
REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
30 APR 1997

3. REPORT TYPE AND DATES COVERED
Addendum to Final Technical Report (Sep '96 - Apr '97)

TITLE AND SUBTITLE
Addendum to Final Technical Report
Computer Aided Performance Engineering: Current State of the art

AUTHORS
Ramesh M. Reddi
Prof. Reda Ammar

Infopike, Inc.
Univ of Connecticut

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Infopike, Inc., P. O. Box 328, Norwich, CT 06360

University of Connecticut, Storrs, CT 06269

8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

FUNDING NUMBERS

C - DAAH01-96-C-R298

PR - PAN RTW X8-96

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This is an addendum to the Final Technical Report submitted as a result of Phase I SBIR work awarded to Infopike,
Inc. This addendum reflects the work done by us in assessing the state of the art in the field of Computer Aided
Performance Engineering.
Performance evaluation of computer and software systems has become a rapidly growing field with a growing
number of tools being developed for analyzing various performance aspects of such systems. The literature on
performance evaluation methodologies has also mushroomed with various proposals from researchers all over the
world. This addendum presents the results of a survey conducted on automated performance analysis tools for
computer systems.
The survey includes measurement-based tools, analytical tools, simulation tools and visualization tools, and
describes their properties and capabilities. The tools have been categorized based on their analysis capabilities and
include system-oriented, process-oriented and module-oriented categories. The tools surveyed in this paper
incorporate various techniques including simulation, modeling (Petri net, queuing, semi-markov etc.), measurement,
visualization and emulation. We also present a new methodology for tool classification that aids system designers.

14. SUBJECT TERMS

Computer Aided Performance Engineering

Performance (analytical, simulation, measurement, visualization) tools

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
38

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Computer Generated

BUG OmiJTZ mRPBGTEB I

STANDARD FORM 298 (Rev 2-89)
Drooi-rihaH hw AMCI C*H OTQ.IB

19970428164

Computer Aided Performance Engineering :
Current state of the art

Reda A Ammar, Nagarajan Kandasamy, Brian Mackay and Howard A Sholl.
U-155, Computer Science and Engineering Department,

University of Connecticut,
Storrs, CT 06269.

Ramesh M Reddi,
Infopike Inc.,

Norwich, CT 06360.

Performance evaluation of computer and
software systems has become a rapidly growing
field with a growing number of tools being
developed for analyzing various performance
aspects of such systems. The literature on
performance evaluation methodologies has also
mushroomed with various proposals from
researchers all over the world. This paper
presents the results of a survey conducted on
automated performance analysis tools for
computer systems. The paper also surveys some
of the evaluation methodologies proposed by
various authors. The survey includes
measurement based tools, analytical tools,
simulation tools and visualization tools, and
describes their properties and capabilities. The
tools have been categorized based on their
analysis capabilities and include system-
oriented, process-oriented and module-oriented
categories. The tools surveyed in this paper
incorporate various techniques including
simulation, modeling (Petri net, queuing, semi-
markov etc.), measurement, visualization and
emulation.. The vast number of tools available to
developers of computer systems makes selection
of the appropriate tool an increasingly difficult
task. This paper presents a new methodology for
tool classification which the authors hope will
capture the characteristics of individual tools
better than the standard table format. This model
will also make tool search based on specific
characteristics easier for the designers who need
the appropriate tools.

Keywords computer aided performance
engineering, performance, (analytical,
simulation, measurement, visualization) tools.

1 INTRODUCTION :

The number of tools that have been developed
for computer system performance analysis is
overwhelming. The underlying analysis
methodology, system requirements (hardware
and software), analysis capabilities and front
ends makes each tool unique. This paper surveys
some of the tools available both in the industry
and research community and discusses some
analysis methodologies proposed in the
literature.

Performance of a computer system can
be estimated by one of the three broad
categories, namely : analytically, through
simulation, or by measurement. The analytical
approach focuses on building a static model of
the system under study. The resulting model
describing the behavior of the system, can then
be solved to obtain performance estimates. The
input parameters to the model affect the estimates
obtained. It is important to note that this
approach focuses on solving a static model of
the underlying system. In contrast to this are the
simulation and measurement based approaches.
These approaches focus on the dynamic behavior
of the system. Simulation tools require that the
user write the program in a high level simulation
language and provide system characteristics to
the tool. Simulation tools provide developers
with a virtual machine on which to execute their
code and get performance estimates. Thus
estimates for a target architecture can be obtained

by simulating the code on the development
machine. Measurement tools do not require that a
model be generated as the performance data is
obtained directly from the underlying system.
This requires instrumentation of the code at
various levels. The techniques outlined above
have their advantages and disadvantages.
Analytical modeling becomes increasingly
intractable as the complexity of the system
increases. The demands made by simulation tools
on processor time and memory increase as the
complexity of the model increases. Measurement
tools must be as non-intrusive as possible so as
not to influence the performance data obtained.
The difficulties with the techniques has led some
researchers to move towards hybrid models
involving the three techniques. The authors
would like to point out that most of the tools
surveyed in the paper use the simulation or
measurement approaches.

In addition to categorizing the tools as
analytical, simulation, or measurement, it is also
possible to describe the tool in terms of its
analysis capabilities. Several of the tools
surveyed in this paper exhibit analysis
hierarchies. A computer system can be analyzed
at different levels. These levels are incorporated
into an hierarchy that has the system as a single
entity at the highest level and individual
processes (user programs) at the lowest.
Individual processes are considered to be
composed of a number of modules and analysis
at the module level focuses specifically on the
performance of a single module.

For the purposes of this paper, we
classify the hierarchy into three levels namely
system level, process level and module level. A
brief description of the terminology used is
presented below:
• System level : This represents the highest

level of abstraction, and includes all
components of a computer system including
hardware interfaces to external sources.
Analysis at this level is of large granularity
and focuses primarily on the performance of
the system in terms of throughput, waiting
time etc.

• Process level : Performance Analysis at
this level focuses on the process itself and in
the case of parallel and distributed systems,
interaction among the processes constituting
such a system. A number of process
hierarchies can exist depending on the
complexity of the software system. This
level can also be called as the job level

where a job comprises of one or more
processes. The operating system is also
treated as a job on the system and can be
analyzed at this level.

• Module level: Analysis at the module level,
the lowest level in the hierarchy, is focused
primarily on the modules (procedures and/or
functions) of the individual processes.

The tools surveyed in this paper can be
categorized in terms of these hierarchy levels.
Many of the tools surveyed exhibit capabilities
that would put them in more than one category of
analysis.

2 SYSTEM LEVEL ANALYSIS :

2.1 Simulation Techniques:

Introduction to simulation :
A computer system's performance can

be evaluated by various simulation techniques
such as emulation, Monte Carlo, trace-driven
and discrete event simulation. The simulation
approach can be used to analyze complex
systems which are difficult to measure and model
using analytical techniques. An overview of the
various simulation techniques introduced above
follows:
Monte Carlo Simulation :

A static simulation or one without a
time axis is called a Monte Carlo simulation.
Such simulations are used to model probabilistic
phenomenon that do not change characteristics
with time. These simulations require the
generation of pseudo-random numbers. Monte
Carlo simulations are also used for evaluating
non-probabilistic expressions using probabilistic
methods.
Trace-Driven Simulation :

A simulation using a trace as its input is
a trace-driven simulation. A trace is a time-
ordered record of events on a real system.. Trace-
driven simulations are quite common in
computer system analysis. They are generally
used in analyzing or tuning resource
management algorithms. Trace-driven simulation
has been used to analyze various algorithms
including paging algorithms, cache analysis,
CPU scheduling algorithms, deadlock prevention
algorithms, and algorithms for dynamic
allocation of storage. A trace of the resource
demand is used as an input to the simulation,
which models different algorithms. For example,

in order to compare different memory
management schemes, a trace of page reference
patterns of key programs can be obtained on a
system. This trace can then be used to find the
optimal set of parameters for a given memory
management algorithm or to compare different
algorithms.

Discrete-Event Simulations :
A discrete-event model represents a

process in which the system state changes in
distinct steps. These state changes are usually
characterized by the passage of time. Systems
that can be described by discrete-event models
are those in which resource contention and
allocation occurs. Queuing and probabilistic
behavior are important phenomena encompassed
by discrete-event models. Computer systems
exhibit such behavior and are excellent subjects
for discrete-event simulation.

All discrete-event simulations have a
common structure regardless of the system being
modeled. If a general-purpose language is used,
all the components have to be developed by the
analyst. A simulation language provides some of
the components and leaves others for the analyst
to develop. Common components provided by
such languages include an event scheduler,
simulation clock and a time-advancing
mechanism, system state variables, event
routines, input routines, report generator,
initialization routines, trace routines, dynamic
memory management and the main program.

There are three approaches to
developing a discrete-event simulation : the
event-oriented approach, the process-oriented
approach, and the activity-oriented approach. For
the event-oriented approach, the model is
described by a series of events between which
simulated time may elapse. An event usually
changes the state of the system. Using the
process-oriented approach, the model is
described by a number of interacting processes
which can represent either independent
procedures, where a procedure is a sequence of
activities (sometimes referred to as the
transaction-oriented view) or resources
(sometimes referred to as the resource-oriented
view). A simulation using the activity-oriented
approach is defined by the number of activities
which are executed when certain conditions are
met. Simulation time advances in increments, and
at each advance the activity list is checked. All
activities scheduled to execute at a particular
time are executed.

Simulation allows the user to model
large complex systems and hence is a popular
choice for system level modeling. Selecting a
proper language is probably the most important
step in the process of developing a simulation
model. An incorrect decision during this step
may lead to long development times, incomplete
studies, and failures. There are four choices : a
simulation language, a general-purpose
language, extension of a general-purpose
language, and a simulation package.

Simulation languages such as
SIMULA[33] and SIMSCRIPT[191] have built-
in facilities for time advancing, event scheduling,
entity manipulation, random variate generation,
statistical data collection, and report generation.
These languages allow the analyst to spend more
time on issues specific to the system being
modeled rather than worry about issues that are
general to all simulations.

A general-purpose language such as C
or FORTRAN is chosen for simulation purposes
primarily because of the analyst's familiarity with
the language. It may also be that deadline
requirements do not allow time for him or her to
leam a new simulation language.

An extension of a general-purpose
language such as GASP (for FORTRAN) is
another alternative. These extensions consist of a
collection of routines to handle tasks that are
commonly required in simulations with the aim
of providing a compromise in terms of
efficiency, flexibility, and portability.

Simulation packages such as QNET4
and RESQ[127] allow the user to define a model
using a dialog. The packages have a library of
data structures, routines, and algorithms.

Simulation languages can be classified
into two categories, continuous simulation
languages and discrete-event simulation
languages, based on the types of events they
simulate. Continuous simulation languages are
designed to handle continuous-event models that
are described by differential equations. Discrete-
event simulation languages such as SIMULA,
GPSS, SIMSCRIPT and GASP are designed to
handle discrete-state changes.

An Overview of Some Simulation Languages :
This section provides the reader with a

brief summary of some of the popular simulation
languages and tools being used in industry and
academia today. Simulation languages can fall
into one of the two broad categories : flow-
oriented languages, and statement-oriented

languages. Statement-oriented simulation
languages closely resemble general purpose
programming languages such as C or
FORTRAN. Flow-oriented languages provide
flowchart-like symbols which can be used to
construct graphs representing system behavior.
There also exists toolkits that serve to extend the
original language with simulation capabilities.

SMPL[125] is a general purpose
discrete event simulation library written in C.
SMPL is portable and uses an event oriented
approach.

YACSIM[105] is a process-oriented
discrete-event simulator implemented as an
extension of the C programming language.

SimPack[75] is a collection of C and
C++ libraries and executable programs for
computer simulation. Different simulation
algorithms are supported including discrete-event
simulation, continuous simulation and multi-
model (combined) simulation. SimPack provides
the analyst with a set of basic utilities that can be
built upon to construct special purpose
simulation languages. SimPack's discrete-event
simulation is an event-oriented approach at the
basic level. SimPack also provides a basic X
Windows based graphical user interface.

SIMULA[33] is a general purpose
language in the style of ALGOL. The language
supports object oriented features including
encapsulation, inheritance, and polymorphism.
SIMULATION, a system class of SIMULA is a
process oriented language supporting discrete-
event simulation.

CSIM[184] is a process-oriented,
general purpose simulation toolkit written with C
language functions. The toolkit has been used by
programmers to create and implement process-
oriented, discrete-event simulation models of
computer systems, and software systems
including applications executing on
multiprocessor systems.

SIM++[224] is a general purpose
simulation language based upon C++, that
permits writing process-oriented discrete-event
simulation models. SIM++ is currently available
for PC/AT running Zortech C++ 2.0 or later, and
for DECstation 3100/5000 running ULTRIX 4.2
and the AT&T CC.

SIMAN[160] features simulation and
analysis of discrete (process or event oriented)
and continuous systems (algebraic, difference or
differential equations). It is a flow oriented
language with the system being represented as

linear top-down flow-graphs which depict the
flow of entities through the system.

SIMSCRIPT II.5[191] is a general
purpose process oriented programming language
with structured programming constructs. It
provides advanced GUI features to analysts
including pull-down menus, push buttons,
scrolling text windows and dynamic graphs and
meters.

MODSIM n[27] is a high level Modula-
2 based object-oriented language with multiple
inheritance, message passing, dynamic object
creation, dynamic method redefinition and
separate compilation of modules. The compiler
compiles the source code to C. The programming
environment includes a symbolic debugger, a
genealogy browser with a cross-referencer, a file
manager, and a compilation manager.

SLAM II[153] is a simulation language
that combines process, event and continuous
views on a model. A simulation begins with a
network model or flow diagram showing the flow
of entities. A SLAM II network is made up of
nodes at which processing is performed.
Common functions are entering and leaving the
system, reserving resources, starting and stopping
flows etc. Animations can be created by first
designing the scene setup and then writing a
script. Scripts may be written using a forms
based system. The script specifies which
animation sequence should occur when a
simulation event happens.

HOCUS[163] is a simulation package
supporting discrete-event simulation modeling
using the activity-oriented approach. Activity
scanning centers on the definition of activities in
a model. Entities are assumed to flow through the
model waiting for other entities before engaging
in activities in a certain order.

DEMOS[163] is an process-oriented
discrete-event simulation implementation on the
SIMULA language. DEMOS has a graphical
description language and versions exist under
MS-DOS and X Windows, both written in
SIMULA. A Demographer front end as it is
called supports hierarchical modeling with sub-
processes, based on extended activity diagrams.

2.2 Modeling Tools :
Modeling tools provide the analyst with

user friendly interfaces and ease the burden of
program development. These tools can be used
by the analyst at the cost of flexibility as these
tools make assumptions about the type of system

being modeled. Modeling techniques can be
analytic, numerical, or simulation based.
Analytical techniques provide general models
which may be solved symbolically for the steady
state measures of that system and can be used to
efficiently explore ranges of parameters.
Unfortunately, only a very restricted set of
models have such solutions. Even fewer have
exact solutions, leading to the necessity of
finding approximation techniques. Analytical
techniques are usually applied to queuing
networks, where the structure of the network
allows good rules for finding appropriate models,
notably those in the class known as BCMP
networks.

Somewhere between analytical and
simulation models, it is possible to use numerical
techniques, where the steady state behavior of a
system is found without detailed simulation, but
only in terms of a given set of parameters.

The system level modeling tools
discussed in this paper into three categories :
queuing network based, petri-net based and tools
that use other techniques to model a system.

Queuing network based tools :
QNAP[212] uses a high level textual

language for the description of models which is
then compiled into a form solvable by a range of
solvers offered. Solvers include exact solvers for
BCMP networks, numerical solvers for less
restrictive models, a Markovian solver for
reasonable sized models preserving Markovian
assumptions and a simulation solver for any
model describable in the QNAP language. The
QNAP language is structured around entities
called service centers which could be simple
server nodes as in queuing networks or may have
more complex behavior, described in an
algorithmic language. Options for tracing and
debugging simulations are also supported in
current versions of QNAP.

QNAP is now a part of Simulog's
MODLINE[164] modeling tool incorporating
several features developed during the ESPRIT II
IMSE project. One of the features is a graphical
user interface allowing models to be built from a
menu of symbols as a queuing network . Nodes
can be parameterized to define a complete model
and service center nodes can have QNAP code
associated with them]to provide general
descriptions of behavior. A second feature is an
experiment description facility which allows
analysts to describe repeated runs of a model
with varying parameters and collects outputs

from each in a systematic manner. MODLINE
provides features for animation of simulation
execution and selective instrumentation of
models.

MACOM[114] was developed to
support Markovian Analysis of COMmunication
systems. The model view consists of sources,
sinks and service and control elements. MACOM
allows desired measures and derived statistics
and input parameters (including experiment
series) to be defined by so called evaluation
descriptions. A GUI is used to construct the
models and evaluation descriptions. MACOM
solves models by numerical evaluation of the
markovian chain. MACOM runs on SUN
workstations and its graphical interface is
supported under SunView and X Windows.

The Computer-Aided Performance and
Reliability Evaluation System (CAPRES)[108] is
a queuing network-based tool for evaluating the
design of large-scale, parallel, fault-tolerant
computer architectures. CAPRES uses the
analytic approach for estimating performance,
and can apply one of the following techniques :
modified mean value analysis; flow-equivalent
aggregation via Chandy et al. 's theorem[21], or
modified linearizer algorithm. CAPRES can
predict the performance, reliability, and
performability of a system response times, queue
lengths, nodal and system throughput, and
component utilization.

The Graphical Input Simulation Tool
(GIST)[192] is a transaction-oriented, discrete-
event simulation tool for developing extended
queuing network models. GIST models are
passed through a translator which generates
source code for a simulation compiler.
Performance statistics for the model are collected
including queue length, queue waiting time, and
number of waiting jobs.

The Performance Analysis Workstation
(PAW) [133] is a graphical tool that supports the
development of queuing network models. Models
are defined in terms of nodes and uni-directional
links. PAW provides the analyst with three tools
: a graphics editor, a text editor, and a simulator.
The graphics editor allows the user to specify the
network topology as a diagram. Parameters
associated with each node are entered via the text
editor through the use of forms. The simulator
allows two modes of execution : continuous or
step. The simulator also allows model execution
to be traced and features the facility to provide
periodic snapshots.

The Research Queuing Package
(RESQ)[127] is a modeling tool that supports the
development and analysis of extended queuing
network models. A model consists of nodes,
queues, jobs, routing rules, and routing chains
and is specified through the use of a RESQ
language. Models can be solved either
analytically using the Mean Value Analysis
algorithm, or through simulation. RESQ can
determine resource utilization, throughput, mean
queue lengths, mean queue time, queue length
distributions, queue time distributions, and
statistical analysis of tokens.

Petri Net based tools :
GreatSPN[46] has evolved from a fairly

simple tool for graphical construction and
numerical solution of GSPNs. Model
construction is supported by placing and linking
icons from a menu, representing places,
transitions and arcs. The resulting net may be
analyzed for structural and behavioral properties,
such as deadlocks and invariants. The model is
also solved by numerical techniques based on
generating the underlying Markov chain.

DSPN[122] Express is offered by the
Technical University of Berlin. DSPN Express
allows numerical solution of models
incorporating deterministic time delays in
transitions. DSPN Express does not support
simulation.

QPN[25] is a Petri net modeling tool
from the University of Dortmund. The tool is
similar in its general appearance to GreatSPN. It
supports timed places as well as timed
transitions. A timed place corresponds to a
service station of a queuing network for which a
Petri net equivalent is known. Solution of the
underlying Markov chain is performed with
Usenum, a package for solution of large Markov
chains, also developed at the University of
Dortmund.

ADAS [4] is an integrated set of Petri
net-based tools that supports the development of
hierarchical models. The tool set includes : a
graph editor that is used to create and modify
directed graphs; a Petri net simulator that
verifies the correctness of a software directed
graph by converting it into a Petri net and
simulating it; a Petri Net Analyzer that processes
the results of the Petri net simulator and produces
performance analysis reports; a high level
hardware description language that verifies the
correctness of the hardware graph by generating
a HDL program and simulating it; and a software

functional simulator that supports the
development of either C or Ada modules for
modeling the software operations associated with
a graph node.

Modeler is a Stochastic Timed
Attributed Petri Net (STAPN)-based simulation
tool that provides a GUI based environment for
model development. STAPN is an extension of
Petri nets that supports branching, time delays,
and inhibitors that can prevent a node from firing
even when all required inputs are enabled.
Modeler as presented in [35] is a prototype
model that has limitations on the number of input
and output nodes, a limited statistical output, and
limited ability in displaying model
characteristics.

The System Architects Apprentice
(SARA)[66] is an environment for the analysis of
concurrent systems. The tool set provided with
SARA includes : a structure language (SL) that
provides a set of primitives for defining a
model's structure in a nested, hierarchical
manner. SL is responsible for managing
resources and ensuring that the interface between
modules remains consistent; a Module Interface
Description (MID) that acts as a support tool for
SL which helps establish accessibility of
resources; a Graph Model of Behavior (GMB)
that provides primitives akin to Petri nets for
specifying and analyzing the control and data
flow behavior of a system; and a model library
that has facilities for storage and retrieval of
model components. SARA calculates
performance parameters comprising of mean
utilization, mean queue size, mean waiting time,
queue size distributions, and confidence
measures for all modeled resources.

Miscellaneous Modeling Tools :
This section presents some system

modeling tools that do not use the classical
techniques of modeling. The tools presented here
are based on formal language specifications,
performance process algebras and other recent
modeling techniques.

SimPar[94] is a modeling environment
for the performability analysis of massively
parallel computer systems. Performability
analysis in SimPar comprises both performance
and dependability analysis by considering the
performance degradation in the presence of
component failures. SimPar uses the process-
based simulation engine and the error injection
capabilities of the DEPEND tool[176]. SimPar

uses a technique called conjoint simulation[90]
which is based on the partitioning of the system
model and on the combination of various
modeling techniques. A so-called architecture-
workload model (AWM) comprises the
architecture and workload of the target system
and relies on the object-oriented and process-
based paradigms. A failure-repair model (FRM)
represents the occurrence of component failures
and control of fault-tolerance and maintenance
mechanisms. Performability analysis involves
conjoint simulation of the AWM and FRM
models.

The Parallel Architecture Research and
Evaluation Tool (PARET)[150] is an interactive,
animated environment for analyzing
multicomputer systems. Modeling a system in
PARET comprises developing three separate
specifications : characterization of the
application software, characterization of system
functions, characterization of the
interconnections. All specifications are modeled
as directed flow graph objects. PARET supports
animation and interactive monitoring of the
simulation of the model.

Process algebras have evolved recently
to address some of the shortcomings of simple
Petri nets for behavioral analysis of computer
systems. Formal protocol languages and system
description languages that have often been
heavily influenced by process algebras are being
investigated as a means for providing
performance models directly from system
descriptions and specifications. Early
experiments incorporating such an approach
include TIPP[88] from Universität Erlangen-
Nurenberg, and PEPA[84] from the University of
Edinburgh. TIPP was an attempt at a
performance modeling extension to a process
algebra. TIPP is similar in its algebraic notation
to Milner's Calculus of Communicating systems
(CCS). TIPP has demonstrated that the notation
could express models outside those easily dealt
with by previous performance modeling
formalisms and also the potential for solving
such models by numerical techniques. The
PEPA (Performance Estimation Process Algebra)
is also similar to CCS in its algebraic structure. It
adds to the behavioral analysis capabilities of
CCS by being able to generate a Markov chain
from the state transition model underlying the
algebraic description. The PEPA workbench
allows models written in PEPA to be entered and
their underlying Markov Chain to be generated in
a form suitable for processing by a backend

written using the Maple computer algebra
package.

A number of groups in Europe are
experimenting with the automatic generation of
performance models from formal specifications.
LOTOS is the CCITT recommended protocol
specification language based on process algebra
and combining the features of CCS and Hoare's
Communicating Sequential Processes (CSP).
QNAP models have been generated from
LOTOS specifications as a part of the ongoing
ESPRIT project [213].

2.3 Measurement Tools :
The preferred method of evaluating

computer systems through the measurement
approach is through the use of benchmarks. A
benchmark is a set of executable instructions
which may be used to compare the relative
performance of two or more computer systems. A
benchmark is usually composed of computer
programs, but may also include scripts of
narrative instructions that direct a person or a
machine to perform certain specific tasks during
the course of the comparison test. The process of
benchmarking is conducting controlled
experiments to collect measures of system
performance which may be compared from one
system to another.

Numerous benchmarking suites are
available for most commercial computer systems.
Some well known benchmarks are described in
[102]. An overview of some benchmarking
techniques is presented next.

The sieve kernel has been used to
compare microprocessors, personal computers,
and high-level languages. It is based on
Eratosthenes' sieve algorithm and is used to find
all prime numbers below a given number n.
The Ackermann function has been used to

assess the efficiency of the procedure-calling
mechanism in ALGOL-like languages. The
average execution time per call, the number of
instructions executed per call, and the amount of
stack space required for each call are used to
compare various systems. The Whetstone suite
exercises such processor features as array
addressing, fixed- and floating-point arithmetic,
subroutine calls and parameter passing. The
LINPACK suite consists of a number of
programs that solve dense systems of linear
equations. The LINPACK benchmarks are
compared based on the execution rate as
measured in MFLOPS. The Dhrystone kernel

contains a number of procedure calls considered
to represent systems programming environments.
The benchmark is a measure of integer
performance; it does not exercise floating-point
or I/O processing. The SPEC (Systems
Performance Evaluation Cooperative) bench
mark suite stresses primarily the CPU, Floating
Point Unit (FPU), and the memory subsystem.

Measurement of a computer system can
be performed by hardware or software monitors.
Some hardware systems offer facilities that can
be used for analyzing performance parameters,
like special counters for recording events. The
information can then be read by the monitoring
software and processed. When dealing with
events on a bus or network link, special hardware
is required. In micro-coded architecture,
monitoring facilities could be provided at that
level for event capture. Software monitoring can
be provided at many levels - recording very low
level activities like disk accesses etc., at
intermediate levels such a operating system calls,
or at high levels, recording application level
activity such as database requests. Mapping
requests at one level onto requests at another is a
difficult activity at best. In the following
paragraphs, We survey some tools that are
specifically oriented towards monitoring
hardware level performance.

The Test and Measurement Processor
(TMP)[220] is a multicomputer monitoring
facility that monitors the behavior of a
MC68000-based distributed system. TMP
consists of a host test station and a set of local
monitors, all interconnected via a monitoring
network. Each local monitor contains a
MC68000, an I/O unit for output to a terminal or
printer, a network interface unit, and an event
processing unit. The local monitors observe and
record the bus traffic of the local processor and
produce performance summaries. Summaries,
which can include the number of messages
transmitted and received, elapsed time, execution
times, idle times, etc. can be sent to the host test
station to be displayed. The TMP can monitor
and produce performance summaries at all levels
of the hierarchy (system, process and module).

The Vax 8800[47] Monitor is a
hardware monitor that collects data on the 8800
processor's program counter and memory bus
status. The Vax 8800 monitor comprises of two
modules : a histogram module and a Digital
DMF-32 synchronous parallel interface module.
The histogram module is responsible for
maintaining a count of all machine cycles

executed within the 8800 processor. The
histogram module can also keep track of stalled
cycles and the status of the memory/IO bus at
each clock cycle. The DMF-32 module provides
an interface to the histogram module for
initialization control and downloading of
histogram data. The following performance
parameters can be determined based on the
collected data : opcode execution frequencies,
operand specifier frequency distributions,
frequency of reads and writes per instruction,
frequency of events on the memory/IO bus, read
and write hit ratios, and stalled cycles per
microinstruction.

Zahlmonitor 4 [61] is a measurement
environment for monitoring multiprocessor
systems. It includes a set of hardware probe units
for the object system components and a PC
attached to each probe unit. The PC's are
connected to a central control and evaluator
station. A global time base is maintained via
tightly coupled clocks synchronized by hardware.

Sterling et al. describe a hardware
monitor (the Degradation due to Latency and
Arbitration (DLA) device) for the CONCERT
multiprocessor in [204]. Several sources of
performance degradation are identified namely
(1) insufficient parallelism in the application, (2)
contention for shared resources, (3) overhead
imposed by partitioning the problem, and (4)
latency of access to objects. DLA was designed
to measure the effect of contention and latency at
the hardware level. The DLA monitor was
capable of accumulating statistics in real time
concerning bus utilization, bus requester wait
time, memory access latency, and contention for
software level semaphores.

REMS (Resource Measurement System)
[43] is a tool to aid in the analysis and
measurement of hardware performance for
shared bus multiprocessors. Events of interest
include low level hardware activities such as
memory access, cache access, I/O operations,
and queueing for shared hardware resources.
REMS is composed of a set of sample units
connected to an analysis subsystem. The sample
units compare the state of a set of signal lines
(connected to the system under testing) to a set of
patterns. A pattern matching hardware allows for
fast comparison of an incoming pattern with a set
of patterns of interest. A pattern match may
initiate other recording activities including
counter sampling etc.

TRAMS[43] (TRAce Measurement
System) has been developed at the National

Bureau of Standards. Events of interest are
marked by writing to a location in the address of
each process. The data written to the address is
then recorded by the measurement hardware
along with a 32 bit time stamp, the processor
number, and the execution mode (user or system)
of the processor.

ATUM (Address Tracing Using
Microcode)[193] collects traces of addresses
issued from every instruction executed by a VAX
8350 multiprocessor. ATUM is composed
entirely of microcode that augments the standard
8350 microcode. As each memory request is
issued by the processor, ATUM writes a record
of the request, including the virtual address and
the type of access, to a block of memory reserved
for ATUM use. Traces from ATUM experiments
have been used in studies of cache performance
and to support cache models and other
performance models that rely on memory
reference patterns.
3 PROCESS LEVEL ANALYSIS :

This section surveys tools and
techniques that have been developed specifically
to analyze and predict the performance of a
computer system at the process level. It should
be noted that a number of the system level tools
discussed in previous sections can also be used
for this purpose. A number of these tools use
analytical techniques to obtain a rough estimate
of the performance parameters and simulation
techniques during advanced stages of the
prediction process.

3.1 Modeling Tools and Techniques :
Modeling tools (analytic and simulation

based) and techniques have been developed to
predict the performance of software systems.
There has been extensive work done in
performance prediction based on statistical and
probability theory methods. Parallel programs
can be modeled in terms of distribution
functions, random variables, regression models,
stochastic processes, markov processes and
chains, queuing networks, petri-nets etc. and
performance parameters can be obtained.
F.Sotz[198] provides an approximation
technique to estimate the runtime of a parallel
program which is modeled as a stochastic graph.
Tasks represent nodes in the graph. The runtime
variables of the tasks can be distributed
deterministically or exponentially. The technique
is based on transient state space analysis. N.
Yazici-Pekergin and J.M. Vincent obtain

stochastic bounds on execution times of parallel
programs assuming the availability of an
unlimited number of processors. The execution
times of parallel tasks are random variables
distributed identically. F. Hartleb and V.
Mertsiotakis[92] derive upper and lower bounds
for parallel programs as a means to experiment
with mapping and implementation alternatives.
Parallel programs are modeled as a stochastic
graph and the runtime behavior of a specific
processor is described by a random variable.
Simulation techniques such as emulation, Monte
Carlo, trace-driven and discrete-event simulation
can be used to evaluate the performance of
program models (graph, queuing models, petri-
net models etc.). J. Prost and S. Kipnis[166]
describe a multi-level trace-driven simulation
approach in order to analyze the performance of
programs for distributed memory parallel
systems. The trace consists of a sequence of
events to be simulated. A parameterized model of
the target architecture is incorporated and four
hierarchical simulation levels allow the user to
examine performance parameters at the user,
library and communication levels. J. Bruner et cd.
[38] create instrumented profile runs of a parallel
program, which serve as input to an event-driven
simulator. This approach is aimed at determining
the maximum available parallelism in a program.
A Computer Architecture Research Language
(CARL) is used to model the underlying
architecture. H. Mierendorff et al.[136] evaluate
the performance of parallel programs on
distributed memory multi-processor systems.
They introduce an analytical approach
considering message routing, algorithm structure
and data mapping. The tool developed can model
large systems both in terms of architecture and
algorithms.

Benchmarking models, long used for
performance measurement at the system level is
now a popular performance prediction approach
to support the optimization effort at the process
level. V. Sarkar[180] describes a general
framework for determining average program
execution times in the PTRAN project by using
frequency information and pre-measured
execution times of primitive operations.
Balasundaram et al.[23] describe a performance
estimator to select a data distribution strategy
based on runtime information. It is limited to
programs utilizing the loosely synchronous
communication model. A set of kernels for
operations on a single processor, and loosely
synchronous collective communication routines

on a parallel architecture are incorporated to train
the estimator. A parallel program is parsed for
detection of pre-measured kernels. The estimated
runtime of this program is derived as the
accumulated time of all kernels. N.
MacDonald[124] estimates the performance of a
subset of Fortran77 programs using analytical
time formulae, considering only primitive control
flow. Benchmarks are used to pre-measure
primitive code kernels and these pre-measured
times are used as parameters in the analytical
time formulae.

W. Abu-Sufah and A.Y. Kwok[l]
present a set of performance prediction tools
developed for the Cedar multi-processor system.
Their approach involves analytical and
simulation techniques incorporating guessing for
unknown parameters. Analysts can choose from
either of these techniques depending on the
accuracy required (analytic for coarse grain and
simulations for fine grain).

D. Atapattu and D. Gannon [19] obtain
estimated runtimes for parallel FORTRAN
programs in order to support program
transformation. An analytical model of the bus
behavior for the Alliant FX/8 is incorporated
assuming exponentially distributed processes and
a queuing model. Their estimates are algebraic
expressions of unknown loop bounds and number
of processors.

Modarch[225] is an environment
dedicated to performance evaluation of
distributed computing systems. Modarch helps
find the best fit between hardware configuration
and software applications. Modarch is built upon
the Modline environment and uses a dedicated
version of the QNAP2 simulation software.
Modarch features a graphical programming
interface that allows the analyst to specify the
software and hardware architecture. The tools
included in the Modarch environment are : (1)
The Experimenter which automatically generates
simulation runs of a model. The experimenter
runs the model for each possible value of the
input parameters and stores output results. (2)
The Analyzer allows interactive extraction of
output data and visualization as graphs : lines,
bars, pie charts etc. (3) The Reporter generates
and compiles all the information relevant to the
report subject within the study.

AIMS (Automated Instrumentation and
Monitoring System)[226] is an ongoing effort at
NASA. AIMS consists of a suite of software
tools for measurement and analysis of
performance. Our area of interest is the modeling

facility provided with the AIMS environment.
The Modeling Kernel (MK) is a facility in AIMS
for modeling parallel programs. MK supports
simulation-based and analytical approaches to
performance prediction and scalability analysis,
automates the process of building and simulating
parallel-program models. Based on such models,
users can obtain asymptotic performance
characteristics for either the entire program
(process level) or individual components
(module level). The main component of MK is
GPPM (Generator of Parallel-Program Models).
GPMM models parallel programs at the coarsest
level, capturing only the duration of sequential
blocks, the lengths and destinations of messages,
loop bounds and conditional branch
probabilities. All references to I/O and memory
are ignored. The model structure mirrors
program structure and is derived from parse
trees, one per FORTRAN or C module.

Axe[221] is an integrated set of tools
for the analysis of algorithms and partitioning
strategies on mesh-connected concurrent
processors. The tool set includes a
compiler/translator, a simulator, a monitor and an
experimentation executive for processing user
generated commands. The user specifies the
program to be analyzed using a behavior
description language. The behavior description
language allows the user to specify the model
using similar constructs as the application
implementation language, except that the
execution time of the statements is simulated. In
addition to providing a program description, the
user has the ability to define characteristics of the
run-time environment, including message I/O
overhead, process creation overhead,
communication link bandwidths, number of
nodes and the amount of memory per node. The
user can also select from a limited set of built-in
topologies, routing algorithms, partitioning
algorithms, and scheduling algorithms.
Performance data is generated by discrete-event
simulation of the model.

The Network Emulation Tool
(NET)[20] is a computer network simulation that
supports the analysis of distributed operating
systems and distributed databases. NET provides
a default network description which can be
altered by the user to represent a limited set of
networks. Several network parameters can be
user defined including message delay, message
loss, message duplication, node failure rate, and
network partitioning. An user defined network
description can be created when the default

description is inadequate. NET generates
statistical output on network performance as well
as algorithm performance.

The Rice Parallel Processing testbed
[54] is an execution-driven environment for the
analysis of concurrent programs. Actual
workloads are executed on the target computer to
obtain realistic processing delays while all
interprocess communications and interactions are
simulated allowing for a variety of architectures
to be evaluated. The user must provide three
types of input : a concurrent program, a
simulation model of the architecture, and a
process-to-hardware mapping. The environment
comprises of (1) Concurrent C -This version of
C supports parallel programming. The program
to be evaluated as to be written in this language.
(2) C Simulation Package - This package is a
discrete-event simulator for event queue
manipulation, data collection, and tracing. (3)
Architecture Simulation Preprocessor - The
preprocessor inserts simulation primitives into a
Concurrent C program. These primitives
represent inter-process communication and
synchronization delays. (4) Timing Profiler - The
profiler is an assembly language analyzer that
estimates execution time of sequential code
segments. (5) Simulation Tool Interface - The
user interface is menu driven and supports
windowing. (6) Parallel Tracer/Debugger - This
tool supports a windows-oriented user interface
for monitoring and controlling model execution.
(7) Library - A library is provided for storing
concurrent C programs and architecture models.

QASE[227] is an analytic and
simulation modeling tool for distributed
client/server applications. QASE's system
description is a hierarchical entity-attribute
specification. Entities in a system include
execution flow diagrams, workloads (periodic or
random), hardware diagrams (processor, storage
and communication architectures), software, data
(data stores and flows), operating systems,
communication protocols, and allocations. QASE
uses multiple evaluation techniques using the
analytic approach to evaluate feasibility of
alternate system descriptions and discrete-event
simulation for detailed analysis during final
stages of design. QASE also supports automatic
model generation by populating the model with
performance metric data collected using HP's
Measure Ware Agent.

The Vienna FORTRAN Compiler
System (VFCS)[45] has a parameter based
performance prediction tool in its tool kit.

Parameter based performance prediction of
FORTRAN programs is made possible by this
tool. Workload parameters including work
distribution, number of data transfers, transfer
times, network contention, cache miss ratio, and
main memory performance can be modeled
analytically. The parameters are modeled and
expressions are derived for statements, loops,
procedures and the entire program. The flow
variables (control and data) are not guessed
(specified by the designer) but are estimated
through profile runs of the code. Current work is
focused on training the tool by running different
program profiles under different workload
conditions.

PEPP (Performance Evaluation of
Parallel Programs)[59] is a modeling tool for
creating and evaluating stochastic graph models
of parallel and distributed programs. PEPP offers
functions for graphical model creation and
various evaluation methods for calculating the
mean runtime of a program. PEPP supports the
idea of model-driven monitoring, where
modeling and monitoring are integrated into a
framework to support easier evaluation, tuning
and debugging of parallel and distributed
systems. PEPP is implemented in C with the
graphical user interface implemented on top of
the X Windows system.

MENTOR (Model based EveNT Trace
analysis suppORt system)[60] is an expert system
which assists in the trace evaluation of parallel
and distributed programs by incorporating
knowledge about the program under investigation
into a trace analysis environment SIMPLE[107].
The knowledge is derived from stochastic graph
models created with PEPP.

3.2 Measurement Tools :

Process level measurement tools require
instrumentation of the relevant code (process
code or operating system code) for which
performance data is to be obtained. One of the
major concerns facing designers of such tools is
the perturbation introduced in the performance
data obtained as a result of the measurement
process. Instrumentation of the code has to be as
non-intrusive as possible so as to obtain accurate
results. The following sections survey some
measurement tools designed specifically for the
process level.

Process Level Measurement Tools
The Berkeley UNIX Monitor[137] is a

software monitor within the kernel for measuring
the performance of a distributed program. The
monitor is a distributed program capable of
executing its functions on a user specified
processor. The monitor provide four functions :
• Meter - detects and records events within the

kernel so as to produce a trace. Trace data
can include creation/destruction of
processes, starting/stopping of processes,
and inter-process communication.

• Filter - extracts user specified trace
information from the trace data generated.

• Control - provides an interface to the user to
control the measurement process.

• Analysis - analysis routines can be defined
by the user to summarize and report on the
filtered traces.

The UNIX gprof utility[89] introduces
the concept of a dynamic call graph generation
for an execution of a program. The dynamic call
graph contains one node for each routine that is
invoked as the program executes. Each directed
arc in the graph connects a caller with a callee.
The gprof routines build the dynamic call graph
from a program run. At compile time, calls to an
event recording routine are inserted at the entry
to each subroutine. When the subroutine is
called, an arc between the caller and the callee is
recorded in a table. The graph is generated by a
post processor after termination of the process.

Monit[lll] is a performance monitor
for the Sequent Balance 8000 system. Events of
interest included task and process creation and
termination, entry to and exit from resource
queues, and a general "value trace" event. Active
recorders log event occurrences to a buffer in
memory. A separate process is responsible for
transferring the buffer contents to permanent
storage.

Radar[l 19] is a debugging tool to assist
in analysis of distributed applications. The
applications execute on a network of PERQ
workstations. The events of interest for the
developers of Radar included process creation
and termination, message transmission and
reception, port creation and a general purpose
event. Events are recorded by the node in which
they occur. Each event is marked with an event
number as there is no concept of a global
synchronized time. The event recorder copies the
content of each message as a part of the event

record. This feature facilitates the replay of the
entire experiment in "single step" mode.

PCA (Performance and Coverage
Analyzer)[62] is a performance measurement
tool designed for the VAX architecture. PCA has
been used for both uniprocessor and
multiprocessor applications. Measurement
experiments are divided into two phases: the
collection phase and the analysis phase. The
collection phase involves sampling the program
counter at intervals determined by the system
timer (ten milliseconds). Histograms of program
activity by subroutine, or even by line of source
code can be generated. The time cost of work
done by the low level subroutines can be
propagated back to statements within the higher
level subroutines when the call stack information
is accumulated. PCA allows the insertion of
software trace markers that allow other statistics
namely (1) number of invocations of each
selected subroutine or code fragment, (2) the
number of page faults incurred by each module,
routine or line of code, (3) frequency of requests
for system services by location in the application.

The FORTRAN Analyzer[123] is a
syntax driven software that inserts monitoring
code into an American National Standard
FORTRAN program. Parameters passed to the
monitoring routine include the segment being
monitored and the monitoring routine's entry
point. A code segment is enclosed between the
entry and exit points. Thus this tool can be used
to monitor performance at the module level by
appropriate instrumentation. The storage
requirements for instrumented programs may
increase by 26 to 55%.

Parasight[18] is an environment for
performance analysis of sequential and parallel
programs. The platform for Parasight is UNIX on
the Encore Multimax which is a shared-memory
multiprocessor system. Parasight is executed
concurrently with the program to be monitored
which is embedded within the Parasight
environment. The environment, upon startup
initializes a multitasking environment. The
monitored program is loaded into this
environment and a memory resident symbol table
is created. The code is executed concurrently
with Parasight programs that monitor shared
memory. Parasight routines can be offloaded to
processors other than the one being used by the
monitored code to reduce interference. Parasight
provides breakpoints that can be created and
deleted dynamically at run time.

The Parallel Software Environment
(PSE)[228] is a performance analysis product
from DEC that includes a loop-capable and
parallel profiler for high performance
FORTRAN. The profiler provides information
about the time spent in logical sections of the
code such as do-loops. The profiler allows
programmers to view program-unit and
statement-level timing information about parallel
execution. The performance information also
includes communication times included with
individual FORTRAN statements.

The Programming and Instrumentation
Environment (PIE)[120] is a framework for
developing techniques to predict, detect and
avoid performance degradation in parallel and
distributed programs in a shared memory
multiprocessor environment. PIE supports the
analysis of parallel process composition,
communications, and data partitioning. PIE is
implemented on top of the Mach kernel. PIE
provides a customized visual editing system
through which the user identifies the principal
programming constructs. PIE provides a meta-
language to support the development of parallel
algorithms for observation and analysis. The
meta-language is used in conjunction with Pascal
and extends its capabilities by providing parallel
functionality such as synchronization, access to
shared data, etc. After the source code
visualization, PIE allows for automatic
observation of constructs within the code. PIE's
instrumentation is currently done using software
instrumentation techniques. An Implementation
Assistant tool provides semantic support for
parallel program development. The tool helps
predict program performance before
implementation and assists the user in selecting a
parallel implementation. PIE's visualization
utilities include histograms and time-lines.

The JADE[220] programming system is
a distributed monitoring facility consisting of two
parts : data detection and collection, done by so-
called channel processes, and data analysis and
presentation, done by so-called consoles. JADE
extends debugging support to distributed
applications based on inter-process
communication.

The INC AS [220] project at the
University of Kaiserslautern has developed a tool
for measuring the performance and observing the
behavior of distributed systems during execution.
A hardware support module, called Test and
Measurement Processor (TMP) is integrated into
each node of a distributed system. All TMP's are

connected to a central monitoring station via a
measurement LAN. Sensor code in the monitored
system is reduced to single store instructions for
event signaling, leading to very low interference.

Sun Microsystems provides
SPARCworks[229], a tool to support dynamic
analysis and control of multi-threaded programs.
SPARCworks supports analysis of the code for
potential synchronization errors such as
deadlocks and data race conditions. Detailed
thread level profiling is also supported.

JEWEL[117] is another distributed
measurement environment that consists of four
functional blocks:
• the system under test (SUT),
• the data collection and reduction system

(DCRS),
• the graphical presentation system (GPS),
• and the experiment control system (ECS).
Measurement data is extracted from the SUT,
collected and filtered by the DCRS, and then
passed to the GPS for visualization to the
experimenter concurrent with the operation of the
SUT. Interpreting the visualized data may result
in actions e.g. customizing the graphical
appearance or taking a snapshot, control requests
issued to the ECS , e.g. to change the level of
detail, to stop the current experiment, or to set up
a new configuration.

SPY[214] is a software monitor that
does periodic location counter sampling to
determine the performance of an application
program. Function calls provided to the user
include a setup call that initializes SPY, an
activate monitor call that turns on monitoring,
and a terminate monitor call which turns off
monitoring. The startup call requires that the user
specify a histogram array name, array address,
and sampling interval. All measurement data is
stored within the histogram array in the address
space of the program.

TX-2[148] is a time-shared system that
provides a hardware monitor for measuring
program performance. The monitor has access to
the program counter and index registers. The
monitor can track events as they occur in the
processor and update the relevant parameters.
Thus a histogram of the desired parameter is
available upon program termination.

MemSpy[132] is a tool that helps
programmers identify memory bottlenecks in
parallel and sequential programs. MemSpy
provides information such as cache miss rates,
causes of cache misses, and in multi-processor

systems, information on cache invalidations and
local versus remote memory misses.

MTOOL[86] is a tool aimed at detecting
regions of a program where the memory
hierarchy is performing badly. MTOOL
identifies memory bottlenecks by comparing
the measured execution time with the predicted
time for a perfect memory hierarchy. MTOOL is
aimed at FORTRAN programs running on MIPS
based workstations.

IPS-2[138] defines a computational
hierarchy on the program being monitored. The
program is represented as a black box at the
highest level. The next level is the machine level
where the program is split into several concurrent
processes executing on different processors. The
third level represents the program as a collection
of communicating processes. The final level is
the primitive activity level. IPS-2 uses
instrumentation probes to generate trace data and
then evaluates the performance data. The
instrumentation provided includes a gprof style
profiler that records procedure entry and exit
events, and modified run-time libraries.

The Annai{4%\ tool Environment is
intended for the development and performance
evaluation of parallel and distributed
applications. Tool components include : (1) A
Parallelization Support Tool (PST) for data-
parallel program development with particular
focus on unstructured computations. (2) A
Parallel Debugging Tool (PDT) supporting
interactive, source-level debugging and global
program views. (3). Performance Monitor and
Analyzer (PMA) for directed interactive
identification and tuning of performance
problems. (4) A Common graphical user
interface (UI) and tool/machine interface (TSA).
We concentrate on the measurement section of
the environment, the PMA. Measurement and
monitoring of the code is done by instrumenting
the communication library and the compilation
system. The tool also features dynamic
instrumentation and insertion within executables.
A run-time execution profile accumulation and
event trace buffering is made available to the
analyst.

The AIMS suite discussed earlier
provides tools to measure the execution of
parallel code. AIMS provides (1) xinstrument, a
source code instrumentor that supports Fortran77
and C message-passing programs written under
two communication libraries : MPI and PVM. (2)
monitor, a library of timestamping and trace-
collection routines that run on the IBM SP-2, as

well as networks of workstations (including
Convex/HP clusters, SparcStations and SGIs).
(3) pc, a utility for removing the monitoring
overhead and its effects on the trace generated.

WAT (Workload Analyzer Tool)[164]
is an effort by the University of Pavia in
collaboration with the University of Milan. WAT
provides cluster analysis and other statistical
analysis and is driven by a graphical user
interface. It accepts traces in a number of
standard formats and further formats can be
added by modifying the input section.

The MEasurements Description
Evaluation and Analysis tool (MEDEA)[134],
supports the analysis of trace data. The various
stages of trace analysis include (1) preliminary
analysis of trace data to correlate the events
recorded during the execution of an application
to prepare the data for further analysis. (2)
definition of a format which is a subset of
performance parameters associated with the
current workload component. (3) cluster analysis
to allow the identification of classes of events
with respect to certain parameters. (4) A fitting
module allows compact analytic descriptions of a
workload, which represent the variation of
workload parameters with respect to independent
variables, such as time. (5) A functional
description module allows a logical, rather than a
physical description of the workload. The
workload is viewed in terms of membership of
components to a specific cluster, rather than in
terms of overall resource utilization such as
processing time and (6) data visualization
allowing interactive examination of the workload
models.

SP[140] uses hierarchical structuring of
systems into components and modules, allowing
workloads at different levels to be mapped onto
each other. A so called complexity function is
defined as how much work, in terms of memory,
communication capacities and processor usage at
one level corresponds to units of work at another.
SP can be used for mapping measurements onto
required input parameters of performance models
and for certain simple direct modeling, such as
capacity management decisions.

Measuring Operating system performance :
Modern operating systems (Solaris, NT, 95,
OS/2) provide on-line performance meters to
provide the user with a continuous visualization
of system performance.

Imbench[229] is a suite of portable
benchmarks that compares the performance of
different UNIX systems. Imbench runs a set of
benchmark programs on the target machine in
order to obtain performance data. Benchmark
results are available for most major vendors
(SUN, HP, IBM, DEC, SGI and PCs). Imbench
is a free software covered by the GNU general
public license. Imbench provides bandwidth
benchmarks including cached file read, memory
read/write/copy, and pipes. Latency benchmarks
include context switching, file system creates and
deletes, process creation, system call overhead
and memory read latency.

SymbEL (SE)[229] is an interpreted
language that acts as a toolkit for building
performance tools and utilities. SE provides
scripts that build on the basic tools (vmstat,
iostat, sar etc.) to provide rule-based
performance monitors and viewers. The package
includes a Motif based GUI library and a rules
library.

The AXXiON[230] performance
manager provides performance monitoring for
UNIX and Windows NT systems. The AXXiON
performance manager can be configured to
collect data on real-time performance elements
including memory utilization, disk I/O,
individual processes and other system/network
activities. It delivers snapshots of resource
activity correlating performance data from a
variety of resources.

3.3 Visualization Tools :
Visualization tools provide the

developer with a visual display of program
execution. These tools are useful when the
behavior of a program cannot be inferred easily
by statistical analysis alone. Though visualization
tools fall into one of the three categories
(measurement, simulation, modeling), they
deserve special attention because of their unique
graphics features. Visualization tools can be on-
line or postmortem tools. Visualization tools that
support postmortem analysis do not instrument
the code being monitored. They need a trace file
as input to be processed and visualized.

CHIRON[87] is a visualization system
developed at the University of Cape Town for
displaying performance related behavior of
shared memory microprocessor applications. The
tool is primarily used as a performance
debugging tool which can be utilized by the

designer to fine-tune or remove performance
bottlenecks. CHIRON uses 3D graphics to
generate various performance related views
which can be scaled, rotated, translated, animated
or level-of-detail toggled. CHIRON is used to
system performance (emphasis on cache
performance), synchronization costs, and data
partitioning in a parallel program. It has also
been used to optimize sequential programs that
waste time through ineffective use of the memory
hierarchy.

ParaGraph^ 18] takes as input trace
data generated by the Portable Instrumented
Communication Library (PICL), developed at
Oak Ridge National Labs and provides
visualization of program behavior. PICL can also
provide execution trace data during an actual run
of a parallel program and the resulting trace data
can provide dynamic snapshots of the behavior.
ParaGraph organizes the information into various
views in an attempt to cope with the massive
amount of raw information generated. ParaGraph
runs on the X Window System and is
implemented using the Xlib library for portability
reasons. ParaGraph is designed to be responsive
to user interactions while displaying program
behavior dynamically. The execution behavior of
ParaGraph can be static (initial selection of
parameter values) or dynamic (pause, resume,
single step etc.). ParaGraph is extensible with
users having the ability to add new displays of
their own design. This feature supports the use of
application-specific displays that can be used to
augment the insight that the generic views
provide.

PARvis[144] is a tool used on a post-
mortem basis to translate a given trace file into a
variety of graphical system views which provide
a reasonable basis for system understanding and
program optimization. PARvis takes as input an
//^-generated trace file and extracts graphical
information. Different views of the PARvis
system include single time system snapshots,
animation, statistics and a time-line system view.
PARvis is implemented in C and uses the Motif
libraries for its graphic capabilities. Hardware
platforms include IBM RS/6000, SUN, DEC
MIPS and Alpha systems. Extensions to PARvis
include display of network activities and flow of
messages on different topologies. PARvis
provides configuration files that the user can edit
from run to run. Parameters include color, layout,
fonts etc.

PV (Program Visualizer)[231]
developed at IBM, provides continuous visual

displays of the behavior of a program and an
underlying system. PV is designed as a tool for
debugging and performance tuning and analysis.
PV has been targeted to run on shared-memory
parallel systems and superscalar uniprocessor
workstations (RISC System/6000 with AIX). PV
shows hardware-level performance information,
operating system level activity, communication
library level activity, language run time activity
and application level activity. Thus PV can be
used as a process level and system level monitor.
Users can add their custom configured modules
to analyze application specific characteristics.
PV has been used to gain more insight into the
structure and dynamics of large object-oriented
applications, frameworks and libraries.

Pablo[5] is an ongoing research project
being developed at the University of Illinois.
Pablo is designed to provide performance data
capture, analysis and presentation across scalable
parallel systems. Pablo is best described as a
toolkit for the construction of performance
analysis environments. Pablo consists of a
portable source code instrumentation subsystem
and a performance data analysis subsystem with
a trace data meta-format coupling the two. The
performance analysis component of Pablo
consists of a set of data transformation modules
that can be interconnected to form a data analysis
graph. Performance data flows through the graph
nodes and is transformed to yield the desired
performance metrics. Interesting features of
Pablo include immersive virtual reality to display
performance data and sonification by which
performance data is displayed by the use of sonic
data presentation.

PARADE (PARallel program
Animation Development Environment)[202] is
an ongoing project at the Graphics, Visualization
and Usability center in Georgia Tech to support
the design and implementation of software
visualization of parallel and distributed
programs. PARADE contains components for
monitoring a program's execution, building the
software visualization and mapping the execution
to the visualization. The primary operation of
PARADE is post-mortem visualization with trace
files. Software instrumentation is layered with
decreasing level of programmer involvement.
Instrumentation methods include inclusion of
print functions at specific points in the program,
overriding the standard communication library
with macros and actual modification to the
library code to turn on/off trace flags. PARADE
visualizations include processor grid view, data

distribution views, communication history,
message passing views etc. Visualization in
PARADE is built around the Polka animation
system. Polka provides an object oriented
interface to developers which makes coding
complicated graphics easier.

4 MODULE LEVEL ANALYSIS :
The tools developed for analysis at this

level of granularity rely heavily on mathematical
methods to derive time cost equations. Since the
system under analysis is not too complex, pure
analytical techniques can be used to derive time
cost or other performance equations. Many of the
tools and techniques described in the section on
process level modeling tools can be utilized here.
This section surveys tools that have been
developed to provide a pure analytic solution to
the performance prediction problem.

Metric[217] is an analytic tool for
estimating the execution time of simple LISP
programs. The user must supply as input (1) a
LISP program, (2) a cost table defining the time
cost of basic LISP operations, and (3) procedure
definitions. The procedure definitions are the
previously analyzed procedures of the LISP
program and their input is optional. Metric will
not re-evaluate these procedures in the event that
they are supplied. The time cost of the program
is evaluated in three phases. (1) program
expressions are converted to cost expressions
based on the cost table. (2) Recursive procedure
calls are converted into a set of difference
equations which are solved in (3) to produce
closed form expressions. Metric produces closed-
form expressions characterizing the execution
behavior of the LISP program and procedure
definitions to be used in future analysis efforts.

The Time Cost Analysis System
(TCAS)[188] is a Computational Structure
Model (CSM)-based tool for analyzing the
execution times of parallel computations. The
CSM methodology represents a computation as a
control graph and data graph. The control graph
shows the order in which the operations are
performed and comprises of activity nodes (start,
operation, decision etc.) and edges. An activation
signal propagates through the graph representing
an execution thread. A weight associated with the
edge specifies the number of times that path
should be executed. The data flow graph, similar
in structure to the control flow graph, depicts the
relationship between the data and the operations
of a computation. The computation to be
evaluated is written in a Pascal like language,

checked for correctness of syntax and stored in a
library for retrieval for future analysis. The
computation structure with the flow values
(designer specified) can be solved analytically to
obtain a time cost expression which can then be
used to compute different performance estimates
including minimum, maximum and average
execution times and to plot time cost curves.

TCAS makes a number of assumptions
about the computational environment at runtime.
The environment is characterized by a limited
number of homogeneous processors that
communicate through shared memory and
balance the load equally. The last assumption is
strengthened by the development of the Optimal
Allocation System (OPAS)[168] that provides
four allocation policies : (1) Equal, (2) Enough,
(3) Sequential and (4) degree of parallelism.
OPAS is constructed and operates in a manner
similar to TCAS except that time costs can only
be solved analytically. OPAS determines an
allocation policy leading to minimal execution
times and all performance calculations are based
on this policy.

The Data Flow Analysis System
(DFAS)[169] estimates the execution times of
data flow programs. DFAS provides a similar
interface as that of TCAS, but the underlying
methodology used in the computation of time
costs vary. DFAS is based on a token model in
which the computation is modeled as a graph.
Data flow is modeled as tokens that traverse the
graph. A node is activated when the appropriate
number of tokens become available on the node's
input edges. In addition to the computation, the
user should provide (1) the time cost of each
node, (2) the time cost of each edge and (3)
independent data flows in the computation.
DFAS computes minimum, maximum, and
average time costs, time cost variance and time
cost distribution of the computation.
5 STATISTICAL SUPPORT TOOLS :

Performance analysis of computer
systems can produce an abundance of raw data
that has to be managed and statistically
processed. This has become a serious concern to
designers of performance analysis tools for
parallel and distributed systems due to the
overwhelming amount of data generated. Most of
the tools surveyed earlier have capabilities to
manage and analyze the generated data or
provide users with the utilities to do so.
Additional statistical support tools may be
needed to augment the existing statistical

capabilities of the tool. Table 1 provides a
summary of some of the statistical support tools.

6 A CLASSIFICATION METHODOLOGY :
The sheer number of tools available to a

performance analyst makes selecting an
appropriate tool a challenging task. This section
presents a classification scheme that partitions
the tools based on their properties. A database
can be designed around this classification scheme
that would then enable performance analysts to
retrieve tool information based on a keyword
search.

The classification scheme is presented
as a list of figures. The scheme is tree based with
each node of the tree representing a property
unique to a set of tools. The tool list is refined as
we traverse the depth of the tree. Some of the
performance tools surveyed in this paper can be
placed in more than one category and thus can be
placed under multiple nodes in the classification
tree.

Performance Evaluation
Techniques/Tools

Measurement Tools Simulation Tools Modeling Tools
(Fig. 3) (Fig. 2) (Fig. 4)

Figure 1

7 CONCLUSION:
This paper has surveyed a number of

performance tools that have been or are in the
process of being developed in academia and
industry. Many of the tools surveyed use
sophisticated techniques to simulate or measure
the performance of the target system (software
and hardware). The tools surveyed fall into three
broad categories namely system level, process
level and module level. The measurement tools
that were surveyed in this paper employ
sophisticated techniques to capture system
information in an uni-processor/multi-processor
environment. A majority of the modeling tools
surveyed provide the analyst the option to solve
the system model analytically, in addition to
detailed simulation capabilities. Thus the
performance analyst can use the analytical
solution to obtain coarse estimates of system

performance in addition to simulating the model
to obtain more accurate estimates at the cost of
more computational power. The paper also
discussed a classification scheme to aid
performance analysts obtain information about
the various tools. The information can aid the
designer in making a decision as to the type of
tool to be used to estimate/evaluate the
performance of the underlying system.

TABLE 1
Summary of Statistical Tools

A: basic statistics (mean, median, standard deviation, etc.); B: analysis of variants; C: multivariate
analysis; D: regression analysis; E: cluster analysis; F: time-series analysis; G: correlation; H: non-

parametric statistics; J: random number generation.

Tool

BASS

BLSS

BMDP

Description

BASS provides a limited
collection of statistical routines.

BLSS is an interactive statistics
package supporting matrix operations.

BMDP provides a comprehensive
collection of statistical routines in
addition to a database management
facility, a full screen editor and graphic
facilities.

Platform Capabilities Ref. No.

IBM-PC A, B, D, F, H 234

UNIX
workstations A, B, C, D, J 233

Various A, B, C, D, E, F,
G,H,I 233,

234

CLAM

CLASP

CSS

GLIM

IMSL
Libraries

MathStation

MATLAB

Minitab
Statistical
Software

CLAM is an interactive environment for
matrix-based computations, eigen values,
eigen vectors, fast-Fourier transforms, etc.

Various

CLASP is a tool tailored for cluster and SUN
multivariate analysis.

CSS is a menu-driven facility providing IBM-PC
an extensive collection of statistical routines
in addition to a database management facility
and a spreadsheet-like editor.

GLIM is an interactive statistics package that
provides a facility for interfacing with user-
supplied FORTRAN subroutines.

SUN

The IMSL library is a collection of over 800 Various
FORTRAN subroutines to support statistical analysis
and other areas in applied mathematics such as
eigen system analysis, linear systems, differential
equations, matrix/vector operations etc.

MathStation is a general-purpose, interactive tool SUN
that supports statistical analysis. MathStation can
interface to FORTRAN subroutines and libraries.

MATLAB, though oriented for matrix-based Various
computations provides a limited statistics capability.
MATLAB supports matrix operations, eigen values,
eigen vectors, fast-Fourier transforms, spectral analysis,
convolution etc.

Minitab provides limited collection of statistical
routines.

SUN

A,B,C

C,E

A, B, C, D, E, F,
G,H

B.D, G

B,D,G

A, B, D, G

C,D

A, B, D, F, H

233

233

234

233

233,
235

233

233,
234

233

Maximum
Likelihood
Program

MLP is a tool for fitting probability distributions
to observed data.

SUN 233

NAG The Library contains over 700 routines
FORTRAN for statistics as well as other mathematical areas
Library such as linear algebra, differential equations,

fast Fourier transforms, interpolation etc.

Various A, B, D, F, G, H, J 233

Table [1] (continued).

Tool

NCSS

Prodas

P-Stat

RS/1

Sandie

SAS

Sigstat

SORITEC

Speakeasy

S-PLUS

Unifit

Description Platform Capabilities Ref. No.

NCSS provides a collection of statistical IBM-PC
routines and an advanced graphics utility.

Prodas provides a collection of statistical BM-PC
routines in addition to database and graphics
utilities. Prodas can be run either interactively
or in batch mode.

P-Stat provides an extensive collection of statistical Various
routines, a data management facility, a report writer,
and a command-generator utility.

RS/1 provides a limited collection of statistical Various
routines and supports a graphics capability.

Sandie, originally developed for use in an BM-PC
educational environment, provides a limited
collection of statistical routines and supports
a multi-window user interfaces.

SAS provides a comprehensive set of statistical Various
routines and advanced graphic capabilities.

Sigstat provides a comprehensive set of statistical BM-PC
and graphical routines.

SORITEC provides a limited statistical capability SUN
and supports mathematical functions including matrix
algebra and analytical differentiation. SORITEC can
be executed interactively or in batch mode.

Speakeasy supports statistical correlation and SUN
regression analysis and provides other mathematical
functions for solving matrix algebra, set algebra,
linear algebra, and differential equations.

The S-PLUS package provides a variety of statistical SUN
routines and graphics facilities.

A, B, C, D, E, G, H, 234
I.

A,B,C,D,E,G,H,I 234

A B, C, D, E, F, G, 233,
234.

A B, D, H 234

A B, D, G, J 233,
234

A B, C, D, E, F, G, 234
H.I.

A B, C, D, E, F, G, H., I 234

D,G,H

D,G.

233

233

Software tool for fitting probability distributions to
observed data.

Various

B, C, D, F, G, H 233

235

FIGURE 2 (SIMULATION TOOLS)

Simulation Languages

(4, ft 7. 3. 9, 10. II.

11 14. 15, IS)

Paradigm

Discrete Event Simulation

failures Ty?4

Tool Sät I Fsiemiom

(J, 2. 3. 5, 12. 16,

17)

I
Paradigm

bim Object Oriented

a S, 10, 11, 11

14. 15)

Object Oriented

(4. 6. 9. 13)

Prog Interface

I

Object Oriented

a a)

Flow Chan Oriented

(END OF BRANCH)

Event Onented

(END OF

BRANCH)

PC

(6)

Statement Oriented

(4. 6. 9. S3)

I

\idethcdohcfI

I

Non Object Oriented

(I, 2. 3. S. It, 17)

Procett Oriented

(1. 6. 9. IS)

I
Ptanorm

DEC

(6)

FIGURE 2c

Activity Oriented

(END OF

BRANCH)

Wide Variety

(4. 13. 9)

FIGURE 2d

FIGURE 2b (SIMULATION TOOLS Contd.)

Programmrning Interface

Flow Chart Oriented

(7, 10, 11. IS. 14. 15)

Statement Oriented

(3)

Pro**** Oriented
a. 10. 14. 15)

Methodology

Event Qnented

a io)

Uter Interface

Activity Oriemed

01)

Available Advanced

o (Graphic}, Animation
Spp)

(10. 14, 15)

Wide Variety

(PCt. Workstations etc.)

(7. 10. 14. 15)

I User Interface

Available

a»
fiatfoT

SUN'Station:

(U)

Methodology

Procea Oriented

(3)

Utetr baerfiice

Advanced

m

) Platform j

Wfcfc Variety

(8)

FIGURE 2c (SIMULATION TOOLS Contd.)

Programming Language Augmented

C++
(3)

I
Msihodo lo gy

I
Sv*tnt Onanted

(3)

 I

SIMULA

(12)

I

| Möthodology\

Prec*3i Oriented

(12)

User Interface User Interface

Available (X Windows)
(3)

I
I Platform I

SUNStations
(3)

Available (X Windows)
(12)

I
Platform

/
PC SUNStations
(12) (12)

FIGURE 2d (SIMULATION TOOLS Contd.)

Programming Languages Augmented

(I. 2. 3, 5. 16)
Pascal

(17)

Methodolog Methodology

1 1 I
Event Oriented Process Oriented Activity Oriented

(1. 3) 0. 5. 16) (END OF BRANCH)

I

Event Orisnted
(17)

Platform

Wide Variety
(1. 3)

Platform Platform

PC Wide Variety
(16) a. S)

Not Specified
(17)

Kev:

represents a Decision Box.

Simulation Tools List:
(1) SMPL[125]. (2)YACSIM[105], (3) SimPack [75]. (4) SIMULA [33]. (5)CSIM [184], (6) SIM++[224],
(2) SIMAN[160]. (8)SIMSCRIPT[191], (9) MODSIM [27], (10) SLAM II [153], (11) HOCUS [163], il2)DEMOS[163],
(3) FAST [179]. (14)GPSS [37]. (15) INSIGHT [173], (16) SimCal [129], (17) SIMTOOLS [177], (18) Smalltalk [113].

FIGURE 3 (MEASUREMENT TOOLS)
Measurement Tools

Software Monitors

(3. 9. 10, 11. 13. 14, 15. 16. 17.
19 20. 21. 23. 24. 25. 26. 27.

23. 29. 30 31. 32, 33)

Hardware Monilon

(2. 3. 4. 5. 13. 22)

Hybrid Monitors

a ft 7)
 i

level of Analysis

System level
(11. 16. 17. 20.

26.27. 33)

FIGURE 3a

level of Analysis

System level

a. 3. 4. 5. 13)

Process level
(3. 9. 10. 12. 13.
14. 15. 19. 21.23.
24. 25. 28. 29. 30,
31. 32) |

FIGURE 3b

FIGURE 3c

level of Analysis

Process level

G2)

FIGURE 3d

System level

(I. 7)

FIGURE 3e

Process level

(6)

FIGURE 3f

FIGURE 3a (MEASUREMENT TOOLS Contd.)

Events Monitored

Process Mgmt. Activities
(11. 20)

Communication
Activities

(11. 16. 17. 20. 26. 27)

Trace Data Mgmt.

Data Filtering Analysis

(20) (20)

Replay

GO. 11)

Workstations
(SUN DEC.)

(20)

PERQ
Workstations

(11)

Tract Data Mgmt.

fäsualixation

(20)

Data
Filtering
(16. 20. 26)

Replay

(ID

Workstations
(SUN DEC.)

(20)

Analysis
(16. 17.
20, 26,

27)

Resource Mgtnt.
Activities

(33)

Trace Data Mgmt.

Visualization/
Presentation

(33)

Visualisation/
Presentation
(16. 17. 20.

26. 27)
Platform

Workstations
(SUN DEC)

(16. 20. 26)

Platform
Workstations
(SUN DEC

HP.)
(33)

PC
(33)

Workstations
(16. 17. 20.

26. 27)

IBM
SP-2
(27)

FIGURE 3b (MEASUREMENT TOOLS Contd.)

Events Monitored

Process Management Activities
(8. 9. SO. 12. 13. S4. 15. 19.

2S. 23. 24. 25, 23. 29. 30. 3S.
32)

Trace Data Mgmt.

Data Filtering

(8. SO. 14
25)

Platform

SUN j Sequent
(8) j (10)

Workstation*
05)

Presentation/
Visualization
(14. 15. 19.

32)

Analysis
(3. 9. 12. 19.

23. 24. 25. 28.
29. 30. 32)

Communication
Activities
(15. 25)

Ftiourc* Mgmt. Activities
(SO. 23. 24, 31)

Anafyiu
(15. 25)

Platform

Encore
Mufrimax

(14)

-, UNDC Workstations
X (25)

VAJT
UNIX (m

Workstations
(8. 9. 23. 24.

25. 28. 29.
30)

DEC
(15)

Workstations ,, '
-, Unix

P ■ } Workstations
(SO. 3S)

FIGURE 3c
(Measurement Tools Contd.)

System Configuration

Uni-Processor

0)

Events Monitored

MemoryJlO Activity.
Cache activity

(2)

Processor

VAXS300
(2)

Multi-Processor

(4.5)

Events Monitored

Distributed
a is)

Memory/10
Activity Hardware
,. ,, Resource
(4. 5)

Contention
(4,5)

Processor

System

I
NOW
(l 18)

CONCERT
(4)

General
Purpose

(5)

FIGURE 3d
(Measurement Tools Contd.)

Events Monitored

Process Counter,
Index Register.
General Processor Events

02)

Platform

Not
Specified

(22)

FIGURE 3e
Measurement Tools Contd.

FIGURE 3f
Measurement Tools Contd.

System Configuration

Multi-Processor

(7)

Events Monitored

tPer Cache Performance

(7)

Ph^form

Events Monitored

Distributed

0)

Processor
Events

(6)

Events Monitored
Platform

Not Specified

Local and Network
Activity

a)

Platform

VAX8350
<7)

MC63000 Based
System

Key

Represents a Decision Box.

Measurement Tools List:

(1) IMP [220], (2) Vox 8800 [47], (3) Zahlmonitor 4 [61], (4) DLA [204], (5) REMS [43], (6) TRAMS
[139], (7) ATUM [193], (8) Berkeley UNIX Monitor [137], (9) gprof[%% (10) Monit [111], (11) Radar
[119], (12) PCA [62], (13) Fortran Analyzer [123], (14) Parasight [18], (15) PSE [228], (16) PIE [120],
(17) JADE , (18) INCAS [220], (19) SparcWorks [229], (20) JEWEL [117], (21) SPY [214], (22) TX-2
[148]. (23)MemSpy [132]. (2A)MTOOL [86], (25)IPS-2 [138], (26)Annai [48], (21)AIMS[226],
(28) »MT [164], (29) MEDEA [134], (30) SP [140], (31) Imbench [229], (32) SymblEL [229],
(29)A\:\7O.V[230].

FIGURE 4 (MODELING TOOLS)

Modeling Toali

System Level
(I. 2. S. 4. S. 6. 7.
A 9. 10. 11. 12.
IS. 14, IS. 16. 17.

IS)
J.

Proem 1*1*1
(IP. 20. 21. 22.

21 24. 23. 26.
2V

Module Level
(2S 29. 30)

Figure 4b

rm
(FailureRapair

Modal)
(14)

Flov Graph
(IS)

Graphical
0.9.10) j Tt„,

Graphical Language
(U. W Based

03)

Ten / Language
Bated

(1.2)

FIGURE 4a (Modeling Tools) FIGURE 4b (Modeling Tools)

Text / Language
band

(25. 24. 27) Graphical
(20.26)

LISP
(23)

(1) QNAP [212], (23 MODLIME [164], (3) MACOM [I Ml (4) CAPRES [108], (5) GIST [1921 (6) PAW [1331 (D KKQ P271 (8) Gr«»tSPH [4«1
(9) DSP [122], (10) QPN [25], (11) ADAS [41 (12) Mo<i*l«r PS], (13) SARA [««1 (14) SimPir [941 (15) PARET P50], (16) TIPP [881
(17) PEPA [84], (18) LOTOS pi3] (19) Modtrch [2251 (20) AIMS [2261 (21) A« [221], (22) NET [20], (23) R** PPT [541 (24) QASE [221],
(25) VFCS [45], (26) PEPP [591 (27) MENTOR [60].

8 REFERENCES AND BIBLIOGRAPHY

[1] W. Abu-Sufah and A.Y. Kwok,
'Performance Prediction Tools for Cedar: A
Multiprocessor Supercomputer', Proceedings of
the 12th Annual International Symposium on
Computer Architecture, pp. 406-413.

[2] W. Abu-Sufah, D. Kuck, and D. Lawrie,
'Automatic Program Transformations for Virtual
Memory Computers', In Proc. of the 1979
National Computer Conference, pp. 969-974,
June 1979.

[3] L.M. Adama and T.W. Crockett, 'Modeling
Algorithm Times on Processor Arrays', IEEE
Computer (July 1984) pp. 38-43.

[4] ADAS : An Architecture Design and
Assessment System (User Manual), Research
Triangle Institute, NC, USA (1987).

[5] V.S. Adve et al. 'An Integrated Compilation
and Performance Analysis Environment',
Supercomputing '95, December 1995.

[6] A. Agarwal, 'Performance Tradeoffs in
Multithreaded Processors', IEEE Transactions
on Parallel and Distributed Systems, Vol. 3 No.
5 pp. 525-539, Sept. 1992.

[7] J.R. Agre, M.W. Atkinson, C. Wang,
'Performance Modeling of Distributed Systems
through Simulation', Proc. Int. Conf. Commun.
(1987) pp. 1321-1327.

[8] A. K. Ahuwalia and M. Singhal,
'Performance Analysis of the Communication
Architecture of the Connection Machine', IEEE
Transactions on Parallel and Distributed
Systems, Vol. 3, No. 6, pp. 728-738, Nov. 1992.

[9] R.A. Ammar, et al. 'A Computation-Oriented
Program Experimentation System (COPES)',
Proc. IEE Int. Conf. Syst., Man & Cyber. (1989)
pp. 861-866.

[10] R.A. Ammar et al. 'An Architecture
Assessment Environment for Massively Parallel
Computations', Proc. IEEE Int. Conf. on
Commun. (1987) pp. 1321-1327.

[11] R.A. Ammar and M. Krzych, 'Computer
Aided Performance Engineering: A Survey', J

Comp. Sys. Sei. & Engr, CRL Publ., Ltd., vol 7,
no. 3, pp. 170-189, July, 1992.

[12] R.A. Ammar, et al. 'Time Cost Analysis of a
Parallel Structure with Multi-communication
Nodes in Each Branch', 5th Intl. Conf. Par. Dist.
Comp. & Sys., Pittsburgh, PA, October, 1992.

[13] R.A. Ammar and P. Zhang, 'A Design and
Modeling Methodology for Performance
Evaluation in Real-time, Distributed Software
Systems', IEEE Intl. Conf. Sys. Man & Cyber.,
Charlottesville, VA, Oct. 13-16, 1991, pp. 707-
712.

[14] R.A. Ammar and T. Booth, 'Software
Optimization Using User Models', IEEE Trans.
Systems, Man, & Cyber., vol 18, no 4, Jul/Aug
1988, pp. 552-560.

[15] R.A. Ammar and Q. Bin, 'A Technique to
Derive the Detailed Time Costs of Parallel
Computations', Proc. of the International
Computer Software and Applications
Conference, Oct. 1988.

[16] R.A. Ammar, S. Ramamurthy and B. Qin,
' Towards Time Analysis of a General Parallel
Structure in Shared Memory Environments',
Proc. of the ISMM International Conference on
Parallel and Distributed Computing and Systems,
Oct. 1990.

[17] R.A. Ammar and C. Rosiene, 'Visualizing a
Hierarchy of Performance Models for Software
Systems', Software Practice and Experience, Vol.
23, March 1993.

[18] Z. Aral and I. Gertner, 'Non-intrusive and
Interactive Profiling in Parasight', Proc.
ACM/SIGPLAN (1988) pp. 21-30.

[19] D. Attapattu and D. Gannon, 'Building
Analytical Models into an Interactive
Performance Prediction Tool', In Proc.
Supercomputing 89, pp. 521-530, Reno, Nevada,
1989, ACM Press.

[20] K. Baclawski, 'A Network Emulation Tool',
Proc. Symposium on Simulation of Comput.
Networks. (1987) pp. 198-206.

[21] R.L. Bagrodia, K.M. Chandy, and J. Misra,
'A Message-based Approach to Discrete-event

Simulation', IEEE Trans. Softw. Eng., Vol 13
No 6 (June 1987) pp. 654-665.

[22] V. Balasundaram et al., 'Estimating
Communication Costs from Data Layout
Specifications in an Interactive Data
Partitioning Tool', Tech. Report, C3p-886,
California Institute of Technology, April 1990.

[23] V. Balasundaram, G. Fox, K. Kennedy and
U. Kremer, 'A Static Performance Estimator to
Guide Data Partitioning Decisions', In 3rd
ACM Sigplan Symposium on Principles and
Practice of Parallel Programming (PPoPP),
Williamsburg, VA, April 21-24, 1991

[24] C.C. Bamett, 'Simulation in Pascal with
Micro PASSIM', Proc. Winter Simulation Conf.
(1986) pp. 151-155.

[25] F. Bause and P. Kemper, 'QPNTool for
Qualitative and Quantitative Analysis of
QueuingPetriNets', in [87] pp. 321-334.

[26] B. Beck and D. Olien, 'A Parallel-
Programming Process Model', IEEE Software,
May 1989, pp. 63-72.

[27] R. Belanger et al. ModSim User's Manual,
CACI Inc., LaJolla, CA (May 1989).

[28] S. Benker, B. Chapman, anh H. Zima,
'Vienna Fortran 90', In Proceedings of the
SHPCC Conference 1992, Williamsburg, VA,
1992.

[29] L. Bhuyan, Q. Yang, and D. Agarwal,
'Performance of Multiprocessor Interconnection
Networks', IEEE Computer, pp. 25-37, Feb.
1988.

[30] B. Biezer, 'Micro Analysis of Computer
System Performance', Litton Educational
Publishing, Inc. 1978.

[31] Q. Bin, H. Sholl, and R.A. Ammar, 'Micro
Time Cost Analysis of Parallel Computations',
IEEE Transactions on Computers, Vol. 40, No.
5, May 1991.

[32] T. Bingman, B. Mackay, M. Schmit, and M.
Havira, 'ASAP A Tool for Analytic
Performance Prediction of Software Systems',
ISCA Conference on Computer Applications in

Industry and Engineering, Orlando FL, Dec.
1996.

[33] G. M. Birtwistle, 'Discrete Event Modelling
on SIMULA', Macmillan, 1979.

[34] R. Blasko, 'Hierarchical Performance
Prediction for Parallel Programs', Proc. of the
International Symposium and Workshop on
Systems Engineering of Computer Based
Systems, Tucson AZ, March 1995.

[35] A. Blitz et al., 'A General Purpose
Modeling and Simulation Tool Exploiting the
Petri-net Paradigm', Proc. Eastern Simulation
Conf. (1988) pp. 21-25.

[36] R. Block, et al., 'Automated Performance
Prediction of Message-passing Programs', Proc.
of the 1995 ACM/IEEE Supercomputing
Conference, San Diego CA, Dec. 1995.

[37] P.A. Bobillier, B.C. Kahan, A.R. Probst,
'Simulation with GPSS and GPSS V, Prentice
Hall, NJ (1976).

[38] J. Bruner, H. Cheong, A. Veidenbaum, and
P. Yew, 'Chief : A Parallel Simulation
Environment for Parallel Systems', In 5th Int'l
Parallel Processing Symp.. Anaheim, CA, April
1991.

[39] J. Bruner et al., 'Parallel Computing and
the Perfect Benchmarks', Tech Report,
November, 1991.

[40] A. Carle, et al., 'Automatic Data Layout for
Distributed-Memory Machines in the D
Programming Environment', In Proceedings
International Workshop on Automatic
Parallelization 1993. Universität des Saarlandes,
Saarbrücken, Germany, March 1993.

[41] B. Carlson, T. Wagner, et al., 'Speedup
Properties of Phases in the Execution Profile of
Distributed Parallel Programs', In Computer
Performance Evaluation 1992: Modeling
Techniques and Tools, pp. 83-95, 1992. (Ed.) R.
Pooley and J. Hillston.

[42] E. Carmona and M. Rice, 'Modeling the
Serial and Parallel Fractions of a Parallel
Algorithm', J Par & Distr Computing 13, 1991,
pp. 286-298.

[43] R.J. Carpenter, 'Performance Measurement
Instrumentation for Multiprocessor Computers',
Tech. Report NB-SIR 87-3627, Institute for
Computer Sciences and Technology, National
Bureau of Standards, Aug. 1987.

[44] B.M. Chapman et al., "Automatic Support
for Data Distribution', pp. 184-199, Springer
Verlag, Portland, Oregon, Aug. 1993.

[45] B.M. Chapman, S. Benkner, et al., 'VIENNA
FORTRAN Compilation System: Version 1.0
User's guide'.

[46] G. Chiola, 'A Graphical Petri Net Tool for
Performance Analysis', Proceedings of the
International Workshop on Modeling Techniques
and Tools for Performance Evaluation. March
1987, pp. 297-307, AFCET, Paris.

[47] D.W. Clark, P.J. Bannon, and J.B. Keller,
'Measuring VAX 8800 performance with a
histogram hardware monitor', 15th Ann. Int.
Symp. on Computer Arch. (May 1988) pp. 176-
185.

[48] C. Clemencon, A. Endo et al., 'Annai: An
Integrated Parallel Programming Environment
for Multicomputers', In collection of Tools and
Environments for Parallel and Distributed
Systems, A. Zaky and T. Lewis (eds.), pp. 33-59,
Kluwer Academic Publishers, Feb. 1996.

[49] C. Clemencon, K. Decker et al., 'Tool
Supported Parallel Application Development',
Proc. of the IEEE 15th International Conference
on Computers and Communications, Scottsdale,
AZ, March 1996.

[50] M. Clement and M. Quinn, 'Analytical
Performance Prediction on Multicomputers',
Proc. of the IEEE Supercomputing Conference,
Nov. 1993.

[51] J. Cohan,'Computer AssistedMicroanalysis
of Programs', Communications of the ACM,
Vol. 25, No. 10, Oct. 1982.

[52] J. Cohen, and A. Weitzman, 'Software Tools
for Micro-Analysis of Programs', Software -
Practice and Experience, Vol. 22 No. 9 pp. 777-
808, Sep. 1992.

[53] C.A. Coutant, RE. Griswold, D.R Hanson,
'Measuring the Performance and Behavior of

icon programs', IEEE Trans. Softw. Eng., Vol 9
No 1 (January 1983) pp. 93-102.

[54] R.C. Covington, et al. 'The Rice Parallel
Processing Testbed', Proc. ACM SIGMETRICS
Conf. on Measure. & Modeling of Computer
Syst. (1988) pp. 4-11.

[55] R.C. Crain , D.T. Brunner, J.O. Henriksen,
•Advanced Features of GPSS/H', Proc. Winter
Simulation Conf. (1987) pp. 269-275.

[56] P. Crandall, et al., 'Performance
Comparison of Desktop Multiprocessing and
Workstation Cluster Computing', Proc. 5th IEEE
International Symposium on High Performance
Distributed Computing, Aug. 1996.

[57] P. Crandall and M. Quinn, 'A
Decomposition Advisory System for
Heterogeneous Data-Parallel Processing', Proc.
of the International Symposium on High
Performance Distributed Computing 1994.

[58] F. Darema and J. Prost, 'A Methodology and
Tool for Parallel System Performance Analysis',
Proc. 25th Hawaii International Conference on
Systems Science, Vol. 2, 1992.

[59] P. Dauphin and A. Quick, 'PEPP :
Performance Evaluation of Parallel Programs',
ITG/GI Fachtagung Messung, Modellierung und
Bewertung von Rechen und
Kommunikationssystemen, RWTH Aachen,
Kurzvortroge and Werkzeugausstellung, pp. 105-
108, Sept. 1993.

[60] P. Dauphin and V. Mertsiotakis, 'MENTOR
: A Model Based Event Trace Evaluation
Support System', In the Tools and Posters Proc.
of the 7th Int. Conf. on Modeling Techniques
and Tools for Computer Performance Evaluation,
Vienna, May 1994.

[61] P. Dauphin, R. Hofmann, et al.,
'ZM4/SIMPLE: A General Approach to
Performance Measurement and Evaluation of
Distributed Systems', Tech. Report, 1/91,
University of Erlangen-Numberg, IMMD VII,
Jan. 1991.

[62] Digital Equipment Corporation, 'VAX
Performance and Coverage Analyzer: User's
Reference Manual', 1985. Document Order
Number: AA-EB54B-TE.

[63] P. Dubey, M. Flynn, 'Evaluating
Performance Tradeoffs Between Fine-grained
and Coarse-grained Alternatives', IEEE
Transactions on Parallel and Distributed
Systems, Vol. 6, Jan. 1995.

[64] P. Dubey, A. Krishna, and M. Flynn,
'Analytic Modeling of Multithreaded Pipeline
Performance', Proc. of the 27th Hawaii
International Conference on System Sciences,
Wailea HI, Jan. 1994.

[65] D. L. Eager, et al., 'Speedup Versus
Efficiency in Parallel Systems', IEEE
Transactions on Computers, Vol. 38 No. 3 pp.
408-423, March 1989.

[72] J. Ferrante, V. Sarkar and W. Trash, 'On
Estimating and Enhancing Cache Effectiveness',
In Proc. of the 4th Workshop on Languages and
Compilers for Parallel Computing, Santa Clara,
CA.Aug. 1991.

[73] D. Ferrari, 'Computer Systems Performance
Evaluation', Prentice Hall, 1978.

[74] D. Ferrari, and M. Lui, 'A General Purpose
Software Measurement Tool', Softw. Pract. &
Exper., Vol 5 No 2 (April 1975) pp. 181—192.

[75] P.A. Fishwick, 'SIMPACK: Getting Started
with Simulation Programming in C and C++',
Technical Report, University of Florida, July
1992.

[66] G. Estrin et al., 'SARA (Systems ARchitects
Apprentice): modeling, analysis, and simulation
support for design of concurrent systems', IEEE
Trans. Softw. Eng., Vol 12 No 2 (Febuary 1986)
pp. 293-311.

[67] T. Fahringer, 'Estimating and Optimizing
Performance for Parallel Programs', IEEE
Computer, Vol. 28, Nov. 1995.

[68] T. Fahringer, 'Automatic Cache
Performance Prediction in a Parallelizing
Compiler', In Proc. of the AICA '93 -
International Section, Lecce, Italy, Sep. 1993.

[69] T. Fahringer, 'The Weight Finder, An
Advanced Profiler for Fortran Programs', In
Automatic Parallelization, New Approaches to
Code Generation, Data Distribution, and
Performance Prediction.', Vieweg Advanced
Studies in Computer Science, ISBN 3-528-
05401-8, Verlag Vieweg, Wiesbaden, Germany,
March 1993.

[70] T. Fahringer and H. Zima, 'A Static
Parameter based Performance Prediction Tool
for Parallel Programs', In Invited Paper, Proc.
of the 7th ACM International Conference on
Supercomputing 1993, Tokyo, Japan, July 1993.

[71] T. Fahringer et al., 'Automatic Performance
Prediction to Support Parallelism of Fortran
Programs for Massively Parallel Systems', In
ACM International Conference on
Supercomputing 1992, pp. 347-356, Washington
D.C., July 1992.

[76] E. Foxley and D.J. Morgan, 'Monitoring the
Run-time Activity of Algol 68-R Programs',
Softw. Pract. & Exper., Vol 8 (1978) pp. 29-34.

[77] H. Fromm et al. 'Experiences with
Performance Measurement and Modeling of a
Processor Array', IEEE Trans. Comput, Vol 32
No 1 (January 1983) pp. 15-31.

[78] K. Gallivan et al., 'Performance Prediction
of Loop Constructs on Multi-processor
Hierarchical-Memory Systems', In ACM
International Conference on Supercomputing,
1989.

[79] K. Gallivan et al., 'Perfromance Prediction
for Parallel Numerical Algorithms', International
Journal of High Speed Computing, Vol. 3 No. 1
pp. 31-62, 1991.

[80] D. Gannon, D. Atapattu et al., 'A Software
Tool for Building Supercomputer Applications',
Proc. of the Symp. on Parallel Computation and
their Impact on Mechanics, Vol 86, pp. 81-94.

[81] R.F. Garcia, 'Simulating with GPSS/PC,
Proc. Winter Simulation Conf. (1986) pp. 227-
234.

[82] H.M. Gerndt, 'Work Distribution in Parallel
Programs for Distributed Memory
Multiprocessors', In Proceedings of the
International Conference on Supercomputing, pp.
96-104, Cologne, June 17-21, 1991.

[83] A. Giacalone and S. Smolka, 'Integrated
Environment for Formally Well-founded Design

and Simulation of Concurrent Systems', IEEE
Trans. Softw. Eng., Vol 14 No 6 (June 1988) pp.
787-801.

[84] S. Gilmore and J. Hillston, 'The PEPA
Workbench: A Tool to Support a Process
Algebra based Approach to Performance
Modeling', in [87], pp. 351-368.

[85] E. Glenebe, 'Performance Analysis of the
Connection Machine', Sep. 1989. (Also in ACM
SIGMETRICS, 1990).

[86] A. Goldberg and J. Hennessy, 'Performance
Debugging Shared Memory Multiprocessor
Programs using MTOOL', In Proceedings of
Supercomputing, pp. 481-490, 1991.

[87] H.A. Goosen et al., 'Experience Using the
Chiron Parallel Program Performance
Visualization System', Tech Report, CS Dept.,
University of Cape Town, South Africa.

[88] G. Götz, U. Herzog and M. Rettelbach,
'Multiprocessor and Distributed System Design:
The Integration of Functional Specification and
Performance Analysis using Stochastic process
Algebras', in Proceedings of Performance '93,
1993.

[89] S.L. Graham et al., 'gprof: A Call Graph
Execution Profiler', In Proceedings of the
SIGPLAN '82 Symposium on Compiler
Construction, June 1982.

[90] M. Gupta and P. Banerjee, 'Compile-time
Estimation of the Communication costs on
Multicomputers', In Proc. Sixth International
Parallel Processing Symposium, Beverly Hills,
CA, March 1992.

[91] G. Haring and G. Kotsis, Eds., 'Computer
Performance Evaluation - Modeling Techniques
and Tools', 7th International Conference on
Modeling Techniques and Tools for Computer
Performance Evaluation, Vienna, LNCS 794,
Springer-Verlag, May 1994.

[92] F. Hartleb and V. Mertsiotakis, 'Bounds for
the Mean Runtime of Parallel Programs', Proc.
of the 6th Int. Conf. on Modeling Techniques
and Tools for Comp. Perf. Evaluation, Editors :
R. Pooley and J. Hillston, pp. 143-154, 1992.

[93] K.J. Healy, 'CINEMA tutorial', Proc.
Winter Simulation Conf. (1986) pp. 207-211.

[94] A. Hein, K. Banch, 'SimPar : A Simulation
Environment for Performance and Dependability
Analysis of User-defined Fault Tolerant Parallel
Systems', Internal Report 1/95, IMMD III,
January 1995.

[95] A. Hein, K.K. Goswami, 'Combined
Performance and Dependability Evaluation with
Conjoint Simulation', Proceedings of the ESS
'95, European Simulation Symposium, Erlangen,
Germany, October 1995.

[96] J.C. Hickey, H. Hotta, T. Petitjean,
'Computer-Assisted Microanalysis of Parallel
Programs', ACM Transactions on Programming
Languages and Systems, Vol. 14, No. 1, Jan.
1992.

[97] R. Hockney, 'A Framework for Benchmark
Performance Analysis', Tech. Report, Dept. of
Electronics and Computer Sc, 1992.

[98] M. Holliday, M. Strumm, 'Performance
Evaluation of Hierarchical Ring-based Shared
Memory Multiprocessors', IEEE Transactions on
Computers, Vol. 43, No. 1, Jan. 1994.

[99] C. Hrischuk, J. Rolia, and C. Woodside,
'Automatic Generation of a Software
Performance Model using an Object-oriented
Prototype', Proc. of the IEEE International
Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems,
Durham, NC, Jan. 1995.

[100] J. Hsu and P. Banerjee, 'Performance
Measurement and Trace Driven Simulation of
Parallel CAD and Numerical Applications on a
Hypercube', IEEE Transactions on Parallel and
Distributed Systems, Vol. 3, July 1992.

[101] O. Ibe, H.Choi, and K. Trivedi,
'Performance evaluation of Client-Server
Systems', IEEE transactions on Parallel and
Distributed Systems, Vol. 4, No. 11, Nov. 1993.

[102] R. Jain, 'The Art of Computer Systems
Performance Analysis', Wiley Professional
Computing, 1991.

[103] J. Joyce, et al., 'Monitoring Distributed
Systems', ACM Trans. Comput. Syst., Vol. 5, pp.
121-150, May 1987.

[104] C. Juiz and R. Puigjaner, 'Approximate
Performance Models of Real-time Software
Systems', Proc. of the 3rd IEEE International
Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, Durham NC, Jan. 1995.

[105] J.R. Jump, 'The YACSIM Reference
Manual', Rice University, 1993.

[106] A. Kapelnikov, et al., 'A Modeling
Methodology for the Analysis of Concurrent
Systems and Computations', J par & Distr
Computing, Jun. 1989, pp. 568-597.

[107] A. Karp and H. Flatt, 'Measuring Parallel
Processor Performance', CACM, Vol. 33, No. 5,
May 1990, pp. 539-543.

[108] M.P. Kastner, K.R. Pattipati and S.R.
Dunham, 'CAPRES: a Software Tool for
Modeling and Analysis of Fault-tolerant
Computer Architectures', Proc. Int. Conf. Syst.
Man & Cybern., 1989.

[109] R. Katti, 'Performance Analysis of
Parallel Computations', Proc. of the ISCA
International Conference on Parallel and
Distributed Computing Systems, Oct. 1993.

[110] K. Kennedy et al., 'Static Performance
Estimation in a Parallelizing Compiler', Tech.
Report TR91-174, Dept. of Computer Sc, Rice
University, Dec. 1991.

[Ill] T. Kerola and H. Schwetman, 'Monit: A
Performance Monitoring Tool for Parallel and
Pseudo-Parallel Programs', In Proceedings of
the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer
Systems, May 1987.

[112] C. Kesselman, 'Tools and Techniques for
Performance Measurement and Performance
Improvement in Parallel Processing', UCLA
Tech. Report, UCLA-CS-TR-91-03, 1991.

[113] V. Knapp, 'The Smalltalk Simulation
Environment', Proc. Winter Simulation Conf.
(1986) pp. 125-128.

[114] U.R. Krieger, B. Muller-Clostermann and
M. Sczittnick. 'Modeling and Analysis of
Communication Systems Based on
Computational Methods for Markov Chains',
IEEE Journal on Selected Areas in
Communications, Vol. 8, No. 9, pp. 456-470,
1990.

[115] C. Krusal and M. Snir, 'The Performance
of multistage Interconnection Networks for
Multiprocessors', IEEE Transactions on
Computers, C-32, pp. 1091-1098, Dec. 1983.

[116] P. Krystosek, S. Sirazi and G. Campbell,
'REN: A Reconfigurable Experimental Network',
Proc. Symposium on Simulation of Comp.
Networks, August 1987 pp. 45-50.

[117] F. Lange et al., 'JEWEL: Design and
Implementation of a Distributed Measurement
System'.

[118] E. Lazowska, J. Zahorjan, G. Graham, K.
Sevcik, 'Quantitative System Performance',
Prentice Hall Inc., 1984.

[119] R.J. LeBlanc and A.D. Robbins, 'Event
Driven Monitoring of Distributed Programs', In
Proceedings of the Fifth International Conference
on Distributed Computing Systems, May 1985.

[120] T. Lehr, D.L. Black, 'Mach Kernel
Monitor with application using the PIE
environment'.

[121] J. Li and M. Chen, 'Compiling
Communication-efficient Programs for
Massively Parallel Machines', IEEE
Transactions on Parallel and Distributed
Systems, Vol. 2 No. 3 pp. 361-376, July 1991.

[122] C. Lindemann, 'DSPNExpress: A Software
Package for the Efficient Solution of
Deterministic and Stochastic Petri Nets', 7th
International Conference on Modeling
Techniques and Tools for Computer
Performance Evaluation, Vienna, LNCS 794,
Springer-Verlag, May 1994, pp. 9-20.

[123] G. Lyon and R. Stillman, 'Simple
Transforms for Instrumenting FORTRAN Decks',
Softw. Pract. & Exper., Vol 5 No 4 (October
1975) pp. 347-358.

[124] N.B. MacDonald, 'Predicting the
Execution Time of Sequential Scientific Codes',
In Proceedings of International Workshop on
Automatic Parallelization 1993, Universität des
Saarlandes, Saarbrücken, Germany, March 1993.

[125] M.H. MacDougall, 'Simulating Computer
Systems : Techniques and Tools', MIT Press,
1987.

[126] B. Mackay and H.A. Sholl,
'Communication Alternatives for a Distributed
Real-Time System', Proc. of the ISCA Computer
Applications in Industry and Engineering
Conference, Honolulu HI, Nov. 1995.

[127] E.A. MacNair, 'An Introduction to the
Research Queueing Package', Proc. Winter
Simulation Conf, 1985.

[128] S. Madala and J. Sinclair, 'Performance of
Synchronous Parallel Algorithms with Regular
Structures', IEEE Trans Par & Distr Sys, Vol. 2,
No. l.Jan. 1991, pp. 105-116.

[129] B. Malloy and M.L. Soffa, 'Simcal.The
Merger of Simula and Pascal', Proc. Winter
Simulation Conf. (1986) pp. 397-403.

[130] E. Manchon, 'The PEPS Modeling Tools',
Proc. of the Performance Evaluation of Parallel
Systems Workshop, ESPRIT Project, Univ. of
Warwick, UK, Nov. 1993.

[131] M.A. Marson et al., 'Stochastic Petri Nets
as a Tool for the Analysis of High-Performance
Distributed Architectures', Chapter 12, pp. 578-
613, Van Nostrand Reinhold, New York, 1990,
(Ed.) S.P. Kartashev and S.I. Kartashev.

[132] M. Martonosi, A. Gupta, et al, 'Memspy :
Analyzing Memory System Bottlenecks in
Programs', In the Proceedings of Sigmetrics
'92, pp. 1-12, ACM, 1992.

[133] B. Melamed and R.J.T. Morris, 'Visual
Simulation: The Performance Analysis
Workstation', Computer, August 1985.

[134] A. Merlo, and P. Worley, 'Analysing PICL
Trace Data with MEDEA', in [87] pp. 445-464.

[135] H. Mierendorff et al., 'Performance
Estimates for SUPRENUM System', Parallel
Comput. 7 (1988), pp. 357-366.

[136] H. Mierendroff and R. Schwarzwald,
'LAPAS: A Performance Evaluation Tool for
Large Parallel Systems', In Tagungsband,
München, Marz, 1990, ITG/GI Fachtagung.

[137] B.P. Miller, C. MacRander, and S.
Sechrest, 'A Distributed Programs Monitor for
Berkeley Unix', Softw. Pract. & Exper., Vol 16
No 2 (Febuary 1986) pp. 183-200.

[138] B.P. Miller, et al. 'IPS-2: The Second
Generation of a Parallel Program Measurement
System', IEEE Trans. Parallel Distributed Syst.,
Vol. 1, no. 2, pp. 206-217, Apr. 1990.

[139] A. Mink, et al., 'Hardware-assisted
Multiprocessor Performance Measurements',
Tech. Report NBSIR 87-3585, Institute for
Computer Sciences and Technology, National
Bureau of Standards, June 1987.

[140] C. Minkowitz, V. Vetland and P.H.
Huges, 'A Modular Approach to System Structure
and Specification' in [93], pp. 83-86.

[141] P. Mohapatra, et al., 'Performance Analysis
of Cluster-Based Multiprocessors', IEEE
Transactions on Computers, Vol. 43, No. 1, Jan.
1994.

[142] B. Mohr, 'SIMPLE: A Performance
Evaluation Tool Environment for Parallel and
Distributed Systems', in Distributed Memory
Computing, 2nd European Conference,
EDMCC2 (A. Bode, ed.), pp. 80-89, April 1991.

[143] M.F. Morris, P.F. Roth, 'Computer
Performance Evaluation : Tools and Techniques
for Effective Analysis', Van Nostrand Reinhold
Company, NY, 1982.

[144] W.E. Nagel und A, Arnold, 'PARvis: Ein
Werkzeug Zur Visualisierung Von Parallelen
Prozessen Auf Mehrprozessorsystemen', Proc. 7
ITG/Gi Fachtagung MMB '93, pp. 178-187,
1993.

[145] J. Nehmer et al., 'Key Concepts of the
INCAS Multicomputer Project', TOSE, IEEE,
Vol. SE-13, No. 8, Aug. 1987, 913-923.

[146] M. Neilforoshan, R. Ammar et al.,
'Optimizing the Time Cost of Parallel Structures
by Scheduling Parallel Processes to Access

Critical Sections', University of Connecticut,
Booth Research Center, Tech. Report #TR-92-
02, 1992.

[147] R. Nelson. 'A Performance Evaluation of a
General Parallel Processing Model',
Performance Evaluation Review, Vol. 18, No. 1,
Aug. 1991, pp. 52-60.

[148] A.G. Nemeth and P.D. Rovner, 'User
Program Measurement in a Time Shared
Environment', Commun. ACM, Vol 14 No 10
(October 1971) pp. 661-666.

[149] Network II.5 User's Manual, CACI Inc.,
Los Angeles CA (1987).

[150] K.M. Nichols and J.T. Edmark, 'Modeling
Multicomputer Systems with PARET, Computer
(May 1988) pp. 39-48.

[151] G.R. Nudd, et al., 'A Layered Approach to
the Characterization of Parallel Systems for
Performance Prediction', Proc. of the
Performance Evaluation of Parallel Systems
Workshop, ESPRIT Project, Univ. of Warwick,
U.K., Nov. 1993.

[152] R.M. O'Keefe, and R.M. Davies, 'Discrete
Visual Simulation with Pascal_SIM', Proc.
Winter Simulation Conf. (1986) pp. 517-529.

[153] J.J. O'Reilly, 'SLAMII, a Tutorial', Proc.
Winter Simulation Conf. (1986) pp. 60-65.

[154] C. Pancake, 'Software Support for Parallel
Computing: Where are We Headed ?', CACM,
Vol. 34, No. 11, Nov. 1991, pp. 52-64.

[155] C. Pancake et al., 'Performance
Evaluation Tools for Parallel and Distributed
Systems', IEEE Parallel and Distributed
Technology, Vol. 3, No. 4, Winter 1995.

[156] E. Papaefstathiou et al., 'An Overview of
the CHIPS Performance Prediction Toolset for
Parallel Systems', Proc. of the ISCA Conference
on Parallel and Distributed Computing Systems,
1995.

[157] E. Papaefstathiou et al., 'A Layered
Approach to Parallel Software Performance
Prediction: A Case Study', In Massively Parallel
Processing Applications and Development,
Elsevier Science, New York, 1994.

[158] N. Patel, 'Structuring Analytical
Performance Models using Mathematica', Proc.
of the International Conference on Modeling
Techniques and Tools for Computer
Performance Evaluation, Edinburgh, Sept. 1992.

[159] D. Pease, A. Ghafoor, et al., 'PAWS: A
Performance Evaluation Tool for Parallel
Computing Systems', IEEE Computer. Vol. 24,
Jan. 1991.

[160] CD. Pegden, 'Introduction to SIMAN',
Proc. Winter Simulation Conf. (1986) pp. 95-
103.

[161] J.P. Penny, P.J. Ashton, and A.L.
Wilkinson, 'Data Recording and Monitoring for
Analysis of System Response times', Computer
J., Vol 29 No 5 (October 1986) pp. 396-403.

[162] The Perfect Club, 'The Perfect Club
Benchmarks: Effective Performance Evaluation
of Supercomputers', International Journal of
Supercomputing Applications, 1989.

[163] R. Pooley, 'A Survey of Perfromance
Analysis Tools in Europe', CSG Report Series,
ECS-CSG-12-95, Computer Systems Group,
University of Edinburgh, July 1995.

[164] R. Pooley, 'The Integrated Modeling
Support Environment', 5th International
Conference on Modeling Techniques and Tools
for Computer Performance Evaluation, Torino,
Elsevier, 1992, pp. 1-16.

[165] J.P. Prost and M. Becker, 'Modeling
Methodology for Performance Evaluation of
Parallel Architectures', Intl. J of High Speed
Comp., Vol. 1, No. 4, Dec 1989, pp. 563-601.

[166] J.P. Prost and S. Kipnis, 'A Multilevel
Trace-Driven Simulation Approach for
Performance Analysis of Distributed Memory
Programs', RC 17612 (#77650), IBM Research
Division, T.J. Watson Research Center,
Yorktown Heights, NY 10598, Jan. 1992.

[167] B. Qin, H.A. Sholl et al, 'Micro Time Cost
Analysis of Parallel Computations', IEEE Trans
Comp., Vol. 40, No. 5, pp. 613-628, May 1991.

[168] B. Qin, H.A. Sholl and R.A. Ammar,
'OPAS: A Tool to Minimize the Time Cost of

Parallel Computations Through Optimal
Processing Power Allocation', Softw. Pract. &
Exper., Vol 20 No 3 (March 1990) pp. 283-300.

[169] B. Qin and H.A. Sholl, 'DFAS: A Tool to
Analyze the Time Cost of Data Flow Programs',
ISMM Int. Conf. on Comput. Applicatons. in
Design Simulation & Analysis, Nevada (Feb
1989) pp. 64-67.

[170] J. Ramanujam and P. Sadayappan,
'Compile-time Techniques for Data Distribution
in Distributed Memory Machines', IEEE
Transactions on Parallel and Distributed
Systems, Vol. 2 No. 4 pp. 472-482, Oct. 1991.

[171] B. Ramkumar and G. Chillariga,
'Performance Prediction for Portable Parallel
Execution on MIMD Architectures', Proc. of the
IEEE International Parallel Processing
Symposium, Santa Barbara CA, April 1995.

[172] C. Rathbone, 'Processing Time Analysis in
a Distributed/ Parallel Environment with
Interrupts', Masters Thesis, University of
Connecticut, 1989.

[173] S.D. Roberts, 'Modeling and Simulation
with INSIGHT', Proc. Winter Simulation Conf.
(1986) pp. 104-112.

[174] M. Rosenblum, et al., 'Complete Computer
System Simulation: The SimOS Approach', IEEE
Parallel and Distributed Technology, Vol.3, No.
4, Winter 1995.

[175] C. Rosience, and R.A. Ammar, 'Data
Modeling Framework for Performance Analysis
of Sequential and Parallel Software', Proc. of
the 21st Annual Computer Science Conference,
Indianapolis IN, Feb. 1993.

[176] G. Ries et al., 'DEPEND: A Simulation
Environment for System Dependability Modeling
and Evaluation', Proceedings of the 2nd IEEE
Int. Comp. Perf. and Dependability Symposium
(IPDS '96), Sept. 1996.

[177] S. Ruiz-Mier, J. Talavage, D. Ben-Arieh,
'Towards a Knowledge-based Network
Simulation Environment', Proc. Winter
Simulation Conf, (1985) pp. 141-150.

[178] R Saavedra, 'CPU Performance
Evaluation and Execution Time Prediction using

Narrow Spectrum Benchmarking', Ph.D. thesis,
University of California at Berkeley, 1992.

[179] M.L. Samuels and J.R. Spiegel, 'The
Flexible Ada Simulation Tool (FAST) and its
extensions', Proc. Winter Simulation Conf.
(1987) pp. 175-184.

[180] V. Sarkar , 'Determining Average
Program Execution Times and their Variance',
Proc. of the Conference on Programming
Languages Design and Implementation, June
1989.

[181] V. Sarkar, 'Partitioning and Scheduling
Parallel Programs for Execution on
Multiprocessors', Research Monograph in
Parallel and Distributed Computing, Pitman
1989.

[182] V. Sarkar, 'Automatic Partitioning of a
Program Dependence Graph into Parallel
Tasks', IBM J. of Research and Dev.,
September/November 1991.

[183] C.H. Sauer.E.A. MacNair, and S. Salza,
'A Language for Extended Queuing Models',
IBM J. Res. & Dev., Vol 24 No 6 (November
1980).
[184] H. Schwetman, 'CSIM: a C-based,
Process-oriented Simulation Language', Proc.
Winter Simulation Conf. (1986) pp. 387-396.

[185] T.J. Schriber, 'Introduction to GPSS',
Proc. Winter Simulation Conf. (1986) pp 75-78.

[186] M. Schumann, 'Efficient Performance
Prediction for Parallel Programs', Ph.D.
Dissertation, Technical University of Munich,
Germany, May 1996.

[187] M. Schumann, 'Automatic Performance
Prediction to Support Cross Development of
Parallel Programs', Proc. of the ACM
Symposium on Parallel and Distributed Tools,
May 22-23, 1996.

[188] H.A. Sholl, R.A. Ammar, and B.Quinn,
' TCAS: A Time Cost Analysis System for Parallel
Computations', ISMM Int. Conf. on Mini and
Microcomput., Miami Beach, FL (December
1988) pp. 217-220.

[189] H.A. Sholl, RA. Ammar and C. Xu,
'Performance Analysis of Software Designs

Influenced by Cache Memory', International
Journal of Science and Technology, Vol. 6 No.
1, Spring 1993.

[190] H.A. Sholl and S. Kim, 'An Approach to
Performance Modeling as an Aid in Structuring
Real-Time Distributed System Software', Proc.
19th Hawaii International Conference on System
Science, Jan, 1986.

[191] Simscript II. 5 Programming Language,
CACI Inc., Los Angeles, CA (1987).

[192] Sinclair, J B, Doshi, K A and Madala, S,
'Computer Performance Evaluation with GIST:
A Tool for Specifying Extended Queuing
Network Models', Proc. Winter Simulation
Conf., 1989.

[193] R.L. Sites, and A. Agarwal,
'Multiprocessor Cache Analysis Using ATUM',
In Fifteenth International Symposium on
Computer Architecture, June 1988.

[194] D.L. Smith, 'Performance Analysis of
Software for an MIMD Computer', Proc. of
ACM SIGMETRICS Conference on
Measurement and Modeling of Computer
Systems, 1982.

[195] L.W. Smith, 'Software Performance
Engineering: A Case Study Including
Performance Comparison with Design
Alternatives', IEEE Transactions on Software
Engineering, Vol 19, No. 7, July 1993.

[196] C. Smith, B. Wong, 'SPE Evaluation of a
Client/Server Application', Proc. of the 20th
International Conference for the Resource
Management and Performance Evaluation of
Enterprise Computing Systems, Orlando, Fl,
Dec. 1994.

[197] C.U. Smith, 'Performance Engineering of
Software Systems', The SEI Series in Software
Engineering, Addison-Wesley Publishing Co.,
1990.

[198] F. Sotz, 'A Method for Performance
Prediction of Parallel Programs', Proceedings
of the Joint Int. Conf. on Vector and Parallel
Processing, pp. 98-107, Sept. 1990.

[199] K. Suzuke, A. Sangiovanni-Vincentelli,
'Efficient Software Performance Estimation

Methods for Hardware/Software Codesign',
Proc. of the 33rd Design Automation
Conference, Las Vegas NV, June 1996.

[200] C.R. Standridge, et al., 'A Tutorial on
TESS: The Extended Simulaton System', Proc.
Winter Simulation Conf. (1986) pp. 212-217.

[201] K.L. Stanwood, L.N. Waller, and G.C.
Marr 'System Iconic Modeling Facility', Proc.
Winter Simulation Conf. (1986) pp 531-536.

[202] J.T. Stasko, 'The PARADE Environment
for Visualizing Parallel Program Execution : A
Progress Report', Tech Report, GVU, Georgia
Institute of Technology, Atlanta, January 1995.

[203] P. Stenstrom, et al., 'Shared Data
Structures in a Distributed System - Performance
Evaluation and Practical Considerations', In
Proc. International Seminar on Performance of
Distributed and Parallel Systems, Kyoto, Japan,
Dec. 1988.

[204] T.L. Sterling, et al., 'Multiprocessor
Performance Measurement Using Embedded
Instrumentation', In Proceedings of the 1988
International Conference on Parallel Processing,
1988.

[205] B. Stramm and F. Berman, 'Predicting the
Performance of Large Programs on Scalabel
Multi-computers', In Proceedings of the Scalable
High Performance Computing Conference
SHPCC-92, Williamsburg, VA, April 1992.

[206] A. Sussman, 'Model Driven Mapping of
Computation onto Distributed Memory Parallel
Computers', Ph.D. thesis, Carnegie Mellon
University, School of Computer Science,
Pittsburgh, PA, 1991.

[207] H. Tokuda and M. Kotera, 'A Real-time
Toolset for the ARTS Kernel', Carnegie Mellon
Univ., Tech. Report, CMU-CS-88-180, Sept.
1988.

[208] J. Torrellas, J. Hennessy et al., 'Analysis of
Critical Architectural and Program Parameters
in a Hierarchical Shared-Memory
Multiprocessor', Performance Evaluation
Review, Vol. 18, No. 1, May 1990, pp. 163-172.

[209] R.D. Trammel, 'The Big Picture:
Visualizing System Behaviour in Real Time', in

Proc. 1990 USENIX Summer Conf., Anaheim,
CA, June 1990, pp. 257-266.

[210] FA. Van-Catledge, 'Towards a General
Model for Evaluating the Relative Performance
of Computer Systems', Intl J Supercomput Appl,
Vol. 3, No. 2, Summer 1989, pp. 100-108.

[211] J. Veenstra and R. Fowler, 'MINT: A Front
End for Efficient Simulation of Shared Memory
Multiprocessors', Proc. of the IEEE International
Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems,
Durham NC, Jan. 1995.

[212] M. Veran and D. Potier, 'QNAP 2: A
Portable Environment for Queuing System
Modeling', Proceedings of Modeling Techniques
and Tools for Computer Performance
Evaluation', North Holland, 1985, pp. 25-63.

[213] A. Valderruten, O. Hjiej, et al., 'Deriving
Queuing Networks Performance Models from
Annotated LOTOS Specifications', in [93], pp.
120-130.

[214] W.M. Waite, 'A Sampling Monitor for
Application Programs', Softw. Pract. & Exper.,
Vol 3 No 1 (January 1973) pp. 75-79.

[215] K. Wang, 'Precise Compile-time
Performance Prediction for Superscalar-based
Computers', Proc. of the Conference on
Programming Language Design and
Implementation, June 1994.

[216] S. Wathne, H.A. Sholl and R.A. Ammar,
'Task Partitioning of Multi-channel, Distributed
Real-Time Systems', Proc. of the ISCA Computer
Applications in Industry and Engineering
Conference, Honolulu HI, Nov. 1995.

[217] B. Wegbreit, 'Mechanical Program
Analysis', Commun. ACM, Vol. 18 No. 9
(September 1975), pp. 528-539.

[218] R. Williams and W.E. Nagel,
'Optimization of Output Bandwidth front a
Paragon', Tech. Report CCSF-44, Caltech
Concurrent Supercomputing Facilities, 1994.

[219] C. Woodside, 'Three-view Model for
Performance Engineering of Concurrent
Software', IEEE Transactions on Software
Engineering, Vol. 21, No. 9, Sept. 1995.

[220] D. Wybranietz and D. Haban, 'Monitoring
and Performance Measuring Distributed Systems
during Operation', Proc. ACM SIGMETRICS
Conf. on Measure. & Modeling of Comp. Sys.
(1988) pp. 197-206.

[221] J.C. Yan and S.F. Lundstrom, 'Axe : A
Simulation Environment for Actor-like
Computations on Ensemble Architectures', Proc.
Winter Simulation Conf. (1986) pp. 424-429.

[222] C.Q. Yang and B. Miller, 'Performance
Measurement for Parallel and Distributed
Programs: A Structured and Automatic
Approach', IEEE Trans Software Engg., Vol. 15,
No. 12, Dec. 1989, pp. 1615-1629.

[223] X. Zhang and X. Qin, 'Performance
Prediction and Evaluation of Parallel
Processing on a NUMA Multiprocessor', IEEE
Transactions on Software Engineering, Vol. 17,
Oct. 1991.

[224] More information about SIM++ can be
obtained from the Institute of Telematics,
University of Karlsurhe.

[225] More information can be obtained from :
www.simulog.fr/US/html/prods/modarch.html.

[226] More information on the tool can be
obtained from:
www.nas.nasa.gov/NAS/Tools/Projects/AIMS

[227] More information about the product can be
obtained by writing to :
info@advsystech.com

[228] More information about the product can be
obtained from :
www.digital.com/info/hpc/f90/pse.html

[229] More information about the tool can be
obtained at:
www.eu.sun.com/95091/tuning/tools.html

[230] For more information about this tool, visit:
www.ov.com/text/products/perf_trend.html

[231] More Information about the tool can be
obtained at:
www.almaden.ibm.com/watson/pv

[232] More Information about this tool can be
obtained at :
www.intel.com

References List for Statistical Support Tools:

[233] Catalyst. Sun Microsystems, Inc.,
Mountain View, CA (1988).

[234] PC Magazine. Vol. 8 No. 5 (March 1989).

[235] A. M. Law, S. G. Vincent, "UniFit User's
Guide", Simulation, Modeling and Analysis Co.,
Tucson, AZ (1985).

