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Abstract 

This thesis provides a methodology to analyze the sensitivity of a combat simulation 

relative to the capabilities of the modeled weapon systems. Response Surface 

Methodology (RSM) was the primary technique used for analysis. A ground battle 

scenario was developed with a commercial PC wargame Empire II: The Art of War ' . In 

the computer verses computer mode, the wargame was transformed into a 'combat 

simulation'. A screening experiment was used to determine which of an original 23 

weapon factors were actually significant to this scenario. After analyzing the remaining 

five factors, only three ended up as truly significant to the battle outcome. The three 

factors are used in a regression equation which predicts the outcome of the overall 

simulation scenario. The sensitivity of the simulation outcome is reflected by the 

coefficients of each factor. The regression model was then validated against independent 

simulation trials. 

The method proved useful in analyzing the underlying behavior of a combat 

simulation. Combat analysts must isolate those weapon capabilities which have the 

greatest influence on the simulation model. Modeling funds can be concentrated on 

those factors. With accurate modeling and timely updates of those capabilities, the 

simulation model will earn more credibility as a decision aid. 

Vlll 



SENSITIVITY ANALYSIS OF A COMBAT SIMULATION 
USING 

RESPONSE SURFACE METHODOLOGY 

I.   Introduction 

Many combat simulations are used to compare various force structures for a given 

scenario. Typically, the number and type of combat units are manipulated to improve 

simulation outcomes. These outcomes are also influenced by hard-coded or "fixed" 

variables embedded into the simulation algorithm. Examples of these types of variables 

include the relative power of weapon systems, weather effects, and mobility factors. 

What happens to the simulation outcome when these variables are changed? Is the 

simulation sensitive or robust to these variables? Which are the most important? The 

answer to these questions can lead to a more credible simulation model. Significant 

variables and their characteristics should be isolated and periodically updated. 

Objective 

Apply Response Surface Methodology to analyze weapon system capabilities, and to 

identify those with the greatest influence on a combat simulation outcome. 

Purpose 

A simulation outcome, especially from an accredited model, has significant influence 

on force structure decisions. If an incorrect value of some significant factor can bias the 



outcome, the decision maker will be working with incorrect data. Major decisions that 

involve lives and huge amounts of money need protection from this possibility. 

However, updating all the factors in a combat simulation can be a time consuming and 

expensive process. Such maintenance may have a tendency to be ignored. This 

technique will isolate the simulation's most significant factors. The simulation model 

may be updated and maintained in a much more economical manner. 

Other benefits are also available from a response surface analysis of the simulation 

model. RSM will provide a metamodel of the combat simulation model itself. The 

simulation model can actually be verified and validated to some degree with the 

technique. For example, counter-intuitive behavior which may require further 

investigation could be revealed. Another major benefit of RSM is the quick-turn analysis 

opportunity of the resulting regression equation. The capability of instantly forecasting 

simulation results can be a valuable asset for any decision-maker. 

Background 

When a Commander-in-Chief (CINC) of a major Unified Command such as U.S. 

Central Command (USCENTCOM) is faced with a situation that may require military 

action in his Area of Responsibility (AOR), he is required to provide feasible Courses of 

Action (COA's) to the National Command Authority for consideration. Such was the 

case in 1990 when Iraq invaded Kuwait. General Norman Schwarzkopf (CINC- 

USCENTCOM) was tasked to provide a military response option. Some options were 

already in place but not for the exact scenario. Analysts were needed to compare options 

for possible conflict. Simulations ran against an expected enemy force resulted in 



outputs for various allied force structures. These results were an aid in the decision of 

the number and types of units to be deployed to the Gulf region for Desert Shield. 

The simulation used for this kind of support was TACWAR, a deterministic force on 

force tactical level simulation that USCENTCOM uses to support the Joint Operation 

Planning and Execution System (JOPES). This simulation allows looks at all kinds of 

force against force scenarios to find how various Operation Plans fare against an 

expected threat. TACWAR, like other simulations, has validated algorithms and is 

accredited for this kind of application. 

However, these algorithms are a fixed value. They have fixed biases concerning 

various factors. No problem exists if the biases do not affect the simulation outcome, but 

over time they could. For instance, the offensive capability of a horse cavalry was 

relatively huge during the American Civil War. If computer war simulations existed at 

that time, an algorithm would have considered a unit with horses a high powered unit. In 

today's war, a unit with horses is a practically worthless unit. If the algorithm remained 

unchanged, this simulation would have become less credible over time. 

To maintain a simulation model's credibility, an occasional review of the factors has 

to be considered. These factors need to be adjusted so to provide the most accurate 

result. Before these adjustments can be made, each factor must be measured for its effect 

in the field. This information can be gathered from testing at the proving ground, 

military exercises or expert opinion. With a limited budget, adequate information for all 

factors may be impossible to get. Using RSM techniques on the simulation model will 

isolate those most significant factors that need investigation. Specifically, an RSM 



sensitivity analysis can highlight those factors that truly make a difference to the 

simulation outcome. 

Altering the 'hard-coded' algorithms in TACWAR for a sensitivity analysis is 

infeasible at this thesis level. However, a similar type study can be made on a 

commercially available war game. Empire II: The Art of War™ is a computer war game 

that allows a player to change a number of the "fixed" variables such as strength values 

of weapon systems. Fortunately, this 'game' may be played in a computer verses 

computer mode, which essentially turns it into a combat 'simulation'. A successful 

analysis technique for this game most likely can be applied to an established simulation 

such as TACWAR. 

Overview 

The following report is split into five additional chapters. First, the Background 

chapter will cover the statistical foundation of RSM. The chapter will also cover the 

basic components of the Empire II wargame. A Literature Review will cover opinions 

and techniques offered by notable writers and previous theses authors. Chapter Four will 

cover the actual methodology used in the research. The rolling 'checklist' covers all the 

steps from start to finish. Results are developed and validated in Chapter Five. All data 

is presented in the appendices. Finally, the research and some of its benefits are 

reviewed with a couple of suggestions for follow-on research. The thesis hopefully will 

serve as a guide for those who have a similar objective, or as a foundation for those who 

are intent on expanding the technique. 



II.   Background 

Introduction 

This chapter explains the tools used in this research. First, an overview of Response 

Surface Methodology, otherwise known as RSM, will show how this regression process 

works. RSM will be used to find the factors most significant to a simulation outcome. 

The final RSM model will be subjected to several tests to determine if indeed the model 

is a reasonable representation of the simulation process. In this case, RSM will be used 

to analyze a combat simulation. The simulation is actually a commercially produced 

computer wargame that allows computer verses computer play. Wargames are generally 

considered combat simulations with human interaction, but in this application, only 

computers will be involved in the play of the game. An overview of the computer 

simulation is presented at the end of the chapter. 

Response Surface Methodology - RSM 

Response Surface Methodology is collection of various statistical and mathematical 

techniques used to 'map' various processes by regression analysis (Myers and 

Montgomery, 1995: 1). RSM allows a process that allows numerous factors to be 

described with a single equation. Equation (1) describes a process with j factors. 

y = ßo + Ä*i + ßixi + ß3x3 + ...+ ßjXj (1) 

where 
Xj is the input factor's value. 

ßj is the coefficient or parameter that describes that factor's effect on the response. 

ß0 is the intercept value - or the value of the response when all factors are zero. 



The simplest form of (1) is the basic linear equation with a single factor: 

y - mx + b (2) 

where 
y is the response of the process. 

x is the input factor value. 

m is the coefficient that describe that factor's effect on the response (the slope). 

b is the intercept value ~ or the value of the response when all factors are zero. 

Since the response of a typical process generally follows a pattern based on input 

factors' values, some kind of'mapping' of the process can be described with an equation. 

Mapping is a term to describe output values for various sets of inputs. For example, a 

surveyor can map the terrain of a plot of land by simply taking point elevation readings 

around the plot. By obtaining enough elevation readings around the plot, a picture, or a 

map, of the terrain begins to take form. Someone that has never seen the plot of land can 

get a good idea of what the land form is like. This is the basic premise of RSM. 

Instead of taking elevation readings of every square inch of the plot, readings at each 

corner may supply enough information to map contours of the land. This is especially 

true if the land is known to be flat or gently slopes. But, if the relief of the land form is 

unknown or suspected of undulating, then many more readings throughout the plot are 

required to map the elevation contours accurately. By taking these readings in an 

organized fashion, say in a grid fashion, then a minimum number of readings are 

required. If this grid is laid out north-south and east-west, the resulting chart will have 

many elevation values laid out in an organized manner. So much so that one could pick a 

random location on the land plot, go to the chart and get a pretty good idea of what the 

elevation would be there. 



A similarity can be drawn if the results of a process are equated with the elevation 

readings, while the factor values are equated with the coordinates, or location, of each 

reading. The amount of factor 1 is like the amount or distance traveled north from the 

southern edge of the land plot, while factor 2 is the distance east from the western edge. 

Go to the location on the map where the amount of factor 1 is so much (say 'A') and 

factor 2 is some amount (say 'B'), then a pretty good guess of the process outcome at that 

location can be made. 

The beauty of RSM is that it allows many factors to be included when this map is 

built. Most industrial processes, from making steel to making pancake mixes, can be 

mapped out using this basic idea of RSM. Once the process is mapped out, if some 

desired output of the process is requested, go to the map and pick off the factor levels 

that generate the desired result. Industry will typically want the optimum result - no 

problem, go to the map and locate the peak! 

If the process is a linear process, meaning the factors make the same amount of 

difference no matter where on the map one is looking, the optimum point will not only be 

on the edge of the map, but at one of the corners. Consider the land plot example. 

Where the plot is located on a side-slope of some ridge line, then the highest point will be 

along the highest edge. Unless the edge is parallel to the ridge line, the highest point on 

the plot will be on either end of the edge. The same reasoning goes for the lowest point. 

Therefore, the optimum point, whether at the highest or the lowest response, will be at a 

corner point (Figure 1). 
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Fig. 1 -Mapping of a Land Plot 

However, most cases in industry involve non-linear processes. Consider the pancake 

mix. If there is just a small amount of flour in the initial recipe, a unique result will 

occur - lousy pancakes. Now, as the amount of flour is increased, the pancakes get 

better, but only to a point. Once past that point, the pancakes worsen as the flour amount 

increases. This is different from a linear process where theoretically pancakes would 

only improve as flour is increased. Equation (1) above can only describe a linear 

process. 

Another related but slightly more complex equation can handle a non-linear process: 

y = ß0 + ßixx + ßixi + ß\iX\xi (3) 

Like the original equation, equation (3) is considered a 'first order' equation because 

there are no quadratic , cubic, etc. terms. But to describe the flour and the pancake mix 

situation, squaring the flour factor value will describe the effect of getting better then 



worse pancake results. An equation that can handle two factors and their square terms is 

written: 

y = ß0 + ßlxl + ß2x2 + ßux* + ß22x2 + ßnxlx2 (4) 

Equation (4) is known as a second order equation because of its quadratic terms. 

Second order equations can get quite complex, but they do a good job mapping the 

undulating surface of responses. A linear equation can only describe a flat surface, 

which is inadequate for the more typical process whose response behaves in such a way 

that there are 'peaks' and 'troughs' based on various factor inputs. While second order 

equations can become very hard to work with, a calculator or computer can rapidly 

produce a result! 

When optimizing the result for some given factors in a non-linear case, calculus 

offers the derivative for finding the maximum of minimum. Looking at equation (4) and 

taking the partial derivatives against xx and x2 results in: 

-J^-= ßx + 2ßllXl + ß12x2 (5) 

and 

dy 

dx2 
= ßi +2ß22x2 + ßl2xx (6) 

By setting both equations to equal zero, then a unique solution for x, and x2 will 

result. This solution are the factor values for the optimum response y. Larger models 

with k factors will require k equations to solve. These can be arranged using matrices, 

and solved by taking the Jacobean or derivative of the matrix and setting them equal to 

zero. Computer programs can make this process relatively painless. 



Rapidly calculating a result is one of the great benefits of RSM. RSM is a tool that 

mathematically models or 'maps' a process. With this map, a credible estimate of an 

output can be generated from a given set of inputs. The output can be optimized by using 

calculus Max / Min procedures on the model equation. The next two sections will show 

how the equation is built. 

Where Does the Regression Equation Come From? 

Assuming that a process will have exactly one possible result for a given set of inputs, 

and responses have been collected for a number of input combinations, then a RSM 

model may be constructed. In a case where there is one factor, two settings that result in 

two outputs could simply be plotted as two points on graph paper. An RSM model of the 

process is produced by connecting the two points with a line. At any particular factor 

level, the corresponding point on the line is a prediction of the response. This is the best 

model that can be constructed from the given information. But, it may be risky to claim 

that a model based on two observations is an adequate model. 

Say by taking 10 observations, each at a unique input value, results in a series of 

plots that form a trend. Taking a straight edge and pencil, one can draw a line that pretty 

well fits the trend. This is a form of a regression line. Compared to a two-point model, a 

regression line is a more dependable at describing the process than the two point model. 

A single factor is the limit of this method since the one factor and its response requires a 

two dimensional surface to model. Two factors and their response would need a three 

dimensional plot, while k factors will need k +1  dimensions to model. 

10 



A mathematical approximation method process called the least-squares fit, puts a line 

through the plot of points such that the cumulative distance between the line and the 

actual plots is minimized. For mathematicians, that is not quite the case. Since some 

points are above the line, they would have a positive distance from the line, while the 

ones below would have a negative distance. By squaring each distance value, all 

resulting values (distance squared) will be positive. Adjusting the line to minimize this 

cumulative value will result in the 'best' fit line. Therefore, regression equation (6) used 

in RSM will have some error although the error is minimized: 

y, = A + A*/i + ßixi2 + ß*x,3 + ---+ßjXtJ + si (6) 

where 
i = \,2,3,...,n (n plotted points) 

.7 = 1,2,3,...,* (kfactors) 

£j is the individual error between plotted point / and the regression equation. 

Squaring each £", and summing gives the total sum of squares (L), which is to be 

minimized. 
n 

T V1     _ 2 
(7) L^sf 

7 = 1 

With multiple factors (xtJ ) and the various responses (yt), the equation can be 

simplified into vector and matrix form. 

y =  X ß + s (8) 

11 



where 

y     is the response vector. 

X is the factor matrix. 

ß is the coefficient vector. 

s is the error vector. 

y\ 1   xu X\2 '"X\k A 
y2 x = 1      *21 

i   ; 

X22 
• • • X A2k 

ß = 
A 

yn 
1 xm Xn2 -X«k 4 

£ = 

The values for y and X are known. The best fitting equation will have the coefficient 

vector ß. To find an estimate for vector/?, an estimator called vector b is used. Vector 

b is the defining vector for the RSM regression model. Solving for b is the basic 

problem in RSM. This can be done by minimizing L where: 

Since 

L = I el or L = syE 
1 = 1 

s = (y-Xß) 

(9) 

(10) 

then 

L = (y-Xß)'(y-Xß) (11) 

Multiplying out 

L = yy-ßx'y-yxß+ßx'xß (12) 

12 



ß X' y is a scalar value whose transpose has the same scalar value, therefore 

L = yy-2ßX'y + ßX'Xß (13) 

Let vector b be the estimator for/?. The least square estimator must satisfy: 

dL 
—    =-2X'y + 2X'Xb  = 0 (14) 

Simplify 

then 

2XXb = 2X'y (15) 

X'Xb = X'y (16) 

Thus b, the least squares estimator of /?, reduces to: 

b = (X'X)-'X'y (17) 

So, by supplying the X matrix and the y vector, the best fit least-square regression 

equation can be found: 

y = X b (18) 

A 

where y is the estimate for the response (or the model's response) for any combination 

of input factors (X). (Myers and Montgomery, 1995: 19-21) 

Unfortunately, supplying the X matrix and y vector is a time consuming process. This 

equates to the land surveyor going out and getting all the point elevations on the land 

plot. An organized process of gathering data for the equation is required. Design of 

Experiments offers some very efficient methods for doing this. 

13 



Design of Experiments 

The goal of an experiment is to provide adequate data about a process for use in the 

construction of credible models. These models can then provide insights of the process. 

An efficient experiment accumulates this information with minimal observations. Each 

experimental trial increases data. However, there is a point where the additional 

information does not justify the cost of an additional trial. Thus, a good design of 

experiment will get adequate data at a reasonable cost. This section will develop the 

reasoning behind the experiment selected for this research. 

A thorough experiment will consider each and every possible combination of all 

possible factors in a given scenario. For instance, if six factors influence a certain 

response, each individual factor would be metered at certain levels and then examined at 

each level. If each factor is separated into say five levels, then a thorough experiment 

will have 56 or over 15,000 trials! If only two levels are considered (hence a Two-Level 

Factorial experiment) there would only be 26 or 64 trials. (Myers and Montgomery, 1995: 

79) 

A Two-Level Factorial experiment uses only a high and low value for each factor. 

For simplicity, each high and low value is 'coded' as 1 and -1. Median values, if needed, 

are coded as zero. The experimenter selects the high and low value of each factor to 

code. For instance, if one of the factors under consideration is temperature, the 

experimenter could have a region of interest from 32° to 58°. This can be translated as 

45° ±13°. 

14 



A general formula for coding: 

4, - £o *, = -— (19) 

where 
*,- is the coded value (-1,0,1) 

£,.    is the uncoded low, median, or high value 

|/0   is the uncoded average value 

S.  is the difference between the uncoded median and high (or low) values. 

(Box and Draper, 1987:107) 

In this example the high value would translate to ' 1'   or    1 =  
13 

Some experiments will call for some coded factors values in excess of T. For 

instance, if this experiment called for a value of '2', the actual value called for can be 

calculated: 

£-45 
2 = "^-   or   4=71° (20) 

This coding scheme allows factor values to fit into even more advanced Two-Level 

experimental designs. These Two-Level designs provide a specific X matrix which 

radically reduces the number of experimental trials required for credible results, although 

in the end the conclusions must be decoded again! 

Consider the six factor Two-Level experiment. Compared to the 56 experiment, some 

information will be lost, but not enough to justify 15,000 more trials! Even 64 (26) trials 

may be too many. If trials are expensive, any way to cut the number of trials should be 

15 



considered. Enter the Two Level Fractional Factorial experiment design. Of the 64 

trials, many measure interactions of three or more of the six factors. Rare are the cases 

where a certain combination of three or more factors make a significant difference on the 

outcome. According to Dr. Genichi Taguchi, an expert in Design of Experiments, even 

two-factor interactions tend to be insignificant (Taguchi, 1987: 3). The fractional 

factorial design essentially eliminates those trials that measure multiple interactions. For 

instance, if the experimenter can only afford 20 or so trials, then a 16 trial design can be 

used. Granted, many of the high level interactions will be lost, but all the main effects 

will be preserved. That should be the main goal of the experimenter. 

A Resolution III experiment design is a design that has been reduced in such a way 

that in some cases it is unclear which had an impact on the response - a main factor or a 

two-factor interaction. This is called an 'alias' relationship. Aliases are the cost of 

reducing the number of experiments. However, the combinations of factors in each trial 

can be managed such that the aliases are minimized if not eliminated. If all aliases 

between main factors and two-factor interactions are eliminated, then the design is 

referred to as a Resolution IV experiment. A Resolution IV experiment can be attained 

in twice the trials of any Resolution III experiment by simply augmenting with an 

identical second experiment, except for reversing the values of each factor. This is called 

a fold-over design. The fold-over is an option if it is unclear if either a main factor or 

one of the interactions is causing the response. If the offending interaction is known, 

then it is possible to manipulate some Resolution III experiments to eliminate that 

particular alias. This alternate type of experiment can get the information of a 

16 



Resolution IV experiment form the same number of trials of a Resolution III experiment! 

Experimental design documents will have tables to aid those designs. (Wu and Chen, 

1992: 162-175) 

There will be at least one pair of two-factor interactions aliased with each other in a 

Resolution IV experiment. If all two-factor interactions are of interest, then even a 

Resolution IV experiment will be insufficient. The outcome of the experiment may be 

obviously dependent on an interaction of two factors, but when two of these interactions 

are aliased with each other, we can't really conclude which interaction caused the 

response. A Resolution V experiment is required.   A Resolution V experiment 

deconflicts all two-factor interactions with one another. The Resolution V design is 

generally much more expensive because it requires at least double the trials of the 

Resolution IV experiment. Nevertheless, if two-factor interactions are important, the 

Resolution V design may be worth the extra cost. 

Whatever design is selected, it defines the X matrix. The responses for each of the 

trials in the experiment defines the y vector. Refer to the six factor experiment 

mentioned. Figure 2 shows an eight trial Resolution III experiment. 

Factor xl Factor x2 Factor x3 Factor x4 Factor x5 Factor x6 Response 
Trial 1 -1 -1 -1 1 yi 
Trial 2 -1 -1 -1 -1 y2 
Trial 3 -1 1 -1 -1 -1 y3 
Trial 4 1 -1 1 -1 -1 y4 
Trial 5 -1 -1 1 1 -1 -1 ys 
Trial 6 -1 1 -1 -1 y6 
Trial 7 -1 1 1 -1 -1 y7 
Trial 8 1 1 1 ys 

Fig. 2 - Six Factor Resolution III Design 

17 



Figure 3 reflects the corresponding to X matrix and y vector. 

X = 

"l-i-i-i  i   i   r 
li-i-i -i -i   i 

l-i   i  -l-i  i  -i 

ii   l-ii-i-i 

l-i-ii   l-i -i 

ii   i   l-ii-i 

l-i-i  i  -i -i  i 

ill   i   i   i   i 

y= 

y2 

y3 

y4 

ys 

y6 

yi 

y». 

Fig. 3 - Resulting X matrix and y vector 

The first column of the X matrix is all ones and is referred to as the x0 column. This 

column corresponds with b0 of the b vector while bx_6 corresponds with each of the six 

factors {xx_6). 

One of the advantages of this particular design is that it is orthogonal. Multiply each 

element of one column against the corresponding element in any other column. The sum 

of the resulting products will always be zero. The advantage of this is that X' X is a 

diagonal matrix which is much easier to handle if doing this calculation manually. 

Another advantage of an orthogonal design that it provides the experimenter the option to 

isolate a factor. A change in a single factor unilaterally affects any corresponding 

difference in the response. 
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Trial 8 1 1 ys 
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The design has given the experimenter an efficient way to come up with both an X 

matrix and y vector - the ingredients required to make a regression model. But, with the 

efficiency offered by the fractional experiment design, some accuracy is lost. To get an 

idea of how effective the model is, some tests have to be made. If these tests show that 

the resulting regression model does not fit the data well, then a supplemental experiment 

may be required to increase data points. This additional information will allow the 

construction of a more complex but better fitting regression model. Some of these tests 

are discussed in the next section. 

Measure of Goodness of the Regression Equation 

After running the experiment, the X matrix and y vector are known values. The b 

vector can now be solved for using equation (17). How well does the b vector 

estimate ß ? Five tests are used in this research to determine if the fit is good or not. 

These include the Coefficient of Multiple Determination (R2) analysis, residual analysis 

plots, the lf ratio test, 'F' test for Regression Relation, and if needed, the Lack of Fit test 

(Neter, 1996: 229). The final determination of model fit tends to be a subjective one, but 

these test results are used to defend the judgment call. 

First, look at the elements that make up these tests. A simple one factor (x) model 

regressed from four data points (Figure 4). (Neter, 1996: 70) 
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Fig. 4 - Terms of a Regression Plot Defined 

Some definitions: 

n 

Regression Sum of Squares - SSR = ^(j>. -y.) 77   \2 

J=l 

Error Sum of Squares - SSis = ^(yt -yt)
2 

i=i 

Total Sum of Squares - SSTO = £ (yt - y.y 
j=i 

These definitions have the relationship: 

557? + SSE = SSTO 

(21) 

(22) 

(23) 

(24) 
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This can be interpreted using Pythagorean Theorem -   a  +b  =c    (Figure 5) 

SSTO <-> c 
SSE<r>b' 

SSR** a 

Fig. 5 - Relationship Between Error and Pythagorean Theorem (RSM Class Notes) 

Coefficient of Multiple Determination (R ).   The diagram in Figure 5 is a good 

picture of what the Coefficient of Multiple Determination, better known as R2, is 

measuring.  R2 is the amount of variance that the model explains. This is the proportion 

of SSR to SSTO. (Neter, 1996: 230) 

R2 = 
SSR 

SSTO 
= 1 

SSE 
SSTO 

(25) 

Generally, the closer R2 is to 1.0, the better. A model that explains a response to a 

single factor with only two data points can be interpreted as a great model. In this case 

R2 will have a perfect value of 1.0. However, since only two data points exist, a 

regression model would simply connect them. The model would have zero error since 

both observed data points fall on the model's plotted line. All variance would then be 

explained and R2 would be a perfect 1.0. This model would be questionable at best, 

since so few data points are used to define it. In higher dimensions, the same problem 

exists. 
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In Plackett-Burman designs, just enough trials are used to build a regression model. 

For instance, a 24 trial experiment can model a response dependent on 23 factors. The 

same situation occurs as in the two data point model, but in this case all 24 data points 

easily connect in 23 dimensions, and R2 is 1.0! Although this kind of design can be used 

to get an idea of which factors are important and which are not, this model is not well 

suited to describe any response accurately. Thus a Plackett-Burman design is used just 

for screening out insignificant factors. (Kleijnen, 1975: 331) 

If the R2 value is relatively low, say 0.6 to 0.9, the model is considered only a fair fit. 

One of three reasons may explain for this kind of reading. First, the model simply does 

not describe the data. If this is really the case, the R2 value will generally be lower than 

0.6. But, alow/?2 could also be because of a second reason. If trials are repeated at 

each design point, and a wide variance of responses are recorded, a regression model can 

only place a single line through the band of data points. The distance between each data 

point and the regression line is squared and summed to give a relatively large SSE and in 

turn a smaller SSR. Therefore, R2 is driven downward. The model is a good fit, but the 

wide variance puts the model in question. This is a common problem in modeling any 

process with large variability. Modeling processes such as economic behavior, business 

simulations, and combat simulations are but a few examples. 

The Residual Plot.   A third reason that R2 may have a low value is because the data 

may have a non-linear pattern. A linear regression model will not adequately describe 

the data. One of the most important tests for detecting this is quite a subjective one. The 

residual analysis graph is simply a plot of the errors from the regression model. The 
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regression model is a best guess of the response. Each error is simply yt - yl. Since the 

regression model plots through the set of data points, nearly the same number of positive 

and negative errors should occur. A good residual plot will have no discernible pattern. 

That is the subjective nature of the test. Figure 6 shows a lack of pattern while Figure 7 

shows a parabolic pattern indicating that some kind of quadratic term is needed in the 

regression model. (Myers and Montgomery, 1995: 42) 

15- 

10     12 
n r 
10        20 30 

y    Predicted 

Fig. 6 Fig. 7 
Residual Analysis Plots 

The residual plot offers a simple visual check of the regression model. However, the 

plot is one of the most important tests to check the adequacy of the regression fit. The 

residual plot should always be considered regardless how good R2 is. 

The other three tests are more statistical in nature. The V ratio test is designed to test 

the significance of each coefficient bt of the regression model. The 'F' test will show the 

overall significance of the entire model as a whole. Finally, the Lack of Fit test 

statistically does what the residual plot did visually. This test will determine if the 
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regression model is a good enough fit despite any non-linear effect. All these tests 

depend on the normality and the independence of residual error. 

The lf Ratio Test. Before any factor of a model can be declared significant, each 

must pass the 'Student f or V ratio test. The '/' test is a statistical tool that determines if 

a factor is indeed significant and not just noise. First, assume a factor has no effect on 

the response, or in other words, a regression model should assign it a coefficient of zero. 

After running an experiment, the data may seem to indicate that the outcome is indeed 

influenced by a particular factor. The simulation outcome may show some 'tendency' of 

dependence on a certain factor. However, if the tendency appears to be minor, the 

regression model really cannot claim the factor has a significant influence on the 

outcome. The factor is significant only if the tendency of the outcome is more 

pronounced than any randomness of the process. Standard error is a measure of 

randomness. The "f test is a look at the ratio of the change of a process tendency to the 

standard error.   (Myers and Montgomery, 1995: 31 -32) 

To illustrate the '/' test, assume some process has a tendency to output a value of y0 

with standard error s{y} . After changing some factor xx the process has some new 

tendency to output a value of yx. But, before a model can 'claim' that xx really made 

the difference, a Y test must be performed.   First, the V ratio is calculated: 

'-*ff (26) s{y) 

where standard error s{y} = 7<72C|Y 
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C„  is the diagonal element of (X'X)-1 corresponding with the coefficient bt of 

factor /', or in this case, Cn.   A value of 'f is generated. Before any conclusions can be 

made, 7' is compared with a reference value t*.    The value of t* is based on: 

1. The confidence required for the claim (termed as '* percent confident'). 
2. The amount of data to support the claim (known as 'degrees of freedom'). 

If t > t*, then the claim is accepted. This is known as the Test of Hypothesis. The 

null hypothesis H0 corresponds to the statement "The change from ;c0 to .x^ makes no 

difference", while the counter hypothesis Ha says the change did. The calculated value 

7' is the 'test statistic' which is compared against t* resulting in one hypothesis 

favored over the other. Typically, a 95% confidence level is required before a null 

hypothesis is 'overturned'. The higher the confidence level, the higher t*, and the 

tougher it is to 'overturn' H0. 

The amount of data to support a claim is also important to the t* value. One data 

point cannot show a tendency, but two can. Three points can show a better tendency, and 

20 points even better. The term 'degrees of freedom' describes this fact. A claim can be 

made based on one data point, but the other data points support the claim. If 20 data 

points are available, 19 can be used to support the claim. Some hypotheses make several 

claims as will be shown in the explanation the 'F' test. In a case where 7 claims are 

made, then only 13 of the 20 data points remain for support. Degrees of freedom is 

simply the number of data points minus the number of claims. With fewer degrees of 

freedom, the higher t* is. 
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With a known confidence level, and a known number for the degrees of freedom (df), 

t* can be found in statistical tables. As the df exceeds 30, then the Central Limit 

Theorem states that df becomes an insignificant input. In the case where df exceeds 30 

and 95% confidence is required for the claim, t* will have a value of 1.96. This 

translates into saying that the difference between y0 andyx must exceed 1.96 times 

s{y} before experimenter can claim a difference. To illustrate, refer to Figure 8. 

Plots Reflecting the Tendancy of Two Responses 

y^ central tendency is 2.5 

nz 
The central tendency of y. 

exceeds 1.96 standard 
deviations of 

the yQ tendency, therefore 

can be 'claimed' as distinct 
with 95% confidence 

Prob y0  Prob^j 

Fig. 8 - The Difference Between Factor x0 andxt 

Overall, the V ratio test shows Jf there really is a statistical difference between two 

response values. If so, the factor that influenced the difference can be declared 

significant at the confidence level defined. Three items influence the behavior of the T 

ratio test. It is harder to show a difference between two responses if: 

1. The variance (standard error) is high. 
2. There is a shortage of data to support the claim. 
3. A high confidence level is required for the claim. 
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Commonly, the 'f ratio test will be put in terms of confidence level. For whatever '?' 

calculated, an equal t* is determined from the existing df and then varying the confidence 

level. Generally, the confidence level is in terms of(l - a), where« is the risk of a 

wrong claim. A wrong claim is referred to in hypotheses testing as a 'Type F error. In 

making any claim, the researcher specifies an acceptable a, or probability of a Type I 

error.   In the example above, a was specified at 5%, and the associated t* was 1.96. If 

a number of factors are being considered at one time, many computer products will 

provide a 'f ratio for each of them. Significant factors are recognized by inspection 

when their associated 'f values exceed 1.96. An alternate method displays a probability 

value that could be compared against the specified a. These values are found in the 

Prob > |t| column. A value smaller than the specified a will reject the null hypothesis, 

and the factor is significant. On the other hand, if the value is higher than a, then the 

null hypothesis stands, and the factor is rejected as insignificant. This allows the 

researcher to recognize and disregard any non significant factors by simple inspection. 

Refer to Figure 9. Assume a 95% confidence level is required before claiming a factor's 

significance, or that the specified a is 5%. Notice that XI and X4 have probabilities 

that exceed a, therefore both XI and X4 are excluded from further consideration. 
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/     [    Parameter Estimates   J                                                    \ 

Term                      Estimate       Std Error        t Ratio      Prob>|t| 

Intercept            157.23333        3.803367          41.34       <0001 

X1                    -1.708333        4 252293           -0 40       0 6913.^ 

X2                  14.958333        4.252293            3.52       0.0017 

X3                   42.291667        4.252293            9.95       <0001 
V   Y/i                       6 9583333          4 9592Q3               1 R4         D114^^ 

Fig. 9 - Factor Coefficients and Their Respective V Test Result 

The Significance of Regression Test.   A test for significance of regression is a test to 

determine if any linear relationship exists between a group of factors (pch x2, x3,..., x{) and 

a response y. (Myers and Montgomery, 1995: 34) 

The two hypotheses are: 

H0:     ßx = ß2 =ß3=... = ßi = Q 

Ha.    at least one ßi  ^  0 

(27) 

(28) 

The 'F' test, similar to the V ratio test, is used to determine if a model is really capable 

of claiming any factor significance.   The test statistic 'F' is a ratio that uses SSR, SSE, 

and their respective degrees of freedom. An Analysis of Variance (ANOVA) table 

describes the calculation of 'F' (Figure 10). 
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Source of 
Variance 

Sum of 
Squares 

Degrees 
of 

Freedom 
Mean Square F 

Regression SSR k MSRJ
S

,
R 

k 
MSR 

MSE 

Residual SSE n-k MSE=SSB, 
n-k 

Total SSTO n 

Where:   n is the total available degrees of freedom (Total data points -1) 

k is the number of factors 

Fig. 10- An ANOVA Table 

Like the V ratio test, the test statistic 'F' is compared against an F* . F* is a value 

determined by the degrees of freedom of both MSR and MSE, and the desired confidence 

level. If 'F' exceeds F*, then the researcher can claim some factor xt is significant. 

Figure 11 reflects an ANOVA table with the addition of a probability value to compare 

against a specified Type I error probability (a). In this case, at least one xt is 

significant. 

/  [ Analysis of Variance \ 

Source DF    Sum of Squares Mean Square F Ratio 
Model 4               49528.167 12382.0 28,5322 
Error 25                10849.200 434.0 /Prob>FNN 

Vc Total 29               60377.367 \<.0001 J 

Fig. 11 - 'F' Test Result 
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The lf test and the 'F' test are very similar in nature. A claim about a model's 

behavior can be supported by using these tests. Typically, the 'F' test is first used to see 

if any factor is significant. If so, then each factor is examined by the '/' test. These are 

the main statistical tools to determine which factors are important in a process. In this 

research, these are also the main tools for determining the sensitivity of a battle 

simulation's outcome to various input factors. 

The Lack of Fit Test. The last statistical test before a model is considered usable is 

the Lack of Fit (LOF) test. Like the residual plot, the LOF test is used to determine if the 

regression fit indeed models the process adequately. The statistical LOF test is much 

more sensitive to a bad model than the subjective residual plot.   If multiple trials are 

made at the factors' median values (coded as 0 in the experiment), then a LOF test can 

be performed. In this case the null hypothesis says the model fits the process. An 'F' test 

statistic is also used in the LOF test. With repeat observations of some trials, SSE can be 

separated into two components, SS Pure Error (SSPE) and SS Lack of Fit (SSLOF). 

The degrees of freedom for SSPE is the total number of replicates in the experiment. 

The ANOVA table in Figure 12 explains how the LOF 'F' statistic is calculated. (Myers 

and Montgomery, 1995: 50) 
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Source of 
Variance 

Sum of 
Squares 

Degrees 
of 

Freedom 
Mean Square F 

Regression SSR k 

Residual SSE n-k 

Lack of Fit SSLOF c-k 
SSLOF 

MSLOF = — 
c-k 

MSLOF 
MSPE 

Pure Error SSPE n-c 
SSPE 

MSPE =  
n-c 

Total SSTO n 

Where:   eis number of 1 trial points, and k is the number of factors 

Fig. 12 - Lack of Fit ANOVA Table 

With a good fitting model, the null hypothesis will hold. The calculated 'F' statistic 

should be less than F* . The probability value should exceed the specified Type I error 

(a). This is exactly the opposite of the previous 'F' test! Figure 13 indicates the 

regression model fits the process adequately. 

/       Lack of Fit 

Source DF Sum of Squares Mean Square F Ratio 

Lack of Fit 4 2322.533 580.633 -1.4300 

Pure Error 21 8526.667 406.032 

Total Error 25 10849.200 
/Prob>F\ 
\0.2589/y 

Fig 13 - Lack of Fit Result 
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A Final Quality Test. A final test, before making any declarations, is the sanity check. 

A regression model may claim a factor behaves in a counter-intuitive manner. Although 

this is another subjective test, the sanity check may do the most for the model's 

credibility. For instance, a regression model indicates that as a factor's value is 

increased, the response significantly decreases. However, common knowledge is that as 

the factor value increases, the response increases. Another possibility is that an 

unexpected factor seems to over-influence a response. As the factor value changes, the 

response reacts in a way that is too good to be true. Either way, an investigation is 

needed. 

The least expensive investigation is simply retrace the experiment to see if data was 

input correctly. If other factors similar to the one in question are available, do they 

behave in a similar manner? If these bring no conclusions, then a confirmation 

experiment is in order. Isolating the factor in question by varying it while holding all 

others constant, may confirm or reject the sanity check. A possibility exists that the 

model may have discovered something unexpected! Either way, an unexpected model 

behavior has to be acknowledged and investigated. The credibility of the experimenter 

will be maintained if not enhanced! 
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Empire II: The Art of War™ Description 

Empire II is a computer wargame designed for the entertainment of wargame 

enthusiasts. It was designed to allow the wargamer a opportunity to custom build 

scenarios to either play against other gamers or a computer. An option for computer 

against computer is also available. In this thesis, the computer verses computer option is 

used to avoid the long drawn out trials of human play, not to mention the complex 

experimental blocking designs due to several players. By taking the human player out of 

the process, Empire II is really no longer a wargame, but a combat simulation. 

Ironically, Empire II is not unlike some of the older combat simulations used in the 

military. 

Movement. Like a typical manual wargame, Empire II is played on a regular 'game 

board' that allows two sides to play out a tactical level battle scenario. Unlike most 

manual wargames, Empire II offers many different 'game boards', simply by allowing 

the player to custom build them. (New World Computing-User Manual, 1995: 78-116) 

All Empire II game boards consist of a regular network spatial structure of square nodes 

(Figure 14). Each of these squares can be assigned one of 12 terrain types. Like any 

regular spatial network, all of the nodes (squares) are of one size. Entity movement 

from node center to node center (arcing) is allowed in any of eight directions throughout 

the network. Each node is assigned a terrain type that influences the movement of 

entities. A node with a terrain type 'charges' an entity a certain amount of 'offensive 

potential' to transit. The modeler has the freedom of assigning just how restrictive each 
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terrain type is for the movement of each entity type. A node may be assigned a terrain 

type (such as swampland) that restricts movement. Arcing through these nodes will have 

a high cost. Other nodes (such as clear terrain) will allow relative freedom of movement. 

Node Types 

Open Area 

Mountain 

Broken Ground 

Swamp 

Entity and direction of movement 

* 
Arc paths between nodes       Roads Rivers 

Entities may travel along arcs or roads 

The Regular Spatial Network 

TM Fig. 14 - Entity Movement in Empire II: The Art of War 

There is another option that will allow for entity travel. Lines of communication such 

as roads may be constructed along node edges. There is still a cost per unit length for 

entity movement along these lines, but the higher expense of arcing from node center to 

node center can be avoided. On the other hand, these edges between nodes can also 

serve as a barrier between nodes (like rivers). In this case, as an entity arcing from node 
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to node crosses one of these, an additional cost is assessed. This has the effect of slowing 

down the movement of entities when obstructions are encountered. 

Entities are allotted a fixed value of offensive potential for each successive turn. The 

game refers to this value as movement points. This potential may be used for either 

movement or for firing weapons (which are discussed later). The entity may be 

commanded to move towards a destination or stand-fast. The commander determines the 

best path through the node network. By arcing through low cost nodes or along lines of 

communication, the entity can reach its destination sooner with the least loss of offensive 

potential. Any remaining movement points may be used for offensive weapons. 

The entities themselves represent the battle units. Each entity type is generic until 

defined by the modeler. Each entity type is assigned an amount of offensive potential in 

accordance to the type of weapon system it represents. Since offensive potential may be 

used for either movement or fire power, the modeler must assign a reasonable amount of 

potential for a given weapon system. For instance, compare a light infantry unit with a 

combat helicopter unit. Each unit will be represented as an entity. Assume a maximum 

limit of 100 offensive potential points are allowed for any entity. In this case, a 

helicopter unit has high mobility and high firepower, while the light infantry unit is rather 

slow and armed with light weapons. Assigning a helicopter entity a full 100 offensive 

potential points, and 10 to the light infantry entity, will give each a reasonable difference 

in offensive potential or capability.   In addition to this, the modeler also has the freedom 

of assigning how much each terrain type can charge each specific entity type for transit. 

A helicopter may be charged one point going through a swamp node (since helicopters 

35 



actually fly over swamps) while the light infantry entity will get charged 10 points. 

Numbers, Predictions and War, by Trevor Depuy, is a good source for relative combat 

capabilities of various unit types. (Depuy, 1985: 185-231) 

The simulation is set up so that each side will complete a 'turn', then the other side 

responds with a turn. This sequence will go for a fixed number of turns. A 'turn' is 

made of two parts for each entity. First, the entity executes its movement command, then 

if able, executes a combat action against an enemy force. There are two types of combat 

action. Every entity has the ability to resist any enemy entity invading its node.   There is 

no charge against either entity's offensive potential for this node battle engagement. The 

modeler can give each entity type a special ability to engage enemy entities at distant 

nodes. This is called 'Ranged Fire'. Ranged fire costs the firing entity a fixed amount 

offensive potential. Hence, the entity's allocated offensive potential may be used for 

movement or ranged fire. Unused potential is lost at the end of the turn. 

Ranged Fire. Along with movement ability, ranged fire potential defines the 

uniqueness of each entity type. An armor entity as well as an artillery entity can fire 

projectiles, each with their specific capabilities. The user specifies the range, accuracy, 

and the strength of the projectile effects to describe each entity type's ranged fire. He 

also assigns the offensive potential cost of each shot. Consider the previous helicopter 

entity example.   A realistic ranged fire capability is the ability to fire guided rockets - a 

projectile. The modeler can assign the rockets a range of four node lengths, an accuracy 

of 50%, and a strong '80' for projectile effect (1 to 100 relative scale). After a trial run, 

the modeler can keep the capabilities or change them to any desired level. Consider the 
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helicopter entity with 100 offensive potential points. If the cost for firing is relatively 

low, say one offensive potential point for each shot, the helicopter entity can spend 90 

points for movement, and still fire 10 rockets (expecting 5 hits). 

Ranged fire can be further modified to consider the vulnerability of the target being 

fired at and the terrain the where the target is located. Specified accuracy and effects can 

be modified in consideration of the target's ability to hide and protect itself. For instance 

a helicopter cannot expect the same results against an armor unit in a forest as out in the 

open. Accuracy and effects may both be adversely affected in the forest. A simple 

adjustment for this particular type of engagement can be made without modifying the 

overall reference settings. Empire II gives the user much flexibility in overall definition 

of an entity type's true offensive firing capability. 

Combat Strength. When an entity fires on an enemy entity, the computer will 

randomly draw to determine if a hit occurred. The result is influenced by the specified 

accuracy of the fired weapon. Given a hit, the computer also draws randomly to 

determine the effects of the hit. The target's 'Combat Strength' is decreased accordingly. 

The modeler determines the initial combat strength value for each entity type. The 

combat strength value determines the entity's offensive firepower, morale status, and 

well being. Again, consider the helicopter entity. The helicopter entity actually 

represents a combat unit of helicopters. The entity can absorb a few hits, and will lose 

combat strength with each hit. The entity will remain alive, but with 'fewer' helicopters. 

The entity can still fight but not at its original strength. If the strength drops below a 

certain level (as determined by the modeler), an entity can become demoralized and 

attempt to leave the battle. Complete loss of combat strength equates to a killed entity. 
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Force attrition is calculated in a way not unlike the ATLAS force attrition model 

formerly used by the US Army (Hartman, 1985: Chap 2).   Here is an example of how 

the calculations work (New World Computing - User Manual, 1995: 31): 

1.   The firing entity Ranged Fire Strength is modified by the ratio of its current Combat 

Strength to its original Maximum Combat Strength. 

RF^>Current ~ ™ '^Original 
^'-'Current 

V ^^ Original J 

(29) 

2. Once the shot is taken, Ranged Fire Accuracy, as modified by target conditions 

(weather, target camouflage, etc.) determines if the target entity is hit. 

P{Hit) = RFAFirer(ConditionsTGT) (30) 

3. Given a hit, the target entity's Combat Strength is modified downward as determined 

by the firer's Ranged Fire Strength and a corresponding Combat Effectiveness value 

of the target entity. Each firer is assigned a Combat Effectiveness value against each 

particular enemy entity type. If this value is high, then a hit will cause great damage 

to the target. 

^Current = ^^ Original ~ &t'&Firer V^'1''Firer I TGT) W'i 

If the target's combat strength is brought down below the kill level, the attacker scores. 

Definitions. The modeler may also define some basic characteristics for the opposing 

sides. Efficiency reflects the training quality of each side, and a single value will apply to 

all entity types of a given side. Combat Effectiveness defines an overall reference value 
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for node engagements (not ranged fire) for all entities on the battlefield. It gives the 

computer a reference to calculate damage between entities engaged in a node battle.  All 

damage calculated is assessed against the respective entity's combat strength value. 

Each entity type is allowed an option to entrench itself. The entity becomes immobile 

but is still free to use ranged fire. An entrenchment value is defined for the entire 

battlefield so that the computer can factor in an attacked entity's dug in defensive posture 

on any combat strength calculation. On the other hand, selected entities can go into a 

transit mode that accelerates their movement but takes away any ability of ranged fire. If 

one of these units gets attacked, the computer references the transit modifier in the 

calculation. In this case the effect of the hit will be enhanced! 

Detection and identification are also considered in this simulation, although line of 

sight calculations are not used. Instead, reference detection and identification distances 

are defined for the battlefield. Each entity type's detection ability is then modified based 

on that reference. Factors that affect the ability to detect and identify include terrain 

type, weather conditions, and the type of entity to be detected. The helicopter entity can 

be allowed to have great detection ability for an armor unit in the open, but restricted 

ability against a light infantry unit within a forest node. Restrictions can be enhanced for 

unfavorable weather conditions. 

Supply and Reinforcements. Empire II features added realism by considering logistics 

and reinforcements. These features are useful in longer running simulations. In the 

models considered in this research, units were considered fully supplied at all times with 

no reinforcements available. 
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Measures of Effectiveness.   Empire II scores the battle in a combination of three 

ways. Points are awarded for killing enemy entities, capturing land mass, and capturing 

strategic locations. The user can use what ever combination that he desires to score the 

battle. Point values are awarded for each entity killed and each strategic location held. 

Possession of a strategic location can be scored once in each game or with every turn. 

Any one of the three groups can have a multiplier to weight the final score. The modeler 

defines how the scoring takes place consistent with the MOE desired. 

Conclusion 

This chapter discussed the RSM modeling technique and how it can be applied to map 

a simulation model. This mapping can be used for a number of applications. In this 

research, RSM will be used to find the sensitivity of a combat simulation outcome to 

numerous input factors. Instead of using an established combat simulation, Empire II, a 

commercial wargame is utilized. The computer wargame turns into a simple combat 

simulation by letting the computer handle all the human interaction. Empire II allows 

the player to custom build any tactical level scenario. RSM can be used to find what 

inputs the simulation is sensitive to. The technique may also be useful in larger and more 

complex settings. 
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III. Literature Review 

Introduction 

For the last 20 years, computer simulations have been used extensively in the military 

world for decision support. Simulations have had a great following because of their 

ability to generate accurate data for a given scenario without committing resources to 

actually building the scenario, assuming it can be built at all. Simulation models are used 

to compare alternative inputs, giving the decision maker additional insight of the 

ramifications of the decision itself Speculation about possible outcomes are either 

confirmed or discredited by those simulation models. 

But, as simulation models advance and become more complex, blind trust in their 

results increases. The simulation's ability to generate accurate data is based on the fact 

that the input data is accurate. Throughout the literature, a question of validation 

repeatedly comes up. Validation is simply the confirmation that the model is indeed a 

credible source of information for a particular application. Apparently many of the 

simulation models, especially those used in the military, have a reputation among 

simulation and modeling experts of lacking adequate validation. 

Validation in itself is made up of several elements. However, no single methodology 

has been established. In a joint thesis by Capt. Craig Ghelber and Capt. Charles Haley, a 

validation methodology is proposed which is broken down into four phases (Ghelber and 

Haley, 1980: 40-60). First, the conceptual phase where the actual application of the 

model is defined. Once the simulation is coded, a verification phase assures the 

simulation behaves correctly. The third phase examines the credibility of the 
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model. This includes a sanity check by somebody familiar with the real world system, 

and a sensitivity analysis to examine the limits of the model. All this accomplished, the 

fourth and final phase, confidence building. The successful use of the model, once it has 

been through the first three phases, will increase the users confidence. All put together, 

in time, the simulation model is recognized as a sound source of information. However, 

users get so confident of the model that the credibility phase (which should be an 

ongoing phase) gets neglected. 

The Need for Sensitivity Analysis in Combat Simulation 

As the computer simulation model ages, the behavior of the model may not reflect 

current conditions. The reliability range of the model shrinks. In their book The 

Wargame. Garry Brewer and Martin Shubik indicate there are many cases where models 

are not maintained at an acceptable level (Brewer and Shubik, 1979: Ch 13). Even when 

models are developed, questionable validation taints their credibility. Sensitivity analysis 

is neglected. They say: 

Sensitivity analysis is an important operational control, particularly 
when the number of variables in a MSG (Models, Simulations, and 
Games) is large and the model is complex. It is necessary to know the 
effects of alterations in input parameters on MSG behavior. This is 
especially true when the precision of the data is questionable, where the 
data variance is large, or where random perturbations are treated 
explicitly. Nevertheless, 45% of the MSG's we surveyed had not been 
tested for sensitivity. Such testing is generally expensive and time- 
consuming, but it is essential to a determination of the MSG's 
usefulness and validity. (Brewer and Shubik, 1979: Ch 13) 

The editors of The Military Applications of Models responded to some similar 

comments by Brewer and Shubik.   They commented that some work has been 
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done, but "institutional arrangements are not conducive to generation and 

funding of such a program" (Battilega and Grange, 1984: 521). 

These comments were made 10 years ago, so clearly with lack of funding, 

problems still exist. Sensitivity analysis is one of many ingredients in the 

validation process. It can highlight shortcomings of a model. In addition, it can 

point out the factors that need to be closely monitored. Methods of sensitivity 

analysis tend to be cumbersome. Several techniques are available, each with 

their own advantages and disadvantages.   One sensitivity analysis technique 

uses Response Surface Methodology. RSM has proven successful in the 

following examples. 

Previous Efforts in Sensitivity Analysis of Simulations 

Ronald Iman, Jon Helton, and James Campbell of Sandia Labs uses a response 

surface technique to analyze the sensitivity of a computer simulation output (Iman, 

Helton, and Campbell, 1981: 174-183, 232-240). They indicate the benefits of such an 

analysis include: 

1) An indication whether the model operates as intended 
2) Identification of unimportant variables or unnecessary model complexity 
3) An assessment of relative input variable importance for guidance in data collected 

Dr. Iman points out the term 'sensitivity analysis' is widely accepted as meaning the 

study of variation in model output with respect to input. Overall, he wanted to answer 

the question - "What variables have a significant effect on model output and what is their 

relative importance?" 
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Data from a computer simulation model was used to generate a response surface 

metamodel. A metamodel is a model of a model. In this case, the metamodel was used 

to map out the responses of the simulation for various inputs. A stepwise regression 

process was used to determine the coefficients of the response surface's function. The 

coefficients indicate the sensitivity of the simulation's outcome to their respective 

factors. Once the metamodel was confirmed to adequately map the simulation's 

behavior, the most significant factors were simple to see. 

The article concludes with a generic 'checklist'. This will be the general procedure 

followed in this thesis. Although the article specifies that this is not an algorithm for all 

sensitivity analysis situations, the checklist will give a good basic chronological outline. 

The checklist is broken into five steps: 

1. Define the objective of the sensitivity analysis, then identify which input variables 

are to be considered, and the desired simulation response to measure. 

2. Select input vectors for the regression equation from some experimental design. 

3. Perform a preliminary factor assessment - find which factors are important. 

4. Determine relative factor importance by constructing a response surface through 

some regression technique. 

5. Check the predictive ability of the resulting response surface metamodel against 

actual simulation model results. 

Alan Goldfarb used this general outline in building a response surface for a discrete 

simulation model (Goldfarb and others, 1988: 689-693). The problem was that certain 

factors in a production process significantly affected the production rate, but he did not 

know which ones. He had narrowed a production rate problem down to 22 parameters 
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for consideration. Using a typical full factorial sampling technique, the required runs of 

the simulation were excessive (over 4 million runs!). Instead, a Monte Carlo method of 

setting factor values was used. 

Each of the 22 factors could be described with a triangular distribution. Using 

random numbers, he selected a value for each factor in a given simulation run. Note that 

this particular simulation model used is a deterministic model. The model will calculate 

the same outcome every time for a fixed set of factor values. If any of the values are 

changed, a different outcome is calculated. 50 separate deterministic runs, each with 

their unique set of values for the 22 factors, were completed. 

A stepwise regression technique was used to determine that seven of the 22 factors 

explained 85% of the production rate. In other words, the production rate (the response) 

was most sensitive to those seven factors. Therefore, management could now be alerted 

to focus on those seven factors. 

But, before the results could be presented, a check of the response surface was 

required. The author subjected the regression model to the same 50 sets of parameter 

values, but limited the regression function to just the seven factors. The metamodel was 

found to adequately predict simulation results - thus giving the response surface 

credibility as a good model of the simulation. 

Probably a better way of testing the regression equation in this case, is to make 

another set of runs using other randomly selected settings for the 22 parameters. These 

values would be completely independent of the values used to make the metamodel in 

the first place. Then compare the seven factor regression model against those simulation 
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results. The cost of this would have been more runs over the original 50 on the 

computer. 

Other examples of RSM use in sensitivity analysis include the Ghelber and Haley 

thesis. As mentioned before, sensitivity analysis was an important factor in the 

credibility stage of their validation methodology. A response surface was constructed to 

determine the main factors of a stochastic air defense model. It was confirmed that this 

step was very time consuming and was recommended that an additional look at the 

process would be beneficial (Ghelber and Haley, 1980: 61). 

The Myers thesis used RSM sensitivity analysis as an aid to a deterministic decision 

model. Other sensitivity tools were used in the research and found the RSM method 

highly successful. The method was used in lieu of individual factor sensitivity analysis. 

The major benefit in this particular case, was an accurate regression model derived from 

a minimum of simulation trials (Myers, 1995: 5-2). 

A parts quality thesis by Matthew Stone used a three factor RSM model to isolate 

which factor the outcome was most sensitive to. He concluded in the end that two of the 

three were very significant, but he also made an interesting observation. With only three 

factors, a full factorial design is quite feasible (Stone, 1988: Ch 4). This gives an 

advantage where all interaction combinations could be considered for their effects on the 

outcome. This could be a significant direction to look. However, Dr. G. Taguchi, a 

renowned name in the experimental design field, stresses the point that individual factors 

account for most variability in a response. An experimenter should first isolate the main 

factor effects before embarking into larger experiment designs aimed at finding 

interaction effects (Taguchi, 1987: Introduction). 
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RSM and Sensitivity Analysis of a Combat Simulation 

Two recent thesis efforts use RSM techniques to build metamodels of separate 

THUNDER combat simulations. Capt. Ryan Farmer concluded in his thesis that a 

Resolution V experiment is satisfactory in producing a metamodel (Farmer, 1995: 6-3). 

However, he learned large ranges between the high and low experiment values can create 

a problem of an excessive design space. A lack of data in the voids between the high and 

low values of a two-level experiment leaves a note of uncertainty about the actual 

metamodel surface. Are there significant simulation model characteristics between the 

two-level design points left unexamined? In Capt. Farmer's case, the large design space 

did not hinder the results significantly. The design space for his research used each 

factor's reference value plus and minus 40%. This research will examine a space defined 

by the reference values plus and minus 10%. 

Although the design space may not give the overall picture, a simulation model's 

sensitivity can be accurately demonstrated over a limited design space. A linear model 

may be examined over a large design space or a very small space. Either way, the 

response's sensitivity is the same. In a combat simulation, relationships between input 

factors and the response may be linear. If the experiment is referenced near the nominal 

levels of each factor, then a small (±10%) design space can produce a linear metamodel 

that will closely approach the actual response surface regardless of its linearity. The 

factor coefficients can then be interpreted as the response's sensitivity to the various 

inputs. With a linearity assumption, sensitivity may be extrapolated over the entire 

combat model. However, if the combat model behaves in a non-linear fashion then the 
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metamodel is usable only in the design space. Follow-on experiments will be required to 

provide adequate data to form an accurate non-linear metamodel. 

A second thesis effort by Capt. Steven Forsythe provides a methodology that not only 

provides a metamodel of a combat simulation but also optimizes the response 

(Forsythe, 1994: Ch 3). The response calculated was rather linear although an interaction 

term did have a 'significant' effect. The slight nonlinear nature of the metamodel 

allowed an optimization attempt. The result is somewhat misleading. The optimized 

response was well outside the design region. This information identified a point outside 

the feasible region as a point of diminishing returns. Operationally, this information is 

rather useless for two reasons. First, the metamodel, which is nearly linear, indicates that 

with more weapons employed the better the results - right up to the constraint. A linear 

model would provide the same information. Second, even if there was a optimal result in 

the feasible region, it is accurate only for the fixed enemy force provided in the combat 

simulation. Consistently using the same 'optimum' strategy against a smart enemy 

would certainly yield non-optimal results. Claiming an optimal strategy based on a fixed 

enemy is unwise! 

Putting this in layman's terms, imagine a hockey team. This analysis is similar to 

analyzing the optimum number of hockey players on the ice at one time. With data 

recorded for four, five, and six players on the ice, a slightly non-linear response surface is 

generated for predicting the amount of time between goals. Calculations could show a 

result where 15 players on the ice would yield best results, even though only six are 

allowed. Common sense indicates, the maximum number of six players allowed on the 

ice is certainly the best strategy. Like hockey, the optimum combat strategy will likely be 
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found at the constraints - regardless of the enemy. Precise predictions of a nearly linear 

and highly variable response are misleading. A nearly linear response surface based on 

such data may as well be treated as linear. 

The Relationship of Combat Simulations and Commercial Wargames 

Like weather simulations, combat simulations are based on a high degree of 

uncertainty. Claiming a set of inputs will result in a certain response carries a significant 

degree of risk. Warriors however have had a history of using simulations to identify and 

improve their advantages. In his most recent wargames handbook, James Dunnigan, a 

noted wargame advocate, states that combat simulations and wargames are major tools 

for the Pentagon and the warfighting CINC's (Dunnigan, 1992: 234-264). 

Mr. Dunnigan states that wargames are merely a 'playable simulation', while a 

combat simulation "is a model, or a collection of models that can be easily manipulated 

to test the 'what if questions". He goes on to explain that combat is very unpredictable, 

but like weather simulations, a moderately high degree of confidence can be afforded to 

their results. But, he points out the military strive for the unobtainable perfect prediction 

model is infeasible. "Until recently, professional wargaming tended to go after the less 

than 1 percent deviation in accuracy and consume years and millions of dollars in the 

process." He further explains, "Commercial manual wargames can generally achieve a 

'5 percent solution'", while a wargame on a PC can get a "nearly 1 percent solution". In 

other words, a commercial PC wargame is an extremely economical combat simulation 

that can give legitimate results. 
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This research does not intend to use the commercial PC wargame Empire II as a 

predictor of combat engagements, but rather as a vehicle to show how RSM may be used 

in conjunction with a combat simulation. However, if the game results appear to be 

consistent with other military combat simulations and actual experience, then 

consideration should be given to Mr. Dunnigan's thoughts. 

Conclusion 

A major benefit of a simulation is the ability to demonstrate sensitivity to various 

inputs. The sensitivity of the model must be consistent with actual process behavior 

before a simulation model can be declared valid. But, simulation models themselves 

must be analyzed periodically to confirm their currency with the actual process. A valid 

model can explore regions where the actual process has not been. A combat simulation 

can be used to determine the effects of changing force structure as well as weapon 

characteristics to a specific response. Mapping the response can give a quick turn 

analysis without referring to the simulation model repeatedly. However, the metamodel 

produces only a prediction of a simulation trend. Claiming an optimal solution to a 

highly stochastic combat simulation (which in itself is a model of a highly unpredictable 

process) is subject to criticism. Metamodels of highly stochastic combat simulations 

cannot be used to confidently predict short term results, but can isolate trends influenced 

by a limited number of factors. 
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IV.   Methodology 

Introduction 

The goal of this research is to define a methodology that identifies weapon systems 

and their characteristics which have the most influence on a simulation outcome. A good 

metamodel produced by this methodology will adequately describe the behavior of the 

simulation model based only on those most significant factors. This chapter will describe 

the methodology from the building of a simulation scenario to the actual mapping of the 

simulation behavior. First, an overview of the simulation scenario is covered. All 

weapon systems and their characteristics are defined. Each individual weapon 

characteristic is treated as a separate factor. A screening experiment is performed and 

data collected which will isolate those few factors that are indeed significant to the 

simulation outcome. To find the extent of their significance, those remaining factors are 

further analyzed with a follow-on experiment. With these results, a regression 

metamodel, which maps the behavior of the combat simulation model, will be calculated. 

Since the regression model is based on a small number of representative factors, a 

validation experiment is required to determine if the simple metamodel is accurate 

enough to be useful.   If the metamodel is indeed valid, then conclusions can be drawn 

about the simulation's behavior based only on those most significant factors. Each step 

of the process will be discussed in this chapter. 
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Scenario Setup 

This section explains the actual scenario used for the research. The scenario defines 

the battle scene to be simulated. Each weapon type is briefly described in the technology 

overview. The Battlefield section describes the geography of the area and force setup. 

Next, the Measure of Effectiveness section will define the scoring of the simulation 

outcome. Finally, the Attack Scenario section will focus on the actual attack force 

structure of the scenario. 

The Scenario. A generic battle scenario was required to represent not just a real world 

possibility, but also a scenario which is not uncommon. Several scenarios were 

considered. Consider the possible objectives of two sides. Generally, each side wants to 

control the same objective. The objective in this scenario is a strategic location. 

The first scenario put either side facing each other with an objective in between. The 

goal is identical for both sides - capture the strategic location before the other. This 

turned out to be rather unrealistic. The only situation that resembles this is the big 

westbound push by the Soviets, and eastbound push by the other allies, to capture as 

much of Nazi Germany as possible before meeting each other. This did not degenerate 

into a ground battle between the allies when they met. 

A second scenario is to assign both sides each a strategic location to protect, and the 

desire to capture the other. However, a dual objective is rather unrealistic. Both sides 

are playing the aggressor role, although there is an objective just as precious to defend. 

This condition is common in various sports such as soccer or hockey, but not in conflicts. 
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The scenario selected involves one aggressor force (Blue) whose mission is to capture 

a strategic location protected by a defensive force (Red). This circumstance is rather 

common in world conflicts. In Desert Storm, after the Iraqis played the aggressor against 

Kuwait, the coalition then played the aggressor against Iraq - two conflicts separated by 

months of stalemate. 

Operational or theater level simulations such as TACWAR and THUNDER have 

'piston driven' structures where the campaign is separated into individual corridors, each 

independent of the other. The forward line (known as the FLOT) moves like a piston in 

each corridor subject to each individual battle. The overall result is calculated by 

aggregating all the corridor FLOT positions into a single 'continuous' (but jagged) FLOT 

position. Empire II offers a simulation tool at the tactical level or the level where the 

battles are fought. Consider the conflict in this simulation as a battle in one of the 

individual corridors. 

Technology Overview. Each side is made up of individual unit types of identical 

strength. The main difference between the two sides are the numbers of units. This is a 

summary of each unit type and their capabilities. 

1. Light Infantry - Dismounted troops armed with light firepower. Dismounted troops 

are used by the defenders to protect urban areas from the aggressors. Red Light Infantry 

will force the Blue aggressors into urban warfare if Blue penetrates that far. Since they 

can disperse and defend throughout the town, they are considered somewhat survivable. 

Aggressors also have light infantry but are considered mounted until they arrive in the 

town itself. 
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2. Mechanized Infantry - Mounted troops on board fighting vehicles armed with 

weapons that have medium range (4km), moderate fire rate, and moderate fire power. 

Nearly half of each force is composed of mechanized infantry. Mechanized infantry is 

very mobile and is not considered a soft target, so artillery will have a hard time killing 

them with their area fire. However, armor and helicopters can engage directly with good 

success. Mechanized infantry possess anti-tank weapons and some anti-air missiles, 

posing a formidable threat to their adversaries. 

3. Armor - Compared to mechanized infantry, tanks are armed with lower range (3km) 

weapons, but with strong fire power and a slightly higher fire rate. Like mechanized 

infantry, armor makes up nearly half of each ground force. Tanks are capable of moving 

as fast as mechanized infantry. Coupled with heavy protection, armor is a tough target to 

kill. Aviation units, fighter jets, and other armor units are considered as major threats, 

although any unit can possess at least some weaponry capable of putting tanks out of 

commission. 

4. Artillery -  Long range guns (13 -17 km in this simulation) with ballistic projectiles. 

Artillery batteries are allocated to each brigade. Each artillery unit is allowed numerous 

shots, but since they fire into an area target, accuracy is not considered high. However, 

given a hit, a soft target will be damaged heavily while an armored target will be 

somewhat hindered. These artillery units are minimally capable of moving while firing, 

but can be put into a transport mode to allow them rapid repositioning if required. These 

units are vulnerable, especially when stationary and in the open, but are capable of 

limited self defense against all other units. 
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5. Aviation - Consists of various helicopters, a highly agile weapon system that also 

carries a powerful punch. Aviation units are capable of firing guided missiles more 

destructive than artillery shells and with improved accuracy. Helicopters can go behind 

enemy lines and engage targets while maintaining some standoff capability. But, unless 

they elude well, helicopters are very vulnerable to anti-aircraft fire. Like artillery, 

aviation is a limited resource and is an allocated asset. 

6. Close Air Support (CAS) - In addition to helicopters, the Blue aggressors are given 

the added advantage of close air support. CAS in this simulation consists of jet fighter 

attacks on units at and behind the front line. These equate to very long range artillery 

pieces that are directed against point targets. Because of the coordination required 

between the ground commander and pilot, not to mention the CAS skills of the pilot, 

accuracy is somewhat limited. Given a hit, any ground unit can be severely affected. 

Close air support can also be used by the aggressors in this simulation to soften defenses 

well behind the FLOT in preparation for invasion. 

7. Command and Control (C2) - The defender's strategic location. C2 is simulated as a 

bunker location that is well fortified and defended with short range fire. The C2 process 

in itself is not directly simulated. 

The Battlefield. The selected scenario could occur anywhere in the world, so rather 

than simulating at a particular world location, a generic location was developed. 

Empire II offers an opportunity for the modeler to build a generic battlefield location. 

This scenario is placed in a location where the objective town is found on a seacoast 

(Figure 15). This town has a strategic location (consider it a command bunker) which is 
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protected with a Red division made up of two brigades each of armored vehicles and 

mechanized infantry. Located in the town are several Red battalions of entrenched light 

infantry. Moving west out of town and away from the seacoast is a line of hilly terrain 

covered with forest and meadows. The hills are approximately 10 km inland and extend 

from north to south paralleling the seacoast. Moving further west another 10 km, the 

hills give way into forested plains that are spotted with lakes and occasional swampy 

areas. Two divisions of Blue aggressors, each separated into three brigades are located 

10 - 20 km west of the hilly terrain. Several passes through the terrain are available to 

the aggressors although the hills are not impassable. 

Fig. 15 Battlefield Setup 
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Measures of Effectiveness. The only way to score in this wargame is to outright kill 

an opposing unit entity. Although a shot can hit and disable an opponent, only a kill will 

score. Each unit type has been assigned a value based on its offensive potential. This 

potential is based on its offensive capability or movement value, its combat resilience or 

strength value, and its ranged fire strength. Refer to Table 1. The product of the three 

terms are recorded in the M*S*R column. To align the values to a scale of 1 to 25 (the 

simulation's scoring limits), two adjustments are made. First, to reduce the magnitude of 

the differences but still keep the relative values intact, the square root of each value is 

taken. The result is then adjusted down to usable value by dividing by an arbitrary 

constant - 25. The result was then truncated up to the next highest integer. 

Table 1 - Scoring Value Worksheet 

Movement Strength Ranged Fire Score 
Value Value Value         M*S*R Square Root Sart/25 Value 

Light Inf 2 50 2               200 14.1 0.6 1 
Artillery 20 30 20            12000 109.5 4.4 5 
Mech Inf 15 40 15              9000 94.9 3.8 4 
Armor 15 70 25             26250 162.0 6.5 7 

Aviation 60 65 35            136500 369.5 14.8 15 

Since Blue's Close Air Support airfields are out of Red's range, no value is required. 

The Red defender's Command and Control is the Blue aggressor's objective, thus is 

given a maximum value of 25. The simulation terminates after a set period. Final scores 

are summed for each side and presented as offensive totals for Blue and Red. 
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The Attack Scenario. Several attack scenarios were considered in this research. 

Typically, Army wisdom insists on at least a 3-1 advantage before an aggressor engages. 

This creates a problem for this research. The simulation outcome tends to become more 

robust as advantage increases. The outcome's sensitivity to various factors becomes 

impossible to detect. In battle, this is very important point for the aggressors. The bigger 

the advantage, the many various factors become less significant to the final outcome - 

thus insuring victory. 

On the other hand, a slight advantage to the aggressor yields victories in only half the 

battles. Even slight changes to the factors show significant but inconsistent differences 

to the outcome. For this research, an equal strength battle seemed to be a logical way to 

go. However, this lack of realism where an aggressor opts to attack with no advantage 

would put any research results in question. 

An interesting situation occurs in the simulation when the two sides are nearly equal. 

Even though victories are evenly split, the margin of victory tends to be rather large 

regardless of who was victorious. These results tend to follow Lanchester-type attrition 

models. The Lanchester-type attrition model states the attrition of one side depends on 

the strength of the other side. As one side gets an advantage, that advantage accelerates 

until the other side is vanquished. If neither side gets an advantage, the battle outcome 

will pivot on the last two standing. But in these simulations, sooner or later one side gets 

an advantage which always increases through the final turn. This presented a problem 

where results had huge variance. Just by changing a few minor factors, the battle 

outcome is completely altered. Therefore, as the simulation points out, a commander 
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may be very unwise to engage a somewhat evenly matched opponent, since the outcome 

is very sensitive to factors that nobody has control. Attacking with a large advantage 

negates the problems associated with the highly stochastic fog of war. 

With the advantage firmly in the aggressors hands, these factors will still make a 

difference, but in a much more subtle manner. No doubt the aggressors will be victorious 

most of the time, but a change in the input factors will result in noticeable differences in 

the scoring output. 

A compromise between the two force ratios is used in this research. An approximate 

2-1 advantage is given to the aggressors (Table 2). Although unlikely and maybe unwise 

for an army to attack with this small of an advantage, it is not unreasonable. The 

defender's objective is not necessarily to defeat the aggressors, but to hold them off until 

reinforcements arrive. This scenario is set for a twelve hour day. Twelve hours is the 

basic time period for a TACWAR simulation. Again, this battle represents only a part of 

a larger campaign. The battle represents only one of the 'pistons' in a simulation like 

TACWAR or THUNDER. The 'piston' in this particular corridor is expected to move in 

a eastbound direction as the aggressors invade the defender's town. 

Table 2 - Total Forces in Scenario 

Aaaressor Total Value Defender Total Value 

Light Inf 0 0 8 8 
Artillery 12 60 8 40 
Wlech Inf 28 112 14 56 
Armor 24 168 14 98 
Aviation 4 60 2 30 

Sums 68 400 46 232 
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Design of Experiments 

The objective of the entire series of experiments is to identify which factors are 

significant to the simulation outcome, measure their actual effects, and then to validate 

the findings. Since simulation runs are tedious, an economical design of experiment is a 

major concern. First, isolating the significant factors is accomplished with a screening 

experiment.   A Plackett-Burman experimental design is very useful to screen large 

numbers of factors. After identifying the most significant variables, a Resolution V 

factor analysis experiment will determine the effects of each remaining factor and their 

interactions. With these two main steps, the factors which the simulation outcome are 

most sensitive to will be isolated and evaluated. The final results must be cross-checked 

against an independent experiment to validate that the metamodel is indeed accurate 

enough to be usable. 

Screening Strategy. The Plackett-Burman design is a classic experimental design for 

screening large number of factors. Some of the design limits include the fact that it is 

only a Resolution m design and that it has a complex alias structure. Significant factors 

will stand out, although there is a small possibility that some factor will falsely stand out 

because of some multi-factor interaction alias. The assumption is made that all 

interactions are insignificant and only main factors account for different simulation 

outcomes. In this research, 23 variables are analyzed with a Plackett-Burman screening 

experiment using 24 trials. The experiment design will be the basis for 'X'. 

By using a stochastic simulation, each trial will require multiple runs. Enough runs 

are required to define an 'average' result for each trial. The Central Limit Theorem states 
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as the number of trials approach infinity, the sampling will result in a normal 

distribution. Usually, 30 or more samplings will closely approach a normal distribution 

(Mendenhall, 1989: 317-320). Fortunately, each factor is set to one of two levels, high 

and low. Since each factor is considered in each of 24 trials (12 at a high level, 12 low), 

then three runs for each trial will produce 72 data points for each factor - 36 for the 

factor's high setting and 36 low. With a highly variable simulation model, even 30 data 

points may not be enough to adequately define the variance. The variance, and in turn 

standard error, must be at a usable level before any statistical claims can be made. An 

'«' number of runs are required to develop a standard error small enough for the defined 

confidence level of the '/' test later used for factor selection (Law and Kelton, 1991: 287- 

290). However, V is an unknown number, so like above, a safe move is to gather 

approximately 30 data points for each of the factor settings to begin with. 

Once the information is collected from the experiment, the y vector is at hand. A 

regression model may now be constructed. Once the model is constructed, a test for 

residual normality must be performed to confirm that all the statistical tests mentioned in 

Chapter 2 can be used. The run average for each trial will produce a regression model 

for all 23 factors based on 24 trials. With only one degree of freedom , the model may 

give good insight to the most significant factors (despite an R2 of 1.0). On the other 

hand, using all 72 runs will produce a regression model that may not have an R2 of 1.0 

but with the additional degrees of freedom, will better screen for those significant factors. 

The 23 Factors Considered. Most theses authors before experimented with the 

number of combatants in a scenario to isolate the effects of changes to the force 
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structure. This thesis concentrates on the effects of altering various weapon system 

characteristics to the scenario outcome. 

In this research, only the aggressor (Blue) weapon systems are altered. Five aggressor 

weapon systems are considered - Artillery, Armor, Aviation, Mechanized Infantry, and 

Close Air Support. Each weapon system is represented as an entity type in the 

simulation. Each entity type, except for CAS, is affected by five characteristics. The 

first two characteristics are entity movement (offensive capability), and combat strength 

(the ability to survive). The other three characteristics are Ranged Fire capabilities. 

Ranged Fire accuracy, strength, and projectile range are all entity attributes considered. 

Four weapon system types times five characteristics produce the first 20 variables. A 

CAS entity is actually a stationary airfield that is out of range of the Red forces, therefore 

movement and combat strength will remain constant. Ranged Fire projectiles are 

represented by the actual sorties flown. Since the jets have a range greater than the 

battlefield area, Ranged Fire projectile range remains large and constant. So, only two of 

the Ranged Fire variables remain for CAS - accuracy and strength. The total list stands 

at 22 variables. 

The last variable considered is Blue Combat Efficiency, or the relative strength of the 

Blue army compared to Red. Equal sized armies from different parts of the world are not 

necessarily of equal combat value. This is a rather subjective factor in which the 

modeler assigns some objective values. In this experiment, the factor is a reflection of 

the Blue side's training and reliability, which in turn affects their ability to employ. If the 

outcome is sensitive to this factor, then a closer look should be taken at how the 

62 



Simulation objectively measures and uses the 'training' or 'functional reliability' value of 

an army. A full breakdown of the factors is shown in Table 3. 

In the experiment, each factor is adjusted 10% higher and lower about the reference 

value. A ±10% increment is enough to allow a satisfactory look at the sensitivity of all 

factors despite large simulation variability. If a larger positive increment is used, the 

response will be constrained by the lack of Red forces. In other words, any high setting 

will give the same response as all high settings - the entire Red force would always be 

destroyed, resulting in a constant outcome. 

Table 3 — The 23 Factors and Their Settings 

Plackett - Burman Design (N = 23) 

-10% +10% 
Low Medium High 

Factor -1 0 1 

Artillery 1 Movement 9 10 11 
2 Combat Strength 22 25 28 
3 RF Strength 22 25 28 
4 RF Range 13 15 17 
5 RF Accuracy 22 25 28 

Mech Inf 6 Movement 13 15 17 
7 Combat Strength 36 40 44 
8 RF Strength 13 15 17 

25% 9 RF Range 3 (-2.5) 4(0) 5 (+2.5) 
10 RF Accuracy 54 60 66 

Armor 11 Movement 13 15 17 
12 Combat Strength 63 70 77 
13 RF Strength 22 25 28 

30% 14 RF Range 2 (-3) 3(0) 4 (+3) 
15 RF Accuracy 63 70 77 

Aviation 16 Movement 54 60 66 
17 Combat Strength 58 65 72 
18 RF Strength 31 35 39 
19 RF Range 13 15 17 
20 RF Accuracy 63 70 77 

CAS 21 RF Accuracy 45 50 55 
22 RF Strength 27 30 33 

Efficiency 23 Aggressor Efficiency -1 0 1 
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Two factors could not be incremented by only 10%. Since the simulation model will 

only allow discrete integer values for input, relatively small values such as the Ranged 

Fire Range for armor and mechanized infantry could only be incremented by 30% and 

25% respectively. There are two ways to compensate. First, adjust the final regression 

results for each factor down accordingly. For instance, when the factor is three times the 

standard increment, divide the resultant coefficient by three. A second option, used in 

this experiment, adjusts the X matrix to reflect the non-standard increments. Instead of 

having all (-1, 0,1) in the matrix, the column that has three times the standard increment 

will have a series of (-3, 0,3) in its column. 

Analysis of Factors. Once the most significant factors are identified and ranked, a 

certain number of them are chosen for further analysis. Analysis of those remaining 

factors will create the final mapping that will ultimately describe the sensitivity of the 

simulation's outcome. A subjective decision based on either a significance criteria (a), 

or an experiment design limit (such as a budget and/or time constraint) will determine 

which of the screened factors are further considered. Once the most significant factors 

have been isolated, their interaction effects should also be considered for their possibility 

of significance. Selecting a number of finalist factors to fit at least a Resolution V 

experiment is preferable. With a minimum of simulation runs, this experimental design 

will allow all two-factor interactions an opportunity to show themselves as significant 

without being aliased with a main factor. 

Using 95% significance criteria based on the screening experiment's V test, a certain 

number of factors are identified for further consideration. Generally, only a small 
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fraction of the original main factors will meet the selection criteria. With luck, the 

number of factors selected will fit nicely into a Resolution V experiment design. If not, 

the most significant of the factors which do fit a Resolution V experiment should be 

identified. A possibility exists that there are a shortage of significant factors to fill the 

experiment's design. This is an opportunity, with no extra cost, to add factors that don't 

quite meet selection criteria. In other words, if a 16 trial Resolution V experiment can 

handle five factors, yet only four pass the screening criteria, a fifth factor can be added at 

the experimenter's discretion. 

Again several runs have to be made for each trial. In the case of five factors in a 16 

trial experiment, at least four runs should be made for each trial, a total of 64 runs. That 

results in 32 data points for each of the two factor levels. Center trials are added for a 

lack of fit test. Three to five center trials are recommended (Myers and Montgomery, 

1995: 311). Five trials with five runs each will result in 25 data points for each of the 

factor's reference or median value. 

With the Resolution V experiment designed and completed, both the X matrix and y 

vector are identified, and an initial regression analysis can be accomplished. Like the 

screening experiment, the residuals must be normally distributed before the adequacy 

tests of Chapter 2 can be used. Assuming the residuals are normally distributed, the tests 

can give a measure of how good the regression model is. Unlike the Plackett-Burman 

screening experiment, a limited number of factors coupled with numerous trials offers 

multiple degrees of freedom. Without sacrificing model accuracy, each trial average can 

now be used to simplify the regression calculation. Compared with models using all trial 

runs, aggregate error will be lower, so the R2 values will be much closer to 1.0. 

65 



However, average error will be roughly the same, and the adequacy tests will remain 

essentially unchanged. 

The next major consideration is the Lack of Fit (LOF) test. The original model 

supplemented with multiple center runs may show some kind of curvature in the data set. 

In the case of a combat simulation, there is an absolute ceiling on scoring (only a certain 

number of kills are available). A general reduction of the slope should be encountered as 

the maximum score is reached. The same goes for the case of percentages. Consider a 

percentage measurement that increases at a nearly constant rate through say 50% to 70%, 

but the rate must decrease as it approaches 100%. To be credible, the regression model 

may need to reflect this fact.   Granted, data from a restricted portion of the model may 

not show a significant effect of tapering, but the overall tendency should not be ignored 

and may need to be considered in the final regression equation. 

A failure in a LOF test indicates that interactions may be needed to complete the 

model. Still a first order model may be all that is needed. Some interactions may help 

the model to the point where it passes the LOF test. However, if the LOF test still fails, 

then a second order design is required. Axial trials are accomplished to check each 

factor individually at each of the two levels. Fortunately, axial trials can be 

supplemented onto the original experiment when required. In a five factor experiment, 

that means ten additional trials with the corresponding number of runs each. But, an 

opportunity arises where the experimenter can be economical with the number of axial 

trials actually required. If the first order model determined some of the selected factors 

to be insignificant, those factors can be eliminated. Axial trials for those factors should 

not be needed for the final second order model. 
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A second order model will give the regression surface extra freedom to curve and a 

better chance to fit a set of data. Other methods of fitting a good regression curve 

include logarithmic transformations. This method will allow a regression line to taper 

off to a horizontal asymptote. This kind of curve is best for describing a process that 

eventually reaches a limit. A combat simulation would best be described in this context 

when design space is large, and the outcome is very sensitive a factor's low setting and 

robust at its high setting. A problem with logarithmic transformations is that they are 

confusing to work with and to present. This research concerns only a small design space, 

therefore a second order model is adequate. 

Validation.    Once the regression metamodel has been produced, it cannot be taken 

for granted. Some kind of validation is needed for credibility. There are two parts to 

consider in the validation process. First, a comparison against an independent 

experiment has to be performed. This experiment will provide validation data to test the 

consistency between the regression metamodel and actual simulation results. A number 

of different methods can show if a metamodel is consistent with the actual simulation 

model. They can range from a random draw of factor values to an experiment identical 

to the original. . Second, a common sense inspection is needed to detect any counter- 

intuitive results. Since counter-intuitive results can in themselves destroy a simulation 

model's credibility, some effort has to be put in to explain them. Credibility relies on 

good validation, so enough of a budget must be allocated for a satisfactory cross-check. 
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Once a metamodel of some corresponding simulation model has been constructed, the 

first step in validation is to demonstrate that both behave in the same way. The 

regression metamodel is a very simplified mapping of the complex simulation model. 

But, if the mapping is an accurate representation of the simulation, then the metamodel 

can then be used in lieu of the simulation model. The metamodel can also be used to 

spot certain trends of the simulation's behavior - such as sensitivity! 

Designing a set of experiments identical to the original set of experiments would be 

the most thorough way of testing. If a similar metamodel were produced then the 

regression model is valid. However, that is probably the most expensive way to go. 

Another option is to take a sampling of random factor settings and compare the 

metamodel's prediction against actual simulation results. A good cross section of these 

will adequately compare the two models. A third and most economical way to test is by 

using the original Plackett-Burman design. Although there are a limited number of total 

runs, enough are available to draw conclusions. Best of all, the runs are already done! A 

second advantage is that aU of the original factors are considered in the original Plackett- 

Burman design. If the 'insignificant' factors really are insignificant, then metamodel 

should be consistent with the simulation! However, a bias can be introduced since the 

'insignificant' factors are not randomly adjusted from trial to trial. 

Once the metamodel is validated, it may be a dependable indicator of counter- 

intuitive behavior in the simulation model. Counter-intuitive behavior exhibited in the 

metamodel may put the simulation model itself in question, even though the simulation 
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may be quite accurate. The simulation model may indeed be accurately showing 

something that nobody expected. On the other hand, the actual simulation model may be 

flawed. Either way, the simulation model must be 'verified', to be sure that it is working 

correctly. 

Verification is a time consuming process of observing the simulation model at work 

and making repairs where needed. Verification also involves observing the model and 

finding legitimate reasons why a simulation is producing counter-intuitive results. Either 

way, a counter-intuitive result is the only real flag that something is wrong, even if 

nothing is wrong. The modeler must put forth an effort to solve the question. 

Whatever validation methods are used, determining if the simulation model and its 

corresponding regression metamodel are valid is a subjective judgment call. The bottom 

line questions are: 

1. If the simulation's behavior is counter-intuitive, is the simulation model really 

accurate? 

2. Does the RSM regression metamodel, even though not perfect, provide an adequate 

representation of the simulation's behavior? 

Positive answers for both questions will give the simulation model and the resulting 

metamodel real credibility. 
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V.  Results 

Introduction 

The research project uses the methodology outlined in Chapter 4. This chapter 

discusses the results. Each step in the methodology will be quantified so the reader can 

follow how the conclusions were found. The technological attributes of each entity type 

used in this particular simulation scenario will be documented. These attributes account 

for all of the factors used in the research. The actual Plackett-Burman design results 

which describe how the 'finalist' factors were selected are presented. The findings of the 

follow-on factor analysis experiment will show how only three of the original factors 

significantly affect the simulation outcome. Some three-dimensional response surface 

graphics will visually describe the effects of these three factors. Finally, results are 

validated. One of the final three factors has a counter-intuitive effect on the simulation 

model, and is discussed. The regression model coefficients are validated and the 

predictive ability of the model is tested. 

The Simulation 

Before starting the presentation of data results, an explanation of the data source is 

advisable. The experiment involved entity types and their technological attributes. Each 

entity type started as a generic weapon system with no real power. Each entity type was 

then defined to closely resemble an associated weapon system. These technological 

definitions, which made each weapon system unique, are the very factors that were 
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varied for the research. Appendix A is the technology report for all the entities used on 

the battlefield. This report is separated into four sections; 

The Rules - These are some of the basic battlefield reference values that are 

simultaneously defined for both sides. These remained constant for all simulation runs. 

Combat Damage Effectiveness is directly (as modified by the firing entity type) used in 

determining the amount of damage of a given hit. All modifiers in the report are simply 

multipliers that allow an overall reference value to be adjusted either upward or 

downward by the amount indicated (1 = +10% and -2 = -20%). An increase of the 

entrenchment modifier increases combat resilience while an increase of the transit 

modifier makes the entity more vulnerable. Activated morale rules allow a unit to run 

when their combat strength is down to a certain level. Sighting rules dictate an overall 

reference distance value for both detection and identification (which can be later 

modified by each entity type). 

1. Forces - The only factor considered here is the Combat Efficiency value. This 

number was adjusted only for the aggressor (Blue) side. A +1 increases the strength 

and firepower of Blue by 10% across the board. This value accounts for the overall 

combat ability of a side's army. For instance, the US Army is probably better trained 

and equipped than an equal sized Arab army. 

2. Unit Type Summary - This section gives a technology overview of each entity type. 

The summary reflects some of the relative strengths of various entities. Some aspects 

investigated in the research include Speed (Movement value), Maximum Strength 

(Combat Strength value), Ranged Fire Strength and Accuracy. All other values in 

this section remained constant. 
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3.   Unit Type Details - Each individual entity type is thoroughly described in this 

section. All information from the Unit Type Summary is repeated. Nevertheless, 

more information is presented that will further clarify the capability of each weapon 

system. The only factor investigated not mentioned so far is each entity's Ranged 

Fire Range, whose reference value is listed only in this section. The intent of the 

section, however, is to thoroughly describe the modifiers. These modifiers fine tune 

those capabilities given to each entity type. For instance, a unit type is assigned a 

'movement value' or 'offensive capability' value. The value in noted on top of the 

each entity's subdivision as 'Speed'. This value is modified by the 'Movement 

Costs' table. The 'Movement Costs' modifiers account for the different kinds of 

node terrain - the higher the number, the higher the cost to move through. Similar 

modifiers are made for combat fire effects. A target in the forest may be tougher to 

hit and kill than in the open. All modifiers are used for each individual shot 

calculation, which ultimately affects the final score. Since these modifiers are a 

subset of the main factor settings, and assumed to individually make little difference, 

they were left as a constant throughout the research. As certain weapon systems are 

highlighted as having significant influence on the outcome, those respective 

modifiers should then be further investigated. 

These are all examples of various weapon system characteristics that are essentially 

untouchable to the user in most established combat simulations like THUNDER. Again, 

the objective of this research is to see which weapon's system characteristics make a 

difference to a simulation outcome. Those characteristics the simulation is most 
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sensitive should be closely monitored and maintained in the simulation model. The 

accuracy and credibility of the simulation model depend on it. However, conclusions 

based oh this particular scenario's technology setup may not be consistent with all other 

scenarios. Only by doing similar investigations with various scenarios and technology 

setups will a truly accurate conclusion be drawn. 

Screening Results 

After all factors were identified, a Plackett-Burman screening design was used to 

determine potential factors for further investigation. Each factor's significance was 

based on its influence on various simulation trials.   The objective was not to measure 

which side was victorious most of the time. Truly, victory is based on influencing the 

enemy leadership to submit to conditions. A single enemy killed, even with large 

friendly losses, may influence the enemy to compromise. However, an assumption was 

made that higher enemy losses coupled with lower friendly losses tends to be a 

commander's goal and therefore was used as the measure. So, the simulation's outcome 

was measured not by victory, but by the battle's final score - a reflection of total kills. 

Two Measures of Effectiveness (MOE) were used. Total Blue score and Percent Blue 

score. Blue score reflects the number of Red defenders killed. Red score was also 

considered, but two problems arose. First, Red scores (the number of Blue killed) were 

relatively erratic. Second, a low Red score coupled with a low Blue score indicated the 

battle was slow moving - not that Red (or Blue for that matter) did worse. In lieu of 

using a Red score, the Blue percentage of the total combined score accounted for both 

problems. Regardless of the battle speed, Percent Blue reflected how well both Blue and 
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Red had done. A second advantage featured was the relative stability of the Percent Blue 

MOE. 

Even though a Plackett-Burman design can handle a larger number of variables, the 

23 factors most likely to affect simulation outcomes were selected. This was strictly a 

subjective decision based on opinions of various Army officers. The actual design used 

is presented in Appendix B. Results of the 24 trials are also presented in Appendix B. 

All factors (except two mentioned later) were adjusted by approximately ± 10%, and 

were coded as ± 1. Three runs were made for each trial for a total of 72 runs. 

A regression analysis using JMP®PC software, supplied by SAS Institute Inc., was 

used to isolate a number significant factors to a 95% level of confidence. Confidence 

tests are considered valid since the residuals for both Blue and Percent Blue appear 

normal. Normal Probability Plots are presented in Appendix B. 

Five factors appeared significant for both MOE's. However, one of them was 

Mechanized Infantry Ranged Fire Range. Because of a software limit, this factor could 

only be adjusted by approximately ± 25% instead of ± 10%.   To compensate, it was 

boosted from a coded value of ± 1 to a value of ± 2.5 in the experimental design. 

Regardless of their coded values, the standard error was the same for all factors in the 

model.   The 'real' error attributed to a ±10% difference for a factor that was actually 

adjusted ± 25% is 1/ (2.5) (or 10% / 25%) of the standard error. The parameter found 

for this factor was relatively small, but with a small 'adjusted' standard error to go along 

with it, the significance of the 7' ratio ended up favorably high. Therefore, the Y test for 

the regression model provided high confidence that the parameter was not zero.   On the 

other hand, this particular factor had little significance on the simulation outcome. Since 
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the objective was to find the most significant parameters, this factor was deleted 

accordingly. Armor Ranged Fire Range, which with the same software limit could only 

be adjusted by approximately ±30%, was boosted up to a round value of ± 3.   However 

this time, even with the model adjustment, Armor's Ranged Fire Range turned out to be 

one of the most important influences on the simulation outcome. With its standard error 

reduced by a factor of three, the lf test result proved extremely favorable. So in this 

case, despite the non-standard coding, the factor was shown to be very significant. 

All together, four factors stood out as the most significant for both MOE's: 

1. Armor Ranged Fire Strength 
2. Armor Ranged Fire Range 
3. Aviation Combat Strength 
4. Aviation Ranged Fire Range 

Aviation Combat Strength behaved in a peculiar way. As strength was increased, 

Blue's score decreased. Since this factor was among the most significant, it was 

investigated further. The behavior created an additional challenge for the overall 

validation of the simulation model, which is discussed later in the chapter. 

Analysis of Significant Factors 

With four 'finalist' factors identified, an additional experiment was needed to 

thoroughly investigate their effects on the simulation outcome. Even though interaction 

effects were ignored in the screening experiment, the interactions of these most 

significant factors may have proven to be somewhat significant. By inspection, the four 

factors did not have any obvious three-way of four-way relationships. On the other hand, 

three two-factor interactions stood out as possibilities. Each inclusive pair of Armor 

factors, Aviation factors, and Ranged Fire Range factors appeared to have the most 
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obvious chances of having significant two-way interactions. Eliminating any chance of a 

two-factor interaction alias in the experiment, a minimum of a Resolution V experiment 

design was required. 

With only four factors to consider, a full factorial experiment (which is better than a 

Resolution V design) would have required 2 , or 16 trials. An eight trial fractional 

factorial experiment would only yield an inadequate Resolution IV design. Since a 

minimum of 16 trials were required anyway, a five factor, 16 trial Resolution V design 

was utilized. So a fifth factor, although not meeting the initial screening selection 

criteria, was added. Several semi-significant factors stood out as possibilities for the fifth 

finalist. The one selected was Aviation Ranged Fire Strength, which appeared to 

compliment the other four factors by adding yet another likely two-way interaction - the 

Ranged Fire strength combination. The five 'finalists' with their low, median and high 

values are listed below in Table 4. Notice that Armor Ranged Fire Range continued to be 

incremented ± 30%, and the others ± 10%. 

Table 4 ~ The Five Factors for Final Analysis 

Factor 
Armor Low Median Hiah 

a RF Strength 22 25 28 
b RF Range 

Aviation 

2 3 4 

c Combat Strength 58 65 72 
d RF Strength 31 35 39 
e RF Range 13 15 17 
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Since both MOE's had a capped maximum value, the final models were likely to have 

a somewhat decreasing non-linear effect. Five center trials were supplemented onto the 

16 trial experiment to allow for a Lack-of-Fit tests for various combinations of factors. 

Regression Results 

Again, JMP® PC software was used for regression analysis. Each MOE, Blue and 

Percent Blue, were considered individually. The initial models considered only the five 

main factors without interaction. Armor Ranged Fire Strength (V) and Aviation Ranged 

Fire Strength ('cT) were individually insignificant to both models, and were eliminated 

from further consideration (refer to Figure 16). Although not quite meeting selection 

criteria, Aviation Combat Strength still appeared somewhat significant to the Percent 

Blue outcome. Therefore, Aviation Combat Strength was further considered. 

j Parameter Estimates          ulUQ 

Term Estimate     Std Error t  Ratio Prob>11 j 

Intercept 160.22857      1.691407 94.73 <-0001 

a-Arm RF S 1.725     1.93775 0.89 0.3755 

b-Arm RF R 9.8583333       0.645917 15.26< 3-oooT) 
c-Av  CS -2.55    1.93775 -1.32 0.1912 

d-Av  RF  S 0.25   1.93775 0.13 0.8976 

e-Av  RF R 4.45   1.93775 2.30C Ü0,023l> 

[Parameter  Es timates]  Percent Blue 
\ 

Term Estimate     Std Error t  Ratio Prob>ItI 

Intercept 64.967173       0.688031 94.42 •C.0001 

a-Arm RF  S 1.0379707      0.788239 1.32 0J_2ß9 

b-Arm RF R 3.7456642       0.262746 14.26/ <.000l\ 

c-Av  CS -1.45518    0.788239 -1.85\ 0.067 9/ 

d-Av  RF S 0.8308271      0.788239 1.05 072^44 

e-Av  RF R 3.565094      0.788239 4.52< 3^oooi> 

Fig. 16 — Main Factor Estimates 
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The remaining three factors, Armor Ranged Fire Range, Aviation Combat Strength, 

and Aviation Ranged Fire Range ('b\ 'c', and V respectively) were then analyzed for 

interaction effects. Since the Lack of Fit test passed for both MOE's, quadratic effects 

were not needed so axial trials were not accomplished. The entire 21 trial experiment 

with results is presented in Appendix C. Figure 17 shows that after all combinations 

were considered, only the two-way Ranged Fire Range interaction (b and e) appeared 

important. This interaction appeared somewhat significant for both MOE's. The two- 

factor interaction was used in both models. 

Parameter Estimates ) Blue 
\ 

Term Estimate Std Error t  Ratio Prob>!t1 

Intercept 160.22857 1.664784 96.25 •c.0001 

b-Arm RF R 9.8583333 0.63575 15.51/ ̂ TOOOTN 

e-Av  RF R 4.45 1.90725 2.3| 0.0216 

b-Arm RF*e -Av RF 1.2416667 0.63575 1.95\ 0.0536y 
  

Parameter Estimate 0 Percent Blue 
Estimate Std Error t  Ratio Prob>1tI Term 

Intercept 64.967173 0.689359 94.24 •c.0001 

b-Arm RF R 3.7456642 0.263253 14.23/ <T. 0001N 

c-Av  CS -1.45518 0.78976 -1.8* 0.0684 

e-Av  RF R 3.565094 0.78976 4.5lS s<.oooiy 
b-Arm RF*c-Av CS 0.0173752 0.263253 0.07 0.9475 

b-Arm RF+e-Av  RF 0.4953962 0.263253 1.8^ 0.0629 

c-Av  CS+e-Av  RF 0.5774017 0.78976 0.73 0.4665 

b-Arm RF*c-Av CS+e -Av  RF 0.16074 0.263253 0.61 0.5429 

Fig. 17 — Main Factor and Interaction Effects 

Both MOE's are restricted by a maximum value. Blue is maximized when all of Red 

is eliminated. Percent Blue likewise is capped at 100%. A non-linear effect outside the 
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design area out to the maximum limit is very likely. Therefore, extrapolating 

information outside the design region is inadvisable. Table 5 shows the results of the 

regression. The sensitivity of the simulation's outcome is based on the figures below. A 

10% increase of Armor's firing range will result in an improvement of Blue's score by 

about 10 points. Likewise, a nearly 4% increase of Blue's point share will result. This 

factor was the most significant in the research. 

Table 5 - Analysis of Factors Regression Results 

Factor Blue Percent Blue 
Intercept 160 65 

b - Armor RF Range 9.9 3.8 
c - Aviation Combat Strength N/A -1.5 

e - Aviation RF Range 4.5 3.5 
Interaction be 1.2 0.5 

The final coded regression models for each of the MOE's are listed in the following 

equations: 

Blue=l60 + 9.9-b + 4.5-e + l.2-b-e (32) 

PercentBlue = 65 + 3.8 • b -1.5 • c + 3.5 • e + 0.5 • b ■ e (33) 

Both models perform very well against standard statistical tests. The models both have a 

normal residual distribution.   All pertinent statistical information is included in 

Appendix D. 

Each factor coefficient indicates the effect that the factor has on the simulation 

outcome. The simulation sensitivity is quantified with these coefficients. This particular 

simulation model is most sensitive to Armor Ranged Fire Range ('6'), followed by 
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Aviation Ranged Fire Range (V). Although Aviation Combat Strength (V) is not as 

significant, a peculiar counter-intuitive behavior is indicated by its negative coefficient. 

As Blue Aviation Combat Strength is increased, Blue performance is reduced! This is 

discussed in the Validation section. 

Screening results highlight those factors which the simulation model is most sensitive 

to. A follow-on analysis of those factors will provide further screening. Follow-on 

analysis also quantifies just how sensitive the simulation is to the remaining factors. 

With the results from Table 5, the simulation modeler should be most diligent with 

measurements concerning firing ranges of armor and aviation units.   Further analysis of 

these factors should include those modifiers listed in Appendix A. 

An uncoded model (a model which uses actual factor values) is nearly useless in this 

context. Each factor of this experiment was perturbed by a percentage value. These 

were coded into a consistent model where all factors were set ± 10% about their 

reference values. Therefore, all regression model coefficients are consistent with each 

other. An uncoded model would not be easy to use in this sensitivity context. For 

instance, consider a factor that is perturbed ± 10% around a reference value of 15, while 

another around 60. Individual regression coefficients would be consistent with each of 

these reference values. If these two factors had an equal effect on the simulation 

outcome, their coefficients would differ by a factor of four. As an example, the Equation 

(34) is the uncoded version of the Blue response in Equation (32). 

Blue = U\-6.1-b-A.l-e + 25-b-e (34) 
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Unfortunately, this equation is only useful for predicting simulation outcomes. By 

inspection, there is nearly no way to get sensitivity information from this equation 

without first knowing the proper reference value for each factor!   However, whichever 

method is used, coded or uncoded, a graphical plot of the resulting response surface will 

appear identical. These plots will provide a 'picture' that will allow a visual inspection 

of the regression model. These pictures will allow a sensitivity analysis simply by visual 

inspection. The following section will discuss the plots constructed for the regression 

models. 

The Response Surface 

A visual representation of the regression model can be useful in presenting results. 

Only two factors coupled with a response can be presented in a three dimensional plot. 

In the case of three factors, three separate plots presenting each pair combination are 

constructed. An example of a response surface plot is presented in Figure 18. 

-0.5 

Fig 18 - A Response Surface 



Both the three-dimensional and two-dimensional plot of the same regression model 

are given in Figure 18. The two-dimensional plot may be more useful for sensitivity 

analysis. As the factor is increased up the Y axis, the response increases at a sizable rate 

which diminishes slightly. On the other hand, as the factor represented on the X axis is 

increased, the response slowly decreases at a constant rate. An inspection of the plot can 

give a relative 'feel' of the factor effects. Flat surface grades indicate those factors that 

the simulation outcome is insensitive or robust to. The simulation outcome does not 

depend on those factors. However, a factor that provides a hillside, particularly a steep 

one, indicates a factor the simulation outcome is especially sensitive to. Plots for each of 

the MOE's are presented in Appendix E. 

Validation 

Now that two models have been presented, a question of their credibility arises. Each 

of the models was constructed based on a set of input data. If the models are indeed 

accurate, they should predict any simulation outcome within the design region. Accurate 

predictions over the entire design region may mean the model could be a reasonable 

substitute for the simulation model itself. Two sources of independent data were used in 

the validation of each model. 

The first set of validation data was generated by completing a full-factorial 

experiment with the three finalist factors. The other 20 factors were set at their reference 

values. Eight trials of five runs each produced 40 data points around the 'corners' of the 
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design region. The design was then supplemented with axial and center trials for a final 

total of 85 data points. This data provided a basic validation data set based only on those 

three factors which were used in each of the final regression models. The data used in 

the initial Plackett-Burman screening of factors were also used as another validation data 

set. However, this data set provided a tougher test for each of the final regression models 

because all 23 factors were varied, influencing each of the resulting validation data 

points. These biases should not have been individually important since the screening 

found them relatively insignificant. However, aggregate influence of these extra 20 

'insignificant' factors exposed both models to a much more demanding test than the first 

set of validation data. If both of the final models are determined to be consistent with the 

screening data, then the factors used in those models are indeed the most significant. If 

the final models are moderately inconsistent, then the bias of the 20 unused factors most 

likely had some influence on the validation data. If the bias can be quantified, then the 

final models can be adjusted and applied accordingly. 

Two techniques were used to compare the final models with the validation data sets. 

First, a regression surface was constructed using the same factors used by the final 

models. A comparison of the final models against the resulting regression surfaces will 

confirm if the factor coefficients are respectively consistent with one another.   A second 

test used the predictions of the models against each individual validation data point. 

Mean Relative Error (MRE) showed if the models predict consistently high or low. 

MRE is presented as a positive or negative percentage. A good model will be consistent 

with the validation data and will have a very low MRE.   MRE is calculated using 

Equation 35. 
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n   /\.        -^ 1 n       f * 
MRE (Mean Relative Error) = - Y IIZIL . 100% (35) 

-    v  y,   J 

where 
n = Number of observations 

yt = Observation from validation data. 
yt 

= Observation prediction of the model. 

A complimentary measure of the model's predictive ability is by use of Root Mean 

Square Error (RMSE).   RMSE is an indication of how well a regression surface fits a set 

of data. The Coefficient of Determination (R2) and RMSE are inversely related. A 

perfect fit will give an R2 value of 1.0 and a RMSE of 0.0, and a bad fit an R2 of a 

number near zero coupled with a very large RMSE. A regression surface based on a set 

of data will have some value for RMSE. The same surface compared against a different 

set of data will have another RMSE. Generally, a regression surface will have a lower 

RMSE against the data from which it was constructed verses an independent set of data. 

Regardless, if the two RMSE values are similar, then a conclusion can be drawn that the 

regression surface closely fits the independent data. RMSE is calculated with the 

following formula: 

ZU-A)2 

Root Mean Square Error (RMSE) = V —  (36) 
n 

With a combination of low MRE and consistent RMSE, a regression model can be 

accepted as a accurate predictor. The actual point where the model is considered 
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adequate is a subjective decision. The user's tolerance to model error should define the 

satisfactory validation criteria. 

Validation Results. After collecting and organizing the validation data, a least square 

regression surface was constructed for each. All validation data information is available 

in Appendix F. Table 6 summarizes the coefficients of the original surfaces and the 

validation surfaces. Notice that several factors proved to be less than 95% significant in 

the validation models. That does not mean the final model's terms in turn lack 

significance, but simply that the respective validation data set was not sensitive to those 

factors. Low values for R (Appendix F) are not due to a bad fit, but to the high variance 

from numerous trial runs. Using average trial values will give similar results and a 

higher R (over .95), but with much fewer degrees of freedom for other statistical 

calculations. Overall, although each model is based on a different data set, the three 

response surfaces are very consistent. 

Table 6 — Response Surface Coefficient Comparison 

Final Model Validation Model Validation Model 
(Original Data) (Full-Factorial Data) (Screening Data) 

MOE: Blue 
Intercept 160 160 151 

b - Arm RF R 9.9 10.0 8.9 
e - Avn RF R 4.5 Insignificant** 4.9* 
Interaction be 1.2 1.0* Insignificant** 

MOE: Percent Blue 
Intercept 65 65 60 

b - Arm RF R 3.7 3.5 3.3 
c - Avn CS -1.5 -1.1* -3.7 

e - Avn RF R 3.6 1.7 3.3 
Interaction be 0.5 0.5 0.5* 

*  Did not meet 95% Significance Criteria 
** Completely Insignificant — Did not meet 50% Significance Criteria 
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The outcome of Blue's score is consistently very sensitive to the Armor's Ranged Fire 

Range capability. Aviation's Ranged Fire Range capability may indeed be somewhat 

important, although that was not confirmed by either validation data set.   However, 

relative performance of the Blue aggressors as shown by the Percent Blue MOE is rather 

sensitive to all three factors. Notice that the counter-intuitive behavior of Aviation's 

Combat Strength is confirmed by both validation sets.  Both Ranged Fire Range factors 

proved consistently significant for Percent Blue across all three data sets. 

The predictive ability of each of the two models was then measured against the 

validation data. Table 7 summarizes the findings: 

Table 7 - Predictive Comparisons 

Final Model 
(Original Data) 

Validation Model 
(Full-Factorial Data) 

Validation Model 
(Screening Data) 

MOE: Blue 
MRE 

RMSE 

MOE: Percent Blue 
MRE 

RMSE 

N/A (0%) 
17.1 

N/A (0%) 
7.0 

+1.6% 
18.9 

-0.1% 
6.2 

+9.7% 
19.5 

+10.5% 
6.3 

The final models do very well against the first set of validation data. RME of 1.6% 

and -0.1% indicate the validation data from the full-factorial data set almost perfectly 

brackets both regression models. Both RMSE's indicate the trend of the data nearly 

matches the trend of the original data. Both of the final models fare very well against the 

full-factorial data set, which really was not unexpected. The final models were 

86 



constructed from a Resolution V experiment with five factors influencing the original 

data set. The full-factorial data set was comprised of data where only the three final 

factors were manipulated. No bias from the 20 'insignificant' factors was introduced. 

Both of the final models tended to predict about 10% high against the more biased 

screening data. Apparently, the screening data may not only be biased by the extra 

factors, but also by non-orthogonal factor settings. The Plackett-Burman design does not 

randomly change factor values from trial to trial. The design is orthogonal only if used in 

its entirety. The validation screening data was separated into eight non-orthogonal 

subsets. That introduces a bias which may explain why the screening data shows a lack 

of performance for the Blue aggressors. Although predictions tended to be high in both 

cases, the RMSE produced by both validation data sets compare favorably with the 

original data's regression model. 

The RMSE was better with both validation data sets when Percent Blue was used as 

an MOE. In both cases, the validation data produced an unusually improved consistency 

when placed against the final Percent Blue model. Most likely the original data had a 

higher variance with respect to the Percent Blue MOE. The same trend did not appear 

with the final Blue MOE model. 

Overall, both of the final models predict very well against data sets involving the 

three final factors. A data set where all 23 factors are randomly altered may offer a better 

validation result than the original Plackett-Burman screening experiment data set. Until 

that is resolved, both of the final models may be suspect in predicting outcomes of 

simulation runs where all 23 factors are considered. However, both models prove 

themselves as accurate 'mappings' of the simulation's behavior and can be used as 
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reliable sensitivity analysis tools.   The validated Percent Blue MOE model indicated the 

simulation responds to Aviation Combat Strength in a counter-intuitive manner. The 

next section investigates this behavior. 

Simulation in Question - The Counter-Intuitive Result. The last issue confronted was 

the counter-intuitive result involving Blue Army's Aviation Combat Strength (V). As 

strength increased, Blue's performance went down significantly. Red performance also 

increased accordingly. Separate simulation trials were run where the factor was altered 

in increments of 10% from -30% to +30% of the reference value. 

Over the large span, as Aviation Combat Strength increased, Blue's overall battlefield 

performance decreased. Blue outscored Red 71% to 29% (of total score) when strength 

was set at -30%. At +30%, Blue outscored Red 63% to 37%. In general, Blue loses 

effectiveness as Aviation Combat Strength increases. This wide span confirms the odd 

behavior detected by all of the regression metamodels. Figure 19 shows a plot off all 

simulation runs in terms of the Percent Blue MOE. 
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Equation (37) shows the overall effect of the factor. This equation is based on a 

separate set of simulation trials in which only Blue's Aviation Combat Strength was 

altered. The result is remarkably close to the respective values in the final Percent Blue 

regression model. 

PercentBlue = 68 -1.1 • c (37) 

By visually observing the simulation runs in progress, a trend explaining the behavior 

appeared. As expected, the aggressiveness of Blue Aviation intensified as Combat 

Strength increased. However, Blue Aviation units were putting themselves into much 

greater risk while working around the front lines. More intrusions across the line resulted 

in many more Red shots hitting their mark. As strength and in turn aggressiveness 

increased, Blue Aviation units were eliminated despite their greater strength. 

Helicopters stayed back when strength was set low, and blindly attacked when strength 

was set high. For example, of the four aviation units, an average of 1.5 unit were lost 

when strength was 30% lower than the reference value. On the other hand, an average of 

3.3 units were lost when strength was set 30% higher! Overall, the Blue MOE remained 

somewhat constant, but Red's score increased proportionally to the helicopter units 

killed. Therefore, the Percent Blue MOE showed the effect most clearly. 

Other unit types also had a similar trend. Refer to the screening experiment for the 

Blue MOE (Appendix B). Most other units types had a slightly negative trend as their 

combat strength was increased. Blue Aviation units were by far the highest value target 

for Red units (15 points per kill), so the negative Blue Aviation trend was highlighted 

with the MOE's used. 
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The simulation model has indicated an interesting phenomena. The artificial 

intelligence of the simulation model elects to increase aggressiveness as combat strength 

is increased. Some say this may be a tendency of most human leaders. The simulation 

model points out that maybe aggressiveness should be left alone, allowing weapon 

systems a longer life span. In turn, the weapon system can accumulate more kills during 

the long run. In conclusion, the simulation model may be accurately reflecting a combat 

tendency, and should not be disregarded. Aggressiveness should be carefully amplified 

as strength is increased. 

In summary, both of the final models are very good at sensitivity analysis. Using only 

three of the original 23 factors, the regression models also provide a useful mapping of 

the simulation's behavior. Counter-intuitive simulation behavior was highlighted and 

investigated. The predictive ability of both models is shown to be reasonable. However, 

the deterministic nature of a regression model means it may not be beneficial as a short- 

sighted predictor of a highly stochastic simulation. On the other hand, a prediction from 

a regression model should be very useful for long range 'expected value' information. 

Isolating counter-intuitive behavior proved to be a very valuable benefit of the regression 

model. New simulation models may benefit from a regression analysis for such a reason. 

Both of the final models proved themselves as valuable mappings of the combat 

simulation. 
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VI.   Conclusion / Recommendations 

Objective Review 

The primary objective of this thesis was to measure the sensitivity of a combat 

simulation's outcome to various weapon system capabilities. Since weapon capabilities 

of established combat simulations are hard-coded, a more accessible combat simulation 

was used. Empire II: The Art of War™, a computer wargame was used as a substitute. 

The game offered a computer verses computer option, thus turning the wargame into a 

'combat simulation'. After designing a battle scenario, weapon system capabilities on a 

single side were manipulated. Those manipulated factors indeed made a difference to 

the simulation's battle outcome. Using Response Surface Methodology, those factors 

that had the most influence were isolated. As shown in the Literature Review, RSM was 

a sound technique for sensitivity analysis. 

Research Summary 

Previous theses efforts took an established combat simulation, a given scenario, and a 

given set of weapon systems, then manipulated a side's force structure. Their objective 

was to isolate those weapon systems which had the most influence to the outcome. 

However, in this research the battlefield force structure remained constant. One side's 

weapon system capabilities were manipulated to identify how much significance they had 

on the outcome. Five separate weapon systems were simulated, each having several 

unique capabilities. A total of 23 factors were identified as potentially important to the 
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Simulation outcome. A sensitivity analysis was then performed using RSM techniques. 

Only those factors which the simulation outcome was most sensitive remained for use in 

the final regression metamodel. 

In the final RSM metamodel, only three of the initial 23 factors were required to 

adequately describe the simulation's behavior. The results showed that a simple 

regression model can indeed be constructed based on a limited number of simulation 

trials. In the end, the outcome's sensitivity was defined by each factor's coefficient. The 

metamodel may also be used as a quick-turn deterministic 'simulation'. This kind of 

application could be used for a general 'first-look' analysis.   A simple metamodel may 

conveniently and adequately serve as a substitute for actual simulation trials. 

Significance of Results 

In practice, a similar procedure could be used with an actual combat simulation. For 

simulation accuracy, those highlighted factors should be measured with the most care as 

they are updated in the simulation model. If these factors are indeed important to the 

simulation outcome, then these factors are likely to be just as important on the actual 

battlefield. Commanders should be aware of what they are. On the other hand, these 

commanders should also be made aware of those factors that do not make a difference. 

Actual resources spent on those factors may be excessive. 

The acquisition process may be very interested in finding those factors that are most 

significant. Many times, a disproportionate amount of money is spent upgrading those 

factors that would make little difference in a battle. Highlighting those most significant 
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factors of a combat simulation should prove as very useful information for decisions 

concerning the allocation of resources destined for upgrades. 

Military professionals have recently used commercial wargames for battle insights 

(Dunnigan, 1992: 234). Even though this particular wargame is by no means a substitute 

for a complex combat simulation, it can still actually show which weapon capabilities 

may be most important. A similar effort with an actual combat simulation would 

confirm if indeed a wargame like this one is consistent with the multi-million dollar 

simulation model. In his Wargames Handbook, noted wargame enthusiast James F. 

Dunnigan states: 

Until recently, professional wargaming tended to go after the less than 
1 percent deviation in accuracy and consume years and millions of dollars 
in the process. Indeed, the process usually overcame the search for a 
solution, often leading to a lost, and failed, project. Commercial manual 
wargames can generally achieve a '5 percent solution'. Put a wargame on 
a PC, and you get a nearly 1 percent solution. But it took the military a 
while to catch on to this cheaper solution sitting on the shelves of a local 
game store. (Dunnigan, 1992: 236) 

If wargame behavior is indeed consistent with established combat simulations, Mr. 

Dunnigan would have his point about the value of commercial wargames validated. 

Recommendation for Further Research. An established combat simulation and a 

commercially produced computer wargame could be compared for consistency of results. 

For a given scenario, if the commercial wargame is found to be consistent with the 

established combat simulation, an argument where 'cheap' wargames could be used as an 

alternative could be defended. However, a combat simulation which could be altered 

must be found. Many accredited simulation models may not be available for this kind of 

research. 
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Possible Improvements 

The methodology used in this research has been used several times before as 

mentioned in the Literature review. The primary flaw with the method is in the possible 

over simplification of a process. This particular metamodel will serve as a tool for only 

this particular scenario. The metamodel should not be used to predict results or trends in 

unrelated scenarios. Multiple experiments expanding into several scenarios should be 

considered for a conglomeration of metamodels that together could be used for wide 

ranging decisions. However, such a tasking will be time consuming since a multitude of 

simulation runs would be required. 

Recommendation for Further Research. If these metamodels could be constructed 

with a consistent RSM technique, all could be combined into one generic model. As 

long as each factor is considered equally in all of the models, the coefficients may be 

averaged into a mean parameter. Since each coefficient is actually a normal random 

variable, a mean normal distribution may be found each parameter. A stochastic 

spreadsheet metamodel can produce results with all scenarios considered. In other 

words, an aggregated quick-turn metamodel may be constructed piece by piece over time. 

As new scenarios are added and others dropped, the overall metamodel can be updated 

accordingly. Certain factors will be identified as significant for the overall picture, while 

others will be highlighted for individual scenarios. Not unlike an object-oriented 

simulation, each individual metamodel can be 'plugged in' as needed into the aggregated 

model. 
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Summary 

Applying the RSM technique to map out a simulation model is extremely useful. This 

research utilized the technique for sensitivity analysis purposes. The metamodel 

mapping is beneficial for other applications such as quick-turn analysis where simply 

'plugging in' factor values will produce a prediction of the simulation result, not to 

mention an actual result. Because of tremendous variability, combat modeling may be 

one of the more risky areas to use this somewhat deterministic method. As long as the 

limits of the metamodel are recognized, the risk should be acceptable. In processes 

where results are consistent in nature such as a manufacturing process, a regression 

metamodel can be very helpful, not only in spotting trends but also as an accurate 

predictor of results. 

A major benefit of the RSM model was its ability to highlight counter-intuitive 

simulation behavior. These behaviors can be further investigated and repaired if 

required. Although not an expected result, the RSM model proved to serve as a 

verification tool for the simulation model itself. 

Overall, Response Surface Methodology is a proven technique which can be used to 

map a process to the point where decision makers can see the 'big picture' without 

reckless trial and error. By using RSM, this research objective was easily met. 
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Appendix A 

Appendix A: Entity Reference Settings 

Empire II Technology Report 
Reference Scenario Variables 

are 
Italicized 

1. Rules 

Turn Length 72 min 
Combat Damage Effectiveness 50% 
Combat Variance 0% 
Entrenchment Modifier 5 
Transit Modifier -5 
Supply Rules No 
Morale Rules Yes 
Sighting Rules Yes 
Detection Range 30 
Identification Range 10 

2. Forces 

Combat Efficiency 

Blue 
Red 

0 
0 

3. Unit Type Summary 

Blue Speed      RF Cost    Max Strength   Kill Pt Morale Pt   RF Strength    RF Accuracy 

Artillery 10 3 
Mech Inf 15 6 
Armor 15 6 
Aviation 60 40 
CAS 30 30 

Red 

Light Inf 2 2 
C2 2 2 
Artillery 10 3 
Mech Inf 15 6 
Armor 15 6 
Aviation 60 40 

25 0 10 25 
40 0 10 15 
70 0 10 25 
65 0 30 35 
100 0 0 30 

50 0 0 8 
90 0 0 30 
25 0 10 25 
40 0 10 15 
70 0 10 25 
65 0 30 35 

25% 
60% 
70% 
70% 
50% 

80% 
80% 
25% 
60% 
70% 
70% 
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Appendix A 

Blue Artillerv 
( ** Selected Variable ) 

Speed ** 10 Kill Break Point 0 
Transit Speed 20 Morale Break Point 10 
RF Cost 3 Max Combat Strength ** 25 
RF Type Artillery Max RF Strength ** 25 
RF Range ** 15 RF Depletion 

RF Accuracy ** 
Able to Entrench? 
Zone of Control? 

0 
25% 
Yes 
Yes 

Siahtina 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 15 Red Artillery 10 Red Mech Inf 7 
Red Armor 10 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 10 
Village 10 Clear 6 Forest 10 
Broken Ground 12 Mountain 12 Desert 8 
Arctic 8 Swamp 12 Beach 10 
River 4 Stream 2 Road 5 

Movement Costs (Transit) 
Deep Sea No Shallow Sea No City 8 
Village 4 Clear 2 Forest 6 
Broken Ground 8 Mountain 10 Desert 6 
Arctic 6 Swamp 10 Beach 6 
River 4 Stream 2 Road 4 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -3 
Broken Ground 0 Mountain -3 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranaed Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest 0 
Broken Ground 12 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 
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Appendix A 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 1 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 -5 Red Artillery 3 Red Mech Inf 2 
Red Armor 2 Red Aviation -7 

Taraet Ranged Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS No 
RedC2 3 Red Artillery 0 Red Mech Inf -3 
Red Armor -4 Red Aviation -7 

Blue Mechanized Infantry 
( ** Selected Variable ) 

Speed ** 15 Kill Break Point 0 
Transit Speed NA Morale Break Point 10 
RF Cost 6 ... Max Combat Strength ** 40 
RF Type Guns Max RF Strength ** 15 
RF Range ** 4 RF Depletion 

RF Accuracy ** 
Able to Entrench? 
Zone of Control? 

0 
60% 
Yes 
Yes 

Siahtina 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 15 Red Artillery 5 Red Mech Inf 5 
Red Armor 5 Red Aviation 5 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 8 
Village 6 Clear 2 Forest 6 
Broken Ground 6 Mountain 8 Desert 8 
Arctic 8 Swamp 8 Beach 6 
River 4 Stream 2 Road 6 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -2 
Broken Ground 0 Mountain -3 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 
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Appendix A 

Terrain Ranged Fire Adjustments 
Deep Sea                  0          Shallow Sea 
Village                      -3         Clear 
Broken Ground          3          Mountain 
Arctic                        3          Swamp 
River                         2          Stream 

0 
1 
2 
1 
1 

City 
Forest 
Desert 
Beach 

-5 
0 
3 
3 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf                2          Blue Artillery 
Blue Armor                0          Blue Aviation 
Red C2                     -7         Red Artillery 
Red Armor                2          Red Aviation 

0 
0 
1 
1 

Blue Mech Inf 
Blue CAS 
Red Mech Inf 

0 
0 
2 

Target Ranged Fire Adjustments 
Red Lgt Inf                0          Blue Artillery 
Blue Armor                0          Blue Aviation 
RedC2                      1          Red Artillery 
Red Armor                -1          Red Aviation 

0 
0 
0 
2 

Blue Mech Inf 
Blue CAS 
Red Mech Inf 

0 
No 
0 

Blue Armor 
( ** Selected Variable ) 

Speed ** 15 Kill Break Point 0 
Transit Speed NA Morale Break Point 10 
RF Cost 6 Max Combat Strength ** 70 
RF Type Incendiary Max RF Strength ** 25 
RF Range ** 3 RF Depletion 

RF Accuracy ** 
Able to Entrench? 
Zone of Control? 

0 
70% 
Yes 
Yes 

Sighting 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 15 Red Artillery 10 Red Mech Inf 5 
Red Armor 7 Red Aviation 3 

Movement Costs fSoeed) 
Deep Sea No Shallow Sea No City 8 
Village 6 Clear 2 Forest 6 
Broken Ground 6 Mountain 8 Desert 8 
Arctic 8 Swamp 8 Beach 6 
River 4 Stream 2 Road 7 

99 



Appendix A 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -3 
Broken Ground 0 Mountain -4 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranged Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest 0 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 1 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 -6 Red Artillery 3 Red Mech Inf 3 
Red Armor 3 Red Aviation -4 

Taraet Ranaed Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS No 
RedC2 2 Red Artillery 1 Red Mech Inf 1 
Red Armor 1 Red Aviation -3 

Blue Aviation 
( ** Selected Variable ) 

Speed ** 60 Kill Break Point 0 
Transit Speed NA Morale Break Point 30 
RF Cost 40 Max Combat Strength ** 65 
RF Type Rockets Max RF Strength ** 35 
RF Range ** 75 RF Depletion 

RF Accuracy ** 
Able to Entrench? 
Zone of Control? 

0 
70% 
No 
No 

Siqhtinp 
Red Lgt Inf -5 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 15 Red Artillery 8 Red Mech Inf 5 
Red Armor 5 Red Aviation 0 
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Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 2 
Village 2 Clear 2 Forest 4 
Broken Ground 2 Mountain 6 Desert 2 
Arctic 2 Swamp 2 Beach 2 
River NA Stream NA Road NA 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -1 
Broken Ground 0 Mountain -2 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranged Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest -3 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
0 Blue Mech Inf Red Lgt Inf 1 Blue Artillery 0 

Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 -5 Red Artillery 2 Red Mech Inf 3 
Red Armor 2 Red Aviation -7 

Taraet Ranaed Fire Adjustments 
Red Lgt Inf -1 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS No 
RedC2 -7 Red Artillery 0 Red Mech Inf -1 
Red Armor 0 Red Aviation 

Blue CAS 

-7 

( ** Selected Variable ) 

Speed 30 
Transit Speed NA 
RF Cost 30 
RF Type Jet Bomber 
RF Range 130 

Kill Break Point 0 
Morale Break Point 0 
Max Combat Strength 100 
Max RF Strength ** 30 
RF Depletion 0 
RF Accuracy ** 50% 
Able to Entrench? Yes 
Zone of Control? No 
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Siahtina 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 
Blue Armor 0 Blue Aviation 0 Blue CAS 
RedC2 76 Red Artillery 70 Red Mech Inf 
Red Armor 70 Red Aviation 5 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City No 
Village No Clear Placed Forest No 
Broken Ground No Mountain No Desert No 
Arctic No Swamp No Beach No 
River NA Stream NA Road NA 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -3 
Village -5 Clear 0 Forest -6 
Broken Ground 0 Mountain -6 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranged Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest -3 
Broken Ground 3 Mountain -2 Desert 3 
Arctic 3 Swamp -2 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
0 Blue Mech Inf Red Lgt Inf 1 Blue Artillery 0 

Blue Armor 0 Blue Aviation 0 Blue CAS 0 
RedC2 -8 Red Artillery 2 Red Mech Inf 1 
Red Armor 2 Red Aviation -7 

Tarnet Ranged Fire Adjustments 
Red Lgt Inf -1 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS No 
RedC2 -7 Red Artillery 0 Red Mech Inf -1 
Red Armor 0 Red Aviation -7 

0 
0 

70 
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Red Light Infantry 

Speed 2 Kill Break Point 0 
Transit Speed NA Morale Break Point 0 
RF Cost 2 Max Combat Strength 50 
RF Type Guns Max RF Strength 8 
RF Range 2 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
80% 
Yes 
No 

Siahtina 
Red Lgt Inf 0 Blue Artillery 5 Blue Mech Inf 5 
Blue Armor 5 Blue Aviation 5 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 2 
Village No Clear No Forest No 
Broken Ground No Mountain No Desert No 
Arctic No Swamp No Beach No 
River NA Stream NA Road NA 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City 1 
Village 0 Clear 0 Forest 0 
Broken Ground 0 Mountain 0 Desert 0 
Arctic 0 Swamp 0 Beach 0 
River 1 Stream 0 

Terrain Ranped Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City 0 
Village 0 Clear 0 Forest 0 
Broken Ground 0 Mountain 0 Desert 0 
Arctic 0 Swamp 0 Beach 0 
River 0 Stream 0 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 0 Blue Artillery 2 Blue Mech Inf 4 
Blue Armor 4 Blue Aviation 1 Blue CAS 0 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 
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Target Ranged Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 1 Blue Mech Inf 1 
Blue Armor 1 Blue Aviation 3 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Red Command and Control 

Speed 2 Kill Break Point 0 
Transit Speed NA Morale Break Point 0 
RF Cost 2 Max Combat Strength 90 
RF Type Guns Max RF Strength 30 
RF Range 2 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
80% 
Yes 
Yes 

Sighting 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor 0 Blue Aviation 0 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea Place Shallow Sea Place City Place 
Village Place Clear Place Forest Place 
Broken Ground Place Mountain Place Desert Place 
Arctic Place Swamp Place Beach Place 
River NA Stream NA Road NA 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City 0 
Village 0 Clear 0 Forest 0 
Broken Ground 0 Mountain 0 Desert 0 
Arctic 0 Swamp 0 Beach 0 
River 1 Stream 0 

Terrain Ranged Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City 2 
Village 0 Clear 0 Forest 0 
Broken Ground 0 Mountain 0 Desert 0 
Arctic 0 Swamp 0 Beach 0 
River 0 Stream 0 
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Attacker vs Defender Combat Adjustments 
Red Lgt Inf 0 Blue Artillery 2 Blue Mech Inf 2 
Blue Armor 2 Blue Aviation -2 Blue CAS 0 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Tarqet Ranqed Fire Adjustments 
Red Lgt Inf 2 Blue Artillery 2 Blue Mech Inf 2 
Blue Armor 2 Blue Aviation 7 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Red Artillery 

Speed 10 Kill Break Point 0 
Transit Speed 20 Morale Break Point 10 
RF Cost 3 Max Combat Strength 25 
RF Type Artillery Max RF Strength 25 
RF Range 15 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
25% 
Yes 
Yes 

Siphtinq 
Red Lgt Inf 0 Blue Artillery 10 Blue Mech Inf 7 
Blue Armor 10 Blue Aviation 0 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 10 
Village 10 Clear 6 Forest 10 
Broken Ground 12 Mountain 12 Desert 8 
Arctic 8 Swamp 12 Beach 10 
River 4 Stream 2 Road 5 

Movement Costs (Transit) 
Deep Sea No Shallow Sea No City 8 
Village 4 Clear 2 Forest 6 
Broken Ground 8 Mountain 10 Desert 6 
Arctic 6 Swamp 10 Beach 6 
River 4 Stream 2 Road 4 
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Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -3 
Broken Ground 0 Mountain -3 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranped Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest 0 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 1 Blue Artillery 3 Blue Mech Inf 2 
Blue Armor 2 Blue Aviation -7 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Taraet Ranped Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf -3 
Blue Armor -4 Blue Aviation -7 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Red Mechanized Infantrv 

Speed 15 Kill Break Point 0 
Transit Speed NA Morale Break Point 10 
RF Cost 6 Max Combat Strength 40 
RF Type Guns Max RF Strength 15 
RF Range 4 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
60% 
Yes 
Yes 

Siphtinp 
Red Lgt Inf 0 Blue Artillery 5 Blue Mech Inf 5 
Blue Armor 5 Blue Aviation 5 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 
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Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 8 
Village 6 Clear 2 Forest 6 
Broken Ground 6 Mountain 8 Desert 8 
Arctic 8 Swamp 8 Beach 6 
River 4 Stream 2 Road 6 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -2 
Broken Ground 0 Mountain -3 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranped Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest 0 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 2 Blue Artillery 1 Blue Mech Inf 2 
Blue Armor 2 Blue Aviation 1 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Taraet Ranped Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 0 Blue Mech Inf 0 
Blue Armor -1 Blue Aviation 2 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 

Red Armor 

0 

Speed 15 Kill Break Point 0 
Transit Speed NA Morale Break Point 10 
RF Cost 6 Max Combat Strength 70 
RF Type Incendiary Max RF Strength 25 
RF Range 3 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
70% 
Yes 
Yes 
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Sighting 
Red Lgt Inf 0 Blue Artillery 10 Blue Mech Inf 5 
Blue Armor 7 Blue Aviation 3 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 8 
Village 6 Clear 2 Forest 6 
Broken Ground 6 Mountain 8 Desert 8 
Arctic 8 Swamp 8 Beach 6 
River 4 Stream 2 Road 7 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -3 
Broken Ground 0 Mountain -4 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranged Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest 0 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 

Attacker vs Defender Combat Adjustments 
Red Lgt Inf 1 Blue Artillery 
Blue Armor 3 Blue Aviation 
Red C2 0 Red Artillery 
Red Armor 0 Red Aviation 

3 
-4 
0 
0 

Blue Mech Inf 
Blue CAS 
Red Mech Inf 

3 
No 
0 

Target Ranged Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 
Blue Armor 1 Blue Aviation 
Red C2 0 Red Artillery 
Red Armor 0 Red Aviation 

1 
-3 
0 
0 

Blue Mech Inf 
Blue CAS 
Red Mech Inf 

1 
No 
0 
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Red Aviation 

Speed 60 Kill Break Point 0 
Transit Speed NA Morale Break Point 30 
RF Cost 40 Max Combat Strength 65 
RF Type Rockets Max RF Strength 35 
RF Range 15 RF Depletion 

RF Accuracy 
Able to Entrench? 
Zone of Control? 

0 
70% 
Yes 
No 

Siahtina 
Red Lgt Inf 0 Blue Artillery 8 Blue Mech Inf 5 
Blue Armor 5 Blue Aviation 0 Blue CAS No 
RedC2 0 Red Artillery 0 Red Mech Inf 0 
Red Armor 0 Red Aviation 0 

Movement Costs (Speed) 
Deep Sea No Shallow Sea No City 2 
Village 2 Clear 2 Forest 4 
Broken Ground 2 Mountain 6 Desert 2 
Arctic 2 Swamp 2 Beach 2 
River NA Stream NA Road NA 

Terrain Combat Adjustments 
Deep Sea 0 Shallow Sea 0 City -2 
Village -3 Clear 0 Forest -1 
Broken Ground 0 Mountain -2 Desert 0 
Arctic 0 Swamp -2 Beach 0 
River 2 Stream 1 

Terrain Ranoed Fire Adjustments 
Deep Sea 0 Shallow Sea 0 City -5 
Village -3 Clear 1 Forest -3 
Broken Ground 3 Mountain 2 Desert 3 
Arctic 3 Swamp 1 Beach 3 
River 2 Stream 1 
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Attacker vs Defender Combat Adjustments 
Red Lgt Inf 1 Blue Artillery 2 Blue Mech Inf 
Blue Armor 2 Blue Aviation -7 Blue CAS 
Red C2 0 Red Artillery 0 Red Mech Inf 
Red Armor 0 Red Aviation 0 

1 
No 
0 

Target Ranged Fire Adjustments 
Red Lgt Inf 0 Blue Artillery 
Blue Armor 0 Blue Aviation 
Red C2 0 Red Artillery 
Red Armor 0 Red Aviation 

0 
-7 
0 
0 

Blue Mech Inf 
Blue CAS 
Red Mech Inf 

-1 
No 
0 

110 



x 

e a a, 
< 

cor)eo«J»*?con<7eo<?wwc9e9«7*?<?*?*?« 

U>U)u)IOu>ioiOIOu>u>u>u>u>Ult'>U>U>u>IOIOIOIOio 



Plackett-Burman Screen-Run Summaries 

Appendix B 

Trial Run Trial Run 
Blue Red Percent Blue Blue Red Percent Blue 

1 1 219 22 90.9 13 37 183 89 67.3 

2 212 51 80.6 38 177 99 64.1 

3 191 76 71.5 39 178 72 71.2 

2 4 129 83 60.8 14 40 140 79 63.9 

5 158 69 69.6 41 166 108 60.6 

6 190 55 77.6 42 162 100 61.8 

3 7 213 66 76.3 15 43 91 172 34.6 

8 179 89 66.8 44 85 138 38.1 

9 155 78 66.5 45 108 167 39.3 

4 10 162 103 61.1 16 46 85 114 427 
11 134 160 45.6 47 110 115 48.9 

12 142 151 48.5 48 104 121 45.2 

5 13 85 121 41.3 17 49 119 103 53.6 

14 62 149 29.4 50 92 161 36.4 

15 114 113 50.2 51 126 111 53.2 

6 16 206 68 75.2 18 52 123 122 50.2 

17 167 73 69.6 53 113 98 53.6 

18 209 64 76.6 54 111 100 526 
7 19 157 61 720 19 55 112 110 50.5 

20 192 68 73.8 56 116 122 48.7 

21 172 38 81.9 57 106 173 38.0 

8 22 149 87 63.1 20 58 162 80 66.9 

23 176 87 66.9 59 181 75 70.7 

24 188 90 67.6 60 133 113 54.1 

9 25 159 114 58.2 21 61 131 114 53.5 

26 120 130 48.0 62 185 110 62.7 

27 147 102 59.0 63 155 128 54.8 

10 28 97 113 46.2 22 64 170 135 55.7 

29 101 150 40.2 65 144 117 55.2 

30 120 116 50.8 66 170 87 66.1 

11 31 204 28 87.9 23 67 119 175 40.5 

32 209 53 79.8 68 98 143 40.7 

33 194 95 67.1 69 104 155 40.2 

12 34 179 53 77.2 24 70 145 120 54.9 

35 178 103 63.3 71 138 169 45.0 

36 165 130 55.9 72 139 99 58.4 
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Normal Probability Plots 
Plackett-Burman Screen 

Blue 

Percent Blue 
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Blue Screen 

G Summary of Fit 
RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

0.855875 

0.786815 

17.54874 

147.4444 

72 

Parameter Estimates      ] 

Term Estimate Std Error t Ratio Prob>1tI 

Intercept 147.44444 2.068139 71.29 •c.0001 

Art M -0.277778 2.068139 -0.13 0.8937 

Art CS 0.4444444 2.068139 0.21 0.8308 

Art RF S 0.5277778 2.068139 0.26 0.7997 

Art RF R -2.333333 2.068139 -1.13 0.2648 

Art RF A 2.3888889 2.068139 1.16 0.2538 

Mech M 5.3888889 2.068139 2.61 0.01221 

Mech CS -2.75 2.068139 -1.33 0.1899 

Mech RF S 1.6388889 2.068139 0.79 0.4320 

Mech RF R 2.9111111 0.827256 3.52 0.00101 

Mech RF A -0.611111 2.068139 -0.30 0.7689 

Arm M 6.1388889 2.068139 2.97 0.0047 

Arm CS -0.722222 2.068139 -0.35 0.7285 

Arm RF S 10 2.068139 4.84 <.0001 

Arm RF R 8.9074074 0.68938 12.92 <.0001 

Arm RF A 7.0833333 2.068139 3.42 0.0013 

Avn M 1.5277778 2.068139 0.74 0.4637 

Avn CS -10.86111 2.068139 -5.25 <.0001| 

Avn RF S 3.25 2.068139 1.57 0.1226 

Avn RF R 4.9166667 2.068139 2.38 0.0215] 

Avn RF A -2.805556 2.068139 -1.36 0.1813 
CAS RF S 0.3055556 2.068139 0.15 0.8832 
CAS RF A -3.472222 2.068139 -1.68 0.0997 

B Eff 6.1111111 2.068139 2.95 0.0048| 

Analysis of Variance 

Source 

Model 

Error 

C Total 

DF Sum of Squares 

23 87781.78 

48 14782.00 

71 102563.78 

Mean Square 

3816.60 

307.96 

F Ratio 

12.3932 

Prob>F 

<.0001 

Blue 
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Percent Blue Screen 
f Summary of Fit 

RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

J 
0.839402 

0.762449 

6.695056 

58.50018 

72 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>1t 

Interce Pt 58.500179 0.78902 74.14 <.0001 

Art M -0.700458 0.78902 -0.89 0.3791 

Art CS 0.4645959 0.78902 0.59 0.5587 

Art RF S -0.079222 0.78902 -0.10 0.9204 

Art RF R -1.178812 0.78902 -1.49 0.1417 

Art RF A 0.9184657 0.78902 1.16 0.2502 

Mech M 0.904299 0.78902 1.15 0.2574 

Mech CS -0.648735 0.78902 -0.82 0.4150 

Mech RF S 1.3028991 0.78902 1.65 0.1052 

Mech RF R 0.9807093 0.315608 3.11 0.0032 

Mech RF A 1.2706316 0.78902 1.61 0.1139 

Arm M 1.0249539 0.78902 1.30 0.2001 

Arm CS 0.0624497 0.78902 0.08 0.9372 

Arm RF S 3.4002367 0.78902 4.31 <.0001 

Arm RF R 3.3150434 0.263007 12.60 <-0001 

Arm RF A 1.5053198 0.78902 1.91 0.0624 

Avn M -0.419264 0.78902 -0.53 0.5976 

Avn CS -3.145199 0.78902 -3.99 0.0002 

Avn RF S 2.1674957 0.78902 2.75 0.0084 

Avn RF R 3.270775 0.78902 4.15 0.0001 

Avn RF A -0.835665 0.78902 -1.06 0.2948 

CAS RF S -0.02644 0.78902 -0.03 0.9734 

CAS RF A -0.663363 0.78902 -0.84 0.4047 

B Eff 1.5130587 0.78902 1.92 0.0611 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 23 11245.532 488.936 10.9080 

Error 48 2151.541 44.824 Prob>F 

C Total 71 13397.073 <.0001 
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Appendix C: Remaining Factors 

Remaining Significant Factors 

Final Breakdown 

Armor 
Factor Low Median Hiah 

a RF Strength 22 25 28 
b RF Range 

Aviation 

2 3 4 

c Combat Strength 58 65 72 
d RF Strength 31 35 39 
e RF Range 13 15 17 

Resolution 5 Experiment 

Experiment Design 

a - Arm RF S      b - Arm RF R c - Av CS d - Av RF S e - Av RF R 
TRIAL 

1                      -1 -3 -1 -1 
2                     -1 -3 -1 -1 
3                     -1 -3 -1 -1 
4                     -1 -3 
5                     -1 3 -1 -1 -1 
6                     -1 3 -1 
7                     -1 3 -1 
8                     -1 3 -1 
9                       1 -3 -1 -1 -1 
10                      1 -3 -1 
11                       1 -3 -1 
12                     1 -3 -1 
13                     1 3 -1 -1 
14                     1 3 -1 -1 
15                     1 3 -1 -1 
16                     1 3 

17                     0 0 0 0 0 
18                     0 0 0 0 0 
19                     0 0 0 0 0 
20                     0 0 0 0 0 
21                     0 0 0 0 0 
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Analysis of Factors-Run Summaries 
Trial   Run Trial Run 

Blue Red Percent Blue Blue Red Percent Blue 
1    1 127 128 49.8 11 51 124 135 47.9 

2 172 63 73.2 52 115 113 50.4 
3 113 136 45.4 53 119 134 47.0 
4 115 102 53.0 54 147 103 58.8 
5 132 104 55.9 55 137 131 51.1 

2    6 115 161 41.7 12 56 124 105 54.1 
7 124 180 40.8 57 128 146 46.7 
8 138 84 62.2 58 103 128 44.6 
9 130 99 56.8 59 102 160 38.9 
10 132 128 50.8 60 150 117 56.2 

3    11 129 130 49.8 13 61 211 50 80.8 
12 135 122 52.5 62 202 38 84.2 
13 120 143 45.6 63 224 27 89.2 
14 153 121 55.8 64 196 54 78.4 
15 132 116 53.2 65 187 52 78.2 

4    16 110 128 46.2 14 66 169 67 71.6 
17 100 89 52.9 67 183 79 69.8 
18 129 74 63.5 68 164 62 72.6 
19 138 72 65.7 69 210 34 86.1 
20 151 112 57.4 70 193 77 71.5 

5    21 154 84 64.7 15 71 176 104 62.9 
22 162 78 67.5 72 197 93 67.9 
23 211 58 78.4 73 167 73 69.6 
24 182 80 69.5 74 173 70 71.2 
25 186 42 81.6 

16 
75 
76 

185 
203 

69 72.8 
6    26 179 41 81.4 56 78.4 

27 216 72 75.0 77 202 46 81.5 
28 201 24 89.3 78 201 12 94.4 
29 195 73 72.8 79 199 13 93.9 
30 206 40 83.7 80 205 27 88.4 

7    31 203 34 85.7 17 81 172 74 69.9 
32 191 58 76.7 Center 82 140 58 70.7 
33 169 96 63.8 83 166 68 70.9 
34 185 66 73.7 84 182 53 77.4 
35 170 73 70.0 85 141 74 65.6 

8    36 206 52 79.8 18 86 162 110 59.6 
37 132 132 50.0 Center 87 151 89 62.9 
38 191 65 74.6 88 175 105 62.5 
39 187 95 66.3 89 178 89 66.7 
40 190 86 68.8 90 166 107 60.8 

9     41 113 132 46.1 19 91 150 88 63.0 
42 147 82 64.2 Center 92 175 90 66.0 
43 107 104 50.7 93 167 84 66.5 
44 140 131 51.7 94 159 69 69.7 
45 162 88 64.8 95 152 77 66.4 

10    46 118 91 56.5 20 96 130 104 55.6 
47 170 89 65.6 Center 97 175 88 66.5 
48 132 119 52.6 98 178 104 63.1 
49 152 107 58.7 99 157 102 60.6 
50 112 79 58.6 100 185 69 72.8 

21 101 167 94 64.0 
Center 102 

103 
104 

180 
152 
170 

75 
78 
63 

70.6 
66.1 
73.0 

105 134 104 56.3 

117 



Appendix D: Analysis of Factors 

Analysis of Factors 
Response - Blue 

Appendix D 

Normal Probability Plot 

Summary of  Fit 

RSquare 

RSquare  Adj 

Root  Mean  Square   Error 

Mean  of Response 

Observations   (or  Sum Wgts) 

0.712016 

0.703462 

17.05896 

160.2286 

Lack of  Fit 

Source DF Sum of Squares Me an Square F Ratio 

Lack of Fit 1 178.354 178.354 0.6105 

Pure Error 100 29213.460 292.135 Prob>F 

Total Error 101 29391.814 0.4364 

Max RSq 

0.7138 

Parameter LStirtiat es ) 
Term Estimate Std Error t Ratio Prob>|tI 

Intercept 160.22857 1.664784 96.25 <.0001 

b-Arm RF R 9.8583333 0.63575 15.51 <.0001 

e-Av RF R 4.45 1.90725 2.33 0.0216 

b-Arm RF*e -Av RF 1.2416667 0.63575 1.95 0.0536 

Analysis of Va riance ) 
Source DF Sum of Squares Mean Square F Ratio 

Model 3 72668.70 24222.9 83.2379 

Error 101 29391.81 291.0 Prob>F 

C Total 
V 

104 102060.51 <.0001 
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Analysis of Factors 
Response - Percent Blue 

Appendix D 

Normal Probability Plot 

RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts 

I Lack of Fit 

Source 

Lack of Fit 

Pure Error 

Total Error 

96 

100 

Sura of  Squares 

73.6622 

4811.9049 

4885.5671 

Mean Square 

18.4156 

50.1240 

F Ratio 

0.3674 

Prob>F 

0.8313 

Max RSq 

0.7057 

Parameter Estimates 

Term 

Intercept 

b-Arm RF R 

c-Av CS 

e-Av RF R 

b-Arm RF*e-Av RF 

Estimate 

64.967173 

3.7456642 

-1.45518 

3.565094 

0.4953962 

Std Error 

0.682123 

0.26049 

0.78147 

0.78147 

0.26049 

t Ratio 

95.24 

14.38 

-1.86 

4.56 

1.90 

Prob>!tI 

<.0001 

<.0001 

0.0655 

<.0001 

0.0601 

Analysis of Variance 

Source 

Model 

Error 

C Total 

DF 

100 

104 

Sum of Squares 

11464.496 

4885.567 

16350.064 

Mean Square 

2866.12 

48.86 

F Ratio 

58.6651 

Prob>F 

<.0001 
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Appendix E 

Appendix E: Response Surfaces 

For the Response - Blue 
(All coded+/-10%) 

Best fit equation:     f(b,e) := 160+9.9b+ 4.5e + 1.24b e 

b = Arm RF Range (10%)      e = Aviation RF Range 

Blue X axis = Armor RF Range       Y axis = Aviation RF Range 
b=0    e:=0    f(b,e)=160 

-0.5' 
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Appendix E 

For the Response -- Percent Blue 
(All coded+/-10%) 

Best fit equation:      f(b,c,e) :=65-f-3.75b- 1.46c4-3.57e-h0.50be 

Where: 
b = Arm RF Range    c = Aviation Combat Strength   e = Aviation RF Range 

Percent Blue;   X axis = Armor RF Range       Y axis = Aviation Combat Strength 

b =0  c=0 e=l     f(b,c,e) =68.57 

-o.j 

-l -0.5 o 0.5 
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Appendix E 

Percent Blue ;       X axis = Armor RF Range       Y axis = Aviation RF Range 

b =0 c=l  e =0    f(b,c,e) =63.54 

-O.j 

-l -0.5 

Percent Blue ;   X axis = Aviation Combat Strength       Y axis = Aviation RF Range 

b =1   c=0 e: = 0    f(b,c,e) =68.75 

-OS 
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Appendix F: Validation 

Appendix F 

Full-Factorial Validation Experiment and Results 

b - Arm RF R c - Avn CS e - Avn RF R 
Trial 

1 -3 -1 -1 
2 -3 -1 
3 -3 -1 
4 -3 
5 3 -1 -1 
6 3 -1 
7 3 -1 
8 3 
9 0 0 0 
10 0 0 0 
11 0 0 0 
12 3 0 0 
13 -3 0 0 
14 0 1 0 
15 0 -1 0 
16 0 0 1 
17 0 0 -1 

Trial Run Trial Run 
Blue Red Percent Blue Blue Red Percent Blue 

1 1 142 127 52.8 9 41 172 74 69.9 
2 115 96 54.5 42 140 58 70.7 
3 125 105 54.3 43 166 68 70.9 
4 156 118 56.9 44 182 53 77.4 
5 102 97 51.3 45 141 74 65.6 

2 6 178 108 62.2 10 46 162 110 59.6 
7 100 143 41.2 47 151 89 62.9 
8 117 127 48.0 48 175 105 62.5 
9 131 80 62.1 49 178 89 66.7 
10 134 94 58.8 50 166 107 60.8 

3 11 161 108 59.9 11 51 150 88 63.0 
12 142 144 49.7 52 175 90 66.0 
13 131 103 56.0 53 167 84 66.5 
14 148 114 56.5 54 159 69 69.7 
15 115 120 48.9 55 152 77 66.4 

4 16 95 110 46.3 12 56 212 37 85.1 ! 17 131 90 59.3 57 199 81 71.1 
18 95 132 41.9 58 180 68 72.6 

| 19 143 95 60.1 59 172 68 71.7 
20 128 61 67.7 60 176 71 71.3 

i        5 21 204 65 75.8 13 61 126 99 56 
22 166 68 70.9 62 135 90 60 
23 187 94 66.5 63 139 109 56 
24 178 50 78.1 64 129 85 60.3 
25 196 61 76.3 65 122 140 46.6 

6 26 190 56 77.2 14 66 154 86 64.2 
27 219 48 82.0 67 138 96 59 
28 181 51 78.0 68 160 70 69.6 
29 199 23 89.6 69 177 86 67.3 
30 168 52 76.4 70 136 114 54.4 

i        7 31 177 76 70.0 15 71 172 49 77.8 
32 201 69 74.4 72 179 53 77.2 
33 184 74 71.3 73 147 99 59.8 

! 34 198 89 69.0 74 145 93 60.9 
35 193 65 74.8 75 203 61 76.9 

!   8 36 190 81 70.1 16 76 141 87 61.8 
37 176 25 87.6 77 184 60 75.4 
38 212 43 83.1 78 110 105 51.2 
39 210 67 75.8 79 178 68 72.4 
40 168 57 74.7 80 181 77 70.2 

17 81 187 91 67.3 
82 179 86 67.5 
83 118 80 59.6 
84 143 85 62.7 

•  85 158 101 61 
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Validation 
Full-Factorial Data 

Appendix F 

Response - Blue 

Normal Probability Plot 

G Summary of Fit 
RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

0.644871 

0.630074 

13.5789 

159.8026 

Lack of Fit 

Source 

Lack of Fit 

Pure Error 

Total Error 

DF Sum of Squares 

5 170.289 

67 24682.350 

72 24852.639 

Mean Square F Ratio 

34.058 0.0924 

368.393 Prok»F 

0.9932 

Max RSq 

0.6473 

Parameter Estimates 

Term 

Intercept 

b-Arm RF R 

e-Avn RF R 

b-Arm RF*e-Avn RF 

Estimate Std Error 

159.80263 2.131146 

9.9733333 0.875818 

-0.94 2.627453 

0.95 0.979194 

Ratio Prob>ItI 

74.98 <.0001 

11.39 <.0001 

-0.36 0.7216 

0.97 0.3352 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 3 45129.400 15043.1 43.5811 

Error 72 24852.639 345.2 Prob>F 

C Total 75 69982.039 <.0001 
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Validation 
Full-Factorial Data 

Response - Percent Blue 

Normal Probability Plot 

Appendix F 

! Summary of Fit 

RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

0.658764 

0.641702 

6.150654 

65.59226 

[Lack of Fit 

Source 

Lack of Fit 

Pure Error 

Total Error 

DF Sum of Squares 

10 170.2158 

70 2856.2281 

80 3026.4440 

Mean Square F Ratio 

17.0216 0.4172 

40.8033 Prob>F 

0.9339 

Ma i RSq 

0.6780 

Parameter Estimates 

Term 

Intercept 

b-Arm RF R 

c-Avn CS 

e-Avn RF R 

b-Arm RF*e-Avn RF 

Estimate Std Error t Ratio Prob>111 

65.592261 0.667132 98.32 <.000i 

3.5090242 0.289945 12.10 <.0001 

-1.082454 0.869834 -1.24 C.2170 

1.7384296 0.869834 2.00 0.04 91 

0.5054451 0.324168 1.56 0.1229 

Analysis of Variance 

Source DF 

Model 4 

Error 80 

C Total 84 

Sum of Squares Mean Square F Ratio 

5842.6258 1460.66 38.6105 

3026.4440 37.83 Prob>F 

8869.0698 < OOP" 
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Appendix F 

Plackett-Burman Validation Data 

b-ArmRFR c-AvnCS e-AvnRFR      Blue Red Percent Blue b-ArmRFR c-AvnCS e-AvnRFR Blue Red Percent Blue 
Run Run 

1 3                  1 1                219 22 90.87 43 -3 85 121 41.26 
2 3                  1 1                 212 51 80.61 44 -3 62 149 29.38 
3 3                  1 1                 191 76 71.54 45 -3 114 113 50.22 
4 3                  1 1                 129 83 60.85 45 -3    ■ 97 113 46.19 
6 3                  1 1                 158 69 69.60 47 -3 101 150 40.24 
6 3                  1 1                 190 55 77.55 43 -3 120 116 50.85 
7 3                  1 1                 179 53 77.16 49 -3 91 172 34.60 
8 3                  1 1                 178 103 63.35 50 -3 85 138 38.12 
9 3                  1 1                 165 130 55.93 51 -3 108 167 39.27 
10 3                  1 1                 140 79 63.93 52 -3 -1 119 175 40.48 
11 3                  1 1                 166 108 60.58 53 -3 -1 98 143 40.66 
12 3                  1 1                 162 100 61.83 54 -3 -1 104 155 40.15 
13 3                  1 -1                206 68 75.18 55 -3 162 103 61.13 
14 3                  1 -1                 167 73 69.58 56 -3 134 160 45.58 
15 3                  1 -1                209 64 76.56 57 -3 -1 142 151 43.46 
16 3                  1 •1                 159 114 58.24 58 -3 -1 149 87 63.14 
17 3                  1 -1                 120 130 48.00 59 -3 -1 176 87 66.92 
18 3                  1 -1                 147 102 59.04 60 

61 
-3 
-3 

188 

123 

90 

122 
67.63 

50.20 19 3                 -1 1                 157 61 72.02 
20 3                 -1 1                 192 68 73.85 62 -3 113 98 53.55 
21 3                 -1 1                 172 38 81.90 63 -3 111 100 5261 
22 3                 -1 1                 204 28 87.93 64 -3 -1 112 110 50.45 
23 3                 -1 1                 209 53 79.77 65 -3 -1 116 122 48.74 
24 3                 -1 1                 194 95 67.13 66 -3 106 173 37.99 
25 3                 -1 -1                213 66 76.34 67 -3 -1 -1 131 114 53.47 
26 3                 -1 -1                 179 89 66.79 68 -3 -1 185 110 6271 
27 3                 -1 •1                 155 78 66.52 69 -3 -1 155 128 54.77 
28 3                 -1 -1                 183 89 67.28 70 -3 146 120 54.89 
29 3                 -1 -1                 177 99 64.13 71 -3 -1 138 169 44.95 
30 
31 

3                 -1 
3                 -1 

•1                 178 
-1                 162 

72 
80 

71.20 
66.94 

72 -3 -1 -1 139 99 58.40 
73 0 0 0 172 74 69.92 

32 3                 -1 -1                 181 75 70.70 74 0 0 0 140 58 70.71 
33 3                 -1 -1                 133 113 54.07 75 0 0 0 166 68 70.94 
34 3                 -1 -1                 170 135 55.74 76 0 0 0 182 53 77.45 
35 3                 -1 -1                  144 117 55.17 77 0 0 0 141 74 65.58 
36 3                 -1 -1                 170 87 66.15 78 

79 
0 
0 

0 
0 

0 
0 

162 
151 

110 
89 

59.56 
6292 37 -3                 1 1                  85 114 42.71 

38 -3                  1 1                 110 115 48.89 80 0 0 0 175 105 6250 
39 -3                 1 1                 104 121 46.22 81 0 0 0 178 89 66.67 
40 -3                  1 1                 119 103 53.60 82 0 0 0 166 107 60.81 
41 -3                  1 1                  92 161 36.36 83 0 0 0 150 88 63.03 
42 -3                 1 1                 126 111 53.16 84 

85 
0 
0 

0 
0 

0 
0 

175 
167 

90 
84 

66.04 
66.53 

86 0 0 0 159 69 69.74 
87 0 0 0 152 77 66.38 
88 0 0 0 130 104 55.56 
89 0 0 0 175 88 66.54 
90 0 0 0 178 104 63.12 
91 0 0 0 157 102 60.62 
92 0 0. 0 185 69 7283 
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Validation 
Plackett-Burman Data 

Appendix F 

Response - Blue 

Normal Probability Plot 

Summary of Fit 

RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

0.479786 

0.462052 

25.59366 

150.837 

92 

Lack of Fit 

Source 

Lack of Fit 

Pure Error 

Total Error 

Squares Mean Square F Ratio 

3811.827 3811.83 6.1605 

53831.283 618.75 Prot»F 

57643.110 0.0150 

Max RSq 

0.5142 

Parameter Estimates ) 
Term Estimate Std Error t Ratio Prob>|t[ 

Intercept 150.83696 2.668323 56.53 <.0001 

b-Arm RF R 8.9074074 1.005414 8.86 <.0001 

e-Avn RF R 4.9166667 3.016242 1.63 0.1067 

b-Arm RF*e -Avn RF -0.12037 1.005414 -0.12 0.9050 

Analysis of Variance 

Source DF 

Model 3 

Error 88 

C Total 91 

Sum of Squares Mean Square F Ratio 

53163.44 17721.1 27.0537 

57643.11 655.0 Prob>F 

110806.55 <.0001 
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Validation 
Plackett-Burman Data 

Appendix F 

Response - Percent Blue 

Normal Probability Plot 

Summary of Fit 

RSquare 

RSquare Adj 

Root Mean Square Error 

Mean of Response 

Observations (or Sum Wgts) 

0.593473 

0.574783 

8.301257 

60.10253 

92 

Lack of Fit 
) 

Source DF Sum c f Squares Mean Square F Ratio 

Lack of Fit 4 1202.7047 300.676 5.2073 

Pure Error 83 4792.5405 57.741 Prob>F 

Total Error 87 5995.2452 0.0009 

Max RSq 

v 
0.6750 

) 
[Parameter Estimat es J 

Estimate Std Error   t Ratio Prob>|t1 Term 

Intercept 60.102529 0.865466     69.45 <.0001 

b-Arm RF R 3 3150434 0.326104      10.17 <.0001 

c-Avn CS -3.65302 1.037657      -3.52 0.0007 

e-Avn RF R 3.270775 0.978312       3.34 0.0012 

b-Arm RF*e-Avn RF 0 5078215 0.345836       1.47 0.1457 

Analysis of Va riance ) 
Source DF Sum of Squares Mean Square F Ratio 

Model 4 8752.242 2188.06 31.7520 

Error 87 5995.245 68.91 Prob>F 

C Total 91 14747.487 <.0001 
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Appendix F 

Predictive Analysis — Full Factorial Plus Axial Data 
b -Arm    R F   R c   -   A V n CS      e-AvnRFR Blue                 %    B I u e Predicted   B lu e      Predicted   ° 

-3 - 1 14 2                       5 2.8 1 3 0 5 3.1 
-3 - 1 115                       5 4.5 1 3 0 5 3.1 
-3 -1 12 5                       5 4.3 1 3 0 5 3.1 
-3 -1 15 6                       5 6.9 1 3 0 5 3.1 
-3 -1 10 2                       5 1.3 1 3 0 5 3.1 
-3 17 8                       6 2.2 1 3 1 5 7.3 
-3 -1 10 0                       4 1.2 1 3 1 5 7.3 
-3 117                       4 8.0 1 3 1 5 7.3 
-3 -1 13 1                        6 2.1 1 3 1 5 7.3 
-3 -1 13 4                       5 8.8 1 3 1 5 7.3 
-3 -1 16 1                        5 9.9 1 3 0 5 0.2 
-3 -1 14 2                       4 9.7 1 3 0 5 0.2 
-3 13 1                        5 6.0 1 3 0 5 0.2 
-3 14 8                       5 6.5 1 3 0 5 0.2 
-3 -1 115                       4 8.9 1 3 0 5 0.2 
-3 9 5                         4 6.3 1 3 1 5 4.4 
-3 13 1                        5 9.3 1 3 1 5 4.4 
-3 9 5                         4 1.9 1 3 1 5 4.4 

-3 14 3                       6 0.1 1 3 1 5 4.4 
-3 12 8                       6 7.7 1 3 1 5 4.4 

3 -1 2 0 4                       7 5.8 1 8 1 7 2.6 
3 -1 -1 16 6                       7 0.9 1 8 1 7 2.6 
3 -1 -1 18 7                       6 6.5 1 8 1 7 2.6 

3 -1 -1 17 8                       7 8.1 1 8 1 7 2.6 
3 -1 19 6                       7 6.3 1 8 1 7 2.6 
3 -1 19 0                       7 7.2 1 9 8 8 2.8 
3 -1 2 19                       8 2.0 1 9 8 8 2.8 
3 18 1                        7 8.0 1 9 8 8 2.8 
3 19 9                       8 9.6 1 9 8 8 2.8 
3 -1 16 8                       7 6.4 1 9 8 8 2.8 
3 -1 17 7                       7 0.0 1 8 1 6 9.7 
3 -1 2 0 1                        7 4.4 1 8 1 6 9.7 
3 -1 18 4                       7 1.3 1 8 1 6 9.7 
3 19 8                       6 9.0 1 8 1 6 9.7 
3 -1 19 3                       7 4.8 1 8 1 6 9.7 
3 19 0                       7 0.1 1 9 8 7 9.9 
3 17 6                       8 7.6 1 9 8 7 9.9 
3 2 12                       8 3.1 1 9 8 7 9.9 
3 2 10                       7 5.8 1 9 8 7 9.9 
3 16 8                       7 4.7 1 9 8 7 9.9 
0 0 0 17 2                       6 9.9 1 6 0 6 5 
0 0 0 14 0                       7 0.7 1 6 0 6 5 
0 0 0 16 6                       7 0.9 1 6 0 6 5 
0 0 0 18 2                       7 7.4 1 6 0 6 5 
0 0 0 14 1                        6 5.6 1 6 0 6 5 
0 0 0 16 2                       5 9.6 1 6 0 6 5 
0 0 0 15 1                        6 2.9 1 6 0 6 5 
0 0 0 17 5                       6 2.5 1 6 0 6 5 
0 0 0 17 8                       6 6.7 1 6 0 6 5 
0 0 0 16 6                       6 0.8 1 6 0 6 5 
0 0 0 15 0                         6 3.0 1 6 0 6 5 
0 0 0 17 5                       6 6.0 1 6 0 6 5 
0 0 0 16 7                       6 6.5 1 6 0 6 5 
0 0 0 15 9                       6 9.7 1 6 0 6 5 
0 0 0 15 2                       6 6.4 1 6 0 6 5 
3 0 0 2 12                         8 5.1 1 9 0 7 6.3 
3 0 0 19 9                         7 1.1 1 9 0 7 6.3 
3 0 0 18 0                         7 2.6 1  9 0 7 6.3 
3 0 0 17 2                         7 1.7 1  9 0 7 6.3 
3 0 0 17 6                         7 1.3 1  9 0 7 6.3 
-3 0 0 12 6                            5 6 1  3 0 5 3.75 
-3 0 0 13 5                            6 0 1  3 0 5 3.75 
-3 0 0 13 9                            5 6 1  3 0 5 3.75 
•3 0 0 12 9                         6 0.3 1  3 0 5 3.75 
-3 0 0 12 2                         4 6.6 1 3 0 5 3.75 
0 0 15 4                         6 4.2 1 6 0 6 3.5 
0 0 13 8                            5 9 1 6 0 6 3.5 
0 0 16 0                         6 9.6 1 6 0 6 3.5 
0 0 17 7                         6 7.3 1 6 0 6 3.5 
0 0 13 6                         5 4.4 1  6 0 6 3.5 
0 0 17 2                         7 7.8 1  6 0 6 6.5 
0 0 17 9                         7 7.2 1 6 0 6 6.5 
0 0 14 7                         5 9.8 1  6 0 6 6.5 
0 0 14 5                         6 0.9 1  6 0 6 6.5 
0 0 2 0 3                         7 6.9 1 6 0 6 6.5 
0 0 14 1                          6 1.8 16 4.5 6 8.6 
0 0 18 4                         7 5.4 16 4.5 6 8.6 
0 0 110                         5 1.2 16 4.5 6 8.6 
0 0 17 8                         7 2.4 16 4.5 6 8.6 
0 0 18 1                          7 0.2 16 4.5 6 8.6 
0 0 18 7                         6 7.3 15 5.5 6 1.4 
0 0 17 9                         6 7.5 15 5.5 6 1.4 
0 0 118                         5 9.6 15 5.5 6 1.4 
0 0 14 3                         6 2.7 15 5.5 6 1.4 
0 0 15 8                            6 1 

Blue 

15 5.5 

% Blue 

6 1.4 

Relative Error 1.61% -0.12% 
RMSE 18.94 6.19 
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Appendix F 

Predictive Analysis -- Plackett-Burman Screening Data 
A r m 

3 
3 
3 
3 
3 
3 
3 
3 

A V n RF R 

-3 
-3 

-3 
-3 
-3 

-3 
-3 

-3 
-3 

-3 
-3 

Blue 
2 1 9 
2 1 2 
1 9 1 
1 2 9 
1 5 8 
1 9 0 
1 7 9 
1 7 8 
1 6 5 
1 4 0 
1 6 6 
1 6 2 
2 0 6 
1 6 7 
2 0 9 
1 5 9 
1 2 0 
1 47 
1 5 7 
1 9 2 
1 7 2 
2 0 4 
2 0 9 
1 9 4 
2 1 3 
1 7 9 
1 5 5 
1 8 3 
1 7 7 
1 7 8 
1 6 2 
1 I 
1 3 3 
1 7 0 
1 4 4 
1 7 0 
8 5 

1 1 0 
1 0 4 
1 1 9 
9 2 

1 2 6 
8 5 
6 2 

1 1 4 
9 7 

1 0 1 
1 2 0 
9 1 
8 5 

1 0 8 
1 1 9 
9 8 

1 0 4 
1 6 2 
1 3 4 
1 4 2 
1 4 9 
1 7 6 
1 8 8 
1 2 3 
1 1 3 
1 1 1 
1 1 2 
1 1 6 
1 0 6 
1 3 1 
1 8 5 
1 5 5 
1 4 6 
1 3 8 
1 39 
1 72 
1 4 0 
1 6 6 
1 82 
1 4 1 
1 6 2 
1 5 1 
1 7 5 
1 78 
1 6 6 
1 50 
1 75 
1 67 
1 5 9 
1 52 
1 30 
1 75 
1 7 8 
1 57 
1 8 5 

7 6 - 

% Blue 
9 0.87137 
8 0.60837 
7 1.53558 
6 0.84906 
6 9.60352 
77.55102 
7 7.15517 
6 3.3452 
5 5.9322 
6 3.92694 
6 0.58394 
6 1.83206 
7 5.18248 
6 9.58333 
7 6.5 5 678 
5 8.24176 

4 8 
5 9.03614 
7 2.0 1835 
7 3.84615 
8 1.90476 
8 7.93103 
7 9.77099 
6 7.12803 

.3 4 40 9 

.79 104 
6 6.52361 
6 7.27941 
6 4.13043 

7 1 .2 
66.94215 
7 0.70313 
5 4.06504 
55.7 3 77 
5 5.17241 
6 6.14786 
4 2.71357 
4 8.88889 
4 6.22222 
5 3.6036 
3 6.36364 
5 3.16456 
4 1.26214 
29.3 8 38 9 
5 0.22026 
4 6.19048 
4 0.23904 
5 0.84746 
34.6 0 07 6 
38.1 165 9 
3 9.27273 
4 0.47619 
40.6 6 39 
4 0.15444 
6 1.13 208 
4 5.57823 
4 8.46416 
6 3.13559 
6 6.92015 
6 7.6259 
50.2 0 40 8 
5 3.5545 
5 2.60664 
5 0.45045 
4 8.7395 
3 7.99283 
5 3.46939 
6 2.71186 
5 4.77032 
5 4.88722 
44.95114 
58.4033 6 
69.9 187 
70.70707 
7 0.94017 
77.44 68 1 
65.58 14 
5 9.55882 
6 2.9 1667 

62.5 
66.6666 7 
60.80586 
6 3.0252 1 
6 6.03774 
66.5338 6 
69.73684 
6 6.37 555 
55.5555 6 
6 6.5399 2 
63.12057 
60.61 776 
72.8346 5 

P re d icte d   Blue 
1 9 8 

I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 0 
I 3 1 

P r e d ic te d % 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
7 9.9 
6 9.7 
6 9.7 
6 9.7 
6 9.7 
6 9.7 
6 9.7 
8 2.8 
8 2.8 
8 2.8 
8 2.8 
8 2.8 
8 2.8 
7 2.6 
7 2.6 
7 2.6 
7 2.6 
7 2.6 
72.6 
7 2.6 
7 2.6 
7 2.6 
7 2.6 
72.6 
7 2.6 
5 4.4 
54.4 
5 4.4 
5 4.4 
5 4.4 
5 4.4 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0.2 
5 0 
5 7 

I 3 1 
I 3 1 
I 3 1 
I 3 0 
I 3 0 
I 3 0 
I 30 
I 30 
I 30 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 
I 60 

2 
3 

5 7.3 
5 7.3 
5 7.3 
5 7.3 
5 7.3 
5 7.3 
5 7.3 
5 7.3 
57.3 
5 7.3 
5 7.3 
5 3.1 
5 3.1 
5 3.1 
53.1 
53.1 
5 3.1 
6 5 
65 
65 
6 5 
65 
65 
65 
6 5 
6 5 
65 
65 
65 
6 5 
65 
65 
65 
65 
65 
65 
6 5 

Relative Error 
RMSE 

Blue 
10% 
19.51 

% Blue 
11% 
6.26 
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