NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN 92-16

"CCITT TEST DOCUMENTS" DIGITIZATION

JUNE 1993

OFFICE OF THE MANAGER
NATIONAL COMMUNICATIONS SYSTEM
701 SOUTH COURT HOUSE ROAD
ARLINGTON, VA 22204-2198

19970117 057
Title and Subtitle

"CCITT Test Documents" Digitization

Authors

Stephen Perschau

Performing Organization

Delta Information Systems, Inc.
300 Welsh Road, Building #3
Horsham, PA 19044-2273

Sponsoring/Monitoring Agency

National Communications System
Office of Technology and Standards Division
701 South Court House Road
Arlington, Virginia 22204-2198

Abstract

The purpose of this report was to scan the "eight Consultative Communication for International Telegraph and Telephone (CCITT) test documents" at pel densities of 200, 300, 400 and 600 pels per inch, compress the data, and store them on DOS diskettes. Eight documents were originally digitized by the French Administration, and were used in the Group 3 Facsimile algorithm selection process, completed in 1980. These images are often referred to as the "CCITT standard images." Although they were never an official standard, they have been used extensively by experimenters over the years. They were scanned at roughly 200 pels per inch, consistent with the capabilities of facsimile machines at that time. Recently there has been renewed interest in these images. Many of the inquiries for these images have been for digitized images of DOS diskette media at pel densities higher than 200 pels per inch. The NCS has been a leader in the development and promulgation of standardized imagery for facsimile. The NCS has sponsored the digitizing of documents at resolutions of 200, 240, 300, 400, and 480 lines per inch. This data has been used by many experimenters in the development of standard compression algorithms for digital facsimile.
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract
G - Grant
PE - Program Element
PR - Project
TA - Task
W/U - Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."
DOE - See authorities.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
1. INTRODUCTION

This document summarizes work performed by Delta Information Systems, Inc. (DIS) for the National Communications System (NCS), Office of Technology and Standards. This office is responsible for the management of the Federal Telecommunications Standards Program, which develops telecommunications standards, whose use is mandatory for all Federal departments and agencies. The purpose of this project, performed under contract number DCA100-91-C-0031, was to scan the "eight CCITT test documents" at pel densities of 200, 300, 400 and 600 pels per inch, and store them on DOS diskettes.

The eight documents were originally digitized by the French Administration, and were used in the Group 3 Facsimile algorithm selection process, completed in 1980. These images are often referred to as the "CCITT standard images". Although they were never an official standard, they have been used extensively by experimenters over the years. They were scanned at roughly 200 pels per inch, consistent with the capabilities of facsimile machines at that time.

Recently there has been renewed interest in these images, including a proposal in the CCITT that they be made an official standard (recommendation). Many of the inquiries for these images have been for digitized images on DOS diskette media at pel densities higher than 200 pels per inch. Current Group 3 and Group 4 facsimile machines have up to 400 pel per inch capability, and the next step could easily be 600 pels per inch.

The NCS has been a leader in the development and promulgation of standardized imagery for facsimile. The NCS has sponsored the digitizing of documents at resolutions of 200, 240, 300, 400, and 480 lines per inch. This data has been used by many experimenters in the development of standard compression algorithms for digital facsimile, and has contributed significantly to the development of facsimile recommendations which will be of considerable value to the U.S. Government. In addition, the NCS sponsored the preparation of standard gray scale images, representative of continuous tone pictures to be transmitted through facsimile systems.
The purpose of this project was to scan the "eight CCITT test documents" at pel densities of 200, 300, 400 and 600 pels per inch, compress the data, and store it on DOS diskettes.

This report is comprised of three sections. Section 1 provides a brief description of the objectives of the study and an outline of the contents of this report. Section 2 discusses the steps taken to scan the images. Section 3 is a guide to expanding the images to their original size.
FOREWORD

Among the responsibilities assigned to the Office of the Manager, National Communications System, is the management of the Federal Telecommunication Standards Program. Under this program, the NCS, with the assistance of the Federal Telecommunication Standards Committee identifies, develops, and coordinates proposed Federal Standards which either contribute to the interoperability of functionally similar Federal telecommunication systems or to the achievement of a compatible and efficient interface between computer and telecommunication systems. In developing and coordinating these standards, a considerable amount of effort is expended in initiating and pursuing joint standards development efforts with appropriate technical committees of the International Organization for Standardization, and the International Telegraph and Telephone Consultative Committee of the International Telecommunication Union. This Technical Information Bulletin presents and overview of an effort which is contributing to the development of compatible Federal, national, and international standards in the area of facsimile. It has been prepared to inform interested Federal activities of the progress of these efforts. Any comments, inputs or statements of requirements which could assist in the advancement of this work are welcome and should be addressed to:

Office of the Manager
National Communications System
Attn: NT
701 S. Court House Road
Arlington, VA 22204-2198
"CCITT TEST DOCUMENTS"
DIGITIZATION

JUNE 1993

SUBMITTED TO:
THE NATIONAL COMMUNICATIONS SYSTEM
701 SOUTH COURT HOUSE ROAD
ARLINGTON, VA 22204-2198

DELTA INFORMATION SYSTEMS, INC.
300 WELSH ROAD, BUILDING 3
HORSHAM, PA 19044-2273
TEL: (215) 657-5270 FAX: (215) 657-5273
1. INTRODUCTION

This document summarizes work performed by Delta Information Systems, Inc. (DIS) for the National Communications System (NCS), Office of Technology and Standards. This office is responsible for the management of the Federal Telecommunications Standards Program, which develops telecommunications standards, whose use is mandatory for all Federal departments and agencies. The purpose of this project, performed under contract number DCA100-91-C-0031, was to scan the "eight CCITT test documents" at pel densities of 200, 300, 400 and 600 pels per inch, and store them on DOS diskettes.

The eight documents were originally digitized by the French Administration, and were used in the Group 3 Facsimile algorithm selection process, completed in 1980. These images are often referred to as the "CCITT standard images". Although they were never an official standard, they have been used extensively by experimenters over the years. They were scanned at roughly 200 pels per inch, consistent with the capabilities of facsimile machines at that time.

Recently there has been renewed interest in these images, including a proposal in the CCITT that they be made an official standard (recommendation). Many of the inquiries for these images have been for digitized images on DOS diskette media at pel densities higher than 200 pels per inch. Current Group 3 and Group 4 facsimile machines have up to 400 pel per inch capability, and the next step could easily be 600 pels per inch.

The NCS has been a leader in the development and promulgation of standardized imagery for facsimile. The NCS has sponsored the digitizing of documents at resolutions of 200, 240, 300, 400, and 480 lines per inch. This data has been used by many experimenters in the development of standard compression algorithms for digital facsimile, and has contributed significantly to the development of facsimile recommendations which will be of considerable value to the U.S. Government. In addition, the NCS sponsored the preparation of standard gray scale images, representative of continuous tone pictures to be transmitted through facsimile systems.
The purpose of this project was to scan the "eight CCITT test documents" at pel densities of 200, 300, 400 and 600 pels per inch, compress the data, and store it on DOS diskettes.

This report is comprised of three sections. Section 1 provides a brief description of the objectives of the study and an outline of the contents of this report. Section 2 discusses the steps taken to scan the images. Section 3 is a guide to expanding the images to their original size.
2. TECHNICAL DISCUSSION

Figure 1 through Figure 8 illustrate the test documents that were scanned. The images used in the scanning process were obtained from SEPT\(^1\). They are from a set of original-quality copies made at the time that the Group 3 compression algorithm studies were being conducted. All of the images are A4 size, that is 210 mm wide by 297 mm long.

The resolutions selected for the scanning process (200, 300, 400, and 600 pels per 25.4 mm) were based on those specified in the Group 3 and Group 4 recommendations (200, 300, and 400 pels per 25.4 mm) plus 600 pels per 25.4 mm. The additional higher resolution anticipates the advancing laser printing technology.

Having selected the resolutions and given the width of the image, the number of pels per line can be determined. For the A4 page width of 210 mm, a 200 pels per 25.4 mm scan gives 1654 pels per line. The 1654 pel width is not a convenient number for computers (not divisible by 8). One way to correct this condition is to extend the right margin to make an even number of bytes, as the French PTT did when they originally scanned the images. A better approach would be to produce a digital image that closely approximates the image produced by a Group 3 or Group 4 facsimile scanner. The latter approach was chosen for this project; that is, the charts were scanned to produce the nominal pels per line and lines per image shown in the Group 3 and Group 4 Recommendations. This means that the documents were centered and overscanned. (The chart itself is 210 mm wide, but the scan line is 219.46 mm wide.) Figure 9 illustrates the scanning geometry for the four sampling densities. A reference point is defined that is just inside the top left corner of the image, 0.5 pels from the corner. The coordinates of the reference point, shown in pels, define the position of the A4-size image within the total digitized image. The blanking margin is white.

The images are scanned left-to-right and top-to-bottom, just as in facsimile.

\(^1\) Mr. Grimault of Service d'Etudes communes de La Poste et de France Telecom graciously provided the images.
The scanning process was performed by the Image Electronics Center of Eastman Kodak on a microdensitometer. The microdensitometer samples each pel at 12 bits. The data is processed to produce one bit per pel, stored in the following way. The left-most (first) pel of the first scan line is stored in the most significant bit of the first byte. Proceeding from left to right, pels are stored in successive bytes, 8 pels to a byte, from most significant to least significant. A black pel is a "1" and a white pel is a "0".
Dr. P.N. Cundall,
Mining Surveys Ltd.,
Holroyd Road,
Reading,
Bersks.

Dear Pete,

Permit me to introduce you to the facility of facsimile transmission.

In facsimile a photocell is caused to perform a raster scan over the subject copy. The variations of print density on the document cause the photocell to generate an analogous electrical video signal. This signal is used to modulate a carrier, which is transmitted to a remote destination over a radio or cable communications link.

At the remote terminal, demodulation reconstructs the video signal, which is used to modulate the density of print produced by a printing device. This device is scanning in a raster scan synchronised with that at the transmitting terminal. As a result, a facsimile copy of the subject document is produced.

Probably you have uses for this facility in your organisation.

Yours sincerely,

Phil.

P.J. CROSS
Group Leader - Facsimile Research
This is current driver circuit.

Phil

FIGURE 2

22-9-71
ETABLISSEMENTS ABCDEFG
SOCIETE ANONYME AU CAPITAL DE 300 000 F
20, RUE DU XYVUTRSTBSL F 00000 NTBCLAG
Tél. : (35) 24 48 22 Adr. Tg. : NVIYIROLM
Téléc. : 31358 F IN : 718480070227
Transporteur (ou Translatre)
M. M. DUPONT Frères
8 qual des bichch F 0000 NTBCLAG

LIVRAISON
5, rue XYZ
99000 VILLE

FACTURATION
12, rue ABCD BP 15
99000 VILLE

<table>
<thead>
<tr>
<th>DOMICILIAIION BANCAIRE DU VENDEUR</th>
<th>PAYS D'ORIGINE</th>
<th>PAYS DE DESTINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODE BANQUE CODE GUICHET COMPTE CLIENT</td>
<td>ORIGINE TRANSFERT DESTINATION MODE</td>
<td>ORIGINE 1</td>
</tr>
<tr>
<td></td>
<td>MODE AIR</td>
<td></td>
</tr>
<tr>
<td>ORIGINE 1</td>
<td>TRANSFERT 2</td>
<td>DESTINATION 2</td>
</tr>
</tbody>
</table>

MARQUES ET NUMEROS
MARKS AND NUMBERS

<table>
<thead>
<tr>
<th>QUANTITE COMMANDEE ET UNITE</th>
<th>N° ET REF. DE L’ARTICLE</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AF-809</td>
<td>Circuit intégré</td>
</tr>
<tr>
<td>10</td>
<td>SS-T4</td>
<td>Connecteur</td>
</tr>
<tr>
<td>25</td>
<td>ZI07</td>
<td>Composant indéterminé</td>
</tr>
</tbody>
</table>

FACTURE
FACTURE

<table>
<thead>
<tr>
<th>CODE ECHANT</th>
<th>CODE CLIENT</th>
<th>CODE INVOICE</th>
<th>DATE</th>
<th>NUMERO</th>
<th>FEUILLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-7-7-4</td>
<td>DU</td>
<td>74-2-438</td>
<td>7-7-1-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Votre commande</td>
<td>du 74-1-438</td>
<td>74-1-12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NET TO BE PAID</th>
<th>NET A REGLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET A REGLER</td>
<td>7431.80</td>
</tr>
</tbody>
</table>

FIGURE 3

<table>
<thead>
<tr>
<th>Costs</th>
<th>Packing</th>
<th>Freight</th>
<th>Insurance</th>
<th>Invoice amount</th>
<th>Installment</th>
<th>INSTALLMENT</th>
<th>MONTANT TOTAL DE LA FACTURE</th>
<th>1431.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débours inclus</td>
<td>Non inclus</td>
<td>92.14</td>
<td>7</td>
<td>1431.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L'ordre de lancement et de réalisation des applications fait l'objet de décisions au plus haut niveau de la Direction Générale des Télécommunications. Il n'est certes pas question de construire ce système intégré "en bloc" mais bien au contraire de procéder par étapes, par paliers successifs. Certaines applications, dont la rentabilité ne pourra être assurée, ne seront pas entreprises. Actuellement, sur trente applications qui ont pu être globalement définies, six en sont au stade de l'exploitation, six autres se sont vu donner la priorité pour leur réalisation.

Chaque application est confiée à un "chef de projet", responsable successivement de sa conception, de son analyse-programmation et de sa mise en œuvre dans une région-pilote. La généralisation ultérieure de l'application réalisée dans cette région-pilote dépend des résultats obtenus et fait l'objet d'une décision de la Direction Générale. Néanmoins, le chef de projet doit dès le départ considérer que son activité a une vocation nationale donc refuser tout particularisme régional. Il est aidé d'une équipe d'analystes-programmeurs et entouré d'un "groupe de conception" chargé de rédiger le document de "définition des objectifs globaux" puis le "cahier des charges" de l'application, qui sont adressés pour avis à tous les services utilisateurs potentiels et aux chefs de projet des autres applications. Le groupe de conception comprend 6 à 10 personnes représentant les services les plus divers concernés par le projet, et comporte obligatoirement un bon analyste attaché à l'application.

II - L'IMPLANTATION GEOCRAPHIQUE D'UN RESEAU INFORMATIQUE PERFORMANT

L'organisation de l'entreprise française des télécommunications repose sur l'existence de 20 régions. Des calculateurs ont été implantés dans le passé au moins dans toutes les plus importantes. On trouve ainsi des machines Bull Gamma 30 à Lyon et Marseille, des GE 425 à Lille, Bordeaux, Toulouse et Montpellier, un GE 437 à Massy, enfin quelques machines Bull 300 TI à programmes câblés étaient récemment ou sont encore en service dans les régions de Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essentiellement utilisé pour la comptabilité téléphonique.

A l'avenir, la plupart des fichiers nécessaires aux applications décrites plus haut peuvent être gérés en temps différé, un certain nombre d'entre eux devront nécessairement être accessibles, voire mis à jour en temps réel ; parmi ces derniers le fichier commercial des abonnés, le fichier des renseignements, le fichier des circuits, le fichier technique des abonnés contiendront des quantités considérables d'informations.

Le volume total de caractères à gérer en phase finale sur un ordinateur ayant en charge quelques 500 000 abonnés a été estimé à un milliard de caractères au moins. Au moins les tiers des données seront concernées par des traitements en temps réel.

Aucun des calculateurs énumérés plus haut ne permettait d'envisager de tels traitements. L'intégration progressive de toutes les applications suppose la création d'un support commun pour toutes les informations, une véritable "Banque de données", répartie sur des moyens de traitement nationaux et régionaux, et qui devra rester alimentée, mise à jour en permanence, à partir de la base de l'entreprise, c'est-à-dire les chantiers, les magasins, les guichets des services d'abonnement, les services de personnel etc.

L'étude des différents fichiers à constituer a donc permis de définir les principales caractéristiques du réseau d'ordinateurs nouveaux à mettre en place pour aborder la réalisation du système informatif. L'obligation de faire appel à des ordinateurs de troisième génération, très puissants et dotés de volumineuses mémoires de masse, a conduit à en réduire substantiellement le nombre.

L'implantation de sept centres de calcul interrégionaux constituera un compromis entre : d'une part le désir de réduire le coût économique de l'ensemble, de faciliter la coordination des équipes d'informaticiens ; et d'autre part le refus de créer des centres trop importants difficiles à gérer et à diriger, et posant des problèmes délicats de sécurité. Le regroupement des traitements relatifs à plusieurs régions sur chacun de ces sept centres permettra de leur donner une taille relativement homogène. Chaque centre "géant" enverra un million d'abonnés à la fin du Vième Plan.

La mise en place de ces centres a débuté au début de l'année 1957 : un ordinateur IRIS 50 de la Compagnie Internationale pour l'Informatique a été installé à Toulouse en février. La même machine vient d'être mise en service au centre de calcul interrégional de Bordeaux.
Cela est d'autant plus valable que \(T \Delta f \) est plus grand. À cet égard la figure 2 représente la vraie courbe donnant \(|\phi(f)|\) en fonction de \(f \) pour les valeurs numériques indiquées page précédente.

Dans ce cas, le filtre adapté pourra être constitué, conformément à la figure 3, par la cascade :

— d'un filtre passe-bande de transfert unité pour \(f_0 \leq f \leq f_0 + \Delta f \) et de transfert quasi nul pour \(f < f_0 \) et \(f > f_0 + \Delta f \), filtre ne modifiant pas la phase des composants le traversant ;

— filtre suivi d'une ligne à retard (LAR) disperse ayant un temps de propagation de groupe \(T_R \) décroissant linéairement avec la fréquence \(f \) suivant l'expression :

\[
T_R = T_0 + \left(f_0 - f \right) \frac{T}{\Delta f} \quad \text{(avec } T_0 > T)
\]

(voir fig. 4).

La phase de la ligne à retard est donnée par :

\[
\varphi = -2\pi \int_0^f T_R \, df
\]

\[
\varphi = -2\pi \left[T_0 + \frac{f_0 T}{\Delta f} \right] f + \pi \frac{T}{\Delta f} f^2
\]

Et cette phase est bien l'opposé de \(\phi(f) \), à un déphasage constant près (sans importance) et à un retard \(T_0 \) près (inévitable).

Un signal utile \(S(t) \) traversant un tel filtre adapté donne à la sortie (à un retard \(T_0 \) près et à un déphasage près de la porteuse) un signal dont la transformée de Fourier est réelle, constante entre \(f_0 \) et \(f_0 + \Delta f \), et nulle de part et d'autre de \(f_0 \) et de \(f_0 + \Delta f \), c'est-à-dire un signal de fréquence porteuse \(f_0 + \Delta f / 2 \) et dont l'enveloppe a la forme indiquée à la figure 5, où l'on a représenté simultanément le signal \(S(t) \) et le signal \(S_r(t) \) correspondant obtenu à la sortie du filtre adapté. On comprend le nom de récepteur à compression d'impulsion donné à ce genre de filtre adapté : la « largeur » (à 3 dB) du signal comprimé étant égale à \(1/\Delta f \), le rapport de compression est de \(\frac{T}{1/\Delta f} = T \Delta f \)

On saisit physiquement le phénomène de compression en réalisant que lorsque le signal \(S(t) \) entre dans la ligne à retard (LAR) la fréquence qui entre la première à l'instant 0 est la fréquence basse \(f_0 \), qui met un temps \(T_0 \) pour traverser. La fréquence \(f \) entre à l'instant \(t = \left(f - f_0 \right) \frac{T}{\Delta f} \) et elle met un temps \(\frac{T}{\Delta f} \) pour traverser, ce qui la fait ressortir

\[
T \quad \text{à la portée } A
\]

Ainsi donc, le signal \(S(t) \)
QUESTIONS – COMMISSION XII

Courbes adaptées G_a (essais subjectifs) pour

$G_a = 25$ dB $G_a = 35$ dB

Points calculés $D (Q, G_a)$ pour

$G_a = 25$ dB $G_a = 35$ dB

- dans la partie montante
- dans la partie descendante

Courbes $D (Q, G_a)$

FIGURE 3

TOMÉ V — Question 18/XII, Annexe 6

FIGURE 6
FIGURE 8

FOR IT!

ASKED

WELL, WE

HOW?

Any comments?

dera compression.

We need research into graphics to overcome our problems in achieving graphics data high-speed facsimile transmissions are needed to freeing us from writing and drawing on weather maps. For example, we cannot key in graphic form. For example, some data must remain by communication systems. However, this can be expensive, and also some data must remain reduced to alphanumeric form for transmission.

We know that, where possible, data is

7/14/81

1984

Researc

E. V. Smith

P. A. Sorge

FROM:

memorandum
NOTES:

R = Sampling density (pels per 25.4 mm)
P = Total scan line length (pels) = 219.46 mm
W = A4 paper width (pels) = 210 mm
B = Blanking margin (pels)
L = Nominal number of scan lines

<table>
<thead>
<tr>
<th>R</th>
<th>P</th>
<th>W</th>
<th>B</th>
<th>L</th>
<th>Reference Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1728</td>
<td>1654</td>
<td>37</td>
<td>2339</td>
<td>(38,1)</td>
</tr>
<tr>
<td>300</td>
<td>2592</td>
<td>2480</td>
<td>56</td>
<td>3508</td>
<td>(57,1)</td>
</tr>
<tr>
<td>400</td>
<td>3456</td>
<td>3308</td>
<td>74</td>
<td>4677</td>
<td>(75,1)</td>
</tr>
<tr>
<td>600</td>
<td>5184</td>
<td>4960</td>
<td>112</td>
<td>7016</td>
<td>(113,1)</td>
</tr>
</tbody>
</table>

Figure 9. Scanning geometry
3. IMAGE STORAGE AND RETRIEVAL

The total number of bytes required to store each of the images, as a function of resolution (or sampling density), is shown in Table 1. Note that at 200 pels per 25.4 mm about 0.5 megabytes are required, while at 600 pels per 25.4 mm about 4.5 megabytes are needed. In order to reduce the storage requirements and make DOS diskettes a practical storage media, the data must be compressed.

Table 2 is a list of the 32 compressed files produced by scanning 8 documents at 4 resolutions. The files are stored on 8 DOS diskettes, one document per diskette, with a decompression program stored on each of the diskettes. To retrieve an image from a compressed file, first copy the compressed file to a hard disk and type:

`pkunzip <filename> [enter]`

The compressed file will be expanded and the result written to the hard disk. Make sure that the hard disk has enough space to contain the expanded image.
Table 1. Image storage requirements

<table>
<thead>
<tr>
<th>pel density (pels per 25.4mm)</th>
<th>pels per line</th>
<th>scan lines</th>
<th>pels per page</th>
<th>bytes per page</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1728</td>
<td>2339</td>
<td>4041792</td>
<td>505224</td>
</tr>
<tr>
<td>300</td>
<td>2592</td>
<td>3508</td>
<td>9092736</td>
<td>1136592</td>
</tr>
<tr>
<td>400</td>
<td>3456</td>
<td>4677</td>
<td>16163712</td>
<td>2020464</td>
</tr>
<tr>
<td>600</td>
<td>5184</td>
<td>7016</td>
<td>36370944</td>
<td>4546368</td>
</tr>
<tr>
<td>DOCUMENT</td>
<td>PEL DENSITY</td>
<td>FILE NAME</td>
<td>UNCOMPRESSED BYTES</td>
<td>COMPRESSED BYTES</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Document #1</td>
<td>200</td>
<td>DOC1_200.ZIP</td>
<td>505224</td>
<td>33981</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC1_300.ZIP</td>
<td>1136592</td>
<td>61770</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC1_400.ZIP</td>
<td>2020464</td>
<td>96736</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC1_600.ZIP</td>
<td>4546368</td>
<td>193956</td>
</tr>
<tr>
<td>Document #2</td>
<td>200</td>
<td>DOC2_200.ZIP</td>
<td>505224</td>
<td>31166</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC2_300.ZIP</td>
<td>1136592</td>
<td>53431</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC2_400.ZIP</td>
<td>2020464</td>
<td>82740</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC2_600.ZIP</td>
<td>4546368</td>
<td>150728</td>
</tr>
<tr>
<td>Document #3</td>
<td>200</td>
<td>DOC3_200.ZIP</td>
<td>505224</td>
<td>48828</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC3_300.ZIP</td>
<td>1136592</td>
<td>87117</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC3_400.ZIP</td>
<td>2020464</td>
<td>134523</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC3_600.ZIP</td>
<td>4546368</td>
<td>254890</td>
</tr>
<tr>
<td>Document #4</td>
<td>200</td>
<td>DOC4_200.ZIP</td>
<td>505224</td>
<td>105163</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC4_300.ZIP</td>
<td>1136592</td>
<td>186133</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC4_400.ZIP</td>
<td>2020464</td>
<td>283570</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC4_600.ZIP</td>
<td>4546368</td>
<td>541148</td>
</tr>
<tr>
<td>Document #5</td>
<td>200</td>
<td>DOC5_200.ZIP</td>
<td>505224</td>
<td>57283</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC5_300.ZIP</td>
<td>1136592</td>
<td>100292</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC5_400.ZIP</td>
<td>2020464</td>
<td>153352</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC5_600.ZIP</td>
<td>4546368</td>
<td>288427</td>
</tr>
<tr>
<td>Document #6</td>
<td>200</td>
<td>DOC6_200.ZIP</td>
<td>505224</td>
<td>35213</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC6_300.ZIP</td>
<td>1136592</td>
<td>62364</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC6_400.ZIP</td>
<td>2020464</td>
<td>99982</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC6_600.ZIP</td>
<td>4546368</td>
<td>197443</td>
</tr>
<tr>
<td>Document #7</td>
<td>200</td>
<td>DOC7_200.ZIP</td>
<td>505224</td>
<td>119462</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC7_300.ZIP</td>
<td>1136592</td>
<td>209547</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC7_400.ZIP</td>
<td>2020464</td>
<td>316710</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC7_600.ZIP</td>
<td>4546368</td>
<td>242113</td>
</tr>
<tr>
<td>Document #8</td>
<td>200</td>
<td>DOC8_200.ZIP</td>
<td>505224</td>
<td>47752</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>DOC8_300.ZIP</td>
<td>1136592</td>
<td>83438</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>DOC8_400.ZIP</td>
<td>2020464</td>
<td>126685</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>DOC8_600.ZIP</td>
<td>4546368</td>
<td>234532</td>
</tr>
</tbody>
</table>