
rtß-oio-104 
bsrb-~m-04-7b 

Signal Processing Methods for 

Gearbox Fault Detection 

Simon Rofe 

sun 

19970429 153 

APPROVED FOR PUBLIC RELEASE 

(£)   Commonwealth of Australia 

DEPARTMENTOF    DEFENCE 

DUO QüAUTY INSPECTED 1 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 



i THE UNITED STATES RATIONAL 
.J 

| TECHNICAL    INFORMATION    SERVICE 
1  IS   AUTHORISED   TO 

I Fi£PRODUOc AND SEL.L THIS REPORT 



Signal Processing Methods for Gearbox Fault 
Detection 

Simon Rofe 

Airframes and Engines Division 
Aeronautical and Maritime Research Laboratory 

DSTO-TR-0476 

ABSTRACT 

Methods of accounting for load variation in vibration signals from helicopter 
transmission systems are presented. These methods are based on autoregreassive 
moving-average (ARMA) models, and several ARMA parameter estimation schemes 
are presented. Simulations of load variation are carried out, and a prediction error 
filter, based on the ARMA models, is used to generate a residual signal. Fault indices 
extracted from the residential signal are used to indicate the presence or absence of a 
fault. The results of the simulations suggest that this method of fault detection is able 
to detect both general and local fault conditions. 
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Signal Processing Methods for Gearbox Fault 
Detection 

Executive Summary 

Current vibration-based techniques used for gearbox fault detection rely on analysis 
of signals captured under fixed load and fixed speed conditions. While helicopter 
gearboxes operate nominally at fixed speed, they do not operate under fixed load. If 
such fault detection techniques are to be implemented as part of self-contained on- 
board systems, then adaption to, or accounting for, load variation is a necessary 
requirement. This report details the signal processing methods which are able to 
account for load variation. 

Several methods of linear modelling are introduced. These techniques enable the 
vibration signals recorded from helicopter transmission systems to be modelled. The 
aim is to identify a suitable model of the gearbox vibration signals under normal 
operating conditions, which is able to be adjusted to meet variations of the load 
imposed on the gearbox. Once a suitable model is established, the vibration signal 
recorded from the gearbox is compared with the signal produced by the model. 
Various signal characteristics (referred to as fault indices) are derived from this 
comparison as a means of deciding if a fault is present or not. 

The results of several simulations show that this type of linear modelling provides a 
useful means of both accounting for load variation, and detecting the presence of 
faults. 
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1    Introduction 

Current vibration-based techniques used for gearbox fault detection rely on analysis of 
signals captured under fixed load and fixed speed conditions. While helicopter gearboxes 
operate nominally at fixed speed, they do not operate under fixed load. If such fault 
detection techniques are to be implemented as part of a self-contained on-board system, 
then adaption to, or accounting for, load variation is a necessary requirement. 

Initial investigations of gearbox vibration signals indicate that load variation acts to 
change the signal characteristics in a non-linear manner. This implies that spectral and 
statistical properties of the vibration signal vary non-linearly with load. Consequently, 
adaption to load variation cannot be achieved by simply normalising the signal with respect 
to the load, or some signal feature which is proportional to load. 

This report details signal processing methods which are able to account for load vari- 
ation. 

One of the difficulties in attempting to account for load variation in the vibration 
signal is that it is not possible to use a strictly adaptive method. Such methods usually 
derive an error signal from the actual vibration signal, and a mathematical model used 
to predict the vibration signal. This error is then used to adjust the model parameters in 
order to reduce the error power. A problem arises when a fault occurs in the system, in 
which case, the model will be adjusted not only to account for the variation in load, but 
also to any change in system dynamics due to the fault. The aim, then, is to account for 
load variations while maintaining the ability to detect faults. 

2    Signal Model 

The signal processing methods used herein essentially involve modelling the signal of 
interest, and adjusting the model parameters appropriately, to account for varying load 
conditions. The underlying model may be either (1) linear or (2) non-linear. While the 
theory of linear models is well established, non-linear models have found prominence in 
recent years [7, 9, 10, 11, 15, 24, 25]. 

There are many types of non-linear models including non-linear networks, bilinear 
models and Volterra series. Due to their complexity, and the computational burden, non- 
linear models should only be used if absolutely necessary. Conversely, linear models are 
much easier to implement, and require less computational effort. In this report only linear 
models will be considered, however, the techniques are readily extended to non-linear 
models. 

One of the most general linear models is the autoregressive moving average (ARMA) 
model. Such models have been used in fields as diverse as economic forecasting, seismology, 
speech processing, array processing and adaptive filtering [13, 14, 16, 19, 20, 21, 22]. 
ARMA models are also widely used in control theory. 
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2.1    General Linear Signal Model 

The signal under investigation is recorded from an accelerometer mounted externally 
on the gearbox. Since the measured vibration signal is stochastic (as opposed to determin- 
istic), it is convenient to model it as a white noise process passed through a linear filter 
with a rational spectral density function as shown in figure 1. Here {x[n] : n = 1,2,.... N} 

lite noise Vibration 
input B(z) 

A(z) 

signal 

v[n] x[n] 

Figure 1: Vibration signal model. 

is the recorded vibration signal sequence and [v[n] : n = 1,2,..., .V} is a Gaussian dis- 
tributed random sequence with zero mean and variance a^ (often it is assumed a^ = \ for 
convenience). The polynomials A{z) and B(z) represent the poles and zeros, respectively, 
of the linear system. If 

A(z) = 1 (1) 

the model consists entirely of zeros and is known as a moving average (MA) process. 
Alternatively, if 

B(z) = 1 (2) 

the model consists entirely of poles, and is known as an autoregressive (AR) process. Both 
A(z) and B{z) are assumed to be polynomials in z (the forward shift operator) of finite 
order, and share no common factors. 

It is generally accepted [4, 13, 14, 16] that AR models are suited to processes which 
exhibit peaks in the power spectral density function, and MA models are suited to processes 
which exhibit notches in the power spectral density function. Although the AR and MA 
models (individually) are able to represent a broad range of signals over an arbitrary 
large frequency range, the ARMA model is able to achieve this with a smaller number of 
parameters. 

It is important to note a fundamental difference between signal processing and control 
applications; viz., the properties of the signal v[n]. In general signal processing applica- 
tions, access to v[n] is unavailable, and it is assumed to consist of a Gaussian distributed 
process as described above. In control applications, however, v[n] is often a deterministic 
function, of which access is generally available. Access to v[n] makes the identification of 
the model B(z)/A(z) simpler than if it is not available. Additionally, for Gaussian v[n], 
B(z)/A(z) is assumed to be a stable minimum-phase system (poles and zeros are inside 
the unit circle). 

2.2    Fault Signal Model 

The linear signal model above describes the process under normal operation (free from 
any fault). The fault may be incorporated by adding a signal which describes the action 
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of the fault, 
s[n] = J/N + <* z[n\ (3) 

where y[n] is the signal recorded during normal conditions, z[n] is the signal due to a fault, 
and a = 0 if normal operation or a = 1 if operation under fault conditions. Figure 2 shows 
this graphically. The sequence {w[n] : n = 1,2,..., N} is Gaussian distributed with zero 

Fault model 

White noise input 
w[n] 

C(z) 

White noise 
input 

<> 

Vibration 
signal 
 >- 

x[n] 
v\n\ 

Figure 2: Fault signal model. 

mean and variance o\. Additionally, {w[n]} and {w[n]} are assumed to be independent. 
The polynomials C(z) and D(z) describe the spectral characteristics of the fault signal 
sequence. 

3    Accounting for Load Variation 

The simplest method of accounting for load variation is to adjust the model parameters 
with respect to the load. This is illustrated in figure 3. 

Load 
^ 

u[n] x[n 

<*. 

Figure 3: Adaptive parameter scheme. 

This requires the model parameters to be identified as a function of the load. The 
model may then be written as 

where the variable £ is introduced to represent the dependence on load. 

This scheme requires either the parameter variation to be determined as a function 
of load, or more simply, parameters to be identified for a series of different loads C[^] = 
Lmini • ■ • > Lmax where Lmj„ and Lmax are the minimum and maximum loads of interest. 
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It will be necessary to determine these parameters from vibration signals which are known 

to be fault free. 

4    Parameter Estimation 

One of the important requirements in using the modelling techniques described above 
is estimating the model parameters. These model parameters must be estimated from the 
gearbox vibration signal. There are several techniques for ARMA model estimation, and 

in the following four such methods are described. 

It is well established [4, 13, 14, 16] that the estimation of the AR parameters involves 
a set of linear equations, whereas the estimation of the MA parameters is a non-linear 
problem. The latter of these is the more difficult to solve. 

The first three methods presented below differ in the way they estimate the MA pa- 
rameters of the model. They are also static estimators as they operate on a single data 
block. The fourth technique uses a recursive least squares algorithm to estimate the AR 
and MA parameters concurrently. It is also an adaptive algorithm since it updates the 

parameters continuously. 

4.1    Kay and Marple Methods 

The books by Kay and Marple [13, 16] present several methods of ARMA parameter 
estimation. Although the general motivation is spectral estimation, these methods are 
also applicable to system modelling and linear prediction. Two methods are presented in 
which the AR and MA parameters of the ARMA model are estimated separately. These 
are referred to as the modified Yule-Walker equations and the least squares modified Yule- 

Walker equations. 

The general form of a rational polynomial ARMA model is 

x[n] = -J2 a[k]x[n - Ä] + £ &[*M" ~ *]> (5) 

fc=i fc=i 

where v[n] is a Gaussian distributed white noise process, and a[k] : k = 1,2,... ,p are the 
autoregressive parameters and b[k] : k = 1,2,..., q are the moving average parameters for 
and ARMA(p,q) process. Multiplying equation (5) by x[n - k] and taking the expected 

value gives 

RxM = - £ a[l]Rxx[k - 1] + E b[l]R^[k - I], (6) 
i=i i=i 

where Rxx[k] is the autocorrelation of the output sequence x[n] and 

Rxv[k] = E {v[n]x[n - k]} = E {x[n]v[n + *:]} . (7) 
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Now RxV[k] = 0 for k > 0, since x[n] = £"=-00 h[n - l)v[l] is the output of a causal filter 
and clearly depends on {v[n], v[n — 1],...} which is uncorrelated with v[n + k] for k > 0. 
Thus 

■tCxx l™} 

J2 a[l]Rxx[k -l] + J2 b[l]Rxv{k -I)    for k = 0,1,..., q 
l=\ 
v 

1=1 (8) 
for k > q + 1 -^a[l]Rxx[k-l] 

i=i 

The above relationship shows there is a non-linear relationship between the autocorrelation 
function and the ARMA parameters. This is due to the J2qi-i b[l]Rxv[k — I] term. If only 
the equations for k > q are used, then this term may be omitted. This may then be 
written as the set of linear equations 

Rxx[q] 
Rxx[q + 1] 

Rxx[q-l] 
Rxx[q] 

Rxx[q-p + i] 
Rxx[q-p + 2] 

a[l] 
a[2] 

a\p) 

Rxx{q + l] 
Rxx[q + 1] 

. Rxx[q + p] 

(9) 

Rxx[q+P~l]    Rxx[q + P-2]   ■■■ Rxx[q] 

These are known as the modified Yule-Walker equations. These equations involve the 
actual autocorrelation function which is not generally known. A reasonable approach is 
to replace the theoretical autocorrelation function by an either the biased estimate 

N-k 1 
Rxx[k] = -rz ]T x[n]x[n - i], 

N i=l 

or the unbiased estimate 

•Ra;i[Kj — N-k 

N-k 

E x\n\x\n —1\. 

(10) 

(11) 

4.1.1    Modified Yule-Walker Equations 

The modified Yule-Walker equations may be solved by using an extension of the Levin- 
son [13, 16] algorithm to give estimates of the AR parameters {a[l],o[2],... ,a[p]}. The 
recursive algorithm is initialised by setting 

-Rxx[q+ 1] 
fll[l]   = 

Mi]  = 

Rxx[q] 

-Rxx[q -1] 
Rxx[q] 

Pl   =   (l - a^lMi}) Rxx[q], 

Then recursion for k = 2,3,... ,p, 

-Rxx[q + k] + Ef=/ ak-i[l}Rxx[q + k - 1} ak[k] 
Pk-i 

ak[i\    =    Gfc-iM + a>k[k]bk-i[k - i]     i = 1,2,..., k - 1. 

(12) 

(13) 
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If k = p, the recursion is stopped, otherwise 

b [k]    =    -Rxx[q -k] + Ezti1 bk^[l)Rxx[q - k - I] ^ 

Pk-i 

(14) 
ak\i]   =   bk-i[i\ + h[k]ak-i[k - i]     i = 1,2,... ,k - 1, 

Pk   =    (1 - ak[k]bk[k]) pk-i- 

The solution is then a[k] = ap[k] :k = l,2,...,p, and the error variance a2 = pp. 

Following the estimation of the AR parameters, the data are filtered with the estimate 
ofA(z), 

Ä(z) = ä[l]z~l + a[2]z-2 + ... + ä\p]z-p, (15) 

giving, 

y[n] = -jr,a[k]x[n-k] (16) 

Durbin's method [13, 16] is applied to this filtered data to estimate the MA parameters 
{b[l], b[2],..., b[q]} and the white noise variance a2. 

Durbin's method consists of the following two steps, 

1. Using the data, {y[l],y[2],... ,y[N]}, fit a large order AR model using the autocor- 
relation method (based on the Levinson algorithm). For an AR model of order L, 
where q <S L <C N, the white noise variance estimator is given by 

L 

<72 = iWo] + £ä[A;]£*xM- (17) 

2. Using the AR parameter estimates obtained in step 1 as the data {a[l], a[2],.... a[L]}, 
use the autocorrelation method with an order q to find {&[!], b[2],..., b[q]}. 

4.1.2    Least Squares Modified Yule-Walker Equations 

To reduce the variance associated with the modified Yule-Walker equation estimator 
described above, it is possible to utilise more of the available equations. Since for an 
ARMA(p, q) process 

p 

Rxx[k} = Y,a\i~\R™[k-i]        k>q + l (18) 
i=i 

the choice of only using p equations in (9) is arbitrary.   The motivation for extending 
this number of equations is that the autocorrelation function contains information beyond 
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the p lags used in equation (9) [4]. Assuming that the highest lag of the autocorrelation 
function which may be estimated is M, consider the following set of equations, 

(19) 

RXx[q + l] 
Rxx[q + 2] 

Rxx[q]       Rxx[q-l]    ■ 
RXx[q +1]       Rxx[q] 

■ ■   Rxx[q-p + i] 
..   Rxx[q-p + 2] 

-a[l] 
a[2) 

Rxx[M] _Rxx[M-l]   Rxx[M-2]   . ..     Rxx[M-p] . a\p] 

or in matrix fori n 
r = -Ra. (20) 

With R of dimension (M — q) x p, and assuming M — q > p, there will be more equa- 
tions than unknowns. Also, since the actual autocorrelation is replaced by an estimate, 
allowance must be made for estimation error. If equation (20) is re-written as 

f = —Ra + e, 

then a least-squares solution for the AR parameters [13, 18] is given by, 

ä = -(RTR)_1RTf. 

(21) 

(22) 

The estimator is asymptotically unbiased and has variance which usually decreases as 
M — q (the number of equations) increases, provided N ^> M — q. 

To determine the MA parameters and white noise variance estimate, Durbin's method 
may be used (as described above), again after filtering with the estimate of A(z). 

4.2    Mayne Firoozan Method 

The Mayne-Firoozan method of ARMA parameter estimation [17] fits a high order 
AR model to the data, then filters the data with the inverse of this model as a means 
of estimating the white noise process. This filtered data are then used in conjunction 
with the original data to determine an ARMA input/output model via a least squares 
estimation. 

The process consists of 5 steps, 

1. Determine A(z), the value of A(z) which minimises 

N N 

J2 [Az)y[k]}2 = E \v M + a^k -!] + ■■■ + <*My[k - M}}2 , (23) 
fc=l k=l 

where M S> p. 

2. Determine the residual sequence e[k] :k = l,2,...,N using 

e[k) = A(z)y[k]. (24) 
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3. Determine Äl(z) and Bl{z), the values of A(z) and B{z) which minimise 

N N 

Y/[A(z)y[k)-B(z)e[k}}    =    '£[(y[k]-e[k]) + {a1,...,ap,b1,---bP) 

x(y[k - 1],...,y[k - p]e[k - 1],..., e[k - p])}2 . 

4. Determine the filtered sequences {y} and {e} using 

B{z)y[k\    =   y[k], 

B(z)e[k]   =   e[k]. 

5. Determine A2(z) and B2(z), the values of A(z) and B(z) which minimise 

N N 

J2[A{z)y[k]-BW[Q]    =    E K»[*]-c[*]) + (oi.---»ap.*i."-6p) 

x(y[k -l],...,y[k- p]e[k - 1],..., e[k - p])]2 . 

(25) 

(26) 

(27) 

Steps 1, 3 and 5 are accomplished using a linear least squares estimate. Steps 4 and 5 
are added to improve the consistency of the parameter estimates. 

4.3    Stochastic Recursive Least Squares 

The recursive least squares algorithm is used widely in adaptive control [1, 2, 12] and 
adaptive filtering [8], as a method of continuously updating model parameters as new 
data are received. In both these fields, however, access is available to the system (or 
filter) inputs and outputs. As noted previously, in vibration analysis there is generally no 
input signal available, thus the least squares algorithm requires a slight modification [12] 
to produce a stochastic recursive least squares algorithm. The algorithm is summarised 
below, and a detailed derivation is presented in Appendix A. 

The parameterised model is written in the form 

y[n] = ipi [n]6i + <p2[n]Ö2 + ■■■ + <PM[n]6M, (28) 

where the model parameters are, 

6 = [aia2...apbib2...bp], (29) 

ie., M = 2p. The system outputs, y[n], and estimated inputs, v[n] are augmented to form 
the array, 

ipT[n] = [y[n - l]y[n - 2]... y[n — p]v[n — l]v[n -2]...v[n — p}}. (30) 

The array of outputs used in the above model up to time n is then 

V[l] 
»[2] 

y[n] 

J/[2] 
Y[n)=     y[/     , (31) 
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and the model error is defined as, 

e[n]    =   y[n] - y[n] 

=   y[n] - <PT[n}9, 

(32) 

where y[n] us the estimate of y[n] based on the estimated parameters 6.   The array of 
errors may be defined as 

E[n] = 

e[l] 
e[2] 

e[n] 

= Y[n]-cf>[n}9, (33) 

where, 

#*] = 
\ipT[n] J 

with ip[n] = 

<pnn\ 
ip2[n] 

<pp[n] 

(34) 

Or in terms of the outputs and estimated inputs, 

W[0] -y[-i]    • •   -y[i-p] v[0] v[-l)      . ■■    v[l-p] 
2/[l] -J/[O]     • ■   -VP-P] v[l] v[0]       . ••    v[2-p] 

—y[n — 1]    — y[n — 2]    ...    —y[n — p]    v[n — 1]    v[n - 2]    ...    v[n — p] 

For simplicity in the algorithm, define the matrix 

P[n]=[cfr[n}4>[n}]~1. 

The least squares recursive algorithm for estimating the parameter vector 6 is 

1. Determine K[n] (refer to Appendix A for details), 

K[n) = P[n - l]ip[n] [i + <pT[n)P[n - l]tp[n]] ^ , 

(35) 

(36) 

(37) 

where I is the identity matrix. For a single input single output system, this reduces 
to 

P[n - l]tp[n] 

The matrix K [n] is often referred to as the Kaiman gain matrix [8]. 

2. Update the estimated parameter vector 9 

e[n] = 6[n - 1] + K[n] [y[n] - <pT[n]9[n - 1]] . 

(38) 

(39) 
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3. Update the matrix P[n] 

P[n] = [I- K[n]<p[n]] P[n - 1]. (40) 

The procedure is initialised by setting 

P[0] = 

a 0 ... 0 
0 a ... 0 

: : ■•• 0 
0 0 ... a 

= al, (41) 

for some large a. 

The above algorithm assumes knowledge of the input sequence, which is unavailable for 
a stochastic model. However, since the prediction error for a stochastic model is analogous 
to the Gaussian distributed input sequence, it may be used as an estimate of the input 

sequence, 
v[n] = e[n] = y[n] - <pT[n]e[n - 1]. (42) 

To initialise, the error sequence is assumed zero for n < 0 ie., v[n] = 0. Additionally, the 

initial parameter vector is also set to zero, 0[O] = 0. 

5    Fault Detection Condition Indices 

In order to determine the presence or absence of a fault, some signal feature or condition 
index must be determined. These are generally a numerical value derived from, say, the 
statistics of the vibration signal. Empirical analysis and experience allow ranges of these 
values for which acceptable and unacceptable operation may be defined. 

5.1    Current Methods 

At AMRL, the use of synchronous signal averaging has been fundamental to the ability 
to detect faults on individual gears within a gearbox. The approach used is to average 
segments of the vibration signal which correspond to one shaft rotation. Such ensemble 
averaging allows signal frequencies which are synchronous with the shaft period for that 

gear to be isolated from all other signals. 

The signal average contains a large amount of information which is redundant to the 
aim of fault detection. This is essentially contained in the gear meshing frequency and its 
harmonics, as well as a smaller amount at the fundamental shaft rotation frequency, and 
its modulation with the meshing harmonics. The latter may be due to imbalances in shaft 
rotation (perhaps caused by shaft misalignment). However, this once-per-rev component 
may be a vital factor once localised faults propagate sufficiently as shown by Forrester [6]. 
For example, a defect on a single gear tooth will have a prominent once-per-rev component 
each time it comes into mesh, provided the effect of this fault exceeds that due to shaft 
imbalances. Thus there is a trade-off in removing the once-per-rev component. 

10 
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The information is redundant in terms of fault detection since it is relevant to the gear 
meshing only, and contains no information relevant to the fault. Hence it may be removed 
as a means of enhancing sensitivity to faults. 

Removal of the tooth meshing harmonics, as well as the once-per-rev and possibly 
twice-per-rev modulation of these, produces a residual signal average. Clearly this residual 
signal average would be more useful for fault detection analysis, and some fault indices 
used at AMRL are based on this premise. 

Current condition indices used at AMRL [3, 5] have been found by experience to be 
useful indicators of various types of gearbox faults. The indices are of two basic types: (1) 
general and (2) local. General indices are sensitive to general faults, such as wear on all 
teeth; whereas local indices are sensitive to localised perturbations, such as changes in the 
stiffness of a single tooth on a gear. The indices used at AMRL are summarised below. 

Bl Amplitude of the shaft frequency. 

Al Amplitude of 2 x shaft frequency. 

Gl RMS of the signal average. 

G2 RMS of the residual signal average divided by the RMS of the signal average. 

G3 The peak level of the envelope of the narrow band around a mesh harmonic divided 
by the RMS of the mesh harmonic. 

LI Kurtosis of the residual signal. 

L2 Kurtosis of the envelope of the narrow band around a mesh harmonic. 

L3 Kurtosis of the instantaneous frequency of the modulated signal. 

5.2    Methods for Diagnosis 

As described above the use of synchronous signal averaging and removal of gear mesh 
harmonics allows the removal of a large amount of redundant information (at least in 
terms of fault detection). The signal averaging process enables frequencies relevant to 
the particular gear of interest to be extracted from those due to other gears (provided, of 
course, other gears do not have rotation frequencies and harmonics common to that gear). 
Further to this, the residual signal average removes the gear meshing harmonics which are 
of little interest to fault detection. 

With this in mind, and the use of ARMA modelling as a means of accounting for 
load variation, the residual signal obtained from the model appears intuitively to offer the 
most promise as a means of fault detection. The residual signal, in this case, is just the 
difference between the measured vibration signal, and the one-step-ahead prediction based 
on the estimated ARMA model, 

e[n]    =   x[n] — x[n] 

=   x[n] + ^a[k]x[n-k]-Y^b[k]v[n-k] ^43) 

fc=i fc=i 
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It should be stressed that the residual signal here is not the same as the residual signal 

average1. 

Since the ARMA model attempts to model the dynamics of the process, the residual 
signal is ideally a Gaussian distributed random process of variance a2, ie., it is equivalent 
to the input of the ARMA model. To clarify this, the ARMA model is defined as a 
Gaussian process passed through a linear filter of the form B{z)/A{z). Using this model 
to predict the output, the error must be equivalent to the noise input since this is the part 

of the signal which cannot be predicted. 

Once a fault is introduced, the structure of the process model changes. Thus using 
a predictor based on a fault-free process will change the residual signal from Gaussian 
noise to coloured (filtered) noise since there will be un-modelled dynamics due to the 

introduction of the fault. 

From a different perspective, but conceptually the same, the residual signal is akin to 
the process of synchronous signal averaging and removal of the gear mesh harmonics as 
described above. The most notable difference is that the latter uses ensemble averaging 
whereas the former does not. The residual signal consists of the original signal minus 
the identified process dynamics. Hence removal of the redundant information is similarly 

achieved. 

The residual signal, then, provides the most obvious means of detecting the presence 
of a fault. Statistical properties and the power spectral density offer the best means of 
extracting information, from this signal, which may be used to detect faults. 

Coherent signal averaging offers another advantage hitherto unmentioned. That is it 
provides a convenient description of the signal from a particular gear. In a crude sense, 
ensemble averaging compresses the information recorded over many minutes into a short 
data record, which describes the rotation of a single gear, and this is primarily what we 
are interested in. Application of synchronous signal averaging to the residual signal from 
the ARMA model will then enable extraction of information pertinent to the rotation of a 
single gear, particularly if localised faults are present, since (ideally) all other information 
has been removed. In this case, current fault indices based on the residual signal average 
may be use on the signal average derived from the ARMA model residual signal. 

The use of ARMA modelling, then, enables load variation to be accounted for, and the 
residual of the model provides the means of detecting faults. 

6    Simulations 

In this section a simple ARMA time-series is generated to simulate a linear process. 
To simulate varying load conditions, the poles and zeros of the model will be altered in 
steps.  To simulate the action of a fault, a second ARMA time-series is generated, and 

lrrhe residual signal average is the ensemble average of the vibration signal with the meshing harmonics 
removed. The residual signal in this case is the output of a prediction error filter, and no ensemble averaging 
is applied. 

12 
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added to the first for a short period of time. Since the dynamics of the fault are also likely 
to change with varying load, the poles and zeros of the fault signal are also varied with 

load. 

The following simulations are intended only as an illustration of how load variation may 
be accounted for, and how fault detection is possible. Further work using data recorded 
from the AMRL gear test rig will appear in a subsequent report. 

6.1    General Time Series Simulation 

To generate ARMA time-series examples with a known transfer function, it is necessary 
to separate the AR and MA sections of the model. Consider the ARMA time-series model 

of equation (5) 

x[n] = - £ a[k]x[n -k] + f^ b[k]v[n - k], (44) 
k=\ k=l 

where {v[k] : k = 1,2,... ,p} is a Gaussian distributed white noise process. Since the 
AR section requires knowledge of x[n] for n < 0 (and this is clearly not available) it is 
necessary to determine appropriate initial conditions. This is achieved by setting [13] 

' y/p^O] for n = 0 

J/N = { -J2an[l]y[n-l] + ^vM    forn = l,2)...,p-l   ' (4o) 

where <n\j] is the tth prediction coefficient for the jth order model, and pj is the prediction 
error power for the jth order model. This requires an additional p - 1 sets of prediction 
coefficients (for the predictors of order 1,2,... ,p - 1) which may be derived from the pth 

order AR model by [13] 

flfc_lW    =    aM-ak[k)a,[k-i] for , = lj2>... ,^ _ i   fc = p - l,p - 2,..., 1 

*-' = T^PIF     ^-'-i.'-*.--1- (46. 

With the above initial conditions set, the remaining data for the AR model may be 

generated using 

v 
y[n} = -Y/a[n]y[n-k] + ^v[n]        n = p,p + 1,... ,N + q, (47) 

fc=i 

where JV is the total number of time-series samples required. 

Filtering the AR time-series {y[n} : n = 1,2,..., JV} with a finite impulse response 
(FIR) filter consisting of coefficients equal to the MA coefficients will then produce the 

required ARMA time-series, 

q 

x[n] = X b[k]y[n - k]       n = q,q + 1,... ,7V + g. (48) 
fc=i 
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Note that a delay of q samples is required to ensure the filter is initialised. 

This ARMA time-series is completely described by its ARMA parameters {a[k] : k 
1,2,... ,p} and {b[k} : k = 1,2,..., q} as well as the prediction error power pp. 

6.2    System Model and Fault Simulation 

Since the fundamental frequency components of the vibration signal due to gear mesh- 
ing are directly related to the shaft rotation frequency, then load variation will not change 
these. Hence, the argument (angle) of the model poles and zeros in the ^-domain will 
remain the same. It is, however, possible that the damping of the poles and zeros (distance 
from the origin) may change with load. 

The simple system model, for illustrating how load variation may be accounted for, 
consists of two pairs of complex conjugate poles, and a double real zero, as shown in 
figures 4 and 5. Note that the two figures show the initial and final load positions. Also, 
the double zero appears only once on the real axis. To simulate load variation the poles 
and zeros are moved from the initial position (figure 4) to the final position (figure 5) in 
five steps. 

Real Axis 

Figure J^: Initial system poles and zeros. Figure 5: Final system poles and zeros. 

Previous analysis of vibration signal from helicopter transmission systems with dam- 
aged teeth [5] has shown that the fault appears, predominantly, at the second and higher 
order harmonics of the tooth-meshing frequency. To exaggerate this, for illustration pur- 
poses, the fault signal is simulated as a pair of complex conjugate poles, and a single zero 
in the left hand plane of the -E-domain. These are shown in figures 6 and 7. Again load 
variation is simulated by moving the poles and zero away from the origin towards the unit 
circle in five steps. In addition, a low signal-to-noise ratio is achieved by setting the white 
noise variance used to generate the fault time-series to one tenth that of the system signal. 

The spectra of the system and fault processes are shown in figures 8-11. Note that the 
magnitude of the system spectra are significantly greater than that of the fault spectra. 
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Real Axis 

Figure 6: Initial fault poles and zero. 

Real Axis 

Figure 7: Final fault poles and zero. 

These spectra are determined from the actual ARMA parameters using, 

WARMAVH - 1 + Yfk=i a[k)e-i2*fk' 
(49) 

7000 ■■ 
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Normalised Frequency 

0      0.05     0.1     0.15     0.2    0.25     0.3     0.35     0.4     0.45     0.5 
Normalised Frequency 

Figure 8: Initial system ARMA spectra. Figure 9: Final system ARMA spectra. 

Figures 12 and 13 show 30,000 samples of the system ARMA simulation to which has 
been added 10,000 samples of the fault signal in the sample range 10,000-20,000. From 
these figures the location of the fault is not apparent in either of the simulations. 

Since the kurtosis provides a measure of localised faults, a series of impulses with a 
magnitude of 10.0 is added to the fault signal. The impulses are spaced 100 samples apart. 
Time-series simulations for the initial and final load conditions are shown in figures 14 and 
15. Again the location of the fault is not distinguishable, despite the additional impulses 
with a magnitude of 10.0. 
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0.05     0.1     0.15     0.2     0.25     0.3     0.35     0.4    0.45     0.5 
Normalised Frequency 

0      0.05     0.1     0.15     0.2     0.25     0.3     0.35     0.4     0.45     0.5 
Normalised Frequency 

Figure 10: Initial fault ARMA spectra. Figure 11: Final fault ARMA spectra. 

10O00   15000   20000 
Samples 

Figure 12:   Initial system and fault signal   Figure 13:   Final system and fault signal 
time-series. time-series. 

Figure 14:   Initial system and fault signal   Figure 15:   Final system and fault signal 
time-series with impulses. time-series with impulses. 
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6.3    Fault Detection 

To test both general and local fault detection indices, the variance (equivalent to the 
RMS) and kurtosis of the residual signal are to be determined. To generate the residual 
signal, a prediction error filter is formed using the ARMA model. A diagram is shown in 
figure 16. 

y[n] 

Vln\ 

2/M X +    £En] 
ii 

Figure 16: Prediction error filter block diagram. 

For the data generated above in Section 6.2 an ARMA(2,2) model is estimated, and 
a prediction error filter, as shown in figure 16, is formed using the parameter estimates. 
Figures 17 and 18 show the residual signals determined from the initial and final fault 
signal time-series shown in figures 12 and 13. In figure 17 a small increase in signal 
magnitude can be seen from 10,000-20,000 samples (the location of the fault), however, 
the increase is far more evident in figure 18. This suggests that some measure of the signal 
magnitude will be suitable for detecting a fault. The reason that the increase is greater 
for the final fault signal is that the poles and zeros of the fault signal model are closer 
to the unit circle. This has the effect of creating a sharper notch in the power spectral 
density, and increasing the magnitude of the fault signal (compare figures 10 and 11, and 
note the differences in the magnitude scales). 

Applying the same prediction error filter to the time-series with impulses added to the 
fault signals give the results shown in figures 19 and 20. In this case both the initial and 
final fault signal residual signals show a significant increase in magnitude at the location 
of the fault. The greater discrimination here is essentially due to the impulses, which are 
not accounted for by the ARMA model (since they are part of the fault signal). 

Figures 21-25 show the variance of the residual signal for each of the fault signal time- 
series as described above. The variance was determined by averaging over 1,000 samples 

17 



DSTO-TR-0476 

5000    10000   15000   20000   25000   30000 
Samples 

10000   15000   20000 
Samples 

25000   30000 

Figure 17: Residual signal from initial fault  Figure 18:  Residual signal from final fault 
signal time-series. signal time-series. 

5000 10000 15000 20000 25000 30000 
Samples 

5000 10000 15000 
Samples 

10000 25O0O 30000 

Figure 19: Residual signal from initial fault   Figure 20:  Residual signal from final fault 
signal time-series with impulses. signal time-series with impulses. 
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using a sliding block approach. Here, the variance is determined over the block of 1,000 
samples. Then as each new sample is added to the start of the block, one sample is 
discarded from the end, and the variance is determined for the new data block. This gives 
the variance over the averaging time (of 1,000 samples) as a function of samples (or time). 

Note that despite there being little discrimination between normal and fault conditions 
in the residual signal of figure 17 (for the initial fault signal), figure 21 shows a clear 
distinction from 10,000-20,000 samples. This is a consequence of the averaging process 
used in determining the variance. 

ii - 

10- 

9- 

-vVV 
0     5000    10000   15000   20000   25000   30000 

Samples 

Figure 21:  Variance of residual signal from   Figure 22:  Variance of residual signal from 
initial fault signal time-series. second fault signal time-series. 

w^J\ 
0     5000    10000   15000   20000   25000   50000 

Samples 

6-A H\/ rv\^ 
0     5000    10000   15000   20000   25000   30000 

Samples 

Figure 23:  Variance of residual signal from   Figure 24:  Variance of residual signal from 
third fault signal time-series. fourth fault signal time-series. 

Figures 26-30 show the variance determined for the residual of the fault signal time- 
series with impulses added. It is evident that the addition of impulses allows a greater 
discrimination between normal and fault conditions. This should be understood by com- 
paring the residual signals of figures 17 and 19, which show that the impulses lead to a 
significant increase in the magnitude of the residual signal when the fault is present. 

Figures 31-35 show the kurtosis of the residual signal for each of the fault signal time- 
series described previously. A similar sliding block approach, as described previously, is 
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O-i- 
o 5000 10000 15000 20000 25000 30000 

Samples 

Figure 25:  Variance of residual signal from   Figure 26:  Variance of residual signal from 
final fault signal time-series. initial fault signal time-series with impulses. 
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Figure 27:  Variance of residual signal from   Figure 28:  Variance of residual signal from 
second fault signal time-series with impulses,   third fault signal time-series with impulses. 
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0-i~ 
0 15000 20000 
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Figure 29:  Variance of residual signal from   Figure 30:  Variance of residual signal from 
fourth fault signal time-series with impulses,   final fault signal time-series with impulses. 
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also used with averaging over 1,000 samples. In each of these figures it is not possible to 
determine the location of the fault, since the kurtosis appears to be similar throughout 
each record. There is, however, a distinct increase in the kurtosis at the beginning and 
end of the fault section in figure 35. This can be attributed to the transition from normal 
to fault condition, and thence from fault to normal condition. This feature implies that 
the kurtosis is able to detect transient phenomena in the residual signal, provided it is of 
significant magnitude. The transition in the residual signal can be seen clearly in figure 18, 
where the fault signal from 10,000-20,000 samples has a much greater magnitude than the 

normal signal either side of this. 

30000 30000 

Figure 31: Kurtosis of residual signal from   Figure 32: Kurtosis of residual signal from 
initial fault signal time-series. second fault signal time-series. 

HI k 
\' y ^ i 

0 5000 10000        15000        :oooo 
Samples 

25000 30000 

Figure 33: Kurtosis of residual signal from   Figure 34: Kurtosis of residual signal from 
third fault signal time-series. fourth fault signal time-series. 

Figures 36-40 show the kurtosis determined for the residual of the fault signal time- 
series with impulses added. In contrast to figures 31-35 the location of the fault can 
be seen clearly in the sample range 10,000-20,000. Also noticeable are sharp peaks at 
the beginning and end of the fault section. This shows that the kurtosis is suitable for 
determining faults which are impulsive, as well as being able to detect the transition as 
the fault signal is added to the normal signal. 
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Figure 35: Kurtosis of residual signal from  Figure 36: Kurtosis of residual signal from 
final fault signal time-series. initial fault signal time-series with impulses. 
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Figure 37: Kurtosis of residual signal from   Figure 38: Kurtosis of residual signal from 
second fault signal time-series with impulses,   third fault signal time-series with impulses. 
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Figure 39: Kurtosis of residual signal from   Figure 40: Kurtosis of residual signal from 
fourth fault signal time-series with impulses,  final fault signal time-series with impulses. 
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7    Further Requirements 

This report is intended to review signal processing methods which may be suitable for 
accounting for variable load conditions when analysing gearbox vibration signals for fault 
detection. The application of these methods requires much further study. 

Before applying these methods, however, if is necessary to make a comprehensive study 
of vibration signals under varying load conditions. It will be necessary to achieve this using 
signals which are known to be fault-free. It is important to gain as much information as 
possible about "normal" condition signals particularly if little, or no, information is to 
be assumed regarding the fault. The main reason for this is that it is not possible to 
characterise all types of faults, since there are perhaps many faults for which we have no 
knowledge of [23]. 

The methods described will have to be applied to actual vibration signals to determine 
the suitability of the types of models presented. Following this, it will be necessary to 
determine how effective they are in detecting faults. In particular, the time between 
detection and catastrophic failure will be a most important indicator here. 

Previously it was suggested that model parameters will need to be determined at 
several different load settings. Subsequently, the analysis for fault detection will also have 
to be achieved at different load settings. However, depending on the variation of model 
parameters, it may be possible to interpolate model parameters between these fixed load 
points to achieve a more practical system, able to be used at any load. 

An obvious extension would be to apply synchronous signal averaging to the ARMA 
residual signal. This has two possible benefits namely: (1) it will be possible to determine 
whether the residual signal contains periodic components at the meshing frequencies - 
which ideally should have been removed, and (2) as a means of data reduction. This latter 
point will be of benefit if on-board hardware is to be used, in which case data storage will 
be at a premium. 

8    Conclusions 

This report introduced linear modelling techniques as a means of accounting for vary- 
ing load conditions experienced in helicopter transmission systems. Several methods of 
ARMA parameter estimation were outlined which enable modelling of the vibration sig- 
nals recorded from transmission systems. With the ultimate aim being the detection of 
faults under varying load conditions, it was suggested that a prediction error filter be used 
to generate a residual signal. Subsequent analysis of this residual signal will then enable 
detection of faults. 

A comparison was made between the residual signal derived from the prediction error 
filter, and the residual signal average in common use by AMRL. It was proposed that the 
former is able to remove frequency components which are inherent in the vibration signal 
(including those synchronous with the shaft rotation of the gear of concern, and other gears 
in the gearbox), whereas, synchronous signal averaging is incapable of removing any signal 
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component which is synchronous with the shaft rotation. The removal of the meshing 
harmonics and once-per-rev modulations is a means of removing information redundant 
to fault detection, from the signal average. However, as noted previously, this may also 
remove information specific to the fault. For example, the once-per-rev component will be 
evident if a localised gear fault (such as a tooth crack) is present, in addition to a similar 
component due to shaft imbalances. The residual signal derived from the prediction error 
filter does not suffer this disadvantage since the model is estimated from a vibration signal 
which is known to be fault free. Thus the residual signal should only contain information 
which is relevant to the fault. 

Simple simulations were used to illustrate the ability of the technique to detect a fault 
under varying load conditions. A simulated fault signal was added to a simulated vibration 
signal for a short period. It was found that the residual signal derived from the prediction 
error filter had an increase in power during the time the fault signal was applied. Two 
indices were determined from the residual signal; the (1) variance and (2) kurtosis. It was 
found that the variance was sensitive to changes in signal magnitude, and the kurtosis to 
transients in the residual signal. 

It was suggested that synchronous signal averaging of the residual signal from the 
prediction error filter would be a useful means of data reduction, as well as a check on the 
effectiveness of the methods in removing information redundant to fault detection (such 
as the gear meshing harmonics). 

It was noted that further work is required in analysing gear rig vibration signals to 
determine the applicability of the modelling techniques. 
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Appendix A 

Stochastic Recursive Least Squares Derivation 

This appendix gives a derivation of the recursive least squares algorithm adapted for 
stochastic signals. It is drawn from several sources [1, 2, 12, 8] in an attempt to provide 
a more concise and simplified derivation. 

The parameterised model is written in the form 

y[n] = <pi[n]9i + <P2[n]92 + ... + ^ATM^M, (Al) 

where the model parameters are, 

6 = [ai02 ■ ■ ■ apbib2 ...bp], (A2) 

ie., M = 2p. The system outputs, y[n], and estimated inputs, v[n] are augmented to form 
the array, 

ipT[n] = [y[n - l]y[n - 2]... y[n - p]v[n - l]v[n -2]...v[n- p]]. (A3) 

The array of outputs used in the above model up to time n is then 

Y[n} = 

»[1] 

(A4) 

and the model error is defined as, 

e[n]    =   y[n] - y[n] 

=   y[n\- vT[n}6, 
(A5) 

where y[n] us the estimate of y[n] based on the estimated parameters 6.   The array of 
errors may be defined as 

E[n] = 

e[l) 
e[2] 

e[n] 

Y[n]-(j>[n]9, (A6) 

where, 

tfn] 
:.VT[n] j 

with ip[n] 
<P2[n] 

fp[n] 

(A7) 
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Or in terms of the outputs and estimated inputs, 

<P[n} = 

-V[0] 
-2/[l] 

-2/[-l] 
-V[0] 

-y[n - 1]    -y[n - 2] 

-y[l-p]       v[0] v[-i]      ...    v[l-p] 
-y[2-p]       v[l] v[0]       ...    v[2-p] 

-y[n - p]    v[n - 1]    v[n - 2]    ...    v[n - p] _ 

(A8) 

The least squares solution requires the sum of the errors squared to be minimised. The 
sum of the errors squared is given by (note that the time index is dropped for convenience) 

V   =   Yje
2[t\=ETE 

t=i 

=   YTY-YT(f>9-eT<f>TY + eT<i>T<!>9. 

(A9) 

To minimise V with respect to 9, differentiate w.r.t. 9 and set to zero, 

9     [YTY - YT<t>9 - 9T<PTY + 9Tf$9\ 
89 

= Q-4>TY- fY + 2f4>9 
= -2<f>TY + 2<f>T<f>§ = 0. 

(A10) 

Now the second derivative (d/d§T d/39)V - 2(f>T(f> > 0, thus V is minimised.    The 
condition for a least squares estimate of 9 is then 

2<f>T9 2<pTY 

9   =    y>Tcf>]   Xct>TY. 
(All) 

A recursive algorithm for estimating 9 will allow continuous updating of the parame- 
ters. To achieve this, it is necessary to relate the parameters estimated at time n to those 
already estimated at time n — 1. First, define the matrix 

P[n] = [<PT[n}cj>[n}] (A12) 

and note from equation (A7) that 

4>[n-l] = 

<pT[n - 1] 

(A13) 

so that 

P[n-l]=[^(l)^[2]...^[n-l]] <pTm 

cpT[n-l] 

(A14) 
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then 
p-i[n] = P~l[n - 1] + <p[n]<pT[n}. 

Recall from equation (All) that 

0{n]    =    \f $yl <f>TY 

(A15) 

X>M¥>TM 
.i=i 

-1 r 

2 v[*M* 
,i=i 

Li=l 
n-l 

=   PW 

=   P["] 

the third line of the above equation implies 

§[n - 1] = P[n - 1] 

2¥>[*M* 
(A16) 

2 ^*M*1 
Li=l 

+ ¥>[n]y[n], 

n-l 

.t=i 

(A17) 

or 
n-l 

(A18) 

(A19) 

X>[i]y[i]    =   P-l[n-l]9[n-l] 

=    [p-^n] - <^[n]</>T[n]] 0[n - 1]. 

Where the last line is as a result of using P~l[n - 1] = P-1[n] - </j[n]^T[n] from equa 
tion (A15). Using this in the last line of (A16) 

0[n]   =   P[n] [p-^niein - 1] - ip[n]ipT[n}9[n - 1] + (p[n]y[n]] 

=   0[n - 1] + P[n]tp[n] [y[n] - <pT[n}9[n - 1]] . 

Note that in the last line (p[n]9[n - 1] is just a one-step-ahead prediction of y[n] based 
on the parameters estimated at time n-l. The expression in the brackets is then the 
prediction error e[n] — y[n] - y[n]. The above equation can then be re-written as 

§[n] = 9[n - 1] + K[n]e[n], (A20) 

which is appropriately recursive. It remains to determine a recursion equation for P[n]. 
Recall from equation (A15) that 

P[n] = [p[n - 1] + </?[n](/[n]]~  . 

Using the matrix inversion lemma [2] 

[A + BCD}'1 = A'1 - A~lB [C1 + DA~
1
B\ 

_1 DA~\ 

where A, C and [C_1 + DA~lB] are required to be non-singular. Let 

(A21) 

(A22) 

A = P-^n-l] 
B = tp[n] 
C — I        the identity matrix 
D = <pT[n], 

(A23) 
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then 
i-i 

P[n]    =    [p-i[n}+<p[n}cpT[n]\ 

=   P[n - 1] - P[n - l]<p[n] [i + ipT[n]P[n - l]ip[n]] ~* <pT[n]P[n - 1]. 

Since K[n] = P[n]ip[n], we have 

K[n]    =   P[n - l](p[n] - P[n - l]<p[n] [I + <pT[n]P[n - l]y>[n]]_1 cpT[n]P[n - l]<p[n) 
=   P[n - l]<p[n] [/-[/ + ifT[n]P[n - l]tp[n]] ipT[n]P[n - l]<p[n]] (A25) 
=    P[n - l]V[n] [I + cpT[n]P[n - lMn]]   *, 

where the last line is as a result of applying the matrix inversion lemma to the contents 
of the outer brackets of the line above. From equations (A24) and (A25) 

P[n)    =   P[n - 1] - P[n - l](p[n] [i + ipT[n]P[n - l]tp[n]] ~* (pT[n]P[n - 1} 

K[n]    =   P[n - l]<p[n] [i + <pT[n}P[n - l](p[n]] , 

it follows that 
P[n] = [I - K[n]<p[n]] P[n - 1]. 

The full recursive procedure for estimating the parameter vector 6 is then, 

1. Update K[n] 

K[n] = P[n - l](p[n] [/ + ipT[n]P[n - l]<p[n]] ^ 

for a single-input single-output system, this reduces to 

P[n - l]ip[n] 

(A26) 

(A27) 

K[n] 
1 + tpT[n]P[n - l]ip[n] 

2. Update 0[n] 

3. Update P[n] 

§[n] = 6{n - 1] + K[n] [y[n] - ipT[n]§[n - 1]] 

P[n] = [I - K[n]cp[n]} P[n - 1] 

The procedure is initialised be setting 

(A28) 

(A29) 

(A30) 

(A31) 

P[0] 

a    0 
0    a 

0    0 

0 
0 

a 

= al (A32) 

The above algorithm assumes knowledge of the input sequence, which is unavailable for 
a stochastic model. However, since the prediction error for a stochastic model is analogous 
to the Gaussian distributed input sequence, it may be used as an estimate of the input 
sequence, 

v[n] = e[n] = y[n] - ipT[n]§[n - 1]. (A33) 

To initialise, the error sequence is assumed zero for n < 0 ie., v[n] = 0. Additionally, the 
initial parameter vector is also set to zero, 9[0] = 0. 
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