
REPORT DOCUMENTATION PAGE
form AptMOvtd

OMB No. 0704-om,

nvom tot~*jcmq imiburnt, to *miw*qto*^«auuft^ Wynw. 2JZlZ£>rnI«iD7^»mvvttl«n«j«o* OC JWO*
Ftio»tmimiimiiMi«*mo>in»»,«o«nwuon ..
mMnw «ix Hinmmmiq WMU «imia. _—,

OIIM» I HQ»I»«V. iwrtt 1104. Artmoion. V A jano;wai. «na to two Ottw» o* MWIUMIWI «■* nuaq«. P—*wo»»

 ~oftt

1. AGENCY USE ONLY (U«w äto/Wk) 2. REPORT DATE
January 8, 1997

3. REPORT TYPE AND DATES COVER*»
Quarterly Technical Report

4. TITLE AND SUBTITLE

Quarterly Technical Report
Massive Data Analysis Systems

6. AUTHOrKS)
Richard Frost Mike Wan
Chaitanya Baru Reagan Moore
Richard Marciano Joe Lopez

Vibby Gottemukkala
Anant Jhingran

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)

San Diego Supercomputer Center
P0 Box .85608
San Diego CA 92186-85608

9. SPONSORING; MONITORING AGENCY NAME(S) AND AOORESS(ES)

ARPA/ITO
Att: Charlene Veney
3701 N. Fairfax Drive
Arlington VA 22203-1714

S. FUNDING NUMBERS

F19628-95-C-0194

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING / MONITDRINQ
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

ARPA/ITO
ESC/ENS
DTIC
ARPA Technical Library

ApowrtA tot pnfaite rotac—.»
DMii'/UBuit Ulutanltad 12b. DISTRIBUTION CODE

19970113 086
13. ABSTRACT (Maximum 200 wards)

The creation of a Massive Data Analysis System (MDAS) will enable new modes of science through improved data management of

scientific data sets. This requires a scalable software infrastructure that can manage petabytes of data, support rapid access of selected

data sets, and provide support for subsequent computationally intensive analyses. To accomplish this, object-relational database

technology is being integrated with archival storage systems. By supporting transportable methods for manipulating the data, it then

becomes possible to analyze selected data sets on remote systems. The MDAS becomes.a scheduling system, managing the flow of data

and computation across distributed resources. Usage models are needed that simplify the identification, transport and analysis of large

collections of data. The system must automate the collection of metadata describing the data set attributes, and handle interactive

WEB access, distributed database access, and discipline specific application interfaces. A software infrastructure has been designed

which manages user access restrictions, matches application requirements with resource availability, and schedules the data movement

and application execution. Development of this software system is proceeding on schedule, with selected applications testing the initial

prototypes.

DTIC QUALITY INSPECTED 1

14. SUBJECT TERMS

Scientific Data Mining

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 754041-280-5500

18. SECURITY CLASSIFICATION'
OF THIS PAGE

Unclassified

u. «fljfliTv Mumm
OF ABSTRACT

Unclassified

15. NUMBER OF PACES
221

16. PRICE CODE

JO-UMITATIOHOFAflUlUr

"standard Form 298 (Rav. 1-69)
PTKnlX «* AMI *«* **»■'•

Report on Work in Progress:

Massive Data Analysis Systems

QUARTERLY TECHNICAL REPORT
October 1996 - December 1996

San Diego Supercomputer Center

Reagan Moore. Principal Investigator.
Chaitanya Baru, Richard Frost, Joe Lopez, Richard Marciano,

Arcot Rajasekar, and Mike Wan

Sponsored by: Advanced Research Projects Agency ITO

ARPA Order No. D007 and D309
Issued by ESC/ENS under Contract F19628-95-C-0194

DSstriJsttäaft üsatatted
A«

Disclaimer: "The views and conclusion contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the

Advanced Projects Research Agency or the U.S. Government."'

Distribution:

ARPA Agent (2 copies)
ESC/ENS
Bldg 1704, Rm 114
5 Eglin Street
Hanscom AFB, MA 01731-2116

ARPA/ITO (2 copies)
Attn: Charlene Veney
3701 N. Fairfax Drive
Arlington, VA 22203-1714

ESC/ENK (letter)
Attn: Ms Carole Stephan
Bldg 1704, Rm 119
5 Eglin Stree
Hanscom AFB, MA 01731-2116
(Letter of Transmittal Only)

Defense Technology Information Center (2 copies)
Cameron Station
Alexandria, VA 22034-6145

ARPA/Technical Library (1 copy)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

Source:

Richard Frost
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

Contents

List of Figures vii

List of Tables viii

Abstract ix

1 Task Objectives 1

2 Technical Problems 2

3 General Methodology 5

3.1 Transparency 6

3.1.1 Location Transparency 7

3.1.2 Format Transparency 7

3.1.3 Method Transparency 7

3.1.4 Resource Transparency 7

3.1.5 User Transparency 8

4 Technical Results 9

4.1 MDAS Architecture 10

4.1.1 System Components 10

4.1.2 Authentication 12

4.1.3 Software Architecture 13

in

4.2 Application Scenarios 15

4.2.1 Document Text and Image Processing 15

4.2.2 Scientific Applications 16

4.3 API Tutorial 19

4.3.1 Catalog Queries 19

4.3.2 Fetching Data 19

4.3.3 Piping Data Sets 19

4.3.4 Executing Requests 20

4.3.5 Computing with User-defined Formats 20

4.3.6 Connecting to Resources 20

4.3.7 Interacting with MPI 20

4.4 Mid-Level Tutorial 22

4.5 Run-Time Environment 23

4.5.1 User and Installation Defined Parameters 23

4.5.2 Default Parameter Locations 23

4.5.3 Command-Line Arguments 23

4.5.4 Environment Variables 23

4.5.5 "Resource" Files 23

4.5.6 "Ticket" Files 23

4.6 Language Bindings 24

4.6.1 Library Calls 24

4.6.2 MDAS Types 24

4.6.3 MDAS Tokens 24

4.7 Application Program Interface 25

4.7.1 API Data Types 25

4.7.2 Info 27

4.7.3 API Prototypes 114

iv

4.8 MDAS Mid-Level Interface 147

4.8.1 Mid-Level Data Types 147

4.8.2 Mid-Level Prototypes 148

4.9 MDAS Metadata 153

4.9.1 Locating Entities 153

4.9.2 Accessing Entities 153

4.9.3 Computing With Entities 154

4.9.4 Usage of Metadata 154

4.9.5 Metadata Schema 155

4.9.6 Implementation Issues 183

4.10 Library and Catalog Table Bindings 185

4.11 Low-Level Interface 186

4.11.1 Low-Level Data Types 186

4.11.2 Low-Level Drivers 187

4.11.3 MDAS Internals 194

4.12 Demonstration and Test Programs 197

4.12.1 MDAS_INIT() Test 197

4.12.2 "View a Patent"' Demo 197

4.13 Build Environment 199

4.13.1 Directory Structure 199

4.13.2 Build Directories 199

4.13.3 Source Development 200

4.13.4 Automatically Generated Files 201

4.14 Executable Tools 202

4.14.1 Catalog Registration 202

4.14.2 Catalog Registration 202

4.15 Agents and Brokers 203

v

4.15.1 The MDAS Outreach Program 203

4.16 File I/O Interface to Archival Storage 204

4.16.1 The File I/O API 204

4.16.2 A Prototype Implementation 206

4.16.3 Alternative Implementations 207

5 Important Findings and Conclusions 209

6 Implications For Further Research 211

Bibliography 212

VI

List of Figures

4.1 Massive data analysis system components 10

4.2 MDAS Library placement in an application software hierarchy 13

4.3 MDAS Metadata Tables 155

4.4 Metadata Data Model (data-centric) 157

4.5 Example: Data flow in a Compound Method 180

Vll

List of Tables

4.1 MDAS API base data types and their counterparts in standard languages. . 25

4.2 MDAS API extended data types 26

4.3 The status vector. Bit codes are procedure-specific. See procedure definition
for list of applicable bit codes 26

4.4 MDAS handle references 27

4.5 MDAS Mid-Level data types and their counterparts in standard languages. 147

4.6 Additional MDAS handles 148

4.7 Native Type Definitions (MDAS Mid-level) 159

4.8 Type Definition Tables (MDAS Mid-level) 160

4.9 Catalog Data Tables (MDAS Mid-level) 161

4.10 Auxiliary Data Tables for Datasets (MDAS Mid-level) 162

4.11 Auxiliary Data Tables for Methods (MDAS Mid-level) 163

4.12 Auxiliary Data Tables for Resources (MDAS Mid-level) 164

4.13 Auxiliary Data Tables for Users (MDAS Mid-level) 164

4.14 Sample MDAS-AD_METH_COMPOUND_DSET_MAP table 180

4.15 Sample MDAS_AD_METH_COMPOUND_PARAMETER_MAP table 180

4.16 Driver function naming conventions for driver "db2" 187

Vlll

ABSTRACT

The creation of a Massive Data Analysis System (MDAS) will enable new modes of science
through improved management tools for scientific data sets, computational methods, and
computational resources. To provide these capabilities, MDAS researchers are developing
a software infrastructure to support data location transparency, access transparency, and
conversion transparency in a heterogeneous, distributed systems. This requires a scalable
software infrastructure that can manage petabytes of data, support rapid access of selected
data sets, and provide support for subsequent computationally intensive analyses. The sys-
tem must automate the collection of metadata describing data sets, computational methods,
resources, and users. Some of the core technologies being used to provide this functionality
include object:relational database systems, archival storage systems, parallel I/O, third-
party transfers, and method-level authentication. By supporting transportable methods for
manipulating the data, it then becomes possible to analyze selected data sets on remote
systems. The MDAS becomes an infrastructure to build next-generation operating and
scheduling systems which can manage the flow of data and computation across distributed
resources.

IX

Chapter 1

Task Objectives

MDAS is an information discovery system that supports queries against metadata stored
for users, methods, data sets, and resources. A request for processing of data can be
issued based entirely on the objective of the researcher. The information discovery system
determines the names of the data set and the methods that need to be applied to the data
set, the locations of the data set and method, and the identity of the computer resources
that could be used to execute the methods. The result is a program graph that can be given
to a scheduler and then to an execution environment. All data set accesses are represented
as invocation of methods. This results in a seamless link to information, driven by user
needs.

The overall objective of the Massive Data Analysis System is the construction of a scalable
system that integrates data management, with computation to support analysis and assim-
ilation of arbitrarily large data sets. The initial goals for the project were the development
of consensus on (a) application requirements, (b) hardware and software systems that can
meet the application requirements, (c) and the application presentation interfaces needed
to make the system accessible to researchers. These goals have been met.

Currently, MDAS researchers are concentrating on the implementation of the software de-
sign, the use of real applications to test the implementation, the integration of archival
storage with database management systems, and the involvement of a commercial software
vendor. Integrated data and object handling systems have the potential to be the next
major software infrastructure in the evolution of computer systems. If designed correctly,
the data handling system can support a uniform user interface to distributed heterogeneous
systems needed for global computing. The data handling system acts as a scheduling system
that resides above the operating system. Users interact directly with data attributes, rely-
ing on the data handling system to locate the data, move the data to appropriate compute
resources, and execute applications on the data sets.

Chapter 2

Technical Problems

The primary challenges in the MDAS project are (a) the integration of data management
systems with archival storage and (b) end-user solutions for the replacement of the (Unix)
file paradigm with a higher-order interface to data, methods, and resources.

At project onset, database management systems (DBMSs) and hierarchical (archive) storage
systems (HSSs) were not interoperable. Replacements for the Unix OS file paradigm existed,
but only on single-user systems and largely without high-order interfaces to resources. In or-
der to develop concrete extensible solutions with reasonable technology transfer attributes,
we have taken a two-pronged approach to these problems. First, we rely heavily on applica-
tion prototypes to investigate the viability of possible solutions to the primary challenges.
Second, we continue to carry out an in-depth research into the design and specification of
production-grade software solutions. A number of technical problems have emerged from
these efforts which we will address throughout the remainder of the project:

1. Hierarchical storage system (HSSs) have a limited number of I/O channels and phys-
ical read/write heads for archival (tape) storage. Therefore, an application with large
resource requirements can easily monopolize the entire storage system unless a rea-
sonable resource management policy is implemented in the HSS. This amounts to
implementing a queuing system within the HSS to mitigate requests from multiple
clients.

2. HSS software interfaces contain general I/O routines such as read, seek, rewind, etc.
However, most HSS application client interfaces limit data transactions to file get and
put—primarily to keep applications from monopolizing resources. For example, an
application controlling a tape drive with seeks and rewinds for 2 hours leads to poor
resource utilization for the general user population. This means that when an HSS
client wants to read a large file, it must have either (a) enough local memory (RAM or
Disk) to read the file in total, or (b) access to an intelligent spooler which can buffer
the read and make incremental calls to the HSS for large file blocks. The latter case
is most common.

3. The development of an MDAS software infrastructure for general I/O interoperabil-
ity between local and remote resources requires (a) library interfaces to individual

resources, (b) a high-level interface to hide individual resource semantics from the
users, and (c) a high-level interface that supports multiple I/O paradigms across each
supported resource. Not all platforms will have suitable library interfaces for all re-
sources; e.g., a desired DBMS, HSS, or HTTP library might be missing. Hence,
daemons must be developed to assist application clients on those platforms. Further,
the build environment for the MDAS software can become arbitrarily complex without
careful design considerations. Rather than "port" the MDAS software to each ven-
dor hardware platform, the MDAS build environment should support compile-time
configurable options for drivers to various resources.

Supporting a a high-level interface to hide individual resource semantics from users
requires the development of intermediate buffering mechanisms just below the appli-
cation level. For example, supporting a { read, seek, rewind } paradigm on top of
a dataset opened (transparently) on an ftp resource will require local buffering and

possibly remote re-reads of the file. A related issue is the support of legacy software
systems; e.g., the use of Fortran unit numbers for I/O transactions on a DBMS large

object, or the transfer of two valid file handles to a third-party data mover for a
Unix-style "pipe" transaction.

Tension also exists between items "b" and "c" when a paradigm from one I/O source
(e.g., DBMS query) does not match paradigms supported by another (e.g., Unix fifo
pipe). Therefore, categories of I/O paradigms need to be identified and then supported
by categories of high-level semantics.

4. Among the key resources that will be supported by MDAS are archival storage systems
with a database system front-end. The database systems are used to store metadata
and to provide access to the archive data sets. However, depending on the particular
database system used, the implementation of this interface may be different. In or-
der to insulate MDAS methods from such implementation issues, the MDAS system
must provide appropriate mappings from the standard file I/O interface used by the
methods to the actual interface supported by each database system front end.

5. Application clients, DBMSs, and HSSs all have response time limitations for I/O and
general communication transactions. Coupling these systems requires careful design
considerations to avoid request timeouts and blocked (hung) communication requests.
For any particular component in the system, it is worthwhile to know in advance
that another component is off-line—rather than to wait on an internal (possibly long)
connection timeout condition.

6. Application clients, servers, DBMSs, and HSSs all have various authentication mech-
anisms which can vary among sites. In a distributed environment, it is often desirable
to transfer methods and/or datasets from one resource to another for more efficient
processing. This capability requires authentication interfaces between coupled systems
(e.g., a tightly coupled DBMS and HSS) plus third party authentication mechanisms
to permit a server to transfer a client's request to an external (third party) processing
svstem.

(. Object-oriented (00) software technologies greatly simplify the task of software engi-
neering and hold great promise for software reuse. However, present-day 00 compilers
do not produce high-performance executables which is of paramount importance to

this project. Hence, MDAS implementations should choose application-efficient lan-

guages while providing interfaces to 00 language semantics.

8. Applets (as implemented in the Java language) and other interpreted methods ex-
tend the 00 paradigm to remote resources. However, applets are extremely slow in
processing scientific datasets or performing moderate iterative tasks in general. For
applets to be truly efficient, "just-in-time" compilation methods are desirable on the

target platform.

9. Traditional DBMS and FTP technologies rely on sequential I/O streams for trans-
ferring data objects. This approach has been demonstrated to give relatively poor

performance unless aggressive caching strategies are developed. The concern is that
focusing on just caching strategies will be inappropriate for the more advanced tech-

nology that is based on parallel I/O streams.

10. Scientific applications should be able to access data and cache it locally no matter
where the data is originally located. This is equivalent to requiring a catalog or expert

system with universal resource name (URN) capabilities.

11. Support for parallel I/O streams must be done within the context of emerging stan-
dards. This requires tracking the MPI2 10 effort which is examining issues related
to message passing within a compute platform and I/O to external peripherals. In-
teroperability between MPI and non-MPI processes will require specialized software

interfaces.

12. The design of appropriate experiments to test the capabilities of the proposed system
requires independent testing of individual infrastructure components. This requires
dedicating separate portions of the testbed system to HSS support and to database
support. The result is that it will be possible to quantify the memory, disk cache,
and I/O requirements independently for each system, and then quantify what the
integrated system will need in terms of hardware resources to have adequate perfor-

mance.

Chapter 3

General Methodology

Scientists have an ever-increasing need to store, access, and manipulate unprecedented
quantities of data. Modern data manipulation requirements include searches for correlations
in large data sets, incorporation of empirical data to improve the predictive capabilities of
computational simulations, and mining of existing data sets to derive better input conditions
for new calculations. High performance data assimilation environments [8] require new
modes of operation to integrate data mining and supercomputing. These large-scale and
national-scale problems strain our current infrastructure and motivate the development of
massive data analysis systems.

In order to implement a system that can meet these requirements, mutually-scalable tech-
nologies are needed in parallel data-handling systems, computational servers, local area
networks, and resource scheduling environments. Further, these system complexities need
to be presented to users in a set of navigatable hierarchies. This latter criteria insures that
a novice can have a high degree of success in using the system, while experts can achieve
major advances in analysis and resource efficiencies.

Other efforts in this area have focused exclusively on scalable I/O [11, 3], high-performance
computation [7], high-performance communication [5], digital libraries [10], or object-oriented
software integration [6]. These are valuable efforts which will provide an experience base
for future system integrations. However, in order to be successful, we need to address all
aspects of of the "massive data analysis" problem. It is far more effective to design these
new-generation systems from a first principles approach, while taking available technology
into consideration.

The Massive Data Analysis System (MDAS) provides a software infrastructure, including
user-level application program interfaces, metadata catalogs, MDAS engine functions and
daemons, and MDAS drivers, to enable resource discovery and to identify resources for
scheduling computations in a heterogeneous, distributed system. The objective of MDAS
is to enable the construction of scalable systems which integrate data management with
resource management to support storage, movement, analysis, and display of arbitrarily
large data sets. MDAS is being used as one of the software components of the Distributed
Object Computation Test bed (DOCT). MDAS provides a seamless link to information; a
data management system for heterogeneous data resources.

MDAS defines four types of system entities, viz. Data Set, Resource, Method, and User.
Metadata definitions are provided for each type of entity. The system maintains metadata
for all "registered" entities and provides the ability to create, update, store, and query this
metadata. The metadata is used by the system to perform resource discovery and resource
scheduling. Each data set access is represented by an access method which can be scheduled
as a part of the overall application. Entities can be registered with MDAS at installation
time or by authorized users during the life of the system. Applications can link to libraries
which provide routines for accessing the metadata as well as for accessing MDAS entities.

The type of metadata maintained by the system is an extension of the metadata maintained
by typical operating systems. The specific goal in MDAS is to employ this metadata to
support the storage, handling, and processing of massive data sets. Applications can use
the MDAS application program interface library to access registered data sets, resources,
and methods. To serve a specific application request, the MDAS engine may perform a
variety of actions including: (i) invoking an underlying method or sequence of methods, (ii)
allocating a set of resources, (iii) accessing the neccesary data sets, (iv) moving data sets
from storage to compute resources, and back, (v) moving data sets among storage resources,
e.g. for caching and/or replication, and (vi) plugging in built-in "glue" functions to move

data sets between methods.

3.1 Transparency

The objective of the MDAS project is to construct a prototype of a scalable system which
integrates data management with computation to support analysis and assimilation of arbi-
trarily large data sets. The system must provide the ability to store, transport, and process
large data sets. By storing metadata and providing the ability to represent, store, query, and
process this metadata, the system is able to integrate heterogeneous data management and
computational resources in a distributed system. An abstraction of the services available
in such a system is provided by supporting various types of transparencies.

The wide range of services offered by MDAS are accessible from a set of application program
interfaces (API's). These API's provide location transparency, thereby enabling applications
to access data sets based on their attribute values rather than by their precise location,
such as URL or file path. In addition to location transparency, MDAS provides a strong
abstraction of the distributed system by supporting (i) Format Transparency which hides
the details of data set formats and structure from the application, (ii) Method Transparency
which enables applications to specify high-level computational requests that automatically
invoke the appropriate method (or sequence of methods) to complete the request, (iii)
Resource transparency where the system determines the set of resources to use for satisfying
a given computational request rather than requiring the application to explicitly state this as
an input requirement, and (iv) User Transparency which allows MDAS to serve as a broker
or surrogate and utilize resources on behalf of users who may not have direct resource

authorization.

3.1.1 Location Transparency

A data set can be identified based on intrinsic content or the content of its associated,
application-specific metadata, rather than by exact location, such as a URL or file path.
This feature provides location independence to applications and also allows for optimization
of data set accesses. The system can choose the least cost location for accessing a given
data set if the data set is cached and/or replicated at multiple sites.

3.1.2 Format Transparency

The system maintains metadata on data sets as well as on function (or methods) that
operate on data sets. This permits MDAS to distinguish between the form and content of
data sets. Multiple, existing data sets may have the same semantic content, but may differ
from each other in terms of the internal representations. MDAS defines a change of format
to be invariant on the data set content. An example is a text file which may be converted
to tagged HTML format, and further transformed into a Postscript file. By maintaining
the neccesary metadata, the system is able to match requests for data sets by identifying
the one with the correct format, or by applying conversion methods to convert an existing
data set into the desired format.

3.1.3 Method Transparency

For a given computational request, there may be several alternative implementations (i.e.,
executions of methods on resources) which provide the desired functionality. Given a high-
level request, the MDAS library is able to compute and execute an optimal or near-optimal
implementation of the request based on user-specified (or default) performance criteria. In
some cases MDAS may need to synthesize a sequence of methods to provide the desired
functionality. Where possible, metadata is maintained regarding speed-up and scale-up
behavior. These features of the system are referred to as method transparency. Data access
is viewed as the invocation of a method appropriate for the storage resource being accessed.
Method transparency implies that the requestor of the data set does not have to specify the
access mechanism.

3.1.4 Resource Transparency

Users can identify specific resources for the execution of a request or simply ask that a
request be abstractly executed on a resource pool. In the latter case, an optimal (or near
optimal) set of resources is identified by MDAS for executing the request according to
user-specified (or default) performance criteria. Once again, this is achieved by maintain-
ing appropriate metadata on resources and methods. For resources, the system maintains
metadata on histories of load throughput, estimates of queue waiting times, and functions
to access current resource load estimates.

3.1.5 User Transparency

In heterogeneous, distributed systems one can expect resources to belong to different se-
curity realms or domains. A single computational request may involve multiple resources
belonging to multiple realms. For example, a data set may be moved from a resource at
one geographic location to another resource at another location, where it may undergo a
conversion, and then moved to a third location where it is processed. All of these resources
may operate in different security realms.

If the user submitting the original request has been initially authenticated by MDAS or
one of its methods, the MDAS ticket mechanism can be used to ensure that subsequent
accesses to all the resources is transparent in terms of authentication and security actions.
In particular, resources may receive requests directly from MDAS and might not be aware
of the identity of the user submitting the original request. Thus, user transparency provides
an authentication broker service that allows user requests to be processed on resources to
which the original user may not have been directly authenticated. Given that data accesses
are represented by the access method, user transparency is achieved by authenticating
interactions between methods.

Providing user transparency also allows the MDAS system to avoid copying data sets. For
example, when a user requests a read-only copy of a data set, MDAS simply increments the
user reference counter for the object instead of performing a disk copy. In this manner, the
MDAS "User Space" concept replaces the Unix "home directory" paradigm. (MDAS has
no notion of files and directories, except in the context of data set storage locations.) A
"User Space" is defined by the system entities referenced by a user and is not necessarily a
physical space on a resource.

Chapter 4

Technical Results

The MDAS software system is now in the implementation phase. An overview of the MDAS
architecture is given in section 4.1. Application scenarios are discussed in section 4.2. A
draft tutorial and portions of a user guide for the MDAS Application Program Interface
(API) is given in sections 4.3-4.5. Sections 4.6-4.10 comprise the main sections of a draft
MDAS API Reference manual. Portions of a draft implementors guide are given in sections
4.11-4.13. Executable versions of MDAS Library routines and miscellaneous tools to assist
with the task of Catalog metadata registration are listed in section 4.14. Optional MDAS
agents and service brokers are discussed in section 4.15. An early DBMS-Archival Storage
integration effort is presented in section 4.16.

Web
Clients

DBMS
Clients

Interactive
Applications

Batch
Applications

CD CD CD

8

S

2

Web
Servers

DBMS
Servers

Metadata
Servers

□ D
Daemon
Services

D

Computational Servers Storage Servers

\ ms
VP Cluster

() ()

MPP

L D r
SMP Visual Media Generic

Figure 4.1: Massive data analysis system components.

4.1 MDAS Architecture

To enable transparent use of resources, methods, and data sets, MDAS must generalize
disjoint protocols. As such, MDAS is middleware that supports a very high-level interface
to application layers while maintaining an internal layer of drivers to interface with ac-
tual system components. The following subsections identify system components commonly
encountered in an MDAS computing environment.

4.1.1 System Components

A generic representation of a computing environment is given in figure 4.1. This diagram
is intended to represent system resources and services that users might encounter in a
typical computational data analysis environment. The following list describes some of the
characteristics of the resources and services available in the computing environment shown

10

in figure 4.1.

• A "Logical Interconnect" may be an intranet or internet along any network lines.
Intra- or internets may exist between computational servers.

• Components represented as single systems may in fact be multiple, distributed, or
overlapping.

• Web and DBMS clients are special instances of interactive applications.

• Web and DBMS servers also represent enhanced storage services.

• A Metadata server is a DBMS that stores metadata (both, application-specific meta-
data as well as MDAS system metadata).

• A Web client is used to browse and download moderate-size data sets or data set

segments. A DBMS client is used to query application-specific metadata.

• Batch applications might run on a desktop or a (remote) computational server.

• A daemon service might be something simple like a print spooler or X-Window client—
or a complex task scheduling and management system.

4.1.1.1 Users/Clients

MDAS users may access the system from a variety of sources including interactive Web
access, direct access via an application program, and access via a DBMS. Users may be
anonymous or authenticated. An authenticated user is one who has previously "registered"
with MDAS. MDAS provides mechanisms by which an anonymous user may use the Regis-
tration Services of MDAS to become a registered user. Non-registered users are treated as
anonymous users and all anonymous users receive default levels of access and service from
MDAS.

Along with authentication information, users can be associated with level of service, level of
access, and path histories of method invocation. The level of service establishes the user's
priorities and resource consumption constraints in using the system. Level of access controls
the user's accessibility to resources in the system. The user's patterns of use of the MDAS
system are cached as path histories. They contain information on the nature, frequency,
and relationships of accesses to data sets, resources, and methods, to enable future user
requests to be served efficiently.

4.1.1.2 Data Sets

Data sets are MDAS entities accessed by methods. These include raw data sets stored on
disk or on archival system (or both), data stored under various file systems, and data stored
in DBMS's. In addition to standard information such as name, location, size, format, and
access control, other information that may be associated with data sets includes partitioning

11

(especially for parallel data sets), structure, and access history. As mentioned above, a data
set access may be in the path history of one or more users. Conversely, a data set itself may
be associated with access history information. The path and access history information
is important in deciding when a data set needs to be "cached" (e.g. from archival store
to disk), when it can be "swapped out", or when it needs to be replicated for improved
performance.

4.1.1.3 Methods

Methods in MDAS include programs, macros, and utilities, which operate upon and trans-
form data sets in the system. These may be user-specified or built-in. Similar to other
entities in the system, when a method is registered, the system stores metadata describing
the method, its input/output parameters, its speedup and scaleup characteristics, etc.

4.1.1.4 Servers

In the category of MDAS servers we include computational and storage engines or resources.
These entities have a given capacity and therefore the usage/consumption of these resources
needs to be monitored for effective scheduling. This includes compute engines (parallel and
sequential), visualization engines, interactive systems, and disks. It also includes file servers,
DBMS's, and archival storage systems. MDAS maintains metadata on usage of servers.

4.1.1.5 Metadata Servers

TBD.

4.1.2 Authentication

Applications running in a heterogeneous, distributed massive data analysis system may
often require connections to resources, methods, and data sets which belong to different
security realms or domains. Thus, the system must handle issues related to authentication
and security in this environment. A typical operating system provides data set security
by maintaining file permissions at the user or group level. In addition, most operating
systems use security protocols which rely on passwords and the fact that users first log
in to systems using a password prior to starting any other tasks. However, there is a
wide variety of service security models that a system may support including, single user
model (as in PC's), dedicated network connections (single user networks), password challenge
(telnet model), "hard-wired" or pre-set software passwords (software equivalent of dedicated
network), friendly host tables (Unix model), and tickets (kerberos, ssh model).

The ticket model is used within MDAS and, functionally, this model subsumes the other se-
curity schemes. The semantics of tickets is based on a point-to-point authorization protocol
in which each side is assumed to have a private security key for the other, plus the ability to

12

Application
Program

MD AS
Library

Heterogeneous
Protocols

Application Layers

High-Level: API

MDAS
Daemons

Mid-Level: Specialized Program
Development Interfaces

Low-Level: Protocol Services
and Internal Procedures

Streams FTP HTTP SQL (Internals)

Physical Layers

Figure 4.2: MDAS Library placement in an application software hierarchy

generate public "tickets" which can be decoded by the other party's private key for access
authorization. Under this model, a passwordless system can be considered to have null
tickets. A password challenge system can permit the instantiation of tickets, where the user
changes from a login+password paradigm to a ticket+login paradigm. Since the friendly
host table model is another instance of pre-set software passwords, it can be replaced by
either null or automatically generated tickets. Given the permission to execute a method
to access a data set and then to execute an analysis or display method, MDAS supports
third-party authentication in which the methods directly exchange tickets to validate the
information exchange.

4.1.3 Software Architecture

The system software architecture is composed of a software library plus optional daemons.
Figure 4.2 shows a software hierarchy indicating the relationship of MDAS software compo-
nents. The highest level in the software architecture offers an application program interface
(API) to external applications. The middle level consists of the MDAS Library which pro-
vides the mechanisms to store, retrieve, update, and act on metadata maintained by MDAS.
At the lowest level, MDAS maintains a set of architecture and resource specific drivers which
provide the interface between MDAS and the underlying heterogeneous environment.

The library itself may contain generic system functions, e.g. format translation algorithms,
but it does not contain application-specific routines. Instead it requires that such methods
be "registered*' as MDAS methods which will then be invoked as needed. This highlights
the role of MDAS as a broker of metadata. The MDAS Library is expected to contain

13

several value-added methods for standard format translations, spooling operations, etc.
The library also provides drivers to interact with MDAS service broker daemons. These
daemons provide access to services which may not have been implemented on a particular
architecture, e.g. the IBM DB2 database system on SGI/Cray T3E parallel computer.
Thus, applications can gain access to such resources even if they are not implemented on
the local system.

MDAS entities (including, data sets, methods, resources, and users) are registered in the
system either via explicit calls to the appropriate API's, or as a side effect of an MDAS
operation. For example, data sets are automatically registered when a new data set is
opened for write with an MDAS API call, or when the system creates intermediate result
data sets, or when it replicates data sets. In addition, a resource that is new or unknown
so far to MDAS is registered when a user explicitly connects to it the first time.

The system metadata is stored in a distributed, replicated MDAS Metadata Catalog. The
locations of the MDAS Catalog and its replicas are specified at system installation time on
a per-site basis. Users can override or augment the default catalog information at run-time
for specific resources.

14

4.2 Application Scenarios

This section illustrates how MDAS services can be used in a variety of scenarios involving
analysis of massive data sets.

4.2.1 Document Text and Image Processing

This scenario illustrates the use of MDAS services for handling text and image data, with
specific applicability to the types of applications being considered in the DOCT project.

Patent and trademark related data is stored in archival storage systems using proprietary
data formats (e.g. Messenger text files). In order to index these data sets using standard
text engines, the original files may have to be converted to standard formats, e.g. SGML,

tagged files; cleaned up so that all records in the file are in the same format, e.g. remove
leading/trailing blanks; and processed such that relevant metadata is extracted for each
file. These converted, "cleaned" files can then be used to create text indexes and populate
database systems with the actual document data. The patent files also contain a large
number of images stored in the "Yellow Book" format. These files are processed to extract
images in standard formats, e.g. tiff images, and store the link between images and patents.

4.2.1.1 Handling Text Files

Queries issued against the patent database may involve reading the processed text indexes
associated with the database, as well as reading the original data itself. The system must
provide the capability to read this data regardless of whether it is in archival storage or
disk, on the local system or a remote system.

Methods used to convert data from archival storage to a form that is suitable for indexing
and loading in a database can be registered in MDAS. The system maintains metadata
associated with each method. An application can issue the following sequence of requests
to MDAS:

1. Connect to an archival storage system containing files for a particular patent, such
that, currently, the links from the application host to the the archival system are least
congested

2. Connect to a database that currently has sufficient storage space to hold the informa-
tion for this patent

3. Connect to a text search engine

4. Move all data associated with this patent from the archive to the database and index
this data using the text search engine

15

MDAS metadata is used in responding to the above sequence of requests. For example,
the system keeps information on contents and location of data sets and the current state
of resources which allows it to identify the archive requested in the first request. Similarly,
it stores the location of various resources such as database management systems and text
search engines, and their states, which enables it to respond to the second and third requests
above. Finally, it keeps tracks of various methods available to it. The last request above
prompts the system to search for methods that can carry out the neccesary transformations
on the data sets. Thus, it is able to identify the appropriate method(s) to invoke on the
specified data sets using the desired set of resources to satisfy the user's requests.

4.2.1.2 Handling Image Data

Similar to the text data, patent files also contain image data which may be stored in archival
storage systems and/or disk, and which may be indexed based on image features. The same
sequence of requests as above can be issued against image files related to a particular
patent. In addition, there may be other types of processing applicable to images. For
example, consider the following sequence of requests:

1. Connect to an archival storage containing image data for a given subset of patents

2. Invoke a user defined parallel method which performs image feature extraction and
use this to extract all images which satisfy a given condition

3. Store selected images in a database

Metadata associated with the image feature extraction method allows the system to identify
the number of nodes needed on a massively parallel computer. Based on the data set sizes,
the system may also identify the need for a parallel I/O transfer between the archival storage
system and the parallel computer.

4.2.2 Scientific Applications

This section describes a variety of scientific applications which can benefit from the services
provided by MDAS.

4.2.2.1 3-D Ocean Simulation Environments

Running very large 3-D ocean simulations (as done by NCCOSC, the Naval Command Con-
trol and Ocean Surveillance Center), is both computationally intensive and data intensive.
Very large model output files are typically generated for each run. Additional data require-
ments might include storing information such as model calibration data, observational data
for validation, etc.

16

Creating a historical log of model run outputs would be desirable. Unfortunately, current
computational simulations are often rerun from scratch in order to reanalyze output data
due to storage limitations.

Using the resource metadata of MDAS to identify systems to speed up the simulation
itself, as well as the data handling and storage capabilities of MDAS, to store model input
and output data sets, would create a unique modeling archive in which post-processing,
comparing, and validating' of output data would constitute a modeling audit trail suitable
for use by policy makers and modelers alike.

Model validation tools could be developed in this framework that automate the validation
process. Defining classes of statistical tests and associated calibration data sets would be
an important step in increasing model result confidence. This could be accomplished in the
MDAS framework by registering user-supplied validation methods.

4.2.2.2 Climate Data Assimilation

An important aspect in short-term numerical weather prediction and long-term climate
modeling is incorporating observational data into simulation systems (data assimilation).
A typical climate data assimilation scenario might involve the following:

1. Observations of the weather system (coming from ground stations, satellites, flying
balloons, and other sources) are collected every 6 hours, giving a record of what
actually happened.

2. A forecast/simulation model starting from a given initial condition computes succes-
sive forecasts every 6 hours for every point of some regular grid (e.g. 2 x 2.5 degrees
with 14-22 elevation levels).

3. These two streams of events (what the weather should theoretically be + what was
actually observed) are fused together by the data assimilation process, which produces
a more optimal data set.

More accurate forecasts can be produced by using the assimilated data set as the initial
condition in computing the next forecast, leading to a better forecast sequence.

In operational environments, data assimilation is a very computationally intensive task with
real-time requirements specifying that all calculations be completed before the next batch
of observation data comes in (6 hours in our example).

The computation and storage requirements involved make this a challenging problem. The
application requires access to distributed archival storage systems to be able to handle the
storage requirements and proper scheduling of tasks on, possibly, multiple parallel engines.
MDAS discovery and resource identification services can be useful here.

4.2.2.3 Digital Sky Survey

Large-area digital sky surveys are a development of astronomical research that can also
benefit from the MDAS environment. Recent large-area surveys in optical, infrared, and
radio wavelengths will be placed online for use by the astronomical community. Collections
such as the Digital Palomar Observatory Sky Survey (DPOSS), the 2-Micron All Sky Survey
(2-MASS), and the NRAO VLA Sky Survey (NVSS) represent terabytes of data.

Providing access to catalogs and image data with MDAS infrastructure for accessing dis-
tributed data archives will allow detailed correlated studies across the entire data set.

18

4.3 API Tutorial

As a place holder, examples have been included from the reference section.

The following examples assume that argv and arge are system-defined variables.

4.3.1 Catalog Queries

4.3.2 Fetching Data

PROGRAM getk2

MDAS_status status

MDAS.INFOH dsinfo, cacheinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_IMFO_CREATE(MDAS_DATASET, dsinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fin.dat", dsinfo, status)
MDAS_INFO_CREATE(MDAS_DATASET, cacheinfo, status)

MDAS_INFO_SET_ATTR(MDAS_STOR_FMTN, "khoros2", cacheinfo, status)
MDAS_GET(dsinfo, cacheinfo, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.3.3 Piping Data Sets

PROGRAM pipefun

MDAS.status status

MDAS.IMFOH funinfo, psinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, funinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fun.dat", funinfo, status)

MDAS_INFO_CREATE(MDAS_RESOURCE, psinfo, status)

MDAS_INFO_SET_ATTR(MDAS_RSRC_TYPE, MDAS.PRINTER, psinfo, status)

MDAS_INFO_SET_ATTR(MDAS_RSRC_FMTN, "postscript", psinfo, status)

MDAS_INFO_PIPE(funinfo, psinfo, status)

19

print "fun.dat printed at:"

MDAS_INFO_PRINT(psinfo,status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.3.4 Executing Requests

4.3.5 Computing with User-defined Formats

4.3.6 Connecting to Resources

PROGRAM dbconnect

MDAS_status status
MDAS.INFOH dbinfo
MDAS.SERVH dbh

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_RESOURCE, dbinfo, status)
MDAS_INFO_SET_ATTR(MDAS_NAME, "ord.com", dbinfo, status)
MDAS_INFO_SET_ATTR(MDAS_RSRC_SRVN, "illustra", dbinfo, status)
MDAS_CONNECT(dbinfo, NULL, NULL, servh, status)

MDAS_DISCONNECT(servh, NULL, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.3.7 Interacting with MPI

The following example assumes that argv and arge are system-defined variables. The

handle MPI_COMM_WORLD is defined by MPI.

PROGRAM do_mpi

integer ierr
MDAS.status status

MPI_INIT(ierr)

20

MDAS_INIT(argc, argv, MPI_COMM_WORLD, status)

MDAS_FINALIZE(MPI_COMM_WORLD,status)

MPI_FINALIZE(ierr)

END PROGRAM

21

4.4 Mid-Level Tutorial

TBD.

22

4.5 Run-Time Environment

Intro ...TBD.

Need to discuss how MDAS_INIT() is involved with this process.

4.5.1 User and Installation Defined Parameters

TBD.

4.5.2 Default Parameter Locations

TBD.

4.5.3 Command-Line Arguments

TBD.

4.5.4 Environment Variables

TBD.

4.5.5 "Resource" Files

TBD.

4.5.6 "Ticket" Files

TBD.

23

4.6 Language Bindings

The naming of MDAS library routines and data types varies according to programming
language. This avoids ambiguities in mixed language programs.

The MDAS Library is a functional rather than an object-oriented design. The MDAS
Library may be encapsulated in C++ application class libraries but does not directly supply
a class library interface.

4.6.1 Library Calls

MDAS Library call names are implemented with the prefix mdas*_ where * is F for Fortran
90, C for ANSI C, etc. Thus, the routine MDAS_INIT() (section ??) is implemented:

mdasF_init(argc, argv, comm, status) (in Fortran 90)

mdasC_init(argc, argv, comm, status) (in ANSI C, C++)

4.6.2 MDAS Types

The implementation of MDAS data type names (sections 4.7.1,4.8.1,4.11.1) is identical to
that of MDAS Library calls. For example, the base types MDAS_string and MDAS.status
are implemented:

mdasF.string (in Fortran 90)
mdasF_status

mdasC_string (in ANSI C, C++)
mdasC.status

4.6.3 MDAS Tokens

MDAS Tokens are implemented as parameters in Fortran and pre-processor macros in C
and C++. Name conflicts cannot arise. They appear in the language exactly as shown in
tables throughout this document.

The actual token values in any language are identical. However, values may change across
library versions. Users are advised to always use token names instead of token values for
portability.

24

MDAS Data Type Fortran 90 Type ANSI C, C++ Type
MDAS.byte character unsigned char
MDAS_character character char
MDAS_string character array char[] with '\0'
MDAS.logical logical integer
MDAS_integer integer long
MDAS.real real float
MDAS_double double precision double
MDAS_complex complex double[2]
MDAS.handle pointer void*

Table 4.1: MDAS API base data types and their counterparts in standard languages.

4.7 Application Program Interface

MDAS provides a High-Level application program interface (API) for simple interactions
with MDAS metadata and services. It is expected that most user needs will be met at this
level. Library writers and system software developers may also find the MDAS Mid-Level
architecture described in section 4.8 of interest.

This section discusses the MDAS High-Level API in detail. Datatypes exposed to the user at
this level are discussed in section 4.7.1. Function prototypes are presented in section 4.7.3.

4.7.1 API Data Types

The MDAS API defines several base data types for interoperability with standard languages
types. A list of currently supported types is given in table 4.1. MDAS also defines a set of
extended data types discussed in detail below. Attributes of MDAS extended data types
are given in table 4.2.

The implementation of these types is language and architecture dependent (see section 4.6).
Type conversions between languages and architectures is performed by Mid-Level routines
in the MDAS librarv.

4.7.1.1 Status

Most MDAS Library calls return a status vector MDAS.status, which is an integer array of
size 4. The use of each element is summarized in table 4.3.

status: (IN/OUT) MDAS.status

The procedures MDAS_STATUS_MSG(). MDAS_STATUS_PRINT(), and MDAS_STATUS_INFO() in
section 4.7.3.3 provide an interface to MDAS status messages.

25

MDAS Data Type Fortran 90 Type ANSI C, C++ Type

MDAS_status integer(4) int[4]

MDAS.time derived TYPE struct

MDAS_size integer(2) long [2]

MDAS_spectrum doubleprecision(8) double [8]

comm MPI communicator MPI communicator

MDAS.token integer int

MDAS_DATAH derived TYPE struct

MDAS.INFOH derived TYPE struct

MDAS.SERVH derived TYPE struct

Table 4.2: MDAS API extended data types.

status element Purpose Values

status(0) Flag error: status(0) < 0
success: status (0) = 0
warning: status (0) > 0

status(1) Total errors
and warnings

from 0 to 32

status(2) Codes parameterized bit codes

status(3) Procedure^ from 1 to MDAS_PR0C_C0UNT

Table 4.3: The status vector. Bit codes are procedure-specific. See procedure definition

for list of applicable bit codes.

By definition, status (0) = 0 means success. When status(0) < 0, an error has occurred.
Warnings are indicated by status(O) > 0. The value returned in status(l) indicates the

total number of errors and warnings which occurred.

Array element status (2) contains up to 32 of status (bit) codes packed into a single integer
by logical "or" operations. All status codes have predefined exposed parameter or macro
names in the implementation language. (See the definition of each call for a list of applicable
status codes.) Bit codes placed in status(2) may be unique to the calling procedure.

The Library call procedure id# is returned in status(3). Procedure id#'s range in value

from 1 to MDAS_PR0C_C0UMT.

4.7.1.2 Time

TBD.

26

MDAS Handle Type Reference
comm
MDAS.DATAH
MDAS.INFOH
MDAS.SERVH

MPI communicator
physical contents of a data set
MDAS.info structure
service connection

Table 4.4: MDAS handle references.

4.7.1.3 Size

TBD.

4.7.1.4 Comm

Some versions of the MDAS Library are built with MPI [12] for portability on parallel
computing platforms. The MPI communicator argument comm appears in some MDAS
Library routines to extend the MDAS interface to MPI programs. MPI can always be
suppressed in MDAS Library routines by passing NULL for comm.

4.7.1.5 Handles

The MDAS Library provides a handle type for transparent interface to Info structures,
connections, open data sets, and other protocols. A list of MDAS.handle types is given
in table 4.4. An MDAS.handle may have an associated handle structure for the purpose

of caching Mid-Level library attributes. The handle comm is always address equivalent to
an MPI communicator (or NULL). For more detail on MDAS handle structures, see sec-
tion midlevel-handles.

4.7.2 Info

A central data type in MDAS is the MDAS.info structure, commonly referred to as Info.
Its primary use is the capture and specification of metadata from/to the MDAS API. More
specifically, Info structures are used to specify information about

• entities

• entity attributes

• entity auxilary data

Info structures are opaque to the calling language and managed by a set of API functions.
Implementations of Info structures are language dependent.

27

4.7.2.1 Info Semantics

The MDAS Info structure provides a means for users to supply un-ordered, incomplete
metadata to the MDAS Library for correlation with complete metadata sets stored in an
MDAS Catalog. This section discusses the semantic interpretation of user-supplied Info in
the context of MDAS Library requests.

Complete metadata specifications are dense with information which is (a) necessary for
arbitrary system transactions and (b) typically unknown by end-users. As such, the MDAS
Library provides information discovery. A library interface for this purpose must provide a
means for

1. users to easily specify what they know

2. users and the library to easily extract what they need to know

3. the library to efficiently store partial and full metadata information

4. the library to translate partial information into Catalog queries

Further, system-level metadata is inherently heirarchical. For example, data sets have
attributes of names, summary information, storage information, etc. For example, storage
attributes (in a distributed system) of a data set must indicate the number of logical storage
replications. Each storage replication may have attribute of being partitioned, in which
case each attributes of the segment storage (e.g., location, segmenting method) must be
maintained. Historically, users tracked such information in a log book. Part of the MDAS
design is to track these details for the user.

The approach to these problems in MDAS is to allow users to specify "what they know"
about an entity with a sequential protocol; i.e., a list of known attributes of the entity.
Thus, the creation of Info structures is always in the context of an entity. Any additional
records added to the structure are then taken to be attributes or auxilary data of the entity.
In particular, users should be able to specify very little about an entity let MDAS determine
the remaining system level details required to carry out their transaction.

For example, suppose a user knows the name of a particular data set and that it is the
member of some group defined in the MDAS Catalog. To create Info about these attributes
of the data set, a user program executes a command to

•'create an Info structure of entity type MDAS.DATASET."

To add attributes containing the data set name and group, a user program follows the Info
creation instruction with

•'set an Info attribute containing name" and
"set an Info attribute containing group."

28

In this manner, the user is provided with a simple, sequential interface for data entry
and the library can take care of the details of laying the data out in nested hierarchies of
(incomplete) metadata. This meets goal #1.

Goal #2 is to provide users and internal MDAS library procedures with a straightforward
method of reading values from an Info structure. For example: suppose that a query to an
MDAS Catalog has returned a fully populated Info structure containing metadata about
a particular data set and a user desires to extract metadata attributes of the data set into
the memory of a user program.

Three things are required to achieve this functionality: (a) the user presumably knew that

MDAS maintains such information, (b) the user must determine what names or function
in MDAS can be used to specify the attribute of interest to the MDAS Library, and (c)
the library must define a protocol for returning attribute information to the user. In order
to obtain goal #1, MDAS adopted the semantics of building Info structures by adding
attributes to entities. Thus, users will have the expectation of extracting Info values in a

like manner. To support this expectation, MDAS provides a "seek and read" protocol based
on the same attribute names that users provide to input entity attributes. For example,
to obtain the common name of a data set from a "Catalog populated" Info structure into
program variable A, the user would

"scan the value for attribute MDAS.NAME of the MDAS.DATASET entity into A."

Goal #3 (efficient in-memory store of metadata) could be achieved by ignoring #1 and
#2 and implementing Info structures as a C struct with no interface to the members
other than direct naming of the structure members. This would not only degrade the user
interface, but expose the underlying structure to direct user manipulation and place the
Library at risk. At the same time, it is prudent to implement Info structures as C or F90
structures—but with private members served only to the user by the interface described for
#1 and #2. Note that this approach permits long-term evolutions in the Info structure
design without sacrificing the portability of early implementations. Further, it allows the
internal representation of an Info structure to be "flattened out" and reduce the number
of dereferences required to extract a given value. Thus, the complexity of the internal Info
structure can increase for the benefit of efficiency without sacrificing the simplicity of the
user interface.

To achieve "ease of translation" of data in Info format to Catalog queries (goal #4), the
MDAS Library incrementally caches SQL-like structures in Info based on the entity type
and attributes. A convenience routine is then provided to convert partial entity descriptions
in Info structures to SQL. An alternate approach would be to ask the end user to use SQL
directly. It is expected that this would be too great a burden on most users. It also would
make Catalog design changes difficult to implement transparently. However, for those users
that need a SQL interface MDAS provides a SQL Exec function. A table of entity attributes
and their associated tables for the current implementation are given in the MDAS User
Guide.

29

4.7.2.2 Base Entities

4.7.2.2.1 MDASJDATASET

MDAS.DATASET attribute Type Use
(Base)

MDAS.NAME

MDASJD

MDAS.CDJD

MDAS_string

MDASJnteger

MDASJnteger

Name of data set. When specified in the info argument
of MDASJNQUIREQ, matches to data sets with this
name or alias will be sought. When scanning this
attribute from an Info structure that resulted from an
inquiry, the "common" name of the data set will be
returned. A name may only be registered once. Any
further name registrations will produce a new alias.

Catalog id#. Can be used in inquiries or scanned from
inquiry results. Value is never set by user.

Id# of MDAS Catalog in which this data set can be
found. Can be used in inquiries or scanned from
inquiry results. MDAS uses this value to differentiate
between multiple catalogs referenced during a single
run-time. Value is set by library and is only valid
during run-time.

MDAS.DATASET attribute

(Version)
MDAS.VERSION

MDAS.VERSIONX

MDAS.VERSIONM

MDAS.VERSIONP

MDAS.VERSIONN

Type

MDAS_string

MDASJogical

MDASJnteger

MDASJnteger

MDASJnteger

Use

MDAS Version # of data set. When the "version" of a
data set is updated, it keeps the same names and alias'

but obtains a new Catalog id#. Creating a new
"version" of a data set is synonymous with re-writing
the data set with new or different content. If the
content is unchanged but in a different format or
storage medium, MDAS considers this a replication.
See MDAS.STOR.FMTN and MDAS.REPLICATES
for comparison.

Indicates whether MDAS.VERSIONM is an external
method registered in the MDAS Catalog or an internal

MDAS Library method. If external,

MDAS.VERSIONX evaluates to "true".

Depending upon the value of MDAS.VERSIONX,
MDAS.VERSIONM is either the Catalog id# of an
MDAS.METHOD or an MDAS Library token for an
internal method. See table'?? for a list of applicable

tokens.

Catalog id# of previous version (if any) of this data
set. This is useful for automatically propagating new

alias' to previous versions.

Catalog id# of next version (if any) of this data set.
This is particularly useful for automatically
propagating new alias' to later versions.

30

MDAS-DATASET attribute Type Use
(Alias)

MDAS.ALIAS

MDAS-ALIASC

MDAS_ALIASV

MDASjstring

M DAS integer

MDASjstring
array

Alternate names for the data set. On input to
MDASJNQUIRE(), this is functionally equivalent to
MDAS-NAME. When scanning this attribute from an
Info structure that resulted from an inquiry, an
element of the MDAS-ALIASV array will be returned.
When preparing an MDAS.DATASET Info structure
for registration, adding this attribute will also add an
element to the MDAS.ALIASV array.

of strings in MDAS.ALIASV.

Array of alias strings. To read this attribute, first read
MDAS_ALIASC and allocate an array of that size.
Alternately, incrementally read MDAS.ALIAS. To set
this attribute, first set MDAS_ALLA.SC or set
MDAS-ALIAS incrementally.

MDAS.DATASET attribute Type Use
(Documentation)

MDAS.ABSTRACT

MDAS.DOC

MDASJnteger

MDASJnteger

Catalog id# of Abstract. Every abstract is an
independent entity. To add an abstract, first register
the abstract and obtain its Catalog id#.

Catalog id# of Documentation. Every set of
documentation is an independent entity. To add
documentation, first register the doc's and obtain their
Catalog id#.

31

MDAS-DATASET attribute Type Use

(SD)
MDAS.SD-TABLE MDASinteger Catalog id# of relational table which contains this

data set (and possibly others) as a LOB in a column
cell. To add this attribute, first register the table as an
MDAS.DATASET and then obtain the Catalog id#.
Note: To register a data set with SD attributes, all
SD attributes must be specified.

MDAS-SD.KEYC MDAS Jnteger # of relational columns in MDAS.SD-TABLE
applicable to MDAS inquiries. Identifies the # of
elements in MDAS.SD.COLS, MDAS_SD.KEY-TYP,
and MDAS-SD-KEY.

MDAS.SD-COLS MDAS-string
array

The names of columns in MDAS.SD-TABLE applicable
to MDAS inquiries. To read this attribute, first read
MDAS.SD.KEYC and allocate an array of that size.
To set this attribute, first set MDAS-SD.KEYC.

MDAS.SD.KEY-TYP MDASinteger The (MDAS) data types of the columns named in
MDAS.SD-COLS.

MDASJSD-KEYS MDASJiandle The values in the columns of MDAS.SD-TABLE which
uniquely identify this data set. To read this attribute,
first read MDAS.SD.KEYC and
MDAS.SD_KEY.TYP, then allocate an appropriate
structure or array. To set this attribute, first set
MDAS-SD.KEYC, MDAS.SD-COLS, and
MDAS-SD-KEYS.

MDAS-SD_LOB_COL MDASjstring Name of SD column cell containing LOB for this data
set.

32

MDAS.DATASET attribute Type Us
(Logical Group)

MDAS-STOR.GRPN MDASjstring

MDAS.STOR.GRPI MDASinteger

MDAS-STOR.GRPNC

MDAS.STOR.GRPNV

MDAS.STOR.GRPIC

MDAS_STOR.GRPIV

MDASinteger

MDASjstring
array

MDASinteger

MDASJnteger
array

Name of some MDAS.GROUP in which this data set
has membership. When specified in the info argument
of MDAS JNQUIRE(), matches to data sets with this
group will be sought. When scanning this attribute
from an Info structure that resulted from an inquiry,
an element of the MDAS.STOR.GRPNV array will be
returned. When preparing an MDAS.DATASET Info
structure for registration, adding this attribute will also
add an element to the MDAS.STOR.GRPNV array.

Catalog id# of some MDAS.GROUP in which this
data set has membership. When specified in the info
argument of MDAS.INQUIREQ, matches to data sets
with this group will be sought. When scanning this
attribute from an Info structure that resulted from an
inquiry, an element of the MDAS.STOR.GRPIV array
will be returned. When preparing an
MDAS.DATASET Info structure for registration,
adding this attribute will also add an element to the
MDAS.STOR.GRPIV array.

of MDAS.GROUP names in MDAS.STOR.GRPNV
array.

Array of MDAS.GROUP names in which this data set
has membership. MDAS.STOR.GRPNV is the union
of group memberships across any replicates of the data
set. A group membership need not span all replicates.
To read this attribute, first read
MDAS.STOR.GRPNC and allocate an array of that
size. Alternately, incrementally read
MDAS-STOR.GRPN. To set this attribute, first set
MDAS-STOR.GRPNC or set MDAS.STOR.GRPN
incrementally.

of MDAS.GROUP Catalog id#s in
MDAS.STOR.GRPIV array.

Array of MDAS.GROUP Catalog id#'s in which this
data set has membership. MDAS.STOR.GRPIV is the
union of group memberships across any replicates of
the data set. A group membership need not span all
replicates. To read this attribute, first read
MDAS.STOR.GRPIC and allocate an array of that
size. Alternately, incrementally read
MDAS.STOR.GRPI. To set this attribute, first set
MDAS.STOR.GRPIC or set MDAS.STOR.GRPI
incrementally.

33

MDASJDATASET attribute
(Logical Domain)

MDAS.STOR.DMNN

MDAS.STOR.DMNI

MDAS.STOR.DMNNC

MDAS.STOR.DMNNV

MDAS.STOR.DMNIC

MDAS.STOR_DMNIV

Type

MDAS_string

MDASinteger

MDASinteger

MDAS-string
array

MDASinteger

MDASinteger
array

Use

Name of some MDAS.DOMAIN in which this data set
has membership. When specified in the info argument
of MDASJNQUIRE(), matches to data sets with this
domain will be sought. When scanning this attribute
from an Info structure that resulted from an inquiry,
an element of the MDAS.STOR.DMNNV array will be
returned. When preparing an MDAS.DATASET Info
structure for registration, adding this attribute will also
add an element to the MDAS.STOR.DMNNV array.

Catalog id# of some MDAS.DOMAIN in which this
data set has membership. When specified in the info
argument of MDASiNQUIREQ, matches to data sets
with this domain will be sought. When scanning this
attribute from an Info structure that resulted from an
inquiry, an element of the MDAS_STOR.DMNIV array
wiü be returned. When preparing an
MDAS.DATASET Info structure for registration,
adding this attribute will also add an element to the
MDAS.STOR.DMNIV array.

of MDAS.DOMAIN names in
MDAS-STOR.DMNNV array.

Array of MDAS.DOMAIN names in which this data
set has membership. MDAS.STOR-DMNNV is the
union of domain memberships across any replicates of
the data set. A domain membership need not span all
replicates. See MDAS.REPL.DMNNA. To read this
attribute, first read MDAS.STOR.DMNNC and
allocate an array of that size. Alternately,
incrementally read MDAS.STOR.DMNN. To set this
attribute, first set MDAS.STOR.DMNNC or set
MDAS-STOR.DMNN incrementally.
MDAS.STOR.DMNNV contains all names in
MDAS.REPL-DMNNA.

of MDAS.DOMAIN Catalog id#s in
MDAS.STOR.DMNIV array.

Array of MDAS.DOMAIN Catalog id#'s in which this
data set has membership. MDAS.STOR.DMNIV is
the union of domain memberships across any replicates
of the data set. A domain membership need not span
all replicates. See MDAS.REPL.DMNIA. To read this
attribute, first read MDAS.STOR.DMNIC and
allocate an array of that size. Alternately,
incrementally read MDAS.STOR.DMNI. To set this
attribute, first set MDAS.STOR.DMNIC or set
MDAS.STOR.DMNI incrementally.
MDAS.STOR.DMNIV contains all names in
MDAS-REPL.DMNIA.

34

MDAS.DATASET attribute Type Use
(Input Lineage)

MDAS.STORJN MDASJnteger

MDAS.STORJNC MDASJnteger

MDAS.STORJNV MDASJnteger
array

Catalog id# of an MDAS.DATASET source used in
the creation of this data set (if any). Applies only to
the origination of data set, not replications or
segments. When inquiring about data sets,
MDAS.STORJN may be used to match source
"lineage". When scanning MDAS.STORJN from Info
returned by MDASJNQUIREQ, the value is some
element of MDAS.STORJNV. When adding attributes
to an Info structure for Catalog registration, set
MDASJSTORJNC and use MDAS.STORJNV.

of items listed in MDAS.STORJNV. When
inquiring about data sets, MDAS.STORJNC may be
used to match the count of data sets in source
"lineage". When scanning MDAS.STORJNC from
data set Info returned by MDASJNQUIREQ, the
value is the actual count for a particular data set.
When adding attributes to an Info structure for
Catalog registration, set MDAS.STORJNC before
making incremental adds of MDAS.STORJN or
adding the MDAS.STORJNV vector.

Array of Catalog an MDAS.DATASET id#'s that
specify the sources used to create this data set.
Applies only to the origination of data set, not
replications or segments. The ordering of inputs
specified in MDAS.STORJNV must match the
ordering of inputs defined in the Catalog metadata for
MDAS-STOR.GEN.

MDAS.DATASET attribute Type Use
(Consequential Lineage)

MDAS.STOR.OUT

MDAS.STOR-OUTC

MDAS.STOR.OUTV

MDASJnteger

MDASJnteger

MDASJnteger
array

Catalog id# of an entity produced from this data set.
When inquiring about data sets. MDAS-STOR.OUT
may be used to match output "lineage". When
scanning MDAS.STOR.OUT from Info returned by
MDASJNQUIREQ, the value returned is some
element of MDAS.STOR.OUTV. When adding
attributes to an Info structure for Catalog registration,
incremental addition of the MDAS.STOR.OUT
attribute will add elements to MDAS.STOR.OUTV
and may increment MDAS.STOR.OUTC if necessary.
To avoid ambiguous behavior, scan or set
MDAS.STOR.OUTC and use MDAS.STOR.OUTV.

of items listed in MDAS.STOR.OUTV.

Array of Catalog id#'s of entities created from this
data set. Applies only to the logical data set, not
replicates or segments.

35

MDASJDATASET attribute
(Generation Lineage)

MDAS-STOR-GEN

MDASJ3TOR-GNP

MDAS.STOR.GNR

MDAS_STOR_GNU

Type

MDASJnteger

MDAS-string

MDAS-integer

MDASJnteger

Use

Catalog id# of the MDAS.METHOD which generated
this data set. When inquiring about data sets,
MDAS-STOR-GEN may be used to match method
"lineage". When scanning MDAS.STOR.GEN from
data set Info returned by MDASJNQUIREQ, the
value returned is the method which generated the data
set. The ordering of inputs specified in
MDAS.STORJNV must match the ordering of inputs
defined in the Catalog metadata for
MDAS-STOR-GEN. Applies only to the origination of
data set, not replications or segments.

The parameter list (if any) used with
MDASJSTOR.GEN to generate this data set. When
inquiring about data sets, MDAS.STOR.GNP may be
used to match method "lineage". When scanning
MDAS-STOR.GNP from data set Info returned by
MDASJNQUIREQ, the value returned is the
parameter list used to generate the data set. Applies
only to the origination of data set, not replications or
segments. The format of MDAS-STOR-GNP must
match the parameter format required for
MDAS_STOR_GEN.

Catalog id# of the MDAS.RESOURCE on which
MDAS.STOR.GEN executed to create the data set.
When inquiring about data sets, MDAS.STOR-GNR
may be used to match method "lineage". Applies only
to the origination of data set, not replications or
segments.

Catalog id# of the MDAS.USER which executed
MDAS-STOR-GEN to create the data set. When
inquiring about data sets, MDAS-STOR.GNU may be
used to match method "lineage". Applies only to the
origination of data set, not replications or segments.

MDAS-DATASET attribute Type Use
(Re-Generation Policy)

MDAS-STOR-PLCY MDASJnteger Update policy for this data set. When inquiring about
data sets, MDAS_STOR.PLCY may be used to match
the policy of an arbitrary data set. When scanning
MDAS-STOR-PLCY from data set Info returned by
MDASJNQUIREQ, the value represents the data set
update policy. When adding attributes to an Info
structure for Catalog registration, only one
MDAS-STOR-PLCY may be set.

36

MDASJDATASET attribute Type Use

(Trigger)
MDAS.STOR.TRGM MDASinteger

MDAS.STOR.TRGP MDASinteger

MDAS_STOR.TRGC

MDAS_STOR.TRGMV

MDAS-STOR.TRGPV

MDASJnteger

MDASJnteger
arrav

MDASinteger
array

Catalog MDAS.METHOD id# of some trigger for this
data set. These methods are executed when updates
are made to this data set and the corresponding trigger
policy evaluates to "true". When inquiring about data
sets, MDAS-STOR.TRGM may be used to match data
set triggers. When scanning MDAS.STOR.TRGM
from data set Info returned by MDASiNQUIRE(), the
value returned is some element of
MDAS.STOR.TRGMV. When adding attributes to an
Info structure for Catalog registration, incremental
addition of the MDAS.STOR.TRGM attribute will
add elements to MDAS.STOR.TRGMV and may
increment MDAS.STOR.TRGC if necessary. To avoid
ambiguous behavior, scan or set MDAS.STOR.TRGC
and use MDAS.STOR.TRGMV.

Catalog MDAS.POLICY id# of some trigger policy for
this data set. Triggers are executed when updates are
made to this data set and the corresponding trigger
policy evaluates to "true". When inquiring about data
sets, MDAS_STOR_TRGP may be used to match data
set policies. When scanning MDAS.STOR_TRGP from
data set Info returned by MDAS.INQUIRE(), the
value returned is some element of
MDAS-STOR.TRGPV. When adding attributes to an
Info structure for Catalog registration, incremental
addition of the MDAS_STOR_TRGP attribute will add
elements to MDAS.STOR.TRGPV and may increment
MDAS-STOR.TRGC if necessary. To avoid ambiguous
behavior, scan or set MDAS_STOR-TRGC and use
MDAS-STOR.TRGPV.

of triggers and trigger policies listed in
MDAS.STOR.TRGMV and MDAS.STOR.TRGPV.

Array of method Catalog id#'s. These methods are
executed when updates are made to this data set and
the corresponding policy in MDAS-STOR.TRGPV
evaluates to "true".

Array of policy Catalog id#:s for triggers in
MDAS.STOR.TRGMV.

MDAS.DATASET attribute Type Use
(Storage Date)

MDAS.STOR.DATE MDAS.time Creation date of data set. It is typically scanned or
specified with MDAS.INFO-SCÄN-ATTR(info,
MDAS.STOR.DATE, odate, status) and
MDASiNFO.SET-ATTR(MDAS_STOR.DATE,
odate, info, status). If the data set has been replicated,
MDAS-STOR.DATE is also the creation date of the
"original" replicate. See MDAS.REPL.DATE and
MDAS.REPL.DATEV.

MDAS.DATASET attribute
(Storage Permanence)

MDAS-STOR-PERM

MDAS-STOR.PURG

Type

MDAS-double

MDASJogical

Use

Probability of not being purged (permanence).
MDAS-STOR.PERM applies to all instances of the
data set. If the data set has been replicated,
MDAS-STOR-PERM represents the cumulative
probability across all replications (all elements of
MDAS.REPL-PERMV). See MDAS.REPLICATES.

True if data set has been purged.
MDAS-STOR-PURG applies to all instances of the
data set. If the data set has been replicated,
MDAS-STOR-PURG represents the conjunctive truth
across all replications (all elements of
MDAS-REPL-PURGV). See MDAS.REPLICATES.

MDAS-DATASET attribute Type Use
(Storage Size)

MDAS-STOR-SIZE MDAS-size The size of the data set, in bytes. When inquiring
about data sets, MDAS-STORJ3IZE may be used to
match the size of an arbitrary data set or data set
replicate (see MDAS-REPLICATES below). When
scanning MDAS-STOR.SIZE from Info returned by
MDASJNQUIREQ, the value may represent either (a)
the size of an unreplicated data set or (b) the size of
some replicate of the data set (an element of
MDAS-REPL-SIZEV). When adding attributes to an
Info structure for Catalog registration, use
MDAS-REPL-SIZE with
MDAS-INFO-SET-RATTR().

38

MDAS-DATASET attribute Type Use
(Storage Format)

MDASJSTOR-FMTN MDAS-string

MDAS.STOR.FMTI MDASJnteger

The name (or alias) of the data set format. When
inquiring about data sets, MDASJSTOR-FMTN may
be used to match the format of an arbitrary data set or
data set replicate (see MDAS.REPLICATES below).
When scanning MDASJSTOR-FMTN from Info
returned by MDASJNQUIREQ, the name may
represent either (a) the format of an unreplicated data
set or (b) the format of some replicate of the data set
(an element, of MDAS.REPL_FMTNV). When adding
attributes to an Info structure for Catalog registration,
use MDAS.REPL.FMTN with
MDASJNFOJ3ET-RATTRQ and
MDASJNFOJSCANJtATTRQ.

The Catalog id# of the data set format. When
inquiring about data sets, MDAS.STOR.FMTI may be
used to match the format of an arbitrary data set or
data set replicate (see MDAS.REPLICATES below).
When scanning MDAS.STOR.FMTI from Info
returned by MDASJNQUIRE0, the value may
represent either (a) the format of an unreplicated data
set or (b) the format of some replicate of the data set
(an element of MDAS.REPL_FMTIV). When adding
attributes to an Info structure for Catalog registration,
use MDAS.REPL.FMTI with
MDASJNFOJ3ET_RATTR() and
MDASJNFOJSCAN-RATTR().

39

MDAS.DATASET attribute
(Storage Resource)

MDAS.STOR-RSCN

MDAS.STOR-RSCI

Type

MDASjstring

MDASinteger

Use

The name (or alias) of a storage resource for the data
set. When inquiring about data sets,
MDAS.STOR-RSCN may be used to match the name
of an arbitrary storage resource. When scanning
MDAS-STOR.RSCN from Info returned by
MDASJNQUIRE(), the name may represent either (a)
the storage resource of an unreplicated data set or (b)
the storage resource of some replicate of the data set
(an element of MDAS-REPL.RSCNV). When adding
attributes to an Info structure for Catalog registration,
use MDAS-REPLJRSCN with
MDASJNFCLSETJRATTRQ.

The Catalog id# of a storage resource for the data set
format. When inquiring about data sets,
MDAS-STOR-RSCI may be used to match the id# of
an arbitrary storage resource. When scanning
MDAS.STOR.RSCI from Info returned by
MDASJNQUIRE0, the value may represent either (a)
the id# of a storage resource for an unreplicated data
set or (b) the id# of a storage resource for some
replicate of the data set (an element of
MDAS-REPL-RSCIV). When adding attributes to an
Info structure for Catalog registration, use
MDAS-REPL-RSCI with
MDASJNFO-SET-RATTR().

40

MDAS.DATASET attribute Type Use
(Storage Server)

MDAS-STORJSRVN MDAS-string

MDASJSTORJSRVI MDASJnteger

The name (or alias) of a software server for the data
set. This might be the O/S for the storage resource, or
a specialized service provider. When inquiring about
data sets, MDAS_STOR.SRVN may be used to match
the name of an arbitrary software server. When
scanning MDAS_STOR.SRVN from Info returned by
MDASJNQUIREQ, the name may represent either (a)
the software server for an unreplicated data set or (b)
the software server for some replicate of the data set
(an element of MDASJtEPL-SRVNV). When adding
attributes to an Info structure for Catalog registration,
use MDAS.REPL_SRVN with
MDASJNFO.SETJtATTR().

The Catalog id# of a software server for the data set
format. This might be the O/S for the storage
resource, or a specialized service provider. When
inquiring about data sets, MDAS.STOR_SRVI may be
used to match the id# of an arbitrary software server.
When scanning MDAS.STOR_SRVI from Info returned
by MDAS.INQUIRE(), the value may represent either
(a) the id# of a software server for an unreplicated
data set or (b) the id# of a software server for some
replicate of the data set (an element of
MDASJR.EPL-SRVIV). When adding attributes to an
Info structure for Catalog registration, use
MDAS.REPL_SRVI with
MDASJNFO_SET.RATTR().

41

MDAS.DATASET attribute

(Storage Path and Name)

MDAS-STOR.DIR

MDAS-STOR.NAM

Type

MDAS-string

MDAS-string

Use

The storage ''directory" of the data set on the given

resource (MDAS.STOR.RSCN or
MDAS.STOR.RSCI) and server (MDAS-STOR.SRVN
or MDAS.STOR-SRVI). MDAS distinguishes between

data set storage directories and storage names. In the

simple Unix or MS DOS case, the full file path is the
concatenation of MDAS.STOR.NAM to
MDAS.STOR-DIR. When inquiring about data sets,
MDAS-STOR-DIR may be used to match the
directory of an arbitrary data set or data set replicate
(see MDAS-REPLICATES below). When scanning
MDAS-STOR-DIR from Info returned by
MDASJNQUIREQ, the value may represent either (a)
the directory of an unreplicated data set or (b) the
directory of some replicate of the data set (an element
of MDASJREPL.DIRV). When adding attributes to an

Info structure for Catalog registration, use
MDAS.REPL-DIR with MDASJNFO-SET.RATTRQ.

The O/S or server name of the data set at the given
directory (MDAS_STOR_DIR) on the given resource
(MDAS*-STOR_RSCN or MDAS-STOR.RSCI) and
server (MDAS-STOR-SRVN or MDAS.STOR.SRVI).

MDAS distinguishes between data set storage
directories and storage names. In the simple Unix or
MS DOS case, the full file path is the concatenation of
MDAS.STOR-NAM to MDAS-STOR.DIR. When
inquiring about data sets, MDAS.STOR-NAM may be
used to match the O/S or server name of an arbitrary

data set or data set replicate (see
MDAS.REPLICATES below). When scanning
MDAS.STOR-NAM from Info returned by
MDAS_INQUIRE(), the value may represent either (a)

the "storage name" for an unreplicated data set or (b)
the "storage name" of some replicate of the data set
(an element of MDAS.REPL.NAM). When adding
attributes to an Info structure for Catalog registration,

use MDAS-REPL-NAM with
MDAS.INFO-SET-RATTR().

42

MDAS.DATASET attribute
(Data Set Owner)

MDAS-STOR-OWN

Type

MDASinteger

Use

Catalog id# of logical owner of the data set or a
specific replicate. When inquiring about data sets,
MDAS_STOR_OWN may be used to match the owner
of an arbitrary data set or data set replicate (see
MDAS.REPLICATES below). Scanning
MDAS.STOR_OWN from Info returned by
MDASJNQUIREO with
MDASJNFO_SCAN_ATTR(info, MDAS.STOR_OWN,
owner, status) the logical owner of the data set. Use
MDAS.REPL.OWN with
MDAS JNFO.SET.RATTR() or
MDASJNFO-SCANJtATTRO to reference the owner
of a particular replicate.

43

MDAS.DATASET attribute
(Data Set SpecHist)

MDASJSTOR-HSA

MDAS.STOR.HST

MDAS.STOR.HSS

MDASJSTOR.HSC

MDAS.STOR.HSAV

MDAS-STOR-HSTV

MDAS-STOR-HSSV

Type

MDAS jnteger Catalog id# of some action listed in
MDAS-STOR-HSAV for a logical data set. When
inquiring about data sets, MDAS.STOR.HSA may be
used to match an action tracked for a particular data
set. To scan or set MDAS.STOR.HSA Info, use
MDAS-STOR_HSC and MDAS-STOR-HSAV.

MDAS-time Time stamp for some spectral history of an action for a
logical data set. When inquiring about data sets,
MDAS-STOR-HST may be used to match time stamps
of spectral history compilations for actions on a
particular data set. To scan or set MDAS-STOR-HST
Info, use MDAS-STOR-HSC and MDASJ3TOR-HSTV.

MDAS-spectruiji Spectral histories of an action for a logical data set.
When inquiring about data sets, MDAS-STOR-HSS
may be used to match spectral history compilations for
arbitrary actions on a particular data set. To scan or
set MDAS-STOR_HSS Info, use MDAS.STOR.HSC
and MDAS-STOR-HSSV.

MDAS Jnteger

MDASJnteger
array

MDAS-time
array

MDAS_spectrurji
array

Use

of actions listed in MDAS_STOR-HSAV,
MDAS-STOR-HSTV, and MDAS-STOR-HSSV. When
inquiring about data sets, MDAS_STOR-HSC may be
used to match the count of actions tracked to date for
a particular data set. When scanning
MDAS-STOR-HSC from data set Info returned by
MDASJNQUIRE0, the value is the actual count for a
particular data set. When adding attributes to an Info
structure for Catalog registration, set
MDAS-STOR_HSC before making incremental adds of
MDAS-STOR-HSAV or MDAS.STOR.HSSV.

Array of Catalog id#'s of actions logical data set.
When inquiring about data sets, MDAS.STOR.HSAV
may be used to match a set of actions tracked for a
particular data set. To scan MDAS.STOR.HSAV Info,
first scan MDAS.STOR.HSC and allocate an array of
that size, then use MDAS.INFOJ3CAN_ATTR(info,
MDAS.STOR.HSAV, userarray, status).

Time stamps of spectral history compilations for a
logical data set. When inquiring about data sets,
MDAS-STOR-HSTV may be used to match the time
stamp array for spectral history compilations on a
particular data set. To scan MDAS.STOR.HSTV Info,
first scan MDAS-STOR-HSC and allocate an array of
that size, then use MDAS-INFO_SCAN_ATTR(info,
MDAS.STOR.HSTV, userarray, status).

Spectral histories for a logical data set. When
inquiring about data sets, MDAS.STOR.HSSV may be
used to match entire spectral history sets a particular
data set. To scan MDAS.STOR.HSSV Info, first scan
MDAS-STOR-HSC and allocate an array of that size,
then use MDASJNFO_SCAN-ATTR(info,
MDAS-STOR.HSSV, userarray, status).

44

MDAS-DATASET attribute Type Use
(Data Set Perf)

MDASJSTOR-PERF TBD TBD.

MDAS-DATASET attribute Type Use
(Data Set Lock)

MDAS-STOR-RLCK MDASJogical Read access lock flag for logical data set (all replicates
and segments). "True" means read access to data set is
locked.

MDAS.STOR.RLCKS MDAS.time Start time for read access lock flag for logical data set
(all replicates and segments).

MDAS.STOR.RLCKE MDAS.time End time for read access lock flag for logical data set
(all replicates and segments).

MDAS-STOR.RLCKD MDASJnteger Domain Catalog id# which is allowed to set read locks
on logical data set.

MDAS.STORAVLCK MDASJogical Write access lock flag for logical data set (all replicates
and segments). 'True" means write access to data set
is locked.

MDAS-STOR.WLCKS MDAS.time Start time for write access lock flag for logical data set
(all replicates and segments).

MDAS.STORAVLCKE MDAS.time End time for write access lock flag for logical data set
(all replicates and segments).

MDAS.STOR_WLCKD MDASJnteger Domain Catalog id# which is allowed to set read locks
on logical data set.

MDAS.DATASET attribute Type Use
(Data Set Security)

MDAS.STOR_AUTK MDAS-string Public authorization key for logical data set (all
replicates and segments).

MDAS-STOR-AÜTM MDASJnteger Method Catalog id# for public authorization key.

MDAS.STOR.RACCK MDASjstring Public read-access key for logical data set (all
replicates and segments).

MDAS-STOR-RACCM MDASJnteger Method Catalog id# for public read-access key.

MDAS-STOR-WACCK MDAS-string Public write-access key for logical data set (all
replicates and segments).

MDAS-STOR.WACCM MDASJnteger Method Catalog id# for public write-access key.

MDAS.STOR.CRYK MDAS-string Public encryption key for logical data set (all replicates
and segments).

MDAS-STOR.CRYM MDASJnteger Method Catalog id# for public encryption key.

45

MDAS.DATASET attribute Type Use

(Replicates)
MDAS.REPLICATES MDASJnteger # of data set replications. Replications are always

equivalent in content, but not necessarily in format or
storage media. By default, an unreplicated data set is
replicate #1. All replications have the same
MDASJD, names, and alias'. Replicates can be
generated by either (a) a format or storage translation
on an instance of the data set, or (b) re-execution of
the method that generated the original instance of the
data, set but using different target format and/or
storage parameters. In either case, the storage "Input
Lineage" (MDAS_STORJNV) and "Generation
Lineage" (MDAS.STOR.GEN/GNP/GRC/GNU) will
be the same but "Replication Lineage" attributes will
vary. Replicate attributes may be accessed with either
MDASJNFO.{SET/SCAN}_ATTR() or
MDASJNFO.{SET/SCAN}.RATTR(). See individual
attribute for details. For case 'a', methods which
perform format translations but otherwise do not alter
the content of entities have MDAS JNVARIENT set
"true". Data sets can also be segmented (partitioned).
See MDAS-REPL-SEGC.

46

MDAS-DATASET attribute Type Use

(Replicate Group)
MDAS_REPL.GR.PN MDAS_string

MDAS.REPL.GRPNC

MDAS.REPL.GRPNV

MDAS.REPL.GRPI

MDAS.REPL.GRPIC

MDAS.REPL.GRPIV

MDASJnteger
array

MDAS-string
array

MDASJnteger

MDASJnteger
array

MDAS-string
array

Name of some MDAS.GROUP in which this replicate
has membership. When specified in the info argument
of MDASJNQUIREQ, matches to data set replicates
with this group will be sought; i.e., inquiries with
MDAS.REPL.GRPN are identical to inquiries with
MDAS_STOR_GRPN. Use MDAS.REPL.GRPNV to
scan or register all the groups for a particular data set
replicate.

MDAS.REPL.GRPNC, is the # of MDAS.GROUP
names for replicate #i.

Array of MDAS.GROUP names for some data set
replicate. When specified in the info argument of
MDASJNQUIREQ, matches to replicates with
memberships in these particular groups will be sought.
The same group memberships need not span all
replicates. To scan this attribute, use
MDASJNFO-SCAN_RATTR(info, i,
MDAS.REPL.GRPNV, grpnames, status). To set this
attribute, first use MDASJNFO_SET.RATTR(i,
MDAS.REPL.GRPNC, grpcount, info, status) then
MDASJNFO-SET.RATTR(i, MDAS.REPL.GRPNV,
grpnames, info, status).

Catalog id# of some MDAS.GROUP in which this
replicate has membership. When specified in the info
argument of MDASJNQUIREQ, matches to data set
replicates with this group will be sought; i.e., inquiries
with MDAS.REPL.GRPI are identical to inquiries
with MDAS.STOR.GRPI. Use MDAS.REPL.GRPIV
to scan or register all the groups for a particular data
set replicate.

MDAS.REPL.GRPIC, is the # of MDAS.GROUP
Catalog id#'s for replicate #«'.

Array of MDAS.GROUP Catalog id#'s for some data
set replicate. When specified in the info argument of
MDASJNQUIREQ, matches to replicates with
memberships in these particular groups will be sought.
The same group memberships need not span all
replicates. To scan this attribute, use
MDASJNFO.SCAN.RATTR(info, i,
MDAS.REPL.GRPIV, grpids, status). To set this
attribute, first use MDASJNFO_SET.RATTR(i,
MDAS.REPL.GRPIC, grpcount. info, status) then
MDASJNFO.SET.RATTR(i, MDAS.REPL.GRPIV,
grpids. info, status).

MDASJDATASET attribute Type Use
(Replicate Domain)

MDAS.REPL.DMNN MDAS-string

MDAS_REPL.DMNNC

MDAS.REPL.DMNNV

MDASJnteger
array

MDAS-string
array

MDAS.REPL-DMNI MDASJnteger

MDAS-REPL-DMNIC

MDAS.REPL.DMNIV

MDASJnteger
array

MDAS-string
array

Name of some MDAS-DOMAIN in which this replicate
has membership. When specified in the info argument
of MDASJNQUIRE(), matches to data set replicates
with this domain will be sought; i.e., inquiries with
MDAS-REPL.DMNN are identical to inquiries with
MDAS.STORJ)MNN. Use MDAS.REPL.DMNNV to
scan or register all the domains for a particular data
set replicate.

MDASJtEPL J)MNNC, is the # of MDASJDOMAIN
names for replicate #i.

Array of MDAS JOOMAIN names for some data set
replicate. When specified in the info argument of
MDASJNQUIREQ, matches to replicates with
memberships in these particular domains will be
sought. The same domain memberships need not span
all replicates. To scan this attribute, use
MDASJNFO_SCANJtATTR(info, i,
MDAS.REPL.DMNNV, dmnnames, status). To set
this attribute, first use MDAS-INFOJ5ET_RATTR(i,
MDAS.REPL.DMNNC, dmncount, info, status) then
MDASJNFO-SET_RATTR(i,
MDAS.REPL.DMNNV, dmnnames, info, status).

Catalog id# of some MDAS.DOMAIN in which this
replicate has membership. When specified in the info
argument of MDASJNQUIREQ, matches to data set
replicates with this domain will be sought; i.e.,
inquiries with MDAS.REPLJOMNI are identical to
inquiries with MDASJSTORJDMNI. Use
MDAS.REPL.DMNIV to scan or register all the
domains for a particular data set replicate.

MDAS-REPL.DMNICi is the # of MDAS.DOMAIN
Catalog id#'s for replicate #(.

Array of MDAS_DOMAIN Catalog id#'s for some data
set replicate. When specified in the info argument of
MDASJNQUIREQ, matches to replicates with
memberships in these particular domains will be
sought. The same domain memberships need not span
all replicates. To scan this attribute, use
MDASJNFO-SCANJtATTR(info, i,
MDASJ1EPLJ)MNIV, dmnids, status). To set this
attribute, first use MDASJNFO_SETJiATTR(i,
MDASJtEPLJDMNIC, dmncount, info, status) then
MDASJNFO.SETJtATTR(i, MDASJIEPLJDMNIV,
dmnids, info, status).

48

MDAS-DATASET attribute Type Use

(Repl. Input Lineage)
MDAS-REPL-IN MDASJnteger

MDAS.REPL.INC MDASinteger

MDAS-REPLJNV MDASJnteger
array

Catalog id# of an MDAS J3ATASET source used in
the creation of this data set replicate. Applies only to
the replication of data set, not segments or origination.
When inquiring about data sets, MDAS-REPLJN may
be used to match replication "lineage". When scanning
MDAS-REPL-IN from Info returned by
MDASJNQUIREQ, the value is some data set used in
creating the replication. To obtain all inputs used to
create a replicate, use MDAS-REPLJNV. When
adding attributes to an Info structure for Catalog
registration, use MDAS.REPL.INV.

of items listed in MDAS.REPLJNV. When
inquiring about data sets, MDAS-REPL JNC may be
used to match the count of data sets in replication
"lineage". When scanning MDAS-REPL JNC from
data set Info returned by MDASJNQUIRE(), the
value is the actual count of inputs to a replication
method used to create a particular data set replicate.
When adding attributes to an Info structure for
Catalog registration, set MDAS JtEPLJNC before
making incremental adds of MDAS-REPLJN or
adding an MDASJtEPLJNV vector.

Array of Catalog id#'s used as inputs to a replication
method that created some data set replicate. Applies
only to the replication of a data set, not segments or
origination. When inquiring about data sets,
MDAS-REPLJNC and MDAS.REPLJNV may be
used to match replication "lineage". When scanning
MDAS-REPLJNV from Info returned by
MDASJNQUIREQ, the value is some vector of input
data set id#'s used to create one of the data set
replications. When adding attributes to an Info
structure for Catalog registration, first use
MDASJNFO-SET-RATTR(i, MDAS.REPLJNC,
incount, info, status) and then use
MDASJNFO-SET.RATTR(i. MDAS-REPLJNV,
rlinvect, info, status).

49

MDAS.DATASET attribute Type Use

(Repl. Conseq. Lineage)
MDAS-REPL-OUT MDASinteger

MDAS_REPL.OUTVC MDASinteger

MDAS-REPL-OUTV MDASJnteger
array

Catalog id# of an MDAS.DATASET data set
replicate produced from another data set replicate.
Applies only to the replication of data set, not
segments or origination. When inquiring about data
sets, MDAS-REPL-OUT may be used to match
replication "consequential lineage". When scanning
MDAS-REPL-OUT from Info returned by
MDASJNQUIREQ, the value is the Catalog id# of
some data replicate set. To add this value for Catalog
registration, use MDASJNFOJ3ET_RATTR(i,
MDAS-REPL-OUT, rlout, info, status). To obtain all
replicates produced from another replicate, use
MDAS-REPL-OUTV.

of items listed in MDAS-REPL-OUTV. When
inquiring about data sets, MDAS-REPL-OUTVC may
be used to match the count of data sets in replication
"consequential lineage". When scanning
MDAS-REPL-OUTVC from data set Info returned by
MDASJNQUIRE(), the value is the actual count of
replicates created from a particular data set replicate.
When adding attributes to an Info structure for
Catalog registration, set MDAS-REPL.OUTVC before
making incremental adds of MDAS-REPL-OUT or
adding an MDAS-REPL.OUTV vector.

Array of Catalog id#'s used as inputs to a replication
method that created some data set replicate. Applies
only to the replication of a data set, not segments or
origination. When inquiring about data sets,
MDAS.REPL-OUTVC and MDAS-REPL-OUTV may
be used to match replication "consequential lineage".
When scanning MDAS-REPL.OUTV from Info
returned by MDAS_INQUIRE(), use
MDASJNFO-SET-RATTR(i, MDAS-REPL-OUTVC,
outcount, info, status) and then
MDASJNFO-SCAN-RATTR(i,
MDAS_REPL-OUTV, rloutvect, info, status). When
adding attributes to an Info structure for Catalog
registration, first use MDAS-INFO-SET.RATTR(i,
MDAS-REPL-OUTVC, outcount, info, status) and
then use MDAS-INFO_SET-RATTR(i,
MDAS-REPL_OUTV, rloutvect, info, status).

50

MDAS.DATASET attribute Type Use

(Repl. Gen. Lineage)
MDAS_R.EPL.GEN MDASJnteger

MDAS.REPL.GNP

MDAS.REPL.GNR

MDAS.REPL.GNU

MDAS_string

MDASJnteger

MDASJnteger

Catalog id# of an MDAS.METHOD which generated
this data set replicate. Applies only to the replication
of a data set, not segments or origination. When
inquiring about data set replicates, MDAS.REPL.GEN
may be used to match "replication method lineage".
When scanning MDAS.REPL.GEN from data set Info
returned by MDASJNQUIREQ, use
MDASJNFO_SCAN_RATTR(i, MDAS.REPL.GEN,
rmethod, info, status) to find the method used to
produce replicate ■*. Likewise, use
MDASJNFO_SET-RATTR(i, MDAS.REPL.GEN,
rmethod, info, status) to specify the method used to
produce replicate i. The ordering of inputs specified in
MDAS.REPL.INV must match the ordering of inputs
defined in the Catalog metadata for
MDAS-REPL.GEN.

The parameter list (if any) used with
MDAS-REPL.GEN to generate this data set
replicate. Applies only to the replication of a data
set, not segments or origination. When inquiring about
data set replicates, MDAS.REPL.GNP may be used to
match method "replication method lineage". When
scanning MDAS.REPL.GNP from data set Info
returned by MDASJNQUIREQ, use
MDASJNFO.SCAN_RATTR(i, MDAS.REPL.GNP,
rparams, info, status) to find the method parameters
used to produce replicate i. Likewise, use
MDASJNFO_SET_RATTR(i, MDAS.REPL.GNP,
rparams, info, status) to specify the parameters used
to produce replicate i. The format of
MDAS.REPL.GNP must match the parameter format
required for MDAS.REPL.GEN.

Catalog id# of the MDAS.RESOURCE on which
MDAS.REPL.GEN executed to create the data set
replicate. Applies only to the replication of a data
set, not segments or origination. When inquiring about
data set replicates, MDAS-REPL.GNR may be used to
match method "replication method lineage". When
scanning MDAS.REPL.GNR from data set Info
returned by MDASJNQUIREQ, use
MDASJNFO-SCAN_RATTR(«', MDAS.REPL.GNR,
replrsrc, info, status) to find the resource where
replicate i was produced.

Catalog id# of the MDAS.ÜSER which executed
MDAS.REPL.GEN to create the data set replicate.
Applies only to the replication of a data set, not
segments or origination. When inquiring about data
set replicates, MDAS.REPL.GNU may be used to
match method "replication method lineage". When
scanning MDAS.REPL.GNU from data set Info
returned by MDAS.INQUIRE(), use
MDAS_INFO.SCAN_RATTR(i, MDAS.REPL.GNU,
repluser, info, status) to find the user that produced
replicate i.

51

MDAS.DATASET attribute
(Replication Trigger)

MDAS.REPL.TRGM

MDAS.REPL.TRGP

MDAS.REPL.TRGC

MDAS-REPL-TRGMV

MDAS.REPL.TRGPV

Type

MDASJnteger

MDASinteger

MDAS-integer

MDASJnteger
arrav

Use

MDASJnteger
array

Catalog MDAS.METHOD id# of some trigger for a
data set replicate. These replication methods are
executed when updates are made to this data set and
the corresponding trigger policy evaluates to "true''.
When inquiring about data sets, MDAS.REPL.TRGM
may be used to match data set replication triggers.
When scanning MDAS.REPL.TRGM from data set
Info returned by MDASJNQUIREQ, the value
returned is some element of MDAS.REPL.TRGMV.
When adding attributes to an Info structure for
Catalog registration, use MDAS.REPL.TRGC and
MDAS.REPL.TRGMV to avoid ambiguous behavior.

Catalog MDAS.POLICY id# of some trigger policy for
a data set replicate. Replication triggers are executed
when updates are made to this data set replicate and
the corresponding trigger policy evaluates to "true".
When inquiring about data set replicates,
MDAS.REPL.TRGP may be used to match data set
replication policies. When scanning
MDAS.REPL.TRGP from data set Info returned by
MDAS_INQUIRE(), the value returned is some
element of MDAS.REPL.TRGPV. When adding
attributes to an Info structure for Catalog registration,
use MDAS.REPL.TRGC and MDAS.REPL.TRGPV
to avoid ambiguous behavior.

of triggers and trigger policies listed in
MDAS-REPL-TRGMV and MDAS.REPL.TRGPV for
some replicate. When scanning MDAS.REPL.TRGC
from Info returned by MDASJNQUIREf), use
MDAS_INFO_SCAN-RATTR(*, MDAS.REPL.TRGC,
repltrgc, info, status) to find the number of replication
triggers for replicate i. Likewise, use
MDASJNFO.SET.RATTR(i, MDAS.REPL.TRGC,
repltrgc, info, status) to specify the replication trigger
count for replicate i.

Array of method Catalog id#'s. These methods are
executed when updates are made to this data set and
the corresponding policy in MDAS.REPL.TRGPV
evaluates to "true". To scan the entire array for
replicate i, first obtain MDAS.REPL.TRGC and
allocate an array of that size. Scan values into the
array with MDASJNFO_SCAN.RATTR(i,
MDAS-REPL-TRGMV, repltrgmv, info, status).

Array of policy Catalog id#'s for triggers in
MDAS-REPL-TRGMV. To scan the entire array for
replicate i, first obtain MDAS.REPL.TRGC and
allocate an array of that size. Scan values into the
array with MDAS-INFOJ5CAN_RATTR0\
MDAS-REPL.TRGPV, repltrgpv, info, status).

52

MDAS.DATASET attribute Type Use
(Repl. Re-Gen. Policy)

MDAS.REPL.PLCY MDASinteger Update policy for a data set replicate. When
inquiring about data set replicates,
MDAS.REPL.PLCY may be used to match
"replication regeneration policies". Applies only to the
replication of a data set, not segments or origination.
When scanning MDAS.REPL.PLCY from Info
returned by MDASJNQUIRE(), use
MDASJNFO_SCAN_RATTR(j, MDAS.REPL.PLCY,
replplcy, info, status) to find the policy that produced
replicate i. Likewise, use MDASJNFO_SET.RATTR(i,
MDAS.REPL.PLCY, replplcy, info, status) to specify
the policy for regeneration of replicate i.

MDAS.DATASET attribute
(Replicate Dates)

MDAS.REPL.DATE

MDAS.REPL.DATEV

Type

MDAS.time

MDAS.time
array

Us

The creation time for some replicate. When inquiring
about data sets, MDAS.REPL.DATE may be used to
match the creation date of an arbitrary data set
replicate. When scanning MDAS.REPL.DATE from
Info returned by MDASJNQUIRE(), the value
represents the creation date of some replicate of the
data set (an element of MDAS.REPL.DATEV). To
obtain the creation time for a specific replicate i, use
MDASJNFO.SCAN_RATTR(>, MDAS.REPL.DATE,
repldate, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDASJNFO.SET_RATTR(i, MDAS.REPL.DATE,
repldate, info, status).

MDAS.REPL.DATEV, is the creation time for
replicate i. This array can be scanned and set with
MDASJNFO_SCAN.ATTR(info,
MDAS-REPL.DATEV. userarray, status) and
MDASJNFO-SET-ATTR(MDAS.REPL-DATEV,
userarray, info, status).

53

MDAS.DATASET attribute
(Replicate Permanence)

MDAS.REPL.PERM

MDAS.REPL.PERMV

MDAS.REPL.PURG

MDAS.REPL.PURGV

Type

MDAS-double

MDAS.double
array

MDASJogical

MDASJogical
array

Use

Probability of some replicate not being purged
(permanence). When inquiring about data sets.
MDAS.REPL.PERM may be used to match the
permanence of an arbitrary data set replicate. When
scanning MDAS.REPL.PERM from Info returned by
MDASJNQUIREO, use
MDASJNFO-SCANJtATTR(i, MDAS.REPL.PERM,
replperm, info, status) to obtain the permanence value
for replicate i. When adding attributes to an Info
structure for Catalog registration, use
MDASJNFO.SET.RATTR(i, MDAS.REPL.PERM,
replperm, info, status). See also
MDAS.REPL.PERMV.

MDAS.REPL.PERMV; is the permanence value for
replicate i. This array can be scanned and set with
MDAS-INFO.SCAN_ATTR(info,
MDAS.REPL.PERMV, userarray, status) and
MDASJNFO.SET-ATTR(MDAS_REPL.PERMV,
userarray, info, status).

True if replicate has been purged. When inquiring
about data sets, MDAS.REPL.PTJRG may be used to
match the purge status of an arbitrary data set
replicate. When scanning MDAS.REPL.PURG from
Info returned by MDASJNQUIREO, use
MDASJNFO.SCAN-RATTR(J, MDAS.REPL.PURG,
replpurg, info, status) to obtain the purge truth value
for replicate i. When adding attributes to an Info
structure for Catalog registration, use
MDAS.INFO_SET.RATTR(i, MDAS.REPL.PURG,
replpurg, info, status).

MDAS.REPL.PURGV, is true if replicate i has been
purged. This array can be scanned and set with
MDAS-INFO.SCÄN-ATTR(info,
MDAS.REPL.PURGV, userarray, status) and
MDASJNFO.SET_ATTR(MDAS-REPL.PURGV,
userarray, info, status).

54

MDAS,DATASET attribute Type Use
(Replicate Sizes)

MDAS.REPL.SIZE

MDAS.REPL-SIZEV

MDASjsize

MDAS-size
array

The size of a data set replicate. When inquiring
about data sets, MDAS.REPL.SIZE may be used to
match the size of an arbitrary data set replicate. When
scanning MDAS.REPL.SIZE from Info returned by
MDASJNQUIREQ, the value represents the size of
some replicate of the data set (an element of
MDAS.REPL-SIZEV). To obtain the creation time for
a specific replicate i, use
MDASJNFO_SCAN-RATTR(*\ MDAS.REPL.SIZE,
replsize, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDASJNFO.SET.RATTR(i, MDAS.REPL.SIZE,
replsize, info, status).

MDAS.REPL.SIZEV, is the creation time for replicate
i. This array can be scanned and set with
MDAS-INFO.SCAN_ATTR(info,
MDAS.REPL-SIZEV, userarray, status) and
MDAS-INFO.SET_ATTR(MDAS-REPL-SIZEV,
userarray, info, status).

55

MDAS-DATASET attribute
(Replicate Format)

MDAS.REPL.FMTH

Note: a data set replicate
with heterogeneous format
segments will not have any
data in the format
attributes below. See
MDAS-REPLJ3EGC.

MDAS.REPL.FMTN

MDAS.REPL.FMTNV

MDAS.REPL.FMTI

MDAS.REPL.FMTIV

Type

MDASJogical

MDASjstring

MDAS_string
arrav

MDAS integer

MDASinteger
array

Use

True when a data set replicate has heterogeneous
format segments. To scan this attribute, use
MDASJNFO-SCAN_RATTR(i, info,
MDAS.REPL.FMTH, hflag, status). See
MDAS.REPL.SEGC.

The name (or alias) of the format of some data set
replicate. When inquiring about data sets,
MDAS.REPL.FMTN may be used to match the
format of an arbitrary data set replicate. To obtain the
format name of a specific replicate i, use
MDASJNFO.SCANJtATTR(i, MDAS.REPL.FMTN.
replfmtn, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDASJNFOJ3ET.RATTR(i, MDAS.REPL.FMTN,
replfmtn, info, status). See MDAS.REPL.FMTNV.

MDAS-REPL-FMTNVi is the format name (or alias)
of replicate i. This array can be scanned and set with
MDASJNFO_SCAN-ATTR(info,
MDAS.REPL.FMTNV, userarray, status) and
MDASJNFO_SET_ATTR(MDAS_REPL-FMTNV,
userarray, info, status).

The Catalog id# of the format of some data set
replicate. When inquiring about data sets,
MDAS.REPL.FMTI may be used to match the format
of an arbitrary data set replicate. To obtain the format
id# of a specific replicate z, use
MDASJNFO_SCAN_RATTR(i, MDAS.REPL.FMTI,
replfmti, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDASJNFO-SET-RATTR(i, MDAS.REPL.FMTI,
replfmti, info, status). See MDAS.REPL.FMTIV.

MDAS.REPL.FMTIV, is the format Catalog id# of
replicate i. This array can be scanned and set with
MDASJNFO_SCANJVTTR(nifo,
MDAS.REPL.FMTIV, userarray, status) and
MDASJNFO_SET-ATTR(MDAS.REPL.FMTIV,
userarray, info, status).

56

MD AS .DATASET attribute Type Use
(Repl. Storage Resource

MDAS-REPL-RSCH MDASJogical

Note: a data set replicate
with distributed storage
segments will not have any
data in the resource
attributes below. See
MDASJtEPL-SEGC.

MDAS.REPL.RSCN MDAS-strine

MDASJtEPL.RSCNV MDAS_string
arrav

MDAS.REPL.RSCI MDAS Jnteger

MDASJIEPL-RSCIV MDASJnteger
array

True when a data set replicate has heterogeneous
format segments. To scan this attribute, use
MDASJNFO_SCAN_RATTR(«\ info,
MDAS.REPL-RSCH, hflag, status). See
MDAS-REPL-SEGC.

The name (or alias) of a storage resource for some data
set replicate. When inquiring about data set replicates,
MDAS_REPL_RSCN may be used to match the name
of a storage resource for an arbitrary data set replicate.
To obtain the storage resource name of a specific
replicate i, use MDASJNFO-SCAN.RATTR(i,
MDAS-REPL-RSCN, replrscn, info, status). When
adding attributes to an Info structure for Catalog
registration, use MDASJNFO.SET.RATTR(i,
MDAS-REPL-RSCN, replrscn, info, status). See
MDAS-REPL-RSCNV.

MDAS-REPL-RSCNV, is the storage resource name
(or alias) of replicate i. This array can be scanned and
set with MDAS.INFOJ3CAN_ATTR(info,
MDAS-REPL_RSCNV, userarray, status) and
MDAS_INFCLSET-ATTR(MDAS_REPL-RSCNV,
userarray, info, status).

The Catalog id# of a storage resource for some data
set replicate. When inquiring about data set replicates,
MDAS-REPL-RSCI may be used to match the id# of
a storage resource for an arbitrary data set replicate.
To obtain the storage resource id# of a specific
replicate i, use MDASJNFOJSCAN.RATTR(j,
MDAS-REPL-RSCI, replrsci, info, status). When
adding attributes to an Info structure for Catalog
registration, use MDASJNFO_SET.RATTR(z,
MDAS-REPL-RSCI. replrsci, info, status). See
MDASJIEPL-RSCIV.

MDAS-REPL-RSCIV» is the storage resource Catalog
id# of replicate i. This array can be scanned and set
with MDASJNFOJ3CAN-ATTR(info,
MDAS_REPL_RSCIV, userarray, status) and
MDASJNFO-SET-ATTR(MDÄSJtEPL-RSCIV,
userarray, info, status).

D<

MDAS-DATASET attribute

(Repl. Storage Server)
MDASJEtEPL-SRVH

Note: a data set replicate
with heterogeneous

storage service segments

will not have any data in
the server attributes

below. See
MDAS-REPL.SEGC.

MDAS-REPL-SRVN

MDAS-REPL-SRVNV

MDAS.REPL-SRVI

MDAS.REPL-SRVIV

Type

MDASJogical

MDAS-string

MDAS-string
array

MDASinteger

MDAS jnteger

array

Use

True when a data set replicate has heterogeneous
format segments. To scan this attribute, use
MDASJNFO-SCAN_RATTR(i, info,
MDAS.REPL.SRVH, hflag, status). See
MDAS-REPL-SEGC.

The name (or alias) of a storage resource server for
some data set replicate. This might be the O/S for the
storage resource, or a specialized service provider.
When inquiring about data set replicates,
MDASJtEPL-SRVN may be used to match the name
of a storage resource server for an arbitrary data set
replicate. To obtain the storage resource server name

of a specific replicate i, use
MDASJNFOJSCANJtATTR(i, MDAS_REPL_SRVN,

replsrvn, info, status). When adding attributes to an

Info structure for Catalog registration, use
MDASJNFO.SET-RATTR(i, MDASJtEPL-SRVN,
replsrvn, info, status). See MDAS-REPL-SRVNV.

MDAS-REPL-SRVNV, is the storage resource server

name (or alias) of replicate i. This array can be
scanned and set with MDAS-INFO_SCAN-ATTR(info,
MDAS-REPL-SRVNV, userarray, status) and
MDASJNFO-SET_ATTR(MDAS-REPL-SRVNV,

userarray, info, status).

The Catalog id# of a storage resource server for some
data set replicate. This might be the O/S for the
storage resource, or a specialized service provider.
When inquiring about data set replicates,
MDAS-REPL-SRVI may be used to match the id# of
a storage resource server for an arbitrary data set
replicate. To obtain the storage resource server id# of
a specific replicate i, use
MDASJNFO-SCAN-RATTR(i, MDAS.REPL-SRVI,

replsrvi, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDAS-INFO-SET-RATTR((, MDAS.REPL-SRVI,

replsrvi, info, status). See MDAS.REPL-SRVIV.

MDAS.REPL-SRVIV; is the storage resource server
Catalog id# of replicate i. This array can be scanned
and set with MDASJNFCLSCAN_ATTR(info,
MDAS-REPL.SRVIV, userarray, status) and
MDASJNFO-SET-ATTR(MDAS-REPL.SRVIV,

userarray, info, status).

58

MDAS-DATASET attribute Type Use
(Repl. Dir. and Name)

Note: a data set replicate
with heterogeneous
storage segments will not
have any data in the
directory and name
attributes below. See
MDAS.REPL.SEGC.

MDASJIEPL.DIRN MDAS-string

MDAS-REPL-DIRNV

MDAS_REPL_NAMN

MDAS-REPL-NAMNV

MDAS-string
array

MDAS-string

MDAS_string
arrav

The storage "directory" for some data set replicate.
MDAS distinguishes between data set storage
directories and storage names. In the simple Unix or
MS DOS case, the full file path is the concatenation of
MDAS-REPL-NAM to MDAS.REPL.DIR. When
inquiring about data set replicates,
MDAS-REPL-DIRN may be used to match the storage
directory for an arbitrary data set replicate. To obtain
the storage directory of a specific replicate i, use
MDASJNFO-SCAN_RATTR(z', MDAS_REPL-DIRN,
repldirn, info, status). When adding attributes to an
Info structure for Catalog registration, use
MDASJNFO.SET.RATTR(i, MDAS-REPL-DIRN,
repldirn, info, status). See MDAS-REPL-DIRNV.

MDAS-REPL-DIRNV, is the storage directory of
replicate i. This array can be scanned and set with
MDASJNFOJSCAN_ATTR(info,
MDAS-REPL-DIRNV, userarray, status) and
MDASJNFCLSET-ATTR(MDAS-REPL_DIRNV,
userarray, info, status).

The O/S or server name for some data set replicate.
MDAS distinguishes between data set storage
directories and storage names. In the simple Unix or
MS DOS case, the full file path is the concatenation of
MDAS-REPL-NAM to MDAS.REPL.DIR. When
inquiring about data set replicates,
MDAS-REPL-NAMN may be used to match the O/S
or server name for an arbitrary data set replicate. To
obtain the O/S or server name of a specific replicate i,
use MDAS-INFO_SCAN-RATTR(j,
MDAS.REPL_NAMN, replnamn, info, status). When
adding attributes to an Info structure for Catalog
registration, use MDASJNFO.SET-RATTR(i,
MDAS-REPL_NAMN, replnamn, info, status). See
MDAS-REPL-NAMNV.

MDAS-REPL-NAMNV, is the O/S or server name of
replicate i. This array can be scanned and set with
MDAS-INFO-SCAN-ATTR(info,
MDAS-REPL-NAMNV, userarray, status) and
MDASJNFO-SET-ATTR(MDAS-REPL-NAMNV,
userarray, info, status).

59

MDAS.DATASET attribute Type Use
(Replicate Owner)

MDAS.REPL.OWN

MDAS-REPL-OWNV

MDAS-string

MDAS-string
array

An MDAS-USER Catalog id# for the owner of some
data set replicate. When inquiring about data set
replicates, MDAS.REPL.OWN may be used to match
the owner's Catalog id# for an arbitrary data set
replicate. To obtain the owner id# of a specific
replicate i, use MDASJNFO_SCAN.RATTR(i,
MDAS.REPL-OWN, replown, info, status). When
adding attributes to an Info structure for Catalog
registration, use MDASJNFO.SET.RATTR(i,
MDAS_REPL-OWN, replown, info, status). See
MDAS-REPL-OWNV.

MDAS-REPL.OWNVi is the storage directory of
replicate i. This array can be scanned and set with
MDASJNFO.SCAN-ATTR(info,
MDAS-REPL-OWNV, userarray, status) and
MDASJNFO.SET-ATTR(MDAS-REPL_OWNV,
userarray, info, status).

60

MDAS-DATASET attribute Type Use
(Replicate SpecHist)

MDAS.REPL.HSA

MDAS.REPL.HST

MDAS.REPL.HSS

MDASinteger Catalog id# of some action listed in
MDAS.REPL.HSAV for a data set replicate. When
inquiring about data sets, MDAS.REPL.HSA may be
used to match an action tracked for a data set
replicate. To scan or set MDAS.REPL.HSA Info, use
MDAS.REPL.HSC and MDAS.REPL.HSAV.

MDAS.time Time stamp for some spectral history of an action for a
data set replicate. When inquiring about data sets,
MDAS.REPL.HST may be used to match time stamps
of spectral history compilations for actions on a data
set replicate. To scan or set MDAS.REPL.HST Info,
use MDAS.REPL.HSC and MDAS.REPL.HSTV.

MDAS-spectrurfi Spectral histories of an action for a data set replicate.
When inquiring about data sets, MDAS.REPL.HSS
may be used to match spectral history compilations for
arbitrary actions on a data set replicate. To scan or set
MDAS.REPL.HSS Info, use MDAS.REPL.HSC and
MDAS.REPL.HSSV.

MDAS.REPL.HSC MDASinteger

MDAS.REPL.HSAV MDASinteger
array

MDAS.REPL.HSTV MDAS.time
arrav

MDAS.REPL.HSSV MDAS_spectrun
arrav

of actions listed in MDAS.REPL.HSAV,
MDAS.REPL.HSTV, and MDAS.REPL.HSSV. When
inquiring about data sets, MDAS.REPL.HSC may be
used to match the count of actions tracked to date for
a data set replicate. When scanning
MDAS.REPL.HSC from data set Info returned by
MDASJNQUIRE(), the value is the actual count for a
data set replicate. When adding attributes to an Info
structure for Catalog registration, set
MDAS.REPL.HSC before making incremental adds of
MDAS.REPL.HSAV or MDAS.REPL.HSSV.

Array of Catalog id#'s of actions data set replicate.
When inquiring about data sets, MDAS.REPL.HSAV
may be used to match a set of actions tracked for a
data set replicate. To scan MDAS.REPL.HSAV Info,
first scan MDAS.REPL.HSC and allocate an array of
that size, then use MDAS.INFO_SCAN.RATTR(i,
info, MDAS.REPL.HSAV, userarray, status).

Time stamps of spectral history compilations for a
data set replicate. When inquiring about data sets,
MDAS.REPL.HSTV may be used to match the time
stamp array for spectral history compilations on a data
set replicate. To scan MDAS.REPL.HSTV Info, first
scan MDAS.REPL.HSC and allocate an array of that
size, then use MDASJNFO.SCAN_RATTR(/, info,
MDAS.REPL.HSTV, userarray, status).

Spectral histories for a data set replicate. When
inquiring about data sets, MDAS.REPL.HSSV may be
used to match entire spectral history sets a data set
replicate. To scan MDAS.REPL.HSSV Info, first scan
MDAS.REPL.HSC and allocate an array of that size,
then use MDASJNFOJ3CAN.RATTR(i\ info,
MDAS-REPL.HSSV, userarray, status).

61

MDAS-DATASET attribute Type Use

(Replicate Lock)
MDAS-REPL-RLCK MDASJogical Read access lock flag for data set replicate (all

replicates and segments). "True" means read access to

data set is locked.

MDAS-REPL-RLCKS M DAS-time Start time for read access lock flag for data set

replicate.

MDAS.REPL.RLCKE M DAS .time End time for read access lock flag for data set replicate.

MDAS.REPL.RLCKD MDASinteger Domain Catalog id# which is allowed to set read locks

on data set replicate.

MDAS_REPL_WLCK MDASJogical Write access lock flag for data set replicate. "True"

means write access to data set is locked.

MDAS.REPL.WLCKS M DAS-time Start time for write access lock flag for data set

replicate.

MDAS.REPLAVLCKE MDAS-time End time for write access lock flag for data set

replicate.

MDAS.REPL.WLCKD MDASinteger Domain Catalog id# which is allowed to set read locks

on data set replicate.

MDAS-DATASET attribute
(Replicate Security)

MDAS-REPL-AUTK

MDAS-REPL-AUTM

MDAS-REPL-RACCK

MDAS-REPL-RACCM

MDAS-REPL-WACCK

MDAS-REPL-WACCM

MDAS-REPL-CRYK

MDAS-REPL-CRYM

Type

MDAS-string

MDAS-integer

MDAS-string

MDAS-integer

MDAS-string

MDASJnteger

MDAS-string

MDASinteger

Use

Public authorization key for data set replicate.

Method Catalog id# for public authorization key.

Public read-access key for data set replicate.

Method Catalog id# for public read-access key.

Public write-access key for data set replicate.

Method Catalog id# for public write-access key.

Public encryption key for data set replicate.

Method Catalog id# for public encryption key.

MDAS-DATASET attribute Type Use

(Replicate Perf)
MDAS.REPL-PERF TBD TBD.

62

MDAS-DATASET attribute Type Use

(Segment Storage)
MDAS-REPL-SEGC MDASJnteger

MDAS.REPL.SEGM

MDAS.REPL.SEGRV

MDASJnteger

MDASJnteger
array

MDAS-REPL.SEGIV MDASJnteger
array

of segments in individual data set replication. Any
replication may be partitioned. Segments are
registered as independent data sets. By default, all
replications are composed of 1 segment. Use
MDASJNFO.SCAN_RATTR(i, info,
MDAS-REPL_SEGC, replsegc, status) to scan this
value for replicate i. Updates made to individual
segments effect the parent entity according to the
trigger and lineage polices of the parent and child data
sets.

Catalog id# of method used to segment some data set
replicate. Use MDAS.INFO_SCAN.RATTR(i, info,
MDAS-REPL-SEGM, replmeth, status) to scan this
value for replicate i.

Array of segment ranks for Catalog id#'s listed in
MDAS-REPL-SEGIV. These ranks provide the linkage
between MDAS-REPL-SEGIV and
MDAS-REPL-SEGM. Use
MDASJNFO-SCAN-RATTRfi, info,
MDAS-REPL-SEGRV, replsegranks, status) to scan
this value for replicate i.

Array of data set Catalog id#'s composing the
segments of some data set replicate. Use
MDASJNFO-SCAN-RATTR()', info,
MDAS-REPL-SEGIV, replsegids, status) to scan this
value for replicate i.

4.7.2.2.2 MDASJMETHOD

Methods are ultimately stored in a computing environment and therefore share many at-
tributes with data sets. Here, all attributes of methods are listed for completeness. De-
scriptions are only given for those attributes unique to methods.

A method replicate is a storage instance of an executable code. Hence, method replicates
have read, write, and executable attributes. Replicates of the same method instantiated
for different operating systems may have different input, output, and execution parameter
constraints.

A method segment is a physical segment of an executable code or library. Object files
composing a library are an example of segments of an executable library registered as a
method.

Methods may be coupled together to form flows. A flow is a compound method with
specified linkage between its input/output and the inputs/outputs of the member methods,
plus specific internal linkages between the inputs and outputs of the members.

Unique Method Attributes

63

MDAS-METHOD attribute Type Use
(Content Variance)

MDASJVIETHJNVAR MDASJogical Invariant method ^method changes format, not
content.

MDAS.METHJVRTC MDASJnteger Invertible method —«-input is reproducible from output.
MDAS.METH JVRTC is the count of registered
methods that can perform this inversion.

MDAS.METHJVRTM MDASJnteger
array

If MDAS.METHJVRT is greater than 0, then
MDAS.METH JVRTMm is the Catalog id# of a
method which can perform output-to-input inversion.

MDAS.METHJVRTI MDASJnteger
array

For each method m in MDASJVIETHJVRTM,
MDAS.METH JVRTIrofc maps the fcth output of the
invertible method to a given input of
MDASJVIETHJVRTM™. MDASJvf ETHJVRTI has
dimension MDASJVIETHJVRTC by
MDASJVIETH.OUTC.

MDAS.METHJVRTO MDASJnteger
array

For each method m in MDAS.METHJVRTM,
MDASJMETHJVRTIm* designates which output of
MDASJVIETHJVRTMm will reproduce the feth input
of the invertible method. MDASJVIETHJVRTI has
dimension MDASJVIETHJVRTC by
MDASJVIETHJNC.

MDASJVIETHOD attribute Type Use
(Server)

MDAS.SERV JVIETH MDASJogical True if method is a server. See MDAS.SERVER.

MDASJVIETHOD attribute Type Use
(Method Lock) Additional locking attributes for methods.

MDAS.METHJ5LCK MDASJogical Execute access lock flag for logical method (all
replicates and segments). "True" means execute access
to method is locked.

MDASJVIETHJ5LCKS MDAS.time Start time for execute access lock flag for logical
method (all replicates and segments).

MDASJVIETHJ3LCKE MDAS.time End time for execute access lock flag for logical
method (all replicates and segments).

MDASJVIETHJ5LCKD MDASJnteger Domain Catalog id# which is allowed to set execute
locks on logical method.

64

MDAS-METHOD attribute Type Use
(Method Lock) Additional locking attributes for methods.

MDAS.REPL.ELCK MDASJogical Execute access lock flag for a replicate of the method.
"True" means execute access to method is locked.

MDASJREPL-ELCKS MDAS.time Start time for execute access lock flag for a replicate of
the method.

MDAS.REPL.ELCKE MDAS.time End time for execute access lock flag for a replicate of
the method.

MDAS.REPL.ELCKD MDASJnteger Domain Catalog id# which is allowed to set execute
locks on a replicate of the method.

MDASJVIETHOD attribute Type Use
(Method Security) Additional security attributes for methods.

MDAS_STOR_EACCK MDAS-string Execution-access key for logical method (all replicates).

MDAS-STOR.EACCM MDASJnteger Execution-access key method for logical method (all
replicates).

MDAS-METHOD attribute Type Use
(Replicate Security) Additional security attributes for methods.

MDASJIEPL-EACCK MDAS_string Execution-access key for a method replicate (single
instance).

MDASJREPL_EACCM MDASJnteger Execution-access key method for a method replicate
(single instance).

65

MDAS-METHOD attribute
(Method Inputs)

MDAS.METHJNC

MDAS.METH.FIN

MDAS.METH.DIN

MDAS.METH.RIN

MDAS.METH.UIN

MDAS.METH.PIN

Type

MDASJnteger

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

Use

of inputs (data set inputs) to method. May be used
as search criteria across replicate instances of methods.

Format Catalog id#'s of inputs to method. Dimension
is MDAS-METHJNC. May be used as search criteria
across replicate instances of methods.

Data set Catalog id#'s of any static inputs to method.
This array identifies fixed data sets that must be used
each time the method is executed.
MDAS-METH-DINi = NULL indicates no fixed data
set constraint for input i. Dimension is
MDAS-METHJNC. May be used as search criteria
across replicate instances of methods.

Resource Catalog id#'s of any static resource
constraints on method inputs. This array identifies any
fixed resources that must be used with particular
inputs. MDAS.METH.RINi = NULL indicates no
fixed resource constraint for input i. Dimension is
MDAS.METHJNC. May be used as search criteria
across replicate instances of methods.

User Catalog id#'s of any static user constraints on
method inputs. This array identifies any fixed users
that must have ownership of particular inputs.
MDAS.METHJUN, = NULL indicates no fixed user
constraint for input i. Dimension is
MDAS-METHJNC. May be used as search criteria
across replicate instances of methods.

The rank of input #i in the method parameter
specification MDAS.METH.PARAM. Dimension is
MDAS.METHJNC. May be used as search criteria
across replicate instances of methods.

66

MDAS-METHOD attribute Type Use
(Method Repl. Inputs)

MDAS.REPLJNC

MDAS.REPL.FIN

MDAS-REPL-DIN

MDAS.REPL.RIN

MDAS.REPL.UIN

MDAS.REPL.PIN

MDASJnteger

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

of inputs (data set inputs) to method instance.

Format Catalog id#'s of inputs to method instance.
Dimension is MDAS.REPLJNC. Array for replicate r
is read with MDASJNFO-SCANJtATTR().

Data set Catalog id#'s of any static inputs to method
instance. This array identifies fixed data sets that must
be used each time the method is executed.
MDAS-REPL JOIN,- = NULL indicates no fixed data
set constraint for input i. Dimension is
MDAS.REPLJNC. Array for replicate r is read with
MDASJNFO_SCANJtATTR().

Resource Catalog id#'s of any static resource
constraints on method inputs. This array identifies any
fixed resources that must be used with particular
inputs. MDAS.REPL.RIN, = NULL indicates no fixed
resource constraint for input i. Dimension is
MDAS.REPLJNC. Array for replicate r is read with
MDASJNFO_SCANJlATTR().

User Catalog id#'s of any static user constraints on
method inputs. This array identifies any fixed users
that must have ownership of particular inputs.
MDAS.REPL.RIN, = NULL indicates no fixed user
constraint for input i. Dimension is
MDAS.REPLJNC. Array for replicate r is read with
MDASJNFO-SCAN_RATTR().

The rank of input #z in the method parameter
specification MDASJIEPL.PARAM. Dimension is
MDASJIEPLJNC. Array for replicate r is read with
MDASJNFOJSCANJtATTR().

MDAS-METHOD attribute
(Method Outputs)

MDAS.METH.OUTC

MDAS.METH.FOUT

MDAS.METH.DOUT

MDAS.METH.ROUT

MDAS.METH.UOUT

MDAS.METH.POUT

Type

MDASJnteger

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

MDASJnteger
array

Use

of outputs (data set outputs) from method. May be
used as search criteria across replicate instances of
methods.

Format Catalog id#'s of outputs from method.
Dimension is MDAS.METH.OUTC. May be used as
search criteria across replicate instances of methods.

Data set Catalog id#'s of any static outputs from
method. This array identifies fixed data sets that are
reproduced each time the method is executed.
MDAS.METHJ30UT, = NULL indicates no fixed
data set constraint for output i. Dimension is
MDAS.METH.OUTC. May be used as search criteria
across replicate instances of methods.

Resource Catalog id#'s of any static resource
constraints on method outputs. This array identifies
any fixed resources that must be used with particular
outputs. MDAS-METH.ROUT, = NULL indicates no
fixed resource constraint for output i. Dimension is
MDAS.METH.OUTC. May be used as search criteria
across replicate instances of methods.

User Catalog id#'s of any static user constraints on
method outputs. This array identifies any fixed users
that must have ownership of particular outputs.
MDAS.METHJR.OUT; = NULL indicates no fixed
user constraint for output i. Dimension is
MDAS.METH.OUTC. May be used as search criteria
across replicate instances of methods.

The rank of output #i in the method parameter
specification MDAS.METH.PARAM. Dimension is
MDAS.METH.OUTC. May be used as search criteria
across replicate instances of methods.

68

MDAS.METHOD attribute
(Method Repl. Outputs)

MDAS.REPL.OUTC

MDAS.REPL.FOUT

MDAS.REPL.DOUT

MDAS.REPL.ROUT

MDAS.REPL.UOUT

MDAS.REPL.POUT

Type

MDASJnteger

MDASJnteger
arrav

MDASJnteger
array

Us

MDASJnteger
array

MDASJnteger
arrav

MDASJnteger
arrav

of outputs (data set outputs)
for replicate r is read with
MDAS_INFO_SCAN-RATTR().

from method. Value

Format Catalog id#'s of outputs from method.
Dimension is MDAS.REPL.OUTC. Array for replicate
r is read with MDASJNFO.SCAN.RATTR().

Data set Catalog id#'s of any static outputs from
method. This array identifies fixed data sets that are
reproduced each time the method is executed.
MDAS.REPL.DOUT, = NULL indicates no fixed data
set constraint for output i. Dimension is
MDAS.REPL.OUTC. Array for replicate r is read
with MDASJNFOJ3CAN.RATTR().

Resource Catalog id#'s of any static resource
constraints on method outputs. This array identifies
any fixed resources that must be used with particular
outputs. MDAS.REPL.ROUT; = NULL indicates no
fixed resource constraint for output i. Dimension is
MDAS.REPL.OUTC. Array for replicate r is read
with MDASJNFOJSCAN-RATTRQ.

User Catalog id#'s of any static user constraints on
method outputs. This array identifies any fixed users
that must have ownership of particular outputs.
MDAS.REPL.ROUT,- = NULL indicates no fixed user
constraint for output z. Dimension is
MDAS.REPL.OUTC. Array for replicate r is read
with MDASJNFO-SCAN.RATTRQ.

The rank of output #t in the method parameter
specification MDAS.REPL.PARAM. Dimension is
MDAS.REPL.OUTC. Array for replicate r is read
with MDASJNFO_SCAN.RATTR().

69

MDASJVIETHOD attribute

(Execution Parameters)
MDAS-METH-PTMPL

MDAS.METH-PFMT

MDAS-METH.PMETH

MDAS.METH.EXECS

Type

MDASJnteger

M DAS .integer

MDASJnteger

MDASJnteger

Use

Parameter template for method. Utilizes numeric
dummy variables for input and output data sets.

Dummy value 0 is reserved for the storage name of the
executable in the spirit of Unix argv[0]. All other

dummy values are unique and greater than 0.
MDAS JVIETHJTN contains the mapping of listed
inputs to dummy values for inputs.
MDAS_METH_POUT contains the mapping of listed
inputs to dummy values for outputs. NULL values in
either array indicate no mapping. Note that

MDAS-METH-PIN and MDAS.METH-POUT are
disjoint with the possible exception of NULL values.

May be used as search criteria across replicate

instances of methods.

Format Catalog id# parameter template. May be used

as search criteria across replicate instances of methods.

Method Catalog id# for method (or MDAS Library

routine) which takes MDAS-METH.PIN,
MDAS-METH-POUT, MDAS.METH_PTMPL,
MDAS-STOR-DIR, MDAS.STOR.NAME, etc. as
input and produces a parameter stream suitable for
MDAS-METH.EXECS. May be used as search criteria
across replicate instances of methods.

Server Catalog id# for service (or MDAS Library
routine) which takes output of MDAS.METH-PMETH

and executes the MDASJVIETHOD. May be used as
search criteria across replicate instances.

MDAS-METHOD attribute Type Use

(Repl. Execution Param's)
MDAS.REPL.PTMPL MDASJnteger

MDAS-REPL.PFMT

MDAS.REPL.PREPL

MDASJnteger

MDASJnteger

MDAS.REPL.EXECS MDASJnteger

Parameter template for method instance. Utilizes
numeric dummy variables for input and output data
sets. Dummy value 0 is reserved for the storage name
of the executable in the spirit of Unix argv [0]. All
other dummy values are unique and greater than 0.
MDAS-REPL-PIN contains the mapping of listed
inputs to dummy values for inputs.
MDAS_REPL_POUT contains the mapping of listed
inputs to dummy values for outputs. NULL values in
either array indicate no mapping. Note that
MDAS.REPL.PIN and MDASJtEPLJ>OUT are
disjoint with the possible exception of NULL values.
Value for replicate r is read with
MDAS.INFOJ3CAN-RATTR().

Format Catalog id# parameter template for method
instance. Value for replicate r is read with
MDAS-INFO-SCANJRATTR().

Method Catalog id# for method (or MDAS Library-
routine) which takes MDAS.REPL.PIN,
MDAS-REPL-POUT, MDAS_REPL_PTMPL,
MDASJtEPL_DIR, MDAS.REPLJNTAME, etc. as
input and produces a parameter stream suitable for
MDAS.REPL.EXECS. Value for replicate r is read
with MDASJNFO_SCAN_RATTR().

Server Catalog id# for service (or MDAS Library
routine) which takes output of MDAS.REPLJPREPL
and executes the MDASJVIETHOD instance. Value for
replicate r is read with MDASJNFO-SCAN-RATTRQ.

71

MDAS.METHOD attribute
(Method Flow)

MDAS.METH.FLOWC

MDAS-METHJFLOWM

MDAS-METH-FLOWI

MDAS-METH-FLOWO

MDAS.METH.FLOWE

Type

MDASJnteger

MDASJnteger
array

MDASJnteger
array

MDASJnteger
arrav

MDASJnteger
matrix

Use
Methods may be coupled together to form flows. A
flow is a compound method with specified linkage
between its input/output and the inputs/outputs of
the member methods, plus specific internal linkages
between the inputs and outputs of the members.

of methods forming flow. May be used as search
criteria across replicate instances of methods.

Method Catalog id#'s of flow methods. Dimension is
MDAS-METH-FLOWC. May be used as search
criteria across replicate instances of methods.

Linkage of flow inputs to each method input.
Dimension is 2 by MDAS-METH-FLOWC. If
MDAS-METH-FLOWI.-i = m and
MDAS-METH-FLOWI.-2 = it then input i of the flow
maps to input k of flow method m. May be used as
search criteria across replicate instances of methods.

Linkage of flow outputs to each method output.
Dimension is 2 by MDASJV1ETH -FLOWC. If
MDASJV1ETHJLOWOji = n and
MDAS.METH_FLOWOj2 = m then input j of the
flow maps to input, n of flow method m. May be used
as search criteria across replicate instances of methods.

Execution dependence matrix. Dimension is
MDAS-METH-FLOWC by MDAS-METH JLOWC. If
MDAS_METH_FL0WE3t = true then the execution of
flow method s depends (in some unspecified way) on
the execution of flow method t. If false, then there is no
dependency of s on t. If the value is MDAS-RECUR,
then s has recursive dependencies on t. Flows with
recursion will be executed at least two times until a
first version of the final output(s) defined in
MDAS-METH-FLOWO are produced. Note that input
and output linkage is given in MDAS.METHTLOWI
and MDAS-METH-FLOWO. May be used as search
criteria across replicate instances of methods.

MDAS-METHOD attribute Type Use

(Flow Instances)

MDAS.REPL.FLOWC

MDAS.REPL.FLOWM

MDASJnteger

MDASJnteger

array

MDAS.REPL.FLOWI

MDAS.REPL.FLOWO

MDAS.REPL.FLOVVE

MDASJnteger
array

MDASJnteger
array

MDASJnteger
matrix

Methods may be coupled together to form flows. A
flow is a compound method with specified linkage

between its input/output and the inputs/outputs of

the member methods, plus specific internal linkages
between the inputs and outputs of the members.

of methods forming flow. Value for flow replicate r
is read with MDASJNFO_SCAN_RATTR().

Method Catalog id#'s and replicate #'s of flow
instance methods; i.e., the constituent methods of a
particular flow replicate. Dimension is 2 by

MDAS.REPL.FLOWC. MDAS.REPL.FLOWM;i is
flow instance method, MDAS JtEPL JLOWMl2 is
specific replicate of flow instance method. Array for
flow replicate r is read with

MDAS_INFOJ3CANJtATTR().

Linkage of flow inputs to each method input.

Dimension is 3 by MDAS.REPL.FLOWC. If
MDAS-REPL-FLOWIii = m and

MDAS.REPL.FLOWIi2 = k then input i of the flow
maps to input k of flow method m. May be used as

search criteria across replicate instances of methods.
Array for flow replicate r is read with

MDASJNFO-SCANJtATTR().

Linkage of flow outputs to each method output.

Dimension is 2 by MDAS_REPL_FLOWC. If
MDAS-METH-FLOWOji = n.

MDAS.METH_FLOWOj2 = m, and
MDAS-METH-FLOWOjs = r then output j of the
flow maps to output n of replicate r of flow method m.
Array for flow replicate r is read with
MDASJNFO_SCAN JtATTR(').

Execution dependence matrix. Dimension is
MDAS_REPL_FLOWC by MDAS.REPL.FLOWC. If
MDAS_REPL.FLOWE3t = true then the execution of
flow method s depends (in some unspecified way) on
the execution of flow method t. If false, then there is
no dependency of s on t. If the value is
MDAS-RECUR, then s has recursive dependencies on
/. Flows with recursion will be re-executed until the
first version(s) of the final output(s) defined in

MDAS.REPL.FLOVVO are produced. Note that input
and output linkage is given in MDAS.REPL.FLOWI

and MDAS.REPL.FLOWO. Array for flow replicate r
is read with MDASJNFOJ5CAN_RATTR().

MDASJVIETHOD attribute Type Use

(Intra-Flow Linkage)

MDAS.REPL.FLOWX MDASJnteger
array

MDAS.REPL.FLOWU MDASJnteger
array

MDAS.REPL-FLOWY MDASJnteger
array

MDAS.REPL.FLOWV MDASJnteger
array

MDAS.REPL.FLOWZ MDASJnteger
matrix

Methods may be coupled together to form flows. A
flow is a compound method with specified linkage
between its input/output and the inputs/outputs of
the member methods, plus specific internal linkages
between the inputs and outputs of the members.

For each MDAS.REPL.FLOWM, the # of inputs with
intra-flow dependencies. An input has intra-flow
dependency if it requires the output of another method
in the flow. MDAS.REPL.FLOWX, is the # of
dependent inputs for replicate
MDAS_REPL.FLOWMi2 of method
MDAS.REPL_FLOWMii. Array for flow replicate r is
read with MDASJNFO.SCANJIATTRQ.

For each MDAS.REPL.FLOWM dependent input, the
dependent output and method #.
MDAS.REPLJFLOWUii is the of dependent input #
in method i, MDAS.REPL.FLOWU!2 is the flow
method instance in MDAS.REPL-FLOWM on which
method i depends, and MDAS.REPL_FLOWU!3 is the
output # of MDAS.REPL.FLOWUl2 which input
MDAS-REPL.FLOWUii needs. Array for flow
replicate r is read with MDASJNFO.SCAN.RATTR().

For each MDAS.REPL-FLOWM, the # of outputs
with intra-flow dependencies. An output has intra-flow
dependency if it is required for input by of another
method in the flow. MDAS.REPL.FLOWY, is the #
of dependent outputs for replicate
MDAS.REPL_FLOWM,2 of method
MDAS.REPL.FLOWM;! • Array for flow replicate r is
read with MDAS.INFO.SCAN-RATTR().

For each MDAS.REPL-FLOWM dependent output,
the dependent input and method #.
MDAS-REPL-FLOWUii is the # of the dependent
output in method i, MDAS.REPL_FLOWUl2 is the
flow method instance in MDAS.REPL.FLOWM which
is dependent upon method i, and
MDAS.REPL.FLOWUt3 is the input # in
MDAS.REPL.FLOWUt2 which needs
MDAS.REPL.FLOWUti. Array for flow replicate r is
read with MDASJNFO.SCAN_RATTR().

Data flow dependence matrix. The inputs to each
method in MDAS.REPL.FLOWM form a block of
rows in MDAS.REPL.FLOWZ, there are a total of
E MDAS.REPL.FLOWX; rows. Similarly, the outputs
of each flow method form a block of columns and there
are E MDAS.REPL.FLOWY., columns. If
MDAS-REPL.FLOWX.J = MDAS.TRUE then output
#j is linked to input #i. Matrix values are otherwise
false. If an entire column is false and the corresponding
output data set is new, it may be discarded. Matrix for
flow replicate r is read with
MDAS.INFO.SCAN JIATTRQ.

Shared Attributes

MDAS-METHOD attribute Type Use
(Base) Methods share these attributes with data sets.

MDAS-NAME MDAS-string
MDASJD MDASJnteger
MDAS.CDJD . MDASJnteger

MDAS-METHOD attribute Type Use
(Version)

MDAS.VERSION
MDAS-VERSIONX
MDAS_VERSIONM
MDAS.VERSIONP
MDAS.VERSIONN

MDAS-string
MDASJogical
MDASJnteger
MDASJnteger
MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Alias) Methods share these attributes with data sets.

MDAS-ALIAS MDAS-string
MDAS-ALIASC MDASJnteger
MDAS-ALIASV MDAS_string

array

MDAS-METHOD attribute Type Use
(Documentation)

MDAS-ABSTRACT
MDAS-DOC

MDASJnteger
MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(SD) Methods share these attributes with data sets.

MDAS-SD-TABLE
MDAS.SD.KEYC
MDAS-SD-COLS

MDASJnteger
MDASJnteger
MDAS-string

MDAS-SD-KEY-TYP
MDAS-SD-KEYS
MDAS-SD.LOB-COL

array
MDASJnteger
MDAS-handle
MDAS-string

MDAS-METHOD attribute Type Use
(Logical Group) Methods share these attributes with data sets.

MDAS-STOR-GRPN
MDAS-STOR-GRPI
MDAS-STOR_GRPNC
MDAS-STOR-GRPNV

MDAS-string
MDASJnteger
MDASJnteger
MDAS-string

MDAS-STOR-GRPIC
MDAS-STOR-GRPIV

array
MDASJnteger
MDASJnteger
array

to

MDAS-METHOD attribute Type Use

(Logical Domain) Methods share these attributes with data sets.

MDAS-STOR-DMNN MDAS-string
MDASJ5TORJDMNI MDASJnteger
MDAS_STOR.DMNNC MDASJnteger
MDAS.STOR-DMNNV MDAS-string

array
MDAS.STOR-DMNIC MDAS-integer
MDAS.STOR_DMNIV MDAS-integer

array

MDAS-METHOD attribute
(Input Lineage)

MDAS-STORJN
MDASJ3TORJNC
MDAS-STORJNV

Type

MDASJnteger
MDAS-integer
MDAS-integer
array

Use
Methods share these attributes with data sets.

MDAS-METHOD attribute
(Consequential Lineage)

MDAS-STOR-OUT
MDAS-STOR-OUTC
MDAS-STOR-OUTV

Type

MDAS-integer
MDAS-integer
MDASJnteger
array

Use
Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Generation Lineage)

MDAS-STOR_GEN
MDAS-STOR-GNP
MDAS-STOR-GNR
MDAS-STOR.GNU

MDASJnteger
MDAS-string
MDASJnteger
MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Re-Generation Policy)

MDAS-STOR-PLCY MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Trigger) Methods share th ese attributes with data sets.

MDAS-STOR-TRGM MDASJnteger
MDAS-STOR-TRGP MDASJnteger
MDAS-STOR-TRGC MDASJnteger
MDAS-STOR.TRGMV MDASJnteger

array
MDAS-STOR-TRGPV MDASJnteger

array

MDAS-METHOD attribute Type Use
(Storage Date)

MDASJSTORJDATE MDAS.time

Methods share these attributes with data sets.

MDASJVIETHOD attribute Type Use
(Storage Permanence) Methods share these attributes with data sets.

MDAS-STOR-PERM MDAS.double
MDAS.STOR_PURG MDASJogical

MDAS.METHOD attribute Type Use
(Storage Size)

xMDAS.STOR.SIZE MDAS-size

Methods share these attributes with data sets.

MDASJVIETHOD attribute Type Use
(Storage Format) Methods share these attributes with data sets.

MDAS.STOR-FMTN MDAS_string
MDAS.STOR.FMTI MDASJnteger

MDAS.METHOD attribute Type Use
(Storage Resource)

MDAS.STOR.RSCN
MDAS.STOR.RSCI

MDAS-string
MDASJnteger

Methods share these attributes with data sets.

MDASJVIETHOD attribute Type Use
(Storage Server)

MDAS.STOR.SRVN
MDAS.STORJSRVI

MDAS-string
MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Storage Path and Name) Methods share these attributes with data sets.

MDAS.ST0R.DIR MDAS-string
MDAS.STOR.NAM MDAS-string

MDAS-METHOD attribute Type Use
(Method Owner)

MDAS-STOR-OWN MDASJnteger

Methods share these attributes with data sets.

MDAS.METHOD attribute Type Use

(Method SpecHist) Methods share these attributes with data sets.

MDAS.STOR.HSA MDASJnteger
MDAS-STOR-HST M DAS .time
MDAS-STOR.HSS MDAS_spectruri
MDAS.STOR-HSC MDASJnteger
MDAS.STOR.HSAV MDASJnteger

array
MDAS-STOR.HSTV MDAS.time

array
MDAS.STOR.HSSV MDAS-spectrun

array

MDAS.METHOD attribute Type Use

(Method Perf)

MDAS-STOR.PERF TBD

Methods share these attributes with data sets.

TBD.

MDAS-METHOD attribute
(Method Lock)

MDAS.
MDAS
MDAS
MDAS
MDAS
MDAS
MDAS
MDAS

.STOR.

.STOR.

.STOR.

.STOR.

.STOR.

.STOR.

.STOR.

.STOR.

RLCK
RICKS
.RLCKE
RLCKD
WLCK
WLCKS
WLCKE
WLCKD

Type

MDASJogical
MDAS.time
MDAS.time
MDASJnteger
MDASJogical
MDAS.time
MDAS.time
MDASJnteger

Use
Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use

(Method Security) Methods share these attributes with data sets.

MDAS.STOR-AUTK MDAS-string
MDAS.STOR.AUTM MDASJnteger
MDAS.STOR.RACCK MDAS_string
MDAS.STOR.RACCM MDASJnteger
MDAS-STOR.WACCK MDAS-string
MDAS-STOR-WACCM MDASJnteger
MDAS-STOR-CRYK MDAS-string
MDAS-STOR-CRYM MDASJnteger

MDAS.METHOD attribute
(Replicates)

MDAS-REPLICATES

Type

MDASJnteger

Use
Methods share these attributes with data sets.

MDAS.METHOD attribute Type Use
(Replicate Group) Methods share these attributes with data sets.

MDAS-REPL.GRPN MDAS-string
MDAS.REPL.GRPNC MDASJnteger

array
MDAS.REPL.GRPNV MDAS-string

array
MDAS.REPL.GRPI MDASJnteger
MDAS.REPL_GRPIC MDASJnteger

array
MDASJIEPL.GRPIV MDAS-string

array

MDAS-METHOD attribute Type Use
(Replicate Domain) Methods share these attributes with data sets.

MDAS-REPL-DMNN MDAS_string
MDAS.REPL.DMNNC MDASJnteger

arrav
MDAS.REPL.DMNNV MDAS-string

array
MDAS-REPL-DMNI MDASJnteger
MDAS-REPL-DMNIC MDASJnteger

array
MDAS.REPL-DMNIV MDAS-string

array

MDAS-METHOD attribute Type Use
(Repl. Input Lineage) Methods share these attributes with data sets.

MDAS-REPLJN MDASJnteger
MDAS-REPLJNC MDASJnteger
MDAS-REPLJNV MDASJnteger

array

MDAS-METHOD attribute
(Repl. Conseq. Lineage)

MDAS-REPL-OUT
MDAS-REPL-OUTVC
MDAS-REPL-OUTV

Type

MDASJnteger
MDASJnteger
MDASJnteger
arrav

Use
Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Repl. Gen. Lineage)

MDAS-REPL-GEN
MDAS-REPL-GNP
MDAS.REPL.GNR
MDAS-REPL-GNU

MDASJnteger
MDAS-string
MDASJnteger
MDASJnteger

Methods share these attributes with data sets.

MDAS-METHOD attribute
(Replication Trigger)

MDAS-REPL-TRGM
MDAS.REPL.TRGP
MDAS.REPL.TRGC
MDAS.REPL.TRGMV

MDAS.REPL.TRGPV

Type

MDASJnteger
MDASJnteger
MDASJnteger
MDASJnteger
array
MDASJnteger
array

Use
Methods share these attributes with data sets.

MDAS.METHOD attribute Type Use
(Repl. Re-Gen. Policy)

MDAS.REPL-PLCY MDASJnteger

Methods share these attributes with data sets.

MDASJV1ETHOD attribute
(Replicate Dates)

MDASJtEPLJDATE
MDASJLEPLJDATEV

Type

MDAS.time
MDAS.time
array

Use
Methods share these attributes with data sets.

MDAS-METHOD attribute Type Use
(Replicate Permanence) Methods share these attributes with data sets.

MDASJtEPL-PERM MDAS-double
MDASJIEPL-PERMV MDAS_double

array
MDASJtEPL_PURG MDASJogical
MDASJtEPL_PURGV MDASJogical

array

MDAS-METHOD attribute
(Replicate Sizes)

MDASJfcEPL-SIZE
MDAS.REPL.SIZEV

Type

MDAS-size
MDAS_size
array

Use
Methods share these attributes with data sets.

80

MDASJVIETHOD attribute Type Use

(Replicate Format) Methods share these attributes with data sets.

MDAS.REPL.FMTH MDASJogical

Note: a method replicate
with heterogeneous format
segments will not have any
data in the format
attributes below. See
MDAS-REPL-SEGC.

MDAS.REPL.FMTN MDAS-string
MDAS.REPL.FMTNV MDAS_string

arrav
MDAS.REPL_FMTI MDASJnteger
MDAS.REPL_FMTIV MDASJnteger

array

MDAS.METHOD attribute Type Use
(Repl. Storage Resource) Methods share these attributes with data sets.

MDAS.REPL.RSCH MDASJogical

Note: a method replicate
with distributed storage
segments will not have any
data in the resource
attributes below. See
MDAS.REPL-SEGC.

MDAS-REPL-RSCN MDAS-string
MDAS-REPL-RSCNV MDAS-string

arrav
MDAS-REPL-RSCI MDASJnteger
MDAS-REPL-RSCIV MDASJnteger

array

MDAS.METHOD attribute Type Use
(Repl. Storage Server) Methods share these attributes with data sets.

MDAS-REPL-SRVH MDASJogical

Note: a method replicate
with heterogeneous
storage service segments
will not have any data in
the server attributes
below. See
MDAS-REPL-SEGC.

MDAS-REPL-SRVN
MDAS-REPL-SRVNV

MDAS-string
MDAS-string

MDAS-REPL-SRVI
MDAS-REPL-SRVIV

array
MDASJnteger
MDASJnteger
array

81

MDAS-METHOD attribute Type Use

(Repl. Dir. and Name) Methods share these attributes with data sets.

Note: a method replicate
with heterogeneous
storage segments will not
have any data in the
directory and name
attributes below. See
MDAS.REPL.SEGC.

MDAS.REPL.DIRN MDAS-string
MDAS.REPL.DIRNV MDAS-string

array
MDAS_REPL_NAMN MDAS-string
MDAS-REPL-NAMNV MDAS-string

array

MDAS-METHOD attribute Type Use
(Replicate Owner)

MDAS-REPL-OWN
MDAS-REPL-OWNV

MDAS-string
MDAS-string
array

Methods sh ire these attributes with data sets.

MDAS_METHOD attribute Type Use
(Replicate SpecHist) Methods share these attributes with data sets.

MDAS-REPL-HSA MDAS-integer
MDAS-REPL-HST MDAS-time
MDAS-REPL-HSS MDAS_spectrur l
MDAS-REPL-HSC MDASJnteger
MDAS-REPL-HSAV MDAS_integer

arrav
MDAS-REPL-HSTV MDAS-time

arrav
MDAS_REPL-HSSV MDAS-spectrur

array
l

MDAS-METHOD attribute Type Use
(Replicate Lock) Methods share these attributes with data sets.

MDAS-REPL-RLCK MDASJogical
MDAS-REPL-RLCKS MDAS-time
MDAS-REPL-RLCKE MDAS-time
MDAS-REPL-RLCKD MDAS_integer
MDAS-REPL-WLCK MDAS-logical
MDAS-REPL-WLCKS MDAS-time
MDAS-REPL-WLCKE MDAS-time
MDAS-REPL-WLCKD MDASJnteger

82

MDAS-METHOD attribute Type Use
(Replicate Security) Methods share these attributes with data sets.

MDAS-REPL-AUTK MDAS-string
MDAS.REPL_A.UTM MDASJnteger
MDAS.REPLJIACCK MDAS-string
MDAS-REPL.RACCM MDASJnteger
MDAS.REPL.WACCK MDAS.string
MDAS.REPL.WACCM . MDASJnteger
MDAS.REPL.CRYK MDAS-string
MDAS.REPL.CRYM MDASJnteger

MDASJvlETHOD attribute Type Use
(Replicate Perf)

MDAS.REPL.PERF TBD

Methods share these attributes with data sets.

TBD.

MDAS-METHOD attribute Type Use
(Segment Storage) Methods share these attributes with data sets.

MDAS-REPL-SEGC
MDAS-REPL-SEGM
MDAS-REPL-SEGRV

MDASJnteger
MDASJnteger
MDASJnteger

MDAS-REPL_SEGIV
array
MDASJnteger
array

4.7.2.2.3 MDAS_RESOURCE

Resources share many attributes with data sets and methods. Since resources are not
truly "stored", the prefix MDAS_ST0R_ is redefined to MDAS.RSRC for resources. Further,
resources are not considered to be replicable. To identify resources with similar (or identical)
characteristics, define a group and give the resources membership in that group.

Here, all attributes of resources are listed for completeness. Descriptions are only given for
those attributes unique to resources.

A resource location is a description of its network address and physical local.

A resource segment is a physical component (e.g., peripheral) of a compound computer
system.

Unique Resource Attributes

MDAS-RESOURCE attribute Type Use
(Resource Location)

MDAS-RSRC-LOC TBD TBD.

83

MDAS-RESOURCE attribute Type Use

(Resource Services)
MDAS.RSRC-SRVI MDASinteger Catalog id# of some available server.

MDAS-RSRCSRVN MDASJnteger Name or alias of some available server.

MDAS-RSRCSRVC MDASinteger # of services available.

MDAS.RSRC.SRVIV MDASJnteger Catalog id#'s of available servers.

MDAS.RSRC.SRVNV
array
MDAS-string
array

Names of available servers.

Shared Attributes

MDAS-RESOURCE attribute Type Use

(Base)

MDAS-NAME
MDASJD
MDAS-CDJD

MDAS-string
MDASJnteger
MDASJnteger

Resources share these attributes with data sets.

MDAS_RESOURCE attribute Type Use

(Version) Resources share these attributes with data sets.

MDAS-VERSION MDASjütring
MDAS-VERSIONX MDASJogical
MDAS-VERSIONM MDASJnteger
MDAS-VERSIONP MDASJnteger
MDAS-VERSIONN MDASJnteger

MDAS-RESOURCE attribute Type Use

(Abas) Resources share these attributes with data sets.

MDAS-ALIAS MDASjätring
MDAS-ALIASC MDASJnteger
MDAS-ALIASV MDAS_string

array

MDAS-RESOURCE attribute Type Use

(Documentation)

MDAS-ABSTRACT
MDAS-DOC

MDASJnteger
MDASJnteger

Resources share these attributes with data sets.

84

MDAS.RESOURCE attribute Type Use
(Logical Group)

MDAS.RSRC.GRPN
MDAS-RSRC.GRPI
MDAS.RSRC.GRPNC
MDAS-RSRC.GRPNV

MDAS-RSRC-GRPIC
MDAS_RSRC_GRPIV

MDAS_string
MDASJnteger
MDASJnteger
MDAS-string
array
MDASJnteger
MDASJnteger
array

Resources share these attributes with data sets.

MDAS-RESOURCE attribute Type Use
(Logical Domain) Resources share these attributes with data sets.

MDAS.RSRC.DMNN
MDAS.RSRC.DMNI
MDAS.RSRC.DMNNC
MDAS.RSRC.DMNNV

MDAS_string
MDASJnteger
MDASJnteger
MDAS-string

MDAS.RSRC.DMNIC
MDAS-RSRC.DMNIV

array
MDASJnteger
MDASJnteger
array

MDAS-RESOURCE attribute Type Use
(Trigger) Resources share th ese attributes with data sets.

MDAS_RSRC_TRGM
MDAS.RSRC.TRGP
MDAS_RSRC.TRGC
MDAS-RSRC.TRGMV

MDASJnteger
MDASJnteger
MDASJnteger
MDASJnteger

MDAS-RSRC_TRGPV
array
MDASJnteger
array

MDAS-RESOURCE attribute
(Instantiation Date)

MDAS.RSRC.DATE

Type

MDAS.time

Use
Resources share these attributes with data sets.

MDAS-RESOURCE attribute Type Use
(Resource Format)

MDAS-RSRC-FMTN
MDAS-RSRC-FMTI

MDAS-string
MDASJnteger

Resources share these attributes with data sets.

MDAS-RESOURCE attribute
(Resource Owner)

MDAS-RSRC.OWN

Type

MDASJnteger

Use
Resources share these attributes with data sets.

85

MDAS-RESOURCE attribute
(Resource SpecHist)

MDAS.RSRC.HSA
MDAS_RSRC.HST
MDAS.RSRC.HSS
MDAS.RSRC-HSC
MDAS_RSRC.HSAV

MDAS.RSRC.HSTV

MDAS.RSRC_HSSV

Type

MDASJnteger
MDAS.time
MDAS-spectrun
MDASJnteger
MDASJnteger
array
MDAS.time
array
MDAS-spectrurji
array

Use
Resources share these attributes with data sets.

MDAS.RESOURCE attribute
(Resource Perf)

MDAS.RSRC.PERF

Type

TBD

Use
Resources share these attributes with data sets.

TBD.

MDAS.RESOURCE attribute Type Use

(Resource Lock) Resources share
methods.

these attributes with data sets and

MDAS-RSRC-RLCK MDASJogical

MDAS-RSRC-RLCKS MDAS.time

MDAS.RSRC.RLCKE MDAS.time

MDAS.RSRC.RLCKD MDASJnteger

MDAS-RSRC_WLCK MDASJogical

MDAS-RSRC-VVLCKS MDAS.time

MDAS-RSRC-WLCKE MDAS.time

MDAS-RSRC-WLCKD MDASJnteger

MDAS-RSRC-ELCK MDASJogical

MDAS-RSRC-ELCKS MDAS.time

MDAS-RSRC_ELCKE MDAS.time

MDAS-RSRC-ELCKD MDASJnteger

MDAS-RESOURCE attribute Type Use

(Resource Security) Resources share these attributes with data sets
methods.

and

MDAS.RSRC.AUTK MDAS_string

MDAS-RSRC-AUTM MDASJnteger

MDAS.RSRC.RACCK MDAS-string

MDAS.RSRC.RACCM MDASJnteger

MDAS.RSRC.WACCK MDAS-string

MDAS-RSRC.WACCM MDASJnteger

MDAS-RSRC.EACCK MDAS-string
MDAS.RSRC.EACCM MDASJnteger

MDAS.RSRC.CRYK MDAS-string

MDAS.RSRC.CRYM MDASJnteger

86

MDAS.RESOURCE attribute Type Use

(Resource Segments) Resources share these attributes with data sets.

MDAS.RSRCJSEGC MDASJnteger

MDAS-RSRC-SEGM MDASJnteger
MDAS.RSRC.SEGRV MDASJnteger

arrav
MDAS.RSRC.SEGIV MDASinteger

array

4.7.2.2.4 MDASJJSER

A user is the owner of a data set, method, resource, or process. User accounts are in-
stantiated by a system administrator and gain access to resources through membership in
security domains. An individual (human) with multiple accounts is considered a single user
with replicate accounts. Each replicate can have separable access characteristics through
individual domain attributes. To identify users with similar (or identical) characteristics,
users membership in a group or domain.

User metadata have some attributes common to data sets and methods, but are not parti-
tioned into segments. Here, all attributes of users are listed for completeness. Descriptions
are only given for those attributes unique to users.

Unique User Attributes

TBD.

Shared Attributes

MDASJJSER attribute Type Use
(Account Lock) Users share these attributes with other entities.

MDASJJSER.ELCK MDASJogical Users share these attributes with other entities.

MDAS_USER.ELCKS MDAS.time Users share these attributes with other entities.

MDAS.USER_ELCKE MDAS.time Users share these attributes with other entities.

MDAS.USER.ELCKD MDASJnteger Users share these attributes with other entities.

MDAS.USER attribute Type Lrse
(Account Lock) Users share these attributes with other entities.

MDAS-REPL.ELCK MDASJogical Users share these attributes with other entities.

MDAS.REPL.ELCKS MDAS_time Lasers share these attributes with other entities.

MDAS-REPL.ELCKE MDAS.time Users share these attributes with other entities.

MDAS-REPL.ELCKD MDASJnteger t'sers share these attributes with other entities.

87

MDAS.USER attribute Type Use
(Account Security) Users share these attributes with other entities.

MDAS.STOR-EACCK MDAS-string Users share these attributes with other entities.

MDAS.STOR.EACCN MDASJnteger Users share these attributes with other entities.

MDAS.USER attribute
(Replicate Security)

MDAS-REPL.EACCK

MDAS.REPL.EACCV.

Type

MDAS-string

MDASJnteger

Use
Users share these attributes with other entities.

Users share these attributes with other entities.

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Base)

MDAS-NAME
MDASJD
MDAS-CDJD

MDAS-string
MDASJnteger
MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Version) Users share these attributes with other entities.

MDAS-VERSION M DAS jst ring
MDAS-VERSIONX MDASJogical
MDAS-VERSIONM MDASJnteger
MDAS.VERSIONP MDASJnteger
MDAS-VERSIONN MDASJnteger

MDAS.USER attribute Type Use

(Alias) Users share these attributes with other entities.

MDAS-ALIAS MDAS.string
MDAS.ALIASC MDASJnteger
MDAS_ALIASV MDAS.st.ring

array

MDAS.USER attribute Type Use
(Documentation)

MDAS_ABSTRACT
MDAS.DOC

MDASJnteger
MDASJnteger

Users share these attributes with other entities.

88

MDAS.USER attribute
(SD)

MDAS.SD.TABLE
MDASJSD.KEYC
MDAS-SD.COLS

MDAS_SD.KEY.TYP
MDAS-SD.KEYS
MDAS.SD.LOB.COL

Type

MDASJnteger
MDASJnteger
MDAS-string
array
MDASJnteger
MDASJiandle
MDAS_string

Use
Users share these attributes with other entities.

MDAS.USER attribute
(Logical Group)

MDAS.STOR.GRPN
MDAS.STOR.GRPI
MDAS.STOR.GRPNC
MDAS.STOR.GRPN\

MDAS-STOR.GRPIC
MDAS.STOR.GRPIV

Type

MDAS-string
MDASJnteger
MDASJnteger
MDAS-string
array
MDASJnteger
MDASJnteger
array

Use
Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Logical Domain)

MDAS.STOR.DMNN
MDAS.STOR.DMNI
MDAS.STOR.DMNNCfc
MDAS.STOR.DMNNV

MDAS-STOR.DMNIC
MDAS.STOR.DMNIV

Users share these attributes with other entities.

MDAS-string
MDASJnteger
MDASJnteger
MDAS_string
array
MDASJnteger
MDASJnteger
arrav

MDAS.USER attribute
(Input Lineage)

MDAS-STORJN
MDAS.STOR.INC
MDAS.STORJNV

Type

MDASJnteger
MDASJnteger
MDASJnteger
array

Use
Users share these attributes with other entities.

MDAS.USER attribute
(Consequential Lineage)

MDAS-STOR-OUT
MDAS.STOR.OUTC
MDAS.STOR.OUTV

Type

MDASJnteger
MDASJnteger
MDASJnteger
arrav

Use
Users share these attributes with other entities.

89

MDAS-USER attribute Type Use

(Generation Lineage)

MDAS-STOR.GEN
MDAS-STOR-GNP
MDAS.STOR-GNR
MDAS_STOR.GNU

MDASJnteger
MDASjstring
MDASJnteger
MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Re-Generation Policy)

MDAS.STOR.PLCY MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Trigger) Users share these attributes with other entities.

MDAS-STOR-TRGM MDASJnteger
MDAS.STOR-TRGP MDASJnteger
MDAS.STOR.TRGC MDASJnteger
MDAS-STOR-TRGM'\ r MDASJnteger

array
MDAS-STOR.TRGPV MDASJnteger

array

MDAS.USER attribute Type Use

(Storage Date)

MDAS.STOR-DATE MDAS-time

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Storage Permanence)

MDAS-STOR-PERM
MDAS-STOR-PURG

MDAS-double
MDASJogical

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Storage Format)

MDAS-STOR-FMTN
MDAS-STOR-FMTI

MDASjstring
MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Storage Resource)

MDAS-STOR-RSCN
MDAS.STOR-RSCI

MDAS-string
MDASJnteger

Users share these attributes with other entities.

MDAS-USER attribute Type Use

(Storage Server) Users share these attributes with other entities.

MDAS-STOR-SRVN MDAS-string
MDAS-STOR-SRVI MDASJnteger

90

MDAS.USER attribute Type Use

(Storage Path and Name) Users share these attributes with other entities.

MDAS-STOR-DIR MDASjstring
MDAS-STOR-NAM MDASjstring

MDAS.USER attribute Type Use

(Account Admin.)

MDAS.STOR.OWN MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(User SpecHist) Users share these attributes with other entities.

MDAS-STOR.HSA MDAS Jnteger
MDAS.STOR.HST MDAS.time
MDAS.STOR.HSS MDAS-spectruri l
MDAS.STOR.HSC MDASJnteger
MDAS.STOR_HSAV MDASinteger

arrav
MDAS.STOR.HSTV MDAS.time

array
MDAS.STOR_HSSV MDAS-spectrui

array
l

MDAS.USER attribute Type Use
(User Perf)

MDAS.STOR.PERF TBD

Users share these attributes with other entities.

TBD.

MDAS.USER attribute Type Use
(User Lock)

MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.

.STOR.

.STOR.

.STOR.

.STOR.
STOR.
.STOR.
STOR.
STOR.

RLCK
RLCKS
RLCKE
RLCKD
WLCK
WLCKJ
WLCKE
WLCKD

MDASJogical
MDAS.time
MDAS.time
MDASJnteger
MDASJogical
MDAS.time
MDAS.time
MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(User Security) Users share these attributes with other entities.

MDAS.STOR.AUTK MDAS-string
MDAS.STOR.AUTM MDASJnteger
MDAS-STOR.RACC'K MDASjstring
MDAS.STOR.RACCX : MDASJnteger
MDAS-STOR.WACCI : MDASjstring
MDAS.STOR.WACO I MDASJnteger
MDAS-STOR.CRYK MDASjstring
MDAS.STOR.CRYM MDASJnteger

91

MDAS-USER attribute Type Use
(Replicates)

MDAS-REPLICATES MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use

(Replicate Group) Users share these attributes with other entities.

MDAS.REPL.GRPN
MDAS.REPL-GRPNC

MDAS-string
MDASJnteger

MDAS.REPL.GRPNV
array
MDAS-string

MDAS-REPL.GRPI
MDAS.REPL.GRPIC

array
MDASinteger
MDASinteger

MDAS.REPL.GRPIV
array
MDAS-string
array

MDAS.USER attribute Type Use
(Replicate Domain) Users share these attributes with other entities.

MDAS-REPL-DMNN MDAS-string
MDAS_REPLJDMNN(! MDASinteger

arrav
MDAS-REPL_DMNm ' MDASjstring

arrav
MDAS-REPL-DMNI MDASinteger
MDAS-REPL-DMNIC MDASinteger

arrav
MDAS-REPL-DMNIV MDAS-string

array

MDAS-USER attribute Type Use
(Repl. Input Lineage)

MDAS-REPL-IN
MDAS.REPL-INC
MDAS-REPLJNV

MDASinteger
MDASinteger
MDASinteger
array

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Repl. Conseq. Lineage) Users sh ire these attributes with other entities.

MDAS-REPL-OUT MDASinteger
MDAS-REPL.OUTVC MDASinteger
MDAS-REPL-OUTV MDASinteger

array

MDAS.USER attribute Type Use
(Repl. Gen. Lineage) Users share these attributes with other entities.

MDAS-REPL-GEN MDASinteger
MDAS-REPL-GNP MDAS-string
MDAS-REPL-GNR MDASinteger
MDAS-REPL.GNU MDASinteger

92

MDAS_USER attribute Type Use
(Replication Trigger) Users share these attributes with other entities.

MDAS.REPL.TRGM
MDAS.REPL.TRGP
MDAS.REPL.TRGC
MDAS_REPL_TRGM\

MDASJnteger
MDASJnteger
MDASJnteger

' MDASJnteger

MDAS_REPL.TRGPV
array
MDASJnteger
array

MDAS.USER attribute Type Use
(Repl. Re-Gen. Policy)

MDAS.REPL.PLCY MDASJnteger

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Replicate Dates)

MDAS-REPL.DATE
MDAS.REPL.DATEV

MDAS.time
MDAS.time
array

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Replicate Permanence) Users share these attributes with other entities.

MDAS.REPL.PERM MDAS-double
MDAS.REPL_PERM\ MDAS.double

array
MDAS-REPL.PURG MDASJogical
MDAS.REPL.PURGV MDASJogical

array

MDAS.USER attribute Type Use
(Replicate Format) Users share these attributes with other entities.

MDAS.REPL.FMTH MDASJogical
MDAS.REPL.FMTN MDAS^tring
MDAS_REPL.FMTN\ MDASjstring

array
MDAS.REPL.FMTI MDASJnteger
MDAS.REPL.FMTIV MDASJnteger

array

MDAS.USER attribute Type Use
(Repl. Storage Resource) Users share these attributes with other entities.

MDAS.REPL.RSCH
MDAS.REPL.RSCN
MDAS.REPL.RSCNV

MDASJogical
MDAS_string
MDAS.string

MDAS.REPL.RSCI
MDAS.REPL.RSCIV

array
MDASJnteger
MDASJnteger
array

93

MDAS.USER attribute Type Use
(Repl. Storage Server) Users share these attributes with other entities.

MDAS.REPL.SRVH MDASJogical
MDAS-REPL-SRVN MDAS-string
MDAS.REPL.SRVNV MDAS-string

array
MDAS_REPL_SRVI MDASJnteger
MDAS.REPL.SRVIV MDASJnteger

array

MDAS.USER attribute Type Use
(Repl. Dir. and Name) Users share these attributes with other entities.

MDAS_REPL_DIRN MDAS-string
MDAS_REPL_DIRNV MDAS-string

array
MDAS_REPL_NAMN MDAS_string
MDAS.REPL-NAMm ' MDAS-string

array

MDAS.USER attribute Type Use
(Replicate Owner)

MDAS.REPL.OWN
MDAS-REPL-OWNV

MDAS-string
MDAS-string
array

Users share these attributes with other entities.

MDAS.USER attribute Type Use
(Replicate SpecHist) Users share these attributes with other entities.

MDAS-REPL.HSA MDAS-integer
MDAS.REPL.HST MDAS-time
MDAS-REPL.HSS MDAS_spectriir l
MDAS.REPL.HSC MDASJnteger
MDAS.REPL.HSAV MDASJnteger

array
MDAS.REPL.HSTV MDAS_time

arrav
MDAS.REPL.HSSV MDAS-spectrun

array
l

MDAS.USER attribute
(Replicate Lock)

MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS
MDAS
MDAS

.REPL.

.REPL.

.REPL.

.REPL.

.REPL.

.REPL.

.REPL.

.REPL.

RLCK
RLCKS
RLCKE
RLCKD
WLCK
.WLCKS
.WLCKB:
.WLCKD

Type

MDASJogical
MDAS .time
MDAS-time
MDASJnteger
MDASJogical
MDAS-time
MDAS-time
MDASJnteger

Use
Users share these attributes with other entities.

94

MDAS.ÜSER attribute Type Use
(Replicate Security) Users share these attributes with other entities.

MDAS-REPL.AUTK MDASjstring
MDAS.REPL.AUTM MDASJnteger
MDAS.REPL.RACCK MDASjstring
MDASJREPL.RACCJV MDASJnteger
MDAS.REPL.WACCI' : MDASjstring
MDAS.REPL.WACCM MDASinteger
MDAS.REPL.CRYK MDASjstring
MDAS.REPL.CRYM MDASinteger

MDAS.USER attribute Type Use
(Replicate Perf)

MDAS_REPL_PERF TBD

Users share these attributes with other entities.

TBD.

4.7.2.3 Auxilary Entities

4.7.2.3.1 MDAS_FORMAT

A format is an MDAS token that identifies the digital or logical structure of an MDAS
Entity.

A method which changes the format of an MDAS entity without changing the entity content
is said to be invariant.

Format metadata have a few attributes common to data sets and methods but no storage.

Here, all attributes of formats are listed for completeness. Descriptions are only given for
those attributes unique to formats.

Unique Format Attributes

TBD.

Shared Attributes

MDAS.FORMAT attribute Type Use
(Base) Formats share these attributes with other entities.

MDAS.NAME MDASjstring
MDASJD MDASJnteger
MDASXDJD MDASJnteger

95

MDAS-FORMAT attribute Type Use

(Version) Formats share these attributes with other entities.

MDAS.VERSION MDAS-string
MDAS.VERSIONX MDASJogical
MDAS.VERSIONM MDASJnteger
MDAS.VERSIONP MDASJnteger
MDAS-VERSIONN MDASJnteger

MDAS.FORMAT attribute Type Use
(Alias) Formats sh are these attributes with other entities.

MDAS-ALIAS MDAS.string
MDAS-ALIASC MDASJnteger
MDAS-ALIASV MDAS-string

array

MDAS-FORMAT attribute Type Use
(Documentation)

MDAS-ABSTRACT
MDAS-DOC

MDASJnteger
MDASJnteger

Formats share these attributes with other entities.

MDAS-FORMAT attribute Type Use
(Input Lineage) Formats share these attributes with other entities.

MDAS-FMT-IN MDASJnteger
MDAS-FMT-INC MDASJnteger
MDAS-FMTJNV MDASJnteger

array

MDAS_FORMAT attribute Type Use
(Consequential Lineage)

MDAS-FMT-OUT
MDAS-FMT-OUTC
MDAS-FMT-OUTV

MDASJnteger
MDASJnteger
MDASJnteger
array

Formats share these attributes with other entities.

MDAS_FORMAT attribute Type Use
(Generation Lineage) Formats share these attributes with other entities.

MDAS-FMT-GEN MDASJnteger
MDAS-FMT-GNP MDAS-string
MDAS-FMT.GNR MDASJnteger
MDAS-FMT-GNU MDASJnteger

MDAS-FORMAT attribute Type Use
(Re-Generation Policy)

MDAS-FMT-PLCY MDASJnteger

Formats share these attributes with other entities.

96

MDAS.FORMAT attribute Type Use
(Trigger) Formats share these attributes with other entities.

MDAS.FMT.TRGM
MDAS-FMT.TRGP
MDAS-FMT.TRGC
MDAS-FMT-TRGMV

MDAS-integer
MDAS-integer
MDASJnteger
MDAS-integer

MDAS-FMT-TRGPV
array
MDAS-integer
array

MDAS.FORMAT attribute Type Use
(Instantiation Date)

MDAS-FMT.DATE MDAS-time

Formats share these attributes with other entities.

MDAS.FORMAT attribute Type Use
(Instantiation Permanence)

MDAS-FMT-PERM
MDAS-FMT-PURG

MDAS-double
MDASJogical

Formats share these attributes with other entities.

MDAS-FORMAT attribute Type Use
(Catalog SpecHist) Formats share these attributes with other entities.

MDAS.FMT-HSA MDAS-integer
MDAS.FMT-HST MDAS.time
MDAS-FMT-HSS MDAS.spectrur l
MDAS.FMT.HSC MDASJnteger
MDAS-FMT-HSAV MDASJnteger

array
MDAS-FMT-HSTV MDAS.time

arrav
MDAS.FMT.HSSV MDAS-spectrui

array
n

MDAS-FORMAT attribute Type Use
(Catalog Perf)

MDAS_FMT-PERF TBD

Formats share these attributes with other entities.

TBD.

4.7.2.3.2 MDAS-SERVER

A server is an MDAS.METHOD specialized for access to specific resources or storage mediums.
For data sets, this might be the O/S for the storage resource or a specialized service provider
such as a DBMS. The MDAS library is compiled with drivers for MDAS servers. The
library matches the names of compiled drivers with server names (or id#*s) at run-time to
determine access requirements for services requested a user.

Unique Method Attributes

97

None. A server is a method with MDAS_SERV_METH set to true.

Shared Attributes

An MDAS.SERVER has all the attributes of an MDAS_METHOD.

4.7.2.3.3 MDAS_POLICY ■

4.7.2.3.4 MDASJiCTION

4.7.2.4 Collective Entities

4.7.2.4.1 MDAS_CD

A CD is an MDAS Catalog, or "Catalog Data". Catalogs are a data set with a specific use

in MDAS.

Open question: are catalogs replicated?

Catalog metadata have some attributes common to data sets and methods, but are not
partitioned into segments. Here, all attributes of catalogs are listed for completeness. De-
scriptions are only given for those attributes unique to catalogs.

Unique Catalog Attributes

TBD.

Shared Attributes

MDAS.CD attribute Type Use
(Base) Catalogs share these attributes with other entities.

MDAS.NAME MDAS-string
MDAS.ID MDASinteger

MDAS.CD attribute Type Use
(Version) Catalogs share these attributes with other entities.

MDAS-VERSION MDAS string
MDAS.VERSIONX MDASJogical
MDAS.VERSIONM MDASJnteger
MDASA'ERSIONP MDASJnteger
MDASA'ERSIONN MDASJnteger

98

MDAS.CD attribute Type Use
(Alias) Catalogs share these attributes with other entities.

M DAS-ALIAS MDAS-string
MDAS-ALIASC MDASJnteger
MDAS.ALIASV MDAS-string

array

MDAS-CD attribute Type Use
(Documentation) Catalogs share these attributes with other entities.

MDAS-ABSTRACT MDASJnteger
MDAS-DOC MDASJnteger

MDAS.CD attribute Type Use
(SD) Catalogs share these attributes with other entities.

MDAS-SD-TABLE MDASJnteger
MDAS-SD-KEYC MDASJnteger
MDAS-SD.COLS MDAS-string

array
MDAS-SD-KEY-TYP MDASJnteger
MDAS-SD-KEYS MDASJiandle
MDAS-SD-LOB.COL MDAS-string

MDAS.CD attribute Type Use
(Logical Group) Catalogs share these attributes with other entities.

MDAS-STOR-GRPN MDAS-string
MDAS-STOR-GRPI MDASJnteger
MDAS-STOR.GRPNC MDASJnteger
MDAS-STOR-GRPN\ MDAS-string

arrav
MDAS-STOR-GRPIC MDASJnteger
MDAS-STOR-GRPIV MDASJnteger

array

MDAS-CD attribute Type Use
(Logical Domain) Catalogs share these attributes with other entities.

MDAS-STOR_DMNN
MDAS-STOR-DMNI
MDAS-STOR-DMNN(
MDAS-STOR-DMNN^

MDAS-string
MDASJnteger

/ MDASJnteger
1 MDAS-string

MDAS-STOR-DMNIC
MDAS-STOR-DMNIV

array
MDASJnteger
MDASJnteger
array

MDAS-CD attribute Type Use
(Input Lineage) Catalogs share these attributes with other entities.

MDAS-STOR-IN MDASJnteger
MDAS-STOR-INC MDASJnteger
MDAS-STOR-INV MDASJnteger

array

99

MDAS.CD attribute Type Use
(Consequential Lineage) Catalogs share these attributes with other entities.

MDAS.STOR.OUT MDASJnteger
MDAS.STOR.OUTC MDASJnteger
MDAS.STOR.OUTV MDASJnteger

array

MDAS.CD attribute Type Use
(Generation Lineage)

MDAS.STOR.GEN
MDASJ3TOR-GNP
MDAS.STOR.GNR
MDAS_STOR.GNU

MDASJnteger
MDAS-string
MDASJnteger
MDASJnteger

Catalogs share these attributes with other entities.

MDAS.CD attribute Type Use
(Re-Generation Policy)

MDAS-STOR.PLCY MDASJnteger

Catalogs share these attributes with other entities.

MDAS.CD attribute Type Use
(Trigger) Catalogs share these attributes with other entities.

MDAS.STOR.TRGM
MDAS.STOR.TRGP
MDAS_STOR_TRGC
MDAS_STOR-TRGM\

MDASJnteger
MDASJnteger
MDASJnteger

'' MDASJnteger

MDAS.STOR.TRGPV
array
MDASJnteger
array

MDAS.CD attribute Type Use
(Storage Date)

MDAS.STOR.DATE MDAS.time

Catalogs share these attributes with other entities.

MDAS.CD attribute Type Use
(Storage Permanence) Catalogs share these attributes with other entities.

MDAS.STOR.PERM MDAS.double
MDAS-STOR.PURG MDASJogical

MDAS.CD attribute Type Use
(Storage Format) Catalogs share these attributes with other entities.

MDAS.STOR.FMTN MDAS-string
MDAS.STOR.FMTI MDASJnteger

MDAS.CD attribute Type Use
(Storage Resource)

MDAS-STOR.RSCN
MDAS-STOR.RSCI

MDAS.string
MDASJnteger

Catalogs share these attributes with other entities.

100

MDAS.CD attribute Type Use
(Storage Server)

MDASJSTOR-SRVN
MDAS.STOR.SRVI

Catalogs share these attributes with other entities.

MDAS-string
MDASJnteger

MDAS.CD attribute
(Storage Path and Name)

MDAS.STOR.DIR
MDAS.STOR.NAM

Type

MDAS-string
MDAS_string

Use
Catalogs share these attributes with other entities.

MDAS.CD attribute
(Catalog Owner)

MDAS-STOR.OWN

Type

MDASJnteger

Use
Catalogs share these attributes with other entities.

MDAS.CD attribute
(Catalog SpecHist)

MDASJ3TOR.HSA
MDAS.STOR.HST
MDAS.STOR.HSS
MDAS.STOR.HSC
MDAS.STOR.HSAV

MDAS.STOR.HSTV

MDAS.STOR.HSSV

Type

MDASJnteger
MDAS.time
MDAS-spectrurfi
MDASJnteger
MDASJnteger
array
MDAS.time
array
MDAS-spectruiJi
array

Use
Catalogs share these attributes with other entities.

MDAS.CD attribute
(Catalog Perf)

MDASJ5TOR.PERF

Type

TBD

Use
Catalogs share these attributes with other entities.

TBD.

MDAS.CD attribute
(Catalog Lock)

MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.

.STOR.
STOR.
.STOR.
.STOR.
.STOR.
.STOR.
.STOR.
STOR.

RLCK
RLCKS
RLCKE
RLCKD
WLCK
WLCK5
WLCKII
WLCKI)

Type

MDASJogical
MDAS.time
MDAS.time
MDASJnteger
MDASJogical
MDAS.time
MDAS.time
MDASJnteger

Use
Catalogs share these attributes with other entities.

101

MDAS-CD attribute
(Catalog Security)

MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.

STOR.
.STOR
STOR
STOR.
STOR
.STOR.
STOR
STOR

.AUTK

.AUTM

.RACCK

.RACCM

.WACCr

.WACOM

.CRYK

.CRYM

Type

MDAS-string
MDASJnteger
MDAS-string
MDASJnteger
MDAS-string
MDASJnteger
MDAS-string
MDASJnteger

Use
Catalogs share these attributes with other entities.

MDAS-CD attribute
(Replicates)

MDAS-REPLICATES

Type

MDASJnteger

Use
Catalogs share these attributes with other entities.

MDAS-CD attribute Type Use

(Replicate Group) Catalogs share these attributes with other entities.

MDAS-REPL-GRPN MDAS-string
MDAS-REPL-GRPNC MDASJnteger

array
MDAS-REPL-GRPNV MDAS-string

array
MDAS-REPL-GRPI MDASJnteger
MDAS-REPL-GRPIC MDASJnteger

array
MDAS-REPL-GRPIV MDAS-string

array

MDAS-CD attribute
(Replicate Domain)

MDAS-REPL-DMNN
MDAS-REPL-DMNNC

MDAS-REPL-DMNNY

MDAS-REPL-DMNI
MDAS-REPL-DMNIC

MDAS-REPL-DMNIV

Type

MDAS^tring
MDASJnteger
array
MDAS-string
array
MDASJnteger
MDASJnteger
array
MDAS-string
arrav

Use
Catalogs share these attributes with other entities.

MDAS-CD attribute Type Use

(Repl. Input Lineage) Catalogs share these attributes with other entities.

MDAS-REPLJN MDASJnteger
MDAS-REPLJNC MDASJnteger
MDAS-REPL-INV MDASJnteger

array

102

MDAS.CD attribute Type Use
(Repl. Conseq. Lineage) Catalogs share these attributes with other entities.

MDAS.REPL.OUT MDASJnteger
MDAS.REPL.OUTVC MDASinteger
MDAS.REPL.OUTV MDASJnteger

array

MDAS.CD attribute Type Use
(Repl. Gen. Lineage) Catalogs share these attributes with other entities.

MDAS.REPL.GEN MDASJnteger
MDAS.REPL.GNP MDAS-string
MDAS.REPL.GNR MDASJnteger
MDAS.REPL.GNU MDASJnteger

MDAS.CD attribute Type Use
(Replication Trigger) Catalogs share these attributes with other entities.

MDAS.REPL.TRGM MDASJnteger
MDAS.REPL.TRGP MDASJnteger
MDAS.REPL.TRGC MDASJnteger
MDAS.REPL.TRGM\ ' MDASJnteger

arrav
MDAS.REPL.TRGPV MDASJnteger

array

MDAS.CD attribute Type Use
(Repl. Re-Gen. Policy)

MDAS.REPL.PLCY MDASJnteger

Catalogs share these attributes with other entities.

MDAS.CD attribute Type Use
(Replicate Dates) Catalogs share these attributes with other entities.

MDAS.REPL.DATE MDAS.time
MDAS-REPL.DATEV MDAS.time

array

MDAS.CD attribute Type Use
(Replicate Permanence) Catalogs share these attributes with other entities.

MDAS.REPL.PERM MDAS.double
MDAS_REPL.PERM\ MDAS.double

array
MDAS.REPL.PURG MDASJogical
MDAS.REPL.PURGV MDASJogical

array

103

MDAS.CD attribute Type Use
(Replicate Format) Catalogs share these attributes with other entities.

MDAS.REPL-FMTH MDASJogical
MDAS.REPL-FMTN MDAS-string
MDAS_REPL.FMTN\ MDAS-string

array
MDAS.REPL-FMTI MDASJnteger
MDAS.REPL-FMTIV MDASJnteger

array

MDAS-CD attribute Type Use
(Repl. Storage Resource)

MDAS-REPL.RSCH
MDAS-REPL-RSCN
MDAS-REPL-RSCNV

MDAS.REPL-RSCI
MDAS-REPL-RSCIV

MDASJogical
MDAS-string
MDAS-string
array
MDAS-integer
MDAS-integer
array

Catalogs share these attributes with other entities.

MDAS-CD attribute Type Use
(Repl. Storage Server) Catalogs share these attributes with other entities.

MDAS-REPL-SRVH MDASJogical
MDAS-REPL-SRVN MDAS_string
MDAS-REPL-SRVNV MDAS-string

array
MDAS-REPL-SRVI MDASJnteger
MDAS-REPL-SRVIV MDASJnteger

array

MDAS-CD attribute Type Use
(Repl. Dir. and Name) Catalogs share these attributes with other entities.

MDAS-REPL-DIRN
MDAS-REPL-DIRNV

MDAS-string
MDAS-string

MDAS-REPL-NAMN
MDAS-REPL-NAMNA

array
MDAS-string

r MDAS-string
array

MDAS.CD attribute Type Use
(Replicate Owner) Catalogs share these attributes with other entities.

MDAS-REPL-OWN MDAS-string
MDAS-REPL-OWNV MDAS-string

array

104

MDAS-CD attribute Type Use
(Replicate SpecHist) Catalogs share these attributes with other entities.

MDAS.REPL.HSA MDASJnteger
MDAS-REPL.HST MDAS.time
MDAS.REPL.HSS MDAS-spectruri
MDAS.REPL.HSC MDASJnteger
MDAS.REPL.HSAV MDASJnteger

array
MDAS.REPL.HSTV MDAS.time

array
MDAS.REPL.HSSV MDASjspectruri

array

MDAS.CD attribute Type Use
(Replicate Lock)

MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.
MDAS.

REPL.
REPL.
REPL.
REPL.
REPL.
REPL.
REPL.
REPL.

.RLCK

.RLCKS
RLCKE
RLCKD
WLCK
.WLCKS
WLCKE
WLCKD

MDASJogical
MDAS.time
MDAS.time
MDASJnteger
MDASJogical
MDAS.time
MDAS.time
MDASJnteger

Catalogs share these attributes with other entities.

MDAS.CD attribute Type Use
(Replicate Security) Catalogs share these attributes with other entities.

MDAS.REPL.AUTK MDAS-string
MDAS-REPL.AUTM MDASJnteger
MDAS.REPL.RACCK MDAS-string
MDAS_REPL.RACCi MDASJnteger
MDAS-REPL_WACCTi : MDAS-string
MDAS-REPL.WACCJS [MDASJnteger
MDAS.REPL.CRYK MDAS-string
MDAS.REPL.CRYM MDASJnteger

MDAS-CD attribute Type Use
(Replicate Perf)

MDAS-REPL-PERF TBD

Catalogs share these attributes with other entities.

TBD.

4.7.2.4.2 MDASJ30MAIN

Domains are functionally equivalent to MDAS_GROUP, but have the additional constraint of
access control.

Every user is a (singleton) domain, but may also have memberships in larger domains.

Domain Attributes

105

MDAS-DOMAIN attribute Type Use
(Base)

MDAS.NAME
MDASJD
MDAS.CDJD

MDAS-string
MDASJnteger
MDASJnteger

Domains share these attributes with other entities.

MDAS-DOMAIN attribute Type Use

(Version) Domains share these attributes with other entities.

MDAS-VERSION MDAS-string
MDAS-VERSIONX MDASJogical
MDAS-VERSIONM MDASJnteger
MDAS-VERSIONP MDASJnteger
MDAS-VERSIONN MDASJnteger

MDAS_DOMAIN attribute Type Use
(Alias) Domains share these attributes with other entities.

MDAS-ALIAS MDAS_string
MDAS-ALIASC MDASJnteger
MDAS-ALIASV MDAS_string

array

MDAS-DOMAIN attribute Type Use
(Documentation)

MDAS-ABSTRACT
MDAS-DOC

MDASJnteger
MDASJnteger

Domains share these attributes with other entities.

MDAS-DOMAIN attribute Type Use
(Input Lineage) Domains share these attributes with other entities.

MDAS-DMNJN MDASJnteger
MDAS-DMNJNC MDASJnteger
MDAS-DMNJNV MDASJnteger

array

MDAS-DOMAIN attribute Type Use
(Consequential Lineage) Domains share these attributes with other entities.

MDAS-DMN-OUT MDASJnteger
MDAS_DMN_OUTC MDASJnteger
MDAS-DMN-OUTV MDASJnteger

array

MDAS-DOMAIN attribute Type Use
(Generation Lineage)

MDAS-DMN-GEN
MDAS-DMN-GNP
MDAS-DMN-GNR
MDAS-DMN-GNU

MDASJnteger
MDAS-string
MDASJnteger
MDASJnteger

Domains share these attributes with other entities.

106

MDAS.DOMAIN attribute Type Use

(Re-Generation Policy)

MDAS.DMN.PLCY MDASJnteger

Domains share these attributes with other entities.

MDAS.DOMAIN attribute Type Use

(Trigger) Domains share these attributes with other entities.

MDAS.DMN.TRGM
MDAS.DMN.TRGP
MDAS.DMN.TRGC
MDAS-DMN.TRGMV

MDASJnteger
MDASJnteger
MDASJnteger
MDASJnteger

MDAS.DMN.TRGPV
array
MDASJnteger
array

MDAS.DOMAIN attribute Type Use

(Storage Date)

MDAS.DMN.DATE MDAS.time

Domains share these attributes with other entities.

MDAS.DOMAIN attribute Type Use
(Storage Permanence)

MDAS.DMN.PERM
MDAS.DMN.PURG

MDAS.double
MDASJogical

Domains share these attributes with other entities.

MDAS.DOMAIN attribute Type Use
(Domain Owner)

MDAS.DMN.OWN MDASJnteger

Domains share these attributes with other entities.

MDAS.DOMAIN attribute Type Use
(Domain SpecHist) Domains share these attributes with other entities.

MDAS.DMN.HSA MDASJnteger
MDAS.DMN.HST MDAS.time
MDAS.DMN.HSS MDAS-spectrui l
MDAS.DMN.HSC MDASJnteger
MDAS.DMN.HSAV MDASJnteger

array
MDAS.DMN.HSTV MDAS.time

arrav
MDAS.DMN.HSSV MDAS-spectrur

array
l

MDAS.DOMAIN attribute Type Use
(Domain Perf)

MDAS.DMN.PERF TBD

Domains share these attributes with other entities.

TBD.

107

MDAS-DOMAIN attribute Type Use

(Domain Security) Domains share these attributes with other entities.

MDAS.DMN-AUTK MDAS-string
MDAS_DMN_AUTM MDASJnteger
MDAS.DMN.RACCK MDAS-string
MDAS.DMN.RACCM MDASJnteger
MDAS_DMN.WACCK MDAS-string
MDAS.DMN.WACCM MDASJnteger
MDAS.DMN.EACCK MDASjstring
MDAS.DMN.EACCM MDASJnteger
MDAS.DMN.CRYK MDAS-string
MDAS.DMN-CRYM MDASJnteger

4.7.2.4.3 MDAS_GROUP

A group is a set of MDAS entities with a common attribute encapsulated in the group name.

Group Attributes

MDAS-GROUP attribute Type Use

(Base)

MDAS-NAME
MDASJD
MDAS.CDJD

MDAS-string
MDASJnteger
MDASJnteger

Groups share these attributes with other entities.

MDAS-GROUP attribute Type Use

(Version) Groups share these attributes with other entities.

MDAS-VERSION MDAS-string
MDAS.VERSIONX MDASJogical
MDAS-VERSIONM MDASJnteger
MDAS.VERSIONP MDASJnteger
MDAS.VERSIONN MDASJnteger

MDAS-GROUP attribute Type Use a

(Alias) Groups share these attributes with other entities.

MDAS.ALIAS MDAS-string
MDAS.ALIASC MDASJnteger
MDAS.ALIASV MDAS-string

array

MDAS-GROUP attribute Type Use

(Documentation) Groups share these attributes with other entities.

MDAS-ABSTRACT MDASJnteger
MDAS-DOC MDASJnteger

108

MDAS.GROUP attribute Type Use
(Input Lineage) Groups sh< ire these attributes with other entities.

MDAS.GRPJN MDASJnteger
MDAS.GRPJNC MDASJnteger
MDAS.GRPJNV MDASJnteger

array

MDAS.GROUP attribute Type Use
(Consequential Lineage) Groups share these attributes with other entities.

MDAS.GRP.OUT MDASJnteger
MDAS.GRP.OUTC MDASJnteger
MDAS.GRP.OUTV MDASJnteger

array

MDAS.GROUP attribute Type Use
(Generation Lineage)

MDAS-GRP-GEN
MDAS.GRP.GNP
MDAS-GRP.GNR
MDAS.GRP.GNU

MDASJnteger
MDAS-string
MDASJnteger
MDASJnteger

Groups share these attributes with other entities.

MDAS.GROUP attribute Type Use
(Re-Generation Policy)

MDAS.GRP_PLCY MDASJnteger

Groups share these attributes with other entities.

MDAS.GROUP attribute Type Use
(Trigger) Groups share these attribu es with other entities.

MDAS.GRP.TRGM MDASJnteger
MDAS.GRP.TRGP MDASJnteger
MDAS.GRP.TRGC MDASJnteger
MDAS.GRP.TRGMV MDASJnteger

arrav
MDAS.GRP.TRGPV MDASJnteger

array

MDAS.GROUP attribute Type Use
(Storage Date)

MDAS.GRP.DATE MDAS.time

Groups share these attributes with other entities.

MDAS.GROUP attribute Type L<se
(Storage Permanence)

MDAS.GRP.PERM
MDAS-GRP.PURG

MDAS.double
MDASJogical

Groups share these attributes with other entities.

109

MDAS.GROUP attribute
(Domain Owner)

MDAS.GRP.OWN

Type

MDASJnteger

Use
Groups share these attributes with other entities.

MDAS.GROUP attribute Type Use
(Domain SpecHist) Groups share these attributes with other entities.

MDAS.GRP-HSA MDASJnteger
MDAS_GRP-HST M DAS.time
MDAS.GRP.HSS MDASjspectruri
MDAS-GRP.HSC MDASJnteger
MDAS.GRP.HSAV MDASJnteger

array
MDAS.GRP.HSTV MDAS.time

array
MDAS-GRP-HSSV MDAS-spectrun

array

MDAS.GROUP attribute Type Use
(Domain Perf)

MDAS-GRP-PERF TBD

Groups share these attributes with other entities.

TBD.

4.7.2.4.4 MDAS_LIST

An entity list is a simple list of entity records. It typically encountered in the result of

MDAS_INQUIRE().

An MDAS.LIST is created with
MDAS_INFO_CREATE(MDAS.LIST, listinfo, status)

where listinfo is an infoh structure initialized by the call.

To add Info structure my inf o to a list, use
MDAS_INFO_ADD_LATTR(listinfo, myinfo, n, status).

The list element number n assigned to the entity is returned by the call. To retrieve the

nth Info structure from a list, use
MDAS_INFO_SCAN_LATTR(listinfo, n, someinfo, status)

where someinfo is an inf oh structure (re)initialized by the call. List entities can be deleted

with
MDAS_INFO_DEL_LATTR(listinfo, n, status).

The number of entities in a list is given by attribute MDAS_LIST_COUNT and the types of each
entity is given by MDAS_LIST_TYPE. These attributes may be scanned with MDAS_INFO_SCAN_ATTR().

To create "list entities" without explicitly declaring individual entity handles, use
MDAS_INFO_CREATE_LEATTR(entitytype, listinfo, n, status)

where listinfo is the name of an existing MDAS.LIST Info structure and entitytype is
a valid MDAS entity. The list element number n assigned to the entity is returned by the

call.

110

To set attributes of "list entities" without the explicit entity handles, use
MDAS_INFO_SET_LEATTR(attr, value, listinfo, n, status)

where attr is a valid attribute for the entity type and value is a valid value for the attribute.
To read values directly from a list entity, use

MDAS_INFO_SCAN_LEATTR(listinfo, n, attr, value, status)
List entity replicate (LER) values can likewise be accessed with

MDAS_INFO_SET_LERATTR(r, attr, value, listinfo, n, status)
and

MDAS_INFO_SCAN_LERATTR(listinfo, n, r, attr, value, status)
where r is the replicate index of the desired attribute.

List Attributes

MDASJViETHOD attribute Type Use
MDAS.LIST.COUNT M DAS .integer Number of entities in list.

MDAS.LIST.TYPEV MDASJnteger Array of entity types corresponding to each entity in
array the list.

MDAS.LISTJNFOV MDAS-infoh
array

Array of Info handles.

4.7.2.4.5 MDAS_SITE

A site is an MDAS_RESOURCE that identifies a set of resources known to users as a "site". The
MDAS_SITE token has special meaning to the MDAS Library, but is otherwise equivalant to
a resource entity. Individual resources of a site are registered as segments of the site entity.

Unique Method Attributes

None. A site is a resource with MDAS_SITE_RSRC set to true.

Shared Attributes

An MDAS.SITE has all the attributes of an MDAS.RESOURCE.

4.7.2.5 Directive Entities

The MDAS Library defines several entities for specifying directives in Info to MDAS Library
routines and directive flags as attributes of Catalog metadata.

4.7.2.5.1 MDAS_DIRECTIVE

MDAS.DIRECTIVE is functionally equivalent to MDAS_LIST, but its use is restricted to MDAS
Library calls requiring argument lists placed in an Info structure.

Ill

All attributes of MDAS.DIRECTIVE are optional. The semantics of any particular attribute

is dependent upon its use. Most members are designed as flags.

MDAS-DIRECTIVE
(zero or more of:)

MDASJNPUT
MDAS.OUTPUT
MDAS-READ
MDAS.WRITE
MDAS.READWRITE
MDAS.APPEND
MDAS.SPOOL

4.7.2.6 Conditional Entities

Conditional entities are used wherever an Info structure must specify logical semantics
to an MDAS Library function. A primary use is the cond argument to MDAS_INQUIRE()

(section 4.7.3.2.1).

For example, suppose a user is interested in finding Catalog id#'s for any entity whose
name equals "kilroy". To specify this query to MDAS_IMQUIRE(). a user program would

place the following attribute in the info argument

MDAS.ENTITY MDAS.ANY (null)

and these two attributes in the cond argument:

MDAS.CRITERIA MDAS.NAME "kilroy"
MDAS.LIMIT MDAS.ANY MDAS.ID

Upon successful return from MDAS_INQUIRE(), the calling program would receive a list in
the result parameter containing Catalog id#'s for entities matching the query:

MDAS.LIST
MDAS-LIST.COUNT n

More information on Conditional Entities is given in the following subsections.

4.7.2.6.1 MDAS_ANY

MDAS.ANY is a wild-card token which is used in the context of queries.

112

4.7.2.6.2 MDAS_CONDITION

MDAS.CONDITION is used to specify logical conditions to MDAS Library functions. These
conditions may be listed sequentially, or built in tree-like hierarchies to specify complex
logic requirements. Like most conditional entities, all attributes of MDAS_C0MDITI0N are
optional.

MDAS.CONDITION
MDAS.EQUIV
MDAS.NOT
MDAS.AND
MDAS-OR
MDAS.NAND
MDAS.NOR
MDAS.ANY

4.7.2.6.3 MDAS_CRITERIA

MDAS.CRITERIA
MDAS.TOKEN
MDAS-SUBSTR
MDAS.LIKE
MDAS.ORIGIN
MDAS.BEST
MDAS.DISTINCT
MDAS.ANY

4.7.2.6.4 MDAS_LIMIT

MDASJJMIT
(any valid entity)

(any attribute of the entity)
MDAS.ANY

4.7.2.6.5 MDAS_EXTENT

MDAS-EXTENT
MDAS.LOCAL
MDAS.WIDE
MDAS.UNIVERSE
MDAS-A.NY

113

4.7.3 API Prototypes

The following descriptions of MDAS function prototypes are provided as a reference to the
MDAS High-Level API. Example use of each function is given in procedural pseudo-code.
For a tutorial style introduction, please see the MDAS User Guide and Tutorial.

4.7.3.1 Library Initialization and Cleanup

The MDAS Library requires initialization of internal parameters and run-time resources
before use. Likewise, a clean-up process is required when the application program no
longer needs MDAS library resources. The routines MDAS_INIT() and MDAS.FINALIZEQ

are provided for this purpose.

4.7.3.1.0.1 MDASJNITQ

MDAS_INIT(argc, argv, comm, status)
argv: (IN) array of character string
arge: (IM) integer
comm: (IN) handle
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success MDAS library initialized

MDAS_WARN_MDASRC warning no run-time mdasrc data found

MDAS_WARN_TICKETS warning no run-time ticket data found

MDAS_WARN_MPI warning comm non-NULL but no MPI

MDAS_ERR_MEHORY error unable to allocate memory

MDAS_INIT() allocates memory for basic library operations and initializes library run-time
parameters as described in section 4.5. The arguments argv and arge are the standard
string and count structures for command line argument lists encountered in Unix and other
operating systems. The comm argument is used only when the application is linked to an

MPI-enabled version of MDAS; it is otherwise ignored.

4.7.3.1.0.2 MDAS_FINALIZE()

MDAS_FINALIZE(comm,status)
comm: (IN) handle
status: (IN/OUT) MDAS.status

114

Status codes type meaning
MDAS.SUCCESS success MDAS library finalized
MDAS_WARN_COMM warning comm different from MDAS.INIT
MDAS_WARN_MPI warning comm non-NULL but no MPI
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_MEMORY error unable to free all allocations
MDAS_ERR_CONNECT error unable to close all connections
MDAS_ERR_COMM error comm not part of MDAS_INIT comm

MDAS_FINALIZE() resets library parameters, closes any open connections, and frees any
memory allocated by MDAS library calls.

4.7.3.1.0.3 MDAS_INIT() and MDAS_FINALIZE() Examples

The following example assumes that argv and arge are system-defined variables.

PROGRAM dolittle

MDAS_status status

MDAS_INIT(argc, argv, NULL, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

The following example assumes that argv and arge are system-defined variables. The
handle MPI_C0MM_W0RLD is defined by MPI.

PROGRAM do.mpi

integer ierr
MDAS_status status

MPI_INIT(ierr)

MDAS_INIT(argc, argv, MPI_C0MM_W0RLD, status)

MDAS_FINALIZE(MPI_COMM_WORLD,status)

MPI_FINALIZE(ierr)

END PROGRAM

115

4.7.3.2 Info Operations on MDAS Catalogs

4.7.3.2.1 Obtaining Info From MDAS Catalogs

MDAS_INFO_INQUIRE() operates on catalogs of MDAS metadata stored in external metadata
servers. The existence and location of such servers are identified either at (a) MDAS
installation time and/or (b) application run-time. See sections 4.5 and 4.13 for details.

4.7.3.2.1.1 MDAS_INFO_INQUIRE()

MDAS_INFO_INQUIRE(info, cond, extent, result, status)

info: (IN) MDAS.INFOH

cond: (IN) MDAS.INFOH

extent: (IN) MDAS.INFOH

result: (OUT) MDAS_INFOH

status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success result(s) obtained

MDAS_WARN_INFO warning info is empty or NULL

MDAS_WARN_COND warning cond is empty or NULL

MDAS_WARN_EXTENT warning extent is empty or NULL

MDAS_WARN_RESULT warning result is empty

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_INFO error invalid info

MDAS_ERR_COND error invalid cond

MDAS_ERR_EXTENT error invalid extent

MDAS_ERR_RESULT error invalid result
MDAS_ERR_MEMORY error unable to allocate memory

The info argument should specify known static information about the desired item, however
sparse or incomplete. For example, a user may wish to specify the MDAS_TYPE and a portion

of the name or descriptive keywords in info.

The cond argument is used to specify conditions and criteria binding on the query. The
tokens MDAS.CONDITION and MDAS.CRITERIA are provided for this purpose. (See section

4.7.2.6.)

The extent of catalogs searched are specified in extent. MDAS_EXTENT may be used in com-
bination with MDAS.CONDITION and extent to fully qualify the catalog search boundaries.
If NULL is given by the user, default catalogs specified by the run-time environment are

searched.

Query results are returned in result (which may be internally spooled). If no matches
are found, result is returned empty and an error is returned in status. Users are re-

116

sponsible for freeing the memory allocated for result with either MDAS_INFO_FREE() or
MDAS_FINALIZE().

4.7.3.2.1.2 MDAS_INFO_INQUIRE() Example

4.7.3.2.2 Catalog Info Registration

MDAS_INFO_REGISTER() operates on catalogs of MDAS metadata stored in external meta-
data servers. The existence and location of such servers are identified either at MDAS
installation time (section 4.13) and/or application run-time (section 4.5).

To register Info about users, data sets, methods, or resources to an MDAS Catalog, a
minimal set of attributes is required. These may be specified by the user, and in some cases

are automatically generated by the MDAS Library.

4.7.3.2.2.1 MDAS_INFO_REGISTER()

MDAS_INFO_REGISTER(info, extent, status)
info: (IN/OUT) MDAS.INFOH
extent: (IN) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success info registered
MDAS_WARN_INFO warning info is empty
MDAS_WARN_EXTENT warning extent is empty or NULL
MDAS_WARN_REGISTER warning info previously registered
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_INFO error invalid info
MDAS_ERR_EXTEMT error invalid extent
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_REGISTER error insufficient metadata.

MDAS_INFO_REGISTER() adds information about users, data sets, methods, and resources
to one or more catalogs. Specifying NULL in extent will select the default catalog. If info
does not contain the minimal metadata required for registration in an MDAS Catalog, an
error is returned in status and attributes (with empty values) of the required attributes
are appended to info.

4.7.3.2.2.2 MDASJNFOJIEGISTERO Example

PROGRAM reginfo

Hi

MDAS.status status

MDAS.INFOH myinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_METHOD, myinfo, status)
MDAS_INFO_SET_ATTR(MDAS_NAME, "myfilter", myinfo, status)

MDAS_INFO_SET_ATTR(MDAS_STOR_RSCN, "moon.com", myinfo, status)

MDAS_INFO_SET_ATTR(MDAS_STOR_DIR, "/users/kilroy/bin/", myinfo, status)

MDAS_INFO_REGISTER(myinfo, MULL, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.3 Returning Status Messages

The MDAS Library provides 3 procedures to generate status messages from status codes.
All of these procedures take status vectors as input. The contents of status is not altered.

4.7.3.3.0.3 MDAS_STATUSJPRINT()

MDAS_STATUS_PRINT(status)
status: (IN) MDAS_status

MDAS_STATUS_PRINT is one of a very few routines that are guaranteed to work outside of
MDAS_INIT() and MDAS_FINALIZE(). It interprets the contents of status and prints the
corresponding status message(s) to the 0/S equivalent of standard output, one line per
message. MDAS_STATUS_PRINT ignores status(O) and status(l).

4.7.3.3.0.4 MDAS_STATUS_MSG()

MDAS_STATUS_MSG(code, procid, msg)
code: (IN) integer
procid: (IN) integer
msg: (OUT) MDAS.string

MDAS_STATUS_MSGis also guaranteed to work outside of MDAS_INIT() and MDAS_FINALIZE().
The code argument should contain one MDAS status bit code corresponding to MDAS Li-
brary procedure id# procid. If code and procid are valid, then up to 31 characters of

string data are returned in msg. Otherwise, msg is empty on return.

118

4.7.3.3.0.5 MDAS_STATUS_INFO()

MDAS_STATUS_INFO(status, info)
status: (IN) MDAS_status
info: (OUT) MDAS.INFOH

MDAS_STATUS_IMFO requires that the MDAS Library be initialized. It creates an Info
structure in info from the contents of status. No structure is created if status is invalid.
MDAS_STATUS_INFO ignores status(0) and status(1).

4.7.3.3.0.6 Example use of MDAS_STATUS-PRINT() and MDAS_STATUS_MSG()

In the following examples, program checkstat examines status, prints any error or warning
messages, then exits on error. Program printstat prints the entire table of MDAS status
codes. Program checkrc checks to see if MDAS.INITQ found resource information in the
local environment. If not, the status message associated with this condition is printed and
the program exits.

PROGRAM checkstat

MDAS_status status

MDAS_INIT(argc, argv, NULL, status)
if (status(0) .ne. 0)

MDAS_STATUS_PRINT(status)
if (status(0) < 0) exit

end if

MDAS_FINALIZE(NULL,status)

END PROGRAM

PROGRAM printstat

MDAS_status status

integer p

status(2) = FFFFFFFF

for status(3) = 1, MDAS_PR0C_C0UNT

MDAS_STATUS_PRINT(status)
end for

END PROGRAM

PROGRAM checkrc

119

MDAS.status status

character msg(32)

MDAS_INIT(argc, argv, NULL, status)

if (status(2) & MDAS_WARN_MDASRC)

MDAS_STATUS_MSG(MDAS_WARN_MDASRC, status(3), msg)

MDAS_FINALIZE(NULL,status)

print msg

exit

end if

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.4 Info Management

4.7.3.4.1 Creating Your Own Info

MDAS Info structures can be created by either initializing a new MDAS.INFOH with
MDAS_INFO_CREATE() or copying an existing Info structure into a new area of memory
with MDAS_INFO_DUP(). Existing Info structures can be purged from program memory

with MDAS_INFO_FREE().

4.7.3.4.1.1 MDAS_INFCLCREATE()

MDAS_INFO_CREATE(entity, info, status)
entity: (IN) MDAS.token
info: (OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success info created

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_INFO error invalid info

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_TOKEN error invalid MDAS_token

MDAS_INFO_CREATE() allocates memory for an MDAS.info structure for the entity spec-
ified by entity. No calls are made to MDAS Catalogs. To place values in the struc-
ture, use MDAS_INFO_SET_ATTR(), MDAS_INFO_SET_RATTR() (for attributes of replicates).
MDAS_INFO_ADD_LATTR() (for attributes of lists), MDAS_INFO_SET_LEATTR() (for list enti-

ties), and MDAS_INFO_SET_LERATTR() (for list entity replicates).

120

4.7.3.4.1.2 MDAS_INFO_DUP()

MDAS_INFO_DUP(oldinfo, newinfo, status)
infol: (IN) MDAS.INFOH
info2: (OUT) MDAS.INFOH

status codes type meaning
MDAS.SUCCESS success info2 created from infol
MDAS_WARN_INFO warning infol is empty
MDAS_ERR_IMIT error MDAS not initialized
MDAS_ERR_MEMORY error unable to allocate memory

MDAS_INFO_DUP() allocates memory for the contents of info2 and then initializes it with
the contents of infol.

4.7.3.4.1.3 MDAS_INFO_FREE()

MDAS_INFO_FREE(info, status)
info: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success info deallocated
MDAS_WARN_INFO warning info is empty
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_INFO error invalid info
MDAS_ERR_MEMORY error unable to free all allocations

MDAS_INFO_FREE() deallocates all memory associated with info. Upon return, the value
of info is NULL. Any Info structures not explicitly freed with MDAS_INFO_FREE() will be
purged during MDAS_FINALIZE().

4.7.3.4.1.4 Example use of MDAS_INFO_CREATE() and MDAS_INFO_FREE()

PROGRAM createinfo

MDAS_status status
MDAS.INFOH dsinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, dsinfo, status)

121

MDAS_INFO_FREE(dsinfo, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.4.1.5 MDAS_INFO_DUP() Example

PROGRAM dupinfo

MDAS_status status

MDAS.INFOH dsinfol, dsinfo2

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, dsinfol, status)

MDAS_INFO_DUP(dsinfol, dsinfo2, status)

MDAS.FINALIZE(NULL,status)

END PROGRAM

4.7.3.4.2 Setting Info Attributes

4.7.3.4.2.1 MDAS_INFO-SET_ATTR()

MDAS_INFO_SET_ATTR() sets a metadata attribute in an existing MDAS.inf o structure.

MDAS_INFO_SET_ATTR(attr, value, info, status)
attr: (IN) MDAS.token
value: (IN) pointer (choice)
info: (IN/OUT) MDAS_INFOH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success added 1 attribute to info

MDAS_WARN_NULL warning added NULL attribute

MDAS_WARN_TOKEN warning NULL MDAS.token

MDAS_WARN_VALUE warning NULL value

MDAS_ERR_INIT error MDAS not. initialized

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_TOKEN error invalid MDAS_token

MDAS_ERR_DATATYPE error invalid MDAS.datatype for value

MDAS_ERR_INFO error invalid info

122

4.7.3.4.2.2 MDAS_INFOJSET_ATTR() Example

PROGRAM addinfo

MDAS_status status

MDAS_INFOH dsinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, dsinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fin.dat", dsinfo, status)

MDAS_IMFO_SET_ATTR(MDAS_NAME, "netcdf", dsinfo, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.4.3 Scanning Info Attributes

4.7.3.4.3.1 MDAS_INFO_SCAN_ATTR()

MDAS_INFO_SCAN_ATTR(info, attr, value, status)

info: (IN) MDAS.INFOH
attr: (OUT) MDAS.token

value: (OUT) pointer (choice)
status: (IN/OUT) MDAS_status

status codes type meaning
MDAS_SUCCESS success item(s) scanned
MDAS_WARN_ATTR warning attribute value is NULL
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_INFO error invalid info
MDAS_ERR_ATTR error invalid attribute for entity

MDAS_INFO_SCAN_ATTR() returns the attr attribute value for a given Info entity. A warn-
ing is returned in status if info has no attributes.

4.7.3.4.4 MDAS_LIST Entities and Attributes

An entity list is a simple list of entity records. It typically encountered in the result of
MDAS_INQUIRE().

An MDAS.LIST is created with
MDAS_INFO_CREATE(MDAS_LIST, ilist, status)

where ilist is an inf oh structure initialized bv the call.

123

•

The number of entities in a list is given by attribute MDAS_LIST_COUNT and the types of each
entity is given by MDAS_LIST_TYPE. These attributes may be scanned with MDAS_INFO_SCAN_ATTR().

4.7.3.4.4.1 MDAS_INFO_ADD_LATTR()

MDAS_INFO_ADD_LATTR(ilist, myinfo, n, status)
ilist: (IN/OUT) MDAS.INFOH
myinfo: (IN/OUT) MDAS.INFOH
n: (OUT) MDAS.integer
status: (IN/OUT) MDAS.status

Use MDAS_INFO_ADD_LATTRto add myinfo to list ilist. The list element number n assigned

to the entity is returned by the call.

4.7.3.4.4.2 MDAS_INFO_SCAN_LATTR()

To retrieve the nth Info structure from a list, use

MDAS_INFO_SCAN_LATTR(ilist, n, myinfo, status)
ilist: (IN/OUT) MDAS.INFOH
n: (IN) MDAS.intsger
myinfo: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS_status

where someinf o is an inf oh structure (reinitialized by the call.

4.7.3.4.4.3 MDAS_INFO_DEL_LATTR()

MDAS_INFO_DEL_LATTR(ilist, n, status)

ilist: (IN/OUT) MDAS.INFOH

n: (IN) MDAS.integer

status: (IN/OUT) MDAS_status

MDAS_INFO_DEL_LATTR() deletes list entities.

4.7.3.4.4.4 MDAS_INFO_CREATE_LEATTR()

MDAS_INFO_CREATE_LEATTR(type, ilist, n, status)

type: (IN) MDAS.token

ilist: (IN/OUT) MDAS.INFOH

n: (OUT) MDAS_integer

status: (IN/OUT) MDAS.status

124

To create "list entities" without explicitly declaring individual entity handles, use MDAS_INFO_CREATE_yj^TTR(
where ilist is the name of an existing MDAS.LIST Info structure and type is a valid MDAS WM
entity type. The list element number n assigned to the entity is returned by the call.

4.7.3.4.4.5 MDAS_INF0_5ET_LEATTR()

MDAS_INFO_SET_LEATTR(attr, value, ilist, n, status)
attr: (IN) MDAS.token
value: (IN) pointer (choice)
ilist: (IN/OUT) MDAS.INFOH
n: (IN) MDAS.integer
status: (IN/OUT) MDAS_status

Use MDAS_INFO_SET_LEATTR() to set attributes of "list entities" without the explicit entity
handles. The token attr must be a valid attribute for the entity type and value must be
a valid value for the attribute.

4.7.3.4.4.6 MDAS_INFO_SCAN_LEATTR()

To read values directly from a list entity, use:

MDAS_INFO_SCAN_LEATTR(ilist, n, attr, value, status)
ilist: (IN/OUT) MDAS_INFOH
n: (IN) MDAS.integer
attr: (IN) MDAS.token
value: (IN) pointer (choice)

status: (IN/OUT) MDAS.status

4.7.3.4.4.7 MDAS_INFO_SET_LERATTR()

MDAS_INFO_SET_LERATTR(r, attr, value, ilist, n, status)
r: (IN) MDAS.integer
attr: (IN) MDAS.token
value: (IN) pointer (choice)
ilist: (IN/OUT) MDAS.INFOH
n: (IN) MDAS.integer
status: (IN/OUT) MDAS_status

List entity replicate (LER) values can be accessed with MDAS_INFO_SET_LERATTR() where
r is the replicate index of the desired attribute.

125

4.7.3.4.4.8 MDAS_INFO_SCAN_LERATTR()

MDAS_INFO_SCAN_LERATTR(ilist, n, r, attr, value, status)

ilist: (IN/OUT) MDAS.INFOH
MDAS.integer

MDAS.integer

MDAS.token

pointer (choice)

MDAS.status

n: uw;
r: (IN)
attr: (IM)
value: (IN)
status: (IN/OUT)

4.7.3.4.5 Selecting Info

Queries on MDAS Catalogs by MDAS_INQUIRE() will often return metadata on multiple
items in result. The user can of course manually transverse the MDAS.LIST, then (based
on some user-defined decision mechanism) copy a particular item to a new Info structure
for further use. Another alternative is to rely on default selection criteria when supplying
several items in a single Info structure to a procedure that must use exactly one; e.g.,
MDAS_CONNECT(), MDAS.OPENO, MDAS.PIPEO, etc.

A third option is to explicitly narrow the result to a single item according to some condition
or criteria. MDAS_INFO_SELECT() is provided for this purpose. The use of this function is
not limited to metadata returned by MDAS_INQUIRE(). The user may wish to input Info
created at the user level or obtained by other means.

4.7.3.4.5.1 MDAS_INFO_SELECT()

MDAS_INFO_SELECT(info, cond, entity, status)

info: (IN/OUT)

cond: (IM)

entity: (OUT)

status: (IM/OUT)

MDAS.INFOH

MDAS_INFOH

MDAS.INFOH

MDAS.status

status codes type meaning

MDAS.SUCCESS success entity selected

MDAS_WARN_INFO warning info is empty or MULL

MDAS_WARN_COMD warning cond is empty or MULL

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_IMFO error invalid info

MDAS.ERR.COND error invalid cond

MDAS_INFO_SELECT() selects entities from info based on the criteria given in cond and
returns a single item in entity. Only the contents of info are used: MDAS Catalogs are

not searched.

126

The cond argument is used to specify conditions and criteria binding on the query. The to-
kens MDAS.CONDITION and MDAS.CRITERIA are provided for this purpose (see section 4.7.2.6).
The cond argument may be NULL to force default selection rules.

If cond contains MDAS_BEST, then all records of info are searched and default selection rules
apply. Otherwise, MDAS_IMFO_SELECT() returns the first entity in info matching all the
conditions and criteria in cond.

4.7.3.4.6 Printing Info

4.7.3.4.6.1 MDAS_INFO_PRINT()

MDAS_INFO_PRINT(info, status)
info: (IM) MDAS_INFOH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS_SUCCESS success info printed
MDAS_WARN_INFO warning info is empty
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_INFO error invalid info

MDAS_INFO_PRINT() prints the contents of an Info structure to standard output or the O/S
equivalent.

4.7.3.5 Access

4.7.3.5.1 Access Authorization

Applications running in a heterogeneous, distributed massive data analysis system may
often require connections to resources, methods, and data sets which belong to different
security realms or domains. Thus, the system must handle issues related to authentication
and security in this environment. The ticket model is used within MDAS. Functionally, this
model subsumes other security schemes.

The semantics of tickets is based on a point-to-point authorization protocol in which each
side is assumed to have a private security key for the other, plus the ability to generate
public "tickets" which can be decoded by the other party's private key for access authoriza-
tion. Under this model, a passwordless system can be considered to have null tickets. A
password challenge system can permit the instantiation of tickets, where the user changes
from a login+password paradigm to a ticket + login paradigm. Given the permission to
execute a method to access a data set and then to execute an analysis or display method,
MDAS supports third-party authentication in which the methods directly exchange tickets
to validate the information exchange.

127

4.7.3.5.1.1 MDASJTICKETO

MDAS_TICKET(item, user, type, ticket, status)

item: (IN)

user: (IN)

ttype: (IN)
ticket: (IN/OUT)

status: (IN/OUT)

MDAS.INFOH

MDAS.INFOH

MDAS.INFOH

MDAS.INFOH

MDAS.status

status codes type meaning

MDAS.SUCCESS success ticket updated

MDAS.WARN.USER warning user is empty or NULL

MDAS.WARN.TTYPE warning ttype is empty or NULL

MDAS.ERR.INIT error MDAS not initialized

MDAS.ERR.USER error invalid or unknown user

MDAS.ERR.TTYPE error invalid or unknown ttype

MDAS.ERR.TICKET error invalid ticket

MDAS.ERR.MEMORY error unable to allocate memory

MDAS.TICKETO generates an authorization "ticket" of type ttype for a specific item and
user using built-in libraries or modules installed on the local platform. The item can be
a data set, method, or resource. The user and ttype arguments may reference an ac-
tual user and authorization method, or NULL may be supplied to force default behavior.
Any metadata referenced by item, user, and ttype must be registered in an accessible
MDAS Catalog. If the descriptions of item, user, or ttype are somehow incomplete,
MDAS.INQUIREO and other Info manipulation procedures may be called internally with
default conditions and criteria to complete the minimal metadata requirements for generat-
ing ticket. MDAS.TICKET fails if the supplied metadata is too vague or local methods are
not found to enact the requested authentication.

4.7.3.5.2 Service Connection

4.7.3.5.2.1 MDAS_CONNECT()

MDAS_CONNECT(server, ticket, comm, servh, status)

server: (IN/OUT) MDAS.INFOH

ticket: (IN/OUT) MDAS.INFOH

comm: (IN) handle

servh: (OUT) MDAS.SERVH
status: (IN/OUT) MDAS.status

128

Status codes type meaning
MDAS.SUCCESS success connection established
MDAS_WARN_SERVER warning server is empty or NULL
MDAS_WARN_TICKET warning ticket is empty or NULL
MDAS_WARN_COMM warning comm different from MDAS.INIT
MDAS_WARN_MPI warning comm non-NULL but no MPI
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_SERVER error invalid or unknown server
MDAS_ERR_TICKET error invalid or unknown ticket
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_COMM error comm not part of MDAS.INIT comm
MDAS_ERR_SERVH error server not available

MDAS_CONNECT() connects an application program with the authorization protocol and key
specified in ticket to the service described in server. If server contains an MDAS.LIST
describing multiple services then a single service will be selected using default selection rules.
The ticket argument may also contain multiple tickets, in which case a match between one
of the tickets and a selected service will be attempted. The ticket argument may be NULL
to force internal ticket development with default selection criteria. If the descriptions of
server or ticket are somehow incomplete, MDAS_INQUIRE() and other Info manipulation
procedures may be called internally with default conditions and criteria to complete the
minimal metadata requirements for generating the connection.

The comm argument should be used only when the application is linked to an MPI-enabled
version of MDAS. If non-NULL, comm must be equivalent to or "split" (MPI_COMM_SPLIT())
from the communicator argument used in MDAS_INIT().

The returned servh handle maintains the functionality of a physical connection across
time-outs.

4.7.3.5.2.2 MDASJDISCONNECTQ

MDAS_DISCONNECT(servh, comm, status)
servh: (IN/OUT) MDAS.SERVH
comm: (IN) MDAS_handle
status: (IN/OUT) MDAS_status

status codes type meaning
MDAS.SUCCESS success server deallocated
MDAS_WARN_COMM warning comm different from MDAS.CONNECT
MDAS_WARN_MPI warning comm non-NULL but no MPI
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_SERVH error invalid servh
MDAS_ERR_MEMORY error unable to deallocate memorv
MDAS_ERR_COMM error comm not part of MDAS.CONNECT
MDAS_ERR_SERVER error server not available

129

MDAS_DISCONNECT() closes the connection specified by servh (and possibly comm) and frees

any memory associated with the structure.

4.7.3.5.2.3 MDAS.CONNECT and MDAS_DISCONNECT() Example

PROGRAM dbconnect

MDAS.status status

MDAS.INFOH dbinfo

MDAS.SERVH dbh

MDAS_INIT(argc, argv, MULL, status)

MDAS_INFO_CREATE(MDAS_RESOURCE, dbinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "ord.com", dbinfo, status)
MDAS_INFO_SET_ATTR(MDAS_RSRC_SRVN, "illustra", dbinfo, status)

MDAS.CONNECT(dbinfo, MULL, NULL, servh, status)

MDAS_DISCOMNECT(servh, MULL, status)

MDAS_FIMALIZE(NULL,status)

END PROGRAM

4.7.3.6 Operations on Data Sets

4.7.3.6.1 Cache Operations

4.7.3.6.1.1 MDAS_GET()

MDAS_GET(dset, cache, status)
dset: (IN/OUT) MDAS.IMFOH

cache: (IN/OUT) MDAS_INFOH

status: (IN/OUT) MDAS.status

130

Status codes type meaning
MDAS.SUCCESS success dset cached
MDAS_WARN_CACHE warning cache is empty or NULL
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DSET error invalid dset
MDAS_ERR_CACHE error invalid cache
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_READ error read access denied
MDAS_ERR_WRITE error write access denied
MDAS_ERR_IO error unable to perform I/O

MDAS_GET() retrieves a data set specified in dset and caches it on the local file system.

Any required tickets and/or connections are automatically generated. The target location
is selected by the MDAS library and returned in cache. The user can specify alternate

formats for the storage of dset in cache on input. The MDAS library may invoke a 3rd
party mover to perform the data transfer and possibly spool the data. If cache contains
a named data set, then the operation of MDAS_GET() will be functionally equivalent to
MDAS_INFO_PIPE(). If the description of dset is somehow incomplete, MDAS_IWQUIRE()
and other Info manipulation procedures may be called internally with default conditions
and criteria to complete the minimal metadata requirements for identifying the data set.

4.7.3.6.1.2 MDAS_GETALL()

MDAS_GETALL(dset, cache, status)
dset: (IN/OUT) MDAS.INFOH
cache: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success data sets cached
MDAS_WARN_CACHE warning cache is empty or NULL
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DSET error invalid dset
MDAS_ERR_CACHE error invalid cache
MDAS_ERR_MEMORY error unable to allocate memorv
MDAS_ERR_READ error read access denied
MDAS_ERR_WRITE error write access denied
MDAS_ERR_IO error unable to perform I/O

MDAS_GETALL() retrieves a set of data sets specified in dset and caches them on the local
file system. The entity type of dset may be either MDAS.DATASET or MDAS.LIST. The cache
argument may not specify more than one resource and may not name any data set(s).
MDAS_GETALL() is otherwise equivalent to MDAS_GET().

131

4.7.3.6.1.3 MDAS-PUTO

MDAS_PUT(dset, rsrc, status)
dset: (IN/OUT) MDAS_INFOH
rsrc: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS_status

status codes type meaning

MDAS.SUCCESS success dset stored in rsrc

MDAS_WARN_RESOURCE warning rsrc is empty or MULL

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_DSET error invalid dset

MDAS_ERR_RESOURCE error invalid rsrc

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_READ error read access denied

MDAS_ERR_WRITE error write access denied

MDAS_ERR_IO error unable to perform I/O

MDAS_PUT() retrieves a data set specified in dset from local cache and moves it to the
resource specified by rsrc. The target location is selected by the MDAS library and returned
in rsrc. The user can also use rsrc to specify alternate formats and storage servers for
the storage of dset. The MDAS library may invoke a 3rd party mover to perform the data
transfer and possibly spool the data. If rsrc contains a named data set, then the operation
of MDAS_PUT() will be functionally equivalent to MDAS_INFO_PIPE(). If the descriptions
of dset or rsrc are somehow incomplete, MDAS_INQUIRE() and other Info manipulation
procedures may be called internally with default conditions and criteria to complete the
minimal metadata requirements for identifying the data set and resource.

4.7.3.6.1.4 MDAS_PUTALL()

MDAS_PUTALL(dset, rsrc, status)

dset: (IN/OUT) MDAS.IMFOH

rsrc: (IN/OUT) MDAS.IMFOH

status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success dset stored in rsrc

MDAS.WARM.RESOURCE warning rsrc is empty or MULL

MDAS.ERR.IMIT error MDAS not initialized

MDAS.ERR.DSET error invalid dset

MDAS.ERR.RESOURCE error invalid rsrc
MDAS.ERR.MEMORY error unable to allocate memory

MDAS.ERR.READ error read access denied

MDAS.ERR.WRITE error write access denied

MDAS.ERR.IO error unable to perform I/O

132

MDAS_PUTALL() retrieves a set of data sets specified in dset from local cache and moves
them to the resource specified by rsrc. The entity type of dset may be either MDAS.DATASET
or MDAS.LIST. The rsrc argument may not specify more than one resource and may not
name any data set(s). MDAS_PUTALL() is otherwise equivalent to MDAS_PUT().

4.7.3.6.1.5 MDAS_GET() Example

PROGRAM getk2

MDAS_status status

MDAS.INFOH dsinfo, cacheinfo

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, dsinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fin.dat", dsinfo, status)

MDAS_INFO_CREATE(MDAS_DATASET, cacheinfo, status)

MDAS_INFO_SET_ATTR(MDAS_STOR_FMTN, "khoros2", cacheinfo, status)
MDAS_GET(dsinfo, cacheinfo, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.6.2 Generalized Point-to-Point Dataflow

MDAS provides a generalization of the Unix "pipe" paradigm for data set transmission.
The operation may be performed on either open data handles or data sets described by
metadata in Info structures. Since MDAS_INFO_PIPE() allows the MDAS Library (and
any schedulers known or discovered by the library) to select resources, tickets, and meth-
ods for completing the pipe transaction, it provides the greatest opportunities for MDAS
optimization of any point-to-point data transfer request.

4.7.3.6.2.1 MDAS_INFO_PIPE()

MDAS_INFO_PIPE(infol, info2, status)

infol: (IN/OUT) MDAS.INFOH
info2: (IN/OUT) MDAS.INFOH

status: (IN/OUT) MDAS.status

133

Status codes type meaning

MDAS.SUCCESS success pipe completed

MDAS_WARN_READ warning source automatically selected

MDAS_WARN_WRITE warning target automatically selected

MDAS_WARM_IO warning 3rd party mover employed

MDAS_WARN_FORMAT warning format conversion performed

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_INF01 error invalid infol

MDAS_ERR_IMF02 error invalid info2

MDAS_ERR_READ error read access denied

MDAS_ERR_WRITE error write access denied

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_IO error unable to perform I/O

MDAS_ERR_FORMAT error unable to convert format

MDAS_INFO_PIPE() takes two MDAS MDAS_info structures—each containing references to
data sets, and "pipes" the contents of a single data set from the first MDAS.info structure
to a single data set in the second. If infol contains records describing multiple data sets
then a single data set will be selected using default selection rules. The inf o2 argument
may also contain multiple data sets, in which case a single data set will be selected. Any
required tickets and/or connections are automatically generated.

If the descriptions of the (selected) data sets in infol or info2 are somehow incomplete,
MDAS_INQUIRE() and other Info manipulation procedures may be called internally with de-
fault conditions and criteria to complete the minimal metadata requirements for completing
the "pipe" transaction. The call fails when choices are ambiguous. The call is otherwise
functionally equivalent to MDAS_DATAH_PIPE().

4.7.3.6.2.2 MDAS_DATAH_PIPE()

MDAS_DATAH_PIPE(dhl, dh2, status)

dhl: (IN/OUT) MDAS.DATAH

dh2: (IN/OUT) MDAS.DATAH

status: (IN/OUT) MDAS.status

134

Status codes type meaning
MDAS_SUCCESS success stream dhl piped to stream dh2
MDAS_WARN_EOF warning dhl already at EOF
MDAS_WARN_IO warning 3rd party mover employed
MDAS_WARW_FORMAT warning format conversion performed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH1 error invalid dhl
MDAS_ERR_DH2 error invalid dh2
MDAS_ERR_READ error dhl closed
MDAS_ERR_WRITE error dh2 closed
MDAS_ERR_MEMORY error unable to allocate memorv
MDAS_ERR_IO error unable to perform I/O
MDAS_ERR_FORMAT error unable to convert format

MDAS_DATAH_PIPE() takes two MDAS data handles—one open for read and the other for
write, and "pipes" the data from one to the other performing any stream and format
conversion in-situ. Third-party movers are employed if necessary. The operation begins at
the current stream locations in dhl and dh2. The call may fail if no movers are available to
perform the required operation(s). Both handles are open on successful return but assumed
to be at "end of stream".

4.7.3.6.2.3 MDAS_INFO_PIPE() Example

PROGRAM pipefun

MDAS_status status

MDAS.INFOH funinfo, psinfo

MDAS_INIT(argc, argv, MULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, funinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fun.dat", funinfo, status)

MDAS_INFO_CREATE(MDAS_RESOURCE, psinfo, status)

MDAS_INFO_SET_ATTR(MDAS_RSRC_TYPE, MDAS.PRIMTER, psinfo, status)

MDAS_INFO_SET_ATTR(MDAS_RSRC_FMTN, "postscript", psinfo, status)

MDAS_INFO_PIPE(funinfo, psinfo, status)

print "fun.dat printed at:"

MDAS_IMFO_PRINT(psinfo,status)

MDAS_FINALIZE(MULL,status)

END PROGRAM

135

4.7.3.6.2.4 MDAS_DATAH_PIPE() Example

PROGRAM pipestream

MDAS_status status

MDAS.INFOH fininfo, tailinfo

MDAS.DATAH finh, tailh

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, fininfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "fin.dat", fininfo, status)

MDAS_OPEN(NULL, NULL, fininfo, NULL, finh, status)

MDAS_INFO_CREATE(MDAS_DATASET, tailinfo, status)

MDAS_INFO_SET_ATTR(MDAS_NAME, "tail.dat", tailinfo, status)

MDAS_OPEN(NULL, NULL, tailinfo, NULL, finh, status)

MDAS_DATAH_PIPE(finh, tailh, status)

MDAS_CLOSE(finh, NULL, status)

MDAS_CLOSE(tailh, NULL, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.6.3 Generalized Data Set Scatter/Gather

MDAS supplies multiplex versions of the MDAS_*_PIPE() commands for the replication and

concatenation of multiple data sets.

4.7.3.6.3.1 MDAS_INFO_SCATTER()

MDAS_INFO_SCATTER(infol, info2, status)

infol: (IN/OUT) MDAS.INFOH

info2: (IN/OUT) MDAS.INFOH

status: (IN/OUT) MDAS_status

136

Status codes type meaning
MDAS.SUCCESS success scatter completed
MDAS_WARN_READ warning source automatically selected
MDAS_WARM_WRITE warning target automatically selected
MDAS_WARN_IO warning 3rd party mover employed
MDAS_WARN_FORMAT warning format conversion performed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_IMF01 error invalid infol
MDAS_ERR_INF02 error invalid info2
MDAS_ERR_READ error read access denied
MDAS_ERR_WRITE error write access denied
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_IO error unable to perform I/O
MDAS_ERR_FORMAT error unable to convert format

MDAS_INFO_SCATTER() replicates the contents of a single data set specified in infol to one
or more data sets referenced in info2. The result is that the contents of a data set in infol
are replicated to one or more data sets in info2. If infol contains records describing
multiple data sets then a single data set will be selected using default selection rules. If
info2 contains multiple data sets, all will be selected as targets. Any required tickets
and/or connections are automatically generated.

If the descriptions of the (selected) data sets in infol or info2 are somehow incomplete,
MDAS_INQUIRE() and other Info manipulation procedures may be called internally with de-
fault conditions and criteria to complete the minimal metadata requirements for completing
the "scatter" transaction. The call fails when choices are ambiguous, access authorization
is denied, or when proper read/write modes can not be established. The call is otherwise
functionally equivalent to MDAS_DATAH_SCATTER().

4.7.3.6.3.2 MDAS_IMFO_GATHER()

MDAS_INFO_GATHER(infol, info2, status)

infol: (IN/OUT) MDAS.IMFOH

info2: (IN/OUT) MDAS.INFOH

status: (IN/OUT) MDAS.status

131

Status codes type meaning

MDAS.SUCCESS success gather completed

MDAS_WARM_READ warning source automatically selected

MDAS_WARN_WRITE warning target automatically selected

MDAS_WARN_IO warning 3rd party mover employed

MDAS_WARN_FORMAT warning format conversion performed

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_INF01 error invalid infol

MDAS_ERR_IWF02 error invalid inf o2

MDAS_ERR_READ error read access denied

MDAS_ERR_WRITE error write access denied

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_IO error unable to perform I/O

MDAS_ERR_FORMAT error unable to convert format

MDAS_INFO_GATHER() pipes the contents of one or more data sets referenced in infol to a
single data set specified in info2. The result is that the contents of the data sets in infol
are concatenated (in list order) to the data set in info2. If infol contains multiple data
sets, all will be selected as sources. If inf o2 contains records describing multiple data sets
then a single data set will be selected using default selection rules. Any required tickets

and/or connections are automatically generated.

If the descriptions of the (selected) data sets in infol or info2 are somehow incomplete,
MDAS_INQUIRE() and other Info manipulation procedures may be called internally with de-
fault conditions and criteria to complete the minimal metadata requirements for completing
the "gather' transaction. The call fails when choices are ambiguous, access authorization
is denied, or when proper read/write modes can not be established. The call is otherwise
functionally equivalent to MDAS_DATAH_GATHER().

4.7.3.6.3.3 MDAS_DATAH_SCATTER()

MDAS_DATAH_SCATTER(dh, count, dhvect, status)
dh: (IN/OUT)
count: (IN)
dhvect: (IN/OUT)
status: (IN/OUT)

MDAS.DATAH
integer
vector of MDAS.DATAH
MDAS.status

138

Status codes type meaning
MDAS_SUCCESS success dh piped to dhvect
MDAS_WARN_EOF warning dh alreadv at EOF
MDAS.WARN.IO warning 3rd party mover employed
MDAS.WARN.FORMAT warning format conversion performed
MDAS.ERR.INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_COUNT error invalid count
MDAS_ERR_DHVECT error invalid dhvect
MDAS.ERR.READ error dh closed
MDAS_ERR_WRITE error handle in dhvect closed
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_IO error unable to perform I/O
MDAS_ERR_FORMAT error unable to convert format

MDAS_DATAH_SCATTER() pipes the contents of the data stream pointed to by dh to a vector of

distinct streams dhvect of size count. The operation begins at the current stream locations
in dh and dhvect. The result is that the (remaining) stream contents of dh are replicated to
the streams in dhvect. Upon successful return, all data handles will be open but assumed
to be at "end of stream". Read mode must be enabled for dh and all data handles in dhvect
must be enabled for write.

4.7.3.6.3.4 MDAS_DATAH_GATHER()

MDAS_DATAH_GATHER(count, dhvect, dh, status)
count: (IN) integer

dhvect: (IN/OUT) vector of MDAS_DATAH
dh: (IN/OUT) MDAS.DATAH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success dhvect concatenated to dh
MDAS_WARN_EOF warning some dhvect handles at EOF
MDAS.WARN.IO warning 3rd party mover employed
MDAS.WARN.FORMAT warning format conversion performed
MDAS.ERR.INIT error MDAS not initialized
MDAS.ERR.COUNT error invalid count
MDAS.ERR.DHVECT error invalid dhvect
MDAS.ERR.DH error invalid dh
MDAS.ERR.READ error handle in dhvect closed
MDAS.ERR.WRITE error dh closed
MDAS.ERR.MEMORY error unable to allocate memory
MDAS.ERR.IO error unable to perform I/O
MDAS.ERR.FORMAT error unable to convert format

139

MDAS_DATAH_GATHER() pipes the contents of the distinct data streams pointed to by dhvect
of size count to the stream dh. The operation begins at the current stream locations in
dhvect and dh. The result is that the (remaining) stream contents of dhvect are concate-
nated to the stream in dh in vector order. Upon successful return, all data handles will
be open but assumed to be at "end of stream". Read mode must be enabled for all data

handles in dhvect and dh must be enabled for write.

4.7.3.6.4 Generalized Open on Data Sets

4.7.3.6.4.1 MDAS_0PEM()

MDAS_0PEN(servh, comm, dset, mode, dh, status)

servh: (IN) MDAS.SERVH

comm: (IN) MDAS.handle

dset: (IN) MDAS.INFOH

mode: (IN) MDAS.INFOH

dh: (OUT) MDAS.DATAH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success data set open on dh

MDAS_WARN_SERVH warning servh is empty or NULL

MDAS_WARN_SERVER warning server automatically selected

MDAS_WARN_COMM warning comm different from MDAS.CONNECT

MDAS_WARN_MPI warning comm non-NULL but no MPI

MDAS_WARN_DSET warning dset is empty or NULL

MDAS_WARN_DATASET warning data set automatically selected

MDAS_WARN_MODE warning mode is empty or NULL

MDAS_WARN_IO warning I/O mode automatically selected

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_SERVH error invalid servh

MDAS_ERR_COMM error comm not part of MDAS.CONNECT

MDAS_ERR_DSET error invalid dset

MDAS_ERR_MODE error invalid mode

MDAS_ERR_READ error read access denied

MDAS_ERR_WRITE error write access denied

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_SERVER error server not available

MDAS_ERR_DATASET error data set not available

MDAS_0PEN() opens a generalized data handle for a data set specified in the dset argu-
ment. If servh is NULL, then the metadata specified in dset are used to establish access
authentication and a service connection to a resource containing the data set. The comm
argument is used only when the application is linked to an MPI-enabled version of MDAS;
it is otherwise ignored. If comm is used, it must be equivalent or "split"' from the MPI

140

communicator used to create servh. This behavior is guaranteed when servh is NULL. The
MDAS mode argument should be either NULL for default read/write access or contain an
I/O directive attribute.

A warning is returned in status if NULL is passed but the data set access mode is limited to
one of read or write. An error is returned with a NULL dh when access to the data set is de-
nied. If the descriptions of servh, dset, or mode are somehow incomplete, MDAS_INQUIRE()
and other Info manipulation procedures may be called internally with default conditions
and criteria to complete the minimal metadata requirements for opening the data handle. If
successful, the returned handle contains Info from dset and a pointer to the actual physical
data stream employed.

4.7.3.6.4.2 MDAS_CLOSE()

MDAS_CLOSE(dh, comm, status)

dh: (IN/OUT) MDAS.DATAH
comm: (IN) MDAS.handle
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success dh deallocated
MDAS_WARN_COMM warning comm different from MDAS.OPEN
MDAS_WARN_MPI warning comm non-NULL but no MPI
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_COMM error comm not part of MDAS.OPEN
MDAS_ERR_MEMORY error unable to deallocate memory
MDAS_ERR_SERVER error server not available
MDAS_ERR_IO error I/O error on close

MDAS_CLOSE() closes the data stream, etc. specified by dh (and possibly comm) and frees
any memory associated with the structure.

4.7.3.6.4.3 Example use of MDAS_0PEN() and MDAS_CLOSE()

PROGRAM openfinh

MDAS_status status

MDAS.INFOH dsinfo

MDAS.DATAH finh

MDAS_INIT(argc, argv, NULL, status)

MDAS_INFO_CREATE(MDAS_DATASET, dsinfo, status)

141

MDAS_INFO_SET_ATTR(MDAS_NAME, "fin.dat", dsinfo, status)
MDAS_INFO_SET_ATTR(MDAS_STOR_FMT, "hdf", dsinfo, status)

MDAS_OPEN(NULL, NULL, dsinfo, NULL, finh, status)

MDAS_CLOSE(finh, NULL, status)

MDAS_FINALIZE(NULL,status)

END PROGRAM

4.7.3.7 Block I/O

MDAS supplies MDAS_READ() and MDAS_WRITE() for block I/O on data handles. The de-
velopment of spooler daemons are one example use.

MDAS_READ(dh, type, count, buffer, status)
MDAS.DATAH
MDAS.datatype
integer
MDAS_handle (user defined buffer)
MDAS.status

dh: (IN/OUT)

type: (IN)

count: (IN)

buffer: (OUT)

status: (IN/OUT)

WRITE(type, coun

type: (IN)

count: (IN)

buffer: (IN)

dh: (IN/OUT)

status: (IN/OUT)

MDAS.datatype
integer
MDAS.handle (user defined buffer)

MDAS.DATAH

MDAS.status

The argument lists to MDAS.READ and MDAS.WRITE differ only in the order of arguments.
Valid type values are given in table 4.5. The count specifies how many of the given type
are contiguously packed in the given buffer. All data supplied in buffer by MDAS_READ()
will be packed. For MDAS_WRITE(), if type is an MDAS.INFOH, MDAS_TABLE_HANDLE: or
MDAS.INFOH, a handle packed by MDAS_HANDLE_PACK() must be supplied in buffer.

4.7.3.7.1 Data Handle Conversion

MDAS provides several data handle conversion routines to permit native protocol transac-
tions on data sets opened by MDAS_0PEN(). For example, it is desirable in data mining and
knowledge building applications to search (inquire) about data sets available for access with
a file stream interface and then perform operations on those data sets. Conversions to data
handles are also permitted in the event that a user wishes to perform MDAS_DATAH_PIPE()
on an "unregistered"' data set. In particular: data received in a C program from standard
input outside the purview of MDAS cannot be registered.

142

4.7.3.7.1.1 MDAS_CVTJ)H_U()

MDAS_CVT_DH_U(dh, unit, status)
dh: (IN/OUT) MDAS.DATAH
unit: (IN/OUT) integer
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success unit assigned for dh
MDAS_WARM_IO warning 3rd party mover employed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_IO error unable to convert I/O stream
MDAS_ERR_UMIT error unable to assign to given unit

MDAS_CVT_DH_U() is most applicable to Fortran implementations. If the caller supplies
unit < 1, then a unit number is selected and returned. The user should not call Fortran
close() on unit. To close the stream, use MDAS_CLOSE() on the original dh.

4.7.3.7.1.2 MDAS_CVT_DH_FP()

MDAS_CVT_DH_FP(dh, fp, status)
dh: (IN/OUT) MDAS.DATAH
fp: (OUT) MDAS.handle
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success f p created for dh
MDAS_WARN_IO warning 3rd party mover employed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_IO error unable to convert I/O stream

MDAS_CVT_DH_FP() is most applicable to ANSI C implementations.' The returned (FILE*) fp
is also cached on dh. The user should not call C fclose() on fp. To close the stream, use
MDAS_CLOSE() on the original dh.

4.7.3.7.1.3 MDAS_CVT_DH_FS()

MDAS_CVT_DH_FS(dh, fs, status)
dh: (IN/OUT) MDAS.DATAH

143

fs: (OUT)

status: (IN/OUT)

MDAS.handle

MDAS_status

status codes type meaning

MDAS.SUCCESS success f s created for dh

MDAS_WARN_IO warning 3rd party mover employed

MDAS_ERR_INIT error MDAS not initialized

MDAS_ERR_DH error invalid dh

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_IO error unable to convert I/O stream

MDAS_CVT_DH_FS() creates an open socket fs for the stream in dh. The user should not
call manually close fs, but rather use MDAS_CLOSE() on the original dh.

4.7.3.7.1.4 MDAS_CVT_U_DH()

MDAS_CVT_U_DH(unit, dh, status)
unit: (IN) integer
dh: (OUT) MDAS.DATAH
status: (IN/OUT) MDAS_status

status codes type meaning

MDAS_SUCCESS success dh created for unit

MDAS_WARN_IO warning 3rd party mover employed

MDAS_ERR_INIT error MDAS not initialized

MDAS.ERR.DH error invalid dh

MDAS_ERR_UNIT error invalid unit

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_IO error unable to convert I/O stream

MDAS_CVT_U_DH() is most applicable to Fortran implementations. The caller must supply
an valid unit number to an open file or stream. To close the data handle and stream, the
user should first call MDAS_CLOSE() on dh (which will only deallocate the data handle) and

then call Fortran closeQ on on the original unit.

4.7.3.7.1.5 MDAS_CVT_FP_DH()

MDAS_CVT_FP_DH(fp, dh, status)
fp: (IN) MDAS.handle

dh: (OUT) MDAS_DATAH

status: (IN/OUT) MDAS.status

144

Status codes type meaning
MDAS.SUCCESS success dh created for f p
MDAS_WARN_IO warning 3rd party mover employed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_IO error unable to convert I/O stream

MDAS_CVT_FP_DH() is most applicable to C and C++ implementations. The caller must
supply an valid file handle fp to an open file or stream. To close the data handle and
stream, the user should first call MDAS_CLOSE() on dh (which will only deallocate the data
handle) and then call C f closeQ on on the original fp.

4.7.3.7.1.6 MDAS_CVT_FS_DH()

MDAS_CVT_FS_DH(fs, dh, status)

fs: (IN) MDAS.handle
dh: (OUT) MDAS.DATAH
status: (IN/OUT) MDAS_status

status codes type meaning
MDAS.SUCCESS success dh created for f s
MDAS_WARN_IO warning 3rd party mover employed
MDAS_ERR_INIT error MDAS not initialized
MDAS_ERR_DH error invalid dh
MDAS_ERR_MEMORY error unable to allocate memorv
MDAS_ERR_IO error unable to convert I/O stream

MDAS_CVT_DH_FP() creates a data handle for the open socket fs. The caller must supply
an valid socket handle f s to an open stream. To close the data handle and stream, the user
should first call MDAS_CLOSE() on dh (which will only deallocate the data handle) and then
call closeQ on on the original fs.

4.7.3.7.1.7 MDAS_CVT_FP_DH() Example

/* PROGRAM cvtfp ~ ANSI C */

main(arge, argv) ;

■C

FILE* fp ;

mdasC_status status ;

mdasCLINFOH dsinfo ;

mdasC.DATAH finh, tailh ;

145

fp = fopenO'fin.dat", "r") ;

mdasC_init(argc, argv, NULL, status) ;

mdasC_cvt_fp_dh(fp, finh, status) ;

mdasC_info_create(MDAS_DATASET, MDAS.NAME, "tail.dat", dsinfo, status) ;

mdasC_open(NULL, NULL, dsinfo, NULL, tailh, status) ;

mdasC_close(finh, NULL, status) ;

fclose(finh) ;

mdasC_close(tailh, NULL, status) ;

mdasC.finalize(NULL,status)

fclose(fp) ;

exit(O) ;

}
/* END PROGRAM */

4.7.3.8 Executing Methods

4.7.3.8.1 MDAS-EXECQ

MDAS.EXEC(method, params, rsrc, ds_in, ds_out, status)
method: (IN/OUT) MDAS.INFOH
params: (IN/OUT) MDAS.INFOH
rsrc: (IN/OUT) MDAS.INFOH
ds_in: (IN/OUT) MDAS.INFOH
ds.out: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success request completed

MDAS.WARN.METHOD warning method is empty or NULL

MDAS.WARN.PARAMS warning params is empty or NULL
MDAS.WARN.RESOURCE warning rsrc is empty or NULL

MDAS.WARN.INPUT warning ds.in is empty or NULL
MDAS.WARN.OUTPUT warning ds.out is empty or NULL

MDAS.ERR.MEMORY error unable to allocate memory

MDAS.ERR.SERVER error server not available

MDAS.ERR.METHOD error method error

MDAS.EXEC discussion: TBD.

146

MDAS Data Type Fortran 90 Type ANSI C, C++ Type
MDAS.table
MDAS.graph

derived TYPE
derived TYPE

void**
struct

Table 4.5: MDAS Mid-Level data types and their counterparts in standard languages.

4.8 MDAS Mid-Level Interface

This section discusses the MDAS Mid-Level in detail. Datatypes exposed to the user at
this level are discussed in section 4.8.1. Function prototypes are presented in section 4.8.2.

4.8.1 Mid-Level Data Types

In addition to the types supported at the API level (4.7.1), MDAS supports types for use at
the Mid-Level library interface. A list of currently supported types is given in table ??. The
implementation of these types is language and architecture dependent. Type conversions
between languages and architectures is performed by Mid-Level routines in the MDAS
library.

4.8.1.1 Graph

TBD.

The MDAS_graph structure is the primary protocol for communications between an MDAS-
enabled application and an MDAS daemon. It is also used by higher level libraries for direct
interface with the MDAS trasparency and transaction engines. Internally, an MDAS_graph
structure is a directed graph whose nodes and vertices are defined by MDAS.inf o structures.
An interface to MDAS_graph handles is given in section ??.

4.8.1.2 Table

TBD.

The MDAS Library defines the type MDAS.table for direct import and export of DBMS
tables. The MDAS.table type most often appears as a value with token MDAS.SD in an
MDAS_info structure and thus unseen by users. Input/Output operations on large tables
may be internally spooled. An interface to MDAS_table handles is given in section ??.

4.8.1.3 Handle Structures

TBD.

147

MDAS Handle Type Purpose
MDAS.GH
MDAS.TABLH

handle to MDAS_graph structure
handle to MDAS_table structure

Table 4.6: Additional MDAS handles.

Needs to describe details of handle structures.

The MDAS Mid-Level Library defines handles for MDAS.graph and MDAS_table structures,
along with routines to manipulate the attributes of MDAS-defined handle types. This
section discusses handle attributes and structures. A list of Mid-Level MDAS.handle types

is given in table 4.6.

4.8.2 Mid-Level Prototypes

TBD.

4.8.2.1 Library Initialization

MDAS_INITIALIZED() allows layered libraries to determine if another library in the applica-
tion code has called MDAS_IMIT() or MDAS_FINALIZE(). It returns success (0) if the library
is initialized. Otherwise, a warning code is returned indicating whether the library has (a)

never been initialized or (b) has been finalized.

MDAS_IMITIALIZED(status)
status: (IN/OUT) MDAS.status

4.8.2.2 Data Type Length and Packing

To support the import, export, and internal transfer of data among MDAS-enabled appli-
cations and external environments, the MDAS Library provides an interface to obtain the

length of data structures in the system. Js'

MDAS_DATATYPE_LEN(type, len, status)
type: (IN) MDAS.datatype
len: (OUT) integer
status: (IN/OUT) MDAS_status

MDAS_DATATYPE_LEN() returns the length (in bytes) of an MDAS.datatype (table 4.5. sec-
tion ??) in the current run-time. If type is a handle, the handle length and not the
length of the underlying structure is returned. Use MDAS_HANDLE_PACK_LEN() to obtain the

contiguous length of an MDAS.handle.

148

MDAS_HANDLE_PACK_LEN(htype, handle, len, status)

htype: (IN) Name of MDAS.handle
handle: (IN/OUT) MDASJiandle
len: (OUT) integer
status: (IN/OUT) MDAS.status

MDAS_HANDLE_PACK_LEN() returns the length (in bytes) of a structure referenced by handle-
as if it were packed into a contiguous stream of bytes. The routine may actually pack the
structure if internal optimizations deem it prudent. Otherwise, the structure is left un-
touched. The value supplied in htype must (currently) be one of MDAS_GRAPH_HANDLE,
MDAS.INFOH, or MDAS_TABLE_HANDLE.

MDAS_HANDLE_PACK(htype, handle, buffer, buflen, len, status)

htype: (IN) Name of MDAS.handle

handle: (IN/OUT) MDAS.handle

buffer: (IN/OUT) MDAS.handle (user defined buffer)
buflen: (IN) integer
len: (OUT) integer
status: (IN/OUT) MDAS.status

MDAS_HANDLE_PACK() packs a structure referenced by handle into a contiguous stream
of bytes which is suitable for I/O. The buffer must be user-allocated memory of length
buflen. The actual length of the packed structure is returned in len. This is guaranteed
to be the same length as MDAS_HANDLE_PACK_LEN() would return for the same handle
reference. A packed MDAS.handle structure is functionally equivalent to its unpacked form.

Note: subsequent operations on the content of a packed MDAS.handle structure (e.g.,
section ??) may cause the structure to be unpacked. When an MDAS.handle structure is
packed for I/O or communication, its content should not be examined or updated until the
I/O transaction is complete.

4.8.2.3 Program Graph Interface

One of the prime MDAS objectives is the replacement of the Unix file paradigm with a high-
level data set abstraction. To do so also requires the abstraction of programs to methods,
since programs are typically stored as executable files. Visual programming environments
have proven to be an effective interface for the design and prototyping of software systems.
The MDAS ''Program Graph Interface" provides a direct means for visual programming
GUIs to interface the MDAS transparency and transaction engines. MDAS Daemons and
many High-Level MDAS API functions such as MDAS_GET(), MDAS.PUTO, MDAS_*_PIPE(),
and MDAS_*_MPLX() are implemented with this Mid-Level interface.

MDAS_GRAPH_CREATE(gh, status)
gh: (IN/OUT) MDAS.GRAPH.HANDLE
status: (IN/OUT) MDAS.status

149

MDAS_GRAPH_DUP(ghl, gh2, status)
ghl: (IN/OUT) MDAS_GRAPH_HANDLE
gh2: (IN/OUT) MDAS_GRAPH_HANDLE
status: (IN/OUT) MDAS.status

MDAS_GRAPH_ADD_NODE(info, gh, status)
info: (IM) MDAS.INFOH
gh: (IN/OUT) MDAS_GRAPH_HANDLE

status: (IN/OUT) MDAS.status

MDAS_GRAPH_DEL_NODE(info, gh, status)
info: (IN) MDAS.INFOH
gh: (IN/OUT) MDAS_GRAPH_HANDLE
status: (IM/OUT) MDAS.status

MDAS_GRAPH_CONNECT(infol, info2, cinfo, gh, status)
infol: (IN) MDAS.INFOH
info2: (IM) MDAS.INFOH
cinfo: (IN) MDAS.INFOH
gh: (IN/OUT) MDAS_GRAPH_HANDLE
status: (IN/OUT) MDAS.status

MDAS.GRAPH.CUKinfol, info2, gh, status)
infol: (IN) MDAS.INFOH
info2: (IN) MDAS.INFOH
gh: (IN/OUT) MDAS.GRAPH.HANDLE
status: (IN/OUT) MDAS.status

MDAS_GRAPH_SELECT(info, gh, status)
info: (IN) MDAS.INFOH
gh: (IM/OUT) MDAS.GRAPH.HANDLE
status: (IN/OUT) MDAS.status

MDAS_GRAPH_CURSOR_SCAM(gh, action, scalar, status)
gh: (IN/OUT) MDAS.GRAPH.HANDLE
action: (IN) integer
scalar: (OUT) integer
status: (IN/OUT) MDAS.status

(This needs to be updated for graphs.) MDAS_GRAPH_CURSOR_SCAN() returns the cursor
position, level, or size values of MDAS.graph structures. The result is returned in seal
The gh argument is a handle to the structure of interest. Valid action values are:

ar.

150

MDAS_LEVEL_GET get the level of the current cursor position
MDAS_CURSOR_SIZE get the size of the MDAS.graph structure at the current level
MDAS_CURSOR_GET get index of current cursor position in current level

MDAS_GRAPH_CURSOR(gh, action, index, status)

gh: (IN/OUT) MDAS_GRAPH_HANDLE

action: (IN) integer

index: (IN) integer

status: (IN/OUT) MDAS_status

MDAS_GRAPH_COPY(gh, ghcopy, status)

gh: (IN/OUT) MDAS_GRAPH_HANDLE

ghcopy: (OUT) MDAS_GRAPH_HANDLE

status: (IN/OUT) MDAS.status

MDAS_GRAPH_EXEC(gh, rsrc, status)

gh: (IN/OUT) MDAS_GRAPH_HANDLE

rsrc: (IN) MDAS.INFOH
status: (IN/OUT) MDAS.status

MDAS_GRAPH_FREE(gh, status)

gh: (IN/OUT) MDAS_GRAPH_HANDLE
status: (IN/OUT) MDAS.status

4.8.2.4 Direct Query Interface

MDAS_SD_QUERY(info, cond, extent, result, status)
info: (IN) MDAS.INFOH
cond: (IN) MDAS.INFOH
extent: (IN) MDAS.INFOH
result: (OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

MDAS_SD_QUERY() extends the functionality of MDAS_INQUIRE() to user-defined specific
data. The call may fail if no methods exist to perform the requested query on the specified
data set. Where supported, MDAS will search the contents of user data for occurences of
user tokens and values specified in info. An error is returned if no such tokens are found.

MDAS_SQL_EXEC(...)
... TBD

Since MDAS targets interoperation between many protocols, an ANSI SQL execute call is
also provided for use with SQL-enabled servers opened with MDAS_CONNECT().

151

4.8.2.5 Table Interface

The MDAS Library provides and interface for the direct import and export of DBMS tables.

TBD.

Input/Output operations on large tables may be internally spooled.

152

4.9 MDAS Metadata

This section provides details on the type of metadata maintained by MDAS. It also describes
a few scenarios that show the use of this metadata. MDAS maintains metadata to support
the following functionality:

1. locating entities

2. gaining access to entities, and

3. performing computations with the entities

4.9.1 Locating Entities

The metadata associated with the locator functionality provides for a variety of ways for
locating entities in the information space. In the case of data set elements, locator metadata
may originate either from portions of the element itself (implicit metadata) and/or may
arise from other parametric values (explicit metadata) that aid in locating the element.
For example, the contents of a document form part of implicit metadata whereas its name
and the semantics of the contents form part of explicit metadata. In the case of methods,
resources and users, the associated metadata is typically explicit in nature. Entities that are
of interest are identified by queries against either the system metadata (attributes stored
for all entities) or entity metadata (attributes that are specific to that class of entity).

4.9.2 Accessing Entities

The access metadata provides information on how to transport an entity, e.g. data set,
from its current location to a location of interest. Data sets and methods are example
of transportable entities. In the case of non-transportable entities, the access metadata
provides information on how to communicate with the entity. Resources and users are ex-
amples of such entities. For transportable entities, the metadata provides information on
how to authenticate and connect to the corresponding data server, and the method to use to
perform and mediate the transfer operation. Information on the applicable levels of locking
are maintained to control the amount of concurrent activity. Metadata about constraints
that are imposed on the transfer operation can also be maintained. Transportable entities
may exist in replicates, or may be distributed over a network, or possibly both. Transport
methods may allow for parallel transport. Metadata to determine which replicate can be
cost-effectively transferred and metadata to formulate a plan to perform parallel access of
data sets may also be stored in required cases. In the case of non-transportable entities, the
metadata provides methods which one can use to communicate with the entity and also the
parametric values that can be used to establish this communication. Again, authentication
and security metadata may also be maintained in certain cases. In the case of resources,
statistical and usage metadata is maintained to facilitate scheduling and accounting appli-
cations.

153

4.9.3 Computing With Entities

For data sets, the compute-oriented metadata provides information on how to transform and
present the data to various processes, users and resources. A data set may be stored in one
form while a computing process may require the data in another form. MDAS can provide
the transformation to the acceptable form by maintaining metadata about this procedure.
In the case of resources and methods, the compute-oriented metadata provides information
about the characteristics of inputs and outputs (e.g. ability to support parallel I/O), and

auxiliary support structures needed for effective computation.

4.9.4 Usage of Metadata

Following are examples of the types of requests that MDAS can respond to based on its

metadata.

4.9.4.1 Locating Data Sets

A user is only able to describe a data set of interest, but does not know its location. For

example:

• Locate the data set that was created on 10/10/96 by using the Spectral Gradient
Transform on the Intel Paragon with wave data collected by EOS satellite at 2200

hrs.

• Locate the text document created by the OCR program based on manuscript page 24
for the patent on "Multithreaded Supercomputers".

• Locate the document provided by Intel about the Paragon and dealing with FIFO

cache registers.

4.9.4.2 Locating Resources

A user needs resources which conform to some user-defined specification but is not aware of
the actual set of resources available in the heterogeneous, distributed computing environ-

ment. For example:

• Find a computing platform with a 100 Teraflops rating which is connected to Suranet

• Find a computing platform which can run the "Smith-Waterson'? algorithm and also
provide 1 Teraflops for a 20-minute interval in the next 24-hour period.

• Find the nearest available resource that holds text and image files for Patent number
"22224444". Execute the patent conversion utility that translates the files into LaTeX

and tiff form.

154

CD Tables AD Tables TD Tables SD Tables
\ \ \ \

1 1 1 1
1 1 1 1

1

Figure 4.3: MDAS Metadata Tables

4.9.4.3 Locating Methods

A user needs to find out if a specific computational function (method) exists or can be
applied to some data set(s) using specified resource(s). For example:

• Find a format conversion method to convert from the netCDF format to the vis5D
format.

• Is there a method to validate 3D ECOM-si hydrodynamic ocean simulation output
with observational data for the San Diego Bay?

• Can I run a parallel interpolation function on regular grids of size greater than 1024
x 1024 on a CRAY MPP platform?

4.9.5 Metadata Schema

The metadata described in the previous sections is stored in the MDAS Metadata Catalog
shown in Figure 4.3. The central component of the metadata database schema consists of
four main Catalog Data (CD) metadata tables, one each for the main elements of MDAS.
viz. datasets, methods, resources and users. The CD metadata tables are supported by
several companion Auxiliary Data (AD) metadata tables. The CD and AD metadata tables
form a normalized schema for the metadata database. The definitions and descriptions of
several of the attribute values in CD and AD metadata tables are contained in Token Data
(TD) metadata tables. Apart from these three types of metadata tables, which form the
system level component of the metadata database, optional Specific Data (SD) metadata
tables can be defined for each user, dataset. method, and resource in the system. The
SD metadata tables make up the application level component of the metadata database.
Provisions are made to access these tables in conjunction with the system level metadata.
All or parts of these tables may be replicated in more than one metadatabases for high
availability and performance. The compositions of and interactions between the table are
described below.

Table 4.7 provides the types of attributes used in the metadata schema. Table 4.8 provides
the attributes of all TD metadata tables. Table 4.9 provides the attributes of all CD meta-
data tables. Tables 4.10, 4.11, 4.12 and 4.13 provide AD metadata for datasets. methods.

155

resources and users in MDAS. The schema digram for part of the metadata database is
given in Figure 4.4.

156

TDJWJDir

TDJ3SET

F1FJT>_

\
\

DATA
SD

TABLES

1DJUJIHE mCATlON

TIJiEPL..POLICY

ADJXJNEAGE
PARAMETER

CDRESOURCE

1DJJAOGREOATIOl r

CD_METHOD

Figure 4.4: Metadata Data Model (data-centric)

15.

158

native type
MDAS-DATAJD
MDAS-RSRCJD
MDAS.METH.ID
MDAS-USERJD
MDAS.DATA_TYPE.ID
MDAS-RSRC.TYPEJD
MDAS-METH.TYPE.ID
MDAS.USER.TYPEJD
MDAS_DATA_NAME
MDAS.RSRC-NAME
MDAS.METH.NAME
MDAS-USER.NAME
MDAS_DATA.TYPE_NAME
MDAS_RSRC-TYPE_NAME
MDAS-METH.TYPE.NAME
MDAS.USER_TYPE.NAME
MDAS.USER_ADDRESS
MDAS-USER.PHONE
MDAS.USER.EMAIL
MDAS.USER.DOMAIN

native type
MDAS-FIELD.NAME
MDAS_FIELD_TYPE
MDAS.FIELD_TYPE.NAME
MDAS.PATH.NAME
MDAS.REP.POLICY.DESC
MDAS-REP.TYPE.DESC
iMDAS.PARTITION.DESG
MDAS-TRIG-DESC
MDAS.TRIG.MODE
MDAS.TRIG-CONDITION
MDAS-ACCESS.DESC
MDAS-PREDJDESC
MDAS.FUNCTION.DESC
MDAS_FUNCTION_NAME
MDAS.LANG.TYPE
MDAS.SCHEMAJD
MDAS-ACCESSJD
MDAS.TRIGGERJD
MDAS-AGGREGATIONJD
MDAS.FUNCTIONJD
MDAS-LOCATIONJD
MDAS.LOC.DESC

native type
MDAS.TICKET.DESC
MDAS-AUTHENTICATION_DESC
MDAS.LOCK_DESC
MDAS_MISC_TYPE_ID
MDAS-LOCKJD
MDAS.TICKETJD
MDAS-AUTHENTICATIONJD
MDAS-MISC-VALUE
MDAS-MISC-NAME
MDAS_REP_POLICY_ID
MDAS_REP_TYPE_ID
MDAS-PARTITIONJCHEMEJD
MDAS-ACTIONJD
MDAS_ACTION_DESC
MDAS.PARAMETER.TYPE
MDASJPARAMETER.VALUE
MDAS.PARAMETER.NAME
MDAS-SD-DESC
MDAS.KEY
MDAS.SCHEMA_TYPE_NAME
MDAS.METH_EXEC-TYPE.NAME
MDAS.METH.EXEC.TYPE.ID

Table 4.7: Native Type Definitions (MDAS Mid-level)

159

table name
MDAS-TD_LOCK
MDAS_TD_DOMAIN
MDAS.TDJDATA-TYPE
MDAS-TDJVIETHLTYPE

MDAS_TD_RSRC_TYPE

MDAS-TD-USER_TYPE
MDAS-TD_EXEC.TYPE
MDAS.TD-LOCATION

MDAS-TD_RSRC_FUNCTION

MDAS_TD_DSET-FIELD.TYPE
MDAS-TD-DSETJ3CHEMA
MDAS.TD_DSET-SCHEMA_DESCRIPTION
MDAS-TD-SPECTRALJ3UMMARY
MDAS_TD_ACTION
MDAS-TD.TICKET
MDAS_TD_REPLICATION_TYPE
MDAS.TD-AUTHENTICATION

MDAS.TD-VERIFICATION

MDAS.TD-ENCRYPTION

MDAS.TDJ3ECRYPTION

MDAS.TD-RSRC-ACCESS
MDAS-TDJVIETH.ACCESS
MDAS_TD_DSET_ACCESS
MDAS-TD.DSET-REPLICATION-POLICY

MDAS_TD_DSET.PARTITION_POLICY

MDAS-TDJDSET.TRIGGER

MDAS.TD_DSET_AGGREGATION

MDAS-TDJMETH.REPLICATION-POLICY

\IDAS-TD_RSRC-REPLICATION-POLICY

attributes
lockJd, lock-description, lock_methodad
domainJd, domain-description
mo_data_type_id, data_type_name, parent_data_type_id
mo_method_type_.id. method_type_name,
parent_method_typeJd,
mo_resource_type_id, resource_type_name,
parent_resource_type_id
mo_user_type_id, user_type_name, parent-user_type_id
executable.type_id, executable_type_name
locationid, location-description, country, state, city,
county, site, building, wing, floor, room, organization, de-
partment, division, subdivision, project, domain, group,
latitude, longitude, timezone, zipcode, netprefix, nettype,
function Jd, function-description,
function_compliance_description, function_name
field-type, field_type_name, conformJanguage
mo-schemaJd, schema_name, parent-schema
mojschemaJd , field_enum , field_name , field-type
spectral-id, spectral-description
action-id, action-description
ticket-id, ticket-description, ticket-method
replication_type_id, description
authenticationJd, authentication-description, authentica-
tion-name, authentication-kind. authentication_keylength,
authentication-public-info, authenticationJiietodid
verification-id, verification-description, verification-name,
verification-kind, verification Jveylength,
verification-public-info, verification-inetodJd
encryption-id, encryption-description,
encryption-name, encryption-kind, encryption_key length,
encryption_public_info, encryption-metodid
decryption-id, decryption-description,
decryption-name, decryption-kind, decryption_keylength,
decryption-public info, decryption_metodJd
mo_access_id, access-constraint, ticket-id
mo_access_id, access_constraint, access_ticketJd
mo_access-id, access-constraint, access_ticket_id
replication-policy Jd, replication-description,
replication_policy_methodJd
partition-scheme-id, partition-description,
partition-policy_methodJd
mo_trigger_id, trigger-description, trigger-methodJd, trig-
ger_mode, trigger-condition, destination_data_id
mo-aggregation, aggregation-description,
aggregation-method
replication-policyJd, replication_policy-description, repli-
cation_policy_methodJd
replication-policy Jd, replication-policy_descriptionJd,
replication_policy_methodJd ^_

Table 4.8: Type Definition Tables (MDAS Mid-level)

160

table name attributes
MDAS.CD-DATA

MDAS-CDJVIETHOD

MDAS-CD_RESOURCE

MDAS.CD-USER

mo.dataJd, mo_data_name, global_data_type_id,
global-schema Jd, verification-key , verificationJd,
is_partitioned
mo_methodJd,
mo_method_name, mo_method_typeJd, verifica-
tion_key, verificationJd, publickey, publicJd,
is_compound
mo_resource_id,
mo_resource_name, mo_resource_typeJd, verifica-
tion_key, verificationJd, publickey, publicJd
mo_user_id, mo_user_name, mo_user_address,
mo_user_phone, mo_user_phone2, mo_user_fax,
mo.usecemail, mo_user_domain, mo_user_type_id,
verification-key, verificationJd, publickey, pub-
licJd

Table 4.9: Catalog Data Tables (MDAS Mid-level)

161

table name
MDAS-AD_DSET-ALIAS
MDAS-AD.DSETJDOMAIN
MDAS-AD_DSET_AUTHENTTCATION_KEY

MDAS-AD-DSET.REPLICATION

MDAS.AD_DSET.LOCK

MDAS_AD_DSET_ACCESS

MDAS-AD_DSET_PART_TION

MDAS_AD_DSET_AGGREGATION
MDAS-AD_DSET_SUMMARY

MDAS_AD_DSET_TRIGGER

MDAS_AD_DSET_AUD_T

MDAS_A.DJ3SET.LINEAGE.DATA

MDAS_AD_DSET_LINEAGE.METHOD

MDAS_A.D_DSET.LINEAGE.USER
MDAS-AD_DSET_LINEAGE_PARAMETER

MDAS_A.DJDSET.LINEAGE_RESOURCE

MDAS_AD_DSET_SD
MDAS_AD_DSET_TYPE_SD

ittributes
mo.dataid, mo.data.name, mo.user.id
mo.dataid, domainid
mo.dataid, privateJcey, privateJockbox_method,
authentication jd
mo.dataid, replication.enum,
mo_data_name, mo_data.type_id, mojschemaid,
path_name, mo_resourceid, replication.typeid,
replication.policyid, replication.timestamp, size,
cardinality, is.deleted, permanence, defaultüags
mo.dataid, replication.enum, mo.user.id,
start.time, end.time, lock Jd
mo.dataid, replication.enum, mo.user.id,
mo_accessid
mo.dataid, partition.dataid, partition.enum,
partition_scheme
mo.dataid, aggregationid, aggregation.dataid
mo.dataid, replication.enum, actionid, spec-
tral.timestamp, spectralid, spectraLvalues
mo.dataid, replication.enum,
validated.condition, mo.triggerid
mo.dataid, replication.enum, mo.user.id, ac-
tionid, time_stamp
mo.dataid, replication.enum, parent.dataid,
parent_in.data.enum
mo.dataid. replication.enum, parent_methodid,
child_output_enum
mo.dataid, replication.enum, owner.userid
mo.dataid, replication.enum, parameter.enum,
parameter_value
mo.dataid, replication.enum, sub.method.enum,
parent_resource_id
mo.dataid, sd.description, sd.dataid
mo.data.typeid, sd.description, sd.dataid

Table 4.10: Auxiliary Data Tables for Datasets (MDAS Mid-level)

162

table attributes
MDAS-AD_i\IETH_ALIAS
MDAS_ADJVIETH_DOMAIN
MDAS_ADJVIETH_AUTHENTICATION_KEY

MDAS-AD_METH_DECRYPTION_KEY

MDAS_AD_METH_REPLICATION

MDAS-AD-METH.LOCK

MDAS-ADJVIETH-ACCESS

MDAS-AD-METH.SUMMARY

MDAS_AD_METH_AUDIT

MDAS-ADJVIETH.LINEAGE.METHOD

MDAS-AD.METH.LINEAGE-DATA

MDAS-ADJVIETH-LINEAGE.USER
MDAS_AD-METH_LINEAGE.PARAMETER

MDAS_ADJVIETH_LINEAGE_RESOURCE

MDAS.AD.CONVERT_METHOD.ID
MDAS_AD.CONVERTJVIETHOD_TYPE

MDAS_AD_METH_APPLICATION_PARAMETER

MDAS_AD_METH_APPLICATION_OUTPUT

MDAS-AD-METH_APPLICATIONJNPUT

MDAS-AD_METH_APPLICATION-REQUIREMENTS
MDAS-AD_METH_APPLICAT_ON_PREDICTION

MDAS-AD_METH.COMPOUND-METHOD_MAP
MDAS_A.D_METH.COMPOUND_DSET.MAP

MDAS-AD_METH_COMPOUND_.PARAMETER.MAP

MDAS-AD.METH_SD
MDAS_AD.METH_TYPE.SD

mojnethodid, mo_method_name, mo_user_id
mojnethodid, domainJd
mojnethodid, private Jsey,
private _lockbox_method, authentication jd
mojnethodid, private_key,
privateJockbox_method, decryption.id
mojnethodid, replication.enum,
mojnethodjiame, mo_method_type_id,
executable.typeid, mo_resource_id, pathjiame,
replication.type.id, replication_policy_id, replica-
tion.timestamp
mojnethodid, replication_enum, mo.user.id,
start-time, end-time, lock_id
mojnethodid, replication.enum, mo.user.id,
mo_access_id
mojnethodid, replication_enum, actionJd,
spectral.timestamp, spectralid, spectral.value
replication.enum, mojnethodid, mo.user.id, ac-
tionJd, time_stamp
mo_method_id, replication_enum,
parent_method_id, child.output.enum
mojnethodid, replication.enum, parent-dataid,
parentin.data.enum
mojnethodid, replication.enum, ovvner.user.id
mojnethodid, replication.enum,
parameter_enum, parameter.value
mo_method_id, replication.enum,
sub_method.enum, parent .resourceid
mojnethodid, in_data_type_id. out_data.type.id
mo_method.type.id, in_data_type_id,
out_data_type-id
mo_methodid, parameter.enum, parameter.type,
parameter_name, parameter_default_value
mo_method_id, out.enum, out_data_type,
out.datajiame, out_default_value
mojnethodid, in_enum, in.data.type,
in_data_name, in_default_value
mojnethodid. miscjiame, misc.type, misc.value
mo_methodid, replication.enum ,
prediction_methodid. prediction-description
mojnethodid, method.enum, subjnethodid
mojnethodid,
producer.method.enum, producer.out.enum, con-
sumer jnethod.enum, consumerin.enum
mojnethodid, method_param_enum,
subjnethod.param.enum
mojnethodid. sd-description, sd_dataid
mojnethod-typeid, sd.description. sd.dataid

Table 4.11: Auxiliary Data Tables for Methods (IMDAS Mid-level)

163

table name
MDAS_ADJtSRC_ALIAS
MDAS-AD-RSRCJDOMAIN
MDAS-ADJISRC-AUTHENTICATION.KEY

MDAS-ADJISRC-DECRYPTION-KEY

MDAS-AD.RSRG-REPLICATION

MDAS-AD_RSRC_LOCK

MDAS-AD.RSRC.ACCESS

MDAS-AD.RSRC.SUMMARY

MDAS.AD.RSRC.AUDIT

MDAS.AD.RSRC-LINEAGE.RESOURCE

MDAS.AD-RSRC-LINEAGE.METHOD

MDAS-AD.RSRC_LINEAGE.USER
MDAS_ADJISRC_LINEAGE_PARAMETER

MDAS_AD-RSRC-LINEAGE_DATA

MDAS_AD_FUNCTION_ON_RESOURCE
MDAS-AD_RSRC_APPLICATION.PREDICTION

MDAS-AD.RSRC-SD
MDAS-AD_RSRC.TYPE_SD

attributes
mo_resource_id, mo_resource.name, mo_user_id
mo_resource_id, domainJd
mo_resource_id, private-key,
private.lockbox_method, authenticationJd
mo_resource.id, privateJvey,
privateJockboxjnethod, decryption-id
mo_resource_id, replication.enum,
mo_resource_name, mo_resource_typeJd, loca-
tionJd, replication.type.id, replication.timestamp
mo_resource_id, replication.enum, mo.user.id,
start.time, end-time, lockJd
moj.-esource.id, replication.enum, mo.user_id,
mo.access.id
mo_resource_id, action-id, replication.enum, spec-
traLtimestamp, spectraLid, spectral.value
mo_resource_id, replication.enum, mo.user.id, ac-
tionid, time-stamp
mo_resource_id, replication.enum,
sub.method.enum, parent_resource_id
mo_resource_id, replication.enum,
parent_methodJd
mo_resource_id, replication.enum, owner.user.id
moj-esource.id, replication.enum,
parameter.enum, parameter.value
mo_resource_id, replication.enum, parent.dataJd,
parent _in.data.enum
mo_resource_id, mo_methodJd, functioned
mo_resource_id, replication.enum,
prediction_method-id, prediction-description
mo_resource_id, sd.description, sd.data.id
mo_resource.type.id, sd.description, sd_data_id

Table 4.12: Auxiliary Data Tables for Resources (MDAS Mid-level)

table name attributes
MDAS_AD.USER_ALIAS mo.user.id, mo.user.name
MDAS-AD.USER.GROUP mo.user.id, group.user.id
MDAS-AD.USER_DOMAIN mo_user_id, domainid
MDAS_AD.USER_AUTHENTICATION.KEY mo.user.id, privateJcey, privateJockbox_method,

authentication Jd
MDAS_AD_USER_DECRYPTION.KEY mo.user.id, private_key, private Jockbox_method,

decryption.id
MDAS.AD_USER.SUMMARY mo.user.id, actionid, spectral.timestamp, spec-

tral Jd, spectral.value
MDAS-AD.USER_AUDIT mo.user.id, action Jd, time_stamp
MDAS_AD.USER.SD mo.user.id, sd.description, sd.dataJd
MDAS_4D.USER.TYPE.SD mo.user.typeJd, sd.description, sd.dataJd

Table 4.13: Auxiliary Data Tables for Users (MDAS Mid-level)

164

We start with the CD table for datasets along with two important AD tables.

MDASX'D-DATA
(mo-dataJd

mo-data-name
glo ba Lda ta_ type .id

global-schema Jd
verification-key

verifieationJd
isjpartitioned

);
MDAS-AD-DSET-REPLICATION

%primary key

dereferences MDAS-TDJDATA-TYPE

dereferences MDAS-TD-DSETSTR UCTURE
% public hey for verification

dereferences MDASJTD.VERIFICATION

(mo-dataJd
replica tion-enum
mo-datajname

mo-data-type Jd
moschemaJd

path-name
mo-resourceJd
replication-type Jd,
replication-policy Jd
replication Jimestamp
size
cardinality
is-deleted
permanence

default-flags

);
MDA S-A D-DSE T-PA R TIT ION

mo-data-id
partition-data-id

partition.enum
partitionscheme Jd

);

dereferences MDAS-CD-DATA
%unique to each copy of a dataset

preferences MDASJTD-DA TA-TYPE
dereferences MDAS-TD-DSETSTRUCTURE

%path of file /large object or database name of table
dereferences MDAS.CDJtESOURGE
dereferences MDAS-TD-DSET-REPLICATION-TYPE
fcreferences MDAS-TD-DSET-REPLICATION-POLICY

preferences MDAS-CD-DATA
'preferences MDAS-CD-DA TA
%unique ids given to each partition
%enumeration of partition of a dataset
preferences MDAS-TD-DSET-PARTITION-POLICY

The mo-dataJd is a catalog-wide unique identifier given to each dataset registered in the
catalog. We allow two separate MDAS catalog systems to share the same identifier space;
but, we ensure uniqueness across all catalogs by combining data set identifiers with the

catalog names. Hence, we do not require a centralized identifier-generator system to main-
tain unique identity. The catalog name for each MDAS catalog is generated using the ip or
network address of the system on which the MDAS resides and also the creation timestamp,
thereby ensuring uniqueness in the MDAS catalog names domain. In MDAS, the identifiers
for datasets are generated using an incremental counter (stored in a table of counters). One
can ask for the next identifier or ask for a block of n identifiers.

Even though the combination of dataset identifiers and catalog names provide uniqueness in
identification, it does not solve the problem of finding whether two identifiers (residing in two

165

different catalogs) point to the same dataset. That resolution can be done by dereferencing
the path.name and resolving the mo.resource.ids. We consider that this problem of dual
references is not important enough to warrant a complicated method to generate unique

identifiers based on contents and/or location.

Normally, deleted datasets do not relinquish their identifiers and the identifiers are not
reused. But, provisions will be made to provide a high water mark (possibly around the 90%
mark of the maximum possible identifier that can be generated) in the identifier generation
when a garbage collection is performed to get a list of reusable identifiers. In case, one hits
a second higher (98%) water mark (possibly after reusing old identifiers), MDAS should
start building another catalog and redirect all insertions to the new catalog.

A registered dataset can either be replicated or partitioned. Each replicated copy retains
the mojd.ata.id given to the dataset in the MDAS_CD_DATA, whereas each partition of a
dataset are given a unique mo-dataJd. This decision was made because of the following
reasons: each partition of a database can be manipulated separately independent of other
partitions and hence behave as individual datasets in their own rights. On the other hand,
even though each replication of a dataset are accessed independently of other replicas,
any changes made to one should be reflected in all of them, i.e., each replica should be
semantically isomorphic; hence they carry the same identifier.

Each replica is identified from its siblings by the replication.enum attribute as given in
table MDAS_AD_DSET-REPLICATION. The attribute mo.data.id is a virtual identifier,
where as the combination (mojdata.id,replication.enum) forms a real identifier. The
(mo.re source.id, path-name) combination provides the physical means of locating the
actual dataset. Even though each replica are required to be semantically equivalent, they
can differ in their formats (syntax). For example, consider a latex file paper.tex and
its derivatives paper.dvi and paper.ps. In MDAS. the three files are considered to be
semantically equivalent and are stored under the same identifier. The mo.data.name and
moJata.type.id attributes defined in the MDAS_AD_DSET.REPLICATION allows for dif-
ferent type and name values. We do not allow the concept of partitioning a replica.

The is.partitioned attribute in the MDASX'D JDATA table flags whetehr the dataset is par-
titioned or not. Unique identification of partitions is done in the MDAS^4D_DSET_PARTITION.
The partition.enum attribute provides the actual ordering of the partitions with respect to
the original unpartitioned dataset. Partitions provide convenience in more than one way.
For very large datasets, finding space in a single storage system may not be possible and
partitioning provides a natural means to overcome this problem. Partitions can be driven
by application-level constraints and for efficiency reasons. Assume a dataset that contains
nation-wide data, where the data is mostly used inside regions with a few operations per-
formed nation-wide. Then partitioning the data region-wise, and distributing them to be
stored at regional centers may be highly efficient. Since the datasets have distinct identi-
fiers, updates, access, locks and other access controls on one of the partitions need not affect
other partitions. An operation over the full dataset can still be accomplished seamlessly by
performing it on the (virtual) parent dataset which will be automatically applied to all the

partitions.

Partitioning the dataset is controlled by a partition.policy .method.id attribute; the table
MDAS-TD_DSET_PARTinON_POLICY provides a pointer to this method. This affords

166

a flexibility to perform the partitioning using syntactic or semantic criteria and is not
dependent on partitioning provided by the storage system. For example, a large text, such
as a patent, can be partitioned such that all its images are stored in one partition and other
parts in another partition. One may then view or modify only the text parts, or the image
parts, without accessing the other parts.

Each partition of a dataset can be of different types since they are viewed as registered
datasets. This mechanism' allows one to store each partition in a convenient form or in
an efficient form at the storage site. For example, a large table that is partitioned and
distributed nation-wide may be stored in a variety of database systems taking advantage of
what is available locally; one partition may be stored in a DB2 system, where as another
may reside in an Oracle database, and yet another in an Illustra database. Such storage
flexibility may allow local user to access the data in a method familiar and convenient to
them. Operations on other partitions or on all partitions may seamlessly present the table

in a familiar form by making appropriate changes based on the global AataJ.ype.id attribute
of each partitioned dataset. Note that, in the case of database tables, this functionality is

an enhancement on the ODBC concept as it applies to partitions of datasets which are
of different types instead of datasets of different types. The corresponding operation (of
seamless integration of objects of different types) for datasets of other types (other than
database tables) are unique to MDAS.

If an inverse operation for a partition policy method exists (this information is registered
in MDAS-AD.CONVERT-METHOD JD table) then one can use it as a convenient way to
recreate back a singe dataset. The part ition.policy -method Jd also plays another important
role. In the case of reads or update access, the policy method provides a way to identify
the partition (or partitions) on which the operation need to be performed. Hence, the
policy method is used not only as a means of partitioning but also as a access redirection
mechanism. In the current design of the MDA system, one can partition each dataset using
only one method. That is, more than one way of partitioning a dataset is not allowed. But
each partition can be further partitioned if necessary and further, any partition can also be
replicated if desired.

The replication „policy M attribute in MDAS_AD_DSET_REPLICATION table provides the
method (a pointer to which is stored in the MDAS_TD_DSET_REPLICATION_POLICY
table) that is used for updating purposes. That is, whenever a replica is changed, this
method should be invoked to ensure that the updates are propagated if desired. The up-
dating method can be different for each replica and provides a rich semantics of replication.
One can perform an immediate replication or deferred replication depending upon which
copy is being updated. Moreover, one can control which types of updates are passed to
other replicas immediately, and which types of updates are batched to be deferred for later
transmission. Updates can even be controlled from being invisible to other replicas by hav-
ing a null update method thus providing a version capability. One may also have updates

to be propagated only on explicit commands by the user or only at system-defined intervals
or events. The update methods can perform the necessary checks before passing on the
updates to its replicas. The user is also notified of any errors raised during the updates.

Another parameter that comes into the picture during updates on the replicas is the
replicationJypeJd attribute of the replicas. We envisage that replication may be done

167

in many ways. One can perform a master-slave copy which allows one to update only the
master copy which is then passed on to the slave copies; one can perform a peer-to-peer
copy where updates can occur on any of the copies and can be passed onto others; one can
perform a private copy where changes are allowed on the private copy but are not passed
along to other copies and updates at other places will not be reflected in the private copy;
one can have a backup copy where no updates are allowed and the copy is also not visible to
the users unless explicitly requested; one can have a version copy where updates are allowed
on the new version and the old version will not be updated though it is available to other
user groups; one can have divergent copies where no action is taken on updates and each
copy diverges from its peers, and a synchronizing update is performed at a later time to
reconcile the differences, or one can have a transient copy which can vanish after some time
and is not shown to users who query about the copies. Other esoteric updates can be simi-
larly accommodated using the combination of replication policy .id and replication JypeJd

attributes.

The mo-dataJypes of datasets form an hierarchy (see MDAS_TD_DATA_TYPE table). Ac-
tually types of all entities registered by MDAS have this property. This allows for inheritance
of properties and functions in the hierarchy. We do not provide explicit functionalities and
properties for datasets (or other entities) as part of the system-level metadata; we consider
them to be part of specific data and expect SD tables to be defined for these purposes.

The mo-data JypeJd attribute in the MDAS JVD_DSET_REPLICATION table also provides
an ability to replicate a database in different formats. Updates on such replicates in the
MDA system generalizes the concept of traditional updates in distributed systems. Apart
from update operations such as insertions, deletions and modifications on texts, tables
or other objects being mirrored in other copies of the same type, here one also needs to
contend with updates across datasets of different types. An update performed on a dataset
of particular type may require regeneration of a new copy of the replica using thealternate

format.

Revisiting the example of the latex file paper.tex and its derivatives paper.dvi and pa-
per.ps. any changes to paper.tex can be reflected on its dvi replica by running a latex
command (or a make command if other files are also involved) on the updated paper.tex
file. Further the paper.ps file may be regenerated from the paper.dvi file through a dvi2ps
command. These two commands may be packaged as a single update method for the two
files. In this case a useful method of replication is that the latex file is stored as a master
and the other two files are stored as its slave replicas. The mirrored updates to the derived
files may be done at a user given explicit update command, or at significant intervals.

Note that with this semantics, the update command is being used to provide a form of
method transparency, wherein the commands to perform latex and the dvi2ps tasks are
hidden from the user as an update method. Similar transparencies can be accomplished
for compilation and linking, for generating up-to-date statistics, for real-time aggregation
or deriving operations, for real-time dataset displays under update and even for printing a
dataset (where a particular replica is considered to be stored in the printer in a printable

format!!).

One can provide real-time visualization by registering a transient replica of the dataset as
being "stored" on the screen through an interactive viewer. The update method issues a

168

redraw command to the viewer. Note that in this case, the screen is viewed as a resource that
can be used as a write-only transient store. The is.deleted attribute can be used to control
the transience of the replica. For example, consider that the user is viewing the paper.tex
file using an interactive viewer on its paper.ps replica, and has registered this "view" as
a transient replica. Then, any updates to paper.tex gets reflected on its paper.dvi and
paper.ps replica file and further on the screen if proper reopen commands are placed in
its update method. Similarly, in this seamless semantics, the notion of a 'tele-conferencing'
or 'designing-by-group', and 'tele-operating' reduce to that of update performance.

The replication .policy Jd and replication JypeJd attributes also provide information about
the consistency and currency of a replica with respect to its peers. Hence, one can access
a copy knowing whether it contains stale data. One is given a choice of accessing datasets
based on allowed levels of staleness (ascertained by knowing the replication policy of the
replicas) and use this criteria to access a stale replica that may be cheaper to access (possibly
it resides on a local file store) than to access another replica that is current but needs a
costly access operation.

The replication paradigm defined in MDAS also helps in providing a a different form of
format transparency. Again using the 'paper' example, one can issue an edit command on
the paper dataset and the system will use the paper.tex file as the target file. If a print
command is used on the same paper dataset, the paper.ps file will be used to spool to a
(Postscript) printer.

Next we discuss the role of the schema attribute in MDAS_AD_DSET_REPLICATION and

MDAS_CDJDATA tables. Tables MDAS_AD_DSET_STRUCTURE_DESCRIPTION and
MDAS_TD_DSETSTRUCTURE describes the schema of the dataset. For example, in a
database table it will provide the database schema for the table and for a text file, it may
provide the sectional organizations. One can use the schema description to select or read
portions of interest from the dataset control mechanisms.

We allow the schema attribute at the MDAS_CD_DATA level in order to provide a place
to hold a schema independent of the individual copy format. For example, for a table
repbcated in a variety of database systems, the global jschemald can be used to provide a
generic schema. We also allow hierarchies in the schema structure. Not only can this be
used as an inheritance mechanism for properties of schema attributes, but it can also be
used to record schema evolution.

We discuss the verification attributes when we discuss MDASX'DAIETHOD.

In MDAS REPLICATION AD tables are also defined for methods and resources. Since a
method can be replicated (possibly compiled for different platforms) such a table is neces-
sary. The reason for having a REPLICATION AD table for resources is to provide a kind
of resource transparency. In an organization, one may view all printers as common resource
and a print command can choose any one of the available ones; these printers are viewed to
be functionally (semantically) equivalent. Of course, the notion of updates does not exist
for resources and the replication policy is used to note how to replicate a given resource
(eg. make and configuration files needed for setting up an identical resource).

The PARTITION AD table is particular to datasets and has no equivalent counterpart for

169

methods, resources and users.

The following AD tables along with relevant TD tables capture access control metadata for

datasets in MDAS.

MDAS-AD-DSET-A CCESS
(mo-dataJd altogether form reference to
replication-enum %MD AS-AD-DSET-REPLICA TION
mo.userJd /preferences MDAS.CD-USER
mo-accessJd dereferences MDAS-TD-DSET-ACCESS

)■>

MDAS-AD.DSET-L OCR
(mo.data.id %together form reference to
replication-enum %MD AS-AD.DSET-REPLICA TION

mo.userJd dereferences MDAS.CD-USER

start-time

end-time
lockJd dereferences MDAS-TD-LOCK

);
MDAS-AD-DSET-DOMAIN

(mo-dataJd dereferences MDAS-CD-DATA
domain-id dereferences MDAS.TD-DOMAIN

);

The mo-accessJd attribute can be used to find the types of access (as described in the
MDAS-TD_DSET_ACCESS table) that are allowed on the dataset and can also be used
to obtain an appropriate ticket once the appropriate access has been validated. The
MDAS_AD-DSET_ACCESS table uses the user's identification to check for access permis-
sions to a dataset. The types of access that are permitted are defined by the access-constraint
attribute in the MDAS-TD JDSET.ACCESS table. Examples of access include read, write,
append, delete, execute, replicate, partition, control, etc. If a type of access to a dataset for
a particular user is permitted a corresponding entry will be available in the AD table Then,
the ticket-id attribute (in the TD table) can be used to obtain a ticket that will provide a
user transparent access to the dataset in a particular domain. Such a ticket can be used to
validate the access to a dataset if a remote storage system that stores the dataset requires

user authentication.

The lock attribute is primarily for transaction management purposes. Its utility is similar
to that found in database management systems. Apart from the normal kinds of locks
(eg. read lock, exclusive read lock, write lock, etc.,), the lock attribute can also be used
as a reservation mechanism. Assume that one of the users is planning to edit a copy of
the paper.tex file and wishes that it not be used by others during that period. The user
can lock the replica of interest for sufficient amount of time. This facility will be useful
when one needs to lock all copies of a dataset for some extended time for some purpose.
Then, other users are given an indication about when to expect the dataset to be back on
line. The lock facility can also be used for advance reservation. One can anticipate one's
needs and reserve the dataset for a block of time in the future. At the dataset level this
functionality will provide a means to facilitate group-design with individual time slots. In

170

the case of resources and methods, the reservation via locking mechanism gives a facility to
ensure future availability of resources for quality of service purposes, and can be used by
schedulers effectively.

The concept of a domain is used as an additional level of security, apart from the ones given
by access, and authentication and encryption mechanisms. A domain is considered to be
a secure area in which one can expect protection with respect to authenticated datasets
and secure communications. We consider that each dataset is associated with one or more
domains (whose descriptions are given in the MDAS-TD JDOMAIN table) authorized in the
MDAS_AD_DSET_DOMAIN table. One, can move a dataset, or parts or copies of it, only
within those domains.

In MDAS, ACCESS and LOCK AD tables are also provided for methods and resources,
and DOMAIN AD table is provided for users, methods and resources.

Next we look at two AD tables useful for statistical and accounting purposes.

);
MDAS-AD-DSET-Ä UDIT

(mo-data-id %together form reference to
replication.enum %MDAS-ADJ)SETJIEPLICA TION
mo-userJd %references MDASX'B^USER
mo.actionJd 'preferences MDAS-TD-ACTION
time stamp

MDAS-AD-DSETJSUMMARY
(mo-data-id %together form reference to
replication.enum %MDAS-ADJ)SETJIEPLICA TION
mo-actionJd dereferences MB ASJID.ACTION
spectralJimestamp
spectraUd 'preferences MDAS-TDSPECTRALJSUMMARY
spectraLvahie

);

The MDAS_AD_DSET_AUDIT table is used to log in an audit trail about the usage of the
datasets. Every operation performed on every registered dataset is logged in here and can
be used to charge users for accessing datasets and also for finding the usage statistics of
each replica of the dataset. This information is used to update the permanence attribute
in the MDAS_AD_DSET_REPLICATION table. If a replica falls below a certain level of
permanence, it may be purged from the system or at least moved to an archival storage.

The MDAS_AD_DSET_SUMMARY table is used to store spectral information that is gleaned
from the audit trail. That is, for each dataset replica and each operation, one finds the num-
ber times the action has been performed in a particular time period (say past minute, past
hour, every Wednesday in the last year, etc) and are stored with the appropriate spectral-td.
Spectral information definitions are provided in the MDAS_TD_SPECTRAL_SUMMARY
table. The summary information can be used for predicting usage statistics for datasets.

The next two AD tables provide metadata for operations that are borrowed from database

171

systems but are applied to any dataset in MDAS.

MDAS-AD-DSET-A GGREGA TION
(mo-dataJd dereferences MDAS-CD-DATA

% parent data set on which aggregation is being performed

aggregation Jd dereferences MDAS. TD-DSET-A GGREGA TION
aggregation .data Ad ■ dereferences MDAS-CD-DATA

% resultant dataset holding the aggregation.

);
MDAS-AD-DSET-TRIGGER

(mo-dataJd %together form reference to
replication-enum %MD AS-AD-DSET-REPLICA TION

validated-condition
mo-trigger-id dereferences MDAS-TD-DSET-TRIGGER

);
MDAS- TD-DSET- TRIGGER

(mo-trigger-id
trigger-description
trigger-method dereferences MDAS-CD-METHOD

trigger-mode
trigger-condition
destination-data-id

);

Aggregation in DBMS is an operation that is performed on tables to obtain summary
information of interest. For example, one may want to find the regional sales totals of a
nation-wide department store using the receipts table. In the context of other datasets
any derived dataset can be seen as a result of an 'aggregation' operation. In this sense,
for each dataset, the MDAS_AD_DSET_AGGREGATION table provides pointers to all
derived datasets. This can be seen as an inverse of the lineage data provided by other
tables (discussed later). Even though every dataset has a lineage, the aggregation table
may contain only pointers to a few important derived datasets. Hence, the information
stored in this table will be helpful if a user wants to find a particular aggregate of a dataset;
if the aggregation is not available, one may need to recompute it.

Triggers in DBMS are used for enforcing general forms of integrity such as business rules
(eg., no salary can be increased by more than 10%) and for performing actions (possibly out-
side the database) on insert delete or update operations. The MDAS_AD_DSET_TRIGGER
table provides metadata to achieve similar capabilities for all types of datasets that are regis-
tered with the system. The MDAS_TD_DSET-TRIGGER table provides the trigger-condition

for the trigger, the method that needs to be performed if the condition is true and the time
at which it is performed using the trigger-mode attribute. The trigger-mode may be used
to defer the action, perform it immediately or to spawn a new transaction to be done inde-
pendent of the triggering transaction. It may also be used to suggest whether the trigger
is a one-time only trigger or a continuous trigger. The mode attribute can also be used
to turn on or turn off the trigger. The validatedxondition can be used to cache parts of
conditions that have already been validated by previous trigger actions. With this facility,

172

one can perform a trigger which has a validation condition that requires information from
earlier states of the dataset.

The AGGREGATION and TRIGGER tables are not available for other types of entities in
MDAS.

Next we see the metadata support offered by MDAS for finding the lineage of a dataset.
By lineage we mean the information about datasets, resources, users and methods that
were involved in creating the database. Lineage information does not apply to updates to
datasets.

MDA S_A D.DSE T.LINE A GEJ)A TA
(mo.data.id %together form reference to
replication.enum %MDAS.AD.DSET.REPLICATION
parenUlata.id %references MDAS.CD.DATA
pa ren t .in-da ta.enu m);

MDAS-AD-DSET-LINEAGEMETHOD
(mo.data.id %together form reference to
replications n u m %MDA 5L4 D.DSE T.REPLICA TION
parent-method Jd preferences MDAS-CDMETHOD
ch ild.o u tp u t. e n u m

);
MDAS-AD.DSET.LINEAGE.USER

(mo.data.id %together form reference to
repUcation.enum %MDASJLD.DSET.REPLICA TION
owner.user.id preferences AIDAS.CD.USER

);
MDASJiD-DSET-LINEAGEJ>ARAMETER

(mo.data.id %together form reference to
replication.enum %MDASJ\.D.DSET.REPLICA TION
parameter.enum
parameter.value

);
MDAS-AD-DSET-LINEAGE-RESOURCE

(mo.data.id. %together form reference to
replication-enum %MDAS-AD-DSET.REPLICA TION
sub.metkod.enum
parent.re source.id dereferences AIDAS.CD.RESOURCE

);

As explained later, we consider that each method (including compound methods) has
an enumerated list of input datasets, an enumerated list of parameters which when ap-
plied to the method, produces an enumerated list of output datasets. Each sub-method
of a compound method may be performed on a different resource and the method itself
may be initiated by more than one user. In providing metadata about the lineage of a
dataset, we consider it to be an output dataset emitted by a method, and capture all
relevant data that went into its creation. The MDAS-ADJ)SET_LINEAGE_DATA table

173

captures the parent datasets (and their position in the enumerated list of input datasets)
that created the dataset of interest given by mo-dataJd, replicationjenum. The method
that created the dataset is captured in the table MDAS_AD_DSET_LINEAGE_METHOD
along with the information about the position of the created dataset in the output list of
datasets. The MDAS_4D_DSET_LINEAGE_USER table captures the user information and
the MDAS_AD_DSET_LINEAGE_PARAMETER table records the information about pa-
rameter values used in the creation. Finally, the MDAS_AD_DSET_LINEAGE_RESOURCE
table provides information about the various resources used at each step in the method in-
vocation.

The MDAS_ADJDSET_ALIAS table given below is a facility for each user (or group) to
give an alias name for any dataset, apart from the one provided in the MDAS_CD_DATA
table.

MDAS-AD-DSET-ALIAS
(mo-dataJd dereferences MDAS-CDJ)ATA
mo-data-name
mo.userJd dereferences MDAS-CD-USER

);

The following tables provide the necessary mapping for using SD metadata tables in the
MDAS framework.

MDAS-AD-DSETJSD
(m o-data-id % refe re n ces MDA 5_ CD-DA TA
sd-description
sd-data-id dereferences MDAS-CD-DATA

);
MDAS-.AD-DSET-TYPESD

(mo-data-type preferences MDAS-TD-DATA-TYPE
sd-description
sd-dataJd dereferences MDAS-CD-DATA

);

SD meta data tables are defined outside the core metadata tables of MDAS and are useful
in storing application-specific metadata. The MDAS system will be able to provide rudi-
mentary metadata for access and computation without the aid of SD tables. The SD tables
are useful in describing additional properties of datasets, methods, resources and users. For
example, the search indices provided by systems such as Open Text for documents and
patents can be useful SD tables that may allow users to access the documents through
keywords. Properties of computing platforms such as the speed, number of processors, size
of memory, etc., can be useful SD metadata that can be used by a scheduler to find optimal
platforms for processes.

The MDAS_AD_DSET_SD table provides entries about SD tables that are relevant to par-
ticular datasets. and the MDAS_ADJDSET_TYPE_SD provides the same information for
datasets of common types (eg. all patent type datasets may share one or more index SD

174

tables). The description attribute provides keywords or definitions about the contents of
the SD table. A query to MDAS can use the description value to find appropriate SD tables
for a given type of dataset (or particular dataset) and search in it for relevant information.
For example, the following SD table (also registered in MDAS) provides keyword-to-patent
dataset mapping that can aid in finding relevant datasets of interest.

SD.024
(keyword % word that occurs in

mo.dataJd %a (patent) dataset registered in MDAS

);

The SD_024 table can be made visible to the user through the MDA system by having an

entry such as ('patent1',''keyindex1\#idj'or_SZ>_024) in the MDAS_A.DJDSET_TYPE.SD
table. MDAS will provide facilities to search in such SD metadata tables.

Next we discuss the schema of metadata tables for methods. We do not discuss the AD and
TD tables that have similar functionalities with respect to the dataset metadata tables.

MDAS-CDMETHOD
(mo-methodAd
mo.me th od. n a m e
mo.method.type.id
verification-key % public key for verification
ve rificationJd %refe re nee s MDA S. TD. VERIFICA TION
public.key % public key for encryption
publicJd preferences MDAS.TD.ENCRYPTION
is.compound

);

The MDASXDJMETHOD table is similar to the CD table for datasets, except that it
contains an is-compound attribute (instead of an is-partitioned attribute) which can be
used to register compound methods. In MDAS each compound method is considered as a
single method with an enumerated list of input datasets, an enumerated list of parameters
and an enumerated list of output datasets. The metadata about these enumerated lists
are stored in corresponding APPLICATION AD tables discussed next. The mapping of
the compound method to its constituent sub-methods and the mapping of the inputs and
outputs between the two and the interaction between the sub-methods are captured in the
COMPOUND AD tables.

In MDAS we provide two types of metadata for aiding in implementing authentication
and encryption mechanisms. We follow the mechanisms outlined in [?] when defining
the metadata. We consider that a dataset, user, resource or method may use private
signatures to authenticate their validity using privately held authentication keys and the
receiver of information from these sources will use publicly available verification keys to
check the validity of their communications. The above mechanism helps in ensuring that
the receipients in the communication can be convinced about the originator's validity. The

175

verification-key in MDAS.CDJVIETHOD (and in other CD tables) are used for verifying a

dataset or message for its authenticity.

The verification-id provides a handle to the verification method that needs to be used in the
checking process. The MDAS-TD-VERIFICATION table that provides the method and its
parameters is given below. A similar table called MDAS_TD_AUTHENTICATION helps in
applying the authenticating signature to a dataset or message before communicating them.

MDAS-TD-VERIFICATION

(verification Jd
verification-description % description
verification-name % verification scheme (eg. DSS,RSA,MD5,SHA,etc.)
verificationJcind % kind of signature (eg. symmetric, public)

verification Jieylength
verification-public-info % other info such as modulo, etc
verification-method-id % references MDAS-CD-METHOD

);

To ensure secrecy, a dataset, user, resource or method may use the publicly available encryp-
tion keys of the recievers to encypher the dataset or messages that are being communicated
to the receiver. The receiver (a user, resource or method) in turn will use its own privately
held decryption key to decypher the message. This mechanism helps in ensuring secure
communications between domains possibly separated by insecure communication channels.
The encryption-key in MDAS_CD_METHOD are used for encrypting a dataset. The encrp-
tion key is available for other CD tables except that for datasets. Datasets are not designed
to receive any information and hence do not require any encryption mechanism.

The encryption-id provides a handle to the encryption method that needs to be used in
the cypher process. The MDAS_TD_ENCRYPTION table that provides the method and
its parameters is given below. A similar table called MDAS-TD_DECRYPTION helps in
applying the decyphering a dataset or message after receiving them.

MDA S- TD-ENCR YP TION
(encryptionJd
encryption-description % description
encryption-name % encryption scheme
encryption-kind % kind of encryption (eg. symmetric, public)

encryption-keylength
encryption-public-info % other info such as modulo, etc
encryption-method-id % references MDAS-CD-METHOD

)■

Apart from the publicly available signature verification keys and encryption keys, their
counterparts of private authentication and decryptio keys are stored in (or at leaset via)
MDAS in corresponding AD tables. Below, we show the AD tables for methods. Similar

tables are available for resources, users and datasets.

176

MDAS-ADMETH-A UTHENTICA TIONJCEY
(mo-methodJd % referencs MDAS-CD-METHOD
private-key % public key is stored in a secure DBMS or
privateJockbox„method % a method is used to access

% a private key held in a lock box
% referencs MDAS-CD-METHOD

authentication-id dereferences MDAS.TDJL UTHENTICATION

);
MDAS-AD-METHJDECRYPTION-KEY

(mo-methodJd % referencs MDAS-CD-METHOD
private-key
privateJockbox-method % referencs MDAS.CD.METHOD
decryption-id %references MDAS-TD-DECRYPTION

);

We assume that either a private key is held in a secure DBMS or a method is available for
getting hold of a key from a software lock box. The authenticationJd (sim. decryption id)
provide a handle to the methods that is used to apply the authentication key (or decryption
key) to a message or dataset.

MDAS-AD-METH-APPLICATION-PARAMETER
(mo-method-id dereferences MDAS-CD-METHOD
parameter.enum
parameter-type
parameter-name
parameter-default-value

);
MDAS-AD-METH-APPLICATION-OUTPUT

(mo-methodJd preferences MDAS-CD-METHOD
out-enum
out-data-type Jd
out-data-name
out-defa ult-value

h
MDAS-A D-METH-APPLICA TIONJNPUT

(mo-methodJd 'preferences MDAS-CD-METHOD
in .e num.
in-data-type-id
in.data-name
in-default-value

);
MDAS-AD-METH-APPLICATION-REQUIREMENTS

(mo-methodJd dereferences MDAS-CD-METHOD
misc-name
miscJype
misc-value

h

in

MDAS-ADJilETH-APPLICATION-PREDICTION
(mo-methodJd dereferences MDAS-CD-METHOD

replication.enum
prediction-method-id dereferences MDAS-CD-METHOD

prediction-description

);

The APPLICATION table captures metadata about how to use the methods registered with
MDAS. The MDAS_AD_METH_APPLICATION_PARAMETER table contains information
about all the command-line parameters that can be given when invoking the method. The
parameters are enumerated in a list and this enumeration is used when using the method
as a sub-method in a compound method or to record lineage information as discussed for
datasets. The name and type of the parameter is included along with a default value that

can be used in case the user fails to supply a value.

The MDAS_AD_METH_APPLICATION_OUTPUT table provides information about the

output datasets created by the method. The type of dataset is also noted along with the
name that is used to describe the output dataset. A default value for naming the output
dataset is also provided in case the user fails to give a name for storing the output. The
MDAS.AD JVIETH_APPLICATION_INPUT table provides similar information about input
datasets to a method. Default input datasets are used in case user has not assigned a value.
This will be helpful in cases where some of the inputs (eg. a dictionary) can be understood

by default.

The MDAS_AD JVIETHAPPLICATION JtEQUIREMENTS table captures all other infor-
mation that may be relevant and necessary when invoking the method. For example, a
method may require a large memory space in order to execute and this requirement may
be logged in this table. Hence, any software, hardware, protocol requirements may be
given as metadata in this table. The MDASAD_METH_APPLICATION_PREDICTION
provides metadata to predict the performance of a method. The prediction.method Jd
can take parameters such as sizes of input and provide a prediction about the time re-
quired by the method to complete. This information could be used by a scheduler for
efficiently using resources or to reserve resources for later execution (see discussion of the
MDAS_AD_DSET_LOCK table earlier.)

MDAS-.AD-METH-COMPOUND-METHOD-MAP

(mo-methodJd %references MDAS-CD-METHOD

method.enum
sub-method.id %references MDAS-CD.METHOD

);
MDAS-A.D.METH-COMPOUND-PARAMETERMAP

(mo-methodJd %references MDAS-CD-METHOD

method-param-enum
sub-method-id preferences MDAS-CD.METHOD

sub-method-param-enum

MDAS-AD-METH-COMPOUND-DSET-MAP

178

(mojmethodJd %references MDASX'DMETHOD
producer.method^enum
producer\out.enurn
consumerjmethod-enum

consumerJn.enum

);

The compound AD tables shown above provide the mapping between a compound method
to its constituent sub-methods. The MDAS-AD_METH_COMPOUND_METHOD_MAP
table stores the method-to-methods map and also shows an enumeration of the sub-method
in the order that they need to be applied to obtain the functionality of the compound
method. For example, assume that a compound method cl consist of compile and link
sub-methods to be performed in that order, then the two methods are logged in the table
with enumeration 1 and 2.

The MDAS_AD_METH_COMPOUND_PARAMETER_MAP table maps the parameters given
for the compound method to parameters required by the sub-methods. Again considering
the compound method cl, it will have all parameters needed by its sub-methods stored

in MDAS JVD_METH_COMPOUND_PARAMETER_MAP. Some parameters of cl may be
required by both sub-methods also.

The MDAS_ADJ^ETH_COMPOUND_DSET_MAP table captures three types of mappings:
from the compound method input datasets to the input datasets of the sub-methods, from
the output datasets of the sub-methods to the output datasets of the compound method
and, the interconnection between two submethods, where one of the sub-method's output
may be the input of another sub-method. We consider that the compound method is
given an enumeration number 0 and the sub-methods are numbered from 1 onwards. The
compound method is considered to be the producer of input datasets and consumer of
output datasets. Note that a dataset (either input dataset or a dataset that is output by
a sub-method) can be used as input by more than one sub-method. For example, for the
data flow diagram given in Figure 4.5 appropriate mappings are captured in the sets of
tuples shown in Tables 4.14 and 4.15; we assume that the compound method has 24 as its
identifier. Tables 4.14 describes the dataset flow between the sub-methods of a compound
method as well as the usage of input datasets and creation of output datasets by the the
sub-methods. Tables 4.15 describes the usage of parameters by the sub-methods. In the
data flow diagram in Figure 4.5 a few datasets (output files) are created by the sub-methods
which are not used by other sub-methods or by given as output datasets. These datasets
are scratch files produced by these methods. In MDAS, we do not keep track of internal
datasets created by the sub-methods, only the datasets that are explicitly outputted are
registered. If one needs to know the intermediate datasets. then one can obtain them by
executing the compound method and explicitly outputting the required datasets.

The meta information in the MDAS_AD_METH_COMPOUND_DSET_MAP table can be
used by an intelligent scheduler to parallelize a compound method. For example, in the
above method sub-methods 1 and 2 can be performed in parallel.

MDAS-AD-CONVERTMETHODJD
(mojmethodJd preferences MDAS.CDMETHOD

179

mo. .method-id producer-jmethod-tnum producer-out-enum consumer■-method-enum consnmer.in .enum

24 0 1 1 1

24 0 1 2 1

24 0 2 2 2
24 1 1 4 1
24 1 2 3 1

24 2 1 3 2

24 3 1 4 2
24 3 1 0 2
24 4 1 0 1

Table 4.14: Sample MDAS_AD_METH_COMPOUND_DSET_MAP table

mo.method-id method-param-enum sub-method-id sub-method-param-enum

24
24
24
24

1
2
2
3

1
1
3
4

1
2
1
1

Table 4.15: Sample MDAS_\D_METH_COMPOUND_PARAMETER_MAP table

Input
Datasets

Parameters
.1 _ 2 _3

Output
Datasets

Figure 4.5: Example: Data flow in a Compound Method

180

moJndataJ.ype

mo-outdata-type

)■:

MDAS-AD-CONVERT-METHODJTYPE
(mo-methodJype
moJndataJype

mo-outdatajype

);

The conversion tables given above provide a means of finding methods that are applicable
for conversion of a dataset from one type to another. An important aspect of MDAS is
to provide format transparency. Hence, if a user wants to print a file that is not in latex

format to a Postscript printer and no replica of an equivalent file in postscript format exists,

then MDAS will use the MDAS_AD_CONVERT_METHODJD table to find appropriate
methods that can perform the format transformation before feeding the file to the printer.

The MDAS_AD_CONVERT_METHOD_TYPE file stores metadata about format conver-
sion, but gives a class of methods that can perform the transformation instead of individual
methods.

Next we discuss the schema of metadata tables for resources. Again, we do not discuss the
AD and TD tables that have been discussed for other types of MDAS elements.

MDAS-CD-RESOURCE
(m o.resou rceJd
m o- re s o u rce-na m e
mo-resourceJypeJd
global .a uth e nticationJd

h

The CD table has similar functionality as the CD tables of datasets and methods. Note that
the concept of a resource in MDAS is very diverse and includes hardware resources such
as storage systems, peripheral systems, memory systems (such as cache), communication

systems, computing systems, etc., and software resources such as operating systems, file
system, archival system, database systems, scheduling systems, MDAS systems, digital
library systems, etc. The properties of each special types of resources are captured in
non-system SD metadata tables.

MDAS-AD-FUNCTION.ONJRESO URGE
(mo-resourceJd dereferences MDAS-CD.RESOURCE
mo-methodJd
functionJd

);
MDAS-A.D-RSRC-APPLICATION.PREDICTION

(mo„resourceJd dereferences MDAS.CD.RESOURCE
replications n u m
prediction-method Jd
prediction-description

181

);

The MDAS_AD_FUNCTION_ON_RESOURCE table provides metadata about the func-
tions that can be applied to each resource. For example, an archival system may have
functions such as open, close, create, read, write, seek, etc. Such functions are registered
in MDAS through this table using the f unctionJd attribute. The corresponding TD table,
MDAS-TD JtSRC-FUNCTION, provides attributes for storing the name, a description of
the function and also whether it complies to any standards (eg. functions to a DBMS may
be ODBC compliant, or a parallel executable function may be MPI compliant). Moreover,
the mo-method Jd in MDAS-AD JUNCTION_ON_RESOURCE table provides the method
that needs to be invoked to obtain the functionality. This provides method transparency
when applying the functions which can be generic for resources of the same type.

The MDAS_AD_RSRC_APPLICATION.PREDICTION table is used to store data that can
be used to predict the performance of each resource. We consider that with proper parame-
ters such as size of datasets, function being applied, etc., one can predict performance using
the associated prediction method. More than one prediction method can be associated with

each resource.

Finally, we discuss the schema of metadata tables for users. We discuss the CD table and
group AD metadata table only as other tables are similar in semantics with corresponding

tables discussed earlier.

MDAS.CD.USER
(mo-userjd
mo.userjname
mo-.user.address
mo-user.phone
mo .user .phone 2

mo.user.fax
mo.user.email
mo.iiser.domain
mo.user.type.id
authentication Jd

)■■

MDA S^A D. USER.GR 0 UP
(mo-userJd 'preferences MDAS.CD.USER
group.user.id %references MDAS-CD.USER

)•

The MDAS-CD_USER contains information about users and groups. The user type can be
used to define group hierarchies. The semantics of authentication is similar to those of other
elemental types in MDAS. The MDASAD_USER_GROUP table stores group membership

information.

182

4.9.6 Implementation Issues

The previous section demonstrated the important role played by metadata in the MDAS
architecture and also provided a schema for the MDAS Metadata Catalog. This section
provides a discussion of issues related to creating and maintaining this metadata.

4.9.6.1 Generation

Some of the metadata recorded in the catalogs is provided directly by the user, while other
metadata can be obtained automatically by pre-processing the input (eg. data sets and
methods), actively searching for metainformation (eg. resource discovery) or, monitoring
the progress of an operation (eg. resource or process metadata). The system includes
mechanisms to capture all of these types of metadata.

4.9.6.2 Representation

Addressing issues related to metadata representation is critical to the goal of providing
seamless integration of metadata across distributed heterogenous systems. A metadata
representation scheme must provide the following:

1. Convenient methods for inserting, updating and viewing metadata.

2. Ease of transportation of metadata among diverse distributed computing and storage
environments.

3. Easy translation into various in-memory formats.

4. An inheritance hierarchy. For example, one can define metadata about printers in
general, followed by those for laser-printers and color-matrix printers, etc. followed
by metadata about specific printer-types (eg. Epson II stylus printer) and finally
metadata parameters (eg. address, buffer size etc) about a specific printer attached
to a LAN or workstation.

The above representational issues will be handled by defining a language for representing
metadata, called the MetaData Markup Language (MDML). This language will provide a
common distribution format for portability, and a user-friendly scheme for entering and
updating metadata. The common format will also allow one to write translation meth-
ods for storage and memory representation at language-specific and system-specific levels.
Moreover, one can also define a set of methods that can be applied to metadata that can
be used for creating, maintaining and querying purposes.

4.9.6.3 Storage

Since the quantity of metadata can overwhelm any system, it is important to consider issues
related to storage hierarchies, local versus remote location of metadata, distribution and

183

fragmentation of data, and replication. An important aspect of metadata management is
the ability to store and access data based on usage patterns, archival requirements, and
access time requirements. The system must provide the application an interface to the
metadata which is independent of where the data is stored and how it is managed.

4.9.6.4 Maintenance

Important issues in metadata maintenance are fault-tolerance, schema evolution, and ver-
sioning. MDAS catalog services must be highly available and fault tolerant to ensure that
applications are not unduly disconnected from resources. Schema evolution and versioning
must be supported since database schemas tend to evolve over time and, at any given in-
stant, it is likely that different resources available to MDAS are using different versions of the
schema. Since the metadata schema and the metadata will evolve over time, considerations

for extensibility should be central to the design.

4.9.6.5 Retrieval

The system must support efficient retrieval of metadata. Since the metadata catalog can
reside on different platforms, possibly fragmented and replicated, it is neccesary to provide
a fully-transparent retrieval system that can handle issues such as optimization, caching,
sharing, authentication and security. It may also be neccesary to provide active mechanisms
which provide support for triggering an action when a change occurs to a specific piece of

metadata.

4.9.6.6 Legacy and Domain-dependent Metadata

Finally, since there already exist vast amounts of domain-specific metadata, defined by
various groups of users (eg. biologists) one needs to give careful thought to the design of
the system in order to allow assimilation of existing metadata in the new framework. We
plan to tackle this problem by providing automated means for encoding domain-specific
metadata in a uniform manner and also by porting existing metadata into the MDAS

framework.

184

4.10 Library and Catalog Table Bindings

TBD.

185

4.11 Low-Level Interface

This section discusses the MDAS Low-Level interface in detail. Two functionalities are
supported here: drivers and internals. Nothing at this level is for use by application pro-
grams. Datatypes unique to this level are discussed in section 4.11.1. Function prototypes
for MDAS drivers and internals are presented in sections 4.11.2 and 4.11.3. Examples
concerning driver implementations are given in section ??.

4.11.1 Low-Level Data Types

TBD.

4.11.1.1 MDAS_INIT_STRUCT

TBD.

4.11.1.2 MDAS_TICKET_STRUCT

TBD.

4.11.1.3 MDAS_DRIVER_STRUCT

TBD.

4.11.1.4 MDAS_RSRC_STRUCT

TBD.

4.11.1.5 MDAS_RSRCC_STRUCT

TBD.

4.11.1.6 MDAS_LLIST_STRUCT

TBD.

186

Prototype Name Implemented Name
Fortran 90 C, C++

MDAS_*_C0NN mdasF_db2_conn mdasC_db2_conn
MDAS_*_DC0N mdasF_db2_dcon mdasC_db2_dcon
MDAS_*_GET mdasF_db2_get mdasC_db2_get
MDAS_*_PUT mdasF_db2_put mdasC_db2_put
MDAS_*_0PEN mdasF_db2_open mdasC_db2_open
MDAS_*_CLOSE mdasF_db2_close mdasC_db2_close
MDAS_*_READ_BLK mdasF_db2_read_blk mdasC_db2_read_blk
MDAS_*_WRITE_BLK mdasF_db2_write_blk mdasC_db2_write_blk
MDAS_*_EXEC_TYPES mdasF_db2_exec_types mdasC_db2_exec_types
MDAS_*_EXEC mdasF_db2_exec mdasC_db2_exec
MDAS_*_CAT_EXISTS mdasF_db2_cat.exists mdasC_db2_cat.exists
MDAS_*_CAT_MAKE mdasF_db2_cat_make mdasC_db2_cat_make
MDAS_*_CAT_DEL mdasF_db2_cat_del mdasC_db2_cat_del
MDAS_*_INFO_INQUIRE mdasF_db2_info_inquire mdasC_db2_info_inquire
MDAS_*_INFO_REGISTER mdasF_db2_info_register mdasC_db2_info_register
MDAS_*_INFO_UPDATE mdasF_db2_info_update mdasC_db2_info_update
MDAS_*_INFO_PURGE mdasF_db2_info_purge mdasC_db2_info_purge

Table 4.16: Driver function naming conventions for driver '•db*2"

4.11.2 Low-Level Drivers

At the lowest level, MDAS maintains a set of architecture and resource specific, drivers.
These are for internal use of the MDAS-library Mid-Level engines and daemons, and not
exposed to application programs.

Currently, each driver contains about 30 routines. Depending on the nature of the function
and type of resource, these routines range from low to medium level of code complexity.
The argument lists for each set of driver routines are identical.

All implementations must implement a driver for the operating system to be used in the
run-time environment. Built-in rules in the MDAS Build Environment enforce this policy.

4.11.2.1 Naming Conventions

All Low-Level prototypes have the prefix MDAS_*_ where * is the driver name. Driver names
and the availability of drivers is implementation dependent. A translation table of prototype
names and their actual names for a c'db2" driver is given in table 4.16.

187

4.11.2.2 Built-in Drivers

Discussion: TBD.

4.11.2.3 Access

MDAS_*_CONN(user, ticket, server, comm, servh, status)

user: (IM) MDAS.INFOH

ticket: (IM) MDAS.IMFOH

server: (IM) MDAS_IMFOH

comm: (IM) MDAS_handle

servh: (OUT) MDAS_SERVH

status: (IM/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success connection established

MDAS.ERR.COMM error communicator operation failed

MDAS_ERR_MPI error severe MPI error

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_TICKET error access error

MDAS_ERR_SERVH error server not available

MDAS_*_C0NN() connects the user named in user to the service described in server with
authorization protocol and key specified in ticket. The server argument is guaranteed
to describe 1 unique service. Likewise, user and ticket are guaranteed to contain the

description of 1 item.

If comm is non-NULL, it is guaranteed to be a valid communicator and MDAS_*_C0MN() may
execute collective operation on comm. If comm is used to establish an MPI intercommunicator
with a remote service then this new handle must be cached in servh. If the driver does not

use MPI protocols, then comm can be ignored.

The returned servh handle maintains the functionality of a physical connection across time-
outs. The actual implementation may be that in the event of a low-level operation on a
time-out, the connection is re-instated by the call responsible for the operation.

MDAS_*_DCON(servh, comm, status)
servh: (IN) MDAS_SERVH
comm: (IN) MDAS.handle
status: (IN/OUT) MDAS.status

188

Status codes type meaning
MDAS.SUCCESS success server deallocated
MDAS_ERR_COMM error communicator operation failed
MDAS_ERR_MPI error severe MPI error
MDAS_ERR_MEMORY error unable to deallocate memory
MDAS_ERR_SERVER error server not available

MDAS_*_DC0N() closes the connection specified by servh and frees any memory associated
with the structure. If MDAS_*_C0NN() was used to establish an intercommunicator, it should
be released.

4.11.2.4 Cache Operations

4.11.2.4.1 MDAS_*_GET()

MDAS_*_GET(dset, dstkt, servh, com, cache, status)

dset: (IN) MDAS.INFOH
dstkt: (IN) MDAS.INFOH
servh: (IN) MDAS.SERVH
comm: (IN) MDAS.handle
cache: (IN) MDAS.INFOH
status: (IN/OUT) MDAS.status

MDAS_*_GET() discussion: TBD.

4.11.2.4.2 MDAS_*_PUT()

MDAS_*_PUT(cache, dset, dstkt, servh, comm, status)

cache: (IN) MDAS.INFOH
dset: (IN) MDAS.INFOH

dstkt: (IN) MDAS.INFOH

servh: (IN) MDAS.SERVH

comm: (IN) MDAS.handle

status: (IN/OUT) MDAS.status

MDAS_*_PUT() discussion: TBD.

4.11.2.5 Data Handles

MDAS_*_OPEN(dset, dstkt, servh, comm, mode, dh, status)

dset: (IN) MDAS.INFOH

mode: (IN) MDAS.INFOH

189

dstkt: (IN)

servh: (IN)

comm: (IN)
dh: (OUT)

status: (IN/OUT)

MDAS.INFOH

MDAS.SERVH

MDAS.handle

MDAS.DATAH

MDAS_status

status codes type meaning

MDAS.SUCCESS success data set open on dh

MDAS_ERR_COMM error communicator operation failed

MDAS_ERR_MPI error severe MPI error

MDAS_ERR_TICKET error invalid ticket

MDAS_ERR_MODE error invalid mode

MDAS_ERR_READ error read access denied

MDAS_ERR_WRITE error write access denied

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_SERVER error server not available

MDAS_ERR_DATASET error data set not available

MDAS_*_0PEN() opens a generalized data handle for data set dset managed by the service
servh. The mode argument specifies the desired I/O mode. Any authentication ticket
required for the data set is provided in dstkt. The handle servh is guaranteed to be valid.
If comm is non-NULL, it is guaranteed to be valid and MDAS_*_0PEN() may perform collective
operations. If an MPI intercommunicator is established to perform the I/O operation, it
should be cached in dh. An error is returned with a NULL dh on failure.

MDAS_*_CLOSE(dh, comm, status)
dh: (IN/OUT) MDAS.DATAH
comm: (IN) MDAS.handle
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success dh deallocated

MDAS_ERR_COMM error communicator operation failed

MDAS_ERR_MPI error severe MPI error

MDAS_ERR_MEMORY error unable to deallocate memory

MDAS_ERR_SERVER error server not available

MDAS_ERR_IO error I/O error on close

MDAS_*_CLOSE() closes the data stream, etc. specified by dh (and possibly comm) and frees
anv memory associated with the structure.

4.11.2.6 Block I/O

The MDAS drivers provide a basic block I/O facility for reading and writing bytes on open

data handles.

190

MDAS_*_READ_BLK(dh, count, buffer, status)

dh: (IN/OUT)
count: (IN)

buffer: (IN/OUT)

status: (IN/OUT)

MDAS.DATAH

MDAS_integer

MDAS_handle

MDAS_status

status codes type meaning
MDAS.SUCCESS success bvtes read
MDAS_WARM_EOS error found logical end of stream
MDAS_ERR_MEMORY error unable to allocate memorv
MDAS_ERR_SERVER error server not available
MDAS_ERR_DATASET error data set not available
MDAS_ERR_IO error I/O operation failed

MDAS_*_READ_BLK() reads count bytes from dh and places them in buffer. A warning is
returned in status if the end-of-flle, end-of-stream, etc. is reached.

MDAS_*_WRITE_BLK(count, buffer, dh, status)
count: (IN)
buffer: (IN/OUT)
dh: (IN/OUT)
status: (IN/OUT)

MDAS_integer
MDAS.handle
MDAS_DATAH

MDAS_status

status codes type meaning
MDAS.SUCCESS success bytes read
MDAS_ERR_EOS error found physical end of stream
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_SERVER error server not available
MDAS_ERR_DATASET error data set not available
MDAS_ERR_IO error I/O operation failed

MDAS_*_WRITE_BLK() writes count bytes from buffer to dh. A error is returned in status
if the physical end-of-file, end-of-stream, etc. is reached.

4.11.2.7 Executing Methods

4.11.2.7.1 MDAS_*_EXEC_TYPES()

MDAS_*_EXEC_TYPES(server, types, status)

server: (IN) MDAS.INFOH

types: (OUT) MDAS.INFOH

status: (IN/OUT) MDAS_status

MDAS_*_EXEC_TYPES discussion: TBD.

191

4.11.2.7.2 MDAS_*_EXEC()

MDAS_*_EXEC(method, params, server,

method: (IN/OUT) MDAS.INFOH

params: (IN/OUT) MDAS.INFOH

server: (IN/OUT) MDAS.INFOH

ds_in: (IN/OUT) MDAS.INFOH

ds.out: (IN/OUT) MDAS.INFOH

status: (IN/OUT) MDAS.status

ds.in, ds.out, status)

MDAS_*_EXEC discussion: TBD.

4.11.2.8 Catalog Operations

MDAS_*_CAT_EXISTS(name, servh, status)
name: (IN) MDAS.string
servh: (IN) MDAS.SERVH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS
MDAS.ERR.SERVER
MDAS.ERR.CATALOG

success
error
error

catalog exists
server not available
catalog not available

MDAS_*_CAT_EXISTS() checks for the existance of an MDAS catalog named in name on
servh. The caller may check if the driver supports catalog functions by calling MDAS_*_CAT_EXISTS()

with NULL for both name and servh.

MDAS_*_CAT_MAKE(name, servh, status)
name: (IN) MDAS.string
servh: (IN) MDAS.SERVH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS
MDAS.ERR.SERVER
MDAS.ERR.CATALOG

success
error
error

catalog created
server not available
catalog broken

MDAS_*_CAT_MAKE() creates an MDAS catalog named in name on servh.

MDAS_*_CAT_DEL(name, servh, status)
name: (IN) MDAS.string
servh: (IN) MDAS.SERVH
status: (IN/OUT) MDAS.status

192

Status codes type meaning
MDAS.SUCCESS
MDAS_ERR_SERVER

MDAS_ERR_CATALOG

success
error
error

catalog deleted
server not available
catalog broken

MDAS_*_CAT_DEL() deletes the MDAS catalog named in name on servh.

4.11.2.9 Catalog Info Operations

MDAS_*_INFO_INQUIRE(servh, info, result, status)
servh: (IN)

info: (IN)

result: (OUT)

status: (IN/OUT)

MDAS.SERVH

MDAS.IWFOH

MDAS.INFOH

MDAS_status

status codes type meaning
MDAS.SUCCESS success result(s) obtained
MDAS_WARN_RESULT warning result is empty
MDAS_WARN_SP00L warning result spooled
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_READ error read access denied
MDAS_ERR_RESULT error unable to return result
MDAS_ERR_SERVH error server not available

The catalog server connection servh is guaranteed to be valid. The Info argument info
is also guaranteed to be valid. The conditions and criteria argument may be NULL. A
valid handle is supplied to result, in which any results are returned. The result may be
spooled if the magnitude exceeds the driver's capability. The result must be spooled if the
MDAS.SPOOL directive (see MDAS.DIRECTIVE) is set in cond. If the result is spooled, the
MDAS_WARN_SP00L status bit is set.

MDAS_*_INFO_REGISTER(servh, info, status)
servh: (IN) MDAS.SERVH
info: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning
MDAS.SUCCESS success info registered
MDAS_WARN_REGISTER warning info previously registered
MDAS_ERR_MEMORY error unable to allocate memory
MDAS_ERR_WRITE error write access denied
MDAS_ERR_SERVH error server not available

193

MDAS_*_INFO_REGISTER() registers Info for one MDAS_TYPE. The catalog server connection
servh is guaranteed to be valid. The info argument is also guaranteed to be valid and
contain at least the minimal amount of required metadata for catalog registration. The
catalog MDAS_ID of the registered Info is returned in info. If the info is spooled, the

MDAS_WARN_SP00L status bit is set.

MDAS_*_INFO_UPDATE(servh, info, status)

servh: (IN) MDAS.SERVH
info: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success info updated

MDAS_ERR_MEMORY error unable to allocate memory

MDAS_ERR_WRITE error write access denied

MDAS_ERR_REGISTER error invalid MDAS.ID

MDAS_ERR_SERVH error server not available

MDAS_*_INFO_UPDATE() adds and/or changes catalog Info for one MDAS.ID. The catalog
server connection servh is guaranteed to be valid. The info argument is also guaranteed
to contain one MDAS_ID and at least one attribute to be added or changed. All attributes in
info are assumed to be additions or changes. If the info is spooled, the MDAS_WARN_SP00L

status bit is set.

MDAS_*_INFO_PURGE(servh, info, status)
servh: (IN) MDAS.SERVH
info: (IN/OUT) MDAS.INFOH
status: (IN/OUT) MDAS.status

status codes type meaning

MDAS.SUCCESS success info purged

MDAS_ERR_WRITE error write access denied

MDAS_ERR_REGISTER error invalid MDAS_ID

MDAS_ERR_SERVH error server not available

MDAS_*_INFO_PURGE() deletes one or more MDAS.ID's and their associated Info in an MDAS
catalog. The catalog server connection servh is guaranteed to be valid. The info argument
is also guaranteed to contain at least one MDAS.ID and no other attributes. All id#'s in
info should be purged. If the info is spooled, the MDAS_WARN_SP00L status bit is set. If
one or more MDAS.ID's in info are invalid, the reponsible id#'s are returned in info and
the MDAS_ERR_REGISTER status bit is set.

4.11.3 MDAS Internals

TBD.

194

4.11.3.1 Parameters and Macros

TBD.

Need to discuss how parameter and macro files are built automatically, what the parameters
and macros are. etc.

4.11.3.2 Global Variables

TBD.

4.11.3.2.1 MDAS_VERBOSE

TBD.

4.11.3.3 Driver Cross-Reference Tables

TBD.

4.11.3.4 Prototypes

TBD.

MDAS_InitStructCtor()

MDAS.InitStructDtorO

MDAS_args()

MDAS.envO

MDAS_gethome()

MDAS_rc2home()

MDAS_rc2dflt()

MDAS_validhome()

MDAS_getrc()

MDAS_validrc()

MDAS_gettickets()

195

MDAS_rc2tickets()

MDAS_validtickets()

MDAS.TicketCtorO

MDAS_TicketDtor()

MDAS_DriverCtor()

MDAS_DriverDtor()

MDAS_RsrcCtor()

MDAS_RsrcListCtor()

MDAS_PurgeRsrcList()

MDAS_RsrcDtor()

MDAS_InitRsrcC()

MDAS.RsrcCCtorO

MDAS_RsrcCDtor()

MDAS_ExtendRsrcs()

MDAS_ExtendTckts()

MDAS_CmpRsrcs()

MDAS_CmpTckts()

MDAS_TcktListCtor()

MDAS.PurgeTcktList()

MDAS.AddRsrcListO

MDAS.AddTcktListO

MDAS_RsrcCCache()

MDAS.RsrcCPrintQ

MDAS.GetValQ

MDAS.InhaleTxtO

MDAS_LListCtor()

MDAS_LListDtor()

196

4.12 Demonstration and Test Programs

(Under construction.)

4.12.1 MDAS_IMIT() Test

/* testinit.c */

»include "COPYRIGHT.h"
»include "mdasC.h"

int
main(int arge, char* argv[])

{

mdasC_status status ;

mdasC_init(arge, argv, NULL, status) ;
if (status [0] < 0)
{
fprintf(stderr, "mdasC_example : exiting on mdasC_init error\n") ;
exit(l) ;

>
if (status[0] > 0)

■C

fprintf(stderr, "mdasC.example : exiting on mdasC.init warning\n") ;
exit(0) ;

}

mdasC_finalize(NULL, status) ;

exit(0) ;

>

4.12.2 "View a Patent" Demo

/* viewpatent.c */

»include "mdasC.h"

int main(int arge, char *argv[])

■c
/* feel free to add comments to this program! */
mdasC_infoh patinfo ;

mdasC_infoh patsres ;

mdasC.infoh viewinfo ;

197

mdasC_infoh viewrsrcs ;

mdasC_status status ;

/* initialize the MDAS library */

mdasC_init(argc, argv, NULL, status) ;

/* describe the data set as we know it */
mdasC_info_create(MDAS_DATASET, patinfo, status) ;

mdasC_info_set_attr(MDAS_NAME, "10001", patinfo, status) ;

mdasC_info_set_attr(MDAS_STOR_GRPN, "patent", patinfo, status)

/* describe the display resources as we know them */
mdasC_info_create(MDAS_RESOURCE, viewinfo, status) ;

mdasC_info_record_add(MDAS_RSRC_TYPE, MDAS.DISPLAY,

viewinfo, status) ;
/* This next record would be taken as a default. Here

we include it for completeness. */
mdasC_info_record_add(MDAS_RSRC_LOCT, MDAS.LOCAL,

viewinfo, status) ;

/* get the catalog entries that match the patent description */

mdasC_inquire(patinfo, MULL, NULL, patsrcs, status) ;

/* get the catalog entries that match display description */
mdasC.inquire(viewinfo, NULL, NULL, viewrsrcs, status) ;

/* Pipe the patent to the display method. PIPE will first

look for matches between formats of patent replicates

and input formats of display resources and select

one (data set, resource) pair. Next, PIPE will call
MDAS_GET() to bring the data set to the local resource.

Finally, pipe calls MDAS_EXEC() to have the local copy
of the patent (returned from GET in "cacheinfo") displayed.

*/
mdasC_pipe(patsrcs, viewrsrcs, status) ;

/* O.K., we're done. */
mdasC.finalize(NULL, status) ;

exit(0) ;

>

198

4.13 Build Environment

Intro ...TBD.

4.13.1 Directory Structure

TBD.

MDAS/

Makefile

bin/

config/

doc/

src/

4.13.2 Build Directories

MDAS creates'an architecture-dependent Makefile and binaries from common source tree.
For example, a software build on an IBM AIX system might create the following MDAS-59. AIX .4.1
infrastructure under the main MDAS directory tree:

Makefile

bin/

conf ig/
doc/

src/

include/

mdas/
db2/

hpss/

http/

illustra/

MDAS -59.AIX.4.
bin/

lib/

src/

1/

include/

. ./src/include/*

mdas _drvr.h

mdas _drvr.F

mdas -> . ./src/mdas

db2 -> . . /src/db2

hpss -> . ./src/hpss

199

Compile-time dependencies are determined by architecture resource files in the MDAS/conf ig/
directory. Include files named mdas.drvr.* with contents specific to the available languages
and resources are automatically generated in the target include/ directory. At run-time,
parameters and an array of function pointers defined in the mdas.drvr.* include files are
used to create the linkage between the API and compiled driver functions.

4.13.2.1 Configuration Files

TBD.

4.13.3 Source Development

TBD.

Need to discuss compile-time configuration of drivers.

4.13.3.1 API

TBD.

4.13.3.2 Mid-Level

TBD.

4.13.3.3 Low-Level

TBD.

4.13.3.3.1 Drivers

TBD.

4.13.3.3.2 Internals

TBD.

200

4.13.4 Automatically Generated Files

TBD.

201

4.14 Executable Tools

Executable versions of MDAS Library routines and miscellaneous tools to assist with the
task of Catalog metadata registration are discussed here.

4.14.1 Catalog Registration

(TBD).

One tacit assumption so far has been that most MDAS library calls have a command line
version for use in shell (script) run-time environments.

4.14.2 Catalog Registration

(TBD).

There was a write-up on this in the old MDAS research pages on the web.

The idea is that there were active and passive "tools" to assist with the registration of what
we now call Catalog metadata.

The active tools are a set of scripts and/or executables to be used for batch registration
of data sets. These would be particularly useful for registering large batches of files on
delivered on tape, etc. Another set of active tools exist in the library - primarly for building
interfaces for manual interactive registration. For example, the registration of a user by a
system administrator.

The passive tools are library internals which attempt to automatically build the minimal
set of metadata required to "register" an MDAS entity. These tools are invoked passively
as the library encounters (or suspects the presence of) "new" entities. For example, calling
MDAS_GET/PUT/CONNECT/EXEC invokes the registration procedures. An advantage of this
approach is that the metadata for an entity can be grown with use; i.e., the system "learns"
about attributes of an entity over time. Caveat: it must start with a minimal set of
attributes.

202

4.15 Agents and Brokers

(TBD).

Optional MDAS agents and service brokers are discussed here.

4.15.1 The MDAS Outreach Program

(TBD).

Chaitan has introduced a hybrid approach which involves an "active" agent "passively"
registering entities it discovers on some extent of resources. It would seem that there are
two functionalities required for a robust discovery mechanism: a "browser" and a "valida-
tor". The former is as Chaitan describes, the latter is a quality assurance tool that checks
whether a registered entity still resides and/or functions as described in the catalog. Since
MDAS users may want only one of these functions, it would make sense to have two agents
(daemons): mdas_browse and mdas_validate.

This discussion sounds like a paper for Agents '97 (past due) or an ACM Transactions
journal.

Once we have MDAS in place, a concern is how we get neccesary up-to-date metadata into
the system. While people may be willing to have MDAS run on their systems (for some
presumed advantage that they may gain by doing this), they may not be equally willing to
supply all the metadata we would like to have, in the first place, and to keep this updated.
The reason being that metadata collection could be laborious and low on people's priority
of things to do. The suggestion is to think of MDAS metadata discovery "agents" which
go about looking for metadata of interest to MDAS and update MDAS catalogs with this
information.

There are, obviously, many details to ponder but, in essence, we create agents for each type
of resource and set agents loose on the systems on which MDAS is running or to which it
has access. Depending on how friendly a system (or sys admin) wants to be to MDAS, there
will be various levels at which these agents could be run, e.g. user level process, privileged
process, etc. Depending on the level (and how smart the agent is), certain type and amount
of metadata can be collected.

I first thought about the agent approach since I was concerned that people may not have
the time/resources to populate MDAS catalogs with appropriate metadata. However, the
basic concept can be extended to glean lots of information by monitoring system activity.
In fact, systems like Andrew Gross' intrusion analysis s/w and the network weather service
may be collecting all sorts of information that may of interest to MDAS. Since the agents
embody MDAS* efforts to include as many resources into MDAS as possible, we can think
of this as the MDAS Outreach Program!

203

4.16 File I/O Interface to Archival Storage

This section describes an early implmentation of a set of MDAS API's which provide access
transparency to applications accessing data sets stored in archival storage systems. This
is achieved by providing a common file I/O interface to various archival storage systems.
Thus, regardless of where a data set resides (on disk or in various archival storage systems),
the interface to access the data set is the same. As explained below, these particular API's
do not provide location transparency since location information needs to be provided as
input to them. However, the intent in MDAS is to implement higher level API's which can
query MDAS metadata to obtain the location information required by the lower level API's
described here. The file I/O interface described here refers to a particular implementation
of the interface at the San Diego Supercomputer Center (SDSC) which uses the Postgres95
database management system to provide an interface to the NSL UniTree and the IBM
High Performance Storage System (HPSS) archival storage systems. NSL UniTree is a
hierarchical archival storage system currently running in production mode at SDSC. The
system is capable of storing almost unlimited amount of data. This system will be replaced
by the HPSS system by the beginning of 1997.

4.16.1 The File I/O API

Currently, the file I/O API specification includes the following standard file I/O calls,
create, open, unlink, stat. read, write, seek, sync, close, stat. The function input/output
parameters for these functions are the same as those for the corresponding UNIX calls,
except in the case of the first four functions, viz. create, open, unlink, stat. For these
functions, two additional parameters are introduced which are described below.

New Parameters.

The file I/O interface introduces two new parameters, access method and host address,
which are used to specify the location of a data set in a distributed system which supports
replicated archives. These parameters are relevant only to functions that refer to a file by
its name rather than by its file handle.

The "Access Method" parameter.

The access method parameter, access.m, is used to specify the access method for stor-
ing/retrieving data sets. The data type is integer and each integer value maps to a
specific method of access. For example:

• 0 - local disk

• 1 - UniTree

• 2 - HPSS

204

The "Host Address" parameter.

The host address parameter, host.addr, specifies the address of the host system where the
data resides. This provides support for remote sites in a distributed system.

Interface Functions.

Following is a list of functions that together form the file I/O interface to archival storage
systems. The prefix "e_" is used to distinguish these calls from the standard UNIX file I/O
calls.

Functions with filename as parameter.

1. Create.

int e_create(int access_m, text *host_addr, text *filename,
int mode)

2. Open.

int e_open(int access.m, char *host_addr, char *filename,
int flags, int mode)

3. Unlink.

int e_unlink(int access_m, char *host_addr, char ^filename)

4. Stat.

int e_stat(int access_m, char *host_addr, char *filename,
struct stat *statbuf)

For example, the following call to the e_create function will create the file, DOCT'.archive-file
on the HPSS archival storage system running on host, suraj.sdsc.edu:

e_create(2, "suraj.sdsc.edu", "DOCT_archive_file", 0)

Functions with file handle as parameter.

1. Close.

int e_close(int fd_inx)

2. Read.

205

int e_read(int fd.inx, char *buf, int len)

3. Write.

int e_write(int fd.inx, char *buf, int len)

4. Seek.

int e_seek(int fd.inx, long offset, int whence)

5. Sync.

int e_sync(int fd_inx)

4.16.2 A Prototype Implementation

A prototype of the file I/O interface has been implemented at SDSC for the NSL UniTree
and IBM HPSS systems. The Postgres95 database management system was used as the
front-end to this archival storage system. The Postgres DBMS serves two purposes. First, it
provides a means for storing metadata associated with the archival data sets that are stored
in UniTree/HPSS. Using a DBMS allows one to query the metadata using the full power
of standard database query language interfaces. Second, the Postgres system provides the
means to implement the functions specified in the file I/O interface as internal Postgres
functions. Thus, applications can store/retrieve archival data by directly interacting with

the Postgres DBMS.

Implementation using the Postgres DBMS.

Each of the functions in the interface is implemented as an internal function in the Post-
gres server. Corresponding functions are also implemented on the client side, to support
client/server access to the data sets. Accessing archived data sets requires making a connec-
tion to the Postgres server from the client using the Postgres CONNECT API. Subsequent
calls from the client need to specify the corresponding "connection handle" to identify the

established connection.

The client-side functions are the same as the corresponding functions on the server-side with
the addition of one parameter, viz. the Postgres connection descriptor called, PGconn. This
descriptor is returned by the call to the CONNECT API. For example, the client function

prototype for create is follows:

int e.create(PGconn* conn, int access_m, char *host_addr,
char *filename, int mode)

Authorization.

206

The file interface must include checking to ensure that users have the neccesary authorization
to execute the various functions on the specified data sets in the specified archival systems.
Each function can verify this for the corresponding user. In the prototype implementation,
authentication is done at two levels. User authentication is done during Postgres CONNECT
processing to ensure users have the authorization to connect to the DBMS. Authorization
at the file level is done during file open and create (e-open and e.create) processing to
ensure users have the authorization to perform the specific I/O operation. In general, it is
expected that security and authorization checking on data sets will be done by the ticket

services provided by MDAS.

4.16.3 Alternative Implementations

In general, it is expected that a DBMS will be used to store all the metadata associated with
an archival data set. However, there are several alternative implementations for providing

access to the archival data set itself. These include storing the data set as a file under the
control of a DBMS, as a large object within a DBMS, and simply as an external file (outside
of a DBMS). These alternatives are further described in the following sections.

DBMS-based implementations.

The DBMS-based implementations can be divided into implementations that use an "ex-
ternal" file implementation versus those that employ the large object support provided by
the DBMS itself.

External file implementation.

The prototype described in this report is an example of a DBMS-based, external file im-
plementation. The DBMS implements internal functions corresponding to the functions
specified in the file interface. These functions are made available to application programs
as DBMS API's. Thus, application programs can directly call these functions via the API.
The application program passes read/write buffers to the DBMS which, in turn, passes
these buffers to the archival storage svstem.

Large Object Implementation.

Object-relational database systems have various mechanisms by which they are able to
support the storage and manipulation of so-called large objects within a DBMS. In this
implementation, the archival data sets are stored as regular large objects with the difference
being that the DBMS is able to direct these objects to archival storage systems rather than
storing them on local disk. The functions specified in the interface can be implemented
specifically for large objects within a database. Alternatively, existing methods provided
by the DBMS for handling large objects can be overloaded to handle archival data sets as
weU.

20 <

A Prototype based on Postgres Large Objects.

Postgres95 supports the storage and manipulation of large objects within the database.
Thus, a prototype of the archival storage file interface was implemented by extending the
existing Postgres large object implementation to allow for multiple storage/access methods.
In Postgres, each large object is associated with an object id (Oid) which is assigned when
the large object is created. The function prototypes on the DBMS server side are as follows:

Oid lo_creat(int access_m)

int lo_open(0id object_id, int mode)

int lo_unlink(Oid object.id)

int lo_close(int fd)

int lo_read(int fd, char *buf, int len)

int lo_write(int fd, char *buf, int len)

int lo_seek(int fd, int offset, int whence)

Oid lo_import (char *filename, int access_m)

int lo.export (Oid object.id, char *filename)

Except for loJmport and lo^export, these functions are similar to the ones in the external
file implementation and adhere to the same UNIX file I/O paradigm. LoJmport is used to
import a UNIX file as a large object and lo-export is used to create a UNIX file from a large
object. As before, the accessjm parameter in the lo.creat and loJmport functions allows
the client to choose the access method for the large object to be created.

As before, corresponding functions are implemented on the client side. They are the same
as the server API's with the inclusion of the the database connection descriptor parameter

in each case, e.g.

Oid lo_creat(PGconn* conn, int access_m)

Non-DBMS Implementation.

In a non-DBMS implementation, access to the archival data sets is provided by a service
outside of the DBMS which supports the file I/O interface. Thus, the interface is imple-
mented as a separate, stand-alone service. As mentioned before, a DBMS may still be used
to store metadata related to the archival data sets. However, to access a data set, the
application program interacts directly with the service.

208

Chapter 5

Important Findings and
Conclusions

The primary challenges in the MDAS project are (a) the integration of data management
systems with archival storage and (b) end-user solutions for the replacement of the (Unix)
file paradigm with a higher-order interface to data, methods, and resources. MDAS will
develop robust prototype solutions to these challenges, but several general problems will
remain that merit follow-on efforts. These include:

Intelligent Hierarchical Storage Systems : Current HSS technology is designed for ei-
ther (a) atomic file input/output by many users or (b) general read, write, and seek
operations by a few users. An internal intelligent queueing mechanism is desirable to
scale general I/O capabilities to a. large number of simultaneous user requests.

Software Development Environment Standards : The lack of standards in system
software tools makes developing multi-platform software a tedious process. The fur-
ther development and acceptance of POSIX standards for Unix will provide some relief
in this area. The situation is particularly acute in high performance computing. In
1995, the NCO for HPCC sponsored a report by the System Software Tools Working
Group (SSTWG) on desired standards in system software tools. Reference to this
report in procurements is likely to have a major effect on vendor compliance.

Heterogeneous MPI : The MPI Forum is defining protocols which will enable the com-
munication of data-type structures and file structures between third-party applica-
tions. Further, MPI is defining an interoperable storage description that will allow
the same binary file to be read by different binary format computing platforms. These
capabilities are restricted to applications running the same version (implementation)
of MPI. Further, these communication and storage modes are optional to the user so
that applications desiring higher-performance communication and storage protocols
may have them on vendor-specific architecture. However, it is likely that no single
implementation of the MPI standard will run on all platforms of interest to a par-
ticular site; i.e., there is still a need for interoperable implementations of MPI. This
could be acheived by defining an optional interoperable communication mode in the
MPI standard itself.

209

Advanced OO technology : Object-oriented (00) software technologies greatly sim-
plify the task of software engineering and hold great promise for software reuse.
However, present-day 00 compilers do not produce high-performance executables.
Improvements to both 00 languages and compilers would be of great benefit.

Dynamic Loading : A "just-in-time" compiled applet is essentially a dynamically loaded
software module. Dynamic loading has existed in some Unix compiler technology for
several years, but is not standard practice. It is particularly useful in data mining
and analysis applications for compiled source code derived from symbolic mathematics
and query languages. Dynamic unloading is equally desirable when a module is no
longer needed.

Universal Resource Names : Scientific applications should be able to access data and
cache it locally no matter where the data is originally located. This is equivalent to
requiring a catalog or expert system with universal resource name (URN) capabilities.

Resource Discovery : Current 0/S technologies do not provide adequate interfaces for
resource discovery. For example, to "discover" that a particular DBMS is running
on a remote platform, the user must perform manual work to find the port number
and appropriate library interface. SNMP provides a partial solution. A general 0/S
independent mechanism for automated discovery is needed. Meeting site dependent
security needs will be an important aspect.

Parallel I/O : Support for parallel I/O streams must be done within the context of emerg-
ing standards. This requires tracking the MPI2 10 effort which is examining issues
related to message passing within a compute platform and I/O to external periph-
erals. Interoperability between MPI and non-MPI processes will require specialized
software interfaces.

Distributed Computation Support : Data sets may be distributed to multiple plat-
forms, for analysis by methods that are retrieved from a DBMS. Support for distri-
bution of computation objects is needed.

Third-party Authentication : Methods and data sets need to validate their interopera-
tion through an authentication mechanism that is independent of the local operating
system.

Common Communication Layer : Many of the above problems could be solved by a
standardized communication layer that addresses concerns across all the sectors of
the computing community. At present, there are many protocols and software imple-
mentations available with limited capabilities from which general prototypes can be
developed. The NEXUS system from Argonne National Laboratory is example.

210

Chapter 6

Implications For Further Research

The issues researched in MDAS are essential in enabling the "Distributed Object Compu-
tation Testbed" project which will build a complex document handling system on top of
federated databases that access replicated archives. The integration of database, archival
storage and application (Web in particular) technology promises to facilitate the manipula-
tion of large data sets and large collections of data sets. One goal is to enable data analysis
on terabyte-sized data sets retrieved from petabyte archives, at an access rate of 10 GB/sec.
Current supercomputer technology supports a 1 GB/s access rate to 1 terabyte of disk. For
a teraflops supercomputer with 10 TB of disk, data rates on the order of 10 GB/s will be fea-
sible. This will require, however, support for parallel I/O streams, and support for striping
data sets across multiple peripherals. Fortunately, the software technology to support third
party transport of data sets across parallel I/O streams is being developed in the HPSS
archival storage system. Data redistribution mechanisms for the parallel data streams are
being standardized as part of the MPI-IO effort. The expectation is that the initial usage
prototypes described above can be extended to support supercomputer applications that
analyze arbitrarily large data sets.

211

Bibliography

[2

[e:

[8

[9

[10

[11

[12

S.K. Chang, R. Korfhage, S. Levialdi, and T. Ichikawa. Ten Years of Visual Language
Research. In Proc. IEEE Symposium on Visual Languages, page 196, 1994.

F. Davis, W. Farrell, J. Gray, R. Mechoso, R. Moore, S. Sides, and M. Stonebraker.
EOSDIS Alternative Architecture. Technical report, San Diego Supercomputer Center.

1/23/95,
http://www.research.microsoft.com/research/barc/gray/eos_dis/.

S. Fineberg. MPI-IO: A Parallel File I/O Interface for MPI.
http://lovelace.nas.nasa.gov/MPI-IO/.

William Gropp. Ewing Lusk, and Anthony Skjellum. Using MPI. MIT Press, 1994.

S. Tuecke I. Foster. Enabling Technologies for Web-Based Ubiquitous Supercom-
puting. In Proc. 5th IEEE Symp. on High Performance Distributed Computing.
ftp://ftp.mcs.anl.gov/pub/nexus/reports/hpdc_java.ps.gz.

John F. Karpovich. Support for Object Placement in Wide Area Heterogeneous Dis-
tributed Systems. Technical report, Univ. of Virginia CS-96-03. 1/96,
ftp://ftp.cs. Virginia.edu/pub/techreports/CS-96-03.ps.Z.1

Sandia National Laboratory. Sandia Joins R&D Effort To Bring Teraflop Supercom-
puting On-Line. http://www.cs.sandia.gov/teraflop.html.

R. Moore. High Performance Data Assimilation, a White Paper. Technical report,
San Diego Supercomputer Center,
http://www.sdsc.edu/EnablingTech/InfoServers/HPDA.html.

MPI Forum. MPI 2. http://www.mcs.anl.gov/mpi/mpi2/mpi2.html.

Andreas Paepcke, Steve B. Cousins, Hector Garcia-Molina, Scott W. Hassan,
Steven P. Ketchpel, Martin Rvscheisen, and Terry Winograd. Using Dis-
tributed Objects for Digital Library Interoperatbility. IEEE Computer, May 1996.
http://www.computer.org/pubs/computer/dli/r50061/r50061.htm.

Scalable I/O Initiative. Working Papers.
http://www.ccsf.caltech.edu/SIO/SIOpubslist.html.

Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. MIT Press, 1995.

212

