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Design of materials with extreme thermal expansion 
using a three-phase topology optimization method 

0. Sigmund* and S. Torquato 
Department of Civil Engineering and Operations Research and 

Princeton Materials Institute 
Princeton University 

Princeton, N.J. 08544, USA 

Abstract 

Composites with extremal or unusual thermal expansion coefficients are designed 
using a three-phase topology optimization method. The composites are made of two 
different material phases and a void phase. The topology optimization method consists 
in finding the distribution of material phases that optimizes an objective function (e.g., 
thermoelastic properties) subject to certain constraints, such as elastic symmetry or 
volume fractions of the constituent phases, within a periodic base cell. The effective 
properties of the material structures are found using the numerical homogenization 
method based on a finite-element discretization of the base cell. The optimization 
problem is solved using sequential linear programming. 

To benchmark the design method we first consider two-phase designs. Our optimal 
two-phase microstructures are in fine agreement with rigorous bounds and the so-called 
Vigdergauz microstructures that realize the bounds. For three phases, the optimal 
microstructures are also compared with new rigorous bounds and again it is shown 
that the method yields designed materials with thermoelastic properties that are close 
to the bounds. 

The three-phase design method is illustrated by designing materials having max- 
imum directional thermal expansion (thermal actuators), zero isotropic thermal ex- 
pansion, and negative isotropic thermal expansion. It is shown that materials with 
effective negative thermal expansion coefficients can be obtained by mixing two phases 
with positive thermal expansion coefficients and void. 

•Partly on leave from Department of Solid Mechanics, Technical University of Denmark, DK-2800 Lyngby, 
Denmark (current and permanent address). 



1    Introduction 

In this paper, we use a topology optimization procedure to determine the distribution of three 
phases (two different bulk material phases and a void phase) in order to design composites 
with extremal or unusual thermal expansion behavior. Three phases are used (as opposed 
to two phases) since one can achieve effective properties of the composite beyond those of 
the individual components [25]. Microstructural variation is limited to one length scale in a 
unit cell as this is most easily manufacturable. 

Materials with extreme or unusual thermal expansion behavior are of interest from both a 
technological and fundamental standpoint. Of particular practical interest are materials with 
zero thermal expansion, maximum thermal expansion or force, and negative (i.e., minimum) 
thermal expansion. Heretofore, however, a systematic procedure to design materials with 
exotic thermal-expansion behavior has been lacking. 

Materials with zero thermal expansion coefficients are needed for use in structures subject 
to temperature changes such as civil engineering and space structures as well as piping 
systems. Examples are bridges, where temperature changes between day and night, and 
summer and winter, cause big structural changes, and space applications, where temperature 
differences between sunny and shady sides of a structure are extreme. Such temperature 
differences can cause distortion of space antennas and "rapid" temperature changes due to 
orbit of the Hubble space telescope are known to cause thermal distortions of its solar arrays 
in turn causing the arrays and thereby the telescope to vibrate (Collins and Richter [8]). 
Materials with maximum unidirectional thermal displacement or force can be employed as 
"thermal" actuators. Materials with negative thermal expansion coefficients can be used to 
overcome positive thermal expansion of other materials or, among other applications, be used 
for thermally operated fasteners. A fastener made of a negative thermal expansion coefficient 
material, upon heating, can be inserted easily into a hole because of the volume contraction. 
When cooled down, it will expand, fitting tightly into the hole and upon heating can be 
easily removed. Finally, the design of material with specific thermal expansion coefficients 
is important, to be able to eliminate thermal mismatch between parts in structures subject 
to heat changes. 

A negative thermal expansion material has the counterintuitive property of contracting 
upon heating. There are a number of existing materials with negative thermal expansion co- 
efficients. Glasses in the titania-silica family have isotropic negative expansion coefficients at 
room temperature [40]. Examples of materials that have negative thermal expansion at very 
low temperatures (< 100K) are silicon and germanium [22] as well as Bii.iSrx£,CaCu?.Ox 

superconductor single crystals [48]. Examples of materials with directional negative thermal 
expansion coefficients at room temperature are Kevlar, carbon fibers, plastically deformed 
(anisotropic) Invar (Fe-Ni alloys) [18] and certain molecular crystalline networks [3]. The 
negative expansion mechanism of these molecular-level networks is based on un-twisting of 
helical chains. Currently there is no way to manufacture these materials in extended form, 
but this an active area of research. 

An interesting question [3] is whether there is a mechanistic relationship between negative 
thermal expansion and negative Poisson's ratio? A material with negative Poisson's ratio 
expands laterally when pulled axially and can be manufactured by processing of open-walled 
foam structures described by Lakes [24]. We will show that isotropic materials with effective 



negative thermal expansion coefficients exist with positive values of the Poisson's ratio and 
that they can be obtained by mixing two phases with positive thermal expansion coefficients 
and void. 

Several researchers have addressed the problem of designing materials composites with 
specific directional thermal expansion properties. Autio, Laitinen and Pramila [2] designed 
laminates with specific elastic and thermal expansion coefficients by varying layering thick- 
nesses and directions. Wetherhold and Wang [47] tailored the thermal deformation of beams, 
and Parton and Kudryavtsev [31] discussed the design of one dimensional beams with nega- 
tive thermal expansion. Rodriques and Fernandes [34] designed thermally loaded structures 
with optimal stiffness. 

It was shown by Levin [27] and later by Rosen and Hashin [35], that there is a sim- 
ple relationship between the effective thermal expansion coefficients and the effective elastic 
moduli of two-phase materials. In other words, designing two-phase composites with extreme 
thermal expansion coefficients corresponds to designing two-phase composites with extreme 
bulk moduli. The problem of finding the structures that extremize the effective elastic 
properties of two-phase media has a long history beginning with the composite-sphere as- 
semblages of Hashin and Shtrikman [17] for the bulk modulus problem. Certain hierarchical 
laminates were shown to realize the Hashin-Shtrikman bounds on both the bulk and shear 
moduli of isotropic two-phase composites [10]. More recently, Milton and Cherkaev [28] have 
found multi-length scale materials possessing elastic properties ranging over the entire range 
compatible with thermodynamics. Vigdergauz [45, 46] and Grabovsky and Kohn [12, 13] 
have studied single-inclusion microstructures of extreme rigidity. Sigmund [41, 42, 43] has 
designed material structures with specific elastic properties (including isotropic negative 
Poisson's ratio material), where the microstructure is restricted to one length scale. 

For three-phase materials, one-to-one relationships between the thermal expansion coef- 
ficients and elastic properties do not exist. Indeed, for multiphase composites, Schapery [38] 
and Rosen and Hashin [35] found bounds on the thermal expansion coefficients in terms 
of the stiffness tensor. Recently, Gibiansky and Torquato [11] have improved upon the 
Rosen-Hashin bounds using the so-called translation method. This improvement was actu- 
ally motivated by the topology optimization results of the present study. To our knowledge, 
no one to date has addressed the problem of systematically designing three-phase materials 
with extreme isotropic thermal expansion coefficients. 

In this paper, we show how composites with extremal or unusual thermal expansion co- 
efficients can be designed using a three-phase topology optimization method based on the 
aforementioned works of Sigmund. The three phases consist of two different material phases 
and void. The two material phases can have different elastic and thermal expansion coeffi- 
cients, described by their elastic tensors C\jlx and C^, and their thermal strain coefficient 

tensors a\j and a\j , respectively. The basic goal is to maximize or minimize components, 

or combination of components, of the effective thermal strain tensor ofy' or effective stress 

tensor ß\j = C\"jkla^t , subject to constraints on phase volume fractions, effective stiffness 
and elastic symmetry. To check the validity of the optimization procedure, our results will 
be compared with the available bounds on thermoelastic properties for three-phase materials 
[11, 35, 38]. 



The topology optimization procedure proposed here, essentially follows the steps of con- 
ventional topology optimization procedures. The design problem is initialized by defining 
a design domain discretized by a number of finite elements. The optimization procedure 
then consists in solving a sequence of finite-element problems followed by changes in density 
and material type of each of the finite elements, dependent on the local strain energies. For 
simple compliance optimization, this corresponds to adding material where the strain energy 
density is high and removing material where the strain energy density is low. 

The proposed procedure differs from the conventional approach in an important aspect. 
In the original works on topology optimization (e.g. Bends0e and Kikuchi [4] and Kohn 
and Strang [23]), elimination of ill-conditioning and the existence of materials in elements 
of intermediate densities was ensured by using so-called ranked materials made of micro- 
scopically oscillating material on differing length scales or by using microstructures with 
rectangular holes. Using homogenization methods to determine the effective properties of 
ranked (or microstructured) materials and substituting the homogenized parameters into 
the "macroscopic" topology optimization problem, lead to the "homogenization approach to 
topology optimization". In this paper, however, we will use an "artificial" material model 
for intermediate densities which means that the material properties in a given element is 
simply some fraction times the material properties of solid material. As long as we end up 
having entirely solid material or void in each element, this is a perfectly valid approach. By 
using the "artificial-material" model, we simplify the whole design procedure significantly 
because the local problems of determining lamination parameters and orientations at differ- 
ent length scales of the ranked materials are eliminated. The "artificial-material" model has 
been used by several authors (e.g. Rozvany et al. [36], Mlejnek and Schirrmacher [29] and 
Sigmund [41]). 

At each step of the topology optimization procedure, we have to determine the effective 
thermoelastic properties of the microstructure. There exist several methods to determine 
these properties. However, because the topology optimization method is based on finite- 
element discretizations, and because the finite-element method allows easy derivation and 
evaluation of the sensitivities of the effective properties with respect to design changes, we 
have chosen to use a finite element based numerical homogenization procedure as developed 
in Bourgat [6] and Guedes and Kikuchi [14]. 

The paper is organized the following way. In section 2 we describe the three-phase topol- 
ogy optimization procedure and its application to design of material structures with extreme 
thermal expansion. The sequential linear programming method used to solve the topology 
optimization problem is described in section 2.2 and numerical implementation issues are 
discussed in section 2.3. Solving the topology optimization procedure as proposed, results in 
solutions with finite-element related problems such as checkerboards, mesh-dependency and 
local optima. These problems and procedures to avoid them are discussed in section 2.4. 
To benchmark the optimization procedure, results obtained are compared to bounds for two 
and three phase materials; the available bounds are listed in section 3. The performance 
of the design procedure is demonstrated by several examples in section 4. The calculation 
of the effective thermoelastic properties using a numerical homogenization procedure based 
on the finite-element method is briefly described in Appendix A and the sensitivity analysis 
necessary to solve the design problem is listed in Appendix B. 



2    Procedures for three-phase topology optimization 

This section describes a numerical procedure for topology optimization of three-phase ma- 
terial structures in two dimensions. A sequential linear programming problem is formulated 
to solve the optimization problem. The procedure is applied to the design of material struc- 
tures with extreme thermal expansion properties. For the derivations, we will assume that 
we can find the effective stiffness and thermal expansion tensors C\*ku oq*' and /?•* using 
the numerical homogenization method described in Appendix A. The sensitivity analysis 
necessary for solving the problem is derived in Appendix B. At the end of the section, we 
discuss implementation issues as well as some numerical difficulties and how to avoid them. 

Assuming two-dimensional linear elasticity (i.e. small strains), perfect bonding between 
the material phases, uniform temperature distribution and constant material properties, the 
thermoelastic behavior of materials can be described by the constitutive relations given as 

"ii = CijhiCki - CijkiaklAT = Cijkitki — ßijAT, (1) 

where Ciju, <?ij, £w, or«, ßij are the elasticity, stress, strain, thermal strain, and thermal stress 
tensors, respectively, and AT is the temperature change. We refer to an as the "thermal 
strain tensor" (the resulting strain of a material which is allowed to expand freely) and to 
ßij as the "thermal stress tensor" (the stress in a material which is not allowed to expand). 
For the three-phase composite of interest, the constitutive equation Eq. (1) is valid on a 
local scale (with superscripts (0), (1), and (2) appended to the thermoelastic properties, 
i.e. C\fkl, a\j and ß\j) and the macroscopic scale (with superscript (*) appended to the 
properties). In the latter case, the stresses and strains are averages over local stresses and 
strains, respectively, i.e. 

*« = C£&« - CUi4*)Ar = Cj&lu - ß^AT, (2) 

where overbar denotes the volume average. The effective thermoelastic properties, C\"kl, 

akl and ßij of the three phase composite are computed using a numerical homogenization 
method as described in Appendix A. 

The goal of this work is to optimize components or combinations of components of the 
effective thermal tensors a-* or ß\* by distributing, in a clever way, given amounts of two 
material phases and void within the design domain representing a base cell of a periodic 
material. In other words, we want to design microstructural topologies that give us some 
desirable overall thermoelastic properties. As will be seen later, materials with extreme 
thermal expansion tend to have low overall stiffness. Thus, for practical applications, one 
must bound the effective stiffness or bulk moduli from below. It should also be possible to 
specify elastic symmetries such as orthotropy, square symmetry or isotropy of the resulting 
materials. 



An optimization problem including these features can be written as 

Minimize   :   Some function of ay   or /3y , 

Variables 

Subject to 

Distribution of two material phases and void in the base cell, 

Constraints on volume fractions, 

Orthotropy, square symmetry or isotropy constraints, (3) 

Lower bound constraints on stiffness, 

Bounds on design variables. 

2.1    Formulation of the optimization problem 

This subsection discusses the individual parts of the optimization problem defined in Eq. (3). 

Objective function 

The objective function f{a\*\ ß\f) can be any combination of the thermal coefficients a;* 

or ß\*\ An example will be the case where we want to minimize the isotropic thermal 
expansion, i.e. the sum of the thermal strain coefficients in the horizontal and the vertical 
directions. In that case, the objective function will be f(a\f) = a$ + a^, where subscripts 
11 and 22 define horizontal and vertical directions, respectively. As another example we 
might consider the maximization of the thermal stress coefficient in the vertical direction. 
In this case, the objective function will be f{ß\f) = -ß$ where the minus sign is used to 
convert the maximization problem into a minimization problem. 

Design variables and mixture assumption 

Phase 1 material has the stiffness tensor C\]lt and the thermal strain coefficient tensor <*„ 

and similarly phase 2 material has the material tensors 0$, and a\f. The stiffness tensor of 

the "void" phase is taken as a small number xmin times C\]'kl, respectively, where xmin = 10~4, 
for reasons which will be explained later. 

The material type, that is, material phase 1, phase 2 or void, can vary from finite element 
to finite element as seen in Fig. 1. With a fine finite-element discretization, this allows us to 
define complicated bimaterial topologies within the design domain. Having discretized the 
design domain (the periodic base cell) with JV finite elements, the design problem consists 
in assigning either phase 1, 2 or void to each element such that the objective function is 
minimized. 

Even for a small number of elements, this integer-type optimization problems becomes 
a huge combinatorial problem which is impossible to solve. For a small design problem 
with N = 100, the number of different distributions of the three material phases would be 
astronomical (3100 = 5 • 1047). As each function evaluation requires a full finite element 
analysis, it is hopeless to solve the optimization problem using random search methods 
such as, genetic algorithms or simulated annealing methods, which use a large number of 
function evaluations and do not make use of sensitivity information. Following the idea of 
standard topology optimization procedures, the problem is therefore relaxed by allowing the 



Design domain (base cell) 

y 

| Phase 1 material 

[XI Phase 2 material 

Q  Void 

Periodic material structure 

Figure 1: Design domain and discretization for the three-phase topology optimization prob- 
lem. Each square represents one finite element which can consist of either phase 1 or 2 
material or void. 

material at a given point to be a mixture of the three phases. This makes it possible to find 
sensitivities with respect to design changes, which in turn allows us to use mathematical 
programming methods to solve the optimization problem. At the end of the optimization 
procedure however, we hope to have a design where each element is either void, phase 1 or 
phase 2 material. 

Using a simple artificial mixture assumption, the local stiffness and thermal strain coeffi- 
cient tensors in element e can be written as a function of the two design variables x\ and x\ 

cf.„(*;,*S) = (*i)"[(i-*;)<?$,+ XSC«], 
(4) 

<*$,(*;)   =   (l-*S)aH> + *S«g „w 

where 77 is a penalization factor discussed later. The variable x\ e [xmi„, 1] can be seen as a 
local density variable with x\ = xmin meaning that the given element is "void" and x\ — 1 
meaning that the given element is solid material. The variable x\ 6 [0,1] is a "mixture 
coefficient" with x\ = 0 meaning that the given element is pure phase 1 material and xf, = l 
meaning that it is pure phase 2 material. The local thermal strain tensor a£(a:|) is not 
dependent on the density variable x\. This can be explained by the fact that once we have 
chosen the local material mixture (i.e. the value of x\), the thermal strain coefficient does 
not change with density. 

It should be emphasized that the local material assumptions Eqs. (4) only are valid for 
the design variables taking the extreme values.1 Nevertheless, during the design process 
we allow intermediate values meaning that we are working with artificial (non-existing) 

JA material with constitutive behavior close to the described could be realized as an isotropic porous 
triangular microstructure 



materials. This violation is not critical as long as we end up with a discrete design as 
discussed in the introduction. 

Experience shows that the penalty parameter r) should be given values ranging from 3 
to 10 depending on the design problem. The influence of the penalty parameter can be 
explained as follows: Let us assume that x% = 0 in element e. The local stiffness tensors 

dependence of x\ [Eq. (4)] can then be written as Ce
ijkl{x\) = {xl)'C$u). By specifying a 

value of r) higher than one, the local stiffness for fixed x\ < 1 is lowered, thus making it 
"uneconomical" to have intermediate densities in the optimal design. 

Constraints on volume fractions 

Having denned the design variables xx and x2 above, and assuming that the design domain 
has been disrectized by N finite elements of volume Y', the volume fractions of the three 
phases can be calculated as the sums 

cW = hExl(l-*l)ye>        c<2> = iX>^2Y%        c(°» = l-c(1»-C<2»,        (5) 

where Y is the volume of the base cell. For a specific design problem, we might want to 
constrain the volume fractions of the phases. This can be done by defining two volume 
fraction constraints as 

r(D   < c(i) < c(i) c<2»   < c<2> < c(2) , (6) cmin i c       — cm«n ""mm — *"       — "-man \   ' 

where c£]„, c£]n) cg>t 
and C»L are lower and upper bounds on the volume fractions of 

material 1 and 2, respectively. By setting the lower bound constraint equal to the upper 
bound constraint, it is possible to fix the volume fractions of the individual phases. 

Isotropy or square symmetry constraints 

For the purpose of designing materials with either orthotropic, square symmetric or isotropic 
elastic parameters, such constraints must be implemented in the optimization problem. Or- 
thotropy of the materials can be obtained simply by specifying at least one geometrical 
symmetry axis in the base cell. Assuming that a material structure is orthotropic, the condi- 
tion for square symmetry of the elasticity tensor is that cQi ~ C2222 = 0. and the conditions 
for isotropy of the elasticity tensor under plane stress assumption are that Cull - C2222 = 0 
and (C[l>n + c£>22) - 2(C$2 + 2C$12) = 0. Finally, the condition for thermal expansion 
isotropy is that c$ - 0$ = 0 and 0$ = 0. These conditions are difficult to implement 
as equality constraints in an optimization problem because the starting guess might be in- 
feasible (i.e. anisotropic). Therefore, it is chosen to implement the constraints as a penalty 
function added to the cost function. The penalty function is defined as the squared error in 
obtaining either square symmetry, elastic or thermal isotropy, times the penalization factors 
ru r2 and r3, respectively. It should be noted here that three 60 degree symmetry lines of a 
microstructure is a sufficient but not a necessary condition for isotropy. Indeed, this paper 
shows examples of isotropic material structures with only one line of symmetry. 



The errors in obtaining square symmetry or isotropy, respectively, can be written as 

Error      =    '   "" ~    2222> I7\ Urrorsq   - (7) 
I Will T ^2222^ 

_ (wm + C2222) _ 2(Cn22 + 2Cj2i2) 
Error iso   -   •* j- j- '— +Error s„. 

(Mill T ^2222^ 

Expressions similar to Errorsq and Erroriso are also known in the literature of composite 
materials (e.g. Christensen [7]) as the practical composite parameters U2 and U3. 

The error in obtaining isotropic thermal expansion can be defined as 

Error»      - '■  "'      v  u ~   22; (K\ r<rrortherm - ,   M ,    (.)., (°j 

Lower bound constraints on effective stiffness 

As will be seen later, extreme thermal properties can be obtained if we allow the overall 
stiffness of the material to be small. Low stiffness is generally undesirable and therefore we 
will introduce a lower bound constraint on the the directional Young's moduli E["^ and E^ 
or on the bulk modulus fcM 0f the material. 

Such constraints can be written as #(„,,•„) < gi{C\fki). For isotropic materials, we have 

a lower bound constraint on the bulk modulus [fc|$n < ifc<*> = (Cffn + C^L)/2 + CIIMI- 

For anisotropic materials, we might want to constrain the value of the horizontal or vertical 
Young's moduli, i.e. [E^ < £<*> = C& - (Cj&JVC&J or [££>,<„ < £<*> = C&2 - 

(C1122) /Clnl\. 

Lower bound constraints on design variables 

For computational reasons (singularity of the stiffness matrix in the finite element formula- 
tion), the lower bound on design variable x\ is set to xmin; not zero (xmin = 10~4). Numerical 
experiments show that the "void" regions have practically no structural significance and can 
be regarded as real void regions. The bounds on the design variables can thus be written as 
0 < xmin < x\ < 1 and 0 < x\ < 1. 

The final optimization problem 

An optimization problem including above mentioned features can now be written as 

Minimize   :   $(Xl, x2) = f(a\j\ ß\f) + riErrorsqr + r2Erroris0 + r3Errortherm, 

subject to   :   gi(min) < #(C$,), i = l,...,M, 

cW-   < c(1) < c(1) CQI 

c(2)    < C(2> < C<2> 

0 < xmin < xi < 1, 

0 < x2 < 1, 



where Xi and x2 are the jV-vectors containing the design variables and the three penalty 
parameters r,- can be set to zero or non-zero values, depending on the desired isotropy type. 

2.2    Sequential linear programming method 

Topology optimization problems in the literature often consist in the optimization of a simple 
energy functional (e.g. compliance or eigenfrequencies) with a single constraint on material 
resource, and these problems can therefore be solved very efficiently using optimality criteria 
methods. In this paper, however, we are considering several different objective functions and 
multiple constraints which can not be written in energy forms and therefore it will be cum- 
bersome if not impossible to formulate the optimization problem as an optimality criteria 
problem. Instead we will use a mathematical programming method called sequential linear 
programming (SLP), which consists in the sequential solving of an approximate linear sub- 
problem, obtained by writing linear Taylor series expansions for the objective and constraint 
functions. The SLP method was successfully used in optimization of truss structures by 
Pedersen [32] and was evaluated as a robust, efficient and easy to use optimization algorithm 
in a review paper by Schittkowski [39]. 

Using the sequential linear programming method, the optimization problem Eq. (9) is 
solved iteratively. In each iteration step, the optimization problem is linearized around the 
current design point {xi, x2} using the first part of a Taylor series expansion and the vector 
of optimal design changes {Axi, Ax2} is found by solving the linear programming problem 

f 9$   9$ 1T 

Minimize   :   $ + < -g—, ^— f   {Axj, Ax2}, 

subject to   :   gi{min) ~9i < IQ~, g^-\   {AXl, Ax2}, i = 1,...,M, 

■   C--C(1)^{^^}T{AX1'AX2}^--C(1' (10) 

:   c2m„ - c<» < {*£, U}T {Ax,, Ax2} < «w - c<*>, 

:   {Ax!z,,Ax2t} < {Ax!,Ax2} < {Axlt/, Ax2[/}, 

where Axu, Ax2i, Axw and Ax2v are move-limits on the design variables. The move-limits 
are adjusted for the absolute limits given in Eqs. (9). 

The applied move-limit strategy is important for the stable convergence of the algorithm. 
Here we use the simple rule that the move-limit for a specific design variable is increased 
by a factor of 1.4 if the change in the design variable has the same sign for two subsequent 
steps. Similarly the move-limit is decreased by a factor of 0.6 if the change in the design 
variable has opposite signs for two subsequent steps. 

The sensitivities, which are necessary to solve the linearized sub-problem Eq. (10), are 
derived in Appendix B, and are calculated locally for each element. This means that no 
additional finite-element problems have to be solved to find the sensitivities needed. 
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Initialization 

(Starting guess) 

Homogenization 

(Finite element problems) 

Sensitivity analysis 

(Linearization) 

Optimization step 

(Linear Programming problem) 

Figure 2: Flowchart of the design algorithm 

2.3    Numerical implementation issues 

This subsection describes the numerical implementation of the three-phase topology op- 
timization problem including the finite-element discretization and procedures, the linear 
programming package DSPLP [16] from the SLATEC library, control of move-limits and a 
flowchart of the procedure. 

A flowchart of the design algorithm is shown in Fig. 2. The individual steps of the design 
procedure are described in the following. 

Initialization 

First, we initialize the design problem by selecting the objective function, specifying a lower 
bound on the stiffness, selecting isotropy type and symmetry lines. We also choose the design 
domain discretization, using 900 or 3600 4-node linear displacement finite elements, corre- 
sponding to 30 by 30 or 60 by 60 element discretizations, depending on accuracy demands 
and available computing time. To save computer time, a design problem can first be solved 
on a 30 by 30 element mesh. When a solution has been reached, each of the elements are 
divided into four and the procedure is continued until convergence. 

Starting guess 

Starting distribution of densities and material types (i.e. starting values of the design variable 
vectors Xi and x2) is up to the user. Having absolutely no idea of what the solution will look 
like, a random distribution of densities and material types is chosen as the starting guess. If 
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the user has an idea of what the solution will look like or he has an old solution to a similar 
problem, considerable amount of computing time is saved by using this (old) topology as a 
starting guess. 

Homogenization step 

The equilibrium equations Eqs. (17) for the homogenization problem derived in Appendix A, 
are solved using the finite-element method applied to calculation of effective material prop- 
erties in Bourgat [6] and Guedes and Kikuchi [14]. 

Sensitivity analysis 

The sensitivity analysis necessary to solve the linear programming problem in Eq. (10) is 
derived in Appendix B. The computation of the sensitivities is fast because they can be 
found from the strain fields already computed by the homogenization procedure. 

Linear programming problem 

The linear programming problem Eq. (10) is solved using a linear programming solver 
DSPLP [16] from the SLATEC library. As the optimization is non-sparse, the DSPLP 
routine is invoked with an option for no sparsity. Nevertheless, the routine has proven faster 
and demands less storage space than other LP-algorithms tests. 

Convergence 

The iterative design procedure is repeated until the change in each design variable from step 
to step is lower than 10~4 (by experience). 

2.4    Problems related to topology optimization 

This subsection discusses some numerical difficulties due to the finite-element discretization, 
namely checkerboard patterns, mesh-dependencies and local minima. 

The checkerboard and mesh-dependency problems 

Applying the topology optimization method to different design problems, one often encoun- 
ters regions of alternating solid and void elements, referred to as checkerboards, in the 
"optimal solutions". The regions are seen in many works on general topology optimization 
and it was earlier believed, that such regions represented optimal microstructure on the 
finite-element level. However, two recent papers by Jog and Haber [21] and Diaz and Sig- 
mund [9] conclude, that regions with checkerboard patterns have artificially high (numerical) 
stiffness (higher than the theoretical bounds) and can be explained by poor numerical mod- 
elling of the stiffness of checkerboards by lower order finite elements. Both papers conclude, 
that checkerboards are certainly prone to appear in topology optimization using four-node 
finite elements, as here, but also using higher order elements such as nine-node quadratic 
displacement finite elements. 
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Another problem, due to the finite-element discretization, is mesh-dependency, which 
refers to the non-convergence of solutions with mesh-refinement. Refining the finite-element 
mesh should ideally result in the same topology as for a coarse mesh but with better defini- 
tions of the boundaries between the material phases. However, a refinement does result in a 
solution with a more complicated (finer) microstructure. Methods to avoid this problem have 
been suggested in three recent papers. Jog, Haber and Bends0e [15] suggest to introduce a 
constraint on global perimeter. In a paper on bone remodelling, closely related to topology 
optimization methods, Mullender, Huiskes and Weihnans [30] suggest a mesh-independency 
algorithm that assumes that bone growth at a point is dependent on the loads in a (mesh- 
independent) neighborhood of the point. A method related to the latter approach, but with 
different origin, is proposed in Sigmund [41], who performs the density update based on low- 
pass filtered strain energy fields. To avoid the checkerboard and mesh-dependency problems, 
we use the method suggested in Sigmund [41] 

Local minima 

The topology optimization problem is very prone to converge to local minima. However, 
introducing the mesh-independency algorithm (Sigmund [41]) makes it possible to prevent 
this problem to a certain extent. Solving a cell design problem is typically done as follows. 
First we solve the optimization problem with a low value of the low-pass filter parameter, 
i.e., we do not allow rapid variation in the element densities. This results in a design with 
large areas of intermediate densities but it also prevents the design in converging to a local 
minimum (binary design). Gradually, we increase the low-pass filter parameter, in turn 
letting the design problem converge. In that way, we gradually arrive at a solution which is 
entirely binary and which is, hopefully, a global optimum. To make sure that the actually 
obtained microstructures are global optima indeed, the same optimization problem is always 
solved using differing starting guesses, move-limit strategies and choices of low-pass filter 
parameter and penalty parameter j]. However, as will be seen later, topologically different 
solutions with similar values of the objective function have been found when solving specific 
design problems. Solutions which are "shifted" (translated half a base cell dimension) of 
other solutions have also been encountered. The fact that the effective properties of the 
design examples are close to theoretical bounds supports our belief, that we are finding the 
optimal topologies with the proposed design procedure. 

Computing time 

One design iteration, typically takes three seconds (30 by 30 element discretization) and 20 
seconds (60 by 60 element discretization) on an Indigo 2 work station. To arrive at an opti- 
mal solution, depending on starting guess, several thousand iterations are needed. Including 
interaction by the user, a full design process may take two working days. Comparing the 
computing time and number of iterations with other works in topology optimization it can 
be concluded that the present procedure is extremely slow. However, these other works in 
topology optimization usually consider self-adjoint loading problems and statically determi- 
nant structures where a solution can be found often within a few design iterations. This is 
due to the fact that the stress fields of statically determinate structures do not change much 
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with design. In this paper, however, the optimal strain and stress fields for the given design 
problem are unknown in the beginning and must emerge gradually during the design process 
together with the optimal material distribution. 

3    Rigorous expressions and bounds on effective ther- 
moelastic properties 

Rigorous expressions for the effective thermal expansion coefficients of two-phase, isotropic 
composites and rigorous bounds on the effective coefficients of three-phase, isotropic com- 
posites will serve to benchmark the design algorithm. For simplicity, we assume that the 
constituent phases are isotropic which implies that they can be described by their Young's 
moduli £(0), £(1) and E&\ their Poisson's ratios i/'0', vw and i/<2> and their thermal strain 
coefficients a(0), a'1' and a(2'. It is also assumed that the composite is macroscopicically 
isotropic. The bulk and shear moduli of the phases are then 

*(i, = 2(Sör   "
W
 = 2(ITW   '=0'1'2- (11) 

Two-phase materials 

The effective thermal strain coefficient a'*' of a two-phase isotropic material is explicitly 
given in terms of the effective bulk modulus fc(,) (Levin [27] or Rosen and Hashin [35]) 

aWfcW (fc<2> - *<*>) - «Wit«2) (Art*) - fc<*>) 
a<* = *(*) (fcp) - fed)) • ^12' 

The best bounds on the isotropic effective bulk modulus fcw, given volume fraction infor- 
mation only, were derived by Hashin and Shtrikman [17] and read 

((Ei~))"'-'-^Ws((Rb))"-'- ('3> 
where bars denote averaged values and jimin and \imax are the minimum and maximum shear 
moduli [Eq. (11)] of the three phases, respectively. Bounds for the thermal strain coefficient 
are therefore obtained by inserting the upper and lower bounds for the bulk modulus Eq. (13) 
into Eq. (12). 

Three-phase materials 

Bounds on the effective thermal strain coefficient a^ < a<*> < a^> of three-phase, isotropic 
composites were found by Schapery [38] and Rosen and Hashin [35] and read 

a(L> J      Jim - \ß\a U«      k) +  k   \\k)      K'l 
± 

\k)   k« 

1/2 / i     i\1/2l 
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where 

H(©-0 («-¥)-(*-?)]"' 
Note that there is a typographical error in the equation [Eq. (14)] in Rosen and Hashin [35] 
as well as in the corresponding formula in the text by Christensen  [7]. 

A bounded domain of possible effective bulk moduli and thermal strain coefficients for a 
specific choice of constituent phases is shown in Fig. 4. We found that the proposed design 
method did not yield pairs (fc<*>,aM) that were close to the Schapery-Rosen-Hashin bounds 
[Eq. (14)]. There were two possible explanations for this discrepancy: either the design 
method could not find the optimal solutions, or the bounds themselves could be improved 
upon. Indeed, the latter explanation turned out to be true. 

Inspired by above mentioned discrepancy Gibiansky and Torquato [11] recently found 
improved bounds, which are also shown in Fig. 4. The new bounds can be written as 

5}   =   ^^{(^-^)(^ + ^)(^-) + 
(*M-*W)(*<<0 + ^„)(    *£L_U (15) 

where 

* = -(*<*>+*»-)(*<*>+,min) \ (j-^-) - OM F+ 
[yk + PminJ        \k + HmaxJj 

(Vr, -'-•»{'"^"-»(^'-'"^-»(n^:)} 

and fc<L> and W* are the lower and upper Hashin-Shtrikman bounds on bulk modulus as 
given in Eq. (13). As will be seen in the subsequent section, the solutions obtained by the 
design procedure are very close to the new bounds. 

Examination of the thermoelastic bounds in Fig. 4 reveals that extreme values (e.g. 
negative values) of thermal strain coefficients only are possible for low bulk moduli. If we 
simply tried to minimize/maximize the thermal strain a<*>, we would end up with a very 
weak material. Therefore, there is a tradeoff between extremizing thermal strain coefficients 
on the one hand and ending up with a stiff material on the other. This problem will be 
discussed in more detail in the next section. 
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4    Design examples 
In this section, we will first discuss design examples with mixtures of hypothetical materials. 
These examples are used to benchmark the design algorithm for two- and three-phase design. 
We will also study other design examples that utilize real materials as constituent phases. 

Plotting results 

During the iterative procedure, a Postscript plot of the topology is generated every 10 iter- 
ations. The plot shows the current density and material distribution in the base cell, thus 
allowing the user to follow the evolution of the microstructure and interact if necessary. The 
plots in the following sections show the optimal density and material type distributions for 
the different design problems. If an element is dominating material phase two (i.e., xe

2 > 0.5), 
the element is illustrated by a cross with grey scale denoting the density x\; white means 
void (x\ = xmin) and black means solid (x\ = 1). If the element is dominating material 
phase one (i.e., x\ < 0.5), it is shown as a filled rectangle with grey values interpreted as 
before. For all examples, we both show the resulting topologies represented by a single base 
cell (the design domain) and as a repeated microstructure consisting of 3 by 3 base cells. 

4.1    Comparison with two-phase bounds 

The two-phase bounds given by Eqs. (12) and (13) are used for benchmarking the design 
algorithm for two-phase design. The non-dimensionalized material data for the two phases 
are chosen as E^/E^ = 10, i/W = v™ = 0.3, a«2'/^1' = 10 and c« = c<2> = 0.5. 

The bounds on the thermal strain coefficient for this mixture are found from Eq. (12) 
to be given by 6.3412 < a<*Va(1) < 8.2524 and the bounds on the bulk modulus are found 
from Eq. (13) to be given by 0.0996 < fcW/fc'» < 0.1690. 

First we try to maximize the effective thermal strain coefficient which through Eq. (12) 
corresponds to maximizing the effective bulk modulus. Specifying macroscopic isotropy and 
horizontal and vertical geometric symmetry, the attained values with a 60 by 60 element 
discretization are aL*L/"(1) = 8-2349 and 4*L/*(1) = 0.1680. If we try to minimize the 
thermal strain coefficient we just get the "inverted" microstructure, meaning that the two 
domains are interchanged. The actual numbers obtained for this case are a£in/a

(1> = 6.3907 
and fc(*| /fcw = 0.1007. The optimal topology of the microstructure for maximum thermal 
strain value and isotropy constraint is shown in Fig. 3 (top). 

Relaxing the isotropy requirement by only specifying square symmetry (but still spec- 
ifying horizontal and vertical geometric symmetry), the attained values with a 60 by 60 

element discretization are a«, = 8.2320 and 4*L/fcW = °-1677> aml> = 6'3733 and 

fcHjfcW = 0.1004, respectively. The actual topology of the optimal two-phase microstruc- 
ture is shown in Fig. 3 (bottom). As expected, the optimal microstructural topologies 
resemble the energy minimizing microstructures of Vigdergauz [45]. 

It should be noted that we get the same (except for numerical errors) effective properties 
for the isotropic material and square symmetric microstructures. This means, that the 
optimal rigidity Vigdergauz microstructures can be made isotropic by using the new geometry 
in Fig. 3 (top) instead of the one in Fig. 3 (bottom).  Not surprisingly, it also shows that 
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Figure 3: Optimal microstructures for two-phase design problem. Maximization of thermal 
strain coefficient with and without macroscopic isotropy constraint (top and bottom respec- 
tively). The filled regions consist of low expansion material (phase 1) and the cross-hatched 
regions consist of high expansion material (phase 2). 

solutions with widely different topologies can have the same values of the objective function. 

4.2    Comparison with three-phase bounds 

The three-phase bounds given by Eqs. (13), (14) and (15) are used for benchmarking the 
design algorithm for three-phase design. The material data for the two phases are chosen as 
£(l)/£(2)   =   1(   „(1)   =  v(2)  = 0 3;   Q(2)/Q(1)   =  10)   and  the volume fract;ons   are prescribed tQ 

be c« = c<2> = 0.25 (i.e. c*0' = 0.5). Note that the volume fractions c, are held fixed for this 
hypothetical composite, to allow for comparison with the bounds and for easy interpretation 
of the results. 
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Figure 4: Bounds for three-phase design example. The circles with letters a-d denote the 
obtained values for the microstructures shown in Figs. 5 and 6. 
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Four three-phase design examples, constrained to be elastically isotropic, are considered 
as follows: 

(a) Minimization of the isotropic thermal strain coefficient a'*'/a(1) with a lower bound 
constraint on the effective bulk modulus given as 10% of the theoretically attainable 
bulk modulus, i.e. fcw/fc(1) = 0.0258. Horizontal geometric symmetry is specified. 

(b) Same as design example (a) but with horizontal, vertical and diagonal (geometric) 
symmetry. 

(c) Maximization of bulk modulus &(*'/&(1' for fixed zero thermal expansion Q'*'/C(
(1
' = 0. 

Horizontal geometric symmetry is specified. 

(d) Maximization of isotropic thermal stress coefficient ß'**//?'1' with horizontal, vertical 
and diagonal geometric symmetry. 

The old and new theoretical bounds are given by Eqs. (13) and (15), respectively, and they 
are shown Fig. 4. In examples (a) and (b), the lower bound on the possible thermal strain 
coefficient is -5.567 < a'*'/a(1'- In example (c), the upper bound on possible bulk modulus 
for zero thermal expansion is fcw/&(1) < 0.0692. The upper bound on the thermal stress 
coefficient in design example (d) is /?<*>//?(i) < 3.15 (for k^/k^ = 0.237). 

The resulting topologies are shown in Figs. 5 and 6 and their effective properties are 
shown in Table 1 and plotted as small circles in Fig. 4. Studying the graph in Fig. 4, we 
see that the obtained effective values are far away from the original Schapery-Rosen-Hashin 
bounds. This discrepancy inspired Gibiansky and Torquato to try to improve the bounds 
and indeed improvement was possible as seen in Fig. 4. The effective values of the examples 
(a)-(d) are still somewhat away from the improved bounds. This can be explained by the 
fact that the new bounds by Gibiansky and Torquato have not been proven to be optimal. 
Furthermore, it is our experience that a finer finite-element mesh makes it possible to get 
closer to the bounds. In example (a), the minimum thermal strain coefficient obtained for 
a 30 by 30 mesh is aw = -3.59 and a(*> = -4.17 for the 60 by 60 element discretization 
shown in Fig. 5. Due to computer time limitations, it has not been possible to try out finer 
discretizations. 

The actual mechanisms behind the extreme thermal expansion coefficients of the ma- 
terialstructures can be difficult to understand. To visualize one of the mechanisms, the 
(exaggerated) displacements, due to an increase in temperature of the microstructure in 
Fig. 5 (bottom), is shown in Fig. 7. Studying Fig. 7, we note that there appears to be 
contact between parts of the microstructure. This contact is only due to the magnification 
of the displacements used in the illustration. The simple linear modelling used here can not 
take such problems into account. Nevertheless, it would be interesting to extend the analysis 
to include non-linear behavior including contact, which would open up for a whole new world 
of interesting design possibilities. We will leave these extensions to future studies. 

When allowing low bulk moduli [as in examples (a) and (b)], the main mechanism behind 
the extreme (negative) thermal expansion is the reentrant cell structure having bimaterial 
components which bend and cause large deformation when heated. The bimaterial interfaces 
of design examples (a) and (b) bend and make the cell contract, similar to the behavior 
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Figure 5: Examples (a) (top) and (b) (bottom): Optimal microstructures for minimization 
of effective thermal strain coefficient corresponding to the circles a and 6 in Fig. 4, respec- 
tively. The white regions denote void (phase 0), the filled regions consist of low expansion 
material (phase 1) and the cross-hatched regions consist of high expansion material (phase 
2). 
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Figure 6: Examples (c) (top) and (d) (bottom): Optimal microstructures for maximization 
of bulk modulus with zero thermal expansion (top) and maximization of effective thermal 
stress coefficient (bottom) corresponding to the circles c and d in Fig. 4, respectively. The 
white regions denote void (phase 0), the filled regions consist of low expansion material 
(phase 1) and the cross-hatched regions consist of high expansion material (phase 2). 

!          ^PKSS-            eMSii^M. 
i^^^K^          ^Nii^^l 

A   -J^^JL : A 

Figure 7: Thermal displacement of microstructure in Fig. 5 (bottom). 
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Example Objective/ 
Constraint 

JfcW/ifeW 
(bound) 

„(>) QW/a(i) 

(bound) 

ßto/ßW 
(bound) 

(a), Fig. 5 Min. öW/QU) 

fcM/fcW > 0.0258 
0.0258 0.039 -4.17 

(-5.567) 

(b), Fig. 5 Min. aW/a(U 

fcW/fc(1) > 0.0258 
0.0258 0.51 -4.02 

(-5.567) 

(c), Fig. 6 Max. k^/kM 
a<*)/o(1) < 0.0 

0.0692 
(0.0814) 

0.54 0 

(d), Fig. 6 Max. ßW/ßW 0.243 0.51 3.01 
(3.15) 

Table 1: Thermoelastic parameters for optimal three-phase microstructures composed of 
hypothetical materials compared with the bounds. The white regions denote void, the filled 
regions consist of low expansion material (phase 1) and the cross-hatched regions consist of 
high expansion material (phase 2). 

of negative Poisson's ratio materials [24]. If a higher effective bulk modulus is specified, as 
in example (c), the intricate bi-material mechanisms are less pronounced resulting in a less 
extreme expansion (a, = 0). Finally, maximizing the expansive stress, as in example (d), 
results in a structure without bimaterial mechanisms, where the high expansion phase (cross 
hatched phase) is arranged such that it maximizes the horizontal and vertical expansion. 

Design examples (a) and (b) in Fig. 5 demonstrate how two, topologically, very differ- 
ent microstructures can have (almost) the same value of the objective function. The only 
difference between the two examples is the specified geometric symmetry. 

In order to check the validity of the effective values computed by the homogenization code, 
we will make a comparison between a simple example and an idealized beam model. Figure 8 
shows the optimal microstructure (e) for maximization of the thermal strain coefficient in 
the vertical direction a2j. We specify geometrical symmetry about horizontal and vertical 
axes, effective vertical stiffness component C2222 ^ 0-07 and volume fractions c'1' and c'2' 
less or equal 0.2. The obtained values are aft' = —20.7 and a22 = 33.5. The actual material 
volume fractions in the optimal topology are c'1' = 0.167 and c'2> = 0.200 and effective 
horizontal and vertical stiffness components are fcM = 0.070, respectively. 

To check the obtained values, we calculate the effective thermal strain tensor using an 
idealized beam model in Appendix C. The predicted thermal strain coefficients and bulk 
modulus, are aft' = —21, ay = 32 and fcM = 0.085, respectively. Good agreement between 
the idealized beam model and the effective properties is observed. 
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Figure 8: Example (e): Optimal microstructure for maximization of thermal strain in the 
vertical direction ay. The white regions denote void (phase 0), the filled regions consist 
of low expansion material (phase 1) and the cross-hatched regions consist of high expansion 
material (phase 2). 

4.3    Mixtures of real materials 

For the design of new materials with extreme thermal expansion coefficients, the two base 
materials should be of equal stiffness but widely differing thermal strain coefficients. Two 
materials fulfilling this requirement are isotropic Invar (Fe-36%Ni) and Nickel as discussed 
in the introduction. For the next design examples, the volume fractions of the material phases 
are unconstrained. This will allow for a wider range of minimum and maximum values, in 
contrast to the hypothetical examples (a)-(e) in which the volume fractions were fixed. 

The material properties of Invar and Nickel can be found in the ASM-Handbook [1]. The 
Young's moduli are 150 GPa and 200 GPa, respectively, Poisson's ratios are 0.31 for both, 
and the thermal expansion coefficients are 0.8(im/(m/{) and 13Aßm/(mK), respectively. 

(f) Minimization of the isotropic thermal stress coefficient /?(*'. Horizontal geometric sym- 
metry is specified. 

(g) Minimization of the vertical thermal stress coefficient ß$. Horizontal and vertical sym- 
metry is specified. 

(h) Minimization of the vertical thermal stress E^afä. Horizontal and vertical symmetry 
is specified. 

(i) Maximization of the vertical strain (a«)22 with constraint on vertical Young's modulus 
£2   > 5 GPa. Horizontal and vertical symmetry is specified. 

The resulting topologies are shown in Figs. 9, 10 and 11, and their effective properties are 
shown in Table 2. 

To overcome the positive thermal expansion of other surrounding materials, we seek to 
maximize the contraction force, i.e., minimize the isotropic thermal stress coefficient as in 
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BBSS 

Figure 9: Examples (f): Optimal microstructure for minimization of the isotropic thermal 
stress coefficient /?'*'. The white regions denote void (phase 0), the filled regions consist of 
Invar (phase 1) and the cross-hatched regions consist of Nickel (phase 2). 

Example Objective «<*> EM i/W ßM cl'Vc'2' 
ßml(mK) GPa kPa/K 

Invar 0.8 150 0.31 175 1/0 
Nickel (Max. ßM) 13.4 200 0.31 3890 0/1 

(f) Fig. 9 Min. ßM -5.0 15 0.06 -78 0.60/0.28 

(g) Fig. 10 Min. ß$ 10.0/-1.6 9.2/8.8 -0.75/-0.80 258/-210 0.49/0.38 

(h) Fig. 10 Min. E^dfl 5.4/-4.7 67/30 0.06/0.02 392/-128 0.60/0.30 

(i) Fig. 11 Max. a{22 23/35 1.1/5.0 -.14/-.62 2/174 0.38/0.46 

Table 2: Thermoelastic parameters for optimal microstructures made of Invar (phase 1) and 
Nickel (phase 2). 
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Figure 10: Examples (g) (top) and (h) (bottom): Optimal microstructures for minimization 
of thermal stress coefficient ß!$ (top) and minimization of vertical contraction stress E^ctQ- 
The white regions denote void (phase 0), the filled regions consist of Invar (phase 1) and the 
cross-hatched regions consist of Nickel (phase 2). 

25 



Figure 11: Example (i): Optimal microstructure for maximization of thermal strain in the 
vertical direction a^.. The white regions denote void (phase 0), the filled regions consist of 
Invar (phase 1) and the cross-hatched regions consist of Nickel (phase 2). 

example (f). The obtained isotropic contraction stress of example (f) is /?'*' = —78GPa. 
By relaxing the isotropy requirement and allowing orthotropic materials the directional con- 
traction stress can be increased. In example (g) we minimize the value of ß^' and get the 
effective value R('J = — 128GPa. Minimizing the value of ß^, gives us a composite which for 
fixed boundaries has high contraction force (remember that the thermal stress coefficient /3'*' 
is the stress in a material constrained at the boundaries). If we want to maximize the contrac- 
tion force for a material with free boundaries, we should minimize the product (£*)2(a«)22 as 
done in example (h). The "free boundary" stress of example (g) is (£,)2(a.)22 = —14GPa, 
whereas the "free boundary" stress of example (g) is (£»)2(a»)22 = —141GPa. 

If we want to maximize the expansion stress of the composite, the best choice would be 
to take solid nickel material both for the isotropic and the directional cases. 

The isotropic negative thermal expansion materials in examples (a), (b) and (f) all 
have positive Poisson's ratios (0.04, 0.52 and 0.06, respectively), showing that there is no 
mechanistic relationship between negative thermal expansion and negative Poisson's ratio. 

In example (i) we see again that allowing orthotropy can lead to high directional expan- 
sion coefficients. The vertical coefficient (Q»)22 of example (i) is 2.6 times higher than for 
solid nickel, but at the cost of a low vertical Young's modulus (2.5% of solid nickel). 
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5    Conclusions 

We have proposed a method to design material microstructures with extreme thermoelastic 
properties. The optimization procedure has been shown to be very accurate in producing 
the optimal microstructures. Indeed, the results of this study motivated Gibiansky and 
Torquato to improve upon the 29-year old Schapery-Rosen-Hashin bounds on the thermal 
expansion of three-phase media. Our obtained values are close to the Gibiansky-Torquato 
bounds. We have shown that extreme thermal expansion behavior can be obtained but at 
the cost of a low bulk modulus. Therefore, there is a tradeoff between extremizing thermal 
strain coefficients on the one hand and ending up with a stiff material on the other. We 
have also shown that extreme directional thermal expansion can be obtained by allowing 
anisotropy of the composites. 

For the topology optimization method in general, the results in this paper shows, that 
the method produces designs which are optimal indeed. 

In practice, how can our optimally designed materials be manufactured? They may be 
fabricated (with cell sizes down to a few millimeters) using stereolithography techniques [20] 
or using surface micromachining techniques (with cell sizes down to 50 micros) as seen for 
materials with negative Poisson's ratios in Larsen, Sigmund and Bouwstra [26]. Furthermore, 
it will be interesting to examine whether the lessons learned from this continuum analyses 
can be exploited to optimally design and synthesis of materials at the molecular level (e.g. 
Baughman and Galväo [3]). 

Finally, we note that the method is applicable to design of smart materials (piezoelectric 
or shape-memory-alloy inclusions). In a future paper, the procedure described here will 
be used to find the structures that optimize the piezoelectric properties of the material for 
use as actuators or sensors. The method can also be modified to handle three-dimensional 
microstructures. The extension to three dimensions is straight forward, but computer time 
will increase dramatically. Extensions to three dimensions for two material phases have been 
done in Sigmund [43] and Sigmund and Torquato [44], 
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A    Homogenization theory 

This appendix summarizes the important equations for computation of the effective ther- 
moelastic properties of a periodic inhomogeneous material using the homogenization theory 
as developed in Bensoussan et al. [5] and Sanchez-Palencia [37]. 

We want to find the effective homogenized thermoelastic tensors C\fkl, ß\f and a\f 
of a periodic material microstructure described by the rectangular base cell Y. Using the 
symmetries of the thermoelastic tensors, Ciju = CjM = djii, = Ckiij, ßij = ßji and Q,J = a,;, 
the anisotropic elasticity tensor has nine and the thermal expansion tensors have three 
independent parameters. 

Only considering first order terms in the asymptotic expansion, it can be shown that 
relations for obtaining the effective elasticity, thermal stress and thermal strain tensors can 
be written in energy forms as 

eW    =    F Jy C""(e-" - #(XH))(#*> - ttix'WY 

/W>   =   FI C„«(a„ - £(r))(e°P - $(x«))dY, (16) 
aij      —    V-'ijkl)     Pkl > 

where the displacements fields \k> and T are solutions to the following cell problems: find 
\hl € V and V € V, such that 

V =    {v  :  v is Y — periodic], 

(17) 

IcJ^dY  =   /Ay,      v,EV, 
Jy        dyi dyj Jy     dyj 

V =   {v : v is Y — periodic}. 

The fluctuation strains e*<H>(xH) and epg(T) are defined through the strain-displacement 
relations 4;>(x«) = \{dX

k
p
lldyq + dX

h,'/dyp) and £(r) = \{8Tr/dy, + dT,/dyp) and e°f> 
are three linearly independent test strain fields.   In Eqs. (16) and (17), djki, ßij and Q,J 
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are the locally (dependent on y) varying stiffness, thermal stress and thermal strain tensors, 
respectively. 

As test strain fields ej|(*'> we choose the three unit tensors (in two dimensions) e^11' = 
(1,0,0,0), £°<22> = (0,1,0,0) and e£<12> = (0,0,1,0) and e£(21> can be ignored for symmetry 
reasons. 

The equilibrium equations, Eqs. (17), are solved using the finite-element method. The 
base cell is discretized by finite elements and solving Eqs. (17) means solving a finite-element 
problem with periodic boundary conditions for the three different prestrain cases: horizontal 
unit strain, vertical unit strain, shear unit strain as given by the tensors e°(*'' and for a 
thermal strain field resulting from the locally varying thermal stress tensor ßij. 

Having discretized the base cell by N finite elements, the integrals for the evaluation 
of the homogenized properties in Eqs. (16) can be evaluated on the element level and the 
effective properties can be written as the sums 

1   e=l JY° 

(18) 

$ 

where Yc is the area of element e. 
For a more thorough description of the numerical homogenization procedure and finite- 

element discretization, the reader is referred to the numerical works of Bourgat [6] and 
Guedes and Kikuchi [14]. 

To solve the linear system of equations we use a so-called Element-By-Element Precon- 
ditioned-Conjugate-Gradient solver (EBE-PCG). The PCG solver is described in Numerical 
Recipes [33] and its application to finite element problems is discussed in Hollister and 
Riemer [19], who use the method for the microstructural analysis of human bone structure 
discretized by up to one million finite elements. The advantages gained by using the EBE- 
PCG solver for the present design method are multiple. The EBE-PCG solver is an iterative 
solver using a starting guess for the displacement vector. By using the displacement vector 
from the preceding design step, computational time can be saved. Furthermore, we do not 
need an exact solution to the finite-element problem in the beginning of the design sequence, 
thus we can stop the solver when an approximate solution has been reached. Only in the final 
iterations of the optimization procedure we need an exact solution and then, the convergence 
requirements of the solver can be made stricter. Another advantage of the EBE-PCG solver 
is, that is does not require an assembly of the global stiffness matrix thereby saving storage 
space, in fact, it is only necessary to store two element stiffness matrices, implying that the 
stiffness matrix for a particular element can be calculated using Eq. (4). Finally, the EBE- 
PCG solver eliminates problems with increase of bandwidth due to the periodic boundary 
conditions. Opposing nodes of the base cells are simply given the same node numbers causing 
no increase in computational complexity, due to the element-by-element nature of the EBE- 
PCG solver. 
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B    Sensitivity analysis 

This appendix derives all the sensitivities which are necessary to solve the sequential linear 
programming problem Eq. (10). The sensitivities can be found directly from the strain fields 
already computed by the homogenization procedure. 

The sensitivities of the effective stiffness tensor in Eq. (18) with respect to design variables 
x\ and x\ of element e can be found as 

^xf = 4/y.   fef(£- " - W))^' " W))<*1", m = 1,2,        (19) 

where it was used that the test fields ej are independent of the design variables (i.e. 

defl)ldx\ = def'^dxl = 0). 
The sensitivities of the local stiffness tensor are 

^ = (1-*5)C&+ *;<$,    and    ^ = ^(-C«+0. (20) 

Sensitivity of the effective thermal stress tensor with respect to design variable x\ in 
Eq. (18) can be found as 

% = -1YL ^^ ~ £(r))($ö) - # W'> (2D 
where it was used that the thermal test field a,-j is independent of design variable x\ (i.e. 
d<xijldx\ = 0). 

As ctij is dependent on design variable x\ (i.e. da°j/dx\ = —a-]' + a\f), sensitivity of 
the effective thermal tensor with respect to design variable x\ in Eq. (18) has an extra term 

dx\ ~   YJY*  dx% (0ipq    €
P^>>^>      

e*'(x >>dY + 

^jYCUk^{%n-W)W'- (22) 

Sensitivities of the effective thermal strain tensor a\f with respect to design variables x\ 
and x\ are found by differentiating Eq. (16) as follows: 

öa£ _ a(cS')-1 M      w -.8$> 
ös«,  -      ft^     Ä<  +(C

«
H)

     flx«m'
ro-1,2- (23) 

Finally, the sensitivities of the volume fractions Eqs. (5) with respect to design variables 
x\ and x\ are 

dcmldx\=   (l-xl)Y'/Y, dcm/dx'2 = xlY'/Y, 

dcmldx\=    xe
2Y"/Y, dc^jdx\ = x\Y'jY. (24) 
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Figure 12: Idealization of the cross microstructure from Fig. 8. 

C    Beam model of thermal actuator example 

To check the results obtained with the topology optimization algorithm, this appendix calcu- 
lates the effective thermal strain tensor for the "maximization of vertical expansion" (Fig- 8) 
example (e) using a simple beam model. 

The cross-like topology from Fig. 8 can be idealized as seen in Fig. 12. In the interpre- 
tation we assume that each of the four legs are slender beams of height h, width w = 1 
and length / = V2/2. The four beam legs are joined together at the center of the cell and 
connected to neighboring cells with ideal moment-free hinges. 

The thermal strain coefficient of the beam model can be found by calculating the bending 
and elongation of each "leg" and projecting these displacements to the horizontal and vertical 
directions. Using Bernoulli-Euler beam theory, the strain across the thickness of a beam 
varies with the distance from the neutral axis as ex = y/r, where ex is the strain in the 
^-direction (horizontal) and r is the radius of curvature. Using Hooke's law, the stress in the 
z-direction of the beam is crx = Eex = Ey/r. The thermal expansion of the two layers can 
be seen as an applied thermal stress to the two layers, i.e., OT{{) = Ecti (i = 1,2). To find the 
beam moment-curvature relationship, resulting moments about the transverse beam-axis are 
summed to give 

fh/2 fh/2 
w I      aTydy = w I      <rxydy (25) 

J-h/2 J-h/2 

/0 
Eawydy - 

-A/2 

j-h/2 /■, 
/      Ear'ydy = w I 

A/2      „2 
Ey-dy. 

h/2      r 
(26) 

Eq. (26) can be evaluated as 

vl-Eh2a^y - wl-Eh2a^y = wE^-. 
8 8 Ylr 

(27) 

Using the approximation d2y/dx2 fs 1/r, the differential equation for bending of the beam 
can be found as 

d2y _ 1 _ 3(Q"» 

dx1      r 

>(2)1 

2h 
(28) 
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Integrating Eq. (28) twice with respect to x, we get the vertical displacement at the tip of 
the cantilever 

3/2(a(i) _ Q(2)) 
«, = -4ji >- (29) 

The displacement in the ^-direction is simply the average elongation 

ux = /(a'1' + a(2))/2. (30) 

Rotating the leg 45 degrees, the resulting deflection of one leg in the horizontal and 
vertical directions are 

uh = —- (ux + uy)    and    u„ = — {-ux + u„). (31) 

The effective thermal strain coefficients are the relative displacements of the whole cross 
in the horizontal and vertical directions, respectively 

Q,,>   =    2^ = V2(u  +Uy) = V2 / + + 8P(oW - «<*>) 
(x ix (x   \ 4/i 

(32) 

aw  =     2u»       ^(-»« + "») - ^ f ;(aa> | am)/2    3?2("(1) - *(2))\ , 
'» '» lj   \ 4h J 

Finally, by inserting / = \/2/2, we get 

«i? = ^(*(1) + «(a))±!^(a(1,-«(2)). (33) 

The thickness of the legs in Fig. 8 is estimated to h = 0.18. Inserting this value together 
with material data in Eq. (33), we get a['^ = -21 and a^ = 32. 

Again using simple beam analysis, the effective bulk modulus can be found as fc'*' R; 

16Ewh3. Inserting h = 0.18 and w = 1, we get fc<*> ss 0.085. 
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