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ABSTRACT

This study investigates and develops various modifications to the Multiple Model Adaptive
Estimation (MMAE) algorithm. The standard MMAE uses a bank of Kalman filters, each based on
a different model of the system. Each of the filters predict the systerh response, based on its system
model, to a given input and form the residual difference between the prediction and sensor
measurements of the system response. Model differences in the input matrix, output matrix, and
state transition matrix, which respectively correspond to an actuator failure, sensor failure, and an

incorrectly modeled flight condition for a flight control failure application, were investigated in this

research. An alternative filter bank structure is developed that uses a linear transform on the residual
from a single Kalman ﬁlter to produce the equivalent residuals of the other Kalman filters in the
standard MMAE. A Neyman-Pearson based hypothesis testing algorithm is developed that results in
significant improvement in failure detection performance when compared to the standard hypothesis
testing algorithm. Hypothesis testing using spectral estimation techniques is also developed which

provides superior failure identification performance at extremely small input levels.

xi




PRACTICAL IMPLEMENTATION OF
MULTIPLE MODEL ADAPTIVE ESTIMATION USING
NEYMAN-PEARSON BASED HYPOTHESIS TESTING AND

SPECTRAL ESTIMATION TOOLS

I. Introduction

1.1 Chapter Overview

In this chapter we introduce the development of modifications to the Multiple Model
Adaptive Estimation (MMAE) algorithm. To demonstrate the MMAE performance with these
modifications, we have chosen to use a flight control failure detection application, which is described
in Section 1.2. We also will point out some of the difficulties encountered with contemporary
MMAE designs that motivated the development of these modifications. Finally, in Section 1.3 we

present an overview of the structure of this dissertation.

1.2 Description of the Motivating Problem

The MMAE algorithm shows tremendous promise in enhancing flight control performance.
The constant pressure to improve aircraft performance, particularly in military aircraft, has forced
designers to build aircraft with instabilities that are beyond that capabilities of human pilots to
control. Thus, these designers have been forced to rely on increasingly complex flight control

systems. These systems are designed for a particular system configuration (i.e. a fully functional
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Figure 1. Multiple Model Adaptive Estimation Algorithm

aircraft) and usually cannot perform adequately when the system is configured substantially
differently (i.e. a flight control failure). Designers are constructing several flight control system
designs that will perform adequately for different system conﬁgurati‘ons, but the flight control system
must be informed which configuration is the appropriate one to choose. One such method of
detecting and identifying system failures is the MMAE.

The MMAE, diagrammatically shown in Figure 1, is composed of a bank of Kalman filters,
each imbued with its own model, and a hypothesis testing algorithm. Each elemental Kalman filter
uses its own model, along with a given input (#), to develop an estimation of the current aircraft

states (t,), independent of the other filters. The filter then uses this estimate, along with the current




measurement of those states (z), to form the residual (ryp, which is the difference between the
measurement and the filter's prediction of the measurements before they arrive. The residuals from
the filters are used by the hypothesis testing algorithm as a relative indication of how close each of
the filter models are to the true model, i.e., to the real-world situation. The smaller the residual, the
closer the filter model matches the true model. The hypothesis testing algorithm first scales the
residuals to account for various uncertainties and noises in the measurements (as developed in detail
in Section 3.3.1), and then computes the conditional probability for each of the hypotheses modeled
in the bank of Kalman filters (p,). These probabilities are then used to weight the individual Kalman
filter state estimates to produce a blended estimate of the true states (¥,,,5), Which can then be used
as the optimal estimate of the states by a control system, When used for failure identification, each
of the Kalman filters would model a different failure condition and the residuals from each filter
would indicate how close that filter's model is to the actual failure condition. By monitoring these
residuals, the hypothesis tester can estimate the current failure status of the aircraft (@).

The specific aircraft model [62] that is used for this application was developed for the
LAMBDA flight vehicle. The LAMBDA is an unmanned research vehicle developed by the Flight
Control Division of the Flight Dynamics Directorate, Wright Laboratory, as an affordable, flexible
research vehicle for testing and demonstrating flight control concepts, devices, and systems [62].
The flight condition of the LAMBDA is determined by five parameters: the aircraft weight, forward
velocity, dynamic pressure, center of gravity, and trim angle. The average flight condition
parameters are a weight of 200 1bs, a speed of 160 ft/sec, a dynamic pressure of 30.43 Ib/ft?, a center
of gravity located at 46.8 inches from the aircraft nose, and a trim angle of zero degrees. The
LAMBDA usually flies at low altitude; therefore the dynamic pressure (V2pv?) is directly related to

forward velocity (v) since the air density (p) is essentially constant. The trim angle is usually very
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Figure 2. LAMBDA Flight Envelope

small for a well trimmed aircraft; therefore we assume a trim angle of zero. Since the altitude and
trim angle are considered constant, we end up with a three-dimensional flight envelope for the
LAMBDA as shown in Figure 2, which also shows the design flight condition. This flight condition
is considered average because the LAMBDA is usually flown close to maximum velocity, at low
altitude, with the variation in weight primarily dependent on the amount of fuel consumed. Therefore
the design flight condition is a median value of the normal operating points.

Embedded within the linearized model (linear perturbation model about trim condition) of
the LAMBDA are several other assumptions that were used to develop the model [62], namely lateral
and longitudinal axis decoupling and first order actuator dynamics. The linearized model was
developed by estimating flight coefficients from geometric data and then adjusting these estimates

using good engineering judgment and flight test data. For a fully functional aircraft, the cross-axis




coupling terms are so small that they produce a negligible aircraft response. Currently, all test flights
have been conducted using a fully functional aircraft [62], and therefore, the flight test data does not
contain énough information to estimate the cross-axis terms. The assumption of first order actuator
dynamics compares quite well with the flight test data.

To model single actuator failures, we have assumed that a single flight control surface failure
will produce half of the expected response from dual control surfaces. For instance, a certain
elevator input might produce a 10 degree pitch-up response. We have assumed that, for this same
input, a failure of only the right elevator actuator would produce half of this response (5 degree pitch-
up) since only the left elevator actuator would be functional, thereby decreasing the actuator surface
area by one half,

As mentioned above, we have assumed that the cross-axis coupling terms are negligible even
for single surface failures, primarily because there is insufficient data to estimate these terms [62].
Using our example, a right elevator failure would produce a small yawing and rolling response,
which we assume to be negligible. An exception to this assumption is the cross-coupling between
the ailerons and the yaw axis because the long yaw moment arm of the ailerons could easily produce
a significant yaw. Fortunately, there is sufficient data to estimate the aileron's effect on the yaw rate
(r) and the rudder's effect on the roll rate (p). At the design point, the contribution of the aileron to a
yaw rate is 10.5% and the contribution of the rudder to a roll rate is only 0.3%. This supports our
assumption that the cross-axis terms are small. However, Swift found noticeable roll/pitch coupling
dynamics for the LAMBDA, but was unable to estimate the cross coupling terms [62: 3.50]. A flight
test with single actuator failures should provide the much needed data for estimating these cross-axis

coupling terms, and the aircraft model can then be corrected for further tests.




Previous research [19, 31, 41] that developed an MMAE-based failure detection algorithm
for this flight vehicle identified three problems with contemporary MMAE designs. These problems
are a lack of a methodical way to make a definitive failure status declaration, the computational cost
for implementing these designs, and the need to dither the system constantly to provide adequate
excitation for good failure detection. These problems are described in more detail below.

Most flight control systems require a definite failure status declaration from the failure
detection and identification algorithm. The conditional probabilities produced by the MMAE give
only a relative indication of the failure status. To make a declaration of the failure status,
contemporary MMAE designers choose a probability threshold that is used to declare if a certain
hypothesized failure has occurred. If the conditional probability for that hypothesis exceeds the
threshold, then the hypothesized failure would be declared. Unfortunately, there is no method of
choosing this threshold aside from extensive computer simulations. These simulations would give a
relative indication of the tradeoff between the false alarm rate and failure detection performance and
the designer would use good engineering judgement to choose the threshold. A more satisfactory
design method would be to be able to dictate the maximum acceptable false alarm rate and desired
failure detection probability, and have these two parameters dictate the threshold. Such a technique
is available using a Neyman-Pearson base hypothesis testing algorithm that will be developed in this
research.

MMAE can be a very costly algorithm to implement. The Kalman filter algorithm,
presented in Section 3.2.1, can be computationally intensive, particularly if a large number of filter
states is needed to capture the real-world aircraft dynamics. Using a bank of Kalman filters further
compounds the computational cost of implementing an MMAE algorithm. MMAE can be

implemented on a set of parallel processors, because of its inherent parallel structure, but the




required power, cooling, and data bus interconnection, along with the weight and cost, of producing
this set of parallel processors could easily make this implementation infeasible. We develop an
equivalent MMAE filter bank structure that uses the residual and state estimates from a single
Kalman filter, along with the linear transformation that is developed in Section 3.2.5, to produce the
equivalent residual from another Kalman filter. This transformation computes the equivalent
residual by using the known differences between the two Kalman filter models. These model
differences usually produce sparse matrices, which significantly reduces the computational cost of
computing the equivalent residuals. Thus, the bank of filters can be replaced by a single filter with
several linear transformations, each of which produces the equivalent residual to the Kalman filter
that it replaces, but with a reduction in the cost of computing the residual.

The primary objection to implementing an MMAE-based failure detection algorithm is the
need to dither the system constantly, The MMAE compares the magnitudes of the residuals
(appropriately scaled to account for various uncertainties and noises) from the various filters and
chooses the hypothesis that corresponds to the residual that has a history of having smallest (scaled)
magnitude. Large residuals néed to be produced by the filters with models that are incorrect to be
able to identify these incorrect hypotheses. The residual is the difference between the measurement
of the system output and the filter's prediction of what that measurement should be, based on the
filter-assumed system model. Therefore, to produce the needed large residuals in the incorrect filters,
we need to produce a history of sufficiently large system outputs, so we need to dither the system
constantly and thereby excite the system states. For flight control failure applications, we would
need to move the aircraft continually in all axes to produce the desired failure detection performance,
to which most pilots (not to mention passengers) would strenuously object. We develop a modified

MMAE algorithm that uses the correlation of the residual with signal processing techniques to




produce the desired failure detection, while significantly reducing the objectionable dither, possibly

to the point of being subliminal.

1.3 Dissertation Qverview

In the subsequent chapters we develop this research in more detail. We have presented a
general introduction to the MMAE and a brief description of the problems that have motivated this
research. Chapter 2 gives a brief background on the development of the MMAE and a description of
some statistical signal processing techniques that are used in the research. Chapter 3 presents the
development of the theory behind the various modifications to the MMAE that have been developed.
Chapter 4 presents the results from a specific simulation of these modifications using the flight
control application described above. Finally, in Chapter 5 we present a comparison of the various

modifications, draw pertinent conclusions, and finish with our recommendations for future research.




II. Background

2.1 Chapter Overview

In this chapter we introduce the background research that has led up to this investigation.
We start, in Section 2.2, with a brief survey of the development of the Multiple Model Adaptive
Estimation (MMAE) and describe some of the research of its use for various applications. In Section
2.3 we present an overview of statistical signal processing techniques that may help enhance the
performance of MMAE. These techniques include hypothesis testing based on various spectral

estimation techniques and the Neyman-Pearson lemma .

2.2 Multiple Model Adaptive Estimation
2.2.1 Multiple Model Adaptive Estimation Development. The use of

multiple filters in a parallel structure to generate adaptive estimation algorithms was first developed
by D. T. Magill [35]. He arranged a number of Kalman filters, each with different time invariant
plant models, and used the residuals from these filters to form an appropriately weighted sum of the
Kalman filter estimates, as shown in Figure 1. He showed that this adaptive estimation algorithm
produced the optimal estimate in the minimum mean square error sense for a Gauss-Markov process,
over a finite set of models, one of which is the "true" model which accurately represents the true
system. This work was extended to handle equivalent discrete-time systems by C. B. Chang and M.
Athans [6, 7, 8].

The properties of this multiple model adaptive estimation concept were further developed by
Lainiotis and others [10, 20, 28, 29]. They investigated the properties of this concept when using a

discrete number of models to represent a continuous domain of plant models [28, 29]. With others,
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he showed that good performance was attained with tightly tuned Kalman filters, but these filters
produced erratic behavior if the filter with the correct model was not in the filter bank [10, 20].

A. S. Willsky [68] surveyed a number of failure detection methods, using a performance
index as an empirical measurement of the capabilities of the various methods. He surveyed three
classes of failure detection methods. The first was the use of specific failure-sensitive filters, such as
limited memory or Fagin age weighting filter and filters that included failure states in the filter
model. A second class was methods that conduct statistical tests on the filter innovations, such as the
Generalized Likelihood Ratio (GLR) and voting techniques. The third class consisted of multiple
hypothesis filter detectors, specifically the MMAE. The performancé index he used included the
types of failure modes that can be detected-, implementation complexity, various performance
measures (false alarms, detection delays, repeatability), and robustness in the presence of modeling
errors. He found that the multiple model adaptive estimator will yield the best pe&ommm over the

widest class of failures.

2.2.2 Multiple Model Adaptive Control Development. M. Athans et. al.,

extended this adaptive estimation concept to adaptive control developed for the flight control system
of NASA's F-8C flight test aircraft [1]. They weighted the optimal control signals generated by a
bank of Linear system-Quadratic cost function-Gaussian noise distribution (LQG) controllers, each
with an embedded Kalman filter using a different plant model, and then summed these weighted
control signals together, as shown in Figure 3. They found that this algorithm provided good control
at flight conditions that were close to the design conditions of the Kalman filter models, as long as
the system was appropriately excited, using a test signal or dither, to attain good failure
identification. They also found that this algorithm was sensitive to high frequency noise, specifically

strong wind gusts, and required low pass filtering to attain good performance.
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Figure 3. Multiple Model Adaptive Control Algorithm

Greene and Willsky {16] examined and defined stability regions where the multiple model
adaptive control (MMAC) algorithm yields non-oscillatory responses. They found that the stability
of the MMAC was determined by the relation between the growth rate of the most unstable mode of
a Kalman filter with a mismatched model, when compared to the truth model, and the rate of decay of
the slowest stable mode of a Kalman filter with a matching model. They presented a method of
computing the borders where the algorithm is neutrally stable, which then defines the "domain of
attraction," or the region where the MMAC's response does not oscillate.

Longitudinal control of the Short Take-Off and Landing (STOL) F-15 using Multiple Model

Adaptive Control (MMAC) was investigated by Pogoda [42, 52] and Stevens [43, 60]. Pogoda
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developed an algorithm for the landing phase of the flight regime, which would reconfigure the flight
control in the presence of a single failed control surface or sensor. He designed Kalman filter models
and controllers for a fully functional aircraft, a failed stabilator, a failed "pseudo-surface,” and a
failed pitch rate sensor. The "pseudo-surface” was a combination of the canards, ailerons, and flaps,
to allow a reduction in the number of aircraft states and independent control surfaces. Stevens
extended this research further by including failed reverser vanes, a failed velocity sensor, and a failed
flight path sensor. He first investigated "soft" or partial failures of these sensors and surfaces, with
the soft failures modeled as either partial power to a flight surface, an increase in the sensor noise, or
an increase in the sensor bias. He then investigated the performance of a hierarchical structure of
multiple model adaptive controllers to detect the presence of double failures, such as a stabilator
surface failure followed by a flight path angle sensor failure. This hierarchical structure of
controllers started with a bank of controllers, with different single failure models (including, of
course, a no-failure model), that would detect the first failure and then switch to another bank of
controllers that had models that assumed both the detected failure and a second failure (including no
second failure). Each of the banks also had a controller with a failure model that assumed that the
detected failure had not occurred after all, which allowed the structure to correct any
misidentifications. Pogoda and Stevens both found that the MMAC structure was able to identify the
failures properly and reconfigure the control law to maintain stable flight control. Stevens found that
the MMAC would blend the appropriate controller commands in the presence of soft failures, and

that the hierarchical structure would properly detect multiple failures.
2.2.3 Multiple Model Adaptive Estimation Ba ontrol. In a similar

manner, Stratton [61] and Menke [47, 48, 49] have developed an MMAE-based control algorithm

for both the longitudinal and lateral axes of the VISTA F-16 aircraft. In contrast to the MMAC of
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Figure 3, this algorithm uses the MMAE of Figure 1, feeding ¢and #,,,,, to a single controller block;
in their implementation, only £,,,,, Was used as an input to an already designed and validated flight
control system. Stratton used a flight condition of Mach 0.8 and altitude 10,000 feet, while Menke
designed for a flight condition of Mach 0.4 and altitude 20,000 feet, the latter involving low dynamic
pressures and thus presenting a more difficult failure detection problem. They investigated both
single and multiple, hard and soft, actuator and sensor failures. Included in their study was the effect
of a test signal or commanded dither to aid in identifying the failure during benign straight and level
flight conditions. Several dither signals were tested, including sine Waves, square waves, triangular
waves, and pulse trains, at levels that were deemed either subliminal (up to + 0.1 g's in the
longitudinal axis and + 0.2 g's in the lateral axis) or non-subliminal (reasonable physical acceleration
limits at the pilot's station). They found that the MMAE identified these failures correctly as long as
an appropriate dither signal was present that excited all failure modes in both axes.

Eide [11, 12] and Stepaniak [58, 59] continueq the development of the MMAE-based
control algorithm for the VISTA F-16. Eide tested the algorithm against a full-scale nonlinear truth
model, instead of a linearized truth model that was used for the previous performance analyses.
Initially, he found fairly poor failure identification performance that was attributed to a mismatch
between the full-scale nonlinear model and the linearized design model. He tuned the Kalman filters
and achieved much better performance, thus showing the robustness of the MMAE algorithm, even
when operating with a nonlinear system while the MMAE Kalman filters are based on linearized
models. Stepaniak used an MMAE to redistribute the control input to redundant nonfailed actuators
using the existing VISTA F-16 control system. He obtained excellent results, showing that this
MMAE-based control algorithm could track a desired state trajectory, as long as the redundant

actuators were not forced into saturation. Thus, he showed that the MMAE-based control algorithm
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can completely compensate for a failed actuator, up to the limits of command authority, if redundant

control surfaces are available.

2.2.4 Multiple Model Adaptation Applications. Multiple model adaptive

algorithms have been successfully developed for a number of other applications. It was investigated
for the detection and tracking of maneuvering targets [8, 14, 15, 37, 44, 50, 51, 63, 64, 65], flexible
space structure control [13, 23, 24, 32, 33, 54], multiple hypotheses testing [1, 45], and prevention
of the initial divergence of extended Kalman filters due to large initial uncertainties [22, 46]. It has
been studied for use in diverse applications such as instrument failure detection in a pressurized
water fusion reactor [10], autonomous monitoring of cardiac patients [17], adaptive signal

processing of seismic data [58], and detection of incidents on freeways [69].

2.3 Signal Processing Techniques
2.3.1 Spectral Estimation Techniques. Kay [26] presents a methodical survey of

some of the many spectral estimation techniques. He groups these techniques into classical methods,
those that are based on Fourier transform and filtering theory, and modern techniques that are based
on time series analysis and filtering theory. In the classical group he describes periodograms,
averaged periodograms, and Blackman-Tukey spectral estimators. Based on the definition of the
power spectral density of a signal, the Fourier transform of the autocorrelation function, these
techniques window the data (using various shaped windows for each of the different techniques) and
then compute the spectral content across the data window at various frequencies by computing the
Fourier transform of an estimate of the autocorrelation function of the windowed data. Modern
techniques are based on parametric modeling of the signal, with the assumption that the signal is

composed of a known number of sinusoids.
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The primary motivation for the research of these techniques is detecting and characterizing
sinusoids with time-varying amplitude, embedded in a background of noise, which describes many
applications where the data set is relatively short compared to the duration of the sinusoid. This
occurs with speech synthesis, where a speech sound may only last for about 20 to 80 msec [36], and
in Doppler radar and sonar, where the propagation characteristics of the transition medium may
change in time [25] . In other applications the small data set is due to a genuine lack of data.
Seismic data sets are transient because events such as volcanic eruptions and earthquakes last for
very short periods of time [30]. Other applications have small data sets because of the prohibitive
cost of collecting the data, such as optical interferometry [4], vibration analysis [2], radio astronomy
[67], image processing [18], and the application that we are studying, flight control failure detection.
There are many other methods of signal analysis that apply, such as Maximum Entropy Methods
(MEM), particularly useful for small data sets [53], but we have chosen to research the use of
periodograms (presented in Section 3.2.6) because it has been extensively researched, is
straightforward to implement, and provides a basic conceptual framework for implementing the other

techniques.

2.3.2 Neyman-Pearson Hypothesis Testing. Scharf [53:103-166 ] presents the

development of a Neyman-Pearson Detector. The basis of the detector is a hypothesis test in which
the distribution of a test statistic is known, for each of the hypotheses that is being tested. The
hypothesis test is based on the Neyman-Pearson lemma, which will be formally presented in Section
3.3.2, which shows that a likelihood ratio that is formed using these known distributions of the test
statistic, provides the best probability of detection for a given false alarm probability, for a fixed
number of data samples. The probability of detection is defined as the probability that the correct

hypothesis is actually chosen, given that the incorrect hypothesis is considered to be in force at the
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time of the hypothesis test. For example, the probability of detection is the probability that, if a
failure occurs, the hypothesis test chooses the failure hypothesis when prior to the test the no failure
hypothesis was correct. The false alarm probability is defined as the probability that the incorrect
hypothesis is chosen, given that the correct hypothesis is considered in force at the time of the
hypothesis test. For example, this is the probability that, if a failure does not occur, the hypothesis
test chooses the failure hypothesis, when prior to the test the no failure hypothesis was correct. Thus,
we want to maximize the probability of detection, while minimizing the probability of false alarm,
which illustrates the importance of the Neyman-Pearson lemma.

These definitions will differ slightly frorﬁ the usual convention when the hypothesis that is
considered in force is not the fully functio;lal hypothesis. To illustrate this, assume that the left
elevator has failed and that hypothesis is in force. If a hypothesis test is conducted, and the test
incorrectly chooses the fully functional hypothesis, that would be a false alarm by the definitions
given above. The usual convention is to call this incorrect declaration a missed detection because the
test mistakenly missed the detection of the failed elevator. We will use the definitions given above to
be consistent with the development of the Neyman-Pearson hypothesis test.

Frequently, the fixed length of the data set will not provide enough information to be able to
distinguish the various hypotheses from each other. If the number of data samples is not set, thus
defining a sequential estimation problem, the sequential probability ratio test (SPRT) is superior to
the Neyman-Pearson most powerful test because it will not make a decision until sufficient
information is obtained to distinguish the hypotheses from each other [34]. We have chosen to use
the Neyman-Pearson most powerful test to lay the conceptual framework for this type of hypothesis
testing. Scharf [53] also develops the methodology for selecting the decision threshold that is used to

choose between the various hypotheses. The special case of a test statistic that is normally
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distributed with differing means is particularly important for our application, since the Kalman filter
residual will be shown, in Section 3.2, to be normally distributed with a nonzero mean if the Kalman

filter model is inaccurate, and thus we can use the residual as a test statistic,

2.4 Chapter Summary

In this chapter we have presented a brief summary of the research that has led up to this
investigation. First, we described the development of the MMAE, along with two methods of using
the mﬁltiple model concept for control applications. The MMAC algorithm uses a bank of the
Kalman filters with LQG controllers that were each developed for a specific hypothesis, and then
uses the conditional probabilities from the hypothesis testing algorithm, to weight the commanded
inputs from the various controllers. The MMAE-based control algorithm uses an MMAE to provide
estimates, rather than raw measurements, to a single separate control system. The MMAE-based
control algorithm with control redistribution has been shown to be able to compensate completely for
any failed aircraft sensor and for any failed actuator, up to the point of saturation of the actuator, if
redundant control surfaces are available. We briefly listed some of the applications that have used
MMAE. Then, we described some spectral estimation techniques which show great promise in
enhancing the failure detection performance of the MMAE. We have chosen to focus on the
periodogram spectral estimation technique because its characteristics are well researched and it
provides an excellent conceptual framework for developing other spectral estimation techniques. We

introduced the Neyman-Pearson detector, which we will use as a framework for developing an

alternative hypothesis testing algorithm,
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III. Theory Development

3.1 Chapter Overview
A Multiple Model Adaptive Estimator (MMAE) consists of a bank of parallel Kalman

filters, each with a different model, and a hypothesis testing algorithm as shown in Figure 4.

— =1 Kalman Filter
based on model 1

—1=1 Kalman Filter

Hypothesis Testing i
|1 based on model 2

Algorithm

Q)

= j Kalman Filter
based on model 3

Kalman Filter
based on mode] K

Figure 4. Multiple Model Adaptive Estimation Algorithm

The internal models of the Kalman filters can be represented by a discrete value of a parameter vector
(a,). The Kalman filters are provided/a measurement vector (z) and the input vector (), and

produce a state estimate (%,) and a residual (r,). The hypothesis testing algorithm uses the residuals
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to compute conditional probabilities (p,) of the various hypotheses that are modeled in the Kalman

filters conditioned on the history of measurements received up to that time, and an estimate of the
true parameter vector (@). For the flight control failure application in which we are interested, each
Kalman filter has a different failure model (a,) that it uses to form the state estimate (%,) and the
residual (r,). The hypothesis testing algorithm produces an estimate of the failure status of the flight
control system (@). The Kalman filter equations will be presented in Section 3.2. In Sections 3.2.2
through 3.2.4, we will show that the magnitude of the residual from a particular filter can be used as
a relative measure of the inaccuracy (conversely, the accuracy) of the failure model used by that filter.
In Section 3.3 we will study various hypothesis testing algorithms that assign conditional
probabilities (p,) to each of the hypotheses that were used to form the Kalman filter models. These
conditional probabilities indicate the relative correctness of the various filter models, and can be used
to select the best estimate of the true system model, weight the individual state estimates
appropriately, and form a probability-weighted average state estimate (Xyyag). The specific
workings of the algorithms in these blocks, along with various modifications to those algorithms, are

examined in the following sections.

3.2 Kalman Filter Bank

3.2.1 Basic Equations. The Kalman filter algorithm uses a model of the true system

to generate estimates of the noise-corrupted measurements before they are taken at a particular
sample time, assuming that the measurements are linear combinations of the system states. Previous
researchers have computed the mean and covariance of the residual under the assumption that the
Kalman filter model accurately represents the true system. We will relax this assumption by allowing

certain differences between the Kalman filter model and a model that accurately represents the true
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system. Under these different assumptions, we will compute the mean and covariance of the Kalman
filter residual.

We assume that we have noise-corrupted measurements of a possibly nonlinear system that
we are examining. These true system measurements will be denoted z(,). We also assume that there
exists a linear model that will produce accurate representations of the true system measurements.
This model will be called the true system model and denoted with the subscript T. Thus the
representations of the true system measurements will be denoted z,(z,), and we are assuming that
these true system model representations portray the true system measurements so that z(1,) = z(z,).
Now assume that the true system model is a discrete-time equivalent system model [33] of the form

xp(1;) = @rxp(t; )+ Bru(t, )+ Gpw(t )

2(8;) = 2p(t) = Hpxg(t;)«ve(t)

(1

where x; is the true system state vector
@, is the state transition matrix, the discrete-time equivalent of the true system dynamics
matrix
B is the discrete-time equivalent of the true system control input matrix
u is the system input vector
G is the discrete-time equivalent true noise input matrix

wr is an additive white discrete-time dynamics noise input with zero mean and

E{wr(ti)wTT(tj)) =
0, t # tj @)
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2z, is the true system measurement vector

H, is the true system output matrix

v is an additive white measurement noise input, independent of w, with zero mean and

Ry 4=
E{"T(ti)"TT(tJ‘)} "o 1t
: i 3)

We are assuming that the sampling rate is sufficiently high so that the system modes and

noise models can be considered constant over several sampling periods. Thus the ®,, B, G, H,

Q.. and R, matrices are assumed to be time invariant over the duration of the simulations used in this

research. Also, we have assumed that the system control input is held constant over each time

The assumption that the system model is time invariant allows us to consider using a steady

state Kalman filter model (and eventually a steady state constant-gain Kalman filter for

implementation), which will be denoted with the subscript k. Thus we have

X (2) = ®px () Bpu(t )+ Gpwy(1, )

zg(ti) = H* xk(t,')"’k(t,') C))

where  x, is the Kalman filter model state vector

®, is the Kalman filter model state transition matrix
B, is the Kalman filter model control input matrix
u is the system input vector

G, is the Kalman filter model noise input matrix
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w, is an additive white discrete-time dynamics noise input used in the Kalman filter model,

with zero mean and

T Qk: t, = tJ
Eflw, (t)w, (tj)} =
0, t‘. + tj (5)

7, is the Kalman filter model measurement vector
H, is the Kalman filter model output matrix
v, is an additive white measurement noise input that is used in the Kalman filter model. This

noise input is assumed to be independent of w,, and zero-mean with

E{v,(t)v,T (1)) =
{k k ]} 0, t'." tj . (6)

Note that the Kalman filter model and the truth model are both linear models, but the dimensionality

of these two models may not necessarily be the same. In most cases, the Kalman filter model is a

reduced order (the number of Kalman filter model states is often a subset of the truth model states)

version of the truth model.

The Kalman filter algorithm uses this model to define time propagation and measurement

update equations of the Kalman filter state estimates and the Kalman filter state estimate covariance

matrix. The Kalman filter state estimate propagation equation based on the Kalman filter model is:

Jek(ti') = tbkfk(ti_l’). Bku(ti-l)
2(4;) = Hy £4(¢)) : )

22




where X, is the Kalman filter state estimate vector

2,(t,) is the Kalman filter estimate of the measurement vector before it becomes available
t; is the time just before the measurement update at the ith time sample, and

t,_,*is the time just after the measurement update at the (i - 1) time sample,

1

and the state estimate covariance matrix propagation equation:

Pu(1) = @, Pe(4,)) @, + G,0, G, 7. 38
The Kalman filter state estimates are updated using:

R (1)) = (1)« K (1)) ri(2) )

where the Kalman filter gain is:

K, (t)=P, (1] H, A, (1) (10)

and the Kalman filter-computed residual covariance matrix A, is:

A (1) -H P, (t))H, . R, (11

where R, is the measurement noise covariance matrix used in the Kalman filter model.
The Kalman filter residual vector, shown in Eq (9), is defined as:
rt) & 2(1)-H 2, (1) = z0(1;)- Hy 2, (1)) 12)
which is simply the difference between the measurements (z) and the Kalman filter estimates, based

on its model, of those measurements before they are taken (H, x,(1,) ).

The Kalman filter state estimate covariance matrix is updated using:
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P(2))=P(t])- K (t;))H, P (1)) . (13)

Poor numerical characteristics of these equations (particularly the last one) require that this algorithm
be implemented using the U-D (unitary upper-triangular - diagonal) covariance factorization form.
The development of this factorization form can be found in Maybeck [33].

The steady state values of the Kalman filter estimate of the state covariance matrix can be
precomputed by iterating Eqs (8), (10), (11), and (13) until steady state of the covariance and gain
matrices is reached. Once this value for the state covariance matrix is found, the steady state Kalman
filter gain K, and the steady state Kalman filter residual covariance matrix A, are computed using Eq
(10) and Eq (11). With this steady state implementation, the state covariance matrix, the steady state
Kalman filter gain, and the steady state Kalman filter residual covariance matrices are assumed to be
constant and theretore do not need to be computed in real time. The steady state Kalman filter

equations become:
(1) = @2 (4, ) Byu(t, ) 14)
for propagating the state estimates and

2.(2) = (1)« K ri(2) (15)

for updating the state estimates.

3.2.2 Nomenclature for Representing Mismodeling. We will be

investigating the effects of an incorrect Kalman filter model on the filter's residual: Specifically we

will look at incorrect modeling of the state transition matrix, @, the output matrix, H, and the input
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matrix, B. We also are assuming that the Kalman filter model and the truth model dynamics noise
strength, @, measurement noise strength, R, and noise input matrices, G, are equivalent. These
conditions were chosen because they commonly occur in failure detection applications where MMAE
is used.

One such application is identifying flight control failures, where a mismodeled input matrix
is used to represent an actuator failure and a mismodeled output matrix would be a sensor failure.
For example, a single actuator failure can be represented by zeroing a column of the input matrix, B.
The result is that the element of the system input, u, that corresponds to that column of B will have
no effect on the system dynamics, which is exaclty what we would expect for a failed actuator.
Likewise, a single sensor failure can be represented by zeroing a row of the output matrix, H. The
result is that the element of the measurement that corresponds to the zeroed row of the output matrix
will not consist of a linear combination of the system states, but will only have the additive white
measurement noisc v, which is precisely the expected result of a failed sensor.

For example, assume that the truth model represents the case of a single actuator failure and
the Kalman filter model assumes a non-failed system; the obvious result will be a difference between
the truth model and the Kalman filter model. In this case the difference occurs in the column of the
system input matrix that corresponds to the failed actuator. The truth model would have a column of
zeros, while the filter model would have the non-failed terms (some would be nonzero). Similarly, a
failed sensor truth model would result in a difference in the row of the output matrix. |

A mismodeling of the state transition matrix can occur when the filter model is based on a
certain operating point (altitude, velocity, center of gravity, etc.), while the true operating point is

different. The system dynamics are directly related to the operating point. Thus, there would be a
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difference between the filter model and truth model, certainly in the state transition matrix and

possibly in the system input matrix.

In most applications of Kalman filtering, a designer will decrease the order (the number of

states) of the Kalman filter design model from that of the truth model, to reduce the computation

loading required to implement the Kalman filter. This is done by eliminating certain states that do

not significantly impact the fidelity of the filter model, and then appropriately adding pseudonoise to

the filter model to account for the added uncertainty caused by the elimination of these states. The

result of eliminating these states is an incorrectly modeled state transition matrix, output matrix, and

input matrix. For example, if we were eliminating the n" state in the following model:

b b,

¢]'|"'¢l,n-1 ¢T'" fl(t;_]) bl,l 1,r-1 ‘.' "l(ti-l)
¢’n—1,1"'¢n-l.n-l 4’,.-1_,. ‘fn-l(fi-l) ' bn—l,lmbn-l,r—l bn—'l,r u;‘l((tti‘]))
4’m'"‘f’n,n-1 ¢M 2,(t;0) bm"‘bm-l I,M AN P!
A
hyyhypg ki 2.(4)
hm-l,lmhm-l,n-l hm-l,n fn-l({"-)
. hm,lmhm,n-l hm" f"(t,-) (16)

we would need to zero out the n® column and n' row of the state transition matrix, the n® row of the

system input matrix and the n™ column of the output matrix. This results in:

2,0t |

;en-l(ti-)
0|

2(1)

2, (1)
f,.,(’i-)

BRI
¢n-l_1m 4)71—1,»-1 0
0-0 0 |
hyy~hyn, O
hm-l,lm hm-l.n-l 0
hml... hm,n-l

[ wbd b

fl(f{_,) byt 1Lr u (t, )
fu-l(fi'-l) ' bn—l.lm bn-l,r-l bn-l." u!:-l((tti-g)
2,(4) 00 0 riii-l
r -
2.(4)
fn.l({i-)
‘fn(ti) (17)

which essentially eliminates the n® state.
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This method of eliminating states results in partitions of zeros in the model, which most
designers would simply drop from the model so that the truth model and the Kalman filter models are
of differing dimensions. Additionally, in many cases the designer will aggregate states so that there
will not be a one-to-one correspondence between the states of the truth model and the Kalman filter
models. An elegant method that allows this state reduction is described by Sheldon [55, 56]. He
uses a transformation matrix that actually removes or combines various truth model states, so that
the truth model and the Kalman filter model differ in dimensionality. To simplify the development of
this research, I have chosen to keep the dimensionality of the truth model and the Kalman filter model
the same. Further research is needed to develop the hypothesis testing techniques using the
transformation matrix method described by Sheldon.

We introduce the following definitions:

AB, & B.-B, = B,=B,- AB,

AH, & H,-H, -~ H,-H_- AH,

A‘I’k Y ‘I’T- <I>k had ‘bk= ¢T- A‘I’k (18)

where we are implicitly assuming that the dimensions of the filter model and the truth model are the
same.

Using this definition for the examples above, we see that in most cases rather sparse
matrices result. For instance, for the actuator failure where the difference between the truth model

and filter model is due to a zeroed column of the B matrix, the result would be:

bl.l'"bl,l-l 0 bl,l.l"'bl,n bl,l’ bl,I bl,n 0-0 ‘bl,l 0-0
ABk A BT_Bk= H - H H H = H H H
bn‘l---b”‘l_l 0 bn,lvl'"bn,n bn’l~ bn,l ~~-bn"l 0-0 —bM 0.0
AH, Y H.-H, = 0
Ao, a &, - ¢bk_ 0.

19)
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Similarly, for a sensor failure where the difference between the truth model and the filter model is due

to a zeroed row of the H matrix, the result would be:

AB, A B, - B, -~ 0
[ h}jl hl,n hl.l hl,n
h[im hl:l,n hl—l,l hl-l,n 0 0
AH, &6 H.-H,-| 0 0 |- By him |= "Ry Ba
hl.x,l hl.l.n hl.l,l hlol,n
[ B By hjx Bin 0
Ad, & ¢,.- 0, =0. (20)

Initially, we will assume that the true system model is accurately represented in one of the
Kalman filters of the MMAE. This assumption allows us to define the true system Kalman filter
gain, K, which is the steady state Kalman filter gain of the filter that uses the true system model.

The Kalman filter that uses the true system model will be called the true filter. Later, we will relax
this assumption and discuss the effect on the performance of the MMAE.

Equations (5), (7), (8), and (10) show that the steady state Kalman filter gain is a function of
?,, G, H,, O, and R,. Note that it is not a function of B,, thus any mismodeling in the input matrix
will not change the steady state Kalman filter gain. However, any difference between H, and H, or
®, and @, will result in a difference in Kalman filter gains between the true filter and the filter with

the mismodeling. Therefore we define

AK, &4 K. - K, - K,=K;-AK,. @1

We now define the error between the Kalman filter state estimate and the true state as:

€ (1) & xp(2,) - £,(1), ' 22)
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and
ex (1)) & xp(1,) - £,(17). 23)
For the case in which the Kalman filter model and the true system model match, that is the
true filter, the state estimate error is defined as:

er(t) & xp (1) - £.(1), (24)

and
er(t]) & xp(8) - 2.(1). (25)

Note that until the filter state estimates are updated using z (¢,), the best estimate of x,(¢,) is

x7@1;). Therefore:
Bz p{#r(t) } = £:(17) (6)

where E,,, ,{ - }is the conditional expectation operator, which is conditioned on Z(¢,_ , ), the
history of measurements up to and including time ¢, _,.

The true filter state estimate covariance matrix is defined as:

Po(1) & Ez(“_l){ [xr(8) - 22(47) ][ %22 - x,(:;)]’}
= Ez(z,_,){ er(t) er(1))’ } 27

3.2.3 Covariance of the Residual. We will derive the covariance of the residual by

first deriving an expression for the mean of the residual. Starting with Eq (9) we get:
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M

El(tl_l){ ’k(ti) } = Ez(t‘_l){ [ Z(ti) - Hk fk(t,-_) ] }

=Bz {20 } - Ezg p{ Ha 2201 }- 28)

Note that we are conditioning the expectation of the measurement history up to the ¢, _, time sample.
Egs (4), (6), (7), (8), and (9) show that the state estimates in the second term of Eq (28) are simply a
function of the Kalman filter model and the previous measurements. Therefore, if we are given this
measurement history, the étate estimates are not random and can be directly computed, so the only

random variable in Eq (28) is z(z;). Thus we have:

Ezm.l){ re(4;) } - El(t..l){ z("‘)} -y (1) 29)

Now we use Eq (1) to get:

Ez(t“){ z(1,) } = EZ(‘H){ Hpxp(t)+v(1) }

=HrEgzq 5 {*r(t) )« Ez H{v (1)}

H 2.(4)+0

Ezep{2(t)} = Hr2p(1). (30)

Now to compute the conditional covariance matrix of the residual, conditioned on the

measurement history up to the ¢, | time sample:
cov 200 {1} = Ezq 5 {reCtdreCt )} - By 5 {reCt)} E gy y{re ()7}
) Ez(‘x-l){[z(ti)_Hk'ek(ti.)] [Z(t,-)—HkJe,,(t{)]T}

[ Btz O} Et D[ Bz {20} Bty D]y
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200 {0} = Bz {20020} - By {2000} £,(4V B
-H, 2,(1]) Ez(t“){z(ti)r} CH, 2,0t7) 2,0 BT
Bz {200} Ba p {27} - Bz p{2(10) £ BT

00 B o 50T ) By 200> 2207 Y
= B0 {220} - Egy 5 {201} Bz ({2 (1)7)

= covzeey {201} 32)

This last expression tells us that the covariance matrix of the residual is not dependent on the Kalman
ﬁiter model, it is only dependent on the covariance of the measurements. We would expect this
because, as noted earlier, the only random part of the residual, given the measurement history up to
t;_1»is z(¢; ). Thus, in the MMAE filter bank, all of the Kalman filter residuals would have the same
covariance since they all use the same measurement vector, z(1,), and measurement history, Z(1; ).

To get a more explicit expression for the covariance matrix of the residual, we compute the

conditional covariance matrix of z(t,) and use Eq (1) to get:

oV z2¢q. ) { k(1) } = cov 7 {2 (1)}

) EZ(‘f-l)(z(t’) z(tf)r} ' EZ(‘t.x){z(ti)} EZ(‘(.]){Z(!‘)T}
= EZ(&.x){[HTxT(’i) * "T('i)] [err(‘i) * "T(‘i)]T } -Hp2.(4) 2. (¢ HLT

=HpE,y {xp(t) xp (1)) JHT « Hp20(8) B, 3 {ve(1))7)
v E 7y {ve(1)} 2.0t HT . Ezq p {vr() vr(t) )

- Hp2.(t) 2,07 H,T
= HTEZ(Q.I){ xr(1) xp (1) }HTT « Rp(t;) - Hp#p(17) 2001 Y Hy' (33)
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cov 70 {1} = HT[EZ(tl_l){xr(tl.) xr(1) ) - 200) 2.7
- 2p(8]) 20 ¢ 20 (1)) £ |HS Ry(1))
- HT{ EZ(‘(—I){ xp (1) xp (1) } -2, (1) 2000 .

-2 (1) 2o () ¢ 20 () 2087 ]HTT « Rp(1y)

" Bl Egg p{2r () 22 (1)} - By {208 } 2000

- %27(1) EZ(‘:.;){xr(’i)T } e 20 (17) 22047 ]HTT + Rp(1)

=H.E ;. xp (1)) xp () -xp (1) 20 (¢ - 20 (1 Y p (1) + 201 ) 20 (1) JH T

+ Rp(1))

= HpE 7 y{[*r(t) - 200 ]| x208) - 22007 JHLT « R ()

- T
H P (YA, + Rp(1)

cov 20 {Te(1)} = A1) 34)

where A (1,) denotes the Kalman filter residual covariance matrix at time ¢, We now assume that the
Kalman filter has reached steady state so that the covariance matrix is constant. We denote the
covariance matrix of the residual of the steady state Kalman filter that is using the true system model
as A;. This result tells us that the steady state covariance matrix of any Kalman filter residual is
independent of the Kalman filter model and can be precomputed simply by calculating the steady

state residual covariance of a Kalman filter with the true model.

3.2.4 Mean of the Residual. Earlier it was shown that the conditional covariance of

the residual from any of the Kalman filters in the MMAE is dependent only on the conditional

covariance of the actual measurements; thus any mismodeling in the design model upon which the
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filter is based, has no effect on the conditional covariance of the residual. We will now examine the
effects of mismodeling on the conditional mean of the residual.

First, we expand one of the terms in Eq (12) using the definition in Eq (1) to get:

() - H 2, (1;) = [HTxT(ti) . vT(tl.)] - H 2, (1;)

[ 3

ry (1)

1

HT[tPTxT(ti_l) « Bru(t; |) - Gde(ti-l)] e vp( ;) - Hkltbk;ek(t,-'_l) + Bku(t,._l)]

u

Hp®ox (4 ) - H @ 2, (1 1)+ [HTBT - HkBk]u (4 1)+ HpGpw (8, 1)+ vp(ty)

It

Hp®, x. (1, ) - (HT - AHk)(th - A(Dk)f,,(t,-'_,)

. [HTB,.- (HT - AHk)(Br- ABk)]u(t,._l) c HpyGow (1, ) v ve(t)

Hp®p[xr(t,) - (4]« (Hra®, o B, ®; - AH A®,)2, (1))

« (HpAB, + AH By - AH A®Yu(4,)) » HrGrw,(4) + vr(%)

Hp®pe () (HpA®,« AH, @ - AH A®)2, (1)
¢ (HpABy « AH By - AHA® Yu (1, )« HrGrwy(4 1)+ vr(t)
33)

We take the expectation of this to find the mean of the residual:

Eze n{me(t)} = EZ(t,_l){HTd,Tek(ti-l) c(Hpb®,» AH ®; - AH A®)2,(4)

 (HpABy « AH Bo - AH 88 u (1) « BrGpw,(4,) « vr(4)}

Hp® By o{ep(ti)} o (HpA®, « AH ®p - AH,A8,)2, (1)
(BpABy« AHBr - AH MG u (s )« HeGrEy (% (4.1))

* Bz p{rr(1)}
Bz {1} - HT‘I’TEZ(t..o{Ek(‘."-x)}

c(Hpd®, « AH @p - AH AD, )2, (1)

+ (HTABk + AHkBT- AHkAd,k)u(ti-l) (36)
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To derive an expression for the first term, we take the conditional expectation of Eq (23) and then

step back one data sample in time:

Ezy. )<ek(t )} Ezee. x (1) - £,(1; )}
Bz pr*r(t) - [:2 (t;)+ K, 'k(‘)]

Bz, o{*r(t) - [;e (1) - K H 2, (1) Kkz(t)]}

Ver(r) - (I-K B )2, (1)) - KyBg, 3 (ve(1))

{
{
{
Bz, ){xT(I) I-K H)2,(4) - K JHpxp (1)« ve(y )]}
Bz il
{

Z('t 1) (I K H [ T(ti-l) ' BTu(ti-l) M Gde(ti-])]

C(T-E H )| @,2,(41) « Bpu (s )]}
= By (T KuHp)®rxp()) - (I-K, H,)®,2,(4.)}
(- Hy)By - (I-K BB Ju(t )

e (I- K H)GrEz {wa(t1))

= By A (1-KeHp)®rxp(1y) - (I-K H,) @, 2, (4.1)}

Z(4.y)
o [(F-KyHy)By - (1-K H)Bylu(y ) (37

Now we substitute in the definitions from L:q (18):

Bz (i)} = Bz {(I-EuHp)®rxp(s, ) - [1-Ky (Hp- AHL)|(®7-88,)2,(5.)}
{(I-kx B, - [1 K (Hp- AH,)|(By-AB,)}u (4, )

Epy (1K) @rar(ty) - [(I-KeHr) o K 0H,](®7-88,)8,(1 1))

{(I-K Hy

= (I'KkHr)d’TEZ(t..;)(“‘r(’1-1) - £,,(t{.1)}

By - [(I-K,Hy)+ K,AH,|(Bp- AB ) u (4 )

[(T-KeHp)A®, - K, AH, ®,]%,(4.1)

+[(I-KyHy)By - (I-K Hy)By+ (I-K,Hy)AB, - K, AH, B, |u(t;_,)




Ez('t-ﬂ{ek(t;)} B ("KkHT)‘I’rEz(r,.l){ek(‘i'-l)}

+[(T-KeHp)A®, - Ky AH @, ]%,(4 )

v [(T-KyH7)AB, - K, AH,B,Ju (2, ;) 38)

We will assume that until a certain point in time the Kalman filter model matched the true
system model. For failure identification applications, this point in time would be the failure time, I

Up until that time, all of the modeling errors are zero and

Rp(t]) = 2,(1])
i ) Vti < tf'
2p(t;) = 2,(8;) 39)

Therefore the mean of the state estimate error will also be zero. This assumption gives us:

0 ,» Jor t,<= t

[(1-KyHp)A®, - K AH, @], (1)
+ [(1-K Hy)AB, - K, AH, By |u (1)
(I-K,Hp)® By, {ep(hi1)}

c[(I-EpHp)A®, - K AH, @)%, (8,) » Jor 4> 4,
'[(I'KkHT)ABk'KkAHkBk]u(ti-l) (40)

J , Jfor =t
Bz i€t} =

\

Thus, to compute the mean of the residual, we keep a running calculation of the mean state

estimate error using Eq (40) , and then compute the residual mean using:

Ez¢. p{re(1)} = Hrd’rEZ(q_,){ek(‘{-l)}
v (HpA®, « AH, ® - AH A®, )2, (1)

+ (HpABy + AH By - AH, AB,)u (1) (41)
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We can now use this equation to look at the mean of the Kalman filter residual for several

special cases of mismodeling.

3.2.4.1 No Mismodeling. We will first look at the case where the Kalman

filter model and the true system model match. For this case we get:

o]
~
"
-
>
Sy
»
1]
<

®,.- &, AD, =0 42)
Using Eq (40) and Eq (41) we find that:

EZ(“_l){ek(t,-')} =0 VvVt

- EZ(:,_,){’k(’i)} =0 V1t 43)

which Maybeck [33] has also shown using a different development.

3.2.4.2 Mismodeled Input Matrix. A mismodeled input matrix, which is

used to model an actuator failure in flight control failure identification applications, would result in:

B.* B, AB, # 0

H.-H, { -~ | AH, =0

(sz d)k A‘bk: 0 (44)
Using Eq (40) we get:
r 0 » Jor t;< L
. (I-KkHT)ABku(tf) s Jor ti=tp
EZ(t..,){Ek(t" )} -
(- EeHz)0: Bz, et} for 131

> i v 1

| (K Hp)ABu (1) e @5)
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and from Eq (41) we get:

Ezeo y{ra(t)) = Br®r Bz (et} « BrAB u (s, ),

3.2.4.3 Mismodeled Output Matrix. A mismodeled output matrix, which

is used to model a sensor failure in flight control applications, would result in:

B, = B, AB, =0
H.# H, - AH, #+ 0
&, - &, A®, = 0.
Using Eq (40) again, we get:
0 , Jor 1<t
) ) -K,AH &, 2,(1;) - K, AH, B u (1)) , for ti=t
By et} - ,
(I-KkHT)thEz(‘H){ek(t,._,)}
. » Jor >4
‘ - K, AH &, 2,(t,,)- K,AH, B, u(t, |)
which can be rewritten as:
)
0 , for 1<t
) J “KkAkak(tf-l) . Jor ti=t.,
By olatin) - .
(I-KkHT)thEZ(‘M){ek(ti_,)}
Lo Jor 1>t
- K AH 2, (1))

Using Eq (41) we get:
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Bz o{re(t)) = Hr @By, {e(t1)} « AH ®12,(1)) « AHBru (4 ;)

- Hp 0By, {6 (60}« AH, 2,(1). (50)

3.2.4.4 Mismodeled State Transition Matrix. A mismodeled state

transition matrix, which can be used to model an imperfect modeling of the aircraft modes in flight

control futlure identification applications, would result in:

B, - B, AB, =0
HT = Hk - AH‘: =0
¢T # (bk A(bk +# 0. (51)
Using Eq (40) again, we get:
0 , Jor Lt
’ (T-K,Hp)A®, 2, (1) s Jor ti=tp
Bz p{eni} - 1 f }
(1 K, H_\&_E e (1 1)
\ k T) bi Z(lt-l)l A ) s for t,>tf.l
+(I-K H ) A®, 2, (4 ) (52)
Using Eq (41) we get:
Ezeq.n{rC} - HTd)TEZ(tM){Ek(ti'-l)} CHTA® (1), (53) .

3.2.5 Kalman Filter Bank Implemented Using a Single Residual. In this

section we propose a linear transform that operates on the residual from one Kalman filter and

produces the equivalent residual of another Kalman filter. The proposed structure is shown in Figure
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Figure 5 - Alternative Method of Computing a Second Kalman Filter Residual

5. A single Kalman filter, denoted filter &, is implemented and its residual and state estimates, along
with the control input and measurcment vectors, arc used by a lincar transform to produce the
equivalent of the residual from another Kalman filter, denoted filter j. This transform only requires
knowing the difference between the filter models and does not require the implementation of filter j.
This structure can be extended to form the equivatent of the Kalman filter bank shown in Figure 4.
This alternative structure is shown in Figure 6, where a single residual is used (o form the equivalent
residual from all the other Kalman filters.

This structure could produce significant computational savings for many MMAE
applications. We illustrate this, we will compare the operations count (number of multiplies and
additions) that are need to implement the usual Kalman filter bank structure with the count needed to
implement this structure. We will not assume a specific structure (i.e., diagonal, block diagonal,
partitioned, etc.) of the matrices used to implement these structures, except for the AB, 4H, and 4P

matrices. Previously, we showed that these matrices are sparse, usually with only one nonzero row or
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Figure 6. Alternative Multiple Model Adaptive Estimation Filter Bank Structure
Using Equivalent Residuals

column. We will develop the operations count for the fully implemented Kalman filter bank in this
section, and compare this to the operations count for the case of a mismodeled system input matrix
(simulating an actuator failure) in Section 3.2.5.3 and a2 mismodeled output matrix (simulating a
sensor failure) in Section 3.2.5 4.

We start by defining the various matrix dimensions as follows: n_- number of states, n, -
number of system inputs, and n,, - number of measurements. The steady-state Kalman filter state
estimates are updated using Eq (15), where the dimension of K is n_ by n,,, the state estimate vector

is n,, and residual vector is n,,. Thus, we will have n_n, multiplies, and n, (n,-1)+n,=n_n,
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additions. The state estimates are propagated using Eq (14), where the dimension of ®, is n, by n_,
B, is n_by n, and the system input vector is n,. Eq (14) requires n_n, + n_n_ multiplies, and n_(n, -
+n, (n, -1)+n, = n_n, additions. Lastly, Eq (12) is used to form the current time sample of the
residual, which requires n, n,, multiplies, and n,, (n, -1)+n, =n_n, additions. Thus, the total
operations count is n, (n, + n, + 2n,, ) multiplies and n, (n, + n, + 2n,, -1). The dimension for the
specific application that was implemented for this research were n, =19, n, =6, and n,, =9, which
gives us an operations count of 817 multiplies and 798 additions, per elemental filter. This
operations count will be compared to the count using this alternate structure in the following

sections. Now we will compute the linear transform.

3.2.5.1 Model Difference Nomenclature. This development will be

similar to Section 3.2.2, except that we will be developing the difference between two Kalman filter
models instead of between the true system model and a Kalman filter model. We will use the
subscripts j and k to denote the two different Kalman filter models.

We are examining model diffcrences in the state transition matrix, @, the output matrix, H, and

the input matrix, B. Thercfore, we introduce the following definitions:

AB,, & B, - B, ~ B;=B,- AB,;
AH,; ¢ H - H, - H;-H,- AH,;
AG, & &,-® — &,-0,- A0,
AK,; 8 K, - K, ~ K; =K, - AK,; 54)

In Section 3.2.2 we defined the error between the Kalman filter state estimates and the true

state using the nomenclature €,. In Section 3.2.4 we showed that the mean error between the Kalman

filter state estimates is important in computing the mean of the residual and must be computed at
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each time sample to compute the mean of the residual. In a similar manner, we define the difference

in state estimate errors, which is algebraically equivalent to the difference in state estimates as:

Acip (1) & &) - (1))

[xr(1) - 2.00)) ] - [ 20(1) - 2,()) |

2,017 - 2,(1)

2,(1) - Aejk(t'.'). (55)

[t}

~ (1)

3.2.5.2 Computation of the Residuals. Our goal is to replace the j-th

Kalman filter, in the MMAE filter bank, using the residual from the k-th Kalman filter. We assume
that the Kalman filter states from filter k and the residual from filter k are computed at each time
sample and are available for computations. Also the control input and the measurement vectors are
available for computations. We assume thatvthe model differences are only between the input
matrices, output matrices, and state transition matrices (or some subset thereof). Thus, we desire to
derive an expression for the residual of filter j, in terms of the state estimates of filter k, the
difference between the Kalman filter state estimates of filter & and j, and the known model matrices.

We start with the definition of the residual for filter J:

ri(t) & (1) - H;2.(17)

z(1,) - Hj[dbj.éj(t‘._l’) . Bju(ti_l)]

2(;) - H;®2.(4, ') - H;Bu(t )

1

]

I

2(4) - H;®;[£,(4. )-8, (4, )| - HBju (4, )

P8y = 2(8) - Hj® 2.4 ) - HjBju(4,) + H® A, (4)"). (56)

This expression can be used to compute the equivalent residual from filter j using the state

estimates from filter k, the difference between the state estimates of filter k and filter j, and the
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control input and measurement vectors. We will now derive an equivalent expression that uses the

residual from filter k.

ri(t;)=z(8) - H; @2, (¢, ) - H;B;u(t; )~ de’jAejk(’i-l')

]

2(1,) - (Hy- AHy;)(0p- A8, )2, (4 ")

|
|
- (Hy- AHy;)(By- AByYu (1)) « Hy® A€, (1, ") |

il

2(4) - [Hy®p-H;A®, - AH, @, ]2,(4 ")

- [H,,B,,_HjABkj- AH,,jB,]u(t,._l) +H; @ Ae; (1, ) |

2(4) - Hy[®,2,(4, ) Bou(t, )]+ [H;A®, - AH 8,]2,(4, )

o [H; By AHy B Ju(t, ) « H;®;Ac, (1 ")

2(1) - Hy, (1) + [H;A®,  AH, 8,]2,(4, ')

o [HjABy+ AH B Ju(t, )« H;® Aej (1, ). 57)
Thus, we get:

r(8) = rp (1) « H® Ac; (14,1)

c[HjA®y AH @) 2,(4 ) [HjAB« AH B Ju (s, ). (58)

This may seem to be a more complex expression than Eq (56), but later we will see that in most
cases this simplifies dramatically.

To compute the difference in state estimates between filter £ and filter j, we can compute
each of these estimates and then difference them. However, by doing so we would need to implement
filter j, which would defeat the purpose of this derivation since we would have the residual directly
from that filter, When the MMAE is initialized, the difference between the Kalman filter state

estimates is either zero or known. Therefore, we need to derive a recursive expression for the
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difference in state estimates between filter k and filter j (A e, (¢;)). We could then compute
A, (¢) at each time sample and then the desired residual for the filter j.

We start with Eq (55) and simply decrement back one time sample:

Aej,,(tl.') = £,(1) - Jej(t,.')

[2.007) « Kerg(1)) |- [ 2,080) « Kjrj(1) |
= {207« Ky [ 2(1) - B2 (0] ) - { #,¢0) « K [ 2(8) - H;2,(¢0)] )
= (I- K H \2,(4) - (I- KH;)#,(47) « (K, - K )z(2,)
= (1- KuH, )| @,2,(1,1) » Byu (1) |
(1 - KB ) @208, )« Bju (4, ) |« (K, - K )z (1)
= (I- K H )@ 2,04, 0') - (1- K;H;)®.#£,(8, ")

+ [(I- Kka )Bk- (I— KJH} )Bj]u(tl.‘l) + (Kk- KJ )Z(ti) (59)

Now we substitute in the definitions from Eq (54) and Eq (55):
Bejp(t)) = (1 - KpHy V0,2, (4 ") - (1 - K H VO [ 2,1, 1')- g (4,,)]
«[(I-K,H,)B, - (I-KH;\B; |u (1)« AK 2 (1)
= (I-K;H;\®Ae, (1, )
«[{I-KH)®, - (I-KH, )®;] 204 1)

+[(1- K Hy )By - (I- K;H;\B; |u(t;\)+ AK;2(1) (60)

which is the desired recursive relationship.

Eq (58) and Eq (60) certainly appear to be very complex expressions, but under most model
differences these expressions will simplify dramatically. We now look at some specific model

differences to demonstrate this simplification.




3.2.5.3 Different Input Matrix Models. We now assume that the two

Kalman filter models differ only in the input matrix. This would represent different actuator failure

conditions for the filter control failure identification application. This gives us:

®,- & | ADy =0
H,- H, AH, - 0
} -
Ky - K; AK,; =0
# B,
Bk Bj J | ABkJ # 0. (61)
Under these assumptions Eq (60) becomes:
Mg (1)) = (I - KH; )@ Mg (5.))
[ K )@ - (1 - )01, (40
o[ (7- K;H; \By - (I - K;H;)B; |u(t;,)+ AKy;z(1;)
A (1) = (1-K;H; )@ 8¢,(1.,)
*(I-KIHJ )ABkJu(t,_l) (62)
and Eq (58) becomes:
rj(ti) = rk(t,.) + qu)jAejk(ti-]') + HjABkju(ti-l)' (63)

Returning to our flight control failure detection example, we find that we could construct the
equivalent residuals of a bank of Kalman filters, each with a different actuator failure model, by
using a single Kalman filter residual and Eqs (62) and (63). We will now compute the operations

count and compare it to the required number of operations for the fully implemented Kalman filter
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bank. We define n, as the number of columns of AB that are not zero, thus a mismodeling in a
single column of B will produce a AB with only one nonzero column, and n, = 1. The (1-x,H)) ¢,
which is n, by n,, and (1- k,H,) AB,, terms in Eq (62) are precomputable, and therefore will not be
computed at each time sample. The (7- X, H,) AB,, term is a sparse 1, by n, matrix with only n,
nonzero columns. To evaluate the first term of Eq (62) will require n, n, multiplications and n (n.-1)
additions. The second term requires n, n, multiplications and n(n,-1) additions. A similar analysis
of Eq (63) shows that, the second term requires #,, n, multiplications and n_,(n_-1) additions, the third
term requires n,, n, multiplications and n_(#n,-1) additions, plus 2#,, additions to sum the first,
second, and third terms together. Thus the total operations count is n_(n,, + n + ng) +n, n,
multiplications, and n,, (n,; + n,) + n.> + n, (n,-1) additions. This results in 560 multiplies and 541
additions for the specific application that we implemented for this research. Subtracting this count
from the total operations count, developed earlier, gives us the tolal operations savings of
implcmenting this structure over the fully implemented Kalman filter structure. This savings is
n,(n;+n,) - ngy(n +n,) multiplies and the same for the number additions, which is 257 for this
particular application. This savings would be multiplied by the number of filters that are modeling
actuator failures in the Kalman filter bank, to produce the total savings of implementing this structure
over fully implementing the Kalman filter bank. For this specific implementation, the savings is

about 30% of the required operations.

3.2.5.4 Different OQutput Matrix Models. We now assume that the two

Kalman filter models differ only in the output matrix. This will cause the two filters to also have

different Kalman filter gains, as explained in Section 3.2.2. This gives us:
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)
AG, -0
®, - @
AB, = 0
B, - B, -
AH,, # 0
H + H - K, * K,
_Axkj #0. (64)

Under these assumptions Eq (60) becomes:

Mgy (1) = (I - K;H; )® A€ (1, )

(T - K Hy )@y - (T- KH VO 2,(4)
[(1- KB )By - (1- K;H; B, Ju(t, )+ AKgz(s;)

= (I-KH;)®,Ae, (1)
. [ (1 -KH,)-(I-K;H, )]tbkfk(ti_l')
[ (T - KeHy )~ (1- K;H;)|Byu(y )« AK,z(1,)

= (- K;H;)®,8¢,(1, ')« AK;z(1,)
| EjH - K Hy |8, 2, (4 ) [ KH - KB B u (s )

CAND I AEIER

(KH; - K H )@, £,(4,.1") » Byu(y )]
Aej (1)) = (1 - K;H; )QjAejk(zi_l.) » AKz(1;)

*(KjHj—Kka)fk(tl’-) (65)

and Eq (58) becomes:

’j(‘i) =r.(t) HjﬁjAejk(ti_l') + Aijtbk.fk(ti_l') + AijBku(ti_l)
re(t)  Hy® A (1) « AH[®,2,(5, ')« Byu(s, )]

ri(t) = rp () + H;j®;Ae;p(4;.1') « AHy; 2, (1) (66)
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Returning to our flight control failure detection example, we find that we could construct the
equivalent residuals of a bank of Kalman filters, each with a different sensor failure model, by using
a single Kalman filter residual and Eqs (65) and (66). We will first develop the operations count
assuming that 4K, is not necessarily sparse, and then develop the operations count assuming that
AK,; is sparse with a small nonzero partition. We define n, as the number of nonzero rows of AH,,
Since none of the terms in Eq (65) are sparse, the operations count for this equation is 21>+ n_n,,
multiplications and 2n?+ n_(n,-1) additions. The 4H,;in Eq (66) is sparse, so only n, n,
multiplies and n,, ( n-1) additions are need to evaluate the last term. Thus, the operations count for
Eq (66) is n, (n,+ n,) multiplies and (n,, + n,)( n-1) + n, additions. The total count for
implementing the equivalent residual structure is n, ( 2n, + 2n,, + n,) multiplies and n_( 2n + 2n, +
n,) - (n, - n + n,) additions. This structure requires 1083 multiplies and 1072 additions for the
specific application that we implemented, only because we assumed that 4K, is not necessarily
sparse. | |

We observed that 4K, is actually sparse for the particular application that was implemented
for this research. This matrix would have a small block partition that would be nonzero for the
sensor failures that were modeled. We define the dimension of the block as n,, and expanded the last
term in Eq (65) to get AKX, AH, - AK, H,-K,AH, . When the sparse structure of 4K,; and 4H,; are
taken into account, this term is a sparse matrix with n,, nonzero rows and an n, by rn, nonzero block
partition. This results in a operations count of n_ + n( n, -1) multiplications and (n, -1) +
(ng -1)(n, -1) additions. The total operations count for Eq (65) and Eq (66), when the sparse
structures of AK,; and 4H,; are taken into account, is n, (n,+ n, +n, + 1) + ng (2n - 1) multiplies
and (n,+n,+n,+ 1)(n, - 1)+ 2n,- 1) (n, - 1) + 2n_, additions, which gives us 615 multiplies and

594 additions for this particular implementation where n,, = 1 and n, = 5. Subtracting this from the
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operations count for the fully implemented Kalman filter version gives us a savings of n, (n,, + n, - n,,
- 1)+ ny-2n2 multiplies and n, (n, + n; - n, - 1) + n,+ 1 - 2n, - 1)(ng - 1) - n,,, which is a savings
of 202 multiplies and 204 additions. Thus, the equivalent residual version of the Kalman filter bank

requires about 25% fewer operations than the fully implemented Kalman filter bank.

3.2.5.5 Different State Transition Matrix Models. Finally, we

assume that the two Kalman filter models differ only in the state transition matrix. This will cause

uie two iliters to have differcnt Kalman (er gains, as expiaticd i Seciion 3.2.2. This gives us!

AD, * 0
®, % & -~ K, * K

AB,; - 0
B, - B, -

AH, = 0
H,-H

AK, # 0. 67)

Under these assumptions Eq (60) becomes:

Aejp (1)) = (I-K;H; )@ Ac; (1, ')
TSR - ATNNPE §: AT RFENEIN

(
[(1- K Hy)B, - (1-KH, B, |u(t_ ) AK,;z(1)

(I-K;H;)® Ac;, (1, ')

[ ®p- @ - K H, @« K;H, @ 12,(1, )

o [KjHy - K Hy |Byu(t )+ AKz(8)
=(I-K;H; JO, 86, (4 ) - AKGH B,u(t, )+ MK, 2(1)

[ A®y, - K H, @, KH(6,-08,)]2,(4.")
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A (t)) = (1- K;H; )@ A€, (1, ') - AKGH B u(t, )+ AK,;2(1)
v [A®,; - AKGH,®, - K;HA®, | £,(4.)")
= (I - K;H; )‘I’jAejk(t.--{) + AK, 2 ()
o (I- KHy )A®, #,(4, ') - AR H[©,2,(5.,) « Byu(y )]
= (I-K;H; )@ Ae; (1, ')+ (I-KH; )A® 2,(4 1)

. Axkj[z(t,.) - kak(tl.')]

Mg (1)) =(I-K;H, )[tbjAejk(ti_l’) . Atbkj.ék(ti_l')] e AKr (1) (68)
and Eq (58) becomes:
r(t) = (1)« Hi@ Mg (1)) HiA®, £,(1, ). (69)

We can still construct the equivalent residuals of a bank of Kalman filters, each with a
different state transition matrix model, by using a single Kalman filter residual and Eq (68) and Eq
(69). The differences between models is sometimes in only one row and column of the state
transition matrices, so A®,; may be a matrix with only one nonzero row and column. When this is
multiplied with another matrix, the product is no longer a sparse matrix. Thus, these equatiohs will
not, in general produce a savings in computational loading. However, just like the case of a
mismodeled output matrix, the equivalent residual implementation may produce computational
savings for some specific applications. Thus, the computational savings must be investigated for

each specific application.

3.2.6 Residual Correlation Kalman Filter Bank. In this section we propose

constructing a Kalman filter bank with outputs that are estimates of the power spectral density of

each of the residuals from the Kalman filters in the bank. We showed earlier that, if the Kalman filter

50




forward 10 T T .
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0
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0
rate 205 ]
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) 1 2 3 4 5
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0
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0
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0
rate 02 i ] L 1 }
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0
angle g i ‘ ' ‘
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Figure 7. Residual from the Kalman filter with the Fully Functional Model
in the Presence of an Elevator Failure.

model is correct, the residual is a white sequence with zero mean, but if the model is incorrect the
mean changes. This causes a change in the residual correlation, but not the covariance of the
residual. In Section 3.2.4.2, we showed that, if the model differences are in the input matrix, the
change in mean of the residual is a summation of input terms. If the input is a sinusoid, then these
terms produce a sinusoidal residual at the same frequency as the input. This effect is clearly evident
in Figure 7 where the residual from the Kalman filter based on a model that assumes a fully

functional aircraft, shows the presence of the elevator dither input when an elevator failure occurs.
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Figure 8. Fourier Transform of the Pitch Rate Residual from the Fully Functional
Kalman Filter with Mismodeling (solid line) and No Mismodeling (dotted line).

Since we know the frequency of the input, we can use the spectral content of the residual at
this particular frequency to indicate the presence of mismodeling. Figure 8 is the Fourier transform
of 200 data points of the residual for the pitch rate residual element shown in Figure 7 (solid line),
along with the same residual element from the same Kalman filter when there is no failure (dotted
line). The "spike" in the solid line occurs at the elevator dither input frequency. Note that, at this
particular frequency, the spectral content of the residual with the mismodeling is significantly greater
than the spectral content for the correctly modeled residual. This figure shows that the spectral

content of the residual clearly indicates the presence or absence of the mismodeling.
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3.2.6.1 Basic Equations. Kay [26] develops several spectral estimation

techniques; we have chosen to use the periodogram [26: 65] for this research since its characteristics
are well researched and it is used as a conceptual basis for many other spectral estimation techniques.
One version of the periodogram utilizes the fast Fourier transform, which could greatly aid in
implementing this technique because this transform has been implemented on commercial chip sets.
Other spectral estimation techniques still need to be researched to determine which one or ones
produce the desired performance. The periodogram is based on estimating the autocorrelation of the
residual and then taking the discrete Fourier transform of the autocorrelation to produce an estimate
of the power spectral density.

We must first make some assumptions to be able to estimate the autocorrelation of the
residual. We assume that the residual sequence is a series of samples of a stationary process, so that
the probability distributions do not change with time. We also assume that the residual is ergodic in
the autocorrelation function, which implies that the expected value of the time-averaged
autocorrelation function is the same irrespective of the length of time averaging.

For a multidimensional sequence, the estimate of the autocorrelation is:

N-1-]1]

Y rk(ti-n)rkr(ti-n-ﬂl)

. 1
A1) = —
k N [T (70)

The periodogram is the discrete Fourier transform of this sequence, thus:
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N-1

i)=Y A,(0) exp( j2nfl)
I=-(N-1)
N-1 1 N-1-|1] r
= E - E re(t_ ) g (t,-_,l_!”)exP( J2=fl)
t--v-1y N o0 (71)

where N is the number of data samples that are collected over time.

Note that by dividing by N instead of (N - 1) or (N -| /| -1) in Eq (70), we are using a biased
estimate of the autocorrelation. We need the 1/N factor to make this an estimate of the power
spectral density.

If the residual sequence is a scalar sequence, than Eq (71) can be shown to be equivalent to:

N-1 2

P (i) =~ | X r,) e j2nf)
N n=0 (72)

which is simply the squared absolute value of the N-point Fourier transform of the residual sequence.
This is much easier to implement and executes much faster than Eq (71), since it exploits the fast
Fourier transform routines. If the residual sequence is multidimensional, we can approximate Eq
(71) with Eq (72) if the cross-correlation terms between elements of the residual vector are
negligible. For the specific flight control application that we are studying, most of these cross terms
are negligible. Since we are attempting to find practical implementations of the MMAE algorithm,
and Eq (71) is computationally intensive, we chose to implement Eq (72) for this research, but we
will continue the theoretical development based on Eq (71), since it is correct for multidimensional

residual sequences.
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Figure 9. Multiple Model Adaptive Estimation Algorithm using a
Residual Correlation Kalman Filter Bank

We propose altering the Kalman filter bank by estimating the spectral content of each of the
residuals using Eq (72). This structure is shown in Figure 9 (the "Hypothesis Testing Algorithm"
block will be specified in detail in Section 3.3.1). Kay [26: 65-66 ] shows that this can be interpreted
as filtering the residual with a bandpass filter centered at f and a 3dB bandwidth of 1/N, sampling the
output, and computing the squared magnitude. The 1/N factor is need to make the estimate a power
spectral density. Clearly, as more data samples are used (N increases) the filter bandwidth narrows
and more of the out-of-bandwidth noise is rejected. To use this estimate of the power spectral
density in the hypothesis testing algorithms that are developed in Section 3.3, we need the mean and

covariance of this estimate.
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Note that in Eqs (71) and (72) we are multiplying two Gaussian random variables together,
which will yeild a chi-squared distributed random variable, and then summing several of the chi-
squared random variables together (we used N = 100 for this research). Since each sample of the
residual is independent and identically distributed, we can use the Lindeburg-Levy Theorem [53] to
show that the distribution of ¥ converges in distribution to a normal distribution. We generated
histogranls of ¥ using 120 data points and observed that, for the case where the residual has a
nonzero mean (when a failure occurs). this approximation works well. However, when the residual is
zero-mean, then ¥ appears to be more chi-squared distributed. We also observed that, for the dither
input levels that we used for this research, the change in mean effects of ¥ were much greater than
the effect of using an incorrect distribution. In Section 3.3.1.1, we will approximate ® as Gaussian.
Further research needs to be accomplished to characterize the distribution of % properly, for a small

number of data samples.

3.2.6.2 Mean of the Power Spectral Density Estimate. To develop the mean

of this estimate, we first need to compute the autocorrelation function of the residual. Earlier, we

found that, if therc is no mismodeling, the autocorrelation matrix is:

A, (0), for 1=20

A, (1)
0, forl # 0

A, (0) 3 (1) ' 73)

where A,(0) = H P H,"+R,, and 8(]) is the Kronecker delta function defined as:

1, for 1 =0
8§ (1) =
0, forl =0 74
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We will now allow the mismodeling that we studied in the earlier sections and develop an expression
for the residual autocorrelation.
We start by expanding the definition of the residual (letting v(z,) = v(z,), since the subscript

holds no information for this application):

rk(ti) = z(t,') - Hk'fh(ti-)

[Hrxr(s)» v(1)] - Hy#, (1)

Hpxp(t) - (HT- AHk):ek(t,f) «v(t)

1l

Ho[xp(8,) - £,(4)] « AH 2, (1) + v (1))

rk(t,.)=HT€k(t;)o AHk.fk(t;)ov(t'.) (75)

We assume that the mismodeling has occurred over the entire length of data sampling, all the way
back to 1, ,, where [ is the number of sample periods over which we are interested in estimating the
autocorrelation. Since the residual is a real-valued sequence, we need only estimate the

autocorrelation for positive / because the autocorrelation estimate for positive [ is the same as for

negative [ (A,(/) = A,(-)). Now we use the definition of the autocorrelation of the residual, for [ > 0:

A, (D) = By Ary () rl (4}
= By o { [BreaCt)  aH 2, () v 0 )| (L) B 27 (7. ) AR v T(1, ] }
- HTEZ(‘H){e,(z;)ef(z,.‘.,)}H,T.HTEZU‘_l){e,,(z,.'):e,,r(z,.'_,)} AHT
’HTEZ(Q_,){ek(ti-)vT(ti-l)}’AHkEZ(t,_,){’ek(ti_)G:'(ti-l)}HI?
+AHkEZ(‘M){Jek(t,.'):ekr(t{_,)}AHkT,AHkEZ(l‘_I){Jek(t{)vT(t,.w,)}
Byt (v (1)) Bz y{ex (s} Hr « Ezto (¥ ()} Bz y{#6 (1} aHT

Bz {v )T () (76)
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Using Eq (3) for the last three terms we get:
Ez(‘z‘n{"(‘i)}EZ(t,.l){ef(t{.z)}”rr= 0
T, - T
Ez(‘t-l){v(t‘)}EZ(&.x){’ek (ti-l)} AHp =0

By p{v(1)vT(4.)) = Rp3 (D) -

The middle three terms are easily evaluated:
- T, 6 o- T - T, - T
AH E; (&) (.0} BT = AB 2, () By {0} Hr
0T, - T - T, - T
AHkEz(q_l){f,,(‘i)fk (‘i-z)}AHr = AH, 2, (4;) % (4 ) AHy

AH Bz, ({£,G)vT (4 D} = AH, 2,0 By {(vT(1 D) = 0 78)

The first three terms require an expression of €,(¢;) in terms of €,(¢; ;). We will use a similar
development to what we did in Section 3.2.4 where we derived an expression for €,(;*), but we need

€,(t,) for this expression. We start with the definition of €,(;") and decrement one time sample:

xp(1,)-2,(1)

[@r%r(t )+ Bru (1) Gpw (4 )] [@,2,(40 1) Byu(4,.)]

= ‘bTxT(ti—l)'(d)T'Ad)k)'ek(ti'-l)'[BT' (Br-ABy)|u(t 1)+ Grw (4 ;)

= ®p[xp(t )2, (4 |+ A0, (41) ABu (41) Grw (1))

= 0 [xr (1) 2 (4 - Kyry (1) |« A, 2,(5 ) Kyry (1)
cABLu(t, )+ Gyw(t_)

= @6 (60)- O K, 20t ) - Ho2 (1)) 840,2,(47))
cA® K204 ) -H 2, (11) ]+ AByu (14, )« Gpw (4,,)

= QTEk(li_-l)'QTKI[HTxT(ti-l)'v(ti-l)'(HT' AHk)gk(ti-l)]*Aq’k'ek(t(-l)
CA® K [Hpxp () ev (4 ) - (Hp- AHD 2, (41) |+ ABu (4 1)+ Gpw (1)

= ‘I’Tek(‘i-l)"I’rKkHr[xr(‘i-l)'fk(’i_-l)]"brxk"(‘:-l)"I’TKkAHk’ek(’i-l)

(DD () ALK H [ xr (1 )2, (1) ] A K v (1)

[l

Ek(ti—)

+AO K AH 2, (t; 1)+ ABu (1, |)+Grw(t; ;)
= & (I-K Hy)e (4 1)-(®p-A®)K,v(t; |)-(®p-AD K, AH, 2, (4 )

DD R (1) AD K Hoe (1;.,)+ABu(t, |)+Gpw (1, )
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& (t;) = [®p(I-K,Hy)+ A® K, Hyle, (8.1)- B, K, v (4 )+Gpw (4 )
+[A®y- @ K AH 2,1 1)+ ABu (1) 9)

We apply this equation repeatedly to get:
(1) = [®(I-K Hp)+ AS K Ho e, (141)
-1
+ Y [QT(I-K,‘HT)oA@kKkHT]"[(Atbk—¢I>kKkAHk)£,‘(ti'_1_,l)+ABku(t,._l_n)]
n-0
1-1

> [@r(1-EyHp) A® K He|"[Grw (2, ,)- 0, K, v (1, ,)] 50)
n-0

Note that we have separated the noise terms from the deterministic terms in preparation of taking the

expected value of this equation.

Now to use this in the first term of Eq (76):

- T, - T 1 - T, - T
HTEZ(Q.,){ek(’i )E"(’i-l)}HT < Hp[®p(]-K,Hy)  A® K Hy Ez(xl_l){ek(ti-l)ek(ti-l)}HT
1-1
; r, - T
CHLY [QT(I-KkHT).AtkakHT]"[(Atbk_tkakAH)EZ(tt_l){fk(t(_,_")ek(t,_,)}]ﬂr
n=0

1-1
T, - T
cHL Y [QT(I'KhHT)’Ad’kKkHT]n[ABkEZ(t‘_l){u(ti-l-u)ek(’i-l)}]HT
n-0

-1 .

Tr, - T

CHL Y [8,(1-K Hy) AtkakHT]"[GTEZ(‘“){w(t‘._l_n)}EZ(t‘_l){e,,(t,_,)}]HT
n=0

1-1

T, - T

«Hr Y [‘I’T(I'KkHr)’Ad’kKkHr]"[‘ ‘I’kKkEZ(g_l){"(‘i-n_,.)}Ez(:,_,){fk(l.--z)}]HT
n=0

f

1 - T, - T
He @ (1-K Hp) 80, K, H)'E, {e(4 e ()} By
-1
- T, - T
cH:Y [®p(I-K Hyp). Ad)kKkHT]"[(Atbk- tkakAH)Jek(ti_,_n)Ez(t’_l){e,,(t,_,)}]H,.
n=0
I-1 T r
cH; Y [@,(1-K Hy) AQkKkHT]"[ABku(t‘._l_")EZ(‘H){ek(t,_,)}]HT
n=0

! - LT, - T
Hp[® (I-K,Hy).A®, K, Hy| Ezu,_,){Ek(‘i-z)ﬁk(ti-z)}Hr

1-1
«Hp Y [®;(I-K,Hp). A‘I’kkar]"[(A‘I’k"I’kKhAH)’ek(‘i_-x-n)'ABk" (‘i-l-n)]
n=0

: EZ(:,_I){G:(G_-I)}H: (81)
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Using the same procedure for the second term in Eq (76):

naT, - T
HTEZ(:,_,){ek(‘i )%y (ti-l)}AHT

! - voT,,- T

= Hy[® (I-K Hp)+ A0, K, H,] Ez(g_,){ex(tt-t)fk (ti-l)} AHy

-1
+ H Y, [®r(T-K Hp) - AD K Hy|"
n=0
- T, - T
.[(Atbk-QkKkAH)Ez(q_l){fk(ti_l_n)tk (t,._,)}]AH,.
-1
T, - T
N [<1>T(1-K,HT).Acbkx,,nrl"[ABkEz(t‘_l){u(zl._l_n)f,, (t,-_,)}]AHT
n=0

-1
N T - T
. HTZO [¢>T(1-K,,HT),A¢kKkHT]"[GTEZ(q“){w(zi_l_")}bz(,’_l){x, (:,,,)}]AHT
-

1-1

T - T
cHLY [‘DT(I‘KkHT)'Aq)kKkHT]"[' ‘I’kKkEZ(:,_,){“(’i-l-n)}EZ(z,_,){’e* (ti-')}}AHT
n=0

- T, - T
=Hp[®,(I-K,Hy). AQkKkHT]lEZ(t‘_I){ek(ti-l)}fk (ti.))AHy
1-1
CHp Y [®p(1-K Hy)e AG K H |"[(A®,- €, K, AH) (11, ABu (1, )]
n=0

- 2y ( 1) AHIT (82)
Finally, we use Eq (79) to expand on the third term in Eq (76)

HrEp {e(i)v (4}
= Hp[® (I-K Hp). Ad>kKkHT]'Ez(q_l){ek(ti_,)}Ez(,‘_l){v T(t,._,)}

. HTSO [(bT(I-KkHT)oAQkKkHT]"[(Atbk-QkKkAH).tk(ti'_l_n)Ez(t‘_l){vT(t,._,)}]
n-
. HT:Z;]D [d>T(I-KkHT)~AQkKkHT]"[ABkEZ(tM){u(tl._]_n)}EZ(t‘_l){vT(ti_l)}]
. HT:);‘; [@T(I—KkHT).AtkakHT]"[GTEZ(“_l){w(ti_l_")}EZ(tH){vT(t‘_l)}]
. HT:z;jlo [@,(I-K,H,),Acpkxkyrl"[- @kKkEz(t‘_l){v(ti-l_n)vT(t,._,)}]
= H,.I}_:l [@7(1-KyHp) A® K H ["[- @, K Rpd (n-1.1)]

n=0

(83)
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Note that 8(n-/+1) is only nonzero for n = [-1, therefore there is only one term in the summation of

Eq (84) that is nonzero. Also, the summation is only valid for /-1>0, or />1. Thus:

- -1
HiEy 3{e()v T (4 D} - -He[® (I-K Hp)- A8, K, H, ] @K, R, 84)

We put Eq (77), Eq (78), Eq (81), Eq (82), and Eq (84) into Eq (76), to get an expression
for the residual autocorrelation with mismodeling in the output matrix, the control input matrix, and
the state transition matrix:

1 - T, - T
Ay(1) = Hy[®,(1-K,Hp)+ AS K Hy Em_]){ek(:,._,)e,,(t,._,)}lfr

I-1
HyY [®;(1-KE,Hp):A® K H ]"[(A®,- ©,K,AH) %, (11 ) AByu (1, )]
n=0

+

: Ez(Q.l){etT(fi‘-z)}HTT

. T, - T
Hy[®.(1-K Hp). AtkakHT]lEz(t‘_l){ ee(t )} 24 (1) AHT

+

I-1
cH.Y [® (1-K Hp). AdskKkHT]"[(A@k- ®,K,AH)2,(t | »)+ AB,u (‘1-1-..)]
n=0

T, - T
“Xg (4, )AHT

I-1 - T, - T
-Hp[® (I-K Hy) A® K H "' & K Ry AH 2, (1)) Ey(, { e,,(z,._,)}HT

c AH 2, ()2 (4. )Hy « Rp 8 (1) 85)

This is a ponderous expression to evaluate because we have allowed for any mismodeling in
the control input matrix, output matrix, and state transition matrix. Most mismodeling in the MMAE
filter banks occurs in only one of these matrices. Research {11, 12,19, 41, 42,43, 47, 48, 49, 52, 58,
60, 61] has shown that the MMAE identifies flight control sensor failures quite well, so we will
target our research to improve the MMAE performance in detecting actuator failures. Thus, we will

limit the mismodeling for the rest of this development to a mismodeled control input matrix. With
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this assumption, we get AH = 0 and A® = 0, which simplifies the previous equation for the residual

autocorrelation to:

A, (1) = Hr{[QT(I‘KkHT)]IEZ(q_I){ek(ti-—l) e:(ti-l)}

1-1
+ ¥ [erU-KHD)" [ABu(ti_l_n)EZ(tH){ek(t{_,)}]}H;
n=0

-Hp[®,(J-K,Hp)|" @, K Ry o Ry (1) (86)

To complete this derivation, we need to develop an expression for the first term in Eq (86). We start

with:

Ezc {ek(tl-l) ex ( ‘1-1)} = Ez(x,_,){["r(‘i-z) - ‘ek(tl"-l)”xr(ti-l) - ‘ek('i-l)]r}
- - - - T
= Bz oy [0t - 2000 200800 - 2, (0D | [0 (- 2, (70 ]}

EZ(‘:-I) [xr(ti-l)‘fr( i)+ Aek(ti—-l)”xr( t,-_l)‘-‘?k(ti»-l)]r }

f

{
- Ez(t‘_l){[er(t,‘_,).Aek(z,'_,)”er(z,'_,).Aek(z,ﬁ_,)]r}
= By p{ertier( b By o {er(iin e (5.0}
Bz p{ Aa(tiDer(t. )} v Ez ({Ae, (1) e (D7}
= Pr(ti 1)+ Ezq {er(tin}ae (1 ) Aek(z{_,)EZ(‘l'l){ er(t )}
A (t )Ae (1 )T

= PreAe (4 DA (1 )T 87)

where Eq (27) is used to define P (1, ), and we replace this with the steady state covariance matrix
P in the last line of Eq (87). We can use this expression in Eq (86) to compute an estimate of the
autocorrelation of the residual given a mismodeling in the input matrix, and then use Eq (86) to

compute the mean of the power spectral density estimate using:
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where we can use the relation 4 (/) = A ,(-I) since the residual is a real sequence. We can use Eq (86)
and Eq (87) to compute the residual autocorrelation matrix and put this into Eq (88) to get the
desired mean of the power spectral density estimate.

A more practical method of computing the mean of the power spectral density estimate
would be to compute the mean of the residual, given the mismodeling in the Kalman filter, using the
development in Section 3.2.4, and then compute the power spectral density estimate using Eq (71) or
Eq (72). This method will not yield the correct mean of the spectral density estimate, but for large

residuals it will provide an acceptable approximation.

3.2.6.3 Covariance of the Power Spectral Density Estimate. To

develop an expression for the covariance of the power spectral density estimate, we propose a
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vectorized version of the power spectral density estimate matrix defined in Eq (71). To form this

vector, we take the columns of the $ matrix and stack them one on top of the other. Therefore:

A

1
Y ()

-

?,, (f51)
VUL = R, () | T V) R ey 2105 4)

8

¥, a1 (89)

where m is the number of elements in the residual vector and | is the ceiling function, which rounds
the operand to the nearest integer toward positive infinity. Thus, y (r;¢,) is an m*>-dimensional
vector of functions of frequency f. This construct will aid in notation for the covariance of this
estimate since the covariance will be a matrix of scalars using this vector version, versus a tensor if
we use the matrix version of the power spectral density estimate.

Using this notation, we will derive an expression for the autocorrelation of the power
spectral density estimate. We will derive this expression for a single element of the autocorrelation
matrix using a and b to denote that particular element (note that a and b can each take on integer
values from 1 to m?). Also, we are denoting a particular element of the residual vector using j, k, [, or

n as the index.
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This expression involves the fourth moment of a Gaussian random variable, which is
difficult to expand if we allow any mismodeling in the Kalman filter. We intend to use this residual
correlation Kalman filter bank with the standard hypothesis testing algorithm that is described in
Section 3.3.1. This algorithm only requires the covariance of the power spectral density estimate for
the case of no mismodeling in the Kalman filter. We showed carlier that this produces a zero-mecan
residual and we can compute the steady state covariance of the residual. Therefore, we can use the
standard development of the fourth moment of a zero-mean Gaussian random variable [e.g. 37: 107]
to expand this last expression, since the fourth moment can be expressed in terms of the second

moment, which is the covariance of the residual. Thus:

Epe y{ ¥ (1) 97 (1))

a, b
;N N-1  N-1-|g| N-1-|p|
== X Y X X (4,044,001
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where A, (s - 1) denotes the j, I th element of the A( s - ¢ ) matrix.
This expression is very computationally intensive. Note that we are computing the

covariance of the power spectral density estimate for the case where there is no mismodeling, so

A, (0), fort=20
Ar(t) =
0, fort=0 92)

where A, (0) is the precomputed steady state Kalman filter residual covariance matrix for the true
Kalman filter. Thus, we can approximate Eq (91) by checking each of the time arguments of the
residual covariance matrices and assume that the residual covariance matrix is 0 if the time argument
is not zero.

Earlier we showed that, for the case of a mismodeled input matrix, corresponding to an
actuator failure, the residual covariance matrices are all equal. Thus, the covariance of the spectral

density estimate will be the same for any of the actuator failure hypotheses.

3.3 Hypothesis Testing Algorithm

In Section 3.2 we showed that the Kalman filter residuals within an MMAE structure are
normally distributed random vectors with known (and precomputable) steady state covariances, but
different means. Therefore, the residuals will have different distributions that are dependent on the
hypotheses of their internal models. The various hypotheses that were explored for this research are
defined by AH,, AB,,and 4®,. We will denote a set of these parameters as 0 and the parameter
space of all possible parameter variations as ©. A particular hypothesis is constructed by defining a

subset of the parameter space:

thB Eek (93)
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We also assume that the various hypotheses form a disjoint covering of the parameter space, so that

-8 U8 U.-Us, 94)

If we test h, versus ki, versus ... h,,, then we have a N-ary hypothesis test. If N=2 we have a binary
hypothesis test. The primary hypothesis, which is the assumed true hypothesis at the time of the test,
will be denoted k,,. The other hypotheses will be called the alternate hypotheses. Thus, a binary
hypothesis test is a test of the primary hypothesis, &,, versus the alternative hypothesis, #,. N-ary
hypothesis testing is an extension of binary hypothesis testing by simply making N-1 binary
hypothesis tests between the primary hypothesis, 4,, and the N-1 alternate hypotheses, 4, through
hy.;, to obtain the desired N-ary hypothesis test. This is sufficient because the covering in Eq (94) is
assumed to be disjoint. If each subspace 8, contains a single element (i.e. represents a single flight

control failure), then the hypothesis

h,:0e8, (95)

is called a simple hypothesis. If it contains more than one element, then it is called a composite
hypothesis. We will assume that the hypotheses we are researching are simple hypotheses (each
subspace contains only a single flight control failure hypothesis) and denote a particular hypothesis

as:

h,: 6=0, (96)

There are two types of errors that can occur when testing hypotheses. Type I errors, called
false alarms, occur when the alternate hypothesis is chosen when the true hypothesis is the primary

hypothesis. The probability that this type of error can occur is called either the probability of false
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alarm, denoted Py, or the size of the test, denoted «. Type II errors, called missed detection, occur
when the primary hypothesis is chosen when the true hypothesis is the alternate hypothesis. The
probability that this type of error can occur is called the probability of a miss. This probability is 1-
P, where Py, is the probability of detection, also called the power of the test.

Please note, the definitions for a false alarm and a missed detection that are used for
Neyman-Pearson hypothesis testing. Researchers in the failure identification field usually define a
false alarm as a declaration of a failure, when in fact one had not occurred, and a missed detection as
a declaration of no-failure, when in fact a failure had occurred. These definitions agree with the
Neyman-Pearson definitions above, if the current hypothesis is the no-failure hypothesis.
Disagreement occurs when a failure hypothesis is in force. For example, if the assumed primary
hypothesis is a failed elevator, and the hypothesis test declares a no-failure when in fact the elevator
failure remains true, the Neyman-Pearson definition would define this a false alarm but the usual
terminology would define this as a missed detection. We choose to use the Neyman-Pearson

definitions because they are defined, without ambiguity, by the design parameters Pg, and the Py

3.3.1 Standard Hypothesis Testing Algorithm. First, we will give an example

to demonstrate (he. conceptual basis of the Standard Hypothesis Testing Algorithm (SHTA), and then
we'll derive the specific equations of this algorithm. Let us assign Kalman filter 1 the fully functional
aircraft model, and Kalman filter 2 the left elevator failure model. Each of these filters would use the
commanded input and its internal model to compute an estimate of what the measurements should be.
Included in this computation is a statistical model of both the noise in these measurements and the
disturbances that drive the system dynamics. The Kalman filter algorithm uses these models to
calculate an expected value and covariance matrix of the measurement, before the actual

measurement is taken at a particular sample time. The actual measurement is then used to form the
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residual, which is the difference between the actual measurement and the computed prediction of that
measurement. If the aircraft has no failures, then the residual from filter 1, whose internal model
hypothesizes that there are no failures, would be much smaller, relative to its own internally
computed covariance, than the residual in filter 2.

The SHTA would use the information in the residuals from the filter bank to compute the
relative probabilities of each of the hypothesized models. The algorithm would assign the highest
probability to filter 1 since it has the smallest residual. Now, let us assume that a left elevator failure
occurs, thus the residual in filter 2 would become quite small and the residual in filter 1 would grow.
The hypothesis testing algorithm would then assign less probability to the hypothesis of filter 1 and

more to the hypothesis of filter 2.

3.3.1.1 Basic Equations. The Standard Hypothesis Testing Algorithm

(SHTA) simultaneously tests the residuals of the Kalman filter bank under multiple hypotheses. In
Section 3.2.4.1 we found that if the Kalman filter model matches the true system model, the residual
has a mean of zero, and in Section 3.2.3 we found that the residual will have a precomputable
covariance matrix, A,. Therefore, this Kalman filter residual is a white Gaussian sequence of mean

zero and covariance

o7

- T
A =HP HT.R,

Since we know that the residual is a Gaussian vector with zero mean and covariance A,, we substitute
these values into the known expression for a Gaussian conditional density function. Therefore we get
that the conditional density function of the measurement ( z ) at ¢, for the kth Kalman filter,

conditioned on the measurement history ( Z(t, ) =[z7(¢, ): - : 27(t, )7), is
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Lecpim. z¢q.y (Zil by Z; ) = Byexp (-}

1 1. T -1 98)
= d{-}={-- t)A )
e e ey {-3m A n) |
The scalar likelihood quotient will be defined as:
208 = 7y (1) A5 1 (1) 99)

If the RCKFB, developed in Section 3.2.6, is implemented with the Standard Hypothesis
Testing Algorithm (SHTA), we modify Eq (98) and Eq (99) to use the power spectral density
estimate from the RCKFB. Two versions of the power spectral density estimate were developed in
Section 3.2.6, each of which requires a slightly different modification to Eqs (98) and (99). The
periodogram version, Eq (71), produces a matrix of power spectral density estimates because it
included the cross power spectral density estimates between different elements of the residual. We
computed the mean of this estimate, Eq (88) with A (/) given by Eq (85), and then formed a vector
version of this matrix, Eq (89), to help in developing an expression for the covariance of the
estimate, Eq (91). We introduced a simpler, less accurate version of the power spectral density
estimate in Eq (72). This version produces a vector because it does not compute the cross power
spectral density estimate between the elements of the residual, so it provides a subset of the estimates
that are computed using Eq (71). The mean for this Fourier-transform-based version, can be
computed either by using the appropriate terms of Eq (88), or by using the computation of the mean
of the residual, developed in Section 3.2.4, in place of the residual in Eq (72). The covariance of the

estimate can be computed using the appropriate terms of the covariance matrix from Eq (91).
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Another method would be to take several samples of the power spectral density estimate, subtract the
mean from the samples, and estimate the covariance of the samples. Many software packages, such
as MATLAB, have an intrinsic sample covariance computation available, which makes this method
quite easy to implement.

In practice, the mean for the no-failure hypothesis is very small when compared to the mean
of the spectral density estimate for an actuator failure hypothesis. This is clearly seen in Figure §,
where the no-failure case has a mean of about 1, while the failed case has a mean of about 40. Since
the disparity between the hypotheses is so great, we choose to model the power spectral density
estimate as a zero-mean process with a covariance matrix that is assumed to be constant and
computed using 400 samples of the fully functional residual power spectral density estimate. We

evaluate ¥ (f;¢)at f=f,, where f; is the known frequency of the input. This gives us the modified

version of Eq (98):
Toimzey (Wllost) B Z; ) = B, exp -}
1 - 100
where B, = T and {-)={_%w:(fo;ti)A"wh(fo;ti)} ( )
(21! )m 12 ’A'IIIZ
and Eq (99) becomes:

At this point, the development of the SHTA for the Standard Kalman Filter Bank (SKFB), Eqs (98)
and (99), parallels the development of the SHTA for the RCKFB, Eqs (100) and (101). We present
modifications to the SHTA for the SKFB, with the understanding that the same development would
be used for the SHTA for the RCKFB, including the "B Stripping" modification discussed in Section

3.3.1.2, which may create numerical conditioning problems due to the high dimensionality of .
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We can use these equations as a relative measure of the accuracy of the Kalman filter model.
In Section 3.2.4 we found that if the Kalman filter model has some mismodeling errors, the mean of
the residual will be nonzero, and if the Kalman filter model is accurate, the mean of the residual is
zero. The Kalman filter that is most accurate will have a scalar likelihood quotient (the norm of the
residual, scaled by the inverse of the precomputed covariance matrix) that is smaller that the scalar
likelihood quotient from a Kalman filter with mismodeling errors. Thus, Eq (99) becomes a
quadratic penalty for any mismodeling in the Kalman filter model. Conversely, if we use the scalar
likelihood quotient as a negative exponent, as in the "dot” term of Eq (98), we will have an
exponential indicator of the accuracy of the Kalman filter model. Note that if the residual is larger
than expected due to modeling errors, the scalar likelihood quotient is large and the "dot” term will be
small. If the "dot" term is scaled by the §, term, we have a conditional probability density.

We define the conditional probability for a particular hypothesis as:

pk(ti)=prob{h=hk|Z(t,.):Zi} (102)

We can compute the conditional probability for a particular hypothesis by comparing the conditional
probability density for the current measurement, assuming that particular hypothesis, to the densities
associated with all the other hypotheses. The conditional probability of a specific hypothesis can be

shown [34] 1o be:

ey 1n. 2o (z;1 by Z; 1) b (8 1)

X (103)
Feaptn.zeyy il kp Zig) - pi(4y)
1

Pk(t,') =

Jj=

In this equation we use the prior conditional probabilities, p (1, ), to weigh the conditional

probabilities of the current measurements, assuming each hypothesis, and then normalize it over the
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complete set of such numerator terms. For failure identification applications, where we usually want
to choose the most likely hypothesis out of the set of possible hypotheses, we would choose the
hypothesis with the largest conditional probability. These conditional probabilities can also be used
to weight and blend the various hypotheses, depending on the particular application.

In practice, these conditional probabilities will fluctuate rapidly from one time sample to the
next. If the hypothesis testing algorithm is choosing the hypothesis with the highest conditional
probability, these fluctuations could cause momentary incorrect hypothesis declarations. To alleviate
this phenomenon, the conditional probability calculations are modified (as described in the next few
sections) and compared to a decision threshold. The decision threshold is defined such that a
hypothesis is chosen only if its conditional probability is greater than the threshold. The threshold is
set to avoid momentary incorrect hypothesis declarations while hopefully providing adequate
hypothesis testing performance. The performance is usually measures by the time it takes to detect
and declare the correct flight control failure for the failure identification application. Various

modifications to the conditional probabilities are explained below.

3.3.1.2 P Stripping. Stevens [43, 60] found that certain performance

problems could be reduced by modifying Eq (98). He altered the conditional density function in Eq
(98) by removing the B, term, which was used to make the area under the density function equal to 1.

Thus Eq (98) becomes:

Ph;.Z(q.x)(zi) =exp{-}
(104)
where {-} = { -%’kT(Ii)Ak—lrk(ti) }

where Py z¢q (% )is the unnormalized conditional probability of hypothesis k. Eq (103)

becomes:
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P zeq (2) Pt y)

X (105)
Yy PhJ,Z(:H) (z;) - pi(1 1)
j=1

pk(ti) =

If all the scalar likelihood quotients were approximately the same size for all elemental
filters, Eq (98) and Eq (103) would put the highest probability on the elemental filters with the

smallest |A,| value. This is an inappropriate weighting since the size of |A,| has nothing to do with

the correctness of the hypothesis in matching the current real-world failure status. Since sensor
failures exhibit themselves as a row of H going to zero, filters based on the hypothesis of a failed
sensor tend to have smaller |A,| values, and thus the MMAE will be prone to false alarms on sensor
failures.

Eq (104) and Eq (105) tunction properly with the B, term removed because the denominator
in Eq (105) is the sum of all possible numerators, so the probabilities (p,) will still sum to 1 even if
the area under each of the modified "densitics” of Eq (104), which are the densities of Eq (98) with

B, removed, is no longer unity.

3.3.1.3 Lower Bounding of the Conditional Probabilities.

Previous research [42, 43, 52, 60, 61] also found that a lower bound needed to be placed on the
probabilities. The purpose of the MMAE is to make quick and accurate failure identifications, and it
was found that if some of the probabilitics were allowed to get too small, it took a long time for the
probability in the correct filter to grow when a change in the failure status occurred. This was due to
the fact that the previous conditional probability, p,(t, ,), was so small for the new correct filter model
and so large for the old correct model, that Eq (105) had to be iterated several times before the values

would change significantly.
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This method was developed as an ad hoc was to allow for time varying model parameters. If
we assumed that the model parameters were not constant, we would need to set up a filter bank in
which each filter was based on a particular time history of the model parameters. This causes a
geometric growth of the filter bank. A number of researchers have pursued such MMAE designs, as
particularly with Markov process models for probability variations in time [13, 14, 32, 33], but some
means of pruning or merging branches in the resulting decision tree structure is needed to prevent the
impractical growth of the filter hank. T.ower hounding the conditional probabilities in Eq (105)
allows a change in model parameters (o be reflected in the conditional probabilities without such
dramatic bank growth. Menke (47, 48, 49] and Stratton [61] found that 0.001 was a good lower

bound on the conditional probabilities for an application using about ten elemental filters.

3.3.1.4 Filter Tuning. Previous experiments [19, 41] found that an incorrect

hypothesis may be momentarily chosen because the scalar likelihood quotients representing the
incorrect hypothesis may temporarily be smaller than the likelihood quotients from the correct
hypothesis. One cause of this phenomenon was the norm of A, for these incorrect hypotheses. These
hypotheses had smaller values for the norm of A,, and thus had smaller scalar likelihood quotients for
a given vector residual. As noted in Section 3.3.1.2, the norm of A, has nothing to do with the
correctness of the hypothesis, so these small norm values were causing momentary incorrect
hypothesis declarations.

This effect was corrected by tuning the Kalman filters that used the incorrect hypothesis
models. The tuning was accomplished by increasing the modeled value of measurcment noise, R,
which is called adding measurement pseudonoise. Adding the measurement pseudonoise changes the
Kalman filter gain so that when the state estimates are updated, the measurements are not weighted

as heavily as they were before the pseudonoise was added. This technique is especially appropriate if
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one of the scalar measurements is particularly noisy with respect to the other scalar measurements.
Another method of increasing the norm of A, is to increase the modeled value of the dynamic noise
covariance, @. This also changes the Kalman filter gain, but with this technique the measurements
are weighted more heavily then the predictions of those measurements based on the Kalman filter
model. If the filters are mistuned, the accuracy of the state estimates is much poorer than can be
achieved with better tuning of the Kalman filter gain values. The appropriate amount of pseudonoise

had to be found through extensive simulation to prevent performance degradation due to mistuning.

3.3.1.5 Smoothing of the Conditional Probabilities. The false alarm
rate in some previous research [42, 43, 52, 60, 61] was found to be too high in most simulation
examples. To decrease the false alarm rate, the conditional probabilities were averaged over several
time samples. A sct of N conditional probabilities was collected and then averaged using:

N-1
Y opi(y ) (106)

1
Pk(t~) =
JE N ;5

This average was then compared to the threshold and a hypothesis was chosen. This decreased the

effects of momentary false alarms, but it also delayed the hypothesis identification.

3.3.1.6 Exponential Penalty Increase. The SHTA was found to be much

slower in declaring the correct failure for certain failure hypotheses than for others. These failures
took much longer (o identify because the effects of the failure had to grow for some time before they
were disambiguated from other failure hypotheses. To remedy this, a scalar multiplier was

substituted into Eq (104) to get:

Phksz(‘l.l) (z;) =expl{-}  where {-}-= { - I‘rkT(t,.)A,,'lrk(t,.) } 107)
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Research [19, 41] has shown that by increasing the exponential penalty for an incorrect
hypothesis, that is increasing I' in Eq (107), caused the SHTA to choose the correct hypothesis
faster. However, the number of false alarms also increased when this penalty was increased. The

penalty needed to produce the desired performance had to be found through extensive simulation.

3.3.1.7 Propagating Several Time Samples before Updating.

Another approach to rectifying the problem presented in the last section is to propagate the state
estimate several time periods belore updating. Figure 10 shows graphically how this approach would
work with a scalar state estimate. Normally, the state estimates are updated at each time sample,
which moves the state estimate closer to the measurement, as shown in Figure 10. If the state
estimate is propagated without &pdate for several time samples, the distance between the state
estimate and the measurement will be much greater, if the hypothesized model used by the filter is
incorrect. This is clear in Figure 10 where the X, state estimate is propagated without update for
three iterations and the distance between H 2 (¢, ,)and z(1,,;) is much larger than the distance
between H £ (¢, ,) and z(1,,,). This will produce a larger residual , which produces a larger penalty
for mismodeling, thus helping to disambiguatc the hypotheses. Others [20] have rescarched this

approach.

3.3.2 Neyman-Pearson Based Hypothesis Testing Algorithm.

3.3.2.1 Basic Equations. In this section we will develop an alternative

hypothesis testing algorithm based on the Neyman-Pearson Lemma. We will first define a binary
hypothesis test and then present the Neyman-Pearson Lemma. Then we'll show that this alternative
hypothesis testing algorithm requires only a single Kalman filter residual, instead of a complete bank

of Kalman filters.
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Figure 10 - Comparison of Updated State Estimates with Nonupdated State Estimates.

A binary test of h,: 0 € O, (the parameter sct is in the parameter subspace 8,) versus h,: 0

€ 0, of aresidual would take the form

~ h reR

1
¢{r(t,«>}={0 .

1

o TEA (108)

This is read "the test function $(r) equals 1, and hypothesis 4, is accepted, if the residual lies in the
h, rejection region R. The test function equals zero, and hypothesis #, is accepted, if the residual lies
in the £, acceptance region A."

Considering the flight control failure detection application, our desire is to define the
acceptance and rejection regions such that the detection probability, Py, is maximized for a given

probability of false alarm, P.,. We can usually accept a certain rate of false alarms, but, it is
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essential not to miss detecting the failure with this particular application. There are, however, other
applications that might need to minimize the probability of a false alarm for a given detection
probability.

Now that we have defined the basic binary hypothesis test, we can introduce thé Neyman-
Pearson Lemma [53: 107]:
Neyman-Pearson I emma

Let ©={ 0,, 0, } and assume that r has a density or probability mass function, denoted fr).
The subscript denotes that the function exists over the whole parameler space ©. This function will
be subscripted with 6, or 0, to denote the function for a particular subset of the parameter space.

The test of the form

1, lffel(’)>kfeo(")
¢{r}= ¢, lffel(’)zkfeo(’)
0, 'ffel(") < kfeo(’) (109)

for some test threshold k > 0 and some 0 < { < 1, is the most powerful test (the test with the largest
Py) of size « > 0 (for a given Pp,) for testing fi,: 8 = 6, versus h,: 0 = 0,. These tests are unique
except perhaps on sets of probability zero under A, and /1,. When ¢ (r) = 1 we choose #,, and when

¢ (r) = 0 we choose h,. When ¢ (r) = { we select /i, with probability .

This lemma can be rewritten by defining the likelihood ratio as:

fo, (F)
I(r) =

Jo, (1) (110)
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so that the most powerful test of size « for testing k,: 6 = 0, versus k;: 6 = 0, is a likelihood ratio

test of the form

1, fl(ry>k
d{r)=13¢ I(r)y=k
0, ifl(r)<k (111)

If | (r) = k with probability zero, then ¢ = 0 and the threshold k, for a given size «, can be computed
from:

o =Peo[l(r)>k]= ffeo(l)dl
[ (112)

where fﬁo (1) is the density function of [ (r) under f,. The power of the test, Py, can be obtained
from:

Q =Py [fo()dl.
X (113)

We will now show that the likelihood ratio in Eq (110), which operates on a single residual,
is equivalent to a likelihood ratio that operates on two different residuals. First, we assume that the
density functions used in the likelihood ratio are conditioned on the measurement history Z(t, ). We
will compare two residuals from two different Kalman filters, r; and r,. The Kalman filter models
used in these filters use two different hypotheses that differ only in the control input matrix, output
matrix, or dynamics matrix. We will compare the two likelihood ratios to check for equality:

fal(’j) 2 fel(’j)
Jo,(r) ~ fo, (1))
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B, exp { ’—[ i~ Bz i |h1] A [ Bz 1){'1“"1]}
BoexP{ [* zey {7 'ho] 4y [ra- Bz (" "'o]}
, Proo {37 Bz prs)n ]TAI-I{'J’ 2.0 {7} n ]}

o {3 B oW AC [ B U] e

-—

)
}

For simplicity of notation, we are suppressing the time argument, ¢;, of the residuals. Examining Eq
(114), we note that the numerators and leading coefficients are equal. Thus the equality will hold if

and only if:
re - Bz o {re}ln 27 - Ezgy (T} s, (115)

We assume that the hypothesis, A, can consist of any of the modeling differences that we are
investigating, namely AB, AH, and A®. We substitute Eq (35) and Eq (36) into Eq (115) and

cancel terms to get:

Hp®pl (1) - EZ(:,A,){ek(ti'—l)} ] CHp Gpw () - vp(1)

«bT[ () - By {0} ] cHp Grwy(t, )+ ve(t)

- EIz(‘i'-l) - EZ(:,_, { lz(tx l)} = € (tx 1) - Z(‘x.x){ej(ti"l)}

(116)
We then expand these terms using the definition from Eq (23) to get:
[ x4 1)- 2, (1) ] - EZ(Q_I){xT(ti-l)'gk(ti’-l)}
TlrerChd- 2060 | - Bpgy sy {2r (-0}
xp(t 1) - £,(4) - Bz y{*r(t1)} « 2,04 )
Z xr(ti-l) - 'ej(li'_]) - EZ(t,_,){xT(ti-l)} * 'ej(ti'-l)
xp(t ) - Bz y{*r (1))} Y xp(41) - Bz y{*r(4.1)} 117)
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Therefore
fel(’j) _fol(’j)
foo(’k) feo(’j) (118)

Thus we can perform the hypothesis test using a single Kalman filter residual, testing it for multiple
hypotheses, and this is equivalent to performing the hypothesis test using multiple residuals, each

one tested for a single hypothesis.

3.3.2.2 Single Time Sample Hypothesis Testing. Now we can apply

the Neyman-Pearson hypothesis test to the residual of a Kalman filter. We need an estimate of the
residual covariance for a particular hypothesis, which we can precompute, as described in Section
3.2.1, by using a Kalman filter that uses the hypothesized system model. We will use the steady state
Kalman filter estimate of the residual covariance matrix, thus the residual covariance will be
considered constant. Note that the estimate for the residual covariance is not a function of the system
input matrix, B. Thus, if we only have modeling differences in the system input matrix, so only 4B
is nonzero, then the residual covariance matrix will be identical for each of the hypotheses. We will
develop the Neyman-Pearson based hypothesis testing algorithm for the case of 4B = 0, which is an
actuator failure for the flight control application. Later we will look at the case where the other
modeling differences are nonzero.

Under these assumptions, we have a Necyman-Pearson detector for "common covariances,
uncommon means” as developed by Scharf [53: 111]. We will develop the Neyman-Pearson detector
in the same manner as Scharf does, but we will first extend it to a single-time sample hypothesis test
using a multidimensional random variable (a single time sample of the residual). In Section 3.3.2.3,

we will extend the development to use several time samples of the residual.




We will start with a single time sample of a Kalman filter residual and design a binary test
using the Neyman-Pearson Lemma. We first need to compute the likelihood ratio. We've shown that
the residual is normally distributed with covariance A irrespective of the hypothesis that is currently
in force in the detection algorithm. These residual covariances, which we will denote A,, for the
various hypotheses are identical only if the modeling differences are limited to 4B # 0 and all other
differences (i.e., A® and AH) are zero. We will denote the mean of the residual given the past

measurement history and a particular hypothesis as

Ezeq {7 (1)} gy = my (1)
Bz {r (i)} Iy = me(2). (119)
Using Eq (110), the likelihood ratio is a ratio of two normal density functions, which becomes the

ratio or two exponential terms when the leading f§ terms are canceled. Thus the likelihood ratio

becomes:

1(r(t;)) = exp {-—;—[r(zi)—ml(ti)]TAk'llr(t‘.)-ml(Ii)]

, %[r(ti)-mo(t,.)]TAk‘l[r(ti)—mo(tl.)]}

H

exp {—%[r(ti)TAk']r(ti)-r(ti)TAk'lml(ti)-ml(ti)TAk'lr(ti)'ml(t'.)TAk‘lml(li)]

. —;—[r(ti)TAk'lr(ti)-r(ti)TAk'lmo(ti)—mo(ti)TAk"lr(tl.)»mo(tl.)TAk'lmo(tx.)]}

exp {%[r(t,.)TAk"ml(tl.)eml(t,.)TAk'lr(t,.)-ml(tl.)TAk'lml(tl.)

-r(tl.)TAk'lmo(ti)-mo(ti)TAk'lr(t,.)+mo(t,.)TAk'1m°(ti)]}. (120)

Note that each term within the exponential is a scalar and we can use one of the properties of the

covariance matrix A, to get:

83




(Ak-l y = Ak—l
r(t)) 4, ' m (1)) = ( r(t)) A4, 'm (1) )T = m ()74 r() = mi(2)TA4, r (1)

r () A my (1) = (1 () A mg (1) )T = mg(()T(A P (1) = my(1)7 4,7 1 (1) (121

Also, we can use the natural log of the likelihood ratio in place of the likelihood ratio because the

natural logarithm is a monotonic function. Therefore we get the log likelihood ratio:

L(’(ti)) = ]n{l(r(t,'))}

ml(ti)TAk'lr(t!.)—mo(tl.)TAk'lr(t'.)-%(ml(ti)TAk'lml(t,.)-mo(ti)TAk'lmo(t,.))

(ml(ti)-mo(ti))TAk'lr(ti)-%(ml(t‘.)—mo(t‘.))TAk'](ml(t‘.)omo(tl.))

H

s(1)-b(t)

where s(1,) = (my(1,)-my(1))7 4, r(1,)

and b(1;) = l(ml(ti)-mo(zi))TAk'](ml(ti)omo(ti))

2 (122)

We call s(z,) the signal and b(z,) the bias of the log likelihood function. One structure for
implementing Eq (122) is shown in Figure 11.

Rewriting the Neyman-Pearson Lemma to use the log likelihood function in Eq (122), we

get:

6 (ris) 1, L(r(4))>n =In(k)
r . =
{rea) 0, L(r(t))snm. (123)
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Figure 11 - Implementation of the Neyman-Pearson Based Hypothesis Test

Now we only need to compute the threshold 1 in order to define the Neyman-Pearson
hypothesis test algorithm completely. We first need to find the probability density function for the
test statistic L( r(#; )). We note the L is a linear transformation of r, therefore L is also normally
distributed and we necd only compute the mean and covariance to define the probability density
function. We'll start by computing the mean under both the primary and alternate hypotheses.

First we define:

d(t;) - m(t,) - mg(t,)

so that the test statistic becomes:

L(r(t)) d(tl.)TAk'lr(ti)~%d(ti)TAk'l(ml(ti).m“(ti))

s(4;)-b(1;). (124)

Now we compute the mean of the test statistic, given that the primary hypothesis is in force:
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By n{L(r} 1y, = d(t,) A By ({r(1)) lho--;—d(tl)TAk'l(ml(ti)+m°(ti))

=d(t)4 'lmo(t) .1(: YA m(1,) -—d(t YA my (1))

% d () A7 (mg()-my(2)) = % d(t)fa d ()= -%D(t,.)

1

where D(z; ) will be called the hypothesis discrimination measure.

(125)

Likewise, we compute the mean of the test statistic given that the alternative hypothesis is in

force:

By p{L(re)) 1y = 4 A Ep 3 {r(1)) |h‘—%d(ti)TAk'l(ml(t,.)'mo(ti))

0]

d(t,Y A m(2)- = d(t)A m(t)——d(t)Ak my(t,)

d(t) A td(1,) - %D(ti).

% d(t,.)TAk'l(ml(ti)-mo(ti)) -

ISEES

Now to compute the conditional covariance of the test statistic under either hypothesis:

(126)

cov 20, {L(r (1Y} = Egey S{LCrU )L (r ()Y }-Epey (L (r (4,0} Ezq H{L (r (1))

{
Bz p{[s () -DCD)} - [z s { s -D (1) }]?
Bz p{s (10725 ()b (1) b (1)) - (B¢, s {s (1)} -b(1)]?
Bz {5 (47} 2 B2 {5 (1)} b (1) b (1)

- [Bzep{s (10} -2 Bz y {s (1)} B (1) b (1)
= Bz {s 0} Bz {5 (0}

Now use Eq (124) to get:
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v 204 ) {L (P ()} = Bz {5 (107} - Bz {10}
= By o404 r ()]} - Brg {4007 4 r (1p])
= Bz {40074 r() ] [2 (T4 r (1]
- By p{[400T A7 ()]} Ep o {[4 G447 r (]
= d (YA, By, S{r(e)r () )4 d (1)

() AT Ep g oy {r (0} Ezqy p{r (17 }47 (1)

"

d (1) A g o {r (07 ()T} -Brey y{r G0} Bpq {r (e} 41 d (1)

d(t)ata,a.1d(e)

i

i

()4, d(1)=D(1). (128)

We assumed that the residual correlation matrix was identical for each of the hypotheses
when we formed the likelihood ratio in Eq (120). This occurs when we only allow differences in the
control input matrix (B), which corresponds to actuator failures for flight control failure
identification applications. We noted earlier, that model differences in the output matrix (H) and
state transition matrix (®) will produce different residual correlation matrices. We will now look at
the case where we are modeling a flight control sensor failure.

A flight control sensor failure is modeled by zeroing a row of the output matrix that
corresponds to the particular failed sensor. Thus, the element of the vector H x(¢;") that corresponds
to the failed sensor will be zero. Therefore, this element of the residual vector will primarify affect
the row and column of the residual covariance matrix that corresponds to the failed sensor and the
other elements of the covariance matrix may be slightly affected. It has been observed that the row
and column of the residual covariance matrix that correspond to the failed sensor increase

significantly, which is appropriate since this indicates that the Kalman filter algorithm based on such
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a residual covariance matrix will not rely on the failed sensor measurement as much as it did before
the failure. One approach to detecting flight control sensor failures would be to conduct a Neyman-
Pearson hypothesis test, assuming that the residual correlation matrices are equal to the computed
residual correlation matrix for the sensor failure (and correspondingly for the element of H x(¢,)
corresponding to the failed sensor to be set to zero) This approach will work well if the effect of the
change in mean of the residual is much more significant than the effect of the difference between the
correlation matrices. A similar argument can be made for some mismodeling in the state transition
matrix. Therefore, we are assuming that the state estimates are large enough to produce a significant
change in the residual mean and that the residual correlation matrices are approximately equal when
we conduct a hypothesis test for a sensor failure, which is tantamount to assuming that the residual
mean effects will dominate the effects of differing correlation matrices.

To summarize, we know that the test statistic is normally distributed as follows:

D (1,)
hO:L(r(ti))~N —T,D(ti)J
hy:L{r(t))~N b D( )I
: r(t)) ~ _— ).
1 ( 1) 2 i (129)

We substitute this into the known density function for a normal distribution, which can then be used

to compute the threshold 7 for a given Pp,. Using the definition given in Eq (110), we get:

. (x D(z.»))’ . .
1 1 T 1 y
e =P, =f——— _exp|—>—"—[dx = —————exp{-——}dy
FA {(2::1)(:,.))"2 2 D(1) { (27)2 2
2 -
D(fi)lﬂ
+D(t‘)
=1-y 2| -1-v(g)
12 :
D(1,) (130)
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where

D(¢t) g
i 1 x?
g=—"71 v(g)= '—-——CXP{-——-}dx v(-g) 1-v(g).
D (1)"? £ (27 )2 2 (131)
Similarly, we can compute the P
by \? .
o« 1 1 x-———2 ; 1 {y2}dy
Po=f———exp |- — T = —————— exp {-=—
P { (27D (1, 2 D(t) {m (2%)"? 2
3
‘D(t,)”2
Dy
=l-y| —2| = 1-v(g-D(1)"?).
D (1) (132)

For most applications, the designer would set Py, and P, to achieve the desired hypothesis
testing performance, and that would dictate a unique hypothesis discrimination measure, D (7, ),
needed to achieve the P, and P,,. However, this does not give us a unique d (1) needed to achieve
the discrimination measure, even for a given A,”'. Let's assume that one of the hypotheses, say #,, is
correct, so that m(t;) = 0. This gives us d (1;) = m(1;), which we can use, along with the
precomputable A4, to get a class of residual means that would achieve the desired discrimination
measure. In practice, we would choose a system input, compute the residual mean, and compute the
discrimination measure to see it achieves the desired value. If it doesn't, we iterate on the input until
the desired discrimination measure is achieved.

The process for computing the required D (¢, ) is summarized at the end of the next section.
Unfortunately, for the flight control application that we have been considering, a single time sample
of the residual will not produce enough distinguishability between two hypotheses. We therefore will

look at using multiple samples of the residual to perform the hypothesis testing.
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3.3.2.3 Multiple Time Samples Hypothesis Testing. We propose

simply to sum several time samples of the log likelihood test statistic when the hypothesis
discrimination is too small to attain the desired hypothesis testing performance. Therefore, let

N-1

Lr(1)) = Y, L(r(t. D))

n=0 (133)
We now need to compute the mean of this new test statistic under each hypothesis. To compute the
conditional mean of this test statistic, we will use the conditional mean of each of the terms in the
summation of Eq (133), conditioned on the measurement history up to the last measurement before
the log likelihood test statistic, L(r(¢; ), is computed. This will allow us to compute the log
likelihood test statistic at each time sample, and add it to a running sum of previous log likelihood
test statistics, which is precisely what we want to implement in real time. To denote the different

conditional means on each of the log likelihood test statistics, we will define:

N-1
Bre {200} = B B, o 10 0))

= Bz LU}« Epe ({LGr )} =0 By S {LCr Uy} (g3

With this notation, we get:

N-1 N-1
Ezqu p {Lr(tN}y, - Eo Erty{ LD}y = X (-5)P (4
n= n=0
lN-l
N-1

N-1
Bt {2 UMYy = X Ep 5{ L D}, =
n=0

I
—

N |-

N-1
Y D(y,).
n=0 (135)

90




Now to compute the conditional covariance of this test statistic. As we did above, we will
condition the expectation operator on the measurement history up to the latest data sample in the

summation that we are operating on. Therefore:

cov 20 {2} = Bz (LD} - [ Bz h{2(r (e} ] (136)

Since we are developing a recursive relationship of L(r(¢;)) that is based on the previous values, we

will separate the sum as fallmws;:

covz(t‘_z){sf(r(ti))} = EZ(“)

ey

(N-1 2
> L(r(t,-_,,))] -

n=0

N-1 2
Ez(l‘“){,.z.:o L('(‘i-,.))} ]

Z(4. 3)

———

N-1 2
L(r(g;))« Y L(r(t,-_,))J

a=1

n=1

N-1 2
E2<q.z>{’“('(’.~)) ) L(r(ti.,.))}] : w5

Expanding this relationship we get:

CWZ(:,_Z){SE('(‘i))}

N-1
= EZ(Q_Z){L(’(II‘))Z’ 2L(r ()Y L(r(t, )+

n=1

N-1 2
> L(’(t,-,.))]

n=1

N-1 2
Ez(tl_z){L(r(t,-))}*Ez(t‘_z){z L(r(t,._n))H
h n=1

N-1
= Bz H{L(r (1)) %) 2Ez(.‘_z){L(r(:,>)E L(r(ri_,,n}
n=1

N-1 2
*EZ(Q_z){{"gl L(r(ti~n))] }- [Ez(t,_z){L(’(t,-))}] 2

- 2EZ(1“_E){L(r(ti))}

N-1
EZ(Q.E){EI L(’(‘i-n))}

N-1 2
Ezm.z){-?:_:l L(’(‘i-n))}]
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eV 204, ) {2 (r (1))}

- [Ezc:..z>{1‘(’(‘i))2}‘(EZ(4.5){L(’(‘i))}) 2]

N-1 N-1
+2 Ez(tl_z){L(r(ti))E L(r(ti_n))}~Ez(“_z){L(r(t,.))}Ez(t‘_E){ngl L(r(:i_n))H

n=1

N-1 2 N-1 2
Eztam Z L(r(s. n))} _(EZ(Q.E){E L(r(ti-n))})
n=1

[N—l

N

. N
‘\‘,’_,,/IJ

—~

XNy
L, *

OVZ(Q_E){ﬁ:\’\‘i))} = ‘“VZ(Q_E){I‘\’(‘i))} . LUVZ(Q.Z)I
-1

N-1

+ 2covz(t‘_z){L(r(t,~)), E L(r(t_,))

n=1

——

(138)

If we assume that the first two terms of Eq (138) dominate the third term, so that:

N-1
ca"z(z‘_n){L('('i))} . covz(ti‘}:){gl L(r(ti_n))}

N-1
» 2covz(t‘.z){L(r(t,.)), E L(r(t,._"))}

n=1

(139)

then, using this approximation, we get:

n

N-1
cavz(t’_x){iﬁ(r(tl.))} covz(“_z){L(r(tl.))} T { L{r(4 )

¥
MZ
h
"\
3
v
———t

= ey p{E(r ()} v covyqy oy

bd

N-1
D(1;)+ covz(‘l_x){z L(r(ti_"))} a0
n=1

Since this holds for any N, we use this repeatedly to get:
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cavz(t‘_l){SE(r(t'.))}: D(t)+ w"Z(t‘_z){L(’(ti-l))}""""’VZ(Q_N){L(’(‘LN.]))}

= D(ti) + D(ti_l)fme(li_N'l)

N-1

= Y D(1_,).
n=0 (141)

Thus we can approximate the covariance of the test étatistic by recursively adding the covariances at
each time sample. We will define the discrimination measure for the test statistic, HAr(t, )), as:
N-1
A(t) =Y D(t.,).
nx0 (142)
We have now characterized the test statistic, Ar(t; )), proposed in Eq (133) by defining the
mean of the test statistic, Eq (135), under both the primary and alternative hypotheses, and an
approximation of the covariance of the test statistic, Eq (142). These equations were defined for a
given number of data samples, N, but what defines the required number of data samples? We will
now address this question.
The performance of the hypothesis test is defined by the probability of false alarms, Pp,, and
the probability of detection, Py,. If we can compute the inverse of the y function defined in Eq (131),
then we can compute the test threshold and the desired discrimination measure. We will denote the
desired discrimination measure as A, and call it the trigger discrimination measure for reasons
which will become clear shortly, We will denote the test threshold as 7, as before, and the inverse of
the y function as y™'. We will begin the computation of the test threshold and trigger discrimination

measure by using:

AT
P, -1 ET
FA- 1Y s 1-v(e)
T
-1
~ g =7 (1-Pg) (143)
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and

Ar
2 1/2
Pp=1-y i =l-y(g-477)
T
1”2 -1
—~g-Ar" =y (1-Pp). (144)

Subtracting Eq (144) from Eq (143), we get:
g_(g_ATIIZ) - AT1/2 : Y-l(l ‘PFA)‘ Y—l(l ‘PD)
~ Ar=[v(1-Pe) - v (1B (145)

The test threshold can be computed using the definition of g :

AT
T\'T
g:
Va7
-~ n = /A, Y“(I-PFA)-ﬁ~
2 (146)

Some software packages (such as MATLAB) do not have the inverse of the y function
available, but they usually have an inverse error function available. We will extend the usual
development [53: 114-115], Eqs (143) Lhrohgh (146), to the case where we do not have the inverse

of the y function available We can use the following relations

l-erf(y)-efc(y)- —;_;fCXP(-tz)dt -2y(V2y)
Yy
erfinv (x) =y = x=ef(y) (147)

to compute the trigger discrimination measure and the test threshold.
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First, we compute the test threshold using:

let n =2y = y-=

Sl

——

~ 2y(n)=2y(2y)=2Py, = 1-af ()

M
- e;f(%) =1-2P,, - e;ﬁnv(l_zpm)=E
-~ 1 = ﬁerﬁnv(l—ZPFA). (148)
Then we can compute the trigger discrimination measure using:
let n-Ap=y2y = y= 20T
r V2
~ 2y(n-Ap)=2v(y2y) = 2P = 1-af(y)
- A - A
- oar | 22T s 1lap, = e;ﬁnv(l-zPD):"—l
V2 V2
~ Ap =M -y2 afiv (1-2Py). (149)

Now we can summarize the binary hypothesis testing algorithm that uses this new test

statistic.

Step_1 - First, we would initialize the test statistic and the discrimination measure using:
L(r(t))=0

Step 2 - Then, at each time interval we would compute the following:
m,(t, ) and m,(t; ) defined in Eq (119), using Eq (40) and Eq (41),

d(t;) and L( r(; ) ) using Eq (124) and the unnumbered equation above it,
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D@, )=d(, ) At d(,),

Lr@))=Lr@,)) + L. ,))

and A(t,) = D(t, )+ A(t, ;).

Step 3 - We would then compare A(f; ) to A, as follows:

Step 3a - If A(r;) < A, then a hypothesis test is not performed for this time iteration.

Step 3b - If A(z;) > A, then a hypothesis test is triggered (hence the name trigger
discrimination measure) by comparing & (r(z; ) ) to 1 as follows:
Step3b-1-H &(r(t;))>n, choose i, (h, becomes the primary hypothesis) and reset

the test statistic and discrimination measure using:
L(r(e))=0

A(1)=0. (151)

Step 3b -2 - If &L(r(; ) ) < n, choose h, (11, remains the primary hypothesis) and reset

the test statistic and discrimination measure using Eq (151).

This algorithm performs a binary hypothesis test, but it can be extended to any N-ary test by
using the algorithm against several alternative hypotheses. We start by defining the mean of the

residual given a specific alternative hypothesis as:

Ezqp{r () Iy = mi(1) (152)

where k denotes the specific alternative hypothesis. We will define &, (r(¢; ) ) as the test statistic and

A,(t;) as the discrimination measure for the k¥ hypothesis. Note that all of the alternative hypothesis
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tests are run in parallel, so all of the test statistics and discrimination measures are computed in
parallel (not sequentially) with those of the other hypotheses.

Step 1 - We initialize these measures for each of the alternative hypotheses:

@ (r(1,))=0
vk

A (1) =0 (153)
Step 2 - At each time interval we compute m,(t,), defined in Eq (152), using Eq (40) and Eq (41), and
then perform all of the following computations for all of the alternative hypotheses:

d (1) =m.(¢t,) - my(1)

L(r (1)) =d, (1) a7 r(1,)- %dk(z,.)TA,;‘(mk(t,.),mo(z,.))

D, (1) = d, (1) 4,4, (1) [V
Le(r (1)) = Lp(r (1)) « L (r (1))
A, (1) = Dy(1) + Au(4 ) ) (154)

Initially, we will include all of the alternative hypotheses in a list of viable primary
hypotheses. We will now start 1o remove alternative hypotheses that are not viable at this
particular data sample.

Step 3 - First, we remove the alternative hypotheses that cannot be discriminated from the primary
hypothesis from the list of viable primary hypotheses. For each of the alternative
hypotheses, k, we would compare A, (¢; ) to A, as follows:

Step 3a-If A, (r; ) < A, then a viable hypothesis test cannot be performed at this time
iteration for this alternative hypothesis, so we remove this alternative hypothesis from

the list of viable primary hypotheses.
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Step 3b-If A, (¢;) > A4, then a viable hypothesis test can be performed at this time
iteration, so we keep the alternative hypothesis & on the list of viable primary
hypotheses.

Step 4 - Now we perform a hypothesis test between the current primary hypothesis and all of the
alternative hypotheses left on the viable primary hypothesis list. For each of the alternative
hypotheses left on the list of viable primary hypotheses, we perform a hypothesis test by
comparing &, (r(z, ) ) to n as follows:

Step 4a - If &, (r(1;) ) < n, the alternative hypothesis is removed from the list of viable
primary hypotheses and its test statistic and discrimination measure are reset, only for
this particular alternative hypothesis. Note that the alternative hypotheses that were
removed {rom the list of viable primary hypotheses did not trigger a hypothesis test, so
we do not reset their test statistic and discrimination measure.

Step 4b - If &, (r(1;) ) > 1, keep the alternative hypothesis on the list of viable primary
hypotheses.

Step 5 - We now have two possible cases, either the list of viable primary hypotheses still has one or
more entries, or it does not.

Step Sa - If the list of viable primary hypotheses is empty, then the current primary
hypothesis is still in effect.

Step 5b - If the list of viable primary hypotheses is not empty, then we choose the hypothesis
that has the largest test statistic and reset all of the test statistics and discrimination
measures using:

g, (r(t))=0
vV k.

A(2) =0 (155)
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Step 4a allows the other alternative hypotheses to trigger the hypothesis test at the
appropriate number of iterations to provide the desired hypothesis testing performance. Thus, the
hypotheses that have discrimination measures that grow faster because they are easily distinguished
from the primary hypothesis would be tested before the less easily distinguished hypotheses.

For example, let the primary hypothesis be a no flight control failure and two alternative
hypotheses a left and right aileron failure. If the right aileron failure hypothesis discrimination
measure grew faster than the left aileron failure hypothesis discrimination, a no failure hypothesis
versus a right aileron failure hypothesis test would be triggered before the no failure vs. left aileron
failure hypothesis test. Once the test is triggered, if the no failure hypothesis is chosen, then the test
discrimination measure for the right aileron failure hypothesis is reset. The test discrimination
measure for the left aileron failure hypothesis is not reset so it will continue to grow until a no failure
vs. left aileron failure hypothesis test is triggered. Note that if the left aileron failure hypothesis
discrimination measure were reset in this case, a no failure vs. lefl aileron failure hypothesis test
would never be triggered. If the no failure vs. right aileron failure hypothesis test is triggered and the
alternative hypothesis (right aileron failure) is chosen, then all of the test measures and hypothesis
discrimination measures are reset because we would have a new primary hypothesis against which we
will test the alternative hypotheses.

Note that this is not truly, an optimal failure hypothesis testing structure because we are only
testing the primary hypothesis against the alternative hypotheses, and we are not testing any
alternative hypotheses against each other. In the example above, we are not testing the left vs. right
aileron failures. This could artificially boost the likelihood of an incorrect hypothesis in the event of

a missed detection. For example, if a no-failure vs. right aileron hypothesis test is triggered, and a
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right aileron failure is mistakenly missed, then the left aileron failure discrimination measure is not
reset and most likely will reach its discrimination trigger before the right aileron failure
discrimination measure (which was reset after the test was conducted) reaches its trigger. If there
happens to be ambiguity between the two hypotheses (right vs. left aileron failure), the right aileron
vs. no-failure hypothesis test will likely choose the incorrect hypothesis (the right aileron failure).
This occurs because we are not tracking the discrimination between the alternative hypotheses, which
would require K(K-1) (where K is the number of hypotheses) different hypothesis triggers,
discrimination measures, and tests. If it is known that certain alternate hypotheses have ambiguity
problems, the probability of missed detection (1-Pp,) for those hypotheses could be set lower than the
other hypotheses to decrease the probability of this type of problem.

The timing of the failure could influence the amount of time needed to identify the failure,
Ideally, if the failure occurs right when the test discrimination measure is started, this algorithm will
trigger a hypothesis test just at the time when the hypothesis is distinguishable from the primary

hypothesis, say M time samples after the failure. However, if the failure occurred after the test

discrimination measure has already started, the discrimination measure will trigger a test before the
two hypotheses are truly distinguishable, so it is quite possible for the algorithm to miss the failure
detection at this first test, but it should pick up the failure M time samples later. Thus, the worst case

delay in the failure detection of this algorithm would be 2M-1.

3.4 Chapter Summary

We have established the theoretical and algorithmic contributions of this research in this
chapter. We started by presenting the Kalman filter equations and laid out the nomenclature that we
use to represent the mismodeling in the models that are used to develop the Kalman filter equations.
The specific mismodeling cases that we represented are a mismodeled input matrix, output matrix,
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and state transition matrix. We developed expressions for the mean and covariance of the residual
for any of these three types of mismodeling, and showed how the expressions reduced for specific
cases of mismodeling. In Section 3.2.5 we developed an equivalent structure to the Standard Kalman
Filter Bank (SKFB) that uses the residual and state estimates from a single Kalman filter, to compute
the equivalent residuals of all other Kalman filters with known model differences, which would
usually be implemented in an MMAE algorithm. We developed a Residual Correlation Kalman
Filter Bank (RCKFB) in Section 3.2.6, that estimates the power spectral density of the residuals and
feeds this to the hypothesis testing algorithm, motivated by the idea that this structure would exploit
the known characteristics of the correlation of the residual 1o identify failures. Section 3.3.1 defined
the Standard Hypothesis Testing Algorithm (SHTA) and described several of the modifications that
have been researched. We developed a Neyman-Pearson based Hypothesis Testing Algorithm
(NPHTA) in Section 3.3.2, where we extended the usual single time sample, binary hypothesis test
formulation, to multiple time sample, multiple hypothesis testing. These developments suggest an
algorithm architecture of an "MMAE-like" algorithm, but with the many elemental filters and
residuals of a usual MMAE replaced by one filter, lincar transformations (optimized "matched
filters") and equivalent residuals. An eventually implemented system might be composed of an
algorithm structure based on wither the SKFB or RCKFB (or both), possibly using equivalent
residuals rather than actual residuals, and perhaps using the NPHTA rather than the SHTA. The
next chapter applies these various algorithms to a specific sensor/actuator failure detection problem

to assess relative strengths of the various configurations.
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IV. Results

4.1 Chapter Overview

In this chapter we present the results of our research. In Section 4.2, we verify our
development of an expression for the mean of the residual (Eq (40) and Eq (41) from Section 3.2.4)

and the covariance of the residual (Eq (34) from Section 3.2.3). We present a graphical comparison

of the time history of the predicted mean and covariance for each element of a residual along with a
single sample of a residual from a Kalman filter. A more detailed comparison of the mean and
covariance of the residual is made by temporally averaging five samples of the residual and then
ensemble averaging these temporal averages, and ensemble averaging 10 samples of the residual and
temporally averaging these ensemble (sample) averages. These empirically computed statistics are
compared to the predicted values of the mean and covariance. This comparison is made for the
specific cases of no mismodeling in the Kalman filter model, a mismodeled input control matrix
(actuator failure), and a mismodeled output matrix (sensor failure). Time limitations prevented the
computation of results for the mismodeled state transition matrix test case. The development of
equivalent residuals, presented in Section 3.2.5, is verified in Section 4.3. We compare the residuals
from a bank of several Kalman filters with the equivalent residuals that are computed using a single
Kalman filter residual and known model differences between the Kalman filters. The comparisén is
made for the same specific cases of mismodeling that were presented in Section 4.2. These results
suggest a new filter bank architecture that replaces the many filters and residuals with a single

Kalman filter, several linear transforms, and equivalent residuals.
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Section 4.4 is a comparison of the failure identification performance of the three different
MMAE structures that were developed: Standard Kalman Filter Bank (SKFB) with a Standard
Hypothesis Testing Algorithm (SHTA), Residual Correlation Kalman Filter Bank (RCKFB) with a
SHTA, and SKFB with a Neyman-Pearson Hypothesis Testing Algorithm (NPHTA). Time
limitations prevented the development and testing of a fourth configuration, namely a RCKFB with
NPHTA. The testing of the failure identification performance was accomplished for various actuator
failures, which were modeled by a column of the control input matrix heing set to zero. Previous
research [19, 31, 41] has shown that these were the most difficult failure modes to identify for this
particular aircraft, so we chose to test the performance for these failures to be able to characterize the
worst case performance of these various structures. The comparison of these different architectures
suggests an algorithm structure that uses both the SKFB and RCKFB, perhaps with equivalent
residuals instead of the actual residuals, using « NPHTA for the best failure identification

performance.

4.2 Characterization of the Residual

In Section 3.3, we developed a recursive algorithm for estimating the mean and covariance of
the Kalman filter residuals under various forms of hypothesized mismodeling. We present a
comparison of these estimates with actual Kalman filter residuals. The comparisons are presented
for three hypotheses: no mismodeling, an input control matrix mismodeling (4B # 0), and an output
matrix mismodeling (4H # 0). For the flight control failure identification application, these
hypotheses correspond to no flight control failure, an actuator failure, and a sensor failure,
respectively.

The application that we used to test the theory developed in this dissertation consisted of a
bank of 16 Kalman filters, each modeling a different hypothesis (1 no failure, 6 actuator failures, and
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9 sensor failures). The complete set of results for this section would require us to present 256 test
cases, 16 Kalman filter residuals for each of the 16 hypotheses. Therefore, we will present
representative results to show the accuracy of the estimates of a Kalman filter residual for the three
cases of mismodeling.

The plots presented below show each of the scalar elements of a single sample of the 9-
element residual in a separate plot. The elements are shown as a function of time, with the

simulation time being § seconds. The covariance of the residual is precomputed using Scction 2.2.2.

For each element of the residual, we superimpose on the plot of the single sample of the residual
process, the computed mean, the computed mean plus the square root of the computed variance
(corresponding to one computed standard deviation for the residual element), and the computed mean
minus one standard deviation. Since the residual is assumed to be Gaussian, we would expect that
about 68% of the time samples of the residual would lie within the plotted mean + one standard
deviation bounds. Thus, we can visually compare the residual with its computed mean and
covariance.

A more detailed analysis of the residual characteristics is accomplished by comparing
various empirical statistics to the computed mean and covariance. First, we computed the temporal
average (ergodic approximation of the mean) and the temporally-computed standard deviation of
each of five realizations of the residual process. Then we averaged these temporal averages to get the
ensemble-temporal average of the mean and standard deviation. Next, we computed the ensemble
(sample) average of 10 realizations of the residual process, which gave us a time history average of

both the mean and standard deviation. These ensemble (sample) averages were averaged temporally

to obtain the temporal-ensemble averages. These two types of averages are compared (o the

predicted mean and standard deviation.




We chose to examine the residual vector from the Kalman filter that models a fully

functional aircraft (no flight control failures). The true system model assumes a fully functional
aircraft for the first second of simulation, followed by a specific single flight control failure. Thus,
for the first second of simulation, the chosen Kalman filter has no mismodeling, after which a
specific mismodeling occurs, which will be the difference between the fully functional aircraft model
and the actual flight control failure model. We will look at specific cases of mismodeling in the

following sections.

4.2.1 No Mismodeling (No Failure). We start by comparing the residual from

the Kalman filter that models a fully functional aircraft (no flight control actuator or sensor failures)
where the model is accurate throughout the simulation time. The mean and covariance were
computed using Eq (40) and Eq (41) with AB=0, AH=0, and A®=0. The results for this specific
case of mismodeling were developed in Section 3.2.4.1, where we found that the residual should be
zero-mean for all time. Figure 12 shows that the residual is zero-mean throughout the simulation and
approximately 68% of the time samples are within the computed standard deviation bounds.

To facilitate a more accurate comparison of the residual with its computed characteristics,
we present, in Table 1, the computed the mean and standard deviation of the scalar components, the
ensemble-temporal averages, and the terﬁporal-ensemble averages. The computed standard deviation
of each element was calculated by computing the diagonal elements of the matrix square root of the
computed covariance matrix (which was shown to be time invariant).

These results clearly indicate that the residual was well characterized for the case of no
mismodeling in the Kalman filter model. Note that these averages (computed using both methods)

may differ because of the different number samples used for each. Also, these averages are
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Figure 12. Residual and Computed Residual Mean and Standard Deviation of the
Fully Functional Kalman Filter with No Mismodeling
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Kalman Filter Residual Statistical Comparison when No Mismodeling Exists.

Table 1

Residual Computed | Ensemble | Temporal || Computed | Ensemble | Temporal
Element Average | Temporal | Ensemble o Temporal | Ensemble
Average Average o 0
Forward Velocity 0 -1.34E-1 |-224E-1 {3.00 297 2.96

Angle of Attack 0 370E-3 |-804E4 [[296E-2 |295E-2 |[295E-2
Pitch Rate 0 409E4 |465E-3 |355E-2 |353E-2 |350E-2
Pitch Angle 0 576E-4 |380E-5 |[[292E-3 |287E-3 |297E-3
Sideslip Angle 0 -3.64E-3 | -651E-3 [[144E-1 1.44 E-1 142 E-1
Roll Rate 0 -230E4 |-175E-3 |[|346E-2 |341E-2 |348E-2
Roll Angle 0 -1.62E-5 {-7.12E-5 [|394E-3 |380E-3 |399E3
Yaw Rate 0 967E-5 |[566E4 |[532E2 |S5S57E2 |540E-2
Yaw Angle 0 -581E-5 |-534E-5 [|322E-3 |[3.12E-3 |320E-3

dominated significantly by the standard deviation values, as we would expect from the computed

mean (i.e., zero) and standard deviations.

4.2.2 Mismodeled Input Control Matrix (Actuator Failure). We now

compare the residual from the Kalman filter that uses a fully functional aircraft model to the

computed mean and covariance assuming that the control input matrix is mismodeled starting at 1

second into the simulation. This situation corresponds to an actuator failure occurring at 1 second.

We will look at an elevator actuator failure, an aileron actuator failure, and a rudder actuator failure.
Similar results were obtained using the Kalman filter that incorrectly modeled the failure status from
the start of simulation to 1 second, and then correctly modeled the failure status from then to the end
of the simulation. An example of this case, where the filter model is based on a left elevator failure

and the left elevator failure occurs at 1 second, is shown later in Figure 21, which shows that the
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residual initially is not zero-mean, but eventually, after the failure occurs, becomes zero-mean. For

all of these cases, the mean of the residual was computed using Eq (40) and Eq (41) and the expected
covariance was developed in Section 3.2.3. In Section 3.2.4.2 we found that AB+0 results in a
residual mean that has components of the control input, including purposeful dithers that are put into
the input to enhance failure identification. The inputs that were used for this research are shown in
Figure 13.

The results for the elevator failure case, are graphically shown in Figure 14. For this case we
have no mismodeling up to 1 second in the simulation, then mismodeling occurs in the column of the
control input matrix that corresponds to an elevator, a left elevator in this case. The left elevator
input is quite evident in the residual, particularly in the pitch rate and pitch angle where there is a
significant change in scale. Also the forward velocity and angle of attack show a slight change in
mean corresponding to the left elevator input. The other elements of the residual do not show the left
elevator input because the aircraft model assumes there is no cross-coupling between the pitch axis
and the other (lateral-directional) axes.

* These are precisely the results that we expected. If an elevator actuator failed, then the
aircraft will not respond to the elevator input. The Kalman filter with the model based on a fully
functional aircraft, would predict the measurements based on the aircraft responding to the elevator
input. Since the aircraft is not responding to this input, the difference between the Kalman filter's
prediction of the measurements and the actual measurements (the residual) would show the aircraft
response. For this particular case, a sinusoidal elevator input would case a change in the pitch rate,
pitch angle, angle of attack, and forward velocity. Since the fully functional Kalman filter would
predict these responses, but the aircraft is actually not responding to this elevator input, the

difference between the filter's prediction and the actual measurements would show this expected
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Figure 14. Residual and Computed Residual Mean and Standard Deviation of the
Fully Functional Kalman Filter with a Mismodeled Elevator Input.
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response to the elevator input. This is precisely what we found in Figure 14. Similar results were
obtained for a right elevator failure.
To facilitate further analysis, we computed the bias-compensated residual by differencing the

computed mean and the value of the realization of the residual process for each time sample:

E(e) = me(e) - r (1) (156)

where m (t,) is the computed residual mean. If the computed residual mean accurately represents the
residual mean, then we would expect that the ensemble mean of the temporal average of this
difference to be:

{
Eth.ﬁ{ﬁ X 5(‘/)}=Em.1){7‘1 )
jl

{ {
[mcC)-r() =5 X [ mc(4) - Bz p{r(e)} ]
J=-Mo1 -M~1 J= i-Me1

I
"a X [mely) - me(ep]
S f-M1

=0 157)
Likewise, the temporal average of the ensemble mean of this difference is:
1 - 1 =
" ¥ Ezu,_,){ mo()-r(1)} = v p) I me() - Ezu,,,){ r(e)} ]
t=1 =1
M
= f,): [mcCe) - me(2)]
(23]
=0 (158)

Since the only random part of £ is the residual, the covariance of this bias-compensated residual is

the covariance of the residual.
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Thus, if we compute the temporal-ensemble average (compute the ensemble average first

and then compute the temporal average of the ensemble average) and the ensemble-temporal average

(compute the temporal average of each realization and then compute the ensemble average of these

temporal averages) we would expect the same results that were predicted for No Mismodeling case,

shown in Table 1.

We computed the results for three cases, an elevator failure, an aileron failure, and a rudder

failure. The results for the first case, an elevator failure, are shown in Table 2. Clearly, the residual

is accurately characterized.

Table 2

Kalman Filter Residual Statistical Comparison for the Case of an Elevator Failure.

Residual Computed | Ensemble | Temporal || Computed | Ensemble | Temporal
Element Average | Temporal { Ensemble oof g Temporal | Ensemble
of £ Average Average oof & oof £
of & of §
Forward Velocity 0 -205E-1 | -235E-1 |[3.00 3.00 2.98
Angle of Attack 0 -483E-3 | -1.99E-4 ||296E-2 292 E-2 296E-2
Pitch Rate 0 -370E-3 | -130E-3 {{355E-2 |354E-2 |3.60E-2
Pitch Angle 0 576E-4 |[-9.60E-5 {1292E-3 |276E-3 287E-3
Sideslip Angle 0 394E-3 |245E4 [ 144E-1 |143E-1 | 142E-1
Roll Rate 0 -230E4 | 403E4 | 346E-2 |338E-2 [344E-2
Roll Angle 0 355E4 |-778E-5 ||394E-3 |3.87E-3 3.97E-3
Yaw Rate 0 322E-5 |566E4 |532E-2 |549E-2 |[543E-2
Yaw Angle 0 -5.81E-5 | 808E-6 |3.22E-3 |3.15E-3 3.18E-3
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The next case corresponds to an aileron failure. Again, we have no mismodeling up to 1
second in the simulation, then mismodeling occurs in the column of the control input matrix that
corresponds to an aileron. In Figure 15 we graphically show the results; the input to the left aileron
is clearly evident in the residual, particularly in the roll rate and roll angle, and to a lesser degree in
the yaw rate and yaw angle. Note the dramatic change in scale for these elements of the residual
vector, Just like in the elevator failure case, the airdaft is not responding to the left aileron input, but
the fully functional Kalman filter is predicting that the aircraft will respond to this input. Thus, the
difference between the actual measurements (which show the aircraft's lack of response) and the
predicted measurements (which assume that the aircraft is responding) will reflect the aircraft
response to a left aileron input. The expected aircraft response to a sinusoidal left aileron input
would be a sinusoidal change in the roll rate and roll angle. Also, since this is an input to only one
aileron, we expect a small sinusoidal change in the yaw rate and ya'w angle. This is precisely what
was observed in Figure 15. Similar results were obtained for a right aileron failure.

We also computed and tabulated the ensemble-temporal average and temporal-ensemble
average of the bias-compensated residual. These results, shown in Table 3, show that the
characteristics of the residual are accurately computed for the casc of an aileron failure.

The last case corresponds to a rudder failure. Again, we have no mismodeling up to 1
second in the simulation, then mismodeling occurs in the column of the control input matrix that
corresponds to a rudder. In Figure 16 we show the results for a left rudder failure. The input to the
left rudder is clearly evident in the residual, particularly in the yaw rate and yaw angle with some
cross-coupling to the roll rate and roll angle. Again, note the change in scale for these
residualelements. This aircraft has two rudders (similar to the A-10 aircraft), so if one rudder is not

responding to a sinusoidal input, the other rudder would cause not only sinusoidal changes in yaw
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Figure 15. Residual and Computed Residual Mean and Standard Deviation of the
Fully Functional Kalman Filter with a Mismodeled Aileron Input.
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Table 3

Kalman Filter Residual Statistical Comparison for the Case of an Aileron Failure.

Residual Computed | Ensemble | Temporal {| Computed | Ensemble | Temporal
Element Average | Temporal | Ensemble oof § Temporal | Ensemble
of £ Average Average cof § gof
of of
Forward Velocity 0 224E-1 |-950E-2 }3.00 296 296
Angle of Attack 0 -1.76 E-3 | -1.08 E-4 |[[296E-2 |291E-2 |278E-2
Pitch Rate 0 1.38E-3 | 654E4 |355E-2 |358E-2 |344E-2
Pitch Angle 0 468E-5 |323E4 JJ292E3 |[285E-3 | 289E-3
Sideslip Angle 0 1.59E-2 | 146E-3 1.44 E-1 142 E-1 1.42 E-1
Roll Rate 0 1.L10E-3 | 989E-4 |[346E-2 |345E-2 | 348E-2
Roll Angle 0 -276E-4 [205E-3 |I394E-3 |3.67E-3 3.75E-3
Yaw Rate 0 1.L13E3 |[286E-3 |532E-2 |552E2 |546E-2
Yaw Angle 0 3.18E-3 | 6.09E4 |3.22E-3 |3.19E-3 |3.19E3
Table 4

Kalman Filter Residual Statistical Comparison {or the Case of a Rudder Failure.

Residual Computed | Ensemble | Temporal || Computed | Ensemble | Temporal
Element Average | Temporal | Ensemble oof € Temporal | Ensemble
of § Average Average oof g oof §
of & of &
Forward Velocity 0 -201E-1 | -1.85E-1 {13.00 295 298
Angle of Attack 0 -1.12E-3 | 560E-4 [[296E-2 |297E-2 |298E-2
Pitch Rate 0 261E-3 | 266E-3 |I3.55E2 |359E-2 3.53E-2
Pitch Angle 0 -7.83E-5 |419E-5 [[292E-3 | 294E-3 2.86 E-3
Sideslip Angle 0 -2.16E-3 | -3.79E-4 | 144E-1 143 E-1 143 E-1
Roll Rate 0 6.07E4 | 6.09E4 [[346E-2 |353E-2 348 E-2
Roll Angle 0 1.20E-3 |[3.16E4 [ 394E-3 |3.51E-3 3.89E-3
Yaw Rate 0 301E-3 | 209E-3 |[|532E2 |535E2 |528E-2
Yaw Angle 0 5.71E-3 195E4 ([{3.22E-3 | 3.15E-3 327E-3
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Figure 16. Residual and Computed Residual Mean and Standard Deviation of the

Fully Functional Kalman Filter with a Mismodeled Rudder Input.
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rate and yaw angle, but some small cross-coupling would occur in roll rate and roll angle. Again,
since the fully functional Kalman filter predicts that the aircraft is responding to the input, but the
aircraft actually is not, the residual would reflect the aircraft response to a single rudder input. This
is precisely what is reflected in Figure 16. As before, the difference resuits were computed and are
tabulated in Table 4. Clearly, the residual is accurately characterized. Similar results were obtained

for a right rudder failure.

4.2.3 Mismodeled Output Matrix (Sensor Failure). We now compare the

residual from the Kalman filter that uses a fully functional aircraft model to the computed mean and
covariance, assuming that the output matrix is mismodeled starting at 1 second into the simulation.
This situation corresponds to a sensor failure occurring at 1 second. We look separately at a failure
in the forward velocity sensor and the pitch rate sensor. Once again, the mean of the residual was
computed using Eq (40) and Eq (41) and the expected covariance was devéloped in Section 3.2.3.
The failure mode that is represented by this mismodeling in the output matrix (a row of the matrix is
zero) corresponds to a "fail to nominal,"” rather than "fail to zero," since the Kalman filter model is a
perturbation model. The mismodeling in the output matrix zeros out any non-zero value of the
perturbation state, so any perturbations from the nominal are set to zero for this failure mode. The
results for a forward velocity sensor failure are graphically shown in Figure 17, wheré the forward
velocity residual element is clearly no longer zero-mean (note the dramatic change in scale). The
aircraft model did not include a thrust input, so we consistently noticed that the forward velocity
decreased throughout the simulation (since there was no thrust to counteract the drag caused by the
actuator inputs). Once the forward velocity sensor failed, this decrease in velocity was not measured,
but the fully functional Kalman filter continued to predict that the forward velocity would decrease.

Therefore, the difference between the actual measurement and the filter's prediction of that
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Figure 17. Residual and Computed Residual Mean and Standard Deviation of the
Fully Functional Kalman Filter with a Mismodeled Forward Velocity Sensor.
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Table 5§

Kalman Filter Residual Statistical Comparison for the Case of a Forward Velocity Sensor Failure.

Residual Computed | Ensemble | Temporal || Computed | Ensemble | Temporal
Element Average | Temporal | Ensemble cof § Temporal | Ensemble
of £ Average Average oof £ oof £
of § of £
Forward Velocity 0 -201E-1 | 227E-1 3.003 298 3.05
Angle of Attack 0 -379E4 |-101E-3 ||296E-2 |289E-2 |297E-2
Pitch Rate 0 855E-4 |941E-2 J1355E2 |347E-2 |3.66E-2
Pitch Angle 0 -1.01E-5 {-6.13E-3 ||292E-3 |287E-3 |294E-3
Sideslip Angle 0 6.82 E-4 1.64 E-3 144 E-1 143 E-1 1.41 E-1
Roll Rate 0 155E4 |486E4 |1346E-2 |341E-2 | 338E-2
Roll Angle 0 2.62E4 176 E-4 [[3.94E-3 | 3.86E-3 397E-3
Yaw Rate 0 914 E4 | -1.73E-3 [|532E-2 |536E-2 |529E-2
Yaw Angle 0 2.87TE-5 1.L12E4 |322E-3 |3.20E-3 3.18E-3

measurement is clearly reflected in the residual. The difference between the computed mean and the

actual residual was computed and the temporal mean and standard deviation were calculated. The

results are tabulated in Table S. Once again, the characteristics of the residual are accurately

computed.

The results for the forward velocity sensor failure are representative only for the sensors that

have very weak cross-coupling with other sensors: specifically, the angle of attack and sideslip angle

sensors. The other sensors have stronger cross-coupling. This cross-coupling is not through the

output matrix, but through the state transition matrix (i.e., the system dynamics and kinematics) and

Kalman filter gain matrix. If the Kalman filter assumes that the pitch rate measurement is accurate

(which the fully functional Kalman filter does), the state estimates are updated using this
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Table 6

Kalman Filter Residual Statistical Comparison for the Case of a Pitch Rate Sensor Failure.

Residual Computed | Ensemble | Temporal || Computed | Ensemble | Temporal
Element Average | Temporal | Ensemble ogof § Temporal | Ensemble
of & Average Average oof § cof £
of £ of €
Forward Velocity 0 725E-2 | 229E-1 3.003 298 297
Angle of Attack 0 3.12E4 | -6.13E4 ||296E-2 |295E-2 |292E-2
Pitch Rate 0 1.56E-2 | 104E-2 |346E-2 |347E-2 |339E-2
Pitch Angle 0 -1.08E-3 [ -6.76E-3 ||292E-3 |294E3 |294E-3
Sideslip Angle 0 702E4 |-304C4 || 144E-1 1.43 E-1 143 E-1
Roll Rate 0 267E-4 |357E4 |[346E-2 |343E-2 |346E-2
Roll Angle 0 -349E-5 | -279E-4 |394E-3 396 E-3 3.87E-3
Yaw Rate 0 137E4 | -486E-3 |I532E-2 | 538E-2 | 531E-2
Yaw Angle 0 1.20E-5 | 448E-5 | 322E-3 |3.20E-3 3.16 E-3

measurement, even if they are wrong! Thus, the other states are corrupted by the incorrect

measurement of this single element of the measurement vector. The residuals not only reflect the

difference between the actual measurement and the failed measurement, but also differences will

occur between the coupled measurements and the filter prediction of those measurements. This is

clearly evident in Figure 18, where the pitch angle element of the residual is impacted as well as the

pitch rate element. The average and standard deviation of the difference between the computed

residual mean and the actual residual are tabulated in Table 6.
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Figure 18. Residual and Computed Residual Mean and Standard Deviation of the
Fully Functional Kalman Filter with a Mismodeled Pitch Rate Sensor.
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4.3 Single Residual Kalman Filter Bank

In Section 3.2.5 we developed the framework for an MMAE structure that uses the residual
vector from a single Kalman filter with a linear transform to produce the equivalent residual from
another Kalman filter. In this section we present a comparison of the residual from a fully
implemented Kalman filter with the computed equivalent of that residual. The application that we
studied had an MMAE with 16 Kalman filters. Extensive simulation was conducted, since each of
the 16 filters could be used to compute the residuals from any of the other 16 filters for any of the 16
possible failure scenarios. This results in 4096 test cases (16°), so we have elected to present a

representative sample of three test cases.

4.3.1 No Mismodeling (No Failure). First, we present the test case in which the

true system has no flight control failure and we compare the actual residual from the Kalman filter
that assumed a fully functional aircraft with its equivalent residual computed using the residual from
the Kalman filter that assumed a left elevator failure. This is 1 somewhat arbitrary choice to
demonstrate the equivalency between the usual filter bank structure of several parallel Kalman filters,
and a filter "bank" structure that uses a single Kalman filter with several linear transforms to produce
equivalent residuals. We expect that the usual implementation of this equivalent structure would
consist of the fully functional model based Kalman filter with the equivalent residuals computed for
the Kalman filters that assume the various failures. Figure 19 shows what appears to be a set of
single plots of the fully functional Kalman filter residual elements, but these plots are actually the
equivalent residual plotted over the actual residual. It appears to be a single plot because the two
residuals are equivalent. We computed the difference between the actual residual and the equivalent
residual, and temporally averaged this difference. The results are tabulated in Table 7. Note that for

some of the residual elements, the temporal average of the difference between the actual residual and
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Figure 19. The Fully Functional Kalman Filter Residual and the Equivalent Residual
Computed Using the Left Elevator Kalman Filter Residual for a No-Failure Test Case.
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Table 7

Temporal Average of the Difference Between the Fully Functional Kalman Filter Residual
and the Equivalent Residual Computed Using the Left Elevator Failure Filter Residual
for a No-Failure Test Case.

Residual Temporal Average of
Element Difference
Forward Velocity -1.376 E-15
Angle of Attack 4.342 E-19
Pitch Rate 3.492 E-17
Pitch Angle -5.926 E-18
Sideslip Angle <10™
Roll Rate <102
Roll Angle <102
Yaw Rate <10%
Yaw Angle <10

equivalent residual is less than the precision of the simulation software (102!), and in all cases the
difference is many orders of magnitude less than the two individual residuals. Obviously, the actual
residual and the computed equivalent residual are equivalent.

In Section 3.2.5, we proposed using these equivalent residuals to construct the Standard
Kalman Filter Bank, where we are using the fully functional model based Kalman filter as the source
filter for this implementation. We verified this construct in Figure 20 where we show the residual
from the elevator failure Kalman filter along with its equivalent residual that was computed using the
fully functional Kalman filter. This test case matches the structure shown in Figure 6 of Section

3.2.5, for the case of an elevator failure. The tabulated differences between the actual residual and
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Figure 20. The Left Elevator Kalman Filter Residual and the Equivalent Residual
Computed Using the Fully Functional Kalman Filter Residual for a Left Elevator Failure
Test Case.
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Table 8

Temporal Average of the Difference Between the Left Elevator Failure Kalman Filter Residual
and the Equivalent Residual Computed Using the Fully Functional Kalman Filter Residual
for a Left Elevator Failure Test Case.

Residual Temporal Average of
Element Difference
Forward Velocity 1.372 E-15
Angle of Attack -4.516 E-19
Pitch Rate -3.503 E-17
Pitch Angle 5912 E-18
Sideslip Angle <10
Roll Rate <10%
Roll Angle <10
Yaw Rate <10%
Yaw Angle <10

the equivalent residual are in Table 8; again, the equivalence of the two forms of the residual is

evident,

4.3.2 Mismodeled Control Input Matrix (Actuator Failure). Next, we

present the test case in which the true system has an actuator failure, specifically the left elevator, and
we compare the actual residual from the Kalman filter that uses a fully functional aircraft model, with
its equivalent residual computed using the residual from the Kalman filter that assumed a left

elevator failure. Figure 21 again shows what appears to be a set of single plots of the fully functional

Kalman filter residual, but these plots are actually the equivalent residual plotted over the actual
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Figure 21. The Fully Functional Kalman Filter Residual and the Equivalent Residual
Computed Using the Left Elevator Failure Kalman Filter Residual
for a Left Elevator Failure Test Case.
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residual. We also tabulated the difference between the actual residual and the equivalent residual in

Table 9. Once again, these residuals are equivalent.

To verify the structure developed in Section 3.2.5, we show the actual residual from the
Kalman filter that assumes a left aileron failure when the actual failure is a left elevator, along with
its equivalent residual computed using the fully functional Kalman filter. This comparison is made in

Figure 22, and the differences are tabulated in Table 10. Clearly, the equivalent residual and the

actual residual are identical.

Table 9

Temporal Average of the Difference Between the Fully Functional Kalman Filter Residual
and the Equivalent Residual Computed Using the Left Elevator Failure Kalman Filter Residual

for a Left Elevator Failure Test Case.

Residual Temporal Average of
Element Difference
Forward Velocity 1.372 E-15
Angle of Attack 4516 E-19
Pitch Rate -3.503 E-17
Pitch Angle 5912E-18
Sideslip Angle <10
Roll Rate <10?
Roll Angle < 102
Yaw Rate <10
Yaw Angle <102
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Figure 22. The Left Aileron Kalman Filter Residual and the Equivalent Residual
Computed Using the Fully Functional Kalman Filter Residual
for a Left Elevator Failure Test Case.
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Table 10

Temporal Average of the Difference Between the Left Aileron Kalman Filter Residual
and the Equxvalent Residual Computed Using the Fully Functional Kalman Filter Residual
for a Left Elevator Failure Test Case.

Residual Temporal Average of
Element Difference
Forward Velocity <102
Angle of Attack <10
Pitch Rate <10
Pitch Angle <10
Sideslip Angle -1.255 E-18
Roll Rate -6.940 E-18
Roll Angle -5.321 E-17
Yaw Rate -1.931E-17
Yaw Angle -3.987 E-17

4.3.3 Mismodeled Qutput Matrix (Sensor Failure). Finally, we examine the

test case in which the true system has a sensor failure, specifically the pitch angle sensor, and
compare the actual residual from the Kalman filter that assumed a pitch rate sensor failure with its
equivalent residual computed using the residual from the Kalman filter that assumed a fully

functional aircraft. Note that the actual failure, the assumed failure for the output filter residual, and

the chosen source filter are nonmatching (three-way nonmatching) to help demonstrate the level of
viability of this approach. We have chosen the source filter to be the fully functional filter to verify
the structure shown in Figure 6 of Section 3.2.5. As in the previous cases, Figure 23 shows what
appears to be a set of single plots of the fully functional Kalman filter residual, but these plots are

actually the equivalent residual plotted over the actual residual. Once again, it appears to be a single
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Figure 23. The Pitch Rate Failure Kalman Filter Residual and the Equivalent Residual

Computed Using the Fully Functional Kalman Filter Residual
for a Pitch Angle Sensor Failure Test Case.
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Table 11
Temporal Average of the Difference Between the Pitch Rate Failure Kalman Filter Residual
and the Equivalent Residual Computed Using the Fully Functional Kalman Filter Residual
for a Pitch Angle Failure Test Case.

Residual Temporal Average of
Element Difference
Forward Velocity -2.194 E-15
Angle of Attack 3323 E-19
Pitch Rate -3.686 E-19
Pitch Angle 4966 E-18
Sideslip Angle <10
Roll Rate <10
Roll Angle 1.169 E-19
Yaw Rate -2.575 E-21
Yaw Angle -3.287 E-21

plot because the two residual are equivalent. The differences are tabulated in Table 11, and again

demonstrate the equivalency.

4.3.4_QOverall Equivalency. The average difference for all 4096 test cases was

computed and tabulated in Table 12. These values indicate that the equivalent residuals are identical

(within round-off error) to the actual Kalman filter residuals.

4.3.5 Generalized Likelihood Ratio Class Equivalence. We have [39]
noticed the striking similarity between the filter "bank" structure of Figure 6 and Generalized
Likelihood Ratio (GLR) based failure detection algorithms. The GLR structure [66] uses a Kalman
filter residual as the input to a set of matched filters, and then the output of these matched filters are

used by a hypothesis testing algorithm to determine the failure status. The matched filters are based
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Table 12

Overall Temporal Average of the Difference Between an Actual Residual
and the Equivalent Residual, Averaged over all 4096 Test Cases.

Residual Temporal Average of
Element Difference
Forward Velocity 9.633 E-17
Angle of Attack -1.378 E-18
Pitch Rate -1.518 E-17
Pitch Angle 7.768 E-18
Sideslip Angle 1.172 E-18
Roll Rate 2.686 E-19
Roll Angle 2.730 E-18
Yaw Rate -3.139 E-18
Yaw Angle 1.576 E-18

on the designer's expectation of the time history of the residual for certain failures. For example, the
set of filters would model a no-failure hypothesis, a jump in the residual mean (representing a sudden
additive bias), and a ramp in the residual mean (representing a slow changing additive bias).

The results from this section have shown that the linear transforms of Figure 6 are
equivalent to implementing a complete Kalman filter. Another interpretation of this result is that the
linear transforms operating on a single Kalman filer output can be viewed as the best possible
“matched filters" for the GLR failure identification method. These linear transforms yield the actual
impact of the hypothesized failure on the Kalman filter residual, versus the designer's ad hoc
representation of what that impact might be. This interpretation establishes an equivalence class
relationship between MMAE failure detection and isolation systems and the best-possible GLR

failure detection and isolation systems. This equivalence class relationship needs to be established
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using a more structured theoretical approach. This appears as one of the recommendations for future

research, in Section 5.6.

4.4 Failure Detection Performance

We present the failure identification performance for the three MMAE structures that were
developed in Chapter 3. The first structure, shown in Figure 24, is the Standard Kalman Filter Bank
(SKFB) with a Standard Hypothesis Testing Algorithm (SHTA). The Kalman filter equations for the
SKFB were presented in Section 3.3.1, and the SHTA algorithm was presented in Section 3.3.1. An
alternative structure, shown in Figure 25, was developed in Section 3.2.5 and was shown to be

equivalent to the SKFB in Section 4.3. Since the structures are equivalent, the failure identification
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Figure 24. Multiple Model Adaptive Estimation Algorithm
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Figure 25. Alternative Multiple Model Adaptive Estimation Filter Bank Structure
Using Equivalent Residuals

performance of the first structure will be identical to the failure identification performance of the
equivalent structure. Therefore, we did not test the failure identification performance of this
equivalent structure. The second structure, shown in Figure 26, is the Residual Correlation Kalman
Filter Bank (RCKFB), developed in Section 3.2.6, with a SHTA. The last structure is the SKFB with
a Neyman-Pearson Hypothesis Testing Algorithm (NPHTA) that was developed in Section 3.3.2. In
Section 3.3.2.1, we showed that performing a hypothesis test, using a likelihood ratio, on multiple
residuals was equivalent to performing muitiple hypothesis tests on a single residual. Thus, we can
replace the K filters in the Kalman filter bank, with a single filter and perform a Neyman-Pearson

Hypothesis Test on the residual from this single filter. If the MMAE weighted state estimate is
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Figure 26. Multiple Model Adaptive Estimation Algorithm using a
Residual Correlation Kalman Filter Bank

needed, we would need to implement either the full SKFB, or the equivalent filter bank so that we
have all of the state estimates from the various Kalman filters. Thus, the SKFB-NPHTA structure is
eéuival_ent to the structure shown in Figure 27. Since we do not need the state estimates to test the
failure identification performance of this structure, we did not implement the linear transforms. We
chose to construct the SKFB-NPHTA structure using the fully functional aircraft model based
Kalman filter. The failure identification performance of the SKFB-SHTA is presented in Section
4.4.1, the RCKFB-SHTA performance in Section 4.4.2, and the performance for the SKFB-NPHTA
is shown in Section 4.4.3. Section 4.4.4 is a comparison of the failure identification performances

for these three structures. The last possible combination of these structures, namely the RCKFB-
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Figure 27. Equivalent Standard Kalman Filter Bank (SKFB) with a
Neyman-Pearson Hypothesis Testing Algorithm Structure

-NPHTA, is a viable (and promising) algorithm, but it was not evaluated because of time limitations.
In Section 3.2.4 we found that the mean of the residual will have elements of the input for
the case of an actuator failure, and for a sensor failure the residual will have elements of the state
estimates. If we use a sinusoid for the input, then the sinusoid input elements cause the residual to be
a sinusoid. This sinusoid appears as a spike in the power spectral density at the frequency of the
input, which was shown in Figure 9. Therefore, since we éan stipulate the frequency of the system
input (since we can generate the dither input ourselves), we can use the spectral content at that
frequency to indicate the presence of an actuator failure, which was the basis for developing the

RCKFB. However, we cannot readily stipulate the frequency of the state estimates, unless extensive
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simulation is done to find the particular input that causes sinusoidal state estimates. Since the state
estimates are not necessarily sinusoidal, they may not be well correlated and we might need to
estimate the power spectral density across the entire spectrum to try to find indications of the
presence of a sensor failure. Figure 18 shows a residual from a filter with mismodeled output matrix.
Clearly, the components of this residual are not sinusoidal. We believe that this technique would not
work well for sensor failures unless the appropriate input is used that causes the states estimates to
become strongly correlated in a readily distinguishable manner.

For this reason, we implemented the RCKFB-SHTA structure using only actuator failure
models. The failure identification of the other structures was initially evaluated for all the
hypothesized failures (including sensor failures), and then the set of hypotheses was reduced to just
the actuator failures so we could compare the failure identification performance between the various
structures. This reduced sct of hypotheses significantly reduced the computations required to analyze
the failure identification performance, so we were able to compare the failure identification
performance of the various structures at several different system input levels. We also restricted the
SKFB-SHTA and SKFB-NPHTA (to be presented in Section 4.4.1) structures to actuator failure
hypotheses only, to make a fair comparison of failure identification algorithms. The usual
implementation of these structures includes sensor failure hypotheses.

Thus, in the following sections you will first find the failure identification performance of
each of the structures, and then a comparative evaluation of their performances for the different types
of actuator failures. In their individual failure identification performance sections, we present the
overall failure identification performance of the SKFB-SHTA and the SKFB-NPHTA, including
sensor failures, but only the actuator failure identification for the RCKFB-SHTA. The actuator

failure identification performance as a function of input level is presented for all three structures, and
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then the presentation of the actuator performance is rearranged to facilitate the comparison of the

performance of the various structures.

4.4.1 SKFB-SHTA Failure Identification Performance. The failure

identification performance of the SKFB-SHTA structure for this particular application was
previously researched [19, 41] and some optimization of the modifications presented in Section 3.3.1
was accomplished. We present a summary of those results to facilitate performance comparisons to
the other structures.

The failure identification performance for a particular failure (a left elevator failure) is
presented in Figure 28. Note that the conditional probability for the fully functional hypothesis
essentially mirrors the conditional probability for the actual failure (the left elevator failure). Similar
results were observed for all other hypothesized failures, except for two. The failure identification
was fairly stow for rudder failures (the left one is shown in Figure 29) and the forward velocity
sensor failure (shown in Figure 30). We present these failures to show two reasons for slow failure
identification performance. The rudder failure identification is slow because several other
hypotheses appear (o be equally as viable as the rudder failure hypothesis. Note Lhat the roll angle
sensor failure and sideslip angle sensor failures appear to be almost as probable as the Afu‘lly
functional hypothesis, until the rudder failure hypothesis is identified. Previous research [19] has
shown that, unless the filters are properly tuned as we described in Section 3.3.1.4, this structure has
a bias toward occasionally generating a false alarm for sensor failures, which is precisely what is
observed in this case. The forward velocity sensor failure performance, Figure 30, shows a different
situation. This sensor has much stronger measurement noise than all the other sensors, so the effects

of this particular sensor failure have to be quite large for the failure to be identified. Figure 17 shows
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Figure 28. Failure Identification of the Standard Kalman Filter Bank (SKFB) with a
Standard Hypothesis Testing Algorithm (SHTA) for a Left Elevator Failure.
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Figure 29. Failure Identification of the Standard Kalman Filter Bank (SKFB) with a
Standard Hypothesis Testing Algorithm (SHTA) for a Left Rudder Failure.

141




no 1 T T T T T T T
failure 05 CTT—— ~l
1 1 i ! i
8

left 1 T T T T 7 T T
elevator 05
0 ! ) ] ! : | ; .

0 H 2 3 4 5 6

right 1 T T T T T T T
elevator 05 {
0 ! 1 ! | : ] 71 .

0 1 2 3 4 S

left 1 T T T T T T T
ailleron 05 4
0 1 1 1 1 1 [ ] 8

0 1 2 3 4 5 6 7

right 1 | T 7 | | T T
alieron 0.5 ”I
0 I ! ! ! 1 i !

0 1 2 3 4 5 6 7 8
left 1 T T T 7 T T T
rudder 05 j

0 I 1 1 1 L 1 1

0 1 2 3 4 5 6 7 8
right 1 T T T T T T T
rudder 05 {

0 1 L 1 ] ! ! !
0 1 2 3 4 5 6 7 8
forward 1 T T T T T T
velocity 0.5 / j
0 1 ) 1 1 i | ]
0 1 2 3 4 5 6 7 8
angale of 1 T T T T T T T
attack 05 ‘i
0 ! ! ] i L 1 !

0 1 2 3 4 S 6 7 8
pit(t:h 1 T T T T T T T ]
rate O'(S) t ! 1 ) 1 L L _i

0 1 2 3 4 h) 6 7 8
pitch 1 T T T T T T T
angle 05 j

0 i I ! ! L i !
0 1 2 3 4 5 6 7 8
sideslip 1 T T T T T T T
angle 0.5 -l
O 13 { 1 i ! 1 1

0 1 2 3 4 5 6 7 8

l’0|t| 1 T T T T T T T ‘1
e ..
ra Og ! | I I ! ! !

0 1 2 3 4 5 6 7 8
roll 1 T T T T T T T
angle 0.5 +

0 1 L 1 i 1 1 1

] 1 2 3 4 5 6 7 8
yaw 1 T T T T T T T
rate 0.5 :i

0 | 1 i 1 1 1 |

0 1 2 3 4 S 6 7 8
yaw 1 l T T T T T T
angle 0.5 —!

0 ] ! L ! ] I !
0 1 2 3 4 S 6 7 8

Figure 30. Failure Identification of the Standard Kalman Filter Bank (SKFB) with a
Standard Hypothesis Testing Algorithm (SHTA) for a Forward Velocity Sensor Failure.
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that it takes a few seconds for the effects of the sensor failure to cause the residual to grow. In this
case the noise of the sensor is so great that it masks the residual growth until it is quite large.

The results from these three and all other failure cases can be summarized by observing only
the conditional probability of the particular failure that is actually occurring, since the fully functional
hypothesis mirrors this probability, and all other hypothesized failures are near zero throughout the
simulation. The overall performance of the SKFB-SHTA failure identification performance can be
summarized by showing the conditional probabilities for each of the failure hypotheses on a series of
plots, shown in Figure 31, where each plot shows the SKFB-SHTA failure identification performance
for a particular failure. Note that the left elevator failure identification performance (Figure 28) is
summarized in the left elevator plot of Figure 31, the left rudder failure identification performance
(Figure 29) is shown in the left rudder plot of Figure 31, and the forward velocity sensor failure
identification performance (Figure 30) is shown in the forward velocity plot of Figure 31.

One simple method of declaring a failure status is to choose a probability threshold that is
used as a declaration trigger. The conditional probabilities are compared to this threshold, and when
the threshold is exceeded, the hypothesis corresponding to that conditional probability is declared as
the failure status. For example, if the threshold was set to a probability of 0.5 and a left elevator
failure occurred, when the left elevator conditional probability exceeds 0.5, then a failed left elevator
would be declared. Figure 31 shows that this would occur at about 1.5 seconds into the simulation,
or about 0.5 seconds after the failure actually occurred. Using this threshold, we averaged the
actuator failure performance of this MMAE structure over 5 Monte Carlo runs, and then averaged
the left and right actuator failure performance results to get an average over 10 test samples. We
averaged the left and right actuator failure performances because we assume that they are

independent. This assumption is based on the orthogonal system input (Figure 13), where the left
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Figure 31. Overall Failure Identification Performance of a Standard Kalman Filter Bank
(SKFB) with a Standard Hypothesis Testing Algorithm (SHTA).
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actuator input is almost exactly out-of-phase with the right input (a slight offset from exactly out-of-
phase was needed to allow some excitation of the sensors), thus the left and right inputs are
orthogonal. The averaging was done for a various input strengths, starting with the one shown in
Figure 13, and reducing it with an input multiplier, down to 1/100 of the original control input. The
results are tabulated in Table 13, where the decision time is the amount of time from the occurrence
of the failure to when the conditional probability of the hypothesis crosses the probability threshold
of 0.5. At very small inputs, the conditional probability grew so slowly, that when they approached
the threshold, the randomness of the probabilities would cause it to cross the threshold a few times.
For these cases, the decision time is the amount of time from the occurrence of the failure to when the
conditional probability crosses the probability threshold for the last time and stays there. These
results are graphically shown in Figure 32, where the input multiplier is plotted on a logarithmic
(base 10) scale.

Note the "--" entries in Table 13 and the dashed line portion of the plots in Figure 32. These
indicate where false alarms were observed, with an increase in the number of false alarms as the
input was decreased. The dashes are to show where the performance may be deemed unacceptable
due to the increase in the false alarm rate.

Figure 32 shows that failure performance drops off dramatically as the input decreases. This
is particularly evident for the elevator and aileron failures, where identification times are beyond the
termination of the simulation (7 seconds after the failure) for input multipliers of less than 0.025.
These results make good sense, because stronger inputs would cause larger residuals from the
incorrect Kalman filters when the failure occurs. Likewise, smaller inputs will produce relatively

smaller residuals when the failure occurs, so the conditional probability of the failure hypothesis
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Table 13

SKFB-SHTA Actuator Failure Identification Performance, 10-Test Sample Average.

Input Elevator Failures Aileron Failures Rudder Failures
Multiplier (sec) (sec) (sec)
1.00 042 0.31 2.29
0.25 0.51 041 1.04
0.1 0.96 0.98 1.11
0.075 1.38 2.07 1.29
0.0625 207 -- 334 -- 1.23 -
0.05 3.28 -- >7 - 2.495 --
0.025 >7 -- >7 - 498 --
0.016 >7-- >7-- >7--
0.01 >7 - >7 -- >7 --

A}

Log ( Input Multiplier )
=

x - Elevator, o -

Aileron, + - Rudder

T T

T T T

4 5 6

Average ldentification Time (sec)

Figure 32. Actuator Failure Identification Performance for the Standard
Kalman Filter Bank (SKFB) with a Standard Hypothesis Testing Algorithm
(SHTA).
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requires more time to grow. In particular, note that the rudder failure identification is still viable at
an input multiplier level of 0.025, but drops off quickly after that.

Note that, as the rudder input is increased, the failure identification time actually increases,
which does not correspond to the anticipated results of better identification performance for stronger
inputs. We showed earlier that this structure had trouble identifying rudder failures, possibly
because of cross-coupling between axes causing misidentification of a sensor failure. This is not the
case here, since, at this point, we have limited the SKFB to actuator failure hypotheses to make a fair
comparison with the RCKFB structure. There are two reasons that this occurs, one is the stonger
rudder input (Figure 13), relative to the elevator and aileron inputs, and the other is the timing of the
failure.

To illustrate these reasons, we have plotted the likelihood quotient, ¢, from Eq (99), from
each of the Kalman filters for the no-failure case. These quotients are used as negative exponents in
Eq (103), if B stripping described in Section 3.3.1.2 is not being used, and Eq (105), if B stripping is
being used (we implemented the SHTA using B stripping for this research), and are key factors in
computing the conditional probabilities. Large quotients produce extremely small exponential
factors in Eq (103) and Eq (105), which, when multiplied by the prior conditional probability, tends
to decrease the elemental conditional probability significantly, These elemental conditional
probabilities are normalized by the sum of all the conditional probabilities. Good failure
identification requires that the conditional probabilities change quickly when a failure occurs, which
in turn requires that the quotient for the correct hypothesis be small compared to the other quotients,

so that its conditional probability will not decrease as much as the others. This is clearly indicated in

147




Figure 33, where the quotient for the no-failure Kalman filter is much smaller than the other
quotients,

Using the plots on Figure 33, we see that, when the simulation is started, the strong rudder
input causes the quotient in the rudder failure Kalman filter to grow quite large, much larger than the
other quotients. When the right rudder failure actually occurs at one second into the simulation in
Figure 34, the rudder quotient is nearly at its maximum, and almost five times larger than any other
quotient. During the first second (i.e., with no failure), the large rudder input causes the state
estimates to diverge rapidly from the true states, thus causing a large residual, which
in turn causes a large rudder likelihood quotient. This divergence occurs in the other incorrect filters
as well, but to a lesser degree due to the smaller inputs, which is why their likelihood quotients are
smaller. When the faiture occurs, the state estimates in the rudder failure Kalman filter (now the
correct filter) take longer to converge to the true states than a filter whose state estimates were closer
to the true states when it became the correct filter. Thus the residual will take longer to decrease, for
the rudder failure case, which causes the likelihood quotient to decrease slowly, as shown in Figure
34. This causes the conditional probability to increase slowly, which delays the failure identification.

The timing of the failure is also important because of the interplay between the various
likelihood quotients. Figure 33 shows that at one second into the simulation the rudder likelihood
quotient is at its maximum and the other likelihood quotients are at a local minimum. Figure 34
shows that this causes a delay in the decrease of the rudder likelihood quotient, and the increase of
the other likelihood quotients, which delays the change in the conditional probabilities. If the failure
is injected at 4.2 seconds into the simulation instead, the rudder likelihood quotients (Figure 35) are
approaching their local minimum, the aileron quotients are steady, and the elevator quotients are

starting to rise to a local maximum. These conditions favor a faster rudder failure
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Figure 33. Kalman Filter Likelihood Quotients for the No-Failure Case.
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identification time because the rudder quotient is already diminishing, while the other quotients are
increasing. On the other hand, these conditions appear to be unfavorable if an aileron failure were to
occur at 4.2 seconds, since we found that the aileron failure detection time was much greater, under
these conditions, than we found for the failure injection times of 1 and 2 seconds. We found that it
took about 2.4 seconds to identify the failure clearly; during that time the aileron failure conditional
probability and the fully functional conditional probability oscillated between each other, finally
settling onto the correct hypothesis at about 2.4 seconds. Clearly, failure timing in relation to the
likelihood quotients can strongly influence the failure identification performance.

We conducted a the same type of analysis that was used to generate Figure 32, but we did
this for different failure injection times. The failures were injected at 1, 2, and 4.2 seconds into the
simulation. The input multiplier is plotted as a function of failure identification time for the elevator
(Figure 36), aileron (Figure 37), and rudder (Figure 38). The shaded area represents the range of
identification times that we believe could occur for the given input (shown in Figure 13), but with the
different multipliers. Figure 36 indicates that there is an optimal input strength for which the
difference between the maximum (worst) failure identification time and the minimum (best) failure
identification time is minimized. This optimal input strength seems to be just prior to the dramatic
dropoff in failure identification performance. This makes good sense because, as the input decreases,
the relative strengths between the various inputs also decrease, so the relative strengths of the
likelihood quotients are also decreasing. For example, let the inputs be 20, 10, and 15 degrees for
the elevator, aileron, and rudder, respectively. If the multiplier is .25, then the inputs become 5, 2.5,
and 3.75 degrees. If the multiplier is 0.1, then the inputs are 2, 1, and 1.5 degrees. Obviously, the
range between the inputs is decreasing, which would cause a decrease in the range between the

likelihood quotients.
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Figure 36. Elevator Failure Identification Performance
for Various Failure Injection Times.
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Figure 38. Rudder Failure Identification Performance
for Various Failure Injection Times.

Figure 36 shows excellent elevator failure identification performance with very little
difference between the maximum and minimum identification times. We believe this is due not only
to the strength of the elevator likelihood quotients, but also the oscillatory behavior that is clearly
seen in Figure 33. This oscillatory behavior would help cause the likelihood quotient to build if the
hypothesis is incorrect, and diminish quickly if the hypothesis is correct. These observations would
argue for finding a "balanced" input, one that causes the oscillatory behavior seen in the elevator
quotients in Figure 33, and cause equal magnitude likelihood quotients for all of the incorrect
hypotheses, in order to get good detection performance for all types of actuator failures.

Time constraints prevented further analysis of these observations. In particular, we were
not able to compare the performance of other structures for the different failure injection times, but

we were able to compare the other structures' performance for the given input, shown in Figure 13.
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The comparison of the failure identification performance for the various structures will be presented

in Section 4.4.4.

4.4.2 RCKFB-SHTA Failure Identification Performance. We implemented

the Residual Correlation Kalman Filter Bank (RCKFB) with the Standard Hypothesis Testing
Algorithm (SHTA) shown in Figure 26. We used the form of the RCKFB, shown in Eq (72), that
exploits the fast Fourier transform, but ignores the cross-coupling terms of the residual. These cross-
coupling terms are not small in many cases. For example, the residual for a left elevator failure
(Figure 14) shows that both the pitch rate and pitch angle strongly reflect the elevator input. Note
that the pitch rate is clearly a sinusoid, and would be strongly correlated with itself. The pitch angle
is also a sinusoid at the same frequency, so the cross-correlation between these two sinusoids would
be quite strong. By ignoring these cases of strong cross-correlations, we are implementing an
algorithm that does not exploit any of the information available from these cross terms. We
considered the computational cost of exploiting these cross terms to be unacceptable, so we
implemented the algorithm using only the autocorrelation of the individual elements of the residual.

A summary of the failure detection performance, following the format described in the
previous section, is presented in Figure 39. Time limitations prevented investigating the sensor
failure detection performance of this structure.

In Section 3.2.6 we noted that Kay [24] shows that this algorithm essentially filters the
residual with a bandpass filter, centered at the frequency of interest and with a bandwidth of 2/N. If
the bandwidth of this filter is small, the other input frequencies will not have spectral content in the
bandwidth of this bandpass filter. Thus, we need to collect enough data samples so that the
bandwidth of the filter will not have any spectral content from the other inputs. The more data

samples that we need to collect, the longer the delay will be from the time when the sinusoid is
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Figure 39. Actuator Failure Identification Performance of a Residual Correlation Kalman
Filter Bank (RDKFB) with a Standard Hypothesis Testing Algorithm (SHTA).

present (when the failure occurs) to when we can compute the spectral estimate of this filter and
detect the sinusoid. Thus, there is a tradeoff between the number of data samples needed to
distinguish between the input sinusoids and the failure detection time. This would dictate a wide
spacing of the input sinusoids, to allow the bandpass filters to have larger bandwidths, so fewer data
samples are needed. Unfortunately, most mechanical system (like aircraft) have very narrow low
pass system response bandwidths (the bandwidth was about 2.2 Hz for this particular aircraft). The
system response to the input must be seen in the residual for any failure identification scheme to

work, thus we need to specify input frequencies that are within the system response bandwidth. This
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requires that the inputs be located close together in the frequency spectrum, which requires narrow

bandpass filters for this structure, which in turn requires more data samples to be collected. Our
inputs were at 0.5, 1 and 2 Hz, which, when normalized by dividing by the sampling frequency,
become 0.01, 0.02, and 0.04, respectively. The two closest frequencies were 0.5 Hz away from each
other, or 0.01 in normalized frequency. The bandpass filter would need to have a bandwidth of less
than 1 Hz (0.5 Hz on each side of the center frequency), which is 0.02 in normalized frequency, to be
able to distinguish these input frequencies from each other. This requires 100 data samples (2/N =
0.02 = N = 100) for the required bandpass filter bandwidth, which is the value of N chosen for this
research. This value caused a delay in the detection of the failure because at least half of the 100
data samples (which translates to 1 second) had to show strong correlation at the input sinusoid
frequency for the spectral estimator even to start to identify the presence of the sinusoid. Figure 39,
when compared to Figure 31, shows that this delay caused this algorithm to take about one second
longer to identify the actuator failures.

We noted earlier that the aircraft model assumed complete axis decoupling, which can help
decrease the number of required data samples. The elevator input was at a frequency of 1 Hz, while
the rudder input was at 0.5 Hz and the aileron input was at 2 Hz. Since the pitch axis would not
affect the roll and yaw axes, the elevator input would not appear in the spectra for the longitudinal
elements of the residual (roll and yaw). Thus the elevator input frequency did not need to be
considered when we were designing the bandwidth of the bandpass filter. Thus, the two closest
frequencies were actually 1.5 Hz apart, which means that we could have used only 34 data samples to
distinguish between the rudder and aileron input frequencies. Time constraints prevented testing the

failure identification performance using other values of N .
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We tested the failure performance of this structure at the various input strengths that were
used for the SKFB-SHTA testing. These results are tabulated in Table 14 and graphically presented
in Figure 40. Note that the results are an average of only two Monte Carlo runs with both left and
right actuators, for a total of four test samples. We observed a large drop in failure identification
time for the strong rudder inputs. The reason for this phenomenon is illustrated in Figure 20. Note,
when the failure occurs at one second, the pitch rate and pitch angle elements of the residual are at
their peak and take about 0.5 seconds to die out. During this decay, these waveforms appear to be
part of the sinusoid that was clearly present before the failure occurred. The sinusoid in the fully
functional Kalman filter (Figure 21) is also delayed by about 0.5 second. Thus, the left elevator
failure Kalman filter residual will show a slowly decaying spectral content at the elevator input
frequency, and the fully functional Kalman filter residual will show a slowly building spectral content
at that frequency. Thus, the SHTA will not identify the failure until the decay is nearly complete.

The important feature to notice in Figure 40, is that failure identification is still
accomplished at a much lower input level than accomp!ished with the SKFB algorithm, as seen in
Figure 32. This feature will be highlighted when this structure is compared to the others in Section
444.

The plots of the likelihood quotient, Figure 33, suggest an alternative structure to the
RCKFB. We note that the likelihood quotient also reflects the sinusoidal nature of the residual,
especially in the elevator likelihood quotients. A spectral estimator could be used to estimate the
power spectral density of these likelihood quotients, rather than of the residuals. Since this quotient
is a scalar that is formed by computing the scaled squared value of the residual, the cross-coupling
terms would be included in this structure. Also, the spectral estimator would be fairly

straightforward to implement, due to the decrease in the dimension of the input to the estimator.
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Table 14

RCKFB-SHTA Actuator Failure Identification Performance, 4-Test Sample Average.

Input Elevator Failures Aileron Failures Rudder Failures
Multiplier (sec) (sec) (sec)
1.00 2.55 242 6.35
0.25 3.10 2.12 452
0.1 1.85 2.73 3.15
-0.075 1.72 243 2.26
0.0625 1.75 2.26 2.04
0.05 1.99 2.29 1.54
0.025 1.95 2.08 2.03
0.016 3.28 -- 2.81 -- 3.79 --
0.01 343 -- 443 -- 5.59 --
1o° X- Elévator. 0 - Aileron, + - Rudder
10t .
3
S
-2
10 0 5 8
Average ldentification Time (sec)

Figure 40. Actuator Failure Identification Performance for the Residual
Correlation Kalman Filter Bank (RCKFB) with a Standard Hypothesis
Testing Algorithm (SHTA).
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Note, that by using this likelihood quotient (the scaled squared norm of the residual) we are
essentially squaring the sinusoidal components of the residual, which doubles the frequency, so the
likelihood quotient oscillates at twice the frequency as the residual. This would allow us to use fewer
data samples since the bandwidth of the bandpass filters could be twice as large as they were for the
RCKFB. This approach shows great promise for improving the performance of residual correlation

based Kalman filter banks.

4.4.3 SKFB-NPHTA Failure Identification Performance. Using the

development in Section 3.3.2, we implemented a Neyman-Pearson Hypothesis Testing Algorithm
(NPHTA), similar to the structure shown in Figure 27. We were only testing the failure identification
performance of the structure, so we did not implement the linear transforms that are needed to
produce the blended state estimate. Thus our structure simply consisted of a single Kalman filter (the
fully functional Kalman filter) with a NPHTA. The output of this algorithm is a declaration of the
failure status, not a set of conditional probabilities. We chose to compare the declared failure status
to the true failure status to evaluate the performance of this algorithm. In Figure 41 we present the
failure identification performance of this structure, by plotting the agreement (denoted by 1) and
disagreement (denoted by 0) of the declared failure status with the true failure status.

The design parameters for the NPHTA are the probability of detection and probability of
false alarm, which were 0.999 and 0.01 respectively, for this research. Performance sensitivity to the
choice of these two parameters could be investigated for a given application, but these are chosen as
reasonable, representative values. First note the one misidentification in the right aileron plot of
Figure 41. The fully functional hypothesis was momentarily (for about 0.02 sec) declared as the
failure status, when in fact the right aileron failure was the true hypothesis. We attribute this to the

probability of false alarm setting. Note that this is a false alarm (using the definitions of Section 3.3)
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Figure 41. Overall Failure Identification Performance of a Standard Kalman Filter Bank
(SKFB) with a Neyman-Pearson Hypothesis Testing Algorithm (NPHTA).
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rather than a missed alarm, since the primary hypothesis before the test was the failed state but the
identification algorithm chose the unfailed state. From the time of failure (1 sec) to the end of the
simulation there are 48 tests of the right aileron failure hypothesis vs. the fully functional hypothesis.
The probability of false alarm setting that was used would roughly give us one false alarm for every
100 tests, so to get one false alarm for a set of 48 tests does seem reasonable.

Sensor failures showed mixed results. The failure of sensors that have very little
measurement noise was identified quite readily, but the two sensors that have the most measurement
noise show several false alarms. This algorithm was developed under the assumption that the
covariance of the test statistic was the same for all of the hypotheses. This is true for the actuator
failures, but not necessarily true for the sensor failures. If the sensors have very little measurement
noise, then the covariance of the test statistic, for that particular hypothesis, is essentially equal to
the covariance for an actuator failure hypothesis. If the sensor has a large amount of measurement
noise, then the covariance matrix will differ greatly from the covariance matrix for an actuator failure
hypothesis. We believe that the different covariances are the reason for the large number of false
alarms for these sensor failure hypotheses.

The failure identification performance for this structure was tested using the range of inputs
from the previous sections, and the results are tabulated in the Table 15. The plot of those results
(Figure 42) shows that this structure performs quite well, especially when compared with the SKFB-
SHTA, Figure 32, and RCKFB-SHTA, Figure 40 (except for small input strengths). Note that this
algorithm identifies the failure much more quickly than the other structures, until the input reaches
0.05 times the original input, and then the performance drops off quite rapidly. We found an
increase in false alarms for input levels below the 0.05 multiplier. It appears that the 0.05 multiplier

level is the minimum input strength needed to provide good failure identification performance. Note
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that this structure's performance remains relatively constant with input strength, until it reaches this
minimum input.

In particular, note that the rudder failure identification performance does not reflect the drop
in performance as the input strengthens, like we saw for the other two structures. The basis of the
SHTA is that the correct residual is small compared to the residual from the incorrect filters. We've
seen that, if the failure occurs when the appropriate residual is near a peak, the failure identification
is delayed. This algorithm computes a time history of the residual, based on a certain hypothesis, and
then compares the measurement history of the residual to the computed time history (if the
distinguishability is great enough) to determine which hypothesis is cbrrect. Thus, the algorithm
does not have to wait until the residual decéays before it can identify the failure. It is possible that this
algorithm could suffer from the failure injection timing problems that were described for the SHTA.
If the failure occurs just after the discrimination measure was reset, when the discrimination measure
grows large enough to trigger a test, the test statistic will not have grown as large as it would have if
the failure had actually occurred right when the discrimination measure was reset. Thus, the NPHTA
could miss the change in hypothesis (missed detection) when the test is conducted. The
discrimination measure and test statistic would be reset, and they would build appropriately to
identify the failure on the next test. We observed that actuator failure hypothesis tests were triggered
about every 5 - 10 time samples and sensor failure hypothesis tests were occurring about every 1-5
data samples. Thus, it is possible that the failure identification could be delayed about 0.2 seconds
beyond the best detection time. This compares quite favorably with the range in detection times that
were found using the SKFB-SHTA structure, shown in Figures 36, 37, and 38. A similar analysis of

the timing differences needs to be accomplished for this structure, in the future.
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Table 15

SKFB-NPHTA Actuator Failure Identification Performance, 10-Test Sample Average.

Input Elevator Failures Aileron Failures Rudder Failures
Multiplier (sec) {sec) (sec)
1.00 0.21 0.17 0.29
0.25 0.32 0.28 048
0.1 041 0.44 0.53
0.075 0.52 0.51 0.60
0.0625 0.59 0.53 0.63
0.05 0.82 -- 0.73 -- 0.69--
0.025 1.93 -- >8-- 1.17--
0.016 >8 -- >8 -- 2.66 --
0.01 >8 -- >8-- >8--
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Figure 42. Actuator Failure Identification Performance for the Standard
Kalman Filter Bank (SKFB) with a Neyman-Pearson Hypothesis Testing
Algorithm (NPHTA).
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444 rative Failure Identification Perfi nce. We used the failure

identification performance data shown in the last three sections to compare the performance for the
various structures. The elevator failure identification performance of all three structures is shown in
Figure 43. Similarly, the performance for an aileron failure is shown in Figure 44, and the rudder
failure identification performance is