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1    Introduction. 

In this paper we study the recent push-relabel [7, 111 class of algorithms for the maximum flow 
problem in capacitated directed networks. Several researchers [1, 3, 5, 12] concluded that their 
sequential implementations of push-relabel algorithms are superior to previously used codes. We 
focus on the behavior of the push-relabel method in massively parallel environments. 

The push-relabel method is the first theoretically efficient algorithm for the maximum flow 
problem that is potentially practical; the previous algorithm of Shiloach and Vishkin [18], based 
on Dinitz' blocking flow method [6], requires the amount of memory quadratic in the number of 
nodes in the input network. 

The push-relabel method uses two operations, push and relabel, to manipulate current flow and 
distance labeling functions. In the parallel implementation the algorithm pushes simultaneously 
from all nodes to which the push operation applies; we refer to this method of pushing as parallel 
push. Similarly, parallel relabel applies relabeling operation to all eligible nodes simultaneously. 

The push-relabel algorithm works regardless of the order in which the push and relabel oper- 
ations are applied. It also works with any correct labeling procedure. This robust nature of the 
algorithm allows us to experiment with various strategies for ordering push and relabel operations, 
and with a variety of relabeling procedures. All of the push and relabel operations are suitable 
for parallelization. The goal is to determine the ordering and relabel procedures most suitable for 
a practical parallel implementation. 

This paper is a report on experiments with various strategies for the parallel push-relabel 
algorithm. The experiments were conducted on a Connection Machine [13] model CM-2, with 
32K processors (KSS1024).1 Each processor can directly access 256K bits of local memory, so the 
entire system has 1 gigabytes of memory. The starting point for our work was the Connection 
Machine implementation of the algorithm described in [8]. Our current implementation, however, 
improves the original one in several areas, including better ordering and pipelining of operations 
of messages. Also, the original implementation was on CM-1 using the *LISP interpreter where 
as the current implementation is on CM-2 using the C* compiler. Our experimental results are 
very good on a wide class of problems; we can solve large (millions of arcs) problems in a matter 
of minutes. 

This paper contains five sections including the introduction. In Section 2 we outline the push- 
relabel algorithm and discuss parallel implementation of push and various relabel operations 
including Derigs and Meier's gap-relabeling and parallel breadth-first search. In Section 3 we 
describe the mapping of networks to the Connection Machine processors. This mapping is designed 
to take advantage of the parallel prefix and suffix operations provided in the Connection Machine. 
In Section 4 we describe in more detail parallel push and relabel operations in the context of this 
mapping. In Section 5 we report on the running time of the program on various sample inputs 
and present our conclusions. 

We used 16K processors in our experiments because fall 32K processors were often unavailable. 



2    The Parallel Push-Relabel Algorithm. 

In this section we review some of the basic concepts of the push-relabel method and its parallel 
implementation. We assume that the reader is familiar with [11]. (See also [10].) Because of 
high-grain parallelism of the CM-2 architecture, the goal of our implementation is to get a tight 
inner loop of the algorithm rather then to achieve high processor utilization by careful processor 
scheduling (see [9, 18]). 

A flow network is a directed graph G = (V, E, s, t, u), where V and E are node set and arc set, 
respectively, s and t are the source and the sink, respectively, and u is a non-negative capacity 
function on the arcs. We define n = |F| and m = \E\, and assume that for each arc (v,w), the 
arc (w,v) is also present. A flow is a function on the arcs that satisfies capacity constraints on all 
arcs and conservation constraints on all nodes except the source and the sink. The conservation 
constraint at a node v indicates that the excess e/(u), defined as the difference between the 
incoming and the outgoing flows, is equal to zero. A preflow [14] satisfies the capacity constraints 
and the relaxed version of conservation constraints that requires the excesses to be nonnegative. 

An arc is residual if the flow on it can be increased without violating the capacity constraints, 
and saturated otherwise. The residual capacity uj(v,w) of an arc (v,w) is the amount by which 
the arc flow can be increased. The residual graph is induced by the residual arcs. A residual arc 
(v,w) is admissible if d(v) > d(w). 

The distance labeling d : V —* N satisfies the following conditions: d(s) =; n, d(t) = 0, and for 
every residual arc (v,w), d(v) < d(w) + 1. It is easy to see that if d(v) < n, then d(v) is a lower 
bound on the actual distance from v to t in the residual graph, and if d(v) > n, then d(v) - n is 
a lower bound on the actual distance of v to s. 

A push-relabel algorithm maintains a preflow and a distance labeling. We say that a node v 
is active if v # {s,t} and ef(v) > 0. The preflow is modified using push operation, which pushes 
excess flow from an active node to an adjacent one that has a smaller distance label. When an 
active node cannot push its excess because its label is at most that of its neighbors, then the 
distance labeling is modified using a relabel operation, which increases the distance label of the 
node to the largest value allowed by the labeling constraints. 

Our parallel implementation works as follows. The preflow / is initialized to f(s,w) = u(s,w) 
for all nodes u adjacent to 5, and f(v,w) — 0 for all t; ^ s. The initial distance labeling is 
computed using breadth-first search (BFS) on the residual graph induced by the initial preflow. 
The preflow and distance labeling are updated using the push and relabel operations, respectively, 
until no active nodes remain. 

The parallel push operation works as follows. For every active node, the parallel push operation 
distributes their excess among admissible outgoing arcs as described in Figure 1. In the figure, 

OPERATION ParaM-PusJi 

For all active nodes v in parallel do 
push flow from v until ej(v) = 0 or Vu> such that d{vi) < d(v), uj(v,w) — 0. 

Figure 1: The parallel push operation. 



OPERATION Relabel 

For  all nodes v g {s, t} in parallel do 
d'(v) <— mhi{d(w) -r 1 :  Uf(v,w) > 0}; 
Ifd(v)*d'{v)then 

broadcast d{v) to all neighbors oft); 
end; 

Figure 2: The parallel relabel operation. 

OPERATION gap-relabel 

(1) Find the smallest g where 0 < g < n and no node has label g. 
(2) For all nodes v in parallel do: 

if g < d(v) < n set d(v) <— n. 
(3) For all v which have a new label broadcast the new labels to all neighbors of v. 

Figure 3: The gap-relabel operation. 

"push flow from v to w" means increasing the flow from v to w by the minimum of e/(v) and 
Uf(w) and updating the excesses of v and w. 

We use several kinds of parallel relabel operations in our implementation. The simple parallel 
relabel, described in Figure 2, sets a distance label of every node except s and t to one plus the 
minimum distance label of its residual neighbors. 

Another relabeling procedure is the gap-label of Derigs and Meier [5] based on the following 
observation. Suppose at certain stage of the algorithm some nodes are labeled 0, some labeled 1, 
and so on, through g — 1 < n, but no node is labeled g, although some other nodes are labeled 
by integers between g and n. Derigs and Meier observe that the sink is not reachable from any of 
the nodes whose labels d are strictly between g and n. Therefore, the labels of such nodes may 
just be increased to n. This procedure may easily be implemented in parallel; see Figure 3. 

Note that the most accurate labeling is obtained by applying BFS backwards from the sink and 
forward from the source. This can be implemented by applying parallel relabeling operations until 
distance labels stop changing. Doing this during every pulse is too expensive. The implementation 
of [8] performs a breadth-first search once after a sequence of pulses so that the breadth-first search 
time can be amortized over the pulse time. We experimented with this approach as well as with 
using the gap-relabel operation instead. 

No theoretical result suggests that gap-relabel and BFS operations improve the worst-case 
time bounds on the algorithm. In practice, both periodic BFS and gap-relabel operations reduce 
the number of pulses drastically. The gap-relabel operation, however, is much less expensive 
(usually faster than simple parallel relabel in our implementation) and as a result gives better 
running times most of the time despite of the fact that the labeling after such an operation is not 
exact. 

Our parallel implementation can be viewed as running the parallel push, relabel, and gap- 
relabel processes "simultaneously". However, due to the SIMD nature of the machine, we have to 
time-multiplex the operations. We can adjust relative speed of the operations by running several 



push operations followed by several relabel operations followed by a gap-relabel operation. (Note 
that it does not make sense to run two gap-relabel operations without running a simple relabel 
operation in between.) We also can pipeline some of the operations as described in the next 
section. 

A pulse is a sequence of pushes and relabelings (possibly pipelined) that is repeated over and 
over. A general rule is that the closer the labels are to their actual distance to the sink, the fewer 
pushes will be performed. Therefore, the more accurate labeling may reduce the total number of 
pulses. However, maintaining a very accurate labeling is too expensive. Our strategy is to update 
labels as accurately as possible without increasing the time spent in each pulse by too much. 

In Section 5, we describe our implementation in more detail. 

3    CM Architecture and Tools. 

In this section we review some aspects of the CM architecture relevant to our program. Then, 
we describe a set of useful operations available on the Connection Machine for accumulating in 
parallel partial sums, partial nnnimums, etc. 

3.1    Connection Machine Architecture. 

The following is a brief outline of the CM architecture. For more details see the book by Hillis 
[13] and documents from the Thinking Machine Corporation, for instance [4]. 

The Connection Machine is a distributed memory parallel computer [16]. It consists of thou- 
sands of processors connected by a routing network. Each processor has local memory. The local 
memory of a processor can be accessed by other processors via the routing network. The CM is 
a single instruction, multiple data (SIMD) machine: the program is stored in a host computer 
which executes a sequential program containing parallel instructions. When a parallel instruction 
appears in the program, the host broadcasts it to all processors. Each processor, depending on its 
memory contents, either executes the instructions or remains idle. The operation of the machine 
is totally synchronous: the next instruction does not start until all processors have completed the 
execution of the current instruction. 

Each processor can access its own memory, or it can access the memory of other processors. 
However, accessing the local memory is much faster than accessing other processors' memory. In 
general, the time required by a processor to access memory of a processor that is "close" (in the 
routing network) is less than the time required to access the memory of a processor that is far. 
If during the execution of an instruction several processors access memories of other processors, 
the longest memory access time determines the execution time of the instruction. A routing cycle 
is the amount of time it takes to execute such an instruction. It is important to realize that the 
routing cycle time varies depending on the interprocessor communication pattern and the size of 
data being accessed. 

The Connection Machine software also provides the notion of virtual processors. The user 
may request any number of processors he or she wishes. If this number is larger than the number 
of physical processors, each physical processor simulates t; virtual processors, where v is the VP 
ratio, that is „ = [ *pf jg&g£,°o" J- 



3.2    Parallel Prefix and Suffix Operations. 

Parallel prefix operations have been recognized as fundamental parallel operations, and their 
implementation and use in parallel algorithms has been widely studied; see e.g. [15, 17]. Given 
an associative binary operation "*" and a sequence of s numbers a1: a2, • • •, a„, the parallel prefix 
"*" operation maps this sequence into the sequence ai,ai * 02, ■ • • ,ai * a2 * ■■ ■ * a,. Similarly 
the parallel suffix operation maps this sequence into a\ « a2 * ■ • • * a,, ■ ■ ■, a,-i * a,, as. In our 
implementation of the parallel push-relabel method, we use prefix and suffix operations with "*" 
replaced by addition, min, and copy. 

An extended form of parallel prefix and suffix operations are segmented parallel prefix opera- 
tion. In the segmented form a list of sequences Si, S2, ■ ■ ■, 5/ is mapped into S{, S'2, ■ ■ •, 5/, where 
each sequence S- is obtained from the corresponding sequence 5, using the parallel prefix or suffix 
"*" operation. The lengths of sequences Si may be different. 

A sequence of numbers is stored in the Connection Machine by placing the entries of the 
sequence in contiguous processors. For simple operations such as addition, copying, and minimum, 
the time required to perform parallel prefix and suffix operations is of the same order of magnitude 
as the time required for one routing cycle on the data of the same size. Although the routing cycle 
time and the time to perform a parallel prefix operation vary depending on the communication 
pattern and on the type of the parallel prefix operation, we shall refer to these times as simply 
the routing cycle in our description of algorithms. The main point to remember is that a routing 
cycle is much larger than a local memory access. 

4    Data Structures and Implementation Details. 

4.1    Parallel Implementation of the Pulse Procedure. 

We use a mapping of the input network to the machine as first described by Blelloch in [2]. This 
mapping allows us to use locality of data through the parallel prefix (suffix) operations. Each 
node v is assigned a processor Pv which we call a node processor. Each arc (v, w) is also assigned 
a processor Pvw called an arc processor. Recall that for each arc (v,w) we assume that the arc 
(w, v) is also present in the network and therefore, in our implementation, a separate arc processor 
Pun is assigned to this arc. We call processors Pvw and P„„, pair processors. In the machine, each 
processor Pv is followed by all the processors P^, corresponding to the arcs incident on it; the 
positions of arc processors associated with a node are arbitrary within themselves, and so is the 
positions of the node processors as long as the associated arc processors follow them. Each arc 
processor P^, stores the processor address of its pair processor P^. 

The part of the program that reads in the input, allocates processors, and initializes the 
system is relatively simple. The main part consists of application of the pulse procedure until 
no active nodes remain. The implementation of this procedure is summarized in Figure 4. This 
implementation include the simple relabel operations as part of it because all of the versions 
use this operation predominantly, although occasionally other relabel operations such as BFS or 
gap-relabel is used. 

Steps 1-3 and 7 implement the parallel push procedure. In Step 1, the value of excess at 
each node processor Pv is sent to the arc processors immediately following it. Step 2 distributes 



Procedure pulse 

ä f? *V £V~ {S\t} C°Py ef(v) t0 ^ P" UsinS "9-prefiz-copy operation. (2) { distribute excess } 

For all P,    use seg-suffiz-add to compute the amount that can be pushed to lower 
labeled nodes through arcs that follow („, w) on the incident list of v 

For all Pvvl compute the amount a(v,w) to be pushed from rtott 

(3) { Pusfflow T C°mPUte thC amOUDt °f CXCeSS that remaiDS at V after the Pushin«- 
For all Pvw do if a(v, w > 0 do begin 

/(», w) - /(«, W) + a(v, w); uf(v, w) «- «,(„, w) - <r(r.w); 
send a message containing a(v,w) to processor Pmv 

end. 

For all   Pwv that received O-(D, W) do begin 

w   •     ,fiv\WJrfiV,w)~a{v'w)'' uf(v'w)*-^f(v,w) + a(v.w); 
If simple relabel is the relabeling operation chosen then begin 

(4) { Compute new distance labels } 
For all Pvn do 

i£uf(v,w) > 0 then head-iabel(v,w) — d{v) + 1 
else head-label(v, w) *— 2n. 

f*\ Z°Ta3iVeV~ {M> comPute nevHl(v) using *e*-«tfl»-mtt. 
« For all t, e V - {*, «} copy »«,«*(,) to all Pvu using «p-pre^-copj, 

(6) { Broadcast new labels } 
For all P„„ such that v g {s, t} do 

If d(v) ^ neu; - d(v) then 
send a message containing the value of d(v) to Pwv 

and set d(r) to new-d{v) that was broadcast 
end. 

(7) { Update excess } 
For all w € V do begin 

Use seg-suffiz-add to compute the amount of flow new-e.(w) pushed into w 
e} (w)«- ef (w)+newef (w) 

end. 

Figure 4: Implementation of the pulse procedure. 



OPERATION Parallel BFS 

d'(s) «- n, and d'(t) — 0; 
For all nodes v € V - {s, t} d'(v) «- 2n; 
Repeat 

Run steps (3), (4) and (5) of Pulse procedure. 
Until nev>d{v) = d(v) for all nodes v. 

Figure 5: Implementation of parallel breadth-first search operation. 

the node excess to the outgoing arcs. First, each arc processor Pvw determines how much excess 
may be sent through its arc. This is equal to the residual capacity if d(w) < d{v) (that is if w is 
estimated to be closer to sink) and zero otherwise. Then a seg-suffix-add is performed on these 
values. Now, each arc processor Pvw has information about the excess to be pushed from v, the 
amount it can push, and the amount that can be pushed through the arcs that follow (v, w) on the 
arc list of v. This information is enough to compute the amount a(v,w) to be pushed through the 
arc (v, w). After an execution of the seg-suffix-add operation, each node processor Pv contains the 
information about how much excess can be pushed from the node v at this pulse. The processor 
sets the value of its variable ef(v) to the amount that will remain after the pushing. Finally in step 
3, all arc processors Pvw for which the amount <r(v, w) > 0, increase/(t;, w) by <r(v, w), decrease 
Uf(v,w) by the same amount, and send the value of <T(V,W) to their pair processor Pwv. Each 
processor Pwv that receives such a message decreases f(w,v) by cr(v,w) and increases Uf(w,v) by 
the same amount. Step 7 computes the new excesses on each node by performing a seg-suffix-add 
on the amount of new flow pushed through each arc, and this amount is added to e/(r). 

Steps 4-6 implement the simple relabel operation. In Step 4, each processor Pvw sets its 
variable head-label to either d(w) +1 or 2n, depending on whether the arc (v, w) is residual or not. 
This process involves only local memory access. Next, a seg-suffix-min operation is performed on 
the head-label variable, and as a result each node processor Pv contains new value of d(v). In Step 
5 all node processors except Pt and Pt copy this value to their corresponding arc processors using 
seg-prefix-copy. In Step 6 each arc processor ?ra checks if the new d(v) is different from the old 
one and if so, sends a message to its pair processor Pwv updating d(v) in the pair processor. 

Each step 1 through 7 contains either a segmented parallel prefix (suffix), or a communication 
primitive, and the running time of each step is dominated by the primitive. Therefore, the overall 
running time of the pulse procedure is roughly seven routing cycles of the machine. Also observe 
that general communications are done along paths that are fixed through entire program: each 
processor P„„, has to communicate to processor P^ in steps 3 and 6 and these are the only general 
communication operations.: Therefore, the communication path has to be computed only once for 
each arc processor and the same information is used throughout the program. 

To implement the parallel BFS operation we simply take steps 4-6 of pulse and run them 
over and over until the labels do not change. The number of times the simple relabel is iterated 
in a BFS operation is at most the larger of maximum distance of a node to the sink (if sink is 
reachable) and maximum distance of a node to the source (if sink is not reachable) in the residual 

graph. 

The gap-relabel procedure is also easy to implement on the Connection machine; see Figure 
6. Clearly this procedure is not much more costly than a simple relabel operation (roughly four 
routing cycles vs.  three). However, it may increase the labels of many nodes by a substantial 



OPERATION Parallel gap-relabel 

(1) For each node whose label d(v) satisfies d(v) < n in parallel do: 
Broadcast a flag to the processor numbered d(v); 

(2) Find the smallest g where processor g did not receive any message in step 1). 
(3) For all nodes v in parallel do: 

if g < d(v) < n set d(v) «— n. 
(4) For all v with new labels copy new-d(v) to all Pvw using seg-prefix-copy. 
(5) For all pvvi which received new labels send a message to Pwv containing new-d(v). 

Figure 6: Implementation of the parallel gap-relabel operation. 

amount. 

We have experimented with several variants of using gap-relabel and BFS operations. In all 
of the variants each pulse uses pushes and simple relabels, but certain times instead of the simple 
relabel a BFS or gap-relabel operation is used. 

When using BFS we follow the following rule. We save the amount of computational work 
done in the last call to BFS. Then we accumulate the amount of work done by the simple relabel 
since the last call to BFS. We also fix a parameter k. If k times the amount of work since the last 
call to BFS exceeds the amount of work in the last BFS then we use BFS, otherwise we use simple 
relabeling. The amount of work itself can be measured in several ways. One way is to simply 
look at the CPU time used. Another way is to count the number of "expensive" operations, 
in this case the number of routing cycles. Each simple relabel contributes three routing cycles 
(one parallel suffix copy, one parallel prefix min, and one general communication step), and the 
work accumulated by the simple relabeling procedure is simply three times the number of pulses 
since last call to BFS. The amount of work in each BFS varies as the residual graph changes 
with each new prefiow. We have-used this technique for both push-relabel and push-push-relabel 
methods. The latter is a variation of a the push-relabel method where we only relabel every other 
pulse.2 (One may think of this method as choosing the relabeling operation that does nothing, 
and alternate using this operation with simple relabeling.) We also tested this technique with the 
pipelined variants of push-relabel and push-push-relabel techniques (to be discussed in the next 
section.) 

Another approach is to use push and relabel operations but after each relabel to apply a 
gap-relabel operation as well. Our experiments show that one does not need to apply gap-relabel 
every time. We fix a parameter k and call gap-relabel after every ib pulses. Again, we tested 
gap-relabel with both push-relabel and push-push-relabel variants of pulse and their pipelined 
versions. All of the timings are reported in Section 5. 

4.2    Pipelining Independent Operations. 

On the Connection Machine, if two segmented parallel prefix or suffix operations work on exactly 
the same sequences and perform the same binary operations, it is possible to pipeline them so that 
the pipelined operation, performed on the two sequences at once, is faster than two operations, 
each performed on one of the sequences at a time. For instance, steps 1 and 5 of the pulse could 

In general, a pulse can have x push operations followed by y relabel operations. 



be pipelined, and so could steps 2 and 7. Steps 3 and 6 also do the same kind of operation, 
except that they involve message routing instructions. In theory we should be able to get better 
performance by pipelining the message routing steps, but on the Connection Machine we have 
not seen significant improvement. Pipelining the segmented prefix operations, however, results in 
about 10 to 20 percent improvement. 

There are seven routing cycles in the pulse procedure (including cycles in simple relabeling). 
Some steps need to be performed after others (for instance, Step 6 must follow Step 5, and Step 
5 must follow Step 4), whereas others are independent of each other (for example, steps 1 and 2 
do not depend on each other and either may follow the other.) Figure 7 shows the dependency 
relationship among these steps. 

The problem with pipelining steps 1 and 5, 2 and 7, and 3 and 6 is that they are sequentially 
related in the dependency graph. In order to curb this problem we take advantage of the robustness 
of the method. The dependency of Step 4 on Step 3 exists so that in the relabel step we have 
the updated residual capacities. Also, the dependency of Step 2 on Step 6 (of the previous 
pulse) exists so that the push operation is done based on new labels. These dependencies may 
be loosened somewhat so that steps 1 and 5, steps 2 and 7, and steps 3 and 6 can be pipelined. 
The disadvantage is that now the labeling becomes less accurate, and this translates into more 
iterations of the pulse procedure. The advantage is that now each pulse has only four routing 
cycles, three of which are pipelined (and thus operate on longer data). See Figure 8. 

The question is whether the time saved in each pulse more than compensates the time lost 
due to increased number of pulses. We report on the experiments in the-next section. 

We also used pipelining on the push-push-relabel implementation. (Recall that in this imple- 
mentation we call the relabel operation only every other pulse.) The dependency graph for this 
version of the algorithm is unfolded in Figure 9. Notice that every stage in Figure 9 is equivalent 
to two pulses, only one of which has a relabel stage. Thus in this form the total number of routing 
cycles for two pulses is seven, whereas in Figure 8 there are eight routing cycles per two pulses. 

5    Experimental Results. 

In this section we report on the running times of our program on several classes of medium 
and large networks. These experiments were conducted on two similar Connection Machines, 
one located at the Thinking Machine Corporation in Cambridge, Massachusetts, and the other 
one at the Army High-Performance Computing Research Center (AHPCRC) at the University 
of Minnesota in Minneapolis. Both machines have 32K processors with 1 Gigabytes of memory. 
The timings reported here are based on test runs on the machine in AHPCRC. The program 
was coded using the new C* programming language, an extension of standard C for data parallel 
programming. 

Finding a "fair" set of input networks to test the parallel push-relabel method is not an easy 
task. One can easily find instances that cause the program run very slowly. For instance, since 
the number of pulses is at least as large as the length of the shortest path from stot, the program 
will perform poorly on any graph with large s -1 distance. A simple path of size 64K will require 
64K pulses, each taking several routing cycle of the Connection Machine, which is large compared 
to memory access time of a typical sequential computer. In fact, in this degenerate case only one 
node is active at a time, and our implementation exhibits no parallelism. On the other hand, if 
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Figure 7: The dependency graph in the pulse procedure. 
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Figure 8: Unfolded dependency graph of the pulse procedure with pipelined steps. 
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Figure 9: Unfolded dependency graph of push-push-relabel procedure with pipelined steps. 
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a graph consists of 64K parallel arcs connecting the source to the sink, our implementation will 
terminate in just one pulse. 

One class of networks we used is generated as follows [8]: imagine an infinite pipe with a mesh 
drawn on it. Suppose the pipe goes from west to east. The distance from a node of the mesh to 
the nearest neighbor in both horizontal and vertical directions is one, and the circumference of 
the pipe is D. First we construct a graph on the nodes of the mesh. In this graph, every node 
has out-degree 2SX -f 26Y ■ To construct the graph, we connect each node v by a directed arc 
to all nodes within 6X due east and west, and within SY due north and south. The capacity of 
an arc {v, w) depends on the distance x between v and x in the mesh. The capacity is selected 
from a uniform distribution on the interval [0,min(1.8x, 10000)]. To complete the construction, 
we introduce a source s and a sink t. Then we cut the pipe by two planes perpendicular to the 
axis of the pipe. The cutting planes are distance L apart. We consider the portion of the pipe 
that is between the two planes, and identify all nodes to the west of the west plane into source 
s and all nodes on the east of the east plane into sink t. All the arcs cut by the left plane are 
connected to the source, and those cut by the right plane are connected to the sink. In Figure 10 
we list the node and arc sizes of mesh-on-pipe graphs we experimented with. 

Graph X Y Sx sv nodes arcs size 

meshl 32 32 5 5 1026 10080 21186 

mesh.2 64 32 8 5 2050 25984 54018 

mesh3 128 32 12 5 4098 67904 139906 

mesh4 256 32 16 5 8194 168704 345602 

meshS 64 64 8 8 4098 64256 132610 

mesh6 512 16 23 4 8194 217504 443202 

mesh7 256 256 16 16 65538 2070528 4206594 

Figure ICh Characteristics of mesh-on-pipe graphs. 

The size parameter is larger than sum of nodes and arcs because for each arc (v, w) we had to 
create the pair arc (w, v). The task of reading the input is done by the front end machine (which 
is a SUN 4 system), and involves reading one line of input at a time, allocating a processor for 
the arc that was read and its pair, and sending the information (head and tail of the arc and its 
capacity) to the allocated processors. 

Graph a b nodes arcs size 

rmfl 16 128 32768 155392 220672 

rmf2 16 4 1024 4608 6400 

rmf3 16 64 16384 77568 11008 

Figure 11: Graphs generated by the "genrmf" generator. 

We also experimented with a number of other networks provided for the DIMACS Challenge, 
namely the ones generated by the "genrmf' generator, fully dense acyclic networks, and some 
moderately sparse grids. In figures 11, 12, and 13 we list sizes of the networks that we used in 

our experiments. 

For each of these networks we have run four basic algorithms: push-relabel without pipelining, 
push-relabel with pipelining, push-push-relabel without pipelining and push-push-relabel with 
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Graph nodes arcs           size 
1 acyclic 1 512 130816      262144 

acyclic3 2048 2096128    4194304 

Figure 12 : Complete acyclic networks. 

Graph nodes arcs size 
BLM1 16386 522211 1060808 
BLM2 4098 65029 134156 

Figure 13: Moderately sparse Basic Line Mesh networks. 

pipelining. In all cases the simple relabel is used in the pulse procedure, except at certain pulses 
gap-relabel or BFS operation was is used instead, as discussed in the previous section. Gap-relabel 
was used every other k pulses for some parameter k. Although the best parameter depends on 
the structure of the input graph, we fixed k = 10, so that the results are comparable. For BFS, 
as was mentioned earlier, we compare the amount of "work" (in our case the number of routing 
cycles) done by the last BFS, and if it exceeds k times the accumulated "work" done by simple 
relabels then we use BFS. Again the optimal value of k varies depending on the structure of the 
graph; in our .experiments we used k = 2 throughout. We have observed that the versions using 
gap-relabel procedure almost universally outperform those which use BFS. Figure 14 shows the 
computational results when gap-relabel procedure is used. Note that for large enough problems, 
our algorithm would run almost twice as fast on a 32K processors due to a lower VP ratio. (Recall 
that our data is for 16K processors.) 

16. 

In order to demonstrate the effect of changing the parameter k for both algorithms that use 
gap-relabel, and those that use BFS, we report the behavior of two algorithms on the network 
rmfl. The results for push-push-relabel without pipelining, with BFS and k changing from 2.0 to 
3;0 in increments of 0.2 are shown in figure 15, while those of push-relabel, without pipelining, with 
gap-relabel and for k changing from 10 to 14 in increments of 1, on the same network are shown 
in Figure 16. Generally, we have observed that for 7 < k < 15 for gap-relabel and 1.5 < k < 3.0 
for BFS all variants perform well. However, within these ranges there is no unique best value of 
k and one may see oscillations in the total number of pulses and in the CPU running time as 
Jk changes. This phenomenon may be attributed to the fact that it is not just the frequency of 
BFS or gap-relabel operations that affects the total number of pulses, but the instance that they 
are used is also important. The effect of calling such an operation is influenced by the current 
structure of the residual graph. It is not clear how to determine the most appropriate moment to 
apply the accurate relabeling without doing a lot of time-consuming operations. 

6    Conclusions 

We described several parallel implementations of the push-relabel method for the maximum flow 
problem and evaluated several heuristics that improve the practical performance of the method. 
Our results are impressive on some classes of problems. They also provide feedback for the 
designers of parallel computers. 
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Graph Size 
push-relabel 

without 
pipelining 

push-relabel 
with 

pipelining 

push-push-relabel 
without 

pipelining 

push-push-relabel 
with 

pipelining 

pulses time pulses time pulses time pulses time 

meshl 21186 48 0.42 61 0.55 64 0.45 44 0.57 

mesh2 54018 45 0.61 52 0.77 46 0.51 30 0.63 

mesh3 139906 79 3:il 93 4.36 108 3.46 64 4.02 

mesh4 345602 98 7.39 111 10.05 128 8.47 82 10.09 

mesh5 132610- 69 2.70 86 4.06 95 3.02 51 3.29 

mesh6 443202 110 8.61 122 11.58 146 9.25 84 10.75 

mesh 7 4206594 124 135.67 135 176.43 152 137.54 99 176.97 

rmfl 220672 1410 114.30 1497 135.94 1855 117.53 986 126.96 

rmf2 6400 835 4.97 939 5.98 1084 5.25 635 5.91 

rmf3 110080 1024 40.60 1164 52.55 1322 41.94 789 49.39 

acyclic 1 262144 368 14.11 478 22.23 471 14.75 257 16.01 

acyclic3 4194304 1062 617.44 1477 1048.98 1391 658.61 808 759.86 

BLM1 1060808 464 157.51 962 484.05 599 164.21 304 167.18 

BLM2 134156 97 4.94 106 6.01 103 4.54 56 4.69 

Figure 14: number of iterations of pulse operation and running time (in seconds) of pipelined 
and unpipelined push-relabel procedure with gap-relabel used every 10 pulses. For all runs 16K 
processors were used. 

k pulses time 
2.0 1664 136.40 
2.2 1610 123.40 
2.4 1620 126.01 
2.6 1684 133.10 
2.8 1752 136.50 
3.0 1669 119.26 

Figure 15: Effect of push-push-relabel without pipelining and using BFS on network rmfl. 

k pulses time 
10 1410 114.30 
11 1341 107.74 
12 1431 113.8 
13 1374 110.69 
14 1402 109.89 

Figure 16: Effect of push-relabel without pipelining and using gap-relabel on network rmfl. 
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