
NAWCWPNS TP 8340

Using Diagonally Implicit Multistage Integration
Methods for Solving Ordinary

Differential Equations.
Part 1: Introduction and Explicit Methods

by
Jack VanWieren

Research and Technology Group

JANUARY 1997

NAVAL AIR WARFARE CENTER WEAPONS DIVISION
CHINA LAKE, CA 93555-6100

Approved for public release; distribution is unlimited.

mm M
DTIC QUiLLITl' IWuiriuOTBD 1

Naval Air Warfare Center Weapons Division

FOREWORD

Diagonally implicit multistage integration methods (DIMSMs) hold great promise for
providing more efficient, more accurate and more robust software for solving systems of
ordinary differential equations numerically. The author was supported by Navy In-House
Independent Research Funds.

This report was reviewed for technical accuracy by Professor Zdzislaw Jackiewicz,
Arizona State University, Tempe, Arizona.

Approved by Under authority of
R. L. DERR, Head J. V. CHENEVEY
Research and Technology Group RADM, U.S. Navy
31 January 1997 Commander

Released for publication by
S.HAALAND
Director for Research and Engineering

NAWCWPNS Technical Publication 8340

Published by Technical Information Division
Collation Cover, 68 leaves
First printing 30 copies

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public repotting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

January 1997
3. REPORT TYPE AND DATES COVERED

Interim report—October 1994-September 1996
4. TITLE AND SUBTITLE

Using Diagonally Implicit Multistage Integration Methods for Solving Ordinary
Differential Equations. Part 1: Introduction and Explicit Methods

5. FUNDING NUMBERS

N0001495WX30085
N0001495WX20167

6. AUTHOR(S)

Jack M. Van Wieren

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Weapons Division
China Lake, CA 93555-6100

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAWCWPNS TP 8340

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. Ronald Derr
Code 4B0000D
Naval Air Warfare Center Weapons Division

China Lake, CA 93555-6100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

A Statement; public release; distribution unlimited.

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

(U) A survey of theoretical results for the recently invented and highly promising class of diagonally implicit
multistage integration methods (DIMSIMs) is provided. New results are obtained that provide improved
implementation and simplified analysis. Particular attention is given to issues affecting use on parallel computers in
waveform relaxation. The process of implementation parameter derivation and testing for the second and fifth order
members of the DIMEX family of ordinary differential equation solver computer codes using explicit DIMSIMs is
described . Extensive test results using the standard suite DETEST are reported that show considerable promise. A
listing of the FORTRAN 77 research code DIMEX5 is provided.

14. SUBJECT TERMS

Differential Equations, DIMSIMs, Waveform Relaxation, Parallel Computing,
Numerical Analysis, Mathematical Software

15. NUMBER OF PAGES

136

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

UNCLASSIFIED
SECURITY CLASSIFICATION OF TÜIS PAGE" (When Data altered)

Standard Form 298 Back (Rev. 2-89)
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

NAWCWPNS TP 8340

CONTENTS

Introduction 3

Implementing DIMSIMs 19

Techniques for Obtaining Starting Values For DIMSIMs 42

Developing Explicit DIMSIM ODE Solvers 55

The DIMEX Family of Explicit DIMSIM ODE Solvers 89

References H3

Appendix
DIMEX5 Code 117

NAWCWPNS TP 8340

INTRODUCTION TO DIMSIMS

LITERATURE SURVEY

Diagonally implicit multistage integration methods (DIMSIMs) were first described in a
1992 paper by John Butcher (Reference 1) in which he laid out the essential elements of a
new family of general linear methods. His stated purpose was to overcome the glaring
weaknesses of existing methods, that is, lack of A-stability for high order linear multistep
methods and low stage order and high implementation costs for A-stable implicit Runge-
Kutta methods. These methods are diagonally implicit and hence have computational
complexity properties similar to diagonally implicit Runge-Kutta (DIRK) methods, but
utilize additional parameters generated through the general linear design to overcome the
stage order (and hence stiff order) limitations of DIRK methods. Explicit DIMSIMs are not
technically "diagonally implicit", since the diagonal is actually 0, but have an advantage
over Runge-Kutta methods in that the order barriers for explicit Runge-Kutta methods do
not apply, and p-stage methods of order p do indeed exist for all positive integers p. The
original concept called for stage order q to equal the number of internal stages s, the
number of external stages r, and the order p. In a subsequent paper with Jackiewicz
(Reference 2) the family of DIMSIMs was extended to include adjacent methods for which
s+l=r = q, p = qorq+l,s = r+l = q, p = q or q + 1, and s = r = q, p = q + 1. A
significant step toward practical utilization was taken with another paper by Butcher and
Jackiewicz (Reference 3) that lays out techniques for error estimation, interpolation, and
step-size changing. Jackiewicz, Vermiglio, and Zennaro (Reference 4) devised an
alternative step-size changing strategy and showed how incorporation of an additional
external stage could provide a satisfactory continuous method. In a separate paper
(Reference 5) they also showed that there exist explicit DIMSIMs with regularity properties
not possessed by explicit Runge-Kutta methods. Butcher, Chartier, and Jackiewicz, in an
unpublished manuscript, "Nordsieck representation of DIMSIMs," recently proposed an
alternative representation of DIMSIMs with promise of simplifying analysis and
implementation. Both explicit and implicit DIMSIMs up to the order 8 have now been
found with appropriate stability properties and were announced by Butcher, Jackiewicz,
and Mittelmann (Reference 6), extending techniques described in earlier papers by Butcher
and Jackiewicz (Reference 7 and 8).

BASIC DEFINITIONS AND RELATIONSHIPS

We consider the initial value problem:

^ = f(t,y), y(t0) = yo> te[t0,T\ (l)
at

NAWCWPNS TP 8340

We define matrices A, U, B and V such that A is s x s, V is r x r, U is s x r, and B is r x s.
Let Y be composed of the s internal stages, F be composed of the s stage derivatives

(Fj = f[tn + Cjh, Yj)) and y-n* be composed of the r external stage values. Then if h is the
step size, the solution advances one step through the relationships:

Yi=ht OijFj + t Uijyy **, i = 1,2,...,*
7=1 7=1

y\n] = h X bijFj + X VyyM, / = l,2,...,r (2)
7=1 7=1

n = l,2,...,N, Nh = T-t0

The external stages are defined through Taylor expansion so that if

y\n^ = ia^y^tn-^O^), (3)
7=0

then we must have, for some constants atj,

vJn]=XsW;)(?n) + 0(^+1), (4)
7=0

for a method of order p. Butcher has observed (Reference 9) that the effect then is to
calculate r neighboring trajectories and to use these to determine solution values. The s
values C; are chosen initially and other method parameters are then determined in a way to
produce high stage order, that is, so that:

Y^y^+hc^ + O^1), 1 = 1,2,...,*. (5)

where q is defined to be the stage order.

The description "diagonally implicit" comes from the form of the matrix A, and the
following discussion is true for both DIMSIMs and DIRK methods. If we restrict A to be

NAWCWPNS TP 8340

lower triangular with a constant along the diagonal, the complexity of the solution of the
system of nonlinear equations determining Y in Equation 2 reduces greatly. If A is dense
and a standard gaussian ehmination approach is used in a modified Newton method, the
arithmetic complexity is 0((Ms)3), or 0(M3s3), where s is the number of stages of the
method and M is the dimension of the initial value problem. Simply requiring A to be
lower triangular separates the system of Ms simultaneous nonlinear equations into s
systems of M simultaneous equations to be solved in sequence, each with arithmetic
complexity 0(M3) for total complexity 0(sM3), a reduction by a factor of 0(s2).

The advantage of having a single value along the diagonal may be seen from a closer
examination of the nonlinear system solution process, which typically involves a modified
Newton method. The Newton iteration to solve the nonlinear system g(x) = 0 takes the
form

xn+\=xn-J{xn)
1g{xn), (6)

where J is the Jacobian of g. Of course the inverse of the Jacobian is not actually calculated
and instead a technique such as gaussian elimination is utilized, and the process followed is
to calculate a correction:

j{Xn)5n+\=s{xn\ (7)

= X„ + 5„

An LU or PLU factorization of J(xn) is called for here at each iteration, which is 0(M3),
where M is the size of the system, and this is the most time consuming step. In practice a
new Jacobian is evaluated and a new matrix factorization is carried out only when
convergence seems too slow. In the case of DEVISIMs the equation for Y takes the form

Yj=h^ajkf(tn_1+ckh,Yk) + hajjf(tn_1+cjh,Yj) + y[;-l], (8)

with U=I as is usually the case. Then we are solving an equation of the form gj(Yj)=0,
where gj takes the form:

gj(Yj) = Yj -hajjf(tn^ +cjh,Yj)-hiajkf(tn_l + ckh,Yk)-yM. (9)

NAWCWPNS TP 8340

All the dependency on Yj is contained in the first two terms and so only these terms affect
the calculation of the Jacobian. Now if all diagonal elements a^ are the same the Jacobians
J will vary from stage to stage only with the solution, and new Jacobians and their LU
decompositions will only have to be computed when convergence seems too slow, which
should be relatively rare for small step size h. This can result in substantial savings.

A similar reduction follows from utilization of a nonsingular A (perhaps dense) with a
single eigenvalue, and this has been applied in the implicit Runge-Kutta code STRIDE
developed by Burrage, Butcher, and Chipman (Reference 10). Because of the work
required for linear transformation, this is to be avoided if possible due to the number of
transformations that become necessary. Of course the low stage order of DIRK methods,
which drastically reduces the observed order of the method for stiff equations to second
order, made this alternative approach attractive for use in STRIDE.

The conditions (Equations 2 through 5) may be re-expressed in a convenient form as
follows. Let W be the r x (p + 1) matrix of ay values, and we denote the vector consisting
of the kth column of W as oc^.Let Z be a vector with element X] = zJ_1. Then define w(z) =
WZ. Furthermore we may define ecz as the vector

„cz

S\z

oCll

„csz

(10)

Then the following theorem may be used in determining the coefficients of the method:

Theorem 1: A DUVISIM (Equation 2) has order p and stage order p if and only if

ecz=zAecz + Uw(z) + 0(zp+l),

ezw(z) = zBecz + Vw(z) + o[zp+l\
(11)

Proof: The proof is given by Butcher (Reference 1) and is included here for the sake of
completeness.

The stage order condition gives

NAWCWPNS TP 8340

Yi=y(tn-l+hci) + o(hP+1).

We apply the derivative function f to both sides and find that

/(r„_j + Cih,Yt) = /(/„_! + C^n-l + Cth) + 0(hP+1))

= f(tn-l+cih,y{tn_l+cih)) + 0(hP+1)

= y'(tn..1+cih) + 0(hP+1).

We then may write, using Taylor expansion,

#(*„_!+CM) = f ^yU)('n-i)hi+0(hP+1) Al/-i)<

Since

yY]=iaijy^(tn)h^0{hP+l)

we find through Taylor expansion that

Z f J 1
Vi"j = X X -«,;_>

j=ou=ofc! y
y0)(Vi)^' + ^+1).

We now utilize Equation 2, provide a Taylor expansion for each Yj; and use W to express

eachv'-"-1^ in terms of Äfcv^(f«-i)- Then we can combine coefficients to obtain the two
equations

NAWCWPNS TP 8340

p
2

*=0

p
2

*=0
'2 f «a-i" i*t>Vj-1 - iwtAjrJ%-i) = 0(hp+1)

Now each coefficient (call them dk and dk, respectively for the two equations) of
,*

—y (*n-i) (f°r eacn k) may be set t0 0 since they are all independent of h. Then we

have

P zK

*=o k\

P ~ zk

*=o k\

which leads to two new equations. The first is

2 4
*=o

*£_ P s
2 lkaijC]

k=0j=l

*-l£_
k\

P r
I 2v*/*z =0.

*=0;=1

The first summation may be identified as the first p + 1 terms in the Taylor expansion of
ec'z, leaving a difference that is of order 0(zp+1). Reversing the order of the summations,

r
the third term may be readily identified as - JJUyWj(z). Reversing the order of summation

7=1
for the second term and factoring as appropriate, we have

4 I Jfc-l Z 2 OijZ 2 Cj
*-l 4 %l kzk

2 OijZ 2 cj
j% lJ\% J (*-l)! A l] *fo] k\

NAWCWPNS TP 8340

C "Z
Here the sum over k may be identified as the first p terms in the Taylor expansion of e J ,

leaving a difference that is 0(zp). Then the second term is - YJaijZeC]Z + 0(zp+1 J. Thus
7=1

the first equation is equivalent to:

eCiZ - iza^ - iugwjiz) = o(zp+l),
7=1 7=1

or, in matrix form,

ecz=zAecz + Uw(z) + 0(zp+1).

The second new equation is:

-k n v ~k n r «* P k 1A 7
K P s . . ,-K P r 7*

jfetoÄ /! ' k\ ktojti lJ J k\ k=0jti
lJ Jk k\

We interchange the order of summation and find for the second term similarly as for the

second term above that we have - ^b^ze1* + 0\zp+l). For the third term our expression
7=1

r
is similar to that for the third term in the first equation and we have -'Zvijwj(z). For the

7=1
first term we may observe that it is ezwi(z)+0(zp+1) by looking at e2W;(z) as the product of
the first p+1 terms in the Taylor expansion for ez times the terms in w;(z). If terms of the
same order in z are combined and terms of order in z higher than p are dropped the
expressions may be seen to be identical. Then the second new equation may be rewritten
as

ezwt(z)- ibijzeciz-ivijwj(z) = 0(zp+l),
7=1 y'=l

or in matrix form,

ezw{z)-zBecz-Vecz=0(zp+1).

NAWCWPNS TP 8340

These are equivalent to the second equation in the theorem. On the other hand, these steps
may be reversed to obtain the order and stage order conditions. ■

It turns out that a restriction on the coefficient matrix B provides assurance that order
and stage order conditions are met, according to the following theorem derived by Butcher
(Reference 1). The symbol e will be used throughout this report for the vector of the
appropriate length for the context for which each element is 1.

Theorem 2. Letr = s = p, Ve = e. Then the DMSIM

'A I'

B V

is of order p and stage order q = p if and only if

B=B0-AB,-VB2+VA,

where

fl+c,

B,

B

\lQ
+Ci<j>j{x)dx

t(l+ci)
XiJ

tfa) '
(12)

Jl'^{x)dx

and where

0/(*)= U{x-ck). (13)

Proof: See Butcher (Reference 1).

Note that using this theorem eliminates the elements of B as free parameters when
deriving methods. It also has the following immediate corollary, since for any specified

10

NAWCWPNS TP 8340

vector c and matrices A and V a construction may be completed, leaving stability as the
principal issue in deriving new methods.

Corollary: For each integer p > 1, DMSIMs of order p and stage order q = p exist for
s = r = p, U = I, where s is the number of internal stages and r is the length of the external
stage vector.

In what follows we will restrict ourselves to DMSMs for which s = r = p = q and
U= I.

STABILITY AND CONSISTENCY PROPERTIES OF DIMSIMS

We may note that in order to handle the simple scalar equation y' = 0 we must have the
preconsistency condition Ve = e. The eigenvalues of V detemine the power-boundedness
of the method, required for zero-stability, and these must all have magnitudes not greater
than 1, and those with magnitude equal to one must have one-dimensional Jordan blocks.
A typical design choice is to choose all eigenvalues to be 0 except for the unit eigenvalue
associated with eigenvector e as is the case for Runge-Kutta methods, leaving V of rank 1
and all rows identical.

The standard consistency condition, related to the solution of the equation y* = 1, then
requires that there must exist a consistency vector u such that Be + Vu = e + u (Reference
11). We first note that equating the terms of order zero in z in the Taylor expansion about
z = 0 for the first equation of Equation 11 tells us that a0j = 1, j = l,...,p, so that oc0 = e
(oc0 is the first column of W). It follows that Ve = e and Be + Vo^ = e + o^ where oq is the
second column of W, made up of elements alj; as may be seen by equating zeroth and first
order terms in z (respectively) in the Taylor expansion about z = 0 for the second equation
of Equation 11 and hence cq is a consistency vector for the method.

The stability matrix for a DMSIM is (Reference 1)

M(z) = V + zB(I-zA)-\ (14)

This is easily seen from the method (Equation 2) using the standard test problem y' = A,y,
y(t0) = y0. We solve the first equation in 2 for Y and, noting that F(Y) = XY, we obtain,
setting z = hX,

y = (/-zA)-V""1].

Then we may substitute this expression in the second equation of 2 to obtain

11

NAWCWPNS TP 8340

y W- (zB(I- ■zATl + vy»-i\

Thus the region of absolute stability of a DIMSIM is the region

S = {z:w<= <J(M(Z)) => w < l}.

If S includes the entire open left half plane the method is called A-stable. We also define
the associated stability polynomial

p(co,z) = det(w/ - M(z)).

A method may typically be verified to be A-stable either by using the Schur criterion (see,
for example, Lambert (Reference 13)), or by reducing the stability polynomial to a familiar
form associated with a Runge-Kutta method known to be A-stable.

A FEW SIMPLE EXAMPLES OF DIMSIMS

Butcher divides DIMSIMs into 4 categories, or types, using criteria of explicit or
implicit and suitable or not suitable for parallel evaluation of stages. Note that for a matrix
A that is lower triangular as is required for DIMSIMs, if it is also diagonal (including the
zero matrix) the stage evaluations are completely independent of one another and may be
carried out in parallel. Thus we have the following order 2 examples with c = [0,1], first
developed by Butcher and illustrating his taxonomy (Reference 1):

Type 1 (explicit, serial):

A U

B V

0 0 1 0"

2 0 0 1
5
4

1
4

1
2

1
2

3
4

1
4

1
2

1
2

(15)

This method has by design the same stability function (and region) as a 2-stage explicit
Runge-Kutta methods of order 2. That is, the eigenvalues of M(z) are zero and R(z) where

12

NAWCWPNS TP 8340

the stability function of a Runge-Kutta method of order 2.

Type 2 (implicit, serial):

A Ü

B V

2-V2

2
6 + 2V2

7
73-3W2

28
87-48V2

28

0

2-V2
2

-5 + 4V2

1

0

3-V2

0

 -1 + V2

4 2 2
-45 + 34V2 3-V2 -I + V2

28 2 2 .

(16)

This method was designed to have a stability matrix with eigenvalues zero and R(z), where

R(z) =
<V2-l)

z2(|-V2)-z(2-V2) + l:

the same stability function as a 2-stage Singly-Diagonally Implicit Runge-Kutta (SDIRK)
method of order 2 which is known to be A-stable. Therefore this method (Equation 16) is
then itself A-stable.

Type 3 (explicit, parallel):

"A U

B V

0 0

0 0
3 3

1 0

0 1
_!

4
_2

4

(17)

This method has a stability polynomial

p(vv,z) = w
2-^l + ^w-^(3z + l),

which yields a stability interval along the real axis of [-f ,0j.

13

Type 4 (implicit parallel):

NAWCWPNS TP 8340

A U~

B V

3 -V3
2

0

18- -iW3

22
4

-13V3
4

0

3-V3
2

-12 + 7^3
4

-12 + 9V3

1

0

■2V3
2

-2V3

0

-1 + 2-V3
2

-I + 2V3

(18)

This method has the stability polynomial

p(w,z) = w2 +■
2 - 2VI + (8^/3 - 12)z + (15 - 9S)zz

-2 + (6-2V3)z + (3^3 - 6)?W (-2 + (6 - 2,/3> + (sV3 -6)z2f

2 + (V3-3)z

and is found, using the Schur criterion, to be A-stable.

We may note by examining Equation 2 that for the serial DIMSIM types, the first
internal stage must be calculated before the second stage, etc. For the parallel types, on the
other hand, the calculations of the internal stages are independent of each other and could
conceivably be performed on separate processors of a parallel computer. This is an
example of "parallelism across the method," described by Gear in an early report
(Reference 13) in which this form of parallelism was distinguished from "parallelism
across the system" in which different equations or subsystems might be handled with
different processors. Waveform relaxation (see, for example, Reference 14 and Reference
15) is an example of the use of this latter form of parallelism and it is possible that both
types of parallelism could be combined in solving a single problem. It is evident that the
parallelism across the method indicated here for DEVISIMs would only enable effective use
of a number of processors equal to the number of internal stages while parallelism across
the system could employ many processors in solving a large system. It may also be noted
that the parallel types have fewer parameters and it would men be expected to be more
difficult to find methods with desirable stability properties and other characteristics.

The type 3 methods are interesting in that they do not call for the calculation of internal
stages, the external stages are the same as the internal stages. Also since A = 0, the first
equation of Equation 11 implies that the external stages are the first p + 1 terms of the

Taylor expansions of y at the stage points tn_, + C;h, since ecz = w(z) + 0(zp+1) ■ The
methods then use a Taylor series starting method and time marching is carried out using the
equation

14

NAWCWPNS TP 8340

yW=hBF(yW) + VyW. (19)

For example, with p = 2, Cj = 0, c2 = 1, we find (using methods described in the next
section) that we may also derive the method

A If

B V

0 0 1 0"

0 0 0 1

0 0 0 1
-1 3

I) 1
2 2

(20)

Upon examining the time marching process of Equation 19 for this particular method, we
see that it is equivalent to the the familiar second order Adams-Bashforth method,

yB = yn-i+i(3/B-i-/„-2)-

For Type 3 methods the stage values approximate the solution at the stage points, since
external stages and internal stages are equal here and the stage order condition requires that
the solution be approximated by the internal stages at the stage points. These are each
calculated using an explicit linear multistep method depending on previous values only
from the last interval, with the formula for the ith component skipping the i - 1 last
calculated solution points. A DMSM uses an interpolant then based on solution and
derivative values from the stage points to produce final approximations at arbitrary points.
Nevertheless the Type 3 time marching process can be seen as an example of an explicit
cyclic linear multistep method (Reference 16) when stage points are evenly spaced, and
only a slight modification would seem necessary for irregular spacing. For example, the
ith element of the external stage vector approximates the solution at tn.j + c;h and is given by

Ti
,M

7=1 7=1

and for constant step size and uniform spacing of c from 0 to 1 (c. = (j-l)/(p-l)) and
recognizing that we really have a solution at each of the stage points, this becomes for the
ith stage of the nth step, using the simplified notation yk to the refer to the kth stage,
numbering from the first stage of the first step,

y
p{n-l)+i h ibijf(to + (P(n - 2) + j)h,y^-2^) + tvjy*"- 2)+7

15

NAWCWPNS TP 8340

and this is in the familiar explicit linear multistep class of formulas. Some interesting
features of this family when seen in this form include the use of the same combination of
solution values for each element within a cycle (vTy[n"1]) and the omission of several
previous values and derivatives in the calculation at most of the stage points. Clearly this
solution process can utilize separate parallel CPUs for the p derivative evaluations required
at each step.

APPROXIMATING THE SOLUTION AND THE NORDSIECK VECTOR

Nordsieck techniques are used extensively in the development and implementation of
DIMSIMs. These use a vector of derivatives scaled with the step size and usually also with
a factor of l/(j -1)! where j is the component number of the vector. Here we omit the exra
factor, which can be readily provided through multiplication by a constant diagonal matrix
Q = diag(l/0!, 1/1!, 1/2!, ..., 1/p!), and use the term "Nordsieck vector" to refer to a
closely related vector that frequently appears here. We define the Nordsieck vector of
length p + 1 as

y(xn) =

y{xn)
hy'{xn)

hpy{p\xn)

(21)

Nordsieck (References 17 and 18) described a family of linear multistep methods using the
vector Qy(xn) which provided an especially convenient approach to step-size changes.
Nordsieck noted that solutions of ordinary differential equations could be reduced to
finding interpolation polynomials to use in representing the solution, and his vector
provided a readily scalable representation. These techniques have frequently been
incorporated in implementing linear multistep methods and Butcher and Jackiewicz
(Reference 3) have shown how they may be utilized effectively with DIMSIMs as well.
Trocogna (Reference 19) has since then used this approach in implementing two-step
Runge-Kutta methods (Reference 20).

Two matrices are defined which are used to relate the Nordsieck vector to the internal

and external stages of the method. Let FlF^j be a vector with kth component /(l-p).

Then we can find matrices B and V such that

y(xn) = hBFfiW) + ty[*-1] + 0(hP+l). (22)

16

NAWCWPNS TP 8340

These matrices can be calculated using the following theorem, announced in Butcher
(Reference 1) and proven rigorously in Butcher and Jackiewicz (Reference 3). We first
define z as a vector of length p + 1,

z = (23)

Theorem 3 (Butcher and Jackiewicz, Reference 3): Assume that the method in Equation
2 has order p and stage order q = p or q = p - 1. Then the approximations in Equation 22

are correct to 0\hp+1) if and only if

ezz = zBecz+Vw(z) + 0(zp+1). (24)

Proof: The proof was developed by Butcher and Jackiewicz and is reproduced here for the
sake of completeness. Define a matrix T such that

H t0 tx .]=

1 -1 l H)p

0 1 -1

0 0 0

(-1)
p-\

(p-1)!

Taylor expansions, the stage order and the problem definition in Equation 1 are used to
obtain the relationships

y{xn)
hy'(xn)

hpy{p)(xn)

-|f0,*i,...,fpj

y{xn-\)
hy'ixn-i)

WP)(*n-l)

+ o(hp+1),

and

17

NAWCWPNS TP 8340

MYl)'
hF{Y2)

hF(Yp)

0,e,c,...,-
?■

y{xn-\)
hy'{xn-i) + o(h«+2).

We also use Equation 3 to write

31 [n-i]

Ti
n-l]

y
;»-i]

^[a0,ah...,ap]

y{xn-i)

+ o(/^+1).

We now substitute these equations into Equation 22 to obtain

1=0 i=l (z ~ !J! i=0 \ / \ /

Since q = porq = p-lwe can combine terms to obtain

{VaQ-tQ)y(xn_x)+i

Equating terms of the same power in h we obtain

t0 = Va0,

and

,*-i
U=B-

(*-l)!
+ Vak, k = l,2,...,p.

18

NAWCWPNS TP 8340

Multiplying the kth equation by zk and adding yields

p ~ P c1'1?1'1 ~ P
ltiZ

l=zBZ—^— + VZaiZ
l,

i=0 i=l [i - \)\ i=0

which may be seen to equivalent to Equation 29 upon expansion of the exponentials in
Taylor series. ■

Noting that

yW = Wy(xn) + 0(hp+l)

= WBhF(Y[n]) + WVy[n~1] + 0(hp+l)

= BhF(Y[n]) + Vy[n-l],

and comparing the corresponding terms we obtain the following so-called compatibility
conditions

TO = * (25)
wv = v.

IMPLEMENTING DIMSIMS

IMPLEMENTATION ISSUES

In order for an ODE solution method to be useful, certain capabilities must be provided.
A numerical method will most effectively be applied using adaptive step-size selection
based on an error tolerance. Thus neither too much work is done due to steps that are too
short, nor is required accuracy sacrificed by using steps that are too long. This requires an
ability to change step size, and also the ability to estimate error and suitable step length.
Order changing is also desirable for maximum efficiency, but techniques for accomplishing
this with DIMSIMs have not yet been developed. Furthermore, although typically the ODE
solution is desired at certain output points, often evenly spaced, the ideal combination of
efficiency and accuracy calls for integration steps to be as long as accuracy will allow.
Thus interpolation should be used to obtain output values. Some sort of starting technique
is required for the first step. Finally, for methods for which Cj = 0 and cp = 1, a significant
savings in work is possible by using a new approach that will be described for evaluation
of the first internal stage.

19

NAWCWPNS TP 8340

CHANGING STEP SIZE WITH DIMSIMS

We must introduce some notation to discuss the reseating that becomes necessary to
continue the calculation with a modified step size. We begin by calculating y[1] using Ym

and h, = trt0, and we assume now that y[n"^ has been calculated using Y[n_lland hn.j = tn_, -
tn.2. We now calculate a y[n] corresponding to tn using Y[n] and step size hn = tn - tn.j. We
denote

5fo-i) =

y(tn-i)

Viy('n-l) (26)

~y(?n-i) =

y^n-i)

Ky{p\tn-x\

(27)

We also define the diagonal matrix

D = diag(l,8,S2,...,Sp), (28)

where 8 = Sn=——. Furthermore we distinguish y-n ^and y-n l\ where y-n * is
Vi

rescaled to reflect a next step of hn. This reseating process will be described below. We
desire to have $-n~l* approximate wf(tn-i) in the same way that yB-1J approximates

Wy{tn_x). This leads to the relations

20

NAWCWPNS TP 8340

y[n-1] = w~y(tn-i)+o(h£i),

5M = K-iBF(Y[n~1]) + vy[n~1] + oftfi1). ?[0] = y^,

^fe-i)=^^«-i)=^_1]+^r1)-

This indicates, after using the expression for the Nordsieck vector at tn.15 that we can
rescale by using the formula

yM] = ViWZ)ÄF(y["-1]) + WDVy[n-2]. (29)

We now have a modified numerical process, as follows:

(30)

jW = ^WDBFlY^ + WDvin~l].

We note (Reference 1) that zero-stability for a step-changing solver will then be determined
by the eigenvalues of the matrix WDV. Thus any free parameters in determining B and V
might well be used to ensure good stability for step-size changing. That this is always
possible will now be shown.

Computation of the rescaling matrices is simplified, first of all, with all type 1
DMSIMs with Cj = 0. The equations to be satisfied include Equation 25 (the compatibility
condition), Equation 24 and the condition that step-size changing zero stability be
nonrestrictive, met where the matrix WD V has only the one nonzero eigenvector e with the
associated eigenvalue of 1. We are able to meet both of these conditions for a choice of V
such that the first row is vT and all the other rows are 0, and for a choice of B such that the
first row is the same as the first row of B and the other elements are computed uniquely
from a linear system. We quickly note that for V of this form, DV=V, and WV=V by
the compatibility condition, and V is defined to be equal to evT. This indeed has the one
nonzero eigenvector e with associated eigenvalue of 1. We now examine the condition 24
for the first rows of the two rescaling matrices,

21

NAWCWPNS TP 8340

ez=zB1e
cz + V1w(z) + o(zp+1).

We compare this with the similar condition in Equation 11 for the first rows of B and V,
and noting on the left side the condition Cj = 0, which makes Wj(z) = 1, we obtain

ez=zB1e
cz + V1w(z) + 0(zp+1).

Clearly the first rows satisfy the same conditions, and hence the first rows of B and V can
be taken the same äs the first rows of B and V, respectively. We now consider the
conditions on the remaining rows. If we take the remaining rows of V to be 0, we then

have the conditions for rows of B as follows:

ezzk-1=zBke
cz + 0(zp+1), k = 2,...,p + l.

We have p unknowns in each equation. But if we examine the number of conditions
required to equate polynomial terms of degree 0 through p, we find that there will be no
degree 0 condition, but degrees 1 through p will always appear. Thus we have p linear
equations in p unknowns for each remaining row of B. Also, the matrices for each
equation are the same but the right hand sides will always be different. And so long as the
method is nonconfluent (that is, c,- * cj for i ^ j), there should be no problem in solving
these systems, as may be observed from the formation of the matrix elements from the
Taylor series. This is easily extended for both implicit and explicit DBVISIMs when c2 is
not 0. Taking V as before, we find the situation with B for rows after the first to be
unchanged. The relationship of the equation for the first row to the equation for the first
row of B is modified, however, since Wj(z) is no longer 1. Recognizing that the the zero
degree term in each component of w(z) is 1, we find that the equation

ez-vT w(z) = zB\ecz + 0(zp+1)

has a zero term of degree 0, since the leading 1 in the Taylor expansion of ez is cancelled by
the leading 1 from the term vTe. Thus we again have p equations in p unknowns. Note
that the compatibility condition for B must automatically be satisfied for this form of V
since multiplying Equation 24 by W and setting 8 = 1 produces the same equation that B
must satisfy, the second relation of Equation 11. We summarize these observations in the
following theorem which will be helpful in calculating the rescaling matrices B and V".

22

NAWCWPNS TP 8340

Theorem 4: For nonconfluent DIMSIMs, we have

i) the rescaling matrix V may be chosen to consist of a first row vT and all other rows
equal to 0;

ii) if cpO, the rescaling matrix B will then have a first row that is identical to the first
row of B,

ezzk-l=zBke
cz + 0{zp+l\ k = 2,...,p + l;

iii) if Cj ^ 0, the first row of B must satisfy the linear system

ez-vTw(z) = zBle
cz + o(zp+1);

iv) and for all choices of c1? subsequent rows must each satisfy the linear system
resulting from Taylor expansion of

ezzk-l=zBke
cz + 0{zp+l), k = 2,...,p + l.

We see that the coefficients of B for rows after the first are thus dependent only on the
choice of stage points. It is evident that the higher derivatives of the Nordsieck vector are
obtained in this approach by taking advantage of the high stage order. Applying the
derivative function to the internal stages yields high order approximations to the solution
derivatives at the stage points which yield linear systems for the higher derivatives through
Taylor expansion.

Zero stability is obviously a rather mimimal condition. More careful step-size change
stability requires examination of the stability matrix for this process. This may be written
as

M(S) = zWD(6)B(I - zA)~l + WD(S)V = ZWD(8)B(I - zA)~l + V (31)

for the customary form of V given by theorem 4. But it is not true that eigenvalues of this
matrix will determine the growth of the external stage vector, since it is nonsymmetric and
typically varies with each step, and this becomes a very difficult problem. However,
lacking some better criterion, in a heuristic approach the eigenvalues of this matrix may be
examined by calculating a sort of "pseudo-stability region" to provide some indication of
the effect on stability of step-size changing with a view to aiding the determination for a
solver of the bounds to set on step-size changes. This approach, pursued by Enenkel

23

NAWCWPNS TP 8340

(Reference 21) in his study of related general linear methods, yielded very restrictive
results.

BUTCHER-JACKIEWICZ-TYPE INTERPOLATION

Butcher and Jackiewicz (Reference 3) proposed continuous interpolants of uniform
order p of the form

n(tn-i +ehn) = hnß0(e)F(^)+7o(e)y[n-1]. (32)

Here we define ß0(e) = [ßQMßQ2{e),...,ßQM] ^d yo(0) = [y0i(ö),ro2(ö),-,y0r(ö)],
where the components are polynomials of degree p (or lower if certain coefficients become
set to zero). For a Nordsieck interpolant we may write the interpolant in this form as well,

and with the customary form for V, Yo(0) = v . We further note that in order for
compatibility with the equation for the first component of the Nordsieck vector, ß0(l) and

70(1) must be equal to the first rows of B and V, respectively. This interpolant
compatibility condition will be shown to be incorporated within the order condition
provided in the following theorem derived by Butcher and Jackiewicz (Reference 3) in
which the case q = p - 1, though not of particular interest here, is also included.

Theorem 5 (Butcher and Jackiewicz): If a DIMSIM has order p and stage order q = p or
q = p - 1, then rj approximates y with uniform order p if and only if

zßo{d)ecz+y0(9)w(z) = eez + o(zp+l), 0e(O,l], (33)

and w(z) is as defined above. Moreover, the interpolant r\ is continuous on the whole
interval of integration if and only if

A>(o) = o,
y0(0)WDB = ß0(l), (34)

y0(P)WDV = y0{l).

Proof: Expanding y[n], y(tn), and y'(tn+1+ch) =hF(Y[n])+0(hp+I) in Taylor series about tn.
and assuming that the interpolant approximates y to uniform order p, we may write

24

NAWCWPNS TP 8340

£ ^/6(%-i)=ßo(e) 1 ^hkJ%n_x)+Yo(o) £«AV%-,)+o(hr)+o(ht2),
k%k\nJ vn~l> ™w*=l(*-l): k=0

where we denote the (i-l)th column of W as as. Since, as previously noted, the first
column of W, cc0, is e, and q = p or q = p - 1, we can write

We then generate p + 1 equations by setting coefficients of powers 0 to p of hn to 0:

/U0)^+7o(0K=fr' l-k-p-

We may now multiply each equation by an appropriate power of z and sum, obtaining an
equation equivalent to the result we seek:

P rk~X7k~X P v P Gk

zßo(6)l C—^— + 7o(0) I cckz
k = 1 -.

k=\ {k -1)! k=o k=o kl

These steps are reversible.

For continuity at node point xn we must have i]{xn -) = r]{xn +). The equation

representing this relationship reads:

Mo(i)/(rw)+Um[n-l] = K+Mo)f(^n+1])+n(o)y[n]

= h+M°)f(Y[n+1]) + 7o(0){KWDBf(Y^) + WDiryW).

Comparing coefficients of f(Y[n+1]) we see that ß0(0)=0. Similarly, comparison of

coefficients of f(Y[n])and y1""11 yields y0{0)WDB = ß0(l) and j0(0)WDV = y0(l),

respectively. ■

The following corollary provides simplification of the conditions of this theorem.

25

NAWCWPNS TP 8340

Corollary: If a DIMSIM has order p and stage order q = p or q = p - 1, then rj
approximates y with uniform order p if and only if

zßo(d)ecz + Yo(0)w(z) = e* + o(zp+1), 9 e (0,1], (35)

and w(z) is as defined above. Moreover, the interpolant r] is continuous on the whole
interval of integration if and only if

A>(o) = o,
7o(0)5 = A)(l), (36)

7o(0)V = 7o(l).

Furthermore, if these conditions are met, the interpolant compatibility conditions that /J0(l)

and 70(1) must be equal to the first rows of B and V, respectively, will automatically be
satisfied.

Proof: Looking again at the order condition in Equation 33, we find that because of
continuity, we can now consider the case where 6 is set to 0. Then since /?o(0) = 0, and

e6z = l, we have y0(0)w(z) = 1 ■ Now w(z) = Wz. We can consider the various
polynomial terms separately. Let ex e2, etc., be the unit vectors with Is in the appropriate

position. Then 70(0)^ = 1, and 70(0)^=0 for k > 1. Thus
70(0)WD = [l 0 • • • O] regardless of the value of 8. Thus, from the order condition we

have: r0(0)WDB = ß0 (the first row of B) and y0(0)WDV = Yo (the first row of V).
Note that the interpolation coefficients will never depend on S. Also note this eliminates
the interpolant compatibility conditions as separate criteria; since there is no dependence on
its value we may arbitrarily set 8 = 1, in which case D = I. Then WDB = WIB = WB = B,
and WDV = WIV = WV=V. ■

Deriving an interpolant is then a matter of finding coefficients to satisfy these
relationships. In this report all interpolants of the form in Equation 32 and satisfying the
conditions of Theorem 5 will be termed Butcher-Jackiewicz-type interpolants, while the
interpolants proposed below by the author of this report will be termed Nordsieck or
continuous Nordsieck interpolants.

Although examples of continuous interpolants of maximal order will be derived and
utilized in the Implementing DIMSIMS section, we must note here that a continuous
interpolant of maximal order in this form does not exist for all DIMSBVIs. For example, we
consider the type 2 example of Equation 16, shown again below:

26

NAWCWPNS TP 8340

A U

B V

2-V2

2
6 + 2V2

7
73-3W2

28
87-48V2

28

0

2-V2
2

-5 + 4V2
4

-45 + 34V2

28

1

0

3-V2
2

3-V2

0

-I + V2
2

-I + V2

with c=[0,l]T. For this method the matrices 5 and V were calculated by Butcher
(Reference l)tobe

B =

-26 + 41V2 62-37^2'
28

-48 + 51V2
28

64-33^2

28 28
-2O + I5V2 20-9^2

14 14

and

V =

-I2 + IIV2 26-IIV2'
14 14

-3O + 3V2 30-3^2
14 14

I2 + 3V2 I2 + 3V2

7 7

(Note: A separate calculation using the customary form for V yielded the same result.)

We now apply the compatibility and continuity conditions (with the help of Mathematica)
and show that an interpolant of the form described here cannot satisfy these. We look for
vectors

A>(0) = [A)io + A>n0 + A)i202> A™ + Arno+A^2].

Yoiß) = [y010 + yme + 7oi2Ö2,7o20 + 7o2iö + YonO2]

27

NAWCWPNS TP 8340

We immediately note from the first compatibility condition that ß010 and ß020 must be 0.
We use the compatibility conditions to eliminate ß0J2, ß022, y011, and y021. We then use
the second continuity condition to eliminate y012 and y022. But then the third continuity
condition, y0(0)V=y0(l), becomes equivalent to

1142683156482 -1429914988166^2 -6579484927094450 - 4651660909947086^2'
87418383556 87418383556

= [0 0],

which contradicts the assumption that an interpolant of the given form exists.

A consequence of the fact that interpolants of the given form do not always exist is that
a search for a suitable DMSIM scheme should incorporate conditions for the existence of
an interpolant of this desirable form. The existence of a suitable interpolant is crucial for
the implementation of DMSMs in a waveform relaxation strategy, and for those methods
for which this form does not exist, the Nordsieck form may always be used. A subsequent
report will compare the performances of alternative interpolants for DEV1S1M
implementations for waveform relaxation.

We may readily obtain the following corollary to Theorem 5:

Corollary: If a continuous interpolant of the form of Equation 34 exists, then there exists
a constant vector Yo(0) such that

i) Yo(9)y y» f°r eacri steP °f ^e integration process, where yn is the
approximation to the solution at tn and is also given by the first component of the Nordsieck
vector calculated using Equation 22.

ii) y0(0)W = [l 0 - 0].

iii) Yo(0)B = B1, 7o(0)V =Vl = V1=vT, where the subscript 1 indicates the first

row of the matrix and V = ev .

Proof: i) Setting 0 to 0 in Equation 34 and using continuity at tn., and /?0(0) = 0, we
obtain

ri{t„-i) = 7o(0)j[n_1] = v{tn-2 + Vi) = yi{*„-i) ■

We then note that we may simply adjust the subscript,

ii) See proof of Theorem 5.

28

NAWCWPNS TP 8340

iii) Since the first column of W is e, from ii), Yo(0)e = 1. Then

Y0(0)V = 70(0)ev = v . Now see proof of Theorem 5.

NORDSIECK INTERPOLATION

The availability of the Nordsieck vector provides a ready interpolant. For any DEVISM
we may calculate coefficient matrices B and V using theorem 4, which will then yield
Nordsieck vectors at each grid point. Interpolation can be carried out backward and
extrapolation forward from a grid point using the Taylor expansion polynomial of degree p.
Since the Nordsieck vector components are all locally accurate to 0(hp+1), the global
accuracy of the interpolant is then 0(hp), the same as the accuracy of the method at the grid
points. This is provided for all DMSIMs, including the Type 2 method above for which
the Butcher-Jackiewicz-type interpolant does not exist. (Note that the availability of
extrapolation accurate extrapolation forward is extremely useful in that it provides an
excellent internal stage predictor for implicit methods. This will be developed more
extensively in a report in preparation on implicit DIMSIMs.) If we have calculated an
approximation to the Nordsieck vector at tn as

y(tn) = hnBF(YW) + V^ fat«-1]

we may then carry out Nordsieck interpolatation at tn_x + 61% using the Taylor series
formula at the point tn of the form

l(tn-l+^n) = 1 -1 (-1)'
P}-

D(i-0)y{tn), (37)

where

D(<5):

1 0 0 •• 0

0 6 0 •■ 0

0 0 Ö2 •• 0

0 0 0 •• 8*

and where 1-0 is used because interpolation is carried out to the left of the grid point, at tn-
(l-0)hn. Alternatively interpolation to the right can be carried out. The formula changes

29

NAWCWPNS TP 8340

only slightly, with 0 used instead of 1-0 and the negative signs in the multiplying vector
are eliminated.

This interpolant has two drawbacks. First, since a fresh DIMSIM calculation of the
Nordsieck vector is carried out at each grid point, these will be points of discontinuity.
Secondly, Taylor series decrease in accuracy away from the node point. Both of these
problems can be overcome, or at least mitigated, by increasing the Taylor series degree to
p + 1. The extra component is calculated to exactly remove the discontinuity at the far grid
point and will yield a 0 contribution at the grid point where the Nordsieck vector is
calculated. For example, the interpolant above would be modified to produce a continuous
Nordsieck interpolant by the addition of the term

f

yifc-i)" 1 -1 I
Pi

y(tn) (l-0)p+lhP+l. (38)

Since this term should be quite small due to the higher power of hn, the overall behavior
of the interpolant should not degrade, and in fact tests described below in the chapter,
"Developing Explicit DTMSIM ODE Solvers," indicate that it performs quite well.

DIMSIM ERROR ESTIMATES

An error estimate is intended to approximate the local error in the solution of an initial
value problem. That is, if a DIMSIM has produced a solution at grid point tn.jOf yn.,, then
the DIMSIM solution yn at tn is compared to the exact solution y(tn;tn.i,yn4) of the problem

f/C'WM'» (39)
1 y{tn-i)=yn-i '

and the local error at tn which is to be estimated is defined to be

errn = ?« ~ >fe > fn-\ > 3^-1) ■ (40)

Unlike linear multistep and Runge-Kutta methods, DMSMs do not typically produce
an approximation to the solution at the grid points in the time marching process. The first
component of the Nordsieck vector must be separately computed from the external and
internal stages when an approximation to the solution is desired. Furthermore, the external
stages are neighboring trajectories that are averaged in a special way to produce a solution
and the next internal and external stage vectors. Finally, the Nordsieck vector components
deviate essentially independently as the solution process proceeds. Thus after the first step,
the kth component approximating h^k\tn) does not in fact represent to OCh^1) the scaled

30

NAWCWPNS TP 8340

kth derivative of the solution of the ordinary differential equation y'(t) = f(t,y) passing
through the point y(tn) given by the first component, but rather to 0(hp). Thus error
estimation may be expected to proceed differently from the approach in the older families of
methods. However, the work of estimating local error is still to determine the amount by
which the approximation to the solution at the end of a step deviates from the local solution
of the initial value problem y'(t) = f(t,y) passing through the approximation to the solution
obtained at the end of the previous step. And this has proven to be possible with
DMSMs.

Although error estimates for other cases have been derived (Reference 3), we will
restrict ourselves to the case p = q. The stage order condition requires that if the solution is
sufficiently smooth, we may write

Yt = A'n-l + Cih) + &ip+%n-l)hP+1 + 0(hP+2), (41)

where the middle term on the right is designated the principal part of the error for Yj. We
note here that we are using the function y to refer to the exact local solution described
above. Although theoretical investigation of the effect of the accumulation of global
solution error on the validity of this local stage order condition remains to be carried out,
there is ample experimental evidence to support the conjecture that Equation 41 holds true,
and that global errors do not reduce the order of the leading stage error term. We assume
that this is the case in the following development, which otherwise closely follows the
approach developed by Butcher and Jackiewicz (Reference 3), in which possible stage
order reduction is taken into account.

We note that the following general definition for local discretization error of the external
stages applies to all DEVISIMs. The idea is to identify what is to be called the local
discretization error of the external stages with the term of order hp+1 in the difference
between the exact external stages at tn and the calculated external stages, assuming that an
exact Nordsieck vector is used initially at tn., and that stage and order conditions are met.

Definition: The local discretization error le;(tn) of the ith external stage y)"Jof the
method 1(2.2) at the point tn is given by

Htn)= iocJk\tn)hk -hibikf[tn_l+ckh,YlnA- £ £v^.,vW(rn_1)^,(42)
lc=0 k=l x ' j=lk=0

where

Yln] = hiaijf{tn_l+cjhj}n])+ £ iu^yU^ti, k = l,2,...,s. (43)
j=\ 7=1 i=0

31

NAWCWPNS TP 8340

For the case p = q = r = s, U = I, and assuming that the local condition for stage order
holds, we make these substitutions in Equation 42 to obtain the simplified expression

Htn) = iccikyW{tn)hk - h i v('«-i+cMfn-i+cJh)+Zjy{p+1)hp+l)

j= ■ ^

-I hijajky
ik\tn_l)h

k+, i = l,...,p
j=lk=0

In any case, the vector of values le^tj we designate as the local discretization error of the
external stages.

Theorem 6 (Butcher and Jackiewicz, Reference 3) The local discretization error le(tn) of
the external stages of Equation 2 at the point tn is given by

le(xn) = (ppy^+1\Xn_l)h^+0(h?+2), (45)

where

p k=\ k\ p\

Proof: The proof is given for more general choices of p, q, r, and s in Butcher and
Jackiewicz (Reference 3) and is reproduced here for this restricted case for the sake of
completeness. We may use Taylor expansion to express

y{k\tn) = 1 y{k+%-i)T+o(hP+2~k),k = ox...,P+i.
1=0 <! v

We then substitute this expression into Equation 44 and obtain

k=o i=o t! jf=l

1 UjCXjJ^tn-i^ + leM + O^2).
j=\k=0

32

NAWCWPNS TP 8340

We now expand y'Ct^+Cjh) about tn., to get

p p+i-*,

1 E>,M%.)*'*'=iH^-f^y
k=0 1=0 L- 7=1 k=\ \K '■)■

p p

+ll^Jky
{k](tn.l)hk

+iei(tn)+o(h^).
i=\ k=o

We now reorder the summation on the left side:

i=0 1=0 '•

4=0 /=0 {V ~ K')- 1=1 L-

t=oV/=o L-) '=i l-

Then, interchanging summation orders on the right, we obtain

til^irV^y+£^v('+I)(U*'+I
k=Q\l=0

Ss^w(<,.,)'''+i2:vsv"('.-,)H-fei(v1)+o(A^).
4=1 j=\ {K - ij! *=0 y=l

We now combine terms and rearrange to find that

*=0\^=0 Z! 7=1
it!

+
\J=1 *' ;=1 P- J

33

NAWCWPNS TP 8340

The order conditions ensure that terms of order less than p + 1 in h must vanish, and so we
have the result that

H^)- y«i,p-n-/
L l\

P bijci £_0
M

/=l y- =l P1-
y{p+l\tn-,)h

p+l + o{hP+l).

The connection between errors in the external stages and errors in the solution values is
not immediately obvious. However, the value of v le(xn) takes on a special significance.
Here vT is both the row vector (all identical) of V and the left eigenvector associated with
eigenvalue 1 of V. This will be called the principal part of the local discretization error.
Albrecht (Reference 22) showed that for a broad class of methods, this is the quantity that
should be controlled to maintain accurate integration, and as will be demonstrated in the
Techniques for Obtaining Values for DMSMs section, this choice leads to very
satisfactory results.

The error estimate for fixed step sizes may be found, as demonstrated by Butcher and
Jackiewicz (Reference 3), in the form

VVP+%-IK+1=^MF["
W + rTy[n-D + 0(hP+2), (47)

and for variable step sizes only the minor modifications shown below are needed. The
error estimate is then a linear combination of terms aready computed and thus is essentially
free of computational cost. The ß and y vectors are determined by the method and may be
different for initial steps, constant step sizes, and varying step sizes (involving 8 but
reducing to the constant step size formula for 8=1). They may be computed as follows.

Define a matrix

G = 0,e,c,...,-— (48)

and a matrix

34

NAWCWPNS TP 8340

T -\tQ,ih...,ip+i\-

1 -1 1

0 1 -1

0 0 0

(-1)
p+l

(p+l)\

(-l)p

1

(49)

Then the following theorem applies:

Theorem 7 (Butcher and Jackiewicz, Reference 3): If the fixed step method in Equation 2
has stage order q equal to the order p and V is a rank one matrix such that Ve = e, then
vTle(xn) can be estimated by the formula

vTle(xn) = hßTF(Y^) + y V"_1] + 0(hP+2), (50)

where, for every step after the first, the vectors ß and y satisfy the system of equations

yTe = 0

*T C
i-i

(/-!)!
+ YTBGtt=0, i = l,2,...,p . (51)

tfc
$ +r^BGip+1=vI(Pp.

Proof: The following is based on an earlier proof of Butcher and Jackiewicz (Reference 3)
and is included here for completeness and to indicate where their proof requires that the
step number n be greater than 1.

The first equation of Equation 51 is the equation resulting from terms of O(l) in
Equation 50, since, as we have already noted, the first column of W is e, and so each
component of ytn"1] is y(xn.1) + O(h). Since each column of a rank 1 matrix is proportional
to e and V is chosen to be rank 1, we must then also have yTV = 0. We now use Taylor
expansion, the stage order, and the initial value problem Equation 1 to write

35

NAWCWPNS TP 8340

hF\ /yW) =

y(xn-\)
hy'(xn_x)

^+V'+1)K-i)

+ 0(hP+2)

We may also write

hF\ ■(Y[n-i]\ = G

y(xn-i)

hy'(xn-i)

hp+ly{p+l\xn_2)

+ 0(hP+2),

but we note that this only makes sense for n > 1, that is, for steps after the first. We may
also write the Taylor series relationship

y{xn-l)
hy'(xn_2)

hp+1y{p+%n-2\

= T

y{xn-\)
hy'ixn-i)

hp+xy{p+%n-,\

+ 0(hP+2),

which of course only applies to the first step if the domain of validity of the differential
Equation 1 extends sufficiently far to the left of x0. Finally we use the second equation of
the method Equation 2 to write

y^-^=hBF(Y^ + Vy^-2\

which clearly is meaningless for the first step. We substitute these expressions into
Equation 50, and using yTV = 0 and Theorem 6 we obtain

vTcpphr^+%n_1) = (ßTG + rTBGf)

y{xn-i)

W(xn-l)

*P+V'+1)(*n-l).

+ 0(hp+2). (52)

36

NAWCWPNS TP 8340

But we have

ßTG + yTBGf 0,ßTe + yTBGih...,£-^ + YTBGptp+l

Substituting into Equation 52 and equating terms of the same degree in h, we obtain the
conditions of Equation 51. ■

For the first step, the accuracy of the approximation used in generating the starting
vector y[01 becomes important. Although the minimum requirement is that

^=£a^t)(<b)*'+0(*'+1),
1=0

it is possible to obtain more accurate estimates for the higher derivatives of the solution so
that the accuracy becomes 0(hp+2). The fixed-step error formulas derived by Butcher and
Jackiewicz may then be replaced by formulas of similar form but with different
coefficients.

Theorem 8 (Initial Step Error Estimate): If the solution y(x) to the problem in
Equation 1 is sufficiently smooth and the starting vector is calculated by a method correct
up to OOtf*"2), then the error in y,, the approximation to y(Xj) calculated using the method in
Equation 2 is

lte = y{tl)-yl =
1 P - Cj hßTF{y[l]]j+ry rJ°]) + 0(hP+2), (53)

provided vectors ß and y meet the following conditions:

37

NAWCWPNS TP 8340

\)yTe = 0

2)ßTe + yTa1=0

P ck~l

3) 1 ßj T-^— + yTak = 0, k = 2,...,p (54)

P ßjCf

7=1 Pi

Proof: We wish to calculate the term of (Xh1*1) in the expression y(t,) - yv We use a
Taylor expansion for the true solution about t0 and use the expression for the first
component of the Nordsieck vector in computing yv Then we have

i=0 l-

y^hB^Y^ + V.yM

We use the definition of the starting vector and the stage order condition to write

;=0

^ = v(;0+^) + o(^+1).

Now

F{yM) - f(YP) = f(y(t0 + C.-Ä) + 0{h^)) = f(y(t0 + C.-Ä)) + 0(h^)

hJ

: y (r0 + Cih) + 0(^+1) = f y^fo) Ar + 0(^+1).
7=0 ./•

Then the term in h of order p + 1 in y(t,) - yt is the lte and may be readily found to be

38

NAWCWPNS TP 8340

üe = hr+1yb+l\t0)

(1 P - cf

We wish now to find an estimate

^+Vp+1)('o)=hßTF\f$)+7 V0]+dipr2\

We use the same expressions for F and the external stages. This yields

hP+lip+l) P C:
%)=lßjl-±h

j=i k=o kl
k+1y{k+%)+ £ Yj £ «^('o)*'' + 0(hp+2)-

j=\ i=0

The first relationship comes from considering terms of order 0. The second relationship
results from equating terms of order 1 and noting that if some Cj = 0, the term of order 1 is
produced by multiplying the term of order 0 in the Taylor expansion by h and hence we use
a convention where 1 appears in place of the apparent undefined 0° in the last formula. The
third set of formulas comes from considering orders 2 through p, while the fourth formula
comes from setting the coefficients of terms of order p + 1 on the right to one. ■

We note that we have p + 2 equations in either case to determine 2p variables. For
p = 2 the solution is unique, while for higher orders there are additional free parameters.
These may be used to accomplish other purposes, for example to avoid poles that might
arise in the formula.

Error estimation for variable step implementations have also been developed. We
follow here the Nordsieck approach of Butcher and Jackiewicz (Reference 3) but also note
that an alternative formulation has been developed in a paper by Jackiewicz, Vermiglio and
Zennaro (Reference 23). We define hn as t„-t„.,, and 8 = h„/h„_, and we seek vectors
ß = ß(8) and y = y(8) such that

un-l> ■n-1

/<^li) = KßT(S)F(Y^) + YT(S)~yW + 0(hr2). (55)

It should be noted in the following modification of a theorem by Butcher and Jackiewicz
(Reference 3) that the error formula includes the effect of rescaling and that error estimation
is not carried out by simply using a fixed step formula with a rescaled external stage vector
as is done in interpolation. Also note that variable stepsize does not apply before the
second step. Note that in the following the validity of the local stage order condition is
assumed.

39

NAWCWPNS TP 8340

Theorem 9: Assume that the method in Equation 2 with p = q = r=s, U = I, is
implemented in variable stepsize mode using the Nordsieck technique and that V is rank
one, Ve = e. Then

vTle(tn) = hnß
T(ö)F(YW) + rT{8)~y[n-l] + 0(hT2), (56)

if ß = ß(S) and y = y{8) satisfy the system of equations

l)y1WDV = 0

2)y1 e = 0

3)(ßT-^>T + -%Y*WDB)e = 0 (57)

4)ßT
7^— + -^7TWDBGti^0, i = 2,3,...,p

5)ßT —^ + -±Ty
TWDBG~tp+1 = vT(pp.

For the frequently occurring case where the first row of V is vT and the other rows are 0,
the first condition simplifies to y e = 0, eliminating it as a separate condition.

Proof: We follow the proof of Butcher and Jackiewicz (Reference 3) with some
modifications. We proceed as in the proof of Theorem 6. First, we use the stage order
condition and Equation 48 to obtain through Taylor expansion,

\F{y[n])=

y('»-i)

K+xy{p+%n_x)

+ o{K+2\

K-iF{Y[n- K-l? (tn-l)

hCh{P+%n-2)

+ o{htf\

40

NAWCWPNS TP 8340

Taylor expansion yields the relationship

y(tn-i)

vlyfe-2) = T

y{tn-i)

Viyfe-i) + o(htf),

(1 1 1 \
and rescaling with D = diag 1,—, -y, • • •, -r-^- yields the relationship

V o o oF)

y{tn-i)

Viy('n-l)

CiVp+Vi)

= D

y{tn-i)

K+ly{p+%-i)

Substituting, we then obtain

K-iF(Yin~1]) = QTD

y{tn-i)

Ky'{tn-i)

K+ly{p+l\tn-i\

+ o{K+1\

Furthermore, using the relationship in Equation 22 and the rescaling formula in Equation
29, we obtain

y[n~1] = hn_xWDBF[Y[n-l]) + WDVy[n'2].

We now substitute into Equation 55 to obtain

41

NAWCWPNS TP 8340

v^fV^fe-i) = (ßTG + yTWDBGfD) kJ ^

K*y{p+l\tn_x\

+ yTWDVy[n-2]+0(hP+2).

Since fixed stepsize D and D are identity matrices, we may note that this expression agrees
with the comparable expression derived earlier for fixed stepsizes. However, the term

y WDVy-n~ * requires additional consideration. We note that the first column of G is 0.

Then, examining the terms created in multiplying the Nordsieck vector by ßT(ö)G, we

find that there is no term remaining of order h°. Similarly since D is a diagonal rescaling
matrix and T is lower triangular, there is also no term of order h°. Then, since
~[n-2\ _ ey[tn_^ + (9(/zn_[) we must have yTWDVe = 0. For the case where the first row

of V is vT and the other rows are 0 we have WDVe = e and the zeroth order condition
reduces to the requirement that y (8)e = 0, which also eliminates the entire term since

WDV = WV = V = ev for this case. However, for more general V matrices it has been
convenient to impose the sufficient condition y WDV = 0.

We now use our knowledge of the nature of G in the first term and D in the second to
find that

ßTG + yTWDBGfb = 0 ßTe + irTWDBC(il - ßT — + -^yTWDBGtp+l
Sp+

We note that Gt^ = e. Thus the first order condition simplifies to

(ßT + i yTWDB\e = 0. The other equations of Equation 37 then follow by equating terms

of the same degree. ■

TECHNIQUES FOR OBTAINING STARTING VALUES FOR DIMSIMS

In general it is the derivatives that must be computed to obtain starting values.
Techniques will be illustrated here for methods of second order that may be extended to
methods of higher order. For a second order method only the second derivative becomes a
problem, since the first derivative may be computed using the derivative function f of
Equation 1. The derivative of the derivative function could be computed symbolically

42

NAWCWPNS TP 8340

whenever f is available in a symbolic form, but this will be too complicated for many
functions of interest. Otherwise, an approximation for y" may be calculated, which needs
only to be correct to 1st order to provide satisfactory starting values. Only one additional
solution point is needed, y(x0 + h0), where h0 is some small value (note that the first
DMSIM integration step size is designated h,). The Taylor expansion at x0 then yields a
convenient expression with a first order error:

y(h) = y{t0)+Vfo>)+T/'M+ofa3),

so we have the expression

*'H yo + 0(/*o). (58)

Here we substitute the approximation

yi = y{h) + o(}%),

where y, must be calculated using a second order Runge-Kutta method to provide a second
derivative correct to O(ho). It may be noticed that an approximation for y(t:) is obtained as
part of the starting procedure. However it is the external stages that are needed and they
will be calculated at tj using the DMSM. New function evaluations will be required, even
if the value of c, is 0 and h0 is actually used as the initial step size.

Although adequate starting values are obtained with a first order estimate of the second
derivate, as was shown in Theorem 8, in order to obtain a reliable error estimate for the

first step for a second order DMSIM, it is necessary to obtain an OUIQ) approximation for

y"(tQ). This may be done using a 3rd order Runge-Kutta method and either two calculated
points or one calculated point and a functional evaluation, as follows. Assume we calculate
two points y and y2 from (t0,y0) using a 3rd order (explicit) method. Note that if both are
calculated from the starting point there will be no stability problems, no subsequent steps
are taken with the method. We can express both in terms of Taylor expansions of y(t0+hj)

4 4
and y(x0+h2) to 0(h), since these are the accurate with error 0(h). Let h; = h(/2 and
h2= h0. Then we have:

43

NAWCWPNS TP 8340

^o ,,' _i_ ho ,/'> fy) ,,'", n(h^\

We can eliminate the third derivative term between these two equations and come up with
the following expression for the second derivative:

Jo = f fc - 8* + 7y0 + 3«) + o(/*o2). (59)

Alternatively we can calculate a.Vj at t0+h0, do a function evaluation there to determine its
first derivative y{, and use Taylor expansions to develop a different formula, also correct to
second order:

yi=yo + hoy'o+iy'o+iyo + o(hZ)

yi = y,o + hoyo+lryo + o(4).

Multiplying through the second equation by h0 we have an error term that is 4th order, the
third derivative can again be eliminated and we arrive at the formula:

yö=^(3(* - y0) - h(yi+Wo)) + ^2). (60)

Limited testing seemed to indicate that Equation 59 produced somewhat better results.
However, the second method requires fewer function evaluations. But a great advantage to
either approach is that they yield a convenient estimate for the third derivative, and this may
be used to provide a very accurate a priori error estimate enabling optimal step size
selection. This will be explained in more detail in the next section.

STEP SIZE SELECTION STRATEGY

The adaptive approach employed for each step is to use the error estimation techniques
outlined above to obtain an estimate of the error generated with the step. If the error
exceeds the tolerance the step size is halved, the external stage vector is rescaled using
Equation 29, and the step is repeated. This continues until a result is obtained within
tolerance or the maximum allowable number of attempts is exceeded, which terminates the
integration with an error message. On the other hand, if a step is successful, a new step

44

NAWCWPNS TP 8340

size is calculated for the next step. This is done with the standard formula provided, for
example, by Hairer, Norsett, and Wanner (Reference 18). The optimal step size, hopt, will
produce an error equal to the tolerance. The error is assumed for both the previous step
and the next step to be of the form of the left hand side of Equation 55 with approximately
the same derivative factor. Then we estimate

Kpt = h

\err)

There are some issues that must be considered in changing step size, even after a
computation of optimal step size has been carried out. First, the amount of work that is
necessary to complete an integration is minimized if the longest possible step sizes are
used. On the other hand, failed steps are expensive since all the step calculations, including
rescaling external stages, derivative evaluations, and error estimation must be repeated.
Therefore, since error estimates are simply estimates, a safety factor is always utilized,
usually chosen to be 0.8 or 0.9. Furthermore, large changes in optimal step-size
calculations are an indication of rapid changes in the solution to the system being solved
which lessens the value of error estimates, and so a maximum step-size increase ratio is set.
Finally, error estimates and integration behavior deteriorate with frequent step-size
changes, so it is desirable once a step size has increased to prohibit further increases for a
few steps. There are then three parameters to be determined heuristically that can
significantly affect the performance of a solver, the safety factor, the maximum step-size
increase ratio, and the number of successive steps after a step-size change in which step
size is kept from increasing.

Integration at the right end point may proceed in a few different ways. If the interval
from the last mesh point to the end point is small, extrapolation may be used.
Alternatively, the solver may integrate past the end point using the step length calculated
from the error estimate and interpolate back. Finally, the right end point may be chosen as
the final mesh point for the last integration step. This third alternative is used here because
it is most appropriate for waveform relaxation. Extrapolation does not yield an interpolant
for the final interval, which is the actual required output with waveform relaxation. Also,
in waveform relaxation the derivative function is undefined past the end of the current
window since interpolants for variables associated with other subsystems of the overall
problem have not yet been determined. Thus the third alternative is the technique chosen
for this work.

Choosing a suitable size for the first step has been almost as much of an art as a science
and approaches are typically taken based, to a considerable extent, on heuristics. It is
desirable for accuracy to choose a very small first step and then use the error estimator to
determine step-size changes for subsequent steps. However, too small a first step will
result in too many small steps as the integration progresses while the step size is increasing.
Three different approaches were examined in developing DIMSIM solvers. Shampine and
Gordon (Reference 24) used the following selection for initial step size:

45

NAWCWPNS TP 8340

/
h = imn *»i

V
0.5*tol

/(wo!

\t
(61)

Here the input h0 value is a user-supplied estimate to prevent too large a value from being
used, and tol is the specified tolerance. The choice comes from estimating the error of a
first order method as h times the error of a zero order method, and then calculating a step
size to produce an error of half the tolerance. This step size is then divided by 4 to produce
a conservative value. Their approach is used in a linear multistep solver in which the first
step is of first order, which renders it less suitable for a higher order DIMSIM solver.

A more sophisticated approach suitable for higher order solvers is presented by Hairer,
Norsett and Wanner (Reference 18) and originally developed by Gladwell, Shampine, and
Brankin (Reference 25). The local truncation error is assumed to be of the form

he - Ch?+ly(p+l\t0). (62)

They then recommend the following process. The preliminary value is the step size that
produces an Euler step yielding a solution change of 1%. This is used to then obtain an
estimate for the norm of the second derivative. The larger of the first and second
derivatives is used as an estimate for Cy^1^), and a value of h is chosen to produce an lte
of around 1%. Various threshholds are set to avoid bad choices for more exceptional
cases. In summary, these steps are followed:

r \2

and sc is a vector of 1. Let 4)=|yo|| and 4=||/(f0,y0)\\, where ||z||= £ I
V i=AsciJ

scale factors, here sc—Atolj+lyoilRtolj with Atol and Rtol vectors of absolute and relative
error tolerances.

2. If d0 or dj is less than 10"5, set h0= 10"6, otherwise let h0= 0.01 (d^d,).

3. Let y, = y0+ h0f(t0,y0) and find f(t0+ h,,.^).

4. Let d2=j;\\f(t0+h0,yl)-f(t0,y0)\\.

5. If max(dl,d2) ^ 10~15 then set h\ = max^O-6,/^ • 10~3), otherwise,

h = p+i
0.01

max (4, d2) •

46

NAWCWPNS TP 8340

6. Use starting step size h = min(100h0,hj).

This was the first method that was tried for choosing the initial step size.

An alternative approach with considerable promise has been devised as part of this
research effort. For a 5th order DEVISEM, for example, we would proceed as follows: Any
small step may be used with an explicit 6th order Runge-Kutta integrator to produce 3
values for the solution at t0 + h0, t0 + 2h0, and t0 + 4h0. Using two of the three possible
derivative function evaluations to produce values for the derivative, there are 5 equations in

5 unknowns, producing values for the /*o:/^(fo) for k ranging from 2 to 5 as needed for

the starting vector, plus a value for /zoV^(f0), which may be used with the existing
formula to provide an accurate a priori error estimate for the first step before the DEVISIM is
even applied, using Equation 53. This may be used with the tolerance value to provide a
simple formula for the appropriate step size for the first step. A safety factor of perhaps 2
should be provided based on heuristics from further tests. The starting vector calculated
using h0 would only need rescaling, prior to actual use. This will avoid the usual step size
buildup at the beginning and improve accuracy. Furthermore, one might utilize alternative
error formulas for solvers of different orders, with no additional derivative function
evaluations required, to obtain an optimal order selection for the problem, at least in the
region of the first step.

Some problems encountered with early testing of this approach indicate that it is
important to utilize a suitable h0 value. It should be noted that the most difficult value to
calculate in the Nordsieck vector will be the term of 0(/z£+1) if h0 is small, because it is
calculated as a linear combination of terms that may be near 1. Thus machine precision and
roundoff error may become significant. The problem of machine precision is greatly
simplified when a quadruple precision data type (real* 16) is available. Furthermore, if h0
is too large, the Runge-Kutta integration will not be sufficiently accurate. The estimate for
a suitable value of h0 may be obtained from the heuristic relationship

10 • eps = scfac ■ h£+ ,

where eps is the machine epsilon and scfac is a scale factor reflecting the scaling of the
problem. A reasonable choice of scfac might be 1 or the minimum of y0 and y0' with the
maximum taken if one of the two is very small (an approximation to 0). This assumes that
the (p + l)st derivative is around the same size as scfac. The idea is to choose h0 so that the
smallest and most difficult term to calculate is on the order of ten times the machine epsilon.
If h0 is smaller, roundoff error will create problems, while if h0 is too large the
approximation accuracy will suffer. This process is more extensively illustrated as it is
used for obtaining starting procedures in the Techniques for Obtaining Starting Values for
DEVISIMs section.

47

NAWCWPNS TP 8340

ALTERNATIVE REPRESENTATIONS

The DIMSIM solution equation and the rescaling formula provide relationships among
current external stage vectors, previous external stage vectors, and derivative vectors at
current or previous internal stage points. These enable alternative representations of
formulas for such things as error estimates, intepolants, Nordsieck vectors, and rescaling.
These alternative formulas are mathematically completely equivalent but may have
somewhat different roundoff properties. In some cases significant differences for
waveform relaxation implementations in memory requirements and in message passing
volume for parallel computing will result from the choice of representation, as will be
described below. Alternative representations are also helpful in shortening recursions in
deriving stability regions for predictor-corrector implementations, and this will be used in
the report to follow on implicit DIMSIMs. The following relationships are not exhaustive
but are provided as examples of useful forms.

We again write the second equation of Equation 2, using an alternative expression for
V:

yW=^F(rW) + evV""1]- (63)

We can then write, for nonsingular B, (implicitly assumed in this section wherever B"1

appears)

ÄF(yM) = B'lyW - fi-WV"11- (64)

Alternatively, we may use the rescaling formula in Equation 29 to express

y[n~1] = hn_lWDBF\Y[n-1]) + WDVy[n~2\

We can then apply these as follows:

a. Error Estimates: The fixed step formula has been expressed in Equation 50 as

vTle(tn) = hßTF{Y^) + 7rvfn_1] + 0(hP+2),

and we may produce alternative representations as described in the following.

48

NAWCWPNS TP 8340

Corollary to Theorem 7: If the fixed step method in Equation 2 has stage order q equal
to the order p and V is a rank one matrix such that Ve = e, then vTle(xn) can be estimated by
Equation 50 and either of the formulas

vT le{tn) = hfiFft'l) + hßlF[Y^ + 0{hP+2), (65)

and

vTHtn) = rh[n]+rb[n-1] + o(hp+2), (66)

rp rp

where ß and y are given by the formulas of Equation 51, ßj= ß, ß2 = J B, and Yj and y2

are given by

7i=ßTB-\
(67)

rl = rT-ßTB-levT.

Proof: To obtain Equation 66 we substitute Equation 64 into Equation 50 to obtain

vTle(tn) = ßT(B~lyW - B-Wy^y yTy^ + o(hP+2),

and the result follows immediately. Equation 65 results from substituting Equation 63 for
the previous step into Equation 50 to obtain

vTle(tn) = hßTF(YW) + yT(hBF(YW) + evTyW).

The extra term yTevTy-n 2' is 0 since yTe=0 from Equation 51. ■

We have similar relationships for variable step size. Note that 5 refers to 5n in the
following.

Corollary to Theorem 9: If the variable step method in Equation 30 has stage order q
equal to the order p and V is a rank one matrix such that Ve = e, then vTle(xn) can be
estimated by Equation 56 and any of the formulas

49

NAWCWPNS TP 8340

vTle(tn) = hnß[(Sn)F(W) + K-lßI(Sn^n-l)F(Y[n-1]) + o(hP+2), (68)

and

vrfefe) = rl (%H+rl(¥n~1]+o(hP+2), m

where ß and y are given by the formulas of Equation 57, ßj= ß, ß2 = J (Sn)WD(8n_i)B,

with V in standard form, and y and y2 are given by

rI = ßT(s)B-\
(70)

7T
2=YT(S)-ßT(6)B-W.

Proof: To obtain Equation 69 we substitute Equation 64 into Equation 56 to obtain

vTle(tn) = hßT(8)[B-lyW - evTy^) + r
r(«]M

and the result follows from identification of coefficients. Equation 68 results from
substituting Equation 29 into Equation 56 to obtain

vTle(tn) = KßT{8n)F{Y[n]) + fi^D^-BF^) + WD^»"2]).

Assuming the standard form of V with a first row of vT and all the other rows identically 0,

we may note that WDV = V = evT. This results in the extra term yT(S)evTy-n~2\ but

7 (S)e = 0 from Equation 57. ■

A similar approach can be used for the first step error estimate.

b. Interpolants:

The most payoff from using alternative formulas can be expected here, since
interpolants over some number of steps are stored and passed between parallel processors
as they are used to represent solutions over a window in waveform relaxation. The

50

NAWCWPNS TP 8340

formula derived above requires storing and passing both external stage vectors for each
step within a window and the vectors of derivatives at internal stage points, at each grid
point requiring storage and passing of 2Mp numbers, where M is the number of equations
in a subsystem and p is the order of the DMSM. The requirement for a Nordsieck
interpolant is only M(p +1), but in a representation using only external stage vectors this
number becomes just Mp. We have the following alternative formulations. It should be
noted carefully which external stage vectors are rescaled.

Corollary to Theorem 5: If a DMSIM has order p and stage order q = p or q = p - 1,
then a Butcher-Jackiewicz-type interpolant 77 given by either of two equivalent forms
approximates y with uniform order p and is continuous on the whole interval of integration
if and only if conditions of Equations 35 and 36 are met and the interpolant is given by
Equation 34 or

v{tn-i+eh)=ro,i(e)y[n]+y^{e)^~l\ (7i)

where

7o,i(0) = ßo(ö)B-\
(72)

7o,2(0) = ro(0)-ßo(0)B-1evT.

Proof: This follows from identification of coefficients after direct substitution of Equation
64 into Equation 34 to obtain

i(tn-i +eh) = ßo(e)(B-ly[n] - B-WyW)+rQ{e)y[n~l]- ■

For the Nordsieck vector we have the following.

Corollary to Theorem 3: If the method in Equation 2 satisfies Equation 24, then the
Nordsieck vector y at tn may be approximated to OCh^1) using either the equivalent
formula of Equation 22 or

y{tn) = vJ-nUv£n-l\ (73)

where

51

NAWCWPNS TP 8340

(74)

V2 = V-BB~levT.

Proof: This follows from identification of coefficients after direct substitution of Equation
64 into Equation 22 to obtain

y(tn) = BfB-'yW - BrW^) + V$M

c. Rescaling: Since formulas used above include some rescaled and some unrescaled
external stage vectors, the ability to rescale using only external stage vectors is important.
We note that if we can rescale using Equation 29, we can also rescale using

pH = WDnBB~l y[n~1] +(l- WDnBB~l)evTy[n-2]. (75)

This follows immediately from direct substitution of Equation 64 into Equation 29 to obtain

y^ = K-iWD(6n)B(B-^n^ - B-Win-2~\) + WD(dn)elV
Ty^-2\

where a standard form for V is assumed and I represents the identity matrix of appropriate
dimensionality.

FIRST APPROXIMATELY SAME AS LAST (FASAL) MODE

Runge-Kutta methods for which the first stage of the new step equals the last stage of
the previous step have been know for some time (see, for example, Reference 18), and the
property is called First Same As Last (FSAL). Its primary use is for error estimation, as
for example with Dormand-Prince pairs (Reference 26), where an embedded method of
higher order is created by adding an extra stage with A coefficients identical to the b
coefficients of the first method. The higher order result is actually used to continue the
integration in this case but seven stages are utilized for a 5th order method. No additional
function evaluations are needed for successful steps and the work is the same as though
only 6 stages were used because the final stage is identical to the first stage of the following
step (FSAL) which would have to be evaluated anyway. Because of the high stage order,
all types of DIMSIMs for which Cj = 0 and cp = 1 and the local stage order condition
(Equation 41) is true have a First Approximately Same As Last (FASAL) property, and this
can be used to save at least one internal stage evaluation on every step after the first. As

52

NAWCWPNS TP 8340

discussed above in conjunction with error estimation, theoretical work concerning the effect
of global error on local stage error remains to be done, but experimental evidence for the
validity of this assumption is abundant.

The local stage order condition requires that

where here y denotes the local solution of the ODE through the indicated initial point, while

where y again is a local solution, and hn = hn-1 and tn4 = tn_2 + h^. Note that the order
condition implies that

y{tn-l\tn-l>yn-l) = y{fn-2 + K-\^n-2^n-l) + 0{hn-l\

and thus we have, with h = hn= hn.x,

Y\n] = Yln-l] + 0{hp+l).

Since what is used is the always the derivative multiplied times the step size, and

hf[tn-i,t
] + 0(hP+l)) = hf(tn_hYW) + 0(hP+2),

it is possible to use F\Y^n~^j in place of carrying out the function evaluation for explicit

methods, or even the nonlinear equation solving required in implicit methods, for FIY}"* J.

It should be noted that higher order terms (0(hp+2)) will be changed. In some cases
they will be fortuitously decreased, but in others they will be increased. The smaller the
error constant the greater the impact that these terms will have. But in general the error
estimation, rescaling, and interpolation for the original DUVISIM should be essentially
unchanged.

53

NAWCWPNS TP 8340

But the most significant impact will be on stability. It should be noted that when this
implementation is used, the pth internal stage from the previous step is carried over into the
next step along with the external stage vector, and thus in a sense this becomes a "two-step
DIMSIM." The modified method may be written in standard General Linear Method

A A A. /V

(GLM) notation by producing A, B, U, and V matrices from the A, B, U(= I), and V
from the original DIMSIM, and by enlarging the external stage vector length by 1 to
r = p + 1. This becomes a GLM with p = q=s, r = p+l. The first component of the
external stage vector becomes the pth internal stage that is carried along, while the others
are unchanged. We set A = A except for the first row which becomes 0; this is unchanged
for explicit methods. U is an augmentation of I produced by adding a 0 second column,
and hence is px(p + 1). B is produced by adding to B the last row of A as a new first row
and is (p + l)xp. Finally, V is produced by adding to V a new first row and first column,
with 1 for the last element of the first row and Os elsewhere for these new elements. A
tableau then appears as

0 1 0 0 ••• 0

A2 ooi'-.i
A U ;

• ; •. '•. 0
B V_ Ap

Ap

0 0 ••• 0 1
0 ••• 1

B 0 V

where Ak is used to denote the kth row of matrix A.

The original V becomes the lower right submatrix and the new matrix is (p + 1) x (p +
1). Then we may write for a single ODE,

Y^=hAF[Y^) + Üy^n-l\

(76)

yW=hBF(YW) + Vytn -1]

(It should be noted here that the external stages are redefined, although notation has not
been changed, and that actual implementation will not involve separate evaluations or
function evaluations for the repeated stages.) Then the new stability matrix becomes,
through application to the test problem y' = Xy and setting hX = z,

M = TB[I-ZX)
lu+v. (77)

54

NAWCWPNS TP 8340

This is now (p + 1) x (p + 1) and in general does not produce the same stability region as
the original DIMSIM. Thus if FASAL implementation is desired, a method should be
sought that optimizes the FASAL stability region rather than that of the DIMSIM, and in
general it should not be expected that FASAL implementation for a given DIMSIM should
produce a favorable region. This may be used in various ways, including development of
new methods especially for FASAL implementation, or in variable implementation where
FASAL is used until it runs into stability problems. Typical stability region plots will be
shown below as the use of specific methods are discussed.

DEVELOPING EXPLICIT DIMSIM ODE SOLVERS

Explicit solvers have been developed based on Type 1 DMSIMs derived by Butcher
(Reference 1) and by Butcher and Jackiewicz (References 6,7, and 8). These methods are
designed to have the same desirable stability regions as Runge-Kutta methods but break
Runge-Kutta order barriers at orders above 4 and stage order barriers, thus reducing the
number of function evaluations required per integration step. These DMSIMs are
designed to have a number of stages (the number of function evaluations) equal to the order
of the method, while explicit Runge-Kutta methods require one extra stage for orders 5 and
6, two extra for order 7, and at least three extra for orders 8 and higher. In fact, order 10 is
the highest-order explicitly constructed explicit method found so far, and the fewest stages
required of any 10th order method is 17 according to the current (1993) revision of Hairer,
Norsett, and Wanner (Reference 18). Thus the recent announcement of the discovery of an
8th order Type 1 DIMSIM using 8 stages and with good stability properties by Butcher,
Jackiewicz and Mittelmann (Reference 6) is of great significance.

The development of a solver involves derivation and testing of additional
implementation parameters to provide for rescaling at step-size changes, error estimation,
interpolation, and starting procedure. A solver also requires software design and
implementation. In this case the final codes were written in FORTRAN 77.

IMPLEMENTION PARAMETERS FOR A SECOND ORDER EXPLICIT
DIMSIM

Although second order does not provide sufficient accuracy to be broadly useful, the
simplicity of the small number of parameters enables development and convenient
illustration of techniques applicable to higher orders.

Butcher's second order Type 1 method in Equation 15 was utilized to develop a
DIMSIM variable step-size solver. For convenience the tableau is reproduced here.

A U

B V

0 0 10'

2 0 0 1
5 1 1 1
4 4 2 2
3
4

1
4

1
2

1
2

55

NAWCWPNS TP 8340

and c = [0,1]T. Butcher (Reference 1) also found matrices W, B, and V (see above in
the Introduction to DIMSIMs section for the relevant definitions). These are

W =

B =

V-

1 0 0

[l -1 i

5 1
4 4
0 1 ?

-1 1

i r
2 2
0 0 .

0 0

(78)

The latter two were determined using a free parameter g to obtain desirable step-size
changing zero stability, determined from the eigenvalues of the matrix

WDV =
1 1
2 2

±-ög + d2g ± + 8g-62g

ri 11
2 2
1 1

_2 2j
= v,

for g = 0, which has eigenvalues 0 and 1, independent of 8. Note that standard form is
used for V in this case. The stability polynomial M(z) = 1 + z + z2/2, is the same as
for a two-stage, second-order explicit Runge-Kutta method, and thus this method has the
same well-known stability region, including the interval [-2, 0] along the real axis.

Butcher (Reference 1) also derived estimates for the local truncation error (after the first
step) as

lte =
20

1 + Ö (W(Y2)-W(Yihi(yt1]-y[2-1]l (79)

which reduces for fixed step (5 = 1) to

56

NAWCWPNS TP 8340

lte^hf(Y2)^hf(Yl) + ^-ytl]

For the first step error estimate we apply Theorem 8, Equation 53 and calculate

p ~ c
J _ l

£ &ij „i ~ 24 (p + l)\ ~i LJ p\

The simultaneous equations to satisfy from Equation 54 are

71+72=0

ßi+ß2-72=0

jS2+i72=0

Then ßT = [-6,2], yT = [4,-4], and the first step error estimate becomes

ite^2hf{^)-\hAYM\{y{"]-yf\ (80)

This is exactly one-half of the fixed-step error estimate used for subsequent steps.

The final computation involves the derivation of an interpolant using Theorem 5. We
need to find the 12 coefficients of

/#(*) =
A)io + A)iiö + A)i20

A)20 + 5021Ö + A)22ö .

and

76» =
7oio+7oii0 +7oi20

7020+7021Ö + 7022Ö2

57

NAWCWPNS TP 8340

where 8 e [0,1] is the interpolation parameter. We find immediately from the continuity
condition ß0(0) = 0 that we must have ß010 = ß020 = 0. The other continuity conditions
11(3.3), when combined with the compatibility conditions (see Implementing DEVISIMs
section), yield the equations

7o(o)^=[lroio+Jro2o i7oio-|ro2o]= A>(i)=[f \\

which yields Y0io=l> Yo2o=0> and

ro(o)^=[i(roio+7o2o) i(7oio+7o2o)]= ro(i)=[i i\

which is consistent with the previous result but yields no additional information. The basic
compatibility conditions then tell us that

An i+A)i2

.A)21 + A)22.

7oio+7on+7oi2

7020+7021+7022

or, using the values just calculated, the second vector equation becomes

2
1
2

7oi i+7oi2

7021 +7022.

The order condition now becomes

z[ßou9 + ßon92 ß0120 + ßo22Ö2]eZ +[l + 7onö + 7o2Ö2 7021Ö + 7022Ö2]

ö(4
1-z + ^z2

= e6z+<

58

NAWCWPNS TP 8340

We expand the exponentials about z = 0 and equate coefficients of powers of z. This gives
us the following three equations:

0(1): 1 + /olio + 7oi2#2 + 70210 + 7o220
2 = 1

O(z): A)ii0 + /W2+A)2i0 + A)2202-7o2i0-7o2202 = 0

e2

0(z2): A)2i0 + A)2202+i7o2i0 + i02=T-

This gives us 7 equations for 8 variables, but we clearly must seek to eliminate the
parameter dependence on 0. We use the compatibility conditions to eliminate yon, y021,
ßon, and ß021. Our 0(1) condition then reduces to

-(l-0)7oi2 "(1-0)7022=0,

which is used to eliminate y022 when the condition 0 * 1 is considered. The 0(z) condition
then yields the equation

i -e-2ß022(i-e) -7o22(i-0) = 0.

This similarly enables elimnation of y022. Finally, the 0(z2) condition is applied. It
reduces to

1-0- A»2(i -0)-3A)22(i-0) = O-

We then can eliminate ß012, leaving us with the following one-parameter family of
coefficients:

59

NAWCWPNS TP 8340

7oio = 1.

Toil - 2-2ßo22>

7012=-1 + 2A)2>

7o20=°>

7021 -~2+2A)22'

7022 -1-2P022>

A)io=0.

/^Oll - 4+3^022'

A)12 -1~ 3^022'

A>20=0,

-^021 = 4~A)22'

A)22 = A)22-

We let ß022= 0 to obtain the Butcher-Jackiewicz-type interpolant

1+--02

I 2 J r
i]
+(-f^2)*-i] (81)

Some possible starting procedures were derived above in the chapter Implementing
DMSIMs as an illustration of techniques generally applicable to DIMSBVIs. For our

60

NAWCWPNS TP 8340

explicit second order solver we use an order 3 explicit Runge-Kutta solver to obtain an
approximation yl to y(to+h0) accurate to O(h0

4). Then we have:

y^yo + hyo+ho+ivo + o^),

yi^yo + two+^yo + ofö).

Here y{ = f(t0 +hQ,y1). Eliminating variables we solve these two simultaneous equations
and obtain

y'o=Ti(3{yi -yo)-2y'o- yi)+o{^\
"0

^X^yo-yJ + Zo + yO + Ofo).

Note that the third derivative is not needed for the Nordsieck vector but is useful in
selecting initial step size. Then the Nordsieck vector at ^ is given by

yM
yM

V('o)
yo

6{yi-yo)-4y'0-2y{

+
<&)■

Note that this depends on the step size. Once a correct step size hj is chosen, this vector is
rescaled using the matrix

D =

1 0 0"

0 s 0

0 0 s2\

h where 5 is the ratio —. Multiplication by W then yields the appropriate starting vector.

The error in the first step is given by Theorem 8 to be

61

NAWCWPNS TP 8340

Ite-i
' 2 cV

7=1
4 - I *y ^ /3)(%)^i3 + 0{h}) = i53(2(y0 - *) + ho{y'0 + vf)) + o(h?).

If we set this error to half the tolerance T and use a norm to include the possibility of
systems of equations, we then may write a conservative but hopefully accurate choice for
initial step size to be 8h0, where

S =
2%

M

\\2{yo-yi) + ho{yo+yi
(82)

TESTING IMPLEMENTATION PARAMETERS FOR SECOND ORDER

A test equation first proposed by Prothero and Robinson (Reference 27) was
extensively utilized:

y' = k(y-p{t)) + p'{t), y{t0) = y0. (83)

The exact solution is

y(t) = (y0 - Jp(^o))exp(A(r -10)) + p{t). (84)

It is interesting to note that for y0 = p(t0) the solution is simply p(t). The sine function
was used for p(t) and the interval of interest is t e [0,20]. Typical values for A- were -2 and
-20.

A quantity r is determined for each step, where r is defined as

err

est
(85)

Here err represents the local error as described in Equation 40, that is, the solution of the
initial value problem in Equation 1 beginning at a DIMSIM solution point (tn.,,yn.i) with
exact local solution at tn given by y(tn;tn_i,yn_,), and with calculated solution at tn of yn.
Thus we test how well the estimate approximates the error using Equation 40,

62

NAWCWPNS TP 8340

errn=yn-y(tn;tn_l,yn_l).

It should be noted that it is not appropriate to restart the solution in seeking to obtain the
expression for err. A DMSM changes character after the first step, and this must be
preserved in the testing process. In particular the external stage vector is not recalculated
using a starting procedure, otherwise the separate error estimate for an intial step would be
required. Testing will only then truly reveal the behavior of the error estimator in its use
within a solver.

The results of a test may be indicated both graphically and using a number of statistics.
The quantity est is used to denote the result of the use of the error estimate provided for the
method. A graph showing both err and est together is sometimes very revealing, but it is
also vital to look at the largest error and the solution range. And a table showing the
percentages of error estimates yielding r less than 1%, 5%, 10%, 25%, 50%, and 100%
has proven to be of great value. Of course it is expected that test results will vary greatly
with the tolerance used and also with the problem solved and even with the problem
parameters. Thus any testing of implementation parameters must be considered preliminary
to the much more extensive testing required of a full solver.

Two tests were provided for the quality of error estimates. Test 2 was carried out as
part of the testing of the complete solver on a number of different problems and is
described with results in the Developing Explicit DMSIM ODE Solvers section. Test 1
was first described by Butcher and Jackiewicz (Reference 3). A scheme was devised for
testing the effects of rapid step changes on error estimation accuracy. An initial step size h0

is chosen, along with a ratio p. The cyclic pattern of step sizes h0, ph0, p2h0, ph0, h0, \\J
p, h0/p

2, hy p, h0, ..., is used until the end of the interval of interest is reached. This
should be considered to be a very stringent test, especially for higher values of p, and
serves as an excellent preliminary check. The behavior even with rapid step-size changing
is quite good, as shown in Tables 1 and 2, and Figure 1.

TABLE 1. Error Estimate Test for Second Order, Part 1.

p % r < 0.01 %r < 0.05 %r<0.10 %r < 0. 25 %r < 0.50 %r< 1.0

1.25 0.66 9.27 21.19 49.67 95.36 99.34
1.50 3.29 11.84 23.68 49.34 91.45 99.34
1.75 2.63 6.58 13.16 34.87 78.29 99.34
2.00 0.65 3.92 9.80 25.49 67.32 99.35

63

NAWCWPNS TP 8340

TABLE 2. Error Estimate Test for Second Order, Part 2.

p rmin rmax tf max err max
err/At £

1.25 0.2811 3.2740 20.0402 0.0011 0.0610
1.50 0.0031 6.6206 20.0963 0.0010 0.0584
1.75 0.1719 3.8194 20.0335 0.0010 0.0597
2.00 0.0402 22.0300 20.1128 0.0010 0.0559

xlO r* RHO = 1.25 x10 r+ RHO = 1.5

x10

10 20

■+ RHO = 1.75

-5

' ? x ■<■

} s i \ /
j

\ / I /
;

i>i ■ "Wi W H: I

) 10 20

xlO"4 RH0 = 2

•|; ■ fl ■-&.

0 / I J '\

If ' IJjv

-5
C 10 20

FIGURE 1. Graph of Error Estimate Test for Second Order. Estimate is
dotted line, local error is solid line.

A related test was devised for interpolants. The interpolant was used to calculate the
solution at 10 points evenly spaced across a step. The error at the end of the step was used
to scale the error at the interpolated points. Thus a ratio no greater than 1 in absolute value
would indicate that the error at the interpolated point is no greater than the error at the end
point. Any of the error estimator tests described above might be used to generate the
integration points, but the rapid step-size changing test seemed most directly useful.

Figure 2 shows the behavior of the Butcher-Jackiewicz-type interpolant (Equation 81)
error relative to the behavior of the solver at the grid points. It performs very well with

64

NAWCWPNS TP 8340

only a few of the thousands of interpolated points having an error greater than the error at
the grid points. In fact, much of the time the error at the interpolated points in the middle of
the interval is less than the end point error. Certain grid points seem to lie close to a zero of
the error function, having associated errors as much as 2 to 4 times less than those at other
points, and the interpolated values in the middle of those intervals have significantly less
accuracy than the grid points.

RHO = 1.25 RHO = 1.5

_|. jHHj^iuii. IH^^^M|~|, I^^^L^u^ _ ^.^^Hf^^nJU^Uwuiyf^|H l^^u

10 20

FIGURE 2. Test Results for Order 2 Butcher-Jackiewicz-type Interpolant.

It is interesting to look at the percentage of relative errors falling in various ranges. For
-1500 steps the factors k by which the interpolation errors were greater than the grid point
error were distributed as shown in Table 3.

65

NAWCWPNS TP 8340

TABLE 3. Test Results for Order 2 Butcher-Jackiewicz-Type Interpellant.

p k>10 10>k>5 5>k>2 2>k>l k<=l
1.25 0.0% 0.0% 0.0% 1.8% 98.2%
1.50 0.6% 0.4% 0.1% 0.9% 98.0%
1.75 0.0% 0.1% 0.8% 0.4% 97.7%
2.00 0.3% 0.2% 0.4% 1.5% 97.6%

The Nordsieck interpolant was also tested using the same test problem. Figure 3
shows that this interpolant has errors that are fairly comparable to the grid point errors.
The simple second order Nordsieck vector was used without the third order continuity
correction term.

RHO = 1.25 RHO = 1.5

W iw IP

0 10

IP

2

FIGURE 3. Order 2 Nordsieck Interpolant Test.

For -1500 steps the factors k by which the interpolation errors were greater than the grid
point error were distributed as shown in Table 4.

66

NAWCWPNS TP 8340

TABLE 4. Order 2 Nordsieck Interpolant Test.

p k>10 10>k>5 5>k>2 2>k>l k<=l

1.25 0.0% 0.1% 10.2% 78.3% 11.3%
1.50 0.9% 0.1% 13.1% 74.7% 11.2%
1.75 0.1% 0.5% 15.5% 72.6% 11.2%
2.00 0.4% 0.4% 17.1% 70.6% 11.6%

It is evident that for this method, the interpolant of Butcher-Jackiewicz type (Equation 81)
provides a better representation of the solution than the simple 2nd order Nordsieck
interpolant.

The continuous version was then tried with the graphical results shown in Figure 4.

RHO-1.25 RHO = 1.5

FIGURE 4. Order 2 Continuous Nordsieck Interpolant Test.

67

NAWCWPNS TP 8340

The statistical breakdown obtained by continuous Nordsieck interpolant test is shown in
Table 5.

TABLE 5. Order 2 Continuous Nordsieck Interpolant Test.

p k>10 10>k>5 5>k>2 2>k>l k<=l
1.25 0.0% 0.0% 1.2% 68.1% 30.7%
1.50 0.6% 0.4% 0.5% 67.8% 30.7%
1.75 0.0% 0.2% 1.5% 67.1% 31.2%
2.00 0.3% 0.2% 1.2% 66.7% 31.6%

This interpolant is less accurate here than the Butcher-Jackiewicz-type interpolant (Equation
81), but provides substantially better accuracy than the 2nd order Nordsieck interpolant and
could be readily used if a better alternative did not exist for this case.

The testing of the starting method concerns the accuracy of the starting vector, the
accuracy of the first step error estimate, and the appropriateness of the choice for initial step
size. The Prothero-Robinson test problem is used here with A, = -2, with a starting point at
t0 on the exact solution trajectory through (0, 1).

The following test reveals the accuracy of the error estimate and of the initial step size
selection algorithm. The starting point at t0= 1 is used throughout to avoid the special case
of a 0 third derivative at t0. It is evident that accuracy improves until round-off error
becomes significant. The fact that the error term is O(h) is evident as a tightening of the
tolerance by a factor of 1000 produces changes of a factor of 10 in h.

TABLE 6. Order 2 Starting Procedure Test 1.

Tol h(Nord) Locerr Errest h(H-N-W) Locerr Errest

io-3 1.95x10-' -3.21X10"4 -5.04X10"4 3.09xl0"2 -1.87xl0"6 -1.99xl0"6

IO"6 1.95xlCr2 -4.81xl0"7 -5-OlxlO"7 3.09xl0"3 -1.97xl0'9 -1.99xl0"9

IO"9 1.95xl0"3 -4.98x10-'° -5.00x10-'° 3.09X10"4 -2.02xl012 -2.00xl0"12

IO"12 1.95xl0"4 -5.00x10'13 -5.00xl0-'3 3.09xl0"5 -1.89xl015 -1.97xl015

IO"15 1.95xl0"5 -5.55xl0"16 -5.11xl0-16 3.09xl0"6 -l.llxlO-16 -3.75xl0"'8

Another revealing test uses starting points at 0 through 1, evenly spaced, and with a
fixed tolerance of 10 . We note in Table 7 that the use of the Nordsieck-vector-based error
estimate for the first step provides a much more efficient start than the method described
above in the previous chapter as outlined in Hairer, Norsett and Wanner (Reference 18).

68

NAWCWPNS TP 8340

TABLE 7. Order 2 Starting Procedure Test 2.

tn h(Nord) Locerr Errest h (H-N-W) Locerr Errest

0 LlOxlO"03 -4.99x10"'° -5.00x10-'° 1.36X1004 -9.38xl0"13 -9.39xl0"'3

0.2 1.24X10"03 -4.99x10"'° -5.00xl0-10 1.59xl0'04 -1.07xl0"'2 -1.07xl0"'2

0.4 1.39X10"03 -4.99x10"'° -5.00x10-'° 2.11X10-04 -1.77xl0-'2 -1.78xl0"'2

0.6 1.55X10"03 -4.98X10"10 -5.00x10"10 2.55xl0"04 -2.24xl0"'2 -2.24xl0"12

0.8 1.73X10"03 -4.98x10"'° -5.00x10-'° 3.24X10"04 -3.29xl0"12 -3.29xl0"12

1 1.95xl0"3 -4.98x10"'° -5.00x10"'° 3.09xl0"4 -2.02xl0'12 -2.00xl012

The final test concerns the calculation of the starting vector. Here we are concerned that
the smallest possible safe value for h0 be utilized to produce the maximum accuracy since
no DIMSIM integration step will actually be taken. We estimate that the derivatives will all

be approximately at least the same size as g(t0,y0)=min(||v0||,|/(f0,>'0)||j, but taking the

maximum if the minimum is smaller by a factor of eps, the machine epsilon. We note that

quantities /ZQy (to) will be calculated in terms of linear combinations of functional values
and derivatives multiplied by h0, with the most difficult term to calculate corresponding to
k=p+l, used for the initial step-size selection. We would like to have at least three
significant digits for this derivative, and we expect to have more correct digits for the other
terms. Thus we would like to have g(to,y0)h^+l = 105eps (103 instead of 105 worked well
for order 2 but not for order 5, this is a bit more conservative but more generally useful).

This yields an optimal choice of /ZQ
_2_f

\op+l

V

eps

s(Wo).

p+i

In this case of course, p = 2.

We test this by calculating the relative errors in the second and third derivatives at 5
uniformly spaced starting points between 0 and 1, and also looking at the maximum norm
of the error in the starting external stage vector. Note that for this test problem the
increment was quite appropriate (see Table 8).

TABLE 8. Order 2 Starting Procedure Test 3.

to h0 y'Vo) Rel err rM Rel err
AyM

oo

0 2.81x10"* 4.00 1.06x10-' -9.00 5.02x10- 1.69x10"*
0.2 3.95x10"* 2.48 2.12x10"' -6.34 6.47x10- 4.11 xlO"
0.4 9.97x10- 1.41 1.44x10"° -4.51 1.46x10" 1.01 xlO"
0.6 4.64x10"* 6.40x10" 3.64x10"' -3.23 5.68x10- 2.51 xlO-
0.8 4.23x10* 9.02x10" 8.32x10"' -2.31 3.94x10- 6.77 xl0"'J

1 4.35x10- -3.00x10" 2.78x10-" -1.62 2.45x10- 7.77 xlO'u

69

NAWCWPNS TP 8340

IMPLEMENTATION PARAMETERS FOR A FIFTH ORDER EXPLICIT
DIMSIM

A fifth order type 1 DIMSIM derived by Butcher and Jackiewicz (Reference 8) was
adapted for implementation as an ODE solver. The method was derived using numerical
techniques for solving the large system of nonlinear equation and, to ensure favorable
stability, adding a requirement that the form of the stability polynomial reduce to the
standard 5th order Runge-Kutta stability polynomial. Here again, p = q = r = s = 5, U = I.
The method coefficients are as follows:

H° i i i if.

A =

0

1.1765281703106688

1.9805793463233191

3.0532835108392395

0

0

.4017181027378085

.7349961462028882

0

0

0

.2672357626475791

0 0

0 0

0 0

0 0

1.4193325269467698 2.6534897473125331 -2.2778532945468265 1.1978905088172778 0

V is given by a matrix with 5 identical rows, where each row is vT, and

" -.2406956155386215'

1.2604945758471451

-2.4812693924523267

1.9199070083032958

0.5415634238405073

3.163023914364555736
3.250176692142333514

3.508528033848969459

4.176223954923772036

3.008220785304765914

1.974339246050540681

1.53197813493942957

0.327374204184027625

-2.61827171939311992

2.11453341958770507

-0.81042512005562813

0.097908213277705203

2.239060519232953536

7.03900409877443037

0.3572048837825639

0.540922018802018401

-0.422272425642426043
-2.097452509375452155

-5.2884360132659356

-1.90425330857598604

0.05507865419631683844

-0.4613800716699075171

-0.936868983593822539

-1.691097027371050162

-0.64562655527099952

and was calculated using Theorem 2 and Mathematica.
straightforward using the first relation of Equation 11,

The computation of W is

70

NAWCWPNS TP 8340

W

z
_2

= (I-zA)ecz + 0(z6).

This yields, equating terms of the same degree,

W = c-Ae Ac
2

Cl-A
cl ^-A

C-
6 2 24 6 120" -A 24

or evaluating this numerically,

w =

0 0 0 0 0

-0.926528170310669 0.03125 O.O026O4166666666666 0.0001627604166666666 8.1380208333333310«-6

-1.882297449061128 0.02457047431554788 0.00827964262277682 0.001558025774120291 0.0001950328608825182

-3.305515419689707 -0.0361169178745116 O.01393940O1OO21236 0.005702129564105415 0.001161984318267553

-1.992859488529754 0.07713632883232162 0.03157006827664394 -0.002014862315115681 -0.001959141967572072

This approach was utilized in calculating the rescaling matrices for this 5th order DIMSIM.
The customary form of V is utilized with a first row of vT and the remaining elements 0,
while

'3.163023914364555 1.974339246050541 -0.810425120055628 0.5409220188020184 0.055078654196316831

0 0 0 0 1

1 —& 12 -16

_™ 152 _4I6
3 3

-448 768 -576 160

256 -1024 1536 -1024 256

3

96

21
3

140

3

was computed using Mathematica.

Interpolation may always be carried out using the Nordsieck vector or the continuous
modification of the Nordsieck interpolant as described above in the Implementing
DEVISIMs section. However, the Butcher-Jackiewicz interpolant has some desirable

71

NAWCWPNS TP 8340

features when it exists, and it was also calculated for this method. It is a continuous
interpolant of both order and degree 5, while the simple Nordsieck interpolant is also of
order and degree 5 but not continuous at the grid points, and the continuous Nordsieck
interpolant is of degree 6 but adds the additional oscillation typical of a higher degree
polynomial without increasing the order of accuracy, since the method itself is only of
order 5. The interpolant sought is of the form Equation 34, which in this case is

*,-i + OK) = KßMF[Y[n])+7o(e)9[n-1],

where ß0 and y0 are both column vectors of polynomials of degree 5. We write them in the
form

A> =

"A>io+An»+fee2+Ans*3+Awe4+fee;
A)20 + ßoifl + A)22# +A)23# + A)24# +^025^'

A)3O+A)310 + A)320 +A)330 +^034^ +^035^'

A)40 + ßotoß + A)42# +^043^ + ßou^ +^045^"

.ßoSO + ßoSl» + A)5202 + ßoS3^ + ßm^ + A)550
:

and

7o =

7oio + 7oiiö + 7oi202 + 7oi3#3 + 7oi4^4 + 7oi5#5

7020 + 7021<? + 7022^2 + 7O2303 + 7o24^4 + 7025^

7030 + 7031Ö + 7O3202 + 7033^3 + 7o34^4 + 7035^

7040 + 7041Ö + 7O4202 + 7043^3 + 7o44^4 + 7o45#5

7050 + 70510 + 7052#2 + 7O5303 + 7054^ + 7055^

We use the criterion Equations 35 and 36 to evaluate the unknown coefficients. That
ß0j0= 0 for all j follows immediately from the condition ß0(0) = 0. From Corollary l.ii to
Theorem 5 we find that we must have y0(0) = [l 0 0 0 0]. This reduces the
continuity conditions of Equation 36 and to the following relations:

5
?>ßoij=bij> i = U,...,5

.7=1

and

72

NAWCWPNS TP 8340

X7oi7=v,-, i = l,2 5.
/=0

There are a total of 50 unknowns remaining and 10 linear equations have already been
specified. The order condition in Equation 35 provides additional linear equations. We
have, again,

zß0(e)ecz+roißHz) = eez+0(z6\ 6 e (0,1].

We find the following equations for terms of degree 0 through 5 in z, note that the alphas
are the elements of W and that the first row of W is 0 except for a first element 1.

Degree 0: 70(d)a0 =y0(0)e = l.

Degree 1: ß0(e)e+ ^YQi{0)aiX=d.

Degree 2: I/W^; + lYoii^n = ~T-
z'=2 i=2 l

Degree 3: I ß0i(6)^-+ Ijoii^is = ~7-
j=2 2 ;=2 O

Degree4: £ ß0i(6)^+ {r0i(0)oci4=^-.
j=2 O J=2 24

Degree5: { ß0i(6)^-+ {y0i(d)ai5 =£-.
i=2 24 f=2 12U

Setting terms of the same degree in q in each of these equations to 0 provides 5 equations
for each degree, for a total of 30 additional equations. This means that there are a total of
40 equations to solve with 50 unknowns, leaving 10 free parameters.

The equations were solved using Mathematica using a process of symbolic eh'mination
of variables. The decimal representation of the method parameters resulted in the
appearance of some inexact floating point numbers. When the coefficients or constant
terms were l.Oe -16 or less they were understood to be 0 for the purpose of satisfying the
interpolant defining conditions. It might be desirable to also try solving these equations
with a purely numerical solver. The following interpolant, one of a family of equivalent

73

NAWCWPNS TP 8340

interpolants, was calculated in this way, with free parameters identified during the solution
process set to 0 at the end. It should be noted that an alternative procedure for setting free
parameters would be to use them to rrinimize the interpolant error, yielded by the sixth
degree term in z in the Taylor expansion of Equation 35.

ro(*) =

1 + 6.6257606574898426 - 2.49544672768745802 -1O.5O65833728538603 +10.4441633211653404 - 5.3O858949365249905'

1.2604945758471450

-2.4812693924523270

-2.9781439O48957180 + 4.898O5O913199O1302

-2.4268419359889530 - 2.40260418551155602 + 1O.5O65833728538603 -10.4441633211653404 + 5.3085894936524990s

A(0) =

-14.438897214O71690 + 7.15197332O6O746402 +21.8729345991698403 - 2O.678O835712726804 + 9.255O967799316505

-7.2412112973764320 + 4.5177685O937919802 + 1.O32326O5991517803+3.66545597413259805

6.OO674794O554OO20-6.817173O6O6O96304

-1.6721559444299640 - 3.59438203013115303 + 9.869182843675O404 - 4.0617228503119O605

O.1622576215384850-O.26721155826OO82302+1.6272657376669103-3.1876761861315804+1.72O443O3938258705

Although there seemed to be only 10 free parameters based on the number of equations to
solve, some of the equations proved to be dependent as they became effectively 0 before
they could be utilized in the solution process.

The error coefficient is a point of comparison among competing methods as the
coefficient of the leading discretization error term, for these DIMSIMs always multiplying a

term of the form y(p+l'(tn)h%+1. We note, first of all, that the error coefficient of any

DEVISIM is given by

T T v> =v
p+ia

Kk=i

p+l-k Bcp

from Theorem 6. For this method we find that

<Pv =

"0.000055186676403623959'

0.000135380090032096182

0.00045011570559905138

0.00141313551999348304

-0.0006734285188458039

74

NAWCWPNS TP 8340

and so the error coefficient of the method becomes v cpP = 1.38889e-3. However,
interestingly enough, for the first step the comparable number obtained using Theorem 8 is
5.518667640362375e-05.

Error estimation parameters were also calculated. The initial error is estimated using
vectors ß and y where

ß =

' 0.1812875545254936 "

0.3105254335256836

-0.3258295105315199

0.1138267699195702

-0.01051030018603054

and

-0.1351324309632461'

0

0

0

0.1351324309632461

These are calculated using the conditions of Theorem 8, which yield 7 linear equations for
the 10 parameters. These were solved using Mathematica, and y2, y3, and y4 were free
parameters that were arbitrarily set to 0 to produce a simple form minimizing the number of
operations required per step.

Subsequent steps utilize different vectors ß and y where these are determined using
Theorem 9. Upon examination, the first condition of Equation 57 reduces in the case to the
second and so there are again 7 linear equations in 10 unknowns, solved using
Mathematica. For this method ß and y were derived to be

ß = k

-126.7321008977760"

-9.065592286799085

9.939847085378934

-1.234330257611486

0

75

NAWCWPNS TP 8340

and

y = k

" 67.38322836913306

0

-65.05966877019942

0

-2.323559598933673

where

k =
1 +5.7377413289581355+ 7.613785314977576S2 +2.9291724733967865s +.05312848737725841<54 '

Observe that k has four poles, at 6 = -52.4401, 6 = -1.44533, 8 = -1, and 5= -0.248337,
and these negative poles are not a problem since 8 must be positive in any ODE solver.

However, it should be noted that there was a choice here of free parameters, which
were all arbitrarily set to 0 at the end of the calculation. These were ß5, y2 and y4. Other
choices of free parameters were tried first and actually yielded poles for small positive 8.
In particular, a choice of ß5, y3 and y4 yielded a pole at 8 = 0.93028; a choice of ßs, y2

and y3 yielded a pole at 8 = 0.0752006; and a choice of y2, y3 and y4 yielded a pole at
8 = 0.568585. Use of free parameters to enforce the condition ßTe=0 also resulted in a
small positive pole and so this condition was not enforced. Testing showed that so long as
the pole was avoided, similar results were obtained for all choices of free parameters.
Clearly it is undesirable for a pole to appear in the error estimation expression in the
neighborhood of likely choices for successive step size ratios, and it is evident that these
poles are unfortunate artifacts that do not reflect the actual errors produced through step-
size changes. This problem was earlier observed by Jackiewicz and Zennaro (Reference
28) and by Bellen, Jackiewicz and Zennaro (Reference 29) in the context of two-step
Runge-Kutta methods. The success here in using the parameter freedom to move these
poles to the negative real axis is an encouraging result that may have direct relevance to
other ODE methods.

For our explicit fifth order solver, we need a total of 5 equations to obtain for our 5
unknowns the derivatives 2 through 6. We use an order 6 explicit Runge-Kutta solver to
obtain an approximation y, to y(t0+h0) accurate to O(h0

7). Then we have:

yi -yo+VO+T^O+T^O+^O +12Ö% +720^0 +u\no)

V - v' + h v" + & v'"+ & v(4) + *L v(5) j4_ v(6) n(f6 \ y\ - Jo + ^O + 3^0 + — % +24^0 +120^0 +U[n0h

16

NAWCWPNS TP 8340

Here y{ = f{t0 +hQ,yl). Similarly we obtain two more equations by computing an
approximation y2 to y(t0+h(/2) accurate to O(h0

7). This yields

y2-y0+T^0+ X% + 48 yo+myo + 3840% + 46080% + Gy20J

v2 ~%+T%+X% + 48% + 384% + 3840% + °yz0j-

Note that the 6th derivative term must be included to obtain sufficient accuracy, even if an a
priori error estimate is not sought. This means that one more equation must be used, and
this may come from computing an approximation y4 to y(t0+h(/4) accurate to O(h0

7). This
final equation is

^4-%+—% +32%+ 384%+ 6144% +122880% +2949120% +u{n0j-

Eliminating variables we solve these five simultaneous equations and obtain

y'o = 7^2-(-567y0 - 25^ - 432v2 + 1024y4 + ^(-90^ + 3y[+ 12y'2)) + o(h%),
9«o

yo"= 4"(1836% +1483^ + 2112v2 - 4096y4 + hQ(222y,
0 - 18y{ - 384y2)) + 0\

y{0]= ^(-1323y0 - 169j! - 1836y2 + 3328y4 + ^(-144^ + 21yf + 378y2)) + o($)
3«o

>o5) = ^x(378v0 + 70v2 + 576y2 - 1024y4 + h0{39y'0 - 9y{ - 132y2)) + 0\

y(6) = 1^0 (_9oyo _ 22yi - 144y2 + 256y4 + *b(-9>6 + U + 36y2)) + Ofo>).

The error in the first step is given by Theorem 8, with h1 the first DMSIM step size, to be

77

NAWCWPNS TP 8340

lte\ = ,,
' 6! -L " 5! s-i^H>)+0K)

= (7.063894579663840e - 2)S6(-90y0 -22yY - I44y2 + 256y4 + Ao(-9y6 + 3y{ + 36)4))

If we set this error to half the tolerance % and use a norm to include the possibility of
systems of equations, we then may write a conservative but hopefully accurate choice for
initial step size to be 8h0, where

2(7.063894579663840<? - 02)|-90y0 - 22^ - I44y2 + 256y4 + hQ(-9y'0 + 3y{ + 36y'2

TESTING IMPLEMENTATION PARAMETERS FOR FIFTH ORDER

a. Variable Step Error Estimate

The error estimate was tested in the same way for fifth order as for second order. For
the same time steps the following results were obtained in Figure 5.

\l

78

NAWCWPNS TP 8340

X10 r
8 RHO = 1.25 X10 ■

8 RHO = 1.5

X10 r
5 RHO = 2

Error Estimate
Local Error

FIGURE 5. Order 5 Error Estimation Test.

The statistics obtained during the fifth order error stimation test are contained in Tables 9
and 10.

TABLE 9. Order 5 Error Estimation Test Part 1.

p % r<.01 %r<.05 %r<.10 %r<.25 %r<.50 %r<1.0

1.25 0.66 3.31 6.62 17.88 52.32 88.08
1.50 1.32 8.55 15.13 29.61 54.61 94.08
1.75 0.66 3.95 8.55 16.45 38.16 90.79
2.00 0.00 0.65 5.88 11.11 25.49 77.77

79

NAWCWPNS TP 8340

TABLE 10. Order 5 Error Estimation Test Part 2.

p rmin rmax tf Max err Max err/At5

1.25 2.74e-2 16.85 20.0402 1.54e-8 3.78e-4
1.50 2.99e-2 96.67 20.0963 1.59e-8 4.02e-4
1.75 1.76e-2 12.96 20.0335 1.50e-8 3.67e-4
2.00 5.84e-2 26.48 20.1128 3.21e-5 7.80e-l

The error here is significantly less than what appeared with order 2, but the problem for
p = 2 with larger errors and change in solution order is troubling. A separate test was run
with smaller step size, a difference of a factor of two. The results can be seen in Figure 6,
and Tables 11 and 12.

x10-i° RHO = 1.25 x10-io RHO-1.5

Error Estimate
Local Error

FIGURE 6. Order 5 Error Estimation Test, Smaller Step Size.

80

NAWCWPNS TP 8340

TABLE 11. Order 5 Error Test, Smaller Step Size, Part 1.

p % r<.01 %r<.05 %r<10 %r<.25 %r<.50 %r<1.0

1.25 0.66 4.98 9.97 27.24 61.46 80.73

1.50 1.65 9.27 15.56 29.14 58.28 90.07

1.75 0.33 4.30 7.28 18.87 40.40 92.72

2.00 0.66 2.97 5.61 13.20 33.66 74.59

TABLE 12. Order 5 Error Test, Smaller Step Size, Part 2.

p rmin rmax tf Max err Max err/At5

1.25 6.55e-4 490.6 20.0200 4.96e-10 3.83e-4

1.50 2.83e-2 73.26 20.0483 5.10&-10 3.99e-4

1.75 1.31e-2 41.03 20.0165 4.88e-10 3.76e-4

2.00 7.15e-3 35.51 20.0556 5.11e-10 3.92e-4

We can see that in this case the results are consistent for all p.

b. Interpolants

Interpolation testing was similar to the procedures used for the second order
method, but with more points and over a shorter interval. The results for the Butcher-
Jackiewicz interpolant are seen in Figure 7.

81

NAWCWPNS TP 8340

RHO = 1.25 RHO = 1.5

RHO = 1.75 RHO = 2

FIGURE 7. Test Results for Order 5 Butcher-Jackiewicz-Type Interpolant.

The statistics obtained during the fifth order interpolant test are contained in Table 13.

TABLE 13. Order 5 Butcher-Jackiewicz Interpolant Test.

p k>10 10>k>5 5>k>2 2>k> 1 k<=l
1.25 0.0% 0.0% 0.4% 8.8% 90.8%
1.50 0.2% 0.2% 3.5% 20.9% 75.1%
1.75 2.4% 2.0% 7.5% 28.1% 59.9%
2.00 1.2% 0.8% 6.5% 32.6% 58.8%

Evidently some significant degradation occurs at this higher order with increasingly rapid
step changing. A similar phenomenon was also observed in a study of related general linear
methods by Enenkel and Jackson (Reference 30) and Enenkel (Reference 21). It should be
again noted that no error minimization was carried out using the free parameters.

82

NAWCWPNS TP 8340

The simple fifth order Nordsieck interpolant yielded the following in Figure 8.

RHO = 1.25 RHO = 1.5

-5

I —J

0 5 10

RHO = 2

FIGURE 8. Order 5 Nordsieck Interpolant.

The statistics obtained during the fifth order Nordsieck Interpolant test are contained in
Table 14.

TABLE 14. Order 5 Nordsieck Interpolant.

p k>10 10>k>5 5>k>2 2>k>l k<=l

1.25 0.0% 0.0% 0.0% 88.5% 11.5%
1.50 0.0% 0.0% 0.0% 86.5% 13.5%
1.75 0.0% 0.0% 0.1% 84.5% 15.4%
2.00 0.0% 0.0% 0.0% 85.5% 14.5%

This is clearly highly accurate for this range of step sizes.

83

NAWCWPNS TP 8340

The continuous Nordsieck interpolant displayed even greater accuracy in Figure 9.

RHO = 1.25 RHO = 1.5

RHO = 1.75

FIGURE 9. Order 5 Continuous Nordsieck Interpolant.

The statistics obtained during the fifth order continuous Nordsieck interpolant test are
included in Table 15.

TABLE 15. Order 5 Continuous Nordsieck Interpolant.

p k>10 10>k>5 5>k>2 2>k>l k<=l
1.25 _j 0.0% 0.0% 0.0% 1.1% 98.9%
1.50 0.0% 0.0% 0.0% 1.3% 98.7%
1.75 0.0% 0.0% 0.0% 1.4% 98.6%
2.00 0.0% 0.0% 0.0% 1.3% 98.7%

84

NAWCWPNS TP 8340

This must be considered highly desirable, perhaps with more accuracy than is typically
needed.

It then became of interest to test the results for the larger step sizes used for 2nd order.
The results for the Butcher-Jackiewicz interpolant were as follows in Figure 10.

RHO = 1.25 RHO = 1.5

FIGURE 10. Order 5 Butcher-Jackiewicz Interpolant Test, Longer Step Size.

The statistics obtained during the fifth order Butcher-Jackiewicz interpolant test are
contained in Table 16.

TABLE 16. Order 5 Butcher-Jackiewicz Interpolant Test, Longer Step Size.

p k>10 10>k>5 5>k>2 2>k>l k<=l

1.25 3.9% 3.4% 13.4% 26.4% 52.9%
1.50 3.4% 3.8% 13.9% 33.9% 45.1%
1.75 3.6% 3.4% 6.8% 24.7% 61.5%
2.00 2.5% 2.5% 4.5% 21.9% 68.6%

85

NAWCWPNS TP 8340

For the fifth order Nordsieck interpolant the results are shown in Figure 11.

RHO = 1.25 RHO = 1.5

FIGURE 11. Nordsieck Interpolant Test, Longer Step Size.

The statistics obtained during the Nordsieck interpolant test are contained in Table 17.

TABLE 17. Nordsieck Interpolant Test, Longer Step Size...

p k>10 10>k>5 5>k>2 2>k> 1 k<=l
1.25 0.0% 0.0% 0.5% 80.7% 18.8%
1.50 0.0% 0.0% 0.3% 83.0% 16.7%
1.75 0.0% 0.0% 0.3% 86.8% 12.9%
2.00 0.0% 0.0% 0.0% 88.8% 11.2%

For the continuous Nordsieck interpolant we have Figure 12 and Table 18.

86

NAWCWPNS TP 8340

RHO-1.25 RHO = 1.5

FIGUPvE 12. Order 5 Continuous Nordsieck Interpolant Test, Longer Step Size.

TABLE 18. Order 5 Continuous Nordsieck Interpolant Test, Longer Step Size.

p f > 10 10>f>5 5>f>2 2>f> 1 f<=l
1.25 0.5% 0.1% 0.0% 25.8% 73.6%
1.50 0.5% 0.1% 0.3% 26.7% 72.4%
1.75 0.0% 0.0% 0.0% 26.5% 73.5%
2.00 0.0% 0.0% 0.0% 26.3% 73.7%

Both Nordsieck interpolants seem to be highly acceptable, with the simple Nordsieck
interpolant producing fewer large errors with k > 5, while the continuous Nordsieck
interpolant otherwise generating higher accuracy. The continuous Nordsieck interpolant
seems to consistently produce k < 1, while the simple Nordsieck interpolant produces
many values of k slightly greater than 1.

87

NAWCWPNS TP 8340

The starting procedure testing was similar to that used for the second order method.
The selection of h0 proved to be a bit delicate and, as alluded to above, the formula

gh$ -105eps proved to be necessary to provide a suitable value. If the eps factor was
reduced by a factor of 10 the step was too small to prevent serious round-off errors from
occuring, while if the factor was increased by 10 there was a loss of local truncation
accuracy. This is not because of the breakdown in the assumption that the derivatives are
of the same size as the initial value and the corresponding derivative. In fact in this test 6th
derivatives grew to be as large as 64 while first derivatives and functional values were
around 0.3 to 1, but this would tend to reduce rather than increase the size of h0. A better
answer is that the amount of cancellation in the calculation of the Nordsieck vector
components requires that more digits exist in the answer.

The testing of the starting method concerns the accuracy of the starting vector, the
accuracy of the first step error estimate, and the appropriateness of the choice for initial step
size. The Prothero-Robinson test problem is again used here with A, = -2, with a starting
point at to on the exact solution trajectory through (0,1).

The following test (Table 19) reveals the accuracy of the error estimate and of the initial
step size selection algorithm. The starting point at t0 = 1 is used here throughout. It is
evident that accuracy improves until round-off error becomes significant.

TABLE 19. Order 5 Starting Procedure Test 1.

to h(Nord) Locerr Errest h(H-N-W) Locerr Errest

io-3 1.03 -5.22xl0"5 6.81x10-" 1.76x10"' 8.05xl0"9 1.34xl0"8

IO"6 3.26x10"' 2.12xl0"7 5.77xl0"7 5.55xl0"2 1.09x10" 1.26x10-"
IO"9 1.03x10-' 3.96x10-'° 5.32x10-'° 1.76xl0"2 1.90xl0"14 1.12xl0-'4

IO"12 3.26xl0"2 5.09x10-" 5.00xl0'3 5.55xl0'3 5.55xl0"16 -2.39X10'17

IO"15 1.03xl0-2 1.89xl015 3.26xl0"16 1.76xl0"3 5.55xl0"16 -3.33xl0"'8

Another revealing test uses starting points at 0 through 1, evenly spaced, and with a
fixed tolerance of 10 . At this tolerance and at this order the error estimate is not quite as
accurate. We note again that the use of the Nordsieck-vector-based error estimate for the
first step provides a much more efficient start than the method outlined in Hairer, Norsett
and Wanner (Table 20).

TABLE 20. Order 5 Starting Procedure Test 2.

to h(Nord) Locerr Errest h(H-N-W) Locerr Errest

0 7.22x10"2 4.23x10-'° 5.16x10"'° 1.17xl0"2 8.77xl0-'5 8.71xl0-'5

0.2 7.75xl0"2 4.29x10"'° 5.26x10-'° 1.26xl0"2 1.39xl0-14 9.59xl015

0.4 8.32xl0"2 4.16x10-'° 5.28x10-'° 1.45xl0"2 1.20xl0-'4 1.48xl0-'4

0.6 8.91xl0"2 4.12x10"'° 5.31x10-'° 1.60xl0"2 1.65xl0"14 1.71xl0-'4

0.8 9.54xl0"2 4.14x10-'° 5.28x10-'° 1.80xl0"2 2.93xl014 2.36xl0"14

1 1.03x10"' 3.97x10"'° 5.32x10-'° 1.76xl0"2 1.90xl014 1.12xl0"12

88

NAWCWPNS TP 8340

The final test concerns the calculation of the starting vector. Here we are concerned that
the smallest possible safe value for h0 be utilized to produce the maximum accuracy since
no DIMSIM integration step will actually be taken until this is rescaled. As indicated

f \pk
above, we use a choice of hq = 10p+1 eps

8(*o,yo)
with p = 5. We test this by calculating

the relative errors in the fifth and sixth derivatives (noting that higher derivatives are
computed less accurately) at 5 uniformly spaced starting points between 0 and 1. The error
in the starting vector is also calculated (Table 21).

TABLE 21. Order 5 Starting Procedure Test 3.

to h0 ><5)(<o)
Relerr y{6)M Relerr AyW

oo

0 1.68x10" -3.10x10' 1.13x10° 6.40x10' 2.75x10° 4.51x10°
0.2 1.99x10" 2.05 xlO1 1.47xl0"4 4.27 xlO1 2.29x10" 1.72 xlO'4

0.4 3.16x10" -1.35 xlO1 6.31x10" 2.84 xlO1 3.81x10" 4.48 xlO'"
0.6 2.15x10" -8.81 3.74xl0"4 1.87 xlO' 3.44x10" 1.76 xlO"'4

0.8 2.06x10" -5.76 2.59x10° 1.22x10' 1.61x10" 1.48 xlO"4

1 2.09x10" -3.79 6.64x10-4 7.82 3.86x10" 2.48 xlO"14

THE DIMEX FAMILY OF EXPLICIT DIMSIM ODE SOLVERS

DESCRIPTION AND USE OF DIMEX FAMILY OF SOLVERS

The second order type 1 DIMSIM explicit variable step-size ordinary differential
equation-initial value problem solvers DIMEXx are written as a collection of double
precision FORTRAN 77 subroutines called by a driver dimxl that provides the interface to
the user's calling program. Here x denotes the method order. These are research codes,
designed primarily for use in waveform relaxation in a form that should make them suitable
for extension to higher orders, as well as for use in solving standard ODE initial value
problems. A number of elements remain to be determined in developing mature production
codes, and optimization for speed and memory usage have not been performed. The codes
use the Type 1 schemes along with the coefficients described in the previous chapter.
Advantage is taken of the FASAL property referred to in the Implementing DIMSEVIs
section whenever use of the same step size is continued for another step for both order 2
and order 5, and for all steps after the first for second order. In this section we discuss
other significant elements of the software design and use. The complete code for DIMEX5
appears in the appendix.

89

NAWCWPNS TP 8340

a. Calling the Solvers

The user must issue the command (x is the order number, currently 2 or 5)
calldimxl(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,

1 NCalls,NMisses,Diag,ErrEst,Work)
Parameter definitions:
X0: (real*8) Initial value of independent variable at start of integration, input
Y0: (real*8 array) Initial value of solution at start of integration, dimensioned

NEqn, input
X: (real*8) Desired output point if Diag is .false., otherwise set to same as XF,

input
Y: (real*8) Computed solution at X if Diag is .false., otherwise at XOut, output

only
F: (subroutine) Provides derivative function f for ODE y'=f(x,y). Subroutine must

be defined with parameters F(X,Y,YP,NEqn), where YP is the derivative at
(X,Y) and NEqn is as defined below. F must be declared external in the
calling program.

NEqn: (integer) Number of equations in ODE system, input
XF: (real*8) Intended termination point for integration process, input
H: (real* 8) Step size used. Output only, not to be defined or changed by the user
ATol: (real*8) Absolute tolerance for local truncation error, used in controlling

integration according to formula described below, input
RTol: (real*8) Relative tolerance for local truncation error, used in controlling

integration according to formula ErrEst<ATol+RTol* WYj^, input
Starting: (logical) Initially set to .true., thereafter not to be changed by the user
XOut:: (real*8) End point of last integration step performed, output only, not to be

changed by the user
NCalls: (integer) Number of function calls since beginning of integration. Output

only, not to be changed by the user.
NMisses: (integer) Number of tolerance misses since beginning of integration.

Output only, not to be changed by the user.
Diag: (logical) Set to true if only one integration step at a time is desired, which is

the preferred mode for study of integrator behavior, and false if it is desired
to integrate until interpolated output at X may be obtained

ErrEst: (real*8) Maximum norm of estimated error in last integration step taken,
output only

Work: (real*8) Work array which must be dimensioned at least 2+24*NEqn for
2nd order and 2+53*NEqn for 5th order.

90

NAWCWPNS TP 8340

b. Calling tree for DMEX5

dim51
I

driver

I I I I I
start solver NewStep Nordlnterp rescale
I \ I
F RK6 F

I
F

-A block data subprogram called matrices is also used.

FIGURE 13. Calling Tree for DIMEX5.

c. Description and parameters for subprograms of DIMEX5

subroutine dim51: See Section a above for discussion of parameters. This subroutine
simply serves the purpose of hiding from the user the details of the numerous arrays
used by DIMEX5. A single large work array is split appropriately as required by the
driver.

subroutine driver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,
1 NCalls,NMisses,Diag,ErrEst,H01d,YIter,FStage,YIterP,
2 X01d,YP,Yl,Y2,Y4,YlP,Y2P,YStage,
3 YIterN,YIterS,FStageN,Y6Der,FStageP,RKWork,NordVec)

driver provides the essential logic to control the integration process and calls the
subprograms needed to carry out the necessary calculations. When Starting is set to
.true., start is called to obtain an initial Nordsieck vector, step size, and external
stage vector. Solver then is called to carry out the first integration step and the error
estimate is checked to ensure the result is within tolerance. If not, the step size is
halved and Nordsieck vector is rescaled to produce a new starting external stage
vector. This process is repeated until successful. Starting is then set to .false, and
the integration process proceeds as NewStep calculates a new step size to use. If
Diag is .true, driver returns dim51, which returns to be called again by the main
program, otherwise at each iteration either XOut is at least X, in which case
Nordlnterp produces an interpolated solution value at X and a return is made to the
main program for another call, or an integration step is carried out. An integration
step begins by saving copies of the current and previous external stage vectors.
Then rescale is called to rescale the current external stage vector, a DMSIM step is
performed using a call to solver, and ErrEst is checked to be sure the error is within
tolerance. If not, a tolerance miss is counted and the step size is halved. Rescaling
again takes place using the saved values, and this process continues until the step is
within tolerance or MaxTries is exceeded, generating an error message and STOP.
For normal execution final XOut is XF.

91

NAWCWPNS TP 8340

X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,NCalls,NMisses,Diag,ErrEst: As
in dim51, see Section a above.

HOld: (real*8) Step size used for previous successful integration step
YIter: (real*8 array) External stage vector for current step, dimensioned (NEqn,5)
FStage: (real*8 array) Vector of derivative values computed from internal stage values for

most recent successful step, dimensioned (NEqn,5).
YIterP: (real* 8 array) External stage vector for previous successful step, dimensioned

(NEqn,5)
XOld: (real*8) Previous successful step point
YP: (real*8 array) Derivative at X0, =f(X0,Y0). Dimensioned NEqn.
Y1,Y2,Y4,Y1P,Y2P, Y6Der: (real*8 arrays) Storage needed for subroutine start. Each

dimensioned NEqn.
YIterN,YIterS, FStageN: (real*8 arrays) Storage needed for temporary storage of current

and previous external stage vectors and current vector of derivatives at internal stage
points until it is verified that step was successful, dimensioned (NEqn,5).

YStage: (real*8 array) Storage needed for subroutine solver, dimensioned NEqn.
FStageP: (real*8 array) Previous vector of derivative values for last internal stage, used

again for first internal stage of new step if step size does not change. Dimensioned
NEqn)

RKWork: (real*8 array) Storage needed for subroutine start, dimensioned 8*NEqn.
NordVec: (real*8 array) At first step, Nordsieck vector at X0. Subsequently, Nordsieck

vector at XOut. Dimensioned (NEqn,6)

subroutine solver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP,Starting,YStage,
1 FStageP,KCalls)

solver applies the basic DIMSIM algorithm to compute a new external stage vector
and an error estimate. Different coefficients are used in computing the error
estimate if Starting is .true.

X0: (real*8) Starting point for this integration step
NEqn,H,H01d,F,ErrEst,Starting: See description of driver, above.
FStage: (real*8 array) Upon output, set to vector of derivatives at internal stage points for

current step, dimensioned (NEqn,5)
YIter: (real*8) Upon input, set to rescaled previous external stage vector. Upon
output, set to current external stage vector. Dimensioned (NEqn,5)

YIterP: (real* 8 array) Output only, set to input value of YIter. Dimensioned (NEqn,5)
YStage: (real*8 array) Temporary storage needed for each internal stage vector in turn

during calculation. Dimensioned NEqn.
FStageP: (real*8 array) Input, see driver description above. Dimensioned NEqn.
KCalls: (integer) Number of calls to derivative function subroutine for this solver step,

output

subroutine start(YIterP,F,X0,Y0,NEqn,H,YP,Tol,Yl,YlP,Y6Der,Y2,Y2P,Y4,
1 YNord,RKWork)

Start first calculates the derivative at the initial point X0. A scaling factor g to
estimate the size of the initial Nordsieck vector is computed and this is used to
determine h0. In most cases g will be the smaller of the norm of the function and
the first derivative, but in case one is smaller than 1000*eps (machine epsilon) the
larger is taken, and in no case is g taken as less than 10"6. A 6th order Runge-Kutta
method is used by calling RK6 to compute the solution Y4 at X0+h0/4, Y2 at
X0+h0/2 (from Y4), and Yl at XO+hO (from Y2). These are then used to calculate
a Nordsieck vector for computation of the initial external stage vector, plus an extra

92

NAWCWPNS TP 8340

derivative for computation of the appropriate size for the first DBVISIM step. Both
the Nordsieck vector and the intial external stage vector are returned in case
tolerance is not met.

YIterP: (real*8 array) Initial external stage vector, output dimensioned (NEqn,5)
F,X0,Y0,NEqn: See Section a above.
H: (real *8) Output value for calculated initial DMSM step size
YP: (real*8 array) Derivative of the solution at X0, calculated using y'=F(X0,Y0), output

dimensioned NEqn
Tol: (real*8) Initial tolerance computed as described in section a from RTol, Y0 and ATol,

input
Y1,Y1P,Y2,Y2P,Y4: (real*8 arrays) Values computed using 6th order Runge-Kutta

method for solution at h0, hJ2, and h,/4, and associated derivatives computed using
F, workspace each dimensioned NEqn.

Y6Der: (real*8 array) 6th derivative of solution vector at X0, multiplied times AQ,

workspace dimensioned NEqn.
YNord: (real*8 array) Nordsieck vector at X0 for step size H, output dimensioned

(NEqn,6)
RKWork: See driver description above.

subroutine rescale(YIter,H,H01d,FStage,YIterP,NEqn)
Rescale takes a previous external stage vector computed using a step size HOld and
uses the DMSIM rescaling algorithm to rescale it to become the appropriate
previous external stage vector for continuing the computation with step size H.

YIter: (real* 8 array) Output rescaled extermal stage vector, dimensioned (NEqn,5)
H: (real*8) Input new step length
HOld: (real*8) Input step length for previous successful step.
FStage: (real*8 array) Input vector of derivatives at stage points for last step completed
YIterP: (real* 8 array) Input previous external stage vector, calculated using step length

HOld, dimensioned (NEqn,5)
NEqn: See Section a above

real*8 function NewStep(H,Tol,ErrEst)
The error estimate is compared with the tolerance to produce a step change factor
modifying the step size in preparation for the next step. The local truncation error is
assumed to be proportional to the 6th power of the step size. The largest possible
step change is a factor of 2. A step change safety factor equal to .75 was used for
DMEX5 so that the step size used was .75 of optimal. A larger factor of .9 was
used successfully for DIMEX2. Step size is not changed if change would be less
than 10% for DMEX5 and 5% for DMEX2.

H: (real*8) At input contains old step size. At output contains new step size
Tol: (real*8) Input tolerance derived from RTol, Y and ATol as described in section a

above
ErrEst: (real* 8) Input current local error estimate

subroutine NordInterp(Y,H,Theta,FStage,YIter,NordVec,NEqn)
The Nordsieck vector NordVec is calculated at the current value of XOut, using the
previously calculated external stage vector YIter, the current step size H, and the
current vector of derivatives at stage points, FStage. Theta then is used to rescale
the Nordsieck vector to correspond to the desired output point and a fifthth order
Taylor series approximation Y is formed.

93

NAWCWPNS TP 8340

Y: (real*8 array) Output approximation to the solution at the desired output point, length
NEqn.

H: (real*8) Input step size for last successful integration
Theta: (real* 8) Input between 0 and 1, ratio (X-X01d)/H, where X is the desired output

point
FStage: (real*8 array) Input vector of derivatives at stage points for last successful

integration, dimensioned (NEqn,5)
YIter: (real*8 array) Input previous external stage vector, dimensioned (NEqn,5)
NordVec: (real*8 array) Workspace (output for waveform relaxation) for Nordsieck vector

at current XOut and last step size used.
NEqn; (integer) See above, Section a.

subroutine RK6(Y,X0,Y0,H,F,NEqn,YP,YP2,YP3,YP4,YP5,YP6,YP7,YTemp)
A simple 6th order Runge-Kutta solver, used to provide solution values needed for
starting method. Solution Y for initial values (X0,Y0) is found at XO+H for
problem Y'=F(X,Y). The method is described in Butcher (Reference 11), pp. 203-
205.

Y: (real*8 array) Solution at XO+H, dimensioned NEqn.
X0: (real*8) Initial value of independent variable.
Y0: (real*8 array) Initial value of" dependent variable, dimensioned NEqn
H: (real*8) step size used
F: See above, Section a
NEqn: See above, Section a
YP,YP2,YP3,YP4,YP5,YP6,YP7: (real*8 arrays) Workspace used for storing derivatives

of stages, each dimensioned NEqn.
YTemp: (real*8 array) Workspace used for storing stage vectors successfully,

dimensioned NEqn

block data matrices
The matrices and vectors defining the paricular method are set to appropriate values
using data statements and stored in the common region /Method/.

TESTING DIMEX

The ultimate test of an ODE solver is the accurate and efficient solution of a wide
variety of problems. The relatively easy, nonstiff problems utilized in the well-known suite
DETEST have provided a standard test suite for ODE solvers since they were first
introduced in 1972 by Hull, et. al, (Reference 31). For second order testing these were run
using both DJMEX2 and the well established linear multistep solver LSODE developed at
Livermore by Hindmarsh and his coworkers (Reference 32). LSODE was used in the
Adams-Moulton solver mode with functional iteration. This mode provides predictor-
corrector solution of the form P(EC)M where M is no greater than 3 and is usually 1. This
provided the most efficient solution for competitive purposes on this test suite. For fifth
order testing these were run using both DIMEX5 and the highly regarded Runge-Kutta
code DOPRI5 (Reference 18). For the easy problems of DETEST, LSODE is very
efficient as measured by steps taken and function evaluations, but the sphere of
applicability for DIMEX5 would be similar to that of DOPRI5 and it is hoped that a
comparison on simpler problems would provide some indication of relative performance on
the harder problems that do not find their way into standard benchmark suites. The
problems are divided into classes A-E, with Class A consisting of single equations, Class

94

NAWCWPNS TP 8340

B of small systems of 2 or 3 equations, Class C of moderate systems of 10 to 51
equations, Class D of orbit equations, and Class E of higher order (second order)
equations. Application areas represented include the simple negative exponential, a simple
Riccati equation, an oscillatory problem, logistics and spiral curves, conflicting population
growths, chemical reactions, rigid body motion, radioactive decay chains, heat equation, 5
body problem, orbital motion, Bessel's equation, Van der Pol's equation, Duffing's
equation, falling body and linear pursuit. All are integrated over an interval from 0 to 20.
Only a few are provided with exact solutions, and accuracy testing was conducted primarily
using significantly tighter tolerances with the same solver. Rather than adapting DIMEX,
DOPRI5 and LSODE to fit with the DETEST software, the functions were simply coded
and used with a specially designed calling routine that provided the desired output
information. Although number of steps is important, even more important is the number of
function evaluations, which is a good measure of the amount of work required. A timing
of the solution process would also give a measure of the overhead, which has been noted to
be significant for LSODE (Reference 18). But the DMEX codes have not been carefully
optimized yet and so this comparison was not carried out.

Some aspects of the comparison process utilized should be noted. First, LSODE uses
an Adams-Moulton solver and can only be set to restrict to a specified order up to 12 that
will not be exceeded. Thus for second order testing it is possible that some steps were first
order. The order is chosen to minimize error and hence maximizes step length.
Furthermore, in conducting these tests it was observed that LSODE applies relative
tolerance to each separate solution component, while DIMEX applies relative tolerance to
the norm of the solution. Thus the only relative tolerance comparisons are for tests A1-A5,
since only a single equation is used. Otherwise, absolute tolerance was used for both.
Finally, exact solutions were used for comparison purposes only for A1-4, while high
tolerances of 10"13 to 10"15 were used to produce a "true" value of the local solution and Ihe
end point solution.

For fifth order testing was conducted only for the more appropriate higher tolerances
10"6, 10"9, and 10"12. On the other hand, second order methods often take a very long time
to integrate at tight tolerances and so 10"12 was not used for second order, while the loose
tolerance of 10 was an appropriate condition for testing a second order solver.

A summary of results is shown in the Tables 22 through 71. Note that an entry of "**"
indicates that a measurement was not made. It was not convenient to obtain data from
LSODE on tolerance misses and times deceived, and it did not seem to be important to
obtain that information. DOPRI5 provided number of tolerance misses but it was not
convenient to obtain the number of times deceived. And DMEX5 did not conveniently
provide a sufficiently accurate solution at tolerance 10"15 to determine the accuracy of
individual steps as required in computing number of steps deceived at tolerance 10"12.
Also, "AM" designates the Adams-Moulton integrator of LSODE.

95

NAWCWPNS TP 8340

DIMEX2 Test Results

TABLE 22. Order 2 Problem Al Test.

Tolerance 10" io-° 10" 9

method DIM2 AM2 DIM2 AM2 DM2 AM2

steps 121 107 1222 1049 12231 10484
func calls 126 116 1227 1055 12235 10490
tol misses 1 ** 1 ** 0 **

deceived 0 0 0 ** 0 **

end relerr 7.9e-2 1.3e-l 8.8e-4 6.8e-4 8.9e-6 6.1e-6

TABLE 23. Order 2 Problem A2 Test.

Tolerance 10" 10"° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 27 29 239 217 2356 2075

func calls 31 32 243 220 2360 2078
tol misses 0 ** 0 ** 0 **

deceived 0 ** 0 ** 0 **

end relerr 3.4e-3 4.3e-3 4.8e-5 3.5e-5 5.0e-7 3.3e-7

TABLE 24. Order 2 Problem A3 Test.

Tolerance 1(T 10"° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 131 108 1160 950 11485 9430

func calls 171 132 1199 1002 11521 9523
tol misses 33 ** 31 ** 32 **

deceived 2 ** 1 ** 0 **

end relerr 1.3e-3 4.6e-3 4.2e-5 4.6e-5 5.8e-7 4.2e-7

TABLE 25. Order 2 Problem A4 Test.

Tolerance 103 10"° 105'
method DM2 AM2 DM2 AM2 DM2 AM2
steps 19 18 169 144 1650 1377

func calls 25 26 178 156 1659 1386
tol misses 2 ** 5 ** 5 **

deceived 0 ** 0 ** 0 **

end relerr 2.5e-4 4.1e-4 1.6e-6 1.9e-7 7.0e-9 5.8e-9

96

NAWCWPNS TP 8340

TABLE 26. Order 2 Problem A5 Test.

Tolerance io-3 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 24 21 185 162 1801 1539

func calls 37 33 197 179 1815 1566
tol misses 9 ** 8 ** 10 **

deceived 0 ** 11 ** 9 **

end relerr 1.5e-l 2.7e-2 1.6e-3 8.4e-4 1.6e-5 1.0e-5

TABLE 27. Order 2 Problem B1 Test.

Tolerance io-J 10° io-y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 244 191 2194 1724 21944 17060

func calls 290 224 2199 1766 21949 17102
tol misses 42 #* 1 ** 1 **

deceived 32 ** 1 ** 0 **

end relerr 4.9e-3 5.4e-l 8.6e-5 5.4e-4 l.le-6 3.5e-6

TABLE 28. Order 2 Problem B2 Test.

Tolerance io-3 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 92 90 275 239 2423 1930

func calls 101 151 284 276 2427 1936
tol misses 5 ** 5 ** 0 **

deceived 0 ** 3 ** 0 **

end relerr 1.2e-4 4.2e-5 2.4e-7 2.6e-8 2.5e-10 l.le-9

TABLE 29. Order 2 Problem B3 Test.

Tolerance io-J 10° 10y

method DM2 AM2 DM2 AM2 DIM2 AM2
steps 37 45 259 209 2548 2014

func calls 45 72 263 212 2552 2017
tol misses 4 ** 0 ** 0 **

deceived 0 ** 0 ** 0 **

end relerr 4.5e-4 3.7e-4 1.7e-5 1.7e-5 1.9e-7 1.4e-7

97

NAWCWPNS TP 8340

TABLE 30. Order 2 Problem B4 Test.

Tolerance io-j 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 191 143 1882 1356 18833 13705

func calls 197 150 1886 1363 18837 13713
tol misses 2 ** 0 ** 0 **

deceived 8 #* 0 ** 0 **

end relerr 1.9e-l 1.0e-l 1.8e-3 1.7e-3 1.8e-5 1.6e-5

TABLE 31. Order 2 Problem B5 Test.

Tolerance 10"J 10"° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 114 87 1048 788 10378 7686

func calls 133 150 1066 821 10384 7724
tol misses 15 ** 14 ** 3 **

deceived 10 ** 0 ** 0 **

end relerr 1.6e-2 l.le-1 3.7e-4 6.1e-4 3.1e-6 5.0e-6

TABLE 32. Order 2 Problem Cl Test.

Tolerance io-3 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 54 50 356 247 3523 2383

func calls 60 80 360 250 3527 2386
tol misses 2 ** 0 ** 0 **

deceived 0 ** 0 ** 0 **

end relerr 2.1e-4 2.1e-4 1.3e-5 2.6e-5 1.4e-7 1.8e-7

TABLE 33. Order 2 Problem C2 Test.

Tolerance IO"3 10"° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 268 225 394 325 2961 1949

func calls 276 406 403 439 2970 1995
tol misses 4 ** 5 ** 5 **

deceived 0 #* 2 ** 0 **

end relerr 1.5e-4 2.7e-5 3.9e-7 1.3e-7 3.5e-10 6.9e-10

98

NAWCWPNS TP 8340

TABLE 34. Order 2 Problem C3 Test.

Tolerance io-J 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 116 112 259 202 2352 1567

func calls 123 205 266 245 2356 1570
tol misses 3 *# 3 ** 0 **

deceived 1 ** 0 ** 0 **

end relerr 5.5e-2 9.5e-3 1.9e-4 1.2e-4 4.5e-6 5.0e-6

TABLE 35. Order 2 Problem C4 Test.

Tolerance 10'J 10'° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 117 93 259 165 2355 1199

func calls 124 167 266 199 2359 1202
tol misses 3 ** 3 ** 0 **

deceived 1 ** 3 ** 1 **

end relerr 1.4e-2 2.5e-2 1.8e-4 2.0e-4 4.1e-6 7.0e-6

TABLE 36. Order 2 Problem C5 Test.

Tolerance icr 10° 10"*
method DM2 AM2 DM2 AM2 DM2 AM2
steps 30 16 287 157 2865 1536

func calls 34 21 291 159 2869 1538
tol misses 0 ** 0 ** 0 **

deceived 0 ** 0 ** 1 **

end relerr 1.4e-3 4.9e-3 1.2e-5 1.2e-5 l.le-7 1.9e-7

TABLE 37. Order 2 Problem Dl Test.

Tolerance 10j 10"° 10"*
method DM2 AM2 DM2 AM2 DM2 AM2
steps 130 115 1255 937 12541 9418

func calls 135 168 1259 944 12545 9426
tol misses 1 ** 0 ** 1 **

deceived 6 ** 0 ** 0 **

end relerr 7.6e-l 2.1e+0 4.0e-3 4.6e-3 3.4e-5 9.4e-6

99

NAWCWPNS TP 8340

TABLE 38. Order 2 Problem D2 Test.

Tolerance 10J 10"° 10y

method DIM2 AM2 DM2 AM2 DM2 AM2
steps 155 129 1483 1071 14816 10659

func calls 165 199 1487 1091 14820 10680
tol misses 6 ** 0 ** 0 **

deceived 11 ** 0 #* 0 **

end relerr 6.3e-l 2.0e+0 5.7e-3 2.5e-3 5.8e-5 2.1e-5

TABLE 39. Order 2 Problem D3 Test.

Tolerance 10J 10"° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 202 152 1799 1289 17937 12746

func calls 236 230 1803 1322 17941 12779
tol misses 30 ** 0 ** 0 **

deceived 6 ** 0 ** 0 **

end relerr 7.1e-l 2.2e+0 7.6e-3 1.7e-3 8.2e-5 4.1e-5

TABLE 40. Order 2 Problem D4 Test.

Tolerance 10° io-° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 269 188 2294 1634 22896 16255

func calls 330 256 2298 1683 22900 16306
tol misses 57 ** 0 ** 0 **

deceived 8 ** 0 ** 0 **

end relerr 7.0e-l 1.8e+0 8.9e-3 3.0e-3 9.3e-5 5.6e-5

TABLE 41. Order 2 Problem D5 Test.

Tolerance io-J 10"° io-tf

method DM2 AM2 DM2 AM2 DM2 AM2
steps 414 280 3457 2464 34502 24212

func calls 521 363 3461 2545 34506 24296
tol misses 103 ** 0 ** 0 **

deceived 11 ** 0 ** 1 **

end relerr 5.4e-l 1.2e+0 9.3e-3 5.2e-3 9.3e-5 7.4e-5

100

NAWCWPNS TP 8340

TABLE 42. Order 2 Problem El Test.

Tolerance io-J 10"° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 74 62 738 611 7372 6021

tune calls 78 117 742 614 7376 6024
tol misses 0 ** 0 ** 0 **

deceived 8 ** 0 ** 0 **

end relerr 2.7e-l 2.6e-l 2.0e-3 1.8e-3 2.0e-5 1.5e-5

TABLE 43. Order 2 Problem E2 Test.

Tolerance 10'j 10° 10y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 282 219 2649 2010 26490 20016

func calls 318 264 2657 2061 26495 20071
tol misses 32 *# 4 ** 1 **

deceived 28 ** 0 ** 0 **

end relerr 2.2e-2 1.3e-2 1.9e-4 1.5e-4 1.9e-6 1.6e-6

TABLE 44. Order 2 Problem E3 Test.

Tolerance 1(T 10° 10-"
method DM2 AM2 DM2 AM2 DM2 AM2
steps 281 213 2714 2064 27128 20440

func calls 304 230 2718 2086 27133 20463
tol misses 19 ** 0 ** 1 **

deceived 3 ** 0 ** 0 **

end relerr 9.7e-2 1.4e-l 1.2e-3 1.2e-3 l.le-5 1.3e-5

TABLE 45. Order 2 Problem E4 Test.

5olerance 103 10° 1(T
method DM2 AM2 DM2 AM2 DM2 AM2
steps 16 14 138 104 1365 1052

func calls 22 23 142 109 1369 1057
tol misses 2 ** 0 ** 0 **

deceived 1 ** 5 ** 0 **

end relerr 2.8e-4 3.7e-4 4.3e-6 3.7e-6 4.3e-8 3.8e-8

101

NAWCWPNS TP 8340

TABLE 46. Order 2 Problem E5 Test.

Tolerance ioJ 10° 10"y

method DM2 AM2 DM2 AM2 DM2 AM2
steps 31 28 280 209 2804 2047

func calls 32 52 285 220 2809 2059
tol misses 1 ** 1 ** 1 **

deceived 23 ** 0 ** 0 #*

end relerr 4.9e-3 3.5e-3 4.7e-5 4.2e-5 4.7e-7 4.4e-7

DIMEX5 TEST RESULTS

TABLE 47. Order 5 Problem Al Test.

Tolerance 10° 10-* 10""
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 97 94 288 361 882 1426

func calls 531 566 1496 2168 4436 8558
tol misses 5 0 7 0 1 0
deceived 0 #* 0 ** 0 **

end relerr l.le-5 3.9e-6 5.0e-8 3.3e-9 1.7e-10 3.1e-12

TABLE 48. Order 5 Problem A2 Test.

Tolerance 10° 10-* 101Z

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 38 22 104 67 320 246

func calls 226 134 546 404 1621 1478
tol misses 3 0 1 0 0 0
deceived 0 ** 0 ** 0 **

end relerr 8.7e-7 4.4e-7 5.1e-9 2.8e-10 1.7e-ll 1.9e-13

TABLE 49. Order 5 Problem A3 Test.

Tolerance 10° 10y 10-"
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 136 88 426 286 1348 1070

func calls 721 530 2166 1718 6776 6422
tol misses 4 15 3 19 3 19
deceived 0 ** 0 ** 0 **

end relerr 4.3e-6 2.1e-6 8.8e-9 1.7e-9 2.6e-ll 2.1e-12

102

NAWCWPNS TP 8340

TABLE 50. Order 5 Problem A4 Test.

Tolerance 10° 10"y io-u

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5

steps 23 18 64 56 197 205
func calls 146 110 346 338 1016 1232
tol misses 2 1 1 2 2 1
deceived 0 ** 0 ** 0 **

end relerr 1.9e-7 7.2e-8 3.2e-10 5.1e-ll 9.8e-14 6.9e-13

TABLE 51. Order 5 Problem A5 Test.

Tolerance 10° 10" 1012

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5

steps 28 15 78 51 241 190
func calls 171 92 411 308 1226 1142
tol misses 2 0 0 1 0 1
deceived 2 ** 1 ** ** **

end relerr 5.4e-5 6.5e-6 2.3e-7 7.6e-9 3.5e-10 8.9e-12

TABLE 52. Order 5 Problem B1 Test.

Tolerance 10" * io- i lO12

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5

steps 233 165 683 583 2147 2311
func calls 1201 992 3436 3500 10756 13868
tol misses 3 17 0 3 0 0
deceived 2 ** 1 ** ** **

end relerr 2.1e-4 1.9e-5 9.9e-7 2.5e-9 3.3e-9 2.3e-12

TABLE 53. Order 5 Problem B2 Test.

Tol (abs) 10" & io- i lO""

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5

steps 87 43 134 123 354 450
func calls 486 260 711 740 1806 2702
tol misses 6 2 4 0 3 0
deceived 6 ** 0 ** ** **

end relerr 3.6e-7 4.7e-7 2.9e-10 6.3e-ll 2.1e-13 9.7e-14

103

NAWCWPNS TP 8340

TABLE 54. Order 5 Problem B3 Test.

Tol (abs) 10° 10'y io-u

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 49 33 112 108 344 400

func calls 266 200 596 650 1741 2402
tol misses 4 0 3 0 0 **

deceived 1 ** 0 ** ** **

end relerr 2.7e-7 9.7e-8 2.1e-9 1.9e-10 7.4e-12 1.4e-13

TABLE 55. Order 5 Problem B4 Test.

Tol (abs) 10° 10"y IQ"12

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 159 108 494 424 1561 1682

func calls 816 650 2491 2546 7826 10094
tol misses 0 0 0 0 0 0
deceived 0 ** 0 ** ** **

end relerr 3.1e-6 3.4e-6 5.8e-9 8.1e-10 2.8e-ll 8.9e-13

TABLE 56. Order 5 Problem B5 Test.

Tol (abs) 10° 10y 10-"
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 137 82 422 284 1327 1123

func calls 706 494 2136 1706 6661 6740
tol misses 0 7 1 ** 1 0
deceived 0 ** 0 ** ** **

end relerr 6.8e-6 3.0e-6 3.2e-8 7.7e-9 8.9e-ll 9.0e-12

TABLE 57. Order 5 Problem Cl Test.

Tol (abs) 10-o 10* 10lz

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 51 39 132 134 411 508

func calls 281 236 681 806 2076 3050
tol misses 1 0 0 0 0 0
deceived 9 ** 9 ** ** **

end relerr l.le-7 1.7e-7 1.5e-9 4.8e-10 5.7e-12 5.5e-13

104

NAWCWPNS TP 8340

TABLE 58. Order 5 Problem C2 Test.

Tol (abs) 10° 10y 10"u

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 198 68 214 142 466 496

func calls 1086 410 1126 854 2381 2978
tol misses 15 2 7 2 6 0
deceived 17 ** 43 ** ** **

end relerr 2.6e-8 7.2e-7 7.8e-ll 2.2e-10 2.2e-13 2.7e-13

TABLE 59. Order 5 Problem C3 Test.

Tol (abs) 10° io-y 10"
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 98 41 122 108 334 398

func calls 536 248 646 650 1691 2390
tol misses 5 1 3 0 0 0
deceived 0 ** 0 ** *# **

end relerr 1.4e-5 3.2e-5 2.2e-8 1.4e-8 1.9e-10 1.8e-ll

TABLE 60. Order 5 Problem C4 Test.

Tol (abs) 10° 10"y IQ"12

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 104 39 132 94 334 340

func calls 561 236 696 566 1691 2042
tol misses 4 1 3 0 0 0
deceived 0 ** 0 ** ** **

end relerr 7.0e-7 3.5e-5 7.6e-9 3.0e-8 1.5e-10 3.4e-ll

TABLE 61. Order 5 Problem C5 Test.

Tolerance 10° 1(T 10"1Z

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 14 15 32 55 94 211

func calls 91 92 181 332 491 1268
tol misses 0 0 0 2 0 4
deceived 0 ** 0 ** ** **

end relerr 1.8e-6 1.8e-6 6.7e-9 8.3e-10 1.8e-ll 5.7e-13

105

NAWCWPNS TP 8340

TABLE 62. Order 5 Problem Dl Test.

Tol (abs) 1(T 10y 10"u

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 119 83 373 323 1177 1276

func calls 616 500 1891 1940 5911 7658
tol misses 0 0 1 0 1 0
deceived 0 ** 1 ** ** **

end relerr 1.3e-4 3.1e-4 8.4e-7 1.3e-7 2.5e-9 1.7e-10

TABLE 63. Order 5 Problem D2 Test.

Tol (abs) io-° 10"y 101Z

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 163 98 512 350 1617 1382

func calls 836 590 2581 2102 8106 8294
tol misses 0 6 0 0 J 0 0
deceived 0 ** 0 ** ** **

end relerr 1.5e-4 4.3e-4 4.5e-7 1.2e-7 1.4e-9 1.5e-9

TABLE 64. Order 5 Problem D3 Test.

Tol (abs) 10"° 10y 1012

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 212 131 671 414 2121 1638

func calls 1081 788 3376 2486 10631 9830
tol misses 0 20 0 0 1 0
deceived 0 #* 0 ** ** **

end relerr 4.0e-4 2.6e-4 1.0e-6 9.1e-8 2.8e-9 l.le-10

TABLE 65. Order 5 Problem D4 Test.

Tol (abs) 10"° 10"y 101Z

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 281 174 889 514 2807 2035

func calls 1426 1046 4471 3086 14061 12212
tol misses 0 34 1 0 1 0
deceived 0 ** 0 ** ** **

end relerr 6.8e-4 2.0e-4 1.5e-6 8.0e-8 4.3e-9 9.7e-ll

106

NAWCWPNS TP 8340

TABLE 66. Order 5 Problem D5 Test.

Tol (abs) io-° 10"y 10-"

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 422 256 1331 728 4201 2884

func calls 2136 1538 6686 4370 21056 17306
tol misses 1 54 0 0 0 0
deceived 1 ** 1 ** ** **

end relerr 67.1-5 1.3e-4 9.1e-8 6.0e-8 2.2e-9 6.7e-ll

TABLE 67. Order 5 Problem El Test.

Tolerance 10° 10"y io-12

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 94 112 286 426 900 1683

func calls 491 674 1451 2558 4521 10100
tol misses 0 10 0 11 0 12
deceived 0 ** 0 ** ** **

end relerr l.le-5 2.2e-6 4.3e-8 2.7e-9 1.3e-10 2.8e-12

TABLE 68. Order 5 Problem E2 Test.

Tol (abs) 1(T 10y 10'2

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 303 183 916 637 2922 2503

func calls 1551 1100 4601 3824 14631 15020
tol misses 3 18 0 6 0 5
deceived 2 ** 1 ** ** **

end relerr 5.0e-6 2.0e-4 4.3e-9 6.1e-8 7.3e-12 2.6e-ll

TABLE 69. Order 5 Problem E3 Test.

Tol (abs) 10° 10"y 10"1Z

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 220 137 695 489 2198 1916

func calls 1121 824 3501 2936 11011 11498
tol misses 0 10 1 4 0 0
deceived 0 ** 0 ** ** **

end relerr 8.8e-6 1.6e-4 4.4e-8 4.9e-8 4.0e-10 2.3e-ll

107

NAWCWPNS TP 8340

TABLE 70. Order 5 Problem E4 Test.

Tol (abs) 1(T 10"y 10"u

method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 19 17 47 46 145 167

func calls 121 104 256 278 746 1004
tol misses 1 1 0 0 0 0
deceived 0 ** 0 ** ** **

end relerr 3.9e-8 1.8e-7 1.3e-10 1.5e-10 1.3e-13 1.7e-13

TABLE 71. Order 5 Problem E5 Test.

Tol (abs) 10"° 10"y 10-"
method DM5 DOPRI5 DM5 DOPRI5 DM5 DOPRI5
steps 25 24 78 61 242 233

func calls 146 146 411 368 1231 1400
tol misses 0 5 0 0 0 0
deceived 0 #* 0 ** ** **

end relerr 1.3e-6 1.6e-8 4.3e-9 1.5e-ll 1.2e-ll 1.2e-14

DISCUSSION OF TEST RESULTS

In scanning the results for second order testing, it is evident that the number of steps is
usually 10 to 20% higher for the DMEX2 integrator in comparison with LSODE. But
since LSODE has been extensively refined over a period of nearly 20 years, this is not bad
for a newly developed research code. A different DMSM with a smaller error constant
would produce fewer steps with otherwise the same implementation. On the other hand,
for these relatively easy problems, LSODE minimizes the number of function iterations to
the extent that often the average number of function evaluations required is just over 1 per
step. DMEX2 significantly outperforms LSODE at loose tolerances on problems A2, A4,
B2, B3, B5, Cl, C2, C3,C4, El, E4, and E5. The orbital problems Dl and D2 might also
be included, but the accuracy of both solvers was inadequate to make these true tests. The
operation of DMEX2 shows that although it is not really a competitive method for simple
problems with tighter tolerances, the implementation is essentially correct and appropriate.
And it points to the possibility of developing a truly competitive DMSM second order
explicit solver, since the number of function evaluations per step is consistently 1 even at
looser tolerances.

A calculation of the stability region for the FASAL implementation was performed.
The following graph shows that the portion of the negative real axis included was reduced
by 1/3. However, it was found that method parameter could be chosen to find another
Type 1 second order DMSM with a more favorable stability region. The longest portion
of the negative real axis that could be obtained is also shown and is unreduced from the
original DMSM, although the portion off the real axis is seriously reduced for this case in
Figure 14. It is felt that more can be done to produce desirable stability regions for higher
orders with more parameters.

108

NAWCWPNS TP 8340

1.5

1

0.5
/

0

-0.5 If

-1

-1.5 -

V
FASAL

-<H)

DMSM

Optimal
FASAL

-1.5 -0.5 0.5

FIGURE 14. Comparison of Stability Regions for Second Order.

The fifth order results show very competitive results. DIMEX5 often beats DOPRI5,
and otherwise provides roughly comparable results, and this despite the larger error
constant (1/720 versus 1/3600, a factor of 5) and a slightly smaller stability region. This is
directly attributable to the savings of one function evaluation per step with the DIMSIM.
But this does not show the complete picture, because dense output is typically required in
real applications, not just a race to the end of the interval. And the DIMSIM requires no
additional function evaluations or system solves to provide interpolated output at 5th order,
while DOPRI5 requires two additional stages to provide 5th order dense output (Reference
18). Thus when dense output requirements are considered, DIMEX5 in reality
significantly outperforms DOPRI5 for much of this test set and is rarely beaten. And
improved DIMSMs may be found with smaller error constants and larger stability regions.
Finally, the difference at higher orders is expected to be much greater. For example, at 8th
order, the Runge-Kutta-based DOP853 code provides an 8th order method with an
interpolant of 7th order with an effective number of 15 function evaluations per step
(Reference 18), while an 8th order DIMSIM requires only 8 function evaluations per step
and provides an interpolant of 8th order.

A note should be provided concerning FASAL operation. The reported tests were first
conducted using the FASAL property only when step size had not changed since the last
step, and for most problems the number of function evaluations was reduced by the

109

NAWCWPNS TP 8340

expected 20%. An attempt was made to allow this for all steps after the first, and in most
problems the results were satisfactory and the number of function evaluations significantly
reduced. However, for perhaps 5 or 6 of the problems the quality of the error estimate
deteriorated significantly, resulting in unacceptably large numbers of times the error
estimator was deceived, reducing accuracy, and causing up to one third more function
evaluations. Further examination showed that for these problems, not using FASAL
produced the best results. Table 72 shows what happened for Problem C2 with tolerance
10"9.

TABLE 72. Order 5 With and Without FASAL for Problem C2 Test.

Use of FASAL None Constant Step All After First
#Steps 234 357 590
#func calls 1286 1633 2386
#tol misses 19 7 1
#deceived 81 209 430
end relerr 3.0e-10 2.5e-ll 2.0e-10

It was originally thought that this is due to larger higher order terms that are present in
these problems, and this may be an important factor. However, a calculation showed that
the stability region for order 5 became extremely limited with FASAL implementation (see
Figure 15).

110

NAWCWPNS TP 8340

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4
-0.4 -0.3 -0.2 -0.1 0.1

FIGURE 15. Order 5 FASAL Implementation Stability Region.

In Figure 15 z values are shown in a neighborhood of the origin where the eigenvalue of
largest modulus w of the stability matrix has Iwl = 1. The dimensions of this region are
smaller by an order of magnitude as compared with the original DMSIM. It is evident that
stability for the FASAL implementation must be considered when deriving DEVISMs if this
implementation efficiency is to be utilized! As a result of the small stability region, a
FASAL implementation was not used in the testing reported above.

For the DMSIM itself, the error constant for the method is rather small, and at times
the sixth order term might be dominated by the seventh order terms. If this is true, a
different method might not have this problem. More study of the estimation of higher order
terms and of the use of FASAL is needed.

FUTURE DEVELOPMENT

It might be noted that DMEX5 frequently generates exactly 1 tolerance miss. This is
usually generated on the second step, when the step size calculated for the first step is used
for the second step, which has a larger associated error. A future version of the code will
incorporate an appropriate modification similar to the approach used in DIMEX2. Other

111

NAWCWPNS TP 8340

improvements and optimizations are anticipated for later development and suggestions and
bug reports are requested. It should also be noted that DMEX5 uses one example of a
fifth order Type 1 DMSEVI. It is expected that in the future other methods of this class will
be found with different error constants and relatively smaller coefficients for higher order
terms, and these may enable significant performance improvements. Stability for FASAL
implementations will also be utilized in deriving future methods. And although Runge-
Kutta stability regions are a design choice here, they are not necessarily essential and
stability regions even larger than those of Runge-Kutta methods may be found. And the
family, which now includes only orders 2 and 5, may already be extended to include
methods through order 8. It is hoped that in time a single variable order code may be
developed incorporating the entire family in an optimal way.

112

NAWCWPNS TP 8340

REFERENCES

1. J. C. Butcher. "Diagonally Implicit Multi-Stage Integration Methods," Appl. Numer.
Math., Vol. 11 (1993), pp. 347-63.

2. J. C. Butcher and Z. Jackiewicz. "Diagonally Implicit General Linear Methods for
Ordinary Differential Equations," BIT, Vol. 33 (1993), pp. 452-472.

3. J. C. Butcher and Z. Jackiewicz. "Implementation of Diagonally Implicit Multistage
Integration Methods for Ordinary Differential Equations," to appear in 57AM /. Num.
Anal.

4. Z. Jackiewicz, R. Vermiglio, and M. Zennaro. "Variable Stepsize Diagonally Implicit
Multistage Integration Methods for Ordinary Differential Equations," Appl. Numer.
Math., Vol. 16 (1995), pp. 343-67.

5. Z. Jackiewicz, R. Vermiglio, and M. Zennaro. "Regularity Properties of Multistage
Integration Methods," submitted to J. Comp. Appl. Math.

6. J. C. Butcher, Z. Jackiewicz, and H. Mittelmann. "A Nonlinear Optimization
Approach to the Construction of General Linear Methods of High Order," to appear in
J. Comp. Appl. Math.

7. J. C. Butcher and Z. Jackiewicz. "Construction of Diagonally Implicit General Linear
Methods of Type 1 and 2 for Ordinary Differential Equations," to appear in Appl.
Num. Math.

8. J. C. Butcher and Z. Jackiewicz. "Construction of High Order DIMSJMs for
Ordinary Differential Equations," submitted to IMA J. Num. Anal.

9. J. C. Butcher. "General Linear Methods," Comp. Math. Appl. Int. J. 31 (1996), 105-
112.

10. K. Burrage, J. C. Butcher, and F. H. Chipman. "An Implementation of Singly-
Implicit Runge-Kutta Methods," BIT, Vol. 20 (1980), pp. 326-40.

11. J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods. Chichester, Wiley and Sons, 1987.

12. J. D. Lambert. Computational Methods in Ordinary Differential Equations.
London, Wiley and Sons, 1973.

113

NAWCWPNS TP 8340

13. C. W. Gear. "The Potential for Parallelism in Ordinary Differential Equations,"
University of Illinois Report No. UIUCDCS-R-86-1246, 1986.

14. K. Burrage. Parallel and Sequential Methods for Ordinary Differential
Equations. Oxford, Clarendon Press, 1995.

15. S. Vandewalle. Parallel Multigrid Waveform Relaxation for Parabolic Problems.
Stuttgart: B.G. Teubner, 1993.

16. J. Donelson and E. Hansen. "Cyclic Composite Multistep Predictor-Corrector
Methods," SIAM J. ofNumer. Anal, Vol. 8 (March 1971), pp. 137-57.

17. A. Nordsieck. "On Numerical Integration of Ordinary Differential Equations," Math.
Comp., Vol. 15 (1962), pp. 22-49.

18. E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations,
Vol. I: Nonstiff Problems, 2nd ed. New York, Springer-Verlag, 1993.

19. S. Trocogna. Implementation of Two-Step Runge-Kutta Methods for Ordinary
Differential Equations," to appear in J. Comp. Appl. Math.

20. Z. Jackiewicz and S. Trocogna. "A General Class of Two-Step Runge-Kutta
Methods for Ordinary Differential Equations," SIAM J. Numer. Anal. 32 (1995), pp.
1390-1427.

21. R. Enenkel. "DIMSEMs-Diagonally Implicit Single-Eigenvalue Methods for the
Numerical Solution of Stiff Ordinary Differential Equations on Parallel Computers."
Ph.D. dissertation, University of Toronto, 1996.

22. P. Albrecht, "Numerical Treatment of O.D.E.s: The Theory of A-Methods," Numer.
Math., Vol. 47 (1985), pp. 59-87.

23. Z. Jackiewicz, R. Vermiglio, and M. Zennaro. "Variable Stepsize Diagonally Implicit
Multistage Integration Methods for Ordinary Differential Equations," Appl. Numer.
Math., Vol. 16 (1995), pp. 343-67.

24. L. F. Shampine and M. K. Gordon. Computer Solution of Ordinary Differential
Equations: The Inital Value Problem. San Francisco, W. H. Freeman and
Company, 1975.

25. I. Gladwell, L. F. Shampine, and R. W. Brankin. "Automatic Selection of the Initial
Step Size for an ODE Solver," /. Comp. Appl. Math., Vol. 18 (1987), pp. 175-92.

26. J. R. Dormand and P. J. Prince. "A Family of Embedded Runge-Kutta Formulae." J.
Comp. Appl. Math., Vol. 6, pp. 19-26.

27. A. Prothero and A. Robinson. "On the Stability and Accuracy of One-Step Methods
for Solving Stiff Systems of Ordinary Differential Equations," Math. Comp., Vol. 28
(1974), pp. 145-62.

114

NAWCWPNS TP 8340

28. Z. Jackiewicz and M. Zennaro. "Variable Step-Size Explicit Two-Step Runge-Kutta
Methods," Math. Comp., Vol. 59 (1992), pp. 421-438.

29. A. Bellen, Z. Jackiewicz, and M. Zennaro. "Local Error Estimation for Singly
Implicit Formulas by Two-Step Runge-Kutta Methods," BIT, Vol. 32 (1992), pp.
104-17.

30. R. Enenkel and K. Jackson, "DMSEMs-Diagonally Implicit Single-Eigenvalue
Methods for the Numerical Solution of Stiff ODEs on Parallel Computers," to appear
in Adv. Comp. Math.

31. T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick. "Comparing
Numerical Methods for Ordinary Differential Equations," SIAM J. Numer. Anal,
Vol. 9 (December 1972), pp. 603-637.

32. K. Radhakrishnan and A. Hindmarsh. "Description and Use of LSODE, the
Livermore Solver for Ordinary Differential Equations," NASA Reference Publication
1327, Lawrence Livermore National Laboratory Report UCRL-ID-113855, December
1993.

115

NAWCWPNS TP 8340

116

NAWCWPNS TP 8340

Appendix

DHVEX5 Code

subroutine dim51 (X0, Y0,X, Y,F,NEqn,XF,H, ATol,RTol,Starting,XOut,
1 NCalls,NMisses,Diag,ErrEst,Work)

c
c dim51 calls driver which controls the integration process. Main
c function of dim51 is to divide up work array so its use is transparent
c to user. Work array is dimensioned at least 52*NEqn+2.
c Parameter definitions:
c X0: (real*8) Initial value of independent variable at start of integration,
c input
c Y0: (real*8 array) Initial value of solution at start of integration,
c dimensioned NEqn, input
c X: (real*8) Desired output point if Diag is .false., otherwise set to same
c as XF, input
c Y: (real*8) Computed solution at X if Diag is .false., otherwise at XOut,
c output only
c F: (subroutine) Provides derivative function f for ODE y'=f(x,y).
c Subroutine must be defined with parameters F(X,Y,YP,NEqn),
c where YP is the derivative at (X,Y) and NEqn is as defined
c below. F must be declared external in the calling program.
c NEqn: (integer) Number of equations in ODE system, input
c XF: (real*8) Intended termination point for integration process, input
c H: (real*8) Step size used. Output only, not to be defined or changed by
c the user
c ATol: (real*8) Absolute tolerance for local truncation error, used in
c controlling integration according to formula described below,
c input
c RTol: (real*8) Relative tolerance for local truncation error, used in
c controlling integration according to formula
c ErrEst<ATol+RTol* , input
c Starting: (logical) Initially set to .true., thereafter not to be changed
c by the user
c XOut:: (real*8) End point of last integration step performed,output only,
c not to be changed by the user
c NCalls: (integer) Number of function calls since beginning of integration.
c Output only, not to be changed by the user.
c NMisses: (integer) Number of tolerance misses since beginning of
c integration. Output only, not to be changed by the user.

117

NAWCWPNS TP 8340

c Diag: (logical) Set to true if only one integration step at a time is
c desired, which is the preferred mode for study of integrator
c behavior, and false if it is desired to integrate until
c interpolated output at X may be obtained
c ErrEst: (real*8) Maximum norm of estimated error in last integration step
c taken, output only
c Work: (real*8) Work array which must be dimensioned at least 2+23*NEqn
c for 2nd order and 2+52*NEqn for 5th order.
c
~***

implicit none
logical Starting,Diag
integer NCalls,NMisses,NEqn
real*8H,X0,Y0(NEqn),X,Y(NEqn),ATol,RTol,XF,XOut,Work(2+52*NEqn)

real*8 ErrEst
external F
calldriver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,

1 NCalls,NMisses,Diag,ErrEst,Work(1),Work(2),
2 Work(2+5*NEqn),Work(2+10*NEqn),Work(2+15*NEqn),
3 Work(3+15*NEqn),
4 Work(3+16*NEqn),Work(3+17*NEqn),Work(3+18*NEqn),
5 Work(3+19*NEqn),Work(3+20*NEqn),Work(3+21 *NEqn),
6 Work(3+22*NEqn),Work(3+27*NEqn),Work(3+32*NEqn),
7 Work(3+37*NEqn),Work(3+38*NEqn),Work(3+46*NEqn))
end

118

NAWCWPNS TP 8340

subroutine driver(X0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,
1 NCalls,NMisses,Diag,ErrEst,H01d,YIter,FStage,YIterP,
2 X01d,YP,Yl,Y2,Y4,YlP,Y2P,YStage,
3 YIterN,YIterS,FStageN,Y6Der,RKWork,NordVec)

c driver provides the essential logic to control the integration process and
c calls the subprograms needed to carry out the necessary calculations. When
c Starting is set to .true., start is called to obtain an initial Nordsieck
c vector, step size and external stage vector, solver then is called to
c carry out the first integration step and the error estimate is checked to
c ensure the result is within tolerance. If not the step size is halved and
c Nordsieck vector is rescaled to produce a new starting external stage vector.
c This process is repeated until successful. Starting is then set to .false.
c and the integration process proceeds as NewStep calculates a new step size to
c use. If Diag is .true, driver returns dim51 which returns to be called again
c by the main program, otherwise at each iteration either XOut is at least X,
c in which case Nordlnterp produces an interpolated solution value at X and a
c return is made to the main program for another call, or an integration step
c is carried out. An integration step begins by saving copies of the current
c and previous external stage vectors. Then rescale is called to rescale the
c current external stage vector, a DIMSIM step is performed using a call to
c solver, and ErrEst is checked to be sure the error is within tolerance. If
c not, a tolerance miss is counted and the step size is halved. Rescaling
c again takes place using the saved values, and this process continues until
c the step is within tolerance or MaxTries is exceeded, generating an error
c message and STOP. For normal execution final XOut is XF.
c
c Parameters:
cX0,Y0,X,Y,F,NEqn,XF,H,ATol,RTol,Starting,XOut,NCalls,NMisses,Diag,ErrEst:
c As in dim51, see Section a above.
c HOld: (real*8) Step size used for previous successful integration step
c YIter: (real*8 array) External stage vector for current step, dimensioned
c (NEqn,5)
c FStage: (real*8 array) Vector of derivative values computed from internal
c stage values for most recent successful step, dimensioned (NEqn,5).
c YIterP: (real*8 array) External stage vector for previous successful step,
c dimensioned (NEqn,5)
c XOld: (real*8) Previous successful step point
c YP: (real*8 array) Derivative at X0, =f(X0,Y0). Dimensioned NEqn.
c Y1,Y2,Y4,Y1P,Y2P, Y6Der: (real*8 arrays) Storage needed for subroutine start.
c Each dimensioned NEqn.
c YIterN,YIterS, FStageN: (real*8 arrays) Storage needed for temporary storage
c of current and previous external stage vectors and current vector of"
c derivatives at internal stage points until it is verified that step
c was successful, dimensioned (NEqn,5).
c YStage: (real*8 array) Storage needed for subroutine solver, dimensioned
c NEqn.
c RKWork: (real* 8 array) Storage needed for subroutine start, dimensioned
c 8*NEqn.
c NordVec: (real*8 array) At first step, Nordsieck vector at X0. Subsequently,

119

NAWCWPNS TP 8340

c Nordsieck vector at XOut. Dimensioned (NEqn,6)

c
c Driver controls the integration process.
c

implicit none
logical Starting,Diag
real*8H,X0,Y0(NEqn),ErrEst,FStage(NEqn,5),YIter(NEqn,5),X,XOut
real*8YIterN(NEqn,5),YIterP(NEqn,5),Y(NEqn),X01d,H01d,HFac,delta
real*8Theta,Eps,YIterS(NEqn,5),HNew,YP(NEqn),ATol,RTol,YlP(NEqn)
real*8FStageN(NEqn,5),Yl(NEqn),YStage(NEqn)
real*8 NewStep,X 1 ,norm,Tol,Y2(NEqn),Y6Der(NEqn),NordVec(NEqn,6),XF
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5)

real*8RKWork(8*NEqn),Y2P(NEqn),Y4(NEqn)
common/Method/C,A,B,vT,W,BT,Beta,Gamma
save Method
integer NCalls,NMisses,iii,jjj ,NEqn,JEqn,NTries,MaxTries
external F
parameter (Eps=2.2D-16,MaxTries=10)
if (Starting) then

NCalls=0
NMisses=0
Tol=ATol+RTol*norm(YO,NEqn)

c
c Compute starting values
c

call start(YIter,F,XO,YO,NEqn,H,YP,Tol,Yl ,YlP,Y6Der,Y2,
1 Y2P,Y4,NordVec,RKWork)

H01d=H
NCalls=NCalls+21
delta=l

c
c Iterate until H yields error estimate within tolerance
c
1 continue
c
c Compute First Step with Error Estimate and Interp Parameters
c

callSolver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP,
1 Starting,YStage)

NCalls=NCalls+5
if (ErrEst .gt. Tol) then

print *,'FIRST STEP MISSED!!! H',H,'X0=',X0
NMisses=NMisses+l
H=H/2
delta=delta/2
do JEqn=l,NEqn

YIter(JEqn,l)=YO(JEqn)
do iii=2,5

YIter(JEqn,iii)=YO(JEqn)

120

NAWCWPNS TP 8340

dojjj=2,6
YIter(JEqn,iii)=YIter(JEqn,iii)+

1 W(iiijjj) *NordVec(JEqn,jjj) * delta* * (jjj-1)
end do

end do
end do
goto 1

endif
c HNew=NewStep(H,Tol,2*ErrEst)

XOut=X0+H
H01d=H

c H=HNew
Starting = .false,
if (Diag) then

do JEqn=l,NEqn
Y(JEqn)=YIter(JEqn,l)

end do
RETURN

endif
endif

c
c Iterate until X is reached or exceeded,
c
2 continue

if ((XOut .ge. X) .and. .not. Diag) then
c
c Calculate Y using NordLiterp
c

Theta=(X-X01d)/H01d
callNordInterp(Y,H01d,Theta,FStage,YIterP,NordVec,NEqn)

else
NTries=0
X01d=XOut
Tol=ATol+RTol*norm(YIter(1,1),NEqn)

c
c Iterate until error estimate is within tolerance,
c
3 continue

XOut=X01d+H
if (XOut .gt.XF) then

H=XF-X01d
XOut=XF

endif
do JEqn=l,NEqn

do iii=l,5
YIterS(JEqn,iü)=YIterP(JEqn,iii)
YIterN(JEqn,iii)=YIter(JEqn,iü)

end do
end do

c
c Rescale iteration vector for new step size

121

NAWCWPNS TP 8340

call rescale(YIterN,H,H01d,FStage, YIterS ,NEqn)
callSolver(X01d,NEqn,YIterN,H,H01d,F,ErrEst,

1 FStageN, YIterS,Starting, YStage)
NCalls=NCalls+5
if(ErrEst.gt. Tol) then

NTries=NTries+l
if (NTries .gt. MaxTries) then

print *,'At XOut=',XOut,', MaxTries exceeded'
print *,Tol=',Tol

STOP
endif
NMisses=NMisses+1
H=H/2
goto 3

endif
HNew=NewStep(H,Tol,ErrEst)
H01d=H
H=HNew
do JEqn=l,NEqn

Y(JEqn)=YIterN(JEqn, 1)
doiii=l,5

YIterP(JEqn,iii)=YIterS(JEqn,iii)
YIter(JEqn,iii)=YIterN(JEqn,iii)
FStage(JEqn,iii)=FStageN(JEqn,iii)

end do
end do

if (.not. Diag) then
goto 2

endif
endif

end

122

NAWCWPNS TP 8340

SUBROUTINE Solver(X0,NEqn,YIter,H,HOld,F,ErrEst,FStage,YIterP,
1 Starting,YStage)

c
c Solver carries out one step of the solution for an explicit fifth
c order DIMSIM ODE solver for an ODE system. U is assumed to be the
c identity matrix,
c

c solver applies the basic DIMSIM algorithm to compute a new external stage
c vector and an error estimate. Different coefficients are used in computing
c the error estimate if Starting is .true.
c
c Parameters:
c X0: (real*8) Starting point for this integration step
c NEqn,H,H01d,F,ErrEst,Starting: See description of driver
c FStage: (real*8) Upon output, set to vector of derivatives at internal
c stage points for current step, dimensioned (NEqn,5)
c YIter: (real*8) Upon input, set to rescaled previous external stage vector.
c Upon output, set to current external stage vector. Dimensioned (NEqn,5)
c YIterP: (real*8) Output only, set to input value of YIter. Dimensioned
c (NEqn,5)
c YStage: (real*8) Temporary storage needed for each internal stage vector in
c turn during calculation. Dimensioned NEqn.
„***********************#***

implicit none
real*8XO,H,ErrEst,YIter(NEqn,5),H01d,Delta,Err
real*8 YStage(NEqn),YIterP(NEqn,5),FStage(NEqn,5),Eps
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5)

real*8Beta(5),Gamma(5),vTYIter,Fac,BeÜnit(5),GamInit(5)
integer iii,jjj,JEqn,NEqn
logical Starting
parameter (Eps=2.2d-16)
external F
common/Method/C,A,B ,vT,W,BT,Beta,Gamma
save Method
Delta=H/H01d
do JEqn=l,NEqn

doiii=l,5
YIterP(JEqn,iii)=YIter(JEqn,iii)

end do
end do
call F(X0+C(1)*H,YIterP(1,1),FStage(1,1),NEqn)
do iii=2,5

do JEqn=l,NEqn
YStage(JEqn)=YIterP(JEqn,iii)
dojjj=l,iii-l

YStage(JEqn)=YStage(IEqn)+
1 H*A(iii,jjj)*FStage(JEqnjjj)

end do
end do

123

NAWCWPNS TP 8340

callF(XO+C(iii)*H,YStage,FStage(l,iü),NEqn)
end do
do JEqn=l,NEqn

vTYIter=0
doiii=l,5

vTYIter^vTYIter+vT(iii)*YIterP(JEqn,iii)
end do
do iii=l,5

YIter(JEqn,iii)=vTYIter
dojjj=l,5

YIter(JEqn,iii)=YIter(JEqn,iii)+
1 H*B(iii,jjj)*FStage(JEqn,jjj)

end do
end do

end do
ErrEst=0
if (.not. Starting) then

do JEqn=l,NEqn
Err=0
do iii= 1,5

Err=Err+H*Beta(iii)*FStage(JEqn,iii)+
1 Gamma(iii)*YIterP(JEqn,iii)

end do
if (abs(Err) .gt. ErrEst) then

ErrEst=abs(Err)
endif

end do
Fac=Delta**4/(18.82229382702224d0+1.079974531970991d2*Delta+

1 1.43308904334375d2*Delta**2+
2 5.513374496429978dl*Delta**3+Delta**4)

ErrEst=Fac*ErrEst
else

Betlnit(1)=0.181287554525493 6d0
Betlnit(2)=0.3105254335256836d0
Betlnit(3)=-0.3258295105315199d0
Betlnit(4)=0.1138267699195702d0
Betlnit(5)=-0.01051030018603054d0
Gamlnit(1)=-0.1351324309632461 dO
Gamlnit(2)=0
Gamlnit(3)=0
Gamlnit(4)=0
Gamlnit(5)=0.1351324309632461 dO
do JEqn=l,NEqn

Err=0
doiii=l,5

Err=Err+H*BetInit(iii)*FStage(JEqn,iii)+
1 GamInit(iii)*YIterP(JEqn,iii)

end do
if (abs(Err) .gt. ErrEst) then

ErrEst=abs(Err)
endif

124

NAWCWPNS TP 8340

end do
endif
end

125

NAWCWPNS TP 8340

subroutine start(YIterP,F,XO, Y0,NEqn,H,YP,Tol, Yl ,YlP,Y6Der,
1 Y2,Y2P,Y4,YNord,RKWork)

c start first calculates the derivative at the initial point X0. A scaling
c factor g to estimate the size of the initial Nordsieck vector is computed and
c this is used to determine hO. In most cases g will be the smaller of the
c norm of the function and the first derivative, but in case one is smaller
c than 1000*eps (machine epsilon) the larger is taken, and in no case is g
c taken as less than 10-6. A 6th order Runge-Kutta method is used by calling
c RK6 to compute the solution Y4 at X0+h0/4, Y2 at X0+h0/2 (from Y4), and Yl
c at XO+hO (from Y2). These are then used to calculate a Nordsieck vector for
c computation of the initial external stage vector, plus an extra derivative
c for computation of the appropriate size for the first DÜVISIM step. Both
c the Nordsieck vector and the intial external stage vector are returned in
c case tolerance is not met.
c YIterP: (real*8) Initial external stage vector, output dimensioned (NEqn,5)
c F,X0,Y0,NEqn: Seedim51 description
c H: (real *8) Output value for calculated initial DIMSBvI step size
c YP: (real*8) Derivative of the solution at X0, calculated using y'=F(X0,Y0),
c output dimensioned NEqn
c Tol: (real*8) Initial tolerance computed as described in section a from
c RTol, Y0 and ATol, input
c Y1,Y1P,Y2,Y2P,Y4: (real*8 arrays) Values computed using 6th order
c Runge-Kutta method for solution at hO, hO/2, and hO/4, and associated
c derivatives computed using F, workspace each dimensioned NEqn.
c Y6Der: (real*8 array) 6th derivative of solution vector at X0, multiplied
c times , workspace dimensioned NEqn.
c YNord: (real*8) Nordsieck vector at X0 for step size H, output dimensioned
c (NEqn,6)
c RKWork: See driver description

**

implicit none
real*8 YIterP(NEqn,5),X0,Y0(NEqn),H,YP(NEqn),Tol,YPP,norm,EPS
real*8 Yl (NEqn),YlP(NEqn),Y2(NEqn),g,hO,delta
real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5)

real*8Y6Der(NEqn),YNord(NEqn,6),Y2P(NEqn),Y4(NEqn)
real*8 RKWork(8*NEqn)
integer NEqn,JEqn,iii,jjj
parameter (EPS=2.2d-16)
external F
common /method/C, A,B, vT,W,BT,Beta,Gamma
save Method
call f(XO,Y0,YP,NEqn)

c
c Compute a value for hO
c

g=dminl(norm(YO,NEqn),norm(YP,NEqn))
if (g .It. 1000*eps) g=dmaxl(norm(yO,NEqn),norm(YP,NEqn))
g=max(g,1.0d-6)

126

NAWCWPNS TP 8340

hO=10**(5.0dO/6)*(eps/g)**(1.0dO/6)
c
c Compute a value for y4 at X0+H0/4 using sixth order
c Runge-Kutta method
c

call RK6(Y4,X0,Y0,h0/4,F,NEqn,RKWork(1 +7*NEqn),RKWork(1),
1 RKWork(l+NEqn),
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn),
2 RKWork(l+5*NEqn),RKWork(1 +6*NEqn))

c
c Compute a value for y2 and y2P at X0+H0/2 using sixth order
c Runge-Kutta method
c

call RK6(Y2,X0+h0/4,Y4,h0/4,F,NEqn,RKWork(1 +7*NEqn),RKWork(1),
1 RKWork(l+NEqn),
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn),
2 RKWork(l+5*NEqn),RKWork(l+6*NEqn))
call F(X0+h0/2,Y2,Y2P,NEqn)

c
c Compute a value for yl and ylP at X0+H0 using sixth order
c Runge-Kutta method
c

callRK6(Yl,X0+h0/2,Y2,h0/2,F,NEqn,RKWork(l+7*NEqn),RKWork(l),
1 RKWork(l+NEqn),
1 RKWork(l+2*NEqn),RKWork(l+3*NEqn),RKWork(l+4*NEqn),
2 RKWork(l+5*NEqn),RKWork(l+6*NEqn))
call F(XO+hO,Yl,YlP,NEqn)

c
c Compute sixth derivative times h0A6
c

do JEqn=l,NEqn
Y6Der(JEqn)=1280*(-90*Y0(JEqn)-22*Yl(JEqn)-144*Y2(JEqn)+

1 256*Y4(JEqn)+H0*(-9*YP(JEqn)+
2 3*YlP(JEqn)+36*Y2P(JEqn)))
end do

c
c Compute initial step size
c

H=hO*(Tol/(4*(5.518667640362375d-5)*norm(Y6Der,NEqn)))
1 **(1.0d0/6)
if (H .It. 100*EPS)then

print *,'START-Tolerance too tight or H too small'
print *,'h0=',h0/H=',H,'New H=1.0d-8'

H=1.0d-8
endif

c
c Compute starting vector
c

delta=H/hO
do JEqn=l,NEqn

YNord(JEqn, 1)=YO(JEqn)

127

NAWCWPNS TP 8340

YNord(JEqn,2)=H*YP(JEqn)
YNord(JEqn,3)=2*(-567*Y0(JEqn)-25*Yl(JEqn)-432*Y2(JEqn)+

1 1024*Y4(JEqn)+H0*(-90*YP(JEqn)+3*YlP(JEqn)+
2 72*Y2P(JEqn)))/9

YNord(JEqn,3)=YNord(JEqn,3)*delta**2
YNord(JEqn,4)=1836*Y0(JEqn)+148*Yl(JEqn)+2112*Y2(JEqn)-

1 4096*Y4(JEqn)+H0*(222*YP(JEqn)-
2 18*YlP(JEqn)-384*Y2P(JEqn))

YNord(JEqn,4)=YNord(JEqn,4)*delta**3
YNord(JEqn,5)=32*(-1323* YO(JEqn)-169* Yl (JEqn)-1836* Y2(JEqn)+

1 3328*Y4(JEqn)+H0*(-144*YP(JEqn)+
2 21*YlP(JEqn)+378*Y2P(JEqn)))/3

YNord(JEqn,5)=YNord(JEqn,5)*delta**4
YNord(JEqn,6)=160*(378*Y0(JEqn)+70*Yl(JEqn)+576*Y2(JEqn)-

1 1024*Y4(JEqn)+H0*(39*YP(JEqn)-
2 9*YlP(JEqn)-132*Y2P(JEqn)))

YNord(JEqn,6)=YNord(JEqn,6)*delta**5
end do

c
c We make use of the special form of W for c0=0, explicit methods
c

do JEqn=l,NEqn
YIterP(JEqn, l)=Y0(JEqn)
do iii=2,5

YIterP(JEqn,iii)=0
dojjj=l,6

YIterP(JEqn,iii)=YIterp(JEqn,iü)+
1 W(iii,jjj)*YNord(JEqn,jjj)

end do
end do

end do
end

128

NAWCWPNS TP 8340

subroutine rescale(YIter,H,H01d,FStage,YIterP,NEqn)

*
c rescale takes a previous external stage vector computed using a step size
c HOld and uses the DIMSIM rescaling algorithm to rescale it to become the
c appropriate previous external stage vector for continuing the computation
c with step size H.
c
c Parameters:
c YIter: (real*8) Output rescaled extermal stage vector, dimensioned (NEqn,5)
c H: (real*8) Input new step length
c HOld: (real*8) Input step length for previous successful step.
c FStage: (real* 8) Input vector of derivatives at stage points for last step
c completed
c YIterP: (real*8) Input previous external stage vector, calculated using step
c length HOld, dimensioned (NEqn,5)
cNEqn: Seedim51

*

implicit none
real*8Yiter(NEqn,5),H,H01d,FStage(NEqn,5),YIterP(NEqn,5),Delta
real*8 C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Suml ,Sum2

real*8 Beta(5),Gamma(5)
integer i,j,k,JEqn,NEqn
common /Method/C,A,B ,vT,W,BT,Beta, Gamma
save Method
Delta=H/H01d
do JEqn=l,NEqn

doi=l,5
Sum 1=0
Sum2=0
doj=l,5

Sum2=Sum2+vT(j)*YIterP(JEqnj)
end do
doj=l,5

dok=l,6
Suml=Suml+W(i,k)*Delta**(k-l)*BT(k,j)*FStage(JEqn,j)

end do
end do
YIter(JEqn,i)=H01d*Suml+Sum2

end do
end do
end

129

NAWCWPNS TP 8340

real*8 function NewStep(H,Tol,ErrEst)

*#

c The error estimate is compared with the tolerance to produce a step change
c factor modifying the step size in preparation for the next step. The local
c truncation error is assumed to be proportional to the 6th power of the step
c size. The largest possible step change is a factor of 2. A step change
c safety factor equal to .75 was used for DIMEX5 so that the step size used
c was .75 of optimal. A larger factor of .9 was used successfully for DIMEX2.
c
c Parameters:
c H: (real*8) At input contains old step size. At output contains new step
c size
c Tol: (real* 8) Input tolerance derived from RTol, Y and ATol as described
c in section a above
c ErrEst: (real* 8) Input current local error estimate
c**
**

implicit none
real*8ErrEst,RTol,ATol,Tol,HFac,H,Eps,YNorm
parameter (Eps=2.2d-16)
HFac=.75dO*(Tol/abs(ErrEst))**(1.0dO/6)
HFac=dminl(HFac,2.0dO)
NewStep=HFac*H
end

130

NAWCWPNS TP 8340

subroutine NordInterp(Y,H,Theta,FStage,YIter,NordVec,NEqn)

*

c The Nordsieck vector NordVec is calculated at the current value of XOut,
c using the previously calculated external stage vector YIter, the current
c step size H, and the current vector of derivatives at stage points, FStage.
c Theta then is used to rescale the Nordsieck vector to correspond to the
c desired output point and a 5th order Taylor series approximation Y is formed.
c
c Parameters:
c Y: (real*8 vector) Output approximation to the solution at the desired
c output point, length NEqn.
c H: (real*8) Input step size for last successful integration
c Theta: (real* 8) Input between 0 and 1, ratio (X-X01d)/H, where X is the
c desired output point
c FStage: (real*8 vector) Input vector of derivatives at stage points for
c last successful integration, dimensioned (NEqn,5)
c YIter: (real*8 vector) Input previous external stage vector, dimensioned
c (NEqn,5)
c NordVec: (real*8 vector) Workspace (output for waveform relaxation) for
c Nordsieck vector at current XOut and last step size used.
cNEqn: Seedim51

*

implicit none
real*8H,Theta,FStage(NEqn,5),YIter(NEqn,5),Y(NEqn)
real*8NordVec(NEqn,6),Bt(6,5),vT(5),vTIter,del,C(5),A(5,5)
real*8B(5,5),W(5,6),Beta(5),Gamma(5),Factorial
integer JEqn,NEqn,iii,jjj
common/Method/C,A,B,vT,W,Bt,Beta,Gamma
save Method
do JEqn=l,NEqn

vTIter=0
doiii=l,5

vTIter=vTIter+vT(iii)*YIter(JEqn,iii)
end do
do iii= 1,6

NordVec(JEqn,iii)=vTIter
dojjj=l,5

NordVec(JEqn,iii)=NordVec(JEqn,iii)+
1 H*Bt(iii,jjj)*FStage(JEqn,jjj)

end do
end do
del=-(l-theta)
Y(JEqn)=NordVec(JEqn, 1)
factorial 1
do iii=2,6

Y(JEqn)=Y(JEqn)+NordVec(JEqn,iii)*del**(iii-l)/Factorial
Factorial=Factorial*iii

end do
end do

131

NAWCWPNS TP 8340

end

132

NAWCWPNS TP 8340

subroutine RK6(Y,X0,Y0,H,F,NEqn,YP,YP2,YP3,YP4,YP5,YP6,YP7,YTemp)
/-% 5jC 5|C 5(C 3JC 5|* 5f£ JjC »J* «j£ SjC *jC »(» 5jC 5JC 5JC 5JC *JC 5JC 5JC *|C 5|S SjC JJ» *|* *> 5jC *j* JfC 5JC JjC 5|C 5J* JjC 5(C ?JC *jC 3JC SjC »JC 3JC *JC 3j» 3|C 5JS *}* 5|C 3(C 3J^ *JC 3p SJC 3j* 5J* 3|» J)y *J* 3JC *J> *jy 3]C 5jt *f* PJC *j* *|* ?J* Jj* ?p Pf* *p 5j£

c A simple 6th order Runge-Kutta solver with 7 stages, used to provide solution
c valuesneeded for starting method. Solution Y for initial values (X0,Y0) is
c found at XO+H for problem Y'=F(X,Y). The method is described in Butcher,
c pp. 203-205.
c
c Parameters:
c Y: (real*8 vector) Solution at XO+H, dimensioned NEqn.
c XO: (real*8) Initial value of independent variable.
c YO: (real*8 vector) Initial value of dependent variable, dimensioned NEqn
c H: (real*8) step size used
cF: seedim51
cNEqn: seedim51
c YP,YP2,YP3,YP4,YP5,YP6,YP7: (real*8 vectors) Workspace used for storing
c derivatives of stages, each dimensioned NEqn.
c YTemp: (real*8 vector) Workspace used for storing stage vectors
c successfully, dimensioned NEqn

implicit none
integer JEqn,NEqn
real*8H,X0,Y0(NEqn),YP(NEqn),YP2(NEqn),YP3(NEqn),YP4(NEqn)
real*8Y(NEqn),YP5(NEqn),YP6(NEqn),YP7(NEqn),YTemp(NEqn)
external F
call F(X0,Y0,YP,NEqn)
do JEqn=l,NEqn

YTemp(JEqn)=Y0(JEqn)+H*YP(JEqn)/3
end do
call F(X0+H/3,YTemp,YP2,NEqn)
do JEqn=l,NEqn

YTemp(JEqn)=Y0(JEqn)+2*H*YP2(JEqn)/3
end do
call F(X0+2*H/3,YTemp,YP3,NEqn)
do JEqn=l,NEqn

YTemp(JEqn)=Y0(JEqn)+H*(YP(JEqn)+4*YP2(JEqn)-YP3(JEqn))/12
end do
call F(X0+H/3,YTemp,YP4,NEqn)
do JEqn=l,NEqn

YTemp(JEqn)=Y0(JEqn)+H*(25*YP(JEqn)-110*YP2(JEqn)+
1 35*YP3(JEqn)+90*YP4(JEqn))/48
end do
call F(X0+5*H/6,YTemp,YP5,NEqn)
do JEqn=l,NEqn

YTemp(JEqn)=YO(JEqn)+H*(18* YP(JEqn)-55* YP2(JEqn)-
1 15*YP3(JEqn)+60*YP4(JEqn)+12*YP5(JEqn))/120
end do
call F(X0+h/6,YTemp,YP6,NEqn)
doJEqn=l,NEqn

YTemp(JEqn)=Y0(JEqn)+H*((-261 d0/260)* YP(JEqn)+

133

NAWCWPNS TP 8340

1 (33d0/13)*YP2(JEqn)+(43d0/156)*YP3(JEqn)+
2 (-118d0/39)*YP4(JEqn)+(32d0/195)*YP5(JEqn)+
3 (80d0/39)*YP6(JEqn))
end do
call F(X0+h,YTemp,YP7,NEqn)
do JEqn=l,NEqn

Y(JEqn)=Y0(JEqn)+H*(13*YP(JEqn)+55*YP3(JEqn)+55*YP4(JEqn)+
1 32*YP5(JEqn)+32*YP6(JEqn)+13*YP7(JEqn))/200
end do
END

134

NAWCWPNS TP 8340

block data Matrices

c The matrices and vectors defining the particular method are set to
c appropriate values using data statements and stored in the common region
c /Method/.

1» «1 *1* *1» *1» *1* *1» *I» *!• •!» *I» *!• *1» »I* *l* *i* *J* »1* *1* *I* *1* *t* *I* *I* ■!• «I* *!• *1* 4* "J* •!* *1* *1" »£* *1* *1* *1* *I* *4* «4* *1- *1* 4* ^* *I* *I* *1* ^ ^* ^ "1* ^* >l* ^ "^ 4* ^* 4* 4* 4* ^ ^r ^ ^r ^ *^* ^* ^^ ^ ^" ^
A Jjv J|s J|^ JJ^ 5J* *|* ^> *I* *^ *p J^ *fr <[* ^* *^ ^ n* ^ ^ ^ ^ ^ ^* ^* ^* ^« «^ *^ ^* *T* ^ *T* *t* *T* *r* *r* *v* *r* ^ •T* *^ *T* **• *T* *** *T* *1* "1* "T* "T* *T* ■!* "T* *1* *T* *** *I* *T* *r* **■ *I* *1* *** *t* *I* •T" *T" *T* *T* *T* *T*

real*8C(5),A(5,5),B(5,5),vT(5),W(5,6),BT(6,5),Beta(5),Gamma(5)
common/Method/C,A,B ,vT,W,BT,Beta,Gamma
save Method
datavT/-.2406956155386215d0,1.2604945758471451d0,

1 -2.4812693924523267d0,1.9199070083032958d0,
2 5.415634238405067d-l/
data C /0,2.5d-l,5.0d-l,7.5d-l,l/
data A/0,1.1765281703106688d0,1.9805793463233191d0,
1 3.0532835108392395d0,1.4193325269467698d0,2*0,
2 .4017181027378085d0,.7349961462028882d0,
3 2.6534897473125331d0,3*0,.2672357626475791d0,
4 -2.2778532945468265d0,4*0,1.1978905088172778d0,5*0/
dataB/3.163023914364555736d0,3-250176692142333514d0,

1 3.508528033848969459d0,4.176223954923772036d0,
2 3.008220785304765914d0,1.9743392460505406810,
3 1.53197813493942957d0,0.327374204184027625d0,
4 -2.61827171939311992d0,2.11453341958770507d0,
5 -0.81042512005562813d0,0.097908213277705203d0,
6 2.239060519232953536d0,7.03900409877443037d0,
7 0.3572048837825639d0,0.540922018802018401d0,
8 -0.422272425642426043d0,-2.097452509375452155d0,
8 -5.2884360132659356d0,
9 -1.90425330857598604d0,0.05507865419631683844d0,
1 -0.4613800716699075171d0,-0.936868983593822539d0,
2 -1.691097027371050162d0,-0.64562655527099952d0/
data Bt/3.163023914364555d0,0,1,1.46666666666667d 1,96,256,

1 1.974339246050541d0,0,-5.333333333333333d0,
2 -7.466666666666667dl,-448,-1024,-0.810425120055628dO,0,
3 12,152,768,1536,0.5409220188020184d0,0,-16,
4 -1.386666666666667d2,-576,-1024,0.05507865419631683d0,
5 l,8.333333333333333d0,4.666666666666667dl,160,256/
dataW/l,l,l,l,l,0,-0.926528170310669d0,-1.882297449061128d0,

1 -3.305515419689707d0,-1.992859488529754d0,0,
2 0.03125d0,0.02457047431554788d0,-0.03 61169178745116d0,
3 0.07713632883232162d0,0,0.002604166666666666d0,
4 0.00827964262277682d0,0.01393940010021236d0,
5 0.03157006827664394d0,0,0.0001627604166666666d0,
6 0.001558025774120291d0,0.005702129564105415d0,
7 -0.002014862315115681d0,0,8.13802083333333d-6,
8 0.0001950328608825182d0,0.001161984318267553d0,
9 -0.001959141967572072d0/
data Beta/-2.385388840413769d3,-1.706352417381188d2,

1 1.870907224366729d2,-2.323292678834744dl,0/

135

NAWCWPNS TP 8340

data Gamma /1.268306923377163d3,0,-1.224572201881436d3,0,
1 -4.373472149572754dl/
end

136

INITIAL DISTRIBUTION

1 Command« in Chief. U. S. Pacific Fleet, Pearl Harbor (Code 325)
1 Naval War College, Newport
1 Headquarters, 497 IG/INT, Falls Church (OUWG Chairman)
2 Defense Technical Information Center, Fort Belvoir
1 Center for Naval Analyses, Alexandria, VA (Technical Library)

ON-SITE DISTRIBUTION

4 Code 4BLO0OD (3 plus Archives copy)
1 Code 4BO00OD

17 Code 4B4000D
S. Chesnut (1)
C. Schwartz (1)
J. VanWieren (15)

1 Code 472000D
1 Code 473000D

