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Preface 

The purpose of this research effort was to develop a straightforward method of 

aggregating output data from the SABSEL model for use in the TACWAR model. The 

objective was to develop a software application that would provide consistent results 

while not requiring a tremendous amount of effort on the part of the analyst. The 

majority of the effort focused on the construction of a functional approximation of the 

data and evaluation of this approximation against a look-up table methodology. For the 

SABSEL data set, a look-up table proved superior. An application was built using the 

look-up features of MS Access that is simple and straightforward. 

This work could not have been completed without the help and encouragement of 

others. First, I am most indebted to my Lord and Savior, Jesus Christ without whose 

sacrifice none these efforts would have the slightest eternal meaning. I would also like to 

thank my advisor, Ltc Jack Jackson, for his patient encouragement and pointed comments 

that helped maintain focus on the big picture. I'm also grateful to Dr. Steve Rogers, who 

helped keep this effort on track with his insight and direction throughout my efforts with 

neural networks.   Major Don Hinton also provided great help with his insights into the 

vagaries of MS Access and saved me many hours of trial and error. Finally, I would like 

to give special thanks to my wife, Michelle, whose consistent love, patience and support 

were invaluable. 
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AFIT/GOR/ENS/97M-12 

Abstract 

An interactive MS Access™ based application that aggregates the output of the 

SABSEL model for input into the TACWAR model is developed. The application was 

developed following efforts to create a functional approximation of the SABSEL data 

using neural networks, statistical networks, and traditional statistical techniques. These 

approximations were compared to a look-up table methodology on the basis of accuracy, 

(RMSE < 0.01), speed (runs in minutes) and compactness (storage requirement).   The 

method best satisfying these criteria, the look-up table, was used as the basis from which 

the application was constructed. Results from the comparison of the function 

approximation techniques give insight as to the strengths and weaknesses of each 

technique. 
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EXPERIMENTS IN AGGREGATING AIR ORDINANCE 
EFFECTIVENESS DATA FOR THE TACWAR MODEL 

I. Introduction 

A recurring challenge in modeling and simulation (M&S) is the aggregation of 

data from high resolution models for input or use in lower resolution models. For 

example, the U. S. Central Command Combat Analysis Group (CCCA) often uses output 

from the Air Force's Sabre/Selector (SABSEL) model for input into the TACWAR 

theater level model, and needs an analytically sound method to aggregate the SABSEL 

data. This research focuses primarily on the construction of a functional approximation 

of SABSEL data using neural networks, statistical networks, and traditional statistical 

techniques. The approximations constructed under each technique will be compared with 

a look-up table methodology on the basis of accuracy, speed and compactness (storage 

requirement). Finally, using the best methodology, an automated aggregation tool for the 

SABSEL data will built to meet CCCA's needs. 

1.1 Background 

The CCCA uses theater level combat models for much of its analysis. Many 

inputs to these models require the aggregation of high resolution data into a useable form 

for input to one of these models. Currently, much of the aggregation of data relies upon 

the expert judgment of the analyst to boil down high resolution model data. Due to 

variability in methodology from analyst to analyst, this expert judgment produces results 

that are hard to defend when subjected to skeptical scrutiny. As the reliance of decision 



makers upon M&S continues to increase, the current method of aggregation is losing its 

utility. A better method is needed. 

More specifically, CCCA has a need for an analytically sound method of 

aggregating the air ordinance effectiveness data of the engineering level S ABSEL model 

for input of a single value into the TACWAR theater level model. The large SABSEL 

data base contains values for numerous factors including aircraft type, ordinance load, 

delivery profiles, target type and layout, weather, and many others. From these many 

factors SABSEL can produce output for a wide variety of input scenarios. The challenge 

for CCCA analysts is producing a consistent, analytically defensible input value to the 

TACWAR model in a timely fashion. 

The difficulty of this aggregation process can be illuminated with the following 

example. Currently, TACWAR has a single effectiveness value for an AGM-65 missile 

attacking a single tank ground target. SABSEL on the other hand generates separate 

values for several AGM-65 missiles, delivered from several different aircraft, various 

weather conditions, differing delivery tactics, differing target types, differing target 

groupings, the number of weapons on of the delivery aircraft, the number of passes over 

the target and numerous other factors. Each of these factors may or may not have a 

distinct effect on the effectiveness of a particular combination of input values. Currently, 

CCCA uses an expert judgment based estimation process. In this process the analyst 

averages the SABSEL effectiveness data for those factors the analyst deems significant. 

Since the heuristic varies from analyst to analyst, this leads to a lack of defensible 

consistency in the aggregation process.   CCCA desires a methodology that is 

straightforward, transparent, and defensible (Foulk, 1996). 



1.2 Research Objectives 

This research will compare several methods of creating a functional 

approximation as a means of aggregating the data from the SABSEL model. This effort 

will focus on building and training a neural network to produce the desired output. The 

performance of the neural network will be compared to an automated off the shelf 

software product that combines statistical and neural networks techniques. The output of 

both of these techniques will also be compared to a statistical regression approach. This 

comparison will be based on the accuracy of the functional approximation using the root 

mean square error (RMSE) due to the ability to compare the fit of various sample sizes. 

For those techniques achieving the desired accuracy, considerations of speed and 

compactness will be compared to that of a look-up table based approach. Using the 

"best" technique, an automated tool was created for aggregating the SABSEL data. 

1.3 Research Approach 

In recent years, problems of this nature have been tackled by network modeling 

approaches that produce output based on a polynomial representation of the various input 

factor levels.   One of the advantages of these networks is that they are self organizing. 

Self organizing models can "train" on input data and adjust the output values to provide a 

desired result in a manner similar to how a child learning a new skill makes adjustments 

to produce the desired result (Nelson, 1991:3). This research will first design and train a 

neural network using a portion of the SABSEL data. Upon achieving consistent results 

with the neural network, a second model was built using the automated modeling tool 

ModelQuest™ by AbTech Corporation of Charlottesville, VA (ModelQuest, 1996). 



Then, a third model will be built using traditional statistical techniques. These models 

will then be measured against a look-up table for speed and accuracy. Accuracy will be 

measured against root mean square error (RMSE) using a portion of the SABSEL data set 

held out of the model building process. The "best" method will be that which most 

closely conforms to CCCA's requirements of accuracy, clarity, and defensibility. 

A successful research effort will produce insight into the various significant 

factors thereby enhancing the aggregation process for CCCA. Our goal is' to produce a 

straightforward, analytically sound methodology that CCCA can apply consistently. As a 

best case, this research will produce or demonstrate a methodology that has wide 

applicability for many aggregation problems facing the M&S community. 

Chapter Two discusses the applicable literature outlining the techniques used to 

approximate the SABSEL data as a function. The techniques discussed include 

backpropagation and radial basis function neural networks, statistical networks, and 

principal components analysis. Chapter Three provides a narrative of the research and 

results, to include the building of a MS Access application to meet the sponsor's 

requirements. Chapter Four outlines the final results and recommendations from this 

research effort. 

1.4  Summary 

This thesis will apply neural networks, statistical networks, and traditional statistical 

techniques to the SABSEL database to attempt to generate a highly accurate function 

approximation of the data. The technique yielding the "best" performance will be 



measured against a look-up methodology and an application to aggregate the SABSEL 

data will be built to meet CCCA's requirements. 



II. Literature Review 

This problem is essentially one of approximating an unknown function which 

represents the underlying trends in the data, with a requirement for a high degree of 

accuracy. CCCA's current methodology uses a table look-up from the SABSEL data 

base to determine a single shot probability of damage (SSPD) as input to the TACWAR 

model. Neural nets, abductive networks, and multivariate statistics each show promise 

for reproducing the SABSEL data in the form of a function. This chapter provides a 

review of literature concerning neural networks, statistical networks, and multivariate 

analysis as each pertains to this problem. Specifically, the necessary terms for each 

technique will be defined and a basic discussion provided. 

2.1 Neural Networks 

Artificial neural networks grew out of attempts to model the processes of the brain at 

the level of the neuron. Neural network techniques attempt to reproduce biological 

capabilities by using a similar approach. Though biologically inspired, many of the 

methods in artificial neural networks are not biologically accurate in a manner similar to 

the way aircraft wings bear only faint resemblance to the birds wings which inspired them 

(Nelson, 1991:1) (Rogers, 1990:iii). Additionally, neural networks have grown to 

encompass a wide area of application using a variety of techniques. This discussion will 

focus on feedforward, multilayered, neural networks to perform a curve fitting operation 

on the multidimensional SABSEL data. The author assumes a familiarity with the terms 



of neural network research. However, a brief glossary is provided in appendix A for 

clarification. 

2.1.1   Multilayer Perceptrons 

The basic building block of the multilayer perceptron (MLP) is the single 

perceptron(see glossary, Appendix A). Linearly separable classes can be separated using 

a single perceptron. The perceptron is trained to return an output value of ~ 1 with one 

class and an output of ~ 0 with the other class. Through training the weights are adjusted 

based on the error between the actual output and the desired output. In cases where the 

data is not linearly separable but hyperplane separable, an MLP can be used to separate 

the classes (Rogers, 1996:7). Cybenko demonstrated that a single hidden layer MLP with 

enough perceptrons can approximate any continuous nonlinear function with arbitrary 

accuracy (Cybenko, 1989). Using a MLP for function approximation essentially forms a 

piecewise approximation to the function, with each perceptron training to return a 

segment of the function. 

As in other curve fitting techniques, the problems of overfitting and underfitting the 

data present themselves. As a result, the selection of the number of perceptrons for fitting 

an unknown function remains an art form based on the practitioner's experience and a- 

priori knowledge of the data. Figure 1, depicts a Multilayer Perceptron with a single 

output. Though multiple outputs are feasible, the nature of the data for this study requires 

only a single perceptron on the output layer. 



Input Layer        Hidden Layer       Output Layer 
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ZK 

Figure 1. Multilayer Perceptron 

2.1.1.1 Backpropagation Learning Law 

The most common method for updating the matrix of weights of an MLP is 

backpropagation. This technique uses the partial derivative of the error, E, computed 

with respect to each weight, to calculate the updates. A common measure of error is sum 

squared error (SSE) defined as: 

E = J,(dk-zk)
2, (1) 

where zk is the actual output and dk is the desired output. In the case of a function 

approximation, only a single output perceptron is used and the subscripts of equation 1 

are not necessary. 



Let w be the weight matrix for a layer. Using gradient descent, the direction of 

steepest descent can be defined by —. This relationship yields a learning law for 
dw 

updating the weights of each perceptron: 

cF 
w"('+1)=w"(')-"^^' (2) 

where w(t+l) is the set of updated weights at step t+1, w(t) the old set of weights at step 

t, h defines the perceptron layer, and 77 is the learning rate or step size for the descent 

(Rogers, 1996:12-13). As written, this learning law is independent of the transfer 

function. 

The process of training a MLP has four basic steps (Rogers, 1990:51). 

1. Initialize the network weights. Rogers recommends using small random 

numbers with a uniform distribution between -0.5 and 0.5. 

2. Input the training vector (exemplar) and desired output for that training 

vector to the network. 

3. Calculate the actual output by using the outputs of each layer as inputs 

to the following layer (inputs for the first layer are the feature values of 

an exemplar): 

y,■=f(Z*>lxl+wI+l0),Vi = 1,2,...,/,./ = 1,2,..., J, (3) 
1=0 

where JC,. are the inputs to the layer, wt are the weights, ys is the output 

of the each perceptron, 6? is the bias, and /(#)is the transfer function. 

In matrix terms equation 3 is: 



j.=/(wrx), 

where the bias, 6, is included as the last row of the input vector x. 

(4) 

4. Training: 

dE 
w'(» + l) = w'W-,5^. (5) 

The key to the learning law and hence, backpropagation, is calculating the partial 

derivative of the error, E, with respect to the weights. This calculation is relatively 

straight forward provided the transfer function, /(•), has a manageable derivative. 

Transfer functions which have relatively simple derivatives include the sigmoid function 

(or logistic), the hyperbolic tangent, the linear function. These functions are shown in 

figure 2. Weight update equations for these functions are listed in table 1. 

Sigmoid 

Figure 2. Transfer Functions 
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Table 1. Weight Updates 

Layer Transfer Function Weight Update Equation 
Output Sigmoid w) (f +1) = w) {t) + r](d - Z)(z)(l - zKyj) 

Output Linear w2
j(t + l) = w2

j(t) + j](d-z)(yj) 

Hidden Tanh(linear output) w,;(r + l) = w;(0 + r?(rf-z)(w;
2)(l-(j7.)2)(x,.) 

Hidden Tanh(sigmoid output) w\ {t +1) = w\ (t) + r\(d - z)(z)(l - z){w) )(l-(yj)2 )(x,) 

2.1.1.2  Enhancements to the Backpropagation Learning Law 

Backpropagation, like other gradient descent techniques, tends to hang up on a local 

minimum rather than a global minimum. Two techniques that may speed learning and 

reduce the probability of hang up in a local minimum are momentum and adaptive step 

size. Momentum aids convergence on the global minimum by preventing radical changes 

in the weight change direction. Adding momentum to equation 4 results in: 

w*(f + l) = w*(f)-J7 
dE 

dwh(t) 
+ ß(yvh(t)-wh(t-l)), (6) 

where \i is the momentum constant. Empirical evidence suggests a value of ß is 

between 0.5 and 0.9 (Demuth, 1992). Another technique that speeds convergence or 

learning is adaptive adjustment of the step size or learning rate. If the learning rate is too 

small, convergence may be extremely slow. If the learning rate is too large, the weights 

may not converge as the weights oscillate between less than optimal solutions. An 

adaptive learning rate increases the step size if the error, E, decreases and decreases the 

step size if the error, E, increases. Adaptive learning can be implemented as follows: 

7](t + l) = T](t)-aT](t), 

ri(t + l) = ri(t) + ari(t), 

if(E(t)-E(t-l))<0, 

otherwise 
(7) 
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where a is the rate of change in the step size. Adding adaptive learning to equation 5 

results in: 

r)F 
wh(t + l) = wh(t)-ri(t + l)—1— + n(wh(t)-wh(t-D). (8) 

cm (0 

Another commonly used adaptive technique consists of the logarithmic decay of the 

learning rate with each epoch (Rogers, Nov 1996). 

An additional enhancement to the gradient descent is an adaptive technique that 

transitions between standard first order steepest descent and second order Gauss-Newton 

descent is the Levenberg-Marquardt algorithm (LM) (Neter, 1996:546). LM seeks to 

capitalize on the best features of both techniques Gauss-Newton and steepest descent. 

Gauss-Newton is a direct search procedure that converges quickly provided the starting 

conditions are sufficiently close. With poor starting conditions, Gauss-Newton may 

converge slowly, converge to a local minimum, or diverge (Neter, 1996:546). LM 

transitions between steepest descent and Gauss-Newton based on the rate of convergence 

of each epoch [E(t)-E(t-1)]. Typically LM converges orders of magnitude faster than the 

backpropagation techniques outlined above, however it requires significantly more 

computer memory (Demuth, 1992). 

2.1.2   Radial Basis Functions 

A large disadvantage of the preceding backpropagation techniques is that the 

gradient search techniques are computationally intensive and may not reach a global 

minimum. A viable alternative is the use of a network of radial basis functions (RBF). 

The key advantage is that this network is linear in the parameters and can be solved using 

the least squares algorithm. 

12 



As initially proposed, this technique centered an RBF such as a Gaussian or spline 

function on each data exemplar and solved for the weights. This produced an 

approximation with zero error, but did not prove practical in large applications. Various 

authors proposed techniques to reduce the size of the RBF network such that IS«I, where 

I is the number of exemplars. These efforts met with varying degrees of success. Chen, 

et. al., proposed using a forward regression technique using orthogonal least 

squares(OLS) that selects a suitable set of RBF centers from the exemplars to obtain a 

parsimonious network as shown in appendix B (Chen, 1990:302). The Matlab neural 

networks toolbox implements the OLS algorithm (Demuth, 1992) 

2.2   Statistical Networks™ by ModelQuest™ 

ModelQuest is an automated, self organizing software package that fits a piecewise 

polynomial to the input data. The ModelQuest system forms this fit by forming a 

network of piecewise polynomials where each node represents a fractional portion of the 

data similar to neural network techniques. ModelQuest constructs a high order network 

from the input data vectors where the output of each layer is a weighted algebraic sum of 

the inputs as shown in figure 3. The names single, doublet and triplet are based on the 

number of inputs to the element. The output of a single is determined by: 

w0+(wlxl) + (w2xl) + (w3x
i

l) (9) 

where wt are the weights, and xt are the layer inputs. The output of a double is: 

w0+(wix1) + (w2x2) + (w3xf) + (w4xl) + (w5xlx2) + 

(w6xf) + {wnx\) + (w8x2xf) + (yv9xxx\) 

13 



Normalizers      First 
Layer 

Second       Third  Unitizers 
Layer        Layer 

Output 

Figure 3. Example Four Input, Three Layer, Single Output Statistical Network 

The output of a triple is determined by: 

w0 + (wlxl) + (w2x2) + (w3*3) + (w4xf) + (w5*2) + (w6*3) + (w1xlx2) + (wsxtx3) + 

(w9x2x3) + (wwx1x2x3) + (w,,*?) + (w12x2) + (w13x3
3) + (wux2xf) +" (11) 

(Wi5*,*2 ) + (Wi6^i-«3 ) + Cw17JC3JCj2) + (vt/i8X3X2 ) + (w19X2X3 ) 

Note that each element is a third degree polynomial and includes cross products in 

the case of doublets and triplets. Another element used by the network is the linear 

element such that the output is the weighted sum of all outputs from the preceding layer: 

w1x1+w2x2+K wnxn (12) 

where n is the number of inputs from the preceding layer. Additionally, the network 

normalizes the input variables (features) with a zero mean and one variance, and unitizes 

14 



the output variables to the same range (mean and variance) as the desired output. 

ModelQuest automatically fits the best network using a criterion defined by A. R. 

Barren called predicted square error (PSE) (Barron: 1984). This criterion attempts to find 

the best balance between accuracy and complexity and is defined as follows: 

PSE = SSE + KP (13) 

where SSE is the sum squared error for the fitted model and KP is a complexity penalty. 

The complexity penalty KP can be adjusted based on the needs of the user. The model 

performance relationship between SSE, PSE and KP is shown in figure 4. 

Best Network PSE 

Model 
Error 

Increasing Complexity 

Figure 4. ModelQuest Performance 

ModelQuest conducts an enumerative search of the possible combinations of linear, 

single, doublet and triplet elements against a training set of data to find the network 

which returns the best (lowest) PSE. The network is then presented against a test set of 

15 



the data to check for the quality of generalization that may be attributed to the network 

(ModelQuest, 1996:2.6-2.8). 

2.3 Statistical Methods 

There are a myriad of statistical tools and techniques that could be brought to bear on 

this problem. The primary techniques that show promise for this problem are least 

squares regression, stepwise regression (JMP, 1995:199-210), the use of scatter plots 

(Neter, 1996:217-251), sorting and grouping (JMP, 1995), and principal component 

analysis (Bauer, 1996) (JMP, 1995). Non-linear regression (Neter, 1996:531-558) was 

considered as a means of providing a more accurate function approximation, but rejected 

because it requires gradient descent techniques for solution, and requires a high degree of 

practical skill to produce acceptable results, while not having the time saving advantage 

of self organization possessed by neural networks. Logistic regression was considered 

but rejected due to the nature of the desired output. Logistic regression works well when 

the output is qualitative, while the desired response for this research is continuous (Neter, 

1996: 534). Therefore, no attempts at functional approximation will be made using 

logistic regression. A brief discussion of principal components analysis follows. 

Principal component analysis (PCA) assumes an underlying structure within the data 

and seeks to determine the true dimensionality of a data set by studying the 

interdependence structure of a set of variables and provide a means of interpreting the 

underlying factors within the data (Bauer, 1996:15). By solving the correlation matrix (or 

covariance matrix) for its eigenvalues and normalized eigenvectors, the original features 

are mapped onto "principal components" as shown in figure 5. This technique takes 

16 



"linear combinations of the original features such that the first principal component has 

maximum variation, the second principal component has the next most variation subject 

to being orthogonal to the first and so on"(JMP, 1995:315). 

ORIGINAL 
FEATURES 

PRINCIPAL 
COMPONENTS 

PCA 

MAPPING 

w 
w 

Figure 5. Principal Components Mapping 

This mapping forms a linear combination as the cross product of the vector of 

original features and the eigenvector corresponding to each eigenvalue. PCA reduces the 

dimensionality by using only those principal components which explain a significant 

amount of the total variance within the data set (Bauer, 1996:15-26). 

2.4 Summary 

A function approximation of the SABEL data will be constructed using neural 

networks, statistical networks and statistical regression techniques. Each of these 

methods will be compared against a table look-up methodology, with the best in terms of 

accuracy, speed and simplicity serving as an engine for the desired aggregation tool. 

17 



III. Methodology and Results 

The primary objective of this thesis was to develop a straightforward methodology 

for aggregating S ABSEL data for use in the TACWAR model. Ideally, the solution could 

be implemented in common software such as Microsoft Excel™ or Access™ and would 

be rather transparent to the user. Most of the research focused on attempts to create a 

highly accurate function approximation of the SABSEL data that would execute 

efficiently. This approximation would serve as an "engine" for an MS Excel based 

application. Efficient in this situation, would be an approximation that executes quickly, 

requires significantly less memory than the look-up table methodology currently being 

used, and sacrifices little in terms of accuracy. Due to the nature of the SABSEL data, the 

accuracy turned out to be the driver behind most of the efforts. The following provides a 

narrative of the steps taken to create the desired function approximation. Though each 

technique approaches this problem from a different direction, there were areas in which 

the methods complemented each other. Finally, an application was built using MS 

Access to provide the desired aggregation tool. In chapter four, a recommended research 

methodology will be discussed. 

3.1  Neural Networks 

3.1.1 Gaining Experience with Backpropagation 

The research began with an effort to code a feedforward, backpropagation neural 

network using the Matlab neural network toolbox. Using examples from the Matlab 

toolbox, this proved to be a relatively straight forward task. This code was tested on a 

18 



SUNSPARC Ultra computer against the following equation for verification and to gain 

experience with the various backpropagation techniques: 

? = (—r) (14) 
'x + l   1 + exp{ sin(6x - -J5x)} 

which results in the decreasing sin wave type function that goes to zero as the input value 

goes to infinity shown in figure 6. 

Figure 6. Data for Function Approximation 

The measure of accuracy was set at 0.001 using sum squared error as the criterion. 

Experimentation was conducted using backpropagation, backpropagation with 

momentum, adaptive backpropagation and the Levenberg-Marquardt (LM) algorithm. 

For this two dimensional problem with a relatively small number of exemplars, no 

network required more than 5 minutes to train. The number of epochs required to train to 

the desired accuracy varied with the technique used and the number of perceptrons (or 

nodes) used. As stated in the Matlab neural networks toolbox manual, LM requires 
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magnitudes of order fewer epochs to train. LM also demonstrated better characteristics in 

avoiding a local minimum. Additionally in conjunction with the LM algorithm, the 

number of nodes in the hidden layer were varied to demonstrate the effects of overfitting 

and underfitting. Too many nodes resulted in a jagged approximation, while too few 

nodes prevented reaching the error goal. One insight gained from this process is that LM 

will train quickly initially, then follow a relatively shallow slope to the desired error goal, 

unless there are too few nodes in the hidden layer. 

3.1.2 Backpropagation Efforts with the SABSEL Data Set 

The previously generated code served as the basis for the attempts to train a neural 

network against the SABSEL data (see Appendix C). The desired performance goal was 

the approximation of Single Shot Probability of Damage (SSPD) to a root mean square 

error (RMSE) less than 0.01. RMSE can be defined as: 

ISSE 
RMSE = 4 , (15) 

V   n 

where n is the number of exemplars (input vectors). A simple inspection of the data set 

showed that many of the features were a function of SSPD rather than independent 

variables. For example, 'expected kills' is the product of SSPD; the number of passes 

over the target and the number of weapons released per pass.   Elimination of these 

variables reduced the feature space to twelve. A network was then trained on these 

features with no preprocessing of the data. Normally preprocessing consists of scaling or 

normalizing the data with a mean of zero and a standard deviation of one. The number of 

nodes were varied from ten to fifty. 
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During this initial attempt it became apparent that the size of the data base would 

greatly slow training, and would require considerable amounts of processor time. To 

increase neural network performance, while providing a source of data with which to 

check for the ability of the network to generalize, the data was split into equal sized 

training and test sets by selecting alternate exemplars for each set from the original data 

set.   Additionally, a draw back of the LM algorithm soon became apparent. The LM 

algorithm requires a large amount of random access memory (RAM) to execute. This is 

due to the size of the matrix that must be inverted to solve the LM algorithm during each 

epoch. Once the available 64 megabytes of RAM of the machine were exhausted, the 

learning process proceeded at a snail's pace due to the slow file swapping process. With 

twelve features, network training slowed considerably when the number of nodes used 

exceeded fifty. Training on the entire data set and using 50 nodes produced a RMSE of 

0.24 after 10000 epochs, which took over 150 hours of processor time. The desired 

accuracy was orders of magnitude larger than desired, and increasing the number of 

hidden layer nodes would increase the training time greatly, therefore additional reduction 

of features would be necessary. 

3.1.2.1 Feature Reduction 

The first attempt to improve the performance to the network involved using simple 

statistical techniques available through the JMP software to try and eliminate features 

from future training. Exploration of the data first involved generating a correlation matrix 

to help eliminate features that were highly correlated and discover any features that were 

highly correlated to the desired output SSPD. The correlation matrix in table 2 shows that 
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the feature showing the highest correlation with SSPD is the weapon type, however its 

value is quite low at 0.2985. 

Table 2 Correlations 

Variable Aircraft Weapon Loadout Profile Weather Target Tgt elem SSPD 

Aircraft 1 0.1888 0.5088 0.2282 -0.4723 -0.0217 -0.0027 -0.062 

Weapon 0.1888 1 -0.1809 0.2358 -0.1583 0.0003 -0.0071 0.2985 

Loadout 0.5088 -0.1809 1 -0.003 -0.4043 0.0354 0.0111 -0.1713 

Profile 0.2282 0.2358 -0.003 1 -0.1995 -0.0376 -0.0068 0.0311 

Weather -0.4723 -0.1583 -0.4043 -0.1995 1 -0.0281 -0.0021 0.1809 

Target -0.0217 0.0003 0.0354 -0.0376 -0.0281 1 -0.0509 0.0593 

Tgt elem -0.0027 -0.0071 0.0111 -0.0068 -0.0021 -0.0509 1 -0.0938 

SSPD -0.062 0.2985 -0.1713 0.0311 0.1809 0.0593 -0.0938 1 

Principal component analysis (PCA) and experimentation with different groupings of 

features, while searching for those combinations which could account for the greatest 

amount of variance within the data, produced disappointing results. In following the rule 

of thumb for PCA which suggests keeping those components which have an eigenvalue 

greater than 1.0 only four principal components should be used. These components 

roughly correspond to aircraft, weapon, target elements, and target type as shown in table 

3. These components explain only 76% of the variance, thus failing to meet the accuracy 

requirements. 

However, the grouping of aircraft, weapon, profile and target produced a set of 

features that spanned the entire data set. In other words, each exemplar within the set is a 

unique combination of values from these four features. Using this information, all but 

these four features were eliminated from future neural network training attempts. Closer 

examination of these four features showed that they all are nominal variables: aircraft 

type, weapon type, profile type, and target type. This would suggest there exists no real 
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structure within the data. The scatter plot analysis in figure 7 confirms the lack of 

structure and indicates a relatively large number of nodes will be required to approximate 

this data with an acceptable error. 

Table 3 Principal Components 

Eigenvalue: 2.0167 1.3015 1.0524 0.9499 0.7581 0.5512 0.3703 

Percent: 28.8094 18.5925 15.0337 13.5704 10.8306 7.8737 5.2897 

CumPercent: 28.8094 47.4019 62.4356 76.006 86.8366 94.7103 100 

Eigenvectors: 
Aircraft 0.59366 -0.0276 0.03065 -0.0452 -0.1191 0.47867 -0.6329 

Weapon 0.17487 0.68202 -0.0898 0.14154 -0.5648 0.17279 0.35683 

Loadout 0.4846 -0.4956 0.0299 -0.0417 0.03863 0.25927 0.66946 

Profile 0.28015 0.52313 0.02207 -0.0359 0.79373 0.0361 0.12151 

Weather -0.551 0.01477 0.03201 -0.0457 0.13217 0.81795 0.0811 

Target 0.00911 -0.1178 -0.7064 0.68142 0.12989 0.05794 -0.0498 

Tgt elem 0.00128 -0.0262 0.69971 0.71308 0.03116 0.01005 -0.0129 
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Next the mean and standard deviation of the SSPD over each possible value taken 

by each feature (e.g. set aircraft equal to one and calculate the mean SSPD and standard 

deviation, then repeat for each aircraft) were then plotted. This was accomplished to 

determine if some structure could be created within the data. Figure 8 and figure 9 show 

the plots of the mean SSPD values and their standard deviations and demonstrates that 

creating structure would likely yield little benefit in network training due to the high 

degree of variance within each nominal value. 
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Figure 9. Feature vs. SSPD Std. Dev. 

Once again various attempts to train the network were made by varying the number 

of hidden nodes from 10 to 100. The reduction of variables and exemplars, facilitated a 

significant improvement in the learning rate and enabled the use of up to 65 nodes before 

network training bogged down due to exhausting the available RAM. These efforts 

reduced the network RMSE slightly to 0.22 after 20000 epochs, but failed to get close to 

the desired 0.01. 

3.1.2.2 Preprocessing the Data 

According to Rogers, correctly preprocessing the data can speed learning (Rogers, 

Nov 1996). Two methods of preprocessing the data were implemented, normalizing the 

data (~N(0,1)) and converting each nominal value to a binary value.   Normalizing the 

data initially improved the network learning rate, however the networks with normalized 
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data soon lagged the networks that had no preprocessing and produced a less accurate 

RMSE of 0.24. Conversion of each nominal value to a binary string greatly increased the 

feature space from four to thirty one and likewise greatly increased the processor time 

required for each epoch. However, this method yielded a network with a significantly 

improved RMSE of 0.12 after 20000 epochs and 250 hours of processor time over a three 

week period.   Intuitively, the improved accuracy makes sense due to the nominal nature 

of the input features. 

3.2 Radial Basis Functions 

At this point the need for a method of training a network that was less 

computationally intensive, thus allowing more nodes in the hidden layer, became 

apparent. RBF networks held promise for such a solution. As discussed in chapter 2, 

centering a RBF(node) on each exemplar in the data set, produces a function that is linear 

in the parameters (the weights) and can be solved efficiently using the least mean squares 

algorithm with zero error. However, this produces a network that requires significantly 

more memory than a look-up table for this application. Using Matlab's implementation 

of Chen's orthogonal least squares (OLS) algorithm, attempts were made to train to the 

desired accuracy with significantly less processor time than backpropagation (Demuth, 

1992). The initial attempt to use this iterative forward regression technique on the entire 

data set using only the four features defined above (no preprocessing), once again 

exhausted the resources of the Ultra SPARC computer. Further attempts to train would 

require a significantly reduced data set. To verify the operation of the Matlab code, 

training was attempted on l/200th subset of the original data chosen at random. By 
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varying the spread constant (width) of the RBF, the desired error goal was reached, but 

required three nodes for every four exemplars. The size of the training set was iteratively 

increased in steps tol/20th of the original data set when the computer once again bogged 

down. As the training set was increased, the number of nodes required to reach the error 

goal held fairly constant at three nodes to four exemplars, thus failing to achieve the goal 

of a compact approximation. Though this technique successfully approximated a subset 

of the data, it would prove unsuitable for the entire data set due to processor limitations. 

3.3 Divide and Conquer 

At this point, neither backpropagation nor RBF networks provided an approximation 

of the data with the desired accuracy. Since the four features that span the SSPD output 

space are all nominal values, this facilitates reducing the feature space to three features 

while holding one feature value constant. Training a localized network for each value a 

feature takes within the set can greatly speed training due to the reduced feature space and 

the smaller subset of exemplars used for training. Once trained, these localized networks 

can be linked to produce a function approximation that spans the entire data set. 

The first feature selected for this approach was aircraft type. This was selected 

because there were only nine possible values aircraft could take and therefore would 

require the training and linking of only nine networks. For the initial attempt using this 

methodology, an aircraft type for which there were relatively few exemplars (aircraft 

number nine, with 919 exemplars) was chosen. As expected, this network trained much 

faster on RBF networks and enabled the use of more nodes in the hidden layer using 

backpropagation, before the computer bogged down. The RBF network achieved the 
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desired error goal but required two hidden layer nodes for every three exemplars. 

However, training on a larger set such as aircraft number three with 4288 exemplars 

overtaxed the computing capacity. Using this approach with a backpropagation network, 

showed greatly improved training and a significantly reduced trained network error. 

However, using 100 nodes in a backpropagation network produced a best RMSE result of 

0.06. 

The next feature selected for this technique was weapon type. This was chosen 

because it would require the next smallest number of trained networks to provide a 

complete function approximation. This feature assumed 43 possible values and would 

require the training and linking of a like number of networks. Due to lessons learned 

while holding aircraft type constant, a back propagation network was first trained. Again, 

the smaller subset of data produced quicker training and more accurate results. Training 

on these networks typically required eight to twelve hours of processor time. These 

networks achieved the desired RMSE goal of 0.01 while requiring approximately one 

hidden layer node to ten exemplars for each weapon type upon which a network was 

trained. Having achieved the desired accuracy and compactness with backpropagation, 

RBF networks were no longer attempted. This decision was made because RBF networks 

consistently required a much greater number of nodes to achieve a given error goal than 

backpropagation. 

3.4 Statistical Networks - ModelQuest 

ModelQuest has proven useful in a variety of applications such as stock prediction, 

flight controls and pattern recognition. Due to the relative ease of constructing and 
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training a network using the ModelQuest software, as the features were reduced an 

attempt was made to approximate the function with this software essentially in parallel 

with the efforts using neural networks. As in the previous discussion on 

backpropagation, reduction of features greatly reduced training time. At each step, the 

ModelQuest software trained in under half the time required for backpropagation, but was 

never able to achieve accuracy results near those of backpropagation or RBF networks. 

The primary reason for this points back to the nature of the data. The software was 

designed to quickly numerically approximate a function given the assumption that 

numerical values have some real meaning. 

The effort that produced the best results, though far from satisfactory, entailed 

holding the feature, weapon, constant as described in section 3.3. This produced a RMSE 

of 0.29.   In fairness, ModelQuest was not designed to work well with data that consists 

entirely of nominal input values. However, at the beginning of this investigation, the 

nature of the features was not known. One suggestion given by the vendor to improve the 

performance entailed binary coding each feature. This was not attempted since it would 

expand the feature space from 4 to 261 features, thus increasing training time beyond 

reasonable bounds. 

3.5 Statistical Approximation 

In addition to the statistical methods discussed in section 3.1.2.1 for feature 

reduction, correlation analysis, least mean squares fitting and stepwise regression were 

performed on this data. Principal component analysis resulted in four principal 

components, each of which related was highly correlated to one of the four features 
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selected, thus confirming the feature reduction already accomplished. Using the JMP 

software, least mean squares fitting produced first order model with 257 parameters and a 

RMSE of 0.19. The reason for the high number of parameters is because JMP treated 

each value assumed by each feature as a separate variable. Examination of higher order 

models up to fourth order using stepwise regression netted only a minor improvement, a 

RMSE of 0.185 while using over 1400 parameters. Neither of these techniques met the 

accuracy goal or the goal of a compact representation of the data. 

3.6 Summarizing Function Approximation 

All function approximation attempts to this point failed to produce a result that 

provides the desired output efficiently. However, achieving the desired accuracy using a 

backpropagation neural network demonstrates an ability to approximate even 

discontinuous data. The reduction of features improved performance for all techniques. 

In table 4, the best RMSE is listed for each methodology along with comments on relative 

requirements needed to apply each method. 

Table 4. Results Summary 

Methodology 
Best 

RMSE 
Computational 
Requirement 

Practitioner 
Skill Required 

Nodes or Processing 
Elements Required 

Neural Networks 
Backpropagation 0.01 Very High High Moderate 

Radial Basis Functions *** High High Very High 

ModelOuest 
Statistical Networks 0.29 Moderate Low Moderate 

Statistica I Methods 
Least Mean Squares 0.19 Low Low Moderate 
Stepwise Regression 0.185 Low Moderate Very High 

Note: RB F's achieved the desired RMSE, jut only on a su jset of the data. 
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3.7  Aggregation with a Look-up Table 

One of the underlying goals for function approximation was the creation of a 

compact representation of the data set. However due to the nature of the data, this goal 

was not met. Since MS Excel, Access and other spreadsheet and database applications 

provide efficient tools for looking up values within a data set, the decision was made to 

use a look-up table rather than a function approximation. MS Access was chosen to 

build an application tool due to its application building features and its ability to handle 

large data sets. Due to the desire for flexibility in the number of aircraft, weapons and 

targets to be aggregated at any given time, a weighted average of the look-up values was 

chosen for the purposes of aggregation. 

Specifically, Access is used to filter all possible combinations of the input values 

supplied for aircraft type, weapon type, and target number to return a list of SSPD values. 

From this point, the aggregate SSPD may be calculated using one of two methods, either 

by feature or as a total weighted sum across the input features aircraft, weapon and 

target. In either case, the aggregate value is a weighted sum, with the sum of the weights 

equal to 1.0. Calculation of the weighted sum by feature begins by calculating the mean 

SSPD for each distinct value a feature takes using: 

1 " 
X. =~YuXi ' * = i,—,»> (16) 

where xi are the best SSPD values returned by the look-up for a given weather condition, 

n is the number rows returned for a given feature value, and x} is the mean SSPD for 

feature x when it takes value j, j = 1,..., m, and m is the number of distinct values for 

feature x. The weighted SSPD for feature x is then taken using: 
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* = 2>;Wj,/ = l,...,/», (17) 
7=1 

where the w. is the specified percentage of the force mix for a given xy. The Wj for 

the feature aircraft type are adjusted for differing weapon loads using: 

w, * loadout, 
w, = (18) 

2_jWs* loadout t 

where s is the specified portion of the aircraft mix and loadout is number of weapons 

carried by an aircraft. Calculation of the total weighted sum across all features follows a 

similar logic: 

SSPD = XXx*w/>^ = l>--->r^ = {aircraft, weapon, target],       (19) 

where r is the total number of values returned by filtering the SABSEL data, 

/ designates the three features, aircraft, weapon and target. Again the weights are 

normalized such that: 

ESw;=10. (20) 

A series of queries were built to implement the above aggregation in Access that 

meets the desires of CCCA. This application filters the SABSEL data in under thirty 

seconds on a Pentium 90 PC with zero error and requires an additional one to two 

minutes to complete the aggregation process. Data entry forms were created to make the 

process relatively easy, not requiring more than a few minutes to complete. A tutorial for 

this application is at Appendix D. 
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3.8  Summary 

This chapter discussed the steps taken to build an accurate function approximation of 

the S ABSEL data using neural networks, statistical networks and traditional statistical 

techniques. A discussion of the methods used for feature reduction was also included. 

Table 4 summarizes the results of the function approximation attempts, showing a 

relative comparison of the techniques. Finally, a brief discussion of the building of an 

aggregation tool using Access was provided. 
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IV. Conclusions/Recommendations 

The purpose of this thesis was to produce a tool for the aggregation of SSPD value 

from the relatively large SABSEL database. After drawing some conclusions on the 

performance of each type of function approximation technique as discussed in chapter 3, 

this chapter will recommend areas of future study. 

4.1 Conclusions 

4.1.1 Data Reduction 

All attempts at approximation of the SABSEL data were greatly affected by the 

nature of the data. Once feature reduction was accomplished, each method showed 

significant performance improvements both in terms of training time and accuracy. Any 

feature reduction that can be accomplished prior to training the networks will be highly 

beneficial. 

4.1.2 Neural Networks 

Both backpropagation networks and radial basis function networks can be highly 

computationally intense with a large data set. Splitting the data can provide benefits in 

terms of training time while providing a source of data for evaluation of the trained 

network. Due to the relatively uniform distribution of the data, neither backpropagation 

or RBF's proved simple. Only after breaking the data into small subsets corresponding to 

some nominal value, was a network trained to a suitably small error. This suggests that 

as processors get faster a network may be trained on a data set of this size and nature. 
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Statistical evaluation of the data provided great insight into the nature of the data and 

should be used along side neural network techniques. 

4.1.3 Statistical Networks 

The ModelQuest software package was unsuited for this task. The function 

approximation required for this research called for a scalpel, while the ModelQuest 

software provided a butcher knife. Though it does accomplish function approximation, it 

could not provide a highly accurate approximation using the SABSEL's nominal data . 

The uniform distribution of the data within the space and the accuracy requirement can 

account for the relatively poor performance of this piecewise approximation technique. 

To its advantage, this software was intuitive and relatively fast (compared to 

backpropagation). 

4.1.4 Statistical Techniques 

Traditional regression techniques for approximating this highly uniform data proved 

inadequate. Though simple to execute using the JMP software package(JMP,1995), both 

least mean squares regression and higher order stepwise regression failed to approach the 

accuracy requirement of this research. Again much of this failure can be attributed to the 

nature of the data. 

4.1.5 Look-up vs. Function Approximation 

Once feature reduction had been accomplished, the data set consisted of a set of 

features composed of nominal values. Though backpropagation could achieve the desired 

accuracy, there exist many applications that perform table look-up with much less effort 
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and greater efficiency. Function approximation by any of the methods attempted is more 

suited to instances where there are continuous or at least ordinal values within the data 

set, rather than nominal values as was the case for the SABSEL data. The choice of using 

a look-up table or a function approximation for aggregation should be made depending on 

the nature of the data. In this case, the look-up table proved far superior to function 

approximation for aggregating the data. 

4.2 Aggregation Tool 

The suitability of the look-up table aggregation can best be summarized by CCCA. 

For their needs the SABSEL Aggregation tool: 

"works very well and will allow us to improve the quality of the probabilities of kill we 
use in our combat models such as TACWAR. In addition it should reduce the time needed 
to perform an aggregation which will us to regularly update our data base every time we 
receive a new SABSEL data base. It also provides the mechanism to clearly define the 
aggregation assumptions used and to record those assumptions for future reference and 
repeated use." (Hebert, 1997) 

4.3 Recommendations 

Within the modeling and simulation community there exist many stochastic models 

where much data is available, yet there is no satisfactory means of mining the information 

from the data. For example, a multitude of data exists for many scenarios of the 

THUNDER model that has not been aggregated into tool that provides a meaningful way 

of predicting the results of the model. Neural networks, and statistical networks, once 

trained, can be used to provide an 80% answer quickly rather than requiring numerous 

model runs. 

To accomplish such a mining of existing data the following is recommended: 
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1. Determine the nature of the data. Is the data primarily continuous, ordinal, or 

nominal? Use statistical techniques such as scatterplots, correlation analysis, and 

principal components analysis. Also examine various groupings of the data, 

searching for any group of nominal values that spans the data space. 

2. Reduce the feature space. Using information gained in step 1, eliminate 

unnecessary features. 

3. Depending on the nature of the data: 

a. Primarily continuous data: use statistical networks to achieve a ballpark type 

approximation (because of its relative ease of use), or neural networks if a 

more precise approximation desired. 

b. Primarily nominal data: use a spreadsheet or database program to provide a 

look-up that executes quickly and provides data for further aggregation. 

c. Mixed data: Train a network for each nominal value, and use a look-up as a 

pointer to each network, or train a network of networks as suggested by 

ModelQuest (ModelQuest, 1996:4.22). 

4.4 Summary 

The SABSEL data primarily consists of nominal data features. Neural networks, 

Statistical networks and regression techniques were compared with a look-up table 

methodology on the basis of accuracy, speed and compactness (storage requirement). An 

Access based tool has been created that quickly filters the SABSEL data and implements 

a weighted sum algorithm to aggregate the SSPD values. A brief tutorial is provided at 

appendix D. This tool should greatly simplify the aggregation of SABSEL SSPD values 

for use in the TACWAR model. 
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Appendix A.   Glossary of Neural Network Terms 

• Back-propagation - a supervised learning algorithm for adjusting weights in a 

multilayer, feedforward neural network that uses gradient descent techniques to 

minimize network output error. 

• Bias - the bias, 0, provides a means of shifting the intercept of the transfer 

function. Its input value is set at 1.0 and its associated weight shifts the intercept. 

• Epoch - the presentation of all exemplars in the data set being used to train the 

network or perceptron one time.. 

• Exemplar - an input data vector consisting of a unique set of feature values, 

xi,x2,...,x/. An exemplar in neural network terminology is the same thing as a 

sample point in statistical terminology. Essentially this is one row of the data set. 

• Feature - an independent variable, x,-, which provides information useful for 

approximating a function or distinguishing classes. 

• Feedforward Network - a collection of perceptrons whose connections 

exclusively feed inputs from lower to higher layers; in contrast to a feedback 

network, a feedforward network operates only until its inputs propagate to its output 

layer (DARPA, 1988). 

• Hidden Layers - those processing elements in a multilayer neural network which 

are neither the input layer or output layer. 

• Multilayer Perceptron (MLP)- a feedforward multilayer perceptron that is fully 

connected(i.e. each input from a lower layer is connected to each perceptron in the 

next higher layer). A typical MLP has an input layer, one or more hidden layers and 
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an output layer. This type network is usually trained through back-propagation. See 

Figure A-l Multilayer Perceptron . 

•   Perceptron - first proposed by Rosenblatt (Rosenblatt, 1959), the single 

perceptron, Figure A-l, performs a transformation on the weighted sum of the input 

exemplar. Perceptrons are also known as neurons, or nodes, or processing elements. 

f (!>,*,+w/+10) ■>y = f(w,x) 

e =+i 

Figure A-l. Perceptron 

• Supervised Training - a method of training a neural network that provides the 

desired output to the network as a standard from which to measure network output 

error. An alternative technique is unsupervised training where the network "self 

organizes" or clusters the data during the training process. 

• Transformation Function - the perceptron maps the weighted sum of its inputs 

onto its output through the transformation function, /(•) (also known as a transfer 

function). 

• Weight - each input into a perceptron is weighted, wi,w2,... ,w/. The weights are 

adjusted through training to achieve the desired output. 
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Appendix B. Chen 's Orthogonal Least Squares Basis Function Algorithm 

The RBF network implements a mapping /r:R" -» R as follows: 

/r(x) = 0 + Zw(.<K|x-c(.|), (21) 

where x € R" is the exemplar(input vector), (/>(•)is a given RBF, 0 is the bias 

(intercept), wt denotes the weights (parameters), ci are the RBF centers, ||«| denotes the 

Euclidean norm, and / is the number of centers. Assuming that the centers c, and the 

functional form 0(») are fixed, weights wt can be determined using linear least squares 

(LS). According to Chen, the choice of the type of RBF $(•) is not significant. The 

Gaussian function is 

0(v) = exp(-v2//?2), (22) 

where v is the Euclidean distance from the center, and ß is a preset spread constant. 

(Chen , 1991:303). A larger ß results in smoother function, while too large a value of ß 

can result in an ill conditioned matrix(Demuth, 1992). 

In his presentation of the orthogonal least squares (OLS) algorithm, Chen views the 

RBF network as a special case of the linear regression model 

M 

d(0 = SPiW+£(0, (23) 
i=i 

where d(t) is the desired output, 6t are the parameters (weights), and pt (t) are the 

regressors which are some fixed functions of x(t): 

Pi(t) = Pi(x(t))- (24) 
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Equation 20 can be rewritten as: 

d=P0+E (25) 

where 

d = [d(l)...d(N)]T, (26) 

P = [p,...pM], p,=[A(l)...A(iV)f, 1</<M, (27) 

where M is the number of RBF centers, 

® = [0V..0MT, (28) 

E = [S(l)...s(N)]T. (29) 

Chen's OLS method transforms the set of p, into a set of orthogonal basis vectors. This 

transformation makes it possible to calculate the individual contribution to the desired 

output from each basis vector. In other words, this transformation provides a way to rank 

each RBF center according to its contribution to achieving the desired accuracy. 

Decomposing the regression matrix P results in: 

P = WA, (30) 

where A is an M x M triangular matrix with l's on the diagonal and 0's below the 

diagonal, and W is an JV x M matrix with orthogonal columns wt such that 

WrW = H (31) 

where H is diagonal with elements h{. 

N 

K = w/w, = I>,(0w,(0, 1 £/£ M (32) 

The orthogonal basis vectors w; span the same space as the set of p^ an can be written as 

d = Wg + £. (33) 
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The OLS solution can then be given by 

g = H -1 W7d (34) 

or 

g =wfd/(wfwi), \<i<M. (35) 

The OLS algorithm facilitates the selection of a subset of RBF centers from a large 

set of data. By equating w, top,, Chen proceeds to derive an error reduction ratio due to 

w; 

[err], = g2wfw, /(drd), \<i<M. (36) 

This error ratio offers a simple method for selecting a set of significant regressors using 

forward regression. Finally, Chen summarizes this procedure as follows: 

1.   For \<i < M, compute 

Find 

and select 

wj0 = p, 

[err](
1°=(gI

(,'))2(w(
1'
))rwl')/drd 

[errf'l) = max {[err];0, \<i<M] 

(37) 

(38) 

Wl=w('>>=p,r 

2.   At the kth step where k > 2, for 1 < i < M,     /' * /j,...,/ * ik_x, compute 

(39) 

<=w;.p,./(w>,),l<;<^ 

w (0 
4-1 

p.-ZAX 

gf =(w«)rd/((w2>)rw«) 

[err]i'>=(g«)2w(
J!>)rwi'>/drdJ 

(40) 
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Find 

[errf]] = max{[errf], l<i<M,     i*ix,...ti±ik_x, (41) 

and select 

w*=w^=pu. -J^w, (42) 
7=1 

where a/t = or| ,1^7 < *• (43) 

3.   Stop when 

\prr   . \-Y\err}j<P (44) 
7=1 

where Ms is the number of significant regressors and p, 0 < p< 1, is the 

chosen tolerance(Chen, 1991:303-305). 
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Appendix C. Matlab Code for Training Neural Networks 

Example Matlab Code for Backpropagation (Levenberg-Marquardt Algorithm) 

% 2 Dec 96. 
% Maj Parker. 
% After performing analysis on the data and reducing the features, this 
% trial attempts to train on only those exemplars where the feature 'aircraft' has a 
% value of 1, using LM. 

% initialize parameters 
clear; close all; 

% Load the SABSEL data, selecting the desired features 

load aircraftl.mat; 
P = aircraftl(:,5:7)'; 

%   T defines the associated 1-element targets (column vectors): 

T = aircraftl(:,4)'; 
clear aircraft 1; 

% Normalize the columns of the input matrix P. 

P = normc(P); 

%   PLOTTING THE DATA POINTS 

%   Here the data points are plotted: 

figure(l); 
plot(P,T,V); 
title('Training Vectors'); 
xlabel('Input Vector P'); 
ylabel('Target Vector T); 

%   The function the neural network learns must pass through 
%   these data points. 

%    DESIGN THE NETWORK 
%    ================== 
%   A two-layer TANSIG/PURELIN network will be trained using 100 hidden nodes. 

SI = 100; 

%    INITFF is used to initialize the weights and biases for 
%    the TANSIG/PURELIN network. 

[wl,bl,w2,b2] = initff(P,Sl,'tansig',T,'logsig'); 

%   TRAINING THE NETWORK 

%   TRAINLM uses backpropagation to train feed-forward networks. 
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df = 25; % Frequency of progress displays (in epochs), 
me =20000; % Maximum number of epochs to train, 
eg = 0.1; % Sum-squared error goal. 
min_grad =0.0001; % Minimum gradient 
mu = 0.001; % Initial value for mu. 
mu_inc = 10; % Multiplier for increasing mu. 
mu_dec = 0.1; % Multiplier for decreasing mu. 
maxmu = lelO; % Maximum value for mu. 

tp = [df me eg min_grad mu mu_inc mu_dec maxmu]; 

[w 1 ,b 1 ,w2,b2,ep,tr] = trainlm(w 1 ,bl ,,tansig',w2,b2,,logsig',P,T,tp); 

% PLOTTING THE ERROR CURVE 

%   Here the errors are plotted with respect to training epochs: 

figure;ploterr(tr,eg); 
figure; 
plot(P,T,'+'); 
title(Training Vectors'); 
xlabel('Input Vector P); 
y label(Target Vector T); 

% Save weights and input parameters upon completion. 

clear P T; 
save res lOOacl; 

end; 

Example Matlab Code for Radial Basis Functions 

% 4 Nov 96. 
% Maj Parker. 
% After performing analysis on the data and reducing the features, this 
% trial attempts to train on only those exemplars where the feature 'aircraft' has a 
% value of 1, using radial basis functions. 

% initialize parameters 
clear; close all; 

load aircraftl.mat; 
[n,m]=size(aircraftl); 

%   P contains the normalized training vectors: Aircraft, Weapon, Profile, and Target. 

temp = aircraft9(:,l:3); 
temp = normc(temp); 
P=temp'; 

%   T defines the associated 1-element targets (SSPD): 
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T=aircraftl(:,4)'; 
clear aircraftl temp; 

% A two-layer radial basis network will be trained. 
% TRAINING THE NETWORK 
% ================== 
% SOLVERB trains a radial basis network using the minimum number of neurons 
% to meet the error goal. 

df = 1; % Frequency of progress displays (in epochs), 
me = 500;        % Maximum number of to include in network, 
eg = .20;        % Sum-squared error goal, 
spread = 0.3; % Spread for hidden layer transfer function. 

tp = [df me eg spread]; 

[wl,bl,w2,b2,nr,dr] = solverb(P,T,tp); 

% Save weights and input parameters upon completion. 

clear P T; 
save res lOOacl; 

end; 
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Appendix D. SABSEL Aggregator Tutorial 

Introduction 

The SABSEL Aggregator is designed to calculate a weighted average SSPD value from 

the SABSEL data set.   Given the weather minimums, a set of aircraft, a set of weapons, 

and a set of targets, this tool filters the SABSEL data for SSPD values for all possible 

combinations of the aircraft, weapons and targets. These SSPD values are then 

aggregated into a single value based on the mix. For instance, if a particular aircraft 

makes up only 20% of the mix, it's influence on the aggregated SSPD is adjusted 

appropriately. Additionally, if an input combination does not exist within the SABSEL 

data, the mix of the other inputs are adjusted automatically. Finally, the specified mix for 

aircraft are adjusted for the number of weapons carried (e.g. an aircraft that can carry four 

of a particular weapon carries twice the weight of one that can carry only two). The 

following is a simple description of how to run the aggregator in MS Access. More 

detailed discussion of the algorithm is provided in chapter 3. 

Instructions 

1. Open Access and the sab.mdb file. 

2. Select the forms tab and double click on the Aggregator Input form as shown 

in figure D-l. 

3. The Data Input form (figure D-2) has four buttons for input. Click the Aircraft 

Input, Weapon Input, or Target Input button to view the data entry form 

(figure D-3). Drop down menus are available for legal values for aircraft type, 

weapon type and target number. Use care to ensure the sum of 
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Figure D-l. Select Form 

Figure D-2. Data Input Form 
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Figure D-3. Aircraft Entry Form 

the mix input equals 1.0.  If this sum does not equal 1.0, the program will 

automatically normalize the input mix. Each input form will initially display 

inputs stored previously. Type over or delete these values as desired. 

4. Once the aircraft, weapons and targets have been input, specify the prevailing 

weather minimums, by using the drop down menu under "Weather 

Minimums." If the weather code is known, enter it directly. 

5. Once the inputs are complete, this form provides three choices. 

a. To review the output, click the "Aggregate" button. This will present the 

weighted mean SSPD by aircraft, by weapon, and by target, along with a 

total aggregated value for SSPD, called "Total_Wtd_SSPD" (see figure D- 

4. Aggregate Button Output). The aggregator first selects the best SSPD 

for a given weather condition, aircraft, weapon and target from the 

SABSEL data. From this initial selection, the "Total_Wtd_SSPD" value 

is taken as a total weighted sum of all possible combinations, with the 

weights derived from the specified mix, and adjusted to sum to 1.0. 

Normally, the "Total_Wtd_SSPD" value is the desired output. 

However, there may be situations where one the type of aircraft, 
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Figure D-4. Aggregate Button Output 

weapon or target is the overriding factor. The "By Aircraft", "By 

Weapon", and "By Target" buttons provide weighted sum SSPD 

values that are adjusted only for the named input, and disregard the 

mix input values of the other inputs. 

b. To view the raw data as extracted from the SABSEL data without any 

aggregation, click on "Raw Data." Figure D-5 shows an example of this 

output. 

c. To get a report showing both the raw data and the aggregated SSPD 

values, click on "Report." Figure D-6 shows an example of this output. 

This option takes the longest to execute (approximately 2-3 minutes on a 

Pentium 90). 

NOTE: Data from any of the above output can be transferred to and from MS Excel and 

Word using the cut and paste commands. 
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Figure D-5. Raw Data Output 
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Figure D-6. Report Output 
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