
.>•'■

. -WgSJ¥n

;-S*r

EXPERIMENTS IN AGGREGATING AIR
ORDINANCE EFFECTIVENESS

DATA FOR THE TACWAR MODEL

THESIS
James E. Parker

Major, USAF

AFTT/GOA/ENS/97M-12

Apptowd to* public ratectMf
DMiibottan rjnMmitBd

CVJ

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

üriccpiALm^sPEcrBDi

AFIT/GOA/ENS/97M-12

EXPERIMENTS IN AGGREGATING AIR
ORDINANCE EFFECTIVENESS

DATA FOR THE TACWAR MODEL

THESIS
James E. Parker
Major, USAF

AFIT/GOA/ENS/97M-12

Approved for public release; distribution unlimited

AFIT/GOA/ENS/97M-12

EXPERIMENTS IN AGGREGATING AIR ORDINANCE
EFFECTIVENESS DATA FOR THE TACWAR MODEL

THESIS

Submitted to the Faculty of the Graduate School of Engineering
in Partial Completion of the

Requirements for the Degree of
Master of Science in Operations Research

James E. Parker, BSCE
Major, USAF

February, 1997

Approved for public release; distribution unlimited

THESIS APPROVAL

Student: James E. Parker, Major, USAF Class: GOA-97M

Title: Experiments in Aggregating Air Ordinance Effectiveness Data for the TACWAR
Model

Defense Date: 20 February 1997

Committee: Name/Title/Department

Advisor Jack Jackson
Assistant Professor
Department of Operational Sciences

Reader Steven K. Rogers
Professor
Department of Electrical and Computer Engineering

Preface

The purpose of this research effort was to develop a straightforward method of

aggregating output data from the SABSEL model for use in the TACWAR model. The

objective was to develop a software application that would provide consistent results

while not requiring a tremendous amount of effort on the part of the analyst. The

majority of the effort focused on the construction of a functional approximation of the

data and evaluation of this approximation against a look-up table methodology. For the

SABSEL data set, a look-up table proved superior. An application was built using the

look-up features of MS Access that is simple and straightforward.

This work could not have been completed without the help and encouragement of

others. First, I am most indebted to my Lord and Savior, Jesus Christ without whose

sacrifice none these efforts would have the slightest eternal meaning. I would also like to

thank my advisor, Ltc Jack Jackson, for his patient encouragement and pointed comments

that helped maintain focus on the big picture. I'm also grateful to Dr. Steve Rogers, who

helped keep this effort on track with his insight and direction throughout my efforts with

neural networks. Major Don Hinton also provided great help with his insights into the

vagaries of MS Access and saved me many hours of trial and error. Finally, I would like

to give special thanks to my wife, Michelle, whose consistent love, patience and support

were invaluable.

Table of Contents

Page

Preface "

List of Figures yii

Abstract *x

I. Introduction 1

1.1 Background... 1

1.2 Research Approach 3

1.3 Research Objectives 3

1.4 Summary 4

n. Literature Review 6

2.1 Neural Networks 6

2.1.1 Multilayer Perceptrons 7

2.1.1.1 Backpropagation Learning Law 8

2.1.1.2 Enhancements to Backpropagation Learning Law 11

2.1.2 Radial Basis Functions 12

2.2 Statistical Networks™ by ModelQuest™ 13

2.3 Statistical Methods 16

2.4 Summary 17

HI. Methodology and Results 18

3.1 Neural Networks 18

in

Page

3.1.1 Gaining Experience with Backpropagation 18

3.1.2 Backpropagation Efforts with the SABSEL Data Set 20

3.1.2.1 Feature Reduction 21

3.1.2.2 Preprocessing the Data 25

3.2 Radial Basis Functions 26

3.3 Divide and Conquer 27

3.4 Statistical Networks - ModelQuest 28

3.5 Statistical Approximation 29

3.6 Summarizing Function Approximation 30

3.7 Aggregation with a Look-up Table 31

3.8 Summary 33

IV. Conclusions/Recommendations 34

4.1 Conclusions 34

4.1.1 Data Reduction 34

4.1.2 Neural Networks 34

4.1.3 Statistical Networks 35

4.1.4 Statistical Techniques 35

4.1.5 Look-up vs. Function Approximation 35

4.2 Aggregation Tool 36

4.3 Recommendations 36

4.4 Summary 37

IV

Appendix A. Neural Network Terms 38

Appendix B. Chen's Orthogonal Least Squares Basis Function Algorithm 40

Appendix C. Matlab Code 44

Appendix D. SABSEL Aggregator Tutorial 47

Bibliography 52

Vita 54

List of Figures

Figure PaSe

1. Multilayer Perceptron 8

2. Transfer Functions 10

3. Example Four Input, Three Layer, Single Output Statistical Network 13

4. ModelQuest Performance 15

5. Principal Components Mapping 17

6. Data for Function Approximation 19

7. Scatterplot Matrix 23

8. Feature vs. Mean SSPD 24

9. Feature vs. SSPD Std Dev 25

A-l Perceptron 38

D-l Select Form 48

D-2 Data Input Form 48

D-3 Aircraft Entry Form 49

D-4 Aggregate Button Output 50

D-4 Raw Data Output 51

D-5 Report Output 51

VI

List of Tables

Table PaSe

1. Weight Updates U

2. Correlations 22

3. Principal Components 23

4. Results Summary 30

Vll

AFIT/GOR/ENS/97M-12

Abstract

An interactive MS Access™ based application that aggregates the output of the

SABSEL model for input into the TACWAR model is developed. The application was

developed following efforts to create a functional approximation of the SABSEL data

using neural networks, statistical networks, and traditional statistical techniques. These

approximations were compared to a look-up table methodology on the basis of accuracy,

(RMSE < 0.01), speed (runs in minutes) and compactness (storage requirement). The

method best satisfying these criteria, the look-up table, was used as the basis from which

the application was constructed. Results from the comparison of the function

approximation techniques give insight as to the strengths and weaknesses of each

technique.

vin

EXPERIMENTS IN AGGREGATING AIR ORDINANCE
EFFECTIVENESS DATA FOR THE TACWAR MODEL

I. Introduction

A recurring challenge in modeling and simulation (M&S) is the aggregation of

data from high resolution models for input or use in lower resolution models. For

example, the U. S. Central Command Combat Analysis Group (CCCA) often uses output

from the Air Force's Sabre/Selector (SABSEL) model for input into the TACWAR

theater level model, and needs an analytically sound method to aggregate the SABSEL

data. This research focuses primarily on the construction of a functional approximation

of SABSEL data using neural networks, statistical networks, and traditional statistical

techniques. The approximations constructed under each technique will be compared with

a look-up table methodology on the basis of accuracy, speed and compactness (storage

requirement). Finally, using the best methodology, an automated aggregation tool for the

SABSEL data will built to meet CCCA's needs.

1.1 Background

The CCCA uses theater level combat models for much of its analysis. Many

inputs to these models require the aggregation of high resolution data into a useable form

for input to one of these models. Currently, much of the aggregation of data relies upon

the expert judgment of the analyst to boil down high resolution model data. Due to

variability in methodology from analyst to analyst, this expert judgment produces results

that are hard to defend when subjected to skeptical scrutiny. As the reliance of decision

makers upon M&S continues to increase, the current method of aggregation is losing its

utility. A better method is needed.

More specifically, CCCA has a need for an analytically sound method of

aggregating the air ordinance effectiveness data of the engineering level S ABSEL model

for input of a single value into the TACWAR theater level model. The large SABSEL

data base contains values for numerous factors including aircraft type, ordinance load,

delivery profiles, target type and layout, weather, and many others. From these many

factors SABSEL can produce output for a wide variety of input scenarios. The challenge

for CCCA analysts is producing a consistent, analytically defensible input value to the

TACWAR model in a timely fashion.

The difficulty of this aggregation process can be illuminated with the following

example. Currently, TACWAR has a single effectiveness value for an AGM-65 missile

attacking a single tank ground target. SABSEL on the other hand generates separate

values for several AGM-65 missiles, delivered from several different aircraft, various

weather conditions, differing delivery tactics, differing target types, differing target

groupings, the number of weapons on of the delivery aircraft, the number of passes over

the target and numerous other factors. Each of these factors may or may not have a

distinct effect on the effectiveness of a particular combination of input values. Currently,

CCCA uses an expert judgment based estimation process. In this process the analyst

averages the SABSEL effectiveness data for those factors the analyst deems significant.

Since the heuristic varies from analyst to analyst, this leads to a lack of defensible

consistency in the aggregation process. CCCA desires a methodology that is

straightforward, transparent, and defensible (Foulk, 1996).

1.2 Research Objectives

This research will compare several methods of creating a functional

approximation as a means of aggregating the data from the SABSEL model. This effort

will focus on building and training a neural network to produce the desired output. The

performance of the neural network will be compared to an automated off the shelf

software product that combines statistical and neural networks techniques. The output of

both of these techniques will also be compared to a statistical regression approach. This

comparison will be based on the accuracy of the functional approximation using the root

mean square error (RMSE) due to the ability to compare the fit of various sample sizes.

For those techniques achieving the desired accuracy, considerations of speed and

compactness will be compared to that of a look-up table based approach. Using the

"best" technique, an automated tool was created for aggregating the SABSEL data.

1.3 Research Approach

In recent years, problems of this nature have been tackled by network modeling

approaches that produce output based on a polynomial representation of the various input

factor levels. One of the advantages of these networks is that they are self organizing.

Self organizing models can "train" on input data and adjust the output values to provide a

desired result in a manner similar to how a child learning a new skill makes adjustments

to produce the desired result (Nelson, 1991:3). This research will first design and train a

neural network using a portion of the SABSEL data. Upon achieving consistent results

with the neural network, a second model was built using the automated modeling tool

ModelQuest™ by AbTech Corporation of Charlottesville, VA (ModelQuest, 1996).

Then, a third model will be built using traditional statistical techniques. These models

will then be measured against a look-up table for speed and accuracy. Accuracy will be

measured against root mean square error (RMSE) using a portion of the SABSEL data set

held out of the model building process. The "best" method will be that which most

closely conforms to CCCA's requirements of accuracy, clarity, and defensibility.

A successful research effort will produce insight into the various significant

factors thereby enhancing the aggregation process for CCCA. Our goal is' to produce a

straightforward, analytically sound methodology that CCCA can apply consistently. As a

best case, this research will produce or demonstrate a methodology that has wide

applicability for many aggregation problems facing the M&S community.

Chapter Two discusses the applicable literature outlining the techniques used to

approximate the SABSEL data as a function. The techniques discussed include

backpropagation and radial basis function neural networks, statistical networks, and

principal components analysis. Chapter Three provides a narrative of the research and

results, to include the building of a MS Access application to meet the sponsor's

requirements. Chapter Four outlines the final results and recommendations from this

research effort.

1.4 Summary

This thesis will apply neural networks, statistical networks, and traditional statistical

techniques to the SABSEL database to attempt to generate a highly accurate function

approximation of the data. The technique yielding the "best" performance will be

measured against a look-up methodology and an application to aggregate the SABSEL

data will be built to meet CCCA's requirements.

II. Literature Review

This problem is essentially one of approximating an unknown function which

represents the underlying trends in the data, with a requirement for a high degree of

accuracy. CCCA's current methodology uses a table look-up from the SABSEL data

base to determine a single shot probability of damage (SSPD) as input to the TACWAR

model. Neural nets, abductive networks, and multivariate statistics each show promise

for reproducing the SABSEL data in the form of a function. This chapter provides a

review of literature concerning neural networks, statistical networks, and multivariate

analysis as each pertains to this problem. Specifically, the necessary terms for each

technique will be defined and a basic discussion provided.

2.1 Neural Networks

Artificial neural networks grew out of attempts to model the processes of the brain at

the level of the neuron. Neural network techniques attempt to reproduce biological

capabilities by using a similar approach. Though biologically inspired, many of the

methods in artificial neural networks are not biologically accurate in a manner similar to

the way aircraft wings bear only faint resemblance to the birds wings which inspired them

(Nelson, 1991:1) (Rogers, 1990:iii). Additionally, neural networks have grown to

encompass a wide area of application using a variety of techniques. This discussion will

focus on feedforward, multilayered, neural networks to perform a curve fitting operation

on the multidimensional SABSEL data. The author assumes a familiarity with the terms

of neural network research. However, a brief glossary is provided in appendix A for

clarification.

2.1.1 Multilayer Perceptrons

The basic building block of the multilayer perceptron (MLP) is the single

perceptron(see glossary, Appendix A). Linearly separable classes can be separated using

a single perceptron. The perceptron is trained to return an output value of ~ 1 with one

class and an output of ~ 0 with the other class. Through training the weights are adjusted

based on the error between the actual output and the desired output. In cases where the

data is not linearly separable but hyperplane separable, an MLP can be used to separate

the classes (Rogers, 1996:7). Cybenko demonstrated that a single hidden layer MLP with

enough perceptrons can approximate any continuous nonlinear function with arbitrary

accuracy (Cybenko, 1989). Using a MLP for function approximation essentially forms a

piecewise approximation to the function, with each perceptron training to return a

segment of the function.

As in other curve fitting techniques, the problems of overfitting and underfitting the

data present themselves. As a result, the selection of the number of perceptrons for fitting

an unknown function remains an art form based on the practitioner's experience and a-

priori knowledge of the data. Figure 1, depicts a Multilayer Perceptron with a single

output. Though multiple outputs are feasible, the nature of the data for this study requires

only a single perceptron on the output layer.

Input Layer Hidden Layer Output Layer

Weights, Wj jO Weights, wjk

Xi

xi
e

ZK

Figure 1. Multilayer Perceptron

2.1.1.1 Backpropagation Learning Law

The most common method for updating the matrix of weights of an MLP is

backpropagation. This technique uses the partial derivative of the error, E, computed

with respect to each weight, to calculate the updates. A common measure of error is sum

squared error (SSE) defined as:

E = J,(dk-zk)
2, (1)

where zk is the actual output and dk is the desired output. In the case of a function

approximation, only a single output perceptron is used and the subscripts of equation 1

are not necessary.

Let w be the weight matrix for a layer. Using gradient descent, the direction of

steepest descent can be defined by —. This relationship yields a learning law for
dw

updating the weights of each perceptron:

cF
w"('+1)=w"(')-"^^' (2)

where w(t+l) is the set of updated weights at step t+1, w(t) the old set of weights at step

t, h defines the perceptron layer, and 77 is the learning rate or step size for the descent

(Rogers, 1996:12-13). As written, this learning law is independent of the transfer

function.

The process of training a MLP has four basic steps (Rogers, 1990:51).

1. Initialize the network weights. Rogers recommends using small random

numbers with a uniform distribution between -0.5 and 0.5.

2. Input the training vector (exemplar) and desired output for that training

vector to the network.

3. Calculate the actual output by using the outputs of each layer as inputs

to the following layer (inputs for the first layer are the feature values of

an exemplar):

y,■=f(Z*>lxl+wI+l0),Vi = 1,2,...,/,./ = 1,2,..., J, (3)
1=0

where JC,. are the inputs to the layer, wt are the weights, ys is the output

of the each perceptron, 6? is the bias, and /(#)is the transfer function.

In matrix terms equation 3 is:

j.=/(wrx),

where the bias, 6, is included as the last row of the input vector x.

(4)

4. Training:

dE
w'(» + l) = w'W-,5^. (5)

The key to the learning law and hence, backpropagation, is calculating the partial

derivative of the error, E, with respect to the weights. This calculation is relatively

straight forward provided the transfer function, /(•), has a manageable derivative.

Transfer functions which have relatively simple derivatives include the sigmoid function

(or logistic), the hyperbolic tangent, the linear function. These functions are shown in

figure 2. Weight update equations for these functions are listed in table 1.

Sigmoid

Figure 2. Transfer Functions

10

Table 1. Weight Updates

Layer Transfer Function Weight Update Equation
Output Sigmoid w) (f +1) = w) {t) + r](d - Z)(z)(l - zKyj)

Output Linear w2
j(t + l) = w2

j(t) + j](d-z)(yj)

Hidden Tanh(linear output) w,;(r + l) = w;(0 + r?(rf-z)(w;
2)(l-(j7.)2)(x,.)

Hidden Tanh(sigmoid output) w\ {t +1) = w\ (t) + r\(d - z)(z)(l - z){w))(l-(yj)2)(x,)

2.1.1.2 Enhancements to the Backpropagation Learning Law

Backpropagation, like other gradient descent techniques, tends to hang up on a local

minimum rather than a global minimum. Two techniques that may speed learning and

reduce the probability of hang up in a local minimum are momentum and adaptive step

size. Momentum aids convergence on the global minimum by preventing radical changes

in the weight change direction. Adding momentum to equation 4 results in:

w*(f + l) = w*(f)-J7
dE

dwh(t)
+ ß(yvh(t)-wh(t-l)), (6)

where \i is the momentum constant. Empirical evidence suggests a value of ß is

between 0.5 and 0.9 (Demuth, 1992). Another technique that speeds convergence or

learning is adaptive adjustment of the step size or learning rate. If the learning rate is too

small, convergence may be extremely slow. If the learning rate is too large, the weights

may not converge as the weights oscillate between less than optimal solutions. An

adaptive learning rate increases the step size if the error, E, decreases and decreases the

step size if the error, E, increases. Adaptive learning can be implemented as follows:

7](t + l) = T](t)-aT](t),

ri(t + l) = ri(t) + ari(t),

if(E(t)-E(t-l))<0,

otherwise
(7)

11

where a is the rate of change in the step size. Adding adaptive learning to equation 5

results in:

r)F
wh(t + l) = wh(t)-ri(t + l)—1— + n(wh(t)-wh(t-D). (8)

cm (0

Another commonly used adaptive technique consists of the logarithmic decay of the

learning rate with each epoch (Rogers, Nov 1996).

An additional enhancement to the gradient descent is an adaptive technique that

transitions between standard first order steepest descent and second order Gauss-Newton

descent is the Levenberg-Marquardt algorithm (LM) (Neter, 1996:546). LM seeks to

capitalize on the best features of both techniques Gauss-Newton and steepest descent.

Gauss-Newton is a direct search procedure that converges quickly provided the starting

conditions are sufficiently close. With poor starting conditions, Gauss-Newton may

converge slowly, converge to a local minimum, or diverge (Neter, 1996:546). LM

transitions between steepest descent and Gauss-Newton based on the rate of convergence

of each epoch [E(t)-E(t-1)]. Typically LM converges orders of magnitude faster than the

backpropagation techniques outlined above, however it requires significantly more

computer memory (Demuth, 1992).

2.1.2 Radial Basis Functions

A large disadvantage of the preceding backpropagation techniques is that the

gradient search techniques are computationally intensive and may not reach a global

minimum. A viable alternative is the use of a network of radial basis functions (RBF).

The key advantage is that this network is linear in the parameters and can be solved using

the least squares algorithm.

12

As initially proposed, this technique centered an RBF such as a Gaussian or spline

function on each data exemplar and solved for the weights. This produced an

approximation with zero error, but did not prove practical in large applications. Various

authors proposed techniques to reduce the size of the RBF network such that IS«I, where

I is the number of exemplars. These efforts met with varying degrees of success. Chen,

et. al., proposed using a forward regression technique using orthogonal least

squares(OLS) that selects a suitable set of RBF centers from the exemplars to obtain a

parsimonious network as shown in appendix B (Chen, 1990:302). The Matlab neural

networks toolbox implements the OLS algorithm (Demuth, 1992)

2.2 Statistical Networks™ by ModelQuest™

ModelQuest is an automated, self organizing software package that fits a piecewise

polynomial to the input data. The ModelQuest system forms this fit by forming a

network of piecewise polynomials where each node represents a fractional portion of the

data similar to neural network techniques. ModelQuest constructs a high order network

from the input data vectors where the output of each layer is a weighted algebraic sum of

the inputs as shown in figure 3. The names single, doublet and triplet are based on the

number of inputs to the element. The output of a single is determined by:

w0+(wlxl) + (w2xl) + (w3x
i

l) (9)

where wt are the weights, and xt are the layer inputs. The output of a double is:

w0+(wix1) + (w2x2) + (w3xf) + (w4xl) + (w5xlx2) +

(w6xf) + {wnx\) + (w8x2xf) + (yv9xxx\)

13

Normalizers First
Layer

Second Third Unitizers
Layer Layer

Output

Figure 3. Example Four Input, Three Layer, Single Output Statistical Network

The output of a triple is determined by:

w0 + (wlxl) + (w2x2) + (w3*3) + (w4xf) + (w5*2) + (w6*3) + (w1xlx2) + (wsxtx3) +

(w9x2x3) + (wwx1x2x3) + (w,,*?) + (w12x2) + (w13x3
3) + (wux2xf) +" (11)

(Wi5*,*2) + (Wi6^i-«3) + Cw17JC3JCj2) + (vt/i8X3X2) + (w19X2X3)

Note that each element is a third degree polynomial and includes cross products in

the case of doublets and triplets. Another element used by the network is the linear

element such that the output is the weighted sum of all outputs from the preceding layer:

w1x1+w2x2+K wnxn (12)

where n is the number of inputs from the preceding layer. Additionally, the network

normalizes the input variables (features) with a zero mean and one variance, and unitizes

14

the output variables to the same range (mean and variance) as the desired output.

ModelQuest automatically fits the best network using a criterion defined by A. R.

Barren called predicted square error (PSE) (Barron: 1984). This criterion attempts to find

the best balance between accuracy and complexity and is defined as follows:

PSE = SSE + KP (13)

where SSE is the sum squared error for the fitted model and KP is a complexity penalty.

The complexity penalty KP can be adjusted based on the needs of the user. The model

performance relationship between SSE, PSE and KP is shown in figure 4.

Best Network PSE

Model
Error

Increasing Complexity

Figure 4. ModelQuest Performance

ModelQuest conducts an enumerative search of the possible combinations of linear,

single, doublet and triplet elements against a training set of data to find the network

which returns the best (lowest) PSE. The network is then presented against a test set of

15

the data to check for the quality of generalization that may be attributed to the network

(ModelQuest, 1996:2.6-2.8).

2.3 Statistical Methods

There are a myriad of statistical tools and techniques that could be brought to bear on

this problem. The primary techniques that show promise for this problem are least

squares regression, stepwise regression (JMP, 1995:199-210), the use of scatter plots

(Neter, 1996:217-251), sorting and grouping (JMP, 1995), and principal component

analysis (Bauer, 1996) (JMP, 1995). Non-linear regression (Neter, 1996:531-558) was

considered as a means of providing a more accurate function approximation, but rejected

because it requires gradient descent techniques for solution, and requires a high degree of

practical skill to produce acceptable results, while not having the time saving advantage

of self organization possessed by neural networks. Logistic regression was considered

but rejected due to the nature of the desired output. Logistic regression works well when

the output is qualitative, while the desired response for this research is continuous (Neter,

1996: 534). Therefore, no attempts at functional approximation will be made using

logistic regression. A brief discussion of principal components analysis follows.

Principal component analysis (PCA) assumes an underlying structure within the data

and seeks to determine the true dimensionality of a data set by studying the

interdependence structure of a set of variables and provide a means of interpreting the

underlying factors within the data (Bauer, 1996:15). By solving the correlation matrix (or

covariance matrix) for its eigenvalues and normalized eigenvectors, the original features

are mapped onto "principal components" as shown in figure 5. This technique takes

16

"linear combinations of the original features such that the first principal component has

maximum variation, the second principal component has the next most variation subject

to being orthogonal to the first and so on"(JMP, 1995:315).

ORIGINAL
FEATURES

PRINCIPAL
COMPONENTS

PCA

MAPPING

w
w

Figure 5. Principal Components Mapping

This mapping forms a linear combination as the cross product of the vector of

original features and the eigenvector corresponding to each eigenvalue. PCA reduces the

dimensionality by using only those principal components which explain a significant

amount of the total variance within the data set (Bauer, 1996:15-26).

2.4 Summary

A function approximation of the SABEL data will be constructed using neural

networks, statistical networks and statistical regression techniques. Each of these

methods will be compared against a table look-up methodology, with the best in terms of

accuracy, speed and simplicity serving as an engine for the desired aggregation tool.

17

III. Methodology and Results

The primary objective of this thesis was to develop a straightforward methodology

for aggregating S ABSEL data for use in the TACWAR model. Ideally, the solution could

be implemented in common software such as Microsoft Excel™ or Access™ and would

be rather transparent to the user. Most of the research focused on attempts to create a

highly accurate function approximation of the SABSEL data that would execute

efficiently. This approximation would serve as an "engine" for an MS Excel based

application. Efficient in this situation, would be an approximation that executes quickly,

requires significantly less memory than the look-up table methodology currently being

used, and sacrifices little in terms of accuracy. Due to the nature of the SABSEL data, the

accuracy turned out to be the driver behind most of the efforts. The following provides a

narrative of the steps taken to create the desired function approximation. Though each

technique approaches this problem from a different direction, there were areas in which

the methods complemented each other. Finally, an application was built using MS

Access to provide the desired aggregation tool. In chapter four, a recommended research

methodology will be discussed.

3.1 Neural Networks

3.1.1 Gaining Experience with Backpropagation

The research began with an effort to code a feedforward, backpropagation neural

network using the Matlab neural network toolbox. Using examples from the Matlab

toolbox, this proved to be a relatively straight forward task. This code was tested on a

18

SUNSPARC Ultra computer against the following equation for verification and to gain

experience with the various backpropagation techniques:

? = (—r) (14)
'x + l 1 + exp{ sin(6x - -J5x)}

which results in the decreasing sin wave type function that goes to zero as the input value

goes to infinity shown in figure 6.

Figure 6. Data for Function Approximation

The measure of accuracy was set at 0.001 using sum squared error as the criterion.

Experimentation was conducted using backpropagation, backpropagation with

momentum, adaptive backpropagation and the Levenberg-Marquardt (LM) algorithm.

For this two dimensional problem with a relatively small number of exemplars, no

network required more than 5 minutes to train. The number of epochs required to train to

the desired accuracy varied with the technique used and the number of perceptrons (or

nodes) used. As stated in the Matlab neural networks toolbox manual, LM requires

19

magnitudes of order fewer epochs to train. LM also demonstrated better characteristics in

avoiding a local minimum. Additionally in conjunction with the LM algorithm, the

number of nodes in the hidden layer were varied to demonstrate the effects of overfitting

and underfitting. Too many nodes resulted in a jagged approximation, while too few

nodes prevented reaching the error goal. One insight gained from this process is that LM

will train quickly initially, then follow a relatively shallow slope to the desired error goal,

unless there are too few nodes in the hidden layer.

3.1.2 Backpropagation Efforts with the SABSEL Data Set

The previously generated code served as the basis for the attempts to train a neural

network against the SABSEL data (see Appendix C). The desired performance goal was

the approximation of Single Shot Probability of Damage (SSPD) to a root mean square

error (RMSE) less than 0.01. RMSE can be defined as:

ISSE
RMSE = 4 , (15)

V n

where n is the number of exemplars (input vectors). A simple inspection of the data set

showed that many of the features were a function of SSPD rather than independent

variables. For example, 'expected kills' is the product of SSPD; the number of passes

over the target and the number of weapons released per pass. Elimination of these

variables reduced the feature space to twelve. A network was then trained on these

features with no preprocessing of the data. Normally preprocessing consists of scaling or

normalizing the data with a mean of zero and a standard deviation of one. The number of

nodes were varied from ten to fifty.

20

During this initial attempt it became apparent that the size of the data base would

greatly slow training, and would require considerable amounts of processor time. To

increase neural network performance, while providing a source of data with which to

check for the ability of the network to generalize, the data was split into equal sized

training and test sets by selecting alternate exemplars for each set from the original data

set. Additionally, a draw back of the LM algorithm soon became apparent. The LM

algorithm requires a large amount of random access memory (RAM) to execute. This is

due to the size of the matrix that must be inverted to solve the LM algorithm during each

epoch. Once the available 64 megabytes of RAM of the machine were exhausted, the

learning process proceeded at a snail's pace due to the slow file swapping process. With

twelve features, network training slowed considerably when the number of nodes used

exceeded fifty. Training on the entire data set and using 50 nodes produced a RMSE of

0.24 after 10000 epochs, which took over 150 hours of processor time. The desired

accuracy was orders of magnitude larger than desired, and increasing the number of

hidden layer nodes would increase the training time greatly, therefore additional reduction

of features would be necessary.

3.1.2.1 Feature Reduction

The first attempt to improve the performance to the network involved using simple

statistical techniques available through the JMP software to try and eliminate features

from future training. Exploration of the data first involved generating a correlation matrix

to help eliminate features that were highly correlated and discover any features that were

highly correlated to the desired output SSPD. The correlation matrix in table 2 shows that

21

the feature showing the highest correlation with SSPD is the weapon type, however its

value is quite low at 0.2985.

Table 2 Correlations

Variable Aircraft Weapon Loadout Profile Weather Target Tgt elem SSPD

Aircraft 1 0.1888 0.5088 0.2282 -0.4723 -0.0217 -0.0027 -0.062

Weapon 0.1888 1 -0.1809 0.2358 -0.1583 0.0003 -0.0071 0.2985

Loadout 0.5088 -0.1809 1 -0.003 -0.4043 0.0354 0.0111 -0.1713

Profile 0.2282 0.2358 -0.003 1 -0.1995 -0.0376 -0.0068 0.0311

Weather -0.4723 -0.1583 -0.4043 -0.1995 1 -0.0281 -0.0021 0.1809

Target -0.0217 0.0003 0.0354 -0.0376 -0.0281 1 -0.0509 0.0593

Tgt elem -0.0027 -0.0071 0.0111 -0.0068 -0.0021 -0.0509 1 -0.0938

SSPD -0.062 0.2985 -0.1713 0.0311 0.1809 0.0593 -0.0938 1

Principal component analysis (PCA) and experimentation with different groupings of

features, while searching for those combinations which could account for the greatest

amount of variance within the data, produced disappointing results. In following the rule

of thumb for PCA which suggests keeping those components which have an eigenvalue

greater than 1.0 only four principal components should be used. These components

roughly correspond to aircraft, weapon, target elements, and target type as shown in table

3. These components explain only 76% of the variance, thus failing to meet the accuracy

requirements.

However, the grouping of aircraft, weapon, profile and target produced a set of

features that spanned the entire data set. In other words, each exemplar within the set is a

unique combination of values from these four features. Using this information, all but

these four features were eliminated from future neural network training attempts. Closer

examination of these four features showed that they all are nominal variables: aircraft

type, weapon type, profile type, and target type. This would suggest there exists no real

22

structure within the data. The scatter plot analysis in figure 7 confirms the lack of

structure and indicates a relatively large number of nodes will be required to approximate

this data with an acceptable error.

Table 3 Principal Components

Eigenvalue: 2.0167 1.3015 1.0524 0.9499 0.7581 0.5512 0.3703

Percent: 28.8094 18.5925 15.0337 13.5704 10.8306 7.8737 5.2897

CumPercent: 28.8094 47.4019 62.4356 76.006 86.8366 94.7103 100

Eigenvectors:
Aircraft 0.59366 -0.0276 0.03065 -0.0452 -0.1191 0.47867 -0.6329

Weapon 0.17487 0.68202 -0.0898 0.14154 -0.5648 0.17279 0.35683

Loadout 0.4846 -0.4956 0.0299 -0.0417 0.03863 0.25927 0.66946

Profile 0.28015 0.52313 0.02207 -0.0359 0.79373 0.0361 0.12151

Weather -0.551 0.01477 0.03201 -0.0457 0.13217 0.81795 0.0811

Target 0.00911 -0.1178 -0.7064 0.68142 0.12989 0.05794 -0.0498

Tgt elem 0.00128 -0.0262 0.69971 0.71308 0.03116 0.01005 -0.0129

10.0

7.0

5.0

3.0

1.0
90'

70 !
so;
30;

io-

400 n

Aircraft

zoo

100

70

■i:

sol I
- I
: i

30 i i

10-

i <

TU« ap on

■ Uli!
iru": n in i
ikin.i ii r<-
mfaitt
ITK":
II H...
frill"

II *■■
ip mil
II ■"■
Iklliii
L-ff.,..

HPIrf III .*.
= = H t! » •=■
** ■.
IEÜ II L .*.
»IT« r| B .-.

■ i-ff ; J
__n in ■' nm ri t i-i

Profile asisHHKHs:::
I'v-nrr 'Triii ■-■■taa.

^■i^ I

iiiiSi
j^ao.na i

wi^ ■
tuj i:nn I

XJUBil
«l!M I

lTl *■■■■>' -
bbjaiHi i

|%V4*I>H* «

■It 'IVl IITAa

ftllllRIIIIIHIIIII
ililiitiHIillil
»■■■im ■in»#BDrii

Tirget

■UJUJUUIIL'L?..

1—HllWi ilUm

0.90

0.60

0.30

0 .OOi,
i; ii

pi Ira!

M

mm

SSPD

ininnnii n

10 30
rr
50

TTTTTT
00 .30 .

TTTTT
60 .90 1.0

"I"1!"1!'"!'"!'"!'

4.0 7.0 10.

Ill |lll|l

ao
iiiiiiiiiiii|iii|

30 50 70 90

tllllllllllll'l

100 300
-I ■■■■■■ "i

70

Figure 7 Scatterplot Matrix

23

Next the mean and standard deviation of the SSPD over each possible value taken

by each feature (e.g. set aircraft equal to one and calculate the mean SSPD and standard

deviation, then repeat for each aircraft) were then plotted. This was accomplished to

determine if some structure could be created within the data. Figure 8 and figure 9 show

the plots of the mean SSPD values and their standard deviations and demonstrates that

creating structure would likely yield little benefit in network training due to the high

degree of variance within each nominal value.

Aircraft V5 Mean SSPD + Mean

0.45 -

0.4 -

0.35 ■

0.3
s
53 0.25 ■
CO

♦
♦

♦ <

♦

♦ ♦
<

1 0.2 s
0.15

0.1 •

0.05 -

0 - —i —i 1 <

Aircraft
10

0.8

0.7

0.6

Q 0.5
EL
CO

I0-4

S 0.3

0.2

0.1

0

Profile MS Mean SSPD + Mean

♦ ♦ ♦

■ 1 ♦ ♦ t

:• * <••• ♦ *

♦ ♦ ♦

 1 1——i 1

♦ ♦♦♦

♦ ♦
♦

i—

100 200 300 400 500
Profile

Weapon TO Mean SSPD [^Mean

Figure 8. Feature vs. Mean SSPD

24

Aircraft vs SSPD Std Dev | a Std Dev |

0.3- ■ - . » " ■
■

0.25 I

1 °-2
1 0.15

0.1

0.05

0 —i 1 1 —i

4 6
Aircraft

Profile vsSSPD ■ Std Dev

0.35

0.3 f X
*0.2-

S0.15-

0.1 •■

0.05

\ \ ■ ■

■ ■

■

■ ■ ■
■■*

■■

_■

200 300
Profile

500

0.4

0.35

0.3

0.25

| 0.2

8 0.15

0.1

0.05

0

Weapon vsSSPD | ■ Std Dev |

■
■ ■■

mm
■ ■

* -

■
■■

■
■
■

■

■

■

» ■ ■ %
■ ■

■
m

. m

 h 1— —i—

m

i

20 40 „, 60
Weapon

100

Target vs SSPD ■ Std Dev

0.4

0.35

0.3

0.25 >
^ 0.2

^ 0.15

0.1

0.05

0

tl»,
- "■
■■"■■«

Jill ^ % ■ m

a ■ ■ # ■ ■

10 20 30 40 50 60 70 80
Target

Figure 9. Feature vs. SSPD Std. Dev.

Once again various attempts to train the network were made by varying the number

of hidden nodes from 10 to 100. The reduction of variables and exemplars, facilitated a

significant improvement in the learning rate and enabled the use of up to 65 nodes before

network training bogged down due to exhausting the available RAM. These efforts

reduced the network RMSE slightly to 0.22 after 20000 epochs, but failed to get close to

the desired 0.01.

3.1.2.2 Preprocessing the Data

According to Rogers, correctly preprocessing the data can speed learning (Rogers,

Nov 1996). Two methods of preprocessing the data were implemented, normalizing the

data (~N(0,1)) and converting each nominal value to a binary value. Normalizing the

data initially improved the network learning rate, however the networks with normalized

25

data soon lagged the networks that had no preprocessing and produced a less accurate

RMSE of 0.24. Conversion of each nominal value to a binary string greatly increased the

feature space from four to thirty one and likewise greatly increased the processor time

required for each epoch. However, this method yielded a network with a significantly

improved RMSE of 0.12 after 20000 epochs and 250 hours of processor time over a three

week period. Intuitively, the improved accuracy makes sense due to the nominal nature

of the input features.

3.2 Radial Basis Functions

At this point the need for a method of training a network that was less

computationally intensive, thus allowing more nodes in the hidden layer, became

apparent. RBF networks held promise for such a solution. As discussed in chapter 2,

centering a RBF(node) on each exemplar in the data set, produces a function that is linear

in the parameters (the weights) and can be solved efficiently using the least mean squares

algorithm with zero error. However, this produces a network that requires significantly

more memory than a look-up table for this application. Using Matlab's implementation

of Chen's orthogonal least squares (OLS) algorithm, attempts were made to train to the

desired accuracy with significantly less processor time than backpropagation (Demuth,

1992). The initial attempt to use this iterative forward regression technique on the entire

data set using only the four features defined above (no preprocessing), once again

exhausted the resources of the Ultra SPARC computer. Further attempts to train would

require a significantly reduced data set. To verify the operation of the Matlab code,

training was attempted on l/200th subset of the original data chosen at random. By

26

varying the spread constant (width) of the RBF, the desired error goal was reached, but

required three nodes for every four exemplars. The size of the training set was iteratively

increased in steps tol/20th of the original data set when the computer once again bogged

down. As the training set was increased, the number of nodes required to reach the error

goal held fairly constant at three nodes to four exemplars, thus failing to achieve the goal

of a compact approximation. Though this technique successfully approximated a subset

of the data, it would prove unsuitable for the entire data set due to processor limitations.

3.3 Divide and Conquer

At this point, neither backpropagation nor RBF networks provided an approximation

of the data with the desired accuracy. Since the four features that span the SSPD output

space are all nominal values, this facilitates reducing the feature space to three features

while holding one feature value constant. Training a localized network for each value a

feature takes within the set can greatly speed training due to the reduced feature space and

the smaller subset of exemplars used for training. Once trained, these localized networks

can be linked to produce a function approximation that spans the entire data set.

The first feature selected for this approach was aircraft type. This was selected

because there were only nine possible values aircraft could take and therefore would

require the training and linking of only nine networks. For the initial attempt using this

methodology, an aircraft type for which there were relatively few exemplars (aircraft

number nine, with 919 exemplars) was chosen. As expected, this network trained much

faster on RBF networks and enabled the use of more nodes in the hidden layer using

backpropagation, before the computer bogged down. The RBF network achieved the

27

desired error goal but required two hidden layer nodes for every three exemplars.

However, training on a larger set such as aircraft number three with 4288 exemplars

overtaxed the computing capacity. Using this approach with a backpropagation network,

showed greatly improved training and a significantly reduced trained network error.

However, using 100 nodes in a backpropagation network produced a best RMSE result of

0.06.

The next feature selected for this technique was weapon type. This was chosen

because it would require the next smallest number of trained networks to provide a

complete function approximation. This feature assumed 43 possible values and would

require the training and linking of a like number of networks. Due to lessons learned

while holding aircraft type constant, a back propagation network was first trained. Again,

the smaller subset of data produced quicker training and more accurate results. Training

on these networks typically required eight to twelve hours of processor time. These

networks achieved the desired RMSE goal of 0.01 while requiring approximately one

hidden layer node to ten exemplars for each weapon type upon which a network was

trained. Having achieved the desired accuracy and compactness with backpropagation,

RBF networks were no longer attempted. This decision was made because RBF networks

consistently required a much greater number of nodes to achieve a given error goal than

backpropagation.

3.4 Statistical Networks - ModelQuest

ModelQuest has proven useful in a variety of applications such as stock prediction,

flight controls and pattern recognition. Due to the relative ease of constructing and

28

training a network using the ModelQuest software, as the features were reduced an

attempt was made to approximate the function with this software essentially in parallel

with the efforts using neural networks. As in the previous discussion on

backpropagation, reduction of features greatly reduced training time. At each step, the

ModelQuest software trained in under half the time required for backpropagation, but was

never able to achieve accuracy results near those of backpropagation or RBF networks.

The primary reason for this points back to the nature of the data. The software was

designed to quickly numerically approximate a function given the assumption that

numerical values have some real meaning.

The effort that produced the best results, though far from satisfactory, entailed

holding the feature, weapon, constant as described in section 3.3. This produced a RMSE

of 0.29. In fairness, ModelQuest was not designed to work well with data that consists

entirely of nominal input values. However, at the beginning of this investigation, the

nature of the features was not known. One suggestion given by the vendor to improve the

performance entailed binary coding each feature. This was not attempted since it would

expand the feature space from 4 to 261 features, thus increasing training time beyond

reasonable bounds.

3.5 Statistical Approximation

In addition to the statistical methods discussed in section 3.1.2.1 for feature

reduction, correlation analysis, least mean squares fitting and stepwise regression were

performed on this data. Principal component analysis resulted in four principal

components, each of which related was highly correlated to one of the four features

29

selected, thus confirming the feature reduction already accomplished. Using the JMP

software, least mean squares fitting produced first order model with 257 parameters and a

RMSE of 0.19. The reason for the high number of parameters is because JMP treated

each value assumed by each feature as a separate variable. Examination of higher order

models up to fourth order using stepwise regression netted only a minor improvement, a

RMSE of 0.185 while using over 1400 parameters. Neither of these techniques met the

accuracy goal or the goal of a compact representation of the data.

3.6 Summarizing Function Approximation

All function approximation attempts to this point failed to produce a result that

provides the desired output efficiently. However, achieving the desired accuracy using a

backpropagation neural network demonstrates an ability to approximate even

discontinuous data. The reduction of features improved performance for all techniques.

In table 4, the best RMSE is listed for each methodology along with comments on relative

requirements needed to apply each method.

Table 4. Results Summary

Methodology
Best

RMSE
Computational
Requirement

Practitioner
Skill Required

Nodes or Processing
Elements Required

Neural Networks
Backpropagation 0.01 Very High High Moderate

Radial Basis Functions *** High High Very High

ModelOuest
Statistical Networks 0.29 Moderate Low Moderate

Statistica I Methods
Least Mean Squares 0.19 Low Low Moderate
Stepwise Regression 0.185 Low Moderate Very High

Note: RB F's achieved the desired RMSE, jut only on a su jset of the data.

30

3.7 Aggregation with a Look-up Table

One of the underlying goals for function approximation was the creation of a

compact representation of the data set. However due to the nature of the data, this goal

was not met. Since MS Excel, Access and other spreadsheet and database applications

provide efficient tools for looking up values within a data set, the decision was made to

use a look-up table rather than a function approximation. MS Access was chosen to

build an application tool due to its application building features and its ability to handle

large data sets. Due to the desire for flexibility in the number of aircraft, weapons and

targets to be aggregated at any given time, a weighted average of the look-up values was

chosen for the purposes of aggregation.

Specifically, Access is used to filter all possible combinations of the input values

supplied for aircraft type, weapon type, and target number to return a list of SSPD values.

From this point, the aggregate SSPD may be calculated using one of two methods, either

by feature or as a total weighted sum across the input features aircraft, weapon and

target. In either case, the aggregate value is a weighted sum, with the sum of the weights

equal to 1.0. Calculation of the weighted sum by feature begins by calculating the mean

SSPD for each distinct value a feature takes using:

1 "
X. =~YuXi ' * = i,—,»> (16)

where xi are the best SSPD values returned by the look-up for a given weather condition,

n is the number rows returned for a given feature value, and x} is the mean SSPD for

feature x when it takes value j, j = 1,..., m, and m is the number of distinct values for

feature x. The weighted SSPD for feature x is then taken using:

31

* = 2>;Wj,/ = l,...,/», (17)
7=1

where the w. is the specified percentage of the force mix for a given xy. The Wj for

the feature aircraft type are adjusted for differing weapon loads using:

w, * loadout,
w, = (18)

2_jWs* loadout t

where s is the specified portion of the aircraft mix and loadout is number of weapons

carried by an aircraft. Calculation of the total weighted sum across all features follows a

similar logic:

SSPD = XXx*w/>^ = l>--->r^ = {aircraft, weapon, target], (19)

where r is the total number of values returned by filtering the SABSEL data,

/ designates the three features, aircraft, weapon and target. Again the weights are

normalized such that:

ESw;=10. (20)

A series of queries were built to implement the above aggregation in Access that

meets the desires of CCCA. This application filters the SABSEL data in under thirty

seconds on a Pentium 90 PC with zero error and requires an additional one to two

minutes to complete the aggregation process. Data entry forms were created to make the

process relatively easy, not requiring more than a few minutes to complete. A tutorial for

this application is at Appendix D.

32

3.8 Summary

This chapter discussed the steps taken to build an accurate function approximation of

the S ABSEL data using neural networks, statistical networks and traditional statistical

techniques. A discussion of the methods used for feature reduction was also included.

Table 4 summarizes the results of the function approximation attempts, showing a

relative comparison of the techniques. Finally, a brief discussion of the building of an

aggregation tool using Access was provided.

33

IV. Conclusions/Recommendations

The purpose of this thesis was to produce a tool for the aggregation of SSPD value

from the relatively large SABSEL database. After drawing some conclusions on the

performance of each type of function approximation technique as discussed in chapter 3,

this chapter will recommend areas of future study.

4.1 Conclusions

4.1.1 Data Reduction

All attempts at approximation of the SABSEL data were greatly affected by the

nature of the data. Once feature reduction was accomplished, each method showed

significant performance improvements both in terms of training time and accuracy. Any

feature reduction that can be accomplished prior to training the networks will be highly

beneficial.

4.1.2 Neural Networks

Both backpropagation networks and radial basis function networks can be highly

computationally intense with a large data set. Splitting the data can provide benefits in

terms of training time while providing a source of data for evaluation of the trained

network. Due to the relatively uniform distribution of the data, neither backpropagation

or RBF's proved simple. Only after breaking the data into small subsets corresponding to

some nominal value, was a network trained to a suitably small error. This suggests that

as processors get faster a network may be trained on a data set of this size and nature.

34

Statistical evaluation of the data provided great insight into the nature of the data and

should be used along side neural network techniques.

4.1.3 Statistical Networks

The ModelQuest software package was unsuited for this task. The function

approximation required for this research called for a scalpel, while the ModelQuest

software provided a butcher knife. Though it does accomplish function approximation, it

could not provide a highly accurate approximation using the SABSEL's nominal data .

The uniform distribution of the data within the space and the accuracy requirement can

account for the relatively poor performance of this piecewise approximation technique.

To its advantage, this software was intuitive and relatively fast (compared to

backpropagation).

4.1.4 Statistical Techniques

Traditional regression techniques for approximating this highly uniform data proved

inadequate. Though simple to execute using the JMP software package(JMP,1995), both

least mean squares regression and higher order stepwise regression failed to approach the

accuracy requirement of this research. Again much of this failure can be attributed to the

nature of the data.

4.1.5 Look-up vs. Function Approximation

Once feature reduction had been accomplished, the data set consisted of a set of

features composed of nominal values. Though backpropagation could achieve the desired

accuracy, there exist many applications that perform table look-up with much less effort

35

and greater efficiency. Function approximation by any of the methods attempted is more

suited to instances where there are continuous or at least ordinal values within the data

set, rather than nominal values as was the case for the SABSEL data. The choice of using

a look-up table or a function approximation for aggregation should be made depending on

the nature of the data. In this case, the look-up table proved far superior to function

approximation for aggregating the data.

4.2 Aggregation Tool

The suitability of the look-up table aggregation can best be summarized by CCCA.

For their needs the SABSEL Aggregation tool:

"works very well and will allow us to improve the quality of the probabilities of kill we
use in our combat models such as TACWAR. In addition it should reduce the time needed
to perform an aggregation which will us to regularly update our data base every time we
receive a new SABSEL data base. It also provides the mechanism to clearly define the
aggregation assumptions used and to record those assumptions for future reference and
repeated use." (Hebert, 1997)

4.3 Recommendations

Within the modeling and simulation community there exist many stochastic models

where much data is available, yet there is no satisfactory means of mining the information

from the data. For example, a multitude of data exists for many scenarios of the

THUNDER model that has not been aggregated into tool that provides a meaningful way

of predicting the results of the model. Neural networks, and statistical networks, once

trained, can be used to provide an 80% answer quickly rather than requiring numerous

model runs.

To accomplish such a mining of existing data the following is recommended:

36

1. Determine the nature of the data. Is the data primarily continuous, ordinal, or

nominal? Use statistical techniques such as scatterplots, correlation analysis, and

principal components analysis. Also examine various groupings of the data,

searching for any group of nominal values that spans the data space.

2. Reduce the feature space. Using information gained in step 1, eliminate

unnecessary features.

3. Depending on the nature of the data:

a. Primarily continuous data: use statistical networks to achieve a ballpark type

approximation (because of its relative ease of use), or neural networks if a

more precise approximation desired.

b. Primarily nominal data: use a spreadsheet or database program to provide a

look-up that executes quickly and provides data for further aggregation.

c. Mixed data: Train a network for each nominal value, and use a look-up as a

pointer to each network, or train a network of networks as suggested by

ModelQuest (ModelQuest, 1996:4.22).

4.4 Summary

The SABSEL data primarily consists of nominal data features. Neural networks,

Statistical networks and regression techniques were compared with a look-up table

methodology on the basis of accuracy, speed and compactness (storage requirement). An

Access based tool has been created that quickly filters the SABSEL data and implements

a weighted sum algorithm to aggregate the SSPD values. A brief tutorial is provided at

appendix D. This tool should greatly simplify the aggregation of SABSEL SSPD values

for use in the TACWAR model.

37

Appendix A. Glossary of Neural Network Terms

• Back-propagation - a supervised learning algorithm for adjusting weights in a

multilayer, feedforward neural network that uses gradient descent techniques to

minimize network output error.

• Bias - the bias, 0, provides a means of shifting the intercept of the transfer

function. Its input value is set at 1.0 and its associated weight shifts the intercept.

• Epoch - the presentation of all exemplars in the data set being used to train the

network or perceptron one time..

• Exemplar - an input data vector consisting of a unique set of feature values,

xi,x2,...,x/. An exemplar in neural network terminology is the same thing as a

sample point in statistical terminology. Essentially this is one row of the data set.

• Feature - an independent variable, x,-, which provides information useful for

approximating a function or distinguishing classes.

• Feedforward Network - a collection of perceptrons whose connections

exclusively feed inputs from lower to higher layers; in contrast to a feedback

network, a feedforward network operates only until its inputs propagate to its output

layer (DARPA, 1988).

• Hidden Layers - those processing elements in a multilayer neural network which

are neither the input layer or output layer.

• Multilayer Perceptron (MLP)- a feedforward multilayer perceptron that is fully

connected(i.e. each input from a lower layer is connected to each perceptron in the

next higher layer). A typical MLP has an input layer, one or more hidden layers and

38

an output layer. This type network is usually trained through back-propagation. See

Figure A-l Multilayer Perceptron .

• Perceptron - first proposed by Rosenblatt (Rosenblatt, 1959), the single

perceptron, Figure A-l, performs a transformation on the weighted sum of the input

exemplar. Perceptrons are also known as neurons, or nodes, or processing elements.

f (!>,*,+w/+10) ■>y = f(w,x)

e =+i

Figure A-l. Perceptron

• Supervised Training - a method of training a neural network that provides the

desired output to the network as a standard from which to measure network output

error. An alternative technique is unsupervised training where the network "self

organizes" or clusters the data during the training process.

• Transformation Function - the perceptron maps the weighted sum of its inputs

onto its output through the transformation function, /(•) (also known as a transfer

function).

• Weight - each input into a perceptron is weighted, wi,w2,... ,w/. The weights are

adjusted through training to achieve the desired output.

39

Appendix B. Chen 's Orthogonal Least Squares Basis Function Algorithm

The RBF network implements a mapping /r:R" -» R as follows:

/r(x) = 0 + Zw(.<K|x-c(.|), (21)

where x € R" is the exemplar(input vector), (/>(•)is a given RBF, 0 is the bias

(intercept), wt denotes the weights (parameters), ci are the RBF centers, ||«| denotes the

Euclidean norm, and / is the number of centers. Assuming that the centers c, and the

functional form 0(») are fixed, weights wt can be determined using linear least squares

(LS). According to Chen, the choice of the type of RBF $(•) is not significant. The

Gaussian function is

0(v) = exp(-v2//?2), (22)

where v is the Euclidean distance from the center, and ß is a preset spread constant.

(Chen , 1991:303). A larger ß results in smoother function, while too large a value of ß

can result in an ill conditioned matrix(Demuth, 1992).

In his presentation of the orthogonal least squares (OLS) algorithm, Chen views the

RBF network as a special case of the linear regression model

M

d(0 = SPiW+£(0, (23)
i=i

where d(t) is the desired output, 6t are the parameters (weights), and pt (t) are the

regressors which are some fixed functions of x(t):

Pi(t) = Pi(x(t))- (24)

40

Equation 20 can be rewritten as:

d=P0+E (25)

where

d = [d(l)...d(N)]T, (26)

P = [p,...pM], p,=[A(l)...A(iV)f, 1</<M, (27)

where M is the number of RBF centers,

® = [0V..0MT, (28)

E = [S(l)...s(N)]T. (29)

Chen's OLS method transforms the set of p, into a set of orthogonal basis vectors. This

transformation makes it possible to calculate the individual contribution to the desired

output from each basis vector. In other words, this transformation provides a way to rank

each RBF center according to its contribution to achieving the desired accuracy.

Decomposing the regression matrix P results in:

P = WA, (30)

where A is an M x M triangular matrix with l's on the diagonal and 0's below the

diagonal, and W is an JV x M matrix with orthogonal columns wt such that

WrW = H (31)

where H is diagonal with elements h{.

N

K = w/w, = I>,(0w,(0, 1 £/£ M (32)

The orthogonal basis vectors w; span the same space as the set of p^ an can be written as

d = Wg + £. (33)

41

The OLS solution can then be given by

g = H -1 W7d (34)

or

g =wfd/(wfwi), \<i<M. (35)

The OLS algorithm facilitates the selection of a subset of RBF centers from a large

set of data. By equating w, top,, Chen proceeds to derive an error reduction ratio due to

w;

[err], = g2wfw, /(drd), \<i<M. (36)

This error ratio offers a simple method for selecting a set of significant regressors using

forward regression. Finally, Chen summarizes this procedure as follows:

1. For \<i < M, compute

Find

and select

wj0 = p,

[err](
1°=(gI

(,'))2(w(
1'
))rwl')/drd

[errf'l) = max {[err];0, \<i<M]

(37)

(38)

Wl=w('>>=p,r

2. At the kth step where k > 2, for 1 < i < M, /' * /j,...,/ * ik_x, compute

(39)

<=w;.p,./(w>,),l<;<^

w (0
4-1

p.-ZAX

gf =(w«)rd/((w2>)rw«)

[err]i'>=(g«)2w(
J!>)rwi'>/drdJ

(40)

42

Find

[errf]] = max{[errf], l<i<M, i*ix,...ti±ik_x, (41)

and select

w*=w^=pu. -J^w, (42)
7=1

where a/t = or| ,1^7 < *• (43)

3. Stop when

\prr . \-Y\err}j<P (44)
7=1

where Ms is the number of significant regressors and p, 0 < p< 1, is the

chosen tolerance(Chen, 1991:303-305).

43

Appendix C. Matlab Code for Training Neural Networks

Example Matlab Code for Backpropagation (Levenberg-Marquardt Algorithm)

% 2 Dec 96.
% Maj Parker.
% After performing analysis on the data and reducing the features, this
% trial attempts to train on only those exemplars where the feature 'aircraft' has a
% value of 1, using LM.

% initialize parameters
clear; close all;

% Load the SABSEL data, selecting the desired features

load aircraftl.mat;
P = aircraftl(:,5:7)';

% T defines the associated 1-element targets (column vectors):

T = aircraftl(:,4)';
clear aircraft 1;

% Normalize the columns of the input matrix P.

P = normc(P);

% PLOTTING THE DATA POINTS

% Here the data points are plotted:

figure(l);
plot(P,T,V);
title('Training Vectors');
xlabel('Input Vector P');
ylabel('Target Vector T);

% The function the neural network learns must pass through
% these data points.

% DESIGN THE NETWORK
% ==================
% A two-layer TANSIG/PURELIN network will be trained using 100 hidden nodes.

SI = 100;

% INITFF is used to initialize the weights and biases for
% the TANSIG/PURELIN network.

[wl,bl,w2,b2] = initff(P,Sl,'tansig',T,'logsig');

% TRAINING THE NETWORK

% TRAINLM uses backpropagation to train feed-forward networks.

44

df = 25; % Frequency of progress displays (in epochs),
me =20000; % Maximum number of epochs to train,
eg = 0.1; % Sum-squared error goal.
min_grad =0.0001; % Minimum gradient
mu = 0.001; % Initial value for mu.
mu_inc = 10; % Multiplier for increasing mu.
mu_dec = 0.1; % Multiplier for decreasing mu.
maxmu = lelO; % Maximum value for mu.

tp = [df me eg min_grad mu mu_inc mu_dec maxmu];

[w 1 ,b 1 ,w2,b2,ep,tr] = trainlm(w 1 ,bl ,,tansig',w2,b2,,logsig',P,T,tp);

% PLOTTING THE ERROR CURVE

% Here the errors are plotted with respect to training epochs:

figure;ploterr(tr,eg);
figure;
plot(P,T,'+');
title(Training Vectors');
xlabel('Input Vector P);
y label(Target Vector T);

% Save weights and input parameters upon completion.

clear P T;
save res lOOacl;

end;

Example Matlab Code for Radial Basis Functions

% 4 Nov 96.
% Maj Parker.
% After performing analysis on the data and reducing the features, this
% trial attempts to train on only those exemplars where the feature 'aircraft' has a
% value of 1, using radial basis functions.

% initialize parameters
clear; close all;

load aircraftl.mat;
[n,m]=size(aircraftl);

% P contains the normalized training vectors: Aircraft, Weapon, Profile, and Target.

temp = aircraft9(:,l:3);
temp = normc(temp);
P=temp';

% T defines the associated 1-element targets (SSPD):

45

T=aircraftl(:,4)';
clear aircraftl temp;

% A two-layer radial basis network will be trained.
% TRAINING THE NETWORK
% ==================
% SOLVERB trains a radial basis network using the minimum number of neurons
% to meet the error goal.

df = 1; % Frequency of progress displays (in epochs),
me = 500; % Maximum number of to include in network,
eg = .20; % Sum-squared error goal,
spread = 0.3; % Spread for hidden layer transfer function.

tp = [df me eg spread];

[wl,bl,w2,b2,nr,dr] = solverb(P,T,tp);

% Save weights and input parameters upon completion.

clear P T;
save res lOOacl;

end;

46

Appendix D. SABSEL Aggregator Tutorial

Introduction

The SABSEL Aggregator is designed to calculate a weighted average SSPD value from

the SABSEL data set. Given the weather minimums, a set of aircraft, a set of weapons,

and a set of targets, this tool filters the SABSEL data for SSPD values for all possible

combinations of the aircraft, weapons and targets. These SSPD values are then

aggregated into a single value based on the mix. For instance, if a particular aircraft

makes up only 20% of the mix, it's influence on the aggregated SSPD is adjusted

appropriately. Additionally, if an input combination does not exist within the SABSEL

data, the mix of the other inputs are adjusted automatically. Finally, the specified mix for

aircraft are adjusted for the number of weapons carried (e.g. an aircraft that can carry four

of a particular weapon carries twice the weight of one that can carry only two). The

following is a simple description of how to run the aggregator in MS Access. More

detailed discussion of the algorithm is provided in chapter 3.

Instructions

1. Open Access and the sab.mdb file.

2. Select the forms tab and double click on the Aggregator Input form as shown

in figure D-l.

3. The Data Input form (figure D-2) has four buttons for input. Click the Aircraft

Input, Weapon Input, or Target Input button to view the data entry form

(figure D-3). Drop down menus are available for legal values for aircraft type,

weapon type and target number. Use care to ensure the sum of

47

Figure D-l. Select Form

Figure D-2. Data Input Form

48

Figure D-3. Aircraft Entry Form

the mix input equals 1.0. If this sum does not equal 1.0, the program will

automatically normalize the input mix. Each input form will initially display

inputs stored previously. Type over or delete these values as desired.

4. Once the aircraft, weapons and targets have been input, specify the prevailing

weather minimums, by using the drop down menu under "Weather

Minimums." If the weather code is known, enter it directly.

5. Once the inputs are complete, this form provides three choices.

a. To review the output, click the "Aggregate" button. This will present the

weighted mean SSPD by aircraft, by weapon, and by target, along with a

total aggregated value for SSPD, called "Total_Wtd_SSPD" (see figure D-

4. Aggregate Button Output). The aggregator first selects the best SSPD

for a given weather condition, aircraft, weapon and target from the

SABSEL data. From this initial selection, the "Total_Wtd_SSPD" value

is taken as a total weighted sum of all possible combinations, with the

weights derived from the specified mix, and adjusted to sum to 1.0.

Normally, the "Total_Wtd_SSPD" value is the desired output.

However, there may be situations where one the type of aircraft,

49

■&\M/crvsoft Access

l_Avfl.By_. ■iAiial

1=1 Aggregate SSPD : Select Queiy

s^liP la

r^c^aMMaia.-jtfa aaw^MflttHHE
0.59731 0.6006!

mmßwmmmiffltäwmmim

Figure D-4. Aggregate Button Output

weapon or target is the overriding factor. The "By Aircraft", "By

Weapon", and "By Target" buttons provide weighted sum SSPD

values that are adjusted only for the named input, and disregard the

mix input values of the other inputs.

b. To view the raw data as extracted from the SABSEL data without any

aggregation, click on "Raw Data." Figure D-5 shows an example of this

output.

c. To get a report showing both the raw data and the aggregated SSPD

values, click on "Report." Figure D-6 shows an example of this output.

This option takes the longest to execute (approximately 2-3 minutes on a

Pentium 90).

NOTE: Data from any of the above output can be transferred to and from MS Excel and

Word using the cut and paste commands.

50

iiiHliliiliiBiiSBiiil

Figure D-5. Raw Data Output

pügfg^jmjilll

Aggregated SSPD

Aggregated SSPD 0.6656

AvJUrcraft 0.6570

Av_Weapon 0.70

Av_Target 0.6378

Aggregate - Raw Data
Alreral» Aln:ra«% Ad) Aircraft % Wnupa« W«p«i 1 Tfgrt Tltgrt*

0.4286 38 0.2 03 0.747

0.428« 38 0.2 2 0:2 0.747

0.438« 38 0.2 02 0.747

0.4286 39 02 03 0.7476

0.428« 39 02 02 0.7476

0.4286 39 0.2 02 0.7476

0.4286 40 0.1 03 0.6654

0.4286 40 0.1 02 0.7476

0.4286 40 0.1 02
KEF?*«*™»«*-

06654

fcm®ss$&rmä8is&tä

Figure D-6. Report Output

51

Bibliography

Barron, A. R., "Predicted Square Error: A Criterion For Automatic Model Selection,"
Self-Organizing Methods in Modeling: GMDH Type Algorithms, edited by S. J.
Farlow, New York: Marcel-Dekker, Inc., 1984

Bauer, Kenneth,. Class handout, OPER 685, Applied Multivariate Analysis, School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH,
September 1996.

Chen, S. et al, "Non-linear Systems Identification Using Radial Basis Functions,"
International Journal of Systems Science, vol. 21, no 1, pp. 2513-2539,1990.

Cybenko, G. "Approximations by Superpositions of Sigmoidal Functions," Mathematics
of Controls, Signals, and Systems, vol. 2, no. 4, pp. 303-314 ,1989

Demuth, Howard. Neural Network Toolbox for use with MATLAB: user's guide. Natick,
Massachusetts: Mathworks, Inc., 1992.

Defense Advanced Research Projects Agency (DARPA), "Neural Network Study,"
AFCEA International Press, Fairfax VA, November 1988.

Foulk, John. Analysis officer, Centcom Combat Analysis Group, HQ Central Command,
Patrick AFB, FL. Telephone Interview. 4 September 1996.

Hebert, Joseph. Analysis officer, Centcom Combat Analysis Group, HQ Central
Command, Patrick AFB, FL. Telephone Interview. 4 March 1997.

JMP®. Version 3.1, IBM, 8MB, disk. Computer software. SAS Institute Inc., Cary, NC,
1995.

ModelQuest™. Version 4.0, IBM, 15MB, disk. Computer software. AbTech
Corporation, Charlottesville, VA, 1996.

Nelson, Marilyn McCord and W. T. Illingworth, A Practical Guide to Neural Nets.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1991.

Neter, John, et al, Applied Statistical Linear Models, Fourth Edition. Chicago, Times
Mirror Higher Education Group, Inc., 1996.

Rogers, Steven K. and others, An Introduction to Biological and Artificial Neural
Networks for Pattern Recognition. Boston, Society of Photooptical instrumentation

Engineers Optical Engineering Press, 1991.

52

Rogers, Steven K. Introduction to Perceptrons: Advanced Topics in Neural Networks. Air
Force Institute of Technology, Wright-Patterson AFB, OH, April 1996.

Rogers , Steven K. Class notes, ENG 699, Introduction to Biological and Artificial Neural
Networks, School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB OH, November 1996.

Rosenblatt, R., Principles of Neurodvnamics. Spartan Books, New York, 1959.

53

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1997
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Experiments in Aggregating Air Ordinance Effectiveness
Data for the TACWAR Model

6. AUTHOR(S)

James E. Parker, Major, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology/ENS
2750 P Street
Wright-Patterson AFB, Ohio 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/97M-12

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ACC/XP-SAS
204 Dodd Blvd., Ste. 202
Langley AFB, VA 23665-2778

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Approved for Public Release; Distribution is Unlimited

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An interactive MS Access™ based application that aggregates the output of the SABSEL model for input into the
TACWAR model is developed. The application was developed following efforts to create a functional approximation of
the SABSEL data using neural networks, statistical networks, and traditional statistical techniques. These
approximations were compared to a look-up table methodology on the basis of accuracy, (RMSE < 0.01), speed (runs in
minutes) and compactness (storage requirement). The method best satisfying these criteria, the look-up table, was used
as the basis from which the application was constructed. Results from the comparison of the function approximation
techniques give insight as to the strengths and weaknesses of each technique.

14. SUBJECT TERMS

Aggregation, Nueral Networks, Radial Basis Functions, Backpropagation,
Statistical Networks, SABSEL

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block!. Agency Use Only (leave b/anfc).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

B!ock3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -
G -
PE -

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block?. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Blocks. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NHB 2200.2.
Leave blank.

DOE ■
NASA
NT! 5 ■

Block 12b. Distribution Code.

DOD
DOE

NASA -
NTIS -

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

• U.S.GPO: 1993-0-336-043 Standard Form 298 Back (Rev. 2-89)

