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Summary 

Techniques are presented for improving methods of aircraft identification and trajectory 
prediction. This work represents an extension of the advanced trackers that use both translation 
and attitude data to improve accuracy of trajectory tracking and prediction. The novel extension 
in this work deals with the development of a new tracking algorithm based on a radius of 
curvature estimator, use of regression-based artificial measurements during the prediction 
interval and development of aircraft identification techniques for vehicles being tracked based 
on remote trajectory measurements. The procedure was evaluated with actual position and 
attitude trajectory data for a F-14A, AV-8B and A6 aircraft acquired during training flights. 
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1.        Introduction 

Pilots of unfriendly aircraft will employ all of their aircraft capabilities in order to increase the 
chances of their survival and their mission success. In order to maximize the probability of 
intercepting an unfriendly aircraft (by firing a projectile at the target), several challenges need 
to be addressed. Firstly, the type of aircraft in the scene needs to be recognized in order to 
resolve the uncertainty of having a friend or foe target. Secondly, the target position and 
orientation in space and its velocity needs to be determined. Lastly, a trajectory predictor needs 
to be implemented in order to calculate future target positions to direct the air defenses at the 
correct lead angle. 

The research presented in this work is directed at improving methods of aircraft identification 
and trajectory prediction, in order to do so, several concepts needs to be understood before a 
problem definition could be formulated. This section will introduce the ideas of estimation and 
pattern recognition as relates to the problem that needs to be solved. 
Estimation is the process of extracting information from data which may be corrupted by 

disturbances or noise. Modern estimation methods use known physical and mathematical 
relationships to compute desired information from measurements. These methods take into 
account measurement errors, the effects of disturbances and control actions on the system [43]. 

There are three types of estimation problems. When the time at which an estimate is desired 
coincides with the last measurement point, the problem is referred to as filtering. When the time 
of interest falls within the span of available measurement data, the problem is termed 
smoothing. And, when the time of interest occurs after the last available measurement, the 
problem is called prediction [43]. 

For nearly three decades the problem of filtering and predicting the trajectory of an aircraft for 
fire control has been a wide application area of state estimation theory. In this problem, a sensor 
system tracks the current position and sometimes the orientation of the target with an associated 
measurement error. The purpose of the filter is to process the noisy measurements in such a 
manner as to estimate the parameters required for the prediction model. Such parameters might 
include current target position, velocity, and acceleration. 

The estimation problem in target trajectory tracking is to process the sensor outputs such that 
the best estimates of the trajectory parameters are obtained. Computer implemented data 
processing algorithms called trackers are used to perform the filtering and prediction of the 
target trajectory. 

The research presented in this work is directed at improving methods of aircraft trajectory 
tracking. The goal is to improve the ability to filter and predict target trajectories using advanced 
regression-based data conditioning techniques in conjunction with attitude/translation models of 
the target dynamics. 

1.1      Pattern Classification 

Pattern Classification, the assignment of an object to one of a number of predetermined groups, 
is of fundamental importance in many areas of science and technology. The problem of 
classification is to find a way of assigning a new object on the basis of a set of measurements 
to one of a number of possible groups. Inherent in this statement of the problem is the idea of 
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a classification rule, that is, a well defined procedure that can be described and applied without 
the need for any additional subjective judgments [30, 55], 

In the combat situation where a Friend needs to be identified from a Foe target, the problem 
of pattern classification takes an essential role. Furthermore, for military aircraft, it is of 
fundamental importance to define the type of aircraft in the scene, its position and orientation 
in space and its velocity, so that a trajectory estimator can be used to calculate the aircraft 
trajectory and consequently to direct the air defenses at the correct lead angle so as to maximize 
the probability of hitting the aircraft. 

The research presented in this work describes a new approach to aircraft identification. Remote 
measurements of target aircraft trajectory are used to identify between friend and foe aircraft, 
and to determine foe aircraft classes. 

1.2 The Fire Control Problem 

The problem of fire control in air-to-air operations may be defined as follows: How can a 
projectile be fired from a potentially moving weapon station to strike a target aircraft? There are 
certain probabilistic factors influencing the problem: the target position at the time of hit and 
the projectile's time of flight, during which the projectile is under the influence of natural 
phenomena outside the launcher's control. Some of the variables in the fire control problem are 
illustrated in Figure 1.1. 

Important quantities used in analyzing fire control problems are: 

1. The line of sight between the attacking aircraft to the target. 
2. The weapon line or direction in which the weapon should be launched. 
3. The prediction angle between these two directions. 

These three factors are all invariant to the reference frame chosen for expressing the fire control 
problem. 

In order hit the target, the prediction or lead angle must be computed a priori with 
consideration given to the three physical factors that can cause the projectile to miss the target 
if it were launched directly along the line of sight: 

1. Target motion (the target is moving during the projectile's time of flight). 
2. Curvature (the projectile changes its speed and/or curve of its trajectory during 

its fight to the target). 
3. Jump (there is an initial projectile velocity direction different from that of the 

weapon line) [89]. 

These phenomena, target motion, trajectory curvature and jump must be tracked (filtered and 
predicted) in order to set the correction to the weapon-aiming line prior to firing the projectile. 

1.3 Importance of a Tracking Method for Fire Control 

An important part of any tracker in military applications is to improve the probability of hit 
(Ph) against violently maneuvering aircraft. This task can be accomplished by tracking the target 
aircraft and then predicting the position of the target in the future when the projectile arrives at 



Weapon Station 

the target. 

Figure 1.1 Fire Control Variables in an Air to Air 
Operation [89] 

Target motion involves the apparent travel of the target during the time of flight of the projectile 
between the time of firing and the instant of impact with the target. This apparent travel is 
derived from the integrated effects of target velocity and acceleration during the time of flight 
(Figure 1.2). 

Future target position can be expressed as function of present airplane target range, present 
velocity integrated over the time of flight and the double integral of target acceleration over the 
time of flight. Several approaches to the treatment of target acceleration as it influences the fire 
control problem can be made: 

Target acceleration is assumed zero, so that target is Considered to be moving 
in a straight line at constant speed. 
Target acceleration is assumed constant, thereby simplifying the integration 
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procedure. 

Target Position at Firing 
(Present Target Position) 
(Projactile Position After 

Time of Flight) 

Integrated Velocity ond 
Acceleration of Target 
During Time of Flight 
Giving Target Travel 

\ 
Target Position After 

Projectile Time of Flight 
(Futurs Torget Pozifion) 

Line of Sign» to 
Target at Firing 

(Present Line of Sight) 

Angular Miss Due 
to Target Trowel 

When Initial Project 
Velocity is Along 

Present Line of Sight 

Line of Sight to Torget 
After Projectile Time of Flight 

(Future Line of Sight) 

Weapon Station Position 
at Firing 

Weapon Station After 
Projectile Time of Flight 

Figure 1.2 Basic Factors Associated 
with the Prediction Angle [89] 

0       Maneuvers may be anticipated, if the probabilities of various target courses can 
be ascertained. Obviously, this is the most difficult thing to do [89]. 

Improving a weapons Ph against violently maneuvering aircraft can be achieved by first 
identifying the class of target and its maneuvering capabilities, tracking its movements, and then 
predicting an aim point for a high Ph. Incorporating this type of real-time computer generated 
information into a weapons fire control system could produce a higher hit probability for air 
defense weapons and may prove applicable against certain ground targets. 

1.4      Importance of a Parameter Identification Technique in Aircraft Tracking Problems 

A compromise is made with the application of advanced trackers between improved tracking 
accuracy and the need for an increased amount of vehicle specific information. In order to 
effectively use an attitude/translation tracking algorithm, the target vehicle must be identified and 
appropriate vehicle specific parameters must be applied to the tracking algorithm. It may be 
unrealistic for an imaging system to be able to correctly and efficiently identify a target - 
especially at great distances where only a limited number of pixels of image data may be 
discernable. 
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The observed trajectory should offer a means of estimating the dynamic characteristics of the 
aircraft. The observed trajectory alone would allow the system to estimate vehicle characteristic 
parameters to be used in target recognition. Once that the target is identified the appropriate 
vehicle specific parameters could be obtained from an aircraft properties database. This approach 
is not unrealistic at all if an observation is made: most of the foe aircraft flying in combat 
situations have been built by the U.S. or allied countries, therefore their specific parameters 
are well recorded. 

The aircraft characteristic parameters provide two significant benefits. The target class can be 
identified a priori and accurate values of vehicle specific information be determined. With this 
information significant improvements in the accuracy of the prediction process in an 
attitude/translation tracker could be made [5,6]. Perhaps more importantly, vehicle characteristic 
parameters can aid in identifying whether the vehicle being tracked is friend or foe (IFF). A 
space of vehicle parameters can be searched for the closest match by a discriminant classifier 
[55]. 

1.5      Problem Definition 

The classical problem of anti-aircraft gun fire control is the definition of the type of aircraft in 
the scene and the accurate prediction of the future position of a given target at the time of 
projectile intercept. The correct gun-pointing angles (or equivalent) can be determined based on 
this information. Current approaches to the solution of this problem typically employ the use of 
modern estimation techniques (Kaiman filtering) to estimate target velocity and acceleration on 
the basis of target position measurements. Once the velocity and acceleration estimates have been 
obtained, the prediction of the future position can be accomplished by numerical integration or 
other techniques. 

The tracking problem is a state estimation problem, where the state vector X(t) contains target 
position, velocity, and sometimes acceleration as the state variables at time t . In some 
situations, key parameters characterizing other important target properties are also included as 
state variables (i.e., target orientation angles). The state of a target is assumed to evolve in time 
according to the equation: 

X - a(X(t),t) + w(*) 1-1 

As seen in Equation 1.1, a non-linear model represents the target behavior, this is due to the fact 
that the target dynamics are a non-linear functions of target state variables. The corresponding 
discrete measurement vector (obtained by remote sensors) is given by: 

Z(k) - h(X(k),k) + v(k) 1.2 

where w(0 is a process noise vector representing modeling errors and v(k) is the 
measurement noise vector that accounts for sensing errors. The system process noise and 
measurement noise are assumed to be mean white noise processes with 
w(f)~(0,<?(0) and v(k) ~(0,R(k)) . Q(t) is selected to compensate for modeling 

errors (discrepancies between the model and the actual processes). The statistics of the 
measurement noise R (k) should also be selected to represent all possible excursions from the 
ideal observation such as measurement biases, false measurements, etc. [21] 
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The objective in tracking problems is to estimate the target state vector X(k) , based upon the 
measurement vector Z()c) . Equation 1.1 is a mathematical model representative of the target 
dynamics and Equation 1.2 is the measurement equation relating state variables to measurement 
variables. When a radar is used, Z(k) has at least three components (i.e., range, azimuth and 
elevation). If attitude sensing means such as imaging sensors are used, Z(fc) may include 
aircraft orientation information (roll, pitch and yaw angles), as shown in Figure 1.3. 

Figure 1.3 Measurement Geometry 

Estimating the trajectory and associated parameters of an airplane is a highly complex, non- 
linear problem. Not only does the non-linear vehicular equation of motion represent an excessive 
computational burden, but the necessity of identifying key parameters associated with the vehicle 
dynamics complicates the problem even further. 

The purpose of this research is to improve the methods of trajectory tracking and prediction by 
the application of regression dynamics models. The ultimate goal of this effort is to improve the 
ability to track and predict trajectories of aircraft and identify them as friend or foe. The 
approach uses advanced regression-based data conditioning techniques in conjunction with 
attitude/translation models of aircraft dynamics. This work considers the improvement of the 
accuracy of attitude/translation trackers developed at Purdue University and U.S. Army 
Picatinny Arsenal [1 - 9] and the development of target identification techniques for vehicles 
being tracked. 
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2.        Objectives 

This work represents an extension of the advanced trackers that were developed at Purdue 
University and the U.S. Army Picatinny Arsenal [1 - 9]. These trackers used both translation 
and attitude data to improve the accuracy of conventional trackers. Translation measurements 
from radar data (range, azimuth and elevation) and their associated rates are used in conjunction 
with aircraft attitude data (roll, pitch and yaw angles) to improve tracking accuracy by providing 
a more complete dynamic model of aircraft performance. This dynamic model can yield 
increases in tracking and prediction accuracy by providing useful estimates of target acceleration. 

The novel extension in this work deals with the development of a new tracking algorithm based 
on a radius of curvature estimator, use of artificial measurements during the prediction interval 
and development of aircraft identification techniques for vehicles being tracked based on remote 
trajectory measurements. 

This work examines the use of regression models of translation and attitude measurements that 
are constructed in real time and used for estimation of tracking measurement data and prediction 
of measurement data during the lead time interval. The rationale for the use of regression models 
of measurement data is based on the concept of underlying dynamics for each measurable 
parameter. These underlying dynamics may not be well understood from first principles, but 
they can be adequately represented by regression models [31 - 35]. These regression models can 
be used for the creation of state models useful for Kaiman filter estimation of the measurement 
data and prediction of measurement data during the lead interval. 

The motivation for regression modeling is to attempt to improve the position prediction by 
applying predicted measurement data as input to the translation/attitude model of aircraft 
performance. This approach allows the underlying dynamics of the measurement data to 
enhance the effectiveness of the dynamic model of the aircraft. 

The goal of this effort is to improve the ability to track and predict the position of a target 
aircraft. This problem is complicated by the tendency of aircraft to violently maneuver as an 
evasive tactic. The violent maneuvering has the effect of making the future position of the 
vehicle less predictable. The predicted position is necessary in order to compute an appropriate 
lead angle. 

The presented work can be summarized as follows: 

1. Implementation of a new tracking algorithm based on a radius of curvature estimator. 
This approach has a significant advantage over the existing attitude/translation tracker, 
because, both position and attitude are used to estimate vehicle dynamics without 
requiring vehicle specific inertial data. 

2. Use of regression-based predictions of the trajectory measurement data as input to the 
radius of curvature dynamic model for target position prediction improvement. 

3. Development of a target type identification technique, that uses real-time observations of 
aircraft trajectory performance, to estimate aircraft characteristic parameters for target 
classification. This technique offers both improved accuracy in tracking when aircraft 
parameter specific filters are used and a method to "identify friend or foe" (IFF) for 
potential targets. 
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4. Performance comparisons of the new tracking methods to the attitude/translation tracking 
techniques [5], using actual flight data (translation and attitude) from the Navy's Tactical 
Aircrew Combat Training System (TACTS). 

The study was conducted using actual position and attitude trajectory data for F-14A, A6 and 
AV-8B aircraft acquired during training flights. The data was supplied through the Navy's 
TACTS at Cherry Point Marine Corps Air Station [69 - 71]. All positional data was collected 
by ground-based radar and attitude data was collected using on-board gyroscopic instruments. 
A unique aspect of this study is the use of actual trajectory data. Many prior comparative studies 
of filter performance have been made using purely simulated data or attitude data estimated from 
translational data. 
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3.        Tracking and Prediction Technique Using Regression-Based Artificial Measurements 

This section details the different phases studied during the implementation of the prediction 
method based on artificial measurements: an integrated tracking and prediction technique, radius 
of curvature state model, continuous-discrete extended Kaiman filter implementation, and 
regression-based models of measurement dynamics. 

3.1      Integrated Tracking and Prediction Technique 

The overall tracking and prediction approach is schematized in Figure 3.1. The trajectory is 
observed or measured at a specific instant by a vector consisting of orientation (roll, pitch and 
yaw), position (range, azimuth and elevation) and the corresponding position derivatives: 

z(k) 

*(*) ROLL 

e(*) PITCH 

T(k) YAW 

R(k) RANGE 

r\(k) AZIMUTH 

S(k) ELEVATION 

R(k) RANGE RATE 

*<*) AZIMUTH RATE 

l(k)   . ELEVATION RATE 

3.1 

The target is tracked for a period of time using inherently noisy measurement data. 
Subsequently, the trajectory measurement data is modeled using regression techniques and an 
integrated linear Kaiman Filter estimation algorithm is applied to the modeled measurement data. 
The resulting estimate of trajectory measurements serves as the input to an attitude-translation 
based extended Kaiman filter for target dynamics. When no trajectory measurement data is 
available (during the prediction interval), regression estimates of the measurement data are used 
to estimate target dynamics. The goal is to improve the prediction of target trajectory by 
modeling the trajectory measurement data during the prediction interval. 
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Figure 3.1 Schematic of Trajectory Tracking and Prediction Technique Using Regression 
Models of Measurement Dynamics 
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Representing the underlying dynamics of the measurement data using regression models 
improves the overall effectiveness of the aircraft dynamic model and, ultimately, the accuracy 
of the position prediction during the lead interval. The basic sequence of operations in the real- 
time modeling and estimation of target trajectories is as follows: 

Track the target for period of time using noisy measurement data. 
Model the trajectory measurement data using a piecewise regression technique. 
For each trajectory measurement model build a linear Kaiman filter to optimally 
estimate the trajectory measurements. 
Use the estimates of target measurement data as input to an attitude-translation 
based Kaiman Filter for target dynamics. 

This sequence is illustrated in Figure 3.2. 

x,, x2. .x, 
NUMERICAL INTEGRATION 

EFFECT OF MEASUREMENT 

ON STATE ESTIMATE 

R . v . f  

time 

time 

MEASURED AND REGRESSION 

DYNAMICS FILTERED DATA 

REGRESSION 

PREDICTED 
DATA 

Figure 3.2 State Estimation and Prediction with Regression-Based Measurement Data 
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This method uses nine Kaiman filters running in parallel to estimate the dynamics of the 
measurement data. These filtered estimates of the measurement data are used as input to the 
Kaiman filter for aircraft dynamics (utilizing the attitude-translational model). Ultimately, when 
measurement data is not available (during the lead prediction interval), the algorithm will use 
regression estimates of measurement data as input to the extended Kaiman filter to estimate 
target dynamics. 

3.2     Radius of Curvature State Model 

A new tracking algorithm based on a radius of curvature estimator was developed in this work. 
This approach has a significant advantage over the existing attitude/translation tracker. Both 
vehicle position and attitude are used to estimate vehicle dynamics without requiring vehicle 
specific inertial data. A derivation of the new model is presented in this section in order to 
describe how it was implemented in this research. 

The total acceleration of an airplane is defined as the load acceleration plus gravity: 

a - aL + g 3.2 

The load acceleration can be defined as the tangential acceleration plus the normal acceleration: 

aL~ aT+ aN 3'3 

For any particle moving along a smooth curve in three dimensional space, the velocity and load 
acceleration vectors can be written as: 

v - — T 3.4 
dt 

3.5 

where s is an arc-length parameter for the curve and T , N and   K denote the unit tangent 
vector, unit normal vector and curvature, respectively. 

If the position vector at time t in the inertial coordinate system is given by: 

r - xi + yf + zJc 3*° 
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then 

ds        II dt II Hy Ty To 
It   "\~Jt\  ~VX     +y Z 
at at 

3.7 

and 

d2s       ix + yy + zz 

dt2 " { x2 + y2 + z2 
3.8 

Squaring both sides, the first time rate of change of s may be found as: 

•1 •2*'      -5 x   + y   + z 
(ds\2   .2 ^ .2e .2 

\dt. 
3.9 

Given the standard definition of K : 

D l|rxr|| 

\r\* 
3.10 

or 

_ J(yz~yQ2 + (xz-xz)2 + (xy-xyf 

[jx2 + f + z2f 
3.11 

the magnitude of the tangential acceleration can be expressed as: 

d2s _   xx + yy + zz 

dt2      sjx2 +f + z2 
3.12 
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and the magnitude of the normal acceleration can be expressed as: 

aN- K 

fds¥ . V(yz-yz)2 + (xz-xzf + (xy-xy? 3.13 
y   + z 

The components of the tangential acceleration in the inertial coordinate system can be obtained 
with the definition of the unit tangent vector: 

T - — 3.14 
II r | 

The components are given by: 

. x(xx + yy + zz) ^ 
•2 -2 '1 x   + yL + z 

a    _ y (xx + yy + zz) 
^v -2 -2 •"! y        xz + y   + z 

3.16 

a  - ^ (^ + yy + zz) 
^z -2 -2 -2 jr + yz + z 

3.17 

The components of the normal acceleration in the inertial frame can be obtained by decomposing 
the normal vector into the body axis reference frame and rotating the resultant frame into the 
inertial frame by use of the Euler angles: 

aN - (cosi|; cos8 sina - cosijr sinö cos(J> cosa 
3.18 

- sini|/ sinxf> cosa) aN 
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aN - (sini|j cos0 since - sinilr sinö cos(j) cosa 
"y 

+ cosi|r sin<f> cosa) aN 

3.19 

a^ - (-sinö sina - cos8 cos<J) cosa) aN 3.20 

Given these components, the definitions of the cartesian accelerations can be expressed as: 

x - [Cjsina + (c2 + c^)cosa][(yz - yz)2 + (xz - xz)2 

+ (# - m2]112 ix2+f+z2r112 3-21 

+ i(xx + yy + zz}[x2+y2+i2Yx 

y - [c4sina + (c5 + Cg)cosa][(yf - yz)2 + (if - xz)2 

+ (xy - xy)2]1/2 [i2^2^2]"1/2 3-22 

+ y(xx + yy + i£)\x2+y2+z2Tl 

z - [Cjsina + c8cosa][(y£ - yz)2 + (xz - xz)2 

+ (# - xy)2]1/2 [i2+;y2+z2r1/2 3'23 

+ z(xf + yy + zz)[i2+y2+z2]"1 + g 

where: 
c1 - costy cos6 
c2 - -costy sinö coso) 
c3 —sini|r sin(|) 
c4 - sini|j coso 
c5 - -sini|r sin0 coscj) 
c6 - cosijr sin<|) 
c7 —sin 6 
c„ —cos0 cos<J) 
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The observed Euler angles can be preconditioned with linear Kaiman filters making the 
terms cvc~ ... c8 constant between discrete time steps. Alternatively, the terms can be treated 
as states. The latter option greatly increases the complexity of the state transition jacobian. 

Using the first option, the following state transition variables can be defined as: 

dl   ~ C4(C2  +  C3)   "  Cl(C5  +  cö) 4'24 

d2 - c7(c2 + c3) - CjCg 4.25 

d3 - c7(c5 + c6) - c4cg 4.26 

The system dynamics can be described as: 

xi xx  + >Vj 4.27 
Ti 

X2 x2 + w2 4.28 
Ti 

*3 x. - -i + w, 4.29 
Ti 

x4 - [(dlXs + d2x£fx + x/2]/3 + xw + w4 4.30 

x5 - [(-<*,*, + ^/j + X$f2]f3 + JCU + w5 4.31 
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*6 - [(-4**4 + <W/i + V2]/3 
+ #+ *n + w6 4.32 

*7 - x4 3.33 

Jc8 - x5 3.34 

*9 - *6 3.35 

*io " xw^2 + wi 3.36 

*n " *n/T2 + w8 3.37 

*12 " X\2lX2 + W9 3.38 

where the functions fv f2 and f3 are defined as: 

J^fas**  " *2*6)2  +  (*4*3   " W  +  ^^^1^ 4*39 

A  " ¥l  + X5*2  + X6X3 3.40 

/3      ~2        2        I 3.41 
x4 + x5 + x6 
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^ ierkJLS modeled as a Markov process. The terms wv w2 ... w9 represent Gaussian noise 
added The state variables x10, xu and xn are process noise added to compensate for 
unmodeled lateral accelerations and gusts. (42) 

3.3      Implementation of the Continuous-Discrete Extended Kaiman Filter 

The target state is characterized by the following vector: 

x   - 

"IO 

"11 

"12 

x ACCELERATION 

y ACCELERATION 

z ACCELERATION 

x VELOCITY 

y VELOCITY 

z VELOCITY 

x POSITION 

y POSITION 

Z POSITION 

x PROCESS NOISE 

y PROCESS NOISE 

z PROCESS NOISE 

4.42 



25 

The measurements used in the filter consist of a vector of translation^ data in polar coordinates 
and their corresponding derivatives. These are coupled with the aircraft body attitude in terms 
of Euler angles. The translational information is derived from radar observations. The attitude 
data is gyroscopically derived on board the aircraft and transmitted to the ground station. In an 
actual tracking engagement, these angles are assumed to be estimated by an electro-optical image 
sensing technique. The translation and orientation measurement data are summarized as the 
following measurement vector: 

z(k) 

*<B ROLL 

eot) PITCH 

Y(fc) YAW 

R(k) RANGE 

r\(k) AZIMUTH 

m ELEVATION 

R(k) RANGE RATE 

Xi(k) AZIMUTH RATE 

Uk)   . ELEVATION RATE 

4.43 

All of the measurements are used in measurement equations for the extended Kaiman filter. Each 
measurement has an additive noise term to account for measurement uncertainty. The 
measurement noise terms are assumed to be Gaussian, white, and statistically independent from 
the other measurement noises, any process noise and the initial state of the aircraft trajectory. 

The Extended Kaiman filter implementation assumes a continuous, non-linear state model as 
shown in Equation 3.44: 

£ - a(x,t) + G(t)w(t) 3.44 

where a is the state transition function, w is the process noise vector and G is a process 
noise transformation matrix. 

The corresponding discrete, non-linear measurement model is assumed as shown in Equation 
3.45: 
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zk - h[x(L),k] + \k 3.45 

where h is the measurement function, v is the measurement noise vector and is the discrete 
time. 

The state vector, process noise and measurement noise are assumed to have the following 
statistics: x(0) - (x0,P0), w(f) ~(0,ß) and vt~(0,U) . Furthermore, it is assumed 
that w(0 and vk are white noise processes uncorrelated with x(0) and with each other [43, 
63]. 

The time derivative of the state vector must be obtained in order to implement the Kaiman filter 
estimator. Equations 3.46 - 3.57 detail the time derivatives in terms of the other state variables: 

*i- — 4.46 
Ti 

x, - -2- 3.47 

x, 
x, - — 3.48 

x4 - [{dxxs + d2x^fx + vy/3 + x10 3.49 

x5 - [(-^x4 + dzx^fx + vy/3 + xu 3.50 

*6  -  [(~d2X4  +  rf3*5>/l   + Vy/3   
+ #+ *12 3-51 
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Xj - xA 3.52 

Xa   mm  X* J.JJ 

Xn      Ä     Xr <3«3iT 

*io " *10'X2 3.55 

*n ™ ^ii' ^2 3,56 

A»A   ™     \ilo J»3 / 

where «^ , rf2 and ^ are the state transition variables defined by Equations 3.24 to 3.26 and 
functions /j, ^ and)J were described by Equations 3.39 to 3.41. The 
variable® Tj and x2 represent the process time constants assumed the same in all three 
coordinate directions, in this work, each time constant was tuned to -4.0. 

Although there may be some concerns about the potential for a real-time implementation of this 
model with the currently available computer resources, trends in increased computer 
performance suggest that this will not be a problem in the near future. 

3.4      Regression-Based Estimation and Prediction of Measurement Data 

This section describes the research done in the use of regression models of trajectory 
measurement data for improving the performance of aircraft trajectory tracking and prediction 
algorithms. Regression models were used to adaptively precondition or remove measurement 
noise from trajectory observations. Regression models were also considered for extrapolating 
trajectory measurements when a prediction of aircraft position is required. The regression 
modelling approach was adopted as a means of better estimating the underlying dynamics of the 
aircraft as observed through position and attitude measurements. 

Significant accuracy improvements in prediction were achieved using regression techniques to 
pre-condition trajectory measurement data. This study used a new technique for enhancing the 
effectiveness of tracking and prediction filters. Independent linear Kaiman filters for each 
measured parameter associated with the trajectory were used to precondition the observations 
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prior to use in the tracking and prediction filter. Independent parameters such as range, azimuth 
and elevation as well as roll, pitch and yaw are preconditioned in order to improve the resultant 
state estimates. The basic concept involves the creation of a regression model (specifically, an 
nth order power series in time) of the parameter signature over a brief interval. The resulting 
regression model is differentiated n times. The resulting differential equation is converted into 
a state model and used to implement a linear Kaiman filter for that measurement [31 - 35]. A 
derivation of the method for converting a power series into a state model is provided in 
Appendix C. 

The regression model is updated for each time step in the discrete measurement process. 
Statistics for the process noise are extracted from the model derived at each time step. 
Measurement noise statistics are found by conventional techniques. This approach makes the 
usual assumptions regarding the statistics of the states and disturbances. It should be noted that 
the state of the measurement that results from this modeling is not identical to the vector 
consisting of the measurement and its relevant time derivatives. However, a linear 
transformation can be performed to convert this state into the units of the measurement. This 
transformation is also extracted from the regression model [31, 32, 33]. 

This method is intended to remove noise disturbances from a measurement that has significant 
dynamics. It has been shown to be effective in improving the quality of measurement signatures 
in a variety of manufacturing processes [34, 35]. The method uses an assumption that a time- 
varying measurement has dynamics that are describable and applicable to a linear Kaiman filter. 
These dynamics may not be understood from first principles; however, they may be described 
in a terms of a regression model. The regression model derives useful information from the 
measurement process and helps in estimating the actual measurement. 

This approach is not simply a low-pass filtering of the measurement. The regression model for 
the measurement is selected based on the statistical significance of the terms in the power series. 
If the measurement process has high-order dynamics, corresponding terms in the regression 
model will be significant in describing the time signatures (as evaluated by standard t-tests and 
F-tests). In practice, short intervals of aircraft trajectory measurements such as range can be 
effectively modeled by a third-order power series. This is reasonable since the measurement is 
likely to be describable in terms of velocity, acceleration and jerk. 

Figures 3.3 to 3.11 show actual F-14A trajectory measurements over a nine second interval. The 
actual measurements, noisy measurements and preconditioned estimates are shown. The noisy 
and preconditioned measurements were both used in the extended Kaiman filter estimator for 
trajectory tracking. These figures illustrate the ability of linear Kaiman filters, derived from 
regression models of noisy data, to effectively estimate the underlying measurements of the 
aircraft trajectory with significant disturbances. 

The adaptively created regression models were also used in the trajectory prediction process. 
Previous investigations used Runge-Kutta integration of the last tracked state in order to predict 
future states through the time update cycle in the extended Kaiman filter. The regression models 
derived for preconditioning allow prediction to be performed in a novel way. The last estimated 
regression model of the measurement is used to extrapolate the measurement throughout the 
prediction interval. The extrapolated data in the prediction interval is shown at the end of each 
trajectory measurement shown in Figures 3.3 to 3.11. In the process of testing the various 
tracking techniques, extrapolations were made every second. The extrapolations shown are for 
illustrative purposes. These extrapolations or artificial measurements are used to continue the 
operation of the extended Kaiman filter during the prediction interval.  The state and 
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measurement update cycles of the extended Kaiman filter are executed in the identical fashion 
as they were during the tracking interval. 

FUA - ID7 - PATH No. 2 
MEASUREMENT: Roll 

Figure 3.3 Trajectory Measurement Data: Roll 
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FUA - ID7 - PATH No. 2 
MEASUREMENT: Pitch 

Figure 3.4 Trajectory Measurement Data: Pitch 
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Figure 3.5 Trajectory Measurement Data: Yaw 
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FUA - ID7 - PATH No. 2 
MEASUREMENT: Range 
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Figure 3.6 Trajectory Measurement Data: Range 
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F14A - ID7 - PATH No. 2 
MEASUREMENT: Azimuth 

Figure 3.7 Trajectory Measurement Data: Azimuth 
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F14A - ID7 - PATH No. 2 
MEASUREMENT: Elevation 

Figure 3.8 Trajectory Measurement Data: Elevation 
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Figure 3.9 Trajectory Measurement Data: Range Rate 
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FUA - ID7 - PATH No. 2 
MEASUREMENT: Azimuth Rate 

-0.005 

Figure 3.10 Trajectory Measurement Data: Azimuth Rate 
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FUA - ID7 - PATH No. 2 
MEASUREMENT: Elevation Rate 
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Figure 3.11 Trajectory Measurement Data: Elevation Rate 

To conclude this section it can be said that preconditioning measurement data using adaptive 
regression modelling techniques have shown to offer a substantial improvement in tracking and 
prediction performance. This approach requires no additional hardware in a real tracking 
environment and imposed limited computational overhead, yet is offers a significant enhancement 
in tracking and prediction performance. 

Artificial measurements extrapolated from regression models of the measurement data offer a 
means of improving prediction accuracy over numerical integration of the state equations. This 
result suggests that regression modelling can capture the underlying dynamics of the 
measurements and infuse that additional information into the filter to improve predictive 
performance. 
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4.        The Use of Aircraft Parameters for Identify Friend or Foe (IFF) Applications 

4.1      Criterion of Classification 

The problem of classification is to find a way of assigning a new object on the basis of a set of 
measurements to one of a number of possible groups [55]. Inherent in this statement of the 
problem is the idea of a classification rule, that is a well defined procedure that can be 
described and applied without the need for any additional subjective judgements. 

Obviously, it is possible to think up any number of procedures for classifying an object into one 
of a number of groups, ranging from random allocation to an arbitrary rule using any of the 
measurements. The problem is to select one of the set of possible classification rules based on 
its performance. In other words we would like to use the classification that was in some sense 
best. Even though there are a great many criteria which can be used to select a best 
classification rule the overwhelming majority of applications make use of the obvious criterion 
of minimum error and as a result this will be used as the standard criterion. To be precise, the 
classification rule that we seek is optimum in the sense that minimizes the total error of 
classification. 

As conditional probabilities can be used to summarize any information that we have about an 
event, it should come as no surprise that they are central to the classification of an object based 
on any measurements that we have made. For example, suppose that there are two classes of 
aircraft in the air (Friend and Foe) and we need a way of knowing if an aircraft belongs to the 
Friend or Foe class. Obviously, if the Friend class makes up 90% of all the aircraft in the air 
then the probability of any given aircraft coming from the Friend class is 0.9. That is: 

P(Friend) - 0.9 4#1 

and if Friend and Foe exhaustively describe the possible outcomes: 

4.2 
P(Foe) - 0.1 

In the absence of any other information it seems reasonable to assign an aircraft of unknown 
class to Friend class, after all, more aircraft come from Friend class. 

Now suppose, on the basis of a number of measurements (aerodynamic coefficients, wing span, 
wing area, etc.), it is possible to obtain the conditional probabilities on the set of measurements 
( X ) and for a particular set they are: 

® P(Friend \ X) - 0.2 4.3 

P(Foe I X) « 0.8 
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It seems reasonable to assume that on the basis of the set of measurements ( X ) the aircraft 
found came from class Foe. This classification rule assign the object to the group with the 
highest conditional probability. The approach is known as Bayes' rule and it is not difficult 
to prove that is the rule which minimizes the total error of classification [30, 42]. It is the 
optimal rule that we seek. 

Put more formally, Bayes' rule will assign the object to group i  where: 

P{Gi | X) >  P(Gj \X)      V     j <> i 3"4 

If by any chance there are more than one group with the largest conditional probability then the 
tie can be broken by allocating the object at random to one of the tied groups. Bayes' rule is 
telling us is that all of the information that we have about possible group membership is 
contained in the set of conditional probabilities. 

4.2      Feature Selection 

The study of aircraft remote identification has received considerable attention as described in 
previously. An extensive study of classification problems has resulted in a variety of abstract 
mathematical models that provide the theoretical basis for the design of classifiers [30]. 

One of the preoccupations of multivariate statistics in general is the reduction of the number of 
variables that have to be considered to reach a conclusion about the data being studied. In 
general, the fewer variables involved in a problem, the more likely we are to understand it and 
the more likely is it that any solution will be practical. This is certainly true of classification 
where methods of reducing the number of variables involved in a classification rule, without 
severely affecting the rule's performance, are known collectively as feature selection [55]. The 
use of the word feature originated in pattern recognition where a feature is some identifiable 
part which serves to distinguish between groups. However, its use does not seem inappropriate 
when taken to mean any variable or combination of variables important for classification. 

Suppose some aircraft (event) is to be assigned to one of several aircraft types (classes). A 
sensor system (radar and imagery devices) is used to collect the event's information to be used 
in the process of classification. The output of the measurement system is directed into a feature 
extractor, whose purpose is to reduce the available data by generating certain features or 
properties that distinguish the classes of events that may occur. 
Classification can not always be reliably performed on events using only one feature. If more 
than one feature is extracted from a measurement, the data is expressed in a feature vector 
where each feature becomes a dimension in a feature space. If a feature extractor can 
derive n features from a measurement, the point in the feature space, C , is given as: 

The classification process attempts to partition the space into regions where all of the points 
corresponding to a specific class can be isolated. A set of training samples with known classes 
is used to develop the appropriate partition or to train the system. 
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5.5 

'n-\ 

4.3      Aircraft Feature Parameter Based on Lift Coefficient, Characteristic Area and Mass 

The purpose of this section is to obtain a characteristic feature to be used in target recognition 
based on the dynamics, geometry and aerodynamics of the aircraft. This novel technique uses 
aircraft's velocity and acceleration estimates obtained by the tracking filter discussed earlier to 
define the aircraft parameter: 

CLS 
4.6 

m 

where CL is the lift coefficient, S is the characteristic area and m is the mass of the target. 

The idea behind the calculation of this parameter is to represent a characteristic for each aircraft 
type that involves the dynamics (mass), geometry (characteristic area) and aerodynamic behavior 
(lift coefficient) that all aircraft of the same class have in common. In order to do that, an 
equation involving these quantities and remotely measurable observations of the aircraft needs 
to be developed. However, before that equation is evolved, the load and normal accelerations 
need to be defined. 

Load acceleration, aL , is defined as total acceleration, a , minus gravity, g 

aL- a- g 4.7 

Assuming a coordinated flight (no lateral component of velocity), the normal load acceleration 
can be formed by removing from the load acceleration any component of load acceleration along 
the velocity vector,  v '• 

*NL   -   *I.  ~   (" 

V.a, 
-) v 4.8 
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or 

XNL - X - 
x [xx + yy + • /  a* 

z(z - e)] 
• 2          «2 x* + yz 

+ z2 

y^L - y - 
y [xx + yy + z(z - 8)} 

• 2          '2 or + )r + z2 

Z
NL z - 8 

z [xx + yy + z(z -g)] 

x2 + yz + z: # 

4.9 

where the velocity and acceleration components are expressed in the inertial coordinate system. 

The magnitude of the lift force is equal to the product of the dynamic 
pressure, I p (r2 + y1 + i2) , the lift coefficient, r , and the characteristic area of the 
aircraft, s2: 

L-±9& + ?+'*)CLS 
4'10 

Using Newton's Second Law the lift force can be expressed as mass times normal load 
acceleration: 

maNL - 2p(? + ? + ^C
L
S 

Equation 4.11 can be rewritten in order to find a characteristic parameter of the aircraft: 

p   _ cLs 
m 

2 iXNL +y*L  + Zm. 
rL 

p (x2 + y
2 + z2) 

4.12 

Parameter PL is an aircraft class characteristic based on the dynamics, geometry and 
aerodynamics of the aircraft belonging to the group. The parameter is defined as a function of 
aircraft velocity and acceleration. However, this parameter not only describes the dynamics of 
the aircraft class, but also the geometry and aerodynamic behavior of the group, providing an 
abundance of information about the class. 
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Training data recorded from F-14A flights at Cherry Point Marine Corps Air Station (MCAS) 
using the Tactical Aircrew Combat Training System (TACTS) [69 - 71] was used to verify the 
accuracy of estimate of Equation 4.12. The flight paths used included: 2g dive, 2g climb, 5g 
right uncoordinated turns, 5g left uncoordinated turns and 5g S-turns for different F-14A aircraft 
loaded under conditions similar to air combat. 

The recorded data was fed into the Extended Kaiman Filter developed in previously. Velocity 
and acceleration estimates provided by the filter were used to calculate the characteristic 
parameter of the aircraft defined by Equation 4.12. 

Due to empirical evidence that the lift coefficient is a quadratic function of the aircraft angle of 
attack (Figure 4.1 [16]), a second order model of the form: 

PL - a0 + ata + a2 a
2 4.13 

was built by regression techniques [66]. 

The model expressing the relationship between angle of attack and the characteristic 
parameter, PL , was compared with the parameter calculated with empirical values of lift 
coefficient (at different angles of attack), mass, and surface area provided by the Naval Air 
Systems Command (NAVAIR, [28, 29]). Figure 4.2 shows that the model estimated by the 
procedure developed in this section is enclosed on the envelope of experimental data, verifying 
the robustness of the technique as a potential source of features needed in a pattern recognition 
scheme. 

4.4      Aircraft Feature Parameter Based on Drag Coefficient, Characteristic Area and 
Mass 

In the previous section an aircraft characteristic parameter estimated by remote measurements 
was developed. This section defines another characteristic parameter to be used in target 
recognition based on the dynamics, geometry and aerodynamics of the aircraft. Remote estimates 
of velocity and acceleration are used to obtain the characteristic parameter: 

PD - E*l 4.14 
m 

where CD is the drag coefficient, S is the characteristic area and m is the mass of the target. 

The equations of motion for the aircraft can be derived from Newton's Second Law, which states 
that the summation of all external forces acting on a body must be equal to the time rate of 
change of its linear momentum: 

Let Fp represent the vector sum of the aerodynamic and propulsion forces, with the 
subscript B indicating that they are expressed in the body frame. The body-frame gravitational 
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Figure 4.2 Empirical and Estimated F-14A Aircraft Parameter 

attraction is Ra mg    where m is the aircraft mass and Ra is the transformation matrix that 
rotates the g vector from the inertial into the body frame. ^rormauon matrix that 

Let V. be the absolute (measured with respect to the inertial space) velocity vector of the 

mSSftheS^' eXPreSSed ln th& b0dy frame- ™erefore' Newton's kX^V^nS 

F> + Ra,mg- -£-0»VJ 4.16 

^tteS^rr.1*tokBn with respect to **inertiai reference frame' ^this is imficated 



Equation 4.16 can be written as: 
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where: 

Fb 
+ RibMg - m 

*b 4.17 

*b X 

yb -** y 

.2*. 
z_ 

4.18 

and, 

g - 

0 

0 4.19 

Force Fh has components due to aerodynamic effects and engine thrust. These components will 
be denoted, respectively, by the subscripts A and T : 

FB  ~ F*A  + FiT 
4.20 



Equation 4.20 can be replaced in 4.17 to give: 
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FbA + FiT + RibmS - m yb 

4.21 

The aerodynamic forces on an aircraft are produced by the relative motion with respect to the 
air and depend on the orientation of the aircraft respect to the air stream. Only two orientation 
angles (with respect to the relative wind) are needed to specify the aerodynamic forces. The 
angles that are used are the angle of attack ( a ) and the sideslip angle ( ß ). 

Figure 4.3 Definition of Sideslip 
and Attack Angles [82] 

Figure 4.3 shows an aircraft with the relative wind on its side (sideslipping) and with the 
conventional right-handed set of body-fixed axes illustrated. The angles of attack and sideslip 
are defined by performing a plane rotation about the body y axis, followed by a plane rotation 
about the new z axis, such that the final x axis is aligned directly into the relative wind. The 
first rotation defines the stability axes. The angle of attack is the angle between the body- 
fixed x axis and the stability x axis. The second rotation leads to a set of wind axes, and the 
sideslip angle is the angle between the stability   x axis and the wind x axis. 
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Matrix R^ represents the complete rotation from body to wind axes: 

cosa cosß   sinß    sina cosß 

Rbw " -cosa sinß cosß   -sina sinß 

-sina       0 cosa 

4.22 

In the right handed wind axes, we use L (lift) and D (drag) for the z and x aerodynamic 
force components, and define a component Y for the aerodynamic sideforce measured along 
the positive y axis. 

The body axes equations can be expressed as equations of motion in the wind axis. The wind 
axes are the natural axes for the aerodynamic forces. Conversion of the body axes equations to 
wind axes equations, can be performed by transformation of the vector equations using the body 
to wind axes rotation matrix ( /?    ). 

UW 

RbwFbA + RbwFbT + mRbwRib8 ~ mRbw 

*b 

yb 

4.23 

Assuming the engine thrust vector to be parallel to the body x   axis, the body axes thrust force 
component will be denoted by j : 

bT 

T 

0 

0 

4.24 

Defining: 

RbwRu>8 

8X 

8 4.25 
yw 

g. zw 



and, 
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RbwRib 

4.26 

Equation 4.23 can be written as the set of equations: 

-D + rcosacosß + mgw - mxw 
4.27 

Y - Tcosa sinß + mg    - myw 
4.28 

-L - Tsina + mg    - m'z zw ~w 
4.29 

Solving Equation 4.29 for variable T : 

r- ~mK- L + mg. ZW> 

sina 
4.30 

Replacing Equation 4.30 in Equation 4.27 and solving for D , we obtain: 

— - -x   + P    - ^^ß  _  £cosß       g^cosß 
m tana mtana tana 

5.31 
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The magnitude of the lift vector can be expressed as a function of the normal load acceleration: 

L - maNL 4.32 

Replacing Equation 4.32 in Equation 4.31: 

&        - cosß , „ 4« 

The drag force can be defined in terms of the dimensionless aerodynamic drag coefficient C 
D 

D- ip(i2 + y
2 + z2)SCD 

4*34 

Equation 4.34 can be arranged as follows: 

P   - 5»5 _ D 2 4.35 
m        m (xz + y2 + z2) 

replacing the drag acceleration ( — ) in Equation 4.35 by Equation 4.33, we obtain an aircraft 
characteristic parameter: m 

p               2 r cosß , ..  ., 
p (jr + yz + z) tana w 

4.36 

The velocity and acceleration estimates from the flight data used to calculate the parameter 
characteristic^based on the lift coefficient were used to calculate the new aircraft characteristic 
parameter defined by Equation 4.36, and equation relating the correlation that the air density has 
with air temperature and altitude was used instead of p  [82]. 

The estimated parameter was used to build a second order model of the form: 

P
D - bo + bia + b2al 4-37 
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Statistical tests conducted on the model developed by regression analysis confirmed the 
correlation between angle of attack and drag coefficient. Reports from wing runnel test results 
have shown that the drag coefficient increases in an approximately quadratic fashion as the angle 
of attack is increased (see Figure 4.1). 

In order to check the validity of the models developed in this and the previous section, a graph 
of the aircraft characteristic parameters ( PL versus PD ) was plotted. Figure 4.4 shows with 
filled square symbols the parameters calculated with reported values of drag and lift coefficients, 
mass, and surface area provided by the Naval Air Systems Command (NAVAIR, [28, 29]). The 
plus symbols represent the parameters based on remote measurements. The correlation between 
the modeling technique and empirical data, validates the method as a potential source for features 
needed in target identification. 
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As can be seen from Figure 4.3 there is only a limited range of values for 
the Pr and PD estimated parameters. The reason for that is given by the flight paths and 
aircraft load configurations used to estimate the parameters. These flight paths correspond to 
typical air combat situations with the F-14A fully loaded with weapons. During these maneuvers, 
the pilot tends to flight at subsonic speeds (most air engagements take effect at MACH numbers 
m the 0.4 to 0.8 range) because the high load carried by the aircraft [28, 29]. Maneuvering the 
F-14A under these conditions results in a finite group of values for the angle of attack (range 
between 2 to 8 degrees, see Figure 4.1) that, in fact, cause a narrow range of 
estimated PL and PD   parameters. 

4.5     Fusion of Aircraft Feature Parameters into a Two Dimensional Feature Space 

Two aircraft characteristic parameters based on remote estimates of aircraft velocity, acceleration 
and orientation were previously defined. The problem with these parameters is that each one is 
dependent on the aircraft angle of attack. In other words, each characteristic ( PL or PD ) is 
a continuous function of the independent variable a and, consequently, on the dynamics of the 
flight path. A feature extractor model, whose purpose is to reduce the dynamics dependent 
aircraft characteristic information into a dynamics independent properties vector needs to be 
developed. This section describes the fusion of the available aircraft parameter data into a two 
dimensional feature vector, where each feature will become an aircraft characteristic parameter 
independent of the flight dynamics. 

Airfoil aerodynamic studies [16] have shown that a linear correlation exists between the drag 
coefficient versus the square of the lift coefficient. This relationship can be expressed by the 
empirical relationship: 

c2? 
Cn-Cn  + -^f. 5.38 

Tt be 
'D        -D0 

where CD is the minimum parasite or profile drag and consists of friction and pressure 
drag, b i§ the wine span, and e is the span efficiency factor. Multiplying each side of 
Equation 4.38 by _   we obtain: 

m 
cDs     cDos      cL

2S> 
m m nb2em 

5.39 

or 

PD - -A_ +     m    p* 5.40 
*» izb2e 
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By comparison of Equation 4.40 with the equation of a line: 

y - C0 + Cx x 4.41 

it can be concluded by observation that: 

PD represents the dependent variable ( y ), 

(CD S) I m is the independent term co , 

m / (nb2e) corresponds to the slope Cx and 

Pjr2 represents the independent variable ( x ) of Equation 4.41. 

@8jksequently, Equation 4.40 is the equation of a line, where the independent variable can be 
calculated from Equation 4.36 and the dependent variable from Equation 4.12. 

The independent term and slope on Equation 4.40 can be obtained by building a first order 
regression model with data provided by Equations 4.12 and 4.36. A short duration data set of 
an aircraft trajectory velocity measurements can be input into the Extended Kaiman Filter 
developed previously. The velocity and acceleration estimates output from the filter can be used 
to calculate the dependent and independent variables in Equation 4.40. With the data set of 
dependent and independent variables available, a straight-line regression model can be fit into 
the data to obtain the coefficients C0 and Cx (independent term and slope). 

The independent term C0 and slope Cx are characteristic features of each aircraft. Most 
importantly, these characteristics are independent of flight dynamics. Consequently they 
constitute the components of the feature vector that can be used for IFF (Identify Friend or Foe) 
operations. Figure 4.5 shows the characteristic model (Equation 4.40) calculated by the method 
described in this section, using F-14A and AV-8B aircraft flight data provided by Cherry Point 
MCAS [69 - 71]. ' 

The graphical separation between the lines representing the feature characteristic equation for 
the F-14A and AV-8B aircraft is evident. The differences not only in slope ( C, ) but also in 
the independent term ( C0 ) for these aircraft shows the potential use of the method for 
extracting a feature vector. To conclude this section, it can be said that the feature characteristic 
equation provides the information ( C0 and Cx ) necessary to build the feature vector to be 
used in the aircraft identification problem. 
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F-14A AND AV-8B AIRCRAFT 
FEATURE CHARACTERISTIC EQUATION 

U.IO 
^ 

0.07- 
0.1 0.2 0.3 

(P_L)~2 
0.4 0.5 0.6 

■F-UA AV-8B 

Figure 4.5 Aircraft Feature Characteristic Equation 
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5.        System Operation 

5.1      System Training for Friend or Foe Aircraft Classification 

A schematic diagram of the information flow in the system training technique is shown in the 
Figure 5.1. In this representation, the lines connecting the boxes represent piecewise sensor 
signatures (3 seconds of data) corresponding to the execution of one cycle of the procedure. The 
training technique must be implemented for each aircraft type to be identified in order to find 
the discriminant score to be evaluated during the aircraft classification. 

RADAR / IMAGING  MEASUREMENTS 

EXTENDED  KALMAN  FILTER 

VELOCITY AND  ACCELERATION   ESTIMATES 

AIRCRAFT CHARACTERICTIC  PARAMETERS 

PL AND   PD 

AIRCRAFT FEATURE VECTOR 

c = [c0 c,]T 

YES 

DISCRIMINANT  FUNCTION 

GROUP A PRIORI  PROBABILITY 

DISCRIMINANT SCORE FUNCTION 

Figure 5.1 Training Mode 

Training data recorded from F-14A, AV-8B and A-6 aircraft flights at the Cherry Point Marine 
Corps Air Station (MCAS) [69 - 71] were used as sensor measurements. The data was collected 



55 

as a normal part of the training mission using the Tactical Aircrew Combat Training System 
(TACTS). A full set of position, and rate information was collected from training aircraft via 
radar and a telemetry unit mounted on the training aircraft. A gyroscope recorded the orientation 
angles (attitude data) during the maneuvers. A transponder transmitted the information to the 
ground tracker, establishing a form of air-ground data link. 

The flight paths used included: 2g dive, 2g climb, 5g right uncoordinated turn, 5g left 
uncoordinated turn and 5g S-turn for different aircraft types loaded under conditions similar to 
air combat. Three second long data segments recorded by the radar and gyroscopic sensor 
devices are directed into the Extended Kaiman Filter developed previously. Velocity and 
acceleration estimates calculated by the filter are used to estimate the aircraft characteristic 
parameters defined by Equations 4.12 and 4.36. The lift and drag characteristic parameters are 
combined by the fusion algorithm developed earlier to obtain the two dimensional aircraft feature 
vector. 

Once the aircraft feature vector has been estimated, the procedure starts all over again. The 
technique is repeated until the sample of aircraft feature vectors show normal distribution. A 
Chi-Square statistics test [66] is performed each time a new feature vector is estimated, to test 
if the feature vector sample has a normal behavior. The Chi-Square test for goodness of fit 
determines to which extent a group of feature vectors can be reasonably assumed to have a 
normal distribution within some desired confidence interval. 

The chi-square variate with n degrees of freedom X2 is defined as [85]: 

X2-(C- ii)**-1«:- |i) 5.1 

This equation represents an hyperellipse defining the confidence region for the case of a bivariate 
normal distribution. The loci of points of constant density are hyperellipses for which the chi- 
square is constant. 

If Ä„(X2) is defined as the region bounded by the hyperellipse, then the probability, p , that 
a random feature vector lies within this ellipse is written as: 

p-P(C€ Rn(x
2)) 5.2 

This probability, is equal to the probability that a chi-square variate with n degrees of freedom 
does not exceed the value selected for x • A standard table of percentage points of the chi- 
square distribution can be used to find the desired value for a 100(1- a ) % confidence region. 

When the system passes the normality test, there are enough aircraft feature vector statistics to 
estimate the mean vector and the covariance matrix for the characteristics of the aircraft. Using 
the estimated mean vector and covariance matrix the discriminant function can be defined. 
Airfield tactical analysts can provide the a priori group type probability (or in the worst case the 
same a priori probability can be assigned to each group), that combined with the discriminant 
function constitutes the discriminant score function to be used for aircraft identification during 
the normal identification mode. 
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5.2      Normal Operation for Friend or Foe Aircraft Classification 

Once the training procedure is complete, the quadratic discriminant score functions can be used 
to discriminate between friend or foe aircraft and classify previously trained aircraft types. The 
Normal Identification Mode operation runs in real time while the Extended Kaiman Filter is 
tracking the target aircraft. A schematic of the Normal Identification Mode operation for friend 
or foe aircraft classification is shown in Figure 5.2. 

RADAR / IMAGING  MEASUREMENTS 

EXTENDED KAIMAN  FILTER 

VELOCITY AND ACCELERATION ESTIMATES 

AIRCRAFT CHARACTERICTIC  PARAMETERS 

P,   AND    P„ 

AIRCRAFT FEATURE VECTOR 

C = [C0 C,]T 

FRIEND   DISCRIMINANT  SCORE  FUNCTION 

YES 

NO 

EVALUATE VARIOUS AIRCRAFT 

DISCRIMINANT  SCORE   FUNCTIONS 

FRIEND AIRCRAFT 

IDENTIFICATION  COMPLETED 

Figure 5.2 Normal Identification Mode 
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6.        Sample Application of the Trajectory Tracking/Prediction and Friend or Foe Aircraft 
Classification 

This research was conducted using existing equipment at the University of Detroit Mercy. 
Personal computers were used to test the tracking algorithms against aircraft trajectory data. The 
software was developed in the Pascal and C languages. 

Sources for trajectory data necessary to evaluate the performance of tracking algorithms were 
established at Cherry Point Marine Corps Air Station (MCAS). The MCAS is a training range 
for Marine Corps and Navy aircraft. A contract organization, Loral Aerospace, is responsible 
for operation of the Tactical Aircrew Combat Training System (TACTS) which is similar to the 
Air Force's Air Combat Maneuvering Instrumentation (ACMI). This system is designed to 
provide mission data for trainers to evaluate pilot performance. A full set of position, attitude 
and rate information is collected from training aircraft via radar and a telemetry unit mounted 
on the training aircraft. Figure 6.1 shows an example of TACTS data output from a hardcopy 
source for a specific mission profile involving two aircraft. 

CND102130016 
TACTICAL 

MODE; REPLAY      2 /ia/91 

A/C NO 1 2 

TAIL NO 106 101 

G 1  0 9 

MACH .81 78 

AOA 7 6 

D/CA 0 0 

RC 3 0 

P 0 0 

R L  5 0 

H 42 0 

CRAB 0 0 

ASS -4 -3 

X 38427 999999 

Y -6374 999999 

Z 7744 488 

vx 6Sfe 0 

VY 701 0 

VZ J. 0 

Figure 6.1 Typical TACTS Data [69 - 71] 
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Contacts made at Loral Aerospace and Cherry Point MCAS have provided a convenient means 
of obtaining combat maneuver trajectories. Through permission obtained from the range 
manager, an engineer from Loral prepared a data reduction program that can transfer position 
and orientation data to IBM compatible floppy diskettes [69 - 71]. The diskettes are sent through 
the regular mail. Figure 6.2 shows an example of a F-14A trajectory from a TACTS file plotted 
in a three dimensional plotting package developed at the University of Detroit Mercy. 

Figure 6.2 F-14A Trajectory Recorded Using TACTS 

This excellent working relationship with Loral Aerospace and Cherry Point MCAS provided a 
virtually limitless source of data for evaluation of algorithms and testing performance under 
various conditions. 

The evaluation of tracking algorithm performance and pattern classification techniques required 
access to certain dynamic characteristics of the aircraft used in the trajectory. Sources of data 
for aircraft parameters (mass properties, stability and control derivatives, etc.) were identified 
in the Naval Air Systems (NAVAIR) Command Headquarters. Representatives from the F-14A 
Program Office have been helpful in providing the necessary data for the specific aircraft used 
in the training missions flown at Cherry Point MCAS [28, 29]. 

Ultimately, this large database of realistic trajectory data coupled with appropriate aircraft 
parameters offered a complete simulation environment for the testing and evaluation of the 
trackers under this research work. 
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6.2      Comparative Studies of Filter Performance 

^Xf!$le ™* us,^ '° P^0™ a c0111!»»0^ study between the performance of the 
Attitude/Translation (AT) Filter (developed by Purdue University and tLS. Army Picatinnv 
Arsenal) and the Radius of Curvature (RC) Filter with preconditioned measurement data 
developed under this research. The AT Filter was tested using both noisy and preconditioned 
measurement data. The variance of the measurement noises are given in Table 6 1 Two 
different approaches to predicting the trajectory of the aircraft were used in the AT Filter- (1) 
the standard Runge-Kutta integration of the state equations and (2) continued operation of the 
extended Kaiman filter using artificial measurements extrapolated from regression models of the 
various measurements. fe 

MEASUREMENT 

A. 
e 

jt 

R 

VARIANCE 

0.00076 rad 

0.00076 rad 

0.00076 rad 

2500 ft 

0.000004 rad 

0.000004 rad 

2500 ft/s 

0.000016 rad/s 

0.000016 rad/s 

Table 6.1 Measurement Noise 

All tests were conducted using actual aircraft data collected from the TACTs training system at 
Cherry Point MCAS. A long duration F-14A trajectory was used to compare the performance 
in a high dynamic maneuver. The particular trajectory used for this work is illustrated in terms 
of aircraft position and attitude in Figure 6.3. A vertical line is projected onto a flat earth (or 
plane tangent to the earth at the radar station) approximately every second. The triangular 
symbol gives an indication of aircraft attitude only and is not to scale. 

A plan view of the trajectory is given in Figure 6.4. It should be noted that some of the radar 
measurements were at ranges up to 6-7 miles. 

A portion of the trajectory shown in Figures 6.3 and 6.4 was selected to test the comparative 
performance of the filters. A 3.5 g turn to the left while diving was the selected maneuver The 
turn had accelerations ranging from 0.5 to 3.5 g and velocities close to Mach 0.7. The maximum 
bank angle was close to 90 degrees. The total duration of the selected trajectory was 45 seconds 
A plan view of the trajectory is illustrated in Figure 6.5 
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Figure 6.3 Complete F-14A Trajectory on TACTS Training Range (Cherry Point MCAS) 
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Figure 6.4 Plan View of Complete F-14A Trajectory 

A plot of the aircraft altitude as a function of time and the relative acceleration throughout the 
maneuver are shown in Figures 6.6 and 6.7 respectively. Clearly, this is a demanding test for 
a prediction algorithm due to the high accelerations witnessed by the aircraft. 

All comparisons were based on a continuous one second forward prediction of aircraft trajectory. 
It should be noted that the error measurements are not necessarily a ground truth or absolute 
indication of tracking or prediction accuracy. The measurements are made at a distance of 
several miles. Furthermore, the measurements are made on a real aircraft with a radar cross 
section that varies with attitude. Both of these factors limit the ultimate accuracy of the actual 
measurements from the TACTS data. It is suspected that some type of smoothing is performed 
on the data when it is recorded on the TACTs debriefing system. The contacts at Loral 
Aerospace who provided the data did not know any details on the smoothing algorithms or where 
not at liberty to discuss them. 

The results of the prediction performance are summarized in Table 6.2 in terms of Euclidean 
errors (square root of the sum of squares). A maximum Euclidean distance and the Euclidean 
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FHA - ID7 - PATH No. 2 
Data Source Cherry Point MCAS 

4000 

-8000 
25 30 35 

EAST DIRECTION 
(Thousands) 

40 45 

Figure 6.5 Plan View of F-14A Trajectory 

arithmetic average of the errors are given. It is recognized that other error metrics may be used. 
However, the Euclidean norm was selected as a convenient way of showing comparative 
performance. 
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Figure 6.6 Aircraft Altitude as a Function of Time 
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Figure 6.7 Aircraft Relative Acceleration 

EUCLIDEAN ERRORS 

MAXIMUM (Feet) AVERAGE (Feet) 
AT Filter/Runge 
Kutta Prediction 

226 127 

AT Filter/Artific. 
Measurements 

216 111 

RC Filter/Artific. 
Measurements 

216 110 

Regression Model/ 
Prediction Only 

306 110 

Table 6.2 Error Statistics 
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The comparisons shown a 14.4% improvement in average prediction error and a 5% 
improvement in maximum prediction error when regression based artificial measurements are 
used in place of the Runge-Kutta integration procedure in the attitude translation filter. 
Comparisons between the Radius of Curvature filter with artificial measurements and the AT 
filter with Runge-Kutta predictor show 15.5% improvement in average prediction error and 5% 
improvement in maximum prediction error. The results shown by the RC filter compare 
favorably with the AT approach, especially when considering the fact that no vehicle specific 
information is needed. 

Comparisons were also made between strictly regression-based predictions with no filter and the 
AT filter with Runge Kutta integration. A 35% improvement in maximum prediction error by 
the AT filter provides an independent confirmation of the value of the extended Kaiman filter 
in the prediction process. 

Figure 6.8 shows the Euclidean error for the predictor developed at Purdue University and U.S. 
Army Picatinny Arsenal (AT filter with a Runge-Kutta predictor). The maximum error roughly 
corresponds to location of the largest acceleration. Figure 6.9 shows the errors resulting from 
the same extended Kaiman filter algorithm using regression preconditioned data and predictions 
created by extrapolations of the regression models at the instant a prediction was required 
(artificial measurements). The statistics of the errors are summarized in Table 6.2. This 
illustrates the significant improvement in performance that is achieved by the use of the 
regression prediction method over Runge-Kutta techniques. 

Figure 6.10 shows the errors resulting from the Radius of Curvature filter using regression 
preconditioned data and artificial measurements. Figure 6.11 shows the errors resulting from a 
pure regression extrapolation of the range, azimuth and elevation data. The same preconditioning 
models used in the regression-based technique were used to simply extrapolate the range, 
elevation and azimuth forward in time. No Kaiman filters or attitude data were used. 

It should be noted that the ultimate performance of each approach cannot really be defined since 
the comparisons are being made with real radar data rather than theoretically exact simulation 
data. Therefore, there is no ground truth for comparison to the actual position of the aircraft. 
Instead, there is only comparisons to the best available radar data. 

The use of artificial measurements improved both the maximum and average prediction errors 
throughout the trajectory. The use of artificial measurements consistently showed decreased 
prediction errors over the use of Runge-Kutta integration. 

The Radius of Curvature filter is capable of predicting the vehicle dynamics using measurements 
of position and attitude without requiring vehicle specific data. 

Overall, the use of attitude information has been confirmed as a means for improving tracking 
and predictive performance. Regression modelling in both preconditioning measurement data and 
extrapolating artificial measurements has been demonstrated to be a powerful tool for improving 
the performance of advanced tracking and prediction techniques. 

6.3      Aircraft Classification using F-14A, A6 and AV-8B Aircraft Flight Data 

This example illustrates both the system training and aircraft classification techniques described 
in Chapters 4 and 5. The training technique must be implemented for each aircraft type to be 
identified in order to find the discriminant score to be evaluated during the aircraft classification. 



66 

350 

F14A - ID7 - PATH No. 2 
AT Filter/Runge Kutta Prediction 

90        95 
TIME (Seconds) 

110 

Figure 6.8 AT filter/Runge-Kutta Predictor 

Training data recorded from F-14A, AV-8B and A-6 aircraft flights at the Cherry Point MCAS 
were used as sensor measurements. The data was collected as a normal part of the training 
mission using the Tactical Aircrew Combat Training System (TACTS). The flight paths used 
included: 2g dive, 2g climb, 5g right uncoordinated turn, 5g left uncoordinated turn and 5g S- 
turn for different aircraft types loaded under conditions similar to air combat. A sample of the 
aircraft paths used is shown in Figures 6.12, 6.13 and 6.14. 
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Figure 6.9 AT filter/Artificial Measurements 

Data segments 3 seconds long, extracted from the aircraft paths, were used to estimate feature 
vectors according to the fusion algorithm developed in Section 4.5. Aircraft-type samples of 25 
feature vectors were randomly selected for each group. The samples were assumed to have 
normal behavior and were used to make inferences about each aircraft group. 

To describe each aircraft type, the samples were used to estimate the mean vector and the 
covariance matrix of the group. The following parameters were estimated for the F-14A, AV-8B 
and A6 aircraft: 

^F14A 

0.037602 

0.093769 
*-F14A 

6A5E-01 2.41£-05 

2.41E-05  0.025186 
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Figure 6.10 RC filter/Artificial Measurements 

PAVSB 

0.043419 

0.211856 '■AVSB 

3A2E-05  -0.00019 

-0.00019  0.003278 

*A* 

0.028716 

0.184153 
M<f 

6.56E-05 -0.00162 

-0.00162 0.040987 
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Figure 6.11 Regression Model Predictions Only 

The same a priori probability was assigned to each group ( P(G.) - 0.33 ), 
consequentiy 21n(P(Gl)) - -2.1972246 was used for all groups. The inverse covariance 
matrices and the natural log of the covariance matrix determinants were found to be: 

^\KFUA\ ~ -17.9719 K      -1 

*F14A 
1607948   -1541.25 

-1541.25  41.18138 

ln|£ AV8B -16.3703 K       -1 
ÄAV«B 

42179.56 2387.023 

2387.023 440.1782 
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Figure 6.12 Plan View of Complete F-14A Trajectory 

In If A6\ -16.58 Z*1 
650486.1 25709.74 

25709.74  1040.547 

From these estimates the discriminant score functions for each group were constructed: 

™F14A  -  k|*«4*|  +  (C "   *FUA)
T
**U- ' (C ~   HF14A) 

- 2hi(P(GF14A)) 
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Figure 6.13 Plan View of Complete AV-8B Trajectory 

DSAV8B - In^l + (C - »AV8B)T KAV8B-» (C - vM) 

~ 2hi(P(Gm)) 

™M - 1*1^1 + (C ~ »A6)T KA6- » (C - nA6) 

- 2MP(GA6)) 
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Figure 6.14 Plan View of Complete A6 Trajectory 

With the training procedure completed, 
classify between aircraft types. 

the quadratic discriminant score functions were used to 

Four feature vectors for each aircraft type, captured by the fusion algorithm, were used to test 
the discriminant score functions. Five minutes of flight data for each aircraft type were employed 
to randomly select four sets of data segments. Each data set was 3 seconds long, the flight data 
corresponded to different flight paths and aircraft configurations than the ones employed on the 
training procedure. Each 3 second long data set was used to estimate a feature vector. Table 6.3 
shows the aircraft type, the data record (there are four for each group totaling twelve records) 
and the components of the feature vector estimated for the data record. 



73 

AIRCRAFT TYPE DATA RECORD C0 c, 
A6 1 0.028729 0.227663 
A6 2 0.038626 0.408267 

A6 3 0.018792 0.407472 

A6 4 0.017308 0.524374 
F-14A 5 0.036466 0.054962 
F-14A 6 0.038153 -0.07827 
F-14A 7 0.038186 0.034614 
F-14A 8 0.040577 0.020881 
AV-8B 9 0.036131 0.219511 
AV-8B 10 0.05045 0.138224 
AV-8B 11 0.043677 0.277832 
AV-8B 12 0.03539 0.290866 

Table 6.3 Data Used For Classification 

The data shown in Table 6.3 was used to evaluate each aircraft discriminant score function. The 
scores calculated for each data record and group function are tabulated in Table 6.4. 
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DATA 
RECORD ™A* DSF14A DSAV8B BEST 

SCORE 
CONCLUSION 

1 -14.5809 113.0225 -8.26669 A6 CORRECT 
2 -14.58 -14.4469 29.52154 A6 CORRECT 
3 -14.5796 573.1877 3.056179 A6 CORRECT 
4 -11.0519 678.8287 16.4212 A6 CORRECT 

5 -11.6259 -15.9707 1.712074 F-14A CORRECT 
6 -14.3312 -15.9727 29.14434 F-14A CORRECT 
7 115.513 -15.9723 -13.7453 F-14A CORRECT 
8 3.093802 -2.85336 2.615438 F-14A CORRECT 

9 33.96719 -13.2713 -14.3705 AV-8B CORRECT 
10 241.555 245.7746 -14.3702 AV-8B CORRECT 
11 210.2169 39.31882 -14.3702 AV-8B CORRECT 

12 60.86462 -7.16061 -13.9319 AV-8B CORRECT 

Table 6.4 Scores Calculated For Aircraft Type 

The score calculated by DSA6 is smaller than for DSF14A and DSAV8B in the first four data 
records. Consequently, it could be said that data records 1, 2, 3 and 4 correspond to an A6 
aircraft. All records were correctly classified. 

Table 6.4 also shows that records 5, 6, 7 and 8 are classified as belonging to an aircraft F-14A 
class because the discriminant DSn4A scores the smaller value in the four cases. All records 
were correctly classified. 

Lastly, data records 9, 10, 11 and 12 are classified by the discriminant score technique as 
conforming to an AV-8B aircraft type. Again, in each case the classification was correct. 

This example illustrates the practical application of the complete system training and aircraft 
classification technique described in this work. In every case the classification tests using the 
aircraft parameter characteristic feature vector provided a reliable means of aircraft type 
discrimination. In terms of time performance, the mathematical simplicity of the discriminant 
score functions encourage their use in real time applications. The results obtained (considering 
that real flight data was used on the test) confirmed the potential use of the method as an aid in 
sensor fusion classification algorithms combining aircraft feature parameters information, shape 
descriptor information and spectral information collected by remote sensing techniques. 
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7.        Conclusions 

A new tracking algorithm based on a radius of curvature estimator was developed under this 
work. This approach has a significant advantage over the existing attitude/translation tracker. 
Both vehicle position and attitude are used to estimate vehicle dynamics without requiring vehicle 
specific data. Therefore, it enjoys the benefits of a better means of estimating acceleration while 
not requiring an extensive system description. 

Tests performed on the radius of curvature model have been encouraging. The F-14A data was 
used to test the new technique. The identical trajectory applied in the development of the 
regression-based attitude/translation model was used to test this approach. Results compare 
favorably with the attitude/translation approach, especially when considering the fact that no 
vehicle specific information is needed. 

Regression modelling of trajectory measurement data was examined as a means for improving 
the performance of aircraft trajectory tracking and prediction. Regression models were used for 
adaptively removing measurement noise from trajectory observations and extrapolating trajectory 
measurements. A comparative study was done between two models of aircraft dynamics used 
in an extended Kaiman filter: an attitude/translation model that uses vehicle specific inertial 
characteristics and an attitude/translation model based on the radius of curvature estimator. 
Adaptive regression models were used for measurement accuracy enhancement. Comparisons 
were also made between errors resulting from position and attitude predictions using Runge- 
Kutta integration and extrapolated regression models. 

Two aircraft characteristic parameters based on the dynamics, geometry and aerodynamics of 
the aircraft were developed in this research. Remote measurements from F-14A, AV-8B and A6 
flights were used to estimate the parameters and demonstrate their use in target recognition. 
Classification tests performed with actual data showed the potential use of the technique. The 
use of the aircraft parameter characteristic feature vector provides a consistently reliable means 
of aircraft type discrimination and the mathematical simplicity of the classification algorithm 
encouraging its use in real time applications. 

A unique aspect of this study was the use of actual trajectory data. The study was conducted 
using actual position and attitude trajectory data for F-14A, AV-8B and A6 aircraft acquired 
during training flights. The data was supplied through the Navy's TACTS (Tactical Aircrew 
Training System) at the Cherry Point Marine Corps Air Station. 

The following results can be summarized from the performance tests: 

1. The new tracking algorithm based on a radius of curvature estimator has a significant 
advantage over the existing attitude/translation tracker. Both vehicle position and attitude 
are used to estimate vehicle dynamics without requiring vehicle specific data. 

2. Measuring and modelling the attitude of the aircraft produces a significant improvement 
in both tracking and prediction accuracy. 

The use of vehicle specific inertia in an attitude/translation tracker has negligible effects 
on the improvement of tracking and prediction performance. Only limited aerodynamic 
and mass data are needed to achieve the performance improvements associated with 
trackers that include attitude information. 
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4. Preconditioning measurement data using adaptive regression modelling techniques has 
been shown to offer a substantial improvement in tracking and prediction performance. 
This approach requires no additional hardware in a real tracking environment and 
imposed limited computational overhead, yet is offers a significant enhancement in 
tracking and prediction performance. 

5. Artificial measurements extrapolated from regression models of the measurement data 
offer a means of improving prediction accuracy over numerical integration of the state 
equations. This result suggests that regression modelling can capture the underlying 
dynamics of the measurements and infuse that additional information into the filter to 
improve predictive performance. 

6. The results obtained with the target recognition technique based on dynamics, geometry 
and aerodynamics of the aircraft confirmed the potential use of the method. Furthermore, 
it showed that it could be used as an aid in sensor fusion classification algorithms 
combining aircraft feature parameters information, shape descriptor information and 
spectral information collected by remote sensing techniques. 

61.2 Impact of the Research 

This work represents a means for improving the currently available methods of aircraft trajectory 
prediction and target recognition by the application of regression dynamics methods. There are 
significant benefits to be accrued by the implementation of this technique. 

o Improved lead angle prediction and better target information in fire control 
systems. 

o Enhanced capability for identifying friend or foe (IFF) by accurate trajectory 
estimation and target parameter estimation. 

o Technical superiority for future fire control systems. The method has the potential 
to be integrated into the ballistic equation used for firing solutions to further 
improve the Probability of Hit in a complex tracking problem. 

61.3 Possible Applications 
61.3.1 Prediction (Lead Angle) 

Target motion during the time of flight of the projectile is one of the factors to be used on the 
computation of the lead angle. Future target position can be expressed as a series of vectors 
involving present range, present target velocity integrated over the time of flight and the double 
integral of target acceleration over the time of flight. 

Conventional trackers have used constant velocity or constant acceleration models to simplify 
the lead angle computation. This new approach can yield increases in the accuracy of lead angle 
computation by providing a new way to predict future target position. 

Translation measurements from radar data (range, azimuth and elevation) and their associated 
rates are used in conjunction with aircraft attitude data (roll, pitch and yaw angles) to build 
target data regression models. These models carry useful target dynamic information that can 
predict (during the lead time) how the target is going to behave in the future. 
61.3.2 Tracking 
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AU fire control systems must receive target information, as well as the direction and motion of 
the line of sight as the principal system inputs [89]. The orientation of the line of sight on the 
fire control equipment must change continuously in order to follow the target. Consequently a 
drive system is required in every fire control system. The drive system is used to orient the line 
of sight through electromechanical means. 

A potentially more accurate tracking system can be implemented by applying the improved target 
aircraft dynamic model in combination with the target data regression modeling technique. The 
method could improve the control of the fire control drive system by applying predicted 
measurement data as input to the translation/attitude model in order to predict line of sight 
orientation. 
61.3.3 Identifying Friend or Foe (IFF) 

The observed trajectory offers a means of estimating the dynamic characteristics as well as 
geometry and aerodynamics of the aircraft. For an aircraft, located beyond the range of optical 
devices, the approach offers a unique means of accomplishing parameter estimation and 
providing a method to identify the type of vehicle being tracked. 

61.3.4 Air Traffic Control (ATC) 

One of the important applications of the target tracking-trajectory estimation problem is the 
tracking of commercial aircraft for air traffic control and collision avoidance. 

The improved attitude-translation tracker could be employed for the purpose of safely controlling 
air traffic in route and in vicinity of airports. The potential increases in tracking and prediction 
accuracy provided by the new tracker could be a useful aid in controlling aircraft traffic at large 
airports. 

Known stability and control derivatives in the dynamic model of the tracked aircraft in addition 
to an augmented measurement vector (tracker knowledge of surface and control deflections) 
could define a better performance tracking system for guiding aircraft to safe landing and 
avoiding collisions. 
61.4    Significant Advances 

This work represents a novel addition to the work done on advanced trackers at the U.S. Army 
Armament Research Development and Engineering Center (ARDEC), Picatinny Arsenai N J 
and Purdue University [1 - 9]. These advanced trackers used both translation and attitude data 
to improve the accuracy of conventional trackers. The new method represents a significant 
advance over the previous investigations by considering an aircraft dynamic model without use 
of aircraft specific parameters and improving the aircraft trajectory prediction by the application 
of regression dynamics methods. The ultimate goal of this work was to improve the ability to 
track and predict the position of an aircraft using radar measured position and image estimated 
attitude data. 

In this approach, regression models of translational and attitude measurements were used to 
improve the estimation of trajectories and prediction of measurement data during the lead time 
interval. In addition, observed trajectory can offer a means of estimating the characteristic 
parameters necessary to implement the aircraft recognition. 
The integration of the improved aircraft model, parameter identification and regression based 
measurement models make this approach attractive for the estimation and prediction of target 
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position during the lead interval. 

8.        Recommendations 

This study provides some evidence suggesting a number of ways of improving the tracking and 
prediction performance of advanced non-linear tracking filters. Since these approaches use 
extended Kaiman filters, they are non-optimal in a theoretical sense. Therefore, there is a 
potential for performance improvement. The empirical evidence in this work does not offer proof 
of improved performance of trackers by using preconditioned data and artificial measurements. 
Rather, these results demonstrate the potential of these techniques. More investigation is 
warranted.  The following studies are recommended: 

1. Perform comparative studies of filter performance using simulated trajectory data. This 
data is not subject to the limitations of actual radar data. 

2. Use shorter range (and hence, more reliable) radar data in a suite of tests. Data should 
be used with ranges less than one mile to offer a comparison to the extended range data 
used in this test. 

3. New approaches should be explored in an effort to augment the aircraft characteristic 
feature vector with the overall goal of improving the discrimination between aircraft 
classes. 

4. The real-time operation of the trajectory tracking and prediction algorithm must be 
investigated. Because nine linear Kaiman Filters are used by the algorithm, parallel 
processing techniques appear to be an attractive means of implementing the algorithms 
and data processing strategies described in this work. 

5. Investigate a new tracking algorithm that uses control surface (aileron, elevator and 
rudder) deflections as a leading indicator of aircraft trajectory. The new approach could 
estimate the tendency of the aircraft to rotate and change the orientation of the lift vector, 
thus providing an earlier indicator of future aircraft trajectory changes. 

6. Perform a sensitivity study to find the influence that Euler angles measurement noise 
have on the overall performance of the filter. 

7. The target trajectory tracking and prediction methods presented here should be 
implemented, in at least an observatory fashion, on an actual training aircraft to evaluate 
the utility of the procedure in the air-field environment. 

6.6     Extension to Other Fields 

The regression-based tracking algorithm proposed in this work may be applied to other tracking 
problems. The tracking of helicopters and ground vehicles share many of the same problems as 
fixed wing aircraft tracking. 

The new reconnaissance RAH-66 Comanche helicopters [12] will be armed with smart weapons 
directed by an electro-optical target acquisition/designation system (EOTADS), providing greater 
accuracy in identifying, prioritizing, and discriminating between real and false targets. The 
improved attitude-translation tracker developed in this work, could be modified to potentially 
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aiding accuracy in target trajectory prediction [9]. 

Significant benefits may be accrued for tracking ground vehicles such as tanks with improved 
trackers due to the limitation of some of the trajectory measurement hardware used in the fire 
control systems for these classes of targets. In a ground vehicle such as a tank, a two- 
dimensional tracking problem can be formulated as illustrated in Figure 8.1. 
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Figure 8.1 Tracking Problem Geometry 

The reference coordinate system is based on the tank. The ranging data is referenced to the 
origin and the angular reference is with respect to the positive x axis. When the target is 
observed at a time /   , two tracking measurements are made: R(t) and   0(f) . 

A target has certain maneuvering capabilities based on the physical limitations of a vehicle. If 
the target is in motion, the trajectory can be rectilinear, curvilinear or, over a longer time 
interval, an arbitrary smooth function. The function is governed by the vehicle dynamics, i.e., 
a limited turning radius, acceleration/deceleration capabilities, etc. The tracking problem 
becomes highly non-linear even for the simplest of these trajectories. Furthermore, since the 
trajectory is unknown, any future predictions of the trajectory are subject to whatever 
assumptions are made regarding the functional form of the trajectory. For these reasons, a time- 
parametric regression model of the target trajectory are a potential useful means of modeling the 
trajectory. The target is observed for a set of measurements of range and angle over a short time 
interval. These measurements can be used to create time domain regression models that will in 
turn permit a corresponding implementation of a trajectory prediction algorithm. 
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