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Abstract 
A continuous adjoint approach for obtaining sensitivity derivatives on unstructured 

grids is developed and analyzed. The derivation of the costate equations is presented, and 
a second-order accurate discretization method is described. The relationship between the 
continuous formulation and a discrete formulation is explored for inviscid, as well as for 
viscous flow. Several limitations in a strict adherence to the continuous approach are un- 
covered, and an approach that circumvents these difficulties is presented. The issue of grid 
sensitivities, which do not arise naturally in the continuous formulation, is investigated 
and is observed to be of importance when dealing with geometric singularities. A method 
is described for modifying inviscid and viscous meshes during the design cycle to accom- 
modate changes in the surface shape. The accuracy of the sensitivity derivatives is estab- 
lished by comparing with finite-difference gradients and several design examples are pre- 
sented. 
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for Computer Applications in Science and Engineering (ICASE), Mail stop 403, 6 North 
Dry den Street, NASA Langley Research Center, Hampton, Va. 23681-0001 



Introduction 
Aerodynamic design optimization has been an important area of research for many 

years. Although some of the early work in this area has been limited in applicability be- 
cause of a lack of computational tools, advances in computational algorithms and com- 
puter hardware have recently fostered intense efforts aimed at aerodynamic and multidis- 
ciplinary optimization. Among the methods currently used are gradient-based optimizers 
in which a specified objective function is minimized. The gradients of the objective func- 
tion with respect to the design variables are used to update the design variables in order to 
systematically reduce the cost function to arrive at a local minimum. An important step in 
this process is the determination of these gradients, which are also referred to as sensitiv- 
ity derivatives. 

Several techniques have been investigated for evaluating the sensitivities for aerody- 
namic applications. A description of these techniques can be found in Refs. 5, 15, 16, and 
in the references contained therein. Of particular interest in the present context are adjoint 
methods. In these methods, the objective function is augmented with the flow equations 
enforced as constraints through the use of Lagrange multipliers. These methods are partic- 
ularly suited to aerodynamic design optimization for which the number of design vari- 
ables is large in relation to the number of aerodynamic constraints or to the number of ob- 
jective functions in a multipoint design. This is because the derivatives with respect to all 
design variables for each objective function or aerodynamic constraint, can be obtained 
with a computational effort roughly equivalent to that for a single solution of the flow 
equations. 

Adjoint methods can generally be divided into discrete and continuous adjoint methods. 
In the discrete adjoint approach, the augmented cost function is discretized before varia- 
tions are taken. For the continuous adjoint formulation, the process is reversed: variations 
are performed first, followed by the discretization. Note that the operations of differentia- 
tion and discretization do not commute in general. Hence, derivatives obtained by using 
the two approaches may not be identical and would differ according to the level of trunca- 
tion error. A comparison of these two approaches for a quasi-one-dimensional problem is 
given in Ref. 37. 

Much of the pioneering theoretical work in adjoint methodology has been presented in 
Refs. 19, 25, 29, 30, and 31. Although optimality conditions for aerodynamic applications 
have been derived from a continuous approach in Refs. 3 and 6, the computer implemen- 
tations have generally followed the discrete approach. One of the advantages of the dis- 
crete adjoint approach is that, because the equations are discretely adjoint to the flow 
equations, the derivatives obtained are consistent with finite-difference gradients indepen- 
dent of the mesh size. A disadvantage of this approach is that it requires the transpose of 
the matrix that represents the linearization of the discrete residual with respect to the flow 
variables. For higher order accurate schemes, where the residual has a complex depen- 
dence on grid points, an exact implementation of this approach may be difficult to realize. 
For this reason, previous implementations of the discrete adjoint approach, such as those 
in Refs. 6, 7, 26, and 27, have used a discretization of the adjoint equations that is consis- 
tent with a first-order accurate discretization of the flow equations. Second-order accurate 
implementations of the discrete adjoint approach have been carried out on structured grids 



in Refs. 10 and 23. On unstructured grids, a discrete adjoint approach for the Euler equa- 
tions that is consistent with a second-order discretization of the flow equations has re- 
cently been implemented.13 

In Ref. 19, Jameson developed a control theory framework for optimization using both 
the full potential and Euler equations for compressible flows. Computational results based 
on this approach were first presented in Ref. 20. This approach has been further developed 
and implemented for both two- and three-dimensional applications.21-22 In these references, 
the continuous adjoint approach is pursued in both the derivation and the implementation 
on structured grids. In Refs. 32 and 33, the technique has been applied on complex config- 
urations with a multiblock algorithm. 

The continuous adjoint approach has also been considered by Iollo et al.17 and Iollo and 
Salas18 for both one-dimensional flow and two-dimensional flows over simple geometries. 
Kuruvila, Ta'asan, and Salas24 and Ta'asan and Kuruvila38 have investigated an efficient 
"one-shot" approach in which the design variables are updated in a hierarchical manner. 
Cabuk and Modi11 and Cabuk et al.12 have also used an adjoint formulation to design an 
optimal diffuser shape using the incompressible Navier-Stokes equations. 

In this paper, the problem of aerodynamic optimization on unstructured grids via a con- 
tinuous adjoint approach is developed and analyzed for inviscid and viscous flows. A de- 
tailed discretization of the adjoint equations is presented, and the relationship with the dis- 
crete adjoint approach is investigated. The accuracy of the resulting derivatives is assessed 
by comparison with finite-difference gradients. In addition, a mesh movement scheme is 
presented for restructuring the grid in response to changes in the surface geometry. The re- 
sulting methodology is then used to design several airfoils for inviscid compressible flow, 
as well as for incompressible laminar flow. 

Adjoint Variable Approach for Sensitivity Derivatives 
Considering first steady inviscid compressible flow, the governing equations are given 

by: 

^F(Q)+^G(Q) = 0 

where Q is the set of dependent variables for the Euler equations (p, pu, pv, E), F and 
G represent the flux vectors of mass, momentum, and energy, and x and y are Cartesian 
coordinates. 

In the adjoint approach for design optimization, a cost function is defined and aug- 
mented with the flow equations as constraints: 

I(Q,D,Y) = Ic(Q,D) + Jö(¥,R)dQ = IC(Q,D) + IR(Q,D,¥) (2) 

where R represents the steady-state flow equations, D is the vector of design variables, 
and *F are the Lagrange multipliers (also referred to as the costate or adjoint variables). In 
Eq. (2), IC(Q, D) represents the cost that is to be minimized, and Jfi(*F, R)dO is the 
inner product of the costate variables with the residual. Examples of suitable cost func- 



tions include drag minimization and matching a specified pressure distribution, for which 
IC(Q, D) can be written as 

IC(Q, D) = j> (cpkxcosoc-cpkysina)ds    Drag minimization (3a) 

1 r 2 
IC(Q. D)= =j»r(c -c *) ds        Specified pressure distribution 2-T (3b) 

where cp is the pressure coefficient, kx and ky are x and y components of a unit normal 
to the surface, and a is the angle of attack. The cost function can also involve field inte- 
grals, such as viscous dissipation, although these are not considered in this paper. It is as- 
sumed that the cost functions are differentiable although this assumption may not be valid 
for flows with shock waves or other singularities. A smoothing procedure as suggested in 
Refs. 19 and 22 may be employed to place the derivation on firmer theoretical ground. 
However, in numerical implementations, dissipation typically smears discontinuities over 
a finite number of mesh points, thus mitigating the effects of non-differentiability. There- 
fore, smoothing of the cost function is not performed in this paper with no apparent conse- 
quences. This step is consistent with discrete approaches where the lack of differentiabil- 
ity is also not explicitly taken into account. 

The derivation of the adjoint equations closely follows classical techniques from calcu- 
lus of variations, as outlined in Ref. 36. In shape optimization, calculation of the first vari- 
ation of functionals, such as those in Eqs. (3a) and (3b), requires that the integral on the 
modified surface be expressed in terms of quantities on the original surface. For example, 
cost functions such as drag minimization are composed of terms that involve products of 
both geometric and nongeometric quantities: 

IC(Q,D) = jir(g(Q(D))k(D))ds (4) 

Here, g is an arbitrary function of the flow variables, and k represents either kx or k . 
For cost functions such as Eq. (3b), k assumes a value of unity. A general form for the 
first variation can be written as 

5IC(Q,D) = ^,(gnewknew)ds -fr(goldkold)ds (5) 

where T and T represent the old and the new surface of the geometry, respectively, and 
the subscripts old and new denote quantities on these surfaces. Evaluation of these inte- 
grals is addressed after a discussion on obtaining variations of IR. 

The method for obtaining the variations of the volume integral in Eq. (2) involving the 
residual R follows closely that of Pironneau.31 Denoting this volume integral as 



IR(Q,D,T) = J(Y,R)dß (6) 

the variation that properly accounts for volume changes, as well as for changes in the flow 
field, is given by 

SIR = -jQT(ATU + BT0)dQ + jQT(ATkx + BTky)^ds (7) 

T T 
where A and B are the transposes of the inviscid flux Jacobian matrices and the sur- 
face integral is over the solid walls as well as the far-field. In deriving Eq. (7), it is tacitly 
assumed that the fluxes and the costate variables are differentiable; similar assumptions 
have been discussed earlier regarding the cost function. The variation of the augmented 
cost function in Eq. (2) is formed by combining Eq. (7) with the variations in IC(Q, D). 
Because Q is arbitrary, the volume integrals present in the variation of the augmented 
cost function can be eliminated by requiring that *P satisfy the following adjoint (costate) 
equation: 

-A3--B3-   =0 (8) 
ox        dy 

The surface integral in Eq. (7) is used together with the variations in the cost function 
IC(Q, D) to determine both the boundary conditions and the sensitivity derivatives. The 
boundary conditions for *F are chosen to eliminate the terms that multiply Q on the 
boundaries. The surface integral can be rewritten as 

|QT(ATkx + BTky) Wr = j(Ä\, Q)dr (9) 
r r 

—T T T 
where A = A kx + B k . In the far field, this term can be rewritten by using a locally 
one-dimensional characteristic decomposition at the boundary to yield 

|(ÄT4/,Q)dr = J(^,TÄW)dr (10) 
r r 

where W = T Q, T is the matrix of left eigenvectors of A, and A are the corre- 
sponding eigenvalues. Boundary conditions for the costate variables in the far field are ob- 
tained using characteristic-type boundary conditions on the field variables, where the 
propagation of information is based on the signs of the eigenvalues. For shape optimiza- 
tion, variations in W associated with free-stream quantities are zero, so that the corre- 
sponding costate variables on the boundary can be extrapolated from the interior of the 
domain. The other costate variables on the boundary are obtained by requiring the remain- 
ing terms in Eq. (10) to vanish. When Mach number or angle of attack are design vari- 



ables, variations in W reflect the appropriate changes in free-stream conditions and are 
used in obtaining the derivatives with respect to these variables. 

On solid walls, the boundary condition that there is no flow normal to the new surface is 
written as 

Q2+^ x+^2y + Q2J(kx + kx) (ID 

9Q3~   3Q3 

Using Eq. (11), the surface integral in Eq. (9) can be expressed as 

\(X\, Q)ds = }(Qi[(kxV2 + ky\|/3)<))] + (12a) 
r r 
Q2[(kx\|/2 + ky¥3)(

1-Y)u] + 

Q3[(kx\i/2 + ky\|/3)(l-y)v] + 

Q4[(kx\|/2 + ky\|/3)(Y - 1)] + R(\(/1 + \|/2u + \|/3 v + \|/4H) )ds 

where H is the total enthalpy and 

R = -(Q2kx + Q3ky) (12b) 

dQ2   dQ3V (   9Q2  ^ (   og2  dQ3\  / dQ2  dQ3\ 

In order to compute the variation in Eq. (5), the integrand for the first integral is ex- 
panded as follows: 

§newknew = (g + gx* + ByY + g)(knew + ^new) (13) 

In Eq. (13), the derivatives gx and gy account for spatial changes and g reflects the vari- 
ation due to the fact that the solution of the governing equations has changed in response 
to the changing surface. Note that for structured grids, which employ a mapping to a fixed 
computational domain, these spatial derivatives do not arise because the variations in the 
generalized coordinates are zero. However, variations in the mapping function need to be 
considered which naturally provides a mechanism to account for grid sensitivities in a 
continuous framework.32 



The boundary conditions for the costate variables are derived by combining the bound- 
ary terms from the variation in the cost function with those from Eq. (12a) and then elimi- 
nating terms that involve variations in Q. Because g is a function of Q, g is given by 

g =   V <te_Q, 
i7i9Qi 

The boundary terms that multiply Q are eliminated by requiring that 

(14) 

(kx\|/2 + k\|/3) 

"    4>    ' 
(l-y)u 

(l-y)v 

.(Y-l). 

+ k 9g   3g   9g   9g 
aQj'aQ^Qs'^ 

= 0 (15) 

Note that the column vector that multiplies (kx\|/2 + ky\|/3) corresponds to the derivatives 
of pressure with respect to the dependent variables. In order to obtain a unique boundary 
condition for (kx\|/2 + kyy3), the second column must be a scalar multiple of the first. 
Therefore, g can only be a function of pressure, h(p), which yields the following bound- 
ary condition: 

kx¥2 + ky¥3 + k^h(P) = ° (16) 

Thus, cost functions such as specification of a velocity distribution or minimization of sur- 
face entropy are inadmissible, except in special cases where they can be expressed solely 
in terms of pressure. 

As an example of an allowable cost function, consider the drag coefficient given by 

yM„ rvp~    J 
Ycosa + kvsina)ds 
A y 

(17) 

The appropriate boundary condition for this case is given by 

2 
kx\|/2 + ky\|/3 + —(kxcosa + kysina) = 0 

YMTC p„ 
(18) 

Surface Parameterization 
In shape design, the best representation of the surface for design problems remains an 

open issue. In the current study, the geometries are modeled with B splines, which offer 
great flexibility in the definition of the surfaces. By varying the polynomial degree and the 
number of control points, a wide range in the number of design variables and surface fi- 
delity can be obtained. On one hand, the design variables can be made to correspond to the 



individual grid points on the surface by choosing a linear polynomial and an appropriate 
number of control points. Conversely, a single polynomial curve of degree n (known as a 
Bezier curve) can be used to describe the geometry by choosing the number of control 
points to be n + 1. In addition, through the knot sequence associated with the spline, sharp 
breaks in the surface such as those that occur in cove regions and blunt trailing edges can 
still be represented in a single curve. 

In a B-spline representation, the x- and y-coordinates of the surfaces are written in a 
parametric form as14 

(19a) x(t) 
n+1 

=   ZxiNifk(t) 
i = 1 

y(t) 
n+1 

=    I  YiN. k(t) 
i = 1 

(19b) 

where (x, y) are the Cartesian coordinates of the surface, N- , is the B-spline basis 
function of order k, (X^ Yj) are the coordinates of the B-spline control polygon, and 
n + 1 is the total number of control points. Notice that the surface description with Eqs. 
(19a) and (19b) is still continuous. 

In Fig. 1, a point on the old surface is assumed to move to the new surface while re- 
maining at a fixed value of t. Consequently, variations in the basis functions need not be 
considered. In addition, generality is maintained for the surface geometry as variations are 
not restricted to being strictly normal to the existing surface. 

new surface 

old surface 

Figure 1. Movement of point on surface. 



For small variations, an incremental length on the new surface can be written as 

ds' = (1 + A)ds (20) 

where 

and 

.2       .2 x +y 

n + 1       dN- , 
C.-XÄ.V <22a> 

i = l 

n + 1       JN- , 

i = i 

Here, X; and Y, are variations in the position of the B-spline control points, and x and y 
are derivatives with respect to t. Because a given point on both the old and new surfaces 
is at a fixed value of t, the coordinates on the new surface can be written as 

*»ew =  XVXK =  xWld + Xi)Ni,k (»a) 

y»ew - '£*r»v = "£'(Y^ + YON,.,, (23b) 
i=l i=l 

Therefore, the variation of a point on the surface is given by 

x=IXiNu (24a) 
i = 1 

y = "xYiN^ (24b) 
i= 1 

Since the components of the surface normal can be expressed as 



K = -ßL= (25a) 
A/X +y 

ky - -ßß= (25b) 
A/X  +y 

the variations in the surface normals can be derived as 

(l-k2)"*1- dNik       kk     al}~dNik 

rrir,   A       r2   ^ ^' Vx +y i= l vx +y i = l 'dt 

^-T^I^^-^XY^^ (26b) 
A/X +y i = l A/X +y i = l 

By using Eqs. (13), and (20)-(26b), variations of integrals that involve gk   can be written 
as 

n+l 
öQgkyds) = jgkydS- £Xj (2?a) 

i    r 

Similarly, variations of integrals involving gkx are given by 

öffgkxdsl = Jgkxds + X Xijfy||Nifk)dt (27b) 
T        

J     r i=i    rv ox      J 

For cost functions such as (3b) that only involve flow quantities, a similar procedure 
yields 



öMgdsj = Jgds (27c) 

lYiJ Ns j£ + 
V        dN;   A 

u3y   x2 + v2rft 

gV    U1>i,k    1.2 ,   .2,t —       A/X +y dt 
) 

SxJ N;^ + -SX <M; 

9x     jt2 + y2A 
Vx2 + y2dt 

The terms in Eqs. (27a), (27b), and (27c)^ involving g are eliminated by the boundary 
conditions along with the terms involving Q in Eq. (12a) as discussed earlier. The sensi- 
tivity derivatives are obtained by combining the remaining terms in Eq. (27a), (27b), or 
(27c) with the last term in Eq. (12a). For example, using Eqs. (24a)-(26b) to compute the 
variations in the coordinates and metric terms, the sensitivity derivatives of the drag coef- 
ficient with respect to each B-spline control point are given by 

3c, .dS\     $%i 
i(^-^JN^-g2Jt 

dN U dt 
dX{     yM^ r 

.(    dN:k    r   dQ2       dQ3\      \ + -KQ^    " lk*3x" + ky^h kF'+ "^ + ^ + H^4)dt 

(28a) 

3c, 

3Yj       yM 

IK* + 

2 

i,k 

(28b) 

kx^
2 + k J?3 K k )(¥, + u¥2 + v^3 + H^4)dt 

where gj = (p/p«- l)cosoc and g2 = (p/p«,- l)sina. For cost functions such as lift 
or moment coefficients, a similar procedure is followed. When Mach number and angle of 
attack are considered as design variables, variations from surface integrals in the far field 
also contribute to the sensitivity derivatives. 

Navier-Stokes 
In this section, the adjoint equations with the associated boundary conditions and the ex- 

pressions for the sensitivity derivatives are derived for viscous flows. Only steady incom- 
pressible viscous flows are considered in this paper to make the analysis more transparent. 

The governing equations, with the artificial compressibility parameter ß, are given by 

10 



>+^"° 
(29) 

3,2,   . , d,    v     u f3 f~3uA    3 f3u   3v 

3 ,    ,3,2,   .     u. f3 f3u   3vA    3 f„dvY\ 

The cost function is augmented as in Eq. (2) with the flow equations as constraints 
through the Lagrange multipliers *P with Q = {p, u, v}T. The variation in IR is split into 
the contributions from the inviscid and the viscous terms I|l

nv and I£isc, respectively. 
These can be derived as 

and 

" 1 

M-    R Jj \dx{ 3x J   3yV3y      3x 
dQ 

„3^2    „3¥2     3^ 
2UT^—   + v—   + v—   Ids + Ikx 2u-^-   + v^   + v^J 

J
r 

x|_    3x        3y        3x J 

r._3vF,    _3¥,    _3*P3 

3x" 
+ fkv 2v^-J + ü^- * + G 

J, y|_    3y        3y 
ds 

(30) 

(31) 

Combining the field integrals in Eqs. (30) and (31) and setting the integrands to zero 
yields the following adjoint system: 

,AT3*_BTW = T 

dx       dy (32a) 

li 



where 

T = 
Re 

0 

Bx\ dx )   9yv3y      dx 

a,*r2 W3N _a| 
May     3x J   3yl äy" 

(32b) 

For purposes of illustration, the boundary conditions for the adjoint system are derived 
with the assumption that the cost function is the drag coefficient: 

■J cnkY cos a + cnkv sin a (33) 

-Pi 2k 

au 
dx 

av 

du . dv 

-i(2k^+Ha7+SJlcosa 

Rer--%+k*(!+a7l|sina ds 

Note that the expression for drag retains the components from the viscous stress tensor. It 
will be seen that this is a requirement for obtaining boundary conditions for the adjoint 
equations. Using Eqs. (27a) and (27b), the variation in the drag coefficient is given by 

aG0    3N; 

G, dt 

flow ~    rf   ■ CKJ, . CKJ9       dJNj   k        -\ 6cd = &r + IXij(YNi,kK
1-XNU3I

2-5I''kG2J 

- ./.    3G,   .    3G, a> 

(34a) 

where 

12 



5cd
ow = J| 2p(kxcosa + kysina) (34b) 

" i(2kv^ + k*G|Ü + ^v))sina)^72dt 

and 

G, - 2pcosa-4^cosa-2i(| + |)si„a (34c) 

G2 . 2psi„a-4A|sina - 2 £(| ♦ *)„.« (34d) 

Expressing the velocities on the new surface in a Taylor series and noting that the veloci- 
ties on the old and new surface are both zero, the variations in the velocity components 
can be written as 

du~    9u~ 
u = -äx-x-ä^y (35a) 

3v~   3v~ 
v = -^x-^y (35b) 

In order to derive the boundary conditions, Eqs. (30), (31), (32a), and (32b) are com- 
bined, and terms that involve the variations in the velocity gradients and p are eliminated. 
This requires that the following relationships hold: 

kx*F2 + ky ¥3 + 2kx cos a + 2ky sin a = 0 (36a) 

- 4kxcosoc - 2*F2kx + 4ky since + 2kysina = 0 (36b) 

-2kycosa-2kxsina-vF2ky-*P3kx = 0 (36c) 

13 



This system is overdetermined and is satisfied by the choice 

4*2 = -2 cos a (37a) 

*F3 = -2 sin a (37b) 

The variation in the drag coefficient can be obtained from Eq. (34a) by using these equa- 
tions in conjunction with Eqs. (24a) and (24b). 

Without the inclusion of the full stress tensor in the cost function, it is not possible to ob- 
tain a consistent set of boundary conditions for *F2 and ¥3. Generally, suitable cost func- 
tions are composed of terms that will appropriately balance the boundary terms from the 
residuals. In particular, cost functions such as lift, drag, and pitching moment are admissi- 
ble. It is not immediately obvious that the specification of a pressure distribution is allow- 
able because of the absence of viscous terms in the cost function. However, a suitable cost 
function can be obtained by first replacing the pressure term in the stress tensor by the dif- 
ference between the current and the desired pressure coefficient Acp. This is then premul- 
tiplied by the surface normal scaled by this difference in cp and postmultiplied by the sur- 
face normal. In nondimensionalized variables, the resulting expression is given by 

h = J{kxAc
P'kyAcp} 

2     Re 3x     Revöy    W 

_A|Qu.+ 3^|   ACp_2ixav 
Re^3y    dx)     2     Re dy 

ds (38) 

After expansion, Eq. (38) can be rewritten as 

>c = J    Ac (39) 

AAcpkx(2^+ky(|4)) + k,(2ky| + ky(|4j„ds 

This equation can be recast in terms of the velocity gradient normal to the boundary as 

'1A.2   ^Acp3un w(H-: 
Re 3n 

ds (40) 

where un is the normal velocity component and n is the surface normal direction. The ve- 
locity gradient term in this equation is zero by the continuity equation, so that the cost 
function in Eq. (39) corresponds to specifying a pressure distribution. However, all the 

14 



terms in Eq. (39) are required for the derivation of the boundary conditions for the adjoint 
equations. The final boundary conditions on *F2 and ¥3 for specifying a pressure distri- 
bution are given by 

^2 = -2kx(cp-Cp) (41a) 

^3 =-2ky(
cp-S) (41b) 

The continuous adjoint formulation for Navier-Stokes equations described in this sec- 
tion poses a problem in the evaluation of the sensitivity derivatives. The evaluation of 
these derivatives requires second derivatives of the velocity components because Gj and 
G2 involve velocity gradients that are further differentiated in Eq. (34a). Recall that these 
terms arise from expressing the cost function on the new surface in a Taylor series expan- 
sion about the old surface. In the present work, because the flow solver is only second- 
order accurate, pointwise second derivatives are inconsistent in general. An accurate eval- 
uation of second derivatives would require the flow solver to be at least third-order accu- 
rate. If a mapping is employed, as is possible with structured grids, the surface remains at 
a constant coordinate line, and this problem does not occur. 

In a discrete adjoint approach, the restriction on defining a suitable cost function and the 
need for second derivatives are eliminated, as will be shown. However, the full implica- 
tion of designing for cost functions in a discrete framework for which boundary condi- 
tions are not obtainable in the continuous case is not clear at this time. 

Discretization 

Flow equations 
The discretization of the flow equations is first addressed since it has implications for 

the discretization of the adjoint equations. The discretization of the compressible inviscid 
equations is given first; a similar procedure is used to discretize the inviscid contributions 
for the incompressible Navier-Stokes equations. The equations represent a system of con- 
servation laws for a control volume that relates the rate of change of a vector of state vari- 
ables Q to the flux through the volume surface. The equations are written in integral form 
as 

J-fQdQ + ^F(Q,n)ds = 0 (42) 
a r 

where for compressible flows Q = [p, pu, pv, E] and F(Q, n) is the flux of mass, mo- 
mentum, and energy through the control volume. In these equations, n is the vector nor- 
mal to the boundary, p is the density, u and v are the Cartesian velocity components, and 
E is the total energy per unit volume. These equations are closed by the equation of state 
for a perfect gas. 

15 



In discretizing Eq. (42), the variables are stored at the vertices of a triangular mesh. The 
control volumes are defined by the median dual. The discrete form of Eq. (42) for vertex i, 
with an associated control volume Qj, is given by 

j^QdQ+      2Fyly    =    0 (43) 

where Fy is the numerical flux that approximates the normal flux through the control-vol- 
ume edge dual to the triangle edge that joins nodes i and j, ly is the length of the dual 
edge, and Nj is the set of vertex neighbors of i. The numerical fluxes are computed by 
using a Roe-type approximate Riemann solver:34 

Fy = ^[F(Qi;n) + F(Qj;n)-|Ä(Qr,Q,;n)|(Qr-Q1)] (44) 

where A is the Jacobian matrix evaluated at the Roe state, and Qr and Q, are the depen- 
dent variables on the right and left boundaries of the control volume face which are ob- 
tained by extrapolation: 

Qi = Qi + fVQ-O-j-Ti) (45a) 

Qr = Qj + fVQ-d-j-rp (45b) 

where cp = 0 for first-order discretization, cp = 1 for second-order discretization, and r{ 

and r j are the position vectors of nodes i and j, respectively. Note that the definition of 
the fluxes in Eq. (44) is different from a standard Riemann solver in that the unsplit fluxes 
are evaluated by using data at the nodes Q; and Q= instead of data at the extrapolated 
states Qr and Q]. This discretization remains second-order accurate and has the benefit 
that the only term that involves data other than at the immediate neighbors occurs through 
the dissipation. This enables a discretization of the continuous adjoint equations to be eas- 
ily obtained that is identical to the discrete adjoint approach, except for small differences 
that arise from the higher order dissipation. 

For computing the viscous contributions to the residual, a finite-volume scheme is used 
that is equivalent to a Galerkin discretization with linear basis functions. On triangular 
grids, this discretization only requires data at the immediate neighboring nodes. 

Adjoint equations 

The adjoint equations can, in principle, be discretized by any stable and consistent 
method. However, insufficient grid resolution may result in poor accuracy of the sensitiv- 
ity derivatives in that they do not agree with those obtained by finite differences. Inaccu- 
rate sensitivity derivatives may lead to failure in the optimization process.37 Sensitivity de- 
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rivatives that agree with finite-difference gradients can be obtained regardless of grid size 
by making the equations discretely adjoint to the discretized flow equations. However, 
achieving this for higher order discretizations can be an onerous task. In the present work, 
the discretization is been derived with strong guidance from a discrete adjoint formulation 
so that for first-order accuracy, a direct correspondence with a discrete adjoint approach is 
achieved. Higher order accuracy for the discretization of the inviscid terms is obtained 
through the use of extrapolation of the costate variables. 

The discretization of the adjoint equation is performed by adding a time derivative to 
Eq. (8) and using a finite-volume type of method similar to that used for the flow solver. 
In this context, Eq. (8) is integrated over control volumes, where the matrices are taken 
outside the integrand and are evaluated using nodal point values of the dependent vari- 
ables: 

The volume integrals are converted to surface integrals over each of the control volumes, 
and the values of the costate variables on the boundaries are obtained by using upwind 
type formulas: 

y    2 
'(yi + ¥j)+A(Qi;n)-TfÄ (^-.y,) 

\dQJ 
(47) 

where the extrapolated costate variables ¥r and xül are obtained by using formulas that 
are similar to Eqs. (45a) and (45b). The data used for evaluation of the matrices and the 
formulas used for obtaining the costate variables on the faces of the control volumes have 
been chosen so that a discrete adjoint formulation is obtained for first-order spatial accu- 
racy. The resulting discretization of the inviscid contributions may be written as follows: 

ij¥dfi-     XGyly-0 (48) 
olQ. jeNj 

The numerical flux, Gy, used in calculating the residual for the control volume that sur- 
rounds node i, is given by 

<^ = 2 A(Qi;n)Vi + lPj) + (||-) (¥,-¥,)" (49) 

where O = |Ä(Qr, Q,;n)|(Qr-Q,). Note that Gy *-Gy. 
On solid boundaries, the flux along the wall for closing off the surface integral around 

node i is given by 

Gjlj = kxA?V + kyB?V = Ä^F (50) 
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For enforcing the boundary conditions on the costate variables, a weak formulation is used 
in which the fluxes are modified appropriately to reflect the imposition of the boundary 
conditions. Numerically, the Jacobian matrix in Eq. (50) is evaluated without explicitly 
enforcing the boundary condition on the flow variables that no flow is allowed through the 
surface. In this way, the contributions from the fluxes in the interior in conjunction with 
the boundary flux in Eq. (50) combine so that the resulting discretization corresponds with 
that from a discrete adjoint approach. 

Note that in Eq. (49) the linearization of <i> is somewhat cumbersome but has been pre- 
viously derived (see for example Ref. 4). A simpler equation can be obtained by employ- 
ing the approximate linearization of <3> as 

^ = |A| (3D 

This equation is less complicated than the full linearization and only differs from the exact 
linearization in proportion to (Qr - Q,), but numerical experiments have indicated that on 
very coarse grids some of the sensitivity derivatives are of poor accuracy compared with 
finite-difference derivatives. Although these errors decrease as the grid resolution in- 
creases, the full linearization is used in the current work. 

Since the viscous equations used in the current study are for incompressible flow, the 
corresponding terms in the adjoint equations (Eq. (32a)) have the same form and are there- 
fore discretized in the same manner. The Dirichlet boundary conditions for \|/2 and \|/3 

are strongly enforced with the same technique used to set the velocities to zero in the flow 
solver. In the implicit solver, this is achieved by zeroing the off-diagonal elements in the 
rows of the matrix that correspond to boundary nodes, as well as the appropriate terms on 
the right-hand side. 

For viscous flows, a direct correspondence with a discrete adjoint formulation is not 
achieved near solid boundaries. This is easily seen by examining the resulting matrix 
structures from both approaches for a small mesh shown in Fig. 2, where it is assumed that 
nodes 1, 3, and 5 lie on a solid wall. 

5 1 3 

Figure 2. Sample mesh. 

18 



In the discrete adjoint approach, the augmented cost function is given by 

I(Q, D, V, X(D)) = IC(Q, D) + ¥TR(Q, D, X((D))) (52) 

where R is the vector of discrete residuals and, thus, depends explicitly on the grid-point 
locations X. Taking variations of Eq. (52) and regrouping terms yields the adjoint equa- 
tion 

3R 

The variation in the cost function is then given by 

W&Uo 

81 = X  T/8R 3RBXA 
3D   [dD   dXdDJ 

D (54) 
) 

In these equations, it is understood that the linearization of the residual includes the full 
effects of the boundary conditions. Here, dX/dD represents the sensitivity of the interior 
grid points to changes in the design variables. In the continuous adjoint formulation de- 
scribed earlier, no counterpart to this term exists. The determination of grid sensitivities is 
dependent on the methodology used to restructure the mesh. Neglecting these terms is 
equivalent to freezing the interior grid points, regardless of changes in the surface geome- 
try. Nevertheless, in a second-order-accurate scheme, the 3R/3D term in Eq. (54) ac- 
counts for changes in the residuals at the nodes immediately adjacent to the surface, as 
well as at the second nearest neighbors. 

A diagram of the matrix structure associated with the configuration of nodes in Fig. 2 is 
shown in Fig. 3 for the discrete adjoint approach. The matrix structure for the continuous 
adjoint approach is shown in Fig. 4. In these figures, the solid circles represent the non- 
zero entries in the matrices. Note that in both figures, a first-order discretization of the in- 
viscid terms is assumed so that the stencil only involves the nearest neighbors. 

Comparing Figs. 3 and 4, it is seen that the matrix structures are significantly different. 
This is due to the strong enforcement of the no-slip condition in the flow solver, which 
leads to zeros in the columns of the adjoint system. For the continuous case, explicit en- 
forcement of the boundary condition on *¥2 and *F3 leads to zeros along rows. Of partic- 
ular interest in the discrete adjoint case is that because of the zeros in the columns, the so- 
lution of the costate variables in the interior of the mesh does not depend on the values of 
*F2 and ¥3 at the boundary. Furthermore, because the residual equation for the flow 
solver at these points is replaced by a Dirichlet condition on the velocities, the residual 
does not depend on the design variables so that 9R/3D = 0. Therefore, there is no con- 
tribution to the sensitivity derivatives in Eq. (54) from these terms. The result is that in the 
discrete adjoint case the values of *F2 and *F3 on the boundary are completely arbitrary 
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and have no effect on the sensitivity derivatives. This has been verified by numerical ex- 
periments. 
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Figure 4. Matrix structure for continuous adjoint approach. 

In light of the discussion above, it is of interest to compare the values of the costate vari- 
ables that are obtained from both the continuous and the discrete adjoint formulations for 
a viscous flow. In Fig. 5, profiles of ¥3 as a function of the distance from the body are 
shown for a case in which the cost function is the drag of an airfoil and the location of the 
profile is taken to be at the midchord of the airfoil on the upper surface. In the figure, the 
values of ¥2 agree well away from the body. Near the boundary, however, the costate 
variables from the continuous and discrete formulations do not agree. As the mesh is re- 
fined, the distance from the surface of the airfoil in which these discrepancies occur de- 
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creases. Thus, one would expect that in the limit of vanishing mesh size, the two ap- 
proaches would agree. 
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Figure 5. Profiles of ^2 obtained from both discrete and continuous adjoint formulations. 

In Eq. (53), *F can be determined provided that dR/dQ is nonsingular irrespective of 
the cost function. Also, no difficulty is encountered in determining the sensitivity deriva- 
tives with Eq. (54). In particular, note that this equation does not require explicit calcula- 
tion of second derivatives. Therefore, for viscous flows, a discrete approach is used in the 
current study, except that higher order accuracy for the inviscid terms is achieved by using 
the continuous approach described in the inviscid section. The implementation of this ap- 
proach does not entail much additional effort because the inviscid terms are already dis- 
cretely adjoint for first-order accuracy, and the viscous terms only involve the nearest 
neighbors. The accuracy of the derivatives using this approach is comparable to that ob- 
tained for inviscid flows. For first-order accuracy, the resulting method is identical to the 
standard discrete adjoint approach. 

Solution procedures 
For the flow equations, an implicit solution method with multigrid acceleration is used. 

Details may be found in Refs. 1, 2, and 9. The discretized equations for the costate vari- 
ables in the absence of the time derivative represent a linear system that can be solved by 
using a technique such as preconditioned GMRES.35 Alternatively, by retaining the time 
derivative, the equations can be solved to steady state by using a time-marching proce- 
dure. In the present work, the time term is included and a multigrid procedure is used with 
preconditioned GMRES as a smoother. The preconditioning is accomplished using an in- 
complete lower/upper (LU) decomposition with no fill-in. The motivation for retaining 
the time term is that this approach often converges in situations for which the GMRES 
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procedure might otherwise "stall." Note that because the equations are linear, the matrix- 
vector products are easily formed by simply passing the vector to the residual routine in 
place of the costate variables. By forming the matrix-vector products in this way, the larg- 
est contribution to memory requirements is through the preconditioner so that the result- 
ing scheme requires roughly the same amount of memory as the flow solver. 

Grid generation and mesh movement 
The unstructured meshes used in this work are generated using the software package de- 

scribed in Ref. 28. This employs an advancing front type of method that generates good 
quality grids for both inviscid and viscous calculations. 

For shape optimization, the design is carried out in a domain that changes during the de- 
sign cycle as the shape of the boundary changes. Therefore, the existing grid is modified 
in order to conform to the changing domain. 

For inviscid flows, the strategy outlined in Ref. 42 is used to restructure the mesh in re- 
sponse to the changes in the surface shape. The tension-spring analogy is employed to 
allow the field grid points to respond to the displacements of the points on the surface. The 
following linear system of equations is solved with a Jacobi iteration strategy: 

X KyCAXj-AXj) = 0 
jeNs 

(55) 

where Ax; and Ax= are the displacements from the initial position for nodes i and j. The 
spring stiffness Kjj is assumed to be l^- , where ly is the length of the edge that joins 
nodes i and j. Note that by using Eq. (55), the mesh remains unchanged when the surface 
is held fixed. When the boundary shape changes during the design cycle, this method does 
not guarantee that the grid lines will not cross. An improvement is to make the spring sys- 
tem nonlinear (i.e., the shape change is decomposed into smaller steps, and the procedure 
is repeated at each step). Also, in order to maintain good mesh quality throughout the de- 
sign cycle, the edges are reconnected according to either a Delaunay criterion or by locally 
minimizing maximum angles (min-max). 

a) 

Figure 6. Methodology for mesh movement for viscous grids. 
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For grids with high-aspect-ratio cells, the inviscid strategy fails for a number of reasons. 
The spring analogy typically results in invalid grids with crossing of grid lines. In addi- 
tion, both the Delaunay and min-max criteria often result in nodes with large connectivi- 
ties. Therefore, the grid-movement scheme is modified to deal with Navier-Stokes grids. 
The Delaunay criterion is replaced by the min-max criterion where the swapping is only 
carried out if the maximum angle exceeds a specified angle (set to 150°). The distance to 
the wall for each node in the mesh is first computed. When the points on the surface are 
displaced, the field points move in response, as shown in Fig. 6(a). Here, AB is an edge on 
the surface of the body. Nodes A and B move to A' and B', respectively. For the field 
point X, the nearest point on edge AB is denoted by C. Given vectors AA' and BB', the 
vector CC is obtained by linear interpolation. The field point X moves to X' such that 
XX' is equal and parallel to CC. In order to contain the effect of grid movement to a spec- 
ified region, XX' is multiplied by an exponential factor that decays from unity at the sur- 
face to nearly zero at a specified cut-off distance. This technique, in combination with 
edge swapping, allows for large changes in body shapes even when highly stretched grids 
are used. However, the grids tend to lose orthogonality near the surface when large 
changes occur in the surface geometry. To improve orthogonality near the surface, the 
method described above is replaced by the one shown in Fig. 6(b) within a specified dis- 
tance to the wall. In this technique, CC is obtained as before, but C'X' remains orthogo- 
nal to A'B' and the normal distance d is maintained. It is also desirable to revert to the in- 
viscid algorithm in regions where the grid is not highly stretched. Therefore, outside 
another specified distance from the wall, the inviscid algorithm is employed. Thus, the 
final scheme is a blending of all three methods. This scheme has been found to be effec- 
tive in dealing with Navier-Stokes grids, even for large-scale changes in surface shape, 
and is reasonably insensitive to the cutoff distances provided that the region in which or- 
thogonality is maintained is restricted to the immediate vicinity of the wall. Unless the dis- 
placements of the surfaces are large, the last step can be skipped. 

The technique described above is demonstrated in Fig. 7 for a Navier-Stokes grid about 
an airfoil. The grid contains 26949 nodes, and the spacing at the wall is 2 x 10" relative 
to the chord. In this figure, the nose of the geometry is distorted by moving one of the 
Bezier control points in this region. Although the geometry is significantly altered, a valid 
mesh results, which maintains good quality as well as orthogonality near the surface. It 
should be pointed out that for multielement configurations, the procedure described may 
fail for large relative displacements of the elements because the cutoff regions that may be 
initially distinct could "collide." Further work is necessary in this area. 
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A) Initial mesh. B) Distorted mesh.       C) Close-up in nose region. 

Figure 7. Example of mesh movement for viscous mesh. 

Optimizer 
The optimizer used in the current study is KSOPT,40 which uses a quasi-Newton method 

to determine the search directions and a polynomial line search technique to determine the 
step length in the descent direction. This code has been chosen because it is capable of 
multipoint design and can handle both equality and inequality constraints. In addition, 
upper and lower bounds can be placed on design variables; this is the method that is cur- 
rently used to enforce the geometric constraints necessary to maintain a viable geometry 
throughout the design cycle. 

Results 

Accuracy of derivatives 

To assess the accuracy of derivatives, an isolated transonic airfoil and a subsonic mul- 
tielement airfoil (where interaction between the elements occurs through the flow field) 
are studied. For the first test, a single 12th-order Bezier curve is used to approximate an 
NACA 0012 airfoil, with only 13 control points. In the experiment that follows, a grid 
with 4770 nodes is generated, with 128 grid points on the surface of the airfoil. The cost 
function is the lift coefficient, and derivatives with respect to the Bezier control points are 
obtained using the continuous adjoint method and are compared with those from finite dif- 
ferences. The Mach number for this case is 0.75, and the angle of attack is 1.25°. The re- 
sulting pressure distribution is shown in Fig. 8 and exhibits a shock on the upper surface 
of the airfoil. 
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Figure 8. Pressure distribution for NACA 0012 with M„ = 0.75 and a = 1.25°. 

The sensitivity derivatives of the lift with respect to the y position of the individual con- 
trol points are shown in Figs. 9 and 10 using the continuous adjoint approach. In these fig- 
ures, the derivatives are obtained by using the second-order formulation for both the flow 
solver and the adjoint equations. The corresponding derivatives for first-order accuracy 
are not shown because the first-order scheme has been verified to be discretely adjoint to 
the flow solver in this case. In Fig. 9, the derivatives at the first and last control points 
(numbers 1 and 13) correspond to those at the trailing edge. Although the derivatives of 
the control points at the trailing edge are available from the adjoint approach, the corre- 
sponding finite-difference derivatives are not obtained because the geometry would "sep- 
arate" at the trailing edge. Instead, the grid point at the trailing edge is perturbed, and the 
resulting derivative is compared with the sum of the derivatives at this location from the 
adjoint approach. A close-up view of the derivatives away from the trailing edge is shown 
in Fig. 10. The figures indicate that the derivatives are fairly accurate; the largest discrep- 
ancy between the adjoint and the finite-difference derivatives is less than 5 percent. Note 
that in this study specification of the costate variables as a boundary condition across dis- 
continuities in the field, as suggested in Refs. 17 and 18, is not done with no apparent deg- 
radation in accuracy. 
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Figure 9. Comparison of derivatives obtained using adjoint approach with finite 
differences for NACA 0012 with ML = 0.75 and a = 1.25°. 
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Figure 10. Close-up view of Fig. 9 

As mentioned previously, unless the adjoint equations are discretized appropriately, the 
resulting derivatives may exhibit inaccuracies when compared with finite-difference gra- 
dients on coarse grids. To study this aspect more closely, a two-element airfoil is consid- 
ered for which the surface of each element is represented with a third-order B-spline with 
31 control points. The cost function is the lift coefficient, and the derivatives with respect 
to the design variables on the aft element are computed with both methods on a set of four 
sequentially finer grids. These grids, denoted as grids 4, 3,2, and 1, consist of 1103, 3030, 
9591, and 18,392 nodes, respectively; of these nodes, 88, 176, 352, and 704 lie on the air- 
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foil surfaces. Obtaining the sensitivity derivatives with central finite-difference formulas 
requires 58 flow-field computations for each grid. For the adjoint approach, all derivatives 
are obtained in one solution of the adjoint equations, which requires roughly the same 
amount of work as one solution of the flow field. 
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Figure 11. Accuracy of derivatives on aft element of a two-element airfoil; third-order B- 
spline with 31 control points 

In Fig. 11, finite-difference derivatives are compared with those obtained using the for- 
mulas for the continuous adjoint approach. In this figure, the derivatives in the immediate 
vicinity of the trailing edge are not shown so that the derivatives over the bulk of the air- 
foil can be examined more closely. The importance of the derivatives near the trailing 
edge is discussed later in this section. In addition, derivatives are also shown from a "hy- 
brid" approach in which the costate variables are obtained from the continuous adjoint ap- 
proach and are subsequently used in a discrete adjoint framework to compute the sensitiv- 
ity derivatives by using Eq. (54). In this approach, no approximations are used in Eq. (54), 
so that the only difference between the hybrid approach and a purely discrete adjoint ap- 
proach stems from small differences in obtaining the costate variables for the second- 
order discretization. Recall that in the continuous adjoint case, no sensitivities that result 
from mesh movement appear in the equations. Therefore, for the hybrid approach, the 
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mesh sensitivities have been neglected in order to examine the effects. As discussed ear- 
lier, when the surface of the airfoil is perturbed, the residuals are affected at the nodes on 
the body as well as at their first and second nearest neighboring nodes (the second nearest 
nodes are affected through the gradient computation). Therefore, the residuals at these 
nodes contribute to the sensitivity-derivative calculation in Eq. (54). However, inclusion 
of these contributions does not account for any change in the interior residuals caused by 
the possible movement of interior mesh points. The situation is thus equivalent to the case 
for which the surface of the airfoil is modified but the interior of the mesh is held fixed. 

As seen in the figure, the finite-difference derivatives are nonsmooth on the coarser 
grids and have several derivatives of negative sign. The derivatives obtained with the hy- 
brid approach follow an almost identical pattern. The derivatives obtained from the con- 
tinuous adjoint approach are smoother on all of the grids and remain positive over the en- 
tire interval shown. Although discrepancies result over parts of the airfoil, the derivatives 
calculated with all three methods agree as the grids are refined. A case could be made that 
the continuous adjoint derivatives are "better" because the signs of derivatives are always 
in "correct" agreement with those from the finest grid. However, when designing on the 
coarser grids, this could cause the optimizer to fail because the derivatives do not accu- 
rately represent the discrete derivatives.37 Conversely, the hybrid approach may be consid- 
ered to be "better" in that the derivatives agree more closely with those obtained from fi- 
nite differences on all the meshes. Although this may lead to successful numerical 
optimization on all grids, the resulting geometry may be quite different from that obtained 
with a finer grid. In either case, a suitably refined grid must be employed in which case 
neither the continuous nor the discrete approach offers a significant advantage over the 
other. 

In Fig. 11, the discrepancies in the derivatives on the coarse grids stem from three 
sources. These include the fact that the second-order scheme is not exactly discretely ad- 
joint to the flow equations on all grids. Also, small errors in the finite-difference calcula- 
tions may be present as a result of the choice of step size which was not optimized for ac- 
curacy for each of the 29 design variables although a reasonable effort was made to 
determine acceptable values. In addition, the derivatives obtained from finite differences 
include the effect of grid sensitivities because the interior mesh points are relaxed each 
time a design variable is perturbed using the techniques described earlier. As mentioned 
previously, neither the continuous adjoint nor the hybrid approach has included these ef- 
fects because the continuous formulation assumes no dependence on a grid and the hybrid 
formulation has neglected these contributions for this test. The figure shows clearly that as 
the grids are refined the derivatives over the bulk of the airfoil approach the same value 
regardless of the methodology used to obtain them. 

Although it is tempting to conclude from the above example that grid sensitivities do not 
play a major role as the grid is refined, this conclusion is not always valid. To demon- 
strate, a simple example is given in which the geometry and flow conditions are held fixed 
while the grid is allowed to change. More specifically, the relationship between the airfoil 
surface and the grid is changed. The role of the grid sensitivities is studied by considering 
the derivative of the lift of a single airfoil due to a vertical translation. 

For this case, an NACA 0012 airfoil at a free-stream Mach number of 0.5 and an angle 
of attack of 2° is considered. A sequence of structured C-type grids is utilized in which 
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each grid represents a uniform refinement in each direction over the previous level. Two 
structured-grid codes39-41 are used, in addition to the unstructured-grid flow solver. For the 
unstructured flow solver, the cells in the structured mesh are simply divided into triangles. 
The derivative of the lift with respect to translation of the airfoil surface in the y direction 
is computed with central differences. The airfoil surface is perturbed a small amount, and 
three different techniques are considered for modifying the interior mesh: 
1. The airfoil surface and the entire mesh are shifted. 

2. The airfoil surface is perturbed, and the rest of the mesh remains fixed. 

3. The airfoil surface, as well as the mesh line that extends from the trailing edge of the 

airfoil to the downstream outer boundary are perturbed, and the rest of the grid 

remains fixed. 

For the case in which the airfoil and the mesh are simultaneously perturbed, the lift does 
not change and the derivative is zero, independent of the mesh size. This case corresponds 
to simply a shifting of the origin of the coordinate system; therefore, no calculations are 
required. The importance of the second method for computing the finite-difference deriv- 
ative is that this situation corresponds to the case in which grid sensitivities are ignored in 
a discrete formulation. This correspondence has been verified using the derivatives ob- 
tained from the first-order adjoint code, where the derivatives are obtained by using the 
hybrid methodology and the grid sensitivities are neglected. The third method is chosen 
simply for demonstration purposes. Note that in the numerical experiments that follow, all 
results are converged to machine zero and the step size for computing the finite-difference 
derivatives has been varied over a large range of values with no significant changes in the 
results. In all cases, the step size that is used is much smaller than the distance from the 
surface of the airfoil to the first grid line, so no crossing of grid lines occurs. 

In an ideal situation, the lift of a single airfoil in an unbounded flow would be insensi- 
tive to a vertical change in the coordinates so that the derivative would be zero. Numeri- 
cally, however, changes may occur because of the changing location of the airfoil relative 
to the outer boundary and because of possible changes in the grid. In the case where the 
entire grid is shifted, the derivative of lift due to a shift in the y location of the surface is 
zero. By shifting all grid lines except the one at the outer boundary, the derivatives have 
been found to remain very small (O(10_ )) which indicates that the derivative of lift due 
to the location of the outer boundary is small. In this case, the changes are not only attrib- 
utable to the changing location of the outer boundary but also to some small grid effects at 
the outer boundary. 

In Fig. 12, the sensitivity derivatives of the lift with respect to translation of the airfoil in 
the y direction are shown for methods 2 and 3 described above. As seen in the figure, the 
derivatives due to the translation of the airfoil surface depend greatly on the methodology 
used to modify the grid. More importantly, these derivatives do not tend to zero as the 
mesh is refined but actually increase in magnitude! 
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Figure 12. Finite-difference derivatives of lift with respect to vertical shift in airfoil 
position obtained with fixed computational grid. 

Computing the derivative of lift with respect to a vertical translation corresponds to a 
simple summation of the derivatives of lift with respect to the y position of each of the de- 
sign variables. For example, 3c,/9Y for the aft element of the airfoil shown in Fig. 11 
can be computed by a summation of the individual derivatives. Although the individual 
derivatives shown in Fig. 11 converge as the mesh is refined, the derivatives at the trailing 
edge do not. In Fig. 13, the individual sensitivity derivatives that are obtained with the hy- 
brid approach are now plotted at a scale so that the derivatives at the trailing edge can be 
seen. Whereas the derivatives away from the trailing edge converge as the grid is refined 
(see Fig. 11), those at the trailing edge of the airfoil do not exhibit the same level of con- 
vergence and, in fact, continually change as the grid is refined. This behavior appears to 
be caused by the singularity at the trailing edge and is the source of the sensitivity of the 
derivative to the manner in which the grid is treated. 
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Figure 13. Sensitivity derivatives. 

In Fig. 14, finite-difference derivatives similar to those shown in Fig. 12 are shown for a 
symmetric Joukowski airfoil at the same Mach number and angle of attack as before. For 
this airfoil, the slope of the upper and lower surfaces in the analytical definition are identi- 
cal at the trailing edge, and the effect of the singularity should be reduced. These deriva- 
tives have been obtained by shifting only the surface of the grid, as in method 2. As is 
clearly seen in the figure, the derivatives are much smaller in magnitude than those for the 
NACA 0012 and do not increase in magnitude as the grid is refined. 

From the foregoing discussion, it is apparent that the grid sensitivities near the trailing 
edge of the airfoil can play a major role in the computation of the derivatives necessary to 
position airfoils relative to one another. It should be emphasized that during an actual de- 
sign the grid is generally "relaxed," so that the original relationships between the grid 
points are more or less intact, and that the effect of the grid would be much less pro- 
nounced than that shown above. The important point is that without inclusion of the grid 
sensitivities, the derivatives obtained would correspond to the case above in which the in- 
terior grid is held fixed. Because the derivatives clearly depend on the manner in which 
the mesh and the geometry interact, this factor must be accounted for in the computations 
when derivatives are needed in the immediate vicinity of the trailing edge. Furthermore, 
the errors caused by failure to properly account for these terms do not vanish as the mesh 
is refined. However, from the results in Fig. 11, it appears that grid sensitivities can be 
safely neglected in regions away from the trailing edge, provided that the grid is suffi- 
ciently refined. 
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Inviscid Design Examples 

An example of shape optimization is shown below in which drag minimization has been 
performed for a single airfoil. The initial geometry is an NACA 0012 airfoil, described by 
a third-order B-spline with 50 control points. The grid consists of 4763 nodes with 128 
nodes on the airfoil surface. The Mach number for this test is 0.75, and the initial angle of 
attack is 2°. For this case, the computed lift coefficient is 0.4229, with a corresponding 
drag coefficient of 0.0123. For this design, the cost associated with maintaining the cur- 
rent lift coefficient is combined with that for minimizing the drag: 

IC(Q,D) = l^-c^+lOxicCd-c/)2 
(56) 

where Cj* is the desired lift coefficient and cd* is zero. The factor of 10 associated with 
the cost function for drag is chosen so that the contribution from each cost function is of 
the same order of magnitude. The design variables are the y-coordinates of the control 
points that describe the airfoil, except those at the trailing edge, which remain fixed. The 
angle of attack is an additional design variable and is allowed to vary in order to maintain 
the lift. The total number of design variables for this case is 49. For this case, the continu- 
ous adjoint approach is used instead of the hybrid approach. 

After 10 design iterations, the lift coefficient is 0.4225, which is in close agreement 
with the specified lift coefficient of 0.4229. The drag has been reduced from 0.0123 to 
0.0016, and the final angle of attack is 1.747°. The objective function and the root mean 
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square (rms) of the sensitivity derivatives have each been reduced between 1 and 2 orders 
of magnitude. Note that these gradients are not the projected gradients and that several 
side constraints are active. The initial and final pressure distributions are shown in Fig. 15; 
the corresponding geometries are shown in Fig. 16. 
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Figure 15. Initial and final pressure distribution for NACA 0012 design case. 
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Figure 16. Initial and final airfoil for NACA 0012 design case. 
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The next case is that of a two-element airfoil configuration that consists of two airfoils 
in which the top airfoil is displaced from the other in the positive y direction by 0.5 chord 
and in the negative x direction by 0.5 chord. The free-stream Mach number is 0.60, and 
the angle of attack is o°. A sequence of three grids for use with multigrid acceleration has 
been generated for this case. The finest grid consists of 7974 points and is shown in Fig. 
17. 

Figure 17. Initial configuration for two-element test case. 

For this case, the objective is to modify the shape of the aft airfoil in order to achieve a 
desired pressure distribution on the front airfoil. The desired pressure distribution has 
been obtained from analysis of the initial configuration, with the shape of the aft airfoil 
modified. Although this test case is somewhat fabricated, it demonstrates flexibility that 
may be difficult to achieve with inverse methods in which the interaction between ele- 
ments is not taken into account. 

Pressure contours for the initial flow field are shown in Fig. 18(a); the corresponding 
contours of *F2 are shown in Fig. 18(b). The pressure contours indicate the presence of a 
shock between the two airfoils, with a Mach number ahead of the shock on the lower air- 
foil of approximately 1.25. The costate variables shown in the accompanying figure, on 
the other hand, exhibit a shocklike structure in a location that corresponds to the sonic line 
in the flow field. However, in designing for other objective functions, the contours of the 
costate variables change and do not necessarily show such a clear correspondence with the 
flow field. For example, if the cost function is zero at the design point in an unconstrained 
optimization, the costate variables are all zero independent of the flow field, due to the ho- 
mogeneity of the boundary conditions. 
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The initial and final pressure distributions on the surface of the airfoils are shown in Fig. 
19; the pressure contours after three design cycles are shown in Fig. 20. As seen from Fig. 
19, the pressure distribution obtained after three design iterations agrees closely with that 
desired. The cost function has been reduced over 3 orders of magnitude, and the rms of the 
sensitivity derivatives has also been reduced over 3 orders of magnitude after the second 
design cycle. The final pressure distribution on the aft element does not exhibit the strong 
shock that is initially present. 

Figure 18.Contours of pressure coefficient and *F2 for two-element configuration. 
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Figure 20. Final airfoils and pressure coefficient for two-element airfoil. 

Viscous Design Examples 

For the first viscous case, the objective is to maximize the lift of an isolated airfoil by 
modifying the shape, with the angle of attack held constant. An initial computation has 
been performed for an airfoil at a Reynolds number of 5000 and an angle of attack of 2°. 
The mesh used for this computation has 6951 nodes of which 128 lie on the surface of the 
airfoil. The airfoil geometry is described by using a 12th-order Bezier representation sim- 
ilar to that described earlier, except that several of the control points have been modified 
so that the airfoil is no longer symmetric (see Fig. 21). For this case, nine design variables 
have been used. These correspond to the y-coordinates of the control points away from the 
immediate vicinity of the trailing edge. The initial lift coefficient is 0.0950, and the initial 
drag coefficient is 0.0545. After three design cycles, the lift has been increased to 0.2571 
and 5 of the nine design variables have hit their imposed side constraints. Although no 
constraint or objective was placed on the drag, the drag coefficient has dropped to 0.0509. 
Note that for this case both the initial and final configurations have a small separated re- 
gion that extends over the last 25 percent of the airfoil. Despite the presence of separation, 
a steady flow field is obtained. In the event of unsteady separation, the adjoint approach as 
described would not be applicable because the steady-state residual is assumed to be zero 
and is used as a constraint for the optimization. 
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Figure 21. Viscous design for maximizing lift. 

For the final case shown in Fig. 22, the objective is to match a desired pressure distribu- 
tion that has been obtained from a previous analysis of an NACA 0012 airfoil. The initial 
airfoil geometry has been obtained by simply displacing several of the B-spline control 
points that define the original airfoil. The Reynolds number is 5000, based on the chord of 
the airfoil, and the angle of attack is held fixed at 2°. The mesh used for this is similar to 
that used in the previous test case and has approximately 7000 nodes. For the current test, 
the cost function has been reduced by 4.5 orders of magnitude after three design cycles, 
and the gradients have been reduced by 1.5 orders of magnitude after the second design 
cycle. As seen in Fig. 22, the target pressure distribution is obtained, and the final airfoil 
shape is that of an NACA 0012 airfoil. 
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Figure 22. Initial and final pressure distribution for viscous flow. 

Discussion and Conclusions 
The purpose of the present investigation has been to develop and analyze the continuous 

adjoint approach for obtaining sensitivity derivatives on unstructured grids for the Euler 
and Navier-Stokes equations. During the course of the study, several drawbacks have been 
uncovered. The most significant is the need for accurate second derivatives of the veloci- 
ties required for computing the shape sensitivity derivatives for viscous flows. In general, 
consistent second derivatives cannot be obtained with spatially second-order accurate 
schemes. This problem can be circumvented by mapping the domain to a fixed computa- 
tional coordinate system as is usually employed for structured grids. This approach, how- 
ever, is restrictive in its generality and is at odds with the flexibility offered by unstruc- 
tured grids. The absence of a mapping is a fundamental difference between structured and 
unstructured grids. The requirement for second derivatives can also be overcome by con- 
sidering a higher order discretization of the flow field, so that consistent second deriva- 
tives can be obtained. However, this represents a significant level of effort because the en- 
tire flow field must be computed to higher order accuracy. It appears that the most 
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expedient and cost-effective means for alleviating this problem is to essentially abandon 
the purely continuous adjoint approach in favor of a more discrete approach, as described 
in the present paper. This approach has the added benefit that the contributions to the sen- 
sitivity derivatives due to the grid may be included. These terms do not naturally appear in 
the continuous framework unless a mapping to a fixed computational domain is first em- 
ployed. However, it is shown in this paper that these, terms are critical in obtaining accu- 
rate derivatives for geometries with singularities. 

Another possible drawback of the continuous approach is that a restriction is placed on 
the allowable cost functions that can be used. This restriction stems from the need for a 
suitable balance between terms in the cost function and corresponding terms from the re- 
sidual that are used to eliminate variations in pressure or velocity gradients. For inviscid 
flows, the allowable cost functions are those that involve only the pressure. For viscous 
flows, an additional requirement is that terms from the entire stress tensor, including both 
the pressure and viscous terms, must be included. Although this limitation does not appear 
to occur in a discrete adjoint approach, the full implications remain unclear. 

The continuous adjoint approach requires more "up front" derivations than the discrete 
approach before a computer implementation can be pursued. Also, each new cost function 
requires a certain level of effort to not only arrive at the appropriate boundary conditions 
but to determine whether boundary conditions can even be obtained. On the other hand, 
the continuous approach may provide insight into which cost functions are controllable. 
For example, in the case of inviscid compressible flow, pressure is the only surviving term 
in the boundary flux upon application of the flow tangency condition. Therefore, it stands 
to reason that only cost functions that involve pressure can be controlled. In the discrete 
adjoint approach, new cost functions are more easily added because they enter the prob- 
lem only through the right-hand side of a linear system of equations. After a subroutine 
has been written to evaluate a cost function, it is usually a simple matter to obtain all the 
necessary derivatives by differentiating the code directly using the chain rule. Further- 
more, this procedure does not require detailed knowledge of the equations and can be ac- 
complished by using a computational tool such as ADIFOR.8 

A technique is presented in this paper that is derived from a continuous adjoint approach 
but appeals to the discrete approach where expedient. A discretization of the adjoint equa- 
tions for viscous and inviscid flow is presented that corresponds exactly to a discrete ad- 
joint formulation for first-order spatial accuracy. The discretization differs from the dis- 
crete adjoint approach for higher order schemes only in the artificial dissipation terms. 
This approach is simple to implement and yields derivatives that are reasonably accurate 
in comparison with finite-difference calculations, even on coarse grids. Alternatively, the 
same scheme could be obtained from a discrete adjoint point of view by appealing to the 
continuous approach for making suitable approximations. The adjoint approach is coupled 
with an optimization algorithm and is augmented with a mesh movement strategy for re- 
structuring the mesh in response to surface displacements. The mesh movement technique 
is applicable for meshes used in inviscid computations as well as for meshes with high as- 
pect ratio triangles typically used in viscous computations. The resulting approach has 
been used in several design examples. 
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