
PB96-150404
Nils,
Information is our business.

IMPLEMENTING THE PUSH-RELABEL METHOD FOR
THE MAXIMUM FLOW PROBLEM ON A CONNECTION
MACHINE

STANFORD UNIV., CA

19970409 019

FEB 92

Tiff *.

"fiPfr
%%

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

attribution TfaWm.^

February 1992 Report No. STAN-CS-92-1410

PB96-150404

Implementing the Push-Relabel Method
for the Maximum Flow Problem on a Connection Machine

by

Farid Alizadeh and Andrew Goldberg

Department of Computer Science

Stanford University

Stanford, California 94305

REPRODUCED BY: NTKl
U S Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Puttie reporting burden for this collection of information ts «timatcd to average I hour oer response, including the time for reviewing instructions, searchlra eirstinädätäsaurcär
gathering end maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or anv other asoactof thh
collection of information, including suooeitmns for reducing this burden, to Washington Headquarters Services. Director«» For information Operations and Aeoom. tJlSjvrtmn
Davi»Mia»~~_«--'"-—", ,•,,,,! mi ||| 4302. and to the Office of Management and Budget. Paperwork Reduction Protect (07044188). Watnlnata« DOO«I

PB96-150404_
a). ...we MBJU SUBTITLE

f Management and Budget. Paoerwonc Reduction Protect (07044188). Washington. DC 20503.

2. REPORT DATE
February 1992

3. REPORT TYPE AND DATES COVERED

Implementing the Push-Relabel Method for the Maximum
Flow Problem on a Connection Machine

6. AUTHOR(S)

Farid Alizadeh and Andrew Goldberg

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer Science Department
Stanford University
Stanford, CA 94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

STAN-CS-92-1410

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ONR
Arlington, VA 22217

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper describes an implementation of the Push-Relabel method for the
Maximum Flow problem on a Connection Machine and gives computation times
of the implementation on several classes of problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
17

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Implementing the Push-Relabel Method
for the Maximum Flow Problem

on a Connection Machine

Farid Alizadeh*
Andrew V. Goldberg*

February 1992

'Computer Science Department, University of Minnesota, Minneapolis, MN, 55455; e-mail: alizade-
h@cs.umn.edu. This work was supported in part by the Air Force Office of Scientific Research grant AFOSR-
87-0127, the National Science Foundation grant DCR-8420935 and the Minnesota Supercomputer Institute.

tComputer Science Department, Stanford University, Stanford, CA, 94305, e-mail:goldberg@cs.stanford.edu.
This work was supported in part by ONR Young Investigator Award NOO014-91-J-1855, NSF Presidential Young
Investigator Grant CCR-8858097 with matching funds from AT&T and DEC, Stanford Office of Technology Li-
censing, and a grant form Mitsubishi Corp.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
0 ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

1 Introduction.

In this paper we study the recent push-relabel [7, 111 class of algorithms for the maximum flow
problem in capacitated directed networks. Several researchers [1, 3, 5, 12] concluded that their
sequential implementations of push-relabel algorithms are superior to previously used codes. We
focus on the behavior of the push-relabel method in massively parallel environments.

The push-relabel method is the first theoretically efficient algorithm for the maximum flow
problem that is potentially practical; the previous algorithm of Shiloach and Vishkin [18], based
on Dinitz' blocking flow method [6], requires the amount of memory quadratic in the number of
nodes in the input network.

The push-relabel method uses two operations, push and relabel, to manipulate current flow and
distance labeling functions. In the parallel implementation the algorithm pushes simultaneously
from all nodes to which the push operation applies; we refer to this method of pushing as parallel
push. Similarly, parallel relabel applies relabeling operation to all eligible nodes simultaneously.

The push-relabel algorithm works regardless of the order in which the push and relabel oper-
ations are applied. It also works with any correct labeling procedure. This robust nature of the
algorithm allows us to experiment with various strategies for ordering push and relabel operations,
and with a variety of relabeling procedures. All of the push and relabel operations are suitable
for parallelization. The goal is to determine the ordering and relabel procedures most suitable for
a practical parallel implementation.

This paper is a report on experiments with various strategies for the parallel push-relabel
algorithm. The experiments were conducted on a Connection Machine [13] model CM-2, with
32K processors (KSS1024).1 Each processor can directly access 256K bits of local memory, so the
entire system has 1 gigabytes of memory. The starting point for our work was the Connection
Machine implementation of the algorithm described in [8]. Our current implementation, however,
improves the original one in several areas, including better ordering and pipelining of operations
of messages. Also, the original implementation was on CM-1 using the *LISP interpreter where
as the current implementation is on CM-2 using the C* compiler. Our experimental results are
very good on a wide class of problems; we can solve large (millions of arcs) problems in a matter
of minutes.

This paper contains five sections including the introduction. In Section 2 we outline the push-
relabel algorithm and discuss parallel implementation of push and various relabel operations
including Derigs and Meier's gap-relabeling and parallel breadth-first search. In Section 3 we
describe the mapping of networks to the Connection Machine processors. This mapping is designed
to take advantage of the parallel prefix and suffix operations provided in the Connection Machine.
In Section 4 we describe in more detail parallel push and relabel operations in the context of this
mapping. In Section 5 we report on the running time of the program on various sample inputs
and present our conclusions.

We used 16K processors in our experiments because fall 32K processors were often unavailable.

2 The Parallel Push-Relabel Algorithm.

In this section we review some of the basic concepts of the push-relabel method and its parallel
implementation. We assume that the reader is familiar with [11]. (See also [10].) Because of
high-grain parallelism of the CM-2 architecture, the goal of our implementation is to get a tight
inner loop of the algorithm rather then to achieve high processor utilization by careful processor
scheduling (see [9, 18]).

A flow network is a directed graph G = (V, E, s, t, u), where V and E are node set and arc set,
respectively, s and t are the source and the sink, respectively, and u is a non-negative capacity
function on the arcs. We define n = |F| and m = \E\, and assume that for each arc (v,w), the
arc (w,v) is also present. A flow is a function on the arcs that satisfies capacity constraints on all
arcs and conservation constraints on all nodes except the source and the sink. The conservation
constraint at a node v indicates that the excess e/(u), defined as the difference between the
incoming and the outgoing flows, is equal to zero. A preflow [14] satisfies the capacity constraints
and the relaxed version of conservation constraints that requires the excesses to be nonnegative.

An arc is residual if the flow on it can be increased without violating the capacity constraints,
and saturated otherwise. The residual capacity uj(v,w) of an arc (v,w) is the amount by which
the arc flow can be increased. The residual graph is induced by the residual arcs. A residual arc
(v,w) is admissible if d(v) > d(w).

The distance labeling d : V —* N satisfies the following conditions: d(s) =; n, d(t) = 0, and for
every residual arc (v,w), d(v) < d(w) + 1. It is easy to see that if d(v) < n, then d(v) is a lower
bound on the actual distance from v to t in the residual graph, and if d(v) > n, then d(v) - n is
a lower bound on the actual distance of v to s.

A push-relabel algorithm maintains a preflow and a distance labeling. We say that a node v
is active if v # {s,t} and ef(v) > 0. The preflow is modified using push operation, which pushes
excess flow from an active node to an adjacent one that has a smaller distance label. When an
active node cannot push its excess because its label is at most that of its neighbors, then the
distance labeling is modified using a relabel operation, which increases the distance label of the
node to the largest value allowed by the labeling constraints.

Our parallel implementation works as follows. The preflow / is initialized to f(s,w) = u(s,w)
for all nodes u adjacent to 5, and f(v,w) — 0 for all t; ^ s. The initial distance labeling is
computed using breadth-first search (BFS) on the residual graph induced by the initial preflow.
The preflow and distance labeling are updated using the push and relabel operations, respectively,
until no active nodes remain.

The parallel push operation works as follows. For every active node, the parallel push operation
distributes their excess among admissible outgoing arcs as described in Figure 1. In the figure,

OPERATION ParaM-PusJi

For all active nodes v in parallel do
push flow from v until ej(v) = 0 or Vu> such that d{vi) < d(v), uj(v,w) — 0.

Figure 1: The parallel push operation.

OPERATION Relabel

For all nodes v g {s, t} in parallel do
d'(v) <— mhi{d(w) -r 1 : Uf(v,w) > 0};
Ifd(v)*d'{v)then

broadcast d{v) to all neighbors oft);
end;

Figure 2: The parallel relabel operation.

OPERATION gap-relabel

(1) Find the smallest g where 0 < g < n and no node has label g.
(2) For all nodes v in parallel do:

if g < d(v) < n set d(v) <— n.
(3) For all v which have a new label broadcast the new labels to all neighbors of v.

Figure 3: The gap-relabel operation.

"push flow from v to w" means increasing the flow from v to w by the minimum of e/(v) and
Uf(w) and updating the excesses of v and w.

We use several kinds of parallel relabel operations in our implementation. The simple parallel
relabel, described in Figure 2, sets a distance label of every node except s and t to one plus the
minimum distance label of its residual neighbors.

Another relabeling procedure is the gap-label of Derigs and Meier [5] based on the following
observation. Suppose at certain stage of the algorithm some nodes are labeled 0, some labeled 1,
and so on, through g — 1 < n, but no node is labeled g, although some other nodes are labeled
by integers between g and n. Derigs and Meier observe that the sink is not reachable from any of
the nodes whose labels d are strictly between g and n. Therefore, the labels of such nodes may
just be increased to n. This procedure may easily be implemented in parallel; see Figure 3.

Note that the most accurate labeling is obtained by applying BFS backwards from the sink and
forward from the source. This can be implemented by applying parallel relabeling operations until
distance labels stop changing. Doing this during every pulse is too expensive. The implementation
of [8] performs a breadth-first search once after a sequence of pulses so that the breadth-first search
time can be amortized over the pulse time. We experimented with this approach as well as with
using the gap-relabel operation instead.

No theoretical result suggests that gap-relabel and BFS operations improve the worst-case
time bounds on the algorithm. In practice, both periodic BFS and gap-relabel operations reduce
the number of pulses drastically. The gap-relabel operation, however, is much less expensive
(usually faster than simple parallel relabel in our implementation) and as a result gives better
running times most of the time despite of the fact that the labeling after such an operation is not
exact.

Our parallel implementation can be viewed as running the parallel push, relabel, and gap-
relabel processes "simultaneously". However, due to the SIMD nature of the machine, we have to
time-multiplex the operations. We can adjust relative speed of the operations by running several

push operations followed by several relabel operations followed by a gap-relabel operation. (Note
that it does not make sense to run two gap-relabel operations without running a simple relabel
operation in between.) We also can pipeline some of the operations as described in the next
section.

A pulse is a sequence of pushes and relabelings (possibly pipelined) that is repeated over and
over. A general rule is that the closer the labels are to their actual distance to the sink, the fewer
pushes will be performed. Therefore, the more accurate labeling may reduce the total number of
pulses. However, maintaining a very accurate labeling is too expensive. Our strategy is to update
labels as accurately as possible without increasing the time spent in each pulse by too much.

In Section 5, we describe our implementation in more detail.

3 CM Architecture and Tools.

In this section we review some aspects of the CM architecture relevant to our program. Then,
we describe a set of useful operations available on the Connection Machine for accumulating in
parallel partial sums, partial nnnimums, etc.

3.1 Connection Machine Architecture.

The following is a brief outline of the CM architecture. For more details see the book by Hillis
[13] and documents from the Thinking Machine Corporation, for instance [4].

The Connection Machine is a distributed memory parallel computer [16]. It consists of thou-
sands of processors connected by a routing network. Each processor has local memory. The local
memory of a processor can be accessed by other processors via the routing network. The CM is
a single instruction, multiple data (SIMD) machine: the program is stored in a host computer
which executes a sequential program containing parallel instructions. When a parallel instruction
appears in the program, the host broadcasts it to all processors. Each processor, depending on its
memory contents, either executes the instructions or remains idle. The operation of the machine
is totally synchronous: the next instruction does not start until all processors have completed the
execution of the current instruction.

Each processor can access its own memory, or it can access the memory of other processors.
However, accessing the local memory is much faster than accessing other processors' memory. In
general, the time required by a processor to access memory of a processor that is "close" (in the
routing network) is less than the time required to access the memory of a processor that is far.
If during the execution of an instruction several processors access memories of other processors,
the longest memory access time determines the execution time of the instruction. A routing cycle
is the amount of time it takes to execute such an instruction. It is important to realize that the
routing cycle time varies depending on the interprocessor communication pattern and the size of
data being accessed.

The Connection Machine software also provides the notion of virtual processors. The user
may request any number of processors he or she wishes. If this number is larger than the number
of physical processors, each physical processor simulates t; virtual processors, where v is the VP
ratio, that is „ = [*pf jg&g£,°o" J-

3.2 Parallel Prefix and Suffix Operations.

Parallel prefix operations have been recognized as fundamental parallel operations, and their
implementation and use in parallel algorithms has been widely studied; see e.g. [15, 17]. Given
an associative binary operation "*" and a sequence of s numbers a1: a2, • • •, a„, the parallel prefix
"*" operation maps this sequence into the sequence ai,ai * 02, ■ • • ,ai * a2 * ■■ ■ * a,. Similarly
the parallel suffix operation maps this sequence into a\ « a2 * ■ • • * a,, ■ ■ ■, a,-i * a,, as. In our
implementation of the parallel push-relabel method, we use prefix and suffix operations with "*"
replaced by addition, min, and copy.

An extended form of parallel prefix and suffix operations are segmented parallel prefix opera-
tion. In the segmented form a list of sequences Si, S2, ■ ■ ■, 5/ is mapped into S{, S'2, ■ ■ •, 5/, where
each sequence S- is obtained from the corresponding sequence 5, using the parallel prefix or suffix
"*" operation. The lengths of sequences Si may be different.

A sequence of numbers is stored in the Connection Machine by placing the entries of the
sequence in contiguous processors. For simple operations such as addition, copying, and minimum,
the time required to perform parallel prefix and suffix operations is of the same order of magnitude
as the time required for one routing cycle on the data of the same size. Although the routing cycle
time and the time to perform a parallel prefix operation vary depending on the communication
pattern and on the type of the parallel prefix operation, we shall refer to these times as simply
the routing cycle in our description of algorithms. The main point to remember is that a routing
cycle is much larger than a local memory access.

4 Data Structures and Implementation Details.

4.1 Parallel Implementation of the Pulse Procedure.

We use a mapping of the input network to the machine as first described by Blelloch in [2]. This
mapping allows us to use locality of data through the parallel prefix (suffix) operations. Each
node v is assigned a processor Pv which we call a node processor. Each arc (v, w) is also assigned
a processor Pvw called an arc processor. Recall that for each arc (v,w) we assume that the arc
(w, v) is also present in the network and therefore, in our implementation, a separate arc processor
Pun is assigned to this arc. We call processors Pvw and P„„, pair processors. In the machine, each
processor Pv is followed by all the processors P^, corresponding to the arcs incident on it; the
positions of arc processors associated with a node are arbitrary within themselves, and so is the
positions of the node processors as long as the associated arc processors follow them. Each arc
processor P^, stores the processor address of its pair processor P^.

The part of the program that reads in the input, allocates processors, and initializes the
system is relatively simple. The main part consists of application of the pulse procedure until
no active nodes remain. The implementation of this procedure is summarized in Figure 4. This
implementation include the simple relabel operations as part of it because all of the versions
use this operation predominantly, although occasionally other relabel operations such as BFS or
gap-relabel is used.

Steps 1-3 and 7 implement the parallel push procedure. In Step 1, the value of excess at
each node processor Pv is sent to the arc processors immediately following it. Step 2 distributes

Procedure pulse

ä f? *V £V~ {S\t} C°Py ef(v) t0 ^ P" UsinS "9-prefiz-copy operation. (2) { distribute excess }

For all P, use seg-suffiz-add to compute the amount that can be pushed to lower
labeled nodes through arcs that follow („, w) on the incident list of v

For all Pvvl compute the amount a(v,w) to be pushed from rtott

(3) { Pusfflow T C°mPUte thC amOUDt °f CXCeSS that remaiDS at V after the Pushin«-
For all Pvw do if a(v, w > 0 do begin

/(», w) - /(«, W) + a(v, w); uf(v, w) «- «,(„, w) - <r(r.w);
send a message containing a(v,w) to processor Pmv

end.

For all Pwv that received O-(D, W) do begin

w • ,fiv\WJrfiV,w)~a{v'w)'' uf(v'w)*-^f(v,w) + a(v.w);
If simple relabel is the relabeling operation chosen then begin

(4) { Compute new distance labels }
For all Pvn do

i£uf(v,w) > 0 then head-iabel(v,w) — d{v) + 1
else head-label(v, w) *— 2n.

f*\ Z°Ta3iVeV~ {M> comPute nevHl(v) using *e*-«tfl»-mtt.
« For all t, e V - {*, «} copy »«,«*(,) to all Pvu using «p-pre^-copj,

(6) { Broadcast new labels }
For all P„„ such that v g {s, t} do

If d(v) ^ neu; - d(v) then
send a message containing the value of d(v) to Pwv

and set d(r) to new-d{v) that was broadcast
end.

(7) { Update excess }
For all w € V do begin

Use seg-suffiz-add to compute the amount of flow new-e.(w) pushed into w
e} (w)«- ef (w)+newef (w)

end.

Figure 4: Implementation of the pulse procedure.

OPERATION Parallel BFS

d'(s) «- n, and d'(t) — 0;
For all nodes v € V - {s, t} d'(v) «- 2n;
Repeat

Run steps (3), (4) and (5) of Pulse procedure.
Until nev>d{v) = d(v) for all nodes v.

Figure 5: Implementation of parallel breadth-first search operation.

the node excess to the outgoing arcs. First, each arc processor Pvw determines how much excess
may be sent through its arc. This is equal to the residual capacity if d(w) < d{v) (that is if w is
estimated to be closer to sink) and zero otherwise. Then a seg-suffix-add is performed on these
values. Now, each arc processor Pvw has information about the excess to be pushed from v, the
amount it can push, and the amount that can be pushed through the arcs that follow (v, w) on the
arc list of v. This information is enough to compute the amount a(v,w) to be pushed through the
arc (v, w). After an execution of the seg-suffix-add operation, each node processor Pv contains the
information about how much excess can be pushed from the node v at this pulse. The processor
sets the value of its variable ef(v) to the amount that will remain after the pushing. Finally in step
3, all arc processors Pvw for which the amount <r(v, w) > 0, increase/(t;, w) by <r(v, w), decrease
Uf(v,w) by the same amount, and send the value of <T(V,W) to their pair processor Pwv. Each
processor Pwv that receives such a message decreases f(w,v) by cr(v,w) and increases Uf(w,v) by
the same amount. Step 7 computes the new excesses on each node by performing a seg-suffix-add
on the amount of new flow pushed through each arc, and this amount is added to e/(r).

Steps 4-6 implement the simple relabel operation. In Step 4, each processor Pvw sets its
variable head-label to either d(w) +1 or 2n, depending on whether the arc (v, w) is residual or not.
This process involves only local memory access. Next, a seg-suffix-min operation is performed on
the head-label variable, and as a result each node processor Pv contains new value of d(v). In Step
5 all node processors except Pt and Pt copy this value to their corresponding arc processors using
seg-prefix-copy. In Step 6 each arc processor ?ra checks if the new d(v) is different from the old
one and if so, sends a message to its pair processor Pwv updating d(v) in the pair processor.

Each step 1 through 7 contains either a segmented parallel prefix (suffix), or a communication
primitive, and the running time of each step is dominated by the primitive. Therefore, the overall
running time of the pulse procedure is roughly seven routing cycles of the machine. Also observe
that general communications are done along paths that are fixed through entire program: each
processor P„„, has to communicate to processor P^ in steps 3 and 6 and these are the only general
communication operations.: Therefore, the communication path has to be computed only once for
each arc processor and the same information is used throughout the program.

To implement the parallel BFS operation we simply take steps 4-6 of pulse and run them
over and over until the labels do not change. The number of times the simple relabel is iterated
in a BFS operation is at most the larger of maximum distance of a node to the sink (if sink is
reachable) and maximum distance of a node to the source (if sink is not reachable) in the residual

graph.

The gap-relabel procedure is also easy to implement on the Connection machine; see Figure
6. Clearly this procedure is not much more costly than a simple relabel operation (roughly four
routing cycles vs. three). However, it may increase the labels of many nodes by a substantial

OPERATION Parallel gap-relabel

(1) For each node whose label d(v) satisfies d(v) < n in parallel do:
Broadcast a flag to the processor numbered d(v);

(2) Find the smallest g where processor g did not receive any message in step 1).
(3) For all nodes v in parallel do:

if g < d(v) < n set d(v) «— n.
(4) For all v with new labels copy new-d(v) to all Pvw using seg-prefix-copy.
(5) For all pvvi which received new labels send a message to Pwv containing new-d(v).

Figure 6: Implementation of the parallel gap-relabel operation.

amount.

We have experimented with several variants of using gap-relabel and BFS operations. In all
of the variants each pulse uses pushes and simple relabels, but certain times instead of the simple
relabel a BFS or gap-relabel operation is used.

When using BFS we follow the following rule. We save the amount of computational work
done in the last call to BFS. Then we accumulate the amount of work done by the simple relabel
since the last call to BFS. We also fix a parameter k. If k times the amount of work since the last
call to BFS exceeds the amount of work in the last BFS then we use BFS, otherwise we use simple
relabeling. The amount of work itself can be measured in several ways. One way is to simply
look at the CPU time used. Another way is to count the number of "expensive" operations,
in this case the number of routing cycles. Each simple relabel contributes three routing cycles
(one parallel suffix copy, one parallel prefix min, and one general communication step), and the
work accumulated by the simple relabeling procedure is simply three times the number of pulses
since last call to BFS. The amount of work in each BFS varies as the residual graph changes
with each new prefiow. We have-used this technique for both push-relabel and push-push-relabel
methods. The latter is a variation of a the push-relabel method where we only relabel every other
pulse.2 (One may think of this method as choosing the relabeling operation that does nothing,
and alternate using this operation with simple relabeling.) We also tested this technique with the
pipelined variants of push-relabel and push-push-relabel techniques (to be discussed in the next
section.)

Another approach is to use push and relabel operations but after each relabel to apply a
gap-relabel operation as well. Our experiments show that one does not need to apply gap-relabel
every time. We fix a parameter k and call gap-relabel after every ib pulses. Again, we tested
gap-relabel with both push-relabel and push-push-relabel variants of pulse and their pipelined
versions. All of the timings are reported in Section 5.

4.2 Pipelining Independent Operations.

On the Connection Machine, if two segmented parallel prefix or suffix operations work on exactly
the same sequences and perform the same binary operations, it is possible to pipeline them so that
the pipelined operation, performed on the two sequences at once, is faster than two operations,
each performed on one of the sequences at a time. For instance, steps 1 and 5 of the pulse could

In general, a pulse can have x push operations followed by y relabel operations.

be pipelined, and so could steps 2 and 7. Steps 3 and 6 also do the same kind of operation,
except that they involve message routing instructions. In theory we should be able to get better
performance by pipelining the message routing steps, but on the Connection Machine we have
not seen significant improvement. Pipelining the segmented prefix operations, however, results in
about 10 to 20 percent improvement.

There are seven routing cycles in the pulse procedure (including cycles in simple relabeling).
Some steps need to be performed after others (for instance, Step 6 must follow Step 5, and Step
5 must follow Step 4), whereas others are independent of each other (for example, steps 1 and 2
do not depend on each other and either may follow the other.) Figure 7 shows the dependency
relationship among these steps.

The problem with pipelining steps 1 and 5, 2 and 7, and 3 and 6 is that they are sequentially
related in the dependency graph. In order to curb this problem we take advantage of the robustness
of the method. The dependency of Step 4 on Step 3 exists so that in the relabel step we have
the updated residual capacities. Also, the dependency of Step 2 on Step 6 (of the previous
pulse) exists so that the push operation is done based on new labels. These dependencies may
be loosened somewhat so that steps 1 and 5, steps 2 and 7, and steps 3 and 6 can be pipelined.
The disadvantage is that now the labeling becomes less accurate, and this translates into more
iterations of the pulse procedure. The advantage is that now each pulse has only four routing
cycles, three of which are pipelined (and thus operate on longer data). See Figure 8.

The question is whether the time saved in each pulse more than compensates the time lost
due to increased number of pulses. We report on the experiments in the-next section.

We also used pipelining on the push-push-relabel implementation. (Recall that in this imple-
mentation we call the relabel operation only every other pulse.) The dependency graph for this
version of the algorithm is unfolded in Figure 9. Notice that every stage in Figure 9 is equivalent
to two pulses, only one of which has a relabel stage. Thus in this form the total number of routing
cycles for two pulses is seven, whereas in Figure 8 there are eight routing cycles per two pulses.

5 Experimental Results.

In this section we report on the running times of our program on several classes of medium
and large networks. These experiments were conducted on two similar Connection Machines,
one located at the Thinking Machine Corporation in Cambridge, Massachusetts, and the other
one at the Army High-Performance Computing Research Center (AHPCRC) at the University
of Minnesota in Minneapolis. Both machines have 32K processors with 1 Gigabytes of memory.
The timings reported here are based on test runs on the machine in AHPCRC. The program
was coded using the new C* programming language, an extension of standard C for data parallel
programming.

Finding a "fair" set of input networks to test the parallel push-relabel method is not an easy
task. One can easily find instances that cause the program run very slowly. For instance, since
the number of pulses is at least as large as the length of the shortest path from stot, the program
will perform poorly on any graph with large s -1 distance. A simple path of size 64K will require
64K pulses, each taking several routing cycle of the Connection Machine, which is large compared
to memory access time of a typical sequential computer. In fact, in this degenerate case only one
node is active at a time, and our implementation exhibits no parallelism. On the other hand, if

9

1 seg-prefix-copy

2
seg-suffix-add

3
_

broadcast

4 seg-suffix-min

5 seg-prefix-copy

6

broadcast

7 seg-suffix-add

Figure 7: The dependency graph in the pulse procedure.

10

Initialize step

j'th ttagt in
i'th pulse

pulse 1

1 I
pipelined $tep>

pulse 2

e ©
<9

7)* l*'y V't)

i r

3, 3)3 C 0
•A. pulse 3 >' >'

Figure 8: Unfolded dependency graph of the pulse procedure with pipelined steps.

11

Pulse 1

(l, 7J3=t(2j)

< — »

Figure 9: Unfolded dependency graph of push-push-relabel procedure with pipelined steps.

12

a graph consists of 64K parallel arcs connecting the source to the sink, our implementation will
terminate in just one pulse.

One class of networks we used is generated as follows [8]: imagine an infinite pipe with a mesh
drawn on it. Suppose the pipe goes from west to east. The distance from a node of the mesh to
the nearest neighbor in both horizontal and vertical directions is one, and the circumference of
the pipe is D. First we construct a graph on the nodes of the mesh. In this graph, every node
has out-degree 2SX -f 26Y ■ To construct the graph, we connect each node v by a directed arc
to all nodes within 6X due east and west, and within SY due north and south. The capacity of
an arc {v, w) depends on the distance x between v and x in the mesh. The capacity is selected
from a uniform distribution on the interval [0,min(1.8x, 10000)]. To complete the construction,
we introduce a source s and a sink t. Then we cut the pipe by two planes perpendicular to the
axis of the pipe. The cutting planes are distance L apart. We consider the portion of the pipe
that is between the two planes, and identify all nodes to the west of the west plane into source
s and all nodes on the east of the east plane into sink t. All the arcs cut by the left plane are
connected to the source, and those cut by the right plane are connected to the sink. In Figure 10
we list the node and arc sizes of mesh-on-pipe graphs we experimented with.

Graph X Y Sx sv nodes arcs size

meshl 32 32 5 5 1026 10080 21186

mesh.2 64 32 8 5 2050 25984 54018

mesh3 128 32 12 5 4098 67904 139906

mesh4 256 32 16 5 8194 168704 345602

meshS 64 64 8 8 4098 64256 132610

mesh6 512 16 23 4 8194 217504 443202

mesh7 256 256 16 16 65538 2070528 4206594

Figure ICh Characteristics of mesh-on-pipe graphs.

The size parameter is larger than sum of nodes and arcs because for each arc (v, w) we had to
create the pair arc (w, v). The task of reading the input is done by the front end machine (which
is a SUN 4 system), and involves reading one line of input at a time, allocating a processor for
the arc that was read and its pair, and sending the information (head and tail of the arc and its
capacity) to the allocated processors.

Graph a b nodes arcs size

rmfl 16 128 32768 155392 220672

rmf2 16 4 1024 4608 6400

rmf3 16 64 16384 77568 11008

Figure 11: Graphs generated by the "genrmf" generator.

We also experimented with a number of other networks provided for the DIMACS Challenge,
namely the ones generated by the "genrmf' generator, fully dense acyclic networks, and some
moderately sparse grids. In figures 11, 12, and 13 we list sizes of the networks that we used in

our experiments.

For each of these networks we have run four basic algorithms: push-relabel without pipelining,
push-relabel with pipelining, push-push-relabel without pipelining and push-push-relabel with

13

Graph nodes arcs size
1 acyclic 1 512 130816 262144

acyclic3 2048 2096128 4194304

Figure 12 : Complete acyclic networks.

Graph nodes arcs size
BLM1 16386 522211 1060808
BLM2 4098 65029 134156

Figure 13: Moderately sparse Basic Line Mesh networks.

pipelining. In all cases the simple relabel is used in the pulse procedure, except at certain pulses
gap-relabel or BFS operation was is used instead, as discussed in the previous section. Gap-relabel
was used every other k pulses for some parameter k. Although the best parameter depends on
the structure of the input graph, we fixed k = 10, so that the results are comparable. For BFS,
as was mentioned earlier, we compare the amount of "work" (in our case the number of routing
cycles) done by the last BFS, and if it exceeds k times the accumulated "work" done by simple
relabels then we use BFS. Again the optimal value of k varies depending on the structure of the
graph; in our .experiments we used k = 2 throughout. We have observed that the versions using
gap-relabel procedure almost universally outperform those which use BFS. Figure 14 shows the
computational results when gap-relabel procedure is used. Note that for large enough problems,
our algorithm would run almost twice as fast on a 32K processors due to a lower VP ratio. (Recall
that our data is for 16K processors.)

16.

In order to demonstrate the effect of changing the parameter k for both algorithms that use
gap-relabel, and those that use BFS, we report the behavior of two algorithms on the network
rmfl. The results for push-push-relabel without pipelining, with BFS and k changing from 2.0 to
3;0 in increments of 0.2 are shown in figure 15, while those of push-relabel, without pipelining, with
gap-relabel and for k changing from 10 to 14 in increments of 1, on the same network are shown
in Figure 16. Generally, we have observed that for 7 < k < 15 for gap-relabel and 1.5 < k < 3.0
for BFS all variants perform well. However, within these ranges there is no unique best value of
k and one may see oscillations in the total number of pulses and in the CPU running time as
Jk changes. This phenomenon may be attributed to the fact that it is not just the frequency of
BFS or gap-relabel operations that affects the total number of pulses, but the instance that they
are used is also important. The effect of calling such an operation is influenced by the current
structure of the residual graph. It is not clear how to determine the most appropriate moment to
apply the accurate relabeling without doing a lot of time-consuming operations.

6 Conclusions

We described several parallel implementations of the push-relabel method for the maximum flow
problem and evaluated several heuristics that improve the practical performance of the method.
Our results are impressive on some classes of problems. They also provide feedback for the
designers of parallel computers.

14

Graph Size
push-relabel

without
pipelining

push-relabel
with

pipelining

push-push-relabel
without

pipelining

push-push-relabel
with

pipelining

pulses time pulses time pulses time pulses time

meshl 21186 48 0.42 61 0.55 64 0.45 44 0.57

mesh2 54018 45 0.61 52 0.77 46 0.51 30 0.63

mesh3 139906 79 3:il 93 4.36 108 3.46 64 4.02

mesh4 345602 98 7.39 111 10.05 128 8.47 82 10.09

mesh5 132610- 69 2.70 86 4.06 95 3.02 51 3.29

mesh6 443202 110 8.61 122 11.58 146 9.25 84 10.75

mesh 7 4206594 124 135.67 135 176.43 152 137.54 99 176.97

rmfl 220672 1410 114.30 1497 135.94 1855 117.53 986 126.96

rmf2 6400 835 4.97 939 5.98 1084 5.25 635 5.91

rmf3 110080 1024 40.60 1164 52.55 1322 41.94 789 49.39

acyclic 1 262144 368 14.11 478 22.23 471 14.75 257 16.01

acyclic3 4194304 1062 617.44 1477 1048.98 1391 658.61 808 759.86

BLM1 1060808 464 157.51 962 484.05 599 164.21 304 167.18

BLM2 134156 97 4.94 106 6.01 103 4.54 56 4.69

Figure 14: number of iterations of pulse operation and running time (in seconds) of pipelined
and unpipelined push-relabel procedure with gap-relabel used every 10 pulses. For all runs 16K
processors were used.

k pulses time
2.0 1664 136.40
2.2 1610 123.40
2.4 1620 126.01
2.6 1684 133.10
2.8 1752 136.50
3.0 1669 119.26

Figure 15: Effect of push-push-relabel without pipelining and using BFS on network rmfl.

k pulses time
10 1410 114.30
11 1341 107.74
12 1431 113.8
13 1374 110.69
14 1402 109.89

Figure 16: Effect of push-relabel without pipelining and using gap-relabel on network rmfl.

15

Acknowledgment

We would like to thank the Thinking Machine Corporation and the Army High Performance
Computing Research Center at the University of Minnesota for making their Connection Machines
available to us. The first author would also like to thank J. B. Rosen for his support during the
course of this work, and Gene Golub and the Stanford University Computer Science department
for their hospitality.

References

[1] R. K. Ahuja and J. B. Orlin. Personal communication. 1987.

[2] G. Blelloch. Parallel Prefix vs. Concurrent Memory Access. Technical report, Thinking
Machines, Inc., 1986.

[3] B. V. Cherkassky. Personal communication. 1991.

[4] Thinking Machine Corporation. Connection Machine Model CM2 Technical Summary. 1990.

[5] U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational
Investigation. ZOR — Methods and Models of Operations Research, 33:383-403, 1989.

[6] E. A. Dink. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power
Estimation. Soviet Math. Dokl., 11:1277-1280, 1970.

[7] A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM:291, Labo-
ratory for Computer Science, M.I.T., 1985.

[8] A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD
thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer ,
Science, M.I.T., 1987).

[9] A. V. Goldberg. Processor-Efficient Implementation of a Maximum Flow Algorithm. Infor-
mation Processing Let, pages 179-185, 1991.

[10] A. V. Goldberg, E. Taxdos, and R. E. Tarjan. Network Flow Algorithms. In B. Korte,
L. Lovasz, H. J. Prömel, and A. Schrijver, editors, Flows, Paths, and VLSI Layout, pages
101-164. Springer Verlag, 1990.

[11] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. /.
Assoc. Comput. Mach., 35:921-940, 1988. A preliminary version appeared in Proc. 18th
ACM Symp. on Theory of Comp., 136-146, 1986.

[12] M. D. Grigoriadis. Personal communication. 1988.

[13] W. D. Hillis. The Connection Machine. MIT Press, 1985.

[14] A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows.
Soviet Math. Dok., 15:434-437, 1974.

16

[15] R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. J. Assoc. Comput. Mach.,

27:831-838, 1980.

116] C. E. Leiserson and B. M. Maggs. Communication-Efficient Parallel Graph Algorithms. In
Proc. of International Conference on Parallel Processing, pages 861-868, 1986.

[17] J. T. Schwartz. Ultracomputers. ACM Trans. Prog. Lang, and Syst., 2:484-521, 1980.

[18] Y. Shiloach and U. Vishkin. An O(n2logn) Parallel Max-Flow Algorithm. J. Algorithms,

3:128-146, 1982.

17

Reproduced by NTIS
National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161

This report was printed specifically for your
order from our collection of more than 2 million
technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Your copy is the best possible reproduction available from
our master archive. If you have any questions concerning this document
or any order you placed with NTIS, please call our Customer Services
Department at (703) 387-4660.

Always think of NTIS when you want:
• Access to the technical, scientific, and engineering results generated
by the ongoing multibillion dollar R&D program of the U.S. Government.
• R&D results from Japan, West Germany, Great Britain, and some 20
other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable
information:
• The Federal Computer Products Center - offers software and
datafiles produced by Federal agencies.
• The Center for the Utilization of Federal Technology - gives you
access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS Products
and Services Catalog which describes how you can access this U.S. and

foreign Government technology. Call (703) 487-4650 or send this
sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161.
Ask for catalog, PR-827.

Name
Address

Telephone,

Your Source to U.S. and Foreign Government
Research and Technology

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Technical Information Service
Springfield, VA 22161 (703)487-4650

