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INTRODUCTION TO DIMSIMS 

LITERATURE SURVEY 

Diagonally implicit multistage integration methods (DIMSIMs) were first described in a 
1992 paper by John Butcher (Reference 1) in which he laid out the essential elements of a 
new family of general linear methods. His stated purpose was to overcome the glaring 
weaknesses of existing methods, that is, lack of A-stability for high order linear multistep 
methods and low stage order and high implementation costs for A-stable implicit Runge- 
Kutta methods. These methods are diagonally implicit and hence have computational 
complexity properties similar to diagonally implicit Runge-Kutta (DIRK) methods, but 
utilize additional parameters generated through the general linear design to overcome the 
stage order (and hence stiff order) limitations of DIRK methods. Explicit DIMSIMs are not 
technically "diagonally implicit", since the diagonal is actually 0, but have an advantage 
over Runge-Kutta methods in that the order barriers for explicit Runge-Kutta methods do 
not apply, and p-stage methods of order p do indeed exist for all positive integers p. The 
original concept called for stage order q to equal the number of internal stages s, the 
number of external stages r, and the order p. In a subsequent paper with Jackiewicz 
(Reference 2) the family of DIMSIMs was extended to include adjacent methods for which 
s+l=r = q, p = qorq+l,s = r+l = q, p = q or q + 1, and s = r = q, p = q + 1. A 
significant step toward practical utilization was taken with another paper by Butcher and 
Jackiewicz (Reference 3) that lays out techniques for error estimation, interpolation, and 
step-size changing. Jackiewicz, Vermiglio, and Zennaro (Reference 4) devised an 
alternative step-size changing strategy and showed how incorporation of an additional 
external stage could provide a satisfactory continuous method. In a separate paper 
(Reference 5) they also showed that there exist explicit DIMSIMs with regularity properties 
not possessed by explicit Runge-Kutta methods. Butcher, Chartier, and Jackiewicz, in an 
unpublished manuscript, "Nordsieck representation of DIMSIMs," recently proposed an 
alternative representation of DIMSIMs with promise of simplifying analysis and 
implementation. Both explicit and implicit DIMSIMs up to the order 8 have now been 
found with appropriate stability properties and were announced by Butcher, Jackiewicz, 
and Mittelmann (Reference 6), extending techniques described in earlier papers by Butcher 
and Jackiewicz (Reference 7 and 8). 

BASIC DEFINITIONS AND RELATIONSHIPS 

We consider the initial value problem: 

^ = f(t,y), y(t0) = yo> te[t0,T\ (l) 
at 
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We define matrices A, U, B and V such that A is s x s, V is r x r, U is s x r, and B is r x s. 
Let Y be composed of the s internal stages, F be composed of the s stage derivatives 

(Fj = f[tn + Cjh, Yj)) and y-n* be composed of the r external stage values.  Then if h is the 
step size, the solution advances one step through the relationships: 

Yi=ht OijFj + t Uijyy **,   i = 1,2,...,* 
7=1 7=1 

y\n] = h X bijFj + X VyyM,   / = l,2,...,r (2) 
7=1 7=1 

n = l,2,...,N,   Nh = T-t0 

The external stages are defined through Taylor expansion so that if 

y\n^ = ia^y^tn-^O^), (3) 
7=0 

then we must have, for some constants atj, 

vJn]=XsW;)(?n) + 0(^+1), (4) 
7=0 

for a method of order p. Butcher has observed (Reference 9) that the effect then is to 
calculate r neighboring trajectories and to use these to determine solution values. The s 
values C; are chosen initially and other method parameters are then determined in a way to 
produce high stage order, that is, so that: 

Y^y^+hc^ + O^1),   1 = 1,2,...,*. (5) 

where q is defined to be the stage order. 

The description "diagonally implicit" comes from the form of the matrix A, and the 
following discussion is true for both DIMSIMs and DIRK methods.  If we restrict A to be 
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lower triangular with a constant along the diagonal, the complexity of the solution of the 
system of nonlinear equations determining Y in Equation 2 reduces greatly. If A is dense 
and a standard gaussian ehmination approach is used in a modified Newton method, the 
arithmetic complexity is 0((Ms)3), or 0(M3s3), where s is the number of stages of the 
method and M is the dimension of the initial value problem. Simply requiring A to be 
lower triangular separates the system of Ms simultaneous nonlinear equations into s 
systems of M simultaneous equations to be solved in sequence, each with arithmetic 
complexity 0(M3) for total complexity 0(sM3), a reduction by a factor of 0(s2). 

The advantage of having a single value along the diagonal may be seen from a closer 
examination of the nonlinear system solution process, which typically involves a modified 
Newton method. The Newton iteration to solve the nonlinear system g(x) = 0 takes the 
form 

xn+\=xn-J{xn)
1g{xn), (6) 

where J is the Jacobian of g. Of course the inverse of the Jacobian is not actually calculated 
and instead a technique such as gaussian elimination is utilized, and the process followed is 
to calculate a correction: 

j{Xn)5n+\=s{xn\ (7) 

= X„ + 5„ 

An LU or PLU factorization of J(xn) is called for here at each iteration, which is 0(M3), 
where M is the size of the system, and this is the most time consuming step. In practice a 
new Jacobian is evaluated and a new matrix factorization is carried out only when 
convergence seems too slow. In the case of DEVISIMs the equation for Y takes the form 

Yj=h^ajkf(tn_1+ckh,Yk) + hajjf(tn_1+cjh,Yj) + y[;-l], (8) 

with U=I as is usually the case.  Then we are solving an equation of the form gj(Yj)=0, 
where gj takes the form: 

gj(Yj) = Yj -hajjf(tn^ +cjh,Yj)-hiajkf(tn_l + ckh,Yk)-yM. (9) 
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All the dependency on Yj is contained in the first two terms and so only these terms affect 
the calculation of the Jacobian. Now if all diagonal elements a^ are the same the Jacobians 
J will vary from stage to stage only with the solution, and new Jacobians and their LU 
decompositions will only have to be computed when convergence seems too slow, which 
should be relatively rare for small step size h. This can result in substantial savings. 

A similar reduction follows from utilization of a nonsingular A (perhaps dense) with a 
single eigenvalue, and this has been applied in the implicit Runge-Kutta code STRIDE 
developed by Burrage, Butcher, and Chipman (Reference 10). Because of the work 
required for linear transformation, this is to be avoided if possible due to the number of 
transformations that become necessary. Of course the low stage order of DIRK methods, 
which drastically reduces the observed order of the method for stiff equations to second 
order, made this alternative approach attractive for use in STRIDE. 

The conditions (Equations 2 through 5) may be re-expressed in a convenient form as 
follows. Let W be the r x (p + 1) matrix of ay values, and we denote the vector consisting 
of the kth column of W as oc^.Let Z be a vector with element X] = zJ_1. Then define w(z) = 
WZ. Furthermore we may define ecz as the vector 

„cz 

S\z 

oCll 

„csz 

(10) 

Then the following theorem may be used in determining the coefficients of the method: 

Theorem 1: A DUVISIM (Equation 2) has order p and stage order p if and only if 

ecz=zAecz + Uw(z) + 0(zp+l), 

ezw(z) = zBecz + Vw(z) + o[zp+l\ 
(11) 

Proof:  The proof is given by Butcher (Reference 1) and is included here for the sake of 
completeness. 

The stage order condition gives 
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Yi=y(tn-l+hci) + o(hP+1). 

We apply the derivative function f to both sides and find that 

/(r„_j + Cih,Yt) = /(/„_! + C^n-l + Cth) + 0(hP+1)) 

= f(tn-l+cih,y{tn_l+cih)) + 0(hP+1) 

= y'(tn..1+cih) + 0(hP+1). 

We then may write, using Taylor expansion, 

#(*„_!+CM) = f ^yU)('n-i)hi+0(hP+1) Al/-i)< 

Since 

yY]=iaijy^(tn)h^0{hP+l) 

we find through Taylor expansion that 

Z f J   1 
Vi"j = X      X -«,;_> 

j=ou=ofc!        y 
y0)(Vi)^' + ^+1). 

We now utilize Equation 2, provide a Taylor expansion for each Yj; and use W to express 

eachv'-"-1^ in terms of Äfcv^(f«-i)- Then we can combine coefficients to obtain the two 
equations 
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p 
2 

*=0 

p 
2 

*=0 
'2 f «a-i" i*t>Vj-1 - iwtAjrJ%-i) = 0(hp+1) 

Now each coefficient (call them dk and  dk, respectively for the two equations) of 
,* 

—y    (*n-i) (f°r eacn k) may be set t0 0 since they are all independent of h.   Then we 

have 

P zK 

*=o k\ 

P ~ zk 

*=o k\ 

which leads to two new equations. The first is 

2 4 
*=o 

*£_ P     s 
2 lkaijC] 

k=0j=l 

*-l£_ 
k\ 

P     r 
I 2v*/*z =0. 

*=0;=1 

The first summation may be identified as the first p + 1 terms in the Taylor expansion of 
ec'z, leaving a difference that is of order 0(zp+1).  Reversing the order of the summations, 

r 
the third term may be readily identified as - JJUyWj(z). Reversing the order of summation 

7=1 
for the second term and factoring as appropriate, we have 

4 I   Jfc-l   Z 2 OijZ 2 Cj 
*-l 4     %l kzk 

2 OijZ 2 cj 
j% lJ\% J   (*-l)!   A l] *fo ] k\ 
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C "Z 
Here the sum over k may be identified as the first p terms in the Taylor expansion of e J , 

leaving a difference that is 0(zp).  Then the second term is - YJaijZeC]Z + 0(zp+1 J.   Thus 
7=1 

the first equation is equivalent to: 

eCiZ - iza^ - iugwjiz) = o(zp+l), 
7=1 7=1 

or, in matrix form, 

ecz=zAecz + Uw(z) + 0(zp+1). 

The second new equation is: 

-k n      v ~k n      r «* P     k   1A 7
K        P     s .   . ,-K        P     r 7* 

jfetoÄ /!   '     k\    ktojti  lJ J    k\   k=0jti 
lJ Jk   k\ 

We interchange the order of summation and find for the second term similarly as for the 

second term above that we have - ^b^ze1* + 0\zp+l).   For the third term our expression 
7=1 

r 
is similar to that for the third term in the first equation and we have -'Zvijwj(z).   For the 

7=1 
first term we may observe that it is ezwi(z)+0(zp+1) by looking at e2W;(z) as the product of 
the first p+1 terms in the Taylor expansion for ez times the terms in w;(z). If terms of the 
same order in z are combined and terms of order in z higher than p are dropped the 
expressions may be seen to be identical. Then the second new equation may be rewritten 
as 

ezwt(z)- ibijzeciz-ivijwj(z) = 0(zp+l), 
7=1 y'=l 

or in matrix form, 

ezw{z)-zBecz-Vecz=0(zp+1). 
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These are equivalent to the second equation in the theorem. On the other hand, these steps 
may be reversed to obtain the order and stage order conditions. ■ 

It turns out that a restriction on the coefficient matrix B provides assurance that order 
and stage order conditions are met, according to the following theorem derived by Butcher 
(Reference 1). The symbol e will be used throughout this report for the vector of the 
appropriate length for the context for which each element is 1. 

Theorem 2. Letr = s = p, Ve = e. Then the DMSIM 

'A    I' 

B   V 

is of order p and stage order q = p if and only if 

B=B0-AB,-VB2+VA, 

where 

fl+c, 

B, 

B 

\lQ
+Ci<j>j{x)dx 

t(l+ci) 
XiJ 

tfa) ' 
(12) 

Jl'^{x)dx 

and where 

0/(*)= U{x-ck). (13) 

Proof: See Butcher (Reference 1). 

Note that using this theorem eliminates the elements of B as free parameters when 
deriving methods.  It also has the following immediate corollary, since for any specified 

10 
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vector c and matrices A and V a construction may be completed, leaving stability as the 
principal issue in deriving new methods. 

Corollary: For each integer p > 1, DMSIMs of order p and stage order q = p exist for 
s = r = p, U = I, where s is the number of internal stages and r is the length of the external 
stage vector. 

In what follows we will restrict ourselves to DMSMs for which s = r = p = q and 
U= I. 

STABILITY AND CONSISTENCY PROPERTIES OF DIMSIMS 

We may note that in order to handle the simple scalar equation y' = 0 we must have the 
preconsistency condition Ve = e. The eigenvalues of V detemine the power-boundedness 
of the method, required for zero-stability, and these must all have magnitudes not greater 
than 1, and those with magnitude equal to one must have one-dimensional Jordan blocks. 
A typical design choice is to choose all eigenvalues to be 0 except for the unit eigenvalue 
associated with eigenvector e as is the case for Runge-Kutta methods, leaving V of rank 1 
and all rows identical. 

The standard consistency condition, related to the solution of the equation y* = 1, then 
requires that there must exist a consistency vector u such that Be + Vu = e + u (Reference 
11). We first note that equating the terms of order zero in z in the Taylor expansion about 
z = 0 for the first equation of Equation 11 tells us that a0j = 1, j = l,...,p, so that oc0 = e 
(oc0 is the first column of W). It follows that Ve = e and Be + Vo^ = e + o^ where oq is the 
second column of W, made up of elements alj; as may be seen by equating zeroth and first 
order terms in z (respectively) in the Taylor expansion about z = 0 for the second equation 
of Equation 11 and hence cq is a consistency vector for the method. 

The stability matrix for a DMSIM is (Reference 1) 

M(z) = V + zB(I-zA)-\ (14) 

This is easily seen from the method (Equation 2) using the standard test problem y' = A,y, 
y(t0) = y0. We solve the first equation in 2 for Y and, noting that F(Y) = XY, we obtain, 
setting z = hX, 

y = (/-zA)-V""1]. 

Then we may substitute this expression in the second equation of 2 to obtain 

11 
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y W- (zB(I- ■zATl + vy»-i\ 

Thus the region of absolute stability of a DIMSIM is the region 

S = {z:w<= <J(M(Z)) => w < l}. 

If S includes the entire open left half plane the method is called A-stable. We also define 
the associated stability polynomial 

p(co,z) = det(w/ - M(z)). 

A method may typically be verified to be A-stable either by using the Schur criterion (see, 
for example, Lambert (Reference 13)), or by reducing the stability polynomial to a familiar 
form associated with a Runge-Kutta method known to be A-stable. 

A FEW SIMPLE EXAMPLES OF DIMSIMS 

Butcher divides DIMSIMs into 4 categories, or types, using criteria of explicit or 
implicit and suitable or not suitable for parallel evaluation of stages. Note that for a matrix 
A that is lower triangular as is required for DIMSIMs, if it is also diagonal (including the 
zero matrix) the stage evaluations are completely independent of one another and may be 
carried out in parallel. Thus we have the following order 2 examples with c = [0,1], first 
developed by Butcher and illustrating his taxonomy (Reference 1): 

Type 1 (explicit, serial): 

A    U 

B    V 

0 0 1 0" 

2 0 0 1 
5 
4 

1 
4 

1 
2 

1 
2 

3 
4 

1 
4 

1 
2 

1 
2 

(15) 

This method has by design the same stability function (and region) as a 2-stage explicit 
Runge-Kutta methods of order 2. That is, the eigenvalues of M(z) are zero and R(z) where 

12 
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the stability function of a Runge-Kutta method of order 2. 

Type 2 (implicit, serial): 

A    Ü 

B    V 

2-V2 

2 
6 + 2V2 

7 
73-3W2 

28 
87-48V2 

28 

0 

2-V2 
2 

-5 + 4V2 

1 

0 

3-V2 

0 

    -1 + V2 

4 2 2 
-45 + 34V2 3-V2 -I + V2 

28 2 2      . 

(16) 

This method was designed to have a stability matrix with eigenvalues zero and R(z), where 

R(z) = 
<V2-l) 

z2(|-V2)-z(2-V2) + l: 

the same stability function as a 2-stage Singly-Diagonally Implicit Runge-Kutta (SDIRK) 
method of order 2 which is known to be A-stable. Therefore this method (Equation 16) is 
then itself A-stable. 

Type 3 (explicit, parallel): 

"A   U 

B   V 

0   0 

0   0 
3 3 

1    0 

0    1 
_! 

4 
_2 

4 

(17) 

This method has a stability polynomial 

p(vv,z) = w
2-^l + ^w-^(3z + l), 

which yields a stability interval along the real axis of [-f ,0j. 

13 
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A   U~ 

B    V 

3 -V3 
2 

0 

18- -iW3 

22 
4 

-13V3 
4 

0 

3-V3 
2 

-12 + 7^3 
4 

-12 + 9V3 

1 

0 

■2V3 
2 

-2V3 

0 

-1 + 2-V3 
2 

-I + 2V3 

(18) 

This method has the stability polynomial 

p(w,z) = w2 +■ 
2 - 2VI + (8^/3 - 12)z + (15 - 9S)zz 

-2 + (6-2V3)z + (3^3 - 6)?W (-2 + (6 - 2,/3> + (sV3 -6)z2f 

2 + (V3-3)z 

and is found, using the Schur criterion, to be A-stable. 

We may note by examining Equation 2 that for the serial DIMSIM types, the first 
internal stage must be calculated before the second stage, etc. For the parallel types, on the 
other hand, the calculations of the internal stages are independent of each other and could 
conceivably be performed on separate processors of a parallel computer. This is an 
example of "parallelism across the method," described by Gear in an early report 
(Reference 13) in which this form of parallelism was distinguished from "parallelism 
across the system" in which different equations or subsystems might be handled with 
different processors. Waveform relaxation (see, for example, Reference 14 and Reference 
15) is an example of the use of this latter form of parallelism and it is possible that both 
types of parallelism could be combined in solving a single problem. It is evident that the 
parallelism across the method indicated here for DEVISIMs would only enable effective use 
of a number of processors equal to the number of internal stages while parallelism across 
the system could employ many processors in solving a large system. It may also be noted 
that the parallel types have fewer parameters and it would men be expected to be more 
difficult to find methods with desirable stability properties and other characteristics. 

The type 3 methods are interesting in that they do not call for the calculation of internal 
stages, the external stages are the same as the internal stages. Also since A = 0, the first 
equation of Equation 11 implies that the external stages are the first p + 1 terms of the 

Taylor expansions of y at the stage points tn_, + C;h, since ecz = w(z) + 0(zp+1) ■    The 
methods then use a Taylor series starting method and time marching is carried out using the 
equation 

14 
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yW=hBF(yW) + VyW. (19) 

For example, with p = 2, Cj = 0, c2 = 1, we find (using methods described in the next 
section) that we may also derive the method 

A   If 

B   V 

0 0 1 0" 

0 0 0 1 

0 0 0 1 
-1 3 

I) 1 
2 2 

(20) 

Upon examining the time marching process of Equation 19 for this particular method, we 
see that it is equivalent to the the familiar second order Adams-Bashforth method, 

yB = yn-i+i(3/B-i-/„-2)- 

For Type 3 methods the stage values approximate the solution at the stage points, since 
external stages and internal stages are equal here and the stage order condition requires that 
the solution be approximated by the internal stages at the stage points. These are each 
calculated using an explicit linear multistep method depending on previous values only 
from the last interval, with the formula for the ith component skipping the i - 1 last 
calculated solution points. A DMSM uses an interpolant then based on solution and 
derivative values from the stage points to produce final approximations at arbitrary points. 
Nevertheless the Type 3 time marching process can be seen as an example of an explicit 
cyclic linear multistep method (Reference 16) when stage points are evenly spaced, and 
only a slight modification would seem necessary for irregular spacing. For example, the 
ith element of the external stage vector approximates the solution at tn.j + c;h and is given by 

Ti 
,M 

7=1 7=1 

and for constant step size and uniform spacing of c from 0 to 1 (c. = (j-l)/(p-l)) and 
recognizing that we really have a solution at each of the stage points, this becomes for the 
ith stage of the nth step, using the simplified notation yk to the refer to the kth stage, 
numbering from the first stage of the first step, 

y 
p{n-l)+i h ibijf(to + (P(n - 2) + j)h,y^-2^) + tvjy*"- 2)+7 

15 
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and this is in the familiar explicit linear multistep class of formulas. Some interesting 
features of this family when seen in this form include the use of the same combination of 
solution values for each element within a cycle (vTy[n"1]) and the omission of several 
previous values and derivatives in the calculation at most of the stage points. Clearly this 
solution process can utilize separate parallel CPUs for the p derivative evaluations required 
at each step. 

APPROXIMATING THE SOLUTION AND THE NORDSIECK VECTOR 

Nordsieck techniques are used extensively in the development and implementation of 
DIMSIMs. These use a vector of derivatives scaled with the step size and usually also with 
a factor of l/(j -1)! where j is the component number of the vector. Here we omit the exra 
factor, which can be readily provided through multiplication by a constant diagonal matrix 
Q = diag(l/0!, 1/1!, 1/2!, ..., 1/p!), and use the term "Nordsieck vector" to refer to a 
closely related vector that frequently appears here. We define the Nordsieck vector of 
length p + 1 as 

y(xn) = 

y{xn) 
hy'{xn) 

hpy{p\xn) 

(21) 

Nordsieck (References 17 and 18) described a family of linear multistep methods using the 
vector Qy(xn) which provided an especially convenient approach to step-size changes. 
Nordsieck noted that solutions of ordinary differential equations could be reduced to 
finding interpolation polynomials to use in representing the solution, and his vector 
provided a readily scalable representation. These techniques have frequently been 
incorporated in implementing linear multistep methods and Butcher and Jackiewicz 
(Reference 3) have shown how they may be utilized effectively with DIMSIMs as well. 
Trocogna (Reference 19) has since then used this approach in implementing two-step 
Runge-Kutta methods (Reference 20). 

Two matrices are defined which are used to relate the Nordsieck vector to the internal 

and external stages of the method.  Let FlF^j be a vector with kth component /(l-p). 

Then we can find matrices B and V such that 

y(xn) = hBFfiW) + ty[*-1] + 0(hP+l). (22) 

16 



NAWCWPNS TP 8340 

These matrices can be calculated using the following theorem, announced in Butcher 
(Reference 1) and proven rigorously in Butcher and Jackiewicz (Reference 3). We first 
define z as a vector of length p + 1, 

z = (23) 

Theorem 3 (Butcher and Jackiewicz, Reference 3): Assume that the method in Equation 
2 has order p and stage order q = p or q = p - 1.   Then the approximations in Equation 22 

are correct to 0\hp+1) if and only if 

ezz = zBecz+Vw(z) + 0(zp+1). (24) 

Proof: The proof was developed by Butcher and Jackiewicz and is reproduced here for the 
sake of completeness. Define a matrix T such that 

H t0   tx .]= 

1   -1 l H)p 

0    1    -1 

0    0     0 

(-1) 
p-\ 

(p-1)! 

Taylor expansions, the stage order and the problem definition in Equation 1 are used to 
obtain the relationships 

y{xn) 
hy'(xn) 

hpy{p)(xn) 

-|f0,*i,...,fpj 

y{xn-\) 
hy'ixn-i) 

WP)(*n-l) 

+ o(hp+1), 

and 
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MYl)' 
hF{Y2) 

hF(Yp) 

0,e,c,...,- 
?■ 

y{xn-\) 
hy'{xn-i) + o(h«+2). 

We also use Equation 3 to write 

31 [n-i] 

Ti 
n-l] 

y 
;»-i] 

^[a0,ah...,ap] 

y{xn-i) 

+ o(/^+1). 

We now substitute these equations into Equation 22 to obtain 

1=0 i=l (z ~ !J! i=0 \ / \ / 

Since q = porq = p-lwe can combine terms to obtain 

{VaQ-tQ)y(xn_x)+i 

Equating terms of the same power in h we obtain 

t0 = Va0, 

and 

,*-i 
U=B- 

(*-l)! 
+ Vak, k = l,2,...,p. 
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Multiplying the kth equation by zk and adding yields 

p ~ P c1'1?1'1      ~ P 
ltiZ

l=zBZ—^— + VZaiZ
l, 

i=0 i=l [i - \)\        i=0 

which may be seen to equivalent to Equation 29 upon expansion of the exponentials in 
Taylor series. ■ 

Noting that 

yW = Wy(xn) + 0(hp+l) 

= WBhF(Y[n]) + WVy[n~1] + 0(hp+l) 

= BhF(Y[n]) + Vy[n-l], 

and comparing the corresponding terms we obtain the following so-called compatibility 
conditions 

TO = * (25) 
wv = v. 

IMPLEMENTING DIMSIMS 

IMPLEMENTATION ISSUES 

In order for an ODE solution method to be useful, certain capabilities must be provided. 
A numerical method will most effectively be applied using adaptive step-size selection 
based on an error tolerance. Thus neither too much work is done due to steps that are too 
short, nor is required accuracy sacrificed by using steps that are too long. This requires an 
ability to change step size, and also the ability to estimate error and suitable step length. 
Order changing is also desirable for maximum efficiency, but techniques for accomplishing 
this with DIMSIMs have not yet been developed. Furthermore, although typically the ODE 
solution is desired at certain output points, often evenly spaced, the ideal combination of 
efficiency and accuracy calls for integration steps to be as long as accuracy will allow. 
Thus interpolation should be used to obtain output values. Some sort of starting technique 
is required for the first step. Finally, for methods for which Cj = 0 and cp = 1, a significant 
savings in work is possible by using a new approach that will be described for evaluation 
of the first internal stage. 
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CHANGING STEP SIZE WITH DIMSIMS 

We must introduce some notation to discuss the reseating that becomes necessary to 
continue the calculation with a modified step size. We begin by calculating y[1] using Ym 

and h, = trt0, and we assume now that y[n"^ has been calculated using Y[n_lland hn.j = tn_, - 
tn.2. We now calculate a y[n] corresponding to tn using Y[n] and step size hn = tn - tn.j. We 
denote 

5fo-i) = 

y(tn-i) 

Viy('n-l) (26) 

~y(?n-i) = 

y^n-i) 

Ky{p\tn-x\ 

(27) 

We also define the diagonal matrix 

D = diag(l,8,S2,...,Sp), (28) 

where 8 = Sn=——.    Furthermore we distinguish y-n ^and y-n l\ where y-n   * is 
Vi 

rescaled to reflect a next step of hn.  This reseating process will be described below.  We 
desire to have $-n~l* approximate wf(tn-i) in the same way that yB-1J approximates 

Wy{tn_x). This leads to the relations 
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y[n-1] = w~y(tn-i)+o(h£i), 

5M = K-iBF(Y[n~1]) + vy[n~1] + oftfi1). ?[0] = y^, 

^fe-i)=^^«-i)=^_1]+^r1)- 

This indicates, after using the expression for the Nordsieck vector at tn.15 that we can 
rescale by using the formula 

yM] = ViWZ)ÄF(y["-1]) + WDVy[n-2]. (29) 

We now have a modified numerical process, as follows: 

(30) 

jW = ^WDBFlY^ + WDvin~l]. 

We note (Reference 1) that zero-stability for a step-changing solver will then be determined 
by the eigenvalues of the matrix WDV. Thus any free parameters in determining B and V 
might well be used to ensure good stability for step-size changing. That this is always 
possible will now be shown. 

Computation of the rescaling matrices is simplified, first of all, with all type 1 
DMSIMs with Cj = 0. The equations to be satisfied include Equation 25 (the compatibility 
condition), Equation 24 and the condition that step-size changing zero  stability be 
nonrestrictive, met where the matrix WD V has only the one nonzero eigenvector e with the 
associated eigenvalue of 1. We are able to meet both of these conditions for a choice of V 
such that the first row is vT and all the other rows are 0, and for a choice of B such that the 
first row is the same as the first row of B and the other elements are computed uniquely 
from a linear system. We quickly note that for V of this form, DV=V, and WV=V by 
the compatibility condition, and V is defined to be equal to evT. This indeed has the one 
nonzero eigenvector e with associated eigenvalue of 1. We now examine the condition 24 
for the first rows of the two rescaling matrices, 
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ez=zB1e
cz + V1w(z) + o(zp+1). 

We compare this with the similar condition in Equation 11 for the first rows of B and V, 
and noting on the left side the condition Cj = 0, which makes Wj(z) = 1, we obtain 

ez=zB1e
cz + V1w(z) + 0(zp+1). 

Clearly the first rows satisfy the same conditions, and hence the first rows of B and V can 
be taken the same äs the first rows of B and V, respectively.   We now consider the 
conditions on the remaining rows.   If we take the remaining rows of V to be 0, we then 

have the conditions for rows of B as follows: 

ezzk-1=zBke
cz + 0(zp+1), k = 2,...,p + l. 

We have p unknowns in each equation. But if we examine the number of conditions 
required to equate polynomial terms of degree 0 through p, we find that there will be no 
degree 0 condition, but degrees 1 through p will always appear.   Thus we have p linear 
equations in p unknowns for each remaining row of B. Also, the matrices for each 
equation are the same but the right hand sides will always be different. And so long as the 
method is nonconfluent (that is, c,- * cj for i ^ j), there should be no problem in solving 
these systems, as may be observed from the formation of the matrix elements from the 
Taylor series.   This is easily extended for both implicit and explicit DBVISIMs when c2 is 
not 0. Taking V as before, we find the situation with B for rows after the first to be 
unchanged. The relationship of the equation for the first row to the equation for the first 
row of B is modified, however, since Wj(z) is no longer 1. Recognizing that the the zero 
degree term in each component of w(z) is 1, we find that the equation 

ez-vT w(z) = zB\ecz + 0(zp+1) 

has a zero term of degree 0, since the leading 1 in the Taylor expansion of ez is cancelled by 
the leading 1 from the term vTe.  Thus we again have p equations in p unknowns.   Note 
that the compatibility condition for B must automatically be satisfied for this form of V 
since multiplying Equation 24 by W and setting 8 = 1 produces the same equation that B 
must satisfy, the second relation of Equation 11.  We summarize these observations in the 
following theorem which will be helpful in calculating the rescaling matrices B and V". 
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Theorem 4: For nonconfluent DIMSIMs, we have 

i) the rescaling matrix V may be chosen to consist of a first row vT and all other rows 
equal to 0; 

ii) if cpO, the rescaling matrix B will then have a first row that is identical to the first 
row of B, 

ezzk-l=zBke
cz + 0{zp+l\ k = 2,...,p + l; 

iii) if Cj ^ 0, the first row of B must satisfy the linear system 

ez-vTw(z) = zBle
cz + o(zp+1); 

iv) and for all choices of c1? subsequent rows must each satisfy the linear system 
resulting from Taylor expansion of 

ezzk-l=zBke
cz + 0{zp+l), k = 2,...,p + l. 

We see that the coefficients of B for rows after the first are thus dependent only on the 
choice of stage points. It is evident that the higher derivatives of the Nordsieck vector are 
obtained in this approach by taking advantage of the high stage order. Applying the 
derivative function to the internal stages yields high order approximations to the solution 
derivatives at the stage points which yield linear systems for the higher derivatives through 
Taylor expansion. 

Zero stability is obviously a rather mimimal condition. More careful step-size change 
stability requires examination of the stability matrix for this process. This may be written 
as 

M(S) = zWD(6)B(I - zA)~l + WD(S)V = ZWD(8)B(I - zA)~l + V (31) 

for the customary form of V given by theorem 4. But it is not true that eigenvalues of this 
matrix will determine the growth of the external stage vector, since it is nonsymmetric and 
typically varies with each step, and this becomes a very difficult problem. However, 
lacking some better criterion, in a heuristic approach the eigenvalues of this matrix may be 
examined by calculating a sort of "pseudo-stability region" to provide some indication of 
the effect on stability of step-size changing with a view to aiding the determination for a 
solver of the bounds to set on step-size changes.   This approach, pursued by Enenkel 
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(Reference 21) in his study of related general linear methods, yielded very restrictive 
results. 

BUTCHER-JACKIEWICZ-TYPE INTERPOLATION 

Butcher and Jackiewicz (Reference 3) proposed continuous interpolants of uniform 
order p of the form 

n(tn-i +ehn) = hnß0(e)F(^)+7o(e)y[n-1]. (32) 

Here we define ß0(e) = [ßQMßQ2{e),...,ßQM] ^d yo(0) = [y0i(ö),ro2(ö),-,y0r(ö)], 
where the components are polynomials of degree p (or lower if certain coefficients become 
set to zero). For a Nordsieck interpolant we may write the interpolant in this form as well, 

and with the customary form for V,  Yo(0) = v .    We further note that in order for 
compatibility with the equation for the first component of the Nordsieck vector, ß0(l) and 

70(1) must be equal to the first rows of B and V, respectively. This interpolant 
compatibility condition will be shown to be incorporated within the order condition 
provided in the following theorem derived by Butcher and Jackiewicz (Reference 3) in 
which the case q = p - 1, though not of particular interest here, is also included. 

Theorem 5 (Butcher and Jackiewicz): If a DIMSIM has order p and stage order q = p or 
q = p - 1, then rj approximates y with uniform order p if and only if 

zßo{d)ecz+y0(9)w(z) = eez + o(zp+l), 0e(O,l], (33) 

and w(z) is as defined above.   Moreover, the interpolant r\ is continuous on the whole 
interval of integration if and only if 

A>(o) = o, 
y0(0)WDB = ß0(l), (34) 

y0(P)WDV = y0{l). 

Proof: Expanding y[n], y(tn), and y'(tn+1+ch) =hF(Y[n])+0(hp+I) in Taylor series about tn. 
and assuming that the interpolant approximates y to uniform order p, we may write 
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£ ^/6(%-i)=ßo(e) 1 ^hkJ%n_x)+Yo(o) £«AV%-,)+o(hr)+o(ht2), 
k%k\nJ vn~l> ™w*=l(*-l): k=0 

where we denote the (i-l)th column of W as as. Since, as previously noted, the first 
column of W, cc0, is e, and q = p or q = p - 1, we can write 

We then generate p + 1 equations by setting coefficients of powers 0 to p of hn to 0: 

/U0)^+7o(0K=fr' l-k-p- 

We may now multiply each equation by an appropriate power of z and sum, obtaining an 
equation equivalent to the result we seek: 

P rk~X7k~X P        v      P  Gk 

zßo(6)l C—^— + 7o(0) I cckz
k = 1 -. 

k=\ {k -1)! k=o k=o kl 

These steps are reversible. 

For continuity at node point xn we must have i]{xn -) = r]{xn +). The equation 

representing this relationship reads: 

Mo(i)/(rw)+Um[n-l] = K+Mo)f(^n+1])+n(o)y[n] 

= h+M°)f(Y[n+1]) + 7o(0){KWDBf(Y^) + WDiryW). 

Comparing coefficients of f(Y[n+1]) we see that ß0(0)=0. Similarly, comparison of 

coefficients of f(Y[n])and y1""11 yields y0{0)WDB = ß0(l) and j0(0)WDV = y0(l), 

respectively. ■ 

The following corollary provides simplification of the conditions of this theorem. 

25 



NAWCWPNS TP 8340 

Corollary:   If a DIMSIM has order p and stage order q = p or q = p - 1, then rj 
approximates y with uniform order p if and only if 

zßo(d)ecz + Yo(0)w(z) = e* + o(zp+1), 9 e (0,1], (35) 

and w(z) is as defined above.   Moreover, the interpolant r] is continuous on the whole 
interval of integration if and only if 

A>(o) = o, 
7o(0)5 = A)(l), (36) 

7o(0)V = 7o(l). 

Furthermore, if these conditions are met, the interpolant compatibility conditions that /J0(l) 

and 70(1) must be equal to the first rows of B and V, respectively, will automatically be 
satisfied. 

Proof: Looking again at the order condition in Equation 33, we find that because of 
continuity, we can now consider the case where 6 is set to 0.   Then since /?o(0) = 0, and 

e6z = l, we have y0(0)w(z) = 1 ■ Now w(z) = Wz. We can consider the various 
polynomial terms separately. Let ex e2, etc., be the unit vectors with Is in the appropriate 

position.        Then    70(0)^ = 1,    and    70(0)^=0     for    k    >    1. Thus 
70(0)WD = [l   0   • • •   O] regardless of the value of 8. Thus, from the order condition we 

have: r0(0)WDB = ß0 (the first row of B) and y0(0)WDV = Yo (the first row of V). 
Note that the interpolation coefficients will never depend on S. Also note this eliminates 
the interpolant compatibility conditions as separate criteria; since there is no dependence on 
its value we may arbitrarily set 8 = 1, in which case D = I.   Then WDB = WIB = WB = B, 
and WDV = WIV = WV=V. ■ 

Deriving an interpolant is then a matter of finding coefficients to satisfy these 
relationships. In this report all interpolants of the form in Equation 32 and satisfying the 
conditions of Theorem 5 will be termed Butcher-Jackiewicz-type interpolants, while the 
interpolants proposed below by the author of this report will be termed Nordsieck or 
continuous Nordsieck interpolants. 

Although examples of continuous interpolants of maximal order will be derived and 
utilized in the Implementing DIMSIMS section, we must note here that a continuous 
interpolant of maximal order in this form does not exist for all DIMSBVIs. For example, we 
consider the type 2 example of Equation 16, shown again below: 
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A    U 

B    V 

2-V2 

2 
6 + 2V2 

7 
73-3W2 

28 
87-48V2 

28 

0 

2-V2 
2 

-5 + 4V2 
4 

-45 + 34V2 

28 

1 

0 

3-V2 
2 

3-V2 

0 

-I + V2 
2 

-I + V2 

with c=[0,l]T.   For this method the matrices 5 and V were calculated by Butcher 
(Reference l)tobe 

B = 

-26 + 41V2    62-37^2' 
28 

-48 + 51V2 
28 

64-33^2 

28 28 
-2O + I5V2     20-9^2 

14 14 

and 

V = 

-I2 + IIV2    26-IIV2' 
14 14 

-3O + 3V2      30-3^2 
14 14 

I2 + 3V2      I2 + 3V2 

7 7 

(Note: A separate calculation using the customary form for V yielded the same result.) 

We now apply the compatibility and continuity conditions (with the help of Mathematica) 
and show that an interpolant of the form described here cannot satisfy these. We look for 
vectors 

A>(0) = [A)io + A>n0 + A)i202> A™ + Arno+A^2]. 

Yoiß) = [y010 + yme + 7oi2Ö2,7o20 + 7o2iö + YonO2] 
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We immediately note from the first compatibility condition that ß010 and ß020 must be 0. 
We use the compatibility conditions to eliminate ß0J2, ß022, y011, and y021. We then use 
the second continuity condition to eliminate y012 and y022. But then the third continuity 
condition, y0(0)V=y0(l), becomes equivalent to 

1142683156482 -1429914988166^2    -6579484927094450 - 4651660909947086^2' 
87418383556 87418383556 

= [0   0], 

which contradicts the assumption that an interpolant of the given form exists. 

A consequence of the fact that interpolants of the given form do not always exist is that 
a search for a suitable DMSIM scheme should incorporate conditions for the existence of 
an interpolant of this desirable form. The existence of a suitable interpolant is crucial for 
the implementation of DMSMs in a waveform relaxation strategy, and for those methods 
for which this form does not exist, the Nordsieck form may always be used. A subsequent 
report will compare the performances of alternative interpolants for DEV1S1M 
implementations for waveform relaxation. 

We may readily obtain the following corollary to Theorem 5: 

Corollary: If a continuous interpolant of the form of Equation 34 exists, then there exists 
a constant vector Yo(0) such that 

i) Yo(9)y y» f°r eacri steP °f ^e integration process, where yn is the 
approximation to the solution at tn and is also given by the first component of the Nordsieck 
vector calculated using Equation 22. 

ii) y0(0)W = [l   0   -   0]. 

iii) Yo(0)B = B1, 7o(0)V =Vl = V1=vT, where the subscript 1 indicates the first 

row of the matrix and V = ev . 

Proof:  i) Setting 0 to 0 in Equation 34 and using continuity at tn., and /?0(0) = 0, we 
obtain 

ri{t„-i) = 7o(0)j[n_1] = v{tn-2 + Vi) = yi{*„-i) ■ 

We then note that we may simply adjust the subscript, 

ii) See proof of Theorem 5. 
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iii)     Since  the  first  column   of  W   is   e,   from   ii),   Yo(0)e = 1. Then 

Y0(0)V = 70(0)ev   = v . Now see proof of Theorem 5. 

NORDSIECK INTERPOLATION 

The availability of the Nordsieck vector provides a ready interpolant. For any DEVISM 
we may calculate coefficient matrices B and V using theorem 4, which will then yield 
Nordsieck vectors at each grid point. Interpolation can be carried out backward and 
extrapolation forward from a grid point using the Taylor expansion polynomial of degree p. 
Since the Nordsieck vector components are all locally accurate to 0(hp+1), the global 
accuracy of the interpolant is then 0(hp), the same as the accuracy of the method at the grid 
points. This is provided for all DMSIMs, including the Type 2 method above for which 
the Butcher-Jackiewicz-type interpolant does not exist. (Note that the availability of 
extrapolation accurate extrapolation forward is extremely useful in that it provides an 
excellent internal stage predictor for implicit methods. This will be developed more 
extensively in a report in preparation on implicit DIMSIMs.) If we have calculated an 
approximation to the Nordsieck vector at tn as 

y(tn) = hnBF(YW) + V^ fat«-1] 

we may then carry out Nordsieck interpolatation at tn_x + 61% using the Taylor series 
formula at the point tn of the form 

l(tn-l+^n) = 1   -1 (-1)' 
P}- 

D(i-0)y{tn), (37) 

where 

D(<5): 

1 0 0 ••    0 

0 6 0 •■     0 

0 0 Ö2 ••    0 

0 0 0 ••   8* 

and where 1-0 is used because interpolation is carried out to the left of the grid point, at tn- 
(l-0)hn.  Alternatively interpolation to the right can be carried out.  The formula changes 
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only slightly, with 0 used instead of 1-0 and the negative signs in the multiplying vector 
are eliminated. 

This interpolant has two drawbacks. First, since a fresh DIMSIM calculation of the 
Nordsieck vector is carried out at each grid point, these will be points of discontinuity. 
Secondly, Taylor series decrease in accuracy away from the node point. Both of these 
problems can be overcome, or at least mitigated, by increasing the Taylor series degree to 
p + 1. The extra component is calculated to exactly remove the discontinuity at the far grid 
point and will yield a 0 contribution at the grid point where the Nordsieck vector is 
calculated. For example, the interpolant above would be modified to produce a continuous 
Nordsieck interpolant by the addition of the term 

f 

yifc-i)" 1   -1   I 
Pi 

y(tn) (l-0)p+lhP+l. (38) 

Since this term should be quite small due to the higher power of hn, the overall behavior 
of the interpolant should not degrade, and in fact tests described below in the chapter, 
"Developing Explicit DTMSIM ODE Solvers," indicate that it performs quite well. 

DIMSIM ERROR ESTIMATES 

An error estimate is intended to approximate the local error in the solution of an initial 
value problem. That is, if a DIMSIM has produced a solution at grid point tn.jOf yn.,, then 
the DIMSIM solution yn at tn is compared to the exact solution y(tn;tn.i,yn4) of the problem 

f/C'WM'» (39) 
1 y{tn-i)=yn-i ' 

and the local error at tn which is to be estimated is defined to be 

errn = ?« ~ >fe > fn-\ > 3^-1) ■ (40) 

Unlike linear multistep and Runge-Kutta methods, DMSMs do not typically produce 
an approximation to the solution at the grid points in the time marching process. The first 
component of the Nordsieck vector must be separately computed from the external and 
internal stages when an approximation to the solution is desired. Furthermore, the external 
stages are neighboring trajectories that are averaged in a special way to produce a solution 
and the next internal and external stage vectors. Finally, the Nordsieck vector components 
deviate essentially independently as the solution process proceeds. Thus after the first step, 
the kth component approximating h^k\tn) does not in fact represent to OCh^1) the scaled 
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kth derivative of the solution of the ordinary differential equation y'(t) = f(t,y) passing 
through the point y(tn) given by the first component, but rather to 0(hp). Thus error 
estimation may be expected to proceed differently from the approach in the older families of 
methods. However, the work of estimating local error is still to determine the amount by 
which the approximation to the solution at the end of a step deviates from the local solution 
of the initial value problem y'(t) = f(t,y) passing through the approximation to the solution 
obtained at the end of the previous step. And this has proven to be possible with 
DMSMs. 

Although error estimates for other cases have been derived (Reference 3), we will 
restrict ourselves to the case p = q. The stage order condition requires that if the solution is 
sufficiently smooth, we may write 

Yt = A'n-l + Cih) + &ip+%n-l)hP+1 + 0(hP+2), (41) 

where the middle term on the right is designated the principal part of the error for Yj. We 
note here that we are using the function y to refer to the exact local solution described 
above. Although theoretical investigation of the effect of the accumulation of global 
solution error on the validity of this local stage order condition remains to be carried out, 
there is ample experimental evidence to support the conjecture that Equation 41 holds true, 
and that global errors do not reduce the order of the leading stage error term. We assume 
that this is the case in the following development, which otherwise closely follows the 
approach developed by Butcher and Jackiewicz (Reference 3), in which possible stage 
order reduction is taken into account. 

We note that the following general definition for local discretization error of the external 
stages applies to all DEVISIMs. The idea is to identify what is to be called the local 
discretization error of the external stages with the term of order hp+1 in the difference 
between the exact external stages at tn and the calculated external stages, assuming that an 
exact Nordsieck vector is used initially at tn., and that stage and order conditions are met. 

Definition: The local discretization error le;(tn) of the ith external stage y)"Jof the 
method 1(2.2) at the point tn is given by 

Htn)= iocJk\tn)hk -hibikf[tn_l+ckh,YlnA- £ £v^.,vW(rn_1)^,(42) 
lc=0 k=l        x '     j=lk=0 

where 

Yln] = hiaijf{tn_l+cjhj}n])+ £ iu^yU^ti, k = l,2,...,s. (43) 
j=\ 7=1 i=0 
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For the case p = q = r = s, U = I, and assuming that the local condition for stage order 
holds, we make these substitutions in Equation 42 to obtain the simplified expression 

Htn) = iccikyW{tn)hk - h i v('«-i+cMfn-i+cJh)+Zjy{p+1)hp+l) 

j= ■ ^ 

-I hijajky
ik\tn_l)h

k+, i = l,...,p 
j=lk=0 

In any case, the vector of values le^tj we designate as the local discretization error of the 
external stages. 

Theorem 6 (Butcher and Jackiewicz, Reference 3) The local discretization error le(tn) of 
the external stages of Equation 2 at the point tn is given by 

le(xn) = (ppy^+1\Xn_l)h^+0(h?+2), (45) 

where 

p    k=\    k\ p\ 

Proof: The proof is given for more general choices of p, q, r, and s in Butcher and 
Jackiewicz (Reference 3) and is reproduced here for this restricted case for the sake of 
completeness. We may use Taylor expansion to express 

y{k\tn) = 1 y{k+%-i)T+o(hP+2~k),k = ox...,P+i. 
1=0 <! v 

We then substitute this expression into Equation 44 and obtain 

k=o i=o    t! jf=l 

1 UjCXjJ^tn-i^ + leM + O^2). 
j=\k=0 
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We now expand y'Ct^+Cjh) about tn., to get 

p p+i-*, 

1 E>,M%.)*'*'=iH^-f^y 
k=0   1=0     L- 7=1 k=\ \K      '■)■ 

p   p 

+ll^Jky
{k](tn.l)hk

+iei(tn)+o(h^). 
i=\ k=o 

We now reorder the summation on the left side: 

i=0   1=0     '• 

4=0 /=0 {V ~ K')- 1=1 L- 

t=oV/=o    L-   ) '=i     l- 

Then, interchanging summation orders on the right, we obtain 

til^irV^y+£^v('+I)(U*'+I 
k=Q\l=0 

Ss^w(<,.,)'''+i2:vsv"('.-,)H-fei(v1)+o(A^). 
4=1 j=\ {K - ij! *=0 y=l 

We now combine terms and rearrange to find that 

*=0\^=0 Z! 7=1 
it! 

+ 
\J=1 *' ;=1     P-    J 
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The order conditions ensure that terms of order less than p + 1 in h must vanish, and so we 
have the result that 

H^)- y«i,p-n-/ 
L      l\ 

P bijci £_0 
M 

/=l y- =l   P1- 
y{p+l\tn-,)h

p+l + o{hP+l). 

The connection between errors in the external stages and errors in the solution values is 
not immediately obvious. However, the value of v le(xn) takes on a special significance. 
Here vT is both the row vector (all identical) of V and the left eigenvector associated with 
eigenvalue 1 of V. This will be called the principal part of the local discretization error. 
Albrecht (Reference 22) showed that for a broad class of methods, this is the quantity that 
should be controlled to maintain accurate integration, and as will be demonstrated in the 
Techniques for Obtaining Values for DMSMs section, this choice leads to very 
satisfactory results. 

The error estimate for fixed step sizes may be found, as demonstrated by Butcher and 
Jackiewicz (Reference 3), in the form 

VVP+%-IK+1=^MF[" 
W + rTy[n-D + 0(hP+2), (47) 

and for variable step sizes only the minor modifications shown below are needed. The 
error estimate is then a linear combination of terms aready computed and thus is essentially 
free of computational cost. The ß and y vectors are determined by the method and may be 
different for initial steps, constant step sizes, and varying step sizes (involving 8 but 
reducing to the constant step size formula for 8=1). They may be computed as follows. 

Define a matrix 

G = 0,e,c,...,-— (48) 

and a matrix 
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T -\tQ,ih...,ip+i\- 

1    -1    1 

0     1    -1 

0    0     0 

(-1) 
p+l 

(p+l)\ 

(-l)p 

1 

(49) 

Then the following theorem applies: 

Theorem 7 (Butcher and Jackiewicz, Reference 3): If the fixed step method in Equation 2 
has stage order q equal to the order p and V is a rank one matrix such that Ve = e, then 
vTle(xn) can be estimated by the formula 

vTle(xn) = hßTF(Y^) + y V"_1] + 0(hP+2), (50) 

where, for every step after the first, the vectors ß and y satisfy the system of equations 

yTe = 0 

*T  C 
i-i 

(/-!)! 
+ YTBGtt=0, i = l,2,...,p  . (51) 

tfc 
$      +r^BGip+1=vI(Pp. 

Proof: The following is based on an earlier proof of Butcher and Jackiewicz (Reference 3) 
and is included here for completeness and to indicate where their proof requires that the 
step number n be greater than 1. 

The first equation of Equation 51 is the equation resulting from terms of O(l) in 
Equation 50, since, as we have already noted, the first column of W is e, and so each 
component of ytn"1] is y(xn.1) + O(h). Since each column of a rank 1 matrix is proportional 
to e and V is chosen to be rank 1, we must then also have yTV = 0. We now use Taylor 
expansion, the stage order, and the initial value problem Equation 1 to write 
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hF\ /yW) = 

y(xn-\) 
hy'(xn_x) 

^+V'+1)K-i) 

+ 0(hP+2) 

We may also write 

hF\ ■(Y[n-i]\ = G 

y(xn-i) 

hy'(xn-i) 

hp+ly{p+l\xn_2) 

+ 0(hP+2), 

but we note that this only makes sense for n > 1, that is, for steps after the first.  We may 
also write the Taylor series relationship 

y{xn-l) 
hy'(xn_2) 

hp+1y{p+%n-2\ 

= T 

y{xn-\) 
hy'ixn-i) 

hp+xy{p+%n-,\ 

+ 0(hP+2), 

which of course only applies to the first step if the domain of validity of the differential 
Equation 1 extends sufficiently far to the left of x0. Finally we use the second equation of 
the method Equation 2 to write 

y^-^=hBF(Y^ + Vy^-2\ 

which clearly is meaningless for the first step.    We substitute these expressions into 
Equation 50, and using yTV = 0 and Theorem 6 we obtain 

vTcpphr^+%n_1) = (ßTG + rTBGf) 

y{xn-i) 

W(xn-l) 

*P+V'+1)(*n-l). 

+ 0(hp+2). (52) 
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But we have 

ßTG + yTBGf 0,ßTe + yTBGih...,£-^ + YTBGptp+l 

Substituting into Equation 52 and equating terms of the same degree in h, we obtain the 
conditions of Equation 51. ■ 

For the first step, the accuracy of the approximation used in generating the starting 
vector y[01 becomes important. Although the minimum requirement is that 

^=£a^t)(<b)*'+0(*'+1), 
1=0 

it is possible to obtain more accurate estimates for the higher derivatives of the solution so 
that the accuracy becomes 0(hp+2). The fixed-step error formulas derived by Butcher and 
Jackiewicz may then be replaced by formulas of similar form but with different 
coefficients. 

Theorem 8 (Initial Step Error Estimate): If the solution y(x) to the problem in 
Equation 1 is sufficiently smooth and the starting vector is calculated by a method correct 
up to OOtf*"2), then the error in y,, the approximation to y(Xj) calculated using the method in 
Equation 2 is 

lte = y{tl)-yl = 
1 P  -    Cj hßTF{y[l]]j+ry rJ°] ) + 0(hP+2), (53) 

provided vectors ß and y meet the following conditions: 
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\)yTe = 0 

2)ßTe + yTa1=0 

P        ck~l 

3) 1 ßj T-^— + yTak = 0, k = 2,...,p (54) 

P  ßjCf 

7=1    Pi 

Proof: We wish to calculate the term of (Xh1*1) in the expression y(t,) - yv We use a 
Taylor expansion for the true solution about t0 and use the expression for the first 
component of the Nordsieck vector in computing yv Then we have 

i=0     l- 

y^hB^Y^ + V.yM 

We use the definition of the starting vector and the stage order condition to write 

;=0 

^ = v(;0+^) + o(^+1). 

Now 

F{yM) - f(YP) = f(y(t0 + C.-Ä) + 0{h^)) = f(y(t0 + C.-Ä)) + 0(h^) 

hJ 

: y (r0 + Cih) + 0(^+1) = f y^fo) Ar + 0(^+1). 
7=0 ./• 

Then the term in h of order p + 1 in y(t,) - yt is the lte and may be readily found to be 
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üe = hr+1yb+l\t0) 

(     1 P -   cf 

We wish now to find an estimate 

^+Vp+1)('o)=hßTF\f$)+7 V0]+dipr2\ 

We use the same expressions for F and the external stages. This yields 

hP+lip+l) P    C: 
%)=lßjl-±h 

j=i    k=o kl 
k+1y{k+%)+ £ Yj £ «^('o)*'' + 0(hp+2)- 

j=\     i=0 

The first relationship comes from considering terms of order 0. The second relationship 
results from equating terms of order 1 and noting that if some Cj = 0, the term of order 1 is 
produced by multiplying the term of order 0 in the Taylor expansion by h and hence we use 
a convention where 1 appears in place of the apparent undefined 0° in the last formula. The 
third set of formulas comes from considering orders 2 through p, while the fourth formula 
comes from setting the coefficients of terms of order p + 1 on the right to one. ■ 

We note that we have p + 2 equations in either case to determine 2p variables. For 
p = 2 the solution is unique, while for higher orders there are additional free parameters. 
These may be used to accomplish other purposes, for example to avoid poles that might 
arise in the formula. 

Error estimation for variable step implementations have also been developed. We 
follow here the Nordsieck approach of Butcher and Jackiewicz (Reference 3) but also note 
that an alternative formulation has been developed in a paper by Jackiewicz, Vermiglio and 
Zennaro (Reference 23). We define hn as t„-t„.,, and 8 = h„/h„_, and we seek vectors 
ß = ß(8) and y = y(8) such that 

un-l> ■n-1 

/<^li) = KßT(S)F(Y^) + YT(S)~yW + 0(hr2). (55) 

It should be noted in the following modification of a theorem by Butcher and Jackiewicz 
(Reference 3) that the error formula includes the effect of rescaling and that error estimation 
is not carried out by simply using a fixed step formula with a rescaled external stage vector 
as is done in interpolation. Also note that variable stepsize does not apply before the 
second step. Note that in the following the validity of the local stage order condition is 
assumed. 
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Theorem 9: Assume that the method in Equation 2 with p = q = r=s, U = I, is 
implemented in variable stepsize mode using the Nordsieck technique and that V is rank 
one, Ve = e. Then 

vTle(tn) = hnß
T(ö)F(YW) + rT{8)~y[n-l] + 0(hT2), (56) 

if ß = ß(S) and y = y{8) satisfy the system of equations 

l)y1WDV = 0 

2)y1 e = 0 

3)(ßT-^>T + -%Y*WDB)e = 0 (57) 

4)ßT
7^— + -^7TWDBGti^0,   i = 2,3,...,p 

5)ßT —^ + -±Ty
TWDBG~tp+1 = vT(pp. 

For the frequently occurring case where the first row of V is vT and the other rows are 0, 
the first condition simplifies to y e = 0, eliminating it as a separate condition. 

Proof: We follow the proof of Butcher and Jackiewicz (Reference 3) with some 
modifications. We proceed as in the proof of Theorem 6. First, we use the stage order 
condition and Equation 48 to obtain through Taylor expansion, 

\F{y[n])= 

y('»-i) 

K+xy{p+%n_x) 

+ o{K+2\ 

K-iF{Y[n- K-l? (tn-l) 

hCh{P+%n-2) 

+ o{htf\ 
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Taylor expansion yields the relationship 

y(tn-i) 

vlyfe-2) = T 

y{tn-i) 

Viyfe-i) + o(htf), 

( 1  1       1 \ 
and rescaling with D = diag 1,—, -y, • • •, -r-^-   yields the relationship 

V   o o oF    ) 

y{tn-i) 

Viy('n-l) 

CiVp+Vi) 

= D 

y{tn-i) 

K+ly{p+%-i) 

Substituting, we then obtain 

K-iF(Yin~1]) = QTD 

y{tn-i) 

Ky'{tn-i) 

K+ly{p+l\tn-i\ 

+ o{K+1\ 

Furthermore, using the relationship in Equation 22 and the rescaling formula in Equation 
29, we obtain 

y[n~1] = hn_xWDBF[Y[n-l]) + WDVy[n'2]. 

We now substitute into Equation 55 to obtain 
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v^fV^fe-i) = (ßTG + yTWDBGfD)     kJ ^ 

K*y{p+l\tn_x\ 

+ yTWDVy[n-2]+0(hP+2). 

Since fixed stepsize D and D are identity matrices, we may note that this expression agrees 
with the comparable expression derived earlier for fixed stepsizes.   However, the term 

y WDVy-n~ * requires additional consideration. We note that the first column of G is 0. 

Then, examining the terms created in multiplying the Nordsieck vector by ßT(ö)G, we 

find that there is no term remaining of order h°. Similarly since D is a diagonal rescaling 
matrix and T is lower triangular, there is also no term of order h°.    Then, since 
~[n-2\ _ ey[tn_^ + (9(/zn_[) we must have yTWDVe = 0. For the case where the first row 

of V is vT and the other rows are 0 we have WDVe = e and the zeroth order condition 
reduces to the requirement that y (8)e = 0, which also eliminates the entire term since 

WDV = WV = V = ev for this case. However, for more general V matrices it has been 
convenient to impose the sufficient condition y WDV = 0. 

We now use our knowledge of the nature of G in the first term and D in the second to 
find that 

ßTG + yTWDBGfb = 0   ßTe + irTWDBC(il    -   ßT — + -^yTWDBGtp+l 
Sp+ 

We note that Gt^ = e. Thus the first order condition simplifies to 

(ßT + i yTWDB\e = 0. The other equations of Equation 37 then follow by equating terms 

of the same degree. ■ 

TECHNIQUES FOR OBTAINING STARTING VALUES FOR DIMSIMS 

In general it is the derivatives that must be computed to obtain starting values. 
Techniques will be illustrated here for methods of second order that may be extended to 
methods of higher order. For a second order method only the second derivative becomes a 
problem, since the first derivative may be computed using the derivative function f of 
Equation 1.   The derivative of the derivative function could be computed symbolically 
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whenever f is available in a symbolic form, but this will be too complicated for many 
functions of interest. Otherwise, an approximation for y" may be calculated, which needs 
only to be correct to 1st order to provide satisfactory starting values. Only one additional 
solution point is needed, y(x0 + h0), where h0 is some small value (note that the first 
DMSIM integration step size is designated h,). The Taylor expansion at x0 then yields a 
convenient expression with a first order error: 

y(h) = y{t0)+Vfo>)+T/'M+ofa3), 

so we have the expression 

*'H yo + 0(/*o). (58) 

Here we substitute the approximation 

yi = y{h) + o(}%), 

where y, must be calculated using a second order Runge-Kutta method to provide a second 
derivative correct to O(ho). It may be noticed that an approximation for y(t:) is obtained as 
part of the starting procedure. However it is the external stages that are needed and they 
will be calculated at tj using the DMSM. New function evaluations will be required, even 
if the value of c, is 0 and h0 is actually used as the initial step size. 

Although adequate starting values are obtained with a first order estimate of the second 
derivate, as was shown in Theorem 8, in order to obtain a reliable error estimate for the 

first step for a second order DMSIM, it is necessary to obtain an OUIQ) approximation for 

y"(tQ). This may be done using a 3rd order Runge-Kutta method and either two calculated 
points or one calculated point and a functional evaluation, as follows. Assume we calculate 
two points y and y2 from (t0,y0) using a 3rd order (explicit) method. Note that if both are 
calculated from the starting point there will be no stability problems, no subsequent steps 
are taken with the method. We can express both in terms of Taylor expansions of y(t0+hj) 

4 4 
and y(x0+h2) to 0(h ), since these are the accurate with error 0(h ). Let h; = h(/2 and 
h2= h0. Then we have: 
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^o ,,' _i_ ho ,/'> fy) ,,'", n(h^\ 

We can eliminate the third derivative term between these two equations and come up with 
the following expression for the second derivative: 

Jo = f fc - 8* + 7y0 + 3«) + o(/*o2). (59) 

Alternatively we can calculate a.Vj at t0+h0, do a function evaluation there to determine its 
first derivative y{, and use Taylor expansions to develop a different formula, also correct to 
second order: 

yi=yo + hoy'o+iy'o+iyo + o(hZ) 

yi = y,o + hoyo+lryo + o(4). 

Multiplying through the second equation by h0 we have an error term that is 4th order, the 
third derivative can again be eliminated and we arrive at the formula: 

yö=^(3(* - y0) - h(yi+Wo)) + ^2). (60) 

Limited testing seemed to indicate that Equation 59 produced somewhat better results. 
However, the second method requires fewer function evaluations. But a great advantage to 
either approach is that they yield a convenient estimate for the third derivative, and this may 
be used to provide a very accurate a priori error estimate enabling optimal step size 
selection. This will be explained in more detail in the next section. 

STEP SIZE SELECTION STRATEGY 

The adaptive approach employed for each step is to use the error estimation techniques 
outlined above to obtain an estimate of the error generated with the step. If the error 
exceeds the tolerance the step size is halved, the external stage vector is rescaled using 
Equation 29, and the step is repeated. This continues until a result is obtained within 
tolerance or the maximum allowable number of attempts is exceeded, which terminates the 
integration with an error message.  On the other hand, if a step is successful, a new step 
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size is calculated for the next step. This is done with the standard formula provided, for 
example, by Hairer, Norsett, and Wanner (Reference 18). The optimal step size, hopt, will 
produce an error equal to the tolerance. The error is assumed for both the previous step 
and the next step to be of the form of the left hand side of Equation 55 with approximately 
the same derivative factor. Then we estimate 

Kpt = h 

\err) 

There are some issues that must be considered in changing step size, even after a 
computation of optimal step size has been carried out. First, the amount of work that is 
necessary to complete an integration is minimized if the longest possible step sizes are 
used. On the other hand, failed steps are expensive since all the step calculations, including 
rescaling external stages, derivative evaluations, and error estimation must be repeated. 
Therefore, since error estimates are simply estimates, a safety factor is always utilized, 
usually chosen to be 0.8 or 0.9. Furthermore, large changes in optimal step-size 
calculations are an indication of rapid changes in the solution to the system being solved 
which lessens the value of error estimates, and so a maximum step-size increase ratio is set. 
Finally, error estimates and integration behavior deteriorate with frequent step-size 
changes, so it is desirable once a step size has increased to prohibit further increases for a 
few steps. There are then three parameters to be determined heuristically that can 
significantly affect the performance of a solver, the safety factor, the maximum step-size 
increase ratio, and the number of successive steps after a step-size change in which step 
size is kept from increasing. 

Integration at the right end point may proceed in a few different ways. If the interval 
from the last mesh point to the end point is small, extrapolation may be used. 
Alternatively, the solver may integrate past the end point using the step length calculated 
from the error estimate and interpolate back. Finally, the right end point may be chosen as 
the final mesh point for the last integration step. This third alternative is used here because 
it is most appropriate for waveform relaxation. Extrapolation does not yield an interpolant 
for the final interval, which is the actual required output with waveform relaxation. Also, 
in waveform relaxation the derivative function is undefined past the end of the current 
window since interpolants for variables associated with other subsystems of the overall 
problem have not yet been determined. Thus the third alternative is the technique chosen 
for this work. 

Choosing a suitable size for the first step has been almost as much of an art as a science 
and approaches are typically taken based, to a considerable extent, on heuristics. It is 
desirable for accuracy to choose a very small first step and then use the error estimator to 
determine step-size changes for subsequent steps. However, too small a first step will 
result in too many small steps as the integration progresses while the step size is increasing. 
Three different approaches were examined in developing DIMSIM solvers. Shampine and 
Gordon (Reference 24) used the following selection for initial step size: 
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/ 
h = imn *»i 

V 
0.5*tol 

/(wo! 

\t 
(61) 

Here the input h0 value is a user-supplied estimate to prevent too large a value from being 
used, and tol is the specified tolerance. The choice comes from estimating the error of a 
first order method as h times the error of a zero order method, and then calculating a step 
size to produce an error of half the tolerance. This step size is then divided by 4 to produce 
a conservative value. Their approach is used in a linear multistep solver in which the first 
step is of first order, which renders it less suitable for a higher order DIMSIM solver. 

A more sophisticated approach suitable for higher order solvers is presented by Hairer, 
Norsett and Wanner (Reference 18) and originally developed by Gladwell, Shampine, and 
Brankin (Reference 25). The local truncation error is assumed to be of the form 

he - Ch?+ly(p+l\t0). (62) 

They then recommend the following process. The preliminary value is the step size that 
produces an Euler step yielding a solution change of 1%. This is used to then obtain an 
estimate for the norm of the second derivative. The larger of the first and second 
derivatives is used as an estimate for Cy^1^), and a value of h is chosen to produce an lte 
of around 1%. Various threshholds are set to avoid bad choices for more exceptional 
cases. In summary, these steps are followed: 

r    \2 

and sc is a vector of 1. Let 4)=|yo||  and 4=||/(f0,y0)\\, where ||z||=   £ I 
V   i=AsciJ 

scale factors, here sc—Atolj+lyoilRtolj with Atol and Rtol vectors of absolute and relative 
error tolerances. 

2. If d0 or dj is less than 10"5, set h0= 10"6, otherwise let h0= 0.01 (d^d,). 

3. Let y, = y0+ h0f(t0,y0) and find f(t0+ h,,.^). 

4. Let d2=j;\\f(t0+h0,yl)-f(t0,y0)\\. 

5. If max(dl,d2) ^ 10~15 then set h\ = max^O-6,/^ • 10~3), otherwise, 

h = p+i 
0.01 

max (4, d2) • 
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6. Use starting step size h = min(100h0,hj). 

This was the first method that was tried for choosing the initial step size. 

An alternative approach with considerable promise has been devised as part of this 
research effort. For a 5th order DEVISEM, for example, we would proceed as follows: Any 
small step may be used with an explicit 6th order Runge-Kutta integrator to produce 3 
values for the solution at t0 + h0, t0 + 2h0, and t0 + 4h0. Using two of the three possible 
derivative function evaluations to produce values for the derivative, there are 5 equations in 

5 unknowns, producing values for the /*o:/^(fo) for k ranging from 2 to 5 as needed for 

the starting vector, plus a value for /zoV^(f0), which may be used with the existing 
formula to provide an accurate a priori error estimate for the first step before the DEVISIM is 
even applied, using Equation 53. This may be used with the tolerance value to provide a 
simple formula for the appropriate step size for the first step. A safety factor of perhaps 2 
should be provided based on heuristics from further tests. The starting vector calculated 
using h0 would only need rescaling, prior to actual use. This will avoid the usual step size 
buildup at the beginning and improve accuracy. Furthermore, one might utilize alternative 
error formulas for solvers of different orders, with no additional derivative function 
evaluations required, to obtain an optimal order selection for the problem, at least in the 
region of the first step. 

Some problems encountered with early testing of this approach indicate that it is 
important to utilize a suitable h0 value.  It should be noted that the most difficult value to 
calculate in the Nordsieck vector will be the term of 0(/z£+1) if h0 is small, because it is 
calculated as a linear combination of terms that may be near 1. Thus machine precision and 
roundoff error may become significant. The problem of machine precision is greatly 
simplified when a quadruple precision data type (real* 16) is available. Furthermore, if h0 
is too large, the Runge-Kutta integration will not be sufficiently accurate. The estimate for 
a suitable value of h0 may be obtained from the heuristic relationship 

10 • eps = scfac ■ h£+ , 

where eps is the machine epsilon and scfac is a scale factor reflecting the scaling of the 
problem. A reasonable choice of scfac might be 1 or the minimum of y0 and y0' with the 
maximum taken if one of the two is very small (an approximation to 0). This assumes that 
the (p + l)st derivative is around the same size as scfac. The idea is to choose h0 so that the 
smallest and most difficult term to calculate is on the order of ten times the machine epsilon. 
If h0 is smaller, roundoff error will create problems, while if h0 is too large the 
approximation accuracy will suffer. This process is more extensively illustrated as it is 
used for obtaining starting procedures in the Techniques for Obtaining Starting Values for 
DEVISIMs section. 
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ALTERNATIVE REPRESENTATIONS 

The DIMSIM solution equation and the rescaling formula provide relationships among 
current external stage vectors, previous external stage vectors, and derivative vectors at 
current or previous internal stage points. These enable alternative representations of 
formulas for such things as error estimates, intepolants, Nordsieck vectors, and rescaling. 
These alternative formulas are mathematically completely equivalent but may have 
somewhat different roundoff properties. In some cases significant differences for 
waveform relaxation implementations in memory requirements and in message passing 
volume for parallel computing will result from the choice of representation, as will be 
described below. Alternative representations are also helpful in shortening recursions in 
deriving stability regions for predictor-corrector implementations, and this will be used in 
the report to follow on implicit DIMSIMs. The following relationships are not exhaustive 
but are provided as examples of useful forms. 

We again write the second equation of Equation 2, using an alternative expression for 
V: 

yW=^F(rW) + evV""1]- (63) 

We can then write, for nonsingular B, (implicitly assumed in this section wherever B"1 

appears) 

ÄF(yM) = B'lyW - fi-WV"11- (64) 

Alternatively, we may use the rescaling formula in Equation 29 to express 

y[n~1] = hn_lWDBF\Y[n-1]) + WDVy[n~2\ 

We can then apply these as follows: 

a. Error Estimates: The fixed step formula has been expressed in Equation 50 as 

vTle(tn) = hßTF{Y^) + 7rvfn_1] + 0(hP+2), 

and we may produce alternative representations as described in the following. 
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Corollary to Theorem 7: If the fixed step method in Equation 2 has stage order q equal 
to the order p and V is a rank one matrix such that Ve = e, then vTle(xn) can be estimated by 
Equation 50 and either of the formulas 

vT le{tn) = hfiFft'l) + hßlF[Y^ + 0{hP+2), (65) 

and 

vTHtn) = rh[n]+rb[n-1] + o(hp+2), (66) 

rp rp 

where ß and y are given by the formulas of Equation 51, ßj= ß, ß2 = J B, and Yj and y2 

are given by 

7i=ßTB-\ 
(67) 

rl = rT-ßTB-levT. 

Proof: To obtain Equation 66 we substitute Equation 64 into Equation 50 to obtain 

vTle(tn) = ßT(B~lyW - B-Wy^y yTy^ + o(hP+2), 

and the result follows immediately. Equation 65 results from substituting Equation 63 for 
the previous step into Equation 50 to obtain 

vTle(tn) = hßTF(YW) + yT(hBF(YW) + evTyW). 

The extra term yTevTy-n 2' is 0 since yTe=0 from Equation 51. ■ 

We have similar relationships for variable step size. Note that 5 refers to 5n in the 
following. 

Corollary to Theorem 9: If the variable step method in Equation 30 has stage order q 
equal to the order p and V is a rank one matrix such that Ve = e, then vTle(xn) can be 
estimated by Equation 56 and any of the formulas 
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vTle(tn) = hnß[(Sn)F(W) + K-lßI(Sn^n-l)F(Y[n-1]) + o(hP+2), (68) 

and 

vrfefe) = rl (%H+rl(¥n~1]+o(hP+2), m 

where ß and y are given by the formulas of Equation 57, ßj= ß, ß2 = J (Sn)WD(8n_i)B, 

with V in standard form, and y and y2 are given by 

rI = ßT(s)B-\ 
(70) 

7T
2=YT(S)-ßT(6)B-W. 

Proof: To obtain Equation 69 we substitute Equation 64 into Equation 56 to obtain 

vTle(tn) = hßT(8)[B-lyW - evTy^) + r
r(«]M 

and the result follows from identification of coefficients. Equation 68 results from 
substituting Equation 29 into Equation 56 to obtain 

vTle(tn) = KßT{8n)F{Y[n]) + fi^D^-BF^) + WD^»"2]). 

Assuming the standard form of V with a first row of vT and all the other rows identically 0, 

we may note that WDV = V = evT. This results in the extra term yT(S)evTy-n~2\ but 

7 (S)e = 0 from Equation 57. ■ 

A similar approach can be used for the first step error estimate. 

b. Interpolants: 

The most payoff from using alternative formulas can be expected here, since 
interpolants over some number of steps are stored and passed between parallel processors 
as they are used to represent solutions over a window in waveform relaxation.    The 
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formula derived above requires storing and passing both external stage vectors for each 
step within a window and the vectors of derivatives at internal stage points, at each grid 
point requiring storage and passing of 2Mp numbers, where M is the number of equations 
in a subsystem and p is the order of the DMSM. The requirement for a Nordsieck 
interpolant is only M(p +1), but in a representation using only external stage vectors this 
number becomes just Mp. We have the following alternative formulations. It should be 
noted carefully which external stage vectors are rescaled. 

Corollary to Theorem 5: If a DMSIM has order p and stage order q = p or q = p - 1, 
then a Butcher-Jackiewicz-type interpolant 77 given by either of two equivalent forms 
approximates y with uniform order p and is continuous on the whole interval of integration 
if and only if conditions of Equations 35 and 36 are met and the interpolant is given by 
Equation 34 or 

v{tn-i+eh)=ro,i(e)y[n]+y^{e)^~l\ (7i) 

where 

7o,i(0) = ßo(ö)B-\ 
(72) 

7o,2(0) = ro(0)-ßo(0)B-1evT. 

Proof: This follows from identification of coefficients after direct substitution of Equation 
64 into Equation 34 to obtain 

i(tn-i +eh) = ßo(e)(B-ly[n] - B-WyW)+rQ{e)y[n~l]-       ■ 

For the Nordsieck vector we have the following. 

Corollary to Theorem 3: If the method in Equation 2 satisfies Equation 24, then the 
Nordsieck vector y at tn may be approximated to OCh^1) using either the equivalent 
formula of Equation 22 or 

y{tn) = vJ-nUv£n-l\ (73) 

where 
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(74) 

V2 = V-BB~levT. 

Proof: This follows from identification of coefficients after direct substitution of Equation 
64 into Equation 22 to obtain 

y(tn) = BfB-'yW - BrW^) + V$M 

c. Rescaling: Since formulas used above include some rescaled and some unrescaled 
external stage vectors, the ability to rescale using only external stage vectors is important. 
We note that if we can rescale using Equation 29, we can also rescale using 

pH = WDnBB~l y[n~1] +(l- WDnBB~l )evTy[n-2]. (75) 

This follows immediately from direct substitution of Equation 64 into Equation 29 to obtain 

y^ = K-iWD(6n)B(B-^n^ - B-Win-2~\) + WD(dn)elV
Ty^-2\ 

where a standard form for V is assumed and I represents the identity matrix of appropriate 
dimensionality. 

FIRST APPROXIMATELY SAME AS LAST (FASAL) MODE 

Runge-Kutta methods for which the first stage of the new step equals the last stage of 
the previous step have been know for some time (see, for example, Reference 18), and the 
property is called First Same As Last (FSAL). Its primary use is for error estimation, as 
for example with Dormand-Prince pairs (Reference 26), where an embedded method of 
higher order is created by adding an extra stage with A coefficients identical to the b 
coefficients of the first method. The higher order result is actually used to continue the 
integration in this case but seven stages are utilized for a 5th order method. No additional 
function evaluations are needed for successful steps and the work is the same as though 
only 6 stages were used because the final stage is identical to the first stage of the following 
step (FSAL) which would have to be evaluated anyway. Because of the high stage order, 
all types of DIMSIMs for which Cj = 0 and cp = 1 and the local stage order condition 
(Equation 41) is true have a First Approximately Same As Last (FASAL) property, and this 
can be used to save at least one internal stage evaluation on every step after the first.  As 
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discussed above in conjunction with error estimation, theoretical work concerning the effect 
of global error on local stage error remains to be done, but experimental evidence for the 
validity of this assumption is abundant. 

The local stage order condition requires that 

where here y denotes the local solution of the ODE through the indicated initial point, while 

where y again is a local solution, and hn = hn-1 and tn4 = tn_2 + h^. Note that the order 
condition implies that 

y{tn-l\tn-l>yn-l) = y{fn-2 + K-\^n-2^n-l) + 0{hn-l\ 

and thus we have, with h = hn= hn.x, 

Y\n] = Yln-l] + 0{hp+l). 

Since what is used is the always the derivative multiplied times the step size, and 

hf[tn-i,t
] + 0(hP+l)) = hf(tn_hYW) + 0(hP+2), 

it is possible to use F\Y^n~^j in place of carrying out the function evaluation for explicit 

methods, or even the nonlinear equation solving required in implicit methods, for FIY}"* J. 

It should be noted that higher order terms (0(hp+2)) will be changed. In some cases 
they will be fortuitously decreased, but in others they will be increased. The smaller the 
error constant the greater the impact that these terms will have. But in general the error 
estimation, rescaling, and interpolation for the original DUVISIM should be essentially 
unchanged. 
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But the most significant impact will be on stability. It should be noted that when this 
implementation is used, the pth internal stage from the previous step is carried over into the 
next step along with the external stage vector, and thus in a sense this becomes a "two-step 
DIMSIM."   The modified method may be written in standard General Linear Method 

A A A. /V 

(GLM) notation by producing A, B, U, and V matrices from the A, B, U(= I), and V 
from the original DIMSIM, and by enlarging the external stage vector length by 1 to 
r = p + 1. This becomes a GLM with p = q=s, r = p+l. The first component of the 
external stage vector becomes the pth internal stage that is carried along, while the others 
are unchanged. We set A = A except for the first row which becomes 0; this is unchanged 
for explicit methods.  U is an augmentation of I produced by adding a 0 second column, 
and hence is px(p + 1). B is produced by adding to B the last row of A as a new first row 
and is (p + l)xp. Finally, V is produced by adding to V a new first row and first column, 
with 1 for the last element of the first row and Os elsewhere for these new elements. A 
tableau then appears as 

0 1    0    0    •••   0 

A2 ooi'-.i 
A    U ; 

•   ;    •.  '•.  0 
B   V_ Ap 

Ap 

0   0   •••    0    1 
0   •••   1 

B 0   V 

where Ak is used to denote the kth row of matrix A. 

The original V becomes the lower right submatrix and the new matrix is (p + 1) x (p + 
1). Then we may write for a single ODE, 

Y^=hAF[Y^) + Üy^n-l\ 

(76) 

yW=hBF(YW) + Vytn -1] 

(It should be noted here that the external stages are redefined, although notation has not 
been changed, and that actual implementation will not involve separate evaluations or 
function evaluations for the repeated stages.) Then the new stability matrix becomes, 
through application to the test problem y' = Xy and setting hX = z, 

M = TB[I-ZX) 
lu+v. (77) 
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This is now (p + 1) x (p + 1) and in general does not produce the same stability region as 
the original DIMSIM. Thus if FASAL implementation is desired, a method should be 
sought that optimizes the FASAL stability region rather than that of the DIMSIM, and in 
general it should not be expected that FASAL implementation for a given DIMSIM should 
produce a favorable region. This may be used in various ways, including development of 
new methods especially for FASAL implementation, or in variable implementation where 
FASAL is used until it runs into stability problems. Typical stability region plots will be 
shown below as the use of specific methods are discussed. 

DEVELOPING EXPLICIT DIMSIM ODE SOLVERS 

Explicit solvers have been developed based on Type 1 DMSIMs derived by Butcher 
(Reference 1) and by Butcher and Jackiewicz (References 6,7, and 8). These methods are 
designed to have the same desirable stability regions as Runge-Kutta methods but break 
Runge-Kutta order barriers at orders above 4 and stage order barriers, thus reducing the 
number of function evaluations required per integration step. These DMSIMs are 
designed to have a number of stages (the number of function evaluations) equal to the order 
of the method, while explicit Runge-Kutta methods require one extra stage for orders 5 and 
6, two extra for order 7, and at least three extra for orders 8 and higher. In fact, order 10 is 
the highest-order explicitly constructed explicit method found so far, and the fewest stages 
required of any 10th order method is 17 according to the current (1993) revision of Hairer, 
Norsett, and Wanner (Reference 18). Thus the recent announcement of the discovery of an 
8th order Type 1 DIMSIM using 8 stages and with good stability properties by Butcher, 
Jackiewicz and Mittelmann (Reference 6) is of great significance. 

The development of a solver involves derivation and testing of additional 
implementation parameters to provide for rescaling at step-size changes, error estimation, 
interpolation, and starting procedure. A solver also requires software design and 
implementation. In this case the final codes were written in FORTRAN 77. 

IMPLEMENTION  PARAMETERS   FOR A   SECOND   ORDER  EXPLICIT 
DIMSIM 

Although second order does not provide sufficient accuracy to be broadly useful, the 
simplicity of the small number of parameters enables development and convenient 
illustration of techniques applicable to higher orders. 

Butcher's second order Type 1 method in Equation 15 was utilized to develop a 
DIMSIM variable step-size solver. For convenience the tableau is reproduced here. 

A    U 

B    V 

0   0     10' 

2 0 0 1 
5 1 1 1 
4 4 2 2 
3 
4 

1 
4 

1 
2 

1 
2 
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and c = [0,1 ]T.   Butcher (Reference 1) also found matrices W, B, and V (see above in 
the Introduction to DIMSIMs section for the relevant definitions). These are 

W = 

B = 

V- 

1   0 0 

[l -1 i 

5       1 
4       4 
0     1 ? 

-1  1 

i   r 
2     2 
0   0 . 

0   0 

(78) 

The latter two were determined using a free parameter g to obtain desirable step-size 
changing zero stability, determined from the eigenvalues of the matrix 

WDV = 
1 1 
2 2 

±-ög + d2g   ± + 8g-62g 

ri 11 
2 2 
1 1 

_2 2j 
= v, 

for g = 0, which has eigenvalues 0 and 1, independent of 8.   Note that standard form is 
used for V in this case. The stability polynomial M(z) = 1 + z + z2/2, is the same as 
for a two-stage, second-order explicit Runge-Kutta method, and thus this method has the 
same well-known stability region, including the interval [-2, 0] along the real axis. 

Butcher (Reference 1) also derived estimates for the local truncation error (after the first 
step) as 

lte = 
20 

1 + Ö (W(Y2)-W(Yihi(yt1]-y[2-1]l (79) 

which reduces for fixed step (5 = 1) to 
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lte^hf(Y2)^hf(Yl) + ^-ytl] 

For the first step error estimate we apply Theorem 8, Equation 53 and calculate 

p ~   c 
J _ l 

£ &ij „i ~ 24 (p + l)\    ~i  LJ p\ 

The simultaneous equations to satisfy from Equation 54 are 

71+72=0 

ßi+ß2-72=0 

jS2+i72=0 

Then ßT = [-6,2], yT = [4,-4], and the first step error estimate becomes 

ite^2hf{^)-\hAYM\{y{"]-yf\ (80) 

This is exactly one-half of the fixed-step error estimate used for subsequent steps. 

The final computation involves the derivation of an interpolant using Theorem 5.   We 
need to find the 12 coefficients of 

/#(*) = 
A)io + A)iiö + A)i20 

A)20 + 5021Ö + A)22ö  . 

and 

76» = 
7oio+7oii0 +7oi20 

7020+7021Ö + 7022Ö2 

57 



NAWCWPNS TP 8340 

where 8 e [0,1] is the interpolation parameter. We find immediately from the continuity 
condition ß0(0) = 0 that we must have ß010 = ß020 = 0. The other continuity conditions 
11(3.3), when combined with the compatibility conditions (see Implementing DEVISIMs 
section), yield the equations 

7o(o)^=[lroio+Jro2o i7oio-|ro2o]= A>(i)=[f \\ 

which yields Y0io=l> Yo2o=0> and 

ro(o)^=[i(roio+7o2o) i(7oio+7o2o)]= ro(i)=[i i\ 

which is consistent with the previous result but yields no additional information. The basic 
compatibility conditions then tell us that 

An i+A)i2 

.A)21 + A)22. 

7oio+7on+7oi2 

7020+7021+7022 

or, using the values just calculated, the second vector equation becomes 

2 
1 
2 

7oi i+7oi2 

7021 +7022. 

The order condition now becomes 

z[ßou9 + ßon92    ß0120 + ßo22Ö2]eZ  +[l + 7onö + 7o2Ö2    7021Ö + 7022Ö2] 

ö(4 
1-z + ^z2 

= e6z+< 
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We expand the exponentials about z = 0 and equate coefficients of powers of z. This gives 
us the following three equations: 

0(1):   1 + /olio + 7oi2#2 + 70210 + 7o220
2 = 1 

O(z):   A)ii0 + /W2+A)2i0 + A)2202-7o2i0-7o2202 = 0 

e2 

0(z2):   A)2i0 + A)2202+i7o2i0 + i02=T- 

This gives us 7 equations for 8 variables, but we clearly must seek to eliminate the 
parameter dependence on 0. We use the compatibility conditions to eliminate yon, y021, 
ßon, and ß021. Our 0(1) condition then reduces to 

-(l-0)7oi2 "(1-0)7022=0, 

which is used to eliminate y022 when the condition 0 * 1 is considered. The 0(z) condition 
then yields the equation 

i -e-2ß022(i-e) -7o22(i-0) = 0. 

This similarly enables elimnation of y022.    Finally, the 0(z2) condition is applied.    It 
reduces to 

1-0- A»2(i -0)-3A)22(i-0) = O- 

We then can eliminate ß012, leaving us with the following one-parameter family of 
coefficients: 
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7oio = 1. 

Toil - 2-2ßo22> 

7012=-1 + 2A)2> 

7o20=°> 

7021 -~2+2A)22' 

7022 -1-2P022> 

A)io=0. 

/^Oll - 4+3^022' 

A)12 -1~ 3^022' 

A>20=0, 

-^021 = 4~A)22' 

A)22 = A)22- 

We let ß022= 0 to obtain the Butcher-Jackiewicz-type interpolant 

1+--02 

I     2        J r
i]
+(-f^2)*-i] (81) 

Some possible starting procedures were derived above in the chapter Implementing 
DMSIMs as an illustration of techniques generally applicable to DIMSBVIs.    For our 
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explicit second order solver we use an order 3 explicit Runge-Kutta solver to obtain an 
approximation yl to y(to+h0) accurate to O(h0

4). Then we have: 

y^yo + hyo+ho+ivo + o^), 

yi^yo + two+^yo + ofö). 

Here y{ = f(t0 +hQ,y1). Eliminating variables we solve these two simultaneous equations 
and obtain 

y'o=Ti(3{yi -yo)-2y'o- yi)+o{^\ 
"0 

^X^yo-yJ + Zo + yO + Ofo). 

Note that the third derivative is not needed for the Nordsieck vector but is useful in 
selecting initial step size. Then the Nordsieck vector at ^ is given by 

yM 
yM 

V('o) 
yo 

6{yi-yo)-4y'0-2y{ 

+ 
<&)■ 

Note that this depends on the step size. Once a correct step size hj is chosen, this vector is 
rescaled using the matrix 

D = 

1    0 0" 

0  s 0 

0   0 s2\ 

h where 5 is the ratio —.   Multiplication by W then yields the appropriate starting vector. 

The error in the first step is given by Theorem 8 to be 
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Ite-i 
' 2 cV 

7=1 
4 - I *y ^ /3)(%)^i3 + 0{h}) = i53(2(y0 - *) + ho{y'0 + vf)) + o(h?). 

If we set this error to half the tolerance T and use a norm to include the possibility of 
systems of equations, we then may write a conservative but hopefully accurate choice for 
initial step size to be 8h0, where 

S = 
2% 

M 

\\2{yo-yi) + ho{yo+yi 
(82) 

TESTING IMPLEMENTATION PARAMETERS FOR SECOND ORDER 

A test equation first proposed by Prothero  and Robinson  (Reference 27)  was 
extensively utilized: 

y' = k(y-p{t)) + p'{t), y{t0) = y0. (83) 

The exact solution is 

y(t) = (y0 - Jp(^o))exp(A(r -10)) + p{t). (84) 

It is interesting to note that for y0 = p(t0) the solution is simply p(t). The sine function 
was used for p(t) and the interval of interest is t e [0,20]. Typical values for A- were -2 and 
-20. 

A quantity r is determined for each step, where r is defined as 

err 

est 
(85) 

Here err represents the local error as described in Equation 40, that is, the solution of the 
initial value problem in Equation 1 beginning at a DIMSIM solution point (tn.,,yn.i) with 
exact local solution at tn given by y(tn;tn_i,yn_,), and with calculated solution at tn of yn. 
Thus we test how well the estimate approximates the error using Equation 40, 
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errn=yn-y(tn;tn_l,yn_l). 

It should be noted that it is not appropriate to restart the solution in seeking to obtain the 
expression for err. A DMSM changes character after the first step, and this must be 
preserved in the testing process. In particular the external stage vector is not recalculated 
using a starting procedure, otherwise the separate error estimate for an intial step would be 
required. Testing will only then truly reveal the behavior of the error estimator in its use 
within a solver. 

The results of a test may be indicated both graphically and using a number of statistics. 
The quantity est is used to denote the result of the use of the error estimate provided for the 
method. A graph showing both err and est together is sometimes very revealing, but it is 
also vital to look at the largest error and the solution range. And a table showing the 
percentages of error estimates yielding r less than 1%, 5%, 10%, 25%, 50%, and 100% 
has proven to be of great value. Of course it is expected that test results will vary greatly 
with the tolerance used and also with the problem solved and even with the problem 
parameters. Thus any testing of implementation parameters must be considered preliminary 
to the much more extensive testing required of a full solver. 

Two tests were provided for the quality of error estimates. Test 2 was carried out as 
part of the testing of the complete solver on a number of different problems and is 
described with results in the Developing Explicit DMSIM ODE Solvers section. Test 1 
was first described by Butcher and Jackiewicz (Reference 3). A scheme was devised for 
testing the effects of rapid step changes on error estimation accuracy. An initial step size h0 

is chosen, along with a ratio p. The cyclic pattern of step sizes h0, ph0, p2h0, ph0, h0, \\J 
p, h0/p

2, hy p, h0, ..., is used until the end of the interval of interest is reached. This 
should be considered to be a very stringent test, especially for higher values of p, and 
serves as an excellent preliminary check. The behavior even with rapid step-size changing 
is quite good, as shown in Tables 1 and 2, and Figure 1. 

TABLE 1. Error Estimate Test for Second Order, Part 1. 

p % r < 0.01 %r < 0.05 %r<0.10 %r < 0. 25 %r < 0.50 %r< 1.0 

1.25 0.66 9.27 21.19 49.67 95.36 99.34 
1.50 3.29 11.84 23.68 49.34 91.45 99.34 
1.75 2.63 6.58 13.16 34.87 78.29 99.34 
2.00 0.65 3.92 9.80 25.49 67.32 99.35 
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TABLE 2. Error Estimate Test for Second Order, Part 2. 

p rmin rmax tf max err max 
err/At £ 

1.25 0.2811 3.2740 20.0402 0.0011 0.0610 
1.50 0.0031 6.6206 20.0963 0.0010 0.0584 
1.75 0.1719 3.8194 20.0335 0.0010 0.0597 
2.00 0.0402 22.0300 20.1128 0.0010 0.0559 

xlO r*    RHO = 1.25 x10 r+     RHO = 1.5 
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FIGURE 1.   Graph of Error Estimate Test for Second Order. Estimate is 
dotted line, local error is solid line. 

A related test was devised for interpolants. The interpolant was used to calculate the 
solution at 10 points evenly spaced across a step. The error at the end of the step was used 
to scale the error at the interpolated points. Thus a ratio no greater than 1 in absolute value 
would indicate that the error at the interpolated point is no greater than the error at the end 
point. Any of the error estimator tests described above might be used to generate the 
integration points, but the rapid step-size changing test seemed most directly useful. 

Figure 2 shows the behavior of the Butcher-Jackiewicz-type interpolant (Equation 81) 
error relative to the behavior of the solver at the grid points.   It performs very well with 
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only a few of the thousands of interpolated points having an error greater than the error at 
the grid points. In fact, much of the time the error at the interpolated points in the middle of 
the interval is less than the end point error. Certain grid points seem to lie close to a zero of 
the error function, having associated errors as much as 2 to 4 times less than those at other 
points, and the interpolated values in the middle of those intervals have significantly less 
accuracy than the grid points. 

RHO = 1.25 RHO = 1.5 

_|. jHHj^iuii. IH^^^M|~|, I^^^L^u^ _ ^.^^Hf^^nJU^Uwuiyf^|H  l^^u 

10 20 

FIGURE 2. Test Results for Order 2 Butcher-Jackiewicz-type Interpolant. 

It is interesting to look at the percentage of relative errors falling in various ranges. For 
-1500 steps the factors k by which the interpolation errors were greater than the grid point 
error were distributed as shown in Table 3. 
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TABLE 3. Test Results for Order 2 Butcher-Jackiewicz-Type Interpellant. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 
1.25 0.0% 0.0% 0.0% 1.8% 98.2% 
1.50 0.6% 0.4% 0.1% 0.9% 98.0% 
1.75 0.0% 0.1% 0.8% 0.4% 97.7% 
2.00 0.3% 0.2% 0.4% 1.5% 97.6% 

The Nordsieck interpolant was also tested using the same test problem. Figure 3 
shows that this interpolant has errors that are fairly comparable to the grid point errors. 
The simple second order Nordsieck vector was used without the third order continuity 
correction term. 

RHO = 1.25 RHO = 1.5 

W     iw     IP 

0                     10 

IP 

2 

FIGURE 3. Order 2 Nordsieck Interpolant Test. 

For -1500 steps the factors k by which the interpolation errors were greater than the grid 
point error were distributed as shown in Table 4. 
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TABLE 4. Order 2 Nordsieck Interpolant Test. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 

1.25 0.0% 0.1% 10.2% 78.3% 11.3% 
1.50 0.9% 0.1% 13.1% 74.7% 11.2% 
1.75 0.1% 0.5% 15.5% 72.6% 11.2% 
2.00 0.4% 0.4% 17.1% 70.6% 11.6% 

It is evident that for this method, the interpolant of Butcher-Jackiewicz type (Equation 81) 
provides a better representation of the solution than the simple 2nd order Nordsieck 
interpolant. 

The continuous version was then tried with the graphical results shown in Figure 4. 

RHO-1.25 RHO = 1.5 

FIGURE 4. Order 2 Continuous Nordsieck Interpolant Test. 
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The statistical breakdown obtained by continuous Nordsieck interpolant test is shown in 
Table 5. 

TABLE 5. Order 2 Continuous Nordsieck Interpolant Test. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 
1.25 0.0% 0.0% 1.2% 68.1% 30.7% 
1.50 0.6% 0.4% 0.5% 67.8% 30.7% 
1.75 0.0% 0.2% 1.5% 67.1% 31.2% 
2.00 0.3% 0.2% 1.2% 66.7% 31.6% 

This interpolant is less accurate here than the Butcher-Jackiewicz-type interpolant (Equation 
81), but provides substantially better accuracy than the 2nd order Nordsieck interpolant and 
could be readily used if a better alternative did not exist for this case. 

The testing of the starting method concerns the accuracy of the starting vector, the 
accuracy of the first step error estimate, and the appropriateness of the choice for initial step 
size. The Prothero-Robinson test problem is used here with A, = -2, with a starting point at 
t0 on the exact solution trajectory through (0, 1). 

The following test reveals the accuracy of the error estimate and of the initial step size 
selection algorithm. The starting point at t0= 1 is used throughout to avoid the special case 
of a 0 third derivative at t0. It is evident that accuracy improves until round-off error 
becomes significant. The fact that the error term is O(h) is evident as a tightening of the 
tolerance by a factor of 1000 produces changes of a factor of 10 in h. 

TABLE 6. Order 2 Starting Procedure Test 1. 

Tol h(Nord) Locerr Errest h(H-N-W) Locerr Errest 

io-3 1.95x10-' -3.21X10"4 -5.04X10"4 3.09xl0"2 -1.87xl0"6 -1.99xl0"6 

IO"6 1.95xlCr2 -4.81xl0"7 -5-OlxlO"7 3.09xl0"3 -1.97xl0'9 -1.99xl0"9 

IO"9 1.95xl0"3 -4.98x10-'° -5.00x10-'° 3.09X10"4 -2.02xl012 -2.00xl0"12 

IO"12 1.95xl0"4 -5.00x10'13 -5.00xl0-'3 3.09xl0"5 -1.89xl015 -1.97xl015 

IO"15 1.95xl0"5 -5.55xl0"16 -5.11xl0-16 3.09xl0"6 -l.llxlO-16 -3.75xl0"'8 

Another revealing test uses starting points at 0 through 1, evenly spaced, and with a 
fixed tolerance of 10 . We note in Table 7 that the use of the Nordsieck-vector-based error 
estimate for the first step provides a much more efficient start than the method described 
above in the previous chapter as outlined in Hairer, Norsett and Wanner (Reference 18). 
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TABLE 7. Order 2 Starting Procedure Test 2. 

tn h(Nord) Locerr Errest h (H-N-W) Locerr Errest 

0 LlOxlO"03 -4.99x10"'° -5.00x10-'° 1.36X1004 -9.38xl0"13 -9.39xl0"'3 

0.2 1.24X10"03 -4.99x10"'° -5.00xl0-10 1.59xl0'04 -1.07xl0"'2 -1.07xl0"'2 

0.4 1.39X10"03 -4.99x10"'° -5.00x10-'° 2.11X10-04 -1.77xl0-'2 -1.78xl0"'2 

0.6 1.55X10"03 -4.98X10"10 -5.00x10"10 2.55xl0"04 -2.24xl0"'2 -2.24xl0"12 

0.8 1.73X10"03 -4.98x10"'° -5.00x10-'° 3.24X10"04 -3.29xl0"12 -3.29xl0"12 

1 1.95xl0"3 -4.98x10"'° -5.00x10"'° 3.09xl0"4 -2.02xl0'12 -2.00xl012 

The final test concerns the calculation of the starting vector. Here we are concerned that 
the smallest possible safe value for h0 be utilized to produce the maximum accuracy since 
no DIMSIM integration step will actually be taken. We estimate that the derivatives will all 

be approximately at least the same size as g(t0,y0)=min(||v0||,|/(f0,>'0)||j, but taking the 

maximum if the minimum is smaller by a factor of eps, the machine epsilon. We note that 

quantities /ZQy (to) will be calculated in terms of linear combinations of functional values 
and derivatives multiplied by h0, with the most difficult term to calculate corresponding to 
k=p+l, used for the initial step-size selection. We would like to have at least three 
significant digits for this derivative, and we expect to have more correct digits for the other 
terms. Thus we would like to have g(to,y0)h^+l = 105eps (103 instead of 105 worked well 
for order 2 but not for order 5, this is a bit more conservative but more generally useful). 

This yields an optimal choice of /ZQ 
_2_f 

\op+l 

V 

eps 

s(Wo). 

p+i 

In this case of course, p = 2. 

We test this by calculating the relative errors in the second and third derivatives at 5 
uniformly spaced starting points between 0 and 1, and also looking at the maximum norm 
of the error in the starting external stage vector. Note that for this test problem the 
increment was quite appropriate (see Table 8). 

TABLE 8. Order 2 Starting Procedure Test 3. 

to h0 y'Vo) Rel err rM Rel err 
AyM 

oo 

0 2.81x10"* 4.00 1.06x10-' -9.00 5.02x10- 1.69x10"* 
0.2 3.95x10"* 2.48 2.12x10"' -6.34 6.47x10- 4.11 xlO" 
0.4 9.97x10- 1.41 1.44x10"° -4.51 1.46x10" 1.01 xlO" 
0.6 4.64x10"* 6.40x10" 3.64x10"' -3.23 5.68x10- 2.51 xlO- 
0.8 4.23x10* 9.02x10" 8.32x10"' -2.31 3.94x10- 6.77 xl0"'J 

1 4.35x10- -3.00x10" 2.78x10-" -1.62 2.45x10- 7.77 xlO'u 
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IMPLEMENTATION  PARAMETERS   FOR A  FIFTH   ORDER EXPLICIT 
DIMSIM 

A fifth order type 1 DIMSIM derived by Butcher and Jackiewicz (Reference 8) was 
adapted for implementation as an ODE solver. The method was derived using numerical 
techniques for solving the large system of nonlinear equation and, to ensure favorable 
stability, adding a requirement that the form of the stability polynomial reduce to the 
standard 5th order Runge-Kutta stability polynomial. Here again, p = q = r = s = 5, U = I. 
The method coefficients are as follows: 

H° i i i if. 

A = 

0 

1.1765281703106688 

1.9805793463233191 

3.0532835108392395 

0 

0 

.4017181027378085 

.7349961462028882 

0 

0 

0 

.2672357626475791 

0 0 

0 0 

0 0 

0 0 

1.4193325269467698    2.6534897473125331    -2.2778532945468265    1.1978905088172778    0 

V is given by a matrix with 5 identical rows, where each row is vT, and 

" -.2406956155386215' 

1.2604945758471451 

-2.4812693924523267 

1.9199070083032958 

0.5415634238405073 

3.163023914364555736 
3.250176692142333514 

3.508528033848969459 

4.176223954923772036 

3.008220785304765914 

1.974339246050540681 

1.53197813493942957 

0.327374204184027625 

-2.61827171939311992 

2.11453341958770507 

-0.81042512005562813 

0.097908213277705203 

2.239060519232953536 

7.03900409877443037 

0.3572048837825639 

0.540922018802018401 

-0.422272425642426043 
-2.097452509375452155 

-5.2884360132659356 

-1.90425330857598604 

0.05507865419631683844 

-0.4613800716699075171 

-0.936868983593822539 

-1.691097027371050162 

-0.64562655527099952 

and was calculated using Theorem 2 and Mathematica. 
straightforward using the first relation of Equation 11, 

The computation of W is 
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W 

z 
_2 

= (I-zA)ecz + 0(z6). 

This yields, equating terms of the same degree, 

W = c-Ae Ac 
2 

Cl-A
cl   ^-A

C- 
6 2     24        6 120" -A 24 

or evaluating this numerically, 

w = 

0             0 0              0               0 

-0.926528170310669     0.03125 O.O026O4166666666666 0.0001627604166666666 8.1380208333333310«-6 

-1.882297449061128 0.02457047431554788 0.00827964262277682 0.001558025774120291 0.0001950328608825182 

-3.305515419689707 -0.0361169178745116 O.01393940O1OO21236 0.005702129564105415  0.001161984318267553 

-1.992859488529754 0.07713632883232162 0.03157006827664394 -0.002014862315115681 -0.001959141967572072 

This approach was utilized in calculating the rescaling matrices for this 5th order DIMSIM. 
The customary form of V is utilized with a first row of vT and the remaining elements 0, 
while 

'3.163023914364555     1.974339246050541     -0.810425120055628     0.5409220188020184     0.055078654196316831 

0 0                                 0 0 1 

1 —& 12 -16 

_™ 152 _4I6 
3 3 

-448 768 -576            160 

256          -1024 1536 -1024            256 

3 

96 

21 
3 

140 

3 

was computed using Mathematica. 

Interpolation may always be carried out using the Nordsieck vector or the continuous 
modification of the Nordsieck interpolant as described above in the Implementing 
DEVISIMs section.    However, the Butcher-Jackiewicz interpolant has some desirable 
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features when it exists, and it was also calculated for this method. It is a continuous 
interpolant of both order and degree 5, while the simple Nordsieck interpolant is also of 
order and degree 5 but not continuous at the grid points, and the continuous Nordsieck 
interpolant is of degree 6 but adds the additional oscillation typical of a higher degree 
polynomial without increasing the order of accuracy, since the method itself is only of 
order 5. The interpolant sought is of the form Equation 34, which in this case is 

*,-i + OK) = KßMF[Y[n])+7o(e)9[n-1], 

where ß0 and y0 are both column vectors of polynomials of degree 5. We write them in the 
form 

A> = 

"A>io+An»+fee2+Ans*3+Awe4+fee; 
A)20 + ßoifl + A)22#   +A)23#   + A)24#   +^025^' 

A)3O+A)310 + A)320   +A)330   +^034^   +^035^' 

A)40 + ßotoß + A)42#   +^043^   + ßou^   +^045^" 

.ßoSO + ßoSl» + A)5202 + ßoS3^ + ßm^ + A)550
: 

and 

7o = 

7oio + 7oiiö + 7oi202 + 7oi3#3 + 7oi4^4 + 7oi5#5 

7020 + 7021<? + 7022^2 + 7O2303 + 7o24^4 + 7025^ 

7030 + 7031Ö + 7O3202 + 7033^3 + 7o34^4 + 7035^ 

7040 + 7041Ö + 7O4202 + 7043^3 + 7o44^4 + 7o45#5 

7050 + 70510 + 7052#2 + 7O5303 + 7054^ + 7055^ 

We use the criterion Equations 35 and 36 to evaluate the unknown coefficients. That 
ß0j0= 0 for all j follows immediately from the condition ß0(0) = 0. From Corollary l.ii to 
Theorem 5 we find that we must have y0(0) = [l 0 0 0 0]. This reduces the 
continuity conditions of Equation 36 and to the following relations: 

5 
?>ßoij=bij> i = U,...,5 

.7=1 

and 
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X7oi7=v,-, i = l,2 5. 
/=0 

There are a total of 50 unknowns remaining and 10 linear equations have already been 
specified. The order condition in Equation 35 provides additional linear equations. We 
have, again, 

zß0(e)ecz+roißHz) = eez+0(z6\ 6 e (0,1]. 

We find the following equations for terms of degree 0 through 5 in z, note that the alphas 
are the elements of W and that the first row of W is 0 except for a first element 1. 

Degree 0: 70(d)a0 =y0(0)e = l. 

Degree 1: ß0(e)e+ ^YQi{0)aiX=d. 

Degree 2:   I/W^; + lYoii^n = ~T- 
z'=2 i=2 l 

Degree 3:   I ß0i(6)^-+ Ijoii^is = ~7- 
j=2 2      ;=2 O 

Degree4: £ ß0i(6)^+ {r0i(0)oci4=^-. 
j=2 O      J=2 24 

Degree5: { ß0i(6)^-+ {y0i(d)ai5 =£-. 
i=2 24    f=2 12U 

Setting terms of the same degree in q in each of these equations to 0 provides 5 equations 
for each degree, for a total of 30 additional equations. This means that there are a total of 
40 equations to solve with 50 unknowns, leaving 10 free parameters. 

The equations were solved using Mathematica using a process of symbolic eh'mination 
of variables. The decimal representation of the method parameters resulted in the 
appearance of some inexact floating point numbers. When the coefficients or constant 
terms were l.Oe -16 or less they were understood to be 0 for the purpose of satisfying the 
interpolant defining conditions. It might be desirable to also try solving these equations 
with a purely numerical solver.  The following interpolant, one of a family of equivalent 
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interpolants, was calculated in this way, with free parameters identified during the solution 
process set to 0 at the end. It should be noted that an alternative procedure for setting free 
parameters would be to use them to rrinimize the interpolant error, yielded by the sixth 
degree term in z in the Taylor expansion of Equation 35. 

ro(*) = 

1 + 6.6257606574898426 - 2.49544672768745802 -1O.5O65833728538603 +10.4441633211653404 - 5.3O858949365249905' 

1.2604945758471450 

-2.4812693924523270 

-2.9781439O48957180 + 4.898O5O913199O1302 

-2.4268419359889530 - 2.40260418551155602 + 1O.5O65833728538603 -10.4441633211653404 + 5.3085894936524990s 

A(0) = 

-14.438897214O71690 + 7.15197332O6O746402 +21.8729345991698403 - 2O.678O835712726804 + 9.255O967799316505 

-7.2412112973764320 + 4.5177685O937919802 + 1.O32326O5991517803+3.66545597413259805 

6.OO674794O554OO20-6.817173O6O6O96304 

-1.6721559444299640 - 3.59438203013115303 + 9.869182843675O404 - 4.0617228503119O605 

O.1622576215384850-O.26721155826OO82302+1.6272657376669103-3.1876761861315804+1.72O443O3938258705 

Although there seemed to be only 10 free parameters based on the number of equations to 
solve, some of the equations proved to be dependent as they became effectively 0 before 
they could be utilized in the solution process. 

The error coefficient is a point of comparison among competing methods as the 
coefficient of the leading discretization error term, for these DIMSIMs always multiplying a 

term of the form y(p+l'(tn)h%+1. We note, first of all, that the error coefficient of any 

DEVISIM is given by 

T T v>   =v 
p+ia 

Kk=i 

p+l-k Bcp 

from Theorem 6. For this method we find that 

<Pv = 

"0.000055186676403623959' 

0.000135380090032096182 

0.00045011570559905138 

0.00141313551999348304 

-0.0006734285188458039 
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and so the error coefficient of the method becomes v cpP = 1.38889e-3. However, 
interestingly enough, for the first step the comparable number obtained using Theorem 8 is 
5.518667640362375e-05. 

Error estimation parameters were also calculated. The initial error is estimated using 
vectors ß and y where 

ß = 

' 0.1812875545254936 " 

0.3105254335256836 

-0.3258295105315199 

0.1138267699195702 

-0.01051030018603054 

and 

-0.1351324309632461' 

0 

0 

0 

0.1351324309632461 

These are calculated using the conditions of Theorem 8, which yield 7 linear equations for 
the 10 parameters. These were solved using Mathematica, and y2, y3, and y4 were free 
parameters that were arbitrarily set to 0 to produce a simple form minimizing the number of 
operations required per step. 

Subsequent steps utilize different vectors ß and y where these are determined using 
Theorem 9. Upon examination, the first condition of Equation 57 reduces in the case to the 
second and so there are again 7 linear equations in 10 unknowns, solved using 
Mathematica. For this method ß and y were derived to be 

ß = k 

-126.7321008977760" 

-9.065592286799085 

9.939847085378934 

-1.234330257611486 

0 
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and 

y = k 

" 67.38322836913306 

0 

-65.05966877019942 

0 

-2.323559598933673 

where 

k = 
1 +5.7377413289581355+ 7.613785314977576S2 +2.9291724733967865s +.05312848737725841<54 ' 

Observe that k has four poles, at 6 = -52.4401, 6 = -1.44533, 8 = -1, and 5= -0.248337, 
and these negative poles are not a problem since 8 must be positive in any ODE solver. 

However, it should be noted that there was a choice here of free parameters, which 
were all arbitrarily set to 0 at the end of the calculation. These were ß5, y2 and y4. Other 
choices of free parameters were tried first and actually yielded poles for small positive 8. 
In particular, a choice of ß5, y3 and y4 yielded a pole at 8 = 0.93028; a choice of ßs, y2 

and y3 yielded a pole at 8 = 0.0752006; and a choice of y2, y3 and y4 yielded a pole at 
8 = 0.568585. Use of free parameters to enforce the condition ßTe=0 also resulted in a 
small positive pole and so this condition was not enforced. Testing showed that so long as 
the pole was avoided, similar results were obtained for all choices of free parameters. 
Clearly it is undesirable for a pole to appear in the error estimation expression in the 
neighborhood of likely choices for successive step size ratios, and it is evident that these 
poles are unfortunate artifacts that do not reflect the actual errors produced through step- 
size changes. This problem was earlier observed by Jackiewicz and Zennaro (Reference 
28) and by Bellen, Jackiewicz and Zennaro (Reference 29) in the context of two-step 
Runge-Kutta methods. The success here in using the parameter freedom to move these 
poles to the negative real axis is an encouraging result that may have direct relevance to 
other ODE methods. 

For our explicit fifth order solver, we need a total of 5 equations to obtain for our 5 
unknowns the derivatives 2 through 6. We use an order 6 explicit Runge-Kutta solver to 
obtain an approximation y, to y(t0+h0) accurate to O(h0

7). Then we have: 

yi -yo+VO+T^O+T^O+^O    +12Ö%   +720^0   +u\no) 

V - v' + h v" + & v'"+ & v(4) + *L v(5)     j4_ v(6)     n(f6 \ y\ - Jo + ^O + 3^0 + — %    +24^0   +120^0    +U[n0h 
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Here y{ = f{t0 +hQ,yl).    Similarly we obtain two more equations by computing an 
approximation y2 to y(t0+h(/2) accurate to O(h0

7). This yields 

y2-y0+T^0+ X% + 48 yo+myo    + 3840%   + 46080%    + Gy20J 

v2 ~%+T%+X% + 48%    + 384%    + 3840%    + °yz0j- 

Note that the 6th derivative term must be included to obtain sufficient accuracy, even if an a 
priori error estimate is not sought. This means that one more equation must be used, and 
this may come from computing an approximation y4 to y(t0+h(/4) accurate to O(h0

7). This 
final equation is 

^4-%+—% +32%+ 384%+ 6144%    +122880%   +2949120%    +u{n0j- 

Eliminating variables we solve these five simultaneous equations and obtain 

y'o = 7^2-(-567y0 - 25^ - 432v2 + 1024y4 + ^(-90^ + 3y[ + 12y'2)) + o(h%), 
9«o 

yo"= 4"(1836% +1483^ + 2112v2 - 4096y4 + hQ(222y,
0 - 18y{ - 384y2)) + 0\ 

y{0]= ^(-1323y0 - 169j! - 1836y2 + 3328y4 + ^(-144^ + 21yf + 378y2)) + o($) 
3«o 

>o5) = ^x(378v0 + 70v2 + 576y2 - 1024y4 + h0{39y'0 - 9y{ - 132y2)) + 0\ 

y(6) = 1^0 (_9oyo _ 22yi - 144y2 + 256y4 + *b(-9>6 + U + 36y2)) + Ofo>). 

The error in the first step is given by Theorem 8, with h1 the first DMSIM step size, to be 
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lte\ =  ,, 
'      6!    -L " 5! s-i^H>)+0K) 

= (7.063894579663840e - 2)S6(-90y0 -22yY - I44y2 + 256y4 + Ao(-9y6 + 3y{ + 36)4)) 

If we set this error to half the tolerance % and use a norm to include the possibility of 
systems of equations, we then may write a conservative but hopefully accurate choice for 
initial step size to be 8h0, where 

2(7.063894579663840<? - 02)|-90y0 - 22^ - I44y2 + 256y4 + hQ(-9y'0 + 3y{ + 36y'2 

TESTING IMPLEMENTATION PARAMETERS FOR FIFTH ORDER 

a.  Variable Step Error Estimate 

The error estimate was tested in the same way for fifth order as for second order.  For 
the same time steps the following results were obtained in Figure 5. 

\l 
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X10 r
8    RHO = 1.25 X10 ■

8      RHO = 1.5 

X10 r
5       RHO = 2 

Error Estimate 
Local Error 

FIGURE 5. Order 5 Error Estimation Test. 

The statistics obtained during the fifth order error stimation test are contained in Tables 9 
and 10. 

TABLE 9. Order 5 Error Estimation Test Part 1. 

p % r<.01 %r<.05 %r<.10 %r<.25 %r<.50 %r<1.0 

1.25 0.66 3.31 6.62 17.88 52.32 88.08 
1.50 1.32 8.55 15.13 29.61 54.61 94.08 
1.75 0.66 3.95 8.55 16.45 38.16 90.79 
2.00 0.00 0.65 5.88 11.11 25.49 77.77 
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TABLE 10. Order 5 Error Estimation Test Part 2. 

p rmin rmax tf Max err Max err/At5 

1.25 2.74e-2 16.85 20.0402 1.54e-8 3.78e-4 
1.50 2.99e-2 96.67 20.0963 1.59e-8 4.02e-4 
1.75 1.76e-2 12.96 20.0335 1.50e-8 3.67e-4 
2.00 5.84e-2 26.48 20.1128 3.21e-5 7.80e-l 

The error here is significantly less than what appeared with order 2, but the problem for 
p = 2 with larger errors and change in solution order is troubling. A separate test was run 
with smaller step size, a difference of a factor of two. The results can be seen in Figure 6, 
and Tables 11 and 12. 

x10-i°   RHO = 1.25 x10-io    RHO-1.5 

Error Estimate 
Local Error 

FIGURE 6. Order 5 Error Estimation Test, Smaller Step Size. 
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TABLE 11. Order 5 Error Test, Smaller Step Size, Part 1. 

p % r<.01 %r<.05 %r<10 %r<.25 %r<.50 %r<1.0 

1.25 0.66 4.98 9.97 27.24 61.46 80.73 

1.50 1.65 9.27 15.56 29.14 58.28 90.07 

1.75 0.33 4.30 7.28 18.87 40.40 92.72 

2.00 0.66 2.97 5.61 13.20 33.66 74.59 

TABLE 12. Order 5 Error Test, Smaller Step Size, Part 2. 

p rmin rmax tf Max err Max err/At5 

1.25 6.55e-4 490.6 20.0200 4.96e-10 3.83e-4 

1.50 2.83e-2 73.26 20.0483 5.10&-10 3.99e-4 

1.75 1.31e-2 41.03 20.0165 4.88e-10 3.76e-4 

2.00 7.15e-3 35.51 20.0556 5.11e-10 3.92e-4 

We can see that in this case the results are consistent for all p. 

b. Interpolants 

Interpolation testing was similar to the procedures used for the second order 
method, but with more points and over a shorter interval. The results for the Butcher- 
Jackiewicz interpolant are seen in Figure 7. 
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RHO = 1.25 RHO = 1.5 

RHO = 1.75 RHO = 2 

FIGURE 7. Test Results for Order 5 Butcher-Jackiewicz-Type Interpolant. 

The statistics obtained during the fifth order interpolant test are contained in Table 13. 

TABLE 13. Order 5 Butcher-Jackiewicz Interpolant Test. 

p k>10 10>k>5 5>k>2 2>k> 1 k<=l 
1.25 0.0% 0.0% 0.4% 8.8% 90.8% 
1.50 0.2% 0.2% 3.5% 20.9% 75.1% 
1.75 2.4% 2.0% 7.5% 28.1% 59.9% 
2.00 1.2% 0.8% 6.5% 32.6% 58.8% 

Evidently some significant degradation occurs at this higher order with increasingly rapid 
step changing. A similar phenomenon was also observed in a study of related general linear 
methods by Enenkel and Jackson (Reference 30) and Enenkel (Reference 21). It should be 
again noted that no error minimization was carried out using the free parameters. 
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The simple fifth order Nordsieck interpolant yielded the following in Figure 8. 

RHO = 1.25 RHO = 1.5 

-5 

I —J 

0 5 10 

RHO = 2 

FIGURE 8. Order 5 Nordsieck Interpolant. 

The statistics obtained during the fifth order Nordsieck Interpolant test are contained in 
Table 14. 

TABLE 14. Order 5 Nordsieck Interpolant. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 

1.25 0.0% 0.0% 0.0% 88.5% 11.5% 
1.50 0.0% 0.0% 0.0% 86.5% 13.5% 
1.75 0.0% 0.0% 0.1% 84.5% 15.4% 
2.00 0.0% 0.0% 0.0% 85.5% 14.5% 

This is clearly highly accurate for this range of step sizes. 
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The continuous Nordsieck interpolant displayed even greater accuracy in Figure 9. 

RHO = 1.25 RHO = 1.5 

RHO = 1.75 

FIGURE 9. Order 5 Continuous Nordsieck Interpolant. 

The statistics obtained during the fifth order continuous Nordsieck interpolant test are 
included in Table 15. 

TABLE 15. Order 5 Continuous Nordsieck Interpolant. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 
1.25    _j 0.0% 0.0% 0.0% 1.1% 98.9% 
1.50 0.0% 0.0% 0.0% 1.3% 98.7% 
1.75 0.0% 0.0% 0.0% 1.4% 98.6% 
2.00 0.0% 0.0% 0.0% 1.3% 98.7% 
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This must be considered highly desirable, perhaps with more accuracy than is typically 
needed. 

It then became of interest to test the results for the larger step sizes used for 2nd order. 
The results for the Butcher-Jackiewicz interpolant were as follows in Figure 10. 

RHO = 1.25 RHO = 1.5 

FIGURE 10. Order 5 Butcher-Jackiewicz Interpolant Test, Longer Step Size. 

The statistics obtained during the fifth order Butcher-Jackiewicz interpolant test are 
contained in Table 16. 

TABLE 16. Order 5 Butcher-Jackiewicz Interpolant Test, Longer Step Size. 

p k>10 10>k>5 5>k>2 2>k>l k<=l 

1.25 3.9% 3.4% 13.4% 26.4% 52.9% 
1.50 3.4% 3.8% 13.9% 33.9% 45.1% 
1.75 3.6% 3.4% 6.8% 24.7% 61.5% 
2.00 2.5% 2.5% 4.5% 21.9% 68.6% 
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For the fifth order Nordsieck interpolant the results are shown in Figure 11. 

RHO = 1.25 RHO = 1.5 

FIGURE 11. Nordsieck Interpolant Test, Longer Step Size. 

The statistics obtained during the Nordsieck interpolant test are contained in Table 17. 

TABLE 17. Nordsieck Interpolant Test, Longer Step Size... 

p k>10 10>k>5 5>k>2 2>k> 1 k<=l 
1.25 0.0% 0.0% 0.5% 80.7% 18.8% 
1.50 0.0% 0.0% 0.3% 83.0% 16.7% 
1.75 0.0% 0.0% 0.3% 86.8% 12.9% 
2.00 0.0% 0.0% 0.0% 88.8% 11.2% 

For the continuous Nordsieck interpolant we have Figure 12 and Table 18. 
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RHO-1.25 RHO = 1.5 

FIGUPvE 12. Order 5 Continuous Nordsieck Interpolant Test, Longer Step Size. 

TABLE 18. Order 5 Continuous Nordsieck Interpolant Test, Longer Step Size. 

p f > 10 10>f>5 5>f>2 2>f> 1 f<=l 
1.25 0.5% 0.1% 0.0% 25.8% 73.6% 
1.50 0.5% 0.1% 0.3% 26.7% 72.4% 
1.75 0.0% 0.0% 0.0% 26.5% 73.5% 
2.00 0.0% 0.0% 0.0% 26.3% 73.7% 

Both Nordsieck interpolants seem to be highly acceptable, with the simple Nordsieck 
interpolant producing fewer large errors with k > 5, while the continuous Nordsieck 
interpolant otherwise generating higher accuracy. The continuous Nordsieck interpolant 
seems to consistently produce k < 1, while the simple Nordsieck interpolant produces 
many values of k slightly greater than 1. 
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The starting procedure testing was similar to that used for the second order method. 
The selection of h0 proved to be a bit delicate and, as alluded to above, the formula 

gh$ -105eps proved to be necessary to provide a suitable value. If the eps factor was 
reduced by a factor of 10 the step was too small to prevent serious round-off errors from 
occuring, while if the factor was increased by 10 there was a loss of local truncation 
accuracy. This is not because of the breakdown in the assumption that the derivatives are 
of the same size as the initial value and the corresponding derivative. In fact in this test 6th 
derivatives grew to be as large as 64 while first derivatives and functional values were 
around 0.3 to 1, but this would tend to reduce rather than increase the size of h0. A better 
answer is that the amount of cancellation in the calculation of the Nordsieck vector 
components requires that more digits exist in the answer. 

The testing of the starting method concerns the accuracy of the starting vector, the 
accuracy of the first step error estimate, and the appropriateness of the choice for initial step 
size. The Prothero-Robinson test problem is again used here with A, = -2, with a starting 
point at to on the exact solution trajectory through (0,1). 

The following test (Table 19) reveals the accuracy of the error estimate and of the initial 
step size selection algorithm. The starting point at t0 = 1 is used here throughout. It is 
evident that accuracy improves until round-off error becomes significant. 

TABLE 19. Order 5 Starting Procedure Test 1. 

to h(Nord) Locerr Errest h(H-N-W) Locerr Errest 

io-3 1.03 -5.22xl0"5 6.81x10-" 1.76x10"' 8.05xl0"9 1.34xl0"8 

IO"6 3.26x10"' 2.12xl0"7 5.77xl0"7 5.55xl0"2 1.09x10" 1.26x10-" 
IO"9 1.03x10-' 3.96x10-'° 5.32x10-'° 1.76xl0"2 1.90xl0"14 1.12xl0-'4 

IO"12 3.26xl0"2 5.09x10-" 5.00xl0'3 5.55xl0'3 5.55xl0"16 -2.39X10'17 

IO"15 1.03xl0-2 1.89xl015 3.26xl0"16 1.76xl0"3 5.55xl0"16 -3.33xl0"'8 

Another revealing test uses starting points at 0 through 1, evenly spaced, and with a 
fixed tolerance of 10 . At this tolerance and at this order the error estimate is not quite as 
accurate. We note again that the use of the Nordsieck-vector-based error estimate for the 
first step provides a much more efficient start than the method outlined in Hairer, Norsett 
and Wanner (Table 20). 

TABLE 20. Order 5 Starting Procedure Test 2. 

to h(Nord) Locerr Errest h(H-N-W) Locerr Errest 

0 7.22x10"2 4.23x10-'° 5.16x10"'° 1.17xl0"2 8.77xl0-'5 8.71xl0-'5 

0.2 7.75xl0"2 4.29x10"'° 5.26x10-'° 1.26xl0"2 1.39xl0-14 9.59xl015 

0.4 8.32xl0"2 4.16x10-'° 5.28x10-'° 1.45xl0"2 1.20xl0-'4 1.48xl0-'4 

0.6 8.91xl0"2 4.12x10"'° 5.31x10-'° 1.60xl0"2 1.65xl0"14 1.71xl0-'4 

0.8 9.54xl0"2 4.14x10-'° 5.28x10-'° 1.80xl0"2 2.93xl014 2.36xl0"14 

1 1.03x10"' 3.97x10"'° 5.32x10-'° 1.76xl0"2 1.90xl014 1.12xl0"12 
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The final test concerns the calculation of the starting vector. Here we are concerned that 
the smallest possible safe value for h0 be utilized to produce the maximum accuracy since 
no DIMSIM integration step will actually be taken until this is rescaled.   As indicated 

f \pk 
above, we use a choice of hq = 10p+1 eps 

8(*o,yo) 
with p = 5. We test this by calculating 

the relative errors in the fifth and sixth derivatives (noting that higher derivatives are 
computed less accurately) at 5 uniformly spaced starting points between 0 and 1. The error 
in the starting vector is also calculated (Table 21). 

TABLE 21. Order 5 Starting Procedure Test 3. 

to h0 ><5)(<o) 
Relerr y{6)M Relerr AyW 

oo 

0 1.68x10" -3.10x10' 1.13x10° 6.40x10' 2.75x10° 4.51x10° 
0.2 1.99x10" 2.05 xlO1 1.47xl0"4 4.27 xlO1 2.29x10" 1.72 xlO'4 

0.4 3.16x10" -1.35 xlO1 6.31x10" 2.84 xlO1 3.81x10" 4.48 xlO'" 
0.6 2.15x10" -8.81 3.74xl0"4 1.87 xlO' 3.44x10" 1.76 xlO"'4 

0.8 2.06x10" -5.76 2.59x10° 1.22x10' 1.61x10" 1.48 xlO"4 

1 2.09x10" -3.79 6.64x10-4 7.82 3.86x10" 2.48 xlO"14 

THE DIMEX FAMILY OF EXPLICIT DIMSIM ODE SOLVERS 

DESCRIPTION AND USE OF DIMEX FAMILY OF SOLVERS 

The second order type 1 DIMSIM explicit variable step-size ordinary differential 
equation-initial value problem solvers DIMEXx are written as a collection of double 
precision FORTRAN 77 subroutines called by a driver dimxl that provides the interface to 
the user's calling program. Here x denotes the method order. These are research codes, 
designed primarily for use in waveform relaxation in a form that should make them suitable 
for extension to higher orders, as well as for use in solving standard ODE initial value 
problems. A number of elements remain to be determined in developing mature production 
codes, and optimization for speed and memory usage have not been performed. The codes 
use the Type 1 schemes along with the coefficients described in the previous chapter. 
Advantage is taken of the FASAL property referred to in the Implementing DIMSEVIs 
section whenever use of the same step size is continued for another step for both order 2 
and order 5, and for all steps after the first for second order. In this section we discuss 
other significant elements of the software design and use. The complete code for DIMEX5 
appears in the appendix. 
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a. Calling the Solvers 

The user must issue the command (x is the order number, currently 2 or 5) 
calldimxl(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut, 

1 NCalls,NMisses,Diag,ErrEst,Work) 
Parameter definitions: 
X0: (real*8) Initial value of independent variable at start of integration, input 
Y0:   (real*8 array) Initial value of solution at start of integration, dimensioned 

NEqn, input 
X:  (real*8) Desired output point if Diag is .false., otherwise set to same as XF, 

input 
Y:  (real*8) Computed solution at X if Diag is .false., otherwise at XOut, output 

only 
F: (subroutine) Provides derivative function f for ODE y'=f(x,y). Subroutine must 

be defined with parameters F(X,Y,YP,NEqn), where YP is the derivative at 
(X,Y) and NEqn is as defined below.  F must be declared external in the 
calling program. 

NEqn: (integer) Number of equations in ODE system, input 
XF: (real*8) Intended termination point for integration process, input 
H: (real* 8) Step size used. Output only, not to be defined or changed by the user 
ATol: (real*8) Absolute tolerance for local truncation error, used in controlling 

integration according to formula described below, input 
RTol:   (real*8) Relative tolerance for local truncation error, used in controlling 

integration according to formula ErrEst<ATol+RTol* WYj^, input 
Starting: (logical) Initially set to .true., thereafter not to be changed by the user 
XOut:: (real*8) End point of last integration step performed, output only, not to be 

changed by the user 
NCalls:   (integer) Number of function calls since beginning of integration. Output 

only, not to be changed by the user. 
NMisses:   (integer) Number of tolerance misses since beginning of integration. 

Output only, not to be changed by the user. 
Diag: (logical) Set to true if only one integration step at a time is desired, which is 

the preferred mode for study of integrator behavior, and false if it is desired 
to integrate until interpolated output at X may be obtained 

ErrEst:  (real*8) Maximum norm of estimated error in last integration step taken, 
output only 

Work:  (real*8) Work array which must be dimensioned at least 2+24*NEqn for 
2nd order and 2+53*NEqn for 5th order. 
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b. Calling tree for DMEX5 

dim51 
I 

driver 

I I                      I                        I                  I 
start solver            NewStep        Nordlnterp     rescale 
I        \ I 
F         RK6 F 

I 
F 

-A block data subprogram called matrices is also used. 

FIGURE 13. Calling Tree for DIMEX5. 

c. Description and parameters for subprograms of DIMEX5 

subroutine dim51: See Section a above for discussion of parameters. This subroutine 
simply serves the purpose of hiding from the user the details of the numerous arrays 
used by DIMEX5. A single large work array is split appropriately as required by the 
driver. 

subroutine driver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut, 
1 NCalls,NMisses,Diag,ErrEst,H01d,YIter,FStage,YIterP, 
2 X01d,YP,Yl,Y2,Y4,YlP,Y2P,YStage, 
3 YIterN,YIterS,FStageN,Y6Der,FStageP,RKWork,NordVec) 

driver provides the essential logic to control the integration process and calls the 
subprograms needed to carry out the necessary calculations. When Starting is set to 
.true., start is called to obtain an initial Nordsieck vector, step size, and external 
stage vector. Solver then is called to carry out the first integration step and the error 
estimate is checked to ensure the result is within tolerance. If not, the step size is 
halved and Nordsieck vector is rescaled to produce a new starting external stage 
vector. This process is repeated until successful. Starting is then set to .false, and 
the integration process proceeds as NewStep calculates a new step size to use. If 
Diag is .true, driver returns dim51, which returns to be called again by the main 
program, otherwise at each iteration either XOut is at least X, in which case 
Nordlnterp produces an interpolated solution value at X and a return is made to the 
main program for another call, or an integration step is carried out. An integration 
step begins by saving copies of the current and previous external stage vectors. 
Then rescale is called to rescale the current external stage vector, a DMSIM step is 
performed using a call to solver, and ErrEst is checked to be sure the error is within 
tolerance. If not, a tolerance miss is counted and the step size is halved. Rescaling 
again takes place using the saved values, and this process continues until the step is 
within tolerance or MaxTries is exceeded, generating an error message and STOP. 
For normal execution final XOut is XF. 
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X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,NCalls,NMisses,Diag,ErrEst:    As 
in dim51, see Section a above. 

HOld: (real*8) Step size used for previous successful integration step 
YIter: (real*8 array) External stage vector for current step, dimensioned (NEqn,5) 
FStage: (real*8 array) Vector of derivative values computed from internal stage values for 

most recent successful step, dimensioned (NEqn,5). 
YIterP: (real* 8 array) External stage vector for previous successful step, dimensioned 

(NEqn,5) 
XOld: (real*8) Previous successful step point 
YP: (real*8 array) Derivative at X0, =f(X0,Y0). Dimensioned NEqn. 
Y1,Y2,Y4,Y1P,Y2P, Y6Der:  (real*8 arrays) Storage needed for subroutine start.   Each 

dimensioned NEqn. 
YIterN,YIterS, FStageN: (real*8 arrays) Storage needed for temporary storage of current 

and previous external stage vectors and current vector of derivatives at internal stage 
points until it is verified that step was successful, dimensioned (NEqn,5). 

YStage: (real*8 array) Storage needed for subroutine solver, dimensioned NEqn. 
FStageP:  (real*8 array) Previous vector of derivative values for last internal stage, used 

again for first internal stage of new step if step size does not change. Dimensioned 
NEqn) 

RKWork: (real*8 array) Storage needed for subroutine start, dimensioned 8*NEqn. 
NordVec: (real*8 array) At first step, Nordsieck vector at X0.   Subsequently, Nordsieck 

vector at XOut. Dimensioned (NEqn,6) 

subroutine solver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP,Starting,YStage, 
1 FStageP,KCalls) 

solver applies the basic DIMSIM algorithm to compute a new external stage vector 
and an error estimate.   Different coefficients are used in computing the error 
estimate if Starting is .true. 

X0: (real*8) Starting point for this integration step 
NEqn,H,H01d,F,ErrEst,Starting: See description of driver, above. 
FStage: (real*8 array) Upon output, set to vector of derivatives at internal stage points for 

current step, dimensioned (NEqn,5) 
YIter:  (real*8) Upon input, set to rescaled previous external stage vector.   Upon 
output, set to current external stage vector. Dimensioned (NEqn,5) 

YIterP: (real* 8 array) Output only, set to input value of YIter. Dimensioned (NEqn,5) 
YStage:   (real*8 array) Temporary storage needed for each internal stage vector in turn 

during calculation. Dimensioned NEqn. 
FStageP: (real*8 array) Input, see driver description above. Dimensioned NEqn. 
KCalls:  (integer) Number of calls to derivative function subroutine for this solver step, 

output 

subroutine start(YIterP,F,X0,Y0,NEqn,H,YP,Tol,Yl,YlP,Y6Der,Y2,Y2P,Y4, 
1 YNord,RKWork) 

Start first calculates the derivative at the initial point X0. A scaling factor g to 
estimate the size of the initial Nordsieck vector is computed and this is used to 
determine h0. In most cases g will be the smaller of the norm of the function and 
the first derivative, but in case one is smaller than 1000*eps (machine epsilon) the 
larger is taken, and in no case is g taken as less than 10"6. A 6th order Runge-Kutta 
method is used by calling RK6 to compute the solution Y4 at X0+h0/4, Y2 at 
X0+h0/2 (from Y4), and Yl at XO+hO (from Y2). These are then used to calculate 
a Nordsieck vector for computation of the initial external stage vector, plus an extra 
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derivative for computation of the appropriate size for the first DBVISIM step.  Both 
the Nordsieck vector and the intial external stage vector are returned in case 
tolerance is not met. 

YIterP: (real*8 array) Initial external stage vector, output dimensioned (NEqn,5) 
F,X0,Y0,NEqn: See Section a above. 
H: (real *8) Output value for calculated initial DMSM step size 
YP: (real*8 array) Derivative of the solution at X0, calculated using y'=F(X0,Y0), output 

dimensioned NEqn 
Tol: (real*8) Initial tolerance computed as described in section a from RTol, Y0 and ATol, 

input 
Y1,Y1P,Y2,Y2P,Y4:    (real*8 arrays) Values computed using 6th order Runge-Kutta 

method for solution at h0, hJ2, and h,/4, and associated derivatives computed using 
F, workspace each dimensioned NEqn. 

Y6Der:   (real*8 array) 6th derivative of solution vector at X0, multiplied times  AQ, 

workspace dimensioned NEqn. 
YNord:    (real*8 array) Nordsieck vector at X0 for step size H,  output dimensioned 

(NEqn,6) 
RKWork: See driver description above. 

subroutine rescale(YIter,H,H01d,FStage,YIterP,NEqn) 
Rescale takes a previous external stage vector computed using a step size HOld and 
uses the DMSIM rescaling algorithm to rescale it to become the appropriate 
previous external stage vector for continuing the computation with step size H. 

YIter: (real* 8 array) Output rescaled extermal stage vector, dimensioned (NEqn,5) 
H: (real*8) Input new step length 
HOld: (real*8) Input step length for previous successful step. 
FStage: (real*8 array) Input vector of derivatives at stage points for last step completed 
YIterP:  (real* 8 array) Input previous external stage vector, calculated using step length 

HOld, dimensioned (NEqn,5) 
NEqn: See Section a above 

real*8 function NewStep(H,Tol,ErrEst) 
The error estimate is compared with the tolerance to produce a step change factor 
modifying the step size in preparation for the next step. The local truncation error is 
assumed to be proportional to the 6th power of the step size. The largest possible 
step change is a factor of 2. A step change safety factor equal to .75 was used for 
DMEX5 so that the step size used was .75 of optimal. A larger factor of .9 was 
used successfully for DIMEX2. Step size is not changed if change would be less 
than 10% for DMEX5 and 5% for DMEX2. 

H: (real*8) At input contains old step size. At output contains new step size 
Tol:  (real*8) Input tolerance derived from RTol, Y and ATol as described in section a 

above 
ErrEst: (real* 8) Input current local error estimate 

subroutine NordInterp(Y,H,Theta,FStage,YIter,NordVec,NEqn) 
The Nordsieck vector NordVec is calculated at the current value of XOut, using the 
previously calculated external stage vector YIter, the current step size H, and the 
current vector of derivatives at stage points, FStage. Theta then is used to rescale 
the Nordsieck vector to correspond to the desired output point and a fifthth order 
Taylor series approximation Y is formed. 
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Y:  (real*8 array) Output approximation to the solution at the desired output point, length 
NEqn. 

H: (real*8) Input step size for last successful integration 
Theta:  (real* 8) Input between 0 and 1, ratio (X-X01d)/H, where X is the desired output 

point 
FStage: (real*8 array) Input vector of derivatives at stage points for last successful 

integration, dimensioned (NEqn,5) 
YIter: (real*8 array) Input previous external stage vector, dimensioned (NEqn,5) 
NordVec: (real*8 array) Workspace (output for waveform relaxation) for Nordsieck vector 

at current XOut and last step size used. 
NEqn; (integer) See above, Section a. 

subroutine RK6(Y,X0,Y0,H,F,NEqn,YP,YP2,YP3,YP4,YP5,YP6,YP7,YTemp) 
A simple 6th order Runge-Kutta solver, used to provide solution values needed for 
starting method. Solution Y for initial values (X0,Y0) is found at XO+H for 
problem Y'=F(X,Y). The method is described in Butcher (Reference 11), pp. 203- 
205. 

Y: (real*8 array) Solution at XO+H, dimensioned NEqn. 
X0: (real*8) Initial value of independent variable. 
Y0: (real*8 array) Initial value of" dependent variable, dimensioned NEqn 
H: (real*8) step size used 
F: See above, Section a 
NEqn: See above, Section a 
YP,YP2,YP3,YP4,YP5,YP6,YP7: (real*8 arrays) Workspace used for storing derivatives 

of stages, each dimensioned NEqn. 
YTemp:      (real*8   array)   Workspace  used  for   storing   stage  vectors   successfully, 

dimensioned NEqn 

block data matrices 
The matrices and vectors defining the paricular method are set to appropriate values 
using data statements and stored in the common region /Method/. 

TESTING DIMEX 

The ultimate test of an ODE solver is the accurate and efficient solution of a wide 
variety of problems. The relatively easy, nonstiff problems utilized in the well-known suite 
DETEST have provided a standard test suite for ODE solvers since they were first 
introduced in 1972 by Hull, et. al, (Reference 31). For second order testing these were run 
using both DJMEX2 and the well established linear multistep solver LSODE developed at 
Livermore by Hindmarsh and his coworkers (Reference 32). LSODE was used in the 
Adams-Moulton solver mode with functional iteration. This mode provides predictor- 
corrector solution of the form P(EC)M where M is no greater than 3 and is usually 1. This 
provided the most efficient solution for competitive purposes on this test suite. For fifth 
order testing these were run using both DIMEX5 and the highly regarded Runge-Kutta 
code DOPRI5 (Reference 18). For the easy problems of DETEST, LSODE is very 
efficient as measured by steps taken and function evaluations, but the sphere of 
applicability for DIMEX5 would be similar to that of DOPRI5 and it is hoped that a 
comparison on simpler problems would provide some indication of relative performance on 
the harder problems that do not find their way into standard benchmark suites. The 
problems are divided into classes A-E, with Class A consisting of single equations, Class 
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B of small systems of 2 or 3 equations, Class C of moderate systems of 10 to 51 
equations, Class D of orbit equations, and Class E of higher order (second order) 
equations. Application areas represented include the simple negative exponential, a simple 
Riccati equation, an oscillatory problem, logistics and spiral curves, conflicting population 
growths, chemical reactions, rigid body motion, radioactive decay chains, heat equation, 5 
body problem, orbital motion, Bessel's equation, Van der Pol's equation, Duffing's 
equation, falling body and linear pursuit. All are integrated over an interval from 0 to 20. 
Only a few are provided with exact solutions, and accuracy testing was conducted primarily 
using significantly tighter tolerances with the same solver. Rather than adapting DIMEX, 
DOPRI5 and LSODE to fit with the DETEST software, the functions were simply coded 
and used with a specially designed calling routine that provided the desired output 
information. Although number of steps is important, even more important is the number of 
function evaluations, which is a good measure of the amount of work required. A timing 
of the solution process would also give a measure of the overhead, which has been noted to 
be significant for LSODE (Reference 18). But the DMEX codes have not been carefully 
optimized yet and so this comparison was not carried out. 

Some aspects of the comparison process utilized should be noted. First, LSODE uses 
an Adams-Moulton solver and can only be set to restrict to a specified order up to 12 that 
will not be exceeded. Thus for second order testing it is possible that some steps were first 
order. The order is chosen to minimize error and hence maximizes step length. 
Furthermore, in conducting these tests it was observed that LSODE applies relative 
tolerance to each separate solution component, while DIMEX applies relative tolerance to 
the norm of the solution. Thus the only relative tolerance comparisons are for tests A1-A5, 
since only a single equation is used. Otherwise, absolute tolerance was used for both. 
Finally, exact solutions were used for comparison purposes only for A1-4, while high 
tolerances of 10"13 to 10"15 were used to produce a "true" value of the local solution and Ihe 
end point solution. 

For fifth order testing was conducted only for the more appropriate higher tolerances 
10"6, 10"9, and 10"12. On the other hand, second order methods often take a very long time 
to integrate at tight tolerances and so 10"12 was not used for second order, while the loose 
tolerance of 10  was an appropriate condition for testing a second order solver. 

A summary of results is shown in the Tables 22 through 71. Note that an entry of "**" 
indicates that a measurement was not made. It was not convenient to obtain data from 
LSODE on tolerance misses and times deceived, and it did not seem to be important to 
obtain that information. DOPRI5 provided number of tolerance misses but it was not 
convenient to obtain the number of times deceived. And DMEX5 did not conveniently 
provide a sufficiently accurate solution at tolerance 10"15 to determine the accuracy of 
individual steps as required in computing number of steps deceived at tolerance 10"12. 
Also, "AM" designates the Adams-Moulton integrator of LSODE. 
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DIMEX2 Test Results 

TABLE 22. Order 2 Problem Al Test. 

Tolerance 10" io-° 10" 9  

method DIM2 AM2 DIM2 AM2 DM2 AM2 

# steps 121 107 1222 1049 12231 10484 
# func calls 126 116 1227 1055 12235 10490 
# tol misses 1 ** 1 ** 0 ** 

# deceived 0 0 0 ** 0 ** 

end relerr 7.9e-2 1.3e-l 8.8e-4 6.8e-4 8.9e-6 6.1e-6 

TABLE 23. Order 2 Problem A2 Test. 

Tolerance 10" 10"° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 27 29 239 217 2356 2075 

# func calls 31 32 243 220 2360 2078 
# tol misses 0 ** 0 ** 0 ** 

# deceived 0 ** 0 ** 0 ** 

end relerr 3.4e-3 4.3e-3 4.8e-5 3.5e-5 5.0e-7 3.3e-7 

TABLE 24. Order 2 Problem A3 Test. 

Tolerance 1(T 10"° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 131 108 1160 950 11485 9430 

# func calls 171 132 1199 1002 11521 9523 
# tol misses 33 ** 31 ** 32 ** 

# deceived 2 ** 1 ** 0 ** 

end relerr 1.3e-3 4.6e-3 4.2e-5 4.6e-5 5.8e-7 4.2e-7 

TABLE 25. Order 2 Problem A4 Test. 

Tolerance 103 10"° 105' 
method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 19 18 169 144 1650 1377 

# func calls 25 26 178 156 1659 1386 
# tol misses 2 ** 5 ** 5 ** 

# deceived 0 ** 0 ** 0 ** 

end relerr 2.5e-4 4.1e-4 1.6e-6 1.9e-7 7.0e-9 5.8e-9 
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TABLE 26. Order 2 Problem A5 Test. 

Tolerance io-3 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 24 21 185 162 1801 1539 

# func calls 37 33 197 179 1815 1566 
# tol misses 9 ** 8 ** 10 ** 

# deceived 0 ** 11 ** 9 ** 

end relerr 1.5e-l 2.7e-2 1.6e-3 8.4e-4 1.6e-5 1.0e-5 

TABLE 27. Order 2 Problem B1 Test. 

Tolerance io-J 10° io-y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 244 191 2194 1724 21944 17060 

# func calls 290 224 2199 1766 21949 17102 
# tol misses 42 #* 1 ** 1 ** 

# deceived 32 ** 1 ** 0 ** 

end relerr 4.9e-3 5.4e-l 8.6e-5 5.4e-4 l.le-6 3.5e-6 

TABLE 28. Order 2 Problem B2 Test. 

Tolerance io-3 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 92 90 275 239 2423 1930 

# func calls 101 151 284 276 2427 1936 
# tol misses 5 ** 5 ** 0 ** 

# deceived 0 ** 3 ** 0 ** 

end relerr 1.2e-4 4.2e-5 2.4e-7 2.6e-8 2.5e-10 l.le-9 

TABLE 29. Order 2 Problem B3 Test. 

Tolerance io-J 10° 10y 

method DM2 AM2 DM2 AM2 DIM2 AM2 
# steps 37 45 259 209 2548 2014 

# func calls 45 72 263 212 2552 2017 
# tol misses 4 ** 0 ** 0 ** 

# deceived 0 ** 0 ** 0 ** 

end relerr 4.5e-4 3.7e-4 1.7e-5 1.7e-5 1.9e-7 1.4e-7 
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TABLE 30. Order 2 Problem B4 Test. 

Tolerance io-j 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 191 143 1882 1356 18833 13705 

# func calls 197 150 1886 1363 18837 13713 
# tol misses 2 ** 0 ** 0 ** 

# deceived 8 #* 0 ** 0 ** 

end relerr 1.9e-l 1.0e-l 1.8e-3 1.7e-3 1.8e-5 1.6e-5 

TABLE 31. Order 2 Problem B5 Test. 

Tolerance 10"J 10"° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 114 87 1048 788 10378 7686 

# func calls 133 150 1066 821 10384 7724 
# tol misses 15 ** 14 ** 3 ** 

# deceived 10 ** 0 ** 0 ** 

end relerr 1.6e-2 l.le-1 3.7e-4 6.1e-4 3.1e-6 5.0e-6 

TABLE 32. Order 2 Problem Cl Test. 

Tolerance io-3 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 54 50 356 247 3523 2383 

# func calls 60 80 360 250 3527 2386 
# tol misses 2 ** 0 ** 0 ** 

# deceived 0 ** 0 ** 0 ** 

end relerr 2.1e-4 2.1e-4 1.3e-5 2.6e-5 1.4e-7 1.8e-7 

TABLE 33. Order 2 Problem C2 Test. 

Tolerance IO"3 10"° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 268 225 394 325 2961 1949 

# func calls 276 406 403 439 2970 1995 
# tol misses 4 ** 5 ** 5 ** 

# deceived 0 #* 2 ** 0 ** 

end relerr 1.5e-4 2.7e-5 3.9e-7 1.3e-7 3.5e-10 6.9e-10 
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TABLE 34. Order 2 Problem C3 Test. 

Tolerance io-J 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 116 112 259 202 2352 1567 

# func calls 123 205 266 245 2356 1570 
# tol misses 3 *# 3 ** 0 ** 

# deceived 1 ** 0 ** 0 ** 

end relerr 5.5e-2 9.5e-3 1.9e-4 1.2e-4 4.5e-6 5.0e-6 

TABLE 35. Order 2 Problem C4 Test. 

Tolerance 10'J 10'° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 117 93 259 165 2355 1199 

# func calls 124 167 266 199 2359 1202 
# tol misses 3 ** 3 ** 0 ** 

# deceived 1 ** 3 ** 1 ** 

end relerr 1.4e-2 2.5e-2 1.8e-4 2.0e-4 4.1e-6 7.0e-6 

TABLE 36. Order 2 Problem C5 Test. 

Tolerance icr 10° 10"* 
method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 30 16 287 157 2865 1536 

# func calls 34 21 291 159 2869 1538 
# tol misses 0 ** 0 ** 0 ** 

# deceived 0 ** 0 ** 1 ** 

end relerr 1.4e-3 4.9e-3 1.2e-5 1.2e-5 l.le-7 1.9e-7 

TABLE 37. Order 2 Problem Dl Test. 

Tolerance 10j 10"° 10"* 
method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 130 115 1255 937 12541 9418 

# func calls 135 168 1259 944 12545 9426 
# tol misses 1 ** 0 ** 1 ** 

# deceived 6 ** 0 ** 0 ** 

end relerr 7.6e-l 2.1e+0 4.0e-3 4.6e-3 3.4e-5 9.4e-6 
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TABLE 38. Order 2 Problem D2 Test. 

Tolerance 10J 10"° 10y 

method DIM2 AM2 DM2 AM2 DM2 AM2 
# steps 155 129 1483 1071 14816 10659 

# func calls 165 199 1487 1091 14820 10680 
# tol misses 6 ** 0 ** 0 ** 

# deceived 11 ** 0 #* 0 ** 

end relerr 6.3e-l 2.0e+0 5.7e-3 2.5e-3 5.8e-5 2.1e-5 

TABLE 39. Order 2 Problem D3 Test. 

Tolerance 10J 10"° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 202 152 1799 1289 17937 12746 

# func calls 236 230 1803 1322 17941 12779 
# tol misses 30 ** 0 ** 0 ** 

# deceived 6 ** 0 ** 0 ** 

end relerr 7.1e-l 2.2e+0 7.6e-3 1.7e-3 8.2e-5 4.1e-5 

TABLE 40. Order 2 Problem D4 Test. 

Tolerance 10° io-° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 269 188 2294 1634 22896 16255 

# func calls 330 256 2298 1683 22900 16306 
# tol misses 57 ** 0 ** 0 ** 

# deceived 8 ** 0 ** 0 ** 

end relerr 7.0e-l 1.8e+0 8.9e-3 3.0e-3 9.3e-5 5.6e-5 

TABLE 41. Order 2 Problem D5 Test. 

Tolerance io-J 10"° io-tf 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 414 280 3457 2464 34502 24212 

# func calls 521 363 3461 2545 34506 24296 
# tol misses 103 ** 0 ** 0 ** 

# deceived 11 ** 0 ** 1 ** 

end relerr 5.4e-l 1.2e+0 9.3e-3 5.2e-3 9.3e-5 7.4e-5 
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TABLE 42. Order 2 Problem El Test. 

Tolerance io-J 10"° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 74 62 738 611 7372 6021 

# tune calls 78 117 742 614 7376 6024 
# tol misses 0 ** 0 ** 0 ** 

# deceived 8 ** 0 ** 0 ** 

end relerr 2.7e-l 2.6e-l 2.0e-3 1.8e-3 2.0e-5 1.5e-5 

TABLE 43. Order 2 Problem E2 Test. 

Tolerance 10'j 10° 10y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 282 219 2649 2010 26490 20016 

# func calls 318 264 2657 2061 26495 20071 
# tol misses 32 *# 4 ** 1 ** 

# deceived 28 ** 0 ** 0 ** 

end relerr 2.2e-2 1.3e-2 1.9e-4 1.5e-4 1.9e-6 1.6e-6 

TABLE 44. Order 2 Problem E3 Test. 

Tolerance 1(T 10° 10-" 
method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 281 213 2714 2064 27128 20440 

# func calls 304 230 2718 2086 27133 20463 
# tol misses 19 ** 0 ** 1 ** 

# deceived 3 ** 0 ** 0 ** 

end relerr 9.7e-2 1.4e-l 1.2e-3 1.2e-3 l.le-5 1.3e-5 

TABLE 45. Order 2 Problem E4 Test. 

5olerance 103 10° 1(T 
method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 16 14 138 104 1365 1052 

# func calls 22 23 142 109 1369 1057 
# tol misses 2 ** 0 ** 0 ** 

# deceived 1 ** 5 ** 0 ** 

end relerr 2.8e-4 3.7e-4 4.3e-6 3.7e-6 4.3e-8 3.8e-8 
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TABLE 46. Order 2 Problem E5 Test. 

Tolerance ioJ 10° 10"y 

method DM2 AM2 DM2 AM2 DM2 AM2 
# steps 31 28 280 209 2804 2047 

# func calls 32 52 285 220 2809 2059 
# tol misses 1 ** 1 ** 1 ** 

# deceived 23 ** 0 ** 0 #* 

end relerr 4.9e-3 3.5e-3 4.7e-5 4.2e-5 4.7e-7 4.4e-7 

DIMEX5 TEST RESULTS 

TABLE 47. Order 5 Problem Al Test. 

Tolerance 10° 10-* 10"" 
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 97 94 288 361 882 1426 

# func calls 531 566 1496 2168 4436 8558 
# tol misses 5 0 7 0 1 0 
# deceived 0 #* 0 ** 0 ** 

end relerr l.le-5 3.9e-6 5.0e-8 3.3e-9 1.7e-10 3.1e-12 

TABLE 48. Order 5 Problem A2 Test. 

Tolerance 10° 10-* 101Z 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 38 22 104 67 320 246 

# func calls 226 134 546 404 1621 1478 
# tol misses 3 0 1 0 0 0 
# deceived 0 ** 0 ** 0 ** 

end relerr 8.7e-7 4.4e-7 5.1e-9 2.8e-10 1.7e-ll 1.9e-13 

TABLE 49. Order 5 Problem A3 Test. 

Tolerance 10° 10y 10-" 
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 136 88 426 286 1348 1070 

# func calls 721 530 2166 1718 6776 6422 
# tol misses 4 15 3 19 3 19 
# deceived 0 ** 0 ** 0 ** 

end relerr 4.3e-6 2.1e-6 8.8e-9 1.7e-9 2.6e-ll 2.1e-12 
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TABLE 50. Order 5 Problem A4 Test. 

Tolerance 10° 10"y io-u 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 

# steps 23 18 64 56 197 205 
# func calls 146 110 346 338 1016 1232 
# tol misses 2 1 1 2 2 1 
# deceived 0 ** 0 ** 0 ** 

end relerr 1.9e-7 7.2e-8 3.2e-10 5.1e-ll 9.8e-14 6.9e-13 

TABLE 51. Order 5 Problem A5 Test. 

Tolerance 10° 10" 1012 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 

# steps 28 15 78 51 241 190 
# func calls 171 92 411 308 1226 1142 
# tol misses 2 0 0 1 0 1 
# deceived 2 ** 1 ** ** ** 

end relerr 5.4e-5 6.5e-6 2.3e-7 7.6e-9 3.5e-10 8.9e-12 

TABLE 52. Order 5 Problem B1 Test. 

Tolerance 10" *   io- i lO12 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 

# steps 233 165 683 583 2147 2311 
# func calls 1201 992 3436 3500 10756 13868 
# tol misses 3 17 0 3 0 0 
# deceived 2 ** 1 ** ** ** 

end relerr 2.1e-4 1.9e-5 9.9e-7 2.5e-9 3.3e-9 2.3e-12 

TABLE 53. Order 5 Problem B2 Test. 

Tol (abs) 10" & io- i lO"" 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 

# steps 87 43 134 123 354 450 
# func calls 486 260 711 740 1806 2702 
# tol misses 6 2 4 0 3 0 
# deceived 6 ** 0 ** ** ** 

end relerr 3.6e-7 4.7e-7 2.9e-10 6.3e-ll 2.1e-13 9.7e-14 
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TABLE 54. Order 5 Problem B3 Test. 

Tol (abs) 10° 10'y io-u 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 49 33 112 108 344 400 

# func calls 266 200 596 650 1741 2402 
# tol misses 4 0 3 0 0 ** 

# deceived 1 ** 0 ** ** ** 

end relerr 2.7e-7 9.7e-8 2.1e-9 1.9e-10 7.4e-12 1.4e-13 

TABLE 55. Order 5 Problem B4 Test. 

Tol (abs) 10° 10"y IQ"12 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 159 108 494 424 1561 1682 

# func calls 816 650 2491 2546 7826 10094 
# tol misses 0 0 0 0 0 0 
# deceived 0 ** 0 ** ** ** 

end relerr 3.1e-6 3.4e-6 5.8e-9 8.1e-10 2.8e-ll 8.9e-13 

TABLE 56. Order 5 Problem B5 Test. 

Tol (abs) 10° 10y 10-" 
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 137 82 422 284 1327 1123 

# func calls 706 494 2136 1706 6661 6740 
# tol misses 0 7 1 ** 1 0 
# deceived 0 ** 0 ** ** ** 

end relerr 6.8e-6 3.0e-6 3.2e-8 7.7e-9 8.9e-ll 9.0e-12 

TABLE 57. Order 5 Problem Cl Test. 

Tol (abs) 10-o 10* 10lz 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 51 39 132 134 411 508 

# func calls 281 236 681 806 2076 3050 
# tol misses 1 0 0 0 0 0 
# deceived 9 ** 9 ** ** ** 

end relerr l.le-7 1.7e-7 1.5e-9 4.8e-10 5.7e-12 5.5e-13 
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TABLE 58. Order 5 Problem C2 Test. 

Tol (abs) 10° 10y 10"u 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 198 68 214 142 466 496 

# func calls 1086 410 1126 854 2381 2978 
# tol misses 15 2 7 2 6 0 
# deceived 17 ** 43 ** ** ** 

end relerr 2.6e-8 7.2e-7 7.8e-ll 2.2e-10 2.2e-13 2.7e-13 

TABLE 59. Order 5 Problem C3 Test. 

Tol (abs) 10° io-y 10" 
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 98 41 122 108 334 398 

# func calls 536 248 646 650 1691 2390 
# tol misses 5 1 3 0 0 0 
# deceived 0 ** 0 ** *# ** 

end relerr 1.4e-5 3.2e-5 2.2e-8 1.4e-8 1.9e-10 1.8e-ll 

TABLE 60. Order 5 Problem C4 Test. 

Tol (abs) 10° 10"y IQ"12 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 104 39 132 94 334 340 

# func calls 561 236 696 566 1691 2042 
# tol misses 4 1 3 0 0 0 
# deceived 0 ** 0 ** ** ** 

end relerr 7.0e-7 3.5e-5 7.6e-9 3.0e-8 1.5e-10 3.4e-ll 

TABLE 61. Order 5 Problem C5 Test. 

Tolerance 10° 1(T 10"1Z 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 14 15 32 55 94 211 

# func calls 91 92 181 332 491 1268 
# tol misses 0 0 0 2 0 4 
# deceived 0 ** 0 ** ** ** 

end relerr 1.8e-6 1.8e-6 6.7e-9 8.3e-10 1.8e-ll 5.7e-13 
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TABLE 62. Order 5 Problem Dl Test. 

Tol (abs) 1(T 10y 10"u 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 119 83 373 323 1177 1276 

# func calls 616 500 1891 1940 5911 7658 
# tol misses 0 0 1 0 1 0 
# deceived 0 ** 1 ** ** ** 

end relerr 1.3e-4 3.1e-4 8.4e-7 1.3e-7 2.5e-9 1.7e-10 

TABLE 63. Order 5 Problem D2 Test. 

Tol (abs) io-° 10"y 101Z 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 163 98 512 350 1617 1382 

# func calls 836 590 2581 2102 8106 8294 
# tol misses 0 6 0 0      J 0 0 
# deceived 0 ** 0 ** ** ** 

end relerr 1.5e-4 4.3e-4 4.5e-7 1.2e-7 1.4e-9 1.5e-9 

TABLE 64. Order 5 Problem D3 Test. 

Tol (abs) 10"° 10y 1012 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 212 131 671 414 2121 1638 

# func calls 1081 788 3376 2486 10631 9830 
# tol misses 0 20 0 0 1 0 
# deceived 0 #* 0 ** ** ** 

end relerr 4.0e-4 2.6e-4 1.0e-6 9.1e-8 2.8e-9 l.le-10 

TABLE 65. Order 5 Problem D4 Test. 

Tol (abs) 10"° 10"y 101Z 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 281 174 889 514 2807 2035 

# func calls 1426 1046 4471 3086 14061 12212 
# tol misses 0 34 1 0 1 0 
# deceived 0 ** 0 ** ** ** 

end relerr 6.8e-4 2.0e-4 1.5e-6 8.0e-8 4.3e-9 9.7e-ll 
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TABLE 66. Order 5 Problem D5 Test. 

Tol (abs) io-° 10"y 10-" 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 422 256 1331 728 4201 2884 

# func calls 2136 1538 6686 4370 21056 17306 
# tol misses 1 54 0 0 0 0 
# deceived 1 ** 1 ** ** ** 

end relerr 67.1-5 1.3e-4 9.1e-8 6.0e-8 2.2e-9 6.7e-ll 

TABLE 67. Order 5 Problem El Test. 

Tolerance 10° 10"y io-12 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 94 112 286 426 900 1683 

# func calls 491 674 1451 2558 4521 10100 
# tol misses 0 10 0 11 0 12 
# deceived 0 ** 0 ** ** ** 

end relerr l.le-5 2.2e-6 4.3e-8 2.7e-9 1.3e-10 2.8e-12 

TABLE 68. Order 5 Problem E2 Test. 

Tol (abs) 1(T 10y 10'2 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 303 183 916 637 2922 2503 

# func calls 1551 1100 4601 3824 14631 15020 
# tol misses 3 18 0 6 0 5 
# deceived 2 ** 1 ** ** ** 

end relerr 5.0e-6 2.0e-4 4.3e-9 6.1e-8 7.3e-12 2.6e-ll 

TABLE 69. Order 5 Problem E3 Test. 

Tol (abs) 10° 10"y 10"1Z 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 220 137 695 489 2198 1916 

# func calls 1121 824 3501 2936 11011 11498 
# tol misses 0 10 1 4 0 0 
# deceived 0 ** 0 ** ** ** 

end relerr 8.8e-6 1.6e-4 4.4e-8 4.9e-8 4.0e-10 2.3e-ll 
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TABLE 70. Order 5 Problem E4 Test. 

Tol (abs) 1(T 10"y 10"u 

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 19 17 47 46 145 167 

# func calls 121 104 256 278 746 1004 
# tol misses 1 1 0 0 0 0 
# deceived 0 ** 0 ** ** ** 

end relerr 3.9e-8 1.8e-7 1.3e-10 1.5e-10 1.3e-13 1.7e-13 

TABLE 71. Order 5 Problem E5 Test. 

Tol (abs) 10"° 10"y 10-" 
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5 
# steps 25 24 78 61 242 233 

# func calls 146 146 411 368 1231 1400 
# tol misses 0 5 0 0 0 0 
# deceived 0 #* 0 ** ** ** 

end relerr 1.3e-6 1.6e-8 4.3e-9 1.5e-ll 1.2e-ll 1.2e-14 

DISCUSSION OF TEST RESULTS 

In scanning the results for second order testing, it is evident that the number of steps is 
usually 10 to 20% higher for the DMEX2 integrator in comparison with LSODE. But 
since LSODE has been extensively refined over a period of nearly 20 years, this is not bad 
for a newly developed research code. A different DMSM with a smaller error constant 
would produce fewer steps with otherwise the same implementation. On the other hand, 
for these relatively easy problems, LSODE minimizes the number of function iterations to 
the extent that often the average number of function evaluations required is just over 1 per 
step. DMEX2 significantly outperforms LSODE at loose tolerances on problems A2, A4, 
B2, B3, B5, Cl, C2, C3,C4, El, E4, and E5. The orbital problems Dl and D2 might also 
be included, but the accuracy of both solvers was inadequate to make these true tests. The 
operation of DMEX2 shows that although it is not really a competitive method for simple 
problems with tighter tolerances, the implementation is essentially correct and appropriate. 
And it points to the possibility of developing a truly competitive DMSM second order 
explicit solver, since the number of function evaluations per step is consistently 1 even at 
looser tolerances. 

A calculation of the stability region for the FASAL implementation was performed. 
The following graph shows that the portion of the negative real axis included was reduced 
by 1/3. However, it was found that method parameter could be chosen to find another 
Type 1 second order DMSM with a more favorable stability region. The longest portion 
of the negative real axis that could be obtained is also shown and is unreduced from the 
original DMSM, although the portion off the real axis is seriously reduced for this case in 
Figure 14. It is felt that more can be done to produce desirable stability regions for higher 
orders with more parameters. 
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FIGURE 14. Comparison of Stability Regions for Second Order. 

The fifth order results show very competitive results. DIMEX5 often beats DOPRI5, 
and otherwise provides roughly comparable results, and this despite the larger error 
constant (1/720 versus 1/3600, a factor of 5) and a slightly smaller stability region. This is 
directly attributable to the savings of one function evaluation per step with the DIMSIM. 
But this does not show the complete picture, because dense output is typically required in 
real applications, not just a race to the end of the interval. And the DIMSIM requires no 
additional function evaluations or system solves to provide interpolated output at 5th order, 
while DOPRI5 requires two additional stages to provide 5th order dense output (Reference 
18). Thus when dense output requirements are considered, DIMEX5 in reality 
significantly outperforms DOPRI5 for much of this test set and is rarely beaten. And 
improved DIMSMs may be found with smaller error constants and larger stability regions. 
Finally, the difference at higher orders is expected to be much greater. For example, at 8th 
order, the Runge-Kutta-based DOP853 code provides an 8th order method with an 
interpolant of 7th order with an effective number of 15 function evaluations per step 
(Reference 18), while an 8th order DIMSIM requires only 8 function evaluations per step 
and provides an interpolant of 8th order. 

A note should be provided concerning FASAL operation. The reported tests were first 
conducted using the FASAL property only when step size had not changed since the last 
step, and for most problems the number of function evaluations was reduced by the 
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expected 20%. An attempt was made to allow this for all steps after the first, and in most 
problems the results were satisfactory and the number of function evaluations significantly 
reduced. However, for perhaps 5 or 6 of the problems the quality of the error estimate 
deteriorated significantly, resulting in unacceptably large numbers of times the error 
estimator was deceived, reducing accuracy, and causing up to one third more function 
evaluations. Further examination showed that for these problems, not using FASAL 
produced the best results. Table 72 shows what happened for Problem C2 with tolerance 
10"9. 

TABLE 72. Order 5 With and Without FASAL for Problem C2 Test. 

Use of FASAL None Constant Step All After First 
#Steps 234 357 590 
#func calls 1286 1633 2386 
#tol misses 19 7 1 
#deceived 81 209 430 
end relerr 3.0e-10 2.5e-ll 2.0e-10 

It was originally thought that this is due to larger higher order terms that are present in 
these problems, and this may be an important factor. However, a calculation showed that 
the stability region for order 5 became extremely limited with FASAL implementation (see 
Figure 15). 
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FIGURE 15. Order 5 FASAL Implementation Stability Region. 

In Figure 15 z values are shown in a neighborhood of the origin where the eigenvalue of 
largest modulus w of the stability matrix has Iwl = 1. The dimensions of this region are 
smaller by an order of magnitude as compared with the original DMSIM. It is evident that 
stability for the FASAL implementation must be considered when deriving DEVISMs if this 
implementation efficiency is to be utilized! As a result of the small stability region, a 
FASAL implementation was not used in the testing reported above. 

For the DMSIM itself, the error constant for the method is rather small, and at times 
the sixth order term might be dominated by the seventh order terms. If this is true, a 
different method might not have this problem. More study of the estimation of higher order 
terms and of the use of FASAL is needed. 

FUTURE DEVELOPMENT 

It might be noted that DMEX5 frequently generates exactly 1 tolerance miss. This is 
usually generated on the second step, when the step size calculated for the first step is used 
for the second step, which has a larger associated error. A future version of the code will 
incorporate an appropriate modification similar to the approach used in DIMEX2.   Other 
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improvements and optimizations are anticipated for later development and suggestions and 
bug reports are requested. It should also be noted that DMEX5 uses one example of a 
fifth order Type 1 DMSEVI. It is expected that in the future other methods of this class will 
be found with different error constants and relatively smaller coefficients for higher order 
terms, and these may enable significant performance improvements. Stability for FASAL 
implementations will also be utilized in deriving future methods. And although Runge- 
Kutta stability regions are a design choice here, they are not necessarily essential and 
stability regions even larger than those of Runge-Kutta methods may be found. And the 
family, which now includes only orders 2 and 5, may already be extended to include 
methods through order 8. It is hoped that in time a single variable order code may be 
developed incorporating the entire family in an optimal way. 
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Appendix 

DHVEX5 Code 

subroutine dim51 (X0, Y0,X, Y,F,NEqn,XF,H, ATol,RTol,Starting,XOut, 
1 NCalls,NMisses,Diag,ErrEst,Work) 

**** 

c 
c    dim51 calls driver which controls the integration process. Main 
c    function of dim51 is to divide up work array so its use is transparent 
c    to user. Work array is dimensioned at least 52*NEqn+2. 
c Parameter definitions: 
c X0: (real*8) Initial value of independent variable at start of integration, 
c input 
c Y0: (real*8 array) Initial value of solution at start of integration, 
c dimensioned NEqn, input 
c X: (real*8) Desired output point if Diag is .false., otherwise set to same 
c as XF, input 
c Y: (real*8) Computed solution at X if Diag is .false., otherwise at XOut, 
c output only 
c F: (subroutine) Provides derivative function f for ODE y'=f(x,y). 
c Subroutine must be defined with parameters F(X,Y,YP,NEqn), 
c where YP is the derivative at (X,Y) and NEqn is as defined 
c below. F must be declared external in the calling program. 
c NEqn: (integer) Number of equations in ODE system, input 
c XF: (real*8) Intended termination point for integration process, input 
c H: (real*8) Step size used. Output only, not to be defined or changed by 
c the user 
c ATol: (real*8) Absolute tolerance for local truncation error, used in 
c controlling integration according to formula described below, 
c input 
c RTol: (real*8) Relative tolerance for local truncation error, used in 
c controlling integration according to formula 
c ErrEst<ATol+RTol* , input 
c Starting: (logical) Initially set to .true., thereafter not to be changed 
c by the user 
c XOut:: (real*8) End point of last integration step performed,output only, 
c not to be changed by the user 
c NCalls: (integer) Number of function calls since beginning of integration. 
c Output only, not to be changed by the user. 
c NMisses: (integer) Number of tolerance misses since beginning of 
c integration. Output only, not to be changed by the user. 
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c Diag: (logical) Set to true if only one integration step at a time is 
c desired, which is the preferred mode for study of integrator 
c behavior, and false if it is desired to integrate until 
c interpolated output at X may be obtained 
c ErrEst: (real*8) Maximum norm of estimated error in last integration step 
c taken, output only 
c Work: (real*8) Work array which must be dimensioned at least 2+23*NEqn 
c for 2nd order and 2+52*NEqn for 5th order. 
c 
~*********************************************************************** 

**** 

implicit none 
logical Starting,Diag 
integer NCalls,NMisses,NEqn 
real*8H,X0,Y0(NEqn),X,Y(NEqn),ATol,RTol,XF,XOut,Work(2+52*NEqn) 

real*8 ErrEst 
external F 
calldriver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut, 

1 NCalls,NMisses,Diag,ErrEst,Work( 1 ),Work(2), 
2 Work(2+5*NEqn),Work(2+10*NEqn),Work(2+15*NEqn), 
3 Work(3+15*NEqn), 
4 Work(3+16*NEqn),Work(3+17*NEqn),Work(3+18*NEqn), 
5 Work(3+19*NEqn),Work(3+20*NEqn),Work(3+21 *NEqn), 
6 Work(3+22*NEqn),Work(3+27*NEqn),Work(3+32*NEqn), 
7 Work(3+37*NEqn),Work(3+38*NEqn),Work(3+46*NEqn)) 
end 
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subroutine driver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut, 
1 NCalls,NMisses,Diag,ErrEst,H01d,YIter,FStage,YIterP, 
2 X01d,YP,Yl,Y2,Y4,YlP,Y2P,YStage, 
3 YIterN,YIterS,FStageN,Y6Der,RKWork,NordVec) 

c driver provides the essential logic to control the integration process and 
c calls the subprograms needed to carry out the necessary calculations. When 
c Starting is set to .true., start is called to obtain an initial Nordsieck 
c vector, step size and external stage vector, solver then is called to 
c carry out the first integration step and the error estimate is checked to 
c ensure the result is within tolerance. If not the step size is halved and 
c Nordsieck vector is rescaled to produce a new starting external stage vector. 
c This process is repeated until successful. Starting is then set to .false. 
c and the integration process proceeds as NewStep calculates a new step size to 
c use. If Diag is .true, driver returns dim51 which returns to be called again 
c by the main program, otherwise at each iteration either XOut is at least X, 
c in which case Nordlnterp produces an interpolated solution value at X and a 
c return is made to the main program for another call, or an integration step 
c is carried out. An integration step begins by saving copies of the current 
c and previous external stage vectors. Then rescale is called to rescale the 
c current external stage vector, a DIMSIM step is performed using a call to 
c solver, and ErrEst is checked to be sure the error is within tolerance. If 
c not, a tolerance miss is counted and the step size is halved. Rescaling 
c again takes place using the saved values, and this process continues until 
c the step is within tolerance or MaxTries is exceeded, generating an error 
c message and STOP. For normal execution final XOut is XF. 
c 
c  Parameters: 
cX0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,NCalls,NMisses,Diag,ErrEst: 
c        As in dim51, see Section a above. 
c HOld: (real*8) Step size used for previous successful integration step 
c YIter: (real*8 array) External stage vector for current step, dimensioned 
c (NEqn,5) 
c FStage: (real*8 array) Vector of derivative values computed from internal 
c        stage values for most recent successful step, dimensioned (NEqn,5). 
c YIterP: (real*8 array) External stage vector for previous successful step, 
c        dimensioned (NEqn,5) 
c XOld: (real*8) Previous successful step point 
c YP: (real*8 array) Derivative at X0, =f(X0,Y0). Dimensioned NEqn. 
c Y1,Y2,Y4,Y1P,Y2P, Y6Der: (real*8 arrays) Storage needed for subroutine start. 
c       Each dimensioned NEqn. 
c YIterN,YIterS, FStageN: (real*8 arrays) Storage needed for temporary storage 
c       of current and previous external stage vectors and current vector of" 
c       derivatives at internal stage points until it is verified that step 
c        was successful, dimensioned (NEqn,5). 
c YStage: (real*8 array) Storage needed for subroutine solver, dimensioned 
c        NEqn. 
c RKWork: (real* 8 array) Storage needed for subroutine start, dimensioned 
c        8*NEqn. 
c NordVec: (real*8 array) At first step, Nordsieck vector at X0. Subsequently, 
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c       Nordsieck vector at XOut. Dimensioned (NEqn,6) 

*** 

c 
c    Driver controls the integration process. 
c 

implicit none 
logical Starting,Diag 
real*8H,X0,Y0(NEqn),ErrEst,FStage(NEqn,5),YIter(NEqn,5),X,XOut 
real*8YIterN(NEqn,5),YIterP(NEqn,5),Y(NEqn),X01d,H01d,HFac,delta 
real*8Theta,Eps,YIterS(NEqn,5),HNew,YP(NEqn),ATol,RTol,YlP(NEqn) 
real*8FStageN(NEqn,5),Yl(NEqn),YStage(NEqn) 
real*8 NewStep,X 1 ,norm,Tol,Y2(NEqn),Y6Der(NEqn),NordVec(NEqn,6),XF 
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5) 

real*8RKWork(8*NEqn),Y2P(NEqn),Y4(NEqn) 
common/Method/C,A,B,vT,W,BT,Beta,Gamma 
save Method 
integer NCalls,NMisses,iii,jjj ,NEqn,JEqn,NTries,MaxTries 
external F 
parameter (Eps=2.2D-16,MaxTries=10) 
if (Starting) then 

NCalls=0 
NMisses=0 
Tol=ATol+RTol*norm(YO,NEqn) 

c 
c    Compute starting values 
c 

call start(YIter,F,XO,YO,NEqn,H,YP,Tol,Yl ,YlP,Y6Der,Y2, 
1 Y2P,Y4,NordVec,RKWork) 

H01d=H 
NCalls=NCalls+21 
delta=l 

c 
c    Iterate until H yields error estimate within tolerance 
c 
1        continue 
c 
c    Compute First Step with Error Estimate and Interp Parameters 
c 

callSolver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP, 
1 Starting,YStage) 

NCalls=NCalls+5 
if (ErrEst .gt. Tol) then 

print *,'FIRST STEP MISSED!!! H',H,'X0=',X0 
NMisses=NMisses+l 
H=H/2 
delta=delta/2 
do JEqn=l,NEqn 

YIter(JEqn,l)=YO(JEqn) 
do iii=2,5 

YIter(JEqn,iii)=YO(JEqn) 
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dojjj=2,6 
YIter(JEqn,iii)=YIter(JEqn,iii)+ 

1 W(iiijjj) *NordVec(JEqn,jjj) * delta* * (jjj-1) 
end do 

end do 
end do 
goto 1 

endif 
c       HNew=NewStep(H,Tol,2*ErrEst) 

XOut=X0+H 
H01d=H 

c       H=HNew 
Starting = .false, 
if (Diag) then 

do JEqn=l,NEqn 
Y(JEqn)=YIter(JEqn,l) 

end do 
RETURN 

endif 
endif 

c 
c    Iterate until X is reached or exceeded, 
c 
2 continue 

if ((XOut .ge. X) .and. .not. Diag) then 
c 
c    Calculate Y using NordLiterp 
c 

Theta=(X-X01d)/H01d 
callNordInterp(Y,H01d,Theta,FStage,YIterP,NordVec,NEqn) 

else 
NTries=0 
X01d=XOut 
Tol=ATol+RTol*norm(YIter( 1,1 ),NEqn) 

c 
c    Iterate until error estimate is within tolerance, 
c 
3 continue 

XOut=X01d+H 
if (XOut .gt.XF) then 

H=XF-X01d 
XOut=XF 

endif 
do JEqn=l,NEqn 

do iii=l,5 
YIterS(JEqn,iü)=YIterP(JEqn,iii) 
YIterN(JEqn,iii)=YIter(JEqn,iü) 

end do 
end do 

c 
c    Rescale iteration vector for new step size 
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call rescale( YIterN,H,H01d,FStage, YIterS ,NEqn) 
callSolver(X01d,NEqn,YIterN,H,H01d,F,ErrEst, 

1 FStageN, YIterS,Starting, YStage) 
NCalls=NCalls+5 
if(ErrEst.gt. Tol) then 

NTries=NTries+l 
if (NTries .gt. MaxTries) then 

print *,'At XOut=',XOut,', MaxTries exceeded' 
print *,Tol=',Tol 

STOP 
endif 
NMisses=NMisses+1 
H=H/2 
goto 3 

endif 
HNew=NewStep(H,Tol,ErrEst) 
H01d=H 
H=HNew 
do JEqn=l,NEqn 

Y(JEqn)=YIterN(JEqn, 1) 
doiii=l,5 

YIterP(JEqn,iii)=YIterS(JEqn,iii) 
YIter(JEqn,iii)=YIterN(JEqn,iii) 
FStage(JEqn,iii)=FStageN(JEqn,iii) 

end do 
end do 

if (.not. Diag) then 
goto 2 

endif 
endif 

end 
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SUBROUTINE Solver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP, 
1 Starting,YStage) 

c 
c    Solver carries out one step of the solution for an explicit fifth 
c    order DIMSIM ODE solver for an ODE system. U is assumed to be the 
c    identity matrix, 
c 

c solver applies the basic DIMSIM algorithm to compute a new external stage 
c vector and an error estimate. Different coefficients are used in computing 
c the error estimate if Starting is .true. 
c 
c      Parameters: 
c X0: (real*8) Starting point for this integration step 
c NEqn,H,H01d,F,ErrEst,Starting: See description of driver 
c FStage: (real*8) Upon output, set to vector of derivatives at internal 
c       stage points for current step, dimensioned (NEqn,5) 
c YIter: (real*8) Upon input, set to rescaled previous external stage vector. 
c Upon output, set to current external stage vector. Dimensioned (NEqn,5) 
c YIterP: (real*8) Output only, set to input value of YIter. Dimensioned 
c (NEqn,5) 
c YStage: (real*8) Temporary storage needed for each internal stage vector in 
c        turn during calculation. Dimensioned NEqn. 
„***********************#*********************************************** 

implicit none 
real*8XO,H,ErrEst,YIter(NEqn,5),H01d,Delta,Err 
real*8 YStage(NEqn),YIterP(NEqn,5),FStage(NEqn,5),Eps 
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5) 

real*8Beta(5),Gamma(5),vTYIter,Fac,BeÜnit(5),GamInit(5) 
integer iii,jjj,JEqn,NEqn 
logical Starting 
parameter (Eps=2.2d-16) 
external F 
common/Method/C,A,B ,vT,W,BT,Beta,Gamma 
save Method 
Delta=H/H01d 
do JEqn=l,NEqn 

doiii=l,5 
YIterP(JEqn,iii)=YIter(JEqn,iii) 

end do 
end do 
call F(X0+C( 1)*H,YIterP( 1,1 ),FStage( 1,1 ),NEqn) 
do iii=2,5 

do JEqn=l,NEqn 
YStage(JEqn)=YIterP(JEqn,iii) 
dojjj=l,iii-l 

YStage(JEqn)=YStage(IEqn)+ 
1 H*A(iii,jjj)*FStage(JEqnjjj) 

end do 
end do 
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callF(XO+C(iii)*H,YStage,FStage(l,iü),NEqn) 
end do 
do JEqn=l,NEqn 

vTYIter=0 
doiii=l,5 

vTYIter^vTYIter+vT(iii)*YIterP(JEqn,iii) 
end do 
do iii=l,5 

YIter(JEqn,iii)=vTYIter 
dojjj=l,5 

YIter(JEqn,iii)=YIter(JEqn,iii)+ 
1 H*B(iii,jjj)*FStage(JEqn,jjj) 

end do 
end do 

end do 
ErrEst=0 
if (.not. Starting) then 

do JEqn=l,NEqn 
Err=0 
do iii= 1,5 

Err=Err+H*Beta(iii)*FStage(JEqn,iii)+ 
1 Gamma(iii)*YIterP(JEqn,iii) 

end do 
if (abs(Err) .gt. ErrEst) then 

ErrEst=abs(Err) 
endif 

end do 
Fac=Delta**4/(18.82229382702224d0+1.079974531970991d2*Delta+ 

1 1.43308904334375d2*Delta**2+ 
2 5.513374496429978dl*Delta**3+Delta**4) 

ErrEst=Fac*ErrEst 
else 

Betlnit( 1 )=0.181287554525493 6d0 
Betlnit(2)=0.3105254335256836d0 
Betlnit(3)=-0.3258295105315199d0 
Betlnit(4)=0.1138267699195702d0 
Betlnit(5)=-0.01051030018603054d0 
Gamlnit( 1 )=-0.1351324309632461 dO 
Gamlnit(2)=0 
Gamlnit(3)=0 
Gamlnit(4)=0 
Gamlnit(5)=0.1351324309632461 dO 
do JEqn=l,NEqn 

Err=0 
doiii=l,5 

Err=Err+H*BetInit(iii)*FStage(JEqn,iii)+ 
1 GamInit(iii)*YIterP(JEqn,iii) 

end do 
if (abs(Err) .gt. ErrEst) then 

ErrEst=abs(Err) 
endif 
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end do 
endif 
end 
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subroutine start(YIterP,F,XO, Y0,NEqn,H,YP,Tol, Yl ,YlP,Y6Der, 
1 Y2,Y2P,Y4,YNord,RKWork) 

*** 

c start first calculates the derivative at the initial point X0. A scaling 
c factor g to estimate the size of the initial Nordsieck vector is computed and 
c this is used to determine hO. In most cases g will be the smaller of the 
c norm of the function and the first derivative, but in case one is smaller 
c than 1000*eps (machine epsilon) the larger is taken, and in no case is g 
c taken as less than 10-6. A 6th order Runge-Kutta method is used by calling 
c RK6 to compute the solution Y4 at X0+h0/4, Y2 at X0+h0/2 (from Y4), and Yl 
c at XO+hO (from Y2). These are then used to calculate a Nordsieck vector for 
c computation of the initial external stage vector, plus an extra derivative 
c for computation of the appropriate size for the first DÜVISIM step. Both 
c the Nordsieck vector and the intial external stage vector are returned in 
c case tolerance is not met. 
c YIterP: (real*8) Initial external stage vector, output dimensioned (NEqn,5) 
c F,X0,Y0,NEqn: Seedim51 description 
c H: (real *8) Output value for calculated initial DIMSBvI step size 
c YP: (real*8) Derivative of the solution at X0, calculated using y'=F(X0,Y0), 
c      output dimensioned NEqn 
c Tol: (real*8) Initial tolerance computed as described in section a from 
c      RTol, Y0 and ATol, input 
c Y1,Y1P,Y2,Y2P,Y4: (real*8 arrays) Values computed using 6th order 
c      Runge-Kutta method for solution at hO, hO/2, and hO/4, and associated 
c      derivatives computed using F, workspace each dimensioned NEqn. 
c Y6Der: (real*8 array) 6th derivative of solution vector at X0, multiplied 
c      times , workspace dimensioned NEqn. 
c YNord: (real*8) Nordsieck vector at X0 for step size H, output dimensioned 
c       (NEqn,6) 
c RKWork: See driver description 

** 

implicit none 
real*8 YIterP(NEqn,5),X0,Y0(NEqn),H,YP(NEqn),Tol,YPP,norm,EPS 
real*8 Yl (NEqn),YlP(NEqn),Y2(NEqn),g,hO,delta 
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5) 

real*8Y6Der(NEqn),YNord(NEqn,6),Y2P(NEqn),Y4(NEqn) 
real*8 RKWork(8*NEqn) 
integer NEqn,JEqn,iii,jjj 
parameter (EPS=2.2d-16) 
external F 
common /method/C, A,B, vT,W,BT,Beta,Gamma 
save Method 
call f(XO,Y0,YP,NEqn) 

c 
c    Compute a value for hO 
c 

g=dminl(norm(YO,NEqn),norm(YP,NEqn)) 
if (g .It. 1000*eps) g=dmaxl(norm(yO,NEqn),norm(YP,NEqn)) 
g=max(g,1.0d-6) 
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hO=10**(5.0dO/6)*(eps/g)**(1.0dO/6) 
c 
c    Compute a value for y4 at X0+H0/4 using sixth order 
c     Runge-Kutta method 
c 

call RK6(Y4,X0,Y0,h0/4,F,NEqn,RKWork( 1 +7*NEqn),RKWork( 1), 
1 RKWork(l+NEqn), 
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn), 
2 RKWork( l+5*NEqn),RKWork( 1 +6*NEqn)) 

c 
c    Compute a value for y2 and y2P at X0+H0/2 using sixth order 
c     Runge-Kutta method 
c 

call RK6(Y2,X0+h0/4,Y4,h0/4,F,NEqn,RKWork( 1 +7*NEqn),RKWork( 1), 
1       RKWork(l+NEqn), 
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn), 
2 RKWork( l+5*NEqn),RKWork( l+6*NEqn)) 
call F(X0+h0/2,Y2,Y2P,NEqn) 

c 
c    Compute a value for yl and ylP at X0+H0 using sixth order 
c     Runge-Kutta method 
c 

callRK6(Yl,X0+h0/2,Y2,h0/2,F,NEqn,RKWork(l+7*NEqn),RKWork(l), 
1        RKWork(l+NEqn), 
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn), 
2 RKWork(l+5*NEqn),RKWork(l+6*NEqn)) 
call F(XO+hO,Yl,YlP,NEqn) 

c 
c    Compute sixth derivative times h0A6 
c 

do JEqn=l,NEqn 
Y6Der(JEqn)=1280*(-90*Y0(JEqn)-22*Yl(JEqn)-144*Y2(JEqn)+ 

1 256*Y4(JEqn)+H0*(-9*YP(JEqn)+ 
2 3*YlP(JEqn)+36*Y2P(JEqn))) 
end do 

c 
c    Compute initial step size 
c 

H=hO*(Tol/(4*(5.518667640362375d-5)*norm( Y6Der,NEqn))) 
1 **(1.0d0/6) 
if (H .It. 100*EPS)then 

print *,'START-Tolerance too tight or H too small' 
print *,'h0=',h0/H=',H,'New H=1.0d-8' 

H=1.0d-8 
endif 

c 
c   Compute starting vector 
c 

delta=H/hO 
do JEqn=l,NEqn 

YNord( JEqn, 1 )=YO(JEqn) 
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YNord(JEqn,2)=H*YP(JEqn) 
YNord(JEqn,3)=2*(-567*Y0(JEqn)-25*Yl(JEqn)-432*Y2(JEqn)+ 

1 1024*Y4(JEqn)+H0*(-90*YP(JEqn)+3*YlP(JEqn)+ 
2 72*Y2P(JEqn)))/9 

YNord(JEqn,3)=YNord(JEqn,3)*delta**2 
YNord(JEqn,4)=1836*Y0(JEqn)+148*Yl(JEqn)+2112*Y2(JEqn)- 

1 4096*Y4(JEqn)+H0*(222*YP(JEqn)- 
2 18*YlP(JEqn)-384*Y2P(JEqn)) 

YNord(JEqn,4)=YNord(JEqn,4)*delta**3 
YNord(JEqn,5)=32*(-1323* YO(JEqn)-169* Yl (JEqn)-1836* Y2(JEqn)+ 

1 3328*Y4(JEqn)+H0*(-144*YP(JEqn)+ 
2 21*YlP(JEqn)+378*Y2P(JEqn)))/3 

YNord(JEqn,5)=YNord(JEqn,5)*delta**4 
YNord(JEqn,6)=160*(378*Y0(JEqn)+70*Yl(JEqn)+576*Y2(JEqn)- 

1 1024*Y4(JEqn)+H0*(39*YP(JEqn)- 
2 9*YlP(JEqn)-132*Y2P(JEqn))) 

YNord(JEqn,6)=YNord(JEqn,6)*delta**5 
end do 

c 
c    We make use of the special form of W for c0=0, explicit methods 
c 

do JEqn=l,NEqn 
YIterP(JEqn, l)=Y0(JEqn) 
do iii=2,5 

YIterP(JEqn,iii)=0 
dojjj=l,6 

YIterP(JEqn,iii)=YIterp(JEqn,iü)+ 
1 W(iii,jjj)*YNord(JEqn,jjj) 

end do 
end do 

end do 
end 
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subroutine rescale(YIter,H,H01d,FStage,YIterP,NEqn) 

* 
c rescale takes a previous external stage vector computed using a step size 
c HOld and uses the DIMSIM rescaling algorithm to rescale it to become the 
c appropriate previous external stage vector for continuing the computation 
c with step size H. 
c 
c     Parameters: 
c YIter: (real*8) Output rescaled extermal stage vector, dimensioned (NEqn,5) 
c H: (real*8) Input new step length 
c HOld: (real*8) Input step length for previous successful step. 
c FStage: (real* 8) Input vector of derivatives at stage points for last step 
c completed 
c YIterP: (real*8) Input previous external stage vector, calculated using step 
c length HOld, dimensioned (NEqn,5) 
cNEqn: Seedim51 

* 

implicit none 
real*8Yiter(NEqn,5),H,H01d,FStage(NEqn,5),YIterP(NEqn,5),Delta 
real*8 C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Suml ,Sum2 

real*8 Beta(5),Gamma(5) 
integer i,j,k,JEqn,NEqn 
common /Method/C,A,B ,vT,W,BT,Beta, Gamma 
save Method 
Delta=H/H01d 
do JEqn=l,NEqn 

doi=l,5 
Sum 1=0 
Sum2=0 
doj=l,5 

Sum2=Sum2+vT(j)*YIterP(JEqnj) 
end do 
doj=l,5 

dok=l,6 
Suml=Suml+W(i,k)*Delta**(k-l)*BT(k,j)*FStage(JEqn,j) 

end do 
end do 
YIter(JEqn,i)=H01d*Suml+Sum2 

end do 
end do 
end 
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real*8 function NewStep(H,Tol,ErrEst) 

*# 

c The error estimate is compared with the tolerance to produce a step change 
c factor modifying the step size in preparation for the next step. The local 
c truncation error is assumed to be proportional to the 6th power of the step 
c size. The largest possible step change is a factor of 2. A step change 
c safety factor equal to .75 was used for DIMEX5 so that the step size used 
c was .75 of optimal. A larger factor of .9 was used successfully for DIMEX2. 
c 
c    Parameters: 
c H: (real*8) At input contains old step size. At output contains new step 
c size 
c Tol: (real* 8) Input tolerance derived from RTol, Y and ATol as described 
c in section a above 
c ErrEst: (real* 8) Input current local error estimate 
c** 
** 

implicit none 
real*8ErrEst,RTol,ATol,Tol,HFac,H,Eps,YNorm 
parameter (Eps=2.2d-16) 
HFac=.75dO*(Tol/abs(ErrEst))**(1.0dO/6) 
HFac=dminl(HFac,2.0dO) 
NewStep=HFac*H 
end 
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subroutine NordInterp(Y,H,Theta,FStage,YIter,NordVec,NEqn) 

* 

c The Nordsieck vector NordVec is calculated at the current value of XOut, 
c using the previously calculated external stage vector YIter, the current 
c step size H, and the current vector of derivatives at stage points, FStage. 
c Theta then is used to rescale the Nordsieck vector to correspond to the 
c desired output point and a 5th order Taylor series approximation Y is formed. 
c 
c      Parameters: 
c Y: (real*8 vector) Output approximation to the solution at the desired 
c output point, length NEqn. 
c H: (real*8) Input step size for last successful integration 
c Theta: (real* 8) Input between 0 and 1, ratio (X-X01d)/H, where X is the 
c desired output point 
c FStage: (real*8 vector) Input vector of derivatives at stage points for 
c last successful integration, dimensioned (NEqn,5) 
c YIter: (real*8 vector) Input previous external stage vector, dimensioned 
c (NEqn,5) 
c NordVec: (real*8 vector) Workspace (output for waveform relaxation) for 
c Nordsieck vector at current XOut and last step size used. 
cNEqn: Seedim51 

* 

implicit none 
real*8H,Theta,FStage(NEqn,5),YIter(NEqn,5),Y(NEqn) 
real*8NordVec(NEqn,6),Bt(6,5),vT(5),vTIter,del,C(5),A(5,5) 
real*8B(5,5),W(5,6),Beta(5),Gamma(5),Factorial 
integer JEqn,NEqn,iii,jjj 
common/Method/C,A,B,vT,W,Bt,Beta,Gamma 
save Method 
do JEqn=l,NEqn 

vTIter=0 
doiii=l,5 

vTIter=vTIter+vT(iii)*YIter(JEqn,iii) 
end do 
do iii= 1,6 

NordVec(JEqn,iii)=vTIter 
dojjj=l,5 

NordVec(JEqn,iii)=NordVec(JEqn,iii)+ 
1 H*Bt(iii,jjj)*FStage(JEqn,jjj) 

end do 
end do 
del=-(l-theta) 
Y(JEqn)=NordVec( JEqn, 1) 
factorial 1 
do iii=2,6 

Y(JEqn)=Y(JEqn)+NordVec(JEqn,iii)*del**(iii-l)/Factorial 
Factorial=Factorial*iii 

end do 
end do 
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end 
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subroutine RK6(Y,X0,Y0,H,F,NEqn,YP,YP2,YP3,YP4,YP5,YP6,YP7,YTemp) 
/-% 5jC 5|C 5(C 3JC 5|* 5f£ JjC »J* «j£ SjC *jC »(» 5jC 5JC 5JC 5JC *JC 5JC 5JC *|C 5|S SjC JJ» *|* *> 5jC *j* JfC 5JC JjC 5|C 5J* JjC 5(C ?JC *jC 3JC SjC »JC 3JC *JC 3j» 3|C 5JS *}* 5|C 3(C 3J^ *JC 3p SJC 3j* 5J* 3|» J)y *J* 3JC *J> *jy 3]C 5jt *f* PJC *j* *|* ?J* Jj* ?p Pf* *p 5j£ 

*** 
c A simple 6th order Runge-Kutta solver with 7 stages, used to provide solution 
c valuesneeded for starting method. Solution Y for initial values (X0,Y0) is 
c found at XO+H for problem Y'=F(X,Y). The method is described in Butcher, 
c pp. 203-205. 
c 
c     Parameters: 
c Y: (real*8 vector) Solution at XO+H, dimensioned NEqn. 
c XO: (real*8) Initial value of independent variable. 
c YO: (real*8 vector) Initial value of dependent variable, dimensioned NEqn 
c H: (real*8) step size used 
cF: seedim51 
cNEqn: seedim51 
c YP,YP2,YP3,YP4,YP5,YP6,YP7: (real*8 vectors) Workspace used for storing 
c derivatives of stages, each dimensioned NEqn. 
c YTemp: (real*8 vector) Workspace used for storing stage vectors 
c successfully, dimensioned NEqn 

implicit none 
integer JEqn,NEqn 
real*8H,X0,Y0(NEqn),YP(NEqn),YP2(NEqn),YP3(NEqn),YP4(NEqn) 
real*8Y(NEqn),YP5(NEqn),YP6(NEqn),YP7(NEqn),YTemp(NEqn) 
external F 
call F(X0,Y0,YP,NEqn) 
do JEqn=l,NEqn 

YTemp(JEqn)=Y0(JEqn)+H*YP(JEqn)/3 
end do 
call F(X0+H/3,YTemp,YP2,NEqn) 
do JEqn=l,NEqn 

YTemp(JEqn)=Y0(JEqn)+2*H*YP2(JEqn)/3 
end do 
call F(X0+2*H/3,YTemp,YP3,NEqn) 
do JEqn=l,NEqn 

YTemp(JEqn)=Y0(JEqn)+H*(YP(JEqn)+4*YP2(JEqn)-YP3(JEqn))/12 
end do 
call F(X0+H/3,YTemp,YP4,NEqn) 
do JEqn=l,NEqn 

YTemp(JEqn)=Y0(JEqn)+H*(25*YP(JEqn)-110*YP2(JEqn)+ 
1 35*YP3(JEqn)+90*YP4(JEqn))/48 
end do 
call F(X0+5*H/6,YTemp,YP5,NEqn) 
do JEqn=l,NEqn 

YTemp(JEqn)=YO(JEqn)+H*( 18* YP(JEqn)-55* YP2(JEqn)- 
1 15*YP3(JEqn)+60*YP4(JEqn)+12*YP5(JEqn))/120 
end do 
call F(X0+h/6,YTemp,YP6,NEqn) 
doJEqn=l,NEqn 

YTemp(JEqn)=Y0(JEqn)+H*((-261 d0/260)* YP(JEqn)+ 
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1 (33d0/13)*YP2(JEqn)+(43d0/156)*YP3(JEqn)+ 
2 (-118d0/39)*YP4(JEqn)+(32d0/195)*YP5(JEqn)+ 
3 (80d0/39)*YP6(JEqn)) 
end do 
call F(X0+h,YTemp,YP7,NEqn) 
do JEqn=l,NEqn 

Y(JEqn)=Y0(JEqn)+H*(13*YP(JEqn)+55*YP3(JEqn)+55*YP4(JEqn)+ 
1 32*YP5(JEqn)+32*YP6(JEqn)+13*YP7(JEqn))/200 
end do 
END 
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block data Matrices 

c The matrices and vectors defining the particular method are set to 
c appropriate values using data statements and stored in the common region 
c /Method/. 

*1» «1* *1* *1» *1» *1* *1» *I» *!• •!» *I» *!• *1» »I* *l* *i* *J* »1* *1* *I* *1* *t* *I* *I* ■!• «I* *!• *1* 4* "J* •!* *1* *1" »£* *1* *1* *1* *I* *4* «4* *1- *1* 4* ^* *I* *I* *1* ^ ^* ^ "1* ^* >l* ^ "^ 4* ^* 4* 4* 4* ^ ^r ^ ^r ^ *^* ^* ^^ ^ ^" ^ 
A Jjv J|s J|^ JJ^ 5J* *|* ^> *I* *^ *p J^ *fr <[* ^* *^ ^ n* ^ ^ ^ ^ ^ ^* ^* ^* ^« «^ *^ ^* *T* ^ *T* *t* *T* *r* *r* *v* *r* ^ •T* *^ *T* **• *T* *** *T* *1* "1* "T* "T* *T* ■!* "T* *1* *T* *** *I* *T* *r* **■ *I* *1* *** *t* *I* •T" *T" *T* *T* *T* *T* 

real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5) 
common/Method/C,A,B ,vT,W,BT,Beta,Gamma 
save Method 
datavT/-.2406956155386215d0,1.2604945758471451d0, 

1 -2.4812693924523267d0,1.9199070083032958d0, 
2 5.415634238405067d-l/ 
data C /0,2.5d-l,5.0d-l,7.5d-l,l/ 
data A/0,1.1765281703106688d0,1.9805793463233191d0, 
1 3.0532835108392395d0,1.4193325269467698d0,2*0, 
2 .4017181027378085d0,.7349961462028882d0, 
3 2.6534897473125331d0,3*0,.2672357626475791d0, 
4 -2.2778532945468265d0,4*0,1.1978905088172778d0,5*0/ 
dataB/3.163023914364555736d0,3-250176692142333514d0, 

1 3.508528033848969459d0,4.176223954923772036d0, 
2 3.008220785304765914d0,1.9743392460505406810, 
3 1.53197813493942957d0,0.327374204184027625d0, 
4 -2.61827171939311992d0,2.11453341958770507d0, 
5 -0.81042512005562813d0,0.097908213277705203d0, 
6 2.239060519232953536d0,7.03900409877443037d0, 
7 0.3572048837825639d0,0.540922018802018401d0, 
8 -0.422272425642426043d0,-2.097452509375452155d0, 
8 -5.2884360132659356d0, 
9 -1.90425330857598604d0,0.05507865419631683844d0, 
1 -0.4613800716699075171d0,-0.936868983593822539d0, 
2 -1.691097027371050162d0,-0.64562655527099952d0/ 
data Bt/3.163023914364555d0,0,1,1.46666666666667d 1,96,256, 

1 1.974339246050541d0,0,-5.333333333333333d0, 
2 -7.466666666666667dl,-448,-1024,-0.810425120055628dO,0, 
3 12,152,768,1536,0.5409220188020184d0,0,-16, 
4 -1.386666666666667d2,-576,-1024,0.05507865419631683d0, 
5 l,8.333333333333333d0,4.666666666666667dl,160,256/ 
dataW/l,l,l,l,l,0,-0.926528170310669d0,-1.882297449061128d0, 

1 -3.305515419689707d0,-1.992859488529754d0,0, 
2 0.03125d0,0.02457047431554788d0,-0.03 61169178745116d0, 
3 0.07713632883232162d0,0,0.002604166666666666d0, 
4 0.00827964262277682d0,0.01393940010021236d0, 
5 0.03157006827664394d0,0,0.0001627604166666666d0, 
6 0.001558025774120291d0,0.005702129564105415d0, 
7 -0.002014862315115681d0,0,8.13802083333333d-6, 
8 0.0001950328608825182d0,0.001161984318267553d0, 
9 -0.001959141967572072d0/ 
data Beta/-2.385388840413769d3,-1.706352417381188d2, 

1 1.870907224366729d2,-2.323292678834744dl,0/ 
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data Gamma /1.268306923377163d3,0,-1.224572201881436d3,0, 
1 -4.373472149572754dl/ 
end 
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