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Preface 

The 1995 program in Geophysical Fluid Dynamics addressed "Rotating 
Convection," with particular emphasis on high-Rayleigh-number convection and on 
convection in the ocean. Principal lecturers Ruby Krishnamurti, Joe Fernando and John 
Marshall were our guides. Ruby's courageous laboratory experiments with a rotating table 
proved so sensitive to small disturbances that her listeners were required to sit still and be 
quiet — a feat never before accomplished in Walsh Cottage. Joe Fernando offered us a 
panoramic survey of convection theory, and John Marshall challenged our theoretical 
impulses with a chilling account of real-ocean convection. John has very generously edited 
his lecture notes into a substantial review of ocean convection appearing in this volume. 
Sonya Legg, Keith Julien, Joe Werne and Bob Kerr presented sophisticated numerical 
studies of convection at high Rayleigh numbers. Martin Visbeck and Uwe Send described 
field measurements of convection in the ocean. These stimulating lectures were followed 
by many others, too numerous to mention. As usual, the subjects sometimes strayed quite 
far from the summer's official topic — to anything and everything of interest in the broad 
and rapidly developing field of geophysical fluid dynamics. Our eight graduate-student 
fellows seemed to thrive in this atmosphere, making up in their research for what can only 
be described as a character-building season on the softball field. 

Once again, participants were discouraged from submitting lecture summaries to 
this volume if the results would soon be published in a regular journal. Therefore, readers 
should be sure to scan the "1995 Lecture Schedule" for a fair impression of the spectrum of 
our activities. 

In August, the staff faced an unusual challenge when the director decided to spend a 
week relaxing in Falmouth Hospital and two more weeks malingering at home. While it 
would be impossible for me to thank all of the people at GFD and WHOI who showed 
kindness and offered help, I especially want to thank stalwart Neil Balmforth and the new 
Iron Man of GFD, Rupert Ford, for their generosity and skill in rescuing abandoned 
fellows. 

Just as the current directors seem to be wearing out, reinforcements have arrived: 
We are very proud to announce that Steve Meacham and Stephan Fauve have joined the 
GFD steering committee. These two Steves have contributed to the program in numerous 
past summers, and Steve Meacham (assisted by George Veronis) will direct the 1996 
session on "Double-Diffusive Processes." 

Once again it is a pleasure to thank the Woods Hole Oceanographic Institution for 
its hospitality. Jake Peirson and his staff at the Education Office provided indispensable 
support. This year, we were very fortunate to have Lee Campbell — a newcomer to GFD 
— as our administrator in the cottage. Lee kept things running smoothly despite everything 
we could do. We gratefully acknowledge the support of the National Science Foundation 
and the Office of Naval Research. Finally, very special thanks to my co-director Glenn 
Flierl for his help, patience, and unfailing good spirit. 

Rick Salmon 
1995 co-director 
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Lectures by Ruby Krishnamurti 

Lecture 1      Rayleigh - Benard Convection 

by Ruby Krishnamurti 

1) Cellular Convection: 

1.1.1 Theoretical Background 

A layer of fluid lies between two plates of infinite horizontal extent. The temperature on 
the lower plate is T0 + AT, and the temperature on the upper plate is T0. The governing 
equations in the Boussinesq approximation(Spiegel and Veronis, 1960) are: 

Momentum 
(dt + u-jdj) ui = diP - g—Xi + v0V

2u{ (1) 
V PQ PO 

where i = 1,2,3 and A,- = (0,0,1) 

Mass 
djUj = 0 (2) 

Energy 
(dt + u3dj) T = K0V

2r (3) 

State 
p = Po[l-a(T-T0)} (4) 

1.2 Basic State Solution 

The basic state of the system is one of no motion, hydrostatic balance and steady heat 

conduction. 

Ui,B = 0 (5) 

^ = -gp (6) 
oz 

-IS- 



TB = ~z + (T0 + AT) (7) 

1.1.2 Linear Stability of Basic State 

The system is perturbed with an. infinitesimal amplitude disturbance Ui,9,x so that T = 
TB + 0, p = PB + n and U{ = «;, and linearised about the basic state(see Chandrasekhar, 
1960). The dimensionless equations governing the perturbations are: 

±-dtUi = -di-K + \i0 + V2u{ (8) 
Pr 

djUj = 0 (9) 

dtO = V29 + RujXj (10) 

where Pr = ^ is the Prandtl number and R = -22-ATcP is the Rayleigh number. The 
boundary conditions at z = 0,1 are w — 0, 0 = 0, and u = v = 0 for rigid boundaries or 
dzu = dzv = 0 for stress free boundaries. 

We may separate out the time dependence of it; and 6 as eat and consider the marginal state, 
i.e. where CTR = 0 (aj turns out to be zero for <?R > 0): 

V V- + \i0 - diir = 0 (11) 

V20 + RujXi = 0 (12) 

djUj = 0 (13) 

This is an eigenvalue problem for R. We can combine (11), (12), and (13), and obtain an 
equation solely in terms of the vertical velocity w: 

V6w - RV2
hw = 0 (14) 

where V| = d%x + d2
y. We can look for solutions of the form V|u> = —k2w, in which case: 

\d2
z - k2f + Rk2} w = 0 (15) 
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For the stress-free case, w(x, y, z) — etk'T sin mrz where r = (x, y), n = 1,2,3,... so: 

,2^2   ,    1.2^ 

R=y    ,2   ; (16) k2 

The mininum value of R occurs for n = 1 and fc2 = \ giving Rmin = Rc = ^v4. The 

eigenfunctions are infinitely degenerate: k2 = k2
x + k2 = ^- at R = Rc, i.e. rectangles of any 

kx/ky including squares, rolls, triangles and hexagons are all marginally stable at R = Rc, 
so an experiment in which R is increased through Rc may contain a superposition of many 
eigenfunctions. 

1.2 Demonstration 

The lecturer demonstrated the degeneracy of the eigenfuctions using a tank of fishscale-laced 
water ~ 1cm deep on top of an overhead projector. The lecturer slipped sheets of acetate 
with dark stripes or clear dots under the tank for a while and then removed them, after which 
convection along rolls or in hexagons appeared. The lecturer then excited a more complicated 
pattern using a cutout snowflake swiped from her departmental Christmas decorations. 

1.3 Steady Finite Amplitude Flow 

(See Malkus and Veronis, or notes on Veronis' talk on steady finite amplitude convection) 

For R> Rc there are steady finite amplitude solutions for a modified perturbation expansion 
as follows: 

oo 

X = Y,znX{n) (17) 

R = Rc + eRU + 62RW + .... (18) 

where X = Ui, 9 or TT. The resulting equations at each order of e can be solved. The result 
is that RW = 0, i?<2) > 0 (i.e. R - Rc > 0 for real e), and R™ is smallest for rolls. There 
are still an infinite number of "solutions" (i.e. orientation of rolls) unless boundaries are 
considered. Viscious dissipation on boundaries will break this degeneracy. 

1.4 Stability of Steady Finite Amplitude Flows 
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(See Schlüter, Lortz and Busse, 1965) 

Each of the steady finite amplitude solutions is perturbed with infinitesimal amplitude dis- 
turbance (u{,ö,7r), with growth rate a. Then: 

4- [dtüi + ujdjüi + üjdjUi] = -diiT + kB + V2üi (19) 
Pr 

Oft = 0 (20) 

[dtO + UjdjOj + üjdj9] = V20 + RüjXj (21) 

Note that e now occurs as a given small parameter and as e —> 0, we recover the linear 
stability problem. üt-, 6 and it can be expaned in a perturbation expansion in powers of e, 
along with 

a = a(o) + eaW + e2(7(2) + _ (22) 

The results are that <7(1) = 0 and cr(2) > 0 for all three dimensional solutions - hence the only 
stable solutions are rolls. The observations are of rolls with a heat flux wO ~e2 

2) Laboratory Experiments 

2.1 Generation of Steady Mean Flows 

Laboratory experimental data was shown in which steady finite amplitude rolls become 
unstable. After a number of transitions, cellular structure disappears completely and is 
replaced by transient randomly occurring plumes. This happens at R ~ 106 for Pr = 7. 
When R is increased to 2 x 106, the randomly occurring plumes all develop a non-random 
tilt. If they tilt from lower left to upper right, hot plumes near the bottom boundary drift 
to the left and cold plumes near the top boundary drift to the right. If they tilt from lower 
right to upper left, hot plumes drift to the right, cold to the left. This is shown schematically 
in Figure 1. With tilted plumes, the Reynolds stress uw does not vanish upon horizontal 
averaging (as it would for upright cells). The turbulent velocity components were measured 
with a laser-velocity technique, and it was shown that the divergence of the Reynolds stress 
■i-üw balances the viscous deceleration of a mean flow ü: dz 

dz dz2 
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Thus a large scale shearing flow u(z) has spontaneously formed. The only external forcing 
is still uniform and steady heating below, uniform and steady cooling above. This organized 
mean flow u(z) results from the Reynolds stress of the turbulent velocity transporting hor- 
izontal momentum up the mean velocity gradient. That such a phenomena can occur has 
been shown in a low order mathematical model which shows symmetry breaking bifurcations 
to tilted flows. 

2.2 Laboratory Experiments: generation of low frequency oscillations 

At R > 107 and Pr = 7 there is a new kind of organization in the form of travelling clusters 
of tilted plumes that results locally in long-period oscillations. The lecturer observed (i) 
space-time portraits of the flow, (ii) analyses of internal temperature time-series, and (Hi) 
heat flux measurements, all in the Rayleigh number range 106 — 108, with Prandtl number 
of 7. The first two types of observations give quantitative information about the frequencies, 
length scales, and speeds of the clusters. These observations showed that there are typically 
5 to 10 transient tilted plumes in a cluster. Along a direction of travel of these clusters we see 
at any instant of time an alternating pattern of clusters of plumes, next to a quiescent region 
with almost no plumes, next to another cluster of plumes, etc. Along a 4 ft. line spanning 
the layer, there may be at any instant 3 to 4 clusters of plumes, each separated from the next 
by quiescent zones. At a fixed point near the bottom boundary, there is a high frequency 
(with periods on the order of 10 seconds) variation in temperature as the plumes within the 
cluster pass. The cluster passes in order 102 seconds. The quiescent epoch also lasts on the 
order of 102 seconds. Thus at a fixed point there is the high frequency variability associated 
with plumed passage and the low frequency variability associated with cluster passage. The 
data showed how these periods vary with Rayleigh and Nusselt numbers. Tests also were 
described to convince us that this low frequency oscillation was not inadvertently forced. 

Finally, comparison is made with previous high Rayleigh number and small aspect ratio 
studies.   In recent years there has been much discussion of "soft" and "hard" turbulence. 
For cells (i.e.  containers) with aspect ratio A = 1.0 and Pr ~ 1, there is a transition at 
R ~ 107. Above this Rayleigh number it is found that: 

(i) there is a quasi-steady large scale flow; 
(ii) the probability density function of the mid-cell temperature is a double expo- 

nential; 
(iii) the scaling law for N oc Ra has a = |. 

These constitute hard turbulence.   Siggia(1994), however, points out that for other cells 
these three criteria do not onset together but occur singly, and that furthermore "the hard 
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regime is unlikely to be asymptotic." To add to the confusion, we are reporting here for our 
apparatus aspect ratio A = 12, Pr = 7, that: 

(i) steady large flow sets in at R = 2 x 106; 
(ii) the probability density function approaches a double exponential at R ~ 7 x 107; 

(iii) a is never | for R < 108 (unless the A = 12 tank is partitioned into 144 cells 
each with A = 1). 

The N -R relationship with 144 cells of A = 1, Pr = 7 is 

N = 0.148 R0-28 (24) 

in good agreement with previous investigations at A ~ 1. 

3) Scavenging Plume Model 

Clusters of travelling tilted plumes have been observed moving past a fixed point in nearly 
periodic repetition. Although such regularity seemed strange in a turbulent flow, a "scav- 
enging plume model" was presented which has such a periodic behavior. In this model, 
prior passage of a plume or cluster of plumes has depleted the thermal boundary layer in a 
history-dependent way: the boundary layer is very thin where the plume has just passed, 
but has had time to thicken where the plume passed some time ago. Thus at any moment 
there is a thermal boundary layer of varying thickness, and the pressure gradient in it drives 
a flow towards the thicker regions. Taking this to be slow viscous flow, there is then a shear 
and a down-gradient momentum flux at the wall. This boundary layer is supposed to erupt 
when and where its thickness reaches some critical value. Then, assuming that the interior 
momentum flux is entirely by Reynolds stresses, we can, by matching interior and bound- 
ary layer heat and momentum fluxes, show that plumes move away from regions of thick 
boundary layer at just such a rate that the ever-thickening boundary layer keeps the plume 
"fed" with buoyant fluid. The periodic recurrence at a fixed position is from the successive 
passage of clusters of plumes. The predicted period is shown to be in reasonable agreement 
with that obtained from the x,t photographs and the power spectra shown in (Krishnamurti, 
1995). 

A Galilean transformation is applied to the boundary layer shown in Figure 2: 

x* = x + U0t (25) 

z   = z (26) 
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t* = t (27) 

u* = u + U0 (28) 

w* = w (29) 

yielding: 

jwdzu = rdxh + d2
zzu (30) 

dzw = 0 (31) 

for 6 = hc/l « 1 and dt = 0, and where 7 = w0hc/i/ (the Peclet number), r/6 = 
[gAph^/pQi/2] (the Rayleigh number), and hc is the critical value of the height of the boundary 
layer for which it explodes into a plume. The boundary conditions on z = 0 are: 

dzu = M0 + ~fU0 (32) 

w = 1 (33) 

where M0 is the momentum in the rest frame. In the laboratory frame, dth = w0- In the 
Galilean frame, dt*h = w0 — Uodx*h. For dt* — 0: 

d^ = W (34) 

The interior of the flow is assumed to be homogeneous, incompressible, effectively inviscid 
but not necessarily irrotational. Vorticity u> is constant following material particles, so 
in a two dimensional flow u = —V2^>. If this flow is steady, particle paths coincide with 
streamlines, and u is constant on streamlines, i.e. V2<f> = f{<j>). For an inviscid flow the 
vorticity distribution is arbitrary, so we can chose it to be proportional to <f>: 

S72<f> = -ß2cf> (35) 

The interior is then rotated and distorted so that the spaces between the plumes have right 
angles. This is shown in figure 3. Then the heat and momentum fluxes are matched between 
the boundary layer and the interior: 
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\sinh{2ll2ßl) 

4(sinhßl)2 [       Vl2ßl 

l 

+ UQWQ + //Mo 

tan a = 1 

Period = 77- = — 
U0      w0 

(36) 

(37) 

(38) 

(39) 

(40) 

a is the angle the plume makes with horizontal, fi is simply pv. r is the mean velocity at 
which fluid flows up the plume. 

Experimental evidence supports this model. Figure 4 shows how plumes move to the left (in 
the case shown) whilst growing upwards. At the bottom of the figure, the evolution of the 
boundary layer with time is depicted. Each box in the figure represents a parcel of fluid. The 
first number in each box represents the box's intial position. The second number records 
the time. At time 1, the box on the lower right has just moved out of the boundary layer 
because the height boundary layer just reached a value of hc. At subsequent times, it moves 
up and slightly to the right in this frame of reference while other boxes to its left also come 
out of the boundary layer. By time 5, it is apparent that the boxes have formed a tilted 
plume. 
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Lecture 2 : Rotation without Convection 

1     Theoretical Background 

In a rotating frame, the equation of motion is 

^ + u-Vu + 2fixu = -^ + ^V2u (1) 
dt p 

where u is the velocity, 2S7 is the planetary vorticity, p is the generalized pressure, v 
is the kinematic viscosity and p is the fluid density. If the equations are scaled, one 
arrives at the non-dimensional equation 

1^. + ^!u* . v*u* + 2ulin* x u* = -2uU^- + i/-^V* 2u* (2) 
T dt*      L p L2 

Defining the frequency number, F - 537, the Rossby number, R0 = ^, and the 
Ekman number, E = ^2, it is found for 

F« 1, Ro « 1, £« 1 

that the equation of motion may be approximated by the geostrophic balance : 

2ßxu =  (3) 
P 

Taking the curl of equation (3) gives the geostrophic vorticity equation: 

V x (20 x u) = -V x (—) (4) 

which expands to: 

du 1 rdpdp     dp dp, r.v 

dz        p2 dzdy     dydz 

2ft— = —&^£. - ^^1 (6) 
dz     p2 dzdx     dxdz 

2H—= - —[^^-——1 (7) 
dz        p2 dydx     dxdy 

If the vertical pressure balance is hydrostatic then equations (5)-(7) can be rewrit- 

ten as: 
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du      g dp      dhdp - 
2S2— = - - ^--K~\ löi 

dz      p oy     öy dz 

2flav = £ [_a£ + ö*§£] (9) 
<9z     p    dx     dx dz 

oft—= 9-\—^L -—^} (10) 
<9z      /? <9y dx     dx dy 

where ft describes the height to a density interface. Equations (8)-(10) are one for- 
mulation of the thermal wind equations. 

For a homogeneous fluid, p = constant everywhere, the thermal wind equations 

yield: 

du = dv = dw=0 

dz      dz      dz 

and using the boussinesq continuity equation, V.u. = 0, gives : 

5T + 3r=° <12) 
ox     dy 

These results are known as the Taylor-Proudman theorem and are interpreted to 
mean that for a slow, steady, inviscid flow of a barotropic fluid there are no variations 
in the velocity field parallel to the rotation vector. Equation (12) expresses that the 
flow is solenoidal in planes perpendicular to the rotation vector. 

2    Experiments 

Four experiments were performed to demonstrate rotational effects on fluid flows. The 
experiments were done in a cylindrical tank having a 20 cm diameter. The working- 
fluid was water with a layer depth close to 20 cm. The tank revolved about a vertical 
axis once every 5 seconds so that the spin-up time, which is of the order of E~i, was 
100 seconds. Three spin-up times were allowed for the fluid to approach solid body 

rotation. 

2.1    Experiment 1: Taylor Columns 

The first experiment was an attempt to show Taylor columns. These columns occur 
in flow regimes where the Taylor-Proudman theorem is valid and a volume in the flow 
field is given a velocity perturbation. Because the Taylor-Proudman theorem allows 
no velocity deviations along the axis of rotation, a fluid volume that is perturbed will 
drag with it a column of fluid that spans the depth of the fluid layer. The reason 
for this phenomenon is that for slow, steady, nearly inviscid flows of a barotropic 
fluid there is no available mechanism to apply a torque to a fluid column. Therefore, 
the angular momentum of each fluid column will be preserved for all time. When 
a localized velocity perturbation is introduced to the fluid, the angular momentum 

-M- 



vectors in that fluid column will change unless the entire column moves with the 
perturbed region. Therefore, the vortex lines are fixed parallel to the rotation axis 

for Taylor-Proudman flows. 
To visualize the columns, ground-up fish scales were placed in the water. The 

fish scales tend to mechanically align with shears in the flow, while, optically, the 
individual fish scales act as reflectors. Fish Scales randomly scatter light in a well 
mixed, calm fluid. The fluid appears a silver color and has an optical depth of 
approximately 5 cm. Local shears in the fluid align the scales, changing the optical 
properties radically in these regions to reveal the flow. The fish scales will either 
strongly reflect light or let all the light pass depending on the angle between the 
observer and the light source. 

A slightly buoyant float with a characteristic length scale of 2 cm was placed in 
the solid body flow. If the float is in very slow relative motion with the fluid in the 
tank, a Taylor column will be visible in light reflected off the fish scales. This did not 
occur in the experiment. Instead, curtains of sheared fluid were seen to extend to the 
bottom of the tank and these curtains did not form a cylinder around the float. This 
result occurred because the float was introduced into the water at a relative velocity 
too large for Taylor columns to form. Even though the Rossby number was not small 
enough for Taylor columns to form, the formation of full layer depth curtains revealed 
the two dimensionality of the rotation dominated flow. 

2.2 Experiment 2: Taylor Columns Revisited 

The second experiment also looked for Taylor column formation. In this set-up a 
small cylinder of diameter and height of about 4 cm was placed on the bottom of 
the tank. Wires were placed above each other at three different heights in the layer. 
The plane of the wires did not intersect the cylinder and the lowest of the wires was 
situated well above the top of the cylinder. 

The water in the tank contained thymol blue, a pH indicator, which changes to 
a deep blue color when the pH of the fluid is increased (D.J. Baker, JFM (1966), 
26). By passing a current through the wires the local pH changed enough for the 

surrounding fluid to turn blue. 
After allowing for spin-up, the speed of the tank was slightly decreased. This 

caused the fluid to rotate faster than the wires and the cylinder. When the blue fluid 
was advected through the region above the cylinder, it wrapped around the region 
instead of passing through it. This effectively demonstrated the existence of Taylor 

columns. 

2.3 Experiment 3: Geostrophic Adjustment 

The third experiment involved geostrophic adjustment of a baroclinic vortex (P.M. 
Saunders, JPO (1973)). The apparatus consisted of a 5 cm diameter, open-ended 
cylinder being placed in the center of the tank. The tank was filled with fresh water 
while the cylinder was filled with salt water with a 2 percent density jump. 
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After solid body rotation had been established, the inner cylinder was pulled out 
of the tank. In a non-rotating fluid layer the denser fluid would all settle to the 
bottom of the tank. Here, the settling is resisted by the Coriolis force. At the bottom 
of the tank, the dense fluid pushes outward and is deflected into a clockwise rotation 
as it spreads outwards. Lighter fluid flows inwards to replace denser fluid at the top 
of the tank and is deflected into a counterclockwise rotation. This thermal wind flow 
is able to restore the sloping interface so that the cone of denser fluid is supported by 

the rotation. 
The radius that the fluid flows out to is approximated by the Rossby radius of 

deformation, LP1 which describes the inner length scale at which rotational effects 
become relevant with respect to stratification. In this experiment the Rossby radius 

is defined as 

Ig'H 

where g is the effective gravity in the two layer system, H is the depth of the layer 
and / is the Coriolis parameter. For a fluid depth of 15 cm and a rotational period 
of 5 seconds the Rossby radius is about 6 cm. Upon removing the inner cylinder, 
two cones formed with radii approximating the Rossby radius. The break up of the 
vortex into two cones may have been due to baroclinic instability or this could have 
been caused by perturbations to the system upon removing the cylinder. 

2.4    Experiment 4: Rotating Convection 

The final experiment featured the same apparatus as the previous one except that 
the two fluids were different. The outer fluid was salt water while the inner cylinder 
was filled with a starch suspension in water. 

Ideally, the well mixed starch suspension initially slumps into a thermal wind 
supported cone because its density is greater than that of the surrounding salt water. 
The starch slowly settles out of suspension leaving buoyant fresh water at the top 
of the cone. The fresh water layer becomes buoyantly unstable and plumes ascend 
through salt layer. These ascending plumes will generate vorticity as they accelerate 
upwards via vortex stretching as 

du     ~ ,- — = fi.Vu 
dt 

where u represents the vorticity vector of the parcel. Therefore, the plume will rise 
in a right-handed helix up through the layer. 

When the experiment was performed, the starch settled in the time it took to 
spin-up the fluids. An attempt was made to stir the starch back into suspension 
prior to removing the cylinder, but this proved ineffective. The starch and the water 
remained separated and the fresh water layer rose en masse. The helical motions of 
the outermost plumes were still easily visible. 

Lecture written-up by Jonathan Aurnou and Helene Banks. 
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Lecture 3: Stability of Rotating Convection 

Introduction 

This lecture will consider the stability of rotating convection. As an introduction, 
a simple laboratory experiment is performed showing the effect of rotation on con- 
vection. A theoretical model of the transition to turbulence in a rotating fluid layer 
is then discussed. Finally, recent laboratories experiments are presented, illustrating 
the transition to turbulence. 

1 Convection with and without rotation 

A simple introduction to the effects of rotation on convection was given by considering 
different convective mechanisms in the rotating and non-rotating case. Warm water 
was poured in a cylindrical tank which had an aluminum plate, which had been 
preheated, at the bottom overlaying an insulating one. Evaporation at the surface 
of the tank causes a net heat flux out, thus cooling the surface water and causing 
convection to take place. The experiment was performed both in the rotating and in 
the non-rotating case. In the non rotating case, the convective processes occur in the 
form of large convective cells as well as small scale turbulence. In the rotating case, 
on the other hand, the blue-dye emphasized the smaller scale convective spirals that 
formed all the way to the bottom of the tank. 
In this simple experiment, scaling of the parameters shows that given a tank with 
a diameter, d ~ 20cm, a difference in temperature, AT ~ 10°C then the Rayleigh 
number, Ra = S2^^- ~ 1.1 x 109. The Taylor number for this experiment is given 
by r2 = Mgt „ 6*x 109. 

2 Stability of Rotating Convection 

2.1      Stability of non-rotating convection 

The stability of convection in a non-rotating regime and the transition to turbu- 
lence have received a great deal of attention in the fluid dynamics literature. It may 
be worth mentioning a few works that are of relevance to this lecture. Schlüter et 
al. (1965) present a theory for the stability of finite amplitude solutions in the in- 
finite Prandtl number regime for the case of an infinite layer of unstably stratified 
fluid, due to either cooling at the surface or heating at the bottom. They find that 
all three dimensional flows are unstable to infinitesimal disturbances, whereas the 
stability of two-dimensional flows depends both on the convection cells' wavelength 
and on the wavelength of the disturbance. Laboratory experiments confirm these 
results, introducing a dependence on the Prandtl number, (see, for example, Krish- 
namurti,1970a,1970b), as well as the recognized Rayleigh number dependence. More 
complex forms of instabilities at high Prandtl number are identified by Busse and 
Whitehead (1971) who study the stability of convective rolls with varying wavenum- 
ber. Two regimes are found which involve the bending of rolls and the cross-roll 
instability, where rolls develop at right angles to the original rolls. 
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2.2      Stability of rotating convection Küppers-Lortz Instability 

The stability analysis of Schlüter et a/.(1965) mentioned above was expanded by 
Küppers and Lortz(1969) to include the effects of rotation. The equations can be 
rewritten in terms of three non-dimensional parameters: the Rayleigh, Prandtl and 
Taylor numbers. The stability calculation yields the following results: 

1. There exist stable small-amplitude rolls for the slightly super-critical Rayleigh 
number regime, provided r2 < rc

2 where r = 20i_. All three-dimensional flows 
are unstable. 

2. For T2 > T2, no stable convective flow exists for slightly supercritical Rayleigh 
number, i.e. all flows are necessarily time-dependent. 

Figure 1 from Kuppers-Lortz shows these results. For the case studied, Pr = oo, 
they show that given a Taylor number, there are no steady-state solutions in Rayleigh 
sub-critical regime (Rc — Rc(r)). Thus for a given r > rc, if the Rayleigh number is 
increased from a subcritical value, then there is a transition from pure conduction to 
a time-dependent convective flow. For r < rc, the only stable flow in the form of rolls 
has maximum amplitude for a certain Rayleigh number. 

3      Unsteady Turbulent Convection 

In the ocean, convective turbulent plumes may develop as a consequence of brine- 
rejection during ice-formation or of intensive cooling at the surface. Different scenar- 
ios arise depending on whether the plumes sense rotation before or after they reach 
the bottom (for example in the open-ocean in contrast with the shelf regions). A 
laboratory experiment result is presented to illustrate unsteady turbulent convection 
in a homogeneous rotating fluid (Maxworthy and Narimousa, 1994). Two different 
cases are presented: a laterally confined experiment and an unconfined one. A source 
of saltier, denser water is placed at the surface of a water column that is in solid body 
rotation with the tank. This results in a 3D turbulent front propagating downward. 
At a depth z = zc, the front starts sensing rotational effects and many quasi-2D 
vortices develop. 
Confined experiment 
In this experiment the source covers the whole surface of the tank.. The 2D vortex 
structures described above, penetrate downward (below the mixed layer) to produce 
vortex columns that eventually fill up the rest of the tank. Measurements for the 
transition layer depth, the mean-diameter, the downward propagation speed and the 
maximum swirl velocity of the vortex columns agree with scaling presented in previ- 
ous papers, see for example Maxworthy and Narimousa (1994). 
Unconfined experiment 
In this experiment the buoyancy source covers only a small portion of the tank. Ini- 
tially the flow develops in the same manner as in the above experiment. The vortex 
columns 'fill out' after reaching the bottom and begin to tilt until the whole column 
becomes baroclinically unstable. Baroclinic vortices form and propagate away. Ev- 
idence is also provided for the spreading of the convective layer near the bottom of 
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the tank. Figure 2 shows a schematic of the process. 
Two cases were considered in the 'closed boundary experiment: zc < H and zc > H, 
where H is the depth of the tank. In the first case, quasi-2D vortices develop at the 
base of the 3D turbulence region, and propagate downward until they reach the bot- 
tom of the tank. As the vortex columns begin to fill out, they form this truncated-cone 
which is shown in the diagram. This is the structure that then becomes baroclinically 
unstable, forming eddies which propagate away from the region. In the case zc > H, 
the turbulent mixed layer reaches the bottom. It then forms a gravity current which 
spreads on the bottom and is then deflected by rotation. 
In Maxworthy and Narimousa's scaling laws, a determinant parameter is the natural 
Rossby number (a Rossby number where the velocity is taken to be the swirling veloc- 
ity of the plumes), i% = [B0/fH

2}1/2, where B0 is the surface buoyancy flux. In the 
unconfined experiment, the vortex columns scaled according to the law D/H ~ R*0 ' , 
where D is the diameter, and the columns extended throughout the depth of the tank 
(case H < zc). In the case zc > H, the baroclinic vortices formed at the edge of the 
of the spreading front scaled according to D/H ~ i?*2/3. The transition depth zc is 
experimentally found to be » (12.7 ± 1.5)(£0//

3)1/2. 
There are a number of numerical experiments which illustrate the process of convec- 
tion in the presence of rotation. Amongst these, Jones and Marshall, 1993, use a 
non-hydrostatic numerical model to study the convective overturning of a homoge- 
neous rotating ocean. The numerical results show a fairly good agreement with the 
laboratory case, for small values of i?*, together with an overall qualitative agreement. 
For a discussion of the discrepancies see Maxworthy and Narimousa (1994). 
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Finite amplitude cellular convection in a rotating fluid 

George Veronis,      21st June 1995 

We consider a layer of fluid confined between two horizontal parallel plates in a rotating 
frame. The governing equations for the Boussinesq limit and a linear equation of state are 

ot 
<9v                                    1 o o 
— + v-Vv + 2ßxv = Vp - g—z + vV2v 
Ot pm Pm 

p = pm(l-aT)    and   V-v = 0 

We adopt boundary conditions in which the temperature T is specified on the upper and 
lower boundaries, on which the normal velocity w also vanishes. For simplicity, we assume 
'slippery' or stress-free boundaries on which the normal stresses vuz and uvz vanish. With 
these boundary conditions the equations admit a basic state solution characterised by no 
motion, hydrostatic equilibrium and a linear temperature field 

v = 0,     ^ = ^ = 0,     % = -9P,    T = Tb + AT(l-z/d) 
ox      oy oz 

It is convenient to separate the temperature field into this basic linear profile plus a per- 
turbation, and to rescale the equations based on the layer depth d, applied temperature 
difference AT, and diffusion timescale CP/K 

T = Tb + AT (I - z/d) + 6(x, y, z, t) 

V = (l/d)V,        t = (d2/K)t',        9 = AT6'.       v = («/d)v/.       p={uKPm/d2)p' 

In these new variables the equations take the form 

o-_1(|j7r + v'-VV) + Tzxv' = - W + RB'z + V'V 
dt> 

dV 
V- v' = 0 

where we have introduced three dimensionless parameters, the Prandtl number a, the 
Taylor number T, and the Rayleigh number R. 

a = U/K,        T1/2 = (2Qd2)/u,        R = (gaATd3)/(uK) 
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We now eliminate the pressure term by taking the curl of the momentum equation twice. 
Introducing the vertical vorticity £ and collecting nonlinear terms on the right hand side 
we obtain 

(-"£ - V/2)V,2w + T(z - RV\9 = C/a 
a at 

(-§--V2)C + Twz = -Z/a 
a ot 

( = (Vxv).z = ^-uyi        V
2

h = d2
x + d2

y 

C = dx(v-Vu) + dy(v-Vv) - V^v-Vtc),        Z = dx(v-Vv) - dy(v-Vu) 

Linear Stability 
Assuming solutions of the form wQ = eXtf(x,y)g(z) where f(x,y) satisfies V/i2/ = —7r2o;2, 
and discarding the nonlinear terms C and Z on the assumption that w0 is small, we can 
obtain a single linear equation for w0 

<;£ - v2'2(| - v2>*2-+^1 - v>»* - (;l - V2>Ä°V*2- = ° 
where R0 denotes the Rayleigh number for the linear stability problem. The boundary 
conditions 90 = 0,wo = 0 and uoz = voz = 0 imply all even derivatives wozz = wozzzz = 
... = 0 on the boundaries. Thus we may take g(z) = sm(nnz) as a solution, giving the 
following cubic dispersion relation for the growth rate A 

(a2 + n2)[A + 7T V + n2)] [- + 7r2(a2 + n2)]* + T2n2[A + n2(a2 + n2)} 
la J 

-azR0 + x2(a2 + n2) 
la 

Exchange of stability 
When the growth rate A = 0 we obtain 

R0      {a2 + n2)3 + Ti2n2 2     _    4 = -i '—        where 71   = T   -K 
7T

4 or 

The critical Rayleigh number i?min occurs when ^f = 0, at the roots of the cubic 

2a6 + 3a4n2 - n2 - T2n2 = 0. 

In the limit T —> oo, corresponding to strong rotation, 

a2 ~ (ir1
2n2)1/3       Rmin „ STT^TI V)2/3 (*) 

As T increases the horizontal wavenumber a increases so the cellular diameter decreases. 
Note, however, that the wavelength in the direction of fluid flow remains unchanged (see 
figure 2) but the cells become tilted so the projected wavelength becomes shorter (corre- 
sponding to larger a). The smallest value of i?min occurs when n = 1. Notice that since 
712 oc v~2, both i?min and the corresponding AT decrease as v increases. Thus viscosity 
is destabilising in the asymptotic limit of strong rotation (7~ —>■ oo) ! 
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Time dependent solution (overstability) 
In a rotating system (T > 0) the cubic equation for A may have complex roots. The cubic's 
coefficients are all real so the roots must be of the form A' and Ar ± z'Aj. Overstability 
occurs when Ar = 0, for which the cubic takes the form 

A3 - A'A2 + A2 A - A'A? = 0 

Notice that the constant term equals the product of the coefficients in the A and A2 term. 
Thus 

__2((T+1) _  

and the minimum Rayleigh number is attained when 

2a6 + 3a4 = 1 + .   ^ lV,Ti 

A necessary condition for real A^ is 

2 ^.  (7 + 1/„.2   ,   i>,3 

Notice also that o: -*■ oo as a —>• A/2/3 SO overstability, at least in this horizontally infinite 
system, can only occur when the Prandtl number a < A/2/3. As 7i —>■ oo, 

^ 2-./3 r^ZLl2'3     and     gs-w/a.a^")'^2"^3 

Li + o-J 
a   ~ 

7T4 K I    7T r2 

Thus K is destabilising but v is now stabilising. 

Strongly rotating convection 
In this section we rederive the conclusion of the section 'Exchange of stabilities' using an 
entirely different approach. Rescaling the governing equations based on the layer depth d 
and an arbitrary velocity scale V, 

v = Vv',        p = dpmQVp',        t=(d2/u)t',        V = (l/d)V,        T=(dAT/K)VT' 

and introducing the Ekman number, E = v/(Qd2) = (2T)~\ we obtain 

E^- + 2zx v' = -W + RET'z + EV\>\        a^- -w' = V'V,        V- v' = 0 
dt ot 

As the Ekman number £-4 0 the momentum equation reduces to the thermal wind 
equations for geostrophic balance. Guided by the existence of Stewartson layers of width 
0(E1/3) we assume a horizontal wavenumber k ~ E~xlz and an 0(1) vertical lengthscale 
and perform an expansion in powers of E1^. 

R ~ E-4'3Ro,        k ~ E-V%,       u', v' ~ E°,       T' ~ E2'3 

oo oo oo 

{u',v',w') = Y,En'*{un,vn,wn),        p' = E^J2En/3P^        T' = E2/3J2En/3T" 
n=0 n=0 n=0 
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At leading order we recover the geostrophic balance equations 

o dP° n dPo du0     dv0 -2„„ = -—,        2u, = -—,        -^ + ^ = 0 (la,6,c) 

together with 

-^ = R0T0 - k2
0w0,        w0 = k2

0T0 (2a, b) 

At next order, 0(E1/3), we obtain 

-*-£+*!«-        *.--$ + **.        £ + 5 + &-0    (3M,o) 
Eliminating px between the horizontal momentum equations (3a, b) and substituting into 
the continuity equation (3c) yields 

2("^ + ^ = V*hP° = k*P°'        W°z = ~4k°Po 

Substituting these equations into the leading order heat equation (2a, 6) we finally obtain, 

Assuming solutions of the form T0 oc cos(fc0x) cos(7rz) and minimising over wavenumbers 
k0 we obtain 

Rmin = 3 • 2*'W*fif)*'* 

which is precisely the same as (*) at the end of the earlier section 'Exchange of stabilities'. 
Thus we can successfully treat convection as a perturbation to a rotating system, as well 
as vice versa. 
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FIGURE 2. (a) A top view of two-dimensional rolls in a non-rotating fluid. The arrows 
indicate the direction of motion of the fluid. (6) The same in a system, rotating counter- 
clockwise, (c) A perspective view of fluid particle motions in a role when the fluid is 
rotated. 

Some examples of linear convective flow 
patterns 

Figure 2 illustrates the tilting of convective cells 
in the rotating system as mentioned earlier. The 
lengths BD and AC measured along the direc- 
tion of flow (arrows) are the same in 2(a) and 
2(b). Figure (3) and (4) illustrate rolls combined 
into square and hexagonal planforms, the latter 
being preferred in most real experiments. The 
change in direction of rotation seen in 3 is due to 
the horizontal divergence changing sign halfway- 
down. Diverging fluid spirals clockwise when de- 
flected to the right, and converging fluid spirals 
anticlockwise. 

FIGUBE 3c. A perspective sketch of a fluid particle motion in the square cell. 

FIGUBE 46. A top view of seven rotating hexagonal ceUs. The fluid particles follow spiral 
paths from the centre toward the corners. The dashed lines form the boundaries of the 
centre cell. 
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Lectures by Joe Fernando 

Lecture 4 Turbulent Convection in Fluids 

Convection occurs in flows in which buoyancy forces axe major contributors to the 
motion field. The phenomena of convection can be broken into two broad classes, forced 
convection and free convection. Forced convection occurs in situations where buoyancy 
forces compete with other driving forces to influence the flow. For example, in a turbulent 
pipe flow with heat addition, buoyancy forces may compete with pressure gradient forces 
in transporting heat and momentum. Free convection takes place when buoyancy forces 
dominate over all other forces. 

Convection occurs when regions of fluid become lighter or heavier than their surround- 
ings. When the temperature is responsible for convection, the fluid parcels feel a buoyancy 
force of gaAT where g is gravity, a is the thermal expansion coefficient, and AT is the 
temperature difference between the blob and its surroundings. During the slow motion 
of fluid parcels, the buoyancy force is mainly balanced by the frictional drag force uu/82 

where u is the velocity and 8 is the length scale of the fluid parcels. Thus, the time scale 
of motion tc ~ 8/u is approximately ga&T6 whereas the timescale of diffusion is td ^ 82

/K. 

For convection to occur, the motion time scale must be much smaller than the diffusive 
time scale, tc » t&. With some rearrangement this inequality can be expressed in term 
of the Rayleigh number Ra = ?Qr^J6 >> 1. Thus, convection occurs when the Raleigh 
number Ra »I and the exact value of this critical parameter Ra can be obtained by 
considering the equations of motion. For small amplitude motions, the critical Ra is given 
by linear stability theory. 

Convection can be driven in many ways. Figure 1 contains Turner(1969)'s sketch of 
several convective phenomena. The term 'plume' is generally used to describe flows which 
develop when buoyancy is supplied continuously by a point source. The buoyant fluid 
of turbulent plumes is separated from the surrounding fluid by sharp boundaries. They 
increase their width by entraining fluid (by large eddies) and mixing at small scales in their 
interior. This entrainment mechanism is described in detail by Townsend(1976). 'Thermal' 
denotes a flow generated by a buoyancy source which appears impulsively at a point. In 
a rising thermal, like those which generate and maintain clouds, upward flow occurs in 
the center and downward flow at the edges. Entrainment is also common in such flows. 
However, it appears that when the mean flow velocity becomes of the same order as the 
turbulent fluctuations in the thermal, the entrainment becomes vanishingly small. 

The source of buoyancy could also be horizontally homogenerous as~it was in the 
Rayleigh-Bernard problem which was examined in earlier lectures by R. Krishnamurti and 
G. Veronis. Linear stability theory was applied to the problem. Nonlinearities were delt 
with using perturbation theory and mutiple scales analysis to obtain some results for finite 
amplitude convection. However, these methods do not predict transitions to new regimes 
at high Rayleigh numbers. Most of the current interest is focused on high Ra regimes, the 
realm of hard turbulence. Hard turbulence is defined to occur for Ra » 4 x 107. The 
properties of hard turbulence are described in Castaing et al.(1989). 

Suppose the boundary conditions were changed in the previously examined Rayleigh- 
Bernard problem in which constant temperatures were imposed at the top and bottom 
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boundaries. If instead of constant temperature, a constant heat flux Q = —KpoCp-gj is 
now imposed at z = 0 and 2 = 1, the bottom and top respectively, one can solve the 
previously derived equations using essentially the same steps and obtain the critical value 
of the so called flux Raleigh number: 

R     _   gaQd4   _ g0d
4 

p0CpK2V K2V 

for which instability occurs; here <?o is the buoyancy flux. Foster(1971) looked at the prob- 
lem of two dimensional finite amplitude thermal convection at infinite Prandtl number 
in which a constant negative heat flux was imposed at the top boundary and the bottom 
boundary was completely insulated. For Ra/ > 107, Foster found that convection occurred 
intermittently, switching on and off for certain periods of time. These observations gener- 
ally agreed with a phenomenological model put forth by Howard(1964). Figure 2 outlines 
Howard's conception of the stages of development of a thermal boundary layer. Howard 
argued that at first the thermal boundary layer forms by diffusion. The boundary layer 
becomes unstable when it is sufficiently thick and blobs of fluid breaks off from the bottom 
and rises. The departed fluid is replenished by cooler fluid and the process repeats. 

In an experiment designed to simulate the nature of the planetary boundary layer, 
Deardorff and Willis(1974) described the horizontal structure of a convecting region. Figure 
3 contains a figure from their paper. In the regime they looked at, an irregular pattern of 
open cells developed. Smaller scale dendritic convergence lines appeared along the edges 
of the cells. The most energetic plumes tended to occur where several of these convergence 
lines intersect. The lines were short lived and often got swept into plumes. Thermals 
or plumes of this kind may dominate the flow initially at high Ra. However, Adrian et. 
al.(1986) found that the thermals or plumes may set up a large scale circulation composed 
of large eddies which disrupt the ability of the boundary layer to eject isolated thermals. 

Scaling laws are used to parameterize various convective turbulent flows. In high 
Rayleigh/Reynolds number convection, there are two separate regions in which the flow 
behaves very differently. There is a small conduction region near the bottom boundary 
where d, the height of the fluid layer, is irrelevant. When the bottom buoyancy flux is 
prescribed at this boundary, the important governing parameters near the boundary are 
v, K, and qQ; dimensional analysis implies the following scalings: 

Wb = (?o«J4   ;   ob = —   ;   Zh — 
Wb Wb 

where w is the vertical velocity scale, b is the buoyancy scale, and z is the height scale. 
In the interior region away from the boundary the molecular parameters are unimportant 
and the scaling is 

Wi = (god)*   ;   bt = —   ;   zt = d 
w. 

Using an open-topped box, heated from below, Townsend(1959) investigated thermal con- 
vection and checked the scaling ty&, h, and z&.  The differences between zb scalings and 
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measurements was attributed to the variation of the molecular parameters u and K with 
temperature. 

Early attempts to describe the atmospheric boundary layer using simple parameteri- 
zations were not very successful. For example, Sutton (1953) proposed that a single value 
of eddy diffusivity Km can be representative of the whole atmosphere. He assumed that 
wind stress (r0) is constant in the lower 50-100 m, and geostrophy is achieved above the 
height zh=(Km/fy/2. 

Tennekes (1981) using different scaling arguments obtained a value of the height of the 
boundary layer surprisingly close to the value measured (which may be quite fortuitous) 
for the daytime boundary layer, even though heat flux (go) was considered unimportant: 
zh = 0.25ujf. 

According to the current point of view, the atmospheric convection boundary layer 
(CBL) consists of four layers, each governed by different physics. 
1) In the thin molecular sublayer [0(1 cm)] at the surface molecular processes dominate. 
2) Wind stress becomes important in the unstable superadiabatic surface layer, and the 
important parameters are z, r0/p0 and q0. Then the scales for velocity and buoyancy are 
u* = {TQIp)1/2 and 6* = qo/u*. Heat in the SAL is transported by small-scale turbulent 
eddies and mixing is forced by convection that has the scale of the Monin-Obukhov length 
scale Lmo = ul/q0, and ^ = ^f(z/Lmo). 
3) In the free-convection layer wind stress is not important, so from the remaining pa- 
rameters z and 5o the following scales of motion can be constructed: üf = (qoz)1'3 and 
bf = qo/uf. 
4) Turbulence is insensitive to z and To in the mixed layer, so u;* = (qod)1'3, z* = d and 
K = qo/w* 

The convection boundary layer in the ocean as described by Anis and Mourn (1994) 
has certain similarities to the atmospheric boundary layer. 

On the top of the atmospheric boundary layer is the entrainment interface and the 
inversion layer. The entrainment zone is considered to lie at heights of 0.8-1.2 d. Processes 
such as entrainment and mixing dominate there. How fast the atmospheric boundary layer 
grows is important from a practical viewpoint — the pollutants are confined_to the region 
below the entrainment interface. Due to the interaction of convective elements with the 
inversion layer, internal waves can be radiated to the outer stably stratified layer. 

Experimental results show that the dissipation rate e is independent of z in the interior 
of the domain. Thus, one can analyze shear-free CBL and stable layers using the techniques 
of the rapid distortion theory (Hunt 1984). 

Carruthers and Hunt (1986) calculated velocity fluctuations near an interface between 
a turbulent region and a stably stratified layer in the absence of mean shear. They showed 
that the stratification has least effect on eddies with frequency close to the buoyancy fre- 
quency N. In the inviscid stratified region waves with frequency u> < N propagate without 
attenuation while the evanescent waves with co>N decay rapidly with distance z from the 
boundary. 
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If a density interface is introduced in a domain of homogeneous turbulence, then far away from it 
ds/dz-^0, as before. Observations show that de/dz^O near the interface also, and hence 
&=v<(Di(Di> is unchanged. Thus we can conclude that the effect of the interface on the turbulent 
layer is to produce irrotational fluctuations. The velocity field can be decomposed into 
u(x,t)=uh(x,t)+V <p, where <f> is a velocity potential (V20=O). If uh(x,r) is specified, then u(x,r) 
can be calculated by using the appropriate matching conditions. 

One of the direct effects of stratification-turbulence interaction is the entrainment due 
to turbulent mixing. In convective boundary layers this mixing may occur due to several 
mechanisms, namely, (i)the impingement of thermals or buoyant elements on the interface 
and subsequent splashing of fluid into the non-turbulent layer. (ü)The impinging eddies 
on the interface cause sloshing motions on the interface, and cause Kelvin-Helmholtz type 
instabilities (Kaimal et al.,1976), and (iii) The pressure fluctuations of turbulence cause 
waves to develop, grow and break at the interface thus causing mixing. Of course, if 
shear is present various other mixing mechanisms such as critical-layer absorption appear. 
Laboratory and field observations indicate that these different mechanisms take place at 
different Richardson number ranges. Parameterizations of mixing rates have been proposed 
and tested in the laboratory (Deardorff et al., 1980; Fernando 1991). 
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Figure 1. Sketches of the various stages of convec- 
tion phenomena described in the text. The arrows 
indicate the direction of mean motion. 
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Figure 2. Stages in the development of the tran- 
sient thermal boundary layer. The cycle is re- 
peated upon departure of the thermal burst. 
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Figure 3. Simultaneously occurring patterns near 
the surface(solid lines) and near the inversion base 
(shaded areas), based upon a pair of photographs 
of the milk tracer in plan view. 
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Lecture 5 : Motion in Rotating Fluids 

In rotating fluids, small amplitude motions lead to linear internal waves while 
finite amplitude motion lead to turbulence. 

1     Small Amplitude Motions 

p-S+p2üxu + Wp = 0 (1) 

Taking the curl of this equation gives 

and the curl of (2) gives 

52V2u; 
dt2 

Eliminating u}{ from (2) and (3) gives 

2fim.Va;,- = 0 (3) 

^5-i + (2aV)2u,- = 0 (4) 

This has solutions 

where 

u> = 2Ü.I = 2ücosd 

ie, anticyclonic motion is induced. 

2    Viscous effects 

When viscous effects are included, the solution now becomes: 

u(x, t) = Re u0(k)e-i^~u^e-vk2t (5) 
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If the motion is spatially homogeneous s.t. 

(2K) 

then 

Ha, *) = üWJY / afe> i)e-~te (7) 

ti(fc, t) = Ä(1,2ß.ft)c""'* a*u(Jb, i = 0) (8) 

where R is the rotational matrix. 
So the anisotropic propogation of inertial waves in physical space corresponds in 

spectral space to a differential rotation of the initial spectrum, u(k, t = 0) in a plane 
normal to k with a rate of rotation 2Q..I. 

3    Finite Amplitude Motions 

When the amplitude of fluid motions is large, u.Vu is important and the motions 
become turbulent In three dimensions, the non-linear terms dominate over 
other body forces.   This transition to 3D turbulent motions in rotating fluids has 
been studied mainly experimentally. 

The maximum scale transverse to the rotational axis should be given by a balance 
between the Coriolis force and the inertial forces. 

u2 u — ~2nu^L„ = — 

This is known as the Coriolis scale. The dissipation scale, e is given by 

,3 

This gives the   Coriolis scale 

u 
eocT 

inoc(^)2 

If we define the integral lengthscale 

Ui{x)uj{x + rif.)dz ^ = j 
Ui(x)Uj(x) 

and Q is parallel to the xx axis, then we expect Lu,i to be least affected by the 
rotation. 
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4    Statistical Theory 

The instantaneous equations for buoyancy-driven rotating turbulent flow are: 

U: düi      . düi ^ I dp d u-,       - 

If we write the instantaneous velocity tt,- in terms of a mean and a fluctuation, ie 
üi = Ui + Ui, then the mean equations are 

Ot OXk pOXk OXk       OXk 

Subtracting equation (10) from (9) gives an equation for Ui and an equation for 
uj. Multiplying these by Uj and tt,- respecitively gives 

d, .      dUi      dUj     rr- d   
— [UiUj) + UjUk- (- UiUk- 1- Uk-Z UiUj 
Ot OXk OXk OXk 

+2[enküiukUj + ejpmüpumUi] 

d       1. d        d  .     1   .du,     dui. 

,—Tc      —Te. N       d
2UiUj     n dui duj 

+(ujb6i3 + UibSj3) + u-^-^- - Iv-^--^- 
OXiOXi OXi OXi 

(11) 

(12) 

(13) 

(14) 

There are three interesting features of turbulent flows which can be illustrated by 
these equations: 

• Taking i=j and contracting gives the turbulent kinetic energy equation 

ot 2 dxk 2 dxk        dxk p     2' dxtdxi 2        dxidxi K   J 

where q = u2 + v2 + w2. Thereis no dependence on ti, which implies that rotation 
has NO importance for the overall energy budget. 

• Consider homogeneous turbulence with £l parallel to the Xi axis. In this case 
the equations reduce to: 

—ux
2 = -p- iv——— (16) 

Ot p   OXi OXk OXk 

9—Ö       An  ,2  9u2     _  du2du2 ,.,„,. 
—u2

2 = -4fiu2ti3 + -p- 2v—- —- (17) 
ot p ox2 dxk dxk 



—u3
2 = AÜU2U3 + -p-z 21/-5—^— (18) 

at p 0x3        oxkOXk 
(19) 

So pl2^ does the redistributing among all three components and 12 terms does the 
redistributing among u2 and u3.               

• If the flow starts with a isotropic state, Ui2 = u2
2 = U32 and ujüj = 0,i ^ j, 

then the isotropy is preserved. 

d       on/—2     S\      X   du2      l   duz     o   du2 du3 fort -u2U3 = 2ü(u2
2 - U32) - -pjr- - -?■=- ~ Zvjr-jrr (20) 

dxk p dx3     p dx2        dxk dxk 

5    2-D Turbulence 

tdv. 
A review of such flows has been given by Salmon (1982). Ro —* 0 and 0,-g^ = 0 
yields two dimensionality. This should be discerned from two dimensional component 
turbulence where one component vanishes. The vorticity equation is: 

—=* = w, • Vu + vV2(j (21) 
Dt ~ ~ 

where a^ = u; + Q. If Q is parallel to the z-axis, then since w = V x u and hence 
u^ will also be parallel to the z axis, the first term of the right hand side is zero and 
in the inviscid limit v —* 0: 

^ = 0 (22) 
Dt 

and hence a;2 is conserved. Also, in such a two dimensional case, we may write 
u — _|£ and v = _2_ Then we have: 

ay ox 

WW= f°°E(k,t)dk^ Conserved (23) 
Jo 

Ö72 = f°° k2E(k, t)dk -► Conserved (24) 
Jo 

If we define: 
r kE(k)dk 

*■ = f0°°E(k)dk (25) 

then one can use (k — k\)2 = k2 — 2kik + k2 to show that: 

dh        1 £ (JH* - *Qa(*W < 0 f26* 
dt 2A* ^E{k)dk K   } 

Hence ke becomes smaller with time. Energy is transferred toward smaller wave 
numbers, and the dissipation is reduced. 
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Also, vortex lines are material lines (implied by ^=* = 0). 

V 

Hence, as these lines get more convoluted, the mean square vorticity gradients 
I Vw| • | Vw| = /0°° k4E(k, t)dk increase. 

then: 
If a;2 is injected at rate ß and w2 is injected at rate e at some wavenumber ifci, 

E(k,t) = /(/?,k) ~ /?f *T3  for  Jfex < ib < kd (27) 

2 .      5 
£(M) = /(e,*) ~ £*k~>   for &,„ < k < kx (28) 

where &„, = /(e,t) ~ €~h~2 and A* = /(/3,i/) ~ (j?)° ■ There is some ob- 
servational evidence for such scalings. There are other scaling arguments for 2-D 
turbulence. 

k (cm-1) 

Saffman (1971) describes "vorticity shocks" with vorticity spectra k2E(k) ~ k~2 

and hence E(k) ~ k~4 

Experimentally, E(k) ~ kr2   to   k~3 (Hopfinger's group) or E{k) ~ A;-3 (certain 
other groups). 

tOOTtS 3ü^(A\TTGD        BY      STtv/c     BATMAN/ 

AND   HeuENS    BANJ<<: 
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Lecture 6: Effects of Rotation on Simple 
Convective and Turbulent Flows 

This lecture considers how simple convective processes are affected by background 
rotation. Here we focus attention to turbulent plumes and thermals and entrainment 
across interfaces. For studies of rotating turbulent convection in horizontally homo- 
geneous fluid layers see Fernando, Chen and Boyer (1991) or Boubnov and Golitsyn 

(1990). 

6.1 Turbulent Thermals in Rotating Fluids 

The initial buoyancy, qx, contained in a thermal is 

where p  is the density of the thermal, p0 is the density of the background fluid, g 
is the gravitational acceleration and V0 is the initial volume of the thermal.   The 

r   4 
dimensions of qx are   ^- . 

It has been shown that prior to the onset of rotational effects the buoyancy is the 
dominant parameter that controls the motion of the thermal and that the evolution 
of the thermal in time is self similar. According to this scaling the entraining thermal 
will travel as 

h = c1(qT)U* (2) 

where h is the vertical distance travelled by the thermal, t is time measured after 
an initial transient acceleration and c\ is a constant. The width of the thermal, b, is 
found to be a linear function of h: 

b = c2h (3) 

where c2 is a second constant. The thermal velocity, u, is scaled as 

■v\i (4) 
" = C3\A= 

When the effects of rotation are felt by the thermal, at time ~ ^, the Coriolis 
forces will try to constrain the flow to a cylinder aligned with the rotation axis. The 
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thermal will cease to grow laterally and the entrainment rate will be greatly reduced. 
These effects should manifest in the turbulence of the flow when the Coriolis forces 
become of the order of the inertial forces in the thermal such that 

u2 

2Üu ~ — (5) 

where tt is the rate of rotation, u is the rms velocity in the thermal and / is the 
lengthscale. Applying this last relation to equation (4) for values of h and b when 
rotational effects first become relevant yields 

h< = <*(£)* (6) 
fi 

bc = cA %) ■ (7) 

and 

h    = r.  ( 
M2 

where c3 and c4 are further constants that have been determined experimentally by 
Ayotte and Fernando (1994). 

An idealized calculation of hc in the earth's atmosphere gives hc ~ 6.5 km where 
parameter values of c3 = 2.3, qr = 3.0 ^ and tt = 7.1 x 10~5 ^ have been used. 
hc ~ 6.5km is a significant fraction of the height of the troposphere and, therefore, this 
estimate suggests that rotation only affects very deep convection in the atmosphere. 

6.2 Turbulent Plumes in Rotating Fluids 

A plume is created by a source region that inputs a buoyancy flux, q0, into the fluid 
layer 

qo = — {—gj u0 (8) 

where d0 is the diameter of the source region and u0 is the flow rate from the source 
region into the surrounding fluid. Therefore, the dimensions of the buoyancy flux are 
^ . If the same reasoning is employed as was used for the analysis of thermals, 

that at times smaller than (2£1)-1 the flow cannot be affected by the rotation 
and, therefore, q0 is the controlling parameter of the flow, then self-similar temporal 
evolution of the flow leads to scales 

u = ai(^)* (9) 
z 

I oc z oc b =>•  / = 0C2Z (10) 

where u is the characteristic plume velocity, z is the vertical distance the plume has 
travelled, b is the plume head width, / is an integral length- scale of the turbulence 
in the plume, and a denotes a constant in this section. 
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Balancing the inertial forces of the turbulent motion in the plume with the Coriolis 
force as in equation (5) gives the relation 

*=(—)*<&>* (11) 
V 0:203/       " 

The rotational effects become important at zc and a critical plume width, bc is pro- 
portional to zc as 

4c = Q4(^)f(|)i (12) 

Data from Fernando et. al. (1995-in preparation) give laboratory determinations of 

these a values. 

6.3 Effects of Rotation on Entrainment 

Fleury et al.(1991) devised a number of experiments to determine the effect of rotation 
on the entrainment rate by looking at turbulent mixing across a 2-layer stratified fluid. 

They observed a decrease in the entrainment rate, E, together with an increase in the 
low-frequency oscillations of the density interface across which turbulent mixing is 
occurring. The high frequency oscillations are unaffected by the rotation. From their 
experiments two laws for E are derived as a function of Ri, the Richardson number, 
and Ro, the Rossby number: 

E = O.SRoRi'1 - with rotation 

E = 1.6Ri  2 - without rotation 

A model for turbulent mixing in the presence of rotation was proposed by Mory(1991) 
which provides an explanation for the laboratory results. Mory(1991) proposes mixing 

by small turbulent eddies of Ri = pff/ff2 ~ 0(1) or less. The eddies are responsible 
for the conversion of kinetic energy of the motions into potential energy increase 
associated with interfacial mixing. 

6.4 Polar Leads 
A lead is a long, thin break in the polar ice cap. Leads may be hundreds of kilometers 
long and hundreds of meters wide. The break in the ice exposes water to the cold 
winter atmosphere which causes the ice to refreeze. Salt is rejected back into the 
water during the refreezing process which leads to a sinking line plume forming below 
the lead. Rotation affects the plume in two ways. The first involves the arrest of the 
turbulent diffusion, which occurs when the plume's Rossby number becomes of order 

1 

one, i.e. i?0 = \ ~ 0(1), where / is the length scale of the plume. Secondly rotation 
affects the entrainment flow by deflecting it sideways, thus generating a background 
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mean flow in the direction of the long-axis of the lead. The critical height at which 
the line plume is affected by rotational forces is given as 

* = *(§)' (») 
where q0 is now the buoyancy flux per unit length. The constant <j>\ = 3.2 has been 
experimentally determined by Fernando and Ching (1993a). Coriolis forces will then 
tend to bend the plane of the plume. Line plumes that are much longer than the 
critical width, 6C, of the plume head should break up into smaller sheets analogous 
to the formation of smaller chimneys inside of a larger oceanic downwelling region. 
Simple calculations give that a plume from a lead will fall to roughly 3500 m before 
reaching zc. If the thermocline resides at a level well above this height then the 
plume will fall to this interface and spread to some size on the order of the Rossby 
deformation radius before coming to be affected by the background rotation. This 
implies that for a plume descending in polar regions, rotation will come into effect 
only after the plume has started spreading out horizontally as a gravity current, by 
inducing baroclinic instability and break-up into eddies. Fernando and Ching(1993b) 
show the development of a pair of stacked vortices in their laboratory experiments 
simulating convection in a lead. 

6.5 Effects of Stratification and Boundaries 

In many geophysical settings, fluid layers have an appreciable stratification or a phys- 
ical boundary, such as a finite layer depth, that will change the flow field considerably 
from the case of a homogeneous rotating fluid. Examples of these types of flows found 
in the oceans are chimney formation (Jones and Marshall, 1993), thermal and plume 
flows from hydrothermal vents (Helfrich,1994) and Arctic lead flows. Deep convection 
in the earth's atmosphere must take stratification effects into account as well as the 
finite height of the tropopause. In planetary studies, the effects of rotating convection 
interacting with the unknown stratification of the earth's outer core fluid is of vital 
interest to dynamo theorists for the determination of the type of flow regime that is 
dominant at different radii through the core (Bergman, 1993). The strength of the 
stable stratification of Jupiter's upper atmosphere may hold the key tqjwhether it is 
deep convection or insolation that drives the banded structure of the Jovian cloud 
layer (Condie and Rhines, 1994). Current numerical work on rotating and penetrative 
convection can be found in Julien, Legg, McWilliams and Werne (in press). 
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Lectures by John Marshall 
Lecture 1: OCEAN CONVECTION 

Background 

In recent years there has been much progress in our understanding of the 
kinematics and dynamics of ocean convection through new results from field 
experiments, through focused laboratory experiments and through numerical 
simulation. The observations suggest a complex interplay of scales, ranging 
from plumes at scales of less than a kilometer, through eddies on and above the 
Rossby radius of deformation, right up to the scale of the general circulation. 
These key elements appear to be common to all the open-ocean convection sites 
that have been studied. In these lectures we draw together and review results of 
laboratory and numerical experiments, and summarize our current 
understanding of the underlying hydrodynamical processes at work at the 
convection site and the interplay between the convective and geostrophic scales. 
A more detailed account of much of the material presented in these lectures can 
be found in Marshall et.al. (1994) and Marshall and Schott (1996). This latter 
study includes a comprehensive discussion of the observations presented in the 
context of relevant theory. 

Formation of deep water in 50 km wide convective "chimneys', occurs in the 
Labrador, Greenland, Weddell, and Mediterranean Seas - see the observational 
review by Schott, Visbeck and Send (1993). These are the principal source 
regions for deep and intermediate waters of the world's oceans; processes local 
to these seas set the volume and temperature/salinity properties of the 
thermohaline circulation. Observations of open-ocean deep convection in the 
weakly stratified waters of the Western Mediterranean, the most intensively 
studied site - (the MEDOC Group, 1971; Stommel, 1972; Schott and Leaman, 
1991), suggested that three successive phases can be identified; 
"preconditioning', on the large-scale (of order 100 km), "violent-mixing' 
occurring in localized, intense plumes (on scales of order 1km) and "sinking and 
spreading' of the convectively tainted water, on a scale of 5 to 10km. 

During preconditioning, the gyre-scale circulation and buoyancy forcing 
combine to predispose a particular site to overturn. With the onset of strong 
surface forcing the near-surface stratification, over an area up to 100 km across, 
can be readily erased exposing the very weakly stratified water-mass beneath to 
the surface (Swallow and Caston, 1973). Subsequent cooling events can then 
initiate violent mixing in which the whole of the fluid column may overturn in 
numerous plumes which distribute cooled surface water in the vertical. The 
plumes have a horizontal scale of order 1 km with vertical velocities in excess of 
10 cm s"1 (Voorhis and Webb, 1970). In concert the plumes are thought to 
rapidly mix properties over the preconditioned site   forming a "chimney' of 
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homogeneous fluid. Chimneys ranging in scale from several to many tens of 
kilometers in diameter have been observed. With the cessation of strong forcing 
there follows a sharp decline in convective overturning; the predominantly 
vertical heat transfer of the mixing phase giving way to horizontal transfer 
associated with eddying on geostrophic scales (Swallow and Caston, 1973). 
Individual eddies tend to organize the convected water in to cone-like features. 
The mixed fluid slumps under gravity, spreading out at middle depths, leading, 
on a timescale of days, to the disintegration of the chimney. The descent of the 
dense fluid in the weeks and months after mixing, draws in water from outside 
the chimney, restratifying near surface layers (Stommel, 1972). 

Such observations have inspired theoretical, laboratory and numerical studies of 
rotating convection which are the focus here. Two aspects make ocean 
convection interesting from a theoretical point of view. First the convective 
process in the ocean may be modified by rotation; second the convective and 
geostrophic scales are not very disparate in the ocean and so the water-mass 
transformation process involves a fascinating interplay between upright 
convection and baroclinic instability. Laboratory and numerical studies of 
rotating convection motivated by this specific geophysical application has led to 
advances in our understanding of the general problem. We present numerical 
experiments here in the same spirit as those in the laboratory, except a numerical 
fluid is used rather than a real one. Both approaches have their limitations - 
unless extraordinary measures are taken only Rayleigh numbers in the range 10 
to 1016 are attainable compared to 1026 in the ocean - but when laboratory and 
numerical experiments are used in concert, and in the light of the observations, 
they lead to great insight. 

It is interesting to note how little the developments described here have been 
influenced by 'classical convection studies'1 which trace their lineage back to 
'Rayleigh-Benard' convection. In the ocean the Rayleigh number in convecting 
regions is many orders of magnitude greater than the critical value, and the 
convection is fully turbulent with transfer properties that do not, we believe, 
depend on molecular viscosities and diffusivities. Even more importantly the 
convective process in the ocean is localized in space (horizontally non-uniform) 
making it distinct from the myriad classical studies of convection rooted in the 
Rayleigh problem (convection between two plates extending to ± <*> induced by 
uniform cooling/heating induced by uniform cooling/heating); as one might 
anticipate edge effects and baroclinic instability ultimately come to dominate the 
evolving flow fields in the oceanic context. 

1 Many of these studies were brought together in an excellent compendium edited by Barry 
Saltzman; Theory of Thermal Convection. 
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1. Plume Dynamics; the 'violent mixing' phase 

In this lecture we explore the underlying hydrodynamics of the convective 
process in the absence of horizontal inhomogeneities, whereby a column of 
ocean is overturned by convection induced by widespread and uniform 
buoyancy loss at its surface. The details of the process are interesting, inherently 
complicated, but may not be of paramount importance for the large-scale. We 
thus emphasize the benefit of thinking about the ensemble properties of 
convection rather than (as one is often tempted to do) exclusively about the 
individual elements themselves. We argue that the gross transfer properties of 
the plumes are dictated by demands placed upon them by the large-scale; that 
they draw buoyancy from depth at a rate to offset the loss imposed by the 
meteorology at the surface. This leads to simple scaling laws and the 
identification of key non-dimensional parameters, independent of molecular 
diffusivity and conductivity, and which have been very successful in bringing 
order to observations, and laboratory/numerical experiments. 

1.1 Gravitational instability} upright convection 

Consider  a  resting  ocean  of  constant stratification   Nth   (subscript  'th'  for 
thermocline) which is subject to uniform and wide-spread buoyancy loss from 
its upper surface as shown in Fig. 1.1.1. The thermodynamic equation is: 

™=B (1.1.1) 
Dt 

where b = -(g/p0)a  is the buoyancy with a is the potential density,  p0 a 
constant reference density, g is the acceleration due to gravity and B = d(B / dz is 
the buoyancy forcing, the divergence of the flux ®.2 Because of rotational 
constraints the fluid cannot simultaneously overturn on the large scale; rather 
the qualitative description must be that the response to wide-spread cooling is 
one in which relatively small convection cells (plumes) develop. Fluid parcels at 
the surface will become dense and sink under gravity displacing less dense 
parcels from below. The continual exchange of fluid parcels in this way creates 
a layer which, as we show below, is very close to neutral with respect to its 
thermodynamic properties. However, as long as the buoyancy loss persists there 
will be, on the average, an adverse buoyancy gradient: 

! The buoyancy flux is related to the heat and fresh water flux by: 

S= — 
fee ^ 

Po\c* 
—9{*$ßS{E-P) 
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iVi.=^<0 (1.1.2) mix dz 

If Nmix <0 then exchange of parcels vertically must release gravitational potential 
energy. Since horizontal motion does not affect potential energy one need 
consider only vertical overturning; 'parcel theory' (see Appendix I) then yields 
an upper limit to the growth rate co: 

co2<-Nmb? (1.1.3) 

For a prescribed N2mix, and applying appropriate boundary conditions, it is 
straightforward to obtain complete solutions through linear stability analysis 
(see, for example Rayleigh, 1916; Veronis, 1958; Chandresakhar 1961); these 
show that cü2is nearly attained when the convection cells are tall and thin, for 
which little energy is 'wasted' in horizontal motion. Laboratory simulations, 
however, suggest that the aspect ratio of fully developed turbulent convection 
approaches unity such that horizontal and vertical scales are of the same order. 

Many competing effects collude together to control the detailed dynamics on the 
plume-scale. However, it is important to realize that, irrespective of these 
details, the gross transfer properties of the population of convective cells must be 
controlled by the large scale; the raison d'etre for the overturning is to flux 
buoyancy vertically to offset buoyancy loss at the surface. As shown in the 
appendix, the following law' of vertical heat transfer for the plume-scale can be 
developed using the same parcel theory that leads to Eq.1.1.3. 

^Bp=wAb = Az1/2Abi/2 (1.1.4) 

where w is the vertical velocity in the plume and Ab is the difference in 
buoyancy of the rising and sinking fluid. 

Now if the plumes, acting in concert, achieve a vertical buoyancy flux sufficient 
to balance loss from the surface, then 'Bp='B0, and choosing a deep mixed layer 
exposed to a heat loss of ~ 500 W/m2 typical of the Labrador Sea: 

where g denotes the acceleration due to gravity, p0 a reference density, c„ the heat capacity of 
water and a the thermal and ß the haline expansion coefficient; typically a=2xl0'1 K'1 and ß= 7* !0  fsu^ 
see the appendix in Gill, 1982. H is the surface heat loss and E - P represent the net fresh water 
flux. The buoyancy flux «plays an important role in the dynamical ideas presented here; it has 
units of mV, that of a velocity times an acceleration. 
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Az = 1000 m; S0 = 10~7 m2 s"3 

then we deduce that AT - 0.001° C, typical vertical velocities are (using A2 of the 
appendix) a few cm/s with time-scales of perhaps 8 hours or so. Here we have 
assumed that the buoyancy loss is all due to heat and the thermal expansion 
coefficient of water is a - 10"4 K"1. It is notable that such a tiny temperature 
difference between rising and sinking fluid parcels can achieve a very large heat 
(and buoyancy) flux. We conclude, then, that the vertical column within the 
convecting layer is indeed very well mixed; N^2 in Eq. (1.1.3) is very small 
relative to typical thermocline stratifications. In the limit that Nmix/Nth «1, and 
to the extent that entrainment of stratified fluid from the base of the mixed layer 
can be neglected3, Eq(l.l.l) tells us that the depth of the mixed layer, H, must 
increase according to: 

J2-BJ 
H = ±—- (1.1.5) 

where •30 is the buoyancy forcing at the sea surface and Nth is the stratification 
of the underlying fluid. 

The erosion of a resting stratified fluid by convection can readily be studied in 
2D using a numerical model in the absence of rotation (rotation will be added to 
this model later). Convection is induced by a steady, constant, buoyancy loss of 
S0 = 10"7 m2s"3 from the surface of the stratified fluid with N/f - 10. Results after 
9 days are shown in fig.1.1.2. Energetic vertical overturning is occurring in a 
convecting layer several hundred meters thick, with much weaker flow below. 
The streamfunction of the overturning circulation shows vertical convection 
cells. A very small adverse vertical temperature gradient is evident in the body 
of the convective layer, with a pronounced inversion close to the surface. The 
interior of this mixed layer is unstable with a temperature contrast of a few 
hundredths of a degree over its depth agreeing well with the above prediction 
from parcel theory. Using the mean temperature profile (fig. 1.1.2b) we estimate 
a depth for the mixed layer and plot its timeseries in fig.l.l.2c along with the 

3At sufficiently high Peclet numbers (ie long diffusive timescale compared to advective 
timescale) convective plumes impinging on stable stratification may overshoot their neutral 
buoyancy level, and penetrate into the stably stratified region, resulting in entrainment of fluid 
from below and a reverse buoyancy flux at the base of the convective zone (Deardorff et al 
1980). This reverse flux can lead to a sharpening of the pycnocline at the base of the mixed 
layer, a faster rate of deepening of the convective layer, and a transfer of properties between the 
stable layer and convective layer. However, there is no observational evidence (such as a large 
density jump) that such entrainment is prevalent at the base of deep mixed layers - see Marshall 
and Schott (1996). Moreover numerical simulations of rotating convection by Julien et al, 1996 
suggest one possible explanation; they show that rotation significantly decreases entrainment 
and reduces reverse buoyancy fluxes. 
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prediction from the simple law (Eq. 1.1.5). Evidently the mixed layer is 
deepening in a 1-d fashion. 

We will return to this example in lecture 3 when we consider the influence of 
angular momentum and rotational constraints on convection and the 'switch- 
over' from convection to baroclinic instability. 

1.2 Convection modified by rotation 

Once a mixed layer is established subsequent convection occurs in to fluid in 
which N2 ~ 0 •  We thus now consider convection in a neutral, rotating ocean. 
One of the more interesting aspects of the convective scale in the ocean is that, 
much more so than its atmospheric counterpart, it can be modified by the earth's 
rotation.   The possible effect of rotation on convection can be illustrated by 
considering a single dense plume sinking in to an initially unstratified rotating 
ocean, as sketched schematically in fig 1.2.1. As it sinks the plume will fold in 
(entrain) fluid from the surroundings leading to expansion in the lateral scale of 
the plume as it reaches further down. However if the neutral layer is sufficiently 
deep the entraining plume will attain a lateral scale at which it becomes aware of 
the earth's rotation, before it strikes the bottom. This inhibition of lateral growth 
in the presence of rotation is a consequence of the existence of Taylor columns 
which impart rigidity to the fluid column and which resist lateral displacement. 
Let us call this scale, to which the entraining plume expands, both laterally and 
vertically, 7'. As shown below, and as is clear on dimensional grounds, this scale 
7 depends on the external parameters, the buoyancy flux $0 (mV3) and the 
rotation rate f (s1) thus: 

j_ 
2 

'-'«.= u3; 
(1.2.1) 

The constant of proportionality between / and /rot depends on the nature of the 
entrainment process and must be determined experimentally; it is of order unity. 
(The entrainment process is difficult to model in detail - see section 1.5). Now if 
Zrot/H is very small, where H is the total fluid depth, one might expect rotation to 
have a controlling influence on the convective process; if /rot/H is very large then 
H limits the scale of the convection and rotational effects will play a secondary 
role. This rotational constraint has recently been vividly illustrated in the 
laboratory by Helfrich (1994). Figure 1.2.2 shows a sequence of photographs 
from an experiment in which a salt solution, dyed for flow visualization, was 
introduced into a rotating, 45 cm deep volume of fresh water. The buoyancy flux 
and rotation rate were such that Zrot = 1.98 cm, much less than the water depth. 
The first three frames show the early evolution before rotation becomes 
important. The effects of rotation are evident in frames (d), (e) and (f). The 
radius remains nearly constant and the front falls to form a columnar structure 
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which ultimately undergoes geostrophic adjustment to form an anticyclonic, 
conical eddy of convected fluid on the tank bottom. The radius of the column is 
found to scale very closely with an appropriately defined /„,. 

Such experiments suggest that if Zrol /H is small one might expect to see a surface 
"convective layer' beneath which plumes, under rotational control, extend down 
to the bottom, as shown schematically in fig 1.2.1. It turns out that deep 
convection in the ocean lies in the transitional regime where rotation begins to be 
felt even on the plume-scale. But, as we shall go on to discuss, the plume scale 
in the ocean does not seem to be controlled by rotation, but rotation plays an 
important role. 

1.3 Controlling non-dimensional parameters 

The natural Rossby number 

K 'Tot 

H 

Q o 

fH 2 
J 

V. 
(1.3.1) 

2 

(Maxworthy and Narimousa, 1994; Jones and Marshall, 1993), is the ratio 
discussed above which compares the scale lrot at which convection comes under 
the influence of the Earth's rotation, to the total depth of the connective layer H. 
This non-dimensional number has played a central role in the development of 
our ideas about the plume-scale and chimney-scale dynamics. It turns out that 
Ro* is large in the atmosphere but small in the ocean. 

In atmospheric and oceanic convection typical vertical heat fluxes achieved by a 
population of convective elements are comparable—indeed they have to be 
because heat loss to the atmosphere drives convection in the ocean. But the 
buoyancy fluxes are very different, the vertical buoyancy flux in the atmosphere 
exceeding that in the ocean by many orders of magnitude. If the two fluids 
achieve the same heat flux, the ratio of the buoyancy flux is 

■"atmos  _      r w^w i r\5 

Vocean        Pa^a^a 

where p is the density, c is the specific heat, and a is the coefficient of thermal 
expansion of water, with fy"1 the analogous quantity for air (where da is a typical 
air temperature). Subscripts 'w' and 'a' represent water and air respectively. 

Inserting typical values (pw= 1000 kg/m3, pa=l kg/m3, a = 2x10^ K\ cw=4000 J kg"1 

K*1, ca=1000 J kg"1 K"1 and 9a=300 K) we find that atmospheric buoyancy fluxes are 
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some 105 times greater than oceanic buoyancy fluxes, giving an 1^ of 100 ~ km or 
more in the atmosphere compared to 100 m or so in the ocean. Typical vertical 
scales in the atmosphere are set by the depth of the troposphere, H = 10 km, 
giving Ro* « 10; the convection "hits the ceiling" before it feels the effect of 
rotation; see table 1.3.1. 

Contrast this with the ocean. At the site of deep convection in the western 
Mediterranean Sea, from example, where H » 2000 m, f «10"4 s'1, and heat fluxes 
in excess of 800 W m"2 have been observed, <30« 4xl0'7 m2/s3 (Leaman and Schott, 
1991) then Ro* =0.1. If we, take "deep" convection to encompass regimes from 
Labrador Sea convection to Weddell Sea deep water formation, then relevant 
values for H range from about 1000 m to 4000 m, S0 from perhaps 10"7 m2/s3 to 
perhaps 5xl0"7 m2/s3 and / from its Mediterranean value up to 1.5 x 104 s'1 in 
polar oceans. Consequently values of Ro* from about .01 to 1 are most relevant 
to oceanic deep convection suggesting that rotation cannot be ignored even on 
the plume-scale. 

Table 1.3.1 presents velocity, buoyancy and space scalings, together with Ro* as 
a function of S0 (corresponding to a heat loss ranging from 100 to 1500 W m'2) 
typical of open-ocean convection sites. We have assumed that H = 2 km and 
f=urv. 

H (Wm-*) 

T 
Scaling 

1k<* 
J 100 500 

^Crn's-1) 
1000 1500 

5.00 X 10-* 2^5X10"' 5.00 X 10"' 7.25 X 10"' 

/«(km) (ff 0.22 0.47 0.71 0.85 

UM (m s"1) tr 0.02 0.05 0.07 0.09 

Unorot (BH)W 0.04 0.08 0.09 0.12 

/„(km) 
By*Hm 

0.67 0.97 1.19 1.31 

Re'1* 0.48 0.62 0.705 0.755 

Ro* B'.a 

0.11 0.24 0.35 0.43 

Ro*"2 B\i* 
0.33 0.49 0.59 0.65 

Table 1.3.1 Velocity, buoyancy and space scalings in the open-ocean deep convection regime. 
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It is perhaps useful to consider other interpretations of Ro*. Using the rotational 
scaling outlined below, it is a measure of the fraction of the total depth that a 
particle reaches in a rotation period; alternatively one can think of Ro* as a 
measure of the number of vertical excursions a particle makes in a rotation 
period - strong forcing makes the particle undergo many circuits in a day and 
rotation is felt little. The square of Ro* is a non-dimensional measure of the 
strength of the forcing, comparing tBQ to f3H2 - a velocity scale, fH, times a 
measure of acceleration, f2H. Finally we shall find that its square root is a 
measure of the radius of deformation relative to the depth of the ocean, 
pertaining after the convective overturning of an initially unstratified ocean has 
ceased. 

In addition to Ro* there are a variety of other nondimensional parameters which 
can be employed to completely define the external parameters. The influence of 
diffusion of momentum and buoyancy may be characterized by the flux 
Rayleigh number (which is independent of/), 

Raf=^- (1.3.2) 

where v and K are viscosity and thermal diffusivities respectively, or by the 
Taylor or Ekman numbers, 

' fH2 

Ta=± 
F 7 

( SLJ2\2 

V    V   J 

(1.3.3) 

Appropriate values of Raf and Ta for oceanic deep convection are not known 
with any certainty because the turbulent processes are represented by veddy' 
viscosities and diffusivities which are not distinct from the convective process 
itself. For this reason Klinger and Marshall (1994) attempt to characterize the 
flow in terms of (Raf, Ro* ), rather than the more common choice (Raf, Ta), 
because the former pairing produces a tidy division of the external parameters 
between a viscous/diffusive parameter independent of / - Raf - and a rotational 
parameter independent of diffusion - Ro*. Such a division is especially useful 
for application to the ocean because Ro* is rather readily calculated for 
convection in the ocean (see table 1.3.1), but Raf, which depends on poorly- 
known values of veddy' diffusivities, is not. 

For all the above reasons it also seems appropriate to set v= K i.e. the Prandtl 
number is set to unity: 

Pr=- (1.3.4) 
A: 
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2.4 Scaling ideas 

Imagine that loss of buoyancy, associated with a sustained flux of magnitude 20, 
at the surface of a homogeneous ocean of depth H, drives a convective layer of 
depth lz as illustrated schematically in fig. 1.2.1. The convective layer will deepen 
as the plumes that make it up evolve in time, penetrating into the fluid below. 
Ultimately the layer will extend down to the bottom of the ocean. If Ro* 
becomes sufficiently small then the convective layer will come under the 
influence of the earth's rotation. 

Let us suppose that in the initial stages, plumes extending into the convective 
layer are so small in scale that they cannot feel the finite depth of the ocean H. 
Furthermore if t «f, then rotation is unimportant; only S0 remains as the 
controlling parameter. It is then not possible to construct scales for the depth, 
buoyancy or velocity of the plumes. The convective process must evolve in time, 
and we suppose that it proceeds in a self-similar way. Remembering that the 
units of buoyancy flux S0 are m2s"3, the following scales can be formed from (B0 

and t: 

U~W~($0t)2 (1.4.1) 

(*o\l 

V t 

Scale constrained by the depth of ocean; Ro* »1 

If it is the depth of the ocean that ultimately limits the scale of the cells then 
putting I = H in Eq. 1.4.1a, above, the following scalings are suggested 
(Deardorff and Willis, 1967), independent of rotation: 

1 ~ horot - H 

= («,ff)3 (1.4.2) 

o   ~ onorot ~ 

The subscript vnorot' indicates that these are the scales adopted in the absence of 
rotation. They are the velocity scales that are implicit in the flux law Eq.1.1.4. 
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Scale constrained by the Earth's rotation; Ro* « 1 

If the ocean is sufficiently deep then the evolving convective layer will come 
under geostrophic control before it strikes the ocean bottom as described in 
section 1.2. The transition from 3-d thermally driven plumes to quasi-2-d, 
rotationally dominated motions (represented schematically in Fig. 1.2.1 and 
evident in figs. 1.2.2) will occur as t approaches/_1 at which point, replacing t by 
/"' in Eq.1.4.1 the following scales pertain (see Fernando et.al, 1991): 

* ~ L, = 
f*\ 

u ~ urot = 

v/3y 

\fj 
(1.4.3) 

and 

8'~8'rot=(*of)i 

where the subscript vrof, for 'rotation', has been used to denote the scales at 
which rotation begins to be important. 

At these scales the plume Rossby number is unity: 

o 
fl       fin 

It should be noted that the scales identified above are independent of 
assumptions concerning eddy viscosity and diffusivities; they are the velocity, 
space and buoyancy scales that can be constructed from the "external' parameters 
(B^ f and H. However the constants of proportionality in Eq. 1.4.2 and 1.4.3 will 
be dependent on viscous/diffusive processes. 

Velocity and length scales implied by Eq 1.4.2 and Eq. 1.4.3 are tabulated in table 
1.3.1. for typical oceanographic parameters. Note that when Ro* = 1 (and Ro* 
never becomes very small in the ocean) rotating and non-rotating scales are the 
same. 

1.5 Numerical studies of plumes 

Numerical studies of rotating convection clearly demonstrate the features 
schematized in Fig. 1.2.1 and observed in the laboratory, fig. 1.2.2. Fig. 1.5.1. 
shows currents and temperatures in a very high resolution numerical 
experiment (50x50x50m) 24 hours after vigorous cooling (800 W/m2) was 
applied at the surface of an initially resting unstratified, rotating ocean in which 
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Ro*=0.1 and Raf= 109. As the cooling persists, plumes penetrate progressively 
deeper into the interior, lowering the mean base of the convective layer and, in 
time, distributing the influence of intense surface heat loss over the whole depth 
of the ocean. A linear equation of state was used (but see Sander et.al.1995 
where a more realistic equation of state is considered). 

In Fig. 1.5.2a we plot the horizontal velocity variance V«'2+v'2 at day 2 as a 
function of depth for a series of experiments, normalized with respect to the non- 
rotating scaling unorot, Eq. 1.4.2. Velocities in the (essentially) non-rotating 
experiment f = 10"6 s"1 do indeed scale as unorot - the curve is centered on unity in 
fig. 1.5.2a. However, we see that in the v high-rotation' regime typical eddy 
velocities decrease as the rotation rate increases, as suggested by the scaling 

1.4.2. Fig. 1.5.2b again plots V«'2 +v'2 against depth but now normalized with 
respect to urot, Eq. 1.4.3. The normalized velocities from all the high rotation 
experiments collapse on to the same line centered around unity; urot is indeed the 
velocity scale adopted by the plumes. Note that it is only the f = W6 s'1 velocities 
that appear anomalous when scaled with respect to the rotational velocity urot. 

Laboratory experiments reported by, for example, Maxworthy and Narimousa 
(1994) and Coates et. al. (1995), suggest that the numerical experiments 
presented above, and in Jones and Marshall (1993), over-emphasize the role 
played by rotation in oceanic plume-scale dynamics. The consensus of the 
laboratory experimentalists is that rotational affects are only felt when Ro* < 0.1, 
rather than Ro* < 0.7 or so in these numerical experiments. This issue can only 
be resolved through the careful design of further numerical experiments, but the 
way forward is not clear. 

The approach of Jones and Marshall (1993) is that of a Large Eddy Simulation 
(LES) and uses very crude closure assumptions (laplacian diffusion of heat and 
momentum with constant diffusivities); it has been criticized by Sander et al 
(1995) and Coates et.al (1995). More sophisticated closure schemes exist (but 
more often than not tuned to atmospheric observations), but even the most 
sophisticated LES assumes the turbulence to be isotropic and homogeneous and 
thus make gross assumptions about the nature of the small scale turbulence (a 
critical review of the method in the atmospheric context is given by Mason; 1994 
- see Garwood et.al. 1994 and Denbo et.al. 1994 for examples of LES applied to 
ocean convection). However rotating convection is strongly anisotropic - both 
because of the nature of the plumes, which are stiffened by rotation, and because 
of the organization of the flow by rotation. The advantage of LES is that 
simulations with Reynolds numbers approaching realistic values can be made; 
its disadvantage is that results obtained using the method may depend on 
assumptions implicit in the assumed closure hypotheses. 
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An alternative approach - that of Direct Numerical Simulation (DNS) - is one in 
which all the dynamically active scales of motion, down to the Kolmogorov 
scale, are resolved; it is being pursued by Julien et al (1996a) and Kerr et al 
(1995) but, because of the enormous computational costs is limited in the range 
of Re it can study. However, anisotropies in mixing properties, and boundary 
layer processes, can be examined without any pre-imposed bias in DNS. Since 
realistic Re cannot be examined, instead the DNS approach searches for scaling 
behavior in the solutions, and then extrapolates to realistic values, assuming that 
the flow remains in the same dynamical regime. 

Studies of Raleigh-Benard convection using DNS by Julien et al, 1996b, although 
not in a parameter regime directly applicable to the ocean, reveal an important 
influence of rotation on the dynamics of convective plumes. The localized 
cyclonic vortices associated with low Rossby number convective plumes lead to 
a quasi-2-dimensional vortex dynamics, stirring the fluid in horizontal planes. 
This enhanced lateral mixing inhibits the vertical transports of density 
anomalies, and leads to the establishment of a finite negative temperature 
gradient (rather than the homogeneous mixed layer seen in non-rotating 
convection). This was also observed in the numerical study of Klinger and 
Marshall (1994); the magnitude of the adverse temperature gradient, although 
enhanced over that seen in the non-rotating case, is rather small, however, for 
typical oceanographic parameters and conditions; in the field it would be very 
difficult to isolate from other effects. 

The underlying hydrodynamics explored in the above numerical experiments, 
can be modified, but not fundamentally changed, by thermobaric effects4. 
Gill(1973) and Killworth (1979) first recognized the role of thermobaric 
enhancement of thermal expansion in their calculations/models of hydrostatic 
stability in the water column in the Weddell Sea. The thermobaric effect on 
Greenland Sea convection was studied in LES simulations by Garwood 
et.al.d994), Denbo et al (1995) and Sander, Wolf-Gladrow and Olbers, 1995, and 
was shown to effect plume development and convection depth; see also the 
review by Paluszkiewicz et al (1994). 

4 The stability of a water parcel in a column is determined entirely by the buoyancy force acting 
on it. Complications arise because the density of sea-water can depend on T, S and p in subtle 
ways. Often in theoretical study a simplified equation of state is adopted of the form: 
p = po (1 - OcT + ßS) where a and ß are thermal expansion and haline contraction coefficients 

respectively. To the extent that they can be taken as constant, the dynamical equations can be 
entirely reformulated in terms of a buoyancy variable and buoyancy forcing. But particularly at 
low temperatures the thermal expansion coefficient varies strongly with T and p; it becomes 
smaller at lower temperatures but increases with depth.  The excess acceleration of a parcel due 
to the increase in a with depth, the thermobaric effect, can result in a destabilization of the water 
column if the displacement of a fluid parcel (as a result of gravity waves, turbulence or 
convection from above) is sufficiently large. 

-(o<\- 



Lecture 2; CHIMNEY DYNAMICS 

The most unrealistic feature of the convective process discussed in the first 
lecture, is that there were no lateral inhomogeneities. In nature convection acts to 
homogenize a patch of ocean which is confined in space. In this lecture we go on 
to review what is understood of the dynamics of the mixed patch as a whole. 
The mixed patch has become known as a chimney (although we shall see that 
this is not an ideal name). The defining feature of chimneys is that properties 
(such as T and S) are mixed by convection locally leading to a diminution of 
property gradients interior to the chimney, but an enhancement of gradients 
around the periphery. From a theoretical point of view this localization in space 
makes the chimney problem distinct from the myriad studies of convection 
rooted in the Rayleigh problem (convection between two plates extending to 
±=o); as one might anticipate edge effects ultimately come to dominate the 
evolving flow fields in the chimney problem. Large horizontal buoyancy 
gradients on the edge of the convection patch support strong horizontal currents 
in thermal-wind balance with them - the 'rim-current'. If the chimney has a 
lateral scale greater than the radius of deformation, then instability theory (see 
lecture 3) tells us that it must break up in to Rossby-radius-scale fragments. This 
instability plays a dominant role in the dynamics and thermodynamics of the 
chimney, orchestrating the exchange of fluid and buoyancy to and from it. 

To introduce some of the important ideas we first consider the overturning of a 
neutral, rotating fluid to an extended, but localized loss of buoyancy. We then 
go on to consider the same problem but in a stratified rotating fluid. 

2.1 Chimneys in initially unstratified rotating fluids 

Studies of the convective overturning of neutral fluids are of importance because 
they enable one to focus on the role of rotation in isolation from other effects. 
They also have some practical oceanographic relevance because deep convection 
sites are (almost by definition) very weakly stratified - see the observations of 
Leaman and Schott (1991), for example. We shall see that Ro* emerges again as a 
key non-dimensional parameter; its square root is a measure of the radius of 
deformation relative to the depth of the ocean, pertaining after the convective 
process has ceased. 

2.1.1 Laboratory analogues 

Melting ice-disc 

Laboratory "chimney' experiments have been carried out in Woods Hole to 
observe the flow produced by an extended patch of cooling in the presence of 
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rotation. One particularly instructive (and simple) series of experiments was 
carried out by Jack Whitehead and Brian Racine in 1991; they are described in 
more detail in Marshall et.al. 1994. 

A 1 cm thick ice disc (molded in a cylindrical metal film canister) was gently 
inserted at the top center of the rotating water, as sketched schematically in Fig. 
2.1.1. The ice also contained a dye so that water that was originally ice was 
tagged with a tracer. The ice disc melted in 300 seconds extracting its latent heat 
of fusion from the water implying a cooling rate of 1.2 x 104 Wm'2 (taking the 
latent heat of ice to be 363 J cm"3). This gives So= 6 x 10"6 m2s'3 and hence an Ro* = 
0.03 for the shortest rotation period of 15 seconds (f=0.84). Three other rotation 
rates were also used with periods of 30, 60, and 120 seconds (that is Ro* 's of 0.09, 
0.25, and 0.72, respectively, spanning the oceanographic range). 

After the ice was placed on the water, convection cells were observed to extend 
to the bottom beneath the ice; see fig. 2.1.2a. As the ice melted, small eddies 
migrated away from the edge of the ice. By the time the ice was completely 
melted, at roughly 360 seconds or 24 rotation periods, the cooled fluid had 
broken up into about half a dozen eddies that continued to spread apart with 
time. A side view of the dyed water is shown in figure 2.1.2b for the largest rate 
of rotation. The eddies are conical in shape with cold water (tagged with dye) 
spreading out over the bottom, but 'contained' by rotation. Above each conical 
eddy clear water can be seen. Injected dye showed that there was pronounced 
counterclockwise (cyclonic) circulation there. Dye injected directly into the 
convected fluid revealed little circulation. This picture is consistent with the 
upper cyclonic circulation being associated with a low pressure that vholds up' 
the placid lens of dense fluid. 

Pellets of potassium permanganate were also dropped next to the outer edge of 
the ice disc to produce a vertical column of dyed fluid. Cyclonic circulation built 
up around the periphery of the ice in the early part of the experiment. 
Simultaneously, near the bottom at the same radius, anticyclonic circulation 
started to develop. This is easily understood from a consideration of angular 
momentum and its conservation since fluid flows inward near the top and 
consequently outward near the bottom. Finally, after all the ice had melted, 
cyclonic circulation was found to extend over the full depth of each eddy, 
presumably due to the persistent action of bottom friction. 

An important message to be taken from this experiment is that 'chimney' is a 
misleading name; the convection site does not act as a 'pipe' down which 
material flows to thence spread laterally away. Rather the plumes act as 'mixing 
agents' churning the column vertically. But on scales somewhat (but not much) 
larger than the plume-scale, rotation has a controlling influence and the dense 
gravity current emanating from the convection site is constrained  almost 
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immediately by the earth's rotation. The 'spreading phase' in which convectively 
modified fluid is carried to sites many Rossby radii away from the formation 
region, is a geostrophic process in which eddies formed by baroclinic instability 
play a central role. 

Shower-head 

In an important study by Maxworthy and Narimousa (1994) laboratory 
experiments were combined with scaling arguments to determine the size and 
velocity scales of newly formed baroclinic vortices - the cones we see in Fig 
2.1.2b - generated by surface cooling. They used both laterally confined and 
unconfined apparatus. In the confined experiments saline water was introduced 
over the entire top surface of a rotating tank. In the unconfined experiments 
salty water was introduced only over a central circular region using a shower 
head. These latter experiments are of particular interest because the buoyancy is 
extracted in a localized region (as in Whitehead's ice-disk experiment) and so the 
convectively processed water can escape the forcing and geostrophically adjust 
under rotation and gravity, mimicking the fate of convected fluid in the open 
ocean. 

Maxworthy and Narimousa argued that after convection has ceased convectively 
modified fluid would be found in geostrophically adjusted cones, the remnants 
of the chimney broken up by baroclinic instability into radius-of-deformation- 
scale fragments. The cones of convected water, have a scale controlled by a 
radius of deformation: 

''cone ~ Ip /. 13 

The aspect ratio of the cones of dense fluid, l^/H, scales with the (square-root 
of the) natural Rossby number of the system because: 

L„„»     'o     1   / ,„      B. "cone 

H      H    fy 1   I    y 

f4H2 

where Ro*, depending only on "external" parameters, is the "natural Rossby 
number' discussed in lecture 1. 

Their experiments ranged Ro* from .08 to 1. In both confined and unconfined 
experiments, the slope of the experimental data could be rationalized in terms of 
the scaling arguments reviewed in lecture 1 (section 1.4); in particular it was 
found that the velocity and space scale of the eddies shed by the baroclinically 
unstable, convectively driven vortex, could be expressed as a function of Ro*, 
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consistent with predictions of baroclinic instability theory and the numerical 
experiments of Jones and Marshall (1993) - see below. The experiment also 
provided constants of proportionality which depend on the nature of the 
(rotationally influenced) entrainment process. 

These laboratory experiments have been followed up and extended by Brickman 
(1995) and Coates et.al. (1995) 

2.1.2 Numerical analogues 

Extensive numerical simulations of chimneys in neutral ambient conditions have 
been carried out using ocean models which solve the incompressible Navier 
Stokes equations - see, for example, Jones and Marshall, 1993; Send and 
Marshall, 1995. The implied flux Rayleigh number Raf is 8 x 108 and the Taylor 
number, Ta, ranges between 4 x 102 and 10s, placing these experiments in the 
fully developed turbulence /geostrophic turbulence regime - regions 3 and 4 of 
fig.l in Fernando et.al (1991). The grid-spacing of the model is small enough 
that gross aspects of convective plumes themselves can be resolved, yet the 
domain of integration is sufficiently large to permit a study of both the influence 
of the plumes on the large-scale and the geostrophic adjustment/baroclinic 
instability of the convected water. An example is presented in fig.2.1.3 
simulating the overturning and break-up of a chimney. A buoyancy loss of <B0 = 
4 x 10"7 mV3 (corresponding to a heat-loss of 800 Wm"2) was applied over a 16 km 
disc centered at the surface of a 32 km, doubly periodic, 2 km deep ocean. The 
implied Ro* is 0.1. The water was initially homogeneous with a linear equation 
of state dependent on temperature alone. 

The sequence of events - sinking in plumes and subsequent spreading of 
convected fluid in baroclinic structures - can be readily seen in fig. 2.1.3 where 
the temperature is rendered in three dimensions at various stages in the 
developing chimney, resulting in images reminiscent of those obtained in the 
laboratory using dye. The darker patches correspond to colder fluid. 

As in the laboratory, the combined effect of the plume-scale convection is to 
drive an increasingly strong, large-scale rim-current around the disk of cooling, 
cyclonic at the surface, anticyclonic beneath. This rim-current serves to confine 
the convected fluid to the volume defined by the disk of cooling. Fluid outside 
the chimney is unmodified and initially there is little lateral transfer of fluid 
between the overturning and the non-overturning regions. By day two, 
however, there is evidence of the growth of meanders in the rim-current as it 
becomes baroclinically unstable, an instability which eventually leads to the 
break-up of the patch of convected water and lateral exchange of fluid with the 
surroundings. By day four the chimney of homogenized cold water has broken 
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up into a number of distinct conical structures extending through the depth of 
the model ocean. These cones have a definite space and velocity scale. 

The ratio /cone/H is plotted in fig.2.1.4, obtained from a series of such numerical 
experiments, as a function of Ro*, along with data obtained by Maxworthy and 
Narimousa (1993) in their laboratory. It is very pleasing to find that the 
laboratory and numerical experiments collapse on a very similar line; taken 
together they are strongly supportive of the scaling Eq.2.1.1. From the slope of 
the line drawn through the data in fig.2.1.4 we deduce that: 

H 
= 5VV (2.1.2) 

This formula can be used to predict, with a reasonable measure of success, the 
scale of the cones produced by the melting ice experiment described above. 

The scale lp = H^jRg* , is tabulated in table 1.3.1 as a function of the buoyancy 

flux «. o 

2.2 Chimneys in stratified, rotating fluids 

Laboratory and numerical experiments 

Jack Whitehead designed a set of laboratory experiments which prescribed a 
constant buoyancy loss at the surface of rotating stratified fluid; they are reported 
in Hufford, Marshall and Whitehead (1996). Filter paper was attached to the 
bottom of a cylinder and placed in contact with the free surface of a linearly 
stratified body of water in a rotating (1 m2) tank. The porosity of the filter paper 
was selected so that the flux of brine through it was of the desired rate if the 
standing water depth in the cylinder was 2 or 3 cm; typical buoyancy fluxes of tBa 

= 10"5 mV3 can be obtained in this way and, with judicious choice of porosity, it 
can be reduced further by two orders of magnitude. A camera was used to 
obtain a top view of the evolving convection, together with a side view through 
a 45°mirror. The cylinder obscured the central area in the top view, so only 
intrusive fluid that spread laterally could be seen from the top. The side view in 
the mirror was visible for the entire duration of the experiment, however - see 
fig.2.2.1. 

The convective layer penetrated rapidly downward in the early part of the 
experiment. The dye would typically collect under the source as a rapidly - 
deepening mixed region. After a time, however, the rate of advance of the layer 
slowed markedly but generally never entirely ceased for the duration of a run. 
Usually when the advance slowed, the side view revealed considerable lateral 
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slumping of the sides of the dyed region. As time progressed the patch of dense 
dyed fluid broke in to a number of eddies thus arresting the deepening of 
chimney - see fig.2.2.1. Much quantitative information was obtained from 
dozens of such experiments and interpreted in terms of the theoretical ideas set 
out in section 2.3 below. First, however, we mention parallel numerical studies 
that have used to help us understand the problem. 

The deepening of a mixed layer in to an initially stratified, resting fluid, has also 
been studied numerically, as illustrated in Fig.2.2.2. As in the laboratory 
buoyancy is extracted from the surface of the fluid over a disc of radius r at a 
rate % In the figure cooling at a rate of 500 W/m2 was imposed over a disc of 
radius 30 km. Initially the mixed layer deepens by the action of plumes at a rate 
close to that given by a non-penetrative convection model (eq.1.1.5), but as 
rotation takes over and baroclinic instability sets in, and just as in the laboratory 
experiments, the deepening of the mixed layer is arrested as baroclinic eddies 
sweep the convected fluid away sideways and draw stratified waters in from the 
side. The developing eddies can be seen in fig. 2.2.2. 

Much as outlined in lecture 1, in section 2.3.2 we develop scaling laws, guided 
by our understanding of the underlying hydro-dynamics, for the stratified 
problem also. In addition to Ro*, two other non-dimensional number play an 
important role; N/f, measures the Rossby radius (NH)/f to the depth of the 
ocean H, and r/H measures the aspect ratio of the convection patch. Here N is 
the Brunt-Vaissala frequency of the ambient fluid. But first let us consider 
important integral properties of the chimney. 

23 Theoretical interpretation 

23.1 Vertical mass transport and deep water formation rates 

What are the integral properties of a population of plumes working in concert 
over a local area to form a chimney? A law of vertical heat transport for such a 
collection of plumes was outlined in appendix (i) and applied in lecture 1. We 
consider here the role of plumes in the net vertical mass transport and deep 
water formation rate. 

On the large-scale stretching/compression of Taylor columns generates 
horizontal circulation, thus enabling one to relate the net vertical velocity over a 
patch of ocean to the rate of change with time of the circulation around the 
patch: 

-ju.dl = f0 
dw 

dtJ JO    dz 
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where warea is the vertical velocity averaged over the patch. Observations in the 
Gulf of Lyons (Send, personal communication) do not reveal any systematic 
tendency in rim-current speeds and neither do they appear to be correlated with 

convective events, suggesting that during convection warea is not significantly 
different from zero. Indeed horizontal currents observed on the periphery of 
convection sites rarely exceed 20-30 cm s\ Even if one supposed that such 
currents were set up rapidly, in only a few days, then the above formula yields a 
net w of a fraction of a mm/sec, over a patch 50 km in diameter and 1 km deep. 
This is a very small vertical velocity, tiny compared to those associated with 
individual plumes, and so small as to be insignificant in the context of deep 
water formation. We conclude (the arguments are developed in more detail in 
Send and Marshall, 1995) that the plume-scale does not play a significant role in 
vertical mass transport - downwelling in a plume is almost entirely compensated 
by upwelling local to that plume - but they are very efficient mixers of properties. 
This has important implications for the way in which plumes are parameterized 
in numerical models (see Marshall and Schott, 1996). Evidently the sinking of 
the homogenized column occurs on much longer timescales and, we believe, is 
associated with geostrophic eddy dynamics. A further implication is that the 
volumes of fluid created (for example, the number of Sverdrups of Labrador Sea 
Water) cannot be computed directly from measurements (or deductions) of 
vertical velocity w which are vanishingly small integrated over the chimney. 
Instead it is best to relate them directly to the volumes of homogenized fluid 
created in the mixing phase - see Send etal 1995. 

For example, suppose that convection has created dense water over an area A 
down to a depth h. The volume created is A x h. Taking, for example, 
A = 7t(60km)z and h = 1 km, typical of the Mediterranean (see Send et.al. 1995), 
we obtain a deep water formation rate of l.lxlO13 m3 per year, or approximately 
0.3 Sv, just from one event; this is in approximate agreement with the observed 
outflow of deep water at Gibralter. 

23.2 Equilibrium depth and timescales 

Visbeck, Marshall and Jones (1995) study and quantify the equilibrium state of 
the convective chimney in a linearly stratified ocean which would ultimately be 
set up if buoyancy loss through the sea surface 20 over the chimney, were entirely 
balanced by lateral buoyancy flux due to eddies around the periphery of the 
chimney across the rim-current v'V: 

o 

[B<M=    UVb'dldz (2.3.1) 
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where b' = -g— and the overbar denotes a time-average long compared to a 
Po 

typical eddy lifetime. Of course, such an equilibrium state may not always be 
achieved in nature - see below - but it is an interesting limit state and one which 
is amenable to analysis. 

We now solve (2.3.1) for the equilibrium depth, h a. Parcel theory is applied to 
close for the eddy flux v'b' following Green (1970). The eddy velocity is: 

v' = -^- (2.3.2) 
teddy 

where t^ =^-j- is assumed to be the inverse of the Eady(1949) growth-rate (see 
f 

lecture 3 and appendix (ii)), y is the lateral scale of the eddy transfer process and 
R; is the Richardson number of the mean flow given by: 

T2   rl 

Ri=^-TT- (2.3.3) 
M4 

,2       »     • Here  M  =—  is a measure of the stratification in the horizontal, entirely 
dy 

analogous to N2, the measure of the vertical stratification. 

Furthermore the buoyancy perturbation associated with the eddy is 

b' = M2y (2.3.4) 

and so, combining (2.3.2), (2.3.3) and (2.3.4), we arrive at an expression for the 
lateral buoyancy flux (written down by Green (1970) in the context of lateral heat 
flux by baroclinic eddies in the atmosphere): 

Vb' = a-f=M2y2 (2.3.5) 
\ Ri 

where a is a constant of proportionality and 'y' is a transfer scale, both of which 
need to be determined. 

Now, if the vertically mixed region joins smoothly on to the ambient 
stratification below, with no jumps in buoyancy at its base so that 

M2y = N\quil (2.3.6) 
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then, solving (2.3.1) for h   a using (2.3.5) and (2.3.6), we deduce that: 

hequi!=r^- (2-3.7) 

where r is the radius of the rim-current and y = nr ■ 
(2a)1/3 

It is interesting that the prediction (2.3.7) is independent of the Coriolis 
parameter /. However, this should not be interpreted as implying that 
geostrophic dynamics are not important - on the contrary, the energy supply for 
the eddies seen in Figs. 2.2.1 and 2.2.2 which make equilibration possible is the 
potential energy stored in the thermal wind. 

In an exhaustive evaluation of many numerical and laboratory experiments on 
baroclinically unstable chimneys, including the ones shown in the figures here, 
Visbeck et. al. (1996) confirm the parameter dependence of h   a on B, r and N 

suggested by Eq.(2.3.7) and find that (a fit from experimental data): 

y = 3.9 ±0.9 
implying that a in Eq.(2.3.5) 

a =.008±.002 (2.3.8) 

remarkably close to 0.005, the value obtained by Green in his study of heat 
transport by baroclinic eddies. 

Eq.(2.3.7) can be succinctly expressed in terms of our three controlling non- 
dimensional numbers; dividing through by H, the depth of the ocean, Eq.(2.3.7) 
can be written thus: 

I 
Kquil  _      f fr~\3 

H N{H. 
7?0*3 (2.3.9a) 

N and the implied eddy scale of the equilibrated state is Lp = —hequil, or 

independent of N! 

Typically, in chimney convection, N/f ~ 10 (of the ambient fluid), Ro* ~ 0.1 —> 1 
and r/H ~ 50, giving h^/H ~ 0.1 -» 1 if y ~ 4 (we present more numbers in 
section 2.3.3 below). 
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Time-scales 

Let us now ask the questions; is it likely that the chimney will reach the depth 
predicted by (2.3.7), and, if so, how long will it take? If the mixed-layer 
deepens in a 1-d fashion according to (1.1.5) it will take a time tone_d given by: 

N2h2 

'one-ä^^J- (2-3.10) 

to reach the depth h if N2 is constant. However, if, as the mixed-layer deepens, 
baroclinic eddies have time to grow to finite amplitude, then our one- 
dimensional assumption will break down as lateral fluxes of buoyancy begin to 
contribute to the buoyancy budget of the evolving mixed layer. Suppose that the 
time required for the chimney to equilibrate through baroclinic instability is t a 

and 
*equil      tone-d 

then the deepening of the mixed-layer at the center of the gyre will be slowed 
and possibly arrested. In the limit that the deepening is halted completely, 
buoyancy loss from the surface over the gyre is offset entirely by lateral flux in 
eddies setting up a quasi-steady state (as hypothesized in 2.3.2). 

The time tequil to reach the depth hequil cannot be greater than the time it takes a 
one-dimensional mixed layer deepening as in (1.1.5) to arrive there. Thus, 
combining (2.3.10) and (2.3.7) we find that: 

tequil < y 

(j\ 

K*J 
(2.3.11) 

Fig. (2.3.1b) plots tequil as deduced by inspection of laboratory and numerical 
experiments reported in Visbeck et.al (1996) and Hufford et.al.(1996); tequil scales 
thus: 

(  2\ 

tequU ~ P 

0 = 12 ±1.2 
K*J 

3 
(2.3.12) 

as suggested by (2.3.11) and ß (which is plausibly somewhat smaller than the 
y2 = 16 of 2.3.8) has been determined empirically from the data. 

We now go on to discuss the implications of these results for the dynamics of 
chimneys in the ocean. 



2.3.3 Oceanographic parameters 

In fig.(2.3.2) we plot tequil, Eq(2.3.12) and tone_d, Eq(2.3.10), as a function of the 
cooling rate for h = 100 m, N = 10"2 s"1 and r = 50 km. We see that for persistent 
cooling rates in excess of 300 W/m2, the mixed layer will reach a depth of 100 m 
before it is arrested by baroclinic instability. Choosing somewhat different, but 
not untypical values; - Nsurface~ 5xl0"3 s"1, S = 7.5 x 10"8 mV (corresponding to a 
heat flux of 150 W/m2), H = 200m - we find that tone_d =60 days. This is long 
compared to typical baroclinic instability times-scales (see lecture 3). Thus for 
lower cooling rates perhaps more typical of the climatology, baroclinic 
instability may indeed control the ultimate depth to which the mixed layer 
reaches. But if buoyancy is extracted rapidly, in one or two violent events, 
baroclinic instability will not have sufficient time to limit the depth - one- 
dimensional ideas ought to be adequate to determine the depth to which rapid 
deepening reaches. The patch of homogeneous fluid will nevertheless 
subsequently break up by baroclinic instability and the eddies will disperse and 
play a role in restratifying the convection site. 

In the winter of 1969 (MEDOC) and 1992 (Schott et.al, 1994) convection did not 
reach the bottom but stopped at intermediate levels. Perhaps the deepening of 
the chimney was arrested due to lateral, eddy induced buoyancy flux offsetting 
the surface cooling. For a Mediterranean chimney of width ~ 60 km and a 
typical Mistral heat loss (600 W/m2), Eq.2.3.12 gives tequil ~ 30 days.  Therefore, 
it seems unlikely that baroclinic eddies played a central role in arresting the 
deepening chimney because the period of strong heat loss lasted only 10 days. 
However, close to the rim-current significant lateral heat and tracer fluxes must 
have occurred associated with geostrophic eddies. Our prediction for a typical 
eddy size, given by the final Rossby radius, are close to the observations; 
Eq.2.3.9 suggests a Rossby radius of 8 km which is roughly in accord with the 
eddy scales observed by Gascard (1978). 

Baroclinic eddy fluxes are likely to be of great importance, however, on the 
seasonal (preconditioning) time-scale because the geostrophic eddy instability 
time is then considerably shorter than that of the forcing. If the heat loss is ~ 200 
W/m2 and the diameter of the convecting region ~ 200 km, parameters perhaps 
more typical of the Labrador Sea gyre, then eq.2.3.12 yields a breakup time scale 
of ~ 60 days. This suggests that by the end of winter baroclinic eddies can 
influence the mixed-layer budget significantly, even at the center of the gyre. 

If conditions are such that the chimney does reach its equilibrium depth, then 
characteristic scales of the equilibrium state are summarized in fig.2.3.3. 
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Lecture 3 :A potential vorticity perspective 

In this third lecture we present a generalized view of the convective process 
which has been helpful to us in crystallizing ideas. It is couched in terms of 
potential vorticity (Q). Potential vorticity acts as a wonderful bridge between 
theoretical ideas (which are almost invariably most succinctly expressed in terms 
of Q), models and, most importantly, the observations, because it gets to the 
heart of the dynamics in the most succinct, and hence profound way (see, for 
example the review by Hoskins et.al., 1984). 

Potential vorticity Q is defined thus: 

Q = -T].Vb (3.1a) 
8 

and so is a measure of the stratification in the direction of r\, the absolute 
vorticity vector: 

T) = 7x\ + fk (3.1b) 

where k is a unit vector in the vertical. 

We have a particular interest in the distribution, transformation and transport of 
potential vorticity through the ocean because: 

• Q is conserved in adiabatic, frictionless motion and hence marks a fluid 
particle just like any other fixed feature of a particle of fluid. 

• given suitable boundary conditions any Q field can be 'inverted' subject to 
boundary conditions, to yield the balanced velocity and buoyancy field - the 
'invertibility principle'. 

• all of our basic theoretical constructs - Rossby waves, baroclinic instability 
etc. etc. - have their simplest expression when couched in terms of Q. 
Potential vorticity is the focus of theoretical models of the oceanic 
thermocline and, in an approximated form, is the basis of quasi-geostrophic 
theory. 

If our primary interest is in the large-scale (geostrophically and hydrostatically 
balanced) component of the flow, then the above three aspects suggest that Q 
ought to be the central focus of attention in any parameterization of smaller-scale 
processes that drive large-scale flow (such as baroclinic eddies and/or 
convection, for example). In the convection problem in particular, Q does 
indeed act as this bridge between theory/observations and small/large-scale 
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processes.    The simple notion o» which we wish to elaborate here is the 
following: 

• convection rapidly sets (transforms) the Q of the convection region to zero: 

transformation: Q    convection >0 (3.2) 

• the effect of convection on the large-scale flow can be deduced by inversion 
of the Q field thus transformed, subject to balance and boundary conditions: 

f balanced 
vandb 

/-v      inversion   . I UdldllCCU /,-. „,. inversion: Q >< 7^— {3.3) 

Eq.(3.2) is discussed in section 3.1, Eq.(3.3) in section 3.2. 

3.1 Convection sets PV to zero 

Let us again consider overturning in the vertical plane, as in lecture 1, section 
1.1, but now in the presence of more generalized potential vorticity 
(rotational/angular momentum, as well as stratification) constraints. The 
normal state of affairs in mixed layers - drawn schematically in Fig. 1.1.1b - is 
one in which the density varies in the horizontal across the mixed layer (because 
of more vigorous convection on one side of it than the other, for example). On 
the large-scale a zonal current u(y,z), in thermal wind balance with lateral 
mixed-layer density gradients, will develop given by: 

«Z=-A (3.1.1) 
1       f 

Suppose that there are no variations in x. Then a consideration of the zonal 
momentum equation (assumed inviscid) on an/-plane tells us that: 

— = 0 (3.1.2) 
Dt 

where 
D     d       d        d 
 = _ + V—+ W—- 
Dt     dt      dy       dz 

is the total derivative, v = Dy/Dt is the meridional and w = Dz/Dt the vertical 
velocity and 

m = u-fy (3.1.3) 

Si- 



is the absolute momentum with/ the Coriolis parameter and u the zonal velocity. 

The presence of rotation and a zonal flow in thermal wind balance with a lateral 
density gradient, place, through Eq.(3.1.2), important rotational and angular 
momentum constraints on the convective process. Because the m surfaces are 
material surfaces, they will induce fluid particles to move along slanting, r ither 
then vertical paths. The stability of the layer will depend on the sign of Vb 
measured in the m surface, or the sign of the absolute vorticity normal to the b 
surface (corresponding to a centrifugal instability). Both viewpoints are 
complementary and entirely equivalent. Emanuel (1994) calls this more general 
mixed instability 'slantwise convection'. The stability depends on the sign of the 
potential vorticity: 

Q = -7].Vb (3.1.4) 
8 

a measure the stratification in the direction of 77, the absolute vorticity vector or, 
equivalent^/, a measure of 77 normal to b surfaces. If, as in our thought 
experiment, there are no variations in x, then the absolute vorticity vector lies in 
a surface of constant absolute momentum and Q is just the Jacobian of b and m: 

Q = -Jyz(m,b) (3.1.5) 
8 

If Q is negative then the flow is unstable to symmetric instabilities and slantwise 
convection might be expected to return the Q of the layer to zero, the state of 
marginal stability. The sign of Q depends on the slope of the m surfaces relative 
to the b surfaces and is zero when they are exactly coincident; in the limit of zero 
Q there is no stratification in an m surface and the component of 77 normal to the 
b surface is zero. The magnitude of the absolute vorticity, resolved perpendicular 
to the b surfaces, is simply |TJ| = gQ/\Vb\. For small slopes |V£| ~ N^. and 

(r     1 A 
Q = 

f   Ri 8 
(3.1.6) 

where C~f~u
y is the vertical component of the absolute vorticity and 

Ri = N^ix/u* is the Richardson number. 

Parcel theory can be readily employed to analyze the stability of a zonal flow in 
thermal wind balance to overturning in a vertical plane. The method is outlined 
in Appendix II - see also chapter 12 of Emanual, 1994. Maximum release of 
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energy occurs when fluid parcels are exchanged along surfaces which are 
coincident with the b surfaces. Then parcel theory yields: 

2 s- rl co'<f c  n (3.1.7) 

and the flow will be unstable when Q < 0 or, equivalently, 

Ri<f/C (3.1.8) 

(see Eq.B6, Appendix (ii)) 

Theoretically, then, one has compelling arguments which strongly suggest that: 

• if Q < 0, convection will occur and 
• the end-state of the convective process will be one in which Q = 0. 

These ideas are readily borne out in numerical experiments. 

Numerical illustration 

Consider again the numerical experiment presented in fig 1.1.2 and discussed in 
lecture 1. We now repeat it but make two changes: (1) introduce the possibility 
of rotational control by including / and making the model 2.5 dimensional - (y,z) 
with no x variations and (2) introduce a meridional gradient in the cooling to 
induce lateral buoyancy gradients and so support a zonal wind. 

In Figure 3.1.1 a resting, stratified fluid (N/f=10) is subject to a steady buoyancy 
loss through the sea surface; no variations in down-channel (x) coordinate are 
allowed (further details can be found in Haine and Marshall, 1996). The cooling 
is independent of x but increases across the channel following a hyperbolic 
tangent variation. Thus in the southern third of the channel there is weak 
surface forcing, in the northern third fairly constant densification equivalent to a 
heat loss of 800 Wm"2, and a sharp transition in between. A linear equation of 
state is specified dependent on temperature alone and the resolution is sufficient 
to represent gross aspects of the convective process. The figure shows the fields 
from the central portion of the channel after 9 days of cooling. It is clear from 
the isotherms and streamfunction that the overturning motions cause fluid to 
move systematically in slanting paths, and maintain a non-vanishing 
stratification in the region which is being actively mixed. Here the contours of 
absolute momentum, m, are closely aligned with the isotherms indicating that 
the PV is close to zero. The temperature field alone is ambiguous at highlighting 
the regions of active overturning.     Rather, potential vorticity is the key 
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dynamical variable as shown by Figure 3.1.1b. There are distinct plumes, of 
negative PV, draining the surface source of negative PV into the interior. 

The integration was carried on for another 24 hours, but now with the surface 
cooling switched off. Figure 3.1.2 shows that within this period almost all of the 
turbulent flow has ceased, leaving a layer with non-vanishing vertical 
stratification, but very small potential voracity (around 1% of the undisturbed 
value). The plumes of negative PV have been mixed away by the symmetric 
instability, erasing density gradients along absolute momentum surfaces. 

Such numerical experiments, then, give a measure of support to the notion that 
convection sets PV to zero i.e. stratification measured in a very special direction; 
indeed it is possible to show rigorously that Q=0 is the state of marginal stability 
for the symmetric instability problem for which strips of fluid are assumed to 
conserve absolute momentum. One expects that the same result pertains in 3- 
dimensions; but no such proof exists. Nevertheless we will adopt the notion as a 
working hypothesis and enquire in to its consequences. 

3.2 Influence of convection on the large-scale; PV inversions 

If on the small-scale, the convective process sets (in a violent mixing process) the 
potential vorticity to zero, and, in the aftermath of convection, fluid now 'tagged' 
with zero Q evolves quasi-adiabatically, what are the consequences for the large- 
scale? To answer that question we invoke the 'invertibility principle'. 

Fig.3.2.1a shows the expected Q distribution schematically, just after convection 
has ceased. The chimney, made up of convected fluid, is imagined to have Q = 0, 
and the sea-surface is dense; the ambient fluid has OQ^ and the sea-surface is 
at its ambient density. 

If the large-scale flow is in geostrophic and hydrostatic balance, then on entering 
the geostrophic and hydrostatic relation in to Q, eq.(3.1), it can be expressed as 
an elliptic problem for the perturbation pressure ' p' with (the perturbation) Q as 
the source function: 

JT^lp+^- = 8Q + ^-{lb) (3.2.1) 

and the " represents the deviation from a conveniently chosen reference state. In 
the above p is the pressure perturbation (divided by po) and b the buoyancy 
perturbation related through the hydrostatic relation: 

hydrostatic    — = b (3.2.2) 
dz 
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The balanced currents can be deduced from p using the geostrophic relation: 

geostrophic    vg = fkxVp (3.2.3) 

Eq.3.2.1 is an elliptic equation for p subject to Neumann/Dirichlet boundary 
conditions; it can readily be solved numerically by iterating on the non-linear 
term which is Rossby number smaller than the other terms. The inverted b and 
vg implied by the PV distribution shown in fig.3.2.1a, is plotted in fig.3.2.1b; one 
section is shown through the 3-dimensional solution. The Q field was inverted 
subject to the following boundary conditions: 

(i) p = 0 on all lateral boundaries which are placed far away from the 
cylinder of zero Q in the center of the domain 

(ii) -?- = bsu1face at the sea surface, with bsurface <0 within the disc of the 

chimney and bsurface=0 outside; -^- = 0 at the bottom where we assume 
oz 

b=0. 

We see that the highly idealized Q distribution does indeed induce a large-scale 
flow that has many of the characteristic features of observed chimneys: a rim- 
current, strong and cyclonic toward the surface, somewhat weaker and 
anticyclonic below, circumscribing a large, mixed pool of fluid. On the edge of 
the homogenized pool, isopycnals arch upwards to the surface. By invoking the 
'invertibility principle', then, we see that the convective process is bound to drive 
a large-scale flow much as is observed if it mixes Q away to zero in the mixed 
layer. 

We can take 'PV thinking' forward to consider the hydrodynamical stability of 
the chimney by making use of a 'mathematical trick' due to Bretherton (1966). 

In the inversion of Fig.3.2.1a we employed inhomogeneous Neumann boundary 
conditions at the surface [(ii) above] because we prescribed the density there. 
But a well-known result of 'potential theory' is that any such inhomogeneous 
boundary condition can be replaced by a homogeneous one provided that the 
source function is modified. Thus in the (numerically obtained) solution shown 

in Fig.3.2.1b we employ homogeneous boundary conditions^- = 0 in conjunction 
oz 

with an appropriately modified source function; to the rh.s. of 3.2.1 we add a 
delta-function sheet of positive potential vorticity anomaly just underneath the 
surface to represent the cold surface.   The strength of the sheet, 8surface, is just 
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that required to ensure that the vertical integral of (Q + öSU!face) over each column 

of ocean vanishes; the Q can be imagined to have been 'evacuated' by convection 
in the interior (Q=0 there) and concentrated in to the sheet of Q just beneath the 
surface; the positive source at the surface induces cyclonic flow, the negative 
source anticyclonic. In the interior of the fluid the solutions shown in Fig 3.2.1(a) 
and (b) are identical to one another. It is to be appreciated (and sometimes this 
takes some time!) that this is not just mathematical trickery because in (b) 
boundary conditions and interior sources are given an equal footing - they are 
just potential vorticity distributions which can be inverted subject to 
homogeneous boundary conditions. 

Thus we can now easily see why a cold surface (positive PV sheet) induces 
cyclonic circulation and the low PV of the interior induces anticyclonic 
circulation. Bretherton sheet concepts also clearly indicate that the chimney will 
be subject to baroclinic instability, discussed now in section 3.3, and suggest 
highly instructive idealized models of chimneys based on point vortices. 

33 Hydro dynamical instability of chimneys 

The convective process resets and redistributes the PV of the ambient fluid 
resulting in chimneys which, as we have seen in laboratory and numerical 
experiments, are highly susceptible to, and strongly modified by, baroclinic 
instability. The homogeneous column of water is cold and dense at the surface 
relative to its surroundings and so Vß points inwards to the 8-function disc of 
high PV at the surface. The interior of the chimney has very low (essentially 
zero) PV and so below Vß points outwards from the chimney - see fig.3.2.1b. 
Thus the necessary conditions for baroclinic instability (reversal in sign of Vß 
somewhere within the fluid) are manifestly satisfied. Analytical study of the 
stability of such structures using 'the method of perturbations' can readily be 
carried out within the confines of quasi-geostrophic theory - see, for example, 
Killworth, 1976; Pedlosky 1985 and Helfrich and Send (1988). If the radius of the 
chimney is large relative to the Rossby radius of deformation, then the results of 
such analysis asymptote to that of Eady (1949); a growth rate for the fastest 
growing mode proportional to f / JR^ (see appendix (ii)) on a scale close to 
NHI f, where H is the depth of the chimney and R. the Richardson number of 
the ambient fluid. Because the ambient N is relatively small in deep convection 
sites (N//~5-»10), the growth rates are rapid (a few days) and the scales 
small (a few kilometers). 

Laboratory and numerical experiments suggest that linear theory is a useful 
guide in the early growth of instabilities but non-linear processes soon take hold; 
eddies mature and merge as the chimney disintegrates.   Legg and Marshall 
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(1993) exploit Bretherton sheets to model the chimney as a collection of paired 
point vortices (called 'hetons' by Hogg and Stommel) and so are able to address 
non-linearities. In numerical experiments using Green's function techniques in a 
two-layer model, they pepper the convection site with paired point vortices, one 
(of strength q+) in the upper layer to represent the cold surface and one (strength 
q-) in the lower layer to represent low PV. The rate of introduction of vortices 
can be directly related to the rate at which buoyancy is lost from the sea surface. 
In the experiment shown in Fig.3.2.2 a constant cooling of 800 W m'2 over a disk 
of diameter 16 km (about 10 times the Rossby radius of deformation) is assumed, 
consistent with the explicit calculations of Jones and Marshall (1993). Cooling at 
this rate creates hetons of strength 0.6 / at a rate of 33 per day. They are 
introduced with random initial (Cartesian) coordinates. During the first 2 days, 
most of the hetons remain within the patch of cooling (see fig.3.2.2a and 3.2.2b). 
As the number of hetons within the patch increases, a sheared current develops 
around the rim, cyclonic above, anticyclonic below, reaching a magnitude of ~ 
20 cm s"\ This rim-current effectively constrains the vortices within the disc. 
Initially they are prevented from forming self-propelling pairs by this strong 
shear current - any pairs are torn apart before they can "escape'. However, over 
time, the rim current develops waves of mode number 4 - 5, - see fig.3.2.2b and c 
- through the mechanism of baroclinic instability. After about 2 days we see 
tilted clusters containing several hetons which burst out of the main cloud, 
breaking through the sheared rim current (fig.3.2.2c). The convection site 
therefore breaks up into several smaller tilted clusters which propagate 
outwards. The heton clusters continue to travel outwards (fig.3.2.2d), carrying 
cold water far from the area of cooling. These extended hetons, clumping 
together on the radius of deformation scale, are very efficient at fluxing heat 
laterally into the cooling area; they are the point-vortex model's attempt to 
represent the eddies seen in figs. 2.2.1. and 2.2.2. The linear theory of Pedlosky, 
1985, is very successful in predicting the scale of the clumping. 

As time progresses and the hetons disperse, the magnitude of the rim current 
diminishes, so that it is easier for subsequent groupings to move outwards. 
Ultimately a steady-state is reached in which the flux of hetons out of the area of 
cooling, in the form of tilted clusters, approximately balances the rate at which 
hetons are generated and so the number of hetons in the area of cooling remains 
approximately constant. 

Hetons have been used to help in the interpretation of the mean temperature 
attained over warm discs in laboratory models of convection by Brickman 
(1995). The equilibrium limit in which heat input (or output) is entirely balanced 
by lateral flux, the one discussed in lecture 2, can also be addressed using heton 
models - see Legg et.al.1996. 
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Appendix I 

"Law of vertical heat transfer for deep convective plumes in the ocean" 

Suppose that a weakly stratified ocean is subject to vigorous cooling at the 
surface over some hundreds of kilometers producing a density inversion and the 
possibility of overturning. The fluid cannot simultaneously overturn on this 
scale; rather the qualitative description must be that the response to wide-spread 
cooling is one in which relative small convection cells (plumes) develop. The 
detailed physics setting the plume-scale is as yet unclear. But irrespective of 
these details the gross transfer properties of the population of convective cells 
must be controlled by the large scale; the raison d'etre for the overturning is to 
flux heat vertically to offset the cooling at the surface. A law of vertical heat 
transfer for the plume-scale can be developed using parcel theory as follows. 

Suppose that the net effect of overturning is to exchange particles of fluid, of 
density p{ and p2, over a depth Az ■ Dense water sinks displacing lighter water 
below, and releases potential energy to power the plume and flux heat vertically. 

The change in potential energy AF consequent on the idealized rearrangement 
of particles shown in the figure, is given by: 

AP = Pfmal - PMtial = -gApAz = p0AbAz (Al) 

where Ab is the buoyancy difference of the exchanged particles, g is the 
acceleration due to gravity, and p0 is a representative value of the density. 

Equating the released potential energy, to the acquired kinetic energy of the 

ensuing convective motion K = 2x—p0w2 (where w is the vertical velocity scale 

and there is a factor of 2 because there are two particles) then: 

w2 = AbAz (A2) 

Now if heavy fluid lies above light fluid an unstable disturbance with growth- 

rate co will develop. Thus z «= e"*;— = co;w = — = caz and hence from (A2): 
dt dt 

co2z2=\N2 z2 

and so 

co2 = N2 (A3) 
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which is the 'correct' answer for the growth rate of the fastest growing mode, as 
determined by linear stability analysis (in the inviscid limit, the lateral scale of 
the fastest growing convective mode collapses to zero, no energy is 'wasted' in 
lateral motion, and the limit (A3) is achieved). 

The implied "law" of vertical heat flux on this the plume-scale is then, using (1), 

(A4) <Bp=wAb = Az1/2Ab3/2 

which is Eq.1.1.4. 

Appendix II 
Energy analysis of the thermal wind 

We now consider parcels of incompressible fluid at positions (y^z,) and (y2,z2) in 
thermal wind balance with a meridional density gradient. The parcels are then 
interchanged 'adiabatically' (ie with conservation of buoyancy). 

The change in potential energy (per unit volume) is again (Al): 

^P = Po{z2-z1){b2-bl) (Bl) 

We also have: 

so that 

~     db ~     db ~ 
8b=—8y+—8z 

ay        az 

(b2-bl) = M2(y2-yl) + N2(z2-z1) 

if, for simplicity,  N2 and M2 are assumed constant and quantify the strength of 
the vertical and horizontal density gradients, respectively. 

For the slope, s,, of a buoyancy surface we have, since b2 = bx: 

dy       M2 

Sl    dz       N2 

7    *— 7 
Hence if s = —  is the slope of the surface of interchange, then we may write: 

yz-yi 
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{b2-bl) = N2{y2-yl)[s-sl] 
and so (Bl) becomes 

AP = p0N
2{y2-yi)

2s{s-Sl) 

In convectively stable conditions N2 >0. Hence the sign of AP is the same as that 
of the factor s(s-s,) and that it will be negative, corresponding to the possibility 
of instability, if s<s, ie if the slope of the exchange surface has a smaller slope 
than the isopycnals. That this corresponds to actual instability has to be 
confirmed by carrying out a stability analysis, but it (almost) invariably does - 
the fluid always finds a way to release the potential energy if there is lots of it 
available in the mean flow. 

For a given exchange distance (y2 - yl) the release of potential energy will be a 

maximum (-AP a maximum) when s(s -s^) is a maximum ie when: 
1 
2 i 

Then 

1   (       \*M* 

where Ri is the Richardson number of the large-scale flow defined by: 

f2N2 

M4 

where use has been made of the thermal wind relation. 

We see that in any region where a thermal wind exists it is always possible to 
release potential energy for eddy growth provided an appropriate re- 
arrangement of particles takes place. 

Instability at high Richardson number; Baroclinic instability 

If the Richardson number of the mean flow is large , then only changes in its 
potential energy need be taken in to account. If an unstable disturbance grows 

then   yoce0*;— = a>;v = — = coy and   equating   released   potential   energy   to 
dt dt 
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acquired kinetic energy of the eddying motion (p0v2) we find, in direct analogy 
with the upright convection problem outlined in Appendix (i): 

?2 

col=+- (B4) 
R. 

which is a heuristic derivation of the growth-rate of an Eady wave. Eq.(B4) is in 
effect just A3 but with the AH measured along a slope that has one half that of 

the isopycnals. Again it is the 'correct answer', but one must also demonstrate 
that the hypothesized re-arrangement of particles does indeed occur. This can 
only be done by a 'stability analysis', of which many exist in the literature. 

Instability at low Richardson; symmetric instability 

If the Ri of the large-scale flow is not large, then one must also consider the 
change in kinetic energy of the mean motion. Let us assume a zonal motion U = 
U(y,z) of complete rings of fluid independent of x (rather than just parcels). 
Then we have: 

^ = 0 
Dt 

where m = U - fy is the absolute momentum. 

For any small displacement in the y direction we must have: 

5U = fdy 

as the change following the motion. 

Now consider the change in kinetic energy resulting from the exchange of rings 
of fluid with zonal motion U, at (y^z,) and U2 at (y2,z2). Then 

AK^^p^u, +f(y2 -yi)}2 +{u2 -f(y2-yl)}2~u1
2-u2

2] 

= p0(y2-yi) f f- 
(?2-yi) 

Since 

(U2-U1) = —(y2-yl) +—(z2-z1) 
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this may be written: 

&K = Po(y2-yiff V- —- — 
dy      dz 

.dU 
or, since f^~ = -M2 = N2s^, then 

oz 

*K = pobi-y\f f -N2ssl 

and 

as before. 

AP = p0{y2-yl)
2N2(s2-ssl) 

Hence the change in total energy of the mean motion AEmis, after a little 
rearranging: 

&Em=p0{y2-ylf 

M*L)2 

\    dy j N2 + N2{s-Sl)
2 

Regarding s, the direction of exchange as a variable, AEmhas a minimum when 
5 = 8,16 when the exchange is in the initial isopycnal surface. Then: 

2*2 
(A£m)min=P0()'2-)'l)   / i_J_ 

/    Ri 

will be negative if: 

"'' f Ri<j; 

giving the possibility of instability. Here £ is the 'absolute voracity7. 

From (B5) we may again deduce the growth rate: 

co2<f2 1__L 
/    Ax- 

CBS) 

(B6) 

(B7) 
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Fig. 1.1.1 Schematic diagram showing the convective deepening of a mixed 
layer. In (a) an initially resting stratified fluid is subject to widespread and 
uniform buoyancy loss from the surface; the layer deepens by drawing 
buoyancy from depth through upright convection which exchange parcels of 
fluid in the vertical. In (b) we suppose that there are spatial inhomogeneities 
which induce lateral gradients in mixed-layer depth and density. Now the 
mode of buoyancy transfer through the mixed layer can change to one in which 
fluid parcels are exchanged laterally in, for example, barodinic instability. 
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(a) Temperature(-), streamfunction (—) and flow 
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Fig.1.1.2 Deepening by upright convection in a numerical simulation. Vertical 
section at day 9 showing isotherms (solid), overturning streamfunction (dashed) 
and flow. The flow is shown by the small dashes which indicate equivalent 
displacements after 30mins. The peak speeds are (0.069,0.024) ms"1 in the (y,z) 
directions. The thick dashed line is the prediction of the one-dimensional law for 
the depth of the mixed layer (Eq.1.1.5) (b) Across channel mean temperature 
profile at day 9. (c) Timeseries of mixed layer depth. Full line is ID prediction - 
circles are model results. From Haine and Marshall (1996). 
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Entraining plume 

Coriolis f 

////////////77///////////// 

Fig.l.2.1 
A schematic representation of an entraining plume sinking m to a homogeneous 
ocean of depth H, at a latitude where the Coriolis parameter is f, triggered by 
buoyancy loss S0. If the ocean is sufficiently deep (as drawn here) the plumes 
that make up the convective layer of depth lz will come under rotational control 
on the scale L,. 
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(b) 

(d) (e) (f) 

Fig. 1.2.2 A sequence of photographs from a laboratory experiment carried out 
by Helfrich (199ij) in which a salt solution, dyed for flow visualization, was 
introduced into a rotating, 45 cm deep volume of fresh water. The buoyancy flux 
and rotation rate were such that /rot = 1.98 cm, much less than the water depth. 
The first three frames show the early evolution before rotation becomes 
important. The effects of rotation are evident in frames (d), (e) and (f). The 
radius remains nearly constant and the front falls to form a columnar structure 
which ultimately undergoes geostrophic adjustment to form an anticyclonic 
conical eddy of dense fluid on the tank bottom. The crosses map out a square 
grid of side 5 cm. 
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Fig. 1.5.1 

Numerical simulation of convection induced by surface cooling of 800W/m2 in an 

initially neutral, unstratified rotating fluid in a 10 x 10 x 2 km doubly periodic box. 

Fields are plotted after one day of integration. The horizontal resolution is 50m 

while the vertical resolution varies from 6m at the surface to 100m at mid-depths. 

(a) north-south section of vertical velocity, 6.25 km east of the origin. 

(b) horizontal section of vertical velocity, at mid-depths z=-lkm. 

(c) north-south section of in-situ temperature (corresponding to (a)). 

(d) horizontal section of in-situ temperature (corresponding to (b)). 
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Fig. 1.5.2 Horizontal velocity variance (a) normalized with respect to the non- 
rotating scaling unorot, plotted as a function of depth (b) normalized with respect 
to u^ and plotted as a function of depth. 

Fig.2.1.1 
Sketch of the apparatus for observing cooling under melting ice. The tank, 
mounted on a turntable, was 120 cm in diameter and filled to a depth of 10 cm 
with fresh water at room temperature. The period of rotation ranged from 15 
sees up to 120 sees. Convection was instigated and visualized by placing a 1 cm 
thick disc of ice containing food coloring at the axis of rotation at the surface. 
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r„ X 

Fig.2.1.2 
(a) Side view of plumes descending from the disc at the surface under rotational 
control; this is the most rapidly rotating melting-ice experiment with Ro* = 0.03 
and a 15 second rotation period. 
(b) Eddies marking by dye showing the geostrophically adjusted end-state of the 
connective process after ice has melted and hence cooling has ended; the 
convected fluid resides in Rossby-radius-scale eddies. 
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(d) 

Fig.2.1.3 
The temperature field in a numerical simulation of chimney convection rendered 
in three-dimensions at (a) 1 day, (b) 2 days, (c) 4 days and (d) 6 days. Cold 
water is dark, warmer water lighter. As an aid to perspective a box, 16 km on 
the side and 2 km deep, has been outlined. 
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Fig.2.1.4. The aspect ratio of the cones, lcone/H, plotted against JR^ for six 

numerical experiments (black dots) superimposed on data (open circles) 
obtained by Maxworthy and Narimousa (1994) in their laboratory. 
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Fig.2.2.1 Top and side photographs of the dispersal of convected fluid away 
from an evolving mixed patch in a linearly stratified fluid. 
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a") Vertical Vorücity x 104 a-1 

' z = -165m t= 3 days  b) Vertical Vorticity x 104 a-1 

165m t= 4 days 
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Fig.2.2.2 Numerical simulation of a 
chimney induced by a localized, but 
extended patdxof cooling applied to 
the surface of a resting, stratified 
ocean. In (a), (b), (c) and (d) the 
vertical component of absolute vorti- 
city is plotted at a depth of 200 m 
after 3, 4, 5 and 7 days respectively. 
In (e) we show a vertical section of 
temperature through the middle of the 
chimney at day 6.  Again we see that 
plume-scale convection (evident at 
day 3) gives way to finite amplitude 
baroclinic instability (from day 4 
onwards). 
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Fig. 2.3.1 - taken from Visbeck, Marshall and Jones (1996) 
(a)Regression of the final observed chimney depth versus the prediction, 
eq(2.3.7), both normalized by the radius of the chimney. H&M indicate 
numerical simulations by Hufford and Marshall, W&H laboratory experiments 
by Hufford and Whitehead, I etal. laboratory work by Ivey and collaborators, 
J&L numerical experiments by Jones and Lascaratos. 
(b) Regression of the observed final time-scale versus the prediction, eq(2.3.11). 

Both axes are normalized wrt the rotation rate f. 
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Fig.2.3.2 The curve of tone_d , Eq (2.3.10) and^Eq.(2.3.12) as a function of the 

cooling rate if H = 100 m and N = 10"2 s'\ 
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parameter space 
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Fig.(2.3.3) 
The parameter space covered by all chimney experiments, both laboratory and 
numerical. Solid slanting lines represent constant chimney aspect ratios r/h u 

(Eq.2.3.7) Axes representing the final mode number of baroclmic instability and 
the predicted time (in pendulum days) to reach the steady-state are also 
included. Axes and lines are enumerated making use of our best estimate of the 
constants of proportionality y =3.9 and ß = 12. Zrot can be found in table 1.3.1 as a 
function of S„. 



(a) Temperature and flow 
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Figure 3.1.1 Vertical sections from the 2D integration at day 9, for the central part 
of the channel, a) Temperature, b) Ertel potential voracity normalized by the PV 
of the initial condition. In each figure the flow and ID mixed layer depth are 
shown as in Figure 1.1.2 Peak speeds (v,w) are (0.11,0.050) m s'\ 
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(a) Temperature (-), absolute momerrtum(:) and flow 
Or- 
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(b)PV and flow 
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Figure 3.1.2 Fields at day 10, after the surface cooling has ceased for 24 hours. 
Peak speeds are (0.030, 0.0045) m s'1 in the (y,z) directions at this time, (a) 
temperature and absolute momentum (b) Ertel potential vorticity. From Haine 
and Marshall (1996). 
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Fie 3 2 1 PV chimney inversion with (a) inhomogeneous and (b) homogenous 
boundary conditions at the surface. The top panel shows the PV distribution 
that was inverted to yield the potential density (middle) and currents (bottom 
panel) In (b) the cold surface is represented as a delta-function sheet of high PV. 
Isopycnals and currents and plotted. In (a) the potential density at the sea- 
surface is specified and an idealized interior PV anomaly inverted to give the 
hydrography and azimuthal velocity of a baroclinic vortex. In (b), an interior 
PV field identical to that of (a) is used, but now the cold surface is represented 
bv a sheet of high PV just beneath the upper boundary, which is prescribed to be 
an isopycnal surface. Note that in (b), unlike (a), the isopycnals cannot cut the 
upper surface which is itself an isopycnal. 
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Fig.3.2.2 Four pictures charting the development of a chimney comprising an 
evolving cluster of hetons . Each picture shows the trajectories of the hetons over 
a period of 0.6 days: (a) .6 to 1.2 days , (b) 1.2 to 1.8 days, (c) 1.8 to 2.4 days, (d) 
2.4 to 1.0 days. The trajectories of the upper layer vortices are shown in green, 
while those of the lower layer vortices are shown in red. The horizontal scale is 
presented in units of the deformation radius and the hetons are introduced over 
a disc of diameter of 5 Rossby radii. From Legg and Marshall (1993). 
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Magnetic versus Rotational Effects in Fluids and 
Magnetic Buoyancy 

Jonathan Aurnou 

Abstract 

Magnetic fields can interact with conducting fluids in similar ways to the 
interaction of rotation on fluid flow. This is evident from the existence of the 
magnetic Taylor- Proudman theorem, the magnetic Kelvin's theorem and the 
symmetry between the vorticity equation and the magnetic induction equation 
(Chandrasekhar, 1961). The effects of a uniform rotation on a connectively un- 
stable nondiffusive fluid layer are studied and an alternative derivation of the 
Rossby deformation radius is found. When the rotation is replaced by a uni- 
form magnetic field the flow is found to be absolutely stable against convective 
motions for finite field strengths. A problem similar to the Rossby adjust- 
ment problem is solved with a magnetic field in the place of rotation. Perfect 
shape preservation of the initial surface occurs. Purely magnetically supported 
Rossby waves are not found to exist. Lastly, the governing equations of the 
magneto-Boussinesq approximation are derived and summarized. 

1    Magnetic Deformation Radius 

T.G. Cowling (1951) studied how rotation can affect convection in stellar systems. 
By performing a linear perturbation analysis on the equations of motion, the onset 
of convection with rotation was found to have a critical wavenumber equivalent to 
the reciprocal of the Rossby deformation radius. Convection may occur for inverse 
wavenumbers smaller than the Rossby radius while inertial waves are produced for 
larger length scale perturbations. 

The present analysis develops Cowling's problem with and without rotation and 
then considers a magnetic field in place of the rotation. The scales are assumed to 
be of astrophysical proportions and, therefore, the diffusivities are assumed to have 
negligible effects on the large scale motions of the fluid. 

1.1    Basic Equations 
The basic equations governing a Boussinesq fluid with zero-valued diffusivities are 

^. + u'.Vu' = --Vp'--^gk (1) 
Ot p0 po 
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dV 
^ + u'-Vf = 0 (2) 

V.u' = 0 (3) 

with the density as p = p0(l — a(T' — T0)). The velocity, pressure and temperature 
are defined as 

u' = 0 + u 

p' =Po(z) + P 

T' = T0-ßz + 9 

where u, p and 9 are the perturbations quantities and ß = —-£p- is the adverse 
temperature gradient. 

Linearizing the equations and subtracting out the hydrostatic background pressure 
yields 

^- = -±-Vp + ga9k (4) 
at po 

Yt = ßw (5) 

V-u = 0 (6) 

The vertical component of the second curl of equation (4) is 

-lv2w = -gaV2
H9 (7) 

Solving equations (5) and (7) for the vertical velocity gives 

J^V2u, = gaßV2
Hw (8) 

where V# is the horizontal Laplacian. 
Free boundary solutions that are periodic in the x and y directions are 

ft 7T 
w = Csin(——z)exp[ikxx + ikyy + at] (9) 

a 

where C is a constant, d is the layer depth, a is the growth rate, and a total horizontal 
wavenumber, k, is defined as k2 = k2

x + k2. 
Substituting (9) into (8) gives the dispersion relation for this system 

-2 = ^TW (io) 

Defining the buoyancy frequency, N, as 

JV = -'-%■ = -naß (11) 
paz 
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allows equation (10) to be written as 

a2 = -N2 1^-TT (12) 

where -N2 is a positive number corresponding to an unstable density gradient. It can 
be seen from equation (12) that the fluid layer is unstable for all positive wavenumbers. 
The growth rate goes to zero as k tends to zero and approaches \N\ as k grows large. 
The convective motions become harder to excite as the aspect ratio gets larger because 
no gravitational work is done on the parcels moving along equipotential surfaces. It is 
only the fluid travelling vertically upwards and downwards that powers the convection; 
the fluid travelling horizontally is being passively driven. 

1.2    Effects of Rotation 

If the layer is subjected to a vertical rotation, $lk, equation (1) becomes 

^ + u-Vu + /kxu = --Vp-A?k (13) 
at Po po 

where / = 2Vt. Linearizing the governing equations for instability of this system gives 

a~ = JL1 {-£- (14) 

This system acts the same as the fluid layer without rotation when the horizontal 
wavenumber is large. At small k values the growth rate becomes imaginary and 
instability is replaced by inertial oscillations in the fluid. The boundary between 
oscillations and convection is found by solving for k at a = 0, leading to 

*■ = (/w) (15) 

The only differences between the critical wavenumber, k0, and the reciprocal of the 
Rossby deformation radius found in the oceanographic literature is the unstable strat- 
ification of the fluid layer. Convection will be found to occur on length scales smaller 
than the Rossby radius; inertial oscillations will occur at length scales greater than 
the Rossby radius. 

For the case when the rotation axis is aligned parallel to the x-axis, the growth 
rate is 

2   ~N
2
P - pki 

<T~  =    2-2-^ (16) £2 _|_ n n 

Convection occurring in rolls aligned with the x-axis, with kx = 0, is unaffected by 
the rotation. This is because the motion is two-dimensional in planes perpendicular 
to the rotation axis such that all the convective motions perfectly satisfy the Taylor- 
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Proudman theorem. For convection aligned perpendicular to the rotation axis, ky = 0, 
and 

^ = (-JV2-/2) k-^T (17) 
KX  T      d2 

The x-direction growth rate is stifled by the rotation and becomes imaginary for all 
positive kx when f2 > —N2. Thus, no critical wavenumber may be defined. 

1.3    Magnetic Effects 

If the fluid layer has a vertical magnetic field, B0k, imposed across it and the fluid 
is assumed to have a very high electrical conductivity then the governing equations 
become 

^ + u-Vu = --Vp-^k + —(VxB)xB (18) 
Ot p0 Po Poß 

<9B 
— + u-VB = BVu (19) 

dT V— + u ■ VT = 0 (20) 

V-u = V-B = 0 (21). 

where p is the magnetic permeability of the fluid. 
Using the same analysis as before, the growth rate of instabilities is given by 

a2 = 
-N2k2 2n

27r2 

k2 + ^     V*   d2 Vl^-k- (22) 
d? 

where VA = —^~TB0 is the the Alfven velocity. At a = 0 the critical wavenumber is 
(Po/i)2 

where 
-JV¥ 

Q ~ V2n2K2 

Q is the ratio of convective velocities to the Alfven velocity and is known as the 
Chandrasekhar number. 

The critical magnetic wavenumber is singular when Q is of order unity. There- 
fore, convection is completely inhibited at finite field strengths. Complete inhibition 
of convective motions occurs in the rotational case only for infinite rotation rates. 
This effect results mathematically from an extra Laplacian that comes into the term 
involving B. Physically, this amounts to B acting back on itself even in the linear 
case. 

An imposed horizontal field, i?0x, leads to the dispersion relation 

a2 = -N2 k^r-V2k2
x (24) 
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As with horizontal rotation, convection rolls aligned with the axis of the magnetic 
field are unaffected by the field's presence. For rolls transverse to the field the critical 

wavenumber is given as 

hXo = ^y/Q^ (25) 

The horizontal field is very different than the vertical field in that the critical 
wavenumber tends to zero, not infinity, as Q -> 1 because the Lorentz force tries 
to keep the field lines unbent. It is this magnetic tension inherent in the Lorentz 
force that resists motions occurring at high kx values and consequently the critical 
wavenumber becomes smaller. 

Thermal convection in the presence of a 4500 gauss horizontal magnetic field was 
experimentally studied by Lehnert and Little (1957). Rolls were not observed to form 
parallel to the field lines. Instead elongated convective cells were seen with stream- 
lines parallel to the field. This may have been caused by ungovernable horizontal 
temperature gradients in the experiment or due to the surface visualization technique 
employed. This experiment is currently being set-up in order to better examine these 

results. 

2    The Linear Adjustment Problem with Magnetic 
Pressure 

In a rotating fluid layer an initial discontinuity of the surface will reach equilibrium 
with non-zero surface slope. This slope is upheld because potential vorticity conser- 
vation sets up currents which geostrophically balance the gravitational forces. 

For a shallow fluid layer that has an initial step function surface displacement, 
rj(x,0) = —r]0sgn(x), the equilibrium surface relaxes to 

x . 
V = Vo(l - exPft) 

for x < 0 and 
—x 

rj = T]0(-l + exp—) 

for x > 0 where R = ■>/# is another form of the Rossby deformation radius (Gill, 

1982). 
If rotation is removed from this problem and a vertical magnetic field, B0k, is 

imposed across the layer a completely different stationary solution is found. The 
shape of the initial displacement is unaltered and the height of this preserved structure 
goes from rj0 to zero as B0 ranges from infinity to zero. 

The two dimensional governing equations are 

^ + u • Vu = --Vp - gk + —(V x B) x B (26) 
at Po Pop 

^ + u-VB = B-Vu (27) 
at 
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V • B = 0 (28) 

with non-permeable, free-slip boundary conditions at z = 0 

du 
w = — = 0 (30) 

oz 

and a free-surface, free-slip condition at z = 77 + H 

%>=w (31) 

|^ = 0 (32) 
OZ , 

A non-conducting medium is found above and below the fluid layer so that the external 
perturbation to the magnetic field is continuous at the interface (Chandrasekhar, 

1961). 
Applying equation (32) to the induction equation results in the x-component of 

the magnetic field perturbation, bx, being equal to zero on the boundaries. If the 
fluid layer is very shallow, then the mean value theorem and the boundary conditions 
on bx allow one to assume that bx ~ 0 throughout the fluid layer. Alternatively, the 
small vertical gradients assumed in the shallow water equations causes the field lines 
to be advected by the flow field but not bent. 

The linearized x-momentum equation then becomes 

du dr]      B0 dbz 

dt ox     np0 ox 

where p — —p0g(z — (77 + H)) for a hydrostatic layer and p = 0 for a free surface 
boundary. The steady form of equation (33) used to solve for the equilibrium surface, 
TI(X, t), is 

dr] B0 dbz 
g-ä- = -a- (34) ox up0 ox 

Integrating the z-component of the linearized induction equation 

d   n+H n+H dw 
- /       bzdz = B0 /       —dz (35) 
Ot Jo Jo OZ 

Because bx ~ 0 in the layer, V.6 = 0 reduces to -^ = 0 and, therefore, bz can be 
removed from the left-hand integral giving the result 

where the the boundary condition in equation (31) has been used. Integrating in time 
gives the relationship between the induced field and the surface displacement: 

bz _ r](x,t)-r)(x,0) 

T0 -        H (37) 
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This result is the magnetic analogue to shallow water potential vorticity conservation. 
Substituting equation (37) into equation (34): 

a, = _BI a_ /v_-m) (38) 
dx        p0fx dx \     H     J 

Using c = \/gH, equation(38) may be rewritten as 

Drj      (    VI    \dV(0) 

dx      \ VI + c2 J    dx 

and integrating in x leads to 

(39) 

VI 
VI + c2 »7(0) (40) 

The linear theory preserves the shape of the initial surface displacement with the 
amplitude modulated by the factor V\j (V| + c2). For Alfven velocities approaching 
infinity, the surface displacement is exactly preserved. For vanishing Alfven velocities, 

r\ must go to zero. 
No analogue to the Rossby radius exists in the linear magnetic pressure problem. 

This shape preservation is not so unexpected when one considers how different the 
magnetic deformation radius is compared to the rotational case. Even though a 
precise magnetic analogue exists for shallow water potential vorticity conservation, 
the force balance in equation (34) is very different from the rotational case. The 
magnetic and gravitational forces balance each other by having gradients in the same 
direction. This does not occur in the geostrophic force balance and it is this difference 
that leads to the shape preservation. 

3 Magnetic Rossby Waves 

The dispersion relation for motions in a shallow conducting fluid layer with a vertical 
magnetic field and a slanting bottom boundary and the relation for a vertical magnetic 
field that varied along a /3-plane were studied. No analogue to Rossby waves were 
found to exist because perturbations to the magnetic field do not feedback into the 
velocity field as occurs with vorticity. Though magnetic fields alone will not support 
planetary waves, they will affect planetary wave propagation in a conducting rotating 
fluid (Malkus, 1967; Bergman, 1993). 

4 Magnetic Buoyancy Effects in Convection 

Horizontal magnetic fields with vertical gradients may stabilize or destabilize a fluid 
layer by way of magnetic buoyancy. The Lorentz force can be broken up into two 
terms: a magnetic pressure term, ^j|B|2, and a term that resists any curvature of 

the field lines, -B ■ VB.   The magnetic pressure may be placed together with the 
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thermodynamic pressure to form a total pressure term. In the magneto-Boussinesq 
approximation (Spiegel and Weiss, 1982) variations in the total pressure are shown 
to be small. When this criterion is fulfilled, the positive buoyancy of fluid parcels is 
caused by positive temperature or magnetic field perturbations. Therefore, a horizon- 
tal field that decreases (increases) with height can destabilize (stabilize) a fluid layer. 
Instabilities that do not bend the field lines are appropriately called interchange in- 
stabilities while instabilities that do involve bending the field lines are called undular 
instabilities. Undular instabilities are usually more complex than the interchange 
instabilities due to the addition of the curvature force. 

4.1    Magneto-Boussinesq Equations 

The governing equations are 

p{^. + u' ■ Vu') = -Vp' - pgk + PuW2u' + -(V x B') x B' 

dB' 

dt 
2r»/ + u' • VB' - B' • Vu' - B'(V • u') + 7V2B 

JIT' 
pCv^r + p(v-u') = K'v2r 

V ■ u' = 0 V • B' = 0 

(41) 

(42) 

(43) 

(44) 

where all the primed variables are defined in section 2.1 except the magnetic field 
which is defined as B' = B(z) + b. v is the viscosity, rj is the magnetic diffusivity, 
Cv is the specific heat at constant volume, and K' is the thermal conductivity. The 
dissipation terms have been thrown out of the entropy equation because they will be 
small in the Boussinesq limit of d/Hi < 1 and u/c < 1 where d is the layer depth, 
Hi = —^r is the scale height of the ith state variable of the system, u is the velocity 
and c is the sound speed in the fluid(Spiegel and Veronis,1960; Veronis, 1961). 

The linearized magneto-Boussinesq approximation yields 

O -1 1 

^ = vn + {gad + gKPm)k + vV2u + B • VB 
at        p0 ppo 

db 

dt 
= —w 

'dB(z)     B(z) 

dz H 

d9_       1   dpm _ _ 

dt     p0Cp dt 

y + B • Vu + ??V2b 
p . 

dT(z) 

dz 
+ a p. 

+ KV
2
9 

V-u = 0,        V-b = 0 

(45) 

(46) 

(47) 

(48) 

where II is the total pressure perturbation and pm is the magnetic pressure pertur- 
bation such that II = p + pm. The thermal expansion coefficient is a, K is the 
compressibility and Cp is the specific heat at constant pressure. 
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The magnetic buoyancy term in equation (45) results from setting the variation 
in total pressure to zero: 

/       |B|2\ 

This expression can be expanded to 

dPx    ,  dp B0  6B 
op        oT [i 

If the fluid is treated as an ideal gas then 

*P = _Q 6T . K *°J* 
Po V 

The magnetic pressure term in equation (47) comes from a similar expansion of p( V.u) 

in equation (43). 
When the diffusivities K and r) are different in value one would expect that double 

convection might exist within this system. The only difference between interchange 
mode double convection and thermohaline convection results from the magnetic pres- 
sure term in the entropy equation. Spiegel and Weiss (1982) have given a non-trivial 
transformation whereby these interchange modes can be cast into a form equivalent to 
the equations governing thermohaline circulation (Hughes, 1985; Hughes and Proctor, 

1988). 
In the absence of diffusion the interchange instability occurs for (B(z)/p(z)) de- 

creasing with height while the undular instability can occur when B(z) decreases 
with height. This discrepancy between the stability criteria can be explained by the 
differences in the energy release mechanisms (Hughes and Proctor, 1988). The in- 
terchange instability generates density fluctuations that must do work against the 
thermodynamic and the magnetic pressure while the undular instability can gener- 
ate fluctuations by motions along the field lines that do not require doing any work 
against the magnetic pressure. For very short wavenumber instabilities the curvature 
forces become negligible and, therefore, the undular instability may go unstable even 
when the interchange processes are stable. 

D.W. Hughes (1987) uses normal form analysis (Coullet and Spiegel, 1983) to 
analyze interchange instabilities in the finite amplitude regime. Finite amplitude 
analysis of undular instabilities began this summer but no results have yet been 

obtained. 

5    Future Experiments 

This work has lead to many ideas for magnetoconvection experiments in liquid Gal- 
lium. Besides a re-evaluation of Lehnert and Little's experiment, convection will be 
studied using stacked rare-earth "hockey puck" magnets (radius ~ 4 cm, height ~ 1.5 
cm) to produce a strong magnetic flux tube (3000 gauss). By putting two separate 
stacks of magnets with opposed polarities below the fluid layer it may also be possi- 
ble to simulate a magnetic bipolar pair. We have not yet devised a way to create a 
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strong vertical gradient in a horizontal magnetic field in the laboratory and, therefore, 
cannot experimentally study the rich spectrum of magnetic buoyancy phenomena. 
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A Semigeostrophic Model in a Closed Basin: 
Linear Waves and Normal Modes 

Helene Banks 

Dept. of Oceanography, University of Southampton 

1 Introduction 

The dynamics in closed basins are described exactly by the shallow water equations. How- 
ever, in many situations we are interested only in low frequency dynamics (ie, motions on a 
longer timescale than the inertial scale). Balanced models are approximations to the shal- 
low water equations, which filter the high frequency motions, and allow us to restrict our 
attention to the low frequency dynamics. 

The most popular of the balanced models is the quasi-geostrophic approximation. The 
dynamics of the quasi-geostrophic approximation includes Rossby waves but not Kelvin 
waves, which are ageostrophic boundary trapped waves and also exist at low frequencies. 
Here we develop a formulation of the semigeostrophic approximation for the purposes of 
examining the interaction between Kelvin waves and Rossby waves. With this objective, we 
study two classic problems; Rossby wave reflection from boundaries and the basin modes of 
the model. 

2 Kelvin wave in shallow-water equations 

The linear shallow water equations (SWE) are: 

du dh 
m-fv = -9te (1) 

! + '—*£ « 
f + {^)+MH)} = 0 (3) 

where H is the total depth of the fluid. The exact boundary condition is given by: 

2£.& = 0 (4) 
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Now we will look at the Kelvin wave propogating along a zonal boundary. The boundary 
condition is v = 0. Substituting in equations (1T3) we see that the Kelvin wave is geostrophic 
in the cross-stream direction. Choosing a solution which decays as y increases, gives 

h(x,y,t)=eJ$F(x-ct) (5) 

where Rd — (gH)*/f is the Rossby radius of deformation. The Kelvin wave travels cycloni- 
cally around the basin. 

3    Quasi-geostrophic approximation 

Formally, the quasi-geostrophic approximation is a small Rossby number expansion (Ped- 
losky(1987)), where the Rossby number is given by RQ = U/f0L, where U is the characteristic 
velocity, f0 is the Coriolis parameter (to leading order) and L is the characteristic length 
scale. 

The diagnostic equation for the streamfunction ip is given by: 

£{VV--^} + J(^/) = 0 (6) 

where ug = — -£ and vg = -^. The boundary condition, that the normal geostrophic velocity 
is equal to zero on a boundary, implies 

</> = 7(*) (7) 

where 7(t) is any function of time. 
In a closed domain, integral constraints must be imposed which close the balances of 

mass, energy and circulation. 

|/c«A-0. (8) 

Applied to lowest order, this implies that 

|/oV*Ab = 0. (9) 

This constraint requires that the normal velocity vanishes at the boundary at both zero order 
and first order in Rossby number. 

In particular, imposing equation (7) by requiring tp = 0 on C implies that no free surface 
elevation is allowed on the boundary. Imposing constraints (7) and (8) allows for boundary 
adjustment, but since there are no variations along the boundary Kelvin waves are not 
permitted. 

For a complete description of the low-frequency dynamics in a closed basin, it is necessary 
to include Kelvin waves. A model which allows us to include the Kelvin wave dynamics is 
the semigeostrophic approximation, which we will now examine. 

2.T-- 



4    Semigeostrophic approximation 

In obtaining the quasi-geostrophic approximation we assumed that R0 = U/f0L < 1.  To 
obtain the semigeostrophic approximation we define a Rossby number: 

Idul 
p   _   ' dt I 
tin — l/«l 

and assume that R0 < 1 (Hoskins(1975)). For wave motions, ie u(t) « cos(u>t) this implies 
that co/f < 1. 

Given R0 defined in this manner, we approximate the acceleration in SWE by the 
geostrophic velocity, ug = jkx Vh, while retaining the true velocity elsewhere in the equa- 
tions (the geostrophic momentum approximation). 

g d2h dh .   . 
fv = -9-5Z (10) fdydt     J adx 

fä+»-A (11) 

These equations may also be obtained by linearizing Salmon's (1985) generalised semi- 
geostrophic equations. From these equations we see that the exact boundary condition, 
equation (4) in semigeostrophy is:. 

An* = -fhs (13) 

where n and s are defined as the normal and the tangential direction, respectively and (s, n) 
is a right-handed system. 

Now we can derive a diagnostic equation for h. Taking ^ (11) subtracting ^ (10) and 
substituting in (12) gives: 

§-t{h-V.(9-ßwh)} + J(h,if) = 0. (14) 

It should be noted that / is variable throughout equation (14) and in the boundary 
condition (13). 

In a closed basin, this set of equations conserves energy: 

_        H f,gVh^2 ( gh?_ 
diJ J ' 

and also mass 

I//!«f^f><"=° ™ 
lf/KdA-0. (16) 

If, after expansion of the Jacobian, / is approximated by f0 in (13) and (14), then neither 
mass nor energy are conserved. If / is kept variable in the boundary condition then energy is 



conserved but not mass. In both of these cases the diagnostic equation reduces to equation 
(6). However, if Rd2 is held constant then energy and mass conservation is retained. This 
formulation of the model will be discussed in section 6. 

The linearized form of potential vorticity is conserved: 

where Q = ^ - %■. This is another way of expressing equation (14). 

5    Kelvin wave dynamics 

Here we will examine the Kelvin wave in the semigeostrophic model; firstly, for the f-plane 
case (/ = constant) and secondly, for the case of variable f. 

Case 1 : f-plane (see also Allen et al(1990)) 
Look for solutions of equation (14), proportional to e-kx+Hiy-u>t) wit^ t^e boundary con- 

dition: hxt = —fhy (ie, a meridional boundary). 
The boundary condition gives I = y. Equation (14) => 

flRd u =  
(1 + l2Rd

2)* 

The phase speed c = f = fRd(l ~ i^2-^2 + —)• ^ we compare this with the result in 
shallow water, c = fRd, we see that in the semigeostrophic model the Kelvin wave phase 
speed is slower than in SWE. The error is small for IRd < 1, which implies that the along- 
stream wavelength is larger than that in the cross-stream direction (the Rossby radius of 
deformation). It is this anisotropic wave which is precisely the low-frequency Kelvin wave 
which we wish to include in the dynamics (since IRd < 1=> OJ < f). 

Case 2 : f slowly-varying 
Look for solutions to equation (14) s.t. 

h oc h(x ,y)e-^ 

"xx   *   *^yy 2% 
■f i—hx - 

UJ 

and 

-iu>hx = -fhy 

4t~h=o (is) 

Now if we non-dimensionalise: 
u = ef;f = ßR;x = Lxx';y = Lyy' . 
Then since the Kelvin wave has anisotropic scales and the coriolis parameter varies slowly 

over one wavelength 



LX < Ly  < R 
and we let eLy = Lx; e2R = Lx, then equation (21) (dropping the primes) becomes 

1  I <? Z 2/fc I   ,  -ß    l    I       f2 I - n J^h^ + j^h^-j^hy + z-^-h^—h-O. 

Now if we look for solutions to this equation, which satisfy the boundary condition, of 
the form: 

h = G(x,X,y,Y) 

where X = ex, Y = ey, balancing terms at each order we find: 

h(x, v, t) = fiexpi-^x - iLX - i^V - fcrf). 

So we see that the cross-stream scale is that of the Rossby radius of deformation, Rd and 
the equatorward propogation speed is given by c = y/{gH). The amplitude of the Kelvin 
wave is proportional to /i which is a consequence of conservation of energy (Gill (1982)). 
The final term in the expression for h, represents a westward phase propogation of the Kelvin 
wave. By construction this Kelvin wave does not leak energy to the interior. 

Now we have seen that the Kelvin wave appears in a natural form in the semigeostrophic 
dynamics, let us explore how the Rossby wave dynamics are influenced by the boundary 
condition. 

6    Rossby wave reflection 

In order to make the problem tractable, without appealing to WKB theory but retaining 
the same qualitative results, we consider a modified version of the semigeostrophic model; a 
basin where Rd

2 = gH/f2 = constant. Equation (14) becomes 

?-{h - Rd
2V2h} + J(h, RSf) = 0 (19) 

at 
and the boundary condition is unchanged (equation (13) ). 

It is important to note that the effect of making this assumption is to reverse the sign 
of 'beta'. We can think of this as a topographic effect. It does imply however that Rossby 
waves will now have an eastward phase propogation rather than westward. 

Let us first consider a plane wave incident on a zonal boundary. 
Incident wave : $leAiexp{i(kx + ky — u>t)}. 
Reflected wave : %leARexp{i{kx + lry - cot)}. 

and lT ■=■ —l{. Applying the boundary condition: 

dt y 

we find that 

-(So- 



AR = Aie* 

where <f> is given by 

*-taa",(M?^t?Jk)»)- 
So although the Rossby wave undergoes pure reflection from a zonal boundary (as the 

quasi-geostrophic result), it is subject to a phase-shift in amplitude. 
Let us now consider a plane wave incident on a meridional boundary (in this case an 

eastern boundary). 
Incident wave : $leAiexp{i(kiX + ly — cot)}. 
Reflected wave : ^ReAjiexp{i(krx + ly - ut)}. 

and kT = —ki + ß/ui. Applying the boundary condition: 

d_ 
dt 
-^hx — fhy 

we find that there is a change in amplitude of the reflected wave: 

U    I2 - \A   |2r      [M)2 + (/02]      1 

where k = ki, but unlike the quasi-geostrophic case this does not imply a change in energy. 

7    Normal modes 

Here we calculate the semigeostrophic normal modes. It is instructive to do this since 
any disturbance in the basin can be described as a linear superposition of the normal 
modes. The normal modes have been calculated for the quasi-geostrophic equations (Larichev 
(1974) , Flierl(1977)). How are the normal modes different from those calculated for quasi- 
geostrophy? Do we observe any coupling between the Kelvin wave and the Rossby wave? 

Using the constant Rd
2 model we proceed in the manner of Larichev and Flierl and 

consider the normal modes in a circular basin of radius a. 
• 3x 

If we substitute h(x,y,t) = <f)(x,y)el2»e~lult in equation (14), then we find 

^+€-i?^=° (20) 

and the boundary condition 

7^eH = ;^H (2i) 
on r = a. 

The solution to equation (20) is given by 
<ß(r, 0) = ESUoK J„(*r) + bnYn(kr)}ein9 

Z 



where 
k2 - £L - _1_ 
Then we choose bn = OVra, since we want a solution which is bounded at r = 0. 
Then the exact solution to the interior equation, is 

oo 

n=—oo 

Substituting into the boundary condition, making the beta-plane approximation (ie, / = 
f0 + ßrsinO) and taking the Fourier integral (ie, /0

2T
 eim0), the boundary condition becomes 

^-^P[äm+iJm+i(ka) +äm_1Jm_i(fea)] + i—ämJ'm(ka) 
jo 4w Jo 

= !p-[äm+iJm+1{ka) - äm_!Jm-i(ka)] + iä^mj^ka) 
Au) 

-i^—r[äm+2Jm+2(ka) - 2ämJm{ka) + öm_2Jm_2(M] 
Süjfo 

+-Zj-[äm+iJm+i(ka) - äm-iJm-i(ka)]. (22) 

where än = rnan, where rn = 2 if ra = 0 and rn = 1 otherwise. 

7.1    Rossby modes 
Let us first consider the case uj/fQ -C 1. Then at leading order, (22) becomes 

where ipm is defined 

^ = ^(Wi+^-i)-2mftm (23) 

where bm = z_mämJm(A;a) 
and L is the operator defined s.t. 

This has the solution 

where 

xfim^Atf + BsZ 

S^ = -%±^-^-1)- 
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Here we consider the special case, A = B = 0.   The solution to equation (21), with 
ißm = 0, is 

fc.-CA.(fi) + W.(£i). 
For a bounded solution at ßa/2u = 0 we set D = 0. We consider the case, Jm{ka) ^ OVm. 

Then 

Now we impose conservation of circulation, since at leading order the circulation balance is 
not closed, 

110 <f{i^-cos9<p + ^e'&dS = - /(/„ + ßasinO^Ue^dS. 
J     2üJ or a J ov 

Integrating the right-hand side by parts, gives 

i{^-acos9^> + iu^y&^dS = 0. 
J    2 or 

After some manipulation and using 

T eizcosBcosn0d9 = J„(zW^, 
Jo 

we arrive at an eigenvalue relationship for u> 

t 7-^JmÖJ'-Ö + 2ukTlBJ^ka)} = °- (24) 

The result obtained by Larichev and Flierl for the quasi-geostrophic modes, consists of 
a sum over the second term in the equation only, since <ß is a constant on the boundary in 
quasi-geostrophy. We see that the boundary condition in the semigeostrophic model may 
alter the eigenvalue of the mode but will not change the structure of this mode at leading 
order. 

7.2    Kelvin mode 

Now let us consider the asymptotic limit which corresponds to the Kelvin wave. Choose 
m » 1, k » 1 and k2 < 1, which implies that the Rossby radius Rd is small, k is imaginary 
and ßa/uj < 1. 

The boundary condition to leading order is: 

where k = ik. 

J'm(ika) = imjm(ika). 
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Then using 

Jm(z)=ei^In(ze-in 

we find 

u _ m Im(ka) 

fo     kal'm[ka) 

This is simply a Kelvin wave of wavenumber m. The mode is virtually stationary, since 
ßa/oj —y 0 (the westward propogation is small). 

8    Discussion 

The semigeostrophic model in a closed basin includes the dynamics of Kelvin waves in their 
natural form. This should be contrasted with the quasi-geostrophic approximation which 
merely parameterises the effect of Kelvin waves. The semigeostrophic model in a closed 
basin conserves energy and mass. 

We examined the reflection of Rossby waves from boundaries and found that the boundary 
condition changed the nature of the reflection. The normal modes were calculated and 
contrasted with the quasi-geostrophic approximation. The modified (constant R%) model 
shows that the boundary condition changes the eigenvalue of the Rossby modes as calculated 
in quasi-geostrophy. There is a stationary mode which represents the Kelvin mode. We did 
not find a mode which exhibited coupling between the Rossby wave and the Kelvin wave. In 
retrospect we may have anticipated this result. As shown by Grimshaw and Allen (1988), 
the critical frequency, above which waves remain trapped and below which waves propogate 
into the interior, is given by 

Obviously in the constant Rd model the critical frequency is fixed and we will only observe 
either Kelvin waves or Rossby waves at a given frequency. 

The semigeostrophic model provides a simple means of studying the interaction of the 
Kelvin wave and Rossby wave. It is only by understanding the process that we can interprete 
oceanographic data and numerical simulations. 
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A Single Fourier-mode Model of Frontogenesis 

Paul J. Dellar 

Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK 

We investigate a simple model of atmospheric front formation based on a baroclinic in- 
stability of a rotating fluid layer with a horizontal temperature gradient. The growing 
instability produces steep horizontal gradients in the direction perpendicular to the orig- 
inal temperature gradient. We expect that such steep gradients will induce secondary 
baroclinic instabilities which tend to mix fluid across the front. Assuming the mixing 
can be represented by weak horizontal diffusion, we shall show that this is sufficient to 
halt the growth of the primary instability. The end result is a steady front characterised 
by a horizontal shear with vorticity comparable to the planetary vorticity. In the purely 
inviscid, diffusionless theory the primary instability grows indefinitely, with the vorticity 
becoming infinite within finite time. The work presented is based on a paper by Hoskins 
& Bretherton (1972) who studied the purely inviscid problem. 

We consider a rotating layer of Boussinesq fluid confined between rigid horizontal bound- 
aries at z = 0, H. We shall assume that the Coriolis parameter / is uniform, ignoring the 
Earth's sphericity entirely, and adopt Cartesian coordinates with the y-axis pointing North, 
and the x-axis. pointing East. We assume the fluid to be initially stably stratified with a 
uniform temperature gradient in the vertical, and a linear variation of temperature in the 
y-direction. This is a simple model of a piece of northern hemisphere atmosphere, which is 
warmer in the south and cooler in the north. The rigid lid approximates the tropopause, the 
boundary between the lower troposphere and the overlying stratosphere. Being strongly 
stably stratified, the stratosphere resists vertical displacements of the tropopause. 

z=H 

z=0 
West East 

*-x 

If we perturb this basic state by introducing a small horizontal shear in the y-velocity, the 
warm southerly wind (v > 0) and cold northerly wind (v < 0) will produce a horizontal 
temperature gradient in the eastward (x) direction. The eastward temperature gradient, 

_ i Z<o- 



combined with the eastward geostrophic shear, produces a larger shear in the y-velocity 
in phase with the original perturbation. We shall refer to y as the along-front coordinate, 
and x as the cross-front coordinate. 

Mathematical formulation 

The governing equations for the problem described above, in the absence of viscosity and 
diffusion are 

0 = -(^)s2y + $',        cf> = -s2y(z - \H) + <j>' (la, b) 

™     0,        W = 0,       « = **%- (2c,ä,e) 
Dt g az 

Here u, v, w are the velocity components, 9 and 4> denote the (potential) temperature 
and geopotential, with the horizontal temperature gradient included explicitly. / is the 
Coriolis parameter (assumed constant) and s2 is the imposed temperature gradient. We 
have used a pressure-based coordinate z instead of the physical height h, where z satisfied 
ddz = Qodh. For an adiabatic atmosphere h and z are identical. Equation (2e) is the 
hydrostatic relation || = — pg written in terms of z and the geopotential 4> = gh. 

Following Hoskins k. Bretherton we make two further simplifying assumptions. 

(i) The along-front (y) lengthscale is much larger than the cross-front (x) lengthscale, so 
we may make a boundary-layer approximation and neglect the variation in y of 6', <f>' and 
all other dependent variables except for the variation of 9 and 0 as stated explicity in (1). 

(ii) Geostrophic balance is maintained in the cross-front (x) direction. Thus we may 
discard the cross-front acceleration term Du/Dt in (2a). This approximation, a form of the 
'semigeostrophic approximation', is supported by three-dimensional numerical experiments 
(Williams, 1967) and the scaling arguments presented in Hoskins & Bretherton. 

Having made these approximations, the equations (2) can be rewritten as conservation 
laws for the absolute momentum M = fx + v, temperature deviation 9', and potential 
vorticity q. Treating the v-^- part of the advection operator as a source term, we' may 
write the conservation equations in terms of a two-dimensional advection operator V as 

VM = s2{z-\H),        V6' = s2v,        Vq = 0 (3a, 6, c) 

where 
r\ r\ r\ 

V= — + u— + w — , M = fx + v,        q= "Q
vr'Y (4a, 6, c) at       ox       az 

), ve' = s2v, Vq = 0 

M = = fx + v, q~: 
_ d{M, 9') 
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These equations may be drastically simplified by introducing a 'geostrophic coordinate' X, 

,r VX ld4> /r    ,s X = x + v/f,        — =ug = -j— (5a, 6) 

Although M and X differ only by /, the Coriolis parameter, it is helpful to consider M 
always as a dependent variable, while X will be used as a new independent variable. (5b) 
shows that a fluid parcel with constant X moves with the geostrophic velocity ug. 

We now adopt X together with Z — z and T = t as new independent variables. The 
Jacobian of the coordinate transformation (x, z, t) —¥ (X, Z, T) is 

dX dv     ,,      1 dv ._i '   .„. 
J=to=1 + to = (1-7äf) ■ (6) 

J = C// is also the vertical component of the dimensionless absolute vorticity (where 
C = f+dv/dx). Thus the transformation remains invertible provided the absolute vorticity 
remains finite. We shall see later that J also denotes the tilt of the initially horizontal 
isotherms in the xz plane. 

We may retain the form of the geostrophic and hydrostatic balances (2a, e) in the new 
coordinates by defining a modified geopotential $', 

*' = <l>' + \v\        fv = <f>'x = &x,        *> = (-W, = (-)*'*• (7a, M 
*• 9 9 

The advection operator in (X, Z, T) coordinates becomes 

^±+^Z-H/2)^ + W±, (8) 

which is now linear on horizontal boundaries (where w = 0). The conservation equation 
(3a) is now satisfied identically, and (3b, c) become 

l£r + 7lz-iB)£c + w-h)V"7Vx (9) 

and 

g 1 - / 2$'xx 9 

We have made use of the fact that the potential vorticity retains its original value q = 
N2f9o/g from the initial state of uniform stratification and no motion in the along-front 
direction. N2 is the Brunt Väisälä or buoyancy frequency of the initial stratification. 

We may rearrange (9) into the more familiar form 

&XX + Jp&ZZ = f- (11) 

- 13^- 



This elliptic equation (11) has a unique solution for suitable boundary conditions. In 
particular, specifying 6' = (6o/g)$'z on the upper and lower boundaries is sufficient to 
determine $' uniquely in the interior. This is just an example of a far more general re- 
sult, namely that the temperature and velocity distribution everywhere in a fluid can be 
determined from the potential vorticity distribution in the interior, and the temperature 
distribution on the boundaries by a process called potential vorticity inversion. In con- 
clusion we need only apply (9) on the upper and lower boundaries to determine the time 
evolution of the whole fluid. In addition, the theory of potential vorticity inversion tells 
us that any singularities must form initially on the boundaries. 

The effects of diffusion 

At this point we depart from the formulation presented in Hoskins & Bretherton in order 
to incorporate diffusion. We replace the temperature equation on the boundaries by 

V6' = s2v + K9'XX        (Z = 0, H) (12) 

and insist that the potential vorticity remains conserved. In specifying diffusion only on 
the boundaries in (12) we are not saying that diffusion does not take place in the interior, 
but merely that the form of the diffusion in the interior need not be specified explicitly. 
We have already established (in the previous discussion about potential vorticity inversion) 
that the time evolution of the whole fluid can be determined solely from the boundaries, 
so it is sufficient to specify the effect of diffusion solely on the boundaries. Furthermore we 
have already assumed that the x (cross-front) lengthscale is the smallest, so it is consistent 
to include only 6'xx in (12). In geostrophic coordinates (12) becomes 

where we have used the condition w = 0on the boundaries to remove the nonlinear wdz 
term from the advection operator. In Hoskins & Bretherton's formulation, where re = 0, 
(13) is a purely linear equation whose exact solutions are the Eady waves of inviscid theory. 
Without diffusion the Eady waves can grow indefinitely in geostrophic coordinates, but 
the coordinate transformation back to physical space x = X — f~2$'xx will become 
multi-valued after a finite time. As the horizontal lengthscales remain 0(1) in geostrophic 
coordinates, the diffusion term becomes significant only when the Jacobian J becomes 
large, corresponding to a near singularity in the reverse coordinate transformation. 

Dimensionless equations 
By rescaling the coordinates X, Z, T and $' we may eliminate the parameters /, TV, H, s 
from (6),(11) and (13) to obtain a generic system of three equations. 

$'xx +*'zz = l (14°) 

(dt + Zdx)&2 = *'x + e(J2fe + ^J^'xz^'xxx)       (Z = ±1) (ub) 

J=(l-4i^)-1 = (4$il)-1 (14c) 

7-27     1      X-2fX     f-*2T     j-' ^ c       4fK (15) Z--Z-1,    X-m*,    T~NT>    $-(iV^'    €-8*NIP {    } 
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The elliptic equation (14a) holds in the interior of the fluid at each instant. The time 
evolution is determined by (14&) which holds only on the horizontal boundaries Z = 
±1. The symmetric upper and lower boundary conditions admit solutions to (14a, b, c) 
which are invariant under coordinate inversion (Z->—Z,X-t—X). We consider periodic 
solutions of (14a) satisfying this symmetry, 

1 N 

$'= -Z2 + V an{f) cosh(n/3Z) cos(nßX) + bn(f) smh{nßZ) sin(nßX)        (16) 
8 ' 

where we choose ß to be the wavenumber of the fastest growing Eady wave in the inviscid 
theory (e = 0) (see next section). We emphasise that (16) describes an exact solution of 
the inviscid equations for any N. 

A single Fourier mode model 

As the simplest possible model we consider a solution in the form (16) for N = 1. We obtain 
two coupled ordinary differential equations for a(f) and b(T) by substituting into (14o, c) 
and projecting the nonlinear right hand side of (146) onto the two Fourier components. 
We include two terms because the choice of symmetry in (16), and the differing vertical 
structure of the two components, determine a preferred phase for the Eady wave. The 
projection integrals can be performed analytically, yielding the coupled equations 

^ = (l-/?coth^-(i_
€g)3/2a,        ^ = (/9tanh^-l)a-(i_^2

2)3/26,     (17) 

where R = 4ß2^a2cosh2ß + b2sinh2ß, so that 44%* = Rcos(ß(X + X0).   The linear 
eigensolutions to (17) when e = 0 are (ao, bo)eat where 

ao = Tyi-%Lhlbo>        ^ = ±^coth/3-l)(l-^tanh/5). (18) 

In what follows we choose ß = 0.8031 to give the maximum growth rate a = 0.3098. 
The results of integrating (17) numerically are shown in the figure overleaf. Solutions for 
arbitrary initial conditions are rapidly attracted to the growing linear eigensolution, whose 
ratio a/b is preserved in the nonlinear regime. Thus we may consider the single equation 

lh'Ä-^>{dhi*. (19) 

which can be tackled by matched asymptotics as described in the appendix. The figure 
below shows plots of b{T) for various diffusivities e. For the moment, we need only note 
the final steady solution, 

Ä2 = 1 _ (f£)2/3. (20) 
a 
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Plotting the final steady states in physical space, using the transformation x = X — 
4<&jf shows a respectable front forming even in this simple model (see figures below). 
The limiting shape of the front as the diffusivity becomes small is constrained by the 
assumed sinusoidal form of the solution in geostrophic coordinates. This limits the range 
of geostrophic space in which the Jacobian can be large. We expect that including more 
Fourier modes would produce yet steeper fronts. 
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Models with more modes 

For solutions comprising more Fourier modes the projection integrals have to be computed 
numerically. The diffusion terms become sharply peaked in the region of geostrophic 
coordinates corresponding to the front. We tried using an adaptive integration routine 
to calculate the integrals at each timestep but it proved prohibitively slow for more than 
four modes. A standard pseudo-spectral method also proved useless, because the nonlinear 
term involves division and so formally requires infinite padding to remove aliasing errors. 

~!^l- 



Instead, we adopted what might be described as a 'backwards pseudo-spectral' algorithm. 
The important difference is that the nonlinear terms are calculated directly on a grid, 
and the solution is timestepped on the same grid. Fast Fourier transforms are only used 
to compute the linear terms, by projecting the gridded data on the lower boundary onto 
the general Fourier series solution (18) and solving for an and bn. The difference is that 
the total solution remains reasonably well behaved, so in practice it can be fast Fourier 
transformed more easily than the diffusion terms alone. 
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As expected, the front becomes steeper as more modes are included. Below we show the 
growth of a 4 mode front in physical space, plotting the shear on the lower boundary as a 
function of both x and time. Notice the regions of strong shear (near vertical gradients) 
which develop. 

Growth of along-front shear for a 4 mode solution 

v(x,z=0) 

More pictures, including streamfunctions of typical solutions, are presented in Hoskins & 
Bretherton. 
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The spectrum of a front 

When, the fronts seen in the above solutions becomes steep, a substantial fraction of 
geostrophic space is compressed into a small region of physical space. To study the growth 
of small horizontal lengthscales we consider the evolution of the Fourier series v(n) of the 
along-front shear v{x, z — 0). 
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We find v(n) ~ n-4/3 in an 'inertial range' which extends as the front steepens, being 
limited eventually by diffusion. For the simple solutions comprising single Fourier modes in 
geostrophic space we may calculate the spectrum analytically. In dimensionless variables, 

v(n) =" I* v(x) einß* dx = " [ " §'x e
inß^~4^ (1 - 4$^) ^ 

n Jo K Jo 

mr 
®xx <zmßF{Jt) dX        where x = F(X) = X - 4&x x- (21) 

Following the method of stationary phase, the dominant contributions for large n come 
from the region where F' is smallest. This is precisely where the Jacobian J — (F')~l 

is largest, the front is steepest and the lengthscales are shortest. Expanding around this 
point (XQ in geostrophic space) 

F(X) « (1 - R)(X - X0) + -Rß\X - X0f 

v(n) 
iR 

Anix 

■-XQ 

einß((l-R)Y + ±Rß*Y<) dy ^^ Y = X - X0. (22) 
X0 
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If we may neglect the (1 - R)Y term, because 1 - R is 0(e2/3) when the front is fully 
developed, then the integral can be evaluated as 

v{n) ~ it cos if lr(§)61/3|"_4/3 = 0.2785n~4/3, (23) 

which is the asymptote plotted in the diagram. The diffusive cutoff occurs when n ~ 
(1 - R)-2/3 ~ e-4/3 and the two terms in the exponent become the same order. 

We may also obtain the n~4/3 scaling by a dimensional argument. In terms of the two- 
dimensional advection operator V, conservation of semigeostrophic energy takes the form 

VE=-±s2Hv,    where   E = \{u] + v2) - %z9. '(24) 

where the kinetic energy is calculated from the geostrophic velocities ug = (s2/f){z - \H) 
and vg = v. ug has no short scales so we ignore it in the following analysis. We observe 
that the energy flux into a plane y = cst is the rate of advection of the along-front potential 
energy (temperature) gradient, which is proportional to the along-front velocity v. The 
total energy flux scales as £ = s2NH2 since v = 2NH$'x in dimensional variables. If we 
assume that the Fourier coefficients v(kn) depend only on £ and the wavenumber kn then 
the only possibility is 

v(kn) ~ £^zk^'z. (25) 

The energy spectrum E{k) is conventionally defined so that the average kinetic energy 
I < v2 >= /0°° E{k) dk. The velocities are all independent of the along-front coordinate 
y so the ky dependence of their Fourier transforms is simply 2ir6(ky). Using Parseval's 
theorem, | <v2>= -^ ] \v2\ dkxdkz ~ J^^k-^^kdk if we assume dkxdkz^kdk. 
Thus we obtain a Kolmogorov-type result 

^(ÄO-e.lTxlO-3^2/3*;-5/3. (26) 

The 'universal' constant is much smaller than the usual estimates (between 1 and 1.5). 
This is presumably because the front is confined to a small region in physical space. For 
solutions with N modes it appears that the constant is proportional to VN (see figure 
below) presumably because for moderate N the various regions in which a particular scale 
is present contribute independently. The total spectrum is thus the modulus of a sum of 
random phases, which scales with VN like the variance of the random phases. We would 
expect the constant to tend to a finite limit, hopefully around 1, for large N. 
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Spectra of final steady states for 1, 2 & 4 modes (scaled by NA(1/2)) 
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Some thoughts on interior diffusion 

We have assumed that 

Ve = s2v + G(x, z, t),       VM = s2(z - \H) + H{x, z, t) (27a, 6) 

and imposed G = e9xx, H = 0 on horizontal boundaries. The plots overleaf show G for a 
4-mode solution, before and after it has reached its equilibrium steady state. Notice how 
diffusive effects are concentrated in narrows regions, which shrink as the front steepens. 
The condition for potential vorticity conservation in the presence of diffusion is 

0 = Vq = VJ(M, 9) = J(VM, 0) + J(M, V9) = J{H, 9) + J(M, G) (28) 

where J(f,g) = fjf2!}- If we adopt M,6 as independent variables, following more ad- 
vanced forms of the semigeostrophic formalism, we conclude from (28) that 'diffusion is 
incompressible', in other words 

^+^ = 0 (29) 
/ 89     dM 

However, G is not a function of M alone, since G is localised near the horizontal boundaries. 
Thus diffusion of potential temperature, together with conservation of potential vorticity, 
induces diffusion of momentum. Finally, there exists a 'diffusion streamfunction' x{M, 9) 
such that 

G = XM,        H=-X9. (30) 

The conditions which such a 'streamfunction' must satisfy remain mysterious. The ap- 
parently non-local nature of the diffusion is characteristic of a balanced model such as 
semigeostrophic theory. 
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G(x,z,t=28) for a 4 mode solution G(x,z,t=35) for a 4 mode solution 

Conclusions 

We have established that a simple baroclinic instability can be regularised by the inclu- 
sion of weak horizontal diffusion. In particular, realistic looking steady fronts can be 
constructed from simple low-order models using the semi-geostrophic formalism. We have 
shown that the need to conserve potential vorticity imposes a consistency requirement on 
the diffusion of temperature and momentum, to the extent that only the form of diffusion 
on the boundaries can be specified independently. As an added bonus, these simple models 
exhibit intriguing similarities to the properties of fully three-dimensional turbulent flows. 
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UNSTABLE CONVECTIVE MODES IN A 2-LAYER SYSTEM 

Oleg E. Esenkov 

1     Introduction. 
Convective instability of a layer of fluid with positive density gradient located between 
horizontal boundaries is considered a classical problem. In this work we use nonhy- 
drostatic Boussinesq Navier-Stokes equations with linear friction and cooling instead of 
diffusion and viscosity, which sets the problem apart from more conventional approaches. 
We shall try to answer the question of how addition of a convectively stable layer can 
change dynamics of the unstable region. The problem is important because a situation 
where an unstable layer, bordered on one or both sides by stable layers, occurs is not 
uncommon in many physical systems. Thus, in oceanography, under favorable wind con- 
ditions, Ekman transport brings colder, denser waters above the convectively stable layer 
(Figure 1). In A-class stars convectively unstable ionization zones are bounded by layers 
with stable temperature gradients. 

Two illustrative experiments can be mentioned (Veronis, 1963). In the first, a layer 
of water with temperatures of 0°C and > 4°C at the lower and upper boundaries, respec- 
tively has a constant static state temperature gradient. Thus, the fluid below the 4°C 
level is gravitatiönally unstable, while the fluid above is stable. Convection in the lower 
region penetrates into the fluid above. 

The second is an experiment with a layer of air whose horizontal boundaries are 
maintained at uniform temperatures, which are steadily increased or decreased with 
time. The interior air temperature lags behind the boundary value due to the finite 
conductivity of gas, and two layers — one convectively unstable and one stable — are 
formed. 

The problem described above was studied extensively and stability criteria were de- 
rived for different system configurations and density distributions. Thus, in their early 
analysis Gribov and Gurevich (1957) considered a piecewise-linear density profile with 
semi-infinite statically stable regions above and below the central layer. They showed 
that when density gradients in these stable layers are equal and tend to zero, both the 
minimum Rayleigh number and the horizontal wavenumber (am) of the neutral distur- 
bance corresponding to it tend to zero and that the depth of penetration of the convective 
rolls is inversely proportional to am and therefore increases without bound. 

Another case of a piecewise-linear density profile was studied by Souffrin and Spiegel: 
a finite in vertical system consisting of two layers with subadiabatic temperature gradient 
above a superadiabatic gradient. They derived conditions for instability and showed that 
overstability occurs when conductivity in a layer differs from that in the other one. 

What happens if the density variation is periodic in vertical? This question arises in 
the theory of sedimentation waves in dispersions of small particles. Batchelor and Nitsche 
(1991) studied a sinusoidal density variation with height among other density distribu- 
tions and showed that the fluid is unstable to small disturbances with large horizontal 
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wavelength. 
In all of the aforementioned studies only linear cases are considered. We shall try to 

answer the question of how the nonlinear terms can change behavior of the system in 
this work. 

2    Unstable Convective Modes. 

2.1    Linear Problem: Governing Equations. 

We consider a situation when a layer with positive density gradient lies above a con- 
vectively stable layer (Figure 1). Motions in each layer can be described by Boussinesq 
nonhydrostatic Navier-Stokes equations: 

— _ fv = -px - eu (1) 

— + fu = -py - ev (2) 

— = -p2 + 6-\w (3) 

ux + vy + w2 = 0 (4) 

6t + (u- V)0 + wN2 = -\i&, (5) 

where U,T;,Iü are velocity components in a layer, 6 is the temperature perturbation, p 
is pressure, e and A are horizontal and vertical drag coefficients, respectively, \i is a 
Newtonian cooling coefficient and N is a Brunt-Väisäla frequency. Subscripts 1 and 2 
will always refer to the upper and lower layers, respectively. 

In our model e, A and \i are nonzero in the upper layer, and Nf = — ^ jf = —M2 < 0. 

In the lower layer JVf = N2 > 0, e2 = A2 = ß2 = 0. 
Linearization of (1-5) about the basic state of no flow and with stratification shown 

in Figure 1 leads to: 
ut — fv = —px — eu (6) 

vt + fu = -py - ev (7) 

wt = -pz + 9 - \w (8) 

ux + vy + w2 = 0 (9) 

8t + wN2 = -tM6y (10) 

We are looking for a solution of the form: 

(uiv>w,p,e) = (U)V)W,P,e)exp[st + i(kx + ly)}, (11) 

where U, V, W, P, 0 are all functions of z. After substituting these expressions in (6-10) 
and eliminating U, V> P and 0, we obtain an equation for W in layer i, where i = 1,2: 

W[' = RiWit (12) 
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with 
2" s + e ßs + X)(s + fi)-M 

s2 4- N2 

* = 7TF*'• (14) 

Boundary conditions for a system with two layers will be discussed in section 2.4. 

2.2    One Layer: Linear Theory. 

We consider a one-layer case first, i. e. only the upper layer in Figure 1 is present, which 
is bounded by horizontal planes. Vertical velocity in the layer is governed by (12-13) 
with boundary conditions W{z = 0) = W{z = 1) = 0. 

When s is real, existence of a non-zero solution requires 

(s + A)(s + fi) - M2 < 0, (15) 

so that when the left-hand side of (15) is zero 

si.2 = -(A + fi)/2 ± ((A + fi)2 - iXfi + 4M2)1/2 /2, (16) 

and to have growing modes we must satisfy condition for instability 

M2 > A/x, (17) 

which is essentially the requirement for the 'free-fall' time to be shorter than damping 
time. 

The solution to our problem is: 

W = a sin(az), a = irn (18) 

Substitution of (18) into (12) after use of (13) gives: 

s + e ((s + X)(s + fi) - M' 

H/ii       P + (s + e)2 

what may be written as 

2' 

K2 = -n2ir2, (19) 

where 

a3s
3 + a2s

2 + ois + a0 = 0, (20) 

a3 = l+n2ir2/K2
i (21) 

a2 = e + X + ii + n2Tr2(fi + 2e)/K2, (22) 

ai = e(fi + X) + fj,X-M2+ n27r2(2e/i + f2 + e2)/K2, (23) 

a0 = e(/xA - M2) + n2-K2
ß{f2 + e2)/K2. (24) 
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2.2.1     Direct Instability. 

At the onset of direct instability 5 = 0, hence a0 = 0 from (20) and using (24), we obtain: 

where K2 is a critical wavenumber. Near K2: ais + a0 « 0. Expanding a0 about K2 we 
can get an estimate for the growth rate: 

We can show that ax{K
2

c) > 0 and ^g^ = -n2%2fi(f2 + e2)/K? < 0, so s grows 
with K2 near K2. Our numerical results show that it continues growing for larger values 
of K2 — K\. Thus, the result is the ultraviolet catastrophe: the most unstable mode 
is that with the shortest wavelength. This is unphysical, typically signifies strongly 
unstable situations, and is not suited to nonlinear analysis (section 2.3). To avoid the UV 
catastrophe, we can try different parameterizations of friction and temperature diffusion. 

Replacing // by fiK2 leads to 

K\ = (M2 - nVV(/2 + <?)h)ll>\ (27) 

Zjgp- = «* > 0, (28) 

and 5 oc — (K2 — K2), as desired. Other cases (redefining e or A) still give growth of s 
with K2. Using \i = ßK2 + fi0 gives a similar result, and as we shall see in Section 2.3.1, 
this representation of temperature diffusion and cooling is preferential for the problem 
we are solving. 

Note that the largest K2 occurs when n = 1. When M2 - n2TT2fi(f2 + e2)/e -> 0, 
K2 -» 0. 

Expansion of (21-24) near K2 = 0 leads to an expression: 

(/2 + e2)s ~ -a0K
2, (29) 

so that s ~ 0(K4) for small K2. This sets the stage for a long-wave theory. 

2.2.2     Overstability. 

Now let us investigate the onset of overstability: substituting s = iu> in (20) gives: 

— ia3o;3 — a2u)2 + ia,\U} + ao = 0. (30) 

Taking real and imaginary parts of the expression above, we can show that a^a0 — aia2. 
Use of (21-24) gives a rather complicated expression; however, when e = 0 we can get a 
condition for the onset of overstability: 

M2
C = /xA + n\2f2\/K2[n(l + n\2/K2) + A]. (31) 
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Another interesting case is when two of the roots coalesce. We can rewrite our poly- 
nomial in the form: 

a3(s — si)(s — s2)(s — s3) = a3s
3 + a2s

2 + a-is + a0 (32) 

When 5j = s2, it is easy to show that 

(a0/a3 - Si)/si = aa/a3. (33) 

We can plot solutions of (20-24) with s as a function of M2. Our numerical results 
demonstrate that e is a controlling parameter. For e = 3 we can see (Figure 2) that 
direct instability starts near M2 = 140. A and B are the points where two roots coalesce 
in Figures 2-4: when M2 < M\ we have two complex conjugate roots for n = 1 (their 
real part is shown only) and one real root. Three real roots exist for M2 higher than the 
critical value M\. In the case when e = 0.5 M2 = 70 is a critical value for overstability 
(Figure 3). Our results show that changing e is essentially equivalent to a vertical shift 
of the 5 = 0 axis. For higher values of the parameter (e = 5) the picture changes (Figure 
4) with complex conjugate roots lying below the real one. 

2.3     One Layer: Weakly Nonlinear Theory. 

After examining what happens in the linear case, we can consider the nonlinear problem 
(1-5), which can be reformulated in terms of relative vorticity ( = vx — uy> w and 8: 

(t + e(- fwz = I1 = -[(u- V)u]tf + [(u • V)u]x 

V2wt + ewzz + XV2
hw - V2

h9 + f(z = I2 = X7h. [(u • V)u;]x - V£ • [(u • V)w] 

et + ^e + N2w = I3 = -(u • V)9. 
We define a linear operator C = C(dt) V£, dZ) M

2) such that 

C( = N, 

where 

(34) 

(35) 

(36) 

(37) 

* = 

( c\ 
w 

\ Q ) 

( dt + 
C = 

-fe. 
- < 

■M2 

fdz     dt(d
2

2+Vl) + ed2
z+\Vl    -VI 

0 
n 

V     0 -M2 dt + fi 

and N is a vector of nonlinear terms. Eigenfunctions of the linear problem satisfy CSt! = 
0, where 

f acos(kz) \ 
* =      bs'm(kz)   \ exp[st + i(kxx + kyy)} (38) 

^ cs'm(kz) ) 

For convenience we shall use the algebraic linear operator L(s, K2, k, M2): 

L$ = 0, (39) 

where 

/ o\ / s + e -fk 0 
.fk    -s(k2 + K2) - ek2 - XK2     K2     I (40) $ = b 

V c / 

>   L 

\    o -M2 s + \i 
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2.3.1    Direct instability. 

Assume we have the critical state s = 0, M2 = M2. Then we may write 

M2 = Ml + v2m 

dt = v2dr 

where u is a small parameter, r is a 'slow' time, Cc = £(0, V£, d. 
—Mlfv2 — m) - Cc/u

2, such that 

( dr 

C2 = 
0 0 

0    dr(d2 + V2
h)    0 

V  0 -m dT 

(41) 

(42) 

(43) 

(44) 

M?),C2 = £(dT,Vld2i 

(45) 

In the first order we shall obtain a linear solution of the problem: £c£i = 0, 0(u); in the 
second order we shall find & £c6 = Ni(fr); and £c£$ = N2(6,6) - Afr, 0(v3). We 
shall apply the solvability condition to the last expression to get an amplitude equation. 

O(kv):£eti = 0)(1=A(T)V(x,y,z). 
We shall neglect the nonlinear terms I\ and I2 in (34-35), keeping advection of 8 only. 

It will simplify the derivations considerably, while still retaining the important physics 
of the problem. Then, for the next order: 

0(v2) : 42) = -{u1dx + vxdy + w-LdJßx = -2A:6csin(2Jfcz)|A|2, 

with a, b and c determined in (41-42) when 5 = 0. 

(46) 

6 = 
a2cos(2£z) ^ 
b2 sin(2£z) 
c2 sin(2fcz) j 

where 
/ 

L0 = 

>   6 = L0
1 

-2/Jb    0 

I ° 
0 (47) 

-2fk   -4efc2 

0        -M2 

and the solution 

6 = 
/ o \ 

0 

V-W 
2bkc 

fJ-o 
sin(2ib«)|i4|s 

(48) 

(49) 

is used to calculate nonlinear terms of 0(v3). 

0{vz) : li3) = -^-^ sin(A;z)|A|2Aexp[^] + cc. + Q, 
Mo 

(50) 
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where Q corresponds to the non-secular terms and <f> = kxx + kyy. The equation for £3 

f a3\       I -dTAa        \       I 0 

63   I = 

V c3 

+ 0 
-2cb2k\A\2A/fi0 

(51) dTAb(k2 + K2) 
\   mAb - dTAc   J 

Matrix Lc has a null vector (solution of the linear problem), and we can multiply (51) 
by the adjoint vector & = (a^t^c*): &LC = 0. The result is the amplitude equation: 

with 

dTA + aA + ß\A\2A = 0, 

a = mbJ/G   ,   ß = -2kb2cJ/G, 

(52) 

(53) 

and G = bb\k2 + K2) — aat — cc*. Substitution of values for a, b, c and a*, b\ c* in (53) 
gives: 

mK2        „      2k2K2M2 

a= —    >   P = ptG \lQ\i2G 
(54) 

where G = k2 + K2 + M2K2\\i2 - f2k2/e2. For G > 0 we have /3 > 0. Therefore, we can 
conclude that direct instability occurs through a supercritical bifurcation (Figure 5a). 

2.3.2    Direct Instability: Two Modes. 

We proceed with investigation of properties of the system by considering a bimodal case. 
A linear solution has the form: 

£1 = A(j)tj) ex-p[i(kxx + kyy)] + B(T)tpexp[i(kxx - kyy)]    ,    ip = 

f acos(fcz) 
bsva(kz) 

^ csin(Ä:z) 

with a, b and c determined in (39-40). 0(v2) nonlinear terms are: 

li2) = -bcksm(2kz)(2\A\2+2\B\2+ABexp[i{$++<t>-)}+A'Bexp[i(<t>--cf>+)}+c.c.)i (55) 

with <^+ = kxx + kyy and (f>- = kxx — kyy. Then for £2 we ge*: 

/  0 

6 = 0   | (|,4|2 + |B|2)sin(2Jfcz) 

V "0 

+ 
f V\ cos(2fcz) ^ 

V2 sm(2kz) 
^ 1/3 sin(2A;z) j 

(ABexj>[i(<ß+ + <ß_)] + A*Bexp[i(<f>_ - <f>+)} + c.c),       (56) 
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with i/o = -2cbk/fi0, vx = -4cbk2f/q, u3 = -2bck(e2k2 + e\K2 + f2k2)/(K2q), and 
q = /i€2P + fieXK2 + eN2 + f2k2. Using £2, we calculate: 

43) = -sm(kz) [Äi(|A|2Aexp[^+] + \B\2Bexp[i^)) 

-k(u'3b+ i/06 + ^c)(|A|25exp[^_] + |£|2Aexp[i<£+]) + c.c. + Q, 

where v\ = — 2bckv{. In the third order we obtain two equations for A and B and using 
the solvability condition, we find: 

dTA + aA + ß\A\2A + -y\B\2A = 0 (57) 

dTB + aB + ß\B\2B + -y\A\2B = 0 (58) 

with a = mbci/G, ß = 2k2b2cJ/{noG), 7 = 2k2b2cc\v3b + b/i*> + u2c)/G and G = 
k2 + K2 + M2K2/fi2 — f2k2/e2. After substituting values for a, b and c we find that ß = 
2k2M2K2/(fi0fj,2G) and that ß > \i\ is not satisfied. Therefore, the squares (\A\2 = \B\2) 
are not stable, and the roll pattern is a solution. Figure 5b is a phase portrait of this 
situation. 

Matthews (1988) obtained rolls for a stratification with density represented by a cubic 
polynomial in z when studying solar heating of the surface layers of a lake. 

2.3.3    Overstability. 

We look for the solution of the linear problem of the form: 

acos(kz) ^ 
£1 = A(T) j    bsin(kz)      exp[i(u;£ + kxx + kyy)} + c.c, 

csin(fcz) ) 

and define a linear operator Lw: 
f a N / e + iuj —fk 

Lu     b     = 0   ,   Lu = \    -fk    -ico(k2 + K2) - ek2 - \K2 

\c) \     0 -M2 

For the second order we find 1$ ' = — 2bck sm.{2kz)\A\2 and 

/ON 

(59) 

6 = 0 

V-i/ 
2bck sin(2kz)\A\2(fi - iu>)/(fi2 + u>2) (60) 

r(3) We can calculate now: I\ ' = — 2b2k2csin(kz)\A\2Aexp[i(/)](fi-iu})/(n2 +cu2) + c.c. The 
solvability condition leads to an amplitude equation of the same form as for the one-mode 
case of direct instability but with 

a = -mK\n + iu>)/G(fi2 + üJ2)   ,   ß = 2k2M2K2/G(fM2+cü2), (61) 

and G = k2 + K2 + M2K2/(fi2 + a;2) - /2P/(e2 + a;2). It follows that ß > 0 for G > 0, 
and as in the case of direct instability for a single mode, overstability occurs through a 
supercritical bifurcation. 
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2.4    Two Layers. 

2.4.1 Boundary Conditions. 

Now we consider a situation where the layer of the previous sections lies above a stably- 
stratified layer. The equation for the vertical velocity in layer i is W" = RWi with R\ 
and R2 defined in (13) and (14). We specify the boundary conditions: W\ = 0 at z — h, 
W2 = 0 at z = —H (or at infinity). 

The transition across the interface between the layers must be physically correct. The 
vertical velocity at the interface must be the same in the two regions what gives W\ = W2 

at z = 0. We must also ensure continuity of pressure: pi = p2 at z = 0. In the general 
case, this condition leads to W[{f2 + (s + e)2)/(s + e) = W2'(/

2 + s2)/s at z = 0. Only 
when e = 0, is W continuous at 2 = 0. 

2.4.2 Infinitely Deep Lower Layer. 

First, we examine the situation where e = 0 (no horizontal drag) and the lower layer is 
infinitely deep. We are interested in amplification of internal gravity waves in the lower 
layer (overrefiection). Consider an incident wave (with positive group velocity) with 
amplitude 1, which after reflection at z = 0 has an amplitude A (and negative group 
velocity); s = iut and W2(z) = Aexp[iaz]+exp[-iaz\, where a2 — K2(N2-uj2)/(uj2-f2). 

If we multiply(12) by W*, subtract from it the complex conjugate of (12) multiplied 
by W and integrate from z < 0 to h: /*[(12) • W* - (12)* • W]dz, then, after some algebra 
we get: 

\A\2 - 1 = -CRin, (62) 

where C is a positive constant and Rim is the imaginary part of Äi. Thus, if we can 
show that Rim < 0 for some values of the parameters, overrefiection of gravity waves is 
possible, i. e. \A\2 > 1.   For the case when e = 0 and A and // have different nonzero 
values, we find that 

o;(V - /xM2 + Xu2)K2 

so that a threshold value for overrefiection is 

P 

and for larger M2 reflection coefficient is larger than one. 
However, one can notice from the dispersion relation for internal gravity waves: 

u2 = 
N2 + f2n2ir2/K2 

(65) 

that u->/asn becomes larger. Therefore, the highest vertical overtone goes unstable 
first and to avoid this we need to reconsider this part of the problem in our future work. 

In general it is rather complicated to examine when \A\2 > 1, but the examples above 
prove that overrefiection in our system is possible. Mechanism of amplification of internal 
gravity waves was explained by Souffrin and Spiegel (1967). 
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We suggest that on either side of the interface the mode has a different sense of a 
conserved quantity, potential energy in particular. Thus, the mode induces a change in 
the available potential energy (APE) in the upper layer of the opposite sign to that in 
the lower one, and to conserve APE, the reflected wave in the lower region has to be 

amplified. 
For real s (direct instability) the solution which satisfies the boundary conditions at 

z = h and z — -oo is W\ = asin[a(z — h)} and W2 = 6exp(mz) where m2 = R2 and 
a2 = —Ri, a and b are constants. Matching W and W at z = 0 gives the relation 

m = —acot(ah), (66) 

only when M2 > A/i, i. e. the same condition that we found for instability in the one-layer 
case must be satisfied. 

2.4.3    Lower Layer of Finite Depth. 

When the depth of the lower layer H is finite and e ^ 0 in the upper layer, the solution to 
the problem is Wx = asin[Jb(z - h)}} W2 = isin[/c(z + H)] with k2 = -Äx and K

2
 = -R2. 

Using matching conditions at z = 0, we get an expression: 

ta.n(kh)        s + e _ tan(/c/f)       s .    . 

k      p + (s + e)2 ~        K       s2 + f2 l    j 

Then the marginality condition for direct instability requires tan(Ä^A) = 0, where k0 = 
k(s = 0). After expanding (67) for small 5, we may specify a condition on e to make the 
mode marginal: 

e = 
2k2 tan(/c0ff) 

a4f2*oH 
U2 + *2)> (68) 

where _i = 75T-Ü 1 2e A+M et 
~r^-M^rf™*«2o = -K2N2/f2- 

Perturbing about M2, we can get an expression for the growth rate near the marginal- 
ity point: 

s = 
dkl _|_   /2+e2 

ds 

UM2 - Ml) 
+ Sf2fcotanh(«oi7) 

(69) 

»*S ez2^ —A ^i with ä& = ^ffe) and -gf given above. 
In the case when s = iu>, k = kT + iki and taking the imaginary part of (67) for e = 0 

gives the marginality condition for overstability which is exactly the same as criterion for 
overreflection (64) derived in the previous section. 

Our further analysis of the system with finite-depth lower layer (solution of the eigen- 
value problem) is numerical. As was expected, the controlling parameters are M2 and 
e for the upper layer and M2, A for the lower. By changing them different scenarios of 
instability occuring in the system can be achieved. 

We consider modes corresponding to the upper or lower layer which are extended over 
the entire depth of the system by the use of matching conditions at z = 0. Figures 6a and 
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b show the eigenvalues of oscillatory (real parts) and direct modes associated with the 
upper layer as functions of M2 for e = 0, / = 1, fi = 4, A = 4, N2 = 200, i. e. very stable 
lower layer. Eigenfunctions associated with the upper layer are presented in Figure 7 for 
the same parameters values and M2 = 20. 

Figures 8 and 9 show eigenvalues and eigenfunctions related to the lower layer. Our 
choice of e = 0 makes both W and W continuous at z = 0 (see Figures 7 and 9). 

An interesting case is the mode that is not associated with any particular layer but 
is the mode of the entire system (we call it the hybrid mode). It is shown in Figure 10 
and is generally heavily damped. 

The linear theory for a one-layer case can be applied to two layers: e = A = fj, = 0 
in the lower layer and from (6-10) one can get a solution when 5 = 0: w2 = 0, 82 — 0 
and (2 — const. Thus, in this situation the lower layer is stagnant and does not influence 
dynamics in the upper layer. Hence, the results of section 2.2 are valid in this case. 
However, inclusion of nonlinear terms requires analysis of the full system of equations for 
both layers. 

3     Summary. 

The goal of this work was to study stability of a layer of fluid bordered by horizontal 
planes or by a boundary and a layer with stable density gradient. The former case was 
studied using the nonhydrostatic Boussinesq equations with drag friction and diffusion 
of temperature. Criteria for the onset of direct instability and overstability were derived 
in linear theory. The necessary condition for direct instability is that free-fall time is 
shorter than damping time. 

Analysis of the problem in weakly nonlinear theory when the temperature advection 
term was included showed that supercritical bifurcation leads to direct instability. A 
qualitatively similar result was obtained for overstability. 

When considering a bimodal case, it was shown that squares are not stable and rolls 
are the preferred pattern. 

Inclusion of a stable layer below the one discussed previously does not change stability 
of the upper layer in linear theory, and we obtain a similar condition for the onset of 
instability as in the one-layer case. However, this analogy between one- and two-layer 
cases disappears when nonlinear terms are included. Future work may consider fully 
nonlinear problems for both situations. 

Amplification of gravity waves (overrefiection) in the lower layer is demonstrated for 
some specific choices of parameters. More work can be done in this direction to obtain 
general criteria for overrefiection in the two-layer system. 

It was shown that for increasing mode number, the critical wavenumber K2 decreases. 
In the long-wave limit we expect to obtain an amplitude equation similar to that derived 
by Depassier and Spiegel (1982) which has solitary waves as a solution.Thus, in the case 
of finite vertical extent of the system we can have coherent structures propagating in the 
lower layer. 
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Figure 1 Basic state temperature profile. 

Iambda=4, mu=4, epsilon=3, f=1 

-200     -150 0 50        100 
M squared 

300 

Figure 2 Numerical solution of (20-24) for e = 3, p = 4, A = 4, / = 1. Only real 
parts of the roots are shown. M\ indicates a critical point of direct instability 
for the first mode. 
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Figure 3 As Figure 2 but for e = 0.5. Onset of overstability occurs at Af* for 
the first mode. 

Iambda=4, mu=4, epsilon=5. fc»1 

Figure 4 As Figure 2 but for e = 5.   Note that complex conjugate roots lie 
below the real one now. 
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Figure 5a |^4| as a function of a for a supercritical bifurcation (ß > 0 in (52)). 

Figure 5b Phase portrait of (57-58). Roll pattern is a solution because ß < |-y|. 
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Figure 6a The real parts of eigenvalues of oscillatory modes associated with 
the upper layer for e = 0, / = 1, p = 4, A = 4 and N2 = 200 as functions of 

Figure 6b As Figure 6a but for direct modes. 
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Eigenfunctions associated with the upper layer 
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Figure 7 Eigenfunctions (n=l-3) associated with the upper layer for the same 
parameters values as in Figure 6a. 
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Eigenvalues of modes associated with the tower layer 
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Figure 8 As Figure 6b but for the modes associated with the lower layer. 
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Eigenfunctions associated with the lower layer 

0 
Amplitude 

Figure 9 As Figure 7 but for the eigenfunctions associated with the lower layer. 

The hybrid mode 

0.5 1 
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Figure 10 The hybrid mode. Note that its eigenvalue (a = -8) shows that the 
mode is heavily damped. 
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The Effects of Cooling on a Shallow, Baroclinic Current 
T. James Noyes 

1. Introduction 

In a rotating system, fluids in a geostrophically unbalanced state achieve equilibrium 
by undergoing a process known as geostrophic adjustment. By assuming that potential 
vorticity is conserved during the adjustment process, Rossby(1937) was able to analytically 
determine the final equilibrium state resulting from an initial momentum imbalance. In 
Rossby's problem, the momentum imbalance was the result of momentum injected into 
the ocean by wind stress. In more recent work, authors like Stommel and Veronis(1980), 
Ou(1984), and Blumen and Wu(1995) have investigated the adjustment of a mass imbal- 
ance caused by cooling an initially motionless ocean's surface. Cooling subtracts buoyancy 
and causes convective overturning which homogenizes density vertically. In this paper, the 
adjustment of a mass and momentum imbalance generated by cooling a shallow baroclinic 
current is examined. The results may serve as a rough approximation to the effects of cool- 
ing on a shallow ocean current. They illustrate the influence of cooling on the structure 
and energy contained in currents. 

We examine a y-indepedent baroclinic current modeled with the shallow water equa- 
tions. This model is sketched in figure 1. The p3 layer is infinitely deep, and the condition 
that the interfaces between the layers must adjust so that there is no flow in this layer is 
enforced. Layers 1 and 2 share an interface which slopes down to the right over a height 
scale H0 and a length scale equal to L0. To maintain geostrophic equilibrium, the fluid in 
layer 1 has velocity v,- = ffiffi for ~^o < x < 0, where Ap = p2 -p\ and / is the Coriolis 
parameter. The velocity in layer 2 is zero. The interface between layer 1 and layer 3 ex- 

ponentially decays to HQ{\ + 8) over the length scale L31 = yj (p,~ffiH", i.e. the internal 

Rossby radius of deformation. We choose 8 = ^i^i so that the velocity is continuous at 
x = 0. The velocity in layer 1 decays to zero as the interface becomes constant for x -* co. 

Cooling at the surface causes overturning which mixes momentum and density verti- 
cally. The cooling is too weak to enable convective mixing to penetrate into the lower layer 
of density p3. Mixing is assumed to occur so quickly that momentum and density are both 
vertically homogeneous before any adjustment takes place. The effect of cooling, shown in 
figure 2, is that the region which previously contained the interface between layers 1 and 2, 
—L0 < x < 0, subsequently contains horizontal gradients in density and momentum. If no 
buoyancy is taken out, there is no density gradient for x > 0 and the momentum gradient 
remains unaffected. For x < -L0, the fluid remains homogeneous and has suffered no 
change in density or momentum. 

Analytical determination of the state of geostrophic equilibrium resulting from the 
adjustment of the density and momentum distribution described above only proved possible 
in the limit of A 2 < 1 where A = p2Zpi • In this case, the density difference between the 
lower layer and the upper layers is much greater than the density difference between the 
two upper layers. Essentially, the lower boundary is "stiff.". For a perturbation expansion 
in A2, the zeroth order solution corresponds to the limit in which the interface between 
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the upper and lower layers is rigid and flat. The model in this limit is displayed in figures 3 
and 4. Note that layer 1 now has velocity Uj everywhere. If the same amount of buoyancy 
is removed everywhere at the surface in this model, the density would increase by the same 
amount everywhere as well. Since this uninteresting result would be buoyancy loss' only 
effect, it will be neglected. The zeroth order solution in which the interface between the 
lower and upper layers is rigid and flat will be discussed in this paper. 

2. Rigid Bottom Solution 

The dynamics of the homogeneous layers are simply determined by the shallow water 
potential vorticity equation. 

■no 

hj is the depth of layer j, and Vj is the velocity in layer j. Dynamical equations in the 
stratified middle region are obtained from the conservation of density, potential vorticity, 
and absolute momentum M (= v -f- fx) on parcels in the region. Thus, each parcel in 
the stratified region retains the density, potential vorticity, and absolute momentum it 
had prior to adjustment. The conservation of absolute momentum M comes from the 
horizontal momentum equation. 

Dv JL f        D (   _L f \      DM     n — \- fu = -=r(V + fx) = —rr— = 0. 
Dt      J DV       J   '        Dt 

In terms of the density and velocity fields po and VQ which result from convective mixing, 
the potential vorticity is 

("Ox + f)P0z ~ POxVOz = 0 

since the stratification and the vertical shear are zero in the postconvection state. Not 
only is potential vorticity conserved on parcels in this region, but the vertical mixing 
sets their potential voriticity to zero. An important result follows immediately from these 
conservation principles and the fact that the thermal wind relation will hold in the adjusted 
state. The potential vorticity equation, 

(vx + f)pz ~ PxVz = 0, (2.2) 

may be rewritten as the ratio of the horizontal and vertical density gradients. 

Px _ (vx + /) _ Mx ,2 gv 
Pz Vz Vz  ' 

The conservation of both M and p on parcels implies that the initial functional relation- 
ship between M and p will be maintained. Thus, Mx may be rewritten as Mppx. The 
substitution of Mx = Mppx, ^ = -(§§)p, and the thermal wind relationship vz = --^jPx 

into (2.3) reveals that 
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The slope of the isopycnals is proportional to Mp. Ou(1984) points out that when M0 = fx, 

that is, when there is no northward velocity intially, (|f j = (£l^) ^- The sloPe of the 

isopycnals will be proportional to the inverse of the initial lateral density gradient. The 

presence of a velocity gradient adds (^ J ^ to the slope of the isopycnals. 

The postconvection distributions of density and velocity in the stratified region 
—L < x < 0 are linear in x. 

v0 = Vi(l + ■?-), (2.5a) 

Po = Pl - Ap(f), (2.56) 

(recall u,- = Af?f0° )• This implies that M0 (= vQ + fx) is a linear function of pQ. The 
elimination of x between (2.5a) and (2.56) shows that the functional relationship between 
M and p is 

LQ\(P-PIY 
M = Vi 1- 

Ap 
(2.6) 

where LD = yj^Ii0 is the internal Rossby radius of deformation. The fact that M is 
a hnear function of p yields the important result that the slopes of the isopycnals are 
constant. 

(s),~(§)(1+ä)~ (2-7) 

The slope of the isopycnals, which will henceforward be represented by —a, is proportional 
to the slope of the preconvection interface between the homogenous layers, j£. It is 

multiplied by (1 + e2) where e = jf- is the ratio of the width of the initial interface to 

the internal Rossby radius. The isopycnals' slope will always be —2^- or steeper, so the 
isopycnals will always be steeper than the initial interface. For e <C 1, the slope of the 
isopycnals approaches that of the original interface. For e > 1, the isopycnals are almost 
vertical. 

Armed with the knowledge that the isopycnals all have the slope given in (2.7), we ex- 
pect the internal structure of the stratified region will resemble figure 5a after adjustment. 
Columns of fluid, initially vertical, will tilt during adjustment. An infinitesimally thin 
column of a particular density must have the same volume prior to and after adjustment 
has taken place. The application of this version of the conservation of mass to the column 
shown in figure 5a yields the equation 

H0dx0 = H0y/l + a-*dw, (2.8) 

where w is the width of the tilted column of fluid.   Let s = z + ax.   s is a variable 
proportional to the width of the column.  Specifically, ws =      .x   _2-  5 is constant on 
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dp 

POx Pw 

Therefore, 
Ps = -ßH0, 

where 
Q_    Ap               Ap 

isopycnals which makes it a convenient independent variable in which to determine the 
distribution of density in the stratified region. (2.8) can be rewritten as 

wX (2-9) 

(2.10) 

y     aH0L0      H*(l + e2Y 

It can be shown that application of both shallow water conservation(equations (2.1)) and 
M and p conservation(equation (2.6)) is not possible if the interfaces between the stratified 
and homogeneous fluid are assumed to be isopycnals. This is not merely a consequence 
of having both a rigid top and bottom. If we allow density to vary along the interfaces, 
the contradiction disappears. In this case, then some columns of fluid will intersect an 
interface as shown in figure 5b. The proper equation for mass conservation for this column 
is ps = —ß(H0 — h) where h is the depth of the interface and ps is evaluated along the 
interface. The issue of whether this is appropriate or not and what other alternatives may 
exist will be discussed briefly in the concluding section of the paper. 

Figure 6 contains a sketch of what we expect the final state to look like. The fact 
that the lengths of columns of stratified fluid can be related to the interfaces divides the 
figure into several regions separated by dotted lines in which different equations apply. The 
solutions in these various regions are to be matched at their boundaries. The shallow water 
potential vorticity equations (2.1) reveal that the flow in regions I and V is unchanged from 
the initial state. Conservation of mass, equation (2.10), defines the density and momentum 
fields in region III to within a constant. The regions which contain the interfaces between 
the stratified and homogeneous fluid, labeled regions II and IV in figure 6, have modified 
versions of (2.10) which depend of the location of the interfaces. The fields in these regions 
are strongly influenced by the shape of the interfaces. 

In the region II the applicable equations are, 

(p ~ Pi) V(X, Z) + fx = Vi l-(l + 62) Ap 
(2.11a) 

-"0 

p3 = -ß(H0 - h), (2.11c) 

corresponding to M and p conservation, shallow water potential vorticity conservation in 
layer 2, and mass conservation respectively. v2 is the velocity in the homogeneous layer, 
and v is the velocity in the stratified region, h designates the distance from the rigid top 
to the interface between homogeneous and stratified fluid. In (2.11c), ps is evaluated along 
the interface, that is, for s = —h(x) + ax. 



A similar set of equations holds in region IV, and the steps for solving the set of 
equations for each region are essentially the same. We will now solve the equations for 
region II. First, the velocities are eliminated from (2.11) by calculating their relationship 
with h, p, and the barotropic pressure Po(^)- 

v = 

v2 = 

Pif 
1 

pTf 
i 

pif 
i 

P~Tf 

Pox + dx /   p(x,z')gdz'^ 

= ~övf  Pox ~ ag V^' ^ ~ P(X' °V J ' 
Pox - P2ghx + dx        p{x, z')gdz' 

J-h 

Pox - hxg [p2 - p(x, -h)J - ag [p(x, -h) - p(x, 0)J 

(2.12) 

(2.13) 

A version of (2.7) has been used: px = apz. Substitution of (2.12) and (2.13) into (2.11a) 
and (2.11b) followed by taking the difference of the resulting equations yields 

/ ±[(p2-pix,-h))(^)hx]=-(j±)A-ir^ _/yj , Ho [p(x,-h(x)j\+±-(h-Ho).       (2.14) 

Notice that now p is solely a function evaluated along the interface, that is, s = —h(x) + 
ax. Using mass conservation (2.11c) to eliminate h in this equation and converting to s 
coordinates gives 

ß    \P2 ~ P)PS 

l + ß-ipss +p° (x - (r^2) i1+ß~lpss) 0 = °-        (2-15) 

We can integrate (2.15). At point 0 in Figure 6, the application of the boundary conditions 
p = P2 and ps = 0 yields 

p = -|/3(1 + y/l + e"2)(5 + ^o - *xh)
2. (2.16) 

The boundary condition p = p2 comes from the assumption that the column of density p2 

which was adjacent to the interface between the stratified and homogeneous regions in the 
postconvection state is squashed into the corner denoted by 0. The second comes from 
evaluating (2.11c) at h = H0. 

Substitution of (2.16) and 5 = —h + ax into (2.11c) reveals that the interface between 
the homogeneous and stratified regions is the straight line 

h = ci{l + -j=L=)(x-xb) + H0 (2.17) 

Thus, the interface will be steeper than the isopycnals.   Even though the interface will 
always be steeper than the isopycnals, the interface is never more than twice as steep. 
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The following boundary condition determines Xb- The amount of homogenous fluid 
which has moved to the right during the adjustment process must be balanced by an equal 
amount of stratified fluid moving left. 

/    ° hdx =  I " (H0 - h)dx. (2.18) 
J xt J—Lo 

The dashed line on the left in figure 6 indicates the preadjustment position of the inter- 
face, and the arrows denote the fluid motion which takes place during adjustment. This 
constraint relates the x positions where the interface hits the top and bottom boundaries, 
xt and Xb- The exact x positions can then determined using (2.17). The interface is found 
to be symmetric about x = — LQ. 

At this point, equations for the interface, density, and velocities can be obtained for 
region II. These can be patched at the boundaries with the other regions. Figure 7 displays 
the resulting distributions of density and velocity for for three values of e, e = 10-4, 1, 
and 104. Several interesting features are revealed. As discussed previously, the isopycnals 
have slopes only slightly greater than jf-, the slope of the initial interface, for e <C 1. They 
become progressively steeper as e increases until they are nearly vertical for e ^> 1. In both 
of these limits, regions II and IV in the stratified fluid are compressed and occupy little 
area. Also note that velocities out of the page, that is, flow opposed to the preconvection 
motion of the current, occur in the lower lefthand portion of the figures. Velocities greater 
than Vi, the preconvection velocity of layer 1 fluid, are present in the upper righthand 
portion of the figures. The strength of both of these effects increases with increasing e. 
For e = 10-4, columns of fluid simply tilt over and keep their momentum. The result of 
cooling and adjustment is a frontal region spread out over LQ instead of the sharp jump 
in density from p2 to pi that existed prior to cooling. The current has a lateral extent of 
2LQ, twice as large as before. For e = 104, columns of fluid need only tilt a small amount 
to be in equilibrium. Both the current and the frontal region have a lateral extent of LQ. 

The only clear indication that adjustment has occured is in the velocity field. 

Fronts, corresponding to discontinuities in density and velocity, occur along the inter- 
faces between the stratified and homogenous regions. The difference in velocity across the 
front, Av = v — v2, is small for e<l. Av is not more than 5 x 10-5Ui when e = 10~4. 
However, the velocity jump Av increases with e. The velocity jump along the interface in 
region II increases with height and reaches its maximum at the surface where v2 —* 0. For 
e = l, Av — 0.35UJ at the surface. For e = 104, this increases to Av = 0.5u;. 

Only regions II, III, and IV are altered during the processes of convective mixing and 
geostrophic adjustment. Consider the energy stored in these regions, henceforward called 
"the system." Energy is present in two forms, kinetic energy(KE) and available potential 
energy(APE). The APE is given by 

gp n Bn -H0 

APE= dx I      dz(p-pi)gz+ dx dz(p-p2)gz       (2.19) 
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The total energy(TE) in the system is the sum of KE and APE. The processes of convective 
mixing and geostrophic adjustment can not only change the TE, but can also shift energy 
from one form to another. In geostrophic adjustment problems, for example, typically 
APE is converted into KE during adjustment. 

We'll begin this discussion of the energy in the system with the energy lost during the 
process of geostrophic adjustment. Let £ be the TE of the system prior to cooling. Figure 
8 contains a plot of the energy lost during adjustment in units of S as a function of e. The 
peak in figure 8 corresponds to e = 1.8 and has a value of 0.06765. The figure shows that 
currents with a length scale of the order of the internal Rossby radius radiate the most 
energy, about 0.055. Generally energy lost from a system is attributed to energy carried 
away by gravity waves in geostrophic adjustment problems. Gravity waves do not exist 
in this problem because of the rigid top and bottom. However, gravity waves do exist at 
higher orders in the pertubation expansion to the problem discussed in the introduction. 
The fact that the energy lost is a small fraction of that present in the current leads me to 
suspect that the mechanism of energy loss is a higher order effect. 

It is at the important scale of e = 0(1) that we shall examine qualitatively how energy 
is distributed within the system. Let e = 1. Convective mixing raises denser fluid and 
lowers lighter fluid. It increases APE by 0.205". KE suffers a corresponding decrease of 
about 0.20£. No net energy is lost or gained. Since it is the momentum and density that 
are mixed and conserved during the mixing process, the system could have gained or lost 
energy at this stage. In fact, the system will gain energy when e > 1 and lose energy 
when e < 1. During adjustment for e = 1, about 0.10£ APE is lost; of this, 0.05£ is 
converted into KE and 0.05£ is lost as gravity wave radiation. The combination of both 
processes shows that the overall effect of cooling on the system is to increase APE by 
0.105, decrease KE by 0.15£, and thus decrease the TE by 0.05£. Geostrophic adjustment 
causes the system to lose energy. Convective mixing dominates how energy is redistributed 
within the system and transforms KE into APE. 

3. Conclusions 

In this paper, the effects of cooling a shallow baroclinic current were examined. For 
the model of a current depicted in figure 3, the final state will consist of a region of 
stratified fluid sandwiched between the two homogeneous layers. The isopycnals in the 
stratified region will have slopes given by (2.7). Their slopes are proportional to the slope 
of the initial interface between the two upper layers, j^-, and become progressively steeper 

as e = jf- increases. The interfaces between the stratified region and the homogeneous 
regions are straight lines with slopes given by (2.17). They are always steeper than the 
isopycnals but never more than twice as steep. Fronts exist across the interfaces and are 
only sizable for e yt 1. Velocities in excess of v,- occur near the surface on both sides of 
the front along the right hand interface. Negative velocities are present near the bottom 
interface on both sides of the front along the left hand interface. Both of these effects grow 
stronger as e increases. 

Little energy is lost by the current if its initial length scale is not of the order of 
the internal Rossby radius. The greatest amount of energy will be lost by the current if 
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e = 1.8. In that case, about 6.8% of the total available energy present in the current will 
be lost. Even though kinetic energy is gained and available potential energy is lost through 
adjustment, for e = 1 the kinetic energy of the final state is less than that initially present 
in the current. There is a proportional gain in availible potential energy. The effect of 
convective mixing in this model is to convert kinetic energy to potential energy. Convective 
mixing, and not geostrophic adjustment, dominates the way energy is redistributed within 
the current. 

At this point there is still much work that can be done with this model. The asymp- 
totic expansion in terms of A 2 remains to be completed. In addition, the equations for 
the flexible bottom boundary case can be numerically integrated to find the solution in 
instances where A 2 ^ 1. There is still some question as to whether density can vary along 
the interfaces since, prior to adjustment, the interfaces were material surfaces. However, 
perhaps we should question whether the interfaces really are material surfaces because of 
the discontinuities in density and momentum gradients which existed prior to adjustment. 
If this is true, careful investigation of the frontal region needs to be done and matching of 
solutions will need to take place between it and the interior of the stratified region. On the 
other hand, suppose we insisted that the interfaces are isopycnals. One must then choose 
between discarding either shallow water potential vorticity conservation or M and p con- 
servation. It has been suggested that shallow water potential vorticity conservation does 
not hold during the adjustment process. For example, perhaps the horizontal velocities 
becomes z dependent during adjustment. Whether or not this is true and what relation 
might replace shallow water potential vorticity conservation are presently under investi- 
gation. Shallow water potential voricity has been frequently used to consider adjustment 
problems in the past, but the curious nature of the model presented in this paper, one in 
which homogeneous and stratified regions of fluid are interacting, may render it invalid. 
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Maximizing Passive Vector Stretching 

Vachtang Putkaradze 

Edward A. Spiegel 

I. INTRODUCTION 

G. I. Taylor claimed that the most important characteristic of turbulence is the stretching 
of the vortex lines. Hence, one can perceive the exponential stretching rate Xstr of the vortex 
lines as the "measure" of turbulence. Batchelor's hypothesis [1] assumes that the average 
length of the vortex lines increases exponentially with time: 

< £w >~ ew (1) 

where < • > means a space average. Cocke [2] has proved that for isotropic turbulence the 
length of the vortex lines increases with time, but the question of the validity of (1) is still 
open. 

One can imagine that, the larger the stretching rate Xstr, the more turbulent the fluid 
motion becomes in the "G.I. Taylor sense". The vorticity stretching rate Xstr is, of course, 
a functional of the velocity field v{x,t): Xstr = Xstr{v). We can try to maximize Xstr(v) 
with respect to some class of vector fields v, say, with respect to all fluid motions. The 
condition SXstr(v) = 0(+ constraints) on the vector field v will give us an equation (in 
general, an evolution equation) for v. This will be "the most turbulent equation" in the 
aforementioned sense. If we can find a solution v satisfying 5Xstr(v) = 0 and the constraints 
corresponding to a maximum, we shall be able to put an upper estimate on the stretching 
rate Xstr S Xmax = X[vmax)- 

One should note, however, that it is difficult (perhaps impossible) to compute the func- 
tional Xstr(v) analytically. However, if we simplify the problem, it will be possible to find 
the solution v of the variational problem SXstr(v) = 0(+constraints). Namely, we consider 
the case when the velocity field v is evolving independently of the vorticity field to. In such 
a case, the vorticity a; is a "passive vector" which evolves according to the equation (the Lie 
derivative) 

cot + [v, w] = 0 (2) 

where the subscript t denotes the time derivative and 

[v, u] = (v ■ V)u - {UJ ■ V)u 

is the commutator of the vector fields u and v. The velocity field v is a solution^of some 
evolution equation, where ui is not present. One can say that v "does not know" that u 
Gxists 

We would like to compute the stretching of the vortex lines of u. However, the length of 
the vortex lines is a cumbersome functional. A more easily tractable function which is still 
connected with the vorticity is the "enstrophy" 

lit) = j u{x,t)2dx. (3) 

The functional I(t) will, in general, grow exponentially on average: 

< I(t) >~ I0e
xt (4) 
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where I0 depends on the initial conditions for to, but the growth rate A depends only on v. 
In a real fluid, v and w are connected by 

u) = V x v. (5) 

Equation (5) connects the evolution equations for v and u. That means that v is no longer 
independent of u and the latter becomes an active vector. 

Our goal will be to find a vector field v(x,t) such that it generates large u> according to 
the evolution equation (2). However, without imposing any constraints on the vector field 
u, the maximum growth rate in (4) will be infinite. Therefore, we will try to impose "good" 
constraints on the vector field v. If the constraints imposed are too weak, the maximum 
value will be infinite. If the constraints are too strong, there can be no extremal solution at 
all, except for the trivial one v = 0. Therefore, we shall attempt to find a sort of "golden 
mean" for the constraints. 

Now we can formulate the problem in precise terms. 

Problem 1 Maximize the functional (3)or the growth rate X(v) subject to the evolution 
equation (2), given that LO is an active vector, i.e. (5). Find the relevant constraints. 

The solution of problem 1 was the ultimate goal of our study. However, we were not 
able to make substantial progress without the "passive vector" simplification, i.e., dropping 
the requirement (5) and thus decoupling v from u>. Problem 1 will be subject to further 
investigations. 

The rest of this report will be devoted to: 

Problem 2 Maximize the functional (3) or the growth rate X(v) subject to the evolution 
equation (2), given thatu is a passive vector, i.e., (5) is absent. Find the relevant constraints. 

Problem 2 will be the main subject of the paper. We shall reduce it to a sequence of 
smaller sub-problems, which will build a ladder towards the solution of problem 2. 

II.   POINCARE MAP 

Suppose we perform a convection experiment in a rectangular box of height h. The 
velocity field is v and it generates a passive vector according to (2). 

Let us mark a horizontal plane at z = hfl and follow the lagrangian trajectories starting 
from this plane with the coordinates (x0,y0). Suppose the flow is stationary. After some 
time ti this lagrangian trajectory will cross the plane z = h/2 at the point (xx, yi), then at 
time i2 at the point (x2,2/2) and so on. Therefore, we have a map (Poincare map): 

(x0,y0) -* {xi,yi) -* (0:2,2/2) -> ... 

or, in short notation, 

(xn+i,yn+i) = P(xn,yn), (6) 

where P denotes the Poincare map. Usually, the precise form of the map P is difficult to 
determine analytically. 

The map (6) is two-dimensional if the flow is 3-dimensional. However, in the case when 
there is strong contraction in one dimension, the long-term trajectories for the system (6) 
will collapse onto some one-dimensional curves. In fact, let us suppose that the map (6) 
looks like 
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xn+l — J\Xn,yn) ,„-. 

Vn+i = Ayn. 

The function f(xn,yn) is some nonlinear function of both arguments and |A| < 1. The 
second equation of (7) is readily solved: yn = yoXn. As n -> oo, the y-component will 
become exponentially small and then, with exponentially good accuracy, the first equation 
of (7) reduces to a one-dimensional map 

xn+i = f(zn,0) = f(xn). (8) 

In this case the two-dimensional dynamics has collapsed onto the line y = 0. However, 
the resulting collapsed set ("attractor") may not be that simple and the appearing curves 
may be arranged in a complicated way. As an example of the sophisticated geometry of an 
attractor, one can consider the Henon map [6]. 

III. TOPOLOGICAL ENTROPY FOR ONE-DIMENSIONAL MAPS 

For one-dimensional maps, there is a characteristic which is closely connected with the 
growth rate we are interested in, namely, the topological entropy. Suppose we consider a one- 
dimensional map xn+i = f(xn). There are several equivalent definitions for the topological 
entropy: 

Definition 1 The topological entropy h of the map xn+i = f(xn) is the growth rate of the 
length of the graph of the n-th iterate of f as n —> oo. 

That is, C(fn) ~ ehn for large n, where £(/) is the length of the graph. 

Definition 2 The topological entropy h of the map xn+i = f(xn) is the growth rate of the 
number of periodic orbits of the n-th iterate of f as n —>• oo. 

That means N{fn) ~ ehn for large n, where M{fn) is the number of periodic points. ( Note: 
everywhere fn will mean the n-th iterate of the map /, i.e /(/(/(.. •)) and not the n-th 
power of fn.) 

For example, consider the map xn+i = (xn) mod A, A being some positive number. 
The graph of the n-th iterate consists of the broken pieces of the line with the slope An. 
The length of the graph of the function y = y(x) is C(y) = J yjl +y'2(x)dx. In the case 
of the map xn+i = (xn) mod A, the length of the graph of the n-th iterate y = fn(x) is 
£(/n) = Vl + A2n. We see that h(f) = log A for A > 1 (hence h is positive) and h = 0 for 
0 < A < 1. In general, if the topological entropy is positive, the system is chaotic. 

A very important property of the topological entropy of a flow is that it bounds the 
exponential growth rate of the passively advected vector field (4). If the Poincare map of a 
flow v has an entropy h, then the growth rate of u according to (2) will not exceed h (see 
[3])- 

The topological entropies for a flow and for the resulting Poincare map are the same (for 
sufficiently nice flows). This is true when all the return times for the Poincare maps have 
more or less the same order of magnitude. In this case taking the limit t —v oo for the flow 
will be equivalent to taking the limit n —> oo for the map. We shall assume that this is the 
case and consider the entropies for the Poincare maps. 
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IV. TIME-DEPENDENT PERIODIC MAPS 

From a magnetodynamo example [3], we know that the time-dependent flows are much 
more efficient as dynamos then the time-independent flows. We shall try to investigate this 
phenomenon in terms of maps by including the periodic time-dependence. 

If the flow is time-periodic, one can "strobe" the flow. That is, if the flow has a period 
T, we follow the lagrangian trajectories for the time T. That will generate a map from a 
point in space to some other point in space. However, contrary to the Poincare map, the 
iterates will not lie in the same plane z = h/2 as before, but will be scattered all over the 
physical space. Thus, the resulting map S will be three-dimensional: 

V^n+li 2/n+l) zn+l) — b[Xn,yn, 
zn)- (9) 

We can think of modeling such a map with a time-dependent low-dimensional map. For 
example, the lagrangian trajectories for the convective solutions found by G. Veronis [5] 
go up and down in time periodically. Then, the evolution z coordinate of the lagrangian 
trajectory can be approximated by the periodic motion. Say, for the stroboscope map we 
put zn = z(n mod N), N being the period. Then, (9) becomes a two-dimensional time- 
dependent map 

(xn+l, yn+1) = S(n mod N, xn, yn). (10) 

In the limit of strong contraction we obtain the one-dimensional time-dependent map 

xn+1 = f(xn,n mod N) (11) 

where n is an integer. To construct a visual representation of such a system, we shall apply 
the checkerboard technique derived in [4]. Let us say /, is defined on the interval (0,1) 
for each i. Then, the phase space of the system (11) consists, so to speak, of N intervals. 
Hence, we can then represent the system (11) by drawing a square (0, N) x (0, N). Then we 
divide the x and the y-axis into N intervals. Next, we draw the graph of /i(x) in the first 
column and the second row. We shall denote this square (2,1). Next, we draw the graph 
of the function f2 in square (2,3), the graph of /* in square (i,i + 1) for 1 < i < N — 1, 
and the graph of fN in (N, 1) square (N,l). We then get the function F(x) defined on the 
interval (0, iV). If we iterate F(x) and take x mod 1, we obtain the correct dynamics. This 
construction is illustrated in figure 1. 

M 
r\ £,(x) 

1             *3(X) 

f,(x) 

0 12 3 
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FIG. 1. Checkerboarding of a time-dependent map 

One can see that the N th iterate of F splits into N diagonal squares. In the z-th window 
we will have the function fiofi+1o- ■ •o/no/1o/i_1. Since the topological entropy is the growth 
rate of the length of the graph, the topological entropy of the function / (and, therefore, 
the time-dependent map itself) will coincide with the maximum of the topological entropies 
of these compositions. One can show, however, that all these compositions obtained by the 
cyclic permutations, have the same topological entropy, hence 

Hf) = h(f1of2o...ofN). (12) 

V. TURBULENCE ENHANCEMENT BY TIME-DEPENDENCE 

We want to study why the time-dependent maps are more efficient in generating entropy 
then the time-independent ones. Suppose we take TV = 2 in (12). That is, we first apply 
the map /x, then /2, then fx and so on. Suppose the maps /i and f2 are non-chaotic: 
h(fi) = h(f2) = 0. Now, we want to study the following problem: 

Problem 3 What is the maximum entropy of h(fi o f2) one can obtain by composing the 
two maps /i and f2 subject to the constraint h(fi) = h(f2) = 0 ? Is this constraint sufficient 
for the variational problem to be well-posed? If it is not, find the relevant constraints. 

We shall show now that the constraint h(fi) = h(f2) = 0 is not enough for solving this 
variational problem: the maximum is infinite. 

The following functions /i and f2 on the interval (0,1) are considered: 

/i 

1 _i x_ 

2 "r Ai' 0 <X < i 

and 

h 

{Kxx - \) mod |, | < x < 1 

\ + (A2x - |) mod \ 0 < x < \ 

(13) 

X 

A2 k<X<1 
(14) 

for arbitrary numbers Xx > 1 and A2 > 1. The graphs of the functions in question are drawn 
in figure 2. 

$00 £(x) 

slope— 

slope A] 

//// 

// 
slope A2 

Sl0peÄ2^ 

0 0.5 1 0 0.5 1 

FIG. 2. The maps f\ and f2 which are the solutions to problem 3 
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One can verify that both these functions have zero entropy since they generate pieces of 
the line with the slope 1. Hence, for any even iterate of these functions the length of the 
graph will be V2 and the entropy is, therefore, zero. However, after taking the composition 
of these maps, the two "active" regions (i.e the regions with slopes larger than 1) will interact 
independently. Hence, there will be a region in the space of size 1/2 where for the n-th iterate 
the slope will be (AxA2)

n. Hence, for large n the length of the graph of the n-th iterate of 
/i o f2 will be (AiA2)

n/2 (with exponentially good accuracy in n) and the entropy of the 
composite map fx o f2 is therefore 

ut     t\     logAi+logA2 ,    v 

Since the numbers Ax and A2 are arbitrary, the resulting entropy h(fx o f2) can be arbitrary 
large. 

We see that a constraint stronger then h(fi) = h(f2) = 0 is necessary to obtain a 
meaningful result. 

So far, we have allowed any functions /;. However, these function have to emerge as 
Poincare maps of some physical flow. Therefore, the gradients of these functions have to be 
bounded. A relevant constraint is, therefore, 

mzx\fl(x)\ < K. (16) 

We can show that with the constraint (16) the entropy h(fx o f2) can be maximized, and 
the functions fx and f2 defined by (13-14) then define the exact maximum. 

In fact, in this case we can put Ax = A2 = K, and h(fx o f2) = log AT. on the other hand, 
the length of the graph of (fx o f2)

n (n-th iterate) is given by the chain rule: 

£((/i o /2)
n) = / \A + mx2n)f^(x2n^)n2(x2n.2) ■ ■ ■ f{2(xx)f?(x0)dx 

and due to the constraint (16) this length is estimated from above as 

£((/i ohT) < IVT+K2^ < 1Kn 

and therefore, h(fx o f2)  < InK.   Hence, we have found functions providing the exact 
maximum for problem 3 with the constraint (16). 

Suppose now our Poincare map comes from a vector field v, which oscillates very little 
around some stationary vector field. In this case, the two succesive maps maps fx and /2 
cannot differ by more than some small number e. 

max\fi(x)-Mx)\<e. (17) 
0<x<l 

This will impose a constraint on the time derivative of the vector field. 
Will imposing the constraint (17) improve the result? The answer is no. Of 

course, if e = 0, the maps fx and f2 have to be the same and, hence, h(fx o f2) = 
h(fi) = 0. However, as soon as e > 0, we can construct the maps such that 
h(fx) = h(f2) = 0, maxx\fx(x) - f2(x)\ < e but the entropy of the composite map fx o f2 

can be arbitrarily large. Again, with the constraint (16), the maximum of the entropy of 
fxof2 is h = logK. 

The maps in question appear as in figure 3 (we only show the picture, since we find the 
formulas to be hardly illustrative). 
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fj(x) £(x) 
1 

slope —         ; 
Ai       : 

■ 

•     slope A] 

slope A 2 

tflMIIlM 
slope — 

A, 

0.5 0.5 

FIG. 3. The maps /i and /2 differ by no more then e 

The length of the graph of the n-th iterate of the composition /i o /2 is 

£(/1o/2)
n~c(A1A2)

B. 

Therefore, however small the value of e, the entropy is still given by (15). One should notice 
that the "active" region has a size proportional to e. Hence, restrictions of the type (16) are 
needed to obtain a maximum for the entropy. . 

The examples given in this chapter also explain why one can get more entropy by in- 
troducing the time-dependence. For example, the famous stretch-twist-fold [3] consists of 
simple non-chaotic transformations. The entropy is generated in the process of succesive 
compositions of stretch, twist and fold. 

VI. THE FORMAL SOLUTION OF PROBLEM 2 

The examples' of the previous chapter have taught us that the only relevant constraint 
is the bound on the spatial gradient ||Vu|| < K. We shall use this constraint together with 
the incompressibility condition V • v - 0 to obtain a formal solution for problem 2. In fact, 
incompressibility is not essential for an answer, but we include it in order to remain close to 
the original problem. 

Problem 4 (Problem 2 modernized) Maximize the functional (3) and the growth rate X(v) 
subject to the evolution equation (2), given thatu is a passive vector, i.e., (5) is absent. Use 
the constraints: 

(18) 

together with 

IVull <K 

V-v = 0. (19) 

Multiply equation (2) by u and integrate with respect to the space coordinates. Then, 
the following equation holds: 

/' 
— / u)2dx = / u/ • Vv • u) (20) 

where a/ is the transposed vector to.   Then, since the norm of a matrix is K, we have 
||Vv ■ OJ\\ < KUJ, and from (20) follows the inequality: 
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— f cü2dx< K f Lü2dx. (21) 

Therefore the exponential growth rate of enstrophy is no more than K. We wish to find the 
vector field v which generates a growth rate equal to K. 

We consider the vector field v, which generates the area-preserving "baker's transforma- 
tion" with coefficient K after t — 1 sec in the lagrangian coordinates (x, y) if -1 < x, y < 1 
and does not change the coordinates z and x,y for |x|, |y| > A for some A > 1 (for the 
description of the baker's transformation and its properties, see [6]). The transformation is 
shown in figure 4 

stretch K times 

FIG. 4. The area-preserving baker map with coefficient K 

Equation (2) can be integrated exactly if the transformation from the old to the new 
lagrangian coordinates is known. If x(t) is the solution of the equation x = v with the 
initial condition x(0) = x0, and j = J^- is the jacobian, the solution of (2) is given by 

w(x,t)=w(x,t)=jw(xo,0). (22) 

From (22) it follows that the x- component of the vorticity evolves according to 

ux{x, y, z, t) = eKtcüx(x0, yo, z, 0) 

Assuming that the initial distribution is uniform within the rectangle -1 < x, y < 1, the x- 
component of the initial vector grows with the exponent K. Therefore, the flow v generating 
a baker map with the coefficient K is a solution of the variational problem 4. 

VII. CONCLUSIONS 

Our solution allows us to draw some conclusions about Batchelor's hypothesis. Namely, 
we have maximized the dynamic exponent with respect to the constraint ||Vu|| < K. The 
interesting point would be, of course, to maximize the "enstrophy" with respect to the 
equation of fluid motion, that is, the Navier-Stokes equation. However, the Navier-Stokes 
equation implies that the velocity gradients remain bounded (this has at least been proved for 
two-dimensional flows; for three-dimensional flows the proof is still missing). The rigorous 
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bound is ||Vu|| < i?2logÄ [7], where R is the Reynold's number.   Therefore, the upper 
bound for the exponent in Batchelor's hypothesis is A < R2 log R. Of course, this estimate 
is much too large due to the fact that the rigorous estimates are usually too far from the 
truth. ........ 

We are now undertaking investigation of Problem 1, when the vorticity is the   active 
vector".   It is our hope that maximizing a functional of the type (4) with respect to the 
constraints which are moments of the Navier-Stokes equation and the coupling equation (5), 
will define a reasonably good evolution equation for the vector field v. 
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Circulation in a 2D convective chimney      F. Straneo 

Introduction 

Deep convection is thought to occur in the ocean via various mechanisms. Amongst 
these, convective chimneys have been observed in several regions including the Gulf of 
Lyons and the Labrador Sea. Convection within a chimney occurs via plumes whose 
horizontal scales are on the order of 1 km and timescales of a few hours (Schott and 
Leaman, 1991, and J. Marshall, in this volume). Whereas the chimney can measure 
10-100km in diameter, reach depths on the order of thousands of metres and persist 
for periods on the order of days to weeks. 

The evolution of a chimney involves preconditioning phase, where the large scale 
circulation sets the horizontal scale of the chimney, a violent mixing phase and the 
subsequent sinking collapse of the whole structure through baroclinic instability mech- 
anisms (see John Marshall's lectures). A number of numerical and laboratory exper- 
iments confirm these hypothesis (see, for example, Jones and Marshall, 1993, and 
Maxworthy and Narimousa, 1994). 

In this study, an attempt is made to determine the circulation inside and around a 
chimney which is slowly growing due to surface heat loss. The convective scales, such 
as the plumes, are not resolved; instead, the mixing processes are parametrized by 
introducing a vertical eddy diffusivity which is dependent on the stratification. When 
the water column is unstably stratified, the action of the plumes (i.e. the mixing of 
both momentum and buoyancy) is represented through an artificially high diffusivity 
and viscosity. Typical eddy-diffusivity values are retained for regions of stable strat- 
ification. 

A discussion of this parametrization is presented in section 1, together with a 
solution for a one-dimensional chimney model. Scaling of the equations is described 
in section 2; this includes presenting a balance model and actual values for a typi- 
cal oceanic chimney. Section 3 illustrates a number of approximate solutions for the 
chimney problem, amongst these the extension of the ID solution to the 2D problem. 
In the last section, the validity of the assumptions and the results are discussed. 

1 A chimney parametrization 

1.1      An introduction to a variable diffusivity 

Observations of temperature and salinity profiles within a chimney show an al- 
most vertically homogeneous water mass, with slight gradients in the horizontal (U. 
Send personal communication). The horizontal scale of the chimney is thought to 
be set by pre-existing large scale circulation features, typically a cyclonic gyre that 
causes doming of the isopycnals. The depth to which the chimney extends mainly 
depends on the stratification and the cooling rate. 

In this study, the horizontal scale of the chimney is set by the scale of the surface 
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heat-flux. In the case of linear stratification, which will be used throughout this work, 
this is equivalent to applying a constant heat flux to a non-uniform (in the horizontal) 
initial stratification, i.e. the preconditioning. The action of the plumes, the mixing 
of momentum and buoyancy, is obtained through a large value of the diffusivity and 
viscosity. 

Figure la shows a qualitative description of the diffusivity, K = «(&*), as a func- 
tion of the buoyancy, b. This allows us to identify three different regions depending 
on the value of K(bz), which are schematically shown in figure lb. 

- Interior Region: This is a region of unstable stratification where the plumes 
are active, K is assumed to be large and constant, K«KI. The isotherms are 
almost vertical due to the mixing. 

- Transition zone: This corresponds to the region of varying K, and it describes the 
edge of the chimney. Here the isotherms bend: from the almost homogeneously 
vertically-mixed chimney to the horizontally stratified surroundings. 

- Exterior Region: In this region K resumes its low eddy diffusivity value, as used 
in models which do not resolve the eddies' scales. It represents the surroundings 
of the chimney which are vertically stratified. 

This physical argument only provides a qualitative description of tz, and there 
is a priori no reason for choosing one particular form with respect to another. The 
criterion used in this work was to find a form of the diffusivity that would make the 
problem solvable analytically. 

1.2      One-dimensional Problem 

As an introduction to the problem, a simple ID column of water is considered 
with a step function diffusivity. The column is initially stably stratified (linear strat- 
ification) when a constant heat flux (cooling) is applied at the surface. As the water 
columnn becomes unstably stratified, convection begins to take place. The depth 
to which convection penetrates increases as the cooling persists. The evolution of 
the system is given by a one-dimensional diffusion equation with variable diffusivity 
coefficient. 

bt = dz(Kbz) (1) 

In this preliminary analysis, a simple form of K is assumed: 

{Ki     for bz < 0 

«o    for bz > 0 

where «i >• /Co. Let z = —h(t) describe the depth of the quasi-mixed layer (the 
depth to which convection takes place), i.e. bz > 0 for z < —h(t). The two regions, 
corresponding to different values of K may then be solved separately and h(t) may be 
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determined by imposing the continuity of b at the interface. 

Region 1: bt = Kibzz,  with bz = Q/KI at z = 0 and bz = 0 at z = —h(t) 

Region 2: bt = K0bzz,  with ^ = 0 at z = —h(t) and bz = N2 as z —> -co 

1.3     Non-dimensional form of the equations 

Let £ = Ti, 6 = N2Hb and A = fZTi, where the bars indicate the non-dimensional 
fields. The buoyancy has been scaled by the initial stratification. 
Region 1: The equation in can be written as 

e&F = bzz 

where e = ^- is the ratio of the mixing time to the time over which b varies. Let 
Ki be chosen such that e < 1, and a solution found by expanding in powers of e. 
The flux boundary condition is written as q = KxN2eq, which implies that if Q is the 
scale for q then Q/(K\N

2
) <C 1. The solution of the diffusion equation in powers of 

e, having dropped the bars, is : 

7 2 

b(z, t) = bo(t) + e(-^— + qz), and bot = T 
Z n 

Region 2: The fluid is initially stably stratified, b = N2z, and as long as convection 
does not take place all the way to the bottom, it is reasonable to look for a solution 
of the form: b(z, i) = N2z + ß(z,t) where ß(z,t) represents the variation of b due 
to small diffusion in the bottom layer. The non-zero diffusivity in the bottom layer 
is necessary to ensure the continuity of bz at the interface. Let k = £a-, the ratio of 
the diffusivities of the lower layer to the upper layer, K<1, and 77 = z + h(t), the 
moving boundary coordinate. A solution of the form ß — ß(r], t) can be found for the 
non-dimensional equation: 

eßt + eßr,ht = kßrm 

given by: 

b{z,t) = z - — exp(——) 
eht K 

Imposing the continuity of b at the interface: 

btoP[z = -h(t), t]   =   bbottom[z = -h(t), t] 

=>h(t)    =    -bo(t) 

thus a full solution to the problem is given by 

-*(*) + «?(& + 
z-^exp^)        for z< -h(t) 

Wrrt_/-*(*) + «?(& + !)    foxz>-h(t) 

-18S- 



where h(t) = ^J—2qt. 
Figure 2 shows b(z,t) as a function of depth at different times. The solution has 

a quasi-mixed layer at the surface, which does, however, support an order e gradient 
in the vertical. The depth z — —h(t) describes the base of the chimney which, given 
a steady heat flux, deepens as t1/2. The dimensional timescale for the formation of 
a chimney of depth H given a constant heat flux Q and initial linear stratification is 
T = N2H2/(2Q). 

2      The 2-D chimney 

A two-dimensional vertical section across the chimney is considered by assuming 
no-variations in the y-direction (i.e. dy = 0). Though this assumption is made in or- 
der to simplify the problem, it is equivalent to considering the chimney in cylindrical 
coordinates in the limit of infinite radius. 

Consider the Boussinesq equations where the convective processes are parametrized 
by introducing vertical diffusion and viscosity. Only the vertical terms are retained 
since the vertical diffusivity and viscosity terms are assumed to be much larger than 
the horizontal ones. Furthermore horizontal gradients of the vertical mixing terms 
are scaled out because of the chimney's small aspect ratio. The equations, in the 
usual notation, reduce to : 

Du      . 
-^ fv Dt 

= -Px + dz(uuz) 

Dv      , 
Dt     J = dg(vvx) 

Dw 
Dt = -Pz + b-\-dz(vwz) 

0 = ux + wz 

Db 
=: dz(Kbz) 

Rewriting the equations in terms of the streamfunction, t/>, the y-component of the 
vorticity, £, and the geostrophic momentum, m: 

u = -t};z, w = ipx, £ = VV, m = v + fx 

Dm 
Dt 
Db 
Dt 

=   dz{vmz) (3) 

=   dz(Kbz) (4) 

B-   =   -/m, + 6, + a,K,)+ö,(Vi/.(V0),)- (5) 

Taking dz[f x (3)] - &(4) gives: 

(K - bx)t + dzJ{^ fm) - dxJ{^ b) = d2
zz{ufmz) - d2

zx(Kbz) (6) 
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where J is the Jacobian. A balance form of these equations has been used by Flierl 
and Mied (1985) to study the spin down and circulation of a warm core ring due to 
viscosity. By assuming thermal wind in the y-direction, i.e. fmz = bx, (6) reduces 
to: 

J(ipz, fm) - J(ipx, b) = dz((u - K)bsz + vzbx - Kxbz) 

Moreover for the case of Prandtl number equal to one, v = K, the equation simplifies 
to: 

J{^z,fm)~J(^b) = dzJ(b,K) (7) 

Prandtl number, Pr = 1, will be assumed from now. Physically it implies that 
momentum and buoyancy are mixed at the same rate, so that if the buoyancy and 
i?-velocity field are in balance initially, then the balance is retained throughout the 
time evolution. 

2.1      Non-dimensional equations 

Equations (3)-(6) are non-dimensionalized in a similar way as was done for the 
one dimensional case. Let the bars indicate the non-dimensional quantities and the 
capitals the actual dimensional scales: 

b = N2Hb, t = Tt, r}> = V$ 

X = Lx, K = KK, V — Vv 

then equations (l)-(3) become: 

T + LHJ{M ~ VH*'   =   JP
HKV

*
] 

\Ir v&2 fV N2ff-       K$I 

The leading order balance in the u-equation is assumed to be 

zr* = !Hds\KV*) VHT       H2 

then the scale for $ is given by ^, where f is the Coriolis parameter.   Similarly, 

from thermal wind balance the scale for the geostrophic velocity v is N^j .  Three 
non-dimensional parameters may be introduced: 

H2 

e   =   ——, ratio of the mixing time to the growth time of the chimney 

V      N2H2 

Ro   =   TT =   j-oro > tne Rossby number 
jL       flLz 

7   = , the Ekman number 
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The equations may then be rewritten, having dropped the bars as: 

ebt + RoJ&,b)   =   dz{Kbz) (8) 

evt + .RoJftM - ^   =   dz{Kvz) (9) 

e726 + 72iW,0   =   -u* + k + 72&(«&) + 72&(VK-V^) (10) 

and (6) takes the form: 

e(bx - v,)t + Rodjty, v) - ^zz - RodxJ{^, b) = dz{dz{Kvz) - &(«&*))        (11) 

2.2 Top-Ekman Layer 

A different scaling is introduced for the surface boundary layer. This is necessary 
to satisfy a no-stress boundary condition at z = 0, since thermal wind in the interior 
causes a shear in the geostrophic velocity at the surface. The diffusivity is considered 
to be constant in the thin region at the surface. Let rj be the vertical coordinate in 
this layer and r\ = Sfj, where 6 is the Ekman layer thickness, £ = (0)*, in the surface 
layer the equations reduce to: 

ey2bt + Ro'YJ(il>,b)   =   bvv (12) 

ey2vt + Äo7J(0, v) - ij>n   =   vnv (13) 

e~i2£t + Ro~fJ{lp,£)     =     -Vn + bx + ißrmrm (14) 

where the streamfunction has the same scaling as in the above formulation. 

2.3 Scaling in the ocean 

In deriving a scaling argument for this model it must be stressed that there is 
a priori no reason to choose one particular value for K. The choice is can only be 
justified once the circulation pattern has been determined; the validity of the solution 
that will justify the assumptions made. The values for the following fixed parameters 
are chosen to represent typical oceanic convective conditions: 
heat flux = WOWm'2 which gives a buoyancy flux, Q = 5 x 10"8m25"3 

/~10"45-1, N~l0~3s-1 

horizontal and vertical scales for a chimney are 
L ~ 50km, and H ~ 500m. 
The diffusivity is chosen to be: K, ~ 0.5m2s-1 

The non-dimensional parameters introduced in section 2.1 become: 

O N2H2 K 
-^ = o.i,      ^ = 7^ = 0.01,      7 = ^ = 0.02 

Three time scales should be considered for the problem: 
T is the time needed for the chimney to grow to a depth H given a constant heat flux 
Q. The scaling is given by the solution to the ID case: T = N2H2/(2Q). 
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Tmix is the time needed to diffuse over a depth H given a diffusivity /c, T = H2
/K, 

and T/ is the period of the earth. 
With this choice of variables the different timescales introduced above are: 
T = 2.5 x 106s, Tmix = 5 x 105s, Tf = 104s 
With these values: T > rmt-r > Trot and in terms of the non-dimensional parameters: 

Ro < e < 1 and 7 < 1 

Physically, this choice of parameters implies that the mixing time is long com- 
pared to a rotational period but short compared to the time it takes for the mixed 
layer to descend a certain depth H. The fact that T is greater than Tj is consistent 
with the timescales of the chimney. It also implies that the chimney will be continu- 
ously adjusting to the effects of the Coriolis force. The Ekman layer thickness given 

by this scaling is 8 = 50m. 

2.4     Linear Equations 

Given the scaling introduced above, approximate solutions may be found by ex- 
panding in powers of e. To a first order in e, (8)-(10) become: 

ebt     =dz{Kbz) (15) 

evt -ipz    = dz(ttvz) (16) 

0   =-vz + bx (17) 

Thus the equations reduce to a simple diffusive equation for the buoyancy field, a 
diffusive equation plus the Coriolis term for the v-field, and thermal wind is a result of 
the scaling on the horizontal vorticity equation. The linearity assumption is justified 
for small Rossby number flows, the extent to which this approximation is valid can 
be assessed once a solution is found. Substituting (17) in (11) gives: 

^zz=dzJ(K,b) (18) 

In principle then, any three of the above four equations constitute a closed set of 
equations for the description of the chimney under the scaling assumptions defined 
above. Thus once a certain form of K is specified and with the following bound- 
ary conditions, one may obtain the flow field in the chimney. The non-dimensional 
boundary conditions can be written as: 

z = 0   heat flux: K,{bz) ■ bz = q(x) 
no stress vz = uz = 0 

t = 0 initial values - ij; = 0, b = z, v = 0. 

—> 00 bg —>• 1 
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Similarly the Ekman layer first order equations are: 

0   =   bvv (19) 

-07?   =   vm (20) 

0     =      -Vv + bx + 1pvnr,r, (21) 

The full solution can then be obtained by summing the Ekman layer solution to the 
interior solution. 

3       Approximate Solution 

3.1      Analytical solution 

To gain a qualitative understanding of the fluid circulation within the chimney 
given a z-dependent heat flux, Q, consider, as for the one-dimensional case, the case 

where K is a step-function. 
Interior and surface Ekman layer 

If the advective terms are assumed to be negligible, then in the interior and 
surface layer of the chimney (where K = «i) a solution can be found which is just the 
2D extension of the ID solution. In this case the chimney is represented as a series 
of independent one-dimensional columns, where x is just a parameter that enters the 
problem through the boundary condition, K-J>Z = q{x) at z = 0. Given the b(z, t) 
solution to the ID problem, (2), extended to the 2D case by making q a function 
of x, then (16) and (17) can be used to evaluate the 0 and v fields (both expanded 
in powers of e). The full solution is obtained by adding the interior solution to the 
surface Ekman layer solution: 

0   =   hx{l-ezhcos(z/~{))-eqxz + 0{e2) 

b   =   _h + eqz(JL + i) + 0(e2) 

u 

w 

--hxez^{cos{zh) - sin(z/7)) + 0(e2) (22) 
7 

Ml - ezh cos(z/7)) - eqxx + 0(e2) 
.2 ^3 

V     — -hxz + |e^^(cos(z/7) - sin(z/7)) + eq*{j - y^) + 0(e2) 

where h is now a function of x as well as t, h(x, t) = (—2q{x)t)1'2. 

Exterior Region 
Away from the chimney there will be no circulation and the stratification will be 

the same as in the initial condition, i.e. 0 = 0 and bz = 1. 
Transition region 

Though the exact behaviour in this region depends on the actual choice of n(bz), 
the general behaviour of the solutions can be deduced by matching the interior solu- 
tion with the exterior region. 
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Discussion 
Figure 4 shows the circulation described by solution (22) given a Gaussian-shaped 

heat flux (greatest cooling at the centre). The surface Ekman-layer has been expanded 
in the vertical and the transition region at the base of the chimney is intended only as 
a qualitative description. In particular, behaviour in the transition region is obtained 
by considering a K such as the one proposed in figure la, equations (15)-(18) and 
by matching the interior solution to the exterior conditions. However, it should be 
pointed out that the thickness of this region will strongly depend on the choice of K. 

Figure 4 shows downwelling throughout the interior of the chimney and upwelling 
in the transition region. To balance the stress due to thermal wind balance in the in- 
terior, the Ekman layer is convergent at the surface, whereas the edge of the chimney 
show a divergent flow pattern. 

The interior of the chimney is in thermal wind balance and the evolving chimney 
is in continuous geostrophic adjustment. This is consistent with the space and time 
scales of the chimney: (9(10 — 100km) and up to a few weeks. 

The horizontal and vertical gradients supported by the chimney structure are the 
driving forces for the circulation. The more homogeneous the chimney, (the smaller 
e) the more the circulation is confined to surface Ekman layer and to the boundary of 
the chimney. In this case it seems likely that the contribution of the advective terms 
should not be neglected. 

Since the diffusivity in the outer region is chosen to be small, as the cooling per- 
sists there is no steady state solution for the chimney (i.e. the chimney has to grow, 
albeit slowly). The point at which, according to John Marshall's lecture, the chimney 
arrests its growth and the lateral eddy heat fluxes balance the heat flux at the surface 
is not accounted for in this parametrization. Neither is the baroclinic instability that 
causes the collapse of the whole structure. 

3.2     Numerical Solution 

Given the non-linearity of equation (1), once a certain form of K was chosen, it 
was useful to evaluate a full numerical solution that included the as yet unresolved 
transition area. Figure 3 show the solution for the case where K is chosen to be: 

K = 1 tanh(7&;j) where 7 = 100. 

The numerical solution of (1) agrees, at least qualitatively, with the step-function case 
shown in figure 2. The chimney can support a small gradient in the vertical which 
tends to zero as one approaches the chimney's boundary. Linear stratification persists 
below the base of the quasi-mixed layer. Like the analytical case, the numerical case 
can be seen as a continuum of ID columns in the analytic case, figures 5a-d show the 
same approach for the numerical solution. The solutions are calculated for different 
values of q = q(x), having discretized the fields in the horizontal. By considering these 
ID solutions next to each other in the ^-direction one may compute the velocity and 
streamfunction fields from a finite difference from of equations (15)-(18). A portion 
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of the chimney is shown in figure 5a, where contours of bz are shown in the x-z 
plane. 5b-d show the profiles of bz, u, ip in the vertical calculated for a given x. 
bz is slightly negative in the top 200m; below it the water column rapidly becomes 
stably stratified tending asymptotically to N2. The u-velocity profile is in agreement 
with that calculated analytically in (22), the large increase in the transition layer is 
is partially due to the finite difference approximation but also to the fact that the 
streamfunction is rapidly tending to zero (figure 5d). 

These results are in good agreement with the qualitative description given above 
(§3.1). However, they also show that the magnitude of the terms in the transition 
region depends on the choice of K,(bz). In particular, the magnitude of the advection 
terms may depend on the thickness of the transition layer which is the region of 
varying K. Thus this region may vary from being a boundary layer region to a region 
of slowly varying gradients. Though this does not affect the pattern of the flow field, 
it affects the magnitude of the single variables. Hopefully observations will provide 
some indication as to which choice of K yields more realistic chimney structures. 

3.3      Similarity Solution 

The diffusion equation can be differentiated with respect to z to yield: 

<f>t = d2
zz{K{4>)4>) where <j> = bz 

Let T) = | where h = y/2qi as given by the one-dimensional case , and let <f> = <f>{rf). 
The diffusion equation can then be rewritten as: 

d2
nr,(K(4>)^ + rjq<l>v = Q 

with boundary conditions 

K(<f>)<f> = q at T) = 0 at K(<f>)(f> = K(N
2
)N

2
 as rj -> -oo 

The numerical solution derived for the K given above is plotted as a function of rj in 
figure 6. The different curves are for different times; thus showing that a similarity 
solution exists. No analytical similarity solution has as yet been found. 

4        Validity and conclusions 

4.1      Collapse of the linearity assumption 

In deriving the solution for the step function case the advective terms have been 
neglected. Physically this implies that the advection of heat and momentum are neg- 
ligible compared to the diffusion terms. Though this assumption could very well be 
more restrictive in the transition layer it is also a stringent condition in the interior 
and surface Ekman layer. Given solution (22) the collapse of the linear assump- 
tion occurs when the advective terms become of the same order of magnitude of the 
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diffusion terms.  This can be evaluated by equating the terms bt and vt with their 
respective advection terms calculated from solutions (22).  Thus, the time at which 
the breakdown of the linear hypothesis occurs in each region and for each equation is 
given by: 
Heat Equation: 

Interior: 

* = (i)2/3       => t = (i£m)2/3 =► t = w8* 
Ekman Layer: 

t = (f )2/5 =>   * = (g©2/5   =*   i = 3xl06
5 

V - Equation: 

Interior 

* = (£)2/5      =» ' = (SS)2/5 =►      t = io^s 
Ekman Layer 

* = (£)2/5      =►  t = ($m)2f5   =* * = 3xia i6s 

4.2     Conclusions 

Calculations in section 4.1 show that in the Ekman layer the non-linearity as- 
sumption does not hold for timescales on the order of those needed for the growth 
of the chimney to a depth H given a constant heat flux, Q. Moreover the linearity 
assumptions may not be valid at all at the chimney's boundary, i.e. in the transition 
layer. This suggests that the next step should involve numerical simulations using 
the fully non-linear equations. 

The analytical solution does nonetheless provide an indication of the processes oc- 
curing in the chimney, and that the idea that the chimney is in thermal wind balance 
is not unreasonable. It also shows that the parametrization introduced in describing 
the chimney is valid in certain oceanic regimes. Numerical solutions support this hy- 
pothesis in the linear regime. In particular the chimney can be thought of a structure 
which is in continuous geostrophic adjustment, with the vertical circulation trying to 
maintain thermal wind. 

This is to be considered a preliminary attempt to study circulation in a grow- 
ing chimney. The exact form of K still remains an open question. Amongst various 
possibilities one could think of constructing a diffusivity that never actually reaches 
a constant value in the interior of the chimney, but simply slowly decays to a small 
value at the boundary. 
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Figure la Sch.em.atic of the diffusivity, K, as a function of bz, where b is 
the buoyancy. 

z = o- 

Isopycnals 

Figure lb Schematic of the isopycnals in a x-z cross-section of a chimney 
generated by a Gaussian heat flux applied at the surface. 

b*/\T2 

Figure 2 Schematic of the solution found for the ID model, 
showing buoyancy as a function of time and depth. 

10 12 14 16 
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Figure 3 Numerical solution of (1) for K specified in §3.2. 



->x 
Figure 4 Streamfunction contours of the analytical solution (22) for the 2D chim- 

ney. The Ekman layer is expanded, and the transition layer is intended 
only as a schematic. Arrows indicate the direction of the flow field, and 
the specified heat flux is shown at the bottom. 
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Figure 5 2D numerical solution (§3.2) for a portion of the chimney. 
a) Contours of bz and schematic of the heat flux and flow field. 
Vertical profiles for a fixed central x-value. b) bz c) u(z) d) v 



Baroclinic Instability at a General Latitude 

Stephen Zatman 

We consider the linear baroclinic instability of in a frictionless Boussinesq fluid on a plane 
that is rotating about an axis that is not perpendicular to the plane. We specifically consider 
the instability of flows which are horizontal and normal to the rotation vector ("zonal"), 
with a vertical shear. First, we consider purely symmetric instability. The expected result, 
that instability may occur when the potential vorticity becomes negative, is found. However, 
the maximum growth rate does not necessarily increase as the potential vorticity becomes 
more negative. We investigate what happens as the symmetry of the instability is broken, 
and find that the maximum growth rate for finite longitudinal wavenumber I will have a 
non-zero zonal wavenumber k. Next, we consider nearly geostrophic baroclinic instability. 
We find that at high Richardson number, the growth rates of the instability are the same as 
for the case with a vertical axis of rotation. However, at lower Richardson numbers there is 
increased instability for small k, and also when the potential vorticity is negative there are 
lines in the k,l plane where the growth rate becomes infinite (I being a longitudinal wave 
number), which is consistent with findings of Stone (1966) for non-geostrophic instability 
near the symmetric (I = 0) axis. 

1    Introduction 

Much of the analysis of baroclinic instability in the ocean (e.g. Pedlosky, 1986) has 
neglected the horizontal component of the rotation vector. For almost all of the ocean 
this is reasonable. However, recently there has been some interest in the dynamics 
of ocean "chimneys", areas around 102 kilometers across where cooling events on the 
surface lead to deep convection. In such chimneys, the potential vorticity is "zapped" 
until it is close to zero. These chimneys are then thought to be broken up by baroclinic 
eddies. It is in the instability of such chimneys that we might see the effects of the 
horizontal component of the rotation vector. 

Baroclinic instability on an / plane has been considered by Eady (1949) and others, 
and on a ß plane by Charney (1947) and others. Stone (1969, 1971) considered 
non geostrophic and non hydrostatic instability on an / plane. We shall consider 
a problem close to that of the Eady problem: instability on an / — b plane, where 
b = 20. cos <f>, and <j) is the co-latitude. In particular, we shall consider instability of 
a horizontal flow perpendicular to the rotation axis with a vertical shear. Clearly 
such "zonal" flows are special cases of the sorts of flows one would expect to find in 
chimneys - we should expect the effect of b to be maximised for such a flow. 

In section 2 we shall consider non hydrostatic symmetric instability, i.e. instability 
with k = 0 where k is the zonal wavenumber. Symmetric instability is usually thought 
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to be unimportant in the ocean as it requires a small Richardson number (R < 1), 
whereas a typical Richardson number in the ocean is very large (R ~ 104). However, 
in chimneys the Richardson number may be reduced to 0(1) as convection reduces 
stratification, and indeed one would expect symmetric instability to play a role in 
setting the potential vorticity to zero. In section 3 we shall look at weakly asymmetric 
instability by further developing our analysis from section 2. In section 4 we shall 
consider nearly geostrophic baroclinic instability, through a treatment similar to that 
of the Eady problem. 

2    Symmetric Instability 

We assume a Boussinesq adiabatic inviscid fluid on a plane rotating at angular speed 
0 about a general axis, with / = 20, sin (f) the vertical component and b = 20, cos 0 
the vertical component of the planetary vorticity. Gravity is assumed to be normal to 
the plane. If x, y and z are the zonal, longitudinal and vertical cartesian coordinates, 
u, v and w the respective components of the velocity, p is the pressure with the mean 
density term removed and divided by the density, 6 is the specific buoyancy and H 
is the thickness of the layer, then the governing equations are: 

Du 
— -fv + bw + px = 0 (1) 

Dv     „ n ,n, 
— + fu+py = 0 (2) 

^-bu+pz-e = 0 (3) 

^ = 0 (4) 
Dt v ' 

ux + vy + wz = 0 (5) 

w = Q     z = 0,H (6) 

We write u = ü + u' where ü is the basic state and u' the perturbation, and similarly 
p =p + p', 0 = 0 + ©', v = v' and w = w'. We shall assume the basic state 

(7) 

(8) 

*2-^ryz (9) 
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To nondimensionalise the equations, we use the following scalings: x ~ y ~ u0/f, 
t ~ 1//, z ~ #, 0 ~ /?#, p ~ /?#2, ti ~ v ~ u0, w ~ /#. If we assume 
perturbations of the form exp(i(st + kx + ly)) and if L = i(s + kz) then equations 1-6 
become (dropping the primes): 

Lu-v+{l + B)w + ikRp = 0 (10) 

Lv + u + ilRp = 0 (11) 

Lw = ——u + Spz-S@ = 0 (12) 
R 

LQ-^v + w = 0 (13) 

iku + ilv + wz — 0 (14) 

w = 0     « = 0,1 (15) 

where we have the following dimensionless numbers:   R is the Richardson number 
= ßH2/u2

0, S is a dimensionless stratification = ß/f2 and B = bH/u0. We expect a 
typical midlatitude value of B to be of 0(1). The hydrostatic limit would be S —>■ oo, 
J5/i? —»■ 0. These equations reduce to a single differential equation: 

(1 + L2)wZ2 - 2% (j - 1(1 + BU wz 

-    U(k2 + I2) (l + £\ + l2B(l + B)- 2
{B+

L
l)lk) w = 0 (16) 

if k = 0 (the "symmetric" limit) then this becomes: 

(UI?I1 + (1 + L2)wzz + 2*7(1 + B)WZ - I2 (5(1 + B) + R(I+
1
-))W = 0        (17) 

if I = 0 then this becomes: 

k (      L2\ 
(1 + L2)wzz - 2i-wz + k2R 11 + —- J w = 0 (18) 

It is interesting to note that in this latter case (which corresponds to d/dy — 0, B 
does not appear in the equation, and so the effect of the horizontal component of the 
rotation vector vanishes. If we write p = pt +p such that terms in p balance terms 
with B in equations 10 and 12, then: 

5 
Spz = -B-u (19) 
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Rpx = Bw (20) 

=* Pzx = -„«X = ^: (21) 

If d/dy = 0 then there is no term in p in equation 11, and equation 21 is consistent 
with equation 14. The effects of b are essentially shorted out through the pressure. 
This is dependent on the Boussinesq approximation and would not hold for an anelas- 
tic approximation, and would not necessarily be true for the atmosphere. 

The solution to equation 17 using equation 15 is: 

w = e~Yz sm[miTz] (22) 

for integer TO, where: 

Y = il i±4 (23) 
1 — s^ 

"     /S(1 + B)+Ä(1-a-(li#)=-mV (24) 
l-s2 v~v~ ' "' l " K    s)      1-S2 , 

We can define a streamfuction (p in the y, z plane such that <py = w, (fiz = —v. 

l + B 
A 1 q> = —-cos 

6 
l[y -    _  2z)  sin[m7T2;] (25) 

The streamlines show that the flow consists of tilted overturning cells. The tilt is not 
generally the same as that of the rotation vector. 

We can use equation 24 to solve for s: 

s = ±[xa±[Xb]"Y (26) 
where: 

S 5(1 + B) + R(l + S) + 2S7- 
Xa   ~ V       2(^ + 5^)' P ■ (27) 

S2(B2 + 4^6'2)(1 + Bf + SBR(6 + 2(5(1 + B) + B)) + ARS + R2(S - l)2 

(2(R + S^)f 
(28) 

The condition for instability is Xa> xh which implies R < 1 + B or, if the shear is 
reversed (« = —u0z/H in dimensional units), R < 1 — B. The dependence on B can 
not be removed by finding a Richardson number using the component of stratification 
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longitudinal wavenumber I 

CO 

Figure 1: Symmetric instability for S 
indicate growth. 

100 and R = 0.7. Negative values of Im(s) 

parallel to the rotation rather than the vertical, but this condition is equivalent to 
Q < 0, as expected. This implies that if symmetric instability of thermal winds in 
chimneys takes place, then (in the northern hemisphere) we should expect the south 
of the chimney to be more unstable than the north. 

The maximum instability is for m = l,.l -» oo. This tends to be increased by B for 
small values of B, but decreased by B for large values of B. The long wave cut-off, 
however, is always decreased by B. The magnitude of S has little effect on the results 
except when R» S. 

3    Weakly Asymmetric Instability 

We can explore growth rates near the k = 0 axis of the k, I plane by performing an 
expansion about k. We write w = w0 + kwi + k2w2 + ... and s = s0 + Jbi + k2s2 + — 
and expand equation 16. The first two equations are: 

M0 w0 = 0 

M0 w\ + MIWQ = 0 

where MQ is the operator on w in equation 17, and Mi is given by: 

(29) 

(30) 
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Figure 2: Variation of Im(s) with B for symmetric instability with S = 100, R = 0.7 
and I —> co. 

S   * 

Figure 3: Variation of Im(s) with Ä and S for symmetric instability with B = 1 and 
Z —► oo. 
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Ml = 2s0{s1 + z)d2Z + -dz+ l-Rl2s0{sl + z) + 2i-(l + B)) (31) 
SO \ so ) 

We know that the boundary conditions of equation 15 apply to all the Wi, and that 
WQ is the solution already derived for symmetric instability in section 2. Using the 
boundary conditions, equation 17 and equation 30 we can find a solvability criterion: 

Mi wo dz = 0 

7i = "(1 " s2
0) 

72 = -2if (1 + B) 

(32) 

(33) 

(34) 

(35) 

We can use this to find a solution for s\, which is ds/dk (or part of the wave speed) at 
k = 0. For I greater than the long wave cut-off, the imaginary part of $i oscillates both 
with I and with B, which is peculiar behaviour but which is analogous to the findings 
of Stone (1966) for non geostrophic instability near the symmetric axis. That study 
found that the square of the wave speed oscillated between plus and minus infinity as 
I is increased. The difference may be due to our inclusion of non hydrostatic effects 
in this case. It should be 

4    Nearly Geostrophic Instability 

We assume, as commonly done for the Eady problem, that some Rossby number for 
the system is large and the horizontal velocities are nearly geostrophic, so that we can 
write fv = px and fu = —py. Aside from the usual requirements of quasigeostrophy, 
in our case we also require that B as defined in section 2 is of at most 0(1). Still, the 
use of such dynamics is questionable. Our boundary conditions (w = 0 at z = 0, H) 
become, through the heat equation: 

(dt + udx)Q' + v'Qy = 0      z = 0, H (36) 

using the same notation as in section 2. The vertical momentum equation becomes: 

Vz + jPy = @ (37) 

Ignoring terms in w and second order in perturbation variables, we can write the 
potential vorticity Q as: 
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Figure 4: Variation of Im(s) with I for weakly asymmetric instability with R = 0.7, 
S = 100 and B = 1. 
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Q = (/ + Qez + (b + oey + (/ + c)e; + c'e, + (6 + £)e; + ft,   (38) 

C = ««-«, (39) 

£ = ti, (40) 

The first two terms of this are the basic state and hence constant. If we denote the 
last four terms by g7 then, by conservation of potential vorticity, cf = 0. Using the 
same definitions and non-dimensionalisation as in section 2 and dropping the primes, 
this becomes: 

pz2 + 2il(l + B)pz - {R(k2 + l2)+B l2(l + B))p = 0 (41) 

Solving this, using equation 36 and writing 5 = ck, we can solve for c: 

c=-±-iA1±^ (42) 

1     R(k2 + P) + Bl2{3 + AB) V    } 

A2 = R2(k2 + I2)2 + Bl*(3 + 45)2 + RBl2(3 + AB){k2 + I2) - Al2(l + 2B)2 

-4 (R{k2 + I2) + Bl2(3 + AB) (^|— - l))     (44) 

A3 = 2R{k2 + l2) + Bl2{3 + 4B) (45) 

X = [l2(l + B)-R{k2 + l2)}* (46) 

The Ai term is zero when I = 0 or R —► oo (for k ^ 0). The magnitude is maximum 
as k —* 0, monotonically decreasing with k. This term implies instability at all k 
(albeit with a growth rate that may be very small). 

When I —► 0, as expected from the discussion of equation 18, this becomes the 
standard solution to the Eady problem. If R —>• oo we also arrive back to the standard 
solution. However, in the case B —*• 0 but R is not large, our solution is different 
from the standard solution (due to our inclusion of the horizontal contribution to the 
potential vorticity). 

The major differences between this solution and the standard solution for moderate 
R are as follows. Except when B is small, A2 becomes positive for smaller k (at 
which point the two solutions for the imaginary part of c collapse into the one given 
by the Ai term in equation 42). For B and I sufficiently large A2 may be real for all 
fc, except for sufficiently small R as explained below. Also, for small I the maximum 
growth rate is for small k (if the Ai is not small compared with -V/A2/A3. 

-Zo£- 



0.04 

0.02 
\   \l=0 

V                   0.2 \ J    °'4 o.s o.s J 

0.02 

0.04 

0.06 1=0.1 

Figure 6: Variation of Im(s) with B for nearly geostrophic instability with R — 50. 

For some values of k and /, the X/ tan X term in equation 45 
along hyperbolae in the k, I plane given by: 

k2-l2 B      1_ 
R + R 

1   = 
n2x2 

'~R~ 

±oo. This occurs 

(47) 

where n is an integer other than zero. At these hyperbolae the imaginary part of s 
becomes infinite. The condition for this to occur is R < 1 + B, i.e. the same as for 
symmetric instability. These hyperbolae meet the I axis at the same places that the 
oscillations of c with I at the I — 0 axis found by Stone described in section 3 become 
singular. The hyperbolae would seem to be a continuation of this feature from the 
symmetric axis into the k, I plane. 

5    Conclusions 

The non vertical part of the rotation vector may either stabilise of destabilise a 
zonal thermal wind with a vertical shear according to the orientation of the wind to 
symmetric instability, in a way that is consistent with a Q < 0 instability criterion. 
However, maximum growth rate of the instability decreases with b except when b is 
small. 

For weakly asymmetric instability dlm(s)/dk for k = 0 oscillates with I, which implies 
that for finite I the maximum growth rate is not on the I = 0 axis. These are probably 
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associated with hyperbolae of infinite growth rates in the &, I plane that can be found 
in the nearly geostrophic limit. 

Nearly geostrophic baroclinic instability is most affected by b when the Richardson 
number is small. In such cases, the maximum growth rate will be at smaller k. 
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Spectral theory for the Rankine Vortex 

N.J. Balmforth 

We consider the linear eigenvalue problem for infinitesimal perturbations to ideal, in- 
compressible, two-dimensional vortices. The linear eigenvalue problem contains a singular 
point for radii at which the mean rotation rate of the vortex matches the rotation frequency 
of the perturbation. This critical ring introduces an irremovable singularity into the equa- 
tions for neutral modes and leads to a continuous eigenvalue spectrum. In addition there 
may also be discrete complex modes of regular form corresponding to growing/decaying con- 
jugate pairs, and discrete neutral modes associated with discontinuities in the distribution 
of ambient vorticity. In this lecture, we described how to construct a unique set of singu- 
lar eigenfunctions corresponding to the continuum, and established that the complement of 
eigenfunctions comprised a complete set. Here, we outline these calculations specifically for 
the Rankine vortex. 

The linear equations 
In ideal fluid theory, any circular vortex whose rotation rate as a function of radius, r, is 

ß(r), is a possible equilibrium. If we assume dependences on angle, 0, and time, t, of the form 
exp im{9 - ut), then infinitesimal perturbations to such basic states satisfy the equations, 

(fi - u)u = AV> (1) 

and 

U! (2) 

where w(r) and tp(r) are the radially dependent parts of the perturbation to the vorticity and 
streamfunction, and 

1 d 
A = - — 

r dr 

ld(r2Ü) 

r     dr (3) 

We solve (1) and (2) on the interval 0 < r < oo, subject to the boundary conditions that V> 
vanish at both limits. Equation (1) contains the singular point (radius), r = rc, where ß = v. 
This equation for the ideal vortex is the analogue of Rayleigh's equation for shear flow in a 
channel. 

The Rankine vortex consists of a rigidly rotating core surrounded by irrotational flow 
extending to infinite radius. In terms of rotation rate, the vortex is described by 

fi(r) = (SWA2    r>a, (4) 

with a the core radius and ß0 its rotation rate. For this vortex, ß(r) is not twice differentiable, 
and we must represent A by a <!>—function: 

A = —-±6(r-a)    . (5) 

Although this is not a well-behaved function it has the advantage that we may immediately 
perform any integrals that appear in the problem. Hence we may find explicit solutions for 
the eigenfunctions. 
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Discrete modes 
We first solve (1) and (2) for the discrete modes of the vortex, which amounts to Kelvin's 

(1880) original solution. We begin by inverting the Poisson relation (2) between u and ip by- 
introducing the Green function, G(r,r'), of the Fourier-transformed Laplacian: 

/•OO 

rP(r)= G(r,r')u(r')r'dr'    , (6) 
Jo 

with 

where H(x) is the Heaviside function. Hence, 

(7) 

^(r) = - n-v   (r'a)  " () 

By setting r = a, we obtain the dispersion relation, 

1 = — — Gia.a) = ——     . (9) 
Ü0 - v   K  '   ;      m(Q0 -v) W 

Thus 
mv = (m — l)^o    j (10) 

and so 
%j) = -2m^(a)G(r, a) = G(r, a) (11) 

if we set ij>(a) = G(a, a). Finally, 

u = -6(r-a)    . (12) 
a 

Singular eigenfunctions 
To find the eigenfunctions of the continuum we follow Van Kampen's (1955) recipe. We 

solve (1) by writing 

u(r;rc) = V-£^ + C8(r-rc)    , (13) 

with V meaning the Cauchy principal value, and £2(rc) = v. We then determine the arbitrary 
constant, C, by using the normalization, 

rcE = /     w(r; rc)rdr = °n '  cJ + rcC    , (14 
Jo Uo-V 

with H an eigenvalue-dependent parameter. Or, 

2ft0V>(a;rc) 
^=-1 77i T     ■ (15j rc(S20 — v) 

If we introduce this value into equation (13) and use (6), we find a relation for the stream- 
function, 

iKr; rc) = 2^{a; rcf^^'f^ + rcE G(r, rc)    . (16) 
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If we select r = a, we obtain the algebraic relation, 

rcG(r,rc) - aG(r,a) 
Ha;rc)l l-2ft0- a[ß0 - 0(rc)] 

= rcE G(a,rc) (17) 

In order to be able to solve this relation, hence find a solution for iß for all values of rc, we 
must be careful about points for which 

1- Q(r) = 1 fl - (rAmH{a - rc) - (-)
mH(rc - a)       . 

m [        \ a / \rc/ 
(18) 

At these points the left-hand side of (17) vanishes and we can only find a solution for iß(a; rc) 
provided we insist E = 0.   In other words, it is only by choosing a suitable normalization 
function, E(rc), that we can find a uniquely prescribed set of singular eigenfunctions.   In 
particular, we choose 

-     i     oo rcG(r,rc)-aG(r,a) 
rcz = 1 — Z\IQ- 

which implies that 

Whence, 

ip(r;rc) = G(r,rc) 

a[O0 - &(rc)] 

ip(a;rc) = G(a,rc)    . 

2O0 

fi0 - fi(»"c) 
[G(rc, a)G(r, a) - G(a, a)G(r, rc)] 

and 

aj(r; rc) = -S(r — rc) — 
r 

2fi0 -G(rc,a)6(r-a) G(a, a)S(r - rc) 
Ho — il(rc) [a rc 

(19) 

(20) 

(21) 

(22) 

Completeness 
To establish the completeness of the eigenfunctions, we solve the initial-value problem; 

we take a superposition of eigenfunctions and represent an arbitrary initial condition in 
terms of them. The superposition is, on combining an integral over the continuum with 
the contribution of the discrete mode, 

1 + 
2f2, 

r°° l 
Q(r) := w(r, t = 0) =  /     A(rc)u;(r; rc)rcdrc + -AdS(r - a) 

Jo a 

A(rc)G(a,rc) 

Ü0 - ß(r) 
G(a, a) A(r) -I- -S(r - a) 

a 
Ad - 29,QV [ tt0 — &(rc) 

rr.drn 

(23) 

(24) 

The initial condition, Q, we require to be a continuous function. Hence the right-hand side of 
(24) should not contain any irregular terms like a £—function. We may eliminate such terms 
by choosing 

Jo 

This leaves 

Q(r) = 

Q0 - ß(rc) 

'ßd-ß(r) 

-rcdrc 

ßo - ß(r) 
A(r)    , 

(25) 

(26) 
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where Qd = Q^d) = (m — l)Qo/m is the rotation frequency of the discrete mode. 
In general we cannot solve (26) for A at the point r = rj unless that function is not 

regular there. In fact, we need to set (c/. Balmforth & Morrison, 1995) 

A(rc) = A(rc) + 7> 
Q0 ~ ß(r) 

Qd-Q(r)_ 
Qo (27) 

where Ä is bounded at rc = r<f, and Qd = Q{rd)- (In principle, we might also include a term 
X6(r — rd) in (27), but in the current context it does not seem necessary.) Then, 

Oo - ft(r) 

Qd - fi(r) 
A(r) = 

which is always solvable. Moreover, 

A(rc)G(a,rc) 

[Q{r)-Qd]    , (28) 

Ad = 2O0   P / Jo Q0 - Q(rc) 
rcdrc + QdV f Jo 

G(a,rc) 

Qd — Q(rc) 
rcdrc 

= 2ÜQV I 
Jo 

Q(rc)G(a,rc) 
rcdrc 

(29) 

(30) 
Qd - Q(rc) 

Since A and A<j are now prescribed by Q, we therefore have established completeness. 

Temporal evolution 
At finite time, the disturbance to the vortex evolves as 

f°° 1 
u>(r,i) =   /     A(rc)oü(r;rc)e-imü^Kcdrc + -Ade-'mn^(r - a) (31) 

= Q(r)e-imß<r>' + -Sir - a)e-imQit f°° G(^ro)Q(rc) ^ _ e-im[fi,-Q(rc)]t j ^^    (32) 

a Jo       Qd — Q{rc)    *■ > 

=: ü(r,t) + Ud(t)8(r — a) (33) 

Hence a £—function develops immediately in the perturbation.  We understand this from a 
physical perspective by observing that the background vorticity can be written in the form 

( = -(rzQ)' = 2Q0H(a-r)    . (34) 

If we add the linear perturbation to this basic profile we find 

oo oo 

C + J2 "rn(r, t)eim9 = 2Q0H(a - r) + £ [wm(r, t) + um,d(t)8{r - a)} eim6    , (35) 
m=l 771=1 

where we have restored the dependence of the linear solutions on m and summed over all 
azimuthal modes. To linear order, equation (35) can be written as 

C + J2 "rn(r,t)eim9 = 2Q0H(n - r) + ]T üm(r,t)eim0 (35) 
m=l 771=1 
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with oo 

m=l 

Hence the ^-function piece of the linear solution simply corresponds to the motion of the 
vorticity interface; at time t, the interface lies at a radius, r{. 

Remarks 
In this summary we have described spectral theory exclusively for perturbations to the 

Rankine vortex. This configuration has the important property that the mean vorticity 
gradient vanishes everywhere except at the boundary of the core. Hence it becomes possible 
to directly calculate the eigenfunctions. In the case of a vortex with a general rotation profile, 
the equations reduce only to an integral Fredholm problem for the streamfunction and we 
need to invert a singular integral expression to solve the initial-value problem (cf. Balmforth 
& Morrison, 1995). 

We also do not need to restrict consideration to incompressible vortices, but we may 
extend our analysis to study vortices in shallow water or two-dimensional compressible fluid. 
In these cases, the spectrum also contains an infinite number of discrete modes corresponding 
to surface gravity waves or acoustic modes. With methods related to those used here we 
may extricate the compressional modes from the continuum and examine the details of the 
spectrum. 

Once we have establised a complete set of eigenfunctions we can continue on to study 
the long-time behaviour of the initial-value problem. This usually uncovers algebraic decay 
of the continuum through phase mixing, but we can also find exponential decay under some 
circumstances. This proves relevant to recent experiments on electron plasmas that can be 
magnetically confined in such a way to produce dynamics which approximate that of an ideal 
two-dimensional fluid (e.g. Gould, 1995). 

We may also address the issue of vortex stability within the context of Hamiltonian the- 
ory. The ideal fluid equations can be recast in the form of a Hamiltonian field theory. The 
singular eigenfunctions can be used to define a canonical transformation of the Hamiltonian 
coordinates, which places that theory into canonical, action-angle form (Balmforth &: Mor- 
rison, 1995). This reveals the amplitudes of the singular eigenfunctions to be some sort of 
normal coordinates for the fluid. Moreover, we can unambiguously define the energies of the 
singular modes and predict the existence of negative energy modes, phenomena that have 
previously been observed in electron plasmas (e.g. Gould, 1995). 

Finally, once we have a basis set of eigenfunctions for the linear problem, we can advance 
to consider more general situations in a perturbative context. For example, we can use the 
eigenfunctions to study the dynamics of weakly dissipative and nonlinear disturbances to the 
vortex. 
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Vorticity Dynamics in Shear Flow 

D. del-Castillo-Negrete*       W. R. Young*     N. J. Balmfortht 

The dynamics of vorticity in shear flow is an interesting topic in fluid dynamics with 
important applications in geophysical flows where the generation and persistence of coherent 
vorticity structures in shear flow is commonly observed. One of the simplest models is the 
Euler equation: 

^ + {*,V2*} = 0, (1) 

where the domain is a channel with walls at y = ±1 and periodic in x, {f,g} ■= dxfdyg — 
dxgdyf, and the velocity field is given by (u,v) = (—dy$, dx$). 

The present report has two objectives. The first (Section 1) is to show how, under certain 
conditions, Eq. (1) can be reduced to the relatively simpler Eqs. (5) and (9) for studying 
vorticity dynamics in shear flow. The second objective is to study the linear (Section 2), 
and nonlinear (Sections 3, 4, and 5) dynamics of the reduced equation. To simplify the 
discussion we will neglect dissipation. However, the results presented can be easily modified 
to include both viscous dissipation (~ V4\I>) and Ekman dissipation (~ V2^). Also, the ß 
effect, which accounts for the variation of Coriolis force with latitude, will been neglected. 
The incorporation of the ß effect in the analysis presented below can be done, but it involves 
certain technical complications that we prefer not to discuss in this preliminar report. 

1    Derivation of the reduced vorticity equation 

We begin by decomposing the streamfunction as 

tt = ^o(y)-+eV(s,s^)- (2) 

Substituting Eq. (2) into Eq. (1) yields 

(I + "°I)VW^VM-<'| = °. (3) 
where the primes denote differentiation with respect to y, and u0 = —tf>'0 is the shear flow 
velocity profile. The main assumption that we will make is that the shear flow vorticity has 
the form 

Z0 = -u'0 = -l + eF(y/e)  , (4) 

*Scripps Institution of Oceanography, UCSD La Jolla, CA 92093-0230 
tInstitute for Fusion Studies, UT Austin, TX 78712 
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where F is a arbitrary function such that F —>• 0 for \y\ > e, and e is a small parameter. 
That is, we are interested in the dynamics of a vorticity band of width and streght of order 
e, immersed in a constant (order one) vorticity background . In terms of the velocity field, 
the problem is that of a Couette flow (u0 ~ y) with a "defect" located in a strip of order e 
around y = 0. Some linear stability aspects of this problem have been studied in [1]. 

The derivation proceeds by a matching asymptotic expansion in the spirit of the theory 
of critical layers [2, 3]. It is not our intention to present here a detailed derivation (which 
will be published elsewere); rather, we limit to highlight some of the basic ideas involved. 
We refer to the \y\ » e region as the outer region and to the \y\ ~ e region as the inner 
region. 

To study the flow in the inner region, we rescale the time and y coordinates as t -*■ e t 
y -s- y/e, and propose a solution of the form ipin = B(x,t) + e <f>(x,y,t), where <f>{x,y = 
0, t) = 0 and B is an unknown function to be determined. Substituting this expression for 
ipin into Eq. (3), and doing the long-wave approximation V2 « e~2 <P/dy2, yields to leading 

°rder dA    dA   dJLdA = § (5) 
dt dx      dx  dy 

where Z = cj>" + F is the vorticity in the inner region. That is, in this approximation, the 
vorticity is simply advected by the streamfunction 

rl> = -±y2 + B(x,t). (6) 

The function B(x,t) is determined by considering the outer flow. Rescaling the time as 
before (t -^ et), Eq. (3) for the outer flow reduces to yV2Vw = 0, which has the general 
solution V2Vw = -2A(x,t)S(y), where %) is the Dirac delta function and A(x,t) is an 
undetermined function. That is, in this approximation, the outer flow is the superposition of 
the constant vorticity background and an irrotational flow ißout driven by the inner flow. The 
matching of the outer flow across the inner region requires that the velocity jump, -2A(x, t), 
of the outer flow at y = 0 equals the integrated vorticity, / Z dy, of the inner flow, that is 

/oo 
Z(x,y,t)dy. (7) 

-oo 

The solution of the outer flow equation is given by 4>out{k,y,t) = Q{k,y)A{k), where Q 
is the Green function, and the tilde denotes Fourier transform. Accordingly, tpout(k,y = 
0, t) = k'1 tanh k Ä(k, t), and therefore to satisfy the matching condition, ipout(x, y = 0, i) = 
tpin(x,y = 0,t), the B function has to satisfy 

B(k,t) = k-H<mh{k)Ä(k,t) . (8) 

Inverting the Fourier transforms in Eq. (8), the relation between B and Z can be written as 

B{x,t) = -l-Jdx'JdyK.{x-x')Z{x',y,t), (9) 
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where K(x) := 7r_1 In | coth(7rx/4)|. Equation (9), which accounts for the self-consistent 
modification of the streamfunction in Eq. (6) by the vorticity distribuition, is the analogue 
of the condition Z = V2\l/ in Euler's equation. 

The reduced vorticity equation (5), (9) inherits all the conservation laws of Eq. (1); it 
has the infinite number of vorticity invariants 

jJdxJdyC(Z) = 0, (10) 

where C is any function of Z, and the momentum invariant 

i/,fa/*»Z = 0. (11) 

Also, it has the energy invariant 

jt (E. + E,) = 0, (12) 

where Es is the energy of the inner vortical field or the "shear flow energy", and Ej the 
energy of the outer irrotational field, defined as 

Es = - / dx f dyy2Z,     Ef = f dx AB . (13) 

We conclude this section by pointing out that the reduced vorticity equation is mathemat- 
ically equivalent to the equation for a one-dimensional electron plasma. Let f(x, v, t) denote 
the phase space distribution function of a single component plasma, then the evolution of / 
is governed by the so-called Vlasov equation (see for example [4]) 

df      df    d(f>df    n ■      „N 

where <j>(x, t) is the electrostatic potential which is obtained from f(x, v, t) in a self-consistent 
way via Poisson equation 

— = -i7rjf(x,v,t)dv, (15) 

which can be written as 

<f>= fdv fdx'g(x-x')f(x,v',t), (16) 

where Q is the Green function for the Laplacian in one-dimension. Equations (14) and (16) 
are equivalent to Eqs. (5) and (9), if we identify the fluid vorticity Z(x, y, i) with the plasma 
distribution function f(x,v,t), the (x,y) fluid spatial coordinates with the (x,v) plasma 
phase space coordinates, the fluid outer field B(x,t) with the plasma electrostatic potential 
<j>(x,t), and the Green's function Q of Poisson equation with the kernel K, in Eq. (9). In this 
analogy, the shear flow energy Es corresponds to the kinetic energy of the plasma particles, 
and the outer flow energy Ef corresponds to the electrostatic energy of the plasma. 
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2    Linear Stability 

To study the linear stability of a vorticity profile F(y) consider 

Z(x,y,t) = F(y) + Z1(y)e^-^ . (17) 

Substituting Eq. (17) in Eqs. (5) and (9), and neglecting quadratic terms in Zu leads directly 

to the dispersion relation 
/oo         /?' 
 dy ■ (18) 

-oo y — c 

This result illustrates the advantages of the reduced system. To get the dispersion relation 
using the full equation of motion, Eq. (1), one has to solve the eigenvalue problem for 
Rayleigh equation which is a much harder problem than the evaluation of the integral in 

Eq. (18). 
As a simple example consider the "top-hat" vorticity distribution: F(y) = T) for \y\ < 1/2, 

and F(y) = 0 elsewhere, where 77 is a constant. This vorticity distribution corresponds to 
a piecewise linear velocity profile. In this case the integral in Eq. (18) is trivial to evaluate 
and yields to the dispersion relation 

,      1      7? tanhk ,ir.N 

For small e (where e is the small parameter used in the derivation of the reduced vorticity 
equation) this result agrees with Rayleigh's general result. 

As another example consider a Lorentzian vorticity profile, F(y) = 77/(1 + y2). In this 
case the integral in Eq. (18) can be evaluated using Cauchy residue theorem and yields the 
conclusion that normal modes with 

'l|,|Ü£*_lh, (20) 

exist in the region of the (£,77) plane defined by the condition (ir/2) 77 ta.nh k/k < -1. 
Outside this region there is the continuous spectrum in which there is no definite connection 
between k and c, and the linear problem does not have regular solutions of the form ~ 
„ik(x-ct) 

In addition to providing explicit dispersion relations, the relative simplicity of the linear 
theory of the reduced vorticity equation allows the derivation of necessary and sufficient 
conditions for linear instability. These conditions can be obtained using the so-called Nyquist 
method which has been extensively applied to study the linear stability of Vlasov equation 
(see for example [4]) which, as we discussed before, is analogous to the reduced vorticity 

equation. 
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3    Nonlinear solutions 

The Vlasov equation (14), (16) admits a large class of exact nonlinear solutions known as 
BGK modes (after Bernstein, Greene and Kruskal [5]). In this section we discuss how to 
construct the analogue of the BGK modes for the reduced vorticity equation. The basic 
idea is to look for time independent solutions in which the vorticity is a function of the 
streamfunction. 

Let 
Z(x,y) = Z(i>), (21) 

where ip is the streamfunction in Eq.(6). Equation (21) will be an exact solution of Eqs. (5), 
(7), and (8) for any function Z, provided 

/ dx'A(x *W) = ~\ /   ,Z^\^ (22) 

where 2 TT A(x) := / dkk coth kelkx. Thus, by selecting appropiate expressions for the function 
Z(i>), exact nonlinear solutions can be found by solving Eq. (22) for B(x). Alternatively, 
one can assume the function B{x) to be known, and solve Eq. (22) for Z{ip). Finding these 
solutions is complicated due to the integral operator in the left hand side. However, in the 
long-wave limit the relation between A and B simplifies to B(k) « (1 — k2/3)A(k) and 
Eq. (22) becomes 

d2B     OD     3  f      Zty) 
35 + 

dx2 2J  ^2{B - 0) 

which can be rewritten as the potential equation 

d2B _     dV 

lx^~~~dB 

with the potential given by 

/      WL-# , (23) 

(24) 

V(B) = -Z-B2 -lj Z{^2{B -^)# . (25) 

Thus, given a function Z(ip), a nonlinear solution of the reduced vorticity equation can be 
obtained by solving Eq. (24), a problem equivalent to finding the trajectories of a one-degree 
of freedom particle in a potential. Since the potential is time-independent, the solution can 
easily be reduced to a quadrature. On the other hand, the problem of solving for the function 
Z(tp) assuming the function B(x) is known, is equivalent to the inverse problem of finding 
the potential of a system knowning its trajectories; under some conditions, this problem has 
unique solution that can be reduced to a quadrature (see for example [6]). Finding these 
nonlinear solutions is important because, provided they are stable, they can be used to model 
the formation and presistence of coherent structures in shear flows 
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4    Wave-mean flow interaction 

A problem of interest in shear flow dynamics is the understanding of how waves change the 
average properties of the flow. Related to this problem are the problems of marginal stability 
relaxation and vorticity homogenization. To gain some understanding on these issues we 
present here the wave-mean flow interaction theory for the reduced voticity equation, and 
show that the evolution of the average vorticity field is governed by a diffusion-like equation. 

Let 
Z{x,y,t) = Z{y,t) + Z'(x,y,t), (26) 

where Z := f Zdx, and Z' = 0. Taking the ^-average of Eq. (5) yields 

The right hand side of Eq.(27) is computed using the linear dynamics 

dZ^+    dZ^+d&dl = Q (28) 

dt dx      dx   dy 

Equations (27) and (28) resemble the standard wave-mean flow interaction equations in 
which the time evolution of the average profile is written in terms of the Reynolds stress 
which, in turn, is computed using linear theory. However, there is an important difference 
because, due to the relatively simplicity of the reduced equation, it is possible to obtain an 
analytic expression for the "Reynolds stress" dxB' Z' in Eq. (27). As a matter of fact, after 
some algebra, Eq. (27), can be written as the diffusion equation 

D = 2      —^ rr-^^M)^, (30) 
Jo    (kv — u}r)   + LOT 

with the "diffusion coefficient" given by 

'•°0     u>i k tanh k 

(ky -UJT)
2
 -fw 

where u>(k) = uT + iu{ is the frequency given by the dispersion relation in Eq. (18), and 
S(k,t) = 2irÄ(k,t)B(k,t) is the spectral energy density of the outer flow which satisfies the 

equation 

^ = 2".-£• (31) 

Note that, depending on the sign of Wj, the diffusion coefficient can be positive or negative. 
Equation (29), which is the analogue of the quasilinear equation of plasma physics (see 

for example [4]), preserves all the invariants Eqs. (10)-(12) of the reduced vorticity equation. 
We speculate that the waves growing in an unstable vorticity profile tend to mix vorticity 
so that the average vorticity relaxes to a marginally stable profile by a diffusion-like process 
during which energy is exchanged between the mean flow and the waves. 
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5    Numerical integration 

To conclude we discuss some results on the numerical integration of the reduced vorticity 
equation. We used a Fourier pseudospectral method in x, with finite difference in y. The 
integral in Eq. (7) was evaluated with the trapezoidal rule. For the time-stepping, an Adams- 
Bashforth-Crank-Nicholson method was used. The y domain (which in the reduced vorticity 
equation is (-co, oo)) was truncated to the interval ( — 10,10). For the results reported here, 
the A, B, and Z fields were neglegible for \y\ > 10. 

We studied the time evolution of initial conditions of the form 

c 

Z(x,y,t = 0) = -1— + —— cos* . (32) 
1 + y2      1 + y4 

The first term on the right hand side is an unperturbed Lorentzian vorticity profile of ampli- 
tude 77, which according to Eq. (20) is unstable for 77 < — 2/TT m —0.6366. The second term 
is an small perturbation of size 8. 

• Figures 1 (a)-(e): Unstable vorticity profile 

In this case, 77 = —2, and 8 = 0.1, and thus the vorticity profile is unstable. Figures 
(a) and (b) show contour plots of the vorticity field Z(x,y,t) at t — 0 and t = 10 
respectively. As expected, the numerical integration shows growth of the perturbation 
and vortex formation. Figure (c) shows a cut of the voricity field at x = ir. As the 
instability grows the mean vorticity profile broadens. Figure (e) shows the evolution of 
the energy; the solid line is the energy of the outer field Ef(t) — -E/(0), and the dotted 
line the energy of the shear flow Es(i) - Es(0) as defined in Eq.(13). The energy plot 
shows a tendency towards a saturation stage in which the shear flow and the field 
energy reach a steady (or possibly oscillatory) state and the interchange of energy 
between the shear flow and the outer field stops (or oscillates with a small amplitude). 
This saturation is also observed in the evolution of the B(x,t) field in Fig. (d). Thus, 
it is plausible that the asymptotic regime in this case can be described by a BGK 
mode. 

• Figures 2 (a)-(e): Stable vorticity profile 

In this case, 77 = —0.5, and 8 = 0.025, and thus the vorticity profile is stable. Figures 
(a) and (b) show contour plots of the vorticity field Z(x,y,t) at t = 0 and rj = 10 
respectively. As expected, there is no growth of the perturbation. As time increases, 
the vorticity profile, Fig. (c), narrows, and the B field, Fig. (d), becomes smaller. The 
damping of the outer field B(x,t), and the narrowing of the vorticity profile, is the fluid 
analogue of the collisionless damping of electrostatic plasma waves known as Landau 
damping (see for example [4]). Physically, Landau damping can be undestood as an 
exchange of energy between the plasma particles and the electrostatic wave. That is, 
the wave damps by transferring its energy to the particles which increase their kinetic 
energy broadening the distribution function.   In an analogous way, the fluid outer 
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field B damps transferring its energy to the shear flow as is manifest in Fig. (e); at 
the same time, as shown in Fig. (c), the vorticity profile narrows (the profile narrows 
instead of broadening because the shear flow energy is negative). Note however that 
the amplitude of B instead of going to zero saturates in a regime which might be also 
described by a BGK mode. 
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Ultrasound scattering by turbulent flows 

Stephan Fauve 
Ecole Normale Superieure de Lyon 
46, allee d'ltalie 69364 Lyon France 

1. Sound scattering by velocity gradients 
It has been known for a long time that waves can be used to probe a medium which 
interacts with them. In the case of sound waves, scattering results from density, tem- 
perature or velocity fluctuations. This can be easily understood since the three types 
of perturbations generate local variations of the sound velocity, and the wave equation 
with a random index of refraction has thus been widely used to study amplitude and 
phase perturbations of sound waves in turbulent media [1-4]. Although it can be shown 
that the stochastic wave equation is a reasonable approximation in some limits [5], the 
hydrodynamic equations describing the interaction of sound waves with turbulent flows 
cannot be directly put in this form in general. However, the interpretation of many 
experimental results have been tried in this framework, using empirical models to relate 
the index of refraction to the statistical properties of the turbulent flow. More for- 
mally, the scattering of sound by turbulent inhomogeneities traces back to the coupling 
between the hydrodynamic modes of a simple fluid, i.e. sound, entropy and vorticity 
modes [6]. 

We consider here an incompressible flow and thus neglect its density variations. We 
also neglect temperature fluctuations. The only scattering mechanism is thus related 
to fluctuating velocity gradients. This approximation is realistic in the limit of small 
Mach numbers 

M = ^<1, (1) 
c 

and is easily experimentally checked since scattering by density or temperature fluctua- 
tions generate a different qualitative behavior of the cross-section versus the scattering 
angle. We consider that the frequency us of the sound wave is large compared to any 
characteristic frequency UJQ of the basic flow, 

u3 > w0, (2) 

which is thus considered frozen, and we assume that viscous dissipation is negligible on 
the acoustic time scale. Writing u = ÜQ + v.s and p = po + p3, where the subscript 0 
stands for the basic flow and s for the sound wave, and taking into account the above 
approximations, we obtain from the conservation equations for momentum and mass 

—f + — X7ps » -(u0.V)vs - (vs.V)u0, (3) 
at      po 

-^- + po^.vs « -u0.Vps. (4) 

The left hand side, with ps = c2ps, is related to the sound wave alone, and coupling 
terms with the basic flow on the right hand side of (3, 4) are of respective order, M, 
MXs/lo and M related to the left hand side, where \3 is the acoustic wavelength and 
lo a characteristic spatial scale of the basic flow. Terms of higher order in M have 
been omitted and Xs/h should not be too large in order to ensure the validity of the 
approximation. 

a) The short wavelength limit 
In the limit of very high sound frequency or short wavelength, the second term on 

the right hand side of (3) can be neglected and equations (3, 4) can be put in the form 

D2p3-fi: + uo.v)2p3=c^p3, (5) 
Dt2   ~ \dt 
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showing that the sound wave is advected by a locally constant flow. Similar approxi- 
mations were first used by Obukhov [7] and Blokhintzev [8] to compute scattering of 
sound waves by turbulence. In the limit of geometrical acoustics, one thus has for the 
velocity of a point on a wave front 

§=4+{r°' (6) 

where k is the local wave vector, and one can compute ray trajectories in the fluid. 
The refraction of sound by wind has been considered by Rayleigh [9] and geometrical 
acoustics in moving media has been worked out in details by Blokhinstev [8]. Rudnick 
considered the refraction of sound at an interface between two perfect fluids moving at 
different velocities, i.e. a vorticity sheet, [10-12], and Lindsay investigated the case of 
refraction by a two-dimensional vortex [13]. It can be shown from (6) that a unit vector 

i, tangential to an acoustic ray, obeys 

fWx^, (7) 
dl c 

where LüQ is the vorticity field of the flow and dl the element of length along the ray [14]. 
This formula does not mean that the equiphases of the sound wave are not distorted 
by a flow without vorticity. Indeed, the flow generally makes the medium anisotropic, 
and i*is no longer parallel to the wave vector k. Phase fluctuations of an acoustic wave 
propagating in a turbulent medium can be evaluated in the limit of geometrical acoustics 
3, 4]. This gives a correct estimation provided that the size of the inhomogeneities IQ 

remains large compared to the first Fresnel zone, i.e.   up to a propagation distance / 
given by 

l^f. (8) 
Note that this condition only implies the size IQ of the inhomogeneities but not their 
strength 6uo/c, where SUQ is the velocity increment on size IQ, contrary to refraction 
effects which subsist in the limit of geometrical acoustics. 

b) Sound scattering in the small Mach number limit 
When the sound wavelength is of the same order than the size of some turbulent 

eddies, all terms in equations (3, 4) should be kept and, using approximations (1, 2), 
one obtains 

d2ps       o d" /nN — -c-ApsK2P0-5^:(u0ivsj). (9) 

This shows that when the turbulent flow UQ is probed by an incident sound wave 

(ps ,Vs ), the source term on the right hand side of (9) generates scattered waves 
which result from the interaction between the flow and sound velocity fields. It can be 
observed from equation (9) that the scattered wave is frequency shifted in the case of 
a time dependent flow uo, and also that the interaction term has the same quadrupole 
distribution than the source term found by Lighthill for aerodynamic noise generation 
by turbulence at small Mach number [15]. It is thus easy to discriminate scattering by 
velocity gradients from scattering by temperature fluctuations which leads to a dipolar 
distribution [16-19].   If the interaction term is small, the total sound field is roughly 

equal to the incident one and we can replace v3j by u, • i.e. use the Born approxima- 
tion to compute the scattered wave. This has been done by Kraichnan, who obtained in 
the far field limit, formulas for the angular and frequency distributions of the scattered 
wave in terms of the Fourier transforms in space and time of the shear velocity field UQ . 

Although most experiments of sound propagation in turbulent flows concern am- 
plitude and phase fluctuations of the incident wave, there were also a few studies of the 
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angular distribution of the scattered waves, in atmospheric turbulence by Kallistratova 
and Tatarskii [16], in grid turbulence in air by Baerg and Schwarz [18] and in a tur- 
bulent jet in water by Korman and Beyer [21]. The results obtained by these authors 
were found to be consistant with Kraichnan's formula, and quantitative differences can 
be easily explained, in air because of the approximations leading to (9) are not always 
fulfilled, and for turbulent jets in water because of the possible existence of tiny air 
bubbles which modify the scattering properties. 

Several authors have related the scattered sound to the vorticity LOQ = V x UQ 
of the flow, starting from Pitaevskii who calculated the phonon part of the mutual 
friction force in superfluid helium using the scattering formula for sound by potential 
vortices [22]. Ferziger considered the case of a Burgers vortex and discussed ultrasound 
scattering as a possible monitoring system for vorticity [23], and Fabrikant [24], Klimov 
and Prozorovskii [25] and Lund and Rojas [26] gave compact formulas in the far field 
approximation, relating the scattering amplitude to the vorticity. One has for the 
scattering amplitude 

f(kuk2) oc — (fcx -k2) (h -uo(g)) oc —^(fci • k2){h x k2)-u>0(q), (10) 
u3 \ /       u)sq 

where k\^ are respectively the incident and scattered wave vectors, q = k\ — k2 is the 
scattering wave vector, üo(<sO ^s the spatial Fourier transform of the vortex flow velocity 
field and £>o(<?) is the spatial Fourier transform of the vorticity. Consequently, only the 
vorticity component perpendicular to the scattering plane is probed, and the scattered 
wave vanishes at angles TT/2 and TT. The possible divergence of / at small scattering 
angle is a well known deficiency of the Born approximation. It may be compensated 
by the q dependence of the G>o(q) if the total vorticity vanishes i.e. if there is no global 
circulation [24]. - However, the Born approximation could not be entirely correct, in 
particular at small scattering angles, because of the lack of an imaginary part of the 
scattering amplitude which must exist according to the optical theorem. Corrections to 
the Born approximation have been evaluated by Klimov and Prozorovskii [25] by taking 
into account how the incident wave is deformed by the basic flow field. 

The expression of the scattering amplitude as a function of the vorticity field may 
be misleading. It should be considered as a mathematical expression, approximately 
correct in the Born approximation and in the far field limit, but it would be wrong to 
deduce that the local scattering mechanism involves only the antisymmetric part of the 
velocity gradients, i.e. the vorticity. Indeed, it has been shown, using different methods, 
that irrotational flows do scatter sound waves [7, 27]. 

However, sound scattering by velocity gradients together with the analysis pre- 
sented above in the small Mach number and the far field limits, provides a powerful tool 
to measure directly vorticity dynamics. This has been carefully checked with experi- 
ments on model flows such that the von Karman vortex street in the wake of a cylinder; 
all the results obtained with other experimental techniques on this flow configuration 
have been confirmed using sound scattering, that has also provided additional results 
on vorticity dynamics [28-30]. We have used this technique to detect and charaterize 
vorticity filaments in von Karman turbulent swirling flows generated in the gap between 
counter-rotating disks. 

2. Detection of vorticity filaments in turbulent swirling flows 
a) Vorticity filaments 

As said above, intense vorticity concentrations have been observed in direct numer- 
ical simulations of fully developed turbulence by Siggia [31], and their characteristics 
have been widely studied [32-35]. The following results are fairly well established so far: 

- vorticity concentrations with the shape of nearly two-dimensional filaments are 
observed, 

- their core size rf is in the range between the Taylor and the Kolmogorov lengths, 
i. e. corresponds to a small spatial scale, 

- their length // corresponds to a large spatial scale, probably the integral scale, 
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- the velocity increment Suf on their core size is in the large scale range, probably 
the integral velocity scale urms. 

However, the exact scalings of r/, // and Suf versus the Reynolds number are not 
known due to the finite Reynolds number range of the numerical simulations and to 
possible problems in the filament detection algorithm. The role of vorticity filaments, 
or at least their correlation with the dynamics of turbulence, with the dissipation^ for 
instance, is also unclear. It is clear that vorticity filaments violate locally (in time 
and space) Kolmogorov-41 scaling (as well as isotropy) and it is thus tempting to asso- 
ciate them with intermittency, but no quantitative estimation of their contribution to 
intermittency is available. 

There have been many experimental attempts to visulalize coherent vorticity struc- 
tures in boundary layers or in rotating flows, but only a few in the bulk of fairly homo- 
geneous isotropic flows, i. e. flows for which turbulent fluctuations may be described 
by the numerical simulations quoted above. Douady et al. studied turbulent flows 
generated in the gap between two coaxial counter-rotating disks (von Karman swirling 
flows): visualisation using water seeded with air bubbles, showed that in the median re- 
gion of the cell, the flow looks rather homogeneous when a turbulent regime is reached. 
Moreover, intermittent formation of filaments of bubbles was reported, and ascribed to 
vorticity concentrated on tube-like structures [36]. The detection of these vorticity fila- 
ments and the study of their dynamical and statistical properties have been performed 
via pressure measurements [37-39]. We observed that the pressure drops scale like the 
square of the integral velocity, thus showing that the characteristic velocity increment 
on the core of the vortex is of the order of the integral velocity of the turbulent flow 
[37]. We also studied the statistical properties of the pressure drops [38]: in particu- 
lar, the waiting time between two successive vorticity filaments sweeping the pressure 
transducer, displays Poisson statistics at long enough time, but a clear departure from 
Poisson statistics at short waiting times; the waiting time PDF decays algebraically for 
short times and exponentially at large times. The cross-over between the two behaviors 
occurs for an integral time scale, roughly 10 periods of rotation of the disks. 

b) Sound scattering bv vorticity filaments 
The turbulent flow generated in the gap between two coaxial counter-rotating disks 

has been probed acoustically using pairs of reversible broad band MAT EC piezoelectric 
transducers that are fitted flush with the lateral boundary in the mid-plane between 
the two disks. A sinusoidal wave is emitted by one transducer; the wave scattered by 
turbulent fluctuations in the bulk of the flow, is detected using the other transducer 
at a scattering angle of 60°. The scattering plane is thus horizontal. Thus from (10), 
the Fourier transform of the vorticity component perpendicular to the scattering plane, 
i.e. parallel to the axis of the disks, is probed at the scattering wave vector. The 
incident sound frequency is varied from 1 to 15 MHz; resonant scattering is observed 
at about 10 MHz in water when the rotation rate of the disks is 1000 RPM, and 
at smaller frequencies in water-glycerol mixtures or for smaller rotation rates. Away 
from resonance, the scattered pressure spectrum displays a peak at the incident sound 
wave frequency, enlarged due to turbulence. In the vicinity of resonant scattering, the 
additional scattered power occurs in rather sharp peaks in the Fourier spectrum of the 
scattered pressure which are Doppler-shifted from the incident frequency. They are 
ascribed to the presence of vorticity filaments crossing the scattering volume with a 
given velocity. Note that due to the high frequency of the incident wave, the velocity 
field looks frozen during the measurement time. Resonant scattering occurs when the 
incident sound wavelength is of the same order of magnitude as the core size r/ of 
vorticity filaments. Looking at the maximum scattered intensity as a function of the 
Reynolds number Re, we found that r/ scales like the Taylor microscale of the flow. We 
also studied in details the statistical properties of vorticity fluctuations and found them 
in qualitative agreement with pressure statistics (Dernoncourt et al.)[40]. 

In conclusion, ultrasound scattering is a powerful technique to study turbulent flows 
and in particular coherent structures. Velocity gradients are probed directly in Fourier 
space; one does not need to differentiate a signal assuming the Taylor hypothesis, and 
a whole flow volume can be probed instantaneously at a scale fixed by the scattering 
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wave vector. Ultrasound scattering is thus much more efficient than conventional hot- 
wire anemometry to detect coherent structures and study their dynamics and statistical 
properties. 
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On diffusion by intelligent movements 
Glenn R, Flierl 

MIT 

Many oceanic organisms have spatial distributions which are much less uniform than 
tracer quantities; this patchiness presumeably arises from the ability of the animals to reg- 
ulate their speed or direction based on environmental cues. We wish to understand how 
patchiness occurs, especially in the presence of turbulent flows, and how it affects interac- 
tions with other organisms — grazing and predation. Modelling the dynamics of patchy 
organisms has close analogies to the theory of gases. The simplest, but computationally 
overwhelming, approach to the latter is simulating the motions of individual molecules 
using the rules of Newtonian dynamics and representations of collision processes. Directly 
equivalent approaches have been taken for organisms. At the opposite end of the spectrum 
are the Navier-Stokes equations which view the gas as a continuum and introduce viscosity 
and diffusion to incorporate effects of momentum and energy transfer via collisions. This 
kind of continuum equation is a very important step if we wish to understand the overall 
effects of patchiness in larger scale flows/ ecosystems. In between these two approaches lies 
the Boltzmann equation, which predicts the evolution in space and time of the probability 
distribution for the molecular velocities. This equation proves crucial in that it forges a di- 
rect link between molecular dynamics and continuum mechanics and makes possible direct 
calculation of the form and coeffients of the viscous/ diffusive terms in the Navier-Stokes 
equations, as well as an approach to problems where correctins to these are needed. 

An analogous equation for organisms should play an equivalent and important role in 
aiding our understanding of the relationship between the continuum and individual-based 
models and the limits of validity of the former. We have begun with examples of decision 
rules for individuals and produced Boltzmann equations for the velocity distribution. Us- 
ing the Chapman-Enskog procedure, a form of multiple time-scale analysis, we derive an 
equation for the density of organisms which has biological diffusion and advection (gener- 
ally not non-divergent) terms. Convergent biologically-induced velocities can arise either 
from directed motions up the gradient in the cue field or from changes in the random 
swimming movements according to the cue strength. When the cue field is related to the 
density itself (e.g. sensitivity to the number of neighbors within some perception range), 
the equation becomes nonlinear. 

This equations show that a sufficiently dense uniform distribution of animals can 
become unstable if the organism is attracted to neighbors or slows its random motion as 
the neighbor density increases, leading to patches. The instability is subcritical, so that 
concentrations generally vary strongly from within a patch to outside. In the presence of 
turbulent flows, patches can still form if the shear and strain is not too large. Turbulence 
does not, however, simply act as an increase in physical diffusion: we have estimated the 
diffusion coefficient by examining the dispersion of passive particles. If that diffusivity is 
added to the density equation, patches do not form; in contrast, in the actual turbulent 
flows, organisms can presumeably take advantage of spots with relatively low strain to 
build a patch, the patches do tend to be more tranistory, breaking apart and merging as 
the flow changes around them. 

Patchiness can also alter predator-prey dynamics; in the case of patchy prey, the aver- 
age level increases slightly, while the average predator level decreases. For other parameter 
ranges, there can be travelling waves or chaotic patches. 
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Baroclinic Instability of the Oceanic Mixed Layer. 

Thomas Haine 
Earth, Atmospheric & Planetary Sciences, 

MET, Cambridge, MA 

1. INTRODUCTION 

We explore the possibility that baroclinic instability, feeding off lateral buoyancy 
gradients in the oceanic mixed layer, can result in buoyancy fluxes mat significantly modify 
the deepening and shallowing of the layer. In a simple model of the ocean mixed layer, 
symmetric instability is invoked to set the potential vorticity to zero. The result is a weakly 
stratified layer susceptible to non-hydrostatic baroclinic instability. A numerical study 
confirms the simple theory and extends it to a fully non-linear, three dimensional regime. 

2.       THEORY 

Consider the stratified thermocline outcropping in to a mixed-layer as shown in Figure 1. 
Suppose for a moment that there are no along-channel (x) variations. Then a consideration of 
the zonal momentum equation (assumed inviscid) on an f-plane tells us that: 

DM 
Dt 

= 0, 
Da 
Dt 

B 

g 
(1), 

where M = jy-u is the angular momentum, u the zonal velocity, / the Coriolis 

parameter, y the cross channel coordinate, a is the potential density, DIDt is the Lagrangian 
derivative, B is the buoyancy forcing (induced, for example, by buoyancy loss from the 
surface) and g is the acceleration due to gravity. If the zonal flow is in thermal wind balance 
then the Ertel potential vorticity Q of the fluid is: 

p0Q = Jy2(a,M) (2), 

where p0 is a constant reference density. There will be a vertical shear, du/dz, in the 
mixed layer if there is a cross-channel density gradient, and so the M surfaces will not be 
vertical there. Rather they will tilt over. Since the M surfaces are material surfaces, fluid 
parcels (or rather zonal 'strips', in this thought experiment) will move in slantwise paths. 

Now suppose that buoyancy is lost to the atmosphere so that parcels at the surface 
become dense thereby inducing convection. If the static stability measured along the M 
surface becomes negative (i.e. the potential vorticity Q < 0), then 'slantwise' convection 

Figure  1. Schematic diagram of an isopycnal outcropping into a mixed layer with a lateral 
density gradient. 
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(sometimes called symmetric instability) will occur along the sloping M surfaces. Within a 
few hours this restores the potential vorticity of the layer to zero. The static stability gradient 
on the M surfaces vanishes, but because these are tilted over, there is non-zero vertical 
stratification. 

Below we investigate by numerical experiment whether convective overturning of a 
mixed layer indeed sets the Q of the layer to zero. In the thought experiment above we 
argued, somewhat unrealistically, that M is conserved in zonal strips. In the fully 3- 
dimensional numerical experiments presented below no such constraint is imposed. We find 
that: 

(i) the full 3-D Eitel potential vorticity is now set to zero; a is mixed along the absolute 

vorticity vector k/ + Vxv, rather than an M surface. 
(ii) the resulting 'mixed-layer' is mixed in potential vorticity but vertically stratified in 

density i.e. N2 >0. 
(iii) the zero potential vorticity layer is susceptible to baroclinic instability; slantwise 

convection ultimately gives way to non-hydrostatic baroclinic instability (Stone, 1971) as the 
preferred mechanism of buoyant transport through the mixed layer. Baroclinic eddies 
transport buoyancy laterally and vertically. 

3.       MODEL 

We use a high resolution numerical model to solve the non-hydrostatic Boussinesq 
primitive equations in a periodic channel domain which rotates at a constant rate,/, of lO^s"1. 
The fluid is initially resting with a uniform stratification, N, such that everywhere N/f = 8. 
The motion is forced by a steady buoyancy loss through the sea surface. This cooling is 
independent of x but increases with y following a hyperbolic tangent variation. Thus in the 
southern third of the channel there is weak surface forcing, in the northern third fairly 
constant densification equivalent to a heat loss of 800 Wm"2, and there is a sharp transition 
in between. A linear equation of state is specified dependent on temperature alone. 

A key feature of this model is that the fine cell spacing resolves the upright, gravitational, 
convection. For the first few days a mixed layer of depth H develops according to a simple, 
non-rotating, one dimensional law which predicts the depth of mixing due to the upright 
overturning. Namely, 

10 20 30 40 
Along channel distance (km). 

Figure 2. Horizontal section of temperature at 65m 
depth. 
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H = 
■JlBt 

N 
(3), 

where B is the buoyancy flux across the surface at time t. As a result of the developing 
density gradient across the channel, a flow adjusts to achieve a thermal wind balance. At the 
channel centre, the region of highest gradient, the angular momentum surfaces are bent over, 
and symmetric instability exchanges dense surface water with the underlying fluid along 
paths which slant to the vertical. 

After six days, however, a mode six, finite amplitude, baroclinic instability has grown in 
the channel centre, and is responsible for exchanging water laterally, from the region of deep 
mixing, to the unconvected fluid and vice versa (Figure 2). In the north the fine, plume scale 
elements can be seen drawing the buoyancy from the interior. At later times a field of 
geostrophic turbulence evolves as the baroclinic waves break. Figure 3a shows that the near 
surface, mid-channel, fluid has, on average, a weak vertical stratification. There is no 
evidence of a classic mixed layer with vanishing stratification, except in the region close to 
the northern wall. The heavy dashed line shows the one dimensional prediction of mixed 
layer depth (Eq (3)). Figure 3b shows the Ertel potential vorticity at this time, and is much 
more effective at revealing the "mixed layer" fluid. Across the region of non-vanishing 
vertical stratification the PV is weak and positive; the signature of symmetric instability. To 
the south the low PV fluid shows that mixed water has penetrated deeper than the one 
dimensional prediction, a consequence of the lateral buoyancy flux by baroclinic eddies. To 
the north the mixed layer is shallower. 

4. IMPLICATIONS 

We have shown that in a mixed layer with a horizontal density gradient symmetric 
instability rapidly acts to create a layer with near zero PV and non-vanishing vertical 
stratification. Furthermore, growing baroclinic waves develop to produce an eddy field 
which transports buoyancy laterally in the mixed layer. This flux is certainly important on the 
margins of deep convection chimneys. Our calculations also suggest that it is significant in 
less extreme mixing regimes. The Gulf Stream, and large areas of the sub-polar North 
Atlantic show a strong net lateral buoyancy flux. The seasonal cycle modulates these fluxes, 
giving the greatest power at the time of deepest overturning. Our preliminary results suggest 
that this lateral mixing mechanism may be ubiquitous and represent an important extra term 
in traditional one dimensional mixed layer models. It is most significant at the time of 
subduction, and may be influential in setting the characteristics of newly formed thermocline 
water. 
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Is the Thermocline a Front? 
— Symmetries and Conservation Laws in GFD 

by Simon Hood 
Oceanography Labs., University of Liverpool, 

Liverpool, L69 3BX, England 

Introduction 
In much of the world's oceans there is a surprising characteristic temperature profile: below 
the mixed layer there is a region of rapid temperature decrease, from the surface value, to a 
depth of order 1 km (the thermocline) and below this the temperature is almost constant. What 
physical process (or processes) are responsible for this? 

This question, the so-called thermocline problem, has been addressed by many authors and 
several very different possibilities have been put forward as explanations. Early thermocline 
work used a similarity approach and two opposing limits were advocated: diffusive control 
(Robinson and Stommel, 1959) and advective control (Welander, 1959). More recently 
thermocline studies have made use of layered models. Amongst these Rhines and Young 
(1982) argue that the role of geostrophic eddies in homogenising properties is important, and 
Luyten, Pedlosky and Stommel (1983) argue that the thermocline is a consequence of advection 
of the mixed-layer temperature field down into the ocean interior. There seems little doubt that 
the upper part of the thermocline is ventilated by this latter proccess, but this does not mean 
that other physical processes are not at work. (Marshall (1995) advocates one such process.) 

The governing equations most often used to model the thermocline are (in non-dimensional 
form, on a /5-plane) 

yu = -Py, yv = Px, 9 = PZ, (li) 
ux + vy + wg = 0, u9x + v9y + w9z = f + V, (lii) 

and these are, respectively, the geostrophic and hydrostatic approximations to the horizontal 
and vertical momentum equations, continuity and a thermodynamic equation (salinity is 
neglected). Here u, v and w are the velocity components, P is pressure and 9 is the potential 
temperature; T and V represent forcing and diffusion respectively. Simple scaling arguments 
(cf. Pedlosky, 1987, Section 6.20) indicate that the effects of horizontal diffusion are much 
smaller than those of vertical diffusion and assuming no forcing we may write 

u9x + v8y + w9z = (K{Z)9Z)Z; (2) 

here vertical diffusion is represented by a simple Laplacian scheme which admits variation of 
diffusivity with depth. 

An alternative approach to those more commonly used to determine physical solutions of 
(1) is to consider the mathematical properties of the equations themselves, in particular their 
(Lie) symmetries and (materially) conserved quantities. Each of these approaches is considered 
here. 

Lie Symmetries 

Lie symmetries of a PDE and their usage are best explained by means of a simple example. 
Consider Burgers'equation, 

ut + uux + uxx = 0, (3) 



together with the transformation 

t —► a2t,        x —► ax,        u —> a~xu. (4) 

Burgers' equation is unchanged by (4) as are the combinations of variables 

£=£7ä,        G = t^u. (5) 

We say that (3) is mapped to itself by (4), and (5) are invariants of the transformation which is 
a one-parameter (Lie) group. Such invariants may be used to construct a transformation which 
reduces the number of independent variables in a differential equation. For example, in this 
case, substituting 

u{x,t) = t-1'2G{i) + jt (6) 

into (3), we obtain 
t~ZI2 {(?« + GG(i = 0, (7) 

i.e., we have reduced Burgers' equation to an ODE. 

These ideas are the foundations for an ever growing collection of methods which seek to 
reduce a PDE to a differential equation in fewer independent variables (or a system of such 
equations). An accessible introduction to the subject is given by Hill (1992) and a review of 
several such methods is given in a paper by Olver (1992). The most straightforward of these 
methods has been applied to the so called thermocline equations, (1), to obtain exact solutions, 
by Salmon and Hollerbach (1991) and these results have been expanded upon by Hood (1995) 
and Hood & Williams (1995). The results given in the next section are derived in these latter 
works. 

Results obtained using Lie symmetries 

It has been suggested that the dominant process underlying the formation of the thermocline is 
the formation of a (weak) interior front. The front is supposed to form where water moving 
downwards due to Ekman convergence at the surface meets hypothesised large scale upwelling 
and w —» 0. (In fact it is only necessary that w —► 0; it is not necessary that w change sign. 
This, however, seems less physical.) Diffusion is important only locally, in the frontal region. 
(Frontal solutions to PDES in which characteristics converge in this way are well known in 
other weakly diffusive systems, such as those represented by Burgers' equation; for example 
see Kevorkian, 1990.) This explanation of the thermocline is advocated by Salmon (1990). 

We can find exact analytic solutions to the thermocline equations which help us to 
investigate this process by using Lie symmetries. (Frontal solutions are, however, certainly not 
the only type of solution recoverable by this method: Hood and Williams (1995) include an 
example of a ventilated thermocline.) To do this we first write the thermocline equations, (1), 
as 

MXMZZZ + y(MxzMyzz - MyzMxzz) = V
2
(KMZZZ)Z, (8) 

where 

u = —Myz       v = -Mxz       w = ^Mx       cj) = Mz       9 = MZZ, (9) 
y y y 

without loss of generality and then determine transformations like (4) which reduce (8) to a 
PDE in two independent variables or to an ODE. This is done for transformations which admit 
diffusivity as an arbitrary function of z by Hood (1995). One such reduction is 

M(x, y, z) = G{y, z) + x [y2Kz + T{y, z)] , (10a) 



(a) high diffusion 
0 

(b) low diffusion 
0 

Figure 1. The 0 and 0Z profiles for a depth-varying diffusivity, K(Z) = Xz3, are shown 
in the left-hand and middle columns, respectively. The interior front is clearly seen by 
the mid-depth maximum in 9Z. The right-hand columns show 0Z profiles for uniform 
diffusivity, the value chosen being equal to that at the front in the corresponding 
non-uniform case. 

where the unknown functions G(y, z) and T(y, z) satisfy 

T(y, z)Gzzz + y (y2Kzz + Ta,z) Gyzz - y {y2Kzzz + Ta,zz) Gyz = V
2
KG 

y2K2ZZZT + TTZZZ - y4KKzzzzz - y2KTzzzz + y[y2KzzTyzz 

+ 2yKzzzTz + TzTyzz - 2yKzzTzz - y2KzzzTyz - YyzTzz] = 0. 

ZZZZl (10b) 

(10c) 

By choosing different w and K profiles consistent with (10b) and (10c) it is straightforward to 
investigate front formation. For example, consider Fig. 1. Here the profiles of 9 and 9Z are 
plotted for a diffusivity profile which increases from zero at the ocean bottom and reaches a 
maximum at the surface (left hand and centre columns). Plots are shown for both high and low 
diffusivity. An interior front is clearly seen in the latter case. The right hand column shows the 
0X profile for uniform diffusivity profiles. One can clearly see that the front is controlled by the 
(local) value of K at the front depth, rather than by, e.g., the depth mean value. Consequently 
the frontal character of the solutions is robust to changes in diabatic forcing above (and below) 
the front depth. Corresponding plots of the surface streamlines and isotherms are given in 
Fig. 2. 

Using conserved quantities 
It is well known that both density, p, and potential vorticity, q, are conserved by flow which 
satisfies the ideal thermocline equations. Further, assuming that geostrophic eddies homogenise 
properties on a density surface then 

q = F(p), (11) 

for some function, F(p), i.e., q is constant on a density surface. It is natural to consider 
(11) in isopycnal coordinates and since q = y/Bpp, where B is the Bernoulli function, then 
integrating we obtain 

B(x, t, p) = yF{p) + pb(x, y) + a(x, y), (12) 
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(a) 

Figure 2. Surface streamlines and isotherms (continuous and dashed respectively) for 
variable diffusivity, K(Z) = Xz3, with (a), a low value of A and (b), a high value. More 
realistic cross-isothermal flow is seen with higher surface diffusion.   . 

where a(x,y) and b(x,y) are to be determined. Needier (1971), Cushman-Roison (1984) 
and Salmon (1994) have all considered solutions of this form. However, in current work we 
propose to assume that (11) is correct only up to 0(1). 

Solutions of the form (12) are general enough to admit strong boundary conditions at the 
surface, bottom and (say) the eastern limit of the solution domain, e.g., completely arbitrary 
Ekman pumping, w = WE{X, y) at the surface, a level of no motion at depth and prescription 
of the density profile at some longitude. However, one can use the ansatz, (12), to investigate 
the effects of different models and parameterisations of "sub-grid-scale" motions, which are 
neglected by the ideal thermocline equations, on the density profile, and therefore on F(p). 
We therefore choose to impose only a weak (integral) condition on the solution at the eastern 
boundary — that there is no net flow through a given longitude at all latitudes — and determine 
F(p) by an appeal to 0(e) dynamics. To do this we generalise our ansatz, (12), by admitting 
slow variation of q with x and y, i.e., 

B(x, y, p) = yF(ex, ey, p) + pb(x, y) + a(x, y); (13) 

0(e) terms in the left-hand side of the thermodynamic equation (cf. (1)) are assumed to 
balance non-ideal effects, i.e., the sub-grid-scale motions mentioned, e.g., vertical diffusion. 
In this limit in which e —> 0 a constraint is obtained on F(p) from which one can obtain the 
corresponding density profile. 

Given F{p) we assume that 

B{x, y, p) = yF(p) + pb(x, y) + a{x, y) + eB'(x, y, p), (14) 

where 0 < e < 1 and the 0(e) deviation from (12) given by B', which is to be determined, 
balances non-ideal effects, once more. 0(e2) terms are neglected and consequently it turns out 
that we need only solve a first order, linear PDE for B'pp. 

By this method it is hoped to investigate the limit in which Ekman pumping and interior 
dynamical processes control the density/temperature profile, rather than the complementary 
limit in which the Ekman pumping together with in-flow along some vertical plane is more 
important. 

Preliminary Results 

Work to date using these ideas has concentrated on two parameterisations of "sub-grid-scale" 
motion: (i), Laplacian cross-isopycnal diffusion with uniform diffusivity and (ii), that due to 
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Gent & McWilliams (1989) in which eddy motion is supposed to have a net advective effect. 
Density profiles determined in each case are shown in Figure 3. 

(a) 

surface 

warm I 

surface 

bottom (b) 

Figure 3. Nondimensional density profiles determined by admitting slow variation of 
q with x and y (cf. Eq. (13). In (a) weak cross-isopycnal diffusion leads to a frontal 
character, whilst in (b) a parametrisation based on that due to Gent & McWilliams 
leads to an exponential profile. 

Discussion 
In recent years there appears to have been a move toward layered and numerical models in 
physical oceanography. Indeed it has even been suggested that the idea of seeking exact (e.g. 
similarity) solutions to the thermocline equations has had a detrimental effect. There is no 
question of using exact analytic or perturbation techniques to replace (for example) large scale 
computer modelling of the ocean with realistic topography. However, exact solutions can and 
should be used to test computer models. In addition, used as a tool to investigate hypothesised 
physical processes, by means of thought experiments, these ideas provide an invaluable way 
to gain insight into ocean dynamics. 

References 

Cushman-Roison, B., 1984, J. Phys. Oceanogr., 14, 1179 - 1190. 
Gent, P.R. & J.C. McWilliams, 1989, J. Phys. Oceanogr., 20, 150 - 155. 
Hill, J.M., 1992, "Differential Equations and Group Methods for Engineers and Scientists," CRC Press, 
Boca Raton, Ann Arbor, London and Tokyo. 
Hood, S., 1995, submitted to J. Mar. Res. 
Hood, S. and R.G. Williams, 1995, submitted to J. Mar. Res. 
Kevorkian, J, 1990, "Partial Differential Equations: Analytical Solution Techniques," Wadsworth & 
Brooks/Cole. 
Luyten, J.R., J. Pedlosky and H. Stommel, 1983, J. Phys. Oceanogr., 13, 292 - 309. 
Marshall, J., 1995, coffee-break communication at Woods Hole GFD Summer School. 
Needier, 1971, Deep-Sea Res., 18, 895 - 903. 
Olver, P.J., 1992, Appl. Numer. Math., 10, 307 - 324. 
Pedlosky, J., 1987, "Geophysical Fluid Dynamics," Springer-Verlag. 
Rhines P.B. and W.R. Young, 1982, J. Mar. Res., 40 suppl, 559 - 595. 
Robinson, A.R. and H. Stommel, 1959, Tellus, 11, 295 - 308. 
Salmon R., 1994, J. Mar. Res., 52, 865 - 908. 
Salmon R., 1990, J. Mar. Res., 48, 437 - 469. 
Salmon, R. and R. Hollerbach, 1991, J. Mar. Res., 49, 249 - 280. 
Welander P., 1959, Tellus, 11, 309 - 318. 

-   Z3>6 



Turbulent rotating Rayleigh-Benard convection II 

Keith Julien, NCAR, Boulder, CO 80307-3000 

Collaborators: Nie Brummeil CU; Sonya Legg & Jim McWilliams, NCAR/UCLA; 
Joseph Werne, NCAR. 

1 Introduction 

Recent numerical simulations of rapidly rotating Rayleigh-Benard convection (Julien 
et al. 1995) reveal some rather striking similarities to and differences from the non- 
rotating case. The most remarkable similarity is the presence of "hard turbulence" 
where the observed heat transport law between the Nusselt and Rayleigh numbers is 
given by Nu oc Ra2/7 when the top and bottom boundaries are no-slip (see figure 3 
of Werne this proceeding). The existence of this scaling law in rotating convection, 
which has hitherto only been associated with non-rotating convection (Wu et al. 1988, 
Werne 1993), suggests the ubiquity of hard turbulent regimes in thermal convection 
with no-slip top and bottom boundaries. This result is further compounded since 
the classical 1/3-scaling law (Priestley 1959) is observed when the boundaries are 
stress-free (see figure 3 of Werne, this proceeding). 

Some notable differences are also observed in these simulations of rotating con- 
vection. Firstly, a mean unstable thermal stratification is maintained in the bulk 
of the fluid layer (see figure 2 of Werne, this proceeding). This occurs as a direct 
consequence of enhanced lateral mixing between buoyant plumes developing out of 
the unstable thermal boundary layers. Secondly, plumes are topologically adjusted 
due to Ekman pumping within the thermal boundary layers. Finally, when the top 
and bottome boundaries are stress-free a high Rayleigh number transition (Ra ~ 10s) 
from the classical 1/3-law in the heat transport scaling to an as yet undetermined 
scaling regime exists (see figure 3 of Werne, this proceeding). 

In this discussion we attempt to develop a further understanding of the aforemen- 
tioned characteristics of rotating convection. In particular, we will report on results 
from two-dimensional numerical simulations that a) demonstrate the importance of 
lateral mixing in association with the mean thermal stratification, b) deduce the topo- 
logical adjustment of thermal plumes due to Ekman effects and c) ascertain whether 
the departure from the 1/3-law at high Rayleigh is a generic consequence of thermal 
convection with stress-free boundaries or an effect that arises solely due to rotation. 

2 Lateral Mixing and Mean Temperature Gradients 

The proposed explanation for the existence of an unstable thermal stratification in 
rotating turbulent convection requires that the thermal plumes be vortical, indeed 
they are cyclonic as a consequence of conservation of angular momentum during their 
formation, and that their dynamics be dominated by vortex interactions. The resul- 
tant stirring action of the co-rotating plumes and plume mergers laterally mixes fluid 
in horizontal planes. For example, near the lower boundary, warm plumes interact 
and are laterally mixed into the surrounding fluid at a given level, thereby raising the 
ambient temperature. Fewer buoyant elements survive greater distances away from 
the boundary resulting in a mean unstable stratification with warmer fluid near the 
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bottom boundary, and conversely cooler fluid near the top boundary (see figure 2 of 
Werne, this proceeding). 

The following simple model clearly illustrates the importance of lateral mixing 
(plume-plume interaction) on the thermal stratification: consider rotating convection 
with fluid motions constrained to be invariant in a selected horizontal direction, e.g., 
the y-direction with d/dy — 0. This effectively two-dimensional system was first stud- 
ied by Veronis (1968). Velocities u,v,w and temperature T are made functions of 
x, z only. With this constraint thermal plumes now become cyclonic vortex sheets as 
opposed to the more familiar elliptical tube structures observed in the usual (uncon- 
strained) rotating system. Moreover, vortex interactions cannot lead to co-rotating 
motions but only to (hidden) translations of the vortex sheets in the invariant direc- 
tion. Lateral mixing due to stirring is therefore suppressed. Figure 1 in fact shows 
that as the Rayleigh number is increased, at constant convective Rossby number, the 
thermal stratification in the bulk of the fluid undergoes a transition from a stable 
(dashed lines) to an unstable (solid lines) profile at Ra ~ 5 x 106. Correspondingly, 
the associated flow changes from cellular to turbulent motions (figures 3). In the cel- 
lular regime, plume interactions and therefore lateral mixing are inhibited. The stable 
stratification results when buoyant fluid elements are advected in an anti-buoyant di- 
rection. This effect is particularly enhanced because of the small aspect ratio cellular 
motions that occur at large rotation rates. In the turbulent regime, shearing mo- 
tions associated with mergers between plumes originating at the same boundary, and 
interactions between plumes from opposite boundaries give rise to a lateral mixing 
that sustains an unstable stratification (figure 1). Note however, that the magnitude 
of the unstable stratification is not as large as the that found in the unconstrained 
rotating layer (figure 2), indicating more efficient mixing in the latter. 

3    Topological Adjustment of Thermal Plumes due to Ekman Effects 

In a rapidly rotating fluid layer, the cyclonic nature of plumes imposes important 
constraints on the dynamics of the flow near the boundaries.   Specifically, Ekman 
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Figure 4: Plume Topology, a) Linear Thermal solution 

and nonlinear solutions b) Stress-free, c) No-slip. 
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Figure 5: Ekman profiles2 Figure 6: Heat Transport 

pumping occurs when a vortex tube terminates at a solid no-slip boundary.1 Evidence 
for this is illustrated by the observed spirals [v(z) versus u(z) profiles] obtained at 
various positions within an individual plume in the unconstrained (3D) numerical 
solutions (figure 5, solid lines). Tighter spirals are found than that given by the 
classical linear Ekman theory2 (dashed line) due to the complicated nature of the 
solutions: the flows are strongly nonlinear, non-hydrostatic, occur in connection with 
significant buoyancy, and are far from stationary and axisymmetric. 

Perhaps the most striking feature arising as a consequence of Ekman effects is 
the structure of the plume topology. Horizontal cross-sections of thermal plumes in 
the simulations (figure 4b,c) reveal the development of cyclonic ring-shaped ridges 
where strong Ekman pumping occurs. This is in contrast to a perhaps more intuitive 
bump-shape one might expect from Ekman pumping at the core of the plume. The 
rather unique ring-topology may be explained by the inclusion of thermal (baroclinic) 
effects into the classical Ekman analysis (Hide 1965, Julien et al. 1995). Indeed, 
horizontal cross-sections of a thermal Ekman layer with a Gaussain profile (intended 
to represent a developing plume) show the existence of ring structures in the vorticity 
and horizontal divergence fields (figure 4a). Moreover, the thermal contribution to 
the linear solution is found to be identical in the presence of both stress-free and 
no-slip boundaries. However for no-slip boundaries the magnitude of this thermal 
effect is weak compared to that obtained from the classic viscous effect. 

^or a tube in geostrophic balance (i.e. with the radial pressure gradient balancing centrifugal 
acceleration), pumping of fluid away from the boundary occurs at the vortex core due to the fact that 
the fluid velocity (and hence the centrifugal acceleration) vanishes at the wall, creating a pressure 
imbalance. 

2The analytic solution for the classic linear Ekman layer has the form X = q~1dzX(z = 0)(1 - 
e~qz), where X is the horizontal velocity in complex notation X = u + iv and q~l is the complex 
Ekman layer thickness q = y/if/<r. dzX(z = 0) is the surface stress. 
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4    Departure from the Classical 1/3-Heat Transport Law 

A theory for the 1/3-law observed for rotating convection with stress-free boundaries 
was initially provided by Priestley (1959). This work characterised two distinct re- 
gions of heat transport in thermal convection: a turbulent interior, where the heat flux 
is carried convectively, and thin thermal boundary layers where heat is transported 
solely by diffusion. Notable departures from this classical scaling, in particular the 
2/7 hard-turbulent law, occur when coherent structures in the form of thermal plumes 
appear in the flow (see Werne, this proceedings for a discussion of scaling theories). 
These structures serve to communicate information between the thermal boundary 
layers, either by plumes spanning the depth of the layer thus short-circuiting the 
convective interior or by transmitting information into the convective interior. More- 
over, the different scaling behaviour observed for rotating convection with no-slip and 
stress-free boundaries implies that boundary conditions in addition to the presence 
of plumes play a crucial role. However, this conjecture is not clear-cut since these 
simulations of rotating convection exhibit a transition from the 1/3-law at Ra ~ 108 

in the stress-free case (see figure 3 of Werne, this proceeding). Unfortunately we are 
currently unable to determine the new scaling exponent due to the computational 
expense of simulating at higher Rayleigh numbers. 

We suggest that the two boundary types (no-slip and stress-free) become indis- 
tinguishable at high Rayleigh numbers in rotating convection. This is possible since 
viscous boundary layers exist adjacent to stress-free boundaries due to the baroclinic 
Ekman effect (section 3). In support, we find that the transition in scaling for the 
stress-free case occurs at a Rayleigh number where the thickness of the Ekman bound- 
ary layer is equal to that of the thermal boundary layer. This suggests the important 
role played by the viscous boundary layers in determining the heat transport in ther- 
mal convection. 

To confirm this conjecture we have performed simulations of non-rotating Rayleigh- 
Benard convection in a two-dimensional box with stress-free boundaries. In this case, 
where no viscous boundary layers can exist, a 1/3-scaling law should prevail. Indeed, 
figure 6 (squares), shows a 1/3 exponent for Rayleigh numbers up to 109 indicating the 
necessity of viscous boundary layers for departures from the classical scaling law. Fur- 
thermore, similar simulations with mixed stress-free and no-slip boundary conditions 
result in a 2/7 scaling exponent (figure 6, open circles) implying that heat transport 
is constrained by the presence of any restrictive (no-slip) boundary condition. 

Hide 1965 Tellus XVI, 523. 
Julien, Legg, McWilliams & Werne 1995 J. Fluid Mech., submitted. 
Priestley 1959 The University of Chicago Press. Chicago & London. 
Veronis 1968 J. Fluid Mech., 31, 113. 
Werne 1993 Phys. Rev. E. 48, 1020. 
Wu, Castaing, Heslot & Libchaber 1988 In Proceedings in Physics Vol. 32 Universalities in 

Condensed Matter, 208. 
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Turbulent diffusion in a Gaussian 
velocity field 

Joseph B. Keller* 
Departments of Mathematics and Mechanical Engineering 

Stanford University 
Stanford, CA 94305-2125 

1    Introduction 
Turbulent diffusion is the process of dispersal of a substance by a fluid in tur- 
bulent motion. The velocity of the fluid is represented as a random function 
of position and time, and then the concentration of the dispersed substance 
is also a random function. The theory of turbulent diffusion seeks to deter- 
mine the statistical properties of the concentration in terms of those of the 
velocity. We shall show how to do this when the Lagrangian velocity of the 
fluid is Gaussian. 

One consequence of this analysis is that the probability density of a dif- 
fusing particle satisfies exactly a diffusion equation with a time dependent 
diffusion coefficient. This and other consequences of the analysis can serve 
as tests of approximations and of numerical calculations. 

To obtain a diffusion process with a finite speed of propagation, it is 
necessary to assume that the turbulent velocity is bounded rather than un- 
bounded, as in the Gaussian case considered here. Goldstein [1] illustrated 
this by deriving the telegraph equation, which has a finite propagation speed, 
for a one dimensional random walk on a lattice. Others have derived analo- 
gous equations by approximate analyses of turbulent diffusion. 

»Research supported in part by the AFOSR, ONR and NSF. 
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2    Motion of a single particle 

We begin by following Taylor [2]. First we write 

x(t,x0,t0) =x0+     v(t',x0,t0)dt' . (2.1) 

Here x(t, x0,to) is the position at time i of a particle which is at x0 at time 
t0, and v(t,xQ,t0) is its velocity at time t. Then from (2.1) we obtain the 
mean m(t,x0,t0) — (x(t, x0,t0)} of x and the covariance Vij(t,x0,t0) of the 
components Xi and xf 

m(t,x0,tQ)   =   x0+     (v(t',x0,t0))dt', (2.2) 
Jto 

Vij(t, xo, t0)   =   {[Xi (t, XQ, t0) - m, (t, x0, to)] [XJ (t, x0, *o) - ™j (*, ^o, *)]> 

=    f f\v[ (?, xo, t0) v'j («", xo, t0)>rffdt" 

=    r ftRij(t',t",Xo,t0)dt'dt" . (2.3) 
•/to -/to 

Here angular brackets denote mean or expectation values, v' — v - (v) is 
the fluctuation of v, and %(t',t";x0,to) is the two-time velocity correlation 
function. 

Now we depart from Taylor by assuming that v(t,xo,to) is a Gaussian 
random function oft. It follows from (2.1) that x(t,x0,t0) is also a Gaussian 
random function of t. Then the probability density of x at time t is given by 

Here V is the covariance matrix with components given by (2.3), m is the 
mean (2.2) and det V is the determinant of V. Similarly, we can consider 
Xo(t0,x,t), the position at time t0 of the particle which arrives at x at time 
t. It is a Gaussian random function of t0- The density of x0 at time t0, 
p(x0, t0, x, t), is given by (2.4) with x, t and x0, t0 interchanged. Examination 
of (2.2)-(2.4) shows that 

p(x, t, xo, t0) = p(x0, to, x, t) . (2.5) 
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Differentiating (2.4) shows that p satisfies an advection-diffusion equation, 
which we write in the form 

Pt + {vi(t,x0,t0))dXip = Dijit,x0, t0)dXidXjp . (2.6) 

In (2.6) repeated indices are to be summed from 1 to 3, (UJ) = dtrrii as (2.2) 
shows, and the time dependent diffusion coefficient tensor is given by 

Dij(t,xoM = -\[v{V-l)tV\3 . (2.7) 

Furthermore (2.3) shows that V{t0,x0,t0) = 0, so (2.4) yields 

p(x,to,xo,t0) = S(x-x0) . (2.8) 

Thus p is the unique solution of (2.6) with the initial value (2.8). 
By using(2.3) for V in (2.7), we can express A; in terms of Rij. For 

example, when v is stationary in time and homogeneous in space, then 
Rij = Rij{t' - t") and (2.3) leads to 

Vijfaxo^o) = Vij(t-t0) = 2{t-t0) r
t0 Rij(s)ds-2 f *° sRlj{s)ds . (2.9) 

J 0 J 0 

We can simplify (2.3) for t - t0 either small or large compared to the corre- 
lation time T of v, and we obtain 

Vü(*-i„)~.R*;(0)(*-*o)2,    t-t0<T, (2.10a) 

Vij(t-t0)~2(t-t0)ti-toRij(s)ds,    t-t0»T. (2.10b) 

Upon using these two results in (2.7) we find 

Dijit-to)   ~   %(0)(i-t0),    <-t0<T, (2.11) 

Dijit-to)   ~   f~t0 Rij(s)ds,    t-to^T. (2.12) 

The expression (2.12), with t - t0 replaced by oo is Taylor's result for the 
diffusion coefficient. 
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3    Concentration 

Now we seek the concentration c(x, t) of a substance dispersed by the fluid 
motion. Conservation of the substance implies that it satisfies the advection 
equation 

ct(x, t) + V • [u(x, t)c(x, t)] = 0 . (3.1) 

Here u(x, t) is the random velocity of the fluid. Suppose that initially the 
concentration is c0(x): 

c(x,t0) —CQ(X) . (3.2) 

To solve (3.1) and (3.2) we introduce the particle paths x(t,x0, t0) defined by 

dx 
— (t,x0,to)=u[x(t,x0,to)it},    x(to,x0,t0) =x0 . (3.3) 

Then the solution of (3.1) and (3.2) is 

c [x(t,XQ,t0), t] = co{x0)/j{t,x0,t0) . (3.4) 

Here j = \dx/dxo\ is the jacobian of the transformation x(t,xo,to) from x0 

to x. In terms of the inverse transformation xo(to,x,t), (3.4) is 

c(x,t)=co[x0(to,x,t)]/j[t,x0{to,x,t),to] . (3.5) 

When V • u = 0 then j = 1. 
The result (3.5) shows that c(x,t) is a random function. The probability 

density of the value (3.5) is just p(x0, t0;x,t) given by (2.5) and (2.4). Then 
the mean and variance of c are 

{c(x, t)) =1      ° X\    p(x0, t0; x, t)dx0, (3.6) 
•>  3\t,XQ,to) 

([c(x,t) - (c(x, t))]2) =[ .2f}XQ\ , p(x0,t0;x,t)dx0 - (c(x,t))2. (3.7) 
J    J   [t,Xo^to) 

Next we consider the two-point two-time covariance of c, defined by 

([c(zi,ii) - {c(xuti))] [c{x2,t2) - (c(x2,t2)}}) = 

(c(x1;ti)c(a:2,*2)> " (c{xuti))(c(x2,t2)> . (3.8) 

To evaluate (c(xi,ti)c(x2,t2)) we need the joint probability density 
p(xo,x'0,to;xi,ti,x2,t2) that the particle which arrives at xx at time t\ was 
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at x0 at time t0 and the particle that arrives at x2 at time t2 was at x'0 at 
time t0 • Then we have 

(c(xu ti)c(x2,t2)}= II.u   Co^x°>Co^> p(XOja/ t0; xi,tux2,t2)dx0 dx'0. 
JJj{ti,X0,to)]{t2,X0,to) 

(3.9) 
In order to determine the two-point probability we write 

Xi{ti,x0,to)   =   x0+       v(t',x0,t0)dt, 
Jto 

x2(t2,x'0,t0)   =   x'0+ lt2v{t',x0,t0)dt'. (3.10) 
Jto 

Then we assume that [v(t,x0,t0),v(t,x'0,t0)] is a multivariate Gaussian pro- 
cess. It follows that (xi,x2) given by (3.10) is also a multivariate Gaussian. 
Consequently the probability density p in (3.9) is a Gaussian in the six com- 
ponent vector y = (xo,x'0): 

p(x0,x'0,t0;xutux2,t2) = (27r)3detK e-fe-^-1^-™) . (3.11) 

The six component mean m, and the sixth order covariance matrix V are 
given by expressions like those in (2.2) and (2.3). 

It also follows from the Gaussian assumption that the separation Xi (t, x0, t0) 
x2(t,x0,t0) is a Gaussian random function oft. 

References 
[1] S. Goldstein, Quart. Jour. Math. & Appl. Mech. 4(2), 129-155, 1950. 

[2] G.I. Taylor, Proc. London Math. Soc. 20, 196-212, 1920. 
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Bifurcations in Rotating Systems 

Edgar Knobloch 

Department of Physics, University of California 
Berkeley, CA 94720 

In the next few pages I would like to make a remark about the use of the "narrow gap" or 
"straight channel" approximation to model various types of geophysical and laboratory flows. 
The use of this approximation is common, and is believed to be justified when the scale of the 
motion is small compared to other scales in the problem, eg., radius of curvature. While this 
is true it is also misleading in the sense that it obscures certain important qualitative effects 
which are characteristic of such flows. Consider, for example, convection in a rotating annulus, 
driven by heating from below. In this system one expects, by analogy with convection in a 
rotating cylinder (Ecke et al 1992, Goldstein et al 1993), the onset of convection to take the 
form of travelling waves precessing in the retrograde direction, provided the instability breaks 
the SO(2) symmetry of the rotating annulus. For sufficiently rapid rotation the unstable mode 
will take the form of a wall mode, confined to the outer boundary. A similar mode, confined 
to the inner boundary, will precess in the prograde direction (Kuo and Cross 1993, Herrmann 
and Busse 1993) but will set in at a higher Rayleigh number. Closely related solutions were 
found already by Davies-Jones and Gilman (1971) in their study of the onset of convection 
in a rotating straight channel. However, in contrast to the above expectation, Davies-Jones 
and Gilman found that the onset of a nonaxisymmetric instability can be either via a Hopf 
bifurcation or a steady state bifurcation, depending on the rotation rate. I show here that 
the steady state bifurcations found by Davies-Jones and Gilman are a consequence of the 
fact that their straight channel has 0(2) symmetry instead of the expected SO(2) symmetry 
appropriate to a rotating annulus. The extra reflection symmetry present in their model is a 
180° rotation about a vertical axis through the mid-channel and requires that the boundary 
conditions on the "inner" and "outer" walls be identical. In the annulus this symmetry is 
broken by the curvature of the walls, even with identical boundary conditions at the sides, 
and as a result all (nonaxisymmetric) patterns drift. 

Convection in an annulus of height h is described by the nondimensionalized equations 

-(— + u-V)u   =   -Vp + V2u + RSz + Tu x z, (1) 
er \dt / 

(£ + u-v)e = ™ + v2e, (2) 
V-u   =   0, (3) 

where the quantities T = 2tth2/v, R = gaATh3/Kv, and a = U/K denote, respectively, 
the square root of the Taylor number, the Rayleigh number, and the Prandtl number. Here 
Q is the dimensional angular velocity. However, instead of solving these equations Davies- 
Jones and Gilman (1971) replace them by the corresponding ones written in locally cartesian 
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coordinates: 

1 du dp      -r        —2 ,.-. 
-—   =   -^- + Tv + V2u, (4) 
U Ot OX 

<r at ay 

I*E = -^ + JJe + W (6) 
a ai dz 

^   =   ^ + V20, (7) 
at 

du   to   to = 0 (8) 

ax     ay      az 

where x, y, 2 are the radial, azimuthal and vertical coordinates, respectively, defined relative 
to mid-channel. In this approximation the annulus forms an infinitely long straight channel. 
These equations are supplemented with stress-free, perfectly conducting boundary conditions 

at top and bottom, 
du      dv /nX 

w = e = — = — = 0    on   z = 0,l, (9) 
dz      dz 

and no-slip, thermally insulating sidewalls 

u = v = w = -T— = 0    on    x = ±a. (10) 
dx 

Here x = ±a defines the inner and outer radii of the annulus in units of h. 
With the boundary conditions (9,10) the resulting system has translation symmetry 

in the y-direction, a consequence of the rotation invariance of equations (l)-(3). How- 
ever, equations (4)-(8) possess an additional symmetry not possessed by equations (l)-(3). 
They are invariant under a 180° rotation about a vertical axis through x = 0. That is, 
if (u(x,y,z),v(x,y,z),w(x,y,z),0(x,y,z),p(x,y,z)) solves (4)-(8) so does (-u(-x,-y,z), 
—v(—x,—y,z),w(—x,—y,z),9(-x,—y,z),p(—x,—y,z)). In the following we denote this ro- 
tation by 7T and note that it is a reflection, 7r2 = id. As a consequence of this reflection 
symmetry, the symmetry group of the straight channel with periodic boundary conditions in 
y is the group 0(2), in contrast to the SO(2) symmetry of the annulus. It is this difference 
in the symmetries of the channel and the annulus that is responsible for the qualitative dif- 
ferences in both their linear stability properties and the nonlinear evolution of the resulting 
instability. 

Consider first a symmetry breaking steady state bifurcation with 0(2) symmetry. The 
temperature eigenfunction takes the form 

Q(x,y,z,t) = v(t)h(x,z)eimy + c.c,        m ^ 0, (11) 

where h(x,z) is the appropriate eigenfunction in the radial and vertical directions. To con- 
struct the equations describing the evolution of the complex amplitude v(t) in the nonlinear 
regime near onset we examine the action of translations T : y —► y + a and reflection 
7T : (x,y) —»■ (—x, —y) on the eigenfunction 0. Because of the 0(2) symmetry of the sys- 
tem a translated or reflected eigenfunction must also be an eigenfunction. As a consequence 
h(—x, z) = ±h*(x, z), i.e., the cross-channel eigenfunction must be either even or odd. More- 
over, since the equation for v(t) comes from a system equivariant with respect to translations 



and reflection, it must be equivariant with respect to the following action of 0(2) on C: 

T:   v^vetma, (12) 

7r:      v —* ±y. (13) 

The most general equation for v(t) therefore takes the form 

v = g(\v\2, p)v = pv + a\v\2v + 0(5), (14) 

where g is a real-valued function and p the bifurcation parameter (p = (R - Rc)/Rc). Note 
that it is the reflection % that forces g to be real and hence is responsible for the possibility 
that the initial bifurcation is steady, as assumed. From equation (14) it follows that the 
bifurcation produces a circle of steady states, corresponding to all possible translations of a 
given steady state. If the reflection symmetry is broken, for example, by the curvature of the 
annulus, or by imposing different boundary conditions at x — ±a, the function g acquires an 
imaginary part, and the evolution of v(t) is then governed by 

v = (p + ico)v + {a + ib)\v\2v + 0(5). (15) 

Here p, u, a and b are all real. Consequently the bifurcation becomes a Hopf bifurcation, 
and produces a travelling wave. Note that the direction of precession is given by the sign 
of to; the broken reflection symmetry selects a preferred direction. The magnitude of the 
precession rate is easily estimated as w = O(KmT), where K denotes the (dimensionless) 
channel curvature. 

A Hopf bifurcation can also exist in the channel problem, as found by Davies-Jones and 
Gilman (1971). However, because of the 0(2) symmetry this bifurcation now leads to two 
types of solutions simultaneously. These solutions differ in their symmetry properties. A 
solution we call TW breaks the reflection symmetry; consequently there is a second TW 
related to the first by the symmetry T. For example, a wall mode travelling clockwise along 
the outer wall is related to a wall mode travelling counter-clockwise along the inner wall by 
the symmetry TT. In addition to the TW solutions there is a second type of solution called 
SW. This solution is reflection symmetric, and corresponds to the simultaneous presence of 
both wall modes. It is a simple matter to demonstrate the above results. Instead of (11) we 
now have 

e(x,y,z,t) = {v(t)h+(x,z) + w(t)h-(x,z)}eimy+ C.C,        m ^ 0, (16) 

where, at bifurcation, v(t) oc etwt, w(t) oc e~tut. Thus v, w are the amplitudes of waves trav- 
elling clockwise and counter-clockwise, respectively, around the annulus. The eigenfunctions 
h+(x,z), h-(x,z) satisfy boundary conditions on the horizontal and vertical walls, and are 
related by reflection, h-(x,z) = h+(—x,z). The symmetries T and ~K act on the amplitudes 
v and w as follows: 

T:   (v,w)-* (veima,weima), (17) 

7r: (V,W) ^> (W,V). (18) 

This is the standard action of 0(2) on C2. The most general equation equivariant with 
respect to this action of 0(2) was obtained by Knobloch (1986), who showed that the resulting 



equations can be simplified by an appropriate near-identity change of variables. The resulting 
normal form, truncated at third order, is 

fi + iu + a\v\2 + b\w\2 

0 P 

0 \ / v 
iu + b*\v\2 + a*\w\2 w 

(19) 

Here v and w are now the transformed amplitudes. The coefficients a and b are complex, and 
fi € R is the bifurcation parameter. Expressing the amplitudes in terms of polar variables 
defined by v = r+e!</,+ and w = r^tl4>~, and writing a = ar + ia{ and b = br + i&,-, we find 
both travelling wave (TW) and standing wave (SW) solutions to (19): 

TW 

SW 

P Qi 
= ,     rT=0,     (j)± = ±UJ^fj,— 

r2
+ = r2_ = 

P 
ar + br 

= —§- = u) — fi 
a,- + k 
ar -f br 

(20) 

(21) 

subject to the nondegeneracy conditions ar ^ 0 and ar ^ ±br. In addition it is easy to show 
(Knobloch 1986) that both TW and SW solutions must bifurcate supercritically for either one 
of them to be stable, and that the solution with the largest amplitude is the stable one. The 
solution with r-(r+) zero corresponds to a travelling wave mode localized on the outer(inner) 
wall of the annulus and travelling clockwise(counter-clockwise). The SW solution is an equal 
amplitude superposition of the travelling wave modes localized on both walls and travelling 
in opposite directions. 

In contrast, in the annulus the broken reflection symmetry splits the bifurcation into 
two successive Hopf bifurcations, with one or other direction of precession preferred. This 
splitting is dominant at linear order and so is described by the equations 

(2)-C 
+ iu>i + a|u|2 + b\w\2 

0 
0 

ß + a - ioj2 + b*\v\2 + a*\w\2 
(:)■ 

(22) 

where |<r| <C 1 and u>i — u2 = 0(a). These equations are analyzed by van Gils and Mallet- 
Paret (1986) and by Crawford and Knobloch (1988). The main conclusions are that the two 
successive Hopf bifurcations both lead to travelling waves. The counterpart of the SW is now 
a two-frequency (quasiperiodic) state that bifurcates at finite amplitude from one or other of 
the primary TW branches. See fig. 1. Note that the observation by Gilman (1973) of stable 

(a) (b) 

(d) 

Fig. 1. The effect of curvature on a symmetry-breaking Hopf bifurcation in a rotating channel. 
Figs. (a,c): a = 0; figs. (b,d): a £ 0. 
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SW in the nonlinear regime implies that in the annulus one should observe stable two fre- 
quency waves bifurcating in a secondary bifurcation from a single frequency travelling wave. 
It is likely, however, that the additional symmetries imposed by Gilman to facilitate his 
computation prevented him from testing the stability of the SW state with respect to TW 
perturbations, and that the SW are in fact unstable to TW as in other problems of this type 
(cf Knobloch et al 1986). 

In the 0(2) symmetric system the transition from steady to oscillatory solutions takes 
place via the Takens-Bogdanov bifurcation. Such bifurcation points have been located by 
Davies-Jones and Gilman, and are characterized by four zero eigenvalues. The solution of 
the linear problem takes the form 

e = v(t)h(x,z)eimy + c.c,        m^O, (23) 

where 

C)-(Si)C) w 
and h(—x,z) = ±h*(x,z), as before. The 0(2) symmetry acts on (v,w) as follows 

T:   (v,w)-+ (ve<ma,weima)i (25) 

7r: (V,W) —► (v,w). (26) 

The resulting equation for the evolution of u, truncated at third order, can be written in the 
form 

v = fiv + uv + A\v\2v + B\v\2v + C(vv + vv) + D\v\2v. (27) 

As before the reflection symmetry IT forces all the coefficients to be real. The resulting 
equation has been analyzed in detail by Dangelmayr and Knobloch (1987), who find a number 
of different scenarios depending on the sign of the coefficient A and the value of the ratio 
C/D, including secondary branches of quasiperiodic states. The SW terminate on the branch 
of steady states in either a global bifurcation (A > 0) or in a secondary Hopf bifurcation 
(A < 0). The TW terminate on the branch of steady states in a pitchfork bifurcation; at 
this bifurcation the precession velocity of the wave vanishes. This is a consequence of the 
nonlinearity of the equations which can reduce the precession frequency from its value at 
onset to zero at finite amplitude. 

The effect of breaking the reflection symmetry 7r has not been analyzed in detail, although 
a few possibilities are sketched in Matthews et al. (1992). To determine the possible behavior 
it is necessary to allow for small imaginary parts in all the coefficients of equations (27). 
The resulting diagrams include those obtained from equations (15) and (22), and various 
interconnections between them. 

The above discussion provides a qualitative explanation for the linear stability results 
obtained by Davies-Jones and Gilman (1971) and the nonlinear results obtained by Gilman 
(1973). In particular Davies-Jones and Gilman found two types of steady modes, correspond- 
ing to longitudinal and transverse rolls. These are distinguished by the azimuthal wavenum- 
ber minimizing the Rayleigh number, mc < 1 for longitudinal rolls, while mc = 0(w/a) for 
transverse rolls, at least for the low rotation rates considered in their paper. For larger ro- 
tation rates the bimodal structure of the steady state neutral stability curves persists, but 
with an intervening interval of oscillations. This curve of Hopf bifurcations terminates at 
either end in Takens-Bogdanov bifurcations.   The appearance of these oscillations can be 



understood by analyzing the normal form for a 1:1 spatial resonance with 0(2) symmetry, 
as discussed recently by Julien (1994). Similar behavior was also found in low Prandtl num- 
ber axisymmetric convection in a rotating cylinder (Goldstein et al. 1994). With increasing 
rotation rate the critical Rayleigh number for the oscillations falls below that for either type 
of steady rolls and the instability becomes oscillatory. Note that the oscillatory instability 
will thus have an azimuthal wavenumber that is not as large as that for the steady transverse 
rolls. These oscillatory modes consist of a minimum of two cells in the radial direction, which 
(in the language of Davies-Jones and Gilman) propagate with equal speeds in opposite di- 
rections along the annulus, (and) have horizontal cell structures that are identical when one 
is rotated by 180° about the z-direction. In our language this is the description of an SW 
eigenfunction. Davies-Jones and Gilman did not appreciate, however, that cells travelling 
along one or other wall are separately eigenfunctions as well. Both TW set in at the same 
Rayleigh number as a consequence of the reflection symmetry ir. For yet larger rotation rates 
the eigenfunctions are more and more confined to either wall. Recent numerical simulations 
of compressible convection in an annulus (N. Hurlburt, private communication) verify the 
existence of these counter-propagating wall states, but because of the S0(2) symmetry of the 
system the outer wall state sets in before the inner one, and the precession rates of the two 
wall states are different. 

In this note I have tried to point out the dangers of modeling a system using a model 
with different symmetry properties than the original system. In such circumstances one is 
guaranteed that the model will lack even the qualitative features of the original system. We 
have seen that the change of symmetry from SO(2) to 0(2) has profound effects both at the 
linear and nonlinear levels. It allows steady state bifurcations from the conduction state, 
which evolve, in the nonlinear regime, to convection cells that are slanted with respect to the 
cross-section due to the Coriolis force but do not drift. With SO(2) symmetry steady state 
bifurcations are nongeneric and tilted cells must precess. Any physical effect that breaks 
the symmetry 7r will have this effect. These include curvature of the walls, differences in the 
boundary conditions applied at the sidewalls, sloping walls at the top and bottom etc. In fact, 
as discussed by Knobloch (1994), this is an example of a general phenomenon. For example, 
in a recent paper Matthews et al. (1992) study two-dimensional Boussinesq convection in 
an oblique magnetic field with periodic boundary conditions in the horizontal. Because of 
the boundary conditions in the horizontal this system is invariant under SO(2), the tilt of 
the magnetic field breaking the reflection symmetry in vertical planes. The theory therefore 
suggests that in the generic case the onset of convection should be through a Hopf bifurcation 
leading to a pattern drifting preferentially in one or other direction, depending on the tilt 
of the field. In fact in the Boussinesq case the initial instability is a steady state one and 
no drifts are found; in the nonlinear regime steady but tilted cells are present. The reason 
this nongeneric behavior takes place is related, as in the present paper, to the presence of 
an additional reflection symmetry. This is the reflection in the layer midplane, and is a 
special property of the Boussinesq formulation. Indeed, Matthews et al. find that if the 
Boussinesq approximation is relaxed, so that this symmetry is lost, the tilted cells begin to 
drift, as predicted by the analysis of the generic case. An identical explanation accounts for 
the onset of overstability in rotating compressible convection with or without an imposed 
axisymmetric magnetic field (Jones et al. 1990). In this example the system is treated in 
the channel approximation with identical boundary conditions at the sidewalls; however, 
it is the radial stratification that breaks the mid-channel reflection symmetry, leading to 
precession.   Another example arises in the stability of two-dimensional shear flows.   With 



periodic boundary conditions in the downstream direction such, flows have SO(2) symmetry. 
For generic profiles one therefore expects instability to set in at a Hopf bifurcation, giving rise 
to waves with a nonzero phase velocity relative to the shear flow. Djordjevic and Redekopp 
(1990) find that this is indeed so, and point out that if the vorticity profile is symmetric 
under mid-channel reflection the bifurcation becomes stationary. Additional examples can 
be found in models of the baroclinic instability, such as the Eady model, or in studies of wavy 
vortex flow in the Couette-Taylor system using the narrow gap approximation. 
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Introduction 
Two idealisations of horizontally homogenous convection are commonly studied by 
numerical simulation and laboratory experiment. Rayleigh-Benard convection 
assumes a constant destabilising temperature difference across the depth of the fluid, 
resulting in a depth filling, statistically steady convection, convenient for obtaining 
time-averaged fields and statistics, enabling detailed examination of the dynamics 
of the plumes, and the transition to turbulence (Heslot et al, 1987; Julien et al, 
1995b). However in geophysical convecting layers, the interaction between the con- 
vening plumes and a bounding stably stratified fluid layer is often important; for 
example in the planetary boundary layers. Hence penetrative convection, driven 
by a destabilising buoyancy flux at one surface (either top or bottom), and bounded 
at the other side by a stably stratified region, into which the turbulent convective 
layer is continually deepening, is a more appropriate study scenario. The interface 
between the convective layer and the stably stratified layer is of particular interest: 
for example, cold plumes driven by buoyancy loss at the ocean surface may overshoot 
their neutral buoyancy level, due to kinetic energy aquired in traversing the convec- 
tive layer, and penetrate into the stably stratified region. The resultant entrainment 
of denser fluid into the convective layer leads to a reverse buoyancy flux in this inter- 
facial zone (Deardorff et al, 1969), hereafter referred to as the penetration zone. 

Penetrative and Non-penetrative convection 
A distinction is often made between penetrative and non-penetrative convection in 
the oceanic mixed layer (Turner, 1986). When a surface buoyancy loss results in non- 
penetrative convection, the upper part of the density profile is assumed well mixed, 
with no change below. The total buoyancy removed is directly proportional to the 
shaded area Ai shown in figure 1, and the mixed layer depth can be estimated from 
this buoyancy loss: hm = J(2Bot)/N where N is the pre-existing Brunt-Vaisala 
frequency, and BQ is the buoyancy flux per unit area (Manins and Turner, 1978). 
On the other hand, penetrative convection involves entrainment of fluid from below 
into the mixed layer, leading to an increase in buoyancy (represented by area A2) 
in this penetration zone. A greater buoyancy loss in the convective layer (area ^3) 
than would be balanced by the surface forcing alone and a deeper convective layer 
(hp > hm) result. A region of sharp vertical gradients in density, or pycnocline, is 
formed in the penetration zone as a result of the reverse buoyancy flux. Penetrative 
convection occurs when the diffusion time necessary to remove the buoyancy anomaly 
of plumes is much longer than the advection time: i.e. the Peclet number wh/(K) is 
large (Fernando and Little, 1990), where it; is a vertical velocity scale, h a vertical 
length scale and K the diffusivity. 



Features of non-rotating penetrative convection 
Numerous studies of non-rotating penetrative convection (eg Deardorff et al, 1980) 
show a typical resultant density profile as in figure 2a. The density gradients are 
slightly positive in the upper part, and slightly stable in the lower part of the convec- 
tive layer (due to upwelling of denser fluid). The buoyancy flux is positive throughout 
this layer, and negative, about —0.2 the surface value, in the penetration zone be- 
low (Figure 2b). Hence in the lower convective layer, there is a counter-gradient 
flux of buoyancy, indicative of nonlocal transports by depth traversing structures, or 
plumes, in contrast to mixing by local eddies (Deardorff et al, 1972; Holtslag and 
Moeng, 1991). 

Entrainment: the cause of the negative buoyancy flux 
The entrainment of fluid from the stable layer into the convective layer may be caused 
by any of several mechanisms. A buoyant plume impinging on the interface may cause 
fluid to be swept up around it, due to the associated ring vortex circulation, and that 
fluid may then be engulfed into the mixed layer (Linden (1973)). Alternatively, the 
flattening of the plume against the interface, transfering the motion from the vertical 
to the horizontal generates a shear layer at the interface, which may be unstable to 
Kelvin-Helmholtz billows at sufficiently low local Richardson number (Mory, 1990). 
If the impinging plumes excite internal gravity waves in the stable layer, and these 
waves remain trapped by the stable layer structure, wave breaking into the convec- 
tive layer provides another entrainment mechanism (Fernando and Long, 1985). Each 
mechanism may respond differently to changes in parameters such as the Richardson 
and Rossby numbers. Some are applicable to vertical mixing driven by surface wind 
stress, while others apply more specifically to convectively driven mixing characterised 
by plumes. 

The influence of rotation on convection 
If we measure the influence of rotation on convection by a convective Rossby num- 
ber defined as the ratio between the inertial (coriolis) timescale r/ to the convective 
timescale rw 

ROc = TL = Jh = [w]    = (r&) (1) 

where w* is the convective velocity, / is the coriolis parameter and h is the depth of 
the convective layer, and we have substituted w* ~ {BQh)1^ (Deardorff, 1970), we 
obtain an apriori estimate of the relative influence of rotation on convective motion 
(Fernando et al, 1991). Raj is the flux Raleigh number, Ta is the Taylor number 
and a is the Prandtl number. Smaller values of Roc correspond to stronger rotational 
influence so that deep convective layers (large h), are more likely to be influenced 
by rotation. To investigate the influence of rotation on penetrative convection, we 
carried out three numerical simulations at identical values of Ra/ or BQ, and identical 
initial conditions, characterised by a uniform stratification in the lower 2/3 of the 
volume, and a homogeneous upper 1/3, varying Roc from oo, 0.65 to 0.21. We con- 
centrate our attention on the effect of rotation on entrainment processes, buoyancy 
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fluxes, and the structure of the pycnocline. 

Results 
We find that at decreasing Ro, the magnitude of the negative buoyancy flux in the 
penetration zone also decreases (figure 3a) resulting in less reinforcement of the pycn- 
ocline in this region (figure 3b). The mixed layer depths (figure 4a), as estimated from 
the level at which the density gradient becomes slightly stable, are similar in all three 
cases, and do not deviate strongly from the non-penetrative estimate, but do have 
a slightly steeper slope, indicating penetrative convection, with that slope increasing 
as Ro increases. By contrast, the depth of the penetration zone (figure 4b) (mea- 
sured by the level at which the density gradient approaches the initial stable value) 
is much deeper for the non-rotating case than for the two rotating cases, although 
the slope does not appear significantly different from the non-penetrative estimate. 
Examination of the density anomalies at the penetration zone (see Julien et al 1995a) 
reveals much smaller, weaker plumes in the strongly rotating case. The predominant 
entrainment mechanism in the non-rotating case appears to be the splashing of fluid 
around the plume. The smaller, weaker plumes in the rotating cases are therefore 
less efficient at this upwelling process, and hence lead to a less penetrative convection. 
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Initial density profile 

Final density profile 

gp/Po g P/Po" 

Figure 1: Comparison between the buoyancy budget and final density gradient 
for (a) non-penetrative and (b) penetrative convection paradigms, given an initial 
density gradient (g/p0)(—dp/dz) — N2, and total surface buoyancy loss b = B0t, 
where B0 is the buoyancy flux.  For non-penetrative convection, b = Ax = h2

nN
2/2, 

i.e. hm = J(2Bt)/N. In non-penetrative convection the extra buoyancy gain in the 
penetration zone (A2) balances the extra buoyancy loss in the mixed layer (^43) and 
the depth of mixing hv exceeds hm. 

(a) (b) 

gradient flux     z 

gp/Po <-wg p/p0> 

Figure 2: Typical (a) density and (b) buoyancy flux profiles in non-rotating pene- 
trative convection, showing a region of counter-gradient buoyancy fluxes in the lower 
part of the mixed layer, and pycnocline below. 
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Figure 3: Vertical profiles of (a) temperature flux and (b) temperature gradient 
for 3 simulations with different values of Roc, showing a decrease in magnitude of 
the negative buoyancy flux in the penetration zone with decreasing Roc, and less 
enhancement of the thermocline. 
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Figure 4: Time development of (a) the mixed layer depth (the depth at which the 
temperature gradient becomes slightly stable) and (b) the penetration layer depth (the 
depth at which the temperature gradient tends to the background value), showing 
the reduction in the width of the penetration zone with increasing rotation. 
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The Non-hydrostatic Modeling of Large Scale Oceanographic Flows 

Amala Mahadevan 
Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 

A serious drawback of the hydrostatic model in large scale ocean modeling is that it is 
ill-posed in domains with open boundaries. Solving the non-hydrostatic equations for 
large scale flow on the other hand, is wrought with problems of numerical accuracy. 
An alternate approach that we use is to allow a greater deviation from hydrostatic 
balance. The approximation preserves the solution accuracy desired, and results in 
a well-posed model in domains with open or solid boundaries. It is found that by 
taking advantage of the hydrostatic nature of the problem, one can solve the non- 
hydrostatic equations at a cost that is not much greater than that of solving the 
hydrostatic equations. 

We consider the equations that describe large scale oceanographic flow, while ne- 
glecting viscosity and using the approximation of incompressibility for seawater. 
We rewrite the total pressure as the sum of a hydrostatic component p and non- 
hydrostatic component q, where p is defined by 

Pz + pg = 0 (1) 

and scale the equations in the usual way for the mid-latitudes using the characteristic 
time scale for advection. The dimensionless form of the equations is then given by 

Du/Dt + e~1(px + -yqx-fv + e5bw) = 0 (2a) 

Dv/Dt + e"1 (py + jqy + fu)=0 (2b) 

Dw/Dt + -iC28-2qz - e-25-lbu = 0 (2c) 

ux + vy + twz = 0 (2d) 

where 
D/Dt = udx + vdy + ewdz (3) 

and x,y, z refer to the eastward, northward and antiparallel to gravity coordinate 
directions. Here / and b denote the Coriolis parameters due to the normal and 
tangential to surface components of the earth's angular velocity, e is the Rossby 
number, 5 is the aspect (depth to length) ratio, and 7 is a non-hydrostatic parameter 
that is the ratio of the characteristic magnitudes of non-hydrostatic and hydrostatic 
pressures. The vertical velocity scales as t8 times the horizontal velocity. Our interest 
is in using the model for mesoscale eddies and currents in the ocean. The value of 5 
is typically 10-2 and e is in the range 10-1-10-2 for these situations. 

Since all the variables and their derivatives are dimensionless and 0(1) in the above 
equations, it can be seen that in order for no single term in (2c) to be much larger 
than the others, it must be that 

7 = S. (4) 



Equation (2c) can therefore be rewritten as 

Dw/Dt + t-28-\qz - bu) = 0. (5) 

For the large scale flows of interest to us, t~28~l is in the range 104-106 and im- 
plies that the sum of the vertical pressure gradient and Coriolis term is of the order 
10~4-10~6. This sum must be computed to at least 2 digits of accuracy in order to 
achieve a reasonable accuracy in w and is what makes the numerical solution of these 
equations intractable. (The problem is even worse if the hydrostatic balance (1) is 
not subtracted out of the vertical momentum equation.) 

By making the hydrostatic approximation, one no longer needs to integrate the ver- 
tical momentum equation. The vertical velocity is backed out from (2d), but still 
suffers from problems of accuracy on account of e being small. Further, the equations 
are ill-posed when open boundaries are present [Öliger & Sundstrom (1978)]. 

An alternate strategy suggested by Browning et al. (1990), is to replace the coefficient 
e~28~l in (5) by a much smaller one that we denote by a to give 

Dw/Dt + a(qz - bu) = 0. (6) 

The error made as a result of this approximation can be estimated by forming the 
error equations (by subtracting the approximate equations from the exact ones), and 
estimating the order of magnitude of the error variables. It can be shown that the 
error is 0(a-1), and thus, with a suitable choice of a, we can retain a desired solution 
accuracy. Further, it can be shown that the model is well-posed with open or solid 
boundaries. 

The most computationally intensive task in the numerical solution of these equations 
to find the non-hydrostatic pressure q. To do this, we differentiate (2a),(2b) and (6), 
and using the incompressibility constraint (2d) construct an elliptic equation of the 

form 
qxx + qyy + e2a~f~1qzz = rhs. (7) 

The solution of the linear system arising from the discretization of this elliptic equa- 
tion can be speeded up immensely by using block relaxation that takes advantage of 
the fact that e2a7-1 » 1. 

As an aside, it is interesting to consider the case when the tangential to surface com- 
ponent of the earth's angular velocity is neglected, or does not exist as in laboratory 
experiments. The absence of the term bu from (2c) implies that the pressure gradient 
term can be no larger than the vertical acceleration term. Hence 7 < e2S2. The con- 
sequence of 7 being much smaller is that non-hydrostatic effects are negligible and 
the solution to the non-hydrostatic momentum equations in this case is nearly the 
same as the solution to the hydrostatic equations. 
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1. Introduction 

The atmosphere and ocean move on a broad spectrum of length scales. If we consider 
horizontal scales of motion, it is generally accepted (on physical grounds) that the large 
(planetary) scale motion is inextricably linked to synoptic scale motion. In the ocean, the 
synoptic scale is of O(lO-lOOKm). Evidence from observations and numerical simulations 
generally confirms this. Motion also exists at scales smaller than the synoptic scales. In the 
ocean it is impractical to make detailed observations of the small scale motion occurring 
over a region of large horizontal scale, such as an ocean basin. At present, it is also 
impractical to explicitly resolve motion on scales less than 0(1 Km) in numerical models 
of an ocean basin. There are qualitative differences between the dynamics important to 
small scale motion and those important to synoptic and larger scale flows. For these 
reasons, numerical models of ocean basins seek to explicitly resolve motion at synoptic 
and larger scales while parameterising small scale motion with any of a variety of schemes. 
The similarity between the results of some of the better ocean models and observations, 
at least in the upper ocean in mid and low latitudes, encourages the use of this approach. 
Similar considerations apply to the atmosphere, though there the synoptic scale is larger. 

Both observations and high-resolution numerical models [1] of the ocean indicate that the 
flow at synoptic scales is irregular. Ocean currents are frequently dynamically unstable, 
develop meanders and shed eddies. The interiors of ocean basins contain populations of 
synoptic scale eddies which move within the basin and interact with each other and with 
larger scale currents. This makes oceans unpredictable in the conventional sense. Such 
unpredictability is not confined to the position and strengths of synoptic scale eddies. The 
interaction of these eddies with large scale flows can lead to transitions in the large scale 
pattern of flow, as can be seen in, for example, simulations of the Black Sea. 

In the atmosphere, lack of predictability was explicitly recognised by Lorenz [2]. An 
elegant model introduced by Lorenz served to demonstrate that some types of chaotic 
motion may also contain a geometric simplicity in the form of low-dimensional objects - 
fractal attractors - that the motion asymptotically approaches when viewed in a dynamical 
phase space. 

Ruelle and Takens [3] proposed that bifurcations from regular behavior to motion on 
strange attractors might offer a route to certain types of turbulence. At very high Reynolds 
numbers, shear turbulence appears to be a complicated form of spatio-temporal chaos, but 
at more moderate degrees of nonlinearity, several types of flows or flow-like phenomena 
have been found to exhibit low-dimensional dynamical behavior. Examples include Taylor- 
Couette flow [4] and oscillating chemical reactions of the Belousov-Zhabotinskii type [5]. 

In the ocean, movement at synoptic scales and larger is constrained by the rotation of 
the Earth to be quasi-two-dimensional [6]. This offers the prospect that the turbulent 
character of oceanic flow at these scales may be considerably simpler than high Reynolds 
number, three-dimensional turbulence. 

It seems worthwhile to explore the way in which a simple ocean, driven by wind, becomes 
turbulent.    One conjectures that, as the Reynolds number is decreased, there will be 



a series of bifurcations from regular attractors to low-dimensional fractal attractors to 
progressively higher-dimensional fractal attractors to spatio-temporal chaos. If, at the 
effective Reynolds numbers produced by the sub-synoptic scale motion, there is a set 
of attractors each possessing a relatively simple structure, the knowledge of the shape, 
dimension and probability measure of these attractors may prove useful in determining 
the probable behavior of such a system. Ideally one would wish to extend such an approach 
to a coupled ocean-atmosphere system of the type used in studying the dynamics of the 
Earth's climate. Here we discuss the results of experiments made with a simple two- 
dimensional ocean model. 

2. Model 

Our basic dynamical system is a finite-difference numerical model of wind-driven, barotropic 
flow in a small rectangular basin of uniform depth, H. Since we are not interested in re- 
solving external gravity waves, we use a rigid-lid approximation. The flow is horizontal 
and incompressible, the density is uniform and constant. We normalise the density to 
unity. We use no-slip boundary conditions at the lateral boundaries. The basin is located 
on a mid-latitude beta-plane [7]. The model is forced by a wind stress r. The effects of 
sub-grid scale motion are modelled as a simple diffusion with a uniform diffusivity, v. 

Using a potential vorticity/streamfunction formulation of the problem [8], the governing 
equation can be expressed in the form 

dtVV + J{i>, VV) + ßtx = ^V4^ + cm\(r/H) (1) 

The main dependent variable is, ifi, a streamfunction for the flow. The parameters, u, H 
and ß (the meridional gradient of the Coriolis parameter) are constant. Letting Lx and 
Ly be the zonal and meridional dimensions of the basin, we limit our attention to a steady 
wind-stress of the form r = (r0/Lx)(x - Lx/2), which has a uniform, cyclonic curl. (Our 
original interest was motivated by the behavior of the Black Sea.) 

We nondimensionalize as follows. We introduce the Munk frictional boundary layer width, 
I = (1///3)1/3, and then scale lengths with I, time with (/3Z)-1, and streamfunction with 
ßl3. Eq. (1) becomes 

ötVV + Jr(^,VV)+^s=VV + e (2) 

where 
I        T0 

LxßvH 

Defining a Reynolds number, Re, a dimensionless basin width, 7_1, and an inertial length 
scale, L, by 

„r0 I r      ßvHLx 

pun Lx r0 

we see that e = Rcy = l/L and the problem depends on three dimensionless parameters: 

e = — ,    7 = — ,     and    6 = -^ . 
Jb Lix Jbx 

The last two parameters, 7 and 8, come from a consideration of the locations of the 
basin boundaries. 8 is the aspect ratio of the basin. Together with the no-slip boundary 
conditions adopted here, and in some cases the choice of initial conditions, the specification 
of e, 7 and 8 determines the flow field. 
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Later, when studying the bifurcation properties of the system, we use the dimensional 
version of the model, fix 

£2=1024Km,   Ly = 512Km,   /0 = KT4s_1,   ß = 2 x 10-11m_1s-:i,   -j^—r = 9.766 x 10-5 

flHL 

and vary v in the range 100m2s   l < v < 400m2s   1. 

The numerical model of (1) is discretised on a 129x65 grid using a second-order finite 
difference scheme. An explicit time-stepping scheme is used for all terms in (1) (a second- 
order Runge-Kutta scheme with a time step of 1800s). The Poisson problem is solved 
using Hockney's FACR method [9]. 

Considered as a dynamical system, the "variables" of the system consist of a q value at 
each of roughly 8000 nodes. This makes it a relatively large dynamical system. 

We made a number of calculations that differ by (i) the value of v used and (ii) the 
initial condition. Each calculation furnishes one trajectory of the dynamical system in its 
natural (roughly 8000-dimensional) phase space. Since following the details of this is quite 
impractical, we chose a diagnostic that represents a spatial integral of the instantantaneous 
state of the system and used the method of delay coordinates [10] to reconstruct low 
dimensional phase space approximations. The diagnostic that we used was the basin 
integral of the kinetic energy of the flow, K(t). 

An artificial phase space was constructed by defining an artificial phase variable x(t;r) = 
(a;o,a!i,...,a:n_i) with 

Xj = K(t - JT) 

for a fixed delay r. In the results shown, we have used n = 3 and r = 16.67days. Some 
of the figures below show Poincare sections constructed as follows. We choose a fixed 
value of XQ, say C, and consider the plane with coordinates (xi, £2) given by xo = C. 
Choosing C so that the plane slices through the attractor of interest, we plot the points 
of intersection of the delay-coordinate phase space trajectory with this plane each time a 
trajectory passes through it, going from XQ < C to XQ > C. 

3. Results 

Before examining the bifurcation structure of this model, we first found the marginal curve 
in the (e, 7) plane for several different values of the apsect ratio 8 (Figure 2). A typical 
steady solution is shown in Figure 1. In Fig. 2, the steady solution is linearly stable on 
the large £/small e side of a marginal curve (upper left side) and linearly unstable on the 
opposite side. For the case of a square basin (8 = 1), the marginal mode to the left of e = 1 
takes the form of an instability of the western boundary current, c.f. Ierley and Young 
[12], while along the marginal curve to the right of e = 1, the marginal mode appears to be 
an instability of the standing meander just to the east of the south-western recirculation 
gyre. Below we study the bifurcations of a 8 = 0.5 basin. Along the part of the 8 = 0.5 
marginal curve shown in Figure 2, the marginal instability always seems to be associated 
with the standing meander. 

We have explored the range 100m2s_1 < u < 400m2s_1 and identified several families 
of attractors within this range. For the size of basin and strength of forcing that we 
have used, the only aymptotic state, when v = 400m2s_1, appears to be a fixed point, 
corresponding to a steady circulation. At the other end of this range, v = 100m2s-1 is 
comparable to values of viscosity used in some eddy-resolving ocean simulation studies but 
larger than in others and larger than the estimates obtained from dye release experiments 
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(e.g. from the NATRE experiment [11].) Our main reason for stopping at v — 100m2s 1 

is that regions of high dissipation in the flow become very narrow as v is decreased and 
are poorly resolved in a model with 8Km resolution when v < 100m2s-1. Such structures 
play an important role in determining the flow patterns seen, 

We have identified three families of solutions. These are shown in Figure 3 for the range 
300 < v < 360. One family is a family of fixed points, stable at sufficiently high v but 
losing stability near v — 350. Lack of convergence in our steady state solver at low values 
of v mean that we are unable to continue following this branch of unstable solutions below 
v = 190m2s_1, though there seems no reason to believe that this branch of solutions does 
not continue. We cannot rule out the possibility that, in the vicinity of u = 190m2s-1, the 
branch of steady states curves back around to higher values of v but we have not found 
any indication of this. 

In the vicinity of v = 350m2s-1, the branch of fixed points undergoes a supercritical Hopf 
bifurcation, giving rise to a family of unsteady attractors that we can follow down to 
v — 300m2s_1. For values of v close to 350, these take the form of stable limit cycles 
with periods on the order of 81 days. As v is reduced, the amplitude of the limit cycles 
increases. There is also a mild increase in the period of the oscillations. This limit cycle 
solution appears to undergo a secondary Hopf bifurcation in the vicinity of v = 310m2s_1 

and the stable attractor becomes a 2-torus. After a short interval in u there appears to 
be a transition to a chaotic set. This is either stable when it first appears or is attracting 
in most dimensions and only very weakly unstable. (At v = 300m2s-1 a Poincare section 
shows something similar to a chaotic attractor but given the finite integration time it is 
not possible to rule out that the possibility that what we are seeing is a chaotic transient 
with a very long time scale.) Below v — 300m2s-1, the chaotic attractor appears to lose 
stability. For example at v = 298m2s_1 and v = 297m2s-1, a typical trajectory spends 
a long time in the vicinity of what, from the form of its Poincare section appears to be a 
continuation of the chaotic attractor; however, eventually the trajectory is captured by a 
stable limit cycle belonging to the second family of unsteady solutions discussed next. 

A second family of unsteady solutions appears near v = 327.6m2s_1. This family of 
unsteady attractors can be traced to below v — 100m2s_1. At first these attractors take 
the form of stable limit cycles. Near v = 327m2s-1 these have periods on the order 
of 65 days. As v decreases, the periods of the limit cycles decrease, their amplitudes 
increase and eventually they undergo a sequence of secondary bifurcations that lead to 
more complicated attractors. We first see a forward period-doubling bifurcation at around 
281m2s_1 that gives rise to an ^-interval of period 2 oscillations. This eventually ends 
in a reverse period doubling bifurcation near v — 258m2s_1. This family continues once 
more as a series of period 1 limit cycles (with a period of roughly 51 days) until a sequence 
of two period-doubling bifurcations occurs, leading first to period 2 limit cycles and then 
to period 4. Examples of these are shown in Figure 4. Between v = 168m2s_1 and 
v = 165m2s-1, the period 4 limit cycle appears to undergo a Hopf bifurcation and we see 
quasiperiodic solutions on an attracting two-torus. Subsequently there is a bifurcation to 
what appears, from its Poincare section to be a chaotic attractor, an example of which, 
at v = 147m2s-1, may be seen in Figure 5. The majority of attracting solutions seen at 
lower values of u are chaotic and, from their energy values, appear to be continuations of 
this family. (A narrow band of periodic solutions, first of period 10 and then period 5, 
was also seen in this range, and there may be other periodic windows that we have failed 
to detect.) As u decreases, the chaotic attractor expands and its structure becomes less 
distinct. (Because of the length of time require to integrate the ocean model, the number 
of points that we can generate on a Poincare section is limited.) 



4. Discussion 

There are several significant aspects of the results sketched out above. We have used 
a PDE model of a two-dimensional ocean basin, i.e. an infinite dimensional dynamical 
system. After discretization to reduce the PDE to a numerically integrable form, the 
system becomes finite-dimensional but its dimension remains very high. We find that for 
the range of horizontal viscosities consistent with our horizontal grid spacing, the solution 
asymptotes to a relatively low-dimensional attractor. For example, using a version of 
a nearest neighbor algorithm [13], we estimate that the dimension of the attractor seen 
in the Poincare section for v = 147m2s-1 in Figure 5 to be between 2.4 and 2.5. This 
relatively simplicity is not something that one would immediately anticipate from the 
visual appearance of the time-dependent physical flow field that corresponds to Figure 5. 
The physical flow field looks rather complicated and irregular. 

In the range we have examined, the chaotic attractor on the higher energy branch of 
unsteady solutions is gradually changing as v is decreased. It is spreading out over a larger 
volume of the delay coordinate phase space and is becoming more diffuse. In addition, 
its fractal dimension also appears to be slowly increasing. For v = 130m2s-1, the nearest 
neighbor estimate of the fractal dimension lies between 2.8 and 2.9. This gradual increase 
in dimension makes it difficult to estimate the dimensions of the attractors present at 
lower values of v with the limited duration times series that we are able generate. 

Since our approach relies heavily on the forward integration of a straighforward evolution 
model, there may be other attractors that we have missed, nor do we have much infor- 
mation on the sizes of the basins of attraction of the attractors that we did find. The 
simple-minded approach of integrating forward in time and seeing what happens has the 
virtue of simplicity but more sophisticated approaches to investigating dynamical systems 
exist and, if brought to bear on this problem, ought to reveal more of what is going on. 
The disadvantage of some of the more sophisticated techniques is that, when applied to 
this rather high-dimensional model, they will require a lot of computational resources. 

A direct application of these results to the synoptic and large scale movement of a real 
ocean basin would clearly be incorrect. We feel that their main significance lies in the fact 
the we have integrated a system with some of the complexity of the real ocean and found 
evidence of a relatively simple dynamical behavior. Our numerical model greatly simplifies 
the dynamics of the ocean, and the parameterization of the effects of sub-grid scale eddies 
as a simple, constant-coefficient diffusion is rather naive. However, one should not lose 
sight of the fact that this is still a high-dimensional system. One might also expect to see 
low-dimensional behavior in more sophisticated ocean models. We are experimenting now 
with models that include some of the effects of ocean stratification. 

The gravest simplification we have made is probably the use of a steady forcing for this 
model. The true wind forcing of the ocean is of course unsteady. It would be interesting to 
take a similar approach to a highly simplified climate model containing coupled atmosphere 
and ocean models. One extension to the current problem that we are attempting is to 
place the steady wind-forcing with a periodic forcing chosen to represent the seasonal cycle 
of winds. 
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Rayleigh-Benard Convection in Compressed Gases 

Brendan B. Plapp and Eberhard Bodenschatz 

Department of Physics, Cornell University 

Recently, experiments in Rayleigh-Benard convection revealed a complex, time-dependent 
state in which targets, single- and multi-armed spirals were continually created, annihilated and 
advected throughout the fluid layer. This state, termed "spiral defect chaos" (SDC), was found to 
occur where the Busse balloon stability boundaries would predict a stationary pattern of straight 
rolls. Although SDC was later observed in theoretical simulations of the Boussinesq equations,2 

the nature of SDC is still not understood. Recent theoretical work has sought to explain the spatio- 
temporal chaos via the concept of an "invasive defect".3 

Figure 1: Shadowgraph image of Spiral Defect Chaos at £ = (Ra-Rac) /Rac ~ 1 in pressur- 
ized CO2. White indicates cold downflow; dark represents warm upflow. 

While individual spirals have been studied in biological and chemical systems, nothing is 
known about spirals in Rayleigh-Benard convection. To characterize this fundamental coherent 
structure of SDC, we have experimentally investigated the dynamics of individual spirals. 

By using CO2 pressurized to 50 atm, we could produce convection in a very shallow layer and 
thereby achieve a large lateral to vertical aspect ratio. Six cells of different aspect ratios were then 
simultaneously investigated, as shown in figure 2. Forcing sidewalls were constructed to select 
circular patterns, and the modes of formation and destruction for target patterns, 1-, 2-, 3- and 4- 
armed spirals were observed. Each spiral arm extended from a central core tip out to a trailing 
defect which revolved around the center at a constant radius. Between the defect and the sidewalls 
were concentric circular rolls. 

1. S. W. Morris, E. Bodenschatz, D. S. Cannell, and G. Ahlers, Phys. Rev. Lett. 71, 2026 (1993). 
2. W. Decker, W. Pesch, and A. Weber, Phys. Rev. Lett. 73,648 (1994). 
3. M. C. Cross and Y. Tu, Phys. Rev. Lett. 75,834 (1995). 
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Figure 2: Shadowgraph image of six cells at e = 0.7; note 1-, 2- and 3- armed spirals in the four 
largest cells and Pan Am patterns in the two smallest. Largest cell is 4.3 cm in diameter, smallest 
is 1.3 cm. Layer thickness is 430 u.m. 

The 1-armed spirals' frequencies of rotation were measured and found to increase with the 
applied temperature difference. This trend reversed when the spiral core moved off-center in a 
manner similar to the focus instability.4 Although the outer tip speed increased in the compressed 
region, the slowing of the tip in the expanded region was so great that the average rotation rate 
decreased. 

The drift of the spiral off-center also presaged the occurrence of one or more skewed-varicose 
instabilities, which form the high wavenumber boundary in the Busse balloon for stable rolls for 
our Prandtl number of 1.4. In a skewed-varicose event, a roll pair is torn, causing the pattern to 
relax to a smaller wavenumber. The low wavenumber boundary for stable rolls (at Prandtl number 
1.4) is the cross-roll instability, in which a significant dilation between nominally parallel rolls 
causes perpendicular rolls to grow in the gap. We have compared the wavenumbers at which the 
instabilities occurred to those predicted by theory. Further results and theoretical comparisons will 
be described elsewhere.5 

4. A. C. Newell, T. Passot, and M. Souli, Eur. J. Mech., B/Fluids, 10, no. 2 - Suppl, 151, (1991). 
5. B. B. Plapp, E. Bodenschatz, W. Bäuml, and W. Pesch, in preparation. 
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Spin-offs of the North Atlantic Current 

by T. Rossby 
Graduate School of Oceanography 

University of Rhode Island 
Kingston, RI02881 

The North Atlantic Current (NAC) has the distinction of reaching much farther poleward 
than any other western boundary current As the continuation of the Gulf Stream after it 
curves around the SE Newfoundland Rise near 40°N, 50°W, the NAC flows northeast past 
Flemish Cap to the Northwest Corner before turning sharply to the east towards northern 
Europe. While these notes focus on the northward flow of the current, it is intriguing to 
speculate on why the Gulf Stream, unlike its cousin in the Pacific, the Kuroshio Extension 
Current, turns north at all. The most obvious reason is that the thermohaline or meridional 
overturning cell 'draws' the waters poleward. But this begs the question why the current 
turns north in the west: Why not continue to the east as a zonal jet and then turn north? But 
other possibilities come to mind. To mention one: the eastward flowing Gulf Stream locks 
onto' the southern flank of the Southeast Newfoundland Rise. As the isobaths turn to the 
north and northwest, so does the current. If so, what would happen if the SE 
Newfoundland Rise did not exist?! Would the Gulf Stream continue eastward as does the 
Kuroshio? It might be interesting to test this with a numerical model of the North Atlantic 
Circulation. Fig.l shows Iselin's (1936) map of the depth of the 10°C isotherm in the NW 
Atlantic. 

Fig. 1. The depth of the 10°C isotherm in the NW Atlantic according to Iselin (1936). 
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Studies of the NAC region have been hampered by the persistent cloud coverage and lack 
of ground stations nearby that can receive AVHRR imagery on a routine basis. We recently 
concluded a study of the region using isopycnal rafos floats. Lagrangian techniques for 
studying currents can be very helpful for the float trajectories provide a substantial amount 
of spatial information. A major focus of this project was to elucidate the structure of the 
current, and to determine to what extent it acts as a barrier between the warm subtropical 
waters of the Newfoundland Basin and the cold subpolar waters flowing south in the 
Labrador Current (LC) inshore of the NAC. The isopycnal contrast between waters of the 
NAC and LC is enormous, and can exceed 10° on shallow density surfaces. Starting in 
summer 1993, we have on three separate occasions deployed floats on two specific volume 
anomaly surfaces corresponding to the 27.2 and 27.5 sigma-t surfaces. The majority of 
float missions lasted ten months. Some were deployed in the NAC, and others to either 
side of the current The field program ended in June 1995 and the remaining float data will 
have been processed by the end of the year. From the trajectories of the first -60 floats we 
have constructed a cartoon, Fig. 2, of the mean path of the current (Rossby, 1995). 

Fig. 2. Cartoon of the path of the NAC and adjacent recirculation cells. The arrows indicate 
probable pathways and directions of exchange between the NAC and surrounding waters. 
The dashed lines indicate possible inshore pathways from the Gulf Stream. The dashed line 
in the north indicates an additional meander that appears in some of the deeper float 
trajectories. The four stars mark the positions of the sound sources providing the acoustic 
navigation for the rafos floats. 
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The most striking aspect of the current must surely be its highly convoluted path: the 
meanders are short and steep. Further, where there are crests, troughs are rarely if ever 
observed, and vice versa. Unlike the Gulf Stream where meanders propagate eastward, 
these meanders are stationary and locked, we believe, to the bathymetry. This will be 
quantified when all of the float data have been processed. We have found little evidence for 
zonal jets emanating from the NAC. After the NAC turns east near 52°N, it retains a jet-like 
structure for only a short distance. From the float data available thus far, it appears that the 
NAC changes its character from a narrow jet to a broad eastward flow with perhaps eddy- 
or topographically induced transient jets superimposed. 

As a result of the semi-permanent meanders, strong recirculations develop within the 
'bights' of the meanders. Two floats illustrate this: float 277 shows the shedding of an anti- 
cyclonic eddy at the northwest corner, Fig. 3. 
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Fig. 3. The top panel shows the trajectory, the lower panels show the temperatures and 
pressures at the depth of the float and the density surfaces 0.1 c-units below and above. 
(The float is programmed to float up and down to these neighboring density surfaces twice 
a day.) Note the decrease/increase in stratification in the upper/lower half-layers with time. 
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The interesting feature to note is the cooling of the eddy after it breaks away, and the 
increasing layer thickness. The maximum cooling rate occurs during the late winter 
months, so it is tempting to assume that the float is at the bottom of a deepening mixed 
layer, but the anticyclonic orbiting of the float indicates that it is within a baroclinic pool of 
water, so we can't exclude the possibility of lateral cooling by the surrounding Labrador 
Waters as well. 

The second eddy is effectively a permanent feature of the North Atlantic. We call it the 
Mann eddy after Cedric Mann (Mann, 1967). One of the floats remained trapped in it for its 
entire 10 month mission, Fig. 4. 

Fig. 4. The trajectory of float 260 trapped in the pycnocline undr the Mann eddy for 10 
months. The gradual cooling (not shown) suggests lateral mixing. A Gaussian estimate of 
the eddy's relative vorticity is -0.14f, comparable to the NAC's negative shear vorticity. 
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The temperature record indicates a cooling trend the entire time, but the float's great depth 
and the high stratification preclude contact with the overlying mixed layer. Assuming the 
float was not leaking (which we need to ascertain) and hence sinking into colder waters, the 
only mechanism available would appear to be lateral (isopycnal) mixing with cold waters of 
Labrador Sea origin along the meander perimeter. The temperatures are within an allowable 
range for this to be possible, but since the cooling cannot continue forever, the waters will 
have to be flushed out at some point. The thermocline in this eddy is several hundred 
meters deeper than in the Newfoundland Basin (Mann, 1967). This represents a substantial 
reservoir of eddy potential energy which the curved flow of the meander crest somehow 
maintains. As a consequence of the deep thermocline, a layer of low stratification can 
always be found above it, Fig. 5. It is very difficult to believe that these layers retain such 
uniformity for months after the cessation of winter time cooling. Perhaps some kind of 
slantwise convection or cabbeling mechanism might be involved in suppressing 
restratification. A careful look at the float track in Fig. 4 will show strong inertia! motion. 

Fig. 5. Temperature profiles from the Mann (x) eddy (Mann, 1967) and a recent CTD cast 

Addendum: The sharp meandering of the current and the expulsion of anticyclonic vorticity 
in the form of tight recirculations and separated eddies means that the eastward flowing 
NAC, i.e. after it leaves the western boundary, is transporting less relative a/c vorticity than 
the NAC advected into the region at the southern end. The apparent broadening of the NAC 
after it turns east would be consistent with this hypothesis since the advection of vorticity 
(for a homogeneous flow on a local f-plane) is proportional to the inverse square of the 
width of the current The difference in transport would have to be dissipated in the standing 
meanders or removed in the form of discrete eddies. Perhaps eddy shedding is an intrinsic 
part of the dissipation process: eddies spin-up and break away making room for the next 
one since the meanders alone apparently can't dissipate the vorticity. When all of the data 
are ready, we will attempt to construct a potential vorticity budget for the NAC region. This 
will hopefully include estimates of eddy formation rates and perhaps export from the area. 
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Large-scale aspects of convection: observations, vertical 
transports, and implications 

Uwe Send 

Oceanic deep convection is an important process in the large-scale and global thermohaline cir- 
culation system. It must be this process which generates the deep water masses, since they can 
only acquire their low temperatures and high densities through surface contact in regions where 
corresponding surface conditions are found in winter. It is well known now from direct observations 
as well as numerical and lab modelling studies that convection in the ocean takes place in the form 
of vertical cells, with typical diameters of order lkm. Within these cells (sometimes also referred 
to as plumes), appreciable vertical velocities of up to Wcm/s may be found (see Schott et al. 1994 
for an overview of observations). Scaling relations based entirely on external parameters (buoyancy 
flux B, rotation /, depth H) are quite successful at predicting the various properties of plumes. 
There is still some controversy regarding the choice of rotating versus non-rotating scalings, but for 
typical ocean conditions these yield rather similar sizes and vertical velocities for the plumes. Some 
of these scaling relations can be found in Jones and Marshall (1993), Maxworthy and Narimousa 
(1994), Coates et al. (1994). 

An important topic also is the large-scale (or integral) net effect of the ensemble of all the plumes 
in a convection region. Send and Marshall (1995) investigated the mean downward transport (area 
integral of w) in a convection regime. Using several different approaches, they demonstrate that 
convection must be essentially a mixing process with negligible vertical transport. For example, 
any oceanographically significant mean w would induce unrealistically large relative vorticity. Ob- 
served density structures and numerical model analyses also supported this mixing element con- 
cept of convection plumes. Send and Marshall went on to introduce a vertical mixing timescale 
tmix = H/wp[ume, based on which successful scaling relations for a number of large-scale properties 
of the convection region were derived. Good agreement between predictions from these and numer- 
ical model simulations were obtained for the temporal evolution of the density anomaly, for the 
magnitude and width of the rim current circulating around the (denser water of the) convection 
region, and the instability time-scale and wavenumber of this rim current. 

The success of the mixing concept of convection suggests that also in numerical models, it ought 
to be possible to represent and thus parameterize the plume activity by a suitable mixing scheme. 
A quantitative scaling for a vertical diffusivity to be used during active convection had been put 
forward in Send and Marshall (1995) and this was then rigorously tested via twin experiments in 
Klinger et al. (1995). The net results was that during the first days after the onset of convection, 
it was important to use a mixing scheme (e.g. a diffusivity) with the correct tmiX- However, in the 
long run all parameterization tried, even convective adjustment, yielded water mass properties and 
volumes close to the runs with resolved plume activity. 

One question immediately arises from the above results: If there is no mean downward transport 
during the active convection period (the plume phase), how then is the volume of deep water 
replenished that is observed to exit the convection basins in the thermohaline system ? Let us 
idealize the end state of the deep mixing phase by a density field as sketched in figure 1. It is 
clear then that convection has generated an additional volume A x if/2 of water with deep water 
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densities (hatched in fig. 1), compared to the 'climatologies!' mean state (A is the surface area of 
the convection region). If one assumes that, in the long run, this water somehow settles into the 
deep-water pool, the extra volume of deep water generated is just given by A x H/2. This is how 
the water mass generation in terms of volume should be calculated. Note that this is different from 
the volume mixed and e.g. enriched with tracers, which would be A x H. 

< surface area A > 

a.. o 

extra volume- 

of dense water 
generated" 

deep water 

Figure 1: Cartoon of the large-scale density field after the active deep convection phase. 

In a rotating system, the dense water reaching up to the surface in figure 1 cannot simply sink. 
Possible mechanisms to extract the available potential energy from such a state are baroclinic 
instability, factional spin-down, and draining of the water in a deep boundary current. Another 
possibility that cannot be neglected, however, is that the dense water is mainly removed and/or 
mixed away horizontally (e.g. through instability eddies), without appreciable vertical transport. 
These various mechanisms will be re-visited in subsequent sections. 

Large-scale observations 

In the winter of 1991/92 an experiment {THETIS) was conducted in the northwestern Mediter- 
ranean convection regime in the Gulf of Lions (THETIS Group, 1994). Apart from small-scale ob- 
servations with moored ADCP instruments and temperature/salinity sensors, the project included 
an acoustic tomography array, designed to sample the integral properties of the whole convection 
region. The evolution of the area-averaged heat content determined in this way gives insight into 
the large-scale fluxes (Send et al. 1995). During the months of December and January, the upper- 
layer stratification is gradually eroded by the seasonal cooling (and evaporation), until typically in 
February a short final burst of buoyancy loss is sufficient to generate convection to large depths 
(here 1000—2000m). During these 2 months of so-called preconditioning, the large-scale tomography 
data show that approximately 85-90% of the surface heat loss remains trapped in the convection 
region, which implies a residence time of about 2 months for the water occupying the upper 500m 

-2&0- 



in the area. This is believed to be a major factor in determining the sites where convection can 
happen (Send et al. 1996b), since water needs to be confined in the region with high buoyancy loss 
long enough for the surface fluxes to act. We have some evidence that wind-forced circulations are 
responsible for this trapping, instead of it being a self-preserving mechanism where the stratifica- 
tion from previous years induces the trapping necessary for the next convection season. As a result 
of the small exchange with the surroundings during the months leading up to the deep convection, 
mixed-layer models driven by the surface buoyancy fluxes are quite successful at reproducing the 
time-evolution of the convective mixing (depth, water mass properties) (Mertens 1994, Send et al. 
1995). 

Such 1-dimensional model simulations can then be used for a further test of the mechanisms which 
determine the localization of convection areas. For the above THETIS experiment each hydro- 
graphic station from November/December was used to initialize a local 1-D mixed-layer run, thus 
yielding a spatial distribution of mixing depth at the time of the main convection event (February). 
The area with predicted convection depths exceeding 1000m agreed approximately in size and lo- 
cation (but not in its detailed shape) with the observations. Simulations with spatially uniform and 
spatially varying surface forcing gave very similar results, which shows that the convection site is 
less set by the surface flux distribution than by the pre-existing stratification (if the water remains 
trapped there sufficiently long). As a result, the initial stratification and the total buoyancy loss 
during the season are sufficient to make approximate predictions about the convection depth and 
also about the horizontal extent in such regions with sufficient residence time. This can roughly yield 
the new volume available for the deep water each year, according to figure 1. Further refinements 
are possible by accounting for the limited horizontal exchange through instability eddy activity (the 
'lost' 10-15% buoyancy deficit quoted above), using e.g. the parameterization suggested by Visbeck 
et al. (1995) (see also Visbeck/Marshall, this volume). 

When a tomography array is moored in a convection regime, it allows to monitor directly the extent 
of the upper-layer mixed region sketched in figure 1. For the THETIS experiment this yielded a 
volume which translates into approximately 0.3Sv annual volume addition for the deep water pool 
(assuming the dense water eventually manages to settle into deep-water layers) (Send et al. 1995). 
After the deep convection phase, our observations reveal two stages of large-scale removal of the 
dense water from the region. Initially, most of the area is very quickly capped over with a very 
shallow, O(50m) deep, stratified layer within a few days. The restratification of the remainder of 
the upper/intermediate water levels appears to take place on a 40-day time scale. Which processes 
are responsible for this, cannot be deduced with the available type of observations. However, it is 
clear that instability eddies must play a significant role, at least for the horizontal export of dense 
water and possibly also for lowering its center of mass by extracting potential energy. Quantitative 
estimates for this in comparison with the observations are still under way. 

Acoustic tomography can also be used to estimate area-averaged relative vorticity by closing a 
circulation-integral path around the convection region. This is a rather noisy measurements for the 
size of the signal and for our instruments. In THETIS averaging over a period of several days before 
the deep convection and again afterwards revealed, however, that any average vorticity generated 
in the process was much smaller than would be expected from significant vertical transports. This 
is another confirmation of the mixing concept of convection. 

New observational evidence of one process removing the dense water formed during convection was 
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recently obtained with a single deep mooring some 100km downstream from the Mediterranean 
convection region (Send et al. 1996a). This mooring had been deployed in the deep boundary cur- 
rent with current meters and temperature sensors, in order to test if a direct draining of the dense 
convection water from the Gulf of Lions into a deep boundary current occurred. Approximately 
1 month after the convection phase, a cold anomaly was observed at that mooring. The timing, 
amplitude and vertical structure of this signal is consistent with it originating from convectively 
generated water which is advected past the mooring. The time scale of the event was about 40 
days The exact agreement with the restratification time-scale deduced from tomography above is 
certainly fortuitous, but it is worth noting that the order magnitude is the same. The typical scales 
of the deep boundary current imply then that up to one half of the convectively generated extra 
volume of dense water (as in fig. 1) could have been removed by a direct bleeding into the boundary 

current. 

Implications 

The Mediterranean has served as a convenient test basin for observing many of the thermohaline 
processes which are important on a global scale. Both from the observations there and from the 
theoretical studies summarized above, we have gained insight into a number of the large-scale 
properties and processes in convection regions. Most of the questions of interest are related to the 
topics of how much water is transformed (i.e. has its water mass properties changed) and how much 
new volume of deep water is generated, and how this water feeds into the thermohaline circulation 
(or even affects it). We can now move to the subpolar North Atlantic and apply some of the results 
to the convection there which generates one of the main water masses of the North Atlantic Deep 

Water (NADW), the Labrador Sea Water (LSW). 

In numerical model simulations of the CME type (Böning et al. 1995), a rather surprising result was 
recently noted. While the model generates a reasonable equivalent of the convection in the Labrador 
Sea and of the spreading of this water in the deep boundary current throughout the Atlantic, only 
very small vertical transports were found in the Labrador Sea in the annual average. It is clear 
that several Sverdrups of water with LSW properties are exported from the subpolar gyre, »this 
water has to be fed into the system somewhere. Since the inflow in the thermohaline systemism 
the surface layers, somewhere there has to be a downward transport in the subpolar gyre. Model 
analyses have shown that the sinking in this type of model usually takes place m the northern 
sponge (or buffer) zones and just south of overflow areas. Regardless of whether this is a model 
artefact or not, a relevant question is "Is it a physically reasonably possibility to have convective 

mixing in one place and downward transports in another ?". 

We have seen in the previous sections that during the active convection phase, downward transports 
are negligible. In the subsequent stages, i.e. after the creation of a state that was sketched m ng. 1, 
the first-order process appears to be a horizontal exchange due to eddy activity. Evidence for a 
sinking or vertical draining is not available at the moment (unless convection happens into a deep 
boundary current or near a boundary). Therefore, the observed water mass properties m e.g. the 
LSW flowing out of the subpolar gyre, could very well be set by starting with water that has sunk 
in regions upstream of the convection sites (e.g. near the overflows) and then acquires some of the 
LSW properties through horizontal exchange as it circulates around the Labrador Sea. The actual 



fraction of correctively modified water (e.g. enriched with oxygen or tracers) in the water exiting 
the region would be rather small in such a scenario. This is in agreement with the small values for 
this fraction determined from freon observation further south in the Atlantic. 

If the convection does not feed any water volume into the thermohaline system, but only sets some 
of the deep water mass properties, one would expect a rather small sensitivity of the thermohaline 
circulation to the convection processes. This is in contrast to current results of coarse-resolution 
coupled climate models, which exhibit strong dependence on the presence and location of convec- 
tion activity. Thus, the sensitivity of climatically relevant thermohaline fluctuations to convection 
activity remains an open question. 
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Observations of Convective 'Plumes' in the Ocean 
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1. Introduction 

Oceanic deep convection was firstly studied in the 
western Mediterranean Sea during the MEDOC ex- 
periment in the winter of 1969 [MEDOC group, 1970] 
and three phases of the deep convective process were 
outlined; which as a concept should be applicable to 
other sites of open ocean convection: 

• Preconditioning: Deep convective regions are 
found to have minimal stratification throughout 
the year and are areas of maximum winter buoy- 
ancy loss. A cyclonic circulation, which is usu- 
ally wind driven reduces the buoyancy in the in- 
terior by bending isopycnal towards the oceans 
surface in the center. The associated circula- 
tion pattern traps the water masses at its cen- 
ter where buoyancy loss to the atmosphere can 
accumulate over the winter period. Usually it 
takes most of the winter to remove the upper 
stratification until during February and March 
the mixed layer density is very close to that of 
the deep water. 

• Violent mixing: Once the stratification is 
weak strong buoyancy loss during cold air out- 
breaks will initiate deep convection. It is as- 
sumed that an ensemble of small scale 'plumes' 
mix the water column and thereby efficiently 
transfer properties to great depth. Severe weather 
conditions during times of large buoyancy loss 
will, however, obstruct shipboard operations. 
Therefore other platforms such as neutrally buoy- 
ant floats or moored instruments are much bet- 
ter suited to document dynamical processes dur- 
ing the violent mixing phase. Voorhis and 
Webb [1970] firstly reported strong down welling 
events of several centimeters per second which 
they deduced from neutrally buoyant float tra- 
jectories. More recently acoustically measured 
velocity profiles [Schott and Leaman, 1991; Schott 
et al, 1993, 1994, 1996] showed similarly strong 
down welling events that lasted only a few hours 
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at a fixed location. 

• Spreading: Once an ensemble of 'plumes' has 
processed and mixed the ocean a pool of dense 
and essentially unstratified water is left be- 
hind which has become known as a 'chimney'. 
Those chimneys will be 50-200 km wide and 
only 1-3 km deep. From theory we know that 
such chimneys will have a baroclinically un- 
stable 'rim-current' around their margins [Her- 
man and Owens, 1993; Legg and Marshall, 1993; 
Jones and Marshall, 1993]. Baroclinic eddies 
with about the theoretically expected properties 
have been observed in the periphery of convect- 
ive regions [Gascard, 1978; Gascard and Clarke, 
1983]. Such eddies will break the chimney apart 
and spread convected fluid laterally and thereby 
facilitate a lateral transfer of buoyancy [Jones 
and Marshall, 1993; Maxworthy and Narirnousa, 
1994; Visbeck et al, 1996]. Furthermore, rapid 
restratification was observed in the upper layer 
which can not be accounted for by air-sea inter- 
action [Send et al, 1995]. At depth, the spread- 
ing of convected water was documented by many 
studies [e.g. Sankey, 1973; Rhein, 1995]. Vis- 
beck et al. [1996] propose that baroclinic eddies 
are responsible for both, the fast inward trans- 
fer of stratified water at the surface and the slow 
spreading at depth. 

In the following we turn out attention to the viol- 
ent mixing phase which occurs in late winter usually 
between January and April. We will inspect obser- 
vations of the vertical velocity structures during peri- 
ods of deep convection that were obtained by acous- 
tic Doppler current profilers (ADCPs) which meas- 
ure profiles of vertical and horizontal velocities at a 
fixed location with an accuracy of about 1 cm s-1 

. Those time series of vertical velocities together 
with some knowledge about the larger scale mean 
flow can be used to estimate the width of convection 
cells [Schott and Leaman, 1991; Schott et al., 1993, 
1994,1996]. Motivated by these observations of strong 
down welling of more than 10 cm s-1 and an estimated 
plume diameter of less than 1 km, laboratory [Max- 
worthy and Narirnousa, 1991, 1994] and numerical ex- 
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Visbeck: Observations of convection in the ocean 

periments [Jones and Marshall, 1993; Paluszkiewicz 
et al, 1994] were employed to gain dynamical under- 
standing of the deep convective process in the ocean. 
Fernando et al. [1991]; Maxworthy and Narimousa 
[1994] and Jones and Marshall [1993] presented scal- 
ing laws for the turbulence structures at high Rayleigh 
numbers in a rotating unstratified fluid subject to 
buoyancy loss at the surface. The velocity and length 
scales are found to be unaware of molecular viscosity 
and depend only on external parameters such as the 
surface buoyancy loss Bo, the depth of convection H, 
and the rate of rotation /. A nondimensional number 
Ro* was constructed, which has become known as the 
'natural' or 'convective' Rossby number [see Marshall 
et al., 1994, for a review]: 

Ro* 
U_ 

fL 

B, 1/2 

/3/2# 
'rot 

(i) 

The length scale lrot can be interpreted as a critical 
depth 

lr 
B 1/2 

/3/2 (2) 

at which the plumes are significantly affected by ro- 
tational forces. For small values of i?J when the 
mixing depth (H) is deeper than the critical depth 
(zc), plumes become aware of and their width is con- 
trolled by rotation. However, if the mixing is shallower 
than zc isentropic three dimensional turbulence pre- 
vails with plume diameter of the order of the depth 
scale. For isentropic turbulent convection a velocity 
scale is given by [e.g. Turner, 1973]: 

U3d ~ (B0tf)1/3 (3) 

if, however, rotation is important then this scaling law 
modifies to: 

Ur, 
5o 
/ 

1/2 

(4) 

Which of the two regimes is appropriate for deep con- 
vection in the ocean? Typical values for the convective 
Rossby number RQ (1) as a function of penetration 
depth and heat loss (for a thermal expansion coeffi- 

are cient a = 1 xlO_4oC_1 and / = 1 xlO~4s 
given in figure 1 and show that for deep convection in 
the ocean (Q = 1000 W m~2 , H = 2000 m) rotation 
might matter. 

Figure 1. Convective Rossby number RQ as a func- 
tion of surface heat loss Q and mixing depth H. 
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2. Observations of vertical velocities dur- 
ing deep convection 

Western Mediterranean Sea 

The first ADCP observations of deep convection 
were obtained during the winter of 1987. A cooling 
episode between February 15-23 gave rise to strong 
vertical velocities and convection reached down to the 
bottom at 2500m depth [Schott and Leaman, 1991; 
Leaman and Schott, 1991]. 

During a later experiment in winter 1992 a small 
scale mooring triangle with a side length of about 2 
km (roughly corresponding to the water depth) was 
deployed and each mooring was equipped with at least 
one ADCP [Schott et al., 1996]. The mooring triangle 
was embedded in a gyre scale tomographic array that 
monitored the heat content of the convective region 
and documented aspects of the large scale circulation 
[THETIS group, 1994; Send et al., 1995]. All phases 
of the convective process were observed, however, con- 
vection penetrated only down to 1500 m depth during 
a moderately strong cooling period between February 
18-24 [Schott et al., 1996]. The central mooring was 
equipped with two ADCPs, one looking upward and 
the other downward from a depth of 300 m. Together 
they have documented the vertical velocity structure 
of convection events from 100 to 600 m depth (Fig. 
2). Several of those events were captured by all AD- 
CPs of the mooring triangle, however, uncorrelated 
in time among the instruments. We can immediately 
conclude that the plume width was smaller than 2 km, 
the distance between the moorings. 
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Visbeck: Observations of convection in the ocean 

Figure 2. Deep convection observed in the north western Mediterranean Sea: a) Bathymetric map of the region 
with mean surface currents (gray arrows) and the region of deep mixing (gray shaded) included, b) Contour section 
of vertical velocity versus depth and time in hours during a convection event (19. Feb. 1992). c) Time series of 
vertical velocity at 350 m depth, d) Time series of temperature above (depth 300 m) and below (depth 1000 m) the 
ADCP velocity record (c). 
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Visbeck: Observations of convection in the ocean 

Figure 3. Deep convection observed in the central Greenland Sea: a) Bathymetric map of the region with mean 
surface currents (gray arrows) and the region of deep mixing (gray shaded) included, b) Contour section of vertical 
velocity versus depth and time in hours during a convection event (16. March 1989) d) Time series of temperature 
above (depth 200 m) and below (depth 1400 m) the ADCP velocity record (c). 
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Visbeck: Observations of convection in the ocean 

Central Greenland Sea 

An international convection experiment was carried 
out in the Greenland Sea during the winter 1988/89 
in the framework of the Greenland Sea Project [GSP 
group, 1990]. Four moorings were equipped with AD- 
CPs at several location within the central Greenland 
Sea [Schott et al., 1993], and some of which were part 
of a tomographic array deployed jointly by Scripps 
and Woods Hole oceanographic institutions [Green- 
land Sea Tomography Group, 1993; Pawlowicz et al, 
1995]. In the Greenland Sea the situation is complic- 
ated due to the presence of sea ice which has a sig- 
nificant effect on air-sea interactions [Visbeck et al., 
1995]. During ice formation salt enriched brine is re- 
leased from the ice which significantly increases the 
mixed-layer density. On the other hand ice melt will 
decrease the mixed-layer density and depth dramat- 
ically. Moreover, a closed ice cover will reduce the 
air-sea fluxes due to the insulating effect of sea ice. 
Therefore sea ice processes are crucial during the pre- 
conditioning phase. However, in March 1989 convec- 
tion reaching down to 1500m depth occured in an ice 
free bay and a plume was observed between 1100 and 
1400 m depth on March 16 (Fig. 3). 

Central Labrador Sea 

Preliminary data from a mooring deployment in 
the central Labrador Sea close the former weather 
ship station 'BRAVO' are displayed in figure 4. The 
mooring is part of a monitoring effort in the cent- 
ral Labrador Sea initiated by Rhines (UW, Seattle) 
and Lazier (BIO, Halifax). In the same region a ma- 
jor ocean convection experiment will take place in the 
winters of 1997 and 1998 [see D'Asaro, 1994, for an 
outline]. 

In conclusion the small scale plumes show a striking 
similarity among the three sites with strong downward 
motion occuring only a few times during the winter 
and each of a duration of only a few hours. In the 
following we will compare the maximum plume velo- 
city and plume diameter from all sites to theoretical 
scaling arguments. 

3. Plume observations and scaling laws 

3.1. Vertical velocity scale 

The maximum downward velocities is easily dia- 
gnosed from the ADCP records and was therefore 
chosen as a velocity reference scale. The errors should 
be about 1 cm s-1 plus some uncertainty weather ac- 

tually the center of a plume was 'seen' by the instru- 
ment. 

3.2. Estimating plume diameter from Eulerian 
time series 

One way to estimate plume diameter from Eulerian 
time series of vertical velocities is to assume that con- 
vection cells are advected by the mooring as a 'frozen' 
structure [Schott and Leaman, 1991, Fig. 5]. Then the 
time it takes for a plume to drift by the observer di- 
vided by the mean advection speed gives the plume 
diameter, which is defined here as the maximum dis- 
tance between zero contours of the vertical velocity. 

3.3. Plume scales and their relation to external 
forcing 

Inspecting many 'plumes' like the ones shown in fig- 
ures 2-4 gave plume diameter which are summarized 
in table 1. 

In order to test the observations against theoretical 
scaling laws we need to know the buoyancy loss at 
the surface. For some experiments air-sea fluxes were 
measured from research vessels, for others we used 
fluxes from meteorological weather forecast models. 
Typical atmospheric and oceanic parameter and the 
estimated fluxes using bulk formulae for a period of a 
few days duration are summarized in table 2. 

It was a surprise to us that the total heat loss is 
quite similar in all three convection sites, however, 
the distribution among the individual heat flux com- 
ponents is different with dominant sensible heat loss 
in the arctic regions. Moreover, the surface buoyancy 
flux, taken here as the sum of heat (Q) and fresh water 
üux(E-P): 

B0 = 9- (-Q + ßS(E - P) 
P \Cp 

(5) 

with the appropriate oceanic heat capacity (cp), and 
thermal (a) and haline (/?) expansion coefficients, 
showed large differences between the regions and only 
minor contribution from the freshwater fluxes. The 
differences are mainly due to variations of the thermal 
expansion coefficient, a = — {dp)/{pa dT), which 
strongly depends on temperature and is a factor of 
8 smaller in the cold waters of the central Greenland 
Sea compared to the Mediterranean Sea. 

Given the buoyancy flux at the surface (So) the 
depth of convection (H) and the vertical compon- 
ent of the earth's rotation (/) we can now estimate 
the expected vertical velocities and turbulent length 
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Visbeck: Observations of convection in the ocean 

Figure 4. Deep convection observed in the central Labrador Sea: a) Bathymetric map of the region with mean 
surface currents (gray arrows) and the region of deep mixing (gray shaded) included, b) Contour section of vertical 
velocity versus depth and time in hours during a convection event (7. March 1995). c) Time series of vertical 
velocity at 450 m depth, d) Time series of temperature above (depth 260 m) and below (depth 510 m) the ADCP 
velocity record (c). 
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Visbeck: Observations of convection in the ocean 

Figure 5. Sketch of a convection cell with downward motion shaded and parcel displacements indicated by dots. 

plume diameter 

Table 1. Observed length and velocity scales of convection cells. 

parameter units Mediterranean Labrador Sea Greenland Sea 

date 
depth of convection m 

18-22 Feb 
1100-1500 

20 Feb - 30 Mar 
~ 2200 

15 Feb - 15 Mar 
800-1500 

max. downward velocity 
plume diameter 

cm s 
m 

L                 12 
800-1000 

8 
1000-1500 

6 
600-1000 

-IRQ 



Visbeck: Observations of convection in the ocean 

Table 2. Meteorological conditions during a convection period of a few days duration in late winter. 

parameter units Mediterranean    Labrador Sea    Greenland Sea 

SST 
salinity 

°C 12.9 
38.5 

2.9 
34.4 

-1.4 
34.9 

air temperature dry °C 8 -9 -14 
air temperature wet °C 5 -7 -13 
wind speed (i/io) m s_1 15 13 13 
cloud cover % 40 60 60 
precipitation mm day-1 ? ? ? 

surface heat flux 
sensible heat flux Wm-2 -150 -370 -400 
latent heat flux Wm-2 -400 -140 -140 
short wave radiation Wm-2 120 80 40 
long wave radiation Wm-2 -80 -60 -30 
total heat flux                    W m-2 -500 -490 -530 
evaporation                        mm day"1 13 6 4 
thermal expansion             °C_1 1.9 xlO-4 1.0 xlO-4 0.3 xlO-4 

surface buoyancy flux 
thermal buoy, flux             m2s-3 

haline buoy, flux                m2s-3 
2.5 xlO"6 

0.5 xlO""6 
1.0 xlO"6 

0.2 xlO-6 
0.5 xlO"6 

0.1 xlO-6 

total buoyancy flux            m2s-a 3.0 xl0~b 1.2 xlO~b 0.6 xlO-6 

Table 3. Comparing observed length and velocity scales from ADCP observations to turbulence theory. 

parameter units Mediterranean Labrador Sea Greenland Sea 

depth of convection 
buoyancy flux 
Coriolis parameter 

m 
m2s-3 

s-1 

1100-1500 
3.0 xl0~6 

0.98 xlO"4 

1800-2200 
1.2 xlO-6 

1.2 xl0~4 

800-1500 
0.6 xl0~6 

1.4 xl0~4 

K = Bl'2l(fl*H) 0.4 0.1 0.1 
isentropic turbulence 

u; = (BQH)
1
?
3 

l-H 

regime 
cm s_1 

m 
7.7 

1300 
6.4 

2000 
4.5 

1200 
rotational regime 

Wrot = (50//)
1/2               cm s-1 

lrot = (Bo//3)1/2               m 
5.5 

560 
3.2 
260 

2.1 
150 

observations 
Wmax 
plume diameter 

cm s  1 

m 
10 

800-1000 
8 

1000-1500 
6 

600-1000 
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Visbeck: Observations of convection in the ocean 

scales for each region and compare them to the ob- 
servations (Tab. 3). We find the correct or- 
der of magnitude for both the rotational and non ro- 
tational scaling arguments and a convective Rossby 
number slightly smaller than unity. However, the non 
rotational scaling laws seem to match the estimated 
plume diameter somewhat better. We conclude that 
the observations are consistent with plumes of aspect 
ratio one and maximum vertical velocities given by 
w= 1.5 (S0#)1/3. 

4. Discussion 

It was shown that vertical velocity time series are 
a convenient quantity in order to measure scales of 
deep convective 'plumes' in the ocean, The observed 
maximum vertical velocities and diagnosed diameter 
are consistent with scaling arguments for both the ro- 
tational and non rotational turbulence. This implies 
that deep convective plumes in the three open ocean 
convection regions might be affected by the earth's 
rotation. The uncertainties in the estimates do not 
allow a stronger conclusion. As shown by Visbeck 
[1993] there is no unambiguous information in the 
velocity time series that allows to confirm weather 
plumes themselves rotate or not. The observations 
are consistent with the assumption that plumes are 
efficient mixing agents without a significant mean ver- 
tical transport [Schott et al., 1994; Send and Marshall, 
1995]. Their mixing time scale can be estimated by: 

trnix — 
H #2/3 

Wplur, B 1/3 (6) 

and typically is on the order of a few hours. A vertical 
'plume' mixing coefficient would then be: 

™mix —  *v plume n Bl/3H*'3 
(7) 

and typically be of the order of 100 m2 s-1. It seems 
that representing convective plumes by a fast mixing 
process is reasonable. However, care has to be taken 
when the equation of state is strongly nonlinear, as it 
is the case for water temperatures near the freezing 
point. Then thermobaric effects might enhance the 
penetration of individual plumes [McDougall, 1987; 
Garwood et al., 1994]. More observations are needed 
to settle the issue about the importance of rotation 
and maybe Lagrangian float trajectories provide new 
insights. Further, the interaction of plume dynamics 
with the mesoscale eddy field deserves more attention 
since both process occur together in all of the invest- 
igated sites of deep water formation. 
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Turbulent rotating Rayleigh-Benard convection (with comments on |) 

Joseph Werne, NCAR, Boulder, CO 80307-3000 

Collaborators: Keith Julien, NCAR; Sonya Legg k Jim McWilliams, UCLA 

1 Introduction 

Consider a uniformly rotating Boussinesq fluid confined between horizontal plates. 
If the lower plate is hotter than that above, the fluid in between will experience 
a buoyant force that may drive it to convective motion. For a sufficiently large 
temperature drop between the plates, intense plumes (which themselves generate 
shear and its associated turbulence) spontaneously develop. The ensuing dynamics 
of these plumes, their mutual interaction, and global transport properties are all 
affected directly, or indirectly, by the rate of rotation of the fluid layer. My discussion 
will concentrate on these effects, and will report numerical solutions which illuminate 

similarities to and differences from non-rotating convection. 

2 Non-rotating turbulent convection 

2.1    Experimental findings 

Non-rotating Rayleigh-Benard convection is a classic problem experiencing a resur- 
gence recently due to experimental observation of some remarkable and unexpected 
collective behavior of its plumes. A fundamental question involves the heat transport 
through the layer for a specified temperature drop. Heslot, Castaing & Libchaber 
(1987) reported the stabilization {i.e., consistent circulation in a particular direction) 
and reduced heat transport of a single convection cell once thermal plumes appear, 
while Krishnamurti (1995) discusses the generation of mean shearing motions by 
plumes which cluster together and march in "soldier-row" formation across a large 
(40 x 40 x 1) experimental cell. Krishnamurti's large-scale turbulent patterns exhibit 
an even more drastic reduction in the heat transport than that seen by Heslot et al. 

With these new observations comes the theoretical challenge of explaining the 
reduction in the heat transport due to the presence of plumes (Castaing et al. 1989; 
She 1989; Shraiman k Siggia 1990; Yakhot 1992). I will review two of four existing 
theories which attempt to explain the fundamental physical behavior of laboratory 
plumey convection, which in recent years has acquired the name "hard turbulence:" 
Castaing et al. 1989 and Shraiman k Siggia 1990. In particular, these theories strive 
to derive the observed heat-transport law, Nu oc Ra2^7. Here Nu = H/(KA/L) is the 
Nusselt number or normalized heat flux H, and Ra = gaAL3/(i/K) is the Rayleigh 
number or normalized temperature drop A. g and a are the local acceleration due to 
gravity and the fluid's thermal expansion coefficient. L is the layer depth.1 

1 While Libchaber's group repeatedly observes the 2/7-law for turbulent convection in both small 
(A — 1) and large (^4 = 6.7) containers — A is the width-to-height or aspect ratio — Krishnamurti's 
recent results favor a 1/4-law. Aside from geometry (K's apparatus is rectilinear while L's is cylin- 
drical), the major difference between the experiments is the fluid: liquid water (a » 7) for K and 
Helium gas (a « 0.7) for L, where the Prandtl number a = I//K is the ratio of fluid viscosity v to 
thermal diffusivity K. The much shorter diffusion time, and hence the effectively longer experimen- 
tal run-time for water (and/or the value of <x) may play a role in establishing K's clustered rows of 
plumes. As yet no turbulent heat-transport theory attempts to explain K's observed 1/4-law. 
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2.2     Heat-transport theories 

The first of these theories extends earlier notions of Priestley (1959) (also Malkus 
1963; Howard 1966) which characterize turbulent convection as efficient and ad- 
vective in the bulk, but solely diffusive near the boundaries where the velocity is 
zero. The thin "boundary layers" each span half of the temperature drop A, giving 
H = KA/(2A) -> Nu = L/(2\) where A is the boundary-layer thickness. Priest- 
ley's remaining assumption is a depth L (or equivalently Ra) sufficiently large that 
A ^ A(L), resulting in Nu oc Ra1^3 which has actually been observed for Ra below that 
at which the 2/7-law emerges (Wu et al. 1988). Nevertheless, the large range over 
which the 2/7-law has been observed opens an ever-widening gap from the 1/3-law, the 
ratio of the two laws exceeding 2.4 at Ra = 1015. The contribution by Castaing et al. 
was to conjecture a "mixing zone" where plumes grow out of the boundary layers, then 
mix through turbulent agitation before merging with the bulk fluid. They propose 
1) that plume dynamics is dominated by viscous drag i/uc/X

2 « gcxA, and 2) that 
turbulent convective motions are as Prandtl (1932) suggests, advective H = ucAc 

with kinetic energy of the dominant eddies gained at the expense of buoyancy work 
as they traverse the layer u\j2 « gaAcL. Here uc and Ac are the characteristic 
velocity and temperature contrast of the dominant turbulent eddies; A/2, uc, and A 
are estimates of a plume's temperature, final velocity, and thickness. By solving this 
system of four equations for the four unknowns (H, A, uc, and Ac), Nu oc Ra2/7, as 
well as other scaling laws, is obtained. 

Shraiman & Siggia also derive the 2/7-law, but now using only the one feature 
of hard turbulence absent from the picture proposed by Castaing et al.: the sta- 
ble large-scale circulation. In fact, Shraiman &; Siggia propose the 2/7-law emerges 
precisely when the dominant circulation is sufficiently fast to produce shear-flow tur- 
bulence near the boundaries. They estimate the dissipation in the layer as e ~ u3/L, 

where u* = yv(dU/dz)wau is the "friction velocity," U being the mean velocity par- 
allel to the boundary (wall) and z the normal direction. By suggesting a thermal 
boundary layer A thinner than the viscous sub-layer adjacent to the wall, where the 
mean velocity profile is linear U = z (dU/dz)wau, the heat equation can be sim- 

1 /3 
plified and the result Nu oc {dU/dz)JaU obtained. Employing the exact relation 
CL

4
/K

3
 = a Nu (Ra — 1), the scaling laws Nu oc Ra2^7 and (dU/dz)wau oc Ra6^7 result. 

Though the role of plumes appears secondary within Shraiman & Siggia's boundary- 
layer analysis, it is actually the collective action of the plumes as they establish the 
large-scale circulation which makes the turbulent shear possible. In addition, in the 
bulk fluid the plumes carry practically all of the heat flux. 

The stark contrast between these two approaches points to the caution with which 
one must digest scaling theories for turbulent fluids: derivation of a known result does 
not guarantee the underlying assumptions sufficient to realize the behavior in nature. 
Even greater care is required when an unverified scaling law is "derived" through 
simple scaling arguments — but this is not the case here. 
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3    Rotating turbulent convection 

Rotating the fluid layer alters the dynamics of plumes dramatically. For experiments 
or simulations with rotation rates Q comparable to (or greater than) the convective 
velocity divided by L, individual plumes approximately conserve angular momentum 
as they move from the boundaries, amplifying cyclonic vorticity while contracting 
horizontally. In this way, buoyancy and vortex stretching share a mutual feedback, 
producing a flow-field dominated by strongly cyclonic plumes. Experiments by Rossby 
(1969) and Zhong, Ecke k Steinberg (1993) indicate that increased rotation enhances 
the heat transport slightly; they propose Ekman pumping as a possible cause.2 An- 
other important difference between rotating and non-rotating convection is the de- 
crease in inter-plume spacing resulting from external rotation. Figure 1 shows the de- 
velopment of the flow field (temperature T and vertical vorticity u) as Ra is increased 

while fixing the layer's convective Rossby number Ro = jRa/(aTa); Ta = (2QL2/v)2 

is the Taylor number.3 This figure appears in Julien, Legg, McWilliams k Werne 
(1995); it depicts numerical solutions of rotating Rayleigh-Benard convection with 
no-slip top and bottom and periodic side boundaries. The domain aspect ratio is 
2 x 2 x l.4 The line marked at the bottom of each column indicates the horizontal 
scale of convection predicted by linear stability (Chandrasekhar 1961). As Ra and 
Ta are increased, chaotic roll-convection gives way to isolated vortex/plumes with de- 
creasing horizontal scale. At high Ra, plume-plume (or equivalently, vortex-vortex) 
interactions become increasingly likely, given higher plume-vorticity and shortened 
distances between neighbors. Because the plumes are primarily aligned vertically, the 
vortical interactions which ensue involve the co-rotation of cyclonic vorticity, with 
plumes circulating about each other in horizontal planes. The result is lateral stir- 
ring tending to mix the thermal content of a plume with its surrounding fluid, thus 
weakening the plume and intensifying the temperature of the background. The result 
is a mean temperature gradient not present for non-rotating convection. Figure 2 
depicts this gradient which persists for increasing Ra at fixed Ro. (Note the thinning 
boundary layers near z = ±1.) 

Despite these marked differences between rotating and non-rotating convection 
(vortical interactions, mean thermal gradient, Ekman pumping, etc.), the 2/7-law 
remains for simulations with no-slip vertical boundaries (figure 3). Stress-free bound- 
aries, on the other hand, exhibit Priestley's 1/3-law. Conclusions then are 1) the 
detailed dynamics of plumes are relatively unimportant to establishing the 2/7-law, 
and 2) boundary details are crucial. Both of these conclusions are consistent with 
Shraiman k Siggia (1990), and the second casts doubt on the fundamental nature of 

2 Ekman pumping occurs when a vortex tube terminates at a solid boundary. For a tube in 
geostrophic balance (i.e., with the radial pressure gradient balancing centrifugal acceleration), pump- 
ing of fluid away from the boundary occurs at the vortex core due to the fact that the fluid velocity 
(and hence the centrifugal acceleration) vanishes at the wall, creating a pressure imbalance. 

zRo is the ratio of the rotation timescale (2Q)-1 to the convective timescale y/L/(gaA). For a 
given value of Ro, the influence of rotation on convection should be roughly constant. 

4Simulations are conducted using a pseudo-spectral, Fourier-Chebyshev "tau"-method. The 
influence-matrix with tau-corrections is employed (Kleiser & Schumann 1980; Werne 1995). All 
simulations resolve the Kolmogorov length-scale for the turbulence. 
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Figure 3: Heat transfer versus Ra. 

Castaing et al. (1989), since that theory cannot distinguish stress-free from no-slip 
boundaries. The key point is that the majority of the heat transport through the 
boundaries takes place in strong shear regions between plumes, not at plume-sites. 
This is consistent with earlier findings (Werne 1993). 
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Consider the dispersion of some tracer (concentration c{c, z, t)) in the shallow channel.  Our 

notation is explained in the sketch below and the mathematical model is 

ct + ucx = mixn, 

where "mix" indicates some model of mixing that tries to vertically homogenize the tracer. 

/;fK^\S>>/^K\        2  ~   H/z 

A   2 

■>   %, 

(1) 

V I  )K \ W / / \\\) -H/z 
FIGURE 1 Definition sketch: the tracer is contained in a channel H/2 > z > —H/2. 

We compare three different models of mixing and show that they all lead more or less to the 

same conclusion. The three models are 

mix], = Dczz, 

mix2 = T'
1
^— C), 

mix3 = zapping at intervals of r. 

(2a, b, c) 

In (2&) the vertical average over the layer is denoted by 

rH/2 

-H/2 

I     rH/2 
c(x,t) = — /      c(x,z,t)dz. 

ft J-HI2 
(3) 

The Zappa model in (2c) works by letting the tracer advect for a time r (that is, the right hand 
side of (1) is zero) and then instantaneously vertically homogenizing the tracer. Thus at the time 
t = nr, c(x, z, t) —>■ c(x, t). This might model some sort of event driven mixing, such as the passage 
of a storm, or mixing which occurs only at some point in a tidal cycle. 

Our conclusion is that in the long term the dispersion of the tracer can be described by an 

effective diffusion equation for c(x,t): 

ct + ucx = Descx (4) 
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The effective diffusivity in (4) is given by £>eff = cU2Tmiyi where c is a dimensionless constant, U 
is the scale of u(z), and rmix is the vertical homogenization time. For example, using the model 

in (2a), Tmix = H2/D and then the result above is Taylor's (1953) shear dispersion result. For the 

other two models Tmjx = r. 

The point is that the details of the mixing model on the RHS of (1) are not that important: 
one expects that the combination of the sheared velocity field, u(z), and the vertical mixing will 
always produce an effective diffusion coefficient in the vertically averaged tracer equation in (4). 

One is usually interested only in gross questions such as: where is most of the tracer? how long 
does it take the width of a slug of tracer to double? In this case it doesn't pay to get too exercised 
about which of the models in (2) is "better". All three models are plausible representations of small 
scale mixing processes and all three models result in an effective diffusion equation which describes 

the dispersion of tracer on large scales and long times. 

There are many ways of deriving (4): we take a simple and instructive route, and use the Zappa 

model in (2c). Without any loss of generality we can take ü = 0 — otherwise we can change frame 

so that the vertically averaged velocity is zero. Now imagine that one is maintaining a uniform 

gradient of tracer, T, and that at t = 0+ a zap has just occured so that: 

c(x,z,0+) = Tx. (5) 

Then, in the interval before the next zap, the tracer is advected by the u(z) so that 

c(x, z, t) = F[x - u{z)t)        when        0 < t < r. (6) 

The result in (6) is the solution of (1), with zero RHS, and (5) as an initial condition. Now at t = r 
the tracer is zapped again and, since ü = 0, the post-zap tracer is again given by (5). It looks like 
nothing has happened as a result of all this advection and zapping. But the interesting point is 
that there has been a flux of tracer during the interval between zaps and it is easy to calculate how 
much tracer has been advected down the channel during this period: 

-ff/2 r 
F(x, t)= u(z)T[x - u(z)t] dz, 

J-H/2 (7a, b) 

-Hu2Tt,        when       0 < t < r. 

Thus the flux as a function of time has the sawtooth pattern shown below: after the most recent 

zap the flux starts at zero and then grows linearly with time till the next zap homogenzies the 

tracer and knocks the flux back down to zero. 

Fit) 

FIGURE 2: The flux as a function of time is a "sawtooth". 

2T, 
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The final step is to note that the averaged flux (averaged over both the interval between the 

zaps and the depth of the channel) is just 

F = -l-^rT. (8) 

the expression in (8) is the flux-gradient relation which is typical of a diffusive process: the diffusivity 
is Deff = U

2
T/2. 

It is educational to repeat the calculation above for the other two mixing models in (2): in 
both cases one looks for a steady solution of the from c(x,z,t) = Tx + c'(z). Substitution gives 

an easy equation for c'(z) and then the final step is to calculate the vertically averaged flux and 

identify the constant of proportionality in the flux-gradient relation as the effective diffusivity. All 

three models have the property that weaker vertical mixing (i.e., larger Tm;x) produces stronger 
horizontal dispersion. At first sight this seems curious, but the sawtooth graph of F(t) in the 

figure above shows clearly where this inverse dependence comes from: the sheared velocity field 

"unmixes" the tracer and the horizontal flux grows as this "unmixing" proceeds. 

There are several other embellishments of the Zappa model which serve as good homework 
exercises for students. Suppose that the interval between zaps is a random variable so that after 
a zap occurs the time to the next zap is determined by selecting r from a probability distribution 
with probability density function V{r). What is the effective diffusivity in this case? The answer is 
mildly interesting because it involves the first two moments of r i.e., J0°°Tn'P(r) dt with n = 1 and 2. 

A second suggestion is to use the Zappa model and the particular velocity u = sy to solve an initial 

value problem with c(x,z,0) = exp(ifcx). The goal is to show that the evolution of long waves 
{kH -C 1) is governed by the effective advection-diffusion equation in (4), and that the effective 
diffusivity is the same as that which is found by considering the flux-gradient relationship. This 
exercise is interesting because the evolution of not-so-long waves is not diffusive, and students then 
appreciate some of the approximations involved in (4). 

Now let us turn to a problem in which the tracer is dynamically active rather than pas- 
sive. Consider a stratified fluid, use the Boussinesq approximation and write the density as 
p = po [l — g~1b(x, z, t)] where b(x, z, t) is the "buoyancy". The equations of motion are then 

Du Dw n Db ... 
-jöj; = -Px + zap,        — = -pz + b,        ux + wz = 0,        — = zap, (9) 

where "zap" indicates that we use the Zappa model of mixing and apply this instantaneous homog- 

enization to both momentum and buoyancy. Suppose that at t = 0+ a zap has just occured and the 

buoyancy is b(x, z, 0) = Tx while (u, w) = (0,0). There is an exact solution of (9) which illustrates 
how dense fluid flows under light and so releases the potential energy stored in the stratification: 

u = -Tzt,       p = r xz + Tz2 — 
4 

x + Tz- when        0 < t < r. «7 = 0,        b = r 

(10) 
Notice that we have assumed that there is no vertically integrated transport, ü = 0. This condi- 
tion, which might be enforced by distant vertical sidewalls, is used to determine the constant of 
integration which arises when one determines the pressure by integrating the hydrostatic relation. 
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We now compute the buoyancy flux which occurs during the interval between zaps: 

fH/2 i 
F= ubdz = H2t3T3       when       0 < t < r. (11) 

J-H/2 24 

The solution in (11) shows that the gravitational slumping produces an accelerating velocity and 

this in turn is responsible for the t3 growth of the buoyancy flux which occurs in between the zaps. 
The final step is to calculate how much buoyancy is transported by integrating (11) in time, and 
then averaging over many such zapping cycles. One finds that the analog of (8) is 

F = -±-H
2
T

3
T

3 (12) 
96 

so that the flux of buoyancy is proportional to the cube of the buoyancy gradient. 

We can use the result in (13) to make a heuritic argument that in a "slowly varying configu- 

ration" the vertically averaged buoyancy satisfies the nonlinear diffusion equation: 

lt = l6H^(H)x. (13) 

To understand the meaning of "slowly varying", observe that in the time between zaps fluid travels 
through a distance of order I ~ bxHr2. If the buoyancy gradient "looks" uniform over this distance 
then we expect the solution in (10) to apply locally. The obvious length associated with the 
variation of the buoyancy gradient is bx/bxx. Requiring that this length scale be less than £ shows 
that "slowly varying" means that the nondimensional number bxxHr2 is small. 

The nonlinear diffusion equation (13) was first obtained by Erdogan & Chatwin (1967) using 

molecular diffusion and viscosity as a mixing model t- Once again, it is comforting to see that 
alternative assumptions about how mixing works do not alter the final form of the answer: it is 

instructive to return to (9) and figure out where the three powers of T came from. One realizes 
quickly that the alternative mixing models in (2a) and {2b) will not change the processes responsible 

for the various powers of F. 

Simpson & Linden (1989) have given an interesting theoretical and experimental discussion of 
the role of buoyancy curvature, bxx, in driving frontogenesis. In the simple solution, (10), there 
is no frontogenesis: the 6-surfaces tilt over and maintain equal spacing; the horizontal buoyancy 
gradient is constant. But if the initial condition has some buoyancy curvature then Simpson k 
Linden show that the buoyancy gradient can increase. If there is no mixing then one suspects that 
bx will become infinite in a finite time: this singularity is frontogenesis. The interesting point is 
then that if we use the Zappa model there is a race between the zap and the singularity formation: 
given an initial condition which happens first? Since the time to singularity formation is scales 
like \f\JbxxH this race is decided by the same nondimensional parameter that we identified in the 

discussion of the validity of (13). 

f Because Erdogan & Chatwin used molecular diffusivity, rather than zapping, the analog of r 

in (13) is H2/D. This implies that the diffusivity in the analog of (13) is proportional to the eighth 

power of the layer depth! 
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We followed Simpson & Linden and had some frontogenetic fun by considering the solution of 

(9) with the initial condition b(x,z,0) = B{x): we use B = B0 tanh(kx) as a concrete illustration. 
If kH -C 1 then one can use the hydrostatic approximation and then it is not too hard to develop 

a Taylor series in t for solution of (10). With the aid of MAPLE one finds that 

'39z2 + 5N 

b{x,z,t) = B{x) + -But* + 
144 

B'2B"t4 

+ iz3 + Iz 
432 

y»n'4 ,   f453z3 + 247^£?/35„2 IT'S'4 + 
V       4320       ) 

(14) 

t6 + 0{t8). 

The first two terms of (14) agree with the exact solution in (11) but thereafter the buoyancy 

curvature, Bxx, and higher spatial derivatives becomes important. Of course the expansion in (14) 

becomes invalid close to the putative singularity, but a charitable reader might concede that the 

figure below shows the birth of a front. 

H 

FIGURE 3: The solution in (14) with B = B0 tanh(fcx) and the scaled time is i = ty/2/k2HB0- At 
. i = 0 the buoyancy surfaces are vertical. At i = 0.8 the tilting has begun but there is no indication 

of frontogenesis yet. At i = 1.1 the singularity has begun to form on the boundaries at z = ±H/2. 
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1 Introduction 

Rotation and stable density stratification modify the turbulence dynamics in many geophysical 
situations and on a large range of scales. We here summarize the results of numerical simulations 
aimed at investigating the effects of stably-stratified turbulence and/or solid-body rotation on 
turbulence and coherent vortices. In a first part, we consider the dynamics of coherent vortices 
present in free and wall-bounded (barotropic) shear flows submitted to solid-body rotation. The 
second part will be devoted to the effects of solid-body rotation on stably-stratified homogeneous 
turbulence. 

2 Coherent vortices in rotating shear flows 

Turbulent or transitional shear flows in a rotating frame have been extensively studied due to 
their importance in many geophysical and engineering applications. Within these flows, the 
local Rossby number, which characterizes the relative importance of inertial and Coriolis forces, 
can vary significantly. Typical values of the Rossby number are on the order of 0.05 in mesoscale 
oceanic eddies and in Jupiter's Great Red Spot, 0.3 for large synoptic-scale atmospheric per- 
turbations, and 2.5 for the atmospheric wake of a small island. Turbulence in rotating fluids 
finds numerous industrial applications in turbo-machinery; e.g., the turbulent characteristics of 
the flow in blade passages of radial pumps and compressor impellers determine the efficiency 
of these devices. Turbulence is also of great importance for the cooling by the fluid inside 
the blades. Depending upon the magnitude of the radial velocity, the Rossby number within 
rotating machines can range from values close to unity to very small ones (of the order 0.05). 



Laboratory experiments, theoretical works, numerical simulations and atmospheric and 
oceanic observations show that they are three basic effects associated with rotating bounded- 
or free-shear flows, (i) If the shear vorticity is parallel and of same sign as the rotation vector 
(cyclonic rotation), the flow is made more two-dimensional, (ii) If the two vectors are anti- 
parallel (anticyclonic rotation), destabilization is observed at moderate rotation rates (high 
Rossby numbers), while (iii) two-dimensionalization is recovered for fast rotation. It is easy to 
show that the asymmetry between the cyclonic and anticyclonic cases can only be explained 
by considering the influence of rotation on the growth of three-dimensional perturbations. 

2.1    Linear-stability analysis 

In order to describe the early stage of the development, Yanase et al. (1993) have performed 
a three-dimensional, viscous, linear-stability analysis of two planar free-shear flows subject to 
rigid-body rotation oriented along the span: the mixing layer and the plane wake. The mean 
ambient velocity is oriented in the longitudinal direction x and varies with y, [u(y),0,0]. The 
rotation vector is the spanwise direction z, ft = (0,0, ft). The Rossby number is here based 
upon the maximum ambient vorticity of the basic profile, that is, the vorticity at the inflexion 
point(s), -(dü/dy)i, i.e., 

R0 = -(dü/dy)i/2£l    . (1) 

In the mixing layer, R0 is positive for cyclonic rotation and negative for anticyclonic rotation. 
For the wake, one considers the modulus |i?0| of the Rossby number. From the linearized 
governing equations, it is shown that cyclonic rotation prevents the growth of three-dimensional 
perturbations and two-dimensionalization is observed. For strong anticyclonic rotation (R0 > 
-1) the effect is similar. For moderate anticyclonic rotation (R0 < -1), however, the flow 
stability is dramatically modified. In this regime, a new instability appears along the &2-axis 
(kx = 0), corresponding to a purely streamwise instability: the shear/Coriolis instability. For 
both the mixing layer and the wake, this shear/Coriolis instability has larger amplification 
rates than the co-existing Kelvin-Helmholtz instability for roughly the range -8 < R0 < -1.5, 
and its effect is maximum for R0 ~ -2.5. Yanase et al. (1993) have also shown that, for 
purely longitudinal modes (kx = 0), and if the stability problem is reduced to perturbations 
such that kx = 0, a necessary and sufficient conditions for inviscid instability is that the 
local Rossby number R0(y) = -dü/dy/2Ü should be smaller than -1 somewhere in the layer. 
Notice that, for a purely longitudinal perturbation, the eigenvalue equation is similar to the 
one governing the radial velocity when studying the inviscid linear centrifugal instability in the 
limit of axisymmetric disturbances. 

Further insight into the shear/Coriolis instability can be obtained by examining the vor- 
ticity dynamics. We note u/(x,y,z,t) = (u'x,u'y,uj'z), the relative vorticity perturbation about 
the basic shear. Under simplifying assumptions, such as neglecting viscous effects, assuming 
d/dx(-) = 0 (the shear/Coriolis instability), the following equations can be obtained (see Metais 
et al, 1995b, for details) 

du' 
-t =2fM (2) 
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dt 
= -(2fi-g)c4    . (3) 

where d stands now for the substantial derivative following the basic flow. These can also 
be recovered by considering an exact solution of Euler's equations, in terms of sheets of fluid 
moving idependency (Metais et al, 1992). It reduces to the following equation for ui'x: 

^ = _2n(_| + 2nK  . (4) 

This indicates, that, in the linear regime, the longitudinal vorticity component grows exponen- 
tially in the regions such that R0 < —1, in agreement with the results of the linear stability 
analysis. Furthermore, for a given ambiant vorticity — j" and varying Q, maximum amplifica- 
tion is achieved for R0 = —2. In this case, the same amplification rate is achieved for ui'x and 

u'x dt       u'y dt { ' 

For u>x(Q) ~ LO' (0), this yields to the formation of vortex filaments oriented at 45° with respect 
to the x-direction. 

2.2 The non-linear regime 

The previous analysis allows to describe the early linear stage of the perturbations growth. 
Further insight in the nonlinear regime, can be obtained, firstly by examining the vorticity 
stretching mechanisms, and secondly by performing three-dimensional simulations of the full 
Navier-Stokes equation. 

In a former study (Lesieur et al., 1991) have emphasized the importance of considering 
the absolute vorticity, and not just the relative vorticity, since Kelvin's circulation theorem 
directly applies to the absolute vorticity. For example, if the relative vorticity is written as the 
sum of the ambient —(dü/dy)z and fluctuating u/ components. The absolute vorticity then 
writes (2Q — dü/dy) z + u/. If the flow is locally cyclonic (i.e., 0 and — (dü/dy) have the same 
sign), then the absolute vortex lines are closer to the spanwise direction than the corresponding 
relative ones. Therefore, as compared to the non-rotating case, the effectiveness of vortex 
turning and stretching is reduced. Conversely, if the flow is locally anticyclonic, especially for 
the regions where 20 has a value close to dü/dy (weak absolute spanwise vorticity), absolute 
vortex lines are very convoluted, and will be very rapidly stretched out all over the flow, as 
a dye would do. It was thus predicted that in rotating shear flows, the vortex filaments of 
Rossby number —1 (hence anticyclonic) would be stretched into longitudinal alternate vortices. 
This phenomenological argument will be referred to as the weak-absolute vorticity stretching 
principle. 

2.3 Numerical simulations of rotating free-shear flows 

We here concentrate on the rotating mixing layer case and we will show, through numerical 
simulations, how the rotation modifies the three-dimensional flow topology.   The reader can 
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(a) 

(<0    U 

(b) 

Figure 1: Mixing layer. Relative vorticity isosurfaces at t = 17.8<5,-/|f/o|. a) nonrotating case: w* = 45% of 
\
U

2D\ (vorticity maximum associated with the initial mean profile), light gray; wj = 4.5% of |w^| coloured by 

the sign of wX) black ux < 0, dark gray ux > 0. b) J#} = -1. uz = 45% of |w^|, light gray, c) ä£° = -5. 

o)2 = 45% of |w^|, light gray; w; = 22.5% of |w^| coloured by the sign of ux, black ux < 0, dark gray ux > 0 
(from Metais e< o/., 1995b). 

refer to Lesieur et al. (1991), Metais et al. (1992), and Metais et al. (1995b) for more details. 
Temporal shear flows are considered with periocity in the streamwise direction. We consider a 
mixing layer associated with an hyperbolic-tangent mean-velocity profile: ü(y) = Uota.nh.y/8 
where 2UQ is the velocity difference accross the layer, and 6 = Si/2, with Si initial vorticity 
thickness. We define the Rossby number as, R$ = —UQ/2ÜS. R^ is positive for cyclonic 
rotation (UQ and Ct of opposite sign) and negative for anticyclonic rotation. The Reynolds 
number Re^ = \Uo\S/u is here taken equal to 50. Initially, a low-amplitude random noise 
is superposed upon the ambient velocity profiles. Two different types of perturbations are 
considered. Firstly, a quasi-two-dimensional one consisting of the superposition of a purely 
two-dimensional perturbation (z independent) of kinetic energy C2DUQ and a three-dimensional 
perturbation of energy e3oU£, with e2r> = 10e3D = 10-4. The perturbation peaks at the 
fondamental Kelvin-Helmholtz mode. This case will be referred to as the "forced transition" 
case. The second type of perturbations which has been considered is purely three-dimensional, 
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with tzD — 10-4 and e2D = 0. The noise is now a white-noise which does not favour any mode, 
and the most amplified one can freely emerge: this case will be called the "natural transition" 
case. 

We will show that the simulations have confirmed the global trends observed in the ex- 
periments and predicted by the linear-stability analysis: the Kelvin-Helmholtz vortices are 
two-dimensionalized by the rotation when these are cyclonic; this is also true for rapid anti- 
cyclonic rotation. Conversely, a moderate anti-cyclonic rotation disrupts the primary vortices. 
The latter are stretched into intense longitudinal alternate vortices of Rossby number —1, as 
predicted by the weak absolute vorticity stretching principle. 

(a) 

Figure 2: Mixing layer. Relative vorticity isosurfaces at t = 26.8<5,y|£/0|. (a) forced-transition; (b) natural 
transition. wz, light gray; w; (longitudinal vorticity) coloured by the sign of ux, black uix < 0, dark gray u>x > 0 
(from Metais et al., 1995b). 

In the early stage of the development, the results have corroborated the linear-stability 
predictions for quantities such as the critical Rossby for maximum destabilization, found to be 
« —2. In the present paper, a special care is given to the coherent-vortex dynamics. Now we 
look at the three-dimensional flow structure, in the forced transition case. We focus on the 
relative vorticity iso-surfaces at t = 17.8S{/\Uo\ obtained in the non-rotating case (R® = oo), 
and for anticyclonic rotation at R^ = —5 and R$ = — 1. 

(1) R%) = oo (Figure la). Here, one observes quasi-two-dimensional Kelvin-Helmholtz billows, 
slightly distorted in the spanwise direction. Weak longitudinal vortices are stretched between 
the primary rolls: those are identified through isosurfaces of weak longitudinal vorticity. 
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(2) Ry = —1 (Figure lb) displays the spanwise vorticity field with the same iso-contour value 
than in the non-rotating case. Anticyclonic and cyclonic flows are similar at this Rossby number, 
and a strong two-dimensionalization is observed in both cases. The longitudinal vortices have 
disappeared. Furthermore, the two-dimensionalization tendency can be observed in the cyclonic 
case even for large positive R[l\ This agrees well with both the predictions of the linear stability 
analysis by Yanase et al. (1993) and the phenomelogical theory proposed by Lesieur et al. 
(1991). 

(3) RM = -5 (Figure lc). The Kelvin-Helmholtz vortices are now highly distorted and exhibit 
strong oscillations along the spanwise direction. The longitudinal vorticity is much higher than 
in the non-rotating case: we observe the simultaneous formation of Kelvin-Helmholtz vortices 
and longitudinal hairpin vortices which are stretched inbetween. As time goes on, this pro- 
duces an important increase of the longitudinal vorticity component: by the end of the run the 
longitudinal vorticity is approximately twice the one associated with the initial mean velocity 
profile. By the end of the run (Figure 2a), the Kelvin-Helmholtz vortices have been totally 
dislocated and the flow is entirely composed of hairpin-shaped longitudinal vortices. A similar 
sequence had been proposed in this case by Lesieur et al. (1991), using the weak absolute 
vorticity stretching mechanism: weak absolute vorticity in the stagnation region between the 
Kelvin-Helmholtz rollers would be stretched longitudinally between the latter, yielding longi- 
tudinal alternate vortices which should destroy the primary vortices. It is worth noting that 
these vorticity structures originate from the growth of the longitudinal mode predicted by the 
linear stability analysis (see Yanase et al. 1993). 

In the case of natural transition, we observe the rapid formation of purely longitudinal 
structures corresponding to regions of high relative vorticity (Figure 2b). These exhibit some 
analogies with the Görtier vortices observed in the boundary layer over a concave wall. These 
structures have a spanwise wavelength As corresponding to the fastest shear/Coriolis mode 
predicted by the linear-stability analysis of Yanase et al. (1993). Close examination of the 
time evolution of the absolute vortex lines shows that the flow undergoes very distinct stages. 
In the first stage, the vorticity dynamics are dominated by quasi-linear mechanisms yielding 
absolute vortex lines inclined at 45° with respect to the horizontal plane. These are in phase 
in the longitudinal direction. We have checked that maximum longitudinal vorticity stretching 
is achieved in the flow regions with a local Rossby number of approximately —2.8. In a second 
stage, nonlinear stretching mechanisms yield quasi-horizontal longitudinal hairpins of absolute 
vorticity. As in the forced-transition case, these absolute vortex tubes correspond to local 
Rossby number ss — 1. The OJX stretching terms become larger than for u>y, and those terms 
are found to be maximum within the legs of the vortices. The dynamics are then dominated 
by a strong quasi-horizontal stretching of longitudinal absolute spanwise vorticity. During that 
stage, we observe that the ambient velocity profile exhibits a long range of nearly constant shear 
whose vorticity exactly compensates the solid-body rotation vorticity. Both in the forced and 
natural transition cases, the eventual states are in agreement with the phenomenological theory 
proposed by Lesieur et al. (1991). Thus a very efficient mechanism to create intense longitu- 
dinal vortices in rotating anticyclonic shear layers is provided, thanks to a linear longitudinal 
instability followed by a vigorous stretching of absolute vorticity. It would be interesting to 
look for the existence of these longitudinal vortices in laboratory experiments studying rotating 
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mixing layers and wakes. We know show that the same holds for other types of shear flows 
submitted to solid-body rotation. We here concentrate on the rotating turbulent channel flow. 

2.4    Numerical simulations of rotating channel flow 

We here investigate, via three-dimensional direct numerical simulations, the influence of span- 
wise rotation on the vortex topology in turbulent channel flow (see Lamballais et a/., 1995; 
for further details). Let \R$\ be the Rossby number associated with the vorticity maxima of 
the initial basic velocity profile. We now compare the non-rotating and rotating turbulent flow 
in a channel at Re = 3750 (based upon the centerline velocity of the initial laminar velocity 
profile and the half-channel height). The initial conditions consist in a field issued from a 
non-rotating calculation on which we impose a spanwise rotation corresponding to \Ry\ = 6. 
We then integrate till the flow has reached a statistically steady state. After a short transient, 
the turbulence intensity is amplified on the anticyclonic side while relaminarization occurs on 
the cyclonic side. We have checked that the statistical results agree well with the simulations 
performed by Kristoffersen &, Andersson (1993). 

We particularly examine how the instantaneous vorticity field differs from the non-rotating 
case. Comparison of the isosurface of the relative vorticity modulus (Figure 3) shows clearly 
a change of vortex topology when rotation is applied. Near the cyclonic wall, the iso-vorticity 
surfaces are nearly flat indicating a weak growth of the perturbation. On the anticyclonic side, 
the increase of the turbulence level is associated with the longitudinal vorticity intensification. 

Figure 3:  Isosurface of the vorticity modulus w = 3 at \Ro \ 
(from Lamballais et ah, 1995). 

= oo (left) and |U&°| = 6 (right), Re = 3750 

We have checked that the vortex topology is strongly affected by the rotation. The en- 
hancement of the anticyclonic perturbations level is associated with hairpin vortices which are 
much more inclined (30° to the wall) than in the non-rotating case (45°). These extend till the 
channel center. Superposed on these structures, we also observe large-scale longitudinal rolls 
(Taylor-Görtler-like vortices) as in the laboratory experiments of Johnston et al. (1972) and 
the direct numerical simulations of Kristoffersen & Andersson (1993). 

The mean velocity profile exhibits a characteristic linear region of slope 2fi (see Figure 4). 
It is associated with a local Rossby number R0(y) = —1, where R0(y) = —(dü(y)/dy)/2tt. 
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Figure 4: Mean velocity profile ü(y) (|A>(0| = 6,Äe = 3750; from Lamballais et al, 1995). The anticyclonic 
wall corresponds to the left of the figure; the cyclonic wall to the right. 

The analysis of the different terms involved in the equations for the mean square (absolute) 
vorticity fluctuations shows that the stretching mechanisms play a major role. These are much 
more important than the transport processes. This is in agreement with the phenomenological 
arguments proposed by Lesieur et al. (1991). 

3    Stably-stratified rotating turbulence 

Bartello et al. (1994) have performed calculations of rotating homogeneous turbulence from 
isotropic 3D initial conditions characterizing fully-developed non-rotating turbulence. They 
demonstrate that rotation acts to organize cyclonic regions (i.e. with u ■ Ü > 0) into quasi 
2D coherent structures, while anticyclonic regions show no such tendency when R& = [u ■ 
ti\rmS/2n2 « 1. The situation bears a resemblance to the rotating turbulence experiments of 
Hopfinger et al. (1982), where 3D structures generated by an oscillating grid at the bottom of 
their tank two-dimensionalized towards the top, where the Rossby number was smaller. In this 
experiment, the quasi-two-dimensional vortices were all cyclones. 

This shows that a solid-body rotation when applied to three-dimensional turbulence tends 
to generate vertical coherence in some regions of the flow. As opposed to rotation, stable density 
stratification may induce a very pronounced flow vertical variability. Indeed, Riley et al. (1981) 
and Lilly (1983) have suggested that, in the limit of small Froude numbers, stably-stratified 
turbulence could obey a two-dimensional turbulence dynamics. However, the numerical studies 
by Herring and Metais (1989) and Metais and Herring (1989) have shown that the horizontal 
motion dominates in a strongly stably-stratified environment, but the flow develops a strong 
vertical variability and reorganizes itself into decoupled horizontal layers. The shear of the 
horizontal velocity at the interface between the layers leads to energy dissipation, and prevents 
the turbulence from exhibiting the characteristics of two-dimensional turbulence. 

We here numerically investigate the effects of solid-body rotation on stably-stratified tur- 
bulence with energy injection at small scales. Freely-decaying computations are reported else- 
where (see Bartello, 1995 ; Metais et al, 1995a). The three-dimensional Navier-Stokes equations 
withm the Boussinesq approximation are simulated and homogeneous turbulence is considered. 
We focus on the small Froude number (Fr) regime when the Rossby number (R0) ranges from 
large (slow rotation) to small (rapid rotation) values. The Brünt-Vaissälä frequency N is as- 
sumed to be constant.  In order to reduce the dissipative and diffusive ranges extension, the 
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Laplacian operator in the viscous term is replaced with an iterated Laplacian (see Basdevant 
and Sadourny, 1983). The computational domain is a cubic periodic box, the resolution is 643 

collocation points, and pseudo-spectral numerical methods are used. The results are presented 
in details in (Metais et al, 1994, 1995a). 

3.1    Turbulence and waves 

When solid-body rotation and stable density stratification are simultaneously present, one must 
find a simple way of discrimating between the turbulent part of the motion and the component 
associated with non-linearily interacting inertial-gravity waves. One may use the fact that 
inertial gravity waves have no potential vorticity, and extract the turbulent component of the 
velocity field which is associated with the potential vorticity. This can be done in the limit of 
small Froude and Rossby numbers corresponding to Charney's (1971) geostrophic turbulence. 
Hydrostatic and geostrophic balances then imply that the (normalized) conserved potential 
vorticity ( can be expressed in terms of a stream function ^ (Charney, 1971, see also Lesieur, 
1990): 

C = N' 
d (6) 

( N is the Brünt-Vaissälä frequency; / = 2Ü is the Coriolis parameter; H denotes the horizontal 
and z the vertical direction). Therefore, from the potential vorticity, one can derive xp through 
(6). The geostrophic turbulent part of the horizontal velocity and (normalized) density fields 
can then be deduced in the following way: 

dip d$ dip m 

EQ and EQ will designate the two-components of the geostrophic kinetic energy and EQ the 
geostrophic available potential energy respectively associated to UQ\ VQ and 0G- 

As a first order approximation, one can consider that all the vertical velocity is associated 
with the wave motion: ww = w (where the w index stands for wave). The wave density field 
can be easily derived from: 

^ = -iuQw = N2w (8) 

with u)2 = (N2kjj + j2k2
z) j {k2

H + k2
z). The facts that the wave field has no potential vorticity 

and also that the velocity field is non-divergent lead to: 

d^w__2_d^L    V2     d2w       f d2e, 
dzdx     N2 dzdy  ' HVW

       dzdy     N2 dzdx 
2      u w j   v xyw 2      u w        j   v yyw .  . 

V
K

U
- = -inzz ~ Tti-^r. > V

HVW = -7T-5- + TTtinr: (9) 

These expressions were previously derived by Müller et al. (1986) and Lelong (1990). 
Notice that for / = 0, one recovers the classical decomposition of the horizontal velocity 

field into rotational and divergent components. It is equivalent to Craya's (1958) decomposi- 
tion, which has been used to discriminate between stratified turbulence and internal gravity 
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waves (Riley et ai, 1981; Metais and Herring, 1989). Subsequently, we call vortical mode the 
rotational component of the horizontal velocity field: 

uv = —;   uv =-— , with UJZ =-\72
Hij>    , (10) 

oy ox 

where uz is the vertical vorticity component. 

3.2    Numerical simulations 

For the present runs, the flow is forced at small scale: the forcing is random in space and 
Markovian in time, and acts on a wavenumber band (kß = 10 < k < 12 = &y). We define 
kf = [kß + &r]/2 to be the centroid of the forcing wavenumber band. These conditions are 
analogous to those chosen by Herring and Metais (1989). The forcing is three-dimensional 
and acts equally on the three velocity components u,v,w (no density forcing). The intensity 
of buoyancy and rotation effects will be characterized by a Froude number Fr, and a Rossby 
number respectively defined as: 

V^iT^)_       y^j- 
Fr = — ;   R0 = —-— (11) 

where u>x,uy and wz are the relative vorticity components, and the angular brackets stand for 
—* 

a spatial average. Q and the mean stratification are both oriented along the vertical direction. 
We here focus on the small Froude number regime when the Rossby number ranges from large 
(slow rotation) to small (rapid rotation) values. We concentrate on the energy transfer from 
the injection scales to the large scales. 

In Figure 5a, we display, for various cases, the three-dimensional wavenumber spectrum of 
the vortical kinetic energy (c.f. eq. 10) when the system has reached an equilibrium. In the 
absence of rotation and stratification, for k smaller than the forcing wavenumber the energy 
is equipartitioned between the modes: this yields a k2 spectrum. One may notice that, for 
k > kf, the spectral shape closely corresponds to a k~5^3 Kolmogorov energy cascade. In the 
non-rotating strongly-stratified case (Q = 0;N = i-K)Fr ?» 0.2), the vortical energy transfer 
towards the large scales is more efficient than in the non-stratified case and the spectrum is 
shallower than k2. The buoyancy effects are still dominant when a weak rotation (Q = 2T/10; 
N/f = 10, R0 R3 1) is imposed: the spectral behaviour remains almost unchanged. A complete 
change is observed for strong rotation (Q = 2TT; N/f = 1, R0 ?s 0.1): the spectrum now follows 
a k~5'3 law for k < kf and the spectral slope is increased for k > kj. 

As pointed out by Charney (1971), for geostrophic turbulence, both the total energy, and 
the potential enstrophy are conserved by the non-linear terms of the equations. One can write: 

EG = /    E{k)dk; Dp = /    k2E(k)dk  . (12) 
Jo Jo 

This double conservation property is analogous to two-dimensional turbulence, the difference 
being that E(k) is here a three-dimensional spectrum. Furthermore, the energy possesses three 
components: two kinetic and one potential. Nevertheless, this constraint should prevent the 
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Figure 5: Three-dimensional wavenumber spectrum of the vortical kinetic energy for various values of fi and 
N (from Metais et al, 1995a). 

energy injected at a wave-number kf from cascading towards larger k and it should be uniformly 
transferred to lower wavenumbers along a k~5/3 spectrum similar to the two-dimensional turbu- 
lence energy cascade proposed by Kraichnan (1967). The numerically observed A:-5/3 behaviour 
for small k could therefore be a manifestation of geostrophic turbulence dynamics. This will 
be confirmed by the subsequently presented results. 

Figure 5b is the analogue of Figure 5a. Here, the vortical kinetic energy spectra of the 
isotropic (no rotation, no stratification) and the strongly-stratified, rapidly-rotating cases are 
compared to the one obtained when only fast rotation is applied without any stratification 
(Q, = 2ir; N = 0). We have checked that the large-scale flow exhibits quasi-two-dimensional 
vortices composed of both cyclones and anticyclones are present. However, although the flow 
contains these highly-anisotropic structures, the slope of the vortical kinetic energy spectrum 
for small k remains close to the isotropic k2 spectrum (see Figure 5b). 
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A particular attention is now given to the strongly-stratified, rapidly-rotating regime. Due 
to the nature of the forcing, energy is injected in the inertio-gravity wave as well as in the 
geostrophic part of the motion. Figure 6a compares the three-dimensional wave-number spec- 
trum of the total kinetic energy (KEtotai) to the analogous spectra for the geostrophic kinetic 
energy (KEgeo = EG + Ey

G) and the inertio-gravity wave kinetic energy (KEwave) constructed 
with the velocity field uw,vw and ww defined by (9). Due to the combined effects of rotation 
and stratification, the two kinds of motions are segregated: the geostrophic energy dominates 
the Ar-5'3 inverse cascade and reaches larger and larger scales. By contrast, the wave energy 
cascades towards the scales smaller than the injection scales and is therefore submitted to a 
strong dissipation. A similar picture can be drawn for the geostrophic and wave part of the 
available potential energy. 

Charney (1971) concentrated on the potential enstrophy cascade and argued that the dy- 
namics of quasi-geostrophic flow lead, at small scales, to an equipartition of energy among 
the x and y components of the kinetic energy and the available potential energy. Here, the 
geostrophy energy is equipartitioned among its three components EG, Ey

G and EG over almost 
the whole spectrum including in the large-scale inverse cascade (see Figure 6b). 

3.3    Discussion 

The observed atmospheric mesoscale spectra (see Gage and Nastrom 1986, for a review) exhibit 
several features in common with the present numerical results: A;-5/3 inverse cascades for both 
velocity and temperature spectra with equipartitioning between each of the two components 
of horizontal and potential energy. These similarities might lead to believe that the mesoscale 
spectra do correspond to geostrophic turbulence propagating towards the large scales. However, 
the variation of the Rossby number as a function of the scale of motion L, or the corresponding 
wavenumber k = 2n/L, can be evaluated as R0(k) = u>(Ar)//. u(k) is here a measure of the 
characteristic relative vorticity at wavenumber k. It can be estimated through the kinetic 
energy spectrum E(k): 

R0{k) oc V (13) 

This shows that for E(k) ~ fc~5/3 then R0(k) ~ k2'3. Using Gage and Nastrom (1986) data, we 
find a Rossby number « 1 around the injection scales of 10Arm and then « 0.2 at lOOArm (inverse 
cascade). This is at variance with the present computations for which the Rossby number at the 
injection scales is small (« 0.2). Higher resolution computations should therefore be performed 
for more precise comparisons. 
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