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Abstract  

Measurements are reported of the thermal conductivities and thermal diffusivities of six U.S. 
Army solid gun propellants over the temperature range -20C to +50C at atmospheric pressure. 
The propellants are members of the BRL research series propellants that have been widely 
distributed to research laboratories in the U.S. These propellants include representative types 
from each class of materials that are either in the fielded inventory or experimental ("X" prefix), 
i.e., a single base (MIO), a double base (M9), a homogeneous triple base (JA2), a composite triple 
base (M30), a composite nitramine with inert plasticizer (XM39), and a composite nitramine with 
energetic plasticizer (M43). Conductivities and diffusivities were measured simultaneously using 
a new experimental technique developed specifically for the purpose. The experiment is designed 
to approximate the mathematical idealization of a one-dimensional, infinite, two-component, 
composite solid whose planar interface is subjected to a step-function heat flux. The average 
values obtained are estimated to be accurate to within ±5%, and least-squares polynomial fits are 
provided for convenient use of the data in calculations. For convenience, a table is given 
summarizing the polynomial fits from the present measurements and from previous measurements 
of the specific heats for the same propellant lots. 
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1. INTRODUCTION 

Thermal transport properties of unreacted solid propellants play an important role in 

determining how much of the chemical energy release is retained in the reaction zones and, in turn, 

the rate of combustion and surface regression. Notwithstanding this obvious relevance to 

combustion modeling as well as to calculations of ignition, cookoff, and environmental temperature 

accommodation, few measurements of these properties have been published for solid propellants in 

general. Moreover, we have been unable to find any published data at all for solid gun propellants 

in particular. This deficiency, in part, may be due to the experimental difficulties attending the 

measurement of transport properties using small test specimens. With gun propellants one is 

generally limited to specimens of linear dimensions on the order of half a cm, but small specimens 

are also desirable for explosives and rocket propellants from a safely standpoint. This report 

documents simultaneous measurements of thermal conductivity and thermal diffusivity of six solid 

gun propellants over the temperature range of -20 °C to +50 °C using a newly developed 

experimental technique appropriate for such small specimens (Miller and Kotlar, 1993). The 

propellants studied constitute the BRL Research-Series Propellants, a quantity of single-batch, 

standard Army gun propellants manufactured specifically for advanced combustion-mechanism 

research. This group of propellants includes examples of each different type of propellant 

formulation currently of interest: M10 (single base), M9 (homogeneous double base), JA2 

(homogeneous triple base), M30 (composite triple base), and XM39 (composite nitramine). In 

addition to providing needed data for combustion-mechanism research on these particular materials, 

the data should enable rational estimates of the thermal transport properties to be made of other 

propellants with similar ingredients. Measurements of the specific heats of these same propellants 

over the temperature range -40 °C to 75 °C are reported elsewhere (Miller, 1992a). A table 

summarizing the polynomial fits to thermal diffusivity, thermal conductivity, and specific heat for 

all of these propellants is given at the end of this report. With the exception of M43, these data have 

also been published in the open literature (Miller (1994a), Miller (1994b)). 



2. EXPERIMENTAL TECHNIQUE 

The design of the experimental fixture and the data-reduction procedures are discussed and 

justified at length in a separate paper (Miller and Kotlar, 1993). Here we provide a short summary 

of the technique for coherence and completeness. In essence the experiment is designed to 

approximate closely the mathematical idealization of two one-dimensional semi-infinite solids 

separated by the plane x = 0, which is subjected to a step-function heat flux at t = 0. The exact 

solution to the heat-conduction equation for the temperature at some distance x from the source plane 

at some time t is given by Carslaw and Jaeger (1959), 

r=r0+ 
2foXfe~b 

v^v^ 
r-        (   x   ^ \Jat ierfc 

K  2Jte< 

where the test material is assumed to occupy the region x > 0, the base material of known thermal 

properties occupies the region x < 0, a and ab are the thermal diffusivities of the test material and 

the base respectively, A and Ab are the thermal conductivities of the test material and base, T0 is the 

initial temperature everywhere at t = 0, andf0 is the magnitude of the heat flux for t > 0. 

Experimentally, the step-function heat flux is generated by the sudden application of a 

constant voltage to a thin resistance foil located at the interface of the two "semi-infinite" solids. If 

the current established in the foil is I, its electrical resistance R, its length L, and its width W, then 

the heat flux is given by 

f _ I2R 
h ' LW 

The ideality with which a step-function current in a foil can produce a step-function heat flux has 

been thoroughly discussed by Miller (1992b), who derived an exact Laplace-transform solution to 

the problem of a finite-thickness foil. The finite heat capacity of the foil delays the attainment of a 

constant heat flux even when the current in the foil is a perfect step function. This effect is 

minimized by using very thin foils. In the measurements reported here a Constantan foil 5-um thick 



is employed, resulting in errors in the thermal conductivities and diffusivities of less than 2% due 

to non-idealities in the step-function heat flux. 

SPECIMEN 
IACK-UP 
PIECE 

THERMOCOUPLE 

SPECIMEN 
WAFER 

Figure 1. Exploded schematic view of experimental arrangement of test specimen pieces and heat-flux-generating 
foil. 

Fig. 1 shows a schematic representation of the experimental setup. In reality, the foil is wider 

than the specimen diameter and thermal guards are employed. Voltage from a regulated DC supply 

is applied to the foil by means of a mercury-wetted relay. The temperature as a function of time (up 

to about 4 s) is then measured in the test specimen at a distance of about 0.5 mm from the foil by 

means of a 5-iam-thick Chromel-Alumel foil-type thermocouple interposed between a test-specimen 

wafer and a test-specimen back-up piece. The back-up piece is about 0.65 cm long which is 

sufficiently long to give temperatures that differ from an infinitely thick piece by less than 1 %. The 

many conditions for the experiment to closely approximate the mathematical idealization embodied 

in Eq. 1 are analyzed in detail by Miller and Kotlar (1993).   A determination of the thermal 



conductivity A and diffusivity a is then made by performing a non-linear least-squares fit of Eq. 1 

to the data using A and a as fitting parameters. Temperature conditioning of the copper 

conductivity/diffusivity fixture was accomplished by means of ethylene glycol circulated from a 

temperature-controlled bath through copper tubing soldered to the fixture. A mineral-fiber insulation 

jacket thermally isolated the fixture from its environment. 

3. PROPELLANT DESCRIPTIONS 

All the tested propellants were extruded with a diameter close to 6.4 mm. Specimen wafers 

were cut to a thickness of about 0.5 mm with a low-speed, diamond-bladed wafering saw using water 

as a coolant. This saw produces smooth, low distortion cuts and wafers of very uniform thickness. 

After cutting, the specimens were placed in a desiccator for several days prior to experimentation. 

The compositions of the propellants are given in Tables 1-6 and are taken from manufacturer- 

supplied data sheets where it is customary to list the volatile components separately, presumably 

because of changes during storage. Test specimens from each lot were prepared by cutting the 

cylindrical strands perpendicular to the axis of extrusion. This results in heat flowing along or 

parallel to the extrusion axis. When M30 is extruded, the needle-like nitroguanidine crystals line up 

in the direction of extrusion. To see what effect this alignment might have on heat conduction, an 

M30 specimen was also prepared by cutting a specimen wafer and number of 1-mm-thick slabs 

parallel to the extrusion axis. The 1-mm-thick slabs were stacked to form a specimen back-up piece. 

Thermal contact resistance between these slabs had been found to be negligible by Miller and Kotlar 

(1993), a fact which justifies use of the composite specimen. Thus, the conductivity and diffusivity 

of M30 were measured in directions both parallel to and normal to the extrusion axis. 



Table 1. MIO Composition (Lot No. RAD-PE-792-85, Packed 5/90) 

CONSTITUENT        WEIGHT PERCENT 

(Actual) 

Nitrocellulose (13.12% N) 97.64 

Potassium Sulfate 1.29 

Diphenylamine 1.07 

TOTAL 100.00 

(Total Volatiles) (8.73) 

Table 2. M9 Composition (Lot No. RAD-PE-792-77, Packed 2/90) 

CONSTITUENT WEIGHT PERCENT 

(Actual) 

Nitrocellulose (13.29% N) 57.62 

Nitroglycerin 40.02 

Ethyl Centralite 0.73 

Potassium Nitrate 1.63 

TOTAL 100.00 

(Total Volatiles) (0.26) 



Table 3. JA2 Composition (Lot No. RAD-PE-792-68, Packed 5/89) 

CONSTITUENT WEIGHT PERCENT 

(Actual) 

Nitrocellulose (13.04% N) 58.21 

Nitroglycerin 15.79 

Diethylene Glycol Dinitrate 25.18 

Akardit II 0.74 

Magnesium Oxide 0.05 

Graphite 0.03 

TOTAL 100.00 

(Moisture Content) (0.34) 

Table 4. M30 Composition (Lot No. RAD-PE-792-82, Packed 2/90) 

CONSTITUENT WEIGHT PERCENT 

(Actual) 

Nitrocellulose (12.68% N) 28.71 

Nitroglycerin 22.02 

Nitroguanidine 47.34 

Ethyl Centralite 1.58 

Cryolite 0.35 

TOTAL 100.00 

(Total Volatiles) (0.67) 



Table 5. XM39 Composition (Lot No. IH-XM39-0988-100 Al, Packed 9/88) 

CONSTITUENT WEIGHT PERCENT 

(Nominal) 

RDX (5 micron) 76.0 

Cellulose Acetate Butyrate 12.0 

Nitrocellulose (12.6% N) 4.0 

Acetyl Triethyl Citrate 7.6 

Ethyl Centralite 0.4 

TOTAL 100.0 

(Total Volatiles) (0.14) 

Table 6. M43 Composition (Lot No. IH-HELP1-0988-131 Bl, Packed 9/88) 

CONSTITUENT WEIGHT PERCENT 

(Nominal) 

RDX (5 micron) 76.0 

Cellulose Acetate Butyrate 12.0 

Nitrocellulose (12.6% N) 4.0 

Energetic Plasticizer 7.6 

Ethyl Centralite 0.4 

TOTAL 100.0 

(Total Volatiles) (not available) 



4. RESULTS 

For each propellant at each different temperature, five runs were averaged to obtain the best 

value of conductivity and diffusivity at that temperature. The average values along with their 

standard deviations are given in Tables 7 and 8. Parabolic least-squares fits to these data are shown 

along with the data in Figs. 2-7, and the fitting parameters are collected in Tables 9-10. Error bars 

shown in the figures are the 5-run standard deviations. For M30, heat transfer along the extrusion 

axis proved to be about one third faster than in a direction normal to the extrusion axis, no doubt due 

to conduction enhancement afforded by alignment of the needle-like nitroguanidine crystals parallel 

to the extrusion axis. The microstructure of the other propellants is nearly isotropic so the 

conductivities are presumed to be isotropic. For this reason no subscript is used to denote direction 

for samples other than M30, even though measurements were made only along the extrusion axis. 

By comparing the values for thermal conductivity and diffusivity measured with the present 

technique to literature values for polymethylmethacrylate and Pyrex, Miller and Kotlar (1993) 

estimated that the technique provides an accuracy of ± 5 % for materials with properties between 

these standards. The results reported here all satisfy this condition. 

For convenience the polynomial fits to previously reported measurements (Miller (1992a)) 

of specific heats of specimens from the same six lots are given in Table 11. Estimated accuracy for 

these data is also + 5 %. 



TABLE 7. 104 x Thermal Conductivity (cal/cm-s-°C) 

(x indicates normal to extrusion axis, // indicates parallel to extrusion axis) 

Temperature MIO M9 JA2 M30x M30„ XM39 

-19°C 6.66 ± 0.34 no data 7.06 ±0.59 no data 10.0 ±0.5 6.12 ±0.25 

-18°C no data 6.61 ± 0.41 no data 7.87 ± 0.16 no data no data 

2°C no data no data no data 8.41 ± 0.23 no data no data 

3°C 7.36 ±0.27 7.06 ± 0.34 6.98 ±0.50 no data 11.6 ±0.7 6.34 ± 0.27 

22 °C no data no data 6.94 ± 0.29 no data 10.2 ±0.6 5.86 ±0.20 

23 °C 7.50 ±0.28 7.08 ± 0.22 no data no data 10.7 ±0.6 no data 

24°C no data no data no data 7.64 ± 0.80 no data no data 

48°C 7.26 ± 0.35 no data no data 7.76 ± 0.52 no data 5.88 ± 0.24 

49°C no data 6.92 ± 0.15 6.70 ± 0.27 no data 9.84 ±0.38 no data 

TABLE 8.   103 x Thermal Diffusivity (cm2/s) 

(_L indicates normal to extrusion axis, // indicates parallel to extrusion axis) 

Temperature M10 M9 JA2 M30x M30„ XM39 

-19°C 1.79 ±0.07 no data 1.62 ±0.11 no data 2.34 ±0.09 1.54 ±0.03 

-18°C no data 1.49 ±0.07 no data 1.78 ±0.03 no data no data 

2°C no data no data no data 1.74 ±0.04 no data no data 

3°C 1.81 ±0.05 1.44 ±0.07 1.45 ±0.08 no data 2.41 ±0.14 1.50 ±0.04 

22°C no data no data 1.30 ±0.05 no data 1.90 ±0.09 1.32 ±0.04 

23 °C 1.79 ±0.04 1.33 ±0.03 no data no data 2.09 ±0.11 no data 

24°C no data no data no data 1.46 ±0.11 no data no data 

48°C 1.55 ±0.05 no data no data 1.39 ±0.08 no data 1.21 ±0.04 

49°C no data 1.31 ±0.03 1.30 ±0.03 no data 1.88 ±0.04 no data 
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Figure 2. Thermal conductivity data (open circles, right scale), thermal difrusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits 
(line) for MIO homogeneous single-base propellant. 
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Figure 3. Thermal conductivity data (open circles, right scale), thermal diffusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits 
(line) for M9 homogeneous double-base propellant. 

10 



0.0025 

-40 

0.0008 

0.0006 

ü 
o i 
en 
■ 

(0 
u 

0.0002 

0.0000 
-20      0      20      40 

Temperature \ C) 

Figure 4. Thermal conductivity data (open circles, right scale), thermal diffusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits 
(line) for JA2 homogeneous triple-base propellant. 
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Figure 5. Thermal conductivity data (open circles, right scale), thermal diffusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits (line) for 
M30 composite triple-base propellant, for heat flow in a direction normal to the 
extrusion axis. 
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Figure 6. Thermal conductivity data (open circles, right scale), thermal diffusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits (line) for 
M30 composite triple-base propellant, for heat flow in a direction parallel to the 
extrusion axis. 
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Figure 7. Thermal conductivity data (open circles, right scale), thermal diffusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits (line) for 
XM39 composite nitramine propellant. 
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Figure 8. Thermal conductivity data (open circles, right scale), thermal difiusivity 
(solid circles, left scale), and their least-squares second-degree polynomial fits (line) for 
M43 composite nitramine propellant. 

TABLE 9. Polynomial Fits of Thermal Conductivity X 

(LEAST-SQUARES FITS) 

A(cal/cm-s-°C) = f0 + f,T + f2T
2 , for T in (-20,+50°C) 

(j_ indicates normal to extrusion axis, // indicates parallel to extrusion axis) 

Coefficient M10 M9 JA2 M30x M30// XM39 M43 

fo 7.263E-4 6.971E-4 7.012E-4 8.058E-4 1.082E-3 6.147E-4 6.011E-4 

f, 2.243E-6 1.357E-6 -3.064E-7 1.827E-8 1.461E-6 3.080E-7 2.146E-8 

f2 
-4.716E-8 -3.017E-8 -6.363E-9 -1.756E-8 -7.766E-8 7.351E-9 -1.669E-8 
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TABLE 10. Polynomial Fits of Thermal Diffusivity a 

(LEAST-SQUARES FITS) 

a(cm2/s) = f0 + f,T + f2T
2 , for Tin (-20,+50° C) 

(± indicates normal to extrusion axis, // indicates parallel to extrusion axis) 

Coefficient M10 M9 JA2 M30x M30„ XM39 M43 

fo 1.831E-3 1.426E-3 1.447E-3 1.683E-3 2.252E-3 1.470E-3 1.387E-3 

f, 1.218E-7 -3.449E-6 -7.491E-6 -6.790E-6 -7.603E-6 -4.781E-6 -4.605E-6 

f2 
-1.207E-7 2.003E-8 9.095E-8 3.323E-9 -1.722E-8 -1.979E-8 1.124E-8 

TABLE 11. Polynomial Fits of Specific Heat cp 

(LEAST-SQUARES FITS) 

cp(cal/g-°C) = f0 + f,T + f2T
2 + f3T

3 + fj4 , for T in (-40, +75°C) 

Coefficient M10 M9 JA2 M30 XM39 M43 

fo 2.404E-1 2.987E-1 3.003E-1 2.887E-1 2.496E-1 2.487E-1 

f, 7.831E-4 7.728E-4 8.128E-4 8.434E-4 7.25E-4 7.639E-4 

f2 
3.821E-6 1.031E-6 1.057E-6 4.800E-7 1.575E-6 4.105E-7 

f3 
5.201E-8 1.700E-7 1.552E-7 1.017E-7 6.144E-8 4.129E-8 

f4 
-9.439E-10 -2.278E-9 -2.190E-9 -1.537E-9 -9.142E-10 -5.334E-10 
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5. CONCLUSIONS 

Thermophysical properties are required for a wide range of ignition and combustion 

calculations and yet few measurements of these properties have been published for solid propellants. 

This report documents such measurements for six U. S. Army solid gun propellants over the 

temperature range -20 °C to +50°C using a newly developed technique for the simultaneous 

determination of thermal conductivity and diffusivity of small test specimens. The accuracy of these 

measurements, including previously measured specific heats, is estimated to be ± 5 % and least- 

squares polynomial fits of these data are provided as a function of temperature for convenience in 

calculations. 
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