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Long Tubular Penetration Models 

Minhyung Lee and Stephan Bless 

ABSTRACT 

The penetration mechanics of a thick walled tubular penetrator is examined as 
ratio of the outer to inner diameter is increased from values of 0.4 to 0.74. Since 
the craters are characterized by depth and radius, analytical models for the crater 
radius due to tubular penetrators are developed. A two stage cavity expansion 
model is provided, which is based on the observations that in the first stage, the 
eroded penetration element exerts pressure on the target and opens a cavity. In 
the second stage, the inertia imparted to the target is responsible for the further 
expansion of the cavity. The analysis includes the centrifugal force exerted by the 
penetrator, radial inertia of the target, and the strength of the target. 

The crater radius is also determined from the energy and momentum principles 
and the results are compared with other results. The results obtained from the 
momentum principle provide good agreement with the other models in spite of 
its simplicity. The penetration velocity for tubes, which is less than that of rods, 
thus cannot be obtained from the modified hydrodynamic theory, is determined 
from computer simulations on behalf of the penetration efficiency. 

Numerical simulations using AUTODYN-2D are conducted for comparison with 
the analytical predictions and these confirm the phenomenological assumptions 
in the models. 

I.   INTRODUCTION 

Although the penetration mechanics of long rods is well understood, this is not 
the case for tubular penetrators. The radial motion of target material due to rod 
hypervelocity penetrations occurs in two stages as shown in numerical simulations 
[1]. In the first stage, eroded penetrator elements play the dominant roles in 
opening a cavity. In the second stage, the inertia deposited in the target is 
responsible for further cavity growth until the strength of the target forces it to 
come to rest. 

An earlier analysis of hypervelocity penetration of slender hollow cylinders into 
homogeneous targets is given in Franzen [2]; it is based on hydrodynamic theory. 
Even though many simplifications are made, the model can provide a criteria for 
the choking of flow on the tube axis. This condition occurs for the ratio of the 
inner diameter to outer diameter, \i, less than 0.7. 



In the present work, for p < 0.7 simple analytical models for describing cavity 
growth and resulting final crater size in the target are developed in three ways 
These models were already applied for the penetration of rods [3]. The first 
analytical model is based on the method of Franzen [2] for the purpose of 
determining the extent of the first stage cavity expansion due to eroded 
penetrator elements. Because of the neglect of the target strength in Franzen's 
model, the cavity radius is not bounded. Including the target strength term in the 
analysis allows us to explore the ultimate cavity radius achieved during the first 
stage cavity expansion, which is solely due to radial movement in the penetrator 
"mushrooming". To estimate the amount of inertia imparted to the target in the 
second stage cavity expansion model, for simplicity, we use an energy principle. 
The energy and momentum principles are also developed to determine the final 
crater size and the results are compared with other results. 

An axisymmetric coordinate system moving at the constant penetration velocity U 
is used as reference. All lengths are scaled by the outer radius rp of the tubular 

penetrator, thus dimensions are characterized by the inner radius u. < 1. The 
outer radius varies with ji. Numerical simulations using AUTODYN-2D are also 
presented for comparison with the analytical predictions. 

II.  ENERGY BALANCE 

The crater size for penetration of long tubular penetrators is described in this 
section within the framework of energy balance. The basic assumptions required 
in the analyses are: 

— Target material is considered as incompressible and inviscid flow. 
— The motion of the cavity wall is purely radial. 
— The internal energy change due to thermal effects and strain energy in 

the target are negligible. 
— Work done against the projectile during penetration is negligible. 
— Steady state is assumed. 

— The kinetic energy loss of a penetrator per unit target length. 

Consider a long tubular penetrator of density pp, inner radius p and length L 

impacting at normal incidence an infinite target of density pt. For steady state 
penetration the loss of kinetic energy of a penetrator per unit target length equals 
the total energy deposited in the unit target length. The loss of kinetic energy of 
the tubular penetrator per unit target length is given by, 

EkP = 
2 
2 

'm j\^, a: 



where m = pp^(l-/z2)L. Here m is the mass, L is the penetrator length, P is the 

penetration depth and V is the impact velocity. Using the hydrodynamic relation 
L/P =  (V-U)/U, Eq. (1) becomes, 

EkP=   ^(1-^)^1 V2. (2) 

The amount of plastic work per unit target length done to open the outside cavitv 
is given by, ' 

Ept= J(2;rr)Rtdr= n{ac
2 -ß2) Rt, (3) 

where Rt is the target resistance for radial cavity expansion. If it is further assumed 
that target material within ß flows up the axis of the penetration and is in a 
uniaxial compressive state, the work done for the inner target material per unit 
length, E

Pti' 
ls 8iven by, r 

Ep,i = m1 YP • (4) 

The velocity field vanishes throughout the flow field after a maximum cavity is 
DT??/ y!eid!n§ zero kinetic energy in the target. Details may be found in 
Kef. LJj. At this time the conservation of the energy can be expressed bv the 
relation, r y 

%= ^ac
2-ß2)Rt + Kß2\p. (5) 

Combining Eqs. (3), (4) and (5) leads to a final crater size of, 

SL = .1 1/2Ppfl-/nv2 (V-U) + ß2K-YP 
rp      V Rt u R 

This expression applies to rods if ß equals zero. 

(6) 

— Determination of the penetration velocity. 

An important parameter to be determined in the tubular case is the penetration 
velocity which cannot be predicted from the "modified" Bernoulli equation For 
steady state penetration the modified Bernoulli equation applies, 

1/2pp(V-U)2 + Yp = 1/2ptU
2 + Rt. (7) 



Then U is given by [4], 

_   V-^V2+2(l-ff2)(R,-Yp)/p, 
(T^) ' (8) 

where a = ^pt/pp . For thick tubes, most of the penetrator material flows to the 

outside of the cavity, and yields a larger crater diameter. In this case the 
penetration velocity will be smaller than predicted by Eq. (8), thus resulting in 
poor penetration efficiency. If it is further assumed for steady state penetration 
that the tubular penetration efficiency (P/L)^ is related to the rod penetration 
efficiency (P/L)rod by, 

(P/LU_   (%-U)L      , 
- A > (9) (P/LL  (%-uL 

where A is a constant to be determined from computer simulations. The 
penetration velocity of tubular penetrator Utube is then given by, 

U =     rod ,..     . 
,ube      V-(1-A)Urod * UUj 

where U od is the penetration velocity of a rod penetrator. The theoretical Rt 

values determined by the classical spherical cavity expansion model as presented 
by Satapathy and Bless [5] is used in the present work: 

2 (Y \ 
R   =   --Y In — 

3 (,2Gj 

which gives  RHA steel the value Rt = 5.0 GPa. 

III.   MOMENTUM PRINCIPLES 

+ |Y . (11) 

The crater size for penetration of long tubular penetrators is described in this 
section within the framework of momentum arguments. The control volume 
attached to the penetration interface of two bodies is shown in Fig. 1. The 
control volume is bounded on the left by the penetration interface, on the right 
by the Hugoniot elastic-plastic interface, and on the top and bottom by the 
material interfaces. The penetration interface is moving with velocity U. Mass 
enters the control volume through the elastic-plastic interface. 
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Fig. 1.  Control volume. 

For thick tubes, only target material moves through the inner cavity. This flow can 
be considered incompressible and the Bernoulli's theorem is applicable [2] If U 
is smaller than the sound speed in the target, the static pressure at the inner cavity 
entrance Ps(/z) becomes smaller than the stagnation pressure 1/2ptU

2. To 
determine this static pressure, it is necessary to obtain the local inner cavity 
radius. After a short transient phase this static pressure is created near the center 
of theaxisymmetric axis such that it pushes most of the projectile material to the 
outside cavity. The static pressure will decrease from its initial value to zero at the 
throat From the Bernoulli's theorem with a mass conservation in the flow 
through the cavity, the static pressure at the inner cavity entrance is given by [2] 

P.W = \PV 1 - 
f    \4 

(12) 

where ß, is the cavity radius at the throat, which is not determined for thick tubes 
[2]. Now the static pressure at the entrance is assumed to be the stagnation 
pressure.  For example at ßt /ß = 0.5, the relative error is 0.0625. 

To approximately determine the final crater size, the conservation of momentum 
equation for the control volume is, 

Rt(fDc
2) - 4Yp|(1-^) -4lptU

2^)=  2pp4^
2)(V-U)2, (13) 

where Dc is the normalized crater diameter. The conservation of mass for the 
control volume is accounted for in this equation by equating the incoming mass 
to the outgoing mass in a steady state condition. The solution to the final crater 
radius is then given by, 

£. =     (1'^2)YP    | 1/2AU2/*2   t 2pp(l-p
2)(V-U) 

rp       V     R, R, R. 
(14) 

If p equals zero, this expression gives the same result previously obtained for rod 
penetrations [3]. 



IV.   TWO STAGE CAVITY EXPANSION MODEL (TSCEM) 

We propose that in the first stage, the eroded penetrator elements exert pressure 
on the target and open a cavity. In the second stage, the inertia imparted to the 
target is responsible for the further expansion of the cavity, especially at 
hypervelocity penetration rates. It is further hypothesized that the final cavity 
radius is equal to the sum of the cavity radii produced by each stage acting 
independently, regardless of the order of application of loads. In other words we 
use the principle of superposition for the total work done by each stage The 
analysis includes the centrifugal force exerted by the penetrator, radial inertia of 
the target, and the strength of the target. The basic assumptions required in the 
analysis are: 

— Target material flow is considered as incompressible, steady and inviscid 
relative to the stagnation region. 

— The pressure profile exerted by the target is assumed to be l/2ptU
2 sin3/? 

as provided in Ref. [6], where ß is the angle between the 'tangent 
direction of the centerline and the axis of symmetry. The variation in 
velocity of the "mushrooming" penetrator material is normal to the 
"mushrooming" surface tangent. Although the Newtonian pressure, 
l/2ptU

2sin2/?, allows a simple closed-form solution it over-predicts the 
pressure profile [6]. This pressure is acting normal to the flow at radius r 
where r is the radius of the centerline of an eroded penetrator element.' 

— The stagnation region over which the pressure equals l/2ptU
2 exists for 

K<ß<K/2. The domain for the outside of the stagnation region is 
0<ß<K/2. 6 

— For the inertia calculation, we make an analogy with the case of a rigid 
body penetrator as we did in Ref. [3]. The physical assumption is that a 
penetrator head moving at constant velocity U transfers kinetic energy to 
the target. For simplicity, the energy method described in the previous 
model is then adopted. 

1. The First Stage Cavity Expansion 

With these assumptions, the first stage cavity expansion can be derived from 
Franzen's analysis [2] with presence of the strength of the target The target 
strength will eventually halt the cavity growth. The geometry of the two stage 
cavity expansion model (TSCEM) is shown in Fig. 2. 



^__ 

n r. 
Fig. 2.  Geometry of the two stage cavity expansion model. 

From mass conservation in a coordinate system located at the penetration  front 
and for u. < 0.7, the thickness of the eroded projectile element is given by, 

2r (ß) (15) 

Since the pressure force is acting normal to the flow at radius r, the centrifugal 
forces in the eroded element for the outside of the stagnation region must be 
balanced by the resistance which is equal to the pressure force plus the strength 
of the target, & 

Rt + iPlU
as^s^pp^Ml# (16) 

where R(ß) is the scaled local radius of curvature of the center line curve.   From 
geometric relations, 

R(0) =  - 
1    dr 

sin/3 dß (17) 

Combining Eqs. (15), (16), and (17) gives the differential equation describing the 
trajectory of an eroded tubular element, 

2 
2' 

Na) Rt + :jptU
2sin3j8 =  -A_£Lip(v_u)2 sin/3 A'1 

2 r     p dß 
(18) 

By introducing constants, 

l/2pp(V-U)2 

S = - '" 
R, 

T =   lllpV7 
(19) 



Eq. (18) becomes, 

2(l-AX2)Ssinj8 
2fdr   =    -    VT   •   3p       dß • (20) 1 + Tsinp 

To determine   the trajectory of an eroded  element   as a function  of ß, this 
equation is to be integrated with an initial condition r (ß = n/2) = rv which yields, 

'(ß) - \'' - I^ürbrdß ■ (21> 
By integrating Eq. (21) numerically for the domain of 0<ß<K/2, the cavity 
radius due to the first stage (acl), can be determined. Following Miller's 
hypothesis that there is a stagnation region in which the pressure is equal to 
l/2ptU

2, the initial condition should be estimated. It is useful to recognize that if 

the target pressure is approximated to be l/2p,U2 sin2/?, there is a simple closed- 
form solution given by, 

r(/J = 0°) = acl  =  Jr/ +  il±Ji /n[l + 2T+2VT + T2 

^        VT+T
2
    «■ 

(22) 

To find the initial condition r,, by the same reasoning as above, Eq. (16) can be 
written inside the stagnation region as, 

Rt + -ptU
2 = T()8)pn

(V"U)2 . (23) 
2{ H Hp   R(ß) {    ' 

Again by using the radius of curvature and the thickness of the eroded element, 
this equation is integrated with an initial condition r [ß= K) = (1 + /x)/2, which 
yields, 

l(1 + ^)2     2(1-^2)S 
r,= -\-——+ -* — . (24) 1      V     4 1 + T u ' 

2. The Second Stage Cavity Expansion 

In addition to the first cavity expansion due to the centrifugal forces exerted by 
the eroded penetrator elements, the inertia imparted to the target is responsible 
for further cavity expansion. This inertia is created by flow in the target around a 
penetrator head moving at constant velocity U. In order to estimate the 
additional cavity expansion due to target inertia, we consider the target response 
to an "equivalent penetrator" — a rigid body of the same shape penetrator head 



and penetration velocity. We can then use the energy method described 
previously. 

Consider a rigid penetrator moving through the target with Poncelet resistance 
The force (energy per unit target length) may then be written as follows, 

F = A + BU2, (25) 

where, 

A = 7t(ac]
2-ß%,      B = ]/27t(ac*-ß2)CdPt . (26) 

Here Cd is the drag coefficient. In these equations, A is the target resistance force 
associated with plastic work and B is the drag force which comes about due to the 
convective inertia effects. For the second stage this inertia is responsible for the 
cavity expansion from ac1 to ac.  Hence, 

1 "c 

2 4*c2 -V-)CdptU
2 =  J*2;rrRtdr = K (ac

2 -ac{) Rt . (27) 

The solution for the final crater size is then given by, 

-flJ, + l4L^M a- - -cr,. 
R. 

(28) 

The drag coefficient is assumed to be 0.5. The extent of the compensation due 
to inertia increases with impact velocity because the U2 term in Eq. (28) becomes 
more important in the high impact velocity limit. 

V.   NUMERICAL SIMULATIONS 

Numerical simulations of tungsten long tubular penetrators (L/Deff = 10) into 
infinite RHA steel targets were conducted using an AUTODYN-2D finite 
difference code. The objective of the simulations was to confirm the 
phenomenological assumptions made in the analytical models, and to compare 
numerical results to the analytical predictions. 

We use thick walled tubes of equivalent mass and length (78mm). The mass 
effective diameter of a tube is defined as 

Deff  = D0,   1-    -L     , (29) 



where D., D0 denote the inner and outer diameters. The dimensions of the 
tubular penetrators simulated are summarized in Table I. Thus the outer radius 
(D0/2) varies with fi. 

Table I.   Summary of Penetrator Dimensions 

A*(D,/D0) 0 0.4 0.5 0.6 0.74 
D. (mm) 0 4.25 4.50 5.85 8.58 
D0(mm) 7.8 8.51 9.01 9.75 11.60 

We use a constant shear modulus G and a von-Mises yield surface with a vield 
strength Y as shown in Table II. y 

Table II.  Shear Stress Parameters 

Steel Tungsten Alloy 
G(GPa) 120 HO 
Y(GPa) 1.2 2 

*™£P n ,S an.,Euler,an wave propagation code allowing for a maximum grid of 
60,000 cells. The Mie-Gruniesen equation of state (E.O.S.) is used for both 
materials.  The parameters are the same as in Ref. [7] and listed in Table III. 

In all runs, a constant subgrid with 5-8 cells across the tubular wall and continuing 
for two diameters away from the tubular wall is used. Thus the cell size varies with 
p. The penetration direction has a constant cell size to make the subgrid a M 
aspect ratio. 

Table III.   E.O.S Parameters 

Steel Tu ngsten Alloy 
Po (g/cc) 7.86 17.4 
c (km / s) 3.57 4.03 
s 1.92 1.26 
r0 1.7 1.7 
Pmin(GPa) -2 -2 

The shape of the crater from 2.6 km/s impact of thin (JI = 0.74) and thick (u = 0 6) 
tubular cases as shown in Fig. 3 exhibits the onset condition given by Franzen [2] 
For n = 0.74, some fraction of the penetrator material flows inside the tube.   For 

10 



u = 0.6, a high stagnation pressure formed near the axisymmetric center pushes 
most of the penetrator material to the outside cavity. ' However, some target 
material flows to the inside cavity. 

MATERIAL 
LOCUTION 

IUBE(B.6) INTO RHA(2.6KM/S) 

(a) 

1 RHA 
SIEEL 
HHAX27X 
MOID 

Scale 
imim 

(CMH.US) 
CVCLE 616 
I = 2.003E+0: 

MATERIAL 
LOCATION 

■ RHA 
SIEEL 
MKAX27X 
VOID 

Scale 
L! 

(CH.gH.US) 
CYCLE 564 

===   T = 1.501E+01 

TUBEC8.74) INTO RHA(2,6KH/S) 

(b) 

Fig. 3. Crater and penetrator configuration for (a)   (i=0.6, (b) u=0.74. 
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In Fig. 4, we show the penetration-length (PL) curves obtained from numerical 
simulations for tubular penetrators impacting at 2.6 km/s. The slope increases 
with increasing u, approaching the rod case. For \i < 0.74, the slope is almost the 
same during the first half of the penetration. 

2 4 
Length (cm) 

Fig. 4.  Penetration-length curves. Tungsten alloy striking RHA at 2.6 km/s. 

Figure 5 shows the penetration depth normalized by the penetrator length 
obtained from the numerical simulations for tubular penetrators impacting at 
2.6 km/s and 2.2 km/s. The horizontal axis represents the diameter ratio of the 
tubular penetrator. This data set for thick tubular penetrators can best be 
represented by taking X = 3/4, independent of u. and impact velocity. Using 
Eq. (10), the penetration velocity of a tubular penetrator is thus expressed by, 

3VU 
U,   =    -2- P      4V-LJ (30) 

1.6 

0.8 

0.6   I   i    i   i   i 

2.6 km/s 

a    V= 2.2 km/s 

0 0.2 0.4 0.6 O.i 

D /D 
i 0 

Fig. 5.   Penetration efficiency as function of the diameter ratio, tungsten allov striking 
RHA at 2.6 km/s. 7 5 
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VI.   PREDICTIONS FOR STEEL TUBES 

Penetration of steel tubes is a subject of considerable interest currently at IAT 
Therefore, we apply the TSCEM to the problem of steel tubes striking RHA in 
order to provide some design guidance. 

The case of most interest is for u. = 2/3.   Numerical simulations of RHA tubular 
penetrators (L/Deff = 10) into infinite RHA steel targets were conducted using 
AUTODYN-2D for |i = 0, u. = 0.4 and \i = 2/3 in order to evaluate A at 2 6 km/s 
In Fig 6, we show the penetration-length  (PL) curves obtained from numerical 
simulations for steel tubular penetrators impacting at 2.6 km/s. 

e 
a. 

2 4 
Length (cm) 

Fig. 6.  Penetration-length curves,  RHA striking RHA at 2.6 km/s. 

Fig. 7.  Penetration efficiency,  RHA striking RHA at 2.6 km/s. 

Figure 7 shows the penetration depth normalized by the penetrator length 
obtained from the numerical simulations for steel tubular penetrators. This data 
set for thick tubular penetrators can best be represented by taking A = 0 8 
independent of u,. 

13 



VII.  COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS 

The cavity diameters normalized by the penetrator diameters obtained from the 
analytical models versus impact velocity are shown in Fig. 8 for u. = 0 5 case   The 
numerical results obtained by using AUTODYN-2D are also compared with the 
analytical predictions.  The numerical results always underestimate the crater size 
as also shown in the work of Lee and Bless [3]. 

As shown in Fig. 8, the results obtained from TSCEM compare well with the other 
analyses. It should be emphasized that the model based on energy conservation 
provides an upper bound for the final crater size because energy losses due to 
penetrator deformation, heat and strain energy in the target are ignored 
However, the results from the momentum principle are almost the same as those 
from the energy argument, or even slightly larger. The possible explanation for 
this is that too large a static pressure, the second term in Eq. (14), is assumed to be 
generated near the axisymmetric center location. 

s 
.2 
■3 

a 
a" 

6 

5 

4 

3    - 

2 

-TSCEM 
-A— Momentum 
-Q— Energy 
■      AUTODYN 

1 
1 2 3 4 5 

V (km/s) 

Fig. 8. Ratio of cavity diameter to tubular effective diameter vs. impact velocity 
Tungsten alloy of ji = 0.5 striking RHA steel target. TSCEM represents results 
trom the two stage cavity expansion. Momentum represents results from the 
momentum principle and energy from the energy principle. AUTODYN 
represents results obtained with the AUTODYN wavecode. 

In Fig. 9, the cavity diameter normalized by the penetrator diameter versus ratio 
of the inner to outer diameter are displayed for tungsten alloy penetrators striking 
KHA at 2.6 km/s. We see that the crater diameter increases slightly with 
increasing diameter ratio. In the calculations, the same penetration velocity is 
used for \i < 0.6 tubes. y 
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■       AUTODYN 
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D,/D 
1 c 

0.6 0.8 

Fig. 9. Ratio of cavity diameter to tubular effective diameter as a function of diameter 
ratio. Tungsten alloy striking RHA steel target at 2.6 km/s. 

In Fig. 10, the cavity diameter normalized by the penetrator diameter versus ratio 
of the inner to outer diameter are displayed for a RHA penetrator striking into a 
,r!^/ tf8etat2.6 km/s. In the numerical simulations, the penetration efficiency 
(P/L) of thick and thin RHA tubes is found to be 80% of that of rod penetrators 
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Fig. 10.   Ratio of cavity diameter to tubular effective diameter as a function of 
diameter ratio.  RHA striking RHA steel target at 2.6 km/s. 

VIII. CONCLUSIONS 

The penetration mechanics of long tubular penetrators are examined analytically 
and numerically as the ratio of the outer to inner diameter is increased from 
values of 0.4 to 0.74, with special interest in the thick tubes. 

Analytical models for describing the final crater size are presented in three ways 
with many simplifications, which might impose limits on the validity of the 
analyses. 
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The penetration efficiency (P/L) of thick (0.4<u.<0.6) and thin (u. = 0.74) tungsten 
tubes is found to be 75% and 80% ofthat of rod penetrators, respectively 8 For 

example, , U = 0.5V and in the hydrodynamic limit, the corres^ndhgsteady 
stae penetration velocity for thick tubes is 86%, and forthin tubes fc =8

0 74) is 

?od^Ürunrgste;aiuebesSteel  "*** "* ^ ™re efficient (re.atL to stee* 

The dependence of crater radius on velocity is almost linear, but has a slight 
position curvature This ,s similar to the result for solid rods [3]. For both tungsten 
and steel tubes, of constant cross-sectional areas, as the ID/OD ratio is increased 
the cav.ty diameter increases to a maximum at about 0.5, but the increase is ess 

ID/OD ratios 6 'S fleXibil!ty ln COntrollin§ crater diameter by varying 
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