings available. These readings

were more precise (+/- 6 inches) but they were filtered with the GPS readings. The

problem at the start of each mission was that there were not enough DiveTracker readings

filtered to get an accurate position of where the AUV actually was located. Therefore the

AUV was starting in a place that it thought to be correct but was actually not close to

where it should have been. When it started to make its transit, the positional updates

were so far off that there was too much conflict in the control software. This disparity

caused the AUV to become unstable. This problem was fixed by having the first order

given to be a submerge followed by a 30 second wait. During this 30 seconds, the filters

were able to get consistent inputs on where the AUV was or filter out the positions that

were fixed by the GPS system. Diagnosis of these problems was hampered by lack of

virtual world models for DGPS and DiveTracker.

The third part of DiveTracker problems was related to baseline symmetry and was

found late in testing. On the final test the AUV was placed directly between the two

DiveTracker baseline beacons. If placed away from the baseline and given a starting

position of the AUV the DiveTracker system can distinguish which side of the baseline

85

the vehicle is on than track the mobile unit from that point. However, the DiveTracker

system has a symmetric ambiguity as shown in Figure 20. The system only gives

distances to the mobile unit from each of the home beacons. The actual position of the

mobile unit can be in either one of two places that are equal distance from both baseline

beacons. An example of this is; if there is a line segment drawn on a piece of paper and

an "X" is placed on one side of the line segment, there is a distance that is unique from

either of the segment endpoints to that "X". If that piece of paper is then folded along the

line segment and the "X" is then traced on to the other side of the line segment, the traced

"X" will also be the same distance from each of the line segments endpoints as the

original "X." Therefore it cannot with certainty be determined which "X" is the correct

one unless this information is known prior to writing the first "X".

end point (home beacon)

a """"--.. b

AUV mobile unit 7^ A AUV mobile unit ?

line f egment /
^ (bftieUae)/

C

a = b and c = = d

/•
/

end point (bone beacon)

Figure 20 Reflexive 3-beacon system means AUV position
relative to baseline is ambiguous.

86

The last day, when the vehicle was placed directly on the baseline and then moved, the

software randomly picked which side the vehicle was on. In this particular case the

system chose the wrong side of the base line and caused the AUV to become unstable

because no matter how hard it tried to get to its destination, DiveTracker positions

indicated that it was going away from the destination.

Another test that was done while at Moss Landing was to try to calibrate the speed

sensor. While the AUV is traveling at a speed faster then .25 ft/sec, it uses the speed

sensor to calculate its speed through the water. A script was made to allow for a straight

speed run along the pier. The run was made and data collected it was then learned that

while operating below .6 ft/sec a multiple of 4 was needed in the formula that calculates

the speed through the water while above .6 ft/sec only a factor of two was needed. This

difference in multiples is not precise due to insufficient test runs that were conducted in

original speed wheel tests and this is another avenue for further research. Although these

multiples will not produce exact measurements, they will allow for a closer

approximation of where the AUV is while using the execution position calculations.

Thus a major objective of these tests, obtaining an accurate dead reckoning model,

remains incomplete.

One other test was conducted. The AUV was sent to attempt the mission

untethered. This test failed due to lost communications between the tactical and the

execution level. Specifically, the AUV started on its mission but then the execution level

locked up. The last commands that were sent to the hardware remained active and the

AUV needed to be physically retrieved and manually shutdown. The reason for this

problem was not resolved, but the problem was likely due either to the batteries going

dead or too many print statements with nowhere to be printed. The screen print problem

was corrected by adding an "untethered" switch and in later tests this error was not

encountered.

87

D. SUMMARY

The approach of pre-mission and pseudo-mission testing was used extensively in

validating the newly developed software. Pre-mission testing provided numerous

instrumental successes and validated a key goal of this project. The ability to distribute

the software design proved to be a must in rapid development. Pseudo-mission testing,

especially the ability to end-to-end test, also validates this thesis' worthiness.

Although multiple problems were encountered when testing in Moss Landing, a

majority of the problems were solved on location. However, time constraints and other

commitments made it impossible to continue Moss Landing testing. Nevertheless, prior

to leaving Moss Landing, enough information was gathered to satisfy the project team

that the AUV Phoenix will run and complete a full mission successfully. It appears that

all systems worked most or part of the time, but reliability was never good enough that

they all ran successfully at the same time. Successful completion of the end-to-end Moss

Landing mission remains an unfulfilled experimental goal. Less complex untethered

missions completed recently in the NPS test tank (Davis 96) have produced further

evidence that this goal is attainable.

88

VII. CONCLUSIONS AND FUTURE WORK

A. INTRODUCTION

In this final chapter, thesis goals and results are evaluated. This is done by

answering problem statement questions from Chapter HI. As in all complex research

projects, the work is never completed since new answers provoke newer questions.

Therefore, this chapter will also discuss some short-term and long-term research goals

that can further benefit the Phoenix project.

B. RESEARCH CONCLUSIONS

The questions posed in Chapter m were discussed at great length prior to taking

on this project. These questions are now revisited and answered based on the

experimental results achieved.

1. Will the Virtual World be Helpful?

At the root of this project is the question, "Will integrating the software control

system of a virtual world AUV and the software control system for an actual AUV be

beneficial to the ongoing AUV research being done at NPS?" This was the most

important question from Chapter m. It is quite easily answered affirmatively. By

integrating the software, many new capabilities were made possible. The obvious is true;

one control software package can run either the virtual world or the actual AUV.

However, there are other benefits that also come when combining these two control

codes. This has allowed another dimension to the research being done at NPS. Prior to

this project there was no distributed software development, and no way to visualize an

entire mission prior to it to being tested. Both of these enhancements were major side

effects of combining the code. They will both play a significant role in how future

research will be conducted for the AUV Phoenix. This project has offered a concrete

example of the value of simulation-based design for uncovering the true potential of

Autonomous Underwater Vehicles.

89

2. Which Version (Actual or Virtual) Will be the Basis for the Combined
Robot Software?

"Which code should be imported into the other code in order to complete the

project?" There is a trade off for the development of the source code. If the actual

control code was used as the base, precise stability might be inherited but the structure

would need to be refined. Alternatively, if the virtual control code was used as the base,

better structure was in place but physical stability would need to be refined. There is not

a clear-cut answer to which might best be used as a base, since either final result

ultimately ought to work.

The initial thought was to take the actual code that had already been tested in the

water for stability, and expand it into a more robust form that could accommodate the

many tasks that the virtual world could perform. However, after further review, it was

decided to use the virtual code as the basis for the combined control code and import the

actual functions into the virtual structure. The main reason for this decision was that the

virtual world enabled much faster compilation and continuous feedback about the success

of code changes. There were two other motivating reasons for this decision. The research

group students working in the tactical level were also using the virtual AUV's structure,

so when the time came to merge the two levels it would be an easier process if both

structures were similar. Additionally, if the actual code was used as the basis, major

rewrites would be necessary to comply with the formally defined hydrodynamics model

of the virtual world. After weighing these many factors, it was decided that using the

virtual control code as the basis was a more reliable and productive approach. This

decision proved to be sound.

3. Message Passing to Tactical Level

"How will the tactical and execution levels communicate and what information

will be passed?" It was decided that a single non-blocking read/write socket might

efficiently maintain the connection between the tactical and execution levels.

As an input to the execution level, a single order can arrive on each cycle. In

addition to orders were reports, such as a positional update, since one possible message is

90

a fix position. If the execution level receives a fix order, it updates the state vector

instead of attempting to perform a new task. As an output of the execution level, a state

vector is produced and sent to the tactical level on every cycle. State vector details are

discussed in Chapter V. The idea behind the state vector communications to the tactical

level is to allow any process access to current vehicle state. The critical calculations

performed in the execution level include all calculations necessary to maintain stability,

self preservation, and rudimentary navigational position calculations. All other

calculations such as precise navigation, sonar classification, and path planning are done in

the tactical level using the state vector values. Results from the tactical level are passed

down to the execution level as orders. In summary, demonstrated results answering this

question were affirmative. The proposed communication scheme works as anticipated.

4. What About 10 Hz Stability?

"Will using the robust execution structure used in the virtual world code allow the

vehicle to maintain a 10 Hz execution level update rate?" It was found that the answer to

this question is no. However, it was found that the AUV did operate at 6.66 Hz

successfully. This new closed loop rate did work, but did not allow the AUV to operate

at its full potential. The importance of this question is such that it is discussed in both the

short and long-term goals. The research group ought not to be satisfied with the closed-

loop rate that the AUV is maintaining. Correcting this problem is a major concern which

could be resolved either by an execution level processor upgrade, or software

improvements, or perhaps both.

C. RECOMMENDATIONS FOR SHORT-TERM FUTURE WORK

Some short-term projects that can be accomplished in a reasonable amount of time

are: improve the post-mission playback, benchmark and optimize the execution level,

and verify the effectiveness of the execution level sonar. Post-mission playback was first

discussed in the AUV Integrated Simulator (Brutzman 92). This capability has been

added, enabling missions that are conducted in the actual world to be played back in the

virtual world for analysis. The output file containing the vehicles telemetry is used for

91

this operation and, because each state vector is time stamped, results can be played back

in real time, depicting exactly what the AUV is doing. Making this feature easier to use

and simplifying mission result archive procedures still needs to be done.

Benchmarking and optimizing the execution level is another short-term project.

There are many instances where one variable is updated more than once during each

cycle. Eliminating these duplications would enable the control cycle to go faster.

Benchmarking ensures that optimization efforts are focused on the portions of the code

that actually take the longest time to run. Also, a rewrite in the execution level is needed

for clarity. Because of the complexity of the code and the time given for the project, the

primary focus was in getting the code to run. Individual modules are understandable but

the sheer size of the project makes the combined operation appear complex. One of the

easiest solutions to making the code more readable is grouping of the toggles so that one

action or task is only in one group, and that task is manipulated only once.

Adding an execution level sonar is another short-term project that was recently

completed (Davis 96). The tests in this thesis were conducted using the tactical level

sonar. This was necessary in order to rapidly complete the project and attempt an in-

water mission. Now that a mission is known to work, the execution level must have its

own sonar for obstacle detection. Improved obstacle detection capability in the execution

level will enable the AUV to conduct self-preservation tasks more quickly. The code for

the execution level software has been recently installed, but further testing is needed to

verify its effectiveness.

D. RECOMMENDATIONS FOR LONG-TERM FUTURE WORK

The long-term goals that can be accomplished by future thesis students are to

upgrade the GESPAC computer and reconstruct the internals of the AUV. There was a

problem with maintaining a 10 Hz rate through the execution level control cycle

discussed in Chapter VI. One of the ways to correct this is to upgrade the operating

system. The GESPAC OS-9 was the original operating system used for this project in

controlling the AUV. However, over the course of time new faster operating systems

92

have been developed and are now on the market. However, because of the time that

would be required to completely install a new operating system into the AUV, a new

system has not yet been incorporated. A valuable thesis might be to evaluate several

alternative operating systems as to how they would best serve the AUV, and then actually

install the best operating system into the AUV. The new operating system needs not only

to regain the lost 10 Hz update rate, but also should increase the number of hardware

controllers that might be used by the operating system. This in turn might allow the AUV

to accomplish new tasks in an effort to adapt to changing scenarios. Certainly, versatility

is key to the AUV being involved in many different assignments. One possible solution

might be a Pentium laptop running a free Unix operating system, free g++ (C++)

compiler, Ethernet connectivity and a compatible data acquisition interface.

Another long-term goal for future work is to rewire the existing vehicle and

reposition its internals. If it is decided by the research group to keep the current operating

system, rewiring is a must. The majority of time spent at Moss Landing related to fixing

minor problems that took a great deal of time to physically access. Specifically, it would

be possible to insert a central fuse box that can be readily accessed. This would cut

delays immensely. Also, with that capability, sonars and gyros could be easily turned on

and off. This would reduce the hazards of accidentally wearing out these components.

Along with installing a fuse box, the internals of the AUV need to be cleaned up and

arranged neatly. Because of the massive amount of new components, and the little

amount of time to test, the components were added where they would fit. A

rearrangement of the internal components could place components in logical positions

that are easier to access. Again, this should cut down on delays during actual tests when

locating defective components and accessing them for replacement.

E. SUMMARY

The ability to incorporate the virtual world with the actual world is now used as a

foundation for all work done on the AUV. The progress of work has been greatly

accelerated due to this capability. The tradeoff for long-term projects is time. Is the

93

group ready to take the time necessary now to build a better foundation for the project, or

will taking that time stifle creative new ideas that are ready to be tested on the AUV now?

Perhaps in the near future there will be a lull in new ideas that will prove to be the

opportune time to rebuild the foundation. Based on experience gained in the conduct of

this thesis, prompt action on future work is recommended in order to best enable reliable

rapid progress by future students.

94

APPENDIX A - execution.c SOURCE CODE

/*
Program:

Description:

Authors:

Revised:

System:
Compiler:

Compilation:

[68020]
[68030]

[Irix]

Execution:
[Irix]

Plotting:

Debugging:

Description:

**

execution.c

AUV execution level program

Don Brutzman, Mike Burns, Duane Davis,
Dave Marco & Walt Landaker

7 February 96

AUV Gespac 68020/68030, OS-9 version 2.4
Gespac cc Kernighan & Richie (K&R) C (NOT ANSI C!)

ftp> put execution.c
auvsiml> chd execution
auvsiml> make -k2f execution
auvsiml> make execution

-brutzman/execution» make execution

-brutzman/execution» cd execution
-brutzman/execution» execution remote dynamics-hostname

where dynamics-hostname is the IP name of the host running
the dynamics (virtual world) program

see gnuplot scripts 'auv_plot.gnu' and 'auv_plot_l_second.gnu'
-brutzman/execution» gnuplot auv_plot.gnu

-brutzman/execution» lint -lm execution.c

lint -lm -Iglobals.h -Idefines.h globals.c parse_functions.c \
execution.c

-brutzman/execution» make warnings

closed loop for operation during vehicle in-water
missions as well as in virtual world

Active changes: Don Brutzman working lab/virtual world networked version
& tactical level interface

Dave Marco

Mike Burns

working vehicle code
& interfacing physical devices

Merging the two code sets

Future work: Update digital <==> analog access for new vehicle hardware

Retest code after vehicle repaired

Sonar/altimeter integration code reintegrated/retested

Audios seem to be generated differently by OS-9

standardize parsing of command line and script commands

finish sliding mode control

change serial/parallel comms to sockets once
tactical level gets an Ethernet card

DiveTracker and GPS code will be in tactical level

95

Testing interprocessor connections:

parallel port /P

LPT1:

serial port (/Tl) /TT

Interfaces:

OS-9 auvsiml> mfi_a3

DOS auvsim2> portfix
> print filename.txt

OS-9 auvsiml> wr2tl then write text
OS-9 auvsiml> rdtla then read text
DOS auvsim2> C:\COMM\PROCOMM

then <alto> for chat mode
<altF10> help, <altX> exit

Telemetry sent
Telemetry received

via serial port /tt [== /tl at high baud rate]
via parallel port /P

Telemetry is optionally passed to/from tactical level running on 80386

Reads files:
Writes files:

mission.init [mission initialization data file]
output.data [vehicle telemetry state vector data]
output.auv [tactical order/executive report log]

Sonar commands/replies via device port /t3

Note that %F double formats are used instead of %lf on scanf() and sscanfO
calls for OS-9 compatibility. SGI C compiler does not complain.

f *r*********** ****** ** lr********* I

#include "globals.h"
tinclude "statevector.h"
inelüde "de f ines.h"

lr ********* **** /*********

/* function prototypes

*************** **************************** *********/
*/

/* is there some way to put parameter specifications in the prototypes?? */
/* only if we buy the ANSI C compiler from Microware (or shift to VxWorks) */

/* thus following prototypes are missing parameters :(

void

double
double
double
double
double
double
double
double
double
double
double
double

void
void

double
double
void
int

void
void
void
void

closed_loop_control_module

read_depth
read_psi
read_roll_rate_gyro
read_pitch_rate_gyro
read_yaw_rate_gyro
read_port_motor_rpm
read_s tbd_mo tor_rpm
read_motor
read_roll_angle
read_pitch_angle
read_heading
read_speed

kalman_z
XY_psi_model_est

read_computer_battery_voltage
read_motor_gyro_battery_vo1tage
XY_model_est
leak_check

zero_gyro_data
zero_surfaces
initialize_adcs
init_pia

();

96

void
void
void
void
void
void
void
void
void
void

void
void

void
void
void

unsigned char
void

void
void
int
int

init_timla
thrus ter_power
screw_power
command_control_surface
command_rudder
command_p1anes
command_propellors_off
command_thrusters_off
command_mo tor
test_alive

get_init_avg
get_avg_rng

open_device_paths
close_device_paths
read_parallel_port

read_timlacl
write_timla

send_dacl
send_dac2b
get_adcl
get_adc2

void Init_PortA
void Init_PortB
unsigned char Read_PortA
unsigned char Read_PortB
unsigned short Read_PortAB
void set_bsyA
void rst_bsyA
int ck_sta

void center_sonar
char query_sonar_l_reply
void set_step_size
void tty_mode

void open_virtual_world_socket
void shutdown_virtual_world_socket
void send_buffer_to_virtual_world_socket
void get_string_from_virtual_world_socket

void record_data

void execute_shutdown_script 0;

/* Functions added to implement Dave M's speed control */

int
int

port_speed_control
stbd_speed_control

/* Dive Tracker Functions */

();
0,

int createdmod
int CLReaddmod
void * AttachMod
int DettachMod
void * CreateMod

();
0;
0;
0;
0;

/* external function prototypes */

/* from external_functions.c */

extern double
extern double
extern double

degrees
radians
normalize

0;
0;
0,

97

extern double
extern double
extern double
extern void

extern double
extern double
extern double
extern double

extern double

extern void
extern void

extern void
extern void
extern void
extern void

extern void
extern void

extern void
extern void

extern int

/* from parse_

extern void
extern int
extern void

extern void

extern void

extern double
extern double

normalize2
radian_normalize
radian_normalize2
clamp

atan2
sinh
cosh
tanh

sign

build_telemetry_string
parse_telemetry_string

open_tactical_socket
shutdown_tactical_socket
send_buffer_to_tactical_socket
get_string_from_tactical_socket

record_data_on
record_data_off

cage_dg
uncage_dg

detect_death_spiral

functions.c

parse_command_line_flags
parse_mission_script_commands
parse_mission_string_commands

print_valid_keywords

get_control_constants

dsign
dtanh

/************************** ************* **************************************,

/* File Scope Globais for use by the Thruster Speed Controller Routines */

double Int_rs = 0.0,
Int_ls = 0.0;

/* DAC Values being sent 50 props and thrusters */
int v_dls = 512,

v_drs = 512,
v_dblt = 512,
v_dslt = 512,
v_dbvt = 512,
v_dsvt = 512;

double sin_psi,
cos_psi,
cos_phi;

/* Dive Tracker Variables */
#if (defined(sun) || defined(sgi))
#else

DT2CLMem *dt_dmod;

#endif

Z**»***.»***,»******»*,^.

98

main (arge, argv) /* Note K+R C function prototyping is due to OS-9. */
int arge; char **argv; /* command line arguments. */

{

if (TRACE && DISPIiAYSCREEN) printf ("[start main: execution]\n");

strcpy (virtual_world_remote_host_name, VIRTUAL_WORLD_REMOTE_HOST_NAME);

strcpy (tactical_remote_host_name, TACTICAL_REMOTE_HOST_NAME);

dt = TIMESTEP;

parse_command_line_f lags (arge, argv) ,-

kal_init_z = TRUE;

open_device_paths () ;

record_data_on (); /* Open files for data logging */

if (LOCATIONLAB)
{

open_virtual_world_socket (); /* open connection to virtual world */
if (TRACE && DISPLAYSCREEN)

printf ("\n[LOCATIONLAB == TRUE, open_virtual_world_socket ()]\n">;
if (strlen (buffer) > 0)

send_buffer_to_virtual_world_socket (),- /* SILENT? send to sound driver */

strcpy (buffer, " A U V virtual world socket is open");
send_buffer_to_virtual_world_socket (); /* buffer containing message sent */

if (TACTICAL) /* must follow opening virtual world */
open_tactical_socket (); /* open connection to tactical level */

strcpy (buffer, " A U V tactical socket is open");

if (LOCATIONLAB == FALSE)
{

#if (defined(sun) || defined(sgi))
telse

/* Dive Tracker Stuff */
if (DIVETRACKER)
{

createdmod();

/* Fork Dive Tracker Process */
if((dt_pid =

os9fork("/rO/div_trac",0,dt_fork_parmptr,0,0,0,0)) > 0)
{

printf("[Dive Tracker Process %d forked]\n",dt_pid);
}
else
{

printf("[Can't Fork Dive Tracker Process] \n") ,-
}

}
#endif

/* sleep gives 5 minutes to unhook wires and put AUV in the water */
printf("[Starting a 60 second sleep]\n");

sleep (60);
printf("[Finished a 60 second sleep]\n");

init_pia ();
init_timla (1) ;
uncage_dg ();

zero_surfaces ();
command_propellors_off ();
command_thrusters_off ();
thruster_power (1) ,-

99

screw__power (1) ;
initialize_adcs () ,-
zero_gyro_data () ;
strcpy (buffer, "EXECUTION_INITIALIZED");
send_buffer_to_tactical_socket (); /* message */
tsleep(lO);

}

get_control_constants (); /* announce filename as diagnostic */

EMAIL_ENTERED = FALSE;

/***,

do /* while (LOCATIONLAB && LOOPFOREVER) */
{ /* indefinite repeat loop for long-duration lab testing */

/* ic/

if (DISPLAYSCREEN)
{

if (LOCATIONLAB && (EMAIL) && (EMAIL_ENTERED == FALSE))
{
strcpy (buffer, " Please Enter Your E-mail Address");
send_buffer_to_virtual_world_socket (); /* buffer containing msg sent */
printf ("%s *** HERE ***: ", buffer);
strcpy (email_address, "");
gets (email_address);
EMAIL_ENTERED = TRUE;
sprintf (buffer, "Thanks");
printf ("%s ", buffer);
send_buffer_to_virtual_world_socket (); /* buffer containing msg sent */

if ((int) (strlen (email_address) > 2))
{

sprintf (buffer, "%s\n", email_address);
printf ("%s\n", buffer);
send_buffer_to_virtual_world_socket (),- /* buffer sent */

if ((strcmp (email_address, "brutzman") != 0) &&
(strcmp (email_address, "BRUTZMAN") != 0) &&
(strcmp (email_address, "brutzman@nps.navy.mil") != 0))

{
emailaddressfile = fopen(EMAILADDRESSFILENAME,"a"); /* append */
fprintf (emailaddressfile, "%s\n", email_address);
fclose (emailaddressfile) ,-

}
}

}
else if (LOCATIONLAB == FALSE) /* in water */
{
test_alive (10, start_dwell);
/* Wag fin every 10 seconds for total duration of start_dwell seconds */
printf (" Position AUV for Directional Gyro Offset Measurements") ,-
printf(" Rate Gyro zero measurement\n");
printf(" Hit <Enter> on AUV When Ready *** Here ! ***\n");
/* answer = getchar (); /* pause */

}
printf ("\n\nOK! ! Starting the mission. \n") ,-

}
parse_mission_script_commands (); /* read initial script orders */

/* ignore failure */
/* changed false to true so that gyros won't start in lab */
if (LOCATIONLAB) zero_gyro_data (); /* Get daily zeros for gyros*/

if (SONARINSTALLED) center_sonar (); /* must have open_device_paths 1st */

strcpy (buffer, " ,,,,"); /* pause */
send_buffer_to_virtual_world_socket (); /* buffer containing msg sent */
strcpy (buffer, " A U V is starting");
send_buffer_to_virtual_world_socket () ; /* buffer containing msg sent */

/* Initialization of closed loop parameters */

100

buffer_index = 0;
telemetry_records_saved = 0;
mission_leg_counter = 0;
end_test = FALSE;
wrap_count = 0;
t = 0.0;
dt_time = 0.0;

/

/*
/* Main program operational loop code

if (TRACE && DISPLAYSCREEN)
printf ("[Starting main program operational loop code...]"),

nextloopclock = clock () + (int)(dt * (double) CLOCKS_PER_SEC);

/*

while (end_test == FALSE) /* this is the realtime main operational loop */
/* when end_test == TRUE then loop is done */

closed_loop_control_module (); /* closed loop code is here < */

) /* end of real-time main operational loop */

/* Kill Dive Tracker Process, Unlink Shared Memory, and Cage Gyro */

if (LOCATIONLAB == FALSE)
{

cage_dg();

#if (defined(sun) || defined(sgi))
#else

/* Kill Divetracker Process */
if (DIVETRACKER)
{

kill(dt_pid,0);

/* Unlink Shared Memory Module */
ul_pid = os9exec(os9forkc,argblk[0],argblk,environ,0,0,3)
ul_pid = os9exec(os9forkc,argblk[0],argblk,environ,0,0,3)
ul_pid = os9exec(os9forkc,argblk[0],argblk,environ,0,0,3)

}
#endif

}

"7

/* lab version may repeat forever for long-duration testing: */
replication_count +'+;

if (LOCATIONLAB && LOOPFOREVER && DISPLAYSCREEN)
{

printf ("\n[LOOP FOREVER enabled, next loop is replication %d...]\n",
replication_count);

sprintf (buffer, " LOOP FOREVER enabled, next loop is replication") ,-
send_buffer_to_virtual_world_socket (); /* buffer msg sent */
sprintf (buffer, " %d", replication_count) ,-
send_buffer_to_virtual_world_socket (); /* buffer msg sent */

if (LOCATIONLAB && LOOPFOREVER)
{

/* reset amount of time to wait for next command */
time_next_command = 0.0;
t = 0.0;
if (DISPLAYSCREEN)
{

printf (" \nLoopforever reset time: [time_next_command = 0.0] ") ,-

101

printf (' [t = 0.0]\n"),

}

if (LOOPFILEBACKUP)
{

record_data_off ()

#if (defined(sgi)
printf
system
printf
system
printf
system
printf
system

#else

#endif

printf
system
printf
system
printf
system
printf
system

|| defined(sun))
"rm output.telemetry.previous\n"
"rm output.telemetry.previous"
"cp mission.output.telemetry output.telemetry.previous\n"
"cp mission.output.telemetry output.telemetry.previous"
"m> output.l_second.previous\n"
"*™ output.l_second.previous"
"cp mission.output.l_second output.l_second.previous\n"
"cp mission.output.l_second output.l_second.previous"

"del output.telemetry.previous\n"
"del output.telemetry.previous"
"copy mission.output.telemetry output.telemetry.previous\n"
"copy mission.output.telemetry output.telemetry.previous"
"del output.l_second.previous\n"
"del output.l_second.previous"
"copy mission.output.l_second output.l_second.previous\n"
"copy mission.output.l_second output.l_second.previous"

if (LOCATIONLAB)
{

}

strcpy (buffer, " telemetry data backup complete");
send_buffer_to_virtual_world_socket () ; /* buffer msg sent */

}
else /* don't bother backing up most recent results
{

if (LOCATIONLAB && LOOPFOREVER)
{

if (auvtextfile) rewind (auvtextfile);
if (((TACTICAL == FALSE) || (TACTICALPARSE)) &£= (auvdatafile != NULL))
{

rewind (auvdatafile);
if (TRACE Sc& DISPLAYSCREEN)

printf ("[auvtextfile & auvdatafile rewound to ");
printf ("output.data.previous & output.auv.previous]\n");

}
strcpy (buffer, " telemetry data backup skipped"),-
send_buffer_to_virtual_world_socket (); /* buffer msg sent */

if (auvdatafile) fflush (auvscriptfile); /* force completion-file write */
if (fclose (auvscriptfile) == 0)
{

if (DISPLAYSCREEN)
printf ("[success closing auvscriptfile mission, script .backup] \n") ,-

else if (DISPLAYSCREEN)
printf ("[failure closing auvscriptfile mission, script, backup] \n") ,-

orders

if (auvordersfile) fflush (auvordersfile);/* force completion-file write*/
if (auvordersfile) fclose (auvordersfile);

/*
#if (defined(sgi) || defined(sun))

if (TRUE && DISPLAYSCREEN)
printf ("rm mission.output.orders\n")

system ("rm mission.output.orders")
printf ("mv mission.output.orders.backup mission.output.orders\n")

system ("mv mission.output.orders.backup mission.output.orders")
#else

102

printf ("del mission.output.orders\n")
system ("del mission.output.orders")

printf ("copy mission.output.orders.backup mission.output.orders\n")
system ("copy mission.output.orders.backup mission.output.orders")

printf ("del mission.output.orders.backup\n\n");
system ("del mission.output.orders.backup");

#endif
*/

#if (defined(sgi) || defined(sun))
sprintf (buffer, "rm %s.backup\n", AUVORDERSFILENAME);

#else
sprintf (buffer, "del %s.backup\n", AUVORDERSFILENAME);

#endif
if (DISPLAYSCREEN) printf ("%s\n", buffer);
system (buffer);

#if (defined(sgi) || defined(sun))
sprintf (buffer, "cp %s %s.backup\n", AUVORDERSFILENAME, AUVORDERSFILENAME);

#else
sprintf (buffer, "copy %s %s.backup\n", AUVORDERSFILENAME, AUVORDERSFILENAME);

#endif
if (DISPLAYSCREEN) printf ("%s\n", buffer) ,-
system (buffer);

/*------------- e-mail -------------_____*/

if (replication_count <= 2) /* only send e-mail once */
{
#if (defined(sgi) || defined(sun))

sprintf (buffer, "rm %s\n", AUVEMAILFILENAME);
#else

sprintf (buffer, "del %s\n", AUVEMAILFILENAME);
#endif

if (DISPLAYSCREEN) printf ("%s\n", buffer);
system (buffer) ,-

#if (defined(sgi) || defined(sun))
sprintf (buffer, "cp %s %s\n", AUVINFOFILENAME, AUVEMAILFILENAME);

#else
sprintf (buffer, "copy %s %s\n", AUVINFOFILENAME, AUVEMAILFILENAME);

#endif
if (DISPLAYSCREEN) printf ("%s\n", buffer);
system (buffer);

#if (defined(sgi) || defined(sun))
sprintf (buffer, "cat %s » %s\n", AUVSCRIPTFILENAME, AUVEMAILFILENAME);

#else
sprintf (buffer, "list %s » %s\n", AUVSCRIPTFILENAME, AUVEMAILFILENAME);

#endif
if (DISPLAYSCREEN) printf ("%s\n", buffer);
system (buffer);

#if (defined(sgi) || defined(sun))
sprintf (buffer, "cat %S » %s\n" , AUVORDERSFILENAME, AUVEMAILFILENAME);

#else
sprintf (buffer, "list %s » %s\n", AUVORDERSFILENAME, AUVEMAILFILENAME);

#endif
if (DISPLAYSCREEN) printf ("%s\n", buffer);
system (buffer) ,-

if ((int) (strlen (email_address) >= 3) && (EMAIL))
{

sprintf (buffer, "mail %s < %s", email_address, AUVEMAILFILENAME);
#if (defined(sgi) || defined(sun))

printf ("%s\n", buffer);
system (buffer);

#else
/* system (buffer); /* e-mail not available directly on OS-9 */

send_buffer_to_virtual_world_socket (),- /* buffer msg sent anywav */
#endif

103

}
} /* end if (replication_coimt <= 2)

/* V

/* permit changing the vehicle mission during continuous lab testing */
if (LOCATIONLAB && LOOPFOREVER)
{

get_control_constants () ;
nextloopclock = clock () + (int)(dt * (double) CLOCKS_PER_SEC);
record_data_on (),-

strcpy (buffer, " Load mission again");
send_buffer_to_virtual_world_socket () ;

/* buffer containing message sent */
}

} while (LOCATIONLAB && LOOPFOREVER); /* end of lab infinite loop (if any) */

command_propellors_off (); /* all done, turn them off */

if (TRACE && DISPLAYSCREEN)
printf ("[all done, send 'kill' message to virtual world dynamics] \n") ,-

strcpy (buffer, "kill"); /* must start with 'shutdown' to die */
send_buffer_to_virtual_world_socket (); /* buffer containing message sent */

shutdown_virtual_world_socket () ,- /* close connection to virtual world */

close_device_paths () ,-

record_data_off ();

if (TRACE && DISPLAYSCREEN)
printf ("[finishing main: fflush (stdout), fflush (stderr)]\n");

fflush (stdout); /* force completion of screen write */
fflush (stderr); /* force completion of error write */

if (TRACE && DISPLAYSCREEN) printf ("[main exit: return (0)]\n");

#if (defined(sgi) || defined(sun))
if (DISPLAYSCREEN) printf ("../gnuplot/gnuplot auv_plot_l_second.gnu\n");
system ("../gnuplot/gnuplot auv_plot_l_second.gnu"); /* display plotted results */

#endif

return (0); /* main program exit */

} /* end main program block, execution is complete */

void closed_loop_control_module () /* executed each time step */

{
double lateralMult; /* multiple for lateral thruster voltage */
int dt_rangel, dt_range2;

if (TRACE && DISPLAYSCREEN)
printf ("[start closed_loop_control_module]\n") ;

if ((LOCATIONLAB == FALSE) && (HALTSCRIPT == FALSE))
{

if ((computer_voltage = read_computer_battery_voltage()) < 20.0)

HALTSCRIPT = TRUE;
printf("Low Computer Voltage Detected: %3.If\n",computer_voltage) ;

if ((motor_voltage = read_motor_gyro_battery_voltage()) < 20.0)

104

HALTSCRIPT = TRUE;
printfC'Low Motor Voltage Detected: %3 . If \n" ,motor_voltage) ;

f (leak_check ())

HALTSCRIPT = TRUE;
printf("Leak Detected\n");

f (z_kal > 6.0)

HALTSCRIPT = TRUE;
printf("Depth ExceededXn");

f (DIVETRACKER && (dt_time + 10.0 <= t))

HALTSCRIPT = TRUE;
printf("Loss of Dive Tracker for 30 SecondsXn");

}

if (HALTSCRIPT)
{

execute_shutdown_script();
}

/* Speed Control ***/

speed = read_speed (); /* Added by D. Marco 1-12-96 */

rpm = (port_rpm_command + stbd_rpm_command) / 2.0;

clamp (& rpm, 700.0, -700.0, "rpm"); /* bound maximum RPM */

if (TRACE && DISPLAYSCREEN)
printf ("[clamp (& rpm, 700.0, -700.0, \"rpm\") complete]\n");

/* Main_Motor RPM Control **/

/* note thruster use does not preclude propeller use */

if (LOCATIONLAB) /* rpm model assumes instantaneous response */
{

port_rpm = port_rpm_command;
stbd_rpm = stbd_rpm_command;

}
else /* in water => propeller rpms are controlled so read actual value */
{

port_rpm = read_port_motor_rpm ();
stbd_rpm = read_stbd_motor_rpm ();

}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE /SOFTWARE */

/*
if (NOT_YET_REIMPLEMENTED)
{

main_motor_deltal = fabs(rpm) - stbd_rpm;
main_motor_delta2 = fabs(rpm) - port_rpm;

/* this is reset windup for proportional integral control of motor speed */
/* in order to prevent accumulating the integral of speed error */

/* if (main_motor_deltal>50.0) main_motor_deltal = 50.0;
if (main_motor_delta2>50.0) main_motor_delta2 = 50.0;

main_motor_voltl = main_motor_voltl +(rpm/fabs(rpm)*0.2*main_motor_deltal);
main_motor_volt2 = main_motor_volt2 +(rpm/fabs(rpm)*0.2*main_motor_delta2);

if (main_motor_voltl > 1023) main_motor_yoltl = 1023;
if (main_motor_voltl < 0) main_motor_voltl = 0;
if (main_motor_volt2 > 1023) main_motor_volt2 = 1023;
if (main_motor_volt2 < 0) main_motor_volt2 = 0;

105

send_dacl(main_motor_voltl,RIGHT_MOTOR);
send_dacl(main_motor_volt2,LEFT_MOTOR);

}
*/

/* if using virtual world dynamics, network is source of values «««« */

phi = read_roll_angle (); /* read roll angle */
cos_phi = cos (radians (phi));
theta = read_pitch_angle (); /* read pitch angle */
psi = read_psi (); /* Read psi/heading */
sin_psi = sin (radians (psi)) ;
cos_psi = cos (radians (psi)) ,-

p = read_roll_rate_gyro (),- /* read roll rate */
q = read_pitch_rate_gyro (); /* read pitch rate */

r = normalize2(psi - psi_iml)/dt; /* differentiate to get r */
psi_iml = psi;

/* r = read_yaw_rate_gyro (); /* Read yaw rate */

z = read_depth (); /* Read depth */
kalman_z (z) ;
if (TRACE) printf ("[z=%5.2f, z_kal=%5.2f] \n\ z, z_kal);

if (fabs (z_kal) < 0.0001) z_kal = 0.0;
if (fabs (z_dot_kal) < 0.0001) z_dot_kal = 0.0;
if (fabs (z_ddot_kal) < 0.0001) z_ddot_kal =0.0;

/* z = z_kal; no need to overwrite z value, use z_kal when you want a smoothed value
*/

z_dot = z_dot_kal;
w = z_dot_kal; /* look out!! «« */

/* note: in laboratory using virtual world, values above are superceded */

/* estimate X and Y by dead reckoning -----------______*/

/* estimate X and Y with Mathematical Model or Dead Reckoning */

if (LOCATIONLAB == FALSE) /* in-water, perform a valid dead reckon */
{

XY_model_est (((port_rpm / 700.0) * 24.0),
((stbd_rpm / 700.0) * 24.0),

AUV_bow_lateral, AUV_stern_lateral, /* watch sign shift */
AUV_oceancurrent_x, AUV_oceancurrent_y, TRUE);

else /* virtual world providing sensor inputs */

x += (speed * dt * cos_psi);
if (fabs(x) <= 0.0001) x = 0.0; /* prevent OS-9 gasping */
y += (speed * dt * sin_psi);
if (fabs(y) <= 0.0001) y = 0.0; /* prevent OS-9 gasping */

x += AUV_oceancurrent_x * dt;
y += AUV_oceancurrent_y * dt;

}
z += AUV_oceancurrent_z * dt;

if (TRACE)
{

printf (" [AUV_oceancurrent_x = %3.'lf,", AUV_oceancurrent_x) ,-
printf (" AUV_oceancurrent_y = %3.1f,", AUV_oceancurrent_y);
printf (" AUV_oceancurrent_z = %3.1f]\n", AUV_oceancurrent_z);

/* Control laws **** NOTE: all k_ constants must be (+) positive **** */

#if (defined(sun) || defined(sgi))
#else

/* Update Dive Tracker Ranges */
if (DIVETRACKER && (CLReaddmod(&dt_rangel,&dt_range2)==NEW_DATA) &&

(dt_rangel < 10000) && (dt_range2 < 10000) &&
(dt_range2 > 0) && (dt_rangel > 0))

{

106

divetracker_rangel = (double) dt_rangel / 12.0;
divetracker_range2 = (double) dt_range2 / 12.0;
dt_time = t;
if ((TRACE) && (DISPLAYSCREEN))
printf("Divetracker Ranges: %f %f %f\n",t,divetracker_rangel,divetracker_range2);

else
{

if (z_kal <= 1.0) dt_time = t;
}

#endif

waypoint_distance = sqrt ((x - x_command) * (x - x_command)
+ (y - y_conunand) * (y - y_command)) ;

/* HOVERCONTROL mode course control ---------_-_______*

/* use WAYPOINTCONTROL (not HOVERCONTROL) until within standoff_distance */
if ((HOVERCONTROL) &&

(waypoint_distance > standoff_distance))
{

if (waypoint_distance > standoff_distance + 15.0)
{

WAYPOINTCONTROL = TRUE;
DEADSTICKRUDDER = FALSE;
DEADSTICKPLANES = FALSE;
port_rpm_command = 700;
stbd_rpm_command = 700;
psi_command = psi_coiranand_hover;
fprintf (auvordersfile,

"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"
t, psi_command, x_command, y_command, z_command,

port_rpm_command, stbd_rpm_command,
rudder_command, planes_command,

AUV_bow_vertical,
AUV_stern_vertical,

AUV_bow_lateral,
AUV_stern_lateral);

}
else
{

WAYPOINTCONTROL = FALSE;
DEADSTICKRUDDER = TRUE;
DEADSTICKPLANES = TRUE;

/* port_rpm_command reset needed ?? */
/* stbd_rpm_command reset needed ?? */"

psi_command = psi_command_hover;
fprintf (auvordersfile,

"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"
t, psi_command, x_command, y_command, z_command,

port_rpm_command, stbd_rpm_command,
rudder_command, planes_command,

AUV_bow_vertical,
AUV_stern_vertical,

AUV_bow_lateral,
AUV_stern_lateral);

}
}
else if ((HOVERCONTROL) && (WAYPOINTCONTROL))

/* restore proper HOVERCONTROL, we are now closer */

WAYPOINTCONTROL = FALSE;
DEADSTICKRUDDER = TRUE;
DEADSTICKPLANES = TRUE;
rudder_command = 0.0;
psi_command = psi_command_hover;
port_rpm_command = 0;
stbd_rpm_command = 0;

fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_conunand, z_command,

107

port_rpm_command, s tbd_rpm_command,
rudder_command, planes_command,

AUV_bow_vertical,
AUV_stern_vertical,

AUV_bow_lateral,
AUV_stern_lateral);

}
if ((HOVERCONTROL) && (GPSFIXINPROGRESS == FALSE) &&

((waypoint_distance > standoff_distance) ||
(fabs (depth_error) > standoff_distance) ||
(fabs (psi_error) > 10.0 /* degrees */))) /* cylinder test */

{
/* still not at the hoverpoint */
if (TRACE && DISPLAYSCREEN) printf ("[HOVERCONTROL cylinder test]"):
/* continue until hoverpt reached without further script orders */
time_next_command = t + 2.0 * dt;

}
/* report STABLE to tactical level once hoverpoint received
if ((HOVERCONTROL) && (REPORTSTABLE) &&

((waypoint_distance < standoff_distance) &&
(fabs (depth_error) < standoff_distance) &&
(fabs (psi_error) < 10.0 /* degrees */)))

{

}

if ((TACTICAL) && (GPSFIXINPROGRESS == FALSE))
{

REPORTSTABLE = FALSE;
if (TRACE && DISPLAYSCREEN)

printf ("\n[send_buffer_to_tactical_socket (STABLE HOVER)]\n") ,
strcpy (buffer, "STABLE HOVER");
send_buffer_to_tactical_socket (); /* message */

}

/* WAYPOINTCONTROL mode course control ----------_-----___*/
if (WAYPOINTCONTROL)
{

/* minimum headway speed test & correction ---------______*/
if ((port_rpm_command < 200.0) /* safety check propulsion is positive */

|| (stbd_rpm_command < 200.0))
{

if (TRACE && DISPLAYSCREEN)
printf ("\n[WAYPOINTCONTROL fabs (rpm) < 200.0, too low! reset to 200.0]");

port_rpm_command = 200.0;
s tbd_rpm_command = 200.0;

}

/* note that a reversed x,y calling sequence is necessary */
/* in order to get correct quadrant alignment */
/* also try to lead waypoint to account for AUV_oceancurrent set/drift */

waypoint_angle=atan2 (y_command - y + AUV_oceancurrent_y * dt,
x_command - x + AUV_oceancurrent_x * dt) ,-

waypoint_angle= normalize (degrees (waypoint_angle));
psi_command = waypoint_angle;

/* If the auv is closer to the waypoint than this value, there */
/* is a danger that it could enter a death spiral */
death_spiral_radius = fabs (sin (radians (normalize2 (waypoint_angle - psi))))

, * (1.0/700.0) * rpm * 15.0;

if (TRACE && DISPLAYSCREEN)
{

printf ("WAYPOINTCONTROL psi_command = %5.1f, ", psi_command);
printf ("x = %5.1f, y = %5.1f\n", x, y) ,-

}
if ((FOLLOWWAYPOINTMODE) && (HOVERCONTROL == FALSE) &&

(! ((fabs (depth_error) <= standoff_distance) &&
((waypoint_distance <= standoff_distance) ||
(waypoint_distance <= death_spiral_radius) ||
(detect_death_spiral (FALSE))))))

{

108

if (TRACE && DISPLAYSCREEN)
printf ("\n[FOLLOWWAYPOINTMODE cylinder test]");

/* continue until WAYPOINT reached without further script orders */
time_next_command = t + 2.0 * dt ;

}
else if ((fabs (depth_error) <= standoff_distance) &&

((waypoint_distance <= standoff_distance) ||
(waypoint_distance <= death_spiral_radius) | |
(detect_death_spiral (FALSE))))

{

WAYPOINTCONTROL = FALSE;
FOLLOWWAYPOINTMODE = FALSE;

WAYPOINT reached]"),
if (TRACE && DISPLAYSCREEN)

printf ("\n[FOLLOWWAYPOINTMODE success,
fprintf (auvordersfile,

"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n»
t, psi_command, x_command, y_command, z_command,

port_rpm_command, stbd_rpm_command,
rudder_coiranand, planes_command,

AUV_bow_vertical, AUV_stern_vertical,
AUV_bow_lateral, AUV_stern_lateral),-

/* report STABLE to tactical level once waypoint received */
if ((TACTICAL) && (REPORTSTABLE)

&& (GPSFIXINPROGRESS == FALSE))
{

REPORTSTABLE = FALSE;
if (TRACE && DISPLAYSCREEN)

printf ("\n[send_buffer_to_tactical_socket (STABLE WAYPOINT)]\n");
strcpy (buffer, "STABLE WAYPOINT");
send_buffer_to_tactical_socket (); /* message */

}
else if (HÖVERCONTROL)
{
waypoint_angle=normalize (degrees (atan2 (y_command - y, x_command - x))) ,-

track_angle = normalize (waypoint_angle - psi);
along_track_distance = cos (radians(track_angle)) * waypoint_distance;
cross_track_distance = - sin (radians(track_angle)) * waypoint_distance;

port_rpm_command

stbd_rpm_command =

k_propeller_hover * along_track_distance
- k_propeller_current * AUV_oceancurrent_x

* cosjosi
- k_propeller_current * AUV_oceancurrent_y

* sin_psi
- k_surge_hover * u;
k_propeller_hover * along_track_distance

- k_propeller_current * AUV_oceancurrent_x
* cos_psi

- k_propeller_current * AUV_oceancurrent_y
* sin_psi

- k_surge_hover * u;

if (TRACE && DISPLAYSCREEN)
{

printf ("\nHOVERCONTROL:\n");
printf ("psi_command = %5.1f, ", psi_command);
printf ("x = %5.1f, y = %5.1f\n", x, y) ,-
printf ("waypoint_distance = %5.1f, track_angle = %5.1f\n",

waypoint_distance, track_angle);
printf ("along_track_distance = %5.1f, ", along_track_distance);
printf ("cross_track_distance = %5.1f\n", cross_track_distance);
printf ("port_rpm & stbd_rpm = %5.1f\n", port_rpm);

}
}

/* Simplified PD rudders/planes control rules: -------------

109

/* calculate rudders ----------------_-----____*/

delta_rudder = k_psi * psi_error

+ (k_r * r) + (k_v * v) ;

/* tanh not provided under OS-9 C, added at end of this program */.
/* tanh was change to dtanh toconserve time in approximation */
if (SLIDINGMODECOURSE)
{

sigma = k_sigma_r * r + k_sigma_psi * psi_error;

delta_rudder = (3.1403 * r) + 81.9712 * eta_steering * dtanh (sigma) ,-
}

/* reduce ordered rudder if excessive roll occurs, may work for many UUVs*/

delta_rudder = delta_rudder * cos_phi * cos_phi;

if (TRUE && DISPLAYSCREEN && (cos_phi * cos_phi < 0.98))
{

printf ("\nrudder/planes reduction factor due to roll phi = %6.3f\n",
cos_phi * cos_phi) ;

}

depth_error = (z_kal - z_command) ,-

/* constrain depth_error to +- 15.0 feet to prevent going vertical */
/* and enable stable pitch angle even on large depth changes */

clamp (& depth_error, -15.0, 15.0, "depth_error") ,- /* feet */

/* calculate planes -----------------_--______ */

delta_planes = - (k_z * depth_error)

+ (k_theta * theta) + (k_q * q) - (k_w * z_dot_kal);

/* temporary fix to incorrect delta_planes sign above ««««««««« */
if (LOCATIONLAB == FALSE) delta_j?lanes = - delta_planes;

/* reduce ordered planes if excessive roll occurs, may work for many UUVs*/

delta_planes = delta_planes * cos_phi * cos_phi;

/* Dead stick means no open loop control of rudders/planes -------*/

if (DEADSTICKRUDDER)
{

delta_rudder = rudder_command;
}
if (DEADSTICKPLANES)
{

delta_planes = planes_command;
}

/* Normalization ------------------__________*/

delta_rudder = normalize2 (delta_rudder);
delta_planes = normalize2 (delta_planes) ,-

/* constrain planes & rudder orders +/- 22.5 degrees */

clamp (& delta_rudder, -22.5, 22.5, "delta_rudder"); /* degrees */
clamp (& delta_planes, -22.5, 22.5, "delta_planes"); /* degrees */

/* watch out for planes/rudder chatter and zero them at 0 rpm if needed! */

/* Simplified lateral/vertical thruster control rules: --------_*/

if (ROTATECONTROL) /* open loop rotate thrusters */
{

110

lateral_thruster_volts = k_thruster_rotate * rotate_command;
/* insert * fabs (rotate_command) <««««« */

}
else if (LATERALCONTROL) /* open loop lateral thrusters */
{

lateral_thruster_volts = - k_thruster_lateral * (lateral_command);
}
else /* heading control is default */
{

lateral_thruster_volts = - k_thruster_psi * psi_error

- k_thruster_r * r;
}

vertical_thruster_volts = - k_thruster_z * (z_kal - z_command)

- k_thruster_w * z_dot_kal;

if ((THRUSTERCONTROL) || (HOVERCONTROL) ||
(ROTATECONTROL) || (LATERALCONTROL))

{
AUV_bow_vertical = vertical_thruster_volts;
AUV_stern_vertical = vertical_thruster_volts;

if (LATERALCONTROL)
{

if (TRACE && DISPLAYSCREEN)
{

printf ("(LATERALCONTROL == TRUE, ") ;
printf ("lateral_command == %5.2f, ", lateral_command);
printf ("k_thruster_lateral == %5.2f)\n", k_thruster_lateral);

}

AUV_bow_lateral = lateral_thruster_volts; /* both positive, */
AUV_stern_lateral = lateral_thruster_volts; /* same direction */

}
else if (HOVERCONTROL)
{

if (TRACE && DISPLAYSCREEN) printf ("(HOVERCONTROL == TRUE) \n") ;

AUV_bow_lateral = - (- k_thruster_psi * psi_error

- k_thruster_r * r)

+ k_thruster_hover * cross_track_distance

- k_thruster_current * AUV_oceancurrent_x
* sin_psi

+ k_thruster_current * AUV_oceancurrent_y
* cos_psi

+ k_sway_hover * v;

AUV_stern_lateral = (- k_thruster_psi * psi_error

- k_thruster_r * r)

+ k_thruster_hover * cross_track_distance

- k_thruster_current * AUV_oceancurrent_x
* sin_psi

+ k_thruster_current * AUV_oceancurrent_y
* cos_psi

+ k_sway_hover * v;
}
else if ((THRUSTERCONTROL) || (ROTATECONTROL))
{

if (TRACE && DISPLAYSCREEN)
printf ("(THRUSTERCONTROL == TRUE) || (ROTATECONTROL == TRUE)\n")

111

AUV_bow_lateral
AUV_stern_lateral

}
else
{

lateral_thruster_volts;
lateral_thruster_volts;

/* negative */

printf ("Thruster control logic error *** \n");

if
{

}

(TRACE && DISPLAYSCREEN)

printf ("\nThruster control ON. Pre-clamp calculated values:\n")
printf (" psi = %6.3f, psi_command = %6.3f\n",

psi, psi_command) ;
printf (" AUV_bow_verticai = %6.3f, AUV_stern_vertical = %6.3f\n",

AUV_bow_vertical, AUV_stern_vertical);
printf (" AUV_bow_lateral = %6.3f, AUV_stern_lateral = %6.3f\n",

AUV_bow_lateral, AUV_stern_lateral);

}
else /* thrusters disabled */
{

if (TRACE && DISPLAYSCREEN)
{

printf ("Thruster control OFF. Pre-clamp calculated values:\n");
printf ("vertical_thruster_volts = %6.3f\n",

vertical_thruster_volts);
printf ("lateral_thruster_volts = %6.3f\n",

lateral_thruster_volts);
}
AUV.
AUV_
AUV_
AUV

bow_vertical = 0.0
stern_vertical = 0.0
bow_lateral = 0.0
stern_lateral = 0.0

if (TRACE && DISPLAYSCREEN)
{

printf ("Pre-sqrt thruster control calculated values : \n") ,-
printf ("AUV_bow_vertical = %6.3f\n", AUV_bow_vertical);
printf ("AUV_stern_vertical = %6.3f\n
printf ("AUV_bow_lateral = %6.3f\n

}
printf ("AUV_stern_lateral %6.3f\n"

AUV_stern_vertical)
AUV_bow_lateral);
AUV_stern_lateral) ,-

/* convert to signed sqrt to account for volts-to-thrust relationship

/* different multiple required between lab and auv because of polarity
/* discrepancy between virtual world and actual auv
if (LOCATIONLAB) lateralMult = 2.0;
else lateralMult = -2.0;

/* 2.0 * sqrt(6.0
AUV_bow_vertical

AUV_stern_vertical = 4.8989

AUV_bow_lateral

4.8989 SQR 6 = 2.449 */
4.8989 * sign (AUV_bow_vertical)

* sqrt (fabs (AUV_bow_vertical))
sign (AUV_stern_vertical)
* sqrt (fabs (AUV_stern_vertical))

lateralMult * 2.449 * sign (AUV_bow_lateral
* sqrt (fabs (AUV_bow_lateral))

AUV_stern_lateral = lateralMult * 2.449 * sign (AUV_stern_lateral
* sqrt (fabs (AUV_stern_lateral))

if (TRACE && DISPLAYSCREEN)
{

printf ("Post-sqrt thruster control calculated values : \n") ,-
printf ("AUV_bow_vertical = %6.3f\n", AUV_bow_vertical);
printf ("AUV_stern_vertical = %6.3f\n

("AUV_bow_lateral = %6.3f\n printf
printf ("AUV_stern_lateral %6.3f\n"

AUV_stern_vertical);
AUV_bow_lateral);
AUV_stern lateral);

/* constrain thruster orders +/- 24.0 volts == 3820 rpm no-load
/* constrain propeller orders +/- 700 rpm no-load

*/
*/

112

clamp (& AUV_bow_vertical, -24.0, 24.0, "AUV_bow_vertical");
clamp (& AUV_stern_vertical, -24.0, 24.0, "AUV_stern_vertical");
clamp (& AUV_bow_lateral, -24.0, 24.0, "AUV_bow_lateral");
clamp (& AUV_stern_lateral, -24.0, 24.0, "AUV_stern_lateral");

clamp (& port_rpm_command, -700.0, 700.0, "port_rpm_command") ,-
clamp (& stbd_rpm_command, -700.0, 700.0, "stbd_rpm_command");

/* command thruster and propellor orders */

command_motor (AUV_bow_vertical, BOW_VERTICAL);
command_motor (AUV_stern_vertical, STERN_VERTICAL);
command_motor (AUV_bow_lateral, BOW_LATERAL);
command_motor (AUV_stern_lateral, STERN_LATERAL);
command_motor (port_rpm_command, PORT_PROP);
command_motor (stbd_rpm_command, STBD_PR0P);

/* Send commands to rudders and planes **********»************************/

command_rudder (delta_rudder);
command_planes (delta_planes);

/* Send command & get reply from sonar ***********************************/

AUV_ST1000_bearing = 0.0; /* relative bearings of sonar heads */
AUV_ST725_bearing = 0.0;

/* send telemetry to tactical level and data recording files ------*/
record_data ();

/* read commands from tactical level ------------------*/
/* if (TACTICAL) read_parallel_port 0; [old code] now uses socket*/

/* update simulation clock "t" ----------------_----*/

t = t + dt;

fflush (stdout) ,- /* force completion of screen write */
currentloopclock = clock ();

if (TRACE && REALTIME)
printf("[Unused Loop Time: %5.4f\n",

(float)(nextloopclock - currentloopclock) / (float) CLOCKS_PER_SEC);

if ((REALTIME) &6
(currentloopclock < nextloopclock))

{
if (TRACE && DISPLAYSCREEN)
{

printf ("currentloopclock = %ld, nextloopclock = %ld\n",
currentloopclock, nextloopclock);

printf("timestep dt = %5.3f seconds (corresponding clock ticks = %d)\n",
dt, (int)(dt * (double) CLOCKS_PER_SEC));

printf ("Busy wait until system clock reaches simulation clock, ");
printf ("loop duration = %5.3f\n",

((double) currentloopclock - (double) nextloopclock)
/ CLOCKS_PER_SEC);

}
while (currentloopclock < nextloopclock)
{

currentloopclock = clock (); /* %%%%% busy wait %%%%% */
}
if (TRACE && DISPLAYSCREEN)
{

printf ("Busy wait complete, loop+wait duration = %5.3f, ",
((double) currentloopclock- (double) nextloopclock)
/ CLOCKS_PER_SEC);

printf ("current clock () = %ld\n", currentloopclock);

}

113

else if ((REALTIME == FALSE) && LOCATIONLAB && DISPLAYSCREEN && TRACE)
{

printf ("No busy wait, loop duration = %5.3f, ",
((double) currentloopclock - (double) nextloopclock)
/ CLOCKS_PER_SEC);

printf ("current clock () = %ld\n", currentloopclock);
)

nextloopclock = clock () + (int)(dt * (double) CLOCKS_PER_SEC);

/* determine if closed_loop_control_module () is done; if so, -___*/
/* repeat call to closed_loop_control_module () for each time step - - */

/* this needs to be 3-way logic file | tactical | keyboard <«««««« */

if ((KEYBOARDINPUT) || (TACTICAL))
{

parse_mission_script_commands (); /* get next script orders read */
/* ignore failure */

/* we are reading from the mission script file in these cases */

}
else if (auvdatafile == NULL) /* file never opened, loop and open it */

end_test = TRUE;
}
else if (feof (auvscriptfile) && (t > time_next_command)) /* all done */

if (TRACE && DISPLAYSCREEN) printf ("end_test set TRUE\n");
end_test = TRUE;

}
else if (t > time_next_command) /* scriptfile not yet closed, read more */

if (TRACE && DISPLAYSCREEN)
printf ("\n[read more from parse_mission_script_commands]\n");

parse_mission_script_commands (); /* get next script orders read */
/* ignore failure */

/* else not done executing current script command, continue/don't block */

if (HALTSCRIPT == FALSE)
psi_error = normalize2 (psi - psi_command);
else psi_error =0.0;

if (TRACE && DISPLAYSCREEN)
printf ("\n[time_next_command = %5.1f]\n", time_next_command);

if (TRACE && DISPLAYSCREEN)
printf ("\n[finish closed_loop_control_module 0]\n");

if (end_test)
{

command_motor (0.0, BOW_VERTICAL);
command_motor (0.0, STERN_VERTICAL);
command_motor (0.0, BOW_LATERAL);
command_motor (0.0, STERN_LATERAL);
command_motor (0.0, PORT_PROP) ,-
command_motor (0.0, STBD_PROP);

}

return;

} /* end closed_loop_control_module () */

/* The following four functions were added on 12 Dec 95 */
/* They are from Dave Marco's execution code and are used */
/* for speed control of the port propellors */

114

int port_speed_control(n_com)
double n_com; /* revolutions per second */

{
double Km_ls = 0.6589,

e_n,v_ls_spc,
eta_ls = 10.0,
phi_ls = 5.0;

if(fabs(n_com) < 0.25) Int_ls = 0.0;

e_n = n_com - read_port_motor_rpm () / 60.0;
Int_ls = Int_ls + dtanh(e_n/phi_ls)*dt;

v_ls_spc = (1.0/Km_ls)*(n_com + eta_ls*Int_ls);

v_dls = (int) ((1023.0/48.0)*(v_ls_spc) + 511.5);

if(v_dls < 0) v_dls = 0;
if(v_dls > 1023) v_dls = 1023;
return(v_dls);

} /* end port_speed_control () */

/««•»»««««»Mt»««»»»««.«««»»«»»*»»««»»«»»»««»»««»««»«»»»«»««/

int stbd_speed_control (n_com)
double n_com; /* revolutions per second */

{
double Km_rs = 0.6156,

e_n,v_rs_spc,
eta_rs = 10.0,
phi_rs = 5.0;

if(fabs(n_com) < 0.25) Int_rs = 0.0;

e_n = n_com - read_stbd_motor_rpm() / 60.0;

Int_rs = Int_rs + dtanh(e_n/phi_rs)*dt;

v_rs_spc = (1.0/Km_rs)*(n_com + eta_rs*Int_rs);

v_drs = (int) ((1023.0/48.0)*(v_rs_spc) + 511.5);

if(v_drs < 0) v_drs = 0;
if(v_drs > 1023) v_drs = 1023;
return(v_drs);

} /* end stbd_speed_control () */

/* —.- VERIFIED MATCH CURRENT /OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_depth () /* Return depth in FEET */
{

int val = 0;
double new_z =0.0; /* zz in dave's execf.c code */
double z_offset = 0.0;

if (TRACE && DISPLAYSCREEN) printf ("\n[start read_depth ()]\n");

if (LOCATIONLAB && DEADRECKON)

new_z = z_command;

else if (LOCATIONLAB)

new_z = z; /* no change, use virtual world value */

else /* in-water */

/* val = adcl(DEPTH_CELL_CH); */ /* Channel 1*1

115

}

/* 0.0728 = 0.0182*4.0 */
/♦ Since A/D now has 0-1023 range instead of 0-4095 */
/* new_z = 0.0728M (double) (val - z_val0)) + z_offset; */

/* adc2 card has 0 - 4095 resolution */
val = get_adc2 (DEPTH_CELL_CH, 0);
new_z = 0.0182* ((double) (val - z_val0)) + z„offset;

/* Calibration for Signal Amp */
/*new_z = 0.0034285M (double) (z_val0 - val)) + z_offset;*/

/*
if (ARCHAIC_IGNORE)
{

z_offset =0.0;
val = get_adc2 (0,0);
new_z = 0.002237 * (val - z_val0) + z_offset; /* new_z (ft) */

/*}
*/

if (TRACE && DISPLAYSCREEN)
printf ("\n[finish read_depth (), returns %5.3f]\n", new_z);

return (new_z + depth_cell_bias);

} /* end read_depth () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_psi () /* return psi in degrees */

{
unsigned short psi_bit;
int psi_bit_int,psi_bit_old_int,delta_psi_bit;
double angle,tpi;
double pi = 3.1415927;

if (TRACE && DISPLAYSCREEN) printf ("[start read_psi ()]\n");

if (LOCATIONLAB && DEADRECKON)
{

angle = psi_command;
}
else if (LOCATIONLAB)
{

psi = psi; /* no change, use virtual world value */
angle = psi; /* set up for function return */

}
else /* in-water */
{

psi_bit = Read_PortAB(0xFFF00700);
psi_bit &= 0x3FFF;
psi_bit_int = psi_bit;
psi_bit_old_int = psi_bit_old;

delta_psi_bit = psi_bit_int - psi_bit_old_int;
psi_bit_old = psi_bit;

if(abs(delta_psi_bit) > 10000)
{

wrap_count = wrap_count - delta_psi_bit/abs(delta_psi_bit);

angle = start_jpsi + degrees ((read_heading () -
dg_offset + 2.0*pi*((double) wrap_count)));

if(fabs(angle) < 0.0001) angle = 0.0;
/♦printf("%f %f %f %d %d\n",

angle,read_heading (),dg_offset,wrap_count,psi_bit); */

116

}

/*
if (ARCHAIC_IGNORE)
{

/* port needs to be redone: */
/* psi_bit = Read_PortAB((struct MFI_PIA *) MFI_BASE);

psi_bit &.= 0x3FFF;
psi_bit_int = psi_bit;
psi_bit_old_int = psi_bit_old;

delta_psi_bit = psi_bit_int - psi_bit_old_int;
psi_bit_old = psi_bit;

if(abs(delta_psi_bit) > 10000)
{

wrap_count = wrap_count - delta_psi_bit/abs(delta_psi_bit);
} _
tpi = 2.0 * pi * wrap_count;

angle = read_heading () - dg_offset + tpi;

angle = degrees (angle);

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_psi () returns %5.3f]\n", angle);

return (normalize (angle));

} /* end read_psi () */

/it**

I* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_roll_rate_gyro () /* Return roll rate in DEGREES/SEC */
{

int val;
double rate;

if (TRACE && DISPLAYSCREEN) printf ("[start read_roll_rate_gyro ()]\n");

if (LOCATIONLAB)
{

rate = p; /* no change, use virtual world value */
if (fabs (rate) < 0.0001) rate = 0.0;

}
else /* in-water */
{

val = get_adc2(ROLL_RATE_CH,0) ;
/*' Next two lines from old method */
/*val = val » 2;*/ /* Quick fix for new res */
/*rate = (roll_rate_0/3.2113 - .31062*val)/57.295779;*/
rate = degrees (0.07785*(roll_rate_0 - val)/57.295779);
if(fabs(rate) < 0.0001) rate = 0.0;

}

/*
if (ARCHAIC_IGNORE)
{

if (LOCATIONLAB == FALSE) /* not in virtual world, read slots */
/* {

val = get_adcl (ROLL_RATE_CH) ;
rate = (roll_rate_0/3.2113 - .31062*val)/57.295779;

}
}
*/

rate = normalize2 (rate);

if (TRACE && DISPLAYSCREEN)

117

printf ("[finish read_roll_rate_gyro () returns %5.3f]\n", rate);

return (rate);

} /* end read_roll_rate_gyro 0 */

/**t***«***t***t**t*t»»*******-i**,1j«t»»)rjmr»t(,,t»j,,,1,11,1,,j,ttt,1,lU(„,t,,4,,

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_pitch_rate_gyro () /* Return pitch rate in DEGREES/SEC */
{

int val = 0;
double rate;

if (TRACE && DISPLAYSCREEN) printf ("[start read_pitch_rate_gyro ()]\n");

if (LOCATIONLAB)
{

rate = q; /* no change, use virtual world value */
if (fabs (rate) < 0.0001) rate = 0.0;

}
else /* in-water */
{

val = get_adc2(PITCH_RATE_CH,0);
/* Next two lines from old method */
/*val = val » 2;*/ /* Quick fix for new res */
/»rate = (pitch_rate_0/13.69399 - .0730001*val)/57.295779;*/
rate = degrees (0.01825*(pitch_rate_0 - val)/57.295779);
if(fabs(rate) < 0.0001) rate = 0.0;

}

/*
if (ARCHAIC_IGNORE)
{

if (LOCATIONLAB == FALSE) /* not in virtual world, read slots */
/* {

val = get_adcl (PITCH_RATE_CH);
rate = (pitch_rate_0/13.69399 - .0730001*val)/57.295779;

}
}
*/

rate = normalize2 (rate);

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_pitch_rate_gyro () returns %5.3f]\n", rate);

return (rate);

} /* end read_pitch_rate_gyro () */

/•»»««»«««»«».»»»»»»HtHMtuMMmH,,,,,,,,,,,»,,,,,,,,,,,,,,,,,,,,,,,,

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE /SOFTWARE */

double read_yaw_rate_gyro () /* Return yaw rate in DEGREES/SEC */

int val = 0;
double rate;

if (TRACE && DISPLAYSCREEN) printf ("[start read_yaw_rate_gyro ()]\n");

if (LOCATIONLAB)
{

rate = r; /* no change, use virtual world value */
if (fabs (rate) < 0.0001) rate = 0.0;

}
else /* in-water */
{

/* Below for adcl Card */
/*val = adcl(YAW_RATE_CH);*/ /* Channel 10 */
/*rate = 2.78*(((double) yaw_rate_0)/13.653216 -

118

}

0.0732362M (double) val)) /57.295779;*/

val = get_adc2(YAW_RATE_CH,0);
/* Next two lines from old method */
/*val = val » 2;*/ /* Quick fix for new res */
/»rate = 2 .78* (yaw_rate_0/13.653216 - .0732362*val) /57.295779; */.
rate = degrees (0.0509*(yaw_rate_0 - val)/57.295779);
if(fabs(rate) < 0.0001) rate = 0.0;

/*
if (ARCHAIC_IGNORE)
{

if (LOCATIONLAB == FALSE) /* not in virtual world, read slots */
/* {

val = get_adcl (YAW_RATE_CH);
rate = (yaw_rate_0/13.653216 - .0732362*val)/57.295779;

}
}
*/

rate = normalize2 (rate);

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_yaw_rate_gyro 0 returns %5.3f]\n", rate);

return (rate);

} /* end read_yaw_rate_gyro 0 */

/

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_port_motor_rpm () /* Reads rpm from PORT_PROP */

int pulse;
double local_port_rpm;

if (TRACE && DISPLAYSCREEN) printf ("[start read_port_motor_rpm ()]\n");

local_port_rpm = read_motor (PORT_PROP);

/*
if (ARCHAIC_IGNORE)
{

pulse = get_adcl (LEFT_MOTOR_RPM);
local_port_rpm = 1.244*pulse - 8.4792;

}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_port_motor_rpm () returns %5.3f]\n",

local_port_rpm);

return (local_port_rpm);

} /* end read_port_motor_rpm () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_stbd_motor_rpm () /* Reads rpm from STBD PROP */
{

int pulse;
double local_stbd_rpm;

if (TRACE && DISPLAYSCREEN) printf ("[start read_stbd_motor_rpm ()]\n");

local_stbd_rpm = read_motor (STBD_PROP);

/*
if (ARCHAIC_IGNORE)

119

PORT_PROP RPM
STBD PROP RPM
BOW_VERTICAL volts

STERN_VERTICAL volts
BOW_LATERAL volts

STERN_LATERAL volts

{
pulse = get_adcl (RIGHT_MOTOR_RPM);
local_stbd_rpm = 1.244*pulse - 8.4792;

}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_stbd_motor_rpm () returns %5.3f]\n",

local_stbd_rpm);

return (local_stbd_rpm);

} /* end read_stbd_motor_rpm () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE /SOFTWARE */

double read_motor (motor) /* Read rpm from single propellor or thruster */
int motor;

{
/* motor = 0 Left Propeller

1 Right Propeller
2 Bow Vertical Thruster
3 Bow Lateral Thruster
4 Stern Vertical Thruster
5 Stern Lateral Thruster _

*/
int count;
double freq,rps;
unsigned char lobyte,hibyte;

if (TRACE && DISPLAYSCREEN) printf ("[start read_motor ()]\n");

if (LOCATIONLAB == FALSE) /* in water */
{
switch(motor)
{
case PORT_PROP:

write_timla(3,tim_la_control_reg,17); /* Sei Cntr 1 HOLD Reg. Card 3 */
lobyte = read_timlacl(3,tim_la_data_reg);
hibyte = read_timlacl(3,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;
if(v_dls < 512) count = -count; /* Account for Direction of Rot. */
break;

case STBD_PROP:
write_timla(3,tim_la_control_reg,18); /* Sei Cntr 2 HOLD Reg. Card 3 */
lobyte = read_timlacl(3,tim_la_data_reg);
hibyte = read_timlacl(3,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;
if(v_drs < 512) count = -count; /* Account for Direction of Rot. */
break;

case BOW_VERTICAL:
write_timla(2,tim_la_control_reg,17); /* Sei Cntr 1 HOLD Reg. Card 2 */
lobyte = read_timlacl(2,tim_la_data_reg);
hibyte = read_timlacl (2, tim_la_data_reg)';
count = (int) (256*hibyte) + (int) lobyte;
if(v_dbvt < 512) count = -count; /* Account for Direction of Rot. */
break;

case STERN_VERTICAL:
write_timla(2,tim_la_control_reg,18); /* Sei Cntr 2 HOLD Reg. Card 2 */
lobyte = read_timlacl(2,tim_la_data_reg);
hibyte = read_timlacl(2,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;
if(v_dblt < 512) count = -count; /* Account for Direction of Rot. */.
break;

case BOW_LATERAL:
write_timla(2,tim_la_control_reg,19); /* Sei Cntr 3 HOLD Reg. Card 2 */
lobyte = read_timlacl(2,tim_la_data_reg);

120

hibyte = read_timlacl(2,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;
if(v_dsvt < 512) count = -count; /* Account for Direction of Rot» */
break;

case STERN_1ATERAL:
write_timla(2,tim_la_control_reg,20); /* Sei Cntr 4 HOLD Reg. Card 2 */
lobyte = read_timlacl(2,tim_la_data_reg);
hibyte = read_timlacl(2,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;
if(v_dslt < 512) count = -count; /* Account for Direction of Rot. */
break;

default:
if (DISPLAYSCREEN)
printf ("[read_motor () error: illegal motor value (%d)]\n", motor);
break;

f(count != 0)

freq = (1.0/count)*4.0*pow(10.0,6.0); /* Fl (1 Mhz) The 4.0 is in there */
/* as a scale factor from God */

lse

/* Sensor Not Counting */
freq = 0.0;

* 500 Counts Per Rev */
rps = (freq/500.0);
if((fabs(rps) < 1.0) || (fabs(rps) > 1000.0)) rps = 0.0;

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_motor () returns %5.3f]\n", rps);

return (rps * 60.0); /* convert from per-seconds to per-minutes */

else /* LOCATIONLAB == TRUE */

return (rpm);

} /* end read_motor () */

/************************************ tH>llH«t«<t>tt«l«iitiitHt<»tttt««K«tl

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_roll_angle () /* Return roll angle in DEGREES */
{

int val ;
double angle;

if (TRACE && DISPLAYSCREEN) printf ("[start read_roll_angle ()]\n");

if (LOCATIONLAB)
{

angle = phi; /* no change, use virtual world value */
if (fabs (angle) < 0.0001) angle = 0.0;

}
else /* in-water */
{

val = get_adc2 (ROLL_ANGLE_CH,0);
/* Next three lines from old method */
/*val = val » 2;*/ /* Quick fix for new res */
/* angle = ((516.578 - val)/5.7572)/57.295779; convert to radians */
/♦angle = (-.1737*val + .1737*roll_0)/57.295779;*/
angle = 0.043425*(roll_0 - val)/57.295779;
if (fabs (angle) < 0.0001) angle = 0.0;

}

121

/*
if (ARCHAIC_IGNORE)
{

val = get_adcl (ROLL_ANGLE_CH) ;
/* angle = ((516.578 - val)IS.7572)/57.295779; convert to radians */
/* angle = (-.1737*val + .1737*roll_0)/57.295779;
}
*/
angle = normalize2 (angle);

if (TRACE Sc& DISPLAYSCREEN)
printf ("[finish read_roll_angle () returns %5.3f]\n", angle);

return (angle);
}

/***+********,

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_pitch_angle () /* Return pitch angle in DEGREES */
{

int val;
double angle;

if (TRACE && DISPLAYSCREEN) printf ("[start read_pitch_angle ()]\n");

if (LOCATIONLAB)
{

angle = theta; /* no change, use virtual world value */
if (fabs (angle) < 0.0001) angle = 0.0;

}
else /* in-water */
{

val = get_adc2 (PITCH_ANGLE_CH,0);
/* Next three lines from old method */
/*val = val » 2;*/ /* Quick fix for new res */
/* angle = ((520.153 - val)/8.340)/57.295779; convert to radians */
/♦angle = ((-.1199*val + .1199*pitch_0)/57.295779) ; */
angle = degrees (0.02997*(pitch_0 - val)/57.295779);
if (fabs (angle) < 0.0001) angle = 0.0;

}

/*
if (ARCHAIC_IGNORE)
{

val = get_adcl (PITCH_ANGLE_CH);
/* angle = ((520.153 - val)IS.340)/57.295779; convert to radians */
/* angle = -((-.1199*val + .1199*pitch_0)/57.295779);
}
*/
angle = normalize2 (angle);

if (TRACE &Sc DISPLAYSCREEN)
printf ("[finish read_pitch_angle () returns %5.3f]\n", angle);

return (angle);
}

I* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

double read_heading ()

{

/* Return heading angle with respect to local magnetic north in radians
from directional gyro */

unsigned short dg_bit;
double angle;

if (TRACE && DISPLAYSCREEN) printf (»[start read_heading ()]\n");

122

if (LOCATIONLAB && (DEADRECKON == FALSE))

angle = psi;
if (fabs (angle) < 0.0001) angle = 0.0;

else if (LOCATIONLAB &£c (DEADRECKON))

angle = psi_command;
if (fabs (angle) < 0.0001) angle = 0.0;

else /* in-water */

/*dg_bit = Read_PortAB(MFI_BASE) ;*'/
dg_bit = Read_PortAB(0xFFF00700) ; /* why not a #define here? «« */
/*dg_bit = 10000;*/
dg_bit &= 0x3FFF;

angle = (3.8350e-4)*((double) dg_bit);
/♦printf("Angle = %f %d\n",angle,dg_bit) ;*/
/*if(fabs(angle) < 0.001) angle = 0.0;*/

/*
if (ARCHAIC_IGNORE)
{

dg_bit = Read_PortAB(MFI_BASE);
dg_bit &= 0x3FFF;
angle = (3.8350e-4) * dg_bit;

}
*/

angle = normalize (angle);

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_heading () returns %5.3f]\n", angle);

return (angle);
}

/* — NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE

double read_speed () /* Filter the speed signal
{

static int old_countl,old_count2;
static int start = TRUE;
int count;
unsigned char lobyte,hibyte;
double freq;
double avg_speed;

if (TRACE && DISPLAYSCREEN)
printf ("[start read_speed (), LOCATIONLAB=%d]\n", LOCATIONLAB);

{
if (LOCATIONLAB)

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_speed () returns %5.3f]\n", speed);

return (speed); /* from virtual world-paddlewheel speed = u = surge */

else if (DEADRECKON)
{

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_speed () DEADRECKON returns ");

avg_speed = (speed_per_rpm * (port_rpm + stbd_rpm) / 2.0);
if (TRACE && DISPLAYSCREEN)

printf ("%5.3f]\n", avg_speed);

return (avg_speed);

123

else
{ /* I think this is Dave's speed averaging code */

if(start)
{
old_countl = 0;
old_count2 = 0;
start = FALSE;

}

write_timla(3,tim_la_control_reg,19);
lobyte = read_timlacl(3,tim_la_data_reg);
hibyte = read_timlacl(3,tim_la_data_reg);
count = (int) (256*hibyte) + (int) lobyte;

if((old_countl == count) &&
(old_count2 == count))

{
old_countl = old_count2;
old_count2 = count;
return(0.0);

}

old_countl = old_count2;
old_count2 = count;

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_speed () returns %5.3f]\n", avg_speed);

if(count != 0)
{
freq = (1.0/(2.0*count))* 4.0 »10000.0; /* F3 (10,000 Hz) */

else
{

/* Sensor Not Counting */
freq = 0.0;

}

/* Polyfit for Calibration data in marco:/vault2/marco/AUV/turbo_probe/tp.m */

if(freq >= 4999.0)
{

return(fabs(speed));
}
else
{
return(0.00000973701619*freq*freq + 0.02934498907499*freq + 0.15845400316984),

}
/MmtiMtHtM»*««»*»«»»««*»*»»**«*»«»«»»»«,»»«,,,»»,,,,,,,,»«,,,^,,,,.

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void zero_gyro_data ()
{

int index, val;
int save_trace = TRACE; /* save current TRACE value, restore later */

if (TRACE && DISPLAYSCREEN) printf ("[start zero_gyro_data ()]\n");

/* Marco code has a mode variable for gyro on/off, we assume always on */

if (fabs (dg_offset) < 0.001) dg_offset = 0.0;
/*Z_val0 = adcl(DEPTH_CELL_CH) ;
yaw_rate_0 = get_adcl(YAW_RATE_CH);*/

z_val0 = get_adc2(DEPTH_CELL_CH,0);
pitch_0 = get_adc2(PITCH_ANGLE_CH,0);
roll_0 = get_adc2(ROLL_ANGLE_CH,0);
dg_offset = read_heading ();

124

roll_rate_0
pitch_rate_0
yaw_rate_0

get_adc2(ROLL_RATE_CH,0);
get_adc2(PITCH_RATE_CH,0) ;
get_adc2(YAW_RATE_CH,0);

for
{

(i=0;i<9;++i)

/*z_val0
yaw_rate_0

+= adcl(DEPTH_CELL_CH);
+= get_adcl(YAW_RATE_CH);*/

}

pitch_0 += get_adc2(ll,0);
roll_0 += get_adc2(12,0);
roll_rate_0 += get_adc2(9,0);
pitch_rate_0 += get_adc2(8, 0) ;
yaw_rate_0 += get_adc2(YAW_RATE_CH,0);
dg_offset += read_heading();
z_val0 += get_adc2(DEPTH_CELL_CH,0) ;

tsleep(5);

= dg_offset/10.0;
= z_val0/10;
= pitch_0/10;
= roll_0/10;

ioii_rare_u = roll_rate_0/10;
pitch_rate_0 = pitch_rate_0/10;
yaw_rate_0 = yaw_rate_0/10;

dg_offset
z_val0
pitch_0
roll_0
roll_rate_0

/*psi_bit_old = Read_PortAB(MFI_BASE);*/
psi_bit_old = Read_PortAB(0xFFF00700);
psi_bit_old &= 0x3FFF;

if (TRACE && DISPLAYSCREEN)
{

printf ("roll_0 = %d\n", roll_0);
printf ("roll_rate_0 = %d\n". roll_rate_0);
printf Cpitch_0 = %d\n". pitch_0);
printf ("pitch_rate_0 = %d\n", pitch_rate_0)
printf ("yaw_rate_0 = %d\n". yaw_rate_0);
printf ("z_val0 = %d\n". z_val0);
printf ("dg_offset = %f\n". dg_offset);

if (ARCHAIC_IGNORE)
{

pitch_0
roll_0
roll_rate_0
pitch_rate_0
yaw_rate_0
z_val0
dg_offset

= get_adcl(6)
= get_adcl(7)
= get_adcl(9)
= get_adcl(8)
= get_adcl(10
= get_adc2(0,(
= read_headinc

;
));
J ()

if (TRACE &&

for (index=0;
{

pitch 0
roll_0
roll_rate_
pitch_rats
yaw_rate_C
z_valO

DISPLAYSCREEN)
printf ("[

index<9 9;++index)

+= get_adcl(6)
+= get_adcl(7)

.0 += get_adcl(9)
_0 += get_adcl(8)

+= get_adcl(10
+= get_adc2(0,(

;
));

TRACE
dg_offset
TRACE
tsleep (5)

= FALSE;
+= read_hee
= save_tre

idinc
ice;

J 0;
/
/

[device averaging for 2 seconds.]\n");

/* this is verbose if TRACEd */
' so meanwhile turn off TRACE */
' 256ths of a second */

pitch_0 = pitch_0/100;

125

roll_0 = roll_0/100;
roll_rate_0 = roll_rate_0/100;
pitch_rate_0 = pitch_rate_0/100;
yaw_rate_0 = yaw_rate_0/100;
z_valO = z_val0/100;
dg_offset = dg_offset/100.0;

if (TRACE && DISPLAYSCREEN)
{

printf ("pitch_0 = %d\n", pitch_0);
printf ("roll_0 = %d\n", roll_0);
printf ("roll_rate_0 = %d\n", roll_rate_0);
printf ("pitch_rate_0 = %d\n", pitch_rate_0);
printf ("yaw_rate_0 = %d\n", yaw_rate_0);
printf ("z_valO = %d\n", z_val0);
printf ("dg_offset = %f\n", dg_offset);

}
}

if (TRACE &.&. DISPLAYSCREEN) printf ("[finish zero_gyro_data 0]\n");

return;

} /* end zero_gyro_data () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void zero_surfaces () /* Initialize all planes & rudders to zero */

if (TRACE && DISPLAYSCREEN)
printf ("[start initialize_dacs_zero_actuators ()]\n°);

command_rudder (0.0);
command_planes (0.0) ;

/*
if (ARCHAIC_IGNORE)
{

command_control_surface (BOW_RUDDER_TOP, 0.0)
command_control_surface (BOW_RUDDER_BOTTOM, 0.0)
command_control_surface (BOW_PLANE_STBD/ 0.0)
command_control_surface (BOW_PLANE_PORT, 0.0)
command_control_surface (STERN_RUDDER_TOP, 0.0)
command_control_surface (STERN_RUDDER_BOTTOM,0.0)
coiranand_control_surface (STERN_PLANE_STBD, 0.0)
command_control_surface (STERN_PLANE_PORT, 0.0)

conimand_propellors_off ();
}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish zero_surfaces ()]\n");

return;

} /* end zero_surfaces () */

/»•»«»»»»»«»»«•»HiMtM«»**».**»*».»*««*«»»»»**.««.»**,»*»«»**»!,»***««*/

/* --- VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE — */

void initialize_adcs () /* reconsider casts <«««««««««««««««« */
{ /* is this code even needed <«««««««««««« */

int i,j,val;

if (LOCATIONLAB)
{

return;
}
if (TRACE && DISPLAYSCREEN) printf ("[start initialize_adcs ()]\n");

126

/* Init_PortA(MFI_BASE,0);
Init_PortB(MFI_BASE,0); */

Init_PortA(0xFFF00700,0) ; /* appears to be archaic ««««« */
Init_PortB(0xFFF00700,0);

for (i=0;i<4;++i) /* Stabilize ada-1 card by reading it a few times */
{

for(j=0;j<8;++j)
{

val = get_adcl (j);
}

}
if (TRACE && DISPLAYSCREEN) printf ("[finish initialize_adcs ()]\n");

/*
if (ARCHAIC_IGNORE)
{

if (LOCATIONLAB == FALSE) /* not in virtual world, read slots */
/* {

/* Initialize MFI channels: 0 = input port, 1 = output port */

/* Init_PortA ((struct MFI_PIA *) MFI_BASE, MFI_INPUT_PORT);
Init_PortB ((struct MFI_PIA *) MFI_BASE, MFI_INPUT_PORT) ;

}
}
*/

return;

} /* end initialize_adcs */

void init_pia ()
{

if (LOCATIONLAB)
{

return;
}
via0[ORA_IRA] = OxFF;
via0[ORB_IRB] = OxFF;

viaO[DDRA] = OxFF; /* Enable VIAO for Writing */
viaO[DDRB] = OxFF;

via0[ORA_IRA] = OxFF;
via0[ORB_IRB] = OxFF;

via0a_reg = OxFF;
via0b_reg = OxFF;

vial[DDRA] = 0x00; /* Enable VIA1 for reading */
vialtDDRB] = 0x00;

tsleep(lOO); /* Let Things Cool Off */

/* Initialize tim_la cards, mode = 0 init encoders only, init = 1 encoders */
/* and fins */

void init_timla(mode)
int mode;

{
int i,j;

if (LOCATIONLAB)
{

return;
}

/*
counter 1, Card 1 - front rudder top, rear rudder bottom

127

counter 2, Card 1 - front rudder bottom, rear rudder top

counter 3, Card 1 - front plane left, rear plane right

counter 4, Card 1 - front plane right, rear plane left
V

if(mode)
{

/* Init control surface card 1 */
write_timla(l,tim_la_control_reg,255); /* reset all board functions */
write_timla(l,tim_la_control_reg,23); /* select mastermode register */
write_timla(l,tim_la_data_reg,176); /* lobyte enables 8 bit,binary, */

/* fout */
write_timla(l,tim_la_data_reg,65); /* hibyte enable fout = lmhz etc */
write_timla(l,tim_la_control_reg,249); /* disable write prefetch */

/* for (i=25;i<=28;i++) Use this if new chip installed */
for (j=9;j<=12;j++) /* This is done since signal gets inverted */

/* Counters 1-4 Only */
{

write_timla(l,tim_la_control_reg,j); /* high output time about 8ms */
write_timla(l,tim_la_data_reg,0); /* load all hold registers */
write_timla(l,tim_la_data_reg,150); /* lobyte = 0 hibyte = 155 for */

/* 1 mhz */
}

for (j=l;j<=4;j++) /* Counters 1-4 Only */
{

write_timla(l,tim_la_control_reg,j); /* program all counter mode */
/* registers see mode j */

write_timla(l,tim_la_data_reg,98); /* lobyte = reload from load */
/* or hold, count repeat */

write_timla(l,tim_la_data_reg,27); /* higyte = nogate,count on */
/* falling edge lmhz */

}
} /* End if(mode) */

/* Init speed sensor cards 2 & 3 */

/*
counter 1, Card 2 - BOW VERTICAL THRUSTER SPEED

counter 2, Card 2 - BOW LATERAL THRUSTER SPEED

counter 3, Card 2 - STERN VERTICAL THRUSTER SPEED

counter 4, Card 2 - STERN LATERAL THRUSTER SPEED

counter 1, Card 3 - LEFT SCREW SPEED

counter 2, Card 3 - RIGHT SCREW SPEED

counter 3, Card 3 - TURBO PROBE SPEED
*/

for(i=2;i<=3;++i) /* Program Master Mode Reg. for Cards 2 & 3 */
{

write_timla(i,tim_la_control_reg,Oxff); /* Reset All Board Functions */
write_timla(i,tim_la_control_reg,0xl7) ,- /* Select Master Mode Reg. */
write_timla(i,tim_la_data_reg,OxbO);
write_timla(i,tim_la_data_reg,Oxcl);

}

for(j=l;j<=4;++j) /* Program Counters 1-4, Card 2 */
{

write_timla(2,tim_la_control_reg,j);
write_timla(2,tim_la_data_reg,Oxaa);
write_timla(2,tim_la_data_reg,203); /* Set for Fl (lMhz) */

}

for(j=9;j<=12;++j) /* Set LOAD Reg 1-4 to Zero, Card 2 */
{

128

write_timla(2,tim_la_control_reg,j)
write_timla(2,tim_la_data_reg,0x00)
write_timla(2,tim_la_data_reg,0x00)

write_timla(2,tim_la_control_reg,0x4f); /* Load Counters 1-4 Card 2 */
write_timla(2,tim_la_control_reg,0x2f); /* Arm Counters 1-4 Card 2 */

write_timla(2,tim_la_aux_gates_reg,Oxff); /* SET AUX GATES HIGH TO WORK! */

for(j=l;j<=3;++j) /* Program Counters 1-3, Card 3 */
{

wrlte_timla(3,tim_la_control_reg,j);
write_timla(3,tim_la_data_reg,Oxaa);

/* Fl = 203 = OxCB = 1 Mhz
F2 = 204 = OxCC = 100 Khz
F3 = 205.= OxCD = 10 Khz
F4 = 206 = OxCE =1 Kz
F5 = 207 = OxCF = 100 Hz

*/

if (j==3)
{

/* Turbo Probe */
write_timla(3,tim_la_data_reg,205); /* Set Counter 3 for F (hz) */

}
else
{

write_timla(3,tim_la_data_reg,203); /*Set Counters 1-2 for Fl (lMhz)*/
}

}

for(j=9;j<=ll;++j) /* Set LOAD Reg 1-3 to Zero, Card 3 */
{

write_timla(3,tim_la_control_reg,j)
write_timla(3,tim_la_data_reg,0x00)
write_timla(3,tim_la_data_reg,0x00)

}

write_timla(3,tim_la_control_reg,0x47);
write_timla(3,tim_la_control_reg,0x27);

/* Load Counters 1-3 Card 3 */
/* Arm Counters 1-3 Card 3 */

write_timla(3,tim_la_aux_gates_reg,0xff); /* SET AUX GATES HIGH TO WORK! */

void thruster_power(onoff)
/* A signal inverter has been placed between the pia card and the power

supplies for the thrusters, so in order to turn them on, bits for these
must be set low */

int onoff;
{

if (LOCATIONLAB)

return;
{

}
switch(onoff)
{

case 0: /* TURN OFF */
via0a_reg = via0a_reg | 0x3C; /* Set bits PA2-PA5 High retaining */

/* other bits */
via0[ORA_IRA] = via0a_reg;
break;

case 1:
via0a_reg = via0a_reg & 0xC3; /* Set bits PA2-PA5 Low retaining */

/* other bits */
via0[ORA_IRA] = via0a_reg;
break;

129

}

void screw_power(onoff)
/* A signal inverter has been placed between the pia card and the power

supplies for the thrusters, so in order to turn them on, bits for these
must be set low */

int onoff;
{

if (LOCATIONLAB)
{

return;
}
switch(onoff)
{

case 0: /* TURN OFF */
via0a_reg = via0a_reg | 0x03; /* Set bits PA0-PA1 High retaining */

/* other bits */
via0[ORA_IRA] = via0a_reg;
break;

case 1:
via0a_reg = via0a_reg & OxFC; /* Set bits PA0-PA1 Low retaining */

/* other bits */
viaO[OPA_IRA] = via0a_reg;
break;

}

/•it***********************************/

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void command_control_surface (angle, surface)

double angle;

int surface;

{
/* This function sends the desired ANGLE to the specified control SURFACE

The angle is first normalized to (-45 to 45 degrees), then correction is
applied for the nonlinearity in the servo control module */

/* Connections are:
pin 1 = control
pin 2 = ground
pin 3 =5 volts

useful pulse widths are 600 to 2500 ms
this program ouputs positive going pulses with a 8 ms delay between pulses
this program is set up for a 1 MHz board */

int skip_pulse;
int pulse,hipulse,lopulse,n,m,dis,larm;
unsigned char card;

int volt; /* archaic */
double a,b,c,d; /* archaic */

int old_pulsel = -1
int old_pulse2 = -1
int old_pulse3 = -1
int old_pulse4 = -1

/* Init Old Pulses for cont. surfrace servos */

if (FALSE && DISPLAYSCREEN)
printf ("[start command_control_surface ()]\n");

130

if (LOCATIONLAB)
{

return; /* no action required in virtual world
}

/* pulse = 39.32*angle + 5171;*/ /* angle (deg)*/
pulse = ((int) 2252.87*angle) + 5171; /* Calib for Vehicle Servo angle

(rad) */
hipulse = pulse/256;
lopulse = pulse - (hipulse*256);

skip_pulse = FALSE;

switch(surface)
{
case 1:

n = 25;
m = 233;
dis = OxCl;
larm = 0x61;

if(pulse == old_pulsel) skip_pulse = TRUE;
old_pulsel = pulse;
break;

case 2:
n = 26;
m = 234;
dis = 0xC2;
larm = 0x62 ;

if(pulse == old_pulse2) skip_pulse = TRUE;
old_pulse2 = pulse;
break;

case 3:
n = 27;
m = 235;
dis = 0xC4;
larm = 0x64;

if(pulse == old_pulse3) skip_pulse = TRUE;
old_pulse3 = pulse;
break;

case 4:
n = 28;
m = 236;
dis = 0xC8;
larm = 0x68;

if(pulse == old_pulse4) skip_pulse = TRUE;
old_pulse4 = pulse;
break;

default:
printf("Invalid surface code\n");
break;

}
if(!skip_pulse) /* SKIP resetting of freq out if command angle has not*/

/* changed. Otherwise servo will chatter at frequency */
/♦of control loop when command angle does not change */

write_timla(l,tim_la_control_reg,dis);
write_timla(1,tim_la_control_reg,n);
write_timla(1,tim_la_data_reg,lopulse);
write_timla(1,tim_la_data_reg,hipulse);
write_timla(l,tim_la_control_reg,m);
write_timla(1,tim_la_control_reg,larm);

}

131

if (ARCHAIC_IGNORE)
{

a = 1.2487e-4;
b = -2.9087e-2;
c = 5.0927;
d = 500.6576;

angle = angle*57.295779; /* Convert RADIANS to DEGREES */

/* if ((angle < -22.92) || (angle > 22.92))
{

/* Plane saturated set to +- 45 */
/* angle = 22.92*angle/fabs(angle);

}

volt = a*pow(angle,3.) + b*pow(angle,2.) + c*angle + d;

send_dac2b (volt,surface);
}
*/

if (FALSE && DISPLAYSCREEN)
printf ("[finish conraiand_control_surface ()]\n");

return;

} /* command_control_surface () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void command_rudder (angle)

/* Send angular deflection (DEGREES) to rudders.
Convention (+) angle forward rudder => auv right turn,

(-) angle forward rudder => auv left turn */

double angle;
{

if (TRACE && DISPLAYSCREEN) printf ("[start command_rudder ()]\n");

/* top/bottom surfaces are slaved due to inadequate DAC card channels */

/* positive forward rudder angle pushes bow to right => positive psi rate*/

angle = radians (angle); /*■ convert degrees to radians */

coiranand_control_surface (angle, BOW_RUDDER_TOP) ,-
/* command_control_surface (angle, BOW_RUDDER_BOTTOM); hardware error */

command_control_surface (-angle, STERN_RUDDER_TOP);
/* command_control_surface (-angle, STERN_RUDDER_BOTTOM); hardware error */

/*
if (ARCHAIC_IGNORE)
{

command_control_surface (BOW_RUDDER_TOP, -angle);
command_control_surface (BOW_RUDDER_BOTTOM, angle);
command_control_surface (STERN_RUDDER_TOP, angle);
command_control_surface (STERN_RUDDER_BOTTOM, -angle) ,-

*/
if (TRACE && DISPLAYSCREEN) printf ("[finish command_rudder 0]\n");

return; .

} /* end command_rudder () */

/«mm«»«»»«««»««»««»»«»»»«»»»»»»»«»««»«»»»»»«»»»,,!»»,,,,,»,,,,,,,,

/* --- VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE — */

132

void command_planes (angle)

/* Send angular deflection (RADIANS) to bow and stern planes. Convention:
(-) bow plane angle => auv dive, (+) bow plane angle => auv rise
where auv dive = positive depth rate, auv rise = negative depth rate */

double angle;
{

if (TRACE && DISPLAYSCREEN) printf ("[start command_planes 0]\n");

/* left/right surfaces are slaved due to inadequate DAC card channels */

/* positive planes angle pushes bow up, yields negative depth rate */

angle = radians (angle);

command_control_surface (angle, BOW_PLANE_STBD);
/* command_control_surface (-angle, BOW_PLANE_PORT); combined stern stbd */

command_control_surface (-angle, STERN_PLANE_STBD);
/* command_control_surface (angle, STERN_PLANE_PORT) ,- combined bow stbd */

/*
if (ARCHAIC_IGNORE)
{

command_control_surface (BOW_PLANE_STBD,- angle)
command_control_surface (BOW_PLANE_PORT, -angle)
command_control_surface (STERN_PLANE_STBD, -angle)
command_control_surface (STERN_PLANE_PORT, angle)

*/
if (TRACE && DISPLAYSCREEN) printf ("[finish command_planes ()]\n");

return;

} /* end command_planes () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void command_propellors_off () /* Turn off both main propellors */

if (TRACE && DISPLAYSCREEN)
printf ("[start command_propellors_off ()]\nn);

command_motor (0.0, PORT_PROP);
command_motor (0.0, STBD_PROP);

/*
if (ARCHAIC_IGNORE)
{

send_dac1(512, SUPPLY);
send_dacl(512, RIGHT_MOTOR);
s end_dac1(512, LEFT_MOTOR);

}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish command_propellors_off 0]\n");

return;

} /* end command_propellors_off () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void command_thrusters_off () /* Turn off both main propellers */

if (TRACE && DISPLAYSCREEN)
printf ("[start command_thrusters_off ()]\n");

133

PORT_PROP RPM
STBD_PROP RPM
BOW_VERTICAL volts

STERN VERTICAL volts
BOW_LATERAL volts

STERN_LATERAL volts

command_motor (0.0, BOW_VERTICAL);
command_motor (0.0, STERN_VERTICAL) ;
command_motor (0.0, BOW_LATERAL) ;
command_motor (0.0, STERN_LATERAL);

/*
if (ARCHAIC_IGNORE)
{

send_dacl(512, SUPPLY);
send_dacl(512, RIGHT_MOTOR);
send_dacl(512, LEFT_MOTOR);

}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish command_thrusters_off 0]\n");

return;

} /* end coiranand_thrusters_of f 0 */

z**^

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void command_motor (order, motor)
double order; int motor;

{
/* motor = 0 Left Propeller

1 Right Propeller
2 Bow Vertical Thruster
3 Bow Lateral Thruster
4 Stern Vertical Thruster
5 Stern Lateral Thruster

*/
/* use local variables to permit clamping without side effects */

int dac_value = 0; /* range 0..1023 */
double propellor_rpm = order; /* propellors -700.. 700 rpm */
double thruster_volts = order; /* thrusters -24.. 24 volts */

if (TRACE && DISPLAYSCREEN)
printf ("[start command_motor 0]\n");

if ((motor == PORT_PROP) || (motor == STBD_PROP))
{

clamp (&propellor_rpm, -700.0, 700.0, "command_motor (): propellor_rpm");

if (motor == PORT_PROP)
dac_value = port_speed_control (propellor_rpm / 60.0);

if (motor == STBD_PROP)
dac_value = stbd_speed_control (propellor_rpm / 60.0);

if (TRACE && DISPLAYSCREEN)
{

if (motor == PORT_PROP) printf ("[PORT ");
else if (motor == STBD_PROP) printf ("[STBD ");
printf ("propellor_rpm = %5.1f, dac_value = %d]\n",

propellor_rpm, dac_value);
}

}
else if ((motor == BOW_VERTICAL) || (motor == STERN_VERTICAL)

| | (motor == BOW_LATERAL) j j (motor == STERN_LATERAL))
{

clamp (&thruster_volts,-24.0,24.0,"command_motors (): thruster_volts");

dac_value = (int) ((thruster_volts + 24.0) * 1023.0 / 48.0);

if (TRACE && DISPLAYSCREEN)
printf ("[thruster_volts = %5.1f, dac_value = %d]\n",

thruster_volts, dac_value);
}
else /* erroneous motor number selected */

134

{
if (TRACE && DISPLAYSCREEN)

printf ("[command_motor (): erroneous order/motor (%5.1f/%d)]\n",
order,motor);

return;
}

send_dac2b (dac_value, motor);

/*
if (ARCHAIC_IGNORE)
{

send_dacl(512, SUPPLY);
send_dacl(512, RIGHT_MOTOR);
send_dacl(512, LEFT_MOTOR);

}
*/

if (TRACE && DISPLAYSCREEN)
printf ("[finish command_motor ()]\n");

return;

} /* end command_motor () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void test_alive (interval, local_start_dwell) /* no longer used by Dave? <« */

unsigned int interval;
int local_start_dwell;

{
unsigned int iinterval,jinterval,•
double test_delta;

if (TRACE && DISPLAYSCREEN) printf ("[start test_alive ()]\n");

local_start_dwell = local_start_dwell*100;
interval = interval*100;
iinterval = local_start_dwell/interval;
jinterval = 0;
test_delta = .4; /* Deflect 22.5 degrees */

while(jinterval < iinterval)
{

command_control_surface (BOW_RUDDER_TOP, test_delta);
tsleep(interval); /* 256ths of a second */
test_delta = -test_delta;
jinterval = jinterval + 1;

}

tsleep(200) ,- /* 256ths of a second */

if (TRACE && DISPLAYSCREEN) printf ("[finish test_alive ()]\n");

return;
}

/«**t«**.»mn*»n«m«.m«*t*.t«ttt4»t4»tt,4t„,t4t„„„„j,t„,„Jr)r„1

/* --- NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE — */

void get_init_avg () /* sonar ??? better name needed !!!! «« */

int index, rng_sum;

if (TRACE && DISPLAYSCREEN) printf ("[start get_init_avg ()]\n");

,rng_sum = 0;
range_index = 0;

135

for(index = 0; index < AVG_PTS; ++index)
{
via0[ORB_IRB] = (S0NAR_SW1 & S0NAR_SW3) | S0NARJTRIG2;
via0[ORB_IRB] = S0NAR_SW1 & S0NAR_SW3;
tsleep(5);
range = get_adc2 (3,0);

rng_sum += range;
range_array[index] = range;
++range_index;

}
avg_rng = (rng_sum/AVG_PTS) * 1.0;

if (TRACE && DISPLAYSCREEN) printf ("[finish get_init_avg ()]\nn);

return;
}

/***************+*****************+*****************•**************************>

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void get_avg_rng ()
{

int index, UPDATE_AVG, int_rng_sum;

if (TRACE && DISPLAYSCREEN) printf ("[start get_avg_rng ()]\nn);

UPDATE_AVG = 0;
int_rng_sum = 0;

if (((double)range > avg_rng) ||
(fabs((double)range - avg_rng) <= MAX_RNG_DIFF) ||
(bad_rng >= MAX_BAD_PTS))

{
range_array[range_index] = range;
++range_index;
UPDATE_AVG = 1;
if(bad_rng > MAX_BAD_PTS)

{
++bad_updates;

}
if(bad_updates >= MIN_NO_PTS)

{
bad_rng = 0;

}
}

else
{
++bad_rng;

}

if(UPDATE_AVG)
{
for(index = range_index - AVG_PTS; index <= range_index; ++index)

{
int_rng_sum += range_array[index] ;

}

avg_rng = int_rng_sum/AVG_PTS * 1.0;
}
if (TRACE && DISPLAYSCREEN) printf ("[finish get_avg_rng ()]\n");

return;
}

/*
Lab hardware control changes »FOLLOWING* hardware upgrade 1993:

Telemetry to tactical level: serial port /Tl via driver /TT

136

Orders from tactical level: parallel port /P via MFI register A

Sonar: interface card device driver /T3

*/
/*«HMMM«.tHmt«»»,M,HttHMM»H4«HM»»*tHMMHnn),«,j„.«„,,

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE /SOFTWARE --- */

void open_device_paths ()
{

if (TRACE && DISPLAYSCREEN) printf ("[start open_device_paths ()]\n");

#if (defined(sgi) || defined(sun))
#else

/* either /tl serial port #1 or /tt (high baud rate driver for /tl) */
serialpath = open ("/tl", S_IREAD + S_IWRITE); /* get path number */
/* /tt is device for high baud rate /tl serial port */
if (serialpath <= 0)
{

printf ("open_device_paths (): unable to open serialpath /tl. ") ,-
printf ("Exit.\n");
exit (-1);

}
if (TRACE && DISPLAYSCREEN)

printf ("[serialpath /tl (normal baud rate) open, path number = %d]\n",
serialpath) ,-

if (SONARINSTALLED)
{

sonarpath = open ("/t3", S_IREAD + S_IWRITE); /* get path number */
/* /t3 is device for sonar interface card */
if (sonarpath <= 0)
{

printf ("open_device_paths (): unable to open sonarpath /t3. ");
printf ("Exit.\n") ,-
exit (-1);

}
if (TRACE && DISPLAYSCREEN)

printf ("[sonarpath /t3 open, path number = %d]\n", sonarpath);

tty_mode (sonarpath,1); /* initialize sonar values */
}
else if (TRACE && DISPLAYSCREEN)

printf ("[sonarpath /t3 ignored, SONARINSTALLED == FALSE]\n");

/* other paths: effectors, depth_sonar, etc. ****************************/

#endif
if (TRACE && DISPLAYSCREEN) printf ("[finish open_device_paths ()]\n");

return;
}

/* — NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE --- */

void close_device_paths ()
{

if (TRACE && DISPLAYSCREEN) printf ("[start close_device_paths ()]\n");

if (serialpath > 0) close (serialpath); /* test for open before closing */

else if (TRACE && DISPLAYSCREEN) printf ("[serialpath was not open!]\n");

if (SONARINSTALLED)
{

if (sonarpath > 0) close (sonarpath);

else if (TRACE s=& DISPLAYSCREEN) printf (" [sonarpath was not open!]\n");

137

/* other paths: effectors, depth_sonar, etc. ««««««««««««« */

if (TRACE && DISPLAYSCREEN) printf ("[finish close_device_paths 0]\n");

return;
}
/**+*•*************************/

/* NOT YET UPDATED TO CURRENT/OPERATIONALMARCO AUV HARDWARE/SOFTWARE */

/* may be unneeded in next version */

void read_parallel_port () /* loop and display 8 bit data from port A */
{

static char next_char, last_char;
static char current_command [256];
static int index;
unsigned char temp;

.return;

if (TRACE && DISPLAYSCREEN)
{

printf ("[start read_parallel_port (),");
if (PARALLELPORTTRACE) printf ("PARALLELPORTTRACE is ON] \n") ;
else printf ("PARALLELPORTTRACE is OFF]\n");

}
/* see initialize_adcs () for Init_PortA & B code */

#if (defined(sgi) || defined(sun))
#else

/* Read PortA parallel port character by character for tactical orders */
/* reference: Walt Landaker's mfi_a3.c in directory /hO/AUV and */
/* page 3-12 of Motorola 6800 Series Manual for 6821 PIA */
/* Programmable Interface Adapter. */

/* Warning! You may have to reset both computers to get the parallel */
/* port to read & write properly. Additionally, */
/* on the 386 you can run PORTFIX to reset parallel port LPT1: */

temp = Read_PortA ((struct MFI_PIA *) MFI_BASE); /* should clear busy! */

index = 0;

/* read port status (note sta not stb) */
PortAFlag = ck_sta ((struct MFI_PIA *) MFI_BASE);

if (PARALLELPORTTRACE && DISPLAYSCREEN)
printf ("\n [time %5.2f read_parallel_port () resumed]", t);

while (PortAFlag && 0x80) /* see loop break for alternate exit */
{

/* Note that ck_stb is used in mfi_a3 but ck_sta makes more sense */
PortAFlag = ck_sta ((struct MFI_PIA *) MFI_BASE); /* read port status */
last_char = next_char; /* read char and reset busy */
next_char = Read_PortA((struct MFI_PIA *) MFI_BASE);

if ((PortAFlag == 0x24) && (last_char == next_char)) break;

/* if next_char changed then flag may be messed up, read anyway */
/* check for ptr strobe */
/* break => no character waiting */
/* control passes outside while loop */

else if (next_char == 13) /* CR indicates end of line */
{

current_command [index] = 13
current_command [lndex+1] =10
current_command [index+2] = 0
index = 0;

if (auvtextfile!=NULL)

/* CR /n */
/* LF extra, not needed */
/* end of string delimiter */

138

fprintf (auvtextfile, "%s", current_command);
fflush (auvtextfile); /* force completion of file write */

f (DISPLAYSCREEN)

printf ("\n\n»> time %5.2f tactical message <«\n", t) ;
printf ("%s", current_command);
printf ("\n");

******** insert command processing logic here «««<««««« */

}
else if (next_char != 10) /* LF ignored, others appended */
{

current_command [index] = next_char;
index ++;
if (PARALLELPORTTRACE && DISPLAYSCREEN)
{

/* print character to screen */
printf ("\n %c = %2x, PortAFlag after reading = %4x]

next_char, next_char, PortAFlag);
}

}
} /* end while loop to read characters from port */

if (PARALLELPORTTRACE && DISPLAYSCREEN)
{

printf(" [%c = %2x, PortAFlag = %2x, exiting read_parallel_port ()]",
next_char, next_char, PortAFlag);

}
#endif

if (TRACE && DISPLAYSCREEN) printf ("[finish read_parallel_port 0]\n");

return;

} /* end read_parallel_port */

/* Card arrangement in AUV *PRIOR* to hardware upgrade 1993:

MFI | <-- Direct
Reg A and B j Gyro

adc-2 I <— Sonars
(0 - 15)

Main motors --> | ada-1 dac | | ada-1 adc I <-- Gyros
1(0-3) || (0 - 15) |

dac-2b | <— Planes
(0 - 7) |

This file contains the functions which address the A/D D/A cards
directly in terms of voltages. */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

139

/* this function is full of unreachable statements, ask Dave «««««««« */

unsigned char read_timlacl (card, reg)

unsigned card;
unsigned char reg;

{
unsigned char data;

if (TRACE && DISPLAYSCREEN) printf ("[start read_timlacl ()]\n">;

switch (card)
{

case 1:
return(tim_lacl [reg]) ,-
data = tim_lacl[3]; /* Wait 2uS, one access to address (RTC) */
break;

case 2:
return(tim_lac2[reg]);
data = tim_lac2[3]; /* Wait 2uS, one access to address (RTC) */
break;

case 3:
return(tim_lac3[reg]);
data = tim_lac3[3]; /* Wait 2uS, one access to address (RTC) */
break;

default:
if (DISPLAYSCREEN)

printf ("[read_timlacl (): invalid card (%d)]\n", card);
return (0);

}

if (TRACE && DISPLAYSCREEN)
printf ("[finish read_timlacl () = %d]\n", data);

return (data); /* is this correct ?? */

} /* end read_timlacl () */

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void write_timla (card, reg, value)

unsigned card;
unsigned char reg, value;

{

unsigned char data; /* Dummy Data for delay */

if (LOCATIONLAB) return; /* avoid bus error writing to restricted memory */

if (TRACE && DISPLAYSCREEN) printf ("[start write_timla <)]\n");

switch (card)
{

case 1:
tim_lacl[reg] = value;
data = tim_lacl[3]; /* Wait 2uS, one access address (RTC) */
break;

case 2:
tim_lac2[reg] = value;
data = tim_lac2[3]; /* Wait 2uS, one access address (RTC) */
break;

case 3:
tim_lac3[reg] = value;
data = tim_lac3[3]; /* Wait 2uS, one access address (RTC) */

140

break;

default:
if (DISPLAYSCREEN)
printf ("[write_timla () error: illegal card value (%d)]\n", card);
break;

}
if (TRACE && DISPLAYSCREEN) printf ("[finish write_timla ()]\n");

return;

} /* end write_timla () */

/*»****tH4»»*«*tjt«t*tlm.mt*t*H*«»4**»i,**t(,«*»»i,Mt*lr**»»«««i,ti,itt»t«my

* send_dacl(s,ch) — writes signal 's' to ada-1 dac channel 'ch'
* (allowable channels 0-3)
*** **********************,,*,

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* no longer used.. . */

void send_dacl (s,ch)
int s,ch;
{
if (LOCATIONLAB) /* in virtual world, do not read any slots */

return;
}

/*
if (NOT_YET_REIMPLEMENTED)
{

ch = ch « 2; /* offset for G-96 addressing */
/* dacl_a[ch] = s » 2; /* write upper 8 bits to MSB */
/* dacl_a[ch + DAC_LSB_OFFSET] = s « 6; /* write lower 2 bits B3,B2 */
/*}*/

return;
} /* send_dacl */

* send_dac2b (s,ch) — writes signal 's' to dac2b dac channel 'ch'
* (allowable channels 0-15)
* «•»••»•»»»»»•Httmmt.ijMmmMtj,,,,,,»,,,,,»,,,,,,,,,,,,,,,,,,,,,,,

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/**
* dac2b(s,ch) — writes signal 's' to dac2b dac channel 'ch'
* (allowable channels 0-7)
* s = 0 --> - 10 Vdc Output
* s = 512 --> 0 Vdc Output
* s = 1024 --> + 10 Vdc Output *
* c
* I
* R 20* *19
* C 18* *17
* Channel 7 —> 16* *15 <-- Ground
* B Channel 6 —> 14* *13 <— Ground
* R Channel 5 --> 12* *11 <-- Ground
* D Channel 4 —> 10* *9 <— Ground •
* Channel 3 —> 8* *7 <— Ground
* S Channel 2 —> 6* *5 <-- Ground
* I Channel 1 —> 4* *3 <— Ground
* D Channel 0 —> 2* *1 <— Ground (Bad)
* E

141

void send_dac2b (s,ch)
int s,ch;

{
if (LOCATIONLAB) return; /* avoid bus error writing to restricted memory */

ch = ch « 2; /* offset for G-96 addressing */
dac2b_a[ch] = s » 2; /* write upper 8 bits to MSB */
/*dac2b_a[ch + DAC_LSB_OFFSET] = s « 6;*/ /* write lower 2 bits B3,B2 */
dac2b_a[ch + 2] = s « 6;

/*
if (ARCHAIC_IGNORE)
{

ch = ch « 2; /* offset for G-96 addressing */
/* dac2b_a[ch] = s » 2; /* write upper 8 bits to MSB */
/* dac2b_a[ch + DAC_LSB_OFFSET] = s « 6; /* write lower 2 bits B3,B2 */
/*} */

return;

} /* send_dac2b */

* get_adcl(n) — reads ada-1 adc channel 'n' (channels 0-15)
•»4444««*4««t»444«t4««««4444«444t444«44444444444444444»4»*444444444444»444»4/

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

int get_adcl (n)
int n;

{
int val;

if (LOCATIONLAB) /* in virtual world, do not read any slots */
{

return (0);
}

/*adcl_a[ADCl_CMD_REG] = n;
while (adcl_a[ADCl_STATUS_REG] > 20);
val = adcl_a[ADCl_MSB] « 2;
val += adcl_a[ADCl_LSB] » 6;*/

adcl_a[4] = n;
while (adcl_a[4] > 20);
val = adcl_a[0] « 2;
val += adcl_a[2] » 6;

/*
if (ARCHAIC_IGNORE)
{

adcl_a[ADCl_CMD_REG] = n;
while (adcl_a[ADCl_STATUS_REG] > 20); /* wait for data */

/* val = adcl_a[ADCl_MSB] « 2;
val += adcl_a[ADCl_LSB] » 6;
return (val);

}
*/

return (val);

} /* get_adcl */

* get_adc2(n,g); -- Reads adc-2 channel 'n' (0-15)
with gain 'g' (0 to F => 0 - 1024)

►**,*,****** /

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

int get_adc2 (n,g)

142

int n,g;
{

int val;

if (LOCATIONLAB) /* in virtual world, do not read any slots */
{

return (0);
}

/*adc2_a[ADC2_CH_GAIN] = (n « 4) | g;*/ /* set c&g, start conv */
/ »while ((adc2_a[ADC2_STATUS_REG] & 0x7) != 0),-*/ /* wait for ready */

adc2_a[0] = (n « 4) | g; /* set c&g, start conv */
while((adc2_a[2] & 0x7) != 0); /* wait for ready */

/* This adc uses 0 - 4095 to represent full scale input, in order
to write to the dac (which uses 0 -1023 for full scale) you
must divide val by 4 or shift right by 2. Use the next line to
get full resolution,
val = adc2_a[ADC2_DATA];
The next line is used for testing purposes only

val = adc2_a[ADC2_DATA] » 2; */

/♦val = adc2_a[ADC2_DATA];*/

val = adc2_a[l] ;
val = val & OxOFFF;

/*if (ARCHAIC_IGNORE)
{

adc2_a[ADC2_CH_GAIN] = (n « 4) | g; /* set c&g, start conv */
/* while((adc2_a[ADC2_STATUS_REG] & 0x7) != 0); /* wait for ready */

/* This adc uses 0 - 4095 to represent full scale input, in order
to write to the dac (which uses 0 -1023 for full scale) you
must divide val by 4 or shift right by 2. Use the next line to
get full resolution,
val = adc2_a [ADC2_DATA] ,-
The next line is used for testing purposes only

val = adc2_a[ADC2_DATA] »2; */
/*

val = adc2_a[ADC2_DATA];
val = val & OxOFFF;

}
*/

return(val);

return (val);

} /* get_adc2 */

/*
The program code for the Multi-Function Interface originated from 'mfi.c'
Routines include Init_PortA, Init_PortB, Read_PortA, Read_PortB, Read_PortAB

Excerpt of 'mfi.c' comments follows:

Program example for the Multi-Function-Interface (MFI)
This example uses the 6821 PIA on the MFI board
General purpose functions are provided to initialize the PIA
and read/write data to the ports

MFI P2 connector definitions are provided by the GESMFI-1 data
sheet available from GESPAC, Inc.

6821 device specifics are covered in the 8-bit microprocessor
& peripheral data book from Motorola Inc.

143

3/1/91 j. Rawlins RealTime Software Consulting

*/

* Init_PortA(base, dir) — Initialize Port A of MFI
* dir: 1 = output port, 0 = input port
««««»»«K.tm.Hi.HttM.HUMJMHH«*.«.««*«.»,»,»,*,»«««**../

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void Init_PortA (base, dir)
register struct MFI_PIA *base;/* base address of MFI board on G96 bus */
int dir; /* direction: 1 = output port, 0 = input port */

register short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */

return;
}
temp = (base->cra & OxOOFF); /* get current value of control A */
temp &= ~4; /* clear bit #2 so we can access ddra */

base->cra = temp;
if < dir) /* make port A all outputs */

base->pra = OxOOFF;
else /* port A is all inputs */

base->pra = 0x0000;
temp |=4; /* set bit #2 to access data registers */
base->cra = temp;

/*
if (ARCHAIC_IGNORE)
{

register short temp;
temp = base->cra; /* save contents of control reg. (no-op) */

/* base->cra = 0x00- '* —■"—•-- *-" - ■
/* base->pra = 0x00
/* base->cra = 0x24

/
/* select: b2 = 0 data direction reg. */
/* set portA: 0 = input */
/* select: access data reg.s (b2=l) */

/* b5=l,b4=0,b3=0(read w/cal restore) */
/*}*/

}/* Init_PortA */

/t****««*.«*.«**««»**,,.»,.«»»,..*..»«,»*.»*..«,,,*»,»»«,,,»,,,,,,,,,,,,

* Init_PortB(base, dir) — Initialize Port B of MFI
* dir: 1 = output port, 0 = input port

/* --- VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE --- */

void Init_PortB (base, dir)
register struct MFI_PIA *base; /* base address of MFI board on G96 bus */
int dir; /* direction: 1 = output base, 0 = input base */

register short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */

return;
}
temp = (base->crb & OxOOFF); /* get current value of control A
temp &= ~4; /* clear bit #2 so we can access ddra
base->crb = temp;
if < dir ' /* make port B all outputs */

/* port B is all inputs */
base->prb = OxOOFF

else
base->prb = 0x0000;

temP 1= 4; /* set bit #2 to access data registers
base->crb = temp; */

144

}/* Init_PortB */

* Read_PortA (base) — returns 8 bit value from port A *

/* --- NOT YET UPDATED TO CURRENT /OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* not found! */

unsigned char Read_PortA (base)

register struct MFI_PIA *base; /* base address of MFI */
{

register unsigned short temp;
temp = base->pra; /* read data reg.should reset busy */
return(temp & OxOOFF); /* return data to calling program */

/»••»«»»«•««HM»»»»«»»»««!»******»«»*«««!.»«!,»»»«*»»«»*»»*«»»»«»«

* Read_PortB (base) — returns 8 bit value from port B
*
• ••««»»»»«t.HtH*«««««»»***«*«*»»«*«*»»««»!!»»»»»,,»,»,,,,,,,,,,,,,,,

/* --- NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* not found! */

unsigned char Read_PortB (base)
register struct MFI_PIA *base; /* base address of MFI */

register unsigned short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */

return (0) ;
}

temp = base->prb;
return(temp & OxOOFF);

}

* Read_PortAB (base) — return a 16 bit value from ports
* A and B combined then mask off
* the 15 th and 16 th bits.
* Note: PIA PA0-PA7 is the LSB and PB0-PB7 the MSB
«*»H***»M»*»H«**»*4«»«H««*Htt*mt,H«*ttt»M*t**i.H**«*i»M«»»H*H*/

/* VERIFIED MATCH CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE — */

unsigned short Read_PortAB (base)
register struct MFI_PIA »base; /* base address of MFI */

register unsigned short hi,lo,temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */

return (0);
)

lo = (base->pra & OxOOFF); /* get least significant byte from A */
hi = (base->prb & OxOOFF); /* and most significant byte from B */
temp = ((hi « 8) + lo); /* shift hi into upper byte of word */
return (temp); /* return data */

}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* not found! */

145

void set_bsyA(base) /* sets CB2 high (for busy to sending port) */

register struct MFI_PIA *base; /* base address of MFI */
{

register short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */
{

return;
}
temp = (base->cra & OxFF); /* save era values */
base->cra = 0x38; /* 8 bit 1= CR2 high */
base->cra = temp; /* restore era values */

}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* not found! */

/* sets CB2 low (for -busy to sending port) */
void rstJbsyA(base)
register struct MFI_PIA *base; /* base address of MFI */
{

register short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */
{

return;
}
temp = (base->cra & OxFF); /* save era values */
base->cra = 0x30; /* 8 bit 0= CR2 low */
base->cra = temp; /* restore era values */

}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

/* not found! */

int ck_sta (base)
register struct MFI_PIA *base; /* base address of MFI */
{

register unsigned short temp;

if (LOCATIONLAB) /* in virtual world, do not read any slots */
{

return (0);
}
temp = base->cra; /* save era values */
return (temp);

}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void center_sonar ()
{

int direction,encoder_width;
char encode;

if (! SONARINSTALLED)
{

printf ("[start/stop center_sonar, SONARINSTALLED false]\n");
return;

}

if (TRACE && DISPLAYSCREEN) printf ("[start center_sonar 0]\n");

encoder_width = 0;
direction = 1;

/* set_step_size('H') ; */ /* '1' = 0.9, '2' = 1.8, '4' = 3.6 */

146

/* Are we inside the Encoder Sensor ? */
encode = query_sonar_l_reply CM'); /* Test Head Direction (No Step) */
if (SONARTRACE && DISPLAYSCREEN)

printf("center_sonar: encode = %c\n",encode) ;

if ((encode == 't') || (encode == "I"))
{

while((encode == 't') II (encode == "I"))
{

encode = query_sonar_l_reply ('+'); /* Index Sonar '+' direction */

}

/* Outside Encoder Sensor Now */
direction = -1; /* Reverse Sonar Rotation to Establish Encoder Width */

while ((encode == ' f)
{

if(direction == 1)
{

(encode == 'F'))

encode = query_sonar_l_reply ('+'); /* Index Sonar '+' direction */
if (SONARTRACE && DISPLAYSCREEN) printf("%c\n",encode);

}
else
{

encode = query_sonar_l_reply ('- /* Index Sonar '-' direction */

}

/* Found Edge of Encoder */
while((encode == ■ f) || (encode == 'T'))
{

encoder_width = encoder_width + 1;

if(direction == 1)
{

encode = query_sonar_l_reply ('+'); /* Index Sonar '+' direction */
}
else
{

encode = query_sonar_l_reply ('-'); /* Index Sonar '-' direction */

if (SONARTRACE && DISPLAYSCREEN)
printf ("center_sonar: encoder width = %d\n",encoder_width);

if (TRACE && DISPLAYSCREEN) printf ("[finish center_sonar 0]\n"),-

return;

} /* end center_sonar () */

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

char guery_sonar_l_reply (command_char)

char command_char;

{
/* code tested & taken from headtest.c (prior version ahead.c)

int index,n,n_bytes;
char reply,xx[20],c[l];

if (! SONARINSTALLED)
{

printf ("[start/stop query_sonar_l_reply (), SONARINSTALLED false]\n"]
reply = ' ';
return (reply),-

147

}

if (TRACE && DISPLAYSCREEN) printf ("[start query_sonar_l_reply ()]\n");

/* likely string problems here <««««««««««««««««««««« */
c[0] = command_char;
if (SONARTRACE && DISPLAYSCREEN)

printf ("guery_sonar_l_reply: command_char = %c\n", command_char);
n = write (sonarpath,c,1); /* write characters to sonarpath /t3 device */
tsleep(lO);

n_bytes = _gs_rdy (sonarpath);
if (SONARTRACE && (n_bytes > 1) && DISPLAYSCREEN)

printf ("query_sonar_l_reply: lost reply data, n_bytes = %d\n",n_bytes);

if (n_bytes <= 0)
{

printf("query_sonar_l_reply: bad read, n_bytes = %d\n",n_bytes);

else
{

n = read (sonarpath,xx,n_bytes); /* n unused?????? */

if (SONARTRACE && (n_bytes > 0) && DISPLAYSCREEN)
{

for (index = 0; index < n_bytes; index++)
{

printf("[%c %2d %2x] ", xx[index], xx[index], xxtindex]);
if ((index+1) % 5 == 0)

printf("\n"); /* prevent writing off screen */
}
printf("\n");

}
}
reply = xx[0];

if (TRACE && DISPLAYSCREEN)
printf ("[finish query_sonar_l_reply () returns %c]\n", reply);

return (reply);
}

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE -— */

void set_step_size (step_code)

char step_code;
{

unsigned int n;
char reply;

if (! SONARINSTALLED)
{

printf ("[start/stop set_step_size (), SONARINSTALLED false] \n") ,-
return;

}

if (TRACE && DISPLAYSCREEN) printf ("[start set_step_size ()]\n»);

if (SONARTRACE && DISPLAYSCREEN) printf ("step code = %c\n",step_code);
write (sonarpath,step_code,1);
tsleep (1); /* 256ths of a second */

n = read (sonarpath, reply, 1); /* n unused?????? */

if (SONARTRACE && DISPLAYSCREEN) printf("step = %c\n",reply);

if (TRACE && DISPLAYSCREEN) printf ("[finish set_step_size ()]\n");

return;

148

/************************************^ fr**************** /

/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE/SOFTWARE */

void tty_mode (tty_mode_path, mode)

int tty_mode_path;
int mode; /* note type specifications differ from headtest.c */

static struct sgbuf old,new;
static int init = 1;
int status;

if (! SONARINSTALLED)
{

if (TRACE ScSc DISPLAYSCREEN)
printf ("[start/stop tty_mode, SONARINSTALLED false 0]\n"

return;
}

if (init)
{

if (TRACE && DISPLAYSCREEN) printf ("[start tty_mode ()]\n");

init = 0;
status = _gs_opt(tty_mode_path, &old);
status = _gs_opt(tty_mode_path, &new);

new
new
new
new
new
new.
new
new
new
new
new
new.
new.
new
new
new
new
new.
new.
new
new
new.
new
new
new.
new.

sg_class = 0
sg_case = 0
sg_backsp = 0
sg_delete = 0
sg_echo
sg_alf
sg_nulls
sg_pause
sg_page
sg_bspch
sg_dlnch
sg_eorch
sg_eofch
sg_rlnch
sg_dulnch
sg_psch
sg_kbich = 0
sg_kbach = 0
sg_bsech = 0
sg_bellch = 0
sg_parity = 0
sg_tabcr = 0
sg_tabsiz = 0
sg_tbl = 0
sg_col = 0
sg_err = 0

= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0

0

if (mode) _ss_opt (tty_mode_path, &new);
else _ss_opt (tty_mode_path, Sold);

if (TRACE && DISPLAYSCREEN) printf ("[finish tty_mode ()]\n");

return;
} /* tty_mode */

/ ******* U*(.Mt»t«t«tH*»t»»l«tt4t«****ll**»t«»t»irttlt,mi»„M„ir„»tHj„„)r /

void open_virtual_world_socket ()
{

/* see os9sender.c for original code */

if (LOCATIONLAB == FALSE) /* in water */
{

149

return;
}

if (TRACE && DISPLAYSCREEN)
printf ("[start open_virtual_world_socket 0]\n");

/* Initialize communications blocks */

/* Initialize both client & server **/

/* Signal handlers for termination to override net_open () and net_close ()*/
/* signal handlers. Otherwise you are unable to *C kill this program. */

#if (defined(sgi) || defined(sun))
signal (SIGHUP, shutdown_virtual_world_socket);/* hangup */
signal (SIGINT, shutdown_virtual_world_socket);/* interrupt character */
signal (SIGKILL, shutdown_yirtual_world_socket);/* kill signal from Unix */
signal (SIGPIPE, shutdown_virtual_world_socket);/* broken pipe from other host*/
signal (SIGTERM, shutdown_virtual_world_socket);/* software termination */
#endif

/* Initialize sender **/

/* start by finding default/desired remote host to connect to */

server_entity = gethostbyname (virtual_world_remote_host_name);
if (server_entity == NULL)
{

if (DISPLAYSCREEN)
{
printf (" [open_virtual_world_socket: virtual world remote host\n") ,-
printf(" (\"%s\") not found]\n",

virtual_world_remote_host_name);
fflush (stdout); /* force completion of screen write */

}
/* error message needed on (open) output file «««««««««« */
virtual_world_socket_opened = FALSE;
exit (1);

}
else if (TRACE && DISPLAYSCREEN)

{
printf("[open_virtual_world_socket: virtual world remote host ");
printf("(\"%s\") located]\n", virtual_world_remote_host name);

}

/* Client opens server port ***/

/* Fill in structure 'server_address' with the address of the */
/* remote host (i.e. SERVER) that we want to connect with: */

/*#if defined(sgi)
bzero ((char *) &server_address, sizeof (server_address));

#endif
/ server_address.sin_family = AF_INET; / internet protocol family */

/* copy server IP address into sockaddr_in struct server_address */
/*#if defined(sgi)

bcopy (server_entity->h_addr, &(server_address.sin_addr.s_addr),
server_entity->h_length) ,-

#else
*/ strncpy(5c(server_address.sin_addr.s_addr) , server_entity->h_addr,

server_entity->h_length) ;
/*#endif*/

/* make sure port is in network byte order */
server_address.sin_port = htons (AUVSIM1_TCP_P0RT_1);

/* Open TCP (Internet stream) socket */
if ((socket_descriptor = socket (AF_INET, SOCK_STREAM, 0)) < 0)

if (DISPLAYSCREEN)
{

150

printf ("[open_virtual_world_socket: client can't open server");
printf (" virtual world stream socket]");

}
/* error message needed on (open) output file ««««««««««« */
virtual_world_socket_opened = FALSE;
exit (1);

}
else if (TRACE && DISPLAYSCREEN)

{
printf ("[open_virtual_world_socket: client opened");
printf (" virtual world server socket successfully]\n");

}

/* Connect to the server. Process will block/sleep until connection is
is established. Timeout will return an error. */

if (connect (socket_descriptor,
(struct sockaddr *) &server_address,

sizeof (server_address)) < 0)
{

if (DISPLAYSCREEN)
{

printf ("[open_virtual_world_socket: client can't connect to");
printf (" virtual world server socket]\n");

}
/* error message needed on (open) output file ««««««««««« */
virtual_world_socket_opened = FALSE;
exit (1);

}
else if (TRACE && DISPLAYSCREEN)

{
printf ("[execution client connected to virtual world");
printf (" server socket successfully]\n");

}
virtual_world_socket_opened = TRUE;

} /* end initialization */

socket_stream = socket_descriptor; /* client */

if (TRACE £=& DISPLAYSCREEN) /* print final info */
{
printf("[open_virtual_world_socket CLIENT: socket_descriptor = %d]\n",

socket_descriptor);
printf("[socket_accepted = %d]\n",

socket_accepted);
printf("[socket_stream = %d]\n",

socket_stream);
}

if (TRACE && DISPLAYSCREEN)
printf ("[finish open_virtual_world_socket ()]\n");

return;

}/* end open_virtual_world_socket () */

void shutdown_virtual_world_socket () /* see os9sender.c for original code */

int kill_r'etum_value;

shutdown_signal_received = TRUE;

if (LOCATIONLAB == FALSE) /* in water */
{

return;
}

if (virtual_world_socket_opened == FALSE)
{

if (TRACE && DISPLAYSCREEN)

151

{
printf ("[virtual_world_socket_opened FALSE,");
printf (" shutdown_virtual_world_socket ignored]\n");

}
return;

}
if (TRACE && DISPLAYSCREEN)

printf ("[shutdown_virtual_world_socket start ...]\n");

/* No need to send a message to other side that bridge is going down, */
/* since SIGPIPE signal trigger may shutdown server on other side */

if (close (socket_stream) == -1)
{

if (TRACE && DISPLAYSCREEN)
printf ("shutdown_virtual_world_socket close (socket_stream) failed\n");

/* shutdown () reference: "Using OS-9 Internet" manual p. 2-55 .*/

if (shutdown (socket_stream, 2) == -1)
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[shutdown_virtual_world_socket shutdown");
printf (" (socket_stream, 2) failed]\n");

}

kill_return_value = kill (socket_stream, SIGKILL);

if (TRACE && DISPLAYSCREEN)
{

printf ("[shutdown_virtual_world_socket kill (socket_stream,");
printf (" SIGKILL) returned %d]\n", kill_return_value);

}
}

}
if (TRACE && DISPLAYSCREEN)

printf ("[shutdown_virtual_world_socket return]\n");

return;

} /* end shutdown_virtual_world_socket () */

/it***,

void send_buffer_to_virtual_world_socket () /* see os9sender.c for orig. code */

bytes_left = socket_length;
bytes_written = 0;
Ptr_index = buffer; /* this global string is the data to be sent */

if (LOCATIONLAB == FALSE) /*' in water */
{

return;
}

if (virtual_world_socket_opened == FALSE)
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[send_buffer_to_virtual_world_socket: ");
printf ("virtual_world_socket_opened == FALSE, returning]\n");

return;
}
if (TRACE && DISPLAYSCREEN)

.printf ("[send_buffer_to_virtual_world_socket start ...]\n");

while ((bytes_left > 0) && (bytes_written >= 0)) /* write loop ***********/
{

bytes_sent = write (socket_stream, ptr_index, bytes_left);

152

if (bytes_sent < 0) bytes_written = bytes_sent;
else if (bytes_sent > 0)

{
bytes_left -= bytes_sent;
bytes_written += bytes_sent;
ptr_index += bytes_sent;

}
if (LOCATIONLAB && TRACE && DISPLAYSCREEN)
{

printf ("[record_data send_telemetry_to_server loop");
printf (" bytes sent = %d]\n", bytes_sent);

}
}
if (bytes_written < 0)
{

if (LOCATIONLAB && DISPLAYSCREEN)
{
printf ("[record_data send_telemetry_to_server () send failed, ");
printf ("%d bytes_written]\n", bytes_written);

}
/* error message needed on (open) output file ««««««««««« */

}
else if (LOCATIONLAB && TRACE && DISPLAYSCREEN)

{
printf ("[record_data send_telemetry_to_server total bytes sent");
printf (" = %d]\n", bytes_written);

}

/* Check termination ***/

if (strncmp (buffer, "shutdown", 8) == 0)
{

if (TRACE && DISPLAYSCREEN) printf
("[send_buffer_to_virtual_world_socket: shutdown_signal_received]\n")

shutdown_virtual_world_socket ();
}
if (TRACE && DISPLAYSCREEN)

printf ("[send_buffer_to_virtual_world_socket return]\n");

return;

} /* end send_buffer_to_virtual_world_socket () */

void get_string_from_virtual_world_socket () /* see os9sender.c for original */

if (LOCATIONLAB == FALSE) /* in water */
{

return;
}

if (virtual_world_socket_opened == FALSE)
{

return;
}
if (TRACE && DISPLAYSCREEN)

printf ("[get_string_from_virtual_world_socket start ...]\n");

/* listen to remote host, relay to local network/program */

bytes_left = socket_length;
bytes_received = 0;
ptr_index = buffer_received; /* buffer_received is where results go */

while ((bytes_left > 0) && (bytes_received >= 0)) /* read loop ************/

bytes_read = read (socket_stream, ptr_index, bytes_left);

if (bytes_read < 0) bytes_received = bytes_read;
else if (bytes_read > 0)
{

153

bytes_left -= bytes_read;
bytes_received += bytes_read;
ptr_index += bytes_read;

}
if (TRACE && DISPLAYSCREEN)
{ .

printf ("[get_string_from_virtual_world_socket receiver block");
printf (" loop bytes_read = %d]\n", bytes_read);

}
/* if nothing is waiting to be read, break out of read loop */
if ((bytes_read == 0) && (bytes_received == 0)) break;

}
if (bytes_received < 0) /* failure */
{

if (TRACE && DISPLAYSCREEN)
{

printf (" [get_string_from_virtual_world_socket receiver block read"),-
printf (" failed, bytes_received = %d\n", bytes_received);

}
}
else if (bytes_received == 0) /* no transfer */
{

if (TRACE && DISPLAYSCREEN)
{
printf("[get_string_from_virtual_world_socket received 0 bytes!!]\n");

}
}
else if (bytes_received > 0) /* success */

{
if (TRACE && DISPLAYSCREEN)
{
printf("[get_string_from_virtual_world_socket received %d bytes]\n",

bytes_received);
}

}

/* Check termination ***/

if (strncmp (buffer_received, "shutdown", 8) == 0)
{

if (TRACE && DISPLAYSCREEN) printf
("[get_data_on_virtual_world_socket: shutdown_signal_received]\n");

shutdown_virtual_world_socket ();
}
if (TRACE && DISPLAYSCREEN)

printf ("[get_string_from_virtual_world_socket return]\n");

return;

} /* end get_string_from_virtual_world_socket () */

/••••••••••A***/

void record_data () /* this needs to be better partitioned ««««««<«« */

{
static int count =50;

if (TRACE && DISPLAYSCREEN) printf ("[start record_data 0]\n");

system_time = time (NULL);
system_tmp = localtime (&system_time);

if (TRACE && DISPLAYSCREEN)
printf ("[OS-9 system time is %02d:%02d:%02d, replication %d]\n",

system_tmp->tm_hour, system_tmp->tm_min, system_tmp->tm_sec,
replication_count);

build_telemetry_string (buffer);

if (TACTICALPARSE == FALSE) /* not used by tactical level */
send_buffer_to_virtual_world_socket 0; /* there it goes */

154

if (TRACE && DISPLAYSCREEN) /* telemetry report to screen */
{

printf ("\nsending to virtual world:");
printf ("\n%s", buffer);

}
else if (DISPLAYSCREEN) /* partial telemetry report */
{

if (count == 50)
{

/* printf("t = %5.1f\n",t); */
printf(" voltages: %5.1f %5.1f\n",computer_voltage,motor_voltage);
count = 0;

}
++count;

printf ("sent telemetry to virtual world %5.11f ", t);
printf (»(%5.11f %5.11f %5.11f %5.11f %5.11f %5.11f)\n", x,y,z, phi,theta,psi)

if (LOCATIONLAB)
{

get_string_from_virtual_world_socket (); /* here it comes */

parse_telemetry_string (buffer_received),-
}
if (TRACE && LOCATIONLAB && DISPLAYSCREEN)
{
printf (" \n");

}

if (((TACTICAL == FALSE) || (TACTICALPARSE)) && (auvdatafile != NULL))
/* output data to telemetry file */

{ /* note that unmodified stream is saved */
if (buffer_size == 0) /* nothing was received, send auv_state */

fprintf (auvdatafile, "%s", buffer);
else /* feedback was received, send uvw_state */

fprintf (auvdatafile, "%s", buffer_received);

if (TRACE && DISPLAYSCREEN)
printf("[printed to %s telemetry file]\n", AUVDATAFILENAME);

}

/* only send/print out every 10th telemetry entry to tactical level */
/* due to serial port bandwidth limitations :-(*/

if ((TACTICAL) && TRACE && DISPLAYSCREEN)
printf ("[sending data to tactical level]\n");

#if defined (sun)
#else
/* NOT YET UPDATED TO CURRENT/OPERATIONAL MARCO AUV HARDWARE /SOFTWARE */

/* writeln (serialpath, buffer, buffer_max) ; <««« */
/* if (TACTICAL) write (serialpath, buffer, buffer_max); */

if ((TACTICAL) && TRACE && DISPLAYSCREEN)
printf ("[write buffer to tactical level serialpath OK]\n");

#endif

if (TACTICAL) send_buffer_to_tactical_socket (); /* telemetry */

if (auvtextfile != NULL)
/* output data to .auv text file */
{

if (TRACE && DISPLAYSCREEN)
printf ("[sending data to .auv text file]\n");

fprintf (auvtextfile, "%s", buffer);
if (buffer_size != 0) /* feedback was received, also send uvw_state */

fprintf (auvtextfile, "%s", buffer_received);

if (TRACE && DISPLAYSCREEN)
printf ("[fprintf to .auv text file OK]\n");

155

}

}

telemetry_records_saved ++;

if (((buffer_index +1) % FILEBUFFERSIZE) == 0) buffer_index = 0;
else buffer_index ++;

/* need to copy buffer to buffer_array if caching telemetry «««««« */

if (TRACE && DISPLAYSCREEN) printf ("[buffer_index = %d]\n", buffer_index);

/* */
/* test code to send data from file serial.d from wr2tl.c */
/* read characters from file, echo characters to screen, */
/* send characters to serialpath /tl device */
/* while ((c[0] = getc(serialtestfile)) != EOF)

{
putc (c[0],stdout);
writeln (serialpath, c, 1);

}
*/
/* */

if (TRACE && DISPLAYSCREEN) printf ("[finish record_data ()]\n");

return;

**

void execute_shutdown_script()
{

static int phase = 1;
static double time_next_phase;

if (DISPLAYSCREEN && (phase == 1)) printf("[Shutdown Script Entered]\n"),-

switch (phase)
{

case 1:
if (TRUE && DISPLAYSCREEN) printf("[Starting Phase 1 of Shutdown Script]\n");

THRUSTERCONTROL = TRUE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
FOLLOWWAYPOINTMODE = FALSE;
WAYPOINTCONTROL = FALSE;
HOVERCONTROL = FALSE;
GPSFIXINPROGRESS = FALSE;
x_command = x;
y_command = y;
z_command = -10;
psi_command = psi;
rpm = 0.0;
port_rpm_command = 0.0;
stbd_rpm_command =0.0;
time_next_phase = t + 20.0;
phase = 2;
break;

case 2:
if (t >= time_next_phase)
{

if (TRUE && DISPLAYSCREEN) printf("Starting Phase 2 of Shutdown Script\n");
THRUSTERCONTROL = FALSE;
time_next_phase = t + 1.0;
phase = 3;

}
break;

case 3:
if (t >= time_next_phase)

156

{

if (TRUE && DISPLAYSCREEN) printf("Starting Phase 3 of Shutdown Script\n");
LOOPFOREVER = FALSE;
strcpy (buffer, "KILL");
send_buffer_to_virtual_world_socket (); /* buffer msg sent */
if (DISPLAYSCREEN) printf ("\n[end_test set TRUE]\n");
end_test = TRUE;

fclose (auvscriptfile);
auvscriptfilequit = TRUE;
if (DISPLAYSCREEN)

printf("\n[QUIT condition: (%s backup file) mission.script.backup, file closed]\n",
AUVSCRIPTFILENAME) ;

fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thruster_command,

s tern_lateral_thrus ter_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
x_dot = 0.0;
y_dot = 0.0;
z_dot = 0.0;
phi_dot = 0.0; /* degrees/sec */
theta_dot = 0.0; /* degrees/sec */
psi_dot = 0.0; /* degrees/sec */
speed = 0.0;
u = 0.0;
V = 0.0;
w = 0.0;
P = 0.0; /* degrees/sec */
q = 0.0; /* degrees/sec */
r = 0.0; /* degrees/sec */
delta_planes = 0.0; /* degrees */
delta_rudder = 0.0; /* degrees */
port_rpm = 0;
stbd_rpm = 0;
vertical_ thruster. .volts = 0.0;
lateral_ thruster. jvolts = 0.0;

phase

}
break,-

default:
break;

//**************************** fr*********************************.

double read_computer_battery_voltage ()
{

int val;
double voltage,-

val = get_adcl (COMPUTER_VOLTAGE_CH) ;

/* 3.03 Since a voltage divider Circuit by Approx 3 */
voltage = (10.0/512.0) * ((double) val - 512.0) * 3.03;

if (TRACE) printf ("read_computer_battery_voltage (): val = %d\n", val);
if (TRACE) printf ("read_computer_battery_voltage (): voltage = %f\n",

voltage);

return (voltage);

} /* end read_computer_battery_voltage () */

157

double read_motor_gyro_battery_voltage ()
{

int val;
double voltage;

val = get_adcl (MOTOR_GYRO_VOLTAGE_CH);
/* 3.03 Since a voltage divider Circuit by Approx 3 */
voltage = (10.0/512.0) * ((double) val - 512.0) * 3.03;

if (TRACE) printf ("read_motor_gyro_battery_voltage (): val = %d\n",val);
if (TRACE) printf ("read_motor_gyro_battery_voltage (): voltage = %f\n",

voltage);

return (voltage);

} /* end read_motor_gyro_battery_voltage 0 */

int leak_check ()
{

int i, adc_value [8], bow_adc_value, stern_adc_value;
double bow_voltage, stern_voltage;

LEAK = FALSE;

for (i=0;i<8;++i)
{

adc_value [i] = get_adcl(i);
}

bow_adc_value = adc_value[5];
bow_voltage = (10.0/512.0)*(bow_adc_value - 512.0);

if (TRACE) printf ("leak_check (): bow_voltage = %5.1f\n",bow_voltage) ;

if (bow_voltage > 1.7)
{

printf("***** BOW LEAK DETECTED ***** bow_voltage = %f\n", bow_voltage) ;
LEAK = TRUE;

}

stern_adc_value = adc_value [6];
if (TRACE) printf("stern_adc_value = %d\n",stern_adc_value);

stern_voltage = (10.0/512.0)*(stern_adc_value - 512.0);

if (TRACE) printf ("leak_check (): stern_voltage = %5.1f\n", stern_voltage) ;

if(stern_voltage > 1.7)
{

printf("***** STERN LEAK DETECTED ***** stern_voltage = %f\n",
stern_voltage);

LEAK = TRUE;
}

return (LEAK);

} /* end leak_check () */

/* Dive Tracker Functions Won't Compile on SGI */
#if (defined(sun) || defined(sgi))
#else

int createdmod()
{

158

mod_data *dat_struct;

/* Create to data module */
dt_dmod=CreateMod("DT2CL",sizeof(DT2CLMem),&dat_struct);
if(dt_dmod == NULL) {
printf("Data Module exists. Not created\n");
exit(l);

}
dt_dmod->data_status=CL_R;

}

int CLReaddmod(rl_ptr,r2_ptr)
int *rl_ptr;
int *r2_ptr;
{

static int rl,r2;

if (dt_dmod->data_status==DT_W)
{
rl=dt_dmod->dtr.rl;
r2=dt_dmod->dtr.r2;
dt_dmod->data_s tatus=CL_R;
*rl_ptr=rl;
*r2_ptr=r2;
return(NEW_DATA);

}

/************t************cjlange £n CO(je **********************************», i
/************♦** Dave Mcciairen needs a negative value to signal that there is

no new data recorded by the dive tracker. ******************/

/* *rl_ptr=-l; /"change in code from rl to -1 to signal no update to tactical*/
/* *r2_ptr=-l; /»change in code from r2 to -1 to signal no update to tactical*/
return (OLD_DATA) ,-

}

void *AttachMod(str,data_struct)
char *str;
mod_data **data_struct;
{

/* Trying to link to the Data Module */
if ((*data_struct=modlink(str,ANY))==(mod_data *)-l) {
return (NULL) ,-

}

/* ... then prepares an auxiliar structure to point to the Data Module */
returnf (void *)((long)((mod_data *)*data_struct)

+ (long) (*data_struct)->data_offset)) ,-

int DettachMod(data_struct)
mod_data *data_struct;
{

if (munlink(data_struct)==(mod_data *)-l) {
return(-1);

}
return(0);

}

void *CreateMod(str,size,data_struct)
char *str;
unsigned size;
mod_data **data_struct;
{

/* Creates Data Module */
if((*data_struct=_mkdata_module

159

(str,size, mkattrevs(MA_REENT | MA_GHOST,0x00),Perm_field)) ==
(mod_data *)-l

){
return(NULL);

}

/* ... then prepares an auxiliar structure to point to the Data Module */
return! (void *)((long)((mod_data *)*data_struct)

+(long)(*data_struct)->data_offset));
}

#endif

/* Mathematical Model for Estimating X and Y */

void XY_model_est(v_ls,v_rs,v_blt,v_slt,X_dot_c,Y_dot_c,update_vel)

double v_ls,v_rs,v_blt,v_slt,X_dot_c,Y_dot_c;
unsigned short update_vel;

{
double alpa_x = 0.00375,

alpa_y = 0.004,
b_x = 1.33,
b_y = 17.0;

double M_x = (435.0 + 43.5) / 32.2,
M_y = (435.0 + 348.0) / 32.2;

double f_ls,f_rs,f_blt,f_slt,F_x,F_y;
double u_ddot,v_ddot,r_ddot;

f_ls = alpa_x*(v_ls*v_ls)*dsign(v_ls);
f_rs = alpa_x*(v_rs*v_rs)*dsign(v_rs);

f_blt = alpa_y*(v_blt*v_blt)*dsign(v_blt);
f_slt = alpa_y*(v_slt*v_slt)*dsign(v_slt);

F_x = f_ls + f_rs;
F_y = f_blt + f_slt;

/* printfC'u = %5.1f\n",u);
printf("speed = %5.If\n",speed); */

/* Use speed sensor OR mathematical model to estimate speed */
/* depending on previous speed and speed sensor value */
u_ddot = (F_x - b_x*u*fabs(u))/M_x;
if ((u > 0.2) && (speed >= 0.25))
{

u = speed;
}
else if ((u < -0.2) && (speed >= 0.25))
{

speed = -speed;
u = speed;

}
else
{

u = u + dt * (u_ddot);

if (u > 0.24) u = 0.24;
else if (u < -0.24) u = -0.24;

speed = u;
}

v_ddot = (F_y - b_y*v*fabs(v))/M_y;
v = v + dt*(v_ddot);

i f(!update_vel)
{

160

}

u = x_dot*cos_psi + y_dot*sin_psi;
v = -x_dot*sin_psi + y_dot*cos_psi;

/* modify state vector values based on dead reckoning */

x_dot = u*cos_psi - v*sin_psi + X_dot_c;
y_dot = u*sin_psi + v*cos_psi + Y_dot_c;

x
y

+ dt*x_dot;
+ dt*y_dot;

/* Constant gain Kaiman filter for depth */
void kalman_z(yk)

double yk;
{

double xkl_0,xkl_l,xkl_2;
double phii[3][3],h[3],b[3],lk[3],res;

/* a=[0 1 0;0 0 1;0 0 0]; phii=expm(a*0.1); where dt = 0.1
b[0] = 0.0;
b[l] = 0.0;
b[2] = 1.0;

/* phii = [1.0 0.1 0.005
0.0 1.0 0.1
0.0 0.0 1.0]

phii[0][0] = 1.0;
phii[0][1] = 0.1;
phii[0][2] = 0.005;
phii[l][0] = 0.0
phii[l][1] = 1.0
phii[l][2] = 0.1
phii[2][0] = 0.0
phii[2][1] = 0.0
phii[2][2] = 1.0

/* h = [10 0]; */
h[0] = 1.0;
h[l] = 0.0;
h[2] = 0.0;

if(kal init z == 1)
{

z_kal = yk;
z_dot_kal = 0.0;
z_ddot_kal = ().0;

/* xkl=xk; */
xkl_0 = z_kal;
xkl_l = z_dot_kal;
xkl_2 = z_ddot_kal;
kal_init_z = FALSE;

/* set Ik = const. Slow Filter */
lk[0] = 0.2544;
lk[l]
lk[2]

0.3727
0.2731

/* xkl(:,i)=phii*xk(:,i); */
xkl_0 = phii[0][0]*z_kal + phii[0][1]*z_dot_kal + phii[0][2]*z_ddot_kal
xkl_l = phii[l][0]*z_kal + phii[1][1]*z_dot_kal + phii[1][2]*z_ddot_kal
xkl_2 = phii[2][0]*z_kal + phii[2][1]*z_dot_kal + phii[2][2]*z_ddot_kal

res = yk - (h[0]*xkl_0 + h[l]*xkl_l + h[2]*xkl_2);

/* Set res = 0.0 if larger than threshold */
if(fabs(res) > thres_z)

161

{
res = 0.0;

}

z_kal = xkl_0 + lk[0]*res;
z_dot_kal = xkl_l + lk[l]*res;
z_ddot_kal = xkl_2 + lk[2]*res;

}

/* end of execution.c */

162

APPENDIX B - parsefunctions. c SOURCE CODE

/**/

Program: parse_functions. c

Authors: Don Brutzman

Revised: 16 February 96

System: AUV Gespac 68020/68030, OS-9 version 2.4
Compiler: Gespac cc Kernighan & Richie (K&R) C

Compilation: ftp> put parse_functions.c
auvsiml> chd execution

[68020] auvsiml> make -k2f execution
[68030] auvsiml> make execution

[Irix] fletch> make execution

Purpose: Reduce size of execution.c to allow OS-9 C compiler to work

*/

/* parse_funct ions.c */

#include "globals.h"
#include "statevector.h"
#include "defines.h"

/it***/

void parse_command_line_flags () ;
int parse_mission_script_commands ();
void parse_mission_string_commands ();

void print_valid_keywords ();

void get_control_constants ();

extern int detect_death_spiral ();
extern void send_buffer_to_virtual_world_socket ();
extern void clamp ();

/***,********/

void parse_command_line_flags (arge, argv)

int arge; char **argv; /* command line arguments */
{

int index;

if (DISPLAYSCREEN)
{

printf ("\n[parse_command_line_flags start: # arguments = %d]\n[", arge)
for (i = 0; i < arge; i++) printf (" %s", argv[i]),-
printf ("]\n");

}

if (DISPLAYSCREEN) printf ("[parse arguments: ");
{

for (i = 1; i < arge; i++)
{

printf ("%s ", argv[ij);

for (index = 0; index <= (int)strlen (argv[i]>; index++)/* uppercase */
argv[i] [index] = toupper (argv[i] [index]);

163

}
printf ("]\n");

}

strcpy (buffer, ""); /* initialize for SILENT */

for (i = 1; i < arge; i++)
{

if ((stremp (argv[i], "HELP") == 0)
(stremp (argv[i], "?") == 0)
(stremp (argv[i], "/?") == 0)
(stremp (argv[i], "-?") == 0)'

{
if (TRACE && DISPLAYSCREEN) printf ("[print_help]
print_help = TRUE;

}
else if ((stremp (argv[i], "KEYBOARD") == 0)

(stremp (argv[i], "KEY-BOARD") == 0)
(stremp (argv[i], "KEYBOARD-INPUT") == 0)
(stremp (argv[i], "KEYBOARDINPUT") == 0)

{
if (TRACE && DISPLAYSCREEN) printf ("[KEYBOARDINPUT = TRUE] ");
KEYBOARDINPUT = TRUE;

}
else if (stremp (argv[i], "TRACE") == 0)

{
if (TRACE && DISPLAYSCREEN) printf ("[TRACE = TRUE] ");
TRACE = TRUE;

}
else if ((stremp (argv[i], "TRACEOFF") == 0)

(stremp (argv[i], "TRACE-OFF") == 0)
(stremp (argv[i], "NOTRACE") == 0)
(stremp (argv[i], "NO-TRACE") == 0))

{
if (TRACE && DISPLAYSCREEN) printf ("[TRACE = FALSE] ");
TRACE = FALSE;

}
else if ((stremp (argv[i], "LOOPFOREVER") ==0) ||

(stremp (argv[i], "LOOP-FOREVER") == 0))
{

if (TRACE && DISPLAYSCREEN) printf ("[LOOPFOREVER] ");
LOOPFOREVER = TRUE;

}
else if ((stremp (argv[i], "LOOPONCE") ==0) ||

(stremp (argvfi], "LOOP-ONCE") == 0))
{

if (TRACE && DISPLAYSCREEN) printf ("[LOOPONCE] ") ;
LOOPFOREVER = FALSE;

}
else if ((stremp (argv[i], "LOOPFILEBACKUP") ==0) ||

(stremp (argv[i], "LOOP-FILE-BACKUP") == 0))
{

if (TRACE && DISPLAYSCREEN) printf ("[LOOPFILEBACKUP] ");
LOOPFILEBACKUP = TRUE;

}
else if ((stremp (argv[i], "ENTERCONTROLCONSTANTS") ==0) ||

(stremp (argv[i], "ENTER-CONTROL-CONSTANTS") == 0))

if (TRACE ScSc DISPLAYSCREEN) printf ("[ENTERCONTROLCONSTANTS] ")
ENTERCONTROLCONSTANTS = TRUE;

}
else if ((stremp (argvfi], "CONTROLCONSTANTSINPUTFILE") ==0) ||

(stremp (argv[i], "CONTROL-CONSTANTS-INPUT-FILE") == 0))

LOADCONTROLCONSTANTS = TRUE;
printf ("[%s ", argv[i]);
printf (CONTROLCONSTANTSINPUTNAME);
printf ("]\n");

}
else if ((stremp (argv[i], "TACTICAL") ==0) ||

(stremp (argv[i], "TACTICAL-HOST") ==0) ||
(stremp (argv[i], "TACTICALHOST") == 0))

164

TACTICAL = TRUE;
i++;
if (i >= arge) print_help = TRUE;
else
{

KEYBOARDINPUT = FALSE;
sscanf (argv[i], "%s", tactical_remote_host_name);
if (TRACE && DISPLAYSCREEN)

printf("[TACTICAL-HOST %s (KEYBOARD-OFF)]", tactical_remote_host_name)

else if ((stremp (argv[i], "NO-TACTICAL") ==0) ||
(stremp (argv[i], "TACTICAL-OFF") == 0))

printf ("[%s]\n'\ argv[i]);
TACTICAL = FALSE;

else if ((stremp (argv[i], "SONARTRACE") ==0) ||
(stremp (argv[i], "SONAR-TRACE") == 0))

if (TRACE && DISPLAYSCREEN) printf ("[SONARTRACE] ") ;
SONARTRACE = TRUE;

else if ((stremp (argv[i], "SONARTRACEOFF") ==0) ||
(stremp (argviij, "SONAR-TRACE-OFF") == 0))

if (TRACE Sc&. DISPLAYSCREEN) printf ("[SONARTRACEOFF] ") ;
SONARTRACE = FALSE;

else if ((stremp (argv[i], "SONARINSTALLED") == 0) ||
(stremp (argv[i], "SONAR-INSTALLED") ==0))

if (TRACE && DISPLAYSCREEN) printf ("[SONARINSTALLED] ") ,-
SONARINSTALLED = TRUE;

else if ((stremp (argv[i], "PARALLELPORTTRACE") ==0) ||
(stremp (argviij, "PARALLEL-PORT-TRACE") == 0))

if (TRACE && DISPLAYSCREEN) printf ("[PARALLELPORTTRACE] ");
PARALLELPORTTRACE = TRUE;

else if ((stremp (argv[i], "SILENT") ==0) ||
(stremp (argv[i], "SILENCE") == 0))

{
if (TRACE && DISPLAYSCREEN) printf ("[SILENT] ");
/* send to virtual world after socket is open */
strcpy (buffer, "SILENT"); /* copy current command to buffer */

}
else if ((stremp (argv[i], "TIMESTEP") ==0) ||

(stremp (argv[i], "TIME-STEP") == 0))
{

1++;
if (i >= arge) print_help = TRUE;
else
{

sscanf (argv[i], "%F", &TIMESTEP);
if (TRACE && DISPLAYSCREEN) printf (" [TIMESTEP %f] " , TIMESTEP);
if (TIMESTEP > 0.0) dt = TIMESTEP;
else if (TRACE && DISPLAYSCREEN)

printf(" illegal TIMESTEP value, ignored.");
if (TRUE && DISPLAYSCREEN) printf (" [dt = %f]", dt) ,-

}
}
else if ((stremp (argv[i], "VIRTUALHOST") == 0)

(stremp (argv[i], "VIRTUAL-HOST") == 0)
(stremp (argv[i], "VIRTUAL") == 0)
(stremp (argv[i], "REMOTE") == 0)
(stremp (argv[i], "REMOTEHOST") == 0)
(stremp (argv[i], "REMOTE-HOST") == 0)

{
(stremp (argv[i], "DYNAMICS") == 0)

165

if (i >= arge) print_help = TRUE;
else

}
else

sscanf (argv[i], "%s", virtual_world_remote_host_name);
if (TRACE && DISPLAYSCREEN)

printf("[VIRTUAL-HOST %s]", virtual_world_remote_host_name) ;

if ((stremp (argv[i] , "REALTIME") == 0)

}
else

(stremp (argv[i], "REAL-TIME") == 0))

if (TRACE && DISPLAYSCREEN) printf ("[REALTIME] ");
REALTIME = TRUE;

if ((stremp (argv[i],
(stremp (argv[i],
(stremp (argv[i],
(stremp (argv[i],
(stremp (argv[i],
(stremp (argv[i],
(stremp (argv[i],

"NOREALTIME") == 0)
"NO-REALTIME") == 0)
"NO-REAL-TIME") == 0) ■
"NOWAIT") == 0)

"NO-WAIT") == 0)
"NOPAUSE") == 0)

"NO-PAUSE") ==0))

if (TRACE && DISPLAYSCREEN) printf ("[NOWAIT] ")
REALTIME = FALSE;

else if ((stremp (argv[i], "NOEMAIL")
(stremp (argvti], "NO-EMAIL")

if (TRACE fc& DISPLAYSCREEN) printf
EMAIL = FALSE;

== 0) ||
== 0))

("[NO EMAIL]"),

else if ((stremp (argv[i],

LOCATIONLAB = TRUE;

else if ((stremp (argv[i],

LOCATIONLAB = FALSE;

else if ((stremp (argvti],
(stremp (argvti],
(stremp (argv[i],

"LOCATIONLAB") == 0))

"LOCATIONWATER")

"GYROERROR") == 0)
"GYRO-ERROR") == 0)
"GYRO_ERROR") == 0))

1 + + ;
if (i >= arge)
{
print_help = TRUE;
printf (" warning:

}
else
{
sscanf (argv[i], "%lf", gyro_error) ;
if (TRACE &fc DISPLAYSCREEN)

printf("[%s %5.21f]", argv[i-l],

invalid GYRO-ERROR command.\n");

gyro_error)

}
else if ((stremp (argvti] , "DEPTH-CELL-BIAS") == 0)

(stremp (argvti] , "DEPTHCELLBIAS") 0)
(stremp (argv[i] , "DEPTH-CELL-ERROR") == 0)
(stremp (argv[i] , "DEPTHCELLERROR") 0)
(stremp (argv[i] , "DEPTH-BIAS") 0)
(stremp (argv[i] , "DEPTHBIAS") 0)
(stremp (argv[i] , "DEPTH-ERROR") == 0)

{
(stremp (argv[i] , "DEPTHERROR") == 0))

i + + ;
if (i >= arge)
{
print_help = TRUE;
printf (" warning:

}
invalid DEPTH-CELL-BIAS convm and.Xn")

166

else
{
sscanf (argvti], "%lf", & depth_cell_bias);
if (TRACE && DISPLAYSCREEN)

printf("[%s %5.21f]", argvti-1], depth_cell_bias);
)

}
else if ((strcmp (argv[i], "TETHER") ==0) ||

(strcmp (argv[i], "TETHERED") == 0))
{

DISPLAYSCREEN = TRUE;
LOCATIONLAB = FALSE;

}
else if ((strcmp (argvti], "UNTETHER") ==0) ||

(strcmp (argvfi], "UNTETHERED") ==0))
{

DISPLAYSCREEN = FALSE;
LOCATIONLAB = FALSE;

}
else print_help = TRUE; /* invalid command line entry parameter found */

} /* end for loop through command line parameters */

if (print_help) /* print help string ***************************************/
{
printf("\nUsage: execution \n");
print_valid_keywords ();
exit (-1);

}

if (TRACE && DISPLAYSCREEN) printf ("\n[parse_command_line_flags complete]\n");

return,-

} /* end parse_command_line_flags () */

/*****************************,*♦,♦*****,**************************************/

int parse_mission_script_commands () /* get data from file at program start */
/* mission.script.HELP => descriptions */

/* command_buffer is the string to be parsed */

int index, read_another_line, parameters_read;
double parameter1,parameter2,parameter3,parameter4,parameters,parameter6;

char parameter_string [60];
char backupcommand [50], new_filename [30];
int return_value;

read_another_line = TRUE;

/* do not skip to next command in KEYBOARD or script mode until ready */
if ((t < time_next_command) && (TACTICAL == FALSE)

fc& (TACTICALPARSE == FALSE))
{

if (TRACE && DISPLAYSCREEN)
{

printf ("\n[skip parse_mission_script_commands () until ");
printf ("t > time_next_command]\n");

}
return (FALSE);

if (TRACE && DISPLAYSCREEN)
printf ("\n[start parse_mission_script_commands ()]\n");

if ((GPSFIXINPROGRESS) && (t >= time_postgps_dive))
{

if (TACTICAL) /* execution tell tactical gps-fix done */
{

if (TRACE && DISPLAYSCREEN)

167

printf
("\n[send_buffer_to_tactical_socket (STABLE GPS TIMEOUT)]");

Strcpy (buffer, "STABLE GPS TIMEOUT");
send_buffer_to_tactical_socket (); /* message */

}
GPSFIXINPROGRESS = FALSE;
read_another_line = FALSE;

}
if ((GPSFIXINPROGRESS) && (t >= time_gps_complete) &&

(t < time_postgps_dive))
{

z_command = previous_z_command;
time_postgps_dive =t+30.0; /* head back to ordered depth */
time_next_command = time_postgps_dive;
time_gps_complete = time_postgps_dive + 1.0;
read_another_line = FALSE;
if (DISPLAYSCREEN) printf ("\n[GPS-FIX complete.]\n");

/* Only look at auvscriptfile if we are in script file execution mode */

if ((TACTICALPARSE) /* tactical level internal use */
| | (KEYBOARDINPUT) /* execution level */
|I (TACTICAL)) /* execution level getting tactical comms*/

/* no auvscriptfile setup required in these modes */

else if ((auvscriptfile == NULL)/* auvscriptfile not yet opened */
|| feof (auvscriptfile) /* auvscriptfile end-of-file, repeat */
I | auvscriptfilequit) /* flag for all done */

if (DISPLAYSCREEN)
{

printf ("\n[opening a-copy of the auvscriptfile %s]\n",
AUVSCRIPTFILENAME);

fflush (stdout);
}

#if (defined(sun) || defined(sgi))
sprintf (backupcommand, "rm %s.backup", AUVSCRIPTFILENAME);
printf ("%s\n", backupcommand);
system (backupcommand);
sprintf (backupcommand, "cp %s %s.backup", AUVSCRIPTFILENAME,

AUVSCRIPTFILENAME) ;
printf ("%s\n", backupcommand);
system (backupcommand);

#else

#endif

/* OS-9 */
sprintf (backupcommand, "del %s.backup", AUVSCRIPTFILENAME);
printf ("%s\n", backupcommand);
system (backupcommand);
sprintf (backupcommand, "copy %s %s.backup", AUVSCRIPTFILENAME,

AUVSCRIPTFILENAME) ;
printf ("%s\n", backupcommand);
system (backupcommand);

sprintf (backupcommand, "%s.backup", AUVSCRIPTFILENAME);
auvscriptfile = fopen (backupcommand,"r"); /* input file */
if (auvscriptfile == NULL)
{

printf ("AUV execution: script file %s\n", AUVSCRIPTFILENAME);
printf

(" (or backup copy %s.backup) not found.\n",
backupcommand);

printf (" Ensure you are in the right directory:\n"),
printf (" auvsiml> chd /hO/execution or\n");
printf (" unix> cd ~brutzman/execution\n");
printf

(" Otherwise ensure you have a %s file.Xn",
AUVSCRIPTFILENAME);

printf ("Exit.Vn");
exit (-1);

168

}
auvscriptfilequit = FALSE;

else if (TRACE && DISPLAYSCREEN)
printf ("\n[auvscriptfile checks out as ready...]\n");

if (TACTICALPARSE
{

FALSE)

/* open auvordersfile ---------------_____.
sprintf (buffer, "%s", AUVORDERSFILENAME);
if (auvordersfile == NULL)
{

auvordersfile = fopen (buffer,"w"); /* output file */

' if (TRACE && DISPLAYSCREEN)
printf ("\n[auvordersfile = %x, opened successfully]\n",

auvordersfile);

fprintf (auvordersfile,
\n\n");

fprintf (auvordersfile,
NPS AUV file %s: commanded propulsion orders versus time\n",

AUVORDERSFILENAME);
fprintf (auvordersfile,

#\n">;
fprintf (auvordersfile,

timestep: %4.2f seconds\n", dt) ;
fprintf (auvordersfile,

#\n");
fprintf (auvordersfile,

time heading North' East Depth rpm rpm
fprintf (auvordersfile, ,

x y z port stbd
fprintf (auvordersfile.

"#

"\n")
fprintf (auvordersfile,

stern stern vertical lateral \n")

plane rudder thrusters thrusters\n")

bow/s tern bow/s tern\n")

}
else if (TRACE &£c DISPLAYSCREEN)

printf ("auvordersfile (%s)
auvordersfile) ;

if (auvordersfile == NULL)
{

%x\n", AUVORDERSFILENAME,

printf ("AUV execution: %s file open unsuccessful.\n", buffer)
printf ("
printf ("Exit.\n"
exit (-1);

Error.\n");

while (read_another_line)
{

parameterl = 0.0
parameter2 = 0.0
parameter3 = 0.0

/* ********* Parse loop ************ */

/* Four-way switch: tactical level parses commands internally, or
/* „,N„AAAA^„„„A*,V execution level parses commands from
/* keyboard | tactical ood | mission.script file

/* each option gets the next order and puts it in command_buffer

if (TACTICALPARSE) /* tactical level internal use */
{

}

/* command_buffer is already sent and ready */
read_another_line = FALSE;

else if (KEYBOARDINPUT) /* this blocks!
{

strcpy (buffer, "Enter command");

169

/* send_buffer_to_virtual_world_socket (); /* buffer msg sent */
printf ("\n%s *** HERE ***: ", buffer);
strcpy (commandjbuffer, "");
gets (command_buffer);

}
else if (TACTICAL) /* execution level getting tactical comms */

/* get command_buffer string from tactical level, nonblocking */

if (TRACE && DISPLAYSCREEN)
printf ("\n RECEIVE TACTICAL COMMAND *** HERE ***\n");

strcpy (command_buffer, "");
get_string_from_tactical_socket ();
if (strlen (command_buffer) == 0) /* no command was received */
{

time_next_command = t + dt; /* same as STEP command */
read_another_line = FALSE; /* (prevent blocking) */
if (TRACE && DISPLAYSCREEN)

printf("no tactical command received, STEP & recheck\n");
break;

}
}
else /* get command_buffer string from auvscriptfile */
{

strcpy (command_buffer, "");
fgets (command_buffer, 120, auvscriptfile);

if (feof (auvscriptfile))
{

if (DISPLAYSCREEN)
{

printf ("\n[EOF condition: (");
printf ("%s copy) %s.backup, file closed]\n",

AUVSCRIPTFILENAME, AUVSCRIPTFILENAME) ;
)
fclose (auvscriptfile);
auvscriptfileguit = TRUE;
read_another_line = FALSE;
end_test = TRUE;
strcpy (command_buffer, "");
break;

}
>

/* If Shutdown in Progress, Ignore Commands and Go to Shutdown Script */
if (HALTSCRIPT)
{

return (FALSE);
}

/* parse the command, if any */

if ((int)(strlen (command_buffer) <= 120) && TRACE && DISPLAYSCREEN)

printf ("strlen (command_buffer) = %d", strlen (command_buffer));
printf (">»%s«<", command_buffer) ;

}

parameters_read = sscanf (command_buffer, "%s", keyword);

if (TRACE && DISPLAYSCREEN)
{

printf ("parameters_read = %d, keyword = %s",
parameters_read, keyword);

}

for (index=0; index<=(int)strlen (keyword); index++) /* set uppercase */
keyword [index] = toupper (keyword [index]);

audible_command = TRUE;

if (TRACE && DISPLAYSCREEN)

170

{
printf (", uppercase keyword = %s\n", keyword);

}

if ((parameters_read != 1)
(strlen (keyword) == 0)
(strlen (command_buffer) == 0)
(command_buffer [0] == '\n')) /* blank line */

{
audible_command = FALSE;
read_another_line = TRUE;
if (DISPLAYSCREEN) printf ("\n");

}
else if (keyword [0] == '#') /* comment */
{

if (DISPLAYSCREEN) printf ("%s", command_buffer);
command_buffer [0] = ' ' ,-

}
else if (((keyword [0] == '/') && (keyword [1] == '/')) ||

((keyword [0] == '/') && (keyword [1] == '*'))) /* comment */
{

if (DISPLAYSCREEN) printf ("%s", command_buffer);
command_buffer [0] = ' ';
command_buffer [1] = ' ';

}
else if ((strcmp (keyword, "HELP") == 0)

(strcmp (keyword, "?") == 0)
(strcmp (keyword, "-?") == 0)
(strcmp (keyword, "/?") == 0))

{
if (DISPLAYSCREEN) printf ("\n[HELP] ");
print_valid_keywords ();

}
else if ((strcmp (keyword, "WAIT") ==0) ||

(strcmp (keyword, "RUN") == 0))
{

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl);

printf ("\n[%s %6.2f; ", keyword, parameterl);
if ((parameters_read ==2) && (parameterl >= 0.0))
{

if (TACTICALPARSE) return (FALSE);

read_another_line = FALSE;
time_next_command = t + parameterl;
printf ("time of next command %6.2f]\n",

time_next_command);
fprintf (auvordersfile,

"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"
t, psi_command, x_command, y_command, z_command,
port_rpm_command, s tbd_rpm_command,
rudder_command, planes_command,
bow_lateral_thruster_command,

s tern_lateral_thrus ter_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
}
else printf (" warning: illegal time value, ignored\n") ,-

else if ((strcmp (keyword, "TIME") ==0) ||
(strcmp (keyword, "WAITUNTIL") ==0) ||
(strcmp (keyword, "PAUSEUNTIL") == 0))

{
parameters_read = sscanf (command_buffer, "%s%lf",

keyword, & parameterl);
printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

if (TACTICALPARSE) return (FALSE);

read_another_line = FALSE;
time_next_command = parameterl;

171

fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_conunand,
port_rpm_command, stbd_rpm_command,
rudder_coiranand, planes_command,

bow_lateral_thruster_command,
s tern_lateral_thrus ter_coiranand,

bow_vertical_thruster_conunand,
stern_vertical_thruster_coiranand) ;

(parameterl <= t) if
{

t = parameterl;
printf (" warning: time value has reset AUV clock,");

velocities reset to zero.Xn"),-
= 0.0;

(' printf
u
v
w
P
q
r
x_dot
y_dot
z_dot
phi_dot
theta_dot
psi_dot

0.0
0.0
0.0
0.0
0.0
0.0
0.0

read_another_line
}

TRUE; /* no PDU */

}
else printf (" warning: illegal time value, ignored.\n");

else if ((strcmp (keyword, "TIMESTEP") == 0)
(strcmp (keyword, "TIME-STEP") == 0)) /* different than STEP */

if (sscanf (command_buffer, "%s%F", keyword, ¶meterl) == 2)
{

if (TACTICALPARSE) return (FALSE);

if ((parameterl > 0.0) && (parameterl <= 5.0))
{

dt = parameterl;
if (DISPLAYSCREEN)

printf ("\n[TIMESTEP %6.2f] ", dt) ;
if (TACTICALPARSE == FALSE)
fprintf (auvordersfile, "# timestep: %4.2f seconds\n", dt) ;

}
else print_help = TRUE;

}
else print_help = TRUE;

else if ((strcmp (keyword,
(strcmp (keyword,

"PAUSE") == 0)
•-PAUSE") == 0))

if (DISPLAYSCREEN)
{

printf ("\n[PAUSE]\n");
strcpy (buffer, " Press any key to continue");
send_buffer_to_virtual_world_socket (); /* buffer msg sent */
printf ("\n%s *** HERE ***: ", buffer);
answer = getchar (); /* pause */

}

else if ((strcmp (keyword, "REALTIME") == 0)
(strcmp (keyword, "REAL-TIME") == 0))

if (DISPLAYSCREEN) printf ("\n[REALTIME]
REALTIME = TRUE;

}
else if ((strcmp (keyword,

(s trcmp (keyword,
(s trcmp (keyword,
(strcmp (keyword.

"MISSION") == 0)
"SCRIPT") == 0)
"FILE") == 0)
"FILENAME") == 0))

');

172

parameters_read

if
{

#if (defined(sun)

#else

#endif

sscanf (command_buffer, "%s%s",
keyword, new_filename);

(parameters_read ==2)

if (DISPLAYSCREEN)
printf ("\n[%s %s]\n",

|| defined(sgi))
sprintf (backupcommand, "cp

A0VSCRIPTFILENAME) ,-

keyword, new_filename)

%s %s", new_filename,

sprintf (backupcommand, "copy %s %s",
AUVSCRIPTFILENAME);

new_filename,

if (DISPLAYSCREEN)
printf ("%s\n", backupcommand);

system (backupcommand) ;
auvscriptfile == NULL; /* force re-read */

}
else
{

if (DISPLAYSCREEN)
printf ("\n[%s] warning: no filename present, ignored\n", keyword),

else if ((strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

"KEYBOARD") == 0)
"KEYBOARD-ON") == 0)
"KEYBOARD-INPUT") == 0)
"KEYBOARDINPUT") == 0))

if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);
KEYBOARDINPUT = TRUE;

}
else if ((strcmp (keyword,

(strcmp (keyword,
{

if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);
KEYBOARDINPUT = FALSE;

}

"KEYBOARD-OFF")
"NO-KEYBOARD")

0)
0))

else if ((strcmp (keyword. "NOWAIT") == 0)
(strcmp (keyword, "NO-WAIT") == 0)
(s trcmp (keyword, "NOREALTIME") == 0)
(s trcmp (keyword, "NO-REALTIME") == 0)
(s trcmp (keyword, "NONREALTIME") == 0)
(strcmp (keyword, "NO-PAUSE") == 0)

{
(strcmp (keyword. "NOPAUSE") == 0))

if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);

}
else

REALTIME = FALSE;

if ((strcmp (keyword, "ABORT") == 0))

}
else

HALTSCRIPT = TRUE;
if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);

if ((strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

(strcmp (keyword,
(strcmp (keyword,

/* note most of these commands don't reset LOOPFOREVER, except */
/* KILL/SHUTDOWN which terminate the dynamics model connection */

if ((strcmp (keyword, "KILL") ==0) ||
(strcmp (keyword, "SHUTDOWN") == 0))

"QUIT") == 0)
"STOP") == 0)
"DONE") == 0)
"EXIT") == 0)
"REPEAT") == 0)
"RESTART") == 0)
"COMPLETE") == 0)

"KILL") == 0)
"SHUTDOWN") = = 0))

173

LOOPFOREVER = FALSE;
strcpy (buffer, "KILL");
send_buffer_to_virtual_world_socket (); /* buffer msg sent */

}
else
{

strcpy (buffer, "QUIT");
send_buffer_to_virtual_world_socket (); /* buffer msg sent */

}

printf ("\n[%s]\n", keyword);
if (TRACE && DISPLAYSCREEN) printf ("\n[end_test set TRUE]\n");
end_test = TRUE;
read_another_line = FALSE;

if (TACTICALPARSE) return (FALSE);

fclose (auvscriptfile);
auvscriptfilequit = TRUE;
if (DISPLAYSCREEN)

printf("\n[QUIT condition: (%s backup file) mission.script.backup, file closed]\n",
AUVSCRIPTFILENAME);

fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5

t, psi_command, x_command, y_command
port_rpm_command, s tbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thruster_command,

s tern_lateral_thrus ter_command,
bow_vertical_thruster_command,

stern_vertical_thruster_con\mand);

If %5.1f %5.1f\n",
z_command,

x_dot = 0.0;
y_dot = 0.0;
z_dot = 0.0;
phi_dot = 0.0; /* degrees/sec */
theta_dot = 0.0; /* degrees/sec */
psi_dot = 0.0; /* degrees/sec */
speed = 0.0;
u = 0.0;
V = 0.0;
w = 0.0;
P = 0.0; /* degrees/sec */
q = 0.0; /* degrees/sec */
r = 0.0; /* degrees/sec */
delta_planes = 0.0; /* degrees */
delta_rudder = 0.0; /* degrees */
port_rpm = 0;
stbd_rpm = 0;
vertical_thruster_volts = 0.0;
lateral_thruster_volts = 0.0;

}
else

return (FALSE);

if ((strcmp (keyword. "RPM") == 0)
(strcmp (keyword. "SPEED") == 0)
(strcmp (keyword. 'PROPS") == 0)
(strcmp (keyword. " PROPELLORS ") == 0))

parameters_read = sscanf (command_buffer, "%s%lf%lf",
keyword, & parameterl,

& parameter2);
== 3) if

{
(parameters_read

WAYPOINTCONTROL = FALSE
ROTATECONTROL
HOVERCONTROL
printf ("\n[%s
port_rpm_command

}
else
{

stbd_rpm_command

= FALSE;
= FALSE;
%6.2f %6.2f]\n".keyword,parameterl,

= parameterl;
parameter2)

parameter2;

parameters_read = sscanf (command_buffer, "%s%lf",

174

keyword, & parameter!.);
printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
HOVERCONTROL = FALSE;
port_rpm_command = parameterl;
stbd_rpm_command = parameterl;

}
else printf (" warning: no value, ignored\n");

}
}
else if ((strcmp (keyword, "COURSE") ==0) ||

(strcmp (keyword, "HEADING") ==0) j|
(strcmp (keyword, "YAW") == 0))

{
parameters_read = sscanf (command_buffer, "%s%lf",

keyword, & parameterl);
printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

DEADSTICKRUDDER = FALSE;
WAYPOINTCONTROL = FALSE;
psi_command = parameterl ,-
psi_command_hover = parameterl;
rotate_command = 0.0;
lateral_command = 0.0;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;

if (HOVERCONTROL) /* report when stable again */
REPORTSTABLE = TRUE;

}
else printf (" warning: no value, ignored\n");

}
else if ((strcmp (keyword, "TURN") ==0) ||

(strcmp (keyword, "CHANGE-COURSE") == 0))
{

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl);

printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

DEADSTICKRUDDER = FALSE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
psi_command = psi_command + parameterl;

}
else printf (" warning: no value, ignored\n");

}
else if (strcmp (keyword, "RUDDER") == 0)
{

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl);

printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

DEADSTICKRUDDER = TRUE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
HOVERCONTROL = FALSE;
rudder_command = parameterl;

}
else
{

printf (" warning: improper value, rudder order ignored\n");

}
else if (strcmp (keyword, "DEADSTICKRUDDER") == 0)
{

parameters_read = sscanf (command_buffer, "%s%lf",

175

keyword, & parameter].) ,
if (parameters_read == 2)
{

printf ("\n[%s %6.2f]\n", keyword, parameter!.) ,-
DEADSTICKRUDDER = TRUE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
HOVERCONTROL = FALSE;
rudder_command = parameterl;

}
else
{

printf ("\n[%s] ", keyword),-
DEADSTICKRUDDER = TRUE;
WAYPOINTCONTROL = FALSE,-
ROTATECONTROL = FALSE;
rudder_command = 0.0;

printf(" warning: improper/missing value, rudder set to 0\n")

}
else if (strcmp (keyword, "DEPTH") == 0)
{

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl);

printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

DEADSTICKPLANES = FALSE;
z_command = parameterl;

if (HOVERCONTROL) /* report when stable again */
REPORTSTABLE = TRUE;

}
else printf (" warning: no value, ignored\n");

else if (strcmp (keyword, "PLANES") == 0)
{

parameters_read = sscanf (command_buffer, "%s%lf",-
keyword, & parameterl);

printf ("\n[%s %6.2f)\n", keyword, parameterl);
if (parameters_read == 2)
{

DEADSTICKPLANES = TRUE;
planes_command = parameterl;

}
else printf (" warning: improper value, planes order ignored\n");

else if (strcmp (keyword, "DEADSTICKPLANES") == 0)
{

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl);

if (parameters_read == 2)
{

printf ("\n[%s %6.2f]\n", keyword, parameterl);
DEADSTICKPLANES = TRUE;
planes_command = parameterl;

}
else
{

printf ("\n[%s] ", keyword);
DEADSTICKPLANES = TRUE;
planes_command = 0.0;
printf (" warning: improper value, planes set to 0\n");

}
else if ((strcmp (keyword, "THRUSTERS-ON") = = 0)

(strcmp (keyword, "THRUSTERS") = = 0)
(strcmp (keyword, "THRUSTERON") == 0)
(strcmp (keyword, "THRUSTERSON") == 0))

printf ("\n[%s]\n", keyword);
THRUSTERCONTROL = TRUE;

176

}
else

}
else
'{

if ((strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

"NOTHRUSTER")
"NOTHRUSTERS")
"THRUSTERS-OFF")
"THRUSTERSOFF")

printf ("\n[%s]\n", keyword);
THRUSTERCONTROL = FALSE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
HOVERCONTROL = FALSE;

if (strcmp (keyword, "ROTATE")

== 0)
== 0)
== 0)
== 0))

== 0)

parameters_read = sscanf (command_buffer

printf <"\n[%s %6.2f]\n",
if (parameters_read == 2)

"%s%lf",
keyword,

keyword, parameter1);
& parameterl);

THRUSTERCONTROL = TRUE;
WAYPOINTCONTROL = FALSE;
HOVERCONTROL = FALSE;
rotate_command = parameterl;

clamp (&rotate_command, -12.0, 12.0,
lateral_command = 0.0;
ROTATECONTROL = TRUE;
LATERALCONTROL = FALSE;

"rotate_command");

}
else printf (" warning: no value, ignored\n"

}
else if ((strcmp (keyword. "NOROTATE") == 0)

(strcmp (keyword. "ROTATEOFF") == 0)
(strcmp (keyword, "ROTATE-OFF") == 0))

}
else
{

}
else

printf ("\n[%s]\n", keyword);
rotate_command = 0.0;
ROTATECONTROL = FALSE;

if (strcmp (keyword, "LATERAL") == 0)

parameters_read = sscanf (command_buffer, "%s%lf",
keyword, & parameterl)

printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read == 2)
{

THRUSTERCONTROL = TRUE;
WAYPOINTCONTROL = FALSE;
HOVERCONTROL = FALSE;
rotate_command = 0.0;
lateral_command = parameterl;
ROTATECONTROL = FALSE;
LATERALCONTROL = TRUE;

}
else printf (" warning: no value, ignored\n") ,-

}
else if ((strcmp (keyword, "NOLATERAL") == 0)

(strcmp (keyword. "LATERALOFF") == 0)
(strcmp (keyword, "LATERAL-OFF") == 0))

printf ("\n[%s]\n", keyword),
lateral_command = 0.0;
LATERALCONTROL = FALSE;

if ((strcmp (keyword,
(strcmp (keyword,
(s trcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

"DIVETRACKER1")
"DIVE-TRACKER1")
"DIVE-TRACKER-1")
"DIVE_TRACKER1")
"DIVE_TRACKER_1»)

== 0)
== 0)
== 0)
== 0)
== 0))

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf",
keyword, & parameterl,

& parameter2, & parameter3);

177

printf ("\n[%s %6.2f %6.2f %6.2f]\n", keyword, parameter!.,
parameter2, parameter3);

if (parameters_read == 4)
{

DiveTrackerl_x = parameter1;
DiveTrackerl_y = parameter2;
DiveTrackerl_z = parameter3;

}
else printf (" warning: invalid DiveTrackerl position, ignored\n");

}
else if ((strcmp (keyword, "DIVETRACKER2") == 0)

(strcmp (keyword, "DIVE-TRACKER2") == 0)
(strcmp (keyword, "DIVE-TRACKER-2") == 0)
(strcmp (keyword, "DIVE_TRACKER2") == 0)
(strcmp (keyword, "DIVE_TRACKER_2") ==0) j

{
parameters_read = sscanf (command_buffer, "%s%lf%lf%lf",

keyword, & parameterl,
& parameter2, & parameter3);

printf ("\n[%s %6.2f %6.2f %6.2f]\n", keyword, parameterl,
parameter2, parameter3);

if (parameters_read == 4)
{

DiveTracker2_x = parameterl;
DiveTracker2_y = parameter2;
DiveTracker2_z = parameter3;

}
else printf (" warning: invalid DiveTracker2 position, ignored\n");

else if ((strcmp (keyword, "GPS") ===== 0> I |
(strcmp (keyword, "GPSFIX") ==0) ||
(strcmp (keyword, "GPS-FIX") == 0))

{
if (TACTICALPARSE == FALSE)
{

previous_z_command = z_command;
if (z_command > 40.0) z_command = 41.0; /* deep test tank */
else z_command = -standoff_distance - 0.5;

/* rapid shallow */
GPSFIXINPROGRESS = TRUE;
time_gps_complete = t + 30.0;
time_postgps_dive = t + 60.0;
time_next_command = time_gps_complete;

/* fixed guestimate of GPS fix interval */
/* assume GPS-FIX behavior is properly controlled by tactical level */

if (DISPLAYSCREEN) printf ("\n[GPS-FIX]\n");
}
else if ((GPSFIXINPROGRESS) &&

((strcmp (keyword, "GPS-COMPLETE") == 0)
(strcmp (keyword, "GPS-FIX-COMPLETE") == 0)
(strcmp (keyword, "GPSCOMPLETE") == 0)
(strcmp (keyword, "GPSFIXCOMPLETE") == 0)) j

{
z_command = previous_z_command;
time_postgps_dive = t + 30.0; /* head back to ordered depth */
time_next_command = time_postgps_dive;
time_gps_complete = time_postgps_dive + 1.0;
read_another_line = FALSE;
if (DISPLAYSCREEN) printf ("\n[GPS-FIX complete.]\n");

else if ((strcmp (keyword, "GYROERROR") ==0) ||
(strcmp (keyword, "GYRO-ERROR") ==0) ||
(strcmp (keyword, "GYRO_ERROR") == 0))

{
parameters_read = sscanf (command_buffer, "%s%lf",

keyword, & parameterl) ,
printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameter s_read ===== 2)
{

gyro_error = parameterl;

178

}
else printf (" warning: invalid GYRO-ERROR command, ignored\n"),

}
else if ((strcmp (keyword, "DEPTH-CELL-BIAS") == 0)

(strcmp (keyword, "DEPTHCELLBIAS") == 0)
(strcmp (keyword, "DEPTH-CELL-ERROR") == 0)
(strcmp (keyword, "DEPTHCELLERROR") == 0)
(strcmp (keyword, "DEPTH-BIAS") == 0)
(strcmp (keyword, "DEPTHBIAS") == 0)
(strcmp (keyword, "DEPTH-ERROR") == 0)
(strcmp (keyword, "DEPTHERROR") == 0);

{
parameters_read = sscanf (command_buffer, "%s%lf",

keyword, & parameterl);
printf ("\n[%s %6.2f]\n", keyword, parameterl);
if (parameters_read ==2)
{

depth_cell_bias = parameterl;
}
else printf (" warning: invalid DEPTH-CELL-BIAS command, ignored\n");

else if ((strcmp (keyword, "LOCATIONLAB") == 0))

LOCATIONLAB = TRUE;

else if ((strcmp (keyword, "LOCATIONWATER") == 0))

LOCATIONLAB = FALSE;

else if ((strcmp (keyword, "POSITION") ==0) ||
(strcmp (keyword, "LOCATION") ==0) jj
(strcmp (keyword, "FIX") == 0))

/* note this command must be sent to virtual world (AUVsocket.C tests) */
{

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf",
keyword, & parameterl,

& parameter2, & parameter3);
printf ("\n[%s %6.2f %6.2f %6.2f]\n", keyword, parameterl,

parameter2, parameter3);
if (parameters_read == 4)
{

x = parameterl;
y = parameter2;
z = parameter3; /* note depth cell will likely update z */

/* skip line in telemetry file to break point-to-point lines */
if ((TACTICALPARSE) | | (TACTICAL == FALSE))

fprintf (auvdatafile, "\n");

if (TRACE)
printf ("\nsending fix to virtual world: [%s]\n", buffer);

strcpy (buffer, command_buffer); /* copy command to buffer*/
send_buffer_to_virtual_world_socket (); /* send to vw */

}
else if (parameters_read == 3)
{

x = parameterl;
y = parameter2;

/* skip line in telemetry file to break point-to-point lines */
if ((TACTICALPARSE) | | (TACTICAL == FALSE))

fprintf (auvdatafile, "\n");

if (TRACE)
printf ("\nsending fix to virtual world: [%s]\n", buffer);

strcpy (buffer, command_buffer); /* copy command to buffer*/
send_buffer_to_virtual_world_socket (); /* send to vw- */

}
else printf (" warning: invalid x/y/z fix position, ignored\n");

}
else if ((strcmp (keyword, "ORIENTATION") ==0) ||

(strcmp (keyword, "ROTATION") == 0))

179

}
else
{

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf",
keyword, & parameter].,

& parameter2, & parameter3);
printf ("\n[%s %6.2f %6.2f %6.2f]\n", keyword, parameterl,

parameter2, parameter3);
if (parameters_read == 4)
{

phi
theta
psi

parameterl;
parameter2;
parameter3 ;

}
else
printf (" warning: invalid phi/theta/psi orientation, ignored\n"),

if (strcmp (keyword, "POSTURE") == 0)

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf%lf%lf%lf",
keyword, & parameterl,

& parameter2, & parameter3,
Sc parameter4, & parameters,
& parameter6) ;

printf ("\n[%s %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f]\n",
keyword, parameterl,
parameter2, parameter3,

if (parameters_read == 7)
{

parameter4,
parameter6);

parameters,

X = parameterl;
y = parameter2;
z = parameter3;
phi = parameter4;
theta = parameter5;
psi = parameter6;
start_psi = parameter6;
kal_init_z = TRUE;

}

else

{

/* skip line in telemetry file to break point-to-point lines */
if ((TACTICAL == FALSE) || (TACTICALPARSE))

fprintf (auvdatafile, "\n");
}
else

printf(" warning: invalid posture values (6 required), ignored\n");

if ((strcmp (keyword, "OCEANCURRENT") ==0) ||
(strcmp (keyword, "OCEAN-CURRENT") == 0))

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf",
keyword, & parameterl,

& parameter2, & parameter3) ,
if (parameters_read == 4)
{

printf ("\n[%s %6.2f %6.2f %6.2f]\n", keyword, parameterl,
parameter2, parameter3);

AUV_oceancurrent_x = parameterl;
AUV_oceancurrent_y = parameter2;
AUV_oceancurrent_z = parameter3;

}
else if (parameters_read == 3)
{

printf ("\n[%s %6.2f %6.2f]\n", keyword, parameterl,
parameter2);

AUV_oceancurrent_x = parameterl;
AUV_oceancurrent_y = parameter2;

}
else
{

printf ("\n warning: improper number of OCEAN-CURRENT "),-
printf ("values, ignored\n");

180

}

else if ((strcmp (keyword, "CONTINUE") ==0) ||
(strcmp (keyword, "GO") == 0))

{
if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);
return (FALSE); /* no action required */

}
else if ((strcmp (keyword, "STEP") ==0) ||

(strcmp (keyword, "SINGLE-STEP") == 0))
{

if (DISPLAYSCREEN) printf ("\n[%s]\n", keyword);
time_next_command = t + dt;
read_another_line = FALSE;

}
else if ((strcmp (keyword, "TRACE") ==0) ||

(strcmp (keyword, "TRACE-ON") == 0))
{

if (DISPLAYSCREEN) printf ("\n[TRACE = TRUE] ");
TRACE = TRUE;

}
else if ((strcmp (keyword, "TRACEOFF") == 0)

(strcmp (keyword, "TRACE-OFF") == 0)
(strcmp (keyword, "NOTRACE") == 0)
(strcmp (keyword, "NO-TRACE") ==0))

{
if (DISPLAYSCREEN) printf ("\n[TRACE = FALSE] ");
TRACE = FALSE;

}
else if ((strcmp (keyword, "LOOPFOREVER") == 0) ||

(strcmp (keyword, "LOOP-FOREVER") == 0))
{

if (DISPLAYSCREEN) printf ("\n[LOOPFOREVER] ");
LOOPFOREVER = TRUE;

}
else if ((strcmp (keyword, "LOOPONCE") ==0) ||

(strcmp (keyword, "LOOP-ONCE") == 0))
{

if (DISPLAYSCREEN) printf ("\n[LOOPONCE] ");
LOOPFOREVER = FALSE;

}
else if ((strcmp (keyword, "LOOPFILEBACKUP") ==0) ||

(strcmp (keyword, "LOOP-FILE-BACKUP") ==0))
{

if (DISPLAYSCREEN) printf (" \n [LOOPFILEBACKUP] ") ;
LOOPFILEBACKUP = TRUE;

}
else if ((strcmp (keyword, "ENTERCONTROLCONSTANTS") ==0) |j

(strcmp (keyword, "ENTER-CONTROL-CONSTANTS") == 0))

if (DISPLAYSCREEN) printf (" \n[ENTERCONTROLCONSTANTS] ") ;
ENTERCONTROLCONSTANTS = TRUE;
get_control_constants ();
fflush (stdin);

}
else if ((strcmp (keyword, "CONTROLCONSTANTSINPUTFILE") == 0)

(strcmp (keyword, "CONTROL-CONSTANTS-INPUT-FILE") == 0))

LOADCONTROLCONSTANTS = TRUE;
get_control_constants ();
printf ("\n[CONTROLCONSTANTSINPUTFILE %s]",

CONTROLCONSTANTSINPUTNAME);
)
else if ((strcmp (keyword, "SLIDINGMODECOURSE") ==0) ||

(strcmp (keyword, "SLIDING-MODE-COURSE") == 0))

printf ("\n[%s = TRUE]\n", keyword),-
SLIDINGMODECOURSE = TRUE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
HOVERCONTROL = FALSE;

181

}
else if ((strcmp (keyword, "SLIDINGMODEOFF") ==0) ||

(strcmp (keyword, "SLIDING-MODE-OFF") == 0))
{

printf ("\n[%s: SLIDINGMODECOURSE = FALSE]\n", keyword);

}
else if ((strcmp (keyword. "TACTICAL") == 0)

(strcmp (keyword, "TACTICAL-HOST") == 0)
(strcmp (keyword, "TACTICALHOST") == 0))

if (sscanf (command_buffer, "%s %s", keyword, parameter_string) == 2)
{

TACTICAL = TRUE;
KEYBOARDINPUT = FALSE;
strcpy (tactical_remote_host_name, parameter_string) ;
open_tactical_socket ();
if (DISPLAYSCREEN)

printf("\n[TACTICAL-HOST %s (KEYBOARD-OFF)]",
tactical_remote_host_name);

}
else print_help = TRUE;

}
else if ((strcmp (keyword, "NO-TACTICAL") ==0) ||

(strcmp (keyword, "TACTICAL-OFF") == 0))
{

printf ("\n[%s]\n", keyword);
TACTICAL = FALSE;

}
else if (strcmp (keyword, "SONARTRACE") == 0)
{

if (DISPLAYSCREEN) printf ("\n[SONARTRACE] ");
SONARTRACE = TRUE;

}
else if (strcmp (keyword, "SONARTRACEOFF") == 0)
{

if (DISPLAYSCREEN) printf ("\n[SONARTRACEOFF] ");
SONARTRACE = FALSE;

}
else if (strcmp (keyword, "SONARINSTALLED") == 0)
{

if (DISPLAYSCREEN) printf (" \n[SONARINSTALLED] ") ;
SONARINSTALLED = TRUE;

}
else if (strcmp (keyword, "PARALLELPORTTRACE") == 0)
{

if (DISPLAYSCREEN) printf ("\n[PARALLELPORTTRACE] ") ;
PARALLELPORTTRACE = TRUE;

}
else if ((strcmp (keyword, "AUDIBLE") == 0)

(strcmp (keyword, "AUDIO") == 0)
(strcmp (keyword, "AUDIO-ON") == 0)
(strcmp (keyword, "SOUND-ON") == 0)
(strcmp (keyword, "SOUNDON") == 0)
(strcmp (keyword, "SOUND") == 0))

{
if (DISPLAYSCREEN) printf ("\n[AUDIBLE] ");
strcpy (buffer, "AUDIBLE"); /* copy current command to buffer */
send_buffer_to_virtual_world_socket (); /* send to sound driver */

}
else if ((strcmp (keyword, "SILENT") == 0)

(strcmp (keyword, "SILENCE") == 0)
(strcmp (keyword, "NOSOUND") == 0)
(strcmp (keyword, "NO-SOUND") == 0)
(strcmp (keyword, "SOUNDOFF") == 0)
(strcmp (keyword, "SOUND-OFF") == 0)
(strcmp (keyword, "AUDIOOFF") == 0)
(strcmp (keyword, "AUDIO-OFF") == 0)
(strcmp (keyword, "QUIET") == 0))

{
if (DISPLAYSCREEN) printf ("\n[SILENT] ");
strcpy (buffer, "SILENT"); /* copy current command to buffer */

182

}
else

}
else

}
else

sendjbuffer_to_virtual_world_socket (); /* send to sound driver */

if ((strcmp (keyword, "SOUNDSERIAL") ==0) ||
(strcmp (keyword, "SOUND-SERIAL") == 0))

if (TRACE && DISPLAYSCREEN) printf (" \n [SOUNDSERIAL ON] ") ;
strcpy (buffer, "SOUNDSERIAL"); /* send precise keyword */
sendjbuffer_to_virtual_world_socket ();/* send to sound driver */
audible_command = FALSE;

if ((strcmp (keyword, "SOUNDPARALLEL") ==0) ||
(strcmp (keyword, "SOUND-PARALLEL") == 0))

strcpy (buffer, "SOUNDPARALLEL"); /* send precise keyword */
send_buffer_to_virtual_world_socket (); /* send to sound driver */
audible_command = FALSE;

if ((strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

if (TRACE && DISPLAYSCREEN) printf ("\n[EMAIL ON] ");
EMAIL = TRUE;

"EMAIL") == 0)
"EMAIL-ON") == 0)
"E-MAIL") == 0)
"E-MAIL-ON") == 0)
"EMAILON") == 0))

}
else if ((strcmp (keyword, "EMAILOFF") == 0)

(strcmp (keyword, "EMAIL-OFF") == 0)
(strcmp (keyword, "E-MAILOFF") == 0)
(strcmp (keyword, "E-MAIL-OFF") == 0)
(strcmp (keyword, "NO-E-MAIL") == 0)
(strcmp (keyword. "NO-EMAIL") == 0)
(strcmp (keyword. "NO-E-MAIL") == 0)
(strcmp (keyword, "NOEMAIL") == 0)

}
else

if (TRACE && DISPLAYSCREEN) printf ("\n[EMAIL OFF] "),
EMAIL = FALSE;

if ((strcmp (keyword, "WAYPOINT") ==0) ||
(strcmp (keyword, "WAYPOINT-ON") ==0))

parameters_read = sscanf (command.

if (parameters_read
{

4)

buffer, "%s%lf%lf%lf",
keyword, & parameter!.,

& parameter2, & parameter3);

printf ("\n[%s %6.2f %6.2f %6.

WAYPOINTCONTROL = TRUE;
FOLLOWWAYPOINTMODE = TRUE;
HOVERCONTROL = FALSE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
REPORTSTABLE = TRUE;
DEADSTICKRUDDER = FALSE;
x_command = parameterl;
y_command = parameter2;
z_command = parameter3;

port_rpm_command = fabs (port.
stbd_rpm_command = fabs (stbd_

detect_death_spiral (TRUE);

2f]\n", keyword, parameterl,
parameter2, parameter3);

rpm_commahd); /* ensure fwd */
rpm_command); /* motion only */
/* resets static variables */

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thruster_command,

s tern_lateral_thrus ter_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
}

183

else if
{

(parameters_read 3)

printf ("\n[%s %6.2f %6.2f]\n"

WAYPOINTCONTROL = TRUE;
FOLLOWWAYPOINTMODE = TRUE;

keyword, parameter!.,
parameter2);

HOVERCONTROL = FALSE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
REPORTSTABLE = TRUE;
DEADSTICKRUDDER = FALSE;
x_command
y_command

port_rpm_command
s tbd_rpm_command

= parameter].;
= parameter2;
= fabs (port_rpm_command);
= fabs (stbd_rpm_command);

/
/

detect_death_spiral (TRUE);

ensure fwd */
motion only */

/* resets static variables V

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
. bow_lateral_thruster_command,
stern_lateral_thruster_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
}
else
{

WAYPOINTCONTROL = FALSE;
printf ("\n warning: improper number of values\n waypoint");
printf ("set to current position but otherwise ignored\n");
x_command = x;
y_command = y;
z_command = z;

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thruster_command,

stern_lateral_thruster_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);

}
else

}
if
{
/*

if

(FOLLOWWAYPOINTMODE)

continue until WAYPOINT reached without further script orders */
time_next_command = t + dt;
read_another_line = FALSE;

(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

"WAYPOINTFOLLOW")
"WAYPOINT-FOLLOW")
"WAYPOINTFOLLOWON")
"WAYPOINT-FOLLOW-ON")

}
else

}

printf ("\n[%s]\n", keyword);
FOLLOWWAYPOINTMODE = TRUE;
DEADSTICKRUDDER = FALSE;

if ((strcmp (keyword, "WAYPOINTFOLLOWOFF")
(strcmp (keyword, "WAYPOINT-FOLLOW-OFF")

0)
0)
0)
0))

= 0)
0)

printf ("\n[%s]\n",
FOLLOWWAYPOINTMODE

else if ((strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,
(strcmp (keyword,

keyword);
= FALSE;

"STANDOFF") == 0)
"STAND-OFF") == 0)
"STANDOFFDISTANCE") == 0)
"STANDOFF-DISTANCE") == 0)
"STAND-OFF-DISTANCE") == 0))

184

parameters_read = sscanf (command_buffer, "%s%lf

if
{

(parameters_read == 2)
keyword, & parameter1)

printf ("\n[%s %6.2f]\n", keyword, parameterl);
standoff_distance = parameter!;

if (HOVERCONTROL)
REPORTSTABLE

/' ' report when stable again */
TRUE;

}
else
{

}

printf ("\n[%s]\n"
printf (" warning:

, keyword);
no standoff value provided. ignored");

}
else if ((strcmp (keyword, "HOVEROFF") == 0)

(strcmp (keyword, "HOVER-OFF") == 0)
(strcmp (keyword, "HOVER_OFF") == 0))

{

/* explicitly eliminate side effects */

if (DISPLAYSCREEN) printf ("\n[HOVER-OFF] ")
HOVERCONTROL = FALSE
WAYPOINTCONTROL = FALSE
FOLLOWWAYPOINTMODE = FALSE
port_rpm_command = 0.0
stbd_rpm_command = 0.0
rudder_command = 0.0
read_another_line = FALSE;

}
else if ((strcmp (keyword, "HOVER") ==0) ||

(strcmp (keyword, "HOVER-ON") == 0))
{

parameters_read = sscanf (command_buffer, "%s%lf%lf%lf%lf%lf",
keyword, & parameterl,

& parameter2,

if
{

(parameters_read == 6)

& parameter3,
& parameter4, & parameter5) ;

printf ("\n[%s %6.2f %6.2f %6.2f %6.2f %6.2f]\n",
keyword, parameterl,
parameter2, parameter3,
parameter4, parameter5),

HOVERCONTROL = TRUE;
REPORTSTABLE = TRUE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
THRUSTERCONTROL = TRUE;
DEADSTICKRUDDER = TRUE;
FOLLOWWAYPOINTMODE = FALSE; */
rudder_command = 0.0;
x_command = parameterl ;
y_command = parameter2 ;
z_command = parameter3 ;
psi_command = parameter4 ;
ps i_command_hover = parameter4 ;
standoff_distance = parameters;

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n"

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thruster_command,

stern_lateral_thruster_command,
bow_vert ical_thruster_command,

stern_vertical_thruster_command);
}
else if (parameters_read
{

printf ("\n[%s

5)

%6.2f %6.2f %6.2f %6.2f]\n",
keyword, parameterl,

185

f

"%6.1f

parameter2, parameter3,
parameter4);

HOVERCONTROL = TRUE;
REPORTSTABLE = TRUE;
WAYPOINTCONTROL = FALSE;
ROTATECONTROL = FALSE;
LATERALCONTROL = FALSE;
THRUSTERCONTROL = TRUE;
DEADSTICKRUDDER = TRUE;
FOLLOWWAYPOINTMODE = FALSE; */
rudder_command = 0.0;
x_command = parameterl;
y_command = parameter2;
z_command = parameter3;
psi_command = parameter4;
psi_command_hover = parameter4;

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
%6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n",

t, psi_command, x_convmand, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_coiranand, planes_command,
bow_lateral_thruster_command,

stern_lateral_thruster_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
}
else
{

if (parameters_read

printf ("\n[%s

4)

%6.2f %6.2f %6.2f]\n", keyword, parameterl,
parameter2, parameter3);

= TRUE;
= TRUE;
= FALSE;

HOVERCONTROL
REPORTSTABLE
WAYPOINTCONTROL
ROTATECONTROL = FALSE
LATERALCONTROL = FALSE
THRUSTERCONTROL = TRUE;
DEADSTICKRUDDER = TRUE;

/* FOLLOWWAYPOINTMODE = FALSE; */
rudder_command = 0.0;
x_command = parameterl
y_command = parameter2
z_command = parameter3
psi_command_hover = psi_command;

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n",

t, psi_command, x_command, y_command, z_command,
port_rpm_command, stbd_rpm_command,

rudder_command, planes_command,
bow_lateral_thrus ter_command,

stern_lateral_thruster_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);
}
else
{

if (parameters_read == 3)

printf ("\n[%s %6.2f %6.2f]\n", keyword, parameterl,
parameter2);

= TRUE;
= TRUE;
= FALSE;

"%6.1f

HOVERCONTROL
REPORTSTABLE
WAYPOINTCONTROL
ROTATECONTROL = FALSE
LATERALCONTROL = FALSE
THRUSTERCONTROL = TRUE;
DEADSTICKRUDDER = TRUE;

/* FOLLOWWAYPOINTMODE = FALSE; */
rudder_command = 0.0;
x_command = parameterl ,-
y_command = parameter2;
psi_command_hover = psi_command;

if (TACTICALPARSE == FALSE) fprintf (auvordersfile,
%6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f %5.1f\n»,

t, psi_command, x_command, y_command, z_command,

186

else
{

port_rpm_conimand, stbd_rpm_command/
rudder_coiranand, planes_command,

bow_lateral_thrus ter_command,
s tern_lateral_thrus ter_command,
bow_ver t ical_thrus ter_command,

stern_vertical_thruster_command) ,-

if (parameters_read == 1)

printf ("\n[%s]\n
HOVERCONTROL
REPORTSTABLE
WAYPOINTCONTROL =
ROTATECONTROL
LATERALCONTROL =
THRUSTERCONTROL =
DEADSTICKRUDDER =
FOLLOWWAYPOINTMODE
rudder_command = 0

, keyword) ;
TRUE;
TRUE;
FALSE;
FALSE;
FALSE;
TRUE;
TRUE;

FALSE;
0;

*/

psi_conunand_hover = psi_command;
if (TACTICALPARSE == FALSE) fprintf (auvordersfile,

"%6.1f %6.1f %5.1f %5.1f %5.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f
t, psi_command, x_command, y_command, z.

port_rpm_command, stbd_rpm_command,
rudder_command, planes_command,

bow_lateral_thruster_command,
stern_lateral_thruster_command,
bow_vertical_thruster_command,

stern_vertical_thruster_command);

%5.1f %5.1f\n"
command.

}
else
{

}
else
{

}

}

printf ("\n[%s]\n", keyword);
printf (" warning: improper number of values, ignored\n"]

/* check other possibilities */

parse_mission_string_commands (command_buffer)

if (audible_command)
{

}

strcpy (buffer, command_buffer); /* copy current command to buffer */
send_buffer_to_virtual_world_socket (); /* send to sound driver */

if ((print_help) fc& DISPLAYSCREEN)
{

printf ("%s", command_buffer);
print_valid_keywords ();

strcpy (buffer, " is an unknown command");
send_buffer_to_virtual_world_socket () ;

copy msg to buffer */
send to sound driver */

return_value = print_help;
print_help = FALSE; /* reset value */

if (TACTICAL)
{

}

time_next_command = t + dt; /* one command per timestep only */
read_another_line = FALSE; /* force acknowledgement and loop*/
/* TIME and WAIT and RUN commands are not needed in TACTICAL mode */

if ((HOVERCONTROL) |] (WAYPOINTCONTROL))

read_another_line = FALSE; /* force acknowledgement and loop*/
/* TIME and WAIT and RUN commands are not needed in TACTICAL mode */

} /* loop until read_another_line is FALSE) */

187

if (TRACE && DISPLAYSCREEN)
printf ("\n[end parse_mission_script_commands 0]\n");

return (return_value);

} /* end parse_mission_script_commands () */

/" it**/

void parse_mission_string_commands (command)
char * command;

{
int index;
int number_values = 0;
char parameter_string [60];

if (TRACE && DISPLAYSCREEN)
printf ("\n[parse_mission_string_commands start]\n");

number_values = sscanf (command_buffer, "%s", keyword);

for (index = 0; index <= (int) strlen (keyword); index++)
keyword [index] = toupper (keyword [index]);

if
{

}

(number_values 1)

if (DISPLAYSCREEN) printf (" [no parse word found]\n");
return;

if ((strcmp (keyword, "VIRTUALHOST") == 0)
(strcmp (keyword, "VIRTUAL") == 0)
(strcmp (keyword, "VIRTUAL-HOST") == 0)
(strcmp (keyword, "REMOTE") == 0)
(strcmp (keyword, "REMOTEHOST") == 0)
(strcmp (keyword, "REMOTE-HOST") == 0)
(strcmp (keyword, "DYNAMICS") == 0))

{
if (sscanf (command, "%s %s", keyword, parameter_string) == 2)

{

}

strcpy (virtual_world_remote_host_name, parameter_string) ;
if (DISPLAYSCREEN) printf ("\n[VIRTUAL-HOST %s] ",

virtual_world_remote_host_name);

else print_help = TRUE;
}
else print_help = TRUE; /* invalid command line entry parameter found */

if (TRACE && DISPLAYSCREEN)
printf ("\n[parse_mission_string_commands complete]\n");

return;

}/* end parse_mission_string_commands () */

void print_valid_keywords ()
{

if ((TACTICAL) (TACTICALPARSE)) return;

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf

"\n"),
[help] [trace|notrace] [loopforever|looponce]\n");
[wait #] [time #] [timestep (0.0..5.0)] [mission]\n");
[keyboard|keyboard-off] [quit] [kill]\n");
[rpm] [course] [depth] [thrusters|thrusters-off]\n");
[loopfilebackup] [entercontrolconstants]\n");
[rotate] [position|location|fix] [orientation]\n");
[gps|gps-fix] [gps-completejgps-fix-complete] \n");
[sonartrace|sonartraceoff] [sonarinstalled]\n");
[trace|trace-off] [parallelporttrace] \n");
[remotehost hostname][realtime|nopause] [pause]\n");

188

printf (" [loop-forever|loop-once][entercontrolconstants]\n\n");
printf (" [silence][e-mail|no-email] [waypoint] \n\n") ,-
printf ("See -/execution/mission.script.HELP for command syntax details. \n") ,-
printf ("\n");

#if (defined(sun) || defined(sgi))
/* don't pop up help file if TACTICAL is running or invoking this code */
if ((HELPFILELAUNCHED == FALSE) && (TACTICAL == FALSE) &&

(TACTICALPARSE == FALSE))
{

printf ("popping up 'mission.script.HELP' as a zip file...\n");
system ("zip -v -/execution/mission.script.HELP");
HELPFILELAUNCHED = TRUE;

}
#endif

return;

} /* end print_valid_keywords */

void get_control_constants ()

{
/* get data from file at program start */

if (TACTICALPARSE) return;

if (TRACE && DISPLAYSCREEN)
printf ("\n[start get_control_constants ()]\n");

if (ENTERCONTROLCONSTANTS) /*------______________*/
{

printf("Input start_dwell\n");
scanf("%d", &start_dwell);

/* note %F required by OS-9, accepted by SGI as equivalent to %lf */
printf("Input k_psi, k_r, k_v\n");
scanf ("%F %F %F", &k_psi, &k_r, &k_v);

printf("Input k_z, k_w, k_theta, and k_q\n"),-
scanf("%F %F %F %F", &k_z, &k_w, &k_theta, &k_q);

printf("Input k_thruster_psi,k_thruster_r\n");
scanf("%F %F", &k_thruster_psi, &k_thruster_r);

printf("Input k_thruster_rotate\n");
scanf("%F", &k_thruster_rotate);

printf("Input k_thruster_z,k_thruster_w\n");
scanf("%F %F", &k_thruster_z, &k_thruster_w);

printf("Input k_propeller_hover, k_surge_hover, k_propeller_current\n");
scanf("%F %F %F",&k_propeller_hover,&k_surge_hover,

&k_propeller_current);

printf("Input k_thruster_hover, k_sway_hover, k_thruster_current\n");
scanf("%F %F %F", &k_thruster_hover,

&k_thruster_hover, &k_thruster_current);

printf("Input k_thruster_lateral\n");
scanf("%F %F", &k_thruster_lateral,

&k_thruster_lateral);
}
else if (LOADCONTROLCONSTANTS) /*---' ---------____*/
{

if ((controlconstantsinputfile = fopen (CONTROLCONSTANTSINPUTNAME,"r"))
== NULL)

{
printf("AUV execution: unable to open control constants input file ");
printf("%s for reading.\n", CONTROLCONSTANTSINPUTNAME);
printf
(" Check ownership permissions in current directory.\n");

189

printf("Exit.\n");
exit (-1);
}

strcpy (buffer, "Control constants file is");

if (TRACE && DISPLAYSCREEN)
{
printf ("\n[controlconstantsinputfile %s open, pointer = %x]\n",

CONTROLCONSTANTSINPUTNAME, controlconstantsinputfile);
send_buffer_to_virtual_world_socket (); /* buffer message sent */

}

strcpy (buffer, CONTROLCONSTANTSINPUTNAME);
if (TRACE && DISPLAYSCREEN)
{
send_buffer_to_virtual_world_socket (); /* buffer message sent */

}

/* skip remaining header lines in file */
for (i=l;i<=8;i++) fgets (local_buffer, 80, controlconstantsinputfile);

/* note %F required by OS-9, accepted by SGI as equivalent to %lf */
fscanf (controlconstantsinputfile, "%F %F %F", &k_psi, &k_r, &k_v);
fscanf (controlconstantsinputfile, "%F %F %F %F", &k_z, &k_w,

&k_theta, &k_q);

for (i=l;i<=5;i++) fgets (local_buffer, 80, controlconstantsinputfile);
fscanf(controlconstantsinputfile, "%F %F", &k_thruster_psi,

&k_thruster_r);
fscanf(controlconstantsinputfile, "%F", &k_thruster_rotate);

for (i=l;i<=5;i++) fgets (local_buffer, 80, controlconstantsinputfile);
fscanf(controlconstantsinputfile, "%F %F", &k_thruster_z,

&k_thruster_w);

for (i=l;i<=5;i++) fgets (local_buffer, 80, controlconstantsinputfile);
fscanf(controlconstantsinputfile, "%F %F %F", &k_propeller_hover,

&k_surge_hover,
&k_propeller_current);

for (i=l;i<=5;i++) fgets (local_buffer, 80, controlconstantsinputfile);
fscanf(controlconstantsinputfile, "%F %F %F", &k_thruster_hover,

&k_sway_hover,
&k_thruster_current);

for (i=l;i<=5;i++) fgets (local_buffer, 80, controlconstantsinputfile);
fscanf(controlconstantsinputfile, "%F", &k_thruster_lateral) ;

}
else /* use default initialization values -----------____*/
{

if (TRACE && DISPLAYSCREEN)
printf ("\n[using default control constant values]\n");

start_dwell = 1; /* delay time in seconds */

1.00; /* degrees rudder per degree of course error */
2.00; /* degrees rudder per degree/sec yaw rate */
0.00; /* needed ?? */

/* degrees planes per foot of depth error */

k_psi
k r
k_v

=
1.0
2.0
0.0

k_z
k_w
k theta
k_q

=
15.0
2.0
4.0
1.0

rpm

k_thruster_psi =
k_thruster_r =
k_thruster_rotate =

400.0;

0.6; /* volts per 1 degree course error */
5.0;
1.5; /* (24V)*2=> 2 # = 16.0 deg/sec empirical*/

/* k_thruster_rotate=(24V / 16 deg/sec)A2*/
k_thruster_z = 10.0; /* guesses */

190

k_thruster_w = 80.0;

k_propeller_hover = 200.0; /* 200 rpm per one foot error */

k_surge_hover = 6000.0; /* 60 rpm per 0.01 foot/sec surge */

/* this value is high to reduce sternway */

k_propeller_current = 6500.0; /* experimental */

k_thruster_hover = 4.0
k_sway_hover = 40.0
k_thrustef_current= 40.0 /* experimental */

}

k_thruster_lateral= 48.0; /* 24 V = 2 # = 0.5 ft/sec empirically */
/* note voltage follows a square law */

if ((TRACE && DISPLAYSCREEN) || (ENTERCONTROLCONSTANTS) ||
(LOADCONTROLCONSTANTS))

{
printf ("\n");
printf ("\n[k_psi = %5.2f, k_r = %5.2f, k_v = %5.2f, k_z = %5.2f,. ",

k_psi, k_r, k_v, k_z);
printf ("k_w = %5.2f, k_theta = %5.2f, k_q = %5.2f]\n",

k_w, k_theta, k_q);
printf ("\n[k_thruster_psi = %5.2f, k_thruster_r = %5.2f, ",

k_thruster_psi, k_thruster_r);
printf (Dk_thruster_rotate = %5.2f, ",

k_thruster_rotate);
printf ("k_thruster_z = %5.2f, k_thruster_w = %5.2f]\n",

k_thruster_z, k_thruster_w);

printf ("\n[k_propeller_hover = %5.2f, k_surge_hover = %5.2f]\n",
k_propeller_hover, k_surge_hover);

printf ("\n[k_propeller_current = %5.2f]\n",
k_propeller_current) ;

printf ("\n[k_thruster_hover = %5.2f, k_sway_hover = %5.2f]\n",
k_thruster_hover, k_sway_hover);

printf ("\n[k_thruster_current = %5.2f]\n",
k_thruster_current);

printf ("\n[k_thruster_lateral = %5.2f]\n",k_thruster_lateral);

if ((controlconstantsoutputfile = fopen (CONTROLCONSTANTSOUTPUTNAME,"w"))
== NULL)

{
printf("AUV execution: unable to open control constants output file ");
printf("%s for writing.\n", CONTROLCONSTANTSOUTPUTNAME);
printf
C Check ownership permissions in current directory.\n");
printf("Exit.\n");
exit (-1);

}
if (TRACE && DISPLAYSCREEN)

printf ("\n[controlconstantsoutputfile %s open, pointer = %x]\n",
CONTROLCONSTANTSOUTPUTNAME, controlconstantsoutputfile);

/* warning: the file read capability depends on file format/line spacing */
fprintf (controlconstantsoutputfile,

\n\n");
fprintf (controlconstantsoutputfile,

AUV execution level control algorithm coefficients \n");
fprintf (controlconstantsoutputfile,
^ . ^ " — '. \n\n\n");
fprintf (controlconstantsoutputfile,

" k_psi k_r k_v k_z k_w k_theta k_q\n\n");

191

fprintf (controlconstantsoutputfile,
" %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n\n\n\n",
k_psi, k_r, k_v, k_z, k_w, k_theta, k_q);

fprintf (controlconstantsoutputfile,
" k_thruster_psi k_thruster_r k_thruster_rotate\n\n");

fprintf (controlconstantsoutputfile,
%5.2f %5.2f %5.2f\n\n\n\n»,

k_thruster_psi, k_thruster_r, k_thruster_rotate);

fprintf (controlconstantsoutputfile,
" k_thruster_z k_thruster_w \n\n");

fprintf (controlconstantsoutputfile,
%5.2f %5.2f\n\n\n\n",

k_thruster_z, k_thruster_w);

fprintf (controlconstantsoutputfile,
k_propeller_hover k_surge_hover k_propeller_current\n\n");

fprintf (controlconstantsoutputfile,
%5.2f %5.2f %5.2f\n\n\n\n",

k_propeller_hover, k_surge_hover, k_propeller_current);

fprintf (controlconstantsoutputfile,
" k_thruster_hover k_sway_hover k_thruster_current\n\n");

fprintf (controlconstantsoutputfile,
%5.2f %5.2f %5.2f\n\n\n\n",

k_thruster_hover, k_sway_hover, k_thruster_current) ,-

fprintf (controlconstantsoutputfile,
k_thruster_lateral \n\n");

fprintf (controlconstantsoutputfile,
%5.2f\n\n\n\n",

k_thruster_lateral);

fflush (controlconstantsoutputfile); /* force completion of file write */
fclose (controlconstantsoutputfile);

if (TRACE && DISPLAYSCREEN)
printf ("\n[finish get_control_constants ()]\n");

return;

} /* end get_control_constants () */

192

APPENDIX C - globals. c SOURCE CODE

/*** *********************,
/*

globals.c

Don Brutzman

13 February 96

AUV Gespac 68020/68030, OS-9 version 2.4
Gespac cc Kernighan & Richie (K&R) C

ftp> put globals.c
auvsiml> chd execution
auvsiml> make -k2f execution
auvsiml> make execution

fletch> make execution

Allows repeated use of global variables global.c via global.h
in order to prevent compiler warnings

See statevector.c/statevector.h for other global variables

Program

Authors

Revised

System:
Compiler:

Compilation:

[68020]
[68030]

[Irix]

Purpose:

/*************** ********************** **,

tinclude "defines.h"
#include "globals.h"

/***

/* Program configuration flags

int
int

TRACE
DISPLAYSCREEN

*** ***** ************** ***********************/
*/

0; /* l=trace on. 0=trace off */
1; /* l=screen on, 0=screen off */

#if (defined(sgi) || defined(sun))
int LOCATIONLAB
telse
int LOCATIONLAB
#endif
int TACTICAL
int LOOPFOREVER
int LOOPFILEBACKUP

int PARALLELPORTTRACE
int SONARINSTALLED
int SONARTRACE
int ENTERCONTROLCONSTANTS
int LOADCONTROLCONSTANTS
int REALTIME

int DIVETRACKER

int DEADRECKON
int DEADSTICKRUDDER
int DEADSTICKPLANES
int SLIDINGMODECOURSE

int THRUSTERCONTROL
int ROTATECONTROL
int LATERALCONTROL
int FOLLOWWAYPOINTMODE
int WAYPOINTCONTROL
int HOVERCONTROL

int LEAK

1; /* l=virtual world,0=actual vehicle */

0; /* l=virtual world,0=actual vehicle */

l=tactical on, 0=tactical off */
l=repeat execution indefinitely */'
l=backup files between replications*/

l=trace each char received at port */
l=sonar head available for query */
l=trace on, 0=trace off */
l=manual entry, 0=default values */
1= file entry, 0=default values */
1=1 second real-time waits, 0=none */

l=no dive tracker means abort */

l=dead reckon navigate, 0=regular */
l=use ordered rudder, 0 = control */
l=use ordered planes, 0 = control */
l=use sliding mode, 0 = control */

l=use thrusters, 0=use propellers */
l=use thrusters to rotate in place */
l=use thrusters for lateral motion */
1= go to WAYPOINT without WAITs */
1= go to WAYPOINT */
l=hover at WAYPOINT */

l=water leak in progress */

= 0 /
= 0 /
= 1 /

= 0 /
= 0 /
= 0 /
= 0 /
= 1 /
= 1 /

= 0 /

= 0 /
= 0 /
= 0 /
= 0 /

= 0 /
= 0 /
= 0 /
= 0 /
= 0 /
= 0 /

= 0;

193

int HALTSCRIPT =0; /* l=automatic shutdown criteria met */

#if defined(sgi)
int EMAIL = l; /* l=send e-mail, 0=don't send e-mail */
#else
int EMAIL = 0; /* can't send email via OS-9 directly */
#endif
int EMAIL_ENTERED =0; /* flag for first time through */

int NOT_YET_REIMPLEMENTED =0; /* code in block needs reverification */
int ARCHAIC_IGNORE = 0; /* code in block not valid, commented */

double TIMESTEP = 0.15; /* time of a single closed loop */
/* add code to warn if exceeded «« */
/* units are seconds */

int TACTICALPARSE = 0
int KEYBOARDINPUT = 0
int HELPFILELAUNCHED = 0
int GPSFIXINPROGRESS = 0
int REPORTSTABLE = 0

/* l=tactical level parsing commands */
/* l=read keyboard vice mission file */
/* l=mission.script.HELP already shown*/
/* l=wait GPS-FIX & restore z_command */
/* l=tell when stable hover/waypt/gps */

/* files and paths */

FILE * auvscriptfile;
FILE * auvordersfile;
FILE * auvdatafile;
FILE * auvtextfile;
FILE * controlconstantsinputfile;
FILE * controlconstantsoutputfile;
FILE * emailaddressfile;

/* FILE * serialtestfile; */

int serialpath = 0;

int sonarpath = 0;

/»»»«»•»«»«.»»»»»„„„»•«»mttit.mttt«»*,*»»,»,,,,,»,,,»,,,,,»,,,,,,,,,,,

/* Variables and data structures */

/* buffers of full strings for byte transfer to tactical level & disk file */
/* 'buffer' usually < 256, intentionally oversized in case of overflow error */

time_t system_time = 0;
struct tm *system_tmp = 0;

/* dac: digital-analog converter */
/* adc: analog-digital converter */

/* 4 Channels of DAC ADA-1 DAC -- updated */
unsigned char *dacl_a = (unsigned char *) DAC1_ADDR;

/* 8 Channels of DAC DAC-2B — updated */
unsigned char *dac2b_a = (unsigned char *) DAC2B_ADDR;

/* 16 Channels of ADC ADA-1 -- updated */
unsigned char *adcl_a = (unsigned char '*) ADC1_ADDR;

/* 16 Channels of ADC ADC-2 — updated */
unsigned short *adc2_a = (unsigned short *) ADC2_ADDR;

unsigned char *via0 = (unsigned char *) VIA0_ADDR;
unsigned char *vial = (unsigned char *) VIA1_ADDR;

unsigned char via0a_reg, via0b_reg;

int telemetry_records_saved = 0;
int mission_leg_counter = 0;
int replication_count = 1;
int end_test = FALSE;

194

int wrap_count = 0;

double
double

dt
rpm

= 0.15
0.0; /

/

double dt_time ; /

double
double

computer_voltage
motor_voltage =

24.0
24.0

double
double

vertical_thruster_
lateral_thruster_

„volts
„volts

= 0.0;
0.0;

/
/

double
double
int
int

main_motor_deltal
main_motor_de1ta2
main_motor_voltl
main_motor_volt2

=

0.0;
0.0;
512;
512;

/* units are seconds */
* +-700 rpm == +-2 ft/sec */
* (steady state) */

* dive tracker time */

intermediate calculation */
intermediate calculation */

unsigned short psi_bit_old

double

double

dg_offset

start_psi

= 0;

= 0.0;

=0.0; /* initial heading in degrees */

/* Used to estimate the X and Y position of the AUV */
double
double
double
double
double
double

X_est
Y_est
X_dot_est
Y_dot_est
u_est
v_est

0.0
0.0
0.0
0.0
0.0
0.0

/* control coefficients are based on standard units (degrees/feet/seconds) */
double k_psi = 0.0;
double k_r = 0.0;
double k_v = 0.0;

= 0.0
= 0.0

double k_z
double k_w
double k theta
double k_q

double k_thrus ter_ps i
double k_thruster_r
double k_thruster_rotate
double k_thruster_lateral
double k_thruster_z
double k_thrus ter_w

double k_propeller_hover
double k_surge_hover
double k_prope1ler_current

double k_thrus ter_hover
double k_sway_hover
double k_thrus ter_current

double k_sigma_r
double k_sigma_psi
double eta_steering
double sigma

int mission_legs_total

12.0;
28.87;
0.1;
0.0;

0;

values initialized in parse_mission_script_commands () */
units are seconds
units are seconds
units are seconds
degrees */
degrees */
feet */ .

double time_next_command = 0 0; /
double time_gps_complete = 0 0; /
double time_postgps_dive = 0 0; /
double psi command = 0 0; /
double psi_command_ hover = 0 0; /
double x_command = 0 0; /

195

double y_command = 0 0; /* feet */
double z_coiranand = 0 0; /* feet */
double stbd__rpm_conunand = 0 0; /* -700..700 */
double port_rpm_command = 0 0; /* -700..700 */
double planes_command = 0 0; /* degrees */
double rudder_command = 0 0; /* degrees */
double rotate_command = 0 0; /* degrees/sec */
double lateral_command = 0 0; /* ft/sec */

double bow_lateral_thruster_coiranand = 0 0; /* volts -24. .24 */
double stern_lateral_thruster_command = 0 0; /* volts -24. .24 */
double bow_ vertical_thruster_coiranand = 0 0; /* volts -24. .24 */
double stern. vertical_thruster_command = 0 0; /* volts -24. .24 */

double

double

double
double

double
double
double
double

double

double
double
double

previous_z_command

gyro_error

waypoint_distance
waypoint_angle

track_angle
along_track_distance
cros s_track_di s tance
standoff_distance

death_spiral_radius

depth_error
depth_cell_bias
psi_error

0.0; /* feet

0.0; /* degrees

= 0.0; I*
= 0.0; I*

feet
degrees

= 0.0; /* degrees
= 0.0; /* feet
= 0.0; /* feet
= 1.0; /* feet

= 15.0; /* feet

; /* feet
= 0.0; /* feet
= 0.0; /* degrees

/* psi i-1 for differentiation of r needed because of busted gyro */
double psi_iml = 0.0; /* degrees */

/* values used by kahlman depth filter */
int kal_init_z = TRUE
double thres_z = 1.0;
double z_kal = 0.0;
double z_dot_kal = 0.0;
double z_ddot_kal = 0.0;

int roll_rate_0 = 0;
int pitch_rate_0 = 0;
int yaw_rate 0 = 0;
int roll_0 = 0;
int pitch_0 = 0;
int z_val0 = 0;
int swl = 0;
int error = 0;
int range = 0;
int bad_rng = 0;
int bad_updates = 0;
int range_index = 0;
double range1 = 0.0;
double range2 = 0.0;
double errorl = 0.0;
double error2 = 0.0;
double avg_rng = 0.0;
int k_range = 0;
int range_array [3000];

int pointer = NULL
int speed_array [11];

int PortAFlag = 0.0;

int tick _ 0;
int curr_tick = 0;
int tickl = 0;
int tick2 = 0;
int i = 0;

196

int
long
long
double
short
char
int

int
int
int

int
int
int

int
int

/* char

char
char

int
int
int

char

int
int
int
int
int

FILE

mask
davedate
davetime
value
day
answer
start_dwell

socket_descriptor
socket_accepted
socket_stream

OxOOOOffff;
0;
0;
0.0;
0;

tactical_socket_descriptor = 0
tactical_socket_accepted = 0
tactical_socket_stream = 0

socket_length
buffer_max

= MAXBUFFERSIZE;
= MAXBUFFERSIZE;

buffer_array [FILEBUFFERSIZE][256]; -- not implemented

buffer
local_buffer

buffer_size
buffer_index
variables_parsed

buffer_received

[MAXBUFFERSIZE + 10],
[MAXBUFFERSIZE + 10],

= 0
= 0
= 0

[MAXBUFFERSIZE +10],
virtual_world_remote_host_name [60],

tactical_remote_host_name [60],
command_buffer

bytes_received
bytes_read
bytes_written
bytes_left
bytes_sent

[MAXBUFFERSIZE +10];

* netstat_fileptr;

struct sockaddr_in server_address;

struct hostent *server_entity;

char email_address [81];

int.
int
int

char

int

double

clock_t
clock t

shutdown_signal_received = FALSE
virtual_world_socket_opened = FALSE

tactical_socket_opened = FALSE

ptr_index;

print_help

speed_per_rpm

= FALSE;

2.0 / 700.0 ; /* steady state:
2.0 feet/sec per 700 rpm */

/* -700..700 */

nextloopclock
currentloopclock

= 0;
= 0;

int audible_command TRUE;

int auvscriptfilequit = FALSE;

double AUV_oceancurrent_x
double AUV_oceancurrentjr
double AUV_oceancurrent_z

double DiveTrackerl_x;
double DiveTrackerl_y;

0.0; /* Ocean current rate along North-axis */
0.0; /* Ocean current rate along East-axis */
0.0; /* Ocean current rate along Depth-axis */

/* DiveTrackerl transducer x (feet)
/* DiveTrackerl transducer y (feet)

197

double DiveTrackerl_z;

double DiveTracker2_x;
double DiveTracker2_y;
double DiveTracker2_z;

/* DiveTrackerl transducer z (feet) */

/* DiveTracker2 transducer x (feet) */
/* DiveTracker2 transducer y (feet) */
/* DiveTracker2 transducer z (feet) */

/* Dave's cats and dogs */

unsigned char *tim_lacl = TIM_1AC_1
unsigned char *tim_lac2 = TIM_1AC_2
unsigned char *tim_lac3 = TIM_1AC_3

unsigned char tim_la_data_reg = TIM_1AC_DATA_REG;
unsigned char tim_la_control_reg = TIM_1AC_C0NTR0L_REG;
unsigned char tim_la_aux_gates_reg = TIM_1AC_AUX_GATES_REG;

#ifndef sgi

char *argblk[] = {
"unlink",
"DT2CL",
0,

};

char *dt_fork_parmptr;
int dt_pid;
int ul_pid;

#endif

198

APPENDIX D - statevector.c SOURCE CODE

fr************
/*■

Program:

Authors:

Revised:

System:
Compiler:

Compilation:

[68020]
[68030]

[Irix]

Purpose:

Religion:

statevector.c

State vector (telemetry variables) common definition

Don Brutzman and Mike Burns

27 January 96

AUV Gespac 68020/68030, OS-9 version 2.4
Gespac cc Kernighan & Richie (K&R) C

ftp> put statevector.c
auvsiml> chd execution
auvsiml> make -k2f execution
auvsiml> make execution

fletch> make execution

Allows repeated use of global variables in statevector.c
via statevector.h in order to prevent compiler warnings

See globals.c/globals.h for other global variables

All distance units are feet, all time units are seconds,
all rotational units are degrees. This is only required
when transmitting values externally (socket/text/file).

Deciding factors are consistency and human readability.
Computational performance is not an issue.

Anyone who disagrees has to put up with an endless argument
from Don who will not be persuaded to accept any variations!

/*******************************,, ► *********************»**,.,*,.„*,,.** ********i

#include "defines.h"

/***************

int

*** ******************** "7

char

STATEVECTORSIZE

keyword [300];

double t
double X
double y
double z
double phi
double theta
double psi
double x dot
double y dot
double z dot
double phi_dot
double theta dot
double psi dot
double speed

double u
double V
double w
double p
double q

37; /* how many variables follow*/

/* auv_state or uvw_state V

0.0; /* units are seconds */
0.0; /* feet */
0.0; /* feet */
2.0; /* feet */
0.0; /* degrees */
0.0; /* degrees */
0.0; /* degrees */
0.0; /* feet/sec */
0.0; /* feet/sec */
0.0; /* feet/sec */
0.0; /* degrees/sec */
0.0; /* degrees/sec */
0.0; /* degrees/sec */
0.0; /* feet/sec (paddlewheel) */

/* possibly averaged */
0.0; /* feet/sec */
0.0; /* feet/sec */
0.0; /* feet/sec */
0.0; /* degrees/sec */
0.0; /* degrees/sec */

199

double
double
double
double
double

delta_planes
delta_rudder
port_rpm
stbd_rpm

0.0; /* degrees/sec */
0.0; /* degrees */
0.0; /* degrees */
0 ; /* -700..700 */
0 ; /* -700..700 */

/* +- 24V <=> +~2 lb, + Volts moves thruster in + direction, all identical */
0.0; /* thruster rpm */
0.0; /* thruster rpm */
0.0; /* thruster rpm */
0.0; /* thruster rpm */

double AUV_bow_vertical
double AUV_stern_vertical
double AUV_bow_lateral
double AUV_stern_lateral

/* warning: do not use leading zero with bearings or else read as octal V

double AUV_ST1000_bearing =
double AUV_ST1000_range
double AUV_ST1000_strength=

double AUV_ST725_bearing =
double AUV_ST725_range =
double AUV_ST725_strength =

double divetracker_rangel =
double divetracker_range2 =

/******************************

0.0;/* ST_1000 conical pencil bearing degrees*/
10.0;/* ST_1000 conical pencil range feet */
20.0;/* ST_1000 conical pencil strength dB */

90.0;/* ST_725
20.0;/* ST_725
10.0;/* ST_725

1 x 24 sector bearing degrees*/
1 x 24 sector range feet */
1 x 24 sector strength dB */

-1.0;/* feet range to divetracker unit 1 */
-1.0;/* feet range to divetracker unit 2 */

/* negative range means invalid return */
/* future: divetracker_headingl & 2 */

********** **************************i

200

APPENDIX E - external_f unctions. c SOURCE CODE

/*
^*************************+*********************,

Program:

Authors:

Revised:

System:
Compiler:

Compilation:

[68020]
[68030]

[Irix]

Purpose:

external_functions.c

Don Brutzman

13 February 96

AUV Gespac 68020/68030, OS-9 version 2.4
Gespac cc Kernighan & Richie (K&R) C

ftp> put external_functions.c
auvsiml> chd execution
auvsiml> make -k2f execution
auvsiml> make execution

fletch> make execution

Reduce size of execution.c to allow OS-9 C compiler to work

Make functions globally available for tactical level
in order to guarantee compatibility

/* external_functions.c */

ttinclude "globals.h"
#include "statevector.h"
#include "defines.h"

/»•»»•««•««»•»•»»»»»««»««»»»Hm»««»«»««»»»««»«»«»,»!»!,«»»,,!

/* OS-9 - specific function compatibility (mostly stubs to permit compilation */

#if (defined(sgi) || defined(sun))

void tsleep (unsigned svalue) { /* null body */}

void _sysdate (format, time, date, day, tick)
int format, *time, *date, *tick; short *day;

{ /* null body */}

double pow (xx, yy)
double xx, yy;
{return exp (yy * log (xx));}

int _gs_rdy (path) int path; { return 0; } /* bytes waiting on path */

int _gs_opt (path, buffer)
int path; struct sgbuf *buffer;

{ return 0; }

int

#endif

_ss_opt (path, buffer)
int path; struct sgbuf »buffer;

{ return 0; }

/****4*»***t**«t»»MH«M«H«*H«MH«lr**M*MH**t»Ht»»««t ********************,

double degrees
double radians
double normalize
double normalize2
double radian normalize
double radian normalize2
void clamp

201

#if (defined(sgi)
#else

double
double
double
double

#endif

defined(sun))

atan2
sinh
cosh
tanh

<)
().
0,
0.

double sign

void build_telemetry_string
void parse_telemetry_string

<);

0;
0;

void
void
void
void

open_tactical_socket ();
shutdown_tactical_socket ();
send_buffer_to_tactical_socket ();
get_string_from_tactical_socket ();

void
void

void
void

record_data_on
record_data_off

cage_dg
uncage_dg

0;
();

0;
0;

int

double
double

detect_death_spiral

dsign
dtanh

();

0;
();

/********************** t*** **********,

double degrees (rads) /* radians input */
double rads;

{
return rads * 180.0 / PI;

/**,***, k******************** ,

double radians (degs) /* degrees input*/
double degs;

{
return degs * PI / 180.0;

/******************** t***********************************,, t**************,

double normalize (degs) /* degrees input*/
double degs;

{
double result = degs;

while (result < 0.0) result += 360.0;
while (result >= 360.0) result -= 360.0;

return result;

•/********************** + **************************** ***************************,

double normalize2 (degs) /* degrees input*/
double degs;

{
double result = degs;

while (result <= -180.0) result += 360.0;
while (result > 180.0) result -= 360.0;

return result;

z*** *****************************,

double radian_normalize (rads) /* radians input*/
double rads;

202

{
double result = rads;

while (result < 0.0) result += 2.0 * PI;
while (result >= 2.0 * PI) result -= 2.0 * PI;

return result;
}

double radian_normalize2 (rads) /* radians input*/
double rads;

{
double result = rads;

while (result <= - PI) result += 2.0 * PI;
while (result > PI) result -= 2.0 * PI;

return result;
}

void clamp (clampee, absolute_min, absolute_max, name)
double * clampee;
double absolute_min;
double absolute_max;
char * name;

{
double new_value, local_min, local_max;

if ((absolute_max == 0.0) && (absolute_min == 0.0)) return; /* no clamp */

if (absolute_max >= absolute_min) /* ensure min & max used in proper order */

local_min = absolute_min;
local_max = absolute_max;

}
else
{

local_min = absolute_max;
local_max = absolute_min;

}
if ((* clampee) > local_max)
{

new_value = local_max;

if (TRACE && DISPLAYSCREEN)
printf ("[clamping %s from %5.3f to %5.3f]\n",

name, * clampee, new_value);

* clampee = new_value;
}
if ((* clampee) < local_min)
{

new_value = local_min;

if (TRACE && DISPLAYSCREEN)
printf ("[clamping %s from %5.3f to %5.3f]\n",

name, * clampee, new_value);

}
clampee = new_value;

}

#if (defined(sgi) || defined(sun))
#else

/* thanks to Michael Olberg Oct 20, 94 olberg@bele.oso.chalmers.se */

double atan2 (y, x)
double y; double x;

{

203

if (TRACE && DISPLAYSCREEN)
printf ("[atan2 (%5.3f, %5.3f)]\n", y, x) ;

if (x == 0.0) {
if (y < 0.0) return(-PI12.0);
else return) PI/2.0);

} else {
if (x < 0.0) {

if (y < 0.0) return(atan(y/x)-PI);
else return(atan(y/x)+PI);

} else return(atan(y/x));
}

}
/* as to the tanh you will simply have to use */

double sinh (x)
double x;

{
return (exp(x) - exp(-x))/2.0;

}

double cosh (x)
double x;

{
return (exp(x) + exp(-x))/2.0;

}

double tanh (x)
double x;

{
return sinh(x)/cosh(x);

}

#endif

/** in:****************************,***,*/

double sign (x)
double x;

{
if (x > 0.0) return 1.0
else if (x < 0.0) return -1.0
else return 0.0

}

/*t**tttH»**t*t»»******tttt«***t»»t»»*tt,Mjt«,.ltt„j„»,„,l„4„)„„„t)rH /

void build_telemetry_string (telemetry_buffer_ptr)

char * telemetry_buffer_ptr;

{ /* this function parses global string buffer_received in execution.c */

if (TRACE && DISPLAYSCREEN) printf ("[begin build_telemetry_string ()]\n");

for (i = 0; i <= buffer_max; i++) buffer [i] = '\0'; /* zero buffer */

/* auv_state means state vector from auv that is going to virtual world */

if (LOCATIONLAB) z = z - depth_cell_bias;

buffer_size = sprintf (telemetry_buffer_ptr,
" auv_state %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f

%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5 3f
%5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f \n",

t,x,y,z,
normalize2 (phi),
normalize2 (theta),
normalize (psi),
speed,
u, v, w,
normalize2 (p),

204

normalize2 (q),
normalize2 (r),
x_do t, y_dot, z_dot,
normalize2 (phi_dot),
normalize2 (theta_dot),
normalize2 (psi_dot),
normalize2 (delta_rudder),
normalize2 (delta_planes),
port_rpm, stbd_rpm,
AUV_bow_vertical, AUV_stern_vertical,
AUV_bow_lateral, AUV_stern_lateral,
AUV_ST1000_bearing, AUV_ST1000_range, AUV_ST1000_strength,
AUV_ST725_bearing, AUV_ST725_range, AUV_ST725_strength,
divetracker_rangel, divetracker_range2);

if (LOCATIONLAB) z = z + depth_cell_bias;

if (buffer_size > buffer_max) /* sprintf buffer overflow condition */
{

if (DISPLAYSCREEN)
printf ("Buffer overflow, buffer_size = %d, reduced to %d !!!!!!\n",

buffer_size, buffer_max) ,-
buffer_size = buffer_max;

}

if (TRACE && DISPLAYSCREEN) printf ("[buffer_size is %d]\n", buf fer_size) ,-

/* other state variables & timing constraints can be added <««««««« */

if (TRACE && DISPLAYSCREEN) printf ("[finish build_telemetry_string ()]\n");

return;
}

void parse_telemetry_string (passed_buffer_ptr)

char * passed_buffer_ptr;

{ /* this function parses global string buffer_received in execution.c */

/* temporary hold variables */

double AUV_time_temp,
AUV_x_temp, AUV_y_temp, AUV_z_temp,
AUV_phi_temp, AUV_theta_temp, AUV_psi_temp,
AUV_speed_temp,
AUV_u_temp, AUV_v_temp, AUV_w_temp,
AUV_p_temp, AUV_q_temp, AUV_r_temp,
AUV_x_dot_temp, AUV_y_dot_temp, AUV_z_dot_temp,
AUV_phi_dot_temp, AUV_theta_dot_temp, AUV_psi_dot_temp,
AUV_delta_rudder_temp, AUV_delta_planes_temp,
AUV_port_rpm_temp, AUV_s tbd_rpm_temp,
AUV_bow_vertical_temp, AUV_stern_vertical_temp,
AUV_bow_lateral_temp, AUV_stern_lateral_temp,
AUV_ST1000_bearing_temp, AUV_ST1000_range_temp,
AUV_ST10 0 0_s trength_temp, AUV_ST7 2 5_bearing_temp,
AUV_ST725_range_temp, AUV_ST725_strength_temp/
AUV_divetracker_rangel_temp, AUV_divetracker_range2_temp;

if (TRACE && DISPLAYSCREEN) printf ("[begin parse_telemetry_string ()]\n");

/* update and output AUV state variables */
/* note that if dead reckoning is used, values will not change */

/* note %F required by OS-9, accepted by SGI as equivalent to %lf */

if (TRACE && DISPLAYSCREEN)
printf ("from telemetry buffer:\n%s", passed_buffer_ptr);

variables_parsed = sscanf(passed_buffer_ptr,

205

/* "%s %lf %lf %lf %lf %lf %lf %lf
%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf

"%S %F %F %F %F %F %F %F %F %F
%F %F %F %F %F %F %F %F %F %F\n",

keyword,
ScAUV_x_temp,
&AUV_phi_temp,
&AUV_speed_temp,
&AUV_u_temp,
&AUV_p_temp,
&AUV_x_do t_temp,
&AUV_phi_dot_temp,
&AUV_delta_rudder_temp,
&AUV_port_rpm_temp,
&AUV_bow_vertical_temp,
&AUV_bow_lateral_temp,
&AUV_ST10 0 0_bearing_temp,

&AUV_ST725_bearing_temp,

%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %if %if %if
%lf %lf %lf %lf %lf %lf\n",*/
%F %F %F %F %F %F %F %F %F %F %F %F %F %F %F %F %F

&AUV_t ime_temp,
&AUV_y_temp,
&AUV_theta_temp,

&AUV_z_temp,
&AUV_psi_temp,

&AUV_divetracker_rangel_temp,

&AUV_v_temp,
&AUV_q_temp,
&AUV_y_dot_teinp,
&AUV_theta_dot_temp,
&AUV_delta_planes_temp,
&AUV_s tbd_rpm_temp,
&AUV_stern_vertical_temp,
&AUV_s tern_lateral_temp,
&AUV_ST100 0_range_temp,
&AUV_ST100 0_s trength_temp,
&AUV_ST7 2 5_range_temp,
&AUV_ST725_strength_temp,
&AUV_divetracker_range2_temp);

&AUV_w_temp,
&AUV_r_temp,
&AUV_z_dot_temp,
&AUV_psi_dot_temp,

if
{

(variables_parsed == STATEVECTORSIZE) /* transfer OK, keep new values */

}

t
x
y
z
phi
theta
psi
speed
u
v
w
P
q
r
x_dot
y_dot
z_dot
phi_dot
theta_dot
psi_dot
delta_rudder
delta_planes
port_rpm
stbd_rpm
AUV_bow_vertical
AUV_stern_vertical
AUV_bow_lateral
AUV_stern_lateral
AUV_ST10 0 0_bear ing
AUV_ST100 0_range
AUV_ST1000_strength
AUV_ST72 5_bearing
AUV_ST725_range
AUV_ST7 2 5_s trength
divetracker_rangel
divetracker_range2

= (AUV_time_temp);
= (AUV_x_temp);
= (AUV_y_temp);
= (AUV_z_temp);
= (AUV_phi_temp);

(AUV_theta_temp);
= (AUV_psi_temp);
= (AUV_speed_temp);
= (AUV_u_temp) ;
= (AUV_v_temp)
= (AUV_w_temp) ;

(AUV_p_temp)
= (AUV_q_temp);

(AUV_r_temp);
<AUV_x_dot_temp) ;
(AUV_y_dot_temp);
(AUV_z_dot_temp) ;
(AtFV_phi_dot_temp) ;
(AUV_theta_dot_temp);

= (AUV_psi_dot_temp);
= (AUV_delta_rudder_temp);
= (AUV_delta_planes_temp);
= (AUV_port_rpm_temp);

(AUV_stbd_rpm_temp);
= (AUV_bow_vertical_temp) ;
= (AUV_stern_vertical_temp);

(AUV_bow_lateral_temp);
= (AUV_stern_lateral_temp);
=normalize(AUV_ST1000_bearing_temp);

(AUV_ST1000_range_temp);
(AUV_ST1000_strength_temp);

=normalize(AUV_ST725_bearing_temp);
(AUV_ST725_range_temp);
(AUV_ST725_strength_temp);

= (AUV_divetracker_rangel_temp);
= (AUV_divetracker_range2_temp);

else if ((variables_parsed != STATEVECTORSIZE) && (variables_parsed != -1))
{

strcpy (command_buffer, passedjbuffer_ptr);
parse_mission_script_commands ();

/* if (DISPLAYSCREEN)
printf ("\nGarble problem in buffer_received !!! variables parsed = %d\n%s\n"

variables_parsed, passed_buffer_ptr);
TRACE = TRUE; */

}

206

if
{

p=%5.3f q=%5.3f r=%5.
w,
r);

z_dot=%5.3f ",
z_dot);

}*/

(TRACE £e& DISPLAYSCREEN)

printf ("\nfrom telemetry buffer state variables:"),
printf ("\n %s t=%5.3f x=%5.3f y=%5.3f z=%5.3f ",

keyword, t,
x, y, z);

printf ("phi=%5.3f theta=%5.3f psi=%5.3f ",
phi, theta, psi) ;

printf ("paddlewheel speed=%5.3f ",
speed);

printf ("u=%5.3f v=%5.3f w=%5.3f p=%5.3f q=%5.3f r=%5.3f
u, v,
P, q,

printf ("x_dot=%5.3f y_dot=%5.3f
x_dot, y_dot,

printf ("phi_dot=%5.3f theta_dot=%5.3f psi_dot=%5.3f
phi_dot, theta_dot, psi_dot);

printf ("delta_rudder=%5.3f delta_planes=%5.3f ",
delta_rudder, delta_planes);

printf ("port_rpm=%5.3f stbd_rpm=%5.3f ",
port_rpm, stbd_rpm);

printf ("bow_vertical=%5.3f stern_vertical=%5.3f ",
AUV_bow_vertical, AUV_stern_vertical);

printf ("bow_lateral=%5.3f stern_lateral=%5.3f ",
AUV_bow_lateral, AUV_stern_lateral) ;

printf ("ST1000 b/r/s %5.3f %5.3f %5.3f, ST725 b/r/s %5.3f %5.3f %5.3f"
AUV_ST1000_bearing, AUV_ST1000_range, AUV_ST1000_strength,
AUV_ST725_bearing, AUV_ST725 jrange, AUV_ST725_strength);

printf ("divetracker_rangel=%5.3f divetracker_range2=%5.3f ",
divetracker_rangel, divetracker_range2);

printf (", [current time %d %d %d] \n",
system_tmp->tm_hour, system_tmp->tm_min, system_tmp->tm_sec);

/* keep all telemetry variables in degrees */
phi = normalize2 (phi) ;
theta = normalize2 (theta)
psi = normalize (psi);
phi_dot = normalize2 (phi_dot);
theta_dot = normalize2 (theta_dot);
psi_dot = normalize2 (psi_dot);
p = normalize2 (p);
q = normalize2 (q);
r = normalize2 (r);
delta_rudder = normalize2 (delta_rudder);
delta_planes = normalize2 (delta_planes);

if (TRACE && DISPLAYSCREEN) printf ("[finish parse_telemetry_string ()]\n");

return;
}

void open_tactical_socket () /* see os9sender.c for original code */

if (TRACE && DISPLAYSCREEN)
printf (" [start open_tactical_socket ()] \n") ,•

/* Initialize communications blocks */

/* Initialize both client & server **/

/* Signal handlers for termination to override net_open () and net_close ()*/
/* signal handlers. Otherwise you are unable to ÄC kill this program. */

#if (defined(sgi) || defined(sun))
signal (SIGHUP, shutdown_tactical_socket);/* hangup */
signal (SIGINT, shutdown_tactical_socket);/* interrupt character */
signal (SIGKILL, shutdown_tactical_socket);/* kill signal from Unix */
signal (SIGPIPE, shutdown_tactical_socket);/* broken pipe from other host*/
signal (SIGTERM, shutdown_tactical_socket);/* software termination */
#endif

207

/* Initialize sender **************************************+*******************/

/* start by finding default/desired remote host to connect to */
{

server_entity = gethostbyname (tactical_remote_host_name);
if (server_entity == NULL)
{

if (DISPLAYSCREEN)
{
printf("[open_tactical_socket: tactical remote host\n");
printf(" (\"%s\") not found]\n",

tactical_remote_host_name) ;
fflush (stdout); /* force completion of screen write */

}
/* error message needed on (open) output file «««««««««« */
tactical_socket_opened = FALSE;
exit (1);

}
else if (TRACE && DISPLAYSCREEN)

{
printf (" [open_tactical_socket: tactical remote host ");
printf("(\"%s\") located]\n", tactical_remote_host_name);

}

/* client opens server port ***/

/* Fill in structure 'server_address' with the address of the */
/* remote host (i.e. SERVER) that we want to connect with: */

#if defined(sgi)
bzero ((char *) &server_address, sizeof (server_address));

#endif
server_address.sin_family = AF_INET; /* Internet protocol family */

/* copy server IP address into sockaddr_in struct server_address */
#if defined(sgi)

bcopy (server_entity->h_addr, &(server_address.sin_addr.s_addr),
server_entity->h_length);

#else
strncpy(&(server_address.sin_addr.s_addr), server_entity->h_addr,

server_entity->h_length);
#endif

/* make sure port is in network byte order */
server_address.sin_port = htons (AUVSIM1_TCP_P0RT_2);

/* Open TCP (Internet stream) socket */
if ((tactical_socket_descriptor = socket (AF_INET, SOCK_STREAM, 0)) < 0)
{

if (DISPLAYSCREEN)
{

printf ("[open_tactical_socket: client can't open server");
printf (" tactical stream socket]");

}
/* error message needed on (open) output file ««««««««««« */
tactical_socket_opened = FALSE;
exit (1);

}
else if (TRACE && DISPLAYSCREEN)

{
printf ("[open_tactical_socket: client opened");
printf (" tactical server socket successfully]\n");

}

/* Connect to the server. Process will block/sleep until connection is
is established. Timeout will return an error. */

if (connect (tactical_socket_descriptor,
(struct sockaddr *) &server_address,

sizeof (server_address)) < 0)
{

if (DISPLAYSCREEN)

208

{
printf ("[open_tactical_socket: client can't connect to");
printf (" tactical server socket, tactical coirans ignored]\n");

}
/* error message needed on (open) output file ««««««««««« */
tactical_socket_opened = FALSE;

if (LOCATIONLAB) exit (1);
else if (DISPLAYSCREEN) printf ("[continuing anyway]");

}
else
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[execution client connected to tactical");
printf (" server socket successfully]\n");

}
tactical_socket_opened = TRUE;

}

} /* end initialization */

tactical_socket_stream = tactical_socket_descriptor; /* client */

if (TRACE && DISPLAYSCREEN) /* print final info */
{
printf("[open_tactical_socket CLIENT: tactical_socket_descriptor = %d]\n",

tactical_socket_descriptor);
printf("[tactical_socket_accepted = %d]\n"

tactical_socket_accepted);
printf ("[tactical_socket_stream = %d] \n"

tactical_socket_stream);
}

if (TRACE && DISPLAYSCREEN)
printf ("[finish open_tactical_socket 0]\n");

return;

}/* end open_tactical_socket () */

void shutdown_tactical_socket () /* see os9sender.c for original code */

int kill_return_value;

shutdown_signal_received = TRUE;

if (tactical_socket_opened == FALSE)
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[tactical_socket_opened FALSE,");
printf (" shutdown_tactical_socket ignored]\n");

}
return;

}
if (TRACE && DISPLAYSCREEN)

printf ("[shutdown_tactical_socket start ...]\n");

/* No need to send a message to other side that bridge is going down, */
/* since SIGPIPE signal trigger may shutdown server on other side */

if (close (tactical_socket_stream) == -1)
{

if (TRACE && DISPLAYSCREEN)
printf ("shutdown_tactical_socket close (tactical_socket_stream) failed\n");

/* shutdown () reference: "Using OS-9 Internet" manual p. 2-55 */

if (shutdown (tactical_socket_stream, 2) == -1)

209

{
if (TRACE ScSc DISPLAYSCREEN)
{

printf ("[shutdown_tactical_socket shutdown");
printf (" (tactical_socket_stream, 2) failed]\n");

}

kill_return_value = kill (tactical_socket_stream, SIGKILL);

if (TRACE && DISPLAYSCREEN)
{

printf ("[shutdown_tactical_socket kill (tactical_socket_stream,") ;
printf (" SIGKILL) returned %d]\n", kill_return_value);

}
}

}
if (TRACE && DISPLAYSCREEN)

printf ("[shutdown_tactical_socket return]\n");

return;

} /* end shutdown_tactical_socket () */

void send_buffer_to_tactical_socket () /* see os9sender.c for orig. code */
{

if (HALTSCRIPT) return;

bytes_left = socket_length;
bytes_written = 0;
ptr_index = buffer; /* this global string is the data to be sent */

if (tactical_socket_opened == FALSE)
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[send_buffer_to_tactical_socket: ") ;
printf ("tactical_socket_opened == FALSE, returning]\n");

}
return;

}
if (TRACE && DISPLAYSCREEN)

printf ("[send_buffer_to_tactical_socket start ...]\n");

while ((bytes_left > 0) && (bytes_written >= 0)) /* write loop ***********/
{

bytes_sent = write (tactical_socket_stream, ptr_index, bytes_left);

if (bytes_sent < 0) bytes_written = bytes_sent;
else if (bytes_sent > 0)

{
bytes_left -= bytes_sent;
bytes_written += bytes_sent;
ptr_index += bytes_sent;

}
if (LOCATIONLAB && TRACE && DISPLAYSCREEN)
{

printf ("[record_data send_telemetry_to_server loop");
printf (" bytes sent = %d]\n", bytes_sent);

}
}
if (bytes_written < 0)
{

HALTSCRIPT = TRUE; /* loss of socket comms with tactical level */

if (LOCATIONLAB && DISPLAYSCREEN)
{
printf ("[record_data send_telemetry_to_server () send failed, ");
printf ("%d bytes_written]\n", bytes_written);

}

210

/* error message needed on (open) output file ««««««««««« */
}
else if (LOCATIONLAB && TRACE £e& DISPLAYSCREEN)

{
printf ("[record_data send_telemetry_to_server total bytes sent");
printf (" = %d]\n", bytes_written) ,-

}

/* Check termination ***/

if (strncmp (buffer, "shutdown", 8) == 0)
{

if (TRACE && DISPLAYSCREEN) printf
("[send_buffer_to_tactical_socket: shutdown_signal_received]\n") ;

shutdown_tactical_socket ();
}
if (TRACE && DISPLAYSCREEN)

printf (" [send_buf fer_to_tactical_socket return] \n") ,-

return;

} /* end send_buffer_to_tactical_socket () */

void get_string_from_tactical_socket () /* see os9sender.c for original */

if (tactical_socket_opened == FALSE)
{

if (TRACE && DISPLAYSCREEN)
printf ("[get_string_from_tactical_socket not open, ignored]\n") ;
return;

}
if (TRACE && DISPLAYSCREEN)

printf ("[get_string_from_tactical_socket start ...]\n");

/* listen to remote host, relay to local network/program */

bytes_left = socket_length;
bytes_received = 0;
ptr_index = commandjouffer; /* command_buffer is where results go */

while ((bytes_left > 0) && (bytes_received >= 0)) /* read loop ************/

bytes_read = read (tactical_socket_stream, ptr_index, bytes_left);

if (bytes_read < 0) bytes_received = bytes_read;
else if (bytes_read > 0)
{

bytes_left -= bytes_read;
bytes_received += bytes_read;
ptr_index += bytes_read;

}
if (TRACE && DISPLAYSCREEN)
{

printf ("[get_string_from_tactical_socket receiver block");
printf (" loop bytes_read = %d]\n", bytes_read);

}
/* if nothing is waiting to be read, break out of read loop */
if ((bytes_read == 0) && (bytes_received == 0)) break;

}
if (bytes_received < 0) /* failure */
{

if (TRACE && DISPLAYSCREEN)
{

printf ("[get_string_from_tactical_socket receiver block read");
printf (" failed, bytes_received = %d\n", bytes_received);

}
}
else if (bytes_received == 0) /* no transfer */
{

if (TRACE && DISPLAYSCREEN)

211

{
printf("[get_string_from_tactical_socket received 0 bytes!!]\n");

}
else if (bytes_received > 0) /* success */

{
if (TRACE && DISPLAYSCREEN)
{
printf("[get_string_from_tactical_socket received %d bytes]\n",

bytes_received),-
}

}

/* Check termination ***/

if (strncmp (command_buffer, "shutdown", 8) == 0)
{

if (TRACE && DISPLAYSCREEN) printf
("[get_data_on_tactical_socket: shutdown_signal_received]\n");

shutdown_tactical_socket ();
}
if (TRACE && DISPLAYSCREEN)

printf ("[get_string_from_tactical_socket finish]\n");

return;

} /* end get_string_from_tactical_socket () */

/»»»««»»»«.»».»»».„„.„„„„«„^„„„„„„„„„„„„„„^„„^^^

void record_data_on ()
{

if (TRACE && DISPLAYSCREEN) printf ("[start record_data_on ()]\n");

/* Open files for writing */

if ((TACTICALPARSE) | | (TACTICAL == FALSE))
if ((auvdatafile = fopen (AUVDATAFILENAME,"w")) == NULL)
{
printf("record_data_on () unable to open output file %s for writing.",

AUVDATAFILENAME) ;
printf
(" Check ownership permissions in current directory.\n");
printf("Exit.\n");
exit (-1);

}
if (TRACE && DISPLAYSCREEN && (auvdatafile != NULL))

printf ("[auvdatafile %s open, pointer = %x]\n",
AUVDATAFILENAME, auvdatafile);

if ((TACTICALPARSE) || (TACTICAL == FALSE) || (auvdatafile ! = NULL))

fprintf (auvdatafile, "# auvdatafile %s shows %d ", AUVDATAFILENAME,STATEVECTORSIZE);
fprintf (auvdatafile, "state vector variables at %3.1f intervals.\n\n", dt);

fprintf (auvdatafile, "# state paddle ")•
fprintf (auvdatafile, " -);
fprintf (auvdatafile, " phi theta psi ");'
fprintf (auvdatafile, "delta delta port stbd ");

fprintf (auvdatafile, "bow_ stern bow_ stern ");
fprintf (auvdatafile, "_ST1000 sonar__ ");
fprintf (auvdatafile, "_ST725 sonar ");
fprintf (auvdatafile, "Dive Dive");
fprintf (auvdatafile, "\n");-

fprintf (auvdatafile, "# vector t x y z phi theta psi speed ") ;
fprintf (auvdatafile, "u v w p q r ") ;
fprintf (auvdatafile, "x_dot y_dot z_dot _dot _dot _dot ");
fprintf (auvdatafile, "rudder plane rpm rpm ");

fprintf (auvdatafile, "vrtcl vrtcl latrl latrl ");

212

fprintf (auvdatafile, "bng range dB ");
fprintf (auvdatafile, "bng range dB ");
fprintf (auvdatafile, "Trkl Trk2");
fprintf (auvdatafile, "\n\n");
}

if ((auvtextfile = fopen (AUVTEXTFILENAME,"w")) == NULL)
{

printf("record_data_on () unable to open output file %s for writing.
AUVTEXTFILENAME) ;

printf
(" Check ownership permissions in current directory.\n"
printf("Exit.\n");
exit (-1);

}
if (TRACE && DISPLAYSCREEN)

printf ("[auvtextfile %s open, pointer = %x]\n",
AUVTEXTFILENAME, auvtextfile);

fprintf (auvtextfile,
fprintf (auvtextfile,

fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile,

fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile, "Dive Dive");
fprintf (auvtextfile,

fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile,
fprintf (auvtextfile,

auvtextfile %S shows %d ", AUVDATAFILENAME,STATEVECTORSIZE) ;
state vector variables at %3.1f intervals. \n\n", dt) ;

state

phi theta psi
delta delta port stbd ");

bow_ stern bow_ stern ");
ST1000 sonar ");
.ST725 sonar ") ;

");
paddle ") ;

");

"\n");

vector t x y
"u v w p q
"x_dot y_dot z_dot _dot _dot
rudder plane rpm rpm ");

z phi
r ") ;
_dot ") ;

theta psi speed ");

fprintf (auvtextfile, "vrtcl vrtcl latrl latrl ");
fprintf (auvtextfile, "bng range dB ");
fprintf (auvtextfile, "bng range dB ");
fprintf (auvtextfile, "Trkl Trk2");
fprintf (auvtextfile, "\n\n");

if (LOOPFOREVER)
fprintf (auvtextfile, "# Mission replication #%d\n",

replication_count);

/* testing code from wr2tl.c, not currently in use */
/* serial.d is a telemetry test file to check connectivity */
/* if ((serialtestfile = fopen ("serial.d", "r")) <= 0)

{
printf ("record_data_on () can't open test file serial.d\n") ,-
printf("Exit.\n");
exit (-1);

}

if (TRACE && DISPLAYSCREEN) printf ("[finish record_data_on ()]\n")

return;

void record_data_off ()

************************** ,

{
if (TRACE &.&. DISPLAYSCREEN) printf ("[start record_data_off ()]\n");

if ((auvdatafile != NULL) && TRACE && DISPLAYSCREEN)
{

printf ("[flushing and closing auvdatafile %s %x]\n",

213

AUVDATAFILENAME, auvdataf ile) ;
fflush (stdout); /* force completion of screen write */

}
if (auvdatafile != NULL)
{

if (TRACE && DISPLAYSCREEN) printf ("[auvdatafile flushed]\n");
fflush (stdout); /* force completion of screen write */

fflush (auvdatafile); /* force completion of file write */

fclose (auvdatafile);
if (TRACE && DISPLAYSCREEN) printf ("[auvdatafile closed] \n") ,-
fflush (stdout); /* force completion of screen write */

}
else if ((TRACE && DISPLAYSCREEN) &&

((TACTICAL == FALSE) | | (LOCATIONLAB)))
printf ("[auvdatafile was not open!!]\n");

if (TRACE && DISPLAYSCREEN)
{

printf ("[flushing and closing auvtextfile %s %x]\n",
AUVTEXTFILENAME, auvtextfile);

fflush (stdout); /* force completion of screen write */
}
if (auvtextfile != NULL)
{

if (TRACE && DISPLAYSCREEN) printf ("[auvtextfile flushed]\n");
fflush (stdout); /* force completion of screen write */
fflush (auvtextfile); /* force completion of file write */
fclose (auvtextfile);
if (TRACE && DISPLAYSCREEN) printf ("[auvtextfile closed]\n");
fflush (stdout); /* force completion of screen write */

}
else if (TRACE && DISPLAYSCREEN) printf ("[auvtextfile was not open!!]\n");

fclose (serialtestfile); /* serial port test file */

if (TRACE && DISPLAYSCREEN)
{

printf ("[finish record_data_off ()]\n");
fflush (stdout); /* force completion of screen write */

}
return;

y»***«»»***»*«»«»»»,».«,«,,,,»,,,,,»,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,^^^^

int detect_death_spiral (reset_statics)
int reset_statics;

{
static int turn_direction = 0;
static double psi_old = 0.0;
static double start_psi = 0.0;

if (TRACE && DISPLAYSCREEN) printf ("[start detect_death_spiral ()]\n">;

/* reset static variables; don't check for spiral */
if (reset_statics)
{

turn_direction = 0;
if (TRACE && DISPLAYSCREEN) printf ("[finish detect_death_spiral ()]\n")
return (FALSE);

)

/* Turn direction changed, reset static variables */
if ((dsign (psi_dot) != turn_direction) || (turn_direction == 0))

turn_direction = dsign (psi_dot);
start_psi = psi;

214

psi_old = psi;
if (TRACE && DISPLAYSCREEN) printf ("[finish detect_death_spiral ()]\n"),
return (FALSE);

>

/* Same turn direction, check for full circle */

/* Right Hand Turn */
if (turn_direction == 1)
{

if (((psi > start_psi) && (psi_old < start_psi)) ||
((psi_old > 330.0) && (psi > start_psi) && (psi_old > psi)) ||
((psi_old > 330.0) && (start_psi > psi_old) && (psi < start_psi)))

{
if (TRACE && DISPLAYSCREEN)
{

printf ("[Right Hand Death Spiral Detected]\n");
printf ("[finish detect_death_spiral ()]\n");

}
return (TRUE);

}

/* Left Hand Turn */
else if (turn_direction == -1)
{

if (((psi < start_psi) && (psi_old > start_psi)) ||
((psi_old < 30.0) && (psi < start_psi) && (psi_old < psi)) ||
((psi_old < 30.0) && (start_psi < psi_old) && (psi > start_psi)))

{
if (TRACE && DISPLAYSCREEN)
{

printf ("[Left Hand Death Spiral Detected]\n") ;
printf ("[finish detect_death_spiral ()]\n");

}
return (TRUE);

}

/* No Spiral Detected */
psi_old = psi;
if (TRACE && DISPLAYSCREEN) printf ("[finish detect_death_spiral ()]\n"),-
return (FALSE);

} /* end int detect_death_spiral () */

void cage_dg () /* dg = directional gyro */

{
/* Low TRUE Logic */
/* Setting (Cage DG) Low and (UnCage DG) High will Cage the DG */
via0b_reg = via0b_reg & OxFE; /* Set bits PB0 Low retaining */

/* other bits */
via0[ORB_IRB] = via0b_reg;

/*via0b_reg = via0b_reg | 0x02;*/ /* Set bit PB1 High retaining */
/* other bits */

/* Using PB3 Pin 44/19 since 48/23 crapped out */
via0b_reg = via0b_reg | 0x08; /* Set bit PB3 High retaining */
via0[ORB_IRB] = via0b_reg;

printf("Waiting 20 sec. for Gyro to Cage\n");
tsleep(2000); /* Wait 20 seconds MAX for Caging */

return;

} /* end cage_dg () */

215

void uncage_dg () /* dg = directional gyro */

{
/* Low TRUE Logic */
/* Setting (Cage DG) Hi and (UnCage DG) Low will UnCage the DG */

viaOb_reg = viaOb_reg | 0x01; /* Set bit PBO High retaining */
/* other bits */

via0[ORB_IRB] = via0b_reg;

/*via0b_reg = via0b_reg £ OxFD;*/ /* Set bits PB1 Low retaining */
/* other bits */

/* Using PB3 Pin 44/19 since 48/23 crapped out */
via0b_reg = via0b_reg & 0xF7; /* Set bits PB3 Low retaining */
via0[ORB_IRB] = via0b_reg;

tsleep(lOO); /* Wait 1 second for UnCaging */

return;

} /* end uncage_dg () */

double dsign(value)

double value;
{

if(value == 0.0) return(l.O);
if(value > 0.0) return(l.O) ;
if(value < 0.0) return(-l.O) ;

}

double dtanh(value)

double value;
{

if(fabs(value) > 1.0)
{

return(dsign(value));
}
else
{

return(value);
}

/* double epv,emv;

epv = exp (value);
emv = exp(-value);

return! (epv - emv)/(epv + emv));
*/
)

I* end of external_functions.c
/»MtM*H*»*tt*t»t*ttHliH»*«H**»tH»»»tm»*»»tttH»«*»H«H*t*»t»tt4»tJMllr.

216

APPENDIX F - mission, script. HELP

ii- -ii

-/execution/mission.script.HELP 2 6 April 96

Mission script syntax for NPS AUV execution level control
& tactical level in the NPS AUV Underwater Virtual World.

Don Brutzman brut zman@np s.navy.mil

II- -II

This file describes how to change and create NPS AUV mission script files.
Files and the 'execution' program are in the -/execution subdirectory.

To run a new mission, copy an existing mission file over file
'mission.script' or edit the mission.script file for a new mission.

Example: unix> cd execution
unix> cp mission.script.siggraph mission.script
unix> execution virtualhost fletch.cs.nps.navy.mil

Script commands are read by AUV execution level (execution.c)
from the "mission.script" default file at the start of each mission.

Some of the following commands will also work when invoked from the command
line upon execution.

Here are script keywords (and synonyms) that are currently recognized:

Keywords Parameters
Synonyms | [optional]
 +

Description
(units in feet-degrees-seconds as appropriate)

HELP
■p

/?

Provide a list of available keywords
(as specified in this HELP file).

VIRTUALHOST hostname tells execution level to open socket to virtual world
VIRTUAL hostname which is already running and waiting on 'hostname'
REMOTEHOST hostname VIRTUALHOST is a command line switch. Example:
REMOTE hostname unix> execution virtualhost fletch.stl.nps.navy.mil
DYNAMICS hostname

TACTICALHOST hostname
TACTICAL hostname
STRATEGICHOST hostname
STRATEGIC hostname

//'
/*

WAIT

RUN

TIME
WAITUNTIL
PAUSEUNTIL

tells execution level to open socket to tactical level
which is already running and waiting on 'hostname'
TACTICAL/STRATEGIC is a command line switch. Example:
unix> execution tacticalhost fletch.stl.nps.navy.mil

comments follow on this line which are not executed
note comments will still be spoken if AUDIO-ON
pound sign also indicates a comment if in first column

Wait (or run) for # seconds (letting the robot execute)

prior to reading from the script file again

If in TACTICAL mode, execution ignores WAIT commands.

Wait (or run) until robot clock time #
(letting the robot execute its current orders)

prior to reading from the script file again

217

If in TACTICAL mode, execution ignores TIME commands.

TIMESTEP
TIME-STEP

PAUSE

REALTIME
REAL-TIME

NOREALTIME
NO-REALTIME
NONREALTIME
NOWAIT
NO-WAIT
NOPAUSE
NO-PAUSE

MISSION filename
SCRIPT filename
FILE filename

TELEMETRY filename

change default execution level time step interval
from default of 0.1 sec to # sec

temporarily stop execution until <enter> is pressed

run execution level code in real-time
(busy wait at the end of each timestep if time remains)

run execution level code as quickly as possible

NOSCRIPT

KEYBOARD
KEYBOARD-ON

KEYBOARD-OFF
NO-KEYBOARD

QUIT
STOP
DONE
EXIT
REPEAT
RESTART
COMPLETE
<eof> marker

KILL
SHUTDOWN

RPM # [##]
SPEED # [##]
PROPS # [##]
PROPELLORS # [##]

COURSE #
HEADING
YAW #

TURN #
CHANGE-COURSE #

Replace 'mission.script' with 'filename' and start
the new mission. Read tactical commands for execution
level from filename.

Playback prerecorded telemetry data from filename.
Consider using with NOSCRIPT if no script file present,

dynamics should be run with selection
E dEad_reckon_test_with_execution_level

Ignore script command file. Selectively used
in combination with TELEMETRY data file playback.

read script commands from keyboard

read script commands from mission.script file

do not execute any more commands in this script, but
repeat the mission again if LOOP-FOREVER is set

RUDDER #

DEADSTICKRUDDER

DEPTH #

PLANES #

DEADSTICKPLANES

PITCH
THETA

same as QUIT but also shuts down socket to virtual world
'dynamics' process.

Set ordered rpm values to # for both propellers
t or independently set left & right rpm values
to # and ## respectively]

maximum propellor speed is +- 700 rpm => 2 ft/sec

Set new ordered course (commanded yaw angle)

Change ordered course by # degrees
(positive # to starboard, negative # to port)

Force rudder to remain at # degrees

[#] Force rudder to remain at 0 [or #] degrees

Set new ordered depth (commanded z)

Force planes to remain at # degrees

[#] Force planes to remain at 0 [or #] degrees

Set new ordered pitch (commanded theta angle).
Only effective during HOVERCONTROL.

218

THRUSTERS-ON
THRUSTERS
THRUSTERON
THRUSTERSON

Enable vertical and lateral thruster control

NOTHRUSTER
NOTHRUSTERS
THRUSTERS-OFF
THRUSTERSOFF

Disable vertical and lateral thruster control

ROTATE

NOROTATE
ROTATEOFF
ROTATE-OFF

open loop lateral thruster rotation control
at # degrees/sec

disable open loop lateral thruster rotation control

LATERAL

NOLATERAL
LATERALOFF
LATERAL-OFF

open loop lateral thruster translation control
at # ft/sec
(positive is to starboard, maximum is 0.5 ft/sec)

disable open loop lateral thruster translation control

DIVETRACKER1 # ## ### Position of DiveTracker transducer 1
DIVETRACKER2 # ## ### Position of DiveTracker transducer 2

Still need to incorporate bearing to DiveTrackers.

GPS
GPSFIX
GPS-FIX

GPS-COMPLETE
GPS-FIX-COMPLETE

Proceed to shallow depth, take Global Positioning
System (GPS) fix, restore ordered depth when done.

Control (thrusters, propellers/planes, combined)
is not modified. Maximum fix time is 30 seconds,
at which time execution returns to previously
ordered depth.

GPS fix complete, resume previously ordered depth.

GYRO-ERROR
GYROERROR

DEPTH-CELL-BIAS #
DEPTHCELLBIAS #
DEPTH-CELL-ERROR #
DEPTHCELLERROR #

LOCATION-LAB

LOCATION-WATER

Degrees of error measured for gyrocompass.
[GYRO + ERROR = TRUE]

Feet of bias error measured for depth cell.
[DEPTH CELL Z + BIAS = TRUE Z]

Vehicle is operating in lab using virtual world.

Vehicle is operating in water without the virtual world.

POSITION # ## (###] reset vehicle dead reckon position to (x, y) or
LOCATION # ## [###] (x, y, z) = (#, ##, ###) at current clock time
FIX # ## [###] This is a navigational position fix. Receipt of a

POSITION/LOCATION/FIX command resets the execution
level dead-reckon position. Note that depth value z
will likely be reset by depth cell if operational.

ORIENTATION # ## ### reset vehicle orientation to
ROTATION # ## ### (phi, theta, psi) = (#, ##, ###)

POSTURE #a #b #c #d #e #f
reset vehicle dead reckon posture to
(x, y, z, phi, theta, psi) = (#a, #b, #c, #d, #e, #f)

OCEANCURRENT #x #y [#z] Ocean current rate along North-axis, East-axis and
OCEAN-CURRENT #x #y [#z] [optional] Depth-axis (feet/sec)

(this is cartesian version of parametric set and drift)

CONTINUE
GO

continue reading script & executing, no action performed

219

STEP
SINGLE-STEP

TRACE
TRACE-ON

TRACEOFF
TRACE-OFF
NOTRACE
NO-TRACE

LOOPFOREVER
LOOP-FOREVER

LOOPONCE
LOOP-ONCE

LOOPFILEBACKUP
LOOP-FILE-BACKUP

loop for another timestep prior to reading script again.
Only useful in execution keyboard mode.

enable verbose print statements in execution level

disable verbose print statements in execution level

repeat current mission when done.
each repetition is called a 'replication.'

do not LOOPFOREVER, stop when end of script is reached

back up output files during each loop replication
to permit inspection while new files are written

the backup files are in execution directory:
output.telemetry.previous & output.l_second.previous

ENTERCONTROLCONSTANTS
ENTER-CONTROL-CONSTANTS

start a keyboard dialog to enter
revised control algorithm coefficients

CONTROLCONSTANTSINPUTFILE read revised control algorithm coefficients
CONTROL-CONSTANTS-INPUT-FILE from file "control.constants.input"

SLIDINGMODECOURSE
SLIDING-MODE-COURSE

SLIDINGMODEOFF
SLIDING-MODE-OFF

SONARTRACE

SONARTRACEOFF

SONARINSTALLED

SONAR725 #b #r #p
SONAR-725 #b #r #p
SONAR_725 #b #r #p
ST725 #b #r #p

SONAR1000 #b #r #p
SONAR-1000 #b #r #p
SONAR_1000 #b #r #p
ST1000 #b #r #p

PARALLELPORTTRACE

AUDIBLE
AUDIO
AUDIO-ON
SOUND-ON
SOUNDON
SOUND

SILENT
SILENCE
NOSOUND
SOUNDOFF
SOUND-OFF
AUDIOOFF
AUDIO-OFF
QUIET

SOUNDSERIAL
SOUND-SERIAL

SOUNDPARALLEL

Sliding mode course control algorithm (not yet working)

Disable sliding mode course control algorithm

Enable verbose print statements in execution sonar code

Disable verbose print statements in execution sonar code

Sonar interface hardware cards are installed, use them

Set the bearing (#b), range (#r), and power (#p) of the
ST-725 sonar. In virtual world, bearing is necessary for
sonar model. In water, this stores data in the state
vector for replay and examination.

Set the bearing (#b), range (#r), and power (#p) of the
ST1000 sonar. In virtual world, bearing is necessary for
sonar model. In water, this stores data in the state
vector for replay and examination.

enable trace statements for parallel port communications

enable text-to-speech audio output

disable text-to-speech audio output

tell virtual world to pause while playing back sound
(default)

tell virtual world to play sounds as parallel processes

220

SOUND-PARALLEL (this may cause garbles if speeches play simultaneously)

EMAIL
EMAIL-ON
E-MAIL
E-MAIL-ON
EMAILON

ask user for electronic mail address at mission start,
send user an electronic mail report at mission finish

EMAILOFF
EMAIL-OFF
E-MAILOFF
E-MAIL-OFF
NO-E-MAIL
NO-EMAIL
NO-E-MAIL
NOEMAIL

WAYPOINT #X #Y [#Z]
WAYPOINT-ON #X #Y [#Z]

WAYPOINTFOLLOW
WAYPOINT-FOLLOW
WAYPOINTFOLLOWON
WAYPO INT-FOLLOW-ON

WAYPOINTFOLLOWOFF
WAYPOINT-FOLLOW-OFF

disable electronic mail address query feature

Point towards waypoint with coordinates (#X, #Y)
(depth #Z optional). Leave waypoint control by

ordering course, rudder, sliding-mode, rotate or
lateral thruster control.

If in TACTICAL mode, execution reports STABLE when done.

Set mode to arrive at each waypoint before reading the
next mission script command, i.e. continue towards each

waypoint for however long it takes to reach the standoff
distance before pausing to read the next command.

Disables WAYPOINTFOLLOW mode

STANDOFF #
STAND-OFF #
STANDOFFDI STANCE #
STANDOFF-DISTANCE #
STAND-OFF-DISTANCE #

Change standoff distance for WAYPOINT-FOLLOW and HOVER
control

HOVER

HOVER

[#X #Y] [#Z] Hover using thrusters and propellers for longitudinal
and lateral positioning at specified or previous
waypoint

[#X #Y] [#Z] [#orientation] t#standoff-distance]

HOVEROFF
HOVER-OFF
HOVER OFF

Uses WAYPOINT control until within #standoff-distance
of HOVER point (#X, #Y, #Z) , then switches to
HOVER control with [optional] final »orientation

Full speed (700 RPM) port & starboard is used if
AUV distance to WAYPOINT is > «standoff-distance + 10',
then slows to 200 RPM until within »standoff-distance,
then HOVER control.

HOVER without parameters is the preferred method of
slowing since backing down with negative propellers may
result in large sternway and severe depth excursions.

If in TACTICAL mode, execution reports STABLE when done.

Turn off HOVER mode

TETHER
TETHERED

UNTETHER
UNTETHERED

BENCH-TEST
BENCHTEST
BENCH

command line switch only, used for in-water runs
set DISPLAYSCREEN=TRUE and LOCACTIONLAB=FALSE

command line switch only, used for in-water runs
set DISPLAYSCREEN=FALSE and LOCACTIONLAB=FALSE

Simplified command-line parameter for quick
switch setting during Russ's control and prop testing.

221

II- -II

222

APPENDIX G - OBTAINING AND OPERATING CURRENT SOFTWARE

The Center for Autonomous Underwater Vehicle Research (CAUVR) at NPS

maintains an Internet web site that is for the general public. The web site is located at

http: / /www. cs . nps . navy .mil/research/auv/ and contains an abundants of

current information. The avenues that can be taken from this site are: Briefing Notes,

The Phoenix AUV, Network Monitoring Page, Current Phoenix AUV software, NPS

Underwater Virtual World, Underwater Robotics Laboratories on the WWW, Phoenix

AUV Photos, Testing Status, Research Center Personnel, Thesis Work, Papers in

Hypertext, Publication Abstracts, and Anonymous ftp Server.

The address

http://www.stl.nps.navy.mil/-brutzman/dissertation/execution

/auv-uvw. GUIDE describes in detail what equipment is needed to run the software,

how to download the most current version of the software, how to setup computers for

running the software, and also gives sample script file missions to run. Because this is

ongoing research, these files are updated regularly. The email address

(auvrg@cs. nps. navy. mil) is used by the AUV research group to rapidly

disseminate all information from meetings and conferences to all research team members.

This address is available to anyone that is interested in underwater robotics. By emailing

the research group, all interested personnel can be put onto the AUV research group email

list and have all traffic forwarded.

223

224

LIST OF REFERENCES

Brutzman, Donald P., NPS AUVIntegrated Simulator, Master's Thesis, Naval
Postgraduate School, Monterey, CA, March 1992.

Brutzman, Donald P., A Virtual World for an Autonomous Undersea Vehicle, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, CA, December 1994.
Available at http://www.cs.nps.navy.mil/research/auv

Brutzman, Donald P., From Virtual World to Reality: Designing an Autonomous
Underwater Robot, Proceedings of the Autonomous Vehicles in Mine Countermeasures
Symposium, Naval Postgraduate School, Monterey CA, April 1995.
Available at http://www.cs.nps.navy.mil/research/auv

Byrnes, R.B., The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software
Architecture for the Control of Autonomous Vehicles, Ph.D. Dissertation, Naval
Postgraduate School, Monterey, CA, March 1993.

Byrnes, R.B., The Rational Behavior Software Architecture for Intelligent Ships, An
Approach to Mission and Motion Control, Naval Engineers Journal, March 1996.

Campbell, Michael, Real-Time Sonar Classification for Autonomous Underwater
Vehicles, Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1996.

Davis, Duane, Precision Maneuvering and Control of the Phoenix Autonomous
Underwater Vehicle (AUV) for Entering a Recovery Tube, Master's Thesis, Naval
Postgraduate School, Monterey, CA, September 1996.
Available at http://www.cs.nps.navy.mil/research/auv

Healey, A.J., Mission Planning, Execution, and Data Analysis for the NPS AUV II
Autonomous Underwater Vehicle, Proceedings of the First IARP Workshop on Mobile
Robots for Subsea Environments, Monterey, California, October, 1990

Healey, A.J., Research on Autonomous Vehicles at the Naval Postgraduate School, Naval
Research Reviews, Office of Naval Research, Washington, DC, volume XLTV number 1,
Spring 1992.

Kelly/Pohl, A Book on C, third edition, Benjamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1995.

225

Kwak, S.H., McGhee, R.B. and Bihari, T.E., Rational Behavior Model: A Tri-Level
Multiple Paradigm Architecture for Robot Vehicle Control Software, technical report
NPS-CS-92-003, Naval Postgraduate School, Monterey CA, March 1992.

Leonhardt, Brad, Mission Planning and Mission Control Software for the Phoenix
Autonomous Underwater Vehicle (AUV) Implementation and Experimental Study,
Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1996.
Available at http://www.cs.nps.navy.mil/research/auv

Marco, David, Autonomous Control of Underwater Robots and Local Area Navigation,
Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA, September 1996.

Marco, D.B., Healey, A.J., McGhee, R.B., Autonomous Underwater Vehicles: Hybrid
Control of Mission and Motion, Autonomous Robots 3, 169-186, Kluwer Acedemic
Publishers, Norwell, MA, 1996.

McClarin, David, Kalman-Filtering of Navigation Data for the Phoenix
Autonomous Underwater Vehicle, Master's Thesis, Naval Postgraduate School,
Monterey, CA, March 1996.

Rogers, Charles Ray, A Study of 3-D Visualization and Knowledge-Based Mission
Planning and Control for the NPS Model 2 Autonomous Underwater Vehicle, Master's
Thesis, Naval Postgraduate School, Monterey, CA, December 1989.

Scrivener, Arthur, Acoustic Underwater Navigation of the Autonomous
Underwater Vehicle using the DiveTracker System, Master's Thesis,
Naval Postgraduate School, Monterey, CA, March 1996.

226

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudlley Knox Library, 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Computer Technology Programs, Code CS 1
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Ted Lewis, Code CS 1
Chair, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

5. Dr. Robert McGhee, Code CS/Mz 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

6. Dr. Donald P. Brutzman, Code UW/Br 2
Undersea Warfare Academic group
Naval Postgraduate School
Monterey, CA 93943-5100

7. Dr. Anthony J. Healey, Code ME/Hy 1
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5100

8. CDR Michael Holden, USN, Code CS/Hm 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

227

9. LT Michael L. Burns
11 Dean Ave.
Dracut, MA 01826

10. David Marco, Code ME/MA
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5000

11. Russell Whalen, Code CS/Wh
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

12. Mr. Norman Caplan
National Science Foundation
BES, Room 565
4201 Wilson Blvd.
Arlington, VA 22230

13. Dr. James Bellingham
Underwater Vehicles Laboratory, MIT Sea Grant College Program
292 Main Street
Massachusetts Institute of Technology
Cambridge Massachusetts 02142

228

