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Measurement at the knowledge level 

Abstract 

We develop an approach to the measurement of knowledge content, knowledge 

access and knowledge learning. This approach has two elements: First we describe a 
theoretical view of cognition, called the Newell-Dennett framework, which we see as 
being particularly favourable to the development of a measurement aproach. Then, we 
describe a class of measurement models, based on Rasch modeling, which we see as 
being particularly favourable to the development of cognitive theories. Knowledge content 
and access are viewed as determining the observable actions selected by an agent in order 
to achieve desired goals in observable situations.   To the degree that models within the 

theory fit the data at hand, one considers measures of observed behavior to be 
manifestations of intelligent agents having specific classes of knowledge content and 
varying degrees of access to that knowledge. Although agents, environment, and 
knowledge are constitutively defined (in terms of one another), successful application of 
our theory affords separation of parameters associated with the person from those 
associated with the environment. We present and discuss two examples of measurement 
models developed within our approach that address the evolution of cognitive skill, 
strategy choice and application, and developmental changes in mixtures of strategy use. 



Measurement at the knowledge level 

A Theory of the Measurement of Knowledge Content, Access, 
and Learning 

A defining feature of modern day cognitive psychology is its theoretical admission 

of mental states and processes. The complexity of observed behavior is assumed to be a 

manifestation of unobservable mental states and processes interacting with a complex 

embedding environment. Under a prevalent approach to cognitive psychology, mental 

states and processes and their resulting behavioral manifestations are shaped by 

knowledge. For a variety of reasons, one could argue that knowledge ought to be the 

most scientifically interesting aspect of human psychology. Much, if not most, of the 

behavioral variability of humans is attributed to knowledge differences arising from 

different enculturation histories. Our everyday folk psychologies are typically couched in 

terms of knowledge and intention. Efforts aimed at improving education, artifacts, and 

community life are usually cast in terms of shaping or exploiting knowledge. 

In this paper, we propose a framework and theory for measuring knowledge and 

changes in knowledge. We build upon what we call the Newell-Dennett framework 

(Dennett, 1988; Newell, 1982) for the observation and explanation of intelligent activity at 

the knowledge level. Informally, knowledge-level theories explain or predict intelligent 

activity based on the knowledge that an agent may use to achieve its goals in the 

environment in which it exists. This framework is elaborated with assumptions about 

quantitative invariants that might be measured about states of knowledge content, mixtures 

of knowledge content, degree of access to that content, and changes in states, mixtures, 

and degree of access. For instance, the approach is meant to deal with situations in which 

an agent acquires one or more strategies for dealing with a task, where degree of access to 

those strategies changes with experience, and where the particular mixture of strategies 

used also shifts over time. 

We elaborate the Newell-Dennett framework by drawing from the field of 

psychological measurement. In that area, the manifest behavior of the agent consists of 

observed responses to questions, problems, or formulaic situations—in other words, what 

are generically termed "test items" or just "items." The covert aspects of the agent, 

including strategies and intentions, correspond to the latent structure of those responses, 

generally characterized through the parameters of a model to be estimated. We use a 

measurement approach that is founded on the work of Rasch (1960). A feature of Rasch 

measurement, when it is applicable, is that it affords the separation and quantification of 
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variables that are assumed to be implicitly and conjointly influencing the observed 
behavior. This feature is important when observing knowledge-based behavior that is a 

function of variables associated with the person and variables associated with the 

embedding environment. 

We see the research reviewed here as having two important implications for 
psychological science. First, we see the combination of broad assumptions about the 
nature of knowledge-level systems with assumptions about their observation from a sound 
measurement perspective as an attempt to make the knowledge level into a serious tool for 
scientific psychology rather than the informal, albeit interesting, level of explanation, 

which seems to have been its typical use so far. Indeed, most if not all of the published 

illustrations of knowledge-level explanations are everyday "folk theory" explanations of 

mundane behavior, and in general, the tendency is to use knowledge level explanations as 

an informal waystation on the road to mechanistic process explanations (Newell, 1993). 

We expect that the acknowledged heuristic value of the knowledge level in psychological 
research can be improved by elaborating it with quantitative measurement This is because 
we see quantitative measurement itself as an accelerator of scientific progress, and because 
the specific Rasch approach we develop is associated with an extensive and well-honed set 
of inferential tools. Second, we see the flexible measurement methodology presented here 
as a valuable addition to the armentarium of research psychology, making the advantages 
of advances in item response modeling available for the analysis of experimental and 
quasi-experimental designs (Wilson, 1993; Wilson & Adams, 1992). We do not claim, in 
this paper, that either the cognitive theory approach we describe or the measurement 

approach we describe are necessarily the only possible choices for such purposes. What 

we do see is that each has features that makes it a good fit with the other, that this 

correspondence has some helpful advantages in focusing both theoretical positions, and 
data analysis, and that such a correspondence is necessary to scientific progress in the field 

of cognitive science. 

We present the elements of our approach to measurement in the context of 
hypothetical educational situations involving learning to program. Our first example is an 
application of the theory to a pool of four studies of the development of cognitive skill for 
programming and is similar to situations commonly found in educational settings. We then 
present a second model addressing the development of problem-solving strategies for 
problems in which children are asked how a beam on a fulcrum will balance for different 

configurations of weights and weight placements. This model will be used to illustrate 
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how the model deals with developmental changes in the mixture of knowledge content that 

is used in given situations. 

Theoretical Orientation 

The Newell-Dennett Framework for Observation of Knowledge Content 

Over the course of twenty years, Newell (Moore & Newell, 1973; Newell, 1982; 

Newell, 1990; Newell, Yost, Laird, Rosenbloom, & Altmann, 1992) developed a set of 

ideas about system levels that provides a way of understanding how physical systems 

could be characterized as knowledge systems.  A very similar set of ideas has been 

developed by Dennett (1988) in his discussion of intentional systems1, which derives from 

the work of Brentano (1874/1973).  The Newell-Dennett formulations provide a large part 

of the epistemological framework for our measurement approach. 

In the frame of reference developed by Newell and Dennett, observers ascribe 

knowledge to behaving systems.2 The knowledge level was developed (Newell, 1982) as 

a way to address questions about the nature of knowledge and the nature of ascribing 

knowledge to an agent A key assumption is that knowledge-level systems can be 

specified completely by reference to their interaction with the external world, without 

reference to the mechanical means by which the interactions take place. A knowledge- 

level system consists of an agent behaving in an environment. The agent consists of a set 

of actions, a set of perceptual devices, a goal, and a body of knowledge. Goals are 

preference functions over the joint behavior of the agent and environment. The preference 

functions (goals) are those of the agent. The operation of such systems is governed by the 

principle of rationality: if the agent knows that one of its actions will lead to a situation 

preferred according to its goal, then it will intend the action, which will then be taken if it 

is possible.   The precise nature of the principle of rationality is not discussed at length by 

Newell (although he was clear in stating that it was not a normative sense of rationality). 

However, others such as Anderson (1990) and Dennett (1988, ch. 8) assume that the 

principle derives from the notion of adaptive fit. 

In essence, then, the basic observations at the knowledge level are statements of 

the form: 

^o clarify terminology, what we are calling "knowledge" corresponds to Newell's (e.g., 1982,1990) use 
of the term. This, in turn, corresponds to Dennett's use of "belief," which is consistent with common 
philosophical usage. 
2 Dennett defined an observer who describes a system using an intentional vocabulary (e.g., "know", 
"believe", "think") as one taking an intentional stance. 
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"In situation 5, agent A behaves as if it has knowledge K." 

or, as Newell (1982, p. 105) stated, knowledge is "whatever can be ascribed to an agent, 

'Jsuch that its behavior can be computed according to the principle of rationality." 

Example: Knowledge-level Observation of Knowledge Content 
J To illustrate the notion of knowledge-level observation-the ascription of 
knowledge content to a behaving agent-we consider the general situation that provided 
data for our first model, discussed in detail below. The data set for this first model 
application came from four experiments (Bielaczyc, Pirolli, & Brown, 1995; Pirolli & 
Recker, 1994; Recker & Pirolli, 1994), in which data were collected by an intelligent 
tutoring system (ITS), called the CMU Lisp Tutor (Anderson, Boyle, Corbett, & Lewis, 

1990). 

These studies were conducted under experimental conditions, and although the 

instructional technology was uncommon, the general pedagogical situation and 
knowledge-assessment problems were quite familiar. Students had studied or listened to 
some lesson materials and then solved some exercise problems. From their exercise 
solutions, we wanted to infer what they knew and how well they knew it. To which 
materials had they attended? What prior skills did they seem to have already mastered? 
What skills had they failed to learn? How fluently could they use their knowledge? 

Suppose we observed students working on their program-writing exercises and 
wanted to infer the instructional examples to which they had attended. From patterns of 
problem solving behavior, we wanted to make statements about whether or not a student 
"knew" elements from one or more of the examples used in their instructional materials 
and the degree to which they "knew" their programming skills. For instance, suppose that 

the observed students may or may not have studied either of the example Lisp programs 

presented at the top of Figure 1 and among their exercises they must write the two Lisp 

programs presented at the bottom of Figure 1. 

Our basic expectations of how knowledge will transfer from the examples to the 
exercise problems are summarized in Table 1. Our research hypothesis was that, due to 
similarity in problem structure in Lisp (Pirolli & Recker, 1994), that students who know 
the Sumall example will show higher transfer of example knowledge to their solution of 
the Fact exercise than for the Length exercise, and students who know the Carlist example 
should show the opposite pattern, with Length showing higher tranfer than Fact. 
Reasoning backwards from observations of the pattern of problem solving on the Fact and 
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Length exercises, we should be able to make inferences about the degree to which students 

know the Swnall and Carlist examples. 

Insert Figure 1 and Table 1 about here 

Suppose, that a student of Lisp is in the midst of writing her first recursive 

program Fact. Consider the situation-action sequence schema in Figure 2. Imagine that 

the student has completed the code on the left of the arrow in Figure 2. We then observe 

that she then completes the program with the specific action of writing the underlined code 

to the right of the arrow. The coded element, (- n 1), subtracts 1 from the input argument 

n and it is the appropriate recursive step to take in many simple recursive programs 

involving numeric inputs. An appropriate knowledge-level statement by an observer of 

the student's action in this situation might be something like: 

In her first encountered situation involving the goal of coding a recursive step on a 

numeric input, the student behaved as if they knew the analogous recursive step of 

the Sumall example 

This statement captures an observation of some element of knowledge. That is, we have 

observed that the student is in a particular state of knowledge content. 

Insert Figure 2 about here 

Knowledge Level vs Symbol Level 

We also draw upon Newell's (1982; 1990) distinction between knowledge level 

systems and their mechanistic information-processing descriptions as symbol level 

systems. This distinction leads us, in the next section, to discussion of two parallel 

distinctions of relevance. The first is the distinction between knowledge content, which 

we associate with the knowledge level, and knowledge access, which is carried out by 

symbol-level mechanisms. The second is the distinction between knowledge-level 

learning (changes in knowledge content) and symbol-level learning (changes in knowledge 

access). 
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Newell (1982; 1990) developed the notion of system levels as a proper approach to 

the explanation of cognition. The symbol level is defined by a medium of formal patterns 

that yield behavior through mechanistic computation. Many explanations and models in 

cognitive psychology are cast at this level, especially those cast as computational programs 

specified in cognitive architectures (Anderson, 1983; Anderson, 1990; Newell, 1990).  It 

is generally assumed that symbol-level systems are realized by lower-level systems that 

ultimately are grounded in physical media and laws. 

In the Newell-Dennett approach, knowledge at the knowledge-level is defined 

functionally (Newell, 1982). Knowledge is defined as a function mapping situations and 

intentions onto behavior. Knowledge does not reside in any particular state-like structure 

defined at the symbol level, although symbol-level structures may be involved in the 

computation of the knowledge function, just as structures or states in a computer are part 

of the computation of input-output functions. This functional definition of knowledge is 

adopted by Newell and Dennett because knowledge about the world cannot be captured in 

extension by a finite physical structure-for instance, as a structure containing or listing 

each element of knowledge. Newell clearly states that knowledge is defined "in terms of 

what it does...knowledge, though a medium, is embodied in no medium-like passive 

physical structure...[with a] state-like physical structure" (Newell, 1982, p. 105). The 

potential set of things that could be known about the world, and more technically, which 

could be ascribed to a potential agent, is unbounded: 

What the computational system generates are selections of actions for goals, 

conditioned on states of the world. Each such basic means-ends relation may be 

taken as an element of knowledge. To have the knowledge available in extension 

would be to have all these possible knowledge elements for all the goals, actions 

and states of the world discriminable to the agent at the given moment. The 

knowledge could then be thought of as a giant table full of these knowledge 

elements, but it would have to be an infinite table. Consequently, this knowledge 

(ie., these elements) can only be created dynamically in time. If generated by some 

simple procedure, only relatively uninteresting knowledge can be found. 

Interesting knowledge requires generating only what is relevant to the task at hand, 

ie., generating intelligently. (Newell, 1982, p. 108, italics in original) 

Thinking about knowledge as a dynamically allocated table of elements is a useful 

formulation that we will return to in a moment. These elements may also be thought of as 

elements of an infinite set defined by a relation over goals, perceptual states, and actions. 
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Examples of symbol-level models would be the production system models of Lisp 

programming used in work related to our first example (Anderson, 1984; Anderson, 

Conrad, & Corbett, 1989; Anderson, Pirolli, & Farrell, 1988; Pirolli, 1985; Pirolli & 

Anderson, 1985). Individual production rules and proposition-like elements in 

production-system working memory are elements of symbol-level analysis. The 

production rules formally represent elements of cognitive skill and the proposition-like 

elements formalize facts. The production system architectures that run these models 

employ specific mechanisms for selecting and applying production rules in given 

situations, based on ACT* (Anderson, 1983). These mechanisms embody such principles 

as ordering production rules in given situations based on their strength and situation- 

specificity. As we discuss next, symbol-level mechanisms, such as these, determine the 

context-dependent access of knowledge available to the system. 

We must emphasize that general production systems are just a formal notation and, 

depending on one's theoretical stance, they may be used for symbol-level models or 

knowledge-level models. Some specific production system architectures such as ACT* 

(Anderson, 1983) and Soar (Newell, 1990), whose mechanisms are integral to the 

prediction of cognitive states and processes, are symbol-level models. The production 

system models used in our intelligent tutoring example below are, we claim, knowledge- 

level models, because they formalize what knowledge has been exhibited without 

empirical claim about the cognitive processes by which the knowledge came to be 

exhibited. In a way, a knowledge-level production rule analysis of behavior is like a 

formal grammatical analysis of an utterance: It describes the underlying deep knowledge 

that was exhibited without commitment to the manner in which the knowledge came to be 

expressed. 

Knowledge Access is Defined by the Symbol Level 

In general outline (Newell, 1982), a representation scheme is defined at the symbol 

level as a combination of data structures and processes specified in some architecture. An 

architecture plus knowledge representation scheme determines a context-dependent 

knowledge access function for the knowledge system. Consider the infinite table of 

knowledge mentioned in the Newell quote above. For any given environmental context, 

the symbol-level representation scheme predicts measurable properties about the realization 

of that knowledge in that context Some elements of knowledge will be more accessible 

than others depending on context. One may think of the the symbol-level representation 

scheme as defining a degree-of-access function over the table of knowledge content 

available to the system. 
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The term "access" need not be limited to mean the retrieval and interpretation of 

knowledge structures internal to a person. Depending on how we construe our 
knowledge-level analysis, we might consider a complete system of a person plus external 

media as the knowledge-level system, and access to mean the interpretation of those 
external media as well as the retrieval of internal symbol patterns. Mathematically, in our 
proposed theory, degree-of-access is assumed to be a conjoint function of the environment 
and the person. For instance, in our first example, we deal with people learning to 
program.  One aspect of the developed model addresses the observation that a person with 
a relevant programming example in their environment behaves more knowledgeably than 
one without the example. That is, the person has greater access to the knowledge or, to 
state things differently, the environment-with-relevant-example has a greater affordance 

for that knowledge-based behavior than the environment-with-irrelevant-example.3 

Measurement Spanning Knowledge and Symbol Levels 

The Newell-Dennett notions of system levels and the assumption of an observer 
ascribing knowledge to a system behaving in context provide us with a basic observational 
framework. We will cast our measurement theory as spanning the knowledge and symbol 
levels. We will be concerned with the measurement of properties of knowledge access 
functions, without detailed concern with the specific computational, symbol-level 
mechanisms that give rise to those properties. For instance, the measurement model we 
develop for Lisp programming in our first example aims to measure degree of knowledge 
access (i.e., the proficiency with which people exhibit specific Lisp programming skills), 
but the measurement model is not concerned with how a specific production system model 
might produce such measurements. In this sense, our measurement theory sits at the 
interface between the knowledge level and symbol level. The measurement theory is not a 
mechanistic theory at the symbol level but it addresses measurable properties associated 
with the knowledge access function that ultimately rely on mechanisms at the symbol 

level. This notion is elaborated by considering issues related to the assessment of 

learning. 

Learning as Change in Knowledge Content and Knowledge Access 

The analysis of learning in the context of Newell's system levels has generated 
considerable discussion in recent years (Anderson, 1989; Dietterich, 1986), and there is 

3The general observation is that subjects use examples by interpreting their external form, rather than first 
memorizing them and then working from memory (Chi, Bassok, & Lewis, 1989; Pirolli & Anderson, 
1985). 
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no agreed-upon viewpoint (Agre, 1993). For our purposes, we adopt some broad 

characterizations of learning consistent with a broad class of theories: 

1. At the knowledge level, knowledge content grows monotonically and in 

discrete quanta through interaction with the environment That is, we 

assume that knowledge is only added to the system.4 Changes at the 

knowledge level are also (necessarily) changes at the symbol level because 

the knowledge content of the knowledge level must be implemented in the 

symbol level. (Note that we view forgetting as a symbol-level event, so 

that this does not rule out memory failure, etc.) 

2. There are additional changes at the symbol level that are reflected by 

changes in the access function to existing knowledge—that is, without 

changing the knowledge content of the system. Improvements due to 

repeated practice and forgetting due to disuse are commonly interpreted as 

effects of symbol-level learning. 

We will call changes in knowledge content knowledge-level learning, whereas changes in 

properties of knowledge access are called symbol-level learning. Although this 

terminology differs from that used in the machine learning literature (Dietterich, 1986), we 

believe it is consistent with Newell's (1982) original formulation. 

Newell and Dennett's formulation of the knowledge level is concerned with 

response functions (mappings of environmental situations onto behavioral responses) with 

no concern for mechanism. Knowledge content, perceptions, actions, and goals, situated 

in an environment, define response functions, R, that map onto behavior.5 Our 

knowledge-level observations concern the response function R. The system knows to do 

something, but the knowledge level does not specify how it is done. The symbol level 

specifies those mechanisms. A property of those mechanisms is the propensity with 

which knowledge-level responses occur, where propensity might be operationalized, for 

instance, as response speed or response probability.  Knowledge-access properties are 

properties of R, or P(R). Changes in R necessarily mean changes at the symbol level, 

since the knowledge level is mechanistically realized by the symbol level. But, changes in 

P(R) may take place without changes in R and so, strictly speaking, may not be 

observable from the pure knowledge-level stance. What we are proposing is an 

4For instance, incorrect beliefs can not be deleted from the system, but may be blocked from manifesting 
themselves by more correct beliefs. Other schemes for the development of knowledge are conceivable (see, 
Flavell, 1972). This particular assumption is also consistent with the arguments of Anderson (1989) 
5 A person may intend an action such as "intend to pick up a coffee mug" whereas the behavior carrying 
out the action is the actual physical manifestion carried out, which may vary every time the action is 
carried out 
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embellishment of knowledge-level characterization with a minimal, nonmechanistic, 
quantitative characterization of the symbol-level as embodied in measurable access 

i properties P(R). This is our motivation for distinguishing symbol-level learning from 

: knowledge-level learning. 

I Example: Intelligent Tutoring Systems as Knowledge-Level Recording 

Instruments 

The ITS used in our studies observes students as they write their programs, and 

makes inferences about their state of knowledge by making use of a formal production 
system model of program-writing skills. To a large extent, this approach is motivated by 

studies (Anderson, 1993; Pirolli, 1991; Poison, Bovair, & Kieras, 1987; Singley & 

Anderson, 1989) in which it has been productive to assume a correspondence between 

formal production rules and elements of procedural knowledge or cognitive skill. 
Production rules are formal rule patterns of the form C-»A, in which C specifies a 

condition pattern to which the rule applies and A specifies an action pattern to perform if 
the rule is executed. In the ITS, the production system models are used to simulate 
idealized student cognitive skills to solve program-writing problems. The ideal models are 
compared against the input of an actual subject (Anderson, et al., 1990). Context-specific 
feedback is provided to subjects if they commit programming errors. The Lisp Tutor 
records external observable situations and a subject's actions and matches these against 
production rules representing knowledge elements. In this case, the producton system 
models used by the Lisp Tutor are knowledge-level models. The production rules 
formalize Lisp knowledge, but no theoretical claim is made for the computational 
mechanisms that select and execute those rules in the running Lisp Tutor. 

Notably, this means that the ITS is a knowledge-level recording instrument The 

ITS has an internal table of productions that captures the elements of knowledge that are 
possible both within and across students. It ascribes these knowledge elements to an 
observed student when the student exhibits the appropriate behavior.  The state of 
knowledge ascribed to a subject is an overlay on this table of productions. This 
implements the basic schema for knowledge-level observations of the form, "in situation 
5, agent A behaves as if it has knowledge K." The ITS knows the mapping of situation to 

action implied by knowledge elements—represented by the production rules—and 
mechanically fulfills Newell's (1982) role of observer. Thus, in practice, such an ITS can 
be viewed as an automated knowledge-ascribing instrument that treats a subject as a 

knowledge-level system. 
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As we will illustrate in detail later, we may measure a number of properties of 
individual elements of programming knowledge. The CMU Lisp Tutor can be used to 
track the history of each individual cognitive skill represented by its production rules, 

across the problem situations in which those skills are evoked.  That is, we will have a 
sequence of trials, for each cognitive skill, extracted from the full protocol of behavior 
exhibited by a student During the course of observations over several programming 
problems, a student may be observed to change their basic programming strategy-a 
change in knowledge content-or to improve in their proficiency in exhibiting a specific 
cognitive skill-a change in knowledge access-or both. This leads us to consideration of 
issues concerning the measurement of learning. 

Representation and Quantification 

We note that, for the purposes of measurement, the semantics of a formal 
representation of knowledge have to be sufficient for the scientific question at hand. We 
take this as a pragmatic issue. Like other formalizations in science, the interpretation of 
formal statements about knowledge rely on the shared understanding of scientific 
practitioners.  As a consequence of this stance, the main issue we are concerned with is 
whether a formalization of knowledge and its scientific interpretation are sufficient and 
appropriate for the data at hand. This stance is consistent with the writings of Newell 
(e.g., Newell, 1982) and Dennett (e.g., Dennett, 1988). For instance, Newell's basic 
assertion about formal representation of the knowledge level was that "to ascribe to an 
agent the [symbol] structure 5 is to ascribe whatever the observer can know from 
[symbol] structure 5" (Newell, 1982, p. 112). In the example above, we happened to 
assume a production rule representation of knowledge, but this is not a necessary 
component of the basic approach. 

In addition to representing knowledge content, we will want to measure properties 
concerning its access. Cognitive psychology has largely ignored measurement issues 
(Cuff, 1992). However, outside of cognitive psychology, the pursuit of more direct 
quantitative measurement of theoretical variables has a long history in psychology, and 
this has principally been applied to knowledge access variables such as reaction times, and 
the items in IQ tests. This is precisely because quantification is such a strong tool for, 
and marker of, understanding and control of over the phenomena of interest: 

Quantification in science is inseparable from the experimental method. The 
hypothesis that a particular variable is quantitative is a substantive hypothesis. It 
requires that the values of that variable manifest a definite kind of structure. With 
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the possible exception of some quantitative measurements open to extensive 
measurement, evidence for or against the quantitative measurement must be gained 
by experiment The gathering of such evidence requires a high degree of 

experimental control and, often, sophisticated apparatus and methods of 
observation. It is no accident that the extension of quantification in physics from 

geometry and statics to dynamics, thermodynamics, and electrical phenomena went 

hand in hand with experimental techniques and apparatus. Psychological 
measurement, if it is to be, requires the same kind of advances.(Michell, 1990, p. 

86) 

In the natural sciences, it is not uncommon to begin textbooks with a chapter on 
measurement (e.g., Halliday & Resnick, 1970), and this is mimicked by both editions of 
Steven's Handbook of Experimental Psychology (Atkinson, Herrnstein, Lindzey, & 

Luce, 1988; Stevens, 1951). As we will outline below, our theory derives from 
specifically objective measurement (Rasch, 1960) which (in its determinate version, 

Fischer, 1973; Glas, 1989; Wilson & Pirolli, 1995) meets the conditions offundamental 

measurement theory (Krantz, 1964; Luce & Tukey, 1964) whose development was, in 
part, aimed at placing psychological measurement on the same firm ground as 

measurement in sciences like physics. 

Constitutive Definitions and the Separation of Parameters 

As mentioned above, the Newell-Dennett framewwork includes as principaal 
elements both agents and environments. Both agent variables and environment variables 

are reflected in the same observation of behavior. This raises concerns about the 
separation and quantitative representation of agent and environment parameters, given that 
they must therefore be constitutively defined (in terms of one another). The approach we 

use derives from the measurement work of Rasch (1960). 

The marks of quantity are established by ordinal relations and additive structure 
among the variables of interest (Campbell, 1928; Krantz, 1964; Luce & Tukey, 1964). In 
the case of extensive properties, such as length, specific ordinal relations are clearly 
manifest in comparisons of objects of different lengths and additivity is manifest in the 
manner in which lengths can be concatenated to produce new lengths. For example, with 
respect to the extensive property "length", we note that two particular objects can be 
compared and ordered ("longer than") and they can be concatenated in a particular way to 

yield a new length that can be tested against other lengths. These ordering, comparison, 

and concatenation operations must meet certain conditions in order to be quantified in a 

coherent and meaningful way (Michell, 1990). 



Measurement at the knowledge level 15 

The problem we have here does not involve extensive variables. Rather, the agent 
and environment parameters must be constitutively defined, and this raises special issues 
regarding the separation of the two kinds of variables. The approach to this problem is 
familiar to anyone who has used the additive factors logic of experimental design.6 

Suppose we were investigating the relation of force, mass, and acceleration in classical 
physics (which we now characterize as/= ma).   Suppose we impart forces f\,f% ...fn 

on masses m\, mi, —, % and measure accelerations an, a\2,..., flnm- This means that 
a measure of ay is a measure of the ordered pair <fi, mj >. One can imagine laying out 

these measures as a two-way table, with one class (e.g., force) along the row headings, a 
second class (e.g., mass) along column headings, and the third property (measured in 
conjunction with the other two; e.g., acceleration) in the cell entries in the table.  Such a 
table is illustrated schematically in Figure 3, where the bar lengths on the left of the figure 
represent the original observations. If variables defined over the two classes of entities 
and the resultant response variable can be simultaneously scaled so that an ordinal additive 
(noninteractive) structure results, then one can separate the scales associated with the 
variables. If we stay in the original metric, there is no apparent way to add forces (/j) and 
masses (mj) to get the accelerations (a y), but by performing simultaneous logarithmic 
scaling on the raw variables such that fc = log(/i), Hy = - log(mj), and ay- = log(a y) one 
achieves an additive structure such that cqj= <p{ + ßy Taking two measurements a n and 
a i2, one can measure masses ß i and /i2 independently of the force chosen as <j>-, since 

a 11 - a 12 = (M 1 - P 2) + (01 - 01) = V 1 - /* 2. 

Similarly, accelerations a n and a 21 can be used to compare <j) 1 and <j> 2 by eliminating 
fl\. Units for the scales can be achieved by appropriately selecting some standard a^ as 
the zero point and some other a $ or a -^ as the unit position. This scaling and 

separation is illustrated on the right side of Figure 3, where the bar lengths correpond to 
transformed scores, and additivity in represented by the concatenation of bar lengths. 

Insert Figure 3 about here 

The physics example suggests how separate quantitative scales can be achieved if 
one can find a simultaneous transformation that maintains the order relation and reveals 
additivity among observations. Such measurement is addressed formally by additive 
conjoint measurement theory, a kind of fundamental measurement theory (Krantz, 1964; 

^The following example is based on Rasch (1960) and Andrich (1988). 
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Luce & Tukey, 1964), which addresses issues not found with the measurement of 
extensive properties, such as physical length, concerning the separation of scales. 
Additive conjoint measurement establishes axioms that must be met to satisfy the 

appropriate order and algebraic structure to quantify constitutively defined variables. 
Unfortunately, additive conjoint measurement supposes a deterministic framework. This 
is not consistent with the probabilistic conception of observations at the the knowledge 

level, as described above. What we need is a probabilistic version of the approach we 

have portrayed in the physics example. 

The aim is to map observations of manifest situations and behavior onto measures 

associated with the latent or unobservable knowledge. We think of this mapping as 

probabilistic rather than deterministic for two possible reasons. First, there is standard 

problem of an observer's uncertainty about the inferences made from a finite set of 

observations-in this case about an agent operating in their environment. Second, there is 

the possibility that knowledge maps onto behavior in a stochastic manner, much as 
assumed in the competence-performance distinction (Chomsky, 1965). That is, we may 
want to think of knowledge as response functions which characterize the probabilties of 
behavior in given situations, rather than the exact unique behavior. Either or both of these 
assumptions lead us to adopt the stance that there is a probabilistic relationship between the 
latent knowledge-level constructs and manifest observables. This limits the usefulness of 
approaches such as fundamental measurement (Krantz, 1964; Luce & Tukey, 1964) 
which are based on at least the logical possibility of deterministic ascriptions. 

Example:   Separation of Parameters in the Rasch Approach 

This brings us to the work of Rasch (1960). To illustrate the essence of the Rasch 
approach, suppose that an observer dichotomously scores responses made by an agent n 
in situation / such thatX^ = 1 means that "subject n acted as if they had knowledge 

appropriate for situation /" (a "successful" response), otherwise XJü= 0 (an 

"unsuccessful" response). This might occur, for instance, if the observer was scoring 
performance by students writing their first recursive functions in Lisp, and specific 
program-writing responses, such as "(-1 n)", in specific situations, such as those 
involving the goal to code a recursive step. The Rasch (or logistic) model would then 

characterize the response probabilities as 
exp(0-<5) 
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PrC^. = 016H, 8 ) =  , (2) 1     l + exp(ö„-5) 

where Ön is a parameter characterizing agent n (usually called "ability" in the Rasch 
literature) and 8 is a parameter characterizing situation i (usually called "difficulty" in the 

Rasch literature). 

The response odds are then: 

Pr(XHi = 0\eit,8i) 
= exp(0(,-£). (3) 

It should be noted that simultaneous transformation of both sides of Equation 3 yields the 
additive structure 

log 
PKX^IIM.) 

6-8,. (4) 
*(*,, = OI^S.) 

That is, the log odds of successful response is just a sum of agent and situation 

parameters.7 

So, Equation 4 achieves the desirable properties of the classical physics example. 
The variable associated with the person is separable from that of the external problem, and 
these variables may be scaled quantitatively.  It is noteworthy that the variable separation 
and scaling afforded by the Rasch approach is not achieved in such a direct fashion by 
other psychometric approaches (see for example, Carroll, 1988). 

Rasch (1960) called this key concept on which he based his models, specific 

objectivity.  In his formulation, it is the equivalent of an additive conjoint structure under 
a probabilistic formulation. Specific objectivity means that a response measure is a 
conjoint measure of two entities (such as an agent and situation) whose measures can be 
separated and quantified, similar to the manner discussed above.  Rasch stated that 
specific objectivity holds when 

the result of any comparison of two [agents]... is independent of everything else 
within the frame of reference other than the two [agents] which are to be compared 

((Rasch, 1977), p.77, italics in original). 

7 The values of 0 n and 5 x are usually reported as logit scores or logits. A logit is that distance on the 
knowledge measure that corresponds to odds of success (compared to failure) equal to e, the base of the 
natural logarithms-approximately 2.7:1. 
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That is, the parameter describing the agent must be inferentially separable from the 
parameters describing the environment. This must hold, in a dual fashion, for 
Comparisons of environment parameters also. Rasch (1960) showed that, under mild 
assumptions, his Rasch model is both necessary and sufficient for specific objectivity 
(This proof was formalized and extended by Andersen [1977]). It is possible to 
demonstrate a formal relationship between the Rasch model and additive conjoint 

measurement, and we do so in another recent paper (Wilson & Pirolli, 1995). 

Rasch (1960) established that sufficient statistics (Kendall & Stuart, 1969) could 

be obtained quite simply for the parameters in his model. Estimators based on such 

statistics fulfill the dual role of establishing the empirical conditions under which a model 

applies, and providing the underpinnings for statistical estimation and inference. The 

argument outlined above, basing the Rasch model on the logic of comparison, has been 
extended by Masters and Wright (1984) to a family of Rasch models suitable to 
environment conditions more complex than the dichotomous one (e.g., polytomous 
categories of response). There is an extensive literature elaborating and refining the 
estimation and calibration technologies associated with Rasch models (Fischer & 
Molenaar, 1995; Glas, 1989; Gustafson, 1980; Wright & Douglas, 1977a; Wright & 

Douglas, 1977b). 

Coupling Measures of Knowledge-Level Content and Symbol-Level Access 

We now rum to several basic assumptions of the approach, concerning the nature 
of variables measuring the degree to which a person is in a knowledge-content state and 
their degree of acess to elements of knowledge in that state, as well as the mapping of 
manifest observations onto those variables. In our measurement framework, both 
knowledge-level content and symbol-level access influence behavior. It seems to us that a 
reasonable first approach to this problem is to think of symbol level learning-changes in 
the knowledge access function-as being represented by continuous variables along which 
agents and specific situations are arrayed. Such a view is consistent with common 
approaches in classical test theory or item response models (e.g., Lord & Novick, 1968). 
The joint history of an agent with environmental situations over time may alter how agents 

and environments are arrayed along a knowledge access variable.  Such an approach 
might be used, for instance, in assessing changes in a student's Lisp programming skill 
over a series of exercise problems. Such a view is also consistent with theoretical 
approaches common in memory and learning research, where variables such as strength 
and activation are assumed to represent the accessibility of knowledge, and to change with 
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specific histories of experience with specific situations.  These views arc consistent with 
the idea of symbol level learning as fundamentally incremental. 

In contrast, we propose that knowledge level learning is characterized by discrete 
changes in the knowledge content that forms the basis for actions (i.e., changes in 

Newell's "knowledge table"). This can be represented by different classes of agents 
defined as having equivalent states of knowledge content. Such an approach might be 
used, for instance, in determining which students know one subset of instructional 

material (such as a particular example) versus another when observed while solving a set 
of programming exercises. This is the approach we will take in our first example. Such a 
view resembles the basis for a latent class approach to psychological measurement 
(Lazersfeld & Henry, 1968). Equivalently, one might also view a specific agent at 
different points in their history as being in different states of knowledge content, such as 
having different cognitive strategies or being in different states of domain expertise. This 
is an approach appropriate, for instance, in examining developmental changes in strategy 
use. This is the way we will develop our second example, which addresses how children 
solve balance beam problems. 

Now, knowledge content and knowledge access operate simultaneously. Thus, 
the two types of models, continuous for knowledge access and discontinuous for 
knowledge content, must also operate simultaneously. Within a given agent-class, there 
would always be symbol-level learning going on, so the continuous variables would 
operate within classes. In response to this formulation, the approach we outline in this 
paper describes a combination of latent class and latent variable approaches. It has its 
statistical roots in the topic of mixture models (Titterington, Smith, & Makov, 1985). A 
general outline of the approach has been provided by Mislevy and Verhelst (1990), and 
recent work along these lines has been described by Ekstrand and Wilson (1990), 
Kelderman and Macready (1990), Mislevy, Wingersky, Irvine, and Dann (1991), Rost 
(1990), Mislevy and Wilson (1996), and Wilson and Draney (1995). 

Probabilistic Knowledge-Content States 

To recap, we will assume that measurement models ascribe a probabilistic 
relationship between unobservable knowledge and observable behavior. We will assume 
that there are discretely different states of knowledge content For instance we may 
identify different discrete strategies for solving a problem, or different discrete experiences 

with instructional material for a topic. Assuming there are K possible knowledge classes, 
such as K different problem solving strategies, or K different sets of instructional 
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backgrounds, then we will find it convenient to represent the knowledge state of person n 

using a K-dimensional vector 

of zeros and a single one. That is, fa = 1 represents person n being in knowledge- 

content state k (and consequently, fa = 0 for all other states h). Having observed person 

n interacting with an environment (which may be formalized as responses to "items"), 
based on that data, we will want to estimate the pattern of probablities across the classes: 

i=(kl>in2>~JnKy <6) 

where each 4* (° - 4* -1) represents the probability that the person is in knowledge- 
class k. We can also hypothesize a population level parameter iz that indicates the 
probablity of a random member of die population being in each class: 

%=(nl,K1,...,nKY (7) 

One way to characterize our approach is by contrasting it with models of mastery learning 

(Atkinson & Paulson, 1972). In such models, one assumes that there are some fixed 
elements of knowledge whose learning state is characterized by one or more probability 
parameters. For instance, Corbett, Anderson and O'Brien (1995) use such a model in 
which they record the probability that a cognitive skill is in a learned (or unlearned) state. 
The overall state of learning of knowledge content in a mastery learning model is just the 
instantaneous state of all the variables of all the elements.  That is, one may think of the 
state of mastery as a table of knowledge elements that records the state of variables for 
each knowledge element. Having multiple knowledge-content classes, 0, permits the 

identification of meaningful patterns over the knowledge-element variables that might be 

associated with different kinds of experiential histories (e.g., different courses of 

instruction), different kinds of strategies, and so on. 

Example: Knowledge-Content Differences Arising from Instruction 

Imagine that the cognitive skills for writing recursive programs are represented by 
a table of knowledge elements and continous variables for each indicating their state of 

symbol-level learning.   We might expect that the learning of these knowledge elements 
will exhibit different patterns that depend on instructional experience.  If we constructed a 
table of knowledge elements for the cognitive skills involved in programming the recursive 
functions Fact and Length in Table 1, we would expect the learning of some knowledge- 
element variables to be boosted by the student attending to instruction that included the 
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Swnall example, and other knowledge-element variables to be boosted by attention to 

instruction that used the Carlist example. From observed patterns over the knowledge 

elements, one could make inferences about whether a student attended to one, the other, 

both, or neither of the examples.8 

Example:   Transition Paths Through Knowledge-Content States 

In developmental psychology, questions may arise concerning the difficulty of 

transitioning from one state of cognition to another. For instance, we will be concerned 

with the knowledge-level learning transitions among problem-solving strategies for the 

balance beam. In educational situations, one may be concerned with modelling the 

difficulties of different paths through instructional experiences. The use of knowledge- 

content classes and the notion of knowledge-level learning can be used to address these 

issues. 

Kessler and Anderson (1985) studied a situation in which different orderings of 

problem-solving experiences in program-writing had different learning effects. Some of 

their participants first wrote a block of iterative programs followed by a block of recursive 

programs (iteration-recursion), others had the opposite sequence (recursion-iteration), and 

others had two blocks of iteration (iteration-iteration), or two blocks of recursion 

(recursion-recursion). Participants worked on each of the eight programs in each block 

until the programs ran correctly (i.e. they learned to criterion). Interestingly, the transition 

from learning recursion to learning iteration was more difficult (in terms of time to 

criterion) than the transition from iteration to recursion. Kessler and Anderson argued that 

this was because people think recursive programs are performing iteration if they have not 

previously seen iterative programs. 

One way to think schematically of the iteration-recursion and recursion-iteration 

transitions through knowledge-content states is depicted in Figure 4. For this situation, 

one could develop a table of knowledge elements representing the cognitive skills for 

writing the iterative and recursive programs studied by Kessler and Anderson (1985).9 In 

Figure 4,1+ indicates that the knowledge-elements for iteration show criterion-level 

learning and I- indicates less than criterion-level learning, and R+ and R- have analogous 

meanings for the recursion knowledge elements. The transition among knowledge-content 

states for the iteration-recursion learners goes from [I-, R-] to [I+, R-] to [I+, R+], 

8 Note that in our model application, below, we experimentally manipulated these instructional 
experiences rather than infering them from observation. 
9 A production rule model of the skills for the recursive programs of Kessler and Anderson (1985) is 
presented in Pirolli (1991) 
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whereas the recursion-iteration learners transition [I-, R-] to [I-, R+] to [I+, R+]. It is this 
last transition, indicated by the asterisk in Figure 4, that is particularly difficult. Thus, in 
the notation above, we might construct the knowledge content classes as follows: 

fa = 1 when person n "knows" neither I nor R~[I-, R-], 

fa = 1 when person n "knows" I but not R--[I+, R-], 

fa = l when person n "knows" R but not I—[I-, R+], 

fa = 1 when person n "knows" both I and R-[I+, R+]. 

Insert Figure 4 about here 

Suppose now that we have developed a set of items that are related to I and R: In 

particular, we believe that certain items require I, certain R, certain both, and certain 

neither. Within each knowledge content class we will hypothesize that the items can be 

modeled in a way analagous to the Rasch approach outlined above: 

Pr(X^\ien,5,^=\)=   e^-5^ (8) 
l + exptdn-dti) 

where S^ is the difficulty of item i within class k, and the other symbols are as defined 

above. Note that, analagous to its interpretation under the Rasch model, 0n is aimed at 

capturing the knowledge access of person n. What is different is the parameter (j>D, which 

is aimed at capturing the the knowledge-content class that they are in. If indeed, we knew, 

or could assume we knew, each 0n, then we could proceed in a relatively straightforward 

way to find estimates of 8B and S^ within each class. Unfortunately, we do not generally 

know 0n beforehand (but see later for an example where we do indeed make that 

assumption), so we need to estimate both simultaneously. In the formulation we adopt 
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here, we find it useful to bring one more piece of information into play: we assume that the 

items have been designed to be indicative of certain knowledge classes. This we express 

through certain relationships among the item parameters 8^. For example, one might 

posit, in the context of the Kessler and Anderson situation, that the following holds: 

S*=1 

5,-,if item i requires neither I nor R, 

Sj + Tj, if item i requires I, 

S-t + TÄ, if item i requires R, 

Si + TÄ/, if item i requires both I and R. 

(9) 

Then equation 8 becomes a set of equations, depending on which knowledge-content 

class is applicable: 

Pr(Xni = l/en,S,^2=l)= A
eXp(6^~Si'/Cl)   . if item i requires I, for k=2 or 4, 

PrfXnt = l/en,S,h2=l)=   exP(0n-8i-TR)    .f item. requires R for k=3 or 4>    (10) 
l + exp(dn-öi-'UR) 

Pr(Xni = l/en,5,<bl2=:l)=*Xp<9"~Si~XRl)   ..ifitemlrequiresbothlandR, 
\ + exp{en-öi-TRI) 

/>r(Xw=l/gH,^i=D=1^
H"^ .. otherwise. 

l + exp(dn-Si) 

This is a general measurement formulation that one might apply under a wide range 

of contexts when R and I were being learned and/or experimentally manipulated. For 

example, use of R and I might be conceptualized as "natural" (i.e., not manipulated), in 

which case the classes 1 through 4 are latent, and membership in them must be estimated. 

In the specific situation described above, the classes were experimentally determined, 

hence coulod be considered as known, not estimated. One way to conceptualize how the 

observed differences in learning would be manifest in the results from the measurement 

model would be to estimate the model separately in the two treatment classes training for I 

first as opposed to treatment for R first. Then the observation that transition from [1+ R-] 
to [1+ R+] is easier than the transition from [I- R+] would be captured in a finding that % 

is smaller in the I first treatment class than in the R first treatment class. This finding can 

be tested for statistical significance using the standard errors that are generated as part of 

the analysis. It can also be assessed for substantive significance (i.e., effect size) by using 
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t 

the criterion-referencing techniques used in Rasch scaling, and also by combining it with 
the other (knowledge access and item difficulty) parameters to display the effect upon 

^elected individuals (in terms of odds ratios etc.). 

A More General Measurement Approach 

J We now give a more general and formal characterization of measurement from the 

knowledge level. We will assume that access to knowledge, within a particular 
knowledge-state, varies continuously, but perhaps multidimensionalty. That is, within a 
particular knowledge-content state, k, at the knowledge level we may represent an agent 
by a D-dimensional vector of (possibly unknown) agent-parameters, 0, and we will call 

these variables components, 

e={ol,e2,...,oN). (ii) 

For instance, for a group of people who know a particular problem-solving 

strategy, or who know a specific set of instructions, we may array them along a 
continuous scale to represent their proficiency in accessing and using that knowledge. For 
instance, we might parameterize the initial performance of each of Acknowledge elements 
of cognitive skiS for Lisp programming using a vector of continuous variables 0. As 

indicated above, in Equations 5 and 7, we assume a a AT-dimensional vector, <f>, 
representing K knowledge states, and a AT-dimensional vector, it, representing the 

probabilities of being in the K states. Also, suppose that the environment in which these 
variables operate can be represented by a P-dimensional vector of (possibly unknown) 
environment parameters, t;; which are traditionally termed "item parameters":, 

{ = <&,&,...,§,). (12) 

The examples above have both been restricted to dichotomous responses at the 
item level. This is not required, although it does make for less complicated sets of 
parameters, and consequently, for simpler interpretations. Generally, the approach we 
describe would be amenable to application with any of the wide variaety of models 
generally termed item response models. For the particular examples shown below, and in 
order to preserve the interpretability described above as pertaining to Rasch models, we 
will use a class of generalized polytomous Rasch models. Specifically, we will use a form 
of the Rasch model that uses a linear model on the environment parameters which includes 
a wide class of existing Rasch models: the multidimensional random coefficients 

multinomial logit (MRCML) model, which builds on prior work (Glas, 1990; Wang & 
Wilson, 1993; Wilson & Adams, in press) that permits the generation and fitting of many 
models in the Rasch family. As this particular model is not the focus of this paper (it 
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could be replaced by other formulations) we will not describe it here, but refer the reader 

to the Appendix for an account of the model. In general, the knowledge-level observer 

will be interested in responses that occur in some specific set of environmental situations 

which will be indexed by / = 1,2,... /. For now, we will assume that there is a known 

function fu such that in each situation i, the probability of a particular response by an 
agent can be represented as the probability of a realization xi of a random variable Xt: 
Sü{x0&). Note that the probability depends upon the fixed (but unknown) values of 

the environment ingredients ^ and on the values of the components from the random 

variable 9. 

When /fa(x,;£l0) is a continuous function of its arguments, we can see this 

formulation as representing degree of knowledge access within a particular knowledge- 

content class. For instance, below we will discuss an example involving the learning of 

cognitive skills for Lisp programming. Within that knowledge-content class containing 

the set of cognitive skills relevant to Lisp, we will be concerned with measurements 

indicating improvements in access to those skills due to environmental elements, such as 

available examples, and amount of exposure to practice. Such knowledge-access 

improvements are what we associate with symbol-level learning.10 

For instance, in the illustrative example surrounding Equations 1 to 4, we 

assumed the measurement of difficulties, $, of exhibiting cognitive skill in appropriate 
situations, and these difficulties may comprise a subset of the ^ parameters. In that 

example, there was only one knowledge-content class, #, = (!)> one environment 
parameter, ^ = (<5,), and the person knowledge access parameter was one-dimensional, 

6 = (6K). In our first model application below, in which we address the odds of 

observing the successful (or unsuccessful) execution of a cognitive skill across learning 

opportunity trials, we measure learning difficulties in addition to such difficulty 

parameters. In the Kessler and Anderson example (Equation 10), the person knowledge 
access parameter is still one-dimensional, 6 = (&„). But the knowledge content class has 

expanded to have four elements: #, = (Qni> 0n2'0«3' 0«4>)>m^ ^e environment parameters 

have been expanded to include effect-parameters, T, as well as a set of item parameters, 8j, 

82, ...8K so that ^ = (8lt 52,...5K, Tj, TR, TJR). In real applications one would expect to 

have many more types of item parameters, of course. 

10It is perhaps worth noting that according to our definitions, the measured improvements in knowledge 
access may be determined by either situational variables (e.g., improved examples for Lisp) or agent 
variables (e.g., greater amounts of practice). Convention in psychology restricts "learning" to organisms, 
but the notion of environmental learning can be found in other fields such as organizational learning. 
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We might characterize the effect of knowledge-level learning in the following way. 
Suppose that, in the ideal, if an agent belonged to just one knowledge-content state, k, of 
.the K knowledge classes, or <fo = 1, then we could characterize the probability of response 

"x for that agent in that context as: 

i Pr(X,. =x\<pM) = fl[fld(x;Z\9)\' (13) 

where the conditional probability/subscripted by k will differ from one knowledge- 
content class to another, in addition to the situation index /'. Note that when the knowledge 

content class is known, the use of the iterative product in Equation 13 is a convenience: 
The product of the k -1 terms coded with fa = 0 will be one and the conditional 

probability will be simply to the term coded with fa = 1. 

Note that, although the formal assumptions of the model require that each agent 

belong to just one knowledge class, the results of an estimation (formally, the posterior 

distribution) will be expressed in terms of the probability of each agent being in each of the 
classes, which will generally not indicate exclusive membership in just one class. This is 
typical of latent class formulations. Thus, this formulation should not be seen as being 
inconsistent with approaches that assume that agents belong to more than one knowledge- 
content class at a time, such as might occur in models that assume that a person might use 
different strategies in the same kind of situation. 

The formulation in Equation 13 is referred to as a mixture distribution 
(Titterington, et al., 1985), and techniques are available for parameter estimation when 
certain conditions are met (Mislevy & Verfielst, 1990). First, one must specify the 
functional form of the conditional probabilities /#(.*;£ I9). Second, there needs to be 

substantive theory which identifies and associates environment ingredients with the pattern 
of responses for agents in each knowledge-content class. To restate these prerequisites 

more generally, we need to specify how component parameters of the individual and 
environment parameters are mapped into specific possible situations and actions. 

The MCRML model needs to be further elaborated to deal with agents possibly 
belonging to different latent knowledge-content states, as in Equation 13. Hence we 
generalize the MRCML to a Mixture MRCML (which we abbreviate M2RCML).   The 
Appendix describes how design and scoring matrices must be specified for each of the k = 
1,2, ...K knowledge-content classes to map the <j> knowledge states, 0 person 

components, and £ environment ingredients onto responses 
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In the examples, we explore ways that the M2RCML and its submodels can be 
applied to knowledge measurement situations of recent interest In the first example, we 

discuss application of a model to capture the degree to which subjects have access to 
cognitive skills for programming, where skills are represented as production rules, and to 
capture the effects of experimental manipulations, individual differences, and skill 
difficulties. This application can be viewed as an example in which each subject belongs 
to a single knowledge-content class which is arrived at by experimental training, and we 
are interested in estimates of differences in knowledge access among groups with different 
training.   In the second example, we discuss the application of a model to data on stage- 
like development in a Piagetian task. In this case, both knowledge-content differences in 
strategies and knowledge access are estimated and a notion of ordered development 

through stages is also captured. 

Model Application 1:   Training and Practice Effects on 
Cognitive Skills 

Our first application is based on a production system model of the acquisition and 
transfer of Lisp programming skill (see also, Anderson, et al., 1989; Pirolli, 1991; Pirolli 
& Recker, 1994) An extended discussion of the development and details of this specific 

model application is presented in Draney, Pirolli, and Wilson (1995). 

Overview of the Experiments 

As mentioned above, the data for this example come from four experiments 
(Bielaczyc, et al., 1995; Pirolli & Recker, 1994; Recker & Pirolli, 1994) that used the 
CMU Lisp Tutor (Anderson, et al., 1990). In all four experiments, the analyses 
concentrated on data from a Lisp Tutor lesson on recursive functions. This lesson was 
taught to subjects after several hours of preliminary Lisp Tutor work on other 
programming basics.  Each lesson, including the recursion lesson, required subjects to 
read a text chapter on a topic and then solve related code-writing problems. The lesson on 
recursion in the Lisp Tutor contained 10 or 12 program-coding exercises, depending on 
the study, and took about two to four hours for subjects to complete. 

For instance, in Pirolli and Recker (1994), for each lesson with the Lisp Tutor, 
subjects had to read a lesson booklet, and then had to solve a set of exercise problems. 
Before the recursion lesson, subjects worked through six lessons covering elementary 
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Lisp functions, user-defined functions, predicates and conditionals, the use of user- 

defined sub-functions, input-output, and iteration on numeric inputs. The lesson on 

elementary recursive functions contained excercise problems requiring subjects to write 

recursive functions that operate on numeric and list inputs. The booklets for these lessons 
were early drafts of chapters in the textbook by Anderson, Corbett, and Reiser (1987). 

Subjects would be presented with a specific programming problem, such as the 
task of writing the Fact function. The Lisp Tutor monitored what the student did while 
writing program code and compared this behavior to its store of correct and incorrect 
solution steps represented in production system models. On each cycle of interaction the 

Lisp Tutor ran its internal production system models which would determine the next 

programming goal. The student would enter some small portion of code (usually 

corresponding to the next word-like element) much as they would enter text into a word 

processor. The Lisp Tutor would match the student-entered code to the feasible set of 

correct and incorrect steps for the programming goal (represented by production rules). 
Frequently, more than one correct step and more than one incorrect step was possible at 
each goal-point. If the student code was correct, then the Lisp Tutor set a new 
programming goal internally and a new cycle began. If the code was incorrect, then the 
tutor provided feedback and reset the same goal for the next cycle. After three strikes at 
the same goal, the Lisp Tutor explained the appropriate step and coded it for the subject. 
So long as the subject wrote correct code, the Lisp Tutor remained in the background as it 
performed its internal categorization of inputs and setting of internal goals. 

Experiment 1 of Pirolli and Recker (1994) investigated the impact of instructional 

examples on cognitive skill acquisition, and the transfer of practice across programming 
problems. The texts introducing recursion all contained an example of a recursive function 
in Lisp. For about half the subjects, the example recursed on an integer input (the numeric 
example), and for the remaining subjects the example function recursed on a list input (the 
list example). The numeric example was the Sumall function and the list example was the 
Carlist example, both in Table 1. For each example, one could identify the ideal model 
production rules that would be evoked to produce the solution. Assuming that subjects 
used the example material to provide analogies for program-writing, we expected to 
observe improved acquisition of the productions associated with the examples (Pirolli, 

1991). 

The overall number of errors in writing a program was found to be well-predicted 

by summing the error rates for all the productions evoked on a solution. That is, each 
execution of each cognitive skill represented by a production rule could be treated as an 
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independent event with a probability of error dependent on the particular production. The 
number of errors on the entire programming solution was just the sum of the error 
probabilities for all the production executions involved in the solution. These error 
probabilities associated with each production rules were found to decrease with transfer 
from the example material as well as with transfer from prior practice. We specify the 

form of these transfer functions below. 

The remaining three experiments that contributed to our dataset used the same 
instructional materials and example conditions. Experiment 2 of Pirolli and Recker (1994) 
used the same materials and example conditions, but additionally collected verbal 
protocols, which were analyzed to investigate the correlation of self-explanation and self- 

regulation learning strategies with improved cognitive skill acquisition. Bielaczyc et al. 
(1995) used the same materials and example conditions, but split subjects into a control 
group replicating Pirolli and Recker (1994) Experiment 1 and a trained group that received 
instruction on the effective self-explanation and self-regulation strategies found in Pirolli 
and Recker (1994) Experiment 2. Recker and Pirolli (1994) again used the same materials 
and example conditions, but split subjects into a control group who read the standard 
materials on a computer and a group that read a hypertext version of the materials on a 
computer.  Across all four experiments, we have two consistent example conditions and a 
consistent problem set that provide a set of environments for measuring knowledge 
acquisition and use. 

Basic Model for Lisp Learning 

We developed a measurement model that contained a simple scalar ability 
parameter, 8, to measure the individuals' propensity for learning recursive programming. 
A vector, £, of additional parameters was used to measure (a) the difficulty of specific 

cognitive skills, (b) the learning rate as a function of practice, and (c) the effects of 
example-based learning on the initial acquisition of specific cognitive skills. Participants 
in our studies had experience with one or the other of the recursion examples in Table 1. 
Their knowledge-states could be coded as, 

{(1,0), if Example 1 was read 
(14) 

(0,1), if Example 2 was read. 

The histories of the individual elements of cognitive skill, each represented as a 
production rule, i, can be traced across problem sets regardless of problem ordering. 
Each individual production can be associated with a sequential history of opportunities, or 
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trials, t, to acquire or perform a cognitive skill. So, we can index the programming 
situations according to both the production i appropriate for the situation, and t, an index 
of the opportunity number for production i. For each situation there are Hu = 2 responses: 
Xu = 1 if the subject performs an action consistent with production / (a "correct" action), 

or Xu = 0 if the subject fails to perform the action (an "error"). We will model the log 

odds of error for each production i. 

We predict that error odds improve as a power function of trials of practice (cf. 
Pirolli, 1991), so the learning curves are predicted to be linear in log(Error Odds) x 
logCTrials) coordinates. Differences in the difficulty, $, of initially acquiring specific 

production rules will be reflected by translations of the performance intercept of the 

learning curves. Our model assumes performance improves as a power function of trials. 
We may characterize such power-function improvements as exp(4) over learning 

opportunities, t, where 

4=-alog(r), Ü5) 

and a is an estimated parameter between zero and one.  We assume a is common across 

productions and unaffected by production difficulty or example experience (Pirolli, 1991). 
Further, we expect that there will be another improvement in student performance if a 
relevant instructional example is present in the environment (Pirolli, 1991). With two 
examples, the numeric example (Example 1) and the list example (Example 2) in Table 1, 
there will be two corresponding possible improvements : xi and X2. One example will 

improve one subset of cognitive skills, the other example will improve another subset, and 
some cognitive skills will not be improved by either example. In summary, the parameters 

characterizing the Lisp programming environment can be specified as 

^ = (51,52,...,5/,T1,T2,a). (16) 

The log error odds, given subject ability and environment ingredients, will be a 

function like 

log 
Pr(X, =OI0,S,0t=l) 

(17) 
0 + 8,; - rk - a log(0, if Example k is relevant to production i 

Pr(X,=llö,|,^ = l) 

? + 5,.-Tt-alog(0, i 
[0 + <5, -cdog(r), otherwise. 

Thus, when a person has experienced Example k and it is relevant to production i, 
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Pr(Xu = OI0.I.& = 1) 

PT(XU =110,^,^=1) 
= exp(0 + $ - %k - alog(O). (18> 

which achieves the desirable additive structure discussed in the text surrounding Equations 
1 to 4. The response probabilities can be written as 

MI;.cm.^1). «rt^-'*-"1^')] (,9) 
- l + exp[0 + 5,-T4-alog(O] 

and 

Pr(X, = 110,^,04 = 1) = - ——- ——. (20) 
- 1 + exp[0 + d,, - Tt - a log(r)] 

When a person has experienced Example k and it is not relevant to production x, then we 
simply rewrite Equatiions 18,19, and 20 without zk. 

Results 

The Lisp Tutor matches its ideal model against student behavior at the level of each 

word-like atomic symbol typed by subjects. At this grain of analysis, according to the 
Lisp Tutor's production system model, there are approximately 50 to 800 potential states 
in each of the recursion problems (covering all possible paths students are expected to 
take). There are about 100 productions modeling the relevant target skills and possible 
erroneous variants on the skills. We selected 33 productions for analysis across the N = 
76 participants in the four experiments. These productions represented new knowledge 
presented by the text on recursion or by the instructional examples given to subjects. See 
the Appendix for details on how Equations 19 and 20 can be expressed as special cases of 
Equation Al. 

A fit of the above model was performed using MRCML estimation software 
(Adams & Wilson, in press). The relationship among the difficulties of the productions, 
the size of the practice effects, the ability distributions for each example group, and the 
size of the example effects for this model is illustrated graphically in Figure 5, all on a 
common logit scale. Figure 5 illustrates the relative positions of the production rules on the 
logit scale, with the most difficult productions, the ones on which the most errors were 
made, at the top of the scale, and the easier productions near the bottom. This clearly 
demonstrates that different production rules have distinctly different difficulties. 

Distributions of initial ability for the two disjoint groups receiving different examples are 
shown on the left-hand side of the page, with persons who saw the number recursion 



Measurement at the knowledge level 32 

example represented by a 1, and persons who saw the list recursion example represented 
by a 2. This demonstrates that there were notable differences in individual ability. Each 

person has a greater than 0.5 probability of making an error on a production whose 

difficulty is above their ability level, and a less than 0.5 probability of making an error on 

a production whose difficult is below their ability level on the page. The two groups 
(created by random assignment of subjects) do not differ greatly in their initial abilities. 

The shift in ability for each group when that group encounters a production rule 
related to the example they saw is represented as a vertical line in the box at the bottom left 
corner of the page. The length of each line represents the size of the "boost," T, in 

performance on specific productions that is due to the availability of a relevant example. 
To see the effect of the "boost," this line should be used as a ruler moving it up and down 

the logit scale as appropriate. The effects of practice for repeated trials of a production rule 

are also shown in the top portion of the box. Each ruler represents the effect of the 
number of units of practice shown below the ruler. In other words, on the second trial, 
since a person has had one unit of practice, that person would receive an ability boost 
equivalent to the length of ruler number 1. By positioning the appropriate rulers at a given 
person's location on the scale, it is possible to determine the effects of practice and 
example on the error probability for that person on productions of that type. 

Insert Figure 5 about here 

Figure 5 allows a number of interpretations. First, most subject ability levels are 
higher on the page than the majority of production rule difficulty levels. Thus, most 
subjects are predicted to have a less than 0.5 probability of making an error on a 
production rule, even the first time they attempt it. This is an accurate reflection of the 
observed data, in which, for the group of subjects who saw the numerical example, the 
proportion of error on the first trial was less than or equal to 0.5 for all but 5 production 
rules, and for the group who saw the list example, the proportion was less than or equal to 
0.5 for all but 4 of the production rules. Second, the sizes of the practice effects indicate 

that error rates for most subjects on most productions tend to drop off fairly rapidly, 

which is also consistent with the data. 

For this model, both of the example effects are statistically significant at the .05 
level, as is the learning rate parameter for trials (in logarithmic units). The effect parameter 
for the number example is -0.37 logits, and for the list example is -0.24 logits. These 
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example effects are similar in magnitude, although the effect of the number example is 
slightly larger than the effect of the list example. Table 2 presents the predicted and 
observed estimates for error rates across the two example groups broken down by the 
type of production. Table 2 demonstrates a rather close match between the observed and 
predicted values, and the pattern of predictions is reflected in the observed results. The 
learning rate coefficient for the natural log of trial number is -0.83. The effect of the first 
unit of practice (i.e. the drop in production difficulty experienced on the second trial of the 
production) is -.83 x log(2) = -0.58.  Thus, the effect of the first unit of practice on the 
probability of making an error was somewhat greater than the effect of seeing an example; 

however, the effect of practice drops off fairly rapidly as the number of trials of a 

production rule increased. 

Insert Table 2 about here 

We can check the fit both of the overall model and of individual items and persons 
to the model. Figure 6 illustrates the observed and expected error rates for both groups. 
Figure 6 is constructed by considering the sequence of goals set by the Lisp Tutor for each 
programming problem across the full sequence of problems. Each goal is a production 
trial (an opportunity to perform a production). So Trial 1 is the essentially the production 
trial for the production associated with the first piece of written code for the first program, 
Trial 2 the second piece of code, and so on. Different productions are evoked on different 
trials. Each observed data point in Figure 6 averages over all subjects on the production 
appropriate for the trial. The observed and expected curves match with an R2 of 0.74, 
which is comparable to the fits of Corbett, Anderson and O'Brien of their master learning 
model (Corbett, et al., 1995). Specifically, Corbett, Anderson and O'Brien (1995, p. 25) 
obtained an R2 of 0.72 using approximately four times as many parameters. The Corbett 
et al. data come from Lisp lessons that come before recursion. Performance on the Lisp 
Tutor recursion lessons is typically more variable than the earlier lessons. The use of 
Rasch family models allows the reliability of the person separation to be calculated. This 
is defined in the same way as the familiar Cronbach's alpha reliability which one sees in 
classical testing situations. In our example, for all trials of all productions combined, the 
person separation reliability is 0.83, which is comparable to that for standardized 
achievement tests. Mean square fit statistics and r-value fit statistics (Wright & Masters, 
1982) can be calculated for each trial of each production rule, and for each person. If the 
model fits the data well, the t statistics should be approximately normally distributed with a 

mean of zero and a variance of approximately one for both persons and items. Mean 
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square fit statistics have an expected value of one for both persons and items. These fit 
statistics can also be used to detect individual trials or persons for which the fit of the 

model is especially poor. These trials or persons can then be examined in detail, to see if 
the cause for the lack of fit can be determined. A "rule of thumb" which is often used is 
that the t value fit statistics should lie between 2.00 and -2.00 if the person or trial fits 
adequately. The average value of the mean square fit statistics for production trials in our 
example was 1.02, and for persons the average was 0.97. In both cases, the mean was 
very near its expected value of one, suggesting that the model fits the data reasonably well. 
For the t values, the mean for persons was -0.07, and the standard deviation was 0.84, 

which are still reasonably near the theoretical expected values. However, the low value 

for the standard deviation suggests that there may actually be slightly less misfit than might 

be expected. For trials, however, the mean of the t values is .93, with a standard 
deviation of 0.72. The mean in this case is higher than would be expected if the model fit 

the data as well as we would like. 

Insert Figure 6 about here 

Summary 

The first example illustrates several points about the measurement approach. The 

Lisp Tutor ITS instantiates (quite mechanically) the operation of a knowledge-level 
observer. It is an automatic knowledge-ascribing instrument that scored subjects 
according to whether or not they were behaving as if they were exhibiting particular 
knowledge elements. These elements constituted a single knowledge-content class. In the 

next example we will deal with a situation in which more than one knowledge-content 
class is involved. The measurement model captured separate quantities representing an 
individual's propensity to learn Lisp vs the difficulty of specific programming situations. 
The model addressed changes in knowledge access as a function of environmental factors 
resulting from changes in the examples available in the environment The model also 
addressed changes in knowledge access due to the experiential history of the person. 
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Model Application 2: Development of Strategy Mixtures 

for Proportional Reasoning on the Balance Beam 

Our second example situation comes from the literature on the development of 

strategies for reasoning on balance-beam problems such as those in Figure 7. Siegler 

(1981) proposed that childrens' solutions to such problems are manifestations of stage-like 

changes in reasoning strategy. Siegler postulated a series of rules to describe development 

on such balance beam tasks. Rule I is: Choose the side with greater weight-if weights are 

equal, choose neither. Rule II is: Same as I except that if weights are equal, choose the 

side with greater distance--if distances also equal, choose neither. Rule HI is the same as 

for II, but if neither the weights nor distances are equal, muddle through. Rule IV is the 

same as using the correct formula. 

Insert Figure 7 about here 

More recently, the general argument (Siegler, 1994) has been that children exhibit 

multiple strategies whose propensities change with experience: "cognitive change is better 

thought of in terms of changing distributions of ways of thinking than in terms of sudden 

shifts from one way of thinking to another" (Siegler, 1994, p. 2). This is entirely in line 

with sort of probabilistic approach that we are suggesting in this paper. Indeed, the notion 

that variability and adaptive change go hand in hand is the foundation of modern 

evolutionary explanations of behavior (Smith & Winterhaider, 1992a; Stephens & Krebs, 

1986). These ideas suggest that we should be interested in modeling the changing 

distributions of knowledge elements and their use as agents adapt to their environment, 

which is exactly the situation that the M2RCML model addresses. 

Wilson's (1989) Saltus model is a special case of the M2RCML model. Saltus 

was developed to address group-like cognitive development. Each subject is characterized 

by two variables, one quantitative and the other qualitative. The quantitative parameter, 6, 

indicates degree of proficiency, while the qualitative parameter, <|>, denoting group 

membership, indicates the nature of proficiency. The Saltus model for hierarchical 

development generalizes the Rasch model for dichotomous test items (Rasch, 1960/1980) 

by positing H developmental groups. An agent is assumed to be in exactly one group at 

the time of testing, but group membership is not directly observed. Problem situations are 
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also classified into H classes. It is assumed that a Rasch model holds within each 

developmental group, and the relative distances among problem situation difficulties 

within a given problem situation class are the same regardless of developmental group. 

The relative difficulties among problem situation classes may differ from one 

developmental group to another, however. The amounts by which difficulties of problem 

situation classes vary for different groups are the "Saltus parameters": x. Saltus 

parameters can capture how certain types of problem situations become much easier 

relative to others as people add to or reconceptualize their knowledge content, or how 

some problem situations actually become harder as people progress from an earlier group 

to a more advanced one because they previously answered correctly or incorrectly for the 

wrong reasons. 

Under Saltus, as in M2RCML, an agent is characterized by not just a proficiency 
parameter 8, but also a group membership parameter <j>. As before, if there are H 

potential developmental groups, then 0 = (fy,.... $#). <J>h takes the value of 1 if the 

agent is in Stage h and 0 if not, but posteriors for <j> do not have this constraint As with 0 
, values of ^ are not observable but are estimated from the data. Within each group, items 

are governed by a Rasch model-each item i has a difficulty parameter 8-. It is also 

assumed that each item, based on psychological theory, can be associated with a unique 

developmental group. 

T = ((Xj^)) is an H-by-H matrix of Saltus parameters. In particular, x^ 

expresses an effect upon the difficulty of items in class k that applies to agents in 

developmental group h. For identification purposes, we assume Xik=0, and Xhi=0. The 

probability that an agent with group membership parameter <f>, with 0h=l, and proficiency 

9 will respond correctly to item i, known to be in class k, is given as 

P{x=\\e,(p,8hT) = txV{e-8i + Thk)ly (21) 

where y is the appropriate norming constant. For estimation purposes, we assume a 

population in which the proportion of agents in each developmental group h is TC^, with 

0<Jtu<l.   See Mislevy and Wilson (1996) for a more extensive account of this model. 

We present a re-analysis of a portion of Siegler's (1981) balance beam data 

described in Wilson (1989). In balance beam problems, various combinations of weight 

are placed at various distances from the central fulcrum of a balance beam and subjects are 
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asked which side of the beam will go down. The data consist of the responses by fifty 

persons (agents) whose ages ranged from 5 years to adult, recorded twice approximately 6 

months apart, to twelve balance beam problems. The two sets of measurements are 

combined for this analysis. This resulted in a total of 100 response vectors~7 of which 

were either zero or perfect, and were deleted so as not to distort the model comparison. 

The problems are related to several types of items related to Siegler's Rule Acquisition 

hierarchy for children's understanding of proportional reasoning. Siegler posits a group- 

like discontinuity between successive levels of understanding, made manifest by patterns 

of response to balance-beam problems of the sort shown in Figure 7. The three types of 

problem that will be used for the estimation are the following: 

Dominant (D) items (items 1 to 4) are arranged so that paying attention to only the 

dominant characteristic of the problem (weight) will result in the correct response. 

Children tend to succeed on such items quite early. Weight is referred to as the 

"dominant dimension" in these balance beam problems, and distance as the 

"subordinate dimension," because children typically recognize first the salience of 

weight (Inhelder & Piaget, 1959; Siegler, 1981). 

Subordinate (S) items (items 5 to 8) have equal numbers of weights on both sides but they 

are further from the fulcrum on one side. A child at an earlier group of 

understanding would tend to predict for S tasks that the beam would balance; at a 

more advanced group, the correct prediction, taking the unequal distances properly 

into account, would be made. Because weights are equal on both sides of the 

beam, it is not necessary to address the nature of the interaction of weight and 

distance. 

Conflict-Dominant (CD) items (items 9 to 12) items have unequal weights and distances 

on the two sides of the fulcrum and where paying attention to only the dominant 

characteristic of the problem (weight) will result in the correct response. 

Although the results of the estimation presented, below will be based on only the data for 

these three types of items, Siegler actually collected data on the following item types also. 

We will present results showing how the estimations from the first three types may be 

generalised to the other three. 

Equal (E) items have the same number of weights on both sides at the same distances from 

the fulcrum. Children recognize early on that the beam will stay balanced in this 

situation. 
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Conflict-Subordinate (CS) items have unequal weights and distances on the two sides of 
the fulcrum and are arranged so that paying attention to only the subordinate 

•a characteristic of the problem (distance) will result in the correct response. 

Conflict-Equal (CE) items have unequal weights and distances on the two sides of the 
j fulcrum, and in which the beam balances-a counterintuitive solution to children 

who recognize only the salience of weight An expert solution requires comparing 

torques, or products of weights and distances. 

Results 

The estimated proportions in each group (note, we will use the term "group" in 

preference to "stage" until the groups have indeed been shown to look like stages) and the 

item parameter estimates for each group are given in Table 3 (note that the effect of the 

relevant Saltus parameters have been incorporated into these item parameter estimates). 
The results show that there is a non-negligible proportion of students estimated to be in 
each. Table 4 shows the average proportion of correct responses to items of each type that 
would expected from an examinee at the mean of the three group groups. This makes it 
easier (than in Table 3) to interpret what is going on in each of these groups. Group I is a 
group of people who are doing very poorly on all items. Group II is a group of people 
who are doing very well on both the Dominant and Conflict -Dominant items, but very 
poorly on the Subordinate items. Group m is a group who are doing very well on both 
Dominant and Subordinate items, and somewhat less well on the Conflict-Dominant items. 

Insert Tables 3 and 4 about here 

These groups can be further interpreted by examining which persons are 
categorized into each group by the estimation, which is done by assigning each person 
into the group that had the greatest probability of the three as shown in Table 5. The 
minimum probablity of assignment into these groups was .80/Table 5 shows that the 
persons in groups 1 and 2 are all confined to the younger age groups, while group 3 is 
primarily composed of those in the older age groups. This information, along with the 
probabilities in Table 4, helps us to interpret that the persons in group 2 are those using 
Siegler's Rule I, while those in group 3 are those using the higher Rules. Given the 
probabilities, it seems most likeley that those in group I are using either none of Siegler's 
Rules at all, or are using one that is even earlier in a developmemntal sense. 

Insert Table 5 about here 
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We can gain more interpretive information by looking somewhat more closely at 
the behavior of the members of each of these groups: We can examine their responses to 
individual items, as shown in Table 6. Note in this Table, that the correct response is 
indicated with an asterisk. Looking first at Group 2, note that these persons make the 
correct response very consistently for the Dominant and Conflict-Dominant items, and 
equally consistently make the wrong response "Same" for the Subordinate items. This 
indicates that these persons are indeed responding just as one would expect of a person 
using Seigler's Rule I. However, we can also examine their responses to the other three 

item types: Equal, Conflict-Equal and Conflict-Subordinate. Note that the data regarding 
these three item types was not used in the estimation, so that any verification of findings 
actually constitutes a construct validity check on the results. As one would predict for 
persons using Rule I, they do indeed do very poorly on both the CE and the CS items, and 
do very well on the E items. These results indicate that the Group 2 group do indeed 
correspond very closely to those who are using Siegler's Rule I. 

Insert Table 6 about here 

Looking now at the Group 1 persons, we see that they are doing well on only the 
E and CS items. For all the others, they are doing quite poorly. Apart from the success 
on the CS items, this would indicate that this small group (composed of 4 to 8 year olds) 
is operating at an even lower level than Siegler hypothesized with his Rule I~perhaps a 
Rule 0, where persons respond correctly only on the easiest of questions, should be 
considered. The success of this group on the CS items needs some attention however. 
This is one of the hardest item types, so it is puzzling that they should find them relatively 

easy. The answer may be suggested by examining their responses in a bit more detail. 
They are responding to the S items like a person using Rule I (i.e.,they are getting them 
incorrect), yet, for the other item types (apart from the E items, which they are getting 
correct), they are responding the opposite to those in Group 2 (which corresponds to them 
getting the items incorrect, apart from the CS items). Now, this is a bit strange, but it 
does seem to be a consistent observation. Perhaps this is what is going on: they are a 
group who for some reason are responding the opposite of what they intended, or for 
whom the whole concept is so fragile that they are getting it around the wrong way. 

Turning to Group 3, we can see that there is a very high degree of success on the 
first three item types. It looks like they have certainly mastered Rule II. Just looking at 
the item types in the estimation data set does not allow us to distinguish whether they have 
gone beyond Rule II, but examination of the results for CS shows that indeed they are 
tending to get these right at about a chance level (about 1/3, or approximately 21, in each 
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response category). The same is not so chracteristic of the CS items-they are getting two 

of the items right at a rate that is somewhat higher than chance, and it looks like the more 
heavily weighted side (the left in each case) is more of a distractor here. This looks pretty 

much like what Siegler meant by "muddle through" for Rule in. 

Table 7 illustrates the information available for inferences about individual persons 
from the analysis. We illustrate four cases, the first three of which were selected as typical 
for each successive group. Note that the probabilities of group membership across many 
different data sets have usually been found to be not so extreme as the ones displayed 
here, but are typical in this analysis. The fourth is actually the case with the lowest 
maximum probability. For a given response pattern, there is a posterior probability for 

membership in each of the classes (and we have shown just the most likely), and, 

conditional on membership in a class, a location and its standard error. 

Insert Table 7 about here 

Summary 

In this second example, observations of individuals were used to assess the degree 
to which they belonged to different strategy-use classes. This is because different patterns 
of responses are predicted from membership in different knowledge-content classes. 
Individuals, however, are not exclusively assigned to single categories, but are viewed as 
behaving consistent with a probabilistic mixture of knowledge-content classes. One may 
view this as a manifestation of the individual being a bundle of stochastic strategies, a 

result of the uncertainty of our observations, or both. 

General Discussion 

An essential aspect of our measurement approach is the Newell-Dennett framework 
that defines a knowledge level of observation and explanation. This framework defines 
knowledge as a relation between characteristics of an agent and the characteristics of the 
environment. The framework also defines the role of the observer in this framework in 

attributing knowledge to the agent based on manifest situations and behavior. We assume 
that (latent) states or classes of knowledge content are discrete, and that individual agents 

may be viewed as belonging to (or having) different knowledge-content classes, or to 
mixtures of knowledge-content classes. We assume that within these knowledge-content 
classes individuals in particular environmental situations have varying degrees of access to 
that knowledge. These (latent) knowledge-access functions are viewed as continuous. 
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Observed behavior will be the result of the state or mixture of knowledge content that the 

individual is in and the degree of knowledge access. Knowledge-content classes may be 

defined along the lines of such traditional distinctions as those among different stages, 

levels of expertise, strategies, cognitive skills, subject-matter knowledge, and so on. 

Knowledge-access functions may characterize traditional properties such as strength or 

activation. Critical to our notion of measuring knowledge is the development of an 

approach in which separate empirical quantities characterizing individuals and 

characterizing environments can be measured from the exhibition of knowledge, even 

though knowledge is defined as a relation between agents and environments. This was 

achieved using measurement models that derive from specifically objective measurement 

(Rasch, 1960; Rasch, 1977). 

Heuristic Power of Measurement at the Knowledge-Level 

In short, our proposal is a form of "urbane verificationism" (Dennett, 1991) that 

treats knowledge as a determinant of response functions inferred from observed behavior. 

The proposal adopts an ontological and epistemological stance on knowledge, that traces 

through modem proponents, such as Newell (1990) and Dennett (1988) back to Brentano 

(1874/1973), and aims to be broadly consistent with a variety of psychological approaches 

to theories of cognition. The elaboration of explanations at the knowledge level with 

quantitative measurement aims to dispel the informality of such explanation while 

improving its recognized heuristic value. 

Let us consider this last point in more detail. There are a number of ways to think 

about the role of the knowledge level in theorizing about cognition. One common view is 

that knowledge level explanation is just the everyday "folk psychology" by which we 

make predictions about the actions of others based on our attributions about their 

knowledge and goals. As such, it might be a good source of interesting hypotheses about 

human nature, but plays no formal role in scientific explanation. Another view, exhibited 

especially in Dennett's (1981; 1988) earlier works is that knowledge-level explanations 

are instrumental scientific theories in a number of senses. Intelligent behavior can be 

reliably predicted by treating agents as if they are knowledge-level systems. Similarly, 

mechanistic (symbol-level) analyses must explain how mechanisms perform as ijthey are 

knowledge-level systems.  The utility of knowledge-level explanations, however, is not 

restricted to merely obliging the limited ability of psychologists to model the full 

complexity of the world. Dennett (1981) argues that the knowledge level provides a 

principled way~not available at the symbol level~for developing the effective abstractions 

about human psychology that, for instance, allow us to identify the type of activity 
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observed rather than the mere description of token physical states and movements. 

Moreover, knowledge level analyses cannot be applied ubiquitously to all objects with 

equal effectiveness and scientific meaningfulness: such explanations for the behavior of 

rocks or thermostats do not work as well as they do for humans and other higher 

organisms. According to Dennett (1981; 1988), then, knowledge level explanations are 
instrumental in scientifically understanding behavior, they rationalize mechanistic accounts 

of intelligent behavior, and they seem to work quite well. 

That knowledge-level explanations should work so well begs questioning their 
status as "merely" instrumental. Bechtel (1985), for instance, argues that knowledge-level 

explanations are realist explanations, and furthermore that they fit properly in the realm of 

scientific evolutionary-ecological explanations~a point of view that seems to characterize 

Dennett's more recent thinking (Dennett, 1995).  It could be argued that the knowledge 

level fits evolutionary-ecological explanations in several senses. Beliefs or knowledge 

about the environment, preferences, and principles of rationality must ultimately be 
explained in terms of biological and cultural evolution (see, Smith & Winterhaider, 1992b 
, pp. 45-50). So, evolutionary-ecological explanations tell us why the behavior of 
knowledge level systems is or is not adaptive, and knowledge-level explanations in turn 
rationalize mechanistic accounts. Furthermore, some (Dennett, 1995) have argued that the 
intentionality assumed in knowledge-level systems is an expected product of evolution, 

and more specifically a feature that evolution has dealt to humans. 

So, there are at least three interpretations of why knowledge-level explanations 
have heuristic power in the progress of psychology.  The knowledge level either (a) 
provides a voluminous source of hypotheses from folk theory, (b) is a scientific level of 
explanation in its own right, but "merely" instrumental, or (c) a natural outgrowth of 
evolutionary science, or even evolution itself, and a necessary part of neoDarwinian 
explanation. The heuristic value of the strong latter position lies both in its commitment to 
the knowledge level as a valid scientific level of explanation and in its ties to adaptationism 

(Anderson, 1990; Kitcher, 1987). We believe that our proposed elaboration of 
knowledge-level explanations with quantitative measurement strengthens the empirical 
grounds for such explanation and, moreover, increases its heuristic power in several 

ways. 

In addition to the heuristic power of the search for empirical quantities (see the 
Michell, 1990, quote above), the partial separation of knowledge-level explanation from 
symbol-level explanation allows for more cumulative progress. Our attempts to specify 
the quantitative nature of what is observed are coupled with knowledge-level explanations 
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of why those observations arise. Such explanation is complementary to explanations at 

the symbol level (ie., mechanistic process models) of how the observations arise 

(Anderson, et al., 1990; Winterhaider & Smith, 1992). This suggests that the essential 

aspects to which we have committed do not necessarily imply a strict commitment to an 

information-processing approach, although we have followed that approach throughout 

this paper. So from one reasonable interpretation of our framework, measurements at the 

knowledge level are neutral with respect to the explanations specified at other levels (e.g., 

as to the choice of a symbolic or connectionist model to provide a mechanistic explanation 

at the symbol level). One consequence of this stance is that meaningful results and 

explanations can accumulate at the knowledge level even while controversies remain to be 

resolved at the mechanistic symbol level.11 

The measurement models we used—the M2RCML model and its many 

submodels—are a sufficient but not necessary aspect of our approach. Other specific 

estimation models might be developed to perform the same sort of parameter estimation. 

However, our statistical models exhibit an approach that bridges the gap between very 

general-purpose and group-oriented approaches, such as ANOVA, and strong theoretical 

models of cognition which demand individual difference parameters. The resulting 

measurement models are shaped directly by structural hypotheses about cognition and 

knowledge and hence speak directly to those hypotheses. More generally, the Rasch 

approach from which these specific models evolved has generated a vast array of tools and 

techniques that can be used to address specific methodological problems (see, for 

example, Fischer & Molenaar, 1995). 

Assessment and Diagnosis at the Knowledge Level 

In addition, our proposal could reduce the gap from scientific theory to the 

instruments and technology of knowledge assessment. On the one hand, much of 

cognitive theory over the past half-century has been concerned with the ontology, 

epistemology, and formalization underlying the scientific analysis of knowledge-directed 

behavior. On the other hand, data analysts and psychometricians have been concerned 

with statistical inferences of structure from responses to assessment instruments. The 

former camp, in which one might lump theorists as diverse as Newell (1990) or Piaget 

(Inhelder & Piaget, 1959) take definite ontological stances on the nature of knowledge and 

its acquisition, epistemological stances on how we can know the knowledge of others, and 

nCrowther, Batchelder, and Hu (1995) provide an interesting recent example, somewhat similar in spirit to 
our suggestion. That work showed that a measurement-theoretic account of perceptual recognition 
experiments could more effectively capture all the results of a prevailing fuzzy logic model of perception 
(FLMP), even while the process assumptions of the FLMP could be seriously questioned. 
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many modem versions make specific commitments to formalization and mechanistic 

explanation in the form of cognitive models. The latter camp focuses instead on an 

(empirical methodology that is intended to reveal underlying mathematical structure from 

observed responses. To caricature this distinction: cognitive theorists have been 

practically driven by the concerns of scientific explanation whereas psychometricians have 

been practically concerned with assessment and diagnosis. Within the psychometric 

camp, the Rasch approach is distinctive because of an explicit attention to measurement 

theory (whereas Item Response Theory applications tend to be focused on measurement 

technology). In particular, the notion of specifically objective measurement serves as a 

basis for measuring psychological variables in a meaningful way that attempts to distance 

their scaling from the behavior of the assessment instrument.  In developing our 

approach, we have attempted to integrate philosophical and scientific concerns about 

knowledge with concerns about meaningful measurement and the assessment of 

individuals. 

This work has direct practical consequences for cognitive diagnosis which can be 

seen most clearly in Example 1. The Lisp Tutor analyses of this example are quite similar 

to the ITS work of Corbett et al. (1995). Although it is clear that the ACT-R theory has 

motivated the diagnostic student modeling components of ACT tutors, many basic 

assumptions differ from our analyses. The running ACT tutor's student modeling 

modules assume a simple two-state hidden Markov model of skill acquisition in which 

skill elements are in either a learned or unlearned state with a simple state-transition rule, 

and correct and incorrect response probabilities are conditional upon state. This is 

dramatically different from the complexity of assumptions about knowledge-level learning 

and knowledge access in the ACT-R theory, which depend on such things as strength, 

associative activation, and cost-benefit evaluation. Thus, the learning model of the theory 

is entirely different and disconnected from the learning model employed in practice by the 

ACT ITSs. 

The student models of the ACT-R ITSs diagnose individuals by employing a 

simple Bayesian inference scheme that updates the two-state learning model for individual 

productions following each student-tutor interaction. A more complex Bayesian diagnosis 

scheme is employed by Mislevy (1995). Inferences about the state of individual elements 

of knowledge are computed from observations using Bayesian inference nets (Pearl, 

1988). Such Bayesian assessment technologies can be structured directly by models such 

as the one we developed for the Lisp Tutor studies. Indeed, Draney et al. (1995) 

displayed an exemplary Bayesian inference net for diagnosis based those Lisp Tutoring 



Measurement at the knowledge level 45 

models. In addition to the practical application of knowledge-based cognitive theory, one 

might expect the rigors of real-world problems of assessment to further drive cognitive 

theory. 

Scope of the Measurement Approach 

From the perspective of the measurement models used in the two examples, there 

is a clear progression of complexity. In the first example a unidimensional model was 

used with no latent classes. This was because we assumed that we knew the appropriate 

knowledge content class for each person, by knowing which experimental condition they 

had participated in. The measurement model captured separate quantities representing an 

individual's propensity to learn Lisp and the difficulty of specific programming situations. 

The model addressed changes in knowledge access as a function of environmental and 

person factors, in particular, those resulting from changes in the examples available in the 

environment. The model also addressed changes in knowledge access due to the 

experiential history of the person. What is new about this is that we have estimates of 

these production difficulties and individuals' Lisp learning propensities to explain using 

substantive theory. 

In the second example, latent classes were needed (although we restricted 

ourselves to a single dimension), because the mapping into strategy classes (Siegler's 

"stages") is indirect through the students' responses to the balance beam items. Different 

patterns of responses are predicted from membership in different knowledge-content 

classes. Individuals, however, are not exclusively assigned to single categories, but are 

viewed as behaving consistently with a probabilistic mixture of knowledge-content 

classes. One may view this as a manifestation of the individual being a bundle of 

stochastic strategies, a result of the uncertainty of our observations, or both. What is new 

about this is that each individual is estimated as a particular mixture of strategies, and that 

is what is to be explained using substantive theory. 

It would be possible to formulate multidimensional situations that involve several 

latent classes, although we are not sure that the substantive theory for such complexity is 

truly extant, so we have not proceeded to investigate such a situation at this point. 

Knowledge-level  Observers 

To this point, we have left unexamined the issues surrounding the reliability of 

knowledge-level observers. Many studies that require the coding of behavior (for instance 

in the analysis of verbal protocols) typically report measures of intercoder reliability. The 

coding of behavior by an observer apparently becomes more unreliable as the descriptive 
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language becomes less concrete, includes the ascription of intentions, or as the cultural 
difference from the observed subject becomes more pronounced (Mulder & Caro, 1985). 
Issues such as these may raise suspicions about the degree of invariance of the frame of 

reference and associated measurements. One possibile approach to address these 
suspicions is to include the observer in the measurement theory-in a sense, to account for 
their knowledge-level differences. We have not done this here, but have made attempts 
along these lines in cases where knowledge access has been the focus, such as in Wilson 

and Wang (1995) and Wilson and Case (1996). 
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Appendix 

In this appendix we give a more formal characterization of measurement model 

used in the analyses, which will draw upon the notation presented in Table Al, much of 

which was introduced in the text. 

Insert Table Al about here 

We use the notion of a scoring function to represent the mapping of component 
parameters of the individual onto situation-response pairs and a design function for the 
mapping of ingredient parameters of the environment onto situation-response pairs. For 
technical purposes, we represent these functions as matrices that specify linear 
combinations of parameters that are associated with situation-response pairs. 

We specify^- as the Multidimensional Random Coefficients Multinomial Logit 

model (MRCML, Adams, Wilson, & Wang, in press) using a design matrix A and a 
scoring matrix B: An agent can be characterized by the situation-response probability 

model: 

exp[(240+<4£)] 
fi{xi = h;A,B,^\e) = 1j, ~ ~    ~ ~    . (Al) 

Zexp(^0+a^) 

The scoring matrix B allows the description of the score or "performance level" 
that is assigned to each response alternative on each of the£> dimensions associated with 
the agent To do this we introduce the notion of a response score biM which gives the 
score level for dimension d of the observed response alternative h to situation i. The bjhd 
can be collected in a vector as b^ = (bihi, bih2»—» bjhü) » and the vectors can be collected 

into a matrix B = (bii,bl2,—,b{Hl,b2\,...,b2H2,—,bjM/)- 

Similarly, the design matrix A is used to specify the linear combinations of the P 

ingredient parameters £ = (£i£2>—-»£p)    used in the response probability model to 

describe the behavior of the response categories to each situation. These linear 
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combinations are defined by design vectors a'ih, (i=l,...,I; m=l,...,Mi) which can be 

denoted collectively by the design matrix A = {a[x,a{2,—,a{Hl .flJi»—»0^^ ^">a'iM,)' • 

We now briefly describe how equations in the text can be expressed as special 

cases of the scoring (B) and design (A) matrices used in equation Al above. First, 
consider equations 12 and 13. We have chosen a very small example, with just two 
productions (8i and 82) and one example (xi). The required matrices are shown in Figure 
Al. The responses are shown under the column headed Xit, and these correspond to 

conditions of production, example, and trial, specified in the previous three columns. The 
index i is for productions, and the index t is for trials. Responses also correspond to 
whether the student has experienced a relevant example, which is indicated under the 
column headed k, a 0 indicating that the relevant example was not seen, and a 1 indicating 

that it was seen. The scoring matrix, indicated under B, is a vector in this case, because 
this is a unidimensional model. The parameter vector, £, in this case is composed of 

four parameters, two for production difficulty, one for the example effect, and one for the 
learning rate parameter a. Thus, there are four columns in the design matrix A. 
Whenever the response is correct (Xit=0), all entries are zero, which corresponds to 

equation 19 (i.e.., exp(0)=l). The other entries are only non-zero when the 
corresponding parameter should appear in equation 20. Thus, when the response is an 
error on production 1, a 1 appears under 5i, and correspondingly for 82, otherwise it is a 

zero. When the example is relevant (a 1 under A), and the response is an error, no matter 
which production was involved, there is a 1 under xi, a 0 otherwise. The coefficient of a 

is log(t) when an error occurs, regardless of the production and example, and a 0 
otherwise. Inspection of equations 19 and 20 will show that this pattern corresponds to 

that described in the text 

Insert Figure Al about here 

Table A2 gives the appropriate B matrix and A matrices for a small saltus example 

with four items, and two stages, as in equation 21. The first two items are assumed to be 

associated with stage 1, and the second two with stage 2. Note that Xn=xi2=X2i=0, as 

mentioned above, for identification purposes. 

Insert Table A2 about here 
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Table 1 

General patterns of transfer of knowledge from examples to Lisp programming problems. 

Number Example List Example 

Sumall Carlist 

Number Problem 

Fact High Low 

List Problem 

Length Low High 
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Table 2 

Observed and predicted proportion errors per production in the Lisp Tutor studies. 

f 

J 

Production 
Type 

Group 

Number Recursion Example List Recursion Example 

Observed Predicted Observed Predicted 

Number Example .26 .27 .27 .32 

List Example .18 .21 .12 .16 

Both Examples .26 .29 .28 .30 

Neither Example .27 .25 .25 .23 
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Table 3 
Proportions and item parameter estimates for Siegler's (1981) data 

Group 

1 2 3 

Proportion 0.08 0.28 0.64 

Dl -1.18 -1.18 -1.18 
D2 -0.83 -0.83 -0.83 
D3 -1.18 -1.18 -1.18 
D4 -0.04 -0.04 -0.04 

SI 0.89 7.08 0.71 
S2 0.35 6.54 0.17 
S3 0.55 6.74 0.36 
S4 0.35 6.54 0.17 

CD1 0.72 -1.51 2.47 
CD2 0.16 -2.06 1.92 
CD3 -0.45 -2.68 1.30 
CD4 0.65 -1.57 2.41 
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Table 4 
Modeled proportion of correct responses at group means for Siegler's (1981) data 

Group 

1 2 3 

Proportion 0,08 0.28 0.64 

Dl 0.19 0.99 0.98 
D2 0.14 0.98 0.98 
D3 0.19 0.99 0.98 
D4 0.07 0.96 0.95 

SI 0.03 0.02 0.90 
S2 0.05 0.03 0.94 
S3 0.04 0.02 0.93 
S4 0.05 0.03 0.94 

CD1 0.03 0.99 0.60 
CD2 0.06 0.99 0.73 
CD3 0.10 1.00 0.83 
CD4 0.04 0.99 0.62 
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Table 5 

Categorization of people in by age and strategy groups estimated from the balance beam 

solutions. See text for details. 

Age Group 1 Group 2 Group 3 
4 4 13 3 
5 2 15 3 
8 2 - 18 
12 - - 20 
21 - - 20 



Measurement at the knowledge level 67 

Table 6 

Responses by persons in each group to each item 

Group 1 Group 2 Group 3 
Item Left Right Same Left Right Same Left Right Same 
Dl 5 2* 1 0 28* 0 1 62* 1 
D2 0* 1 1 27* 1 0 64* 0 0 
D3 7 0* 1 0 28* 0 0 64* 0 
D4 0* 8 0 27* 4 0 64* 0 0 
SI 1* 0 7 0* 0 28 57* 1 6 
S2 0 0* 8 1 1* 26 3 60* 1 
S3 1* 0 7 0* 1 27 59* 4 1 
S4 0 0* 8 3 1* 24 2 60* 2 

CD1 1* 7 0 28* 0 0 38* 11 15 
CD2 1* 6 1 28* 0 0 46* 7 11 
CD3 7 0* 1 0 28* 0 2 54* 8 
CD4 7 1* 0 1 27* 0 9 40* 15 
El 2 0 6* 0 1 27* 3 1 60* 
E2 2 0 6* 0 0 28* 1 3 60* 
E3 0 0 8* 0 1 27* 2 2 60* 
E4 1 0 7* 3 3 22* 3 6 55* 

CE1 1 7 0* 27 1 0* 23 8 33* 
CE2 0 7 1* 27 1 0* 31 14 19* 
CE3 0 8 0* 27 1 0* 41 5 18* 
CE4 0 8 0* 26 2 0* 19 8 37* 
CS1 5* 2 1 1* 27 0 22* 21 21 
CS2 0 7* 1 26 2* 0 15 31* 18 
CS3 0 8* 0 27 1* 0 23 24* 17 
CS4 7* 0 1 2* 26 0 21* 22 21 
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Table? 
Posterior distributions for typical examinees under the three-group Saltus model for 

Siegler's (1981) data 

Response Most Probable Probability Location Standard Error 

Pattern Group 

10000010 0100 1 1.00 -2.62 .00 

111000001111 2 1.00 2.98 .21 

1111 1111 1110 3 1.00 2.91 .18 

111101101111 2 0.80 2.88 .18 
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Table Al 

Notation used in the measurement model. 

i = 1, ..., / Index of situations of interest in the environment (items) 

Mi Number of response alternatives to situation i 

Xi Response random variable for situation i (or vector-valued response 
random variable with Hi components) 

D Number of dimensions modelling the agent 

a _ (Q    Q9      0  \  Components: D-dimensional vector of variables associated with an 
  agent 

P Number of dimensions modelling the environment 

£=(£1 £2      £p)    Environment Parameters: P-dämcnsionai vector of variables 
associated with the environment 

K Number of knowledge-content categories 

<t> =(0i > 02. —. 4>K) ^ector °f zeros m^ a sulgle one mat indicates the latent knowledge- 
content category involved in the response 

A Design matrix specifying the linear combinations of environment 
ingredients associated with situation-response elements. 

B                             Scoring matrix specifying the level scored on the D agent 
 dimensions by situation-response elements  
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Table A2 
The scoring vector and design matrices for the saltus example 

! B 

4 A. matrix 

for 0i=l for 02=1 

Item Response Si 82 83 84 X22 81 82 83 84 T22 

1        0 
1 1 
2 0 
2 1 
3 0 
3 1 
4 0 
4        1 

0 
1 
0 
1 
0 
1 
0 
1 

0 0  0  0  0 
10  0  0  0 
0 0  0  0  0 
0   10 0  0 
0 0  0 0  0 
0  0   10  0 
0  0  0  0  0 
0  0  0   10 

0 0 0 0  0 
10  0  0  0 
0 0  0 0 0 
0   10 0  0 
0 0  0 0  0 
0 0   10   1 
0 0  0 0  0 
0 0  0   11 



Measurement at the knowledge level 71 

Figure Captions 

Figure 1. Instructional examples and sample problem exercises for learning to program 

recursion in Lisp. 

Figure 2. A schema representing a situation and action taken in Lisp programming. 

Figure 3. Schematic representation of achieving separation of conjointly measured 

variables by tranformation from a non-additive structure to an additive one. 

Figure 4. Transitions paths among knowledge-content states for learning iteration and 

recursion (see text for details). 

Figure 5. Production difficulties, group abilities, and practice effects for Lisp learning. 

Figure 6. Modeled and observed error rates for all subjects across all production rules. 

Figure 7. Balance beam problems from Siegler (1981). 

Figure Al. Scoring matrix B and design matrix A for a production system model with i= 

{1,2} productions, in k = {0, 1} conditions, over t = {1,2} trials. 
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Number Example 

Sumall takes a positive integer, n, as input 
and computes the sum of all integers 0,..., 

n. 

List Example 

Carlist takes a Lisp list, /, such as ((a b) (c 
d) (e f)), and computes a list containing the 
first elements of each embedded list, e.g., (a 

ce). 

(defun sumall (n) 

(if (equal n 0) 0 

(+ n 

(summall (- n 1))))) 

(defun carlist (1) 

(if (null 1) nil 

(cons (first 1) 

(carlist (rest 1) )) 

Number Problem List Problem 
Fact    takes  a  positive  integer,  n,   and Length   takes a Lisp list, /, as input and 
computes n!. returns the length of the list. 

(defun fact (n) 

(if (equal n 0) 1 

(* n 

(fact (- n 1))))) 

(defun length (1) 

(if (null 1) 0 

(+ 1 

(length (rest 1))))) 



Measurement at the knowledge level 73 

Situation 

(defun fact (n) 

(if (equal n 0)1 

(* n (fact 

-» 

Action 

(defun fact (n) 

(if (equal n 0)1 

(*n(fact{!iLU)B. 
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[l+,   R+] 

[l+,   R-] [l-,   R+] 

[l-,   R-] 



Measurement at the knowledge level 76 

-e—Observed     —B—Predicted I 

0.7-, 

o 
1_ 

0) 
<•— o 

L. 
o 
CL 
o 

Trials of productions 



Measurement at the knowledge level 77 

222 
22 1 

2 111 
2 1 
2 1 

22222 
2 

22 1 
222 

222 
1 1 1 
22 1 
222 

222222 111111 

Group and practice effects 

-4    u 

O   code-not-test 

code-sub 1 -primep 
|   code-difference code-zerop-test 

■  0   recursive-call-pure-tail code-equal-test 
1     r o   code-cons-on-recursive-result recursive-call-primep 

recursive-call-builder 
9   code-sub 1  recursive-call-fib 
3   code-null-test code-plus-on-recursive-result 

code-zerop-test-primep code-add 1 

5 code-mod 
code-number-recursion-primep 

0    L 0 code-cdr-in-pure-tail code-car-in-builder 
Q code-car-greaternum 
Q code-sub 1-fib code-member-test 
0 code-cdr-in-builder-recursion 
u code-add1-on-recursive-result 
0 coae-greater-test 
0   code-oddp-test 

0   code-smaller-test 

0   code-number-test 
8code-times-on-recursiYe-result code-number-recursion 

code-list-recursion 

0   code-car 

-2    " 

code-number-recursion-fib 
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B A 

/   k   t *ft * 82 *i a 

1   0   1 1 "1" "1 0 0 log(l) 

1   0   1 0 0 0 0 0 0 

1   0   2 1 1 1 0 0 log(2) 

1   0   2 0 0 0 0 0 0 

2   0   1 1 1 0 1 0 log(l) 

2   0   1 0 0 0 0 0 0 

2   0   2 1 1 0 1 0 log(2) 

2   0   2 0 0 0 0 0 0 

1    1    1 1 1 1 0 1 log(l) 

1    1    1 0 0 0 0 0 0 

1    1   2 1 1 1 0 1 log(2) 

1    1   2 0 0 0 0 0 0 

2    1    1 1 1 0 1 1 log(l) 

2    1    1 0 0 0 0 0 0 

2    1   2 1 1 0 1 1 log(2) 

2    1    2 0 0 0 0 0 0 
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