
RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:
A PROOF OF CONCEPT SYSTEM FOR THE

AUTOMATED CLASSIFICATION OF
UNITED STATES AIR FORCE RECORDS

THESIS

David W. Snoddy, Captain, USAF

AFIT/GIR/LAR/96D-11 CO
 k~

DTCC QUALITY INSPECTED ■

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved for public release-
Distribution Unlimited

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U. S. Government.

AFIT/GIR/LAR/96D-11

RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:

A PROOF OF CONCEPT SYSTEM FOR THE AUTOMATED

CLASSIFICATION OF UNITED STATES AIR FORCE RECORDS

THESIS

Presented to the Faculty of the Graduate School of Logistics

and Acquisition Management of the

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Information Resources Management

David W. Snoddy, B.A.

Captain, USAF

December 1996

Approved for public release; distribution unlimited

Acknowledgments

This thesis was a massive undertaking which could not have been completed without

the help and encouragement of others. First, I would like to thank Dr. Kim Campbell, my

advisor, and Dr. Guy Shane, my reader. Their guidance and expertise made the entire

process a lot less painful than it could have been. Next, I would like to thank Capt Anne

McPharlin, my sponsor, and the personnel from Wright-Patterson's Base Records

Management office for providing various reference materials for my use throughout this

process. I would also like to extend my thanks to the personnel in the 88th Support

Group Administration Office for allowing me to rifle through their official files in order

to accumulate my sample of records. Most of all, I would like to thank the most

important person, my wife. Without her understanding and support this thesis would not

have been possible.

David W. Snoddy

u

Table of Contents

Page

Acknowledgments ii

List of Figures vi

List of Tables xi

Abstract xii

I. Introduction 1
United States Air Force Records Management 1
Records Management and the DoD 3
Problem Statement 4
Research Objectives 4
Scope and Limitations of the Study 5
Summary 5

II. Literature Review 7
Introduction 7
Artificial Intelligence 7
Knowledge-Based Systems 8
Natural Language Processing 9
Document Classification Systems 11

Manual, Knowledge-Based Systems 12
Automated, Knowledge-Based Systems 13
Automated, Mathematical Comparison Systems 14

Summary 17

III. Method 19
Introduction 19
RACS Introduction 19

Data Flow Diagramming 20
Classify New Record Context Diagram 21
Classify New Record Diagram 0 21
Process 1: Enter New Record 23
Process 2: Generate Record Template 25

Process 2.1: Analyze Individual Terms 26
Process 2.2: Remove Stopwords 27

in

Page

Process 2.3: Perform Stemming Operation 28
Process 2.4: Add to Record Template 29

Process 3: Compare Templates 29
Process 4: Choose Record Class 31
Process 5: Log Results 32

Process 5.1: Calculate Offsets 33
Process 5.2: Update Score Log 33
Process 5.3: Update Log File 33

Process 6: Add Record To Database 34
Process 7: Generate Class Templates 34
Procedure for Testing RACS 35

Sample Records 36
Determining the Effects of Record Order 38
Determining the Effects of Various Weighting Schemes 38
Conducting the Test 39

Analyzing RACS' Performance 40
Question 1 40
Question 2 40
Question 3 41

Summary 41

IV. Results and Analysis 42
Introduction 42
Question 1 42
Question 2 49
Question 3 50
Differences Among Individual Record Classes 52
Summary 53

V. Conclusions and Recommendations 54
Introduction 54
Research Objective 1 54
Research Objective 2 55
Research Objective 3 56
Recommendations 56
Conclusion 58

Appendix A: Acronyms 60

Appendix B: Overview of the RACS System 61

Appendix C: RACS Source Code 73

IV

Page

Appendix D: RACS Configuration File 139

Appendix E: RACS Stop List 140

Appendix F: Excerpt from logfile.txt 142

Appendix G: Excerpt from scorelog.txt 144

Appendix H: Sample Class Template 145

Appendix I: Common Tables and Rules 147

Appendix J. 88 SPTG/CCE Files Maintenance and Disposition Plan 152

Appendix K: Sample Records 154

Appendix L: Offset Data 160

Appendix M: Record Class 1 Charts 162

Appendix N: Record Class 2 Charts 166

Appendix O: Record Class 3 Charts 170

Appendix P: Record Class 4 Charts 174

Appendix Q: Record Class 5 Charts 178

Bibliography 182

Vita 185

List of Figures

Figure Page

1. Example of IF-THEN Rules 9

2. Four Basic Symbols for Data Flow Diagrams 20

3. Classify New Record Context Diagram 21

4. Classify New Record Diagram 0 22

5. Generate Record Template Child Diagram 26

6. Log Results Child Diagram 32

7. Generate Class Templates Child Diagram 35

8. Histogram of Sample 1 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores 43

9. Histogram of Sample 2 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores 43

10. Example of the Accuracy of Record Classification in a Random
or "Guessing" System 45

11. Sample 1 - Time Series Results for RACS with
Weighting Scheme 20/20/20/20/20 46

12. Sample 2 - Time Series Results for RACS with
Weighting Scheme 20/20/20/20/20 46

13. Sample 1 - Time Series Results for RACS with
Weighting Scheme 30/20/30/10/10 47

14. Sample 2 - Time Series Results for RACS with
Weighting Scheme 30/20/30/10/10 47

15. Sample 1 - Time Series Results for RACS with
Weighting Scheme 50/30/00/10/10 48

VI

Figure Page

16. Sample 2 - Time Series Results for RACS with
Weighting Scheme 50/30/00/10/10 48

17. Classify New Record Context Diagram 55

18. RACS Menu/Interface Hierarchy 62

19. Main Menu 63

20. Database Management Menu 63

21. Initialize Databases Menu 64

22. View/Edit Records Menu 65

23. View Record Interface 65

24. Edit Record Interface 66

25. Compact Databases Menu ; 67

26. Template Management Menu 67

27. Generate Templates Menu 68

28. View Templates Menu 69

29. Log Files Management Menu 69

30. View Log Files Menu 70

31. Classify New Record Data Entry 71

32. Verify New Record Data 71

33. Classify New Record Results 72

34. Histogram of Sample 1 Results for Class 1 162

35. Histogram of Sample 2 Results for Class 1 162

36. Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 20/20/20/20/20 163

Vll

Figure Page

37. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 20/20/20/20/20 163

38. Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 30/20/30/10/10 164

39. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 30/20/30/10/10 164

40. Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 50/30/00/10/10 165

41. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 50/30/00/10/10 165

42. Histogram of Sample 1 Results for Class 2 166

43. Histogram of Sample 2 Results for Class 2 166

44. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 20/20/20/20/20 167

45. Time Series Results of Sample 2 for Class 2 with
Weighting Scheme 20/20/20/20/20 167

46. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 30/20/30/10/10 168

47. Time Series Results of Sample 2 for Class 2 with
Weighting Scheme 30/20/30/10/10 168

48. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 50/30/00/10/10 169

49. Time Series Results of Sample 2 for Class 2 with
Weighting Scheme 50/30/00/10/10169

50. Histogram of Sample 1 Results for Class 3 170

51. Histogram of Sample 2 Results for Class 3 170

52. Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 20/20/20/20/20 171

vni

Figure Page

53. Time Series Results of Sample 2 for Class 3 with
Weighting Scheme 20/20/20/20/20 171

54. Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 30/20/30/10/10 172

55. Time Series Results of Sample 2 for Class 3 with
Weighting Scheme 30/20/30/10/10 172

56. Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 50/30/00/10/10 173

57. Time Series Results of Sample 2 for Class 3 with
Weighting Scheme 50/30/00/10/10 173

58. Histogram of Sample 1 Results for Class 4 174

59. Histogram of Sample 2 Results for Class 4 174

60. Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 20/20/20/20/20 175

61. Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 20/20/20/20/20 175

62. Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 30/20/30/10/10 176

63. Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 30/20/30/10/10 176

64. Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 50/30/00/10/10 177

65. Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 50/30/00/10/10 177

66. Histogram of Sample 1 Results for Class 5 178

67. Histogram of Sample 2 Results for Class 5 178

68. Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 20/20/20/20/20 179

IX

Figure Page

69. Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 20/20/20/20/20 179

70. Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 30/20/30/10/10 180

71. Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 30/20/30/10/10 180

72. Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 50/30/00/10/10 181

73. Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 50/30/00/10/10 181

List of Tables

Table Page

1. Summary Matrix of Document Classification Studies 18

2. Record Metadata Specified by DoD-STD-5015.2 23

3. RACS Record Metadata Fields 24

4. Analyze Individual Terms Logic Rules 27

5. Record Classes Selected for Sampling 38

6. Class Score Weighting Schemes 39

7. Paired Sample t Test Results 49

8. Sample 1 Wilcoxon Signed Rank Tests Results 51

9. Sample 2 Wilcoxon Signed Rank Tests Results 51

10. RACS Files 61

XI

AFIT/GIR7LAR/96D-11

Abstract

The records management process utilized within the Department of Defense (DoD) is

currently labor intensive. Work is being done to automate portions of this process, but

classifying documents and assigning disposition instructions remains a labor intensive,

manual operation. Although the requirement for this capability was identified by a DoD

sponsored study, an automated computer-based system which can classify and apply

disposition instructions has yet to be developed for use within the DoD. This thesis study

presents a proof of concept computer program called the Records Analysis and

Classification System (RACS) which was developed to demonstrate computer-based

techniques for the automated classification of official records. To demonstrate the

operation of RACS, a sample of 113 records was collected from the files of an

organization at Wright-Patterson AFB. An analysis of the results of the tests conducted

with the RACS system indicated that it was capable of accurately classifying 72 out of

the 113 records on average. Additionally, the RACS program was designed as a learning

system and the test results indicated that it was, in fact, capable of improving its

classification accuracy over time.

xn

RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:

A PROOF OF CONCEPT SYSTEM FOR THE AUTOMATED

CLASSIFICATION OF UNITED STATES AIR FORCE RECORDS

I. Introduction

In recent years there has been an increasing awareness of a need to manage our

military's information resources more effectively. The Department of Defense (DoD),

recognizing this fact, has initiated some programs to address various areas of concern.

One such area has been the process of records management. To illustrate the need for a

fresh approach the following section provides some details on the current process in place

in the United States Air Force (USAF). To document some of the work done by the DoD

in order to overcome the limitations of the current records management process, the

second section presents a chronological list of such activities.

United States Air Force Records Management

The United States Air Force uses, Air Force Instruction 37-122 Air Force Records

Management Program (AFI37-122), Air Force Manual 37-123 Management of Records

(AFMAN 37-123), and Air Force Manual 37-139 Records Disposition Schedule

(AFMAN 37-139, formerly AFR 4-20 V2) to manage its official records. AFMAN 37-

139 is used specifically to manage the classification and disposition of official records

(SECAF, 1996:1). The disposition instructions for a given record can be found in one of

438 decision logic tables (DLT) contained in AFMAN 37-139. Related DLTs are

grouped under one of 39 different series. For example, DLTs dealing with the area of

Information Management are in series 37 while those DLTs dealing with Acquisition are

in series 63 (note that the series are not numbered consecutively, their numbers

correspond to the appropriate governing instruction series) (SECAF, 1996:1). In all,

there are approximately 6150 disposition rules prescribed in AFMAN 37-139.

The disposition of records is managed by Records Technicians, primarily clerks and

secretaries, under the direction of a Chief of an Office of Record (SECAF, 1994a:Sec 8-

9). Records Technicians and Chiefs of an Office of Record are assisted by a Functional

Area Records Manger who is advised by the base Records Manager (SECAF, 1994a: Sec

6-9). Records Technicians develop files maintenance and disposition plans (files plans)

and physically file and manage (primarily) paper records. As the Air Force draws down,

the first slots to be eliminated are often clerks and secretaries, placing such administrative

tasks on the other unit personnel (McPharlin, 1995). Additionally, desktop PCs and local

area networks are providing the capability to create, use, maintain and disseminate

records electronically. The majority of these electronic records (including e-mail) are not

being managed by the unit files plans (McPharlin, 1995; Bolden and Pollard, 1996). This

results in lost information and/or information retained beyond its disposition, which takes

up valuable disk space and could leave the unit vulnerable to Freedom of Information Act

(FOIA) requests or lawsuits (McPharlin, 1995; Bolden and Pollard, 1996). These records

are not managed under the current process because an understanding of the myriad tables

and rules and knowledge of public law is a burden upon the typical end-user or producer

of USAF records.

Records Management and the DoD

In July 1994 the Department of Defense Records Management Business Process

Reengineering (RM-BPR) study was completed. The study was sponsored by the

Assistant Secretary of Defense for Command, Control, Communications and Intelligence

(ASD(C3I)), and the Deputy Assistant Secretary of Defense for Information Management

(DASD(IM)). During the course of the study representatives from each military service

and the Office of the Secretary of Defense reengineered the process of records

management (DoD RM-BPR, 1994:v).

In September 1994 the ASD(C3I) directed the DASD(IM) to create the Department

of Defense Records Management Task Force (RMTF). The designated mission of the

RMTF is to develop plans and draft policy to implement, by the year 2003, the initiatives

proposed by the RM-BPR (DoD RMTF, 1995: ES-1).

The RM-BPR identified six opportunities for improving records management within

the DoD. These six opportunities became the six strategic policy initiatives for the

RMTF (DoD RMTF, 1995:ES-1). The initiative of interest in this thesis is, "Develop

standard DoD functional and automated systems requirements for managing information

as records in an electronic environment" (DoD RMTF, 1995:ES-1). The DoD has

released a draft which "sets forth mandatory baseline functional requirements and data

elements for storing and accessing information from Records Management Application

(RMA) software used by DoD agencies in the implementation of their records

management programs" (DoD, 1996:1). However, this draft standard does not address

one of the original functional support requirements proposed by the RM-BPR which was

to, "Assign disposition instructions automatically" (DoD RM-BPR, 1994:4-2). It is this

original requirement which is of interest in this thesis.

Problem Statement

The records management process is currently very labor-intensive. Work is being

done to automate portions of this process but the process of classifying documents and

assigning disposition instructions remains a labor-intensive, manual operation. Although

the requirement for this capability was identified by the RM-BPR study, an automated

computer-based system which could accomplish the classification and disposition

assignment process has yet to be developed. (Note: throughout this document the term

disposition is synonymous with disposition instructions)

Research Objectives

The following objectives must be met in order to solve the specific problem of

interest:

1. Locate and summarize the various automatic document classification techniques
being employed by researchers and practitioners on related projects throughout the
world.

2. Develop and propose a technique for automatically analyzing records in order to
assign appropriate classification and disposition within the USAF.

3. Demonstrate the proposed technique on a limited set of sample records.

Scope and Limitations of the Study

The process of computer-based records management is a much larger process than

simply classifying records and assigning disposition instructions. The draft DoD

Standard 5015.2 specifies 13 broad functions a RMA should be capable of performing;

some examples include: Identifying Records, Filing Records and Assigning Disposition,

Storing Records, Retrieving Records, and Destruction of Records (DoD, 1996:14-21).

This thesis effort is not concerned with the whole process; instead, the scope of this

project is limited to the portion of the process which currently requires a human records

technician to determine record type and assign appropriate classification and disposition

instructions based on that determination.

Recognizing the fact that the DoD is currently engaged in an effort to standardize and

simplify the records management process across the DoD, this study will not duplicate

that effort. In other words, this study will not make any attempt to revise and/or propose

a new records schedule; rather it will demonstrate a technique which can be applied

regardless of the underlying schedule.

Summary

As is evident from the information presented thus far, the process of classifying

USAF records is not a simple process. The RM-BPR study recognized that one way to

improve the efficiency of the records management process is to have disposition

instructions assigned automatically (DoD RM-BPR, 1994:4-2). DoD-STD-5015.2

omitted this requirement (DoD: 1996); consequently, any RMA software developed will

undoubtedly require the user to choose the appropriate disposition manually. This thesis

has proposed to develop and demonstrate a technique for automatic classification which

will fill in the gap left by DoD-STD-5015.2.

Chapter II, the literature review, provides general background on some relevant

artificial intelligence technologies and on document classification projects from the

literature.

II. Literature Review

Introduction

This literature review is subdivided into several different sections. The first several

sections are designed to provide a background on artificial intelligence (AI) and on two

specific AI areas of interest in this research effort. The remaining sections detail specific

research which has been conducted previously in the area of applying AI techniques to

the classification of documents.

Artificial Intelligence

Morris Firebaugh presents the following definition of AI which he attributes to

Professor Marvin Minsky of MIT, "Artificial intelligence is the science of making

machines do things that would require intelligence if done by men" (1988:12). This is

not the only definition of AI; in fact, definitions abound. The underlying principle

remains the same: artificial intelligence is a general term applied to the systems and

techniques, usually computerized, which are capable of performing functions which are

normally considered to require intelligence. Two examples include natural language

processing and visual perception. The two specific AI areas which are addressed within

this thesis are knowledge-based systems and natural language processing. These two

areas are summarized here due to their applicability to automatic document classification

tasks.

Knowledge-Based Systems

A knowledge-based system can be defined as "a computer system that attempts to

replicate specific human expert intelligent activities" (Mockler and Dologite, 1992:14).

One specific, well-known form of a knowledge-based system is the expert system.

Expert systems have been developed for a variety of diverse tasks ranging from medical

diagnosis programs such as MYCIN to speech understanding programs such as

HEARSAY-II (Mockler and Dologite, 1992:17).

There are several key components which distinguish a knowledge-based system from

other computer-based systems: a knowledge base, inference mechanism, user interface,

and working memory (Firebaugh, 1988:337-338; Mockler and Dologite, 1992:19-21;

Goel, 1994:54). The knowledge base contains domain-specific information and heuristics

which pertain to the domain of interest. For example, the knowledge base of the MYCIN

system contained about 400 heuristic IF-THEN rules pertaining to the diagnosis and

treatment of infectious blood diseases (Hayes-Roth, 1992:16). The knowledge base can

be considered a codified version of the knowledge derived from the experts within the

particular domain. The inference mechanism is the component in a knowledge-based

system which matches the input supplied against the knowledge contained in the

knowledge base (Goel, 1994:54). For instance, the MYCIN system prompts the user with

a series of questions. Depending on the answers to various questions, between 30 and 90

questions may be asked before a diagnosis is reached (Firebaugh, 1988:352-353). Once

MYCIN has gathered sufficient information, it produces a diagnosis which includes the

most likely causes of infection as well as the recommended treatment (Firebaugh,

1988:353).

There are a variety of ways knowledge can be represented in a knowledge base. The

most common way to store knowledge is in the form of rules, often called production

rules. A typical rule uses if-then statements and Boolean operators to assign values to

variables based on an analysis of input data. An example from the MYCIN system is

illustrated in Figure 1 (Firebaugh, 1988:309).

IF [a) the stain of the organism is gramneg AND
b) the morphology of the organism is rod AND
c) the patient is a compromised host]

THEN [there is suggestive evidence (.6) that the identity of the organism
is pseudamonas]

Figure 1. Example of IF-THEN Rules

Another method of storing knowledge is in frames. The underlying concept of

frames is to store pieces of knowledge together in meaningful chunks; for example, a

frame for a book might contain the title, author, publisher, and date of publication

(Weckert, 1992:31).

Natural Language Processing

In very general terms, a natural language processing (NLP) system can be defined as

"any system which performs a useful operation on natural language input" (Firebaugh,

1988:237). NLP systems have been developed for a number of diverse purposes ranging

from lexical and syntactic analysis tools such as spelling checkers to much more intensive

applications such as those for speech recognition (Firebaugh, 1988:239). This research

effort is concerned with the more general NLP processes for text analysis and will focus

the discussion on those areas.

Statistical text analysis is employed frequently for automatic classification tasks (see

Cheng and Wu, 1995; Losee and Haas, 1995; Larson, 1992). Statistical text analysis is

often considered to have as its origin the early works of Luhn. Luhn, as quoted in Van

Rijsbergen, stated, "It is here proposed that the frequency of word occurrence in an article

furnishes a useful measurement of word significance" (1979:15). It is on this simple

premise that much of the subsequent work in automatic term indexing has been built. An

in-depth discussion of Luhn's work is not appropriate here but a summary of his

technique can be found in Van Rijsbergen (1979:15-16).

If one were to produce a list of all like words with their frequencies from a given set

of documents, it is not hard to imagine that the word list would quickly become quite

long. Thanks to the work of Luhn and other subsequent researchers there are techniques

for reducing these word lists to a more manageable length which will yield a list of index

terms or keywords which will be representative of the original document. The basic steps

employed typically are:

1. Removal of high frequency words or stopwords. This can be accomplished by
means of a stoplist which is a list of all those words which occur frequently and are
not considered key words (Van Rijsbergen 1979:17). Examples of stopwords are
such function words as: on, the, about, has, now, and which.

2. Stripping of suffixes. This process, also called conflation or stemming, involves
examining words for particular word-endings and removing them (Paice, 1977: 82).
Examples include such word endings as -ing and -ous.

10

3. Detection of equivalent words. For example, MATHMATICS should be reduced to
MATH (Cheng and Wu, 1995:294).

The discussion above is intended to provide a very simplified, brief overview of the

techniques involved in automatic text analysis. As will be seen in the following

discussion, refinements and adaptations of the basic text analysis process are integral

portions of the various systems discussed.

Document Classification Systems

It is appropriate at this point to define some key terms used frequently throughout

this thesis. The term document is used generically to refer to any form of written material

to be classified whether it be a book, journal article, or an office memo. A document

classification system is defined as a system which takes as its input a document to be

classified and produces as its output the correct classification for the given document in

relation to a predefined classification scheme.

Considering the definition presented above, it can be said that there are two key

processes which every document classification system must perform. The first process is

text analysis. The second is determination of document classification or classification

determination for short. Taken together, the output of text analysis is a document

representation which can be utilized by the system in order to determine the appropriate

classification during classification determination.

It has been noted by various authors and confirmed by this author that much of the

research done in the 1970s and '80s with automatic classification focused on clustering

like documents without regard to any predefined classification scheme (Larson 1992:131;

11

Cheng and Wu, 1995:289). Given the focus of this thesis effort and the definitions

presented above, the following discussion does not address this early research; instead it

focuses on a sample of contemporary research.

For clarity of discussion, the various classification projects surveyed below are

broken into three sections. The first section-Manual, Knowledge-Based Systems-

describes two knowledge-based systems which require the user to input the significant

data to the system in order for it to make a classification. The second section-

Automated, Knowledge-Based Systems-describes one project which incorporates

automated document content analysis with a knowledge-based representation of the

classification scheme. The third section-Automated, Mathematical Comparison

Systems—describes three systems which were each designed to conduct autonomous

analysis of document content and arrive at a classification using various mathematical

techniques.

Manual Knowledge-Based Systems. A perfect example of a manual/user-dependent

document classification system is the current USAF document classification system. An

example of a classification system which basically automates a portion of what still

remains a largely manual system is the CLOD-X expert system. CLOD-X, which is the

acronym for Classification of Office Document Expert System, was designed for records

managers in the International Civil Aviation Organization (Savic, 1994:20). The

system's knowledge base utilizes both rules and frames to represent the knowledge

necessary for classification. Classification is accomplished through a process which

requires the user to analyze a given document and then answer a series of questions posed

12

by CLOD-X. Once CLOD-X has gathered sufficient information from the user, it returns

a document classification from a possible 400 classes.

Cosgrave and Weimann present a discussion on the use of an expert system tool

known as n-Cube for item classification using the Universal Decimal Classification

(UDC) standard (1992:33). The system they describe requires the user to make some

preliminary assessments of the documents, basically determining keywords and concepts

associated with the document. The user feeds these keywords into the expert system, and

the system returns a suggestion as to the appropriate UDC classification number. While

this system does not require the user to answer a series of questions as with the CLOD-X

system, it still requires the user to analyze the source document and input an accurate set

of keywords to receive a document classification from the system.

Automated. Knowledge-Based Systems. The one system which falls into this

category is the one described by Bhatia et al. The bulk of their article describes the

process of creating a knowledge base for their classification system. To construct the

knowledge base the authors borrow a concept from the field of clinical psychology

known as Personal Construct Theory (Bhatia et al., 1991:92). The system developers

then apply the techniques of this theory during the process of knowledge elicitation

conducted with classification experts. The resulting knowledge base is composed of a

series of production rules.

A new document is automatically analyzed to extract index terms or term phrases.

The authors refer to these terms or term phrases as constructs (Bhatia et al., 1991:96). A

given document is therefore represented by a set of constructs. The occurrence of a

13

construct in the document triggers the rules corresponding to that construct in the

system's knowledge base. The document is ultimately assigned the classification of the

category for which the calculated certainty of correct classification is greatest (Bhatia et

al., 1991:96).

This article is of value in that it illustrates one method for developing a knowledge

base for the classification of documents. The one significant drawback of their system is

that it is extremely labor intensive during the development phase. The systems presented

in the next section illustrate some methods for automating this phase of system

development as well.

Automated. Mathematical Comparison Systems. The projects and techniques

presented in the previous two sections each used expert system techniques to represent

the knowledge of a particular classification scheme. In contrast, the three projects

presented in this section depart from this approach and instead use various statistical

comparison approaches to determine document classification.

The first project reviewed (Losse and Haas, 1995) had several stages. First the

researchers looked at word frequencies and especially at the frequencies of what they

called sublanguage terms. The authors define a sublanguage as "the written or spoken

language that is used in a particular field or discipline by people working in the field,

especially to communicate with their colleagues" (Losee and Haas, 1995:519). The study

focused on eight general fields or disciplines: biology, economics, electrical engineering,

history, math, physics, psychology, and sociology.

14

During the second phase of their project, they conducted an investigation of how

many terms they found to be sublanguage terms in the titles and abstracts of various

articles as defined by special dictionaries for each discipline and by a general dictionary.

The final portion of their investigation is the one of most interest in this thesis. The

authors developed a system to test whether term frequencies could be used to accurately

classify a document-represented in their study by the abstract within a document~into its

correct discipline.

Each discipline was represented in the system by a database of its sublanguage terms

along with their Poisson percentiles. The Poisson percentile as presented in this study,

"provides a measure of the degree to which a term has a higher than expected frequency

of occurrence in the database in question" (Losee and Haas, 1995:522). To determine the

correct discipline of a given abstract, the list of words in that abstract would be compared

with each of the eight lists of words in the discipline databases. Poisson percentiles were

calculated for the abstract in relation to each database and a composite score or weight

computed (Losee and Haas, 1995:527). The abstract was then classified as a member of

one of the eight disciplines based on the highest composite score or weight (Losee and

Haas, 1995:527).

Between 22 and 50 abstracts from each discipline were presented to the system to

determine its ability to accurately characterize the general domain to which the abstract

belonged. The results of the experiment yielded amazing results. The authors' system

was highly accurate, with the lowest success rate at 92.3% while classifying documents

from the general domain, history (Losee and Haas, 1995:527). The system was 100%

15

accurate in classifying both math and sociology documents (Losee and Haas, 1995:527).

The higher error rates for the history domain were attributed to the fact that the sub-

language for that domain did not contain as many unique terms as the sub-language for an

area like mathematics (Losee and Haas, 1995:528).

The experiment developed and reported by Larson attempted to select the correct

classification for a document based on the characteristics ofthat document and on the

characteristics of all documents previously assigned the same classification. The

classification categories used in the study were from the Library of Congress

Classification scheme. Larson developed what he called classification clusters to

represent each Library of Congress Classification tested in the study. The classification

clusters were essentially weighted vectors of index terms (Larson, 1992:132).

Larson's basic classification technique was to use the terms extracted from a

document to be classified as a query to a set of databases where each database represented

a classification cluster. The results of these queries indicated the document's

classification. Larson conducted an exhaustive set of experiments using each

combination of four matching methods, five query types and three index term

representation schemes.

Larson reported that the highest accuracy achieved by any single combination of the

parameters specified above yielded an accuracy of 46.6% (Larson, 1992:145). Larson

was less than optimistic in his conclusion as to the effectiveness of a fully autonomous

classification system. He stated that "fully automatic LC (Library of Congress)

classification may not be possible for all books. A semiautomatic method of

16

classification, using one of a combination of the methods tested here, followed by human

examination and selection of the highly ranked clusters, appears to be feasible" (Larson,

1992:146).

The last article reviewed is a study by Cheng and Wu which investigated the

feasibility of automatic classification under the Universal Decimal Classification (UDC)

scheme. Their technique was very similar to the others presented within this section.

First class vectors were developed for each class used in the study. These class vectors

essentially consisted of the keyterms and their frequencies from a set of sample books.

When a new book was to be classified, a book vector would be generated. The book's

title and chapter headings were used to generate the keyterms which made up each book

vector. Once a book vector was developed it was compared to each of the class vectors

and, using a calculation called the Modified Overlap Coefficient, a measure of similarity

was determined (Cheng and Wu, 1995:293). The class vector which yielded the highest

similarity was the one to which the new book was assigned. The results using this

technique appear very promising. The authors report that when 384 books were classified

about 86% were classified correctly (Cheng and Wu, 1995:296).

Summary

As is evident from the discussion above, automatic classification has been

demonstrated using a variety of methods; some manual, some automated. Table 1 below

summarizes the key points of the studies reviewed above for easy reference. The

methods in the section, Automated Mathematical Comparison Systems, are the ones of

greatest interest in this thesis. This is due to the fact that the systems described there not

17

only automate the classification process, but they automate the process of developing the

representations of the underlying classification scheme as well. The classification

method described by Cheng and Wu appears very promising in that it uses a simple yet

effective calculation to determine document classification.

Table 1. Summary Matrix of Document Classification Studies

TEXT ANALYSIS
CLASSIFICATION
DETERMINATION

AUTHOR(s) TITLE
Savic Designing an Expert System for

Classifying Office Documents

Cosgrove &
Weimann

Expert System Technology Applied to
Item Classification

Bhatia, Deogun
& Raghavan

Formation of Categories in Document
Classification Systems

Losee & Haas Sublanguage Terms: Dictionaries,
Usage, and Automatic Classification

Larson Experiments in Automatic Library of
Congress Classification

Cheng & Wu ACS: an Automatic Classification
System

(0
3
C
CO
5

■a
*-«
CO

E o **
3 <

CD
O)
TJ

"3 ^
s ® O CO
C CO
2£ m M

at
he

m
at

ic
al

C

om
pa

ris
on

X X
X X

X X
X X
X X
X X

18

III. Method

Introduction

The second stated objective of this thesis effort was to develop and propose a

technique for automatically analyzing records in order to assign appropriate classification

and disposition within the USAF. This chapter begins by introducing the Records

Analysis and Classification System (RACS), aproof of concept system which was

developed to meet this objective. Included with this is a brief discussion of the

diagramming technique used in portraying the system. Following that are sections which

describe in detail the processes which occur within RACS while classifying a new record.

A discussion on the procedure used to test the operation of RACS including specific

details on the sample of records collected is presented. The chapter concludes by

summarizing the statistical techniques employed to analyze the performance of RACS.

RACS Introduction

The RACS program was developed using the C programming language. RACS

contains many administrative functions designed to manage the various data files

generated and used during program execution; an in-depth discussion of these functions is

outside of the scope of this chapter. Those interested in these details can refer to

Appendix B, Overview of the RACS System, and Appendix C, which contains a

complete listing of the source code for the RACS program. The discussions in

subsequent sections will focus on the NLP functions which constitute the heart of the

RACS approach to automatic classification of USAF records.

19

Data Flow Diagramming. It is appropriate at this point to briefly describe the

diagramming technique used in portraying RACS' operation. Data Flow Diagrams

(DFD) are a graphical diagramming technique used to depict the flow and transformation

of data through a set of processes (Kendall & Kendall, 1995:229). The four basic

symbols used in creating DFDs are illustrated in Figure 2.

Data
Flow Entity

' 0

Process
D1 Data Store I

Figure 2. Four Basic Symbols for Data Flow Diagrams

Kendall and Kendall describe the four basic symbols as follows (1995:232-233):

1. An entity is something external to the system which can send data to and receive data
from the system.

2. A dataflow depicts the movement of data within the system.

3. A process transforms data as it flows through the system.

4. A data store, represents a repository in which data can be stored and retrieved.

The highest level DFD used in describing a system is the Context Diagram. This

DFD contains only one process which represents the entire system and illustrates the

relationships between the system and any external entities.

The second level DFD is referred to as Diagram 0. Diagram 0 is an exploded view

of the system depicted in the Context Diagram and can show up to nine numbered

20

processes. In turn, each of the processes depicted in Diagram 0 can be exploded into

child diagrams as necessary to present greater detail.

Classify New Record Context Diagram

The actual portion of the RACS system of interest in this thesis is that portion which

determines the correct classification for a new record. Figure 3 presents the Context

Diagram for the Classify New Record process. This process receives from the system

user the pertinent data about the record to be classified. This data about the record, or

Record Metadata, is used by the Classify New Record process to return the Correct

Record Class (record classification) to the user. The concepts, record metadata and

record class, will be described in the following sections.

Record
Metadata w

' ° 1 Correct
Record Class

User User Classify New
Record

Figure 3. Classify New Record Context Diagram

Classify New Record Diagram 0

Figure 4 is the Diagram 0 DFD for the Classify New Record process.

21

User

Record Metadata

Analyzed Outside
ofRACS

Offset
Details

1

Enter New
Record

D3

Record Data
Structure

Record Data
Structure

Score Log I

Offset
Details

Log Results

D4

Analyzed
Terms

Record
Template

Generate
Record

Template

D1 Class Templates I

Record
X Template

Score
Details

All
Details

Compare
Templates

Correct
Record
Class

Class
Templates

Class
Templates

Class
Scores

Log File

Choose
Record Class

T All
Details

Correct
Record

Class

Analyzed Outside
ofRACS

Correct
Record Class

User

D2

Database
Records

Class Databases I

New
Record Data

Add Record
To Database

Figure 4. Classify New Record Diagram 0

As one can see from Figure 4 there are seven key processes which are involved in the

Classify New Record process. As was depicted in Figure 3 (the Classify New Record

Context Diagram) the Classify New Record process depicted in Figure 4 begins when a

user enters the Record Metadata on a new record (shown at the top of the figure). The

22

process concludes when a Correct Record Class determination has been returned to the

user (shown at the bottom of the figure). The seven key processes depicted in Figure 4

are described in greater detail in the following sections.

Process 1: Enter New Record

DoD-STD-5015.2 specifies nine types of metadata which any RMA must be capable

of recording about a given record prior to its classification and filing. The nine types of

metadata and their descriptions are listed in Table 2.

Table 2. Record Metadata Specified by DoD-STD-5015.2

Field Name Description
Subject The principal topic addressed in a record.
Data of Record The date and time the record is filed by the RMA.
Addressee(s) The name of the organization or individual to whom a record is addressed.
Media Type The material/environment on which information is inscribed (e.g., microform,

electronic, paper).
Record Format The logical structure of a record (e.g., WordPerfect 5.2®, Microsoft Excel 4.0®).

Applicable primarily to electronic records.
Location of Record The physical location of the record. For example an operating system path-file

name for an electronic record or the location of a file cabinet for a paper record.
Document Creation
Date

The date and time that the author-originator created the record.

Author or Originator The author of a document is the physical person or the office/position responsible
for the creation of the record.

Originating
Organization

Official name or code that reflects the office responsible for the creation of a
record.

(Adapted from DoD, 1996; Prescott and others, 1995)

For this thesis project, it was assumed that the processes performed by the RACS

system would in fact be just one piece of a larger RMA. With this assumption in mind,

the user enters the pertinent data into the system from the Classify New Record Data

23

Entry interface (see Figure 31 in Appendix B). The specific data fields capable of being

collected by RACS mirror those described in Table 2 with the following exceptions:

1. RACS does not collect Location of Record data. The reason for this exclusion is that
a new record's location is only relevant for retrieval purposes after the record has
been classified and filed. This process is outside of the scope of the RACS program
so was therefore not included.

2. The user does not enter the Date of Record, RACS enters this information
automatically.

3. A field called Record Type was added which is intended to capture information
about the type of record being classified; for example, if a record is being filed which
is an AF Form 55, AF Form 55 would be entered as the record's Record Type. This
field was added for purposes of testing the system because it was felt that this type of
metadata (though not required by the DoD standard) might be an important
distinguishing characteristic of a given record.

Table 3 shows the eight data fields used by RACS as record metadata. The order of

the individual fields for each type of metadata have been reordered to correspond to the

sequence in which the user enters them (see Figure 31 in Appendix B).

Table 3. RACS Record Metadata Fields

Field Name Enter Data Description
Addressee(s) Optional The name of the organization or individual to whom a record is

addressed.
Originating
Organization

Mandatory Official name or code that reflects the office responsible for the
creation of a record.

Subject Mandatory The principal topic addressed in a record.
Author or Originator Optional The author of a document is the physical person or the

office/position responsible for the creation of the record.
Document Creation
Date

Optional The date and time that the author-originator created the record.

Record Type Mandatory The type of record being entered (e.g., official memorandum, AF
Form 55).

Media Type Mandatory The material/environment on which information is inscribed (e.g.,
microform, electronic, paper).

Record Format Mandatory The logical structure of a record (e.g., WordPerfect 5.2®,
Microsoft Excel 4.0®). Applicable primarily to electronic records.

24

The fields labeled as Mandatory are used by RACS to determine the record class of a

new record. These fields were selected because, as a group, they are likely to be capable

of distinguishing one record from another. In contrast, the other fields, while useful for

retrieval in an RMA, would probably not be descriptive enough to distinguish one record

from another. For instance, it was assumed that the metadata in the Subject field would

be more useful for classifying a record than the metadata in the Addressee field.

The output of the Enter New Record process is a Record Data Structure containing

the data entered by the user into each of the fields listed in Table 3.

Process 2: Generate Record Template

As illustrated in Figure 5 below, the Generate Record Template process takes as its

input the Record Data Structure created in Process 1 and performs an analysis of the

mandatory record metadata to derive a representation of the original document or record

called a Record Template.

25

Record Data
Structure

r

Analyzed Terms 1 21

Analyze
Individual

Terms

ALLAL
T

Analyzed Terms

PHA
erms

v

NONWORD
Terms

f *. *. "V

Stnn 2.2 1

D5 StopL
■ words

Remove 1
Stopwords 1

Remainina
' 2.3 1 ALLALPHA Terms ~T~

i

Remaining

Perform
Stemming
Operation

r NONWORD Terms
Stemmed

ALLALPHA Terms
r i>i ^ 2.4

Add to
Record

Template

i

Record
Template

Figure 5. Generate Record Template Child Diagram

Process 2.1: Analyze Individual Terms. This sub-process performs the crucial task

or extracting and classifying individual lexical terms (i.e., words) from each of the five

mandatory fields of metadata in the Record Data Structure. The algorithm developed to

accomplish this task is an adaptation of a lexical scanner described by Atkinson and

Atkinson (1990:382-393). The algorithm uses white space and punctuation characters as

delimiters when extracting individual terms for analysis. Each extracted term is classified

as either ALLALPHA or NONWORD. Any punctuation encountered is classified as

PUNCT. Table 4 outlines the logic used to make these distinctions. Note that the rules

in this table are executed in sequence and the first rule to be found true causes the

26

algorithm to assign that classification to the current term and then begin executing the

rules again with a new term.

Table 4. Analyze Individual Terms Logic Rules

RULE IF
first character is

AND
second character is

AND
all other characters are

THEN
term type is

1 A-Z or a-z a-z a-z ALLALPHA
2 A-Z A-Z A-Z or a-z NONWORD
3 0-9 0-9 or/ or - 0-9 or/or- NONWORD
4 A-Z or a-z N/A N/A ALLALPHA
5 0-9 N/A N/A NONWORD
6 any punctuation N/A N/A PUNCT
Key: A-Z uppercase alphabet character

a-z lowercase alphabet character
0-9 numerical character

To illustrate the use of the rules in Table 4, consider the following terms extracted

from a Subject metadata field: Administrative, AFR, and 177-16. The term

"Administrative" would be classified as ALLALPHA because it meets the conditions in

Rule 1. In contrast, the term "AFR" would be classified as NONWORD because it does

not meet the conditions in Rule 1 but does meet those in Rule 2. Likewise, the term

"177-16" would be classified as NONWORD because, although it does not meet the

conditions in either Rule 1 or Rule 2, it does meet the conditions in Rule 3.

All PUNCT is eliminated from further analysis while the terms classified as

ALLALPHA and NONWORD are converted to all lowercase characters and then sent for

further analysis to Process 2.2, Remove Stopwords.

Process 2.2: Remove Stopwords. During this process each term from Process 2.1 is

compared to a stoplist. If one of the terms from the record matches a stopword in the

27

stoplist the term is marked as a stopword and dropped from further analysis. The stoplist

used with RACS was presented in Fox and contains 425 common English words (e.g.,

"a," "the," "and," "of," etc.) (1992:114-115). Thus, those terms which are assumed to

have relatively little value in analyzing the meaningful differences among records are

removed from consideration. The only additional stopwords added to the stoplist were

the terms "af' and "form". These additional stopwords were added due to the fact that

they occurred frequently in all types of records from various record classes in the sample

collected for this thesis and consequently were not considered valuable in discerning

meaningful differences among records. The complete stoplist used in this thesis can be

found in Appendix E.

Following removal of all stopwords, the remaining ALLALPHA terms are sent to

Process 2.3, Perform Stemming Operation, while all remaining NONWORD terms are

sent directly to Process 2.4, Add to Record Template.

Process 2.3: Perform Stemming Operation. The stemming algorithm used in RACS

was presented in Fox (1992:151-160) and is an adaptation of a suffix stripping algorithm

proposed by Porter (1980). Porter's algorithm works by "treating complex suffixes as

compounds made up of simple suffixes, and removing the simple suffixes in a number of

steps" (1980:130). The result of this stemming operation is a list of terms which have

been reduced to a common morphological stem. These common stems enhance the

ability of RACS to match related terms which would have otherwise appeared to be

different. For example, the stemming process would take as its input the terms

"connect," "connected," "connecting," "connection" and "connections" and reduce each

28

term to the common stem "connect." Only ALL ALPHA terms are subject to stemming in

this system. A NONWORD term (e.g., "AFR") is assumed not to share a common stem

with any other NONWORDs.

Process 2.4: Add to Record Template. The final process within the general process

Generate Record Template takes as its input all remaining NONWORD terms after

stopword removal and all remaining ALLALPHA terms after stopword removal and

stemming. These terms are placed with their frequency of occurrence in the metadata

into a record template which is RACS' representation of the document being classified.

Each term is added to the appropriate term array in the record template; in other words,

terms which were extracted from the Subject field in the original Record Data Structure

are added to a Subject Array in the Record Template and terms from the Media Type

field are added to the Record Template's Media Type Array. Refer to Appendix F to see

an example of a record template as well as the results of the analysis processes in Process

2 on one record.

Process 3: Compare Templates

Recall from Figure 4 that the Compare Templates process takes as its input the

Record Template discussed in the previous section and each of the five Class Templates

in turn. Class templates are identical to record templates except for the fact that instead

of representing one record, a given class template represents all records previously added

to that class (i.e., a record category).

Thus, for each record template to class template comparison there are five distinct

arrays of terms to be compared; Subject, Originating Organization, Record Type, Media

29

Type, and Record Format. To determine the amount of overlap (similarity) between a

given record template array and the corresponding class template array, a Modified

Overlap Coefficient (MOC) is calculated. To illustrate, the formulas for calculating a

MOC indicating the overlap between the record template's subject array and class

template l's subject array are defined below (adapted from Cheng and Wu, 1995:293).

Let CiSub in Equation 1 represent class template l's subject array and RStlb in

Equation 2 represent the record template's subject array:

QSvb = fe./.K^/J.-.k/l'-.t-/»)! (!)

Rs* = ((i.a)»fe.a).-.('}.?J (r.»&)} (2)

where

c,. = term / in ClSub

ft = frequency of term z

m = the number of terms in C1Sub

rj =\&cmjmRSub

gj = frequency of termy

n = the number of terms in RSub

30

Then the formula for calculating the MOC of the record template subject array with

class template l's subject array is:

MOClSub = -ST^ (3)

where

eg =/.(gj) if c^rj

JV, = number of records in class template 1

G = Xg(. if c,=r,

In all, 25 MOC values for a given record template are calculated; there are five

different array MOCs (representing overlap of terms in the subject field, the originating

organization field, etc.) for each of the five class templates (representing record class 1,

record class 2, etc.). Five composite class scores are calculated by summing the five

MOC values from each record template to class template comparison.

Process 4: Choose Record Class

This process represents the point at which the user is presented with a rank ordered

list of the most likely classifications for the record currently being classified. Figure 33 in

Appendix B is a depiction of the interface the user actually sees. The user is required to

enter the correct record class for the current record. Once this is done, the output of the

process, Correct Record Class, flows to the last three processes included within the larger

process, Classify New Record (see Figure 4). As far as the user is concerned, RACS is

now ready to classify another record.

31

Process 5: Log Results

This important process takes as its input the results of various other processes within

the overall Classify New Record process and records them to one of two log files which

are used for data analysis. Another key function performed within the Log Results

process is the calculation of an offset which is in essence an error value. The offset

indicates how far off RACS was from determining the correct record class for the current

record.

An examination of Figure 6 reveals the interrelationships between the various inputs

and the three sub-processes involved.

Correct Record Class

N Score Details

r 5.1 -

Calculate
Offsets

s

r

Offse

> i 4M rt
5.2 \

V

53 ^ Record Template

Update
Score Log

Update
Log File

«

^ Analyzed Terms

>

Offset
Detail:

f ^

All
Details

r

D3 Score Log 1 D4 Log File 1

Figure 6. Log Results Child Diagram

32

Process 5.1: Calculate Offsets. The method for calculating offsets is tied to the ranks

RACS assigns to the five classes during the Compare Templates process. For example, if

the correct class (as entered by the user) for a new record was class 4 and RACS had

determined that class 4 was the third most likely classification, then RACS was off by

two positions in ranking the correct class and the offset is 2. If for the same record,

RACS had determined that class 4 was the first most likely classification (rank 1) then the

offset would be 0.

There is an exception to the general rule used in calculating offsets when RACS

assigns the same score and rank to two or more record classes. For example, if class 5 is

the correct classification and RACS ranks class 5 and class 1 as tied for most likely

classification, then RACS could not distinguish between class 1 and class 5 and the offset

is calculated as 1 (rather than 0) due to the ambiguity.

Process 5.2: Update Score Log. This process takes the Offsets calculated during the

Calculate Offsets process and the Correct Record Class from the Choose Record Class

process and adds the values to the simple log file Score Log which is depicted by data

store D3 in Figure 6. Appendix G is an excerpt from an actual Score Log.

Process 5.3: Update Log File. As Figure 6 illustrates, this process takes as its inputs

the results of various processes and adds the data to the Log File (data store D4).

Appendix F is an excerpt from an actual Log File and illustrates the various information

captured.

33

Process 6: Add Record To Database

As is indicated in Figure 4, this simple process adds the data from the original

Record Data Structure for the current record to the database corresponding to the Correct

Record Class; in other words, if the current record belongs to class 3, the Add Record To

Database process would add this record's data to the database containing data on class 3.

Process 7: Generate Class Templates

Once a record has been classified and its metadata has been added to the appropriate

class database, the corresponding class template is regenerated. As mentioned earlier, a

class template is identical to a record template except for the fact that a class template is a

representation of all the records previously added to that class. An examination of the

processes illustrated in Figure 5 and the processes illustrated in Figure 7 emphasize the

fact that record templates and class templates are virtually identical. Once again, the only

difference is the fact that each record stored in a given Class Database (signified by data

store D2 in Figure 7) is analyzed and used to build the corresponding Class Template

(signified by data store Dl in Figure 7). Appendix H contains a sample of a typical class

template.

The strength of this approach is that RACS is in essence capable of learning in that,

as more records are added to a given class, its knowledge of the records typically found in

that class increases. The converse to this is the fact that a record entered into a class to

which it does not belong can distort RACS' representation of a given class.

34

D2 Class Databases 1

Database
^ r Records

correct
Rornrrt Clacc 1 71 1

Analyze 1
Individual

Terms 1

ALULPHA
Terms

NONWORD
Terms

btop
Words

' 7.2 '

D5 StopL St i-
Remove

Stopwords

st J-

ing Remain

' 7.3 '
ALLALPHA terms
< „1 Ren

uNOI
la'ning

Perform
Stemming
Operation

WORD Terms
Stemmed

ALLALPHA Terms ' 7A 1
Add to Class

Template

Class
Templates

D1 Class Templates 1

Figure 7. Generate Class Templates Child Diagram

Procedure for Testing RACS

The third and final objective of this thesis was to demonstrate the classification

techniques developed on a limited set of sample records. Three specific questions were

formulated which served as the basic requirements for designing the actual testing

procedures. The questions were as follows:

1. How accurately does RACS classify records and is it capable of learning?

2. Since RACS was designed to be a "learning" system, does the order in which records
are added to RACS' record classes affect overall classification accuracy?

35

3. Does the weighting of the five fields of metadata used for scoring affect overall
classification accuracy?

The discussion which follows presents an overview of the sample records collected

for this thesis. Following that is a discussion of the actual procedure employed to test

RACS.

Sample Records. The 88th Support Group Administration Office (88 SPTG/CCE)

Was chosen as the source of the sample records for this thesis. There were two primary

reasons for the selection of the 88 SPTG/CCE. The first reason is that the files plan for

the 88 SPTG/CCE consisted of 23 rules, 19 of which are found among the "Common

Tables and Rules" in Appendix I. As stated in Chapter I, there are over 6000 disposition

rules in AFMAN 37-139. Of these, a relatively small number of rules are common for

virtually all files plans across the USAF (Bolden and Pollard, 1996). Appendix I is an

adaptation of a table provided by the personnel in the Base Records Management office at

Wright-Patterson AFB, OH. The table lists the common tables and rules for files plans

on Wright-Patterson.

Second, a Support Group Administration Office is an organization which can be

found on nearly all USAF Bases. The proceeding two factors taken together demonstrate

that the files plan in use by the personnel at the 88 SPTG/CCE might be considered

representative of a typical USAF files plan.

The files plan for the 88 SPTG/CCE, illustrated in Appendix J, contained record

classes corresponding to 23 distinct disposition rules. AFMAN 37-123 allows for

subdivisions to be added to files plans for ease of filing (SECAF, 1994b:3.2). It should

36

be noted that while the major items/disposition rules contained in a given files plan are

governed by AFMAN 37-139, subdivisions are not; a given organization can include

whatever subdivisions they deem appropriate to meet their specific needs. Subdivisions

are illustrated in Appendix J in items 4,6,7,17,20, and 23. For filing purposes, each of

these rules and subdivisions correspond to a physical file folder in the 88 SPTG/CCE's

official files.

To demonstrate the operation of RACS, five record classes or categories were

selected for sampling (see Table 5). The following factors were considered when the

record classes were selected.

1. At least two record classes should be subdivisions (i.e., would be determined by the
individual office rather than USAF regulation) in order to demonstrate RACS'
ability to be customized to the needs of any given office.

2. At least one record class should contain records of a homogeneous nature. In other
words, all of the files in the class are a specific document type (such as a single
USAF form).

3. Several record classes should contain records of a heterogeneous nature in order to
test RACS' ability to classify diverse records (such as forms, memorandums, etc.)
into the same class.

4. The number of records physically filed in the file folder corresponding to a given
record class should be at least five in order to provide a sufficient sample for testing
RACS.

37

Table 5. Record Classes Selected for Sampling

RACS
Class # Rcrds Item Title Disposition Rule
1 26 3 Delegations/Designations of Authority &

Additional Duty Assignments
T11-02R21.00

2 30 6-3-2 Office Administrative Files - Internal Admin and
Housekeeping - Supplies/Equipment

T 11-01 R01.00

3 5 6-4 Office Administrative Files - Internal Admin and
Housekeeping - Safety

T 11-01 R01.00

4 13 12 Internal Inspections/Self-Inspection Check
Lists/Inventories

T11-02R33.00

5 39 15 Suggestions, Inventions, & Scientific
Achievements - At Evaluating Office

T900-02 R02.00

In all, data on 113 records were gathered. The actual data (i.e., record metadata)

shown in Table 3 was compiled during a review of each sample record located in the

physical file folders of the 88th Support Group. A complete listing of the sample records

used in this thesis can be found in Appendix K.

Determining the Effects of Record Order. In order to test the effects of record entry

order on RACS' classification accuracy, the following procedure was employed. Each

sample record was assigned a random number using a computer-based random number

generator which was seeded by the time from a personal computer's internal clock. The

list of records was then ordered according to the random numbers. This procedure was

then repeated on the same personal computer resulting in two randomly ordered lists of

records.

Determining the Effects of Various Weighting Schemes. Three different weighting

schemes were employed to score every record entered for classification (see Table 6).

The column labels in the top row of the table signify the MOC value for the record

38

metadata field listed as the subscript. The row labels listed in the first column are the

notations for each weighting scheme.

Table 6. Class Score Weighting Schemes

MOCSub MOC^ MOCTyp MOCMed MOCFm

20/20/20/20/20 0.2 0.2 0.2 0.2 0.2
30/20/30/10/10 0.3 0.2 0.3 0.1 0.1
50/30/00/10/10 0.5 0.3 0.0 0.1 0.1

Key: Sub = Subject Field
Org = Originating Organization Field
Typ = Record Type Field
Med = Media Type Field
Frm = Record Format Field

The rationale for the selection of the three weighting schemes was as follows:

1. 20/20/20/20/20 - This scheme assigned equal weight to all applicable data fields.
This scheme was implemented to provide a standard against which the other two
weighting schemes could be compared in terms of classification accuracy.

2. 30/20/30/10/10 - It was felt that the Subject and Record Type fields would be of
more value in distinguishing correct record class than the other fields. Therefore,
under this scheme the Subject and Record Type fields were given greater weight than
the other three fields.

3. 50/3 0/00/10/10 - Record Type does not factor into the score calculated using this
scheme. This scheme was designed to provide insight as to the effect of the addition
of the field, Record Type, which is not mandated by the DoD standard.

Conducting the Test. The procedure for conducting the actual test was

straightforward. All of RACS' data files were cleared of data and the first set of

randomly ordered records was entered into the system. After the log files were saved to

an alternate location, the data files were once again cleared and the procedure was

repeated with the second set of randomly ordered records.

39

Analyzing RACS' Performance.

The three offset values (corresponding to the three weighting schemes) recorded for

each sample record classified served as the raw data which was analyzed to determine

RACS' accuracy as an automated records analysis and classification system. The

following sections summarize the analysis conducted to answer the three research

questions.

Question 1. How accurately does RACS classify records and is it capable of

learning? To analyze RACS' overall accuracy at classifying records, relative frequency

histograms were developed (McClave and Benson, 1994:28-32). Time series plots

including exponentially smoothed trend lines (McClave and Benson, 1994:796-798) were

prepared to illustrate the "learning curve" associated with each set of randomly ordered

sample records and each weighting scheme.

Question 2. Since RACS was designed to be a "learning" system, does the order

in which records are added to RACS' record classes affect overall classification

accuracy? Paired sample / tests (McClave and Benson, 1994:420-424) were conducted

to determine if there was a statistically significant difference between the offsets

generated by each set of randomly ordered sample records. This test was chosen for two

primary reasons. First, the samples in this case were related (i.e., the exact same set of

records are used twice). Thus, since the samples were not independent a standard two-

sample t test was not appropriate. Second, the standard assumptions for a paired

difference test of hypothesis were met with the offset data.

40

Question 3. Does the weighting of the five fields of metadata used for scoring

affect overall classification accuracy? Within each set of randomly ordered sample

records, Wilcoxon signed rank tests for a paired difference experiment (McClave and

Benson, 1994:935-940) were conducted to determine if there was a statistically

significant difference between the offsets generated by each weighting scheme.

Summary

In order to meet the objectives set forth in the thesis effort, automated classification

techniques were developed and implemented in a proof of concept system, RACS. This

system, along with the procedures for testing and analyzing the operation of RACS were

explained in detail. The following chapter presents a detailed analysis of the results from

the tests conducted.

41

IV. Results and Analysis

Introduction

As has been discussed previously, the three offset values (corresponding to the three

weighting schemes) were recorded for each sample record classified. This chapter

provides detailed analysis of these offset values (the actual raw data can be found in

Appendix L). For clarity of discussion, this chapter is subdivided into a series of sections

corresponding to the three research questions posed in the previous chapter.

Question 1

How accurately does RACS classify records and is it capable of learning? There

are essentially two pieces to this question which were analyzed using separate techniques.

The first portion of the question is concerned with an overall picture of RACS' accuracy

while the second portion is concerned specifically with determining if RACS is in fact

capable of learning.

To analyze RACS' overall accuracy while classifying records, simple relative

frequency histograms were utilized to illustrate the results of the classification tests.

Specifically, two histograms were developed; the histogram illustrated in Figure 8

presents the results of the tests conducted using the first randomly ordered set of records

and Figure 9 presents the results of the tests using the second randomly ordered set of

records. The values on the horizontal axis in each histogram correspond to each possible

offset value while the vertical axis represents the number of records which resulted in a

42

given offset value. The three different series of vertical bars correspond to the three

weighting schemes used.

|20/20/20/20/20

130/20/30/10/10

150/30/00/10/10

20 20 22

8 98 6 5 5
7 7 8

2

OFFSET

Figure 8. Histogram of Sample 1 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores

68 70 68

to a a.
o
ü
iu
a.

70 - Id
60 - 1
50 1
40 - 1
30 ■ 1 25 23 23

20 -■ m
m - 1 ■ 8 9 9

o m
0 1 2

OFFS ET

■ 20/20/20/20/20

|B 30/20/30/10/10

□ 50/30/00/10/10

Figure 9. Histogram of Sample 2 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores

43

A visual examination of the two histograms presented indicates that RACS was able

to correctly classify (i.e., achieve an offset of 0) 70 out of 113 records on average.

Additionally, RACS was able to classify an additional 22 records with an offset of 1.

While this data is extremely useful for illustrating the overall performance of RACS, the

analysis conducted to determine RACS ability to learn provides more detailed and

rigorous insight into RACS' ability to accurately classify records.

As discussed earlier, RACS was designed to be a learning system. Before any

records have been classified RACS knows nothing about the particular record classes of

interest. As records are added to a given class, RACS knowledge of the types of records

typically contained in that class increases.

If RACS were only capable of guessing a given record's classification, one would

expect that there would not be any evidence that learning had occurred and that the

offsets produced would occur in a purely random fashion. Figure 10 illustrates this

hypothetical situation.

44

4
3.5

3

fc 2-5

ffi 2
CJ 1.5

1
0.5

0

> * .'■ ä * ■ ■• '• i '. ■• ■ ■ ■ s ■ .' ■■'./ ? /VA ■■ . ■

1- • ■; ■: :■
-|-«-r- -f - - --■;.-

h-<oc>m*-r^-coc>inT-r>-c>o>m*-h--co
o

RECORD

Figure 10. Example of the Accuracy of Record Classification
in a Random or "Guessing" System

The dashed lined in the figure is a time series plot of the offset values computed for

each sequential record classified (the offset values in Figure 10 were generated randomly

for purposes of illustration only). The solid line is an exponentially smoothed line which

is a smoothed version of the offset line and is intended to indicate the general trend in the

data.

In contrast to the results of the hypothetical system depicted in Figure 10, the actual

plots generated from the tests conducted with RACS indicate that learning did in fact

occur. The following six figures illustrate the results of the tests conducted for each of

the three weighting schemes in both randomly ordered sets of records.

45

UJ
CO

RECORD

Figure 11. Sample 1 - Time Series Results for RACS
with Weighting Scheme 20/20/20/20/20

to o> in
i- T- CM

RECORD

Figure 12. Sample 2 - Time Series Results for RACS
with Weighting Scheme 20/20/20/20/20

46

A <5

4*Mt- —f *
3.5 -^M- i ;

; ■■

H 3-^1 --< ♦$- _t_^ ♦ -f----

CO 2.5 - * •, \ -S-* M" — u. u.
O 1 <5 -:

\ i1 % ■ i1

\ ■ 4, tl,'
-"■♦- t

% ■

1 ! --■- \l\ •■ 'V

0 5 -'
■ ■ V?*L «r "^

0 4n
, » ■ * i « 5 • 1 • • ^^^O^^^^^fcJT

T- r- C0 05 If) T-
T- <r- CM CO

r-.coo)ir)T-h-<oo)ir>
cot^-mcDcoh-r-co

RECORD

-r- h- CO «
0) o> o o

Figure 13. Sample 1 - Time Series Results for RACS
with Weighting Scheme 30/20/30/10/10

LU
co

RECORD

Figure 14. Sample 2 - Time Series Results for RACS
with Weighting Scheme 30/20/30/10/10

47

III
W
u.

RECORD

Figure 15. Sample 1 - Time Series Results for RACS
with Weighting Scheme 50/30/00/10/10

RECORD

Figure 16. Sample 2 - Time Series Results for RACS
with Weighting Scheme 50/30/00/10/10

Figure 11 through Figure 16 provide visual evidence that RACS' classification

accuracy improved over time; in other words, RACS did indeed learn during the process

of classifying the 113 records in each sample. This is indicated by the fact that there is a

distinguishable downward trend in the exponentially smoothed line (the solid line in each

figure).

48

Question 2

Since RACS was designed to be a "learning" system, does the order in which

records are added to RACS' record classes affect overall classification accuracy?

Paired sample t tests were conducted to determine if there was a statistically significant

difference between the offsets generated by the two randomly ordered sets of records (i.e.,

Samples 1 and 2).

Three two-tailed paired sample t tests were conducted, one corresponding to each

weighting scheme. The hypotheses tested by each t test were as follows:

• Null Hypothesis: The population of offsets corresponding to a given weighting
scheme from the first set of sample records does not differ from the population of
offsets associated with the same weighting scheme from the second set of sample
records.

• Alternative Hypothesis: The populations are in fact different; essentially indicating
that order does have an effect.

Table 7 summarizes the key data associated with each of the tests conducted.

Table 7. Paired Sample t Test Results

20/20/20/20/20 30/20/30/10/10 50/30/00/10/10

a 0.05 0.05 0.05

nD
113 113 113

df 112 112 112

xD
-0.0088 0.0088 -0.0442

sD
1.2921 1.2500 1.3976

t 0.0753 -0.0728 -0.3365
Rejection Region t<-1.98 ort> 1.98 t<-1.98 or t> 1.98 t< -1.98 or t> 1.98
Result Fail to reject Null Fail to reject Null Fail to reject Null

49

The results presented in the table indicate that record order did not have a statistically

significant effect on classification accuracy under any of the weighting schemes.

Question 3

Does the weighting of the five fields of metadata used for scoring affect overall

classification accuracy? Within each set of randomly ordered sample records, Wilcoxon

signed rank tests for a paired difference experiment (McClave and Benson, 1994:935-

940) were conducted to determine if there was a statistically significant difference

between the offsets generated by each weighting scheme. Three Wilcoxon tests were

conducted for each set of sample records such that all combinations of paired

comparisons were examined. For all Wilcoxon tests, the hypotheses being tested were as

follows:

• Null Hypothesis: The two sampled populations have identical probability
distributions.

• Alternative Hypothesis: The probability distribution for population A is shifted to
the right or to the left ofthat for population B.

The key values associated with each of the tests are summarized in Table 8 and Table

9 below:

50

Table 8. Sample 1 Wilcoxon Signed Rank Tests Results

20/20/20/20/20
30/20/30/10/10

20/20/20/20/20
50/30/00/10/10

30/20/30/10/10
50/30/00/10/10

Cases («) 8 38 38

T+ 16 344 320.5
T. 20 397 420.5
T 16 344 320.5
Test Statistic (Tfor n < 25;

z otherwise)
16 -0.384 -0.725

a 0.05 0.05 0.05
Rejection Region T<4 z<-1.96orz>1.96 z<-1.96orz>1.96
Result Fail to reject Null Fail to reject Null Fail to reject null

Table 9. Sample 2 Wilcoxon Signed Rank Tests Results

20/20/20/20/20
30/20/30/10/10

20/20/20/20/20
50/30/00/10/10

30/20/30/10/10
50/30/00/10/10

Cases (w) 4 37 35
T+ 2 287 238
T. 8 416 392
T 2 287 238
Test Statistic (7/for n < 25;

z otherwise)
2 -0.973 -1.26119

a 0.05 0.05 0.05
Rejection Region N/A z <-1.96 or z> 1.96 z <-1.96 or z> 1.96
Result N/A Fail to reject null Fail to reject null

All of the Wilcoxon tests conducted failed to reject the null hypothesis. This

indicates that the weighting schemes utilized had no significant statistical impact on

RACS' overall ability to classify records. Note that a test was not actually conducted for

the first pairing in sample two. The reason for this is that, of the 113 offset pairs, only 4

resulted in a difference greater than 0 and the Wilcoxon test does not apply to samples

with less than 5 cases.

51

One significant implication of these results is that the additional field, Record Type,

does not appear to contribute significantly to the overall accuracy of classification with

this sample of records. This is evidenced by the fact that the 50/30/00/10/10 weighting

scheme which excludes Record Type from the calculation of a composite class score did

not differ statistically from the other two weighting schemes.

Differences Among Individual Record Classes

The focus of the analysis conducted for this thesis was on RACS' accuracy from a

whole system perspective. While this remains the perspective of greatest interest, some

observations were made during the course of this thesis study about RACS' accuracy

within individual record classes. Appendices M through Q contain an exhaustive set of

graphs illustrating the results of the tests for each of the five record classes used in this

thesis.

Of particular interest are the graphs for record class two (see Appendix N). The

graphs provide evidence that RACS was not particularly successful at classifying records

from this category. A review of the records contained in that class as well as the results

stored in the various log files seems to indicate that the diversity of the records (i.e.,

record class two included two different types of forms as well as a variety of official

memorandums with diverse subjects) stored in this particular class degraded RACS'

ability to accurately classify its records.

52

Summary

This chapter presented an in-depth analysis of the tests conducted with the RACS

proof of concept system. The three specific research questions which were proposed in

Chapter III served as the framework within which the results were presented. Essentially,

the results indicate that RACS is an effective system for classifying records and that it is

capable of learning over time. The results also indicate that the various weighting

schemes employed did not have a significant impact on the overall accuracy of the

system. The next chapter presents the conclusions of this author and outlines some

potential areas for future research.

53

V. Conclusions and Recommendations

Introduction

The basic purpose of this thesis effort was to develop and demonstrate techniques for

the automatic classification of USAF records using a computer based system. There were

three basic objectives established which needed to be met in order to solve this problem.

The first several sections of this chapter summarize the actions taken to meet these

objectives. Following that, recommendations as to areas which warrant further research

are presented. The last section in this chapter presents this author's final conclusions as

to the feasibility of automatic analysis and classification of USAF records

Research Objective 1

Locate and summarize the various automatic document classification

techniques being employed by researchers and practitioners on related projects

throughout the world.

Chapter II described some key concepts relevant to the process of automated analysis

and classification of documents. Additionally, the chapter provided an overview of six

relevant classification projects reported in the literature. The study presented by Cheng

and Wu (1995) outlined some of the key techniques such as the Modified Overlap

Coefficient which were incorporated into the proof of concept system developed during

this thesis research process.

54

Research Objective 2

Develop and propose a technique for automatically analyzing records in order

to assign appropriate classification and disposition within the USAF.

Chapter III introduced the Records Analysis and Classification System or RACS for

short. RACS is a proof of concept system developed using the C programming language

to meet this objective. The chapter outlined in detail the various processes and

techniques which were incorporated into RACS to make automatic analysis and

classification possible.

Figure 17 is a repetition of the Context Diagram for the Classify New Record

process.

Record
Metadata w

r o]
Correct

Record Class
User User Classify New

Record

Figure 17. Classify New Record Context Diagram

The Classify New Record process begins by accepting the Record Metadata on a new

record to be classified from the user. RACS then performs a series of processes with the

record metadata in order to determine the Correct Record Class for the new record.

55

Research Objective 3

Demonstrate the proposed technique on a limited set of sample records.

A sample of 113 records from five different record classes was collected from the

files of the 88 SPTG/CCE. The actual data collected about each record consisted of the

record metadata which was summarized in Table 3. The sample of records was randomly

ordered twice in order to produce two different sets of randomly ordered sample records

To test RACS, each randomly ordered set of sample records was entered into the

system and the results were recorded. After each sample had been entered, the results of

the tests were analyzed.

The analysis of the results indicated that RACS did exhibit the ability to improve its

classification accuracy as more records were entered (i.e., it was capable of "learning").

It was found that the order the sample records were entered did not have a statistically

significant effect on RACS' classification accuracy. The last observation was that the use

of different weighting schemes did not have a statistically significant effect on RACS'

classification accuracy.

Recommendations

The research conducted in conjunction with this thesis is just the first step. There are

many aspects of the analysis and classification techniques incorporated in RACS which

warrant further study. Some of the specific areas which are ripe for future research

efforts are described below.

56

• Develop a specialized USAF stoplist.

The stoplist utilized in this thesis was a very general purpose stoplist, not at all

tailored to the peculiarities of USAF records. A study of the most frequently occurring

words in a large sample of USAF records' metadata could yield a stoplist more attuned to

the specific needs of an automated record classification system within the USAF.

• Investigate alternative methods for scoring record/class template comparisons;
i.e., investigate alternatives to the MOC calculation.

The MOC calculation presented in this thesis is only one of many calculation

methods presented in the literature for quantifying the amount of overlap between a

document and a given class of documents (see Cheng and Wu, 1995:293). The accuracy

achieved by RACS in this thesis study could perhaps be improved by the utilization of a

different scoring method. For example, the MOC calculation considers the frequency

with which terms occurred in a new record versus the frequency with which matching

terms occurred in the whole class. Perhaps a calculation technique which considered

purely the number of terms in common between a new record being classified and each

record class would yield the correct classification more often (i.e., result in an offset of 0).

• Investigate alternate combinations of metadata fields and weighting schemes.

Although the results of this study indicated that the three weighting schemes utilized

did not have a significant impact on classification accuracy, this author is not convinced

that weighting schemes cannot contribute to accuracy of classification. There are myriad

other weighting schemes possible with the five record metadata fields used in this study.

Additionally, the five metadata fields utilized in this thesis may not in fact be the best

combination of fields to represent a document.

57

• Investigate alternate ways to represent records in the class templates.

RACS' representation of a particular class consisted simply of the terms extracted

from the metadata fields in the records belonging to that class along with the frequency

with which the individual terms occurred. Alternate methods of representing a given

class could be developed and compared with the method utilized in this thesis in an

attempt to find the optimal class representation method. For example, one alternative

would be to represent each record in a class template individually. To determine correct

classification a new record being classified would be compared to each record previously

added to a given class and a similarity score would be calculated. A composite score for

each record class would be determined by summing the aforementioned scores.

• Test the operation of a system such as RACS in an actual office environment.

This study investigated the accuracy of RACS using a limited number of record

classes and a relatively small set of sample records. A valuable study to validate the

results achieved in this thesis would be to implement a system similar to RACS in an

actual office and analyze its performance while classifying all records handled in that

office.

Conclusion

The bottom line result of this thesis effort is this; automated analysis and

classification of USAF records is possible. The tests conducted with RACS demonstrated

the fact that records from five distinct record classes could be classified with a reasonable

level of accuracy. It is true that RACS was not perfect, but in an actual implementation,

58

the techniques demonstrated with RACS could serve as a powerful productivity aid to all

USAF personnel who create, disseminate and store records.

59

Appendix A: Acronyms

AFI37-122

AFMAN 37-123

AFMAN 37-139

ASD(C3I)

AI

DASD(IM)

DLT

DFD

DoD

FOIA

MOC

NLP

RACS

RMA

RM-BPR

RMTF

SECAF

USAF

Air Force Instruction 37-122 Air Force Records Management
Program

Air Force Manual 37-123 Management of Records

Air Force Manual 37-139 Records Disposition Schedule

Assistant Secretary of Defense for Command, Control,
Communications and Intelligence

Artificial Intelligence

Deputy Assistant Secretary of Defense for Information Management

Decision Logic Table (Found in AFMAN 37-139)

Data Flow Diagram

Department of Defense

Freedom of Information Act

Modified Overlap Coefficient

Natural Language Processing

Records Analysis and Classification System

Records Management Application

DoD Records Management Business Process Reengineering

DoD Records Management Task Force

Secretary of the Air Force

United States Air Force

60

Appendix B: Overview of the RACS System

The RACS program is a proof of concept automated records analysis and

classification system. The system takes as its input the metadata on a new record to be

classified, processes that input, and based on that processing, presents the user with an

ordered list of the most likely record classes to which the new record belongs. To support

this basic functionality, RACS includes many administration functions which were

implemented to manage the data files used by the system. The following sections briefly

describe these functions and serve as a simple users manual for running RACS.

RACS Files

The RACS program requires several files to function properly. Additionally, files

are created at runtime for various purposes. These files and their purposes are listed in

Table 10.

Table 10. RACS Files

File Name Purpose
racs.exe RACS executable program (See Appendix C for the complete source code)
config.txt Configuration file which racs.exe uses at run time (See Appendix D)
stoplisttxt Stoplist used during the generation of record and class templates (See Appendix E)
catl-cat5.dbf Database files created to store the metadata for all records placed in a given record

class (See Table 5 for the record classes which correspond to each database file)
catl-cat5.dbb Backup files created for each database file
catl-cat5.tpl Files containing the class templates for each database/record class
catltpl-cat5tpl.txt Text versions of the five class templates (See Appendix H for a typical class template)
logfile.txt A detailed log file containing details of each record classified (See Appendix F for an

excerpt from logfile.txt)
scorelog.txt A log file which records the correct database and offsets for each new record classified

(See Appendix G for an excerpt from scorelog.txt)
logfile.bak Backup file oflogfile.txt.
scorelog.bak Backup file ofscorelog.txt.

61

RACS Menu/Interface Hierarchy

The RACS program presents the user with a series of menus and interfaces which

control the execution of the program. Figure 18 illustrates the hierarchy of menus and

user interfaces; for example, the Database Management Menu is a sub-menu of the Main

Menu and the View/Edit Records Menu is a sub-menu of the Database Management

Menu. The following sections describe the functions associated with each menu and

interface.

Main Menu

Database
Management

Menu

Initialize
Databases

Menu

View/Edit
Records
Menu

Template
Management

Menu

Generate
Templates

Menu

View
Record

Interface

View
Templates

Menu

View
Template
Interface

Edit
Record

Interface

Log File
Management

Menu

View Log
Files Menu

View Log
Files

Interface

Figure 18. RACS Menu/Interface Hierarchy

Classify
New Record
Data Entry

Verify New
Record Data

Classify
New Record
Results

62

Main Menu

Choose one of the following actions:

(d) Database Management
(t) Template Management
(1) Log File Management
(c) Classify New Record

(q) Quit

Figure 19. Main Menu

The options on the Main Menu perform the following functions:

(d) Opens the Database Management Menu.

(t) Opens the Template Management Menu.

(1) Opens the Log File Management Menu.

(c) Takes the user to the Classify New Record Data Entry interface for entering a new
record to be classified. (See Chapter III for a detailed discussion of this process)

(q) Exits RACS.

Database Management Menu

Choose one of the following actions:

(b) Backup All Databases
(i) Initialize Databases
(v) View/Edit Records
(c) Compact Databases

(q) Return to the Main Menu

Figure 20. Database Management Menu

63

The options on the Database Management Menu perform the following functions:

(b) Creates backup copies of the five record class databases,

(i) Opens the Initialize Database Menu.

(v) Opens the View/Edit Records Menu.

(c) Opens the Compact Databases Menu,

(q) Returns the user to the Main Menu.

Initialize Databases Menu

Select the database to initialize:

(1) T 11-02 R 21 Item 3
(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) Initialize All Databases

(q) Return to the Databases Menu

Figure 21. Initialize Databases Menu

The options on the Initialize Databases Menu Perform the following functions:

(1-5) Initializes the selected database. Initializing a database deletes all records currently
in the database and resets all of its internal values such as number of records to
their initial values. Note: before a database is initialized RACS creates a backup
copy of the database.

(a) Initializes all of the databases.

(q) Returns the user to the Database Menu.

64

View/Edit Records Menu

Select the database to view/edit:

(1) T 11-02 R 21 Item 3
(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15

(q) Return to the Databases Menu

Figure 22. View/Edit Records Menu

The options on the View/Edit Records Menu perform the following functions.

(1-5) Opens the View Record Interface for the selected database/record class,

(q) Returns the user to the Database Menu.

View Record Interface

Record 1 of 26
Date of Record: 21-Oct-1996 00:14:58
- 1 - Addressee(s):

Status: active

- 2 - ORIGINATOR: 88 SPTG/CC

- 3 - SUBJECT: Appointment/Change of Equipment Custodian

- 4 - Author:

- 5 - Creation Date:

- 6 - RECORD TYPE: official memorandum

- 7 - MEDIA TYPE: paper

- 8 - RECORD FORMAT: paper

(e) Edit (n) Next (p) Prev (f)First
(q) Return to previous menu

(1) Last

Figure 23. View Record Interface

65

The options presented on the View Record Interface perform the following functions:

(e) Opens the Edit Record Interface for the current record.

(n) Moves to the next record unless the user is currently viewing the last record,

(p) Moves to the previous record unless the user is currently viewing the first record.

(f) Moves to the first record in the database.

(1) Moves to the last record in the database.

(q) Returns the user to the View/Edit Records Menu.

Edit Record Interface

Record 1 of 2 6
Date of Record: 21-Oct-1996 00:14:58
- 1 - Addressee(s):

Status: active

- 2 - ORIGINATOR: 88 SPTG/CC

- 3 - SUBJECT: Appointment/Change of Equipment Custodian

- 4 - Author:

- 5 - Creation Date:

- 6 - RECORD TYPE: official memorandum

- 7 - MEDIA TYPE: paper

- 8 - RECORD FORMAT: paper

To reenter any fields enter the appropriate number
(s) Save (d) Del (u) undelete

Figure 24. Edit Record Interface

The options presented on the Edit Record Interface perform the following functions:

(1-8) Allows user to reenter the data in the selected field.

(s) Saves the current record and returns to the View Record Interface. Even if no
changes were made the user must select this option to exit this interface.

66

(d) Marks the current record as deleted. The Status field will change from "active" to
"deleted."

(u) Marks the current record as active. The Status field will change from "deleted" to
"active."

Compact Databases Menu

Select the database to compact:

(1) T 11-02 R 21 Item 3
(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) Compact All Databases

(q) Return to the Databases Menu

Figure 25. Compact Databases Menu

The options on the Compact Databases Menu perform the following functions:

(1-5) Compacts the selected database. Compacting a database rewrites the database,
removing any records marked for deletion. Until a database is compacted, any
records marked as "deleted" are still held in the database and can be undeleted
from the Edit Record Interface.

(a) Compacts all five databases.

(q) Returns the user to the Database Menu.

Template Management Menu

Choose one of the following actions:

(g) Generate Templates
(v) View Templates

(q) Return to the Main Menu

Figure 26. Template Management Menu

67

The options- on the Template Management Menu perform the following functions:

(g) Opens the Generate Templates Menu,

(v) Opens the View Templates Menu,

(q) Returns the user to the Main Menu.

Generate Templates Menu

Select the template to generate:

(1) T 11-02 R 21 Item 3
(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) Generate All Templates

(q) Return to the Templates Menu

Figure 27. Generate Templates Menu

The options on the Generate Templates Menu perform the following functions:

(1-5) Generates the class template for the selected database. The class template is the
representation of a record class which RACS uses to determine the correct
classification for a new record. (A complete discussion on the method for creating
class templates is contained in Chapter III)

(a) Generates all five class templates for the five databases/record class.

(q) Returns the user to the Template Management Menu.

68

View Templates Menu

Select the template to view:

(1) T 11-02 R 21 Item 3
(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15

(q) Return to the Templates Menu

Figure 28. View Templates Menu

The options on the View Templates Menu perform the following functions:

(1-5) Opens the selected class template for viewing with the View Template Interface.

(q) Returns the user to the Template Management Menu.

View Template Interface

The View Template Interface is simply the MS-DOS® edit utility. The selected

class template is automatically opened for viewing. Once done viewing the template the

user exits by pressing ALT-F then X.

Log Files Management Menu

Choose one of the following actions:

(b) Backup Log Files
(d) Delete Log Files
(v) View Log Files

(q) Return to the Main Menu

Figure 29. Log Files Management Menu

The options on the Log Files Management Menu perform the following functions:

(b) Creates backup copies of both the logfile.txt and scorelog.txt log files.

69

(d) Creates backup copies of both log files and then deletes the original copies,

(v) Opens the View Log Files Menu,

(q) Returns the user to the Main Menu.

View Log Files Menu

Select the log file to view:

(a) All Details
(s) Only Score

(q) Return to the Log Files Menu

Figure 30. View Log Files Menu

The options on the View Log Files Menu perform the following functions:

(a) Opens the log file logfile.txt in the View Log Files Interface,

(s) Opens the log file scorelog.txt in the View Log Files Interface,

(q) Returns the user to the Log Files Menu.

View Log Files Interface

The View Log Files Interface is simply the MS-DOS® edit utility. The selected log

file is automatically opened for viewing. Once done viewing the log file the user exits by

pressing ALT-F then X.

70

Classify New Record Data Entry

Addressee(s):
ORIGINATING ORGANIZATION: ASC/CVH
SUBJECT: Focal Points for Management Operations
Author:
Creation Date:
RECORD TYPE: official memorandum
MEDIA TYPE: paper
RECORD FORMAT: paper

Figure 31. Classify New Record Data Entry

The field names appear one at a time for the user to enter data. To proceed to the

next field the user presses the Enter key. The field names in all capital letters indicate the

fields which are actually used in the classification process. The Verify New Record Data

interface is opened when the user presses the enter key after entering data in the

RECORD FORMAT field.

Verify New Record Data

Date of Record: 23-Oct-1996 17:57:30

- 1 - Addressee(s):

- 2 - ORIGINATOR: ASC/CVH

- 3 - SUBJECT: Focal Points for Management Operations

- 4 - Author:

- 5 - Creation Date:

- 6 - RECORD TYPE: official memorandum

- 7 - MEDIA TYPE: paper

- 8 - RECORD FORMAT: paper

To reenter any fields enter the appropriate number
(a) to accept and process the record

Figure 32. Verify New Record Data

71

The options presented on the Verity New Record Data interface perform the following

functions:

(1-8) Allows user to reenter the data in the selected field.

(a) Accepts the new data entered and causes RACS to evaluate the new record to
determine its classification. (See Chapter III for a complete discussion of this
process)

Classify New Record Results

Select the correct database:
30/20/30/10/10 20/20/20/20/20 50/30/00/10/10
DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE

4 1 0.550 4 1 0.638 5 1 0.321
1 2 0.496 1 2 0.604 4 2 0.319
2 3 0.463 2 3 0.580 1 3 0.267

5 4 0.422 5 4 0.572 2 4 0.237

3 5 0.200 3 5 0.400 3 5 0.200

T 11-02 R 21 Item 3
Delegations/Designations of Authority & Additional Duty Assignments
T 11-01 R 01 Item 6-3-2
Office Administrative Files - Internal Administration or Housekeeping
— Supplies/Equipment
T 11-01 R 01 Item 6-4
Office Administrative Files - Internal Administration or Housekeeping
— Safety
T 11-02 R 33 Item 12
Internal Inspections/Self-Inspection Check Lists/Inventories
T 900-02 R02 Item 15
Suggestions, Inventions, S Scientific Achievements - at Evaluation Office

Figure 33. Classify New Record Results

This interface presents the results of RACS' analysis of the new record data. The

user enters the number corresponding to the correct database/record class for the new

record.

72

Appendix C: RACS Source Code

/*
PROJECT: racs.prj

FILE: racs.h

PURPOSE:
This is the single header file included by every module.

#include "includes.h"
tinclude "variable.h"
#include "defines.h"
tinclude "prototyp.h"

73

/*
PROJECT: racs.prj

FILE: inelüde s.h

PURPOSE:
This file lists all standard header files required by racs.exe

iinclude <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <conio.h>
#include <time.h>
♦include <ctype.h>

74

/*
PROJECT: racs.prj

FILE: variable.h

PURPOSE:
This file defines all global variables and structures.

tifndef VARIABLE_H
idefine VARIABLE_H

#ifndef EXTERN
#define EXTERN
#endif

/* Structure for standard dBase III file header */
EXTERN struct DB3HEADER {

unsigned int bfVersion:7;
unsigned int bfHasMemo:1;
unsigned int bYear:8;
unsigned char bMonth;
unsigned char bDay;
long int INumberRecords;
short int nFirstRecordOffset;
short int nRecordLength;
unsigned char szReserved[20];

};

/* Structure for standard dBase III column headers */
EXTERN struct COLUMNDEF {

char szColumnName[11];
char chType;
long lFieldPointer;
unsigned char byLength;
unsigned char byDecimalPlace;
char szReserved[14];

};

/* Structure for individual record data */
EXTERN struct DB3RECORD {

char szStatus[l]; /* does not count as member */
char szDateRecord[26];
char szTo[101];
char szOriginOrg[101];
char szSubject[255];
char szAuthor[101];
char szCreateDate[26];
char szRecType[51];
char szMediaType[51];
char szRecFormat[51];

};

/* Structure to hold keywords with their frequencies *
EXTERN struct KEY {

int iFreq;
char szKwrd[21];

};

/* Structure to hold record template information */
EXTERN struct RECTMPLT {

struct KEY pSub[30];
struct KEY pOrg[10];
struct KEY pTyp[5];
struct KEY pMed[5];

75

struct KEY pFrm[5];
};

/* Structure to hold class template information */
EXTERN struct CLASSTMPLT {

int iNumRecs;
struct KEY pSub[1000];
struct KEY pOrg[100];
struct KEY pTyp[30],
struct KEY pMed[20]
struct KEY pFrm[30]

};

/* Structures to hold the results of computing a MOC for each database */
EXTERN struct MOC {

float fResult;
float fTop;
float fBottom;
int iNumRecs;

};

EXTERN struct SCORE {
int iDBFNum;
int iRank[3];
float fScore[3];
struct MOC sub;
struct MOC org;
struct MOC typ;
struct MOC med;
struct MOC frm;

};

/* Structure to hold raw data for each term analyzed */
EXTERN struct TERM {

char szTerm[51];
char szToken[41];
int iTokenType;

};

/* Structure to hold raw text analysis information */
EXTERN struct ANALYSIS {

int iNumTerms[5];
struct TERM term[50];

};

/* Token Types for getTermsO in analyzer.c */
enum
{

LEXERROR,
ALLALPHA,
NONWORD,
PÜNCT,
EOL,
UNDEFINED

};

#endif

76

/*
PROJECT: racs.prj

FILE: defines.h

PURPOSE:
All global defines are listed in this header.

#ifndef DEFINES_H
♦define DEFINES_H

tdefine TRUE 1
tdefine FALSE 0

/* The following defines are used within the db3funct.c module */
tdefine DELETED_RECORD '*•
♦define USABLE_RECORD • '

tdefine NUMERIC_FIELD *N'
tdefine CHARACTER_FIELD 'C
tdefine LOGICAL_FIELD 'L'
tdefine MEMO_FIELD 'M'
tdefine DATE_FIELD 'D'
tdefine FLOAT_FIELD 'F'
tdefine PICTURE_FIELD 'P1

tendif

77

/*
PROJECT: racs.prj

FILE: prototyp.h

PURPOSE:
All function prototypes are included here with reference to the
module where the given function is defined.
 */

tifndef PROTOTYP_H
#define PROTOTYP_H

/* analyzer.c */
void getTerms(char **ppText, char *pToken, int *pTokenType);
char *numToken(int iTokenType);

/* classrec.c */
void classifyRecord(void);
void getNewRecord(struct DB3REC0RD *pdb3record);
void genRECTMPLT(struct DB3REC0RD *pdb3record, struct RECTMPLT *pRecTmplt,

struct ANALYSIS *pAnalysis);
void addToRECTMPLT(char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield);
int chooseDBF(struct SCORE *pScore);
void logRECTMPLT(struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec,

struct SCORE *pScore, int iDBFNum);

/* db3funct.c */
void createDBF(int iDBFNum);
void addRecord(int iDBFNum, struct DB3REC0RD *pdb3record);
void displayRecords(int iDBFNum);
void editRecord(struct DB3REC0RD *pdb3record, struct DB3HEADER *pdb3header,

int iRecNum);
void compactDBF(int iDBFNum);

/* main.c */
void main(void);
char *szpGetConfig(char szHeadText[], int iFileNum);
void displayError(char szErrorMessage[]);
void copyFile(char *oldName, char *newName);
void cleanup(void);

/* menus.c */
void introScreen(void);
void mainMenu(void);
void databaseMenu(void);
void initializeDatabaseMenu(void);
void viewDatabaseMenu(void);
void compactDatabaseMenu(void) ;
void initializeDBF(int iDBFNum);
void templateMenu(void);
void generateTemplatesMenu(void);
void viewTemplatesMenu(void);
void logFileMenu(void);
void viewLogFileMenu(void) ;

/* score.c */
void compareTemplates(struct RECTMPLT *pRecTmplt, struct SCORE *pScore);
void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,

struct SCORE *pScore);

/* stemmer.c */
char *stem(register char *word);
static int WordSize(register char *word);
static int ContainsVowel(register char *word);

78

static int EndsWithCVC(register char *word);
static int AddAnE(register char *word);
static int RemoveAnE(register char *word);
static int ReplaceEnd(register char *word, struct RULELIST *rule);

/* stoplist.c */
int loadStoplist(char *szStoplist[]);
void unloadStoplist(char *szStoplist[], int iNumWords);
int checkStoplist(char *szTerm, char *szStoplist[], int iNumWords);

/* template.c */
int genCLASSTMPLT(int iDBFNum);
void addToCLASSTMPLT(char *szTerm, struct CLASSTMPLT *pTmplt, int iField),
void logCLASSTMPLT(struct CLASSTMPLT *pTmplt, int iDBFNum);

#endif

79

/*
PROJECT: racs.prj

FILE: analyzer.c

PURPOSE:
This module contains the functions which perform lexical analysis of the
individual terms extratcted from various record metadata fields.

FUNCTIONS:
void getTerms(char **ppText, char *pToken, int *pTokenType)
char *numToken(int iTokenType)

#define EXTERN extern
♦include "racs.h"

void getTerms(char **ppText, char *pToken, int *pTokenType)
{

for(; **ppText == ' ' II **ppText == '\t'; (*ppText)++);

if(**ppText == *\0')
{

*pTokenType = EOL;
return;

}

if((**ppText >= 'A' && **ppText <= 'Z') ||
(**ppText >= 'a' && **ppText <= 'z'))

{
*pToken++ = *(*ppText)++;
if(**ppText >= 'a' && **ppText <= 'z')
{

while(**ppText >= 'a' && **ppText <= 'z')
{

*pToken++ = *(*ppText)++;
}

*pToken = '\0';
*pTokenType = ALLALPHA;
return;
}
*pToken— = *(*ppText)—;

}

if(**ppText >= 'A' && **ppText <= 'Z')
{

*pToken++ = *(*ppText)++;
if(**ppText >= 'A' && **ppText <= 'Z')
{

while((**ppText >= 'A' && **ppText <= 'Z') ||
(**ppText >= 'a' && **ppText <= 'z'))

{
*pToken++ = *(*ppText)++;

}
*pToken = '\0';
*pTokenType = NONWORD;
return;
}
*pToken— = *(*ppText)—;

}

if(**ppText >= '1' S& **ppText <= '9')
{

*pToken++ = *(*ppText)++;

80

if((**ppText >= '0' && **ppText <= '9') II
(**ppText ==*/') II (**ppText == '-'))

{
while((**ppText >= '0' && **ppText <= '9') I

(**ppText == V) II (**ppText == '-'))
{

*pToken++ = *(*ppText)++;
}

*pToken = '\0';
*pTokenType = NONWORD;
return;
}
*pToken— = *(*ppText)—;

}

if((**ppText >= 'A' && **ppText <= 'Z') ||
(**ppText >= 'a' && **ppText <= 'z'))

{
*pToken++ = *(*ppText)++;
*pToken = ' \0';
*pTokenType = ALLALPHA;
return;

}

if(**ppText >= '0' && **ppText <= '9*)
{

*pToken++ = * (*ppText)++;
*pToken = *\0';
*pTokenType = NONWORD;
return;

}

if((**ppText >= 33 && **ppText <= 47) ||
(**ppText >= 58 &S **ppText <= 64) ||
(**ppText >= 91 && **ppText <= 96) I I
(**ppText >= 123 S& **ppText <= 126))

{
*pToken++ = *(*ppText)++;
*pToken = '\0';
*pTokenType = PUNCT;
return;

*pTokenType = LEXERROR;
return;

char *numToken(int iTokenType)
{

static char *tokenNum[] =
{

"LEXERROR",
"ALLALPHA",
"NONWORD",
"PUNCT",
"EOL",
"UNDEFINED"

};
return(tokenNum[iTokenType]);

}

81

/*
PROJECT: racs.prj

FILE: classrec.c

PURPOSE:
The functions in this module are the heart of the RACS program.
The function classifyRecordO controls the actual process of accepting
and classifying a new record.

FUNCTIONS:
void classifyRecord(void)
void getNewRecord(struct DB3REC0RD *pdb3record)
void genRECTMPLT(struct DB3REC0RD *pdb3record, struct RECTMPLT *pRecTmplt,

struct ANALYSIS *pAnalysis)
void addToRECTMPLT(char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield)
int chooseDBF(struct SCORE *pScore)
void logRECTMPLT(struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec

struct SCORE *pScore, int iDBFNum)
 */

#define EXTERN extern
#include "racs.h"

void classifyRecord(void)
{

struct DB3REC0RD db3record;
struct DB3REC0RD *pdb3record;

struct RECTMPLT recTmplt;
struct RECTMPLT *pRecTmplt;

struct ANALYSIS analysis;
struct ANALYSIS *pAnalysis;

struct SCORE score [5];
struct SCORE *pScore;

int iDBFNum;

int i;

pdb3record = sdb3record;
pRecTmplt = &recTmplt;
pAnalysis = sanalysis;
pScore = &score[0];

memset(&recTmplt, 0, sizeof(struct RECTMPLT));
memset(&db3record, 0, sizeof(struct DB3RECORD));
memset(Sanalysis, 0, sizeof(struct ANALYSIS));
memset(Sscore, 0, sizeof(struct SCORE));

getNewRecord(pdb3record) ;

genRECTMPLT(pdb3record, pRecTmplt, pAnalysis);

compareTemplates(pRecTmplt, pScore);

iDBFNum = chooseDBF(pScore);

logRECTMPLT(pAnalysis, pRecTmplt, pScore, iDBFNum);

addRecord(iDBFNum, pdb3record);

82

genCLASSTMPLT(iDBFNum) ,
}

void getNewRecord(struct DB3REC0RD *pdb3record)
{

int iDone = FALSE;
int iFirstTime = TRUE;

char cSel;
char szBuff[255];

struct tm *curTime;
time_t tClock;

clrscr();

pdb3record->szStatus[0] = USABLE_RECORD;

time(stClock) ;
curTime = localtime(StClock);
strftime(szBuff, 255, "%d-%b-%Y %X", curTime);
strncpy(pdb3record->szDateRecord, szBuff,

sizeof(pdb3record->szDateRecord));

cSel = 48;
while(iDone == FALSE)
{

_setcursortype(_NORMALCURSOR);
if(iFirstTime == TRUE)
{

cSel++;
}

switch(cSel)
{

case 49:
printf("Addressee (s): ");
gets(szBuff);
strncpy(pdb3record->szTo, szBuff,

sizeof(pdb3record->szTo));
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 50:
printf("ORIGINATING ORGANIZATION: ");
gets(szBuff);
strncpy(pdb3record->szOriginOrg, szBuff,

sizeof(pdb3record->szOriginOrg));
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 51:
printf("SUBJECT: ");
gets(szBuff);
strncpy(pdb3record->szSubject, szBuff,

sizeof(pdb3record->szSubject));
if(iFirstTime == FALSE)
{

83

cSel = 0;
}
break;

case 52:
printf("Author: ");
gets(szBuff);
strncpy(pdb3record->szAuthor, szBuff,

sizeof(pdb3record->szAuthor));
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 53:
printf("Creation Date: ");
gets(szBuff);
strncpy(pdb3record->szCreateDate, szBuff,

sizeof(pdb3record->szCreateDate));
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 54:
printf("RECORD TYPE: ");
gets(szBuff);
strncpy(pdb3record->szRecType, szBuff,

sizeof(pdb3record->szRecType));
if(iFirstTime == FALSE)
<

cSel = 0;
}
break;

case 55:
printf("MEDIA TYPE: ") ;
gets(szBuff);
strncpy(pdb3record->szMediaType, szBuff,

sizeof(pdb3record->szMediaType));
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 56:
printf("RECORD FORMAT: ");
gets(szBuff);
strncpy(pdb3record->szRecFormat, szBuff,

sizeof(pdb3record->szRecFormat));
iFirstTime = FALSE;
cSel = 0;
if(iFirstTime == FALSE)
{

cSel = 0;
}
break;

case 'a':
case 'A':

iDone = TRUE;
break;

84

default:
clrscr();
_setcursortype(_NOCURSOR) ;
printf("Date of Record: %s\n\n",

pdb3record->szDateRecord);
printfC- 1 - Addressee(s) : %-100s\n",

pdb3record->szTo);
printfC- 2 - ORIGINATOR: %-100s\n",

pdb3record->szOriginOrg);
printfC- 3 - SUBJECT: %-254s\n",

pdb3record->szSubject);
printfC- 4 - Author: %-100s\n",

pdb3record->szAuthor);
printfC- 5 - Creation Date: %-25s\n\n",

pdb3record->szCreateDate);
printfC- 6 - RECORD TYPE: %-50s\n\n",

pdb3record->szRecType);
printfC- 7 - MEDIA TYPE: %-50s\n\n",

pdb3record->szMediaType);
printfC- 8 - RECORD FORMAT: %-50s\n\n",

pdb3record->szRecFormat);
puts("\nTo reenter any fields enter the appropriate number");
puts("(a) to accept and process the record\n");
cSel = getchO ;

}
}
setcursortype(_NOCURSOR);

void genRECTMPLT(struct DB3REC0RD *pdb3record, struct RECTMPLT *pRecTmplt,
struct ANALYSIS *pAnalysis)

{
char szBuff[255];
char szTermBuff[51];
char *pString, *pToken;
char szToken[41];
int iTokenType;
int iRecField;

char *szStoplist[500];
int iNumWords;
int iMatch;

int i, j, k;

iNumWords = loadStoplist(szStoplist);

i = 0;
for(j = 0; j < 5; j++)
{

switch(j)
{

case 0:
strcpy(szBuff, pdb3record->szSubject);
iRecField = 's';
break;

case 1:
strcpy(szBuff, pdb3record->szOriginOrg);
iRecField = 'o';
break;

case 2:

85

strcpy(szBuff, pdb3record->szRecType);
iRecField = 't';
break;

case 3:
strcpy(szBuff, pdb3record->szMediaType);
iRecField = 'm';
break;

case 4:
strcpy(szBuff, pdb3record->szRecFormat);
iRecField = 'f;
break;

}

pString = szBuff;

iTokenType = UNDEFINED;

k = 1;
while(iTokenType != EOL && iTokenType != LEXERROR)
{

pToken = szToken;

getTerms(&pString, pToken, SiTokenType);

if(iTokenType != EOL)
{

pAnalysis->term[i].iTokenType = iTokenType;
strcpy(pAnalysis->term[i].szToken, szToken);

if(iTokenType == ALLALPHA)
{

strcpy(szTermBuff, strlwr(szToken));

iMatch = checkStoplist(szTermBuff, szStoplist, iNumWords);

if(iMatch == TRUE)
{

strcpy(szTermBuff, "-SW-");
}
else
{

strcpy(szTermBuff, stem(strlwr(szToken)));
addToRECTMPLT(szTermBuff, pRecTmplt, iRecField);

}
}

if(iTokenType == NONWORD)
{

strcpy(szTermBuff, strlwr(szToken));

iMatch = checkStoplist(szTermBuff, szStoplist, iNumWords);

if(iMatch == TRUE)
{

strcpy(szTermBuff, "-SW-");
}
else
{

strcpy(szTermBuff, strlwr(szToken));
addToRECTMPLT(szTermBuff, pRecTmplt, iRecField);

}
}

86

if(iTokenType == PUNCT)
{

strcpy(szTermBuff, " ");
}
strcpy(pAnalysis->term[i].szTerm, szTermBuff);
pAnalysis->iNumTerms[j] = k;
i++;
k++;

}
}

}
unloadStoplist(szStoplist, iNumWords);

}

void addToRECTMPLT(char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield)
{

int i;

if(iTMPLTfield == 's')
{

for(i = 0; pCurRec->pSub[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pCurRec->pSub[i].szKwrd, szTerm) == 0)
{

pCurRec->pSub[i].iFreq += 1;
return;

}
}
strcpy(pCurRec->pSub[i].szKwrd, szTerm);
pCurRec->pSub[i].iFreq = 1;

}

if(iTMPLTfield == 'o')
{

ford = 0; pCurRec->pOrg[i] .szKwrd[0] != '\0*; i++)
{

if(strcmp(pCurRec->pOrg[i].szKwrd, szTerm) == 0)
{

pCurRec->pOrg[i].iFreq += 1;
return;

}
}
strcpy(pCurRec->pOrg[i].szKwrd, szTerm);
pCurRec->pOrg[i].iFreq = 1;

}

if(iTMPLTfield == *t')
{

ford = 0; pCurRec->pTyp[i] .szKwrd[0] != '\0'; i++)
{

if(strcmp(pCurRec->pTyp[i].szKwrd, szTerm) == 0)
{

pCurRec->pTyp[i].iFreq += 1;
return;

}
}
strcpy(pCurRec->pTyp[i].szKwrd, szTerm);
pCurRec->pTyp[i].iFreq = 1;

}

if(iTMPLTfield == 'm*)
{

ford = 0; pCurRec->pMed[i] .szKwrd[0] != '\0'; i++)
{

87

if(strcmp(pCurRec->pMed[i].szKwrd, szTerm) == 0)
{

pCurRec->pMed[i].iFreq += 1;
return;

}
}
strcpy(pCurRec->pMed[i].szKwrd, szTerm);
pCurRec->pMed[i].iFreq = 1;

}

if (iTMPLTfield == 'f)
{

for(i = 0; pCurRec->pFrm[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pCurRec->pFrm[i].szKwrd, szTerm) == 0)
{

pCurRec->pFrm[i].iFreq += 1;
return;

}
}
strcpy(pCurRec->pFrm[i].szKwrd, szTerm);
pCurRec->pFrm[i].iFreq = 1;

}

int chooseDBF(struct SCORE *pScore)
{

int i, j;
int ilnner, iOuter;
int iDBFNum;
int iDone = FALSE;
int iDuplicate[3];
char cSel;

struct RANK {
int iDBFNum;
int iRank;
float fScore;
struct MOC sub;
struct MOC org;
struct MOC typ;
struct MOC med;
struct MOC frm;

in-

struct RANK rank[5][3];
struct RANK tempRank;

/* Transfer all values to the structure rank for ease of manipulation */
for(i = 0; i < 5; i++)
{

for(j = 0; j < 3; j++)
{

rank[i][j].iDBFNum = pScore->iDBFNum;
rank[i][j].fScore = pScore->fScore[j];
rank[i][j].iRank = 1;
rankfi][j].sub = pScore->sub;
rankfi][j].org = pScore->org;
rank[i][j].typ = pScore->typ;
rankfi][j].med = pScore->med;
rankfi][j].frm = pScore->frm;

}
pScore++;

}

88

ford = 0; i < 5; i++)
{

}
pScore-

/* Order the scores for presentation to the user using a bubble sort */
ford = 0; i < 3; i++)
{

fordOuter = 0; iOuter < 4; iOuter++)
{

for dinner = iOuter; ilnner < 5; ilnner++)
{

if(rank[ilnner][i].fScore > rank[iOuter][i].fScore)
{

tempRank.iDBFNum = rank[ilnner][i].iDBFNum;
tempRank.fScore = rank[ilnner][i].fScore;
tempRank.sub = rank[ilnner][i].sub;
tempRank.org = rank[ilnner][i].org;
tempRank.typ = rank[ilnner][i].typ;
tempRank.med = rank[ilnner][i].med;
tempRank.frm = rank[ilnner][i] .frm;
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter

.iDBFNum = rank[iOuter][i].iDBFNum;

.fScore = rank[iOuter][i].fScore;

.sub = rank[iOuter][i].sub;

.org = rank[iOuter][i].org;

.typ = rank[iOuter][i].typ;

.med = rank[iOuter][i].med;

.frm = rank[iOuter][i].frm;

.iDBFNum = tempRank.iDBFNum;

.fScore = tempRank.fScore;

.sub = tempRank.sub;

.org = tempRank.org;

.typ = tempRank.typ;

.med = tempRank.med;

.frm = tempRank.frm;

for(i = 0; i < 3; i++)
{

iDuplicate[i] = 0;
rank[0][i].iRank = 1;
for(j = 1; j < 5; j++)
{

if(rank[j][i].fScore == rank[j - 1][i].fScore)
{

rank[j][i].iRank = rank[j - 1][i].iRank;
iDuplicate[i] += 1;

}
else
{

rank[j][i].iRank = ((rank[j
iDuplicate[i]);

iDuplicate[i] = 0;
}

1] [i].iRank) + 1 +

}

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();

89

puts("Select the correct database:");
puts("30/20/30/10/10 20/20/20/20/20 50/30/00/10/10");
puts("DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE");

for(i = 0; i < 5; i++)
{

for(j = 0; j < 3; j++)
{

printft" %d %d %.3f ", rankfi][j].iDBFNum,
rank[i][j].iRank, rank[i][j].fScore);

}
printf("\n");

}
printf("Nn");
printf("1 T 11-02 R 21 Item 3\n");
printf(" Delegation/Designations of Authority &");
printf(" Additional Duty Assignments^");

printf("2 T 11-01 R 01 Item 6-3-2\n");
printf(" Office Administrative Files - Internal");
printft" Administration or Housekeeping\n");
printf (" — Supplies/EqiupmentW) ;

printf("3 T 11-01 R 01 Item 6-4\n");
printf(" Office Administrative Files - Internal");
printft" Administration or Housekeeping\n");
printft" — SafetyW);

printf("4 T 11-02 R 33 Item 12\n");
printft" Internal Inspections/Self-Inspection");
printf(" Check Lists/Inventories\n");

printf("5 T 900-02 R 02 Item 15\n");
printft" Suggestions, Inventions, S Scientific");
printft" Achievements - at Evaluation OfficeW);

cSel = getcht);

switch(cSel)
{

case '1':
iDBFNum = 1;
iDone = TRUE;
break;

case *2':
iDBFNum = 2;
iDone = TRUE;
break;

case '3':
iDBFNum = 3;
iDone = TRUE;
break;

case '4':
iDBFNum = 4;
iDone = TRUE;
break;

case '5':
iDBFNum = 5;
iDone = TRUE;
break;

90

default:
puts("\n INVALID KEY!"),
delay(lOOO);

/* Reorder
for(i = 0;

the
i <

scores by
3; i++)

database number */

for(iOuter = 0; iOuter < 4; iOuter++)
{

for(ilnner
{

iOuter; ilnner < 5; ilnner++)

iDBFNum <= rank[iOuter][i].iDBFNum) if(rank[ilnner][i]
{

tempRank.iDBFNum = rank[ilnner][i].iDBFNum;
tempRank.fScore = rank[ilnner][i].fScore;
tempRank.iRank = rank[ilnner][i].iRank;

rank[ilnner][i].sub;
rank[ilnner][i].org;
rank[ilnner][i].typ;
rank[ilnner][i].med;
rank[ilnner][i]. frm;

[i].iDBFNum = rank[iOuter][i].iDBFNum;
[i].fScore = rank[iOuter][i].fScore;
[i].iRank = rank[iOuter][i].iRank;
[i].sub = rank[iOuter][i].sub;
[i].org = rank[iOuter][i].org;
[i].typ = rank[iOuter][i].typ;
[i].med = rank[iOuter][i].med;
[i].frm = rank[iOuter][i].frm;
[i].iDBFNum = tempRank.iDBFNum;
[i].fScore = tempRank.fScore;
[i].iRank = tempRank.iRank;
[i].sub = tempRank.sub;
[i].org = tempRank.org;
[i].typ = tempRank.typ;
[i].med = tempRank.med;
[i].frm = tempRank.frm;

}

tempRank.sub
tempRank.org
tempRank.typ
tempRank.med
tempRank.frm
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[ilnner
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter
rank[iOuter

}

0; i < 5; i++) for(i =
{

for(j = 0; j < 3; j++)
{

pScore->iDBFNum = rank[i][j].iDBFNum;
pScore->iRank[j] = rank[i][j].iRank;
pScore->fScore[j] = rank[i][j].fScore;
pScore->sub = rank[i][j].sub;

rank[i][j].org;
rank[i][j].typ;
rank[i][j].med;
rankfi][j].frm;

pScore->org =
pScore->typ =
pScore->med
pScore->frm

}
pScore++;

}
return iDBFNum;

void logRECTMPLT(struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec,
struct SCORE *pScore, int iDBFNum)

91

FILE *fpLogFile;
FILE *fpScoreLog;
char szHeader[20] = "logfile";

struct SCORE »score;

int iRank[3];
int iDuplicate[3];
int i, j, k;

if((fpLogFile = fopen(szpGetConfig(szHeader, 1), "a")) == NULL)

displayError("opening log file");

if((fpScoreLog = fopen(szpGetConfig(szHeader, 2), "a")) == NULL)

displayError("opening log file");

for(i = 0; i < 38; i++)

fprintf(fpLogFile, "A\");

forintf(foLocrFile "\n******************************M)•
fprintf(fpLogFile' " INPUT ANALYSIS ");
fprintf(fuLooFile ********************************\n");

i = 0;
for(j = 0; j < 5; j++)
{

if(j == 0)
{

fprintf(fpLogFile, "SUBJECT:\n");
for(k =0; k < pAnalysis->iNumTerms[j]; k++)
{

fprintf(fpLogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken(pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);

i++;
}
fprintf(fpLogFile, "\n");

}

if(j == 1)
{

fprintf(fpLogFile, "ORIGINATING ORGANIZATION:\n") ;
for(k =0; k < pAnalysis->iNumTerms[j]; k++)
{

fprintf(fpLogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken(pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);

i++;
}
fprintf(fpLogFile, "\n");

}

if(j == 2)
{

fprintf(fpLogFile, "RECORD TYPE:\n");
for(k =0; k < pAnalysis->iNumTerms[j]; k++)

92

}

{
fprintf(fpLogFile, "%-20s%-12s%s\n",

pAnalysis->term[i].szToken,
numToken(pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);

i++;
}
fprintf(fpLogFile, "\n");

if(j == 3)
{

fprintf(fpLogFile, "MEDIA TYPE:\n");
for(k = 0; k < pAnalysis->iNumTerms[j]; k++)
{

fprintf(fpLogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken(pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);

i++;
}
fprintf(fpLogFile, "\n");

}

if(j == 4)
{

fprintf(fpLogFile, "RECORD FORMAT:\n");
for(k =0; k < pAnalysis->iNumTerms[j]; k++)
{

fprintf(fpLogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken(pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);

i++;
}
fprintf(fpLogFile, "\n");

}
}

fDrintf(füLoQFile "\n*****************************") "
fprintf(fpLogFile, " RECORD TEMPLATE ") ;
fcrintf(fpLogFile "******************************\n");

for(i = 0; i < 5; i++)
{

if(i == 0)
{

fprintf(fpLogFile, "SUBJECT:\n");
for(j = 0; pCurRec->pSub[j].szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pSub[j].szKwrd, pCurRec->pSub[j].iFreq);

}
fprintf(fpLogFile, "\n");

}

if(i == 1)
{

fprintf(fpLogFile, "ORIGINATING ORGANIZATION:\n");
for(j = 0; pCurRec->pOrg[j].szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pOrg[j].szKwrd, pCurRec->pOrg[j].iFreq);

}
fprintf(fpLogFile, "\n");

93

}

if(i == 2)
{

fprintf(fpLogFile, "RECORD TYPE:\n");
for(j = 0; pCurRec->pTyp[j].szKwrd[0] != '\0*; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pTyp[j].szKwrd, pCurRec->pTyp[j].iFreq);

}
fprintf(fpLogFile, "\n");

}

if(i == 3)
{

fprintf(fpLogFile, "MEDIA TYPE:\n");
for(j = 0; pCurRec->pMed[j].szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pMed[j].szKwrd, pCurRec->pMed[j].iFreq);

}
fprintf(fpLogFile, "\n");

}

if(i == 4)
{

fprintf(fpLogFile, "RECORD FORMAT:\n");
for(j = 0; pCurRec->pFrm[j].szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pFrm[j].szKwrd, pCurRec->pFrm[j].iFreq);

}
fprintf(fpLogFile, "\n");

)
}

fprintf (f pLocrFile "v^*****************************")•
fprintf(fpLogFile, " SCORING RESULTS ");
fprintf CfpLocrFile "******************************\n")■
fprintf(fpLogFile^ "30/20/30/10/10 ");
fprintf(fpLogFile, "20/20/20/20/20 ");
fprintf(fpLogFile, "50/30/00/10/10\n");
fprintf(fpLogFile, "DBF RANK SCORE ");
fprintf(fpLogFile, "DBF RANK SCORE ");
fprintf(fpLogFile, "DBF RANK SCORE\n");

(struct SCORE *)score = pScore;

for(i = 0; i < 5; i++)
{

for(j = 0; j < 3; j++)
{

fprintf(fpLogFile, " %d %d %.3f ", pScore->iDBFNum,
pScore->iRank[j], pScore->fScore[j]);

}
fprintf(fpLogFile, "\n");
pScore++;

}
fprintf(fpLogFile, "\n");

/* Reset pScore to the first element in the array */
pScore = score;

/* Record the details of the MOC caculations to logfile.txt */
for(i = 0; i < 5; i++)

94

fprintf(fpLogFile, "%d SUB %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->sub.fTop, pScore->sub.iNumRecs,
pScore->sub.fBottom, pScore->sub.fResult);

fprintf(fpLogFile, " (0.3 = %5.3f) (0.2 = %5.3f) (0.5 = %5.3f)\n",
pScore->sub.fResult * .3, pScore->sub.fResult * .2,
pScore->sub.fResult * .5);

fprintf(fpLogFile, "%d ORG %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->org.fTop, pScore->org.iNumRecs,
pScore->org.fBottom, pScore->org.fResult);

fprintf(fpLogFile, " (0.2 = %5.3f) (0.2 = %5.3f) (0.3 = %5.3f)\n",
pScore->org.fResult * .2, pScore->org.fResult * .2,
pScore->org.fResult * .3);

fprintf(fpLogFile, "%d TYP %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->typ.fTop, pScore->typ.iNumRecs,
pScore->typ.fBottom, pScore->typ.fResult);

fprintf(fpLogFile, " (0.3 = %5.3f) (0.2 = %5.3f) (0.0 = %5.3f)\n",
pScore->typ.fResult * .3, pScore->typ.fResult * .2,
pScore->typ.fResult * .0);

fprintf(fpLogFile, "%d MED %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->med.fTop, pScore->med.iNumRecs,
pScore->med.fBottom, pScore->med.fResult);

fprintf(fpLogFile, " (0.1 = %5.3f) (0.2 = %5.3f) (0.1 = %5.3f)\n",
pScore->med.fResult * .1, pScore->med.fResult * .2,
pScore->med.fResult * .1);

fprintf(fpLogFile, "%d FRM %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->frm.fTop, pScore->frm.iNumRecs,
pScore->frm.fBottom, pScore->frm.fResult);

fprintf(fpLogFile, " (0.1 = %5.3f) (0.2 = %5.3f) (0.1 = %5.3f)\n",
pScore->frm.fResult * .1, pScore->frm.fResult * .2,
pScore->frm.fResult * .1);

}

fprintf(fpLogFile, "
for(j = 0; j < 3; j++)

fprintf(fpLogFile, "%5.3f
{

}
fprintf(fpLogFile, "\n\n");
pScore++;

Totals: ");

", pScore->fScore[j]) ;

/* Reset pScore to the first element in the array */
pScore = score;

/* Move pScore pointer to the correct element */
for(; pScore->iDBFNum != iDBFNum; pScore++);

for(i = 0; i < 3; i++)
{

iRank[i] = pScore->iRank[i];
}

/* Determine number of duplicates of correct DBF */
for(i = 0; i < 3; i++)
{

pScore = score;
iDuplicate[i] = 0;
for(j = 0; j < 5; j++)
{

if(pScore->iRank[i] == iRank[i] && pScore->iDBFNum != iDBFNum)
{

95

}

iDuplicate[i] += 1;
}
pScore++;

}
}

/* Reset pScore to the first element in the array */
pScore = score;

/* Move pScore pointer to the correct element */
for(; pScore->iDBFNum != iDBFNum; pScore++);

/* Log correct DBF and offsets to logfile.txt */
fprintf{fpLogFile, "Correct DBF: %d Offsets: %d %d %d\n\n"

iDBFNum, (pScore->iRank[0] - 1 + iDuplicate[0]),
(pScore->iRank[l] - 1 + iDuplicate[1]),
(pScore->iRank[2] - 1 + iDuplicate[2]));

/* Log correct DBF and offsets to scorelog.txt */
fprintf(fpScoreLog, "DBF: %d Offsets: %d %d %d\n",

iDBFNum, (pScore->iRank[0] - 1 + iDuplicate[0]),
(pScore->iRank[l] - 1 + iDuplicate[1]),
(pScore->iRank[2] - 1 + iDuplicate[2]));

fclose(fpLogFile);
fclose(fpScoreLog);

96

/*
PROJECT: racs.prj

FILE: db3funct.c

PURPOSE:
This module contains functions to create and update dBASE III compatible
files.

FUNCTIONS:
void createDBF(int iDBFNum)
void addRecord(int iDBFNum, struct DB3REC0RD *pdb3record)
void displayRecords(int iDBFNum)
void editRecord(struct DB3REC0RD *pdb3record, struct DB3HEADER *pdb3header,

int iRecNum)
void compactDBF(int iDBFNum)

•*/

#define EXTERN extern
#include "racs.h"

void createDBF(int iDBFNum)
{

FILE *fpCurDBF;
int i;
char szHeader[20] = "dbfile";
char szBuff[256];

/* Create an instance of structure type struct DB3HEADER */
struct DB3HEADER db3header;

/* Create an array of nine sturtures of type COLUMNDEF */
struct COLUMNDEF columnDef[9];

/* Create an instance of structure type DB3RECORD */
struct DB3REC0RD db3record;

struct tm *curTime;
time_t tClock;

/* Create new dBASE file */
if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "wb")) == NULL)
{

displayError("could not create database file") ;
}

/* Get current time header information */
time(&tClock);
curTime = localtime(StClock);

/* Clear a block of memory for and initialize the db3header */
memset(&db3header, 0, sizeof(db3header));
db3header.bfVersion = 3;
db3header.bfHasMemo = 0;
db3header.bYear = curTime->tm_year;
db3header.bMonth = (unsigned char)(curTime->tm_mon + 1);
db3header.bDay = (unsigned char)curTime->tm_mday;
db3header.lNumberRecords = 0;
db3header.nFirstRecord0ffset = sizeof(db3header) + sizeof(columnDef) + 2;
db3header.nRecordLength = sizeof(db3record);

if((fwrite((char *)sdb3header, sizeof(struct DB3HEADER),
1, fpCurDBF)) != 1)

{

97

displayError("write error (database header)");
}

/* Zero-out memory and initialize the nine column definitions */
memset(columnDef, 0, sizeof(columnDef));

strcpy(columnDef[0].szColumnName, "DateRecord");
columnDef[0].chType = CHARACTERJTIELD;
columnDef[0].byLength = sizeof(db3record.szDateRecord);
columnDef[0].byDecimalPlace = 0;

strcpy(columnDef[1]-szColumnName, "To");
columnDef[1].chType = CHARACTER_FIELD;
columnDef[1].byLength = sizeof(db3record.szTo);
columnDef[1].byDecimalPlace = 0;

strcpy(columnDef[2].szColumnName, "OriginOrg");
columnDef[2].chType = CHARACTER_FIELD;
columnDef[2].byLength = sizeof(db3record.szOriginOrg);
columnDef[2].byDecimalPlace = 0;

strcpy(columnDef[3].szColumnName, "Subject");
columnDef[3].chType = CHARACTER_FIELD;
columnDef[3].byLength = sizeof(db3record.szSubject);
columnDef[3].byDecimalPlace = 0;

strcpy(columnDef[4].szColumnName, "Author");
columnDef[4].chType = CHARACTER_FIELD;
columnDef[4].byLength = sizeof(db3record.szAuthor);
columnDef[4].byDecimalPlace = 0;

strcpy(columnDef[5].szColumnName, "CreateDate");
columnDef[5].chType = CHARACTER_FIELD;
columnDef[5].byLength = sizeof(db3record.szCreateDate);
columnDef[5].byDecimalPlace = 0;

strcpy(columnDef[6].szColumnName, "RecType");
columnDef[6].chType = CHARACTER_FIELD;
columnDef[6].byLength = sizeof(db3record.szRecType);
columnDef[6].byDecimalPlace = 0;

strcpy(columnDef[7].szColumnName, "MediaType");
columnDef[7].chType = CHARACTER_FIELD;
columnDef[7]-byLength = sizeof(db3record.szMediaType);
columnDef[7].byDecimalPlace = 0;

strcpy(columnDef[8].szColumnName, "RecFormat");
columnDef[8].chType = CHARACTER_FIELD;
columnDef[8]-byLength = sizeof(db3record.szRecFormat) ;
columnDef [8] -byDecimalPlace = 0,-

if ((fwrite ((char *)columnDef, sizeof(columnDef), 1, fpCurDBF)) != 1)
{

displayError("write error (column headers)");
}

if((fwrite((char *)"\r\0", sizeof(char) * 2, 1, fpCurDBF)) != 1)
{

displayError("write error (column headers)");
}

fclose(fpCurDBF);

98

void addRecord(int iDBFNum, struct DB3REC0RD *pdb3record)
'{

FILE *fpCurDBF;

int i;
int iOffset;

char szHeader[20] = "dbfile";

struct tm *curTime;
time_t tClock;

struct DB3HEADER db3header;
char *pcdb3record;

clrscr();

pcdb3record = (char *)pdb3record;

/* Replace any NULLs with blank spaces for dBASE III compatibility */
for (i = 0; i < sizeof(struct DB3RECORD); i++)
{

if (pcdb3record[i] == 'NO')
{

pcdb3record[i] = ' ';
}

}

/* Check to insure the intended database exists already */
if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "rb")) == NULL)
{

displayError("database not initialized");
}
else
{

fclose(fpCurDBF);
}

if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "rb+")) == NULL)
{

displayError("could not open specified database");
}

if((fread(Sdb3header, sizeof(struct DB3HEADER) , 1, fpCurDBF)) == NULL)
{

displayError("read error (database header)");
}

/* Set position for new db3record */
iOffset = db3header.nFirstRecordOffset;
iOffset += ((db3header.lNumberRecords) * (db3header.nRecordLength));
fseek(fpCurDBF, iOffset, SEEK_SET);

if((fwrite(pdb3record, sizeof(struct DB3RECORD),•1, fpCurDBF)) != 1)
{

displayError("write error (new db3record)");
}

/* Update values in database header */
++db3header.INumberRecords ;

time(StClock) ;
curTime = localtime(StClock);
db3header.bYear = curTime->tm_year;
db3header.bMonth = (unsigned char)(curTime->tm_mon + 1);

99

}

db3header.bDay = (unsigned char)curTime->tm_mday;

if((fseek(fpCurDBF, 0, SEEK_SET)) != 0)
{

displayError("seek error (rewirte of header)");
}

if((fwrite((char *)Sdb3header, sizeof(struct DB3HEADER), 1, fpCurDBF))
!= 1)

{
displayError("write error (updating header)");

}
fclose(fpCurDBF);

void displayRecords(int iDBFNum)
{

FILE *fpCurDBF;
int i, j;
int iNext = FALSE;
char cSel;
char szStatus[8J;
char szHeader[20] = "dbfile";
char *pBuff;

/* Create an instance of structure type struct DB3HEADER */
struct DB3HEADER db3header;
struct DB3HEADER *pdb3header;

/* Create an instance of structure type DB3RECORD */
struct DB3REC0RD db3record;
struct DB3REC0RD *pdb3record;

pdb3header = &db3header;
pdb3record = &db3record;

if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "rb+")) == NULL)
{

displayError("error opening database for display/editing");
}

if((fread(&db3header, sizeof(struct DB3HEADER), 1, fpCurDBF)) == NULL)
{

displayError("read error (database header)");
}

fseek(fpCurDBF, db3header.nFirstRecordOffset, SEEK_SET);

i = 1;
while(i <= db3header.INumberRecords)
{

clrscr();

fseek(fpCurDBF, (db3header.nFirstRecordOffset +
((i - 1) * db3header.nRecordLength)), SEEK_SET);

if((fread(&db3record, sizeof(struct DB3RECORD), 1, fpCurDBF)) == NULL)
{

displayError("read error (database record)");
}

for(j = 25; db3record.szDateRecord[j] ==•'&& j != 0; j—);

db3record.szDateRecord[j] = '\0';

100

for(j = 100; db3record.szTo[j] ==•'&& j != 0; j —);
j++;
db3record.szTo[j] = '\0';

for(j = 100; db3record.szOriginOrg[j] =='•&& j != 0; j—);

db3record.szOriginOrg[j] = '\0';

for(j = 254; db3record.szSubject[j] ==''&& j != 0; j —) ;

db3record.szSubject[j] = '\0*;

for(j = 100; db3record.szAuthor[j] ==''&& j != 0; j —);
j++;
db3record.szAuthor[j] = ' \0';

for(j = 25; db3record.szCreateDate[j] ==•*&& j != 0; j—);
j++;
db3record.szCreateDate[j] = ' \0';

for(j = 50; db3record.szRecType[j] ==''&£ j"!= 0; j—);

db3record.szRecType[j] = ' \0';

for(j = 50; db3record.szMediaType[j] ==''&& j != 0; j—);

db3record.szMediaType[j] = ' \0';

for(j = 50; db3record.szRecFormat[j] ==''&& j != 0; j—);

db3record.szRecFormat[j] = '\0';

iNext = FALSE;
while(iNext == FALSE)
{

clrscr() *
if(db3record.szStatus[0] == USABLE RECORD)

strcpy(szStatus, "active");

else if(db3record.szStatus[0] == DELETED_RECORD)

strcpy(szStatus, "deleted");

else

strcpyfszStatus, "unknown");

_setcursortype(_NOCURSOR);
printf("Record %d of %d\n", i, db3header.lN\raiberRecords);
printf("Date of Record: %s\t", pdb3record->szDateRecord);
printf("Status: %s\n", szStatus);
printf("- 1 - Addressee(s): %-100s\n", pdb3record->szTo);
printf("- 2 - ORIGINATOR: %-100s\n", pdb3record->szOriginOrg);
printf("- 3 - SUBJECT: %-254s\n", pdb3record->szSubject);
printf("- 4 -Author: %-100s\n", pdb3record->szAuthor);
printf("- 5 - Creation Date: %-25s\n\n",

pdb3record->szCreateDate);
printf("- 6 - RECORD TYPE: %-50s\n\n", pdb3record->szRecType);
printf("- 7 - MEDIA TYPE: %-50s\n\n", pdb3record->szMediaType);
printf("- 8 - RECORD FORMAT: %-50s\n\n",

pdb3record->szRecFormat);
printf("\n(e) %-10s(n) %-10s(p) %-10s(f) %-10s(l) %-10s\n",

"Edit", "Next", "Prev", "First", "Last");
puts("(q) Return to previous menu");

101

cSel = getch();

switch(cSel)
{

case 'e':
case 'E':

editRecord(pdb3record, pdb3header, i);
fseek(fpCurDBF, (db3header.nFirstRecordOffset +

((i - 1) * db3header.nRecordLength)), SEEK_SET).
if((fwrite(pdb3record, sizeof(struct DB3REC0RD),

1, fpCurDBF)) != 1)
{

displayError("write error (edited db3record)");
}
fseek(fpCurDBF, 0, SEEK_SET);
if((fwrite(pdb3header, sizeof(struct DB3HEADER),

1, fpCurDBF)) != 1)
{

displayError("write error (DB3 Header)");
}
iNext = TRUE;
break;

case 'n':
case 'N':

iNext = TRUE;
if(i != db3header.lNumberRecords)
{

i++;
}
else
{

puts("AT LAST RECORD!");
delay(500);

}
break;

case 'P':
iNext = TRUE;
if (i != 1)
{

i—;
}
else
{

puts("AT FIRST RECORD!");
delay(500);

}
break;

case 'f':
case 'F':

iNext = TRUE;
i = 1;
break;

case '1' :
case 'L':

i = db3header.lNumberRecords;
iNext = TRUE;
break;

case

102

return;

default:
puts("INVALID KEY!");
delay(500);

}
}

}
fclose(fpCurDBF);

}

void editRecord(struct DB3RECORD *pdb3record, struct DB3HEADER *pdb3header,
int iRecNum)

{
int i;
int iDone = FALSE;

char cSel;
char szBuff[255];
char szRecStatus[8];
char *pcdb3record;

struct tm *curTime;
time_t tClock;

pcdb3record = (char *)pdb3record;

clrscr();

time(StClock);
curTime = localtime(StClock);
strftime(szBuff, 255, "%d-%b-%Y %X", curTime);
strncpy(pdb3record->szDateRecord, szBuff,

sizeof(pdb3record->szDateRecord));

cSel = 0;
while(iDone == FALSE)
{

_setcursortype(_NORMALCURSOR) ;
if(pdb3record->szStatus[0] == DELETED_RECORD)
{

strcpy(szRecStatus, "deleted");
}
else
{

strcpy(szRecStatus, "active");
}

switch(cSel)
{

case 49:
printf("Addressee(s): ");
gets(szBuff);
strncpy(pdb3record->szTo, szBuff,

sizeof(pdb3record->szTo));
cSel = 0;
break;

case 50:
printf("ORIGINATING ORGANIZATION: ");
gets(szBuff);
strncpy(pdb3record->szOriginOrg, szBuff,

sizeof(pdb3record->szOriginOrg));
cSel = 0;

103

break;

case 51:
printf("SUBJECT: ");
gets(szBuff);
strncpy(pdb3record->szSubject, szBuff,

sizeof(pdb3record->szSubject));
cSel = 0;
break;

case 52:
printf("Author: ") ;
gets(szBuff);
strncpy(pdb3record->szAuthor, szBuff,

sizeof(pdb3record->szAuthor));
cSel = 0;
break;

case 53:
printf("Creation Date: ");
gets(szBuff);
strncpy(pdb3record->szCreateDate, szBuff,

sizeof(pdb3record->szCreateDate));
cSel = 0;

break;

case 54:
printf("RECORD TYPE: ") ;
gets(szBuff);
strncpy(pdb3record->szRecType, szBuff,

sizeof(pdb3record->szRecType));
cSel = 0;
break;

case 55:
printf("MEDIA TYPE: ");
gets(szBuff);
strncpy(pdb3record->szMediaType, szBuff,

sizeof(pdb3record->szMediaType));
cSel = 0;
break;

case 56:
printf("RECORD FORMAT: ");
gets(szBuff);
strncpy(pdb3record->szRecFormat, szBuff,

sizeof(pdb3record->szRecFormat));
cSel = 0;
break;

case 's':
case 'S':

iDone = TRUE;
break;

case 'd':
case 'D':

pdb3record->szStatus[0] = DELETED_RECORD;
cSel = 0;
break;

case 'u':
case 'U':

pdb3record->szStatus[0] = USABLE_RECORD;
cSel = 0;

104

break;

default:
clrscr() ;
_setcursortype(_NOCURSOR);
printf("Record %d of %d\n", iRecNum,

pdb3header->lNumberRecords);
printf("Date of Record: %s\t",

pdb3record->szDateRecord);
printf("Status: %s\n", szRecStatus);
printf("- 1 - Addressee(s): %-100s\n",

pdb3record->szTo);
printf("- 2 - ORIGINATOR: %-100s\n",

pdb3record->szOriginOrg);
printf("- 3 - SUBJECT: %-254s\n",

pdb3record->szSubject);
printf("- 4 - Author: %-100s\n",

pdb3record->szAuthor);
printf("- 5 - Creation Date: %-25s\n\n",

pdb3record->szCreateDate);
printf("- 6 - RECORD TYPE: %-50s\n\n",

pdb3record->szRecType);
printf("- 7 - MEDIA TYPE: %-50s\n\n",

pdb3record->szMediaType);
printf("- 8 - RECORD FORMAT: %-50s\n\n",

pdb3record->szRecFormat);
puts("\nTo reenter any fields enter the appropriate number")
printf("(s) %-10s(d) %-10s(u) %-10s\n",

"Save", "Del", "Undelete");
cSel = getch();

>
}
_setcursortype(_NOCURSOR);

for (i = 0; i < sizeof(struct DB3RECORD); i++)
{

if (pcdb3record[i] == '\0')
{

pcdb3record[i] = ' ';
}

}

time(&tClock);
curTime = localtime(StClock);
pdb3header->bYear = curTime->tm_year;
pdb3header->bMonth = (unsigned char)(curTime->tm_mon + 1);
pdb3header->bDay = (unsigned char)curTime->tm_mday;

void compactDBF(int iDBFNum)
{

FILE *fpCurDBF;
FILE *fpTmpDBF;

int i;
char c;
char szHeader[20] = "dbfile";
char szBuff[256];

struct DB3HEADER db3head01d;
struct DB3HEADER db3headNew;

struct DB3REC0RD db3record;

105

struct tm *curTime;
time_t tClock;

createDBF(6);

if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "rb")) == NULL)

displayError("opening DBF file for compacting");

if((fpTmpDBF = fopen(szpGetConfig(szHeader, 6), "rb+")) == NULL)

displayError("opening temp file for compacting");

f((fread(&db3head01d, sizeof(struct DB3HEADER), 1, fpCurDBF)) == NULL)

displayError("read error (database header)");

if((fread(&db3headNew, sizeof(struct DB3HEADER), 1, fpTmpDBF)) == NULL)

displayError("read error (database header)");

i = 1;
while(i <= db3head01d.lNumberRecords)
{

fseek(fpCurDBF, (db3head01d.nFirstRecord0ffset +
((i - 1) * db3head01d.nRecordLength)), SEEK_SET);

if((fread(&db3record, sizeof(struct DB3REC0RD), 1, fpCurDBF)) == NULL)
{

displayError("read error (database record)");
}
if(db3record.szStatus[0] != '*')
{

fseek(fpTmpDBF, (db3headNew.nFirstRecord0ffset +
(db3headNew.lNumberRecords * db3headNew.nRecordLength)),
SEEK_SET);

if((fwrite((char *)&db3record, sizeof(struct DB3REC0RD), 1, fpTmpDBF))
!= 1)

{
displayError(":(write error (DB3 record in temp file)");

}
db3headNew.lNumberRecords++;

}
i++;

}
time(&tClock) ;
curTime = localtime(StClock);
db3headNew.bYear = curTime->tm_year;
db3headNew.bMonth = (unsigned char)(curTime->tm_mon + 1);
db3headNew.bDay = (unsigned char)curTime->tm_mday;

if((fseek(fpTmpDBF, 0, SEEK_SET)) != 0)
{

displayError("seek error (rewirte of header in temp file)");
}

if((fwrite(Sdb3headNew, sizeof(struct DB3HEADER), 1, fpTmpDBF)) != 1)
{

displayError("write error (updating header in temp file)");
}
fclose(fpTmpDBF);
fclose(fpCurDBF);

106

if((fpTmpDBF = fopen(szpGetConfig(szHeader, 6), "rb")) == NULL)

displayError("opening temp file for copying");

if((fpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum) , "wb")) == NULL)

displayError("opening current DBF file for compacting");

while(1)

c = fgetc(fpTmpDBF);

if(!feof(fpTmpDBF))
fputc(c, fpCurDBF);

else
break;

}

fclose(fpTmpDBF);
fclose(fpCurDBF);
remove(szpGetConfig(szHeader, 6)) ;
printf("\t\t Database %d compacted\n", iDBFNum);

107

/*
PROJECT: racs.prj

FILE: main.c

PURPOSE:
Start and end point for program as well as general utility functions.

FUNCTIONS:
void main(void)
char *szpGetConfig(char szHeaderText[], int iFileNum)
void displayError(char szErrorMessage[])
void copyFile(char *oldName, char *newName)
void cleanup(void)

#define EXTERN extern
♦include "racs.h"

void main(void)
{

_setcursortype(_NOCURSOR);
atexit(cleanup);

introScreent);
mainMenu();

exit(O);
}

char *szpGetConfig(char szHeaderText[], int iFileNum)
{

char szHeader[20] = "";
char szLBracket[] = "[";
char szRBracket[] = "]";
char szBuff[81] = "";
char szFileName[81] = "";
char szErrorMessage[81] = "";

int i;

FILE *fpConfig;

strcat(szHeader, szLBracket);
strcat(szHeader, strupr(szHeaderText)) ;
strcat(szHeader, szRBracket);

if ((fpConfig = fopen("CONFIG.TXT", "r")) == NULL)
{

displayErrorCconfig.txt not found");
}

while(strcmp(szBuff, szHeader) != 0)
{

fscanf(fpConfig, "%s", szBuff);
if(strcmp(szBuff, "[END]") == 0)
{

strcpy(szErrorMessage, szHeader);
strcat(szErrorMessage, " not found in config.txt");
displayError(szErrorMessage);

}
}

108

ford = 0; i < iFileNum; i++)
{

fscanf(fpConfig, "%s", szFileName);
if((strcmp(szBuff, "[END]") ==0) || (szFileName[0] == '['))
{

strcpy(szErrorMessage, "specified file not found under ");
strcat(szErrorMessage, szHeader);
displayError(szErrorMessage);

}
}
fclose(fpConfig);
return szFileName;

void displayError(char szErrorMessage[])
{

clrscr();
puts("\n\n\n\n\n");
printf("\t\t ERROR: %s", szErrorMessage);
delay(3000);
exit (1);

}

void copyFile(char *oldName, char *newNarae)
{

FILE *fp01d, *fpNew;
int c;

if((fp01d = fopen(oldName, "rb")) == NULL)

displayError("opening file to backup");

if((fpNew = fopen(newName, "wb")) == NULL)

displayError("backup could not be created");

while(1)

c = fgetc(fpOld);

if(!feof(fpOld))
fputc(c, fpNew);

else
break;

}
fclose(fpOld);
fclose(fpNew);

}

void cleanup(void)
{

clrscr();
puts("\n\n\n\n\n");
puts("\t\t\t\t Goodbye!");
delay(lOOO);
fcloseall () ;
clrscr ();
_setcursortype(_NORMALCURSOR)

}

109

/*
PROJECT: racs.prj

FILE: menus.c

PURPOSE:
Contains all the functions which display the various menus
needed to operate the program.

FUNCTIONS:
void introScreen(void)
void mainMenu(void)
void databaseMenu(void)
void initializeDatabaseMenu(void)
void viewDatabaseMenu(void)
void compactDatabaseMenu(void)
void initializeDBF(int iDBFNum)
void templateMenu(void)
void generateTemplatesMenu(void)
void viewTemplatesMenu(void)
void logFileMenu(void)
void viewLogFileMenu(void)

tdefine EXTERN extern
#include "racs.h"

void introScreen(void)
{

clrscr();
window(16, 6, 65, 13);
textbackground(BLUE);
textcolor(LIGHTGRAY);
clrscr();
cprintf("\r\n");
cprintfC R.A.C.S. \r\n");
cprintf(" Records Analysis and Classification System \r\n");
cprintf("\r\n");
cprintfC Version 1.0 \r\n");
cprintfC Created by David Snoddy \r\n");
cprintfC October 1996 \r\n");
delay(3500);
window(l, 1, 80, 25);
textbackground(BLACK);
textcolor(LIGHTGRAY);
clrscr();

}

void mainMenu(void)
{

int iDone = FALSE;
char cSel;

while(iDone == FALSE)
{

clrscr();
puts("\n\n");
puts("\t\t\tChoose one of the following actions:\n");
puts("\t\t\t (d)\tDatabase Management");
puts("\t\t\t (t)\tTemplate Management");
puts("\t\t\t (l)\tLog File Management");
puts("\t\t\t (c)\tClassify New Record");
putsC");
puts("\t\t\t (q)\tQuit");

110

cSel = getch();

switch(cSel)
{

case 'd':
case 'D':

databaseMenu();
break;

case 't':
case "I":

templateMenu() ;
break;

case '1':
case 'L':

logFileMenuO ;
break;

case 'c':
case 'C:

classifyRecordO ;
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(1000);

}
}

}

void databaseMenu(void)
{

int i;
int iSuccess[5];
int iDone = FALSE;
char cSel;
char szHeaderl[20] = "dbfile";
char szHeader2[20] = "dbfbackup";
char szNew[20];
char szOld[20];

while(iDone == FALSE)
{

clrscr();
puts("\n\n");
puts("\t\t\tChoose one of the following actions:\n");
puts("\t\t\t (b)\tBackup All Databases");
puts("\t\t\t (i)\tlnitialize Databases");
puts("\t\t\t (v)\tView/Edit Records");
puts("\t\t\t (c)\tCompact Databases");
puts("");
puts("\t\t\t (q)\tReturn to the Main Menu");

cSel = getch();

switch(cSel)
{

case 'b':

111

case 'B':
for(i = 1; i <= 5; i++)
{

strcpy(szOld, szpGetConfig(szHeaderl, i)) ;
strcpy(szNew, szpGetConfig(szHeader2, i));
copyFile(szOld, szNew);

}
printf("\n\t\t\tAll databases backed up");
delay(2000);
break;

case 'i':
case •I*:

initializeDatabaseMenu();
break;

case 'v':
case 'V :

viewDatabaseMenu();
break;

case 'c':
case 'C:

compactDatabaseMenu();
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(lOOO);

void initializeDatabaseMenu(void)
{

int iDone = FALSE;
char cSel;

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the database to initialize:\n"),
puts("\t\t\t (l)\tT 11-02 R 21 Item 3");
puts("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts("'\t\t\t (a)\tlnitialize All Databases");
puts("");
puts("\t\t\t (q)\tReturn to the Databases Menu");

cSel = getch();

switch(cSel)
{

case '1':
initializeDBF(l);

112

break;

case *2':
initializeDBF(2);
break;

case '3':
initializeDBF(3);
break;

case '4':
initializeDBF(4);
break;

case '5':
initializeDBF(5);
break;

case 'a':
case 'A' :

initializeDBF('a');
break;

case 'q':
case 'Q*:

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(1000);

void viewDatabaseMenu(void)
{

int iDone = FALSE;
char cSel;

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the database to view/edit:\n");
puts("\t\t\t (l)\tT 11-02 R 21 Item 3");
puts("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts("\t\t\t (5)\tT 900-02 R 02 Item 15");
putsC");
puts("\t\t\t (q)\tReturn to Databases Menu");

cSel = getch();

switch(cSel)
{

case '1' :
displayRecords (1);
break;

case *2':
displayRecords(2);

113

break;

case '3':
displayRecords(3) ;
break;

case '4':
displayRecords(4);
break;

case '5':
displayRecords(5) ;
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(lOOO);

}
}

void compactDatabaseMenu(void)
{

int iDone = FALSE;
char cSel;

while(iDone = FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the database to compact:\n")
puts("\t\t\t (l)\tT 11-02 R 21 Item 3");
puts("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12"),
puts("\t\t\t (5)\tT 900-02 R 02 Item 15"),
puts("\t\t\t (a)\tCompact All Databases"),
puts("");
puts("\t\t\t (q)\tReturn to the Databases Menu"),

cSel = getch();

switch(cSel)
{

case '1':
compactDBF(l);
delay(500);
break;

case '2':
compactDBF(2);
delay(500);
break;

case '3':
compactDBF(3);
delay(500);
break;

114

case '4':
compactDBF(4);
delay(500);
break;

case '5':
compactDBF(5) ;
delay(500);
break;

case 'a':
case 'A':

compactDBF(1)
compactDBF(2)
compactDBF(3)
compactDBF(4)
compactDBF(5)
delay(500);
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(1000);

void initializeDBF(int iDBFNum)
{

int i;
int iSuccess;
char cSel;
char szHeaderl[20] = "dbfile";
char szHeader2[20] = "dbfbackup";
char szOld[20];
char szNew[20];

puts("\n");
puts("\t\t\tWARNING!");
puts("\t\t\tlnitializing a database will delete any previous");
puts("\t\t\tinformation stored in the database!");
puts("");
puts("\t\t\tDo you wish to continue?");
puts("\t\t\t(y) to continue any other key to abandon operation\n");

cSel = getch();

if(cSel == 'y' II cSel == 'Y')
{

if(iDBFNum == 'a')
{

for(i = 1; i <= 5; i++)
{

strcpy(sz01d, szpGetConfig(szHeaderl, i));
strcpy(szNew, szpGetConfig(szHeader2, i));
copyFile(sz01d, szNew);
createDBF(i);

115

}
else
{

strcpy(sz01d, szpGetConfig(szHeaderl, iDBFNum));
strcpy(szNew, szpGetConfig(szHeader2, iDBFNum));
copyFile(sz01d, szNew);
createDBF(iDBFNum);

}

if(iDBFNum == 'a')
{

puts("\t\t\tAll databases initialized");
}
else
{

printf("\t\t\tDatabase %d initialized\n", iDBFNum);
}
delay(lOOO);

}
else
{

puts("\n\t\t\tOperation aborted!");
delay(1000);

}
}

void templateMenu(void)
{

int i;
int iDone = FALSE;
char cSel;

while(iDone == FALSE)
{

clrscr();
puts("\n\n");
puts("\t\t\tChoose one of the following actions:\n");
puts("\t\t\t (g)\tGenerate Templates");
puts("\t\t\t (v)\tView Templates");
puts("");
puts("\t\t\t (q)\tReturn to the Main Menu");

cSel = getch();

switch(cSel)

generateTemplatesMenu();
break;

case 'v':
case 'V*:

viewTemplatesMenu();
break;

case 'Q':
iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!"),
delay(lOOO);

116

void generateTemplatesMenu(void)
{

int iDone = FALSE;
int i;
char cSel;

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the template to generate:\n");
puts("\t\t\t (l)\tT 11-02 R 21 Item 3");
puts("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts("\t\t\t (a)\tGenerate All Templates");
puts("");
puts("\t\t\t (q)\tReturn to the Templates Menu");

cSel = getch();

switch(cSel)
{

case "1' :
i f(genCLAS STMPLT(1) == TRUE);
{

printf("\n\t\t\tTemplate %c generated", cSel);
delay(500);

}
break;

case '2':
if(genCLASSTMPLT(2) == TRUE);
{

printf("\n\t\t\tTemplate %c generated", cSel);
delay(500);

}
break;

case '3':
i f(genCLAS STMPLT(3) == TRUE);
{

printf("\n\t\t\tTemplate %c generated", cSel);
delay(500);

}
break;

case '4':
i f(genCLAS STMPLT(4) == TRUE);
{

printf("\n\t\t\tTemplate %c generated", cSel);
delay(500);

}
break;

case '5':
i f(genCLAS STMPLT(5) == TRUE);
{

117

printf("\n\t\t\tTemplate %c generated", cSel);
delay(500);

}
break;

case 'a' :
case 'A':

puts("");
for(i = 1; i <= 5; i++)
<

if(genCLASSTMPLT(i) == TRUE);
{

printf("\t\t\tTemplate %d generated\n", i);
delay(100);

}
}
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(1000);

}
}

void viewTemplatesMenu(void)
{

int iDone = FALSE;
int i;
char cSel;

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the template to view:\n");
puts("\t\t\t (l)\tT 11-02 R 21 Item 3");
puts("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts("");
puts("\t\t\t (q)\tReturn to the Templates Menu");

cSel = getch();

switch(cSel)
{

case '1 *:
system("edit catltpl.txt");
break;

case '2':
system("edit cat2tpl.txt");
break;

case '3':
system("edit cat3tpl.txt");

118

break;

case '4':
system("edit cat4tpl.txt");
break;

case '5':
system("edit cat5tpl.txt");
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!") ,
delay(lOOO);

}
}

void logFileMenu(void)
{

int i;
int iDone = FALSE;
char cSel;
char szHeaderl[20] = "logfile";
char szHeader2[20] = "logbackup";
char szOld[20];
char szNew[20];

while(iDone == FALSE)
{

clrscr();
puts("\n\n");
puts("\t\t\tChoose one of the following actions:\n");
puts("\t\t\t (b)\tBackup Log Files");
puts("\t\t\t (d)\tDelete Log Files");
puts("\t\t\t (v)\tView Log Files");
puts ("*');
puts("\t\t\t (q)\tReturn to the Main Menu");

cSel = getch();

switch(cSel)
{

case 'b':
case 'B':

strcpy(szOld, szpGetConfig(szHeaderl, 1));
strcpy(szNew, szpGetConfig(szHeader2, 1));
copyFile(sz01d, szNew);
strcpytszOld, szpGetConfig(szHeaderl, 2));
strcpy(szNew, szpGetConfig(szHeader2, 2));
copyFile(szOld, szNew);
printf("\n\t\t\tLog files backed up");
delay(750);
break;

case 'd':
case 'D':

strcpy(sz01d, szpGetConfig(szHeaderl, 1));
strcpy(szNew, szpGetConfig(szHeader2, 1));
copyFile(szOld, szNew);

119

remove(szOld);
strcpy(szOld, szpGetConfig(szHeaderl, 2)) ;
strcpy(szNew, szpGetConfig(szHeader2, 2));
copyFile(szOld, szNew);
remove(szOld);
printf("\n\t\t\tLog files deleted");
delay(750);
break;

case 'v':
case 'V :

viewLogFileMenuO ;
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");
delay(lOOO);

void viewLogFileMenu(void)
{

int iDone = FALSE;
int i;
char cSel;

while(iDone == FALSE)
{

_setcursortype(_NOCURSOR);
clrscr();
puts("\n\n");
puts("\t\t\tSelect the log file to view:\n");
puts("\t\t\t (a)\tAll Details");
puts("\t\t\t (s)\tOnly Score");
puts("");
puts("\t\t\t (q)\tReturn to the Log Files Menu");

cSel = getch();

switch(cSel)
{

case 'a':
case 'A':

systemC'edit logfile.txt");
break;

case 's':
case 'S':

systemC'edit scorelog.txt");
break;

case 'q':
case 'Q':

iDone = TRUE;
break;

default:
puts("\n\t\t\t INVALID KEY!");

120

delay(1000),

121

/*
PROJECT: racs.prj

FILE: score.c

PURPOSE:
The functions in this module perform the mathematical calculations to
determine the scores for each new record. The scores are determined by
calculating a Modified Overlap Coefficient for the record template versus
each of the five class templates.

FUNCTIONS:
void compareTemplates(struct RECTMPLT *pRecTmplt, struct SCORE *pScore)
void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,

struct SCORE *pScore)
 */

#define EXTERN extern
»include "racs.h"

void compareTemplates(struct RECTMPLT *pRecTmplt, struct SCORE *pScore)
{

FILE *fpClsTmplt;
char szHeader[20] = "template";

int i;

struct CLASSTMPLT clsTmplt;
struct CLASSTMPLT *pClsTmplt;
pClsTmplt = sclsTmplt;

for(i = 0; i < 5; i++)
{

if((fpClsTmplt = fopen(szpGetConfig(szHeader, i + 1), "rb")) == NULL)
{

displayError("opening class template"};
}

memset(SclsTmplt, 0, sizeof(struct CLASSTMPLT));

if((fread(&clsTmplt, sizeof(struct CLASSTMPLT), 1,
fpClsTmplt)) == NULL)

{
displayError("read error (class template)");

}

fclose(fpClsTmplt);

pScore->iDBFNum = (i + 1);
calcScore(pRecTmplt, pClsTmplt, pScore);
pScore++;

}

void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,
struct SCORE *pScore)

{
int i, j;
int iMatch;
float fTop;
float fBottom;
float fSub = 0;
float fOrg = 0;

122

float fTyp = 0;
float fMed = 0;
float fFrm = 0;
float fScore[3] = {0, 0, 0};

/* Caculate score for the subject fields */
iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pSub[i].szKwrd[0] != *\0'); i++)
{

iMatch = FALSE;
for(j = 0; (pClsTmplt->pSub[j].szKwrd[0] != '\0' &&

iMatch != TRUE); j++)
{

clrscr();
printf("Template %d - Subject\n", pScore->iDBFNum);
printf(" Record: %s \n", pRecTmplt->pSub[i].szKwrd);
printf("Template: %s \n", pClsTmplt->pSub[j].szKwrd);
delay(5);

if(strcmp(pRecTmplt->pSub[i].szKwrd,
pClsTmplt->pSub[j].szKwrd) == 0)

{

}
}

iMatch = TRUE;
fTop += ((pRecTmplt->pSub[i].iFreq) *

(pClsTmplt->pSub[j] .iFreq));
fBottom += pRecTmplt->pSub[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pSub[i].iFreq);
printf(" class freq: %d\n", pClsTmplt->pSub[j].iFreq);
printf(" top: %.0f\n", fTop);
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
if(fBottom != 0)
{

fSub = (fTop / (pClsTmplt->iNumRecs * fBottom));
}
pScore->sub.fTop = fTop;
pScore->sub.fBottom = fBottom;
pScore->sub.iNumRecs = pClsTmplt->iNumRecs;
pScore->sub.fResult = fSub;

/* Caculate score for the originating organization fields */
iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pOrg[i].szKwrd[0] != '\0'); i++)
{

iMatch = FALSE;
for(j = 0; (pClsTmplt->pOrg[j].szKwrd[0] != '\0' S&

iMatch != TRUE); j++)
{

clrscr();
printf("Template %d - Originating Org\n", pScore->iDBFNum);
printf(" Record: %s \n", pRecTmplt->pOrg[i].szKwrd);
printf("Template: %s \n", pClsTmplt->pOrg[j].szKwrd);
delay(5);

if(strcmp(pRecTmplt->pOrg[i].szKwrd,
pClsTmplt->pOrg[j].szKwrd) == 0)

{
iMatch = TRUE;

123

fTop += {(pRecTmplt->pOrg[i].iFreq) *
(pClsTmplt->pOrg[j].iFreq)) ;

fBottom += pRecTmplt->pOrg[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pOrg[i].iFreq);
printf(" class freq: %d\n", pClsTmplt->pOrg[j].iFreq);
printf(" top: %.0f\n", fTop);
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
}

}
if(fBottom != 0)
{

fOrg = (fTop / (pClsTmplt->iNumRecs * fBottom));
}
pScore->org.fTop = fTop;
pScore->org.fBottom = fBottom;
pScore->org.iNumRecs = pClsTmplt->iNumRecs;
pScore->org.fResult = fOrg;

/* Caculate score for the record type fields */
iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pTyp[i].szKwrd[0] != '\0'); i++)
{

iMatch = FALSE;
for(j = 0; (pClsTmplt->pTyp[j].szKwrd[0] != '\0' &&

iMatch != TRUE); j++)
{

clrscr();
printf("Template %d - Record Type\n", pScore->iDBFNum);
printf(" Record: %s \n", pRecTmplt->pTyp[i].szKwrd);
printf("Template: %s \n", pClsTmplt->pTyp[j].szKwrd);
delay(5);

if(strcmp(pRecTmplt->pTyp[i].szKwrd,
pClsTmplt->pTyp[j].szKwrd) == 0)

{

}

iMatch = TRUE;
fTop += ((pRecTmplt->pTyp[i].iFreq) *

(pClsTmplt->pTyp[j].iFreq));
fBottom += pRecTmplt->pTyp[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pTyp[i].iFreq);
printf(" class freq: %d\n", pClsTmplt->pTyp[j].iFreq);
printf(" top: %.0f\n", fTop);
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
}
if(fBottom != 0)
{

fTyp = (fTop / (pClsTmplt->iNumRecs * fBottom));
}
pScore->typ.fTop = fTop;
pScore->typ.fBottom = fBottom;
pScore->typ.iNumRecs = pClsTmplt->iNumRecs;
pScore->typ.fResult = fTyp;

/* Caculate score for the media type fields */
iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pMed[i].szKwrd[0] != 'NO'); i++)

124

iMatch = FALSE;
for(j = 0; (pClsTmplt->pMed[j].szKwrd[0] != '\0' &&

iMatch != TRUE); j++)
{

clrscr() ;
printf("Template %d - Media Type\n", pScore->iDBFNum);
printft" Record: %s \n", pRecTmplt->pMed[i].szKwrd);
printf("Template: %s \n", pClsTmplt->pMed[j].szKwrd);
delay(5);

if(strcmp(pRecTmplt->pMed[i].szKwrd,
pClsTmplt->pMed[j].szKwrd) == 0)

{

}
}

iMatch = TRUE;
fTop += ((pRecTmplt->pMed[i].iFreq) *

(pClsTmplt->pMed[j].iFreq));
fBottom += pRecTmplt->pMed[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pMed[i].iFreq);
printft" class freq: %d\n", pClsTmplt->pMed[j].iFreq);
printft" top: %.0f\n", fTop);
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
if(fBottom != 0)
{

fMed = (fTop / (pClsTmplt->iNumRecs * fBottom));
}
pScore->med.fTop = fTop;
pScore->med.fBottom = fBottom;
pScore->med.iNumRecs = pClsTmplt->iNumRecs;
pScore->med.fResult = fMed;

/* Caculate score for the record format fields */
iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pFrm[i].szKwrd[0] != '\0'); i++)
{

iMatch = FALSE;
for(j = 0; (pClsTmplt->pFrm[j].szKwrd[0] != '\0' &S

iMatch != TRUE); j++)
{

clrscr();
printf("Template %d - Record Format\n", pScore->iDBFNum);
printf(" Record: %s \n", pRecTmplt->pFrm[i].szKwrd);
printf("Template: %s \n", pClsTmplt->pFrm[j].szKwrd);
delay(5);

if(strcmp(pRecTmplt->pFrm[i].s zKwrd,
pClsTmplt->pFrm[j].szKwrd) == 0)

{
iMatch = TRUE;
fTop += ((pRecTmplt->pFrm[i].iFreq) *

(pClsTmplt->pFrm[j].iFreq));
fBottom += pRecTmplt->pFrm[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pFrm[i]-iFreq);
printf(" class freq: %d\n", pClsTmplt->pFrm[j].iFreq);
printft" top: %.0f\n", fTop);
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
}

125

}
if(fBottom != 0)
{

}
fFrm = (fTop / (pClsTmplt->iNumRecs * fBottom));

pScore->frm.fTop = fTop;
pScore->frm.fBottom = fBottom;
pScore->frm.iNumRecs = pClsTmplt->iNumRecs;
pScore->frm.fResult = fFrm;

/* Calculate the composite score for the document */
fScore[0] = (fSub * .3) + (fOrg

(fMed * .1) + (fFrm * .1)
fScore[l] = (fSub * .2) + (fOrg

(fMed * .2) + (fFrm * .2)
fScore[2] = (fSub * .5) + (fOrg

(fMed * .1) + (fFrm * .1)

* .2) + (fTyp * .3)

* .2) + (fTyp * .2)

* .3) + (fTyp * .0)

clrscr ();
printf("30/20/30/10/10
printf("20/20/20/20/20
printf("50/30/00/10/10
delay(500);

%.3f\n", fScore[0]);
%.3f\n", fScorefl]);
%.3f\n", fScore[2]);

pScore->fScore[0]
pScore->fScore[1]
pScore->fScore[2 j

fScore[0];
fScore[1];
fScore [2] ;

126

/*
PROJECT: racs.prj

FILE: steininer. c

PURPOSE:
This module is an implementation of the Porter suffix stripping algorithm.
This code was written by C. Fox, 1990.

FUNCTIONS:
char *stem(register char *word)
static int WordSize(register char *word)
static int ContainsVowel(register char *word)
static int EndsWithCVC(register char *word)
static int AddAnE(register char *word)
static int RemoveAnE(register char *word)
static int ReplaceEnd(register char *word, struct RULELIST *rule)
 *

#define EXTERN extern
#include "racs.h"

#define EOS '\0'
#define IsVowel(c) \

(Ca'==(c)) | | Ce'==(c)) I I Ci'==(c)) | | Co'==(c)) I I Cu'==(c)))

struct RULELIST {
int id;
char *old_end;
char *new_end;
int old_offset;
int new_offset;
int min_root_size;
int (*condition)();

};

static char LAMBDA[1] = "";
static char *end;

static struct RULELIST stepla_rules[] =
{

101, "sses". "SS", 3, 1, -1, NULL,
102, "ies". tl ^ II 2, 0, -1, NULL,
103, "ss", "ss", 1, 1, -1, NULL,
104, n <-. ti

■» r LAMBDA, 0, -1, -1, NULL,
000, NULL, NULL, 0, o, o, NULL,

static struct RULELIST steplb_rules[] =
{

105, "eed". "ee", 2, 1, 0, NULL,
106, "ed". LAMBDA, 1, -1, -1, ContainsVowel,
107, "ing", LAMBDA, 2, -I, -1, ContainsVowel,
000,

};
NULL, NULL, 0, o, o, NULL,

static struct RULELIST steplbl_rules[] =
{

108, "at", "ate". 1, 2, -1, NULL,
109, "bl", "ble", 1, 2, -1, NULL,
110, "iz", "ize", 1, 2, -1, NULL,
111, "bb", "b", 1, 0, -1, NULL,
112, "dd", "d". 1, 0, -1, NULL,
113, "ff", "f", 1, 0, -1, NULL,
114, "gg", "g", I, 0, -1, NULL,

127

115, "mm", "m", 1, 0, -1, NULL,
116, "im", "n", 1, 0, -1, NULL,
117, "PP", "P", 1, o, -1, NULL,
118, "rr", L 1 1, o. -1, NULL,
119, "tt", "t". 1, 0, -1, NULL,
120, "ww", "w", 1, o, -1, NULL,
121, "XX", "X", 1, 0, -1, NULL,
122, LAMBDA, "e", -1, 0, -1, AddAnE,
000, NULL, NULL, 0, o, o, NULL,

};

static struct RULELIST steplc_rules[]
{

123, "y", "i", 0, 0, -1 , Conta
000,

};
NULL, NULL, 0, 0, 0 , NULL,

static
{

203,

struct RULELIST step2_rules [] =

"ational", "ate", 6, 2, 0 , NULL,
204, "tional", "tion", 5, 3, 0 , NULL,
205, "enci". "ence", 3, 3, 0 , NULL,
206, "anci", "ance", 3, 3, 0 , NULL,
207, "izer", "ize", 3, 2, 0 NULL,
208, "abli", "able", 3, 3, 0 NULL,
209, "alii", "al", 3, 1, 0 NULL,
210, "entli", "ent", 4, 2, 0 NULL,
211, "eli", "e", 2, 0, 0 NULL,
213, "ousli", "ous", 4, 2, 0 NULL,
214, "ization", "ize". 6, 2, 0 NULL,
215, "ation", "ate". 4, 2, 0 NULL,
216, "ator", "ate". 3, 2, 0 NULL,
217, "alism". "al", 4, 1, 0 NULL,
218, "iveness". "ive", 6, 2, 0 NULL,
219, "fulnes", "ful", 5, 2, 0 NULL,
220, "ousness", "ous", 6, 2, 0 NULL,
221, "aliti". "al", 4, 1, 0 NULL,
222, "iviti". "ive". 4, 2, 0 NULL,
223, "biliti", "ble", 5, 2, 0 NULL,
000, NULL, NULL, 0, 0, 0 NULL,

};

static struct RULELIST step3_rules[] =
{

301, "icate", "ic", 4, 1, 0, NULL,
302, "ative". LAMBDA, 4, -1, o, NULL,
303, "alize", "al", 4, 1, 0, NULL,
304, "iciti", "ic", 4, 1, 0, NULL,
305, "ical". "ic", 3, 1, o, NULL,
308, "ful", LAMBDA, 2, -1, 0, NULL,
309, "ness", LAMBDA, 3, -1, 0, NULL,
000, NULL, NULL, 0, 0, o, NULL,

};

static struct RULELIST step4_rules[] =
{

401, "al". LAMBDA, 1, -1, 1, NULL,
402, "ance", LAMBDA, 3, -1, 1, NULL,
403, "ence". LAMBDA, 3, -1, 1, NULL,
405, "er", LAMBDA, 1, -1, 1, NULL,
406, "ic", LAMBDA, 1, -1, 1, NULL,
407, "able", LAMBDA, 3, -1, 1, NULL,
408, "ible", LAMBDA, 3, -1, 1, NULL,
409, "ant", LAMBDA, 2, -1, 1, NULL,
410, "ement", LAMBDA, 4, -1, 1, NULL,

128

411, "merit", LAMBDA, 3, -1, 1, NULL,
412, "ent", LAMBDA, 2, -1, 1, NULL,
423, "sion", ii — ti 3, 0, 1, NULL,
424, "tion", II+. II 3, 0, 1, NULL,
415, "ou", LAMBDA, 1, -1, 1, NULL,
416, "ism", LAMBDA, 2, -1, 1, NULL,
417, "ate". LAMBDA, 2, -1, 1, NULL,
418, "iti", LAMBDA, 2, -1, 1, NULL,
419, "out", LAMBDA, 2, -1, 1, NULL,
420, "ive", LAMBDA, 2, -1, 1, NULL,
421, "ize", LAMBDA, 2, -1, 1, NULL,
000, NULL, NULL, 0, 0, o, NULL,

};

static struct RULELIST step5a_rules[] =
{

501, "e", LAMBDA, 0,-1, 1, NULL,
502, "e", LAMBDA, 0, -1, -1, RemoveAnE,
000, NULL, NULL, 0, 0, 0, NULL,

};

static struct RULELIST step5b_rules[] =
{

503, "11", "1", 1, 0, 1, NULL,
000, NULL, NULL, 0, 0, 0, NULL,

};

char *stem(register char *word)
{

int rule;

for(end = word; *end != EOS; end++)
{

if(!isalpha(*end))
{

return(FALSE);
}

}
end—;

ReplaceEnd(word, stepla_rules);
rule = ReplaceEnd(word, steplb_rules);
if((106==rule) II (107 == rule))
{

ReplaceEnd(word, steplbl_rules) ;
}
ReplaceEnd(word, steplc_rules);
ReplaceEndt word, step2_rules);
ReplaceEnd(word, step3_rules);
ReplaceEnd(word, step4_rules);
ReplaceEnd(word, step5a_rules);
ReplaceEnd(word, step5b_rules);

return(word);

static int WordSize(register char *word)
{

register int result;
register int state;

result =0;
state =0;

129

while (EOS != *word)
{

switch(state)
{

case 0:
state = (IsVowel(*word)) ? 1 : 2;
break;

case 1:
state = (IsVowel(*word)) ? 1 : 2;
if (2 == state) result++;
break;

case 2:
state = (IsVowel(*word) || (*y'== *word)) ? 1 : 2;
break;

}
word++;

}
return(result);

} /* WordSize */

static int ContainsVowel(register char *word)
{

if (EOS == *word)
{

return(FALSE);
}
else
{

return (IsVowel(*word) II (NULL != strpbrk(word+1,"aeiouy")))
}

} /* ContainsVowel */

static int EndsWithCVC(register char *word)
{

int length;

if ((length = strlen(word)) < 2)
{

return(FALSE);
}
else
{

end = word + length -1;
return((NULL == strchr("aeiouwxy", *end—))

&& (NULL != strchr ("aeiouy", *end—))
&& (NULL == strchr("aeiou", *end)));

}
} /* EndsWithCVC */

static int AddAnE(register char *word)
{

return((1 == WordSize(word)) && EndsWithCVC(word));
} /* AddAnE */

static int RemoveAnE(register char *word)
{

return((1 == WordSize(word)) && !EndsWithCVC(word));
} /* RemoveAnE */

130

static int ReplaceEnd(register char *word, struct RULELIST *rule)
{

register char *ending;
char tmp_ch;

while(0 != rule->id)
{ ,

ending = end - rule->old_offset;
if(word != ending)
{

if(0 == strcmp(ending, rule->old_end))
{

tmp_ch = *ending;
*ending = EOS;
if(rule->min_root_size < WordSize(word))
{

if(!rule->condition || (*rule->condition) (word))
{

(void) strcat(word, rule->new_end);
end = ending + fule->new_offset;
return(rule->id);

}
}
♦ending = tmp_ch;
return! rule->id);

}
}
rule++;

}
return(rule->id);

} /* ReplaceEnd */

131

/*
PROJECT: racs.prj

FILE: stoplist.c

PURPOSE:
This module contains functions to work with a stop list.

FUNCTIONS:
int loadStoplist(char *szStoplist[])
void unloadStoplist(char *szStoplist[], int iNumWords)
int checkStoplist(char *szTerm, char *szStoplist[], int iNumWords)

tdefine EXTERN extern
#include "racs.h"

int loadStoplist(char *szStoplist[])
{

char szBuff[21];
char szBuff01d[21];
char szHeader[20] = "stoplist";

int i;

FILE *fpStoplist;

if((fpStoplist = fopen(szpGetConfig(szHeader, 1), "r")) == NULL)
{

displayError("opening stoplist");
}

i = 0;
szBuff[0] = NULL;
do
{

strcpy(szBuffOld, szBuff);
fscanf(fpStoplist, "%s", szBuff);
if((szStoplist[i] = (char *)malloc(strlen(szBuff)+1)) == NULL)
{

displayError("allocating memory for stoplist");
}
if(strcmp(szBuffOld, szBuff) != 0)
{

strcpy(szStoplist[i], szBuff);
i++;

}
}while(strcmp(szBuffOld, szBuff) != 0);

fclose(fpStoplist);
return i;

void unloadStoplist(char *szStoplist[], int iNumWords)
{

int i;

for(i =0; i < iNumWords; i++)
{

free(szStoplist[i]);
}

}

132

int checkStoplist(char *szTerm, char *szStoplist[], int iNumWords)
{

int i;

for(i = 0; i < iNumWords; i++)
{

if(strcmptszTerm, szStoplist[i]) == 0)
{

return TRUE;
}

}
return FALSE;

}

133

/*
PROJECT: racs.prj

FILE: template.c

PURPOSE:
This module contains all of the functions for manipulating the five class
templates which represent the 5 databases.

FUNCTIONS:
int genCLASSTMPLT(int iDBFNum)
void addToCLASSTMPLT(char *szTerm, struct CLASSTMPLT *pTmplt, int iField)
void logCLASSTMPLT(struct CLASSTMPLT *pTmplt, int iDBFNum)
 */

#define EXTERN extern
#include "racs.h"

int genCLASSTMPLT(int iDBFNum)
{

FILE *fpCurDBF;
FILE *fpClsTmplt;
char szHeaderl[20] = "dbfile";
char szHeader2[20] = "template";

char szBuff[255];
char szTermBuff[51];
char *pString, *pToken;
char szToken[41];
int iTokenType;
int iField;

char *szStoplist[500];
int iNumWords;
int iMatch;

int i, j, k;

struct DB3HEADER db3header;

struct CLASSTMPLT tmplt;
struct CLASSTMPLT *pTmplt;
struct DB3RECORD db3record;
pTmplt = Stmplt;

iNumWords = loadStoplist(szStoplist);

memset(Stmplt, 0, sizeof(struct CLASSTMPLT));

if((fpCurDBF = fopen(szpGetConfig(szHeaderl, iDBFNum), "rb")) == NULL)
{

displayError("could not open database file");
}

if((fread(Sdb3header, sizeof(struct DB3HEADER), 1, fpCurDBF)) == NULL)
{

displayError("read error (database header)");
}

tmplt.iNumRecs = db3header.lNumberRecords;

fseek(fpCurDBF, db3header.nFirstRecordOffset, SEEK_SET);

for(i =0; i < db3header.INumberRecords; i++)

134

{
memset(&db3record, 0, sizeof(struct DB3RECORD));

if((fread(&db3record, sizeof(struct DB3RECORD), 1, fpCurDBF)) == NULL)
{

displayError("read error (database record)");
}

if(db3record.szStatus[0] != '**)
{

for(j = 0; j < 5; j++)
{

memset(sszBuff, '\0', sizeof(szBuff));

switch(j)
{

case 0:
strncpy(szBuff, db3record.szSubject, 255);
szBuff[254] = '\0';
iField = 's';
break;

case 1:
stmcpy(szBuff, db3record.szOriginOrg, 101);
iField = 'o';
break;

case 2:
strncpy(szBuff, db3record.szRecType, 51);
iField = 't';
break;

case 3:
strncpy(szBuff, db3record.szMediaType, 51);
iField = 'm';
break;

case 4:
strncpy(szBuff, db3record.szRecFormat, 51);
iField = 'f;
break;

}

pString = szBuff;

iTokenType = UNDEFINED;

while(iTokenType != EOL && iTokenType != LEXERROR)
{

pToken = szToken;

getTerms(SpString, pToken, &iTokenType);

if(iTokenType != EOL)
{

if (iTokenType == ALLALPHA)
{

strcpy(szTermBuff, strlwr(szToken));

iMatch = checkStoplist(szTermBuff,
szStoplist, iNumWords);

if(iMatch != TRUE)
{

strcpy(szTermBuff, stem(strlwr(szToken)));

135

addToCLASSTMPLT(szTermBuff, pTmplt, iField);
}

}

if(iTokenType == NONWORD)
{

strcpy(szTermBuff, strlwr(szToken));

iMatch = checkStoplist(szTermBuff,
szStoplist, iNumWords);

if(iMatch != TRUE)
{

strcpy(szTermBuff, strlwr(szToken));
addToCLASSTMPLT(szTermBuff, pTmplt, iField);

}
}

}
}

}
}

}
unloadStoplist(szStoplist, iNumWords);

fclose(fpCurDBF);

if((fpClsTmplt = fopen(szpGetConfig(szHeader2, iDBFNum), "wb")) == NULL)

displayError("could not create template file");

if((fwrite((char *)&tmplt, sizeof(tmplt), 1, fpClsTmplt)) != 1)

displayError("write error (class template)");

fclose(fpClsTmplt);

logCLASSTMPLT(pTmplt, iDBFNum);

return 1;

void addToCLASSTMPLT(char *szTerm, struct CLASSTMPLT *pTmplt, int iField)
{

int i;

if(iField == 's')
{

for(i = 0; pTmplt->pSub[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pTmplt->pSub[i].szKwrd, szTerm) == 0)
{

pTmplt->pSub[i].iFreq += 1;
return;

}
}
strcpy(pTmplt->pSub[i].szKwrd, szTerm);
pTmplt->pSub[i].iFreq = 1;

}

if(iField == 'o')
{

for(i = 0; pTmplt->pOrg[i].szKwrd[0] != *\0'; i++)
{

136

if(strcmp(pTmplt->pOrg[i].szKwrd, szTerm) == 0)
{

pTmplt->pOrg[i].iFreq += 1;
return;

}
}
strcpy(pTmplt->pOrg[i].szKwrd, szTerm);
pTmplt->pOrg[i].iFreq = 1;

}

if(iField == 't')
{

for(i = 0; pTmplt->pTyp[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pTmplt->pTyp[i].szKwrd, szTerm) == 0)
{

pTmplt->pTyp[i].iFreq += 1;
return;

}
}
strcpy(pTmplt->pTyp[i].szKwrd, szTerm);
pTmplt->pTyp[i].iFreq = 1;

}

if(iField == 'm')
{

for(i = 0; pTmplt->pMed[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pTmplt->pMed[i].szKwrd, szTerm) == 0)
{

pTmplt->pMed[i].iFreq += 1;
return;

}
}
strcpy(pTmplt->pMed[i].szKwrd, szTerm);
pTmplt->pMed[i].iFreq = 1;

}

if (iField == -'f')
{

for(i = 0; pTmplt->pFrm[i].szKwrd[0] != '\0'; i++)
{

if(strcmp(pTmplt->pFrm[i].szKwrd, szTerm) == 0)
{

pTmplt->pFrm[i].iFreq += 1;
return;

}
}
strcpy(pTmplt->pFrm[i].szKwrd, szTerm);
pTmplt->pFrm[i].iFreq = 1;

}
}

void logCLASSTMPLT(struct CLASSTMPLT *pTmplt, int iDBFNum)
{

FILE *fpLogFile;
char szHeader[20] = "templatetxt";

int i, j;

if((fpLogFile = fopen(szpGetConfig(szHeader, iDBFNum), "w")) == NULL)
{

displayError("opening log file");
}

137

fprintf(fpLogFile, " CLASS TEMPLATE DATABASE %d \n",
iDBFNum) ;

fprintf(fpLogFile, "NUMBER OF RECORDS: %d\n", pTmplt->iNumRecs);
for(i = 0; i < 5; i++)
{

if(i == 0)
{

fprintf(fpLogFile, "SUBJECT:\n");
for(j = 0; pTmplt->pSub[j]'.szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pSub[j].szKwrd, pTmplt->pSub[j].iFreg);

}
fprintf(fpLogFile, "\n");

}

if(i == 1)
{

fprintf(fpLogFile, "ORIGINATING ORGANIZATION:\n");
for(j = 0; pTmplt->pOrg[j].szKwrd[0] != *\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pOrg[j].szKwrd, pTmplt->pOrg[j].iFreq);

}
fprintf(fpLogFile, "\n");

if (i
{

fprintf(fpLogFile, "RECORD TYPE:\n");
for(j = 0; pTmplt->pTyp[j].szKwrd[0] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pTyp[j].szKwrd, pTmplt->pTyp[j].iFreq);

}
fprintf(fpLogFile, "\n");

if(i == 3)
{

fprintf(fpLogFile, "MEDIA TYPE:\n");
for(j = 0; pTmplt->pMed[j].szKwrdfO] != '\0'; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pMed[j].szKwrd, pTmplt->pMed[j].iFreq);

}
fprintf(fpLogFile, "\n");

} .

if(i == 4)
{

fprintf(fpLogFile, "RECORD FORMAT:\n");
for(j = 0; pTmplt->pFrm[j].szKwrd[0] != '\0*; j++)
{

fprintf(fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pFrm[j].szKwrd, pTmplt->pFrm[j].iFreq);

}
fprintf(fpLogFile, "\n");

}
}
fclose(fpLogFile);

138

Appendix D: RACS Configuration File

[STOPLIST]
STOPLIST.TXT

[TEMPLATE]
CAT1.TPL
CAT2.TPL
CAT3.TPL
CAT4.TPL
CAT5.TPL

[DBFILE]
CAT1.DBF
CAT2.DBF
CAT3.DBF
CAT4.DBF
CAT5.DBF
TEMP.DBF

[DBFBACKÜP]
CAT1.DBB
CAT2.DBB
CAT3.DBB
CAT4.DBB
CAT5.DBB

[TEMPLATE]
CAT1.TPL
CAT2.TPL
CAT3.TPL
CAT4.TPL
CAT5.TPL

[TEMPLATETXT]
CAT1TPL.TXT
CAT2TPL.TXT
CAT3TPL.TXT
CAT4TPL.TXT
CAT5TPL.TXT

[LOGFILE]
LOGFILE.TXT
SCORELOG.TXT

[LOGBACKUP]
LOGFILE.BAK
SCORELOG.BAK

[END]

139

Appendix E: RACS Stop List

a
about
above
across
af
after
again
against
all
almost
alone
along
already
also
although
always
among
an
and
another
any
anybody
anyone
anything
anywhere
are
area
areas
around
as
ask
asked
asking
asks
at
away
b
back
backed
backing
backs
be
because
became
become
becomes
been
before
began
behind
being
beings
best
better
between
big
both
but
by

c further keeps
came furthered kind
can furthering knew
cannot furthers know
case g known
cases gave knows
certain general 1
certainly generally large
clear get largely
clearly gets last
come give later
could given latest
d gives least
did go less
differ going let
different good lets
differently goods like
do got likely
does great long
done greater longer
down greatest longest
downed group m
downing grouped made
downs grouping make
during groups making
e h man
each had many
early has may
either have me
end having member
ended he members
ending her men
ends herself might
enough here more
even high most
evenly higher mostly
ever highest mr
every him mrs
everybody himself much
everyone his must
everything how my
everywhere however myself
f i n
face if necessary
faces important need
fact in needed
facts interest needing
far interested needs
felt interesting never
few interests new
find into newer
finds is newest
first it next
for its no
form itself non
four j not
from just nobody
full k noone
fully keep nothing

140

now
nowhere
number
numbered
numbering
numbers
o
of
off
often
old
older
oldest
on
once
one
only
open
opened
opening
opens
or
order
ordered
ordering
orders
other
others
our
out
over
P
part
parted
parting
parts
per
perhaps
place
places
point
pointed
pointing
points
possible
present
presented
presenting

presents
problem
problems
put
puts
q
quite
r
rather
really
right
room
rooms
s
said
same
saw
say
says
second
seconds
see
seem
seemed
seeming
seems
sees
several
shall
she
should
show
showed
showing
shows
side
sides
since
small
smaller
smallest
so
some
somebody
someone
something
somewhere
state

states
still
such
sure
t
take
taken
than
that
the
their
them
then
there
therefore
these
they
thing
things
think
thinks
this
those
though
thought
thoughts
three
through
thus
to
today
together
too
took
toward
turn
turned
turning
turns
two
u
under
until
up
upon
us
use
uses

used
v
very
w
want
wanted
wanting
wants
was
way
ways
we
well
wells
went
were
what
when
where
whether
which
while
who
whole
whose
why
will
with
within
without
work
worked
working
works
would
x
y
year
years
yet
you
young
younger
youngest
your
yours
z

141

Appendix F: Excerpt from logfile.txt

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
****************************** INPUT ANALYSIS ******************************

SUBJECT:
Request
for
Evaluation

WP

960264
Voluntary
Reduction
in
the
Federal
Workforce

ORIGINATING ORGANIZATION
ASC
/
MOS

RECORD TYPE:
official
memorandum

ALLALPHA request
ALLALPHA -SW-
ALLALPHA evalu
PUNCT
NONWORD wp
PUNCT
NONWORD 960264
ALLALPHA voluntari
ALLALPHA reduct
ALLALPHA -SW-
ALLALPHA -SW-
ALLALPHA feder
ALLALPHA workforc

LTION:
NONWORD asc
PUNCT
NONWORD mos

ALLALPHA offici
ALLALPHA memorandum

MEDIA TYPE:
paper ALLALPHA paper

RECORD FORMAT:
paper ALLALPHA paper

***************************** RECORD TEMPLATE ******************************
SUBJECT:
Kwrd 0 request Freq = 1
Kwrd 1 evalu Freq = 1
Kwrd 2 wp Freq = 1
Kwrd 3 960264 Freq = 1
Kwrd 4 voluntari Freq = 1
Kwrd 5 reduct Freq = 1
Kwrd 6 feder Freq = 1
Kwrd 7 workforc Freq = 1

ORIGINATING ORGANIZATION:
Kwrd 0 asc Freq = 1
Kwrd 1 mos Freq = 1

RECORD TYPE:
Kwrd 0 offici
Kwrd 1 memorandum

Freq = 1
Freq = 1

MEDIA TYPE:
Kwrd 0 paper

RECORD FORMAT:
Kwrd 0 paper

Freq = 1

Freq = 1

142

***************************** SCORING RESULTS ******************************
30/20/30/10/10 20/20/20/20/20 50/30/00/10/10
DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE
i ; 0. 529 1 3 0.629 1 3 0 314
2 4 0. 511 2 4 0.611 2 2 0 356
3 5 0. 200 3 5 0.400 3 5 0 200
4 2 0. 571 4 2 0.657 4 3 0 314
5 1 0. 605 5 1 0.686 5 1 0 629

1 SUB 2 / (14 * 1) = 0.143 (0.3 = 0.043) (0.2 = 0.029) (0.5 = 0.071)
1 ORG 2 / (14 * 1) = 0.143 (0.2 = 0.029) (0.2 = 0.029) (0.3 = 0.043)
1 TYP 24 / (14 * 2) = 0.857 (0.3 = 0.257) (0.2 = 0.171) (0.0 = 0.000)
1 MED 14 / (14 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
1 FRM 14 / (14 * 1) 1.000 (0.1 = 0.100)

Totals: 0.529
(0.2 = 0.200)

0.629
(0.1 0.100)

0.314

2 SUB 5 / (18 * 1) = 0.278 (0.3 = 0.083) (0.2 = 0.056) (0.5 = 0.139)
2 ORG 1 / (18 * 1) = 0.056 (0.2 = 0.011) (0.2 = 0.011) (0.3 = 0.017)
2 TYP 26 / (18 * 2) = 0.722 (0.3 = 0.217) (0.2 = 0.144) (0.0 = 0.000)
2 MED 18 / (18 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
2 FRM 18 / (18 * 1) ~ 1.000 (0.1 = 0.100)

Totals: 0.511
(0.2 = 0.200)

0.611
(0.1

=
0.100)
0.356

3 SUB 0 / (3 * 0) = 0.000 (0.3 = 0.000) (0.2 = 0.000) (0.5 = 0.000)
3 ORG 0 / (3 * 0) = 0.000 (0.2 = 0.000) (0.2 = 0.000) (0.3 = 0.000)
3 TYP 0 / (3 * 0) = 0.000 (0.3 = 0.000) (0.2 = 0.000) (0.0 = 0.000)
3 MED 3 / (3 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
3 FRM 3 / (3 * 1) 1.000 (0.1 = 0.100)

Totals: 0.200
(0.2 = 0.200)

0.400
(0.1

=
0.100)
0.200

4 SUB 2 / (7 * 2) = 0.143 (0.3 = 0.043) (0.2 = 0.029) (0.5 = 0.071)
4 ORG 1 / (7 * 1) = 0.143 (0.2 = 0.029) (0.2 = 0.029) (0.3 = 0.043)
4 TYP 14 / (7 * 2) = 1.000 (0.3 = 0.300) (0.2 = 0.200) (0.0 = 0.000)
4 MED 7 / (7 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
4 FRM 7 / (7 * 1) 1.000 (0.1 = 0.100)

Totals: 0.571
(0.2 = 0.200)

0.657
(0.1

=
0.100)
0.314

5 SUB 45 / (21 * 3) = 0.714 (0.3 = 0.214) (0.2 = 0.143) (0.5 = 0.357)
5 ORG 10 / (21 * 2) = 0.238 (0.2 = 0.048) (0.2 = 0.048) (0.3 = 0.071)
5- TYP 20 / (21 * 2) = 0.476 (0.3 = 0.143) (0.2 = 0.095) (0.0 = 0.000)
5 MED 21 / (21 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
5 FRM 21 / (21 * 1) = 1.000 (0.1 = 0.100)

Totals: 0.605
(0.2 = 0.200)

0.686
(0.1 = 0.100)

0.629

Correct DBF: 5 Offsets: 0

143

Appendix G: Excerpt from scorelog.txt

DBF: 3 Offsets: 4 4 4
DBF: 2 Offsets: 4 4 4
DBF: 5 Offsets: 4 4 4
DBF: 2 Offsets: 1 1 1
DBF: 1 Offsets: 4 4 4
DBF: 4 Offsets: 4 4 4
DBF: 1 Offsets: 0 0 0
DBF: 5 Offsets: 0 2 0
DBF: 2 Offsets: 4 4 4
DBF: 2 Offsets: 2 2 2
DBF: 1 Offsets: 0 0 1
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 1 1 2
DBF: 5 Offsets: 0 0 0
DBF: 1 Offsets: 2 3 4
DBF: 5 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 1 1 1
DBF: 5 Offsets: 2 2 0
DBF: 1 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 2 2 3
DBF: 2 Offsets: 1 1 1
DBF: 1 Offsets: 0 0 1
DBF: 5 Offsets: 0 0 1
DBF: 5 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 0
DBF: 1 Offsets: 1 1 1
DBF: 5 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 0
DBF: 5 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 1 Offsets: 0 0 1
DBF: 4 Offsets: 2 2 4
DBF: 2 Offsets: 2 2 4
DBF: 2 Offsets: 2 2 4
DBF: 2 Offsets: 1 1 0
DBF: 5 Offsets: 0 0 0
DBF: 4 Offsets: 0 0 0
DBF: 1 Offsets: 0 0 2
DBF: 1 Offsets: 0 1 0
DBF: 4 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 1
DBF: 2 Offsets: 1 1 1
DBF: 4 Offsets: 0 0 0
DBF: 3 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 1 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 5 Offsets: 2 1 0
DBF: 2 Offsets: 0 0 0
DBF: 2 Offsets: 3 3 3
DBF: 2 Offsets: 3 3 3

144

Appendix H: Sample Class Template

 CLASS TEMPLATE DATABASE 4
NUMBER OF RECORDS: 13
SUBJECT:
Kwrd 0 lesson Freq = 1
Kwrd 1 learn Freq = 1
Kwrd 2 oper Freq = 1
Kwrd 3 desert Freq = 1
Kwrd 4 storm Freq = 1
Kwrd 5 freez Freq = 1
Kwrd 6 munition Freq = 1
Kwrd 7 custodi Freq = 1
Kwrd 8 account Freq = 1
Kwrd 9 custom Freq = 1
Kwrd 10 satisfact Freq = 1
Kwrd 11 survei Freq = 2
Kwrd 12 audit Freq = 2
Kwrd 13 inspect Freq = 6
Kwrd 14 report Freq = 2
Kwrd 15 semiannu Freq = 1
Kwrd 16 self Freq = 4
Kwrd 17 manag Freq = 4
Kwrd 18 comment Freq = 1
Kwrd 19 44595 Freq = 1
Kwrd 20 XXX Freq = 1
Kwrd 21 weapon Freq = 1
Kwrd 22 aeronaut Freq = 1
Kwrd 23 system Freq = 1
Kwrd 24 center Freq = 1
Kwrd 25 asc Freq = 1
Kwrd 26 wpafb Freq = 2
Kwrd 27 oh Freq = 1
Kwrd 28 45433 Freq = 1
Kwrd 29 battle Freq = 1
Kwrd 30 staff Freq = 2
Kwrd 31 support Freq = 1
Kwrd 32 air Freq = 1
Kwrd 33 force Freq = 1
Kwrd 34 agenc Freq = 1
Kwrd 35 afia Freq = 1
Kwrd 36 function Freq = 1
Kwrd 37 review Freq = 3
Kwrd 38 fmr Freq = 1
Kwrd 39 wing Freq = 1
Kwrd 40 level Freq = 1
Kwrd 41 logist Freq = 1
Kwrd 42 plan Freq = 1
Kwrd 43 organiz Freq = 1
Kwrd 44 structur Freq = 1
Kwrd 45 unit Freq = 1
Kwrd 46 program Freq = 2
Kwrd 47 refer Freq = 1
Kwrd 48 sup Freq = 1
Kwrd 49 1 Freq = 1
Kwrd 50 afr Freq = 1
Kwrd 51 123-1 Freq = 1
Kwrd 52 semi Freq = 1
Kwrd 53 annual Freq = 2
Kwrd 54 follow Freq = 1
Kwrd 55 statement Freq = 1

145

Kwrd 56 requir
Kwrd 57 feder
Kwrd 58 financi
Kwrd 59 integr
Kwrd 60 act
Kwrd 61 fmfia
Kwrd 62 1982
Kwrd 63 aflc
Kwrd 64 special
Kwrd 65 item
Kwrd 66 91-3
Kwrd 67 continu
Kwrd 68 evalu
Kwrd 69 personnel

ORIGINATING ORGANIZA
Kwrd 0 2750
Kwrd 1 abw
Kwrd 2 ck
Kwrd 3 sptg
Kwrd 4 cce
Kwrd 5 fine
Kwrd 6 ms
Kwrd 7 88
Kwrd 8 cc
Kwrd 9 mss
Kwrd 10 msi
Kwrd 11 asc
Kwrd 12 ig
Kwrd 13 none
Kwrd 14 cvx

RECORD TYPE:
Kwrd 0 offici
Kwrd 1 memorandum
Kwrd 2 2519

MEDIA TYPE:
Kwrd 0 paper

RECORD FORMAT:
Kwrd 0 paper

Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1

Freq = 7
Freq = 2
Freq = 1
Freq = 3
Freq = 2
Freq = 1
Freq = 3
Freq = 1
Freq = 2
Freq = 4
Freq = 1
Freq = 1
Freq = 1
Freq = 1
Freq = 1

Freq = 12
Freq = 12
Freq = 1

Freq = 13

Freq =13

146

Appendix I: Common Tables and Rules

The tables and rules listed in the column labeled OLD represent the designations for

the rules in AFR 4-20 Vol 2. The tables and rules listed in the column labeled NEW are

the new designations found for the same rules in AFMAN 37-139. The rules are ordered

in relation to their AFR 4-20 Vol 2 designations.

NEW OLD

TABLE RULE TABLE RULE DESCRIPTION

37-3 3 4-3 3 dispatch and delivery receipts on accountable mail

37-3 14 4-3 14 accountable container receipts

37-6 1 4-6 1 publications/forms requisitions and requirements

37-6 7 4-6 7 publication bulletins

37-7 7 5-1 7 operating instructions record copies - at MAJCOM and above

37-7 8 5-1 8 operating instructions record copies - below MAJCOM

37-7 9 5-1 9 base bulletins

37-11 2 10-1 2 general correspondence - temporary

37-11 4 10-1 4 transitory material

37-11 5 10-1 5 reading file

37-11 6 10-1 6 message file (extra copies of messages)

37-11 10 10-1 10 office projects/studies (background and working materials)

37-11 12 10-1 12 staff meetings and conferences (not covered elsewhere) - at MAJCOM and above

37-11 13 10-1 13 staff meetings and conferences (not covered elsewhere) - below MAJCOM

37-12 5 10-2 5 suspense control

37-13 1 10-3 1 background material to orders in rules 2,2.1 and 4

37-13 2 10-3 3 temporary orders (M, P, T, Y, PA and PB series)

147

NEW OLD

TABLE RULE TABLE RULE DESCRIPTION
37-14 1 11-1 1 office administrative files

37-14 4 11-1 4 project control and support (working papers, transcribed steno notes or tapes)

37-14 6 11-1 6 reports, controlled and uncontrolled - not covered elsewhere

37-14 8 11-1 8 reports, controlled and uncontrolled - information copies

37-14 9 11-1 9 precedent files

37-14 10 11-1 10 office instructions, additional duty handbooks/workbooks

37-14 11 11-1 11 building or office services (not covered elsewhere)

37-14 12 11-1 12 presentation aids (not covered elsewhere)

37-14 14 11-1 14 general reference publications

37-14 15 11-1 15 technical/specialized reference materials

37-14 17 11-1 17 organizational planning - at directorate level or above

37-14 18 11-1 18 organizational planning - below directorate level

90-4 2 11-2 2 congressional inquiries - below HQ USAF

37-15 7 11-2 12 host-tenant support agreements

37-15 9 11-2 12.2 other support agreements

37-15 13 11-2 15 GAO audit reports - below HQ USAF

37-15 14 11-2 16 official visits/staff visits (offices performing visits)

37-15 15 11-2 17 official visits/staff visits (offices visited)

37-15 16 11-2 18 official visits/staff visits (intermediate, monitoring or evaluating offices)

37-15 17 11-2 19 official visits/staff visits (visits notifications, itineraries)

37-15 18 11-2 20 official visits/staff visits (visit schedules)

37-15 19 11-2 21 delegations/designations of authority and additional duty assignments

37-15 27 11-2 29 locator or personal data

37-15 31 11-2 33 internal inspections/self-inspection checklists/Inventories (not covered elsewhere)

37-15 32 11-2 34 Overtime requests (for disposition instructions see T177-21, R03 or T176-03, R39.01)

37-18 18 11-5 18 Word Processing Files (floppy disks or hard drives containing letters, memos,
messages, reports)

148

NEW OLD

TABLE RULE TABLE RULE DESCRIPTION

37-19 2 12-1 2 files maintenance and disposition (AF Form 80)

37-19 3 12-1 3 retirement, transfer/shipment records (SF 135 and SF 258) - at initiator's office for
records placed in staging area

37-19 4 12-1 4 retirement, transfer/shipment records (SF 135 and SF 258) - at office of record
manager (RM) for records placed in staging areas

37-19 5 12-1 5 retirement, transfer/shipment records (SF 135 and SF 258) - records retired to
records centers

37-19 6 12-1 6 retirement, transfer/shipment records (SF 135 and SF 258) - transferred records

37-19 23 12-1 23 Freedom of Information Act (FOIA) Program - correspondence relating to
administering FOIA

37-19 24 12-1 24 Freedom of Information Act (FOIA) Program - correspondence responding to
requests

37-19 26 12-1 26 Freedom of Information Act (FOIA) Program - denials not appealed

38-2 11 25-2 11 productivity enhancement

38-3 11 26-1 11 manpower authorization - machine listing derived from the manpower authorization
file

38-3 17 26-1 17 manpower change requests - approved/disapproved requests at MAJCOMs

38-3 18 26-1 18 manpower change requests - approved/disapproved requests below MAJCOMs

38-3 18.1 26-1 18.1 manpower change requests - information copies kept for monitoring purposes

36-4 14 30-4 14 RIP products

36-12 2 35-1 2 personnel information file

36-15 16 35-4 16 individual job descriptions

36-15 27 35-4 27 military sponsor program - at losing activity

36-15 28 35-4 28 military sponsor program - at gaining activity

36-29 4 40-4 4 performance/incentive awards

36-29 10 40-4 10 leave transfer/sharing programs (submitted or resulting from a request/contribution of
leave)

36-29 11 40-4 11 leave transfer/sharing programs (background info)

36-30 7 40-5 7 position management

—— -- 40-8 13 supervisor's employee work folder - documents filed by the supervisor in the work
folder

36-38 6 50-2 6 unit training program

13-10 31 60-5 31 flight evaluation folders

23-11 40 67-11 40 equipment custodian file

149

NEW OLD

TABLE RULE TABLE RULE DESCRIPTION

64-1 14 70-1 7.3 contractor general files - duplicate/working

63-6 3 74-1 3 surveillance records

37-13 1 75-3 15 area clearance for oversea theaters

61-1 19 80-1 19 scientific and technical reference files

90-2 1 123-1 1 inspection reports not otherwise covered in this table - at MAJCOMs

90-2 7 123-1 7 inspection reports not otherwise covered in this table - background material

177-1 8 177-1 8 reports of accounting and finance activities

177-21 3 177-21 3 individual attendance and overtime

177-21 12 177-21 12 payroll control registers

177-21 19 177-21 19 listings (not covered by rules 1 through 18)

177-32 30 177-32 30 unit leave control log - unit copy

177-32 30.1 177-32 30.1 unit leave control log - MPSMA copy

31-4 9 205-1 9 security control records - SF 700, 701, 702

31-4 15 205-1 15 access control records

31-4 22 205-1 22 record suspense receipt and destruction certificate file for secret material - inactive
records

31-4 26 205-1 26 security termination statements - at unit of assignment

31-4 29 205-1 29 security termination statements - at unit of assignment for civilian personnel

31-10 4 207-1 4 records of visitors - requests for visits to restricted areas

31-10 5 207-1 5 records of visitors - authorization for contractors to visit in connection with classified
matters

84-1 7 210-1 7 source documents - for history reports

33-9 9 700-9 9 telephone toll calls - AF Form 1072

63-9 5 800-1 5 system acquisition program files - at system program offices

63-9 6 800-1 6 system acquisition program files - at monitoring, supporting, testing and participating
activities

63-9 12 800-1 12 memorandums of agreement (MOAs)

36-33 2 900-1 2 special honors, trophies and awards - initiating activities

36-33 3 900-1 3 special honors, trophies and awards - nonselected nominations

150

NEW OLD
TABLE RULE TABLE RULE DESCRIPTION

36-33 16 900-1 15 favorable communications

36-33 17 900-1 16 outstanding personnel programs, e.g., outstanding NCO/Airman award, Junior Officer
of the Quarter, outstanding Manager of the Year, AFA representative

36-34 1 900-2 1 suggestions, inventions and scientific achievements - at suggestion program office

36-34 2 900-2 2 suggestions, inventions and scientific achievements - at evaluating offices

151

Appendix J. 88 SPTG/CCE Files Maintenance and Disposition Plan

ITEM TITLE LOCATION

1 FILE MAINT & DISPOSITION PLAN, CTRL FRONT OF FILES & EACH SERIES
RECORD LABEL AND RELATED RCRD

2 READING FILE

3 DELEGATION/DESIGNATIONS OF
AUTHORITY S ADDITIONAL DUTY ASSIGN

4 TRANSITORY MATERIAL

4-1 JAN-APR-JUL-OCT

4-2 FEB-MAY-AUG-NOV

4-3 MAR-JUN-SEP-DEC

5 GENERAL CORRESPONDENCE (TEMPORARY)

6 OFFICE ADMINISTRATIVE FILE -
INTERNAL ADMIN OR HOUSEKEEPING

6-1 SECURITY

6-2 DISASTER PREPAREDNESS

6-3 INSTALLATION MANAGEMENT

6-3-1 FACILITIES

6-3-2 SUPPLIES/EQUIPMENT

6-4 SAFETY

6-5 ADMINISTRATION OF OFFICE PERSONNEL

7 ADMINISTRATIVE SUPPORT COMMITTEE &
BOARD RECORDS

7-1 FINANCIAL WORKING GROUP (FWG)

7-2 FINANCIAL MANAGEMENT BOARD (FMB)

7-3 EEO ADVISORY COMMITTEE

7-4 OCCUPATIONAL SAFETY, FIRE PREVENTION S HEALTH COMMITTEE

8 HOST-TENANT SUPPORT AGREEMENTS

9 OFFICE PROJECTS/STUDIES BELOW MAJ
SUB COMD - NO PUBLICATION ISSUED

10 SUPERVISOR'S EMPLOYEE WORK FOLDER

11 WORD PROCESSING FILES

12 INTERNAL INSPECTIONS/SELF-INSP
CHECK LISTS/INVENTORIES

13 OFFICIAL VISITS/STAFF VISITS - AT
OFFICES OR ORGANIZATIONS VISITED

14 INSPECTION REPORTS - AT INSPECTED
ACTIVITIES, MONIT/EVAL/APPR AUTH

15 SUGS, INVENTIONS, & SCIENTIFIC
ACHIEVEMENTS - AT EVAL OFF

16 GENERAL TRAINING REPORTS

17 FUNDING RECORDS - PROGRAM PROJECT
AND APPROPRIATE CONTROL

17-1 FINANCIAL PLAN

18 SPECIAL HONORS, TROPHIES, AWARDS -

NCOIC, ADMIN'S DESK

GENERAL TRAINING REPORTS

DISPOSITION

T 12-01 R02.00

T 10-01 R05.00

T 11-02 R21.00

T 10-01 R04.00

T 10-01 R02.00

T 11-01 R01.00

T 25-03 R07.00

T 11-02 R12.00

T 10-01 R09.00

T 40-08 R13.00

T 11-05 R18.00

T 11-02 R33.00

Tll-02 R 17.00

T123-01 R03.00

T900-02 R02.00

T 50-01 R19.00

T172-03 R04.00

T900-01 R02.00

152

AT INITIATING ACTIVITIES

19 OUTSTANDING PERSONNEL PROGRAMS T900-01 R16.00

20 TEMP. ORDERS (M-, P-, T-, Y-, PA-, T 10-03 R03.00
PB-, SPECIAL, & SQD NON-PREFIXED

20-1 GF SERIES ORDERS

20-2 GA SERIES ORDERS

20-3 M SERIES ORDERS

20-4 TRAVEL ORDERS

21 SUSPENSE CONTROL (FILE COPIES OR T 10-02 R05.00
EXTRA COPIES TO MANAGE FLOW)

22 PRECEDENT FILES - EXTRA COPIES OF T 11-01 R09.00
PRECEDENT FILES SELECTED RECORDS

23 PAYROLL CONTROL REGISTER DOCUMENT PAYROLL CONTROL REGISTERS T177-21 R12.00
FILES

23-1 WORK SCHEDULES/CHANGES

23-2 FORMAT II TIMESHEETS

153

Appendix K: Sample Records

The tables included in this appendix contain the data collected on each record used in

this thesis.

154

O h-
a. <
OS
u a.

CO
CL
CD
a.

CO
a.
CO
a.

S.
CO
o.

01
a.
o
Q.

<D
CL
CO
CL

CD
CL
CO
CL

s.
(0
CL

a
CO
CL

s.
CO
CL

a
CD
CL

CD
CL
CD
CL

CD
CL
CO
CL

V
Q.
CO
CL

a
CD
CL

0
o.
CO
CL

a
to
CL

a
CO
CL

a
CO
CL

0
CL
a
CL

©
D.
CO
O.

CD
CL
CQ
CL

a
CO
CL

is
Si

CO
a.
CD
CL

8.
co
a.

©
CL
CO
CL

U
a.
CO
a.

CD
CL
CO
CL

CO
CL
CQ
CL

a
CO
CL

a
CO
CL

a
CD
CL

a
CO
CL

a
CO
CL

CD
Q.
CO
Q.

CD
CL
CO
CL

a
CO
CL

©
CL
CO
CL

a
CO
CL

a
CO
CL

a
CO
CL

a
a
a.

©
CL
CD
CL

a
a
CL

©
CL
CO
CL

UJ
0.

§
o
o
UJ
tc

i
u

u

&
O
c

E
■a
c
CD

« 8
£ £
o E

E
3

■o
C
CD

s g
e g
o E

E
3

■o
C
a

° £
E 8
o E

E
3
•a
c
CO

11
11

E
3

c
CO

•§ E
m g
o E

E
3

■a
c
CO

II
II

CO
<<r
00

I
o
u.
U-
<

E
3

TO
C
CO

11
II

E
3
T3
C
CO

11

E
3

C
2

E
3

TO
C
CO

11
11

E
3
TJ
C
CO

11
11

E
3

■D
C
CO

11
11

E
3
•o
C
a

11

E
3
•a
c
CO

ö o
o fc

o E

E
3
«o
c
CO

5 1
6 S
o E

E
3
•o
c
CO

1 g u c

o E

"5
E
CD

E
3

■a
c
CO

s g
E g
o E

0

I
"5
c
o
to

i.

£
3

■a
c
a

ll
11

HI

g
©
c
o
c

CD
c
o
c

CD
c
o
c

CO
a>

O
03

CD
0>
CD
3

CO
o>
_L
3 -^
6

CO
a>
_L
3 —>
A
CM

CO
CD
-L
3 —>
£

s
3

to

CD
O)
_L
3

5

CO
o>
c
3 -»
c6
CM

CO
CD

C
3
-1

uS
CM

CD
cp
C
3

CN

c
3

?
c
3

6
CM

CO
CO

c
3 —>

CD
cp
c
3

—3 j

CO
o>

a.

CO
0>
i.
CD

CO

IT»
0>
o.
©

CO

CM

m
0)

£
°? >*
a
£

CN

o
z

<
CD
c
o
c

©
■o
c
CO

E
E
o
ü

CD
TJ
c
CD

E
E
o
Ü

CD >
I
CD
X

UJ
CD
£
o

c
CQ

O»

to
CO <

CD
"O
C
CO

E
E
o
ü

CO
X3
c
CD

E
E
o
Ü

UJ
o
Ü

g
a.
CO
03
03

•e
a
CL

C 3
o <o

If
11

- CD

Si I z s o

CD
■o
c
a
E
E
o
O

c
CO

CO
c
c
c
CO

CL

•f
CD O

SI If

CD
■D
C
CO

E
E
o
o

f
CL
CD
Q

CD
■D
C
CO

E
E
o
Ü

f
CL
CD
Q

CD >
3
CD
X

UJ
©
£

O

c
o
«
CO
to
<

©

c
a
E
E
o
ü

©
■o
c
a
E
E
o
o

t
CL
©
Q

©

c ffl
E
E
o
ü

f
CL
CD
Q

©

c
a
E
E
o
ü

f
a.
©
Q

©
■a
c
CO

E
E
o

CJ

f
a.
©
a

8
a
E
CD
C
CD
-5

©

<B co
a co
C f=
co a
£ £

1% 8
o5o

o
73
C
CO

E
E
o
ü

© o

t =
f E
S CD
. co

£ «
O £

O
UJ

s
3
CO

3
a
a
c
o
X.

3
c
a

•f
o
£

<
o
CO
c
o
a
c
a»
0)
CD
Q CO

11 & c 5? °* •S » CD M
Q <

c
a

'S
'S
3

Ü

C
CD

E
ex
3
cr
LU

UJ
a.
Q
<
o
<D
o>
CD

8
c
<D

£

a
CL <

c
CO

2
to
3
Ü
C
CD

E
Q.
3
cr

UJ
"o
CD
O»
c
CO
£
Ü
s>
c
CD

E
c

I
CL <

"5

£
t:
CD
O

CD

CO

a»
CD

o

a.

8
CD

C
O

CD
N
•c
o
£

1

CO
c
CD

1
"35
3
O

CD

i
1
o
E
tc
a
o
c
CD

E
c

a
<

3
O

CD
£
Ü
CL
3
2

CO
■o

s
CD

CD
c
c
o
CO

CD
CX
.ti
C
13

5
a:

£
o
CO
a
c
CD

5
CO

■g

8
CD

a
CD

<
c
o

13
c
3

U_

*o

c
©

c

a
CL <

CD >

c
CD «
CD

CL
CD
cc
c
3

< •—
CD

E
o
«
3
o
o

'S
8
CD

cr
C
CO

So

• I
O* co
CD CD

c
a

I
«
3
Ü

c
CD

E
CL
3
cr

UJ
o
CD
a>
c
CO
£

8
c
CD

S
c

a
<

CO
CD
CO
CO
CD

T3

3
CO

E
UJ

CD
C3>
CO
c
CD

£

t
3
CD

CO

,g

'S
CD
3
cr
CD

a.

8
E
O

8
e
CD

CO
CD
C
o
<c
CL
CD

o *;
c
o
2

o
u_

I
c
o

ffl

C

"5
E
o
T3
CD
CD

U_

O

C
CD

E

a
CL <

c
s
©
Sä
tr
©

•a
©

©

OS

CO
©

'S
"S.
8
0
or

£
c
o

OS

■s
o

3 <

CO

CO

ts

§
CO
c
>
2
CL
CL <
©
"2
O

o

c
©

c

a
CL <

CO
c
o

ffl
•a
o
£
3 <
Q.

8
CD

K
CD
CO
CD
M
CO
CD

2

5
O

©
£
Ü
CL
3
O

O
m
"E
8
0
CC

©
c
c
o
e
o

CL
X
c
3

I
o
£

E
CD

?
CL
C
o

"5
©
CD
o>
3

CO

to
© >
ffl
c
©
to
CD
a.
©

CC
CL
3
s

£
c
o
Ü

©

eo
CD
to

a

I 2.
n <0

IÄ
Ct to

IS
Ü c
o *
fe-i
S c

°E

B §
C CO

a. g"
o a
O Ü
ffl CD

a=

oTcS"

s 8I

a»
c
»

c
o
a.

u_

O
0.
CO
±1
CO
c
o

TS
c
3

LL

a)
c
ffl
c
CO
to
©

to
o
c
o
to
to

E
E
o
Ü

o

"E
a
o
£0
£.
c
3
o Ü

SE
© ti—
£ o
CD i_

s s

si II
O CD
-J c

to
c
o

■5

i
0

"c.
0
E
©
a»
a
c
a
£

to
c
0
a

!
U-

X
o
ft
IL.

CD
C
o
c

Ü
Ü

o
t-
a.
CO
CO
03

o
Ü

o
t-
Q.
CO

00
00

UJ
o
Ü

i
<
CO
CO

o
o

g
0.
CO
CO
CO

O
Ü

g
0.
CO
00
00

UJ
o
Ü

g
0.
CO
00
00

UJ
Ü
Ü

g
Q_
CO
CO
CO

Ü
o

g
0.
CO
CO
CO

CO >
CO

D
CO
<

Q
Ü

C9

0.
CO
CO
CO

Q
O

g
a.
CO
CO
CO

UJ
o
o
g
<
CO
00

Ü
o
o
1-
0.
CO
CO
03

Q
Ü

C5
1-
0.
CO
CO
CO

Q
Ü

g
0.
CO
00
CO

Q
O

g
0.
CO
00
CO

Q
Ü

g
CL
CO
CO
CO

C3
1-
a
CO
CO
CO

5
o
o
CO
<

u
CJ

3
i-
0.
CO
CO
CO

5
o
o
CO
<

e
CD
c
o
c

UJ
Q.
z
s
o
(0
CO
o
03
OS

tu
5
CO
O
,-j

CO
Q.

CO
CO
03

£

3
Ü
CO
CO

or
CO
£
CO
Ü
=J
CO
CL
D
CO
CO
CO

DC
S
Q.
Q
CO
CO
5

<
Q <

s
o
00
03

CD
c
o
c

UJ
CL
z
s
Ü
co
CO
o
03
CO

cc
o co
UJ cc
CO UJ
m (9
t <

% < 5 E

CL
X
Ü
CO

Ü
Ü
CO
CO

u.
D
<

o
Ü

CO
CO

Ü

5

5
o
00
03

UJ
Ü
Ü

g
CL
CO
CO
CO

<
o
O
U
CO

3
CO
o
o
CO
00

tc
0.
5
Q.
Q
CO
CO
E

CO
o
S

D
CO
<

Q

UJ
Ü
(D
UJ
Ü
CO
to

s
Ü
CO
CO

i-
0.
CO

<
CO
03

■g
CO
° CO

•*- CD
* S c o
2 " O CO

- s
2 1 o ° | u
es 'S

0
CJ

3
1-
0.
CO
00
CO

UJ

CM

C£
CN
O

CM

tc
CM
C3

CM

tc
CM

9
i-

CN

a:
CN
O

H

CM

rr
OJ
o

CM

Q:

OJ
o

1-

CM

o:
CM
O

CN

CN
O

CM

Q:

CM
O

1-

CM

ce
CM
O

1-

CM

CM
O

CM

CN
o

CM

{£
CM
O

1-

CN

cc
CM
o

1-

CM

tc.
CM
o

1-

CM

Ct
CM

i-

CM

tc
CM
O

1-

CM

a
CN
o

1-

CN

CM
O

CM

tc
CM
O

1-

CM

tc
CM
o

CM

tc
CM
O

u. ffl
O

155

"■ s o z
o a.
iu o
a. £

s.
CO
a.

O
a.
CD
a.

CL
CD
o.

S.
ca
a.

CU
Q.
CD
a.

S
CD
a.

CD

CD
a.

CD
a.
CD a.

0)
a.
CO
a.

a)
a.
CO
a.

a>
a.
m
a.

CD
a.
CO
CL

CD a.
CD a.

CD
CL
CO
CL

CO
a.
CO
a.

CO
OL
ca
a.

CD
CL
CD
a.

O
CL
03
CL

s.
CD
O.

CD
CL
CQ
CL

CO
o.
CO
CL

CD
O.
CO
CL

CL
CO
CL

is ©
a
a
a.

CD
a.
CD
CL

CO
CL
(0
a.

CD
a.
at
a.

CD
CL
CD a.

CD
a

CO
Q.

CD
a.
CD

CD
a.
CO
OL

CD
s.
CD
a.

s.
CD
a.

s.
<0
CL

CD
a.
CO
CL

o
a.
CO
CL

s.
CD
CL

CD
a.
CO
a.

O
CL
CO
CL

s.
CO
a.

CD
CL
CO
a.

CL
CO
a.

CD
CL
CD
CL

O.
CO
CL

tu
CL

o
cc
o
o
u
a

£
3
TJ
C
a

Ü
11

E
3

■o
c
CO

a o
o c
ii

£
3
•o
c
2

ra o
•S E
£ 9
o E

E
3
TJ
c
a

S g

o c

E
3
TJ
C
CD

11
II

"co

i
O

CO

o
c

E
3

C
CO

11
ii

o
u_
9
CO

II

E
3

■o
c
CO

S 8 ° E
o E

E
3
T»
CZ
CO

11
ii

E
3

T»
C
CO

11
ii

E
3

■Ö
C
a

11
ii

E
3

■o
c
CD

•8 E
o E

E
3
T)
c
CO

m o
ü E
e <e
o E

1
o
u,
9
CO

II

s
CM

i
o
u_
a
a

E
3
TJ
C
CD

ii

E
3
T3
C
CO

11
ii

E
3
TJ
C
CD

s g
£ g
o E

E
3
T3
C
CO

1 g u c g g
o E

E
3
TJ
C
CO

& g
e g o c

E
3
TJ
C
CD

11
ii

E
3
TJ
C
CO

11
ii

Q

o>
es
£
6
CO

CD

3
<!>
09
a
CD

8
A.
CD
a>
pi

CD
C
o
c

CD
c
o
c

CO
O)

o
2

6
CN

CO

i
01

CO

ab
CM

CO o>
i.
CD

CO

oS

CO
0)
A.
CD

CO

IO

CD

1
a

CO
4

?
OS

CO
o>
CD
3

CO
CO

c
3

—3

CO
CM

CO
cp
C
3
-3
co

CO
cp
c
3

CO
aa
c
3

CO

CO

>*
CD

£
6

CO
CO

CO

£
6

CO
en
i.
CO

£
d>

CO
CO

CO

£
CO

CO
CO

<
CM
CN

CO
0>

o. <

a
o
X

3 <

CD
TJ
C
CD
E
E
o
Ü

CD
TJ
c
CD

E
E
o
Ü

(0
c
CD

a
&
c
CD
O)
c
c
o
Ü

'S s
£ £
O O

£
o
•o
c
CO

E
E
o

!i a. a.
S 3
a co

To
3
CO

I*
E <»
£ S
3 O
£ T5

l|
Ü S

CD
c
o
c

g
C
O

Ü

CD

3

•3
CD

■c
a>
o
5

UJ
Ü
Ü

5
m <
CO
CO

CD

E
CD
CO
CO
c
CD

S
c
o

I

h

c
o

CD
CO

£
a
o
c
CD
C

IX.

Ü

C
o
CD

O
CO

2
a
©

CO
c
a
S

c
o
ts
CD

CO

a

5
CD

O
c
CD
C

U-

Ü

CD
TJ
C
CO

E
E
o
Ü

5*
3
CL
CD
a

c
CD

E
CD
CO
CO
c
CO

£
c
o

I

h
O

Ü

Ü

CO

CO
CO

CD
XJ
c
CO

E
E
o
ü

c
o

■G
CD

CO

a>
5
CD

'S
c
CD
c
u_

Ü

1
a
CO &
Q

CD
o>
CD
c
CO

£

c
o

c

E
3

o
Ü
z

c
o

'"5
CD

CO

£
CO

a
c
a
c
u.

JC
Ü

1
c
o s

CO o
5c
Ii
" 2. to cr
< UJ

c
o

TS
a»

CO

£
CO

u
c
CO
c
u_
xf
Ü

I
2 «
c

E
TJ <

O i ü %
Z CO

K
O
IU

0)

S

g
c
o
Ü

■Jo

fi
m
m
E
a>

<
co
UJ

I«!
IS
E "I
= O

II

to
c
o

f s
CD

CO

CD
c
c
o
to
CD
a.

©

«
o

c
o

CD

•a o
f
3 <

CO
c
CD

a.
m
<

£
•G
a
"E
o
o
o
c
"o
a.

CO
e
o

a
•c
a.
2
a.
a. <
o
g
c
o
Ü
o >
To
IS
c
E
TJ <
CO

fi
r-

a:
<

to
tj
3

1
0.
a>
c

I
a.
3
a
■o
cz
CO

o»
c

c
•c
a.
o
c
a>
E
£

a

to
CD
3

tx
CO

o
T»
C

UJ
>t
a.
a.
3

CO

CO

a:
5
u.
a.
o
CO
c
o
'S
CD
a

CD >
a

c
a
E
£
3 O
3" E

«■£
||
CO <

IS
g o

If
E o
o a>

t-> s

it
« s 1— °
E <D
a cc

CO
3
a

CO

0»
CD
3
cr
CD

a:
8
e
0)
CO

c
o

1
c
3
E
E
o
Ü
CO
H

D

c
o

?
i
1
ffl
CD
C
o

■C
tx
<D

ff

€
CD

Q
CD
c
o
£
a.
CD

i=
C
o

■5.
CO

9
CO

s
a
CO

c
o

•s
■c
IS
a

c
o

1
1
1
m
CD
c
o
JZ
a.
CD

XI
CD

£
_i

CO
CD
(0
CD f
3
a.
c
CD

E
CL
3
CT

UJ
c
o
CD
N
<D
CD

U_

CO

a

CO

"to
CD
3 cr
re
8
2
a>

CO
c
o

c
3
E
E
o
o
CO

E
D

"E
CD
E TJ

s &

8 i
® CL

CO »
t» CD
C •*
O CD
S= >

S£
c o

II
E TO

cSI
Z o
O S

i1
gs
{2 1
E co
a cc

'S
CO
to
o
,o

CO
to
o
_J

£
g
a.

o
c
o

a
O)

'S
§

5 s,
^ ö?
-> CL

a ä
B c
c o
CD «

IS

c
o

s
•I
1
m
CD
c
o
£
CL
CD

8
£
CD

CO
CO
c
o

s
c
3
E
E
o
Ü
c
o

£
a
CO

1 = Q CO

J- CO
co cc

CO
CO

lo

c
o

OJ

l
c

c
o

8
€
i
m
CD
C
o
x:
CL
CD

09
2
3

CO

'S
■c
a
CO

cc

c
o

8

i
m
CD
c
o
x:
CL
0

GO
C
CO

I
3
Ü
C
©
E
Q.
3
CT
m
o
c
o

8

5
CO
3
C

5

S
o
a.
U.

Ü
cj

t
CO
CO
CO

o
Ü
o
1-
0.
CO
CO
00

a

i <
CO
CO

a.
o

>
o
o
CO

©
O
CO
CO

CD
c
o
c

>
_i

CO
U-

u.

i <
CD
CO

UJ
ü
CJ

§
<
CO
CO

a.
X
a
m
S
o
CO
CO

CO
cc
X
Ü
CO

CS
Ü

CO
CO

i-
2
u
CO

CO
CJ
CO
CO

m
cc
X
ü
CO

O
Ü

CO
CO

a
Ü

o
0.
CO

CO
CO

0.
x:
o
CO

3
Ü

CO
CO

ü
ü
3
i-
a.
CO
CO
CO

Ü
Ü

g
tx
CO
CO
CO

m
cc
X
o
CO

O
CJ
CO
CO

t-
S
ü
CO

o
CO

E
o

UJ
Ü
Ü

3
i-
0.
co
CO
CO

m
IT
X
ü
CO

3
o
CO
CO

Ü s

<
CO
CO

CO
cc
X
Ü
CO

o
o
CO
CO

UJ
CJ
Ü

o
1-
0.
CO
CO
CO

o

CO
LI -
z

CO

CO

o
CO <

H
co
_l

z
o
^-
3
ID
CC
1-
co
a

a

3

1-
co
-1

z
o
1-

m
cc
H
co
g

CD
c
o
c

Z
Ü
Ü
o
0.
CO
GO
GO

c
o
5.
eg
O

CO

s
Q

o
o

g
a.
CO
CO
CO

O
CO
t-

z
Ü
Ü
3
h-
0.
CO

CO
CO

UJ
Ü
CJ

a
V-
a.
CO
CO
CO

Z
CJ
Ü
O
1-
0.
CO
CO
CO

>
(0
Ö

CO Q. M

" OT a
^ *° Q
y * a
top[
S co co
CO 0- GO
CO CO GO

CJ
Ü

CS
1-
Q.
CO
CO
CO

o
CO
1-

z
O

% q
CO

s
a

0
c
o
c

Z
CJ
CJ

3
1-
a.
CO
CO
CO

a.
X
o
CO

3
ü
CO
CO

a
o
i- s
Ü
CO

9
CO

£
a

Z
CJ
Ü

Ö
1-
a.
CO
CO
CO

UJ
Ü
Ü

o
H
Q.
CO
CO
CO

z
CJ
Ü

3
K
Q.
CO
CO
CO

<
o
CD
Ü

CO
CO

UJ
-1
=9

CM

cc
CN
O

cc
CM
o

CM

CC
CM
O

CM

CM
O

CM

A
c6

5

1-

5

a:

CM

CO

CO

tx

CM

CO

CO

cc

1-

CM
CO
ci

CC

H

CM

CO

CO

cc

t-

CM

t

1-

CM

t
CM
CO

CO

a:

CM

CO

c6

cc

1-

CM

CO

CO

CC

1-

CM

CO

CO

cc

CM

CO

CO

DC

CM

CO

cc

cc

1-

CM

CO

CO

or

CM

CO

ci

CC

1-

CM

CO

CO

IT

1-

CM

CO

CO

tr

CM

CO

CO

CC

1-

u.
Q
O

,_ - ,_ r- CM CM CM CM CM CM CM CM CM CM CM CM CM CM CN CM CM CM CM

156

a. <
o s u a.
IU o a. u.

CD
a.
CO
ex

s.
CO
ex

s.
CO
a.

CD a.
CO
a.

CO
a.
CO a.

8.
CO
a.

©
Q.
CO
a.

CD
Q.
CO
a.

CD
CL
CO
a.

U
a.
CO o.

© a.
CO
a.

©
ex
CO
CL

©
ex
CO
CL

©
ex
CO
CL

8.
a
ex

©
CL
CO
CL

©
CL
a
ex

©
ex
a
CL

CL
©
CL

a
CL

a
CL

CO
CL

all
CD
CL
CO
a.

s.
CD
CL

CD a
CO
a.

CD
ex
CO
CL

s.
CO
ex

CD
a.
CO
a.

©
a.
CO
ex

CD a
CO a.

a>
a.
CO
CL

CD
a.
a
a.

©
ex
CO
CL

©
CL
CO
CL

©
CL
a
CL

s.
a
CL

©
ex
a
CL

8.
a
CL

©
CL
CO
a.

a
CL

CL
a
ex

ex
a
CL

ex
a
ex

a
ex

Ui

t
o
K
O
O
tu
a.

£
3
TJ
C
CO

« g
IE g o E

E
3
TJ
C
CO

3 g
e g o E

E
•a
c
CO

3 9
O E=
e g o E

E
TJ
C
CO

1 g
E g o E

o
LU

Q

CO

II

E
3

■a
c
(0

3 g
e s o E

E
3

T>
C
©

s g
o E

g
o

LL.

a
CO

il

E
3

"O
C
CO

» g
E g o E

E
3

■o
C
CO

s 1 u c
o E

E
3
TJ
C

2

O C

11

m

i
O
LU
LU <

to
lO

i
o
u.
LL <

lO
lO

o
u>
LU <

m
ID

g
o
Li.

U. <

E
3
TJ
C
CO

I g
o E

£ -

i E
— £ •
o S 2 o E o
ES? o E JS

E
3
TJ
C
CD

s g
E g o E

E
3
T»
C
©

E
3
TJ
C
a

s g
E g o E

E
3
TJ
E
©

11
11

E
3
TJ
C
a

« g
o E

ui

5
o

CD
CO

c
CO ->

6
CD

Q

lO
0)

o
z

tn
o>
13
O
6
CM

LO
o>
i
CD

CO

CO
CM

in
a>
4
CO

CO

CO

lO
0)
CO
3 <:

CO

in
cp
a>
3 <
in
CM

m
en
a»
3

5

>*
to
5
4
CM

a

CM

©
C o c

©
C o c

©
c
o
c

©
c
o
c

iO
O)

O
CD
CM

tn
o>
i.
©

CO

m
0)
-L
3 —>

CM

ID
o>
3

<4

CM

°?
CO
£
6

cj>
at
3 <

CM
CM

en
c
3 —>

CM

a.
o

<

c

£
CD

a
co

£
o

CD
D>
CO
C
CO

£

©
c
CD

Ü

8
£ 5 © £
to To

»I
£ K O £
to a
3 CD
ü tr

■D
C
CO

£
E
o
o
8
>

M

E
CO

1
a.
©
JZ
Ü

UJ
o
o

i <
03
CO

o
■o
c
a
E
E
o
u

CO

E
CO

1?
a.
aO
n
c:
a
a
O
H
0.
CO
CO
CO

LU
o
o

i <
CO
CO

CD
*D
C
CO

E
E o
Ü

8
co 5=
c 5 o w

s|
si E g" E i o co
c3s

c
c
CO

1-
«0
c
o

8
3

■o
LU

o

£

LU
Ü
CJ

o
1-
a.
CO
CO
CO

Ü
X
Ü
O

O
1-
0.
CO
tn
s

Ü
Ü
O
a.
CO
CO
CO

Ui
o
Ü
CD
1-
a.
CO
CO
00

C o
2 »
c
E
<
ex
3
2

CD
■c

&
CL
3

CO

a.
3
O

O
•c

l§
31
si
o 1
z <

8
e
CO

©

©

O

o
TS
8.
CO

©
TJ
C a
E
E o
Ü

c
o
a.

LU
.ts
TJ
3 <
©
(O
a
m

©
TJ
C
to
E
E
o
ü

O
CO >
TJ <
©
£
V
V)
©

o
li-

3

O
UI

2
CO

s
«

CO
CO
c
o

I
c

E
E
o
o
c o
5.
CO

9
CO

1 = Q CO

o i
It £ ©
to a:

CD
c
o

■c
CL
CD

«
©
o
CO

«
CO
3
XT
©

CO
CO >
c
CO
(O
CO

a.
CO

a:
c
3

<
C
3

a.
CO

O
TJ
c

CO

E
a.
8
©

co

3
CO

a>
E
£

*1
8 <0
e s
CO _| « <
o 2
öj ° 8 ü
£ <o
Ü
i*
ü s
z «

gl
If
t •
5 S"
a S

II
£ i
3 "

CO CO

° 5

si
11
f i
co o
£ co
= 3

O cJ
K <
E S
CO ~~

g S g
£ £ g

©cm
co a ©
3 Ü IT

c
o

•s
o
£

o
Ü
"O
c
3

UL

©

E
S co
3 g

DC a.
8 'S

53
i§
5 o
IS
II
o S
z »
o ■§

i^ a £
£ «
£ =
£ S"
a E

ffl
X
UJ
£ <
CO
CO

s
ex
X
UJ
c

s
CD

O

CD

E >»
CO
a.

c o

8

|
©
c
o
a.
©

"2
CO

Ü

c
©

E
E
© >
o

CD
">?
UJ
E <^
M
CO

£
CL
X

UJ
c
8
©

1

8
a

£
©
c
a
-7

8
©

£

CO
©

X
•a
c
a

a
CO
©
©

o
ex
E
UJ

1
C3

CD
c
JC o

■o

8
©

J= *;
a
©
X
"O
c
a

a
CO
©

O

CX

E
UJ

JZ
x:
E

CO

a:

m

•a
8
©

CO
©

X
■a
c
to

£
CO
©
© >* o
CL
E

UJ

<0
©
c
o
~i

~i

>
a
a

8
0
cr
xz
CO
©

X
■o
c
CO

£
a

CO
©
©

o
CL

E
UJ

©
£
3

CO
c o
t3
2
_to

a
CO

©
E o
"S
3
Ü

c
3

< >•
1
«5
3

Ü

CO c
o
xz
c
3
2
o
en
c
M
0

£
U-

0 w II
5 a

£ ©>
a O

is
TS ©

§°-

If
^. ©

?l © -s1

CO CB

o >

I °
si
1*1 i? -5 ti
"- > 3
j= o £
< (£ CO

Ü
CO < ^

5 i|
m E a>

51°

5 sf
»si
T: © —-

118
*l§
o . *
— co x
co c Ä
c S °
1 s£ ii<

c c ©
0 © *s
E E ■ a © a.

a a ■£. c c o»
a a E
£ £ S

©

3
CO
TJ
c
a
CO
t:

8.
©
a:
c o
ts
8.
CO
c

TJ

5

"2
©
o>
a
c
a
£

2
©
TJ
©
LU

© S
= a>
© .z
? °
3 <
'S u- S £
3 fe
© T3

= $ © t

© £

CO Ö

E
O

CO
"E
V
10
©
a
c
o

■5

8.
0

TJ
©
E
a
©
_j
n
c
0
CO
10
©
_l

Z
O
a
LL

i-
£
o
CO

s
CO

Q

o
u
o
CO

3
ü
CO
CO

>
Ü
Ö
CO <

a. >
CO

3
£
u. <
a
X

LU
CJ
O

§
m <
CO
CO

Ü
O
a
Ü

CO
CO

X
Ü
Ü
o
Q.
CO
CO
CO

a
t-
a.
CO
CO
CO

Ü

Ü

Ü
CO <

a.
X
Ü
CO

o
Ü

CO
CO

UJ
a
Q
CO
CO
E
CO
CO

©
c
o
c

©
c
o
c

©
c
o
c

©
c
o
c

UJ
Ü
Ü

CD
l_
0.
CO

UJ
Ü
ü
CD
H
a
CO

O
3
CO <

ü
o
3
i-
0.
CO
00
CO

£
LL

Ü
y
CO
CO

£

S
CM

Ü

i <
0 m
CM

o
h-

UJ
Ü
Ü

m <
GO
CO

UJ
O
Ü

3
1-
o_
10
CO
GO

co
-1

z
o
1-
3
m
o:
i-
c/>

a

i-
co
_l

z
O
I-
3
m
a:
i-
co
a

z
O

1
CO

£
a

h-
CO

-1

z
o
1-
3
CD

£
1-
co
D

X
Ü
CO

5
Ü

CO
CO

z
o

D

CO

5
Q

Q
CM

Ü
CM

CO
CN

<
CM

CO
CO
5
CO
CO

O
Ü
y
CO
CO
£
CO
CO

©
c
o
c

©
c
o
c

©
c
o
c

©
c
o
c

o
S
Ü
CO <

Ü
<J
CO
Q.
CO
CO
CO

Ü
y

co cs
CO J

U co
Ü c°
* n. ig
CO CD
CO <

3
CO <

CO
£
3
CO
£

8
CM

Ü

Ü

1
m <
s
CM

ü
3
_J
U- <
a
X

Ul

0£

CM

co
co

a.

i-

A
CO

a:

t-

eg
co
CD

K

1-

CM

CO

CD

t£

1-

CM

n
CO

a.

CM

CO

CO

(T

1-

CM

CO
to

CC

1-

CM

CO
CD

CM

CO

CD

a:

L-

5
c6

CM

CO

CD 2
Lt

1-

2 2

1-

2

1-

CO
CO

DC
CM

CO
CO
Q:
CM

CO
CO

tr
CM

CO
CO

ct
CN

1-

CO
CO

CM

1-

CO
CO

a
CM

1-

CO
CO

CM

1-
U.
m
a CM CM CM CM CM CM CM CM CM CM CM <o CO co CO

,^- Tf < ■^- ■* ** •*

157

a. <
o s u a.
IU o

is

I g u c
E s o E

o>

2 c
- P o

o
o _
z co

g

■§ E
E «j o E

01

K
E

f
a.

IS
8.S

o E

2 _
- o

o
O
ü _
Z co

5 E

2
O .
o
o _
z co

in
T5 0.

< 0.

8 E

TO CO
=1 (O

c/> <

1 Ä
> *o

UJ u- LU

O I- S ^ o o
to "8 "55
CD CD (]} — -fc a»
w t= O)
(DOS
goto

,o

O £Q TO *.
TO O

o E

UJ

r < cr
: o cr a: co

c c
■5 S
< i-

< CO

I
E

H o
•o -s

TO £

B E

> o

2 >
© Q

O

f §
o o
Q Q.

5 —

co co a: i-

si
UJ g

•S E
E 8 o E

— 0

s
E
a

I a.

e <

** 5

O
to <

Ü
O

CO
0.
CO

158

o a
UJ o

S
6

E

a.

Z
CB to £ si

O u.

P o

< 0.

&

5« - c
_ S o m

CO
3.
t>

CO
CO ill
fcj- o

Ü
c o

1- b 0.

11:
11!

3
: o
i CO

111
I

£
E

ffi
o m

J> <0
> O
IS
'S "°

? 8

111 E UJ

Q£

If
© S.

&

m
u. <

(0 g
«
3

CD
E
UJ

UJ </)
c O

E o
CD o

. w I
5-S §8

CO Ü

<
I

IS

S3
UJ »

Ü

0.0

-1 o

S E a 5=

co o eo a:

I,

. S
IU -

II
o <
o» —
°» £ 3 o

US •

i co a

CO o
5
Ö

E
a.
a

o
o
3
v-
a.
co

CO n
> Si

(1 y
a.
CO 2

o s
u
CO <

co
a.
co

o y
co
co
2

o
5
o
co <

CO
O
S
u
CO <

a.
J< o
< o > *- o
O CO
X <

UJ
o
cj
CO
a
CO

CO o
5
G
CO <

159

Appendix L: Offset Data

Exp Weight 0.15
SAMPLE 1 SAMPLE 2

WHOLE SYSTEM BY DATABASE WHOLE SYSTEM BY CLASS

a:
UJ
m
2

CO
CO

5

UI

I
s
CO

0.

Ml

o
3
s

LU
X

8
2
CO

a.
Ifl

©

3
1
©

LU
X

§ s
CO

Q-

ifi

a.
LU
m
3
3

CO
CO

5

§

=

LU
X
t-

8
2
to

ill

O

3
s

LU

5
CO

a.
ill

§

i
O

I

LU
X

8
2
to
a.

E
LU
m
2
3

CO
CO

5

1
o o e o
§

u
UJ
X

§
2
to
a
Si

O

3
3
s
o
o

LU
X

2
to
a.

iii

o

1
LJ
UJ
X

§
2
to
a.

ui

a.
LU
m
S

CO
CO

5

© g
g
e o
§

UJ
X

8
2
to
a.
u

o

3

§

UJ
X

§
2
CO

a
u

O

1
§

UJ
X

8
2
to
a.

SI
1 5 4 4.00 4 4.00 4 4.00 6 1 4 4.00 4 4.00 4 4.00 1 5 4 4.00 4 4.00 4 4.00 6 1 4 4.00 4 4.00 4 4.00

? 2 4 4.00 4 4.00 4 4.00 15 1 4 4.00 4 4.00 4 4.00 2 2 4 4.00 4 4.00 4 4.00 15 1 0 3.40 0 3.40 0 3.40

3 4 4 4.00 4 4.00 4 4.00 20 1 3 3.85 2 3.70 2 3.70 3 4 4 4.00 4 4.00 4 4.00 20 1 0 2.89 0 2.89 1 3.04

4 2 2 3.70 2 3.70 2 3.70 28 1 3 3.72 3 3.60 3 3.60 4 2 1 3.55 1 3.55 1 3.55 28 1 3 2.91 2 2.76 4 3.18

5 3 4 3.75 4 3.75 4 3.75 35 1 3 3.61 3 3.51 1 3.21 5 3 4 3.62 4 3.62 4 3.62 35 1 0 2.47 0 2.34 0 2.71

6 1 4 3.78 4 3.78 4 3.78 41 1 0 3.07 0 2.98 0 2.72 6 1 4 3.67 4 3.67 4 3.67 41 1 0 2.10 0 1.99 1 2.45

7 5 1 3.37 0 3.22 0 3.22 43 1 0 2.61 0 2.53 0 2.32 7 5 0 3.12 0 3.12 0 3.12 43 1 1 1.93 1 1.84 1 2.23

8 5 0 2.86 0 2.73 0 2.73 44 1 1 2.37 1 2.30 2 2.27 8 5 2 2.96 0 2.66 0 2.66 44 1 0 1.64 0 1.57 1 2.05

9 2 0 2.43 0 2.32 0 2.32 48 1 0 2.01 0 1.96 1 2.08 9 2 4 3.11 4 2.86 4 2.86 48 1 0 1.40 0 1.33 2 2.04

10 5 0 2.07 0 1.97 0 1.97 56 1 0 1.71 0 1.66 0 1.77 10 5 2 2.95 2 2.73 2 2.73 56 1 1 1.34 0 1.13 0 1.73

11 5 0 1.76 0 1.68 0 1.68 58 1 0 1.46 0 1.41 0 1.50 11 5 0 2.50 0 2.32 1 2.47 58 1 0 1.14 0 0.96 0 1.47

12 2 0 1.49 0 1.43 1 1.58 59 1 1 1.39 1 1.35 1 1.43 12 2 1 2.28 1 2.12 2 2.40 59 1 1 1.12 1 0.97 1 1.40

13 5 0 1.27 0 1.21 1 1.49 61 1 1 1.33 1 1.30 2 1.51 13 5 1 2.09 1 1.95 2 2.34 61 1 0 0.95 0 0.82 1 1.34

14 4 0 1.08 0 1.03 0 1.27 62 1 1 1.28 1 1.25 1 1.44 14 4 0 1.77 0 1.66 0 1.99 62 1 0 0.81 0 0.70 0 1.14

15 1 4 1.52 4 1.48 4 1.68 69 1 0 1.09 0 1.07 0 1.22 15 1 3 1.96 2 1.71 4 2.29 69 1 0 0.69 0 0.59 0 0.97

16 2 0 1.29 0 1.25 0 1.43 76 1 0 0.92 0 0.91 0 1.04 16 2 0 1.66 0 1.45 0 1.95 76 1 0 0.58 0 0.51 0 0.82

17 2 0 1.10 0 1.07 0 1.21 79 1 0 0.79 0 0.77 0 0.88 17 2 1 1.56 1 1.39 2 1.95 79 1 0 0.50 0 0.43 0 0.70

18 2 0 0.93 0 0.91 1 1.18 86 1 0 0.67 0 0.65 0 0.75 18 2 1 1.48 1 1.33 1 1.81 86 1 0 0.42 0 0.36 0 0.60

19 3 0 0.79 0 0.77 0 1.00 89 1 0 0.57 0 0.56 0 0.64 19 3 2 1.56 2 1.43 0 1.54 89 1 0 0.36 0 0.31 0 0.51

20 1 3 1.12 2 0.96 2 1.15 94 1 2 0.78 2 0.77 3 0.99 20 1 0 1.32 0 1.21 0 1.31 94 1 1 0.45 1 0.41 1 0.58

21 5 1 1.10 1 0.96 0 0.98 96 1 0 0.67 0 0.66 0 0.84 21 5 1 1.28 1 1.18 2 1.41 96 1 0 0.39 0 0.35 1 0.64

22 5 0 0.94 0 0.82 0 0.83 101 1 0 0.57 0 0.56 0 0.72 22 5 2 1.38 2 1.31 3 1.65 101 1 1 0.48 1 0.45 2 0.85

23 5 1 0.95 1 0.84 0 0.71 103 1 0 0.48 1 0.62 1 0.76 23 5 1 1.33 1 1.26 1 1.55 103 1 0 0.41 0 0.38 1 0.87

24 3 0 0.81 0 0.72 0 0.60 110 1 0 0.41 0 0.53 1 0.80 24 3 0 1.13 0 1.07 1 1.47 110 1 0 0.35 0 0.32 1 0.89

?5 ? 0 0 69 0 0.61 1 0.66 111 1 0 0.35 0 0.45 1 0.83 25 2 0 0.96 0 0.91 1 1.40 111 1 1 0.44 1 0.43 2 1.06

26 2 0 0.58 0 0.52 0 0.56 112 1 0 0.30 0 0.38 0 0.70 26 2 0 0.81 0 0.77 0 1.19 112 1 0 0.38 0 0.36 0 0.90

27 5 0 049 0 0.44 0 0.48 2 2 4 4.00 4 4.00 4 4.00 27 5 0 0.69 0 0.66 0 1.01 2 2 4 4.00 4 4.00 4 4.00

28 1 3 0.87 3 0.82 3 0.86 4 2 2 3.70 2 3.70 2 3.70 28 1 1 0.74 1 0.71 0 0.86 4 2 1 3.55 1 3.55 1 3.55

29 2 0 0.74 0 0.70 0 0.73 9 2 0 3.15 0 3.15 0 3.15 29 2 1 0.78 1 0.75 1 0.88 9 2 4 3.62 4 3.62 4 3.62

30 2 4 1.23 4 1.20 4 1.22 12 2 0 2.67 0 2.67 1 2.82 30 2 0 0.66 0 0.64 0 0.75 12 2 2 3.37 2 3.37 2 3.37

31 2 0 1.04 0 1.02 0 1.04 16 2 0 2.27 0 2.27 0 2.40 31 2 1 0.71 1 0.69 0 0.64 16 2 1 3.02 1 3.02 2 3.17

32 5 0 0.89 0 0.86 0 0.88 17 2 0 1.93 0 1.93 0 2.04 32 5 0 0.61 0 0.59 0 0.54 17 2 1 2.72 1 2.72 2 2.99

33 5 0 0.75 0 0.73 0 0.75 18 2 0 1.64 0 1.64 1 1.88 33 5 0 0.51 0 0.50 0 0.46 18 2 1 2.46 1 2.46 2 2.84

34 4 0 0.64 0 0.62 0 0.64 25 2 0 1.40 0 1.40 1 1.75 34 4 0 0.44 0 0.43 0 0.39 25 2 1 2.24 1 2.24 1 2.57

35 1 3 1.00 3 0.98 1 0.69 26 2 0 1.19 0 1.19 0 1.49 35 1 0 0.37 0 0.36 1 0.48 26 2 1 2.05 1 2.05 2 2.48

36 5 0 0.85 0 0.83 0 0.59 29 2 0 1.01 0 1.01 0 1.27 36 5 2 0.62 2 0.61 4 1.01 29 2 2 2.05 2 2.05 3 2.56

37 5 0 0.72 0 0.71 0 0.50 30 2 4 1.46 4 1.46 4 1.68 37 5 2 0.82 2 0.82 4 1.46 30 2 1 1.89 1 1.89 1 2.33

38 5 0 0,61 0 0.60 1 0.57 31 2 0 1.24 0 1.24 0 1.42 38 5 2 1.00 2 0.99 4 1.84 31 2 1 1.76 1 1.76 0 1.98

39 4 0 0.52 0 0.51 1 0.64 40 2 3 1.50 3 1.50 3 1.66 39 4 1 1.00 1 1.00 0 1.56 40 2 1 1.64 1 1.64 0 1.68

40 2 3 0.89 3 0.89 3 0.99 45 2 3 1.73 2 1.58 3 1.86 40 2 0 0.85 0 0.85 0 1.33 45 2 2 1.70 2 1.70 4 2.03

41 1 0 0.76 0 0.75 0 0.84 52 2 2 1.77 2 1.64 1 1.73 41 1 0 0.72 0 0.72 0 1.13 52 2 2 1.74 2 1.74 4 2.32

42 4 0 0.64 0 0.64 1 0.87 53 2 2 1.80 2 1.69 4 2.07 42 4 0 0.61 0 0.61 2 1.26 53 2 1 1.63 1 1.63 0 1.98

43 1 0 0.55 0 0.54 0 0.74 60 2 1 1.68 1 1.59 0 1.76 43 1 1 0.67 0 0.52 0 1.07 60 2 1 1.54 1 1.54 1 1.83

44 1 1 0.62 1 0.61 2 0.93 63 2 1 1.58 1 1.50 0 1.50 44 1 0 0.57 0 0.44 0 0.91 63 2 1 1.46 1 1.46 1 1.70

45 2 3 0.97 2 0.82 3 1.24 70 2 1 1.49 1 1.43 0 1.27 45 2 1 0.64 1 0.53 1 0.92 70 2 0 1.24 0 1.24 0 1.4S

46 5 0 0.83 0 0.70 0 1.05 75 2 2 1.57 1 1.36 2 1.38 46 5 1 0.69 1 0.60 1 0.94 75 2 3 1.50 3 1.50 3 1.68

47 4 0 0.70 0 0.59 0 0.89 78 2 1 1.48 1 1.31 1 1.32 47 4 0 0.59 0 0.51 0 0.80 78 2 3 1.73 3 1.73 3 1.88

48 1 0 0.60 0 0.50 1 0.91 80 2 2 1.56 2 1.41 2 1.43 48 1 0 0.50 0 0.43 0 0.68 80 2 0 1.47 0 1.47 1 1.75

49 5 0 0.51 0 0.43 0 0.77 82 2 1 1.48 1 1.35 0 1.21 49 5 0 0.42 0 0.37 0 0.57 82 2 0 1.25 0 1.25 0 1.49

50 5 0 0.43 0 0.36 1 0.81 84 2 3 1.71 2 1.45 3 1.48 50 5 0 0.36 0 0.31 0 0.49 84 2 1 1.21 1 1.21 1 1.41

51 5 0 0.37 0 0.31 1 0.84 87 2 1 1.60 1 1.38 0 1.26 51 5 0 0.31 0 0.26 0 0.42 87 2 0 1.03 0 1.03 0 1.20

52 2 2 0.61 2 0.56 1 0.86 88 2 1 1.51 1 1.32 0 1.07 52 2 1 0.41 2 0.52 0 0.35 88 2 0 0.87 0 0.87 0 1.02

53 2 2 0.82 2 0.78 4 1.33 91 2 1 1.43 1 1.27 0 0.91 53 2 0 0.35 0 0.45 0 0.30 91 2 1 0.89 1 0.89 1 1.02

54 5 0 0.70 0 0.66 0 1.13 93 2 0 1.22 0 1.08 0 0.77 54 5 3 0.75 3 0.83 3 0.70 93 2 0 0.76 0 0.76 0 0.86

55 4 0 0.59 0 0.56 1 1.11 107 2 1 1.19 1 1.07 0 0.66 55 4 3 1.08 3 1.15 3 1.05 107 2 2 0.95 2 0.95 2 1.04

56 1 0 0.50 0 0.48 0 0.95 113 2 2 1.31 2 1.21 1 0.71 56 1 0 0.92 0 0.98 0 0.89 113 2 1 0.95 1 0.95 0 0.88

57 5 0 0.43 0 0.41 0 0.80 5 3 4 4.00 4 4.00 4 4.00 57 5 1 0.93 1 0.98 0 0.76 5 3 4 4.00 4 4.00 4 4.00

58 1 0 0.36 0 0.35 0 0.68 19 3 0 3.40 0 3.40 0 3.40 58 1 3 1.24 3 1.29 0 0.64 19 3 0 3.40 0 3.40 0 3.40

59 1 1 0.46 1 0.44 1 0.73 24 3 0 2.89 0 2.89 0 2.89 59 1 0 1.06 0 1.09 0 0.55 24 3 0 2.89 0 2.89 0 2.89

60 2 1 0.54 1 0.53 0 0.62 68 3 0 2.46 0 2.46 0 2.46 60 2 0 0.90 0 0.93 0 0.47 68 3 0 2.46 0 2.46 0 2.46

61 1 1 0.61 1 0.60 2 0.83 81 3 0 2.09 0 2.09 0 2.09 61 1 0 0.76 0 0.79 0 0.40 81 3 0 2.09 0 2.09 0 2.09

62 1 1 0.67 1 0.65 1 0.85 3 4 4 4.00 4 4.00 4 4.00 62 1 0 0.65 0 0.67 0 0.34 3 4 4 4.00 4 4.00 4 4.00

63 2 1 0.72 1 0.71 0 0.73 14 4 0 3.40 0 3.40 0 3.40 63 2 0 0.55 0 0.57 0 0.29 14 4 2 3.70 2 3.70 4 4.00

160

SAMPLE 1 SAMPLE 2
WHOLE SYSTEM ■ BY DATABASE WHOLE SYSTEM ■ BY CLASS

64 5 0 0.61 0 0.60 0 0.62 34 4 0 2.89 0 2.89 0 2.89 64 5 1 0.62 1 0.64 1 0.39 34 4 0 3.15 0 3.15 0 3.40
65 4 1 0.67 1 0.66 2 0.82 39 4 0 2.46 0 2.46 1 2.61 65 4 0 0.53 0 0.54 1 0.48 39 4 0 2.67 0 2.67 0 2.89
66 5 0 0.57 0 0.56 0 0.70 42 4 0 2.09 0 2.09 1 2.37 66 5 0 0.45 0 0.46 1 0.56 42 4 0 2.27 0 2.27 0 2.46
67 5 1 0.63 1 0.63 1 0.75 47 4 0 1.77 0 1.77 0 2.01 67 5 0 0.38 0 0.39 1 0.63 47 4 1 2.08 1 2.08 0 2.09
68 3 0 0.54 0 0,53 0 0.63 55 4 0 1.51 0 1.51 1 1.86 68 3 0 0.32 0 0.33 0 0.53 55 4 0 1.77 0 1.77 0 1.77
69 1 0 0.46 0 0.45 0 0.54 65 4 1 1.43 1 1.43 2 1.88 69 1 0 0.27 0 0.28 0 0.45 65 4 0 1.50 0 1.50 0 1.51
70 2 1 0.54 1 0.54 0 0.46 73 4 1 1.37 1 1.37 2 1.90 70 2 0 0.23 0 0.24 0 0.39 73 4 1 1.43 1 1.43 1 1.43
71 5 2 0.76 3 0.91 0 0.39 90 4 0 1.16 0 1.16 0 1.61 71 5 3 0.65 3 0.65 0 0.33 90 4 0 1.21 0 1.21 0 1.22
72 5 0 0.64 0 0.77 0 0.33 100 4 0 0.99 0 0.99 0 1.37 72 5 1 0.70 1 0.71 1 0.43 100 4 0 1.03 0 1.03 0 1.03
73 4 1 0.70 1 0.80 2 0.58 108 4 0 0.84 0 0.84 0 1.17 73 4 0 0.60 0 0.60 0 0.36 108 4 0 0.88 0 0.88 0 0.88
74 5 0 0.59 0 0.68 0 0.49 109 4 0 0.71 0 0.71 0 0.99 74 5 1 0.66 1 0.66 1 0.46 109 4 0 0.75 0 0.75 1 0.90
75 2 2 0.80 1 0.73 2 0.72 1 5 4 4.00 4 4.00 4 4.00 75 2 0 0.56 0 0.56 0 0.39 1 5 4 4.00 4 4.00 4 4.00
76 1 0 0.68 0 0.62 0 0.61 7 5 1 3.55 0 3.40 0 3.40 76 1 0 0.47 0 0.48 0 0.33 7 5 2 3.70 0 3.40 0 3.40
77 5 1 0.73 3 0.98 0 0.52 8 5 0 3.02 0 2.89 0 2.89 77 5 0 0.40 0 0.41 0 0.28 8 5 0 3.15 0 2.89 0 2.89
78 2 1 0.77 1 0.98 1 0.59 10 5 0 2.56 0 2.46 0 2.46 78 2 0 0.34 0 0.34 0 0.24 10 5 0 2.67 0 2.46 0 2.46
79 1 0 0.66 0 0.83 0 0.50 11 5 0 2.18 0 2.09 0 2.09 79 1 0 0.29 0 0.29 0 0.20 11 5 2 2.57 2 2.39 0 2.09
80 2 2 0.86 2 1.01 2 0.73 13 5 0 1.85 0 1.77 1 1.92 80 2 3 0.70 3 0.70 0 0.17 13 5 0 2.19 0 2.03 1 1.92
81 3 0 0.73 0 0.86 0 0.62 21 5 1 1.73 1 1.66 0 1.64 81 3 0 0.59 0 0.59 0 0.15 21 5 0 1.86 0 1.73 0 1.64
82 2 1 0.77 1 0.88 0 0.53 22 5 0 1.47 0 1.41 0 1.39 82 2 0 0.50 0 0.50 0 0.13 22 5 0 1.58 0 1.47 0 1.39
83 5 0 0.65 0 0.75 0 0.45 23 5 1 1.40 1 1.35 0 1.18 83 5 0 0.43 0 0.43 0 0.11 23 5 0 1.34 0 1.25 0 1.18
84 2 3 1.01 2 0.94 3 0.83 27 5 0 1.19 0 1.15 0 1.00 84 2 0 0.36 0 0.36 0 0.09 27 5 0 1.14 0 1.06 0 1.00
85 5 0 0.85 0 0.79 0 0.71 32 5 0 1.01 0 0.97 0 0.85 85 5 0 0.31 0 0.31 0 0.08 32 5 0 0.97 0 0.90 0 0.85
86 1 0 0.73 0 0.68 0 0.60 33 5 0 0.86 0 0.83 0 0.73 86 1 0 0.26 0 0.26 0 0.07 33 5 0 0.82 0 0.77 0 0.73
87 2 1 0.77 1 0.72 0 0.51 36 5 0 0.73 0 0.70 0 0.62 87 2 0 0.22 0 0.22 0 0.06 36 5 0 0.70 0 0.65 0 0.62
88 2 1 0.80 1 0.77 0 0.43 37 5 0 0.62 0 0.60 0 0.52 88 2 1 0.34 1 0.34 0 0.05 37 5 0 0.60 0 0.55 0 0.52
89 1 0 0.68 0 0.65 0 0.37 38 5 0 0.53 0 0.51 1 0.60 89 1 0 0.29 0 0.29 0 0.04 38 5 0 0.51 0 0.47 0 0.45
90 4 0 0.58 0 0.55 0 0.31 46 5 0 0.45 0 0.43 0 0.51 90 4 0 0.25 0 0.25 0 0.03 46 5 1 0.58 2 0.70 0 0.38
91 2 1 0.64 1 0.62 0 0.27 49 5 0 0.38 0 0.37 0 0.43 91 2 0 0.21 0 0.21 0 0.03 49 5 0 0.49 0 0.59 0 0.32
92 5 0 0.55 0 0.53 0 0.23 50 5 0 0.32 0 0.31 1 0.52 92 5 0 0.18 0 0.18 0 0.02 50 5 3 0.87 3 0.96 0 0.27
93 2 0 0.46 0 0.45 0 0.19 51 5 0 0.27 0 0.27 1 0.59 93 2 0 0.15 0 0.15 0 0.02 51 5 0 0.74 0 0.81 0 0.23
94 1 2 0.69 2 0.68 3 0.61 54 5 0 0.23 0 0.23 0 0.50 94 1 1 0.28 1 0.28 1 0.17 54 5 0 0.63 0 0.69 0 0.20
95 5 0 0.59 0 0.58 0 0.52 57 5 0 0.20 0 0.19 0 0.43 95 5 1 0.39 1 0.39 1 0.29 57 5 0 0.53 0 0.59 0 0.17
96 1 0 0.50 0 0.49 0 0.44 64 5 0 0.17 0 0.16 0 0.36 96 1 0 0.33 0 0.33 1 0.40 64 5 0 0.45 0 0.50 1 0.29
97 5 0 0.43 0 0.42 0 0.38 66 5 0 0.14 0 0.14 0 0.31 97 5 0 0.28 0 0.28 0 0.34 66 5 0 0.39 0 0.42 0 0.25
98 5 0 0.36 0 0.36 0 0.32 67 5 1 0.27 1 0.27 1 0.41 98 5 0 0.24 0 0.24 0 0.29 67 5 3 0.78 3 0.81 0 0.21
99 5 0 0.31 0 0.30 0 0.27 71 5 2 0.53 3 0.68 0 0.35 99 5 0 0.20 0 0.20 0 0.24 71 5 0 0.66 0 0.69 0 0.18

100 4 0 0.26 0 0.26 0 0.23 72 5 0 0.45 0 0.58 0 0.30 100 4 0 0.17 0 0.17 1 0.36 72 5 3 1.01 3 1.04 0 0.15
101 1 0 0.22 0 0.22 0 0.20 74 5 0 0.38 0 0.49 0 0.25 101 1 1 0.30 1 0.30 2 0.60 74 5 0 0.86 0 0.88 0 0.13
102 5 0 0.19 0 0.19 0 0.17 77 5 1 0.48 3 0.87 0 0.21 102 5 0 0.25 0 0.25 0 0.51 77 5 0 0.73 0 0.75 0 0.11
103 1 0 0.16 1 0.31 1 0.29 83 5 0 0.40 0 0.74 0 0.18 103 1 0 0.21 0 0.21 0 0.44 83 5 0 0.62 0 0.64 0 0.09
104 5 0 0.14 0 0.26 0 0.25 85 5 0 0.34 0 0.63 0 0.16 104 5 0 0.18 0 0.18 1 0.52 85 5 0 0.53 0 0.54 0 0.08
105 5 0 0.12 0 0.22 1 0.36 92 5 0 0.29 0 0.53 0 0.13 105 5 2 0.45 2 0.45 2 0.74 92 5 1 0.60 1 0.61 0 0.07
106 5 0 0.10 0 0.19 0 0.31 95 5 0 0.25 0 0.45 0 0.11 106 5 1 0.54 1 0.54 0 0.63 95 5 0 0.51 0 0.52 0 0.06
107 2 1 0.23 1 0.31 0 0.26 97 5 0 0.21 0 0.38 0 0.10 107 2 0 0.46 0 0.46 1 0.69 97 5 0 0.43 0 0.44 0 0.05
108 4 0 0.20 0 0.26 0 0.22 98 5 0 0.18 0 0.33 0 0.08 108 4 0 0.39 0 0.39 0 0.58 98 5 0 0.37 0 0.37 0 0.04
109 4 0 0.17 0 0.22 0 0.19 99 5 0 0.15 0 0.28 0 0.07 109 4 0 0.33 0 0.33 0 0.50 99 5 0 0.31 0 0.32 1 0.19
110 1 0 0.14 0 0.19 1 0.31 102 5 0 0.13 0 0.24 0 0.06 110 1 1 0.43 1 0.43 2 0.72 102 5 0 0.27 0 0.27 0 0.16
111 1 0 0.12 0 0.16 1 0.41 104 5 0 0.11 0 0.20 0 0.05 111 1 0 0.37 0 0.37 0 0.61 104 5 0 0.23 0 0.23 0 0.13
112 1 0 0.10 0 0.14 0 0.35 105 5 0 0.09 0 0.17 1 0.19 112 1 0 0.31 0 0.31 1 0.67 105 5 0 0.19 0 0.20 0 0.11
113 2 2 0.4 2 0.4 1 0.4 106 5 0 0.1 0 0.1 0 0.2 113 2 0 0.3 0 0.3 0 0.6 106 5 0 0.2 0 0.2 0 0.1

161

Appendix M: Re Class 1 Charts

j «20/20/20/20/20

| m 30/20/30/10/10

IE 50/30/00/10/10

Figure 34. Histogram of mple 1 Results for Class 1

■20/20/20/20/20
B 30/20/30/10/10

050/30/00/10/10

Figure 35. Histogram of Sample 2 Results for Class 1

162

-*-♦- ♦-■»■♦ ♦■♦■♦♦♦ ♦■»-»■♦■♦■♦
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 36. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 20/20/20/20/20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 37. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 20/20/20/20/20

163

4.5
4.

3.5

St—V ->"♦-
2.5 - - - -< -

2 _ - - -V \ -^ ♦
1.5---

i ,_ j ^ ♦-♦-^^^LI r'zj. #r -
0.5 J • /_*, / •-

0^—-i— ♦♦'♦♦♦' —i— '♦♦♦♦♦ i » ♦' '» ♦ ♦
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 38. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 30/20/30/10/10

HI
CO
li.
li-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 39. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 30/20/30/10/10

164

4.5
4<

3.5

3---V-*->v ♦"
8 2.5 T -v;
t 2+--H*--- ♦::^- }►-
° 1-5

1 1 * / - -♦ ¥"--*- -^^^- - .X; -»-♦-<
0.5 J- _\ ___'__.

0-1 i ! ; » ♦' ♦ ♦ : i ♦ ♦ ♦ ♦ ♦ » ♦' i r-V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 40. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 50/30/00/10/10

1-
UJ
V) u.
u.
O

^ 5 -1X *I

2.5 ~\ A -'.-^s^-

l.5p--;--i ^.X.-.^ /-A .'A. -
1 ------ - -- -♦-♦-#-v - - - ^T^-**^^---—♦-V^dfcj^-<*

I1* • # »# « *

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 41. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 50/30/00/10/10

165

Appendix N: Record Class 2 Charts

I «20/20/20/20/20!

B 30/20/30/10/10

j H 50/30/00/10/1 Oi

Figure 42. Histogram of Sample 1 Results for Class 2

15 15

■ 20/20/20/20/20

■30/20/30/10/10 !

! B 50/30/00/10/10!

Figure 43. Histogram of Sample 2 Results for Class 2

166

UJ
<n
u.
LL
o

Figure 44. Time Series Results of Sample 1 for Class 2
with Weighting Scheme 20/20/20/20/20

Figure 45. Time Series Results of Sample 2 for Class 2
with Weighting Scheme 20/20/20/20/20

167

RECORD

Figure 46. Time Series Results of Sample 1 for Class 2
with Weighting Scheme 30/20/30/10/10

RECORD

Figure 47. Time Series Results of Sample 2 for Class 2
with Weighting Scheme 30/20/30/10/10

168

Figure 48. Time Series Results of Sample 1 for Class 2
with Weighting Scheme 50/30/00/10/10

Figure 49. Time Series Results of Sample 2 for Class 2
with Weighting Scheme 50/30/00/10/10

169

Appendix O: Record Class 3 Charts

4 4 4

■20/20/20/20/20

B 30/20/30/10/10 I

Q 50/30/00/10/10 I
1 1 1

0 0 0 0 0 0 0 0 0

2

OFFSET

Figure 50. Histogram of Sample 1 Results for Class 3

4 4 4
4 -r

3.5 -

3 -

g 2.5 1

S 2^
ü
8! 1.5 1

1 |

0.5 i

0^

It

II

120/20/20/20/20 I
130/20/30/10/10 !
150/30/00/10/101

0 0 0 0 0 0 0 0 0

1 1 1

AI
2

OFFSET

Figure 51. Histogram of Sample 2 Results for Class 3

170

HI
(0
LI-

RECORD

Figure 52. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 20/20/20/20/20

HI

LL

RECORD

Figure 53. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 20/20/20/20/20

171

f> 0 \ ,mm

■i ! * _

! nc » _ _ U.S |

1 2 3

RECORD

4 5

Figure 54. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 30/20/30/10/10

tu
to

Figure 55. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 30/20/30/10/10

172

tu

Figure 56. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 50/30/00/10/10

RECORD

Figure 57. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 50/30/00/10/10

173

Appendix P: Record Class 4 Charts

1010

0 0

2

OFFSET

120/20/20/20/20

130/20/30/10/10 i

150/30/00/10/10

1 1 1

0 0 0

Figure 58. Histogram of Sample 1 Results for Class 4

9 9 9
9T

8|
74-

S 5-
O
a 4-

2-

o-l-

B
HI
I If ;;>

B i .

■ 1
-* .»

if 5*7 n$
m

2 2 2

0 0 0

120/20/20/20/20

130/20/30/10/10

150/30/00/10/10

Figure 59. Histogram of Sample 2 Results for Class 4

174

Figure 60. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 20/20/20/20/20

RECORD

Figure 61. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 20/20/20/20/20

175

RECORD

Figure 62. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 30/20/30/10/10

^ ~^s^
N.

CO o V '
"- %

1 j \

(1 i ^

____ ... ^. _„ ..__
u ♦ - ■

1 2 3
■ ▼

4 5 6 7 8 9 10

RECORD

11 12 13

Figure 63. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 30/20/30/10/10

176

10 11 12 13

Figure 64. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 50/30/00/10/10

10 11 12 13

RECORD

Figure 65. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 50/30/00/10/10

177

Appendix 0: Record Class 5 Charts

j «20/20/20/20/20

IH 30/20/30/10/10

!E 50/30/00/10/10

1 1 1

Figure 66. Histogram of Sample 1 Results for Class 5

35
35 -

31^| ■
30- laUB

25 -
tn
§ 20-
o

Hi ■■■1^9

1 ■ 20/20/20/20/20;

B 30/20/30/10/10
° 1<5 - HI IO —

10-

5-

0 '

■■■Hii

HI ■It ■3s

'V

2 3

. ■■!■
2 2 3 3

1 1 1

050/30/00/10/10

0 1 2

OFFSET

3 4

Figure 67. Histogram of Sample 2 Results for Class 5

178

4.

3.5
3

Ei 2-5

eo 2-------V- ♦■
O 1.5

1 !♦ -♦ - V^L ♦

0 ! ; '»♦■»4 : »' '»♦♦♦♦♦♦♦♦♦T»T^ »4 : ♦♦♦♦♦♦~i
■r-coio^o>*-cowf»-c>T-eotof»o>^-comr;g>

I-T-T-T-T-CMC\IC\ICMC\ICOCOCOCOCO

RECORD

Figure 68. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 20/20/20/20/20

4-

3-5 4«

3

2.5

2

1.5

1

0.5

0

• x « ♦-^

r-->^ .. ._

r:;?V::; ::::::::•• ::::::u;r:::::::::::::::
-' «V >^c + -1-J — * .Wr +-

♦ ♦ i ♦♦♦♦♦♦♦♦»♦ : ♦ ♦♦♦♦♦ i ♦ ♦♦♦♦ »♦♦♦♦♦'
T- n to It r f) «)

co co

RECORD

Figure 69. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 20/20/20/20/20

179

1- co in

RECORD

Figure 70. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 30/20/30/10/10

Oi r- CO If) h- O)
CM CO CO CO CO CO

RECORD

Figure 71. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 30/20/30/10/10

180

T- CO lO N- <S>

RECORD

Figure 72. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 50/30/00/10/10

o i »♦♦» »♦♦♦»♦♦»♦»♦♦♦♦
■r- CO lO I*- 0> comf-OT-comf-oi-comt^-o

•«-T-^I-CNCMCNCMCMCOCOCOCOCO

RECORD

Figure 73. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 50/30/00/10/10

181

Bibliography

Atkinson, Lee, and Mark Atkinson. Using C. Carmel IN: Que Corporation, 1990.

Bhatia, Sanjiv K., Jitender S. Deogun, and Vijay V. Raghavan. "Formation of Categories
in Document Classification Systems," Lecture Notes In Computer Science, 507:
91-97 (1991).

Bolden, Bobbie and Willie Pollard. Management Assistants to the Base Records
Manager, 88 CG/IMADA, WPAFB OH. Personal interview. 20 Sep 96.

Cheng, Patrick T. K. and Albert K. W. Wu. "ACS: An Automatic Classification
System," Journal of Information Science. 21: 289-299 (1995).

Cosgrove, S.J. and J.M. Weimann. "Expert System Technology Applied to Item
Classification," Library Hi Tech. 10: 33-40 (1992).

Department of Defense. Department of Defense Design Criteria Standard for Records
Management Application: Functional Baseline Requirements. Draft DoD-STD-
5015.2. Arlington VA: OASD(C3I) C3/IT, 20 May 1996.

Department of Defense Records Management Business Process Reengineering (DoD
RM-BPR). Compendium Report. Arlington VA: ANDRULIS Research
Corporation, August 1994.

Department of Defense Records Management Task Force (DoD RMTF). Managing
Information As Records 2003. Arlington VA: ANDRULIS Research
Corporation, January 1995."

Department of the Air Force. Disposition of Air Force Records: Records Disposition
Schedule. AFR 4-20 Vol 2. Washington: HQ USAF, 1 May 1992.

Firebaugh, Morris W. Artificial Intelligence: A Knowledge-Based Approach. Boston:
Boyd & Fräser Publishing Company, 1988.

Fox, Christopher. "Lexical Analysis and Stoplists," in Information Retrieval: Data
Structures and Algorithms. Ed. William B. Frakes and Ricardo Baeza-Yates.
Englewood Cliffs NJ: Prentice Hall, 1992.

Goel, Ashish. "The Reality and Future of Expert Systems," Information Systems
Management. 11: 53-61 (Winter 1994).

182

Hayes-Roth, Frederick. "Knowledge Systems: An Introduction," Library Hi Tech. 10:
15-29 (1992).

Kendall, Kenneth E. and Julie E. Kendall. Systems Analysis and Design (Third Edition).
Upper Saddle River NJ: Prentice Hall, 1995.

Larson, Ray R. "Experiments in Automatic Library of Congress Classification," Journal
of the American Society for Information Science, 43:130-148 (March 1992).

Losee, Robert M. and Stephanie W. Haas. "Sublanguage Terms: Dictionaries, Usage,
and Automatic Classification," Journal of the American Society for Information
Science. 46: 519-530 (August 1995).

McClave, James T. and P. George Benson. Statistics for Business and Economics (Sixth
Edition). New York: Macmillan College Publishing Company, 1994.

McPharlin, Anne. AF/SCXR, Washington DC. Electronic Mail Message. 13 September
1995.

Mockler, Robert J. and D. G. Dologite. Knowledge-Based Systems: An Introduction to
Expert Systems. New York: Macmillan Publishing Company, 1992.

Paice, C. D. Information Retrieval and the Computer. London: Macdonald and Jane's
Publishers Ltd., 1977.

Porter, M. F. "An Algorithm for Suffix Stripping," Program. 14: 130-137 (July 1980).

Prescott, Daryll R., William Underwood, and Mark Kindl. Functional Baseline
Requirements and Data Elements for Records Management Application Software.
Contract DAKF11-93-C-0043. Atlanta GA: Army Research Laboratory,
28 August 1995.

Van Rijsbergen, C. J. Information Retrieval (Second Edition). London: Butterworth,
1979.

Savic, Dobrica. "Designing an Expert System for Classifying Office Documents,"
Records Management Quarterly. 28: 20-29 (July 1994).

Secretary of the Air Force (SECAF). Air Force Records Management Program.
AFI37-122. Washington: Secretary of the Air Force, 11 January 1994a.

 . Management of Records. AFMAN 37-123. Washington: Secretary of the Air Force,
31 August 1994b.

 . Records Disposition Schedule. AFMAN 37-139. Washington: Secretary of the Air
Force, 1 March 1996.

183

Weckert, John. "Sidebar: Expert Systems," Library Hi Tech. 10: 30-32 (1992).

184

Vita

Captain David W. Snoddy was born 28 August 1970 in Wooster, Ohio. He

graduated from Triway High School, Wooster, Ohio, in 1988. He graduated Magna Cum

Laude from Kent State University, Kent, Ohio, where he received a Bachelor of Arts

Degree in Technology with a minor in Psychology. Upon graduation in May 1992, he

was commissioned through the Air Force Reserve Officer Training Corps. His initial

assignment was as the Squadron Section Commander for the 650th Supply Squadron at

Edwards Air Force Base, California, on 21 January 1993. On 1 October 1993, he became

the Executive Officer/Squadron Section Commander for the newly formed 650th

Logistics Group. Hand-picked by the 650th Air Base Wing Commander, he became the

Executive Officer for the 650th Support Group which was activated on 1 July 1994.

In May 1995, Captain Snoddy entered the School of Logistics and Acquisition

Management, Air Force Institute of Technology.

Capt Snoddy is married to the former Stacy M. Martin of Wooster, Ohio.

Permanent Address: 4409 Buss Road
Wooster, OH 44691

185

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1996
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE
RECORDS ANALYSIS AND CLASSIFICATION SYSTEM: A PROOF OF
CONCEPT SYSTEM FOR THE AUTOMATED CLASSIFICATION OF
UNITED STATES AIR FORCE RECORDS
6. AUTHOR(S)

David W. Snoddy, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
2750 P Street
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GIR/LAR/96D-11

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Captain Anne McPharlin, C4I Resource Analyst
HQ USAF/SCXR
1250 Air Force Pentagon
Washington DC 20330-1250

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 Words)

The records management process utilized within the Department of Defense (DoD) is currently labor intensive.
Work is being done to automate portions of this process, but classifying documents and assigning disposition
instructions remains a labor intensive, manual operation. Although the requirement for this capability was
identified by a DoD sponsored study, an automated computer-based system which can classify and apply
disposition instructions has yet to be developed for use within the DoD. This thesis study presents a proof of
concept computer program called the Records Analysis and Classification System (RACS) which was
developed to demonstrate computer-based techniques for the automated classification of official records. To
demonstrate the operation of RACS, a sample of 113 records was collected from the files of an organization at
Wright-Patterson AFB. An analysis of the results of the tests conducted with the RACS system indicated that it
was capable of accurately classifying 72 out of the 113 records on average. Additionally, the RACS program
was designed as a learning system and the test results indicated that it was in fact capable of improving its
classification accuracy over time.

14. SUBJET TERMS

Records Management, Classification, Artificial Intelligence, Natural Language
15. NUMBER OF PAGES

200
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

AFIT Control Number AFIT/GIR/LAR/96D-11

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaire to: AIR FORCE INSTITUTE
OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT-PATTERSON AFB OH 45433-7765.
Your response is important. Thank you.

1. Did this research contribute to a current research project? a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. Please estimate what this research would have cost in terms of manpower and dollars if it had
been accomplished under contract or if it had been done in-house.

Man Years $

4. Whether or not you were able to establish an equivalent value for this research (in Question
3), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments (Please feel free to use a separate sheet for more detailed answers and include it
with this form):

Name and Grade Organization

Position or Title Address

