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AIRCRAFT ICING ALGORITHMS APPLIED TO U.S. NAVY

NUMERICAL MODEL DATA: A VERIFICATION STUDY

1. INTRODUCTION

The Naval Research Laboratory (NRL) Marine Meteorology
Division is presently developing an interactive information-
processing system that will provide a suite of environmental
products to operational users tasked with providing aviation
weather forecast support. This automated display system is pro-
jected to significantly improve both flight safety and efficien-
cy, by providing more accurate and timely warnings of weather
impacted airspéce to naval aviators. The aviation support product
suite will provide graphical displays of both analyzed and fore-
cast aviation impact variables derived from gridded numerical
model data. For the initial product suite, an icing potential
display is scheduled for implementation. This report evaluates
several aircraft icing algorithms considered as viable candidates
for selection as the icing potential product.

In this verification study, the results of a comparatlve
evaluation of four different icing algorithms using grldded
numerical model data from the Navy Operational Global Atmospherlc
Prediqtion System (NOGAPS) are presented. Specifically, the icing
algorithms evaluated herein include thoée developed by the Re-
search Applications Program of the National Center for Atmos-
pheric Research (NCAR-RAP),, the National Aviation Weather Adviso-
ry Unit (NAWAU) , the Air Force and the Navy. Verificatibn of the
algorithms is accomplished by comparing model-derived analyses

and forecasts of icing potential with pilot reports (PIREPSs).
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Forecasts of icing type and intensity provided by the Air Force
and Navy algorithms are also statistically compared with reported
conditions. In order to assess the impact of model accuracy and
vertical data reéolution on forecast performance, a second evalu-
ation of algorithms is performed using coincidental model-derived
profiles and radiosondes.
2. ICING ALGORITHMS

Operational numerical models such as NOGAPS do not explic-
itly forecast liquid water content or dropsize distribution
which,_along with temperature, are the key meteorological factors
involved in aircraft ice accretion. Withoﬁt appropriate cloud
data, model-applied algorithms attempt to infer significant icing
areas by locating those model temperature and humidity data
within certain thresholds known to be favorable to icing;poten—
tial. As formulated, icing algorithms do not consider aircraft
and flight characteristics, important non-meteorological fabtors
which significantly influence the rate of accumulation (i.e.,
intensity ) of ice upon a particular airframe. o
2.1 NAWAU

The NAWAU icing algorithﬁ, developed by Ron Olson of the
Aviatién Weather Centér's Aviation Observing Branch ( formerly
NAWAU ), is used as operational guidance in the issuance of
advisories to the aviation community ( R.J. Olson, pers. comm.,
1996 ). .The algorithm, a refinement of one developed by Schultz
and Politovigh ( 1992 ), predicts two categories of icing ( Table
1 ). Temperature (T) and relative humidity (RH) criteria for

delineating icing-threat areas were determined through real-time



. Table 1. Tabular description of the NAWAU icing algorithm,
including temperature and relative humidity thresholds for both
icing categories.

ICING CATEGORY TEMPERATURE | RELATIVE HUMIDITY HEIGHT
2 - HIGHER -20<T<0°C RH > 86% < 900m above sfc
PROBABILITY* |-14<T<-1°C ~ RH > 75% > 900m above sfc
1 - LOWER -19<T<0% RH > 60%
PROBABILITY* )

Table 2. Tabular description of the RAP icing algorithm, includ-
ing temperature and relative humidity thresholds for each icing

category.
FICING CATEGORY TEMPERATURE RELATIVE HUMIDITY
FREEZING RAIN T<0°C RH > 80%
W/RH > 80% above T>0°C
FREEZING DRIZZLE ~12<T<0°¢C RH > 85%
W/RH < 85% above T<-12°C
UNSTABLE -20<T<0°C RH > 56%
. ; w/Max RH > 65% below in
conditionally unstable layer |
STABLE ~-16<T<0°C RH > 63%
__________________ JL_-_-_,_;-_____i______-__-_______--__--__-__fj




comparisons with PIREPs and satellite imagery by NAWAU forecast-
ers. In an attempt to reduce the specified threat area (i.e.,
.overforecasting ), category 2 icing generally has more restric-
tive T and RH thresholds than category 1 icing. The only excep-
tion to this occurs at low levels ( within 900 m of the surface )
where the category 2 temperature threshold is expanded to include
temperatures down to -2060. Due to insufficient model ( NOGAPS )
data, the NAWAU algorithm feature which redqces areas of icing
when orographic downslope flow exists, was not utilized in this
evaluation study. The NAWAU icing algorithm has been previously
evaluated by NCAR-RAP ( Brown et al., 1994; Thompson et al.,
1995) . |
2.2 RAP

The RAP icing algorithm, developed by NCAR's Research Appli-
cations Program, is a refinement of oﬁe developed by Forbes et
al. (1993) and an extension of the Schultz-Politovich algorithm.
As emphasized by Thompson et al. (1995), the RAP algorithm is
continually evolving; the temperature and relative humidity
thresholds for icing shown in Table 2 ( and used in this study )
represent those operative during the autumn of 1994. The algo-
rithm-consists of four categories of icing - freezing rain,
freezing drizzle, unstable and stable. Although freezing precipi-
tation is widely regarded as the most éevere icing hazard, the
four RAP algorithm categories are not designed to rank icing
severity but rather provide different phyéical bases for icing
diagnoses. For both freezing precipitation categories,.there are
T and ﬁH criteria not only at the level in question, but also for

a level above. The unstable ( convective ) icing category, in



addition to T and RH criteria at the level in question, requires
the existence below of a conditionally unstable layer (i.e.,
labse rate ) with relative humidity 2 65%. The stable icing
category is similar to the NAWAU category 1 iciﬂg. The version of
the RAP icing algorithm described here has been évaiuated in-
house using data from several different models ( Brown et al.,
1994; Thompson et al., 1995). However, these evaluations have not
specifically verified individual RAP icing cétegory predictions (
eX., freezing rain, drizzle ) against actual reported occur-
rences.
2.3 AIRF

The Air Force ( AIRF ) icing algorithm was develbped at the
Air Force Global Weather Central as guidance for flight opera-
tions (‘Knapp{ 1992 ). Originaliy written for application to
radiosonde data, the AIRF algorithm ﬁses temperature, dew point
depression ( T-Td ) and stability ( lapse rate ) criteria té
predict icing type and severity ( Table 3 ). Specifically, given
a below-freezing moist layer ( T-Td < 4% ) within a radiosonde
or model profile, the AIRF algorithm assigns an icing type and
intensity at each sounding ( or model ) level throughout that
layer,-based on the average temperature and dew point depression
of the level and the next lower level, ana the lapse rate between
the two levels. For the bottom level of a moist layer, the algo¥
rithm always assigns the icing type and intensity corresponding
to the next higher level. Three types of icing may be specified.
For stable lapse rates ( < 2° /'1000 ft ), rime (RME) is always

specified; depending on the temperatﬁre, either clear (CLR) or




Table 3. Tabular description of the AIRF icing algorithm, in-
cluding temperature, dew point depression and lapse rate criteria
for specification of icing intensity and type. Forecast icing
intensities and types are defined in the text.

'TEMPERATURE ( 0>T>~-8 ( -8>T>-16 r-l 6>T>-22
(°c) : :
DEW PT. DEPRESSION <1 1<T-Td<2 <1 {1<T-ng3 <4
(°c) '

———————————————————————— [———-—-—--p--—--—r--—---[-—-—---———-r—--—— - ———— ————— —
LAPSE RATE <2t >2 <2| >2 <21 >2| <2 |>2 N/A
(°C/1000ft)

LGT [MDT | TRC|LGT |MDT|MDT| LGT|LGT LGT
FORECAST ICING RME CLRJ RME J CLR JRME MXD RMEJ MXD | RME
__________________ *-_—_J bttt St adndad bt d oDt T T TR R IO o ————— - ]

Table 4. Tabular description of the TESS icing algorithm, in-
cluding temperature, dew point depression and lapse rate criteria
for specification of icing probability, intensity and type. 'TBL!
indicates intensity value determined using look-up table.

TEMPERATURE | DEW PT. [ LapsE ICING :
(°c) DEPRESSION | RATE PROBABILITY TYPE INTENSITY
' (°c) (°C/100m) (%)

5>T>0 <2 N/A 50 IND UNK
0>T>~7 2<T-Td<4 <.55 20 RME TRC
>.55 20 MXD TRC
<2 <.55 100 RME TBL
>.55 100 CLR TBL
—-75T>=15 3<T-Td<6 <.55 20 RME TRC
‘ >.55 20 MXD TRC
<3 <.55 100 . RME TBL
>.55 100 MXD TBL
-15>T>-22 | 4<T-Td<6 | N/A 10 RME  TRC
<4 <.55 100 RME TBL
>.55 100 . CLR TBL
-225T>-30 <6 N/A 10 RME TBL




mixed (MXD) icing is forecast for.unstable conditions. Forecast
icing intensities include trace (TRC), light (LGT) and moderate
(MDT) ; heavy Oor severe icing is never specified. The AIRF icing
algorithm has: been previously evaluated ( in terms of its ability
to predict yes/no icing conditions ) by Knapp ( 1992 ) and by
NCAR-RAP ( Brown et al;, 1994; Thompson et al., 1995). A more
comprehensive evaluation of the algorithm, which includés icing
type and severity, ﬁas been performed by Cornell et al. ( 1995 ).
2.4 TESS

As an atmospheric application program within the Navy's
Tactical Environméntal Support System (TESS) , the aircraft icing
probability function provides opefational users at various land
sites and aboard selected vessels within the fleet a remote site
automatic icing analysis using radiosondes (Naval Oceanographic
Office, 19885. This TESS icing algorithm is based on empirical
forecast rules given in AWS/TR-80/001 (Air Weather Service, 1980)
and updated cloud characterizations ( Jeck, 1985). The algorithm
provides a probability, type and intensity of aircraft icing for
each level of a sounding ( or model profile, if so chosen ) based
~on various criteria detailed below. To date, the only documented
evaluation of the TESS icing algorithm has beeﬁ by Cornell et al.
( 1995 ). |

Compared to the NAWAU, RAP and AIkF algorithms, the TESS
icing algorithm is complex. Initially, the lifting condensation
level ( LCL ) is computed, and this height is set as the base of
the lowest cloud layer. When a superadiabétic layer exiéts at the
surface, the LCL is not computed ( actuélly, is not defineqd ),

and negative icing is specified at all levels of the sounding.




Based on temperature, dew point depression and stability ( lapse
rate ) criteria, icing may be specified at a given sounding ( or
model profile ) level within a cloud layer ( Table 4 ). The icing
pfobability can be 10, 20, 50 of 100%. ( Note: at any given
level, the probability of icing is zero if the level height is
less than the cloud base height or Table 4 temperature and dew
point depfession icing thresholds are not met.) The icing type
can be induction'(IND), rime (RME) , mixed (MXD) or clear (CLR) .
Rime icing is forecast under stable conditions ( < 5.5°C/km ),
mixed or clearlwhén the atmosphere is unstable or conditionally
unstable ( > 5.5°C/km ). For icing probabilities of 100% , the
intensity of icing ( TRC, LGT, MDT or SVR (severe)) is determined
from a look-up table, and is based on the cloud temperature, the
iéing type and the distance between the cloud base height and the
level being analyzed. Icing intehsity is specified as unknown
(UNK) for induction icing, and trace at probabilities of 10 to
20% when.the temperature is between 0 and -22°C. The TESS icing
algorithm permits multiple cloud ( viz., icing ) layers to be
specified for a given sounding. A new cloud layer is indicated
when icing is forecast to occur; the icing probability at the
previous lower level was zero, and the air temperature is < 5°c.
The threshold values and resultant icing conditions shown
in Table 4 ( and used in this study ) represent those from an
actual operational version (i.e., computer‘code ) of the TESS
algorithm. In sdme cases, Table 4 temperature and_dew point
depressién cafegory endpoints do not agree with those given in

the TESS 2.0 program performance specification for aircraft icing



( Naval Oceanographic Office, 1988 ). Additionally, the Table 4
icing type for -15 < T < -7°c and 100% probability is mixed;
according to Naval Oceanographic Office ( pg. 491 ), the type
.should be clear. For this verification study, the TESS algorithm
operator-selected option of specifying whether or not a cloﬁd
layer intersects a frontal inversion was set to "no", thereby
eliminating the need of the algorithm's second icing iﬁtensity
look-up table used when a frontal inversion is present.
3. DATA
3.1 Model -~ NOGAPS

The Navy Operational Global Atmospheric Prediction System
provided .the model data required for the computation of the
icing algorithms evaluated in this study. The NOGA?S is run twice
daily ( at 002 and 12Z ) at the Fleet Numerical Meteorology and
Oceanography Center ( FNMOC ). Data for this study is from the
NOGAPS Version 3.4 forecast model which consists of a multivari-
ate optimum interpolation analysis, a nonlinear ﬁormél mode
initialization scheme, and a 159-wave triangular ( ~ 3/4 deg.
horizontal resolution ), 18 —le?el spectral forecast model (
Hogan et al., 1991; Goerss and Phoebus, 1993 ).

During the two and a half month period from mid-March
through May 1995, NOGAPS temperature, geopotential height and
vapor pressure fields, interpolated ontd a 2.5% x 2.5° spherical
grid, were stored using the Naval Environmental Operational
Nowcasting System ( NEONS ) database. As avaiiable, meteorologi-
cal data fields were archived at three forecast lengfhs ( the
anaiysis, and 12 and 24 hours ) and at 'seven constant pressure

surfaces ( 1000, 925, 850, 700, 500, 400 and 300 mb) . Analysis




data represents a blend of a 6 hr background forecast with
quality-controlled current observations, performed prior to model
initialization. Simultaneous with each NEONS data extraction,
gridded relative humidity fields ( at the same resolution ) were
computed and archived. NOGAPS data were collected for a regional
grid field encompassing the continental U.S. and adjacent areas (
viz., 5°N-60°N, 50°W-130°W ). |

3.2 PIREPs

3.2.1 Description

For the periﬁd March through_May 1995, a database compris-
ing over 119,000 aircraft pilot repbrts was obtained from the
National Center for Atmospheric Research. These PIREPs contain
encoded numeric data Which provide information on weather, cloud
layers, turbulence and icing. For each PIREP, up to two icing
layers or levels may be specified, each as a coded group éontain-
ing icing base and top heights, intensity and type. Additional
icing information may be available within a PIREP as alphanumeric
remarks.

The base and top heightsAof-a reported icing layer are
usually specified to the nearest thousands of feet, although some
heighfs are reported to the nearest hundreds of feet. For those
PIREPs indicating clear skieé or clear above ( current flight
level ), the top height of any reported negative icing layer is
always specified ( i.e., coded ) as 60,000 ft. Icing type is
encoded as either negativé; rime, clear or mixed. Additional code
elements were created forvicing due to f;eezing rain ( ZR ) and

freezing drizzle ( ZL ), with such occurrences only ascertained
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through pilot remarks. Icing intensity is defined numerically as
follows: 0) negative, 1) trace, 2) trace-light, 3) 1light, 4)
light-moderate, 5) moderate, 6) moderate-heavy, 7) moderate-
severe and 8) severe. Within a given PIREP, a numeric value of.
'-9' is assigned any icing code element ( intensity or type ) for
which no information is ‘given. |
3.2.2 Selection Procedure

Various criteria were applied to the original PIREP data-
base to select tHose pilot reports finally used as verification.
data for model-derived icing forecaéts. PIREPs needed to be
located within the study's model grid domain and were required to
have occurred within one hour of 00Z or 12Z. All selected PIREPs
had to provide at minimum an icing type or intensity for a 'speci-
fied level or layer. Given model data at the appropriate date and
time, a PIREP was matched to the grid point nearest to the PIREP,
provided the report was no more than 80 km from that model grid
point, and at an elevation below a specified top height (-~
27,000 ft ). For each PIREP, the top height ( for icing ) was
specified as the average model analysis ( or, if unavailable, the
12 or 24 hr forecast ) height of the 300 and 400 mb pressure
surfaces at the nearest gridpoint. For some PIREPs, pilot remarks
provided new or additional information which was numerically
encoded provided such information met loéation and time criteria.

Having passed the above selection criteria, a PIREP's icing
information was assigned ( based on reported elevations ) to one
or more of fhe following five icing layers: Low, LOW—MIb, MIDDLE,
MID-HIGH and HIGH. The midpoints ( in elevation ) of the LOW-MID,

MIDDLE, MID-HIGH and HIGH layers correspond to the 850, 700, 500
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and 400 mb model constant bressure surfaces, respectively; the
lowest icing layer ( LOW ) encompasses both the 1000 and 925 mb
model constant pressure surfaces. For each PIREP, the base ( top
) height for the highest four layers is specified as the average
model.height of the layers's constant pressure surface and the
next lower ( higher ) pressure surface at the chosen gridpoint.
For example, the base ( top ) height of the MIDDLE icing layer at
a given gridpoint is the average of the 850 and 700 mb ( 700 and
500 mb ) model heights. The top of the LOW icing layer is speci-
fied as the average height of the 925 and 850 mb pressure sur-
faces; the surface represents the base of this layer. PIREPs
within 5 minutes and 40 km of each other were retained as -sepa-
rate reports if their icing information was from different layers
or, combined into one report, if they provided information for
the same layer. In general, for any PIREP ( individual or com-
bined ) reporting two different icing intensities within a single
layer, the larger intensity value is selected for comparison with
model-derived icing forecasts. The icing type for a layer is that
which corresponds to the chosen ( i.e., highest ) intensity
value. In those cases where a PIﬁEP has two equal maximum icing
inten;ities with differing icing types within a single layer (
eX. MIDDLE ), the type 'mixed' is specified for model compari-

sons.

3.2.3 Distribution

Applying the selection criteria outlined above, a dataset
comprised of 1757 PIREPs over the period mid-March through May

1995 was created for comparison with icing algorithm forecasts
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derived from NOGAPS 2.5° data. Included within this PIREP dataset
are 11 reports of icing type only ( i.e., no intensity ). Tempo-
rally, about 56% of the pilot reports correspbnd to 127, fhe
remainder to 00Z. The spatial disfribution of the PIREP dataset,
and the number of negative icing reports, per 5° x 5° latitude-
longitude bins, is shown in Figﬁre 1. The largest.concentration
of PIREPs in the dataset occurs over the area encompassing the
southern Great Lakes and northern Ohio Valley. Secondary maxima
in nuﬁber of reports occur over eastefn Colorado and western
Washington. While tha total number of negative icing reporté is
largest in the two 5°x 5° bins with the largest number of total
PIREPs, the highest frequency of negative icing ;eports occurs
over the south-central states, with 108 of 139 (~78% ) PIREPs
between 25-35°N and 90-105°W classified as negative icing re-
ports. Overall, about 41% of thelPIREPs within the dataset are
negative icing reports.

Figure 2 presents the number of positive icing reports, per
5° x 59 latitude-longitude bins, of intensity less than moderate
or greater ( TRC, TRC-LGT or LGT ) and of intensity moderate or
greater ( LGT~MbT and above ). For thié cdmpilation, the icing
value 'assigned any individual PIREP corresponds to the maximum
reported intensity. The largest concentration of positive icing
reports occurs over the southern Greaﬁ Lakes - northern Ohio
Valley area. Over the western U.S., positive icing reports are
largely'concentrated over the central Rockies and Pacific North-
west. Reports of icing conditions are not common south.of 35°N.
Of any 5°x% 5° box with greater than 7 positive icing reports,

only one ( that containing Pennsylvania and western New York )
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Figure 1. Spatial distribution of the 2.5° PIREP dataset,
corresponding to the period March-May 1995. For So,x 5°
latitude-longitude boxes, the total number of PIREPs and the
number of negative icing reports are given. Striped boxes
indicate 250% negative icing reports.
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has at least as many MOG ( moderate or greater ) icing reports as
less than MOG reports ( 28 each category ). This box, plus the
three to its west and the one to its southwest, contain half of
all MOG intensity reports within the dataset. Overail, about 40%
of all positive icing reports are of MOG intensity.
Characteristics of the 2.5° PIREP dataset based on vertical
icing layers are given in Table 5. Due to the availability of
-icing ( and no icing ) information in multiple layers with many
PIREPs, the total number of ( layer ) reports ( 3422 ) is roughly
twice as large as the number of PIREPs included with this data-
set. Of the five specified icing layers, the MIDDLE icing layer
contains the most reports ( about a third ) while the LOW layer
contains the least ( < 7% ). Overall, about 5 of eVery 8 layer
reports are classified as negative icing reports. The total
number of such reports ( 2144 ) is three times the number of
negative icing PIREPs, indicating that many of these PIREPs
provided multiple layer reports as a result of low-level flight
under clear sky ( no cloud ) conditions. The percentage of nega-
tive icing reports as a function of all reports is about 48% at
the MIDDLE layer; this percentage increases both upward and
ddwnwafd from this 1aYer, reaching 63% of all reports at the LOW
layer and 94% at the HIGH layer. When icing is specified, about
three of every four reports indicate type 'rime'. Mixed ( clear )
icing is specified about once in 5 ( 15 ) reports. Almost three
of every four reports of clear icing correspond to the LOW-MID
and MIDDLE layers. All reports of freezing precipitation ( 2R or

ZL ) occur at or below the MIDDLE icing layer. Slightly less than
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Table 5. Characteristics of the 2.5° PIREP dataset, including
the: number of reports according to icing type and intensity, and

the average base and top heights ( in ft ), for selected icing
layers. : :

———-—-————-——-—.—--.-————---—----——————-—-————-——-—-————-—-—-———--——-—

Low LOW-MID MIDDLE MID-HIGH HIGH TOTAL
925 MB . 850 MB 700 MB 500 MB 400 MB

AVG. HGT.
BASE -_—— 3592 7292 14167 21103 -—
TOP 3611 7269 14081 21110 27043 —
NO.RPTS. 228 703 1154 796 541 3422
TYPE :
NO (NEG.) 144 403 553 536 508 2144
RIME 48 186 425 184 27 870
CLEAR 9 20 37 11 0 77
MIXED 21 62 98 42 3 226
FRZ. DRZL. 0 1 0 0 0 1
FRZ. RAIN 1 3 2 0 0 6
NOT GIVEN 5 28 39 . 23 3 98
INTENSITY

NEGATIVE 144 403 553 536 508 2144
TRACE 9 35 53 21 4 122
TRC~LGT 1 2 0 0 0 3
LIGHT 36 137 290 132 21 616
LGT-MDT - 12 31 68 31 1 143
MODERATE 22 79 173 74 7 355
MDT-HEAVY 1 5 1 1 0 8
MDT-SEVERE 1 2 2 0 0 5
SEVERE 0 3 9 0 0 12
NOT GIVEN 2 6 5 1 0 14
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half of all positive icing PIREPs specify the intensity as
'light' ( categories TRC-LGT and LGT ) . When combined, the inten-
sity categories LGT-MDT and MDT account for about 2 out of every
5. intensity reports. Trace icing is specified in slightly‘less
than 10% of the reporﬁs. Heévy/severe icing ( categories MDT-
HEAVY, MDT—SEVERE;and SEVERE ) is seldom reported ( only 2% of
all layer reports ); the LOW-MID and MIDDLE 1aYers account for
88% of all reports of such icing.
Within the 2.5° PIREP dataset, a total of 1166 layer re-

ports provided both icing type and intensity information. Table 6
presénts the number of occurrences ( and percent frequencies ) of.
selected (intensity,type) pairs. Here, the top number of any
(intensity,type) box is the number of occurrences, the middle
value is the percent frequency of ﬁhe specified type category for
the given intensity and the lower value is the percent frequency
of the specified intensity category for that given icing type.
Results indicate that the percent frequency of occurrence of rime
icing decreases somewhat with increasing intensity, while thé
reverse occurs for clear icing. The percent occurrence of mixed
icing does not vary greatly over icing intensity categories ( 17%
to ~22% ). The percent frequency of icing intensity is rather
similar for the three main icing types ( RME, MXD and CLR ) . For
example, depending on which icing type ié chosen, between 46% and
51% of all its type observations occur at the light ( TRC-LGT,
LGT ) ihtensity category. With oniy 4 available data, no conclu-
sions can be drawn for ( intensity,type ) relafionships'for icing
due to freezing precipitation ( 2L,2%R ).

A comparison of this study's dataset icing type and inten-
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Table 6. Characteristics of the 2.5° PIREP dataset, according to
selected intensity/type pairings. For any intensity/type box, the
top number is the number of occurrences, the middle value is the
percent frequency of the specified type category given the inten-
sity, and the lower value is the percent frequency of the speci-
fied intensity category given the icing type.

————————————————————————————————————————— F—-————-——-—r—————————
TYPE RME MXD CLR ZL, ZR TOTAL
INTENSITY
74 16 4 0 94
TRC 78.7% | 17.0% 4.3% 0.0%
8.6% 7.2% 5.3% 0.0%
- TRC-LGT 442 102 37 2 583
LGT 75.8% | 17.5% 6.3% 0.3%
51.2% |- 45.7% | 48.7% | 50.0%
—————————————————— o = o . o e ef e v s e o) e e e e e e e e e ]
LGT-MDT 333 101 31 1 466
MDT 71.5% | 21.7% 6.7% 0.2%
38.6% | 45.3% | 40.8% | 25.0%
______________________________________________________________ 4
MDT-HVY 14 4 4 1 23
MDT-SVR 60.9% | 17.4% | 17.4% 4.3%
SVR 1.6% 1.8% 5.3% | 25.0%
TOTAL 863 223 76 4 1166
----------------- JL'__..__—_.J = ] ———-—-—-——J~~———-———-J—-.-—————--J
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sity frequencies with various other observational datasets avail-
able in the literature is presented in Table 7. The icing type
'rime' is found to be dominant in all dataseté, with frequencies
ranging from 72% to 84% ( Table 7a ). Although the frequency of
mixed icing reported by Cohen ( 1983 ) is about half of what is
reported in the other studies, mixed icing is reported to be more
common than clear icing in all four comparison datasets. For 6. of
the 7 tabulated datasets, the icing intensity. category 'light' is
the most dominant frequency. It should be pointed out that the
AWS ( 1980 ) data, adapted from all-weather flight test data
compiled by Thompson ( 1955, Figure 16 of report ), represents
icing severity categories one less than originally given ( éx.,
light instead of moderate ). Eliminating the Perkins et al. (
1957 ) dataset ( where thé categories trace and light are com-
bined ), reported frequencies of light icing range from about 43%
to 67% amohg the given studies. The dataset used by Cornell et
al. ( 1995 ) is unique in that almost all pilot reports are of
either trace ( the dominant frequency at 54% ) or light intensi-
ty, and few of moderate or greaﬁer severity. Frequencies of
moderate icing are observed to be quitezlarge for this study's
dataset and that utilized by Brown et al. ( 1994 ); in both of
these studies, similar PIREP data processing procedures were
followed. Excluding the Thompson ( 1955 ) dataset, observations
of heavy/severe icing are rare, occurring at frequencies between
zero and about 3%. Note that the frequency of heavy icing would
be only 2.2 % for the Thompson dataset if, as per Air Weather

Service ( 1980 ), a distinction is made between heavy and severe
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Table 7.

Percent fre
and intensities (b) f

frequencies from various
the literature.

quencies of occurrence of icing types (a)
or this study's PIREP dataset compared to

other observational datasets found in

____________________________________ [ e e e e e e
i NO. TYPE SOURCE/REFERENCE
DATA RME MXD CLR OTHER
1180 "173.7% 19.2% 6.5% 0.6% ZL,ZR | Tbl. 5/This study
B S S S S
9693 |78.1% 15.8% 6.1% . Tbl. 4/Cornell et.al.,1995
114 |84.2% 8.8% 7.0% _— Tbl. 8/Cohen,1983
4600 72.0% 17.0% 10.0% 1.0% FROST Perkins et.al.,1957
Notes: 1 No Other Type
(b)
NO. INTENSITY SOURCE /REFERENCE
DATA | TRC LGT MDF  HVY/SVR :
1264 | 9.7% 49.0% 39.4% 2.0% Tbl. 5/ This study
9693 [53.7% 42.8% 3.4% — Tbl. 4/ Cornell et.al.,1995
40955 | 4.4% 56.3% 36.2% 3.2% Fig. 4b/ Brown et.al., 1994
114 {14.0% 67.5% 18.4% 0.0% App. A/ Cohen, 1983
3372 |38.4% 44.7% 16.4%  0.6% Tbl. 2/ Air Wea. Serv.,1980
—3%1 —4 87.0% 12.0% 1.0% Perkins et.al.,1957
368 | — ' 48.9% 35.1% 16.0% Fig. 9/ Thompson, 1955
______ .4.__.._-___.-__.._..____-.._....-_.._..._....L.........-_..________'..__..._-_.-......._-
Notes: 1 Not specified

2 Based on Dewpoint Spread < 3°c

3 Unknown

4 Category combined with LGT
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categories , with each category lowered one intensity level.
3.3 Radiosonde |

. In addition to NOGAPS 2.5° model data and pilot reports,
radiosonde observations ( RAOBs ) were archived duriné the study
period for the purpose of assessing the effect of model accuracy
and resolution on icing forecasts. FNMOC quality—controlled RAOBs
were obtained from the NEONS database. Typically, RAOBs provided
geopotential height, temperature, dew point temperature and wind
at mandatory and significant levels. The 925 mb constant pressure
surface, a ( NOGAPS forecast ) level for this study, is not a
mandatory radiosonde level; under fortuitous circumstances,
information for this level may be provided ih the significant
level data. RAOBs do not directly provide the relative humidity;
this parameter, reéuired by the NAWAU and RAP icing algorithms,
‘'was derived subsequently during data processing. For the period
March through May 1995, over 8,000 RAOBs from 85 sites ( both
civilian and military ) within the continental U.S. were ar-
chived.

As was done with the PIREPs, selection criteria were ap-
plied to RAOBs to determine those eventually used for data com-
parisons. For each of the 1757 previously selected PIREPs, a
search was made to find a RAOB‘at the appropriate date and time (
either 00Z or 12%Z ) and withip 80 km of thé PIREP location. If
successful, the distance from the grid point location previously
chosen for the PIREP to the radiosonde site ﬁas calculated and,
if within 80 km, the radiosonde was selected for study compari-
sons. The rather severe requirement that the PIREP, model grid-

point and radiosonde locations all be within 80 km dramatically
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reduced the final database to only 280 RAOBs at 25 sites ( see
Figure 3 ). It should be pointed out that each of these RAOBs is
not unique; in some cases, the same RAOB was assigned to multiple
PIREPS. Geographically, the locations of radiosonde sites are
fairly well distributed fhroughout'the continental U.S., although
no sites are available for the Northeast and within a rather wide
swath from the ndrthern Rockies and Great Plains southeastward to
the mid-South ( viz., Georgia ). By far, the largest number of
radioséndes‘used for model/PIREP data comparisons is at Denver,
CO ( 67, or~24% ); this site, plus Pittsburgh, PA, account for.
about 3 of every 8 radiosondes utilized. In addition to radio-
sonde locations, Figure 3 provides the total number of PIREPs
assigned each RAOB site according to three categories ( négative
icing, < MOG intensity and Mogc intensity ); one PIREP ( over
Oregon ) did not report an icing intensity. Overall, the percent-
age of < MOG intensity reports used for radiosonde comparisons (
~35% ) is about the same as the percentage of such reports within
the fuli PIREP dataset, while the percentages for negative icing
and MOG intensity reports are slightly higher and lower, respec-
tively. Although the number of MOG intensity reports is largest
at the Denver, CO radiosonde site ( 14V), the largest percentage
of such reports at any one site ( 50%, or 7.of 14 ) occurs at
Reno, NV.

For direct comparisons with PIREPs and model data, individ-
ual radiosondes are subdivided into the same five vertical 1éyers
- LOW, LOW-MID, MIDDLE, MID-HIGH and HIGH - as used for pilot

reports. The top and bottom heights for theseAlayers are found in
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an analbgous manner as those for PIREPs, except that radiosonde (
mandatory ) heighté are used in lieu of model constant pressure
surface heights to set layer limits. When néeded, a radiosonde
height value ét 925 mb ( and at any missiﬁg mandatory level,
surface to 300 mb ) is computed by logarithmically interpolating
with respect to pressure using height‘valﬁes of bracketing iso-
baric surfaces. Application of any of the four icing algorithms
used in this study to a particular radiosonde will provide a
yes/no icing determination for each vertical layer with at least
one radiosonde levei. For any layer with multiple-radiosonde
levels, a positive icing condition is specified if icing is .
diagnosed at one or mofe levels. For radiosonde-derived AIRF or
TESS icing analyses, the specification of an icing intensity and
type for any given radiosonde layer containing data at two or
more levels is analogous to the procedure used for PIREP layers
containing two different intehsities or types. In some instances,
the TESS icing type for a layer reporting two equal maximum
intensities is determined by comparing the forecast icing proba-
bilities of the two intensities, then selecting the icing type
corresponding to the larger probability.
3.4 Model Versus Radiosonde

Since model-applied algorithms infer icing by locating
temperature and humidity data within cerfain critical thresholds,
forecasts of icing may be significantly affected by biases in
model state parameters. If one assumes radiosonde measurements
are accurate to a certain degree of precision, then avéfage model
minus radiosonde differencés ( i.e., model biases ) may be con-

sidered to be significant if the magnitudé of such differences is
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well in excess of known radiosonde instrument precision. For the
25 radiosonde sites shown in Figure 3, the VIZ 'B-sonde' was the
dominant instrument type. According to Ahnert ( 1991 ), this
radiosonde has the following measurement precision : 2 mb, or
about 15-20 m ( pressure, heightb), 0.3°C ( temperature ) and 1.6
% (relative humidity ). Within the lower troposphere ( below 400
mb ), Ahnert finds that radiation errors are insignificant for
the VIZ 'B-sonde.'!

Table 8 provides average radiosonde values and model biases
for geopotential height, temperature, dew point temperature and
relative humidity, at seven constant pressure levels and three
forecast lengths ( Tau = 0, 12 and 24 hr ). These statistics are
based on 280 radiosondes, some of which are not unique ( due to
multiple PIREPs for the same soﬁde ) - The number of data at
lowest level ( 1000 mb ) is sﬁbstantially reduced due to a pre-
dominarice of radiosonde launches at higher elevations. Data
availability at 925 mb is lacking sinqe this pressure level is
not a standard radiosonde reporting level. Below 850 mb, statis-
tical sample size was further reduced due to significant differ-
ences in radiosonde and model elevations at several sites. Sample
size was largest ( smallest ) at Tau =.12 hr ( 0 hr ) because
more ( less ) model data were available. Geopotentiél height
biases are all well below radiosonde instrument precision ( 15-20
m ). Eliminating the data-deficit 1000 mb levei, témperature
biases roughly twice instrument precision ( i.e., between 0.5 and
0.9°C ) only occur between 925 and 700 mb at Tau = 12 and 24 hr.

These 'too warm' temperature biases are related, by hydrostatic
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Table 8. . Average radiosonde values and NOGAPS 3.4 model biases
for geopotential height, temperature, dew point temperature and
relative humidity, at seven pressure levels and three forecast
lengths ( Tau = 0, 12 and 24 hr ).

TAU = 0 TAU = 12 TAU = 24

PRES. NO. AVG. BIAS AVG. BIAS AVG. BIAS
(MB) DATA RAOB RAOB RAOB

GEOPOTENTIAL HEIGHT (M)

1000 18,22,19 - 115 -2.4 109 -2.0 115 -2.0
925 42,45,42 . 756 0.8 755 2.4 758 0.1
850 178,187,182 1460 -0.6 1458 2.4 1460 0.8
700 241,257,253 3022 -0.6 3023 1.7 3025 1.2
500 240,255,251 5614 =-0.5 5613 5.7 5616 5.4
400 240,256,252 7239 -0.5 7238 6.9 7241 7.1
300 237,253,249 9222 -2.1 9219 4.7 9223 5.3

TEMPERATURE (°C)

1000 18,22,19 19.3 1.9 18.7 -0.7 19.5 -0.5
925 42,45,42 11.7 0.2 11.8 0.7 11.8 0.6
850 178,187,182 5.3 0.1 5.5 0.7 5.5 0.9
700 241,257,253 -2.3 -0.1 ~ =2.4 0.5 -2.4 0.5

~ 500 240,255,251 -18.6 =-0.1 -18.7 0.2 -18.6 0.2
400 240,256,252 -30.4 =-0.0 -30.5 0.0 -30:.5 0.0
300 237,253,249 . -44.7. -0.2 -45.0 -0.2 -44.9 -0.1

DEW POINT TEMPERATURE (°c)

1000 18,22,19 16.7 -1.0 16.1 -0.3 "17.0 =-0.3
925 42,45,42 8.0 0.4 8.3 0.7 8.0 1.4
850 178,187,182 1.0 -0.9 1.1 -0.4 1.2 -0.4
700 241,257,253 -10.9 1.5 -10.7 2.1 -10.7 2.3
500 240,255,251 -30.3 1.5 -30.5 2.5 -30.5 2.8
400 -240,256,252 -42.4 0.9 -42.6 2.2 -42.5 2.3
300 237,253,249 -56.2 -2.4 -56.5 -1.0 -56.4 -1.1

RELATIVE HUMIDITY (%)

1000 18,22,19 85.4 -13.7 85.5 1.8 86.5 1.0
925 42,45 ,42 83.4 -1.0 84.4 -2.3 82.9 2.5
850 178,187,182 79.6 -4.2 78.8 -5.7 79.6 =5.7
700 241,257,253 61.8 5.3 63.2 5.6. ° 63.1 6.6
500 240,255,251 43.9 4.6 43.7 8.0 43.4 9.4
400 240,256,252 36.2 3.4 36.1 9.6 35.8 10.7
300 237,253,249 29.4 -6.7 29.3 -0.9 29.1 -1.6
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consistency, to slightly positive geopotential height biases ( 5
to 7'm ) found at higher levels ( viz., 500 to 300 mb ). By far,
the most significant model biases, and those most likely to
impact icing algorithm forecast performance, occur in moisture.
Between 700 and 406 mb, the model is considerably more moist than
‘what is observed, with biases increasing steadily with forecast
lead time. This 700-400 mb layer'represents a well-defined,
distinct moist layer; Td and RH biases immediately below and
above ( at 850 and 300 mb, respectively ) are all negative,
.iﬁdicative of a model atmosphere that is too dry. A very large
negative RH bias occurs at Tau = 0 hr and 1000 mb; the signifi-
cance of this statistical value is unclear since it is based only
on 18 data and does not have a corresponding large dew point
temperature bias.
4. VERIFICATION TECHNIQUES

‘Two statistical indices and a skill score discriminant,
derived from two by two contingency tabies, are used to evaluate
the ability of a chosen icing algorithm to predict discrete
yes/no icing conditions. Given a particular event ( viz., icing),
the prefigurance PF ( also known as the hit rate or waer'of
Deteqtion ) is the capability of correctly forecasting that
event, and is defined as the number of correct ( model- or RAOB-
derived ) forecasts divided by the number of reported occur-
rences. The false alarm rate FAR is a measure of the tendency to
overforecast, and is defined as the number of incorrect forecasts
divided by the number of reported "no icing" occurrences. The FAR
index’can be thought of as the probability that a 'no icing’

event will be incorrectly forecast. Due to the nonsymetric,
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biased nature of the PIREP database, the PF and FAR indices
should not be viewedv as being fully reliable statistical meas-
ures of forecasting performance; en'the other hand, for a given
database, they do provide meaningful'comparisons to be drawn
among different icing algorithms ( Brown et al., 1994 ).

The Hanssen and Kuipers ( 1965 ) discriminant v, defined as
the hit rate minus the false alarm rate ( PF - FAR ), provides an
acceptable and unbiased measure of forecast accuracy for 501en-
tific purposes. The score ranges from -1 to 1; -1 implies per-
fectly.wrong forecasts, 0, random performance ( PF ; FAR ), and
1, perfect skill. Since the V discriminant does not depend on the
sample relative.frequency of the predictand, forecast successes
and failures are given equal weight. In general, the greater the
positive score, the greater the likelihood for high hit rates to
be associated with low false alarm rates. Hanssen and Kuipers'
contingency fable formulation of variance will be computed in
order to assess whether or not differences between icing predic-
tors are statistically significant. Given values of V for two
predictors, the difference between them will be considered to be
'highly statisticallyleignificant' provided the skill ‘score dif-
ferenee is greater than the standard deviation in the difference
times a confidence factor set at a 0.01 level of significance (
i.e., 99% confidence level ). When used in this report, a 'sta-
tistically significant difference corresponds to a 0.05 level
of significance ( 95% confidence level ).

Statistical indices are computed for five distinct layers (

LOW to HIGH ) as well as for a columnal layer ( COLUMN ) which
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encompasses all icing data from the LOW through HIGH léyers. For
NOGAPS data, discrete Yes/no icing forecasts for a particular
algorithm are based on only one model—derived value for the LowW-
MID, MIDDLE, MID-HIGH and HIGH léyers ( corresponding to model
850, 700, 500 and 400 mb pressure levels, respectively ) and two
values for the LOW layer ( derived from 1000 and 925 mb data ).
Oniy pilot reports which specify icing intensity are used for
verification of binary yes/no icing forecasts. All four icing
algorithms provide a sﬁecific 'no icing' forecast category. A
designation of 'no icing' for a COLUMN layer ( PIREP, model or
RAOB ) "is only made provided the surface (i.e., lowest possible )
icing layer ( determined using terrain height ) and all layers
above explicitly have 'no icing!' category values. Both the NAWAU
and TESS algorithms are utilized twice. The predictor NAWAU (1)
provides a positive icing forecast if either category 1 or 2 is
forecast. NAWAU(2) is positive only if category 2 icing is fore-
cast within the specified layer; for this predictor, category 1
icing is considered a negative forecast. The TESS (YALL) predictor
yields a positive icing layer forecast if the probability of
icing is non-zero (i.e., 10, 20, 50 or 100% ). Much more restric-
tive, -TESS(Y100) provides a positive icing forecast only if the
algorithm forecasts a 100% probability of icing at any one level
within the specified layer. TESS(Y100) icing forecasts of 10, 20
and 50% probabilities are all considered 'no icing' forecasts,
and are;grouped with 0% probability forecasts.

Verification of icing intensity and type is possible using
both the AIRF and TESS algorithms. ( Note: the paucity of freez-

ing precipitation reports precludes any Verification of RAP's ZR
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and ZL icinQ categories.) For any specified icing layer ( LOW to
HIGH, or COLUMN f, the percent frequency of agreement between
reported and forecast‘( model or RAOB based ) icing type and
intensity as a function of reported type and intensity will be
' determined. These statistics, based on only positive ( i.e., yes
) icing’reports, include the frequency of agreement in type,
intensity, both type and £ntensity and, neither type nor intensi-
4ty. Type comparisons exclude reports of freezing precipitation (
ZR and ZL ), since these icing types are not forecast by either
algorithm. Because the AIRF and TESS algorithms forecast fewer
intensity categories than were reported, the reported intensities
are consolidated prior to comparison. Pilot report categories
TRC-LGT and LGT-MDT were combined with the next higher category (
LGT and MDT, respectively ) prior to comparison with either icing
algorithm. Reports of MDT-HVY, MDT-SVR and SVR were consolidated
into a single SVR category for TESS comparisons. Since the AIRF
algorithm does not forecast severe icing, any reported icing
intensity between LGT-MDT and SVR was assigned a MDT intensity
prior to comparison with AIRF forecasts. Incompatibility between
observed and TESS(YALL) forecast icing type is resolved by ex-
cludiné from comparisons all observed/forecast data pairs having
a forecast type 'induction' and intensity 'unknown.' A similar
incompatibility problem does not occﬁr for the TESS(Y100) predic-
tor since all forecasts of induction icing have been previously
set to a 'no icing' category prior to determination of icing type
and intensity for a particular layer. Given PIREP, model or

radiosonde icing types and intehsities for individual ( Low
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through HIGH ) layers, the composite COLUMN icing type is deter-
mined in an analogous procedure as that for any single PIREP or
radiosonde icing layer with multiple icing data ( previously
discussed in sections 3.2.3 and 3.3 ).

A comparison of PIREPs used in this study with previous
obsérvational studies ( Table f ) ‘indicates that the most preva-
lent icing intensity and type is light rime. In order to assess
the performance of the AIRF and TESS algorithms, icing intensity
and type forecasts will be compared to the predictor 'LGT RME.'
This predictor always assigns the icing intensity and type 'light
rimé' to any positive icing forecast. Specifically, given any
particular AIRF or TESS positiVe.icing forecast ( intensity trace
and above; type rime, mixed or clear ), the existing icing inten-
sity and type is converted to 'light rime' prior to comparison
with the corresponding pilot report. The predictor 'LGT RME' is
applied separately to icing determinations of each of the three
predictors ( AIRF, TESS(YALL) and TESS(Y100) ), for each of the
six icing layers ( LOW to HIGH, COLUMN ) and four categories of
agreement statistics.

5. COMPARISON RESULTS
5.1 Model and PIREPS

Overall verification statistics from PIREP-based verifica-
tion of icing algorithms usin§.NOGAPS 2.$° analysis, 12 and 24 hr
model data are presented in Table 9. For each of six iéing pre-
dictors, the prefigurance and false alarm rate indices, and the V
discriminant, are given for selected icing layers ( LOW to HIGH,
COLUMN ). Statistical differences in skill scores, at a 0.01

level of significance, are indicated by numbers appended to
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Table 9a. For selected icing layers ( LOW to HIGH, COLUMN ),
verification statistics ( PF, FAR, V ) from PIREP-based verifica-
tion of icing predictors with Tau = 0 hr NOGAPS 2.5° model data.

TAU = 0 HR . LAYER
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN

PREFIGURANCE (PF)

AIRF 0.183  0.455 0.288 0.321 0.310 0.564
NAWAU (1) 0.493  0.778 0.701 0.473 0.0 0.868
NAWAU (2) 0.451  0.677 0.517 0.135 0.0 0.688
RAP 0.493  0.767 0.689 0.342 0.0 0.855
' TESS (YALL) 0.0 0.752  0.521 0.582 0.448  0.817
TESS (Y100) . 0.0 0.526 - 0.344 0.333 0.207 0.560
FALSE ALARM RATE (FAR)
AIRF 0.063 0.107 0.150 0.095 0.023  0.179
NAWAU (1) 0.143 0.214 0.363 0.089 0.002  0.358
NAWAU (2) 0.143  0.169  0.243 0.018 0.0 0.255
RAP 0.135  0.212  0.355 0.068 0.0 0.358
TESS (YALL) 0.008 0.268 0.317 0.189 0.070  0.330
TESS(Y100) 0.0 0.131  0.179 0.056 0.017 0.160
_ HK DISCRIMINANT (V)
AIRF 0.120, 0.348 0.138 0.226 0.287  0.385
NAWAU (1) 0.3502 0.5642 0.338% 0.3842 -0.002 0.510
NAWAU (2) 0.3082 o0.508) 0.275' 0.117 0.0 0.434
RAP 0.358%2 0.5552 0.3333 .273! 0.0 0.496
'TESS (YALL) -0.008  0.484' 0.204 0.3932  0.379% o0.487
TESS (Y100) 0.0 0.395 0.166 0.277  0.190  0.400
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Table 9b. Same as a), except with Tau = 12 hr NOGAPS data.

TAU = 12 HR : LAYER

_—-.——---——-—--—-————————-—————-—-—-————_————-—-——.———-——_——_——_-«-.—

PREFIGURANCE (PF)

AIRF 0.235 0.291 0.234 0.387 0.323  0.549
NAWAU (1) 0.338 0.717 0.683 0.492 0.065 0.845
NAWAU (2) 0.338 0.558 0.537 0.165 0.0 0.651
RAP 0.338 0.713 0.678 0.375 0.0 0.829
TESS (YALL) 0.0 0.766 0.533 0.653 0.516 0.836
TESS(Y100) 0.0 0.415 0.375 0.375 0.129  0.558
FALSE ALARM RATE (FAR)
AIRF 0.090 0.089 0.111 0.105 0.026 0.188
NAWAU (1) 0.131 - 0.162  0.343 0.120 0.002 0.356
NAWAU (2) 0.115 0.106 0.212 0.018 0.0 0.198
RAP 0.131 0.159 0.321 0.067 0.002  0.347
TESS (YALL) 0.008 0.196 0.288 0.221 0.099 0.287
TESS(Y100) 0.0 0.092 0.153 0.071 0.022 0.109
HK DISCRIMINANT (V) :
AIRF 0.145 0.201_ 0.123 0.282 0.297 0.361
NAWAU (1) 0.207 0.5552 0.3402 0.372'  0.062 0.489
NAWAU (2) 0.223 0.452! o0.325Y 0.147 0.0 0.453
RAP 0.207 0.5542 0.3563 0.308' -0.002 0.482
TESS (YALL) . -0.008 0.5712 0.246' - 0.4322 0.4173 0.549!
TESS(Y¥100) 0.0 0.323  0.222°  0.304' 0.107 0.449

—-—-—————--———-—.._——————-——-—-—_—-———-——-——-——-———.——--—-——.—--—.———-—--

X number of lower score predictors difference is at 0.01
level of significance
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Table 9c. Same as.a), except with Tau = 24 hr NOGAPS data.

TAU = 24 HR . A LAYER
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN

———-—-—----——————-——-—--—-—_—-——-—--—_—_————-——-————————--.-....-._—-—_

PREFIGURANCE (PF)

AIRF 0.200 0.310 0.229 0.405 0.379  0.549
NAWAU (1) 0.431 0.694 0.626 0.522 0.034 0.833
NAWAU (2) 0.431 0.561 0.490 0.190 0.0 0.649
RAP 0.431 0.678 0.624 0.379 0.0 0.800
TESS (YALL) 0.046 0.737 0.477 0.716 0.655 0.831
TESS (Y100) 0.046 0.427 0.294 0.409 0.172  0.554
FALSE ALARM RATE (FAR)
AIRF 0.050 0.076 0.085 0.096 0.044  0.140
NAWAU (1) 0.151 0.161 0.306 0.111 0.002  0.360
NAWAU (2) 0.134 0.102 0.162 0.029 0.0 .0.180
RAP 0.160 0.158 0.282 0.084 0.0 0.340
TESS (YALL) 0.008 0.195 0.245 0.212 0.101  0.250
TESS(Y100) 0.0 0.102 0.122 0.086 0.022  0.130
HK DISCRIMINANT (V)
AIRF 0.150 0.234_  0.144 0.309'  0.335  0.409
NAWAU (1) 0.280 0.5332 0.3202° 0.410' 0.032 0.473
NAWAU (2) 0.296 0.4591! 0.3282 0.160 0.0 0.469
RAP 0.271  0.5202 0.3423  0.295 0.0 0.460
TESS (YALL) 0.038 0.5422 0.232 0.5044% 0.5544 (.581
TESS(¥100) 0.046 0.326 0.172 0.3241  0.150 0.424

x number of lower score predictors difference is at 0.01
level of significance :
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individual V scores. Specifically, for a given icing predictor,
an appended number indicates how many of the lowest V scores (
within the same icing level ) are highly statistically different
from the score of the selected predictor. As an example, consider
the MIDDLE column statistics for Tau = 0 hr ( Table 9a ); he:e,
both the NAWAU(1) and RAP skill scores are highly statistically
different from the lowest three scores (i.e., those for AIRF,
TESS(YALL) and TESS(Y100)' ), and the NAWAU (2) skill'score is
highly statistically different from the lowest V score ( corre-
spondipg to the AIRF predictor ).

As indicated in Téble 9, the ratio of yes/no icing reports
used for verification is most éven for the MIDDLE column. Verifi-
cation of icing forecasts within the HIGH layer is strongly
skewed-téward negative icing occurrences. On the other hand, over
90% of verifying PIREPs for the cumulative COLUMN layer corre-
spond to positive icing. The numbef of negative icing‘PIREPs used
for Verification decreases slightly with forecast length within
all icing. layers. The number of positive icing PIREPs also de-
Creases over the full forecast interval for the lowest two lay-
ers; however, for the uppér three layers and the COLUMN layer,
the nuﬁber of positive icing reports is greatest at Tau = 12 hr,
least at Tau = 24 hr.

Concentrating first on analysis ( Tau = 0 hr ) verification
statistics, one observes that the NAWAU(1) and RAP icing predic-
tors ( both refinements of the Schultz- Politovich icing algo—
rithm ) have the best capability in diagnosing icing occurrence

for the LOW to MIDDLE, and COLUMN, layers. High PF values, which
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exceed 0.75 and 0.85 for the LOW-MID and COLUMN layers, respec-
tively, are likely abetted by these two predictors:’ relatively
low RH thresholds for cloud icing ( Note: RAP's dominant icing
categories are 'stable' and 'unstable'.) At the same time, these
"generous" moisture thresholds result in FAR indices fer these
two predictors among the highest of all predictors for the Low fo
MIDDLE and COLUMN layers. NAWAU (1) and RAP forecast capability
decreases noticeably from the MIDDLE to MID-HIGH layers, then
becomes nonexistent at the HIGH laYer, as model temperatures fall
below algorithm icing threshold limits. With more restrictive (
i.e., higher ) moisture thresholds for icing prediction, the
NAWAU(2) predictor has somewhat lower PF and FAR indices than
those for NAWAU(1). A widening gap in'NAWAU(i) and NAWAU(2)
forecast capability occurs from the LOW to MID—EIGH layers; at
the MID-HIGH layer, model RH values are mostly well below the
NAWAU(2) threshold limit of 75%. For the LOW layer, both TESS
predictors indicate no forecast capability. Since all other
algorithms forecast positive icing events within the LOW layer,
this result likely has much more to do with the way the ‘TESS
algorithm computes icing than with actual T and Td icing thresh-
olds. -Under usual circumstances ( viz., no saturation at the
lowest model level ), the TESS algorithm requires at least two
levels to define a cloud icing layer.'Therefore, unless model
terrain heights corresponding to positive icing reports within
the LOW layer are at or below 1000 mb, positive icing will gener-
ally not be forecast. Since all but one of combined TESS(YALL)
and TESS(Y100) LOW layer icing forecasts are negative, most of

these TESS forecasts likely were derived from model profile data
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commencing at 925 mb. From the LOW to LOW-MID layer, the
TESS(YALL) PF value jumps from zero to about 0.75; this value is
comparable to those for NAWAU(1) and RAP. With its ability to
forecast icing at lower temperatures than other predictors,
TESS(YALL) has the highest PF and FAR scores at both the MID-HIGH
and HIGH layers. Since TESS(Y100) limits icing to a more restric-
tive temperature range ( 0 > T > =22 °c ), its PF and FAR statis-
tics are generally considerably lower than those for TESS(YALL}.
Limited by quite stringent moisturé thresholds, the AIRF predic-
tor's forecast capability ranks below most of the other predic-
tors ekcept at the HIGH layer, where its PF score‘ranks second to
that for TESS(YALL). For the LOW-MID and MIDDLE layers, FAR
indices for AIRF are the lowest (i.e., best ) of any predictor.
In terms of skill score ( V ), the NAWAU (1) and RAP predic-
tors are best for the lowest three layers ( LOW to MIDDLE ) and
the NAWAU(2) predictor third best ( Table 9a). For the LOW-MID
and MIDDLE layers, the V differences between both NAWAU(1) and
RAP, and either AIRF or TESS(Y100), are highly statistically
significant. At the MID-HIGH layer, NAWAU(1) and TESS(YALL)
exhibit the best skill, and NAWAU(2) the least. The TESS(YALL)
predictor is the most skillful within the HIGH layer; differences
in V scores between this predictor and NAWAU (1), NAWAU(2) and
RAP are all highly statistically significant. Due to virtually
nil icing forecast capability, HK discriminant values are zero or
near zero for TESS at the LOW layer and, NAWAU and RAP at the
HIGH layer. For the COLUMN layer, skill scores for NAWAU (1), RAP

and TESS(YALL) are the highest ( all near 0.5 ) ; however, no
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highly statistically significant differences in V are found among
any of the six icing predictors. A comparison of Tau = o hr Low
to HIGH layer skill scores indicates that, for all icing algo-
rithms, the highest score (i.e., best overall forecaéting skill )
occurred at the LOW-MID icing layer.-Iﬁterestingly, for this
layer, the average skill score of all six predictors exceeds that
for the COLUMN layer by about 0.25. |

A comparison of 12 and 24 hr icing verification statistics
( Tables 9b and ¢ ) with 0 hr ( Table 9a ) results indicate that,
while some variations in statistical rankings ( PF, FAR and V )
do occur, the significant forecasting relationships found among
the various icing algorithms when using model analysis data ( de-
tailed above ) generally hold for model-derived icing forecasts
at the longer 12 and 24 hr lengths. In general, for any selected
icing layer, the predictor with the best PF statistical value (
or the predictor with the best V score ) is the same for 0, 12
and 24 hr‘forecasts. An exception té this result only occurs at
the LOW-MID layer, where the NAWAU(1) and RAP prefigurance values
are slightly higher than TESS(YALL) at Tau = 0 hr, but are some-
what lower than TESS(YALL) at both Tau = 12 and 24 hr. At the
MID-HIGH layer,'all six predictors indicate an increase in fore-
cast capability over the 0 to 24 hr forecast interval; a similar
upward trend in PF values with lead time occurs for TESS(YALL)
and AIRF at the HIGH layer. This result relates directly with the
steadily increasing positive model bias in moisture at mid tropo-
sbheric levels ( see Table 8 ); given highgr model moiéture over
time, more positive icing forecasts should occur as algorithmic

moisture thresholds are increasingly surpassed. Statistical tests
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indicate that differences in V scores as a function of forecast
lead time areé generally not significant; the only exception to
this result occurs for the AIRF predictor, whose V score differ-
ence between Tau = 0 and 12 hr at the LOW-MID layer is highly
statistically significant. The NAWAU(1l) predictor's three 'best
skill' rankings at Tau = 0 hr ( for the LOW-MID, MIDDLE and
COLUMN layers ) are not repeated at either Tau = 12 or 24 hr,
being replaced by either TESS(YALL) ( LOW-MID and COLUMN layers )
or RAP ( MIDDLE layer ). For any given layer, the top skill score
émong predictors is the same at both Tau = 12 and 24 hr; tﬂe
TESS(YALL) predictor has the highest V scores a£ all layers
except LOW and MIDDLE, where the NAWAU(2) and RAP predictors,
respectively, score best. With lower NAWAU and RAP LOW layer
skill scores at 12 and 24 hr ( compared to those at 00 hr ),
differences in V between these predictors and TESS ﬁré not highly
statistically significant at either 12 or 24 hr. The superiority

of TESS(YALL) at upper levels ( MID-HIGH and HIGH ) is most

- evident at Tau = 24 hr, where differences in V between this

predictor and four others are highly statistically significant.

In order to further examine the effect of forecast length

- on model-derived icing forecasts, performance statistics based on

best overall statistical value over the 0 to 24 hr forecast
interval were computed. For a given statistical measure ( PF,
FAR, V ), Table 10 gives the number of predictors with the best
statistical value at Tau = 0 hr, at Tau = 12 hr and at Tau = 24
hr, as a function of icing layer. For example, consider the‘skill

score discriminant for the COLUMN layer; here, 2 of 6 icing
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Table 10. For a given statistical measure ( PF, FAR, V ), the
number of predictors with the best statistical value at Tau = o0,
at Tau = 12 and at Tau = 24 hr, for selected icing layers.

——-.————.———--.-————..—_—-——————.—————-_..—...———_————-—————-———_—__--—_-..

3
LOW-MID 5
MIDDLE 3
MID-HIGH 0
HIGH 1
COLUMN 5

_—-————_—_—_—-—__..._-._—_-._...._-...———_———————-—--——-—-————_—_._-—._..._-—-

——-———_————————_—_——————_——-————_—_—-—--—-————-—-——————-—-——-_—.——_

Table 11. For a given statistical measure ( PF, FAR, V ), the
number of icing layers with the best statistical value at Tau =
0, at Tau = 12 and at Tau = 24 hr, for selected icing predictors.

———-——-—..———_-———_._—_-__———_——...—_——_————-—--.-———-——————_--—..———_—
—-——.-—_————-—_——_—_—_.——...—._————_——-—-——-——-—-————————--——_—_—_-—————

PREDICTOR
AIRF 3
NAWAU (1) 4
NAWAU (2) 3
RAP 4
0
3

——.————-—--—_—--———-_——-—.—-—-—--—-————————-—-———-————

TESS (YALL)
TESS (Y100)




predictors had their highest V score at Tau = 0 hr, one at Tau =
12 hr, and 3 at Tau = 24 hr. In some céses, a particular statis-
tical measure might not have a 'best' score at any one particular
forecast length; when thié occurred, that particular predictor
was not included statistically and the Tau = 0} 12 and 24 hr sum
of best predictor scores for the given layer was less than six (
ex., HK discriminant, HiGH layer; O, 12, and 24 hr sum is only 4
) - | |
Table 10 numerical totals ( of all six icing layers )

indigate‘that collectively, while this study's icing algorithms
had best forecast capability ( i.e., highest PF scores ) at Tau =
0 hr, they had fewest false alarms and overall best ékill (Vv
scores ) at the 24 hr forecast iength. In a collective sense,
forecasting performance at Tau = 12 hr was the poorest of the
three forecast lead times. Within the LOW-MID and COLUMN layers,
most predictors had best PF values using analysis ( Tau = 0 hr )
data; on the contrary, at the MID-HIGH level, all predictors had
best PF scores when using 24 hr forecast data. While FAR scores
for most pfedictors are best at Tau = 24 hr for the LOW-MID and
MIDDLE layers, such scores for the highest two layers ( MID-HIGH:

and HIGH ) are best at Tau = 0 hr. Five of the six predictors

~exhibit best forecasting skill ( i.e., highest V score ) within

the LOW-MID ( MID-HIGH) layer at Tau = 0 hr ( Tau = 24 hr ). This
particular result correlates well with analogous PF statistics,
but poorly with those for FAR scofes, suggesting that the skill
score discriminants ( PF - FAR ) of study icing algorithms are
more sensitive to high PF values than low false alarm rates.

Although 12 hr icing predictions were overall less skillful than
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those based on model 0 or 24 hr data, four of six’predictors had
- highest V scores for the MIDDLE layer af Tau = 12 hr.

Overall forecasting performance may also be examined in
terms of individual predictors. For a given statistical measure (
PF, FAR, V ), Table 11 gives the number of icing layers ( LOW to
HIGH, COLUMN ) with best statistical value at Tau = 0, 12 and 24
hr, for selected icing predictors. For both NAWAU predictors and
RAP, highest PF values mostly occur when predictions are based on
model analysis data while lowest FAR scores generally occur when
icing forecasts are based on NOGAPS 12 and 24 hr data. TESS (YALL)
fcrecast capablllty is better at the longer ( 12 and 24 hr )
forecast lengths. For the majority of icing layers, both the ATIRF
and TESS(YALL) predictors exhibit highest skill at Tau = 24 hr.
Based on Table 11 data, the NAWAU(l) and RAP predictors show a
steady decline in forecasting skill ( V) with lead tlme, while
the opposite occurs for TESS (YALL) .

For a first examination of the AIRF and TESS algorithm;'
ability to differentiate icing}type and intensity, the observed
number of instancgs of selected icing types and intensities
compared with number forecast, based on COLUMN layer data at Tau
= 0 hf, is presented in Figure 4. Results indicate that both
icing algorithms considerably overforecast 'no icing' conditions.
- Specifically, the TESS(YALL) and AIRF forecast/observed ratios of
'no icing' conditioné are between 4:1 and 5:1, while the number
of TESS(Y100) forecasts of 'no icing? éxceeds number observed by

about a 2.5 to 1 ratio. Of positive icing reports, the vast

majority are of intensities light and moderate ( Figure 4a ).
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Figure 4. a. The observed number of selected icing intensities
compared with number forecast by the AIRF, TESS(YALL) and
TESS(Y100) predictors, based on COLUMN layer data at Tau = 0 hr.
b. Same as a., except for selected icing types.
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While the AIRF algorithm only somewhat underforecasts occurrences
of both TRC and LGT icing intensities, it considerably underfore-
casts ( along with both TESS predictors ) occurrences of MDT
intensity icing. Both TESS predictors, most especially
TESS(Y100), greatly underprédict the most observed icing intensi-
ty - light. On the other hand, TESS(YALL) and TESS(Y100) both
Yield many more forecasts of severe icing conditions than ob-
served; a similar result holds for the TRC icing category. Figure
4b indiéateg that rime icing is by far the most dominant icing
tYpe, being reported four times as often as mixed and about 10
times as often as CLR; Rime icing is underforecast by all three
predictors, most especially TESS(Y100). Both TESS predictors
overforecast clear icing conditions; however, the numbér of mixéd
icing reports is similar to the number forecast by each of the
TESS predictors. Finally, while the AIRF algorithm forecasts less
than half ( 42% ) as many mixed icing conditions as actually ob-
served, this predictor's number of clear icing forecasts is
somewhat greatef ( by 24 ) than the observed number of such icing
events. ' |

To further examiné the analysis ( Tau = 0 hr ) COLUMN layer
dataset of Figure 4, percent frequencies of agreement between
observed and forecast icing type and intensity are determined.
These percentages are computéd both as‘a function of observed,
and forecast,‘type and intensity ( Tables 12a and b, respectively
) - TESS(YALL) compilations of Table 12a do not include 'induc-
tion' icing forecasts, while Table 12b tabulations exclude re-
ported ZR,ZL icing conditions. For this particular dataset,

TESS(YALL) correctly forecasts almost half of all reported rime
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Table 12. a) For the AIRF, TESS (YALL) énd TESS(Y100) predictors,

percent frequencies of agreement between observed and forecast

icing type and intensity for the COLUMN layer at Tau = 0 hr, as a

function of observed type and intensity. b) Same as a),

a function of forecast type and intensity.

TESS (YALL)

TESS (Y100)

b)
AIRF
TESS (YALL)

TESS (Y100)

238/644 8/62 13/172
37.0% 12.9% 7.6%
305/634 16/62 36/169
48.1% 25.8%  21.3%
130/644 20/62 347172
20.2% 32.3% 19.8%

238/351 8/86  13/72
67.0% 9.3%  18.1%.
305/422 16/151 36/167
72.3% 10.6% 21.6%
130/177 20/187 34/141
73.4% 10.7%  24.1%

P e — — —— — — - ——————— —— - —————
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"6/97 178/476 427377
6.2%  37.4%  11.1%
35/97 27/464 56/356 3/18

36.1% 5.8%  15.7% 16.7%
27/97 4/476 46/359 3/18
27.8% 0.8% 12.8% 16.7%

6/49 178/398 42/108 —w
12.2% 44.7% 38.9%
35/313  27/86 56/173 3/224
11.2%  31.4%  32.4%  1.3%
27/227 4/4 46/135 3/183
11.9% 100.0% 34.1% 1.6%
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icing events, AIRF 3 out of 8 such occurrences, and TESS(Y100),
only 1 of 5. Both TESS predictors outperform AIRF in forecasting
observed CLR and MXD icing events, with percent frequencies of
égreement for TESS(YALL) and TESS(Y100) between 2 and 3 times
higher than AIRF. In fegards to icing intensity, the AIRF predic-
tor is far better than either TESS predictor in assessing report-
ed light icing intensities; even so, the AIRF algorithm only
correctly forecasts 3 out of every 8 sucﬁ events. Both TESS
predictors forecast TRC icing events consider;bly better than
AIRF; nonetheless, the best predictor ( TESS(YALL) ) is only
abie to correctly assess about 3 of 8 trace icing occurrences.
For moderate and severe icing, all three predictors provide
similarly low forecasting capability, with percent frequencies of
agreement between 11 and 17 %. Table 12b results indicate that,
in spite of noticeable differences among predictors in the number
of icing type forecasts, percent frequencies of agreement for any
selected icing type are similar for all three predictors. Fore-
casts of RME icing are most accurate, with verification rates
about 70% for each predictor. Both CLR and MXD icing types are
significantly overforecast by each predictor, with only about 10%
( 26%.) of CLR ( MXD ) icing forecasts actually verifying. For
TRC and LGT intensities, large differences are noted among pre-
dictors in the number of issued forecasts; for example, at the
LGT intensity categéory, almost 400 forecasts were issued by the
AIRF algorithm, only 4 by TESS(Y100). For either the TRC or MDT
icing category, percent frequencies of agreement are similar for

all three icing predictors; however, percentages for MDT icing




are about 3 times higher than those for the LGT icing category.

The AIRF predictor's best verification of icing occurs for the

“highly reported LGT category, with almost a 45% frequency of

agreement; interestingly, all 4 TESS(Y100) forecasts of light
icing verified. Overforecasting of severé icing conditions is a
serious problem for both TESS predictors, with many forecasté (-~
200 ) and few verifications ( 3 ).

Tables 13a-c present bercent frequencies of agreement
between reported and forecast (. AIRF, TESS(YALL), TESS(Y100) )
icing type and intensity, for 6 icing layers ( LOW to HIGH,
COLUMN ) and 3 forecast lengths ( Tau = 0, 12, 2@ hr ), as a
function of observed type and intensity. Within these tables, the
first value in the "No. Data" column for a given layer and sta-
tistic corresponds to both the AIRF and TESS(Y100) predictors,
while the second valﬁe ( in parenthesis ) corresponds to the
TESS (YALL) predictor. In general; the number of data for the
TESS(YALL) predictor ( at the LOW-MID, MIDDLE and CbLUMN layers )
are reduced somewhat with respect to the other two predictors,
since 'induction' type icing forecasts are not included in the
statistics. For a given layer, forecast tau and agreement statis-
tic, theApercentage in parenthesis after any of the three icing
predictors, corresponds to the percent frequency of agreement for
the 'LGT RME' predictor based .on that particular
observation/predictor dataset.

Results presented in Table 13 indicate that, regardléss of
the icing layer or forecast length, ‘or which of the four icing
agreement classifications is selected, percent frequencies of

agreement for TESS(Y100) are always the worst ( or tied for the
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Table 13a.
percent freq
icing type a

Tau =

predictor ( see text for further

—_————-.——————-—--—_———----—--——-—-——_-.——-—-—-——-——-———-—_--

o o o 0 0 o e i o e e o e . B o . . . e et o . i, . H v S . e e

——.————-—-—-—————.——-—.——..—.——-——-——-———-————-—-——-————-—

——_.—-————-——————-———-—-——————_—-—_-——————-—

——-———————--——-—_———--—-—-—-—-.—--.—».—.——..—_———-

TAU = 0 HR
NO.DATA
LAYER
LOW 67 (67)
LOW-MID 241(220)
MIDDLE 516 (499)
MID-HIGH 217(217)
HIGH 27 (27)
COLUMN 878(865)
LAYER
LOW 71 (71)
LOW-MID  266(241)
MIDDLE 549 (532)
MID-HIGH 237(237)
HIGH 29 (29)
COLUMN 950(935)
LAYER
LOW 66 (66)
LOW-MID  236(215)
MIDDLE 512 (495)
MID-HIGH 216(216)
HIGH 27 (27).
- COLUMN 869 (856)
LAYER
LOW 66 (66)
LOW-MID = 236(215)
MIDDLE 512 (495)
MID-HIGH 216(216)
HIGH 27 (27)
COLUMN 869(856)

9.0%
13.3%
16.9%
24.0%
25.9%
29.5%

7.0%
21.8%
10.6%
13.5%
13.8%
23.8%

84.8%
71.2%
77.9%
70.8%
70.4%
58.5%

information ).

PREDICTOR
TESS (YALL)

TYPES AGREE

(9.0%)
(32.4%)
(20.5%)
(25.3%)
(25.9%)

0.0% (0.0%)
37.7% (49.5%)
20.8% (37.7%)
25.3% (44.7%

18.5% (37.0%

INTENSITIES AGREE

(8.5%)
(22.2%)
(14.4%)
(16.5%)

(3.0%)
(13.1%)
(10.7%)
(12.0%)
(11.1%)
(18.1%)

(84.8%)
(59.7%)
(75.4%)
(70.4%)
(70.4%)
(52.0%)
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(0.0%)
(22.3%)
(17.4%)
(22.7%)
(22.2%)
(29.3%)

(100.%)
(38.1%)
(56.2%)
(48.6%)
(59.3%)
(30.4%)

0.0%
27.8%
14.3%

6.9%

100.%
69.1%
81.6%
91.7%
96.3%
74.7%

For the AIRF, TESS(YALL) and TESS(Y100) predictors,
uencies of agreement between reported and forecast
nd intensity based on selected ici
sifications, for selected icing 1la
0 hr. Percentages in paren

ng agreement clas-
yers ( LOW to HIGH, COLUMN ) at

theses correspond to 'LGT RME!

(0.0%)
(34.9%)
(24.2%)
(23.0%)
(18.5%) -
(39.0%)

(0.0%)
(26.7%)
(16.9%)
(14.8%)
(10.3%)
(26.5%)

NEITHER TYPE NOR INTENSITY AGREE

(100.%)
(54.7%)
(70.3%)
(72.2%)
(77.8%)
(52.6%)

T — — — - " - —— —— — — o — ——— — 2




Table 13b.

Same as a),

except at Tau =

12 hr.

T D 0 0 0 D e (s e . S e S s e T o s . D B S . T o —— _——_— " a0 . T e > o S

PREDICTOR
TESS (YALL)

- TYPES AGREE

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

LAYER
Low
LOW-MID
MIDDLE
MID-~HIGH
HIGH
COLUMN

64 (64)
243(214)
534 (515)
227(227)

29 (29)
898 (882)

68 (68)
265(233)
568 (548)
248 (248)

31 (31)
969 (952)

(14.1%)
(20.2%)
(17.6%)

P
[\S)
~
[2))
o®
N S N

0.0%
38.3%
19.2%
22.5%
31.0%
39.3%

(0.0%)
(51.9%)
(38.6%)
(49.8%)
(44.8%)
(61.0%)

INTENSITIES AGREE

(19.1%)
(14.3%)
(11.1%)
(18.5%)
(16.1%)
(26.6%)

(0.0%)
(34.8%)
(23.5%)
(33.1%)
(29.0%)
(40.0%)

0.0%

(0.0%)
(28.0%)
(27.3%)
(28.6%)
(13.8%)
(40.2%)

(0.0%)
(21.1%)
(16.7%)
(18.5%)

(3.2%)

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

63 (63)
238(209)
530(511)
226(226)

29 (29)
889(873)

BOTH TYPE AND INTENSITY AGREE

(14.3%)
(8.8%)
(8.3%)

(15.0%)

(13.8%)

(19.1%)

o0 o\° o\ o o0 o\

WOoONdWO
.
NONOTIO O

(0.0%)
(23.0%)
(17.2%)
(27.0%)
(27.6%)
(30.1%)

(11.7%)
(14.2%)

(3.4%)
(18.8%)

T D D R L G S S S O S s i . e S S T — s ————— —— —— — — " ———————— . — 2

LAYER
Low
LOW-MID .
MIDDLE
MID-HIGH
HIGH
COLUMN

63 (63)
238(209)
530(511)
226(226)

29 (29)
889(873)

NEITHER TYPE NOR INTENSITY AGREE

81.0%
78.6%
80.8%
69.0%
69.0%
58.8%

(81.0%)
(73.5%)
(79.2%)
(65.9%)
(69.0%)
(53.1%)

(100.%)
(36.8%)
(54.6%)
(43.4%)
(51.7%)
(28.3%)

(100.%)
(64.3%)
(67.2%)
(67.3%)
(86.2%)
(51.5%)

s i Y S s e s S W T e o S Y — T~ — -~ —— ——— o ———— ——— 3. >t 7 o > o
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Table 13c.

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
"HIGH
COLUMN

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

LAYER
LOW
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

62 (62)
231(198)
491(468)
212(212)

26 (26)
835(819)

65 (65)
255(218)
524 (499)
232(232)

29 (29)
905 (885)

61 (61)
228(195)
487 (464)
211(211)

26 (26)
828(812)

61 (61)
228(195)
487 (464)
211(211)
26 (26)
828(812)

BOTH TYPE AND INTENSITY AGREE

9.8%
4.4%
6.2%
13.7%
11.5%
13.3%

83.6%

77.2%

81.5%
66.4%
65.4%
58.2%

Same as a), except at Tau =

24 hr.

PREDICTOR
TESS (YALL)

TYPES AGREE

(12.9%)
(20.8%)
(17.5%)
(30.7%)
(34.6%)
(38.7%)

1.6%
38.9%
19.0%
25.0%
46.2%

(1.6%)
(48.9%)

(34.2%)-

(53.3%)
(61.5%)

INTENSITIES AGREE

(16.9%)
(16.5%)
(12.8%)
(20.3%)
(17.2%)
(28.3%)

(13.1%)
(11.4%)
- (10.3%)

(15.6%) -

(15.4%)
(20.4%)

,\
0]
w
L]
[
o
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1.5%
10.1%
5.8%
6.0%
3.4%
12.1%

98.4%
56.4%
78.0%
71.6%

(3.1%)
(32.6%)
(21.0%)
(36.2%)
(34.5%)
(40.1%)

1.6%

(1.6%)
(27.7%)
(21.6%)
(29.2%)
(15.4%)
(38.9%)

(3.1%)
(21.6%)
(15.5%) .
(19.8%)

(3.4%)
(27.5%)

(0.0%)
(21.5%)
(15.7%)
(28.0%)
(34.6%)
(29.6%)

(0.0%)
(13.2%)
(11.5%)
(13.3%)

(3.8%)
(19.2%)

(95.1%)
(40.5%)
(59.7%)
(37.4%)
(34.6%)
(28.3%)

(95.1%)
(64.5%)
(73.9%)
(64.5%)
(84.6%)
(52.3%)




worst ) among the three icing predictors. Regarding agreement in
icing type, the TESS(YALL) predictor scored the highest percent-
ages at the LOW-MID, MIDDLE and COLUMN layers at all 3 forecast
lengths, while the AIRF predictor did the same at the LOW layer.
In general, icing type percent frequencies of agreement for AIRF
increase with layer height. For any individual layer, the most
dramatic change over time in pefcent agreement of icing type
occurs for TESS(YALL) at the HIGH layer, which rises from 18.5%
at Tau = 0 hr to 46.2% at Tau = 24 hr. With only one exéeption (
ﬁIDDLE layer, Taq =‘12 hr ), the highest percent frequencies of
agreement for icing intensity correspond to the AIRF predictor.
For the most part, agreement percentages for intensity are less
than corresponding values for icing type for all three predic-
tors; in several instances; differences in percent frequency
between type and intensity exceed 25% for TESS(YALL). As one
might expect, frequency of agreement statistics requiring ob-
served/forecast agreement in both type and intensity are the
lowest among the 4 statistical ciassifications; except for the
AIRF predictor.at the COLUMN and highef layers, percent frequen-
cies of agreement in 'both type and intensity' do not exceed 10%.
Resul£s for the classification 'neither type nor intensity agree!
are similar to those for agreement in type, with the TESS (YALL)
‘predictor~y1elding best. ( i.e., lowest ) percent frequéncies of
agreement at the LOW-MID, MIDDLE and COLUMN iayers at all 3
forecast lengths, and the AIRF predictor at the LOW and MID-HIGH
layers. Additionally, for this particular classification, a

noticeable improvement over time occurs for TESS (YALL) at the
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HIGH layer, with a decrease in percentage from -~ 78% at Tau = 0
hr to 50% at Tau = 24 hr. This value of 50% represents the abso-
lute lowest (i.e., best ) percéntage for the 'neither type nor
intensity' agreement classification among all predictors, at all
three forecast lengths. Finally, for any selected icing predic-
tor, comparisons among analysis, 12 and 24 hr bercent frequency
of agreement statistics do not indicate any significant or defin-
itive trends with time in the prediction of either icing type or
intensity.

By far, the most intriguing results pfesented in Table 13
concern the comparisons among the AIRF and TESS predictors and
.the hypothetical 'LGT RME' prédictor. For the data-rich layers (
LOW-MID through MID-HIGH, COLUMN ) » percent frequencies of agree-
ment for the 'LGT RME' predictor, for all forecast lengths and
agreement classes, are always higher than corresponding percent-
ages for any particular predictor (AIRF, TESS(YALL), TESS(Y100) )
selected. Additionally, for the more data-poor layers ( LOW and
HIGH ), peréent frequencies of agreement for 'LGT RME' are equal
or higher than those for AIRF or TESS predictors except for
agreement in 'both type and intensity' at Tau = 24 hr, where both
TESS predictors are marginally higher ( at an insignificant 1.6%
). The fact that a prediction of icing type and intensity, based
on historical most likely cdtegories ('viz., light rime ), is
generally more accurate than what can be achieved by operational
icing aigorithms such as AIRF and TESS attests to the great
difficulty such algorithms encounter when-attempting to'differen-
tiate icing typé and intensity.

Further examination of Table 13 results indicate that, for
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the most part; differences in percent frequency of agreement
between the 'LGT RME! predictor and TESS(YALL) are the largest
while those between 'LGT RME' and the AIRF predictor are the
smallest; in séveral instances-( mostly at Tau = 24 hr ), differ-
ences between 'LGT RME' and TESS(YALL) exceed 30%. For all layers
except LQW, 'LGT RME' percent frequencies of agreement are always
best when based on TESS (YALL) forecast/observed datasets; at the
LOW layer, frequencies computed using AIRF datasets are best. For
the COLUMN layer, TESS(YALL) ~-based 'LGT RME' percent frequencies
are about 60% for type agreement, 40% for intensity.agreement,
and near 30% for agreement in 'both type and intensity' and
'neither type nor intensity'. When coﬁpared, these percent fre-
quencies of agreement are considerably better than corresponding
'LGT RME' percentages based on either AIRF or TESS(Y100) data-
sets. .
5.2 Model, Radiosondes and PIREPs

In this section, two main topics will be explored in depth;
one, the skill level of model;based ( NOGAPS ) icing predictions
compafed to radiosonde-based predictions and two, the importance
of vertical data resolution in icing predicfion. For a given
statiétical measure ( PF, FAR, V ), Table 14 givés the cumulative
number of icing predictors,‘summed over Tau = 0, 12 and 24 hr,
with best statisticai value based on NOGAPS ( NG ) and radiosonde
( RAOB ) data, at selected icing layers. Here, RAOB data includes
both standard and significant levels, NOGAPS only standard levels
plus 925 mb. Given a particular layer and statistic, the maximum

number possible for either model- or RAOB-based predictions is 18

54



Table 14. For a given statistical measure ( PF, FAR, V ), the
cumulative number of icing predictors, summed over Tau = 0, 12
and 24 hr, with best statistical value based on NOGAPS ( NG ) and
radiosonde ( RAOB ) data, for selected icing layers.

-—-—--——-——-—————-——--—--———-—_——---——---———_-—.-—--—.----._.————————

DATA SOURCE (NG) (RAOB) (NG) (RRAOB) (NG) (RAOB)
LAYER

LOW 0 3 9 3 6 6
LOW-MID 0 16 18 0 2 16
MIDDLE 0 18 18 0 0 18
MID-HIGH 3 15 16 2 3 15
HIGH 1 5 7 7 6 8
COLUMN 3 15 8 4 6 12
TOTAL 7 72 76 16 23 75

—.—_——_.————_——_-—-———-.—-—-—_——-——————-———.—_——————-—————-—_—_-———.—_——-

Table 15. For a given statistical measure ( PF, .FAR, V ), the
cumulative number of icing layers, summed over Tau = 0, 12 and 24
hr, with best statistical value based on NOGAPS ( NG ) and radio-
sonde ( RAOB ) data, for selected icing predictors.

-—-———..—_——-—————-.————_—————_—————_——_—.——————————_——_———--—_.-.-—-———

DATA -SOURCE (NG) (RAOB) (NG) (RAOB) (NG) (RAOB)
PREDICTOR

AIRF 0 13 13 4 3 15
NAWAU (1) 1 12 15 1 6 10
NAWAU (2) 0 12 10 1 0. 13
RAP ' 0 11 . 15 1 4 12
TESS (YALL) 6 11 10 6 6 12
TESS (Y100) 0 13 13 3 4 13
TOTAL 7 72 76 16 23 75

_—..._—...————-——-——-—————————_—-—---—_—_—————._-——————_—_—_-———
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( 3 forecast taus x 6 predictors ); since ties are not counted
NG + RAOB sums are often less than 18. Table 14 statistics are
derived from tabular data presented as Appendix A. In general,
the ratio of yes/no PIREPs upon which statistics are computed is
highly skewed toward 'no' PIREPs at the LOW and HIGH layers,
about even.at the MIDDLE layer, and about 7:1 for the COLUMN

layer. The total number of PIREPs used in model/radiosonde com-

_ parisons ranges from about 22 for the LOW layer to near 190 for

the MIDDLE layer.

Table 14 prefigurance totals indicate a much stronger
forecast capability when using radiosonde data than if predic-
tions are based on NOGAPS data. For the lowest three layers, all
PF index comparisons indicate higher ( or equal ) valués for
RAOB-based predictions. On the contrary, false alarm rates for
NOGAPS-based prédictions are décidedly superior except at the
HIGH layer; for both the LOW-MID and MIDDLE layers, best FAR
values for all 6 predictors always correspond to model-derived
predictions. The observed behavior in PF and FAR statistics is
likely related to differences iﬁ vertical resolution<between
model and radiosonde data; with more data levels, RAOB-based
icing predictions are likely to have more hits and false alarms (
i.e., higher PF, worst FAR ). Overall Table 14 numerical totals
for discriminant skill score show a decided advantage for RAOB-
based predictions over those usihg model data ( 75 to 23 ). This
advantage in férecasting skill manifests itself at the LOW-MID
through MID-HIGH, and COLUMN, icing layers. At the LOW and HIGH
layers, no decided advantage in forecasting skill is apparent for

either model- or RAOB-based predictions. Skill score statistics
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at these two layers are likely quite sensitive to the dispropor-
tionate ratios of yes/no icing reports, which include feyw posi-
tive icing occurrences.

For a given statistical measure, Table 15 gives the cumula-
tiVe.number of icing layers, summed over Tau = 0, 12 and 24 hr,
with best stetistical value based on NOGAPS and radiosonde data,
for selected icihg predictors. Similar to Table 14, the maximum
possible sum ( NG + RAOB ) for a given predictor and statistic
is 18 ( 3 forecaet taus x 6 icing layers ). For each predictor,
forecast capability is decidedly superior when RAOB-based data is
used for icing prediction. Interestingly, of the total 7 'best!
PF index values for model-based ( NG ) forecasts, 6 of these
correspond to the TESS(YALL) predictor. False alarm rates for
each predictor are most often better when model data is utilized;
for NAWAU(1) and RAP, 15 'best' FAR statistics correspond to NG
data and only one to RAOB-based predictions. Regardless of which
predictor is.chosen, forecasting skill ( v ) 1is superior using
radiosonde data; this superiority isbmost striking for NAWAU (2),
with a RAOB to NG 'best' statistical value ratio of 13 to zero.

Statistical tests performed on skill score differences
between model- and RAOB-based predictions ( Appendix A ) indicate
that 8 such differehces are highly significant while another 10
differences are significant at a 95% confidence level. Of these
18 differences, skill score values for RAOB-based forecasts were
superior to those based on model data in all but one comparison.
All significant and highly significant differences correspond to

the layers LOW-MID, MIDDLE, MID-HIGH and COLUMN. Peculiarly, six
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of the 8 highly significant différences correspond to the AIRF
predictor.

Although designed priﬁarily for model/radiosonde compari-
sons, Appendix A tables also permits algorithm forécast perform-
ance comparisons to be drawn amdng predictions based exclusively
on model or radiosonde data. Examination of Appendix A radio-
sonde-based results indicate that, for the two layers'with the
most positive icing reports ( COLUMN and MIDDLE ), the TESS
predictors ( YALL and Y100 ) always rank lowest in forecast
capability and skill ( PF and V ) among all 6 predictors, at all
3 forecast iengths. Of the 280 radiosondes utilized for Appendix
A statistics, 80 ( or 2 of every 7 ) had surface superadiabatic
lapse rates. As a result of TESS algorithm processing of such
conditions, negative icing was always specified at all layers of
these radiosondes. On the contrary, for many of these same radio-
sondes, the other three algorithms ( AIRF, NAWAU and RAP ) often
forecast positive icing to occur at one or more layers above such
surface superadiabatic conditions. Thus, for layers reporting
large number of positive icing events ( viz., MIDDLE and COLUMN )
, radiosonde-based TESS forecasting capability ( PF ) and skill (
V ) are noticeably less than for other icing predictors.

Colléctively, results presented so far indicate thét icing
algorithms have better overall foreécast éapability and skill when
based on full radiosonde data. This forecast advantage over model
data could result from two key factors: one, higher vertical
resolution and two, more accurate meteorological data. To explore
this further, comparisons among model and radiosonde icing pre-

dictions were performed using reduced radiosonde data ( designat-

58



ed RAOBR j. Icing forecasts based on RAOBR data utilize radio-
sonde standard levels ( 1000, 850, 700, 500( 400 mb ) plus the
925 mb surface if available. Thus, RAOBR data levels are essen-
tially the same as those available with NOGAPS. If one assumes
radiosonde ( temperature, moisture and.height ) data to be accu-
rate, then direct comparisons of RAOBR and NOGAPS-based icing
predictions will provide a'measure of thé effect model data
inaccuracies have on icing prediction. Appendix B provides full
comparative statistics forlmodgl- and RAOBR-based 0, 12 and 24 hr
forecésts.

For a given statistical valué ( PF, FAR, V ), Table 16
gives the cumulative number of icing predictors ( summed over all
3 forecast lengths f with best statistical value based on NOGAPS
and reduced radiosonde ( RAOBR ) data, at selected icing layers.
Cumulative totals for all 6 layers indicate somewhat better
overall performance for RAOBR-based predictions, with numerical
totals of all three statistical measures higher for RAOBR than
NG. For the LOW, LOW-MID, MID-HIGH and COLUMN. layers, best sta-
tistical value numbers for RAOBR-based predictions are higher
than ( or equal to ) those for NOGAPS-based forecasts for all 3
statisficalAmeasures. Differences between RAOBR and NG sums are
generally most noticeablé at the MID-HIGH and COLUMN layers; at
both layers, false alarm rates for icing prédictions based on
RAOBR data were supefior to those for NG data 15 out of 18 times,
with 3 ties. Table 16 comparison results for the MIDDLE and HIGH
layers -are both interesting. The MIDDLE layer, which contains

both the highest number of data (~ 190 ) and the most even ratio
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Table 16. For a given statistical measure ( PF, FAR, V ), the
cumulative number of icing predictors, summed over Tau = 0, 12
and 24 hr, with best statistical value based on NOGAPS ( NG ) and
reduced radiosonde ( RAOBR ) data, for selected icing layers.

DATA SOURCE (NG) (RAOBR) (NG) (RAOBR) (NG) (RAOBR)
LAYER

LOW 0 3 0 0 0 3
LOW-MID 7 9 5 8 7 11
MIDDLE 9 8 11 5 9 9
MID-HIGH 5 12 0 15 4 14
HIGH 5 1 0 9 5 6
COLUMN 6 10 0 15 6 11
TOTAL 32 43 16 52 31 54

Table 17. For a given statistical measure ( PF, FAR, V ), the
cumulative number of icing layers, summed over Tau = 0, 12 and 24
hr, with best statistical value based on NOGAPS ( NG ) and re-
duced radiosonde ( RAOBR ) data, for selected icing predictors.

.—-—-——————_—_-——————-_-_—_————-—_—_————-—-———————-———————-—_—._—_-_—_

—-———-—————-———————-—--—————-_—.-———..—-——-.—.—--————--—————_—_-—-—-——.

DATA SOURCE (NG) (RAOBR) (NG) (RAOBR) (NG) (RAOBR)
PREDICTOR

AIRF 8 8 2 9 8 10
NAWAU (1) 4 8 4 4 4 9
NAWAU (2) 2 9 3 6 2 10
RAP 2 8 3 9 2 10
TESS(YALL) =~ 12 2 2 12 11 4
TESS (Y100) 4 8 2 12 4 11
TOTAL 32 43 16 52 31 54

-—-—-——-—.——-———-——--————-——-——-—.—-—-——..—-—--————-——————-——_-.—.——_-_—_-_-—
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of yes/no PIREPS ( about 1:1 ) » shows no advantage in forecésting
capability or skill for either of the two déta sources, but does
have decidedly better false alarm rates for model-based fore-
casts. For the HIGH layer, Table 16 results indicate better PF
statistics and worst false alarm rates for model-based iéing
predictions. These particular results could be influenced by the
positive moisture bias in NOGAPS at the 400 mb ( HIGH ) layer, a
condition conducive to enhanced'positive icing prediction ( and
resultantly, more hits and false alarms ). Collectively, Table 16
statistics ( PF, FAR, V ) show the best advantage of RAOBR-based
predictions over those using model data at the MID-HIGH ( 500 mb
) laygr. |
For any given icing predictor and statistical meaéure,

Table 17 givés the cumulative number of icing layers with best
statistical value based'on NOGAPS and RAOBR-based data. Consider-
ing all three statistics, the predictors NAWAU ( 1 and 2 ), RAP
and TESS(Y100) show éomewhat better forecasting performance for
reduced radiosonde data than NOGAPS. Forecasting capability and
skill for the AIRF predictor are about the same for either model
or RAOBR data, alfhough false alarms for model-based forecasts
are decidedly higher.'By far, the most interesting Table 17
results concern TESS(YALL). Of all predictors, TESS(YALL) is the
only one to show better forecast capabiiity‘and skill for model-
based predictions. Without TESS(YALL) numerical values, total
sums for both PF and V would be considerably more skewed toward
bverall better performance with RAOBR data (i.e., PF,HZO to 41;

V, 20 to 50 ). cCcareful examination of TESS (YALL) model~ and

RAOBR-based 0, 12 and 24 hr forecasts ( Appendix B ) reveals
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that, for the LOW-MID, MIDDLE and COLUMN layers, all best statis-
tical values fér both PF and V correspond to model-based fore-
casts. In addition, at Tau = 24 hr, the MID-HIGH and HIGH layers
also have best PF gnd V values for icing predictions based on
NOGAPS déta. While the enhanced TESS (YALL) model-based forecast-
ing performance at and above the MIDDLE layer ( especially at the
longer 12 and 24 hr forecast lengths ) might have been abetted by
the positive NOGAPS moisture bias between 700 and 400 mb, the
superiority of model-based forecasts over RAOBR-derived forecasts
at the LOW-MID layer ( 850 mb level ) is difficult to explain.
While results for NG,RAOBR comparisons ( Table 17 ) suggest
that icing predictors ( except TESS(YALL) ) perform somewhat
better overall when using reduced radiosonde data compared to
NOGAPS, a more definitive measure of performance difference
between the two data sources is available through statistical
testing. In general, tests performed on NG,RAOBR Tau = 0, 12 and
24 hr comparisons ( Appendix B ) do not indicate significant
differences in forecasting skill ( V ) between model- and RAOBR-
based predictions. Indeed, only one NG,RAOBR skill score differ-
ence ( for TESS(YALL) at Tau = 24 hr, énd favoring NG ) is sig-

nificant at the 95% confidence level, none at the 0.01 level of

significance. These results, when combined with those drawn from

.Table 16 and 17 statistics, suggest that inaccuracies in model

temperature and moisture data had only a limited influence upon
the forecasting ability of the ATIRF, NAWAU, RAP and TESS icing
algorithms.

The degree of importance of vertical data resolution to
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algorithm icing prediction may be examined by directly comparing
NG,RAOB and NG,RAOBR statistical measure totals given in Tables
15‘and 17, respectively. Model-based predictions serve as a good
"fixed" standara to compare differences in RAOB- and RAOBR-based
performance since NG statistics presented in both Tables 15 and
.17 are largely based on identical icing predictions, with the
ohly difference an additional 35 ( or about 5% more ) NOGAPS-
derived predictions included with Table 15. For both forecasting
capability ( PF ) and skill ( Vv ), 'best:! statistical value
totals for RAOB-derived forecasts show a significant decrease
when icing predictions are based on reduced ( i.e., standard
level ) data. The effect of radiosonde resolution on false alarm
rates is quite dramatic, as evidenced by a pronounced shift in
'best' overall FAR statistics between NG,RAOB and NG,RAOBR com-
parisons. Specifically, while false alarm rates for NOGAPS-de-
rivéd forecasts are decidedly better than those for full radioQ
sonde ( RAOB ) data ( FAR totals 76 to 16 ), icing forecasts
based on reduced radiosonde data ( RAOBR) have overall better
false alarm rates than model-derived predictions ( 52 'best'
values fdr RAOBR, 16 for NG ). Collectively} results for all
three 'statistical measures indicate that data vertical resolution
plays a critical role in icing prediction performance.

For a more definitive assessment bf the role of vertical
data resolution in icing prediction, one may compafe results of
statistical tests performed on NG,RAOB and, NG,RAOBR, skill scoré
differences. As previously discussed, many ( 18 ) significant and
highly significant differences in skill score were found for

NG,RAOB comparisons ( all but one favoring RAOB ), while only one
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significant V difference ( at the 95% confidence level )‘was
obtained for NG,RAOBR comparisons. Given the largely'invariant
nature of the NG data for these two,comparisoh datasets (
NG,RAOB; NG,RAOBR ), differences between them ( as indicated by
statistical significance test results ) can best be attributed to
differences in radiosonde vertical data resolution. This particu-
lar result strongly suggests that better ( i.e., higher ) verti-
cal data resolution is a very important factor for enhanced icing
prediction performance.

For two icing algorithms ( AIRF and TESS ), comparisons of
NOGAPS aﬁd radiosonde-based forecasts in terms of icing type and
intensity are possible. For each of four icing agreement classi-
fications, Table 18 gives the cumulative number of icing predic-
tors, summed over Tau = 0, 12 and 24 hr, with best percent fre-
quency of agreement based on NOGAPS and radiosonde ( RAOB ) data,
- at selected icing layers. Here, the maximum possible sun ( NG +
 RAOB ) for a given layer and agreement classification is © ( 3
forecast taus x 3 icing predictors ). Table 18 is based on per-
cent frequency of agreement (NG,RAOB) comparison statlstlcs
presented as Appendix C For all four icing classes, Table 18
'best' percentage totals for RAOB-based predictions are consider-
ably higher than those for model-derived forecasts. The advantage
‘of RAOB data over NOGAPS is most ( least ) noticeable for agree-
ment in intensity ( type ). Interestingly,. of the only 4 NG
'best' percentages for agreement in intensity, 3 correspond to
the data-deficient HIGH layer; Concerning forecast/observed

agreement in type, NOGAPS-derived forecast performance is some-
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Table 18. For selected icing agreement classifications, the
cumulative number of icing predictors, summed over Tau = 0, 12
and 24 hr, with best percent frequency of agreement based on
NOGAPS ( NG ) and radiosonde ( RAOB ) data, for selected icing
layers.

TYPES INTENSITIES BOTH TYPE NEITHER TYPE
AGREE AGREE AND INTENSITY NOR INTENSITY
AGREE AGREE

DATA SOURCE NG RAOB NG RAOB NG RAOB NG RAOB
LAYER
LOow 0 0 0 0 0 0 0 0
LOW-MID 5 2 0 8 2. 7 0 8
MIDDLE 0 9 0 9 0 9 0 9
MID-HIGH 3 6 0 9 0 6 3 6
HIGH 0 5 3 1 0 4 2 2
COLUMN 6 3 1 8 3 6 3 6
TOTAL 14 25 4 35 5 32 8 31

T T T T e o e o o e o e e e e e o e o e o e e o o . s . e, s e o s e s S e . e e et . e Sy e e e e 0 e o

Table 19. For selected icing agreement classifications, the
cumulative number of icing layers, summed over Tau = 0, 12 and 24
hr, with best percent frequency of agreement based on NOGAPS ( NG
) and radiosonde ( RAOB ) data, for selected icing predictors.

T e e T e o o o T o o i . o (. e e e . o o . s . . e . . Bt e . D i . e . T o . e~ — . o o

TYPES INTENSITIES BOTH TYPE NEITHER TYPE
AGREE AGREE AND INTENSITY NOR INTENSITY
' AGREE AGREE
DATA SOURCE NG RAOB NG RAOB NG RAOB NG RAOB
PREDICTOR :
AIRF 0 11 0 12 2 11 . 0 13
TESS (YALL) 9 5 1 11 3 9 7 6
TESS(Y100) 5 9 3 12 ' 0 12 1 12
TOTAL 14 25 4 35 5 32 8 31

-——...--.__——_.—-—__—_...-—.__——————-—————-——--——-—---——.—-—..—_-——.——.—.———_..__--.
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what better than radiosonde-based at two levels - LOW-MID and
COLUMN. The superiority of fuli radiosonde data ( standard +
significant levels ) over NOGAPS is most striking at the MIDDLE (
700 mb ) layer, where all four agreement classifications have a
RAOB to NG ratio of 9 to zero.

For the AIRF and two TESS predictors, the cumulative number
of icing iayers with 'best' percent frequency of agreement for
NOGAPS and RAOB-based type/intensity predictions is presented in
Table 19. Here, any selected ( NG + RAOB ) sum may total up to 18
( 3 forecast taus x 6 icing layers ). Of these three predictors,
AIRF appears to benefit most from the use of radiosonde data for
icing type and intensity prediction, with all four RAOB to NG
'best' percent agreement ratios strongly favoring RAOB-based
forecasts. Comparison results for TESS(YALL) indicate that, for
two of the 4 categories ( types agree, neither type nor intensity
agree }, 'best' percent frequency of agreement sums are actually
higher for model-derived forecasts. Interestingly, while NOGAPS
data appears somewhat advantageous over radiosonde data to
TESS(YALL) for differentiating icing type, the same is‘not true
for icing intensity, where TESS(YALL) RAOB-based forecasts appear
to be decidedly superior.

For selected type/intensity classifications, Table 20 gives
the cumulative number of icing predictors ( summed over three
forecast lengths ) with ‘'best' percent frequency of agreement
based on NOGAPS and reduced-radiosonde ( RAOBR ) data, at select-
ed icing layers. With the exception of forecast/observed agree-
ment in 'both type and intensity', 'best! percentage totals favor

NOGAPS-based predictions over those using reduced radiosonde
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Table 20. For selected icing agreement classifications, the
cumulative number of icing predictors, summed over Tau = 0, 12
and 24 hr, with best percent frequency of agreement based on
NOGAPS ( NG ) and reduced radiosonde ( RAOBR ) data, for selected
icing layers.

TYPES INTENSITIES BOTH TYP NEITHER TYPE
AGREE AGREE AND INTENSITY NOR INTENSITY
AGREE - AGREE

DATA SOURCE NG RAOBR NG RAOBR NG RAOBR NG RAOBR
LAYER
Low 0 0 0] 3 0] 0 0 0
LOW-MID 7 1 3 3 2 3 6 2
MIDDLE 6 3 1 3 0 3 6 3
MID-HIGH 7 1 3 3 0 6 9 0]
HIGH 2 2 7 0 1 0 5 0
COLUMN 8 1 6 2 5 3 9 0
TOTAL 30 8 20 14 8 15 35 5

_——---_.-——.————_-_———_—-—_-——_——_——‘--—_——-—_———————————_.—.—_

Table 21. For selected icing agreement classifications, the
cumulative number of icing layers, summed over Tau = 0, 12 and 24
hr, with best percent frequency of agreement based on NOGAPS ( NG
) and reduced radiosonde ( RAOBR ) data, for selected icing
predictors.

TYPES INTENSITIES BOTH TYPE NEITHER TYPE
AGREE AGREE AND .INTENSITY NOR INTENSITY
AGREE AGREE
DATA SOURCE NG RAOBR NG RAOBR NG RAOBR NG RAOBR
PREDICTOR
AIRF 6 6 10 3 9 8

. 6 5
TESS (YALL) 13 2 7 4 2 6 13 0
TESS(Y100) 11 0 0




data. The advantage of NG over RAOBR is most pronounced for
agreement in type and the categofy ' neither type nor intensity
agree'; for the latter, all 9 'best! agreement percentages at the
MID-HIGH and COLUMN layers favor model-based prediction. Although
agreemenf in intensity comparisons show a clear advantage of NG
~over RAOBR at the HIGH layer (.7 to 0 ), a lack of sufficient
data ( -see Appendix D ) precludes a statistically sound conclu-
sion to be drawn.

Table 21 presents (NG,RAOBR) comparisons of icing
type/intensity forecast ability for the AIRF and two TESS predic-
tors. For TESS(Y100), predictions based on NOGAPS data hold a
very strong advantage over those derived from reduced radlosonde
data. Specifically, when all four icing agreement classes are
combined, the NG to RAOBR 'best! percent frequency of agreement
ratio for TESS(Y100) is an overwhelming 35 to zero. The predictor
TESS(YALL) also provides an overall advantage to NOGAPS~based
predictiohs, although the category for agreemént in 'both type
and intensity! févors RAOBR-derived forecasts. AIRF indicates no
clear superiority in icing type and intensity prediction using
either model or reduced radioéonde data. For this predictor, 2 of
the 4-agreement categories favor RAORR, one‘favorS'NG, and one (
for type agreement ) favors neither.

The very significant impact of vertical data resolution on
icing type and intensity prediction can be noted by comparing
(NG,RAOB) and (NG,RAOBR) 'best' agreement totals of Tables 19 and
21, respectively. For all three predictors, a pronounced shift in

overall forecast advantage toward NOGAPS occurs as the vertical
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resolution of radiosonde—based'predictions drops from standard
plus significant levels to essentially standard levels. For the
TESS(Y100) predictor, all four of the type/intensity categories
undergé a dramatic reversai in forecésting advantage ( from
radiosoﬂde to model ) upon diminution of radiosonde resolution.
Finally; alcomparison of NG versus RAOBR 'best' percent frequen-
cies of agreement for statistical measures and icing type/inten-
sity classifications ( Tables 17 and 21, reépectively ) suggests
that, while inaccuracies in this study's model data were overall
somewhat detrimental to algorithmic ( except TESS(YALL) ) predic-
tion of icing occurrence, such inaccuracies actually abetted the
TESS algorithm's limited forécast ability in differentiating
icing type and intensity. |
6. SUMMARY AND CONCLUSIONS

As a prelude to selection of an icing potential product for
inclusion into an aviation support environmental display suite
under development at NRL's Marine Meteorology Division, four
different aircraft icing algorithms are evaluated using: meteoro-

logical data from the Navy Operational Global Atmospheric Predic-

~tion System ( NOGAPS ) model. The algorithms are RAP ( developed

by NCAR's Research Applications. Program ), NAWAU ( used opera-
tionally by the National Centers for Environmental Prediction
Aviation Weather Center ), AIRF ( the opérational routine for the
Air Force Global Weather Center') and TESS, an applications
program within the Navy's Tactical Environmental Support System.
The NAWAU and TESS algorithms are each evaluated as twé separate
predictors. NAWAU(1l) requires either category 1 or 2 icing for a

positive icing forecast; NAWAU(2) only considers category 2 icing




forecasts as positive. The TESS(YALL) predictor considers any
non-zero icing ﬁrobability as a "yes" forecast; much more re-
strictive, TESS(Y100) reguires a '100% probability for positive
icing.vVerification of the .algorithms is accomplished by compar-
ing model-derived analyses and short-range forecasts to pilot
reports ( PIREPs ) of aircraft icing; for the AIRF and TESS
routines, statistical comparisons include icing type and intensi-
ty. The sensitivity of icing algorithms to model data accuracy is
examined by comparing model-derived predictions with coincidental
forecasts based on radiosonde data. The impact of data vertical
resolution on forecast performance is assessed through compari-
sons of icing predictions based on full radiosonde data ( stand- -
ard plus significant levels ) with coincidental predictions based
on standard level data.

For verification purposes, some 1750 pilot reports over the
continental U.S. during the spring of 1995 were utilized. The
largest concentration of reports (lincluding those of moderate or
greater intensity ) was over the iower Great Lakes and northern
Ohio Valley. Secondary maxima of reports ( and positive icing
events ) were located over the central Rockies and Pacific North-
west..Negative icing reports dominated south of 35° N, and are
heavily concentrated over the south-central states. The vast
majority of positive icing reports occurred between 1.5 and 5.5
km ( 5 to 18 thousand feet ); at higher levels, negative icing
reports dominated. Rime icing‘Was,the most prevalent type, indi-
cated in about 3 of every 4 positive reports. Almost half of all

icing occurrences were reported at a light intensity; moderate
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icing ( LGT-MDT and MDT categories ) was indicated in about 2 of
5 icing events. The percent frequency of occurrence of rime icing
was found to decrease somewhat with increasing intensity, while
an opposite trend was noted for clear icing. For all three icing

types ( RME, CLR and MXD ), percent frequencies of occurrenée for
any specified.inteﬁsity category were quite similar. Finally,
comparisons drawn among this study's PIREP dataset and various
other observational datasets found in the literature indicate
good agreement regarding the most commonly reported intensity and
type of aircraft.icing, namely, light rime.

For the most part, differenées in icing forecast perform-
ance among algorithms are closeiy related to differences in
temperature and moisture thresholds used by individual algorithms
to infer icing. The TESS algorithm's unique computational proc-
essing negatively impacted its ability to correctly predict
positive icing occurrences immediately above the surface or
within layers located above surface superadiabatic conditions (
most comﬁon with radiosondes ). Collectively, Tau= 0, 12 and 24

hr statistical results for NOGAPS-based predictions indicate
overall best forecast Capability and skill ( PF and V scores,
‘respectively ) for the NAWAU(1) and RAP predictors within the
lower troposphere ( below ~ 14000 ft MSL ) and for the TESS(YALL)
predictor at mid—tropbspheric levels ( 14 to 27 thousand feet MSL
). For this study's LOW-MID icing layer ( centered at 850 mb, or
~ 5000 ft MSL), average ( Tau = 0, 12 and 24 hr ) prefigurance.
and skill score values exceed 0.7 andAO.S; reSpectively, for all
three of these predictors. 1In general, icing predictors which

indicate better forecast capability and skill at a particular
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atmospheric level also have larger false alarm rates. AIRF was
the most conservative predictor among the four icing algorithms,
characterized by low false alarm rates but below average ability
to forecast positive icing.occurrences. Although statistical
tests indicate that, for any given predictor, differences in
skill scores as a function of forecast lead time are generally
not significant, some improvement in both forecast capability and
skill at mid-tropospheric levels ( this study's MID-HIGH and HIGH
Alayefs ) occurs for the TESS(YAﬁL) and AIRF predictors over the 0
to 24 hr forecast interval. This improvement in féfécast ability
is likely rélated to a steadily increasing ( over time ) positive
moisture bias found in NOGAPS between 700 and 400 mb.

| Overall results indicate that the AIRF and TESS algorithms'
ability to differentiate icing type and intensity is clearly
limited. For this study's heavily-sampled MIDDLE icing layer ( 7
to 14 thousand ft MSL ), only about 1 of 20 AIRF or TESS predic-
tions correctly specified both icing type and intensity while,
about 3 of every 4 such predictions could specify neither type
nor intensity. Both icing algorithms show overall better ability
to forecast icing type than intensity. In éeneral, AIRF outper-
forms fESS(YALL) in specification of icing intensity, while the
opposite holds for icing type. Both AIRF and TESS significantly
underforecast rime icing. Light icing is greatly underforecast by
the TESS algorithm, while the opposite occurs for severe icing.
Statistical results indicate. that a prediction of 'light rime!
icing is generally more accurate than a discriminant icing type

and intensity prediction available from either AIRF or TESS. In
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comparisons between '1rgT kME' and TESS(YALL) predictions, differQ
ences in percent frequency of agreement of observed and forecast
icing type and intensity ( as measured by selected agreement
classifications ) often exceeded 20% and, in several instances (
-mostly at Tau =_24 hr ), exceeded 30%. The fact that a prediction
of a most likely category of icing ( viz., lighﬁ rime ), based on
historical PIREP datasets, may be superior to any arbitrary AIRF
or TESS predictioh is quite significant, especially when one
considers the'large computational effort expended by these algo-
rithms ( especially TESS ) in providing a prediction of icing
type and intensity. A

Study results indicate that data vertical resolution plays
a critical role in icing prediction performance. Comparisons be-
tween model-derived predictions ( based on standard level + 925
mb-data ) and radiosonde predictions using full ( standard plus
significant level ) data indicate that icing algorithms have
decidedly better forecast capability and skill, but also highér,
false alarm rates, when based on the higher resolution radiosonde
data. Inaccuracies in model ( NOGAPS 3.4 ) temperature and mois-
ture data are found to have only a limited impact upon the fore-
casting ability of the icing algorithms evaluated herein, with
differences in forecast skill ( V) between model and reduced
radiosonde ( based on only standard daté ) predictions generally
not significant. Comparisdns of model and reduced-radiosonde
icing predictions indicate better overall forecast performance
for the AIRF, NAWAU and RAP algorithms when using radiosonde
data; however, for the TESS(YALL) ﬁredictor, such comparisons

often yield higher PF and V values for model-derived forecasts.
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Interestingly, TESS predictions of icing type based on NOGAPS
data proved superior to comparable predictions using reduced
radiosonde data.

Based on two important selection criteria - forecast skill
and computational efficiency - the NAWAU icing algorithm seems
the best choice, among the four icing algorithms evaluated in
this study, for inclusion into NRL's aviation support product
suite. NAWAU is computationally the most simple of the algo-
rithms, using only two dozen lines of computer code to predict
two probabilities ( categofies ) of icing occurrence. Unlike the
TESS and AIRF algorithms, NAWAU is not computationally burdened
with unreliable attempts at inferring icing type and intensity.
Overall verification statistics indicate that NAWAU ranks high in

both forecast capability and skill, slightly ahead of RAP. Fore-

- cast skill for TESS is comparable to ( or perhaps slightly better

than ) NAWAU, but only if all nonzero icing probabilities. are
considered definitive 'yes' forecasts ( as per TESS(YALL) ). In
an operational setting, a TESS(YALL) forecast skill level would
not be obtained, since many forecasters would likely not issue a
definitive positive forecast for icing if presented guidance
1nd1cat1ng only a 10 or 20% chance for trace rime or mixed icing.

For the operational user, a highly desirable feature of any
icing potential graphical display is its ability to accurately
depict areal coverage of icing. Unfortunately, temperature- and
humidity-based prediction algorithms applied to rather coarse
numerieal model data ( such as 2.5° NOGAPS ) usually specify

regions of potential icing well in excess of actual areal extent.
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For best deiineation of icing regions ( and improved forecast'
ability ), the highest possible resolution model data should be
utilized for icing predictions. Within the Navy, such data could
be supplied by COAMPS ( Coupled oéean/Atmosphere Mesoscale Pre-
diction System ) ( Hodur, 1993 ), a high resolution model
presently being readied for operational implementation at FNMOC.
Additionally, the use of satellite data to screen cloud-~free
regiohs out of algorithm-derived iciﬁg potential threat areas
would be beneficial ( Thompson et al., 1997 ). Operationally, any
combined model/satellite icing product would require additional
time and computational demands over a 'model only' product and
would be subject to uncertainties regarding satellite data

availability.
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APPENDIX A - Statistical Measures -
Model and Radiosonde Comparisons

TAU = 0 HR : LAYER

LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN
NO.PIREPS(Y/N) 1/20 24/57 89/90 44/91 5/82 136/20

. PREFIGURANCE (PF)
AIRF (NG) 0.0 0.500. 0.236 0.318 0.600 0.596
(RAOB) 0.0 0.667 . 0.708 0.750  0.600 0.890
NAWAU (1) (NG) 0.0 0.875 0.685 0.318 0.0 0.838
(RAOB) 0.0 0.875 0.910 0.818 0.200 0.971
NAWAU (2) (NG) 0.0 0.667 0.584 0.045 0.0 0.691
(RAOB) 0.0 0.833 0.809 0.432 0.0 0.890
RAP (NG) 0.0 ° 0.875 0.697 0.250 0.0 0.853
(RAOB) 0.0 0.875 0.910 0.705 0.0 0.971
TESS (YALL) (NG) 0.0 0.625 0.371 0.568 0.600 0.801
(RAOB) 1.0 0.875 0.584 0.545 0.800 0.632
TESS(Y100) (NG) 0.0 0.583 0.213 0.295  0.400 0.471
(RAOB) 0.0 0.792 0.506 0.500 0.400 0.603

FALSE ALARM RATE (FAR)
AIRF (NG) 0.0 .0.053 0.122 0.110 0.061 0.100
(RAOB) 0.050 0.088 0.289 0.187 0.024 0.150
NAWAU (1) (NG) 0.050 0.123 0.256 0.154 0.0 0.250
(RAOB) 0.050 0.140 - 0.411 0.330 0.037 0.450
NAWAU (2) (NG) 0.050 0.105 0.211 ° 0.044 0.0 0.150
(RAOB) 0.050 0.140 0.289 0.187 0.0 0.150
RAP (NG) 0.050 0.123 0.256 - 0.143 0.0 0.200
(RAOB) 0.050 0.140 0.411 0.264 0.012 0.300
TESS(YALL) (NG) 0.0 0.105 0.200 0.253  0.098 0.250
(RAOB) 0.050 0.263 0.367 0.297  0.049 0.250
TESS(Y100) (NG) 0.0 0.070 0.111 0.077 0.012 0.200
(RAOB) 0.050 0.123 0.267 0.176  0.024 0.150

: HK DISCRIMINANT (V)
AIRF (NG) 0.0 0.447 0.114 - 0.208 0.539 0.496
(RAOB) -0.050 0.579 0.419** 0.563* 0.576 0.740
NAWAU (1) (NG) =-0.050 0.752 0.430 0.164 0.0 0.588
(RAOB) -0.050 0.735 0.499 - 0.489** 0,163 0.521
NAWAU (2) (NG) -0.050 0.561 0.373 0.001 0.0 0.541
(RAOB) =-0.050 0.693 0.520 0.245 0.0 0.740
RAP (NG) -0.050 0.752 0.441 0.107 0.0 0.653
. (RAOB) -0.050 0.735 0.499 0.441** -0.012 0.671
TESS(YALL) (NG) 0.0 0.520 0.171 0.315 0.502 0.551
(RAOB) 0.950 0.612 0.218 0.249  0.751 0.382
TESS(Y100) (NG) 0.0 0.513 0.102 0.219 0.388 0.271
(RAOB) -0.050 0.669 0.239 0.324 - 0.376 0.453

-——-——-.——-—--..———————-————-—.—.—.-——-_—-——————--——..-—_

** difference at 0.01 level of significance
* difference at 0.05 level of significance

—— — . ——— —— ——— —t—
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TAU = 12 HR LAYER

LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN

NO.PIREPS (Y/N) 1/22 24/63 94/97  46/100 6/87 142/20

PREFIGURANCE (PF)

AIRF (NG) 0.0 0.208 0.149 0.435 0.333 0.570
(RAOB) 0.0 0.667 0.723 0.739  0.333 0.908

NAWAU (1) (NG) 0.0 0.708 0.691 0.413 0.167 0.873
(RAOB) 0.0 0.875 0.926 0.783 0.0 0.979

NAWAU (2) (NG) 0.0 0.625 0.596 0.022 0.0 0.683
(RAOB) 0.0 0.833 0.830 0.413 0.0 0.908

RAP (NG) 0.0 0.708 0.691 0.304 0.0 0.859
(RAOB) 0.0 0.875 0.926 0.674 0.0 0.979

TESS (YALL) (NG) 0.0 0.667 0.372 0.717 0.333 0.824
(RAOB) 1.0 0.875 0.596 0.543  0.500 0.627
TESS(Y100) (NG) 0.0  0.375 0.255 0.391 0.167 0.479
(RAOB) 0.0 0.792 0.521 0.478 0.167 0.599

FALSE ALARM RATE (FAR)

AIRF (NG) 0.0 0.048 0.103 0.100 0.046 0.150
- (RAOB) 0.045 0.079 0.299 0.170  0.023 0.150

NAWAU (1) (NG) 0.045 0.095 0.247 0.200 0.0 0.250
(RAOB) 0.045 0.127 0.423 0.320 0.034 0.450

NAWAU (2) (NG) 0.045 0.048 0.175 0.040 0.0 0.100
(RAOB) 0.045 0.127 0.309 0.170 0.0 0.150

RAP (NG) 0.045 0.079 0.227 0.140 0.0 . 0.200
(RAOB) 0.045 0.127 0.423 0.250 0.011 0.300

TESS (YALL) (NG) 0.0 0.079 0.175 0.320 0.149 0.250
'(RAOB) 0.045 0.238 0.381 0.300 0.057 0.250
TESS(Y100) (NG) 0.0 0.032 0.103 0.110 - 0.023 0.200
(RAOB) 0.045 0.111 0.289 0.170 0.023 0.150

, HK DISCRIMINANT (V)

AIRF (NG) 0.0 0.161 0.046 0.335 0.287 0.420
(RAOB) -0.045 0.587** 0.424** 0.569*% 0.310 0.758%

NAWAU (1) (NG) -0.045 0.613 0.444 0.213  0.167 0.623
_(RAOB) -0.045 0.748 0.503 0.463% -0.034 0.529

NAWAU (2) (NG) -0.045 0.577 0.420 -0.018 0.0 0.583
(RAOB) -0.045 0.706 0.521 0.243* 0.0 0.758

RAP - (NG) -0.045 0.629 0.465 0.164 0.0 0.659
' . (RAOB) -0.045 0.748 0.503 0.424* -0.011 0.679
TESS (YALL) (NG) 0.0 0.587 0.197 0.397. 0.184 0.574
(RAOB) 0.955 0.637 0.214 0.243  0.443 0.377
TESS(Y100) (NG) 0.0 0.343 0.152 0.281 0.144 0.279
(RAOB) -0.045 0.681% 0.233 0.308 0.144 0.449

T G T T G e s e s, S — o —— ——— ~ ——— —— — — . - — . " ——_— T ——— —— o~ T ——————— " S "

*¥**% difference at
* difference at

0.01 level of significance
0.05 level of significance
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TAU = 24 HR ‘ ' LAYER

—--—-———_----——-_.._-—----—-——————-—-_-———--———-——-—-————-—_——_——.———

NO.PIREPS (Y/N) 1/21  23/59 95/94 46/96 7/84 141/21
PREFIGURANCE (PF)

AIRF (NG) 0.0 0.087 0.200 0.478 0.286 0.589
(RAOB) 0.0 0.652 0.726 0.717 0.429 0.894

NAWAU (1) (NG) 0.0 0.739 0.642 0.457 0.143 0.858
(RAOB) 0.0 0.870 0.905 0.783 0.143 0.972

NAWAU (2) (NG) 0.0 0.652 0.579 0.0 0.0 0.652
(RAOB) 0.0 0.870 0.811 0.435 0.0 0.901

RAP (NG) 0.0 0.739 0.632 0.283 0.0 0.837
(RAOB) 0.0 0.870 0.905 0.674 0.0 0.972
TESS(YALL) (NG) 0.0 0.696 0.347 0.826 0.571 0.844
(RAOB) 1.0 0.913 0.589 0.543 0.571 0.631
TESS(Y100) (NG) 0.0 0.478 0.221 0.370 0.143 0.504
(RAOB) 0.0 0.826 0.526 0.500 0.286 0.624

FALSE ALARM RATE (FAR)

AIRF (NG) 0.0 0.051 0.106 0.125 0.060 0.190
(RAOB) 0.048 0.085 0.309 0.167 0.012 0.143

NAWAU (1) (NG) 0.095 0.085 0.266 0.177 0.0 0.286
(RAOB) 0.048 0.136 0.436 0.312 0.024 0.429

NAWAU (2) (NG)  0.095 0.068 0.149 0.031 0.0 0.143
(RAOB) 0.048 0.136 0.319 0.156 0.0 0.143

RAP (NG) 0.095 0.085 0.266 0.146 0.0 0.238
(RAOB) . 0.048 0.136 . 0.436 0.240 0.012 0.286
TESS(YALL) (NG) °~ 0.0 0.068 0.170 0.292 0.119 0.286
(RAOB) 0.048 0.237 0.383 0.281 0.048 0.238

TESS (Y100) (NG) 0.0 0.051 0.085 0.125 0.036 0.143
(RAOB) 0.048 0.119 0.298 0.177. 0.012 0.143

HK DISCRIMINANT (V)

AIRF - (NG) 0.0 0.036 0.094 0.353 0.226 0.398
(RAOB) -0.048 0.567** 0.418** .s551 0.417 0.751%

NAWAU (1) (NG) ~0.095 0.654 0.376 0.279 0.143 0.572
- (RAOB) -0.048 0.734 0.469 . 0.470 0.119 0.543

NAWAU (2) (NG) -0.095 0.584 0.430 -0.031 0.0 0.510
(RAOB) -0.048 0.734 0.491 0.279% 0.0 0.758

RAP (NG) -0.095 0.654 0.366 0.137 0.0 0.599
. (RAOB) -0.048 0.734  0.469 0.434* -0.012 0.686

TESS (YALL) (NG) 0.0 0.628 0.177 0.534*  0.452 0.558
(RAOB) 0.952 0.676 0.206 0.262 0.524 0.393
TESS(Y100) (NG) 0.0 0.427 0.136 0.245 0.107 0.361
(RAOB) -0.048 0.707 0.228 0.323 0.274 0.481

-—-—._-————-.———-—————_—--————._.———-.————-——-——————-———_

** difference at 0.01 level of significance
* difference at 0.05 level of significance
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APPENDIX B - Statistical Measures -
Model ‘and Reduced Radiosonde Comparisons

_-_-—-—--—————-—————-—-————..--.—_—-—_-—._...-———-.--————————-——.—_—___...___.

TAU = 0 HR ‘ LAYER
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN
NO.PIREPS(Y/N) 1/12 24/56 84/90 37/89 5/81 125/20

PREFIGURANCE (PF)
AIRF (NG) 0.0 0.500 0.238 0.243 0.600 0.576
(RAOBR) 1.0 0.250 0.298 0.189 0.400 0.392
NAWAU (1) (NG) 0.0 0.875 0.679 0.270 0.0 0.824
(RAOBR) 0.0 0.875 0.655 0.432 0.0 0.872
NAWAU(2) (NG) 0.0 _0.667 0.571 0.054 0.0 0.688
(RAOBR) 0.0 0.833 0.536 0.135 0.0 0.704
RAP (NG) 0.0 0.875 0.690 0.297 0.0 0.840
(RAOBR) 0.0 0.875 0.631 0.378 0.0 0.864
TESS(YALL) (NG) 0.0 0.625 . 0.393 0.541 0.600 0.808
(RAOBR) 0.0 0.375 0.321 . 0.622 0.600 0.584
TESS(Y100) (NG) 0.0 0.583 0.226 0.243 0.400 0.456
(RAOBR) 0.0 0.250 0.298 0.459 0.200 0.488
FALSE ALARM RATE (FAR)
AIRF (NG) 0.0 0.054 0.122 0.112 0.062 0.100
(RAOBR) 0.0 0.054 0.122 0.079 0.0 0.050
NAWAU (1) (NG) 0.0 0.125 0.256 0.157 - 0.0 0.250
(RAOBR) 0.0 0.107 0.278 0.157 0.0 0.250
NAWAU (2) (NG) 0.0 0.107 0.211  0.045 0.0 0.150
(RAOBR) 0.0 0.107 0.156 0.034 0.0 0.100
RAP (NG) 0.0 0.125 0.256 0.146 0.0 0.200
(RAOBR) 0.0 0.107 0.233  0.112 0.0 0.150
TESS(YALL) (NG) 0.0 0.107 0.200 0.258 0.099 0.250
(RAOBR) 0.0 0.071 0.189 0.191 0.012 0.150
TESS(Y100) (NG) 0.0 0.071 0.111 0.079 0.012 0.200
(RAOBR) 0.0 0.018 0.111 0.067 0.0 0.050
. HK DISCRIMINANT (V)

AIRF (NG) 0.0 0.446 0.116 0.131 0.538 0.476
) (RAOBR) 1.0 0.196 0.175 0.111 0.400 0.342
NAWAU (1) (NG) 0.0 0.750 0.423 0.113 0.0 0.574
(RAOBR) 0.0 0.768 0.377 . 0.275 0.0 0.622
NAWAU(2) (NG) 0.0 0.560 0.360 0.009 0.0 0.538
(RAOBR) 0.0 0.726 0.380 0.101 0.0 0.604
RAP (NG) 0.0 0.750 0.435 0.151 0.0 " 0.640
(RAOBR) 0.0 0.768 0.398 0.266 0.0 0.714
TESS(YALL) (NG) 0.0 0.518 0.193 0.282 0.501 0.558
(RAOBR) 0.0 0.304 0.133 0.431 0.588 0.434
TESS(Y100) (NG) 0.0 0.512 0.115 0.165 0.388 0.256
(RAOBR) 0.0 0.232 0.187 0.392 0.200 0.438
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_-._—_——.-———————-—_—————————-—--___——._—_——-————-.--———-—————-——-—-_--

TAU = 12 HR ; LAYER
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN

NO.PIREPS (Y/N) 1/13  24/62 89/97 38/97 6/86 130/20
PREFIGURANCE (PF)

AIRF (NG) 0.0 0.208 0.157 0.368 0.333 0.554
(RAOBR) 1.0 0.250 0.315 0.237 0.333 0.415

NAWAU (1) (NG) 0.0 0.708 0.685 0.368 0.167 0.877
| (RAOBR) 0.0 0.875 0.674 0.395 0.0 0.877
NAWAU (2) (NG) 0.0 0.625 0.584 0.026 0.0 -0.692
(RAOBR) 0.0 0.833 0.562 0.105 0.0 0.715

RAP (NG) 0.0 0.708 0.685 0.342 0.0 0.862
(RAOBR) 0.0 0.875 0.652 0.342 0.0 0.869
TESS(YALL) (NG) 0.0 0.667 0.393 0.711  0.333 0.823
(RAOBR) 0.0 0.375 0.337 0.579  0.500 0.562
TESS(Y100) (NG) 0.0 0.375 0.270 0.316 0.167 0.454
(RAOBR) 0.0  0.250 0.315 0.447 0.167 0.477

 FALSE ALARM RATE (FAR)

AIRF (NG) 0.0 0.048 0.103 0.103 0.047 0.150
(RAOBR) 0.0 0.048 0.113 0.103  0.012 0.050

NAWAU (1) (NG) 0.0 0.097 0.247 0.196 0.0 0.250
(RAOBR) 0.0 0.097 0.278 0.155 0.0 0.250

NAWAU (2) (NG) 0.0 0.048 0.175 0.041 0.0 0.100
(RAOBR) 0.0 0.097 0.155 0.031 0.0 0.100

RAP (NG) 0.0 0.081 0.227 0.144 0.0 0.200
(RAOBR) 0.0 0.097 0.237 0.113 0.0 0.150

TESS (YALL) (NG) 0.0 0.081 0.175 0.320 0.151 0.250
: (RAOBR) 0.0  0.065 0.196 0.186 0.023 0.150
TESS(Y100) (NG) 0.0 0.032 0.103 0.103  0.023 0.200
(RAOBR) 0.0 0.016 0.113 0.062 0.0 0.050

HK DISCRIMINANT (V)

AIRF (NG) 0.0 0.160 0.054 0.265 0.287 0.404
(RAOBR) 1.0 0.202 0.201 0.134 0.322 0.365

NAWAU (1) (NG) 0.0 0.612 0.438 0.173 0.167 0.627
(RAOBR) 0.0 0.778 0.396 .. 0.240 0.0 0.627

NAWAU (2) (NG) 0.0 0.577 . 0.409 =-0.015 0.0 0.592
(RAOBR) 0.0 0.737 0.407 0.074 0.0 0.615

RAP (NG) 0.0 0.628 0.459 0.198 0.0 0.662
- (RAOBR) 0.0 0.778 0.415 0.229 0.0 0.719

TESS (YALL) (NG) 0.0 0.586 0.218  0.391 0.182 0.573
(RAOBR) 0.0 0.310 0.141 0.393  0.477 0.412
TESS(Y100) (NG) 0.0 0.343 0.167 = 0.213  0.143 0.254
(RAOBR) 0.0 0.234 0.201 0.386 0.167 0.427

—-—..—._—._——...—-———————-————-———.—_———-_—————-——.—-—_-_-_—_———.—-—————-——_
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..._—..—_-—:._-———-——-—_.—-—_—_——————-—_——-—‘_—_——.—_——-—————_--—_———_-

LAYER
LOW LOW-MID MIDDLE MID-HIGH
1/12 23/58 - 90/94 39/93  7/83
PREFIGURANCE (PF)
AIRF (NG) 0.0 0.087 0.211 0.436 0.286
(RAOBR) 1.0 0.261 0.300 0.256 0.286
NAWAU(1)  (NG) 0.0 0.739 0.633 0.359  0.143
(RAOBR) 0.0 0.870 0.656 0.410 0.0
NAWAU(2)  (NG) 0.0 0.652 0.567 0.0 0.0
* (RAOBR) 0.0 0.870 0.567 0.128 0.0
RAP (NG) 0.0 0.739 0.622 0.256 0.0
(RAOBR) 0.0 0.870 0.633 0.359 0.0
TESS (YALL) (NG) 0.0 0.696 0.367 0.795 0.571
- (RAOBR) 0.0 0.348 0.333 0.590  0.429
TESS (Y100) (NG) 0.0 0.478 0.233 0.308  0.143
~ (RAOBR) 0.0 0.217 0.311 0.462  0.143
FALSE ALARM RATE (FAR)
AIRF (NG) 0.0 0.052 0.106 0.129 0.060
(RAOBR) 0.0 0.034 0.117 0.108  0.012
NAWAU(1)  (NG) 0.0 0.086 0.266 0.161 0.0
(RAOBR) 0.0 0.103 0.287 0.151 0.0
NAWAU (2) (NG) 0.0 0.069 0.149 0.032 0.0
(RAOBR) 0.0 0.103 0.160 0.032 0.0
 RAP (NG) 0.0 0.086 0.266 0.140 0.0
(RAOBR) 0.0 0.103 0.245 0.108 0.0
TESS (YALL) (NG) 0.0 0.069 0.170 0.280 0.120
(RAOBR) 0.0 0.069 0.202 0.172  0.024
TESS(Y100) (NG) 0.0 0.052 0.085 0.129  0.036
(RAOBR) 0.0 0.017 0.117 0.065 0.0
HK DISCRIMINANT (V)
AIRF (NG) 0.0 0.035 0.105 0.307 0.225
RAOBR) 1.0 0.226 0.183 0.149 0.274
NAWAU(1)  (NG) 0.0 0.653 0.367 0.198  0.143
- (RAOBR) 0.0 0.766 - 0.368 0.260 0.0
NAWAU(2)  (NG) 0.0 0.583 0.418 -0.032 0.0
(RAOBR) 0.0 0.766 0.407 0.096 0.0
'RAP (NG) 0.0 0.653 0.356 0.117 0.0
(RAOBR) 0.0 0.766 0.389 0.251 0.0
TESS(YALL) (NG) 0.0 0.627*  0.196 0.515 0.451
(RAOBR) 0.0 0.279 0.131 0.418  0.404
TESS(YlOO) (NG) 0.0 - 0.427 0.148 0.179  0.107
(RAOBR) 0.0  0.200 0.194 0.397 0.143

* difference at 0.05 level of significance
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APPENDIX C - Type/Intensity Categories -
Model and Radiosonde Comparisons

AIRF
(NG) (RAOB)

PREDICTOR
TESS (YALL) TESS (Y100)
(NG) (RAOB) (NG) (RAOB)
TYPES AGREE
0.0% 0.0% 0.0% 0.0%
33.3% 21.1% 33.3% 19.0%
17.1% 22.5% 9.6% 21.7%
25.0% 12.5% 2.5% 10.0%
20.0% 60.0% 0.0% 20.0%
49.2% 18.7% 16.8% 12.8%
INTENSITIES AGREE
0.0% 0.0% 0.0% 0.0%
4.2% 31.8% 4.2% 29.2%
1.1% 8.2% 1.1%  6.7%
2.3% 13.6% 0.0% 13.6%
20.0% 20.0% 20.0% 0.0%
12.8% 12.7% 2.9% 12.5%

——_——————-————---—-—_—a_—_——-—_—_——..—._———..——-——.—————.———..-.—_——____.—

BOTH TYPE AND INTENSITY AGREE

0.0% 0.0%
14.3% 4.8%
3.7% 24.4%
10.0% 37.5%
40.0% 40.0%

e o 0

WoONOOO

0% 0.0% 0.0%
3% 0.0% 4.8%
8% 0.0% 3.7%
5% 0.0% 2.5%
0% 0.0% 0.0%
5% 0.8% 1.6%

—-——-————-.—.—-———————-._-——_—-——.-—_—_—-.——-—-—————-.—————_—_.-——_-—_——-

NEITHER TYPE NOR

TESS (Y100)

TAU = 0 HR
NO.
DATA
LAYER
LOW v 0
LOW-MID 21(0,2)
MIDDLE 83(1,3)
MID-HIGH 40
HIGH 5
COLUMN 125(3,2)
LAYER
LOow 1(0,1)
LOW-MID 24(0,2)
MIDDLE - 89(1,4)
MID-HIGH 44
HIGH 5
COLUMN '136(3,2)
LAYER
LOW 0
LOW-MID 21(0,2)
MIDDLE 82(1,3)
MID-HIGH 40
HIGH 5
COLUMN 124(3,2)
LAYER -
LOwW 0
LOW-MID 21(0,2)
MIDDLE 82(1,3)
MID-HIGH 40
HIGH 5
COLUMN 124 (3,2)
Note:

0.0% 0.0%
66.7% 61.9%
80.5% 45.1%
70.0% 40.0%
40.0% 40.0%
50.8% 34.7%

0.0%
61.9%
81.5%
75.0%
60.0%

"NO. DATA" counts pertain to AIRF and

predictors; the number of data for the

predictor based on NG (

INTENSITY AGREE

0.0% 0.0% 0.0%
47.4% 61.9% 52.4%
72.2% 89.0% 74.4%
77.5% 97.5% 80.0%
40.0% 80.0% 80.0%
70.5% 80.6% 75.8%

TESS (YALL)

RAOB ) data is found by

subtracting the first ( second ) number in
parenthesis from the given data count.
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—_——..—————-———————._-—_——__—_—--——_——_.-———-——-__..—-_——__..__--.—_—-_

LAYER
Low
LOW-MID
MIDDLE
MID~HIGH
HIGH
COLUMN

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

--———_-—-—————-———_————_—_--—————..———-.——————-———_———_--—_-...-.

LAYER
Low
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

LAYER .
LOW
LOW-MID
MIDDLE
MID-HIGH
HIGH
COLUMN

21(2,2)
87(3,3)
42

5

129(2,2)

1(0,1)
24(2,2)
94(3,4)
46

6

142(2,2)

21(2,2)

86(3,3)

42
5
128(2,2)

21(2,2)

86(3,3)
42
5

128(2,2)

AIRF

86

PREDICTOR
TESS (YALL)
(NG) (RAOB)

TYPES

0.0%
36.8%
15.5%
23.8%
20.0%

AGREE

0.0%
21.1%
22.6%
14.3%
40.0%

0.0%
31.8%
10.0%
10.9%

0.0%
47.4%
71.1%
78.6%
60.0%

TESS (Y100)
(NG) (RAOB)

T ———————t— . —

- INTENSITY AGREE

0.0% 0.0%
85.7% 52.4%
89.5% 73.3%
97.6% 83.3%
80.0% 100.%
85.9% 75.8%

—— . - —— —————t—




TAU = 24 HR PREDICTOR
NO. AIRF TESS (YALL) TESS (Y100)
DATA (NG) (RAOB) (NG) (RAOB) (NG) (RAOB)
: TYPES AGREE
LAYER
LOW -0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID  20(2,2) 0.0% 10.0% 50.0% 22.2% 30.0% 20.0%
MIDDLE 88(2,4) 14.8% 43.2% 18.6% 21.4% 10.2% 20.5%
MID-HIGH 42 28.6% 42.9% 31.0% 11.9% 2.4% 9.5%
HIGH 6 33.3% 50.0% 50.0% 50.0% 0.0% 16.7%
COLUMN  128(1,2) 32.8% 43.0% 46.5% 15.9% 14.1% 12.5%
INTENSITIES AGREE
LAYER .
LOW 1(0,1) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID  23(2,2) 8.7% 30.4% 4.8% 33.3% 4.3% 30.4%
MIDDLE 95(2,5) 9.5% 34.7% 1.1% 8.9% 1.1% 8.4%
MID-HIGH 46 21.7% 43.5% 2.2% 10.9% 0.0% 10.9%
HIGH 7 '14.3% 28.6% 14.3% 14.3% 14.3% 0.0%
COLUMN  141(1,2) 24.1% 46.1% 10.7% 12.9% 2.8% 12.8%
BOTH TYPE AND INTENSITY AGREE
LAYER
LOW 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID 20(2,2) 0.0% 5.0% 0.0% 5.6% 0.0% 5.0%
MIDDLE 87(2,4) 6.9% 24.1% 0.0% 3.6% 0.0% 3.4%
MID-HIGH 42 9.5% 31.0% 2.4% 2.4% 0.0% 2.4%
HIGH 6 16.7% 33.3% 0.0% 16.7% 0.0% 0.0%
COLUMN  127(1,2) 11.8% 27.6% 6.3% 2.4% 0.8%  1.6%
NEITHER TYPE NOR INTENSITY AGREE
LAYER .
LOW 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID 20(2,2) 90.0% 65.0% 44.4% 44.4% 65.0% 50.0%
MIDDLE 87(2,4) 81.6% 43.7% 80.0% 73.5% 88.5% 74.7%
MID-HIGH 42 61.9% 45.2% 69.0% 81.0% 97.6% 83.3%
HIGH 6 66.7% 50.03% 33.3% 50.0% 83.3% 83.3%
COLUMN  127(1,2) 53.5% 36.2% 48.4% 72.8% 84.3% 75.6%




APPENDIX D - Type/Intensity Categories -
Model and Reduced Radiosonde Comparisons

————..——-——--_---—--——————-———_-———.—_.—...—-_—-—_————-—-——-——-—————_--_

AIRF
(NG) (RAOBR)

PREDICTOR
TESS (YALL)

(NG) (RAOBR)

._-———--—_-—-——-——_——-—_-—-———_———_—_-————-—-—————_—-—-_—_—

TYPES AGREE

0.0%
33.3%
17.9%
26.5%
20.0%
46.9%

0.0%
21.1%
10.3%
14.7%
40.0%

-—_-__————-.—----——_—__—_--————-——_--———-————————-—_—-———_—_—-—--—_

0.0% 0.0%
4.2%  4.5%
1.2% 1.2%
0.0% 8.1%
20.0% 0.0%
10.7% 8.9%

TESS (Y100)
(NG) (RAOBR)
0.0% 0.0%
33.3% 14.3%
10.1% 8.9%
2.9% 0.0%
0.0% 0.0%
18.1% 10.3%
0.0% 0.0%
4.2% 0.0%
1.2%  1.2%
0.0% 0.0%
20.0% 0.0%
3.2%  2.4%

——_---——_——————————_———-—_——.——-———___—_————_————_—-————_—_—._-——__

0.0% 100.%
29.2% 16.7%
7.1% 16.7%
16.2% 13.5%
40.0% 20.0%
28.0% 24.0%
0.0% 0.0%
14.3% 0.0%
3.8% 16.7%
8.8% 11.8%
40.0% 20.0%
15.7% 18.3%

NOoOooo
.

HOOOOO

o0 o\ o o\ o o

0.0% 0.0%
61.9% 78.9%
80.5% 88.3%
73.5% 85.3%
60.0% 60.0%

0.0%
61.9%
88.5%
97.1%
80.0%

INTENSITY AGREE

——-—-————---—-——_——.—_—--——_——.—————-—_——-—_————_—-—_——_.—._——_—_————

TAU = 0 HR
NO.
DATA

LAYER

LOW 0
LOW-MID 21(0,2)
MIDDLE 79(1,1)
MID-HIGH 34
HIGH 5
COLUMN 116(3,1)
LAYER

LOW 1
LOW-MID 24(0,2)
- MIDDLE 84(1,1)
MID-HIGH 37
HIGH 5
COLUMN 125(3,1)
LAYER

LOW 0
LOW-MID 21(0,2)
MIDDLE 78(1,1)
MID-HIGH 34
HIGH 5
COLUMN 115(3,1)
LAYER .

Low 0
LOW-MID 21(0,2)
MIDDLE 78(1,1)
MID-HIGH 34 '
HIGH 5
COLUMN 115(3,1)
Note:

"NO. DATA" counts pertain to AIRF and TﬁSS(YlOO)

predictors; the number of data for the TESS (YALL)
predictor based on NG ( RAOBR ) data is found by

subtracting the first ( second ) number in

parenthesis from the given data count.
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TAU = 12 HR PREDICTOR

NO. AIRF TESS (YALL) TESS(Y100)
DATA " (NG) (RAOBR) (NG) (RAOBR) (NG) (RAOBR)
TYPES AGREE
LAYER
LOW 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID  21(2,2) 14.3% 9.5%  36.8% 21.1% 14.3% 14.3%
MIDDLE 83(3,1) 9.6% 26.5% 16.3% 9.8% 9.6% 8.4%
MID-HIGH 35 17.1% 17.1% 28.6% 14.3% 2.9% 0.0%
HIGH 5 40.0% 40.0% 20.0% 40.0% 0.0% 0.0%
COLUMN  119(2,1) 31.9% 30.3% 47.0% 22.0% 14.3% 10.1%
INTENSITIES AGREE
LAYER
LOW 1 0.0% 100.% 0.0% 0.0% 0.0% 0.0%
LOW-MID  24(2,2) 8.3% 16.7% 4.5% 4.5% 0.0% 0.0%
MIDDLE 89(3,1) 7.9% 16.9% 1.2% 1.1% 1.1%  1.1%
MID-HIGH 38 15.8% 13.2% 2.6% 7.9% 0.0% 0.0%
HIGH 6 16.7% 16.7% 16.7% 0.0% 16.7% 0.0%
COLUMN  130(2,1) 23.1% 23.8% 9.4% 9.3% 2.3% 2.3%
BOTH TYPE AND INTENSITY AGREE
LAYER
LOW 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID  21(2,2) 9.5% 0.0% 0.0% 5.3% 0.0% 0.0%
MIDDLE 82(3,1) 6.1% 17.1% 0.0% 0.0% 0.0% 0.0%
MID-HIGH 35 5.7% 11.4% 2.9% 8.6% 0.0% 0.0%
HIGH .5 20.0% 20.0% 0.0% 0.0% 0.0% 0.0%
COLUMN  118(2,1) 14.4% 18.6% 6.0% 6.0% 0.8% 0.0%
NEITHER TYPE NOR INTENSITY AGREE
LAYER .
LOW 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LOW-MID  21(2,2) 85.7% 76.2% 57.9% 78.9% 85.7% 85.7%
MIDDLE 82(3,1) 87.8% 72.0% 82.3% 88.9% 89.0% 90.2%
MID-HIGH 35 71.4% 82.9% 71.4% 85.7% 97.1% 100.3%
HIGH 5 60.0% 60.0% 60.0% 60.0% 80.0% 100.3%

COLUMN 118(2,1) . 57.6% 64.4% 48.3% 74.4% 84.7% 87.3%
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AIRF
(NG) (RAOBR)

PREDICTOR
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TESS (Y100)
(NG) (RAOBR)
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