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ABSTRACT 

Suppose one wishes to construct, use, and maintain a database of facts about 
the real world, even though the state of that world is only partially known. In 
the artificial intelligence domain, this problem arises when an agent has a base 
set of beliefs that reflect partial knowledge about the world, and then tries to 
incorporate new, possibly contradictory knowledge into this set of beliefs. In 
the database domain, one facet of this situation is the well-known nuii values 
problem. We choose to represent such a database as a logical theory, and view 
the models of the theory as representing possible states of the world that are 
consistent with all known information. 

How can new information be incorporated into the database? For example, 
given the new information that "b or c is true," how can one get rid of all outdated 
information about b and c, add the new information, and yet in the process 
not disturb any other information in the database? In current-day database 
management systems, the difficult and tedious burden of determining exactly 
what to add and remove from the database is placed on the user. 

Our research has produced a formal method of specifying the desired change 
intensionally, by stating a well-formed formula that the state of the world is now 
known to satisfy. The database update algorithms we provide will automatically 
accomplish that change. Our approach embeds the incomplete database and the 
incoming information in the language of mathematical logic, and gives formal 
definitions of the semantics of our update operators, along with proofs of correct- 
ness for their associated algorithms. We assess the computational complexity of 
the algorithms, and propose a means of lazy evaluation to avoid undesirable ex- 
pense during execution of updates. We also examine means of enforcing integrity 
constraints as the database is updated. 

This thesis also examines the question of choices of semantics for update 
operators for databases with incomplete information, and proposes a framework 
for evaluation of competing choices of semantics. Several choices of semantics are 
evaluated with respect to that framework. 

A experimental implementation of our method has been constructed, and we 
include the results of test runs on a range of patterns of queries and updates. 
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Chapter 1: Introduction 

How can new facts be added to a body of knowledge when the new 
facts may contradict preexisting information? 

In the course of investigating this question, this dissertation gives partial 
answers to nagging questions in practical database work; in database theory and 
logical databases; and in artificial intelligence, particularly belief revision. In 
this introductory chapter we motivate the research from the perspectives of these 
three groups of readers, and conclude with a guide to the remainder of the thesis. 

The majority of this thesis was written with a particular audience in mind: 
those who are comfortable with first-order logic and have a passing acquaintance 
with database updates. Tactical suggestions are offered below for readers with 
other backgrounds and interests. 

From a traditional database perspective. A database management system 
faces two central tasks: evaluation of incoming queries and, quite separately, 
processing of incoming updates. 

Much attention has been paid to the problem of answering queries in data- 
bases containing null values, or attribute values that are known to lie in a certain 
domain but whose value is currently unknown (see e.g. [Codd 79, Imielinski 84, 
Reiter 84, Vassiliou 79, Zaniolo 82]). There has been very little research on up- 
dating such databases, although, as one group of researchers aptly points out 
[Abiteboul 85], answering queries in databases containing nulls presupposes the 
ability to enter incomplete information into the database and, with any luck, to 
remove uncertainties when more information becomes available. Such a capability 
is needed not only in the case where the user directly requests the incorporation 
of uncertain values into the database, but also when updates indirectly spawn 
incomplete information, as in updating through views [Bancilhon 81, Dayal 82, 
Keller 82, 85] and in natural language updates [Davidson 81, 84]. 

As an example of the difficulties posed by even simple updates, suppose 
that we have the following two relations, containing one null value. 

EMPLOYEE DEPT SALARY 
Reid ? 30,000 
Nilsson CSD 40,000 



MANAGER   DEPT 
Nilsson CSD 

Suppose that the database user wishes to give all the the computer scientists a 
raise. Here is an expression of that update in a generic database manipulation 
language: 

RANGE OF t IS EmpDeptSal 

MODIFY t.SALARY TO BE t.SALARY*l.1 

WHERE t.DEPT - ComputerScience 

What happens to Reid's salary? How can we express the fact that Reid's salary 
depends on an unknown value in another field of the tuple, and how can that 
relationship be determined automatically? 

Matters get more complicated if instead the user wishes to give Reid's 
boss a raise: 

RANGE OF t IS EmpDeptSal 

RANGE OF t2 IS EmpDeptSal 

RANGE OF s IS ManDept 

MODIFY t.SALARY TO BE t.SALARY*1.1 

WHERE t2.EMP » Reid AND t2.DEPT » s.DEPT 

AND s.MANAGER = t.EMP 

What happens to Nilsson's salary? How can we express the fact that his salary 
depends upon an unknown value in a different relation, and how can that fact be 
derived automatically? 

Unfortunately, although it is syntactically simple to allow null values in 
relational tables and update requests, any reasonable semantics for these updates 
will lead to result relations that cannot be stored as simple tables. Even with 
tight restrictions on the appearance of nulls, one quickly leaves the realm of the 
relational model, as in the example above. Our advice to a database management 
system designer operating under tight bounds of performance: don't try to treat 
a null value as anything more than an element in an ordinary domain with a few 
extra primitive operations, such as ISNULLO; otherwise naive users will drive 
processing costs up with their ill-advised updates, and will lay the blame on the 
wrong party. 

For readers oriented toward practical database technology, the recom- 
mended route through this thesis is a quick trip through Chapter 3 followed 
by a tour of Chapter 9, the discussion of implementation. 



From a logical databases perspective. Matters are less bleak if one is 
willing to cast aside the traditional relational restriction of databases to tables 
and instead view databases as simple, restricted theories in first-order logic with 
equality. This is the viewpoint adopted in this thesis, and readers who share this 
perspective should find themselves at home. 

We use an extension of the logic framework set forth by Reiter [84, 84b] 
for the null value and disjunctive information problems. (Disjunctive information 
occurs when one knows that one or more of a set of tuples holds true, without 
knowing which one.) Given a relational database, Reiter shows how to construct 
a relational theory whose model corresponds to the world represented by the 
database, and extends this framework to allow disjunctive information and null 
values to appear in the relational theory. The use of an extension of Reiter's 
logic framework has four advantages: it allows a clean formalization of incom- 
plete information; it allows a definition of the meanings of query and update 
operators without recourse to intuition or common knowledge; and it frees us 
from implicit or explicit consideration of implementation issues, by not forcing 
incomplete information into a tabular format. Through framing the update ques- 
tion in this paradigm, we will also gain insights into the more general problem 
of updating general logical theories, and lay groundwork for use in applications 
beyond ordinary databases, such as AI applications using a knowledge base built 
on top of base facts. We will show that in the logic paradigm it is natural to 
extend the concept of database updates to encompass databases with incomplete 
information. 

From an artificial intelligence perspective. Suppose one wishes to con- 
struct, use, and maintain a knowledge base (KB) of beliefs about the real world, 
even though the facts about that world are only partially known. In the artificial 
intelligence (AI) domain, this problem arises when an agent has a base set of 
beliefs that reflect partial knowledge about the world, and then tries to incor- 
porate new, possibly contradictory knowledge into this set of beliefs. We choose 
to represent such a KB as a logical theory, and view the models of the theory 
as representing possible states of the world that are consistent with the agent's 
beliefs. 

How can new information be incorporated into the KB? For example, given 
the new information that "b or c is true," how can one get rid of all outdated 
information about b and c, add the new information, and yet in the process not 
disturb any other information in the KB? The burden may be placed on the 
user or other omniscient authority to determine exactly what to add and remove 
from the KB. But what's really needed is a way to specify the desired change 
intensionally, by stating some well-formed formula that the state of the world is 
now known to satisfy and letting the KB algorithms automatically accomplish 
that change. We investigate this problem for the simplest type of belief revision, 
that of bodies of ground beliefs with particularly simple axioms. In contrast, 
most work on belief revision by AI researchers focuses on the mechanisms for 
handling inference through axioms correctly (see e.g. [Doyle 79, McCarthy 80]). 



The results of most interest to AI readers are collected in Winslett [86c]. 
In particular, the effect of removing the closed-world assumption [Lifschitz 85, 
Reiter 80] used in this dissertation is investigated there. Syntax, semantics, 
algorithms, and proofs of correctness are all presented for an open-world scenario. 
In addition, the long version of Winslett [86c] includes a more complete discussion 
of the enforcement of dependency axioms than is presented here. The AI-oriented 
reader will find Winslett [86c] to be the best introduction to this work, and then 
can browse through the offerings of these chapters at will. 

Outline of the remaining chapters. Chapter 2 surveys work done by others 
that is related to the problem of updating databases with incomplete information. 

The central ideas of this dissertation all appear in Chapter 3, which 
presents a logical language for the update problem, syntax and semantics for up- 
dates, and an algorithm for implementing the simplest types of updates. Chapter 
4 extends these results to updates containing variables and quantifiers, and also 
gives an update algorithm for the case where the database, exclusive of higher- 
level rules and axioms, is any finite first-order theory containing quantifiers. 
Proofs of correctness for the update algorithms appear in Chapter 4, along with 
a discussion of computational complexity. 

When null values appear in the database, updates can cause unacceptably 
large growth in the database when many data tuples "unify" with one another. 
Chapter 5 presents a lazy evaluation scheme coupled with simple user-supplied 
cost limits, used to avoid undesirable expense during execution of updates against 
databases that suffer from this unification problem. The goal of lazy evaluation 
is to delay execution of too-expensive updates as long as possible in the hopes 
that more information about the null values causing the expense will arrive in the 
interim. The techniques proposed have a strong flavor of database concurrency 
control. 

There axe many possible interpretations of the semantics of updates when 
additional general rules regarding the permissible states of and transformations 
on the database are considered along with the collection of base data. The "cor- 
rect" interpretation of an update when such axioms are present depends on the 
intended semantics of the axiom. The study of artificial intelligence abounds 
with these phenomena; a simple example from the database arena is the choice 
of action when an integrity constraint would be violated by a requested update. 
Typically, a database management system either rejects the update or else makes 
additional changes in the database so that the constraint is still satisfied. Incom- 
plete information complicates matters by providing additional reasonable roles 
for axioms that are not present in the complete-information case. These alterna- 
tives are studied in Chapter 6. After a discussion of these enforcement options, 
Chapter 6 shows how to provide what we call strict enforcement, for the class of 
universally quantified dependency axioms. Simple dependency axioms, such as 
type axioms, functional dependencies, and multi-valued dependencies, are easily 
strictly enforced. 

Chapters 3 and 4 establish that it is computationally feasible to implement 



updates when incomplete information is present, by presenting polynomial-time 
algorithms for a particular choice of update semantics, called the standard se- 
mantics. The standard semantics is by no means the only possible choice of 
semantics, however. Chapter 7 is devoted to a discussion of the properties of a 
number of candidate semantics for updates. A broad spectrum of possible seman- 
tics is identified there, and criteria of expressiveness, suitability for the applica- 
tion, comprehensibility, and computational feasibility are proposed for evaluating 
potential choices of semantics. Several points along that spectrum, including the 
standard semantics, are examined thoroughly with respect to those criteria. In 
addition, update algorithms are presented for two semantics other than the stan- 
dard semantics, to show how our algorithmic approach can be extended to other 
choices of semantics. 

Chapter 8 presents a series of results on update equivalence. Two updates 
Ui and U2 are equivalent if for any database, Ui applied to that database produces 
the same result as does U2 applied to that database. Update equivalence theorems 
are useful for clarifying the properties of candidates for update semantics. They 
provide one measure of comprehensibility for a particular choice of semantics: 
under that semantics, do two updates that look similar have the same effect on 
every database? Do updates that intuitively seem different produce different 
effects? Update equivalence theorems are given for the standard semantics and 
for the other semantics studied in Chapter 7. In addition, we provide several 
results on update equivalence that apply to a broad class of choices of semantics. 

There is much to be learned in the reduction of a theory to practice. 
Clearly queries and updates will be more expensive in databases with incomplete 
information; how high might that extra cost be in a typical database scenario? 
Chapter 9 describes an implementation of the Update Algorithm of Chapter 
4, and gives experimental results. The discussion focuses on the size of the 
stored database after a long series of updates that insert, reference, and remove 
incomplete information, and on the number of disk accesses required to answer 
a set of queries after that series of updates. 

Conclusions are presented in Chapter 10, along with topics for future work. 



Chapter 2: Related Work 

When this research effort began, essentially no work had been done on the 
problem of updating (as opposed to querying) databases that contain incomplete 
information. The notable exception is the work of Fagin et al [83, 86]. Our 
work has a different motivation from that of Fagin et al, who were primarily 
concerned with applications such as updates through views and updates through 
integrity constraints. In such applications, one can attach importance to the 
particular formulas currently in- the theory, such as view definitions or integrity 
constraints; and in fact Fagin et al take the formula as the primary unit of interest 
during update, producing a more syntactically oriented approach than our own. 
In contrast, our semantics is not concerned with the particular formulas in the 
theory being updated, but rather with the individual models of that theory. We 
define the semantics of an update by telling what effect the update should have on 
each model of the theory, independent of all other models. Unlike that of Fagin 
et al, the effect of an update in our paradigm is independent of the choice of 
formulas (other than schema and integrity constraints) used to represent that set 
of models. For example, let Tx be a database containing the formula Emp(Reid, 
CSD) A Emp(Nilsson, CSD), and let T2 be a database containing the two formulas 
Emp(Reid, CSD) and Emp(Nilsson, CSD). Then an update U might give different 
results when applied to 7i and Ti under the approach of Fagin et al. With our 
model-theoretic approach, however, U will give the same results when applied to 
the two databases. 

One benefit of our approach is the feasibility of an efficient algorithm for 
update computation; this is not possible in the framework of Fagin et al. For 
example, Fagin et al define the deletion of a formula a from a first-order theory T 
as, roughly speaking, the set of all maximal subtheories of T that do not logically 
entail a. One cannot expect a polynomial-time procedure for testing whether a 
follows from a first-order theory. In contrast, our update algorithms require time 
linear in the size of the theory being updated. 

As do Fagin et al, we identify multiple levels of formulas in a theory— 
axioms and non-axioms, in our case. However, we divide our axioms into different 
classes based on their intended semantics, and provide different sorts of algorith- 
mic manipulations for the different classes under update. Fagin et al allow for 
an arbitrary number of levels of formulas, but do not note a need for different 
semantics at different levels or for certain formulas. 

Our debt' to Reiter [84, 84b] for his logical formulation of closed-world 
databases has already been mentioned. Reiter describes an encoding of databases 
containing disjunctive information and null values as first-order theories with 



equality. His focus in this work is on algorithms for query evaluation over such 
databases. 

Very recently, DeKleer [85] and Reiter [85] have investigated the problem 
of circuit diagnosis, formulated as the problem of updating a set of propositional 
formulas. They both take a logic theory describing the correct behavior of a cir- 
cuit, and consider the problem of making minimal changes in that theory in order 
to make it consistent with a formula describing the circuit's observed behavior. 
This is closely allied to the problem we investigate (though circuit diagnosis does 
not require the use of selection clauses in update requests). However, the changes 
needed in the theory of the circuit are themselves the diagnosis of the circuit, 
and must be output to the user. As it is an AfV-haid problem just to determine 
whether any changes are needed at all in the circuit description (i.e., to do satis- 
fiability testing and determine whether the circuit is functioning correctly), one 
cannot expect to find a polynomial-time algorithm for diagnosis. In contrast, we 
were particularly interested in producing polynomial-time algorithms to perform 
updates. The algorithms we present in Chapter 3 and subsequent chapters could 
be used for the circuit diagnosis problem only when the new "diagnosed" theory 
is of interest, rather than the exact changes made to the old theory. 

In other recent work, Weber [86] takes a similar position on update seman- 
tics to that of DeKleer and Reiter, and provides an algorithm for implementing 
his update semantics for propositional theories. Extending his algorithm to first- 
order theories containing Skolem constants—that is, databases with null values— 
is not straightforward, however. Again, Weber does not consider updates with 
selection clauses or offer a polynomial-time algorithm for implementation. 

Abiteboul and Grahne [Abiteboul 85] investigate the problem of updates 
on several varieties of tables, or relations containing null values and history con- 
straints other than integrity constraints. They propose a semantics similar to our 
own for simple updates, and investigate the relationship between table type and 
ability to represent the result of an update correctly and completely. They do 
not consider updates with joins or disjunctions in selection clauses, comparisons 
between attribute values, or selection clauses referencing tuples other than the 
tuple being updated. Their conclusion was that only the most powerful and com- 
plex version of tables was able to fully support their update operators. Abiteboul 
and Grahne do not frame their investigation in the paradigm of mathematical 
logic, making their work less applicable to AI needs, one important application 
for this work. 

In the AI realm, Levesque [84] considered the problem of updating knowl- 
edge bases with his TELL operation; however, TELL could only eliminate models 
from the set of models for the knowledge base, not change the internal contents 
of those models. In other words, one could only TELL the knowledge base new 
information that was consistent with what was already known. This is an impor- 
tant and vital function, but an agent also needs to be able to make changes in 
the belief set that contradict current beliefs [Harman 86]. For example, the agent 
should be able to change the belief that block A is on block B if, for example, 



the agent observes an arm removing A from B. 

Work on belief revision as pursued by researchers in artificial intelligence 
(see e.g. [Doyle 79, McCarthy 80]) typically focuses on the problem of how to 
obtain correct inferences from a set of axioms and base beliefs as the set of base 
beliefs itself undergoes revision. This approach assumes that a means is available 
of updating the base set of beliefs, and concentrates on the extremely difficult 
problem of revising derived beliefs correctly. However, we will show that when 
the base set of beliefs contains incomplete information, it may be quite difficult 
to see how to reflect new information in those beliefs. With the exception of 
Chapter 6, which gives a simple treatment of certain types of derived beliefs, this 
thesis is concerned solely with the problems of revising the base set of beliefs. 

In the same vein, the interpretation of counterfactuals [Lewis 73, Gins- 
berg 85] faces very similar problems to those we address in the minimal-change 
semantics (Chapter 7): identification of potential states that satisfy a certain 
formula and differ as little as possible from a starting state. 

This work provides a theoretical underpinning for the view update problem 
in database theory [Bancilhon 81, Dayal 82, Keller 82, 85]. As many researchers 
have noted, updates through views such as projections can produce incomplete 
information in the relations underlying the view. Given a view update policy, i.e., 
a method of translating updates expressed against views into updates on base 
relations, our approach can be used to implement those updates. 



Chapter 3: Syntax, Semantics, and an Update Algorithm 

Incomplete information occurs when, due to insufficient knowledge about 
the state of the world, there is more than one candidate database to represent 
the current state of the world. In the database world, one can imagine the 
user keeping a set of relational databases (even an infinite set, if one imagines 
vigorously), knowing that one of these databases corresponds to the actual state 
of the world, but needing more information to know which database is the correct 
one.* If the user wants to apply an ordinary relational update to this set of 
candidate databases, then the natural definition of the semantics of the update 
is to apply the update to each candidate database individually. 

Though this imaginary scenario paints a clear picture of the semantics 
of ordinary updates when incomplete information is present, it is unsuitable for 
direct implementation due to the prohibitive expense of storing multiple data- 
bases. A more compact representation of the candidate databases is required for 
the sake of efficiency. Our solution is the extended relational theory, a formal- 
ization of the multiple-database scenario and an extension of Reiter's relational 
theories [Reiter 84, 84b]. Extended relational theories are sufficiently powerful to 
represent in one theory any realistic** set of relational databases all having the 
same schema and integrity constraints. Section 3.1 gives a formal description of 
the language and structure of extended relational theories. 

Ordinary relational updates are not sufficiently powerful to express all 
desirable transformations on a set of candidate databases. For example, with 
ordinary updates there is no way to add new candidate databases to the set, or 
eliminate old candidates that are now known to be incorrect. Section 3.2 proposes 
a syntax and semantics suitable for updates to extended relational theories. 

Though extended relational theories solve the compact representation 
problem, they raise another question: how can the effect of an update on a 
set of candidate databases be translated into an algorithm that operates directly 
on an extended relational theory? Section 3.3 presents the Update Algorithm for 
applying updates to extended relational theories, and Section 3.4 discusses the 
computational complexity of the Update Algorithm. 

* Heuristic guidelines may be available that give likelihood estimates for the different 
possible states of the world [Michalski 86, Nilsson 86, Zadeh 79]. How to incorporate these into 
an update algorithm is an interesting open question. 

W Not every set of relational databases can be represented as the models of a first-order 
theory. However, it is highly unlikely that any application of this work will ever run up against 
that particular limitation of logic. 



3.1. Extended Relational Theories 

We now give a formal presentation of extended relational theories, a method of 
representing multiple candidate databases in a single logic theory. 

3.1.1. The Language 

The language C for the theories contains the following symbols: 

1. An infinite set of variables, for use in axioms. 

2. An infinite set of constants. These represent the elements in the domains of 
database attributes, plus additional constants for technical reasons. 

3. A finite set of data predicates of arity 1 or more, representing the attributes 
and relations of the database. 

4. Punctuation symbols '(', ')', and ','• 

5. Logical connectives, quantifiers, truth values, and the equality predicate: A, 
V, -i, -+, «-+., V, 3, T, F, and = . 

6. For each database predicate R (item 3 above), one history predicate HR 

of arity one greater than R. Also, a unary history predicate H. The history 
predicates are present for technical reasons. 

7. An infinite set of Skolem constants c, ei, e2, €3, Skolem constants are the 
logical formulation of null values; they represent existentially quantified variables. 
For example, if a logical theory consists of the two wffs R(e,ci) and R(c2,e) V 
•R(c2, C3), then this theory has the same models as the wff 3xi3x23i3(il(xi,ci) A 
(R(c2,xi) V R(x2,s3))) (see e.g. [Enderton 72]).     0 

Note that this language does not have any means of representing the null 
value commonly called "inapplicable." Inapplicable nulls do not fit into a logic 
framework, as they indicate a mismatch between the possible models of theories 
over a language and the real world that the models are intended to represent. 
Vassiliou [79] offers a lattice-theoretic treatment of inapplicable nulls; Zaniolo 
[82] offers another approach. Or, one can revamp the predicates of the lan- 
guage/database to prevent the occurrence of "inapplicable" nulls, for example 
along the lines of the structural model [Wiederhold 83]. Or, for the reader in- 
terested in working out the details of such a scheme, conventional wisdom has 
it that inapplicable nulls are computationally quite tractable to handle in tradi- 
tional database queries and updates; it is said that one does not need to resort 
to logic or another sophisticated framework in order to describe the effect of a 
series of updates on a database containing inapplicable nulls. 

We now present some terminology used in the remainder of this work. 

Atomic formulas are well-formed formulas (wffs) without logical connec- 
tives. We consider Skolem constants to be functions; hence Skolem constants 
may occur in atomic formulas. For the purposes of this chapter, atoms are atomic 
formulas without variables as arguments. Atoms without Skolem constants are 
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called null-free. Datoms (pronounced "datums") are atoms over data predi- 
cates. For example, R(e) and R(c) are datoms; iZ(x), HR(C), and e=c are not 
datoms. The name "datom" is intended to invoke the image of a datum, i.e., a 
bit of data, and indeed, datoms will be the building blocks of our incomplete- 
information databases; and also to invoke thoughts of atoms, i.e., the atomic 
formulas of first-order logic, and indeed, datoms have a logical nature as well. 

Definitions, er is a substitution if a defines a syntactic replacement of 
distinct Skolem constants and/or variables by constants and Skolem constants. 
In traditional form a substitution a applied to a wff a is written, for example, 
as (o:)ec\'.'.'.

f
c", or more concisely as (a)„. The wff form of a is the wff ei=ciA • • • 

A e„=c„. The wff form of the identity substitution (i.e., where no substitutions 
are specified) is the truth value T. If c\ through c„ are all constants, then a is a 
constant substitution. All substitutions are assumed to be nonredundant, i.e., if 
€j is replaced by Cj, then Cj is not later itself replaced in a.      0 

In the discussions that follow, a will be assumed to be in wff form whenever 
that follows logically from the context; for example, assume o is in wff form when 
it is a subformula of at\a. 

On occasion we will speak of a more exotic type of syntactic replacement, 
that of one datom for another. For example, (a)H L d\ calls for the replacement 
of all occurrences of R(c) in a by the history atom HR(C, d). A datom substitution 
has no wff form. Datom substitutions will be so designated explicitly in the text. 

3.1.2. Extended Relational Theories 

Extended relational theories, an extension of Reiter's relational theories [Reiter 
84], encode the semantics of databases with incomplete information. A theory T 
over £ is an extended relational theory if T has exactly the following wffs: 

1. Body: The body of T may be any finite set of wffs of £ without variables. 
For example, the body might be the wff ->(R(c)AR(ei)). 

In ordinary relational databases, the convention is that all atoms not ex- 
plicitly mentioned in the database are false; that is, the database contains only 
those atoms that are known to be true [Clark 78, Lifschitz 85, Reiter 80]. An 
analogue of this closed-world assumption is needed for extended relational theo- 
ries, as otherwise T might have models in which, for example, an infinite number 
of datoms were true. An appropriate closed-world assumption is that T must 
include axioms stating that the only datoms that may be true in a model of T 
are those that unify * with subformulas of T. This means that a datom not uni- 
fying with any datom of T should be false in all models of T. The closed-world 
assumption is codified in the completion axiom section of T. 

* In this formulation, two atoms f and g unify if there exists a substitution <r for the 
Skolem constants and variables of f and g under which f and g are syntactically identical. If 
atoms / and g unify with one another under substitutions <r\ and <T2, then <r\ is more general 
than <72 if there exists a substitution <rz such that (U)e\ )*a >s (/)cj • 
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2. Completion Axioms: T contains one completion axiom for each n-ary data 
predicate R of T. If no atom over R is a subformula of the body of T, then 
T contains the completion axiom Vii • • • Vin-ii?(x!,..., xn). Otherwise, T 
contains the axiom 

Vxi... Vx„(Ä(i!,..., i„) -» \l a), 
<T£S 

where S is the set of all most general substitutions a such that some atom 
in the body of T unifies with R{x\,..., in) under a.      0 

Note that the completion axioms of T may be derived mechanically from 
the rest of T. For example, Vx(iJ(x) -*■ (x=c V x=ci)) is a completion axiom for 
the example body given earlier. We say that R(ci,... ,c„) is represented in the 
axiom if (ii = Cj) A ... A (xn = c„) is a disjunct of the completion axiom. 

A model M of T is a standard model if in addition to all the formulas in 
T, M. satisfies the unique name axioms c\ ^ c% for each pair of distinct constants 
C\,ci in £. In this work, all models under discussion are assumed to be standard 
models; so, for example, a wff a is satisfiable iff it is satisfied by some standard 
model. 

Each standard model includes a mapping from the constants and Skolem 
constants of £ to elements in the universe of M. The effect of this mapping on 
Skolem constants will often be of particular interest, and to allow easy reference 
to this information, we will now define a set of special wffs associated with M, its 
Skolem constant substitutions. Let £' be an extension of £, created as follows: 
for each Skolem constant e of £ that maps to an element c in M that is not 
named by any constant of £, add an additional constant to £' and map it to c in 
M.. Then the Skolem constant substitution a of M. with respect to a finite set of 
wffs 5 is a substitution of constants of £' for all the Skolem constants of 5, such 
that the wff a is true in M. Note that if M is a model of T, then M is also a 
model of (T)a. 

In an implementation of extended relational theories, one would not actu- 
ally store the unique name or completion axioms. Rather, the axioms formalize 
our intuitions about the behavior of a query and update processor operating on 
the body of the extended relational theory. For example, PROLOG is a query pro- 
cessor that shares our unique name axioms, but has an entirely different closed- 
world assumption. 

Another possible type of completion axiom, the domain completion axiom 
[Reiter 84], has not been included in the definition of extended relational theories. 
The domain completion axiom takes the form Vx((x = ci) V • • • V (x = c„)), 
implying that there are a finite number of elements in the universe, and they are 
all known and named by constants or Skolem constants in £. This completion 
axiom can be maintained during updates by using the same techniques as for the 
other completion axioms. The universe completion axiom will be discussed in 
more detail in Chapter 6. 
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Recall that some predicates are present in £ merely for technical reasons: 
the history predicates. Therefore the models of T give truth valuations for all 
history predicate atoms, even though history predicates are not of interest to 
users. For that reason we define the alternative worlds of T, written Worlds(T), 
as the objects produced by reducing Models(T) (i.e., the models of T) to data 
predicates. A model M. represents an alternative world A if removing the truth 
valuation information in M for history predicates produces A. World(A^) is the 
alternative world represented by M; Worlds(S), for 5 a set of models, is |J.Mes 
World(M). 

Intuitively, an alternative world is a snapshot of the tuples of a complete- 
information relational database. The alternative worlds of an extended relational 
theory look like a set of ordinary relational databases all having the same schema 
and axioms. 

With the inclusion of history predicates in £, we depart from Reiter's 
paradigm. Because these predicates are "invisible" in alternative worlds, there 
may not be a one-to-one correspondence between the models of a relational 
theory and its alternative worlds, as two models may give the same truth val- 
uations to all null-free datoms but differ on some null-free history atoms, and 
still represent the same alternative world. Alternative worlds contain just the 
information that would be of interest to a database user, while models may be 
cluttered with history atoms of no external interest. The history predicates do 
not actually extend the expressive power of £; the proof of Theorem 7-1 will show 
that, with a few minor restrictions, given any extended relational theory T there 
exists an extended relational theory T' not containing history predicates, such 
that Worlds(T) = Worlds(T'). 

3.2. A Language for Updates 

As mentioned in the introduction to this chapter, traditional relational update 
languages are not sufficiently powerful for use when incomplete information is 
present. The traditional languages also lack sufficiently formal semantics for a 
rigorous examination of the properties of these languages. This section presents 
a data manipulation language that remedies these two deficiencies. Appropri- 
ate subsets of traditional update languages, such as those of SQL and INGRES 
without aggregation, may be embedded in this language. In this chapter, only 
updates without variables will be considered; Chapter 4 extends this approach 
to updates with variables. 

3.2.1. Update Syntax 

Let 4> and u be formulas over £ without history predicates or variables. Then an 
update takes the form INSERT u WHERE <f>. 

The reader may wonder what has happened to the traditional relational 
data manipulation operations of MODIFY and DELETE. Under the semantics pre- 
sented below, any DELETE or MODIFY request can be phrased as an INSERT re- 
quest, using negation.   To simplify the presentation, DELETE and MODIFY are 

13 



omitted right from the start; details of the mapping will be presented at the end 
of Section 3.2.2. 

Examples. Suppose the database schema has two relations, Mgr(Manager, 
Department) and Emp(Employee, Department). Then the following are up- 
dates, with their approximate intended semantics offered in italics: 

INSERT Emp(Reid,e) A (e=CSD V e=EE) WHERE ->Mgr(Hilsson,CSL). In al- 
ternative worlds where Nilsson doesn't manage CSL, insert the fact that Reid 
is in one of CSD and EE. 

INSERT -iEmp(Reid,e) WHERE --Mgr(Nilsson,c) A Emp(Reid,e). For some de- 
partment Nilsson does not manage, delete the fact that Reid is in that depart- 
ment. 

INSERT F WHERE -iEmp(Reid,CSL). Eliminate all alternative worlds where Reid 
isn't in CSL. 

INSERT ^Emp(Reid,CSL) A Emp(Reid,e) WHERE Emp(Reid,CSL). In any alter- 
native worlds where Reid was in CSL, reduce that belief to just believing that he 
is in some department. 

INSERT ->Emp(Reid,e) WHERE T. Insert the fact that Reid is not a member of 
every department. 

3.2.2. Update Semantics 

We define the semantics of an update operating on an extended relational theory 
T by its desired effect on the models of T. In particular, the alternative worlds of 
the updated relational theory must be the same as those obtained by applying the 
update separately to each original alternative world. In database terms, this may 
be rephrased as follows: The database with incomplete information represents a 
(possibly infinite) set of alternative worlds, or complete-information relational 
databases, each different and each one possibly the real, unknown world. The 
correct result of an update is that obtained by storing a separate database for 
each alternative world and running the update in parallel on each separate data- 
base. A necessary and sufficient guarantee of correctness for any more efficient 
and practical method of update processing is that it produce the same results 
for updates as the parallel computation method. Equivalently, we require that 
the diagram below be commutative: both paths from upper-left-hand corner to 
lower-right-hand corner must produce the same result. 

has alternative world 
T >A 

update update 

has alternative world 
T >A' 
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The general criteria guiding our choice of semantics are, first, that the 
semantics agree with traditional semantics in the case where the update request 
is to insert or delete a single atom, or to modify one atom to be another. Second, 
an update cannot directly change the truth valuations of any atoms except those 
that unify with atoms of w. For example, the update INSERT Emp(Reid, CSD) 
WHERE T cannot change the department of any employee but Reid, and cannot 
change the truth valuation of formulas such as Mgr(Nilsson, CSD). 

Two more important criteria are that the new information in u> is to rep- 
resent the most exact and most recent state of knowledge obtainable about the 
atoms that the update inserts; and the update is to override all previous infor- 
mation about these atoms. These two criteria have a syntactic component: one 
should not necessarily expect two updates with logically equivalent ws to pro- 
duce the same results. For example, the update INSERT T WHERE T is different 
from INSERT Emp(Reid, CSD)V->Emp(Reid, CSD) WHERE T; one update reports 
no change in the information available about Reid's department, and the other 
reports that whether Reid is in CSD is now unknown. 

For a formal definition of semantics that meets the criteria outlined in 
this section, let U be a null-free update and let Al be a model of an extended 
relational theory T. Then U(M) contains just M if <j> is false in M. Otherwise, 
U(M) contains every model M! with the same universe and mappings as M, 
such that 

(1) M' agrees with M on the truth valuations of all null-free atoms except 
possibly those in u>; and 

(2) u is true in M'.      0 

Example. If the user requests INSERT Emp(Reid, CSD) V Emp(Reid, EE) 
WHERE T, then three models are created from each model M of T: one where 
Reid is in both CSD and EE, one where Reid is just in CSD, and one where Reid 
is just in EE—regardless of whether Reid was in CSD or EE in M originally. 

0 

For simplicity, the semantics of U has been defined in terms of U's effect 
on the model M rather than in terms of I7's effect on the alternative world 
represented by M. However, because the semantics is independent of the truth 
valuations of history atoms in M, U will have the same effect (i.e., produce the 
same alternative worlds) on every model representing the same alternative world 
as M. 

The remarks at the beginning of this section on correctness of update 
processing may be summed up in the following definition: 

Definition. Given two extended relational theories T and T', T ac- 
complishes the null-free update U if 

Worlds(T') = U        Worlds(U(M)).        0 
A<€Models(T) 
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This semantics must be extended to cover the case where Skolem constants 
occur in U. Intuitively, the essential idea is that if the user only had more infor- 
mation, the user would not be requesting an update containing Skolem constants, 
but rather an ordinary update without Skolem constants. Under this assump- 
tion, the correct way to handle an update U with Skolem constants is to consider 
all the possible null-free updates represented by U and execute each of those in 
parallel, collecting the alternative worlds so produced in one large set. Then the 
result of the update the user would have requested had more information been 
available is guaranteed to be in that set. 

For a more formal definition, a bit of new terminology is needed. If U 
is the update INSERT u WHERE <j> and a is a substitution, then let (U)a be the 
update INSERT (w), WHERE {<[>)„. If T is a theory or set of wffs, then let (7), be 
the theory resulting from applying a to each formula in 7. 

Definition. Given two extended relational theories 7 and 7', 7' accom- 
plishes the update U if 

Worlds(7')= U        Worlds((U)„(M)), 
.M€ModeU(T) 

where a is the Skolem constant substitution for M with respect to U.      0 

A moment's examination of the semantics given earlier shows that this 
definition simply amounts to replacing u in rules 1 and 2 by (UJ)^. 

The advantage of this approach to null values in updates is that a asso- 
ciates any Skolem constant c that occurs in both U and 7 with the same element 
in M, so that the user can directly refer to entities such as "that department that 
we earlier noted that Reid is in, though we didn't know exactly which department 
it was." 

Example. If Vi-iil(x) is true in M and we then insert Ä(ci)VR(t2) into 
M, then U(M) will contain every model M' such that just one or two null-free 
atoms of R are true in M', with truth valuations for other datoms unchanged. 
0 

Under these definitions, the traditional relational operations of DELETE 
and MODIFY can be phrased as INSERT requests as follows: to delete a datom * in 
all alternative worlds where <f> is true, use the update INSERT ->t WHERE <f>. For 
example, INSERT --Emp(Reid, CSL) WHERE T will "delete" the atom Emp(Reid, 
CSL) from the Emp relation. To modify a datom r to be a different datom a;, use 
the update INSERT u A ->t WHERE <f>At. For example, to change Reid's department 
from CSL to CSD, use the update INSERT Emp(Reid, CSD)A--Emp(Reid, CSL) 
WHERE Emp(Reid, CSL). 
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3.3. The Update Algorithm 

The semantics presented in the previous section describes the effect of an update 
on the models of a theory; the semantics gives no hints whatsoever on how to 
translate that effect into changes in the extended relational theory. An algorithm 
for performing updates cannot proceed by generating models from the theory and 
updating them directly; this is because the number of non-isomorphic models may 
be exponential in the length of the theory, and it may be very difficult to find 
even one model, as that is equivalent to satisfiability testing of the theory. Any 
update algorithm must find a more efficient way of implementing this semantics. 

The Update Algorithm proposed in this section for incorporating updates 
into an extended relational theory T may be summarized as follows: For each 
atom f in T that unifies with an atom ofu, replace all occurrences of f in T by 
a history atom. * Then add a new formula to T that defines the correct truth 
valuation of f when <f> is false, and another formula to give the correct valuation 
of f when <f> is true. 

Before a more formal presentation of the Update Algorithm, let us mo- 
tivate its workings in a series of examples that will illustrate the problems and 
principles underlying the algorithm. 

3.3.1. A Simple Example 

Let the body of T be -iEmp(Reid, CSL), and the new update be INSERT 
Emp(Reid, CSL) WHERE T. 

One's natural instinct is to add <j>—+u; to 7", because the update says that 
(J) is to be true in all alternative worlds where <f> is true now. Unfortunately, u 
probably contradicts the rest of T. For example, adding T—*Emp(Reid, CSL) to 
T makes T inconsistent, because T already contains Emp(Reid, CSL). Evidently 
u may contradict parts of T, and those parts must be removed from T; in this 
case it would suffice to simply remove the formula -<Emp(Reid, CSL). 

But suppose that the body of T contains more complicated formulas: 
Mgr(Nilsson, CSD)+-»--Emp(Reid,CSD) and Mgr(Nilsson, CSL)+-»->Emp(Reid, 
CSD). One cannot simply excise ->Emp(Reid, CSL) or replace it by a truth value 
without changing the models for the remaining atoms of T; but by the semantics 
for updates, no datom truth valuation except that of Emp(Reid, CSL) can be 
affected by the requested update. 

The solution to this problem is to replace all occurrences of Emp(Reid, 
CSL) in T by another atom. However, the atom used must not be part of any 
alternative world, as otherwise the replacement might change that atom's truth 
valuation. This is where the special history predicates of C come into play; we 
can replace each atom of w by a history atom throughout T, and make only 
minimal changes in the truth valuations in the alternative worlds of T.  In the 

t    These history atoms are not visible externally, i.e., they may not occur in updates; 
they are for internal extended relational theory use only. 
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current case, Emp(Reid, CSL) is replaced by #£mp(Reid, CSL, U), where U is a 
unique ID for the current update. * For convenience, we will write if£mp(Reid, 
CSL, U) as ff(Emp(Reid, CSL), U), to avoid the subscript. This atom may look 
forbidding, but it is really quite simple; read it as "Reid was in CSL at the time 
of update U". The datom substitution that replaces every datom / of u> by its 
history atom H(f, U) is called the history substitution and is written on- Again, 
H(f, U) should be read as "/ was true at the time of update U". 

This is not the only possible means of removing the datoms of u from 
T. Contradictory wffs may be ferreted out and removed without using history 
predicates, by a process such as that used by Weber [86]: If / is a datom of u; that 
is a subformula of a wff a, then replace a by (a)£ V (a)£. Unfortunately, in the 
worst case such a process will multiply the space required to store the theory by 
a factor that is exponential in the number of atoms in the update. In addition, if 
a datom / of u> also is a subformula of <j>, then once / is removed entirely from T, 
it may not be possible to identify the models of T where <f> was true, i.e., where 
the update is to take place. Therefore this technique is useful only for atoms 
of u; that do not unify with any atom of <j>. Further, this technique does not 
extend well to the case where Skolem constants occur in U or T (see the proof 
of Theorem 7-1). Finally, when this method is used it is expensive to specify the 
correct truth valuations for the datoms of u in models where <f> is false. As its 
worst-case characteristics are less pleasant than when a history substitution is 
used, this technique will not be considered further. 

Now consider a slightly more complicated update U: IHSERT Emp(Reid, 
CSL) WHERE Mgr(Nilsson, CSL), when T contains just -iEmp(Reid, CSL). As 
just explained, the first step is to replace this body by (->Emp(Reid, CSL))«^, 
i.e., ->.H"(Emp(Reid, CSL), U). Within a model M of T, this step interchanges 
the truth valuations of every datom f in u and its history atom H(f, U); if <f> 
was true in M initially, then {<j>)OB 

1S now ^•Tne m M.. 
It is now possible to act on the original algorithmic intuition and add 

(4>)<TB~*
U
 *° *ne body of T, establishing correct truth valuations for the atoms 

of u> in models where 4> w&s true initially. In the employee example, the body of 
T now contains the two formulas 

-.ff(Emp(Reid, CSL), U) and 

Mgr(Nilsson, CSL)->Emp(Reid, CSL). 

Unfortunately, the fact "if Nilsson is not the manager of CSL then Reid is 
not in CSL" has been lost! The solution is to also add formulas governing truth 
valuations for atoms in u when <f> is false: Add (/ *-*H{f, U)) V {<t>)„B to T for 
each atom / in w. In other words, if <f> was false in a model M when the update 
began, then / has the same truth valuation in M as it did originally. Then T 
contains 

t If the argument 17 were not present, then a similar substitution in a later update 
involving Emp(Reid, CSL) would make big changes in the alternative worlds of Tat that time. 
For that reason, the U in H(f, U) should be a constant, so that H(f, U) will not unify with any 
history atom used in any other update. 

18 



-JJ(Emp(Reid, CSL), U), 

Mgr(Nilsson, CSL)->Emp(Reid, CSL), and 

(Emp(Reid, CSL)~ff(Emp(Reid,CSL), U)) V Mgr(Nilsson, CSL). 

To make the new version of T into an extended relational theory, the 
new atom Mgr(Nilsson, CSL) must be represented in the completion axiom for 
Mgr. Once this is done, yet another problem remains, for this newest theory has 
models in which Nilsson manages CSL, even though the completion axioms of 
the original theory disallowed that. The solution is to add -iMgr(Nilsson, CSL) 
to the body of T. This is best accomplished at the very beginning of the update 
process, before the history substitution is applied. If we retroactively add this 
wfF, T now has the desired alternative worlds. 

Reviewing the example, we see that the update process falls into two 
phases. The first phase is best thought of as a preprocessing stage, where T is 
changed by representing new atoms in its completion axioms. This phase does 
not change the alternative worlds of T. In the second phase, the alternative 
worlds of T are altered, first by the use of history predicates, and then by the 
addition of formulas governing the truth valuation of atoms in w. 

3.3.2. An Example with Skolem Constants 

The informal algorithm proposed so far does not work when Skolem constants 
are present in either the theory or the update. The basic difficulty is that one 
must update every atom in the theory that unifies with something in u, since 
truth valuations for that atom might possibly be changed by the new update. 
For example, suppose the body of T contains the formula Mgr(Nilsson, e), and 
the new update is INSERT -<Mgr(Nilsson, CSL) WHERE T. In other words, Nilsson 
was known to manage some department, and is now known not to manage CSL, 
quite possibly because he has just resigned that position.* A moment's thought 
shows that quite possibly Nilsson now manages no departments (e.g., if he has 
retired), and so the formula Mgr(Nilsson, e), which unifies with Mgr(Nilsson, 
CSL), must be changed in some way; (e^CSL)-^Mgr(Nilsson, e) is the obvious 
replacement. In the general case, it is necessary to replace all atoms in T that 
unify with datoms of u> by history atoms as part of the history substitution step. 

Let's examine one final example. Suppose the theory initially contains the 
wff Mgr(Nilsson, CSL) and the new update takes the form INSERT Mgr(Nilsson, 
e) WHERE T, implying that Nilsson may now manage another department. In the 
first phase of the update, Mgr(Nilsson, e) is to be represented to the completion 
axiom for Mgr, without changing the models of T. In earlier examples, it sufficed 

t In other words, the update leaves open the possibility that the underlying state of the 
world has changed. To say that Nilsson does not manage CSL, while retaining the belief that 
Nilsson manages some department, the appropriate update is IISERT F WHERE Mgr(Nilsson, 
ÖSL); this new update says that the state of the world has not changed, but that we now have 
more information about its state. Although both updates talk about Nilsson's department, 
their semantics are quite different. 
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to add a disjunct to Mgr and add ->Mgr(Nilsson, e) to the body of T. Unfortu- 
nately, this procedure would change the alternative worlds of T by permanently 
eliminating the possibility that t is CSL: 

Mgr(Nilsson, CSL), 

-<Mgr(Nilsson, e). 

This problem arises because Mgr(Nilsson, e) already is an implicit subformulat 

The solution is to add the wff Mgr(Nilsson, e)->(e=CSL) to the body of T rather 
than -iMgr(Nilsson, e), that is, to add the fact that if Nilsson already manages a 
department e, then e must be a department already mentioned in T as a possible 
candidate for his management. 

Continuing with phase two of the suggested algorithm, a theory is pro- 
duced containing the four formulas 

ff(Mgr(Nilsson, «), U) - (e=CSL), 

ff(Mgr(Nilsson, CSL), U), 

T—>Mgr(Nilsson, e), and 

(Mgr(Nilsson, e)<->fT(Mgr(Nilsson, c), U))V T. 

Unfortunately, this theory has models where Mgr(Nilsson, CSL) is false! The 
problem is that the algorithm does not yet properly take care of the alternative 
worlds where e is not bound to CSL; in those worlds, Mgr(Nilsson, CSL) must 
still be true, regardless of what the new information in the update may be. The 
solution is to add (e^CSL)->(Mgr(Nilsson, CSL)~#(Mgr(Nilsson, CSL), U)) to 
T, and in fact this new theory has the desired alternative worlds. 

3.3.3. The Algorithm 

The lessons of the preceding examples may be summarized as an algorithm for 
executing an update U given by INSERT u> WHERE <j> against an extended relational 
theory T. 

The Update Algorithm (Version I) 

Input. An extended relational theory T and an update U. 

Output. T', an updated version of T. 

Procedure. A sequence of four steps: 

Step 1. Maintain the closed-world assumption. To maintain the closed- 
world assumption, all datoms in u and </> need to be represented in the completion 
axioms of T. First change the body of T to reflect the new completion axioms: 
for each atom g that is a subformula of u or <f> but not of T, let So be the set of 
the most general substitutions a such that for some datom / in T, / unifies with 

t If a datom f is not a subformula of a wff a, but there is a substitution <r such that / 
is a subformula of (a)e, then / is an implicit subformula of a. For example, R(c) and R(d) are 
implicit subformulas of /Z(e)A(e=c). of T. 
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g under a. If So is the empty set, then add ->g to the body of X; otherwise, add 
the wff 

9 -   V * (!) 
<r€Eo 

to the body of X. Then for every datom g of X not represented in the completion 
axioms, add a disjunct representing g to those axioms. Call the resulting theory 
X'. 

Example. If a; contains the datom R(a, e2, ei), and the body of T contains 
the datoms i2(c3,c, 64) and Ä(c4,c,c), then add R(a, «2, ci) —► ((a = 63) A («2 = 
c) A (ei = 64)) V ((a = e4) A (fi2 = c) A (ei = c)) to the body of X, and add 
the disjunct (xi = a) A (#2 = ^2) A (X3 = ej) to the completion axiom for R. 
Intuitively, Formula (1) says that if g is true in some model of X, this must be 
because g has unified with a preexisting atom of X in that model. 

Step 2. Make history. For each atom / in X' that unifies with an atom of u, 
replace all occurrences of / in the body of X' by the history atom H(f, U). In 
other words, replace the body B of X' by {B)aB ■ 
Step 3. Define the scope of the update. Add the vfS (<f>)aB —>u to X'. 

Step 4. Restrict the scope of the update. For each datom / in <TH, let E 
be the set of all most general substitutions a under which / unifies with an atom 
of u}. Add the wff 

(f~H(f,U))V ((*)„A V") (2) 

to X'. Intuitively, for / an atom that might possibly have its truth valuation 
changed by update U, formula (2) says that the truth valuation of / can change 
only in a model where <j> was true originally, and further that in any model so 
created, / must be unified with an atom of u>.      0 

Example. Let the body of X be the wff 

-1Emp(Reid, CSD)AEmp(Reid, CSL)A Mgr(Nilsson, <•), 

and the update be INSERT Emp(Reid, c) A (6^EE) WHERE T. Then the alterna- 
tive worlds of X initially consist of all worlds where Reid is in CSL and Nilsson 
manages some one department. After the update, the alternative worlds should 
be those where Reid is in CSL and Reid is in a department managed by Nilsson, 
and that department is not EE. 

Step 1. Add the wff Emp(Reid, e)->((e=CSD) V(e=CSL)) to the body of 
X, and the corresponding disjunct to the completion axiom. Note that Step 1 
does not change the alternative worlds of the theory. 

Step 2. Replace Emp(Reid, CSD), Emp(Reid, CSL), and Emp(Reid, e) 
by #(Emp(Reid, CSD), 17), ff(Emp(Reid, CSL), U), and #(Emp(Reid, c), U) 
respectively. The body of X' now contains the two wffs 

^H(Emp(Reid, CSD), 17) A F(Emp(Reid, CSL), U) A Mgr(Nilsson, e) and 
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iT(Emp(Reid, e), U) ^((e=CSD)V(e=CSL)). 

Step 3. Add the wff ($)„„ -*u (i.e., T^(Emp(Reid, e)A(e^EE))) to the 
body of V. 

Step 4. Add to T the three wffs 

(Emp(Reid, e)<->#(Emp(Reid, e), U)) V T, 

(Emp(Reid, CSD) ~#(Emp(Reid, CSD), U)) V ( e=CSD), and 

(Emp(Reid, CSL) ~ff(Emp( Reid, CSL), U)) V ( e=CSL). 

Examination of Worlds(T') shows that T accomplishes U.      0 

The models of T' produced by the Update Algorithm always represent 
exactly the alternative worlds that U is defined to produce from T: 

Theorem 3-1. Given an extended relational theory T and an update U, 
the extended relational theory T' produced by the Update Algorithm Version I 
accomplishes U.     0 

In other words, Worlds(T') =UA4eModeb(T) Worlds(f7(M)). Theorem 3-1 
is not proven here, as it follows immediately from Theorem 4-1. 

3.4. Computational Complexity of the Update Algorithm 

Let the size of a wff be defined as the number of occurrences of atoms in the 
wff, and let the size of an update U be the sum of the sizes of <f> and u. Let U 
be an update of size Ar; and let R be the maximum number of distinct datoms 
of T over the same predicate. When T and U contain no Skolem constants, 
the Update Algorithm will process U in time O(klogR) (the same asymptotic 
cost as for ordinary database updates) and increase the size of T by 0{k) worst 
case. This is not to say that an 0(k log R) implementation of updates is the best 
choice; rather, it is advisable to devote extra time to heuristics for mimmizing 
the length of the formulas to be added to T. Nonetheless, a worst-case time 
estimate for the algorithm is informative, as it tells us how much time must be 
devoted to the algorithm proper. The implementation assumptions necessary 
for this estimate to be achieved are described in the chapter on implementation, 
Chapter 9. Further, we assume that the schema is fixed, i.e., that the number of 
predicates is a constant. 

When Skolem constants occur in T or in U, the controlling factor in costs 
is the number of atoms of T that unify with atoms of U. If n atoms of T each 
unify with one atom of U, then T will grow by 0(n + k). In the worst case, 
every atom of T may unify with every atom of U, in which case after a series of 
m updates, the number of occurrences of atoms in T may multiply by 0(mk). 
Theorem 3-2 summarizes these properties. 

Theorem 3-2. Let T be an extended relational theory containing n differ- 
ent datoms (not occurrences of datoms) having Skolem constants as arguments. 
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Let k be a constant that is an upper bound on the size of updates. Then after a 
series of m updates not containing Skolem constants is performed by the Update 
Algorithm, in the worst case the size of T will increase by 0(nmk). Under a 
series of m updates containing Skolem constants, in the worst case the size of T 
will increase by 0(nmk + m2k2).     0 

Proof of Theorem 3-2. We show the space requirements for each step 
of the Update Algorithm. 

Let g be a datom of U, the first of the m updates. If g already is a 
subformula of T, then nothing is added to T for g in Step 1. Otherwise, g is not 
a subformula of 7", and the number of datoms in T that unify with g determines 
the size of So in Step 1. By assumption, g unifies with at most n datoms of 7". By 
assumption, the predicates in C are fixed, and hence each substitution a in So is 
of size bounded by a constant. Therefore at most 0(nk) occurrences of atoms are 
added to T for U. Under a series of m updates not containing Skolem constants, 
Step 1 can add as many as 0(nmk) occurrences of atoms to T. If the updates 
contain Skolem constants, then each update can add k datoms containing Skolem 
constants to T, so that the first update after U may have a So of size n + k, the 
second may have size n + 2k, and so on. As there may be k choices of So for each 
update, after m updates the size of this compounding factor is 0(m2k2). 

Step 2 does not change the size of T'. Step 3 adds 0(k) occurrences of 
atoms to T\ 

For Step 4 of update U, a trick is helpful to keep down the size of formula 
(2). It can be quite expensive to repeatedly add (<j>)(rH to T' for every choice 
of / in formula (2). Much more efficient is to add a single wff H{U)++(4>)OB to 
T' before Step 4, and then use H(U) in place of (<f>)aB in all instantiations of 
formula (2). (H(U) is simply a history atom not unifying with any atom in T'.) 
We assume that this measure is taken, incurring a cost of 0(k) atoms per update. 

If U does not contain Skolem constants, there are at most n + 1 datoms 
in T' that unify with a datom of w, giving a maximum of n + 1 choices for / in 
formula (2). (If U contains Skolem constants, there may be as many asn + k such 
datoms in T'.) Let / be a datom in T' that unifies with a datom of w. The size 
of formula (2) for g is 0(k) worst case, so the cost of instantiating formula (2) 
for U will be 0(nk) (or 0((n + k)k, if U contains Skolem constants). Therefore 
under a series of m updates not containing Skolem constants, Step 4 will add up 
to 0(nmk) occurrences of atoms to T'. If the updates contain Skolem constants, 
then each update can add k datoms containing Skolem constants to T, so that 
again a compounding factor of 0(m2k2) appears.      0 

As for the time complexity of the Update Algorithm, let us assume that an 
indexing scheme is available that enables any datom to be located in T in 0(log R) 
time. Then the running time of the Update Algorithm is 0(kn log R) worst case. 
This estimate assumes that the history step (Step 2) is optimized through special 
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data structures (see Chapter 9): the body of the extended relational theory must 
be represented as a set of logical relationships between pointers. All occurrences 
of a single datom in the body are linked together in a chain of pointers; only the 
head of the chain points to the stored record for the actual datom. 

Happily, a large class of common types of updates—those with very simple 
w and 4>—can be performed in 0(k log R) time per update; Abiteboul and Grahne 
[Abiteboul 85] examine a subset of these simple updates. For the general case, 
however, potential growth of 0(nmk) in the size of T is much too large, yet 
is unavoidable if the effect of the update is to be represented directly in the 
extended relational theory, for every datom of X that is an implicit subformula 
of the update must be changed in some way in T. In some sense the information 
content of a single update is no more than its size, k, and so growth of more 
than 0(mk) after m updates is too much. We can achieve growth of no more 
than 0(mk) by simply storing the updates without incorporating them into T. 
However, since query answering presupposes some means of integrating updates 
with the rest of the database to allow satisfiability testing, a means of at least 
temporary incorporation must be offered. We have devised a scheme of delayed 
evaluation and simplification of expensive updates, by bounding the permissible 
number of unifications for the atoms of an incoming update. This lazy evaluation 
technique is discussed in Chapter 5. 

3.5. Summary and Conclusion 

In this chapter we formalized databases containing incomplete information as 
logical theories, and viewed the models of these extended relational theories as 
representing possible states of the world that are consistent with all known in- 
formation. For the purposes of this chapter, formulas in the body of an ex- 
tended relational theory could be any sentences without universal quantification. 
Typically incomplete information appears in these theories as disjunctions or as 
Skolem constants (a.k.a. null values). 

Within this context, we set forth a data manipulation language for up- 
dates, and gave model-theoretic definitions of the meaning of these updates. We 
presented the Update Algorithm as a means of incorporating updates into ex- 
tended relational theories, and proved it correct in the sense that the alternative 
worlds produced under the Update Algorithm are the same as those produced by 
updating each alternative world individually. 

For extended relational theories and updates without Skolem constants, 
the Update Algorithm has the same asymptotic cost as for an ordinary complete- 
information database update, but may increase the size of the extended relational 
theory. For updates involving Skolem constants, the increase in size will be severe 
if many atomic formulas in the theory unify with those in the update. Chapter 5 
is devoted to a discussion of a means of preventing excessive growth in the theory. 

We conclude that, first, one may extend the concept of a database update 
to databases with incomplete information in a natural way; second, that mathe- 
matical logic is a fruitful paradigm and tool for the investigation; third, that one 
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may construct an algorithm to perform these updates with a reasonable poly- 
nomial running time; and lastly, that some means is needed to prevent runaway 
growth in the database under a series of updates. 
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Chapter 4: Updates With Variables 

We now consider how to extend the Update Algorithm to accept updates 
with variables—the type of update supported by traditional data manipulation 
languages. The two main results shown in this chapter are, first, that updates 
containing variables are no harder to perform than updates without variables, 
provided that variables and quantifiers are permitted in the bodies of extended 
relational theories; and second, that if quantifiers and variables are not permitted 
in theory bodies, updates are somewhat harder to perform but a reasonable 
algorithm is still possible, and its cost will depend on the number of substitutions 
for variables that lead to a satisfiable selection clause <f>. In addition, the algorithm 
given in this chapter for updating extended relational theory bodies containing 
quantifiers is sufficiently general to use in updating any first-order theory. 

Please note that variables will be permitted to occur in updates for the 
duration of this chapter only; subsequent chapters consider only ground updates, 
except when specißcally noted otherwise. 

4.1. Update Syntax 

As usual, we confine our attention to INSERT requests: INSERT u> WHERE <j>. The 
only change required in update syntax is that variables may now occur in <f> and 
UJ. 

4.2. Update Semantics 

We begin by presenting a desideratum for the extension of update semantics 
to updates with variables: the chosen semantics should agree with traditional 
semantics for relational data manipulation language updates with variables. 

As an approach that meets this desideratum, let an extended relational 
theory update U containing variables correspond to a set of updates without 
variables, derived by binding constants and Skolem constants to all the variables 
of U. If we apply every possible binding* to the variables of U, then the result of 
applying U to an extended relational theory T should be that of simultaneously 
applying all the updates in the (probably infinite) set just generated. 

To rephrase this definition more formally, let U: INSERT u WHERE <f> be an 
update containing variables. Let M be a model of an extended relational theory 
T, and let a be the Skolem constant substitution for M. with respect to <f> and 

t Strictly speaking, this imagery is inadequate because not all elements of the universe 
are named in C Rather, one should consider an extension of C for each model in which all the 
elements in the model are named. 
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w. Let Ev be the desired set of substitutions av for all the variables of <f> and 
u. Let ft be the set of all wffs (u)„v such that av is in £„, (<£)<,„ is true in M, 
and ((a;)»,,)» is satisfiable. Then U(M) contains every model M' with the same 
universe and mappings as M, such that 

(1) M' agrees with M on the truth valuations of all null-free atoms except 
possibly those in ft; 

(2) All members of ft are true in M'.     0 

An extended relational theory V accomplishes U(T) if Worlds(T') = 

lWModel,(T) Worlds(tf(^)). 

Examples. Consider the following three updates, to be applied to an 
extended relational theory T with body Emp(Reid, ci): 

1. INSERT Emp(Reid, x) WHERE --Emp(Reid, x) 

2. INSERT Emp(Reid, et) WHERE -<Emp(Reid, ea) 

3. INSERT Emp(Reid, e2) WHERE ->Emp(Reid, e2) 

The first update applied to a model M of T makes Reid an employee of 
all departments in M' (and therefore, depending on the domains involved and 
the method used to calculate Sv, may be unsafe). The second update does not 
change the models of T at all; and the third update produces all models where 
Reid is in one or two different departments.     ^ 

If U does not contain variables and u> is satisfiable, U will produce one or 
more models from every model M to which U is applied. Once variables occur 
in U, this ceases to be true. For example, the update INSERT Ä(ar)A->Ä(y)WHERE 
xj^y will probably be ill-advised when applied to a theory containing R(o) A R(b), 
because it asks for R(a) and R(b) to be both true and false: R(a)A-yR(b), and 
R(b)A->R(a). We will not provide any syntactic means of avoiding conflicting 
updates; in our system, conflicting updates simply eliminate models where a 
conflict arises. 

4.3. An Update Algorithm: No Variables in Body 

This section presents an update algorithm for use with extended relational theo- 
ries without quantifiers and variables in the theory body—the type of extended 
relational theory studied so far. Section 4.4 presents an algorithm for use when 
quantifiers and variables may occur in the theory body. 

The semantics for updates with variables presented in Section 4.2 does not 
directly lend itself to algorithmic application when quantifiers and variables are 
not allowed in the body of T. We must ensure that all but a finite number of 
the substitutions ov used lead to updates that do not change the models of T 
at all. If this is true, then all the substitutions that generate no-op updates can 
be ignored: only a finite set Hv of substitutions will be relevant.  The method 
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traditionally used in database data manipulation languages to guarantee a finite 
E, is the use of safe selection clauses [Ullman 82]. An adaptation of the concept 
presented there to the incomplete information situation might be to include a 
substitution av in E„ iff av substitutes constants and Skolem constants already 
occurring in T or U for all the variables of U. A domain completion axiom can 
be employed to this end. Another technique would be to require typed selection 
clauses, that is, to have type axioms (see Chapter 6) and require that the selection 
clause specify the type of all variables; INGRES [Stonebraker 85] and System R 
[Chamberlain 76] use a variant of this technique. We choose not to dictate the 
choice of a safe query mechanism, but rather operate on the assumption that one 
way or another, the query and update processor knows how to reduce an update 
with variables to a finite set of ground updates. In practice in today's database 
management systems, determination of E„ is typically initiated via index lookup 
on selection and join attributes. As is true in ordinary databases when variables 
occur in updates, an update with variables will often require more changes in the 
extended relational theory than a ground update does, because each instantiation 
of variables represents an additional change to be made in the theory. 

The essential idea of the update algorithm is to create one ground update 
for each substitution <TV in E„. We do not require that (4>)0v actually be true 
in some model of T, as such a condition is equivalent to testing satisfiability, 
and hence might require exponential time to verify. The generation of E„ should 
be done by the algorithms used for query processing, and should require time 
polynomial in the size of the extended relational theory and exponential in the 
length of the update request. 

We now present an extension of the Update Algorithm Version I to handle 
updates with variables. The new Update Algorithm must take into account that 
an atom of T may be affected simultaneously in several different ways by different 
instantiations of the variables in an update. 

The Update Algorithm (Version II) 

Input. An extended relational theory T, an update U and a set E„ of substitu- 
tions ov for all the variables of U. 

Output. T', an updated version of T. 

Procedure. A sequence of four steps: 

Step 1. Maintain the closed-world assumption. To maintain the closed- 
world assumption, all datoms in (w)^ and (<£)»„, for all <rv €Er, must be repre- 
sented in the completion axioms of T. First change the body of T to reflect the 
new completion axioms: for each datom g that is a subformula of some (u)0v or 
(^)<r„ but not of T, let So be the set of substitutions <r such that for some datom 
/ of the body of T, / unifies with g under the most general substitution o. If E0 

is the empty set, then add ->g to the body of T; otherwise, add the wff 

9  -   V ° (!) 
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to the body of T. Then for every datom g of T not represented in the completion 
axioms, add a disjunct representing g to those axioms. Call the resulting theory 
T. 
Step 2. Make history. For each atom / of the body of T' that unifies with an 
atom of (u>)trv for some av€TZv, replace all occurrences of / in the body of T' by 
the history atom H(f, U). In other words, replace the body B of T' by (B)<,B- 
Step 3.  Define the scope of the update. For every av in H„, add the wff 

((*)».)*.-(«)•. to T'. 
Step 4. Restrict the scope of the update. For each ov and each datom / 
in <JH, let E„/ be the set of substitutions a such that / unifies with an atom of 
some (u>)„v under the most general substitution a. For each datom / in <TH, add 
the wff 

(f~H(f,U))V    V   (((*),. )m   A   (   V   ')) (2) 

to T'. Intuitively, for / an atom that might possibly have its truth valuation 
changed by update U, formula (2) says that the truth valuation of / can change 
only in a model where (4>)Vv (for some <r„) was true originally, and further that 
in any model so created, / must be unified with an atom of (<*>)*„ for that same 
<Tv       0 

Example. Let U be INSERT ->Emp(Reid, x) WHERE Emp(Reid, x), when T 
contains Emp(Reid, CSD)A Emp(Reid, ei). The alternative worlds of T initially 
consist of all worlds where Reid is in CSD and possibly one other department, and 
all else is false. After the update, T' should have one alternative world, in which 
everything is false. The set of substitutions £„ contains the two substitutions 
i=CSD and x=t\. 

Step 1. No actions are required, as both atoms that unify with (<*>)*„ are 
already in T. 

Step 2.   Upon application of <TH, the body of T becomes 
ff(Emp(Reid, CSD), U) A #(Emp(Reid, Cl), U). 

Step 3.   Two wffs are added to the body of T': 
ff(Emp(Reid, CSD), U) ->--Emp(Reid, CSD) and 
.ff(Emp(Reid, ei), U) -+-.Emp(Reid, ei). 
Because U is a simple update, at this point T already has the correct alternative 
worlds, and Step 4 is superfluous. 

Step 4.   Add to T' the following two formulas: 

(Emp(Reid, CSD) <->ff(Emp(Reid, CSD), U)) 

V (ff(Emp(Reid, CSD), U)A T) 

V (^(EmpCReid^O.^A (ei = c)) 

(Emp(Reid, ex) <->fT(Emp(Reid, ei), U)) 

V (ff(Emp(Reid, CSD), tf)A («i=<0) 

V (ff(Emp(Reid, ei), U)A T).    0 
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Please note that Version I of the Update Algorithm is a special case of 
Version II. 

The models of T' represent exactly the alternative worlds that U is defined 
to produce from T: 

Theorem 4-1. For any extended relational theory T and update U pos- 
sibly containing variables, the Update Algorithm Version II accomplishes U.     0 

In other words, T is an extended relational theory, and Worlds(T') = 
UjweModelsfT) Worlds(C/'(.M)). Readers not interested in a formal proof of cor- 
rectness for the Update Algorithm should skip to the next section. To prove 
Theorem 4-1, we will use a lemma showing that Step 1 of the Update Algorithm 
does not change the models of T. 

Lemma 4-1. Let T be a theory containing a completion axiom a for an 
n-ary predicate R, and let / be a ground datom R(ci, ..., cn) not represented 
in a. Let So be the set of all substitutions a such that for some datom g in T, 
/ unifies with g under the most general substitution a. Let T' be the theory 
created from T by adding the new disjunct (xi=CiA X2=C2A • • • A x„=c„) to a, 
and then adding ->f to the body of T if So is the empty set or adding 

<r€Eo 

otherwise. Then X and T' have the same models.     0 

Proof of Lemma 4-1. Let a' be a with the disjunct added to represent 
/, and let ß be the wff / —» (V^gE <T)- First consider the case where So is 
nonempty. 

Let M. be a model of T. Let a be the Skolem constant substitution for 
M with respect to T. M satisfies all wffs of T' other than a' and ß, since all 
other wffs also are formulas of 7". But a —*a', so M satisfies a'. As for ß, if / is 
false in M then ß is satisfied. If / is true in M, then (/)<, must be represented 
by some disjunct of {ot)a. Let g be the datom represented by that same disjunct 
in a. Then g and / unify under substitution <r, and therefore ß is satisfied in M. 
We conclude that M is a model of T'. 

For the reverse implication, let M' be a model of T and let a be the 
Skolem constant substitution for M' with respect to T'. M' satisfies all the wffs 
of T except possibly a. But if a is false in M', it must be because for some 
binding to the variables of a, the disjunct representing / is true in M', i.e., that 
/ is true in M'. But then by ß there exists a datom g of T such that / unifies 
with g under a. Since g is represented in a, M' satisfies a. Therefore M' is a 
model of T. 
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Now consider the case where Do is the empty set, i.e., where / is false in 
all models of T. Let M be a model of T. Then a-+a', and ->/ is true in M, so 
M is also a model of T'. 

Conversely, if M' is a model of T' and a is the Skolem constant substi- 
tution for M' with respect to T\ then M' satisfies all wffs of T except possibly 
a. But if a is false in M' for some instantiation of the variables of a, it must be 
because the disjunct representing / in a' is true in M'. But we know that / is 
false in M'. Therefore M' is a model of 7".     0 

Proof of Theorem 4-1. For simplicity of reference, let T be the original 
extended relational theory, T\ be the theory produced by step 1 of the Update 
Algorithm, Tjj be the theory produced by step 2, and so on. M will always refer 
to a model of the original theory, M\ to a model of 7i, and so on. We first show 
that the Update Algorithm produces a subset of the correct set of alternative 
worlds. 

Suppose that M\ is a model of T4. Let a A be the Skolem constant sub- 
stitution for MA with respect to T*. Our goal is to show that U should produce 
Mi from some model M of T. It suffices to show that T\ has such a model M, 
because by Lemma 4-1, the models of T and 71 are the same. 

Let T be the set containing all datoms / in an- Let M be a model that 
has same universe and constant and Skolem constant mappings as MA, and that 
agrees with Mt on the truth valuations for all null-free datoms except possibly 
those in {F)<,A, that is, except those obtained by applying a A to datoms in T. If 
/ is in T, then let the truth valuation of / in M be the same as that of H(f, U) 
in MA. To show that M is actually a model of 7i, let a be a wff of the body of 
T\. The descendant of a in TA is (a)OH. Since M and M4 agree on the truth 
assignments to all atoms of (a)ffB, therefore (a)*B must be true in M. This 
implies that a will be true in M if every atom / of T that is a subformula of a 
has the same truth assignment in M as does H(f, U) in M and M4. But this is 
true by definition. As the completion axioms are the same in both theories, we 
conclude that M is a model of T\ and T. 

It remains to show that U applied to M produces the alternative world 
of MA. Let S^ be the set of all <xv in £„ such that {4)0v is true in M. By 
the previous argument, ((<!>)*„ )aB is satisfied by MA iff av 6S^. By the formula 
of Step 3, it follows that (w)<r„ is true in MA for all av €S^, so rule 2 of the 
definition of INSERT is satisfied by MA- For rule 1, if the truth valuation of a 
null-free datom / is different in M and MA, then /G(^")«r4 and therefore / unifies 
with an atom of (w)*,, for some set of av£Y:v. If (</>)„„ is false in M for all such 
<T„, then by formula (2), f+->H(f, U) must be true in MA, and rule 1 is satisfied. 
We conclude that U produces the alternative world of MA from M. 

We have shown that the Update Algorithm produces only correct alter- 
native worlds; we now turn to the question of completeness: does the Update 
Algorithm produce every alternative world that should be derived under VI 
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Let M be a model of T, and let o\ be the Skolem constant substitution 
for M with respect to T and U. By Lemma 4-1, M is also a model of Tx. 

Let S^ be the set of all substitutions <TVE^V such that (<f>)g,„ is true in M. 
Select one particular set v of truth valuations for the atoms of ((w)»«)»i> for all 
<7»€l!0, such that (u>)fft, is true under v for all <7„EE^ and v is satisfiable. If no 
such v exists, then U produces no alternative worlds from M, and the theorem 
follows. 

Let M4 be the model that agrees with v on all datom valuations of v; 
where H(f, U) is assigned the same valuation as / had in M, for all datoms / in 
<?H\ that has the same universe and constant and Skolem constant mappings as 
M; and that agrees with M on all other null-free atom truth valuations. Then 
M\ is a model of an arbitrary alternative world that should be produced by U 
from M, and we claim that M4 is a model of T4. 

Let <rv be a substitution in E„. First, M4 satisfies the completion axioms 
of 74, as every datom of {u})<Tv already is a subformula of T\, and T4 and T\ have 
identical completion axioms. For atoms / in (u})„v, since H(/, U) has the same 
truth valuation in M\ as does / in M, it follows that M4 satisfies (B)ffB, that 
is, all the formulas of the body of 7i, to which an was applied in Step 2. Since 
(u>)<r„ is true in M\ if av^Z^, the wff ((<j>)9v)ITB-»(u;),^ added to % in Step 3 
is satisfied in T*. There is only one remaining class of wfFs of T4 that M.4 might 
not satisfy: formula (2) from Step 4. 

Let / be an atom in T. If / and H(f, U) have the same truth valuations in 
A<4, then formula (2) is satisfied. If/ and H(f, U) have different truth valuations 
in M4, then {f)ai must appear in v, and therefore also in ((u)g,v)<ri for some 
<7„€£0. Therefore (<£),,, must be true in M, and ((<£)»„ )<rH must be true in MA. 

This implies that formula (2) is satisfied, since o-iA((<^)<Tu)<TH is true in M4. We 
conclude that M4 is a model of T4, and the alternative world of M4 is produced 
by the Update Algorithm. 

It remains to verify that % is an extended relational theory. % has dis- 
juncts in its completion axioms for exactly the datoms in its body. The body of 
% is still finite and contains no variables. This concludes the proof of correctness 
for the Update Algorithm.     0 

The computational complexity of Version II of the Update Algorithm de- 
pends on the size of £„. In particular, if V is the number of members of S„, then 
the number of atoms that are added to T will be as much as V times greater 
than that added by the same steps in Version I. Of course the same relationship 
holds between ordinary relational database insertions with and without variables. 
The time complexity of Version II will likewise by multiplied by a factor of V 
worst case: Ö(V log R(nmk + m?k2)). 

4.4. An Update Algorithm: Variables in Body 

This section presents an update algorithm for use with extended relational the- 
ories with arbitrary formulas in the theory body. This technique is of particular 
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interest, as it gives a method of updating theories for non-database applications. 
Having variables in the theory body makes more work for the query processor, 
but as we will see, makes life much easier for the update processor. 

First, the definitions given earlier for extended relational theories, sub- 
stitution, unification, etc., need to be modified slightly. Piease note that these 
definitions are in effect for the remainder of this chapter only; subsequent chapters 
will revert to the original definitions. The changes needed are as follows: 

• Substitutions: A variable may be substituted for another variable. For 
example, the atomic formulas Emp(Reid, x) and Emp(y, z) now unify 
under substitution Reid=yA x=z. 

• Variables are permitted in atoms and datoms. For example, Emp(Reid, 
x) and Emp(y, z) are now both datoms. 

• An extended relational theory may now be any finite theory; that is, the 
extended relational theory contains only a body, which may be any finite 
set of wffs. All free variables in the theory are implicitly universally quan- 
tified over the scope of the formula in which they occur. As before, only 
standard models will be considered. 

What happened to the completion axioms? Since quantifiers are now 
permitted in theory bodies, there is no reason to separate out the completion 
axioms from the rest of the theory. To implement a closed-world assumption for 
a predicate R, it suffices to include the wff Vxi • • • Vx„-«i2(ii,..., x„) in the body 
at the inception of the theory. Subsequent updates will maintain the closed-world 
assumption automatically, by modifying that formula. The examples given after 
the presentation of the new update algorithm will illustrate this technique. 

Though the definitions of extended relational theories and other technical 
terms are changed slightly for this section, update syntax and semantics remain 
exactly as presented in Sections 4.1 and 4.2. 

With these formalities out of the way, we turn to the main result of this 
section: a very simple version of the Update Algorithm accomplishes updates 
containing variables. This algorithm, Version III, adds only Oik) atoms to the 
size of the theory, where k is the size of the update. This is in contrast to Version 
II, which depends directly on the number of instantiations of variables in Er 

(given to Version II as part of its input), and on the number of datoms in the 
theory that unify with datoms in the update. Further, this independence from 
E„ means that Version III works correctly even for updates with unsafe selection 
clauses—e.g., an infinite number of relevant instantiations of variables—and also 
for universe elements that are not named in C Version II, on the other hand, 
is restricted to safe selection clauses and bindings of variables to constants and 
Skolem constants in C. We now present the Update Algorithm Version III. 

The Update Algorithm (Version III) 
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Input. A theory T and an update U possibly containing variables. 

Output. T', an updated version of T. 

Procedure. A sequence of three steps: 
Step 1. Make history. Let an be the substitution that replaces each atom / 
of T and U that unifies with an atom of u by its history atom H(f, U). Then 
replace all occurrences of / in T by H(f, U). In other words, replace the body B 
of T by (ß)«rH. Call the resulting theory V. 
Step 2. Define the scope of the update. Add the wff (<j>)OB-+w to V. 

Step 3. Restrict the scope of the update. Let j/i through y„ be the variables 
appearing in U. For each n-ary predicate R that appears in u, let ii through 
xn be variables not appearing in T', and let E„ be the set containing all most 
general substitutions a such that R{x\,..., x„) unifies with a datom of w under 
a. Add the wff 

(ß(x1,...,i„)^ir(Ä(x1,...,xn),^))v3yi---3yn((^)<THA   \j   <r) 
<7i,€St 

to T.     0 

Example. Let T contain the single wff VxVjn Emp(x, y), and let U 
be the update INSERT Emp(Reid, CSD) WHERE Emp(Reid, EE). As there are 
no employees initially in T, this update should not change any datom truth 
valuations. Step 1 changes T to the wff VxVy-> H(Emp(x, y), U); Step 2 adds 
the wff fT(Emp(Reid, EE), U) -> Emp(Reid, CSD); and Step 3 adds the wff 
(Emp(xi, x2) <-if(Emp(xi, x2), U))V3yi3y2 (fT(Emp(Reid, EE), U) A (ya = 
Reid) A (y2 = CSD)). 
Clearly there are still no employees after the update.     0 

Example. Let T contain the wff VxVy Emp(x, y) -►(x=Reid) A y=e). 
The models of this theory have either no employees or just one employee, Reid 
in some one department. Let U be the update INSERT Emp(Reid, CSD) WHERE 
Emp(Reid, EE). This update should change all models where Reid is in EE so 
that Reid is now also in CSD. Step 1 changes T to the wff 

VxVy-. H(Emp(x, y), U) -*(x=Reid A y=e). 
Step 2 adds the wff ff (Emp(Reid, EE), U) -► Emp(Reid, CSD); and Step 3 adds 
the wff 
(Emp(x!, x2) «-^(EmpCxj, x2), U))V3y!3y2 (fT(Emp(Reid, EE), U) A (Vl = 
Reid) A (y2 = CSD)). 
Again the correct models obtain.     0 

Example. Let T contain the wffs Emp(Reid, CSD), Emp(Lantz, EE), and 

" Emp(x, y) - (((x = Reid) A (y = CSD)) 

V((x=Lantz)A  (y = EE))). 
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Let U be the update INSERT Emp(y, CSD) WHERE Emp(y, EE). After this update 
is completed, T should have one alternative world, in which Reid is in CSD and 
Lantz is in CSD and EE. After the history substitution step, T' contains the 
three formulas 

#(Emp(Reid, CSD), U), 

ff(Emp(Lantz, EE), U), and 

ff(Emp(x, y), U) -+ 

(((x = Reid) A (y = CSD)) V 

((x = Lantz) A (y = EE)). 

Step 2 adds the formula 

#(Emp(y, EE), U) - Emp(y, CSD) 

to T; and Step 3 contributes the formula 

(Emp(xi, x2) <-+ (.ff(Emp(xi, x2), U)) 

V 3 y(#(Emp(y, EE), U) A (Xl = y) A (x2 = CSD))).     0 

Theorem 4-2. Let T be a theory, let U be an update possibly containing 
variables, and let T' be the theory produced from T and U by the Update 
Algorithm Version III. Then T accomplishes U.     0 

Proof of Theorem 4-2. We begin by showing that the Update Algorithm 
Version III produces a subset of the correct set of alternative worlds. 

Suppose that A4 3 is a model of T%. Let 0-3 be the Skolem constant sub- 
stitution for A4 3 with respect to T3. Our goal is to show that U should produce 
A4 3 from some model A4 of T. 

Let T be the set containing all datoms / in OH- Let A4 be a model with 
the same universe and constant and Skolem constant mappings as A4 3, and that 
agrees with A4 3 on the truth valuations for all null-free datoms except possibly 
those obtained by binding universe elements to the variables in {F)<,aJ If / is in 
T, and b is a binding for all the variables of /, then let the truth valuation of 
(f)b in A4 be the same as that of (H(/, U))b in A4 3. 

To show that A4 is actually a model of T, let a be a wff of T. The 
descendant of a in T$ is {a)aB. For any binding b of elements of the universe 
to all the variables of (a)aB, A4 and A43 agree on the truth assignments to all 
atoms of ((a)aB)b, and therefore (a)„B must be true in A4. This implies that 
(a)b will be true in A4 if for every atom / of F that is a subformula of a, the 
datom (f)b has the same truth assignment in A4 as does (H(f, U))b in A4 and 
A4 3. But this is true by definition. We conclude that A4 is a model of (T)„z and 
T. 

t To be strictly correct, rather than talking about binding universe elements to variables, 
we should extend £ to a language in which all universe elements are named by constants, and 
then bind those constants to variables. 
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It remains to show that U applied to M produces the alternative world 
of M3. Let £4, be the set containing all bindings 6 for all the variables of U such 
that (<f>)b is true in A4. By the previous argument, {(<t>)b)tTH 

1S satisfied by 
Mz iff b eS^. By the formula of Step 3, it follows that (u)b is true in M3 for 
all b eS^, so rule 2 of the definition of INSERT is satisfied by A4 3. For rule 1, 
if the truth valuation of a ground datom / is different in A4 and Mz, then / is 
not a subformula of any member of ti. Therefore for every binding b to all the 
variables of U such that / appears in ((w)*)^, it follows that b£ £4,, and {<f>)b 
is false in M. <f> is false in M. But then by the formula of Step 3, f*-+H{f, U) 
must be true in Mz, and rule 1 is satisfied. We conclude that U produces the 
alternative world of M 3 from M. 

We have shown that the Update Algorithm produces only correct alter- 
native worlds; we now turn to the question of completeness: does the Update 
Algorithm produce every alternative world that should be derived under U? 

Let M be a model of T, and let a be the Skolem constant substitution 
for M with respect to T and U. Let £^ be the set of all bindings b for all 
the variables of U such that (<f>)b is true in M. Select one particular set v of 
truth valuations for the atoms of ((u)b)a, for all &€£^, such that ({u)b)a is true 
under v for all &€£^ and v is satisfiable. If no such v exists, then U produces no 
alternative worlds from M, and the theorem follows. 

Let A43 be the model that has the same universe and constant and Skolem 
constant mappings as M; that agrees with v on all datom valuations of v; where 
(H(f, U))b is assigned the same valuation as (/)& had in M, for all datoms / in 
an and bindings b to the variables of /; and that agrees with A4 on all other 
null-free atom valuations. Then M3 is a model of an arbitrary alternative world 
that should be produced by U from M, and we claim that A4 3 is a model of T3. 

For atoms /inw, since H(f,U) has the same truth valuation in A43 as 
does / in A4, it follows that AI3 satisfies (B)trB, that is, all the formulas of the 
body of T, to which an was applied in Step 1. Let b be a binding for all the 
variables of U. Since (u>)j is true in A<3 if &€£*, the wff {4>)OB~*

U3
 added to T3 

in Step 2 is satisfied in T3. There is only one remaining class of wffs of T3 that 
A4 3 might not satisfy: the formula from Step 3. 

Let / be an atom, and let b be a binding for all the variables of /. If ((/)„ )b 
and ((#(/, U)),r)b have the same truth valuations in A43, then the formula of 
Step 3 is satisfied when ii through i„ are bound to the corresponding arguments 
of /. If they have different truth valuations in A4 3, then (f)„ must a member of 
{?)*, and ((f)„)b must appear in v, and therefore also in ((w)6')<y for some 6'GS^. 

This implies that the formula of Step 3 is satisfied for /, since ((<£)&')» is true in 
A43. We conclude that A43 is a model of T3, and the alternative world of A43 is 
produced by the Update Algorithm. This concludes the proof of correctness for 
the Update Algorithm.     0 

4.5. Summary and Conclusion 

In this section we have extended the definitions and algorithms of Chapter 3 
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to include updates containing variables and extended relational theories with 
arbitrary formulas in their bodies. A very simple update algorithm, Version III, 
was proven sufficient to perform these updates when quantifiers and variables 
are permitted in the theory bodies. If quantifiers are not allowed, Version II of 
the Update Algorithm may be used. The time complexity and the length of the 
wffs added to the extended relational theory in Version II are V times greater 
than those of Version I, where V is the number of sets of substitutions for the 
variables of the update that are to be considered during update processing. In 
contrast, Version III adds to the extended relational theory only a number of 
atoms that is linear in the size of the update request, but makes query processing 
more difficult. Version III is also of interest as a method of updating arbitrary 
logical theories. 
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Chapter 5: Lazy Evaluation of Updates 

Delayed, but nothing altered. —Shakespeare, Romeo and Juliet J.4 

As Chapters 1-4 have shown, first-order logic provides an adequate frame- 
work for an examination of updates to databases containing incomplete informa- 
tion. However, from a practical point of view, updates can be quite expensive 
when Skolem constants occur in the extended relational theory. The cost of an 
update can be measured as a function of the increase in the size of the theory 
that would result from execution of the update, and by measures of the expected 
time to execute the update and to answer subsequent queries. Once a data- 
base administrator has established a policy on when an update is too expensive, 
the techniques of this chapter can be used to recognize and defer or reject too- 
expensive updates and queries. This involves use of a lazy evaluation technique 
to delay execution of expensive updates as long as possible. 

Recall from Theorem 3-2 that when the extended relational theory T 
contains n atoms containing Skolem constants, a series of m updates of size k 
each may cause the size of T to grow by 0(nmk + m2fc2). This potential growth 
is much too large, yet large growth (at least ö(nm)) is unavoidable if the effect 
of an update is to be represented directly in the extended relational theory, for 
in the worst case every datom of T that unifies with a datom of the update 
must be changed in some way in T. In some sense the information content of 
a single update is no more than its size, k, and so growth of more than 0(mk) 
after m updates is too much. We can achieve growth of no more than 0{mk) 
by simply storing the updates without incorporating them into T. However, 
since the usual means of query answering presupposes some means of integrating 
updates with the rest of the database to allow satisfiability testing, a means of at 
least temporary incorporation must be offered. This chapter puts forth a scheme 
of delayed evaluation and simplification of expensive updates based on bounding 
the permissible number of unifications for the atoms of an incoming update. We 
begin with a general overview and a series of examples. 

There is a lot to be said about lazy evaluation, and only part of this story 
is told here. As this chapter began to loom over the others in sheer bulk, the 
author chose to err on the side of informality rather than overload. Died-in-the- 
wool theorists will recognize that numerous additional theorems must be included 
in any definitive treatment of lazy evaluation; non-theorists will see a need for 
further elaboration and refinement of the cost estimation techniques used in lazy 
evaluation. 
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5.1. Overview and Motivation 

The first element of a system for cost reduction of too-expensive updates is a 
cost evaluation function, so that we can decide which updates are too expensive 
to execute. If an incoming update U is determined to be too expensive, we will 
not execute U, but instead set U aside in the hopes that either no queries will be 
asked that require processing U completely, or intervening updates will reduce 
the cost of U sufficiently before it must be executed. 

As the main data structure for this lazy evaluation scheme, we propose to 
use a lazy graph, a directed acyclic graph that keeps track of data dependencies 
between updates. The lazy graph helps minimize the amount of updating that 
must be performed before executing an incoming query Q, and keeps track of 
relevant update sequencing information. Some examples will clarify the potential 
benefits. 

Example. The effect of the two updates INSERT Emp(Reid, CSD) WHERE 
T and INSERT ->Emp(Reid, CSD) WHERE T is dependent upon the order in which 
they are executed; if these two are stored away for lazy execution, we must make 
sure that any eventual processing of them is done in the order in which they 
were received. On the other hand, neither of these two conflicts with the update 
INSERT Emp(Reid, CSL) WHERE T, which could be performed before, after, or 
between the other two.      0 

This example suggests a parallel between lazy evaluation sequencing con- 
trol and concurrency control [Papadimitriou 86]. The main difference is that in 
database concurrency control, any execution equivalent to some serial execution 
is correct, while sequencing control requires that the execution be equivalent to 
the original update input order. 

Example. Suppose the update U': INSERT e =CSD WHERE T is received 
while the update U: INSERT Emp(Reid, e) WHERE T is still unexecuted. Unlike 
information about the truth valuations of datoms, information about the bindings 
of Skolem constants is permanent and once asserted can never be refuted, only 
refined. (For example, if the user follows U' by the update INSERT e=CSL WHERE 
T, then T will become inconsistent.) This pleasant property of permanence allows 
us to use the new information in V about the value of e to simplify not only T, 
but also the pending update U: U can now be reduced to INSERT Emp(Reid, 
CSD) WHERE T, which may well be affordable enough to execute directly even if 
INSERT Emp(Reid, c) WHERE T is not.      0 

Example. Another potentially useful feature is the ability to execute only 
part of an update, leaving the more expensive part for later incorporation. For ex- 
ample, suppose the update U: INSERT Emp(Reid, e)AMgr(Nilsson, CSD) WHERE 
T is too expensive only because Emp(Reid, e) unifies with too many datoms of T. 
If a user later asks a query involving only Mgr(Nilsson, CSD), it is advantageous 
to split U into the two updates Ux: INSERT Mgr(Nilsson, CSD) WHERE T and U2: 
INSERT Emp(Reid, e) WHERE T and only execute U\ before processing the query. 
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U\\ INSERT Mgr(Nilsson, e)A Emp(Reid, e) WHERE T 

U2: INSERT Emp(Reid, CSL) WHERE 

Q: INSERT Q(Reid) WHERE Emp(Reid, CSL) A Emp(Reid, CSD) 

Figure 5-1. Example of lazy evaluation. 

Example. Suppose an update Ui\ INSERT Mgr(Nilsson, e) A Emp(Reid, 
e) WHERE T arrives in the system, followed by the update U2: INSERT Emp(Reid, 
CSL) WHERE T. Then U2 and possibly Ui as well contain new information about 
the truth valuation of Emp(Reid, CSL); both of these updates may write new 
information about Emp(Reid, CSL) into T. In the language of concurrency 
control, there is a write/write conflict between Emp(Reid, e) in Ux and Emp(Reid, 
CSL) in U2; the lazy graph of figure 5-1 depicts these relationships. Suppose that 
the query Q: INSERT Q(Reid) WHERE Emp(Reid, CSL) A Emp(Reid, CSD) arrives 
next. (We have not formally defined queries yet; think of them as establishing 
a new relation that gives a view of the current database.) A read/write conßict 
occurs when one update "reads" a datom (i.e., the datom occurs in <j>) that a later 
update "writes". There are read/write conflicts between Emp(Reid, CSL) of Q 
and Emp(Reid, e) of JJ\ and Emp(Reid, CSL) of U2, and between Emp(Reid, 
CSD) of Q and Emp(Reid, e) of U\, as depicted in figure 5-1. 

Assuming that both Emp(Reid, e) and Mgr(Nilsson, e) in Ui are too ex- 
pensive to execute because they unify with too many datoms of T, the best 
procedure is to first split Mgr(Nilsson, e) out of Ux, as depicted in figure 5-2, 
creating updates U3 and U4. 

Then U* needs to be split on the two substitutions e=CSL and c =CSD, 
creating updates Ui, Ut, and U7, depicted in figure 5-3. At this point Q and the 
updates Q depends upon are more likely to be affordable.     0 

With the algorithm and data structures presented in this chapter, if a 
query is rejected due to excessive expense, exact reasons for the high cost can 
be made available to the caller, so that assertions about the possible bindings 
for Skolem constants may be used to reduce the amount of uncertainty in the 
database and render the query affordable. Furthermore, any new binding infor- 
mation can be used to reduce the size of the extended relational theory, in effect 
retroactively reducing the cost of all earlier updates that contained those Skolem 
constants. 
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U3: INSERT Mgr(Nilsson, e) WHERE T 

U4: INSERT Emp(Reid, e) WHERE T 

U2: INSERT Emp(Reid, CSL) WHERE T 

Q: INSERT Q(Reid) WHERE Emp(Reid, CSL) A Emp(Reid, CSD) 

Figure 5-2. Lazy evaluation horizontal split. 

These examples should suffice to give a flavor of the possible advantages of 
a lazy evaluation scheme. We now turn to the details of lazy evaluation, beginning 
with a definition of queries. The lazy graph data structure is then presented 
formally, followed by an algorithm for adding incoming updates and queries to 
the lazy graph. After a presentation of the Lazy Algorithm, the remainder of the 
chapter is devoted to a discussion of splitting techniques. The chapter concludes 
with a measure of the benefits afforded by lazy evaluation. 

U3: INSERT Mgr(Nilsson, e) WHERE T 

U7: INSERT Emp(Reid, e) WHERE (e#CSL)A(e^CSD) 

U6: INSERT Emp(Reid, CSD) WHERE e=CSD 

U5: INSERT Emp(Reid, CSL) WHERE e=CSL 

U2: INSERT Emp(Reid, CSL) WHERE T 

V 
Q: INSERT C?(Reid) WHERE Emp(Reid, CSL) A Emp(Reid, CSD) 

Figure 5-3. Lazy evaluation vertical split. 
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5.2. Queries 

We define a query as a temporary materialized view, to wit, a short-lived rela- 
tion. In keeping with our emphasis on mechanism rather than policy, we do not 
define what the user should actually "see" as output from a query. A user inter- 
face routine will be in charge of optimizing and reformulating the view relation 
produced by the query execution mechanism into a format judged acceptable for 
human or programmatic consumption. In this thesis only the process of creation 
of that view relation is of concern, not its display. 

Syntactically, queries take the form INSERT Q (ci,..., c„) WHERE <j>, where 
4> is a wff of the language C not containing history atoms or variables, Q is an 
n-ary predicate not in £, and ci through c„ are constants or Skolem constants of 
£. Note that Q cannot contain variables. Of course, in any database application, 
queries almost always contain variables, so this may seem a peculiar choice of 
definition for Q. The goal of this chapter, however, is to explore the issues 
arising in lazy evaluation and to present mechanisms for the basic tasks of lazy 
evaluation, much as the goal of Chapter 3 was to introduce a semantics for 
updates and to explain the basic technique for implementing such a semantics in 
polynomial time. As was the case in Chapter 3, the presence of variables in the 
operations under consideration would only obscure the principles at play. For 
that reason variables are not permitted in queries in this chapter. In like manner 
as the incorporation of variables into updates in Chapter 4 did not require major 
departures from the paradigms laid down in Chapter 3, the generalization of lazy 
evaluation to queries and updates containing variables will not involve radical 
changes in the techniques proposed here. 

When the query Q arrives, the first step in handling Q is to add the new 
predicate Q to C and create a completion axiom Vxi • • • Vx„-iQ(xi,..., x„) and 
add it to T. (Q and its completion axiom can be flushed from the system once 
the user interface routine is done with it.) Q is then added to the lazy graph 
like any ordinary update request (Section 5.5). In fact, the only major difference 
between a query and an ordinary update request is that query Q must be either 
executed or rejected right away. The Lazy Algorithm (Section 5.6) will determine 
whether to accept or reject Q. 

5.3. Cost Estimation 

The first element of a system for lazy evaluation of too-expensive updates is a cost 
estimation function, so that we can decide which updates are too expensive to 
execute. Recall that one precious commodity in the system is the space required 
for extended relational theory storage. In fact, in the update algorithms discussed 
in previous chapters, the time to execute an update was just a logarithmic factor 
higher than the amount of additional space that the update added to T. In lazy 
evaluation, the time required to answer a query will be traded off against the 
amount of space occupied by the extended relational theory; with lazy evaluation 
a large number of unexecuted updates may require attention before a query can 
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be answered. The techniques proposed in this chapter have the goal of minimizing 
storage space, necessarily to the detriment of query response time. In other words, 
in this discussion of lazy evaluation, an expensive update is one which adds too 
many atoms to the extended relational theory.1. 

The 80/20 rule says that in an ordinary database, 80% of the queries 
reference at most 20% of the data; 80% of that 80% (i.e., 64%) only reference 
at most 20% of that 20% (i.e., 4%); and so forth. Because of the 80/20 rule, 
we have assumed that executed updates are permanently incorporated into the 
extended relational theory T. The alternative is to integrate the update with T 
during query execution, but then abort the update at the end of query execution 
to save space in T. However, the 80/20 rule implies that if an update requires 
execution once, it will probably require execution again, and we might as well 
save the recomputation costs. Note, however, that this is based on a particular 
tradeoff between computation and storage costs, and one might take a different 
view in a system where processing was expensive and storage was affordable. 

The amount of space consumed by an update U is proportional to the 
number of relevant (in a sense to be made precise later) unifications of datoms 
in T with atoms of U. To control the amount of space consumed by U, lazy 
evaluation estimates the number of datoms added to T by each step of the Update 
Algorithm while U is being executed, and refuses to execute U if this estimate is 
excessive. 

The cost estimate and cost bound for an incoming update or query are 
to be computed by functions supplied by the database administrator. The cost 
functions must satisfy the following requirements: 

1. The cost estimation function may overestimate but never underestimate 
the costs (as defined by the database administrator) associated with a set 
of updates. 

2. The cost estimate function and bound function must be computable from 
the information stored in the lazy graph. 

The cost information provided in the lazy graph includes a count of the 
number of datoms in T that unify with datoms of u>, as these unifications cause 
most of the expense incurred when executing an update. The cost estimation 
function will presumably rely heavily on this unification count. The obvious 
algorithm for unification counting is to use index lookup and Skolem constant 
instantiation until no more relevant unifications are found or else the cost of 
the unifications found so far exceeds the cost bound. For example, to count the 
number of datoms of T that unify with Emp(Reid, CSD), assuming that the 
database has indices on both Employees and Departments, begin by looking up 
Reid and all Skolem constants in the Employees index, and look up CSD and all 
Skolem constants in the Departments index. Then do a set intersection on the 

t If query response time is a problem, then over-zealous lazy evaluation algorithms may 
be curbed by introducing constraints on the lazy graph (e.g., restrictions on height, flexible 
update cost limits, etc.). 
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two sets of tuple pointers thus generated, and count the number of pointers in 
the intersection. 

Queries also have associated storage costs, for their temporary view rela- 
tions. The bound function might well choose to allot much more space to queries 
than to updates, since that space will only be used temporarily. 

Unification counting and cost estimation should be performed with a bit 
of optimization, and that is where the phrase "relevant occurrences" comes into 
play. The algorithms below use a test for satisfiability of bounded-length for- 
mulas to determine relevance. Other optimizations are also possible: an efficient 
implementation of the cost estimation procedure given below might do a much 
more thorough job of detecting spurious unifications. For example, any obviously 
"impossible" substitutions can be discounted: though Emp(Reid, CSD) unifies 
with Emp(e, CSD), there is no need to count that unification if the wff where 
Emp(c, CSD) occurs in T is Emp(e, CSD)Ae=Nilsson; that unification is not 
relevant, because the two wffs are not simultaneously satisfiable. Such optimiza- 
tions will be part of the heuristic component of an implementation of the Update 
Algorithm, and will be important also for any user interface routine for query 
answering. The choice of optimizations beyond that required by algorithms given 
here is left to the implementor. 

5.4. The Lazy Graph 

The lazy graph is the data structure needed for lazy evaluation. In the lazy graph, 
nodes represent the atoms of updates. Update hyperedges group atoms into 
updates. Family hyperedges associate updates that are descended via splitting 
from the same original update. In addition, there is a directed arc between two 
nodes if the atom labels of the two nodes unify and cause one update to become 
dependent upon the results of the other. More formally, the lazy graph contains 
the following information: 

1. A set of nodes. Each node is labelled with a datom or history atom, 
and cost information. 

2. A set of update hyperedges. Each node is on one update hyperedge. 
Each update hyperedge is labelled with an update or query, such as U: INSERT 
Emp(e, CSD) WHERE T, and flagged as being either unexecuted (hereafter called 
pending) or executed. 

3. A set of family hyperedges. Each node and update hyperedge is con- 
tained in one family hyperedge. Each family hyperedge is labelled with an update 
or query, such as U: INSERT Emp(e, CSD) A Mgr(Nilsson, CSD) WHERE T, and 
flagged as being either an update or query. In addition, each family hyperedge 
has an associated cost bound. 

4. A set of directed labelled arcs between nodes. Each arc is labelled with 
a substitution. These arcs represent dependencies between updates. 

5. A set of directed uniabeied arcs between nodes. These arcs represent 
implied dependencies, such as that between u of an update and <f> of the same 
update. 
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We have chosen not to store cost estimate information for equality atoms, 
and hence they are not included in the lazy graph. This choice was made because 
equality atoms will be instrumental in reducing the size of the extended relational 
theory by eliminating Skolem constants, and we therefore felt that an actual and 
estimated cost of zero was most appropriate for any optimized implementation 
of the Update Algorithm. 

The main expense in an update is typically due to datoms in u>. For exam- 
ple, if Ü! is the update INSERT Emp(Reid, CSD) V Emp(Reid, CSL) WHERE T, 
and U2 is the update INSERT e=CSD V e=CSL WHERE T, then these two updates 
have the same size. Yet a count of the wffs added by the Update Algorithm shows 
that U\ will cost at least 5 times as much as J72 under the Update Algorithm— 
and that minimum is attained if no datom of u> of U\ is an implicit subformula 
of T. Therefore it seems reasonable for non-data atoms (i.e., atoms that are not 
datoms) to be assigned much lower cost estimates than other types of atoms in w. 
For datoms g that occur only in 0, again a lower estimate would be appropriate. 
Except for Step 1 of the Update Algorithm, g will take up no more space than a 
non-data atom, so only if Step 1 is required for g will g be more expensive than 
a non-data atom. 

We distinguish between update and query execution, or the incorporation 
of an update or query into the extended relational theory; update and query 
processing, or the act of reforming the lazy graph to make a particular update 
or query executable; and update and query addition, or the act of adding a new 
update or query to the lazy graph. These three phases are the topics of the next 
three sections. 

5.5. The NAP Algorithm: Addition of Incoming Updates and Queries 
to the Lazy Graph 

The NAP algorithm will be used in two scenarios: When an update or query U 
arrives in the system, the NAP algorithm adds U to the lazy graph as the first 
member of a new update family. If U needs to be incorporated into the extended 
relational theory, we then process and execute U. In addition, when an update is 
split into two subupdates, the NAP algorithm is called to add those subupdates 
to the lazy graph. In this case, the split-off updates are members of the same 
update family as the original update. 

The NAP algorithm talks about updates containing history atoms. History 
atoms in updates! Is nothing sacred? Fear not, users still cannot mention history 
atoms in updates; history atoms are only present for technical reasons: they creep 
in when an update is split. For now, ignore any mysterious terminology, and all 
will be revealed in Section 5.7. 

A helpful example of the operation of the NAP algorithm appears in Figure 
5-4. 

The NAP (Node Addition Procedure) Algorithm. 
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Input: A lazy graph G and a request U, flagged as an update or query; and the 
preexisting update family to which U belongs, if any. 

Output: A new lazy graph G' containing U. 

Procedure: A sequence of three steps: 

Step 1. Add nodes and hyperedges. For each non-equality atom g of U, add 
a node labelled g to G. Add a new update hyperedge to G containing exactly the 
new nodes, and label that hyperedge with U. If U defines a new history atom, 
also add a node labelled with that atom to the hyperedge. Mark the update 
hyperedge as pending. If U is to be part of a preexisting update family, then 
add its nodes to the hyperedge for that family; otherwise (1) create a new family 
hyperedge, labeled with U, (2) mark the family hyperedge as a query or update, 
as appropriate, and (3) compute the family hyperedge cost bound. Call the new 
graph G'. 

Step 2. Add relevant arcs. Intra.-upda.te arcs. Let n and n' be two different 
nodes on the update hyperedge for U. If n is in u of U and n' is in <f> of U, then 
add an unlabeled arc from n to n'. These arcs represent the fact that the truth 
valuations for the atoms in u after U is executed will depend upon the truth 
valuations for the atoms of <f> at the time U is executed. 

History atom definition axes. If a history atom h of U also is the label of 
a node of a pending update U', then add an unlabeled arc from h in U' to the 
node h of U. This ensures that history atoms are defined before they are used. 

inter-update arcs. If any update hyperedges other than U are pending, 
then the effect of executing U may depend upon the results of those other updates. 
Let U' be a pending update hyperedge of G' other than U. Let / be the label 
of a node on the update hyperedge U', and g the label of a node on the update 
hyperedge U. Place a directed arc labelled a from node / to node g if 

(1) / unifies with g under the most general substitution <r; and 

(2) af\<t>u and at\(j>u' are both satisfiable; and 

(3) if <t>u logically entails a wff a containing only equality atoms, then 4>v Aa 
is satisfiable; and either 

(4a) (write/read conflict) / is a subformula of u> of U' and g is a subformula of 
4> of U; or 

(4b) (read/write conflict) / is a subformula of <f> of U' and g is a subformula of 
u of U; or 

(4c) (write/write conflict) / is a subformula of w of U' and g is a subformula 
of u) of U. 

Explanations and examples of these tests appear after the algorithm. 

Step 3. Record cost information. As input to the cost estimation function, 
cost information must be recorded for each node of U that is labelled with a 
datom g. Record whether g is a subformula of T or is the label of any ancestor 
of g in the lazy graph. (In the latter case, g would appear in T by the time U 
is executed.)  Also record the number of different datoms occurring in T or on 
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labels of ancestors of g that unify with g, up to a preset limit /. If the limit / 
is reached, then also record the fact that the unification count terminated early 
due to cost overrun.     0 

The unification count limit / is used to ensure that estimating the cost of 
an overly-expensive update does not take as much time as it would to execute it. 
The correct value for the limit / depends on the cost bound for that particular 
update family, and should be set so that the unification count for any affordable 
update will not exceed /. 

In Step 2 of the NAP Algorithm, tests (1), (2), and (3) ensure that the 
conflict is relevant. If test (1) is failed, then there can be no conflict between U 
and U' on the basis of / and g, because those two atoms do not even unify. For 
example, Emp(Reid, CSD) and Mgr(Nilsson, CSD) cannot cause a conflict. 

Test (2) of Step 2 ensures that the unification under which the conflict 
occurs can actually materialize in some model. For example, let U be INSERT 
Emp(Reid, e) WHERE Mgr(Nilsson, e) A((e = EE) V (e = CSL)), and let U' be 
INSERT Emp(Reid, CSD) WHERE T. Then a is e = CSD, and U and U' can only 
conflict in models where e is CSD. But in any model where e is CSD, the selection 
clause <f> of U must be false. Therefore U and U' cannot conflict. 

Test (3) ensures that U' and U can take place in "overlapping" sets of 
alternative worlds. Test (3) is a useful heuristic for reducing the number of arcs in 
the lazy graph without incurring much additional expense. For example, suppose 
U\ is INSERT Emp(Reid, CSD) WHERE e = CSD and Ux is INSERT Emp(Reid, 
CSD) WHERE e = EE. Without test (3), a write/write conflict would be recorded 
between these two updates, even though in fact the updates must take place in 
disjoint sets of alternative worlds. Including this unnecessary write/write arc in 
the lazy graph would force extra serialization. 

Example. Suppose the lazy graph contains the pending update U\'. IN- 
SERT Emp(Reid, ei)VMgr(Nilsson, e2) WHERE T, and the update U2: INSERT 
Q(CSD) WHERE Emp(Reid, CSD) arrives. Figure 5-4 shows the new lazy graph 
minus cost information.     0 

All Skolem constants and history atoms occurring in a pending update U 
are pinned in T until U has completed execution. This means that database op- 
timization routines cannot remove those Skolem constants and formulas from the 
database, even if they are no longer logically necessary. For example, if the data- 
base system discovers that e=Reid, at least the single wff "e=Reid" must remain 
in T until all pending updates containing e have been executed. (Alternatively, 
one might prefer to substitute the newly discovered values into the pending up- 
dates that reference them; for simplicity we do not consider this method.) If 
these atoms were not pinned, then errors might occur in execution. For exam- 
ple, suppose a user requests the update Ui: INSERT Emp(Reid, e) WHERE T as 
spon as it becomes known that Reid is definitely a member of some department. 
Suppose that U\ is too expensive to execute, and that U\ is still pending two 
weeks later when the user discovers that Reid is in CSD, that is, that e = CSD. 
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Uii    INSERT Emp(Reid,e, )VMgr(Nilssou, e2) WHERE T 
pending 

Emp(Reid, n)        Mgr(Nilsson, e2) 

ei=CSD 

Ur.    INSERT <?(CSD) WHERE Emp(Reid, CSD) 
pending 

Q(CSD)       Emp(Reid, CSD) 

Update hyperedge =   . 

Family hyperedge =  

Figure 5-4. Lazy graph example. 

This new update INSERT e = CSD WHERE T is probably affordable, so assume 
that it is executed immediately. If all mention of « is subsequently removed from 
the theory, and then Ux is finally executed, Ux will not add the fact that Reid 
is m CSD; rather, Ui will erroneously declare that Reid is in some unknown and 
unrestricted department. For this reason, history atoms and atoms containing 
Skolem constants must be pinned. 

It is important to show that the lazy graph does capture exactly the infor- 
mation needed to process all incoming updates correctly with the Update Algo- 
rithm. The arcs and hyperedges of the lazy graph induce a directed acyclic graph 
whose "nodes" are update hyperedges, and in which an arc goes from update U 
to U' if there is an arc in the lazy graph between a node of U and a node of U'. 
As is true of the entire lazy graph, this induced update graph contains no cycles, 
because when an update U is added to the lazy graph using the NAP algorithm', 
all new arcs go to nodes of U from nodes of preexisting updates. Therefore the 
lazy graph induces a partial order on updates, and one can use this ordering to 
sort the updates topologically. Recall that a topological sort of a directed acycHc 
graph is constructed by repeatedly selecting a root in the graph and deleting it 
and its incident arcs from the graph. If Ux ■ • • Un is a topological sort, then call 
the sequence Un • • • U\ a reverse topological sort. 

Theorem '5-1. Let ^•••^„bea sequence of updates and queries, and let 
T be an extended relational theory. Let G be the lazy graph created by sequen- 
tially inserting Ux through Un into an initially empty lazy graph. Let Toposort be 
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any reverse topological sort of all the updates in G. Then Worlds(Toposort(T)) 

= Worlds(£/B(--.(tfi(T))..-)).     0 

The proof of Theorem 5-1 uses a bit of new terminology: 

Definition. Let n and n' be nodes in a lazy graph. Then n is an ancestor 
of n' if there is a path from n to n' in the lazy graph. If U and U' are update 
hyperedges, then U is an ancestor of U' if there is a path from a node of U to a 
node of U' in the lazy graph.     0 

Proof of Theorem 5-1. First, the sequence Si = Un ••• U\ is a re- 
verse topological sort of the lazy graph, because when an update or query U is 
inserted into the lazy graph with the NAP Algorithm, no new ancestors are 
created for any node except U. Let Toposort be a reverse topological sort 
other than Si. There must be a rightmost position on which the two sorts 
differ; counting from the right, say that Si and Toposort agree on positions 1 
through i — 1, but differ in the ith position, where Si has U% and Toposort 
has Uj. Let S2 be the sort Un ■■■ Uj+iUj-i • • • UiUjUi-i •••Ui. Since Toposort 
is a reverse topological sort, Uj must not have any ancestors in the sequence 
Uj-i--- Ui. In particular, Uj-\ must not be an ancestor of Uj. Applying 
Lemma 5-1, Worlds(*7„ • • • Uj+iUj-iUjUj-2 • • • VX{T)) = Worlds(tf„ • • • Ui(T)). 
By induction, Worlds(S2(T)) = Worlds(5i(T)). By induction, it follows that 
Worlds(Toposort(T)) = Worlds(Si(T)).      0 

Lemma 5-1. Let T be an extended relational theory, and let Ui and U2 
be updates or queries: 

U\:    INSERT wx WHERE 4>i, 

U2:    INSERT u2 WHERE <f>2, 

such that if first Ui and then U2 are inserted into a lazy graph G using the 
NAP Algorithm, Ui is not an ancestor of U2.    Then WoT\ds(U2(Ui(T))) = 
WoTlds(Ui(U2(T))).     0 

Proof of Lemma 5-1. Let Al be a model of T having Skolem constant 
substitution a with respect to T, Ui, and U2. Let Mi be a model of Ui(T) 
such that World(A*i) G Warlds(tfi(T)); and let M2 be a model of U2(T) such 
that WoTld(M2) G Wor\ds(U2(T)). Suppose that <j>i is not satisfied in M. Then 
World(X) = World(Ad), and Worlds(V2(A^i)) = Worlds^-M)). Suppose 
U2 is first applied to M, producing a model M\ of World(A^2), and then Ui 
is applied to M\. If Ui does not change the alternative world of M[, then 
World(A42) = World(A42). If Ui does change M[, then though <f>i was false in 
M, 4>i is true in M\. Therefore there must be datoms / in <f>i and g in u>2 such 
that / unifies with g under a. We claim that there is a read/write arc in the 
lazy graph between / and g, which violates the claim that Ui is not an ancestor 
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of U2 • To see this, note that / and g pass test (1) of Step 2, as / and g unify 
under a. For test (2), al\fa is true in M\, and al\fa was true in M, so both 
wfFs are satisfiable. For test (3), suppose fa logically entails a, where a consists 
of equality atoms. Then a is true in M, and therefore also in M\. As fa is true 
in M[, a must be consistent with fa. We conclude that if fa is not true in M, 
then Worlds(?71(vM)) = Worlds(U2(M)). The proof is symmetric if fa is false in 
Al, or if fa is false in Mi, or if fa is false in M\. We conclude that in all these 
cases, the lemma holds. 

Now suppose that fa is true in M, and fa is true in Mi. Let M[ be 
a model that agrees with M in all respects except for the truth valuations of 
the atoms of (wi)», which are the same in M\ as in Mi. Then World(Xi) 
G Worlds(Z72(Al)). Now apply U\ to M\. If {ui)a and (1^2)0 are over disjoint 
sets of datoms, then World(A^2) € Ui(Mi). Otherwise, we claim that there is 
a write/write conflict between Ui and U2, a contradiction. To see this, let / 
be a datom of u>\ and g a datom of w2 such that / and g unify under a. Step 
2 of the NAP algorithm contains three tests for / and g: (1) / and g must 
unify, which they do by definition; (2) aAfa and ot\fa are both satisfied, by 
assumption; and as fa and fa are both true in M, test (3) is also satisfied. The 
symmetric proof holds if first U2 and then Ui is applied to M. We conclude that 
Worlds(U2(Ui(M))) = Worlds^ (*72(A4))).      0 

5.6. The Lazy Algorithm 

When can a pending update U be executed? The cardinal rule is that U may be 
executed now if U is affordable and all its ancestors in the lazy graph have been 
executed. This determination is made by examining each update family in the 
lazy graph G. For U to be affordable, within each update family of G, the costs 
of the ancestors of U plus the costs of previously executed members of the family 
cannot exceed the cost limit for the family. 

For example, let U be the incoming update INSERT Emp(Reid, CSD) 
WHERE T. Suppose the relevant portion of the lazy graph is as in figure 5-5. 
Summing estimated costs (actual costs may be used for Ui if available), it ap- 
pears that no splits will be needed in this lazy graph if the cost limit / is at least 
10. If the cost limit is less than 10, a split of U2 is the most appropriate course 
of action. 

As another example, the update INSERT e = CSD WHERE T must be a root 
in the lazy graph, since it contains no datoms or history atoms; if its estimated 
cost is zero, then it may be executed at any time. 

The test for affordability may be described more formally as follows. 

Definitions. Let S be a set of updates and/or queries in a lazy graph. 
For each family T with an update or query in 5, let S{T) be the set of all updates 
or queries in family T that are in S or have already been executed. Then S is 
affordable if for each family F with an update or query in S, 
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ü\:    INSERT Mgr(Nilsson, e) WHERE T 

executed; EstCost 2 — ~| 
Mgr(Nilsson, e)        I 

U,:    INSERT -Emp(Reid, e) WHERE T 

pending; EstCost 8 

U:    INSERT Emp(Reid, CSD) WHERE T 
pending; EstCost 1 \\ Emp(&eid, <J5L>)   |, 

r  — * 

Update hyperedge =  

Family hyperedge =  

Figure 5-5. Determining whether an update is affordable. 

CostLimit(^)     >        ]T   EstCost(tf), 

i.e., if the amount spent on executed updates and queries of T plus the amount 
estimated for updates and queries of T that are in S is no more than the cost 
limit for T. If 5 is not affordable, then S is expensive.      0 

The Lazy Algorithm non-deterministically processes a query or update U 
of the lazy graph, working U into an executable position by splitting its ancestors 
to reduce their costs. 

The Lazy Algorithm. 

Input.   A lazy graph G with one particular node, U, that is to be processed. 
Initially all nodes of G are marked as being unexamined. 

Output. An equivalent version of G and either an ACCEPT or REJECT verdict. 
If the verdict is ACCEPT, then all ancestors of U in G are now affordable. If the 
verdict is REJECT, then the cause of the rejection is also returned. 

Procedure. A sequence of three steps: 
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Step 1. Accept U. If the set of all ancestors of U in G is affordable, then 
terminate with an ACCEPT verdict. 

Step 2. Reject U. If the examined ancestors of U are expensive, send the user 
a REJECT verdict along with information on the reason for the rejection. This 
information may include the family and update hyperedge labels and all family 
cost information for every update and query on any path from the expensive 
ancestor to U. Then restore the lazy graph to its original state and terminate 
execution. 

Step 3. Split ancestors. Choose a nearest pending unexamined ancestor V 
of U. Guess a sequence of splits for U', and perform them using the Splitting 
Algorithm. Mark V as examined, if it still exists; otherwise mark the updates 
split off from U' as examined. Go back to Step 1.     0 

If the Lazy Algorithm accepts node U, then to execute U, choose an 
affordable pending ancestor update U' whose nodes are all roots in the lazy 
graph G. Execute U', afterwards marking that hyperedge as executed. Repeat 
until U itself has been executed and so marked. If every update hyperedge in 
a family hyperedge has been executed, then all nodes, hyperedges, and incident 
arcs of that family can be removed from G. 

In the case of a REJECT verdict, the Lazy Algorithm may return a great 
deal of information to the user. This is because there are many possible ways 
to make an update cheaper, including retroactively reducing the cost of previ- 
ously executed members of an update family. To make the best choice for cost 
reduction, the user may need all that information. 

For the Lazy Algorithm to work according to expectations, it must satisfy 
a number of requirements. First, if the Lazy Algorithm accepts an update or 
query U, then no family cost bounds may be exceeded during execution of the 
ancestors of U. Fortunately, this follows immediately from Step 1 and the fact 
that the cost estimate function is guaranteed not to underestimate costs as defined 
by the database administrator. 

Second, we must show that the splits performed in Step 3 of the Lazy 
Algorithm map one correct lazy graph into another "equivalent" graph. The 
following section presents a large repertoire of splitting techniques and proves 
that they meet this requirement. 

Finally, Theorem 5-1 guarantees that the extended relational theory will 
reach a correct final state as long as the updates in the lazy graph are executed in 
topographical sort order. However, we need a characterization of the intermediate 
state of the extended relational theory, in particular, of the state of the extended 
relational theory when an update or query U and all its ancestors have just been 
executed; for that is the state that the user glimpses. Intuitively, for U a leaf of 

t A nearest ancestor of U with property P, if one exists, is an ancestor U' of U with 
property P such that no other ancestor of U with property P has a shorter path to U than U' 
does. 
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the lazy graph, at an intermediate stage the alternative worlds of the extended 
relational theory are correct when projected onto just the atoms in the update 
or query U. 

To explore this last point more formally, new terminology is in order. We 
distinguish the case where u contains the equality predicate or is unsatisfiable (an 
assertion). Assertions are different from other updates in that they may elimi- 
nate some alternative worlds of a theory to which they are applied. Updates that 
are not assertions, on the other hand, cannot eliminate any alternative worlds of 
a theory: for if u is satisfiable and does not contain the equality predicate, an 
insertion always produces some model from any model to which it is applied. If u 
is satisfiable but contains the equality predicate, then the update may eliminate 
some models by invalidating their Skolem constant mappings. For example, "e = 
CSD" will eliminate all models where e is not mapped to CSD. The distinction 
between these types of updates is important because most users will want execu- 
tion of any query to force execution of all* pending assertions, because assertions 
may affect the answer to the query by eliminating the alternative worlds where 
some potential answers to the query are true. 

Definition. Let S be a set of datoms. Let T be an extended relational 
theory, and let M be a model of T with Skolem constant substitution a with 
respect to S. Then World(X) restricted to S (written World(A4)|S) is the wff 
form** of the truth valuations in M of atoms in (S)». Further, 

Worlds(T)|S = U        (World(A4)|S).    0 
M£ Models(T) 

Theorem 5-2. Suppose the updates and queries of a lazy graph G formed 
by the NAP algorithm have topological sort U\--- UnQ- Let S be the set con- 
taining all datoms of Q, and let T be an extended relational theory. If Toposort 
is a reverse topological sort of the ancestors of Q, then Worlds(Toposort(T))|S 
C Worlds(Q([/„(- • -Ui(T)- • -)))\S. Further, if Toposort+Assertions is a reverse 
topological sort of Q and the assertions in G, and all their ancestors, then 
Worlds(Q(C7„(- • -Ui(T)- ■ -)))\S = Worlds(Toposort+Assertions(T))|S.      0 

Proof of Theorem 5-2. Choose a particular topological sort Fullto- 
posort of all the updates and queries of G. Let Toposort+Assertions be derived 
from Fulltoposort by deleting all updates and queries of Fulltoposort that are 
not assertions or ancestors of Q. Let Toposort be derived from Toposort+Asser- 
tions by deleting all updates and queries that are not ancestors of Q. Then by 
Theorem 5-1, Worlds(Fulltoposort(T)) = Worlds(Q(*7„(- • -Ui(T)- • •)))• It there- 
fore suffices to show that Worlds(Fulltoposort(T))|5 = Worlds(Toposort+Asser- 
tions(T))|S, and Worlds(Toposort(T))|S C Worlds(Fulltoposort(T))|S. 

t   Well, up to the limits imposed by the user's patience. 
tt A truth valuation v can be written in wff form as a conjunction of literals, such that 

the atom a is a conjunct of v in wff form iff a receives the truth valuation T under v, and -<a 
is a conjunct of v in wff form iff a receives the truth valuation F under v. 
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There must be a rightmost position in which Toposort+Assertions and 
Fulltoposort contain different updates or queries. Suppose that the occupant of 
that position is U in Fulltoposort. Then U does not appear in Toposort+Asser- 
tions. Therefore U is not an ancestor of Q or an assertion. Let M. be a model of 
T with Skolem constant substitution a with respect to Q, U\ through Un, and 
T. When U is applied to M, it may change the alternative world of M but it 
cannot eliminate that world, as u of U must be satisfiable. If <f> of U is false in 
M, then U does not change the alternative world of M, and so eliminating U 
from Fulltoposort would not change the alternative worlds eventually produced 
from M. If 4> is true in M, then U may change the alternative world of M. 
However, U is not an ancestor of Q. If (U)a has no datoms in common with 
any member of (Left(U))ff, that is, the sequence of queries and updates Q---U' 
appearing to the left of U in Fulltoposort, then Worlds(Left(C7)(C/"(X)))|S = 
Worlds(Left(Z7)(vVQ)|S. If a datom or history atom / of uu unifies under a 
with an atom g of U', for U' any member of Left(£/"), then it must be the case 
that test (2) or (3) of Step 2 of the NAP algorithm is violated for / and g, 
i.e., that <j>u' must be false in M and in all descendants of M. In this case, 
when U' is executed, it cannot change the alternative world of M or any de- 
scendant of M. Therefore eliminating U from Fulltoposort cannot change the 
effect of U'. We conclude that U can be removed from Fulltoposort without 
changing the alternative worlds of Fulltoposort(T) restricted to 5. By induction, 
Worlds(Fulltoposort(T))|5 = Worlds(Toposort+Assertions(T))|S. By the same 
argument, Worlds(Toposort(T))|5 C Worlds(Toposort+Assertions(T))|5, so it 
follows that Worlds(Toposort(T))|5 C Worlds(Toposort+Assertions(T))|S.    0 

Theorem 5-2 implies that unless all assertions are executed, a query may 
give less precise answers than is otherwise possible. In particular, it may report 
that a ground wff a is true in some alternative worlds and false in others when, 
if all assertions were executed, it would be known that in fact a had the same 
truth valuation in all remaining alternative worlds. 

5.7. Update Splitting 

To reduce the cost of the ancestors of a query or update that needs to be exe- 
cuted, the Lazy Algorithm makes use of a formalization of the splitting techniques 
illustrated in Section 5.1. There are two basic varieties of splits, or divisions of 
an update U into a sequence of updates: horizontal sphts, in which disjuncts, 
conjuncts, or atoms of u> or <f> are removed from U, generating a sequence of two 
updates to replace U; and verticai splits, in which U is split into multiple updates 
by conjoining a substitution or other wff <j> to one version of U and -><f> to the 
other. When an update is split, the resulting updates belong to the same family 
as did the original, and hence apply to the same cost bound as did the original. 
In addition, there are certain logical manipulations of <j> and u that can be useful, 
and they will be discussed also. 

There are many ways to skin a cat, and many ways to split an update. 
Given an update or query U in the lazy graph to process, in the worst case the best 
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way to split the ancestors of U will not be at all obvious. In fact, in a deterministic 
version of the Update Algorithm, one can easily spend time exponential in the 
size of the lazy graph (assuming V # NV) just trying to decide how to split 
Vs ancestors; the update split that initially looks most advantageous may turn 
out to cause an unacceptable increase in the costs of that update's ancestors. 
This plethora of possibilities does not lead to nice theorems telling when the 
Lazy Algorithm will accept U, or even to a nice algorithm for trying out all the 
possibilities. For that reason, we present a large repertoire of splits but only 
present a characterization of the performance of the Lazy Algorithm for a small 

subset of these splits. 

5.7.1. A Repertoire of Splits 

In a horizontal split, selected datoms are removed from <f> or u of an update U. 
Horizontal splits can be helpful when U is an ancestor of the incoming query Q, 
and some expensive part of U is not actually relevant to Q at all. For example, 
in INSERT a Vff WHERE </», if g is expensive and not needed for the execution of 
Q, it will be advantageous to split g off, because the estimated cost of INSERT a 
WHERE <j> will doubtless be lower than that for U. It is possible to split between 
conjuncts of u or disjuncts of u> or <j>, and also to remove individual datoms from 
w. These four types of splits will be covered in Splitting Rules 1 through 4, which 
map an update U into an equivalent sequence of updates: 

Definition. If Si and S2 are two sequences of updates over a language 
£, then Si and S2 are equivalent if for every extended relational theory T over 
C, Worlds(5i(T)) = Worlds(S2(T)).      0 

One obstacle to splitting an update U into V\ and U2 is that when U2 is 
executed, U2 must have some means of locating those alternative worlds where U 
is not yet completed. For example, if U is INSERT w WHERE <f> and Vx is INSERT wi 
WHERE (j>, then in general U2 cannot also rely on selection clause <f>, because u>! may 
have changed the truth valuations for atoms in <f>. A more promising candidate 
for *72's selection clause is (<f>)9BVl, where <rHUl is the history substitution for U\. 
However; there are two drawbacks to the use of {4)<rBvx in U2. First, a future 
update with ancestor U may need to write some of the datoms in (4>)OBUXI and 
there will be a read/write conflict between U2 and that update, forcing sequential 
execution. Second, U may be split many times before it is fully executed. Every 
split-off update will incur costs associated with <f>. Even if u is very simple, the 
added expense of dealing with (4>).BVl, ((*)Wl )Wa, etc. may push the total 
cost for U beyond the cost limit, and force rejection of queries. 

The solution to this difficulty is to make <f>u7 as short as possible. The 
technique for doing so has been presented once before, in the discussion of com- 
putational complexity of the Update Algorithm Version I in Chapter 3. There the 
goal was to minimize the amount of space required for formula (2), by defining 
a new history atom H(U) with the wff H(U))~<t>, and adding this wfftoT just 
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after Step 1 of the Update Algorithm.   This is adapted to the current case as 
follows. 

Definition. If an update U is split into Ui and U2, then Ux de&nes H(U) 
if H(U) is a newt history atom and during the execution of Ui, after Step 1 of 
the Update Algorithm, the formula H(U)^<j> is added to T.      0 

Once defined, H(U) can be used by subsequent updates; H(U) is just a 
history atom that will be true in a model M iff <f> was true in the precursor to 
that model just before Ui was executed. H(U) is an inexpensive way of marking 
the models where <j> is true so that one can come back later and finish U easily. In 
many of these splitting rules, U\ will define a history atom that is subsequently 
used by U2. In the earlier example, U2 can use H{U) as its selection clause rather 
than {<j>)aavx • By this means, history atoms can now appear in split-off updates. 

Please note that if U defines a history atom and U is itself to be split into 
U\ and U2, then U\ inherits the job of defining that history atom. 

Splitting Rule 1. Splits between conjuncts ofu. If no datom or history 
atom in u>i unifies with an atom of u>2, then the update U: INSERT <jj\/\u2 WHERE 
<l> is equivalent under the Update Algorithm to the sequence of updates 

Un    INSERT «i WHERE <f>, 

U2:    INSERT w2 WHERE H(U), 

where U\ defines H{U).      0 

Remark 5-1. When U is split into U\ and U2, if 4> contains no datoms, 
then the expense of defining H{U) is unnecessary. It is preferable in this case not 
to define H(U), but rather just use <j> directly. This will be done in the examples 
of this chapter. 

Exampie. INSERT Emp(Reid, CSD) A Emp(Reid, EE) WHERE T is equiv- 
alent to the sequence of updates 

INSERT Emp(Reid, CSD) WHERE T, 

INSERT Emp(Reid, EE) WHERE T.      0 

Proofs of correctness for these splitting rules are collected in Section 5.7.2. 

Selection clauses are not the only places where extra history atoms are 
useful for marking models where updating is to be completed later. The case 
where u is a disjunction, e.g., R(a)VR(b), is a good illustration. If we want to 
insert just R(a) for now and complete the disjunction later, then there must be 
some way of identifying the models where R(b) should be inserted later. A new 
history atom is the best solution. 

* A new history atom is one which does not unify with any history atom in Tor in a 
pending update. 
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Splitting Rule 2. Splits between disjuncts of'u. If no datom in u>i unifies 
with an atom of u>2, then the update U: INSERT u>iVu;2 WHERE </> is equivalent 
under the Update Algorithm to the sequence of updates 

Ui:    INSERT wi V H(Ui) WHERE <f>, 

U2:    INSERT H{JJ{) *-> w2 WHERE H(U), 

where H(Ui) is a new history atom, and Ui defines H(U).     0 

Please note that in Splitting Rule 2, U\ does not define H(Ui), but merely 
uses it. 

Exampie. Assuming H(l) is a new history atom, the update U: INSERT 
Emp(Reid, CSD) V Emp(Reid, e) WHERE T is equivalent to the sequence of up- 
dates 

INSERT Emp(Reid, CSD) V H{1) WHERE T, 

INSERT H(l) «-» Emp(Reid, e) WHERE T.      0 

It is worth noting that Splitting Rule 2 would not work if the Update 
Algorithm treated history atoms as it does datoms. For if it did, then U2 would 
change the truth valuation of H(U\), rather than using it to identify the models 
where the update is incomplete. The proofs of these Splitting Rules will show 
that nothing in the Update Algorithm or in its proof of correctness prevents the 
use of history atoms in certain situations within updates; the system may as well 
make internal use of history atoms whenever this is convenient and correct. 

To see the necessity of the restriction in Splitting Rules 1 and 2 that 
datoms of u>\ and u?2 must not unify, consider the update INSERT Emp(Reid, 
CSD) V Emp(Reid, CSD) WHERE T. This update is not equivalent to the sequence 
of updates 

INSERT Emp(Reid, CSD) V H(l) WHERE T, 

INSERT Emp(Reid, CSD) <-► H{1) WHERE T, 

because those two updates may create alternative worlds where Emp(Reid, CSD) 
is false. For example, if T has an empty body, then U\ will produce a model M 
where Emp(Reid, CSD) is true and H(l) is false, and U2 will make Emp(Reid, 
CSD) false in M. A similar problem occurs with the update INSERT Emp(Reid, 
CSD) A -1 Emp(Reid, CSD) WHERE T. 

Using DeMorgan's laws and Splitting Rules 1 and 2, one can completely 
pick apart many ws, using no more splits than there are conjunctions and dis- 
junctions* in uj. Splitting Rules 1 and 2 only apply when u takes a special form, 
however, and even when u> is in that form, at times it may be annoying to have 
to dissect UJ just to get at one important datom. Splitting Rule 3 allows a one- 
step isolation of any set of datoms in w; however, it may require the use of more 

*  Express any other binary operations in u> in terms of A, V, and —•. 
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history atoms than would be needed if Splitting Rules 1 and 2 were repeatedly 
applied. 

The formula for u>u2 
m Splitting Rule 3 is rather intimidating. However, 

the intent is quite simple. If / is a datom of U to be removed from u, then replace 
/ by a history atom H(f,F) in ui. Call this history substitution a?. Then let 
U\ insert (w)0r, and let U2 insert f*-^H(f,^F). The alarming second term of uu3 

in Splitting Rule 3 is vacuously true except in the case where / unifies with an 
atom of (u?)<rr—the same case that caused restrictions in Splitting Rules 1 and 
2. The second conjunct of u>u2 in Splitting Rule 3 simply says that in models 
where / unifies with a datom of (u)aT, U2 cannot change the truth valuation of 
/. Just how U2 accomplishes that is a bit mysterious: H(f, U2) is an atom from 
C/2's own history substitution. Doug Hofstadter watch out! 

Splitting Rule 3. Removai of selected datoms from u. Let U be the 
update INSERT u> WHERE <f>. Let T be a subset of the datoms that occur in w. Let 
<J? be a history substitution for the datoms in T, composed of the replacement 
of every datom / in F by a history atom H(f, T).^ Then U is equivalent under 
the Update Algorithm to the sequence of updates 

Ui :    INSERT (w),, WHERE <f>, 

U2:    INSERT   /\ ((/ «-> H(f, :F))A 

(( V CT)    - (/ ~ H^ U^) WHERE Hw> 

where Ui defines H(U), and S is the set containing the wff F and all substitutions 
a such that for some datom g in (&)„?, f unifies with g under most general 
substitution a.      () 

Intuitively, this type of split is useful when the datoms in T axe too expen- 
sive or else need to be isolated from the other datoms of u to facilitate vertical 
splitting of w. U\ leaves placeholders for those datoms in u, in the form of history 
atoms. When the datoms of T become affordable later on, their truth valuations 
can be tied to those of the history atoms in 07 through update U?. 

Example. Let U be the update INSERT (iR(a) V R(b)) A (R(c) V ->iJ(&)) 
WHERE T, and let Q be the query INSERT Q(b) WHERE R(b). Suppose that U 
is expensive, and the only conflict preventing execution of Q is the write/read 
dependency on R(b). Then R(b) can be split out of U in one step by creating the 
two updates 

Ui:    INSERT (->H(R(a), 1) V R(b)) A (H(R(c), 1) V -.£(&)) WHERE T, 

U2:    INSERT (R(a) <-» H(R{a), 1) A (Ä(c) ~ H(R(c), 1)) WHERE T.    0 

tt  By analogy to U in H(f, U), T in H(f, T) is simply a unique constant not previously 
used in any history atom, so that H(f, T) does not unify with any preexisting history atom. 
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Example. Let U be the update INSERT (e = a) A R(e) A ->R(a) 
WHERE T. As u is unsatisfiable, this update should eliminate all alternative worlds 
of any theory to which it is applied. Splitting U with Splitting Rule 3 produces 

Ui:    INSERT (e = a) A R(e) A -<H(R(a), Ui) WHERE T, 

U2: INSERT (R(a) ~ H(R(a),Ui))A((e = a) -► (^(^(a),^) <- ff(Ä(a), tf2)))) 
WHERE T. 

Without this final conjunct of u; in U2, Ui and U2 applied to an extended relational 
theory with empty body would produce an alternative world in which R(a) is 
false. The additional conjunct correctly eliminates all alternative worlds.      0 

Splitting Rule 4. Splits between disjuncts o£(f>. The update U: INSERT 
w WHERE <t>\V<j>2 is equivalent under the Update Algorithm to the sequence of 
updates 

Ui:    INSERT u WHERE fa, 

U2:    INSERT u WHERE (<f>2)aBUl, 

where CHUX is the history substitution for U\.      0 

Example. The update INSERT Emp(Reid, CSD) WHERE Emp(Reid, EE) V 
Mgr(Nilsson, e) is equivalent to the sequence of updates 

I7i:    INSERT Emp(Reid, CSD) WHERE Emp(Reid, EE), 

U2:    INSERT Emp(Reid, CSD) WHERE Mgr(Nilsson, e).      0 

Though Splitting Rule 4 shows that it is possible to split between disjuncts 
of <j>, in general it is not possible to split between conjuncts of ^, as all conjuncts 
of <f> are needed to determine whether an alternative world is to be affected by 
the update. 

We now turn to an examination of vertical splitting. In Splitting Rule 5 
below, typically <j>' will be a substitution c, and there will be an update or query 
Q that depends on the results of U for some pair of datoms of Q and U that 
unify under substitution a. It may be much cheaper to execute U only in those 
models where a is true, rather than in all models where <f> is true. This typically 
occurs if Skolem constants in the updates U and U2 cause the unacceptable 
expense in U. For example, if U is INSERT Mgr(Nilsson, e) WHERE Emp(Reid, e), 
and Q is INSERT Q(Nilsson) WHERE Mgr(Nilsson, CSD), then Q has a write/read 
dependency on U. However, this dependency only materializes in models where 
£ = CSD. If U is split into Uf. INSERT Mgr(Nilsson, e) WHERE Emp(Reid, e) A c 
= CSD and U2: INSERT Mgr(Nilsson, e) WHERE Emp(Reid, e)Ae^ CSD, then 
Ui may well be affordable though U is not. U2 can be executed later, as it will 
not be an ancestor of Q. 

Splitting Rule 5. VerticaJ Splits. Let U be the update INSERT u WHERE 
<f>. If 4>' is a ground wff, then U is equivalent under the Update Algorithm to the 
sequence of updates 
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U\:    INSERT u WHERE <f> A <f>' and 

J72:    INSERT u WHERE j?(tf) A ->(^')»airl. 
where U\ defines #(£/").      0 

Example. Let Ü" be the update INSERT Emp(Reid, e) WHERE T, and let U' 
be the update INSERT Emp(Reid, CSD) WHERE Mgr(Nilsson, CSD). There is a 
write/write dependency between U and U'\ but this dependency only occurs for 
models where e is bound to CSD. If U is too expensive, try splitting U into 
Ui:    INSERT Emp(Reid, e) WHERE e = CSD, 

U2:    INSERT Emp(Reid, e) WHERE e £ CSD. 

Then U' does not depend on U2, and £fj may well be affordable.     0 

Sometimes two updates are guaranteed not depend on one another by 
virtue of the fact that they take place in disjoint sets of alternative worlds. For 
example, the updates 

INSERT Emp(Reid, e) WHERE e = CSD and 
INSERT ->Emp(Reid, e) WHERE c ^ EE 

will produce the same effect no matter which update is executed first. The NAP 
Algorithm takes advantage of any such opportunities created by vertical splitting, 
by eliminating dependencies of this sort between updates. However, it is not 
sufficient that the selection clauses of the two updates be mutually exclusive; for 
example, the effect of the two updates 
INSERT Emp(Reid, CSD) WHERE -> Emp(Reid, CSD) and 
INSERT -.Emp(Reid, CSD) WHERE Emp(Reid, CSD) 
depends upon the order in which they are executed. 

Logical massage of <j> and w can be used to reduce the cost of Step 1 of the 
Update Algorithm, by removing datoms from U that are not subformulas of T 
or of pending ancestors of U. By applying a substitution a to <j> or u>, sometimes 
the resulting datoms in <j> and u> already are subformulas of T even though the 
original datoms did not. Of course, this sword cuts both ways: applying a may 
turn a datom that did occur in T into one requiring expenditures during Step 1. 

Splitting Rule 6. Logical massage. The four updates 
U\:    INSERT u WHERE <f>Aa, 
U2:    INSERT (u)v WHERE ^A<7, 
U3:    INSERT u WHERE ((f>)*A<r, 

Uf.    INSERT (a;)* WHERE (^)<rA(7, 

where a is a ground substitution, are all equivalent.      0 

Of course the splits and rearrangements presented in the preceding split- 
ting rules are not the only possible manipulations of updates. For example, U 
can be replaced by any other equivalent update; see Chapter 8 for rules on when 
two updates will be equivalent. 

60 



5.7.2. Correctness Proofs for Splits 

Readers not interested in formal proofs of correctness for the splits of the previous 
section should proceed to the next section. 

Proof of Splitting Rule 1. Let M be a model of extended relational 
theory T with Skolem constant substitution a with respect to T, U\, and U2. 
Let Mux be a model of Ui(T), such that the alternative world of Mi/, is pro- 
duced from that of M under the semantics for updates. Let Mu2 be a model 
of U2(Ui(T)), such that the alternative world of Mu2 is produced from that of 
Mui under the semantics for updates. Then <f> is true in M iff H(U) is true in 
Mun by the arguments of Theorem 4-1. If <f> is true in M, then u>iAu;2 is true 
in .Mt/,, because {u\)a and (u>2)o- have no datoms or history atoms in common. 
Therefore Mu2 is a model of an alternative world produced by U applied to M. 

If ^ is false in M, then H(U) is false in Mut, and Aft;, is a model of an 
alternative world produced by applying U to M- 

The reverse implication is symmetric.     0 

Proof of Splitting Rule 2. This proof follows the outline of the proof 
of Splitting Rule 3, with significant differences only in the forward and reverse 
proofs of correctness for Step 3. The revised forward and reverse proofs for Step 
3 follow: 

In the definition of M u and M u2, also define the truth valuation of H(U\): 
let H(Ui) be true in Mu2 iffw2 is true in Mu- 

Consider those wffs added to U2(Ui(T)) during Step 3 of Ux or U2. By 
definition Mu7 satisfies (<£)<Tirt,--*(u;iVu>2). We must show that Mu2 satis- 
fies ((*)WlWa-»((wi)WaVjy(tfi)) and ((*)Wl)w, -.(Wi) " «•*)• 
The latter formula is true by definition of the truth valuation of H(U\) in 
Mut- For the other formula, since no datom of u>\ unifies with an atom of 
u>2, it follows that (u\)aHV is identical to u\. But then by definition of Mu2, 
{{4>)<rHv,)»Hv2-*{M°Bv2VH(Ux)) is satisfied in Mu2- 

For the reverse implication, consider the formula added to U(T) during 
Step 3 of U: (<j>)ffBV-*u. We know Mu satisfies 

(M'HUi )°HV2 - ((«i W, V #(tfi)) 

and 

((*)Wl)W,->0*2«*(tfl))- 

Again, because no datom of wi unifies with an atom of u2, it follows that (wi )aHV2 

is identical to u>i. Therefore the latter two formulas together logically imply 
that ((^WJCTH^-K^IVU^) is true in Mu- Then by the definition of Mu, 
(^Wu-K^i^) is true in Mu-      0 
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Proof of Splitting Rule 3. Let <THU, PHUI, and &HU, be the history 
substitutions for U, Ui, and U2, respectively. First we show that any model 
produced by U is the model of an alternative world also produced by Ui followed 
byU2. 

Let Mu be a model of U{T). Let Mu, be a model identical to Mu 
except that for every null-free datom /, the history atoms H(f,Ui), #(/, t^), 
and H(f,p) are given the following truth valuations in Mu,'-* 

H{fi U\) gets the same valuation as H(/, U) 

H(f, F) gets the same valuation as / 

H(f, U2) gets the same valuation as /, if 3g\{g € {&)*?   and / ~„< g} 

H(f,U2) gets the same valuation as H(f,U), otherwise. 

In addition, let H{U) be true in Mu, iff <t> is true in M. Note that H(U) 
is true in Mu, iff (C^)»»^)aau, 1S *rue m -Mu,', this correspondence will be 
used throughout the formulas in this proof without special notice, by replacing 
occurrences of H(U) by an equivalent expression over <f>. 

Clearly M u and M u, represent the same alternative world. To show that 
Mu, is a model of Worlds([/2(t7"i(.M))), we will consider all the possible reasons 
that a particular wff might be in U2(Ui(T)), and show that in each case, M 
satisfies that wff. 

First suppose a is a wff of the body of T. Then under the Update Algo- 
rithm, U2(Ui(T)) contains the wff ((a)OBU )aHU . Mu, satisfies (a)oBV, and by 
definition therefore also satisfies {{.<^)aHux)<'Bu,• 

Now consider the wffs added to T during Step 1 of update U\. If / is a 
datom of (u;)^, then Uz(U\(T)) contains the wff 

Since U(T) contains the wff 

»6T 

(/- V *)**«" 5-2 

it follows by definition that formula 5-1 is satisfied by Mu,- If / is a datom in 
F, then UiiJJiiT)) also contains the wff 

(/-(V *v    V   ^W 5-3 

t For a a wff, theory, or substitution, and g an atom, the notation g£a means ug is a 
subformula of a". If a is a hyperedge or set of nodes in a graph, then the notation </6a means 
that the node g is on the hyperedge or in the set of nodes a. The notation /~<rff means that 
/ unifies with g under most general substitution o. 
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Since formula 5-2 implies formula 5-3 under the definition of Mu3, it follows that 
formula 5-3 is satisfied by MJJ3- 

Now consider those wffs added to U2(U\(T)) during Step 3 of U\ or U2. 

We first show that {<j>)eau 
is true in Mua iff ((^w;, )*HU3 

is true in Mu9- 

If (4)VBU is true in Mu3, then {(<f)„aUl )<,BU must also be true there, by 
definition of the truth valuations of H(f,Ui). Conversely, if a datom / of <f> is a 
subformula of CTHU3 but not of OH\JX , then it must be the case that / unifies with 
a datom of T and does not unify with any datom of {<S)or. But then by definition 
the truth valuation of H(f,U) is the same as that of H(f,U2). It follows that 

{4)«BV 
is true in Mu* iff (Mwt )°HV2 is also true. 

By definition Mu3 satisfies (4>)cav -* u. We must show that Mu3 sat- 
isfies the wff ((<t>)aaUl)*aUi -» ((wW)»Hff,i introduced during Step 3 of U\. If 
(M'BOX )°nv2 is true '*& Mua, then (4>)9av is also true, and therefore u is true 
in Mu3- By definition of Mu3, it follows that ((w)^)^^ is true in A<[/,. We 
must also show that 

mWl w, - A ((/ ~ *(/»*))A« V«o - (/~ w« ^)))) 

is satisfied in Mu3- But both conjuncts of this formula are true, by definition of 
E. Therefore Mu3 satisfies the wffs added during Step 3. 

Now consider those wffs added to U2(U\{T)) during Step 4 of U\ or U2. 
Mu7 satisfies the wff of U(T) 

(f~H(f,U))V{{4>)9av  A    V  a), 5-4 
»€<■> 

for each datom / in U(T) that unifies with a datom of (u)„r or T. 

If / in U2(Ui(T)) unifies with a datom of (w)9T, then U2(Ui(T)) contains 
the wff 

((/W,, «W,tfi))V(((*W>«,A      V     *)' 
»CO')«'*- 

/~<rf 

which is true by definition of H(f, U2) and H(f, Ui), if / unifies with a datom of 
T\ and true by formula 5-4, otherwise. 

If / in U2(Ui(T)) unifies with a datom of F, then U2(Ui(T)) contains the 
wff 

(/«-J(/,^2))V(((^)Wl)WjA    V  a). 

Since {4)»„v is true iff ((^HI;,)'»^ 
is true' by the definition of Mu3 and 

formula 5-4 this formula is also satisfied by Mu3- This establishes that Mu3 

satisfies the wffs added during Step 4 of U\ and U2, and that Mu2 is a model of 
an alternative world of U2(U\{T)). 
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To show that models produced by Ui and U2 represent alternative worlds 
produced by U, suppose Mu2 

1S a model of U2{U\(T)). Let Mu be a model 
differing from Mut only in the following: H(f,U) has the truth valuation in 
Mu of H(f,Ui) in Mu2 if / unifies with a datom of CHU^, and of H(f,U2) 
otherwise. Then Mu3 and Mu represent the same alternative world, and again 
we must show that Mu satisfies all the wffs of U(T). 

Let a be a wff of T. Then (a)„BV is a subformula of U(T). Mu satisfies 
((a)<Ttfi/x )*BV3» and therefore Mu satisfies (a)eHU. 

Now consider wffs added to T in Step 1 of U: for each datom / that is a 
subformula of w but not of T, U(T) contains the wff 

For / in (w),,, .M 1/ satisfies the wff of U2 (Z7i (T)) 

(/Wt -»   V a' 

which implies that .Mt/ satisfies formula 5-5 as well. 

For / in <r?, Mu satisfies the wff of Ü2{U\{T)) 

(/W, - ( V  °V     V     *)■ 5"6 

9~*S 

In formula 5-6, suppose {f)*BVj is true in Mu- If the left-hand disjunct of 5-6 
is true, then formula 5-5 is satisfied. Otherwise, for some g from the right-hand 
disjunct, g is true in Mu] therefore Mu must satisfy an instantiation of formula 
5-5 for g. It follows that a left-hand disjunct of 5-6 must be true in Mu, and 
therefore 5-5 is satisfied by Mu- 

The formulas added to U(T) during Step 4 of U take the form, for / 
unifying with a datom of u, 

(/"iT(/,£0)V ((*).„ A  V  *)• 5-7 

t-<rt 

If / unifies with a datom of {w)aF, and / is a subformula of T, <j>, or {u})„T, then 
Mu satisfies the formula of ^2(^1 (7")) 

((/W, ~ W, tfi)) V  (((<6 Wx W2 A     V     cr). 
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For / any datom of U(T) unifying with a datom of or, Mu also satisfies 

(/ «- H(f, U2)) V m)9BUl ) w, A v ')• 5-8 

If / does not unify with datoms of both (u>)ff;r and a^-, then formula 5-7 is 
satisfied. Otherwise, if the left-hand disjunct of formula 5-8 is true in Mu2, then 
by definition of Mu, formula 5-7 is satisfied in Mu- If the left-hand disjunct is 
false, then the right-hand one must be true; since the occurrence of a datom g 
in T implies that g also is a subformula of w, it follows that 5-7 is again satisfied 

for Mu- 
Now consider the formula added to U(T) during Step 3 of U: (4>)eHU -»<*>. 

By the same argument used in the forward direction of this proof, ((^)<rHi;1 )"BV2 

is true in Mu2 iff (4>)ITHU 
1S true '*& Mv3- It remains to show that w is true when 

ii<t>)oHUl)*BV2 
is true in Mu,- 

When {(^)aHv1)*Bu7 
is true in Mu2, Mu2 must satisfy ((w)»,)»Hif,» 

/\(/~ff(/,jF)), 

V    *^(H(f,r)~H(f,U2)), 
S~<rl 

or  »mF 

and formula 5-8. But these together imply that Mu2 satisfies {u)ffF- By defini- 
tion of Mu2, if (u)or is true in Mu2, then u> must be true in Mu2- Therefore 
Mu2 satisfies the formulas added during Step 3 of U. 

As Mu satisfies all the wffs added to T during the Update Algorithm for 
U, we conclude that Worlds(ü"2(tfiCO)) = Worlds(£7(T)).      0 

Proof of Splitting Rule 4. Let M be a model of 7", and let Mux be 
a model whose alternative world is derived from M by U\ under the semantics 
for updates. First, by the arguments of Theorem 4-1, {4>2)traVl is true in Mux 

iff <f>2 was true in M. It follows that Splitting Rule 4 is true for all models M 
of T where -><f>iA-xf>2, <£iA->^2> or -><j>iA<f>2 is true. If <f>iA<j>2 is true in M, then 
u; will be inserted into M twice. But insertion of a wff is idempotent; for any 
update U, Worlds(l7(U(M))) = Worlds(C/'(T)). It follows that U is equivalent 
to the sequence of updates U\ and Ü2-      0 

Proof of Splitting Rule 5. Let Al be a model of T, and let Mux 
De 

a model whose alternative world is derived from M by U\ under the semantics 
for updates. By the proof of Theorem 4-1, H(U) will be true in Mux iff 4> was 
true in M before U\ began. Therefore <f> and <f>' are true in M iff {4>)aHvx 

an<^ 
(<t>')CHV , respectively, are true in Mux- Reusing the proof of Splitting Rule 4, it 
follows that Worlds(tf2(tfi(T))) = Worlds(tf(T)).      0 
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Proof of Splitting Rule 6. We will show that U\ and C/4 are equivalent, 
and the proofs for the rest follow. Let M be a model of T, and let a\ be the 
Skolem constant substitution for M with respect to T, <f>, u>, and a. Let Mi/i be 
a model produced from M by the Update Algorithm for update U\. Then <f>Aa 
is true in M iff {<j>)a/\cr is true in M. If <f>Aa is false in M, the theorem follows. 
If </>A<7 is true in M, then o\ logically entails <r, so if u; is true in Mux then (w)» 
is also. This implies that Mux is also a model of an alternative world produced 

by[74. 
For the other direction, let M be as before, and let Mu4 be a model 

produced from M by U4. Suppose that (4>)at\<j is true in A4, as otherwise the 
theorem follows. Then (ijj)a is true m MuA- Since <7i logically entails a, ((u)<r)(n 
is identical to (u;)^, so (w)ffl is true in Mu4- It follows that MuA is a model of 
an alternative world produced by U\.     0 

5.7.3. The Splitting Algorithm 

The Splitting Algorithm shows how to split update hyperedges in the lazy graph. 
Suppose an update U is to be split into the sequence of updates U\ ••• Un. Intu- 
itively, the job of the Splitting Algorithm is to move back in time to the moment 
when U was added to the lazy graph, and instead of adding U, successively add 
U\ through Un ■ Then all the updates that arrived after U can be added back into 
the lazy graph. As the proof of correctness for the Splitting Algorithm will illus- 
trate, this can be done quite efficiently as long as in all vertical splits (Splitting 
Rule 5), 4>' contains no history atoms or datoms. 

The Splitting Algorithm. 

Input: A lazy graph G containing node U, and the sequence of updates Ui and 
Ui-, produced by splitting U in accordance with Splitting Rules 1-4; or produced 
by Splitting Rule 5, if <j>' contains only equality atoms; or a single update U\, 
produced in accordance with Splitting Rule 6. 

Output. An equivalent lazy graph G' in which U has been replaced by the new 
updates U\ and/or U2, as appropriate. 

Procedure. A sequence of three steps: 

Step 1. Add new nodes. Set G' to be G. Remove the nodes of U, the update 
hyperedge of U, and all arcs incident to U from G'.  Let Gu be the subgraph 
of G' containing only those nodes that are ancestors of nodes in U. Apply the 
NAP algorithm to add update hyperedge U\ to the family hyperedge of U in the 
subgraph Gu- Repeat for U2, if Ui exists. 

Step 2. Check arcs to children of U. If there is an arc in G from a node of 
U to a node g not in U, apply Step 2 of the NAP Algorithm and create, if Step 
2 so requires, an arc from a node of U\ or U2 to g in G'. 

Step 3. Reestimate costs for children of U. If there was an arc in G from 
a node of U to a node g not in U, then the cost information for g may change 
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in G'. In particular, the number of unifications for g may may decrease if some 
datom / of U that unified with g no longer is a subformula of T or in any pending 
ancestor of g. Adjust the unification counts to reflect these changes.     0 

Example. Given the lazy graph of figure 5-4, if update U\ is split horizon- 
tally according to Splitting Rule 2, the Splitting Algorithm produces 

U3:    INSERT Emp(Reid, ei)VH(l) WHERE T and 

U4:    INSERT Mgr(Nilsson, e2) ~ #(1) WHERE T, 

shown in the lazy graph produced by the Splitting Algorithm in figure 5-6.     0 

U4:    INSERT Mgr(Nilsson, cj) *-> H(l) WHERE T 

pending r— ^J 

I 
Mgr(Nilsson ,*2)        g(D     |l 

Uf.    INSERT Emp(Reid, ei)VH(l) WHERE T 

pending 
I      Emp(Reid, ei)       g(l)        || 
Vr= 

e,=CSD 

U2:    INSERT Q(CSD) WHERE E^pjReid^CSD) \  

pending [|   Q(CSD)       Emp(geid, CSD)|| 

Update hyperedge =    • 

Family hyperedge =  

Figure 5-6. Splitting Algorithm example. 

The part of the Splitting Algorithm in serious need of formal justification 
is its assumption that U\ and U? have no descendants or ancestors other than 
those nodes that were ancestors or descendants of U. Theorem 5-3 shows that this 
assumption is in fact warranted. According to Theorem 5-3, close examination 
of any seemingly missing arcs of G' will show that the unifications under which 
those conflicts would occur will never materialize. 
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Theorem 5-3. Let S be a sequence of updates and queries containing 
update or query U. Let G be a lazy graph, created with the NAP and Splitting 
Algorithms, with topological sort S. Let G' be the lazy graph produced from G 
by the Splitting Algorithm when U is split into U\ and U2 (just Ui if splitting in 
accordance with Splitting Rule 6). Let S' be the sequence created by replacing 
U in S by U\ TJi. Use the NAP Algorithm to insert sequentially the updates and 
queries of S' into an initially empty lazy graph G". 

If Si and 52 are reverse topological sorts of G' and G", respectively, then 
Si and 52 are equivalent.      0 

The proof of this theorem will show that there may be arcs that the 
NAP Algorithm would include but the Splitting Algorithm does not; but for 
any such arc, external factors will prevent the conflict predicted by the arc from 
materializing. First a bit of terminology: If U is an update or query, let <j>u be 
the set of nodes on the lazy graph hyperedge for U whose labels are subformulas 
of ^ of £7; and let uu be denned analogously. 

Proof of Theorem 5-3. Assume inductively that all splits previously 
performed in G have this property. Then if an arc labelled a appears in G" and 
not in G' (a new arc), its presence cannot lead to a violation of Theorem 5-3 
unless one endpoint of the arc is in U\ or U2 and the other is outside U\ and TJ2 • 
Suppose first that the endpoint is in U\. 

Looking at the formula that defines U\ for the splits of Splitting Rule 1, 
there are no atoms in U\ that were not also subformulas of U; and the selection 
clause 4> is the same as it was in U. Therefore, by Step 2 of the NAP Algorithm, 
no new arc could possibly have an endpoint in U\. 

Looking at the formula that defines U\ for the splits of Splitting Rule 2, 
there is only one datom or history atom, H(Ui), that was not also a subformula 
of U; and the selection clause <f> is the same as it was in U. Therefore, by Step 
2 of the NAP Algorithm, any new arc must have H{U\) as an endpoint. But 
by definition H(U\) is not a subformula of any other update except U2, or unify 
with any atom in any update except Ü2- Therefore there can be no new arc with 
an endpoint in U\. 

For Splitting Rule 3, the same argument holds as for Splitting Rule 2. 

For Splitting Rule 4, again there are no new atoms in U\\ however, <f> 
has changed, so perhaps some unification that failed test (2) or (3) of Step 2 
of the NAP Algorithm will now succeed. However, for test (2), if 0 f\{<j>\V $2) 
is unsatisfiable, then aA^i must be unsatisfiable as well. For test (3), if <f>\V<f>2 
logically entailed a, then so does (j>\. Therefore there can be no new arcs with 
an endpoint in U\. 

For Splitting Rule 5, by assumption <f>' contains no non-equality atoms. 
Therefore there are no new datoms or history atoms in U\, and by the argument 
for Splitting Rule 4, there can be no new arcs with an endpoint in U\. 
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For Splitting Rule 6, there may indeed be new datoms in u or <f>, created 
by applying a to previously existing atoms. However, if o\ is the label of the 
new arc, by Step 2 of the NAP Algorithm, it must be the case that ^A^Acr is 
satisfiable, and so that arc should have been in G all along. We conclude that 
there can be no new arcs with an endpoint in U\, for any type of split. 

Now consider new arcs with an endpoint in U2 and, say, U' as the other 
endpoint. For Splitting Rule 1, the only new atom in U2 is H(U). But by the 
argument used above for Ui of Splitting Rule 1, no new arc can have H(U) as an 
endpoint. Therefore if there is a new arc between U2 and U', it must be because 
that arc formerly failed test (2) or (3) of the NAP Algorithm Step 2, and now 
passes the test. 

If test (3) was failed, suppose first that U2 lies at the head of the new 
arc, and update or query U' lies at the tail of the arc. Let T be an extended 
relational theory with model M. Then by the definition of test (3), whenever 
<j>Ü3 is true in a model M of T, it must be the case that a, defined in test (3), 
is also true in M. As a contains only equality atoms, this property still holds 
for the descendants of M after any sequence of updates is applied to M. But 
this means that when U' is executed, its selection clause must be false in all the 
descendants of M. This means that the conflict predicted by the new arc can 
never materialize, as the result of applying U and U' to M is independent of the 
order in which they are applied. The proof is symmetric if U' lies at the head of 
the new arc and U2 at the tail. 

If test (2) was failed, <TA</> was unsatisfiable. By the arguments of Theorem 
4-1, (<r A <f>)trBU will also be unsatisfiable; by the same arguments, after any 
sequence of history substitutions, this property still holds. Therefore if H(U) is 
true in a model, it must be the case that a is false in that model, and therefore 
the predicted conflict does not actually occur because the unification needed for 
the dependency does not take place. 

Consider the split of Splitting Rule 2. The same argument applies to H(U) 
as for Splitting Rule 1. As H{U\) is not an implicit or explicit subformulaoutside 
of U\ and U2, the theorem follows for that type of split. 

The case of Splitting Rule 3 is identical to that of Splitting Rule 2. 

For Splitting Rule 4, the arguments used for Splitting Rule 1 eliminate the 
possibility that any new arc from outside could have a history atom of (<j>2)eBVl 

as an endpoint. Therefore if there is a new arc with U2 as an endpoint, it must be 
because that arc formerly failed test (2) or test (3) of the NAP Algorithm Step 
2, and now passes these tests. If test (2) was failed, at\{<j>\ V<£2) was unsatisfiable, 
which implies that crA<t>2 was unsatisfiable. By the arguments of Theorem 4-1, 
(<7 A <J>2)<THU will also be unsatisfiable. And if test (3) was failed with selection 
clause <^iv/2 for U, then test (3) must still be failed when the selection clause is 
changed to <j>2. It follows that there can be no new arcs with an endpoint in U2. 

For Splitting Rule 5, <j>' contains no non-equality atoms, so there are no 
new non-equality atoms in U2 other than H(U).    By the argument used for 
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Splitting Rule 1, no new arc can have H(U) as an endpoint. The only remaining 
possibility is that some substitution now passes tests (2) and (3) of Step 2 of the 
NAP Algorithm, but the argument used for Splitting Rule 1 also rules that out. 
We conclude that Theorem 5-3 is true.      0 

5.8. Assertions 

To drive the Lazy Algorithm, we need a policy on when updates should be pro- 
cessed and executed. At the very least, queries should force the execution of as 
many updates as are necessary to give a correct answer to the query. But update 
processing and execution cannot be entirely query-driven: early execution or at 
least special handüng is required for assertions that are entered in response to a 
query rejection. For example, if the user is told that a query about an employee 
cannot be executed because of the datom Emp(e, CSD), the user might assert 
the value of e and then reenter the query. The cost estimation function must 
take note of this new assertion about c and reduce the cost estimates of pending 
updates in which e occurs. Furthermore, the new information about e can be 
used to reduce the size of the extended relational theory, in effect retroactively 
reducing the cost of all earlier updates that contained e! Since the earlier up- 
dates have become more affordable than they originally were, their estimated 
costs should be decreased in accordance with the savings realized in T. We omit 
the algorithm for this aspect of lazy evaluation. 

By letting update execution be entirely query-driven, we would miss some 
other opportunities to reduce the size of the extended relational theory and to 
reduce the cost estimates of other updates. For example, it's a good idea to 
execute helpful assertions (ones that narrow down the range of possible values 
for a Skolem constant) right away. If helpful updates are being blocked from 
execution by expensive ancestors or by the presence of expensive datoms in the 
same update, it may be worthwhile to use the Lazy Algorithm to force execution 
of the helpful part of the update, rather than to keep it waiting in the wings until 
query processing begins. 

Another argument for early execution of assertions is that the user inter- 
face routines will probably force processing and execution of as many pending 
assertions as possible before presenting the user with the answer to a query, even 
though not all assertions need be executed before the query is executed. This is 
necessary if the most exact answer to a query is to be given, because any assertion 
can eliminate an alternative world that was important to the query, and in the 
process eliminate some candidate answer to the query. 

5.9. The Costs and Benefits of the Lazy Algorithm 

As mentioned earlier, we have no nice worst-case theorems telling when a query 
or update U will be processable. This is due to the difficulty of splitting the 
selection clause <t> of an update; if <j> were as easy to split as u; is, then an excellent 
characterization would be possible of the benefits of the Lazy Algorithm. For this 

70 



o, / an equality atom; 
1, / a history atom; 
EstCost(/), / a datom. 

reason, we characterize the behavior of the Lazy Algorithm for a certain class of 
selection clauses <j>. This characterization depends on three assumptions: 

Assumption 1. The non-interacting <j> requirement: Let Q be the in- 
coming query to be processed by the Lazy Algorithm. Then no datom that is 
a subformula of </> of any proper ancestor of Q in the lazy graph can also be a 
subformula of in u> of another ancestor of Q.    0 

Assumption 1 says that any datom read by a parent or higher ancestor of 
Q cannot also be written by an ancestor of Q. 

Assumption 2. The cost estimation function must satisfy the following 
equation for any hyperedge or set of nodes U in the lazy graph: 

EstCost(^) = Y^ 
feu 

For a particular datom node /, EstCost(/) must depend only on the cost infor- 
mation stored at that node in the lazy graph.    0 

The purpose of Assumption 2 is to ensure that the cost estimation func- 
tion does not depend on hard-to-handle factors such as the number of update 
hyperedges in the lazy graph or the distance of an update from a root in the lazy 
graph. This is needed in order to establish a simple relationship between the 
estimated cost of the nodes of an update before and after the update is split. 

Assumption 3. Judicious use of history atoms: Let Q be an incoming 
query. At the time Q is added to the lazy graph, every history atom arc in the 
lazy graph must have one endpoint in an executed update.    0 

History arcs should rarely prevent execution of an otherwise affordable 
update. The purpose of a history arc is to make sure that a history atom is 
defined before it is used; a split of U into Ui and lf2 should always be performed 
so that if Ui defines the history atom and U\ is an ancestor of the query or update 
that is to be executed, then U\ is not an ancestor solely because of history atom 
arcs. For example, consider the update 

U:    INSERT Emp(Reid, e)AMgr(Nilsson, CSD) WHERE Mgr(Kennedy, EE) 

and the incoming query 

Q:    INSERT Q(Nilsson) WHERE Mgr(Nilsson, CSD). 

Suppose that Emp(Reid, e) makes U too expensive, and so U is split according 
to Splitting Rule 1 into 
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Ux:    INSERT Emp(Reid, e) WHERE Mgr(Kennedy, EE) 
and 

U2:    Mgr(Nilsson, CSD) WHERE H(U). 

This was a most foolish choice of splits, because Q still depends on U\ through 
a history atom definition arc for H(U). Either Mgr(Kennedy, EE) should have 
been used as the selection clause of U2, or else Emp(Reid, e) should have been 
split out of U into U2 rather than into U\. Any reasonable choice of splitting 
heuristics should satisfy assumption 3. 

Theorem 5-4 below gives a simple sufficient condition for queries to be 
accepted by the Lazy Algorithm. First a bit of terminology: For any wff a, let 
||a|| be the number of different datoms and history atoms in a. 

Theorem 5-4. Let Q be an incoming query. If assumptions 1, 2, and 3 
are satisfied, then Q will be accepted by the Lazy Algorithm if Q is affordable 
and for each update family T in the lazy graph that contains a parent of Q, the 
difference between the cost bound for T and the amount spent so far on executed 
updates of F is at least 

J2       (EstCost(^) + \\uu\\ -2+  J2 (EstCost(/) + 3)).     0      5- 10 
V parent of Q J€Q 

t~<xl 

Theorem 5-4 implies that when assumptions 1, 2, and 3 are satisfied, there 
is a quick test for acceptability that only requires looking at the parents of the 
query, rather than all ancestors of the query. The proof of the theorem will show 
what splits to use to achieve this bound. 

Proof of Theorem 5-4. Let us examine how to split a particular parent 
U of Q to achieve the bound in formula 5-10. Suppose /i through /„ are the 
datoms of «i/ that have arcs going out to datoms in Q. Then first split U 
horizontally according to Splitting Rule 3, removing all datoms and history atoms 
of uu from u}Vl except fa through /„. Then U\ is still an ancestor of Q, with 
the same estimated costs for its nodes as those nodes had in U before the split, 
by assumption 2; and with the same arcs going to Q as went from U to Q. U2, 
however, is not an ancestor of Q, by assumption 1. 

The next step is to separate out the datoms of w^ into individual updates. 
To accomplish this, split Ui n — 1 times according to Splitting Rule 3, removing 
datom fi from U\ on the ith split. By assumption 2, these splits will not alter 
the cost information for any node of a split update that originally appeared in 
U. Note that there is no need to define a new history atom H{U) at each split 
of Splitting Rule 3; every update that is split off can use the same selection 
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clause H(U), defined by U\ with the formula H(U)^<j>u- This optimization was 
mentioned earlier, in Remark 5-1. The small savings realized through reuse of 
H(U) has been included in formula 5-10. 

In the lazy graph resulting from this second round of splits, there are n 
updates split off from U that are now ancestors of Q\ for simplicity, rename the 
updates in the graph as necessary so that these n updates are called U[ through 
U'n. We now review the form and estimate the costs of U[ through U'n, beginning 
with*7{. 

Only one datom is a subformula of «y: /„. All other datoms of uv have 
been replaced by history atoms in (u)u>: there will be \\u>u\\ — 1 different history 
atoms in wy. By assumption 2, each history atom has an estimated cost of 1. 
The selection clause of U[ is the same as that for U. By assumption 2, it follows 
that EstCost(<£t/<) = EstCost(<£[/). U[ defines a new history atom H(U), using 
the formula H(U)+-xt>. Therefore the estimated cost of U[ is no more than 

EstCost(/„) + (\\uu\\ - 1) + EstCost(^) + 1. 

U'2 through U'n all take the form 

INSERT (/ ~ H{f,a)) A ((V/?Wf °)     - (W,^) ~ W,*)))V 

WHERE H(U), 

for some constants Cj and d,, where S is the set of datoms remaining in u at the 
time / is being split out of u. This form has an upper bound on estimated costs 
of EstCost(/) + 3. 

Summing the estimated costs of Ui through Un produces an upper bound 
estimate of 

EstCost(/„) + {\\uu\\ - 1) + EstCost(<M + 1 +  ^ (EstCost(/t) + 3), 
l<«<n 

which simplifies to 

\\uu\\ - 2 + EstCost(<£c/) +  ^2 (EstCost(/,) + 3). 5-11 
l<t<n 

If these two stages of splitting are applied to all the parents of Q, then 
summing formula 5-11 over all parent families gives formula 5-10. However, 
the theorem is not quite proven: Q may still have ancestors in the lazy graph 
other than its parents. It will require two more rounds of splitting to remove 
these undesirable ancestors. These rounds of splits, however, will not change the 
estimated costs of the parents of Q. 

Let V be a parent of Q in the lazy graph after the first two rounds of 
splitting. To eliminate unwanted ancestors of V, let <f>' be the disjunction of all 
the substitutions labelling arcs that go from V to Q.   Split V vertically on <j>' 
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according to Splitting Rule 5, producing updates Vi and V2. Splitting V with 
Splitting Rule 5 does not change the cost estimates for the nodes of V, because 
vertical splitting does not change the datoms or history atoms of the split update. 

After this third stage of splitting, suppose there is still a parent A of V\ 
such that A is not a parent of Q. Then by assumptions 1 and 3, there must 
be a datom / of U>A that unifies with a datom /' of uux under a most general 
substitution a'. Since /' is the only datom in u/i/t, /' must unify with some 
datom g of Q under a most general substitution a. Further, by definition of U\, 
a must be one of the substitutions in the selection clause <j>' of 4>ux '• 

<t>'   is <j>u A   V   a- 
»60 

Since A is a parent of Vi, by Step 2 of the NAP Algorithm it must be the 
case that ö-'A<£t/A(V »«« a) xs satisfiable; therefore for some choice of a, <T'A<T 

must be satisfiable. This implies that / unifies with g under substitution a' No. 
Yet A is not a parent of Q; therefore it must be the case that there is no arc from 
f to g because that arc fails test (2) or (3) of the NAP Algorithm Step 2. 

First consider the case where the arc fails test (3). In this case there is an 
equality wff a such that, say, 4>A logically entails a and <f>Q logically entails ->a. 
Let <j>' be the wff ->a, and split V\ vertically with Splitting Rule 5 on <j>', creating 
updates V3 and V4. Then by test (3) of the NAP Algorithm Step 2, VA is not a 
parent of Q, and A is not a parent of Vjj- Therefore A is no longer an ancestor of 
Q by any path that goes through V3 or V4. 

Now consider the case where the arc from / in A to g in Q passed test (3) 
but failed test (2) of Step 2 of the NAP Algorithm. In this case either <T"A<£Q 

or cr"A<f>A must be unsatisfiable, where a" is the most general substitution under 
which / and g unify. A simplified diagram of the relevant portion of the lazy 
eraph, includine the illeeal arc a" from A to Q, appears in figure 5-7. 

Figure 5-7. Portion of simplified lazy graph. 

Let S be the set of all choices for <J", that is, the set of all substitutions 
a" such that /GUM, g€Q, and f~*>g. Let <j>' be V,»^ r(<r"), where r{a") is a" 
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if a"f\4>A is unsatisfiable, and is -y<r" otherwise. Split Vi vertically with Splitting 
Rule 5 on <f>', creating updates V3 and V4. We will now show that there is no 
path from A to Q through V3 or V4. 

Suppose that <r"A<t>Q is unsatisfiable. Then <J>Q logically entails -><r". Since 
a" is at least as general as a, ->&" logically entails -I<J. It follows that <JA<J>Q is 
also unsatisfiable. Therefore no arc labelled a can go from V3 or V4 to Q, by test 
(2) of the NAP Algorithm Step 2. Further, <j>u, logically entails V<r»eE r(<T")- 
Therefore <j>u3 logically entails -><r", and <f>vs logically entails -><7 and ->c' as well. 
We conclude that there can be no arc labelled o from V3 to Q and no arc labelled 
a' from A to V3, when a"A<J>Q is unsatisfiable. 

Following the same line of reasoning when <T"A<J>A is unsatisfiable leads to 
the conclusion that no arc labelled a' can go from A to V3 or V4, no arc labelled 
a can go from V4 to Q, and no arc labelled a' can go from A to V+, when (T"A<J>Q 

is unsatisfiable. 

It follows that the only arcs between A, V3, V4, and Q fall into the following 
three classes: 

1. Arcs from V3 to V4. 

2. Arcs labelled a from V3 to Q, when 0" A<J>A is unsatisfiable. 

3. Arcs labelled a' from A to Vt, when <T"A^Q is unsatisfiable. 

Figure 5-8 depicts a simplified lazy graph containing A, V3, V4, Q, the 
phantom arc a" from A to Q, and for clarity V and its arcs as well, though of 
course the Splitting Algorithm would have removed V from the lazy graph before 
V3 and Vi were inserted. 

a' 

V"* Vi >VA )<r" 

Figure 5-8. Portion of simplified lazy graph. 

Note that there is no path from A to Q via V3 or V4. Therefore after 
applying this final round of splitting to all ancestors of Q that are not parents of 
Q, all such ancestors will no longer be ancestors of Q, and the theorem follows. 

<0 
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An improvement to this theorem immediately suggests itself. Read/write 
dependency arcs coming into an update need not prevent execution of that up- 
date, because history predicates can be used as a versioning mechanism to elim- 
inate the read/write conflicts. This means that it is quite possible to execute 
updates in the lazy graph without following a pure topological sort, as read/write 
arcs need not determine execution order. For example, if update U\ is INSERT 
Emp(Reid, CSD) WHERE Emp(Reid, CSL), and update U2 is INSERT -nEmp(Reid, 
CSL) WHERE T, then there is a read/write conflict between U\ and U2. However, 
Ui can be executed ahead of Ui as long as U\ reads üf(Emp(Reid, CSL), U2) 
rather than Emp(Reid, CSL). 

The situation is a bit more complex if the read/write dependency arc has 
a substitution label other than T. For example, if Ux were INSERT Emp(Reid, 
CSD) WHERE Emp(Reid, e), then Ux could not get by with reading ff(Emp(Reid, 
*), #2), for fT(Emp(Reid, e), U2) may be true in models where Emp(Reid, e) 
never was true. This anomaly can occur whenever Emp(Reid, e) is not already a 
subformula of T at the time Ui is executed. The solution is for U\ to be replaced 
by INSERT Emp(Reid, CSD) WHERE (Emp(Reid, e)A (e #CSL)) V(#(Emp(Reid, 
c), #2)A (e =CSL)), if U2 is executed before U\. 

5.10. Summary and Conclusion 

As noted in Chapter 3, the Update Algorithm may lead to excessive increases 
in the size of an extended relational theory T as expensive updates are incorpo- 
rated into T. To control the growth of 7", we propose a scheme of lazy evaluation 
for updates. Lazy evaluation strictly bounds the growth of the extended rela- 
tional theory caused by each update, via user-specified limits on permissible size 
increases. Under lazy evaluation, an overly-expensive update U will be stored 
away rather than executed, in the hopes that new information on costly null 
values will reduce the expense of executing U before the information contained 
in U is needed for an incoming query. If an incoming query unavoidably de- 
pends on the results of an overly expensive portion of an update, the query must 
be rejected, as there is no way to reason about the information in the update 
other than by incorporating it directly in the extended relational theory. When 
a query is rejected, the originator of the query is notified of the exact reasons for 
the rejection. The query may be resubmitted once the range of possible values of 
the troublesome nulls has been narrowed down. The bottom line for an efficient 
implementation of updates, however, is that null values should not be permit- 
ted to occur as attribute values for attributes heavily used in update selection 
clauses—particularly those used as join attributes. 
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Chapter 6: Enforcement of Dependency Axioms 

Until now, we have considered extended relational theories without type 
axioms (an encoding of the schema of the database) and dependency axioms 
(e.g., functional and multivalued dependencies [Ullman 82]), because the compli- 
cations introduced by those axioms axe orthogonal to the other issues in updating 
extended relational theories. 

Dependency axioms can play a number of roles in ordinary relational data- 
bases during updates. A policy decision must be made for each axiom, based on 
the intended semantics of the axiom. If a requested update would lead to a 
database state that violated the axiom, then the database management system's 
possible enforcement policies include rejecting the update; performing the update 
and also making additional changes in the database to make it obey the axiom; 
and performing the update and ignoring the temporary inconsistency. In data- 
bases with incomplete information, dependency axioms play another important 
role, that of identifying and eliminating "impossible" alternative worlds. For ex- 
ample, if a manager can only manage one department at a time and we know 
that Mgr(Nilsson, CSD)V Mgr(Nilsson, EE) is true, then the alternative world 
where Nilsson manages both CSD and EE is inconsistent with the axiom and 
can be eliminated out of hand. As yet another possible enforcement policy, if 
a requested update would create alternative worlds that violate the axiom and 
the update is known to be correct, then the axiom can be changed. This policy 
is implemented in Step 1 of the Update Algorithm, for the completion axioms. 
These axiom enforcement policies are summarized in Table 6-1. 

All five of these axiom enforcement policies are reasonable; the correct 
choice of a policy for a particular axiom depends on the semantics of the axiom 
and the database, and we delegate this decision to a higher authority, such as the 
database administrator. The remainder of this chapter presents a mechanism to 
enforce axioms by permanently weeding out impossible alternative worlds (called 
strict enforcement), to be employed as the database administrator sees fit. En 
route we will point out how to perform passive enforcement, that is, to ignore 
temporary inconsistencies between the theory body and its axioms—perhaps not 
a logically sound procedure, but one used daily by humans with spectacular 
success. 

We begin by defining the class of type and dependency axioms under con- 
sideration here, then explain what kind of axiom enforcement is provided by 
Versions I and II (presented in Chapters 3 and 4, respectively) of the Update 
Algorithm, and extend the Update Algorithm to provide strict axiom enforce- 
ment. To simplify the presentation of this material, all updates are assumed to 
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II an update U applied to alternative world A would create an 
alternative world A' that violates axiom a, then ... 

1. Reject U. 

2. Make additional changes in A' so that it does not violate a. 

3. Ignore the temporary inconsistency and permit a later update U' to remove 
the violation of a in A'. 

4. Eliminate A' permanently. 

5. Change a. 

Table 6-1. Axiom enforcement policies. 

be variable-free, and Version I of the Update Algorithm will be used as the point 
of departure. 

6.1. Extended Relational Theories with Type and Dependency 
Axioms 

Type axioms encode the relationship between predicates and attributes, so that, 
for example, given that Emp(Reid, CSD) is true, it follows that Reid must be an 
element in the employee domain and CSD must be a department. Type axioms 
are useful for controlling the effects of negation and ensuring that queries and 
updates are safe.* For example, Reiter [84b] suggests that all constants, Skolem 
constants, and variables occurring in queries should be typed so that the query 
will be safe. System R [Chamberlain 76] and INGRES [Stonebraker 85] employ 
a similar mechanism on a higher level by requiring RAHGE OF and SELECT FROM 
statements for all the tuple variables of requests. 

For a formal definition of type axioms, distinguish a particular set A of 
unary predicates of £ as the attributes of C. For each n-ary predicate R not in 
A, an extended relational theory T with type axioms must contain exactly one 
axiom of the form 

V*! • • • Vxn(i2(x!,.. .',*„) - (Ai(xi) A • • • A An(xn))), 

where A\,..., An are predicates in A. Further, each predicate in A must appear 
in one or more type axioms. 

Strict enforcement of type axioms may be painful if experienced directly 
by users. For example, rather than just requesting INSERT Emp(Reid, CSD) 
WHERE T, under strict enforcement the user must remember to ensure that 
Reid and CSD are elements in the correct domains: INSERT Emp(Reid, CSD)A 
Employee(Reid)A Department(CSD) WHERE T. A better alternative is to enforce 
the type axioms through axiom modification, as is done for the completion ax- 
ioms: to modify the type axioms during the update so that the update cannot 
violate them. 

A domain completion axiom can be employed to the same end. 
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The definition of extended relational theories must be extended to include 
a set of universally quantified axioms that are to be strictly enforced (strict 
axioms, for short). As far as the Update Algorithm is concerned, all strict axioms 
can be lumped together in a Strict Axiom section of the extended relational 
theory. So in addition to a body and a set of completion axioms, items 1 and 2 
in the definition of an extended relational theory in Section 3.1, every extended 
relational theory T now includes a third section: 

3. Strict Axioms: A set of strictly enforceable (to be defined in Section 6.3) 
universal sentences not containing history predicates.     0 

For example,   a typical functional dependency would be VxiVx2Vx3 

((Emp(xi,x2) A Emp(ii,x3)) -► (x2 = x3)). 

Some universal sentences not containing history predicates will be too ex- 
pensive to enforce easily, and these are excluded from the strict axiom section. 
Section 6.3 will single out the affordable axioms in its definition of strict enforce- 
ability. We do not present that definition here because it relies on intuitions that 
will be developed in later sections. 

6.2. Semantics of Updates Revisited 

The semantics of updates must be augmented with one additional proviso for 
strict enforcement of axioms: Every model M' in U(M) must satisfy the strict 
axioms ofT. In the proofs below, this new provision is referred to as rule 3 in the 
definition of INSERT, to be appended to rules 1 and 2 of the original definition: 

(3) for all strict axioms a of T, a is true in M'. 

A particular update algorithm strictly enforces a for an update U if 
for every extended relational theory T, rule 3 is satisfied by all members of 
Worlds(lf (T)). For the remainder of this chapter, "enforcement" will mean strict 
enforcement unless otherwise noted. 

In this discussion, the strict axioms will be permanently fixed for each 
database schema. It is trivial to extend the types of updates permitted to allow 
addition of new dependencies, constants, or relations. 

6.3. The Update Algorithm Revisited 

What sort of axiom enforcement is provided by the Update Algorithm Version I? 
Suppose the extended relational theory body consists of the wffs Emp(Reid, EE) 
and Emp(Reid, CSD)V Mgr(Nilsson, CSD). If there is a functional dependency 
stating that an employee can be in at most one department at a time, then 
some models of the body of this theory are inconsistent with that functional 
dependency, and will not be models of the theory containing that functional 
dependency as a strict axiom. It follows that in every alternative world of the 
full theory containing that axiom, Nilsson is the manager of CSD. Unfortunately, 
when using the Update Algorithm Version I, a later update may "rescue" the 
alternative worlds where Reid is in two departments and pop them back into 
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existence. In the current example, a new update INSERT ->Emp(Reid, EE) WHERE 
T, when processed according to the Update Algorithm, would blithely produce 
alternative worlds where Nilsson is not the manager of CSD, though these worlds 
are in fact impossible if the axiom and update are interpreted strictly. 

These "rescued" worlds arise because the versions of the Update Algorithm 
seen so far enforce the department axiom passively, merely using it to shape 
answers to queries at the current moment. This passive enforcement allows the 
update INSERT ^Emp(Reid, EE) WHERE T to rescue the alternative world where 
Reid is in both CSD and EE and make its descendant a legitimate world for future 
computations. In general, any time an update removes all axiom violations from 
an "impossible" alternative world, Versions I, II, and III of the Update Algorithm 
will rescue the descendants of that alternative world. 

As mentioned in the introduction to this chapter, passive enforcement will 
be the best choice for some applications, and when passive enforcement is desired, 
then the update algorithms of previous chapters may be used. If an axiom is to be 
strictly enforced, however, then the alternative worlds produced by these update 
algorithms will be incorrect. In the remainder of this chapter, we consider how 
to alter the Update Algorithm to move from passive to strict enforcement: how 
to eliminate forever the alternative world where Reid is in both CSD and EE. 

Proposition 6-1 suggests a means of axiom enforcement through instanti- 
ation of axioms. 

Proposition 6-1. Let T be an extended relational theory and let T+a be 
that theory plus a universal sentence a without history predicates, to be strictly 
enforced. If Worlds(T) = Worids(T+a), then the Update Algorithm Version I 
will strictly enforce a on the next update U applied to T+a.     0 

Proof of Proposition 6-1. By definition all models that are produced 
by the Update Algorithm do satisfy a. The worry is that some model produced 
might not be descended from a model that satisfies a. Let T' be the theory 
produced from T by the Update Algorithm Version I. For the alternative world 
of a model M' of T' to be produced by U, M' must be derived from a model M 
that satisfies T, as proved in Theorem 4-1. Then by assumption M also satisfies 
a, so M! is descended from a model of T+a.     0 

This proposition immediately suggests one means of axiom enforcement. 
If variables are allowed to occur in the body of the extended relational theory, 
as in Section 4.4, one can keep a copy of the dependency axiom in the body 
of the theory at all times, and the axiom will always be strictly enforced. In 
the remainder of this discussion, we assume that variables are not permitted to 
occur in the body of the extended relational theory. The variable-free case is 
important because management of very large volumes of data relies on regularity 
and simplicity of the data to allow efficient access to and inference from the data. 
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When variables appear in the body of the theory rather than solely in its axioms, 
the assumptions of regularity and simplicity must be abandoned, and processing 
costs will rise steeply. 

To ensure that the alternative worlds of T+a are the same as those of T, 
at first glance it might seem sufficient to add a ground instantiation (a)ff* of a 
to T for every substitution a of constants and Skolem constants such that {a)a 

is not valid. Unfortunately, this assumption is flawed on two accounts. First, 
there may be elements in the universe that are not named by any constants or 
Skolem constants in T. It is not possible to instantiate the axiom with these 
elements, yet they must be considered: the user might pose a yes/no query using 
only symbols in £ that would detect rescues of worlds involving these unnamed 
elements.*t As shown below, the completion axioms will help to prevent this 
anomaly. 

Second, even if all elements in the universe are named by constants or ref- 
erenced by Skolem constants, there may be an infinite number of these constants, 
and an infinite number of instantiations may be needed to enforce a. Infinite the- 
ory bodies are unpleasant to contemplate. Fortunately, the fact that only a finite 
number of datoms can be true at any given moment will make it unnecessary to 
resort to infinite theory bodies. 

To see why only a finite number of instantiations of a strict axiom a are 
needed to prevent the rescue of a model, let Al be a model of T that fails to 
satisfy a. Then M fails to satisfy (0)4, for some binding b of all the variables 
of a to universe elements of M..^ Let a be the Skolem constant substitution 
for M with respect to T. Create ß by replacing every datom of (a)b that does 
not appear in (T)a by the truth value F, and ß is false in M.. Now the set of all 
possible bindings b is infinite, giving an infinite number of possible (a)&s, but the 
set of all possible ßs is finite because T is finite. Further, the universe elements 
appearing in ß are all named by constants or Skolem constants in £, because all 
those elements appear in (T)c. Let Inst(a) be the finite set of ßs for M. Then 
adding Inst(a) to T will prevent M. from being rescued by any incoming update. 

At this point it may seem once again that our task is complete: we have 
shown how to prevent M from being rescued by adding a finite set of formulas 
Inst(a) to T. Further, although T may have an infinite number of models M, 
there are only a finite number of possible formulas for Inst(a), so this technique 

t For a a universal sentence in prenex form with prefix Vxi • • • Vx», and a a substitution 
of the form ?* • • •*" > (a)<* ls tne wff obtained from a by removing a's prefix and then applying 
a. A substitution for a subset of the variables of a is defined analogously. 

ft Example: Axiom is Vi(Ä(a) —► Ä(x)), body of T is initially empty, as always C contains 
an infinite number of Skolem constants, and the universe contains two elements, of which only 
a is named in C. If the user requests INSERT R(a) WHERE T, followed by IKSERT ->fi(o) WHERE T, 
then the resulting theory should have no alternative worlds, as the first update eliminates them 
all, due to the completion axioms. But no matter what set of formulas an update algorithm 
adds to the body of T, the wff -<R(e) will be consistent with the new body. 

ttt As usual, (a)j, is not a proper object: strictly speaking, we should extend C or at least 
map all of a to the corresponding elements and relations in M. As in previous chapters, this 
hybrid notation will be used freely. 
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can be extended to prevent rescues of all models.  Unfortunately, there are two 
obstacles to implementation of this scheme: 

1. Exactly which formulas are in Inst(a)? The set of formulas in Inst(a) may 
depend on the universe of M. How can this be predicted efficiently? 

2. Do the same formulas occur in Inst(a) for every choice of M? If not, how 
can the different sets be merged into one large set for inclusion in the body 
ofT? 

If different formulas occur for different choices of M, then one cannot just 
add Inst(a) to the body of T without changing the models of T. For example, 
let C contain a single constant a, and let a be \/x(R(a) -* R(x)). If the body 
of T is the single wff R(a), then T has one model, where a is the only element 
of the universe. Let M be a model of T—a in which R(a) is true and the 
universe contains two elements, say a and 6. Then an appropriate instantiation 
of a that will prevent M from being rescued by the update INSERT ~'R(a) WHERE 
T is the wff R(a)—»F. But adding this wff to the body of T would eliminate the 
one legitimate model of T. 

There are certain cases where questions (1) and (2) above have easy an- 
swers. For example, if the universes of all models of X are isomorphic, then the 
Inst(a) constructed for one model M is identical to that constructed for every 
other model. There are two ways of guaranteeing essentially identical universes: 
either include a domain completion axiom in T (Vx((x = ci) V • • • V (x = cm))*, 
where each c, is a constant) and thereby standardize the universe; or else guar- 
antee that the universe of every model is infinite, by including an infinite set of 
constants in C. In this latter case, universes may vary greatly from model to 
model, but every universe is guaranteed to be sufficiently large that Inst(a) will 
contain the same wffs for every model, giving an answer to question (1). Further, 
with respect to question (1), in the case of an infinite universe it is easy to gen- 
erate Inst(a), because Inst(a) contains every possible instantiation of a, roughly 
speaking. 

In the case where T includes a domain completion axiom, question (2) 
has an easy answer: there is a reasonable way of constructing Inst(a) such that 
Inst(a) is the same for all models of T. (Note that no Skolem constants can 
appear in this domain completion axiom; otherwise, the universe would not nec- 
essarily be standard across all models of T.) However, question (1) remains 
unanswered: exactly which formulas are in Inst(a)? As will be shown after the 
presentation of the new Update Algorithm, it takes time polynomial in the size 
of T and the domain to determine whether a particular formula is in Inst(a). 
The problem is .A/^-complete if the number of variables in a is also part of the 
input; but since the number of variables in a is in practice small and bounded, 
this is not cause for alarm. 

t Domain completion axioms conflict with the requirement of Section 3.1.1 that £ contain 
an infinite number of constants. This requirement is present to insure that one will always be 
able to find a history atom H(f, U) that does not unify with any history atom in the body of T. 
If C contains only a finite set of constants, as implied by a domain completion axiom, then the 
whole system must come to a pause if the Update Algorithm runs out of "new" history atoms. 
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Why might it be expensive to test a candidate formula ß for membership 
in Inst(a)? One must test whether there exists a substitution er over C such that 
ß may be obtained from (a)^ through replacing by F all datoms of (a),, that do 
not unify with any atom of 7". In general, this may require exhaustive generation 
and testing of potential as. The problem may be formalized as that of finding 
a set of assignments to variables from a finite domain given certain forbidden 
combinations of assignments. Since the number of possible substitutions is mn 

for a domain of size m with n variables in a, a generate-and-test strategy gives 
an algorithm that is polynomial in the size of T and the domain, but still quite 
expensive. On the other hand, in practice one expects the domain to be very 
large, and the datoms of T to be sparse within the cross product of the domain, 
making it very likely that a suitable substitution a can be found quickly, if one 
exists. More will be said on this issue after the presentation of the new Update 
Algorithm. 

Setting constraints on the universe is not the only way to achieve enforce- 
ability. For example, a strict axiom can only cause rescues if it contains data 
predicates; if there are no data predicates in a, then a is trivially enforceable, as 
even the Update Algorithm Version I will enforce a. For example, suppose T is 
an extended relational theory and a a domain completion axiom. Let M. be a 
model of T that violates a. No update to M can remove that axiom violation, 
because a contains no atomic formulas whose truth valuations could be changed 
in M to effect a rescue. 

There is one other type of axiom where questions (1) and (2) have easy 
answers. Interestingly, this class encompasses the axioms of traditional interest, 
such as functional dependencies and multivalued dependencies. The key feature 
of this axiom type is that an instantiation (a)b of such an axiom a is guaranteed 
to be valid if any variable of a is bound to a universe element not named in £. 
If (Q)J is valid, then no model can violate (a)b, and hence there is no need to 
include (a)j in Inst(a). 

Strict axioms that are easy to enforce are called enforceable: 

Definition. A universal sentence a not containing history predicates is 
strictly enforceable if any of the following four conditions is satisfied. 

1. a contains no data predicates. 

2. C contains an infinite set of constants. 

3. Among its completion axioms, T contains a domain completion axiom 
Vi((x = c\) V • • • V (i = cm)), for each c* a constant. 

4. For i a variable of a, (a) substitute x for a subset 5 of the variables of a, 
creating ß; (b) replace the atomic formula x = x by T wherever it occurs 
in /?; and (c) replace any other atomic formulas of ß containing z by the 
truth value F. If ß is valid for all choices of x and 5, then a is strictly 
enforceable.      0 
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Please note that if ß in condition 4 is logically equivalent to a, then though 
a fails to be strictly enforceable, a can be replaced by the equivalent and sim- 
pler axiom ß, and ß may well be strictly enforceable. For example, VxVyVz 
Vu>(((Emp(x,y) AEmp(x, z))->{y=z))f\ (Emp(u>, u>)V->Emp(u>, w))) fails to meet 
condition 4 because of w, but in this case ß is logically equivalent to VxVyVz 
((Emp(i, y) A Emp(x, z)) —► (y = z)), which is strictly enforceable because it 
satisfies condition 4. 

As mentioned earlier, most common types of dependencies with semantics 
that are suitable for strict enforcement satisfy condition 4. For example, all 
functional dependencies and multi-valued dependencies satisfy condition 4. To 
see this, consider the dependency VxVyV.z((Emp(x, y) A Emp(x, z)) —► (y = z)). 
If the atomic formulas over any one variable are false, then the preconditions of 
the implication are false, and therefore the axiom is satisfied. On the other hand, 
an axiom stating that an employee must be in every department save possibly 
one—VxVyVz((-iEmp(x, y) A ->Emp(x, z)) -* (y = z))—does not meet condition 
4, as, for example, VxVyVz ((T A -iEmp(x, z)) —► F) is not valid; nor is it logically 
equivalent to the original axiom. 

If a potential strict axiom a does not meet conditions 1, 2, 3, or 4, then 
questions (1) and (2) above do not have easy answers. Section 6.5 presents a 
method of enforcing such axioms, using a rather painful method of instantiation. 

We are now ready to extend the Update Algorithm to handle strictly 
enforceable axioms a. The technique for preventing rescues of alternative worlds 
that violate or has already been presented: a finite set Inst(a) of "instantiations" 
of a is constructed and added to 7". At this point it only remains to present 
an efficient method of generating the set Inst(a). This will be accomplished by 
Step 1 of the new Update Algorithm, which instantiates the strict axioms with a 
subset of the constants and Skolem constants in the body of T. In Step 3 those 
instantiations will be added to the body of 7". The key point of Step 1 is to 
instantiate the axioms as few times as possible, to minimize the size of T'. One 
would like to instantiate the axioms so as to produce only datoms that unify with 
datoms already in T; since all other datoms are known to be false, they can be 
replaced by the truth value F in the instantiation. In fact this is exactly what 
Step 1 does, albeit a bit more conservatively. 

The goal of minimizing the size of Inst(a) leads to a complicated instan- 
tiation process for a. Step 1 is an iterative process, where successively more 
variables of a are carefully bound. Step 1 is difficult to understand, and for 
that reason several parenthetical remarks are included in the presentation of the 
algorithm. 

Steps 2, 4, 5, and 6 in the new version of the Update Algorithm are 
identical or nearly identical to Steps 1, 2, 3, and 4, respectively, of the Update 
Algorithm Version I. 

The Update Algorithm (Version IV) 
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Input. An extended relational theory 7", including a strict axiom section, and a 
ground update U. 

Output. 7*', an updated version of 7". 

Procedure. A sequence of six steps: 

Step 1. Instantiate strict axioms. This step constructs the set of wffs Inst(a) 
for each strict axiom a. (Examples of the operation of Step 1 appear at the end 
of the presentation of the algorithm.) Let Inst(a) contain the set of all wffs (a)„ 
constructed as follows: 

a. Choose initial binding. Choose a datom / in u> and an atomic formula g 
in a such that / and g unify under a most general substitution a'. Let 
ffbea substitution containing just the substitutions for variables in a'. 
(Intuitively, Step la guarantees that some datom of u; appears in (a)a. 
If this condition were not met, then U could not possibly rescue a world 
violating (o;)^.) 

b. Bind additional variables. Repeat the following zero or more times: 

Choose a datom / in T and an atomic formula g in (a)c such that / and 
g unify under a most general substitution a'. Append the substitutions 
for variables in a' to a. 

(Intuitively, Step lb instantiates variables of a so that the datoms appearing 
in (a)« might possibly be true in some model of T. Intuitively, all variables 
unbound after Step lb will be instantiated to universe elements not referenced 
by 7", so that non-ground atomic formulas in (a)„ can be replaced by F. The 
actual process is a bit more complicated; for example, the equality predicate will 
require special treatment.) 

c. Decide which equality atomic formulas will be true. Repeat the following 
zero or more times: 

If a variable x occurs in an equality atomic formula x=y or y=x in (a)ff, 
for y a variable, constant, or Skolem constant, then append to a the sub- 
stitution y. 

This completes the construction of a. The final four phases of Step 1 are devoted 
to simplifying the formulas in Inst(a). 

d. Remove true equality formulas. For each wff ß in Inst(a), replace the 
reflexive equality formula (e.g., x = x) by the truth value T wherever it is 
a subformula of ß. 

e. Discard unwanted ßs. For each wff ß in Inst(a), remove ß from Inst(a) if 

o a satisfies condition 4 in the definition of strictly enforceable axioms 
and ß contains variables. (In this case, Step If applied to ß will yield 
a valid wff, so ß need not be included in Inst(a).) 

o a satisfies condition 3 and Falsifiable(/?, T) is false. (In this case, 
some model of 7" might not satisfy ß if all non-ground atoms of ß were 
replaced by F. The Falsifiable() routine will be described separately.) 
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f. Eliminate remaining variables. For each wff ß in Inst(a), replace all non- 
ground atomic formulas in ß by the truth value F. 

g. Simplify ß. For each wff ß in Inst(a), replace datoms in ß that do not 
unify with any datom in T or « by F, if desired; and replace ß by a 
simpler logically equivalent wff, if desired. (These simplifications will help 
to minimize the number of different instantiations and their total size.) 

Step 2. Maintain the closed-world assumption. To maintain the closed- 
world assumption, all datoms in u, (f>, and Inst(a) need to be represented in the 
completion axioms of T. First change the body of T to reflect the new completion 
axioms: for each atom g that is a subformula of w, <j>, or Inst(a) but not X, let 
So be the set of the most general substitutions a such that for some datom / 
that is a subformula of X, / unifies with g under a. If So is the empty set, then 
add -><7'to the body of X; otherwise, add the wff 

9  -   V a C1) 
«r€Eo 

to the body of X. Then for every datom g of X not represented in the completion 
axioms, add a disjunct representing g to those axioms. 

Step 3. Add Inst(a) to X. Add all the wffs in Inst(a) to the body of X. 

Step 4. Make history. (Same as Step 2 of the Update Algorithm Version 
I) For each atom / that is a subformula of X' and unifies with an atom of w, 
replace all occurrences of / in the body of X by the history atom H(f, U). In 
other words, replace the body B of X by {B)<,B. 

Step 5. Define the scope of the update. (Same as Step 3 of the Update 
Algorithm Version I) Add the wff {<t>)<,B—>u to X'. 

Step 6. Restrict the scope of the update. (Same as Step 4 of the Update 
Algorithm Version I) For each datom / in OH, let S be the set of all most general 
substitutions a under which / unifies with an atom of u. Add the wff 

(f~H(f,U))V WV.A \/ a) (2) 

to X'. (Intuitively, formula (2) says that for / an atom that might possibly have 
its truth valuation changed by update U, the truth valuation of / can change 
only in a model where <f> was true originally, and further that in any model so 
created, / must be unified with an atom of a?.)      0 

Example. For an example of the operation of Step 1, let U be the update 
INSERT -iEmp(Reid, e) WHERE T, when the body of T contains just the wffs 
Emp(Reid, EE) and Emp(Reid, CSD)V Mgr(Nilsson, CSD), and the strict axiom 
section of T contains just the single-department axiom, Va;VyV.z((Emp(x, y) A 
Emp(x, z)) —* (y = z)). This axiom satisfies condition 4 for strict enforceability. 
The Update Algorithm Version I would produce an alternative world in which 
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Reid is in CSD, which is incorrect if a is to be enforced strictly. As will be 
shown, Step 1 of Version IV prevents this anomaly. The two alternative worlds 
that should be produced under strict enforcement have the sets of true datoms 
{Mgr(Nilsson, CSD), Emp(Reid, EE)} and {Mgr(Nilsson, CSD)}, respectively. 

Step la ensures that some datom in the instantiation of a being created 
will unify with a datom of u>. If this were not the case, no datom in that in- 
stantiation of a would be affected at all by the update, and the update could 
not possibly cause a rescue of any alternative world that violated that particular 
instantiation of a. For Step la of the current example, first let / be Emp(i, 
y) of a, which unifies with Emp(Reid, e) in u>. Then a is Reid \, and (a)„ is 
V2((Emp(Reid, e) A Emp(Reid, z)) ->(e=z)). 

One option for (a)ff at this point is not to include any additional variable 
substitutions in a. Intuitively, this corresponds to instantiating those variables 
with universe elements not named in £. For the current example, however, if no 
further variable substitutions are done, (a)a will be eliminated from Inst(a) in 
Step le, because a satisfies condition 4 and hence that instantiation of a would 
be valid. Whenever (a)* is valid, every possible alternative world satisfies (a)*, 
and there is no way that U can cause a rescue of an alternative world violating 
(oc)tr, as there is no such world. 

Another option for (a)ff is to add no variable substitutions to a in Step lb 
and then to replace z by e in Step lc. But the resulting wff (a)», ((Emp(Reid, e) 
A Emp(Reid, e)) —*(e=e), is also valid, and hence may be replaced by T in Step 
lg. The wff T is a particularly uninteresting axiom instantiation. 

The final option for (a)^ is for a variable replacement to take place in 
Step lb. The only variable in (a)i, at that point is z; the only atomic formula 
containing z in (a)^ is Emp(Reid, z); therefore g of Step lb must be Emp(Reid, 
z). There are two possible choices for / in T: Emp(Reid, EE) or Emp(Reid, 
CSD). The former choice gives a a of x

Rtid £ EE, and (a)„ of ((Emp(Reid, e) A 
Emp(Reid, EE)) —»(e=EE); the latter choice leads to a a of Reid \ CSDI 

an<^ (a)<r 
of ((Emp(Reid, e) A Emp(Reid, CSD)) -^(e=CSD). 

As no variables remain in either version of (a),,, Steps lc through If do 
not change these two wffs. In Step lg, no simplifications look promising, so 
the two wffs can remain unchanged. Therefore Inst(a) contains the two wffs 
((Emp(Reid, e) A Emp(Reid, EE)) ->(e=EE) and ((Emp(Reid, e) A Emp(Reid, 
CSD)) ->(e=CSD). 

Returning to Step la for the next iteration, the only other choice for g in 
a is Emp(x, z), and the reader can quickly verify that this choice of g generates 
the same two wffs as did Emp(x, y). Therefore Inst(a) remains unchanged. 

How will the two wffs of Inst(a) prevent the rescue of those undesirable 
alternative worlds? At the end of Step 6 of the Update Algorithm, the body of 
T' will contain the following wffs: 

1. if(Emp(Reid, EE), U) 
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—Original body plus history substitution 

2. #(Emp(Reid, CSV),U) V Mgr(Nilsson, CSD) 

—Original body plus history substitution 

3. #(Emp(Reid, e), U) ^((e =CSD) V (e =EE)) 

—From Step 2, plus history substitution 

4. ((if(Emp(Reid, e), U) A tf(Emp(Reid, EE), U)) ->(e=EE) 

—From Inst(ot), plus history substitution 

5. ((#(Emp(Reid, e), U) A #(Emp(Reid, CSD), U)) -+(e=CSD) 

—From Inst(a), plus history substitution 

6. T-»-iEmp(Reid, e) 

—From Step 5, {<t>)oH -+<*> 

7. (Emp(Reid, e) <-+ff(Emp(Reid, e))) V (TAT) 

—From Step 6, formula (2) 

8. (Emp(Reid, EE) «-jy(Emp(Reid, EE))) V (TA (c=EE)) 

—From Step 6, formula (2) 

9. (Emp(Reid, CSD) ~J3-(Emp(Reid, CSD))) V (TA (e=CSD)) 

—From Step 6, formula (2) 

It is not obvious that this theory has the correct alternative worlds, but a little 
dedicated cranking will grind them out. We do so here to show that a has been 
enforced, that is, that Reid is not in CSD in any model of this theory. 

By the completion axioms, the only possible true datoms are Emp(Reid, 
EE), Emp(Reid, CSD), Mgr(Nilsson, CSD), and Emp(Reid, e). The last of these 
four is ruled out immediately by wfF #6. 

For the remaining three datoms, first assume e=EE. Then #9 implies 
-.Emp(Reid, CSD). #6 implies ^Emp(Reid, EE). #1 implies JT(Emp(Reid, e)), 
and with #5 this implies -i#(Emp(Reid, CSD)), so by #2 Mgr(Nilsson, CSD) 
must be true. 

Now assume e^EE. Then #1 and #8 imply Emp(Reid, EE), which with a 
implies ->Emp(Reid, CSD). It remains to show Mgr(Nilsson, CSD). If e^CSD then 
#9 implies ->ff(Emp(Reid, CSD)), which with #2 implies Mgr(Nilsson, CSD). 
If e=CSD, then #1 and #4 imply -^ff(Emp(Reid, e)). This last and #2 imply 
Mgr(Nilsson, CSD). We conclude that T' has the correct alternative worlds. 
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Example. Let a be Vx (Emp(Reid, English) —►Emp(Reid, x)), and let 
C be infinite. This axiom satisfies condition 2 for strict enforceability but not 
condition 4. If the body of T contains just Emp(Reid, English), then T has no 
models, by the completion axioms. If the incoming update is INSERT -iEmp(Reid, 
English) WHERE T, the Update Algorithm Version I would rescue the alternative 
world where all datoms are false. To enforce a strictly, the Update Algorithm 
Version IV must produce a theory with no models. 

In Step la, if any variable substitutions are put into a then (a)a is 
Emp(Reid, English) —>Emp(Reid, English), which is valid and therefore will not 
be helpful in preventing rescues. Since Emp(Reid, English) of a already is a 
subformula of u>, however, a can remain the empty substitution. 

In Step lb, again any substitution for variables will make {pi)9 valid. Steps 
lc and Id are inapplicable, since a does not contain the equality predicate. Step 
le is also inapplicable. 

In Step If, Emp(Reid, x) is replaced by the truth value F, so that ß is 
Emp(Reid, English) —*F. Note that this wfF was generated without considering 
the contents of the body ofT at all; rather, it was generated using the fact that 
since the universe was infinite while the body of T was finite and ground, it 
followed that Emp(Reid, x) had to be false for some x in the universe. This is 
the key technique that keeps the set of needed instantiations finite for a when C 
contains an infinite set of constants. 

In Step lg, ß can be simplified to -iEmp(Reid, English). As T contains 
Emp(Reid, English), at the end of Step 6 T' will contain both £T(Emp(Reid, En- 
glish)) and -ijy(Emp(Reid, English)), and hence will be unsatisfiable, as desired. 

We now describe the function Falsifiable(ß, 7"). This function takes as 
input a universal formula ß and an extended relational theory T containing a 
domain completion axiom. The function forms the set S containing all non- 
ground atomic formulas of ß, and then determines whether there exists a binding 
b for all the variables in S such that (1) no datom in (S)j unifies with a datom 
of T and (2) all equality atoms in (S)t, are unsatisfiable. 

More formally, let xi through x„ be the variables of ß, and let c\ through 
cm be the constants in the domain completion axiom of T. Then Falsifiable(/?, 
T) returns the value 'true' iff the following formula is satisfiable: 

3xi---3z„(    l\    (xi^Xj)A   f\  ((z,-=Ci)V---V(xi=cm)) 
l<i,j<n !<»<»» 

A   /\   -red(cr)), 

where red(er) is formed from a by replacing all equality atoms containing Skolem 
constants by the truth value T. 
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Falsifiable() checks for satisfiability by generating and testing bindings for 
the Xi variables. The name "Falsifiable" derives from the fact that the function 
is trying to ensure that the non-ground atomic formulas of ß are falsifiable, that 
is, are false in some model of 7". 

We do not specify the exact technique used to compute Falsifiable(/?, 
T); some heuristics to guide the generation process (e.g., a list of unlikely at- 
tribute values, such as "Nilsson" as an unlikely department name and "CSD" 
as an unlikely employee name) and backtracking should be entirely satisfactory 
in practice, since datoms may reasonably be expected to be quite sparse in the 
cross product of the domain. The worst-case time complexity of Falsifiable() is 
0(cmn), where c is the number of occurrences of constants in T. 

Theorem 6-1. For an extended relational theory 7" with strict axioms 
and a ground update U, the Update Algorithm Version IV accomplishes U.      0 

Proof of Theorem 6-1. As usual, let T\ be the theory produced by Step 
1, and so on. First, by Lemma 4-1, Steps 1 and 2 do not change the models 
of T; so 7i, 72, and T all have the same models. Lemma 6-1 below shows that 
Inst(a) is finite, so the body of T$ is finite and 7^ is an extended relational theory. 
Lemma 6-1 also shows that Ti and 7ä have the same models. From the proof 
of Theorem 4-1 it follows that Version IV is correct and complete with respect 
to the definition of INSERT, except for two possible aberrations: Given that a 
model Me is produced by Version IV, we must verify that Me satisfies the strict 
axioms of 7"; and also verify that World(A<6) £ Worlds(U(M)), for M a model 
of T. The former of these follows immediately, as Te contains the same type and 
dependency axioms as did T. It remains to verify that Me is descended from a 
model M of 7". 

From the proof of Theorem 4-1 and the fact that Me must satisfy the 
strict axioms of Te, it is immediate that World(A<6) G Worlds(?7(A^)) for some 
model M of T minus the strict axioms. To review the construction of M, let 
«76 be the Skolem constant substitution for Me with respect to Te- Let M be a 
model that differs from Me in only the following respects: if / is a datom of OH, 

then the truth valuation of / in M is the same as the truth valuation of H(f, U) 
in Me- 

If M violates a, then for some binding 6 of universe elements to all the 
variables of a, (a)i is false inM. Suppose that we are able to show that whenever 
(a)i is false in a model, then some wfF ß of Inst(a) is also false there. But ß is a 
formula of T3, and M is a model of T3, by the proof of Theorem 4-1; therefore M 
must be a model of (a)& and of a. The remainder of this proof is a construction 
of a wff ß such that ß G Inst(a) and ß is false in M if (a)* is false in M. 

The wff ((a)at )j must contain at least one datom that is a subformula of 
(u;)^, because otherwise (a)j and a would be false in Me- (This implies that 
Q does not satisfy condition 1 for strict enforceability.) We will use this datom 
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as the starting point for the construction of ß. Choose an atomic formula g of a 
such that {{g)„e)b is a datom of (u>)0e. Let / be a datom of u; such that (/)<*« 
is the same datom as {(g)vt )b- Then there exists a most general substitution a' 
under which / and g unify. Let a contain just the substitutions for variables in 
a'\ then (a)0 is false in M, (((ö)<T)<T8)6 is (a)b, and (a)^ was produced by the 
Update Algorithm Step la. 

Repeat the following as many times as possible: 

Choose a non-ground atomic formula g of (a)a such that (g)b unifies with 
a datom / of T. Let a' be a most general substitution under which / and 
g unify, and append the substitutions for variables in o' to a. Then (a)0 

is false in M, (((<*)»)»e)» is identical to ((a)ffe)t„ and (a)ff was produced 
by the Update Algorithm Step lb. 

Now let x = y be a non-ground equality atomic subformula of (a)*, for x 
and y distinct and, say, x a variable. If (x = y)\> is true in AA, then append to 
a the substitution *. Repeat for all such subformulas of (at)„, and then (a)„ is 
still false in M, (((<*)*)»«)* is identical to {(a)<,e)b, and (a)* was produced by 
the Update Algorithm Step lc. 

Let ß be the wfF (oi)„. Replace all occurrences of the reflexive equality 
formula in ß (e.g., x = x) by the truth value T. Then (/?)& is false in M, and ß 
was produced by the Update Algorithm Step Id. 

If ß is not ground, then possibly ß will be removed from Inst(a) in Step 
le of the Update Algorithm. This will occur if a satisfies condition 4 for strict 
enforceability. But if a satisfies this condition, then by the construction of ß, 
(a)b must be a valid wff, and hence M must satisfy (a)&, a contradiction. 

ß will also be removed from Inst(a) in Step le if a satisfies condition 3 
for enforceability and Falsifiable(/?, T) is false. But in this case, there must be a 
non-ground atomic formula g of ß such that (g)b unifies with a datom of T. But 
by the construction of /?, there cannot be any such atomic formula remaining in 
ß at this point. 

In Step If, any remaining non-ground equality atomic formulas of ß are 
replaced by F in ß. But by the construction of ß, any such atomic formula is 
false in M under binding b, and hence the new version of (/?)j is still false in M. 

In Step If, all remaining non-ground atomic formulas of ß over data pred- 
icates are also replaced by F in ß. But by the construction of /?, again any such 
atomic formula is false in M under binding b, and hence the new version of ß is 
false in M. 

After Step If, ß is a ground wff that is false in M. By the completion 
axioms, one may replace by F any datom of ß that does not unify with a datom 
of T, and ß will still be false in M. Then by Step lg, ß or a wff logically 
equivalent to ß is in Inst(a). This concludes the proof of correctness for the 
Update Algorithm Version IV.     0 

Lemma 6-1 shows that Step 3 does not change the models of T. 
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Lemma 6-1. For an extended relational theory T and an update U, let 
ß be a wff in Inst(a), produced by Step 1 of the Update Algorithm Version IV. 
Then adding ß to the body of T does not change the models of 7". Further, 
Inst(a) contains a finite number of wffs.      0 

Proof of Lemma 6-1. If the strict axiom a satisfies condition 1 for 
strict enforceability, then Inst(a) is the empty set, and the theorem is satisfied. 
Otherwise, to show that Inst(a) is finite, recall that the body of T is finite and 
so is w. Therefore there can be only a finite number of different unifications of 
atomic formulas of a with datoms of T and u>, and Inst(a) must be finite. The 
remainder of the proof shows that all models of T satisfy Inst(a). 

Since all models of T satisfy a, all models also satisfy (a)„, for any sub- 
stitution a constructed in Step 1. Let ß be the wff (o),,, and assume that ß is 
not discarded in Step le. Then if a satisfies condition 4 for strict enforceability, 
ß is a ground formula at this point. 

If the strict axiom a satisfies condition 2 but not condition 4, then ß may 
still contain variables after Step le, and every non-ground atomic formula of ß 
will be replaced by F in Step If, creating ß'. To show that every model M. of T 
satisfies /?', let c\ through c„ be constants of C such that no datom with C{ as 
an argument is true in M.. There must be such constants, because £ contains 
an infinite number of constants. Then substitute Cj for ij, for every variable 
Zj remaining in ß, creating the wff (ß)c- Then M. satisfies (ß)c, and for every 
non-ground atomic formula g of ß, (g)c is false in M.. Therefore ß' is also true 
in M. 

If the strict axiom a satisfies condition 3 but not condition 4, then ß may 
still contain variables after Step le, and every non-ground atomic formula of ß 
will be replaced by F in Step If, creating ß'. In this case Falsifiable(/?, T) must 
be true, meaning that there exists a constant substitution b for the remaining 
variables of ß such that for every non-ground atomic formula g of ß, (g)b is false 
in M. Therefore ß' is true in every model of 7". 

As for Step lg, by the completion axioms any datom of ß that does not 
unify with any datom in T must be false in all models of T. Therefore if we 
replace such a datom or datoms in ß by F, the resulting wff will also be true in 
all models of T, and adding it to T will not change the models of T. 

Finally, any wff logically equivalent to ß will also be true in all models of 
T, and hence adding such a wff to T will not change the models of T.      0 

6.4. Computational Complexity Revisited 

Step 3 of the Update Algorithm Version IV does increase the size of T. The 
amount of the increase depends on the type of axiom being strictly enforced and 
on the wffs currently in the body of T. Since the dependency axioms for the 
database will be known ahead of time and will change only rarely if at all, the 
axioms can be preanalyzed and specialized enforcement routines prepared. We 
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begin by showing the computational complexity for functional and multi-valued 
dependencies. Let k be the number of different datoms in w, and let R be the 
maximum number of datoms in T over the same data predicate. 

If the dependency axiom is a functional dependency, then the size of 
Inst(a) is O(kR) worst case (when a datom that seems to conflict with every 
other atom over the same predicate is "deleted") and size zero best case (when no 
potential conflicts occur). The time to construct Inst(a) is 0(kRlog(R)) worst 
case, assuming that every atom over every predicate occurring in u> is located 
through an index in time 0(\og(R)); and 0(k log(iZ)) best case. 

These worst-case estimates are high indeed; when extended to updates 
containing variables, the potential cost becomes most alarming. But just how 
many conflicts are likely to occur in practice? More revealing than worst-case 
scenarios is the average size of Inst(a). In an actual database application, there 
are a number of mitigating factors that lead one to expect that Inst(a) will be 
quite small on average. We now examine these factors individually. 

First, practical updates and queries do contain variables. Typically, a 
query references many tuples in order to provide summary information to a user. 
In updates, however, we argue that variables play a different role. The typical 
update in a real database does not modify multiple tuples. It selects one tuple, 
and changes just that one tuple. Variables in such an update play the role of 
placeholders for "don't-care" values while a selection is being done on a key, and 
do not lead to large numbers of database modifications per update request. This 
profile should to carry over to extended relational theories. 

Second, a new datom in u may conflict with every preexisting datom over 
its predicate, but just how likely is that situation? How often are there going 
to be many datoms that unify on the "ruling part" of their attributes? In any 
useful collection of data, those unifications should be few, as datoms will be 
sparse within the cross product of their domains. For example, when inserting 
the Emp(Reid, CSD) datom, one would not expect there to be large numbers 
of unidentified employees, nor for Reid to be rumored to be a member of many 
different departments. 

Third, functional dependencies are typically used to identify keys. One 
very reasonable restriction for a practical database management system is to 
forbid null values to occur in keys. This action would drastically reduce the 
number of potential conflicts. 

In sum, axiom instantiation should not be dismissed as a technique for 
strict axiom enforcement on the basis of its worst-case behavior. There are 
good reasons for expecting satisfactory performance of this technique in real-life 
situations. 

Returning to the investigation of the computational complexity of partic- 
ular classes of strict axioms, if the dependency axiom is a predicate-inclusion 
dependency (e.g., ViVy (Mgr(i, y) —♦ Emp(i, y))), then the time complexity is 
again is 0(kR\og(R)) worst case (when "deleting" a datom that seemed to in- 
validate every atom over some other predicate) and 0(k\og(R)) best case (when 
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no potential conflicts occur). Size complexity is the same as for functional de- 
pendencies. The same cost functions hold for a multivalued dependency as well. 

The space and time bounds given above for enforcing a are precise because 
a has been pinned down to a particular class of axioms, such as functional depen- 
dencies. It is not possible to give a meaningful space bound for Inst(a) without 
such information on the format of a, the occurrences of equality predicates in a, 
and the patterns of occurrences of variables within the atomic formulas of a. For 
a size bound computed without this information, one must assume that every 
atomic formula in a unifies with everything in T at each stage of the reduction, a 
ridiculous assumption that leads to very high estimated bounds. For this reason 
we choose not to include a general worst-case size bound for Inst(a). 

As usual in these algorithms, time complexity to construct Inst(a) differs 
from the size of Inst(a) by a 0(log(R)) factor, representing the time needed to 
look up the atoms in indices. There is an additional multiplicative factor for 
strict axioms that satisfy only condition 3 for enforceability: the time complexity 
of Falsifiable(). As discussed earlier, the worst-case behavior of Falsifiable() is 
linear in the size of T and polynomial in the size of the underlying domain. 
However, it seems reasonable to assume that in practice a call to FalsifiableQ can 
be completed in constant time. 

6.5. Strict Enforceability Revisited 

The previous section explained why certain potential strict axioms a were not 
considered strictly enforceable. In particular, it may be difficult to determine 
which wffs are in Inst(a) for a particular model M, and in addition, different 
models may have different sets of formulas in Inst(a). Actually, any sentence a 
can be strictly enforced; it just may be an unpleasant proposition to do so. 

If a does not meet conditions 1-4 for strict enforceability, then £ has a 
finite set of constants. T, however, may have models with universes of different 
sizes, both finite and infinite. To enforce a strictly will require a pastiche of the 
techniques for finite universes (condition 3) and infinite universes (condition 2). 
Suppose that £ contains n constants, c\ through cn. Then in the final set Inst(o) 
that is added to the body of T: 

• Include all the wffs ß that would be included in Inst(a) if T contained a 
domain closure axiom for ci through c„. Such ßs are true in all models of 
T. 

• Find every additional wff ß that would be included in Inst(a) if £ 
contained one additional constant cn+i and T contained a domain clo- 
sure axiom for c\ through cn+i- Then include in Inst(a) the formula 
((«i #ci)A---A(«i ^cn))- ß. 

• Find every additional wff ß that would be included in Inst(o) if £ con- 
tained k additional constants, c„+i through cn+k, and T contained a do- 
main closure axiom for ci through c„+t.   Then include in Inst(a) the 
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formula^! ^ cx) A- •• A(Cl ^ cn) A- • • A(et ^ ca) A- •• A(e* ^c„)A(efc ^ 
«1) A ••• A (e*#e*_i))-»  ^ 

•     Stop adding formulas to Inst(a) when: 

o If T does not contain a domain completion axiom, then when every ß 
has been generated that would be included in Inst(a) if C contained 
an infinite number of constants; 

o If T contains a domain completion axiom containing j Skolem con- 
stants, then stop after the iteration where k = j. 

Intuitively, those additional elements in the universe are needed in order 
to be able to guarantee the ability to falsify a subset of the datoms of ß. Note 
the combinatorial explosion in the length of members of Inst(a) as k grows large. 

Consider an example where a is Vx (R(a) —► R(x)). If U is IHSERT ->R(a) 
WHERE T, C contains the single constant a, and the body of T contains just R(a), 
then in every model of T, a must be the only element in the universe. After U 
is executed, a should still be the only element in the universe; yet the Update 
Algorithm Version I would rescue all the alternative worlds with more than one 
element. If T contained the domain completion axiom Vx(i = a), then Step 
1 of Version IV would produce the set of formulas Inst(a) = {R(a)—>R(a)}. If 
T contained one additional constant, then Version IV would produce Inst(a) = 
{R(a)—*F}. Adding a filter to the latter set and merging the two sets produces 
Inst(a) ={(e^a) -* ->R(a)}. Note that adding ->R(a) to T would make T incon- 
sistent; but adding (e ^a) -+ -ii2(a)does not change the models of T at all, and 
in fact does strictly enforce a and prevent models with universes containing more 
than just a from being rescued by U. Lest this example look too attractive, note 
that it was made tractable by restricting the language £ to just one constant; a 
large set of constants would cause explosive growth in the number of formulas 
needed to enforce a. 

To merge this technique into Version IV, process U as though a had a 
domain completion axiom containing all the constants of £. At the time of 
the call to Falsifiable(ß, T) in Step le, do not discard ß if the call fails. In- 
stead, repeatedly add single constants to the domain completion axiom until 
Falsifiable(/3, T) succeeds, say on the fcth call. Then replace ß in Inst(a) by 
((ei#ci)A- • • A (cfc_i ^ ejt)) -► ß, where ei through e* do not appear in T. 

6.6. Summary and Conclusion 

Type and dependency axioms can play many different roles in an extended rela- 
tional theory. This chapter shows how to conduct two of those roles, passive and 
strict enforcement, and concentrates on the machinery necessary to enforce uni- 
versally quantified axioms strictly, i.e., to eliminate permanently all alternative 
worlds that fail to satisfy that axiom. If universally quantified variables are per- 
mitted to occur in the body of T, then this is trivial to accomplish. If the body 
of T is restricted to ground wffs, then the technique used is to try to instantiate 
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the axiom with constants and Skolem constants from T, and to add those in- 
stantiations to the body of 7". Through logical manipulations, the required set of 
instantiations can always be made finite. However, it may be difficult to make the 
set small; some combinations of axioms a and languages C are just too expensive 
for strict enforcement when variables are not allowed in the body of T. However, 
a will always be strictly enforceable if £ contains an infinite set of constants, if 
the universe is known to be finite, or if, roughly speaking, for any variable x in a, 
replacing all atomic formulas of or containing x by the truth value F yields a valid 
formula. For example, all functional and multi-valued dependencies are strictly 
enforceable, and the cost of enforcing them during an update is quite reasonable. 
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Chapter 7: Other Semantics 

Chapter 3 presented a semantics for updates (hereafter called the "stan- 
dard semantics") along with a set of desiderata providing a rationale for the 
selection of the standard semantics. However, the standard semantics is not the 
only possible choice: there is a spectrum of reasonable candidates for update 
semantics, and the standard semantics is just one possible choice. The purpose 
of this chapter is to define this spectrum of semantics, give a closer examina- 
tion to a few of the points along the spectrum, and explain why some candidate 
semantics are more reasonable than others. In the process, the motivations be- 
hind the choice of the standard semantics will become clear. In addition, this 
chapter shows how to adapt the Update Algorithm to work with other choices of 
semantics; the basic technique is to change the formula of Step 4. To simplify the 
presentation, we will restrict attention to extended relational theories without 
strict axioms. We begin by providing a framework for evaluation of competing 
semantics. 

7.1. Criteria for Choice of Semantics 

In this discussion, we assume that two of the three main desiderata for semantics 
that were presented in Section 3.3 are still applicable. In particular: 

• The alternative worlds of the updated extended relational theory must 
be the same as those obtained by applying the update separately to each 
original alternative world. 

• An update cannot directly change the truth valuations of any datoms 
except those that unify with datoms of w. 

With regard to the latter point, it is acceptable for an update indirectly 
to cause changes in the truth valuations of other datoms. For example, if type 
axioms (Chapter 6) are being enforced through axiom modification, then the up- 
date INSERT Emp(Reid, CSD) WHERE T might cause the datoms Employee(Reid) 
and Department(CSD) to become true. Any such side effects, however, must 
be due to axiom enforcement policies and not to the intrinsic semantics of the 
update. 

Within the set of semantics that meet these two requirements, we suggest 
four criteria for evaluation of candidate semantics: 

• The semantics of the intended application. 

• Computational tractability. 
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• Comprehensibility. 

• Expressive power. 

The following sections examine each of these criteria in turn, with special refer- 
ence to the properties of the standard semantics. 

The semantics of the intended application. Some applications inherently 
require a particular choice of semantics. Updates contain new information des- 
tined for a database or knowledge base; the source and intended use of that 
information may impart a particular interpretation to the new facts. For exam- 
ple, in a diagnosis application, one wishes to make as few changes as possible in 
a description of the correct functioning of a device in order to make the descrip- 
tion conform to the actual observed behavior of the device. When the observed 
behavior is provided as incoming information in an update, the updated theory 
should not include every possible combination of conditions that would lead to 
the observed behavior, but rather only the minimal sets of combinations of such 
conditions. For example, if a patient is hot and flushed, the diagnostician should 
suggest an infection as the cause of the problem, and not include the combination 
of an infection and a broken leg, or an infection and a broken leg and a headache. 
It turns out that the standard semantics is not appropriate for diagnosis. 

Computational tractability. A computationally tractable semantics is one 
for which an algorithm with a reasonable running time implements the semantics. 
For example, the standard semantics is computationally tractable, as was shown 
in the discussions of the computational complexity of the Update Algorithm. 

Comprehensibility. The user must be able to look at an update and un- 
derstand what it will do: the update must be comprehensible. Our suggested 
tool for measuring comprehensibility versus trickiness is update equivalence: Do 
two updates that look similar produce the same effect on an extended relational 
theory? If two updates look different, do they produce different effects? Chapter 
8 is devoted to a discussion of update equivalence. As will be shown there, syntax 
plays a moderate role in the criteria for update equivalence under the standard 
semantics. 

Expressive power. The semantics must have adequate expressive power. 
One must be able to express every type of update, every transition between sets 
of alternative worlds, that is needed for the application. For example, Theorem 
7-1 below shows that the standard semantics can be used to move from the set 
of alternative worlds of any extended relational theory to the set of worlds of any 
other extended relational theory, with one restriction; and hence the standard 
semantics has satisfactory expressive power. 

The restriction on movement between sets of alternative worlds under the 
standard semantics lies in Skolem constant mapping requirements; for example, 
one cannot move from the extended relational theory with body e=Reid to the 
theory with empty body. In general, any desired change can be made in the 
models of an extended relational theory, except that restrictions on the ranges 
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of particular Skolem constants can never be revoked once those restrictions have 
entered the theory. This is not an important limitation, since we can always just 
rename the Skolem constants in the alternative worlds we would like to move to, 
and abandon the old Skolem constants. The following definition shows how to 
ignore selected Skolem constants in models. 

Definition. Let T> be a subset of the language £, formed by removing a 
finite set of Skolem constants from £. If A = World(A^) for some model M over 
£, then A restricted to V (written A\V) is formed from A by removing from A 
the Skolem constant maps for every Skolem constant not in V.     0 

Theorem 7-1. Let T\ and T2 be extended relational theories over the 
same language, containing disjoint sets of Skolem constants,* such that T\ is 
consistent. Then under the standard semantics, there exists an update U such 
that Worlds(£/(7i ))\V = Worlds(7^)|P, where V is £ minus the Skolem constants 
appearing in T\.      0 

(The proof of Theorem 7-1 is given just before the proof of Theorem 7-5, 
a similar theorem.) 

Further, the application's commonly used transitions between sets of alter- 
native worlds should not be overly difficult to express; for example, the standard 
semantics is not well suited for diagnostic applications for this reason as well. 

7.2. Minimal-Change Semantics 

An obvious alternative to the standard semantics is a semantics for updates where 
the third main desiderata that determined the standard semantics, namely: 

The information in u: is to represent the most exact and most recent state 
of knowledge obtainable about those datoms; and that information is to 
override all previous information about those datoms, 

is replaced by the following: 

An alternative world of T where <f> is true should be changed as little as 
possible to make w true. 

The meaning of "as little as possible" is subject to interpretation, as has been 
debated in other contexts [Todd 77, Bancilhon 81, Davidson 81, 84, Dayal 82, 
DeKleer 85, Fagin 83, 86, Ginsberg 85, Keller 82, 85, Lewis 73, Reiter 85, Weber 
85] and will be discussed in Section 7.3. For the purposes of this section, "as 
little as possible" means that if one set of changes to an alternative world A is 
a proper subset of another set of changes, and both sets of changes will make w 
true in the updated version of A, then the larger set of changes should not be 
performed.  More formally, let M be a model of an extended relational theory 

* This restriction is needed to avoid naming conflicts; if it is violated, rename the Skolem 
constants of one of the theories before testing. 
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7". Then under the minimal-change semantics, inserting a wff u; into M should 
produce the alternative worlds of every model M' with the same universe and 
constant and Skolem constant mappings as M, such that 

(1) if M' differs from M in the truth valuations of a set D of null-free datoms, 
then no other model M* with the same universe and mappings as M' and 
where u is true differs from M in only a proper subset of D; and 

(2) u> is true in M'. 

A simplified version of this semantics is used by DeKleer [85] and Reiter 
[85]; they do not consider selection clauses (<f>) or Skolem constants. 

It follows from the minimal-change definition that two null-free updates 
INSERT ui WHERE <j> and INSERT o>2 WHERE <j> are equivalent under the minimal- 
change semantics if w\ and u>2 are logically equivalent. Exact conditions for 
equivalence, however, are surprisingly complex (see Theorem 8-12), though the 
minimal-change semantics score is still satisfactory on this measure of compre- 
hensibility. The effect of a minimal-change update is very strongly tied to the 
current models of the extended relational theory. A example will perhaps be 
revealing: what is the effect of inserting (aA->b) V (cAd), where a, b, c, and d 
are datoms? The quick response: the alternative worlds will be changed as little 
as possible to get (aA->b) V (cAd) to be true. But exactly what will be true 
afterwards? That depends on what the models are now; for any particular model 
it will take a bit of careful thought to determine what the update produces. 

The minimal-change semantics suffers from lack of expressive power, as 
does any semantics where logically equivalent us lead to equivalent updates. For 
example, if the user wants to say that there is no longer any information about 
the truth or falsity of a particular datom g, this can be done by inserting gV->g 
under the standard semantics. Under a semantics based on logical equivalence, 
however, such an insertion would be equivalent to inserting the truth value T, and 
would therefore have no effect on the alternative worlds of the extended relational 
theory. In general, if an update is needed to express a loss of knowledge—i.e., 
one formerly believed that some proposition was true but now one is unsure—the 
minimal-change semantics does not offer a mechanism to accomplish the change, 
since every model of the old extended relational theory already satisfies w. 

Theorem 7-2. Let 71 and 7^ be consistent extended relational theo- 
ries such that Models(7i) is a proper subset of Models^), and Worlds(7i) ^ 
Worlds(T2). Then for no update U does Warlds(l7(7i)) = Worlds(T2).      0 

Proof of Theorem 7-2. Suppose that U is such an update, and let M 
be a model of 7i and therefore also of 72. Suppose that U changes M., that is, 
that U(M) ^ {M}. Then u is false in M. By the definition of the minimal- 
change semantics, it follows that World(.M) £ Worlds(l/(X)). Since World(A^) 
6 Worlds(72), it follows that for some other model M' of 71, World(A4) € 
Wo^lds(i7(A^,)). But then w is true in M, a contradiction. We conclude that U 
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does not change M. But M is an arbitrary model of 71; therefore Worlds(i7(7i)) 
= Worlds(7i), so Worlds( tf (71)) ^ Worlds(T2).      0 

If instead of a single update U, we allow a series of updates Ui through 
Un, Theorem 7-2 still holds if £ contains a finite set of constants.* An example 
follows. 

Example. Let C contain the single constant a and the single predicate R, 
and let the body of 71 be the formula R(a). Then there is no way to move from 
71 to the alternative worlds of the theory with body i2(a)V->Ji(a) under a series 
of updates.      0 

If C contains an infinite set of constants, it is possible to remove all knowl- 
edge about the truth valuation of a datom under the minimal-change semantics 
by eliminating the requirement that the transition be accomplished in a single 
update. This is because additional updates and constants can be used to do 
encoding, much as history atoms were used with lazy evaluation and update 
splitting in Chapter 5 to encode information for future updates. One cannot 
encode using just the equality predicate and Skolem constants, as such encoding 
makes permanent changes in alternative worlds; hence the need for an infinite set 
of constants. An example follows. 

Exampie. Under the minimal-change semantics, one can remove all knowl- 
edge about the truth valuation of a datom a by the following series of four up- 
dates: 

U\: INSERT fVg WHERE T, 

U2: INSERT --a WHERE g, 

U3: INSERT a WHERE /, 

U4: INSERT ~>f/\->g, 

where / and g are datoms not unifying with a, with each other, or with any 
datom of 7\      0 

The use of ordinary datoms such as / and g for encoding, however, has a 
number of disadvantages. For correctness all the steps of the procedure, including 
the awkward and potentially expensive location of "unused" datoms for coding, 
must be bundled into a single transaction, which is not always convenient. More 
importantly, encoding runs counter to the spirit of our endeavor, as it is beyond 
the capabilities of average users, be they humans or programs. Finally, encoding 

t This conflicts with the requirement of Section 3.1.1 that £ contain an infinite number 
of constants. This requirement is present to insure that one will always be able to find a history 
atom H(/, 17) that does not unify with any history atom in the body of 71 If C contains only 
a finite set of constants, as is reasonable for many applications, then the whole system must 
come to a pause if the Update Algorithm runs out of "new" history atoms. 
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runs afoul of another requirement of the expressiveness criteria, namely, that 
common update requests be standard to express. 

We conclude that under the minimal-change semantics, a separate op- 
erator is needed to accomplish updates reporting a loss of knowledge; such an 
operator could have the standard semantics or another expressive model-based 
semantics. Alternatively, one could define a minimal-change DELETE operator, 
such as that of Fagin et al [86]; however, it turns out that a minimal-change 
DELETE cannot really have a model-based semantics, and so must mark a con- 
siderable departure from all other semantics discussed in this thesis. Of course, 
yet some other hybrid approach is also possible. In any case, we conclude that a 
little syntactic element—name-dropping—can be useful in update semantics. 

Interestingly, the Update Algorithm is sufficiently general to serve under 
the minimal-change semantics (and other choices of semantics as well) simply by 
altering the formula of Step 4. Recall that in Step 4 of the Update Algorithm 
using the standard semantics, 

(f~H(f,U))V ((*)„A V») (2) 

is added to T' for every datom / of T' that unifies with an atom of u. If the 
current update is INSERT Emp(Reid, EE) V Emp(Reid, CSD) WHERE T and there 
are no Skolem constants in T, then this means that T gets the two new wffs 

(Emp(Reid, EE) «-> ff(Emp(Reid, EE), U)) V (T A T) 

(Emp(Reid, CSD) <-► H(Emp(Reid, CSD), U)) V (T A T), 

both of which are logically equivalent to T. To move to the minimal-change 
semantics, one needs to add the two wffs 

(Emp(Reid, EE) «-♦ F(Emp(Reid, EE), U))V 

(-iT(Emp(Reid, EE),U) A -.#(Emp(Reid, CSD),U) A -.Emp(Reid, CSD)) 

(Emp(Reid, CSD) «-» If(Emp(Reid, CSD), tf))V 

(-.if(Emp(Reid, EE),U) A ^ff(Emp(Reid, CSD), 17) A ^Emp(Reid, EE)). 

These formulas say that the truth valuation of Emp(Reid, EE) can only change in 
an alternative world if Reid is in neither department before the update and Reid is 
not in CSD in that alternative world after the update. If Emp(Reid, EE) and/or 
Emp(Reid, CSD) are already true in an alternative world, then they remain true 
there; and otherwise, Reid is put into exactly one of those two departments. 

In the general case, formula (2) needs to contain extra terms that are 
true exactly when / is part of a set of minimal changes that makes u true in an 
alternative world. To capture those states, let vu be a truth valuation for all the 
atoms of w.t Unfortunately, when Skolem constants occur in w, knowing vu may 

* A truth valuation v can be written in wff form as the conjunction of T and a set of 
literals, such that the atom a is a conjunct of v in wff form iff a receives the truth valuation T 
under v, and ->a is a conjunct of v in wff form iff a receives the truth valuation F under v. 
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not be sufficient to determine the minimal changes needed to make u true in an 
alternative world A satisfying vu. In particular, if two datoms of u> unify with one 
another, additional information may be needed, as the following example shows. 

Example. Consider the update INSERT R(a)V(R(e)AR(b)) WHERE T, ap- 
plied to a theory with empty body. If e is not a, then one minimal change that 
will make u true is to make both R(e) and R(b) true. If e is a, however, then this 
is not a minimal change, as making just R(e) true will satisfy u.     0 

For this reason, one must know exactly which datoms in u> unify with 
one another in A before attempting to determine the minimal changes needed in 
A. To that end, let PossUnif(u>) be the set containing T and all most general 
substitutions a under which a datom of u unifies with another datom of w; and 
let Unif(w) be any satisfiable truth valuation of all the atoms in PossUnif(u;). 

Example. Again consider the update U: INSERT R(a)V(R(e)AR(b)) WHERE 
T. PossUnif(u;) contains the formulas T, e=b, and e=a. The possible values for 
Unif(w) are e=b A e^a, e^b A e=a, and e^b A t£a.      ^ 

As explained above, Vu,AUnif(u;) includes all the information about an 
alternative world that is needed to compute the minimal sets of changes in that 
world that will make u> true there. We now need to identify those minimal sets. 
Given a satisfiable Vu,AUnif(w), let Stable(vw, Unif(u;)) be a subset of the truth 
valuations of vu such that 

(1) If v'u is created from vu by negating the truth valuations of all datoms of vu 

except members of Stable(uu,, Unif(w)), then u is true under v^AUnif(w); 

(2) No proper superset of Stable(vw, Unif(w)) within vw has property (1). 

Then Stable(vu;, Unif(w)) exactly characterizes a legal minimal-change transition 
for A, by pinpointing a maximal subset of the datoms of u> that can retain their 
current truth valuations when u is made true. Let StableSets(vo,, Unif(u;)) be the 
set containing all choices of Stable^, Unif(u;)). A simple algorithm for rinding 
StableSets(uu,, Unif(w)), called full reduction, is given in Section 8.4 and proven 
correct in Theorem 8-13. 

Exampie. Again consider the update INSERT fi(a)V(Ä(e)AÄ(6)) WHERE 
T. There are eight possible values for vw; not all of them are satisfiable given 
Unif(w).   We show StableSets(-.Ä(a)A-iÄ(6)A-.Ä(e), Unif(u>)) for each value of 
Unif(w). 

Unif(u>) StableSets(-.Ä(a)A-iÄ(fe)A--Ä(e), Unif(u;)) 

e=6 A t±a    R(a), R(b)AR(e) 
e^b A e=a    R(b) 
t±b A e^a    R(a), R(b)AR(e)    0 
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The set of all legal minimal-change transitions is given by the set SA, 

which contains the wff (uu,)<THAUnif(w)AStable(i;u,, Unif(u>)), for all wffs vu and 
Unif(u>) such that vwAUnif(w) is satisfiable, and for all Stable(vu;, Unif(w)) € 
StableSets(üu,, Unif(u;)). For technical reasons, SA must contain the wff F as well. 
(Since the number of atoms in U is not related to the size of T and will be small, 
the computation of SA will be feasible even though SA may be of size exponential 
in the size of U.) Intuitively, each member of SA represents a minimal-change 
transition from one alternative world (denoted by (vu)aB AUnif(u;)) to another 
under the minimal-change semantics. 

We now incorporate 5A into a new version of Step 4 of the Update Algo- 
rithm Version I that implements the minimal-change semantics: 

Step 4'. Restrict the scope of the update. For each datom / in an, let E 
be the set of all most general substitutions a under which / unifies with an atom 
of u). Add the wff 

(f~H(f,U))V  ((^AV(^A     V   r)) (2') 
<r€E r6SA 

to T'. (By / £ (r)a we mean that / is not a subformula of (r)«,.) Intuitively, 
for / an atom that might possibly have its truth valuation changed by update 
U, formula (2') says that the truth valuation of / can change only in a model 
where <j> was true originally, and further that in any model so created, / must be 
unified with an atom of u, and must be part of a minimal change in that model 
to make UJ true.      0 

Example. For the update INSERT Emp(Reid, EE)V Emp(Reid, CSD) 
WHERE T applied to a theory not containing Skolem constants, the two wffs added 
in Step 4' are 

(Emp(Reid, EE) <-► tf(Emp(Reid, EE), U))V 

(TA(TA (FVFVFV 

(^tf(Emp(Reid, EE), U)A-i#(Emp(Reid, CSD), U)ATA^Emp(Reid, CSD))))) 

(Emp(Reid, CSD) <- J?(Emp(Reid, CSD), U))V 

(TA(TA (FVFVFV 

(-.iT(Emp(Reid, EE), U) A ^H(Emp(Reid, CSD), U) A T A-Emp(Reid, EE))))). 

Theorem 7-3. Given an extended relational theory T and an update 
U, the Update Algorithm Version I, with Step 4 replaced by 4', correctly and 
completely performs U under the minimal-change semantics.      0 

Proof of Theorem 7-3. This new algorithm produces a set of alternative 
worlds that is a subset of those produced by the Update Algorithm Version I, 
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as formula (2') logically entails formula (2). Therefore the proof of Theorem 4-1 
can be used to show that the new algorithm is correct and complete, with one 
exception: Let M4 be a model produced by the new algorithm. For some model 
M of T such that World(M4) 6 Worlds(£/(A4)), we must show that there is no 
model M'i such that World(.M4) € Worlds(?7(A1)) and the differences in datom 
truth valuations between M'4 and M are a proper subset of the differences in 
datom truth valuations between M and M4. 

Let Mi be a model of T4 where {<t>)„a is true; let <r4 be the Skolem constant 
substitution for Mi with respect to T and U; and let M be defined exactly as 
in the proof of Theorem 4-1. Let g be a null-free datom on which M and M\ 
disagree in truth valuation. Then g is a subformula of (OJ)04. Let S be the set 
of datoms / in u> and T such that (/)„« is g. For any /GS, by formula 2' there 
must be cr€Z such that <rA((vw)<rjI AUnif(w)AStable(yu,, Unif(u;))) is true in M4. 
It follows that t?wAUnif(a;) is true in M. But in any model where Vu,AUnif(u;) is 
true, Stable^, Unif(a;)) determines a minimal change in that model that will 
make u true. Since Stable^, Unif(w)) is true in M*, it follows that M± does 
constitute a minimal change from M to make u> true.      ^ 

As defined, the set of formulas added to T' in Step 4' will always have 
size exponential in the number of atoms in U. More precisely, Step 4' adds 
C?(nfc32j(*2+fc)(Jt/2)) occurrences of atoms to T in the worst case, where k is 
the size of the update and n is the maximum number of datoms in T% that unify 
with a datom of u. In other words, the size increase is linear in the number 
of datoms of T that unify with datoms of w, and exponential in the size of the 
update. Though a size increase in T that is exponential in the size of U is 
unavoidable in the worst case, this estimate is greatly exaggerated for the typical 
theory and update. For example, for simple u formulas such as conjunctions 
and disjunctions of literals, a much smaller size increase—linear and quadratic, 
respectively, in the size of U—is possible for ground theories and updates, with 
commensurate savings when Skolem constants are present." Therefore, rather than 
applying the worst-case formulas blindly and adding their instantiations directly 
to T, a heuristic minimization procedure—e.g., recognition of conjunctions and 
disjunctions, Karnaugh mapping—should be applied first to reduce the length of 
the formulas. 

Because we cannot offer as efficient an algorithm for the minimal-change 
semantics as for the standard semantics, and because it will be more difficult 
to minimize the length of the formulas added to T, we conclude that the extra 
effort required to implement minimal-change semantics is not worthwhile unless 
the semantics of the application call for a minimal-change semantics. 

7.3. A Spectrum of Candidate Semantics 

Before embarking on a further investigation of semantics, it will be helpful to 
point out that all these semantics fall into a broad spectrum ranging from the 
standard semantics on one end to variants of the minimal-change semantics on 
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the other. For example, the standard semantics has the most lenient rules about 
which alternative worlds fall into the result of an update; any way of making 
u; true will do. The truth-maintenance semantics (to be presented below) rules 
out a number of these models as containing unacceptable changes in truth val- 
uations. The minimal-change semantics rules out even more of these models. 
One can easily imagine populating the hierarchy with ever more exotic choices of 
semantics. 

For example, consider the minimal-change semantics. The definition we 
gave for this semantics said that in making u> true in an alternative world, if 
one set of changes to an alternative world A is a proper subset of another set of 
changes, then the latter set can be eliminated. An even more minimal change 
can be obtained by requiring the sets of changes to have the minimum possible 
cardinality, instead of just using the set/subset relationship. This variant is 
another point in the semantics spectrum. 

As another variant, perhaps the definition of minimal-change semantics 
should take any strictly enforced axioms into consideration. The quickest route 
to satisfying w, i.e., the minimal sets of changes in an alternative world that 
will make w true, might produce only alternative worlds that violate the strict 
axioms.* A more generous set of changes might lead to a viable alternative world. 

Another point in the semantics spectrum was introduced recently by We- 
ber [86]. He proposes a system where the goal is to preserve as many truth 
valuations as possible in an alternative world when updating. However, if there 
is more than one minimal set of changes that will make u> true in an alternative 
world A, then the truth valuations of all datoms in any minimal set are allowed 
to change. This is a most interesting choice, and one unforeseen by this author 
when postulating the existence of spectrum of reasonable semantics. Given a 
particular update U under Weber's semantics, the effect of U may vary greatly 
depending on the models of the extended relational theory. In fact, the effect can 
range from coinciding with the minimal-change semantics, if there are no con- 
flicts in the minimal sets of changes that will make u true in various alternative 
worlds; to coinciding with the standard semantics, when the current worlds of 
the theory are squarely at odds with the new information in u>. 

7.4. The Truth-Maintenance Semantics 

It will perhaps lend additional credence to the claim of existence of a spectrum of 
reasonable semantics, and also of the flexibility of the Update Algorithm, that the 
majority of the research in this thesis was carried out with a semantics other than 
the standard semantics in mind. The truth-maintenance semantics corresponds 
to the author's original intuitions about what updates should mean; she was 
only detached from this semantics after proving some very unpleasant theorems 
about update equivalence under the truth-maintenance semantics (see Chapter 
8), and indeed it is on the score of comprehensibility that the truth-maintenance 

This problem does not arise with the standard semantics. 
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semantics must be found lacking. We begin with an intuitive justification for this 
semantics. 

Suppose the user requests an insertion of aV6, where a and b are datoms. 
What effect should this update have on a model M where a is already true? In 
particular, should this update produce any model where a is false? The user did 
not mention ->a; there are no negation signs anywhere in this update. Is there 
really any justification for making a false in any models produced by this update? 
Since a appears only positively in the update is it not correct to maintain the 
current truth valuation of a? 

Definition. A null-free datom g appears positively (resp. negativeiy) in a 
null-free wff a having no connectives other than ->, A, and V, if g is a subformula 
of a and does not occur governed by an odd (resp. even) number of negation 
signs.      0 

For example, g does not appear positively or negatively in gV~*g or /V->/, 
and appears positively in -i(/ A-<g). It is easy to prove that if a» is satisfiable, then 
it is satisfiable with a truth valuation in which any given subset of the datoms 
that appear positively in u> receive the truth valuation T, and any given subset 
of the datoms that appear negatively in w receive the truth valuation F: 

Proposition 7-1. Let a be a ground null-free wff with no connectives 
other than A, V, and ->. Let v be a truth valuation for the atoms of a such that a 
is true under v. If g is a datom in a that appears positively (resp. negatively) in 
a and is false (resp. true) under v, then there exists a truth valuation v' created 
from v by negating the truth valuation of g, such that a is satisfied under v'. 0 

Proof of Proposition 7-1. Put a into conjunctive normal form; this 
operation will not affect which datoms appear positively and negatively in a. 
If g appears positively in a, then changing v by making g true can only make 
additional conjuncts of a true, and a will still be satisfied. If g appears negatively 
in a, then changing v by making g false can only make additional conjuncts of a 
true, and a will still be satisfied.     0 

According to the intuitive justification given earlier, if g appears positively 
(resp. negatively) in u> and g is true (resp. false) in M, then the truth valuation 
of g should not be changed by inserting u; into M. 

We now present formal definitions of the truth-maintenance semantics for 
updates. Let U be an update and let M. be a model of an extended relational 
theory T with Skolem constant substitution a with respect to u. Then U{M) 
contains just M if <f> is false in M. Otherwise, U(M) contains exactly every 
model M' with the same universe and mappings as M, such that 
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(1) M' agrees with M on the truth valuations of all null-free atoms except 
possibly those in (u;)^; and 

(la) If a datom g appears positively in (w)„, then if g is true in M, g is 
also true in M'\ and 

(lb) If a datom g appears negatively in (w)*, then if g is false in M, g is 
also false in M'\ and 

(2) u is true in M'.    0 

As usual, Worlds(T') = \JM&MMa{T) Worlds(£/(A<)). 

Skolem constants complicate matters a bit. One cannot tell whether R(a) 
appears positively in R(a)V-iR(e) until one knows whether e is equal to a. In 
general, to decide whether a datom g appears positively or negatively in a wfF a, 
one must specify exactly which of the possible unifications within a involving g 
are true. If v is a wff telling exactly which of these unifications are true, such as 
e=a or e^a in the current example, then one can determine whether g appears 
positively or negatively in a given v. For example, R(a) appears positively in 
R(a)A->R(e) given e^a, and R(a) appears neither positively nor negatively in 
R(a)A-iR(e) given e=a. 

As with the minimal-change semantics, the Update Algorithm Version I 
need be altered only slightly to implement the truth-maintenance semantics. The 
only change is in formula (2) in Step 4, which must be split into three separate 
cases: 

Step 4". Restrict the scope of the update. For each datom / in er#, let £ 
be the set of all most general substitutions a under which / unifies with an atom 
of u. Let Vs be the set containing all satisfiable wffs v, where v is the conjunction 
containing a conjunct a or -><r for every substitution <r€£. Add the wff 

(/ ~ H(f, U)) V ((*)., A\/M r)) (2") 

to T', where r is defined as 

' H(f, U),      if / appears negatively in u given v; 
T = < ->H(f, U),    if / appears positively in u given u; 

T, otherwise.    0 

Example. Let T be an extended relational theory not containing 
Skolem constants, and let U be INSERT --Emp(Reid, CSD)VEmp(Reid, e) WHERE 
T. Then Step 4' produces the two wffs 

(Emp(Reid, CSD)«-» #(Emp(Reid, CSD),tf))V 

(T A ((e = CSD A T) V (e ^ CSD A ff(Emp(Reid, CSD), U)))) 

(Emp(Reid, c) *-* if(Emp(Reid, e), U))V 

(T A ((e = CSD A T) V (e / CSD A -1H(Emp(Reid, e), U)))).0 
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Theorem 7-4. Given an extended relational theory T and an update 
U, the Update Algorithm Version I, with Step 4 replaced by 4", accomplishes U 
under the truth-maintenance semantics.     0 

Proof of Theorem 7-4. This new algorithm produces a set of alternative 
worlds that is a subset of those produced by the Update Algorithm Version I, 
since formula (2") logically entails formula (2). Therefore the proof of Theorem 
4-1 can be used to show that the new algorithm is correct, with one exception: 
if M\ is a model produced by the new algorithm, we must show that M\ obeys 
rules la and lb in the truth-maintenance semantics. Let AU be a model of 
% where {4>)CH 

iS true! ^et a* De tne Skolem constant substitution for M with 
respect to T and U; and let M be defined exactly as in the proof of Theorem 4-1. 
If g is a datom that appears positively in (u>)ff4, then g also appears positively 
in ((u)<,)<T4, for some (7€E. Therefore by formula 2", if g has the same truth 
valuation in M as in At 4 then rules la and lb axe satisfied by M*. If g has a 
different truth valuation in At4 than in M, then by formula 2", H(g, U) must 
be false in AU, and therefore g must be false in M. In this case, g also satisfies 
rules la and lb. Similarly, if g is a datom that appears negatively in (u;)»4, then 
g also appears negatively in ((a;)^)^, for some a€S. Therefore by formula 2", if 
g has the same truth valuation in M as in M4 then rules la and lb are satisfied 
by Al 4. If g has a different truth valuation in Al 4 than in At, then by formula 
2", H(g, U) must be true in M*, and therefore g must be true in M. Since g 
satisfies rules la and lb, we conclude that World(Af4) € Worlds(17(AQ).      0 

We conclude this section by analyzing the truth-maintenance semantics 
in the same framework as for other proposed semantics. First, the computational 
complexity of the Update Algorithm for the truth-maintenance semantics is no 
higher than for the standard semantics in the case of ground updates and theories; 
when Skolem constants are present, the size of the formulas added in Step 4" 
depends on the number of datoms in u> that unify with one another. If there 
are D such most general unifications, then 0(k2D) is the maximum size of an 
instantiation of formula 2", implying that in the worst case Step 4" can add 
0(nk2D) occurrences of atoms to T'. D can be as large as (*) (when every 
datom of u> unifies with every other datom of u>). 

For comprehensibility and intuition, the semantics initially scores well; but 
when more complicated updates are contemplated and the question of update 
equivalence is raised (Chapter 8), the criteria for equivalence are more complex 
than we find ideal, due to dependence on the syntax of the update. 

Theorem 7-5 shows that the truth-maintenance semantics has sufficient 
expressive power. 

Theorem 7-5. Let Tj and T2 be extended relational theories over the 
same language, with the same strict axioms, containing disjoint sets of Skolem 
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constants,* such that T\ is consistent. Then under the truth-maintenance se- 
mantics, there exists an update U such that Worlds(Z7(7i))|D = Worlds(7^) \T>, 
where V is C minus the Skolem constants appearing in T\.     0 

As for other aspects of expressive power, it may be argued that the defi- 
nition of positive and negative presence in a wff should be more strongly related 
to syntax and less strongly to logical implication. For example, if one were to 
request the insertion of the exclusive-or of two datoms a and 6, is it intuitive or 
desirable that a and b do not appear positively in u>? 

Before the proof of Theorem 7-5, we present the proof of Theorem 7-1, 
which is the equivalent of Theorem 7-5 for the standard semantics. Both proofs 
make use of a Reformat() function that systematically removes all history atoms 
from the body of 7", when that body is expressed as a conjunction of formulas 
B. The idea is to remove each history atom h from B by replacing B by (#)j. V 
(B)p. If B contains no Skolem constants, this operation preserves the alternative 
worlds of B. If B contains Skolem constants, then the truth valuation of h may 
determine the truth valuation of other datoms, such as in the formula H(e) A 
e=c A ->H(c). For formulas such as this, all unifications of h with atoms of B 
must be taken into account before h is replaced by a truth value. 

Definition. Let or be a ground wff, and let T be an extended relational 
theory. Then Reformat(a) is the wff ß formed from a by the following procedure: 

1. Initialize. Set ß to be a. 

2. Repeat. If ß contains no history atoms, then the procedure terminates. 

3. Remove a history atom. Let h be a history atom in ß. Let S be the set 
of most general unifications under which h unifies with an atom of ß, and 
let S be the power set of S. Replace ß by the formula 

V ( A ° A A ""■A ((#&'.'.?" V (/?)&:>)), 

where h\ through hn are the atoms in ß that unify with h under a most general 
substitution a in s. Go back to step 2.      0 

Proof of Theorem 7-1. Let U be the update 

INSERT A<,erl(ffv~'Sf) A Reformat(ß) WHERE T, 
where g ranges over the datoms of 71 and B is the conjunction of all the formulas 
in the body of 7^. The first conjunct of w establishes that every datom in 7i 
can change its truth valuation. From this and the second conjunct, the theorem 
will follow if we can show that 7^', the extended relational theory with body 

t This restriction is needed to avoid naming conflicts; if it is violated, rename the Skolem 
constants of one of the theories before testing. 
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Reformat(ß), has the same alternative worlds as 72. Assume without loss of 
generality that the body of 7Ü is the single formula B. 

We first show that models of T2 are also models of T2. Suppose that M 
is a model of T2 but not of T2. Then B is true in M but Reformat(ß) is false in 
M. 

Let s be the maximal member of S such that all the substitutions a in s 
are true in M.. Let h be any history atom in B, and let hi through hn be the 
atoms of B with which h unifies under substitutions in s. Then M. is a model of 
Atr€»a ^ A"65 ~I(T- Further, if h is true in M then M is a model of (B)Tj!"'T

n, 

and if h is false in M then M is a model of {B)^p."pn. Inducting, we conclude 
that Reformat(/?) must be true in M, a contradiction. 

We now show the reverse direction. Suppose that there is an alternative 
world A such that A G Worlds(T2') but A & Worlds^). For M any model of T2 

with alternative world A, B is false in M. We will construct a particular choice 
of M from A by iteratively adding history atom truth assignments to A. We will 
choose these truth assignments by running the Refonnat() procedure backward. 
Initially, let M. contain just the truth assignments and mappings given in A. 

Let s be the maximal member of S such that all the substitutions a in 
s are true in M.  Then M is a model of A-c. c A A<rer ->a.  Let h be the last 

history atom in B to be replaced by the Reformat() procedure, and let ß be the 
partially reformatted version of B right before h is removed. Let hi through h„ 
be the atoms of ß with which h unifies under a. Reformat(ß) is true in M; 
therefore either (ß)xT-Tn or (^)FF•••£" is true in X. If the former disjunct is 
true, assign T to h in M\ otherwise, make h false in M. Then M. satisfies ß. 

Inducting, we conclude that M. must be a model of B and 72, a contra- 
diction. We conclude that all models of T2' axe models of 72, and that 7^ and T2' 
have the same alternative worlds.      0 

Proof of Theorem 7-5. Let U be the update 

INSERT A^TiCsV-^) A hgeTj(gy^g) A Reformat(B) WHERE T, 

where g ranges over the datoms of 71 and 7^. Then no datom appears positively 
or negatively in U, and the remainder of the proof follows from the proof of 
Theorem 7-1.      0 

7.5. Summary and Conclusion 

In this chapter we identified a spectrum of possible update semantics, ranging 
from the standard semantics at one extreme to variants of the minimal-change 
semantics on the other. We showed how the Update Algorithm was easily adapted 
to other choices of semantics by changing the formula of Step 4. 

Unless the semantics of the application dictate otherwise, we find the stan- 
dard semantics to be preferable to the minimal-change semantics for two reasons: 
First, a separate type of update is needed under the minimal-change semantics in 
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order to move from a situation with more knowledge to a situation with less. For 
example, under the minimal-change semantics one cannot directly observe that 
the truth valuation of a fact is now unknown, since formulas such as Emp(Reid, 
CSD)V->Emp(Reid, CSD) are already true in all models of any extended rela- 
tional theory. The new type of update could have the standard semantics, a 
non-model-based minimal-change semantics, or some hybrid semantics. 

Second, the Update Algorithm is more expensive under the minimal- 
change semantics: in executing a minimal-change update, the size of T may 
increase by a number of atoms that is exponential in the size of the update. This 
is true even though the alternative worlds produced by the minimal-change se- 
mantics are always a subset of those that would be produced by the standard 
semantics: the subset is more difficult to characterize than the set as a whole. 
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Chapter 8: Equivalence of Updates 

Chapter 7 delved into the properties of a variety of semantics: the stan- 
dard semantics, defined in Chapter 3; the minimal-change semantics, a subset of 
which was used by DeKleer [85] and Reiter [85]; Weber's semantics [Weber 85]; 
and the truth-maintenance semantics. One of the criteria for choosing a seman- 
tics for updates, as discussed in Chapter 7, is update comprehensibility. a user 
should be able to look at an update and understand what the update will do. 
Though a qualitative discussion of the merits of different choices for semantics 
is indispensable, we have found that theorems on equivalence of updates also go 
a long way toward exposing the peculiarities of a particular choice of semantics. 
Such theorems tell exactly whether two updates look similar but really aren't, 
and whether two different-looking updates really are the same; they provide an 
impassionate demonstration of the properties of different semantics. Equivalence 
theorems can be used to evaluate how well a given semantics meets intuition: if 
a pair of updates should be the same according to intuition, but an equivalence 
theorem says that they are different (or vice versa), then the discrepancy can be 
registered as a mark against that semantics. 

Section 8.1 of this chapter includes a set of semantics-independent theo- 
rems on update equivalence. These theorems will simplify the proofs of subse- 
quent sections, and demonstrate patterns that recur across a wide class of seman- 
tics. Section 8.1 shows that strict axioms can be eliminated from consideration 
when considering update equivalence for a broad class of semantics; Section 8.2 
does the same for Skolem constants. Section 8.3 includes theorems exactly char- 
acterizing when two updates are equivalent under the standard semantics, and 
Sections 8.4 and 8.5 do the same for the minimal-change and truth-maintenance 
semantics, respectively. We begin by defining update equivalence. 

Definitions. If U\ and U2 are two updates over a language £, then Ui and 
U2 are equivalent if for every extended relational theory T over £, Worlds(t^i(T)) 
= Worlds(£/2(2"))- U\ and V2 are equivalent with respect to a model M of T if 
Worlds(£/i(A4)) = Worlds([/2(A4)). U\ and U2 are equivalent with respect to an 
extended relational theory T if Worlds^(T)) = WoT\ds(U2(T)). 

8.1. Semantics-Independent Theorems on Update Equivalence 

This section includes theorems on update equivalence that are in large part in- 
dependent of the choice of semantics for updates. The goal of this section is to 
build up general principles for use in attacking the update equivalence problem. 
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In particular, we will develop a technique for reducing the question of equiva- 
lence of updates with different selection clauses <j> to the case of a single selection 
clause; eliminate the need to consider extended relational theories with strict 
axioms when investigating equivalence; and suggest a methodology for deriving 
theorems about update equivalence. 

The standard, minimal-change, and truth-maintenance semantics are all 
members of the larger class of semantics under consideration in this section. This 
class is composed of those semantics that satisfy a set of five basic properties. In 
particular: 

(1) These semantics must be defined by the alternative worlds an update 
produces when applied to the individual alternative worlds of an extended 
relational theory; 

(2) For any update U applied to an extended relational theory T over a lan- 
guage £, there must exist another extended relational theory T' over C 
such that Worlds(T') = Worlds(*7(T)); 

Property (2) ensures that updates map extended relational theories to 
extended relational theories under any semantics in this class. 

(3) If two updates U\ and U-i over C are equivalent, then they must be equiv- 
alent over all extensions of C 

Property (3) ensures that the semantics does not include explicit tests for 
whether specific constants are in C. 

Properties (4) and (5) are a bit more complicated; their intent is to ensure 
that the effect of any update U on a model M of an extended relational theory 
T is independent of the other models of T. More formally: 

(4) If M is a model of two extended relational theories T\ and 7jj without 
strict axioms, then U(M) must be the same regardless of whether T\ or 
Ti is being updated. 

Weber's semantics fails to satisfy basic property (4): Weber's semantics 
examines every model of T before deciding what the effect of an update should 
be. 

(5) For two models M\ and Al2 of an extended relational theory T and any 
update U, if Mi and M2 agree on the truth valuations of all datoms and 
equality atoms, then U{M\) = U(Mi). 

Property (5) says that when two models "represent" the same complete- 
information database, an update will affect them identically. 

Properties (1) and (4) together ensure that although update syntax may 
be important for a semantics in this class, syntax does not play a role in the 
bodies of extended relational theories: if two extended relational theories have 
the same axioms, then they will have identical sets of alternative worlds after a 
series of updates under any semantics in this class if the bodies of the two theories 
are logically equivalent. Properties (4) and (5) also have ramifications for update 
equivalence testing: 
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Theorem 8-1. Two null-free updates U\ and £72 are equivalent iff for all 
models M of extended relational theories, U\ and U2 are equivalent with respect 
to M.     0 

Proof of Theorem 8-1. To show that this condition is sufficient for 
equivalence, note that if U\ and U2 are equivalent with respect to every model 
of an extended relational theory T, then they must be equivalent with respect to 
T. 

To show that this condition is necessary for equivalence, suppose that U\ 
and U2 are equivalent, but for some model M of an extended relational theory 
T, V/or\ds(Ui(M)) ^ Worlds(tf2(.M)). By basic property (3), Ux and U2 must 
be equivalent with respect to (T)», where a is the Skolem constant substitution 
for M with respect to T. Then M is a model of {T)a, and Worlds(C7i(.M)) ^ 
WoTlds(Ü2(M)). But any other model M' of (T)„ agrees with M. on the truth 
valuation of all atoms, and therefore by basic property (5), V\ and U2 are not 
equivalent with respect to (T)c, a contradiction.      0 

Some of the theorems presented in this section only apply to semantics 
that meet additional, less basic criteria: 

Pi. The Irrelevance Principle. Let M be a model of an extended rela- 
tional theory, and let U be the update INSERT u WHERE F. Then Worlds(*7(.M)) 
= {World(M)}. 

P2. The ^-Independence Principle. Given the two updates INSERT u> 
WHERE fa and INSERT u WHERE $2, if <f>i and fa are both true in a model M, 
then these two updates are equivalent with respect to M. 

Principle Pi says that an update with selection clause F does not change 
the alternative world of any model to which it is applied. Principle P2 ensures 
that 4> does not have any effect on the outcome of the update other than deter- 
mining the alternative worlds in which changes can take place. 

Proposition 8-1. The standard, minimal-change, and truth-maintenance 
semantics satisfy principles PI and P2.      0 

Proof of Proposition 8-1. Left to the reader.     0 

The following theorem will motivate a strategy of attack for proving update 
equivalence under a variety of semantics. 

Theorem 8-2. Let U\ through V\ be null-free updates under a semantics 
that satisfies principles PI and P2: 
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tfi: INSERT wi WHERE <f>, 

U2: INSERT w2 WHERE <ß, 

U3: INSERT wi WHERE V, 

174:    INSERT w2 WHERE V- 

If if> logically entails <f> and U\ and U2 are equivalent, then U3 and C/4 are equiv- 
alent.      0 

Proof of Theorem 8-2. Let T be an extended relational theory and M 
a model of T. If xj) is false in M, then by principles PI and P2, U3 and U\ are 
equivalent with respect to M. 

If V is true in M, then ^ is also true in M. It follows by principle P2 
that Ui and U3 are equivalent when applied to M. Similarly, U2 and U+ must 
be equivalent with respect to Al. By Theorem 8-1, it follows that U3 and U\ are 
equivalent with respect to M. We conclude that U3 is equivalent to C/4.      ^ 

The value of Theorem 8-2 is that it provides a necessary condition for 
two updates Ui and U2 with selection clause <j> to be equivalent: For every truth 
valuation v of all the atoms of <f> under which <f> is satisfied, INSERT wi WHERE 
ut and INSERT u>2 WHERE v must be equivalent. Theorem 8-3 shows that these 
conditions are both necessary and sufficient. 

Theorem 8-3. Let U\ and U2 be two null-free updates with semantics 
that satisfy principles PI and P2: 

Ux:    INSERT wi WHERE <f>, 

U2:    INSERT w2 WHERE <j>. 

Then U\ and U2 are equivalent iff for all truth valuations 1; for all the atoms of 
<t> such that <j> is satisfied under v, INSERT u>i WHERE t; is equivalent to INSERT u2 

WHERE v.     0 

When threshing out theorems on update equivalence, Theorem 8-3 sug- 
gests that the most fruitful strategy may be to first concentrate on updates where 
<f> is a conjunction of literals. Theorems 8-12 and 8-16 show this technique in use 
for the minimal-change and truth-maintenance semantics, respectively. 

Proof of Theorem 8-3. The necessity of this condition is shown by 
Theorem 8-2. For sufficiency, suppose that U\ and U2 satisfy this condition but 
are not equivalent. Then U\ and U2 produce different sets of alternative worlds 
when applied to some extended relational theory T.   In particular, they must 

* A truth valuation v can be written in wff form as a conjunction of literals, such that 
the atom a is a conjunct of v in wff form iff a receives the truth valuation T under v, and ->a 
is a conjunct of v in wff form iff a receives the truth valuation F under v. 
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produce different sets of alternative worlds when applied to some model M of 
T. By principle Pi, this implies that <f> is true in M. But given that <j> is true, by 
principle P2 the effect of U\ and Ui on M is independent of <f>, and must be the 
same as the effect on M of INSERT u>x WHERE v and INSERT u>2 WHERE v, where 
v is the truth valuation in M of the atoms of <f>. Since these two updates are 
equivalent by definition, by Theorem 8-1 they are equivalent with respect to M. 
It follows that U\ and U2 must be equivalent with respect to M, and therefore 
U\ and U2 must be equivalent.      ^ 

The next theorem shows that it suffices to consider only extended rela- 
tional theories without strict axioms when checking update equivalence. Strict 
axioms were introduced for the standard semantics in Chapter 6; Principle P3 
extends that definition to other choices of semantics. 

Principle P3. The Strict Axiom Principle. Let T be an extended rela- 
tional theory without strict axioms, and let a be a set of strict axioms. Then for 
any update U, 

Worlds(£f(T + a)) = Worlds( (J U(M)C) Models(a)).    0 
M€(ModeU(T)nModels(a)) 

In other words, the sole effect of strict axioms on update semantics is the 
requirement that the strict axioms be satisfied by every model to which U is 
applied and by every model produced by U. 

Theorem 8-4. Two updates U\ and Vi under a semantics satisfy- 
ing principle P3 are equivalent iff U\ and U-i are equivalent with respect to all 
extended relational theories without strict axioms.     0 

Proof of Theorem 8-4. If U\ and V2 are equivalent when applied to ex- 
tended relational theories with strict axioms, then they must be equivalent when 
applied to extended relational theories without strict axioms, as these constitute 
a proper subset. 

Suppose now that U\ and U? are equivalent with respect to any extended 
relational theory without strict axioms, but are not equivalent with respect to 
some theory T that contains strict axioms. Let M be a model of T. Let T' be 
an extended relational theory formed from T by removing the strict axioms of T. 
Let M' be a model identical to M; then M' is a model of T\ By Theorem 8-1, 
since U\ and U2 are equivalent with respect to T\ they must be equivalent with 
respect to M'. But then by principle P3, U\ and U2 must be equivalent with 
respect toM, because Worlds^(,V1)) = Worlds^(.M') n Worlds(Models(a))), 
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and similarly for U2- We conclude that it suffices to consider extended relational 
theories without strict axioms when proving results about update equivalence. 
0 

From now on, the statements of the theorems of this chapter will cover 
extended relational theories both with and without strict axioms, but the proofs 
of theorems will only consider extended relational theories without strict axioms. 

For a pair of updates U\ and U2 with selection clauses fa and fa, respec- 
tively, one could easily imagine a scenario where even though fa and fa were 
mutual!- exclusive, U\ just happened to produce exactly the same sets of alter- 
native v ;lds as U2 did. Fortunately, Theorem 8-5 relegates this scenario to the 
realm of fantasy for semantics that satisfy principles PI and P2. 

Theorem 8-5. Let U\ through U4 be null-free updates under a semantics 
that satisfies principles PI and P2: 

Ui:    INSERT Ui WHERE fa, 

U2:    INSERT u2 WHERE fa, 

U3:    INSERT tax WHERE fa A fa, 

U*:    INSERT w2 WHERE fa A fa. 

Then U\ and U2 are equivalent iff 

(1) Uz and I/4 are equivalent; 

(2) If faA->fa is true in a model M of an extended relational theory, then 
Worlds(tfi(A<)) = {World(Af)}; and 

(3) If faA-ifa is true in a model M of an extended relational theory, then 
Worlds(tf2(A*)) = {World(A4)}.     0 

Proof of Theorem 8-5. For sufficiency, since #3 and C/4 are equivalent, 
it follows by principle P2 that U\ and U2 are equivalent with respect to any 
model where faAfa is true. With respect to models where ->faA->fa is true, by 
principle PI, Ui and U2 again are equivalent. For models where fa and ->fa or 
faA->fa is true, conditions (2) and (3) and principle PI guarantee equivalence. 

For necessity, suppose condition (2) is violated in a model M. of T. Then 
by principle Pi, Worlds(^2(A<)) = {World(X)}. By Theorem 8-1, for Ux and 
U2 to be equivalent, Worlds(Z7i(Al)) must be {World(«M)}. We conclude that 
condition (2) is necessary and, by symmetry, condition (3) as well. 

Now suppose condition (1) is violated. Then for some model M of an 
extended relational theory T, fa A fa is true in M and U3 and U\ are not 
equivalent with.respect to M. Then by principle P2, U\ and U2 also are not 
equivalent with respect to M. By Theorem 8-1, it follows that condition (1) is 
necessary.      0 
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8.2. Skolem Constants and Update Equivalence 

In this section we show that the question of equivalence for updates and extended 
relational theories containing Skolem constants can be reduced to the question 
of equivalence for null-free updates and theories. 

First we show that it suffices to consider null-free extended relational 
theories when proving update equivalence, for all semantics that satisfy principle 
P4: 

P4. The Substitution Principle. Let T be an extended relational theory, 
and let U be the update INSERT u> WHERE <f>. Let S be the set of Skolem constant 
substitutions a for the models of T. Then 

Worlds(J7(T)) = (J Worlds((C7)<T((T)<T)).    0 

Proposition 8-2. The standard, minimal-change, and truth-maintenance 
semantics satisfy principle P4.     0 

Proof of Proposition 8-2. Left to the reader.     0 

The semantics used by Abiteboul and Grahne [85] fails to satisfy principle 
P4: the occurrence of a Skolem constant in an update is not tied to its occurrence 
in X under their semantics. 

Theorem 8-6. Under a semantics satisfying principle P4 on substitution, 
two updates U\ and U2 over a language £ are equivalent iff they are equivalent 
when applied to every null-free extended relational theory over £ or an extension 
of£.      0 

Theorem 8-6 shows that even when Skolem constants appear in U\ and U2, 
it suffices to consider equivalence with respect to theories not containing Skolem 
constants. 

Proof of Theorem 8-6. The necessity of this condition follows from 
basic property (2) and the fact that extended relational theories not containing 
Skolem constants are a proper subset of all extended relational theories over £ 
and extensions of £. 

For sufficiency, let T be an extended relational theory, and let S be the set 
of Skolem constant substitutions a for the models of T. Then by principle P4, 
Worlds(tfi(T)) = UT€E Worlds((tfi)»((3")«r))» **& similarly for U2. But (T)„ is 
a null-free extended relational theory over £ or an extension of £, so by definition 
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(Ui)c and (J72)<7 are equivalent with respect to (X)<T. It follows that U\ and U2 
are equivalent with respect to every extended relational theory.      0 

We need some way of reducing the question of update equivalence for 
updates containing Skolem constants to a question of equivalence of a null-free 
updates. The key observation is that it suffices to consider a finite set of sub- 
stitutions a for the Skolem constants of the updates, as long as the semantics is 
constant-independent, as denned in principle P5. This principle and the follow- 
ing theorem make use of a new variety of syntactic replacement called a constant 
swap. A constant swap is a simultaneous syntactic replacement a of one set 
of constants by another, such that for any wff a, ((a)^),, is a. For example, 
c

dl is a typical constant swap, one that replaces all occurrences of c by c' and 
vice versa. Constant swaps differ from substitutions in that all replacements are 
accomplished simultaneously. 

P5. The Constant-Independence Principle. Let U be a null-free update, 
and let T and T' be null-free extended relational theories such that Worlds(T') 
= Worlds(C/'(T)). Let a be a constant swap over any extension of £. Then 
Worlds((^)<r((T)ff)) = Worlds((T')*).      0 

The idea of principle P5 is that renaming constants in T and U and then 
performing U should be equivalent to first performing U and then renaming the 
constants in the resulting theory. This is very similar to principle P4, but with a 
different goal: assuring that no elements in the universe get special treatment in 
the semantics. 

Proposition 8-3. The standard, minimal-change, and truth-maintenance 
semantics satisfy principle P5.     0 

Proof of Proposition 8-3. Left to the reader.     0 

Theorem 8-7. Let U\ and U2 be updates under a semantics satisfying 
principles P3, P4, and P5: 

U\:    INSERT wi WHERE <j>, 

U2:    INSERT u>2 WHERE <f>. 

Suppose that U\ and U2 contain n Skolem constants. Let C be the set containing 
all the constants of Ui and U2 plus n additional constants (extend £ and the 
unique name axioms if necessary). Let Sc be the set of all substitutions of 
constants in C for all the Skolem constants of Ui and Vi- Then TJ\ and L/2 are 
equivalent iff 

(1) <t> is unsatisfiable; or 

(2) For all substitutions <rc€Sc, (U1)tfc is equivalent to (Ui)*c.     0 
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The suggested set of substitutions Sc in Theorem 8-7 is of size exponential 
in the number of constants and Skolem constants in the update; the size of this 
set can in general be reduced. For example, if there are no equality atoms in U\ 
and U2 that contain Skolem constants, only one substitution need be included in 
Sc. If there is just one equality atom, containing a single Skolem constant, only 
two substitutions need be considered: one where the equality atom is true, and 
another where it is false. 

Theorem 8-7 and principle P5 can be generalized by permitting special 
treatment in the semantics for any finite set of constants. For example, an ana- 
logue of Theorem 8-7 will be true if all datoms over constants occurring in the 
body or strict axioms of T are treated specially by the semantics. All such 
constants must be included in C. 

The proof of Theorem 8-7 uses a special property of constant swaps: 

Proposition 8-4. Let 7} and 7^ be two theories, and let a be a constant 
swap. Then Worlds(7i) = Worlds(T2) iff Worlds((7i)„) = Worlds^),).      0 

Proof of Proposition 8-4. Let Mi be a model of 71, and M2 a model 
of 7^. Let M\ be a model created from M.\ as follows: Let the constant and 
Skolem constant mappings of M\ be the same as those of Mi, except that if 
*' appears in <T, then in M\ c' is mapped to the universe element that c was 
mapped to in Mi. Let every atom g in M\ have the truth valuation of (g)„ in 
Mi- The unique name axioms are satisfied by (Mi)0, because a is invertible. 
Then (Mi)a is a model of (T)ff, because the truth valuation of every atom g in 
Mi is the same as that of (g)a in M\. 

Construct M'2 similarly. Then Mi and Mi have the same universe and 
constant and Skolem constant mappings iff M\ and M'2 do. Further, an atom g 
is true in Mi and M2 iff (</)<r is true in both M[ and M'2- We conclude that 
Worlds^) = Worlds^) iff World(A*x) = World(A<2).     0 

Proof of Theorem 8-7. Necessity is immediate for any semantics satis- 
fying principle P4. 

For sufficiency, suppose that M is a model of an extended relational theory 
T without Skolem constants, such that Ui and U2 are not equivalent with respect 
to M. Let o be the Skolem constant substitution for M with respect to Ui and 
C/2. Then a is not in Ec, and must include some constant c that is not in C and 
therefore does not occur in Ui or £/2. There are at most n of these constants. Let 
a' be the constant swap that replaces all such constants c by constants c' that 
occur in C but not in (Ui)„ or (t^)*. By definition of Ec, this must be possible. 
Then for some substitution aceSc, {{Ui)a)^ = (Ui)ac, and ((t^)»)»' = (£M<rc, 
so ((f/i)*)*' and ((t^W are equivalent by assumption. 

Because Worlds^tM^Af)) # Worlds((C/2)<r(A<)), it follows from The- 
orem 8-1 that Worlds((l7iV((T)ff)) ^ Worlds((^2)(T((T)(T).    By principle P5 
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and Proposition 8-4, Worlds(((t/1)ff)(r<(((T)(r)£r-)) # Worlds(((C/2)(,V(((T2)<r V)- 
But ((#I)<T)<T' and ((l^W are equivalent by assumption. We conclude that this 
condition is sufficient for equivalence.      0 

8.3. The Standard Semantics and Update Equivalence 

Under the standard semantics, what conditions govern equivalence when two 
updates have different selection clauses <j>? Theorem 8-5 says that if U\ and U2 are 
two equivalent null-free updates with selection clauses fa and fa, respectively, 
then U\ must not make any changes in any model where fa is false, and vice 
versa. This characterization is almost sufficient; it only lacks exact conditions 
under which a standard-semantics update will not change an alternative world. 

Theorem 8-8. Let U\ and V2 be two null-free updates under the standard 
semantics: 

U\\ INSERT U! WHERE fa, 

U2: INSERT w2 WHERE fa. 

Then U\ and U2 are equivalent iff 

(1) INSERT wi WHERE faAfa is equivalent to INSERT u2 WHERE faAfa; 

(2) faA-ifa logically entails u\ and faA->fa logically entails a;2; and 

(3) If 4>\ A -1 fa is satisfiable, then u\ is uniquely satisfiable*; and if fa A -*fa 
is satisfiable, then u>2 is uniquely satisfiable.      0 

Proof of Theorem 8-8. By Theorem 8-5, condition (1) is necessary. To 
see that condition (3) is necessary, suppose that, say, faA->fa is satisfiable with 
truth valuation u for the datoms of fa and fa. Let T be an extended relational 
theory with body u. Let M be a model of T; then Ü2(M) = {M}. For U\ 
to be equivalent to U2, then, U\ cannot change the alternative world of M, by 
Theorem 8-1. Since the number of alternative worlds U\ produces from M will 
be equal to the number of valuations for ui that satisfy wi, if U\ is equivalent to 
U2 there must be only one valuation, v, that satisfies u>\; therefore condition (3) 
is necessary. To show that condition (2) is necessary, since Worlds(I7i(.M)) must 
be {M}, v must agree with u on all datoms in v. Since u may be any valuation 
satisfying fa A ->fa, v must be a subset of every valuation satisfying fa A ->fa; 
in other words, faA->fa logically entails v; since v is logically equivalent to u\, 
faA->fa logically entails u>i, implying that condition (2) is also necessary. The 
proof is symmetric if faA->fa is satisfiable. 

We now turn to the reverse implication, namely, that if conditions 1) 
through (3) are met, then U\ and U2 are equivalent. By Theorem 8-5, it suffices 
to show that conditions (2) and (3) imply that Ui will not change the alternative 
world of a model where fa A ->fa is true.   But this follows immediately from 

* A wff a is uniquely satisßable if there exists exactly one truth valuation t; for all the 
atoms of a such that a is true under v. 
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conditions (2) and (3). A similar line of reasoning holds if faA-ifa is true in a 
model. We conclude that U\ and £72 are equivalent when applied to T.     0 

We now turn to the question of equivalence for pairs of updates having the 
same selection clause <f>. We begin with a simple sufficient criterion for equivalence 
under the standard semantics: 

Theorem 8-9. Let U\ and U2 be two null-free updates under the standard 
semantics: 

Ui:    INSERT wi WHERE <f>, 

U2:    INSERT w2 WHERE <j>. 

If u>i and W2 are logically equivalent and the same datoms occur in ui and u>2, 
then U\ is equivalent to Ü2-     0 

Proof of Theorem 8-9. Assume that u>\, and therefore u>2, is satisfiable, 
as otherwise the theorem follows immediately. For any extended relational theory 
T without strict axioms, consider the effects of U\ and V2 on a model M of T. 
Ui must produce a model M' from M, since w\ is satisfiable. We wish to show 
that World(Al') € Worlds(I72(.M))> If <f> is false in M, this follows immediately. 
Otherwise u>2 must be true in M', because u\ and u>2 are logically equivalent; 
and therefore rule 2 in the standard-semantics definition of INSERT is satisfied 
for U2 by M'. Rule 1 in the definition of INSERT is also satisfied for U2 by M', 
since U\ and U2 contain the same datoms.     0 

To see that the criteria of Theorem 8-9 are sufficient but not necessary, 
consider the two equivalent updates INSERT / WHERE fhg and INSERT g WHERE 
fAg. These two updates fail the test of Theorem 8-9 because u>i and u>2 contain 
datoms whose truth valuation is logically entailed by both <f> and u. To produce 
necessary and sufficient criteria, it will be advantageous to remove all such datoms 
from LJ by reducing a>: 

Definition. Let U be the update INSERT u> WHERE <j> under the standard 
semantics. The reduction of UJ with respect to <f>, written red(u;, <f>), is formed 
from u) by making the following substitutions for every datom g in ui: 

1. If <f> and <JJ both logically entail g, replace g by T in u. 

2. If <f> and a» both logically entail ->g, replace g by F in u.     0 

This definition may seem a bit odd for the case where <j> is unsatisfiable, 
but such updates aren't very interesting anyway: 

Proposition 8-5. Under the standard semantics, any update U: INSERT 
UJ WHERE 4> is equivalent to INSERT red(u;, <f>) WHERE <f>.      0 
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Proof of Proposition 8-5. Proof by induction: consider a single step in 
the reduction process. If g is a datom of u> that is eliminated in this step, then 
the insertion of u into a model where <j> is true cannot change the truth valuation 
of g. When g is replaced by T or F, creating u', every set of truth valuations 
that satisfied u maps into one set that satisfies u', such that the two sets agree 
on every datom in common. Therefore inserting u' into a model where <f> is true 
will have the same effect as inserting u into that model.     0 

Once the updates being tested for equivalence have been reduced, little 
work remains: 

Theorem 8-10. Let Ux and U2 be null-free updates under the standard 
semantics: 

Ux:    INSERT ux WHERE <j>, 

U2:    INSERT w2 WHERE <j>. 

Ux and U2 are equivalent iff (1) <t> is unsatisfiable or (2) red(u;i, <f>) and red(u;2, 
<j>) contain the same datoms and are logically equivalent.      0 

Examples. If Ux is INSERT g WHERE T and U2 is INSERT grVT WHERE T, 
then these two updates are reduced. Since g is not logically equivalent to <7vT, 
the two updates must not be equivalent; they differ on producing models where 
g is false. For updates INSERT g WHERE g A/ and INSERT / WHERE g A/, in both 
cases u is replaced by T during reduction, and the two updates become identical. 
Theorem 8-10 will proclaim these two updates equivalent. 

Proof of Theorem 8-10. By Proposition 8-5, it suffices to prove this 
theorem for the case where ux and u>2 are already reduced with respect to <f>. 
Assume that <f> is satisfiable, as otherwise the theorem follows immediately. 

We first show that wx and u2 must contain the same datoms. Suppose 
that g is a datom that is a subformula of, say, ux but not of u>2. Let M. be a 
model of an extended relational theory T such that uix is true in M.. Let M! 
be created from M. by negating the truth valuation in M. of g, and negating as 
few additional truth valuations as possible in order to make <j> true in AC. By 
the definition of reduction, the truth valuation of g in AC need not be negated 
again in order to satisfy <t>. Then World(At) € Worlds(U1(X')), but World(X) 
£ Worlds(I/2(A4')). We conclude that Ux and U2 cannot be equivalent unless 
they contain the same datoms. 

We now show that if ux and u?2 are not logically equivalent, then Ux and 
U2 are not equivalent. Select a truth valuation v for all the atoms of ux and 
u2 such that, say, v satisfies ux but not UJ2. Let u be a truth valuation for all 
the datoms of <f> such that <f> is satisfied under u. Create an extended relational 
theory T without strict axioms, with body u, and let Al be a model of T. Let 
Al' be a model that agrees with v on all valuations of t>, and with M on all other 
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information. Since u\ is satisfied in M' by construction, and M' agrees with 
M on all datoms not in wi, it follows that World(.W) € Worlds(tfi(.M)). M' 
cannot be a model of an alternative world of V2(M), because u>2 is false in M'. 
From Theorem 8-1, it follows that u>x and u>2 must be logically equivalent if U\ 
and Vi are equivalent. 

We now turn to the reverse implication, namely, that if u>i and u>2 are 
logically equivalent and contain the same datoms, then V\ and U2 are equivalent. 
Assume that ui\, and therefore u>2, is satisfiable, as otherwise the theorem follows 
immediately. 

For any extended relational theory T without strict axioms, consider the 
effects of U\ and U2 on a model M of T where <j> is true. Since u>i is satisfiable, 
U\(M) is nonempty. Suppose M' is in U\(M). Since u>i and u>2 are logically 
equivalent, u>2 will be true in M', so rule 2 in the definition of INSERT is satisfied 
by Ü2- Since u\ and u>2 contain the same datoms, rule 1 is also satisfied by M!. 
We conclude that U\ and V2 are equivalent.      0 

8.4. The Minimal—Change Semantics and Update Equivalence 

We begin with simple sufficient conditions for update equivalence under the 
minimal-change semantics: 

Theorem 8-11. Let V\ and U2 be two null-free updates under the 
minimal-change semantics: 

Ux:    INSERT wi WHERE fa, 

U2:    INSERT u2 WHERE fa, 

Then U\ and V2 are equivalent if 

(1) If faf\ fa is satisfiable, then u\ and u>2 are logically equivalent; and 

(2) faf\-ifa logically entails u>i and fa/\->fa logically entails u»2-      ^ 

Proof of Theorem 8-11. First note that condition (1) implies that 
INSERT u>i WHERE <£iA</>2 is equivalent to INSERT w2 WHERE faf\fa- Therefore by 
Theorem 8-5, it suffices to show that condition (2) implies that if faf\->fa is true 
in a model M, then U(M) = {M}. But this follows immediately from the fact 
that u>i is already true in M. A similar line of reasoning holds if faf\->fa is true 
in M. We conclude that conditions (1) and (2) are sufficient for equivalence. 
0 

The conditions in Theorem 8-11 are in fact both necessary and sufficient 
if no datom appears in both u\ and fa or in both u>2 and fa. In the general case, 
however, u\ and u>2 must be reduced before testing is done for logical equivalence. 
For example, although R(a) and R(b) are not logically equivalent, 'U\'. INSERT 
R(a) WHERE R(a) A R(b) is equivalent to U2: INSERT R(b) WHERE R(a) A R(b), 
due to interactions between the atoms of <j> and u.   The following definitions 
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show how to reduce u for the minimal-change semantics; the procedure is more 
complex than for the standard semantics. 

Definition. Let U be the update INSERT u> WHERE <f>, under the minimal- 
change semantics. Then the reduction ofu with respect to <j>, written red(w, 0), 
is the wff formed from UJ as follows: 

1. Put u into disjunctive normal form*. 

2. If (f> logically entails a literal /, and / appears as a conjunct of u, then 
replace that conjunct of CJ by T.      0 

Examples. The reduction of R(a) A (R(b) V ->R(c)) with respect to ->R(a) 
A R(b) is the wff (R(a) A T) V (R(a) A ->R{c)). For u any wff, red(w, T) is u in 
disjunctive normal form. 

Unfortunately, even this stronger version of reduction does not lead to as 
elegant a theorem of equivalence as was possible under the standard semantics. 
A counterexample will illustrate why Theorem 8-10 fails to hold for the minimal- 
change semantics. 

Example. Let / and g be datoms. Then the reduced update Ui: INSERT 
fVg WHERE fVg is equivalent to U2: INSERT T WHERE fVg, even though Theorem 
8-10 predicts inequivalence, if co-opted for the minimal-change semantics. The 
problem persists even if the requirement is removed in Theorem 8-10 that the 
same datoms appear in wj and u}2-      ^ 

Before the presentation of the equivalence theorem for the general case, 
one more bit of terminology: 

Definitions. A wff u is basic if u> is ground and does not contain Skolem 
constants or the equality predicate. An update U: INSERT u WHERE <f> is basic iff 
u and 4> are basic. 

Theorem 8-12. Let U\ and U2 be basic updates under the minimal- 
change semantics: 

Ux:      INSERT wi WHERE fa, 

U2:      INSERT u>2 WHERE <j>2\ 

Let <f> be the wff red(^i A <f>2, T). Then Ui and U2 are equivalent iff 

(1) For every satisfiable disjunct D of <f>, red(u;i, D) is logically equivalent to 
red(w2, D). 

(2) <f>i/\-«j>2 logically entails ui and fah-'fa logically entails u2.     0 

t For our purposes here, a literal is an atom, a negated atom, or a truth value; and u 
is in disjunctive normal form if w is a disjunction of conjunctions of literals, and no disjunct 
contains both a literal and the negation of that literal as conjuncts. 
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The proof of Theorem 8-12 uses three auxiliary results: two lemmas and 
a theorem. Lemmas 8-1 and 8-2 give useful logical properties of reduced wffs. 
Theorem 8-13 is interesting in its own right; it shows that the reduction process 
may be used to find the minimal sets of atom truth valuation changes in a model 
that will make a particular wfF true in that model. 

Lemma 8-1. Two basic wffs u>\ and U2 are logically equivalent iff for all 
basic satisfiable conjunctions of literals <j>, red(wi, <f>) and red(ü>2, <i>) are logically 
equivalent.      0 

Proof of Lemma 8-1. To show that this condition is sufficient, recall 
that red(u>, T) is logically equivalent to u>, for all basic wffs u. Therefore if 
red(wi, T) is logically equivalent to red(w2, T), then u\ and uz must be logically 
equivalent. 

To show that this condition is necessary, let / be a basic satisfiable literal. 
Assume that u>\ and u>2 are logically equivalent, but red(wi, I) and red(u;2, /) are 
not. Let v be a truth valuation for all the atoms of u?i and u>2 except the atom 
of I, such that v A -"/satisfies red(u>i, I) A->red(u>2, I), say. (We choose v A ->l 
rather than v A I because v A I must either satisfy both red(u>i, /) and red(o?2, 
/) or else fail to satisfy either, as otherwise u>i A ->U2 would be satisfied by v A 
I, an impossibility since wi and u>2 are logically equivalent.) Suppose first that 
red(u>2, /) is true under v A I. Then there exists a disjunct d of U2 containing / 
such that d is true under v A I. But red(<i, /) must also be true under v A ->l, 
which implies that red(u>2, /) is true under v A ->/, a contradiction. 

Now suppose that red(u>i, /) and red(u>2, 0 are both false under v A I. 
Then u>\ and u>2 are also false under v A I. By definition, red(u;2, /) is false under 
v A -i/. It follows that W2 is false under v A -•/, because if all disjuncts d of u;2 
axe such that ied(d, I) is false under v A ->/, then d must also be false under v 
A ->/. As u?i and u>2 are logically equivalent, wi must also be false under v A ->l. 
As red(u;i, /) is true under v A ->/ by definition, there must be some disjunct d 
of red(wi, T), such that d is false under v A I and red(d, /) is true under v A 
-</. Then d must contain both / and -</, which is forbidden by the definition of 
disjunctive normal form. Therefore red(u>i, /) and red(u>2, 0 must be logically 
equivalent. 

As red(u>i, h A ••■ A /„) = red( ••• red(u>i, h), ••• , /„), for U a basic 
literal, 1 < i < n, we conclude that if u>i and U2 are logically equivalent, then 
red(u;i, <j>) and red(u>2, <f>) are logically equivalent.     0 

Given that two wffs u>i and u>2 are not logically equivalent, Lemma 8-2 
shows how to reduce u>i and u>2 and still preserve that logical inequivalence. 

Lemma 8-2. Let u>i and u>2 be basic wffs, and let D be a satisfiable basic 
conjunction of literals T A h A • • • A /„, for n > 0.  If red(u>i, D) and red(u;2, 
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D) are not logically equivalent, then there exists a truth valuation i; for all the 
atoms of D, u>i, and u2 such that D is true under v and red(wi, v) and red(w2, 
v) are not logically equivalent.      0 

Proof of Lemma 8-2. Suppose red(wi, D) A ->red(u;2, D) is satisfiable 
under truth valuation v'. Let v be formed by concatenating D and the truth 
valuations of v' that are consistent with D. Then red(u;i, v) is satisfied under 
truth valuation v\ but red(u>2, v) cannot be satisfied by v'.      0 

In order to characterize the minimal sets of atom truth valuation changes 
in a model M that will make a particular wff true in M, we need a slightly 
stronger notion of reducibility: 

Definition. For w a basic wff and <f> a basic conjunction of literals, the 
fuiJ reduction ofu with respect to <f>, written fred(u;, <f>), is obtained as follows: 

1. Set fred(u>, <f>) to be red(w, <j>). 

2. If one satisfiable disjunct d of fred(w, <j>) logically entails another, then 
remove d from fred(u>, <f>). Repeat until no such disjunct remains.      0 

Example. An earlier example showed that red(i?(a) A (R(b) V ->R(c)), 
^R(a) A R(b)) = (R(a) A T) V (R(a) A ^Ä(c)); for a full reduction, fred(Ä(a) 
A (R(b) V iÄ(c)), --Ä(a) A R(b)) = (R(a) A T).      0 

Theorem 8-13. Let ubea basic wff, and let v be any truth valuation 
for the atoms of u. Let M be a model that satisfies u, and let M' be a model 
that agrees with M except on the truth valuations of a set S of datoms. Then 
for any satisfiable disjunct d of fred(w, v): 

1. u) is true in At' if 5 contains exactly the datoms of d. 

2. u; is false in M' if 5 is a proper subset of the datoms of d.     0 

In other words, the disjuncts of a fully reduced u represent the minimal 
changes needed to make u true in a particular class of models. This suggests the 
following property, whose proof we omit: 

Proposition 8-6. The basic update INSERT u WHERE <f> is equivalent to 
INSERT red(w, <f>) WHERE <j> and INSERT fred(u;, <f>) WHERE <f> under the minimal- 
change semantics.     ^ 

Proof of Theorem 8-13. Assume without loss of generality that w is 
in disjunctive normal form. We first show that if 5 contains exactly the datoms 
of d, then u is true in M'. Let d' be a disjunct of u that is transformed into 
d during the full reduction of u with respect to u, by replacing literals of d! by 

128 



T. Then d! contains all the literals of d as conjuncts, and other literals / as well 
(though not both any literal and its negation). But if / is removed from d! during 
the reduction process, then / is a conjunct of v, and therefore / is already true in 
M. Therefore d! is also true in M', and u is true in M'. 

To prove condition 2, let w' be fred(u;, v). We first show that u logically 
entails u'. If u; is satisfied under truth valuation t/, then some disjunct Pofu 
must be true under v'. Every conjunct of D must be true under v', and therefore 
red(D, <f>) must be true under v' for any basic truth valuation <f>. It follows that 
red(w, <f>) is true under v'. As red(u>, v) and u>' are logically equivalent, u' must 
also be true under v'. 

Suppose that 5 contains a proper subset of the datoms of a satisfiable 
disjunct d of u/. By the definition of M, every conjunct of u' is false in M, so 
S must contain all the datoms of some satisfiable disjunct d' of u' if u>' is true 
in M'. But then d logically entails d', so d should have been removed from u/ 
during the full reduction process. We conclude that a;', and hence w, is false in 

M'.     0 

Proof of Theorem 8-12. To show that condition 2 is necessary for 
equivalence, if M is a model where (j>\f\-«f>2 is true and u>i is false, then U\ 
applied to M will change or eliminate the alternative world of M, whereas U2 

cannot affect that world. 
To show that condition 1 is also necessary for equivalence, suppose there 

is some satisfiable disjunct D of <f> such that red(u>i, D) and red(u>2, D) are not 
logically equivalent. Then by Lemma 8-2, there is a satisfiable extension D' of 
D that includes every atom of wi and W2, such that red(u>i, D') and red(u>2, D') 
are not logically equivalent. Let wj be fred(u>i, D'), let u>2 be fred(u;2, D'), and 
let Al be a model where D' is satisfied. Choose any one disjunct d of u>[ or 
u>2, say of u>i, that does not subsume any disjunct of w2; such a disjunct must 
occur in u)[ or w2. Let M' be a model that only disagrees with M on the truth 
valuations of atoms in d. By Theorem 8-13, M' € U^M), but M' $ U2(M). 
But then Worlds(Z7i(A4)) ^ Worlds(U2(M)), and by Theorem 8-1 Ui and U2 are 
not equivalent. 

We now show that conditions 1 and 2 are sufficient to guarantee that [/1 
and U2 are equivalent. By condition 2, Ui and U2 axe equivalent when applied 
to all models where -><f> is true, as U\ and U2 have no effect on such models. To 
show that condition 1 is sufficient for models where <f> is true, suppose that for all 
satisfiable disjuncts D of <f>, red(u>i, D) is logically equivalent to red(u;2, D). Then 
by Lemma 8-1, for every extension of D to a satisfiable conjunction D' of literals 
that includes all the atoms of wi and u>2, red(u;i, D') is logically equivalent to 
red(u;2, D'). For an arbitrary choice of D', let wj be fred(u>i, D'), and let UJ'2 be 
fred(w2, D'). Then as u\ and red(wi, D') are logically equivalent, and similarly 
for w2, it follows that u>2 and &[ are logically equivalent. In addition, by the 
definition of full reduction, u\ and w2 must contain the same disjuncts, up to 
reordering of literals within disjuncts. 
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U3 

By Theorem S-13, the minimal sets of atom truth valuation changes that 
would make u.^ true in a model M satisfying D' are given by the disjuncts of u[. 
Whenever one of these sets of changes is made in M, creating M', exactly one dis- 
junct of -.•; is also satisfied in M'. Therefore Worlds^(A*)) C WoTlds(U2(M)). 
By a symmetric argument, \Yovlds(Ui(M)) = Worlds^CA'f)). As this construc- 
tion holds for any model that satisfies <f>, Ui and U2 are equivalent.      0 

8.5. The Truth-Maintenance Semantics and Update Equivalence 

This section discusses update equivalence under the truth-maintenance seman- 
tics. As usual, we begin by showing how to reduce the case of updates with 
different selection clauses <f> to the case of updates with a common selection 
clause. 

Theorem 8-14. Let U\ through U\ be null-free updates under the truth- 
maintenance semantics: 

l*i:    INSERT wi WHERE <f>u 

U2:    INSERT u2 WHERE <j>2, 

INSERT wi WHERE 4>xt\<t>2, 

INSERT u>2 WHERE faAfa. 

Then U\ and U2 are equivalent iff 

(1) t*3 and Ui are equivalent; and 

(2) If 4>iA-i<t>2 is satisfiable, then 

• There must be exactly one truth valuation v for all the datoms of u\ such 
that: 

o   u>i is true under v; and 

o   Each datom that appears positively or negatively in u>i is true or false, 
respectively, under v. 

• Further, 4>it\-*4>2 must logically entail v. 

(3) The analogous condition holds if <j>2f\-
,<j>\ is satisfiable.      0 

Proof of Theorem 8-14. The necessity of condition (1) follows from 
Theorem 8-5. For condition (2), suppose that, say, <t>\/\->(f>2 is satisfiable with 
valuation u. Let T be an extended relational theory without strict axioms, with 
body u. Let M be a model of T; then U2(M) = {M}. By Theorem 8-1, then, 
for U\ to be equivalent to U2, it must be the case that Ui(M) = {M}. 

If ui is unsatisfiable, then U\(M) is the empty set. We conclude that 
there is a truth valuation v for all the datoms of u>i such that u>i is satisfied 
under v. By Proposition 7-1, there exists such a valuation v where in addition all 
datoms that appear positively in u\ have the truth valuation T, and all datoms 
that appear negatively in u>\ have the truth valuation F.  Therefore when U\ is 
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applied to any model where <f>\ is true, an alternative world is produced where 
v is true. Therefore if ^iA-^2 is true in M, for U\ and Ui to be equivalent, v 
must be true in M, and there must be only one such valuation v. The proof of 
necessity of condition (3) is symmetric. 

We now turn to the reverse implication, namely, that if conditions (1) 
through (3) are met, then U\ and Vi axe equivalent. Let T be an extended 
relational theory without strict axioms, and let Al be a model of T. If -*<f>\ A-<<f>2 
is true in M, then Worlds^A*)) = Wor\ds(U2(M)). If faAfa is true in M, 
then since U$ and UA are equivalent, again U\ and V2 must be equivalent with 
respect to M. If <f>iA-><f>2 is true in M, then Worlds^(A4)) = {M}. any model 
produced by V2 represents the same alternative world as M does. By condition 
(2), the same is true of U\{M). We conclude that JJ\ and U2 are equivalent when 
applied to T.     0 

We now present simple sufficient criteria for update equivalence: 

Theorem 8-15. Let Ui and U2 be two null-free updates under the truth- 
maintenance semantics: 

Ui:    INSERT ux WHERE <j>, 

U2:    INSERT u2 WHERE <j>. 

If 

(1) u)\ and W2 are logically equivalent; 

(2) The same datoms appear in u>{ and u>2*, 

(3) The same datoms appear positively in u)\ and u>2? and 

(4) The same datoms appear negatively in u\ and u>2, 

then U\ and V2 are equivalent. 

Proof of Theorem 8-15. Assume that wi, and therefore u>2, is satisfiable, 
as otherwise the theorem follows immediately. For any extended relational theory 
T without strict axioms, consider the effects of U\ and U2 on a model M of T. 
U\ must produce a model M.' from M, since wi is satisfiable. We wish to show 
that M! is also a model produced by U2 acting on M. 

First, u>2 must be true in M', because u\ and U2 are logically equivalent; 
therefore rule 2 in the definition of INSERT is satisfied for U2 by M!. By condition 
(2), rule 1 is satisfied for V2 by M'. Conditions (3) and (4) guarantee that rules 
la and lb are satisfied.      0 

To see that the criteria of Theorem 8-12 are sufficient but not necessary, 
consider the two equivalent insertions of INSERT g WHERE T and INSERT </V(FA->ff) 
WHERE T, which do not satisfy condition (3) for equivalence. For necessary and 
sufficient criteria for two updates to be equivalent, as with the standard semantics 
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we need the concept of a reduced update; but the truth-maintenance reduction 
process will include additional steps beyond that for the standard semantics. 

Definition. Let U be the update INSERT u WHERE <f> under the truth- 
maintenance semantics. To reduceu with respect to <f>, written red(u;, <f>), first put 
u! into disjunctive normal form* and then make the following atom substitutions 
for every datom g in u>: 

1. If (j> and u; both logically entail g, replace g by T in u. 

2. If <t> and u> both logically entail ->g, replace g by F in u. 

3.. If <j> logically entails g and g appears positively in u>, replace g by T in u. 

4. If 4> logically entails ->g and g appears negatively in u>, replace g by F in 

Proposition 8-7. Under the truth-maintenance semantics, any update 
U: INSERT u WHERE <f> is equivalent to INSERT red(w, <j>) WHERE <j>.      0 

We omit the proof of Proposition 8-5 here; intuitively, U cannot change 
the truth valuation of any datom g that is removed from u, because of rules 
la and lb in the definition of INSERT under the truth-maintenance semantics 
(Chapter 7). 

Unfortunately, even this stronger version of reduction does not lead to as 
elegant a theorem of equivalence as was possible under the standard semantics. 
A counterexample will illustrate why Theorem 8-10 fails to hold for the truth- 
maintenance semantics. 

Example. Let / and g be datoms. Then Ui: INSERT ^V-i/VT 
WHERE (fhg)V(->fA->g) is not equivalent to U2: INSERT fVgV-ifV-ig WHERE 
(/A</)V(-i/A-<<7), even though Theorem 8-10 would suggest so, if co-opted for 
the truth-maintenance semantics. The problem arises because even though ui 
and u>2 are logically equivalent, U\ will never produce an alternative world where 
/A-i0 is true, but Ui will. If Theorem 8-10 is strengthened to require that the 
same datoms appear positively and negatively in u\ and u>2, then inequivalence 
would correctly be predicted for this example; but in general, this extra con- 
dition is too strong. For example, consider INSERT #VT WHERE -ig and INSERT 
gV->g WHERE -<g. These two updates are already reduced, and they are equivalent 
although g appears positively in u>i but not in u;2.      0 

Theorem 8-16. Let U\ and Vi be two null-free updates under the truth- 
maintenance semantics, where 4> is in disjunctive normal form: 

* For the truth-maintenance semantics, we need slightly more rigid rules on what con- 
stitutes disjunctive normal form: Add the requirement that if F appears in a disjunct of a wff 
in disjunctive normal form, then F is the only conjunct in that disjunct. 
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U\\ INSERT u\ WHERE <j>, 

U2: INSERT w2 WHERE <f>. 

Then Ui and #2 axe equivalent iff for all satisfiable disjuncts D of <f>, 

(1) red(u;i, D) and red(u>2, -D) contain the same datoms and are logically 
equivalent; and 

(2) If a datom g appears positively (resp. negatively) in only one of red(u;i, 
D) and red(u>2, D), then g appears negatively (resp. positively) in D.     0 

Exampie. Consider the counterexample given earlier: 

U\:      INSERT flfV-i/VT WHERE (fAg)V(->fA->g), 

U2:      INSERT /VyV-i/V-ijr WHERE (fAg)V(^fA^g). 

Reduction with respect to fAg yields red(ü>i, fAg) = (TV-'/VT) and 
red(u;2, fAg) — (/V^V-i/V-ip). As these two wffs do not contain the same 
datoms, Theorem 8-16 correctly predicts inequivalence.      0 

Example. Consider the other counterexample given earlier: 

Ui:      INSERT gVT WHERE -.0, 

U2:      INSERT gV->g WHERE ->g. 

These two updates are already reduced. As u>i and u2 are logically equivalent and 
contain the same datoms, condition (1) for equivalence is satisfied. For condition 
(2), g appears positively in u\ and not in u2, but g does appear negatively in <f>, so 
condition (2) is satisfied. Therefore Theorem 8-16 correctly predicts equivalence 
of Ui and U2.      0 

In the spectrum of choices of semantics, the truth-maintenance semantics 
falls somewhere between the standard semantics and the minimal-change seman- 
tics. It is interesting to note that same intermediate nature in Theorem 8-16, 
which falls between Theorems 8-10 and 8-12 in its requirements. For example, as 
for the minimal-change semantics, reduction in Theorem 8-16 must be done with 
respect to the individual disjuncts of <j> rather than all of <j> at once. The syntactic 
element in the standard semantics crops up in the requirement of Theorem 8-16 
that red(wi, D) and red(u>2, D) contain the same datoms. 

Proof of Theorem 8-16. If ^ is false in a model M, then U\{M) = 
U2(M). If <f> is true in M, then some disjunct D of <j> is true in M. Let U[ 
be the update INSERT red(u>i, D) WHERE D, and let U2 be the update INSERT 
red(u>2, D) WHERE D. By principle P2 and Proposition 8-7, Worlds([7{(.M)) = 
Worlds([7i(.M)), and similarly for U2. If Ui and U2 are equivalent, then, U[ and 
U'2 must be equivalent. Conversely, if U\ and U2 are not equivalent, there must 
be some disjunct D of <j> such that U[ and U2 are not equivalent. 

We now turn to the question of equivalence for the updates U[ and U'2. 
We first show that u[ and w2 (i.e., red(wi, D) and red(w2, D)) must be logically 
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equivalent if U[ and U2 are equivalent. Let v be a particular truth valuation that 
satisfies u[ A-<UJ2, say. Let u be a truth valuation that satisfies D and agrees with 
v on the datoms in v that are not also in D. Let M be a model of an extended 
relational theory without strict axioms, having body u. Then v is true in some 
model M' E U[(M); the definition of reduction ensures that rules la and lb in 
the truth-maintenance definition of INSERT are satisfied by v. But World(X') 
cannot be a member of Worlds^^A*)), because u2 is false in M'. Therefore u[ 
and u>2 must be logically equivalent for U[ and U2 to be equivalent. 

We now show that u[ and u>2 must contain the same datoms if U[ and U2 

are equivalent. If g is a datom that is a subformula of wj but not of w2, and if g 
does not occur in D, then U[ and U2 cannot be equivalent, as by the definition of 
reduction, U[ can change the truth valuation of g but U2 cannot. If g does occur 
in D, then by the definition of reduction, there exists a truth valuation u for the 
datoms of <f> and u>i, such that D is true under u, and also a truth valuation v for 
the datoms of wj, such that that UJ[ is true under v; and where in addition g has 
different truth valuations in u and v. Let M. be a model of an extended relational 
theory without strict axioms, having body u; then Worlds(£7{(«M)) includes an 
alternative world where v is true, because by the definition of reduction, t; satisfies 
rules la and lb in the truth-maintenance definition of INSERT. We conclude that 
u[ and u}'2 must contain the same datoms if U[ and U2 are equivalent. 

We now show that condition (2) is necessary. Suppose g is a datom that 
occurs positively in ui[ but not in u>2, and g does not occur negatively in D. Let 
M. be a model of an extended relational theory without strict axioms, having 
body DAg. Then g is true in every model of U[(M). There must be some model 
M.' of U'2(M.) in which g is false, because ->g is a conjunct of some disjunct of u'2 

by assumption, and by the definition of disjunctive normal form, that disjunct 
must be satisfiable. But then U[ and U2 cannot be equivalent. The proof is 
symmetric if g occurs negatively in fred(u>i, D). 

To show that these conditions are sufficient for U{ and U2 to be equivalent, 
suppose u}[ and u>2 contain the same datoms and are logically equivalent. Let 
M be a model of an extended relational theory T without strict axioms. If D 
is false in M, then U[ and U2 are equivalent. Otherwise, for any model M! in 
U[(M), u2 is true in M', because u\ and u2 are logically equivalent. Therefore 
rule 2 in the truth-maintenance definition of INSERT is satisfied for U2. Rule 1 
is satisfied by assumption. For rule la, suppose that g is true in M, appears 
positively in u>2, but is false in //f. If g appears in D, then by the definition of 
reduction, g is not a datom of w'2, a contradiction. If g does not appear in D, 
then by condition (2) g also appears positively in red(u>J, D), a contradiction. 
The proof is symmetric for rule lb. We conclude that U[ and U2 are equivalent. 
0 

After proving Theorems 8-14 and 8-16, the author was led to the conclusion 
that the truth-maintenance semantics would not be the most fruitful paradigm 
for investigation, due to its complexity. 
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8.6. Summary and Conclusion 

This chapter has shown that it is possible to develop necessary and sufficient 
conditions to determine when two updates will be equivalent, under a variety of 
choices of semantics. Further, a number of basic principles regarding equivalence 
are shared by a broad class of semantics, as illustrated by the theorems in Section 
8-1. Among the semantics examined in detail, the conditions for equivalence are 
most simple for the standard semantics, due to its name-dropping element, and 
are a bit more complicated for the minimal-change semantics. These theorems on 
equivalence are useful when debating the merits of different candidate semantics 
for an application. 
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Chapter 9: Implementation 

This chapter describes an implementation constructed for the Update Al- 
gorithm, and gives experimental results from this implementation. The goal of 
the implementation effort was to gauge the expected performance of the update 
and query processing algorithms in a traditional database management system 
application. The implementation was tailored to this environment, and for that 
reason the techniques used and results obtained will apply only partially, if at 
all, to other application environments, such as knowledge-based artificial intelli- 
gence applications. In particular, the following assumptions and restrictions were 
made. 

• Update syntax was modified and restricted, to encourage use of simple 
constructs. 

• A fixed data access mechanism (query language) was assumed. 

• A large, disk-resident database supplying storage for the body of the ex- 
tended relational theory was assumed. 

• Performance was equated with the number of disk accesses required to 
perform queries and updates after a long series of updates, and the storage 
space required after a long series of updates. 

These assumptions and restrictions are all appropriate to traditional data- 
base management scenarios; they will be discussed in more detail in later sections. 
We begin with a brief high-level description of the implemented system, and then 
examine its components in more detail. The chapter concludes with a description 
of the experimental results. 

9.1. Overview 

The Update Algorithm Version II was chosen for implementation. This version of 
the Update Algorithm permits both null values* and variables to occur in update 
requests. Since we can assume that the parameters of the average case are known 
in advance in a traditional database management system, it is possible to gear the 
implementation of the Update Algorithm toward this expected case, rather than 
orienting the implementation toward the worst case as was done in the presenta- 
tion of the Update Algorithm in Chapters 3 and 4. Orienting the implementation 
toward the average case allowed us to greatly optimize the algorithm to improve 
performance during update processing. A query processor was also constructed; 

t Skolem constants, in logical parlance; in this chapter we will use the non-logical term. 
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because the expected case is also known during traditional query processing, the 
query processing algorithms were also thoroughly optimized. Both the query 
and the update processing routines can make use, when necessary, of a heuristic 
satisfiability tester to help optimize performance. The implementation is coded 
entirely in C, runs on a VAX, and is approximately 121 Kbytes long in executable 
form. We do not include this code here; those parties interested in more details 
of the implementation than are presented here are invited to contact the author 

directly. 
Lazy evaluation was not implemented; for that reason, to keep the size 

of the extended relational theory within reasonable limits, null values were not 
permitted to occur in attributes on which joins were performed in the selection 
clauses of updates. 

The exact pattern of the data, and the individual queries and updates was 
determined using random numbers and probability distributions, as described in 
Section 9.4. Updates and queries are modeled chiefly in terms of their selectivity 
rather than their syntax. In other words, because the goal of the implementation 
is a count of the disk accesses required for processing, the exact syntax of a 
selection clause is unimportant; what matters is how many disk accesses are 
required to process that selection clause. Profiles for updates and queries were 
chosen on the basis of selectivity classes rather than on the basis of syntactic 
features such as numbers of disjuncts and conjuncts. For example, all selection 
clauses that require accessing 10 datoms of T are identical for the purposes of 
performance measurement, whether those selection clauses contain just single 
datoms or conjuncts and disjuncts galore. 

The implemented version of update syntax differs from that presented in 
Chapter 3. The goal of the modifications was to tailor syntax to the operations 
expected to be most common in ordinary database management systems. This 
decision is expected to have the side effect of mildly discouraging the use of less 
common (and presumably harder to perform) forms of update requests. The 
restricted syntax does, however, have the same expressive power as the original 
syntax; some changes to the extended relational theory that could be accom- 
plished in one update may, however, now require multiple updates. The exact 
restrictions on syntax are described in Section 9.5. 

9.2. Data Structures and Access Techniques for Storing Extended 
Relational Theories 

The extended relational theory is mapped into a set of data structures for storage 
on disk. The data structures required fall into five general categories: 

• Datom space. 

• History atom space. 

Equality atom space. 

•     Logical relationship space. 
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Figure 9-1. Datom and logical relationship space. 

•     Data structures for satisfiability testing. 

The unique name axioms and completion axioms are implicitly present and are 
not stored. Figure 9-1 shows a simplified version of these data structures for the 
extended relational theory with body R(a)\/R(e). 
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In the following four subsections we give a high-level overview of each 
type of data structure. The final subsection gives the full details of the data 
structures. 

9.2.1. Datom Space 

Datom space' is organized much as ordinary database tuple storage, with datoms 
packed into disk blocks and accessed using B-tree indices on their attributes. In 
fact, to obtain the running time estimates given in Chapters 3 and 4, all datoms 
in the body of an extended relational theory T must have a lookup and insertion 
time of C(log R), where R is the maximum number of datoms in T over the same 
predicate. The predicates are not assumed to have keys. 

9.2.2. History Atom Space 

As presented in Chapters 3 and 4, the Update Algorithm makes heavy use of 
history atoms. But history atoms are not strictly necessary; there is no reason to 
use them if there is an equivalent method of performing a particular update that 
uses less space than would be required under the history atom method. For this 
reason, the implementation of the Update Algorithm only makes use of history 
atoms when it is difficult or impossible to get along without them. For example, 
the "typical" update in practice is expected to have a very simple selection clause, 
typically one that is true in all alternative worlds. If u is also simple, one can 
almost always "update in place", and no datoms need be replaced by history 
atoms—Steps 2 and 4 become superfluous. 

History atoms are stored separately from datoms. Much less information 
must be stored for a history atom than for a datom, because little is important 
about a history atom except its unique ID. In particular, its attribute values are 
only important insomuch as they determine which other history atoms that atom 
unifies with; and if there are no unifications with other atoms, then nothing need 
be stored for that atom other than its unique ID. Further, the set of atoms with 
which a history atom unifies is fixed at the time an update is performed. Since 
we expect few unifications in practice, the implementation reduces all history 
atoms H(/, U) to unique IDs hi, h2,... (predicate constants, in the language of 
mathematical logic). If some history atom hi unifies with another atom /12 under 
most general substitution a, then the additional formula a —► (hi <-► A2) must 
also be stored in T. This simplification of history atoms is expected to reduce 
the size of T greatly, as history atom unifications will be rare. 

9.2.3. Equality Atom Space 

Equality atoms that are true in all alternative worlds have special data structures 
dedicated to them. Restrictions on the possible values of a Skolem constant are 
stored in the same disk block as one of the datoms in which that null value occurs 
(its home datom). In addition, if the null value is known to be equal to any other 
null values (e.g., €1=62), the data structure for each datom in which it occurs 
includes a pointer to a list of those other null values. 
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9.2.4. Logical Relationship Space 

An outside logical relationship of a datom / is a wff in the body of T that contains 
/ and other atoms. For example, if / only occurs as a separate formula in the 
body of T, then / does not take part in any outside logical relationships. If the 
formula /Va occurs in the body of T, however, then / participates in an outside 
logical relationship. 

The history substitution step (Step 2) is the bottleneck for the Update 
Algorithm. To make renaming fast and achieve the time bounds presented in 
Chapters 3 and 4, all occurrences of a datom / in the body of T must be repre- 
sented on disk by pointers to a block of storage where / is actually kept, so that 
the substitution of H(f, U) for /, if required, can be done in constant time. In 
other words, rather than storing the wffs of the body of T directly, the wffs are 
mapped into a data structure that contains pointers into a separate name space 
where names of datoms are kept—datom space. 

All occurrences of the same atom or history atom in logical relationship 
space are linked together in a chain whose head is either an index entry for a 
datom or a history atom unique ID. 

To facilitate satisfiability testing, logical relationships are not stored as 
they would appear in the body of T, but rather are converted into a normal form 
that is convenient for satisfiability testing. This normal form uses only one logical 
operation, a variant on exclusive-or called exact-or. When normalized, the body 
of the extended relational theory is just a list of a/ternative sets, or sets of pointers 
to atoms, related by exact-or. If a set of atoms is related by exact-or, then 
exactly one of those atoms must be true in any model of the extended relational 
theory. Exact-or differs from exclusive-or in that exact-or is not associative— 
not a proper operator at all. It is extremely easy to write a heuristic satisfiability 
tester (described in Section 9.2.4) that works on alternative sets. Such a tester 
can be captured in a page of C code, unlike a satisfiability tester for formulas 
containing A, V, and ->. The potential pitfall of using alternative sets is that like 
any other normal form, conversion to alternative sets may exponentially increase 
the length of a formula in the worst case. 

9.2.5. Data Structures for Satisfiability Testing 

A heuristic satisfiability tester is an important part of an efficient implementation 
of the Update Algorithm. "Heuristic" means that when testing satisfiability of a 
wff a, in addition to the obvious responses of "satisfiable" and "unsatisfiable", the 
satisfiability tester may decide that it's too hard to tell whether a is satisfiable, 
and respond accordingly. This satisfiability tester is guaranteed to stop in a 
polynomial number of steps (that is, polynomial in the number of stored atoms). 

To test satisfiability efficiently, once a decision has been made on the truth 
valuation of an atom /, all other occurrences of / in the body of T must be located 
quickly. To achieve this, in the implementation all occurrences of the same atom 
in the body of T are linked together in a list whose head is an index entry. 
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The other data structure needed for heuristic satisfiability testing is an 
array of bits to keep track of the decisions made so far on atom truth valuations. 

9.2.6. Details of Data Structures 

In agreement with traditional relational database terminology, in this discussion 
the arguments to a predicate are generically termed attributes and the values for 
those attributes in a particular datom are called attribute values. 

For an efficient implementation, much more must be stored on disk for each 
datom than just its attribute values. The following data structure description 
shows what data structure fields our implementation stores for a three-attribute 
datom; there are 13 fields, the last three of which contain the attribute value 

information for the datom. 

1. Datom ID(s). 
2. Does this datom contain null values or participate in outside logical rela- 

tionships? (Yes/No) 
3. Does this datom participate in outside logical relationships? (Yes/No) 

4-6. Is there a Skolem constant for the attribute value of attribute 1-3? 
(Yes/No for each attribute) 

7-9. Pointers to MarkLists for attributes 1-3. 

10. Pointer to AltSetList. 

11-13. Attribute value or pointer to null value for attributes 1-3. 

The data structure for datoms contains pointers to MarkLists, AltSetLists, 
and null values. Let us first describe the data structures used for null values. 

If an INSERT request is received for a datom that includes a null value as 
an attribute value, then that field is so flagged in a header for the datom, and 
in place of the attribute value a pointer is stored to a null value data structure 
in the same block of disk storage. The null value data structure consists of an 
ordered fist of begin/end range values, with a provision for open ranges. This 
gives a reasonable simulation of Skolem constants in a variety of domains (e.g., 
strings, integers, reals). The implementation uses a linked list, but there might 
be a better choice; the actual data structure is not important for performance 
measurement, as long as one can get the null value information during the same 
disk access as the rest of the datom. 

MarkLists are lists of the equality atoms in which a Skolem constant oc- 
curs. "Marked nulls" is the traditional name in the database community literature 
for the case when two null values are known to be equal to one another. The 
actual data structure used is a header followed by a linked list of datom IDs and 
attribute numbers. The performance measurements assume that each MarkList 
can be fully contained on a block of disk storage. 

One of the drawbacks of using alternative sets of atoms are that alternative 
sets are very fussy about only one of their member atoms being true in any single 
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alternative world. This causes a lot of pain in the case where one wants to express 
concepts such as disjunction. Since the implementation of alternative sets lists 
member datoms and history atoms by atom ID, to implement disjunctions the 
representation cheats by using multiple datom IDs for the same datom. This was 
easy to implement; due to the presence of null values and the lack of keys, the 
implementation already had to provide for more than one datom per index value. 

The implemented AltSetList looks like a MarkList. The main difference 
between them is that some atom IDs in an AltSetList may be over a special 
predicate, the history predicate. These history atom unique IDs occur plentifully 
when alternative set normal form is used. A history atom unique ID is just an 
index into the HistoryAtomArray; in that array a list is stored for each history 
atom, containing pointers to the alternative sets where that history atom appears. 

Associated with the AltSetLists are a few extra bits to help the satisfia- 
bility testing routine remember which truth valuations have been decided so far. 
The bits are arranged so that the satisfiability tester would not have to hop all 
over disk to turn those bits off after the testing is done; they are kept together 
in one array, hashed on datom and history atom ID. This array is to be loaded 
into main memory when the database is first opened. 

The HistoryAtomArray fits on as many contiguous blocks of disk as its 
length requires. Its storage is managed by a manager that keeps track of free 
slots. Each slot represents a different history atom, and contains a pointer off to 
a list of the alternative sets that that history atom occurs in. 

9.3. Implementation of the Update Algorithm 

The Update Algorithm as implemented does not look like very much like its 
presentation in Chapter 4. This is because the presentation in Chapter 4 was 
geared toward streamlined handling of the general case, that is, the worst case. 
In contrast, the implemented version is geared toward streamlined handling of the 
expected case. The "typical" datom in the extended relational theory is expected 
to be true in all alternative worlds, and hence the query and update algorithms 
are oriented heavily toward dealing with datoms that are true (or false) in all 
alternative worlds. 

This orientation leads to the use of a hierarchy of update processing rou- 
tines. At the top of the hierarchy axe procedures that work correctly when datoms 
do not contain null values and are not involved in any outside logical relation- 
ships. At the lowest level are routines that know how to handle arbitrary outside 
logical relationships. The implemented version of the Update Algorithm operates 
at all times in the highest possible level of this uncertainty hierarchy. A simplified 
version of the hierarchy for ground requests follows. 

1. All atoms involved in this query/update are true in all alternative 
worlds, so process this request as though in an ordinary database. 

2. There are null values in one of the atoms involved in this request, but 
the null values are not relevant to this particular request, so they can be ignored. 
Further, the atoms are not involved in any outside logical relationships. 
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3. There are null values in one of the atoms involved in this request, but 
the atom and its null values are not involved in any outside logical relationships, 
so the uncertainty can be dealt with locally. 

4. Some atoms or null values of the request are involved in outside logical 
relationships, and a heuristic satisfiability tester needs to be called before any 
updates are performed or the query answer is returned. 

The determination of the correct level of the hierarchy is done as rapidly 
as possible; dedicated fields in the stored datom are maintained to give that 
information. The determination of the correct level of the hierarchy is done 
separately for each set of bindings to variables in the update or query. 

The hierarchy is organized in accordance with the expected frequency of 
different types of uncertainty in the extended relational theory. For example, 
null values are expected to be the most common type of uncertainty, and null 
values are expected to be less frequent in the "important" attributes (i.e., those 
appearing in joins or equality atoms in <f> and u). For that reason, the implemen- 
tation is optimized to work most efficiently at higher levels of the hierarchy. In 
particular, if no uncertainty is present at all, then queries and updates will be 
processed as fast as though the database management system had never heard of 
uncertainty (except for effects due to the slightly higher space required for tuple 
storage). Under this school of thought, if one doesn't use the expressive power 
of the extended relational theory, then one needn't pay for it. 

Conceptually, a practical implementation of the Update Algorithm will 
begin by instantiating the variables of the update or query request U, attempting 
to satisfy the selection clause <f> of U. The process of instantiation will be guided 
by the use of safe selection clauses, construed in this implementation to mean 
roughly that each instantiation of a variable should be a most general choice that 
will lead a datom of <f> to unify with a datom already in the extended relational 
theory. The instantiation process stops as soon as <j> is satisfied and all variables 
in u are bound. As an example optimization used in the implementation, at 
this point the bound version <f>' of <f> is minimized in length. For example, all 
atoms in <f>' that are known to be true (resp. false) in all alternative worlds are 
replaced by the truth value T (resp. F). In the average case, <f>' will be reduced 
to T if the request is an insertion. In the worst case, <(>' should be reduced to 
a conjunction of a very small number of literals, say no more than three. This 
important minimization reduces the number of atoms that must be added to T 
to perform U. 

9.4. Data 

This section describes the data used as input to the performance measurement 
runs. 

For performance measurement, an extended relational theory containing 
"real" data (e.g., employees, managers, and departments) could not give suffi- 
ciently empirical results. For example, what would constitute a "representative" 

143 



set of queries and updates? Therefore for performance measurement, the impor- 
tant parameters of individual queries and updates are chosen randomly accord- 
ing to pre-specified probability distributions (described below). The individual 
queries and updates are reduced to a set of statistical profiles, so that datoms 
are selected to satisfy selection clauses according to the dictates of probability 
distributions. 

A simple approach to queries is to divide query answers into three cate- 
gories: sets of datoms known to satisfy the query, sets of datoms known to satisfy 
the query in some alternative worlds but not in others, and sets of datoms that 
may possibly satisfy the query. The latter class consists of those sets of datoms 
for which the heuristic satisfiability tester was unable to reach a conclusion on 
theoremhood. 

The extended relational theory T contains three database predicates, each 
with three attributes. Indexes are stored for all three attributes. At the beginning 
of a run, all three database predicates have the same number of datoms occurring 
in 7"; the exact number is a parameter set at the beginning of the run, typically 
1000 or 200. Non-Skolem-constant datom attribute values are distributed uni- 
formly over an infinite range. The chance of null values occurring as attribute 
values in datoms, both initially and when datoms are added using INSERT and 
MODIFY, is controlled by probabilities selected at the beginning of a performance 
run. These probabilities control the number of introduced datoms having zero, 
one, and two null values as attribute values. In addition, the type of range re- 
strictions, if any, on null values at the time of their home datom insertion is 
controlled by probabilities set at the beginning of a performance run. Null values 
can either be unrestricted, meaning they can take on any value in the underlying 
attribute domain; or they are restricted to a range, the size of which is chosen 
uniformly on an interval also selected at run time; or else they are restricted to 
three values. Of course these restrictions can be altered by subsequent updates. 

Disk block, size is also a parameter set at run time. Datom size is set 
to 100 bytes. A block packing factor of 69% (derived from various studies; see 
[Wiederhold 83]) is assumed. 

9.5. Updates and Queries 

We first cover the syntax for updates and queries, then look at the method used to 
generate particular profiles of updates and queries for performance measurement. 

Rather than using one single update operation, four operators are made 
available: INSERT, DELETE, and MODIFY (all discussed in Chapter 3), and also an 
operation called ASSERT, with syntax and semantics as follows: 

ASSERT <j>:    Eliminate every alternative world of T that is not a model of {T, <f>}. 

The mix of the different types of updates and queries is controlled by 
parameters selected at the start of each performance measurement run. 
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In the implemented version of update requests, no more than one datom 
can occur in u. The wff u can contain just /, or / V T (written MAYBE(/) for 
ease of programming), or either of these in conjunction with range restrictions on 
null values. Further, any null values in / cannot already occur in T. (Assertions 
can be used later to equate pairs of null values.) More complicated ws containing 
additional atoms can be simulated using multiple updates within one transaction. 

9.5.1. Selection Clause Profiles 

As implemented, processing of every selection clause other than the truth value T 
begins with a selection phase. The relation and attribute for the initial selection 
is chosen randomly from a uniform distribution. These selections fall into five 
different groups, based on the number of datoms they select. 

1. One datom is selected via index lookup on attribute value. Any ad- 
ditional datoms with null values that could be equal to that attribute value are 
included in the result. 

2. A small set of datoms is selected via index lookup. A uniform distribu- 
tion is used to determine the size of the set, which can range between zero and 
a parameterized upper limit (typically 50 datoms). Any additional datoms with 
null values that could be equal to that attribute value are included in the result. 

3. A percentage of the datoms over a predicate are selected via index 
lookup. The percentage is selected using an Erlang distribution (m = 2, / = 2, 
total = 2.5) that typically selects 10% of the datoms over a predicate. The Erlang 
distribution (see e.g. [Wiederhold 83]) is often used to model natural phenomena; 
the graph of its probability distribution starts off at m = 2 at a high probability, 
quickly rises to its maximum, then falls into a long tail. Any additional datoms 
with null values that could be equal to that attribute value are included in the 
result. 

4. Range selection: All datoms within two delimiting points in an attribute 
index are selected. Size of range is chosen uniformly from an interval selected at 
the beginning of the performance run. (A Zipfian distribution [Knuth 73] would 
have been more appropriate, as discussed below, but was bypassed due to the 
difficulty of implementing it.) Any additional datoms with null values that could 
fall within that range are included in the result. 

5. A sequential scan is conducted of the datoms in the extended relational 
theory over some predicate, resulting in the eventual selection of a small set of 
datoms over that predicate. Again, the size of the set is chosen uniformly from 
an interval selected at the beginning of the performance run, and any additional 
datoms with null values that could be equal to that attribute value are included 

in the result. 
The type of the selection clause of the current request is selected at run 

time using random numbers and expected distributions of selection clause types 
for queries and for updates. Updates are strongly biased towards selection of 
individual datoms (type 1) or the truth value T, in accordance with traditional 
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database updates. (Of course, if every datom in the extended relational theory 
has a null value for some attribute, then even a type 1 selection clause could 
return all the datoms in the theory.) Further, no selection clauses of type 3 are 
allowed in updates, as it is our belief that the number of tuples changed by an 
update is not a function of the size of the database. 

Once the size of the result of a selection has been decided, the actual 
datoms satisfying the selection must be chosen. The implementation uses a uni- 
form probability distribution to select datoms from the predicates. Choice of 
predicate for the selection is also made uniformly. 

9.5.2. Join Profiles 

After the initial selection phase, between zero and two joins are executed. Ex- 
pected percentages of updates and queries with zero, one, and two joins are 
chosen at the beginning of the performance measurement run; generally updates 
are expected to have a high likelihood of having no more than one join. After the 
initial selection phase, the order of joining of relations is chosen, using a uniform 
distribution. 

9.5.3. Projection 

Projection is not modeled, because it is not expected to have a large effect on 
the comparative disk access costs for extended relational theories and complete- 
information relational databases. 

9.6. Update Implementation Technique 

It was our belief that the most economical route in the long run was to minimize 
the amount of information in logical relationship space, at the expense of datom 
space. In other words, if there are two ways to represent the result of an update 
in the extended relational theory, and one way adds more to datom space but 
less to logical relationship space than does the other, then the former method 
is preferred. The idea is to have as much information as possible stored in a 
simple, flat format that will not require use of expensive procedures for analysis. 
With this goal in mind, the implementation avoids having to store equality atoms 
by making heavy use of a procedure called tupJe splitting [Keller 85], described 
briefly below. 

Consider an extended relational theory with body Emp(c, CSD). Suppose 
an update arrives with selection clause Emp(Reid, CSD). Then, loosely speaking, 
the datom Emp(e, CSD) satisfies that selection clause in some alternative worlds 
and not in others. If the update is INSERT Mgr(Nilsson, CSD) WHERE Emp(Reid, 
CSD), then the truth valuation of the new datom Mgr(Nilsson, CSD) is going to 
depend on the value of e. We chose to avoid proliferation of atoms such as e=Reid 
by splitting Emp(e, CSD) into two stored datoms Emp(Reid, CSD) and Emp(e, 
CSD), where (1) the new datom Emp(c, CSD) has a range restriction that e is 
not Reid, and (2) the two datoms appear together in an alternative set. Then the 
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selection clause is satisfied by the datom Emp(Reid, CSD) in all of the alternative 
worlds where Emp(Reid, CSD) is true, and is not satisfied by the other stored 
datom in any world where that datom is true. In the implementation, whenever 
a datom only satisfies the selection clause of an update in some of the worlds 
where that datom is true, then that datom is split until this is no longer the case. 
When a datom is split, its alternative sets must be changed, and also all tuples 
on its mark list may require splitting to preserve the alternative worlds of the 
extended relational theory. We prefer not to present the details of this process, 
as it is quite intricate. 

9.7. Experimental Results and Discussion 

In this section we describe the behavior of the implementation with respect to 
two parameters: disk accesses required to execute a set of queries after a certain 
number of updates has been completed, and size of relations (i.e., number of 
stored datoms over the same predicate) after a series of updates. We first examine 
relation size, then disk access count, and then give some general comments. 

9.7.1. Relation Size 

As described earlier, the input to a simulation run consists of three rela- 
tions/predicates, each with three attributes, and each with the same number of 
stored datoms. Each stored datom is known to be true in all alternative worlds 
at the beginning of the run. Then a long series of hundreds or thousands of 
updates is applied while the size of the three relations is monitored. Most of our 
runs used an initial relation size of 200 datoms; experiments were also performed 
with initial sizes of 1000 and 20. These runs were all very interesting to watch; a 
number of phenomena deserve mention. First we describe the parameter settings 
used for this set of runs, summarized in Table 9-1. 

These parameters are intended to model a scenario where 80% of the in- 
coming INSERT requests are for datoms that are to be-true in all alternative 
worlds. Of the remaining 20%, one null value appears in 18% of the datom in- 
sertion requests, and two null values appear in the remaining 2%. Every inserted 
datom has some non-null value as an argument, because one attribute is required 
to be null-free, to permit joins at a reasonable cost for these large relations. In 
keeping with this 80/20 approach, a MODIFY request has an 80% chance of mod- 
ifying an attribute value to be a constant, and a 20% chance of modifying it to 
be a null value. Half of the unknown values in inserted datoms are restricted 
to small sets, containing three possible values initially. These represent inserted 
datoms like Emp(e, CSD)A(e=Reid V e=Nilsson). The other half of the inserted 
null values have unrestricted ranges, meaning that they can assume any value 
from an infinite domain. Emp(e, CSD) is an example of this type of unrestricted 

insertion. 
The breakdown of update types was 40% MODIFY requests and 20% each 

INSERT, DELETE, and ASSERT requests. The sensitivity of our results to the value 
of the ASSERT parameter will be discussed below. 
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200 Number of datoms in each relation at start of run 

20 Upper bound on "small set" size for type 2 selection clauses 

.20 Percentage of updates that are insertions 

.40 Percentage of updates that are modifications 

.20 Percentage of updates that are deletions 

.20 Percentage of updates that are assertions 

.20 Percentage of modifications that introduce set nulls 

.80 Percentage of type 1 selection clauses for insertions 

.20 Percentage of type 2 selection clauses for insertions 

.58 Percentage of type 1 selection clauses for modifications 

.34 Percentage of type 2 selection clauses for modifications 

.00 Percentage of type 3 selection clauses for modifications 

.06 Percentage of type 4 selection clauses for modifications 

.02 Percentage of type 5 selection clauses for modifications 

.75 Percentage of type 1 selection clauses for deletions 

.15 Percentage of type 2 selection clauses for deletions 

.00 Percentage of type 3 selection clauses for deletions 

.05 Percentage of type 4 selection clauses for deletions 

.05 Percentage of type 5 selection clauses for deletions 

.20 Percentage of type 1 selection clauses for queries 

.20 Percentage of type 2 selection clauses for queries 

.20 Percentage of type 3 selection clauses for queries 

.20 Percentage of type 4 selection clauses for queries 

.20 Percentage of type 5 selection clauses for queries 

.40 Percentage of queries with no joins in the selection clause 

.35 Percentage of queries with one join in the selection clause 

.25 Percentage of queries with two joins in the selection clause- 

.50 Chance of an inserted set null having an unrestricted domain 

.80 Chance of an inserted tuple having no null values 

.18 Chance of an inserted tuple having one null value 

.02 Chance of an inserted tuple having two null values 

Table 9-1. Major input parameters for a series of runs. 

Figures 9-2 and 9-3 show the number of stored datoms for each of the 
three relations over a long series of updates, taken from a run with an initial 
relation size of 200 datoms. Figure 9-2 gives a close-up view of the behavior of 
the relations between updates 2700 and 3700. The starting and stopping points 
were taken at random from a run of over 6000 updates. Figure 9-3 takes a 
longer-term view, covering updates 2500 through 5250. These figures bring out 
two important points about this typical run: 
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Figure 9-2. Relation size after a series of updates. 
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Figure 9-3.  Relation size after a series of updates. 
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• Relation size does not increase with time. 

• Relation size has a high variance. 
The sudden, dramatic rises in relation size, followed immediately by major 

collapses, made this run and its brethren very exciting to watch. What causes 
those dramatic peaks? Over such a long series of updates, events with low prob- 
ability of occurring at any one moment have a high probability of occurring at 
some point. Those peaks are caused by repeated splits of datoms like Emp(e, 
CSD): a long series of updates all have selection clauses that unify with Emp(e, 
CSD), and that datom is split again and again, causing a sudden explosion in the 
size of the alternative sets of the datom. Then the law of averages takes effect: 
an ASSERT request establishes that a datom in one of those large alternative sets 
is true in all alternative worlds, and the entire huge alternative set vanishes with 
that ASSERT request. Graphs on a larger scale than those of Figures 9-2 and 
9-3 would show that such explosions typically take place within a short series of 
perhaps 30 updates, and vanish even more quickly. 

Of course any practical implementation of this theory would need to pre- 
vent sudden bursts in relation size: the growth and collapse use a lot of resources. 
The obvious means would be a limit on the number of times any one tuple can 
be split before more complete information on its null values is required. 

Sudden collapses in relation size, other than those following a sudden burst 
in size, are very rare. This is because the base size of the relation—its size when 
not in a dramatic peak—is determined not by datoms that have been split many 
times, but by datoms that are either true in all alternative worlds or at most 
have been split just a few times. There is no way to delete many of these datoms 
within a few updates, because the number of datoms selected by the DELETE 
operator is not a function of relation size. 

Figures 9-2 and 9-3 do not show the initial growth of the relations from 
200 to their eventual base size of approximately 400 datoms. Recall that at the 
beginning of a simulation run, all datoms are known to be true in all alternative 
worlds. The initial phase of growth lasts for several hundred updates, as the 
initial datoms in the relations are replaced by datoms that are not so likely to 
be true in all alternative worlds. As such datoms are likely to be split several 
times before they are DELETEd or ASSERTed, the long-term expected size of the 
relation is greater than its initial size. 

We had planned to do the simulation runs with much larger initial relation 
sizes, say 10 000 tuples. However, the VAX did not take kindly to keeping all the 
data structures for statistics for such large relations. In addition, the random 
numbers used at every phase of execution gave terrible locality to the datom ac- 
cess patterns. We tested the behavior of relations with initial sizes of between 20 
and 5000 tuples to see what relationship held between starting size and eventual 
size, with the hope that a smaller starting size would suffice. We found that in 
all cases, the relation size after a long series of updates is a function of the initial 
relation size, and that for initial sizes over 100 tuples, the relations grew to be- 
tween 1.5 and 2 times their initial size before stabilizing. For example, an initial 
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relation size of 1000 tuples grew to an average base size of 2000 tuples after a se- 
ries of 1500 or more updates. Smaller starting sizes had to grow proportionately 
more before reaching stability; relations of fewer than 80 tuples stood in danger 
of being wiped out by an unlucky sequence of ASSERT and DELETE requests. For 
example, the smallest relation in Figure 9-2 drops down below 100 tuples after 
update 4500, and to size zero soon thereafter. Even 1500 updates later, that 
relation still had fewer than 20 datoms. This opened up the possibility that 100 
datoms was a size threshold for stability; however, this hypothesis was discredited 
by a separate simulation run using initial sizes of 20 datoms. In this latter run, 
the relation size stabilized at a base of 100 tuples. From the group of test runs 
we conducted, we concluded that simulation runs with an initial relation size of 
200 datoms were adequate for our purposes. 

The exact pattern of relation size peaks and valleys is highly variable. For 
example, changing the random number seed, or changing the initial relation size 
from 200 to 199 or 201 datoms, was found to lead to a very different pattern of 
growth and shrinkage. 

What effect did assertions have in keeping down the size of the relations? 
A sample run with the assertion routines disabled showed slow, steady growth in 
the size of the relations, so that an initial relation size of 200 datoms had grown 
to over 20,000 datoms in the three relations after approximately 850 updates. 

When the percentage of ASSERT requests was lowered to 10% by disabling 
the ASSERT routine half the time, then after 1000 updates, the three relations of 
initial size 200 had grown to a combined base size of over 3500 tuples. After 1500 
updates, the combined base size was over 6000 tuples. Relations of initial size 
100 headed towards size infinity at the same steady pace. 

The second phase of experimentation involved measuring disk accesses 
required for a series of queries after a long series of updates. From examination 
of the pattern of growth and shrinkage, we determined that 1000 updates were 
sufficient to "randomize" the initial relations fully and to stabilize the relation 
sizes. The base relation size remained the same from the 1000th update on 
through the 10 000th, which was the largest number of iterations we tried. 

Because relation size was subject to dramatic temporary fluctuations, we 
did not want to measure the disk access cost of queries at a moment when the 
relations were at an unrealistic size peak that would not have been permitted in 
a more practical setting. However, this turned out not to be a problem, as for 
the test runs we used in measuring disk accesses, the relation sizes were all quite 
reasonable after exactly 1000 updates. 

9.7.2. Disk Access Measurements 

This section compares the performance during query processing of an extended 
relational theory and a complete-information relational database. The first task 
of such a comparison is to decide what constitutes a fair comparison: what should 
be the characteristics of the complete-information database? To determine this, 
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we examined the internal state of an extended relational theory after a long series 
of updates, in order to determine the approximate size of each of its relations in 
its alternative worlds by examining the cardinality of its alternative sets. In the 
process we garnered information about the number and makeup of the alternative 
sets in an extended relational theory after a long series of updates. 

The extended relational theory used in this discussion was generated by 
applying a series of 1000 updates to relations of initial size 200. This theory was 
described in the previous section, and the major input parameters for the theory 
are listed in Table 9-1. At the end of the generation process, the three relations 
had sizes 485, 600, and 358, respectively. An examination of the alternative 
sets of the theory showed that an alternative world of this theory would have 
approximately 225, 199, and 139 tuples, respectively, in its three relations. The 
largest alternative set found contained 130 datoms, most of them from relation 
three. This correlated with the findings of test runs on complete-information 
relations of initial size 200, which showed that the average relation size was 
still approximately 200 tuples after 1000 updates. We concluded that a fair 
comparison could be obtained by running the queries on a complete-information 
relational database with 200 tuples in each relation. 

Experimental runs of 100 to 500 queries on this complete-information 
database showed wide variation—as much as a factor of three—in the seeks, la- 
tencies, and block transfers needed, depending on the choice of a random number 
seed. We traced this problem to the presence of joins whose result was the carte- 
sian product of the two relations. To achieve greater stability, such joins were 
prohibited. Once this step was taken, disk access requirements were fairly uni- 
form over different choices of random number seeds. We averaged the results 
from eight typical runs of 100 queries to get complete-information seek, latency, 
and block transfer totals. These figures are shown in Table 9-2. 

Another factor threatened to prevent a realistic comparison. If joins are 
done on attributes containing unrestricted nulls, then datoms containing nulls 
on those attributes will match with every datom in the joining relation. The 
volatility of this type of n2 join had already been demonstrated in the complete- 
information case. To avoid spurious comparisons, we chose to restrict joins to 
the null-free attribute of each of the relations. 

As mentioned earlier, we assume that each alternative set and mark list fits 
on one block of disk storage. When the satisfiability tester is called, it recursively 
visits all alternative sets that each selected datom appears in, all alternative sets 
that the atoms in those sets appear in, and so on. Once an alternative set has 
been visited during a query, it is completely read into memory at that time and 
remains in memory until the end of that query. Similarly, once a MarkList is 
referenced it is assumed to remain in memory until the end of the query. At the 
end of each query, the alternative sets and mark lists are flushed from memory. 

The disk access requirements shown in Table 9-2 for the incomplete- 
information theory are the averages of a set of six runs taken with different 
random number seeds at query time and otherwise identical input data; the same 
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Seeks       Latencies       Disk Block Transfers 

Complete Information 7750 9440 9440 
Incomplete Information       25821 28502 28502 

Table 9-2. Disk accesses during processing of 100 queries. 

input data for queries were used as for the complete-information database. 

Table 9-2 shows that the presence of incomplete information causes a three- 
fold increase in disk access costs for a series of queries. Examination of the raw 
data showed that most of the extra cost does not come from accesses to alter- 
native sets and mark lists; rather, the more mundane accessing of datom space 
records alone more than doubles the average disk access requirements. Since 
there are twice as many stored datoms in the incomplete-information theory as 
in the complete-information database, this is not surprising. 

9.7.3. General Discussion 

When this project began, it was unclear what level of ASSERT requests would 
be required to keep the extended relational theory from growing without bound. 
We found that 20% assertions provided size stability, and 10% produced slow 
growth, when 40% of the updates were modifications.and the rest were evenly 
split between insertions and deletions. As for disk access costs, the presence of 
incomplete information in the database caused an approximate doubling in the 
number of stored datoms and an approximate threefold increase in disk accesses 
required during query processing, for the case where joins were not permitted on 
attributes containing unrestricted null values. This increase seems reasonable, 
since intuitively the presence of null values will cause many more datoms to 
appear to satisfy the selection clause of an incoming query. 

One unusual feature of the implementation is its use of tuple splitting in 
an attempt to avoid complicated logical inferences over datoms. It is not clear 
whether tuple splitting has any advantages as an implementation strategy. On 
the one hand, tuple splitting made the relation size a clear indicator of the prolif- 
eration of uncertainty within the extended relational theory. On the other hand, 
tuple splitting was responsible for the sudden spurts and drops in relation size. In 
a practical implementation of this approach, those irregularities in relation size 
would have to be ironed out by establishing limits on the permissible number of 
splits. This points out another potential advantage of tuple splitting, in that it is 
easy to detect the most common situations where uncertain data will have a big 
impact on processing costs. On the other hand, such record-keeping could prob- 
ably be incorporated into a more direct implementation of logical relationships 
as well. Finally, it is not clear to what extent the high disk access requirements 
for the database were due to the use of tuple splitting. 

The implementation uses a uniform probability distribution to select 
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datoms from a relation during the selection phase of query and update process- 
ing. A more realistic model (and one which would lead to more optimistic results) 
would be to use Zipf's law [Knuth 73] and use a distribution that directed 90% of 
the updates to 10% of the extended relational theory datoms, 90% of that 90% 
to 10% of that 10%, and so on; and that directed 80% of the queries to 20% of 
the extended relational theory datoms, 80% of that 80% to 20% of that 20%, and 
so on. Zipf's law would improve the in-memory performance of the implementa- 
tion, because it would tend to localize uncertainties into little clusters. The most 
expensive processing occurs when a chain of interrelated uncertainties sprawls 
across the extended relational theory; a Zipfian distribution would tend to keep 
uncertainty local. Because processing cost may be exponential in the length of 
the chain of interrelated uncertainty, short localized chains—in particular, chains 
of guaranteed bounded length—would put a tight cap on the CPU cost of query 
answering. In particular, if chain lengths are bounded by a constant, then query 
answering will no longer be NP-complete*; the worst-case running time of a 
query will be polynomial in the size of the extended relational theory. This 0(1) 
hypothesis—the belief that chains will be of bounded length—is a very important 
point, so let us elaborate on it a bit. 

It is not uncertainty per se that makes query processing expensive; in- 
memory processing only gets expensive when attribute values are uncertain and 
they depend on other uncertain values, which in turn depend on other uncertain 
values, and so on. For example, it's not really a problem if I don't know your 
salary, and I don't know the number of orders outstanding in the warehouse, and 
I don't know who your boss is; it only really becomes a problem if in addition 
your salary depends on who your boss is, and that in turn depends on the number 
of orders outstanding in the warehouse, and so on. The length of that chain of 
uncertainty is what determines the cost of query processing. I hypothesize that 
in "real life," that chain of uncertainty is short: (9(1), i.e., of length bounded by 
a constant. In other words, your salary is not going to depend on datoms far off 
in another corner of the extended relational theory. Zipf's law, which has been 
observed to hold for many natural phenomena, supports the 0(1) hypothesis. Of 
course there is no formal method to prove or disprove this hypothesis; consider 
it an argument against entropy in the extended relational theory, where entropy 
is defined as the Murphy's-Law state of affairs wherein the length of chains of 
interrelated uncertainties grows as the size of the extended relational theory. 

Entropy does have an ally, however. Since people are naturally messy, 
their extended relational theories will tend to get messy and cluttered with old, 
irrelevant uncertainties. A certain amount of energy will have to be expended 
into keeping the extended relational theory clean with ASSERT. Feedback on per- 
formance bottlenecks should suffice to motivate periodic clean-ups. 

* Or co-A^P-complete, depending on the exact query language allowed [Vardi 85]. 
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Chapter 10: Open Questions, Summary, and Conclusions 

This chapter reviews summarizes the findings of Chapters 3 through 9 and 
proposes a number of questions for future work. 

10.1. Open Questions 

Some obvious directions for future work are in the areas of the relaxation of the 
closed-world assumption, minimization of the size of extended relational theories, 
the cost of query answering, axiom enforcement, lazy evaluation, and incorpora- 
tion of other types of incomplete information. 

The closed-world assumption. How would the algorithms presented in this 
thesis differ if the open-world assumption were used rather than a closed-world 
approach? Essentially, Step 1 of the Update Algorithm can be eliminated, and 
dependency enforcement becomes more difficult. This question is investigated 
in some detail in [Winslett 86c], and the reader is referred to that publication 
for details. Conditions for update equivalence under the open-world assumption 
have yet to be specified, and there is much more to be said about axiom enforce- 
ment in the AI realm, as different types of enforcement are needed there than 
those natural in the database environment. The problem of axiom enforcement 
gradually shades into that of revision of beliefs in the face of conflicting evidence. 

Minimization of the size of extended relational theories. A more thorough 
investigation is needed into efficient heuristic techniques for minimizing the size 
of the formulas added to the theory during updates. Simplification heuristics are 
vital for efficient execution, and were at the core of the implementation of the 
Update Algorithm coded by the author. 

The cost of query answering. There is more to be said on exactly when 
answering a query placed to an extended relational theory takes a long time. Of 
course query answering will be at least as hard as satisfiability testing, and the 
exact difficulty will depend on the query language allowed [Vardi 85]. An inter- 
esting question is how the history predicates affect the complexity. In the worst 
case, query answering will be Af'P-hard in the number of history atoms present 
in the extended relational theory, but we conjecture that the time taken up by 
computations on history atoms can be bounded by a function of the complexity 
of the database before those atoms were introduced. 

Axiom enforcement. The work on strict enforcement of type and depen- 
dency axioms should be extended, so far as is possible, to axioms containing 
existential quantification, and to different types of enforcement. 
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Lazy evaluation. There is a good deal more to be said about lazy evalu- 
ation of updates, and quite a bit more to be proven about lazy evaluation. For 
example, refinement of the update cost estimation function of Chapter 5 would 
be helpful, as would measures of the effectiveness of lazy evaluation for updates 
with arbitrary selection clauses. 

Other types of incomplete information. How might an update paradigm 
such as those discussed in this thesis be combined with other types of incomplete 
information? For example, how could this approach be integrated with fuzzy sets 
[Zadeh 79], probabilistic logic [Nilsson 86], or inapplicable null values [Vassiliou 
80, Zaniolo 82]? 

10.2. Summary and Conclusions 

In this thesis we represent databases containing incomplete information as logical 
theories, and view the models of the theory as representing possible states of 
the world that are consistent with all known information. The bodies of these 
extended relational theories allow incomplete information to appear in the form 
of disjunctions or Skolem constants (a.k.a. null values). Any ground formula 
may appear in the theory body and, depending on the needs of the application, 
quantified formulas may be permitted as well. In this latter case, the extended 
relational theory may be any first-order theory. 

We set forth a language and semantics for updates, and a series of al- 
gorithms for incorporating updates into the extended relational theory. These 
Update Algorithms are proven correct in the sense that the alternative worlds 
produced under the algorithms are the same as those produced by processing the 
update in each alternative world individually. For updates and theories without 
Skolem constants, the Update Algorithm has the same asymptotic cost as for an 
ordinary complete-information database update, but may increase the size of the 
extended relational theory. For updates involving Skolem constants, the increase 
in size will be severe if many atomic formulas in the theory unify with those in the 
update; if desired, a lazy evaluation technique may be used to control expansion. 

As a corollary to this work, in the case where quantifiers are allowed to 
appear in the body of the extended relational theory, the Update Algorithm serves 
as an efficient means of implementing updates to arbitrary first-order theories 
under a model-based semantics. 

When dependency axioms are added to this framework, additional mech- 
anisms are required to enforce those axioms when updates are processed. For 
a particular definition of enforcement, we developed mechanisms to handle uni- 
versally quantified dependency axioms during updates, and incorporated those 
mechanisms into the Update Algorithm. The cost of enforcement is reasonable for 
common varieties of axioms, such as functional and multi-valued dependencies. 

A simulation program has been constructed for the Update Algorithm, 
with heavy emphasis on optimization of the algorithms for the expected types 
of queries and updates in a typical database management system scenario. We 
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found that for a reasonable pattern of input queries and updates, the size of the 
extended relational theory fluctuated from moment to moment, but did not grow 
over time. For this pattern of queries and updates, the disk access requirements of 
the extended relational theory were found to be three times greater during query 
processing than for a comparable complete-information relational database. 

The techniques used in the Update Algorithm can be used as the basis 
for efficient processing of updates under a wide range of semantics. We discussed 
the general class of semantics for which the Update Algorithm approach is help- 
ful, and gave special attention to several interesting choices of semantics. We 
introduced the concept of update equivalence as one means of investigating the 
properties of a potential choice of semantics, and provided theorems on update 
equivalence for a variety of semantics. It is our hope that the use of mathemati- 
cal logic in this work, and the attempt to free the approach from considerations 
native to any one application domain, will render these update techniques useful 
in the future for applications in a wide variety of domains. 

In sum we have shown that, first, the concept of a database update can be 
extended to databases with incomplete information in a natural way; second, that 
first-order logic is a fruitful paradigm and tool for the investigation of incomplete 
information; and third, that one may construct an algorithm to perform these 
updates with a reasonable running time. 
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