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WEDGE THEORY / COMPOUND MATRICES: 
PROPERTIES AND APPLICATIONS 

Debra L. Boutin, M.S.* 
Ronald F. Gleeson, Ph.D. 

Robert M. Williams, Ph.D. 

2 August 1996 

ABSTRACT 

The Navy utilizes matrices to analyze radar signals to determine the direction and 
velocity of aircraft. Matrix analysis is also useful in the sonar classification of submarines. 
One powerful tool for obtaining information about matrices is wedge theory. (The tradi- 
tional terminology is "compound matrix theory", whereas modern texts speak of "map- 
pings on the exterior algebra".) Wedge theory is a fundamental tool in multilinear algebra 
with important applications to group representations and tensor analysis. Current research 
indicates that it may also be useful in analyzing noisy data matrices, but this potential has 
not yet been fully explored. The purpose of this report is to collect details about wedge 
theory, in one accessible place, to facilitate future exploration of this topic. First, basic 
properties of the wedge operation are given along with definitions and examples. Then, an 
application to calculating the rank of a matrix with noise is considered. Finally, since the 
basic constructions can now be easily implemented on desktop computer algebra systems, 
the procedures for several such packages are illustrated. 
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I. INTRODUCTION 

The Navy utilizes matrices to analyze radar signals to determine the direction and 
velocity of aircraft. Matrix analysis is also useful in the sonar classification of submarines. 
The role of matrices in Navy data analysis and a tool for extracting information from these 
matrices have been discussed in an earlier report (NAWCADWAR-96-21-TR) by Gleeson, 
Stiller and Williams. 

Another tool for squeezing information out of matrices is wedge theory. In the older 
literature wedge theory is referred to as compound matrix theory. In more modern texts 
one speaks of mappings on the exterior algebra. Wedge theory appears to have the potential 
to be quite useful in analyzing noisy data matrices, but this potential has not yet been 
fully explored. The purpose of this report is to collect details about wedge theory, in one 
accessible place, to facilitate future exploration of this topic. 

The wedge product of a matrix is defined in Section II. Also, certain basic facts and 
properties of the wedge product are discussed. In addition, the eigenvalues and character- 
istic equation for the wedge product, along with a method for efficiently computing the 
coefficients of the characteristic equation, will be considered. Finally, we examine theorems 
relating to different types of compound determinants. 

In Section III we create a rank three 4x4 matrix with noise deliberately added. 
We then show that the wedge products of this matrix have a proportionally larger nullity 
than the original matrix. This increased nullity may afford a method for gaining greater 
sensitivity in determining the effective rank of the matrix. 

Tools such as the wedge product have become more feasible with the development of 
desktop computer algebra software packages. We will show in Appendix A how to produce 
the wedge products using Maple, Mathematica and Fermat. 

II. THEORETICAL BACKGROUND 

A. DEFINITIONS 

Given a matrix A, our goal is to define AP(A), a matrix whose entries are the p x p 
minors of A. This matrix has been called the pth "wedge" of A, "compound" of A or 
"exterior product" of A, depending on the literature. In this paper we shall refer to AP(A) 
as the pth wedge of A or as the order p wedge of A. 

First a little necessary notation. 
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Definition:   Let A be an n x n matrix whose entry in the ith row and jth column is 

denoted by aij. 

A = 

/fli.i    ai,2    •••    ai,n\ 
«2,1      «2,2      • • •       «2,n 

\an,i    an,2    •••     S»' 

Lexicographically ordered p-sets: Fix a number p between 1 and n, inclusive. Consider 
all possible sets of p distinct numbers between 1 and n. Order the elements of each set 
by increasing magnitude. Order the sets by increasing magnitude of the first elements, 
and when the first elements are equal, by increasing magnitude of the second elements, 
and when the first and second elements are equal, by increasing magnitude of the third 
elements, etc. That is, order the sets using a lexicographic or dictionary order. Denote 
these sets by Si, 52,... , S/n\ so that Si < S2 < • • • < S(*y 

Example: Let n = 4 andp = 2. Then Si = {1,2}, S2 = {1,3}, S3 = {1,4}, S4 = {2,3}, 
S5 = {2,4}, S6 = {3,4}. 

Definition: Let Aij be the p x p matrix formed by the intersection, in A, of the rows 
whose numbers are in the set S,- and the columns whose numbers are in the set Sj. That 
is, Aij is formed by the entries ahik of A where h is an element of Si and k is an element 
of Sj, maintaining the relative placement of the entries. 

Note: The determinant of any p x p submatrix of A is called an order p minor of A, or 
alternately, a p x p minor of A. This terminology will be used throughout the paper. 

Example: Let A be an abstract 4x4 matrix. Letp = 2. Then S2 = {1,3} and S5 = {2,4}, 
so A2,5 has entries from the intersection of rows 1 and 3 with columns 2 and 4 of A. Thus 

(«1,2     «1,4 
2,5 ,   „ 1  03,2      «3,4 

Definition: Let A'(A) be the matrix of size (£) x (J) whose (i, j)th entry is the determinant 
of the matrix Aij. 

-3-1     1     2' 
0-131 Example: Let A = I    0   0   x   1 ] • Then, 

V    0     0     0     2- 
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/ 

A\A) = 

-3 -1 -3 1 -3 2 -1 1 -1 2 1 2 
0 -1 0 3 0 1 -1 3 -1 1 3 1 

-3 -1 -3 1 -3 2 -1 1 -1 2 1 2 
0     0 0 1 0 1 0 1 0 1 1 1 

\ 

-3 -1 -3 1 -3 2 -1 1 -1 2 1 2 
0     0 0 0 0 2 0 0 0 2 0 2 

0 -1 0 3 0 1 -1 3 -1 1 3 1 
0     0 0 1 0 1 0 1 0 1 1 1 

0 -1 0 3 0 1 -1 3 -1 1 3 1 
0     0 0 0 0 2 0 0 0 2 0 2 

0     0 0 1 0 1 0 1 0 1 1 1 
0     0 0 0 0 2 0 0 0 2 0 2 

(Z -9 -3 -2 1 
~5\ 

0 -3 -3 -1 -1 -1 
0 0 -6 0 -2 2 
0 0 0 -1 -1 2 
0 0 0 0 -2 6 

Vo 0 0 0 0 2/ 

Basic Facts about Wedge Products 

Let A be an n x n matrix. 

1) The matrix AP(A) has dimension (£) x (£). Thus the dimensions of the various 

wedge products of A correspond to the nth row of Pascal's Triangle. 

2) For theoretical purposes, A0(A) is defined to be the lxl matrix with entry 1. 

3) AJ(i4) = A(A) = A. 

This is clear since by definition, A1 (A) has entries which are determinants of the lxl 
submatrices of A. That is, the entries of A(A) are the entries of A. 

4) An(A) = (det(A)). 

This is an immediate consequence of the definition of An(A). The entries of An(A) 
are the determinants of the nxn submatrices of A. But A is the only n x n submatrix of 
itself. 
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B. PROPERTIES OF THE WEDGE OPERATOR 

The beauty and usefulness of the wedge operator is demonstrated in the following 
properties. A good reference for most of these properties is Determinants and Matrices 
by A. C. Aitken, [1]. In particular, properties 1), 4), 6), 10) and 11) can be found there. 
Property 2) can be found in Algebra. Volume 2 by P. M. Cohn, [2]. 

Theorem: Let A and B be n x n matrices.  Let A be a real number.  Let I and I' be 
identity matrices of appropriate dimensions. Then: 

Property 1) A*(I) = I'. 

This can be seen easily from the definition of AP(A). 

Property 2) AP(AB) = A'(A) A' (B). 

Example: Let A = 

so we can compute A3(AB) = 

and B = 

2-3     5-6 
0-3     3      6 
0     0-6     12 

. 0     0     0-6 

Then AB = 

Further, A3 (A) = 

A3(£) = 

equal to A3(AB). 

Now we can compute A3 (A) A3 (B) = which is 

Property 3) AP(AA) = A? • AP(A). 

In the case A = 1 an easy computation yields AP(AI) = XPI'. If A ^ I, we can write 
AA = A JA. Using 2), the wedge product becomes AP(AA) = AP(AJA) = AP(AJ) Ap (A) = 
\pI' Ap (A) = \p Ap (A). 

Example: Let A = 

A3(2A) = 

Then we can compute 2A = 
liii 
0-111 
0     0     2     1 
0     0     0     3 

-16   -8    -8   -16\ 

0   _204     48     48 ) ' Which Can 6aSily be SGen t0 be 23/v3(A) = 8 

0       0       0   -48/ 

-1 
Property 4) (A' (A))     = A^A"1) 
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This is a consequence of 1) and 2).   Since AA 1 = I, we have that /' = AP(J) 
AP(AA-1) = AP(A) Ap (A'1). Thus AP(A_1) is the inverse of AP(A). 

i   l -l -\ 

Example: With A as above, A-1 = | ° ~*    J _J  | and A3(A_1) = 

We can now compute A3(A) A3 (A 1) = 

I. Thus A3(A-1) is actually the inverse of A3(A). 

Property 5) ( A' (A))1 = A?(A*). 

This is an easy consequence of the definition of AP(A). 

(1     0     0     0\ / -2     0     0     0 > 

\~\     j     o   I   and A3(^) =   (   Z\     3     6     0   )' wnicn 

1113/ V-2     66-6- 
(-2 -1 -1 -2- 

0     0     6     6 
0     0     0 -6. 

Property 6) If A is a symmetric matrix, then AP(A) is symmetric. 

This is an immediate consequence of 5).   If A is symmetric A = A1.   Then by 5), 
Ap(A) = Ap(At) = ( AP (A))\ which means that AP(A) is symmetric. 

(1012\ /    0 -2     0     2\ 

loio I' a symmet"c matrix. Then A3 (A) = I ~0 ~2 _4 _2 1 1S 

2101/ V20-20/ 
also symmetric. 

Property 7) If A is upper (lower) triangular, then AP(A) is upper (lower) triangular. 

Example: Note that in the example for 3) the original matrix is upper triangular and so 
is the wedge product. The example for 5) is a lower triangular matrix, A*, whose wedge is 
also lower triangular. 

Property 8) If A is a diagonal matrix, then AP(A) is diagonal. 

6 
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This is an immediate consequence of 7). If A is diagonal matrix, then it is both upper 
and lower triangular; by 7) so is AP(A). 

(1 o o 0\ /6 o o   o \ 

H 1° I . Then A3(A) = f ° o i°2 o ) is dso diagonal. 
0004/ \000   24/ 

Property 9) The complex conjugate of AP(A) is the pth wedge of the complex conjugate 
of A 

(l-t 1      2-t      -2t \ /2« 2«'     -4« 5-3«  \ 

; »*   ->   •+*). Th«A'(A) =       J f £| -^ ) and 
0 0       0-*/ V   0 0        0 1+*   / 

1 + t      1      2+t        2* 

Ä = [     °    1_i   ~x   1~2' ] is the complex conjugate of A. We can then compute 
ooo«' 

-2» -2i 4i 5+3« 
0 2« 1-i -1-4« 
0 0 1+ 
0 0 0 1-«' 

A3(A) = (    I      2
0'   }"^  ~1

1"
4' ) which is the complex conjugate of A3(A). 

Property 10) The Hermitian conjugate of Ap(^4) is the pth wedge of the Hermitian con- 
jugate of A. 

Since the Hermitian conjugate of a matrix is the complex conjugate transposed, this 
is a straightforward consequence of 9) and 5). 

Property 11) (Sylvester) det(A*(A)) = (det(A))^-1^. 

Example: In the example for 3), det(A) = -6 while det(A3(A)) = -216 = (-6)®. 

Property 12) As a linear operator on a vector space of dimension (£), AP(A) is injective 
(surjective) if and only if A is injective (surjective) as a linear operator on a vector space 
of dimension n. 

For those who are less familiar with injectivity and surjectivity, we provide the fol- 
lowing: 

A linear operator A is said to be injective if for any two vectors x and y, Ax = Ay only 
if x = y. That is, no two distinct vectors have the same image under the linear operator. 
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A linear operator is said to be surjective if for any vector v there is some vector u so 
that Au = v. A consequence of A being surjective is that the image of the vector space 
under the linear operator A is again the whole vector space. 

For finite dimensional vector spaces the notions of injectivity, surjectivity and non-zero 
determinant are equivalent. Thus Property 12) follows from Property 11). 

C. EIGENVALUES OF THE WEDGE PRODUCT 

Theorem: If Ai,... , An are the eigenvalues of A, then the eigenvalues of AP(A) are the 
(") distinct products of the Aj taken p at a time. 

Proof: 
Given a matrix A there is related matrix, called the Jordan form, which has the same 

eigenvalues as A, with the added advantage of being lower triangular. The Jordan form 
will be extremely helpful in finding the eigenvalues of AP(A). 

Let B be the Jordan Form of the matrix A. Then B is similar to A, which means 
that B = PAP"1 for some matrix P. Since similar matrices have the same eigenvalues 
and since the Jordan form is lower triangular, B has the eigenvalues of A as its diagonal 
entries. 

We can compute AP(P) = A^PAP"1) = AP(P) A* (A) Ap (P)"1 by the properties of 
the wedge operator. 

This means that AP(P) and AP(A) are also similar matrices and therefore have identi- 
cal eigenvalues. Thus we have that the eigenvalues of AP(A) are the eigenvalues of AP(P). 

Note that since B is a lower triangular matrix, AP(B) is lower triangular and its 
diagonal entries are |Pi,i|, |I?2,2|, • • • , |£/nw„\|, in the notation of Section ILA. Thus the 

eigenvalues of AP(P) (and therefore of AP(A)) are precisely these |Pj,j|. 

Let's see what one of the |Pi,i| looks like. 

Recall the p-sets Si,... ,S/n\ defined earlier. Let Si = {ii,i2,... ,ip}. Then |£,-,,-1 is 

the determinant of the p x p matrix formed by entries of B from rows ii,i2,... ,ip and 
columns ii, i2,... , ip. That is: 

Bu = 
"«2,«'l "«2 >«2 "«2 ,«3 '"' "»2,«p 

"»3,«1 "»3, «2 "«3,«3 '" "»3,«p 

8 
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Since B is a lower triangular matrix, whenever ij < ijt we know that bijyik = 0.  In 
Bi,i this occurs precisely when j < k.  Thus £,,, is a lower triangular matrix.  Further, 
since the diagonal entries of B are the eigenvalues of A we know that fetj ti. = A^., the ij 
eigenvalue of A. Thus, 

b 

Biti = 

0 

"«3,»1 "*3>«2 

«2,«1 

0 
0 

A «3 

V&ip,!!       %,t2       °ip,i3 

0\ 
0 
0 

Now we can easily compute |5M| = Ait A<a • • • Aip, an eigenvalue of AP(B) and therefore 

of A'(A). 

Since the eigenvalues of AP(A) are precisely the |£i,i|, which are the products of the 
eigenvalues of A taken p at a time, the eigenvalues of A'(A) are the (J) distinct products 
of the A,- taken pat a time. 

Example: If A is a 4 x 4 matrix with eigenvalues Ai, A2, A3, A4 then A2 (A) has eigenvalues 
AiA2, Ai A3, Ai A4, A2A3, A2A4, and A3A4, and A3 (A) has eigenvalues 
A1A2A3, A1A2A4, A1A3A4 and A2A3A4. 

Example: Using the numeric example from Section ILA, we see that A has -3,-1,1 
and 2 as its eigenvalues, which implies that A2(A) has eigenvalues -3 • -1 = 3, -3 • 1 = 
-3 —3 • 2 = —6, -1 • 1 = —1, — 1 • 2 = -2, and 1-2 = 2. We can see immediately that 
this is true by looking at the upper triangular matrix A2 (A) which we computed. 

D. THE CHARACTERISTIC POLYNOMIAL OF THE WEDGE PRODUCT 

We would like to be able to find the characteristic coefficients (that is, the coefficients 
of the characteristic polynomial) of AP(A), directly from the characteristic coefficients of 
A. This turns out to be a straightforward task for two of the characteristic coefficients. 

For the purposes of this paper, the characteristic polynomial of the matrix A is defined 
to be det(xl - A), though in some literature it is defined as det(A - xl). The polynomials 
resulting from these two definitions differ by a power of -1. However, we find it convenient 
to have the highest degree term in the characteristic polynomial be positive, and our 
definition ensures that. 

Let Cfc be the coefficient of the term of degree n-k'm the characteristic polynomial 
of A. In the characteristic polynomial of AP(A), let dk be the coefficient of the term of 
degree (J) - k. 
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More explicitly, the characteristic polynomial of A will be written as xn + c\xn~l + 
• • • + cn-\x + cn, while if we let m = ("), the characteristic polynomial of AP(.A) will be 
written as xm + dix"1-1 -\ 1- dm-\x + dm. 

It is a well known fact in linear algebra that in the characteristic polynomial of an 
n x n matrix, the coefficient of the term of degree n — k is (—l)kSk where Sk is the kth 

symmetric function on the eigenvalues of the matrix. That is, Sk is the sum of products 
of eigenvalues taken k at a time. 

So in the characteristic polynomial of AP(A), d\, the coefficient of the term of degree 
(™) — 1, is (—l)1^!, the negative of the sum of the eigenvalues of AP(A). Since these 
eigenvalues are products of eigenvalues of A taken pat a time, d\ is, up to sign, actually 
the pth symmetric function on the eigenvalues of A. Thus: 

Theorem: In the characteristic polynomial of AP(A), d\ = (—l)p+1cp. 

We now use a similar method to find the constant term, dtn\. 

Recall from the properties of the wedge product that det(Ap(A)) = (det(A))^p_1/' and 
that the constant term of the characteristic polynomial of a matrix is, up to sign, the 
determinant of the matrix. Thus: 

/n-l\ 

Theorem: In the characteristic polynomial of AP(A), the constant term, d/n\, is (cn)^p_1/', 
up to sign. 

The other characteristic coefficients of AP(A) don't lend themselves to such simple 
formulae. However, they are still polynomials in the cjt's, and we can actually find them. 

Method for Finding Characteristic Coefficients 

Let A be an abstract n x n matrix with characteristic polynomial 

p{x) = xn + cixn~l H h cn-ix + cn. 

Suppose that B is a matrix with the same characteristic polynomial as A. Then the 
eigenvalues of B, i.e. the roots of the characteristic polynomial, are identical to the eigen- 
values of A. Thus AP(.A) and AP(JB) also have identical eigenvalues. Since the coefficients 
of the characteristic polynomial of a matrix are completely determined by its eigenvalues, 
AP(I?) has the same characteristic polynomial as AP(A). 

So what we want is a matrix B, with the same characteristic polynomial as A, whose 
entries are O's, l's and cjt's. If AP(J5) also has entries of O's, l's and c/t's, the characteristic 

10 
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coefficients of AP(B) will be polynomials in the cjt's.  Luckily, the companion matrix for 
p(x) fits all these requirements perfectly. 

Let B = 

1 
0 

0   •• 
0   •• 
1   •• 

\0 0   •• 

0 
0 
0 

-Cn    \ 
—C„_l 

— Cn-2 

-ci   / 

the companion matrix for p(x). 

B has the same characteristic polynomial as A, and the entries of B and AP(B) are 
O's, l's and cjt's, so the characteristic coefficients of AP(B) (and therefore of AP(A)) are 

polynomials in the cjt's. 

In particular we can use a computer algebra program such as Mathematica, Maple or 
Fermat to compute the characteristic polynomial of Ap(£). The result will yield a formula 
for each characteristic coefficient of A* (A) in terms of the coefficients of the characteristic 
polynomial of the original matrix, the cjt's. 

This needs only be done once for each n and each p. Then, given a matrix with a 
known characteristic polynomial we need only use the appropriate formulae to find the 
characteristic polynomial of the pth wedge. Some of these formulae are listed in Appendix 

B. 

Example: Let A be a 4 x 4 abstract matrix which has characteristic polynomial of the 

form x4 + cxx
z + c2x

2 + c3x + c4.   If we let B = , we can then compute 

A2(£) = 

/° 0 c4 0 0 °\ 
0 0 0 0 c4 0 
0 0 0 0 0 Ci 

1 0 -c2 0 C3 0 
0 1 -ci 0 0 cz 

\0 0 0 1 -ci 02) 

and A3 (5) = 

We can now compute the characteristic polynomial of A2(B), which is xe + (-c2)x
5 + 

(c3ci -C4)x4 + (2c4c2 -Cic\ -4)x3 + (Ciczcx -c\)x2 +{-c\c2)x + c3, and the characteristic 
polynomial of A3(23), which is x4 + c3x

3 + c4c2x
2 + c\cxx + c\. 

Thus we have the characteristic polynomials of A2(A) and A3 (A) respectively, and the 
characteristic coefficients are polynomials in the characteristic coefficients of A. 

Note that in the characteristic polynomial of A2(A), dx = (-l)2+1c2 and d6 = (c4)W 
as promised. 

11 
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Also, in the characteristic polynomial of A3(A), d\ = (—1)3+1C3 and d^ = (c4)W, 
again as expected. 

Example: Let A be the 4x4 numeric matrix from the example in Section H.A. 

The characteristic polynomial of A is x4 + x3 — 7x2 — x + 6, so cx = 1, c2 = —7, 
cz = —1, and c\ = 6. 

Using these in the formulae above, we get that the characteristic polynomial of A2(A) 
is 

x6 + -(-7)x5 + ((-1)(1) - (6))x4 + (2(6)(-7) - (6)(1)2 - (-1) V 

+ ((6)(-l)(l) - (6)V + (-(6)2(-7)):r + (6)3 

= x6 + 7x5 - 7x4 - 91a;3 - 42x2 + 252x + 216, 

and the characteristic polynomial of A3 (A) is 

x4 + (-l)x3 + (6)(-7)x2 + (6)2(l)x + (6)3 = x4 - x3 - 42x2 + 36x + 216. 

E. DIFFERENT TYPES OF COMPOUND DETERMINANTS 

In this section, we cover some results about minors of "compound matrices." The 
wedge product is one such compound matrix, but there are other compound matrix con- 
structions different from the wedge product. An excellent reference for this section is, 
Determinants and Matrices by A. C. Aitken, [1]. 

Adjugate Wedge Products 

Recall that the entries of AP(A) are the order p minors of A. Here we wish to study 
a matrix, which we will call the pth adjugate wedge of A, whose entries are, up to sign, 
order n—p minors of A. This new matrix is not quite An~p(A), but it's close. Many of the 
signs of the entries will be different, and their positions within the matrix will be different. 
Specifically, we wish the entries of this new matrix to be the cofactors of the minors which 
comprise Ap(^4). So first we must define what we mean by the cofactor of a minor. 

Definition: Let A be an abstract n x n matrix. Let M be the minor which is the 
determinant of the mxm submatrix obtained from rows r\,... , rm and columns C\,... , cm. 
Then the complementary minor to M is the determinant of the (n — m)x(n — m) matrix 
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obtained by deleting rows rx,. 
M is the complementary minor times (-l)ri+ 

rm and columns c\,... , cm. 
+ rm+ciH hcm 

The cofactor of the minor 

' Ol   02   O3  04< 

Example: Let A Let M = 
02   O3 

C2   C3 

Mi is 
61 64 

di d4 

6l   &2   63   64 

C\    C2   C3   C4 

di d? ds dt 

and the cofactor of M is (_l)2+3+i+3 61 64 

d\ di 

Then the minor complementary to 

= (-1) 
61 64 
d\ di 

Definition Let the pth adjugate wedge of a matrix A, denoted adjP(A), be the (J) x (J) 

matrix whose (ij)th entry is the cofactor of the order p minor which is the (j,i)th entry 

of A»(A). 

Example: Let A = 

Then 

■ ai 02 03 04 < 

61  62 63 64 

Cl   C2   C3   C4 

. d\   0*2  ({3  <^4 . 

/ 

A3(A) = 

Ol   02  03 Ol   02  04 ai 03 04 02 03 04 

&1   62   &3 61   62   64 61  63 64 62   f>s  t>i 

Ci   C2   C3 Ci   C2   C4 Cl    C3   C4 Cl   Cz   C4 

ai 02 03 Ol   02  04 ai 03 04 02   03  O4 

6l   62   63 b\  62  ^4 61  63 64 62   63   &4 

di di ds di d2 d4 di dß d4 d2 d3 d4 

V 

\ 

Ol   02   03 Ol  02 04 a.\ 03 04 02 03 04 

Cl   C2   C3 Cl   C2   C4 Cl    C3   C4 C2   C3   C4 

di d2 d3 di d2 d4 di d3 d4 d2 d3 d4 

61  62  63 61   62  64 61  63 64 62   t>3   64 

Cl   C2   C3 Ci   C2   C4 Cl   C3   C4 C2   C3   C4 

di d2 d3 d\ di di di d3 d4 d2 d3 d4 

and 

adj3(A) = 

d4   —C4       64 —04 

—d3     C3 —63 03 

d2   —C2        62 —«2 
1 —di     ci —61 01 • 

Note that adf(A) is "almost" An~p(A). Up to a factor of (-1),+J, the (i,j)th entry 
of adf(A) is the (n - 3 + l,n - * + l)th entry of An~P(A). That is, to get ad? (A), we 
take An~p(A), reflect the entries over the right-leaning diagonal, and adjust the entries by 
( — iy+3 = /^n-j+l+n-i+l 

Example: Let A = 

/4     2-2     1 -5 -2\ 
'0-2-8-1-4     2 ' 

0     0     2     0     10 
0     0     0-2-8-5 

i000021i 
\0     0     0     0     0-1/ 

and A3 (A) = 

Then we can compute A1 (A) = A, A2(A) = 

-4 -16 -10 -9' 
0      4       2      1 
0      0-2-1 
0      0       0-2. 
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Then adj*(A) = 

adj2(A) = 

adj3(A) = 

-2119 
0 -2 -2 -10 
0     0     4     16 
0     0     0-4 

-1-1-5     0     2     2\ 
0     2     8     1     4 -5 \ 
0     0-2     0-1-1 
0     0     0     2     8-2 
0     0     0     0 -2 -2   i 
0     0     0     0     0     4/ 

1     4-1-2 
0-1-1     0 
0     0     2-1 
0     0     0     2 

has the appropriate relationship with A3(A); 

is related in the desired way to A4  2(A) = A2(A); and 

is similarly related to A (A) = A 

Note: The first adjugate wedge of A, adj*(A) is just called the adjugate of A and is often 
denoted simply by adj(A). In some literature this is called the classical adjoint of A. 

Theorem: (Cauchy) det(adj(A)) = (det(A)) 
n-l 

Example: In the example above, we can easily see that det(A) = —4 while det(adj(A)) = 
—64 = (—4)4-1 which fits our theorem. 

Theorem: A 1 — det(yl) adj(A). 

Example: With A as in the example above 

dJÄ)*4^"-* 
-2 1 1 9 

0 -2 -2 -10 
0 0 4 16 
0 0 0 -4 

/ k 1 
4 

1 
4 4   \ 

o 1 1 5 
2 2 2 

0 0 -1 -4 

\  o 0 0 l) 

= A -l since 

det(A) 
adj(A) A = 

( i 

0 

1 
4 
1 
2 

1 
4 
1 
2 

4   ^ 
5 
2 

0 0 -1 -4 

\  o 0 0 l) 

2 1 0 2\ /i 0 0 0 
0 2 1 -M 0 1 0 0 
0 0 -1 

"4   * '   ° 0 1 0 
0 0 0 i/ \0 0 0 1 

Theorem: (Jacobi) Let A be a matrix. Then any minor of order r of adj(A) is equal to 
the cofactor of the corresponding minor in the transpose of A, multiplied by det(A)r_1. 

Example: In the previous numeric example, we can see that the minor of adj(A) of 
order 3, obtained by deleting the last row and last column, is 16. The cofactor of the 
corresponding minor of the transpose of A is (_i)i+2+3+i+2+3 . i = i. When this is 
multiplied by det(A)3-1 = (—4)2 we get back the value of the original minor. 
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Theorem:   (Franke) Any minor of order r in the pth wedge of A is equal to the co- 
factor of corresponding minor in the transpose of the pth adjugate wedge of A, times 

(det(^))r"(n'1). 

Example: Again let A = 

(adjV))' 

Then we have A3(A) = 

-4 -16 -10 -9' 
0      4       2      1 
0      0-2-1 
0      0       0-2. 

and 

Consider the order 2 minor of A3 (A) which is the determinant of the matrix obtained 
-16 -10 

4       2 

-1   o 

from rows 1 and 2 and columns 2 and 3.   It is      "   a"    = 8.   The cofactor of the 

corresponding minor in (adj3^))1 is (-1)1+2+2+3  -i  o   = (_1)2+3+i+2 . (_2) = _2  We 

that det(A) is -4 and 8 = (-2) • (-4)2"(a), as predicted. can see 

The Bazin Hybrid 

There are more ways of creating new matrices from old ones which result in relation- 
ships similar to those we saw above. In the following, we discuss Bazin compound matrices 
and their more general form, Reiss compound matrices, and theorems regarding both. 

Definition: Let A and B be n x n matrices. The Bazin hybrid compound of A and 
B is the n X n matrix whose {i,j)th entry is the determinant of the matrix obtained by 
replacing column i of A with column j of B. 

Example: Let A and B be abstract 2x2 matrices with general entries a,j and bij, 
respectively. Then the Bazin Hybrid of A and B is 

/ 

V 

ftl.1 ai,2 h,2 ai,2 
&2,1 02.2 h,2 02,2 

«1,1 6l,l «1,1 &1,2 

02,1 &2,1 «2,1 &2,2 

\ 

Note: There is no reason to believe that Bazin hybrid of A and B is equal to the Bazin 
hybrid of B and A. In fact they are not generally equal. So we call the Bazin hybrid of B 
and A the dual Bazin hybrid of A and B. 

Theorem: (Bazin) The determinant of the Bazin hybrid compound of A and B is equal 

to (det(A))n-1det(B). 
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(10     0     0 

o   2   3   o I»-^ ~ ( ii    2   o ) ' Then *^e Bazm hybrid compound 
1-1     1     2- 

(12    o    o    0\ 

6    6   4   o I' wmcn has determinant 864. We can see that this is equal 
-12 -3     1-3/ 

to (det(A))      det(B) = (6)4-1 • (4), as was stated above. 

(2    o 0    0\ 

~o ~6 6    o ) w^ 
-6     6 2-8/ 

determinant 384 = (det(B)) det(A) = 44_1 • 6. This also fits Bazin's theorem when we 
reverse the roles of A and B. 

Theorem: (Reiss) Any minor of order r of the Bazin hybrid compound of A and B 
is equal to the cofactor of the corresponding minor in the transpose of the dual hybrid, 
multiplied by (det(A))r_1 (det(£))r""+1. 

Example: Let A and B be as above. Then again the Bazin hybrid compound of A and 
(12     0     0     0\ /2 -2     0 -6' 

~6 ~6   4   o )anc^ ^e transpose of the dual Bazin hybrid is I 0   0   6    2 

-12 -3     1-3/ \0     0     0 -8. 

is 

The minor of the Bazin hybrid obtained from rows 3 and 4 and columns 1 and 3 
6   4 

-12 1 
2 -6 

= 54.   The cofactor of the corresponding minor of the transpose of the dual 

-4 hybrid is obtained from rows 1 and 2 and columns 2 and 4 and is (—1)3+4+1+3 

-1 • (-36) = 36. We can compute (det(4))r-1 (det(£))r""+1 to be (6)1(4)"1 = § and 
multiplying 36 by this gives us 54, the value of the original minor. 

The Reiss Hybrid 

Note: This is a simple generalization of the Bazin hybrid. Similarly, the theorems are 
generalizations of those for the Bazin hybrid. 

Definition: Let A and B be n x n matrices. Define the pth Reiss hybrid compound 
of A and B to be the (") x ("). matrix whose (i,j)th entry is the determinant of the 
matrix obtained by replacing columns ii,... , ip of A with columns ji,... ,jp of B, where 
Si = {ii,...., ip} and Sj = {ji,... , jp} are the ordered p-subsets of {1,2,... , n} defined 
at the beginning of this paper. 

Note: We can also define the pth dual Reiss hybrid of A and B as the pth Reiss hybrid 
compound of B and A. 

Example: Let n = 4 and p = 2. Let A and B be abstract matrices with general entries a^j 
aadbij. Then Si = {1,2}, S2 = {1,3}, S3 = {1,4}, S4 = {2,3}, S5 = {2,4}, 56 = {3,4}. 
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The entry in row 1, column 5 of the second Reiss hybrid of A and B is the determinant of 
the matrix with columns 1 and 2 of A replaced with columns 2 and 4 of B: 

h,2    h,4    «1,3    ai,4 

h,2 h,4 0,2,3 GE2,4 

&2,3 &3,4 «3,3 G3)4 

64,2      &4,4      «4,3      «4,4 

Theorem:  (Reiss, Picquet) The determinant of the pth Reiss hybrid compound of A 

and B is equal to (det(A))("'^(det(B))^Zl^. 

Notice that when p = 1 we have the statement of the theorem by Bazin. 

Example: Let A and B be as in the previous example. Then the second Reiss 
/-12    0    0    0    0    0\ 

'    12   8   0   0   0   0 ' 
-6      2-6000 
0-4   0-4   0   0 

-9-1   3-1   3   0 . 
\   9    9-3   3 -3 -2 / 

hybrid compound is As stated in the theorem, it's determinant 

is 13824 = (det(A))^(det(£))^ = 63 • 43. 

The dual Reiss hybrid compound is 

/ 

V 

-2 0 0 0 0 0 
3 3 0 0 0 0 
3 1 -4 0 0 0 

-3 -3 0 -6 0 0 
-9 -1 4 -2 8 0 

It's determinant is 

0 -6 -12 -12 / 

also 13824 = (det(£))^(det(A))^ = 43 : 6
3. 

Theorem:   (Reiss, Picquet) Any r x r minor of the pth Reiss hybrid compound is 
equal to the cofactor of the corresponding minor in the transpose of the dual Reiss hybrid, 

multiplied by (det(i4))r"(':il)(det(B))r"(B'^. 

Example: Let A and B be as before. Then we need the second Reiss hybrid of A and B 

( 

\ 

-12     0     0     0     0     0\ /-2     3     3-3-9      9 
12     8     0     0     0     0 \ /031-3-19 

-6 2-6000 
0-4     0-4     0     0 

-9-1 3-1 3 0 
9      9-3     3-3-2 

, and the transpose of the dual Reiss hybrid 

\ 

\   0 

0     0-404      0 
0     0     0-6-2-6 
0     0     0     0     8 -12   . 

-12/ 0 0 -12- 

Consider the minor of the second Reiss hybrid which is the determinant of the matrix 
obtained from rows and columns 1,2,3 and 4. It's value is -2304. The cofactor of the 
corresponding minor in the transpose of the dual is (_l)i+2+3+4+i+2+3+4(_96) = _96 

Computing (det(A))4"^Z^(det(.B))4"(4;1) yields (6)1 • (4)1 = 24 and multiplying -96 by 
this gives us —2304, as expected. 

17 



NAWCADPAX--96-220-TR 

III. EXAMPLE OF USEFULNESS 

In the earlier report (NAWCADWAR-96-21-TR) by Gleeson, Stiller and Williams it 
was shown that the characteristic coefficients (cjt's) could.be used to predict the effective 
rank of a noisy matrix. These coefficients, when properly normalized, fall below predeter- 
mined threshold values for k greater than the effective rank. These normalized coefficients 
are called P*'s. 

To illustrate how the wedge product could be used in this type of analysis, we create 
the following matrix: 

A = 

17.91 28.05 6.45 10.33 
-5.97 -11.56 -15.03 -36.72 
22.04 33.83 37.56 38.39 

.-24.17 -37.40 -17.85 -19.93 > 

The matrix A was generated by first creating a rank three 4x4 matrix, and then 
adding a small random noise contribution to each element. For readability, each element 
was then rounded to two decimal places. The details of the generation process are spelled 
out at some length in NAWCADWAR-96-21-TR. 

For the matrix A, we have: 

Pi = 0.53,        P2 = 0.60,        P3 = 0.57, 0.09. 

The earlier report studied 7x7 matrices with different effective ranks and noise levels. 
For small noise, the threshold was found to be typically in the range of 0.2 and 0.3. Let us 
assume that this threshold range does not vary drastically and applies to 4 x 4 matrices. 
The above distribution of the Pjk's has P3 above the threshold and P4 below the threshold. 
This is the profile of a matrix whose effective rank is three. 

Now let us consider the second wedge of A. The second wedge of A is the following 
6x6 matrix: 

A2(A) 

/-39.57 -230.62 -595.90 -347.01 910.63 -81.47 \ 
-12.43 530.56 459.88 835.58 727.55 -140.47 
8.23 -163.86 -107.32 -259.65 -172.86 55.88 
52.85 107.08 580.25 74.30 798.60 802.25 
-56.15 -256.63 -768.42 -355.64 -1142.77 -355.87 

V -6.64 514.42 488.52 800.76 761.42 -63.36 / 
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Recall, that if the given matrix A has rank three, then only three of the four eigenvalues 
are nonzero. With noise added the fourth would also be nonzero, but small compared to 
the other three. The eigenvalues of the second wedge are equal to the products of A's 
eigenvalues taken two at a time, so there are (J) or three significant eigenvalues in A2(A). 
With three significant eigenvalues, A2 (A) should appear to have effective rank three. 

The Pjt's for the A2 (A) are the following: 

Pi =0.60,        P2 = 0.56,        P3 = 0.57,        P4 = 0.22,        P5 = 0.13,        P6 = 0.09. 

Assuming that the 7 x 7 thresholds work for 6 x 6 matrices, P5 and P6 clearly fall 
below the threshold range. P4 is on the border; whereas, P3 is higher than the threshold 
range. This profile indicates that A2(A) is either rank three or four. Actually, the fact 
that P6 is lower than the threshold, alone implies that the rank of A is very likely less than 
four. Moreover, when we see that P5 is also less than the threshold, the likelihood of the 
rank of A being less than four is amplified. Finally, P3 is greater than the threshold. This 
implies that the rank of A2(A) is at least three. This, in turn, implies that the rank of A 
itself is three. The main point here is that A2 (A) has more coefficients with which to work 
and has greater nullity. Using the normalized characteristic coefficients of A2 (A) should 
give us a greater handle and enhanced sensitivity in determining the rank of the matrix A. 

As discussed in Section II, it is not necessary to actually compute A2(A) to determine 
its Pjt's. All one needs are the characteristic coefficients of A2(A) , and these can be 
computed in terms of polynomials in the characteristic coefficients of A. A few examples 
of these polynomials are included in Appendix B. 
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IV. CONCLUSION 

This report may be regarded as a primer on the theory of wedge products. 

In Section II we have brought together definitions, properties and theorems relating 
to the wedge product. Also, we have discussed how the companion matrix can be used to 
compute the coefficients of the characteristic polynomials of the various wedge products. 
Finally, theorems which relate to other forms of compound matrices have been explained. 

In Section III we have illustrated how the wedge product has the potential to be useful 
in the determination of the effective rank of a noisy data matrix. 

Future work in this area includes determining quantitatively the extent of this po- 
tential for predicting the effective rank. That is, we should determine whether or not 
the normalized coefficients of the characteristic polynomial of A2 (A) axe more successful 
than those of A in finding effective rank. Characteristic coefficients for higher order wedge 
products should also be studied. Ultimately, the order(s) of the wedge product(s) that 
optimize results and computation speed should be compared with existing methods for 
predicting effective rank. 
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APPENDIX A 

SAMPLE RUN SESSIONS 

Here we have included sample code that illustrates the syntax for evaluating wedges 
of matrices on three different mathematical software packages: Maple (version 5, release 
3.0), Mathematica (version 2.2), and Fermat (version 1.1). In the symbolic examples below 
WA2 is the second order wedge of matrix A. 

Maple 

In Maple, there is a wedge product function (&") in the differential forms library. 
Unfortunately, the intent of this function was for differential forms, not for linear algebra. 
The wedge product command does not work on all matrices; specifically, it may fail on 
matrices containing zero entries. This would put limitations on the number of matrices for 
which the Navy could find the wedge product. In light of this, George Nakos has written 
a program using Maple syntax that computes the wedge product of any matrix. This file 
can be written in any text editor. Maple can access this file with the command 'read < 
filename >; '. The program is as follows: 

with(linalg): 
with(combinat,cartprod): 

#This function takes a list of lists [[a, 6,...], [al,61,...],... 
#and computes the Cartesian product [a,b,...] x [al,61,...] x ... 
lesslistsO := proc(lis) 
local 11,car; 

11.:- []; 
car := carprod(lis); 
while not car[finished] do 

11 := [op(ll),car[nextvalue] ()] od: 
RETURN(11); 
end: 

# This function takes a list of numbers and returns a list of lists 
#of numbers with entries < to the 
^corresponding entries of the original. For example, 
#Lesslists([2,4,3]); yields [1,1,1], [1,1,2],..., [2,4,3] 
Lesslists := proc(lis) 

local ll,i,n; 

11 := []; 
for i from 1 to nops(lis) do 
11 := [op(ll),[$l..lis[i]]]: 

od: 
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11 := lesslistsO(ll); 

RETURN(11); 
end: 

#This function tests whether the length of f is n 

lengthNQ : = proc(f,n) evalb(nops(f) = n) end: 

# From a list lis, pick the elements of length n 
PickLengthN : = proc(lis,n) select (lengthNQ,lis,n) end: 

#This function deletes repeated elements in a list 

DeleteRepeated := proc(lis) 

local 11,i; 
for i from 2 to nops(lis) do 

if evalb(not member(lis[i] ,11)) then 
11 := [op(ll),lis[i]];fi: 

od: 
RETURN(11); 
end: 

# This function takes two >0 integers n and k, n > k, and returns all pairs 

#of the form (i,j) with i < j and i < k and j < n. 

Submatrixlndex := proc(n,k) 
local tt; 
tt:= [$(n-k+l)..n]; 
LessLists(tt); 
map(convert,",set); 
PickLengthN(",k); 
DeleteRepeatedC); 
tt := map(convert,",list); 

Return(tt); 
end: 

# This function takes a list of numbers and returns the 
^complete Cartesian product of the element lists 

ListOfPairs := proc(lis) 
local ll,nn,i,j; 
nn := nops(lis); 
for i from 1 to nn do 

for j from 1 to nn do 
11  :=  [op(ll),[lis[i],lis[j]]]; 

od: 
od: 
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RETURN(11); 
end: 

# MAIN FUNCTION. Computes the k x k minors of matrix A 
Minors := proc(A,k) 

local n,dimmat,kk,11,i; 
n :-  vectdim(rov(A,l)); 
Submatrixlndex(n,k); 

dimmat := nops("); 
kk := ListOfPairs(""); 

11 := □; 
for i from 1 to nops(kk) do 

11 := [op(ll),det(submatrix(A,op(kk[i])))]; 
od: 

RETURN(matrix(dimmat,dimmat,11)); 
end: 

Example: 

(a\ a2 o3 o4 ' 
61 62 63 64   j     Qne wouJ^ 
cl c2 c3 c4   ■ ' 

,.„,„.., dl d.2 dZ di 
read in the above tile and then type: 
> A := matrix(3,3, [al, a2, a3, a4,61,62,63,64, cl, c2, c3, c4, dl, d2, d3, d4]); 
> WA2 := M«noT5(i4,2); 

The output to this would be the following matrix: 

ol62-o26l al63-a36l ol64-a46l o263-a362 a264-a462 a364-a463 
alc2-o2cl alc3-a3cl aid—aid a2c3-a3c2 a2c4-a4c2 a3c4-o4c3 

■KXTAO •— I old2-o2dl olrf3-a3<fl ald4-a4d\ a2d3-a3d2 a2d4-a4d2 a3d4-a4d3 
61c2-62cl 61c3-63cl 6lc4-64cl 62c3-63c2 62c4-64c2 63c4-64c3 
b\d2-b2dl b\d3-b3d\ 6ld4-64dl 62<f3-63<*2 62d4-64d2 63d4-64d3 
cld2-c2d\  c\d3-c3dl  cld4-c4dl  c2d3-c3d2 c2d4-c4d2 c3d4-c4d3 

Mathematica 

Mathematica has a built in command for computing the wedge product, namely 
"Minors[A,p]". This command takes two parameters; the first is the name of the matrix, 
and the second is a positive integer denoting the order of the wedge. 

Example : 
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As in the previous example, if we wish to compute the second wedge of a 4 x 4 matrix 
in Mathematica, we would enter: 

A = {{<zl, a2, a3, a4}, {ab, a6, a7, a8}, {a9, alO, all, al2}, {al3, al4, al5, al6} } 
WA2= Minors[A,2] 

Fermat 

Fermat is a mathematical software system written by Robert Lewis. While there is 
no built-in function for computing the wedge product, there will be soon. Michael Hirsch 
has written a program in the Fermat language that can be used in the absence of a wedge 
product function. Run times are faster than Mathematica and Maple for large symbolic 
matrices. Once the code is within the Fermat shell, run times using Fermat should be even 
shorter than they are currently (using the Hirsch program). 

;This is the main function for the program 
:Wedge(p,d,matrix2;  m,n,i)  = 

:cols = Cols[p]; 
:rows = Deg[p]/cols; 
:n = Q (cols.d); 
:m = C  (rows,d); 
:ri « 0; 
:ci = 0; 
:b[m,n]; 
:x[d]; 
:y[d]; 
:temp[d,d]; 
Genr(rows,d,l,l); 
:[b]  =    ™   [b]; 

ID [temp] ; 
: [matrix2]  =  [b] ; 
«D>3; 
0.; 

;This function generates all of the possible row combinations 

;for the wedge 
:Genr(m,dd,j,s;i)= 

if (dd = 0) 
then (:ri+; :ci =0; Genc(cols,d,l,l) ) 

else ( for ( :i=s,m+l-dd) do 
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(  :x[j]  = i;       - 
Genr(m,  dd-1,  j+1,  i+1 ); 

) 
).; 

;This function generates all of the possible 
;column combinations for the wedge 
:Genc(n,dc,k,l;i)- 
if (dc = 0) 

then (:ci+; Dump(ri,ci) ) 
else ( for ( :i=l,n+l-dc) do 

( :yCk] = i; 
Genc(n, dc-1, k+1, i+1 ); 

) 

).; 

;This function calculates the determinant of each 
;submatrix for the entries of the wedge 
:Dump(row,col; q,w) = 

:temp[d,d] ; 
for( :q=l, d ) do 

( for( :w=l,d )) do 
(   :temp[q,w]  = p[x[q],y[w]]   ) 

( ); 
:b [col, row]   = Det[temp]; 

<D [temp] .; 

After reading this program into Fermat, using the wedge function is easy.  Just type the 
following: 

> Wedge(matrixl ,d,matrix2) 

where matrixl is the original matrix, d is the order of the wedge, and matrix2 is the 
variable that will be assigned to the wedge. 

Example: 

In Fermat to compute the second wedge of a 4 x 4, we would enter: 

>:a[4,4] 
>: [a] = [[al,a2, aZ, aA, „ 

a5,a6,a7,a8, „ 
a9,al0,all,al2, „ 
al3,al4,al5,al6]] 
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>:IüO2[6,6] 

>Wedge([a],2,[wa2]) 
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APPENDIX B: 

CHARACTERISTIC COEFFICIENT RELATIONSHIPS 

This Appendix contains a few sample coefficients of the characteristic polynomial of 
the wedge products (d^s) expressed as polynomials in the coefficients of the characteristic 
polynomial (cjfc's) of the given matrix (A). 

If A is a 3 x 3 matrix: 

For A2(A): 

di = -c2 

di = C1C3 

d3 = -c\ 

For A3(A): 

di = c3 

If A is a 4 x 4 matrix: 

For A2(A): 

d\ = -c2 

di = ci C3 — C4 

dz = 2c2C4 — CjC4 — c3 

C?4 = C1C3C4 — c\ 

d5 = -c2c\ 

d6 = c| 

27 



NAWCADPAX--96-220-TR 

4x4 matrix cont. 

For A3(A): 

d\ = c3 

C?2 = C2C4 

d3 = CiC^ 

d4 = c\ 

For A4 (A): 

d\ = —C\ 

If >1 is a 5 x 5 matrix: 

For A2 (A): 

d\ = -c2 

d2 = C1C3 — C4 

dz = C1C5 + 2c2c4 - cfc4 - c? 3 

3„      „2 ^4 = C3C5 - 3cic2c5 + c\c5 — cz + C1C3C4 

d5 = -c2c| - cf C3C5 + 2c2c3c5 + 2cic4c5 - 2c\ 

d& = c| + cic2c4c5 - 3c3c4c5 - cf c\ + c2c\ 

d-i = C4C2, + 1cxczc\ - c\cl - cic\cr, 

d$ = c2c4ci? - c\c\ 

d9 = -czc\ 

d\o = c\ 
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5x5 matrix cont. 

For A3(A): 

d\ — c3 

C?2 = C2C4 — C1C5 

^3 = -C4C5 - 2ciC3C5 + C2C5 + Cic| 

d4 = C2C§ - cf ci? - 3c3C4C5 + C1C2C4C5 + c3 

ofe = 2c| - 2cic4c| - 2c2c3cf + c?c3c|? + 02^05 

d6 = ciCsCicj - c\c\ + c\c\ - Zcic2c\ + czc\ 

dr = 44 + 4C*4 ~ 2c2c4c| - cic| 

<*8 = C1C3C5 - C4c| 

dg = c2c| 

c?io = 4 

For A4(4): 

c?i = —C4 

^2 = C3C5 

<f3 = -C24 

d4 = ci4 

da = -c4 

For A5 (A): 

d\ = c5 
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If A is a 6 x 6 matrixr 

For A2(A): 

d\ = —c2 

d2 = C\c% — c4 

dz = -c\ - cjci + 2c2c4 + C1C5 - c6 

d4 = C1C3C4 - c\ + c\c5 - 3cic2c5 + C3C5 - c\c6 + 2c2c6 

d5 = -c2c\ - clczc5 + 2c2c3c5 + 2cic4c5 - 2cj 

-cjc6 + 4cf c2c6 - 2c2c6 - 3cic3c6 + 2c4c6 

d6 = c\ + C1C2C4C5 - 3c3c4c5 - 44 +c2cl 

+clc3c6 - 3cic2c3c6 + 3c|c6 - cf c4c6 + 3cic5c6 - 2c\ 

d7 = -cic\c5 - 44 + 2cic3cl + c4cl - c\c2cAc6 

+2c^c4c6 + C1C3C4C6 - c\ca + cfc5C6 - cic2c5c6 

-3c3c5c6 - cjcj? 

d8 = c2c4cl - cic| + cjcjce - 2c2c\c& + cic\cbc6 

9 O 9 
-2CJC3C5C6 - C2C3C5C6 + C1C4C5C6 + C5C6 - C^Cg 

+44 + 3cic3cl 

d9 = -c3cl - cic2c4c5C6 + 3c4c5c6 + cjclc6 + c2c\c& 

-44 + 3cic2c3ci - Zcjcl - c\c4c\ - 3cic5ci + 2c\ 

d10 = 4 + ciczc\c& - 4cAc
2

5c6 + cjc4cl - 2cic3c4cl + 2c\c\ 

-2cxc2chc\ + 3c3c5ci + 2c\c\ - 2c2c\ 

d\\ = -cic|c6 - c2c3c5cl + 3cic4c5cl + 44 + 44 

-C1C3CJ? - 2c44 

d\2 = C244 + C14 ~ 2C2C4C| - C!C54 + 4 

du = c24 - C3C5C6 

d14 = c44 
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6x6 matrix cont. 

For A2(A): 

d15 = -c\ 

For A3(A): 

d\ = c3 

d2 = C2C4 — C1C5 + C6 

d3 = C1C4 + C2C5 — 2C1C3C5 — C4C5 — C1C2C6 + 3C3C6 

^4 = c\ + C1C2C4C5 - 3c3C4C5 - c\c\ + C2c\ + c\c& 

—3C1C2C3C6 + 3c|c6 + c\ciCs — C2C4C6 + C1C5C6 

^5 = c2clc5 + cf c3c\ - 2c2c3c\ - 2cic4c| + 2c\ 

+C1C2C4C6 — 2c\c3C±C§ — C2C3C4C6 + 3ciC4C6 — 2c\c2C^C& 

+3c2
!c5c6 + 2cic3c5c6 - 4c4c5c6 + 2cf c| - 4cic2c| 

+3c3c2 

^6 = C1C3C4CI - ac\ + c\c\ - Zc\c2c\ + C3c\ 

+C2C4C6 - 2C1C3C4C6 + 2C4C6 + C1C2C3C5C6 - 2c\c3C5C6 

—C1C3C5C6 — 3C1C4C5C6 + 6C1C2C4C5C6 — 2C3C4C5C6 + Ac2c\c$ 

-cjcjcj + 2c\c\ + c\c3c\ - 2cic2c3cl + 3c|c| 

+4c^c4c
2

i - 8c2c4cl - 4cic5c| + 3c| 

d7 = c?,«:3; + cf C4C3; - 2c2c4c| - c^l + cic2c3c4c5ce 

-3cfc4c5C6 - 3cfc|c5c6 + 5c2c|c5c6 + clc2clc6 - 3ciclclc6 

-clc3clc6 + C2C3C2
iC6 + 4C!C4C|C6 + cfce + cf C2,^ 

—Zc\c2c\c\ + 3C3CI — 2c\c2c±c\ + 5C1C2C4C6 + cf C3C4CQ 

—5c2c3C4cl + cic\c\ - c\c5cl + Ac\c2csc\ 

+c\c5c\ - C!C3c5cl - 6ctc5cl + c\c\ - §c\c2c\ 

+3c34 
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6x6 matrix cont. 

For A3(A): 

d& = cic3c| - cAc\ + c244c6 + c\c2Ciclc& - 2clc4clc6 

-AciC3c4clc6 + Acl4c6 - 2c!C2clc6 + c\c\c±c\ - 1c2c\c±c\ 

-2c\c2c\cl + ±444 - 44 + c\c3c54 - Ac\c2c3chcl 

+4cic|c5c^ - 2c\cAcbcl + IIC1C2C4C5CJ? - 5c3c4c5c| + 2c\44 

+c244 - c\c2c\ + ±444 - c\c\ - hcic2c3c\ 

+344 + c\cAc\ - 7c2ci4 ~ Seiest + 34 

dg = C24 + ClC2C34
c6 - 6c2C4c|c6 - C1C5C6 + C1C3C5C6 

+4c3CiC54 - 5cic2c3c4c54 - 4c*c5cl - 44c$4 + I0c24c54 

-Cx44c\ - 24c344 + 5C2C344 + 6C!C444 + 44 

-c!c244 + 44 + 4c*4 - 6ci c2°*4 

+10cic^c4c
3

5 + bc\c3Ci4 - 10c2c3c44 - 5ci44 

-c\c54 + 6c?c2c5c| - 5c|c5c| - 3cic3c54 ~ 5c4c5c| 

' +44 - 5cic2Ce + 6c3c£ 

d10 = 4 + 44ce - 6c4c^c6 + 4444 - ±4c*44 

-2cxc3cA44 +10444 - 2ciC2cgc| + 6c344 + 44 

-Ac24ci4 + 444 - ^4^44 + $444 + ^i^44 

-444 ~ 24c2c3c54 + 4:4c3C54 - 2c^4^4 - 2cf c4c5c| 

+ 12ciC2C4C5c| - 12c3c4c54 + 2444 ~ ^i44 + 44 

-64c24 +10444 - ±44 + §4c*4 - i2cic2c34 

+Q44 - 44c*4 - 2c2C4cg + 2cic5c| 
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6x6 matrix cont. 

For A3(A): 

dn = c2c\c6 + cic2c3cfcj? - 6c2c444 - cx44 + cidjc5c| 

+4c3c4c54 - hcic2c3c4c*,4 - 4c4cs4 - c\c\c5cl + 10c2clc5cl 

-Ci4cl4 ~ 1c\csclc\ + 5c2c3c
2

54 + 6cic4c2c3 

+44 - cxc2c\c\ + 44 + 4C*4 - 6c?c2c4c£ 

+10cic^c4c| + 5c^c3c4c| - 10c2c3c4C6 - 50x44 - 4C$4 

+6c?c2c5c| - 5c^c5c| - 3cic3c5c| - 5c4c5c| + cf 4 

-5cic2Cß + 6c3c| 

^i2 = c!c344 - ^44 + ^444 + c\c2cA44 - 24^44 

-4^03^44 + ±444 - 2cxc244 + C\4CA4 - ^4^4 

-24c244 + ±444 - 44 + CiC3C5c| - A4C2C3C54 

+4cic|c5c| - 2cfc4c5c| + llcic2c4c5c| - 5c3c4c5c| + 2c\44 

+c244 - 4^4 + ±444 - 44 - 5cxc2c3c| 

+344 + 4c*4 - 7c2c44 - 5clC5c| + 34 

di3 = 444 + 4c*44 - 2c2c444 - cx44 + cic2c3c4c54 

-34cic54 - 344c54 + 5c24c54 + 4^44 - 3^444 

-4^44 + c2c344 + 4clC444 + 44 + 444 

-3cxc244 + 344 - 24c2c*4 + 5c!4c44 + 4c3c*4 

-5c2c3c4c| + ci44 - 4^4 + ±4 c2c54 + 4c$4 - cic3c54 

-6c4c54 + 44 - 6clC24 + 3c34 

du = cic3c444 - 444 + 444 - 3cic244 + c344 

+444 - 2clC344 + 244 + 4c2c3c54 - i4c*c$4 

-c\4c$4 - 3c?c4c5c| + 6cic2c4c54 - 2c3c4c54 + ±c244 

-444 + 244 + 4c34 - 2clC2c34 + 344 

+44c44 - Sc2c44 - Acxc54 + 34 
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6x6 matrix cont. 

For A3(A): 

di5 = c2c
2

4c54 + c\c3cl4 - 2c2c3cl4 - 2clCi44 + 244 

+cxc\cA4 ~ 2c\czc±4 ~ C2C3C4C6 + %cic\4 ~ 2c\c2c$4 

+3c|c5c| + 2dc3c54 ~ 4c4(*4 + 2cic6 - 4cic2cJ 

+3c3cJ 

<*16 = 44 + C!C2C4C54 ~ 3c3C4C5C^ - c\44 + C2C14 

+44 - 3ciC2C3cJ + 344 + C1C4C6 - C2C*4 

+cic54 

dn = ci44 + C2C5C6 _ 2cic3c5cJ - c4c54 - cic2cj? 

+3c3c| 

^18 = C2C4c| - CiC5c| + 4 

dig = Cz4 

d20 = 4° 

For A4(A): 

d\ = —C4 

^2 = +(C3C5) - C2C6 

dz — -c24 - 4ce + 2c2c4c6 + cic5c6 - c| 

^4 = +(ciCg) + c2c3c5c6 - 3cic4c5c6 - Cj?C6 - C^Cg 

+dc3c| + 2c4c| 

d5 = -cf, - cic3c|c6 + 4c4c§c6 - c|c4c| + 2cic3c44 

-244 + 2clC2c54 - 3c3c5cg - 2c\4 + 2c24 
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6x6 matrix cont. 

For A4 (A): 

de = +(c3ci?c6) + C-LC2CIC*,CI - 3c3c4c5cjj - 4clcl - c244 

+44 - 3cic2c3c| + Zc\4 + c\ci4 + 3cic5c^ - 2c, 

d7 = -c2c4cl4 + ci44 - 444 + 2c244 - ci4<*4 

+2cf c3c5c| + C2C3C54 - cic4c5c| - 44 + 4c*ci 

~C2C6 — 3cjC3Cg 

ds = +(ci4c54) + C2C5C6 _ 2ciC3c|c^ - C^\4 + 4C2C4C6 

-2c^C4c| - C1C3C4C6 + C4CI - cf c54 + cic2c5c| 

+3c3c5c£ + 44 

dg = —4ci ~ cic2C4c5c| + 3c3c4c5c| + c?ci?c| - c244 

-Cic3c| + 3ciC2C3c| - $44 + cfece - 3cic5c| 

dio = +(c2C4c|) + 4czcs4 - 2c2c3c5c| - 2cic4c54 + 2c|c| 

+cf 4 - 4cf c2c^ + 2c^ + 3ciC3c^ - 2c4c| 

d\\ = -cic3c4c| + 44 ~ 4cs4 + 3cic2c5c£ - c3c54 

+c?4 - 2c2c£ 

di2 = +(c§4) + 4c*cl ~ 2c2C4cJ - cic54 + c§ 

^13 = -ClC3c| + C44 

du = +(c24) 

<*i5 = -4° 

For A5(A): 

d\ = c5 

C?2 = C4Cß 

«fo = C3Cg 
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6x6 matrix cont. 

For A5 (A): 

d4 - c2c\ 

dh = cic| 

d6 = 4 

For A6(A): 

d\ = C6 
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APPENDIX C 

dk DEPENDENCE 

As mentioned in Section II D, one can find the djt's by looking at the characteristic 
polynomial of the pth wedge of the companion matrix for a given polynomial. Appendix 
B specifies how the c^'s and d*'s are related. But how are the d^s related to each other? 
Although the cjt's are algebraically independent, the djt's are not. Below is code from 
Mathematica which uses the Gröbner basis tool to calculate the dk relations. The Gröbner 
basis tool was applied to the equations from Appendix B using the second wedge of a 4 x 4 
matrix. Recall from Appendix B, that the second order wedge of the 4x4 matrix has six 
«fit's. In the ideal generated by this tool, there are five polynomials that only involve the 
six djt's. By setting these polynomials equal to zero and simplifying we get five useful dk 
relations. 

GroebnerBasis[{dl + c2, 

d2 + c4-cl* c3, 

d3 + c4 * clÄ2 + c3~2 - 2c2 * c4, 

d4 + c4~2 - cl * c3 * c4, 

d5 + c2*c4~2, 

d6 - c4"3}, 

{el, c2, c3, o4, dl, d2, d3, d4, d5, <Z6}] 

The output to this command is a Gröbner basis.   The first five polynomials in the 
basis, however, depend only on the d^s. They are as follows: 

d23dQ-d43, 
dld42 - d22d5, 
dld2d6 - d4d5, 
dl2d4d6-d2d52, 
dl3d62-d&. 

Setting each of these equations equal to zero and reducing them provides a way of examin- 
ing the relations between the d^s. In fact, for this example, it turns out that the equations 
reduce to the following: 

d5 = d\ * do1'3 

d4 = d2*d62'3. 

Hence, this gives us an easier way to calculate the d^s. 
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