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AIRCRAFT ICING ALGORITHMS APPLIED TO U.S. NAVY 

NUMERICAL MODEL DATA: A VERIFICATION STUDY 

1. INTRODUCTION 

The Naval Research Laboratory (NRL) Marine Meteorology 

Division is presently developing an interactive information- 

processing system that will provide a suite of environmental 

products to operational users tasked with providing aviation 

weather forecast support. This automated display system is pro- 

jected to significantly improve both flight safety and efficien- 

cy, by providing more accurate and timely warnings of weather 

impacted airspace to naval aviators. The aviation support product 

suite will provide graphical displays of both analyzed and fore- 

cast aviation impact variables derived from gridded numerical 

model data. For the initial product suite, an icing potential 

display is scheduled for implementation. This report evaluates 

several aircraft icing algorithms considered as viable candidates 

for selection as the icing potential product. 

In this verification study, the results of a comparative 

evaluation of four different icing algorithms using gridded 

numerical model data from the Navy Operational Global Atmospheric 

Prediction System (NOGAPS) are presented. Specifically, the icing 

algorithms evaluated herein include those developed by the Re- 

search Applications Program of the National Center for Atmos- 

pheric Research (NCAR-RAP), the National Aviation Weather Adviso- 

ry Unit (NAWAU), the Air Force and the Navy. Verification of the 

algorithms is accomplished by comparing model-derived analyses 

and forecasts of icing potential with pilot reports (PIREPs). 



Forecasts of icing type and intensity provided by the Air Force 

and Navy algorithms are also statistically compared with reported 

conditions. In order to assess the impact of model accuracy and 

vertical data resolution on forecast performance, a second evalu- 

ation of algorithms is performed using coincidental model-derived 

profiles and radiosondes. 

2. ICING ALGORITHMS 

Operational numerical models such as NOGAPS do not explic- 

itly forecast liquid water content or dropsize distribution 

which, along with temperature, are the key meteorological factors 

involved in aircraft ice accretion. Without appropriate cloud 

data, model-applied algorithms attempt to infer significant icing 

areas by locating those model temperature and humidity data 

within certain thresholds known to be favorable to icing poten- 

tial. As formulated, icing algorithms do not consider aircraft 

and flight characteristics, important non-meteorological factors 

which significantly influence the rate of accumulation (i.e., 

intensity ) of ice upon a particular airframe. 

2.1 NAWAU 

The NAWAU icing algorithm, developed by Ron Olson of the 

Aviation Weather Center's Aviation Observing Branch ( formerly 

NAWAU ), is used as operational guidance in the issuance of 

advisories to the aviation community ( R.j. Olson, pers. comm., 

1996 ). .The algorithm, a refinement of one developed by Schultz 

and Politovich ( 1992 ), predicts two categories of icing ( Table 

1 ). Temperature (T) and relative humidity (RH) criteria for 

delineating icing-threat areas were determined through real-time 



Table   1.      Tabular   description   of   the   NAWAU   icing   algorithm 
including temperature and relative humidity thresholds  for both 
icing categories. ^^^i 

ICING CATEGORY TEMPERATURE RELATIVE HUMIDITY HEIGHT 

2 - HIGHER 
PROBABILITY* 

-20<T<0°C 
-14<T<-1°C 

RH > 86% 
RH > 75% 

< 900m above sfc 
> 900m above sfc 

1 - LOWER 
PROBABILITY* 

-19<T<0°C RH > 60% 

*  can be lowered by one category if downslope winds > -5  cm/s 

Table 2. Tabular description of the RAP icing algorithm, includ- 
ing temperature and relative humidity thresholds for each icina 
category. "y 

ICING CATEGORY TEMPERATURE RELATIVE HUMIDITY 

FREEZING RAIN T<0°C RH > 80% 
w/RH > 80% above T>0°C 

FREEZING DRIZZLE -12^T<0°C RH > 85% 
w/RH < 85% above T<-12°C 

UNSTABLE -20<T<0°C RH > 56% 
w/Max RH > 65% below in 
conditionally unstable layer 

STABLE              -16<T<0°C    | RH > 63%                     1 



comparisons with PIREPs and satellite imagery by NAWAU forecast- 

ers. In an attempt to reduce the specified threat area (i.e., 

overforecasting ), category 2 icing generally has more restric- 

tive T and RH thresholds than category 1 icing. The only excep- 

tion to this occurs at low levels ( within 900 m of the surface ) 

where the category 2 temperature threshold is expanded to include 

temperatures down to -20°C. Due to insufficient model ( NOGAPS ) 

data, the NAWAU algorithm feature which reduces areas of icing 

when orographic downslope flow exists, was not utilized in this 

evaluation study. The NAWAU icing algorithm has been previously 

evaluated by NCAR-RAP ( Brown et al., 1994; Thompson et al., 

1995) . 

2.2 RAP 

The RAP icing algorithm, developed by NCAR's Research Appli- 

cations Program, is a refinement of one developed by Forbes et 

al. (1993) and an extension of the Schultz-Politovich algorithm. 

As emphasized by Thompson et al. (1995), the RAP algorithm is 

continually evolving; the temperature and relative humidity 

thresholds for icing shown in Table 2 ( and used in this study ) 

represent those operative during the autumn of 1994. The algo- 

rithm consists of four categories of icing - freezing rain, 

freezing drizzle, unstable and stable. Although freezing precipi- 

tation is widely regarded as the most severe icing hazard, the 

four RAP algorithm categories are not designed to rank icing 

severity but rather provide different physical bases for icing 

diagnoses. For both freezing precipitation categories, there are 

T and RH criteria not only at the level in question, but also for 

a level above. The unstable ( convective ) icing category, in 



addition to T and RH criteria at the level in question, requires 

the existence below of a conditionally unstable layer (i.e., 

lapse rate ) with relative humidity > 65%. The stable icing 

category is similar to the NÄWAU category l icing. The version of 

the RAP icing algorithm described here has been evaluated in- 

house using data from several different models ( Brown et al., 

1994; Thompson et al., 1995). However, these evaluations have not 

specifically verified individual RAP icing category predictions ( 

ex., freezing rain, drizzle ) against actual reported occur- 

rences. 

2.3 AIRF 

The Air Force ( AIRF ) icing algorithm was developed at the 

Air Force Global Weather Central as guidance for flight opera- 

tions ( Knapp, 1992 ). Originally written for application to 

radiosonde data, the AIRF algorithm uses temperature, dew point 

depression ( T-Td ) and stability ( lapse rate ) criteria to 

predict icing type and severity ( Table 3 ). Specifically, given 

a below-freezing moist layer ( T-Td < 4°C ) within a radiosonde 

or model profile, the AIRF algorithm assigns an icing type and 

intensity at each sounding ( or model ) level throughout that 

layer, based on the average temperature and dew point depression 

of the level and the next lower level, and the lapse rate between 

the two levels. For the bottom level of a moist layer, the algo- 

rithm always assigns the icing type and intensity corresponding 

to the next higher level. Three types of icing may be specified. 

For stable lapse rates ( < 2°C / 1000 ft ), rime (RME) is always 

specified; depending on the temperature, either clear (CLR) or 



^J* 4. Tabular description of the AIRF icing algorithm in- 
cluding temperature, dew point depression and lapse rite criteria 
for specification of icing intensity and type Forecast icinS 
intensities and types are defined in the text. 1Clng 

TEMPERATURE 
(°c) 

0>T>-8 -8>T>-16 -16>T>-22 

DEW PT. DEPRESSION 
(°C)       i 

<1 1<T-Td<2 <1 1<T-Td<3 <4 

LAPSE RATE 
(°C/1000ft) 

<2 >2 <2 >2 <2 >2 <2 >2 N/A 

FORECAST ICING 
LGT 
RME 

MDT 
CLR 

TRC 
RME 

LGT 
CLR 

MDT MDT 
RME MXD 

LGT 
.RME 

LGT 
MXD 

LGT 
RME 

S i® V Tabular description of the TESS icing algorithm in- 
cluding temperature, dew point depression and lapse rate criteia 
for specification of icing probability, intensity and type *S" 
indicates intensity value determined using look-up table 

TEMPERATÜRE 
(°C) 

DEW PT. 
DEPRESSION 

(°C) 

LAPSE 
RATE 
(°C/100m) 

PROBABILITY 
(%) 

ICING 
TYPE INTENSITY 

5>T>0 <2 N/A 50 IND UNK 

0>T>-7 2<T-Td<4 

<2 

<-55 
>.55 
<.55 
>.55 

20 
20 

100 
100 

RME 
MXD 
RME 
CLR 

TRC 
TRC 
TBL ' 

-7>T>-15 3<T-Td<6 

<3 

m
 in in in 

in in in in 
i 

V
  A

l V
 

A*| 
1 

20 
20 

100 
100 

RME 
MXD 
RME 
MXD 

TRC 
TRC 
TBL 
TBL 

-15>T>-22 4<T-Td<6 
~ <4 

N/A 
<.55 
>.55 

10 
100 
100 

RME 
RME 
CLR 

TRC 
TBL 

-22>T>-30 <6 N/A 10 RME TBL 



mixed (MXD) icing is forecast for unstable conditions. Forecast 

icing intensities include trace (TRC), light (LGT) and moderate 

(MDT); heavy or severe icing is never specified. The AIRF icing 

algorithm has been previously evaluated ( in terms of its ability 

to predict yes/no icing conditions ) by Knapp ( 1992 ) and by 

NCAR-RAP ( Brown et al., 1994; Thompson et al., 1995). A more 

comprehensive evaluation of the algorithm, which includes icing 

type and severity, has been performed by Cornell et al. ( 1995 ). 

2.4 TESS 

As an atmospheric application program within the Navy's 

Tactical Environmental Support System (TESS) , the aircraft icing 

probability function provides operational users at various land 

sites and aboard selected vessels within the fleet a remote site 

automatic icing analysis using radiosondes (Naval Oceanographic 

Office, 1988). This TESS icing algorithm is based on empirical 

forecast rules given in AWS/TR-80/001 (Air Weather Service, 1980) 

and updated cloud characterizations ( Jeck, 1985). The algorithm 

provides a probability, type and intensity of aircraft icing for 

each level of a sounding ( or model profile, if so chosen ) based 

on various criteria detailed below. To date, the only documented 

evaluation of the TESS icing algorithm has been by Cornell et al. 

( 1995 ). 

Compared to the NAWAU, RAP and AIRF algorithms, the TESS 

icing algorithm is complex. Initially, the lifting condensation 

level ( LCL ) is computed, and this height is set as the base of 

the lowest cloud layer. When a superadiabatic layer exists at the 

surface, the LCL is not computed ( actually, is not defined ), 

and negative icing is specified at all levels of the sounding. 



Based on temperature, dew point depression and stability ( lapse 

rate ) criteria, icing may be specified at a given sounding ( or 

model profile ) level within a cloud layer ( Table 4 ). The icing 

probability can be 10, 20, 50 or 100%. ( Note: at any given 

level, the probability of icing is zero if the level height is 

less than the cloud base height or Table 4 temperature and dew 

point depression icing thresholds are not met.)  The icing type 

can be induction (IND) , rime (RME) , mixed (MXD) or clear (CLR) . 

Rime icing is forecast under stable conditions (  < 5.5°c/km ), 

mixed or clear when the atmosphere is unstable or conditionally 

unstable (  > 5.5°C/km ). For icing probabilities of 100% , the 

intensity of icing ( TRC, LGT, MDT or SVR (severe)) is determined 

from a look-up table, and is based on the cloud temperature, the 

icing type and the distance between the cloud base height and the 

level being analyzed. Icing intensity is specified as unknown 

(UNK) for induction icing, and trace at probabilities of 10 to 

20% when the temperature is between 0 and -22°C. The TESS icing 

algorithm permits multiple cloud ( viz., icing ) layers to be 

specified for a given sounding. A new cloud layer is indicated 

when icing is forecast to occur, the icing probability at the 

previous lower level was zero, and the air temperature is < 5°C. 

The threshold values and resultant icing conditions shown 

in Table 4 ( and used in this study ) represent those from an 

actual operational version (i.e., computer code ) of the TESS 

algorithm. In some cases, Table 4 temperature and dew point 

depression category endpoints do not agree with those given in 

the TESS 2.0 program performance specification for aircraft icing 



( Naval Oceanographic Office, 1988 ). Additionally, the Table 4 

icing type for -15 < T < -7°C and 100% probability is mixed; 

according to Naval Oceanographic Office ( pg. 491 ), the type 

should be clear. For this verification study, the TESS algorithm 

operator-selected option of specifying whether or not a cloud 

layer intersects a frontal inversion was set to "no", thereby 

eliminating the need of the algorithm's second icing intensity 

look-up table used when a frontal inversion is present. 

3. DATA 

3.1 Model - NOGAPS 

The Navy Operational Global Atmospheric Prediction System 

provided the model data required for the computation of the 

icing algorithms evaluated in this study. The NOGAPS is run twice 

daily ( at 00Z and 12Z ) at the Fleet Numerical Meteorology and 

Oceanography Center ( FNMOC ) . Data for this study is from the 

NOGAPS Version 3.4 forecast model which consists of a multivari- 

ate optimum interpolation analysis, a nonlinear normal mode 

initialization scheme, and a 159-wave triangular (— 3/4 deg. 

horizontal resolution ), 18 -level spectral forecast model ( 

Hogan et al., 1991; Goerss and Phoebus, 1993 ). 

During the two and a half month period from mid-March 

through May 1995, NOGAPS temperature, geopotential height and 

vapor pressure fields, interpolated onto a 2.5° x 2.5° spherical 

grid, were stored using the Naval Environmental Operational 

Nowcasting System ( NEONS ) database. As available, meteorologi- 

cal data fields were archived at three forecast lengths ( the 

analysis, and 12 and 24 hours ) and at seven constant pressure 

surfaces ( 1000, 925, 850, 700, 500, 400 and 300 mb). Analysis 



data represents a blend of a  6 hr background forecast with 

quality-controlled current observations, performed prior to model 

initialization. Simultaneous with each NEONS data extraction, 

gridded relative humidity fields ( at the same resolution ) were 

computed and archived. NOGAPS data were collected for a regional 

grid field encompassing the continental U.S. and adjacent areas ( 

Viz., 5°N-60°N, 50°W-130°W ). 

3.2 PIREPs 

3.2.1 Description 

For the period March through May 1995, a database compris- 

ing over 119,000 aircraft pilot reports was obtained from the 

National Center for Atmospheric Research. These PIREPs contain 

encoded numeric data which provide information on weather, cloud 

layers, turbulence and icing. For each PIREP, up to two icing 

layers or levels may be specified, each as a coded group contain- 

ing icing base and top heights, intensity and type. Additional 

icing information may be available within a PIREP as alphanumeric 

remarks. 

The base and top heights of a reported icing layer are 

usually specified to the nearest thousands of feet, although some 

heights are reported to the nearest hundreds of feet. For those 

PIREPs indicating clear skies or clear above ( current flight 

level ), the top height of any reported negative icing layer is 

always specified ( i.e., coded ) as 60,000 ft. Icing type is 

encoded as either negative, rime, clear or mixed. Additional code 

elements were created for icing due to freezing rain ( ZR ) and 

freezing drizzle ( ZL ), with such occurrences  only ascertained 

10 



through pilot remarks. Icing intensity is defined numerically as 

follows: 0) negative, 1) trace, 2) trace-light, 3) light, 4) 

light-moderate, 5) moderate, 6) moderate-heavy, 7) moderate- 

severe and 8) severe. Within a given PIREP, a numeric value of. 

•-9« is assigned any icing code element ( intensity or type ) for 

which no information is given. 

3.2.2 Selection Procedure 

Various criteria were applied to the original PIREP data- 

base to select those pilot reports finally used as verification- 

data for model-derived icing forecasts. PIREPs needed to be 

located within the study's model grid domain and were required to 

have occurred within one hour of 00Z or 12Z. All selected PIREPs 

had to provide at minimum an icing type or intensity for a speci- 

fied level or layer. Given model data at the appropriate date and 

time, a PIREP was matched to the grid point nearest to the PIREP, 

provided the report was no more than 80 km from that model grid 

point, and at an elevation below a specified top height (~ 

27,000 ft ). For each PIREP, the top height ( for icing ) was 

specified as the average model analysis ( or, if unavailable, the 

12 or 24 hr forecast ) height of the 300 and 400 mb pressure 

surfaces at the nearest gridpoint. For some PIREPs, pilot remarks 

provided new or additional information which was numerically 

encoded provided such information met location and time criteria. 

Having passed the above selection criteria, a PIREP's icing 

information was assigned ( based on reported elevations ) to one 

or more of the following five icing layers: LOW, LOW-MID, MIDDLE, 

MID-HIGH and HIGH. The midpoints ( in elevation ) of the LOW-MID, 

MIDDLE, MID-HIGH and HIGH layers correspond to the 850, 700, 500 

11 



and 400 mb model constant pressure surfaces, respectively; the 

lowest icing layer ( LOW ) encompasses both the 1000 and 925 mb 

model constant pressure surfaces. For each PIREP, the base ( top 

) height for the highest four layers is specified as the average 

model height of the layers's constant pressure surface and the 

next lower ( higher ) pressure surface at the chosen gridpoint. 

For example, the base ( top ) height of the MIDDLE icing layer at 

a given gridpoint is the average of the 850 and 700 mb ( 700 and 

500 mb ) model heights. The top of the LOW icing layer is speci- 

fied as the average height of the 925 and 850 mb pressure sur- 

faces; the surface represents the base of this layer. PIREPs 

within 5 minutes and 4 0 km of each other were retained as sepa- 

rate reports if their icing information was from different layers 

or, combined into one report, if they provided information for 

the same layer. In general, for any PIREP ( individual or com- 

bined ) reporting two different icing intensities within a single 

layer, the larger intensity value is selected for comparison with 

model-derived icing forecasts. The icing type for a layer is that 

which corresponds to the chosen ( i.e., highest ) intensity 

value. In those cases where a PIREP has two equal maximum icing 

intensities with differing icing types within a single layer ( 

ex. MIDDLE ), the type 'mixed' is specified for model compari- 

sons. 

3.2.3 Distribution 

Applying the selection criteria outlined above, a dataset 

comprised of 1757 PIREPs over the period mid-March through May 

1995 was created for comparison with icing algorithm forecasts 

12 



derived from NOGAPS 2.5° data. Included within this PIREP dataset 

are 11 reports of icing type only ( i.e., no intensity ). Tempo- 

rally, about 56% of the pilot reports correspond to 12Z, the 

remainder to 00Z. The spatial distribution of the PIREP dataset, 

and the number of negative icing reports, per 5° x 5° latitude- 

longitude bins, is shown in Figure 1. The largest concentration 

of PIREPs in the dataset occurs over the area encompassing the 

southern Great Lakes and northern Ohio Valley. Secondary maxima 

in number of reports occur over eastern Colorado and western 

Washington. While the total number of negative icing reports is 

largest in the.two 5°x 5° bins with the largest number of total 

PIREPs, the highest frequency of negative icing reports occurs 

over the south-central states, with 108 of 139 (~78% ) PIREPs 

between 25-35°N and 90-105°W classified as negative icing re- 

ports. Overall, about 41% of the PIREPs within the dataset are 

negative icing reports. 

Figure 2 presents the number of positive icing reports, per 

5° x 5° latitude-longitude bins, of intensity less than moderate 

or greater ( TRC, TRC-LGT or LGT ) and of intensity moderate or 

greater ( LGT-MDT and above ). For this compilation, the icing 

value assigned any individual PIREP corresponds to the maximum 

reported intensity. The largest concentration of positive icing 

reports occurs over the southern Great Lakes - northern Ohio 

Valley area. Over the western U.S., positive icing reports are 

largely concentrated over the central Rockies and Pacific North- 

west. Reports of icing conditions are not common south of 3 5°N. 

Of any 5°x 5° box with greater than 7 positive icing reports, 

only one ( that containing Pennsylvania and western New York ) 

13 
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125W 

Figure 1.  Spatial distribution of the 2.5° PIREP dataset, 
corresponding to the period March-May 1995.  For 5° x 5° 
latitude-longitude boxes, the total number of PIREPs and the 
number of negative icing reports are given.  Striped boxes 
indicate >50% negative icing reports. 
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has at least as many MOG ( moderate or greater ) icing reports as 

less than MOG reports ( 28 each category. ). This box, plus the 

three to its west and the one to its southwest, contain half of 

all MOG intensity reports within the dataset. Overall, about 40% 

of all positive icing reports are of MOG intensity. 

Characteristics of the 2.5° PIREP dataset based on vertical 

icing layers are given in Table 5. Due to the availability of 

icing ( and no icing ) information in multiple layers with many 

PIREPs, the total number of ( layer ) reports ( 3422 ) is roughly 

twice as large as the number of PIREPs included with this data- 

set. Of the five specified icing layers, the MIDDLE icing layer 

contains the most reports ( about a third ) while the LOW layer 

contains the least ( < 7% ). Overall, about 5 of every 8 layer 

reports are classified as negative icing reports. The total 

number of such reports ( 2144 ) is three times the number of 

negative icing PIREPs, indicating that many of these PIREPs 

provided multiple layer reports as a result of low-level flight 

under clear sky ( no cloud ) conditions. The percentage of nega- 

tive icing reports as a function of all reports is about 48% at 

the MIDDLE layer; this percentage increases both upward and 

downward from this layer, reaching 63% of all reports at the LOW 

layer and 94% at the HIGH layer. When icing is specified, about 

three of every four reports indicate type 'rime'. Mixed ( clear ) 

icing is specified about once in 5 ( 15 ) reports. Almost three 

of every four reports of clear icing correspond to the LOW-MID 

and MIDDLE layers. All reports of freezing precipitation ( ZR or 

ZL ) occur at or below the MIDDLE icing layer. Slightly less than 

16 



Table 5.  Characteristics of the 2.5° PIREP dataset inclnrH™ 
the- number of reports according to icing type and* intenSSy  and 

laye?Ierage baB° "**  tOP heightS ( in " > ' for select educing 

LAYER 
LOW   LOW-MID MIDDLE MID-HIGH HIGH TOTAL 

 925^MB J50  MB 700 MB 500 MB 400 MB 

AVG. HGT. 

?0PE       Z7i            Inll ?292 1416? 21103 
l°l 3611 7269 14081 21110 27043       

-.:-!!?:_ III _7°3__ ~~~?F "9~6 sll 3422""" 
TYPE 

p?,iNEGO         144              4°3 553 536 508 2144 RIME                        48              186 425 184 27 «7n 
CLEA*                         9                 20 37 11 2o 8v? 
MIXED                     21                62 98 42 3 oil 
FRZ.   DRZL.           0                   1 0 0 0? 
FRZ.   RAIN             13 2 0 0 I 
NOT_GIVEN__   _   5 28 39' .           23 3 9S 

INTENSITY 

TRC-LGT                  12 0 0 0 "? 
LIGHT                     36             137 290 132 21 fii« 
LGT-MDT                12                31 68 31 \ Vf2 

MODERATE             22                79 173 74 7 \\l 
MDT-HEAVY             1                   5 ± £ ' 355 

MDT-SEVERE          1                   2 2 On8 

SEVERE                      0                    3 9 n n 5 

NOT  GIVEN             2                   6 5 1 0 14 
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half of all positive icing PIREPs specify the intensity as 

•light' ( categories TRC-LGT and LGT ). When combined, the inten- 

sity categories LGT-MDT and MDT account for about 2 out of every 

5 intensity reports. Trace icing is specified in slightly less 

than 10% of the reports. Heavy/severe icing ( categories MDT- 

HEAVY, MDT-SEVERE,and SEVERE ) is seldom reported ( only 2% of 

all layer reports ); the LOW-MID and MIDDLE layers account for 

88% of all reports of such icing. 

Within the 2.5° PIREP dataset, a total of 1166 layer re- 

ports provided both icing type and intensity information. Table 6 

presents the number of occurrences ( and percent frequencies ) of. 

selected (intensity,type) pairs. Here, the top number of any 

(intensity,type) box is the number of occurrences, the middle 

value is the percent frequency of the specified type category for 

the given intensity and the lower value is the percent frequency 

of the specified intensity category for that given icing type. 

Results indicate that the percent frequency of occurrence of rime 

icing decreases somewhat with increasing intensity, while the 

reverse occurs for clear icing. The percent occurrence of mixed 

icing does not vary greatly over icing intensity categories ( 17% 

to —22% ). The percent frequency of icing intensity is rather 

similar for the three main icing types ( RME, MXD and CLR ). For 

example, depending on which icing type is chosen, between 46% and 

51% of all its type observations occur at the light ( TRC-LGT, 

LGT ) intensity category. With only 4 available data, no conclu- 

sions can be drawn for ( intensity,type ) relationships for icing 

due to freezing precipitation ( ZL,ZR ). 

A comparison of this study's dataset icing type and inten- 
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Table 6.  Characteristics of the 2 5° PTPPP H =.-»-=.^4- 
selected intensity/type pairing, ^or any"LÄy^pTbo^he" 
top number is the number of occurrences, the middle va^ue is tnt 
si?rnandr;rry °f th,e  SPecified type category given the inten- 
sity and the lower value is the percent frequency of the SPH 
fied intensity category given the icing type P  1_ 

INTENSITY^\^ 
RME MXD CLR ZL,ZR TOTAL 

TRC 
74 

78.7% 
8.6% 

16 
17.0% 
7.2% 

4 
4.3% 
5.3% 

0 
0.0% 
0.0% 

94 

TRC-LGT 
LGT 

442 
75.8% 
51.2% 

102 
17.5% 
45.7% 

37 
6.3% 

48.7% 

2 
0.3% 

50.0% 

583 

LGT-MDT 
MDT 

333 
71.5% 
38.6% 

101  1 
21.7% j 
45.3% i 

31 
6.7% 

40.8% 

1 
0.2% 

25.0% 

466 

MDT-HVY 
MDT-SVR 

SVR 

14 
60.9% 
1.6% 

4 
17.4% 
1.8% 

4 
17.4% 
5.3% 

1 
4.3% 

25.0% 

33 

1 

TOTAL 863 223 76 4 1166 1 
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sity frequencies with various other observational datasets avail- 

able in the literature is presented in Table 7. The icing type 

•rime' is found to be.dominant in all datasets, with frequencies 

ranging from 72% to 84% ( Table 7a ). Although the frequency of 

mixed icing reported by Cohen ( 1983 ) is about half of what is 

reported in the other studies, mixed icing is reported to be more 

common than clear icing in all four comparison datasets. For 6 of 

the 7 tabulated datasets, the icing intensity, category 'light' is 

the most dominant frequency. It should be pointed out that the 

AWS ( 1980 ) data, adapted from all-weather flight test data 

compiled by Thompson ( 1955, Figure 16 of report ), represents 

icing severity categories one less than originally given (ex., 

light instead of moderate ). Eliminating the Perkins et al. ( 

1957 ) dataset ( where the categories trace and light are com- 

bined ), reported frequencies of light icing range from about 43% 

to 67% among the given studies. The dataset used by Cornell et 

al. ( 1995 ) is unique in that almost all pilot reports are of 

either trace ( the dominant frequency at 54% ) or light intensi- 

ty, and few of moderate or greater severity. Frequencies of 

moderate icing are observed to be quite large for this study's 

dataset and that utilized by Brown et al. ( 1994 ); in both of 

these studies, similar PIREP data processing procedures were 

followed. Excluding the Thompson ( 1955 ) dataset, observations 

of heavy/severe icing are rare, occurring at frequencies between 

zero and about 3%. Note that the frequency of heavy icing would 

be only 2.2 % for the Thompson dataset if, as per Air Weather 

Service ( 1980 ), a distinction is made between heavy and severe 
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Table 7. Percent frequencies of occurrence of icinq types (a) 
and intensities (b) for this study's PIREP dataset compared to 

S^i?Saturer.°m     **   ^^ observational «atasets found in 

(a) 

NO. 
DATA RME 

TYPE 
MXD   CLR OTHER 

SOURCE/REFERENCE 

1180 73.7% 19.2%  6.5% 0.6% ZL,ZR Tbl. 5/This study 

L. 

9693 
114 

4600 1 
78.1% 
84.2% 
72.0% 

15.8? 
8.8? 

17.0? 

6.1? 
7.03 

10.03 1.0% FROST 

Tbl. 4/Cornell et.al.,1995 
Tbl. 8/Cohen,1983 
Perkins et.al.,1957 

Notes: 1 No Other Type 

(b) 

NO. 
DATA 

INTENSITY 
TRC    LGT    MDT   HVY/SVR 

SOURCE/REFERENCE 

1264 9.7%  49.0%  39.4%   2.0% Tbl. 5/ This study 

9693 
40955 

114 
3372 
 3 

368 

53.7%  42.8%   3.4%       } 

4.4%  56.3%  36.2%   3.2% 
14.0%  67.5%  18.4%   0.0% 
38.4%  44.7%  16.4%   0.6% 
 |  87.0%  12.0%   1.0% 
    48.9%  35.1%  16.0% 

Tbl. 4/ Cornell et.al.,1995 
Fig. 4b/ Brown et.al.,1994 
App. A/ Cohen,1983 
Tbl. 2/ Air Wea. Serv.,1980 
Perkins et.al.,1957 
Fig. 9/ Thompson,1955 

Notes: 1 Not specified 
2 Based on Dewpoint Spread < 3°c 
3 Unknown 
4 Category combined with LGT 

21 



categories , with each category lowered one intensity level. 

3.3 Radiosonde 

In addition to NOGAPS 2.5° model data and pilot reports, 

radiosonde observations ( RAOBs ) were archived during the study 

period for the purpose of assessing the effect of model accuracy 

and resolution on icing forecasts. FNMOC quality-controlled RAOBs 

were obtained from the NEONS database. Typically, RAOBs provided 

geopotential height, temperature, dew point temperature and wind 

at mandatory and significant levels. The 925 mb constant pressure 

surface, a ( NOGAPS forecast ) level for this study, is not a 

mandatory radiosonde level; under fortuitous circumstances, 

information for this level may be provided in the significant 

level data. RAOBs do not directly provide the relative humidity; 

this parameter, required by the NAWAU and RAP icing algorithms, 

was derived subsequently during data "processing. For the period 

March through May 1995, over 8,000 RAOBs from 85 sites ( both 

civilian and military ) within the continental U.S. were ar- 

chived . 

As was done with the PIREPs, selection criteria were ap- 

plied to RAOBs to determine those eventually used for data com- 

parisons. For each of the 1757 previously selected PIREPs, a 

search was made to find a RAOB at the appropriate date and time ( 

either 00Z or 12Z ) and within 80 km of the PIREP location. If 

successful, the distance from the grid point location previously 

chosen for the PIREP to the radiosonde site was calculated and, 

if within 80 km, the radiosonde was selected for study compari- 

sons. The rather severe requirement that the PIREP, model grid- 

point and radiosonde locations all be within 80 km dramatically 
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reduced the final database to only 280 RAOBs at 25 sites ( see 

Figure 3 ). it should be pointed out that each of these RAOBs is 

not unique; in some cases, the same RAOB was assigned to multiple 

PIREPs.  Geographically, the locations of radiosonde sites  are 

fairly well distributed throughout the continental U.S., although 

no sites are available for the Northeast and within a rather wide 

swath from the northern Rockies and Great Plains southeastward to 

the mid-South (viz., Georgia ). By far, the largest number of 

radiosondes used for model/PiREP data comparisons is at Denver, 

CO ( 67, or -24% ); this site, plus Pittsburgh, PA, account for 

about 3 of every 8 radiosondes utilized. In addition to radio- 

sonde locations, Figure 3 provides the total number of PIREPs 

assigned each RAOB site according to three categories ( negative 

icing, < MOG intensity and MOG intensity ); one PIREP ( over 

Oregon ) did not report an icing intensity. Overall, the percent- 

age of < MOG intensity reports used for radiosonde comparisons ( 

-35% ) is about the same as the percentage of such reports within 

the full PIREP dataset, while the percentages for negative icing 

and MOG intensity reports are slightly higher and lower, respec- 

tively. Although the number of MOG intensity reports is largest 

at the Denver, CO radiosonde site ( 14 ) , the largest percentage 

of such reports at any one site ( 50%, or 7 of 14 ) occurs at 

Reno, NV. 

For direct comparisons with PIREPs and model data, individ- 

ual radiosondes are subdivided into the same five vertical layers 

- LOW, LOW-MID, MIDDLE, MID-HIGH and HIGH - as used for pilot 

reports. The top and bottom heights for these layers are found in 
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Figure 3.  Radiosonde locations used for study comparisons. 
The number of PIREPs assigned each radiosonde site are indicated 
according to three categories: negative icing, <MOG intensity 
icing, and MOG intensity icing (left to right, respectively). 
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an analogous manner as those for PIREPs, except that radiosonde ( 

mandatory ) heights are used in lieu of model constant pressure 

surface heights to set layer limits. When needed, a radiosonde 

height value at 925 mb ( and at any missing mandatory level, 

surface to 300 mb ) is computed by logarithmically interpolating 

with respect to pressure using height values of bracketing iso- 

baric surfaces. Application of any of the four icing algorithms 

used in this study to a particular radiosonde will provide a 

yes/no icing determination for each vertical layer with at least 

one radiosonde level. For any layer with multiple radiosonde 

levels, a positive icing condition is specified if icing is 

diagnosed at one or more levels. For radiosonde-derived AIRF or 

TESS icing analyses, the specification of an icing intensity and 

type for any given radiosonde layer containing data at two or 

more levels is analogous to the procedure used for PIREP layers 

containing two different intensities or types. In some instances, 

the TESS icing type for a layer reporting two equal maximum 

intensities is determined by comparing the forecast icing proba- 

bilities of the two intensities, then selecting the icing type 

corresponding to the larger probability. 

3.4 Model Versus Radiosonde 

Since model-applied algorithms infer icing by locating 

temperature and humidity data within certain critical thresholds, 

forecasts of icing may be significantly affected by biases in 

model state parameters. If one assumes radiosonde measurements 

are accurate to a certain degree of precision, then average model 

minus radiosonde differences ( i.e., model biases ) may be con- 

sidered to be significant if the magnitude of such differences is 
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well in excess of known radiosonde instrument precision. For the 

25 radiosonde sites shown in Figure 3, the VIZ 'B-sonde' was the 

dominant instrument type. According to Ahnert ( 1991 ) , this 

radiosonde has the following measurement precision : 2 mb, or 

about 15-20 m ( pressure, height ), 0.3°C ( temperature ) and 1.6 

% (relative humidity ). Within the lower troposphere ( below 400 

mb ), Ahnert finds that radiation errors are insignificant for 

the VIZ »B-sonde.• . 

Table 8 provides average radiosonde values and model biases 

for geopotential height, temperature, dew point temperature and 

relative humidity, at seven constant pressure levels and three 

forecast lengths ( Tau = 0, 12 and 24 hr ). These statistics are 

based on 280 radiosondes, some of which are not unique ( due to 

multiple PIREPs for the same sonde ) . The number of data at 

lowest level ( 1000 mb ) is substantially reduced due to a pre- 

dominance of radiosonde launches at higher elevations. Data 

availability at 925 mb is lacking since this pressure level is 

not a standard radiosonde reporting level. Below 850 mb, statis- 

tical sample size was further reduced due to significant differ- 

ences in radiosonde and model elevations at several sites. Sample 

size was largest ( smallest ) at Tau =.12 hr ( 0 hr ) because 

more ( less ) model data were available. Geopotential height 

biases are all well below radiosonde instrument precision ( 15-2 0 

m ). Eliminating the data-deficit 1000 mb level, temperature 

biases roughly twice instrument precision ( i.e., between 0.5 and 

0.9°C ) only occur between 925 and 700 mb at Tau = 12 and 24 hr. 

These 'too warm1 temperature biases are related, by hydrostatic 
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Table 8. ^Average radiosonde values and NOGAPS 3.4 model biases 
rela?Ive°hu£daiivhei?ht' teI»Perature• *•» P°l»t temperature an? 

llngthTt^Tut^o^lfan^nr'T""       ™*  "**• f°rSCaSt 

    _ _    TAU = 0        TAU = 12       TAU =24 

mm'     2?™       AVG*  BIAS     AVG'  BIÄS     ÄVGT'BIIS"" 
1™_  _    *A _     RA0B RA0B RAOB 

,„„„ GEOPOTENTIAL HEIGHT (M) 
1000    18,22,19      115  -2.4      109  -2.0      il5 -2 0 
925    42,45,42      756   0.8      755   2.4      758 0 1 
850  178,187,182    1460  -0.6     1458   2.4     1460 0 8 
700  241,257,253    3022  -0.6     3023   1.7     3025 1? 
500  240,255,251    5614  -0.5     5613   5.7     5616 5 4 
400  240,256,252    7239  -0.5     7238   6.9     7241 7 1 

_300 _237:253,249    9222  -2.1     9219   4,7     9223 5.3 

TEMPERATURE (°C) 
1000    18,22,19     19.3   1.9     18.7  -0.7     19 5 -0 5 
925    42,45,42     11.7   0.2     11.8   0.7     11 8 0 6 
850  178,187,182     5.3   0.1      5.5   0.7      5 5 0 9 
700  241,257,253    -2.3  -0.1     -2.4   0.5     -2 4 0 5 
500  240,255,251   -18.6  -0.1    -18.7   0.2    -18 6 0 2 
400  240,256,252   -30.4  -0.0    -30.5   0.0    -30 5 0 0 

-!°___?3I'?5!'!4! _ I44,7" ~0-2     "45-° _0-2     ~44-9 -o!i 
DEW POINT TEMPERATURE (°C) 

1000    18,22,19     16.7  -1.0     16.1  -0.3     17 0 -0 3 
925    42,45,42      8.0   0.4      8.3   0.7      8*0 14 
850  178,187,182     1.0  -0.9      1.1  -0.4      12 -0 4 
700  241,257,253   -10.9   1.5    -10.7   2.1    -10*7 2 3 
500  240,255,251   -30.3   1.5    -30.5   2.5    -30*5 2 8 
400 -240,256,252   -42.4   0.9    -42.6   2.2    -42*5 2*? 

-!-°_ 237_>253'li9_        "56.2  -2.4    -56.5  -1.0    -56*4 -1*1 

RELATIVE HUMIDITY (%) 
1000    18,22,19     85.4 -13.7     85.5   1.8     86 5 10 
925    42,45,42     83.4  -1.0     84.4  -2.3     82*9 2*5 
850  178,187,182    79.6  -4.2     78.8  -5.7     79 -5*7 
700  241,257,253    61.8   5.3     63.2   5.6     63*1 66 
500  240,255,251    43.9   4.6     43.7   8.o"    43 4 9 4 
400  240,256,252    36.2   3.4     36.1   9.6     35*8 10 7 
300  237,253,249    29.4  -6.7     29.3  -0.9     29 1 -16 
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consistency, to slightly positive geopotential height biases ( 5 

to 7 m ) found at higher levels ( viz., 500 to 300 mb ). By far, 

the most significant model biases, and those most likely to 

impact icing algorithm forecast performance, occur in moisture. 

Between 700 and 400 mb, the model is considerably more moist than 

what is observed, with biases increasing steadily with forecast 

lead time. This 700-400 mb layer represents a well-defined, 

distinct moist layer; Td and RH biases immediately below and 

above ( at 850 and 300 mb, respectively ) are all negative, 

indicative of a model atmosphere that is too dry. A very large 

negative RH bias occurs at Tau = 0 hr and 1000 mb; the signifi- 

cance of this statistical value is unclear since it is based only 

on 18 data and  does not have a corresponding large dew point 

temperature bias. 

4. VERIFICATION TECHNIQUES 

Two statistical indices and a skill score discriminant, 

derived from two by two contingency tables, are used to evaluate 

the ability of a chosen icing algorithm to predict discrete 

yes/no icing conditions. Given a particular event ( viz., icing), 

the prefigurance PF ( also known as the hit rate or Power of 

Detection ) is the capability of correctly forecasting that 

event, and is defined as the number of correct ( model- or RAOB- 

derived ) forecasts divided by the number of reported occur- 

rences. The false alarm rate FAR is a measure of the tendency to 

overforecast, and is defined as the number of incorrect forecasts 

divided by the number of reported »no icing" occurrences. The FAR 

index can be thought of as the probability that a «no icing' 

event will be incorrectly forecast. Due to the nonsymetric, 
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biased nature of the PIREP database, the PF and FAR indices 

should not be viewed as being fully reliable statistical meas- 

ures of forecasting performance; on the other hand, for a given 

database, they do provide meaningful comparisons to be drawn 

among different icing algorithms ( Brown et al., 1994 ). 

The Hanssen and Kuipers ( 1965 ) discriminant V, defined as 

the hit rate minus the false alarm rate ( PF - FAR ), provides an 

acceptable and unbiased measure of forecast accuracy for scien- 

tific purposes. The score ranges from -l to I; -1 implies per- 

fectly wrong forecasts, 0, random performance ( PF = FAR ), and 

1, perfect skill, since the V discriminant does not depend on the 

sample relative frequency of the predictand, forecast successes 

and failures are given equal weight. In general, the greater the 

positive score, the greater the likelihood for high hit rates to 

be associated with low false alarm rates. Hanssen and Kuipers- 

contingency table formulation of variance will be computed in 

order to assess whether or not differences between icing predic- 

tors are statistically significant. Given values of v for two 

predictors, the difference between them will be considered to be 

•highly statistically significant» provided the skill score dif- 

ference is greater than the standard deviation in the difference 

times a confidence factor set at a 0.01 level of significance ( 

i.e., 99% confidence level ). When used in this report, a 'sta- 

tistically significant • difference corresponds to a 0.05 level 

of significance ( 95% confidence level ). 

Statistical indices are computed for five distinct layers ( 

LOW to HIGH ) as well as for a columnal layer ( COLUMN ) which 
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encompasses all icing data from the LOW through HIGH layers. For 

NOGAPS data, discrete yes/no icing forecasts for a particular 

algorithm are based on only one model-derived value for the LOW- 

MID, MIDDLE, MID-HIGH and HIGH layers ( corresponding to model 

850, 700, 500 and 400 mb pressure levels, respectively ) and two 

values for the LOW layer ( derived from 1000 and 925 mb data ). 

Only pilot reports which specify icing intensity are used for 

verification of binary yes/no icing forecasts. All four icing 

algorithms provide a specific »no icing« forecast category. A 

designation of 'no icing» for a COLUMN layer ( PIREP, model or 

RAOB )• is only made provided the surface (i.e., lowest possible ) 

icing layer ( determined using terrain height ) and all layers 

above explicitly have 'no icing» category values. Both the NAWAU 

and TESS algorithms are utilized twice. The predictor NAWAU(l) 

provides a positive icing forecast if either category 1 or 2 is 

forecast. NAWAU(2) is positive only if category 2 icing is fore- 

cast within the specified layer; for this predictor, category 1 

icing is considered a negative forecast. The TESS(YALL) predictor 

yields a positive icing layer forecast if the probability of 

icing is non-zero (i.e., 10, 20, 50 or 100% ). Much more restric- 

tive, -TESS(YIOO) provides a positive icing forecast only if the 

algorithm forecasts a 100% probability of icing at any one level 

within the specified layer. TESS(YIOO) icing forecasts of 10, 20 

and 50% probabilities are all considered 'no icing» forecasts, 

and are grouped with 0% probability forecasts. 

Verification of icing intensity and type is possible using 

both the AIRF and TESS algorithms. ( Note: the paucity of freez- 

ing precipitation reports precludes any verification of RAP's ZR 
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and ZL icing categories.) For any specified icing layer ( LOW to 

HIGH, or COLUMN ), the percent frequency of agreement between 

reported and forecast ( model or RAOB based ) icing type and 

intensity as a function of reported type and intensity will be 

determined. These statistics, based on only positive ( i.e., yes 

) icing reports, include the frequency of agreement in type, 

intensity, both type and intensity and, neither type nor intensi- 

ty. Type comparisons exclude reports of freezing precipitation ( 

ZR and ZL ), since these icing types are not forecast by either 

algorithm. Because the AIRF and TESS algorithms forecast fewer 

intensity categories than were reported, the reported intensities 

are consolidated prior to comparison. Pilot report categories 

TRC-LGT and LGT-MDT were combined with the next higher category ( 

LGT and MDT, respectively ) prior to comparison with either icing 

algorithm. Reports of MDT-HVY, MDT-SVR and SVR were consolidated 

into a single SVR category for TESS comparisons. Since the AIRF 

algorithm does not forecast severe icing, any reported icing 

intensity between LGT-MDT and SVR was assigned a MDT intensity 

prior to comparison with AIRF forecasts. Incompatibility between 

observed and TESS(YALL) forecast icing type is resolved by ex- 

cluding from comparisons all observed/forecast data pairs having 

a forecast type 'induction' and intensity «unknown.» A similar 

incompatibility problem does not occur for the TESS(YIOO) predic- 

tor since all forecasts of induction icing have been previously 

set to a 'no icing' category prior to determination of icing type 

and intensity for a particular layer. Given PIREP, model or 

radiosonde icing types and intensities for individual ( LOW 
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through HIGH ) layers, the composite COLUMN icing type is deter- 

mined in an analogous procedure as that for any single PIREP or 

radiosonde icing layer with multiple icing data ( previously 

discussed in sections 3.2.3 and 3.3). 

A comparison of PIREPs used in this study with previous 

observational studies ( Table 7 ) indicates that the most preva- 

lent icing intensity and type is light rime. In order to assess 

the performance of the AIRF and TESS algorithms, icing intensity 

and type forecasts will be compared to the predictor 'LGT RME. • 

This predictor always assigns the icing intensity and type 'light 

rime' to any positive icing forecast. Specifically, given any 

particular AIRF or TESS positive icing forecast ( intensity trace 

and above; type rime, mixed or clear ), the existing icing inten- 

sity and type is converted to 'light rime« prior to comparison 

with the corresponding pilot report. The predictor «LGT RME« is 

applied separately to icing determinations of each of the three 

predictors ( AIRF, TESS(YALL) and TESS(Y100) ), for each of the 

six icing layers ( LOW to HIGH, COLUMN ) and four categories of 

agreement statistics. 

5. COMPARISON RESULTS 

5.1 Model and PIREPs 

Overall verification statistics from PIREP-based verifica- 

tion of icing algorithms using NOGAPS 2.5° analysis, 12 and 24 hr 

model data are presented in Table 9. For each of six icing pre- 

dictors, the prefigurance and false alarm rate indices, and the V 

discriminant, are given for selected icing layers ( LOW to HIGH, 

COLUMN ). Statistical differences in skill scores, at a 0.01 

level of significance, are indicated by numbers appended to 
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Table 9a.  For selected icing layers ( LOW to HIGH  COLUMN \ 
verification statistics ( PFf FAR/V ) from PlREP-based vertical 
tion of icing predictors with Tau = 0 hr NOGAPS 2.5° "° model data. 

^a) 

TAU = 0 HR ~~ 
L°W LOW-MID MIDDLE  MID-HIGH HIGH COLUMN 

-2:!-*?!?i!^L_I:^2f 2_6_i/373 ^77i7~77777s7~7777i77577iol 
•____ PREFIGURANCE   (PF) 
AIRF                                0.183        0.455 0.288           0.321 0   310 0   *CA 
NAWAU(l)                      0.493        0.778 0.701           0.473 0   0 I'Hi 
NAWAU(2)                      0.451        0.677 0.517           0.135 0*S I'.Tsl 

SssrYALL^                  V3         n'ltl °*689           °-342 °'° <>.855 
TESS   Y100                     -n'n           M" °*521           °*582 °'448 0-817 
^ffi!i°°l    _°*°   _     °'526 °'344           °-333 0.207 0.560 

____ FALSE ALARM RATE (FAR) 
MJTTATT,-^                       °*063 °-107 °-150           °-095 0.023 0.179 
NAWAU(l)                      0.143 0.214 0.363           0.089 0   002 0   358 
NAWAU(2)                      0.143 0.169 0.243           0.018 oT 2*255 
„         ,                               0.135 0.212 0.355           0.068 0   0 0   3SR 
TESS(YALL)                 0.008 0.268 0.317           0.189 0   070 S*330 
™ff!I"üL_- Ü:?___ °-131 °-179      °'056 0-01? O'.llo 
,„,„ HK DISCRIMINANT (V) 
AIRF            0.120 0.348 0.138    0.226 0.287 0 38<5 
NAWAU(l)        0.350* 0.564* 0.3383   0.384

2 -0 002 0*510 
NAWAU(2)        0.308' 0.508J 0.275»   0.117 Vo O^ 
^             0.3582 0.555* 0.3333   0.273' 0 0 0 496 
TESS(YALL)     -0.008 0.4841 0.204    0.393* O^TV 0*4^ 
TlS.SJll0.V. °:ü °'395 °'166    O-2^1 0*190 o'loo 
 x number of lower score predictors difference is at 0 01 

level of significance 

33 



Table 9b.  Same as a), except with Tau = 12 hr NOGAPS data. 

(b) 

TAU = 12 HR 
LOW LOW-MID 

LAYER 
MIDDLE  MID-HIGH HIGH  COLUMN 

NO.PIREPS(Y/N) 68/122 265/358 568/504  248/493 31/466 969/101 

PREFIGURANCE (PF) 
AIRF 0.235 0.291 0.234 0.387 0.323 0.549 
NAWAU(l) 0.338 0.717 0.683 0.492 0.065 0.845 
NAWAU(2) 0.338 0.558 0.537 0.165 0.0 0.651 
RAP 0.338 0.713 0.678 0.375 0.0 0.829 
TESS(YALL) 0.0 0.766 0.533 0.653 0.516 0.836 
TESS(YIOO) 0.0 0.415 0.375 0.375 0.129 0.558 

FALSE ALARM RATE (FAR) 
AIRF 0.090 0.089 0.111 0.105 0.026 0.188 
NAWAU(l) 0.131 0.162 0.343 0.120 0.002 0.356 
NAWAU(2) 0.115 0.106 0.212 0.018 0.0 0.198 
RAP 0.131 0.159 0.321 0.067 0.002 0.347 
TESS(YALL) 0.008 0.196 0.288 0.221 0.099 0.287 
TESS(YIOO) 0.0 0.092 0.153 0.071 0.022 0.109 

HK DISCRIMINANT (V) 
AIRF 0.145 0.201 0.123 0.282 0.297 0.361 
NAWAU(l) 0.207 0.5552 0.3402 0.372 1 0.062 0.489 
NAWAU(2) 0.223 0.4521 0.3251 0.147 0.0 0.453 
RAP 0.207 0.5542 0.3563 0.3081  - -0.002 0.482 
TESS(YALL) . -0.008 0.571* 0.2461 0.4322 0.4173 0.5491 
TESS(YIOO) 0.0 0.323 0.222' 0.304 1 0.107 0.449 

x number of lower score pr edictors difference is at 0.01 
level of significance 
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Table 9c.  Same as a), except with Tau = 24 hr NOGAPS data. 

(c) 

TAU = 24 HR 
LOW  LOW-MID 

LAYER 
MIDDLE  MID-HIGH HIGH  COLUMN 

NO.PIREPS(Y/N) 65/119 255/354 524/493  232/477 29/456 905/100 

PREFIGURANCE (PF) 
AIRF 0.200 0.310 0.229 0.405 0.379 0.549 
NAWAU(l) 0.431 0.694 0.626 0.522 0.034 0.833 
NAWAU(2) 0.431 0.561 0.490 0.190 0.0 0.649 
RAP 0.431 0.678 0.624 0.379 0.0 0.800 
TESS(YALL) 0.046 0.737 0.477 0.716 0.655 0.831 
TESS(YIOO) 0.046 0.427 0.294 0.409 0.172 0.554 

FALSE ALARM RATE (FAR) 
AIRF 0.050 0.076 0.085 0.096 0.044 0.140 
NAWAU(l) 0.151 0.161 0.306 0.111 0.002 0.360 
NAWAU(2) 0.134 0.102 0.162 0.029 0.0 0.180 
RAP 0.160 0.158 0.282 0.084 0.0 0.340 
TESS(YALL) 0.008 0.195 0.245 0.212 0.101 0.250 
TESS(YIOO) 0.0 0.102 0.122 0.086 0.022 0.130 

HK DISCRIMINANT (V) 
AIRF 0.150 0.234 0.144 0.3091 0.335 0.409 
NAWAU(l) 0.280 0.5332 0.3202 

0.410* 0.032 0.473 
NAWAU(2) 0.296 0.4591 0.3282 0.160 0.0 0.469 
RAP 0.271 0.520* 0.3423 

0.295 0.0 0.460 
TESS(YALL) 0.038 0.5422 0.232 0.5044 

0.5544 0.581 
TESS(YIOO) 0.046 0.326 0.172 0.3241 0.150 0.424 

x number of lower score pr edictors difference 5 is at 0.01 
level of significance 
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individual V scores. Specifically, for a given icing predictor, 

an appended number indicates how many of the lowest V scores ( 

within the same icing level ) are highly statistically different 

from the score of the selected predictor. As an example, consider 

the MIDDLE column statistics for Tau = 0 hr ( Table 9a ); here, 

both the NAWAU(l) and RAP skill scores are highly statistically 

different from the lowest three scores (i.e., those for AIRF, 

TESS(YALL) and TESS(YIOO) ), and the NAWAU(2) skill score is 

highly statistically different from the lowest V score ( corre- 

sponding to the AIRF predictor ). 

As indicated in Table 9, the ratio of yes/no icing reports 

used for verification is most even for the MIDDLE column. Verifi- 

cation of icing forecasts within the HIGH layer is strongly 

skewed-toward negative icing occurrences. On the other hand, over 

90% of verifying PIREPs for the cumulative COLUMN layer corre- 

spond to positive icing. The number of negative icing PIREPs used 

for verification decreases slightly with forecast length within 

all icing layers. The number of positive icing PIREPs also de- 

creases over the full forecast interval for the lowest two lay- 

ers; however, for the upper three layers and the COLUMN layer, 

the number of positive icing reports is greatest at Tau = 12 hr, 

least at Tau = 24 hr. 

Concentrating first on analysis ( Tau = 0 hr ) verification 

statistics, one observes that the NAWAU(l) and RAP icing predic- 

tors ( both refinements of the Schultz- Politovich icing algo- 

rithm ) have the best capability in diagnosing icing occurrence 

for the LOW to MIDDLE, and COLUMN, layers.. High PF values, which 
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exceed 0.75 and 0.85 for the LOW-MID and COLUMN layers, respec- 

tively, are likely abetted by these two predictors' relatively 

low RH thresholds for cloud icing ( Note: RAP's dominant icing 

categories are »stable' and 'unstable'.)  At the same time, these 

'•generous'' moisture thresholds result in FAR indices for these 

two predictors among the highest of all predictors for the LOW to 

MIDDLE and COLUMN layers. NAWAU(l) and RAP forecast capability 

decreases noticeably from the MIDDLE to MID-HIGH layers, then 

becomes nonexistent at the HIGH layer, as model temperatures fall 

below algorithm icing threshold limits. With more restrictive ( 

i.e., higher ) moisture thresholds for icing prediction, the 

NAWAU(2) predictor has somewhat lower PF and FAR indices than 

those for NAWAU(l). A widening gap in NAWAU(l) and NAWAU(2) 

forecast capability occurs from the LOW to MID-HIGH layers; at 

the MID-HIGH layer, model RH values are mostly well below the 

NAWAU(2) threshold limit of 75%. For the LOW layer, both TESS 

predictors indicate no forecast capability. Since all other 

algorithms forecast positive icing events within the LOW layer, 

this result likely has much more to do with the way the TESS 

algorithm computes icing than with actual T and Td icing thresh- 

olds. Under usual circumstances ( viz., no saturation at the 

lowest model level ), the TESS algorithm requires at least two 

levels to define  a cloud icing layer. Therefore, unless model 

terrain heights corresponding to positive icing reports within 

the LOW layer are at or below 1000 mb, positive icing will gener- 

ally not be forecast. Since all but one of combined  TESS(YALL) 

and TESS(YIOO) LOW layer icing forecasts are negative, most of 

these TESS forecasts likely were derived from model profile data 
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commencing at 925 mb. From the LOW to LOW-MID layer, the 

TESS(YALL) PF value jumps from zero to about 0.75; this value is 

comparable to those for NAWAU(l) and RAP. With its ability to 

forecast icing at lower temperatures than other predictors, 

TESS(YALL) has the highest PF and FAR scores at both the MID-HIGH 

and HIGH layers. Since TESS(YIOO) limits icing to a more restric- 

tive temperature range ( 0 > T > -22 °C ), its PF and FAR statis- 

tics are generally considerably lower than those for TESS(YALL). 

Limited by quite stringent moisture thresholds, the AIRF predic- 

tor's forecast capability ranks below most of the other predic- 

tors except at the HIGH layer, where its PF score ranks second to 

that for TESS(YALL). For the LOW-MID and MIDDLE layers, FAR 

indices for AIRF are the lowest (i.e., best ) of any predictor. 

In terms of skill score ( V ), the NAWAU(l) and RAP predic- 

tors are best for the lowest three layers ( LOW to MIDDLE ) and 

the NAWAU(2) predictor third best ( Table 9a). For the LOW-MID 

and MIDDLE layers, the V differences between both NAWAU(l) and 

RAP, and either AIRF or TESS(YIOO), are highly statistically 

significant. At the MID-HIGH layer, NAWAU(l) and TESS(YALL) 

exhibit the best skill, and NAWAU(2) the least. The TESS(YALL) 

predictor is the most skillful within the HIGH layer; differences 

in V scores between this predictor and NAWAU(l), NAWAU(2) and 

RAP are all highly statistically significant. Due to virtually 

nil icing forecast capability, HK discriminant values are zero or 

near zero for TESS at the LOW layer and, NAWAU and RAP at the 

HIGH layer. For the COLUMN layer, skill scores for NAWAU(1), RAP 

and TESS(YALL) are the highest ( all near 0.5 ); however, no 
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highly statistically significant differences in V are found among 

any of the six icing predictors. A comparison of Tau = o hr LOW 

to HIGH layer skill scores indicates that, for all icing algo- 

rithms, the highest score (i.e., best overall forecasting skill ) 

occurred at the LOW-MID icing layer. Interestingly, for this 

layer, the average skill score of all six predictors exceeds that 

for the COLUMN layer by about 0.25. 

A comparison of 12 and 24 hr icing verification statistics 

( Tables 9b and c ) with 0 hr ( Table 9a ) results indicate that, 

while some variations in statistical rankings ( PF, FAR and V ) 

do occur, the significant forecasting relationships found among 

the various icing algorithms when using model analysis data ( de- 

tailed above ) generally hold for model-derived icing forecasts 

at the longer 12 and 24 hr lengths. In general, for any selected 

icing layer, the predictor with the best PF statistical value ( 

or the predictor with the best V score ) is the same for 0, 12 

and 24 hr forecasts. An exception to this result only occurs at 

the LOW-MID layer, where the NAWAU(l) and RAP prefigurance values 

are slightly higher than TESS(YALL) at Tau = 0 hr, but are some- 

what lower than TESS(YALL) at both Tau = 12 and 24 hr. At the 

MID-HIGH layer, all six predictors indicate an increase in fore- 

cast capability over the 0 to 24 hr forecast interval; a similar 

upward trend in PF values with lead time occurs for TESS(YALL) 

and AIRF at the HIGH layer. This result relates directly with the 

steadily increasing positive model bias in moisture at mid tropo- 

spheric levels ( see Table 8 ) ; given higher model moisture over 

time, more positive icing forecasts should occur as algorithmic 

moisture thresholds are increasingly surpassed. Statistical tests 
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indicate that differences in V scores as a function of forecast 

lead time are generally not significant; the only exception to 

this result occurs for the AIRF predictor, whose V score differ- 

ence between Tau = 0 and 12 hr at the LOW-MID layer is highly 

statistically significant. The NAWAU(l) predictor's three 'best 

skill» rankings at Tau = 0 hr ( for the LOW-MID, MIDDLE and 

COLUMN layers ) are not repeated at either Tau = 12 or 2 4 hr, 

being replaced by either TESS(YALL) ( LOW-MID and COLUMN layers ) 

or RAP ( MIDDLE layer ). For any given layer, the top skill score 

among predictors is the same at both Tau = 12 and 2 4 hr; the 

TESS(YALL) predictor has the highest V scores at all layers 

except LOW and MIDDLE, where the NAWAU(2) and RAP predictors, 

respectively, score best. With lower NAWAU and RAP LOW layer 

skill scores at 12 and 24 hr ( compared to those at 00 hr ), 

differences in V between these predictors and TESS are not highly 

statistically significant at either 12 or 24 hr. The superiority 

of TESS(YALL) at upper levels ( MID-HIGH and HIGH ) is most 

evident at Tau = 24 hr, where  differences in V between this 

predictor and four others are highly statistically significant. 

In order to further examine the effect of forecast length 

on model-derived icing forecasts, performance statistics based on 

best overall statistical value over the 0 to 24 hr forecast 

interval were computed. For a given statistical measure ( PF, 

FAR, V ), Table 10 gives the. number of predictors with the best 

statistical value at Tau = 0 hr, at Tau = 12 hr and at Tau =24 

hr, as a function of icing layer. For example, consider the skill 

score discriminant for the COLUMN layer; here, 2 of 6 icing 
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Table 10.  For a given statistical measure ( PF, FAR  V )  the 
number of predictors with the best statistical value at Tau = o 
at Tau = 12 and at Tau = 24 hr, for selected icing layers 

PREFIGURANCE FALSE ALARM RATE HK DISCRIMINANT 

TAU(HR) 0 12 24 0 12 24 0 12 24 

LAYER 
LOW 3 1 2 0 3 1 3 0 T 
LOW-MID 5 1 0 0 1 5 5 1 0 

2 
5 

MIDDLE 3 3 0 0 0 6 0 4 
MID-HIGH 0 0 6 4 1 0 0 1 
HIGH 1 1 2 3 0 0 1 1 2 

3 
COLUMN 5 1 0 0 2 4 2 1 

TOTAL 17 7 10 7 7 16 11 8 15 

Table 11. For a given statistical measure ( PF, FAR V ) the 
number of icing layers with the best statistical value at Tau = 
0, at Tau = 12 and at Tau = 24 hr, for selected icing predictors. 

PREFIGURANCE FALSE ALARM RATE HK DISCRIMINANT 

TAU(HR) 0 12 24 0 12 24 0 12 24 

PREDICTOR 
AIRF 
NAWAU(l) 
NAWAU(2) 
RAP 
TESS(YALL) 
TESS(YIOO) 

3 
4 
3 
4 
0 
3 

1 
1 
1 
0 
3 
1 

2 
1 
1 
1 
3 
2 

2 
1 
0 
0 
2 
2 

0 
2 
1 
2 
0 
2 

4 
2 
3 
3 
3 
1 

1 
3 
2 
3 
0 
2 

0 
2 
0 
2 
2 
2 

5 
1 
3 
0 
4 
2 

TOTAL 17 7 10 7 7 16 11 .8 15 
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predictors had their highest V score at Tau = 0 hr, one at Tau = 

12 hr, and 3 at Tau = 24 hr. In some cases, a particular statis- 

tical measure might not have a 'best' score at any one particular 

forecast length; when this occurred, that particular predictor 

was not included statistically and the Tau = 0, 12 and 24 hr sum 

of best predictor scores for the given layer was less than six ( 

ex., HK discriminant, HIGH layer; 0, 12, and 24 hr sum is only 4 

). 

Table 10 numerical totals ( of all six icing layers ) 

indicate that collectively, while this study's icing algorithms 

had best forecast capability ( i.e., highest PF scores ) at Tau = 

0 hr, they had fewest false alarms and overall best skill ( v 

scores ) at the 24 hr forecast length. In a collective sense, 

forecasting performance at Tau = 12 hr was the poorest of the 

three forecast lead times. Within the LOW-MID and COLUMN layers, 

most predictors had best PF values using analysis ( Tau = 0 hr ) 

data; on the contrary, at the MID-HIGH level, all predictors had 

best PF scores when using 24 hr forecast data. While FAR scores 

for most predictors are best at Tau = 24 hr for the LOW-MID and 

MIDDLE layers, such scores for the highest two layers ( MID-HIGH 

and HIGH ) are best at Tau = 0 hr. Five of the six predictors 

exhibit best forecasting skill ( i.e., highest V score ) within 

the LOW-MID ( MID-HIGH) layer at Tau = 0 hr ( Tau = 24 hr ). This 

particular result correlates well with analogous PF statistics, 

but poorly with those for FAR scores, suggesting that the skill 

score discriminants ( PF - FAR ) of study icing algorithms are 

more sensitive to high PF values than low false alarm rates. 

Although 12 hr icing predictions were overall less skillful than 
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those based on model o or 24 hr rta+-=,  -F^,,>- „*  •     ^. ^ z* nr aata, four of six predictors had 

highest V scores for the MIDDLE layer at Tau = 12 hr. 

Overall forecasting performance may also be examined in 

terms of individual predictors. For a given statistical measure ( 

PF, FAR, V ), Table 11 gives the number of icing layers ( LOW to 

HIGH, COLUMN ) with best statistical value at Tau = o, 12 and 24 

hr, for selected icing predictors. For both NAWAU predictors and 

RAP, highest PF values mostly occur when predictions are based on 

model analysis data while lowest FAR scores generally occur when 

icing forecasts are based on NOGAPS 12 and 24 hr data. TESS(YALL) 

forecast capability is better at the longer ( 12 and 24 hr ) 

forecast lengths. For the majority of icing layers, both the AIRF 

and TESS(YALL) predictors exhibit highest skill at Tau = 24 hr. 

Based on Table 11 data, the NAWAU(l) and RAP predictors show a 

steady decline in forecasting skill ( V ) with lead time, while 

the opposite occurs for TESS(YALL). 

For a first examination of the AIRF and TESS algorithms- 

ability to differentiate icing type and intensity, the observed 

number of instances of selected icing types and intensities 

compared with number forecast, based on COLUMN layer data at Tau 

= 0 hr, is presented in Figure 4. Results indicate that both 

icing algorithms considerably overforecast -no icing- conditions. 

Specifically, the TESS(YALL) and AIRF forecast/observed ratios of 

•no icing- conditions are between 4:1 and 5:1, while the number 

of TESS(YIOO) forecasts of -no icing- exceeds number observed by 

about a 2.5 to 1 ratio. Of positive icing reports, the vast 

majority are of intensities light and moderate ( Figure 4a ). 
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Fxgure 4.  a. The observed number of selected icing intensities 
compared with number forecast by the AIRF, TESS(YALL) and 
TESS(YIOO) predictors, based on COLUMN layer data at Tau = 0 hr 
b. Same as a., except for selected icing types. 
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While the AIRF algorithm only somewhat underforecasts occurrences 

of both TRC and LGT icing intensities, it considerably underfore- 

casts ( along with both TESS predictors ) occurrences of MDT 

intensity icing. Both TESS predictors, most especially 

TESS(YIOO), greatly underpredict the most observed icing intensi- 

ty - light, on the other hand, TESS(YALL) and TESS(YIOO) both 

yield many more forecasts of severe icing conditions than ob- 

served; a similar result holds for the TRC icing category. Figure 
i 

4b indicates that rime icing is by far the most dominant icing 

type, being reported four times as often as mixed and about 10 

times as often as CLR. Rime icing is underforecast by all three 

predictors, most especially TESS(YIOO). Both TESS predictors 

overforecast clear icing conditions; however, the number of mixed 

icing reports is similar to the number forecast by each of the 

TESS predictors. Finally, while the AIRF algorithm forecasts less 

than half ( 42% ) as many mixed icing conditions as actually ob- 

served, this predictor's number of clear icing forecasts is 

somewhat greater ( by 24 ) than the observed number of such icing 

events. 

To further examine the analysis ( Tau = 0 hr ) COLUMN layer 

dataset of Figure 4, percent frequencies of agreement between 

observed and forecast icing type and intensity are determined. 

These percentages are computed both as a function of observed, 

and forecast, type and intensity (Tables 12a and b, respectively 

). TESS(YALL) compilations of Table 12a do not include 'induc- 

tion- icing forecasts, while Table 12b tabulations exclude re- 

ported ZR,ZL icing conditions. For this particular dataset, 

TESS(YALL) correctly forecasts almost half of all reported rime 

45 



Table 12. a) For the AIRF, TESS(YALL) and TESS(YIOO) predictors, 
percent frequencies of agreement between observed and forecast 
icing type and intensity for the COLUMN layer at Tau = 0 hr, as a 
function of observed type and intensity, b) Same as a), except as 
a function of forecast type and intensity. 

PREDICTOR ICING TYPE ICING INTENSITY 

RME     CLR    MXD TRC    LGT     MDT     SVR 

a) 
AIRF 

TESS(YALL) 

TESS(YIOO) 

238/644   8/62  13/172 
37.0%  12.9%    7.6% 

305/634  16/62  36/169 
48.1%  25.8%   21.3% 

130/644  20/62  34/172 
20.2%  32.3%   19.8% 

•6/97 178/476  /!">/':?77    
6.2%   374%   1110- 

35/97 27/464 56/356 3/18 
36.1% 5.8% 15.7% 16.7% 
27/97 4/476 46/359 3/18 
27.8%    0.8%   12.8%  16.7% 

b) 
AIRF 

TESS(YALL) 

TESS(YIOO) 

238/351   8/86   13/72 
67.0%   9.3%   18.1% 

305/422 16/151  36/167 
72.3%  10.6%   21.6% 

130/177 20/187  34/141 
73.4%  10.7%   24.1% 

6/49  170/oqo   p;inn 

12.2%   44 7%   TR n°-    
35/313 27/86 56/173 3/224 
11.2%   31.4%   32.4%   1.3% 

27/227 4/4 46/135 3/183 
11.9%  100.0%   34.1%   1.6%' 
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icing events, AIRF 3 out of 8 such occurrences, and TESS(YIOO), 

only 1 of 5. Both TESS predictors outperform AIRF in forecasting 

observed CLR and MXD icing events, with percent frequencies of 

agreement for TESS(YALL) and TESS(YIOO) between 2 and 3 times 

higher than AIRF. In regards to icing intensity, the AIRF predic- 

tor is far better than either TESS predictor in assessing report- 

ed light icing intensities; even so, the AIRF algorithm only 

correctly forecasts 3 out of every 8 such events. Both TESS 

predictors forecast TRC icing events considerably better than 

AIRF; nonetheless, the best predictor ( TESS(YALL) ) is  only 

able to correctly assess about 3 of 8 trace icing occurrences. 

For moderate and severe icing, all three predictors provide 

similarly low forecasting capability, with percent frequencies of 

agreement between 11 and 17 %. Table 12b results indicate that, 

in spite of noticeable differences among predictors in the number 

of icing type forecasts, percent frequencies of agreement for any 

selected icing type are similar for all three predictors. Fore- 

casts of RME icing are most accurate, with verification rates 

about 70% for each predictor. Both CLR and MXD icing types are 

significantly overforecast by each predictor, with only about 10% 

( 20% ) of CLR ( MXD ) icing forecasts actually verifying. For 

TRC and LGT intensities, large differences are noted among pre- 

dictors in the number of issued forecasts; for example, at the 

LGT intensity category, almost 400 forecasts were issued by the 

AIRF algorithm, only 4 by TESS(YIOO). For either the TRC or MDT 

icing category, percent frequencies of agreement are similar for 

all three icing predictors; however, percentages for MDT icing 
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are about 3 times higher than those for the LGT icing category. 

The AIRF predictor's best verification of icing occurs for the 

highly reported LGT category, with almost a 45% frequency of 

agreement; interestingly, all 4 TESS(YIOO) forecasts of light 

icing verified. Overforecasting of severe icing conditions is a 

serious problem for both TESS predictors, with many forecasts (~ 

200 ) and few verifications ( 3 ). 

Tables 13a-c present percent frequencies of agreement 

between reported and forecast (AIRF, TESS(YALL), TESS(YIOO) ) 

icing type and intensity, for 6 icing layers ( LOW to HIGH, 

COLUMN ) and 3 forecast lengths ( Tau = 0, 12, 24 hr ), as a 

function of observed type and intensity. Within these tables, the 

first value in the "No. Data" column for a given layer and sta- 

tistic corresponds to both the AIRF and TESS(YIOO) predictors, 

while the second value ( in parenthesis ) corresponds to the 

TESS(YALL) predictor. In general, the number of data for the 

TESS(YALL) predictor ( at the LOW-MID, MIDDLE and COLUMN layers ) 

are reduced somewhat with respect to the other two predictors, 

since «induction' type icing forecasts are not included in the 

statistics. For a given layer, forecast tau and agreement statis- 

tic, the percentage in parenthesis after any of the three icing 

predictors, corresponds to the percent frequency of agreement for 

the »LGT RME' predictor based on that particular 

observation/predictor dataset. 

Results presented in Table 13 indicate that, regardless of 

the icing layer or forecast length, or which of the four icing 

agreement classifications is selected, percent frequencies of 

agreement for TESS(YIOO) are always the worst ( or tied for the 

48 



Table 13a.  For the AIRF, TESS(YALL) and TESS(YIOO) predictors 
percent frequencies of agreement between reported a£dfRecast 

siSLti?n.-ntintTiÄb?S.ed °n selected ici^ agreed? clas- sifications, for selected icing layers ( LOW to HIGH, COLUMN ) at 
lau - o nr. Percentages m parentheses correspond to »LGT RME1 

predictor ( see text for further information ). 

(a) 

TAU = 0 HR 
NO.DATA AIRF 

PREDICTOR 
TESS(YALL) TESS(YIOO) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

67 (67) 
241(220) 
516(499) 
217(217) 
27 (27) 

878(865) 

9.03 
13.3* 
16.9* 
24.03 
25.93 
29.53 

TYPES AGREE 

(9.0%) 
(32.4%) 
(20.5%) 
(25.3%) 
(25.9%) 
(40.0%) 

0.0% 
37.7% 
20.8% 
25.3% 
18.5% 

(0.0%) 
(49.5%) 
(37.7%) 
(44.7%) 
(37.0%) 

0.03 
27.83 
14.33 
6.93 

(0.0%) 
(34.9%) 
(24.2%) 
(23.0%) 

0.0% (18.5%) 
41.3% (58.6%)  21.0% (39.0%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

VI (71) 
266(241) 
549(532) 
237(237) 
29 (29) 

950(935) 

7.0% 
21.8% 
10.6% 
13.5% 
13.8% 
23.8% 

INTENSITIES AGREE 

(8.5%) 
(22.2%) 
(14.4%) 
(16.5%) 
(13.8%) 
(26.1%) 

0.03 
9.13 
9.03 
3.43 
3.43 

12.93 

(0.0%) 
(35.3%) 
(23.1%) 
(29.1%) 
(24.1%) 
(39.4%) 

0.0% (0.0%) 
7.1% (26.7%) 
7.5% (16.9%) 
1.7% (14.8%) 
3.4% (10.3%) 
8.4% (26.5%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

BOTH TYPE AND INTENSITY AGREE 

66 (66) 
236(215) 
512(495) 
216(216) 
27 (27) 

869(856) 

1.5% 
7.2% 
5.7% 
8.3% 

11.1% 
12.3% 

(3.0%) 
(13.1%) 
(10.7%) 
(12.0%) 
(11.1%) 
(18.1%) 

0.03 
4.23 
4.03 
2.33 
0.03 

(0.0%) 
(22.3%) 
(17.4%) 
(22.7%) 
(22.2%) 

o.o; 
2.53 
3.93 
0.53 
0.03 

(0.0%) 
(15.3%) 
(11.9%) 
(8.8%) 
(7.4%) 

8.4% (29.3%)   4.4% (18.1%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

NEITHER TYPE NOR INTENSITY AGREE 

66 (66) 
236(215) 
512(495) 
216(216) 
27 (27) 

869(856) 

84.8% 
71.2% 
77.9% 
70.8% 
70.4% 
58.5% 

(84.8%) 
(59.7%) 
(75.4%) 
(70.4%) 
(70.4%) 
(52.0%) 

100.% 
58.6% 
74.1% 
73.1% 
77.8% 

(100.%) 
(38.1%) 
(56.2%) 
(48.6%) 
(59.3%) 

100.% 
69.1% 

(100.%) 
(54.7%) 

81.6% (70.3%) 
91.7% (72.2%) 
96.3%   (77.8%) 

53.9%   (30.4%)      74.7%   (52.6%) 
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Table 13b.  Same as a), except at Tau = 12 hr. 

(b) 

TAU = 12 HR PREDICTOR 
NO.DATA AIRF TESS(YALL) TESS(YIOO) 

TYPES AGREE 
LAYER 
LOW 64 (64) 14.1% (14.1%) 0.0%  (0.0%) 0.0% (0.0%) 
LOW-MID 243(214) 13.2% (20.2%) 38.3% (51.9%) 20.6% (28.0%) 
MIDDLE 534(515) 15.9% (17.6%) 19.2% (38.6%) 14.6% (27.3%) 
MID-HIGH 227(227) 27.3% (30.4%) 22.5% (49.8%) 5.3% (28.6%) 
HIGH 29 (29) 27.6% (27.6%) 31.0% (44.8%) 0.0% (13.8%) 
COLUMN 898(882) 31.8% (39.1%) 39.3% (61.0%) 17.9% (40.2%) 

INTENSITIES AGREE 
LAYER 
LOW 68 (68) 8.8% (19.1%) 0.0%  (0.0%) 0.0% (0.0%) 
LOW-MID 265(233) 12.1% (14.3%) 9.0% (34.8%) 6.0% (21.1%) 
MIDDLE 568(548) 9.3% (11.1%) 10.4% (23.5%) 8.5% (16.7%) 
MID-HIGH 248(248) 15.3% (18.5%) 4.0% (33.1%) 1.2% (18.5%) 
HIGH 31 (31) 16.1% (16.1%) 6.5% (29.0%) 3.2% (3.2%) 
COLUMN 969(952) 22.8% (26.6%) 14.2% (40.0%) 7.6% (26.7%) 

BOTH TYPE AND INTENSITY AGREE 
LAYER 
LOW 63 (63) 4.8% (14.3%) 0.0%  (0.0%) 0.0% (0.0%) 
LOW-MID 238(209) 4.6% (8.8%) 3.8% (23.0%) 2.9% (13.0%) 
MIDDLE 530(511) 6.0% (8.3%) 4.5% (17.2%) 4.2% (11.7%) 
MID-HIGH 226(226) 11.9% (15.0%) 2.2% (27.0%) 0.0% (14.2%) 
HIGH 29 (29) 13.8% (13.8%) 0.0% (27.6%) 0.0% (3.4%) 
COLUMN 889(873) 13.7% (19.1%) 8.7% (30.1%) 3.6% (18.8%) 

NEITHER TYPE NOR INTENSITY AGREE 
LAYER 
LOW 63 (63) 81.0% (81.0%) 100.% (100.%) 100.% (100.%) 
LOW-MID 238(209) 78.6% (73.5%) 57.4% (36.S%) 76.9% (64.3%) 
MIDDLE 530(511) 80.8% (79.2%) 74.6% (54.6%) 80.6% (67.2%) 
MID-HIGH 226(226) 69.0% (65.9%) 76.1% (43.4%) 93.4% (67.3%) 
HIGH 29 (29) 69.0% (69.0%) 62.1% (51.7%) 96.6% (86.2%) 
COLUMN 889(873) 58.8% (53.1%) 55.2% (28.3%) 77.7% (51.5%) 
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Table 13c.  Same as a), except at Tau = 24 hr. 

(c) 

TAU = 24 HR 
NO.DATA AIRF 

PREDICTOR 
TESS(YALL) TESS(YIOO) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

TYPES AGREE 

62 (62) 
231(198) 
491(468) 
212(212) 
26 (26) 

.!!!1!^?L_30:8! l38-7%>    38-9% (6oil%i   il'.U l^'.ll) 
INTENSITIES AGREE 

12.9% (12.9%) 1.6 
14.7% (20.8%) 38.9 
15.3% (17.5%) 19.0 
27.8% (30.7%) 25.0 

(1.6%) 
(48.9%) 
(34.2%) 
(53.3%) 

1.65 
24.25 
11.25 
6.65 

(1.6%) 
(27.7%) 
(21.6%) 
(29.2%) 

30.8% (34.6%)   46.2% (61.5%)   0.0% (15.4%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

65 (65) 
255(218) 
524(499) 
232(232) 
29 (29) 

905(885) 

12.35 
11.85 
8.85 

19.45 
13.85 
23.53 

(16.9%) 
(16.5%) 
(12.8%) 
(20.3%) 
(17.2%) 
(28.3%) 

1.55 
10.13 
5.83 
6.03 
3.43 

12.13 

(3.1%) 
(32.6%) 
(21.0%) 
(36.2%) 
(34.5%) 
(40.1%) 

1, 
5. 
4. 
2. 
3. 
5. 

5% 
9% 
4% 
6% 
4% 
3% 

(3.1%) 
(21.6%) 
(15.5%) 
(19.8%) 
(3.4%) 

(27.5%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

BOTH TYPE AND INTENSITY AGREE 

61 (61) 
228(195) 
487(464) 
211(211) 
26 (26) 

828(812) 

9.8% 
4.4% 
6.2% 

13.7% 
11.5% 
13.3% 

(13.1%) 
(11.4%) 
(10.3%) 
(15.6%) 
(15.4%) 
(20.4%) 

1.6% (0.0%) 
5.1% (21.5%) 
3.0% (15.7%) 
2.8% (28.0%) 
0.0% (34.6%) 
7.6% (29.6%) 

1.6% (0.0%) 
2.2% (13.2%) 
2.3% (11.5%) 
0.0% (13.3%) 
0.0% (3.8%) 
2.3% (19.2%) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

NEITHER TYPE NOR INTENSITY AGREE 

61 (61) 
228(195) 
487(464) 
211(211) 
26 (26) 

828(812) 

83. 
77. 
81. 
66. 
65. 
58. 

(83.6%) 
(72.8%) 
(79.3%) 
(64.0%) 
(61.5%) 
(52.9%) 

98, 
56, 
78, 
71.6% 
50.0% 

(95.1%) 
(40.5%) 
(59.7%) 
(37.4%) 
(34.6%) 

98.4% 
72.8% 
86.4% 
90.5% 
96.2% 

(95.1%) 
(64.5%) 
(73.9%) 
(64.5%) 
(84.6%) 

56.8% (28.3%)  80.2% (52.3%) 

51 



worst ) among the three icing predictors. Regarding agreement in 

icing type, the TESS(YALL) predictor scored the highest percent- 

ages at the LOW-MID, MIDDLE and COLUMN layers at all 3 forecast 

lengths, while the AIRF predictor did the same at the LOW layer. 

In general, icing type percent frequencies of agreement for AIRF 

increase with layer height. For any individual layer, the most 

dramatic change over time in percent agreement of icing type 

occurs for TESS(YALL) at the HIGH layer, which rises from 18.5% 

at Tau = 0 hr to 46.2% at Tau = 24 hr. With only one exception ( 

MIDDLE layer, Tau = 12 hr ), the highest percent frequencies of 

agreement for icing intensity correspond to the AIRF predictor. 

For the most part, agreement percentages for intensity are less 

than corresponding values for icing type for all three predic- 

tors; in several instances, differences in percent frequency 

between type and intensity exceed 25% for TESS(YALL). As one 

might expect, frequency of agreement statistics requiring ob- 

served/forecast agreement in both type and intensity are the 

lowest among the 4 statistical classifications; except for the 

AIRF predictor at the COLUMN and higher layers, percent frequen- 

cies of agreement in 'both type and intensity» do not exceed 10%. 

Results for the classification 'neither type nor intensity agree' 

are similar to those for agreement in type, with the TESS(YALL) 

predictor yielding best( i.e., lowest ) percent frequencies of 

agreement at the LOW-MID, MIDDLE and COLUMN layers at all 3 

forecast lengths, and the AIRF predictor at the LOW and MID-HIGH 

layers. Additionally, for this particular classification, a 

noticeable improvement over time occurs for TESS(YALL) at the 
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HIGH layer, with a decrease in percentage from ~ 78% at Tau = o 

hr to 50% at Tau = 24 hr. This value of 50% represents the abso- 

lute lowest (i.e., best ) percentage for the »neither type nor 

intensity' agreement classification among all predictors, at all 

three forecast lengths. Finally, for any selected icing predic- 

tor, comparisons among analysis, 12 and 24 hr percent frequency 

of agreement statistics do not indicate any significant or defin- 

itive trends with time in the prediction of either icing type or 

intensity. 

By far, the most intriguing results presented in Table 13 

concern the comparisons among the AIRF and TESS predictors and 

the hypothetical 'LGT RME' predictor. For the data-rich layers ( 

LOW-MID through MID-HIGH, COLUMN ), percent frequencies of agree- 

ment for the »LGT RME» predictor, for all forecast lengths and 

agreement classes, are always higher than corresponding percent- 

ages for any particular predictor (AIRF, TESS(YALL), TESS(YIOO) ) 

selected. Additionally, for the more data-poor layers ( LOW and 

HIGH ), percent frequencies of agreement for »LGT RME' are equal 

or higher than those for AIRF or TESS predictors except for 

agreement in «both type and intensity» at Tau = 24 hr, where both 

TESS predictors are marginally higher ( at an insignificant 1.6% 

). The fact that a prediction of icing type and intensity, based 

on historical most likely categories ( viz., light rime ), is 

generally more accurate than what can be achieved by operational 

icing algorithms such as AIRF and TESS attests to the great 

difficulty such algorithms encounter when attempting to differen- 

tiate icing type and intensity. 

Further examination of Table 13 results indicate that, for 
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the most part, differences in percent frequency of agreement 

between the 'LGT RME' predictor and TESS(YALL) are the largest 

while those between «LGT RME• and the AIRF predictor are the 

smallest; in several instances ( mostly at Tau = 24 hr ), differ- 

ences between 'LGT RME« and TESS(YALL) exceed 30%. For all layers 

except LOW, «LGT RME- percent frequencies of agreement are always 

best when based on TESS(YALL) forecast/observed datasets; at the 

LOW layer, frequencies computed using AIRF datasets are best. For 

the COLUMN layer, TESS(YALL)-based »LGT RME- percent frequencies 

are about 60% for type agreement, 40% for intensity agreement, 

and near 3 0% for agreement in 'both type and intensity» and 

•neither type nor intensity«. When compared, these percent fre- 

quencies of agreement are considerably better than corresponding 

•LGT RME' percentages based on either AIRF or TESS(YIOO) data- 

sets. • 

5.2 Model, Radiosondes and PIREPs 

In this section, two main topics will be explored in depth; 

one, the skill level of model-based ( NOGAPS ) icing predictions 

compared to radiosonde-based predictions and two, the importance 

of vertical data resolution in icing prediction. For a given 

statistical measure ( PF, FAR, V ), Table 14 gives the cumulative 

number of icing predictors, summed over Tau = 0, 12 and 2 4 hr, 

with best statistical value based on NOGAPS ( NG ) and radiosonde 

( RAOB ) data, at selected icing layers. Here,.RAOB data includes 

both standard and significant levels, NOGAPS only standard levels 

plus 92-5 mb. Given a particular layer and statistic, the maximum 

number possible for either model- or RAOB-based predictions is 18 
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Table 14. For a given statistical measure ( PF, FAR v ) the 
cumulative number of icing predictors, summed over Tau = 0 12 
and 24 hr, with best statistical value based on NOGAPS ( NG /and 
radiosonde ( RAOB ) data, for selected icing layers. 

PREFIGURANCE   FALSE ALARM RATE   HK DISCRIMINANT 

^DATAJOURCE ^ (NG) (RAOB)       (NG) (RAOB)        ^NG)""RAÖB7 

LAYER 
LOW 0 3 9 3 6 6 
LOW-MID 0 16 18 0 2 16 
MIDDLE 0 18 18 0 0 18 
MID-HIGH 3 15 16 2 3 1R 
HIGH 15 7 7 6 8 
COLUMN 3 15 8 4 6 12 

TOTAL 7    72 76    16 23    75 

Table 15. For a given statistical measure ( PF, FAR, V ) the 
cumulative number of icing layers, summed over Tau = o,' 12 and 24 
hr, with best statistical value based on NOGAPS ( NG ) and radio- 
sonde ( RAOB ) data, for selected icing predictors. 

PREFIGURANCE   FALSE ALARM RATE   HK DISCRIMINANT 

^DATA^SOURCE   (NG) (RAOB)       (NG) (RAOB) (NG)""RAÖB7 

PREDICTOR 
AIRF 0 13 13 4 3 15 
NAWAU(l) 1 12 15 1 6 10 
NAWAU(2) 0 12 10 1 0 13 
RAP 0 11 15 1 4 12 
TESS(YALL) 6 11 10 6 6 12 
TESSOflOO) 0 13 13 3 4 13 

TOTAL 7    72 76    16 23    75 
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( 3 forecast taus x 6 predictors ); since ties are not counted, 

NG + RAOB sums are often less than 18. Table 14 statistics are 

derived from tabular data presented as Appendix A. In general, 

the ratio of yes/no PIREPs upon which statistics are computed is 

highly skewed toward 'no' PIREPs at the LOW and HIGH layers, 

about even at the MIDDLE layer, and about 7:1 for the COLUMN 

layer. The total number of PIREPs used in model/radiosonde com- 

parisons ranges from about 22 for the LOW layer to near 19 0 for 

the MIDDLE layer. 

Table 14 prefigurance totals indicate a much stronger 

forecast capability when using radiosonde data than if predic- 

tions are based on NOGAPS data. For the lowest three layers, all 

PF index comparisons indicate higher ( or equal ) values for 

RAOB-based predictions. On the contrary, false alarm rates for 

NOGAPS-based predictions are decidedly superior except at the 

HIGH layer; for both the LOW-MID and MIDDLE layers, best FAR 

values for all 6 predictors always correspond to model-derived 

predictions. The observed behavior in PF and FAR statistics is 

likely related to differences in vertical resolution between 

model and radiosonde data; with more data levels, RAOB-based 

icing predictions are likely to have more hits and false alarms ( 

i.e., higher PF, worst FAR ). Overall Table 14 numerical totals 

for discriminant skill score show a decided advantage for RAOB- 

based predictions over those using model data ( 75 to 23 ) . This 

advantage in forecasting skill manifests itself at the LOW-MID 

through MID-HIGH, and COLUMN, icing layers. At the LOW and HIGH 

layers, no decided advantage in forecasting skill is apparent for 

either model- or RAOB-based predictions. Skill score statistics 
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at these two layers are likely quite sensitive to the dispropor- 

tionate ratios of yes/no icing reports, which include few posi- 

tive icing occurrences. 

For a given statistical measure, Table 15 gives the cumula- 

tive number of icing layers, summed over Tau = o, 12 and 24 hr, 

with best statistical value based on NOGAPS and radiosonde data, 

for selected icing predictors. Similar to Table 14, the maximum 

possible sum  ( NG + RAOB ) for a given predictor and statistic 

is 18 ( 3 forecast taus x 6 icing layers ). For each predictor, 

forecast capability is decidedly superior when RAOB-based data is 

used for icing prediction. Interestingly, of the total 7 'best- 

PF index values for model-based ( NG ) forecasts, 6 of these 

correspond to the TESS(YALL) predictor. False alarm rates for 

each predictor are most often better when model data is utilized; 

for NAWAU(l) and RAP, 15 -best- FAR statistics correspond to NG 

data and only one to RAOB-based predictions. Regardless of which 

predictor is chosen, forecasting skill ( V ) is superior using 

radiosonde data; this superiority is most striking for NAWAU(2), 

with a RAOB to NG -best' statistical value ratio of 13 to zero. 

Statistical tests performed on skill score differences 

between model- and RAOB-based predictions ( Appendix A ) indicate 

that 8 such differences are highly significant while another 10 

differences are significant at a 95% confidence level, of these 

18 differences, skill score values for RAOB-based forecasts were 

superior to those based on model data in all but one comparison. 

All significant and highly significant differences correspond to 

the layers LOW-MID, MIDDLE, MID-HIGH and COLUMN. Peculiarly, six 
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of the 8 highly significant differences correspond to the AIRF 

predictor. 

Although designed primarily for model/radiosonde compari- 

sons, Appendix A tables also permits algorithm forecast perform- 

ance comparisons to be drawn among predictions based exclusively 

on model or radiosonde data. Examination of Appendix A radio- 

sonde-based results indicate that, for the two layers with the 

most positive icing reports ( COLUMN and MIDDLE ), the TESS 

predictors ( YALL and Y100 ) always rank lowest in forecast 

capability and skill ( PF and V ) among all 6 predictors, at all 

3 forecast lengths. Of the 280 radiosondes utilized for Appendix 

A statistics, 80 ( or 2 of every 7 ) had surface superadiabatic 

lapse rates. As a result of TESS algorithm processing of such 

conditions, negative icing was always specified at all layers of 

these radiosondes. On the contrary, for many of these same radio- 

sondes, the other three algorithms ( AIRF, NAWAU and RAP ) often 

forecast positive icing to occur at one or more layers above such 

surface superadiabatic conditions. Thus, for layers reporting 

large number of positive icing events ( viz., MIDDLE and COLUMN ) 

, radiosonde-based TESS forecasting capability ( PF ) and skill ( 

V ) are noticeably less than for other icing predictors. 

Collectively, results presented so far indicate that icing 

algorithms have better overall forecast capability and skill when 

based on full radiosonde data. This forecast advantage over model 

data could result from two key factors: one, higher vertical 

resolution and two, more accurate meteorological data. To explore 

this further, comparisons among model and radiosonde icing pre- 

dictions were performed using reduced radiosonde data ( designat- 
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ed RAOBR ). Icing forecasts based on RAOBR data utilize radio- 

sonde standard levels ( 1000, 850, 700, 500, 400 mb ) plus the 

925 mb surface if available. Thus, RAOBR data levels are essen- 

tially ^the same as those available with NOGAPS. If one assumes 

radiosonde ( temperature, moisture and height ) data to be accu- 

rate, then direct comparisons of RAOBR and NOGAPS-based icing 

predictions will provide a measure of the effect model data 

inaccuracies have on icing prediction. Appendix B provides full 

comparative statistics for model- and RAOBR-based 0, 12 and 24 hr 

forecasts. 

For a given statistical value ( PF, FAR, V ), Table 16 

gives the cumulative number of icing predictors ( summed over all 

3 forecast lengths ) with best statistical value based on NOGAPS 

and reduced radiosonde ( RAOBR ) data, at selected icing layers. 

Cumulative totals for all 6 layers indicate somewhat better 

overall performance for RAOBR-based predictions, with numerical 

totals of all three statistical measures higher for RAOBR than 

NG. For the LOW, LOW-MID, MID-HIGH and COLUMN layers, best sta- 

tistical value numbers for RAOBR-based predictions are higher 

than ( or equal to ) those for NOGAPS-based forecasts for all 3 

statistical measures. Differences between RAOBR and NG sums are 

generally most noticeable at the MID-HIGH and COLUMN layers; at 

both layers, false alarm rates for icing predictions based on 

RAOBR data were superior to those for NG data 15 out of 18 times, 

with 3 ties. Table 16 comparison results for the MIDDLE, and HIGH 

layers -are both interesting. The MIDDLE layer, which contains 

both the highest number of data (-190 ) and the most even ratio 

59 



Table 16.  For a given statistical measure ( PF, FAR  v )  the 
cumulative number of icing predictors, summed over Tau =0  12 
tx  2\hr<"lth  Jest statistical value based on NOGAPS (NG ) and 
reduced radiosonde ( RAOBR ) data, for selected icing layers. 

 PREFIGURANCE   FALSE ALARM RATE HK DISCRIMINANT"" 

DATAJOURCE (NfMRAOBR^     ING7"RIÖBR7 (^""(^0^""" 
LAYER ~~ 
L0W              0     3          0     0 0     3 
LOW-MID          7     9          5     8 7    11 
MIDDLE           9     8         11     5 9     9 
MID-HIGH         5    12          0    15 4    il 
HIGH             5     1          0     9 5             t 
COLUMN 6^ ^10          0    15 6    11 

T0TAL           32    43         16_   52   . 3l"   54 

Table 17. For a given statistical measure ( PF, FAR V ) the 
cumulative number of icing layers, summed over Tau = o/ 12 and 2? 
hr, with best statistical value based on NOGAPS ( NG ) and re- 
duced radiosonde ( RAOBR ) data, for selected icing predictors! 

 PREFIGURANCE   FALSE ALARM RATE   HK DISCRIMINANT^ 

°^_ffURCE ^GWRAOBR)^ _  ^ (NG~ (RAOHR)"       (NO™ (RAOER""" 

PREDICTOR 
AIRF 8 8 2 9 8 in 
NAWAU(l) 4 8 4 4 ! Q 

NAWAU(2) 2 9 3 6 2 10 
RAP 2 8 3 9 2 lo 
TESS(YALL) 12 2 2 12 it A 
TESS(Y100^| 4 8 2 12 4 1± 

*0TAL 32    43 16    52 31~~~~54 
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of yes/no PIREPS ( about 1:1 ), shows no advantage in forecasting 

capability or skill for either of the two data sources, but does 

have decidedly better false alarm rates for model-based fore- 

casts. For the HIGH layer, Table 16 results indicate better PF 

statistics and worst false alarm rates for model-based icing 

predictions. These particular results could be influenced by the 

positive moisture bias in NOGAPS at the 400 mb ( HIGH ) layer, a 

condition conducive to enhanced positive icing prediction ( and 

resultantly, more hits and false alarms ). Collectively, Table 16 

statistics ( PF, FAR, V ) show the best advantage of RAOBR-based 

predictions over those using model data at the MID-HIGH ( 500 mb 

) layer. 

For any given icing predictor and statistical measure, 

Table 17 gives the cumulative number of icing layers with best 

statistical value based on NOGAPS and RAOBR-based data. Consider- 

ing all three statistics, the predictors NAWAU (1 and 2 ), RAP 

and TESS(YIOO) show somewhat better forecasting performance for 

reduced radiosonde data than NOGAPS. Forecasting capability and 

skill for the AIRF predictor are about the same for either model 

or RAOBR data, although false alarms for model-based forecasts 

are decidedly higher. By far, the most interesting Table 17 

results concern TESS(YALL). Of all predictors, TESS(YALL) is the 

only one to show better forecast capability and skill for model- 

based predictions. Without TESS(YALL) numerical values, total 

sums for both PF and V would be considerably more skewed toward 

overall better performance with RAOBR data (i.e., PF, 2 0 to 41; 

V, 20 to 50 ). Careful examination of TESS(YALL) model- and 

RAOBR-based 0, 12 and 24 hr forecasts ( Appendix B ) reveals 
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that, for the LOW-MID, MIDDLE and COLUMN layers, all best statis- 

tical values for both PF and V correspond to model-based fore- 

casts, in addition, at Tau = 24 hr, the .MID-HIGH and HIGH layers 

also have best PF and V values for icing predictions based on 

NOGAPS data. While the enhanced TESS(YALL) model-based forecast- 

ing performance at and above the MIDDLE layer ( especially at the 

longer 12 and 24 hr forecast lengths ) might have been abetted by 

the positive NOGAPS moisture bias between 700 and 400 mb, the 

superiority of model-based forecasts over RAOBR-derived forecasts 

at the LOW-MID layer ( 850 mb level ) is difficult to explain. 

While results for NG,RAOBR comparisons ( Table 17 ) suggest 

that icing predictors ( except TESS(YALL) ) perform somewhat 

better overall when using reduced radiosonde data compared to 

NOGAPS, a more definitive measure of performance difference 

between the two data sources is available through statistical 

testing. In general, tests performed on NG,RAOBR Tau = 0, 12 and 

24 hr comparisons ( Appendix B ) do not indicate significant 

differences in forecasting skill ( V ) between model- and RAOBR- 

based predictions. Indeed, only one NG,RAOBR skill score differ- 

ence ( for TESS(YALL) at Tau = 24 hr, and favoring NG ) is sig- 

nificant at the 95% confidence level, none at the 0.01 level of 

significance. These results, when combined with those drawn from 

Table 16 and 17 statistics, suggest that inaccuracies in model 

temperature and moisture data had only a limited influence upon 

the forecasting ability of the AIRF, NAWAU, RAP and TESS icing 

algorithms. 

The degree of importance of vertical data resolution to 
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algorithm icing prediction may be examined by directly comparing 

NG,RAOB and NG,RAOBR statistical measure totals given in Tables 

.15 and 17, respectively. Model-based predictions serve as a good 

"fixed" standard to compare differences in RAOB- and RAOBR-based 

performance since NG statistics presented in both Tables 15 and 

17 are largely based on identical icing predictions, with the 

only difference an additional 35 ( or about 5% more ) NOGAPS- 

derived predictions included with Table 15. For both forecasting 

capability ( PF ) and skill ( V ), 'best' statistical value 

totals for RAOB-derived forecasts show a significant decrease 

when icing predictions are based on reduced (i.e., standard 

level ) data. The effect of radiosonde resolution on false alarm 

rates is quite dramatic, as evidenced by a pronounced shift in 

•best' overall FAR statistics between NG,RAOB and NG,RAOBR com- 

parisons. Specifically, while false alarm rates for NOGAPS-de- 

rived forecasts are decidedly better than those for full radio- 

sonde ( RAOB ) data ( FAR totals 76 to 16 ) , icing  forecasts 

based on reduced radiosonde data ( RAOBR) have overall better 

false alarm rates than model-derived predictions ( 52 'best1 

values for RAOBR, 16 for NG ). Collectively, results for all 

three statistical measures indicate that data vertical resolution 

plays a critical role in icing prediction performance. 

For a more definitive assessment of the role of vertical 

data resolution in icing prediction, one may compare results of 

statistical tests performed on NG,RAOB and, NG,RAOBR, skill score 

differences. As previously discussed, many ( 18 ) significant and 

highly significant differences in skill score were found for 

NG,RAOB comparisons ( all but one favoring RAOB ), while only one 
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significant V difference ( at the 95% confidence level ) was 

obtained for NG,RAOBR comparisons. Given the largely invariant 

nature of the NG data for these two.comparison datasets ( 

NG,RAOB; NG,RAOBR ), differences between them ( as indicated by 

statistical significance test results ) can best be attributed to 

differences in radiosonde vertical data resolution. This particu- 

lar result strongly suggests that better ( i.e., higher ) verti- 

cal data resolution is a very important factor for enhanced icing 

prediction performance. 

For two icing algorithms ( AIRF and TESS ), comparisons of 

NOGAPS and radiosonde-based forecasts in terms of icing type and 

intensity are possible. For each of four icing agreement classi- 

fications, Table 18 gives the cumulative number of icing predic- 

tors, summed over Tau = 0, 12 and 2 4 hr, with best percent fre- 

quency of agreement based on NOGAPS and radiosonde ( RAOB ) data, 

at selected icing layers. Here, the maximum possible sum ( NG + 

RAOB ) for a given layer and agreement classification is 9 ( 3 

forecast taus x 3 icing predictors ). Table 18 is based on per- 

cent frequency of agreement (NG,RA0B) comparison statistics 

presented as Appendix C. For all four icing classes, Table 18 

•best« percentage totals for RAOB-based predictions are consider- 

ably higher than those for model-derived forecasts. The advantage 

of RAOB data over NOGAPS is most ( least ) noticeable for agree- 

ment in. intensity ( type ). Interestingly, of the only 4 NG 

•best' percentages for agreement in intensity, 3 correspond to 

the data-deficient HIGH layer. Concerning forecast/observed 

agreement in type, NOGAPS-derived forecast performance is some- 
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Table 18. For selected icing agreement classifications, the 
cumulative number of icing predictors, summed over Tau = 0, 12 
and 24 hr, with best percent frequency of agreement based on 
NOGAPS ( NG ) and radiosonde ( RAOB ) data, for selected icing 
layers. 

TYPES INTENSITIES BOTH TYPE NEITHER TYPE 
AGREE AGREE AND INTENSITY NOR INTENSITY 

AGREE AGREE 

DATA SOURCE NG RAOB NG RAOB NG RAOB NG RAOB 

LAYER 
LOW 0 0 0 0 0 0 0 0 
LOW-MID 5 2 0 8 2 7 0 8 
MIDDLE 0 9 0 9 0 9 0 9 
MID-HIGH 3 6 0 9 0 6 3 6 
HIGH 0 5 3 1 0 4 2 2 
COLUMN 6 3 1 8 3 6 3 . 6 

TOTAL 14 25 4 35 5 32 8 31 

Table 19. For selected icing agreement classifications, the 
cumulative number of icing layers, summed over Tau = 0, 12 and 24 
hr, with best percent frequency of agreement based on NOGAPS ( NG 
) and radiosonde ( RAOB ) data, for selected icing predictors. 

TYPES 
AGREE 

INTENSITIES 
AGREE 

BOTH TYPE 
AND INTENSITY 

AGREE 

NEITHER TYPE 
NOR INTENSITY 

AGREE 

DATA SOURCE NG RAOB NG RAOB NG RAOB NG RAOB 

PREDICTOR 
AIRF 
TESS(YALL) 
TESS(YIOO) 

0  11 
9   5 
5   9 

0 12 
1 11 
3  12 

2 
3 
0 

11 . 
9 

12 

0 13 
7   6 
1 12 

TOTAL 14  25 4  35 5 32 8  31 
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what better than radiosonde-based at two levels - LOW-MID and 

COLUMN. The superiority of full radiosonde data ( standard + 

significant levels ) over NOGAPS is most striking at the MIDDLE ( 

700 mb ) layer, where all four agreement classifications have a 

RAOB to NG ratio of 9 to zero. 

For the AIRF and two TESS predictors, the cumulative number 

of icing layers with 'best» percent frequency of agreement for 

NOGAPS and RAOB-based type/intensity predictions is presented in 

Table 19. Here, any selected ( NG + RAOB ) sum may total up to 18 

( 3 forecast taus x 6 icing layers ). Of these three predictors, 

AIRF appears to benefit most from the use of radiosonde data for 

icing type and intensity prediction, with all four RAOB to NG 

■best' percent agreement ratios strongly favoring RAOB-based 

forecasts. Comparison results for TESS(YALL) indicate that, for 

two of the 4 categories ( types agree, neither type nor intensity 

agree ), 'best' percent frequency of agreement sums are actually 

higher for model-derived forecasts. Interestingly, while NOGAPS 

data appears somewhat advantageous over radiosonde data to 

TESS(YALL) for differentiating icing type, the same is not true 

for icing intensity, where TESS(YALL) RAOB-based forecasts appear 

to be decidedly superior. 

For selected type/intensity classifications, Table 2 0 gives 

the cumulative number of icing predictors ( summed over three 

forecast lengths ) with 'best' percent frequency of agreement 

based on NOGAPS and reduced-radiosonde ( RAOBR ) data, at select- 

ed icing layers. With the exception of forecast/observed agree- 

ment in 'both type and intensity1, 'best' percentage totals favor 

NOGAPS-based predictions over those using reduced radiosonde 
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Table 20. For selected icing agreement classifications the 
^Ti^6 nU-mber °f icin9 Predictors, summed over Tau i o 12 
NO^APq , Ir T1^ beS,t Percent frequency of agreement based on 
icin^ layers     reduce<* radiosonde ( RAOBR ) data, for selected 

TYPES   INTENSITIES BOTH TYPE NEITHER TYPE 
AGREE      AGREE AND INTENSITY NOR INTENSITY 

AGREE- AGREE 

DATAJOURCE   NG RAOBR   NG RAOBR NG RAOBR NG'RAOBR 

LAYER 
L0W            00      03 00 00 
LOW-MID        7   1      3   3 2   3 ß   o 
MIDDLE         6   3      1   3 0   3 \        \ 
MID-HIGH       7   1      3   3 0   6 90 
HIGH           2   2      7   0 10 5   0 
COLUMN     8   1      6   2 5   3 90 

TOTAL         30   8     20  14 8~"l5 35   5 

Table 21. For selected icing agreement classifications, the 
cumulative number of icing layers, summed over Tau = 0, 12 and 24 
hr, with best percent frequency of agreement based on NOGAPS ( NG 
) and reduced radiosonde ( RAOBR ) data, for selected icing 
predictors. ^ 

TYPES INTENSITIES BOTH TYPE NEITHER TYPE 
AGREE AGREE AND INTENSITY NOR INTENSITY 

AGREE AGREE 

?_!Lf°?lCE_ Ü? ^°BR NG RA0BR NG EÄÖBR NG'RAOBR 
PREDICTOR '. 
AIRF                             66 6     10 39 Q        R 
TESS(YALL)           13        2 7        4 2        6 13        n 
TESS^YIOO)^        11        0 7        0 3        0 14        0 

TOTAL                       30        8 20     14 8~"l5 35        5 
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data. The advantage of NG over RAOBR is most pronounced for 

agreement in type and the category • neither type nor intensity 

agree«; for the latter, all 9 'best» agreement percentages at the 

MID-HIGH and COLUMN layers favor model-based prediction. Although 

agreement in intensity comparisons show a clear advantage of NG 

over RAOBR at the HIGH layer ( 7 to 0 ), a lack of sufficient 

data ( see Appendix D ) precludes a statistically sound conclu- 

sion to be drawn. 

Table 21 presents (NG,RAOBR) comparisons of icing 

type/intensity forecast ability for the AIRF and two TESS predic- 

tors. For TESS(YIOO), predictions based on NOGAPS data hold a 

very strong advantage over those derived from reduced radiosonde 

data. Specifically, when all four icing agreement classes are 

combined, the NG to RAOBR 'best- percent frequency of agreement 

ratio for TESS(YIOO) is an overwhelming 35 to zero. The predictor 

TESS(YALL) also provides an overall advantage to NOGAPS-based 

predictions, although the category for agreement in 'both type 

and intensity favors RAOBR-derived forecasts. AIRF indicates no 

clear superiority in icing type and intensity prediction using 

either model or reduced radiosonde data. For this predictor, 2 of 

the 4 agreement categories favor RAOBR, one favors NG, and one ( 

for type agreement ) favors neither. 

The very significant impact of vertical data resolution on 

icing type and intensity prediction can be noted by comparing 

(NG,RAOB) and (NG,RAOBR) »best» agreement totals of Tables 19 and 

21, respectively. For all three predictors, a pronounced shift in 

overall forecast advantage toward NOGAPS occurs as the vertical 
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resolution of radiosonde-based predictions drops from standard 

plus significant levels to essentially standard levels. For the 

TESS(YIOO) predictor, all four of the type/intensity categories 

undergo a dramatic reversal in forecasting advantage ( from 

radiosonde to model ) upon diminution of radiosonde resolution. 

Finally, a comparison of NG versus RAOBR 'best' percent frequen- 

cies of agreement for statistical measures and icing type/inten- 

sity classifications ( Tables 17 and 21, respectively ) suggests 

that, while inaccuracies in this study's model data were overall 

somewhat detrimental to algorithmic ( except TESS(YALL) ) predic- 

tion of icing occurrence, such inaccuracies actually abetted the 

TESS algorithm's limited forecast ability in differentiating 

icing type and intensity. 

6. SUMMARY AND CONCLUSIONS 

As a prelude to selection of an icing potential product for 

inclusion into an aviation support environmental display suite 

under development at NRL's Marine Meteorology Division, four 

different aircraft icing algorithms are evaluated using meteoro- 

logical data from the Navy Operational Global Atmospheric Predic- 

tion System ( NOGAPS ) model. The algorithms are RAP ( developed 

by NCAR's Research Applications Program ), NAWAU ( used opera- 

tionally by the National Centers for Environmental Prediction 

Aviation Weather Center ), AIRF ( the operational routine for the 

Air Force Global Weather Center ) and TESS, an applications 

program within the Navy's Tactical Environmental Support System. 

The NAWAU and TESS algorithms are each evaluated as two separate 

predictors. NAWAU(1) requires either category 1 or 2 icing for a 

positive icing forecast; NAWAU(2) only considers category 2 icing 
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forecasts as positive. The TESS(YALL) predictor considers any 

non-zero icing probability as a »yes» forecast; much more re- 

strictive, TESS(YIOO) requires a 100% probability for positive 

icing. Verification of the algorithms is accomplished by compar- 

ing model-derived analyses and short-range forecasts to pilot 

reports ( PIREPs ) of aircraft icing; for the AIRF and TESS 

routines, statistical comparisons include icing type and intensi- 

ty. The sensitivity of icing algorithms to model data accuracy is 

examined by comparing model-derived predictions with coincidental 

forecasts based on radiosonde data. The impact of data vertical 

resolution on forecast performance is assessed through compari- 

sons of icing predictions based on full radiosonde data ( stand- 

ard plus significant levels ) with coincidental predictions based 

on standard level data. 

For verification purposes, some 1750 pilot reports over the 

continental U.S. during the spring of 1995 were utilized. The 

largest concentration of reports ( including those of moderate or 

greater intensity ) was over the lower Great Lakes and northern 

Ohio Valley. Secondary maxima of reports ( and positive icing 

events ) were located over the central Rockies and Pacific North- 

west. Negative icing reports dominated south of 35° N, and are 

heavily concentrated over the south-central states. The vast 

majority of positive icing reports occurred between 1.5 and 5.5 

km ( 5 to 18 thousand feet ); at higher levels, negative icing 

reports dominated. Rime icing was the most prevalent type, indi- 

cated HI about 3 of every 4 positive reports. Almost half of all 

icing occurrences were reported at a light intensity; moderate 
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icing ( LGT-MDT and MDT categories ) was indicated in about 2 of 

5 icing events. The percent frequency of occurrence of rime icing 

was found to decrease somewhat with increasing intensity, while 

an opposite trend was noted for clear icing. For all three icing 

types ( RME, CLR and MXD ), percent frequencies of occurrence for 

any specified intensity category were quite similar. Finally, 

comparisons drawn among this study's PIREP dataset and various 

other observational datasets found in the literature indicate 

good agreement regarding the most commonly reported intensity and 

type of aircraft icing, namely, light rime. 

For the most part, differences in icing forecast perform- 

ance among algorithms are closely related to differences in 

temperature and moisture thresholds used by individual algorithms 

to infer icing. The TESS algorithm's unique computational proc- 

essing negatively impacted its ability to correctly predict 

positive icing occurrences immediately above the surface or 

within layers located above surface superadiabatic conditions ( 

most common with radiosondes ). Collectively, Tau= 0, 12 and 24 

hr statistical results for NOGAPS-based predictions indicate 

overall best forecast capability and skill ( PF and V scores, 

respectively ) for the NAWAU(l) and RAP predictors within the 

lower troposphere ( below ~ 14000 ft MSL ) and for the TESS(YALL) 

predictor at mid-tropospheric levels ( 14 to 27 thousand feet MSL 

). For this study's LOW-MID icing layer ( centered at 850 mb, or 

~ 5000 ft MSL), average ( Tau - 0, 12 and 24 hr ) prefigurance 

and skill score values exceed 0.7 and 0.5, respectively, for all 

three of these predictors. In general, icing predictors which 

indicate better forecast capability and skill at a particular 
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atmospheric level also have larger false alarm rates. AIRF was 

the most conservative predictor among the four icing algorithms, 

characterized by low false alarm rates but below average ability 

to forecast positive icing occurrences. Although statistical 

tests indicate that, for any given predictor, differences in 

skill scores as a function of forecast lead time are generally 

not significant, some improvement in both forecast capability and 

skill at mid-tropospheric levels ( this study's MID-HIGH and HIGH 

layers ) occurs for the TESS(YALL) and AIRF predictors over the 0 

to 24 hr forecast interval. This improvement in forecast ability 

is likely related to a steadily increasing ( over time ) positive 

moisture bias found in NOGAPS between 7 00 and 400 mb. 

Overall results indicate that the AIRF and TESS algorithms' 

ability to differentiate icing type and intensity is clearly 

limited. For this study's heavily-sampled MIDDLE icing layer ( 7 

to 14 thousand ft MSL ), only about l of 20 AIRF or TESS predic- 

tions correctly specified both icing type and intensity while, 

about 3 of every 4 such predictions could specify neither type 

nor intensity. Both icing algorithms show overall better ability 

to forecast icing type than intensity. In general, AIRF outper- 

forms TESS(YALL) in specification of icing intensity, while the 

opposite holds for icing type. Both AIRF and TESS significantly 

underforecast rime icing. Light icing is greatly underforecast by 

the TESS algorithm, while the opposite occurs for severe icing. 

Statistical results indicate that a prediction of 'light rime' 

icing is generally more accurate than a discriminant icing type 

and intensity prediction available from either AIRF or TESS. In 
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comparisons between 'LGT RME' and TESS(YALL) predictions, differ- 

ences in percent frequency of agreement of observed and forecast 

icing type and intensity ( as measured by selected agreement 

classifications ) often exceeded 20% and, in several instances ( 

mostly at Tau =24 hr ), exceeded 30%. The fact that a prediction 

of a most likely category of icing ( viz., light rime ), based on 

historical PIREP datasets, may be superior to any arbitrary AIRF 

or TESS prediction is quite significant, especially when one 

considers the large computational effort expended by these algo- 

rithms ( especially TESS ) in providing a prediction of icing 

type and intensity. 

Study results indicate that data vertical resolution plays 

a critical role in icing prediction performance. Comparisons be- 

tween model-derived predictions ( based on standard level + 925 

mb data ) and radiosonde predictions using full ( standard plus 

significant level ) data indicate that icing algorithms have 

decidedly better forecast capability and skill, but also higher 

false alarm rates, when based on the higher resolution radiosonde 

data. Inaccuracies in model ( NOGAPS 3.4 ) temperature and mois- 

ture data are found to have only a limited impact upon the fore- 

casting ability of the icing algorithms evaluated herein, with 

differences in forecast skill ( v ) between model and reduced 

radiosonde ( based on only standard data ) predictions generally 

not significant. Comparisons of model and reduced-radiosonde 

icing predictions indicate better overall forecast performance 

for the AIRF, NAWAU and RAP algorithms when using radiosonde 

data; however, for the TESS(YALL) predictor, such comparisons 

often yield higher PF and V values for model-derived forecasts. 
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Interestingly, TESS predictions of icing type based on NOGAPS 

data proved superior to comparable predictions using reduced 

radiosonde data. 

Based on two important selection criteria - forecast skill 

and computational efficiency - the NAWAU icing algorithm seems 

the best choice, among the four icing algorithms evaluated in 

this study, for inclusion into NRL's aviation support product 

suite. NAWAU is computationally the most simple of the algo- 

rithms, using only two dozen lines of computer code to predict 

two probabilities ( categories ) of icing occurrence. Unlike the 

TESS and AIRF algorithms, NAWAU is not computationally burdened 

with unreliable attempts at inferring icing type and intensity. 

Overall verification statistics indicate that NAWAU ranks high in 

both forecast capability and skill, slightly ahead of RAP. Fore- 

cast skill for TESS is comparable to ( or perhaps slightly better 

than ) NAWAU, but only if all nonzero icing probabilities, are 

considered definitive »yes« forecasts ( as per TESS(YALL) ). In 

an operational setting, a TESS(YALL) forecast skill level would 

not be obtained, since many forecasters would likely not issue a 

definitive positive forecast for icing if presented guidance 

indicating only a 10 or 20% chance for trace rime or mixed icing. 

For the operational user, a highly desirable feature of any 

icing potential graphical display is its ability to accurately 

depict areal coverage of icing. Unfortunately, temperature- and 

humidity-based prediction algorithms applied to rather coarse 

numerical model data ( such as 2.5° NOGAPS ) usually specify 

regions of potential icing well in excess of actual areal extent. 
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For best delineation of icing regions ( and improved forecast 

ability ), the highest possible resolution model data should be 

utilized for icing predictions. Within the Navy, such data could 

be supplied by COAMPS (Coupled Ocean/Atmosphere Mesoscale Pre- 

diction System ) ( Hodur, 1993 ), a high resolution model 

presently being readied for operational implementation at FNMOC. 

Additionally, the use of satellite data to screen cloud-free 

regions out of algorithm-derived icing potential threat areas 

would be beneficial ( Thompson et al., 1997 ). Operationally, any 

combined model/satellite icing product would require additional 

time and computational demands over a 'model only1 product and 

would be subject to uncertainties regarding satellite data 

availability. 
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APPENDIX A - Statistical Measures - 
Model and Radiosonde Comparisons 

TAU = 0 HR                             LAYER " 

 L°W _LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

,TT,„       , PREFIGURANCE (PF) 
AIRF       (NG)    0.0 0.500. 0.236 0.318 0.600 0 596 

(RAOB)         0.0 0.667 .  0.708 0.750 0   600 Vlll 
NAWAU(l)         (NG)            0.0 0.875 0.685 0*318 0   0 o'^S 

(RAOB)   0.0 0.875 0.910 0.818 0 200 n*Q7i 
NAWAU(2)   (NG)    0.0 0.667 0.584 0.045 0 0 0   ell 

(RAOB)         0.0 0.833 0.809 0.432 0   0 0   890 
***                     (NS)            0.0 0.875 0.697 0.250 0   0 0B5l 

(RAOB)         0.0 0.875 0.910 0.705 0   0 0   971 
TESS(YALL)    (NG)            0.0 0.625 0.371 0.568 0^600 2*801 

TESSfYinn/m^         n"n °*875 °'584 °-545 °-8°0 0.632 TESS(YIOO)    (NG)            0.0 0.583 0.213 0.295 0.400 0   471 

 1^2ü!__   °*°_ _°:792 °-506 °-500 0-400 °-603 
„TT^                          FALSE ALARM RATE (FAR) 
AIRF       (NG)    0.0 0.053 0.122 O.lio 0.061 0 100 

(RAOB)      0.050 0.088 0.289 0.187 0   0?4 n   iRn 
NAWAU(l)         <NG)         0.050 0.123 0.256 0*154 0   0 0*250 

(RAOB)      0.050 0.140 0.411 0.330 0   037 d' 
NAWAU(2)         (NG)         0.050 0.105 0.211 0.044 0   0 o'isS 

(^A°?)  °-°50 °-140 °-289 0-187 0*0 0*150 
RAP        (NG)   0.050 0.123 0.256- 0.143 0.0 0 200 

TESSrVATT/mr?*       ?„° °-14° °*411 °-264 °-<>12 0.300 TESS(YALL)    (NG)            0.0 0.105 0.200 0.253 0.098 0   250 

TESsrvmn/mrf5     Vn0 °'263 °'367 °'297 °-049 0.250 TESS(YIOO)    (NG)            0.0 0.070 0.111 0.077 0.012 0   200 

 1^^L_°'°5°_ °*^2! °*267 °-176 0-024 0.150 
,„„ HK DISCRIMINANT (V) 
AIRF •     (NG)    0.0 0.447 0.114 0.208 0.539 0 496 

(RAOB) -0.050 0.579 0.419** 0.563** 0 576 0 740 
NAWAU(l)   (NG)  -0.050 0.752 0.430 0.164 0 0 0*588 

(RAOB)    -0.050 0.735 0.499 0.489** 0   163 0*S?1 
NAWAU(2)         (NG)      -0.050 0.561 0.373 0.001 V!           " 

(RAOB)    -0.050 0.693 0.520 0.245 0   0 0*740 
RAP                      (NG)      -0.050 0.752 0.441 0.1o7 JJ'b S*653 

(RAOB) -0.050 0.735 0.499 0.441**-0 012 0 671 
TESS(YALL) (NG)    0.0 0.520 0.171 0.315 0502 2*551 

TESsrvioo/m^     °n9n° °'612 °'218 °'249 °-75^ 0.382 TESS(YIOO)    (NG)            0.0 0.513 0.102 0.219 0.388 0.271 

 1^?}    I°'°50_ °*669 °'239 0-324 0-376 0.453 
** difference at 0.01 level of significance 
* difference at 0.05 level of significance 
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TAU = 12 HR LAYER 
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

NO.PIREPS (Y/N) 1/22 24/63 94/97 46/100 6/87 142/20 

PREFIGURANCE (PF) 
AIRF (NG) 0.0 0.208 0.149 0.435 0.333 0.570 

(RAOB) 0.0 0.667 0.723 0.739 0.333 0.908 
NAWAU(l) (NG) 0.0 0.708 0.691 0.413 0.167 0.873 

(RAOB) 0.0 0.875 0.926 0.783 0.0 0.979 
NAWAU(2) (NG) 0.0 0.625 0.596 0.022 0.0 0.683 

(RAOB) 0.0 0.833 0.830 0.413 0.0 0.908 
RAP (NG) 0.0 0.708 0.691 0.304 0.0 0.859 

(RAOB) 0.0 0.875 0.926 0.674 0.0 0.979 
TESS(YALL) (NG) 0.0 0.667 0.372 0.717 0.333 0.824 

(RAOB) 1.0 0.875 0.596 0.543 0.500 0.627 
TESS(YIOO) (NG) 0.0 0.375 0.255 0.391 0.167 0.479 

(RAOB) 0.0 0.792 0.521 0.478 0.167 0.599 

FALSE ALARM RATE (FAR) 
AIRF (NG) 0.0 0.048 0.103 0.100 0.046 0.150 

- (RAOB) 0.045 0.079 0.299 0.170 0.023 0.150 
NAWAU(l) (NG) 0.045 0.095 0.247 0.200 0.0 0.250 

(RAOB) 0.045 0.127 0.423 0.320 0.034 0.450 
NAWAU(2) (NG) 0.045 0.048 0.175 0.040 0.0 0.100 

(RAOB) 0.045 0.127 0.309 0.170 0.0 0.150 
RAP (NG) 0.045 0.079 0.227 0.140 0.0 . 0.200 

(RAOB) 0.045 0.127 0.423 0.250 0.011 0.300 
TESS(YALL) (NG) 0.0 0.079 0.175 0.320 0.149 0.250 

(RAOB) 0.045 0.238 0.381 0.300 0.057 0.250 
TESS(YIOO) (NG) 0.0 0.032 0.103 0.110 0.023 0.200 

(RAOB) 0.045 0.111 0.289 0.170 0.023 0.150 

HE : DISCRIMINANT (V) 
AIRF  • (NG) 0.0 0.161 0.046 0.335 0.287 0.420 

(RAOB) -0.045 0.587** 0.424** 0.569* 0.310 0.758* 
NAWAU(l) (NG) -0.045 0.613 0.444 0.213 0.167 0.623 

(RAOB) -0.045 0.748 0.503 0.463* -0.034 0.529 
NAWAU(2) (NG) -0.045 0.577 0.420 -0.018 0.0 0.583 

(RAOB) -0.045 0.706 0.521 0.243* 0.0 0.758 
RAP (NG) -0.045 0.629 0.465 0.164 0.0 0.659 

(RAOB) -0.045 0.748 0.503 0.424* -0.011 0.679 
TESS(YALL) (NG) 0.0 0.587 0.197 0.397 0.184 0.574 

(RAOB) 0.955 0.637 0.214 0.243 0.443 0.377 
TESS(YIOO) (NG) 0.0 0.343 0.152 0.281 0.144 0.279 

(RAOB) -0.045 0.681* 0.233 0.308 0.144 0.449 

** difference at 0.01 level of significance 
* difference at 0.05 level of significance 
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TAU = 24 HR                           IjAYER ——- 

  LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

-2:!™fil^ V2~"23/59~95/9l ^IV'^vlV'ul'/ll 
ÄTür ,„„% PREFIGURANCE   (PF) 

,Snil         n'n        °-°87 °-20°           °-478 0.286 0.589 (RAOB)         0.0        0.652 0.726           0.717 0   4?9 n   sol 
NAWAU(l)          (NG)           0.0        0.739 0.642           0.45? o'All S*858 

(RAOB)         0.0        0.870 0.905           0.783 0   143 n*Q79 
NAWAU(2)          (NG)           0.0        0.652 0.579             0.0 o S1s2 

(RAOB)         0.0        0.870 0.811           0.435 0   0 0   901 
^                      (NG)           0.0        0.739 0.632           0.283 0*2 SI37 

(RAOB)         0.0        0.870 0.905           0.674 0   0 0 
TESS(YALL)    (NG)           0.0        0.696 0.347           0.826 0^571 Osll 

(RAOB)         1.0        0.913 0.589           0.543 0   571 0   fiti 
TESS(YIOO)    (NG)           0.0        0.478 0.221          0.370 0   1,3 0   5ol 

 1^°ÜL_ °*° _0:8!! °-526    °-500 °-286 °-624 
ATPT? ,™^ FALSE ALARM RATE   (FAR) 
AIRF                   (NG)           0.0        0.051 0.106           0.125 0.060 0   190 

(RAOB)      0.048      0.085 0.309           0.167 0   012 0   1 A? 
NAWAU(l)          (NG)         0.095 0.085 0.266           0.177 0   o" 0*286 

(RAOB)      0.048 0.136 0.436          0.312 0   024 n'oo 
NAWAU(2)          (NG)         0.095 0.068 0.149           0*031 00 SI43 

(RAOB)      0.048 0.136 0.319           0.156 0*0 0*143 
***                      (NG)         0.095 0.085 0.266           0.146 0*0 0   238 

TESSrYATTlCm??)       °A°n8 0'136 °*436           °'24° °-012 0*286 TESS(YALL)    (NG)           0.0 0.068 0.170           0.292 0   119 0   286 

TEsqrvmmW     Vf °'237 °*383         °*281 °:°48 °-238 TESS(YIOO)    (NG)           0.0 0.051 0.085           0.125 0.036 0   143 

 i^Bl__°*°4!__°-119 °-298           0-177 0-012 0*143 

._„ HK  DISCRIMINANT   (V) 
AIRF                   (NG)           0.0 0.036 0.094           0.353 0.226 0   398 

(RAOB)    -0.048 0.567** 0.418**      0.551 0   417         '        * 
NAWAU(l)          (NG)      -0.095 0.654 0.376           0.219 0'ill 0   5ll 

(RAOB)    -0.048 0.734 0.469           0.470 0   119 0   lit 
NAWAU(2)          (NG)      -0.095 0.584 0.430 -0*031 0   o" 0*510 

(RAOB)    -0.048 0.734 0.491          0.279* 0*0 0*758 
RAP                      (NG)      -0.095 0.654 0.366           0.137 0.0 0   599 

TESSrYÄTTl(?S??)    "°A°o8 °*734 °'469 °'434*      -0-012 0.686 TESS(YALL)    (NG)           0.0 0.628 0.177           0.534* 0   452 0   558 

TESsrvion/mr^     V? °'676 °'206        °*262 °-524 o;393 TESS(YIOO)    (NG)           0.0 0.427 0.136           0.245 0   107 0   Tfil 

 1^?L:?:°1! M°I °:228    °-323 °'274 o'^i 
** difference at 0.01 level of significance 
* difference at 0.05 level of significance 
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APPENDIX B - Statistical Measures - 
Model and Reduced Radiosonde Comparisons 

TAU =  0  HR LAYER 
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

NO.PIREPS (Y/N) 1/12 24/56 84/90 37/89 5/81 125/20 

PREFIGURANCE   (PF) 
AIRF (NG) 0.0 0.500 0.238 0.243 0.600 0.576 

(RAOBR) 1.0 0.250 0.298 0.189 0.400 0.392 
NAWAU(l) (NG) 0.0 0.875 0.679 0.270 0.0 0.824 

(RAOBR) 0.0 0.875 0.655 0.432 0.0 0.872 
NAWAU(2) (NG) 0.0 0.667 0.571 0.054 0.0 0.688 

(RAOBR) 0.0 0.833 0.536 0.135 o.o • 0.704 
RAP (NG) 0.0 0.875 0.690 0.297 0.0 0.840 

(RAOBR) 0.0 0.875 0.631 0.378 0.0 0.864 
TESS(YALL) (NG) 0.0 0.625 0.393 0.541 0.600 0.808 

(RAOBR) 0.0 0.375 0.321 . 0.622 0.600 0.584 
TESS(YIOO) (NG) 0.0 0.583 0.226 0.243 0.400 0.456 

(RAOBR) 0.0 0.250 0.298 0.459 0.200 0.488 

FALSE  ALARM RATE   (FAR) 
AIRF (NG) 0.0 0.054 0.122 0.112 0.062 0.100 

(RAOBR) 0.0 0.054 0.122 0.079 0.0 0.050 
NAWAU(l) (NG) 0.0 0.125 0.256 0.157 0.0 0.250 

(RAOBR) 0.0 0.107 0.278 0.157 0.0 0.250 
NAWAU(2) (NG) 0.0 0.107 0.211 0.045 0.0 0.150 

(RAOBR) 0.0 0.107 0.156 0.034 0.0 0.100 
RAP (NG) 0.0 0.125 0.256 0.146 0.0 0.200 

(RAOBR) 0.0 0.107 0.233 0.112 0.0 0.150 
TESS(YALL) (NG) 0.0 0.107 0.200 0.258 0.099 0.250 

(RAOBR) 0.0 0.071 0.189 0.191 0.012 0.150 
TESS(YIOO) (NG) 0.0 0.071 0.111 0.079 0.012 0.200 

(RAOBR) 0.0 0.018 0.111 0.067 0.0 0.050 

HK :  DISCRIMINANT   (V) 
AIRF (NG) 0.0 0.446 0.116 0.131 0.538 0.476 

(RAOBR) 1.0 0.196 0.175 0.111 0.400 0.342 
NAWAU(l) (NG) 0.0 0.750 0.423 0.113 0.0 0.574 

(RAOBR) 0.0 0.768 0.377 0.275 0.0 0.622 
NAWAU(2) (NG) 0.0 0.560 0.360 0.009 0.0 0.538 

(RAOBR) 0.0 0.726 0.380 0.101 0.0 0.604 
RAP (NG) 0.0 0.750 0.435 0.151 0.0 0.640 

(RAOBR) 0.0 0.768 0.398 0.2,66 0.0 0.714 
TESS(YALL) (NG) 0.0 0.518 0.193 0.282 0.501 0.558 

(RAOBR) 0.0 0.304 0.133 0.431 0.588 0.434 
TESS(YIOO) (NG) 0.0 0.512 0.115 0.165 0.388 0.256 

(RAOBR) 0.0 0.232 0.187 0.392 0.200 0.438 
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TAU = 12 HR LAYER 
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

NO.PIREPS (Y/N) 1/13 24/62 89/97 38/97 6/86 130/20 

PREFIGURANCE (PF) 
- 

AIRF (NG) 0.0 0.208 0.157 0.368 0.333 0.554 
(RAOBR) 1.0 0.250 0.315 0.237 0.333 0.415 

NAWAU(l) (NG) 0.0 0.708 0.685 0.368 0.167 0.877 
(RAOBR) 0.0 0.875 0.674 0.395 0.0 0.877 

NAWAU(2) (NG) 0.0 0.625 0.584 0.026 0.0 0.692 
(RAOBR) 0.0 0.833 0.562 0.105 0.0 0.715 RAP (NG) 0.0 0.708 0.685 0.342 0.0 0.862 
(RAOBR) 0.0 0.875 0.652 0.342 0.0 0.869 

TESS(YALL) (NG) 0.0 0.667 0.393 0.711 0.333 0.823 
(RAOBR) 0.0 0.375 0.337 0.579 0.500 0.562 

TESS(YIOO) (NG) 0.0 0.375 0.270 0.316 0.167 0.454 
(RAOBR) 0.0 0.250 0.315 0.447 0.167 0.477 

FALSE ALARM RATE (FAR) 
AIRF (NG) 0.0 0.048 0.103 0.103 0.047 0.150 

(RAOBR) 0.0 0.048 0.113 0.103 0.012 0.050 NAWAU(l) (NG) 0.0 0.097 0.247 0.196 0.0 0.250 
(RAOBR) 0.0 0.097 0.278 0.155 0.0 0.250 

NAWAU(2) (NG) 0.0 0.048 0.175 0.041 0.0 0.100 
(RAOBR) 0.0 0.097 0.155 0.031 0.0 0.100 RAP (NG) 0.0 0.081 0.227 0.144 0.0 0.200 
(RAOBR) 0.0 0.097 0.237 0.113 0.0 0.150 

TESS(YALL) (NG) 0.0 0.081 0.175 0.320 0.151 0.250 
(RAOBR) 0.0 0.065 0.196 0.186 0.023 0.150 

TESS(YIOO) (NG) 0.0 0.032 0.103 0.103 0.023 0.200 
(RAOBR) 0.0 0.016 0.113 0.062 0.0 0.050 

HK DISCRIMINANT (V) 
AIRF ■ (NG) 0.0 0.160 0.054 0.265 0.287 0.404 

(RAOBR) 1.0 0.202 0.201 0.134 0.322 0.365 
NAWAU(l) (NG) 0.0 0.612 0.438 0.173 0.167 0.627 

(RAOBR) 0.0 0.778 0.396 . 0.240 0.0 0.627 
NAWAU(2) (NG) 0.0 0.577 0.409 -0.015 0.0 0.592 

(RAOBR) 0.0 0.737 0.407 0.074 0.0 0.615 RAP (NG) 0.0 0.628 0.459 0.198 0.0 0.662 
(RAOBR) 0.0 0.778 0.415 0.2.29 0.0 0.719 

TESS(YALL) (NG) 0.0 0.586 0.218 0.391 0.182 0.573 
(RAOBR) 0.0 0.310 0.141 0.393 0.477 0.412 

TESS(YIOO) (NG) 0.0 0.343 0.167 0.213 0.143 0.254 
(RAOBR) 0.0 0.234 0.201 0.386 0.167 0.427 
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TAU =24 HR LAYER 
LOW LOW-MID MIDDLE MID-HIGH HIGH COLUMN 

NO.PIREPS (Y/N) 1/12 23/58  • 90/94 39/93 7/83 130/21 

PREFIGURANCE (PF} 
AIRF (NG) 0.0 0.087 0.211 0.436 0.286 0.569 

(RAOBR) 1.0 0.261 0.300 0.256 0.286 0. 415 NAWAU(l) (NG) 0.0 0.739 0.633 0.359 0.143 0.846 
(RAOBR) 0.0 0.870 0.656 0.410 0.0 0. 869 NAWAU(2) (NG) 0.0 0.652 0.567 0.0 0.0 0. 646 
(RAOBR) 0.0 0.870 0.567 0.128 0.0 0.723 RAP (NG) 0.0 0.739 0.622 0.256 0.0 0.823 
(RAOBR) 0.0 0.870 0.633 0.359 0.0 0. 862 

TESS(YALL > (NG) 0.0 0.696 0.367 0.795 0.571 0.831 
(RAOBR) 0.0 0.348 0.333 0.590 0.429 0. 554 

TESSfYlOO, > (NG) 0.0 0.478 0.233 0.308 0.143 0.485 
(RAOBR) 0.0 0.217 0.311 0.462 0.143 0.485 

FALSE ALARM RATE (FAR} 
AIRF (NG) 0.0 0.052 0.106 0.129 0.060 0.190 

(RAOBR) 0.0 0.034 0.117 0.108 0. 012 0. 048 NAWAU(l) (NG) 0.0 0.086 0.266 0.161 0.0 0.286 
(RAOBR) 0.0 0.103 0.287 0.151 0.0 0. 238 NAWAU(2) (NG) 0.0 0.069 0.149 0.032 0.0 0.143 
(RAOBR) 0.0 0.103 0.160 0.032 0.0 0. 095 RAP (NG) 0.0 0.086 0.266 0.140 0.0 0.238 
(RAOBR) 0.0 0.103 0.245 0.108 0. 0 0.143 

TESS(YALL) (NG) 0.0 0.069 0.170 0.280 0.120 0.286 

TESS(YIOO) 
(RAOBR) 
(NG) 

0.0 
0.0 

0.069 
0.052 

0.202 
0.085 

0.172 
0.129 

0.024 
0.036 

0.143 
0.143 

(RAOBR) 0.0 0.017 0.117 0.065 0.0 0.048 

HK DISCRIMINANT CV} 
AIRF (NG) 0.0 0.035 0.105 0.307 0.225 0.379 

(RAOBR) 1.0 0.226 0.183 0.149 0.274 0. 368 NAWAU(l) (NG) 0.0 0.653 0.367 0.198 0.143 0.560 
(RAOBR) 0.0 0.766 0.368 0.260 0.0 0. 631 NAWAU(2) (NG) 0.0 0.583 0.418 -0.032 0.0 0.503 
(RAOBR) 0.0 0.766 0.407 0.096 0.0 0. 628 RAP (NG) 0.0 0.653 0.356 0.117 0.0 0.585 
(RAOBR) 0.0 0.766 0.389 0.251 0.0 0.719 

TESS(YALL) (NG) 0.0 0.627* 0.196 0.515 0.451 0.545 
(RAOBR) 0.0 0.279 0.131 0.418 0.404 0.411 

TESS(YIOO) (NG) 0.0 • 0.427 0.148 0.179 0.107 0.342 
(RAOBR) 0.0 0.200 0.194 0.397 0.143 0.437 

difference at 0.05 level of significance 
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APPENDIX C - Type/Intensity Categories - 
Model and Radiosonde Comparisons 

TAU = 0 HR PREDICTOR 
NO. AIRF TESS (YALL) TESS(YIOO) 

DATA (NG) (RAOB) (NG) (RAOB) (NG) (RAOB) 

TYPES AGREE 
LAYER 
LOW 0 0.0%  0.0% 0.0% 0.0% 0.0%  0.0% 
LOW-MID 21(0,2) 14.3% 14.3% 33.3% 21.1% 33.3% 19.0% 
MIDDLE 83(1,3) 15.7% 42.2% 17.1% 22.5% 9.6% 21.7% 
MID-HIGH 40 22.5% 50.0% 25.0% 12.5% 2.5% 10.0% HIGH 5 60.0% 60.0% 20.0% 60.0% 0.0% 20.0% COLUMN 125(3,2) 35.2% 45.6% 49.2.% 18.7% 16.8% 12.8% 

LAYER 
INTENSITIES AGREE 

LOW 1(0,1) 0.0%  0.0% 0.0% 0.0% 0.0%  0.0% 
LOW-MID 24(0,2) 29.2% 29.2% 4.2% 31.8% 4.2% 29.2% 
MIDDLE 89(1,4) 6.7% 34.8% 1.1% 8.2% 1.1%  6.7% 
MID-HIGH 44 18.2% 47.7% 2.3% 13.6% 0.0% 13.6% HIGH 5 40.0% 40.0% 20.0% 20.0% 20.0%  0.0% 
COLUMN 136(3,2) 28.7% 47.1% 12.8% 12.7% 2.9% 12.5% 

BOTH TYPE AND INTENSITY AGREE 
LAYER 
LOW 0 0.0%  0.0% 0.0% 0.0% 0.0%  0.0% 
LOW-MID 21(0,2) 14.3%  4.8% 0.0% 5.3% 0.0%  4.8% 
MIDDLE 82(1,3) 3.7% 24.4% 0.0% 3.8% 0.0%  3.7% 
MID-HIGH 
HIGH 

40 
5 

10.0% 37.5% 
40.0% 40.0% 

2.5% 
0.0% 

2.5% 
20.0% 

0.0%  2.5% 
0.0%  0.0% 

COLUMN 124(3,2) 16.1% 29.0% 9.1% 2.5% 0.8%  1.6% 

LAYER ■ 
NEITHER TYPE NOR INTENSITY AGREE 

LOW 0 0.0%  0.0% 0.0% 0.0% 0.0%  0.0% 
LOW-MID 21(0,2) 66.7% 61.9% 61.9% 47.4% 61.9% 52.4% 
MIDDLE 82(1,3) 80.5% 45.1% 81.5% 72.2% 89.0% 74.4% 
MID-HIGH 40 70.0% 40.0% 75.0% 77.5% 97.5% 80.0% 
HIGH 
COLUMN 

5 
124(3,2) 

40.0% 40.0% 
50.8% 34.7% 

60.0% 
46.3% 

40.0% 
70.5% 

80.0% 80.0% 
80.6% 75.8% 

Note:  "NO. DATA» counts pertain to AIRF and TESS(YIOO) 
predictors; the number of data for the TESS(YALL) 
predictor based on NG ( RAOB ) data is found by 
-subtracting the first ( second ) number in 
parenthesis from the given data count. 
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TAU 12 HR 
NO. 

DATA 
AIRF 

(NG) (RAOB) 

PREDICTOR 
TESS(YALL) 
(NG) (RAOB) 

TESS(YIOO) 
(NG) (RAOB) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
21(2,2) 
87(3,3) 
42 
5 

129(2,2) 

TYPES AGREE 

0.0% 0.0% 0.0% 0.0 
14.3% 14.3% 36.8% 21.1 

9.2% 43.7% 15.5% 22.6 
26.2% 45.2% 23.8% 14.3 
40.0% 40.0% 20.0% 40.0 
34.9% 45.7% 48.8% 17.3 

0.0% 0.0% 
14.3% 19.0% 

9.2% 21.8% 
2.4% 9.5% 
0.0% 0.0% 

13.2% 12.4% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

1(0,1) 
24(2,2) 
94(3,4) 
46 
6 

142(2,2) 

INTENSITIES AGREE 

0.0 
8.3 
7.4% 35 

17.4 
16.7 
23.9 

0.03 
29.23 

.V. 

.5* 
1\ 
53 

43 
16 
46 

0.0% 0.0% 0.0% 0.0% 
4.5% 31.8% 0.0% 29.2% 
1.1% 10.0% 1.1% 8.5% 
2.2% 10.9% 0.0% 10.9% 

16.7% 16.7% 16.7% 0.0% 
10.7% 12.9% 2.1% 12.7% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
21(2,2) 
86(3,3) 
42 
5 

128(2,2) 

BOTH TYPE AND INTENSITY AGREE 

0.0% 0 . 0% 
9.5% 4 .8% 
5.8% 24 4% 
7.1% 33. 3% 

20.0% 20. 0% 
14.8% 28. 9% 

0.0% 0.0% 
0.0% 5.3% 
0.0% 3.6% 
2.4% 2.4% 
0.0% 20.0% 
7.1% 2.4% 

0.0% 0 .0% 
0.0% 4 8% 
0.0% 3 5% 
0.0% 2 4% 
0,0% 0. 0% 
0.8% 1 . 6% 

LAYER . 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
21(2,2) 
86(3,3) 
42 
5 

128(2,2) 

NEITHER TYPE NOR INTENSITY AGREE 

0.0% 0.0% 0.0% 0.0% 0 . 0% 0.0% 
85.7% 61.9% 57.9% 47.4% 85 7% 52.4% 
88.4% 43.0% 83.1% 71.1% 89 5% 73.3% 
64.3% 45.2% 76.2% 78.6% 97. 6% 83.3% 
60.0% 60.0% 60.0% 60.0% 80. 0% 100.% 
54.7% 34.4% 46.8% 71.4% 85. 9% 75.8% 
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TAU = 24 HR 
NO. 
DATA 

AIRF 
(NG) (RAOB) 

PREDICTOR 
TESS(YALL) 
(NG) (RAOB) 

TESS(YIOO) 
(NG) (RAOB) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

20(2,2) 
88(2,4) 
42 
6 

128(1,2) 

TYPES AGREE 

0.0% 0.0% 0.0% 0.0% 0.0% 0 0% 
0.0% 10.0% 50.0% 22.2% 30.0% 20 0% 

14.8% 43.2% 18.6% 21.4% 10.2% 20. 5% 
28.6% 42.9% 31.0% 11.9% 2.4% 9. *>% 
33.3% 50.0% 50.0% 50.0% 0.0% 16. 7% 
32.8% 43.0% 46.5% 15.9% 14.1% 12. 5% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

1(0,1) 
23(2,2) 
95(2,5) 
46 
7 

141(1,2) 

INTENSITIES AGREE 

0.0% 0 .0 
8.7% 30 .4 
9.5% 34 7 

21.7% 43 5 
14.3% 28. 6 
24.1% 46.1% 

0.0% 0.0% 0.0% 0.0% 
4.8% 33.3% 4.3% 30.4% 
1.1% 8.9% 1.1% 8.4% 
2.2% 10.9% 0.0% 10.9% 

14.3% 14.3% 14.3% 0.0% 
10.7% 12.9% 2.8% 12.8% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
20(2,2) 
87(2,4) 
42 
6 

127(1,2) 

BOTH TYPE AND INTENSITY AGREE 

0.0% 0.0 
0.0% 5.0 
6.9% 24.1 
9.5% 31.0 

16.7% 33.3 
11.8% 27.6 

0.0% 
0.0% 
0.0% 
2.4% 
0.0% 
6.3% 

0.0% 
5.6% 
3.6% 
2.4% 

16.7% 
2.4% 

0.0% 0.0% 
0.0% 5.0% 
0.0% 3.4% 
0.0% 2.4% 
0.0% 0.0% 
0.8% 1.6% 

LAYER - 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

20(2,2) 
87(2,4) 
42 
6 

127(1,2) 

NEITHER TYPE NOR INTENSITY AGREE 

0.0% 0.0% 0.0% 0.0 
90.0% 65.0% 44.4% 44.4 
81.6% 43.7% 80.0% 73.5 
61.9% 45.2% 69.0% 81.0 
66.7% 50.0% 33.3% 50.0 
53.5% 36.2% 48.4% 72.8 

0.0% 0.0% 
65.0% 50.0% 
88.5% 74.7% 
97.6% 83.3% 
83.3% 83.3% 
84.3%   75.6% 
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APPENDIX D - Type/Intensity Categories - 
Model and Reduced Radiosonde Comparisons 

TAU = 0 HR 
NO. 
DATA 

AIRF 
(NG) (RAOBR) 

PREDICTOR 
TESS(YALL) 
(NG) (RAOBR) 

TESS(YIOO) 
(NG) (RAOBR) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
21(0,2) 
79(1,1) 
34 
5 

116(3,1) 

0.0% 0.0% 
14.3% 9.5% 
16.5% 25.3% 
14.7% 17.6% 
60.0% 40.0% 
32.8% 29.3% 

TYPES AGREE 

0.0% 0.0% 
33.3% 21.1% 
17.9% 10.3% 
26.5% 14.7% 
20.0% 40.0% 
46.9% 23.5% 

0.0%  0.0% 
33.3% 14.3% 
10.1%  8.9% 
2.9%  0.0% 
0.0%  0.0% 

18.1% 10.3% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

24(0,2) 
84(1,1) 
37 
5 

125(3,1) 

0.0% 100.% 
29.2%   16.7% 

7.1% 16.7% 
16.2% 13.5% 
40.0% 20.0% 
28.0%   24.0% 

INTENSITIES AGREE 

0.0% 0.0% 
4.2% 4.5% 
1.2% 1.2% 
0.0% 8.1% 

20.0% 0.0% 
10.7% 8.9% 

0.0% 0.0% 
4.2% 0.0% 
1.2% 1.2% 
0.0% 0.0% 

20.0% 0.0% 
3.2% 2.4% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

21(0,2) 
78(1,1) 
34 
5 

115(3,1) 

BOTH TYPE AND INTENSITY AGREE 

0.0%  0.0% 
14.3%  0.0% 
3.8% 16.7% 
8.8% 11.8% 

40.0% 20.0% 
15.7% 18.3% 

0.0% 0.0% 
0.0% 5.3% 
0.0% 0.0% 
0.0% 8.8% 
0.0% 0.0% 
7.1% 6.1% 

0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.9% 0.0% 

LAYER . 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

21(0,2) 
78(1,1) 
34 
5 

115(3,1) 

NEITHER TYPE NOR INTENSITY AGREE 

0.0% 0.0% 
66.7% 76.2% 
79.5% 73.1% 
76.5% 82.4% 
40.0% 60.0% 
53.0%   65.2% 

0.0% 0.0% 
61.9% 78.9% 
80.5% 88.3% 
73.5% 85.3% 
60.0% 60.0% 
48.2%   73.7% 

0.0% 0.0% 
61.9% 85.7% 
88.5% 89.7% 
97.1% 100.% 
80.0% 100.% 
79.1%   87.0% 

Note: "NO. DATA" counts pertain to AIRF and TESS(YIOO) 
predictors; the number of data for the TESS(YALL) 
predictor based on NG ( RAOBR ) data is found by 
-subtracting the first ( second ) number in 
parenthesis from the given data count. 
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TAU = 12 HR 
NO. 
DATA 

AIRF 
(NG) (RAOBR) 

PREDICTOR 
TESS(YALL) 
(NG) (RAOBR) 

TESS(YIOO) 
(NG) (RAOBR) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

TYPES AGREE 

21(2,2) 
83(3,1) 
35 
5 

119(2,1) 

0 .0% 0 .0 
14 .3% 9 .5 

9 6% 26 5 
17. 1% 17. 1 
40. 0% 40. 0 
31. 9% 30. 3 

0.0% 0 .0 
36.8% 21. 1 
16.3% 9. 8 
28.6% 14. 3 
20.0% 40. 0 
47.0% 22. 0 

0.0% 0.0 
14.3% 14.3 

9.6% 8.4 
2.9% 0.0 
0.0% 0.0 

%    14.3% 10.1% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

1 
24(2,2) 
89(3,1) 
38 
6 

130(2,1) 

INTENSITIES AGREE 

0.0% 100.% 0.0% 0.0 
8.3% 16.7% 4.5% 4.5 
7.9% 16.9% 1.2% 1.1 

15.8% 13.2% 2.6% 7.9 
16.7% 16.7% 16.7% 0.0 
23.1% 23.8% 9.4% 9.3 

0.0% 0.0% 
0.0% 0.0% 
1.1% 1.1% 
0.0% 0.0% 

16.7% 0.0% 
2.3% 2.3% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

21(2,2) 
82(3,1) 
35 
5 

118(2,1) 

BOTH TYPE AND INTENSITY AGREE 

0.0% 0 . 0% 
9.5% 0 . 0% 
6.1% 17 1% 
5.7% 11. 4% 

20.0% 20. 0% 
14.4% 18. 6% 

0.0% 0.0% 
0,0% 5.3% 
0.0% 0.0% 
2.9% 8.6% 
0.0% 0.0% 
6.0% 6.0% 

0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.0% 0.0% 
0.8% 0.0% 

LAYER . 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

21(2,2) 
82(3,1) 
35 
5 

118(2,1) 

NEITHER TYPE NOR INTENSITY AGREE 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
85.7% 76.2% 57.9% 78.9% 85.7% 85.7% 
87.8% 72.0% 82.3% 88.9% 89.0% 90.2% 
71.4% 82.9% 71.4% 85.7% 97.1% 100.% 
60.0% 60.0% 60.0% 60.0% 80.0% 100.% 
57.6% 64.4% 48.3% 74.4% 84.7% 87.3% 

89 



TAU = 24 HR 
NO. 

DATA 
AIRF 

(NG) (RAOBR) 

PREDICTOR 
TESS(YALL) 
(NG) (RAOBR) 

TESS(YIOO) 
(NG) (RAOBR) 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
20(2,2) 
84(2,1) 
36 
6 

119(1,1) 

TYPES AGREE 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0 
0.0% 10.0% 50.0% 16.7% 30.0% 10.0 

15.5% 26.2% 19.5% 9.6% 10.7% 8.3 
22.2% 16.7% 33.3% 11.1% 2.8% 0.0 
33.3% 33.3% 50.0% 33.3% 0.0% 0.0 
29.4% 30.3% 43.2% 20.3% 15.1% 10.1 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

1 
23(2,2) 
90(2,1) 
39 
7 

130(1,1) 

INTENSITIES AGREE ■ 

0.0% 100.% 0.0% 0.0% 
8.7% 17.4% 4.8% 4.8% 

10.0% 16.7% 1.1% 1.1% 
20.5% 12.8% 2.6% 5.1% 
14.3% 14.3% 14.3% 0.0% 
23.1% 24.6% 9.3% 7.0% 

0, 
4. 
1. 
0. 

0% 
3% 
1% 
0% 

14.3% 

0.0% 
0.0% 
1.1% 
0.0% 
0.0% 

3.1%  2.3% 

LAYER 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

20(2,2) 
83(2,1) 
36 
6 

118(1,1) 

BOTH TYPE AND INTENSITY AGREE 

0.0% 0.0% 
0.0% 0.0% 
7.2% 16.9% 
8.3% 11.1% 

16.7% 16.7% 
10.2% 19.5% 

0.0% 0.0% 
0.0% 5.6% 
0.0% 0.0% 
2.8% 5.6% 
0.0% 0.0% 
5.1% 4.3% 

0.0% 0.0 
0.0% 0.0 
0.0% 0.0 
0.0% 0.0 
0.0% 0.0 
0.8% 0.0 

LAYER . 
LOW 
LOW-MID 
MIDDLE 
MID-HIGH 
HIGH 
COLUMN 

0 
20(2,2) 
83(2,1) 
36 
6 

118(1,1) 

NEITHER TYPE NOR INTENSITY AGREE 

0 . 0% 0 .0 
90 . 0% 75 .0 
80. .7% 72 .3 
66. 7% 83 3 
66. 7% 66. 7 
55. 9% 64. 4 

0.0% 0.03 
44.4% 83.83 
79.0% 89.03 
66.7% 88.93 
33.3% 66.73 
51.3%   76.93 

0.0% 0.0% 
65.0% 90.0% 
88.0% 90.4% 
97.2% 100.% 
83.3%   100.% 
83.1%   87.3% 
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