RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:
A PROOF OF CONCEPT SYSTEM FOR THE
AUTOMATED CLASSIFICATION OF
UNITED STATES AIR FORCE RECORDS
THESIS
David W. Snoddy, Captain, USAF

AFIT/GIR/LAR/96D-11

1E0 0110.66}

DTIC QUALITY INSPECTED 4

| DEPARTMENT OF THE AIR FORCE
b AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

———————

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATENENT

Approved for public release;
Distr_IEuﬁon Unlimited l

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U. S. Government.

AFIT/GIR/LAR/96D-11

RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:
A PROOF OF CONCEPT SYSTEM FOR THE AUTOMATED

CLASSIFICATION OF UNITED STATES AIR FORCE RECORDS

THESIS

Presented to the Faculty of the Graduate School of Logistics
and Acquisition Management of the
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Information Resources Management

David W. Snoddy, B.A.

Captain, USAF

December 1996

Approved for public release; distribution unlimited

Acknowledgments

This thesis was a massive undertaking which could not have been completed without
the help and encouragement of others. First, I would like to thank Dr. Kim Campbell, my
advisor, and Dr. Guy Shane, my reader. Their guidance and expertise made the entire
process a lot less painful than it could have been. Next, I would like to thank Capt Anne
McPharlin, msr sponsor, and the personnel from Wright-Patterson’s Base Records
Management office for providing various reference materials for my use throughout this
process. I would also like to extend my thanks to the personnel in the 88th Support
Group Administration Office for allowing me to rifle through their official files in order
to accumulate my sample of records. Most of all, I would like to thank the most
important person, my wife. Without her understanding and support this thesis would not

have been possible.

David W. Snoddy

il

Table of Contents

Page
ACKNOWIBAZIMENLS.....ccoreveeirieeeeteeeneeerereeerseseeseesessestsentsassessesestsssnsssssasssssssnssssasssssns il
LISt Of FIGUIES ...cveureieieierieeeresresereeeteestesteeesnenessesssssssssssesssessssssessstsssssssassasssssssensens vi
LSt OFf TADIES ..cueeiieieceitereccrerecceeree et e s ss s s s e cs s se s st sasessecmesssentsnensase xi
ADSITACTeeeeeteeeeeeeeeeeeseses e sesesaeestssse s e se e st s see s e sesssssassestonesasossstessensssesersseneserssanans xii
I INtrOQUCION «..oeviceeeeeeerceenreeeee e et s et s st s e sae s sser s e sasasssassasessasesobnons 1

United States Air Force Records Managementc.ccccemmucverneneinicecnecsensesnnennnens 1
Records Management and the DoD.........c.ccoceeiievenenininicricrscntnnesesseeesssansans 3
Problem Statementccceveereerreereieneenneeeeeeceeseestesseesesssessssssscssseesssessnsosssesassanens 4
ReSEArCh ODJECHIVES ...ceouinrereeceecrieeiecneeie st secreseeee e seeneaenssese e sestsnesnesssesnsesesssnes 4
Scope and Limitations of the Studyccceceeveeeernreerninnnnriectnecectneneesesessesnens 5
SUIMINIATY ..vverriereereenecnceneesientaseeseesessasseesessasssessessessesssssssssssssessesssassssssssssssnnsnsosssssssssses 5
II. LIterature REVIEWcccoeeeerreresrererieercneeessersesessacssssessasssssessesssnesssssssssesssnsassssasessansns 7
INTOGUCHION ...ttt ettt sttt esas e saesessessessesassaessentssasaasaes 7
Artificial INtEllIGENCE. .. ccuereeieeieeieeietereeee et reeeaeeee et sseee e s sassase s e s e st eseesaseseesses 7
Knowledge-Based SYStEMSc.coveeveeeicieennintrintncneenisetescssesssesessesusssessosssssesesans 8
Natural Language Processing........cocceeeervueseeesersersennrscrnsnsueesceseseeecsssssssssessessssessosees 9
Document Classification SYSIEINSceceuererreereersererserreresieeesesssseesesasssessssacrsssossoses 11
Manual, Knowledge-Based SYStemsccovereereemrrcerenenemierrcrecsensnseessssssessesneae 12
Automated, Knowledge-Based SYStems......ceeeeeererereerreererneeeecreesneesesssssneesanans 13
Automated, Mathematical Comparison SYStemsS........cccveeeeeveecerrrcsreseecsnerenaeas 14
SUIIMATY ..ueveevrirrieieeesrierereiereet e ceseesree e st s eesesse st eeneestsssssssseonsesasssesstssssssssssesssorsesses 17
ITI. MELHOQuiieereiererieereceeeeneeseeseestsse e sessessesse e ssasnsacssestasesensesensnsasesesarsassessesessess 19
INEOAUCTION «..coveeteteeeeerceete ettt st s ts st ass e sbs s aesaesaserasssnsssssnnssnnans 19
RACS INITOQUCLION.......ceerreirrereecnieseeeenaerenteseescteseeseseeesenesssesaessesesssssssssssessossones 19
Data Flow Diagramming...........cecceeeeereerenseesenneereeseesssnenneseessscssssesssessesassessseseens 20
Classify New Record Context DIagramc.cccveeeeceeercrnecrsnecnecenenteesescesesereescsanes 21
Classify New Record Diagram O.......coceceeeecrnirrcenentrnenesineeeeenenesessesseessessssssncnee 21
Process 1: Enter New RecOTd......coveveriininiinirienccnccrtrceteteerceeeesseccnsenessessnees 23
Process 2: Generate Record Template...........covcrvivcrcinciniiniinincnienncscssseensenes 25
Process 2.1: Analyze Individual TEImSc.ceceeermerervecvenneteriesereenentnseeeesenne 26
Process 2.2: ReEmMOVE StOPWOIAS......ccccriemeemrreeenerircrccrecneeeeseessneseessesenssnces 27

iii

Process 2.3: Perform Stemming Operation.........c.cccccvververnnucnscrsneesnensrenreesennne 28 -
Process 2.4: Add to Record Template........ eereeseesaressnesessassiosesessesaasestisstsessntesnns 29
Process 3: Compare Templatesccceieriirrinreniesismesisennnssesneneseseesesseesessesessanas 29
Process 4: Choose Record Classcccoveveeiniicnsininniiennienieineenenieeessesnnessesssenennns 31
Process 5: Log RESUILSccceceemivirieiecieteincntetntcctsstsesre s eaeae s 32
Process 5.1: Calculate OffSets......cccevevrereeererueceerecercncnrecsneenninesseensesaencnens 33
Process 5.2: Update Score LOgcccovimvuericruirinninecicticriienercnessesneessessnenns 33
Process 5.3: Update LOg File......comiircncniiiciiiicitecteeieectee e 33
Process 6: Add Record To Databasececeeveeuercrirrurcimsninnsmncninnnsenseennseseesenenss 34
Process 7: Generate Class TempIates........cceuevervicerncinirsniissninesereeesesnnsesenensnenes 34
Procedure for Testing RACS ...t ccceercesssesesssnescsesaesesesenessaes 35
Sample RECOTAScoveevrenirurercntniicncinctencssesiveninsaeseresessssesesessessssese e s ssens 36
Determining the Effects of Record Order.........oouceivvinvivueencmnnininiennineeneennenene 38
Determining the Effects of Various Weighting Schemes.........ocovvueenenennnneene 38
Conducting the TeSt.....ccccccrceeerereeeeiercsresienisieesnessressessesssesessesassnessesssenns 39
Analyzing RACS’ Performance.cccceevecvererrcenensennnsinseernesenseesessnessessesssesessnens 40
QUESHION 1 ...eereereeecreee et e s ee e s e ssaeseseseessssoessesssessessssesssanssrsrnsossnnssssnns 40
QUESTION 2 ..eeeveeeeeeenetrteeeeestesesseseessessseesaeessrssessessasssssssssssessessassansssssssaesssonss 40
QUESTHION 3 ...ttt e e et se et e sae s e e eesasessesssannsossnsssnsessssessnenssesesnsanas 41
SUIMTIATY ..eeveerienereeeeerceereeeeescosesstesestessesstesessasasessssssessssasssssssessssssmesnsssessessassessassasnns 41
IV. Results and ANALYSIS......ccceererrerreereerceeceersiesensessssscessisessesssessisseessessessessnssssssessessasssens 42
INITOAUCTION ...ttt seneecenere e nente e ese e cecsetesessesasssessessassessisnssessesnsssesersensenes 42
QUESTION L.....oeieerieieteeeereicete e te e see et e ete et s esesasencs st sesescssasssasesassssesbasssnssnasnneranens 42
QUESLION 2....eeieeeeeeieeeeraeereeteeesentetecestese s sssaessmesnssssasesassassosessnsssssssonsesserassssssssanenes 49
QUESTION 3....ceeeeeeereeerterecaee e e st e e e e st e e e e s e e se st essa s e e s sonssosbssntsrnsenseesasssnsransaseos 50
Differences Among Individual Record Classescoevvrvueemrrermnunncnrcseesiessnseeeennns 52
SUIMMIATY ..oeoveeerrenieereneesnteseneesseeneerersreseesteesasesesesesestsssesssnsssassrsssssesssessasssnssssessassss 53
V. Conclusions and Recommendationscocceecereererirsecseeseessumssnersississessenessessesasesnes 54
INETOAUCTION ...o.eveeeveereereeieertreeeereeeesaeeseeeseessesaessseessasssssneseneessossesnaesseosstsnesasseressnnes 54
ReSEArCh ODBJECHVE 1 ...ueeiieeeiireceeierteeeseeneenesenteseneretesssssissesssssssessssssssssessesessenss 54
ReSEarch ODBJECHIVE 2......cerueiireeiecreceeeeree e ceceenescnesesssesssss e sssesssssesessessesensenns 55
Research ODBJECHIVE 3cuererieeiecnrceecrcicneeten et esacsscsssse s esess s s s snasnenns 56
RecoOmMMENAALIONScoveeeeemeeinrieneieetnnteseesteeseesereeeesseesesesesseessesssssessessnssesssessesnessens 56
CONCIUSION.....ceevveereeieereeeteerteereeeresteesteeesseesssessassseessaesseensassassessesesessssasesssssstssesssssanes 58
APPENAIX Al ACTONYIMNS ...oooverirririeesinrissisnsneisississessesssssesessessessmessesaessssessessassasessassssasssses 60
Appendix B: Overview of the RACS SyStem........ccocceevermnurvcnnresnereccienoresneeeneeseneneees 61
Appendix C: RACS Source Code......c.couumeuivirinininierisisissinieneseriesesesesessesessessessens 73

iv

Appendix D: RACS Configuration File........cocmenirinmiiiniiieieicineceetetcnnene 139
Appendix E: RACS StOP LiSt ...cceeeuiniiriiiiticcintiiciieseee ettt sessesnssesesnsene 140
Appendix F: Excerpt from 1ogfile.tXt.......ccoueurueinmriiieriinerneiecetetne e 142
Appendix G: Excerpt from SCOTElOZ. XL ...cuvuruieiiiiriririnietitieiiint s esssnsaans 144
Appendix H: Sample Class Template.........ccoouvinummnininieeereieieniseeeessseesessnnne 145
Appendix I: Common Tables and Rules.........cooveueviiiininmeieeictincsceeteneresenenenene 147
Appendix J. 88 SPTG/CCE Files Maintenance and Disposition Plan.............cceevennneee.. 152
Appendix K: Sample RECOTAS.......ooueivuiniiiiiiiiiniicteiitcineeteietetese s snsensesseneas 154
.Appendix L: OffSEt DAta.......cceereerereeerereeieeereeresessesssereseseeseesssssestesseseessassersssessssesessessons 160
Appendix M: Record Class 1 Chartsccoccocvmerieuininerieenennicineseiesennsesseessesesnenas 162
Appendix N: Record Class 2 Chartsccocvueiirveeirnenienneneenieseneeesesessensssesssnesssssssens 166
Appendix O: Record Class 3 Charts.......c.cocceuienieiciniininicniiniinnicnesesneresesasssesssasessanes 170
Appendix P: Record Class 4 Charts.........ccocoeeiieuiiiniincininnieeicneseiennsensasssssssesens 174
Appendix Q: Record Class 5 Chartscooveeiveniiriiiinininneernrneenesesesseseseseenssssesenens 178
BIDHOGIAPNY ...cecerurrereneireceineeeccss ettt essessssese e s s e s e s sasbssssansens 182
VL.t ieee s e sesetse st sa st s ettt s s et e s b e b ss e bbb st sas et s as bR s b s e st bnas 185

List of Figures

Figure Page
1. Example of IF-THEN RUIES.....coeviruiiiiiriciititietnireeseteetete st ssssvessne s eenne 9
2. Four Basic Symbols for Data Flow Diagrams...........ccceveverirmenericsnseenesininsseseenennsns 20
3. Classify New Record Context DIagramccccoceverevecrnenemsensissesussnesnnensessssnsssssscssnns 21
4. Classify New Record Diagram O......cccceeeveemruinuisininnininsininnsnrinennesiesessenssessssenesens 22
5. Generate Record Template Child Diagramcccoueveevecvinnerininmrncninrcensescsessenesennns 26
6. Log Results Child Diagram.........ccccceeevceermeienisescsecsinissssniessseressessessessesssssssssasessens 32
7. Generate Class Templates Child Diagramcovevienmirniereernsiesesensesseeeseneceenns 35
8. Histogram of Sample 1 Results Showing the Distribution of Offset Values

for Each of the Three Weighting Schemes for Calculating Class Scores 43
9. Histogram of Sample 2 Results Showing the Distribution of Offset Values

for Each of the Three Weighting Schemes for Calculating Class Scores 43
10. Example of the Accuracy of Record Classification in a Random

OF “GUESSING” SYSLEIM ...ueurereccrerueseeseiesesetsessssssnsssssssesesssassesesassnessssssssssasesssssasasas 45
11. Sample 1 - Time Series Results for RACS with

Weighting Scheme 20/20/20/20/20couomivermeirininirinicnctessneeessesneesennesnesnsssssnas 46
12. Sample 2 - Time Series Results for RACS with

Weighting Scheme 20/20/20/20/20ccveeueeureurersenirririeissiniessieeneiessssesassessessneses 46
13. Sample 1 - Time Series Results for RACS with

Weighting Scheme 30/20/30/10/10ccueevrieinnrenicisricnetiiesesereseseeesesessnesenas 47
14. Sample 2 - Time Series Results for RACS with

Weighting Scheme 30/20/30/10/10 ..ottt eneeneans 47
15. Sample 1 - Time Series Results for RACS with

Weighting Scheme 50/30/00/10/10c.ucuiirermeirrcnenceeriiinicniencnesnereeteae e eaesas 48

vi

Figure Page

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.
35.

36.

Sample 2 - Time Series Results for RACS with

Weighting Scheme 50/30/00/10/10 ...t 48
Classify New Record Context DIagramcccucveeererrierenensnessniensiseneccscsasssecsacanes 55
RACS Menw/Interface HIETarchyccocoveveereeverneneeiiiencincseenssescneesssesessssessenens 62
MAIN MEIIU ...veietteeeereesreeressseeeseessaesesssstssssaessssesessssensnessssesassssassssesasasassnsssnsassnacas 63
Database Management MEnNUcoeecvvremrinmermrntesinseiesssssiesessesesessesesessssssasacsessanas 63
Initialize Databases MENUcccceveureeereenieeseeerereistsacscsissesssesessnsssesessessssssssasssanss 64
View/Edit RECOTAS MENUccuvierieneereirtneceeeetrtesssisesasnssessssnesssesessssssassssssasssssanas 65
View ReCOrd INLEITACE.coveereererereeeentsiesesetnnsssesesessssesne s sssssesesesnsssssssssesassaeas 65
Edit Record Interface.........cooevceueveeveeereeiinriinnnenieseensensanesecsssesssnnnas eeneenseensarcnanne 66
Compact Databases MENU..........ccivuuiiivninreenieeisnnnessnssssssssssssssssasassetessasssssasscases 67
Template Management MENU.........ccueeueiermeeeieenensnesnsneeseesescstesiesssessensnsasuesssnes 67
Generate Templates MENU.........ooviiiiiiriinriinteteseeerr ettt neesssscnenenas 68
View Templates MENUcccoccuiiiiieririiisiieinsesetesssesssesssssesssessssssssss s ssstssessssasaesns 69
Log Files Management MEnNU..........cocceeeueerueermereeinenssssssssssssennstssnassessstsssssasasscssasass 69
View Log Files MENU......ccoccerininiiiiiiiiinnceencnteresnese et ssssss s ssssssnssssesesanees 70
Classify New Record Data ENtrycoooccrnicieieneeencestetensns s nsssssecenenseees 71
Verify New Record Data........cceviuiininmninininecciesenetensiese st esccscs 71
Classify New Record ReSULLSccucueccereininiiiiiinntsieseietereeneses e sssssesnsssenss 72
Histogram of Sample 1 Results for Class ... 162
Histogram of Sample 2 Results for Class 1.......cooeieieenreenieiiereeeeecesecies 162

Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 20/20/20/20/20ouviiimreerirenieeeecnntesetsseseses s sesesesessaenes 163

vii

Figure Page

37. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 20/20/20/20/201.........courevcnvecreerrreneenrirnenescsnrnsceresessesoscnessacans

38. Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 30/20/30/10/10.......c.ooureeeneerriiricinininescncecrenceenseseeeseseanses

39. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 30/20/30/10/10 ...t iieeerecteeeercererneceeeesreeseseeesecssesssssenns

40. Time Series Results of Sample 1 for Class 1 with
Weighting Scheme 50/30/00/10/10....cuieverevereeeeeeeirceeecesresncssstncesesesesesessesenns

41. Time Series Results of Sample 2 for Class 1 with
Weighting Scheme 50/30/00/10/10.......coceeeeeeererenecntreinceseisicsesssnsssssesssnesens

42. Histogram of Sample 1 Results for Class 2.........cceueeueereurreeerersrseseresssssesenessessssens
43. Histogram of Sample 2 Results for Class 2.........cceoeeereerinsecrinneneinrneninseesnessnnnnn,

44. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 20/20/20/20/20c..coveuieevenreciniininicersieessniuesnssesssessnsnianes

45. Time Series Results of Sample 2 for Class 2 with
Weighting Scheme 20/20/20/20/20ooueeveereseeeeeiereeseerereaceseesecesceseessssnssseesssssossens

46. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 30/20/30/10/10.......ciiiriniriniciincecnineesteinsescseseeeesesssesnens

47. Time Series Results of Sample 2 for Class 2 with
Weighting Scheme 30/20/30/10/10c..couiiiiereereerencceneneetercreeeeernesessaessonsssens

48. Time Series Results of Sample 1 for Class 2 with
Weighting Scheme 50/30/00/10/10....c..coirveaeerereriereenececreneetesssnesesstscssessesssssssns

49. Time Series Results of Sample 2 for Class 2 with ,
Weighting Scheme 50/30/00/10/10 ..ot seenresnseeesanes

50. Histogram of Sample 1 Results for Class 3.......ccccoeevenenirscenercinsicnecrucnnicensnnncnnene
51. Histogram of Sample 2 Results for Class 3.......ccccevevenrneeceereneninineceecrcccnenes

52. Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 20/20/20/20/20eoeioeeeieeieieceeeereeeeeesseeeseseeeseeesensessssesss

viii

Figure Page

53.

54.

55.

56.

57.

58.
59.
60.

61.

62.

63.

64.

65.

66.
67.
68.

Time Series Results of Sample 2 for Class 3 with

Weighting Scheme 20/20/20/20/20cvceeererenreeenerernerecsseessessssnsssssssssssssesssssssns 171
Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 30/20/30/10/10cuouevereerenrieireeerrenereseestsesesesesaencsenssenens 172
Time Series Results of Sample 2 for Class 3 with
Weighting Scheme 30/20/30/10/10ccueeereeeeerrreeereereeteecreresnessneessensesesesseenes 172
Time Series Results of Sample 1 for Class 3 with
Weighting Scheme 50/30/00/10/10covireeiereneerirrenresereeeeseeeessessensesesessessssasssenens 173
Time Series Results of Sample 2 for Class 3 with
Weighting Scheme 50/30/00/10/10uouceerememneiieeeeeieseteetenisescevenenenn 173
Histogram of Sample 1 Results for Class 4..........coceereveereerrveerenennsereneniesneeseseeens 174
Histogram of Sample 2 Results for Class 4..........coeveveevenrernenenennnneesenenseessesessenens 174
Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 20/20/20/20/20couemrmecerceeirrenerererereeeteseesseeessssssssssesass 175
Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 20/20/20/20/20cocereeeeeeeneecreeseseenessenenessssssssssessssssssnens 175
Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 30/20/30/10/10c.voeeieeireeeeereereeceereeeereeeere e reesssesennens 176
Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 30/20/30/10/10cociiirerceeeeerecrereeneseseeeessaeseseenesaesanns 176
Time Series Results of Sample 1 for Class 4 with
Weighting Scheme 50/30/00/10/10c.coeeerevereereererreeereeeennesseessenesesesessseesensens 177
Time Series Results of Sample 2 for Class 4 with
Weighting Scheme 50/30/00/10/10cueiuecrerevrerreerecrecreeerreeneeseeeseseseesesseensesasesnes 177
Histogram of Sample 1 Results for Class 5.......cccccoceeevueerreeneesinreenrisereeeseesesnnnae 178
Histogram of Sample 2 Results for Class 5.......ccoeieeereeeeeneeeneeeerreeeeereeeseeseeseens 178

Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 20/20/20/20/20coeovveeveeerecereereciereceereeeeenereeseeseaeesesesessenens 179

ix

Figure Page

69.

70.

71.

72.

73.

Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 20/20/20/20/20........ocoueuererreenreinnnnetsesresnsssssesssssssncscans 179
Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 30/20/30/10/10.......vueuiueiemreinreirenssssssesaetsesscssancssesssanss 180
Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 30/20/30/10/10cuuimemieeeereeeinceeeiseeerieisicessies s 180
Time Series Results of Sample 1 for Class 5 with
Weighting Scheme 50/30/00/10/10........ovouvmemeeeeeininneieietsteeasseenesescsssccssncanans 181
Time Series Results of Sample 2 for Class 5 with
Weighting Scheme 50/30/00/10/10oucuemerererereinrenentensnseseeeesenccssesesesisincensaens 181
X

List of Tables

Table Page
Summary Matrix of Document Classification Studi€s.........ccceveveereverenevenerrerenenernnnene. 18
Record Metadata Specified by DoD-STD-5015.2........occoveivierienieeeinneneenneeseennennnn 23
RACS Record Metadata FIeldscccceeueveeeueereninneeneenenieieeeenesesnessesseesesessessennnns 24
Analyze Individual Terms Logic Rules........cccocieieenirininnrinrrreerecrieneseteeeecenenaene 27
Record Classes Selected for SAmMPLingecceeeveeeeerereeereseerssneresesessrssssssesssssssssns 38
Class Score Weighting Schemes .. 39
Paired Sample 7 Test RESUILSccueereiririerieircereteeeeintncneneraeeaeseesesesseseeseessssssnens 49
Sample 1 Wilcoxon Signed Rank Tests ReSULSccccevrveeenvererenreenrneneesccnnncecnnenns 51
Sample 2 Wilcoxon Signed Rank Tests RESULLScccooeeereeerecrreecnerrcernreeseneenennnnes 51

10, RACS FlES....coiuiiiiniiitieienitssic et see e te st sesessessessnssssensessasassssnssesenesens 61

xi

AFIT/GIR/LAR/96D-11
Abstract

The records management process utilized within the Department of Defense (DoD) is
currently labor intensive. Work is being done to automate portions of this process, but
classifying documents and assigning disposition instructions remains a labor intensive,
manual operation. Although the requirement for this capability was identified by a DoD
sponsored study, an automated computer-based system which can classify and apply
disposition instructions has yet to be developed for use within the DoD. This thesis study
presents a proof of concept computer program called the Records Analysis and
Classification System (RACS) which was developed to demonstrate computer-based
techniques for the automated classification of official records. To demonstrate the
operation of RACS, a sample of 113 records was collected from the files of an
organization at Wright-Patterson AFB. An analysis of the results of the tests conducted
with the RACS system indicated that it was capable of accurately classifying 72 out of
the 113 records on average. Additionally, the RACS program was designed as a learning
system and the test results indicated that it was, in fact, capable of improving its

classification accuracy over time.

Xii

RECORDS ANALYSIS AND CLASSIFICATION SYSTEM:
A PROOF OF CONCEPT SYSTEM FOR THE AUTOMATED

CLASSIFICATION OF UNITED STATES AIR FORCE RECORDS

L._Introduction

In recent years there has been an increasing awareness of a need to manage our
military’s information resources more effectively. The Department of Defense (DoD),
recognizing this fact, has initiated some programs to address various areas of concern.
One such area has been the process of records management. To illustrate the need for a
fresh approach the following section provides some details on the current process in place
in the United States Air Force (USAF). To document some of the work done by the DoD
in order to overcome the limitations of the current records management process, the

second section presents a chronological list of such activities.

United States Air Force Records Management

The United States Air Force uses, Air Force Instruction 37-122 Air Force Records

Management Program (AFI 37-122), Air Force Manual 37-123 Management of Records

(AFMAN 37-123), and Air Force Manual 37-139 Records Disposition Schedule

(AFMAN 37-139, formerly AFR 4-20 V2) to manage its official records. AFMAN 37-
139 is used specifically to manage the classification and disposition of official records

(SECAF, 1996:1). The disposition instructions for a given record can be found in one of

438 decision logic tables (DLT) contained in AFMAN 37-139. Related DLTs are
grouped under one of 39 different series. For example, DLTs dealing with the area of
Information Management are in series 37 while those DLTs dealing with Acquisition are
in series 63 (note that the series are not numbered consecutively, their numbers
correspond to the appropriate governing instruction series) (SECAF, 1996:1). In all,
there are approximately 6150 disposition rules prescribed in AFMAN 37-139.

The disposition of records is managed by Records Technicians, primarily clerks and
secretaries, under the direction of a Chief of an Office of Record (SECAF, 1994a:Sec 8-
9). Records Technicians and Chiefs of an Office of Record are assisted by a Functional
Area Records Manger who is advised by the base Records Manager (SECAF, 1994a:Sec
6-9). Records Technicians develop files maintenance and disposition plans (files plans)
and physically file and manage (primarily) paper records. As the Air Force draws down,
the first slots to be eliminated are often clerks and secretaries, placing such administrative
tasks on the other unit personnel (McPharlin, 1995)7 Additionally, desktop PCs and local
area networks are providing the capability to create, use, maintain and disseminate
records electronically. The majority of these electronic records (including e-mail) are not
being managed by the unit files plans (McPharlin, 1995; Bolden and Pollard, 1996). This
results in lost information and/or information retained beyond its disposition, which takes
up valuable disk space and could leave the unit vulnerable to Freedom of Information Act
(FOIA) requests or lawsuits (McPharlin, 1995; Bolden and Pollard, 1996). These records

are not managed under the current process because an understanding of the myriad tables

and rules and knowledge of public law is a burden upon the typical end-user or producer

of USAF records.

Records Management and the DoD

In July 1994 the Department of Defense Records Management Business Process
Reengineering (RM-BPR) study was completed. The study was sponsored by the
Assistant Secretary of Defense for Command, Control, Communications and Intelligence
(ASD(C’1)), and the Deputy Assistant Secretary of Defense for Information Management
(DASD(IM)). During the course of the study representatives from each military service
and the Office of the Secretary of Defense reengineered the process of records
management (DoD RM-BPR, 1994:v).

In September 1994 the ASD(C’I) directed the DASD(IM) to create the Department
of Defense Records Management Task Force (RMTF). The designated mission of the
RMTF is to develop plans and draft policy to implement, by the year 2003, the initiatives
proposed by the RM-BPR (DoD RMTF, 1995: ES-1).

The RM-BPR identified six opportunities for improving records management within
the DoD. These six opportunities became the six strategic policy initiatives for the
RMTF (DoD RMTF, 1995:ES-1). The initiative of interest in this thesis is, “Develop
standard DoD functional and automated systems requirements for managing information
as records in an electronic environment” (DoD RMTF, 1995:ES-1). The DoD has
released a draft which “sets forth mandatory baseline functional requirements and data
elements for storing and accessing information from Records Management Application

(RMA) software used by DoD agencies in the implementation of their records

management programs” (DoD, 1996:1). However, this draft standard does not address
one of the original functional support requirements proposed by the RM-BPR which was
to, “Assign disposition instructions automatically” (DoD RM-BPR, 1994:4-2). It is this

original requirement which is of interest in this thesis.

Problem Statement

The records management process is currently very labor-intensive. Work is being
done to automate portions of this process but the process of classifying documents and
assigning disposition instructions remains a labor-intensive, manual operation. Although
the requirement for this capability was identified by the RM-BPR study, an automated
computer-based system which could accomplish the classification and disposition
assignment process has yet to be developed. (Note: throughout this document the term

disposition is synonymous with disposition instructions)

Research Objectives

The following objectives must be met in order to solve the specific problem of

interest:

1. Locate and summarize the various automatic document classification techniques
being employed by researchers and practitioners on related projects throughout the
world.

2. Develop and propose a technique for automatically analyzing records in order to
assign appropriate classification and disposition within the USAF.

3. Demonstrate the proposed technique on a limited set of sample records.

Scope and Limitations of the Study

The process of computer-based records management is a much larger process than
simply classifying records and assigning disposition instructions. The draft DoD
Standard 5015.2 specifies 13 broad functions a RMA should be capable of performing;
some examples include: Identifying Records, Filing Records and Assigning Disposition,
Storing Records, Retrieving Records, and Destruction of Records (DoD, 1996:14-21).
This thesis effort is not concerned with the whole process; instead, the scope of this
project is limited to the portion of the process which currently requires a human records
technician to determine record type and assign appropriate classification and disposition
instructions based on that determination.

Recognizing the fact that the DoD is currently engaged in an effort to standardize and
simplify the records management process across the DoD, this study will not duplicate
that effort. In other words, this study will not make any attempt to revise and/or propose
a new records schedule; rather it will demonstrate a technique which can be applied

regardless of the underlying schedule.

Summary

As is evident from the information presented thus far, the process of classifying
USATF records is not a simple process. The RM-BPR study recognized that one way to
improve the efficiency of the records management process is to have disposition
instructions assigned automatically (DoD RM-BPR, 1994:4-2). DoD-STD-5015.2
omitted this requirement (DoD:1996); consequently, any RMA software developed will

undoubtedly require the user to choose the appropriate disposition manually. This thesis

has proposed to develop and demonstrate a technique for automatic classification which
will fill in the gap left by DoD-STD-5015.2.

Chapter II, the literature review, provides general background on some relevant
artificial intelligence technologies and on document classification projects from the

literature.

II. Literature Review

Introduction

This literature review is subdivided into several different sections. The first several
sections are designed to provide a background on artificial intelligence (AI) and on two
specific Al areas of interest in this research effort. The remaining sections detail specific
research which has been conducted previously in the area of applying Al techniques to

the classification of documents.

Artificial Intelligence

Morris Firebaugh presents the following definition of Al which he attributes to
Professor Marvin Minsky of MIT, “Artificial intelligence is the science of making
machines do things that would require intelligence if done by men” (1988:12). This is
not the only definition of Al; in fact, definitions abound. The underlying principle
remains the same: artificial intelligence is a general term applied to the systems and
techniques, usually computerized, which are capable of performing functions which are
normally considered to require intelligence. Two examples include natural language
processing and visual perception. The two specific Al areas which are addressed within
this thesis are knowledge-based systems and natural language processing. These two
areas are summarized here due to their applicability to automatic document classification

tasks.

Knowledge-Based Systems

A knowledge-based system can be defined as “a computer system that attempts to
replicate specific human expert intelligent activities” (Mockler and Dologite, 1992:14).
One specific, well-known form of a knowledge-based system is the expert system.

Expert systems have been developed for a variety of diverse tasks ranging from medical
diagnosis programs such as MYCIN to speech understanding programs such as
HEARSAY-II (Mockler and Dologite, 1992:17).

There are several key components which distinguish a knowledge-based system from
other computer-based systems: a knowledge base, inference mechanism, user interface,
and working memory (Firebaugh, 1988:337-338; Mockler and Dologite, 1992:19-21;
Goel, 1994:54). The knowledge base contains domain-specific information and heuristics
which pertain to the domain of interest. For example, the knowledge base of the MYCIN
system contained about 400 heuristic IF-THEN rules pertaining to the diagnosis and
treatment of infectious blood diseases (Hayes-Roth, 1992:16). The knowledge base can
be considered a codified version of the knowledge derived from the experts within the
particular domain. The inference mechanism is the component in a knowledge-based
system which matches the input supplied against the knowledge contained in the
knowledge base (Goel, 1994:54). For instance, the MYCIN system prompts the user with
a series of questions. Depending on the answers to various questions, between 30 and 90
questions may be asked before a diagnosis is reached (Firebaugh, 1988:352-353). Once

MYCIN has gathered sufficient information, it produces a diagnosis which includes the

most likely causes of infection as well as the recommended treatment (Firebaugh,
1988:353).

There are a variety of ways knowledge can be represented in a knowledge base. The
most common way to store knowledge is in the form of rules, often called production
rules. A typical rule uses if-then statements and Boolean operators to assign values to
variables based on an analysis of input data. An example from the MYCIN system is

illustrated in Figure 1 (Firebaugh, 1988:309).

IF [a) the stain of the organism is gramneg AND
b) the morphology of the organism is rod AND
c) the patient is a compromised host]
THEN [there is suggestive evidence (.6) that the identity of the organism
is pseudamonas]

Figure 1. Example of IF-THEN Rules

Another method of storing knowledge is in frames. The underlying concept of
frames is to store pieces of knowledge together in meaningful chunks; for example, a
frame for a book might contain the title, author, publisher, and date of publication

(Weckert, 1992:31).

Natural Language Processing

In very general terms, a natural language processing (NLP) system can be defined as
“any system which performs a useful operation on natural language input” (Firebaugh,
1988:237). NLP systems have been developed for a number of diverse purposes ranging

from lexical and syntactic analysis tools such as spelling checkers to much more intensive

applications such as those for speech recognition (Firebaugh, 1988:239). This research
effort is concerned with the more general NLP processes for text analysis and will focus
the discussion on those areas.

Statistical text analysis is employed frequently for automatic classification tasks (see
Cheng and Wu, 1995; Losee and Haas, 1995; Larson, 1992). Statistical text analysis is
often considered to have as its origin the early works of Luhn. Luhn, as quoted in Van
Rijsbergen, stated, “It is here proposed that the frequency of word occurrence in an article
furnishes a useful measurement of word significance” (1979:15). It is on this simple
premise that much of the subsequent work in automatic term indexing has been built. An
in-depth discussion of Luhn’s work is not appropriate here but a summary of his
technique can be found in Van Rijsbergen (1979:15-16).

If one were to produce a list of all like words with their frequencies from a given set
of documents, it is not hard to imagine that the word list would quickly become quite
long. Thanks to the work of Luhn and other subsequent researchers there are techniques
for reducing these word lists to a more manageable length which will yield a list of index
terms or keywords which will be representative of the original document. The basic steps
employed typically are:

1. Removal of high frequency words or stopwords. This can be accomplished by
means of a stoplist which is a list of all those words which occur frequently and are

not considered key words (Van Rijsbergen 1979:17). Examples of stopwords are
such function words as: on, the, about, has, now, and which.

2. Stripping of suffixes. This process, also called conflation or stemming, involves
examining words for particular word-endings and removing them (Paice, 1977: 82).
Examples include such word endings as -ing and -ous.

10

3. Detection of equivalent words. For example, MATHMATICS should be reduced to
MATH (Cheng and Wu, 1995:294).

The discussion above is intended to provide a very simplified, brief overview of the
techniques involved in automatic text analysis. As will be seen in the following
discussion, refinements and adaptations of the basic text analysis process are integral

portions of the various systems discussed.

Document Classification Systems

It is appropriate at this point to define some key terms used frequently throughout
this thesis. The term document is used generically to refer to any form of written material
to be classified whether it be a book, journal article, or an office memo. 4 document
classification system is defined as a system which takes as its input a document to be
classified and produces as its output the correct classification for the given document in
relation to a predefined classification scheme.

Considering the deﬁﬁition presented above, it can be said that there are two key
processes which every document classification system must perform. The first process is
text analysis. The second is determination of document classification or classification
determination for short. Taken together, the output of text analysis is a document
representation which can be utilized by the system in order to determine the appropriate
classification during classification determination.

It has been noted by various authors and confirmed by this author that much of the
research done in the 1970s and ‘80s with automatic classification focused on clustering

like documents without regard to any predefined classification scheme (Larson 1992:131;

11

Cheng and Wu, 1995:289). Given the focus of this thesis effort and the definitions
presented above, the following discussion does not address this early research; instead it
focuses on a sample of contemporary research.

For clarity of discussion, the various classification projects surveyed below are
broken into three sections. The first section--Manual, Knowledge-Based Systems--
describes two knowledge-based systems which require the user to input the significant
data to the system in order for it to make a classification. The second section--
Automated, Knowledge-Based Systems--describes one project which incorporates
automated document content analysis with a knowledge-based representation of the
classification scheme. The third section--Automated, Mathematical Comparison
Systems--describes three systems which were each designed to conduct autonomous
analysis of document content and arrive at a classification using various mathematical
techniques.

Manual Knowlédge-Based Systems. A perfect example of a manual/user-dependent
document classification system is the current USAF document classification system. An
example of a classification system which basically automates a portion of what still
remains a largely manual system is the CLOD-X expert system. CLOD-X, which is the
acronym for Classification of Office Document Expert System, was designed for records
managers in the International Civil Aviation Organization (Savic, 1994:20). The
system’s knowledge base utilizes both rules and frames to represent the knowledge
necessary for classification. Classification is accomplished through a process which

requires the user to analyze a given document and then answer a series of questions posed

12

by CLOD-X. Once CLOD-X has gathered sufficient information from the user, it returns
a document classification from a possible 400 classes.

Cosgrave and Weimann present a discussion on the use of an expert system tool
known as n-Cube for item classification using the Universal Decimal Classification
(UDC) standard (1992:33). The system they describe requires the user to make some
preliminary assessments of the documents, basically determining keywords and concepts
associated with the document. The user feeds these keywords into the expert system, and
the system returns a suggestion as to the appropriate UDC classification number. While
this system does not require the user to answer a series of questions as with the CLOD-X

~system, it still requires the user to analyze the source document and input an accurate set
of keywords to receive a document classification from the system.

Automated, Knowledge-Based Systems. The one system which falls into this
category is the one described by Bhatia et al. The bulk of their article describes the
process of creating a knowledge base for their classification system. To construct the
knowledge base the authors borrow a concept ﬁo;11 the field of clinical psychology
known as Personal Construct Theory (Bhatia et al., 1991:92). The system developers
then apply the techniques of this theory during the process of knowledge elicitation
conducted with classification experts. The resulting knowledge base is composed of a
series of production rules.

A new document is automatically analyzed to extract index terms or term phrases.
The authors refer to these terms or term phrases as constructs (Bhatia et al., 1991:96). A

given document is therefore represented by a set of constructs. The occurrence of a

13

construct in the document triggers the rules corresponding to that construct in the
system’s knowledge base. The document is ultimately assigned the classification of the
category for which the calculated certainty of correct classification is greatest (Bhatia et
al., 1991:96).

This article is of value in that it illustrates one method for developing a knowledge
base for the classification of documents. The one significant drawback of their system is
that it is extremely labor intensive during the development phase. The systems presented
in the next section illustrate some methods for automating this phase of system
development as well.

Automated, Mathematical Comparison Systems. The projects and techniques

presented in the previous two sections each used expert system techniques to represent
the knowledge of a particular classification scheme. In contrast, the three projects
presented in this section depart from this approach and instead use various statistical
comparison approaches to determine document classification.

The first project reviewed (Losse and Haas, 1995) had several stages. First the
researchers looked at word frequencies and especially at the frequencies of what they
called sublanguage terms. The authors define a sublanguage as “the written or spoken
language that is used in a particular field or discipline by people working in the field,
especially to communicate with their colleagues” (Losee and Haas, 1995:519). The study
focused on eight general fields or disciplines: biology, economics, electrical engineering,

history, math, physics, psychology, and sociology.

14

During the second phase of their project, they conducted an investigation of how
many terms they found to be sublanguage terms in the titles and abstracts of various
articles as defined by special dictionaries for each discipline and by a general dictionary.

The final portion of their investigation is the one of most interest in this thesis. The

authors developed a system to test whether term frequencies could be used to accurately

- classify a document--represented in their study by the abstract within a document--into its

correct discipline.

Each discipline was represented in the system by a da;tabase of its sublanguage terms
along with their Poisson percentiles. The Poisson percentile as presented in this study,
“provides a measure of the degree to which a term has a higher than expected frequency
of occurrence in the database in question” (Losee and Haas, 1995:522). To determine the
correct discipline of a given abstract, the list of words in that abstract would be compared
with each of the eight lists of words in the discipline databases. Poisson percentiles were
calculated for the abstract in relation to each database and a composite score or weight
computed (Losee and Haas, 1995:527). The abstract was then classified as a member of
one of the eight disciplines based on the highest composite score or weight (Losee and
Haas, 1995:527).

Between 22 and 50 abstracts from each discipline were presented to the system to
determine its ability to accurately characterize the general domain to which the abstract
belonged. The results of the experiment yielded amazing results. The authors’ system
was highly accurate, with the lowest success rate at 92.3% while classifying documents

from the general domain, history (Losee and Haas, 1995:527). The system was 100%

15

accurate in classifying both math and sociology documents (Losee and Haas, 1995:527).
The higher error rates for the history domain were attributed to the fact that the sub-
language for that domain did not contain as many unique terms as the sub-language for an
area like mathematics (Losée and Haas, 1995:528).

The experiment developed and reported by Larson attempted to select the correct
classification for a document based on the characteristics of that document and on the
characteristics of all documents previously assigned the same classification. The
classification categories used in the study were from the Library of Congress
Classification scheme. Larson developed what he called classification clusters to
represent each Library of Congress Classification tested in the study. The classification
clusters were essentially weighted vectors of index terms (Larson, 1992:132).

Larson’s basic classification technique was to use the terms extracted from a
document to be classified as a query to a set of databases where each database represented
a classification cluster. The resuits of these queries indicated the document’s
classification. Larson conducted an exhaustive set of experiments using each
combination of four matching methods, five query types and three index term
representation schemes.

Larson reported that the highest accuracy achieved by any single combination of the
parameters specified above yielded an accuracy of 46.6% (Larson, 1992:145). Larson
was less than optimistic in his conclusion as to the effectiveness of a fully autonomous
classiﬁcation system. He stated that “fully automatic LC (Library of Congress)

classification may not be possible for all books. A semiautomatic method of

16

classification, using one of a combination of the methods tested here, followed by human
examination and selection of the highly ranked clusters, appears to be feasible” (Larson,
1992:146).

The last article reviewed is a study by Cheng and Wu which investigated the
feasibility of automatic classification under the Universal Decimal Classification (UDC)
scheme. Their technique was very similar to the others presented within this section.
First class vectors were developed for each class used in the study. These class vectors
essentially consisted of the keyterms and their frequencies from a set of sample books.
‘When a new book was to be classified, a book vector would be generated. The book’s
title and chapter headings were used to generate the keyterms which made up each book
vector. Once a book vector was developed it was compared to each of the class vectors
and, using a calculation called the Modiﬁed Overlap Coefficient, a measure of similarity
was determined (Cheng and Wu, 1995:293). The class vector which yielded the highest
similarity was the one to which the new book was assigned. The results using this
technique appear very promising. The authors report that when 384 books were classified

about 86% were classified correctly (Cheng and Wu, 1995:296).

Summary

As is evident from the discussion above, automatic classification has been
demonstrated using a variety of methods; some manual, some automated. Table 1 below
summarizes the key points of the studies reviewed above for easy reference. The
methods in the section, Automated Mathematical Comparison Systems, are the ones of

greatest interest in this thesis. This is due to the fact that the systems described there not

17

only automate the classification process, but they automate the process of developing the
representations of the underlying classification scheme as well. The classification
method described by Cheng and Wu appears very promising in that it uses a simple yet

effective calculation to determine document classification.

Table 1. Summary Matrix of Document Classification Studies

CLASSIFICATION
TEXT ANALYSIS DETERMINATION

Automated
Knowledge
Mathemati
Comparison

Based

AUTHOR(s) TITLE

Savic Designing an Expert System for
Classifying Office Documents

>< Manual

Cosgrove & tExpert System Technoiogy Applied to

> X X

Weimann ltem Ciassification
Bhatia, Deogun |Formation of Categories in Document
& Raghavan Classification Systems

Losee & Haas |Sublanguage Terms: Dictionaries,
Usage, and Automatic Classification

Larson Experiments in Automatic Library of
Congress Classification

X > X

Cheng & Wu ACS: an Automatic Classification
System

>4 X X X

18

III. Method

Introduction

The second sta';ed objective of this thesis effort was to develop and propose a
technique for automatically analyzing records in order to assign appropriate classification
and disposition within the USAF. This chapter begins by introducing the Records
Analysis and Classification System (RACS), a proof of concept system which was
developed to meet this objective. Included with this is a brief discussion of the
diagramming technique used in portraying the system. Following that are sections which
describe in detail the processes which occur within RACS while classifying a new record.
A discussion on the procedure used to test the operatjon of RACS including specific
details on the sample of records collected is presented. The chapter concludes by

summarizing the statistical techniques employed to analyze the performance of RACS.

RACS Introduction

The RACS program was developed using the C programming language. RACS
contains many administrative functions designed to manage the various data files
generated and used during program execution; an in-depth discussion of these functions is
outside of the scope of this chapter. Those interested in these details can refer to
Appendix B, Overview of the RACS System, and Appendix C, which contains a
complete listing of the source code for the RACS program. The discussions in
subsequent sections will focus on the NLP functions which constitute the heart of the

RACS approach to automatic classification of USAF records.

19

Data Flow Diagramming. It is appropriate at this point to briefly describe the

diagramming technique used in portraying RACS’ operation. Data Flow Diagrams
(DFD) are a graphical diagramming technique used to depict the flow and transformation
of data through a set of processes (Kendall & Kendall, 1995:229). The four basic

symbols used in creating DFDs are illustrated in Figure 2.

0 .
Data
Flow oracess | D1 | Data Store I
—

Figure 2. Four Basic Symbols for Data Flow Diagrams

Kendall and Kendall describe the four basic symbols as follows (1995:232-233):

1. An entity is something external to the system which can send data to and receive data
from the system.

2. A data flow depicts the movement of data within the system.
3. A process transforms data as it flows through the system.
4. A data store, represents a repository in which data can be stored and retrieved.

The highest level DFD used in describing a system is the Context Diagram. This
DFD contains only one process which represents the entire system and illustrates the
relationships between the system and any external entities.

The second level DFD is referred to as Diagram 0. Diagram 0 is an exploded view

of the system depicted in the Context Diagram and can show up to nine numbered

20

processes. In turn, each of the processes depicted in Diagram 0 can be exploded into

child diagrams as necessary to present greater detail.

Classify New Record Context Diagram

The actual portion of the RACS system of interest in this thesis is that portion which
determines the correct classification for a new record. Figure 3 presents the Context
Diagram for the Classify New Record process. This process receives from the system
user the pertinent data about the record to be classified. This data about the record, or
Record Metadata, is used by the Classify New Record process to return the Correct
Record Class (record classification) to the user. The concepts, record metadata and

record class, will be described in the following sections.

Record

Metadata
User

Classify New
Record

Figure 3. Classify New Record Context Diagram

Classify New Record Diagram 0

Figure 4 is the Diagram 0 DFD for the Classify New Record process.

21

User
Record Metadata
1
Record Data
Enter New Structure
Analyzed Qutside Record
of RACS
Offset Record Data
Details Structure
’ 2
D3 Score Log
Generate Class Templates
Record
Analyzed o Template
Offset Terms Class
Details Record Templates
Template
3 Class G
Compare Templates g?:zte
Log Results Details | Templates Templates
Class Database
Al Scores Records
Details Correct 4 Correct
Record Record Class Databases
Class
Choose
Record Class New
Record Data
Correct
Record Class
) Add Record
Analyzed Outside To Database
of RACS User

Figure 4. Classify New Record Diagram 0

As one can see from Figure 4 there are seven key processes which are involved in the
Classify New Record process. As was depicted in Figure 3 (the Classify New Record
Context Diagram) the Classify New Record process depicted in Figure 4 begins when a

user enters the Record Metadata on a new record (shown at the top of the figure). The

22

process concludes when a Correct Record Class determination has been returned to the
user (shown at the bottom of the figure). The seven key processes depicted in Figure 4

are described in greater detail in the following sections.

Process 1: Enter New Record

DoD-STD-5015.2 specifies nine types of metadata which any RMA must be capable
of recording about a given record prior to its classification and filing. The nine types of

metadata and their descriptions are listed in Table 2.

Table 2. Record Metadata Specified by DoD-STD-5015.2

Field Name Description

Subject The principal topic addressed in a record.

Data of Record The date and time the record is filed by the RMA.

Addressee(s) The name of the organization or individual to whom a record is addressed.

Media Type The material/environment on which information is inscribed (e.g., microform,
electronic, paper).

Record Format The logical structure of a record (e.g., WordPerfect 5.2®, Microsoft Excel 4.0®).

Applicable primarily to electronic records.

Location of Record | The physical location of the record. For example an operating system path-file
name for an electronic record or the location of a file cabinet for a paper record.

Document Creation | The date and time that the author-originator created the record.
Date

Author or Originator | The author of a document is the physical person or the office/position responsible
for the creation of the record.

Originating Official name or code that reflects the office responsible for the creation of 2
Organization record.

(Adapted from DoD, 1996; Prescott and others, 1995)

For this thesis project, it was assumed that the processes performed by the RACS

system would in fact be just one piece of a larger RMA. With this assumption in mind,

the user enters the pertinent data into the system from the Classify New Record Data

23

Entry interface (see Figure 31 in Appendix B). The specific data fields capable of being
collected by RACS mirror those described in Table 2 with the following exceptions:

1. RACS does not collect Location of Record data. The reason for this exclusion is that
a new record’s location is only relevant for retrieval purposes after the record has
been classified and filed. This process is outside of the scope of the RACS program
so was therefore not included.

2. The user does not enter the Date of Record, RACS enters this information
automatically.

3. A field called Record Type was added which is intended to capture information
about the type of record being classified; for example, if a record is being filed which
is an AF Form 55, AF Form 55 would be entered as the record’s Record Type. This
field was added for purposes of testing the system because it was felt that this type of
metadata (though not required by the DoD standard) might be an important
distinguishing characteristic of a given record.

Table 3 shows the eight data fields used by RACS as record metadata. The order of
the individual fields for each type of metadata have been reordered to correspond to the

sequence in which the user enters them (see Figure 31 in Appendix B).

Table 3. RACS Record Metadata Fields

Field Name Enter Data | Description

Addressee(s) Optional The name of the organization or individual to whom a record is
addressed.

Originating Mandatory | Official name or code that reflects the office responsible for the

Organization creation of a record.

Subject Mandatory The principal topic addressed in a record.

Author or Originator | Optional The author of a document is the physical person or the
office/position responsible for the creation of the record.

Document Creation | Optional The date and time that the author-originator created the record.

Date

Record Type Mandatory The type of record being entered (e.g., official memorandum, AF
Form 55).

Media Type Mandatory The material/environment on which information is inscribed (e.g.,
microform, electronic, paper).

Record Format Mandatory | The logical structure of a record (e.g., WordPerfect 5.2®,
Microsoft Excel 4.0®). Applicable primarily to electronic records.

24

The fields labeled as Mandatory are used by RACS to determine the record class of a
new record. These fields were selected because, as a group, they are likely to be capable
of distinguishing one record from another. In contrast, the other fields, while useful for
retrieval in an RMA, would probably not be descriptive enough to distinguish one record
from another. For instance, it was assumed that the metadata in the Subject field would
be more useful for classifying a record than the metadata in the Addressee field.

The output of the Enter New Record process is a Record Data Structure containing

the data entered by the user into each of the fields listed in Table 3.

Process 2: Generate Record Template

As illustrated in Figure 5 below, the Generate Record Template process takes as its
input the Record Data Structure created in Process 1 and performs an analysis of the
mandatory record metadata to derive a representation of the original document or record

called a Record Template.

25

Record Data

Structure
2.1
Analyzed T
yzec Jems Analyze
Individual
Terms
ALLALPHA NONWORD
Terms Terms
Analyzed Terms
Stop 22
Word
I D5 | Stop List '___»or 3 Remove
Stopwords
Remaining
23 LLALPHA Terms Remaining
NONWORD Terms
Perform Stemmed 24
Stemming Wa| | ALPHA Terms :
Operation Add to
Record
Template
Record
Template

26

Figure 5. Generate Record Template Child Diagram

Process 2.1: Analyze Individual Terms. This sub-process performs the crucial task
or extracting and classifying individual lexical terms (i.e., words) from each of the five
mandatory fields of metadata in the Record Data Structure. The algorithm developed to
accomplish this task is an adaptation of a lexical scanner described by Atkinson and
Atkinson (1990:382-393). The algorithm uses white space and punctuation characters as
delimiters when extracting individual terms for analysis. Each extracted term is classified
as either ALLALPHA or NONWORD. Any punctuation encountered is classified as
PUNCT. Table 4 outlines the logic used to make these distinctions. Note that the rules

in this table are executed in sequence and the first rule to be found true causes the

algorithm to assign that classification to the current term and then begin executing the

rules again with a new term.

Table 4. Analyze Individual Terms Logic Rules

RULE |IF AND AND THEN

first character is second character is all other characters are term type is
1 A-Zora-z a-z a-z ALLALPHA
2 A-Z A-Z A-Zoraz NONWORD
3 0-9 0-9or/or- 0-9 or/or- NONWORD
4 A-Zoraz N/A N/A ALLALPHA
5 0-9 N/A N/A : NONWORD
6 any punctuation N/A N/A PUNCT

Key: A-Z uppercase alphabet character
a-z lowercase alphabet character
0-9 numerical character

To illustrate the use of the rules in Table 4, consider the following terms extracted
from a Subject metadata field: Administrative, AFR, and 177-16. The term
“Administrative” would be classified as ALLALPHA because it meets the conditions in
Rule 1. In contrast, the term “AFR” would be classified as NONWORD because it does
not meet the conditions in Rule 1 but does meet those in Rule 2. Likewise, the term
“177-16” would be classified as NONWORD because, although it does not meet the
conditions in either Rule 1 or Rule 2, it does meet the conditions in Rule 3.

All PUNCT is eliminated from further analysis while the terms classified as
ALLALPHA and NONWORD are converted to all lowercase characters and then sent for
further analysis to Process 2.2, Remove Stopwords.

Process 2.2: Remove Stopwords. During this process each term from Process 2.1 is

compared to a stoplist. If one of the terms from the record matches a stopword in the

27

stoplist the term is marked as a stopword and dropped from further analysis. The stoplist
used with RACS was presented in Fox and contains 425 common English words (e.g.,
“a,” “the,” “and,” “of,” etc.) (1992:114-115). Thus, those terms which are assumed to
have relatively little value in analyzing the meaningful differences among records are
removed from consideration. The only additional stopwords added to the stoplist were
the terms “af” and “form”. These additional stopwords were added due to the fact that
they occurred frequently in all types of records from various record classes in the sample
collected for this thesis and consequently were not considered valuable in discerning
meaningful differences among records. The complete stoplist used in this thesis can be
found in Appendix E.

Following removal of all stopwords, the remaining ALLALPHA terms are sent to
Process 2.3, Perform Stemming Operation, while all remaining NONWORD terms are
sent directly to Process 2.4, Add to Record Template.

Process 2.3: Perform Stemming Operation. The stemming algorithm used in RACS
was presented in Fox (1992: 151-160) and is an adaptation of a suffix stripping algorithm
proposed by Porter (1980). Porter’s algorithm works by “treating complex suffixes as
compounds made up of simple suffixes, and removing the simple suffixes in a number of
steps” (1980:130). The result of this stemming operation is a list of terms which have
been reduced to a common morphological stem. These common stems enhance the
ability of RACS to match related terms which would have otherwise appeared to be
different. For example, the stemming process would take as its input the terms

“connect,” “connected,” “connecting,” “connection” and “connections” and reduce each

28

term to the common stem “connect.” Only ALLALPHA terms are subject to stemming in
this system. A NONWORD term (e.g., “AFR”) is assumed not to share a common stem
with any other NONWORD:s.

Process 2.4: Add to Record Template. The final process within the general process
Generate Record Template takes as its input all remaining NONWORD terms after
stopword removal and all remaining ALLALPHA terms after stopword removal and
stemming. These terms are placed with their frequency of occurrence in the metadata
into a record template which is RACS’ representation of the document being classified.
Each term is added to the appropriate term array in the record template; in other words,
terms which were extracted from the Subject field in the original Record Data Structure
are added to a Subject Array in the Record Template and terms from the Media Type
field are added to the Record Template’s Media Type Array. Refer to Appendix F to see
an example of a record template as well as the results of the analysis processes in Process

2 on one record.

Process 3: Compare Templates

Recall from Figure 4 that the Compare Templates process takes as its input the
Record Template discussed in the previous section and each of the five Class Templates
in turn. Class templates are identical to record templates except for the fact that instead
of representing one record, a given class template represents all records previously added
to that class (i.e., a record category).

Thus, for each record template to class template comparison there are five distinct

arrays of terms to be compared; Subject, Originating Organization, Record Type, Media

29

Type, and Record Format. To determine the amount of overlap (similarity) between a
given record template array and the corresponding class template array, a Modified
Overlap Coefficient (MOC) is calculated. To illustrate, the formulas for calculating a
MOC indicating the overlap between the record template’s subject array and class
template 1’s subject array are defined below (adapted from Cheng and Wu, 1995:293).

Let C,5, in Equation 1 represent class template 1’s subject array and Rg,, in

Equation 2 represent the record template’s subject array:
S (CWATCA A S W | W

RSub = {(rlagl)’(rvgl)"":(rj>gj)9"'>(rn ’gn)} (2)

where
¢, =termiin C,
f; =frequency of term i
m = the number of terms in C,g,,
r; =termj in R,
g; = frequency of term j

n = the number of terms in Rg,,

30

Then the formula for calculating the MOC of the record template subject array with

class template 1’s subject array is:

Zeij

N,(G)

MOC,, = 3

€; =j}(gj) if ¢, =7,
N, = number of records in class template 1

G=Y g ifc = r

In all, 25 MOC values for a given record template are calculated; there are five
different array MOCs (representing overlap of terms in the subject field, the originating
organization field, etc.) for each of the five class templates (representing record class 1,
record class 2, etc.). Five composite class scores are calculated by summing the five

MOC values from each record template to class template comparison.

Process 4: Choose Record Class

This process represents the point at which the user is presented with a rank ordered
list of the most likely classifications for the record currently being classified. Figure 33 in
Appendix B is a depiction of the interface the user actually sees. The user is required to
enter the correct record class for the current record. Once this is done, the output of the
process, Correct Record Class, flows to the last three processes included within the larger
process, Classify New Record (see Figure 4). As far as the user is concerned, RACS is

now ready to classify another record.

31

Process 5: Log Results

This important process takes as its input the results of various other processes within
the overall Classify New Record process and records them to one of two log files which
are used for data analysis. Another key function performed within the Log Results
process is the calculation of an offser which is in essence an error value. The offset
indicates how far off RACS was from determining the correct record class for the current
record.

An examination of Figure 6 reveals the interrelationships between the various inputs

and the three sub-processes involved.

Correct Record Class

Calculate
Offsets

A Score Details

Record Template

Analyzed Terms

All
Details

Offset
Details

D3 Score Log D4 Log File

Figure 6. Log Results Child Diagram

32

Process 5.1: Calculate Offsets. The method for calculating offsets is tied to the ranks

RACS assigns to the five classes during the Compare Templates process. For example, if
the correct class (as entered by the user) for a new record was class 4 and RACS had
determined that class 4 was the third most likely classification, then RACS was off by
two positions in ranking the correct class and the offset is 2. If for the same record,
RACS had determined that class 4 was the first most likely classification (rank 1) then the
offset would be 0.

There is an exception to the general rule used in calculating offsets when RACS
assigns the same score and rank to two or more record classes. For example, if class 5 is
the correct classification and RACS ranks class 5 and class 1 as tied for most likely
classification, then RACS could not distinguish between class 1 and class 5 and the offset
is calculated as 1 (rather than 0) due to the ambiguity.

Process 5.2: Update Score Log. This process takes the Offsets calculated during the
Calculate Offsets process and the Correct Record Class from the Choose Record Class
process and adds the values to the simple log file Score Log which is depicted by data
store D3 in Figure 6. Appendix G is an excerpt from an actual Score Log.

Process 5.3: Update Log File. As Figure 6 illustrates, this process takes as its inputs
the results of various processes and adds the data to the Log File (data store D4).
Appendix F is an excerpt from an actual Log File and illustrates the various information

captured.

33

Process 6: Add Record To Database

As is indicated in Figure 4, this simple process adds the data from the original
Record Data Structure for the current record to the database corresponding to the Correct
Record Class; in other words, if the current record belongs to class 3, the Add Record To

Database process would add this record’s data to the database containing data on class 3. -

Process 7: Generate Class Templates

Once a record has been classified and its metadata has been added to the appropriate
class database, the corresponding class template is regenerated. As mentioned earlier, a
class template is identical to a record template except for the fact that a class template is a
representation of all the records previously added to that class. An examination of the
processes illustrated in Figure 5 and the processes illustrated in Figure 7 emphasize the
fact that record templates and class templates are virtually identical. Once again, the only
difference is the fact that each record stored in a given Class Database (signified by data
store D2 in Figure 7) is analyzed and used to build the corresponding Class Template
(signified by data store D1 in Figure 7). Appendix H contains a sample of a typical class
template.

The strength of this approach is that RACS is in essence capable of learning in that,
as more records are added to a given class, its knowledge of the records typically found in
that class increases. The converse to this is the fact that a record entered into a class to

which it does not belong can distort RACS’ representation of a given class.

34

Stop
Words

Stop List

Remaining
ALLALPHA Terms

Class Databases

ALLALPHA
Terms

Database

Analyze
Individual
Terms

NONWORD
Terms

Remove
Stopwords

Remaining

Perform
Stemming
Operation

Stemmed
ALLALPHA Terms

Add to Class

NONWORD Terms

Template

Class
Templates

D1

Class Templates

Figure 7. Generate Class Templates Child Diagram

Procedure for Testing RACS

The third and final objective of this thesis was to demonstrate the classification
techniques developed on a limited set of sample records. Three specific questions were

formulated which served as the basic requirements for designing the actual testing

procedures. The questions were as follows:

1. How accurately does RACS classify records and is it capable of learning?

2. Since RACS was designed to be a “learning” system, does the order in which records
are added to RACS’ record classes affect overall classification accuracy?

35

3. Does the weighting of the five fields of metadata used for scoring affect overall
classification accuracy?

The discussion which follows presents an overview of the sample records collected
for this thesis. Following that is a discussion of the actual procedure employed to test
RACS.

Sample Records. The 88th Support Group Administration Office (88 SPTG/CCE)
was chosen as the source of the sample records for this thesis. There were two primary
reasons for the selection of the 88 SPTG/CCE. The first reason is that the files plan for
the 88 SPTG/CCE consisted of 23 rules, 19 of which are found among the “Common
Tables and Rules” in Appendix I. As stated in Chapter I, there are over 6000 disposition
rules in AFMAN 37-139. Of these, a relatively small number of rules are common for
virtually all files plans across the USAF (Bolden and Pollard, 1996). Appendix I is an
adaptation of a table provided by the personnel in the Base Records Management office at |
Wright-Patterson AFB, OH. The table lists the common tables and rules for files plans
on Wright-Patterson.

Second, a Support Group Administration Office is an organization which can be
found on nearly all USAF Bases. The proceeding two factors taken together demonstrate
that the files plan in use by the personnel at the 88 SPTG/CCE might be considered
representative of a typical USAF files plan.

The files plan for the 88 SPTG/CCE, illustrated in Appendix J, contained record
classes corresponding to 23 distinct disposition rules. AFMAN 37-123 allows for

subdivisions to be added to files plans for ease of filing (SECAF, 1994b:3.2). It should

36

be noted that while the major items/disposition rules contained in a given files plan are

governed by AFMAN 37-139, subdivisions are not; a given organization can include

whatever subdivisions they deem appropriate to meet their specific needs. Subdivisions

are illustrated in Appendix J in items 4, 6, 7, 17, 20, and 23. For filing purposes, each of

these rules and subdivisions correspond to a physical file folder in the 88 SPTG/CCE’s

official files.

To demonstrate the operation of RACS, five record classes or categories were

selected for sampling (see Table 5). The following factors were considered when the

record classes were selected.

1.

At least two record classes should be subdivisions (i.e., would be determined by the
individual office rather than USAF regulation) in order to demonstrate RACS’
ability to be customized to the needs of any given office.

At least one record class should contain records of a homogeneous nature. In other
words, all of the files in the class are a specific document type (such as a single
USAF form).

Several record classes should contain records of a heterogeneous nature in order to
test RACS’ ability to classify diverse records (such as forms, memorandums, etc.)
into the same class.

The number of records physically filed in the file folder corresponding to a given
record class should be at least five in order to provide a sufficient sample for testing
RACS.

37

Table 5. Record Classes Selected for Sampling

RACS

Class | # Rerds | Item Title Disposition Rule

1 26 3 Delegations/Designations of Authority & T 11-02 R21.00
Additional Duty Assignments

2 30 6-3-2 Office Administrative Files - Internal Admin and | T 11-01 R01.00
Housekeeping - Supplies/Equipment

3 5 6-4 Office Administrative Files - Internal Admin and | T 11-01 R01.00
Housekeeping - Safety

4 13 12 Internal Inspections/Self-Inspection Check T 11-02 R33.00
Lists/Inventories

5 39 15 Suggestions, Inventions, & Scientific T900-02 R02.00
Achievements - At Evaluating Office

In all, data on 113 records were gathered. The actual data (i.e., record metadata)
shown in Table 3 was compiled during a review of each sample record located in the
physical file folders of the 88th Support Group. A complete listing of the sample records
used in this thesis can be found in Appendix K.

Determining the Effects of Record Order. In order to test the effects of record entry
order on RACS’ classification accuracy, the following procedure was employed. Each
sample record was assigned a random number using a computer-based random number
generator which was seeded by the time from a personal computer’s internal clock. The
list of records was then ordered according to the random numbers. This procedure was
then repeated on the same personal computer resulting in two randomly ordered lists of
records.

Determining the Effects of Various Weighting Schemes. Three different weighting
schemes were employed to score every record entered for classification (see Table 6).

The column labels in the top row of the table signify the MOC value for the record

38

metadata field listed as the subscript. The row labels listed in the first column are the

Table 6. Class Score Weighting Schemes

notations for each weighting scheme.
|

MOC,,, MOC,,, MOCy, Moc,,, MOC,,,
20/20/20/20/20 0.2 0.2 0.2 0.2 0.2
30/20/30/10/10 0.3 0.2 0.3 0.1 0.1
50/30/00/10/10 0.5 0.3 0.0 0.1 0.1

Key: Sub = Subject Field
Org = Originating Organization Field

Typ = Record Type Field

Med = Media Type Field

Frm = Record Format Field

The rationale for the selection of the three weighting schemes was as follows:

1. 20/20/20/20/20 - This scheme assigned equal weight to all applicable data fields.
This scheme was implemented to provide a standard against which the other two
weighting schemes could be compared in terms of classification accuracy.

2. 30/20/30/10/10 - It was felt that the Subject and Record Type fields would be of
more value in distinguishing correct record class than the other fields. Therefore,

under this scheme the Subject and Record Type fields were given greater weight than
the other three fields.

3. 50/30/00/10/10 - Record Type does not factor into the score calculated using this

scheme. This scheme was designed to provide insight as to the effect of the addition

of the field, Record Type, which is not mandated by the DoD standard.

Conducting the Test. The procedure for conducting the actual test was

straightforward. All of RACS’ data files were cleared of data and the first set of

randomly ordered records was entered into the system. After the log files were saved to

an alternate location, the data files were once again cleared and the procedure was

repeated with the second set of randomly ordered records.

39

Analyzing RACS’ Performance.

The three offset values (corresponding to the three weighting schemes) recorded for
each sample record classified served as the raw data which was analyzed to determine
RACS’ accuracy as an automated records analysis and classification system. The
following sections summarize the analysis conducted to answer the three research
questions.

Question 1. How accurately does RACS classify records and is it capable of
learning? To analyze RACS’ overall accuracy at classifying records, relative frequency
histograms were developed (McClave and Benson, 1994:28-32). Time' series plots
including exponentially smoothed trend lines (McClave and Benson, 1994:796-798) were
prepared to illustrate the “learning curve” associated with each set of randomly ordered
sample records and each weighting scheme.

Question 2. Since RACS was designed to be a “learning” system, does the order
in which records are added to RACS’ record classes affect overall classification
accuracy? Paired sample ¢ tests (McClave and Benson, 1994:420-424) were conducted
to determine if there was a statistically significant difference between the offsets
generated by each set of randomly ordered sample records. This test was chosen for two
primary reasons. First, the samples in this case were related (i.e., the exact same set of
records are used twice). Thus, since the samples were not independent a standard two-
sample ¢ test was not appropriate. Second, the standard assumptions for a paired

difference test of hypothesis were met with the offset data.

40

Question 3. Does the weighting of the five fields of metadata used for scoring
affect overall classification accuracy? Within each set of randomly ordered sample
records, Wilcoxon signed rank tests for a paired difference experiment (McClave and
Benson, 1994:935-940) were conducted to determine if there was a statistically

significant difference between the offsets generated by each weighting scheme.

Summary

In order to meet the objectives set forth in the thesis effort, automated classification
techniques were developed and implemented in a proof of concept system, RACS. This
system, along with the procedures for testing and analyzing the operation of RACS were
explained in detail. The following chapter presents a detailed analysis of the results from

the tests conducted.

41

IV. Results and Analysis

Introduction

As has been discussed previously, the three offset values (corresponding to the three
weighting schemes) were recorded for each sample record classified. This chapter
provides detailed analysis of these offset values (the actual raw data can be found in
Appendix L). For clarity of discussion, this chapter is subdivided into a series of sections

corresponding to the three research questions posed in the previous chapter.

Question 1

How accurately does RACS classify records and is it capable of learning? There
are essentially two pieces to this question which were analyzed using separate techniques.
The first portion of the question is concerned with an overall picture of RACS’ accuracy
while the second portion is concerned specifically with determining if RACS is in fact
capable of learning.

To analyze RACS’ overall accuracy while classifying records, simple relative
frequency histograms were utilized to illustrate the results of the classification tests.
Specifically, two histograms were developed; the histogram illustrated in Figure 8
presents the results of the tests conducted using the first randomly ordered set of records
and Figure 9 presents the results of the tests using the second randomly ordered set of
records. The values on the horizontal axis in each histogram correspond to each possible

offset value while the vertical axis represents the number of records which resulted in a

42

given offset value. The three different series of vertical bars correspond to the three

weighting schemes used.

' m 20/20/20/20/20
©30/20/30/10/10
50/30/00/10/10

RECORDS

Figure 8. Histogram of Sample 1 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores

2 W 20/20/20/20/20
& | @130/20/30/10/10 |
ﬁ ' E150/30/00/10/10 |

OFFSET

Figure 9. Histogram of Sample 2 Results Showing the Distribution of Offset Values
for Each of the Three Weighting Schemes for Calculating Class Scores

43

A visual examination of the two histograms presented indicates that RACS was able
to correctly classify (i.e., achieve an offset of 0) 70 out of 113 records on average.
Additionally, RACS was able to classify an additional 22 records with an offset of 1.
While this data is extremely useful for illustrating the overall performance of RACS, the
analysis conducted to determine RACS ability to learn provides more detailed and
rigorous insight into RACS’ ability to accurately classify records.

As discussed earlier, RACS was designed to be a learning system. Before any
records have been classified RACS knows nothing about the particular record classes of
interest. As records are added to a given class, RACS knowledge of the types of records
typically contained in that class increases.

If RACS were only capable of guessing a given record’s classification, one would
expect that there would not be any evidence that learning had occurred and that the
offsets produced would occur in a purely random fashion. Figure 10 illustrates this

hypothetical situation.

44

OFFSET

RECORD

Figure 10. Example of the Accuracy of Record Classification
in 2 Random or “Guessing” System

The dashed lined in the figure is a time series plot of the offset values computed for
each sequential record classified (the offset values in Figure 10 were generated randomly
for purposes of illustration only). The solid line is an exponentially smoothed line which
is a smoothed version of the offset line and is intended to indicate the general trend in the
data.

In contrast to the results of the hypothetical system depicted in Figure 10, the actual
plots generated from the tests conducted with RACS indicate that learning did in fact
occur. The following six figures illustrate the results of the tests conducted for each of

the three weighting schemes in both randomly ordered sets of records.

45

OFFSET

85 = o e

RECORD

Figure 11. Sample 1 - Time Series Results for RACS
with Weighting Scheme 20/20/20/20/20

OFFSET

103

RECORD

Figure 12. Sample 2 - Time Series Results for RACS
with Weighting Scheme 20/20/20/20/20

46

OFFSET

RECORD

Figure 13. Sample 1 - Time Series Results for RACS
with Weighting Scheme 30/20/30/10/10

OFFSET

RECORD

Figure 14. Sample 2 - Time Series Results for RACS
with Weighting Scheme 30/20/30/10/10

47

OFFSET

RECORD

Figure 15. Sample 1 - Time Series Results for RACS
with Weighting Scheme 50/30/00/10/10

OFFSET

RECORD

Figure 16. Sample 2 - Time Series Results for RACS
with Weighting Scheme 50/30/00/10/10

Figure 11 through Figure 16 provide visual evidence that RACS’ classification
accuracy improved over time; in other words, RACS did indeed learn during the process
of classifying the 113 records in each sample. This is indicated by the fact that there is a
distinguishable downward trend in the exponentially smoothed line (the solid line in each

figure).

48

Question 2

Since RACS was designed to be a “learning” system, does the order in which
records are added to RACS’ record classes affect overall classification accuracy?
Paired sample tests were conducted to determine if there was a statistically significant
difference between the offsets generated by the two randomly ordered sets of records (i.e.,
Samples 1 and 2).

Three two-tailed paired sample 7 tests were conducted, one corresponding to each
weighting scheme. The hypotheses tested by each ¢ test were as follows:
e Null Hypothesis: The population of offsets corresponding to a given weighting

scheme from the first set of sample records does not differ from the population of

offsets associated with the same weighting scheme from the second set of sample
records.

e Alternative Hypothesis: The populations are in fact different; essentially indicating
that order does have an effect.

Table 7 summarizes the key data associated with each of the tests conducted.

Table 7. Paired Sample ¢ Test Results

20/20/20/20/20 30/20/30/10/10 50/30/00/10/10
a 0.05 0.05 0.05
n, 113 113 113
df 112 112 112
X, -0.0088 0.0088 -0.0442
Sy 1.2921 1.2500 1.3976
t 0.0753 -0.0728 -0.3365
Rejection Region t<-198 ort>1.98 t<-198 ort>1.98 t<-1.98 ort>1.98
Result Fail to reject Null Fail to reject Null Fail to reject Null

49

The results presented in the table indicate that record order did not have a statistically

significant effect on classification accuracy under any of the weighting schemes.

Question 3

Does the weighting of the five fields of metadata used for scoring affect overall
classification accuracy? Within each set of randomly ordered sample records, Wilcoxon
signed rank tests for a paired difference experiment (McClave and Benson, 1994:935-
940) were conducted to determine if there was a statistically significant difference
between the offsets generated by each weighting scheme. Three Wilcoxon tests were
conducted for each set of sample records such that all combinations of paired
comparisons were examined. For all Wilcoxon tests, the hypotheses being tested were as
follows:

e Null Hypothesis: The two sampled populations have identical probability
distributions.

e Alternative Hypothesis: The probability distribution for population A is shifted to
the right or to the left of that for population B.

The key values associated with each of the tests are summarized in Table 8 and Table

9 below:

50

Table 8. Sample 1 Wilcoxon Signed Rank Tests Results

20/20/20/20/20 20/20/20/20/20 30/20/30/10/10
30/20/30/10/10 50/30/00/10/10 50/30/00/10/10
Cases (n) 8 38 38
T+ 16 344 320.5
T. 20 397 420.5
T 16 344 320.5
Test Statistic (7 for n <25; 16 -0.384 -0.725
z otherwise)
a 0.05 0.05 0.05
Rejection Region T<4 z<-1960rz>196 | z<-196 orz>1.96
Result Fail to reject Null Fail to reject Null Fail to reject null
Table 9. Sample 2 Wilcoxon Signed Rank Tests Results
20/20/20/20/20 20/20/20/20/20 30/20/30/10/10
30/20/30/10/10 50/30/00/10/10 50/30/00/10/10
Cases (n) 4 37 35
T+ 2 287 238
T. 8 416 392
T 2 287 238
Test Statistic (7 for n <25; 2 -0.973 -1.26119
z otherwise)
a 0.05 0.05 0.05
Rejection Region N/A z2<-1960rz>196 | z<-1.96 orz>1.96
Result N/A Fail to reject null Fail to reject null

All of the Wilcoxon tests conducted failed to reject the null hypothesis. This

indicates that the weighting schemes utilized had no significant statistical impact on

RACS’ overall ability to classify records. Note that a test was not actually conducted for

the first pairing in sample two. The reason for this is that, of the 113 offset pairs, only 4

resulted in a difference greater than 0 and the Wilcoxon test does not apply to samples

with less than 5 cases.

51

One significant implication of these results is that the additional field, Record Type,
does not appear to contribute significantly to the overall accuracy of classification with
this sample of records. This is evidenced by the fact that the 50/30/00/10/10 weighting
scheme which excludes Record Type from the calculation of a composite class score did

not differ statistically from the other two weighting schemes.

Differences Among Individual Record Classes

The focus of the analysis conducted for this thesis was on RACS’ accuracy from a
whole system perspective. While this remains the perspective of greatest interest, some
observations were made during the course of this thesis study about RACS’ accuracy
within individual record classes. Appendices M through Q contain an exhaustive set of
graphs illustrating the results of the tests for each of the five record classes used in this
thesis.

Of particular interest are the graphs for record class two (see Appendix N). The
graphs provide evidence that RACS was not particularly successful at classifying records
from this category. A review of the records contained in that class as well as the results
stored in the various log files seems to indicate that the diversity of the records (i.e.,
record class two included two different types of forms as well as a variety of official
memorandums with diverse subjects) stored in this particular class degraded RACS’

ability to accurately classify its records.

52

Summary

This chapter presented an in-depth analysis of the tests conducted with the RACS
proof of concept system. The three specific research questions which were proposed in
Chapter III served as the framework within which the results were presented. Essentially,
the results indicate that RACS is an effective system for classifying records and that it is
capable of learning over time. The results also indicate that the various weighting
schemes employed did not have a significant impact on the overall accuracy of the
system. The next chapter presents the conclusions of this author and outlines some

potential areas for future research.

53

V. Conclusions and Recommendations

Introduction

The basic purpose of this thesis effort was to develop and demonstrate techniques for
. the automatic classification of USAF records using a computer based system. There were
three basic objectives established which needed to be met in order to solve this problem.
The first several sections of this chapter summarize the actions taken to meet these
objectives. Following that, recommendations as to areas which warrant further research
are presented. The last section in this chapter presents this author’s final conclusions as

to the feasibility of automatic analysis and classification of USAF records

Research Objective 1

Locate and summarize the various automatic document classification
techniques being employed by researchers and practitioners on related projects
throughout the world.

Chapter II described some key concepts relevant to the process of automated analysis
and classification of documents. Additionally, the chapter provided an overview of six
relevant classification projects reported in the literature. The study presented by Cheng
and Wu (1995) outlined some of the key techniques such as the Modified Overlap
Coefficient which were incorporated into the proof of concept system developed during

this thesis research process.

54

Research Objective 2

Develop and propose a technique for automatically analyzing records in order
to assign appropriate classification and disposition within the USAF.

Chapter III introduced the Records Analysis and Classification System or RACS for
short. RACS is a proof of concept system developed using the C programming language
to meet this objective. The chapter outlined in detail the various processes and
techniques which were incorporated into RACS to make automatic analysis and
classification possible.

Figure 17 is a repetition of the Context Diagram for the Classify New Record

process.

Record

Metadata
User

Figure 17. Classify New Record Context Diagram

The Classify New Record process begins by accepting the Record Metadata on a new
record to be classified from the user. RACS then performs a series of processes with the

record metadata in order to determine the Correct Record Class for the new record.

55

Research Objective 3

Demonstrate the proposed technique on a limited set of sample records.

A sample of 113 records from five different record classes was collected from the
files of the 88 SPTG/CCE. The actual data collected about each record consisted of the
record metadata which was summarized in Table 3. The sample of records was randomly
ordered twice in order to produce two different sets of randomly ordered sample records

To test RACS, each randomly ordered set of sample records was entered into the
system and the results were recorded. After each sample had been entered, the results of
the tests were analyzed.

The analysis of the results indicated that RACS did exhibit the ability to improve its
classification accuracy as more records were entered (i.e., it was capable of “learning”).

It was found that the order the sample records were entered did not have a statistically
significant effect on RACS’ classification accuracy. The last observation was that the use
of different weighting schemes did not have a statistically significant effect on RACS’

classification accuracy.

Recommendations

The research conducted in conjunction with this thesis is just the first step. There are
many aspects of the analysis and classification techniques incorporated in RACS which
warrant further study. Some of the specific areas which are ripe for future research

efforts are described below.

56

e Develop a specialized USAF stoplist.

The stoplist utilized in this thesis was a very general purpose stoplist, not at all
tailored to the peculiarities of USAF records. A study of the most frequently occurring
words in a large sample of USAF records’ metadata could yield a stoplist more attuned to
the specific needs of an automated record classification system within the USAF.

e Investigate alternative methods for scoring record/class template comparisons;
i.e., investigate alternatives to the MOC calculation.

The MOC calculation presented in this thesis is only one of many calculation
methods presented in the literature for quantifying the amount of overlap between a
document and a given class of documents (see Cheng and Wu, 1995:293). The accuracy
achieved by RACS in this thesis study could perhaps be improved by the utilization of a
different scoring method. For example, the MOC calculation considers the frequency
with which terms occurred in a new record versus the frequency with which matching
terms occurred in the whole class. Perhaps a calculation technique which considered
purely the number of terms in common between a new record being classified and each
record class would yield the correct classification more often (i.e., result in an offset of 0).

e Investigate alternate combinations of metadata fields and weighting schemes.

Although the results of this study indicated that the three weighting schemes utilized
did not have a significant impact on classification accuracy, this author is not convinced
that weighting schemes cannot contribute to accuracy of classification. There are myriad
other weighting schemes possible with the five record metadata fields used in this study.
Additionally, the five metadata fields utilized in this thesis may not in fact be the best

combination of fields to represent a document.

57

e Investigate alternate ways to represent records in the class templates.

RACS’ representation of a particular class consisted simply of the terms extracted
from the metadata fields in the records belonging to that class along with the frequency
with which the individual terms occurred. Alternate methods of representing a given
class could be developed and compared with the method utilized in this thesis in an
attempt to find the optimal class representation method. For example, one alternative
would be to represent each record in a class template individually. To determine correct
classification a new record being classified would be compared to each record previously
‘added to a given class and a similarity score would be calculated. A composite score for
each record class would be determined by summing the aforementioned scores.

e Test the operation of a system such as RACS in an actual office environment.

This study investigated the accuracy of RACS using a limited number of record
classes and a relatively small set of sample records. A valuable study to validate the
results achieved in this thesis would be to implement a system similar to RACS in an
actual office and analyze its performance while classifying all records handled in that

office.

Conclusion

The bottom line result of this thesis effort is this; automated analysis and
classification of USAF records is possible. The tests conducted with RACS demonstrated
the fact that records from five distinct record classes could be classified with a reasonable

level of accuracy. It is true that RACS was not.perfect, but in an actual implementation,

58

the techniques demonstrated with RACS could serve as a powerful productivity aid to all

USAF personnel who create, disseminate and store records.

59

AFI137-122

AFMAN 37-123
AFMAN 37-139

ASD(C’T)

Al
DASD(IM)
DLT
DFD
DoD
FOIA
MOC
NLP
RACS
RMA
RM-BPR
RMTF
SECAF

USAF

Appendix A: Acronyms

Air Force Instruction 37-122 Air Force Records Management
Program

Air Force Manual 37-123 Management of Records
Air Force Manual 37-139 Records Disposition Schedule

Assistant Secretary of Defense for Command, Control,
Communications and Intelligence

Artificial Intelligence

Deputy Assistant Secretary of Defense for Information Management
Decision Logic Table (Found in AFMAN 37-139)

Data Flow Diagram

Department of Defense

Freedom of Information Act

Modified Overlap Coefficient

Natural Language Processing

Records Analysis and Classification System

Records Management Application

DoD Records Management Business Process Reengineering
DoD Records Management Task Force

Secretary of the Air Force

United States Air Force

60

Appendix B: Overview of the RACS System

The RACS program is a proof of concept automated records analysis and
classification system. The system takes as its input the metadata on a new record to be
classified, processes that input, and based on that processing, presents the user with an
ordered list of the most likely record classes to which the new record belongs. To support
this basic functionality, RACS includes many administration functions which were
implemented to manage the data files used by the system. The following sections briefly

describe these functions and serve as a simple users manual for running RACS.

RACS Files

The RACS program requires several files to function properly. Additionally, files

are created at runtime for various purposes. These files and their purposes are listed in

Table 10.

Table 10. RACS Files
File Name Purpose
racs.exe RACS executable program (See Appendix C for the complete source code)
config.txt Configuration file which racs.exe uses at run time (See Appendix D)
stoplist.txt Stoplist used during the generation of record and class templates (See Appendix E)
catl-cat5.dbf Database files created to store the metadata for all records placed in a given record

class (See Table 5 for the record classes which correspond to each database file)

catl-cat5.dbb Backup files created for each database file

catl-cat5.tpl Files containing the class templates for each database/record class

catltpl-catStpl.txt | Text versions of the five class templates (See Appendix H for a typical class template)

logfile.txt A detailed log file containing details of each record classified (See Appendix F for an
excerpt from logfile.txt)

scorelog.txt A log file which records the correct database and offsets for each new record classified
(See Appendix G for an excerpt from scorelog.txt)

logfile.bak Backup file of logfile.txt.

scorelog.bak Backup file of scorelog.txt.

61

RACS Menuw/Interface Hierarchy

The RACS program presents the user with a series of menus and interfaces which

control the execution of the program. Figure 18 illustrates the hierarchy of menus and

user interfaces; for example, the Database Management Menu is a sub-menu of the Main

Menu and the View/Edit Records Menu is a sub-menu of the Database Management

Menu. The following sections describe the functions associated with each menu and

interface.

Main Menu

Database L_ Template L_ Log File Classify
Management Management Management New Record
Menu Menu Menu Data Entry
] IDnaltl(:albaa].slezse TGeen?eliitees View Log verify New
| P — | Files Menu Record Data
Menu Menu
View/Edit View View Log Classify
| Records | Templates Files New Record
Menu Menu Interface Results
View View
L Record L Template
Interface Interface
Edit
L Record
Interface
Compact
L] Databases
Menu

Figure 18. RACS Menuw/Interface Hierarchy

62

Main Menu

Choose one of the following actions:

(d) Database Management
(t) Template Management
(1) Log File Management
(c) Classify New Record

(@) Quit

Figure 19. Main Menu

The options on the Main Menu perform the following functions:

(d) Opens the Database Management Menu.
(t) Opens the Template Management Menu.
() Opens the Log File Management Menu.

(¢) Takes the user to the Classify New Record Data Entry interface for entering a new
record to be classified. (See Chapter III for a detailed discussion of this process)

(@ Exits RACS.

Database Management Menu

Choose one of the following actions:

(b) Backup All Databases
(i) Initialize Databases
(v) View/Edit Records
(c) Compact Databases

. (gq) Return to the Main Menu

Figure 20. Database Management Menu

63

The options on the Database Management Menu perform the following functions:

(b) Creates backup copies of the five record class databases.
(i) Opens the Initialize Database Menu.

(v) Opens the View/Edit Records Menu.

(¢) Opens the Compact Databases Menu.

| (@ Returns the user to the Main Menu.

Initialize Databases Menu

Select the database to initialize:

(1) T 11-02 R 21 Item 3

(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) 1Initialize All Databases

(gq) Return to the Databases Menu

Figure 21. Initialize Databases Menu

The options on the Initialize Databases Menu Perform the following functions:

(1-5) Initializes the selected database. Initializing a database deletes all records currently
in the database and resets all of its internal values such as number of records to
their initial values. Note: before a database is initialized RACS creates a backup
copy of the database.

(a) Initializes all of the databases.

(@ Returns the user to the Database Menu.

64

View/Edit Records Menu

Select the database to view/edit:

(1) T 11-02 R 21 Item 3

(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15

(g) Return to the Databases Menu

Figure 22. View/Edit Records Menu

The options on the View/Edit Records Menu perform the following functions.

(1-5) Opens the View Record Interface for the selected database/record class.

(@99 Returns the user to the Database Menu.

View Record Interface

Record 1 of 26

Date of Record: 21-0Oct-1996 00:14:58 Status: active
- 1 - Addressee(s):

- 2 - ORIGINATOR: 88 SPTG/CC

- 3 - SUBJECT: Appointment/Change of Equipment Custodian

- 4 - Author:
- 5 - Creation Date:
- 6 - RECORD TYPE: official memorandum

- 7 - MEDIA TYPE: paper

1
[e2]
t

RECORD FORMAT: paper

(e) Edit (n) Next (p) Prev (f)First (1) Last
(q) Return to previous menu

Figure 23. View Record Interface

65

The options presented on the View Record Interface perform the following functions:

(¢) Opens the Edit Record Interface for the current record.
(n) Moves to the next record unless the user is currently viewing the last record.
(p) Moves to the previous record unless the user is currently viewing the first record.
(® Moves to the first record in the database. .
(I) Moves to the last record in the database.
(@) Returns the user to the View/Edit Records Menu.
Edit Record Interface

Record 1 of 26

Date of Record: 21-0Oct-1996 00:14:58 Status: active

- 1 - Addressee(s):

~ 2 - ORIGINATOR: 88 SPTG/CC

- 3 - SUBJECT: Appointment/Change of Equipment Custodian

- 4 - Author:

- 5 - Creation Date:

- 6 - RECORD TYPE: official memorandum

-~ 7 - MEDIA TYPE: paper

- 8 - RECORD FORMAT: paper

To reenter any fields enter the appropriate number

(s) Save (d) Del (u) Undelete

Figure 24. Edit Record Interface

The options presented on the Edit Record Interface perform the following functions: .

(1-8) Allows user to reenter the data in the selected field.

(s)

Saves the current record and returns to the View Record Interface. Even if no
changes were made the user must select this option to exit this interface.

66

(d) Marks the current record as deleted. The Status field will change from “active™ to
“deleted.”

(u) Marks the current record as active. The Status field will change from “deleted” to
“active.”

Compact Databases Menu

Select the database to compact:

(1) T 1i-02 R 21 Item 3

(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R 01 Item 6-4
(4) T 11-02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) Compact All Databases

(gq) Return to the Databases Menu

Figure 25. Compact Databases Menu

The options on the Compact Databases Menu perform the following functions:

(1-5) Compacts the selected database. Compacting a database rewrites the database,
removing any records marked for deletion. Until a database is compacted, any
records marked as “deleted” are still held in the database and can be undeleted
from the Edit Record Interface.

(@) Compacts all five databases.

(@) Returns the user to the Database Menu.

Template Management Menu

Choose one of the following actions:

(g) Generate Templates
(v) View Templates

(g) Return to the Main Menu

Figure 26. Template Management Menu

67

The options on the Template Management Menu perform the following functions:

() Opens the Generate Templates Menu.
(v) Opens the View Templates Menu.

(@ Returns the user to the Main Menu.

Generate Templates Menu

Select the template to generate:

(1) T 11~02 R 21 Item 3

(2) T 11-01 R 01 Item 6-3-2
(3) T 11-01 R O1 Item 6-4
(4) T 11~02 R 33 Item 12
(5) T 900-02 R 02 Item 15
(a) Generate All Templates

(q) Return to the Templates Menu

Figure 27. Generate Templates Menu

The options on the Generate Templates Menu perform the following functions:

(1-5) Generates the class template for the selected database. The class template is the
representation of a record class which RACS uses to determine the correct
classification for a new record. (A complete discussion on the method for creating
class templates is contained in Chapter III)

(@) Generates all five class templates for the five databases/record class.

(@) Returns the user to the Template Management Menu.

68

View Templates Menu

(1
(2
(3
(4
(5

(q)

T 11-02 R 21
T 11-01 R 01
T 11-01 R 01
T 11-02 R 33
T 900-02 R 02

Return to the

Select the template to view:

Item 3
Item 6
Item 6-
Item 1
Item 1

Templates Menu

Figure 28. View Templates Menu

The options on the View Templates Menu perform the following functions:

(1-5) Opens the selected class template for viewing with the View Template Interface.

(@) Returns the user to the Template Management Menu.

View Template Interface

The View Template Interface is simply the MS-DOS® edit utility. The selected

class template is automatically opened for viewing. Once done viewing the template the

user exits by pressing ALT-F then X.

Log Files Management Menu

(b)
(d)
(v)

(Q)

Choose one of the following actioms:

Backup Log Files
Delete Log Files

View Log Files

Return to the Main Menu

Figure 29. Log Files Management Menu

The options on the Log Files Management Menu perform the following functions:

(b) Creates backup copies of both the logfile.txt and scorelog.txt log files.

69

(d) Creates backup copies of both log files and then deletes the original copies.
(v) Opens the View Log Files Menu.

(@ Returns the user to the Main Menu.

View Log Files Menu

Select the log file to view:

(a) BAll Details
(s) Only Score

(q) Return to the Log Files Menu

Figure 30. View Log Files Menu

The options on the View Log Files Menu perform the following functions:

(a8 Opens the log file logfile.txt in the View Log Files Interface.
(s) Opens the log file scorelog.txt in the View Log Files Interface.

(@) Returns the user to the Log Files Menu.

View Log Files Interface

The View Log Files Interface is simply the MS-DOS® edit utility. The selected log

file is automatically opened for viewing. Once done viewing the log file the user exits by

pressing ALT-F then X.

70

Classify New Record Data Entry

Addressee(s) :

ORIGINATING ORGANIZATION: ASC/CVH

SUBJECT: Focal Points for Management Operations
Author:

Creation Date:

RECORD TYPE: official memorandum

MEDIA TYPE: paper

RECORD FORMAT: paper

The field names

next field the user presses the Enter key. The field names in all capital letters indicate the
fields which are actually used in the classification process. The Verify New Record Data

interface is opened when the user presses the enter key after entering data in the

Figure 31. Classify New Record Data Entry

appear one at a time for the user to enter data. To proceed to the

RECORD FORMAT field.
Verify New Record Data
Date of Record: 23-0Oct-1996 17:57:30
- 1 - Addressee(s):
- 2 - ORIGINATOR: ASC/CVH
- 3 - SUBJECT: Focal Points for Management Operations
- 4 - Author:
- 5 - Creation Date:
- 6 - RECORD TYPE: official memorandum
- 7 - MEDIA TYPE: paper
- 8 - RECORD FORMAT: paper
To reenter any fields enter the appropriate number
(a) to accept and process the record

Figure 32. Verify New Record Data

71

The options presented on the Verify New Record Data interface perform the following

functions:

(1-8) Allows user to reenter the data in the selected field.

(a) Accepts the new data entered and causes RACS to evaluate the new record to
determine its classification. (See Chapter III for a complete discussion of this
process)

Classify New Record Results

Select the correct database:

30/20/30/10/10 20/20/20/20/20 50/30/00/10/10
DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE
4 1 0.550 4 1 0.638 5 1 0.321
1 2 0.496 1 2 0.604 4 2 0.319
2 3 0.463 2 3 0.580 1 3 0.267
5 4 0.422 5 4 0.572 2 4 0.237
3 5 0.200 3 5 0.400 3 5 0.200

1 T 11-02 R 21 Item 3
Delegations/Designations of Authority & Additional Duty Assignments
2 T 11-01 R 01 Item 6-3-2
Office Administrative Files - Internal Administration or Housekeeping
-- Supplies/Equipment
3 T 11-01 R 01 Item 6-4
Office Administrative Files - Internal Administration or Housekeeping
-—- Safety
4 T 11-02 R 33 Item 12
Internal Inspections/Self-Inspection Check Lists/Inventories
5 T 900-02 RO2 Item 15
Suggestions, Inventions, & Scientific Achievements - at Evaluation Office

Figure 33. Classify New Record Results

This interface presents the results of RACS’ analysis of the new record data. The
user enters the number corresponding to the correct database/record class for the new

record.

72

Appendix C: RACS Source Code

PROJECT: racs.prj
FILE: racs.h

PURPOSE:
This is the single header file included by every module.

_____ —_— [—— —— —_—— —————————— e K [

#include "includes.h"
#include "variable.h"
#include "defines.h"
#include "prototyp.h"

73

PROJECT: racs.prj
FILE: includes.h

PURPOSE :
This file lists all standard header files required by racs.exe

#include <stdlib.h>
#$include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <conio.h>
#include <time.h>

#include <ctype.h>

74

PROJECT: racs.prj
FILE: variable.h

PURPOSE:
This file defines all global variables and structures.

#ifndef VARIABLE_H
#define VARIABLE H

#ifndef EXTERN
#define EXTERN
#endif

/* Structure for standard dBase III file header */

EXTERN struct DB3HEADER ({
unsigned int bfVersion:7;
unsigned int bfHasMemo:1;
unsigned int bYear:8;
unsigned char bMonth;
unsigned char bbay;
long int lNumberRecords;
short int nFirstRecordOffset;
short int nRecordLength;
unsigned char szReserved[20];

}:

/* Structure for standard dBase III column headers */
EXTERN struct COLUMNDEF ({

char szColumnName[11l];

char chType;

long lFieldPointer;

unsigned char byLength:

unsigned char byDecimalPlace;

char szReserved[14];
}:

/* Structure for individual record data */
EXTERN struct DB3RECORD {
char szStatus[l]; /* does not count as member */
char szDateRecord[26];
char szTo(101};
char szOriginOrg{101]:
char szSubject[255];
char szAuthor([101];
char szCreateDate[26];
char szRecType([51];
char szMediaTypel[51};
char szRecFormat([51}]:;
}:

/* Structure to hold keywords with their frequencies */
EXTERN struct KEY ({

int iFreqg;

char szKwrd{21];
}i

/* Structure to hold record template information */
EXTERN struct RECTMPLT {

struct KEY pSub[30];

struct KEY pOrg([10];

struct KEY pTyp(51;

struct KEY pMed[5];

75

struct KEY pFrm({5]:
}i

/* Structure to hold class template information */
EXTERN struct CLASSTMPLT {

int iNumRecs;

struct KEY pSub[1000];

struct KEY pOrg([100];

struct KEY pTyp[30];

struct KEY pMed[20];

struct KEY pFrm[30];
}:

/* Structures to hold the results of computing a MOC for each database */
EXTERN struct MOC {

float fResult;

float fTop:

float fBottom;

int iNumRecs;
}i

EXTERN struct SCORE {
int iDBFNum;
int iRank([3];
float f£Score[3];
struct MOC sub;
struct MOC org:
struct MOC typ:
struct MOC med;
struct MOC frm;

}:

/* Structure to hold raw data for each term analyzed */
EXTERN struct TERM ({

char szTerm[51];

char szToken[41];

int iTokenType:;
}i

/* Structure to hold raw text analysis information */
EXTERN struct ANALYSIS {

int iNumTerms(5];

struct TERM term[50];
}:

/* Token Types for getTerms() in analyzer.c */
enum
{
LEXERROR,
ALLALPHA,
NONWORD,
PUNCT,
EOL,
UNDEFINED
}i

#endif

76

PROJECT: racs.prj
FILE: defines.h

PURPOSE:
All global defines are listed in this header.

_——— - o e e e et ot o e e e e S . oS 00 S o o e e e o o */

#ifndef DEFINES_H
#define DEFINES_H

#define TRUE 1
#define FALSE 0

/* The following defines are used within the db3funct.c module */
#define DELETED_RECORD Tkt
#define USABLE RECORD v

#define NUMERIC_FIELD "N’
#define CHARACTER FIELD 'C'
#define LOGICAL_FIELD 'L’
#define MEMO_FIELD ™'
#define DATE_FIELD D!
#define FLOAT FIELD 'F
#$define PICTURE_FIELD 'p!
#endif

77

PROJECT: racs.prj
FILE: prototyp.h

PURPOSE:
All function prototypes are included here with reference to the
module where the given function is defined.

- - - o e 1 e 1 i e e 4 i e e e e e e 2 —_—— */

#ifndef PROTOTYP_H
#define PROTOTYP_H

/* analyzer.c */
void getTerms (char **ppText, char *pToken, int *pTokenType);
char *numToken (int iTokenType):

/* classrec.c */

void classifyRecord(void);

void getNewRecord{struct DB3RECORD *pdb3record);

void genRECTMPLT (struct DB3RECORD *pdb3record, struct RECTMPLT *pRecTmplt,
struct ANALYSIS *pAnalysis);

void addToRECTMPLT (char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield);

int chooseDBF(struct SCORE *pScore):;

void logRECTMPLT (struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec,
struct SCORE *pScore, int iDBFNum);

/* db3funct.c */

void createDBF(int iDBFNum):;

void addRecord(int iDBFNum, struct DB3RECORD *pdb3record) :

void displayRecords (int iDBFNum) ;

void editRecord(struct DB3RECORD *pdb3record, struct DB3HEADER *pdb3header,
int iRecNum);

void compactDBF (int iDBFNum) ;

/* main.c */

void main(void):

char *szpGetConfig{(char szHeadText[], int iFileNum);
void displayError (char szErrorMessage(]):

void copyFile(char *oldName, char *newName):;

void cleanUp(void);

/* menus.c */

void introScreen(void);

void mainMenu(void):;

void databaseMenu(void);

void initializeDatabaseMenu(void);
void viewDatabaseMenu (void});

void compactDatabaseMenu (void) ;
void initializeDBF (int iDBFNum);
void templateMenu(void):

void generateTemplatesMenu(void);
void viewTemplatesMenu(void) ;
void logFileMenu(void);

void viewLogFileMenu(void);

/* score.c */
void compareTemplates (struct RECTMPLT *pRecTmplt, struct SCORE *pScore);
void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,

struct SCORE *pScore);

/* stemmer.c */

char *stem(register char *word):;

static int WordSize(register char *word):
static int ContainsVowel (register char *word);

78

static int EndsWithCVC(register char *word);

static int AddAnE (register char *word):

static int RemoveAnE (register char *word):

static int ReplaceEnd(register char *word, struct RULELIST *rule);

/* stoplist.c */

int loadStoplist(char *szStoplist([]):

void unloadStoplist(char *szStoplist([], int iNumWords);

int checkStoplist{char *szTerm, char *szStoplist[], int iNumWords);

/* template.c */

int genCLASSTMPLT (int iDBFNum);

void addToCLASSTMPLT (char *szTerm, struct CLASSTMPLT *pTmplt, int iField);
void logCLASSTMPLT (struct CLASSTMPLT *pTmplt, int iDBFNum);

#endif

79

PROJECT: racs.prj
FILE: analyzer.c

PURPOSE:
This module contains the functions which perform lexical analysis of the

individual terms extratcted from various record metadata fields.

FUNCTIONS:
void getTerms (char **ppText, char *pToken, int *pTokenType)
char *numToken (int iTokenType)

$define EXTERN extern
#include "racs.h"

void getTerms(char **ppText, char *pToken, int *pTokenType)

{
for(; **ppText == ' ' || **ppText == '\t'; (*ppText)++);

if (**ppText == '\0')
{
*pTokenType = EOL;
return;

1f((**ppText >= 'A' && **ppText <= '2') ||
(**ppText >= 'a' && **ppText <= 'z'))

*pToken++ = * (*ppText)++;
if (**ppText >= 'a' && **ppText <= 'z')

while (**ppText >= 'a' && **ppText <= 'z')

*pToken++ = * (*ppText)++;
}
*pToken = '\0';
*pTokenType = ALLALPHA;
return;
}
*pToken-- = * (*ppText)--;
}

if (**ppText >= 'A' && **ppText <= '2"')
{
*pToken++ = * (*ppText)++;
if (**ppText >= 'A' && **ppText <= 'Z")
{
while ((**ppText >= 'A' && **ppText <= 'Z2') ||
(**ppText >= 'a' && **ppText <= 'z'))

*pToken++ = * (*ppText)++;
}
*pToken = '\0';
*pTokenType = NONWORD;

return;

}
*pToken~- = * (*ppText)-—-;

}
if (**ppText >= '1' && **ppText <= '9'")
{

*pToken++ = * (*ppText) ++;

80

if ((**ppText >= '0' && **ppText <= '9') ||
(**ppText == '/') || (**ppText == '-'"))

while((**ppText >= '0' && **ppText <= '9") ||
(**ppText == '/') || (**ppText == '-"'))

{
*pToken++ = * (*ppText) ++;

}
*pToken = '\0"';
*pTokenType = NONWORD;
return;
}
*pToken-- = * (*ppText)--;
}

if ({(**ppText >= 'A' && **ppText <= '2') ||
(**ppText >= 'a' && **ppText <= 'z'))
{
*pToken++ = * (*ppText)++;
*pToken = '\0';
*pTokenType = ALLALPHA;
return;

}
if(**ppText >= '0' && **ppText <= '9")

*pToken++ = * (*ppText)++;
*pToken = "\0';
*pTokenType = NONWORD;
return;

}

if ((**ppText >= 33 && **ppText <= 47) ||
(**ppText >= 58 && **ppText <= 64) ||
(**ppText >= 91 && **ppText <= 96) ||
(**ppText >= 123 && **ppText <= 126))

*pToken++ = * (*ppText)++;
*pToken = '\0';
*pTokenType = PUNCT;
return;

}

*pTokenType = LEXERROR;
return;

char *numToken (int iTokenType)
{
static char *tokenNum[] =
{
"LEXERROR",
"ALLALPHA",
"NONWORD",
"PUNCT",
"EOLY .
"UNDEFINED"
};
return (tokenNum[iTokenType])

81

PROJECT: racs.prj
FILE: classrec.c

PURPOSE:
The functions in this module are the heart of the RACS program.
The function classifyRecord() controls the actual process of accepting
and classifying a new record.

FUNCTIONS:
void classifyRecord(void)
void getNewRecord (struct DB3RECORD *pdb3record)
void genRECTMPLT (struct DB3RECORD *pdb3record, struct RECTMPLT *pRecTmplt,

struct ANALYSIS *pAnalysis)
void addToRECTMPLT (char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield)

int chooseDBF (struct SCORE *pScore)
void logRECTMPLT (struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec
struct SCORE *pScore, int iDBFNum)

#define EXTERN extern
#include "racs.h"

void classifyRecord (void)

{
struct DB3RECORD db3record:;

struct DB3RECORD *pdb3record:;

struct RECTMPLT recTmplt;
struct RECTMPLT *pRecTmplt;

struct ANALYSIS analysis:;
struct ANALYSIS *pAnalysis;

struct SCORE score(5];
struct SCORE *pScore;

int iDBFNum;

int 1i;

pdb3record = &db3record;

pRecTmplt = &recTmplt;

pAnalysis = &analysis;

pScore = &score(0];

memset (&recTmplt, 0, sizeof (struct RECTMPLT)):;
menmset (&db3record, 0, sizeof (struct DB3RECORD)):;
memset (&analysis, 0, sizeof (struct ANALYSIS)):
memset {&score, 0, sizeof (struct SCORE));
getNewRecord (pdb3record) ;

genRECTMPLT (pdb3record, pRecTmplt, pAnalysis):;
compareTemplates (pRecTmplt, pScore):

iDBFNum = chooseDBF (pScore) ;

1ogRECTMPLT (pAnalysis, pRecTmplt, pScore, iDBFNum);

addRecord (iDBFNum, pdb3record):;

82

genCLASSTMPLT (iDBFNum) ;
}

void getNewRecord(struct DB3RECORD *pdb3record)
{

int iDone = FALSE;

int iFirstTime = TRUE;

char cSel;
char szBuff([255];

struct tm *curTime;
time t tClock;

clrscr():
pdb3record->szStatus{0] = USABLE_RECORD;

time (&tClock);

curTime = localtime(&tClock);

strftime (szBuff, 255, "%d-%b-%Y %X", curTime);

strncpy (pdb3record->szDateRecord, szBuff,
sizeof (pdb3record->szDateRecord)):

cSel = 48;
while (iDone == FALSE)
{
_setcursortype (_NORMALCURSOR) ;

if (iFirstTime == TRUE)
{

cSel++;
}
switch(cSel)
{

case 49:

printf ("Addressee(s): ");

gets (szBuff);

strncpy (pdb3record->szTo, szBuff,
sizeof (pdb3record->szTo)) ;

if (iFirstTime == FALSE)

{

}

break;

cSel = 0;

case 50:
printf ("ORIGINATING ORGANIZATION: ");
gets (szBuff});
strncpy (pdb3record->sz0riginOrg, szBuff,
sizeof (pdb3record->s20riginOrg)) ;
if (iFirstTime == FALSE)
{
cSel = 0;
}
break;

case 51:
printf£ ("SUBJECT: ");
gets (szBuff);
strncpy (pdb3record->szSubject, szBuff,
sizeof (pdb3record->szSubject)):
if (iFirstTime == FALSE)
{

83

cSel = 0;
}
break;

case 52:
printf ("Author: "):;
gets (szBuff);
strncpy (pdb3record->szAuthor, szBuff,
sizeof (pdb3record->szAuthor));
if(iFirstTime == FALSE)
{
cSel = 0;
}
break:

case 53:
printf ("Creation Date: ");
gets (szBuff);
strncpy (pdb3record->szCreateDate, szBuff,
sizeof (pdb3record->szCreateDate)) ;
if(iFirstTime == FALSE)
{

}
break:;

cSel = 0;

case 54:
printf ("RECORD TYPE: ");
gets (szBuff);
strncpy (pdb3record->szRecType, szBuff,
sizeof (pdb3record->szRecType)) ;
if (iFirstTime == FALSE)
{
cSel = 0;
}

break:;

case 55:
printf ("MEDIA TYPE: ");
gets (szBuff);
strncpy (pdb3record->szMediaType, szBuff,
sizeof (pdb3record->szMediaType)) ;

if (iFirstTime == FALSE)
{ cSel = 0;
éreak;

case 56:

printf ("RECORD FORMAT: ");
gets (szBuff);
strncpy (pdb3record->szRecFormat, szBuff,
sizeof (pdb3record->szRecFormat)) ;
iFirstTime = FALSE;
cSel = 0;
if(iFirstTime == FALSE)
{
cSel = 0;
}
break:;

case 'a':

case 'A':
iDone = TRUE;
break;

84

}

default:
clrscr();
_setcursortype (_NOCURSOR) ;
printf("Date of Record: %s\n\n",
pdb3record->szDateRecord) ;

printf("- 1 - Addressee(s): %-100s\n",

pdb3record->szTo) ;

printf("- 2 - ORIGINATOR: %-100s\n",

pdb3record->sz0riginlOrg) ;
printf("- 3 - SUBJECT: %-254s\n",

pdb3record->szSubject) ;
printf("- 4 - Author: %-100s\n",

pdb3record->szAuthor) ;

printf("- 5 - Creation Date: %-25s\n\n",

pdb3record->szCreateDate) ;

printf("- 6 - RECORD TYPE: $%-50s\n\n",

pdb3record->szRecType) ;

printf("- 7 - MEDIA TYPE: %-50s\n\n",

pdb3record->szMediaType) ;

printf("- 8 - RECORD FORMAT: $-50s\n\n",

pdb3record->szRecFormat) ;

puts ("\nTo reenter any fields enter the appropriate number"):;
puts("(a) to accept and process the record\n");

cSel = getch():
}
}

_setcursortype (_NOCURSOR) ;

void genRECTMPLT (struct DB3RECORD *pdb3record,

{

struct ANALYSIS *pAnalysis)

char szBuff[255];

char szTermBuff[51];
char *pString, *pToken;
char szToken[41];

int iTokenType;

int iRecField;

char *szStoplist[500];
int iNumWords;

int iMatch;

int i, j, k:

iNumWords = loadStoplist(szStoplist);

i=20;
for(j = 0; j < 5; j++)
switch(j)
{
case O:

struct RECTMPLT *pRecTmplt,

strcpy (szBuff, pdb3record->szSubject);

iRecField = 's';
break;

case 1:

strcpy (szBuff, pdb3record->szOriginOrg):

iRecField = 'o';
break;

case 2:

85

}

strcpy (szBuff, pdb3record->szRecType);
iRecField = 't"';
break;

case 3:
strcpy (szBuff, pdb3record->szMediaType):
iRecField = 'm’';
break;

case 4:
strepy (szBuff, pdb3record->szRecFormat);
iRecField = 'f£';
break;

pString = szBuff;

iTokenType = UNDEFINED;

k

= 1;

while (iTokenType != EOL && iTokenType != LEXERROR)

{

pToken = szToken;

getTerms (&pString, pToken, &iTokenType):

if (iTokenType != EOL)

{

pAnalysis->term[i].iTokenType = iTokenType;
strcpy(pAnalysis->term[i].szToken, szToken);

if (iTokenType == ALLALPHA)

{

}

strcpy (szTermBuff, strlwr(szToken));
iMatch = checkStoplist(szTermBuff, szStoplist, iNumWords):

if (iMatch == TRUE)
{
strcpy(szTermBuff, "-SW-"):;
}
else
{
strcpy (szTermBuff, stem(strlwr(szToken))):
addToRECTMPLT (szTermBuff, pRecTmplt, iRecField);
}

if (iTokenType == NONWORD)

{

strcpy (szTermBuff, strlwr(szToken)):
iMatch = checkStoplist(szTermBuff, szStoplist, iNumWords):

if (iMatch == TRUE)
{
strcpy (szTermBuff, "-SW-");

}
else

{
strcpy (szTermBuff, strlwr(szToken)):;

addToRECTMPLT (szTermBuff, pRecTmplt, iRecField):;

86

if (iTokenType == PUNCT)
{

}

strcpy (pAnalysis~>texrm[i].szTerm, szTermBuff):;
pRnalysis->iNumTerms[j] = k;

i++;

k++;

strepy (szTermBuff, "----");

}
}
unloadStoplist (szStoplist, iNumWords):;
}

void addToRECTMPLT (char *szTerm, struct RECTMPLT *pCurRec, int iTMPLTfield)
{
int i;

if (iTMPLTfield == 's')
{
for(i = 0; pCurRec->pSub([i].szKwrd[0] != '\0'; i++)
{
if (strcmp (pCurRec->pSub[i] .szKwrd, szTerm) == 0)
{
pCurRec->pSub([i].iFreq += 1;
return;
}
}
strcpy (pCurRec->pSub (1] .szKwrd, szTerm);
pCurRec->pSub[i].iFreq = 1;
}

if (iTMPLTfield == 'o')
{
for(i = 0; pCurRec->pOrg{i].szKwrd[0] != '\0'; i++)
{
if (strcmp (pCurRec~->pOrg(i].szKwrd, szTerm) == 0)

pCurRec->pOrg[i] .iFreq += 1;
return;
}
}
strcpy (pCurRec—->pOrg[i] .szKwrd, szTerm);
pCurRec->pOrg[i] .iFreq = 1;
}

if (iTMPLTfield == 't')
{
for(i = 0; pCurRec—>pTypl[i].szKwrd[0] != '\0'; i++)
{
if (stremp (pCurRec->pTyp(i].szKwrd, szTerm) == 0)
{

pCurRec->pTyp(i].iFreq += 1;
return;
}
}
strcpy (pCurRec->pTyp (1] .szKwrd, szTerm);
pCurRec->pTyp[i] .iFreq = 1;
}

1f (iTMPLTfield == 'm')

{
for(i = 0; pCurRec->pMed[i].szKwrd[0] != '\0'; i++)
{

87

if (strcmp (pCurRec->pMed[i] .szKwrd, szTerm)

pCurRec->pMed[i].iFreq += 1;

return;
}
}

strcpy (pCurRec->pMed[i].szKwrd, szTerm);
pCurRec->pMed[i] .iFreq = 1;

}

1if (iTMPLTfield == 'f")

{

for(i = 0; pCurRec->pFrm[i].szKwrd[0]

{

1= "\0’;

i++)

if (strcmp (pCurRec->pFrm(i] .szKwrd, szTerm) == 0)

{

pCurRec->pFrm[i] .iFreq += 1;

return;

}
}

strcpy (pCurRec->pFrm{i].szKwrd, szTerm);
pCurRec->pFrm([i] .iFregq = 1;

}

int chooseDBF (struct SCORE *pScore)

{

int i, 3;

int iInner, iOuter;
int iDBFNum;

int iDone = FALSE;
int iDuplicatel[3]:;
char cSel;

struct RANK {
int iDBENum;
int iRank;
float fScore;
struct MOC sub;
struct MOC org:;
struct MOC typ:
struct MOC med;
struct MOC frm;

}:

struct RANK rank([5][3]:;
struct RANK tempRank;

/* Transfer all values to the structure rank for ease of manipulation
for(i = 0; 1 < 5; i++)

{

for(j = 0; j < 3; j++)

{

rank[i] [j].iDBFNum = pScore->iDBFNum;
rank([i] [J].£fScore = pScore->fScore(j];
rank[i} [j].iRank

rank[i] [j].sub
rank[i] [j].org
rank[i] [j].typ
rank[i] [j].med
rank[i] [j].frm
}
pScore++;

}

Bnunun

=1;

pScore->sub;
pScore->o0rg:;
pScore->typ;
pScore->med;
pScore->frm;

88

for(i = 0; 1 < 5; i++)
{

pScore—-;
}

/* Order the scores for presentation to the user using a bubble sort
for(i = 0; 1 < 3; i++)
{
for(iQuter = 0; iOuter < 4; iOuter++)
{
for(iInner = iOuter; iInner < 5; iInner++)

if(rank[iInner][i].£Score > rank[iOuter] [i].fScore)
{
tempRank.iDBFNum = rank[iInner] [i].iDBEFNum;
tempRank. fScore = rank[iInner] [i].fScore;
tempRank. sub rank[iInner] [i].sub;
tempRank.org rank[iInner] [i].oxrg;
tempRank.typ rank{iInner] [i].typ;
tempRank.med rank([iInner] [i] .med;
tempRank. frm rank[iInner] [i].frm;
rank[iInner] [i].iDBFNum = rank[iOuter] [i].iDBFNum;
rank[iInner] [i].fScore = rank{iOuter][i].fScore;
rank{iInner] [i].sub rank{iOuter] [i].sub;
rank{iInner][i].org rank[iOuter] [i].oxg;
rank{iInner][i].typ rank[iOuter] [i].typ;
rank[iInner] [i].med rank[iOuter] [i] .med;
rank(iInner] [i].frm = rank[iOuter][i].frm;
rank[iOuter] [i].1DBFNum = tempRank.iDBFNum;
rank [iOuter] [i].£fScore = tempRank.fScore;
rank[iOuter] [i].sub = tempRank.sub;
rank[iOuter] [i].org tempRank.org;
rank[iOuter] [i].typ tempRank.typ:
rank[iOuter] [1] .med tempRank.med;
rank[iOuter] [i].frm = tempRank.frm;

I T I (]
nonuwnun

}

for(i = 0; 1 < 3; i++)
{
iDuplicate[i] = 0;
rank[0] (i) .iRank = 1;
for(j = 1; j < 5; j++)
{
if(rank{j]l[i].£fScore == rank([j - 1][i].fScore)

rank[j][i].iRank = rank[j - 1][i].iRank;
iDuplicate[i] += 1;
}
else
{
rank{j] [i}.iRank = ((rank[j - 1]1([i).iRank) + 1 +
iDuplicate(il);
iDuplicatel[i] = 0;
}

}

while (iDone == FALSE)

{
_setcursortype (_NOCURSOR) ;
clrscr();

89

puts ("Select the correct database:");
puts ("30/20/30/10/10 20/20/20/20/20 50/30/00/10/10™);
puts ("DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE");

for(i = 0; i < 5; i++)

{
for(j = 0; 3 < 3; j++)
{

printf (" %d %d %.3f ", rank([i] [j].iDBFNum,
rank(i][j]).iRank, rank{i][j].£fScore):

}

printf("\n");
}
printf("\n");
printf("1 T 11-02 R 21 Item 3\n");
printf (" Delegation/Designations of Authority &"):;
printf (" Additional Duty Assignments\n"):;

printf("2 T 11-01 R 01 Item 6-3-2\n");

printf (" Office Administrative Files - Internal");
printf (" Administration or Housekeeping\n");
printf(" -- Supplies/Eqiupment\n");

printf("3 T 11-01 R 01 Item 6-4\n");

printf (" Office Administrative Files - Internal”):;
printf (" Administration or Housekeeping\n");
printf(" -- Safety\n");

printf("4 T 11-02 R 33 Item 12\n"):
printf (" Internal Inspections/Self-Inspection”):;
printf (" Check Lists/Inventories\n");

printf("5 T 900-02 R 02 Item 15\n");
printf (" Suggestions, Inventions, & Scientific");
printf (" Achievements - at Evaluation Office\n"):

cSel = getch():;

switch(cSel)
{
case '1':
iDBFNum = 1;
iDone = TRUE;
break;

case '2':
iDBFNum = 2;
iDone = TRUE;
break;

case '3':
iDBENum = 3;
iDone = TRUE;
break;

case '"4':
iDBFNum = 4;
iDone = TRUE;
break;

case '5':
iDBFNum = 5;
iDone = TRUE;
break;

90

default:
puts("\n INVALID KEY!");
delay(1000) ;

}

/* Reorder the scores by database number */
for(i = 0; i < 3; i++)

for(iOuter = 0; iOuter < 4; iOuter++)
{
for (iInner = iOuter; ilnner < 5; iInner++)

if(rank([iInner] [i].iDBFNum <= rank{iOuter] [i].iDBFNum)
{
tempRank.iDBFNum = rank[iInner] {i].iDBFNum;
tempRank.fScore = rank[iInner] [i].fScore;
tempRank.iRank = rank([iInner] [i].iRank;
tempRank.sub = rank[iInner] [i].sub;
tempRank.org = rank[iInner][i].oxg:;
tempRank.typ = rank[iInner] [i].typ:
tempRank.med = rank[iInner] [i].med;
tempRank.frm = rank[iInner] [i].fxm;
rank [iInner] [i].iDBFNum = rank[iOuter] [i].iDBFNum;
rank([iInner] (i].£fScore = rank[iOuter] [i].£fScore;
rank[iInner] [i].iRank = rank[iOuter][i].iRank;
rank[iInner] [i].sub
rank([iInner] [(i].org
rank([iInner] [i].typ

[
(
(
{ rank [iOuter] [i] .sub;
rank[iOuter] [i].oxg;
rank[iOuter] [i] .typ;
rank([iInner] (i] .med rank([iOuter] (1] .med;
rank[iInner] (i].frm rank[iOuter] [i].frm;
rank[iOuter] {i].iDBFNum = tempRank.iDBFNum;
rank[iOuter] [i].£fScore = tempRank.fScore;
rank[iOuter] [i].iRank = tempRank.iRank;
rank{iOuter] [i].sub tempRank.sub;
rank[iOuter] [i].org tempRank.org;
rank[iOuter] [1i].typ tempRank.typ;

rank [iOuter] [i].med tempRank.med;

rank [iOuter] [i] .frm tempRank. frm;

}

for(i = 0; 1 < 5; i++)
{
for(j = 0; j < 3; j++)
{
pScore~>iDBFNum = rank[i][j].iDBFNum;
pScore->iRank[j] = rank([i]l[j].iRank;
pScore->fScore(j] = rank[i] [j].fScore;
pScore->sub rank([i] [j].sub;
pScore->org rank[i] [j].org;
pScore->typ rank([i] [(j].typ;
pScore->med = rank(i] [j].med;
pScore->frm rank[i] [j].frm;
}
pScoret++;
} .
return iDBFNum;

void logRECTMPLT (struct ANALYSIS *pAnalysis, struct RECTMPLT *pCurRec,
struct SCORE *pScore, int iDBFNum)

91

FILE *fpLogFile;
FILE *fpScorelog:
char szHeader[20] = "logfile";

struct SCORE *score;

int iRank([3]:
int iDuplicate(3]:;
int i, 3, k;

if ((fpLogFile = fopen(szpGetConfig (szHeader, 1), "a")) == NULL)
{

displayError ("opening log file");

if ((fpScoreLog = fopen(szpGetConfig(szHeader, 2), "a")) == NULL)
{

displayError ("opening log file");
}

for(i = 0; i < 38; i++)
{

fprintf (fpLogFile, "/\\");
}
fprintf(progFile’ "\n******************************") ;
fprintf (fpLogFile, "™ INPUT ANALYSIS ");
fprintf(progFile’ "****’Iz*************************\n") H

i=0;
for(j = 0; j < 5; J++)
{

if(j == 0)

{

fprintf (fplogFile, "SUBJECT:\n"):;
for(k = 0; k < pAnalysis->iNumTerms[j]; k++)
{
fprintf (fpLogFile, "%-20s%-12s%s\n",
pAnalysis~>term([i].szToken,
numToken (pAnalysis->term[i].iTokenType),
pAnalysis->term[i].szTerm);
i++;
}
fprintf (fpLogFile, "\n");
}

if(j == 1)
{
fprintf (fpLogFile, "ORIGINATING ORGANIZATION:\n");
for(k = 0; k < pAnalysis->iNumTerms([j]; k++)
{
fprintf (fpLogFile, "$%-20s%-12s%s\n",
pAnalysis~>term[i].szToken,
numToken (pAnalysis->term[i] .iTokenType),
pAnalysis->term[i].szTerm);
i++;
}
fprintf (fplogFile, "\n");
}

if(§ == 2)

fprintf (fpLogFile, "RECORD TYPE:\n");
for(k = 0; k < pAnalysis->iNumTerms([j]; k++)

92

}

fprintf (fpLogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken (pAnalysis~->term([i].iTokenType),
pAnalysis->term[i].szTerm);
i++;
}
fprintf (fplogFile, "\n");
}

if(j == 3)
{
fprintf (fpLlogFile, "MEDIA TYPE:\n");
for(k = 0; k < pAnalysis->iNumTerms[j]; k++)

fprintf (fpLogFile, "%-20s%-12s%s\n",
pAnalysis->texrm([i].szToken,
numToken (pAnalysis->term[i].iTokenType),
pAnalysis->term([i].szTerm);
i++;
}
fprintf (fpLogFile, "\n");
}

if(§ == 4)
{

fprintf (fplogFile, "RECORD FORMAT:\n");
for(k = 0; k < pAnalysis->iNumTerms([j]; k++)
{
fprintf (fplogFile, "%-20s%-12s%s\n",
pAnalysis->term[i].szToken,
numToken (pAnalysis->term(i].iTokenType),
pAnalysis->term[i].szTerm);
id+;

}
fprintf (fpLogFile, "\n");
}

EPrintf (EPLOGEile, ™\M***ha ks ktkskkhkkhhhxkskkkskonssk) 5
fprintf (fplogFile, " RECORD TEMPLATE ");
fprintf (FPLOGEile, "**kkkkkaxx ks *kkkkkkxxxkkkskksk\nh) ;

for(i = 0; 1 < 5; i++)

{

if(i == 0)

{
fprintf (fpLogFile, "SUBJECT:\n");
for(j = 0; pCurRec->pSub[j].szKwrd[0] != '\0'; j++)
{

fprintf (fplogFile, "Kwrd $%-5d%-18sFreq = %d\n", j,
pCurRec->pSub([j] .szKwrd, pCurRec->pSub(j].iFreq);
}
fprintf (fpLogFile, "\n");
}

if(i ==)

{
fprintf (fpLogFile, "ORIGINATING ORGANIZATION: \n");
for(j = 0; pCurRec->pOrg[jl.szKwrd[0] != '\0'; j++)
{

fprintf (fplogFile, "Kwrd $%$-5d%-18sFreq = %d\n", j,
pCurRec~>pOrg[j].szKwrd, pCurRec->pOrgl[j].iFreq);

}
fprintf (fpLogFile, "\n"):;

93

}
if(i == 2)

{
fprintf (fplLogFile, "RECORD TYPE:\n");
for(j = 0; pCurRec->pTypl[j].szKwrd[0] != '\0'; j++)
{
fprintf (fplogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec~>pTyp[j].szKwrd, pCurRec->pTypl[j].iFreq):;
}
fprintf (fpLogFile, "\n"):
}
if(i == 3)
fprintf (fplogFile, "MEDIA TYPE:\n");
for(j = 0; pCurRec->pMed[j].szKwrd[0] != "\O'; j++)
fprintf (fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pCurRec->pMed[j].szKwrd, pCurRec->pMed[j].iFreq);
}
fprintf (fpLogFile, "\n");
}
if(i == 4)

{
fprintf (fpLogFile, "RECORD FORMAT:\n");
for(j = 0; pCurRec->pFrm[j].szKwrd[0] != '\0O'; Jj++)
{

fprintf (fpLogFile, "Kwrd %$-5d%-18sFreq = %d\n", j,
pCurRec->pFrm([j].szKwrd, pCurRec->pFrm[j].iFreq):

}
fprintf (fpLlogFile, "\n");

}

}

fprintf(progFile' "\n*****************************");
fprintf (fpLogFile, " SCORING RESULTS ");
fprintf(prOgFile’ "******************************\n") H
fprintf (fplogFile, "30/20/30/10/10 ")

fprintf (fplogFile, "20/20/20/20/20 ");

fprintf (fpLogFile, "50/30/00/10/10\n"):
fprintf (fpLogFile, "DBF RANK SCORE ")
fprintf (fpLogFile, "DBF RANK SCORE ")
fprintf (fplogFile, "DBF RANK SCORE\n");

~e N

(struct SCORE *)score = pScore;

for(i = 0; 1 < 5; i++)
{
for(j = 0; j < 3; j++)

fprintf (fpLogFile, " %d %d $.3f ", pScore->iDBFNum,
pScore->iRank[j], pScore->fScorel(j]):

}
fprintf (fpLogFile, "\n");
pScore++;

}
fprintf (fpLogFile, "\n"):

/* Reset pScore to the first element in the array */
pScore = score;

/* Record the details of the MOC caculations to logfile.txt */
for(i = 0; 1 < 5; it++)

94

}

fprintf (fpLogFile, "%d SUB %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->sub.fTop, pScore->sub.iNumRecs,
pScore->sub.fBottom, pScore->sub.fResult);

fprintf (fpLogFile, ™ (0.3 = %5.3f) (0.2 = $5.3f) (0.5 = %5.3f)\n",
pScore->sub.fResult * .3, pScore->sub.fResult * .2,
pScore->sub.fResult * .5);

fprintf (fpLogFile, "%d ORG %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore-~>org.fTop, pScore->org.iNumRecs,
pScore->org.fBottom, pScore->org.fResult):;

fprintf (fpLogFile, " (0.2 = %5.3f) (0.2 = %5.3f) (0.3 = %5.3f)\n",
pScore->org.fResult * .2, pScore->org.fResult * .2,
pScore->org.fResult * .3);

fprintf (fpLogFile, "%d TYP %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->typ.fTop, pScore->typ.iNumRecs,
pScore->typ.fBottom, pScore->typ.fResult);

fprintf (fpLogFile, " (0.3 = %5.3f) (0.2 = %5.3f) (0.0 = %5.3f)\n",
pScore->typ.fResult * .3, pScore->typ.fResult * .2,
pScore->typ.fResult * .0);

fprintf (fplogFile, "%d MED %2.0f / (%2d * $2.0f) = %5.3f",
pScore->iDBFNum, pScore->med.fTop, pScore->med.iNumRecs,
pScore->med. fBottom, pScore->med.fResult):;

fprintf (fpLogFile, " (0.1 = %5.3f) (0.2 = $5.3f) (0.1
pScore->med.fResult * .1, pScore->med.fResult * .2,
pScore->med. fResult * .1);

$5.3£) \n",

fprintf (fpLogFile, "%d FRM %2.0f / (%2d * %2.0f) = %5.3f",
pScore->iDBFNum, pScore->frm.fTop, pScore->frm.iNumRecs,
pScore->frm. fBottom, pScore->frm.fResult);

fprintf (fpLogFile, ™ (0.1 = %5.3f) (0.2 = %5.3f) (0.1 = %5.3£f)\n",
pScore->frm.fResult * .1, pScore->frm.fResult * .2,
pScore->frm. fResult * .1);

fprintf (fplogFile, " Totals: ");
for(j = 0; 3 < 3; j++)
{

fprintf (fpLogFile, "%5.3f ", pScore->fScorelj]);
}
fprintf (fpLogFile, "\n\n");
pScore++;

/* Reset pScore to the first element in the array */
pScore = score;

/* Move pScore pointer to the correct element */
for(; pScore->iDBFNum != iDBFNum; pScore++);

for(i = 0; i < 3; i++)

}

{

iRank[i] = pScore->iRank([i];

/* Determine number of duplicates of correct DBF */
for(i = 0; 1 < 3; i++)

pScore = score;
ibDuplicate[i] = 0;
for(j = 0; j < 5; j++)
{ .
if (pScore->iRank[i] == iRank[i] && pScore->iDBFNum != iDBFNum)
{

95

iDuplicate[i] += 1;
}
pScore+t+;
}
}

/* Reset pScore to the first element in the array */
pScore = score;

/* Move pScore pointer to the correct element */
for(; pScore->iDBFNum != iDBFNum; pScore++);

/* Log correct DBF and offsets to logfile.txt */

fprintf (fpLogFile, "Correct DBF: %d Offsets: %d %d %d\n\n",
iDBFNum, (pScore->iRank{0] - 1 + iDuplicate[0]),
(pScore->iRank (1] - 1 + iDuplicate(l]),
(pScore->iRank[2] - 1 + iDuplicate(2]));

/* Log correct DBF and offsets to scorelog.txt */

fprintf (fpScorelog, "DBF: %d Offsets: %d %d $d\n",
iDBFNum, (pScore->iRank[0] - 1 + iDuplicate(0]),
(pScore->iRank[1] - 1 + iDuplicate(l]),
(pScore~>iRank([2] - 1 + iDuplicate(2]));

fclose(fpLogFile);
fclose (fpScorelog);

96

PROJECT: racs.prj
FILE: db3funct.c

PURPOSE:
This module contains functions to create and update dBASE III compatible
files.

FUNCTIONS:
void createDBF(int iDBFNum)
void addRecord(int iDBFNum, struct DB3RECORD *pdb3record)
void displayRecords (int iDBFNum)
void editRecord(struct DB3RECORD *pdb3record, struct DB3HEADER *pdb3header,
int iRecNum)
void compactDBF (int iDBFNum)

#define EXTERN extern
#include "racs.h"

void createDBF (int iDBFNum)
{
FILE *fpCurDBF;
int i;
char szBHeader([20] = "dbfile";
char szBuff([256];

/* Create an instance of structure type struct DB3HEADER */
struct DB3HEADER db3header;

/* Create an array of nine sturtures of type COLUMNDEF */
struct COLUMNDEF columnDef[9];

/* Create an instance of structure type DB3RECORD */
struct DB3RECORD db3record;

struct tm *curTime;
time_t tClock;

/* Create new dBASE file */
1f ((fpCurDBF = fopen (szpGetConfig (szHeader, iDBFNum), "wb")) == NULL)

displayError("could not create database file");
}

/* Get current time header information */
time (&tClock) ;
curTime = localtime (&tClock);

/* Clear a block of memory for and initialize the db3header */

memset (&db3header, 0, sizeof (db3header));

db3header.bfVersion = 3;

db3header.bfHasMemo 0;

db3header.bYear = curTime->tm_year;

db3header.bMonth = (unsigned char) (curTime->tm mon + 1);

db3header.bDay = (unsigned char)curTime->tm mday;
db3header.lNumberRecords = 0;

db3header.nFirstRecordOffset = sizeof (db3header) + sizeof (columnDef) + 2;
db3header.nRecordlLength = sizeof (db3record);

if ((fwrite((char *)&db3header, sizeof (struct DB3HEADER),
1, fpCurDBF)) != 1)
{

97

displayError ("write error (database header)"):

/* Zero-out memory and initialize the nine column definitions */
memset (columnDef, 0, sizeof (columnDef));

strcpy (columnDef [0] .szColumnName, "DateRecord");
columnDef [0] .chType = CHARACTER_FIELD;
columnDef [0] .byLength = sizeof (db3record.szDateRecord);
columnDef [0] .byDecimalPlace = 0O;

strcpy (columnDef[1l].szColumnName, "To");
columnDef (1] .chType = CHARACTER_FIELD;
columnDef [1].byLength = sizeof (db3record.szTo);
columnDef [1] .byDecimalPlace = 0;

strcpy(columnDef [2] .szColumnName, "OriginOrg"”);
columnDef [2] .chType = CHARACTER_FIELD;
columnDef [2] .byLength = sizeof (db3record.szOriginOrg);
columnDef [2] .byDecimalPlace = 0;

strepy (columnDef [3] . szColumnName, "Subject"):;
columnDef [3].chType = CHARACTER FIELD;
columnDef {3] .byLength = sizeof (db3record.szSubject);
columnDef [3] .byDecimalPlace = 0;

strcpy (columnDef[4].szColumnName, "Author"):;
columnDef (4] .chType = CHARACTER_FIELD;
columnDef (4] .byLength = sizeof (db3record.szAuthor);
columnDef [4] .byDecimalPlace = 0;

strcpy (columnDef [5].szColumnName, "CreateDate"):;
columnDef [5].chType = CHARACTER_FIELD;
columnDef [5] .byLength = sizeof (db3record.szCreateDate);
columnDef [5] .byDecimalPlace = 0;

strecpy (columnDef [6] . szColumnName, "RecType"):;
columnDef [6] .chType = CHARACTER_FIELD;
columnDef [6] .byLength = sizeof (db3record.szRecType):
columnDef [6] .byDecimalPlace = 0;

strcpy (columnDef[7] .szColumnName, "MediaType"):;
columnDef [7] .chType = CHARACTER_FIELD;
columnDef [7] .byLength = sizeof (db3record.szMediaType);
colurmnDef (7] .byDecimalPlace = O0;

strcpy (columnDef [8] .szColumnName, "RecFormat"):;
columnDef [8] .chType = CHARACTER_ FIELD;
columnDef [8] .byLength = sizeof (db3record.szRecFormat);
columnDef [8] .byDecimalPlace = 0;

if ((fwrite((char *)columnDef, sizeof(columnDef), 1, fpCurDBF)) != 1)

displayError ("write error (column headers)");
} -

if ((fwrite((char *)"\r\0", sizeof(char) * 2, 1, fpCurDBF)) != 1)
{

displayError ("write error (column headers)"); «
}

fclose (£pCurDBF) ;

98

void addRecord(int iDBFNum, struct DB3RECORD *pdb3record)

{

FILE *fpCurDBF;

int i;
int iOffset;

char szHeader[20] = "dbfile";

struct tm *curTime;
time_t tClock;

struct DB3HEADER db3header;
char *pcdb3record;

clrscr();
pcdb3record = (char *)pdb3record;
/* Replace any NULLs with blank spaces for dBASE III compatibility */

for (i = 0; i < sizeof(struct DB3RECORD); i++)

{
if (pcdb3record[i] == '\0")
{

}

pcdb3record[i] = ' *;
}

/* Check to insure the intended database exists already */
if ((fpCurDBF = fopen (szpGetConfig (szHeader, iDBFNum), "rb")) == NULL)
{ .

}

else
{

displayError ("database not initialized");

fclose (fpCurDBF) ;
}

if ((£pCurDBF = fopen (szpGetConfig(szHeader, iDBFNum), "rb+")) == NULL)

{
displayError("could not open specified database"):

}

if ((fread (&db3header, sizeof{struct DB3HEADER), 1, fpCurDBF)) == NULL)
{

}

displayError("read error {(database header)"):;

/* Set position for new db3record */

ioffset = db3header.nFirstRecordOffset;

iOffset += ((db3header.lNumberRecords) * {(db3header.nRecordlLength)):
fseek (fpCurDBF, iOffset, SEEK_SET);

if((fwrite (pdb3record, sizeof(struct DB3RECORD), '1l, fpCurDBF)) != 1)

{
displayError("write error (new db3record)"):;

}

/* Update values in database header */
++db3header. 1NumberRecords;

time (&tClock);

curTime = localtime (&tClock);

db3header.bYear = curTime->tm_year;

db3header.bMonth = (unsigned char) (curTime->tm mon + 1);

99

db3header.bDay = (unsigned char)curTime->tm mday;

if ((£seek (fpCurDBF, 0, SEEK_SET)) != 0)

{
displayError ("seek error (rewirte of headerx)"):;

if((fwrite((char *)&db3header, sizeof (struct DB3HEADER), 1, fpCurDBF))
= 1)

{
displayError ("write error (updating header)");

}
fclose (fpCurDBF) ;

void displayRecords (int iDBFNum)

{

FILE *fpCurDBF;

int i, j;

int iNext = FALSE;

char cSel;

char szStatus([8];

char szHeader{20] = "dbfile";
char *pBuff;

/* Create an instance of structure type struct DB3HEADER */
struct DB3HEADER db3header;
struct DB3HEADER *pdb3header;

/* Create an instance of structure type DB3RECORD */
struct DB3RECORD db3record;
struct DB3RECORD *pdb3record;

pdb3header = &db3header:;
pdb3record = &db3record;
if ((fpCurDBF = fopen (szpGetConfig (szHeader, iDBFNum), "rb+")) == NULL)

{
}

displayError ("error opening database for display/editing™):;

if ((fread (&db3header, sizeof (struct DB3HEADER), 1, fpCurDBF)) == NULL)
{
displayError ("read error (database header)");
fseek (fpCurDBF, db3header.nFirstRecordOffset, SEEK_SET);
i=1;
while(i <= db3header.lNumberRecords)
clrscr();
fseek (fpCurDBF, (db3header.nFirstRecordOffset +
({i - 1) * db3header.nRecordLength)), SEEK_SET); ‘
if ((fread(&db3record, sizeof (struct DB3RECORD), 1, fpCurDBF)) == NULL)

{
displayError("read error {(database record)"):

}

for(j = 25; db3record.szDateRecord[j] == ' ' && j !'= 0; j--);
J++;
db3record.szDateRecord[j] = '\0O';

100

for(j = 100; db3record.szTo[j] == ' ' && j != 0; j--);

J++;

db3record.szTo[j] = '\0';

for(j = 100; db3record.szOriginOrg({j] == "' ' && j != 0; j--):
é;;;ecord.szOriginOrg[j] = '"\0';

?or(j = 254; db3record.szSubject[j] == ' ' && J != 0; j--):
égg;ecord.szSubject[j] = '\0"';

?or(j = 100; db3record.szAuthor(j] == ' ' && j != 0; j-—-);
J++;

db3record.szAuthor[j] = '\0';

for(j = 25; db3record.szCreateDate[j] == ' ' && J != 0; j--);
é;;;ecord.szCreateDate[j] = '\0';

for(j = 50; db3record.szRecType[j] == ' ' && j != 0; j--);
gg;iecord.szRecType[j] = "\0"';

for(j = 50; db3record.szMediaTypel[j] == "' ' && j != 0; j--);
igg;ecord.szMediaType[j] = '\0';

for(j = 50; db3record.szRecFormat[j] == ' ' && J != 0; j--);
gg;iecord.szRecFormat[j] = '\0";

iNext = FALSE;
while (iNext == FALSE)
{
clrscr();
if (db3record.szStatus[0] == USABLE RECORD)
{
strcpy(szStatus, "active");

else if(db3record.szStatus[0] == DELETED_RECORD)
{

}
else

{

strcpy(szStatus, "deleted");

strcpy(szStatus, "unknown");

}

_setcursortype (_NOCURSOR) ; i

printf ("Record %d of %d\n", i, db3header.lNumberRecords):;

printf ("Date of Record: %s\t”, pdb3record->szDateRecord):

printf ("Status: %s\n", szStatus);

printf("- 1 - Addressee(s): %-100s\n", pdb3record->szTo);

printf("- 2 ORIGINATOR: %-100s\n", pdb3record->szOriginOrgq):;

printf("- 3 SUBJECT: %-254s\n", pdb3record->szSubject);

printf("- 4 - Author: $%$-100s\n", pdb3record->szAuthor):

printf("- 5 - Creation Date: %-25s\n\n",
pdb3record->szCreateDate);

printf("- 6 - RECORD TYPE: %-50s\n\n", pdb3record->szRecType);

printf("- 7 - MEDIA TYPE: %-50s\n\n", pdb3record->szMediaType):;

printf("- 8 - RECORD FORMAT: %-50s\n\n",
pdb3record->szRecFormat) ;

printf("\n(e) %-10s(n) %-10s(p) %-10s(f) %-10s(l) %$-10s\n",
"Edit"™, "Next", "Prev", "First", "Last");

puts (" (q) Return to previous menu");

101

cSel = getch():;

switch{cSel)

{

case 'e':
case 'E':
editRecord(pdb3record, pdb3header, 1i);
fseek (fpCurDBF, (db3header.nFirstRecordOffset +
((i - 1) * db3header.nRecordLength)), SEEK_SET);
if((fwrite (pdb3record, sizeof (struct DB3RECORD),
1, fpCurDBF)) != 1)
{
displayError("write error (edited db3recoxd)"):

}

fseek (fpCurDBF, 0, SEEK_SET);

if ((fwrite (pdb3header, sizeof(struct DB3HEADER),
1, fpCurDBF)) != 1)

{

}
iNext = TRUE;
break;

displayError ("write error (DB3 Header)");

case 'n':

case 'N':
iNext = TRUE;
if(i != db3header.lNumberRecords)
{

}

else

{
puts ("AT LAST RECORD!");
delay(500);

}

break;

i++;

case 'p':
case 'P':
iNext = TRUE;
if(i = 1)
{
i--;
}
else
{
puts ("AT FIRST RECORD!");
delay(500);
}
break;

case 'f':

case 'F':
iNext = TRUE;
i=1;
break;

case '1l':

case 'L':
i = db3header.lNumberRecords;
iNext = TRUE;

break;
case 'qg':
case 'Q':

102

. void editRecord(struct DB3RECORD *pdb3record,

{

}
}

return;

default:
puts ("INVALID KEY!");
delay (500);

fclose (fpCurDBF) ;

int iRecNum)

int i;
int iDone = FALSE;

char
char
char
char

cSel;
szBuff[255]:;
szRecStatus[8];
*pcdb3record;

struct tm *curTime;

time_

t tClock:;

pcdb3record = (char *)pdb3record;

clrscr();

time (&tClock) ;

curTime = localtime (&tClock);

strftime (szBuff, 255, "%d-%b-%Y %X", curTime);
strncpy (pdb3record->szDateRecord, szBuff,

cSel

sizeof (pdb3record->szDateRecord)) ;

= 0;

while (iDone == FALSE)

{

setcursortype (NORMALCURSOR) ;
if (pdb3record->szStatus[0] == DELETED_RECORD)

{
}

strcpy(szRecStatus, "deleted”);

else
{

strcpy (szRecStatus, "active");
}
switch(cSel)
{

case 49:

printf ("Addressee(s): ");

gets(szBuff);

strncpy (pdb3record->szTo, szBuff,
sizeof (pdb3record->szTo)) ;

cSel = 0;

break:;

case 50:
print£ ("ORIGINATING ORGANIZATION: ");
gets (szBuff);
strncpy (pdb3record->szOriginOrg, szBuff,
sizeof (pdb3record->sz0riginOrg)) ;
cSel = 0;

103

struct DB3HEADER *pdb3header,

break;

case 51:
printf ("SUBJECT: "):
gets (szBuff) ;
strncpy (pdb3record~>szSubject, szBuff,
sizeof (pdb3record->szSubject)):
cSel = 0;
break;

case 52:
printf ("Authoxr: ");
gets (szBuff) ;
strncpy (pdb3record->szAuthor, szBuff,
sizeof (pdb3record->szAuthor));
cSel = 0;
break;

case 53:
printf ("Creation Date: ");
gets (szBuff);
strncpy (pdb3record->szCreateDate, szBuff,
sizeof (pdb3record->szCreateDate));
cSel = 0;
break;

case 54:
printf ("RECORD TYPE: ");
gets (szBuff);
strncpy (pdb3record->szRecType, szBuff,
sizeof (pdb3record->szRecType)) ;
cSel = 0;
break;

case 55:
printf ("MEDIA TYPE: ");
gets (szBuff);
strncpy (pdb3record->szMediaType, szBuff,
sizeof (pdb3record->szMediaType));
cSel = 0;
break;

case 56:
printf ("RECORD FORMAT: ");
gets (szBuff);
strncpy (pdb3record->szRecFormat, szBuff,
sizeof (pdb3record->szRecFormat)) ;
cSel = 0;
break;

case 's':

case 'S':
iDone = TRUE;
break;

case 'd':

case 'D':
pdb3record->szStatus (0]
cSel = 0;
break;

DELETED_RECORD;

case 'u':

case 'U':
pdb3record->szStatus[0]
cSel = 0;

USABLE_RECORD;

104

break;

default:

clrscr();

_setcursortype (_NOCURSOR) ;

printf ("Record %d of %d\n", iRecNun,
pdb3header->1NumberRecords) ;

printf ("Date of Record: $s\t",
pdb3record->szDateRecord) ;

printf("Status: %s\n", szRecStatus);

printf("- 1 - Addressee(s): %-100s\n",
pdb3record->szTo) ;

printf("- 2 ~ ORIGINATOR: %-100s\n",
pdb3record->sz0riginOrg) ;

printf("- 3 - SUBJECT: %-254s\n”",
pdb3record->szSubject) ;

printf("- 4 - Author: %-100s\n",
pdb3record->szAuthor) ;

printf("- 5 - Creation Date: %-25s\n\n",
pdb3record->szCreateDate) ;

printf("- 6 - RECORD TYPE: $%-50s\n\n",
pdb3record->szRecType) ;

printf("- 7 - MEDIA TYPE: %-50s\n\n",
pdb3record->szMediaType) ;

printf ("~ 8 - RECORD FORMAT: $%-50s\n\n",
pdb3record->szRecFormat) ;

puts ("\nTo reenter any fields enter the appropriate number");

printf("(s) %-10s(d) %-10s(u) %-10s\n",
"Save", "Del", "Undelete"):;

cSel = getch{):

}
}
_setcursortype (_NOCURSOR}) ;

for (i = 0; i < sizeof(struct DB3RECORD); i++)
if (pcdb3record[i] == '\0')
{

pcdb3record[i] = ' *;
}
}

time (&tClock) ;

curTime = localtime (&tClock);

pdb3header->bYear = curTime->tm_year;

pdb3header->bMonth = (unsigned char) (curTime->tm mon + 1);
pdb3header->bDay = (unsigned char)curTime->tm mday;

void compactDBF (int iDBFNum)
{

FILE *fpCurDBF;

FILE *fpTmpDBEF;

int i;

char c:

char szHeader[20] = "dbfile";
char szBuff[256];

struct DB3HEADER db3headOld;
struct DB3HEADER db3headNew;

struct DB3RECORD db3recorxd;

105

struct tm *curTime;
time_t tClock;

createDBF (6) ;

if ((EpCurDBF = fopen(szpGetConfig(szHeader, iDBFNum), "rb")) == NULL)
{

displayError ("opening DBF file for compacting”):
}

if ((fpTmpDBF = fopen (szpGetConfig(szHeader, 6), "rb+")) == NULL)
{
displayError ("opening temp file for compacting");

}

if ((fread (&db3headOld, sizeof (struct DB3HEADER), 1, fpCurDBF)) == NULL)
{

displayError("read error (database header)");
}

if ((fread(sdb3headNew, sizeof (struct DB3HEADER), 1, fpTmpDBF)) == NULL)
{

displayError ("read error. (database header)");

i=1;
while (i <= db3headOld.lNumberRecords)
{
fseek (fpCurDBF, (db3headOld.nFirstRecordOffset +
({1 - 1) * db3headOld.nRecordlLength)), SEEK_ SET);
if ((fread (&db3record, sizeof (struct DB3RECORD), 1, fpCurDBF)) == NULL)
{
displayError("read error (database record)");

if (db3record.szStatus{[0] != '*')
{
fseek (fpTmpDBF, (db3headNew.nFirstRecordOffset +
(db3headNew. INumberRecords * db3headNew.nRecordLength)),

SEEK_SET) ;

if ((fwrite((char *)&db3record, sizeof (struct DB3RECORD), 1, fpTmpDBF))
= 1)

{
displayError(":(write error (DB3 record in temp file)");

}
db3headNew. 1NumberRecords++;
}
i++;
}
time (&tClock);
curTime = localtime (&tClock);
db3headNew.bYear = curTime->tm year;
db3headNew.bMonth = (unsigned char) (curTime->tm mon + 1);
db3headNew.bDay = (unsigned char)curTime->tm mday;

if((f£seek (fpTmpDBF, 0, SEEK SET)) != 0)
{

displayError ("seek error (rewirte of header in temp file)");

if ((fwrite (&db3headNew, sizeof (struct DB3HEADER), 1, fpTmpDBF)) != 1)
{

}
fclose (fpTmpDBF) ;
fclose (fpCurDBF) ;

displayError ("write error (updating header in temp file)"):;

106

1f ((£pTmpDBF = fopen(szpGetConfig(szHeader, 6), "rb")) == NULL)
{

displayError ("opening temp file for copying”):
}

if ((£pCurDBF = fopen (szpGetConfig(szHeader, iDBFNum), "wb")) == NULL)
{
displayError ("opening current DBF file for compacting”):;

}

while (1)
{
c = fgetc (fpTmpDBF) ;

if (! feof (fpTmpDBF))
fputc(c, fpCurDBF):;
else
break;

}

fclose (fpTmpDBF) ;

fclose (fpCuxDBF) ;

remove (szpGetConfig (szHeader, 6));

printf ("\t\t Database %d compacted\n", iDBFNum);

107

PROJECT: racs.prj
FILE: main.c

PURPOSE:
Start and end point for program as well as general utility functioms.

FUNCTIONS:
void main(void)
char *szpGetConfig(char szHeaderText[], int iFileNum)
void displayError (char szErrorMessagel[])
void copyFile(char *oldName, char *newName)

void cleanUp(veid)
_______ ———— — —————————— ek]

#define EXTERN extern
#include "racs.h"

void main (void)

{
_setcursortype (_NOCURSOR) ;
atexit (cleanUp):

introScreen();
mainMenu () ;

exit(0);
}

char *szpGetConfig(char szHeaderText[], int iFileNum)
{

char szHeader[20] nee
char szLBracket[] T
char szRBracket(] "n;
char szBuff[81] = "";
char szFileName([81] = "";

char szErrorMessage[81] = "";

=0

-

int i;

FILE *fpConfig;

strcat (szHeader, szLBracket);

strcat (szHeader, strupr(szHeaderText)):;

strcat (szHeader, szRBracket):;

if ((fpConfig = fopen ("CONFIG.TXT", "r")) == NULL)
{

}

displayError ("config.txt not found"”);

while (strcmp (szBuff, szHeader) != 0)
{ .
fscanf (fpConfig, "%s”, szBuff):;
if (strcmp(szBuff, "[END]") == 0)
{
strcpy(szErrorMessage, szHeader);
strcat (szErrorMessage, " not found in config.txt"):;
displayError (szErrorMessage);

108

for(i = 0; i < iFileNum; i++)
{
fscanf (fpConfig, "%s", szFileName);
if ((strcmp(szBuff, "[END]") == 0) || (szFileName[0] == '["))
{
strcpy (szErrorMessage, "specified file not found under ");
strcat (szErrorMessage, szHeader):;
displayError (szErrorMessage) ;
}

}
fclose (fpConfig) ;
return szFileName;

void displayError{char szErrorMessage[])

{

clrscr():

puts ("\n\n\n\n\n") ;

printf ("\t\t ERROR: %s", szErrorMessage);
delay(3000);

exit (1);

void copyFile(char *oldName, char *newName)

{

FILE *fpOld, *fpNew;
int c;

if ((£fp0ld = fopen(oldName, "rb")) == NULL)

{
displayError ("opening file to backup"):;
if ((fpNew = fopen (newName, "wb")) == NULL)
{
displayError("backup could not be created"):;
}
while (1)
{

¢ = fgetc(fp0Old):;

if (! feof (£p0ld))
fputc(c, fpNew);
else
break;
}
fclose (£p0ld);
fclose (fpNew) ;

void cleanUp(void)

{

}

clrscr();

puts ("\n\n\n\n\n") ;

puts ("\t\t\t\t Goodbye!");
delay(1000);

fcloseall();

clrscr();

_setcursortype (_NORMALCURSOR) ;

109

PROJECT: racs.prj
FILE: menus.c

PURPOSE:

Contains all the functions which display the various menus

needed to operate the program.

FUNCTIONS:
void introScreen (void)
void mainMenu (void)
void databaseMenu(void)
void initializeDatabaseMenu(void)
void viewDatabaseMenu (void)
void compactDatabaseMenu(void)
void initializeDBF{int iDBFNum)
void templateMenu (void)
void generateTemplatesMenu(void)
void viewTemplatesMenu(void)
void logFileMenu (void)
void viewLogFileMenu(void)

#define EXTERN extern
#include "racs.h"

void introScreen(void)

{
clrscr():
window (16, 6, 65, 13);
textbackground (BLUE) ;
textcolor (LIGHTGRAY) ;
clrscr();
cprintf ("\r\n");
cprintf (" R.A.C.S. \r\n");
cprintf (" Records Analysis and Classification System \r\n");
cprintf ("\r\n");
cprintf (" Version 1.0 \r\n");
cprintf (" Created by David Snoddy \r\n");
cprintf (" October 1996 \r\n");
delay(3500);
window(1l, 1, 80, 25);
textbackground (BLACK) ;
textcolor (LIGHTGRAY) ;
clrscr();
}

void mainMenu (void)

{
int iDone = FALSE;

char cSel;

while (iDone == FALSE)
{

clrscr():

puts ("\n\n");

puts ("\t\t\tChoose one of the following actions:\n");

puts ("\t\t\t (d)\tDatabase Management");
puts ("\t\t\t (t)\tTemplate Management");
puts ("\t\t\t (1)\tLog File Management");
puts ("\t\t\t (c)\tClassify New Record");
puts (n") ;

puts ("\t\t\t (g)\tQuit");

110

*/

cSel = getch();

switch (cSel)
{
case 'd':
case 'D':
databaseMenu() ;
break;

case 't':

case 'T':
templateMenu();
break;

case 'l':

case 'L':
logFileMenu() ;
break;

case 'c':

case 'C':
classifyRecord();
break;

case 'q'

case 'Q'
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!"):
delay(1000);

void databaseMenu (void)
{
int i;
int iSuccess([5];
int iDone = FALSE;
char cSel;
char szHeaderl[20]
char szHeader2[20]
char szNew([20];
char sz01d[20];

"dbfile";
"dbfbackup”;

while(iDone == FALSE)

{
clrscr();
puts ("\n\n");
puts ("\t\t\tChoose one of the following actions:\n");
puts ("\t\t\t (b)\tBackup All Databases");
puts ("\t\t\t (i)\tInitialize Databases");
puts ("\t\t\t (v)\tView/Edit Records”);
puts ("\t\t\t (c)\tCompact Databases");
puts (l'") ;
puts ("\t\t\t (q)\tReturn to the Main Menu");

cSel = getch();
switch(cSel)
{

case 'b':

111

case 'B':

for(i = 1; i <= 5; i++)

{
strcpy (sz0ld, szpGetConfig(szHeaderl, 1i)):
strcpy (szNew, szpGetConfig(szHeader2, 1i)):;
copyFile(sz01d, szNew);

}

printf ("\n\t\t\tAll databases backed up”);

delay(2000);

break;

case 'i':

case 'I':
initializeDatabaseMenu();
break;

case 'v':

case 'V':
viewDatabaseMenu() ;
break;

case 'c':

case 'C':
compactDatabaseMenu () ;
break;

case 'g':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void initializeDatabaseMenu{void)
{

int iDone = FALSE;

char cSel;

while (iDone == FALSE)

{
_setcursortype (_NOCURSOR) ;
clrscr():
puts ("\n\n");
puts ("\t\t\tSelect the database to initialize:\n");
puts ("\t\t\t (1)\tT 11-02 R 21 Item 3");
puts{("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts ("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts ("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts ("\t\t\t (a)\tInitialize All Databases");
puts (nn) ;
puts ("\t\t\t (g)\tReturn to the Databases Menu"):;

cSel = getch():;
switch(cSel)
{

case '1':
initializeDBF(1l);

112

break:

case '2':
initializeDBF(2);
break;

case '3':
initializeDBF (3);
break;

case '4':
initializeDBF (4):
break;

case '5':
initializeDBF (5);
break;

case 'a':

case 'A':
initializeDBF('a');
break;

case 'q':

case 'Q':
iDone = TRUE;
break:;

default:
puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void viewDatabaseMenu(void)
{

int iDone = FALSE;

char cSel;

while (iDone == FALSE)

{
_setcursortype (_NOCURSCR) ;
clrscr():
puts ("\n\n");
puts ("\t\t\tSelect the database to view/edit:\n");
puts ("\t\t\t (1)\tT 11-02 R 21 Item 3");
puts ("\t\t\t (2)\tT 11-01 R 01 Item 6~3-2");
puts ("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts ("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts ("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts ("");
puts ("\t\t\t (q)\tReturn to Databases Menu");

cSel = getch();

switch(cSel)
{
case '1l':
displayRecords (1) ;
break;

case '2':
displayRecords (2);

113

break;

case '3':
displayRecords (3);
break;

case '4':
displayRecords (4);
break;

case '5':
displayRecords (5);
break;

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void compactDatabaseMenu(void)
{

int iDone = FALSE;

char cSel;

while (iDone == FALSE)

{
_setcursortype (_NOCURSOR) ;
clrscr();
puts ("\n\n");
puts ("\t\t\tSelect the database to compact:\n");
puts{"\t\t\t (1)\tT 11-02 R 21 Item 3");
puts ("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts ("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts ("\t\t\t (4)\tT 11-02 R 33 Item 12"):;
puts ("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts ("\t\t\t (a)\tCompact All Databases"):;
puts (" ") ’.

puts ("\t\t\t (qg)\tReturn to the Databases Menu");

cSel = getch();

switch(cSel)
{
case '1°':
compactDBF (1) ;
delay(500);
break;

case '2':
compactDBF (2) ;
delay(500);
break;

case '3':
compactDBF (3) ;
delay (500);
break;

114

case '4':
compactDBF (4) ;
delay (500);
break:

case '5':
compactDBF (5) ;
delay(500);
break:;

case 'a':

case 'A':
compactDBF (1
compactDBF (2
compactDBF (3
compactDBF (4
compactDBF (5
delay (500);
break;

)i
)i
)i:
)i
)i

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void initializeDBF (int iDBFNum)
{
int i;
int iSuccess;
char cSel;
char szHeaderl([20]
char szHeader2[20]
char sz01d[20];
char szNew[20]:;

"dbfile";
"dbfbackup";

puts (n\n") :

puts ("\t\t\tWARNING!") ;

puts ("\t\t\tInitializing a database will delete any previous");
puts ("\t\t\tinformation stored in the database!");

puts ("") ’.

puts ("\t\t\tDo you wish to continue?");

puts("\t\t\t(y) to continue any other key to abandon operation\n");

cSel = getch();

if(cSel == 'y' || cSel == 'Y")
{
if (iDBFNum == 'a')
{
for(i = 1; i <= 5; i++)
{
strcpy(sz0ld, szpGetConfig(szHeaderl, i));
strcpy(szNew, szpGetConfig(szHeadexr2, i));
copyFile (sz0ld, szNew);
createDBF (i) ;

115

}

else

{

}

}
else

{

}

strcpy (sz0ld, szpGetConfig(szHeaderl, iDBFNum
strcpy (szNew, szpGetConfig(szHeader2, iDBFNum

copyFile(sz0ld, szNew);
createDBF (iDBFNum) ;

if (iDBFNum == 'a')

{
}

puts {("\t\t\tAll databases initialized");

else

{
}

printf("\t\t\tDatabase %d initialized\n", iDBFNum);

delay(1000);

puts ("\n\t\t\tOperation aborted!");
delay (1000) ;

void templateMenu (void)

{

int i;
int iDone = FALSE;
char cSel;

while (iDone == FALSE)

{

clrscx();
puts ("\n\n");

puts ("\t\t\tChoose one of the following actions:\n");
(g) \tGenerate Templates");
(v)\tView Templates"):;

puts ("\t\t\t
puts ("\t\t\t

puts (""y;

puts ("\t\t\t

cSel = getch();

switch(cSel)

{

case 'g':

case 'G':
generateTemplatesMenu() ;
break;

case 'v':

case 'V':
viewTemplatesMenu() ;
break;

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID
delay(1000);

(q) \tReturn to the Main Menu");

KEY!"™);

116

void generateTemplatesMenu(void)
{

int iDone = FALSE;

int i;

char cSel;

while (iDone == FALSE)
{
_setcursortype (_NOCURSCR) ;
clrscr():
puts ("\n\n");
puts ("\t\t\tSelect the template to generate:\n");
puts ("\t\t\t (1)\tT 11-02 R 21 Item 3");
puts ("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts ("\t\t\t (3)\tT 11-01 R 01l Item 6-4");
puts ("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts ("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts ("\t\t\t (a)\tGenerate All Templates");
puts ("") ;
puts ("\t\t\t (q) \tReturn to the Templates Menu");

cSel = getch():;

switch(cSel)
{
case 'l1l':
if (genCLASSTMPLT (1) == TRUE);
{
printf ("\n\t\t\tTemplate %c generated", cSel);
delay (500} ;
}
break:;

case '2':
if (genCLASSTMPLT (2) == TRUE);

printf ("\n\t\t\tTemplate %c generated”, cSel);
delay (500);

}

break:;

case '3':
if (genCLASSTMPLT (3) == TRUE);
{
printf ("\n\t\t\tTemplate %c generated", cSel);
delay (500);
}

break:
case '4':
i1f (genCLASSTMPLT (4) == TRUE);
{
printf ("\n\t\t\tTemplate %c generated", cSel);
delay (500);
}
break;
case '5':
if (genCLASSTMPLT (5) == TRUE);

{

117

printf ("\n\t\t\tTemplate %c generated", cSel);

delay(500);
}
break;
case 'a':
case 'A':
puts (n") ;
for(i = 1; i <= 5; i++)
{
if (genCLASSTMPLT (i) == TRUE):;
{
printf ("\t\t\tTemplate %d generated\n", i);
delay(100);
}
}
break;
case 'q':
case 'Q':
iDone = TRUE;
break;
default:

puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void viewTemplatesMenu (void)
{

int iDone = FALSE;

int i;

char cSel;

while (iDone == FALSE)

{
_setcursortype (_NOCURSOR) ;
clrscr():;
puts ("\n\n");
puts ("\t\t\tSelect the template to view:\n");
puts("\t\t\t (1)\tT 11-02 R 21 Item 3");
puts ("\t\t\t (2)\tT 11-01 R 01 Item 6-3-2");
puts ("\t\t\t (3)\tT 11-01 R 01 Item 6-4");
puts("\t\t\t (4)\tT 11-02 R 33 Item 12");
puts ("\t\t\t (5)\tT 900-02 R 02 Item 15");
puts (ll") ;
puts ("\t\t\t (q)\tReturn to the Templates Menu");

cSel = getch();

switch(cSel)
{
case 'l':
system("edit catltpl.txt");
break;

case '2':
system("edit cat2tpl.txt");
break;

case '3':
system("edit cat3tpl.txt");

118

break;

case '4':
system("edit catdtpl.txt"):;
break;

case '5':
system("edit catStpl.txt");
break;

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts {"\n\t\t\t INVALID KEY!");
delay(1000);

void logFileMenu(void)
{
int i;
int iDone = FALSE;
char cSel;
char szHeaderl([20]
char szHeader2[20]
char sz01d[20];
char szNew[20];

"logfile"™;
"logbackup”;

while (iDone == FALSE)
{
clrscr();
puts ("\n\n");
puts ("\t\t\tChoose one of the following actions:\n");
puts ("\t\t\t (b)\tBackup Log Files");
puts ("\t\t\t (d)\tDelete Log Files");
puts ("\t\t\t (v)\tView Log Files");
puts ("") ;
puts ("\t\t\t (q)\tReturn to the Main Menu");

¢cSel = getch();

switch (cSel)
{
case 'b':
case 'B':
strcpy (sz01ld, szpGetConfig(szHeaderl,
strcpy (szNew, szpGetConfig(szHeader2,
copyFile (sz0ld, szNew);
strcpy(sz0ld, szpGetConfig(szHeaderl, 2));
strcpy (szNew, szpGetConfig(szHeader2, 2));
copyFile (sz01ld, szNew);
printf ("\n\t\t\tLog files backed up"):;
delay(750);

break:;
case 'd’':
case 'D':

strcpy(sz0ld, szpGetConfig(szHeaderl,
strcpy (szNew, szpGetConfig(szHeader2,
copyFile(sz0ld, szNew);

=
——
—
~e N

119

remove (sz01d) ;

strcpy(sz0ld, szpGetConfig(szHeaderl, 2));
strcpy (szNew, szpGetConfig(szHeader2, 2));
copyFile (sz01ld, szNew);

remove (sz01ld) ;

printf ("\n\t\t\tLog files deleted"):;
delay(750);

break;

case 'v':

case 'V':
viewLogFileMenu():
break;

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!");
delay(1000);

void viewLogFileMenu (void)
{

int iDone = FALSE;

int i:;

char cSel;

while (iDone == FALSE)
{
_setcursortype (_NOCURSCR) ;
clrscr():
puts ("\n\n");
puts ("\t\t\tSelect the log file to view:\n");
puts("\t\t\t (a)\tAll Details");
puts ("\t\t\t (s)\tOnly Score");
puts ("n) ;
puts ("\t\t\t (q)\tReturn to the Log Files Menu");

cSel = getch():

switch(cSel)
{
case 'a':
case 'A':
system("edit logfile.txt"™):;
break;

case 's':

case 'S':
system("edit scorelog.txt"):
break;

case 'q':

case 'Q':
iDone = TRUE;
break;

default:
puts ("\n\t\t\t INVALID KEY!");

120

delay(1000);

121

PROJECT: racs.prj
FILE: score.c

PURPOSE:
The functions in this module perform the mathematical calculations to
determine the scores for each new record. The scores are determined by
calculating a Modified Overlap Coefficient for the record template versus

each of the five class templates.

FUNCTIONS:
void compareTemplates(struct RECTMPLT *pRecTmplt, struct SCORE *pScore)
void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,

struct SCORE *pScore)

______ —— _*/

#define EXTERN extern
#include "racs.h"

void compareTemplates{struct RECTMPLT *pRecTmplt, struct SCORE *pScore)

{
FILE *fpClsTmplt;
char szHeader[20] = "template”;

int i;

struct CLASSTMPLT clsTmplt;
struct CLASSTMPLT *pClsTmplt:
pClsTmplt = &clsTmplt;

for(i = 0; i < 5; i++)
{
1f{(£pClsTmplt = fopen(szpGetConfig(szHeader, i + 1), "rb")) == NULL)

displayError ("opening class template”);
}

memset (&clsTmplt, 0, sizeof (struct CLASSTMPLT)):;

if((fread(&clsTmplt, sizeof(struct CLASSTMPLT), 1,
fpClsTmplt)) == NULL)

{

}

displayError("read error (class template)");

fclose (fpClsTmplt) ;

pScore->iDBFNum = (i + 1);
calcScore (pRecTmplt, pClsTmplt, pScore);
pScore++;

void calcScore(struct RECTMPLT *pRecTmplt, struct CLASSTMPLT *pClsTmplt,
struct SCORE *pScore)
{
int i, 3
int iMatch;
float £fTop:;
float fBottom;
float fSub = 0;
float fOrg = 0O;

122

float £Typ = 0:
float fMed = 0;
float fFrm = 0;

float fScore([3] = {0, 0, 0};

/* Caculate score for the subject fields */
iMatch = FALSE;

fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pSub[i].szKwrd{0] != "\0'); i++)

{

iMatch = FALSE;

for(j = 0; (pClsTmplt->pSub[j].szKwrd[0] != '\0' &&
iMatch != TRUE); j++)

{
clrscr();
printf ("Template %d - Subject\n"”, pScore->iDBFNum) ;
printf ("™ Record: %s \n", pRecTmplt->pSub[i].szKwrd):;
printf ("Template: %s \n", pClsTmplt->pSub(j].szKwrd);
delay(5);

if (stxcmp (pRecTmplt->pSubli] . szKwrd,
pClsTmplt->pSub(j]).szKwrd) == 0)
{
iMatch = TRUE;
fTop += ((pRecTmplt->pSub(i].iFreq) *
(pClsTmplt->pSub(j].iFreq)):;
fBottom += pRecTmplt->pSub[i].iFregqg;
printf ("record freq: %$d\n", pRecTmplt->pSub[i].iFreq):;
printf(" class freq: %d\n", pClsTmplt->pSub{j].iFreq):;
printf (" top: %.0f\n", fTop);
printf (" bottom: %.0f\n", fBottom);
delay(200);

}
}
if (fBottom != 0)
{

fSub = (fTop / (pClsTmplt->iNumRecs * fBottom)):;
}
pScore->sub.fTop = fTop;
pScore~>sub.fBottom = fBottom;
pScore->sub.iNumRecs = pClsTmplt->iNumRecs;
pScore->sub.fResult = £Sub;

/* Caculate score for the originating organization fields */
iMatch = FALSE;

fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pOrg{i].szKwrd[0] != '\0'); i++)

{

iMatch = FALSE;

for(j = 0; (pClsTmplt->pOrgl[jl.szKwrd[0] != '\0' &&
iMatch != TRUE); j++)

{
clrscr();
printf ("Template %d - Originating Org\n", pScore->iDBFNum);
printf (" Record: %s \n", pRecTmplt->pOrg{i].szKwrd);
printf ("Template: %s \n", pClsTmplt->pOrg(j].szKwrd):
delay(3);

if (strcmp (pRecTmplt->pOrg(i] .szKwrd,
pClsTmplt->pOrg(j].szKwrd) == 0)
{
iMatch = TRUE;

123

fTop += ((pRecTmplt->pOrg(i].iFreq)
(pClsTmplt->pOrg{j].iFreq)):;
fBottom += pRecTmplt->pOrg[i].iFreq:

*

printf("record freg: %d\n", pRecTmplt->pOrg(i].iFreq):;
printf (" class freq: %d\n", pClsTmplt->pOrglj].iFreq):

printf (" top: %.0f\n", fTop):;
printf (" bottom: %.0f\n", fBottom):;
delay(200):

}
}
if (fBottom != 0)
{

fOrg = (fTop / (pClsTmplt->iNumRecs * fBottom)):;

}

pScore~>org.fTop = fTop:;
pScore->org.fBottom = fBottom;
pScore->org.iNumRecs = pClsTmplt->iNumRecs;
pScore->org.fResult = fOrg;

/* Caculate score for the record type fields */

iMatch = FALSE;
fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pTyp(i].szKwrd[0] !=
{
iMatch = FALSE;
for(j = 0; (pClsTmplt->pTypl[jl.szKwrd[O]
iMatch != TRUE); j++)
{
clrscr();

printf ("Template %d - Record Type\n”, pScore->iDBFNum);
printf (" Record: %s \n", pRecTmplt->pTyp[il].szKwxd):;
printf("Template: %s \n", pClsTmplt->pTyp[j].szKwxd):;

delay(5);

if (strcmp (pRecTmplt->pTyp[i] . szKwrd,
pClsTmplt->pTyp[j].szKwrd) ==
{
iMatch = TRUE;
fTop += ((pRecTmplt->pTypl[il.iFreq)
(PClsTmplt->pTyp([jl.iFreq)):
fBottom += pRecTmplt->pTyplil].iFreq;

printf ("record freq: %d\n”, pRecTmplt->pTypl[i].iFreq)
printf (" class freq: %d\n", pClsTmplt->pTyp(j].iFreq)

'\O'); i++)

1= "\0"' &&

)

%*

printf (" top: %.0f\n", £fTop):
printf (" bottom: %.0f\n”, £fBottom);
delay(200);

}
}
if (fBottom != 0)
{

fTyp = (£Top / (pClsTmplt->iNumRecs * fBottom));

}

pScore~>typ.fTop = fTop:;
pScore->typ.fBottom = fBottom;
pScore->typ.iNumRecs = pClsTmplt->iNumRecs;
pScore~>typ.fResult = fTyp;

/* Caculate score for the media type fields
iMatch = FALSE;

fTop = O;

fBottom = 0;

for(i = 0; (pRecTmplt->pMed[i].szKwrd{[0] !=

124

*/

"\NO"); i++)

’
’

iMatch = FALSE;

for(j = 0; (pClsTmplt->pMed[j].szKwrd[0] != '\0' &&
iMatch != TRUE); Jj++)

{
clrscx();
printf ("Template %d - Media Type\n", pScore->iDBFNum);
printf(" Record: %s \n", pRecTmplt->pMed[i].szKwrd);

- printf ("Template: %s \n", pClsTmplt->pMed[j].szKwrd);

delay(5):;

if (strcmp (pRecTmplt~>pMed[i] .szKwrd,
- pClsTmplt->pMed{j].szKwrd) == 0)

{
iMatch = TRUE;
fTop += ((pRecTmplt->pMed[i].iFreq) *

(pClsTmplt->pMed[j].iFreq));

fBottom += pRecTmplt->pMed[i].iFreq;
printf ("record freq: %d\n", pRecTmplt->pMed[i].iFreq);
printf(" class freq: %d\n", pClsTmplt->pMed[j].iFreq);

printf (" top: %.0f\n", £fTop):
printf(" bottom: %.0f\n", fBottom);
delay(200);

}
}
if (fBottom != 0)

fMed = (fTop / (pClsTmplt->iNumRecs * £Bottom));
}
pScore->med.fTop = £Top;
pScore~->med. fBottom = fBottom;
pScore~>med. iNumRecs = pClsTmplt->iNumRecs;
pScore->med. fResult = fMed;

/* Caculate score for the record format fields */
iMatch = FALSE;

fTop = 0;
fBottom = 0;
for(i = 0; (pRecTmplt->pFrm[i].szKwrd[0] != '\0'); i++)

{

iMatch = FALSE;

for(j = 0; (pClsTmplt->pFrm[j].szKwrd([0] != '\0' &&
iMatch != TRUE); j++)

{
clrscr();
printf ("Template %d - Record Format\n", pScore->iDBFNum);
printf (" Record: %s \n", pRecTmplt->pFrm(i].szKwrd);
printf("Template: %s \n", pClsTmplt->pFrm([j].szKwrd);
delay(5);

if (strcmp (pRecTmplt->pFrm{i] . szKwrd,
pClsTmplt->pFrm[j].szKwrd) == 0)
{
iMatch = TRUE;
fTop += ((pRecTmplt->pFrm[i].iFreq) *
(pClsTmplt->pFrm[]j).iFreq));
fBottom += pRecTmplt->pFrm[i].iFreq;
printf("record freq: %d\n", pRecTmplt->pFrm[i].iFreq):;
printf (" class freqg: %d\n", pClsTmplt->pFrm(j].iFreq);
printf (" top: %.0£\n", fTop):
printf (" bottom: %.0f\n", fBottom);
delay (200);

125

}
if (fBottom != 0)
{

fFrm = (fTop / {pClsTmplt->iNumRecs * fBottom)):
}
pScore->frm.fTop = £Top:;
pScore->frm.fBottom = fBottom;
pScore->frm.iNumRecs = pClsTmplt->iNumRecs;
pScore~>frm.fResult = fFrm;

/* Calculate the composite score for the document */

fScore[0] = (£fSub * .3) + (fOrg * .2) + (fTyp * .3) +
(fMed * .1) + (fFrm * .1):

fScore[l] = (£fSub * .2) + (fOrg * .2) + (fTyp * .2) +
(fMed * .2) + (fFrm * .2);

fScore[2] = (fSub * .5) + (£0rg * .3) + (fTyp * .0) +
(fMed * .1) + (fFrm * .1);

clrscxr();

printf ("30/20/30/10/10: %.3f\n", £Score(0]);
printf("20/20/20/20/20: %.3f\n", fScore[l]):;
printf("50/30/00/10/10: %.3f\n", £fScore[2]):
delay(500);

fScore(0];
fScore(l];
fScore[2];

pScore->fScore[0]
pScore->fScore[l]
pScore->fScore (2]

126

PROJECT: racs.prj
FILE: stemmer.c

PURPOSE:
This module is an implementation of the Porter suffix stripping algorithm.
This code was written by C. Fox, 1990.

FUNCTIONS:
char *stem(register char *word)
static int WordSize(register char *word)
static int ContainsVowel (register char *word)
static int EndsWithCVC(register char *word)
static int AddAnE (register char *word)
static int RemoveAnE (register char *word)
static int ReplaceEnd(register char *word, struct RULELIST *rule)

#define EXTERN extern
#include "racs.h"

#define EOS '\0'
#define IsVowel(c) \
((ta'==(c))li("e'==(c)) |l ('di'==(c)) ||l (To'==(c)) |l ("u'==(c)))

struct RULELIST ({
int id;
char *old end;
char *new_end;
int old _offset;
int new_offset;
int min_root_size;
int (*conditionm) ();

}:

static char LAMBDA[1l] = "";
static char *end;

static struct RULELIST stepla_rules(] =
{

101, "sses", "ss", 3, 1, -1, NULL,
102, "ies", niv, 2, 0, -1, NULL,
103, '"ss", "ss", 1, 1, -1, NULL,
104, "s", LAMBDA, 0, -1, -1, NULL,
000, NULL, NULL, 0, 0, 0, NULL,

}:

static struct RULELIST steplb_rules[] =

105, "eed", "ee", 2, 1, 0, NULL,
106, "ed", LAMBDA, 1, -1, -1, ContainsVowel,
107, "ing", LAMBDA, 2, -1, -1, ContainsVowel,
000, NULL, NULL, 0, 0, 0, NULL,

}:

static struct RULELIST steplbl rules[] =
{

108, "at”™, "ate", i, 2, -1, NULL,
108, "bl", "ble", i, 2, -1, NULL,
110, "iz", "ize", i, 2, -1, NULL,
111, "bb", "b", i, 0, -1, NULL,
112, rdd”, "d", i, 0, -1, NULL,
113, "f£fv, S i, 0, -1, NULL,
114, "gg", "g", i, 0, -1, NULL,

127

115,
11le,
117,
118,
119,
120,
121,
122,
000,
}:

static

123,
000,
}:

static

{
203,
204,
205,
206,
207,
208,
209,
210,
211,
213,
214,
215,
216,
217,

000,
}:

static

{
301,
302,
303,
304,
305,
308,
309,
000,

}:

static

{
401,
402,
403,
405,
406,
407,
408,
409,
410,

"mm" ,
llnnll ,
llppll ,
” rr" ,
'ltt ” ,
llww'l ,
llxx" ’
LAMBDA,
NULL,

llmll ’
"n" ’
LAV L
won!
"t",
llwll ,
"x" ;
"e" ’
NULL,

struct RULELIST steplc_rules[]

"y",
NULL,

wiw

iy,
NULL,

0,
0,

o,
0,

-1,
0,

struct RULELIST step2_rules[] =

"ational"”,
"tional",
"enci",
"anci",
"izer",
"abli",
"alli",
"entli",
"eli",
"ousli",
"ization",
"ation",
"ator”,
"alism",
"iveness",
"fulnes",
"ousness",
"aliti”,
"iviti”,
"biliti”,
NULL,

"ate",
"tion",
uence"’
"ance",
"ize"’
"able",
"al" ,
"ent"'
"e"’
"ous ”w ’
Ilize"’
"ate",
Ilate"’
"al" ,
IliVell ’
"fulll ’
"Ous "’
"al" ,
"ive"’
"ble",
NULL,

€,
S,
3,
3,
3,
3,
3,
4,
4,
6,
4,
3,

6,

5,
0,

struct RULELIST step3_rules[] =

"icate",
"ative",
"alize",
"iciti",
"ical",
"ful",
"nessn’
NULL,

"icll,
LAMBDA,
"al",
"ic",
llicll'
LAMBDA,
LAMBDA,
NULL,

4,
4,

4,

struct RULELIST step4_rules[] =

"al"'
"ance",
"ence",
"er" ,
llicll,
"able",
"ible",
"ant"'
"ement"”,

LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,
LAMBDA,

-1,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
AddAnE,
NULL,

ContainsVowel,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

128

411, "ment”, LAaMBDA, 3, -1, 1, NULL,
412, TMent", LAMBDA, 2, -1, 1, NULL,

423, "sion", "s", 3, 0, 1, NULL,
424, "tiomn", "t", 3, 0, 1, NULL,
415, "ou", LaMBDA, 1, -1, 1, NULL,

416, "ism", LAMBDA, 2, -1, 1, NULL,
417, "ate", ILaMBDA, 2, -1, 1, NULL,
418, "iti", LAMBDA, 2, -1, 1, NULL,
419, '"out", LAMBDA, 2, -1, 1, NULL,
420, "ive", LaMBDA, 2, -1, 1, NULL,
421, "ize", LaMBDA, 2, -1, 1, NULL,
000, NULL, NULL, 0, 0, 0, NULL,
}:

static struct RULELIST step5a_rules[] =
{

501, "e", LaMBDA, O, -1, 1, NULL,
502, "e", LAMBDA, 0, -1, -1, RemoveAnE,

000, NULL, NULL, 6, 0, 0, NULL,
}s

static struct RULELIST stepSb_rules(] =

503, "1i1iv, "ir, i, 0, 1, NULL,
- 000, NULL, NULL, o, 0, 0, NULL,
}:

char *stem(register char *word)
{

int rule;

for(end = word; *end != EOS; end++)
{

if (!isalpha(*end))

{

return (FALSE) ;
}
}

end--;

ReplaceEnd (word, stepla_rules);

rule = ReplaceEnd(word, steplb_rules);
if((106==rule) || (107 == rule))

{

}

ReplaceEnd(word, steplc_rules);
ReplaceEnd(word, step2_rules);
ReplaceEnd(word, step3_rules);
ReplaceEnd(word, stepd4_rules):;
ReplaceEnd(word, stepb5a_rules);
ReplaceEnd(word, step5b_rules);

ReplaceEnd (word, steplbl rules);

return(woxrd) ;

static int WordSize(register char *word)
{

register int result;
register int state;

result = 0;
state = 0;

129

while (EOS != *word)
{
switch(state)
{
case 0:
state = (IsVowel (*word)) 2?2 1 : 2;
break;

case 1:
state = (IsVowel(*woxd)) ? 1 : 2;
if (2 == state) result++;
break;

case 2:
state = (IsVowel (*word) || ('y'== *word)) 2 1
break;
}
word++;
}
return(result);
} /* WordSize */

static int ContainsVowel (register char *word)
{

if (EOS == *word)

{

}

else

{

}
} /* ContainsVowel */

return (FALSE) ;

return (IsVowel (*word) || (NULL != strpbrk(word+l, "aeiouy"))):;

static int EndsWithCVC(register char *word)

{
int length;

if ((length = strlen(word)) < 2)
{

}

return (FALSE) ;

else
{
end = word + length -1;
return ((NULL == strchr("aeiouwxy", *end--))
&& (NULL != strchr("aeiouy", *end--))
&& (NULL == strchr("aeiou", *end)));

}
} /* EndsWithCVC */

static int AdJdAnE (register char *word)
{

return((1 == WordSize(word)) && EndsWithCVC(word)):
} /* A4ddAnE */

static int RemoveAnE (register char *word)

{
return((1 == WordSize(word)) && !EndsWithCVC(word)):

} /* RemoveAnE */

130

.

2;

static int ReplaceEnd(register char *word, struct RULELIST *rule)
{

register char *ending;

char tmp_ch;

while (0 != rule->id)
{ .
ending = end - rule->old_offset;
if(word != ending)
{
if (0 == strcmp(ending, rule->old_end))
{
tmp_ch = *ending;
*ending = EOS;
if(rule->min_ root_size < WordSize(word))

if(!rule->condition || (*rule->condition) (word))
{
(void) strcat(word, rule->new_end);
end = ending + rule->new_offset;
return{ rule->id);
}
}
*ending = tmp_ch;
return(rule->id);
}
}
rule++;
}
return(rule->id);
} /* ReplaceEnd */

131

PROJECT: racs.prj
FILE: stoplist.c

PURPOSE:
This module contains functions to work with a stop list.

FUNCTIONS:
int loadStoplist(char *szStoplist(l)
void unloadStoplist(char *szStoplist([], int iNumWords)
int checkStoplist (char *szTerm, char *szStoplist[l, int iNumWords)

- - -_ o~ - s i e S e i i i o e Mo S B 0 T e o A e S * /

#define EXTERN extern
#include "racs.h"

int loadStoplist(char *szStoplist[])
{
char szBuff{21];
char szBuff0ld[21];
char szHeader[20] = "stoplist";
int i;
FILE *fpStoplist;
if ((fpStoplist = fopen(szpGetConfig(szHeader, 1), "r")) == NULL)
{

displayError ("opening stoplist™);

i=0;
szBuff[0] = NULL;
do

{
strepy (szBuff0ld, szBuff):
fscanf (fpStoplist, "%s", szBuff);
1if((szStoplist[i] = (char *)malloc(strlen(szBuff)+1l)) == NULL)

displayError("allocating memory for stoplist");
}
if (strcmp (szBuffOld, szBuff) != 0)

strcpy (szStoplist[i], szBuff):
i++;

}
}while (strcmp (szBuff0ld, szBuff) != 0);

fclose (fpStoplist);
return i;

void unloadStoplist (char *szStoplist[], int iNumWords)
{ int i;

for(i = 0; i1 < iNumWords; i++)

i free(szStoplist[il);

132

int checkStoplist(char *szTerm, char *szStcoplist(],

{

int i;

for(i = 0; i < iNumWords; i++)
{

if (strcmp (szTerm, szStoplist{i]) ==

{
return TRUE;
}
}
return FALSE;

133

int iNumWords)

/*__ - e o o o e e e i e e e i e e e Y R e . S S e S S S S S . S S Y S S S B o g S

PROJECT: racs.prj

FILE: template.c

PURPOSE:
This module contains all of the functions for manipulating the five class
templates which represent the 5 databases.

FUNCTIONS:
int genCLASSTMPLT (int iDBFNum)
void addToCLASSTMPLT (char *szTerm, struct CLASSTMPLT *pTmplt, int iField)
void logCLASSTMPLT (struct CLASSTMPLT *pTmplt, int iDBFNum)
__ _— */

#define EXTERN extern
#include "racs.h"

int genCLASSTMPLT (int iDBFNum)
{
FILE *fpCurDBF;
FILE *fpClsTmplt;
char szHeaderl([20]
char szHeader2[20]

"dbfile";
"template”;

char szBuff[255];

char szTermBuff[51];
char *pString, *pToken;
char szToken([41]:;

int iTokenType:;

int iField:;

char *szStoplist[500];
int iNumWords:;

int iMatch;

int i, 3, k;

struct DB3HEADER db3header;

struct CLASSTMPLT tmplt:

struct CLASSTMPLT *pTmplt;

struct DB3RECORD db3record;

pTmplt = &tmplt;

iNumWords = loadStoplist(szStoplist);

memset (&tmplt, 0, sizeof(struct CLASSTMPLT));

1f((fpCurDBF = fopen (szpGetConfig(szHeaderl, iDBFNum), "rb")) == NULL)

{
displayError ("could not open database file"):;

if ((fread(&db3header, sizeof (struct DB3HEADER), 1, fpCurDBF)) == NULL)

displayError ("read error (database header)");
}

tmplt.iNumRecs = db3header.lNumberRecords;
fseek (fpCurDBF, db3header.nFirstRecordOffset, SEEK_SET);

for(i = 0; i < db3header.lNumberRecords; i++)

134

memset (&db3record, 0, sizeof(struct DB3RECORD));

if ((fread(&db3record, sizeof (struct DB3RECORD), 1, fpCurDBF))

{
displayError ("read error (database record)");
’ if (db3record.szStatus[0] != '*')
{
for(j = 0; j < 5; j++)
{
’ memset (&szBuff, '\0', sizeof(szBuff));
switch(3j)
{
case 0:
strncpy(szBuff, db3record.szSubject, 255);
szBuff[254] = '\0';
iField = 's’';
break;
case 1:
strncpy (szBuff, db3record.szOriginOrg, 101);
iField = 'o';
break;
case 2:
strncpy (szBuff, db3record.szRecType, 51);
iField = *t’;
break;
case 3:
strncpy(szBuff, db3record.szMediaType, 51);
iField = 'm';
break;
case 4:
strncpy (szBuff, db3record.szRecFormat, 51);
iField = 'f';
break:
}
pString = szBuff:;
iTokenType = UNDEFINED;
while (iTokenType != EOL && iTokenType != LEXERROR)
{
pToken = szToken;
getTerms (&pString, pToken, &iTokenType):
if (iTokenType != EOL)
. {

if (iTokenType == ALLALPHA)
{
strcpy (szTermBuff, strlwr(szToken)):

iMatch = checkStoplist (szTermBuff,
szStoplist, iNumWords):;

if (iMatch != TRUE)

{
strcpy (szTermBuff, stem(strlwr(szToken)));

135

== NULL)

addToCLASSTMPLT (szTermBuff, pTmplt, iField):

}
}

if (iTokenType == NONWORD)

{
strcpy (szTermBuff, strlwr(szToken));

iMatch = checkStoplist (szTermBuff,
szStoplist, iNumWords);

if (iMatch != TRUE)

{
strcpy(szTermBuff, strlwr(szToken)):

addToCLASSTMPLT (szTermBuff, pTmplt, iField):
}

}

}

unloadStoplist(szStoplist, iNumWords):

fclose (£pCurDBF) ;

if ((fpClsTmplt = fopen(szpGetConfig(szHeader2, iDBFNum), "wb")) == NULL)
displayError("could not create template file");

if ((fwrite((char *)&tmplt, sizeof (tmplt), 1, fpClsTmplt)) != 1)

{

}
fclose (fpClsTmplt) ;

displayError ("write error (class template)”);

1ogCLASSTMPLT (pTmplt, iDBFNum);

return 1;

void addToCLASSTMPLT (char *szTerm, struct CLASSTMPLT *pTmplt, int iField)
{

int i;

if(iField == 's"')

{ for(i = 0; pTmplt->pSub(il].szKwrd[0] != "\0'; i++)
{ if (strcmp (pTmplt~>pSub[i].szKwrd, szTerm) == 0)

pTmplt->pSubli].iFreq += 1;
return;
}

}
strepy (pTmplt->pSub(i] .szKwrd, szTerm):

pTmplt->pSub(i] .iFreq = 1;
}

if(iField == 'o')

{
for(i = 0; pTmplt->pOrg(i].szKwrd[0] != '\0'; i++)
{

136

if (strcmp (pTmplt->pOrg[i] .szKwrd, szTerm) == 0)
{
pTmplt->pOrgli].iFreq += 1;
return;
}
}
strepy (PTmplt->pOrg[i] . szKwrd, szTerm);
pTmplt->pOrg(i] .iFreq = 1;

if (iField == "t")
{
for(i = 0; pTmplt->pTyp[i].szKwrd([0] != "\0'; i++)
{
if (strcmp (pTmplt->pTyp(i].szKwrd, szTerm) == 0)
{

pTmplt->pTyplil.iFreq += 1;
return;
}
}
strepy (pTmplt->pTyp (i) .szKwrd, szTerm):
pTmplt->pTypli]l.iFreq = 1;
}

if(iField == 'm")
{
for(i = 0; pTmplt->pMed[i].szKwrd[0] != '\0'; i++)
{
if (strcmp (pTmplt->pMed[i].szKwrd, szTerm) == 0)

{
pTmplt->pMed[i] .iFreq += 1;
return;
}
}
strcpy (pTmplt->pMed[i] .szKwrd, szTerm);
pToplt->pMed(i] .iFreq = 1;

if (iField == "f")
{
for(i = 0; pTmplt->pFrm[i].szKwrd{0] != *'\O'; i++)
{
if (strcmp (pTmplt~>pFrm{i] .szKwrd, szTerm) == 0)
{
pToplt->pFrm(i] .iFreq += 1;
return;
}
}
strepy (pTmplt->pFrm[i] .szKwrd, szTerm):
pTmplt->pFrm[i] .iFreq = 1;
}

void logCLASSTMPLT (struct CLASSTMPLT *pTmplt, int iDBFNum)
{ FILE *fpLlogFile;
char szHeader[20] = "templatetxt”;
int i, j;
%f((progFile = fopen (szpGetConfig(szHeader, iDBFNum), "w")}) == NULL)

}

displayError("opening log file"):

137

fprintf (fpLogFile, "-~--~ CLASS TEMPLATE DATABASE %d ---——==—=-- \n",
iDBENum) ;
fprintf (fpLogFile, "NUMBER OF RECORDS: %d\n", pTmplt->iNumRecs);
for(i = 0; i < 5; i++)
{
1if(i == 0)
{
fprintf (fpLogFile, "SUBJECT:\n");
for(j = 0; pTmplt->pSub[j].szKwrd[0] != '\0'; j++)
{
fprintf (fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", 3J,
pTmplt->pSub{j].szKwrd, pTmplt->pSubl[j].iFreq);
}
fprintf (fpLogFile, "\n"):
}

if(i == 1)
{
fprintf (fpLogFile, "ORIGINATING ORGANIZATION:\n");
for(j = 0; pTmplt->pOrg[j].szKwrd[0] != '\O0'; j++)
{
fprintf (fplogFile, "Kwrd %-5d%-18sFreg = %d\n", Jj,
pTmplt->pOrg[jl.szKwrd, pTmplt~->pOrgl(jl.iFreq);
}
fprintf (fpLogFile, "\n"):
}

if(i == 2)
{
fprintf (fpLogFile, "RECORD TYPE:\n"):;
for(j = 0; pTmplt->pTyp[jl.szKwrd[0] != "\0'; j++)
{
fprintf (fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pTyp(j].szKwrd, pTmplt->pTyp[j]l.iFreq):;
}
fprintf (fpLogFile, "\n");
}

1f(i == 3)

{
fprintf (fplogFile, "MEDIA TYPE:\n");
for(j = 0; pTmplt->pMed([j].szKwrd[0] != "\0'; j++)
{

fprintf (fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", J,
pTmplt->pMed[j].szKwrd, pTmplt->pMed[j].iFreq);
}
fprintf (fpLogFile, "\n");
}

if(i == 4)
{
fprintf (fplogFile, "RECORD FORMAT:\n");
for(j = 0; pTmplt->pFrm([j].szKwrd[0] != *\0'; j++)

fprintf (fpLogFile, "Kwrd %-5d%-18sFreq = %d\n", j,
pTmplt->pFrm(j].szKwrd, pTmplt->pFrm{j].iFreq):
}
fprintf (fpLogFile, "\n");
}
}
fclose (fpLogFile);

138

Appendix D: RACS Configuration File

[STOPLIST]
STOPLIST.TXT

[TEMPLATE]
CAT1.TPL
CAT2.TPL
CAT3.TPL
CAT4.TPL
CAT5.TPL

[DBFILE]
CAT1.DBF
CATZ2.DBF
CAT3.DBF
CAT4.DBF
CATS5.DBF
TEMP.DBF

[DBFBACKUP]
CAT1.DBB
CATZ2.DBB
CAT3.DBB
CAT4.DBB
CAT5.DBB

[TEMPLATE]
CAT1.TPL
CAT2.TPL
CAT3.TPL
CAT4.TPL
CAT5.TPL

[TEMPLATETXT]
CAT1TPL.TXT
CAT2TPL. TXT
CAT3TPL.TXT
CAT4TPL.TXT
CATSTPL.TXT

{LOGFILE]
LOGFILE.TXT
SCORELOG. TXT
[LOGBACKUP]
LOGFILE.BAK
SCORELOG.BAK

[END]

139

a
about
above
across
af
after
again
against
all
almost
alone
along
already
also
although
always
among
an

and
another
any
anybody
anyone
anything
anywhere
are
area
areas
around
as

ask
asked
asking
asks

at

away

b

back
backed
backing
backs
be
because
became
become
becomes
been
before
began
behind
being
beings
best
better
between
big
both
but

by

Appendix E: RACS Stop List

c
came

can
cannot
case
cases
certain
certainly
clear
clearly
come
could

d

did
differ
different
differently
do

does

done

down
downed
downing
downs
during

e

each
early
either
end

ended
ending
ends
enough
even
evenly
ever
every
everybody
everyone
everything
everywhere
bid

face
faces
fact
facts

far

felt

few

find
finds
first

for

form

four

from

full
fully

140

further
furthered
furthering
furthers
g

gave
general
generally
get

gets

give
given
gives

go

going
good
goods

got

great
greater
greatest
group
grouped
grouping
groups

h

had

has

have
having

he

her
herself
here
high
higher
highest
him
himself
his

how
however

i

if
important
in
interest
interested
interesting
interests
into

is

it

its
itself

J

just

k

keep

keeps
kind
knew
know
known
knows

1

large
largely
last
later
latest
least
less
let
lets
like
likely
long
longer
longest
m

made
make
making
man
many
may

me
member
members
men
might
more
most
mostly
mr

mrs
much
must
my
myself
n
necessary
need
needed
needing
needs
never
new
newer
newest
next

no

non

not
nobody
noone
nothing

now
nowhere
number
numbered
nunmbering
numbers
o}

of

off
often
old
older
oldest
on

once

one

only
open
opened
opening
opens

or

order
ordered
ordering
orders
other
others
our

out

over

p

part
parted
parting
parts
per
perhaps
place
places
point
pointed
pointing
points
possible
present
presented
presenting

presents
problem
problems
put
puts

q .
quite

r

rather
really
right
room
rooms

s

said
same
saw

say

says
second
seconds
see
seem
seemed
seeming
seems
sees
several
shall
she
should
show
showed
showing
shows
side
sides
since
small
smaller
smallest
S0

some
somebody
someone
something
somewhere
state

141

states
still
such
sure

t

take
taken
than
that
the
their
them
then
there
therefore
these
they
thing
things
think
thinks
this
those
though
thought
thoughts
three
through
thus

to
today
together
too
took
toward
turn
turned
turning
turns
two

u

under
until
up

upon

us

use
uses

used

v

very

w

want
wanted
wanting
wants
was
way
ways

we

well
wells
went
were
what
when
where
whether
which
while
who
whole
whose
why
will
with
within
without
work
worked
working
works
would

X

Y

year
years
yet

you
young
younger
youngest
your
yours

z

Appendix F: Excerpt from logfile.txt

IN

Kkdkkkkkhkkdkkkkkkkkkkkkkkkkxxxkx TNPUT ANALYSIS khkkkkkdhkhkhkhkhkhkhkhhkkhkhkhhkhkhkdkdkhhkd

SUBJECT:
Request
for
Evaluation

r

WP

960264
Voluntary
Reduction
in

the

Federal
Workforce

ALLALPHA
ALLALPHA
ALLALPHA
PUNCT
NONWORD
PUNCT
NONWORD
ALLALPHA
ALLALPHA
ALLALPHA
ALLALPHA
ALLALPHA
ALLALPHA

ORIGINATING ORGANIZATION:

ASC
/
MOS

RECORD TYPE:
official
memorandum

MEDIA TYPE:
paper

RECORD FORMAT:
paper

NONWORD
PUNCT
NONWORD

ALLALPHA
ALLALPHA

ALLALPHA

ALLALPHA

request
-SW-
evalu

wp

960264
voluntari
reduct
SW

_SW—
feder
workforc

asc

mos

offici
memorandum

paper

paper

dkdkkddkkkhkhhkkkkkkkkkkkkkkkikkx RECORD TEMPLATE

SUBJECT:

Kwrd O request
Kwrd 1 evalu

Kwrd 2 wp

Kwrd 3 960264
Kwrd 4 voluntari
Kwrd 5 reduct
Kwrd 6 feder

Kwrd 7 workforc
ORIGINATING ORGANIZATION:
Kwrd 0O asc

Kwrd 1 mos

RECORD TYPE:

Kwrd 0 offici
Kwrd 1 memorandum
MEDIA TYPE:

Kwrd O paper

RECORD FORMAT:

Rwrd O paper

Freq = 1
Freq = 1
Freq = 1
Freg =1
Freg = 1
Freq = 1
Freg = 1
Freg = 1
Freq = 1
Fregq = 1
Freq = 1
Freg = 1
Freg = 1
Freq = 1

142

de e % % % e e K % ke ok ke Tk e ke ke ke Kk e de ke ok ke ke ok ke ke

Fhkkkkdhkdkdkdhdkdkdhkdhkdkkkkkkkkrkx SCORING RESULTS e de k% Kk g g ok ko Kk ko ke de ek K ok de ke ok ke ok g ke

30/20/30/10/10 20/20/20/20/20 50/30/00/10/10
DBF RANK SCORE DBF RANK SCORE DBF RANK SCORE
1 3 0.529 1 3 0.629 1 3 0.314
2 4 0.511 2 4 0.611 2 2 0.356
3 5 0.200 3 5 0.400 3 5 0.200
4 2 0.571 4 2 0.657 4 3 0.314
5 1 0.605 5 1 0.686 5 1 0.629
1 SUB 2/ (14 * 1) = 0.143 (0.3 = 0.043) (0.2 = 0.029) (0.5 = 0.071)
1 0RG 2/ (14 * 1) = 0.143 (0.2 = 0.029) (0.2 = 0.029) (0.3 = 0.043)
1 TYP 24 / (14 * 2) = 0.857 (0.3 = 0.257) (0.2 = 0.171) (0.0 = 0.000)
1 MED 14 / (14 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
1 FRM 14 / (14 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
Totals: 0.529 0.629 0.314
2 SUB 5/ (18 * 1) = 0.278 (0.3 = 0.083) (0.2 = 0.056) (0.5 = 0.139)
20RG 1/ (18 * 1) = 0.056 (0.2 = 0.011) (0.2 = 0.011) (0.3 = 0.017)
2 TYP 26 / (18 * 2) = 0.722 (0.3 = 0.217) (0.2 = 0.144) (0.0 = 0.000)
2 MED 18 / (18 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
2 FRM 18 / (18 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
Totals: 0.511 0.611 0.356
38UB 0/ (3 * 0) =20.000 (0.3 =0.000) (0.2 = 0.000) (0.5 = 0.000)
30RG 0/ (3 * 0) =0.000 (0.2 =0.000) (0.2 = 0.000) (0.3 = 0.000)
3TYP 0/ (3 * 0) =0.000 (0.3 =0.000) (0.2 = 0.000) (0.0 = 0.000)
3MED 3/ (3 * 1) =1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
3 FRM 3/ (3 * 1) =1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
Totals: 0.200 0.400 0.200
4 SUB 2/ (7 * 2) =0.143 (0.3 = 0.043) (0.2 = 0.029) (0.5 = 0.071)
4 0RG 1/ (7 * 1) =0.143 (0.2 = 0.029) (0.2 = 0.029) (0.3 = 0.043)
4 TYP 14 / (7 * 2) =1.000 (0.3 = 0.300) (0.2 = 0.200) (0.0 = 0.000)
4 MED 7/ (7 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
4 FRM 7 / (7 * 1) =1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
Totals: 0.571 0.657 0.314
5 SUB 45 / (21 * 3) = 0.714 (0.3 = 0.214) (0.2 = 0.143) (0.5 = 0.357)
5 ORG 10 / (21 * 2) = 0.238 (0.2 = 0.048) (0.2 = 0.048) (0.3 = 0.071)
5 TYP 20 / (21 * 2) = 0.476 (0.3 = 0.143) (0.2 = 0.095) (0.0 = 0.000)
5 MED 21 / (21 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
5 FRM 21 / (21 * 1) = 1.000 (0.1 = 0.100) (0.2 = 0.200) (0.1 = 0.100)
Totals: 0.605 0.686 0.629

Correct DBF: 5 Offsets: 0 0 O

143

Appendix G: Excerpt from scprelog.txt

DBF: 3 Offsets: 4 4 4
DBF: 2 Offsets: 4 4 4
DBF: 5 Offsets: 4 4 4
DBF: 2 Offsets: 1 1 1
DBF: 1 Offsets: 4 4 4
DBF: 4 Offsets: 4 4 4
DBF: 1 Offsets: O 0 0
DBF: 5 Offsets: 0 2 0
DBF: 2 Offsets: 4 4 4
DBF: 2 Offsets: 2 2 2
DBF: 1 Offsets: 0O 0 1
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 1 1 2
DBF: 5 Offsets: 0 0 0
DBF: 1 Offsets: 2 3 4
DBF: 5 Offsets: O 0 0
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 1 1 1
DBF: 5 Offsets: 2 2 0
DBF: 1 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 2
DBF: 2 Offsets: 2 2 3
DBF: 2 Offsets: 1 1 1
DBF: 1 Offsets: 0 0 1
DBF: 5 Offsets: 0 0 1
DBF: 5 Offsets: O 0 0
DBF: 5 Offsets: O 0 0
DBF: 2 Offsets: 1 1 0
DBF: 1 Offsets: 1 1 1
DBF: 5 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 0
DBF: 5 Offsets: 0O 0 0]
DBF: 5 Offsets: 0O 0 0
DBF: 5 Offsets: O 0 0
DBF: 1 Offsets: O 0 1
DBF: 4 Offsets: 2 2 4
DBF: 2 Offsets: 2 2 4
DBF: 2 Offsets: 2 2 4
DBF: 2 Offsets: 1 1 0
DBF: 5 Offsets: O 0 0
DBF: 4 Offsets: 0 0 0
DBF: 1 Offsets: 0 0 2
DBF: 1 Offsets: O 1 0
DBF: 4 Offsets: 0 0 0
DBF: 2 Offsets: 1 1 1
DBF: 2 Offsets: 1 1 1
DBF: 4 Offsets: O 0] 0]
DBF: 3 Offsets: 0 0 0
DBF: 5 Offsets: 0 0 0
DBF: 1 Offsets: 0 0 0
DBF: 5 Offsets: O 0 0
DBF: 5 Offsets: 2 1 0
DBF: 2 Offsets: 0 0 0
DBF: 2 Offsets: 3 3 3
DBF: 2 Offsets: 3 3 3

144

Appendix H: Sample Class Template

--—- CLASS TEMPLATE DATABASE 4 ---—-—------
NUMBER OF RECORDS: 13

SUBJECT:

Kwxd 0 lesson Freg = 1
Kwxd 1 learn Fregq = 1
Kwrd 2 oper Freq = 1
Kwrd 3 desert Freq = 1
Kwrd 4 storm Freq = 1
Kwrd 5 freez Freq = 1
Kwrd 6 munition Fregq = 1
Kwrd 7 custodi Freq = 1
Kwrd 8 account Freq = 1
Kwrd 9 custom Freq = 1
Kwrd 10 satisfact Freq = 1
Kwrd 11 survei Freq = 2
Kwrd 12 audit Freg = 2
Kwrd 13 inspect Freg = 6
Kwrd 14 report Freq = 2
Kwrd 15 semiannu Freq = 1
Kwrd 16 self Freq = 4
Kwrd 17 manag Freq = 4
Kwrd 18 comment Freq = 1
Kwrd 19 44595 Fregq = 1
Kwrd 20 XXX Fregq = 1
Kwrd 21 weapon Freq = 1
Kwrd 22 aeronaut Freq = 1
Kwrd 23 system Freq = 1
Kwrd 24 center Fregq = 1
Kwrd 25 asc Freq = 1
Kwrd 26 wpafb Freq = 2
Kwrd 27 oh Freq = 1
Kwrd 28 45433 Freqgq = 1
Kwrd 29 battle Fregq = 1
Kwrd 30 staff Freq = 2
Kwrd 31 support Fregq = 1
Kwrd 32 air Fregq = 1
Kwrd 33 force Freq = 1
Kwrd 34 agenc Freq = 1
Kwrd 35 afia Fregq = 1
Kwrd 36 function Freq = 1
Kwrd 37 review Freq = 3
Kwrd 38 fmr Freq = 1
Kwrd 39 wing Freq = 1
Kwxd 40 level Freq = 1
Kwrd 41 logist Freq = 1
Kwrd 42 plan Fregq = 1
Rwrd 43 organiz Freq = 1
Kwrd 44 structur Freq = 1
Kwrd 45 unit Fregq =1
Kwrd 46 program Freg = 2
Kwrd 47 refer Freq = 1
Kwrd 48 sup Freq = 1
Kwrd 49 1 Freq = 1
Kwrd 50 afr Freq = 1
Kwrd 51 123~1 Freg = 1
Kwrd 52 semi Freq = 1
Kwrd 53 annual Fregq = 2
Kwrd 54 follow Freq = 1
Kwrd 55 statement Freq = 1

145

Kwrd 56 requir
Kwrd 57 feder
Kwrd 58 financi
Kwrd 59 integr
Kwrd 60 act
Kwrd 61 fmfia
Kwrd 62 1982
Kwrd 63 aflic
Kwrd 64 special
Kwrd 65 item
Kwrd 66 91-3
Kwrd 67 continu
Kwrd 68 evalu
Kwrd 69 personnel
ORIGINATING ORGANIZATION:
Kwrd 0 2750
Kwrd 1 abw
Kwrd 2 ck

Kwxd 3 sptg
Kwrd 4 cce
Kwrd 5 fmc
Kwrd 6 ms

Kwrd 7 88

Kwrd 8 cc

Kwrd 9 nss
Kwrd 10 msi
Kwrd 11 asc
Kwrd 12 ig

Kwrd 13 none
Kwrd 14 cvx
RECORD TYPE:

Kwrd 0 offici
Kwrd 1 memorandum
Kwrd 2 2519
MEDIA TYPE:

Kwrd 0O paper

RECORD FORMAT:

Kwrd 0

paper

Freqg
Freq
Freqg
Freqg
Freq
Freq
Freq
Freqg
Freq
Freq
Freqg
Freq
Freq
Freq

Freq
Freqg
Freqg
Freq
Freq
Freq
Freq
Freq
Freqg
Freq
Freq
Freq
Freq
Freq
Freq

Freq
Freq
Freq

Freq

Freq

e nnnnn w0 unn b

HRFRRPRRRRRBRE P PR R

FRRPRERESNEPWRNDWENDS

13

13

146

Appendix I: Common Tables and Rules

The tables and rules listed in the column labeled OLD represent the designations for

the rules in AFR 4-20 Vol 2. The tables and rules listed in the column labeled NEW are

the new designations found for the same rules in AFMAN 37-139. The rules are ordered

in relation to their AFR 4-20 Vol 2 designations.

NEW OLD
TABLE |RULE |TABLE |RULE |DESCRIPTION B
37-3 3 4-3 3 dispatch and delivery receipts on accountable mail
37-3 14 4-3 14 accountable container receipts
37-6 1 4-6 1 publications/forms requisitions and requirements
376 7 4-6 7 publication bulletins
377 7 5-1 7 operating instructions record copies - at MAJCOM and above
377 8 5-1 8 operating instructions record copies - below MAJCOM
37-7 |9 51 9 base bulletins
3711 |2 1041 2 general correspondence - temporary
3711 |4 10-1 4 transitory material
3711 |5 10-1 5 reading file
37-11 |6 10-1 6 message file (extra copies of messages)
37-11 |10 10-1 10 office projects/studies (background and working materiais)
3711 |12 10-1 12 staff meetings and conferences (not covered elsewhere) - at MAJCOM and above
3711 |13 10-1 13 staff meetings and conferences (not covered elsewhere) - below MAJCOM
3712 |5 10-2 5 suspense control
3713 1 10-3 1 background materiai to orders in rules 2, 2.1 and 4
37-13 |2 10-3 |3 temporary orders (M, P, T, Y, PA and PB series)

147

NEW OoLD
TABLE [RULE |[TABLE |RULE |DESCRIPTION
37-14 |1 11-1 1 office administrative files
3714 |4 1141 4 project control and support (working papers, transcribed steno notes or tapes)
37-14 |6 1141 6 reports, controlled and uncontrolled - not covered elsewhere
37-14 18 11-1 8 reports, controlied and uncontrolled - information copies
3714 |9 11-1 9 precedent files
37-14 |10 1141 10 office instructions, additional duty handbooks/workbooks
37-14 |11 11-1 11 building or office services (not covered elsewhere)
37-14 |12 1141 12 presentation aids (not covered eisewhere)
37-14 [14 1141 14 general reference publications
3714 |15 11-1 15 technical/specialized reference materials
37-14 |17 1141 17 organizational planning - at directorate level or above
37-14 |18 1141 18 organizational planning - below directorate level
90-4 2 1-2 |2 congressional inquiries - below HQ USAF
3715 |7 11-2 |12 |host-tenant support agreements
37-15 |9 11-2 12.2 |other support agreements
37-16 |13 11-2 15 GAO audit reports - below HQ USAF
37-15 |14 11-2 16 official visits/staff visits (offices performing visits)
37-15 |15 |11-2 |17 |official visits/staff visits (offices visited)
37-15 |16 11-2 18 official visits/staff visits (intermediate, monitoring or evaluating offices)
3715 |17 11-2 19 official visits/staff visits (visits notifications, itineraries)
37-15 |18 11-2 20 official visits/staff visits (visit schedules)
37-15 |19 11-2 21 delegations/designations of authority and additional duty assignments
37-15 |27 11-2 29 locator or personal data
37-15 |31 11-2 33 internal inspections/self-inspection checklists/Inventories (not covered elsewhere)
3716 |32 11-2 34 Overtime requests (for disposition instructions see T177-21, R03 or T176-03, R39.01)
37-18 |18 11-5 18 Word Processing Files (floppy disks or hard drives containing letters, memos,
messages, reports)

148

NEW oLD
TABLE |RULE |TABLE |RULE |[DESCRIPTION
37-19 |2 121 2 files maintenance and disposition (AF Form 80)
37-19 |3 12-1 3 retirement, transfer/shipment records (SF 135 and SF 258) - at initiator's office for
records placed in staging area
37-19 |4 12-1 4 retirement, transfer/shipment records (SF 135 and SF 258) - at office of record
’ manager (RM) for records placed in staging areas
3719 |5 12-1 5 retirement, transfer/shipment records (SF 135 and SF 258) - records retired to
records centers
. 37-19 |6 1241 6 retirement, transfer/shipment records (SF 135 and SF 258) - transferred records
37-19 |23 1241 23 Freedom of Information Act (FOIA) Program - correspondence relating to
administering FOIA
37-19 |24 12-1 24 Freedom of information Act (FOIA) Program - correspondence responding to
requests
37-19 |26 1241 26 Freedom of Information Act (FOIA) Program - denials not appealed
38-2 11 25-2 1" productivity enhancement
38-3 11 26-1 11 manpower authorization - machine listing derived from the manpower authorization
file
38-3 17 26-1 17 manpower change requests - approved/disapproved requests at MAJCOMs
38-3 18 26-1 18 manpower change requests - approved/disapproved requests below MAJCOMs
38-3 18.1 |26-1 18.1 |manpower change requests - information copies kept for monitoring purposes
364 |14 30-4 14 RIP products
36-12 |2 3541 2 personnel information file
36-15 |16 354 16 individual job descriptions
36-15 |27 354 27 military sponsor program - at losing activity
36-15 |28 354 28 military sponsor program - at gaining activity
36-29 |4 40-4 4 performance/incentive awards
36-29 |10 40-4 10 leave transfer/sharing programs (submitted or resulting from a request/contribution of
leave)
36-28 |11 404 1 leave transfer/sharing programs (background info)
36-30 |7 40-5 |7 position management
’ — - 40-8 13 supervisor's employee work folder - documents filed by the supervisor in the work
folder
36-38 |6 50-2 6 unit training program
13-10 |31 60-5 31 flight evaluation folders
23-11 |40 67-11 |40 lequipment custodian file

149

NEW OoLD

TABLE |RULE |TABLE |RULE |DESCRIPTION

64-1 14 701 7.3 |contractor general files - duplicate/working

63-6 3 74-1 3 surveillance records

3713 "1 75-3 15 area clearance for oversea theaters

61-1 19 80-1 19 scientific and technica! reference files

90-2 1 1231 1 inspection reports not otherwise covered in this table - at MAJCOMs

90-2 7 123-1 |7 inspection reports not otherwise covered in this table - background material

1771 |8 1771 |8 reports of accounting and finance activities

177-21 |3 177-21 |3 individual attendance and overtime

177-21 |12 177-21 |12 payroll control registers

177-21 |19 177-21 |19 listings (not covered by rules 1 through 18)

177-32 |30 177-32 |30 unit leave control log - unit copy

177-32 |30.1 |177-32 [30.1 |unit leave control log - MPSMA copy

314 |9 205-1 |9 security control records - SF 700, 701, 702

314 15 2051 |15 access control records

314 |22 205-1 |22 record suspense receipt and destruction certificate file for secret material - inactive
records

31-4 26 205-1 |26 security termination statements - at unit of assignment

314 29 205-1 |29 security termination statements - at unit of assignment for civilian personnel

3110 {4 207-1 |4 records of visitors - requests for visits to restricted areas

31-10 |5 2071 |5 records of visitors - authorization for contractors to visit in connection with classified
matters

84-1 7 2101 |7 source documents - for history reports

339 9 700-9 |9 telephone toll calls - AF Form 1072

63-9 5 800-1 }5 system acquisition program files - at system program offices

63-9 6 800-1 |6 system acquisition program files - at monitoring, supporting, testing and participating
activities

63-9 12 800-1 |12 memorandums of agreement (MOAs)

36-33 |2 9001 |2 special honors, trophies and awards - initiating activities

36-33 |3 900-1 |3 special honors, trophies and awards - nonselected nominations

150

NEW OLD

TABLE {RULE |TABLE |RULE [DESCRIPTION
36-33 {16 800-1 |15 favorable communications

36-33 {17 900-1 |16 outstanding personnel programs, e.g., outstanding NCO/Airman award, Junior Officer
of the Quarter, outstanding Manager of the Year, AFA representative

36-34 |1 900-2 |1 suggestions, inventions and scientific achievements - at suggestion program office

36-34 |2 900-2 |2 suggestions, inventions and scientific achievements - at evaluating offices

151

ITEM

10
11
12

13

14

15

16
17

18

Appendix J. 88 SPTG/CCE Files Maintenance and Disposition Plan

TITLE

FILE MAINT & DISPOSITION PLAN, CTRL

RECORD LABEL AND RELATED RCRD
READING FILE

DELEGATION/DESIGNATIONS OF
AUTHORITY & ADDITIONAL DUTY ASSIGN

TRANSITORY MATERIAL

4-1 JAN-APR-JUL-OCT

4-2 FEB-MAY-AUG-NOV

4-3 MAR~-JUN-SEP-DEC

GENERAL CORRESPONDENCE (TEMPORARY)

OFFICE ADMINISTRATIVE FILE -
INTERNAL ADMIN OR HOUSEKEEPING

6-1 SECURITY

6-2 DISASTER PREPAREDNESS
6-3 INSTALLATION MANAGEMENT
6-3-1 FACILITIES

6-3-2 SUPPLIES/EQUIPMENT
6-4 SAFETY

LOCATION

FRONT OF FILES & EACH SERIES

6-5 ADMINISTRATION OF OFFICE PERSONNEL

ADMINISTRATIVE SUPPORT COMMITTEE &
BOARD RECORDS

7-1 FINANCIAL WORKING GROUP (FWG)

7-2 FINANCIAL MANAGEMENT BOARD (FMB)

7-3 EEO ADVISORY COMMITTEE

7-4 OCCUPATIONAL SAFETY, FIRE PREVENTION & HEALTH COMMITTEE

HOST-TENANT SUPPORT AGREEMENTS

OFFICE PROJECTS/STUDIES BELOW MAJ
SUB COMD - NO PUBLICATION ISSUED

SUPERVISOR’S EMPLOYEE WORK FOLDER
WORD PROCESSING FILES

INTERNAL INSPECTIONS/SELF-INSP
CHECK LISTS/INVENTORIES

OFFICIAL VISITS/STAFF VISITS -~ AT
OFFICES OR ORGANIZATIONS VISITED

INSPECTION REPORTS - AT INSPECTED
ACTIVITIES, MONIT/EVAL/APPR AUTH

SUGS, INVENTIONS, & SCIENTIFIC
ACHIEVEMENTS - AT EVAL OFF

GENERAL TRAINING REPORTS

FUNDING RECORDS - PROGRAM PROJECT
AND APPROPRIATE CONTROL

17-1 FINANCIAL PLAN
SPECIAL HONORS, TROPHIES, AWARDS -

NCOIC, ADMIN’S DESK

GENERAL TRAINING REPORTS

152

DISPOSITION

T 12-01

T 10-01
T 11-02

T 10-01

T 10-01
T 11-01

T 25-03

T 11-02
T 10-01

T 40-08
T 11-05
T 11-02

R02.00

R05.00
R21.00

R04.00

R02.00
R01.00

R07.00

R12.00
R09.00

R13.00
R18.00
R33.00

T11-02 R 17.00

T123-01

T900-02

T 50-01
T172-03

T900-01

R03.00

R02.00

R19.00
R04.00

R02.00

19
20

21

22

23

AT INITIATING ACTIVITIES
OUTSTANDING PERSONNEL PROGRAMS

TEMP. ORDERS (M-, P-, T-, Y-, PA-,
PB-, SPECIAL, & SQD NON-PREFIXED

20-1 GF SERIES ORDERS
20-2 GA SERIES ORDERS
20-3 M SERIES ORDERS
20-4 TRAVEL ORDERS

SUSPENSE CONTROL (FILE COPIES OR
EXTRA COPIES TO MANAGE FLOW)

PRECEDENT FILES - EXTRA COPIES OF
PRECEDENT FILES SELECTED RECORDS

PAYROLL CONTROL REGISTER DOCUMENT
FILES

23-1 WORK SCHEDULES/CHANGES
23-2 FORMAT II TIMESHEETS

PAYROLL CONTROL REGISTERS

153

T900-01
T 10-03

T 10-02

T 11-01

T177-21

R16.00
R03.00

R05.00

R09.00

R12.00

Appendix K: Sample Records

The tables included in this appendix contain the data collected on each record used in

this thesis.

154

winpueowsl 2010 ewabsuspy]
Joded| Joded leldwo] ge-AeN-z| ediopuom pajesBa] Jejyo suojie.edQ juswaBeusyy 40§ sjujod |8004 HADQIOSY 00/91dS 88} 1z z0LLL| o
Old JO Jequiss mau $JOUOISS|WWOY JO
Jeded| Jaded Jape| jpuosiad|g6-ABpy-)) Jepuswwod| BujeuBisep siauo|ssiUILLOD JO pieog AJUNOY BUBBIE) O} JoReT 09/91dS 88| pisog Aluno) suesin zdzo-LLi] 4
oo
wnpueiowaus EoEoow:mE SI0PHUOAN
Joded| Jeded iepyjo| g6-deg-z} pajesBaiy; Jopaiq 8iepdn - Bunst1 ujod (8904 OdSABUOROUN HAQ/OSY OLdS/MBvV 88| 1Z¥20-bil]| 1
nduj
WojsAg 1ejsoy yustuabeusy pus sebuey) a1 10qWAS 820
1aded| Jeded ipwa) g6-deg-G1 90Q "W auer|io} uoieuLioju (Q0d) 1981U0D JO Julod 0} slepdn 1senbay ‘M OL1dS 88 vYWioo ss| 1zyzo-biil
wnpueJowsuwt
Jeded| seded 1ejoyjo| g6-1dy-¢ Jepuswwo) AindeQ seApejuesaidey) dnoig josuoD seisesiq ag/oLds 8_ ax3o/o3088] lzyzoiLl
wnpuelowey _
Jeded| Jeded 1B[o140} g6-unf-g Jepuewiwo) Aindeq Joyuon wesboid uopsebing ao/91ds 88 SOW/OSY| tzdzo-bil|l)
winpuelowotu| _
soded} saded 1Bjolo| ge-unf-gl Jepuswwio Aindeq NO-190uD dnos spiodsy (puuosied Jun Q/9LdS 88 UdWAQ/SSIN| 1z 20-ktl] |}
wnpusiowatu
Jeded| soded 1BRYjO| 96-unr-02 Jepuswwog Aindeg suojjezioyiny 1dja0ay abessapy Qo/9Lds 8_ v000s/9800 88 tzdezo-tiLl |
wnpuelowsw _
Joded| Jaded lepyjo| g6-unr-+4g lepusliwod s|BpIO Bujroiddy siepig Jo Jusunujoddy 00/91dS 88 300/91dS 88| beHZo-tbLf |
wnpuesowasw
toded| soded IBPYJO| 96-UNr-Z| 8MIndBX3 By} o} Juelsissy| 1B PayiHeD/pals)siBay jo 1djsosy Joj uojezyioyiny 300/MavY 8_ OVVVNIDD B8] 1z 20biL] |
winpuesowswl
Joded| seded leoiyo] g6-unr-gz Jepuswuwio Aindeq| sioyuoi (VIO4) 1OV Uoliewwoju) Jo wopssld jo uswiujoddy, Qag/9Lds om_ 4avnio0 88| 1zu2o-bii]
wnpuelJowaw
Joded| soded lejojo{ g6-unr-9z, Japuswiwog Lindaq 19310 so1eg suoydeleL Qao/91ds 88 dx0s/9088] 1zyzo-LiL| &
winpuelowseuw| uojefayu| SUIOVNYIN
Joded| Jeded lepyo| 96-nr-6| pue Bujuueld Aunoss ‘Jelyd $05$0IpPY jlews] JeBeueyy Aunoag Joj jsenbayy ISAS/OSY| ALIMNO3S A4vdM| tzd2o-iiL] o
wnpueloweuwl|
Joded| Jeded lepigo| ge6-inr-gL Jopuswiwoy uejpojsn) juswdinb3 jo ebusypusunujeddy 02/91dS 88 2dNWNOS/SO 88] 1Zu20-LLL] L
dnoio
yoddng 10} jueweBsuspy uopisubiseq
Jaded| Jeded| opglL wuod 4v| 96-nr-6i uofjeutioju; ‘QI0ON] @AlBjuUBsSe:deY JUNCIOY J8UI0ISND JO PIOJBY pue Jojisenbad| 300/91dS 88 suoul 1zy20-biL L
wnpueiowsw
loded| Joded iejoyj0| g6-nr-cz 300/91dS 98] (Wilvd) JeBeueyy spiooay Basy |uojoung jo juswiujeddy| — 300/91dS 8_ vavwioo es] 1zdzobi 4
wnpueiowuaL,
Joded| Jaded lepwo| g6-nr-0e JapuBwiwo) IN0-¥03YD dnoio) spi0daY |8uuosied Hun 00/91dS 8_ HWNJQ/SSW] 1zd2obiL])
wnpueiowsus
Joded| saded teromo| 96-6ny-G1 Jepuswwo) SUB|POISND [BMBIPUIA OWYA 30 Jusiujujoddy 00/91dS 8_ HSWSOUSINS 88| lgdzo-Lii]
wnpueiowsawi
Jaded| Jaded 1BoWo| 96-100-8] amInoax3 8y} 0} lueisissy iteW paipua)/pessisifey jo 1d|eaay Joj uojezuoyIny 300/Mav S_ OVVVWIIDD 88] 12 Z0biL| L
wnpueowsw
soded| soded (B[40 suou lepueiwo) uejpojsny juawdinb3 jo eBusydpuswiuioddy 00/91dS 8_ INSOVSINS 88] 1z 20-bil| 1
wnpusiowstuy
Joded] Jaded [e[d1y0 auou 19puBwWio) uejpojsng Juewdinba 3dav Jo sBueygpuswiuioddy 20/91dS 88 IINWOS/SD 88] 12d20biL] 1
sjuewubissy
Jaded| Jaded| jeunio} oioads ou auou Quou AinQ (euojppy pue Aouiny jo suopeuBisag/uopeBsjeq Quou Quou lgyeo-bid| i
AVIWNOd IdAl| .
aQyo23y¥] ViIgaw AdAL QHOIIY) 3iva HOHINV, hOu..m:nf Houd} 0l 3InY| 480

155

wnpueiows yoddng
taded| Joded 1epoljof gg-1dy-1 | aAless|uiWpY 'DI0ON sug|pojsn) juswdinb3 jo uopeayueA fenuuy| 390/91dS 88 vo/90 88[2€9 18 bt L] 2
wnpuelowaw
seded| Joded 1epyo| ge-1dy-zz| uopoag 16N Isjoueuld ‘YD uopBoyLIeA IIg BuoydeleL| GMXOS/OD 88 NDO/OLdS 88|29 L-LL 4{ 2
wnpuelowaw wewdinbg
Jaded| Jeded 18ojo] g6-ABN-E| 10§ JOHUOW SOX IuBISISSY Koning Jo podey OWIMBY 88 300/91dS 882 €9t L1 L] 2
wnpuesowsw
Jeded] Jeded 1Bo| g6-AB-6| uonoag 1BW (epuBULS ‘YD uopeoyueA jig euoydejeL] 8MXJS/OD 88 NOO/OLdS 88|2€9 1M L-LL L] 2
wnpuelowau '
Joded| Jeded [ejo40| 96-A8N-01 uojjesisiujwpy ‘DI0ON $018pd1 UOHBULIOJU| 300/91dS 88] TOLWOS/G-SLVWA|ZEO LM I-IL L] 2
wnpuslowsw Juswielnbey
Joded| seded leoyjo| 96-AeiN-0i uoikeq-sLvNG “1ebeuey 80jAleg suojiBdjuNWWOg uokeq-SLYING Jo snieis| LWOS/Q-SLVNG dX0S/9088|2€9 1M L-LL Ll 2
wnpusiowsw
Joded| Joded 18R} ge-unr-g| uonoRs IBW iepusulg 'yD uonedlUeA (18 euoydsieL| guX0S/OD 88 NOO/OLdS 88jzE91d L-Li L] 2
iebed |euosied
Joded| Jeded 002 wiod Aaj g6-unr-44 lepuBwwo)| Jo §50] Joj - 507 Apedod jo uojieByseaul AiiqeiT jejousul4 00/9.LdS 88 euoufz-g-9 I b-LL 1| 2
0.0L patiueyd ssuoydale) Ay jo uojyeiedo arsy o) jsenboy
Jaded| Jaded| wuojQ-SLVWQ| 96-unr-gi 00/91dS 88| - jusweinbay sojaieg SUSHBIUNWIWGD NOLAVA-SLYWG 00/91dS 88 NOLAVG-Sivalzeo a1t L] ¢
wnpueJoOWsW 18240
Jeded| Jeded [E{0140| 96-UNP-gZ] JusteBeuByy UojBOJUNWIWIOD snjejs jsanbay 8djaieg uojedjuNWWS) S1VING dX0S/90 88 00/91dS 88 OSL[2€9 1M1t L] 2
0dQ/OLdS 88
wnpuelowatu) AS/OLdS 88 20/SdS
Joded| Joded lepuyo| ge-bny-1 Jepuewiwog Aindeg payI seseyding juswdinb3 uo 8zesldy a2/91dS 88 88 DO/SS 88]ZE9 1M L4 1| 2
winpusiowaw
Joded| Joded 1epujol g6-Bny-1| uojoeg 16y i8jdUBULLY ‘YD UORBOYLBA [I1g BuoydeiaL| auXOS/9D 88 NOO/OLdS 88]2€9 1M L-LL L] 2
wnpueiowsu
seded| ieded lepygol ge-deg-¢| uokeg-siving ‘sefeuspy Aiopeg suoyde|s) uoieq-S1VING oYl Jo Uojnquisig AWOS/SD 88 300/94dS 88[2E-9 L1l L] 2
wnpusiowswl
Joded| Jeded leplyo] gg-deg-g| uoles 16 iejouBLLY YD uopedlueA (g euoydeieL| gyX0S/OD 88 NOO/OLdS 88O Iy I-Lb L] 2
whnpusiowaw 18I0
toded| seded leyjo| gg-dos-6| iusweBeueyy uoyeounwWo) snje)s jsenbey 891AI8G UOHBOIUNWIWOYD SLYNG dX0$/990 88 00/91dS 88 OSLIZE9 1MLl L] 2
001 euoydeje) TvIQWOD euo jo eseyoind 10} jsenbayy
Joded| Joded| uuo4 g-SLVYWQ|96-des-9z 300/MAV 88| - usweuinbay sojAles SUO]IEDUNWWOD NOLAVG-SLYWA 300/MEV 88 uoeq-S1VNG|ZE-9 1M -LL L] 2
winpuslowsiu
Jaded| Jaded 1ejoJof 96-AON-0Z| 104u0D JaYonoA g |BusieN SHN-d JO suojisjsq/malAeY| ATSIW/MEAY 88 NOQ/OLdS 88|29 id1-1L 1| ¢
saded| Joded| jeuuo) oyoads ou Quou auou $8.Npad0ld JBeA jo pu3 Alddng suou suou{ 1-€-9 1 1-i1 1| 2
wnpuesowaw yougig uopBuLOju|
Jaded| Jaded |epiyo auou |ensjA/eIpawIng JoID sjonpold Bupesyidng pue Bupupd jo Jueweinoold ADDS/90 88| LSITNOILNGRILSIOjZ€-9 1y L-LL L] 2
whnpuesowau| Hoddng
Joded| Jeded 1ejoyjo| 06-dos-L1L Joj Jepuewiwo) Aindeq suojieudosddy jo jo1UOD BARBASIUIWPY ‘9L-LL} ¥V da 040V 1z¥zobii|
winpueJolud MO
Joded| saded lejojo| y6-08a-gisueld AousBunuoDem ‘Jeiuo Sueld §3VdM 10} ejUe) Jo Juiod UdX/MEY 88] LSITNOLNBIMLSIA] 1zd2o-biL] o
wnpusiowisw
Jaded] Jsaded 180} 56-494-L1 Japuswwog suojY Allinoag jeuuosiad jsenbay o} uojezuoyiny 00/9.1dS 88 SISV/OSV| 1zd20bLL] 1
wnpuelowa Lzot#al (0oLy)
Joded| Joded 1Bloujo] 66-18N-0E Jopuswwogd 2900 [04)U0D 8.1 S1BWSHY STINVA O jusunujoddy 20/9.1dS 88 S3UNva) izdeo-tiLl)
AVINHOA 3dAL|

ayo03y

3dAL GHOOIY|

3iva

HYOHINY

123rans

31ny| 480

156

WnpusIoWew

leloyjo

$6-100-92

uopesjujwpy dnois) yoddng

Aoning uojoB)SHIBS Jowoysny

309/91dS

OW/JSY!

Jaded| saded 1BIO1Y0| |6-UNP-ZL] JOSIADY OAIaS8Y 80104 IV uLojS Heseq uojiesed(- pewee suosse| MO/MAVY 0542 M0/014V OH ceyzit el v
WnpueIowall 2861 J0 (Viawd) 1y Kubaiuj fepueury
Jaded| Jaded [e1yo| 16-Bny-zz JepuBLWOY SieBBuByy jBI1opa4 oy} Jepun painbay JusWwslels [BnUUY Q0/SSK 0622 00/MBY 0522 CEHZ L Ll ¥
wnpuesowaus
Jeded| Joded 18j0Ujo| Z6-1eN-0L jod (8204 Upny eseg shanung pue spoday uopwsdsujupny W4 SW/SSIN 0522 ceMTIL Ll ¢
(820556 "ON 108fo1d) €Sy HO G4V uosienBd-uBUMm
wnpueiowew '(DSV) tejue) weisAg [esnneuciay ‘suodesp jo jusuebeusyy
Jeded| seded leoyo| ge-inr-gl 18puBwILIOYD "XXXG65¥Y UPNY Jo Hodoy o) sjuswiwo) wewebeusy 00/91dS 88 oI9SV, gedeit Ll ¥
aInpnis
wnpuesowaus leuoneziueBIO sueld sNs1607 (9A8T-BUI LD (MWL) MajAey 00/97 88 dX/M8BY
Jaded| seded lejoo] genr-i1e 2210 [e18uBs) Jol0edsu|| JusweBeuey (Buopouny - (vidy) AousBy uojpedsuj 8oio4 Jy| oOIOSY 88 QO/MaV 88 eyl Ll v
juawiasiopuy
wnpuBIowsy uojjens|ujwpYy
Jeded| ieded tepiyo| ge-des-g4 dnoug poddng *0100N Junoddy Apoisny suopuniy Jo Bujzessd 300/9.1dS 09/SdS 88 cedZIL L] ¥
wnpueiowawt

ceH C-hL L

1aded

300/91dS 88

90Q '\ euB[- pioday yyesH pue Ajajes ealojdwg

auou

auou

Jaded GG W0 JY 300/91dS 88 \d "d 1ejed - PI000Y YiesH pue Ajejes sakojdwl rold bl Ll €

Joded| Jeded GG WO 4y auou 390/91dS 88 S8UO[" [PIABQ - p1020Y yyes pue Ajejes eskojdwg auou suou| ¢ot1yL-L Ll €
Jeded| saded GG ULo4 Jv @uou 00/91dS 88 YNWS "d Il'g - picday uyesH pue Aejes eekodw3y auou ouou[poidL-LLL] €
1aded] Joded GG uLod 4y auou IXOD/IOLAS S0 poo9 ‘g uyor - piodey yyesH pue Kejes eakoldw3 auou euou| voIyL-LL L] €
B

yoid -l L

winpuelowawl
taded| seded 1819140 56-ABIN-Z| |Butujes] ' uopeonp3 Jopana I8 JusWiancg (xJwy) ssedx3 uesyswy, AJQ/SSK 88 DOO/SSW 8BlzEB IdI-LL L] 2
winpueiowaw 190130 JuauieBeuey
Joded| saded 181010 | 56-ABIN-PZ SUOPBIJUNWWIOYD UONEOLLIBA (|18 suoydajel dX98/990 88 sswes|l-eordL-it Ll 2
wnpueiowiaw
Joded| saded 1epiyo] g6-bny-p 19pUBLILIOD silig (XINv) sse1dx3 ueopewy Jo Juswiked 00/08VY| gz'oz'ge've|ecoldiil] 2
040} sauoydeje) TVIQWOD 981y} jo eseydind Joj jsenbes
Joded| teded| uuog Q-SLYING|S6-Bnv-GZ 30O/MEV 88| - Juswaynbay aojuag suojedunWo] NOLAVG-SLYIWA 9.1dS 68 NOLAVA-SLVYWNQ|Z€8 I b i]l €
wnpuesiowsw
Joded} saded 1ejoyjo| g6-Bny-1¢| sweiBoid 3 suejd ©1dS 88 uopezZHOYINY 84 pundl XD/OLdS 88 4X0s/90 98]zc-oiu-b Ll 2
$00JN080Y
wnpueIowaw Jendwod pue suoledUNWWO? ainboy 0} (DVdNI) p1BD
Joded| seded 18P0} ge-des-9 Jepuswuwiod UOlBZLOYINY 8SBUDING JUBYDIBW |BUOjIBWBIY] BY) JO 8S) 00/90 88| iSIINOILNERYLSIQ[Z€9 Iy L-IL Ll 2
0.0} suoydsie} 1viAWOD 8uo jo eseyaind Joj ysenbel
Joded| seded] wuoj d-sLvia|ge-des-gz 3D0/MEV 88] - Jusiasnbay 80IAISS SUO[IBIUNWWOYD NOLAVA-SLVING 300/MaY 88 NOIAVA-SLVWNA|ZE€9 1M L-Li L] 2
wnpusiowatu
laded| Jteded 1BjI§0| G6-100-0C sweiboid ‘j8jyo (ndS) Jopusp ewpd souelsisang| dAS/OWLY DH| LsiINoiLnayisialzeold -l L] 2
winpueowsw
Joded| Jeded 1819140 G6-AON-E 1L lapuBLUWOY 8AA soAjjBjuaseidey Junoooy Jun AD/OSV| LSITNOILNGINLSIQIZE9 1Y b L] 2
wnpuBIoOWdW: eABjuasaldey
saded| Jeded 1ejowo| 56-000-€L 10jus) 90IAIBG JOWOISND suoydojo JeinieD B 10} 1senbey 009S/99 88 300/91dS 88 1€ M-l L] 2
winpuelowaw juaweynbay
Joded] Jeded jejoigo) gs-uer-ti} uoikeg-Siving efisuen 80JAJ8S SUONEOIUNWILIOD U0IKBG-SLVING Jo snigis| LINDS/a-SLVING 300/MEY 8|Z-c oI 1L Ll E
LVWHO4 3dAL
Qyoo| WVIaaW AdAL QUOII| 3iva HOHINY 103rans NOY4| [¢] Ex(at-| F1:(¢)

157

wnpueiowaw 9B 6/9
Jeded| seded leujo| g6-inp-| jreBeueyy weiboid uoiseBBng! | g BoIY 1B [04U0Q 21811 B22096-dM ‘UolBN[BAT Joj jsanbay SOW/OSY 300/SdS 88 eyezo06L] S
wnpusiowaw
Jaded| seded iepol 96-inr-L1 [1ebeusyy weiboid uoysebing BujjoAoeY G¥2096-dM ‘Uojien|BA Joj 1sanbay SOW/OSY 00/91dS 88 2420061 S
winpuslowasw sisu|gjuod
Jaded| Jsaded iBjolgo! ge-Inp-pz|1abBuBy wWeiboid uojisebbng Bujiohoay epircid $5Z096-dM ‘UoliBN(BAT Joj jsenbay SOW/OSY 00/91dS 88 e¥e006l]| S
wnpuelowow BDJOJIOM (818D BY)
Jladed| Jeded 1810Wj0| g6-nr-1¢|1ebeuey weiboid uopseBBng| uj uojonpay AIBJUNIOA Y9Z096-dM ‘UohBNIBAT 10} }sanbay SOW/OSY 3DO/SSN 88 H2006L] S
winpuelowstu woysAg
Jaded| Jeded {BRYj0| ge-inr-|¢|sobruepy weibold uopsebling [BLigjey Juswadeld S9Z096-dM ‘UoneniBA3 Joj 1senbey SOW/OSY 300/SSK 88 zyez006L| s
wnpussowew Jojejijjoed 19jsues)
Jaded| Jeded 18oo| g6-nr-|ejieBeueyy weiboid uoysebBng (81018 dBMS qGOr £192096-dM ‘UolieniBAZ 10} sanbay SOW/OSY 3200/SSK 88 eyzoosL]| s
UOIS|AI] [9UL0Sied €£+2096-dM 1s8nbey 8ABaT Jo UOISS|IgNS
Jeded| Jeded| 1-0001 uuo4 4y| 96-Bny-g eyl Jeryg Andeg 9)uosjo8|3 — ejwISuB] pue uopenieaz uopsebBngl 0da/91dS 88 SOW/OSY eHZ0064]| ¢
tunpuelowsiu
Jaded| seded lejiyo] ge-Bny-glioBeusy weiboid uopseBBng| seuoydeis L 107 Bupued 9/2096-dM ‘UoiBN|BAT Jo) 1sonbey SOW/QSY 209/8dS 88 yz006L] S
Bujujes) 612096-dM 9502 JuswidojeAa(] |BuU0|SS8}0id
Jeded| Jeded| |-000) wiod 4v| 96-Bny-g| pue uoyeonp3 ‘jelyo Sunoy! Uofsinboy ~ [ewsues) pue uojenieA3 uopsebbng 2dQ/SSW 88 3dA/OWLY DH 2HeZ006L| S
wnpueIowaw : 9AB97 ¥OIS
Joded| Jeded leioujo| ge-6ny-j1absueyy weuBoid uoyseBBNg| us|iaD pesnun 10} UPaID £82096-dA ‘UOlEN|BAT J0) jsenbay SOW/OSY 300/SS 88 zHezo06L] s
wnpusiouiauu
taded| seded leuo| ge-bny-g4 1eBeusy weiboid uoysebbng Kynysueg uolysod 992096-dM ‘Uojien|BA3 Joj 1senbey SOW/OSY 300/SSW 88 2u2Z006L] S
wnpueiowaw IOV J0
Joded| Jaded 1ejoujo| 96-Bny-g1 LiaBeusyy weiboid uopseBBng| ux3 18 ubig piolA o dois 682096-dAN ‘UoliEN|BAT J0j Jsenbay SOWOSY 3200/SdS 88 cHeo06Ll g
uolsING 082096
Jeded| seded} }-000) W04 4v| 96-Bny-g2 {auuosiad UBIIIAID JOIYD| -dM 58npaddid i ~ (BIHWSUB)) pue uolenjeas uojisefng 0dQ@/OLdS 88 SOW/OSY, TyeZ006L] S
wnpugiowsw saueioyeuag jo uopeubisaq
oded| soded {e1ou0] 96-6ny-92 JuB}s|ssy juawebeuepy Joj uuog euQ dojersd ‘200096 dM uojiseBBng 80104 Ay da1d/vandy SOW/OSY| eyezo061] ¢
Wby 882096-dM UopBuLoj|
Jaded| Jaded| |-0001 W04 4v| 96-Bny-62 1auuosiod AiBIW ‘JoiyD| [euosied Bujepdn - jspiwsuelL pug uojenieal uojiseBing WJQ/SSK 88 SOW/OSY cHe0061] S
wnpueJowaw juejsissy Ayioe4 8101084U0D
Jaded| Jsded lepuo| g6-bnv-62 weiBoid uoysebbng 10 Maiaoy AjojBS Z262096-dM 'uonen|eA7 Joj jsenbay SOWIOSY 3D0/SSW 88 zdezo06L] S
982096-dM
1-000) ULo4 4v| 96-deS-9]1ub)i4 suodey B UWPY ‘Jeiud| Anmmsues uosOd — (BIIWSUBIYL PUB UOjBN(BAT UONSEHBNS VdS/SdS 88 SOW/OSY 24 2006 L
wnpugiowaut uoipenbg weJboid [puuosied
Jeded] Jeded 1Boo| 16-994-€1 poddng uojssiii 'OI0OON| o uoyenjeag BuinuiuoD ‘¢-16 Wey iseselul [Beds D14v| SWISSW 0§42 IVdS/SdS 0522 CEHZ LY ¥
wnpuelowsw :Qbﬂ:_vw
leded| Joded 1810140 16-JBN-EL Hoddng uojssin ‘0I0ON dn-mojjod uojedsu; 4oS |enuuy-wes SW/SSW 0512 XAJIMBY 052 cedeil L ¥
1€21 Hdv 0} | dng
saded| Jeded 6162 wio4 4v| 16-AepN-g1 XAD| 84VdM 80UB18}8Y J0) MejABY weiBold uopoedsul-jas yun auou euou ceyziL Ll ¢
wnpusiowiaw -:oanw:wE
Jaded]| Jeded 18o| 16-ABN-62 uojjuLoju| eseg ‘Je|yd Jeis woddngyels elneg| ISW/SSW 0522 SW/SSW 05.2 gedeiL L ¥
whnpueiowsw
Jaded| Jeded [eiogo] 16-Aey-1€| Joyuop wesbosd uojpedsu Uojadsu|-jeg Jo melAed| XAD/MAY 0522 NsSW cedeil Ll ¥
wnpueowsw co‘_vm:ew
Jaded| Jaded [Brool 16-Aei-ie Loddns uoissiiN *OI00N uoloedsul-yes enuueiwes SWossz XAQ/MEvV 0s/2l sedeziL il b
AdAL QHOD3Y 3iva) HOHLNY| 123rans _WOud| (o]} 31nyj 40|

158

1,0096-dM Hoday %0840 siepeny

Joded| Jaded| }-000) WO V| 96-Uer-£2 aoljod Anoes 'jein| ‘66v1 uLod 84VdM — [BlisuB) pue uojjlenjea] uoyseBbng SdS 88 SOW/OSV! 2HZ006L] S
wnpuelotuaw| juBjsissy Aiejes 's20096

Jaded| Jeded lelouyo| g6-uer-4Z we.boig uoysebbng d/M "ON uoliseBBing Joj pajsenbay) UoneBuLoju} [BUOIPPY. SOW/OSV| 300/SdS 88 2820061 S
G10096-cM S9UBPIOAY 150D

Jaded| Jaded| 1-0001 Wuod dv| 96-094-8 300/91dS 88| Buueug pewsse} ~ |Bjiwsuel) pue uojenieal uopseng] 300/91dS 88 SOW/OSY 2yez006L| S
201096-dM 1899 89]j0d Jayjea ypm ssBusq usboyled

Jeded| Jeded| 1-0001 uuod Jv| 96-994-51 SdS 88 ‘iepuswwo) auoqpoo|d - [eljwsuel). pus uojenjea3 uoysefting SdS 88 SOW/OSY. gHe006l| §
£L0096-dM V.04 Wiod

Jaded| Jeded] 1-000} Wiod Jv| 96-984-91L uojsjaig Woddng joud| 4v Jo JuoweBeuey - |BywisuBl) pus uojen|eA3 uoiseBbng 0da4v WAX/OM L} DH 2HzZ006L S
Youesg 120096-dM sU0qaps psend

soded| Jaded| }-0001 W04 dv) 96-904-0Z] SweiBoig uopuBooaY ‘JOIUD| [BUOHBN JIV JO JBIM — jBllIWSUBI L PUB UOjiBN(BAT uoyiseBBng] ¥dda/Od4V DH SOW/OSY 2yeo06L] S
G60096-dM suojioung Bujieso eseg/ieuuosiad

seded| Jeded| 1-0001 W04 JV| 96-994-0Z[uBild (BuUUOSIad ABUIW JOIND ajBlIOlNY - [BlHWsUB) pue uojjen|Bal uojiseBBng| SAWJQ/SS 88 AXdQ/OW4Y OH cdeo064! §
Wb €01096-dM @seg uo

seded| Joded| 1-000) WO dv| 96-084-82| woddng diysiequep ‘o] suoneinBey (oyodly - [BRiwsuBL) puB uohenjeA3 uojiseBing AS/OLdS 88 SOW/DSY Zuz-0061| ¢
uospenbg Hoddng €21086-dM

Jaded| Jeded] }-000l Wuod 4v] 96-18IN-8 uojssii 88 ‘JopuBwwod] ueld (¥)10y ABUIN - |BHiwsuBLL pue uojenjeA3 uoysebibing WJa/SSW 8_ SOW/OSY eHT0061| S

1€1096-dM Siuswainbay _

Jaded| Jaded] 1-000L ULOd dv| 96-18N-61 | BujuielL pue uojeanpl ‘JBIYD Bujuis1y - |BRjwsue)] pue uojienieal uopseBbngl WO3JA/SSW 88 d3d0/OWY DH guc006l| S
120096-dM weiBoid 308y sis)end

Joded| seded| 1-000) Wuod dv| 96-1BN-2C Jopuewwog| ‘66v) W04 914V - [BHIWSUBLL pue uojienjea] uoysebBng] SIVAS/SdS 88 SOW/OSY| 2uz0061| S
260096-dM

Joded| Jaded| 1-000} UUO4 JV| 96~JBIN-8Z Japuswiwog | Bujujes). suuy jBWS — [BRIWSUBLYL pue uojjenjea] uojiseBBng| SIVAS/SS 88 SOW/OSY eye006l| s

1aded| Joded| 1-0004 Wiod 4v| g6-dv-1] 1ubid woddng Kieyiw JeiuD| 901096-cdM K18J8S — [BRIWISUBIL PUB UOJiBN|BAS UojisebbNng VAS/OLdS 88 SOW/OSY| SHZ006L| S
UOJSIAIQ] [euU0SIod GG1096-dM seakoidwia §9 ioj spiB)

Joded| Jaded| 1-0001 Wiod 4v| g6-1dv-g ueliing JoIyo Bunoy aW|] 8jBuIT - [BIHUSUBL] PUB UOlBNBAT] UoysebBng] 0d@/OLdS 88 SOW/OSY Zde006L| S

wnpusiowaws juejsissy

Jaded| Jaded 18I0} 96-1dy-6 weiBoid uopseBBng| subjs/syooig Buped VOEL096-dM "Uojien|eA] Joj jsenbay SOWIOSY| 3202/SdS 88 2Yz0061| S
211096-dM

Joded| Jeded| 1-000) Wuod Jv| 96-1dv-g4 Jo1y0 Wbl uoneaey| Jeded deng ejBg ~ [BWSUBIL puB UOjBN|BAT UoiseBEng AS/O1dS 88 SOW/OSY| eyzZ006L §

wnpuesolaw Wb

Joded| saded 1a1030| 96-ABN-0L| Siuswasnbey g susid JelyD 101096-dM uolssBiing jo uopsjuswajdwi| 0d40d4a/OLdS 88 SOW/OSY| 2ye006ll G
wnpueiowaLs punoiBiejd jadng je suig o[okoay ‘00096

soded| saded leiouo| 96-AeN-02 SuopBISIUIWPY ‘DI0ON]| ~dM ‘uoliseBBing o sjuswainbey uojiejuswajdwi pepefold| 300/9.1dS 88 SOW/OSY uzo06L] S
wnpuesowaw juBjsiSsy joug J9a1e) 0} peppy eousiadxy BujAyient) (BUCiPPY

ltaded| saded 1ejouy0| 96-AeN-12 weiBoid uoysebifing - 1610-26 dM uoysefibing o) sjuawnoog uogejuews|du oWmLazZy SOW/OSY Heoo6L| §

wnpusiowsu oawn. MW {ouuocsied .

Joded| saded 1ejouso! 96-ABIN-0E uoneLS|UIPY 'DI0ON usl|inD eBuByD £81096-dM 'UoiBNBAT Joj isenbay| 300/91dS 88 SOW/OSY 2yz006L| S
[ILTE] 902096-dM UojBuIoju|

saded| Jaded| 4-0001 w04 dv| g-unr-pi leuuosiad AlBylI ‘§8IyD| [euuosied Ouo}I3]3 - [BRIWSUBLL pue uoljEn|ea] uojsabbng WJQ/SS 88 SOW/OSY 2Hz006l| s
uinpusiowsw muwm MMM [6UUOSIed

Jaded| Jaded ieuol _96-nr-4 L1eBeusyy weiBoid uoiseBing usiing aBusyD 92Z096-dA ‘UolBNIBAT) Jo} 1sanbay SOW/OSY 3DD/SSI 88 Zuz-0061| S

A1VWHOS IdAl
ayoo3y vigaw IdAL QHOOIA Jiva HOHLNY 123rans) Houd| oL 37NY| 80|

159

Appendix L: Offset Data

Exp Weight 0.15

SAMPLE 1 — SAMPLE 2
WHOLE SYSTEM BY DATABASE WHOLE SYSTEM BY CLASS
[*] o o o oJ o o o |~ [=1 o |~}
[-} % Q Il.:.l fd % o % (=] uE‘ o .il o % (=] %‘ o % o % o % o %
g’é%'g‘%'é S§58§’8‘ g§§§§§ S§§§§§

ARBEIEEIBE] FIRHEBEIEIRIEE: AREHEIHEIEE] FREEIEERIEE:
Elg|5| 3|8| 3|5| 2 £(3|5| 3|3| 3|5| @ THHE HE HE EHEHBIHEIHB
E sfg) ¢l efe| o § 1S I a g glsf 218 & § (3 § <|s] 218 |2 a
2lals! 318 2 2igisi glal Jlg: 3 zlglsl [l=2] & 2iolst 1= sig! &)

1] 5] 4]4.00] 4{4.00] 4/4.00 6] 1] 414.00] 4]/4.00] 4{4.00 1| 5] 4|4.00] 4/4.00] 4]4.00 6| 1] 4}4.00} 4]4.00] 4|4.00
2| 2| 4]4.00] 4]4.00] 4]4.00 15{ 1] 4}4.00] 4/4.00] 4{4.00 2} 2| 4]|4.00] 4{4.00] 4]|4.00 15| 1] 0}3.40] 0;3.40] 0/3.40
3] 4] 4]4.00} 4/4.00] 4]4.00 20{ 1] 3}3.85] 2{3.70{ 2{3.70 3| 4] 4]/4.00] 4{4.00] 4]4.00 20| 1} oj2.89] 0{2.89] 1|3.04
41 2| 2{3.70] 2|3.70] 2|3.70 28¢ 1] 3}3.72] 3]/3.60] 3{3.60 4] 2| 1]3.55] 113.55] 1]3.55 28| 1} 3]2.81] 2{2.76] 4]|3.18]
51 3] 413.75} 4]/3.75] 4]|3.75 35 1] 3}j3.61] 3{3.51] 1|3.21 5| 3] 4/3.62] 4/3.62] 4)3.62 35| 1] 0[2.47] 0{2.34] 0[2.71
el 1] 4[3.78] 4/3.78] 4[3.78 41| 1] 0]3.07] 0}2.98] 0/2.72 6] 1| 4]|3.67] 4]/3.67] 4/3.67 41| 1] 0][2.10] 0]1.99] 1]/2.45
71 5] 1[3.37] 0}{3.22] 0}3.22 43| 1} 0]2.61] 0j2.53{ 0]2.32 71 5] 0[3.12] 0/3.12] 0/3.12 43] 1] 1]1.98] 1]1.84] 1]2.23

8] 5] 0/2.86] 0[2.73] 0]2.73] 44] 1} 1]2.37] 1]/230] 2|2.27 8] 5] 2|2.96] 0/2.66] 0]2.66] 44 1§ 0[1.64] 0[1.57] 1|2.05

9} 2| 0}2.43] 0{2.32] 0/2.32 48| 1} 0{2.01] 0]/1.96] 1]2.08 9| 2| 4]/3.11} 4[2.86] 4/2.86 48| 1§ 0[1.40] 0}1.33} 2|2.04
10! 5] 0j2.07] of1.97] 0[1.97 56] 1) 0[1.71] 0]1.66] 0[1.77 10| 5] 2]|2.95] 2{2.73] 2/2.73 s6] 1} 1]1.34] 0[1.13} 0]1.73]
11] 5] 0]1.76] 0{1.68] 0[1.68 58! 1] 0/1.46] 0[1.41] 0{1.50 11] 5] 0]/2.50] 0{2.32] 1/2.47 58] 1} 0]1.14] 0[0.96] 0]1.
12] 2| o0f1.49] 0{1.43] 1[1.58 59f 1] 1[1.39 1{1.35] 1!1.43 12] 2] 1]2.28] 1i2.12] 2[2.40 59| 1} 1[1.12} 1}0.97] 1]1.
13] 5] of1.27}f 0]1.21] 1]1.49 611 1] 1}1.33] 1{1.30] 2|1.51 13] 5] 1]2.09} 111.85] 2[2.34 61] 1} 0/0.85] 0(0.82} 1]1.
14| 4] 0f1.08] 0{1.03] 0{1.27 62f 1] 1}1.28] 1 1.2?" 1{1.44 14| 4] 0[1.77} 0]1.66] 0]1.99, 62| 1] 0[{0.81} 0]0.70f 0]1.
15{ 1] 4}1.52] 411.48{ 4]1.68 69] 1] 0f1.09] 0[1.07] 0{1.22 151 1] 3/1.96] 2]1.71] 4[2.29 69| 1] 0{0.691 0]/0.59] 0]O0.
16} 2] 0]1.29] 0/1.25{ 0}]1.43 76] 1} 0]0.92] 0[0.91] 0]1.04] 16| 2] 0/1.66} 0/1.45] 0]1.95 76| 1] 0/0.58] 0]0.51} 0]0.
17} 2] 0}1.10] 0]1.07{ 0j1.21 79] 1} o0]o.79] 0]0.77] ojo.88] 17] 2] 1[1.56] 1]1.38] 2[1.95 79| 11 0]0.50} 0(0.43] 0/0.
18| 2| 0}0.93] 0/0.91] 1/1.18 86] 1} 0]0.67] 0]0.65] 0{0.75 18] 2] 1[1.48] 1]1.33{ 1{1.81 86| 1] 0/0.42] 0[0.36] 0f0.
19f 3] 0}0.79] 0]0.77{ 0/1.00 89] 1] 0]0.57] 0]0.56] 0]0.64 19} 3] 2|1.56] 2{1.43] 0]1.54 89| 1§ 0}0.36] 0]0.31] 0]0.
20! 1{ 3[1.12] 2f0.96] 2]1.15 941 1] 2]o.78] 2[0.77] 3]0.99 0] 1] 0/1.32} 0{1.21] 0]1.31 94| 1§ 110.45] 1{0.41} 1/0.

11 51 1}1.10] 1}0.96] 0]0.88| 96! 1| 0]o.67] 0]0.66] 0]0.84 1] 5] 1]1.28] 111.18] 2|1.41 96| 1} 010.39] 0[/0.35} 1]0.
22| 5] 010.94] 0l0.82] 0]0.83101| 1] 0}0.57 O 0.56] 0/0.72 | 22] 5] 2 1,38} 2{1.31] 3[1.654101] 1] 1[0.48] 1]|0.45] 2]0.
23{ 5] 1{0.95] 1}0.84] 0[0.71jM103{ 1] 0]/0.48] 1]/0.62] 1]0.76 23] 5] 1]1.33] 111.26] 1]1.55@M103] 1] 0[0.41] 0[0.38] 1]0.
24} 3] olo.81] 0j0.72] 0]0.copE110{ 1] 0}j0.41] 0{0.53] 1|0.80 24| 3] 0]1.13} 0{1.07] 1]1.47@110| 1} O 0.35] 0]0.32} 1]0.
25! 2] ojo.es] oio.e1] 1j0.ccE111{ 1] 0/0.35] 0{0.45} 1|0.83 25| 2] 0]0.96] 0/0.91] 1]1.400K111] 1] 1{0.44] 1]0.43] 2j1.
26] 2| ofo0.s8] 0j0.52] 0{0.5cE112{ 1} 0/0.30] 0/0.38} 0{0.70 26] 2| 0/0.81] 0j0.77] 0]1.19§112] 1] 0][0.38{ 0]0.36] 0j0.
27| 5] 0[0.49] 0j0.44] 0{0.48 2 414.00] 4]4.00§ 4{4.00 27| 5| 0/0.69] 0]0.66] 0]1.01 2] 2} 4/4.00] 4]4.00] 4i4.
28 3]/0.87] 3}0.82| 3{0.86 4 213.70] 2]3.70f 2{3.70 28} 1] 1/0.74] 1]0.71] 0{0.86 4] 2] 113.55] 113.55] 1]3.
29| 2{ o0[0.74] 0[0.70] 0{0.73 9 0/3.15] 0/3.15] 0 3.15] 29} 2] 1]0.78] 1]0.75] 1j0.88 9] 2] 4/3.62] 4]3.62] 4
30| 2] 4[1.23] 4[1.20f 4}1.22 12{ 2| 0]2.67] 0[267] 1}2.82 30| 2] 0]0.66] 010.64] 010.75 12] 2} 2[3.37] 2[3.37{ 2{3.
31| 2] 0[1.04] 0[1.02} 0}{1.04 16} 2] 0]2.27} 0{2.27] 0}240 31 2_'71 0.71} 110.69] 0]0.64 16 2| 1]3.02] 1|3.02] 2|3.
32| 5f 0/0.89f 0]|0.86] 0]0.88 171 2| 0[1.93f 0{1.93] 0{2.04 | 32} 5] 0]0.61} O 0.59] 0]0.54 17] 2] 112.72] 1]2.72] 2{2.
33| 5| 0[0.75] 0]0.73} 0]0.75) 18] 2| 0]1.64} 0[1.64] 1]/1.88 33] 5] 0]0.51} O 0.50| 0{0.46! 18| 2| 112.46] 1]2.46] 2|2.
34 4] o0jo.64f 0]0.62] 0]0.64 25| 2] 0[1.40] 0[1.40] 1]1.75 34| 4] 0[0.44] 0{0.43] 0/0.33 25| 2] 112.24] 1]2.24] 1{2.
35[1] 3}1.00] 3/0.88] 1]0.69 26| 2] 0}1.19] 0{1.19] O] 1.4 35| 1] 0]0.37] 0jo.36] 1]0.48 26| 2} 1{2.05] 1]2.05] 2{2.
36| 5] o0]o.85§ 0]0.83] 0}0.59 28| 2} 0}1.01] 0§1.01] 011.27 36| 5] 2(0.62] 2{061] 4/1.01 29| 2} 2|2.05] 2{2.05{ 3]2.
37| 5] c[0.72] 0}0.71] 0[0.50 30| 2] 4}1.46] 4]1.46] 4]1.68 371 5| 2/0.82] 2{0.82f 4]1.46 30| 2} 1{1.89] 1/1.88] 1]2.
38| 5] o/o.61] 0[0.60] 1[0.57 31| 2] 0}1.24] 0}1.24] 0}1.42 38| 5| 2[1.00] 2{0.99] 4/1.84 31 2] 1{1.76] 1]1.76] 0]1.
39| 4] 0{0.52] 0}0.51] 11064 40| 2] 3}1.50] 3}1.50] 3]1.66 39| 4] 1[1.00] 1{1.00§ 0{1.56 40| 2f 1{1.64]1 1]1.64] O[1.
40| 2] 3{0.89] 3[0.89] 3[0.98 45(2] 3]1.73] 2|1.58] 3[1.86] 40| 2] 0]/0.85] 0i0.85] 0{1.33 45| 2] 2]1.70] 2[1.70] 4|2.
41] 1] 0]0.76] 0}0.75] 0{0.84 52] 2] 2]1.77] 2|1.64] 1]1.73) 411 1] 0]/0.72] 0j0.72] 0]1.13 52| 2] 2[1.74] 2]|1.74] 4]2.
42| 4] 0/0.64] 0/0.64] 110.87 53] 2| 2/1.80] 2[1.69] 4]2.07 42| 4] o]0.61] 0]0.61] 2|1.26 53| 2 1.63] 1]1.63] 0]1.
43| 1] 0{0.55] 0[0.54] 0]0.74 60! 2| 1}1.68] 1]1.58] 0[1.76] 43| 1] 1]0.67] 0{0.52{ 0]1.07 60| 2} 1}1.54] 1/1.54] 1]1.
44| 1) 1 0.6?_‘ 1] 061} 2}0.93 63] 2] 1[1.58] 1]1.50] 0[1.50 44! 1] 0/0.57] 0j0.44] 0]/0.91 63| 2f 1/1.46] 1]1.46] 1]1.
45| 2} 3/0.97] 2|0.82} 3[1.24] 70{ 2] 1]1.49} 1]1.43] 0[1.27 45| 2| 1/0.64] 110.53] 1[/0.92 70| 2] 0[1.24] 0[1.24] Of1.
46| 5§ 0{0.83] 0/0.70] 0]1.05 75] 2| 2[1.57} 1]1.36] 2]1.38 461 5| 1/0.69] 1;0.60] 1[/0.94 75| 2} 3/1.50{ 3[1.50} 3{1.
47) 4] 0{0.70] 0]/0.59] 0/0.83 78] 2] 1{1.48] 1{1.31] 1}1.32 47} 4{ 0/0.59] 0{0.51] 0{0.80 78| 2] 3]|1.73] 3[1.73] 3{1.
48| 1} 0{0.60] 0[/0.50] 1}0.91 80| 2f 2[1.56] 211.41] 2[1.43 48} 1] 0]/0.50] 0j0.43] 0]0.68 80| 2] 0[1.47] 0]1.47} 1
49] 5] 0/0.51] 0/0.43]| 0/0.77 a2] 2| 1{1.48] 1}1.35] 0]1.21 49 5{ 0]0.42] 0J0.37] 0]/0.57 82| 2] 0[1.25] 0]1.25} O[1.
50| 5] 0/0.43] 0]/0.36] 1]|0.81 84| 2] 3/1.71] 2]1.45] 3]1.48| 50 5] 0/0.36] 0]0.31] 0|0.49 84| 2§ 1]1.21] 1}1.29] 1]1.
51{ 5| 0{0.37] 0{/0.31] 1]0.84, 87| 2] 1}1.60] 1[1.38} 0]1.26 51] 5] 0]0.31] 0}0.26] 0{0.42 87| 2] 0[{1.03] 0]{1.03] Oj1.
52t 2| 210.61] 2{0.56] 1/0.86 88| 2] 111.51] 1}1.32} 0}1.07 52| 2] 1]0.41} 2{0.52] 0{0.35 88| 2] 0/0.87] 0{0.87] Of1.
53] 2| 2[0.82] 2{0.78] 4]1.33 91| 2] 1]1.43} 111.27] 0]0.81 53| 2] 0{0.35] 0j0.45{ 0]0.30 91| 2} 1]/0.89] 1}0.89] 1]1.
54| 5] 0/0.70] O 0.66] 0[1.13 93| 2] 0[1.22} 0}1.08] 0}{0.77 54| 5| 3/0.75] 3]0.83] 3]0.70 93| 2} 0[0.76] 0/0.76] 0]0.
55 4] o0lo.ss] ojo.s6] 1]1.11@107] 2] 1[1.19] 111.07] o[o.66] 55| 4] 3]1.08] 3/1.15] 3|1.05§M107| 2| 2/0.95] 2{0.95] 2|1.
56| 1| o[0.50] 0]0.48] o|o.os113| 2] 2]|1.31] 2]1.21] 1]0.71 56| 1] 0j0.92} O 0.98[o[o.ecg113| 2} 1]0.85] 1}0.95] O
57| 5] 0/0.43] 0]0.41] 0]0.80 5| 3] 4/4.00] 4]4.00] 4[4.00 s7] 5] 1]0.93} 1}0.98] 0]0.76 5| 3} 4/4.00] 4}4.00] 4|4
58| 1] 0[/0.36] 0j0.35{ 0/0.68 19| 3] 0]/3.40] 0{3.40] 0/340 58| 1§ 3]1.24] 3[1.29] 0)0.64 19| 3] 0[3.40] 0]3.40} of3.
59| 1] 1]/0.46] 1j0.44] 1/0.73 24] 3] 0[2.89] 0}2.89] 0]2.89] 59| 1] 0{1.06] 0}1.09] 0]0.55! 24] 3] 0]2.89] 0[2.89] 0|2
60! 2} 1]0.54] 110.53] 0]0.62 68| 3| 0]2.46] 0f2.46} 0[2.45) 60| 2| 0{0.90] 0/0.93] 0{0.47, 68| 3] 0/2.46] 0[2.46} 0|2
61} 1} 1{0.61] 1]0.60] 2]0.83 81] 3| 0[2.09] o}2.09f 0[2.09] 61| 1] 0j0.76] 0]/0.79] 0]0.40 81| 3| 0/2.09] 0[2.08] 0]2.
62 1} 1{0.67] 1}{0.66] 110.85 3} 4] 4]4.00] 4[4.00] 4]/4.00 62| 1] 0}0.65] 0]0.67] 0{0.34 3| 4] 4]4.00] 4/4.00] 4{4.
63| 2| 1]0.72] 1{0.71] 0/0.73 14} 4] 0]3.40] 0]3.40] 0]3.40 63| 2] 0]0.55] 0]/0.57] 0]0.29 14| 4] 2{3.70f 2{3.70] 4{4.

160

o

_ SAMPLE 1 —_ SAMPLEZ —
WHOLE SYSTEM BY DATABASE WHOLE SYSTEM BY CLASS
64| s} ojo.61] ofo.s0] 0 4] 0[2.89] 0]2.89] 0}2.89 64| 5] 1]0.62] 1}0.64] 1 4] 0]3.15] 0]3.15] 0]3.40
65 4] 1lo.67] 1[o.66] 2 4] 0]2.46] 0]2.46] 1}261 65| 4] 0]0.53] 0[0.54] 1 4] o[2.67] o0{2.67} 0[2.89
66} 5] 0]0.57] o[o.s6] 0 4] 0[2.09] 0{2.09] 1{2.37 66| 5] 0]0.45] 0]0.46] 1 4] 0[2.27f 0]2.27] 0[2.45]
67 5] 1{0.63] 1[0.63] 1 4] 0[1.77] 0{1.77] 0{2.01 67] 5| o]o.38] 0j0.39] 1 4] 1]2.08] 112.08{ 0]{2.08
68| 3] o]o.54] o[o.53] O 4] o]1.51] of1.51] 1[1.86 68] 3] 0]0.32] ofo.33] 0 4] o[1.77] o[1.77] o[1.77
69] 1] ojo.4s} o[o.45] O 4] 1]1.43] 1{1.43] 2[1.88{ 69 1] 0]o0.27] ofo.28] O 4] o[1.50] 0]1.50] 0f1.51
70 2| 1]0.54] 1]0.54] © 4] 1]1.37f 111.37] 2{1.90 70| 2] 0]0.23] 0f0.24{ © 4] 1]1.43] 1]1.43] 1]1.43
71] 5] 2jo.76] 3[0.81] O 4] o[1.16] of{1.16] 0] 1.61 71] 5| 3]0.65] 3}0.65§ O 4] 0[1.24] 0[1.21] 0{1.22!
72| 5] ofo.e4} 0[0.77] O 4] ofo.99f 0[0.98] 0{1.37 72[8| 1]o.70] 1j0.71] 1 4] 0[1.03] of1.03] of1.03
73] 4] 1]o.70] 1]o.80] 2 4] o]o.s4f ofo.84] 0[1.17 73] 4] o0]o.60] oio.60f o 4] 0]o.88] ofo.ss] 0]0.88
74} 5] 0]o.59} ojo.es| 0 4] 0]0.71f o[0.71] o[0.98 74| 5] 1]o.66] 1j0.66] 1 4] 0]0.75] ofc.75] 1{0.90]
75] 2 2[o.80f 1]0.73] 2 5| 4]4.00] 4]4.00] 4]4.00 75| 2] o]o.s6] ojo.sef 0 5| 4]4.00] 4[4.00] 4]4.00
76| 1] ojo.es} o[o.62] O 5] 1]3.55] 0[3.40] 0[3.40 76] 1] 0j0.47] ojo.48] O 5] 2[3.70] o0[3.40] 0]3.40
771 5] 1]0.73] 3]o.98] 0 5] 013.02f 0[2.89] 0[2.89 77| 5] olo.40] ofo.41} o 5] 0]3.15] 0[2.89] 0]2.89
78] 2] 1j0.77f 1[ose] 1 5] 0{2.56] 0]2.46] 0[2.46 78] 2] 0j0.34] 0j0.34] © 5] 0]2.67] 0[248] 0]2.48]
79[1] ojo.e6] ofos3] o 5| o0j2.18] o0[2.09f 0[2.09 78] 1] 0jc.29] ojo.29f o 5] 2(2.57] 2[2.39] 0}2.09
80l 2] 2]os6) 2[1.01] 2 5] of1.85] 0[1.77} 1[1.92 80| 2| 3[0.70f 3|0.70} O 5] 0]2.19] 0[2.03] 1[1.92]
81} 3] 0[0.73] ofo.ss] 0 5| 1]1.73] 1[1.66] 0[1.64 81] 3] o[o.59] 0j0.59] O 5] 0[1.88] 0[1.73] of1.64
82| 2| 1[0.77] 1}o.88] 0 5] 0]1.47] 0[1.41] 0[1.39] 82| 2| o[o.50f olo.50f 0 s} o] 1.58] o[1.47] o] 1.39)
831 5] o[o.65] 0[o.75] © 511.4011.35_!01.18 83| 5] 0[0.43] o0j0.43] 0 5] 0] 1.34] o[1.25] 0][1.18
84! 2] 3[1.01] 2[084] 3 5| o]1.19] o[1.15] 0[1.00 84| 2] o0]0.36] 0jo.36] 0 5] 0] 1.14] of1.06] 0[1.00
85| 5| o[o.8s] 0]o.79] O 5] 0[1.01] o[0.87] o0[0.85] 85| 5| 0[0.31] 0{0.31] O 5| ojo.97] 0{0.90] 0]o0.85
86{ 1] o[o.73] ojo.es] o 5| o]o.ss[o[0.83] 0[0.73 86] 1] o0[o.26] ojo.26] o 5] o0jo.82] ofo.77] 0]0.73]
g7] 2] 1]o.77] 1[0.72] © 5] o[o.73] o[o.70] o[o0.62 87| 2] 0[0.22] o{o.22] o 51 o]o.70] o[o.e5] 0f0.62
ga| 2| 1lo.80] 1[0.77] © 5] o]o.62] o[0.60] o[0.52 88| 2] 1]0.34] 1[0.34] O 5] 0/0.60] 0]0.55] 0]0.52
89[1] ofo.es] olo.es] O 5] o]o.53] o[0.51] 1][0.60 89| 1] o{o.2s{ o[o.29] 0 0[0.51] o[0.47] 0]0.45
90| 4] ofo.s8] ofo.55] 0 5| 0]/0.45] 0]0.43] 0]0.51 90[4] ofo.25f 0[0.25] O 1]0.58] 2[0.70] o0f0.38
91] 2] 11o.64] 1]0.62] O 5] 0]0.38] 0/0.37] 0]0.43 91| 2| ofo.21] o[o21] 0 5] 0]0.49] 0]o.59] 0[0.32
92{ s} o]o.55] 0l0.53] o s| o0]0.32] o0f0.31] 1[0.52 92| s| ofo.18] o0io.18] O 5] 3]o.87] 3/0.98] 0[0.27
93| 2] ofo.4s] 0{0.45 0 5] 0jo.27] o}o.27] 1[0.59 ¢3[2] o}o.15] 0jo.15] o 5] o0]o.74] 0[0.81] 0]/0.23
94| 1] 2jo.es| 2[0.68f 3 5| 0]0.23} 0]0.23] 0[0.50 94| 1] 1]c.28] 1]o0.28] 1 5] o0jo.63] o[o.ss] 0]0.20]
95 5] ofo.59] 0]o.58] O 5| 0]0.20f 0[0.19] 0[0.43 o5 5] 1]0.39] 1]0.39] 1 5} 0}0.53] o[0.59] o[0.17
96| 1] ofo.50} 0]0.4s] 0 5] 0[0.17] of0.16] 0[0.36] 96| 1] 0{0.33] 0[0.33] 1 5] 0j0.45] o[0.50] 1]0.29
97| 5] 0{0.43} 0[0.42] O 5] 0]0.14] 0{0.14] 0[0.31 o7[5] o0jo.28} ofo.2s] o 5] 0]0.39] 0[0.42] o0]0.25)
98| 5] ofo.38] o[o.36} O 5] 1{0.27] 1]0.27] 1]/0.41 o8] s| o0]o.24] ofo.24] © 5} 3]0.78] 3|0.81} 0f0.21
98{ 5] 0{0.31] 0{0.30} 0 5] 2{0.53] 3{0.68] 0]0.35) 99| 5] 0]0.20] 0j0.20] O 5] 0]o.6s| o0]o.69] 0]0.18
100] 4] 0{0.26] 0j0.26{ 0 5] 0]0.45] 0[0.58] 0][0.30) 100| 4] 0]{0.17] 0l0.17] 1 5| 3]1.01] 3[1.04] 0f0.15
101} 1] 0jo.22| of0.22] o 5] 0]0.38] 0[0.45] 0[0.25] 101] 1} 1]0.30] 1]0.30] 2 5§ ojo.ss] o[o.ss] 0[0.13]
102]| 5} 0]0.18] olo.18] o 5] 1]{o0.48] 3{o.87] o[0.21 102] 5] ofo.25] 0{0.25] 0 5} ofo.73[o[o.75] ofo.11
103] 1] ofo.16] 110.31} 1 5| 0]0.40] 0{0.74] 0[0.18 103] 1} olo.21] o[o0.21] O 5) ofo.e2| o[o.e4] 0[0.09)
104] 5] 0{0.14] 0f0.26] 0 §| 0]0.34] 0f0.63] 0[0.16] 104] s} ofo.18] ofo.18] 1 5} 0j0.53] o[0.54] of0.08
105] 5] 0]0.12] 0jo.22] 1 5| o[o0.29] 0]0.53] 0[0.13] 105] s 2[0.45] 2][0.45] 2 5| 1}o.60] 1][0.61] o[0.07
106] 5] o{0.10] 0{0.18} 0 s| 0]0.25] oj0.45] o[0.11 106] S| 1]0.54] 1]o0.54] © 5] ofo.51] o]o.52] ofo.06]
107} 2] 1f0.23] 1{0.31} 0 5] 0]0.21] 0f0.38] 0[0.10] 107[2] 0}j0.46} 0]0.48] 1 5| o0}0.43] 0f[0.44] of0.05
108] 4] 0[0.20] 0{0.26] O 5] 0]0.18] 0[0.33] 0]0.08] 108| 4} 0}0.39} 0]0.38] 0 5] 010.37] 0/0.37] 0{0.04
109} 4} ofo.17[of0.22f o 5] 0[0.15] 0]0.28] 0[0.07 109] 4} 0[0.33} 0f0.33] 0 5] ojo.31] o[0.32] 1f0.19
110f 1] of0.14] 0jo0.18} 1 5Y 0{0.13] 0[0.24] 0[0.08] 110 1] 1jo.43f 1]0.43] 2 5] ofo.27] o[o.27] ofo.16]
111} 1] 0[0.12] o]o.1e} 1 5} 0[0.11] 0[0.20} 0[0.05] 111] 1] 0j0.37} 0{0.37] O 5] o0fo.23{ ofo.23] 0[0.13]
112] 1] o[o.10] 0]0.14] © s{ 0]{0.09] ofo.17] 1]0.19 112[1} ofc.31] ofo.31] 1 5| ofo.19] ofo.20] ofo.1%
113] 2] 2[04| 2] 04f 1 5f 0] 01} o] 0.1} o] 0.2 113] 2} of 03] of 03] 0 5] 0 ﬁh 6.2] o] 0.1

161

Appendix M: Re Class 1 Charts

RECORDS

_—
| 20/20/20/20/20
% E30/20/30/10/10

50/30/00/10/10

Figure 34. Histogram o :mple 1 Results for Class 1

RECORDS

' W20/20/20/20/20
| E@30/20/30/10/10 |
{E50/30/00/10/10 ;

OFFSET

Figure 35. Histogram of Sample 2 Results for Class 1

162

OFFSET

”» A U

0?:‘:1%0;%0—————0—&—-0—9—0—————% : :

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26
RECORD

Figure 36. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 20/20/20/20/20

OFFSET

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26
RECORD

Figure 37. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 20/20/20/20/20

163

OFFSET

123 4586 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26
RECORD

Figure 38. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 30/20/30/10/10

OFFSET

1 2 3 456 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26
RECORD

Figure 39. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 30/20/30/10/10

164

L T T
R e T
. R R T e
B 25N e
e~
R e e bt REE T
IS R TN T T
05;— ———————— ‘\———"——-—v—--" ————— xN—— - = A '-"-;'——7 ------ . 5l
0 +——— _— e ‘ ——; ¥
123 456 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26
RECORD
Figure 40. Time Series Results of Sample 1 for Class 1
with Weighting Scheme 50/30/00/10/10
L R B TR
35 N - - o e -
B s N N & & e e
i
IR R e L L e e
A R R S R L ELEE L EETERES LR -
G 15 —-y--a--hoooo R L T T TP v -
L A B I R 2 B e
05 LS S T T :
0l ¢t 6——— &
123 456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26

RECORD

Figure 41. Time Series Results of Sample 2 for Class 1
with Weighting Scheme 50/30/00/10/10

165

Appendix N: Record Class 2 Charts

@ | 20/20/20/20/20 |
& | B30/20/30/10/10 |
i | B150/30/00/10/10 |
0 1 2 3 4
OFFSET
Figure 42. Histogram of Sample 1 Results for Class 2
16 - 1515

RECORDS

| 20/20/20/20/20
| E130/20/30/10/10 |
| §150/30/00/10/10 |

0 1 2 3 4
OFFSET

Figure 43. Histogram of Sample 2 Results for Class 2

166

OFFSET

RECORD

Figure 44. Time Series Results of Sample 1 for Class 2
with Weighting Scheme 20/20/20/20/20

OFFSET

H L] N *
16 L 3 - - v e e o e — — [g _______.____..:‘_

1§—¢~--%-0-0-0-0’-—‘0—0—4———‘+4+-.'----‘

I—_——* _____ 4
0,5;— ————————————————————————————— VA - —mmr—— oy = - — -
o+— . ¢

- [y2] 2] ~ [+] - (3] 2] ~ (2]
- ~— -

- P

RECORD

Figure 45. Time Series Results of Sample 2 for Class 2
with Weighting Scheme 20/20/20/20/20

167

OFFSET

RECORD

Figure 46. Time Series Results of Sample 1 for Class 2
with Weighting Scheme 30/20/30/10/10

OFFSET

2\"-. A *Q _______ .l: Y

15 L5l o v TS g T N i -
1-4---20006--066-—- 54—~ “

05’— ————————————————————————————— J-o-————‘r--—‘-—‘\———f'—-\—-o——-
! S . ’ . . AN
0 P
- ® ®w» ~ o =- e © & 2 3 & & & &

RECORD

Figure 47. Time Series Results of Sample 2 for Class 2
with Weighting Scheme 30/20/30/10/10

168

-_______’_____-__..‘__.______..______

RECORD

Figure 48. Time Series Results of Sample 1 for Class 2

with Weighting Scheme 50/30/00/10/10

b -1
[1
[N [\ I
o
| ! Y
[it
[[
[N le
o -1
[*,p,
[L
| 1 .t
Lo .47
.l [
*-_ ot
ol [
) R TS VR
i) [
! 1 o
[f._
! i *_
o S
o N,
ool L]
il [B
[
1 ! I
™k ed .
[I
[
[
1-®
t [}]
oo
[
N T |

.
(D I
:*_
[I
[
[
['
[|
[I
[
1 1 1
4. 1
s J-‘_
Mo NY - Y
[y} - o

€C

IR 14

61

T4t

T Gt

el

T

RECORD

Figure 49. Time Series Results of Sample 2 for Class 2

with Weighting Scheme 50/30/00/10/10

169

Appendix O: Record Class 3 Charts

RECORDS

| M20/20/20/20/20 |
| E30/20/30/10/10 |
'E150/30/00/10/10 |

OFFSET

Figure 50. Histogram of Sample 1 Results for Class 3

RECORDS

| M 20/20/20/20/20 :
| E830/20/30/10/10 !

i
50/30/00/10/10 ;

OFFSET

Figure 51. Histogram of Sample 2 Results for Class 3

170

- OFFSET

RECORD

Figure 52. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 20/20/20/20/20

OFFSET

RECORD

Figure 53. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 20/20/20/20/20

171

OFFSET

RECORD

Figure 54. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 30/20/30/10/10

OFFSET

RECORD

Figure 55. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 30/20/30/10/10

172

OFFSET

RECORD

Figure 56. Time Series Results of Sample 1 for Class 3
with Weighting Scheme 50/30/00/10/10

OFFSET

RECORD

Figure 57. Time Series Results of Sample 2 for Class 3
with Weighting Scheme 50/30/00/10/10

173

Appendix P: Record Class 4 Charts

RECORDS

OFFSET

 M20/20/20/20/20
.A30/20/30/10/10 |

| [150/30/00/10/10 |

Figure 58. Histogram of Sample 1 Results for Class 4

RECORDS

OFFSET

; W 20/20/20/20/20 |
{30/20/30/10/10 '

| E850/30/00/10/10 |

Figure 59. Histogram of Sample 2 Results for Class 4

174

OFFSET

RECORD

Figure 60. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 20/20/20/20/20

OFFSET

RECORD

Figure 61. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 20/20/20/20/20

175

OFFSET

RECORD

Figure 62. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 30/20/30/10/10

OFFSET

Figure 63. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 30/20/30/10/10

176

-
»
'8
6
RECORD
Figure 64. Time Series Results of Sample 1 for Class 4
with Weighting Scheme 50/30/00/10/10
i
2
L.
o

RECORD

Figure 65. Time Series Results of Sample 2 for Class 4
with Weighting Scheme 50/30/00/10/10

177

Appendix Q: Record Class 5 Charts

RECORDS

35 - 32333

| 20/20/20/20/20
|E30/20/30/10/10 |
| E150/30/00/10/10 |

OFFSET

Figure 66. Histogram of Sample 1 Results for Class S

RECORDS

H20/20/20/20/20 ;

B30/20/30/10/10 :

50/30/00/10/10

Figure 67. Histogram of Sample 2 Results for Class S

178

-
»
o
(S
Figure 68. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 20/20/20/20/20
E
2
S

Figure 69. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 20/20/20/20/20

179

OFFSET

RECORD

Figure 70. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 30/20/30/10/10

OFFSET

Figure 71. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 30/20/30/10/10

180

OFFSET

Figure 72. Time Series Results of Sample 1 for Class 5
with Weighting Scheme 50/30/00/10/10

OFFSET

RECORD

Figure 73. Time Series Results of Sample 2 for Class 5
with Weighting Scheme 50/30/00/10/10

181

Bibliograph

Atkinson, Lee, and Mark Atkinson. Using C. Carmel IN: Que Corporation, 1990.

Bhatia, Sanjiv K., Jitender S. Deogun, and Vijay V. Raghavan. “Formation of Categories
in Document Classification Systems,” Lecture Notes In Computer Science, 507:
91-97 (1991).

Bolden, Bobbie and Willie Pollard. Management Assistants to the Base Records
Manager, 88 CG/IMADA, WPAFB OH. Personal interview. 20 Sep 96.

Cheng, Patrick T. K. and Albert K. W. Wu. “ACS: An Automatic Classification
System,” Journal of Information Science, 21: 289-299 (1995).

Cosgrove, S.J. and J.M. Weimann. “Expert System Technology Applied to Item
Classification,” Library Hi Tech, 10: 33-40 (1992).

Department of Defense. Department of Defense Design Criteria Standard for Records

Management Application: Functional Baseline Requirements. Draft DoD-STD-
5015.2. Arlington VA: OASD(C3I) C3/IT, 20 May 1996.

Department of Defense Records Management Business Process Reengineering (DoD
RM-BPR). Compendium Report. Arlington VA: ANDRULIS Research
Corporation, August 1994.

Department of Defense Records Management Task Force (DoD RMTF). Managing
Information As Records 2003. Arlington VA: ANDRULIS Research

Corporation, January 1995."

Department of the Air Force. Disposition of Air Force Records: Records Disposition
Schedule. AFR 4-20 Vol 2. Washington: HQ USAF, 1 May 1992.

Firebaugh, Morris W. Artificial Intelligence: A Knowledge-Based Approach. Boston:
Boyd & Fraser Publishing Company, 1988.

Fox, Christopher. “Lexical Analysis and Stoplists,” in Information Retrieval: Data
Structures and Algorithms. Ed. William B. Frakes and Ricardo Baeza-Yates.
Englewood Cliffs NJ: Prentice Hall, 1992.

Goel, Ashish. “The Reality and Future of Expert Systems,” Information Systems
Management, 11: 53-61 (Winter 1994).

182

Hayes-Roth, Frederick. “Knowledge Systems: An Introduction,” Library Hi Tech. 10:
15-29 (1992).

Kendall, Kenneth E. and Julie E. Kendall. Systems Analysis and Design (Third Edition).
Upper Saddle River NJ: Prentice Hall, 1995.

Larson, Ray R. “Experiments in Automatic Library of Congress Classification,” Journal
of the American Society for Information Science, 43: 130-148 (March 1992).

Losee, Robert M. and Stephanie W. Haas. “Sublanguage Terms: Dictionaries, Usage,
and Automatic Classification,” Journal of the American Society for Information
Science, 46: 519-530 (August 1995).

McClave, James T. and P. George Benson. Statistics for Business and Economics (Sixth
Edition). New York: Macmillan College Publishing Company, 1994.

McPharlin, Anne. AF/SCXR, Washington DC. Electronic Mail Message. 13 September
' 1995.

Mockler, Robert J. and D. G. Dologite. Knowledge-Based Systems: An Introduction to
Expert Systems. New York: Macmillan Publishing Company, 1992.

Paice, C. D. Information Retrieval and the Computer. London: Macdonald and Jane’s
Publishers Ltd., 1977.

Porter, M. F. “An Algorithm for Suffix Stripping,” Program. 14: 130-137 (July 1980).

Prescott, Daryll R., William Underwood, and Mark Kindl. Functional Baseline

Requirements and Data Elements for Records Management Application Software.
Contract DAKF11-93-C-0043. Atlanta GA: Army Research Laboratory,

28 August 1995.

Van Rijsbergen, C. J. Information Retrieval (Second Edition). London: Butterworth,
1979.

Savic, Dobrica. “Designing an Expert System for Classifying Office Documents,”

Records Management Quarterly, 28: 20-29 (July 1994).

Secretary of the Air Force (SECAF). Air Force Records Management Program.
AFI 37-122. Washington: Secretary of the Air Force, 11 January 1994a.

----- . Management of Records. AFMAN 37-123. Washington: Secretary of the Air Force,
31 August 1994b.

----- . Records Disposition Schedule. AFMAN 37-139. Washington: Secretary of the Air
Force, 1 March 1996.

183

Weckert, John. “Sidebar: Expert Systems,” Library Hi Tech, 10: 30-32 (1992).

184

Vita

Captain David W. Snoddy was born 28 August 1970 in Wooster, Ohio. He
graduated from Triway High School, Wooster, Ohio, in 1988. He graduated Magna Cum
Laude from Kent State University, Kent, Ohio, where he received a Bachelor of Arts
Degree in Technology with a minor in Psychology. Upon graduation in May 1992, he
was commissioned through the Air Force Reserve Officer Training Corps. His initial
assignment was as the Squadron Section Commander for the 650th Supply Squadron at
Edwards Air Force Base, California, on 21 January 1993. On 1 October 1993, he became
the Executive Officer/Squadron Section Commander for the newly formed 650th
Logistics Group. Hand-picked by the 650th Air Base Wing Commander, he became the
Executive Officer for the 650th Support Group which was activated on 1 July 1994.

In May 1995, Captain Snoddy entered the School of Logistics and Acquisition
Management, Air Force Institute of Technology.

Capt Snoddy is married to the former Stacy M. Martin of Wooster, Ohio.

Permanent Address: 4409 Buss Road
Wooster, OH 44691

185

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

RECORDS ANALYSIS AND CLASSIFICATION SYSTEM: A PROOF OF
CONCEPT SYSTEM FOR THE AUTOMATED CLASSIFICATION OF
UNITED STATES AIR FORCE RECORDS

6. AUTHOR(S)
David W. Snoddy, Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
2750 P Street AFIT/GIR/LAR/96D-11

WPAFB OH 45433-7765

3. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Captain Anne McPharlin, C4I Resource Analyst AGENCY REPORT NUMBER
HQ USAF/SCXR

1250 Air Force Pentagon

Washington DC 20330-1250

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for release; distribution unlimited

13. ABSTRACT (Maximum 200 Words)
The records management process utilized within the Department of Defense (DoD) is currently labor intensive.

Work is being done to automate portions of this process, but classifying documents and assigning disposition
instructions remains a labor intensive, manual operation. Although the requirement for this capability was
identified by a DoD sponsored study, an automated computer-based system which can classify and apply
disposition instructions has yet to be developed for use within the DoD. This thesis study presents a proof of
concept computer program called the Records Analysis and Classification System (RACS) which was
developed to demonstrate computer-based techniques for the automated classification of official records. To
demonstrate the operation of RACS, a sample of 113 records was collected from the files of an organization at
Wright-Patterson AFB. An analysis of the results of the tests conducted with the RACS system indicated that it
was capable of accurately classifying 72 out of the 113 records on average. Additionally, the RACS program
was designed as a learning system and the test results indicated that it was in fact capable of improving its
classification accuracy over time.

14. SUBJET TERMS 15. NUMBER OF PAGES
Records Management, Classification, Artificial Intelligence, Natural Language 200

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

AFIT Control Number AFIT/GIR/LAR/96D-11

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaire to: AIR FORCE INSTITUTE
OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT-PATTERSON AFB OH 45433-7765.
Your response is important. Thank you.

1. Did this research contribute to a current research project? a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFIT had not researched it?
a. Yes b. No

3. Please estimate what this research would have cost in terms of manpower and dollars if it had
been accomplished under contract or if it had been done in-house.

Man Years $ '

4. Whether or not you were able to establish an equivalent value for this research (in Question
3), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments (Please feel free to use a separate sheet for more detailed answers and include it
with this form):

Name and Grade Organization

Position or Title Address

