September 1985 Report No. STAN-CS-85-1069

LT R

PR96-149620

The Logical Data Model:
A New Approach
To Database Logic

by
Gabriel Mark Kuper
O _JYATEMERT R | DIC Quazrry INSp(,
Agprovea wm pupic reioazel TED

Department of Computer Science

Stanford University
Stanford, CA 94305

19970422 040

THE LOGICAL DATA MODEL:

A NEW APPROACH

TO DATABASE LOGIC

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
’ Gabriel Mark Kuper
September 1985

© Copyright 1985
by
Gabriel Mark Kuper

ii

I certify that I have read this thesis and that in my- opinion it is

fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Jeffrey D. Ullman
(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is

fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Christos H. Papadimitriou

I certify that I have read this thesis and that in my opinion it is

fully adequate, in scope and in quality, as a dissertation for the
degree of Doctor of Philosophy.

Moshe Y. Vardi
(CSLI)

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

Abstract

We propose a mathematical framework for unifying and generalizing the principal data models, i.e., the
relational, hierarchical and network models. Until recently most theoretical work on databases has focused
on the relational model, mainly due to its elegance and mathematical simplicity compared to the other
models. Some of this work has pointed out various disadvantages of the relational model, among them its
lack of semantics and the fact that it forces the data to have a flat structure that the real data does not
always have. :

The Logical Data Model (LDM) combines the advantages of the relational, network and hierarchical
approaches. It models database schemas as directed graphs, in which the leaves correspond to the attributes,
and the internal nodes to connections between the data. Instances of LDM schemas consist of r-values, which
constitute the data space, and I-values, which constitute the address space. We are thus able to deal with
instances of cyclic structures, but still get a first-order theory.

We define a logic on LDM schemas in which integrity constraints can be specified, and use it to define
a logical, i.e., non-procedural, query language that is analogous to Codd’s relational calculus. We also
describe an algebraic, i.e., procedural, query language and prove that the two languages are equivalent.
These languages have a novel feature: not only can they access a non-flat data structure, e.g. a hierarchy,
but the answers they produce do not have to be flat either. Thus, the language really does have the ability
to restructure data and not only to retrieve it, and can therefore be used both as a query language and for
defining views.

iv

A cknowledgments

I would like to especially thank my adviser, Jeff Ullman. He both suggested this area as a good one for
research, and was very helpful in advising me which directions to explore. I would like to thank Moshe Vardi,
Dave Maier, Christos Papadimitriou, Gio Wiederhold, Ernst Mayr and Richard Hull for comments on my
work. Moshe Vardi in particular was very helpful in defining the logical query language. I would also like to
thank my officemates Howard Trickey, Hank Korth, Jerry Plotnick, Eric Berglund, Joe Pallas, Vineet Singh,
and Kai Yue.

This thesis was produced using IATEX, a macro package designed by Leslie Lamport for Don Knuth’s TeX
typesetting system. The bibliography was prepared with BibTEX, written by Oren Patashnik. Financial
assistance for this work was provided by AFOSR grant 80-0212, and NSF grant IST-12791.

Contents

Abstract
Acknowledgments
1. Introduction

2. Previous Work .
21. DatabaseLogic
22. TheFormatModel
23. Non-First-Normal Form Relations _
24. Non-Procedural Query Languages for the Network Model
2.5. Non-Procedural Query Languages for the Hierarchical Model
2.6. Statistical Databases

3. Introduction to the Logical Data Model
3.1. Data Structuring in the Logical Data Model

............................

3.1.1. The Relational Model
3.1.2. The Network Model
3.1.3. The Hierarchical Model,
3.1.4. Instances of LDM Schemas
3.1.5. The Entity-Relationship Model
3.2. Query Languages
3.2.1. The Logical Query Language
3.2.2. The Algebraic Query Language
4. LDM Schemas and Instances
41. LDM Schemas
4.2. Instances of LDM Schemas
5. The LDM Logic
9.1. Definition of the Logic
5.2. The Relation between LDM logic and First-Order Logic
9.2.1. Mapping LDM Logic into First-Order Logic
5.2.2. Mapping the First-Order Logic into LDM Logic.
9.2.3. Consequences of the Reduction

vi

iv

5.3. A Proof Theory for LDM Logic
5.4. The Complexity of Integrity Checking . . .

6. The Logical Query Language

6.1. Introduction
6.2. The LDM Query Language
6.3. SafeQuerieso
6.4. Ordering the Nodes in a Query
6.5. Complexity of the Query Language

7. The Algebraic Query Language

7.1. The Algebraic Operators

............................

............................

............................

............................

............................

............................

............................

............................

7.1.1. Operators that Copy and Combine Existing Nodes . . v v v v v et i i e e e

7.1.2. Selection Operators
7.1.3. Union, Difference and Projection . .

............................

............................

7.2. Equivalence of the Logical and Algebraic Query Languages

7.3. Various Results about the Algebra

8. Elimination of Cycles

8.1. Introduction

8.2. Converting Cyclic Schemas to Acyclic Ones

8.3. Equivalence of the Schemas

9. Conclusions

A. An Early Attempt at the Query Language

Al Introduction.
A.2. Safety up to Duplication
A.3. Absolute Safety
A.4. Undecidability

B. An Alternative Logical Data Model

B.l. TheModel
B.2. The Query Language
B3. Safety

Bibliography

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

............................

vii

36
36
37
42
44
48

50
50
50
53
54
56
62

66
66
67
72

75

76
76
78
79
80

85
85
86
89

92

List of Figures

© 0N~

L W O AN DN DN DR D) RS DO DD bt pd ot ek b b e e e e
PROO RIS RADINRSORIDA R WP~ O

33.
34.

The Person—Parent relation 7
The Person-Parent relation as an LDM schema 7
The genealogy asametwork 8
LDM schema corresponding to Fig. 3 8
The genealogy asa hierarchy 9
LDM schema corresponding to Fig. 5. 9
The genealogy as a hierarchy with virtual records e e e e e e e e e e e 10
LDM schema corresponding to Fig. 7., 10
Instance of the LDM schema that corresponds to a relation 11
Instance of the LDM schema that corresponds to a hierarchy 11
Pictorial representation of the instance in Fig. 10 e e 12
Department-Employee example 13
Project-Worker example 14
LDM Schema 14
Instance of Fig. 14 14
Exampleof alogicalquery 15
Another example of a logical query 15
First step of the algebraicquery 16
Second step of the algebraic query 16
Third step of the algebraicquery 17
Nodesin LDMschemas 19
Schemaof Qi 37
Resulbof Qi o ..., 38
Schemaof Qz L 38
Schemaof Qs 39
Resultof Qs 39
Schemaof Qg 40
Resulton4............................, 40
Query used in the proof of Theorem 26. 44
Reduction from 3SAT 48
The algebraic operation w —O(v) 51
The algebraic operation w — O(v) 51

35.
36.
37.
38.
39.
40.
41.
42,
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

Example of the algebraic operation &/ —DO(u) 52
A smaller instance of the genealogy schema 52
Example of the algebraic operation &/ = O(u), 52
Result of / «— O(U) . . ¢ oo vt 52
Example of the algebraic operation v’ « O (u,¥) o 53
Result of the operation o' «— (u,v) o o e 53
The algebraic operation w «— aig(¥) o o e 53
The algebraic operation w «— oin(u, %)o oo 53
Exampleof selection e 54
Result of the operation v’ « ¢,_ «g.1oam” (W) - o e 54
Example of the algebraic operation v’ « oin(w,v) e 55
Result of the algebraic operation v’ — in(w,v) e 55
The algebraic operation w — U(v1,¥2) + -« o v v oo v 55
The algebraic operation w — II{y, v, 3(¥) - - o o oo v v oo 55
Constructing an equivalent algebraicquery 58
Result of Qom + = « » ¢ ¢ « o v o vttt e e e e e e e e 62
Schema of Qprod - - « « v+ o b e e e e e e 62
Result of Quy - ¢ v o v v v o e e e e e e 63
Result of Qg . . . o o oo e 64
Result of Qfinal - « « ¢« =« t ot o ot e e e e e e e e e e e e e e 64
Proof that restriction isessential o e 65
Cyclicschema oo vt e e e 67
An acyclic schema equivalent toit oL oo 67
Acyclicschema o i e ... 68
Corresponding acyclicschema o i e 68
Cycesthrough v i e 69
After breaking thecycles e e e e e e . 69
Proof of Lemma 38 e e 71
Alogical QUETY o vt 77
Undecidable qUETy« o o o e e e e e 81
Database schema and logical query oo e e 83

ix

Chapter 1

Introduction

This thesis proposes a new model for data, the Logical Data Model (LDM). The purpose of the LDM model
is to combine the advantages of what are currently the principal data models. Most database systems are
based on either a hierarchical or a network model [COD71] [ANS75] [IBM78] [Wie83] [Dat81] [U1182], both
of which describe in detail how the data is stored in the computer. Because of this, databases based on these
models can be implemented efficiently, but on the other hand they are awkward to use, since the user has
to be aware of a lot of details about the physical implementation.

For this reason, Codd [Cod70] introduced the relational model. In the relational model, the user’s view
of the data is that it is stored in tables, and he does not have to be aware of the precise details of the physical
implementation. Codd [Cod72] defined two query languages on relational databases. One of these is a logical,
i.e., non-procedural, language, which is used to specify what the result of the query should be, without
describing explicitly how to compute it. The second language is an algebraic, i.e., procedural, language,
equivalent to the logical language, which the system uses to answer the query. These query languages have

" a unique property not shared by network and hierarchical database management systems: The result of a

query is a relation, i.e., has the same structure as the data in the original database. One consequence of
this property is that the same language can be used for view definition, and another consequence is that the
query language can handle complex queries by breaking them up into simpler subqueries.

The relational model introduces another level of abstraction between the physical representation of the
data and what the user actually sees. As a result, they are harder to implement efficiently than network and
hierarchical systems. The implementation problems have by now been solved, to a large extent [Tod76] [Z1077]
[SWKH76] [A*76]. Besides the issue of efficiency, however, the relational model has another disadvantage.
By forcing the data to have a flat structure, i.e., by requiring that all the data be in the form of tables,
some of the semantics of the data is lost {Cod70] [HM81] [SS75] [SS77a]. For example, if there is a natural
connection in the data between individual objects and sets of objects of another type, we lose some of the
structure of the data by forcing it into a first normal form relation [JS82]. While it is always possible in
some way to encode the information in a relational form, this is not always the most natural thing to do.
As another example, hierarchical and network database management systems have the ability to use virtual
records. These are essentially pointers to physical records, and are used to avoid redundancy in the database
[UlI82]. Update anomalies are one of the consequences of the fact that the relational model does not model
virtual records.

- The logical data model combines the advantages of both approaches. As in network and hierarchical
databases, the data has more structure than in the relational model. In particular, we can use the LDM
model to model cyclic structures and virtual records. On the other hand, we do not lose the advantages
of the relational model. As in the relational model, our model has two query languages: A logical, i.e.,

2 CHAPTER 1. INTRODUCTION

non-procedural, and an equivalent algebraic, i.e., procedural, language. These languages are analogous to
the relational calculus and algebra, and have the novel feature that not only can they access a non-flat data
structure, e.g., a hierarchy, but the answers they produce do not have to be flat either. Thus, the language
really does have the ability to restructure data and not only to retrieve it.

The organization of the thesis is as follows. Chapter 2 describes some related work. In Chapter 3, we
give an informal description of the LDM model. We show how to map various data models into the logical
data model, and give some informal examples of the two query languages. Chapter 4 contains the formal
definitions of LDM schemas and instances.

In the following two chapters, we define the logical query language. In Chapter 5 we define a logic on
LDM schemas. We prove various results about the logic, including the fact that it is equivalent to a certain
first-order logic. We also give a proof theory for the logic, and some complexity results. In Chapter 6 we use
the logic to define a logical query language. We also discuss when a logical query is safe, and conclude with
some complexity results. ‘

In Chapter 7 we define the algebraic query language, and show that it is equivalent to the logical language.
In Chapter 8 we investigate the role of cyclicity in database schemas. We show that under one measure of
information content, cycles are unnecessary, i.e., anything that can be represented by a cyclic schema can
also be represented by some acyclic schema. We conclude, in Chapter 9 with some directions for future work.

Chapter 2

Previous Work

2.1. Database Logic

Jacobs [Jac79] [Jac80] [Jac82] defined what he called “database logic.” Database logic is a mathematical
model of databases that claims to generalize the relational, network and hierarchical models. In database
logic, a database schema is a set of rules of the form R; = (Rj,,..., R;,). An instance of such a schema is
essentially a table, in which the entries can themselves be tables rather than simple attributes. His model is
a natural way to describe a hierarchy, and it can also be used to describe a network. Jacobs then defines a
logical query language on database schemas.

His model has various shortcomings. One, relatively minor, is that the representation of a hierarchy
does not allow virtual records. A more serious problem is how he handles cyclicity. He allows schemas to
contain cycles, but explicitly forbids cycles on the instance level. Besides this, he also has an unnecessarily
complicated definition of nesting depth. The lack of cyclicity in instances is a severe restriction on the
expressive power of the model.

Another shortcoming of his model is the definition of a database instance. Since instances are acyclic,
he is able to construct instances bottom-up. The problem is that his definition is rather complicated, and
as the users views of the data consists of precisely these instances, we would like them to be as simple as
possible.

Finally, the logic is not first-order. While using a more powerful logic does increase the expressiveness
of the logic, it also makes it harder to handle mathematically. In fact the query language turns out to be
too powerful, as it enables one to write queries whose result is not computable [Var83]. This is one reason
why he does not define an equivalent algebraic language, and therefore his model contains only a logical, i.e.,
nonprocedural, query language.

2.2. The Format Model

The “format model” was introduced by Hull and Yap [HY82]. The format model is an attempt to generalize
the relational and hierarchical models. A database schema, or format, is a tree with labels. The leaves
correspond to the attributes in the relational model, and the internal nodes represent various connections
between the data.

More formally, formats are made from fundamental components, called basic types, and three construc-
tors, composition, collection and classification. A format is a tree with labels assigned to the nodes: Basic

4 CHAPTER 2. PREVIOUS WORK

types are assigned to the leaves, and the other constructors are assigned to the internal nodes. The notation
they use is: O for basic types, O for composition, O for collection and N\ for classification.

Each basic type has a corresponding domairn, i.e., a set of values. The domains of the internal nodes are
defined as follows. The composition constructor, O, is similar to the cartesian product in the relational
model, and to the aggregation of [SS77a]. The domain of a node of type O is the cartesian product of the
domains of its children. The second constructor is classification, Z) that is similar to the generalization of
[SS77b]. The domain of such a node is the marked union of the domains of its children. Finally collection,
O, is used to specify formation of sets of objects, all of a given type. Such a node has only one child, and
its domain is the set of all finite subsets of the domain of the child.

An instance of a schema consists of assigning to each leaf some subset of the corresponding domain, and
to each internal node some subset of the domain that is derived by the above rules.

Their motivation for introducing the format model was different from ours. They wanted to investigate
notions of relative information capacity of database schemas, i.e., whether one database schema is more
expressive than another. For that reason, they did not define a query language on their model. We described
their model here, since the logical data model is based on their structuring of data, with several modifications.
In particular, we modified the format model to allow cyclic structures, and thus we obtained a model that
is a true generalization of the network and hierarchical models.

2.3. Non-First-Normal Form Relations

The relational model of [Cod70] restricts the relations in the database to what are called first-normal form,
or normalized, relations. In non-first-normal form the components of a tuple in a relation are simple, i.e.
atomic, objects, without any further structure. Various people, among them Makinouchi [Mak77], Scheck
and Pistor [SP82] and Kobayashi [Kob80] have pointed out that for some applications such as picture data
processing and CAD restricting the components to atomic objects is too restrictive a requirement.

[Mak77] and [OY85] discuss how to extend dependency theory and normal forms to non-first-normal form
relations. [J$82], [AB84] and [FK77] define algebras for such relations. One consequence of our work will be
that besides generalizing their work, we also get a logical, non-procedural, query language for non-first-normal
form relations.

2.4. Non—Procedufal Query Languages for the
Network Model

Various papers, among them [MP82], [Tsi76], [Dat80] and [Gra79], have advocated using high-level
languages for network databases. The languages they describe are all procedural. [MP82] and [Tsi76]
describe what is essentially a relational front end for a network DBMS. Date’s model [Dat80] involves explicit
navigation as in CODASYL, and [Gra79] describes some ideas for automatic navigation using “paths” but
does not describe how to use them in a query language.

[Day79], [DB82] and [GDB82] describe NQUEL, a non-procedural language similar to QUEL for use with
network databases. The result of an NQUEL query is a relation, but there is also an NQUEL view definition
language that creates new networks. They obtained an equivalent procedural language by mapping the
network database into an equivalent relational one [Bor78] [Kay75], and then using the standard relational
theory. Our approach differs from theirs in several ways. One difference is that the logical data model can
handle more general structures then NQUEL. Another difference is that by defining the query languages
directly on the given database schema, rather than through mapping them into the relational model, we get
a more natural query language.

2.5. NON-PROCEDURAL QUERY LANGUAGES FOR THE HIERARCHICAL MODEL 5

2.5. Non-Procedural Query Languages for the
Hierarchical Model

Hardgrave in {Har78] looks at ways to define a non-procedural query language on hierarchical databases.
The principal idea is that of a “broom,” i.e., a node together with all its children and ancestors. Brooms in
his model play the role of tuples in the relational model. The main problem he investigates is how to handle
conditions on the tuples. For example, if u, v and w are nodes in the hierarchy, and the query is

Print u where v = ¢; and w = ¢3

do we mean all those u’s that are in some broom with v = ¢; and w = ¢, or all those u’s that are in some
broom with v = ¢; and in some other broom with w = ¢2? He shows that there are four different approaches
that may be taken, each of which differs from the others for some queries. Furthermore, he claims that users
with different backgrounds and experience may expect the system to behave according to different ones of
these approaches. Our query language does not make any of these assumptions for the user, but can be used
to specify explicitly any of Hardgrave’s query languages.

2.6. Statistical Databases

Models that have been proposed for statistical databases such as SSDB [0084] and GRASS [BRR82] [RR83]
[RR84] require that the data have more structure than the relational model provides. The structuring of the
data is similar to that of non-first-normal form relations or to the format model that we described above,
together with special nodes for aggregation. We can describe the structuring of data in these models using
the logical data model, and it should be possible to extend the LDM model to include aggregation operations.

Chapter 3

Introduction to the Logical Data
Model

3.1. Data Structuring in the Logical Data Model

The logical data model is based on Hull and Yap’s format model (see Section 2.2). A database schema in the
format model is a labeled tree. Leaves are labeled with basic types (O) that correspond to attributes, while
internal nodes, labeled €, O and 2\ correspond to composition, collection and classification, respectively.

As we mentioned in Section 2.2, the format model fails to model an important part of network and
hierarchical database systems, namely the ability to use virtual records. To model this, we have to introduce
cyclicity into the database schemas. Our first idea was to have two types of leaves: Basic types and pointer
nodes, i.e., nodes that point to other nodes in the tree. It turned out, however, that what we wanted to
express using pointer nodes could be expressed more simply if we use directed graphs rather than trees for
.the underlying schema.

We made two further modifications to Hull and Yap’s format model schemas, both relatively minor. We
have only one basic type, rather than several different ones. For our purposes, the distinction between the
domains of the attributes is not important for structuring the data. In order to keep the model as simple as
possible, we prefer to have only one basic type. We can express the fact that the values of some attribute
come from a specific domain by a constraint in the LDM logic that we shall define later. In contrast, since
Hull and Yap were interested mainly in relative information capacity of different database schemas, the
distinction between different basic types was very important for them.

The other modification we made to the format model was to use multigraphs rather than simple directed
graphs. This means that there may be more than one edge between two nodes, and enables different
components of tuples to have the same structure.

Since it is more intuitive, we shall continue to use tree terminology when referring to LDM schemas. In
particular, by leaf we shall mean a sink, and by children we shall mean successors.

In short, an LDM schema is a labeled directed multigraph. The leaves are labeled O (basic type). The
values that an instance of such a node can have are elements of some fixed domain. These nodes are analogous
to attributes in the relational model. Each interior node is labeled with one of the following.

1. Composition, written €. The domain of such a node is the cartesian product of the domains of its
children.

2. Collection, written O. The domain of such a node is the collectioh of all finite subsets of the domain

3.1. DATA STRUCTURING IN THE LOGICAL DATA MODEL 7

of its child.

3. Classification, written /\ The domain of such a node is the disjoint union of the domains of its
" children.

In the next three subsections we show how to represent relational, network and hierarchical databases in
the logical data model.

3.1.1. The Relational Model

w
Person | Parent
Rehoboam | Solomon
Solomon David
Solomon | Batsheba u v

David Jesse

Figure 1: The Person-Parent relation Figure 2: The Person-Parent relation as an

LDM schema

Example 1: In most of the examples in this thesis the database will be a genealogy. Fig. 1 shows this
database as a relation, together with the data in it.

The LDM schema that corresponds to it is shown in Fig. 2. It consists of two nodes u and v of type O
that correspond to the Person and Parent attributes respectively, and one node w of type (O that contains
pairs of related attributes.

For the moment, an instance I of an LDM schema will be an assignment to each node u of a set I(u) of
values from the corresponding domain (we shall modify the definition of an instance in Section 3.1.4). An
instance of the LDM schema corresponding to the data in Fig. 1 consists of the following assignments:

I(v) = {Rehoboam,Solomon, David}

I(v) = {Solomon,David, Batsheba, Jesse}
and
I(w) = {(Rehoboam,Solomon),(Solomon, David), (Solomon, Batsheba),
(David, Jesse)}
In general any relation R with attributes A, ..., A, can be converted into an LDM schema in a similar

way. The corresponding schema will have one (-node for R, with n children of type O, one corresponding
to each attribute.

3.1.2. The Network Model

Example 2: The genealogy could be represented by the network in Fig. 3. In this network there are two
record types, Person containing the names of the people in the database, and a dummy record PP. There
are two links (sets) that connect each.dummy record to a person and his parents.

The idea behind the mapping from the network to the LDM schema in Fig. 4 is as follows. Each record
type R; is mapped into a (-node vg;. For each field of R;, vg, has a child of type 0. For each link (set)
in the network with R; as a member, let R; be the owner of the link. Then vR; is a child of vpg,.

8 CHAPTER 3. INTRODUCTION TO THE LOGICAL DATA MODEL

w
PP

v

Person u

Figure 4: LDM schema cortesponding to

Figure 3: The genealogy as a network Fig. 3

In Fig. 4, w is vpp and v is vperson. U corresponds to the field of the Person record, i.e., the person’s
name, and the two arcs from w to v correspond to the two links.

If the network had the same contents as the relation in Fig. 1, the coi'responding instance of the LDM
schema in Fig. 4 would be

I(u) = {Rehoboam, Solomon, David, Batsheba, Jesse}
I(v) {(Rehoboam), (Solomon), (David), (Batsheba), (Jesse)}

and

I(w) { ((Rehoboam), (Solomon)), ((Solomon), (David)),

((Solomon), (Batsheba)), ((David), (Jesse)) }

3.1.3. The Hierarchical Model

Example 3: Fig. 5 shows a hierarchical representation of the genealogy. In this hierarchy, each Person
record is related to the linked list of his parents. Even though the hierarchical model uses linked lists, this is
really just a matter of the implementation, and intuitively the user should see only the connection between
a person and the set of his parents. We therefore map each record type R; into a C3-node vg; as we did for
the network model, with a child of type [0 corresponding to each of its fields. However, if R; is a member
of the link (R;, R;), then instead of connecting vg, to v, directly, we connect them through a node of type

Fig. 6 shows the LDM schema that we get from the hierarchy in Fig. 5. In this schema u; is vperson, v1
iS Vparent, Uz and vy correspond to the fields of these records, and w is used to relate Person records to sets
of Parent records.

The instance of Fig. 6 that corresponds to the data in the relation in Fig. 1 is

I(uz) = {Rehoboam,Solomon,David}

I{(vy) = {Solomon,David, Batsheba, Jesse}

I(v;) = {(Solomon),(David), (Batsheba), (Jesse)}

I(w) {{(Solomon)}, {(David), (Batsheba)}, {(Jesse)}}

3.1. DATA STRUCTURING IN THE LOGICAL DATA MODEL 9

Ui
U2 w
Person
V1
V2
Parent

Figure 6: LDM schema corresponding to

Figure 5: The genealogy as a hierarchy Fig. 5

and

I(z) = {(Rehoboam, {(Solomon)})(Solomon, {(David),(Batsheba)})
(David, {(Jesse)})}

Example 4: In practice we would probably not use the hierarchy of Fig. 5 as a representation of the
genealogy, since it contains a lot of duplicated information. If a person appears in the database as both
a child and as a parent, he will appear in both the Person and Parent records. For this reason, we would
probably use a hierarchy with virtual records, as shown in Fig. 7. The corresponding LDM schema is then
the cyclic schema in Fig. 8.

If the contents of the database are the same as before, the corresponding instance of the LDM schema is

I(u) = {Rehoboam,Solomon, David, Batsheba, Jesse}
I(v) = {(Jesse,0),

(David, {(Jesse, 0)}),

(Batsheba,),

(Solomon, {(David, {(Jesse, 0)}), (Batsheba, #)}),

(Rehoboam, {(Solomon, {(David, {(Jesse, #)}), (Batsheba,)})})}
I(w) = {0,{(Jesse,0)}),

{(David, {(Jesse, 8)}), (Batsheba, §)},

{(Solomon, {(David, {(Jesse, 0)}), (Batsheba, #)})})}

3.1.4. Instances of LDM Schemas

As we see in Example 4, when the schema is cyclic and the nesting depth is large an instance can be rather
complicated. If the data as well as the schema was cyclic, then the nesting depth would be infinite and we
would not be able to write the instance down at all. This is similar to one of the problems with Jacobs’

10 CHAPTER 3. INTRODUCTION TO THE LOGICAL DATA MODEL

Person
v
Virtual u w
Person '
Figure 7: The genealogy as a hierarchy with Figure 8: LDM schema corresponding to
virtual records Fig. 7

database logic. The mathematical theory we develop to deal with this problem is closely related to the
non well-founded sets of [Acz85]. Our approach to defining an instance of a schema is to model abstractly
the concept of memory addresses and their contents. We use the term “I-values” for the abstract memory
addresses, and the term “r-values” for their contents. An instance I then consists of two parts

1. An assignment of a set I(u) of l-values (abstract addresses) to each node u of the schema.
2. An assignment of an r-value r({) to each l-value / in I(u).

These l-values are taken from a fixed set L which will usually be the set of natural numbers. We now show
what some of the instances in the previous examples look like when we use l-values and r-values.

Example 5: The instance of the schema in Example 1 consists of the following assignment of l-values to
nodes.

I(v) = {1,2,3}
I(v) {4,5,6,7}

and
I(w) = {8,9,10,11}

We then assign an r-value r(I) to each of these l-values. This assignment is shown in Fig. 9.

Example 6: In Fig. 10 we show the instance using l-values and r-values that corresponds to the instance
of Example 4. Fig. 11 shows the links between the l-values and their r-values pictorially.

3.1.5. The Entity-Relationship Model

We conclude this section by showing how the logical data model can also be used to describe data structured
by the Entity-Relationship Model of [Che76].

To map an entity-relationship schema into an LDM schema, we represent each entity type as a O-
node, and each relationship record as a (O-node. A 1-1 arc from a relationship record to an entity type is
represented by an edge from the corresponding (-node to the corresponding 0-node, while for a many to

3.2. QUERY LANGUAGES 11

I(w)

Figure 9: Instance of the LDM schema that corresponds to a relation

I(w) I(v) I(w)
l r(l) L ()
"1 | Rehoboam 6 {(1,11)
2| Solomon 71(2,12)
3| David 8 |(3,13)
4| Batsheba 9{(4,14)
5| Jesse 10|(5,14)

Figure 10: Instance of thev LDM schema that corresponds to a hierarchy

one arc the connection is through a O-node. Figures 12 and 13 show two examples of entity-relationship
database schemas from [Che76], together with the corresponding LDM schemas.

3.2. Query Languages

In this section, we give some examples of logical and algebraic queries on LDM schemas. All these examples
are of queries that we can write in the query languages that we shall describe later on. The languages
we describe later, however, are more formal, and therefore harder to use. The analogous situation in the
relational model, is the comparison between Codd’s tuple calculus and languages like QUEL. The languages
in the current section have not been fully developed, and we describe them mainly as motivation for the
formal presentation in the following chapters. In all the examples in this section, the database schema will
be the LDM representation of the hierarchy, i.e., the schema in Fig. 14, together with the instance in Fig. 15.

3.2.1. The Logical Query Language

Both the logical and algebraic query languages have the property that the result can have a more general
structure than a relation—in fact it is structured according to some LDM schema that is specified as part
of the query. A query consists therefore of a specification of the nodes of the query, together with some
QUEL-like statements specifying the contents of these nodes.

12 CHAPTER 3. INTRODUCTION TO THE LOGICAL DATA MODEL

[J [. [] [J w
11 12 13 14
\\ 4 7]
6 o T . 8 o 9 2 10 o v
1 2 3 4 5 u
Rehoboam Solomon David Batsheba Jesse

Figure 11: Pictorial representation of the instance in Fig. 10

Example 7: Our first query adds a new node Par-Sol of type O with child Person (see Fig. 16). This node
contains the set of parents of “Solomon.” The query is

type of Par-Sol is (collect,Person)
range of t is PP

range of u is PP

retrieve S into Par-Sol

where S={u.Person}

and t.Person=‘‘Solomon’’

and u is in t.Parents.

Example 8: In this example, we show how to restructure the database in the form shown in the left part
of Fig. 17. We first copy all the people in the node Person into the node Pers

type of Pers is basic
range of t is PP
retrieve t.Person into Pers

The node Pars then contains all pairs that correspond to Person-Parent pairs.

type of Pars is (composition,Pers,Pers)
range of t is PP

range of u is PP

retrieve (t.Person,u.Person) into Pars
where u is in t.Parents.

3.2.2. The Algebraic Query Language

Example 9: We show how we could compute the query of Example 7 by a sequence of algebraic operations.

3.2. QUERY LANGUAGES v 13

Department Dept-Emp
1
Dept-Emp
N Department
Employee
Employee

Figure 12: Department-Employee example

1. Select those elements of PP whose first component is “Solomon,” i.e., t; = 7 (Person=“Solomon

(Fig. 18).
2. Do another type of selection: Select those sets that actually appear in tuples in £;. This is the operation
tz = ”Parents il’l(tl) (Flg 19)

3. We now have almost what we want, the only difference being that ¢, contains elements of PP rather
than of Person. We have to do a dereferencing step, i.e., project onto Person. The operation is

t3 = Iperson (t2) (Fig. 20).

The entire query is therefore

”)(PP)

OpersonParents in”(Person: “Solomon”)(PP)

14 CHAPTER 3. INTRODUCTION TO THE LOGICAL DATA MODEL

Employee Proj-Worker

Proj-Worker

Project

Employee Project

Figure 13: Project-Worker example

PP

Person Parents

Figure 14: LDM Schema

I(Person) I(PP) I(Parents)
A (@) L)
1 |{Rehoboam 6 |(1,11)
2| Solomon 7 1(2,12)
3| David 8 1(3,13)
4| Batsheba 9 1(4,14)
5| Jesse 10 (5, 14)

Figure 15: Instance of Fig. 14

3.2. QUERY LANGUAGES

Par-Sol

Person Parents

Figure 16: Example of a logical query

Pars PP

Pers

Person Parents

Figure 17: Another example of a logical query

15

16 CHAPTER 3. INTRODUCTION TO THE LOGICAL DATA MODEL

I(tl) 1

L] ()
15[(2,12)

Parents

Figure 18: First step of the algebraic query

to
I(t2) PP
L ()
16|{8,9}
Person Parents

Figure 19: Second step of the algebraic query

3.2. QUERY LANGUAGES 17

I(ts)

L] Q)
17[{3,4)

Person Parents

Figure 20: Third step of the algebraic query

Chapter 4

LDM Schemas and Instances

In this chapter we start the formal description of the logical data model. We define the two basic components
of the model: LDM schemas, that describe how data is structured, and instances of these schemas.

4.1. LDM Schemas

The definition of a schema is essentially the same as outlined in the previous chapter. We have to go into
several technical details that were not mentioned there. If v is a node of type O, its domain consists of
tuples formed from its children. For this to be meaningful we need an order on these children. Since there
may be more than one edge between v and a node w, we also need an order on the occurrences of w in these
tuples, so that what we really need is an order on all the edges with tail ». For simplicity, instead of using
one order per node v we shall use a total order on all the edges of the schema.

Another technical detail is that a schema includes a set of constants. The reason for this is that we want
to have a precise analogy between schemas and instances, on the one hand, and logical theories and models,
on the other. The set of constants plays the role of individual constants in a logical theory.

Definition 1: A schema is a tuple S = (V, E, <, y1, C) where:
1. (V, E) is a directed multigraph.

2. < is a total order on E.

3. p is a function from the set of nodes V to the set of types {0, O, O, /\}, that satisfies the following
conditions (see Fig. 21)

(a) p(v) =0 iff v is a leaf.
(b) If pu(v) = O, then v has exactly one child.

(¢) If u(v) = 2 then the children of v are distinct nodes (if p(v) = (O, however, there can be
multiple edges from v to a node w).

4. C is a (possibly empty) set of constants.

u(v) is called the type of v. For readability, we use the following abbreviations
1. p(v) = (O, w) is an abbreviation for “u(v) = O and its child is w.”

2. (a) p(v) = (,n) is an abbreviation for “u(v) = O and v has n children.”

18

4.2. INSTANCES OF LDM SCHEMAS , 19

<
-
<
S
4
<
—
[~
S

Figure 21: Nodes in LDM schemas

(b) u(v) = (O, n,v1,...,v,) is an abbreviation for “u(v) = O, there are exactly n edges e;, ..., e,
with tail v, these edges are in the order e; < --- < e, and their heads are vy, ..., v,.”
3. (a) p(v) = (A\n) is an abbreviation for “u(v) = Aand v has n children.”
(b) p(v) = (ADn,v1,...,v,) is an abbreviation for “u(v) = £\ there are exactly n edges ej, ..., en
with tail v, these edges are in the order e; < --- < e, and their heads are v, ey U7

Some other abbreviations that we shall use include referring to elements of V and E as nodes and edges,
respectively, of S, and referring to < as an order on the children of a node of S. We shall ignore the order
< when it is clear from the context, and we shall often refer to a schema as (V,E,u,C).

As we outlined in the previous chapter, one part of a query on an LDM schema S is the addition of some
nodes to S. We formalize this as follows

Definition 2: Let S = (V, E, <, 1,C) be a schema. S’ = (V', E/, <’, i/, C) is an extension of S iff

L.vcv
2. (a) ECFE

(b) If (v1,v2) € E' — E then v, is in V', i.e. all new edges are either between new nodes, or from a
new node to a node in V.

3. <I|E><E=<
4.y lv=p

4.2. Instances of LDM Schemas

Throughout this section S = (V, E, i, C) will be a fixed LDM schema. An instance of S consists of two
parts: An assignment of a set of objects called I-values to each node of S, and an assignment of an object
called its r-value to each such l-value.

In the format model instances are constructed recursively from the leaves up. Since our model allows
cycles, we cannot use this approach. What we do instead is define when a given object I is an instance.

Definition 3: An instance of S is a tuple I = (I, r, f) that satisfies:

1. I 1s a function with domain V. This is the assignment of sets of l-values to nodes. We require that
I(v) and I(w) be disjoint whenever v and w are distinct nodes of S.

2. r i1s a mapping with domain U,evI(v), i.e., from the set of all the l-values that are in the instance.
The mapping r must satisfy:

20 CHAPTER 4. LDM SCHEMAS AND INSTANCES

(a) If p(v) = (O,n,v1,...,v,) and I € I(v), then r(l) is a tuple (hh,...,1n) such that for each i,
1< i< n,l; is an element of I(v;). '
(b) If u(v) = (O, w) and I € I(v), then r(l) is a subset of I(w).
(c) If p(v) = (& n,v1,...,vn) and | € I(v), then r(!) € I(v1)U---U I(vn).
Note that in general there is no constraint on the range of r on nodes of type OJ.

3. f is a function with domain C. For each ¢ € C, f(c) is the interpretation of the constant c. In general
there is no constraint on the range of f.

If I is in Upeyv I(v), we say that it is an l-value in I, and #(l) is called its r-value. The set Uvevr[I(v)] is
called the set of r-values in L.

Definition 4: A finite instance of S is an instance I = (I, , f) of S such that for each node v of S, I(v) is
finite.

In practice, except for the reduction to first-order logic in Sections 5.2 and 5.3, we shall only be interested
in a restricted class of instances, those that correspond to real databases. Such an instance is finite, and
the instance I(v) of each node v is a set of natural numbers. For a given database schema, there is also a
fixed set D from which the data is taken. If v is of type O and I € I(v), r(I) must belong to the set D.
Furthermore, each constant ¢ € C' must also belong to D, and we do not distinguish between ¢ and f(c). In
short, after Section 5.3 we shall talk about schemas (V, E, p) and instances (I,7), where all the l-values are
natural numbers, and all the data and constants are taken from a fixed set D.

Definition 5: Let I be an instance of the schema S, and let v be a node of S of type (O, n,v1,...,V).
Let ! be any l-value in I(v). If 1 < i < n, then II;(!) will be the b component of (). We shall also use
the notation II,,({) for this component, whenever this does not result in any ambiguity.

The following definition is related to when we can compare two l-values, i.e., if v and w are nodes of S,
l; € I(v) and Iy € I(w), is it possible for l; and I3 to have the same r-value?

Definition 6: We say that two nodes v and w in a schema S are similar iff they are of the same type and
have the same children, i.e., if one of the following holds:

L p(v) = p(w) = 0.

2. For some node u, p(v) = p(w) = (O, u).

3. For some n and nodes ui, . . ., Un, p(v) = p(w) = (O, n,uy,...,Un)-

4. For some n and nodes uy, ..., un, p(v) = p(w) = (D n,u, ...,).

We would like to be able to show that whenever »(I;) = r(l2) for some I, € I(v) and l; € I(w), then v
and w must be similar. However, this may not be true for v or w of type 0. For example if p(v) = 0O,
since there is no constraint on the range of the function r on I(v), the r-value of 1, may just happen to have
the form of a tuple or set of l-values. The logic will be defined in such a way that we shall only be able to

compare r-values of similar nodes, so that this will not cause any problems.
Let S’ be an extension of S. We define an extension of I to an instance of S’ as follows.

Definition 7: Let S’ be an extension of S, and let I = (I, r, f) be an instance of S. We say that an instance
I'=(I',r, f) of 8’ is an extension of I to S’ iff

1. For all v in V, I'(v) = I(v).

4.2. INSTANCES OF LDM SCHEMAS 21

2. fvisanodeof S and I € I(v), then '(I) = r(I).

The proof of the following lemma is straightforward.

Lemma 1: Let S’ be an extension of S, and let I be an instance of S’. Then there is a unique instance 1
of S such that I is the extension of I to S’. This instance is called the restriction of I’ to S. I

We conclude this chapter with a definition of isomorphism. Two instances will be isomorphic if they
are essentially the same, i.e., if they differ only by renaming of l-values. As we shall want to show that the
result of a query is well-defined up to isomorphism, we give a stronger definition of isomorphism. Let I be
an instance of S, let S’ be an extension of S and let I; and I, be extensions of I to S’. We shall say that I,
and Iy are isomorphic relative to S, if there is an isomorphism between I, and I; that leaves the elements
of I fixed. In the case of a query, this will mean that an isomorphism relative to the database leaves the
contents of the database fixed. :

Definition 8: Let S’ be an extension of S and let I = (I,r, f) be an instance of S. Let I = (I1, 1) and
I; = (Iz, 2} be two extensions of I to S/. We say that I, and I, are isomorphic relative to S iff there is a

mapping
. 1-1
g: U Il(v):-;; U I(v)
veS veS
such that
1. For each node v of §’, ¢ maps I;(v) onto I>(v).
2. For each node v of S, g is the identity on I(v).
3. If v is a node of S’ and I € I;(v), then
(a) If v is of type O, then ra(g(l)) = r1(}).
(b) If v is of type (D, n), then

s (o) = (g (111 (n(l))) . g(n,. (m(l))>)

(c) If v is of type 2 then r2(g(1)) = g(r1(1)).
(d) If v is of type O, then g[r,(1)] = r1[g(?)]-

As a special case of this definition we get the definition of ordinary isomorphism.

Definition 9: Let I, = (I;,r,) and I = (I3, r;) be instances of S. We say that I, and I, are isomorphic iff
they are isomorphic relative to the empty schema, i.e., the schema with V = E = = 0.

Chapter 5

The LDM Logic

5.1. Definition of the Logic

In this chapter we define the LDM logic. Our goal is to define a logic that is similar to the relational tuple
calculus. We then use this logic as part of the logical query language. As the logic will resemble the relational
tuple calculus, we can also use it to specify integrity constraints on LDM schemas, and to define views.

Throughout this chapter S = (V, E, 1, C) will be a fixed schema, and I = (I, r, f) will be a fixed instance
of S, unless mentioned otherwise. Each variable in the LDM logic has a fixed sort, where the sorts are the
elements of V. The sorts restrict the possible values that the variable may have. For example, if z is a
variable of sort v then z can take only values in I(v). The analogue to this in the relational calculus is
a tuple variable that ranges over a specific relation. We shall usually write a variable with its sort as a
subscript, e.g., ,. Two variables with different subscripts will denote distinct variables, so that z, will be a
different variable from z,. Even though variables range over l-values, we shall often say “the l-value of z,”
instead of “the value of z,,” and “the r-value of z,” when what we really mean is “the r-value of the value
of z,.”

Definition 10: The atomic formulas over S are the following:

1. z, 7 yu, where w is a node of type € and v is its tth child.

2. &y p Yw, Where w is a node of type AN and v is one of its children.
3. z, € yu, where w is of type (O, v).

4. zy =1 Y.

5. &y =y Yuw, where v and w are similar nodes.

6.

Ty =y ¢, where ¢ is an element of C, and v is of type OJ.

The atomic formula z, 7; y, means that the l-value of z, is the ith component of the r-value of y,,.
Note that we have to mention which component of w we are referring to, since there may be multiple edges
from w to v. However, we shall also write z, 7, ¥, when this is unambiguous. z, p y, means that the
r-value of y,, is z,. Since there are is only one edge from w to v, we use p rather than p;. =, € y,, means
that #, is a member of the r-value of y,,.

There are several different kinds of equality. z, =; ¥y, means that the l-values of z, and y, are equal.
Since I(v) and I(w) are disjoint whenever v # w, the logic has no atomic formula of the form z, =; yy
for v #£ w. z, =, Yy, means that the r-values of z, and y, are equal. We restrict this to similar nodes to

22

5.1. DEFINITION OF THE LOGIC 23

prevent us from comparing r-values of O-nodes to tuples or sets of l-values, as we explained near the end of
Chapter 4. Finally, the atomic formula #, =, ¢ means that the r-value of z, is equal to the interpretation
of the constant c.

By the way, the subscrlpted r’s in the fifth and the sixth cases have slightly different meanings. The first
one refers to the r-value of both sides, and the second just to the left side of the formula. We decided that
the slight confusion this may cause was preferable to using a more cumbersome notation such as =, ,=,
and ,=;.

Definition 11: A well-formed LDM formula over a schema S is:

1. An atomic formula
2. ¢1V ¢2, where ¢; and ¢, are well-formed formulas.
3. —¢1, where ¢; is a well-formed formula.

4. (Vz,)d1, where ¢; is a well-formed formu_la,.

The free variables of ¢ are defined in the same way as in first-order logic.

As usual, we use ¢ A¢ as an abbreviation for (=@, V—¢3), and (3,)¢ as an abbreviation for ~(Vz,)—¢.
We also use ¢1 = ¢2 and @1 <> ¢2 with the standard meanings. Another useful abbreviation is the following.

Definition 12: “z, =, (”vu ., &y)" where v is a node of type (OO, n, vy, ...,v,) will mean “:z:,l,l T Ty A
ATy Ty Ty
We now deﬁne satisfaction of LDM formulas. Let ¢(z} ,...,zJ) be an LDM formula whose free variables
are z} - var Letly, ... 1, be an assignment of l-values to the free variables in the formula, i.e., each
liisa member of the correspondmg I(%). =1 ¢(l, ..., 1) will mean that ¢ is satisfied by Iy,...,1, in the
instance I. When I is clear from the context, we shall write k= instead of =1 .

Definition 13: Let ¢(:cul, .., 2y) be a formula with free variables z} ,r--» &y, and let I; € I(v;) for all 4,
1<i<n Then =y ¢(ly,.. l) iff the following hold:

1. I ¢ is o}, m 4, then = (2f 7 2L)(l, . . ., 1) iff k = T,(1;).

2. If ¢ is =¥ p yl, then E1 (@ pal)(l,. .., 1) iff i = r(l;).

3. I ¢ is z} € zf, then =1 (¢4 € 21)(l, ..., 1) iff l; € r(l;).

4. If ¢ is @} = f, then |y (28 = =) (h,..., 1) iff |; = l.

5. If ¢ is x}, =,], then =1 (v} =, L)1, ..., L) iff #(l;) = r(§;).
6. If ¢ is =}, =, ¢, then |=1 (zf =, ¢)(l1, ..., 1) iff »(L;) = f(c).

7. F1(¢1Vé2)iff Eyé1or =y ¢

8. =1 ¢ iff =1 ¢ does not hold.

9. If ¢ is a formula with free variables a:%l, oo, T}, Yy, then

== ((Vyw)¢) (..) iff for alll € I(w), |1 ¢l ln 1)

Definition 14: An LDM constraint or sentence is an LDM formula with no free variables.

24 . CHAPTER 5. THE LDM LOGIC

Definition 15: A constrained schema is a pair (S, ¢), where S is a schema and ¢ is an LDM constraint over
S. An instance of (S, #) is an instance I of S that satisfies [=1 ¢. :

Definition 16: Let ¢ be an LDM sentence. We say that an instance I of S satisfies ¢ iff 1 ¢ holds.

Definition 17: Let ¥ be a set of LDM sentences, and let ¢ be an LDM sentence. We say that I |= ¢ iff for
every instance I of S that satisfies all the sentences in L, 1 ¢ holds.

Definition 18: Let ¢ be an LDM sentence. and let ¢ be an LDM sentence. We say that ¢ is valid iff for
any instance I of S, =1 ¢ holds.

Example 10: This example and the next one will be over the LDM schema of Fig. 8 (page 10) with the
instance of Fig. 10 (page 11). The LDM formula ¢(zu, ¥u) = (Tu 71 yy) says that the l-value of z, is equal
to the first component of the r-value of yy. f=1 ¢(l, l2) holds for the (I1,13) pairs (1,7, (2,8), (3,9), (4,10),
and (5,11).

Example 11: Let us see how to write a constraint that says that each l-value of u is related to exactly one
set in w. So for example, ‘8’ and ‘9’ as parents of ‘2’ must be in one set rather that in two different sets.
The constraint is

¢ = (Vou)(Ves) (V93) (V2) (V25) (yi = (B, 25) Ao =r (Bu, 28) = 2 =1 23,)

In other words, each l-value in u (z,) has at most one l-value in w (2, and 22) associated with it. This
association is through y} and y2.

Note that this constraint says that each I-value in u is associated with at most one set in w, rather
than saying that each person in the database is associated with at most one such set. There could still be
duplication in u, e.g., two l-values with the r-value “Solomon.” One way to prevent this would be through
the constraint

¥ = (Yo,)(Vad)(zy =r 25 = oy =1 23)

The following lemma shows that we can restrict the logic without reducing its power. ‘We show that
there is no need for atomic formulas that compare r-values of internal nodes. This lemma will make some
subsequent proofs and definitions much simpler.

Lemma 2: Let ¢(z! ,...,2}) be an LDM formula whose free variables are the variables z} , ..., z} .
There is an LDM formula 9(z},, ..., #7,) with the same free variables, that does not contain any atomic
subformula of the form zy =, y, with p(v), u(w) # O. This formula is equivalent to ¢, i.e., for all instances

IofSandallly, ..., I,k € I(%), Ex (- da) iff E1 (1, ..y 1)

Proof: The proof is by induction on the size of ¢. We show how to construct 1 for formulas of the form
Ty =, Yv, Where u and v are similar and not of type O. The result will then follow immediately.

We distinguish between the possible types of v and w.

1. If u and v are of type (O, w), then ¥(zy, y») Will be (V2y,)(2w € Ty ¢ Zw € Yo), Where 2y, is some new
variable. Let I be an instance of S. Then :

‘:I (Tu = Y)1, 1) & 7'(11) = 7‘(12)
& For all lin I(w),l € r(ly) & 1€ r(l3)

< hI ((vzw)(zw €Ery =2y € yv))(llyl2)

and therefore ¢ <> ¢ is valid.

5.1. DEFINITION OF THE LOGIC 25

2. If u and v are of type (OO, n, wy, ..., w,), then ¢(z,,y,) will be

(V2hy) - (V20) (b 72 20 € 2, M0 A+ A GaR, T 2 5 25 7 1)

where 2}, , ..., 2 are n different new variables. Let I be an instance of S. Then E1(zu =r)1, 12)
is equivalent to r(ly) = r(l2). If r(li) = (1f,...,17) and r(l) = (i},...,12), »(l) = r(I3) is equivalent
tolj =05, fori=1, ..., n. In other words, for each such 3,

F1 ((sz;,)(zf;;; Ti Bu > 7, y,,)) (h, k)
and therefore |=1 (zu =r 3)(l1,12) is equivalent to

Ervab,) (25 (8, 7120 & 2, miw)
A A (2D Tn @y & 20, T g.,))(zl,zz)
ie., ¢ & 9 is valid.
3. If u and v are of type (£\n,wy,...,w,), then Y(zy, yy) will be
(G20,)20, Pou A2y, po) V-V (325)20, pou Azl pys)

where 2, , ..., 2} are n different new variables. Let I be an instance of S. Then F1 (@s =r %)(l1,12)
is equivalent to 7(l;) = r(l2) = I. This can hold only if for some i, 1< i< n,l € I(w;) in which case

Er (@G poun s, p w)) ()

and therefore ¢ < v is again valid. |

From now on, we shall assume that z, =, y, can appear as a subformula only when #(v) = p(w) =0, as
far as proofs and definitions are concerned. We shall continue to use the more general form when convenient.

The proof of the following lemma, that says that satisfaction is preserved under isomorphism, is straight-
forward.

Lemma 3: Let S’ be an extension of S, and let I; and I, be extensions of I to S’. Let g be an isomorphism
from I, to I relative to S, and let ¢(x},,..., 25) be an LDM formula. Then

Frel. b)) e Eré(o),. . o0) B

Lemma 4: Let ¢(z;,,..., 27) be an LDM formula over S whose free variables are zl,...,z2 . LetIbea

finite instance and let /; € I(v;) for all 4, 1 < ¢ < n. Then =1 ¢(l1,...,1,) can be determined effectively.

Proof: We show this by induction on the size of the formula. For atomic formulas testing for satisfaction
is straightforward. Testing for disjunction and negation is also clearly effective. For quantification we make
use of the finiteness of I. In order to test whether =1 ((Vyw)#)(l1, ..., 1), we test whether =y, ... 0 0)
for each [in the finite set I(w). I

26 CHAPTER 5. THE LDM LOGIC

5.2. The Relation between LDM logic and First-Order Logic

In this section we shall show that the LDM logic is essentially first-order; that is, it is compact and it satisfies
a Lowenheim-Skolem theorem. We shall prove this by reducing LDM logic to a certain many-sorted first-
order logical theory with equality. We mention in contrast that Jacobs’ database logic [Jac82] is inherently a
higher-order logic that does not have any of these properties. In the next section, we shall use this reduction
to develop a proof theory for the LDM-logic. In both these sections we shall not assume that instances are
finite, or make any of the other assumptions on instances that we mentioned earlier.

Let L be an LDM logic over S. We construct a many-sorted first order logic with equality L’ as follows.
The sorts of L’ are V U {¢}, i.e., we have a sort v for each node of the schema, and one special sort ¢ that
corresponds to the domain from which the data is taken. L’ has variables ranging over all the sorts, except
for the special sort, € since we do not want to be able to quantify over the data domain.

The relation symbols of L' are
{€w| w e V and p(w) = O} U {pu,s | w € V, p(w) = A and v is a child of w}

If w € V is of type (O, v) then €, is a binary relation symbol between elements of sorts v and w. pu, is
also a binary relation between these sorts. We shall use infix notation for binary relations.

The function symbols of L’ are
{rwilweV,p(w)=(O,n),1<i<n}U{fu|weV,u(w)=0}

The function symbol 7, ; is from sort w to sort v, where v is the ith child of w. We shall also use the notation
Tw,y When its meaning is unambiguous. The function symbol f, is from sort w to sort €. Intuitively, 7y ;
maps its argument to its #*h component, and f,, maps its argument to its r-value, which is a data element.
The reason we use pyy, rather than a function symbol, is that p should be interpretated as a function from
I(w) to the union of the instances of its children, whereas in first-order logic all functions are to exactly one
sort. For this reason we use a relation symbol for p, and we shall also need some extra axioms for L' besides
the usual logical axioms. Finally, the constants of L (i.e., the elements of C) are also constants of L, of sort
c.

The logical theory L’ then consists of the standard logical axioms, together with the set Ax(S) of axioms
for p. Ax(S) contains the following axioms for each node w of S that is of type (D, vy,...,vm).

1. (Vzw) (Buk)W, P 20) V-V (BY2,)(EE, Pusn o))
2. Forall i and j where 1 <4, < 7 and i # j, (Vau) (@0,)b, pus 20) = (V8,)~(¥, Pu0;%0))

3. Forall i, 1 < i < n, (Vau) (Yol (V62) (68, Puws 20) A (82, Pues 20) = (v =1 42.)

Essentially these axioms say that the interpretation of p is a function from I(w) to I(v1)U---UI(vp). When
we use the symbol = in the theory L', e.g., £ |= ¢, we shall mean that every model of £ and Ax(S) is also
a model of ¢. :

We now define two mappings. The first, F (for “First-order”) will map formulas and instances of the
LDM logic L to formulas and structures of L’. The second mapping, L (for “LDM”) will map L’/ to L.

5.2.1. Mapping LDM Logic into First-Order Logic

We first show how to map LDM formulas into first-order formulas.

5.2. THE RELATION BETWEEN LDM LOGIC AND FIRST-ORDER LOGIC 27

Definition 19: Let ¢ be a formula of L. W.l.0.g., assume that it is in the form of Lemma 2 (page 24). F(¢)
is the L'-formula defined as follows.

.
Rl A o o o o

F(zy T Yu) 1S Ty = Tw t(Yu)-

F(zy pYuw) i Ty puw,w Yu-

F(zy € yu) is 2y €y Yu-

F(zy =1 yy) is 2y = 9.

F(zy =, yu) is fo(2y) = fuw(yw), where v and w are both of type 0.
F(zy =, c)is fy(zy) =c.

F(¢1 A ¢2) = F(¢1) A F(¢2).

F(~$) = =F(9).

P((Y2,)8) = (V2,)F(9).

We now map an instance I of S into a structure F(I) over L'. An L’-structure M consists of an assignment
of a domain Dp(s) to each sort s, an assignment of a function gM to each function symbol g, an assignment
of a relation Rpq to each relation symbol R and an interpretation of each individual constant of L.

Definition 20: Let I = (I, r, f) be an instance of S. F(I) is the following L’-structure.

1.

7.

The domain corresponding to each sort v of L', except for the sort T, is the set I(v). Formally,
DF(I)(’U) = I(v).

Dpqy(@ = {f(c) | c € CYuU{r(l) | I € I(v) and p(l) = O}. This means that the domain that
corresponds to the sort ¢ consists of the interpretation of all the logical constants and of all the data
in the instance.

The interpretation of 7, ; is the function (7 ;) F(Iy that maps each element of I(w) to the it com-
ponent of its r-value. Formally, (7, ;) F(I)(l) = I;(), for all | € I(w).

. The interpretation of py , is the relation

(Puo)ry = {11, | 11 € (), 1z € T(uw) and b = r(lz) }

. The interpretation of f, is the function (f,) F) that maps each element of I(v) to its r-value, i.e.,

(fv) F(I)(l) = r(l) for all I € I(v). Note that all these r-values are in Dp1(©) by 2.

. The interpretation of €,, where w is of type (O, v) is the relation

(€w)r@y = {(, 1) | € 1(0), 1z € I(w) and by € (1)}

The interpretation of the individual constant ¢ is f(c). This is in Dp1)(?) by 2.

This definition immediately implies the following lemma.

Lemia 5: I‘_‘F(I) Ax(S) 1

Theorem 6: For any L-sentence ¢, =1 ¢ & Fd) F(¢).

28 CHAPTER 5. THE LDM LOGIC

Proof: The proof is by induction on the size of 4. The induction hypothesis is as follows. If ¢(=} PRI 4
is an L-formula and I; € I(v;) for all 4, 1 < i < n, then

'=I 11!(11,...,1,;)@ l'=F(I) F(‘/’)(llv"-:lﬂ)

The theorem follows immediately by taking ¥ = ¢.
For atomic formulas the proof of the induction hypothesis is straightforward. For example

E1 @ 7 vu)(lo, lw) € b = Mi(lu)
& by = (7w,0) ppy ()
& F p@y (@0 = (%)), o)
< |=F(I) F(xv xt yw)(lo;lw)

If¢ is either ¥, Vi3 or ¢y, the proof is easy. Finally,if ¢(x3,,...,27,) is the formula Yy)x(2l,, -, 25 Yw),
then

E1 ((Vyw)x)(ll, ool e Foralllin I(w), Exx(hy--esinl)
By the induction hypothesis and the definition of DF(I)(w),

< For all I in DF(I)(w), Era F(x)(l,.. ., 1n,1)
< F=F(I) F(¥)(h,---, i) B

5.2.2. Mapping the First-Order Logic into LDM Logic

In order to define the inverse mapping L from L’ to L, we first examine the form of atomic formulas in the
first-order logic L’. Since the only relation symbols in L’ are €u, pu,v and =, such an atomic formula must
be one of the following.

1. t; €y t2 where w is of type (O, v), t; is of sort v and t, is of sort w.

2. t1 puw,v t2 where w is of type /\ v is a child of w, ¢; is of sort v and 3 is of sort w.
3. t; = t, where both ¢; and ¢, are of sort w for some w in V.

4. t; =t where both ¢; and ¢; are of sort ©.

Note that we cannot have #; €, t2 or t1 py,y t2 Where either £; or iz is of sort ¢.
We first introduce some notation. Whenever % is a term of the form

Tuzug **° wﬁn—-lyun—ﬂﬂ'unyun—l(wun)

we shall want to replace it by a variable of sort u;. For this purpose, we introduce new variables z&l, ey

z{“:_ll of sort u1, ¥, ..., un_1 respectively. Q; will stand for the sequence of quantifiers
-1
Q= (3z,) - (34,
and ¢, will say that z} , ..., 2271 are on the path from z,,, i.e.,

((ztlllﬂ'umulztzlg) A e A (z‘l':"__.ll W“n;un-—lx“n))

Using this notation we define L(¢) for an atomic L'-formula ¢ as follows.

5.2.

1.

THE RELATION BETWEEN LDM LOGIC AND FIRST-ORDER LOGIC 29

Since the result of each fy is of sort ¢ and there are no function symbols from sort ¢, whenever ¢ is
t) €w L2 Or t; py v t2, the only possible form that the terms t; and ¢, can have is

81 = Ty Tuguy T tiney Tuun (Tu)

and

t=7l'l Tyl y! * Wyt] 7|'II(I)
2 ul,wTulu} ulul _ Tulu! (Yu

(n or m may be equal to 0, in which case some of the new variables are not needed. It should be obvious
how to modify the definitions in this case, and in the case when ¢; or %, is an individual constant.) We
now define

L(t) €w t2) = Q1,Qs, ("»bh Ay, A(20 € z,,,))

where z, and z,, are the new variables of sorts v and w that we introduced.

In a similar way L(t; py,, t2) is defined as as

Qt,Q1, (¢t1 A, A(20 p Zw))

. When ¢ is t; = t, where ¢; and ¢, are of sort w, t; and ¢, must be of the form

t = Tuy,wTuzuy ~°° T“u:un—lﬂ.“y“n(zu)

and
12 = Ty ,wTu3,01 " Fopmvmes To,0m (Yo)
We then define .
L(tl = t2) = Qtha (¢f1 A ¢12 A (zill.J =i zz))
1

where 2z} and 22 are the two new variables of sort w that we introduced.

. When ¢ is t; = t; where ¢; and ¢, are of sort &, t; and ¢ must have the form

ty = fu17rug,u1 T MU, Un ru,u"(;vu)

and
t2 = fo,Tog,0, - T, Ume1 70,0, ()

Write t; = fu,(t3) and t; = f,,(t4). We then define L(t, = t2) to be

Qt,Q1, (¢t3 A, A (2, = 22,)

Definition 21: When ¢ is an L'-formula, L(¢) is defined as follows.

1.
2.
3.
4.

If ¢ is an atomic formula L(¢) is defined above.
L(¢1 A ¢2) = L(¢1) A L(¢2).
L(=¢) = ~L(9).

L((Vzy)¢) = (Vz,) L(4). The fact that L’ has no variables of sort is necessary to guarantee that this
is an L-formula.

We now show how to map L’-structures into L-instances.

30 CHAPTER 5. THE LDM LOGIC

Definition 22: Let M be an L’-structure that satisfies Ax(S). We define L(M) = <I (M) TL(M)’ fL(M)>
to be the following instance of S.

1. For each node v of S, I} j\p)(v) is the domain that corresponds to the sort v, i.e., Dpg(v).
2. For each I € I(v), r(l) is defined as follows:

(8) If p(v) = O, then r(l) = (£

(b) If p(v) = (O, m, 01, ..,), then 7)) = ((Fo0)M D), -, (700)M ()-

(¢) If p(v) = (O, w), then r(l) = {1 | T (€v)Mmi}-

(d) If p(v) = (Dn,vy,...,v), then r(l) = T where I is the unique element of I(v1) U - U I(vp) such
that I py,v; { for some i. The existence and uniqueness of [are consequences of Ax(S).

3. For each ¢ € C, f(c) is the interpretation of the individual constant ¢ in the structure M.
Lemma 7: L(M) is well defined and is an instance of S. 1

Theorem 8: Let M be an L’-structure. Then for any L'-sentence ¢, Epf ¢ ¢ k& (M) L(¢).

Proof: The induction hypothesis is the following. If ¢(z} ,...,z}) is an L'-formula with free variables

zl ...z} and | € Ipg(w) for all 4, 1 < i < n, then

En ¥ b) & E povy L@ h)

Taking ¢ = ¢ completes the proof of the theorem. We shall show the inductive proof only for the first type
of atomic formula in the list above. The proofs for the other cases are similar. Once we know that the result
holds for atomic formulas, it is easy to show that-it holds for all other formulas.
We therefore let ¥(y, yur) be the L'-formula ¢; €y 2 where w is of type (O,v)
11 = Tuy,0Fuzuy ©° '7ru,.,u,._17ru,u,.($u)
and

to =, Tor? ap? *** Woy? ! 7('11(/)
2 ul,wTul,ul ulyul L Tulul \Yu

L(ty €y t2) was defined as Qq, Q1,(¥r, A, A (20 € 2)) Where z, and 2, are new variables. Let I € I (u)
and I € I(v'). Then =g (t1 €w t2)(¢, ') holds iff

MM, - Ty (1) (€0)pg MoTluy -+ T, ()

Let I, = 10, - -1y, (I) and 1, = M, My, oIy (I'). Then l,(€w)pMlw and therefore l, € l,. By their
definition, there must be a sequence of l-values l,,, ..., lu,, lu!, ..., lu, satisfying

|=L(M) ('l’t1 A, A (20 € Zw)) oy luys ooyl dwy but s - ol 1,)
This implies that
Em¥0l) & EFrav) (Qt;ng (¢’t1 A, A (2 € zw))>(l,l')

and therefore
Emv(LT) & F o Lt €o)1 B

5.2. THE RELATION BETWEEN LDM LOGIC AND FIRST-ORDER LOGIC 31

5.2.3. Consequences of the Reduction

It follows immediately from the definitions together with Lemma 5 that L and F are inverse mappings on
instances.

Lemma 9:

1. If I=(I,r, f) is an instance of S, then L(F(I)) =1.
2. If M is an L/-structure that satisfies Ax(S), then F(L(M)) =M. i

As functions on formulas, ¢ and 4 are not inverses, since F(L(¢)) may be a different sentence from ¢.
However these sentences are logically equivalent.

Lemma 10:

1. Let ¢ be an L-sentence. Then L(F(¢)) is equivalent in L to ¢.
2. Let ¢ be an L'-sentence. Then Ax(S) I (F(L(¢)) < ¢).

Proof:

1. We have to show that for any instance Iof S, = (¢ & L(F (¢))) . By Theorem 6, |=1 ¢ is equivalent to

= Fd) F(¢), and by Theorem 8, |= ray F (¢) is equivalent to |= LFy) L(F(¢)). Finally, by Lemma 9,
L(FI) =1

2. Let M be an L’-structure satisfying Ax(S). By Theorem 8, =M ¢ is equivalent to | (M) L(4).
Theorem 6 implies that |= L(M) L(¢) is equivalent to |= FL(M)) F(L(¢)) and by Lemma 9, F(L(M)) =
M. Therefore =g F(L(4)) is equivalent to = 4, and therefore Ax(S) F (F(L(4)) < 4). 1

Corollary 11: (Validity) Let ¢ be an LDM sentence over S. Then ¢ is valid if and only if Ax(S) F F(¢).

Proof: Assume ¢ is valid. Let M be an L’-structure satisfying Ax(S). Since ¢ is valid, E L(M) ¢. By

Theorem 6, = My F(#), and therefore =g F(4). This shows that Ax(S) - F(¢). The proof of the
converse is similar. J

Corollary 12: (Compactness) Let T be a set of LDM sentences over S. Then X is satisfiable iff every
finite subset of X is satisfiable.

Proof: Let F(X) = {F(0) | ¢ € T}. If I satisfies a finite subset of &, then by Theorem 6 F(I) will satisfy
the corresponding subset of F(X). This shows that every finite subset of F(Z) is satisfiable by a model of
Ax(S). The Compactness Theorem for first-order logic then implies that F(£)U Ax(S) is satisfiable by some
model M. By Theorem 8, all the sentences in L(F(X)) hold in L(M), and by Lemma 10 the sentences in
L(F(X)) are logically equivalent to those in . 1

Corollary 13: (Lowenheim-Skolem) Let T be a set of LDM-sentences over a schema S. If ¥ is satisfiable,
then it is satisfiable by a countable instance.

Proof: The proof is similar to the proof of the Compactness Theorem, together with the observation that
the mapping L preserves the cardinality of the model. I

While the latter two corollaries are of theoretical interest, the Validity Corollary also has a practical
significance. It implies that together with the appropriate interface we can use a standard theorem-prover
in the database design process or for deductive query processing [BBG78] [MMSU81] [NG78] [Rei84].

32 CHAPTER 5. THE LDM LOGIC

5.3. A Proof Theory for LDM Logic

In this section we give a complete set of axioms and derivation rules for LDM logic. The axioms are as
follows.

1. All instances of propositional tautologies.
2. Logical axioms, as in first-order logic.

(a) F (V2,)(¢ = ¥) = ((Vz)¢ = (V2o)¥)

(b) F (Vz,)¢(zs) = ¢(yv), where y, does not appear bound in ¢.
3. Equality axioms for =;.

(a) F (Vzu) (2o =1 Tv)

(b) F zy =1 y» = (¢ = ¥), where ¢ is obtained from ¢ by replacing some or all occurrences of =, by
Yo

4. Axioms that say that =, is an equivalence relation. If u, v, and w are nodes of S of type O, then the
following are axioms.

(a) F (;l:u =, xu)
(b) F (20 =r %o = g0 =r 24)
(C) F (;Du =r Yo NYp =r 20 = Ty =r zw)

5. Axioms for (-nodes. If u is of type (O and v is its tth child, then we have axioms saying that each
I-value in I(v) has a unique t*h projection. :

(@) F (Yzu)(Fyo) (o 7t Tu) (Eﬁistence).
(b) F (Vzu)(Vo) (Y20) (Yo 7t Tu A Zy Tt Tu = Yo =1 %) (Uniqueness).

6. Axioms for Anodes. If u is of type (£\ n,v1,...,vn), then there is exactly one element of the I(v;)’s
that corresponds to each element of u.

(a) (Vou)((Ful) (s, p2u) V-V (345,)(¥5, p zu)) (Existence).
(b) For all i,j where 1 < 4,5 < n and i # j,

(Vo) (30) (@5, p zu) = (V¥,)-(¥, p =)

(Uniqueness of the node among the children of u).
(c) Foralli,1<i<n,

(Vou) (V93 (V92) (w8, P 2) A (95 P 2) = (W0, =1 85,))
(Uniqueness in that child). '
The derivation rules are the same as in first-order logic, namely

(MP) From t ¢ = ¢ and I ¢ we can infer 4.

(Gen) From F ¢ we can infer b (Vz,)¢ for any sort vEV.

5.3. A PROOF THEORY FOR LDM LOGIC 33

We use the standard notation for implication. Therefore © I ¢ means that ¢ follows from ¥ and the
above axioms and derivation rules. We now show that this is a complete set of axioms.

Theorem 14:
LF¢ o TE

Proof: We first prove that = ¢ <> F(Z)=F(4). If T4, and M is a model of F(E) satisfying Ax(S),
then L(M) is a model of L(F(X)). By Lemma 10, L(M) satisfies £, and therefore satisfies ¢. But then
M = F(L(M)) satisfies F(¢) by Theorem 6. The proof of the converse is similar.

By the completeness of first-order logic, F(Z)k= F(¢) is equivalent to F(Z) F F(¢). To complete the
proof, it therefore remains to show that

¢ & F(X)F F(¢)

To prove that ¥ - ¢ = F(X) - F(¢), we show that each axiom of the LDM logic L is mapped by F into
a theorem of L/, and that the derivation rules are mapped into valid rules.

It is easy to see that tautologies are mapped to tautologies. The other logical axioms are similar, e.g.,

(Vau)(@ =) = ((Vo.)¢ = (Y20)0)

is mapped by F into
(v2) (F(#) = F(¥)) = (Vo) F(9) = (Vo) F($))

which is valid in first-order logic.

The axioms for =; are similarly mapped into equality axioms of first-order logic. As for the axioms for
=r, F(Tu =r Yo = yv =r zy), for example, is

(fu(‘vu) = fv(yu) = fv(yv) = fu(-’cu))

which is clearly valid.
The axioms for (O are mapped to the valid LDM sentences

(V‘J)u)(ay,,)(y,, = Wu,i(‘”u))

and

(V-Uu)(vyu)(vzv)(yu = TuiTu N2y = Ty iy = Yo = Zu) '
and the axioms for /\ are mapped into axioms in Ax(S). The proof that the derivation rules are valid is
straightforward.

We shall now show that ¥ I ¢ = L(Z) - L(4). Once this holds, we then have F(X) | ¢ = L(F(Z) F
L(F(4)), and applying Lemma 10 completes the proof.

In order to prove this, we show that all the axioms of the first-order theory L’ are mapped by L into
consequences of the LDM axioms, and that the derivation rules are mapped into valid derivation rules. For
this we need a set of axioms for many-sorted logic. Such a set of axioms consists [Sch38] of the standard
first-order axioms with the obvious restrictions of sorts of variables and terms. :

) The proof for the derivation rules and equality axioms is straightforward. It is also straightforward to
show that the axioms in Ax(S) are mapped into the A\ axioms, and that an instance of the logical axiom

F(V20)(¢ =) = ((V2u)¢ = (Voo)¥)

is mapped into the corresponding LDM axiom.

34 CHAPTER 5. THE LDM LOGIC

The remaining, and most difficult, case is the logical axiom

F (Vo)d(zy) = ¢(2)

where £ is a term that contains no variables that are quantified in ¢ by a quantifier that has a free occurrence
of z, in its range. This is mapped into the formula I (Vz,)L(#(2y)) = L(¢(t)). This might appear to be
an instance of the corresponding LDM axiom, but it is not. The reason for this is that substituting ¢ and
then applying L does not give the same formula as applying L and then substituting ¢ for .

Let ¢ be the result of substituting the term ¢ for z, in ¢. We shall prove that (Vz,)(L(¢)) = L(¢) is a
theorem of LDM logic by showing, by induction on the size of ¢, that the stronger assertion (Vz,)(L(¢)) =
L($) = (32,)(L(9)) is such a theorem. The proofs of all of the cases except when ¢ is atomic are trivial.
Note that the second implication is needed for the proof of the first implication to go through in the case of
negation.

For the case when ¢ is atomic, note first that v cannot be of sort ¢, since there are no variables of this
sort. The treatment of the various types of atomic formulas are all similar, and we shall prove the result for
the case when ¢ is the formula z, € yy,. t must be a term of the form mymy, - - -7y, (2u). (V&y)L(4) is then
the formula

(Vzy) (2o €Ew Yu)

L($) is the formula
(Fzy)(By,) - Ty,) (@0 Ty T, A ATy, Ty, 2u ATy Eu Yu)

and (3z,)L(¢) is (324)(Zy Ew Yu). Proving the induction hypothesis is now straightforward since the LDM
axioms for ©-nodes imply that for each z, there are z,,, ..., z,,, ¢, satisfying

(T Ty Ty, Ao+ ATy, Ty, 2u) B

Corollary 15: The axiom system introduced in this section is sound and complete for LDM logic. i

5.4. The Complexity of Integrity Checking

From now on we consider only instances that correspond to real databases. In other words all instance are
finite, all -values are natural numbers, all r-values in nodes of type OJ are from a fixed set D, and we do not
distinguish between individual constants in the schemas and data elements.

In this section we investigate the complexity of checking integrity constraints. The integrity constraints
are sentences in LDM-logic, and a database is “legal” if and only if it satisfies the constraints. Following
[Var82], we use two measures of complexity, data complexity and expression complexity. Intuitively, data
complexity is the complexity of testing satisfaction of a fixed sentence in terms of the size of the database.
Expression complexity, on the other hand, is the complexity of testing satisfaction of sentences on a fixed
database in terms of the length of the sentences.

More formally, the data complexity of LDM logic is the complexity of the sets

Gr(S,4) = {I|Lis an instance of S and =1 ¢}
where ¢ is a sentence over S. The expression complexity of LDM logic is the complexity of the sets
Gr'(8,D)={¢|F1¢}

where I is an instance of S. Note that Gr(S, ¢) is a set of instances, while Gr/(S,1) is a set of sentences.

5.4. THE COMPLEXITY OF INTEGRITY CHECKING 35

Theorem 16:

1. For every sentence ¢ over S, the set Gr(S, ¢) is in LOGSPACE.
2. For every instance I of S, the set Gr/(S,I) is in PSPACE.
3. There is a schema S and an instance I of S, such that the set G»/(S, I) is logspace complete in PSPACE.

Proof:

1. We have to test whether, for a fixed sentence ¢, =1 ¢. Let |I| = n be the number of l-values in I, and
let £ be the number of quantlﬁers in ¢. In order to test whether =y ¢, we have to test all possible
assignments of values to these variables, of which there are at most n*. If we cycle through these
assignments in a fixed, say lexicographic, order, we can do this in space O(k logn) = O(logn). For
each such assignment it is easy to see that testing ¢ takes constant space.

2. As in the previous case, we can test =1 ¢ in O(klogn) = O(k) space. In this case n is fixed and k,
the number of quantifiers in ¢, is less than the length of ¢.

3. We shall reduce the Quantified Boolean Formulas (QBF) of [Sto77] to the set Gr/(S,I). Let S be the
schema consisting of the single node u of type 0. Let I be the instance of S with I(u) = {1,2} and

r()=F,r(2)=T. If E' = (Q1z1)-- (Qn.v,,)E is an instance of QBF, let ¢(E’) be the LDM formula
that we get by replacing each literal z; in F by z}, =, T, each T}, by z!, =, F, and each quantifier
(Qiz:i) by (Qizt,). We clearly have |¢(E’)| = c|E'|, and also

¢(E') € Gr'(S,1) & =1 ¢(E')

<> There exists a satisfying truth assignment for E’ i

Thus the data complexity of LDM logic is LOGSPACE, and the expression complexity of LDM logic is
PSPACE. Since analogous results hold for the relational model [Var82], we see that integrity checking in the
logical data model is not more difficult than in the relational model.

Chapter 6

The Logical Query Language

'6.1. Introduction

In this chapter we use the LDM logic described in the previous chapter to define a non-procedural query
language on LDM schemas. This language will be analogous to the tuple calculus in the relational model. As
we mentioned earlier non-procedural languages exist for the relational model but not for the other models,
and these models can only be queried through various procedural languages. For the rest of this thesis we
consider only instances that correspond to real databases. In other words all instance are finite, all I-values
are natural numbers, all r-values in nodes of type OJ are from a fixed set D, and we do not distinguish
between individual constants in the schemas and data elements. Throughout this chapter S will be a fixed
schema. Except where mentioned otherwise, I will be a fixed instance of S.

We noted one major difference between the relational model and other models, namely that the result
of a query in the relational model has the same structure as the relations in the database. This is certainly
not true of most of the other data models. Whatever the result of a query on a hierarchical database is,
using the standard query languages, it will not be another hierarchy. Because of this property the relational
query language can be used for defining views, rather than requiring a separate language for view definition.
Furthermore, the fact that the result of a query has the same structure as the database enables us to express
and answer complex queries. The system can then break queries up into simpler subqueries and answer the
simpler queries first.

We would therefore like the LDM queries to have a structure that is similar to that of the database, i.e.,
they should also be LDM schemas. Chapter 3 gives some idea of the sort of queries we should like to write.

The natural analogue to the relational calculus would be to have the query consist of an LDM formula
¢ containing one free variable for each query node. Intuitively, we should select all objects that satisfy the
- formula. This approach turned out not to work for several reasons. One was the difficulty of handling cyclic
queries, while the other was what to do with nodes of type O. The only way we were able to deal with
O nodes was to require the query to group together as much as possible in each set. This both reduced
the expressive power of such nodes, as we could no longer relate an object to more than one set, and also
resulted in an extremely complicated and unintuitive definition of the result of the query.

Another unsuccessful approach, using a closed formula ¢ is described in Appendix A. The successful
approach was base on the following idea. Suppose the query added just one node u to the schema. Then we
could use a formula ¢, (z,) with one free variable z, of sort u to define explicitly what the contents of u are
in terms of the contents of the database. The bound variables of ¢y (z,) therefore can range over nodes of
the schema S. The result of the query will be an extension of I such that u contains all those “objects” that
satisfy ¢.

36

6.2. THE LDM QUERY LANGUAGE 37

What do we do if Q adds more than one node to S? We decided to extend this approach by having
one formula per node. Each such formula will define the result at its node in terms of the contents of the
database and of nodes whose result has already been constructed. A consequence of this is that the query
schema must be acyclic. As we still allow the database schema to be cyclic and only prevent the user from
constructing new cycles in his queries we do not think that this is too serious a restriction.

6.2. The LDM Query Language

Definition 23: Let S = (V, E, u) be an LDM schema. A query on S consists of a tuple Q = (Sq, (I>Q, -<Q)
where

1. SQ is an extension of S.

2. <Q is a topological order on the nodes in VQ -V, ie, <Q is a linear order such that if v is a child
of w then v <Q w-

3. <I>Q is a set of LDM formulas, one for each node v in VQ — V. The formula ¢, that corresponds to the
node v satisfies

(a) ¢v has only one free variable, and it is of sort v.

(b) All other variables in ¢, are bound. Each of their sorts is either a node of the database schema
S or is a query node that precedes v under <Q-

The order <Q is used to specify the order in which we define the result of the query. In Section 6.4 we
investigate to what extent we can do without this order.

Before continuing with the formal details we give several examples of logical queries. The database
schema in these examples will be the genealogy schema of Fig. 8 (page 10). The instance of it will be that
shown in Fig. 10 (page 11).

Example 12: The schema of Q; is shown in Fig. 22, The formula ¢y:(zy) is (Fyu) (2w =, yu)- In other
words we want I(u') to be a copy of I(u). We eliminate, however, any duplication that may be in I (u). The
result of the query! is shown in Fig. 23.

Figure 22: Schema of Q;

1In all these examples, the result is defined only up to isomorphism relative to S, i.e., the choice of l-values is arbitrary

38 | CHAPTER 6. THE LOGICAL QUERY LANGUAGE

I(u)

1 r(l)
"17 | Rehoboam
18| Solomon

19 David
20| Batsheba
21 Jesse

Figure 23: Result of Q,

Example 13: The schema of Q3 is shown in Fig. 24. Q2 has ¢(zu/) always true. The result is quite large
containing 2% = 64 elements, the l-values 17 to 80. For this reason we do not show it here. The r-values of
these l-values are all the subsets of I(u).

Figure 24: Schema of Q3

Example 14: The schema of Q3 is shown Fig. 25. We want v’ to contain the set of parents of Solomon and
so we have the formulas

fur(ww) = (30 (32) 32)(322)323) (8 =r 2u) A (42 =- “Solomon”)
A2 = (52, 29) A (2 € 29) A (6 ™1 23))

and ¢v'(a’v’) = (Vyu) (yur € Tyr).

What ¢y(2y:) says is that there is some l-value (y2) in I(u) with the r-value “Solomon,” and another
(yL) with r-value equal to @,. The rest of the formula says that y is a parent of y2. ¢yr(y) says that I(v')
contains all the l-values in I(«') in one set.

The result of the query is shown in Fig. 26.

Example 15: The schema of Q4 is shown in Fig. 27. We want to restructure the hierarchy as a relation,
i.e., we want I(v') and I(w') to contain all the names of people that are in the database and I(u’) to connect
people to their parents.

The formulas are

$ur(2or) = (Fyu)(Tor =r Yu)

6.2. THE LDM QUERY LANGUAGE 39

Figure 25: Schema of Q3
I(w') I(v')

1 r()
19 ’ (17,18}

18 [Batsheba

Figure 26: Result of Q3

Suw(Tw) = () (®w' =r Yu)
and

$u(@ur) = (3z5.)(325,) (Fya) (F0d) (37)(323)(323)((33,' =r %) A(@%r =r 43)
Nzl =r @4 al)) A(zd = (0, 7)) A (62 71 22) A (22 € 22))
The result of the query is shown in Fig. 28.

We now formally define the result of a logical query. We start by looking at queries that add just one
node to the schema. We shall call queries like this simple queries.

Definition 24: A query Q is called a simple query if IVQ - Vl = 1. We shall use the notation Q, for a
simple query that has V-V= {v}.

Let Q, be a simple query on a schema S and let I be an instance of S. The result of Q, on I will be
an extension I, of I to S . In order to define I, we have to define what I,(v) is and what the r-values of

these l-values are. It should contain all those “objects” that satisfy ¢v(2y). The problem with using this as a
definition of I, is that ¢, (z,) is satisfied by I-values and since I, (v) has not yet been defined it is meaningless
to talk about the objects that satisfy ¢,. It might seem that problem is trivial, but suppose that du(zy)
included the conjunct (Vy,)(Vzy)(¥» =i 2). In other words I(v) can contain at most one l-value. If the rest
of ¢, allowed several possibilities for the r-value of this l-value we would have no way of choosing which one
would be in the result.

What enables us to deal with this problem is that a formulalike this is not allowed in our query language—
all bound variables in our language must refer to database nodes or nodes that precede v, not to v itself. As
a result of this restriction, it will turn out that although ¢, refers to l-values, it really expresses something
about their r-values alone. This will enable us to find the r-values that satisfy ¢, and after that pick the
l-values arbitrarily.

40 CHAPTER 6. THE LOGICAL QUERY LANGUAGE

Figure 27: Schema of Q4

I(v") I(w') I(u")
l r(l) l r() 1 @
17 | Rehoboam 22 | Rehoboam 27((17,23)
18| Solomon 23| Solomon 281(18,24)
19| David 24| David 29 (18,25)
20 | Batsheba 25| Batsheba 301 (19,26)
21 Jesse 26| Jesse

Figure 28: Result of Q4

Definition 25: Let r be an r-value (i.e., anything that could be an r-value of z,). We say that r is a
candidate r-value for v? if the following holds. Let ! be some new l-value, i.e., one that does not appear in
I Let I, be the extension of I to S with I(v) = {I} and r({) = r. Then [=y¢,(l).

By using this arbitrary l-value we are able to express the fact that r is one of objects that should be in
the result of the query. We first show that the particular choice of l-value is unimportant.

Lemma 1T7: Let be an r-value and let I; and I, be two extensions of I to SQV defined by, respectively,
L(v) = {hi}, r1(hh) = r, and Ir(v) = {k2}, r2(l2) = r. Then }::Iqu,,(ll) © F1,¢0(l2)

Proof: By definition ¢, has only one free variable of sort v, i.e., the variable z,. By inspection, we can see
that the only atomic formulas that can contain z, are Ty i Ly, Tw P o, Tw € Ly, Lo =r d, £, =, Ty and
T, =i Tp. The last of these is always true, and it is easy to see that the truth of the others depends only on
the r-value of z,. The proof is then a straightforward induction. i

We now define the result of S . Take all the candidate r-values for v, pick a new l-value for each one
of them and put all of these l-values into I,(v). For now, we shall assume that the set of candidate r-values
is finite. Queries with this property will correspond to the safe queries in the relational model. In the next
section we shall look at this issue in more detail.

Definition 26: The result of Q, is the extension I, of I to SQV defined as follows. Let R be the set of all

the candidate r-values for v and let {l, | » € R} be a set of new l-values, i.e., ones that do not appear in L
We then define I,(v) to be the set {I, | » € R} and define r(I,) = r for each r € R.

20f course this really depends on Q and I as well, but these should be clear from the context.

6.2. THE LDM QUERY LANGUAGE 41

We now show that this definition has the properties we want. We show that the result is well defined (up
to isomorphism relative to S, and assuming finiteness), that everything in the result satisfies ¢, and that
we cannot add anything else that satisfies ¢, to the result without introducing duplication. Some of this
formalizes what we meant when we said that ¢, expresses something about the r-values of , rather about
than their I-values.

We first state a lemma which we shall need for the proof of Lemma 19. The proof of this lemma is similar
to the proof of Lemma 17.

Lemma 18: Let I; be an extension of I to S . Let I be an element of I;(v) and let I, be the extension
of I to SQ, defined by I>(v) = {I} and r2(l) = r1(I). Then Fr,¢0(D) & E1,4.(0). &

Lemma 19:

1. Let I and I, be two results of Q,. Then I, and I, are isomorphic relative to S.
2. Let I, be the result of SQ, Then for each I in I,(v), F1,¢u(!).

- Proof:

1. Let I; and I, be two possible results of Q and let {; be an element of I (v). Since »(l;) is a candidate
r-value for v there must be some I3 in Ir(v) with r(l;) = r(I;). Since both I;(v) and I,(v) have no
duplication we immediately get a 1-1 correspondence between the l-values of Ii(v) and L(v). It is
easy to see that this correspondence is an isomorphism.

2. Let I be an arbitrary element of I,(v), and let I* = (I*,r*) be the extension of I to SQ, defined by
I*(v) = {!} and r*({) = »(I). By Lemma 18 '
Fr,¢.() & Er.é0())

Since r(l) is a candidate r-value for v we can extend I to an instance I** of S , by defining I**(v) =

{i**}, r**(I**) = r(l), for some new l-value I**. We then have |=1..4,(I**). By Lemma 17, Er.d.()
and therefore |=1¢,(1). I

We now define the result of an arbitrary query Q. To do this, we first define composition of queries.

Definition 27: Let Q; be a query and let Q; be a query on SQl‘ Q20 Q; is the query on S that we get
by composing them, i.e., Q2 0 Q; has SQ,oQ1 = SQ:’ ¢Q2°Q1 = (I)Qx U<I>Q2 and

<Q..Q,=<Q, Y=<q, Y {(v, w)|veVq,,we VQQ}
Lemma 20: Q;0Q, isa query on S. |

Let the nodes added by the query Q be Vg ~ V = {vy,...,v,} where v; < --- < v,,. We shall define a
Q

sequence of simple queries Q,,, ..., Q,,, as follows. Each Q,; is a query on the schema of Q,,_, and adds
the node v; to that schema. The formula for v; is ¢,,. It is easy to see that Q=0Q,,0---0Q,, and this
enables us to easily define the result of Q.

Definition 28: The result of the query Q on I is the result of applying the queries Q,,, ..., Q,,, successively
to L.

Lemma 21: The result of Q is well defined, i.e., different choices of l-values at each step yield isomorphic
results.

42 ' CHAPTER 6. THE LOGICAL QUERY LANGUAGE

Proof: This is a straightforward application of the first part of Lemma 19. Il

The following theorem shows that the result of the query has the desired properties. These include a close
relation with the maximize data while minimizing duplication approach that we described in the previous
section.

Theorem 22: Let IQ be the result of the query Q on the instance I

1. Let v be a node added by Q and let ! be an element of I(v). Then =1 ¢u(1).

9. If v is a node added by Q and I; and I, are two different l-values in I(v) then r(l;) # r(l2). In other
words there is no duplication in the result.

3. 1, is a maximal extension of I to S that satisfies 1-2, i.e., there is no extension I} with IJ(v) 2 I,(v)
forallve VQ — V that satisfies 1-2 and such that for at least one v the inclusion is proper.

Proof:
1. Let Q* be the query Qu, o -0 Q,, where v = v; and let Iq. be the result of Q*. By Lemma 19,

*

E1 .¢,, (1) It is easy to see that I is an extension of an isomorphic image of IQ and that extending

I‘Q to SQ does not affect the satisfaction of ¢,.

2. Obvious.

3. Assume that such an T* exists. Let v = v be the first of the nodes vy, ..., v, for which I} (v) # I, (v)
and let Q" be the query Qu, o --- 0 Qy,. From 1 and 2 it follows immediately that both I, and
I} restricted to SQ. are results of Q*. Lemma 21 then implies that I} and I, are isomorphic, a

contradiction. il

6.3. Safe Queries

We have seen that provided that the set of candidate r-values at each node is finite, the result of the query
is well-defined. It remains to see when the set of candidate r-values is finite.

Definition 29: A query Q on a schema S is safe if for every instance I of S, the set of candidate r-values
at each node, under the construction described above, is finite.

Note that as we are considering only finite instances, this is the same as requiring that the query have a
result on every database instance.

Let v be a query node, i.e., an element of VQ — V. Assume that we have defined the result of Q for
all those nodes that precede v. If u(v) = O, O or 2\ the set of candidate r-values for v is contained in
either the cartesian product, union or powerset of the instance(s) of its child(ren) and therefore must be
finite. The only case when it may be infinite is when p(v) = O. If the domain D of data is finite, then
all queries are safe, since the set of candidate r-values for nodes of type [J is a subset of D. We therefore
assume throughout this section that D is infinite.

Lemma 23: Q is safe on I iff for every query node of type O the set of candidate r-values for v is finite. 1

We give two examples using the database and query schema shown in Fig. 22 (page 37) and the database
instance shown in Fig. 10 (page 11).

6.3. SAFE QUERIES 43

Example 16: ¢y/(2ur) is (Fyu)(Tw =r %) V (2w =, “Absalom”). This query is safe since the set of
candidate r-values is R = { Jesse, David, Batsheba, Solomon, Rehoboam, Absalom}.

Example 17: ¢y:(zyr) is (zuw 7#- “David”). This query is unsafe since the set of candidate r-values is
R = D — {David}, an infinite set.

As we have pointed out above, testing whether a relational query is safe is undecidable. As we can reduce
testing safety of relational queries to testing safety of LDM queries there cannot be a decision procedure
that tells us whether an query is safe on all database instances.

We give, however, a decision procedure for safety on fixed instances. Let I be a fixed instance of S and
let Q be a query on S.

Lemma 24: Let wy, ..., w, be all of the nodes in the schema S that are of type [J and let {dy,...,di} be
the constants that occur in any of the query formulas. Q is safe on I iff for each query node v of type O,
every candidate r-value for v is either a) the r-value of an element of some I(w;) or b) one of the d;’s.

Proof: One direction is obvious—if this condition holds then Q is safe on I. We prove the converse by
induction on the query nodes VQ -V ={v,...,v} where v; < .- < v,. Let v = v; be a query node of

type [J. We assume that the lemma holds for the nodes that precede v; and that the query is safe on I. Let
I;_; be the result of Q,,_,.
Since Q, is safe on I the set of candidate r-values for v is a finite set R. We have to show that

RC{dy,...,&x}u |J I(w)
pw) =0
weV

Call the right hand of this equation S. If the lemma is false, then there is some element r in R — S. By the
induction hypothesis

S={dy,...,di}U U Li_y(w)
pw)=0
we€EVor
wE VQ, w<v
Since r is a candidate r-value for v, if we extend I;_; to an instance I} of SQ, by defining I}v) = {I} and
ri(l) = r, we have |=1,¢,(I). Let ' be an arbitrary element of D — S, and extend I;_; to an instance 12

of S, by defining I,?('v) = {l} and ry(!) = r’. Since r and ' do not appear in the database, previously
constructed nodes, or in the query formulas, an induction shows that

Fué() e F 1% ()
The key point in the induction is that z, can occur in ¢, (2v) only in atomic formulas of the form z, =, d;
and z, =, y,, where w is a node of type [that is either in V or is one of the nodes V1, ..., ¥i—1 The only

other atomic formulas that can involve z, are z, = z, and z, =, z,, and these are always true. All these
formulas are false whenever the r-value of z, is not in S. '
We have therefore shown that all the elements of the infinite set D — S are candidate r-values, a contradic-
tion. §

The technique of this proof gives us an effective procedure for determining whether the simple query Q,
is safe on the instance I. Take some constant dy that does not occur anywhere in the database or in the
query formulas. Test if dp is a candidate r-value (it is not difficult to see that this can be done effectively).

44 CHAPTER 6. THE LOGICAL QUERY LANGUAGE

In a similar way to the proof of the above lemma, we can show that Q, is safe on I iff do is not a candidate
r-value for v. Intuitively, if some such dp is in the result, the result is infinite since do cannot be distinguished
from any other such constant.

Combining this result with those of the previous section we get:

Theorem 25: Let Q be a query on S and let I be an instance of S. There is a decision procedure to test
whether Q is safe on I. If Q is safe on I then the result can be computed effectively. i

Even though testing for safety and computing the result can be done effectively, it can still be NP-hard
to do so, as we shall see in Section6.5.

6.4. Ordering the Nodes in a Query

We now examine more closely the role of the topological order in an LDM query. It might seem at first
that we can relax the requirement. If each ¢, referred only to database nodes and to descendants of v, we
could evaluate the query “bottom-up” without having to specify explicitly the evaluation order as part of
the query.

Let us call the query language we would then get the bottom-up query language. The reason we prefer
the LDM query language to the bottom-up query language is that the bottom-up language is not closed
under composition.

The reason it is not is as follows. Let Q2 be a query on the result of Q;. Then the formula for a node
v in Q; can refer to a node u in Q that is not a descendant of ». This by itself does not necessarily mean
that the language is not closed under composition—we might be able to rewrite the formula ¢, to get an
equivalent query that does not refer to u. For example, if u is of type (O we can rewrite ¢, to refer only to
the descendants of u. We now show that if u is of type O this cannot always we done.

Theorem 26: The bottom-up query language is not closed under composition.

Proof: The database schema S consists of the node v in Fig. 29. Q; adds the nodes u and w, and Q2 adds
the node t to the result of Q;.

-
| |
| |

tD | ’l).
[S

Figure 29: Query used in the proof of Theorem 26

The outline of the proof is as follows. We first show how by a suitable definition of Q; and Q2 we can
get I(t) to contain copies of exactly those r-values in I(v) that occur with the most duplication. If there
were a bottom-up query equivalent to Q2 o Qi, it would have to define I(t) in terms of database nodes and
descendants of ¢, i.e. in terms of I(v), alone. In the second part of the proof we show that this cannot be
done.

6.4. ORDERING THE NODES IN A QUERY 45

Let I be an instance of S and let dy, ..., dy be all the different r-values that occur in I(v). Write I(v)
in the form

(U 1 Y LAY | SO L

where r(I7) = d;. In other words, group the l-values in I(v) by their r-values.

We define Q; and Q2 by giving the formulas ¢, ¢y and ¢;, and we show what the results of the queries
are. ¢y(2y) is the formula (2, =; #,) (or any other tautology). The result is simply the cross-product of
I(v) with itself, i.e., the candidate r-values for v are {(I1, k) | I1, 1> € I(v)}.

@u(zy) is the formula

(ays)(ayz)((yé 4 1)

A (sz)(zw € 2u A 20 = (3, y?,))
A (V) (V9,) (V2w)(2w € 2u A 2w =r (43,43) = 95 =r ¥4 Atk =, 42)
A (Vo)(V22) (V) (2 € zu A2k €z Ay 2L Ay 1 22 = 21 =; 22)
A (Vyﬁ)(!/? = ¥y = (F2) (20 Ezu AR ™ zw))
A (V2) (V20)(VUR) (VU0) (Vs) (=g, € 2u A 2d € oy A2l =, (43, 42)
A 25 = (3, %) = ¥s =1)
I(u) contains essentially all 1-1 functions from sets of the form {If,...,I2 } into {i2,..., 12 } where a # b.

More precisely, the candidate r-values for u are those R C I(w) for which the set »* = {r(I) | I € R} is such
a function.

Let R be a candidate r-value and define »* as above. Let ! be a new l-value, and extend I to the node u
by defining I(u) = {I} and (!) = R. Then =1 ¢u(l). Let I¢ and l;? be l-values in I(v) that correspond to the
first two existential quantifiers in ¢,. By the first conjunct a # b. By the second conjunct (2, l;’) € R. By
the third, if (I1,1;) € r* then r(l;) = a and r(l;) = b. Therefore r* is a subset of {I2,.. SEYx{8,...,).
The fourth conjunct implies that r* is a function and the fifth that its domain is the entire set {I2,..., i}
Finally, the sixth conjunct implies that r* is 1-1. In a similar way, given any such function »* we can show
that the set {I € I(w) | 7({) € r*} is a candidate r-value. '

We now use these functions to find those r-values that occur in I(v) with the most duplication. They are
those d,’s for which there is a 1-1 function from each set {12, ..., % } into the set {I2,..., I¢ }. We formalize
this by defining ¢;(x:) as

(3vs) (yé =r Tt
A (VR #r 1) = (Bzu) (@) (20 € 20 A2 71 70)
A (F2) B3N 2w € Tu AYS 72 20 AYL =, y.?)))

Let d be a candidate r-value for t. By the first conjunct in ¢;, d is one of the constants dy, ..., di, say
d = ds. By the second conjunct, for any dy # dg there is a 1-1 function from {&2, ..., IhYto{lg,...,1¢} and
therefore d, occurs in I(v) with at least as much duplication as d;. The converse is shown in a similar way.

To prove that the bottom-up query language is not closed under composition, it remains to show that
there is no bottom-up query equivalent to Q3 o Q;. Such a query would have to define I (t) by a formula
¢:¢(x:) all of whose bound variables are all of sort v. _

Let ¢: be such a formula and let n be the number of quantifiers it contains. Let I be an instance of S
such that I(u) contains n + 1 copies of a, i.e., l-values with a as their r-value and n + 2 copies of another

46 CHAPTER 6. THE LOGICAL QUERY LANGUAGE

constant b. Let I* be a second instance of S, that differs from I only by containing another copy of g, i.e.,
another l-value I* with r-value a. Then the only candidate r-values for ¢ on I should be b and both a and b
should be candidate r-values on I*.

Let I; be a new l-value. Extend both I and I* to ¢ by defining I(t) = I*(t) = {l;} and r(I;) = r* (k) = a.

We shall complete the proof by showing that = ¢:(l;) ¢ = 1. 4¢() and thus contradicting the fact that a -
is a candidate r-value for ¢ on I* and not on L

Let the free variables of ¢ be among the variables z;, z1, ..., 7. We prove the following by induction.

Let lg41, - ., In, or any other subset of the I;’s be elements of I(v). Let 1 be any element of I(v) distinct
from lg41, ..., In that satisfies r(I) = a. Then >

Erdls ..y, b)) & F TR N N TR A

(Note that I* is the l-value that appears in I* but not in I.) Using this with ¢ = ¢; will complete the proof.

When ¢ is an atomic formula or =¢; or ¢1 A @2 the proofs of this assertion is straightforward. The hard
case is when ¢ is (Vz})9(z1, 25, . .., 23). Given aset A C I(v) we shall say that Tis suitable for A if (1) = a
and [is not an element of A. If l is suitable for A and some I € A has r-value a, it is easy to see that
is suitable for A — {I} U {I}. The assertion says that if I is suitable for {lx41,...,ln} then the equivalence
holds. Since I(v) has n+ 1 copies of a, we can always find at least two suitable l—values for any set A of size
less than n.

To show the first direction, let I be suitable for {lk41,...,ln} and assume that

B ((V2))e) (e,). 1 g, - 1)

Since the value assigned to the quantified variable z3 is irrelevant, assume, w.l.o.g., that ¢ > k+ 1. For all

lo € I(v) CI*(v), Ex. o, ..., I lkga, .. 5o, 1)
1. If lo # 1, then 1 is suitable for {lx41,...,In}. The induction hypothesis then implies that
By ol Lkt o, dn)
2. Replacing the quantified variable by *, we get
Erol, ... 0 kg, 00)
Since 1 is suitable for {lk+1,- -+, li=1,lit1, . . ., 1} the induction hypothesis implies

Ex ol Llg, .0 0)

Combining these two, we get

E1 ((V2h))(e, 1, Ly, -y)
For the converse, assume that E1 ((V;vf,)qS)(l;,i, vyl k41, .., 1n) holds. Then, for all iy € I(v)

Ey ol Llkg, ..o, oy in)

1. Iflg # 1, then I is suitable for {lo, lg41,...,4i—1,4it1,...,1s} and therefore

Erolol, . . kg, do, 0 ln)

6.4. ORDERING THE NODES IN A QUERY 47

2. If Iy = 7, then I is suitable for {41, lict, lig, - - -, 1n} and we get
}=I.¢(lt,l‘,...,l‘,lk.,.l,...,l“,...,l,,)

3. So far, we have shown that f=q.¢(l, 1*, ..., 1* lig1,..., 0o, ...,1,;) for any Iy in I(v). Pick two l-values
lo and I that are both suitable for

(/ST T A

Then [} is suitable for {lo, lk+1,...,4i-1,4i4+1,...,1,} and the induction assumption implies that
g @ty by bigny ey doy ey ln)
lo is suitable for {If, lx4+1,...,4i—1,li41,...,1.} and the induction hypothesis now gives us

Exede o, 10, kg1, - 1.y ln)
Using the induction assumption once more, together with the fact that I is suitable for

kg1, limy, i, ., 1)

gives us =1 (L, I, .., I, Iy, - - .. -»In) Finally we use the induction hypothesis another time,
this time with the fact that I is suitable for

bty iz, ligny oy ln}
to get E. (e, 1%, ., I bk, .00 1)

Combining these shows that |=1. ((V28)¢)(l, %, .. ., 1%, lk4a, . . .,yIn) and completes the proof. 1

As a consequence of this theorem we see that the topological order is a necessary part of the definition
of the LDM query language. However, this does not mean that the user has to explicitly specify the order
as part of the query, since it is enough if he just specifies the formulas at the nodes of the query. The
system can then pick some order on the query nodes that is consistent with the graph edges and the implicit
dependencies of one formula on another, i.e., if the formula for v refers to the node u then u must precede v.
If the query is a legal one such an order must exist. The specific order we pick, subject to these constraints,
turns out to be irrelevant. The following theorem shows that if we pick a different ordering we would get an
equivalent query.

Theorem 27: Let Q; = <SQ,<1,<I>> and Q, = <Sq,<2, be two queries on a schema S that differ

only in the topological order. Let I be an instance of S. Then the results of Q; and Q2 on I are isomorphic
relative to S.

Proof: Let I and I; be the two results. Let the query nodes be Vq—V = {v1,...,v,} where v; <; -+ <1 v,.

We define an isomorphism f from I; to I by induction on the order <;. Assume f has been defined for all
w such that w <; v. Let R be the set of candidate r-values for v and write I;(v) as {I, | r € R}. We first
define a mapping f* on the candidate r-values for v as follows.

L. If w(v) =0, then f*(r) =1r.
2. If p(v) = (D, n), then 7 is a tuple (I1,...,1,) and we define

£ = (F0), ., £0)

48 CHAPTER 6. THE LOGICAL QUERY LANGUAGE

3. If p(v) = /) then r is the l-value I and we define f*(r) = f(I).
4. If p(v) = O, then r is a set and we define f*(r) = {f(}) |l € r}.

It is not hard to show that f*(r) is a candidate r-value for v in Q. Somewhat informally, the proof is
as follows. Let I;(v) consist of the single l-value l; with r-value r and let I(v) consist of the single l-value
I, with r-value f*(r). Restrict the schema in both cases to the database S and those nodes that precede
v in both Q; and Q,. We can then show that by defining f(l1) = l> we get an isomorphism between the
instances. Theorem 3 then shows that f*(r) is a candidate r-value for v in Q.

We can show in a similar way that the image of f* contains all the candidate r-values for v in Qz, and
we can therefore write I(v) as {Is+(s) | * € R} where r(lge(s)) = f*(r). By defining f(Iy) = lf+(s) we get the
desired isomorphism. [

6.5. Complexity of the Query Language

It is clear that the complexity of evaluating a query can be exponential, or worse, is the size of the database
instance, since even the size of the result itself can be multiply exponential in the database size. We therefore
ask the following question: Given a query and a database instance what is the complexity of testing whether
the result is empty? We show that even this problem is NP-hard.

Theorem 28: Let Q be a query on a database with schema S and instance I. It is NP-hard to determine
whether the result of Q on I is empty or not.

Proof: We reduce the problem to 3SAT [GJ79]. For the reduction we use the database and query schemas
shown in Fig. 30, where the database schema is in the box on the right. We describe informally how to map
an instance of 3SAT into a database instance and what the query Q is.

Figure 30: Reduction from 3SAT

The instance I corresponding to an instance of 3SAT is defined as follows. u contains all the variables in
the instance and v contains the two constants 7" and F'. w contains all possible pairs (z,T’). Finally, each set
in ¢ corresponds to a clause, where the pair (z,T) is interpreted as the variable z and (z, F) as the variable

T.

6.5. COMPLEXITY OF THE QUERY LANGUAGE 49

Q is defined as follows. Each set in s corresponds to a satisfying truth assignment. In other words, such
a set r must satisfy:

1. No two pairs (z,T’) and (x, F) are in r. The pair (z, T') is now interpreted as assigning the value true
to z.

2. For each z in u, either (z,T) or (z, F) is in r.

3. Each clause, i.e., each set {(z, a), (y,0),(z,¢)} in t is “satisfied” by the members of s, i.e., at least one
of (z,a), (y,b) and (z,c) is in r.

It should be clear that we can write a formal LDM query expressing these requirements. It is then easily
seen that instances for which 3SAT has a solution are mapped into database instances for which the query
has a nonempty result and then testing whether the result is empty shows whether the instance of 3SAT has
a satisfying truth assignment. i

A modification of the above proof shows that it is also NP-hard to determine whether a query Q is safe
on a given database instance I. To see this, let the database be as in the proof of the above theorem, and
let Q add the node s above, followed by a node g of type 0. The formula ¢,(z,) is as before, while @q(zq)
will just require that the result at the node s be nonempty, e.g., by the formula $q(xq) = (3zs) (25 =1 z5).
Note that ¢, does not mention the variable z,.

If we map instances of 3SAT into database instances as above, then whenever the instance of 3SAT has
a satisfying truth assignment, the result at s is nonempty. In that case ¢, is satisfied by any l-value, and
the query is unsafe.

Conversely, whenever the instance of 3SAT has no satisfying truth assignment, the result at s is empty.
But then ¢, is satisfied by no l-value and therefore Q is safe. This shows that a test for safety can be used to
test satisfiability, and therefore that the problem of testing a query for safety on a given instance is NP-hard.

Chapter 7

The Algebraic Query Language

7.1. The Algebraic Operators

In this section we define a complete set of algebraic operators. We shall then show that any safe logical query
is equivalent to some sequence of algebraic operations. Conversely, each algebraic operation is equivalent to
a safe logical query.

Since a logical query adds some nodes to the database schema and leaves the instance of the database
schema unchanged, each algebraic operator must do the same. So a selection operator, for example, should
not delete tuples that do not satisfy the selection condition, but should rather create a copy of the database
node. That copy should contain only those tuples that satisfy the condition. In fact this copying of tuples
is really what is done in the relational model—a query does not throw away those tuples in the database
that do not meet a selection condition, but rather copies those tuples that do. This issue is not addressed
explicitly in relational database theory, since the theory does not deal with what happens to temporary
relations that are created while computing the result of a query.

In this section S will be a database schema with instance I. The algebra will consist of operations of the
form w «— a(vy,...,v,). Here a is the name of the operator, and its arguments vy, ..., vn are nodes in the
schema S. « adds the node w to the schema, and extends I to the new schema. We define each operator as
a simple logical query. To define each operator we give

1. The types of its arguments.
2. The type of w and the list of its children.
3. An LDM formula ¢, (z,) that specifies the contents of I(w).

7.1.1. Operators that Copy and Combine Existing Nodes

1. w « O(v) creates a copy of the node v, as is shown in Fig. 31. In all these figures the schema S is
shown in the box on the right, and the node that is created by the operation is on the left. For each
distinct r-value in I(v), I(w) will contain exactly one l-value with this r-value. Note that duplication
in I(v) is eliminated in I(w).

(a) v is a node of S that has type O.
(b) w is of type O.

(C) ¢w (ziu) is (3yu)(l‘w =r yv)-

50

7.1. THE ALGEBRAIC OPERATORS 51

]
]

Figure 31: The algebraic operation w « O (v) Figure 32: The algebraic operation w «— O(v)

2. w « O(d) creates a node of type O that contains just the constant d.
(a) d is a constant in the data domain D.
(b) wis of type O.
(c) dw(zw) is &y =, d.
3. w « O(v) creates a node that contains the powerset of I(v) (see Fig. 32).

(2) v is any node in the schema S.
(b) wis of type (O, v).
(c) duw(zw)is T (i.e. always true).

Figure 33: The algebraic operation w — O(vy, ..., v,) Figure 34: The algebraic operation w «— Nuvy,...,v,)
4. w « O(vy, ..., va) creates anode that contains the cartesian product I(v1) x - - - x I(v,) (see Fig. 33).
(a) v1,...,vs are any n nodes in the schema S.

(b) w is of type (O3, n, v1,...,v,).
(¢) Pw(zw)is T.
5. w— Nvi,...,vn) creates a node that contains the disjoint union I(v1) U---U I(vy) (see Fig. 34).

(a) v1,...,vn are n distinct nodes of the schema S.
(b) w is of type (D n,v1,...,v,).
(¢) du(zw)isT.

Example 18: In all the examples in this section S will be the genealogy whose schema is shown in Fig. 8
(on page 10). In most of the examples the instance will be that shown in Fig. 10 (page 11).

1. The operation v’ < O (u) adds the node «’ to S, and extends the instance as shown in Fig. 35.

52 CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

9. For the remainder of this example, the database instance will be the smaller instance in Fig. 36. The
result of the operation u/ — O(u) is the schema shown in Fig. 37, together with the instance shown

in Fig. 38.

3. The result of the operation v’ — (O(u,v) is the schema shown in Fig. 39, together with the instance
in Fig. 40. .

I(w')

l (1)
17 | Rehoboam

18| Solomon

19 David
20| Batsheba
21 Jesse

Figure 35: Example of the algebraic operation ' « O(u)

I(u) I(v) I(w)
r(?)

l r(1) ()
1| Batsheba 21(1,3) 3| 0

Figure 36: A smaller instance of the genealogy schema

-~

I(w)

r()
0
{Batsheba}

[I

Figure 37: Example of the algebraic opera- Figure 38: Result of u' — O(u)
tion v’ — O(u) '

7.1. THE ALGEBRAIC OPERATORS 53
,v/
I(v')
I r@
u w)

Figure 39: Example of the algebraic opera- . . .,
tion v — O)(u, v) _ Figure 40: Result of the operation v — (D(u, v)

7.1.2. Selection Operators
The LDM algebra has two selection operators.

1. The operation w «— 0; ¢ ;(v) is similar to the selection operation in the relational algebra. This operator
selects those tuples in v whose it® and jth components are related by @ (see Fig. 41).

(a) v is a node of S of type (O, n,v1,...,v,) and i @ j is one of the relations i € Lhim i, ip7,
i:]j&ﬂdi:rj.
(b) wis of type (OO, n,v1,...,v,).
(¢) duw(zw)is
(320) By) B,) (Yos Toi To Aty Tu; o Ay, 0 Yo, Ay =, 24)

Alternatively, # may be of the form ¢ =, d where d is a constant in . Then $uw(zy) is

EEHIEMNITS To; Lo AYu; =r AA Ty =, Ty)

[[T 1

w [v [: :
! I w | v I

' o~ | l |

| i |

[e . |

LY _ _ _Y [, 4

Figure 41: The algebraic operation w — g; ¢ j(v) Figure 42: The algebraic operation w « 0in(u, v)

2. w < 0ojp(u,v). Here u is a child of v, and w will contain those elements of I (u) that actually appear
in I(v), i.e., depending on the type of v, those elements of I (u) that occur either as members of sets,
r-values or tuples (see Fig. 42). :

(a) u and v are nodes of S and u is a child of v.

54 | CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

(b) w is of the same type as u and has the same children.
(¢) ¢uw(zw) depends on the type of v. Note that v cannot be of type O since it has a child u.

i. If v is of type O with u as its &*® child then ¢y (2w) is
(Fzu)Fzy)(2u =- zwa Ty i Ty)

If there are multiple edges from v to u, we have to say which one we mean. In this case we
shall use the notation oin(u, v,) to mean: use the i** edge with tail v.

ii. If v is of type 2\ then ¢y (zy) is
(Fzu)(Fzy)(Tu =r Tw AZu p Ty)
_iil. I v is of type O, then ¢y (zy) is
 (F2)320)(@u =r Tw Ay € Tp)

Example 19: The schema continues to be that of Fig. 8 (page 10) and the instance is that of Table 10
(page 11).

1. The result of the operation u’ « ”(1:,“Rehoboam”)(”) is the schema shown in Fig. 43, together with
the instance in Fig. 44.

2. The result of u’ «— oj,(w, v) is the schema in Fig. 45, and the instance in Table 46. Note that in this
example v’ is simply a copy of w, since every set in I(w) is a member of some tuple in I (v)

I(u')

L ()
15| (1,11)

: . ; !)
Figure 43: Example of selection Figure 44: Result of the operation u’ «— ¢, _ «gp poam”

7.1.3. Union, Difference and Projection

1. The union operator is similar to the relational union. The syntax we use is w U(vi, ..., vn) (see
Fig. 47).
(2) v1,...,vn are n nodes of S that are of the same type and have the same children.

(b) w has the same type and the same children as the v;’s.
(©) $u(@w) is (320,)(@oy =r Tw) V-V (320,) (%0, =r Zu)-

9. For difference we shall use infix notation, i.e., we shall write w « v; — v, rather than —(v1,v2).

7.1. THE ALGEBRAIC OPERATORS 55
u/
v
u w
Figure 45: Example of the algebraic opera- Figure 46: Result of the algebraic operation
tion u' — ojn(w, v) t — oin(w,v)
we

Figure 47: The algebraic operation w «— U(v;, v3) : Figure 48: The algebraic operation w «— M{y,,0,3(v)

(2) v1 and v, are nodes of S that are of the same type and have the same children.

(b) w has the same type and the saie children as »; and v,.

() duw(2w) is (Fzo, (2o, = Tuw) A (V2u,) (%o, Fr Zu).

3. The projection operation is similar to projection in the relational algebra. The syntax we use is
w « I[4(v), where A is an ordered multiset of edges with tail v.

(2) v is a node of S of type (D, n,vy,..., vn) and A is an ordered multiset of edges with tail v.
(b) Let A={ey,...,er} where ¢; is the edge (v,vi;). Then w is of type (O, k, v;,, ..., v;,).
(¢) duw(zw)is

(3x.)(3y,) - - .(El:c,,,_)(;v.,‘.l TLZw Ao A(To;, T Tw) ADy =, (2y,,. "’ka))

When it will not cause any ambiguity, we shall use a set A of nodes rather than of edges, as in Fig. 48.

56 CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

7.2. Equivalence of the Logical and Algebraic
Query Languages

We can now use the algebraic operators defined in the previous section to define an algebraic query language.
An algebraic query will be a sequence {a1,. ..,an} of algebraic operators, where each «; is an algebraic
operator on the result of a;_;. We want to show that this query language is equivalent to the logical query
language. In other words, for each logical query on a schema S, there should exist a sequence of algebraic
operations, and vice versa, with the property that the schemas created by these two queries are identical, and
for every database instance I, the results are isomorphic relative to S. Unfortunately, as the next example
shows, this is not quite true.

Example 20: Let S consist of a node u of type O and let Q be the logical query that adds a node v of type
O to S. Let d; and dy be two distinct constants, and let ¢, (z,) be (zy = d1 V £y = d2). The candidate
r-values for v are then {d;,d;}. There is no algebraic query equivalent to Q. If there was such a query,
it would consist of one algebraic operation alone, since each operator adds a new node to the schema. By
inspection we can see that no single algebraic operator is equivalent to Q.

How can we modify the definition to get an equivalent query? If Q4 is the algebraic query that consists
of the operators w; «— O(d;), w2 « 0O(dz) and v «— U(w;, we) it is clear that the instance of v is what we
are after. If we were then to restrict the result of the query to the schema that consists of the nodes u and v
we get the instance we want. We have essentially used the two nodes w; and w; for temporary storage while
computing the result of the query. In fact the same thing occurs in the relational model, since temporary
relations are used there for subexpressions and then deleted at the end. It is therefore reasonable to expect
the same thing to happen in the logical data model.

To be able to use temporary nodes, we extend the algebraic query language by adding a “delete” operator.
This operator will delete a node from the schema and restrict the instance of the original schema to the new
schema. We have to make sure that we never delete a node that is the child of some other node, since in
that case the result would not be a legal schema. The operator that deletes the node v will be written D(v).

Definition 30: Let S be an LDM schema with instance I. The algebraic operator D(v) is legal when v isa
node with no parent. The result of D(v) is the schema S’ that consists of deleting v from S, together with
the instance that we get by restricting I to S'.

In the algebraic query language we must take care not to delete database nodes, i.e., we must only allow
the user to delete nodes that have been constructed by his query. We shall call the language with the deletion
operator the extended algebraic query language.

Definition 31: Let S be an LDM schema. An extended algebraic query on S is a sequence Q4 =
(a1,...,an) where each o is either

1. An operation of the form w; — Bi(v}, .. .,v::j), where f; is an algebraic operator other than the deletion

i are either node of S or are nodes that were created by some previous f; and

operator and v}, ..., v;

have not been deleted.

9. The operator D(v;), where v; is a node that was created by a previous algebraic operator in the
sequence 1, ..., fi—1 and has not yet been deleted.

Definition 32: Let Q4 be an extended algebraic query on S, and let Qp be an extended algebraic query
on the result of Q4. The query Qpo Q4 is the composition of Q4 and Qp, formed simply by concatenating
the lists of algebraic operators.

7.2. EQUIVALENCE OF THE LOGICAL AND ALGEBRAIC QUERY LANGUAGES 87

Obviously, the delete operator itself is not equivalent to any logical query, since every logical query adds
nodes to the schema. This by itself does not necessarily mean that we cannot find a logical query equivalent
to any extended algebraic query. After all, an extended algebraic query does not delete nodes of S, since the
only nodes that are deleted are those that were constructed by previous algebraic operations. It might still
be the case, as happened in Example 20, that there is an equivalent logical query that somehow expresses
what the result of the query should be without using these temporary nodes.

At the end of this chapter (Theorem 36) we shall prove that such a query does not exist, thus showing
that the extended algebraic query language is strictly more powerful than the logical query language. We
can get equivalence by a simple modification of the logical query language: Allow logical queries to use
temporary nodes as well.

Definition 33: Let S be an LDM schema. An extended logical query on S is a tuple Q = <Sq, <I>Q, <Q» DQ>
where

1. <Sq,(I>Q, <Q> is a logical query on S.
2. DQ is the set of temporary nodes used in the query. DQ is a subset of the query nodes V¢y — V that

we can delete and still get an LDM schema. In other words, there is no edge with tail outside DQ and
head in Dq, ie., if (e1,e2) € EQ and e; € DQ then e; € DQ.

Definition 34: Let Q be the extended logical query Q = <SQ, Qq, <Q» DQ>, and let I be an instance of
S. The result of this query consists of

1. The schema S‘Q consisting of
(a) The nodes in VQ - Dq-
(b) The relevant edges, i.e., all those edges of SQ whose head and tail are both in Q- Dq.
(c) The restriction of the type assignment u to Vq — Dq-

2. The result of Q on I is defined as follows. Let IQ be the result of <SQ, <I>Q, —<Q> on I. The result of
Q on I is then the restriction of IQ to Sb.

We now start to prove the main result of this section, that the two extended query languages are equiva-
lent. We start by proving that every extended algebraic query is equivalent to some extended logical query.

Lemma 29: Let Q4 = {ai,...,a,} be an extended algebraic query on S. There exists a safe extended
logical query Qz on S such that for every instance I of S, the results of Q4 and Qg on I are isomorphic
relative to S.

Proof: The schema of Qf will consist of all those nodes that are created by the operations in the query Q4.
The set of temporary nodes D . Will be the set of nodes deleted in Q4, i.e., {v; | The operator a; is D(v;)}.
Since we are only allowed to delete nodes that are not in S and that have no parent, it is easy to see that
there is no edge with tail outside DQL and head in it. Each a; that is not a delete operator must be of the

form w; — B;(w}, ..., w!). We define an order on the nodes of Vgy — V as follows: w; < w; whenever i < j.
$w;(%w,;) is the formula that was used to define the operator B; in the previous section. It is easy to verify
that the results of Q4 and Qg on any instance I are indeed isomorphic. il

We now show the converse. Let Qf be a logical query on S. For the moment, we shall look at queries in
the original, rather than the extended query language. Afterwards we shall see what to do with the extended

58 ‘ CHAPTER 7. TﬁE ALGEBRAIC QUERY LANGUAGE

query language. Let I be a fixed instance of S. The definition of Q4 will not depend on I, but the results
of Q4 and Qg will only be isomorphic on those instances of S on which Qp is safe. We keep I fixed just so
we will be able to prove various lemmas about the results as we go along. Fig. 49 shows some of the nodes
we construct in the algebraic query, and may help to understand the construction.

Wprod

Figure 49: Constructing an equivalent algebraic query

We first look at the case when Qg is a simple query Q,. We start by creating a node wgom, that
contains the “domain” of w, i.e., all those objects that might be candidate r-values for w if we were to ignore
everything except the type of w and the fact that Qp is safe on I. We define wgom as follows.

1. If w is of type O, let vy, ..., v be all the nodes in S that are of type O and let dy, ..., di be the
constants that occur in ¢y (2y). Define wygom by the algebraic query:
81 «— D (vl)
St — 0 ('Ut)

St41 [:] (dl)

St+k < D(dk)
Wdom U(Sl, ey st+k)

D(s1)

D(st4k)
2. If p(w) = (O, k,v1,...,vx) define waom by Waom — (v1, ..., Vk).
3. If p(w) = (O, v) define waom by Waom «— O(v).
4. If p(w) = (D k,v1, ..., vx) define Waom by Wdom — Ny, ...,).
We shall call this algebraic query Qgom. We formalize the intuition behind it in the following lemma. ’

Lemma 30:

7.2. EQUIVALENCE OF THE LOGICAL AND ALGEBRAIC QUERY LANGUAGES 59

1. The schema created by Qgom is equal to the schema of § together with a node wyom of the same type
and with the same children as the node w in the original logical query Q,,.

2. Let Iiom be the result of Qgom on I and let I, be the result of Q, on I If r is an r-value in Iy (w),
then r is also an r-value in Liom (Wdom)-

Proof: If w is of type O, Aor O, the lemma is obvious. If w is of type O, the first part follows from the
fact that all the nodes except waom that are created by Qgom are also deleted by it. The second part is an
immediate consequence of Lemma 24 (page 43) and the definition of Qdom- 1

We may assume, if necessary by renaming some bound variables, that all the bound variables in the
formula ¢y, (2,) that was used to define Q,, are distinct. Let these variables be £y, -+ -, 25 . The algebraic
query Qprod on the result of Qgom consists of the algebraic operation

Wprod < Q('wly cooy Wk, wdom)

For the purpose of defining Q4 we are going to label the edges with head Wprod as follows. The ith edge
with head wproq will be labeled a:fu'.. These labels will be used only to define the algebraic query, and are
not themselves part of the query.

In certain cases, when we create a new node using some algebraic operation, the outgoing edges from
the new node will inherit the labels of the corresponding edges whose head is one of the arguments of the
operator. We shall only use this inheritance in cases when it is unambiguous, i.e., in cases when all the
arguments have the same labeling. The operations for which labels will be inherited are g; ¢ j, difference and
union. When we use the projection operation the new edges will also inherit the labeling of the corresponding
edges whose head is the argument of the projection. These labels are essentially used to remind us which
bound variable the edge corresponds to.

Arrange all the well formed subformulas of ¢, (zw) in a list 4y, ..., Yy, where ¥, = ¢y (zw) and 7
precedes t; whenever it is a subformula of ¥;. For each such subformula, we shall define an extended
algebraic query Qy; on the result of Qy:_,- Qy, will be a query on the result of Qproda- The labels on the
edges with tail wy will correspond to the variables that might be free in Y—i.e., those that haven’t yet been
bound by 1. The node wy; will be of type (D, 5, wj,, . .., wj,, Wom), and will contain, intuitively, those
tuples (Iy,...,I,14) for which l=1¢'_ Yi(ly, .. I, la).

1 Yiiszy 0 :cz,b. Qy; consists of the algebraic operation Wy; = 0§ 5(Wprod).
. Yiis zg_ 0 xy. Qy, consists of the algebraic operation wy; «— 044 #+1(Wprod)

. %iis ¢y 0 zy. Qy; consists of the algebraic operation Wy; = Ok 416 k+1(Wprod)

2

3

4. i is oy, =, d. Qy, consists of the algebraic operation wy,; — O4=, d(Wprod)-

5. ¥ is ¢y =, d. Qy, consists of the algebraic operation Wy; < O(k4+1)=,d(Wprod)

6. 9i is ¥, V ;. Let A; be the (ordered multi)set of edges with tail wy; that have the same label as
some edge with tail wy;, . Let A, be the corresponding set of edges with tail Wy, . Qu; is the following
extended algebraic query

81« Il4, (wy;,)
82 HAn(wil)jg)
Wypy; U(Sl, 32)
D(sl)
D(s2)

60 CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

(s1 and s; are different temporary nodes from those used above, and from similarly named nodes used
below.) Note that the way we defined A, and Az guarantees that there is no ambiguity in labeling the
edges of the result, at least as long as the labels of the edges in A; and A are in the same order. We
shall show later that this is indeed the case.

7. %; is ;. Let A be the (ordered multi)set of edges with tail wgom ‘that have the same label as some
edge with tail wy;. Qy; is the following extended algebraic query

81 II“i(w‘l’dom)
Wy; — 81 — ‘w,pj
D(sl)

As in the previous case we shall be able to label the edges with tail wy, without any ambiguity.

8. i is (33,)(¢;). Let A be the (ordered multi)set of all edges with tail wy; except for the edge labeled
z8_. We shall show later that there must be exactly one edge with such a label. Qy; then consists of
the algebraic operation wy; — IL4(wy;).

Lemma 31: Let 3 = v; be one of these well formed subformulas of ¢y (zw). Let 2! , ..., o4, . be those

variables in the above list that are not bound in 9;. Note that some of the z{} ’s may not actualfy occur in

;. Then wy, is of type (O, (aj +1),wa,, .. -, Waj, Wdom), and the t*h edge with tail wy; has head w,, and
is labeled with the variable z:,'.'. As a consequence of this, all the labelings of edges are in the same order
and the assumptions that.we made on the labelings when we defined the wy,;’s hold.

Proof: The proof is a fairly straightforward induction using the definition of wy;. The tricky case is when
i is ¥, V ¥j,. Then the children of wy, correspond to the bound variables of ¢,, that are not bound in
1, and the children of wy,, to the bound variables of ¢y, not bound in t;,. Since a variable is not bound in
¥;, V ¥j, iff it is not bound in ¢;, and it is not bound in 9;,, we see that the result does hold in this case. N

Lemma 32: Let wy,; be of type (O3, j, wj,, - .y Wi, Wdom)- Let Iy, be the result of Qy; on I, let I3 be a
member of Iy, (waom) and let I; be a member of Iy,(wj,) fort =1, ..., k. Then there exists an [in Iy, (wy;)
with »(I) = (h,...,k,la) if and only if t=1¢_"/’i(11,'--,lk,ld)- Intuitively, (l1,...,k,l3) is a “candidate

r-value” iff it satisfies ;.

Proof: A straightforward induction on the structure of ¥;. §
The extended algebraic query Qfinal on the result of Q¢ consists of the following operations

W4H O'in(wdoma w¢)
D(ws)

D(wy,)
D(wprod)
D(wdom)

We finally define the algebraic query Q4 as
Qfinat 0 Qg 0 dem-; 0Qy, © Qprod © Qdom

Lemma 33: Let I; be the result of Q, on I and let Iy the result of the algebraic query Q4 on I. Then I;
and I, are isomorphic relative to S.

7.2. EQUIVALENCE OF THE LOGICAL AND ALGEBRAIC QUERY LANGUAGES 61

Proof: First note that the schemas are equal. The only node created but not deleted by Q4 is the node
wy4. This node is similar to the node wyoy, and hence to w.

We have to show that the instances of w4 and w are isomorphic, i.e., that at the point in evaluating the
queries that we compute the instances of these nodes, they have the same candidate r-values. We assume
that we are at the point in the evaluation of Q4 just before the final round of deletions.

Let r be a candidate r-value for w. Extend I to an instance I,, of SqQ, by defining I,,(w) = {i} and

r(l) = r. Then =y _¢u(l). Let Iy, be the result of Q4, on I. By Lemma 30 part 2, r is a candidate
r-value for wyom and so for some I in I, (Waom), *(lg) = r. By Lemma 18 (page 41), |=I.y éw(l) implies
}:L #w(la), and therefore, by Lemma 32, for some Il in I, (Wdom), *(i3) = r is a candidate r-value for w,.

For the converse, suppose that r is a candidate r-value for w,4. Let I;,, be the result of Q4 on I. Since r
is a candidate r-value for wy, for some Iy in Iy, (ws,) and some lg in Iy, (Waom), *(Ig) = (Ia) and r(Iz) = r.
Since ly is in Iy, (wg,,), Lemma 30 implies that |= 1,, $w(la). Restrict Iy, to an instance Iyom of the schema

of Qdom- Then O #w(la), and so by Lemma 18, r(I3) = r is a candidate r-value for w. J

We can easily extend this to general queries by concatenating the algebraic queries for the individual
simple queries. If we have an extended logical query we have to add deletion operations at the end of the
algebraic query that delete those nodes in the delete set of the query. This completes the proof of the
following theorem.

Theorem 34: The extended algebraic query language and the extended logical query language are equiv-
alent, i.e., for every extended algebraic query on S there exists a safe extended logical query on S and for
every extended logical query on S there exists an extended algebraic query on S, such that both queries
define the same schema and for every database instance I on which the logical query is safe, the results of
both queries are isomorphic relative to S. §

Example 21: We shall illustrate the proof of Theorem 34 by showing how it would construct an extended
algebraic query equivalent to the query Q; in Example 12 (page 37). We shall name the new node in that
query t rather than «’. The database instance is shown in Table 10 (page 11).

1. Qdom consists of the algebraic operations s, « O (u), t4om + U(s;) followed by D(sy), the deletion of
s1. Note that the union of copies of all database nodes of type [0 becomes here the union of a single
node. This is of course superfluous, but as we are illustrating the proof of the theorem, rather than
showing how to compute the result efficiently, we include this operation. The final schema (after the
deletion) and the instances of the nodes are shown in Fig. 50.

2. Qproa consists of the operation 504 < O(u,%dom). Fig. 51 shows the schema after this operation.
The instance is too large to show here. It contains 25 l-values, 25-49, with all the possible pairs in
{1,...,5} x {20,...,24} as r-values.

3. The subformulas of ¢ are ¥, = (z: =, yu) and ¢ = 92 = (Fyu) (2 =, Yu)- Qy, is ty, — a=,1(Wprod),
and its result is shown in Fig. 52. .
4. Qg isty — My, 3(ty,)- Its result is shown in Fig. 53.

5. Qfinal consists of the operation 4 «— ojy (tdom, t¢) followed by the deletion of all the temporary nodes.
The result of this is shown in Fig. 54.

This example shows that the algebraic query that we get from the proof, as is also the case in Codd’s proof
of the equivalence of the relational algebra and tuple calculus, is not necessarily the best way to actually
evaluate a logical query. Our example could be done much more efficiently by the single algebraic operation
1g — O (u)

62 CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

I(s1) I(taom)
i r(1) l r(l)

v 15 | Rehoboam 20 | Rehoboam
16| Solomon 21| Solomon
17| David 221 David
18 | Batsheba 23| Batsheba

tdom D u w 19 Jesse 24 Jesse

Figure 50: Result of Qaom

tprod

<

Tt Yu

tdom u w

Figure 51: Schema of Qprod

7.3. Various Results about the Algebra

Most of the algebraic operators are natural analogues of relational operators. Even the powerset operator
O(v) is fairly natural, since it creates the entire domain of the node, and is therefore similar to the operator
O(v1,...,vs) that is based on the cross product. The exception is the restriction operator, oin(u,v). Even
though it is a type of selection, there is an essential difference between it and the other LDM selection
operator. Restriction selects objects based on whether they are used in some other node, whereas the other
selection operator selects objects based only on some property of the object by itself. For this reason, the
LDM selection operator-resembles the relational selection while restriction does not.

For this reason, it would be nice if we were able to eliminate the restriction operator from the algebra,
i.e., to show that it can be expressed in terms of the other algebraic operators. We now show that this is
impossible.

Theorem 35: The extended algebraic query language is strictly more powerful than the language without
restriction.

Proof: Let the database schema consist of the nodes u and v in Fig. 55. We claim that there is no extended
algebraic query not using restriction that is equivalent to the query w « oin(u,v). To see why this is
true, note that the only algebraic operators apart from restriction that can create nodes of type [J are the
operators

7.3. VARIOUS RESULTS ABOUT THE ALGEBRA 63

ty,

I(tiﬁ‘x)

L] r()
501 (1,20)
51((2,21)
52| (3,22)
53(4,23)
54 (5,24)

tdom

Figure 52: Result of Qy,

1. t «—0O(v1)

2. t«—0O(d)

3. t —U(v1,...,v,)
4. t — vy — vg

and in all these cases the arguments must also be of type [J. Intuitively, the query must therefore construct
the node w without looking at the node v at all. More formally, suppose that there existed an extended
algebraic query Q equivalent to w « oiy(u,v). Let I; and I, be the following database instances. Both
I1(u) and Iy(u) are equal to {1,2}, where r1(1) = ro(1) = a and r1(2) = r3(2) = b. On the other hand,
I1(v) = I>(v) = {3} but r1(3) = (1) and r5(3) = (2). The candidate r-values for w on these instances should
be, respectively, a and b. We shall show, by induction on the length of Q, that for any node ¢ in Q of type
O, in particular w, the candidate r-values for ¢ on both I and I, are the same. For Q of length 0, the result
is obvious. Assume that the inductive hypothesis holds for all queries of length less than n, and let Q be of
length n. If the last operation in Q is a deletion or if the last operation creates a node of type other than
O, the result is immediate. If the last operation creates a node of type O, it must do so using one of the
operations 1-4 above, and then the result follows immediately from the inductive assumption. N

Our second result shows that the extended algebraic query language is strictly more powerful than the
nonextended logical query language.

Theorem 36: There is an extended algebraic query that is not equivalent to any (nonextended) logical
query.

Proof: We shall show that there is an extended logical query not equivalent to any (nonextended) logical
query. The result will then follow by Theorem 34.

The database schema S will be the same as the one we used in the proof of Theorem 26 (page 44). The
extended query Q will also be the same as in that proof, together with the set of temporary nodes {u, w}.

64 CHAPTER 7. THE ALGEBRAIC QUERY LANGUAGE

I(te)

1]r()
55{(20)
56 | (21)
57 {(22)
581(23)
59 | (24)

I(t4)
Figure 53: Result of Q4
l (1)

"60 | Rehoboam
61} Solomon

62 David
63| Batsheba
64 Jesse

Figure 54: Result of Qfnal

An equivalent logical query would have to define the contents of t in terms of the contents of v alone, which
we showed in the proof of Theorem 26 to be impossible. |

7.3. VARIOUS RESULTS ABOUT THE ALGEBRA

Figure 55: Proof that restriction is essential

65

Chapter 8

Elimination of Cycles

8.1. Introduction

LDM schemas can contain cycles not only in the schemas but also in the data. For example, if 1 € r(I) for
some l-value I, then we would have a cycle in the data. Having introduced cycles into the model, we would
like to study their expressive power. The problem we shall look at is: Are there applications that cannot be
modeled without cycles? For example, consider the following schema.

Example 22: Fig. 56 shows an example of a cyclic database schema that stores information about procedure
calls in a program. The schema is the same as the genealogy schema that we have used up to now. Elements
in I(v) represent procedures, elements in I(u) represent procedure names and elements in I(w) represent
sets of procedures. Thus, if z € I(v) and r(z) = (y, 2), then r(y) is the name of the procedure z and 7(2)
is the set of procedures called from z. Note that if a procedure calls itself, then we have a cycle in the
data. This is the reason we do not use the genealogy example, since the data in the genealogy should not
be cyclic. An acyclic schema that intuitively seems to “capture the same information” is shown in Fig. 57.
In this schema, elements in I(v;) represent procedure entities, elements in I (u) represent procedure names,
elements in I(w) represent sets of procedures, and elements in I (v1) represent the relationship “procedure
calls procedures.”

To formalize the idea of “capturing the same information,” we use a definition, closely related to the
notion of query-equivalence of [Hul84]. Intuitively, two schemas capture the same information if we can map
instances of one schema to instances of the other, and queries on one schema to queries on the other, such
that the result of the first query on the first instance is isomorphic to the result of the second query on the
second instance.

In our query language, however, the result of a query is not necessarily a new, independent schema, but
may contain pointers to nodes in the database schema S. Because of this, it is meaningless to talk in general
about isomorphism between the results of the queries. In order for such an isomorphism to be meaningful we
shall restrict the query language, in this chapter, to a language that does not allow pointers to the database.

Definition 35: A independent query on a schema S consists of a new schema SQ together with an ordering
of nodes and a set of LDM formulas, such that when we add the query schema to the database schema we
get an LDM query.

The result of an independent query is defined in the obvious way. If two independent queries on different
database schemas have the same query schema, we are then able to talk about their results being isomorphic.

66

8.2. CONVERTING CYCLIC SCHEMAS TO ACYCLIC ONES 67

(a

Figure 57: An acyclic schema equivalent to

Figure 56: Cyclic schema A
i

Definition 36: Let S and T be schemas. Then T dominates S if there is a mapping f of instances of S to
instances of T such that for each independent query Q; on S, there is an independent query Q; on T such
that Q1 (I) is isomorphic to Q2(f(I)) for all instances I of S on which Q; is safe. We say that S and T are
equivalent if each of them dominates the other.

We shall only be able to prove that the two schemas in Example 22 are equivalent when the relationship
represented by v; is functional, i.e., when for each procedure is related to exactly one set of procedures, i.e.
those procedures that it calls. This means that in fact we do not have an equivalence between the schemas,
but rather between the original schema and a new, constrained one. To make our results more general,
we shall also start off with a constrained schema, so that we shall in fact show an equivalence between a
constrained schema (S, ¢) and an acyclic constrained schema (T,v). We start by describing the general
transformation from cyclic schemas to equivalent acyclic schemas. The idea is to break cycles by creating
composition nodes that represent the cyclic relationships, as in the above example.

8.2. Converting Cyclic Schemas to Acyclic Ones

When we try to break cycles in arbitrary cyclic schemas, we notice that there are several pathological cases
in which the above method does not work. First of all, the cycle has to contain a O or /\node at which
to break it, i.e., it cannot consist just of O-nodes. The method also fails when the cycle contains such a
node of type O or /\ but this node has only one child. If we break the cycle at such a node, we would
end up with a childless € or A\ node after breaking the cycle. In both of these cases, the schema relates
l-values to l-values without relating them at any point to the actual data. Intuitively, pure relationships
between l-values such as these do not correspond to anything in the “real world,” which justifies looking only
at schemas without such a relationship.

We make one further restriction on the LDM schemas. If a cycle in the schema contains a node of type
2\ our method of removing cycles appears not to work. For example, if the cyclic schema was the one shown
in Fig. 58, it would be converted into the schema in Fig. 59, that does not represent the same structure.
The original schema essentially stores data objects at the top node, along with sets of objects, sets of sets of

68 : CHAPTER 8. ELIMINATION OF CYCLES

objects, etc, and this is not what is stored in the acyclic schema. For this reason, we shall require that nodes
of type Aoccur only outside cycles. Unlike the other conditions, this is a real restriction on the power of our
" method, and more work remains to be done on whether cycles involving nodes of type /\can be eliminated.

n
v Vg
w
u w u
Figure 58: A cyclic schema Figure 59: Corresponding acyclic schema

Definition 37: A schema S is called well-formed if from each node in the schema there is a path to a node
of type O, and no node of type D occurs in any cycle of S.

Definition 38: Let S be a cyclic schema. A node » in S is called a possible breakpoint if

1. It is of type .
2. It is in at least one cycle.

3. It has at least one child that is not in any cycle.

For example, the node v in Fig. 60 is a possible breakpoint.

Lemma 37: Let S be a well-formed schema. Either S is cyclic, or it has a possible breakpoint.

Proof: Assume that S contains a cycle, and let ug be a node in that cycle. Since S is well-formed, there is
a path ug, ..., u, from uo to a node u, of type (1. Let ux be the first node on this path that is not in any
cycle; there must be at least one such node, since the node u, is not in any cycle. We claim that the node
ug_1 is a possible breakpoint. By definition, it is on at least one cycle and has a child that is not in any
cycle. Since ug—1 is in a cycle and that cycle does not contain ug, ug—1 must have at least one other child.
Since S is well-formed, ug_1 must be of type O. 1

Let S be a well-formed cyclic schema, and let » be a possible breakpoint. There are two ways to generalize
Example 22. One way is to break one cycle through v at a time. In some cases this can result in unnecessarily
complicated schemas, and we prefer instead to break the cycles that go through v all at once. The node v is
replaced by two nodes v; and vy (see Fig. 61). All the edges that had head v, except for those that belonged
to one of the cycles through v, will now have head v;. All the edges that had tail v, except for those that
were in the cycles, now have tail v,. v; and v, will both be of type . The formal definition is as follows.

Definition 39: Let (S, ¢) be a well-formed cyclic constrained schema, where S = (V, E,p), and let v
be a possible breakpoint. Then Br(S, ¢,v) is the constrained schema (S',) where S’ = (V’, E, ') and
1 = Br(¢, v) are defined as follows.

8.2. CONVERTING CYCLIC SCHEMAS TO ACYCLIC ONES 69

y
’
n
Y
) w3 Wy, U, us
[TN) wy I I Uy
wy, @ ® U
® v []
® U [] 2 ®
. °
Wy —1 I I Up—1
Wy, ® Ij ° u,
z
Figure 60: Cycles through v Figure 61: After breaking the cycles

1. We introduce two new nodes v; and vz. V' has v replaced by v; and v,, ie., V/ =V — {v} U {v1, v}

2. All the nodes in V' except for v; and v, have the same type as in S, i.e., 1 (u) = p(u) for all u in
V — {v}. v; and v, are both of type . .

3. Let C be the set of nodes that are on the cycles that go through v. Then E' is defined as follows
E'=F {(u1,u2) | (w1,u2) € E,u; = v or uz = v}

{(v1,v2)}

{(u,v1) | (w,9) €E,ug C}

{(u,vg) l (u,'u) €EE,ue C}

{(v2,u) | (v,u) € E,u ¢ C}

{(v1,u) | (v,u) € E,u€ C}

In other words, the edges in the new schema are

cccccili

. (a) All those in the original schema, except for those whose head or tail is v.
(b) vz is a child of v;.
(c) Each edge with head v is replaced by
- 1. An edge with head v;, when the edge is not part of a cycle.
ii. An edge with head v,, when the edge is part of a cycle.
(d) Each edge with tail v is replaced by
i. An edge with tail v;, when the edge is part of a cycle.
ii. An edge with tail v, when the edge is not part of a cycle.

Any edge that replaces an edge with head or tail v has the same position in the ordering as the edge
it replaces. The edge from v; to v; follows all the other edges in the ordering.

70 CHAPTER 8. ELIMINATION OF CYCLES

In order to define the new constraint 3 = Br(¢,v), we first define a function F(¢) from LDM formulas
over S to LDM formulas over S’.

Definition 40: The function F(¢) is defined by induction on the size of ¢ as follows.

1. (a) If u and w are not equal to v, then F(2y Tu Yu) IS Tu Ty Yu-

(b) If w is not equal to v, then
i. If w is not on a cycle through v, then F(zy Ty Yu) 1S Ty, Ty Yu-
ii. If w is on a cycle through v, then F(zy Ty Yw) IS Ty, T Yuw.

(c) If u is not equal to v, then
i. If u is not on a cycle through v, then F(zy 7y yy) IS Tu Tu Yo,
ii. If w is on a cycle through v, then F(zy 7y yy) is Tu Ty Yo, -

(d) F(zy 7t yo) IS Tu, Ty, Yo, -

2. F(zy € yu) is defined similarly, except that we do not have to worry about the cases when w = v.
3. F(zy p Yu) is similar to the previous case.
4. (a) If u is not equal to v, then F(zy =; Yu) 1S Ty =1 Yu.
(b) F(zy =1 yo) is 2o, =1 Yo,
5. F(zy =r d) is ¢y =, d.
6. F(¢A¥)is F($) AF(¥)-
7. (a) If u is not equal to v, then F((Vzy)¢) is (Vzu)F(4).

(b) F((V20)9) is (Vzy,)(V2u,)((£v, Tvg Tv,) A F()), where z,, and @, are new variables, and the

projection uses the last edge from v; to v3.

Definition 41: The constraint ¢ is mapped into the constraint
Br(¢,v) = F(¢) A (szl)(vwzl)(vxvz)(z% v, x$1 A Ly, Ty, "’zl = “’31 =1 xﬁ;) A (Vzva)(axvl)(wvz Ty, 301)
The last two conjuncts express the functional relationship that exactly one vy is associated with each v;.

Lemma 38: Let (S, ¢) be a well-formed cyclic schema, and let v be a possible breakpoint. Then Br(S, ¢,v) =
(S’,9) is also well-formed.

Proof: We first have to show that S’ is a legal LDM schema. The only reason it may fail to be one is that
S’ may contain a node of type (O that has no children. It is clear from the definition of S’ that the only
node where this could happen is vs, but v, has at least one child since v has at least one child that is not in
any cycle through v.

We now show that S’ is well formed. Let w be an arbitrary node of S’. We have to show that there is a
path in S’ from w to a node of type O, and that no cycle contains a node of type /\ To prove the second of
these, it is not hard to show that we can convert a cycle in §’ into a cycle in S by replacing all occurrences
of v; and v, in the cycle by the node v. For the first condition there are two cases.

1. w is neither of the nodes v; and v,. Then w must be a node of S. Since S is well-formed, there must
be a path in S from w to a node z of type O. Let w, wy, ..., wp, & be a shortest such path. Clearly
¢ is also in S’. If all the other nodes on the path are also in S’, we are done. Otherwise, one of these
nodes, say w;, is equal to v, and by the minimality of the path there is at most one such w;. Since v is
a possible breakpoint, it has a child u; that is not on any cycle, and therefore there is a path uq, ...,
Uy, in S from u; to a node u,, of type O (see Fig. 62). There are then two possibilities.

8.2. CONVERTING CYCLIC SCHEMAS TO ACYCLIC ONES 71

“ ':l. .D N

Figure 62: Proof of Lemma 38

(a) wi_1 is not on any cycle through v. Then W, ..., Wi_1, V1, V2, UL, ..., Uy IS a path in S’ from w
to a node u,, of type (J.

(b) w;—_ is on a cycle through v. Then W, ..., Wi_1, ¥2, U1, ..., Uy iS a path in S’ from w to a node
u,, of type OJ.

2. w is either vy or v,. If we have a path from v to a node z of type [J, we can easily convert it to a path
from v; to z by using the edge (v1,v2). Assume therefore that w is the node v2. Since v is a possible
breakpoint, it has a child w; that is not in any cycle. Since S is well-formed, there is a path from w;
to a node z of type 0. Let wy, ..., wn, = be the shortest such path in S. Then no node on this path
is equal to v and therefore vy, w1, ..., wy,, = is a path in S’ to a node z of type O. 1

We now show that if we repeatedly break cycles, we eventually get an acyclic schema.

Lemma 39: Let (S, ¢) be a well-formed constrained cyclic schema. If we repeatedly break cycles in S at
possible breakpoints, we shall eventually get an acyclic constrained schema (T,%). The termination does
not depend on the order in which we choose the breakpoints.

Proof: The proof is by induction on the number of nodes of the schema that are in at least one cycle. We
show that whenever we break a cycle we reduce the number of such nodes by at least one. Let (Sy,¢;) be
the schema before breaking the cycles through v and let (S, ¢5) = Br(S1, ¢1,v) be the schema afterwards.
We show that

1. The two new nodes v; and v, are not in any cycle in S,.

2. Any node in S; other than v that is not in any cycle in 8,, is also not in any cycle of S.

Together, these conditions immediately imply the result.

1. Assume that there is a cycle in S that goes through v; or through v;. Let C be the shortest such
cycle. There are three cases

(a) C contains v; but not v;. Let w be the node in C that immediately precedes v;. By replacing v;
in C' by v we get a cycle in S;. But then, when we construct Sz, we replace the edge (w,v) by
the edge (w, v2), and S; then contains no edge from w to v;.

72 : CHAPTER 8. ELIMINATION OF CYCLES

(b) C contains vz but not v;. Let u be the node in C that immediately succeeds v2. In a similar way,
by replacing ve by v, we get a cycle in S;. Therefore, when constructing Sz, we replace the edge
(v,u) by the edge (v1,u), and Sz does not contain an edge from v; to u.

(c) C contains both v, and vy. vy must occur immediately after v; on C, since otherwise we could
shorten the cycle C by replacing the path from v; to vz by the edge (v1,v2). Let u be the node
in C that immediately precedes v;. If we replace v; and v in C by the node v, we get a cycle
in S;. But then the edge (u,v;) would be replaced in S; by the edge (u, v2) and S; would not
contain an edge from u to vg, a contradiction.

2. Let u be a node of S; that does not appear in any cycle, and assume that u is in some cycle C in S,.
As we have just shown, no cycle in S, and in particular C, can contain either of the nodes v or vs.
But then C is also a cycle in S;, a contradiction. 1l

8.3. Equivalence of the Schemas

We first show how to map an instance of (S, ¢) into an instance Br(I, v) of (T, ¥) = Br(S, ¢,v). The intuition
behind the construction is as follows. We got from S to T by breaking cycles through v. The instance of
any node other than v, that does not have v as either a parent or a child, is not changed. Each l-value in
I(v) is replaced by a pair of l-values, one in Br(L, v)(v1) and the other in Br(I,v)(v2). The second of these
l-values is the child of the first. We then modify the r-values of the l-values in the parents and children of v
in a straightforward way.

Definition 42: Let (S, ¢) be a well-formed, cyclic, constrained schema, and let I; = (I, 7;) be an instance
of it. Let v be a possible breakpoint, and let (T,%) = Br(S,¢,v). Then I, = (I2,72) = Br(Iy,v) is the
instance of T that is defined as follows. For each ! in I;(v), we introduce two new l-values, that will be
written as a(l) and B(I).

1. Iz(v;) is defined as {a(l) | | € y(v)} and Iy(v2) as {B(l) | 1 € I1(v)}, i.e., they contain all these new
]-values. Since v is of type O, for each such l in I;(v), () = (h,...,ln) for somely, ..., l,. Assume,
w.l.o.g., that the first i children of v are those that are in cycles through v. Then rg(a(l)) is defined as
(1, - .-, &, B(1) and ro(B(1)) as (lig1,---y1n). If the 70 child of v is v itself, then the corresponding
component of ro(c(l)) will be B(l;) instead of I;.

9. If w is any node except v that is not a parent of v, then I(w) = I;(w), and for each [in this set,
ro(l) = r1(1).

3. If w is a node (except v) that is a parent of v, then Ix(w) is defined as I; (w). For the r-values, there
are two cases to consider.

(2) w is not in any cycle that goes through v. If w is of type ((,n), then for each ! in I1(w),
ri(l) = (lu,...,1n) for suitable I’s. Let v be the i child of w Then ry(l) is defined as
(s - lic1,0(l), ig1, .- -, 4n). This generalizes easily to the case when there multiple edges from
w to v. The other possibility is that w is of type (O, v). In that case, for each Il in I(w), r2(l) is
defined as {a(¥) | V' € 11(1)}.

(b) w is on a cycle through v. The r-values are defined as in the previous case, but with B(!) used
everywhere instead of a(l).

Lemma 40: Let I be an instance of (S, ¢) and let v be a possible breakpoint. Let I* be the instance Br(I,v).
Then I* is an instance of the schema (T,) = Br(S, ¢,v).

8.3. EQUIVALENCE OF THE SCHEMAS 73

Proof: We have to show that I* satisfies the constraint Br(¢,v). It is clear that it satisfies the two final
conjuncts in the definition of Br(¢, v), since there is a 1-1 correspondence between l-values a(l) in I*(v;) and
l-values B(1) in I*(vz). It remains to show that |=y. F(¢). This is a consequence of the following assertion,
whose proof is a routine induction on the structure of the formula é.

Let z/)(:ci,l, .., 23 Lyl ...,y™) be an arbitrary LDM formula over S where all the variables of sort v are
at the end. Then the free variables of F(¢) are zl, , ..., z] | Yous Yngr - U, Y. If I € I(w;) for all 4,

1<i<n,and ¥ € I(v) fori=1, ..., m then
':I "/’(ll,---ylmlll:---:l:n) < ’:IOF("/))(II:-'-ylma(li)n@(li)’"'!a(lin)’ﬂ(l:n)) 1

Lemma 41: Let (S, ¢) be a well-formed constrained cyclic schema, let v be a possible breakpoint, and let
(T, %) be the schema that we get by breaking the cycles that go through v. Then (T, %) dominates (S,).

Proof: Let Q; be an independent query on S. Q, will consist of the same schema as Q: and its nodes will
be in the same order. Each formula ¢, (2,) in Q; is replaced by the corresponding formula F(¢,)(zy) in
Q2. It is clear that we get a logical query.

Let I be a fixed instance of (S, 4) and let I* be the instance Br(I,v) of (T,4). We show that the result
I, of Q1 on I and the result I} of Q, on I* are isomorphic. The isomorphism is defined using the topological
order on the query nodes, as follows.

Assume that we have defined the isomorphism f between I; and I{ on all the query nodes that precede
the node u. For each I € I1(u), let r = r1(I) be its r-value. We define an r-value r as follows

1. If v is of type O, then r is a tuple (I, ...,1,). We define to be the tuple (f(l1),...f(ln)).
2. If v is of type O, then r is a set, and we define ' to be the set {f(1) |1 € r}.

3. If v is of type /\ then r =1, and we define » to be f(i)

4. If v is of type O, then r € D, and we define # to be equal to r.

It is straightforward to show that 7/ is a candidate r-value for u in Q. This gives us a 1-1 correspondence
between the r-values of I)(u) and those of I} (u). If we then define f(l) =1*, where I* is the l-value in I} (u)
with r-value ', we extend the isomorphism f to u. By repeating this for each query node u, we get an
isomorphism between I; and I{. 1

We now define the inverse mapping on instances.

Definition 43: Let (S,¢) and (T,9) be as above, and let I, be an instance of (T,%). Then I, is the
following instance

1. I1(v) is defined as I(v1). Whenever I € I;(v), 7;(I) will be a tuple containing all the components from
r2(l), except for the last one that corresponds to the new edge to va, together with all the components
of ro(II,, (1)).

2. If w is any node except v; and v, and w is not a parent of v2, then I;(w) = I>(w) and the r-values are
the same as in I,.

3. If w is any node except v; that is not a parent of v, then Ii(w) = Iy(w). If wis of type (D, n) with v,
as its k" child, then each [in I2(w) has an r-value of the form ra(l) = (Iy, ..., 1k, .., 1,) for suitable
li’s. Since I satisfies ¢, there is a unique I} in Iy(vy) with It as its last component. We then define
ri(l) =(lh,..., I}, ...,1,). We define the r-values for nodes of type O in a similar way.

Lemma 42: Let (S, ¢), (T,¢), I and I, be as in the above definition. Then I, is an instance of (S,9).

74 CHAPTER 8. ELIMINATION OF CYCLES

Proof: I, clearly is an instance of S. The proof that =1 ¢ is a straightforward induction on the structure
of ¢, similar to the proof of Lemma 40. 1

It is easy to show that the two mappings on instances are inverses of each other, i.e., applying one and
then the other yields an instance isomorphic to the original one. To complete the proof of equivalence we
show that (S, ¢) dominates (T,).

Lemma 43: Let (S, ¢) be a well-formed constrained cyclic schema, let v be a possible breakpoint and let
(T, %) be the schema that we get by breaking the cycles that go through v. Then (S, ¢) dominates (T, ¥).

Proof: Let Q; be an independent query on S. Q; consists of the same schema and node ordering as Q.
The formula ¢y, () in Q2 is replaced in Q; by the following formula. Each variable in ¢y, of the form z,,
or z,, is replaced by a variable z,. These variables are distinct, i.e., ©,, and z,, are replaced by different
variables. The only other change we have to make in ¢y, is to atomic formulas that involve 7. Formulas of
the form y, 7; £y, and yy 7; Ty, are replaced by y,, 7k %y, where w is the kth child of v. The remaining
possibility, €y, #n+1 Yu,, Where v has n children, is replaced by z, =; y,. Proving the equivalence of Q; and
Q- is now straightforward, making use of the fact that we only consider instances that satisfy the constraint
Y. 1

Combining Lemmas 41 and 43, we get

Lemma 44: Let (S, ¢) be a well-formed constrained cyclic schema, let v be a possible breakpoint and let
(T, %) be the schema we get by breaking the cycles that go through v. Then (S, ¢) and (T,) are equivalent.

Finally, by applying this result repeatedly together with Lemma 39, we get the desired result.

Theorem 45: Let (S,) be a well-formed constrained schema. There exists an acyclic constrained schema
(T,) that is equivalent to (S, ¢). I

Chapter 9

Conclusions

We have described a new model of data, the Logical Data Model, that is designed to combine the advantages
of the existing data models. On the one hand, it enables the database to describe more of the semantics of
the data than is possible using the relational model of data. On the other hand, we do not lose the nice
properties that relational databases have, in particular the ability to query the database using equivalent
non-procedural and procedural languages.

Some directions for future work are as follows.

1.

More work has to be done on the query language. The languages we have defined are similar to the
initial versions of Codd’s relational algebra and tuple calculus. We have outlined in Section 3.2 how
the LDM languages could be modified to obtain a more user-friendly and efficient language, but more
work has to be done in this direction before an implementation would be possible.

Another direction for future work is extending the power of the query language. While there does not
appear to be any need for the full power of the implicitly defined queries in our first attempt, there may
be specific constraints that we want the result of the query to satisfy, and these may not be expressible
by node-by-node formulas. Appendix B gives one example of the sort of difficulties we encounter in
one extension of this sort.

- The query languages that we have described are all first-order. Recent papers, such as [HN84] [Rei78]

[Ul185], have proposed using a more powerful query language, similar to PROLOG, for accessing
databases. Such a language would be able, among other things to compute the transitive closure of a
relation, something that cannot be done in the relational algebra [AU79]. It may be possible to extend
the LDM query language along these lines to get a non first-order language without the problems that
arise with Jacobs’ database logic.

More work remains to be done on the expressive power of cyclicity. It is still open whether cycles
containing nodes of type /\can be eliminated. Furthermore, we have only shown that, according to a
certain measure, cycles in well-formed schemas do not add any expressive power. But it is not clear
that this measure is the ultimate one.

75

Appendix A

An Early Attempt to Define the
Query Language

A.1. Introduction

In this appendix, S will be a fixed database schema, I an instance of it and Q = <SQ, <qQ ¢Q> a query on

S.
One of our attempts to extend the relational model to LDM schemas was the following. A query consists
of an extension of S together with some sentence that specifies an instance of it. In other words

Definition 44: A query Q on S consists of

1. An extension SQ of S.
2. An LDM sentence ¢Q over SQ.

The result of the query should be an extension of I that satisfies sentence ¢Q.

Definition 45: The result of Q on I is an extension Iq of Ito Sq such that |= Iq¢Q'

One problem with this definition is that there may be many different ways to extend I, all of which satisfy
0. One way we tried to deal with this problem was to require that a query have a unique result, i.e., put
the burden on the user to make sure that he only asks such queries. Uniqueness, of course, will only be up
to isomorphism. In the relational model the term safe queries is used to denote queries for which the result
is defined. The only thing that could go wrong there is that the result may be infinite, and that is in fact
the definition of safety in the relational model. For LDM queries this is no longer true, since there are other
things that may be wrong with a query. For example, there may be no extension of I to SQ that satisfies
the query, or there may be several possible such extensions. We shall borrow the term safe query from the
relational model and use it with an extended meaning. It will denote those queries that have a unique result.
Note that since we are only interested in finite instances the safe queries in the relational model turn out to
be a special case of our more general definition.

Definition 46: A query is safe up to isomorphism if for every instance I of S there is a unique extension of
Ito SQ that satisfies ¢Q. The uniqueness is up to isomorphism relative to S.

76

A.1. INTRODUCTION 7

The problem with this definition is that requiring that a query be safe up to isomorphism is too strong
a requirement.

Figure 63: A logical query

Example 23: Let the database schema be the genealogy schema S shown in Fig. 8 (page 10) Suppose that
as a query on S we want to construct the LDM schema that corresponds to the relational model. In other
words, the query schema is the extension of S formed by adding the nodes in Figure 63 to S. We want w*
to contain pairs of l-values that correspond to (Person-Parent) pairs. To get these pairs, look at elements of
I(v). For each such element, take its left component and pair it with those elements that we get by taking
the elements in its right component, and finding the person that they point to. When we write this out
formally, we get the following LDM sentence

¢1= (Val.)(Vzl.)(Vz3.) ((zﬁ. TusZhe) A (23emyezl.)
= Gy:,)(ays)(aya)(ay:z)(sy3>((y; = 23) A (4 = o3) A (3 = sk 48))

A (s € v) A (yﬁvruyf]’)))

We can think of ¢, as being similar to how we would express a query in the relational model. In other
words, we say what the objects in the result should satisfy. The problem with this query is that it is not
safe up to isomorphism. One reason for this is that unlike the relational model the LDM model can express
duplication of data. Everything in the result of the above query does indeed correspond to a (Person-
Parent) pair but there is nothing to stop such a pair from appearing twice or more often. To prevent this
from happening, we have to add another sentence to the query. The following sentence, ¢2, says explicitly
that the result contains no duplication.

$2 (vxu')(Vyu‘)(a:U‘ :/:I Yus = Ty #r yu‘)
(VEu=)(Vyoe)(@oe F1 Yoo = Bos #r Yoe)

(wa')(Vyw‘)(a’.w‘ Fl Yue = Ty #r yw‘)

> > |l

The query with ¢, A @5 is still unsafe. Nothing in what we have written so far says that any particular
(Person-Parent) pair must appear in the result—we have only said that everything in the result is such a
pair and that nothing appears more than once. In the relational model this is something that we do not
have to say explicitly—we just say what should be in the result and the result will then contain one copy of
each tuple that satisfies the query. To make our query safe we can add another sentence, ¢3, to the query.
#3 says explicitly that anything in I that corresponds to a (Person-Parent) pair gives rise to a corresponding

78 APPENDIX A. AN EARLY ATTEMPT AT THE QUERY LANGUAGE

tuple in the result.
¢3= (Vob)(Vud) (Ve) (Y90 (V45) ((yﬁwuyb) A @3 muyl) A (vh € 93) A (vamull)
= (3z1.)(3z2.)(3=3.) ((z,l,,. = (22, 23.)) A (o2 = %) A (23 = y3)>)

Finally, to get a safe query, we have to restrict the contents of I (u*) and I(v*), i.e, to say that these
nodes contain nothing that is not needed for the tuples in I(w*). Formally

¢s = (Veu+) By) (Tus TusYur) A (V‘”v‘)(ayw‘)(”v‘wv‘yw‘)

Putting all this together we get the query Q = (Sq, ¢Q) where

¢Q=¢1/\¢2/\¢3/\¢4

While this query is safe at last, it is obviously far too complicated to be any real use.

A.2. Safety up to Duplication

What the above example shows is that to get a safe query we have to add conjuncts to our original query that
say things that are obvious. One of these explicitly states the fact that there is no duplication in the result.
We could simplify what the user has to write by making this part of the definition of the query language,
which could be done by having the query processor automatically add a conjunct similar to ¢ to the query.
We feel that this is not the right way to proceed for several reasons. One reason is that this seems a rather
ad hoc approach. Why add this conjunct rather than other ones? The other reason is that the query may,
either implicitly or explicitly, require that there be some duplication in the result. If the system were then
to add ¢, to the query it would convert what was originally a safe query into an unsafe one.

The alternative way to proceed that seems preferable from a mathematical viewpoint as well is to keep
the original query as the condition that the result must satisfy but also require that the result have as little
duplication as possible. In our example this would mean that there is no duplication at all but in general
that would not have to be the case. A safe query would then be one that has a unique minimal instance
satisfying the query. In such a case we shall say the query is safe up to duplication.

Essentially, an instance is minimal if there is no smaller instance that satisfies the sentence. Some
difficulty occurs when trying to define what minimality means at a node of type O. I v is of type (O, u) and
the query requires that u have some duplication, we have to make sure that we minimize internal duplication
in the sets, i.e., that we take only one copy among the duplicates in u as a member of each set in v (unless
duplication of this sort is also required by the query).

In order to define minimality, we first define a relation /; < I3 on l-values. l; < l; will mean, intuitively,
that while I; and I, contain the same information, /; may contain more internal duplication than 3.

Definition 47: Let I = (I, 1) and Iy = (I, 72) be two extensions of I to Sq. We say that an element [
of I;(v) is dominated by an element I3 of I>(v), and write I} < Iy, iff

1. If v is a node of the database schema S, then l; = l. This means that different l-values in the database
are regarded as essentially different objects, even if their r-values are the same.

2. If v is a query node, i.e., v is a node in VQ — V, then

A.3. ABSOLUTE SAFETY 7 79

(a) If p(v) =0, then ri(h) = ro(ly).
(b) If pu(v) = (O, n), then IL;(1) < T;(lz) for all 4, 1 <i<n.

(c) If p(v) = 2\ then ri(ly) < ra(l).
(d) If p(v) = O, then
i. There is a 1-1 function f,:71(l;) — r9(ly) such that for all [€ ri(h), I X f(1), i.e., everything
that is in 71 (l;) is also in r3(l2), possibly with more internal duplication.

ii. For every I € ro(l2), there isan I’ € r1(l1) such that I <1, i.e., everything in r2(l2) is a copy,
possibly with some more internal duplication, of something in ri(h).

Provided that the query does not add cycles to the database, this definition corresponds to the intuition
we described above. The problem with cyclic queries is that since the definition is recursive, l-values of nodes
that are in a cycle added by the query will never dominate one another, and we shall end up with no way to
compare the instances that we get. As we are going to forbid cycles in the query anyway, for other reasons,
we shall not discuss here how to modify the definitions to handle cyclic queries.

The next step is to define a relation I; < I, between instances. Intuitively, I; < I, will mean that I, and
I2 contain the same data, but I, may have more duplication. This means that I, may have more copies of
things in I, and these copies may have more internal duplication.

Definition 48: Let I, = (Ii,r) and I, = (I2, r3) be two extensions of I to SQ. We say that I; < I, iff for
each query node v '

1. There is a 1-1 function f,: I;(v) — I5(v) such that for each I € Ii(v), 1 X fu(1), i.e., everything in I, (v)
is in I(v), possibly with more internal duplication.
2. For every | € Iz(v), there is an ' € I(v) such that ¥ <1

Definition 49: An extension IQ of I to SQ is called a minimal result of Q iff

1. Iq is a result of the query, i.e., |=IQ ¢Q.

2. IQ is minimal, i.e., if I‘Q is another extension of I to SQ such that Ib =< Iq, but Ib is not isomorphic
to IQ relative to S, then I‘Q i§ not a result of Q, i.e., #Ib¢Q.

Definition 50: A query Q is called safe up to duplication on I iff Q has a unique minimal result on I. Q
is safe up to duplication iff it is safe on all instances I of S.

Example 24: If we write the query of Example 23 as (Sq, $1 A d3 A ¢s) we get a somewhat simpler query.
This query is safe up to duplication and has the desired result.

A.3. Absolute Safety

The other way to simplify the user queries is to enable the user to avoid having to specify @3 explicitly. ¢3
Just says that anything that is allowed (by ¢1) to be in the result actually appears in it. In other words
what we want to do is to maximize the data in the result. We also want to combine this with minimizing
the duplication as above. An absolutely safe query will be one that has a unique result under this combined
approach, i.e., maximize data- and minimize duplication.

We first define what it means to say that an instance contains more data than another instance.

80 APPENDIX A. AN EARLY ATTEMPT AT THE QUERY LANGUAGE

Definition 51: Let I) = (I1,r) and I, = (I2,m2) be two extensions of I to S. We say that I, contains
at least as much data as I, and write I; < Iy, iff for each query node v and each element I of I;(v), there

is an element l; of I>(v) that contains the same information, possibly with more internal duplication, ie.,
L < 12. .

Definition 52: An extension Ig of Ito Sq contains the maximum data satisfying Q iff

1. IQ is a result of Q, i.e., kzquﬂq.

*

2. IQ is a maximum result, i.e., if IQ is an extension of I to SQ that satisfies |=Ib ¢Q, then Ib < IQ.

Definition 53: The absolute result of Q is an extension IQ of I to SQ such that IQ is minimal under <
in the class of maximum results, i.e., the class

{Ib | Ib contains the maximum data satisfying Q}

Definition 54: Q is absolutely safe on I iff it has a unique absolute result, up to isomorphism. Q is
absolutely safe iff it is absolutely safe on all database instances.

Example 25: The query of Example 23 can be written as the absolutely safe query (Sq, 1 A ¢a).

A.4. TUndecidability

What we have shown so far is how we can reduce the amount of work the user has to do in order to write a
safe query. The language we get is close in this respect to the relational tuple calculus. In order to do this,
however, we had to make the definition of what the result of a query is much more complicated and less
intuitive.

Besides this, it turns out that all three of the approaches we described are too powerful. We look now
at the question how do we test if a given query is safe, either up to isomorphism, up to duplication or
absolutely. It is not hard to see that we can reduce testing whether a query in the relational model is safe
to testing safety under any of these definitions. Since testing a relational query for safety is undecidable
[Pao69] the undecidability of testing for our types of safety follows immediately. In the relational model this
undecidability is not a problem. The reason for this is that if we are given a database instance we can test
whether the query is safe and we can compute the result when it is. Furthermore, we can give restrictions
on the query language that allow the user to write only safe queries, and if all the domains are finite then
all relational queries are safe. What is undecidable is just to test whether a query is safe for all possible
database instances. Our three definitions of safety, on the other hand, are too powerful, since even if we are
given a database instance, it is still undecidable whether a query is safe on it.

Theorem 46: There is an acyclic schema S! an instance I of S and a query Q on S, such that it is
undecidable whether the query is safe on I up to isomorphism, up to duplication or absolutely.

Proof: We reduce testing the three kinds of safety to testing whether a sentence in a first-order theory with
equality and one ternary relation symbol R(z,y, z) has a finite model [Tra50]. The database schema S will
be the empty schema (V = 0), which immediately turns both testing for safety on a fixed instance, and on
all instances, into the same problem. The query schema SQ is shown in Fig. 64. It has v <Q U

1The reason for mentioning the fact that it is acyclic is that otherwise the cyclicity of S might appear to be what causes the
undecidability

A.4. UNDECIDABILITY 81

v

Figure 64: Undecidable query

Let ¢ be a sentence in the first-order theory. We convert this into an LDM sentence L(4) as follows.
1. Introduce a variable z, for each variable z in é.

2. Replace each quantifier Qx by Quz,.

3. Replace each atomic formula ¢ = y in ¢ by the LDM formula z, =; y,.

4. Replace each atomic formula R(z, y, z) by the LDM formula
¢r = (awu)(wu =r (‘Uv;yv;zu))
The query Q = (Sq,zb) has ¢ equal to

L(#) A (Y2)(V2d) (2} =1 2% = 2} =1 22) A (V) (V92) (0l = o2 = Yo =1 Y2)
/\(V.v,,)(ayu)(.v., T1Yu V Ty T3 Yy V 2y T3 yu)

The intention is that this formula says that the result of the query corresponds to a model of ¢. The three
final conjuncts say that the result has no duplication, and that there are no unnecessary elements in v.

We first show that ¢ has a finite model if and only if there is a (finite) instance of S that satisfies .
Let I be such an instance. We define a finite model M of ¢ as follows.

The domain of the model is the set of data elements in the instance, ie., Dpg = {d € D | (A €
I())(r(l) = d)}. If a, b and ¢ are in the domain, then (a,b,c¢) is in Ry if, intuitively, (a,b,¢) is in
the instance. Formally, this means that there are l-values I;, I; and I3 in I(v) and ! in I(u) such that
7"(1) = (11,12, 13), 11 =r Q, lz =r b and l3 =r C. .

We show that M is a model of ¢ by induction on the size of ¢. Let @ be a subformula of ¢ with the
free variables i, ..., #,. Then the free variables of L($) are zl, ..., z7. For any assignment of domain
elements ay, ..., a, to these variables, there are unique l-values l, ..., I in I(v) with r(l;) = a; for all 4,
1 <4< n, and there is a unique / in I(u) such that r() = (l,...,1,). We now show that

EnM e, an) & 1 L@)

For atomic formulas ¢ of the form & = y this is obvious. For atomic formulas of the form R(z,y, 2), L(¢$) is
defined as (Jwy)(wy =, (2, ¥v, 2v)), and then

EM 3(01, az, ag)e>(ay,az,a3) € Ry
< For some ! in I(u), r(I) = (I1,1,,13)

b1 LG)(h, b2,)

82 APPENDIX A. AN EARLY ATTEMPT AT THE QUERY LANGUAGE

The result now follows by a straightforward induction, and shows that =1 L(¢) is equivalent to EM ¢
Therefore M is a model of ¢.

For the converse, let M be a finite model of ¢. We define an instance I of SQ that satisfies L(¢) as
* follows. Let the domain of M be the finite set A. Introduce new l-values as necessary, and define

I(v) ={la | a € A}, r(ls) =a
I(U‘) = {IR(a,b,c) I a,b,c€ A and = MR(a" b, c)}a r(’R(a,b,c)) = (la, lb:lc)

By a straightforward induction, we can show that =1 L(¢) holds. It is easy to see that the remaining
conjuncts in the definition of 4 also hold, and therefore =1 9.

We now return to the undecidability of testing whether a query is safe. Assume that one the three types
of safety is decidable, and let ¢ be a sentence over the above first-order logic. We show how to use the test
for safety to test whether ¢ has a finite model. Define Q as above, and apply the decision procedure for the
relevant type of safety to Q. If the query is safe, then ¢ has a finite model. If the query is unsafe, however,
this does not necessarily mean that ¢ has no finite model. In fact, there are two possibilities

1. Q has no result.
2. Q has more than one result.

To distinguish between these two possibilities, and from that to deduce whether ¢ has a finite model, we
define a new query Q = (Sq, %) in which

F=vV (Vey)(z, #1 2)

Then f=1 ¥ if and only if |= ¥ or =1 (Vzl)(z} #i z}). The latter formula is satisfied only by the empty
instance Iy with Ip(u) = Ip(v) = 0. Since [= [ﬂ’-, there is always at least one instance that satisfies 9.
Furthermore, it is easy to see that Iy is a minimal instance satisfying .

Apply the test for safety to Q. We distinguish between the three types of safety, as follows.

1. Safety up to isomorphism. First, assume that Q is unsafe. Since Iy satisfies ¥, the unsafety implies
_ that there is some other instance I that satisfies 4. But then I satisfies 9, thus showing that ¢ has a
finite model.

Now assume that Q is safe. Then Iy is the only instance satisfying . Since either zero or more than
one instances satisfy 1, there cannot be any instance satisfying ¥ and therefore ¢ does not have a finite
model.

2. Safety up to duplication. First, assume that Q is unsafe. Since Iy is a minimal instance that satisfies 1,
the unsafety implies that there is some other minimal instance I satisfying 1. But then I also satisfies
% and ¢ has a finite model.

Now assume that Q is safe. Then Iy is the only minimal instance satisfying v¥. Since there are either
zero or more than one minimal instances satisfying 1, there cannot be any minimal instance satisfying
. If there were an instance I that satisfied ¥, the definition of ¥ would imply that I contained no
duplication, and therefore that it must be a minimal instance satisfying 1. This shows that no instance
I can satisfy %, and therefore ¢ does not have a finite model.

3. Absolute safety. First, assume that Q is unsafe. There are two possibilities

(2) There is no maximum instance satisfying ¥. On the other hand, we know that Iy satisfies P.
Since it is not maximum, there must be some other instance satisfying ¥ and containing at least
as much data as Iy. Such an instance must satisfy ¢ and therefore ¢ has a finite model.

A.4. UNDECIDABILITY : 83

(b) There is more than one maximum instance satisfying 1. In this case clearly ¢ has a finite model.

Now assume that Q is safe. If the maximum instance that satisfied ¥ is some instance I other than Iy,
then it is also a maximum instance satisfying ¢. This implies that Q is safe, a contradiction. Therefore
Iy is the only maximum instance satisfying 1. If some other instance I satisfied 9, the maximality of
Iy would imply that I < Iy, a contradiction. Therefore there is no instance satisfying 1, which shows
that ¢ does not have a finite model. J :

In short, our query language is too powerful. One way to see what is wrong with it is to restrict the
schemas to those that correspond to relations. We then get a language that is more powerful than the
relational calculus. Essentially, this language has queries whose result is defined implicitly rather than
explicitly. For arbitrary first-order structures, Beth’s Theorem [CK73] says that for any implicit definition
there is an equivalent explicit one, but the theorem does not hold for finite structures which are what we are
interested in. Making use of open rather than closed formulas, as we did in the LDM query language, seems
therefore to be the way to proceed.

There is in fact a close relation between the LDM query language and our absolutely safe queries. At first
it may seem that the LDM query language is actually a special case of the absolutely safe queries. Given

a query Q = <Sq, <I>Q>, if we define ¢ = A, (V£y)¢y (x,) We appear to get an equivalent absolutely safe

query. This turns out, however, not to be the case. If this new query is absolutely safe we can indeed show
that the results of both queries are the same. The following example, however, shows that even if the original
query is safe the new one need not be absolutely safe.

Figure 65: Database schema and logical query

Example 26: Fig. 65 shows the database schema (the node u) and a query on it. The formulas of Q are
$o(z0) = (Fou)(2u =r 24)
i.e., v is a copy of u, and
$u(2w) = (Voo) (20 € Tw) A (V) (V23)(2y =1 23)

Le., if there is exactly one l-value in v, collect it into a set in w, otherwise the result at w is empty. If we
then define

¢ = (V:cv)¢v (-Ev) A (wa)‘ﬁw (3w)
we get an query that is not absolutely safe. The reason for this is that if I () has more than one element,

then both the instance with v containing a copy of u and w being empty, and the instance with any single
element of u in v and w collecting it into a set, are incomparable instances that satisfy ¢.

84 APPENDIX A. AN EARLY ATTEMPT AT THE QUERY LANGUAGE

The reason for the difference between the absolutely safe queries and the LDM query language is that the
absolutely safe queries try to globally maximize the data in the result whereas in the LDM query language

we maximize the data in the nodes one at a time, in a fixed order.

Appendix B

An Alternative Logical Data Model

B.1. The Model

In this appendix we describe an earlier attempt that we made to define a logical data model. We wanted
a model that would not allow implicit pointers. If, for example, in an LDM schema, we had two different
tuples that contained the same I-value among their components, we would implicitly have a pointer structure.
We would be using the l-values as objects having an independent meaning, and this did not seem to us be
desirable except when it was explicitly mentioned as part of the schema, definition. We therefore tried
to define the schema in such a way that such pointers would only be allowed when they were explicitly
represented in the schema. We shall describe this approach, and shall see that we get into serious difficulties
when we try to define a query language. The logical query language will turn out to require more general
constraints on the result than in the LDM model, and this will make it harder to evaluate a query by a
bottom-up node-by-node approach. To make a query unambiguous, we will have to make quite complicated
restrictions on the form queries can take. As a result, the query language we get is less intuitive than the
LDM query language, and in addition, we were not able to find an equivalent algebra. All the same, this
approach is instructive, as it illustrates the kind of problems that we encounter when we try to have general
constraints on the result of a query.

We shall call the model that we describe in this appendix the “LDM” model, to distinguish it from the
real LDM model. We shall not present all the definitions here, but shall give the details mainly where they
differ from the LDM model.

Definition 55: An “LDM” schema S is a directed forest with types associated with the nodes. Cycles will
be represented through a new type of node— a pointer node. A leaf in an “LDM” schema is of one of the
following types

1. Basic type, written (J (the same as in the LDM model).

’ 2. Pointer type, i.e., the type of v is some other node of S. These nodes will be drawn as e together with
an arrow to the node that they point to.

Other nodes are of the types O and O. To keep the model simple, we leave out the type 2\

l-values and r-values are defined as in the LDM model, with one additional restriction. We require that
no l-value appears as the member of more than one set or as the component of more than one tuple. On the
other hand, it can occur any number of times as the r-value of a pointer node.

85

—>—

86 APPENDIX B. AN ALTERNATIVE LOGICAL DATA MODEL

Definition 56: We shall use the symbol L(I) to represent the set of l-values used in the instance I, i.e.,
L(X) will be Uyev I(v).

Since the underlying graph of the schema S is a forest, given a set Lo of l-values that are used in the
instance I, we can define the set of the descendants of these l-values, something we shall need later on.

Definition 57: Let Lo be a subset of L(I), the set of 1-values used in I. Desc(Lg) = Uier, Desc(l), where
Desc(l), the set of descendants of the l-value ! € I(v), is defined as follows.

1. If v is a leaf, then Desc(l) = {I}. Note that we do not follow pointers, and therefore the recursive
definition will always terminate.

2. I p(v) = O and r(l) = (I, .. ., 1) then Desc(l) = {{}U Desc(l;) U - - - U Desc(ln).
3. If p(v) = O, then Desc(l) = {I}U Urerqy Desc(l')-

We define the “LDM” logic in a similar way to the LDM logic. If a node u points to a node v, the atomic
formula 2, p yu will mean that the value of z, is what the value of y, points to. Isomorphism is also defined
in a similar way to the LDM model, and we can then show that satisfaction is preserved under isomorphism.

B.2. The Query Language

Defining a logical query language is harder than in the LDM model. The problem is that if we try to do
a bottom-up node-by-node evaluation, we put only one copy of each item in each node—no duplication is
allowed. However, when we get to, say, a node of type O, we have a problem. Since no two tuples can
contain the same l-value as a component, we may need more than one copy of an object for use at a later
node. Furthermore, we have no idea in advance how many copies are needed until we get to that node. This
suggests that we have to use some global formula, rather than one formula per node. In general this results
in the same problems we had when we tried to define LDM queries this way. However, in this case, we were
able to find a restricted class of queries which we were able to handle.

This class of queries has schemas that consist of a single tree with root r and without pointers. We could
allow pointers to database nodes, but decided not to, in order to keep the model as simple as possible. The
query will also have an “LDM” formula #(x,) that describes what objects should be at the root of the tree.
The instances of internal nodes in the tree, unlike those in the LDM model, have no independent meaning.
They contain only those objects needed to structure the objects at the root r.

The bound variables in ¢(z,) range over database nodes and over descendants of r. This turns out to
lead to the same problems of implicit definition of the result that we encountered in our first attempt at
defining the LDM query language. As we are interested only in the objects at the root, and we want to
create other objects only when necessary, we restrict the query language to allow us to refer only to elements
of internal nodes of the query that are descendants of the object represented by z,. We do this by restricting
the quantifiers that are allowed in #(z,), in the following way.

1. Let v be a query node whose parent is a node u of type O. To understand the motivation behind
the definition, assume that somehow we have reached the value of the variable zy from the root.
Instead of allowing unrestricted quantification over v, we allow quantification only over those elements
of v that are elements of z,. We write this as (Vy, € £,)¥. Formally this will be equivalent to

(Vyv)(yv ELy = "/’)

2. If v is a query node with parent u of type O and v is w’s kt® child, we allow quantification over v
only through using quantifiers of the form (Vyy T zu)¥. Note that in this case, unlike in the previous

B.2. THE QUERY LANGUAGE 87

one, the value of z, uniquely determines the value of y,. The only reason for using quantification is
to avoid having to introduce some other function symbol.

3. Variables can range freely over database nodes, i.e., there are no restrictions on how we may quantify
these variables.

The definition of a query is:

Definition 58: A query Q on S consists of a pair (S’, #) where

1. S’, the query schema, is a schema with no pointer nodes, in which the underlying graph is a tree with
root r.

2. ¢(z,) is an “LDM” formula with the properties:
(a) ¢(z,) has exactly one free variable and this variable is of sort .
(b) Every quantifier in ¢ on a variable that ranges over a query node is either of the form (Vy, € z,)¢

or (Yyw 7k 24)¥, where 2, is a variable that occurs free in the subformula .

If Qis a query on S, SQ will denote the final schema, i.e., S combined with S'.

When evaluating a query, we will have to put duplicates in some of the nodes. We first define precisely
what duplication is, by defining an equivalence relation between l-values in two extensions I, and I of I
to Sq. Two I-values in the database instance I will be equivalent only when they are equal. On the other

hand, two l-values in query nodes will be equivalent provided that when we follow all the paths from these
l-values down to the leaves we get the same information.

Definition 59: Let /; be an element of I; (v) and I3 an element of I>(v). We say that l; and I, are equivalent,
and write l; = [y, if the following holds.

1. If v is a node in the database schema S, then {; = ls.
2. If v is a node in the query schema S’, then
(a) If v is a leaf of any type, then r1(l) = ro(l2).

(b) I v is of type (D) then all the components are equivalent, i.e., for each i, 1 < i < n, II; (r1 (h)=
H,‘ (7‘2(12)) .

(c) If v is of type O, then for each I € r1(l1), there is an I’ € ry(l3) such that | = V, and vice versa.
Note that this allows duplication inside sets. This will be specifically forbidden in the definition
of the result of a query.

3 We shall now give a list of properties that we would like the result of a query to satisfy. These properties
are similar to those that the result of an LDM query satisfies, as in Lemma 22. We shall use these properties
as the definition of the result, and then investigate when it is well-defined.

Definition 60: The result of Q on an instance I of S is an extension IQ of I to SQ that satisfies:
1. For every ! in Iq(r), |=IQ ().

2. There is no duplication at the root, i.e., if /; and I, are l-values in IQ(r) and l; =1, then l; = I,.

3. There are no unnecessary l-values in the result, so that whenever an l-value [is used in the result, it
must be a descendant of some l-value in Ig (r), i.e., it must be in Desc(Ig(r)).

88 APPENDIX B. AN ALTERNATIVE LOGICAL DATA MODEL

4. There is no duplication in nodes of type O, i.e., if v is a query node of type O and [is an element of
IQ(v), then Iy, lp € r(l) together with I; =2 imply that I} = l5.

*

can
Q

5. The result is maximal, i.e., if I}y is another extension of I to SQ that also satisfies 1-4, then I
be embedded in an instance isomorphic to Iq.

Let 1 be an extension of I to Q and let Lo be a set of I-values used in Iy. We shall define Restrict(I, Lo)
as the minimal extension of I to SQ that uses all the l-values in Lyo.

Definition 61: Let IQ be an extension of I to Sq. Let Lo be a set of l-values that are used in the result
of the query (but not in the database). The restriction of IQ to Lo, written Restrict(I, Lo) = Ify, is the
following instance of Sq- '

1. For each query node w, Ib(w) is equal to I(w) N Desc(Lo).
2. For each database node w, Ib(w) is equal to I{w).
Lemma 47: Restrict(I, Lo) is an instance of SQ.]

We next show that because of the restrictions on the form ¢(z,) can have, we are able to test if an object
should be in the result of the query, by looking only at the descendants of this object, and not at anything
else in any query node.

Lemma 48: Let IQ be an extension of I to Q, and let ! be an l-value in Iq(r). Then
}=IQ¢(1) - ':Restrict(IQ,{l}) é()

Proof: Let Ib = Restrict(Iq, {1}). The result will follow immediately from the following inductive asser-
tion, by taking ¥ = ¢(zr).
Let ¢(z5,,...,25,) bea subformula of ¢ with free variables z} , ..., zy . Let i € Ib(v;), i=1,...,n
Then
t—_- ‘(/)(11,,1)4:}#‘—‘ . ’(,b(ll,...,ln)
IQ n IQ

This is trivial whenever % is an atomic formula or is of the form -’ or ¥y V 2. When we quantify over
a variable whose sort is a database node, the result is also immediate. The remaining cases are '

1. ¢ is (Vg T 2o;)¥' (3,51 20, Yw)- By the definition of the restricted quantification,
‘=1—Q (Vo 7t @0)(l, - - bn)

is equivalent to

':I' ¢,(Ila ey ln, Ht(lt))
Q

Since l; € Iy (vi), (L) is in Ib (w), and the inductive hypothesis implies that this is equivalent to
|=Iq¢’(ll, ...y In, (1)), and therefore to

F‘IQ(Vyw T 2o,)¥ (I, -y ln)

B.3. SAFETY 89

2. Y is (Vyw € 0,)¢ (23,,-..,27 ,yu). By definition,

!:Ib(Vyw € in)QIJ(11, ey ln)

is equivalent to =y, ¥'(l1,..., I, 1), for all 1 in #(§;). Since I; is an element of Ib (vi), all the members of
r(l;) are in Ib (w), and therefore, by the inductive hypothesis, this is equivalent to }::IQ Y., 0,10)
for all / in r(I;), i.e., to }:IQd)(ll, AN |

This lemma is the crucial one behind the definition of the query language. It says that the truth of a
formula ¢(!) depends only on the contents of I and its descendants, and not on anything else in the result
of the query, and therefore we can look for the objects we want to put at the root, one at a time, without
considering any interactions between these objects.

Theorem 49: Let IL,, Ia be two results of Q. Then Ib and 12Q are isomorphic relative to S.

Proof: By part 5 of Definition 60, I}, can be isomorphically embedded in I2,, and vice versa. If f and

g are these isomorphisms, the fact that all instances are finite implies that f and g are 1-1 and onto, and
hence that the instances Ib and IZQ are isomorphic. |

B.3. Safety

In the previous section we assumed that the query Q had a result, and showed that then the result is unique.
If we were to remove the requirement that an instance be finite, we would expect a result always to exist, as
is shown by the following informal argument. :

Define an extension Iq of Ito Q by defining Iq (v) at each leaf v to be an infinite set of l-values, one
for each possible data element d € D. Going up the tree, put all tuples made out of the children of a node
of type (2 at that node. Each node of type O contains the entire powerset of its child. In both cases, no
l-value can be in more than one tuple or in more than one set, so we have to create duplicate l-values when
necessary. We repeat this until reaching the root r, and then remove all the 1-values in IQ (r) that do not
satisfy ¢. Finally, we restrict IQ to the descendants of the l-values in IQ(r). It turns out that whenever
this instance is finite, it is the result of the query. We can also show the converse, that whenever the query
has a result, it is isomorphic to the “instance” we constructed here, and hence this “instance” is finite. As
in the relational model, we define

Definition 62: Q is safe on an instance I of S iff Q has a result on I.

This definition of safety turns out to be closely related to the safe queries in the relational calculus and
in the LDM model, as it captures a similar finiteness property. We now formalize the construction that we
described above. We first have to define duplication of I-values more precisely.

We do this by defining a function Dup that has two arguments—an instance Ip of the database together
with some of the query nodes, and a set Lq of l-values in L(Ip). Lo is the set of l-values that we want to
duplicate. The result of Dup consists of:

1. An instance I; that is a superset of I,.

2. A function Copy that maps the duplicated l-values in Desc(Lg) into their duplicates.

90 APPENDIX B. AN ALTERNATIVE LOGICAL DATA MODEL

Definition 63: Let I be an instance of the database together with some of the query nodes, and let Lo
be a set of l-values used in Iy. The result of the function Dup(Lo, Io) consists of a pair (Iy,Copy). Let
Ly = Desc(Lg). For each ! in L;, we introduce a new l-value which will be called Copy(!). For each node v,
I1(v) will be Ip(v) together with the relevant new l-values, i.e., I (v) = Ip(v) U Copy[L;s N Ip(v)]. For each
new l-value Copy(l), where I € Ly, we now define (Copy(l)). Let I be an element of Ip(w).

1. If w is a leaf, then r(Copy(l)) = r(l).

2. If w is of type @, and r(I) = (I, ...,1s), then
r(Copy(l)) = (Copy(ll), R Copy(l,,))

3. If w is of type O, then #(Copy({)) = {Copy(¥') | ¥ € r(1)}.
Lemma 50: Let Dup(Lo, o) = (I1, Copy). Then

1. I is an instance of the schema.
9. The result of Dup is well-defined, i.e., if we choose different new l-values we get an isomorphic result.

3. The domain of the function Copy is the set Desc(Lg) of descendants of the l-values in Lo, and its range
is L(I;) — L(Io). 1

We now return to the construction of the result of Q. We are given an instance I of S, and we construct
an extension IQ of I to SQ.

1. If v is a query leaf, its r-values will be

Ro={di,...,dx}U U rlI(w)]
w is in a database
node of type O

where di, ..., di are the elements of D that appear in ¢. This resembles the safety requirement in the
relational model and in the LDM model. Ig (v) contains one l-value for each element of Ro, with the

corresponding r-values.

9. If v is a node of type (D, n,vy,...,v,), we would like Iq(v) to contain all the tuples in IQ(vl) X
cee X IQ(vn). However, since no l-value can be in more than one tuple, we have to create duplicate
I-values. We therefore apply the function Dup(IQ (vi), IQ) Il; i |I(vj)]—1 times. Then for each tuple
(L1, ...,l,) where each I; is in the original instance of v; we introduce a new l-value l € Iq(v), whose

r-value is a tuple whose components are equivalent to the I;’s. We can do this is such a way that we
use each l-value in the instances of the children of v exactly once.

3. If v is of type O with child w we do a similar construction, but this time we duplicate .Iq(w)
o(I(w)1-1) _ 1 times, so that we can put all possible subsets as r-values in IQ (v) without repeating
l-values. :

We then define Lo as those elements ! of Iq(r) that satisfy IQd)(l) and replace I by Restrict(Iq, Lo).

Lemma 51: Let Q be a query on a schema S with instance I. Let I* be the instance created by the above
construction. Then Q is safe on I iff I* is the result of Q.

B.3. SAFETY 91

Proof: The first direction, showing that Q is safe whenever I* is the result of Q.

To show the converse, assume that I* is not the result of Q. It is easy to see that I* satisfies parts 1-4
of Definition 60, and therefore must violate the fifth part, i.e., the maximality condition. Therefore, there is
some other instance I** satisfying 1-4 of Definition 60 that cannot be isomorphically embedded in I*. If all
the r-values of the query leaves in I** are also r-values of the query leaves in I*, it is not hard to see that
since our construction considers all possible combinations of these l-values it must be possible to embed I**
in I*. Therefore there must be some data element dy that is an r-value of some query leaf in I** but not in

- I". If dy were in the set Ry, we would consider all objects involving it when constructing I* and therefore

do ¢ Ro. But then, as in the LDM query language, we can replace dy by any such constant, i.e., any element
of D — Ry, and get an object that satisfies ¢. Therefore Q is unsafe. J

Bibliography

[A¥76)
[AB84]
[Acz85]
[ANST75]

[AUTY]

[BBG78]

[Bor78]
[BRRS2]
[CheT6)

[CK73]
[Cod70]

[cOD71]
[Cod72]

[Dat80]

M. M. Astrahan et al. System R: A relational approach to database management. ACM Trans-
actions on Database Systems, 1(2):97-137, 1976.

S. Abiteboul and N. Bidoit. Non first normal form relations to represent hierarchically organized
data. In Proc. Third Annual ACM Symposium on Principles of Database Systems, pages 191~
200, ACM, Waterloo, Ontario, 1984.

P. Aczel. Notes on non-well-founded sets. 1985. Unpublished Manuscript.

ANSI/X3/SPARC. Study group on data base management systems: interim report. File De-
scription and Translation, 7(2), 1975. -

A.V. Aho and J. D. Ullman. Universality of data retrieval 1anguages. In Conference Record
of the Sizth Annual ACM Symposium on Principles of Programming Languages, pages 110-120,
1979.

C. Beeri, P. A. Bernstein, and N. Goodman. A sophisticate’s introduction to database normal-
ization theory. In Proc. Fourth Intl. Conf. on Very Large Data Bases, pages 113-124, Berlin,
1978.

S. A. Borkin. Data model equivalence. In Proc. Fourth Intl. Conf. on Very Large Data Bases,
pages 526-534, Berlin, 1978.

A. Balsamini, M. Rafanelli, and F. L. Ricci. GRASS: A Logical Model for Statistical Databases.
Technical Report TR-39, IASI-CNR, 1982.

P. P. Chen. The entity-relationship model: Toward a unified view of data. ACM Transactions
on Database Systems, 1(1):9-36, 1976.

C.C. Chang and H. J. Keisler. Model Theory. North-Holland, Amsterdam, 1973.

E. F. Codd. A relational model of data for large shared data banks. Commaunications of the
ACM, 13(6):377-387, 1970.

CODASYL. CODASYL Data Base Task Group April 71 Report. ACM, New York, 1971.

E. F. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor, Data Base
Systems, pages 65-98, Prentice-Hall, Englewood Cliffs, NJ, 1972.

C. J. Date. An introduction to the unified database language (UDL). In Proc. Sizth Intl. Conf.
on Very Large Data Bases, pages 15-32, IEEE, Montreal, Quebec, 1980.

92

BIBLIOGRAPHY 93

[Dat81]

[Day79]

[DB82]

[FK77]

[GDB82]

[GIT9]

[Gra79]

[Har78]

[HMS81]

[HN84)

[Hul84]

[HY82]

(TBM78]

[Jac79]

[Jac80]

[Jac82]
7582

C. J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1981.

U. Dayal. Schema-Mapping Problems in Database Systems. PhD thesis, Center for Research in
Computing Technology, Harvard University, 1979.

U. Dayal and P. A. Bernstein. On the correct translation of update operations on relational
views. ACM Transactions on Database Systems, 7(3):381-416, 1982.

A. L. Furtado and L. Kerschberg. An algebra of quotient relations. In Proc. ACM Int’l Conf.
on Management of Data, pages 1-8, ACM, Toronto, Ontario, 1977.

D. Gangopadhyay, U. Dayal, and J. C. Browne. Semantics of network data manipulation lan-
guages: an object-oriented approach. In Proc. Eighth Intl. Conf. on Very Large Data Bases,
IEEE, 1982.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco, 1979.

M. H. Graham. NETS: operations and logic. In F. H. Lochovsky, editor, A Panache of DBMS
Ideas II, pages 152-179, Tech. Report CSRG-101, Computer Systems Research Group, Univeristy
of Toronto, 1979.

W. T. Hardgrave. Ambiguity in Processing Boolean Queries on TDMS Tree-Structures: A Study
of Four Different Philosophies. Technical Report IFSM TR-35, University of Maryland, 1978.

M. Hammer and D. McLeod. Database description with SDM—A semantic database model.
ACM Transactions on Database Systems, 6(3):351-386, September 1981.

L. J. Henschen and S. A. Naqvi. On compiling queries in recursive first-order databases. Journal
of the ACM, 31(1):47-85, 1984.

R. Hull. Relative information capacity of simple relational database schemata. In Proc. Third
Annual ACM Symposium on Principles of Database Systems, pages 97-109, ACM, Waterloo,
Ontario, 1984.

R. Hull and C. K. Yap. The format model: A theory of database organization. In Proc. First
Annual ACM Symposium on Principles of Database Systems, pages 205-211, ACM, Los Angeles,
CA, 1982.

IBM. IMS/VS: General Information. GH20-1260, IBM, White Plains, NY, 1978.

B. E. Jacobs. Application of Database Logic to Datlabase Design. Technical Report TR-892,
University of Maryland at College Park, 1979.

B. E. Jacobs. Applications of Database Logic to the View Update Problem. Technical Report TR-
960, University of Maryland at College Park, 1980.

B. E. Jacobs. On database logic. Journal of the ACM, 29(2):310-332, 1982.

G. Jaeschke and H.-J. Schek. Remarks on the algebra of non first normal form relations. In
Proc. First Annual ACM Symposium on Principles of Database Systems, pages 124-138, ACM,
Los Angeles, CA, 1982.

94

[KayT5]

[Kob80)]
[KV84]
[KV85]

[Mak77]

[MMSUS1]

[MP82]
[NGT78]
[0084]
[0Y85]
[Pao69)]
[Rei78]

[Rei84]

[RR83]
[RR84]
[Sch38]

[SP82)

BIBLIOGRAPHY

M. H. Kay. An assessment of the CODASYL DDL for use with a relational subschema. In

B. C. M. Douqué and G. M. Nijssen, editors, Data Base Description, pages 199-214, North-
Holland, Amsterdam, 1975.

I. Kobayashi. An Overview of the Database Mangement Technology. Technical Report TRCS—
4-1, Sanno College, Kanagawa 259-11, 1980.

G. M. Kuper and M. Y. Vardi. A new approach to database logic. In Proc. Third Annual ACM
Symposium on Principles of Database Sysiems, pages 86-96, ACM, Waterloo, Ontario, 1984.

G. M. Kuper and M. Y. Vardi. On the expressive power of the logical data model. In Proc.
ACM Int’l Conf. on Management of Data, pages 180-189, ACM, Austin, TX, 1985.

A. Makinouchi. A consideration on normal form of not-necessarily normalized relations in the
relational data model. In Proc. Third Intl. Conf. on Very Large Data Bases, pages 447-453,
IEEE, Tokyo, Japan, 1977.

D. Maier, A. O. Mendelzon, F. Sadri, and J. D. Ullman. Adequacy of decompositions of relational
databases. In H. Gallaire, J. Minker, and J. M. Nicolas, editors, Advances in Database Theory,
pages 101-114, Plenum Press, 1981.

F. Manola and A. Pirotte. CQLF—A query language for CODASYL-type databases. In Proc.
ACM Int’l Conf. on Management of Data, pages 94-103, ACM, Orlando, FL, 1982.

J. M. Nicolas and H. Gallaire. Database: Theory vs. interpretation. In H. Gallaire and J.
Minker, editors, Logic and Databases, pages 33-54, Plenum Press, 1978.

G. Ozsoyoglu and Z. M. Ozsoyoglu. SSDB—An architecture for statistical databases. In Proc.
Fourth JCIT, pages 327-341, Jerusalem, 1984.

Z. M. Ozsoyoglu and L.-Y. Yuan. A normal form for nested relations. In Proc. Fourth Annual
ACM Symposium on Principles of Database Systems, pages 251-260, ACM, Portland, OR, 1985.

R. A. Di Paola. The recursive unsolvability of the decision problem for the class of definite
formulas. Journal of the ACM, 16(2):324-327, April 1969.

R. Reiter. Deductive question answering in relational databases. In H. Gallaire and J. Minker,
editors, Logic and Databases, pages 147-177, Plenum Press, 1978.

R. Reiter. Towards a logical reconstruction of relational database theory. In M. L. Brodie,
J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases, and Programming Languages, pages 191-233, Springer-Verlag, 1984.

M. Rafanelli and F. L. Ricci. A Data Definition Language for a Statistical Database. Technical
Report TR-62, IASI-CNR, July 1983.

M. Rafanelli and F. L. Ricci. STAQUEL: A Query Language for Statistical Databases. Technical
Report TR-96, IASI-CNR, October 1984.

" A. Schmidt. Uber deduktive Theorien mit mehreren Sorten von Grunddingen. Math. Ann.,

115:485-506, 1938. :

H.-J. Scheck and P. Pistor. Data structures for an integrated data base management and infor-
mation retrieval system. In Proc. Fourth Intl. Conf. on Very Large Data Bases, IEEE, 1982.

BIBLIOGRAPHY 95

[SS75]
[SS77a)
[SS77b]
[Sto77]
[SWKH76)
[Tod76]
[Tra50]
[Tsi76]

[U1182]
[U1185]

[Var82]

[Var83]
[Wie83)
[Z1077]

H. A. Schmid and J. R. Swenson. On the semantics of the relational data model. In Proc. ACM
Int’l Conf. on Management of Data, pages 211-223, ACM, San Jose, CA, 1975.

J. M. Smith and D. C. P. Smith. Database abstractions: Aggregation. Communications of the
ACM, 20(6):405-413, 1977.

J. M. Smith and D. C. P. Smith. Database abstractions: Aggregation and generalization. ACM
Transactions on Database Systems, 2(2):105-133, 1977.

L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1-22,
1977.

M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation of INGRES.
ACM Transactions on Database Systems, 1(3):189-222, 1976.

S. J. P. Todd. The Peterlee Relational Test Vehicle—A system overview. IBM Systems J.,
15(4):285-308, 1976.

B. A. Trachtenbrot. Impossibility of an algorithm for the decision problem in finite classes. Dokl.
Akad. Nauk SSSR, 70:569-572, 1950.

D. C. Tsichritzis. LSL: A link and selector language. In Proc. ACM Int’l Conf. on Management
of Data, pages 123-133, ACM, Washington, D. C., 1976.

J. D. Ullman. Principles of Database Systems. Computer Science Press, Rockville, MD, 1982.

J. D. Ullman. Implementation of logical query languages for databases. In Proc. ACM Int’l
Conf. on Management of Data, ACM, Austin, TX, 1985.

M. Y. Vardi. The complexity of relational query languages. In Proc. Fourteenth Annual ACM
Symposium on the Theory of Computing, pages 137-146, ACM, San Francisco, CA, 1982.

M.Y. Vardi. Review of [Jac82]. Zentralblatt fir Mathematik, 497.68061, 1983.
G. Wiederhold. Database Design. McGraw-Hill, New York, 1983.

M. M. Zloof. Query-by-Example: A data base language. IBM Systems Journal, 16(4):324-343,
1977.

