
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 19. 1996
4. TITLE AND SUBTITLE

High-Performance Data-Parallel Input/Output

6. AUTHOR(S)

Jason A. Moore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Oregon State University

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STEET, BLDG 125
WRIGHT-PATTERSON AFB OH 45433-7765

5. FUNDING NUMBERS

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

96-058

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

19961212 057
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

184
16. PRICE CODE

20. LIMITATION OF ABSTRACT

DTIC QUALITY INSPECTED 1

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR -
TA -
WU -

Project
Task
Work Unit
Accession No.

Blocke. Author(s). Name(s)of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block?. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enterthe unigue alphanumeric report
number(s) assigned by the organization
performing the report.

Blocks. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categorie

NASA
NTIS

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

• U.S.GPO: 1993-0-336-043
Standard Form 298 Back (Rev. 2-89)

High-Performance Data-Parallel Input/Output

by

Jason A. Moore

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed July 19, 1996
Commencement June 1997

^Copyright by Jason A. Moore

July 19, 1996

All rights reserved

High-Performance Data-Parallel Input/Output

by

Jason A. Moore

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed July 19, 1996
Commencement June 1997

ACKNOWLEDGEMENTS

First and foremost I must thank my major professor, Professor Mike Quinn.

His insight, patience, and support have been critical in getting this work started

and finished.

Thanks to Phil Hatcher for letting me run with his idea, and for providing

great feedback on all of this research. Thanks, too, to my committee members, Dr.

Bose, Dr. D'Ambrosio, Dr. Saletore, and Dr. Eleveld, for their support. Others who

have helped see this research through include Mark Clement, who taught me most

of my Unix knowledge (or at least showed me how to find it); Ken Ferschweiler and

Steve Fulling, who rounded out my Unix education and provided desperately-needed

system administration services; Bob Broeg, whose frTjjjXskills are unequaled; and

Larry Hsu, who gave me PA-RISC implementation lessons.

The United States Air Force Academy Department of Computer Science has

generously supported me during my time at Oregon State. I anxiously look forward

to repaying them.

I am indebted for life to Terri and the kids for putting up with my being

too often at work (mentally if not physically). Most kids get to hear traditional

children's songs, but Tory and Carmen had to listen to "The Buffering Song" while

I mixed playtime with research. Natalie, in the womb for the stretch run, I hope

you haven't been scarred for life! I love you all—you're a great family!

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Background 1

1.2 Research Contributions 6

1.3 Organization of the Dissertation 9

2 RELATED WORK 10

2.1 Improving the Programmer's Interface 10

2.2 I/O Needs of Parallel Applications 13

2.3 Redistribution of File Data 14

2.4 Array Redistribution 18

2.5 Prefetching of Parallel File Data 20

3 EFFICIENT DATA-PARALLEL FILES VIA AUTOMATIC MODE DE-
TECTION 23

3.1 Related Work 26

3.2 C* 28

3.2.1 Programmer's Model 28

3.2.2 C* Implementation on MIMD Machines 31

3.3 Parallel I/O within C* 32

3.3.1 Scalar Files 32

3.3.2 Parallel Data—Single Stream 32

3.3.3 The Alternative—Parallel Streams 34

TABLE OF CONTENTS (Continued)

Page

3.4 Stream* Modes 34

3.5 File Segments 40

3.6 Implementation 41

3.6.1 Opening a File 42

3.6.2 Writing 43

3.6.2.1 Enhancing the Interface and the Performance 45

3.6.2.2 Writing in IB Mode 47

3.6.2.3 Mode Transitions During Writing 49

3.6.2.4 Closing a File 51

3.6.3 Reading 53

3.6.3.1 Reading in IB Mode 54

3.6.3.2 Mode Transitions During Reading 56

3.6.4 I/O with Elemental Functions 58

3.6.5 Seeking 59

3.7 Redistribution Issues 60

3.8 Interfacing Stream* to External Programs 60

3.9 Conclusions 62

4 ANALYSIS AND MODELING OF ARRAY REDISTRIBUTIONS 63

4.1 Introduction 63

4.2 The Modeled System 65

4.3 Basic Packet-Building Model 68

TABLE OF CONTENTS (Continued)

Page

4.3.1 Cache Considerations 68

4.3.2 Modeling the Packet-Building Cost 72

4.4 Scaling the Basic Model to Larger Systems 75

4.4.1 Calculating TLB Miss Costs 76

4.4.1.1 TLBs using LRU and Psuedo-LRU Replacement 76

4.4.1.2 TLBs using Random Replacement 78

4.4.2 Impact of k on TLB Misses 79

4.4.2.1 Large k with True LRU Replacement 81

4.4.2.2 Large k with Pseudo-LRU Replacement 82

4.4.3 Impact of Page Size 87

4.5 Other Redistributions 88

4.6 Packet-Building Summary 92

4.7 Introduction to Unpacking of Received Messages 93

4.8 Model Elements 95

4.8.1 Isolating Cache and TLB Miss Costs 97

4.8.1.1 Modeling TLB Effects 97

4.8.1.2 Modeling Cache-Inefficient Unpacking 100

4.8.1.3 Modeling Cache-Efficient Unpacking 103

4.9 Discussion 110

4.10 Conclusions and Future Work 112

5 ENHANCING DISK-DIRECTED I/O FOR FINE-GRAINED REDISTRI-
BUTION OF FILE DATA 114

TABLE OF CONTENTS (Continued)

Page

5.1 Introduction 114

5.2 Disk-Directed I/O with the Cyclic Distribution 118

5.2.1 Random Disk Layout 119

5.2.2 Contiguous Disk Layout and High-Bandwidth Disk Systems . 120

5.3 Alternatives to Simple Packet Building 122

5.4 Building and Validating Models 124

5.4.1 Analytic Models for Four Disk-Directed File Redistribution
Schemes 124

5.4.2 Validating the Models 127

5.5 Performance Comparison of the Disk-Directed I/O Redistribution
Schemes 130

5.5.1 8-Byte Record Size 130

5.5.2 Impact of Increasing Record Size 137

5.6 Conclusions 145

6 COLLECTIVE PREFETCH WITH REDISTRIBUTION FOR DISK-
DIRECTED I/O 147

6.1 Introduction 147

6.2 Prefetching and Redistribution Approaches 149

6.2.1 Preliminaries 149

6.2.2 Disk Prefetch Only 153

6.2.3 Prefetching with Packet Building 154

6.2.4 Eliminating Unpacking Costs 155

TABLE OF CONTENTS (Continued)

Page

6.3 Performance Comparisons 156

6.3.1 Machine and Workload Models 156

6.3.2 Analysis of Results 157

6.3.3 Determining Robustness of Results 163

6.4 Full Buffers for Optimal Prefetch 167

6.5 Conclusions 170

7 CONCLUSIONS 171

7.1 Contributions and Significance 171

7.2 Future Directions 173

BIBLIOGRAPHY 175

LIST OF FIGURES

Figure Page

1.1 Organization of a distributed memory multicomputer in which I/O
nodes and compute nodes share the same interconnection network. . 2

3.1 The C* model of computation combined with the data-parallel file
abstraction in which each virtual processor in the SIMD machine's
back end has its own I/O stream 25

3.2 Sample C* declarations followed by a code segment containing both
scalar and parallel C* code 29

3.3 Writing parallel data to a scalar file using standard C file operations. 32

3.4 Writing parallel data to parallel streams using familiar C operations. 35

3.5 VP-level writes implemented using high-performance modes 38

3.6 The segmented nature of a Stream* file 41

3.7 Comparison of NB, CB, and IB modes on the Meiko CS-2 46

3.8 Using superblocks for VP writes in IB mode 50

3.9 Directory structure for VP data blocks in a single file 52

3.10 Comparison of NB, CB, and IB modes for reading on the Meiko CS-2. 55

3.11 Simple decision flow for reading a single VP block in IB mode 57

4.1 Cyclic(6) to Cyclic(2) (KYY) redistribution on a four-processor system. 69

4.2 Packet-building copy time when P = 8 is shown for HyperSPARC as
the number of bytes moved during each copy operation varies 74

4.3 Impact of TLB misses on packet-building performance 77

4.4 Comparison of our model for a random TLB with actual results from
a HyperSPARC 80

4.5 Sequence of TLB states for a pseudo-LRU TLB as packets are built
when P = 128 and k = 240 83

4.6 Impact of k on packet-building time as P changes 86

LIST OF FIGURES (Continued)

Figure Page

4.7 The GEN (Cyclic^) to Cyclic(y)) redistribution performed on the
Alpha 91

4.8 Example of efficient cache usage during unpacking of data 95

4.9 Example of redistribution-dependent cache collisions caused during
unpacking of a single packet 96

4.10 Determining the number of excess cache block accesses 102

4.11 Cache-inefficient unpacking of 1 MB using the PA-RISC 104

4.12 Unpacking time when n = 8 and L =1 MB as P varies from 4 to 264
in increments of 4 106

4.13 Collisions resulting from a partially cache-efficient unpacking of re-
distribution data 109

4.14 The cost of a general redistribution performed in one expensive phase
is compared to the cost of the redistribution performed as the com-
position of two simpler redistributions Ill

5.1 Disk-Directed read of data distributed in Cyclic fashion on the com-
pute nodes 118

5.2 Modeled bandwidth using Meiko parameters reading a 50 MB file to
a Cyclic distribution of 8-byte records with a P/I ratio of 4 132

5.3 Modeled bandwidth using Meiko parameters reading a 50 MB file to
a Cyclic distribution of 8-byte records with a P/I ratio of 8 133

5.4 Modeled bandwidth using the DDIO machine parameters (low la-
tency, high bandwidth) reading a 50 MB file to a Cyclic distribution
of 8-byte records with a P/I ratio of 4 134

5.5 Modeled bandwidth using the DDIO machine parameters (low la-
tency, high bandwidth) reading a 50 MB file to a Cyclic distribution
of 8-byte records with a P/I ratio of 8 135

5.6 Bandwidth of 2P-DDIO (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution 138

LIST OF FIGURES (Continued)

Figure Page

5.7 Bandwidth of 2P-DDI0 (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution 140

5.8 Bandwidth of 2P-DDIO (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution 141

5.9 Bandwidth of 2P-DDIO (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution 143

6.1 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained
redistribution of a 50 MB file 159

6.2 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a large-grained
redistribution of a 50 MB file 160

6.3 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained
redistribution of a 10 MB file 161

6.4 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a large-grained
redistribution of a 10 MB file 162

6.5 Effective bandwidths for varying prefetch buffer sizes using DDIO
machine (low latency, high bandwidth) parameters and random com-
putation time for a large-grained redistribution of a 50 MB file. . . . 164

6.6 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained
redistribution of a 500 MB file 165

6.7 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time when P/I = 2 for a
large-grained redistribution of a 500 MB file 166

6.8 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and assuming the entire file is read with fine-grained
packet-building into the prefetch buffers before being requested. . . . 168

LIST OF FIGURES (Continued)

Figure Page

6.9 Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and assuming half the file is read with fine-grained
packet-building into the prefetch buffers before being requested. . . . 169

LIST OF TABLES

Table Page

3.1 VP operations which allow use of Stream* high-performance modes.. 38

3.2 Comparison of achieved I/O bandwidth in megabytes per second
when writing in IB mode with different IB block sizes 48

3.3 Comparison of achieved I/O bandwidth in megabytes per second
when reading in IB mode with different IB block sizes 56

4.1 CPUs used to build and validate the array redistribution model 67

4.2 Parameters for </>(n) = as/(nbs) + cs for three machines and the
resulting R2, MAX and 90th percentile error values relative to actual
machine runs 73

4.3 Parameters and results for experiments determining impact when
P >TE and k mod P ^ 0 87

4.4 The accuracy of our model is shown for all redistributions for two
configurations 92

4.5 Parameters for the cache-efficient curve fit and the cost of an L2 cache
100

4.6 Results of our model of cache-inefficient unpacking compared to ac-
tual runs on three machines 103

4.7 Results of our model of cache-efficient unpacking compared to actual
runs on three machines when n = 8 105

5.1 Parameters used in our model 117

5.2 Comparison of our analytic model with actual run times for file re-
distribution schemes on a Meiko CS-2 129

5.3 Comparison of our analytic model with actual run times for Block to
Cyclic (BC—used for reads) redistributions on a Meiko CS-2 130

5.4 Machine parameters used to generate the data in this section 131

5.5 Packet-building costs in fis/hyte on I/O nodes and compute nodes as
e increases 138

LIST OF TABLES (Continued)

Table Page

5.6 Sustained disk bandwidth in MB/s, per I/O node, needed for 2P-
DDIO to match MB-DDIO performance 141

5.7 Summary of factors affecting schemes for fine-grained redistribution
of file data 144

6.1 Parameters used in our model 150

6.2 Machine parameters used to generate the data in this section 158

HIGH-PERFORMANCE DATA-PARALLEL

INPUT/OUTPUT

1. INTRODUCTION

1.1. Background

First-generation commercial multiple-CPU computers provided little support

for parallel disk I/O, either in terms of a high-performance parallel disk system or a

reasonable programming interface. Today, advances in disk arrays, coupled with the

striping of data across powerful I/O nodes, provide the means for systems such as

the Thinking Machines CM-5, Intel Paragon, Meiko CS-2, and IBM SP-2 to provide

reasonable disk bandwidth to parallel applications.

Unfortunately, disk bandwidth is necessary, but not sufficient, to support

parallel I/O operations. Existing parallel file systems are proving inadequate in two

important arenas: programmability and performance. Both of these inadequacies

can largely be traced to the fact that nearly all parallel file systems evolved from Unix

and rely on a Unix-oriented, single-stream approach to file I/O. More researchers

are agreeing that this approach is not ideal for supporting multiprocessor systems

[80].

In this dissertation, these issues are addressed in the context of distributed

memory parallel computers like the SP-2 and CS-2. The processors on such a

machine are connected by a fast network, and parallel file access is provided by a

subset of processors acting as I/O nodes. File data are striped across the I/O nodes,

Compute
Nodes

Interconnection Network

O (Q

i/o
Nodes

Disk
Units

o

FIGURE 1.1. Organization of a distributed memory multicomputer in which I/O
nodes and compute nodes share the same interconnection network.

which can communicate with each other and the remaining (compute) nodes using

the parallel network. A generic example of such a system is shown in Figure 1.1.

Programming distributed-memory parallel computers, like those in Figure

1.1, has always been a notoriously difficult task; using file operations on parallel

computers perpetuates this tradition. Difficulties can be found at two levels when

parallel file systems are used. At the lower level, close to the operating system, the

programmer uses system-level file calls comparable to the read and write calls of

Unix. But, what does a write call issued by many processes or processors mean?

Does the first write move a shared file pointer, subsequently impacting the next

write, no matter which process issues it? Or, does each process have its own file

pointer and operate on a file independently of others? Must all processes synchro-

3

nize before a file operation? Must all processes open and/or close a shared file

synchronously? Will this operation work the same way on another parallel com-

puter? Obviously, the semantics of a simple write is not concrete when moved from

the straightforward sequential world of Unix to a parallel system.

One might be tempted to ignore the ambiguities of the low-level parallel file

operations. After all, sequential C programmers tend to use C library functions

like fwrite; not operating-system-specific functions like write. In a like manner,

parallel programmers should use the portable file operations provided by their pro-

gramming languages of choice.

At this higher level, the language level, the parallel programmer finds no

relief. While many parallel languages have been developed to exploit and express

parallelism in novel ways, their definitions typically ignore both the syntax and

semantics of parallel I/O operations, which are essential in solving real-world prob-

lems. Therefore, the user of a parallel language is forced to use the file system of

the underlying machine. This approach suffers on many fronts. First, the program-

mer is using a high-level parallel language to abstract away low-level architectural

details. By using the system-level file operations, the abstraction is lost. Second,

it may be awkward, if not difficult, to map the parallel abstraction of the chosen

language to a single stream of bytes. Finally, the use of system-level file operations

suffers from ambiguity and nonportability as described earlier.

One can conclude that parallel language designers ought to include I/O op-

erations in their language definitions. Further, the syntax and semantics of I/O

operations should fit the programming paradigm of the language, so the program-

mer does not move from one abstraction to another to perform I/O. These operations

would enhance portability and abstract low-level file system details away from the

programmer.

4

Although programmability is a major concern, parallel computers are used

for speed. The programmer's I/O interface, while shielding system-level details,

must not inhibit high performance. High performance can be achieved only if

1. Techniques are developed to translate high-level, programmer-friendly I/O

calls into efficient, better yet optimized, native file-system calls.

2. The underlying file system moves from a myopic single-user view of file op-

erations to a view that allows it to optimize, rather than hinder, parallel file

operations.

Two inherent features of parallel file operations, the asynchrony of requests from

multiple processes and distribution of data, make the latter particularly important.

Out-of-order requests can turn latency-hiding techniques such as one-block reada-

head, which works well in sequential situations, into wasted reads. The data prefetch

done after one compute nodes's request may be purged while other compute nodes

are served, even if the prefetched data will be needed soon.

Further complications arise when files are accessed by programs using differ-

ent data distributions. Such accesses account for a majority of production scientific

programs' file accesses [56]. When a file written by a program using one data dis-

tribution is read by a program using another, the data must be permuted. The

brute-force method of permuting, namely having each compute node read many

small pieces of the file making up its local data, inherently requires many inefficient

fine-grained file-system calls. More elegant approaches, which rely on the notion of

collective I/O operations, have been proposed to speed up the permutation opera-

tion.

Collective I/O operations require that all compute nodes synchronize before

the file system is contacted. The file operation to take place, typically transfer of a

5

logically contiguous file segment, is then viewed from a global point of view rather

than from the local view of the individual processors and the portions of the file

segment they must access. A file-system-independent approach to collective I/O is

the two-phase access strategy [27], in which data are redistributed among compute

nodes after a read or before a write. Each compute node then accesses a large,

contiguous portion of the file.

Although two-phase I/O is a step in the right direction, the underlying file

system must be aware of parallel optimizations like collective operations and actively

support them. To quote Marc Snir of IBM, "We should stop thinking of I/O as a

communication between a job and file. I/O is really communication between one

job and another job" [80]. The I/O "job" referred to here must extract maximum

performance from its I/O devices and pass that performance to the compute nodes

by exploiting high-level knowledge (e.g., compute node data distribution) about

file-system operations. Such knowledge can be inferred or easily described when

operations are regular. Many studies of the I/O requirements of applications running

on high-performance computers have found that their file operations are regular,

array-oriented, and sequential, distributions notwithstanding [22, 36, 56, 63, 64,

77].

Disk-directed I/O [52] is the prototypical example of the "file as a job" ap-

proach to I/O. The file system running on I/O nodes optimizes disk accesses and,

when necessary, permutes file data as it is transmitted to compute nodes. Although

it performs well in many instances, disk-directed I/O suffers from high message-

passing overhead and a lack of prefetching support. It does, however, provide a

foundation upon which an efficient, proactive parallel file system can be designed.

This section closes with a merging of the earlier discussion of high-level lan-

guages with the notion of a knowledgeable, proactive, collective, parallel file system.

6

Clearly the run-time system for a parallel language must take advantage of advanced

features of a parallel file system. In fact, as file systems becomes more complex, it

becomes critical that implementation details are hidden from the programmer but

exploited by the run-time system. The programmer then has portable, abstract

access to I/O in which collective operations can be optimized on a large scale,

prefetching takes into account the "big picture" of file operations, and expensive,

fine-grained file system operations are avoided.

1.2. Research Contributions

This research addresses shortcomings of existing parallel I/O facilities at both

levels described in the previous section. At the language level, design principles are

presented for integrating I/O into parallel languages. The use of the principles is

illustrated in their application to C*, a virtual-processor-oriented language. The

limitations of the single-stream view of files for a language like C* are detailed. The

use of machine-independent modes to support both high performance and generality

are motivated. Modes change the performance of file operations, not their semantics,

so programmers need not use ambiguous operations. An automatic mode detection

technique is presented that saves the programmer from extra syntax and low-level

file system details. This mode detection system ensures that the most commonly

encountered file operations are performed using high-performance modes. The high-

performance modes have been crafted to take advantage of collective file operations

and related optimizations. Finally, virtual processor file operations, typically fine-

grained by themselves, are combined into efficient large-scale file system calls.

Although these principles are demonstrated in the context of C*, their sig-

nificance is farther reaching. The notion of language-specific, rather than machine-

7

specific, modes addresses the tension between the need for speed and the need for

generality in file operations. File operation and mode design take into account a

language's style of computation, its constraints, and common operations. Therefore,

I/O fits the language's parallel abstraction. A parallel language must have this kind

of support for I/O in order to be taken seriously and used for production programs.

As long as I/O within parallel languages is ignored, the parallel software crisis will

linger.

At the lower (file system) level, two major weaknesses of disk-directed I/O are

addressed here. First, its performance suffers due to message-passing overhead when

small records must be redistributed, despite the optimistic machine parameters given

in [52]. This research shows that this problem cannot be solved simply by having

I/O nodes use scatter and gather to send fewer messages, especially as disk speeds

increase at their present rate. An alternative approach to redistributions of small

records is provided in the context of disk-directed I/O, in which the two-phase access

strategy is utilized. A model and empirical results are presented showing that this

combination of disk-directed I/O and the two-phase access strategy is faster than

traditional disk-directed I/O and disk-directed I/O with scatter and gather.

The second weakness of disk-directed I/O is its failure to perform any

prefetching. Because it relies on collective I/O operations to get global informa-

tion, the file system is in a strong position to aggressively prefetch for subsequent

collective operations. Redistribution of data from I/O nodes to compute nodes

is a major concern. Hence, pre-permuting prefetched data must be examined as

an option to increase effective bandwidth. An open question is how properly to

pre-permute data that have been prefetched. This issue is explored and several

alternatives are modeled.

8

To support the models used in the discussion of disk-directed I/O, this re-

search develops a detailed model of redistribution cost. In particular, the model

focuses on the most expensive part of the redistribution, packet-building and un-

packing costs. These are modeled independently of the parallel message-passing

system in place. In the model, the impacts of relevant architectural features such as

Translation Lookaside Buffer size and replacement policy, cache size, and compute

node count are described qualitatively and mathematically. The model is accurate

for a wide variety of redistributions and validated on three different architectures.

Not only does the redistribution model presented here provide a foundation

for our work in permuting data for parallel I/O operations, it has significance across

parallel computing. Redistributions are required frequently in languages like HPF,

in which library subroutines are optimized for only a limited number of distribu-

tions, or when differently distributed arrays are combined in an operation. Because

of the frequency of redistributions in this context, modeling their cost is critical.

Data distributions also play a key role in the design of parallel programs which are

composed of the composition of several tasks. Each of these tasks may be performed

by several different algorithms, each optimized for a different data distribution. If

a program designer, human or automated, wants to predict the optimal sequence

of algorithms for a program, the time taken for redistributions between algorithms

must be accounted for. This research is the first to examine, in detail, the param-

eters most directly influencing redistribution cost. From it, accurate models valid

for a wide variety of machines can be built.

1.3. Organization of the Dissertation

In Chapter 2 previous work in parallel file systems, their use, and data dis-

tributions is discussed. A description of virtual processor streams within C* is

presented in Chapter 3. Chapter 4 contains the detailed data redistribution model,

whose results are then applied in Chapters 5 and 6 in evaluating alternatives to

traditional Disk-Directed I/O for permuting data and prefetching. In Chapter 7 the

results are summarized and future directions for this research are outlined.

10

2. RELATED WORK

Like parallel I/O systems on real machines, parallel I/O research is still

maturing. Only within the last several years have the shortcomings of current

parallel file systems sparked significant interest in the research community. This

chapter briefly describes important contributions to the field related to this work

and, when appropriate, differentiates this work from them. These contributions

are broadly divided into the following areas: improving the programmer's interface,

studying I/O needs of "real" parallel applications, improving redistribution of file

data, and enhancing parallel prefetching. In addition, important work in the related

area of array redistribution is discussed in this chapter.

2.1. Improving the Programmer's Interface

Until recently, virtually all parallel file systems proposed and implemented

have given the programmer a view of a parallel file in which all processors (or virtual

processors) access a single byte stream. These include the CM-5's sfs [6] [62], which

provides an inflexible, single-stream approach for C* virtual processor I/O [94],

Intel's CFS/PFS [2] [7] [45] [76], Bridge [29], the nCUBE-2 file system [23] [24],

MasPar parallel I/O [68], and more [9] [28] [32] [100]. The programming interfaces

for these systems, all vendor-specific, are typical Unix-like read, write, and seek

environments, some with different modes for accessing files in parallel.

Modes give the programmer flexibility in selecting the type of processor in-

teraction and file pointer management performed during file operations. Common

access modes include shared-pointer, shared-data mode, in which all processors write

11

or read the same value; synchronous mode, in which a file operation consists of all

processors synchronizing, then transferring data sequentially in processor number

order; and independent mode, in which each processor has its own file pointer and

can access the parallel file independently of other processors. The flexibility pro-

vided by modes is not necessarily a good thing; modes complicate the programmer's

task with non-portable, low-level details. A major drawback of modes is that they

render file operations ambiguous. That is, the same operation has different mean-

ings depending on the mode selected. Hence, the use of modes hurts readability and

maintainability of parallel programs relying on them.

The modes in Stream*, presented in Chapter 3, differ from the modes offered

by these file systems. Stream* modes are machine-independent. Mode changes do

not change the semantics of file operations. Stream* modes are managed by the

run-time system, and the programmer need not be concerned with the underlying

implementation.

As an alternative to the single byte stream approach to parallel file systems,

Kotz proposes the idea of multifiles [51]. A multifile contains several subfiles, typ-

ically one per parallel process. Multifiles simplify the programmer's job, because

processes neither worry about synchronizing for file operations nor positioning their

data in a shared stream. PIOUS [67] provides multifiles as one option for implement-

ing a parallel file. An obvious drawback to this approach is the dependence of the

number of subfiles on the number of compute nodes used during file creation—what

if more or fewer compute nodes are used to access the same file later? The approach

proposed by Hatcher [41], which is the foundation for Stream* presented in Chapter

3, is a generalization of the notion of multifiles. With this approach, the number of

Stream* subfiles, or data-parallel streams, is tied to the number of virtual proces-

sors. This number remains the same regardless of the number of physical processors

12

employed. Also, a generic implementation of multifiles does not support Stream*

optimizations like the collection of many fine-grained writes into one contiguous

file write. Therefore, using multifiles for data-parallel, virtual-processor-oriented

streams would slow the file system to a crawl.

Other file systems provide different views of a parallel file. Vesta [13] [14] [17],

a research project now implemented as IBM's PIOFS, allows a file to be opened using

several views. These views are based on a structured, two-dimensional-array layout

of data. That is, a stream of bytes is divided into a repeating pattern of bytes.

Each of these repeating patterns contains records divided among the processors

along one or two dimensions in a pattern such as Block or Cyclic. Each process' file

operations access only those records mapped to it; the mapping is transparent to the

programmer once the file has been opened and a specific layout specified. Although

the view is that each process has its own stream, Vesta assumes all streams are the

same size, and that all processes read or write the same amount of data in the same

fashion—only one EOF marker is maintained for the file. In terms of abstraction,

Vesta's file interface is simpler than that of traditional file systems at the expense

of a complicated mapping specification when a file is opened.

MPI-IO [15] [16] takes a similar approach to Vesta, but MPI-IO's design is

much more general. At the lowest level, a file is a sequential stream of bytes. Each

process specifies a filetype, which is essentially a template that repeats itself on

the stream of bytes. Within a process' template are data and holes; the data are

readable and/or writeable, while the holes, presumably used by other processes,

are ignored. MPI-IO is more general than Vesta, because each process' filetype

is independent of others. Data accessed by different processes may partially or

completely overlap. The generality of MPI-IO comes at the cost of a steep learning

curve. The data layout specification is complex, and the number of available file

13

operations is overwhelming. Any gains from the parallel abstraction are lost in the

details.

A system providing a high-level file abstraction is the Transparent Paral-

lel I/O Environment (TPIE) [95]. TPIE is a set of C++ templates and libraries,

where the user provides callback functions to TPIE access methods. TPIE has built-

in stream handlers which perform scan, merge, distribution, sort, permute, batch

filter, and distribution-sweep. The programmer-provided callback functions are ap-

plied to streams as streams are manipulated by the stream handlers. Parallelism is

exploited with the distribution function, which divides data from a sequential stream

among many processes. TPIE relies on a SPMD, or single thread of control, style

of parallelism. The programmer consistently interfaces at a high level with stream

operations. Unfortunately, whether or not the abstract interface scales efficiently

to parallel machine is unknown, as the current implementation is for a uniprocessor

with multiple disks.

2.2. I/O Needs of Parallel Applications

The optimizations we present in Chapters 3 and 5 are geared toward data-

parallel applications using predictable, regular file accesses. Several recent stud-

ies show that file usage in the scientific parallel programming environment is pre-

dictable. A study of four parallel oceanographic applications [64] found that all

file accesses were array-oriented and sequential. Scientific applications at Argonne

National Laboratories [36], NASA Ames [63], and the San Diego Supercomputer

Center [71] [72] accessed files in a similar manner. Six scientific codes studied by

Cypher et al [22] running on an Intel Touchstone Delta, nCUBE-1, and nCUBE-2

perform sequential, matrix-oriented file operations. The NHT-1 Application I/O

14

Benchmark [31] emphasizes sequential array writes, while the file I/O used by the

Perfect Benchmarks [79] is predominantly sequential.

A study by Crandall et al [20] finds that three scientific applications running

on the Intel Paragon use less regular file accesses. However, the file usage of these

applications is dictated by limitations of the underlying file system. The program-

mers take direct control of data placement on disk rather than relying on modes

provided by the Paragon's PFS [45].

Traces of production parallel code running on NASA Ames's Numerical Aero-

dynamics Simulation (NAS) facility iPSC/860 [56] and the National Center for Su-

percomputing Applications' CM-5 [77] give a different characterization of file usage.

Instead of large, sequential, array-oriented file accesses, many programs accessed

files in small pieces. Further analysis of these accesses, however, shows that the

fine-grained accesses occur with regular strides and nested strides. The application

programs are manipulating arrays, but the data are laid out in the file with a dif-

ferent distribution than the desired distribution among compute nodes. The data

cannot simply be transferred to each compute node as a contiguous block from the

I/O nodes.

2.3. Redistribution of File Data

Several approaches have been presented to avoid the many fine-grained file

operations often needed to permute data from the compute node distribution to

the file distribution. The simplest of these by Nieuwejaar and Kotz [69] supports

the use of strided and nested-strided file operations. With this approach, the run-

time system can request an entire file block and sieve out unwanted data rather

than requesting a portion of the same block once for each record residing in it.

15

This approach has the drawback that its interface, consisting of strided_read and

strided_write calls, is somewhat low level.

Most other approaches to file data redistribution rely on collective I/O, in

which all processors synchronize and make a single large request for data. This

large request encapsulates both the entire file segment accessed and the associated

redistribution. The run-time system can then optimize the file operation as a whole

instead of performing many seemingly independent fine-grained operations.

Collective I/O has been implemented in several systems, including CM For-

tran and C* [94] on the CM-5, and the nCUBE/2 [23] [24]. SPIFFI [33] is a research

file system supporting collective I/O operations. Parallel I/O libraries allowing col-

lective operations include VIP-FS [28], MPI-IO [16], the Syracuse HPF interface

[8], Jovian [5], PETSc/Chameleon [36], nCUBE [23] [24], and Panda [84]. Not all of

these systems address collective operations in the context of file data redistributions;

those that do are described below.

The nCUBE/2 [25] supports redistributions using two mapping functions.

Unfortunately, these functions only work when the number of array bytes, the num-

ber of compute nodes, and the number of I/O nodes are all powers of two. The first

mapping specifies the data distribution on compute nodes, and the second specifies

the distribution of the file among I/O nodes. The composition of these mappings

is used to calculate the compute node and array offset for each byte in the file.

The composite mapping also gives the number of consecutive bytes to transfer for

a given compute node and array offset. Since the I/O nodes are given the mapping

functions, this approach eliminates the overhead of many data requests. Details of

how data are actually transmitted (one message for each set of bytes contiguous on

both compute nodes and disk, or using scatter and gather) are not given.

16

A collective, file-system-independent approach to file data redistribution is

the two-phase access strategy [8] [27]. Using this approach, the needed file segment

is accessed in the distribution with which it is stored in the file (e.g., row-major

order). The result is that only a few large-grained file operations are needed to

request and transfer the data. The compute nodes then redistribute the data among

themselves before a write or after a read. While a data redistribution can be a

fairly expensive operation, it is much cheaper than many fine-grained file operations

otherwise required to permute the data.

VIP-FS [28] supports both mapped file operations, like the nCUBE/2 but

without power-of-two array size limitations, and the two-phase strategy with its

collective operations. In addition, it uses the notion of assumed requests to minimize

the number of file requests made on a slow network of workstations.

Jovian [5], while eventually planning on providing a global view of file oper-

ations, relies on compute nodes' local view to specify file operations. The interface

consists of file operations for ranges of data and strided data. All file operations

are collective, and a group of coalescing processes act as intermediaries between the

application program and the file system. Each application process makes requests

to the single coalescing process assigned to it. After requests have been passed to

the coalescing processes, they sort and exchange requests so each coalescing process

has all requests for a given I/O node (that is, there is exactly one coalescing process

acting on behalf of each I/O node). Because requests are sorted, a single file block

is requested at most once during an operation. Hence, fine-grained file requests are

not eliminated (because they are communicated to coalescing processes), but they

do not result in fine-grained disk requests.

Disk-directed I/O [52] relies on a collective interface. Compute nodes syn-

chronize before requesting a file operation, and the I/O nodes, which are informed of

17

the data distribution, supervise the transfer of file data. The transfer is performed

using a double-buffering scheme, in which one buffer is used for the current disk

operation, and the other is used to send data to or collect data from the compute

nodes. When operations on both buffers are complete, their roles are reversed. The

I/O nodes sort the list of disk sectors accessed to ensure that the disk, typically

the bottleneck, is used as efficiently as possible. The permutation of data from the

disk distribution to the compute node distribution is done by having the I/O nodes

requesting specific data from compute nodes for writes or sending data to compute

nodes for reads. Because the I/O nodes sort the sectors before accessing them, the

I/O nodes must have control over the order in which data are transferred between

compute nodes and I/O nodes. Simulations of this scheme show that all but the

finest-grained redistributions take essentially the time taken to access the disk. That

is, the redistribution completely overlaps the disk access. The machine assumptions

used for the simulations in [52] are somewhat optimistic, in that the message-passing

latency is approximately 2 [is and bandwidth is 600 MB/s, and the implementation,

due to its machine- and disk-specific nature, is nonportable. However, the potential

performance of disk-directed I/O makes it a good starting point for a parallel file

system.

A more abstract version of disk-directed I/O, one not relying on direct control

of disks, is implemented in Panda [83]. Essentially, intermediate processes supplant

the machine- and disk-specific operations performed by the disk-directed I/O nodes

as defined in [52]. These intermediate processors direct the redistribution of data.

Performance results show that nearly peak disk bandwidth is achieved, but chal-

lenging redistributions such as Block to Cyclic are not benchmarked.

On a related, more theoretical note, several researchers have explored the

problem of reorganizing data on a striped file system. That is, the data are read

18

from one distribution and written in another. The class of redistributions for which

this body of work applies can be described using bit-matrix-multiply/complement

(BMMC) operations. Cormen [18] [19] analyzes BMMC redistributions with a goal

of minimizing the number of disk accesses. More recent work by Wisniewski [99]

analyzes in place BMMC redistributions of large files on a striped file system.

2.4. Array Redistribution

The previous section described recent schemes for permuting parallel file sys-

tem data for use on compute nodes. Although our central concern is redistribution

in the context of I/O, the results presented here are also applicable in the more

mainstream context of array redistribution. Redistribution of data is important for

many parallel applications. In many instances, data must be distributed one way to

minimize communication in one portion of a program, and it must be distributed

differently to minimize communication elsewhere. Although a redistribution may be

expensive, its use may result in significant time savings by allowing the use of opti-

mal algorithms for different steps in a program. In some systems, library functions

require that input data have a particular distribution; in such cases a redistribution

is required.

Johnsson and Ho [46] performed early work in data redistributions. Their

approach is limited to power-of-two-sized arrays, one element per processor, on

hypercubes. They do not address more general redistributions like those in HPF.

Thakur and Choudhary [90] [91] propose straightforward, cache-efficient

methods for redistributing data. Their methods rely on direct communication be-

tween all processors rather than the forwarding of data through intermediate pro-

cessors to reduce the impact of latency. They also provide a performance prediction

19

model for all-to-all communications [89] associated with such a redistribution. Ra-

maswamy and Banerjee [78] use PITFALLS, a notation for expressing intersections

of array segments, to calculate the send and receive sets for redistributions. PIT-

FALLS has more general applicability than the algorithms of Thakur and Choud-

hary, and the results in [78] show that PITFALLS is faster for more general redis-

tributions. The authors make a reasonable case that PITFALLS is also faster for

multi-dimensional array redistributions.

Kalns and Ni [48] propose a scheme in which processors are logically reordered

during a redistribution to minimize the communication needed for the redistribution.

They also have a set of library routines called DaReL [47] implemented in MPI to

provide portable redistributions. In a similar vein, Kunchithapadam and Miller [59]

attempt to optimally distribute data so that the redistribution has minimal cost.

Their scheme requires an instrumented run that tells which data each processor sends

to others. An offline graph coloring scheme is then used to place data on processors

to minimize communication for subsequent runs. Another scheme for placing data

in advance to minimize the cost of a redistribution is the spiral mapping strategy of

Wakatani and Wolfe [98], in which each processor sends to and receives from the

same set of processors, all of which are logically neighbors.

A group at Ohio State University has developed a virtual processor approach

to general cyclic to cyclic redistributions [39] and a multiphase approach to redis-

tribution [50]. These schemes rely on a tensor product algebraic notation [49] for

expressing redistributions and evaluating their cost. The redistributions appear to

be the same as those proposed by Thakur and Choudhary, but the complex algebraic

notation limits their usefulness.

Wakatani and Wolfe [97] propose a stripmining scheme in which communi-

cation for redistribution of an array segment is overlapped with computation on an-

20

other array segment. As Chapter 4 of this thesis shows though, a compute-intensive

expense of redistributions is building of packets, which cannot be overlapped with

computation.

Lee et al [61] present communication-efficient algorithms minimizing disk

operations for redistribution of out-of-core data. The redistribution follows three

phases much like those of Thakur and Choudhary [91]. The phases are packet-

building, communication, and unpacking. The out-of-core approach simply requires

that all these phases take place in steps, each step working with slabs of the data

that can fit in core.

2.5. Prefetching of Parallel File Data

Prefetching has been studied extensively for uniprocessor systems [86]. Unix

implementations typically perform one block lookahead when reading files [3], while

disk controllers fill their buffers with requested read data as well as subsequent

sectors [57] [81]. Because of the striped nature of parallel file systems, and because

processors can request file data in unpredictable sequences, traditional sequential

prefetching methods cannot be naively migrated to parallel systems [52].

Kotz and Ellis performed early work on prefetching for parallel systems [54]

[55]. Their studies concentrate on a synthetic workload consisting of eight differ-

ent file access patterns. The prefetching mechanism chooses between one block

lookahead, infinite block lookahead, or portion (access pattern) recognition. These

studies were done before the file needs of parallel applications became reasonably

well understood, so their conclusions, based on a synthetic workload, are of limited

value.

21

Existing parallel file systems provide either a simple prefetching scheme used

at all times, or they rely on prefetching hints from the programmer. In the former

category are Intel's CFS and PFS [34] [70], which perform one block lookahead for

read prefetching. A PFS substitute for the Paragon [1] generates asynchronous one-

block lookahead requests after each user request. This style of prefetching is similar

to that for the original PFS, and its success is mixed for a variety of file operations.

SPIFFI [33] performs implicit prefetching by increasing the block size so out-of-order

requests for data result in much surrounding data on either side automatically being

pulled into the buffer cache. The latency of the first access of the block is not hidden

by any prefetch operations.

More sophisticated systems let the programmer provide input on the prefetch-

ing done by I/O nodes. Vesta [14] provides explicit prefetch operations at the user

interface. PPFS [44] advocates user control over prefetching, but the current inter-

face only provides support for enabling and disabling prefetching. The Hurricane

File System [58] lets the user specify sequential, bounded sequential, or general

prefetching. Transparent informed prefetching (TIP) [37] [73] [74] [75], now built

into the Scotch file system [38], lets the programmer or the system generate hints

for prefetching. The PASSION project provides PASSION_prefetch_read() and

PASSION_prefetch_wait() calls to support asynchronous requests for data [12]

[88]. The ADOPT dynamic scheme [85] lets the user specify either a sequence of

blocks that will be needed in order or a set of blocks that will be accessed together

in parallel. MPI-IO lets the programmer specify hints, and these can be applied,

depending on the implementation, to prefetching. Vitter [96] proposes a novel prob-

abilistic prefetch scheme based on the Ziv-Lempel data compression algorithm.

None of the above schemes has been combined with a collective interface to

support prefetching of data relative to the global view of the file access. A collective

22

interface prevents the I/O nodes' prefetching mechanism from being confused when

seemingly random, fine-grained file accesses are performed. With a collective view,

even if many small file operations are requested, I/O nodes can hold data they know

will be requested during the operation. When the collective view is combined with

redistribution information, prefetching can be more than simply reading the disk

in advance of file operations. As Chapter 6 shows, progress on the redistribution

can be made as well, resulting in significant gains in completion of a read with

redistribution.

23

3. EFFICIENT DATA-PARALLEL FILES VIA AUTOMATIC MODE
DETECTION 1

Parallel computing offers great potential for speeding up a wide variety of

applications. Unfortunately, parallel software has not matured enough to support

mainstream developers and users. They will not embrace parallelism until the te-

dious low-level details of parallel programming are abstracted away from the pro-

grammer and high-level languages and environments support the construction of

portable, high-performance applications. To this end, many parallel languages have

been proposed. Few of these languages have been adopted by applications program-

mers.

One significant reason parallel languages have not been accepted is their

lack of support for parallel I/O, which is critical for real applications. Parallel

language designers must incorporate into their languages I/O operations which sup-

port high-level I/O integrated with the language's style of computation, which can

be implemented with high performance, and which are portable. Although many

portable parallel file systems have been proposed in recent years, their interfaces

1Much of the material in this chapter appears in the Proceedings of the Fourth Annual
Workshop on I/O in Parallel and Distributed Systems and is Copyright ©1996 by the
Association for Computing Machinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that new copies
bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request Permissions from Publications Dept, ACM Inc.,
Fax +1 (212) 869-0481, or <permissions@acm.org>. Used with permission.

24

are relatively low-level, and their details require significant programmer effort to

master. A more abstract interface, perhaps built on top of one of these systems and

utilizing its optimizations, is needed.

In this chapter, we describe a high-level and intuitive file interface for virtual-

processor-oriented languages. The interface is presented in the context of the SIMD

language C* [92]. The C* user's view is of an abstract parallel machine consisting of

a front-end scalar processor combined with a back-end collection of virtual processors

(VPs). The number of VPs matches the data-parallelism of a given program; each

VP maintains its own element of every parallel variable. Parallel operations are

programmed from the viewpoint of what each VP does with its data. Using the

VPs' view makes parallel programming easier than less abstract methods [42]. We

apply the same view to parallel files: a parallel file consists of one stream per VP, and

each VP operates on its own stream within a file, as shown in Figure 3.1. Therefore,

a parallel file may contain millions of streams, each under the control of a different

VP. We call our implementation of this abstraction Stream* ("Stream-star"). In

addition to maintaining consistency of the C* programmer's view, Stream* enhances

programmability through its interface, which consists of parallel versions of familiar

C file operations. At the VP level, these operations have the same semantics as

their sequential counterparts.

The use of C file operations as the Stream* interface provides the program-

mer with great flexibility. Therefore, our implementation must support general file

operations. However, parallel computers are used for speed, and support for general

operations must not hamper the performance of frequently occurring, structured

operations. Stream* addresses this dichotomy by accessing parallel files in three

modes which use different techniques for managing VP file data. Two modes sup-

port simple, regular I/O operations and have little overhead, while a third mode

25

Front-End
Processor

2X4 Array of Virtual Processors

FIGURE 3.1. The C* model of computation combined with the data-parallel file
abstraction in which each virtual processor in the SIMD machine's back end has its
own I/O stream.

supports complex, irregular I/O operations. As an added advantage to the pro-

grammer, Stream* automatically selects the most efficient file mode to use at run

time.

The selection of modes and the Stream* design were guided by the following

principles, which can be applied to languages other than C* as well.

• Automatic mode detection by the run-time system maintains a high-level

interface—the programmer is not burdened with specification of modes.

• Modes depend only on the program, not the underlying file system, so their

management is completely portable.

• Modes change the performance of file operations, not their semantics.

• Common operations are performed using high-performance modes.

• High-performance modes are designed so they can exploit redistribution op-

timizations such as disk-directed I/O [52] and the two-phase access strategy

[27], where available.

26

• Whenever possible, fine-grained VP file operations are combined into large-

grained file system operations.

• The system must be able to read and write external files (e.g., from sequential

programs or other data-parallel programs).

The remainder of the chapter describes how we have applied these princi-

ples to the implementation of Stream*. We first discuss related work and follow

that with a brief discussion of C*. We then examine the choices available for C*

I/O paradigms. Next is a general discussion of Stream* modes, followed by de-

tailed descriptions of their implementation. Throughout this section, we illustrate

design tradeoffs by presenting results from C* programs compiled and run using

Stream*. We finish by describing how Stream* interfaces with external programs

and how the C* programmer can, without knowing implementation details, ensure

high performance modes are used.

3.1. Related Work

The first C* file system was built by Thinking Machines. Its interface, sim-

ilar to that for VP-oriented CM Fortran on both the CM-200 and CM-5, includes

limited functionality in which all VPs transfer data to or from a single stream [93,

94]. Virtual processor streams for C* were proposed by Hatcher [41], whose re-

sults with a general implementation are reported in [4]. Moore et al [65] point out

the shortcomings of the single-stream approach to VP files and suggest the use of

high-performance modes for parallel streams. Here we extend this work to include

automatic mode detection, design details and tradeoffs, and optimizations.

Most proposed parallel file systems for MIMD machines give the programmer

one view of a file, namely as a single stream of bytes. Some systems, including Vesta

27

[14], PIOUS [67] and others [51] support "multifiles", in which a parallel file is broken

into multiple subfiles or segments, typically one per physical processor. The CM-

200 supports parallel files, in which each physical processor accesses its own subfile

[93]. The notion of parallel VP streams is a large-scale generalization of this idea,

which can simplify I/O programming significantly. Unfortunately, one cannot simply

implement VP streams as segments or subfiles on top of these systems. PIOUS would

require the opening of many thousands of files, and array-oriented Vesta assumes all

subfiles are accessed in the same manner, so it does not store EOF for each subfile.

The parallel files of the CM-200 are too closely tied to the physical machine size to

manage streams for a larger virtual machine. Further, if each VP explicitly accesses

its own subfile, many fine-grained file operations are required. Performance suffers

significantly when this approach is used.

Modes were introduced with the earliest parallel file systems [76, 100], and

some more recent systems use modes [6, 45]. The systems provide a limited number

of operations whose synchronization requirements and file access semantics vary de-

pending on the current mode. The implementations of modes on these systems have

several drawbacks. They are machine-dependent. They give a single file operation

multiple meanings; this leads to poor code readability. Finally, modes complicate

the parallel programmer's task with low-level details. In contrast, Stream* modes

are machine-independent and affect only the performance of file operations, not their

semantics within C*.

28

3.2. C*

3.2.1. Programmer's Model

The C* data-parallel language [92] is targeted for a logical SIMD machine

consisting of a front-end sequential processor and a back-end processor array. C*

programs contain scalar variables and parallel variables. Scalar variables reside on

the front-end processor. Parallel variables are associated with a shape, whose left

indices define the layout of virtual processors along any number of dimensions. The

declarations in Figure 3.2(a) illustrate several language features. The shape S is

logically laid out as a 256 x 128 array of VPs. Stored at each VP is a single integer

x and an array y containing 10 doubles. The variables i, sum, and scalarFile are

scalars. The pointer parFile is a scalar which will point to a parallel file variable

when it is allocated upon opening of a file.

Sequential, or scalar, code is logically executed by the front-end processor.

Parallel code, contained in the with statement, is executed by the back-end array

of VPs. When not all VPs need to work, some can be masked off using the where

statement; the division of VPs into active and inactive subsets forms the context

of operations in the where statement. The sample code segment in Figure 3.2(b)

demonstrates these features.

Finally, parallel data can be manipulated using two different types of func-

tions. C* functions can be passed parallel arguments and can return a parallel vari-

able. The context is passed to these functions when they are called, and synchronous

SIMD operation is maintained while the functions are executed. The computation

performed depends on the context when the function is called. The following ex-

amples include a prototype for function f oo and a call to foo from within a where

statement.

29

shape [256] [128]S;

int:S x;
double:S y[10];

FILE:S *parFile;
int i;
double sum;

FILE *scalarFile;

sum = 0; /* Scalar code */
for (i = 0; i < 10; i++) { /* Also scalar */

with (S) { /* Perform in parallel */
x += y[i] ;
where (x > 100) { /* Only some VPs will do this */

x = x °/„ 100;

}
}

}

FIGURE 3.2. Sample C* declarations followed by a code segment containing both
scalar and parallel C* code.

30

double:S foo(double:S a, double:S b);

int main() {

with (S) {
where (x > 0) {

y[2] = foo(y[0],y[l]);
}

}

}

The second type of function with which parallel data can be manipulated

is an elemental function. Elemental functions are an important extension to C*

formulated by ANSI X3J11.1 [40]. Elemental functions allow VPs to invoke scalar

functions conceptually by passing individual elements of parallel variables as argu-

ments. For example, the University of New Hampshire (UNH) C* compiler, with

which this work is integrated, provides parallel access to the standard C library

routine sin by providing it as an elemental function. The subtle difference between

standard C* functions and elemental functions is that standard functions maintain

SIMD-style synchronization, while elemental functions do not. The current context

is passed to standard functions, which may increase the number of active VPs using

the everywhere statement. With an elemental function, the current context deter-

mines whether or not individual VPs enter the function. Users can write their own

elemental functions, but some operations must be avoided in elemental functions.

In particular, an elemental function must operate only on its parameters, which

must belong to the calling VP. An elemental function cannot have side effects on

scalar data or the data of other VPs. A "single, shared byte stream" approach to

C* I/O cannot support file operations in elemental functions, because the shared

31

file is a scalar. Since each VP has its own stream in Stream*, file operations within

elemental functions can be supported.

3.2.2. C* Implementation on MIMD Machines

Although C* provides the programmer with a simple SIMD view of compu-

tation, the UNH C* compiler has efficient implementations for a variety of MIMD

machines. We briefly describe how key SIMD features are modeled on a MIMD

machine. For more details see [42, 60]. Scalar variables, and operations on them,

are replicated on all compute nodes. Scalar I/O operations are intercepted so only

one compute node physically performs I/O and broadcasts the results to the oth-

ers. Parallel data are distributed among the compute nodes of a MIMD computer.

Although the logical view of the data is that each VP holds its elements of parallel

data, parallel data are grouped together by variable rather than by VP. That is, all

the elements of parallel variable x assigned to a compute node are stored in con-

tiguous memory. Parallel code is implemented through the use of VP emulation,

in which each physical processor performs the operations of the VPs assigned to it.

Standard C* functions are implemented using a single function call on each com-

pute node, and VP emulation and synchronization are performed in the function.

Elemental functions, on the other hand, are called once for each active VP being

emulated by a compute node; VP emulation is performed outside of the function.

32

for (i = 0; i < 256; i++) {
for (j = 0; j < 128; j++) {

int temp = [i][j]x; /* Convert parallel to scalar */
fwrite(&temp,sizeof(int),l,scalarFile);

}
}

FIGURE 3.3. Writing parallel data to a scalar file using standard C file operations.
Extra code is required to work around the limitation that only scalars can be input
or output.

3.3. Parallel I/O within C*

3.3.1. Scalar Files

Scalar files, including stdin, stdout, and stderr, are standard C files man-

aged by the front-end processor in scalar code. The use of standard, scalar C opera-

tions for parallel I/O would let programmers use familiar, well-understood routines.

Unfortunately, scalar file operations are not suited for parallel data. The code in

Figure 3.3 shows how parallel data must be converted to scalar in order for standard

C file operations to be used.

The code shown suffers from two drawbacks. First, each execution of the assignment

int temp = [i] [j]x; requires an expensive communication: one-to-all broadcast.

Second, when I/O is performed serially by only one processor, available parallel I/O

hardware facilities are wasted.

3.3.2. Parallel Data—Single Stream

Since standard sequential C file operations cannot realistically be used for

parallel data in C*, a new programming interface must be introduced to support

33

parallel I/O. Typical parallel I/O systems support the notion of a single stream of

data accessed by many processors; we first examine this approach, which assumes

a scalar file accessed using special operations. These operations can provide the

programmer with either a global view or the VPs' local view.

The global view, implemented by Thinking Machines for their C* I/O inter-

face using CMFS_write_f ile(), CMFS_read_f ile(), and later fwrite and fread,

transfers all VPs' values for a variable, regardless of the VPs' context (based on a

where statement), to or from a single stream [94]. These operations can be per-

formed in parallel at high speed, but they provide little flexibility and abandon the

local VP view that makes programming easy in the first place.

If we take the local view into account, VPs may or may not read or write

during an operation; each may transfer different amounts of data to or from the

single stream. Although this approach is more flexible than the global view, it suffers

from several drawbacks. First, it forces serialization of compute nodes during file

operations, since the file offset for a given node is not known until those preceding

it have completed reading or writing. Second, file operations cannot be used in

elemental functions. Recall that elemental functions cannot have side effects; writing

to or reading from a single, shared stream is a side effect. Hence, debugging messages

cannot be written to a file from an elemental function. Moreover, the single stream

does not allow us to identify the data written by a given VP. Finally, the single

stream forces the programmer to take a global view of the file data, so the local

view is only partly supported.

34

3.3.3. The Alternative—Parallel Streams

Although the single stream approach can provide fast file operations, its

inflexibility limits its utility. Further, it does not fit in with the C* programming

paradigm. In contrast, assume that a data-parallel file contains one stream for each

VP. File operations can be programmed from the VPs' local view, file operations

in elemental functions will not have side effects, and each VP can read from a file

exactly the data it wrote earlier.

With this scheme, a data-parallel file contains one stream for each VP. Stan-

dard C file operations can be overloaded to allow the use of a parallel file pointer.

When a parallel file pointer is passed to a file operation, each active VP performs the

operation specified on its stream in the parallel file. Furthermore, the scalar C file

operations can be used in elemental functions to allow VPs access to their individual

streams. The result is that the programmer can use familiar file operations, and the

compiler and run-time system work together to manage the parallel streams. The

example in Figure 3.4 shows the familiarity of operations when parallel streams are

used—the only difference from standard C operations is a shape pointer argument

added to f open, which lets an input file specify the shape at run time.

Despite the compelling reasons for using Stream* in data-parallel languages,

parallel programmers will use Stream* only if it has high performance. In the next

section, we describe strategies that make Stream* fast for most operations, especially

those most commonly found in data-parallel applications.

3.4. Stream* Modes

In our Stream* virtual processor file implementation, we rely on three file

modes. Two modes limit the available operations in exchange for speed, while one

35

shape [2] [4]S;
int scalarvar;
FILE:S *outfile, *errfile;
int:S someint;

with (S) {
outfile = fopen("temp","w",&S);
fwrite(&someint,sizeof(someint),l,outfile);
fclose(outfile);
where (someint < 0) {

errfile = fopen("debug","a",&S);
fprintf(errf ile ."Error, someint was 0/od\n", someint) ;
fclose(errfile);

}
}

FIGURE 3.4. Writing parallel data to parallel streams using familiar C operations.

36

mode supports more general operations. The restrictions on operations for the high-

performance Stream* modes are shown in Table 3.1. We say an operation meeting

the restrictions for a given mode are compliant with that mode. All three modes

break the file into small (usually less than 64 bytes), fixed-sized VP blocks, from

which VP streams are built. VP blocks, while much smaller, are analogous to disk

blocks in a traditional file system, in which streams consist of an ordered collection

of blocks. The Stream* modes lay out VP blocks in the file in different ways. The

high-performance modes, which require that all VPs move the same amount of data

during an operation, lay VP blocks out in a structured, array-oriented fashion that

is independent of the number of compute nodes. That is, assuming V total VPs,

VP u's stream consists of the vth block and every Vth block after that. Although

a VP block logically has a small size, data are moved in large, contiguous chunks

between the regularly laid out file and compute node memory.

The highest performance mode is No Buffering (NB) mode. In this mode, VP-

level file operations are implemented in parallel using a single, collective file system

operation. This operation moves VP data directly between the file system and

the desired parallel variables on the compute nodes with no intermediate buffering.

Figure 3.5(a) shows how the array-oriented layout of data on compute nodes matches

the desired layout in the file. Note that, to maintain the regular file layout with no

intermediate buffering, all NB-compliant operations must transfer the same amount

of data.

Collective Buffering (CB) mode supports more general operations such as

transfer of strided data, in which the layout of data in compute node memory does

not directly match the structure of the file. In this case, a VP-level file operation is

implemented by copying data between fixed-sized VP buffers on the compute nodes

and the desired parallel variables. The CB buffers themselves are contiguous, so their

37

layout in memory matches the array-oriented layout of data in the file. Because

the restrictions on CB guarantee that all VPs read or write the same amount of

data during a given operation, all VP buffers become full (when writing) or empty

(when reading) at the same time. An example showing the buffers filling with

VP data during a write is shown in Figure 3.5(b)-(d). As with NB, all the data

are moved between compute nodes and the file system in a single, collective large-

grained operation that can take advantage of optimizations such as disk-directed

I/O [52] and the two-phase access strategy [27]. Recall that the VP block size for

NB is dependent on the amount of data written by VPs. The CB VP buffer size,

and hence the VP block size in the parallel file, does not depend on the size of VP

writes, although the amount of data written by each VP during the first write could

be used to choose the CB block size. Since subsequent writes may move different

amounts of data, this may not always prove the best heuristic. Other parameters

an advanced version of Stream* might use to choose a CB VP buffer size include

the amount of memory available and the optimal transfer size for the physical file

system. Our current implementation defaults to an 8-byte CB buffer size whose

value can be changed on a per-run basis via command-line arguments.

It is important to point out that Stream* does not suffer the problems of

a general-purpose file system when buffering VP data on compute nodes. A more

general file system must immediately perform writes to a parallel file to ensure that

other processors see the update. If compute nodes cache prefetched data for reading,

they must ensure the data remain consistent with the physical file contents. With

Stream*, however, each VP accesses only its own stream, and only the compute node

emulating a VP can update its blocks in the file system. Therefore, each compute

node is guaranteed to have the most up-to-date information for the VPs it emulates.

38

Collective Buffering (CB) Mode Restrictions:
1. All VPs are active during every operation
2. All VPs transfer the same number of bytes in a given operation
3. No elemental file operations are performed
4. All VPs choose the same file offset in a given seek operation

No Buffering (NB) Mode Restrictions:
1. All of the above restrictions, plus
2. Every read/write operation transfers b^B bytes per VP
3. VP data are contiguous (unstrided) in compute node memory
4. All seek offsets are an integral multiple of ONB

TABLE 3.1. VP operations which allow use of Stream* high-performance modes.

double:S x[5] ;

fwrite(&x[0] , sizeof (double) , 5, fp) ;

fwrite(&x[0],sizeof(double), 3,fp);

/* Computation updating x here */

fwrite(&;x[0] , sizeof (double) , 3,fp);

Contiguous parallel variable layout in compute node memory
1 ! It i

(a)

smory

local VP 0

CB buffer layout

local VP 1

in compute node m

last local VP

1 II II ••■ lillllllllill 1

CB buffer for
local VPO

CB buffer for
local VP 1

(b)

CB buffer for
last local VP

1 1 1 ••• I.. I

(0

»i i« ■ liH 1 •■■ I«»-! 1
(d)

FIGURE 3.5. VP-level writes implemented using high-performance modes, (a) In
NB, the parallel variable can be moved directly from its location in memory to
the file system with a single, collective file system call. Collective Buffering (CB)
mode is shown in (b)-(d). In the CB example, each VP writes two sets of 24 bytes
(assuming 8-byte doubles) to its own 32-byte CB file buffer. The state of the CB
buffers, each containing 24 bytes after the first write, is shown in (b). The second
write takes two steps. The VP buffers are filled with 8 bytes each and written to
the file system as a single unit, as shown in (c), then the remaining 16 bytes for
each VP are copied into the buffers (d).

39

Independent Buffering (IB) mode is the most general, supporting any C

file operations at the VP level. Because some VPs may be inactive during a file

operation, or VPs may move different amounts of data, the collective, shared-offset,

array-oriented implementation of NB and CB cannot be used for IB. Although

the regular layout of data created by NB and CB eases the job of distinguishing

individual VP streams, such a layout cannot be efficiently utilized in IB mode. VPs

using IB may not fill their buffers at the same time or in any specific order. If,

when IB is used, blocks making up VP streams are laid out in regular fashion as

in NB and CB, each VP buffer must be written individually using an expensive,

fine-grained file operation. An early prototype showed the cost of these operations

to be prohibitive. Our solution, which combines fine-grained VP file operations into

large-grained calls to the file system, writes VP data to the file on a first-come-first-

served basis and manages it using a directory. A description of the implementation

is in Section 3.6.

In our first VP file system implementation [65], the user wanting high-

performance had to specify the desired mode when declaring a parallel file variable.

This approach has several drawbacks. First, the programmer must understand im-

plementation details to choose the correct mode. Second, unfamiliar syntax must

be added to the language to specify mode hints. Finally, the single mode assigned

to a file must be the most general with which it is accessed, even if many of the

operations on the file could be performed using less general, higher performance

modes. Our current design eliminates these drawbacks through the use of dynamic

mode detection, which chooses the best possible mode for each operation based on

its parameters and the current mode.

40

3.5. File Segments

Stream* dynamic mode detection uses a scheme that divides a parallel file

into three distinct segments. The first segment contains VP data written using

NB mode, the second contains data written using CB mode, and the last contains

data written using IB mode. We name the segments after the modes in which they

were written (NB, CB, and IB). The scheme assumes the program writing a file will

use NB, the highest performance mode available. Recall from Table 3.1 that NB

requires that all operations move the same amount of VP data. The first NB write

establishes the VP block size 6JVB for the NB segment of the file. If a program writes

only one data type to the file, as is frequently done in data-parallel applications,

the file will consist entirely of an NB segment. When a non-NB-compliant write

operation, or an NB-compliant operation relying on a different value of 6/VB is used,

the NB segment of the file is complete. A transition to CB or IB takes place.

The CB segment of the file is written using a VP block size of bcB-, whose

value is determined by the run-time system, until an operation requiring IB is

encountered.2 The remaining writes, assuming no backwards seeks, are performed

using IB to the IB segment of the file, even if subsequent operations are NB or

CB-compliant. A scheme could be developed to allow unlimited switching between

modes, but the costs of this approach potentially outweigh the benefits. The vol-

ume of metadata describing the mode switches and VP activity in every IB segment

potentially would be huge. IB's performance relative to the other modes' is good

enough that the extra overhead for allowing more file segments is not justified.

Finally, files used by most data-parallel applications would remain in NB or CB

2Note that operations allowed in NB mode form a subset of those allowed in CB.

41

FIGURE 3.6. The segmented nature of a Stream* file. The first segment is written
using NB mode, and VP blocks of size b^B are regularly laid out in the file. The
second segment is written using CB mode. This segment has a structure similar to
that of NB; the VP block size bcB may differ from that of NB. The last segment
consists of VP blocks of size biß with an unstructured layout. The IB segment is read
with two directory files which describe which blocks make up which VP streams.

modes during their lifetimes [22, 36, 56, 63, 64, 77], and Stream*'s prioritization

of the highest performance modes matches their needs without becoming overly

complex.

Associated with each Stream* data file is a second metafile, whose name is

the concatenation of the data file name with .meta. This file contains information

about the file such as &/v#, bcB, biß, mode transition points, distribution information,

and shape. Files whose IB segment is not empty also have files with suffixes .first

and .dir to hold directory information. Their function will be described in section

3.6.2.2. In the remainder of the chapter, we refer to the meta files by their suffixes

(e.g., the .metafile).

3.6. Implementation

Stream* is implemented as part of the C* run-time library. Machine-

independent routines make up a majority of the Stream* implementation, while

a few routines make calls to the machine-dependent file system. We assume the

underlying file system manages a parallel file in the traditional manner, as a sin-

gle stream of bytes. Therefore, Stream* can be implemented on top of PFS [45],

42

Thinking Machines' CMMD I/O [6], or the single stream views of more flexible file

systems like PIOUS [67] and Vesta [14]. Knowledge of the underlying implemen-

tation of the file system (e.g., programmable I/O nodes, disk arrays, etc.) may be

used to optimize the machine-specific portions of the Stream* run-time system, but

our discussion is independent of the file system. All of the features of Stream* are

implemented on the compute nodes.

For our experiments, we built a simple striped file system using varying

numbers of nodes on a Meiko CS-2 multicomputer. Although a parallel file system

is available with the CS-2, it is not installed on our machine. Instead, specific

nodes are selected as I/O nodes, and they read from and write to their local SCSI

disks using Unix file operations. File operations are requested and fulfilled through

messages on the CS-2's low-latency, high-bandwidth network. For the experiments

shown in subsequent sections, eight compute nodes were used with one to four I/O

nodes and a striping unit of 32K bytes.

3.6.1. Opening a File

When a parallel file is opened, a parallel FILE variable is allocated and a

pointer to the parallel variable is returned. A sequential C FILE has a corresponding

Unix file descriptor, or f d, an integer. Our Stream* implementation also associates

an f d with a FILE variable. The f d is an index into a structure containing the data

needed to manage the parallel file. Our system reserves a fixed number (0-63) of f d

values for sequential files, and f d values higher than that correspond to parallel files.

The typical implementation of a FILE struct allocates a byte to the f d field, so 256

f d values are available to represent both sequential and parallel files, although the

underlying operating system may not support that many open files simultaneously.

43

3.6.2. Writing

Although C provides several ways to write to a stream, our examples below

are based on the parallel overloading of the function f write:

int:current fwrite(char:current *buf, int:current size,
int:current nitems, FILE:current *fp);

Note that the C* keyword current matches the current shape, so the f write

function can be used for any shape. Depending on whether or not all VPs are active,

and depending on the parameters for an invocation of fwrite, this function can

comply with any of NB, CB, and IB modes. The mode detection performed at the

start of fwrite is based on the current mode, file segment, and the characteristics of

the parameters. The goal is to use the fastest mode possible, with IB being selected

if NB and CB tests fail. To use NB or CB for fwrite, the mode detection logic

checks the following:

1. NB requires that the current mode be NB. CB allows a current mode of either

NB or CB.

2. The file segment to which the write will occur must be compatible with the

mode to be used. CB can be used to write to the NB segment of the file using

a buffer size of b^B (after a backwards seek, for example), and only in rare

instances—the current implementation does not check for these—can NB be

used to write to the CB segment of the file.

3. All VPs must be active. Two tests are used to determine VP context. The C*

compiler emits code to manage a flag called CS everywhere. The flag is true

when VPs are not masked off by a where clause. If the flag is false, meaning a

44

where clause is in effect, each compute node can directly test whether or not

all its VPs are active.

4. size * nitems is the same for all VPs.

In addition to the above, the following conditions must hold to use NB:

1. size * nitems is equal to &JVB for all VPs (if this is the first write to the file,

bjsiB is established for subsequent tests).

2. The stride of the parallel data being written is equal to size * nitems. That

is, the data are contiguous in compute node memory. The UNH C* compiler

stores the stride as part of each parallel variable.

Different compute nodes may get different results from the above tests. For

example, on exactly one compute node, a VP may have performed a file operation

in an elemental function. That compute node will come into the fwrite with a

current mode of IB. All others will have a current mode of NB. To guarantee that all

compute nodes are using the proper mode, a reduction is performed. The processors

exchange the calculated mode, number of bytes transferred per VP, and all-active

status of VPs with each other. After the reduction, all compute nodes agree on the

mode. The reduction operation is cheap relative to file operations, and it can act as

the synchronization for a collective file operation, since both NB and CB can take

advantage of collective operations.

If NB is the agreed-upon mode, the compute nodes perform an efficient,

array-oriented transfer of data directly from the parallel variable to the file system.

If CB is chosen, the compute nodes copy from the specified parallel variable to the

VP buffers. If the VP buffers become full, an efficient array-oriented transfer, like

that for NB, moves data from the contiguous VP buffers to the file system. As shown

45

in Figure 3.5, the VPs may write more bytes than their buffers can hold. In this case,

the buffers are filled to capacity and sent to the file system. This copy-and-write

cycle continues until the VP buffers can store the remaining VP data.

3.6.2.1. Enhancing the Interface and the Performance

The version of f write presented above offers general functionality that may

be rarely exploited. For instance, the size and nitems parameters are most often

constants, with the size often denoted using the sizeof operator. With the general

fwrite prototype, the programmer must cast constants to parallel values, e.g.:

fwrite(&parVar, (int:S)sizeof(double), (int:S)l, parFile);

Further, the run-time system must allocate and initialize parallel arguments for

the call to fwrite. Finally, these arguments must be checked, element-by-element,

during mode detection to ensure that all VPs write the same amount of data. To

eliminate these frequently unnecessary costs, Stream* provides another overloading

of fwrite (and, correspondingly, fread), in which size and nitems are scalars:

int:current fwrite(char:current *buf, int size,
int nitems, FILE:current *parFile);

With this version, no parallel arguments must be built, and checking for size con-

sistency among VPs is unnecessary. We expect this to be the normal usage of

fwrite, so this is the version we use when comparing performance in subsequent

experiments.

Because NB is performed using the fastest file operations, it is the standard

against which other modes are measured. Figure 3.7 shows that the differences

between NB and CB modes, despite the extra buffering required by CB, is negligible

when repeatedly writing a simple parallel double. The results shown in Figure 3.7

46

Ö
■ 1—I

2 3

Number of I/O Nodes

FIGURE 3.7. Comparison of NB, CB, and IB modes on the Meiko CS-2. 64K VPs
each output 64 double values for a total of 32 MB. 95% confidence intervals are
shown.

are with a CB block size bcB of 8 bytes. A block size of 32 bytes takes more compute

node memory and may result in inefficient cache usage, but the larger buffers result

in fewer file operations. Our experiments show no statistically significant difference

between CB performance with 8 and 32-byte buffers, so the current default bcB is a

space-saving 8 bytes. The mode detection cost of Stream*, that is, the bandwidth

difference between Stream* with mode detection and without, is also negligible on

all I/O node configurations. The largest difference between NB bandwidth with and

without mode detection is 3.9%, while the standard deviations of the measurements

are 5.6% and 6.0%.

47

3.6.2.2. Writing in IB Mode

If IB is the selected mode, a VP emulation loop performs the write for each

active VP by moving data from the parallel variable being written to the VP's IB

buffer. VPs may fill their compute-node buffers at different times, which is why they

are managed individually, but our goal is to avoid fine-grained writes of individual

VP blocks. Figure 3.8 shows the steps taken when a VP fills its buffer. The contents

are moved to a superblock, a collection whose size would typically be the size of a

striping unit in the underlying file system. Each physical processor maintains its own

superblock for each file in IB mode. When a superblock is filled, the data contained

in it are sent to the file system as a single chunk. VP directory information is

also managed using the notion of superblocks. By combining VP file writes into

superblocks, our implementation avoids many fine-grained writes of VP data, which

would significantly degrade performance. To support IB superblock writes without

processor synchronization (recall that the superblock may be filled from an elemental

function, in which no synchronizations may occur), each compute node must know

where in the IB segment of the file to write its data. We allocate superblocks in

the data file and directory file to compute nodes in round-robin fashion; the pth

processor among P total processors writes to the pth superblock, followed by every

Pth superblock. This does mean that the structure of the data in the file changes

with the number of physical processors, but alternative file layouts relying on virtual

processor instead of physical processor configuration require expensive fine-grained

file system operations to write VP blocks. This scheme may also result in "holes"—

unused space—in the parallel file. In extreme cases, when one physical processor's

VPs write much more than any others', file holes might waste considerable space.

Since such programs will poorly balance the computational load as well as the I/O

48

I/O Nodes

IB Block Size
64 bytes 32 bytes 16 bytes 8 bytes

Bandwidth Bandwidth %64 Bandwidth %64 Bandwidth %64

1
2
3
4

1.37
2.89
4.14
4.96

1.17
2.36
3.44
4.47

85
81
83
90

0.85
1.87
2.55
3.59

62
65
62
72

0.61
1.06
1.63
2.42

45
37
39
49

TABLE 3.2. Comparison of achieved I/O bandwidth in megabytes per second when
writing in IB mode with different IB block sizes. The % 64 column shows the
percentage of the bandwidth achieved relative to when biß = 64. All bandwidth
values are distinct at the 95% confidence level.

load, their general performance will be poor, and thus they should prove to be the

rare case.

Figure 3.7 shows that the bandwidth achieved by IB is approximately 60%

of NB's bandwidth. Note that the times shown include closing the file in IB, an

operation with considerable overhead, to be discussed in Section 3.6.2.4. With a

faster file system, the time for the extra work done on compute nodes limits the

achievable bandwidth. This explains the flattening of the IB curve as the number

of I/O nodes increases.

Several variables play a part in IB performance. The first of these is IB

block size, biß. A large block size requires more compute node memory, but the

buffer management overhead becomes a smaller percentage of work done on compute

nodes. In the benchmark shown in Figure 3.7, biß = 64. Table 3.2 shows the relative

performance with smaller biß values. We see a steady decline in performance as bis

decreases to 32, 16, and 8. Our system defaults to a biß value of 64 bytes; the user

can override this value on a per-run basis using a command-line argument. The cost

of reading, discussed in Section 3.6.3, must be considered along with the time-space

49

tradeoff shown in Table 3.2 to select an appropriate biß value. Another variable is

the number of data block pointers in a single directory entry. The benchmarks shown

were run with only two pointers per directory entry. By increasing that number to

six3, the bandwidth increases on all I/O node configurations by approximately 7%.

Increasing the number to fourteen provides negligible additional bandwidth.

Asynchronous I/O, in which file operations are overlapped with computation,

can sometimes be utilized to increase performance. When asynchronous I/O is used,

the latency, or time the run-time system spends buffering data, is of greater concern

than bandwidth. The latencies for all three modes vary widely based on the number

of VPs per compute node, the cache size, the VP buffer size, and the amount of

data written by each VP. We give here a simple comparison of latencies based on

the experiments described in Figure 3.7. NB latency is 0.000839 //s per VP, CB

latency is 0.086 /is per VP, and IB latency is 6.550 //s per VP. These values reflect

the cost of buffering data on the compute nodes and assume messages to the file

system and subsequent disk operations take place in the background.

3.6.2.3. Mode Transitions During Writing

A mode transition can potentially take place on a subset of the compute

nodes when they perform file operations from within elemental functions. The

other nodes do not need to be informed of the transition as it occurs (in fact,

they cannot be informed, since the run-time system cannot perform communication

within elemental functions), since they will either transition on their own upon

performing elemental file operations, or they will be informed of the transition at the

3With 2 other values in a directory entry, these block pointer counts (2, 6, and 14) ensure
a power-of-2 total size in bytes.

50

©
When a VP fills its
local buffer, the
contents are copied to
the file superblock.

File Superblock

Global block number in
IB segment of data file

VP Buffer
©

©
VP Buffer

When a superblock (data or
directory) is full, it is written
to the file system.

File Superblock

File Superblock

Then, global block numbers are
updated for subsequent writes.
Compute node p of P processors
writes to the pth superblock in
the IB segment and every Pth
subsequent superblock.

The VP then updates
its directory info

When the directory info
is full, it is copied to a
directory superblock and
labeled by VP.

Data block pointers

1
... | ... | 258

\ 1

1,1 | |
■ VP| 1

♦ t t t

Next directory block pointers are NULL.
They will be updated on file closure.

256 257 258 259

272 273 274 275
This example assumes P=4, with
4 VP blocks per superblock, so
the next block for this compute
node is 256 + 4 * 4 = 272.

FIGURE 3.8. Using superblocks for VP writes in IB mode. Each VP has its own
active file buffer. When it is filled, the buffer is copied to the superblock. When the
superblock is filled, it is written as a unit to the file system. The VP keeps track
of which data blocks its data has been written to, and this directory information is
written to the directory file using superblocks.

51

next non-elemental file operation. Non-elemental file operations are preceded by a

reduction to determine the mode for the operation. If some compute nodes are in IB

mode, the remaining nodes will transition after the reduction and prior to performing

the requested operation. If no compute nodes are in IB mode, but the requested

operation requires IB mode, the reduction results in all compute nodes transitioning

at the same time. A transition to IB may require flushing and deallocation of CB

buffers, if they are not empty. Then, IB buffers, superblocks, directory superblocks,

and VP directories must be allocated. The parallel FILE variables, used to manage

individual VP streams, are initialized. The IB transition is now complete, and

the requested operation is performed, either for an individual VP (in an elemental

function), or in a VP emulation loop in a non-elemental function. The simpler

transition from NB to CB entails allocation of CB buffers.

3.6.24. Closing a File

When a file is closed, housekeeping must be performed. Regardless of the

mode(s) used to write a file, the sequential .meta file is written by compute node

0. A file closed while in CB must have its VP buffers flushed if they aren't empty.

The total_CB_data field in the .meta file lets the reader know how many bytes of

the last CB block are valid.

A file written using IB requires more work on closing. First, the VP buffers

are flushed to superblocks. Then, the superblocks are written to the parallel file.

Note from Figure 3.8 that the directory information written so far contains VP

values but NULL next values. These are updated by reading directory superblocks

in reverse order, updating next pointers, and writing the data back again. A linked

list is formed, with the head of each list stored in the .first metafile. Although this

52

VP:

.first file contents:

0 1 2 3 4 5 6

0 1 3 4 -1 5 7

A negative value here indicates an empty VP stream.

Dir Block #: 0

.dir file:

10 15 20 25

Data block ptrs: 35 -1 ... -1

2 -5

VP Next Dir Block

The last nonnegative data
block pointer points to the
last block in the VP's stream.

A negative Next pointer indicates
the end of the list of dir blocks and
tells how many bytes, in this case 5,
are available in the last data block.

FIGURE 3.9. Directory structure for VP data blocks in a single file. The .first
file contains a pointer to the first directory block for each VP. Each directory block
contains pointers to a single VP's data blocks in the IB segment of the data file.
The Next pointer in a directory block is used to build a linked list containing all of
a VP's directory blocks.

53

directory patching step incurs extra overhead, it is performed using large-grained file

operations. An earlier prototype updated the directory in a small-grained fashion

as VP blocks are written; this approach reduced effective bandwidth by an order

of magnitude. One might consider omitting the patching step, since the VP values

in the directory blocks allow the streams to be reconstructed again. However, we

chose to eliminate the need for a reading program to search the directory. As parallel

applications' file needs become more well-understood, we may find it necessary to

change the directory structure entirely, or perhaps to use a doubly-linked list. All

the performance figures presented for IB include the extra cost of updating the

directory upon closing of the file.

3.6.3. Reading

A file may be opened for reading using one of two f open overloadings:

FILE:current *fopen(char *name, char *type);
FILE:void *fopen(char *name, char *type, shape *s);

The first of these requires that the existing file be of the same shape as

current. The second, the only Stream* operation whose usage is not analogous to

that of traditional C, returns a parallel FILE variable whose shape is defined at run

time from the .meta file. The void shape of the return value specifies that it can

match any shape, while the actual shape of the file opened is returned via the s

parameter.

The mode detection performed for reading is essentially the same as for

writing described in section 3.6.2. NB can be used to read only from the NB segment

54

of the file4. CB can be used to read data from the NB and CB segments, because

their structure is identical aside from the VP block size. IB can be used to read

from any of the file segments. The VP block size for each segment is read from the

.meta file, so the VP buffers on the compute nodes exactly match the VP blocks on

disk.

Reads in NB move data directly from the file system to parallel variables. In

CB, data are moved to VP buffers on the compute nodes; VP-level reads then move

data from the buffers to parallel variables. As shown in Figure 3.10, bandwidth

achieved by CB scales well with the number of I/O nodes but slightly lags NB

bandwidth. IB is slower due to the extra buffer manipulation on the compute nodes

as well as the extra reads required to get directory information.

3.6.3.1. Reading in IB Mode

Reading in IB mode was designed to emphasize movement of collections of

VP blocks rather than individual blocks between compute nodes and the file system.

The design is based on the fact that most programs read a file in the same way it was

written. In this case, VP blocks written to the file system in the same superblock

will be needed in the reading program at approximately the same time. Therefore,

when a VP block (data or directory) is needed from the file system, a superblock

containing the desired block and subsequent blocks is read. Like all prefetching

schemes, this one may actually hurt performance when a particularly ill-behaved

read pattern is used. However, if no prefetching is done, or if each prefetch reads a

4If the VP block sizes for the NB and CB segments are identical, NB could be used to
read the CB segment. We have not implemented this optimization.

55

PQ
S
ö

• 1—1

Ö

12 3 4

Number of I/O Nodes

FIGURE 3.10. Comparison of NB, CB, and IB modes for reading on the Meiko
CS-2. 64K VPs each read 64 double values for a total of 32 MB. 95% confidence
intervals are shown.

single VP block from the file system, file accesses are fine-grained and guaranteed

to be slow. We feel that prefetching based on VP write patterns is a good heuristic

for avoiding fine-grained file accesses.

The reading process for IB mode is detailed in Figure 3.11. Several variables

impact the IB reading performance. As with writing, one of these is biß- Table

3.3 shows the relative performance when several values of biß are used. Reducing

bis has an impact on bandwidth, but not as much as for IB writes. The size of a

directory entry affects reading performance as it does for writing. That is, moving

from two to six data block pointers per directory entry increases performance by

about 6%, but increasing that value to fourteen data block pointers makes negligible

additional impact. Finally, the number of read buffers impacts performance. For

the results presented in Figure 3.10, the compute nodes use only two read buffers

56

I/O Nodes

IB Block Size
64 bytes 32 bytes 16 bytes 8 bytes

Bandwidth Bandwidth %64 Bandwidth %64 Bandwidth %64
1
2
3
4

1.50
2.54
2.93
4.24

1.49
2.07
2.45
3.97

99
81
84
94

1.21
2.15
2.05
3.52

81
85
70
83

0.94
1.51
1.58
2.67

63
59
53
63

TABLE 3.3. Comparison of achieved I/O bandwidth in megabytes per second when
reading in IB mode with different IB block sizes. The % 64 column shows the
percentage of the bandwidth achieved relative to when biß = 64. Bandwidth values
are distinct at the 95% confidence level for 3 and 4 I/O nodes.

of 32K bytes each. During the reads, one buffer holds the directory information

while another holds data. Because the data are read exactly as written, no more

read buffers are needed. In other cases, more read buffers may be needed to cache

data for extended periods. Unfortunately, our current implementation uses a simple

linear search of buffers to satisfy a given request; the search becomes expensive as

the number of buffers increases. We shall update the search to a more efficient

scheme; until then, our implementation handicaps reads relying on more than a few

read buffers.

3.6.3.2. Mode Transitions During Reading

Mode transitions can either be forced by the segmented nature of the file

(e.g., when the CB segment has been exhausted, a transition to IB must occur), or

through the parameters of the requested operation. For example, data in the NB

segment of a file may be read using CB if the parallel variable being filled has a

stride. A transition to CB requires allocation of CB buffers on the compute nodes.

The size of the CB buffers is based on the bcB value stored in the .meta file. If the

57

IB
VP

''directory data""
unread or

^exhausted?.

vYes
Is next

VP directory
block in read

cache?

Read block from dir
file, including dir blocks
for subsequent VPs

NB,CB
Yes

Copy directory info
from cache to VP fd.

Get next data
block # from dir

Read block from file, including
data for subsequent VPs.

Yes

Copy data to VP's buffer,
updating amount available.

FIGURE 3.11. Simple decision flow for reading a single VP block in IB mode. This
sequence may be repeated several times to satisfy a user-level request.

58

NB segment is being read, and if b^B < bcB, ^NB is the effective block size until the

CB segment of the file is reached.

Transitions to IB occur in two steps. The first step allocates and initializes

the read buffers. If the NB or CB segment of the file is being read, directory

information is not needed. When the IB segment of the file is reached, the second

step of the transition takes place. The .first file is read to get the first directory

block pointer for each VP. Actual directory blocks are not read until individual VPs

perform read operations.

3.6.4. I/O with Elemental Functions

As shown in [65], a single-stream file model for C* cannot support file output

in elemental functions. Here we show that, to maintain a familiar programmer's

interface, formatted input and output, critical when debugging at the VP level,

must be performed using elemental functions. The functions f printf, vf printf,

and f scanf receive a variable number of arguments whose type is specified in a

format string. The programmer writes, for example:

fprintf(parFile, "Variable someVar is °/0d\n", someVar) ;

and wants the semantics to match someVar's type (scalar or parallel). Unfortunately,

the run-time system must rely exclusively on the type specifier in the format string

to determine the type of fprintf's arguments, and °/0d dictates a single integer,

not a parallel variable. Two obvious solutions present themselves: allow a new

parallel type specifier in the format string, or call fprintf once per VP so the values

passed in are logically scalars. The former solution does not maintain the familiar

C programming interface, while the latter, namely implementation of formatted

output via elemental functions, does.

59

The above example shows a file operation implemented as an elemental func-

tion. A file operation may also be called from within an elemental function. The

Stream* library includes its own versions of the scalar C file operations; these are

called from within elemental functions. They check the f d value for the FILE vari-

able used. If the f d represents a scalar file, the original scalar version of the routine

(now renamed) is called. Otherwise, the Stream* handler performs the requested

operation in IB mode, forcing a transition to IB on that compute node if necessary.

Other compute nodes will be informed of the transition during the reduction in the

next collective file operation.

3.6.5. Seeking

The Stream* f seek operation, in its most general form, allows each VP to

seek to.a different location in its stream. Whether reading or writing, typical data-

parallel applications will have all VPs seeking to the same position in their streams.

When this is the case, and the seek is to the NB or CB segment of the file, NB or

CB mode may be used, even if IB was the previous mode. Here we simply point out

some implementation concerns. When writing to a file, seeks may require flushing

of buffers beforehand and read-modify-write sequences afterward. These operations

can be supported in all three modes, although updates in IB mode may require

that VP blocks be written individually, since each VP block's position is dictated

by the earlier writing pattern. Our implementation does not yet support this type

of operation, which does not appear frequently in data-parallel applications.

60

3.7. Redistribution Issues

So far, we have assumed the distribution of data on the file system matches

the data distribution on the compute nodes. When this is not the case, data must

be permuted during reading and/or writing. As we have noted, disk-directed I/O

[52] or the two-phase access strategy [27] can be used to perform this permutation

collectively for NB and CB modes in place of using many small, inefficient reads

or writes. When such a permutation is performed, the layout of VP data in com-

pute node memory is not the same as the layout on disk, and data do not move

directly between compute node memory and the file system. However, assuming the

permutation must be done, the data layout for NB writing (respectively, reading)

requires no intermediate buffering of data in VP buffers before (after) the permuta-

tion. Therefore, NB's performance is comparable to that of an array-oriented system

requiring a redistribution. CB performance can be enhanced by increasing bcB, es-

sentially the array element size, when redistributions are required; redistributions

are faster in terms of bytes/second when data consist of larger elements [66].

C*'s definition [92] does not include a machine-independent construct for the

programmer to specify data distributions. The UNH C* system currently utilizes

only block distributions. It may be fruitful to explore adding constructs to support

writing of files in a distribution other than the compute-node distribution. When

reading, the run-time system requires no additional information from the program-

mer, since the distribution on disk is known from the .meta file.

3.8. Interfacing Stream* to External Programs

Stream* utilizes a unique file format; thus, the files are "internal" [21]. Ide-

ally, Stream* could exchange files with external applications using little or no filter-

61

ing of files. With NB mode, this is the case. Files consisting of a single NB segment

are laid out exactly as an array-oriented program would write them. These files

can be used without conversion by external programs. External data files can be

treated as files containing only an NB segment. If the first overloading of f read in

Section 3.6.3 is used, an external file lacking a .metafile simply takes on the current

shape and is assumed to consist of a single NB segment. A .meta file may have to

be built using a simple utility program in some situations (e.g., if a file has a dif-

ferent distribution than the program that will read it). Because most data-parallel

applications rely on regular array-oriented I/O, the use of NB as an interface to the

outside world should work in most situations [22, 36, 56, 63, 64, 77].

Files with CB and IB segments require explicit conversions. A file containing

a CB or IB segment can be converted to one containing a single NB segment using

a high-level C* program. The program has each VP reading its existing stream and

writing its data, or a fixed value upon reaching EOF on its input, in NB mode.

Following three rules guarantees that an output file will consist of only an NB

segment, which means it will be written at top speed and will be readable by external

applications.

• Use the form of f write described in section 3.6.2.1 with all VPs active.

• Don't output fields of structs or individual parallel array elements.

• Make sure every VP in every call to f write outputs the same number of bytes.

Note that these rules are at the language level, so the programmer does not need

Stream* implementation knowledge to get high performance.

62

3.9. Conclusions

We have shown that the programmer's I/O interface can be seamlessly in-

tegrated with C*'s virtual processor programming paradigm using data-parallel

streams. Their implementation using machine-independent, automatically detected

modes lets the most common file operations found in data-parallel programs run

at the top speed supported by the file system. The high-performance modes, be-

cause of their array-oriented nature, can also take advantage of file redistribution

optimizations developed for languages such as HPF. The general mode supports a

wide variety of file operations while achieving bandwidth over half that of the high-

performance operations by combining fine-grained virtual processor operations into

large-grained file system operations.

63

4. ANALYSIS AND MODELING OF ARRAY REDISTRIBUTIONS

4.1. Introduction

On distributed memory parallel computers, data are distributed among pro-

cessors, and the choice of data distribution can significantly impact performance.

Programmers must take into account the interplay between parallel algorithms and

data distributions when solving a problem, because many parallel algorithms per-

form well only when the data have a given distribution. For example, cyclic distri-

butions are often applied to adaptive, irregular, and sparse matrix problems. Block

distributions are often ideal for dense matrix problems. In many cases, the pro-

grammer cannot use a single data distribution throughout a program; data must be

redistributed between tasks. The redistribution may be done for performance rea-

sons, as when a distribution well-suited to one task in a program may force terrible

performance for a subsequent task. Other times, the redistribution may be done

out of necessity. Examples of such necessary redistributions include the use of a

library function requiring a specific data distribution and the use of file data whose

file distribution does not match that desired on compute nodes [27].

Redistribution can be expensive, though, and the programmer or a perfor-

mance prediction tool would benefit from knowledge about the expected execution

time. An obvious example is using a redistribution model to decide whether or not

the cost of a redistribution coupled with the reduced cost of subsequent tasks is

cheaper than the tasks without a redistribution. Another use of an accurate re-

distribution performance model is to determine the cheapest type of redistribution

64

performed, since some multi-dimensional and general redistributions can be done in

one expensive phase or two or more efficient phases.

Unfortunately, existing performance models of data redistribution are lim-

ited in scope. An example is the model of Johnsson and Ho [46], which is geared

to hypercubes with array sizes corresponding to machine size. Many approaches

to redistribution have been presented [10, 39, 48, 59, 61, 91, 97] with no predic-

tive performance models. Others model the communication cost [49] of redistribu-

tions. Communication cost, the actual time messages are sent between processors,

is only one factor in the total cost of a redistribution. On a parallel computer

with a high-bandwidth processor interconnect, total cost is dominated by the time

spent building packets to be sent to other processors and the time spent unpacking

data from received packets into their proper local array locations. Packet-building

for a block-to-cyclic redistribution of a 50 MB array using 16 nodes of the Meiko

CS-2 accounts for 76% of the redistribution time; unpacking for a cyclic-to-block

redistribution takes 79% of the total redistribution time. Unlike these two simple

redistributions, cyclic-to-cyclic redistributions require both packing and unpacking

of data; these packet-handling phases take up to 86% of the redistribution time.

Further, the cost of building packets is so high for general redistributions that such

redistributions can sometimes be faster when performed as the composition of two

simpler redistributions, even though the resulting communication costs are doubled

[91]. Understanding the packet-handling phases is important not only because they

dominate redistribution time, but because the time can vary significantly with only

a slight change in variables. For instance, unpacking 1 MB of data from 64 proces-

sors for a Cyclic to Block redistribution takes 179 ms on the Alpha machine used

in our experiments; the same job with 63 processors takes only 82 ms—less than

half the time. This significant variability makes performance prediction impossible

65

without detailed understanding of the factors involved in building and unpacking

packets for redistribution.

In this chapter, we develop and validate a performance model for the costs

incurred when moving data between local arrays and communication packets. We

show that by empirically running just a few key redistributions we can determine

the parameters of a model that accurately describes a variety of redistributions. We

point out machine parameters that play an important part in the cost of building

packets. We also show the value of these parameters for three different machines so

users of our model can discern a reasonable range of expected values to use in their

own models.

In the following sections, we describe the redistribution problem and our

assumptions. We focus on a single redistribution, the Cyclic(&?/) to Cyclic(j/) redis-

tribution, to build a basic model. Subsequent sections show how to model the impact

of TLB misses on the basic model for TLBs using random, LRU, and Pseudo-LRU

replacement policies. TLB effects are also described for redistributions using large

k values. Finally, the results are migrated to other redistributions. Sections 4.7 and

4.8 of the chapter describes the strided unpacking of data after the communication

step. We show how the cache efficiency of the strided copy can be determined and

modeled. TLB effects in the context of the strided copy are also modeled. In all

cases, empirical results are given and compared to the model. We close with a

discussion and conclusions.

4.2. The Modeled System

Our model describes the computation and data copying costs of a parallel

array redistribution. It is is based on the algorithms of Thakur and Choudhary

66

[90, 91], because they are efficient and easy to implement. In these algorithms, the

computation is performed during redistribution, and our model captures the cost of

the computations as overhead for a copy operation. Although redistribution schemes

exist which may be faster in some cases [10] [59], they require more complex up-front

computations. We do not model these preliminary computations, but our model can

effectively be applied to the run-time overhead associated with these models.

The data being redistributed are viewed as a global array A of N elements

mapped to P processors. Each array element is e bytes. L denotes the size in bytes

of the local array residing on a given processor. Data distributions are described

using HPF nomenclature. A Block(m) distribution allocates the first m elements of

A to processor 0, the next m elements to processor 1, and so on in order until all TV

elements have been allocated to processors. The term Block with no arguments is

synonymous with Block(\N/P]). A Cyclic(Ä;) distribution allocates k array elements

to each processor in round-robin fashion starting with processor 0. The term Cyclic

with no arguments is synonymous with Cyclic(l). In Section 4.5 we show how our

model is applied to a variety of redistributions; we first expand our model in the

context of the Gyc]ic(ky) to Cyclic(y) redistribution, denoted KYY.

In modeling the KYY redistribution, we take into account the system fea-

tures which impact the performance of the redistribution. These include number

of processors, memory bandwidth in the context of packet-building, cache size and

block size, and effective Translation Lookahead Buffer (TLB) size and replacement

policy. We calculate parameters such as TLB miss penalty and cache miss penalty

in the context of the redistribution operation, since these values vary greatly depend-

ing on the use of the overall system. For example, the TLB miss penalty depends

on whether or not page table entries (PTEs) are cached, which depends on how

the cache is used. Because our concern is not communication cost, but rather the

Clock L2 Cache TLB
Speed Cache Block TLB Replacement Page

CPU (MHz) Size Size Size Policy Size
Alpha 150 256K 32 32 LRU 8192
HyperSPARC 66 256K 32 64 Random 4096
PA-RISC 33 64K 32 120 Pseudo-LRU 4096

67

TABLE 4.1. CPUs used to build and validate the array redistribution model.

overhead of building data into packets and collecting received data, we can run our

experiments on stand-alone machines using widely-available CPUs. This lets us see

the impact of a variety of architecture and implementation features on redistribu-

tion performance. The CPUs used in the experiments are shown in Table 4.1 [26,

30]. The HyperSPARC experiments were run on a single node of a Meiko CS-2

multicomputer, while the Alpha and PA-RISC machine results are from stand-alone

workstations.

We emphasize that we compare our model to the actual performance of these

machines, not simulations thereof. The times calculated from these machines are

the means of at least 10 runs, and the coefficient of variation (that is, the ratio

of standard deviation to mean) for each value is less than 0.05. The accuracy of

our model is expressed in terms of the coefficient of determination, denoted R2,

maximum relative error, and 90% error, the 90th percentile of relative error values.

The coefficient of determination is a measure of how closely the model predicts the

actual redistribution time. A simple model predicting a run time equal to the mean

of all runs, regardless of the run parameters, would have R2 = 0. A model that

perfectly predicts all redistribution times would have R2 = 1. A negative value

of R2 occurs when the mean is a better predictor of results than the model. The

68

maximum relative error indicates the worst predictions made by the model. The

90% relative error value is less sensitive to outliers than the maximum relative error.

4.3. Basic Packet-Building Model

The first component of the model we examine is the cost of copying data

from the source array to the packets bound for different processors for a KYY

redistribution. A sketch of the packet-building algorithm run on each processor for

this redistribution is:

1. Calculate destination processor pd of first local element
2. For each block of size ky in the local array do
3. For i = 0 to k - 1 do

Put elements (iy) through (i + l)y - 1 of the current block of
size ky into the packet for processor (pj, + i) mod P
(Note that ey bytes are moved at a time)

In the implementation of the above algorithm, the mod function in the loop

is replaced by a much faster increment and test. Figure 4.1 shows the distribution of

the global array data for a Cyclic(6) to Cyclic(2) redistribution and how a processor

builds packets for the associated redistribution. Note that, when k < P, the number

of packets built is k rather than P. Hence when referring to P in the discussion to

follow, we assume it represents the number of processors for which packets are being

built, even if that number is less than the number of physical processors involved in

the redistribution.

4.3.1. Cache Considerations

The performance of packing or unpacking data can vary greatly with cache

utilization. The programmer cannot rely on predictably optimal performance with-

69

Cyclic(6)

Assignment to
Processors

Global Array
0 J 47

0 0

Cyclic(2)

Assignment to
Processors

c 47

012301230123012301230123

Processor 1 Local Array | I | "f" U]

Packets Bound
to Processors 0

FIGURE 4.1. Cyclic(6) to Cyclic(2) (KYY) redistribution on a four-processor sys-
tem. The two snapshots of the global array show to which processor each element
is mapped for each distribution. When building packets for the redistribution, pro-
cessor one moves sequentially through its local array, moving y elements, 2 in this
example, at a time into the correct packets.

70

out taking into account cache effects on the building of packets. For example, a

non-optimized KYY packetizing of 1 MB using the Alpha takes 194 ms; the cache-

optimized version takes 100 ms—half the time. In this section we describe an easy,

computationally inexpensive way to optimize cache usage for redistributions.

A wide variety of cache organizations are used in current processors, but our

discussion centers on a direct-mapped, write-allocate, write-back cache with size

in bytes denoted C. These features are commonly found in L2 caches. The main

concern in this section is avoiding misses in the L2 cache, where a cache miss requires

an expensive main memory access. This discussion can also be applied to LI caches,

whether associative or direct-mapped.

Many redistribution algorithms repeatedly move the same amount of data

to all packets in a round-robin fashion. In this case, all packet pointers move in

tandem as the algorithm progresses. A poor initial arrangement of packets relative

to the cache will cause collisions throughout the packet building process. Therefore,

our goal is to lay out the packets so the starting point of each packet does not map

to the same cache block as the starting point of any other packet. Note that this is

especially critical when the amount of data moved in a single copy, n, is a fraction

of the cache block size b. For example, when 8 bytes at a time are moved to the

packets on a system with a 32-byte cache block size, each block may be loaded into

cache four times in the worst case, three times more than necessary.

Our goal is to lay out the packets so that, when data are moved to a packet,

the last (i.e., current) block used by other packets is not removed from the cache.

We assume a contiguous address space is available for the packets, and that the

starting addresses of adjacent packets differ by a stride of a (measured in cache

blocks), where a is at least as large as the largest packet.The following theorem

71

is an adaptation of a well-known technique from vector processing for eliminating

memory bank conflicts during strided vector operations.

Theorem 4.1 A stride a meeting the following conditions ensures that the starting

addresses of all packets map to different cache blocks.

LCM(a, C) > aP,

where LCM is the least common multiple.

A simple algorithm using this result calculates the desired stride in bytes

between packets:

1. Function CacheOptimalStride(BytesPerPacket, BlocksInCache,
CacheBlockSize, NumberOfPackets)

2. BlocksPerPacket = [BytesPerPacket/CacheBlockSize]
3. While (LCM(BlocksPerPacket,BlocksInCache) <

BlocksPerPacket * NumberOfPackets)
4. BlocksPerPacket = BlocksPerPacket + 1
5. Return(BlocksPerPacket * CacheBlockSize)

The algorithm above eliminates collisions only when elements do not span

more than one cache block. To broaden its usefulness, we can logically increase

CacheBlockSize to

2[log2([n/6] +l)l6j ' (4-1)

(thereby reducing BlocksInCache) to eliminate collisions for larger n values. We

assume here that, as on most machines, C/b is a power of 2 and C mod 6 = 0.

This approach can be used until the logical value of BlocksInCache becomes less

than P. At this point, n is large enough that one extra cache miss per copy adds

minimal time relative to the total copy cost. Although the LCM calculation requires

expensive modulo arithmetic, the most expensive one on the benchmarks presented

in this chapter takes less than one third of one percent of the time for the fastest

72

redistribution on each machine. This is a small price to pay to ensure efficient cache

usage.

4.3.2. Modeling the Packet-Building Cost

The copying cost for building packets depends on several factors, which in-

clude the overhead (e.g., destination processor calculation, memcpy startup time,

etc.) for each copy, memcpy implementation, memory bandwidth, and n (for the

KYY redistribution ey), the number of bytes copied to each packet in a single copy

operation. We represent the empirical copying cost in seconds per megabyte (MB)

as (f>(n,P).

When few bytes are moved, the processor calculation and memcpy overhead

dominates, and the copy time per MB is high. As more bytes are moved in each

operation, the overhead of the copy operations is minimized, and the copy time

moves to its asymptotal value. Such behavior can be modeled using a function in

this form:

#(n) = ^ + cs (4.2)
n°s

In this function, the parameters as and cs, respectively, represent the copy call

overhead and actual time spent copying. The bs value defines the shape of the <j)(n)

curve, which depends on the relationship between as and cs, the implementation of

memcpy, and memory system design. For our model, these values are determined for

a given machine by actually running three different KYY redistributions, namely

when n = 8,40, and 1024 while P = k = 8. The first two points are used because

they lie on the steep portion of the curve, where <f> (n) changes significantly with

a change in n. The last point provides the asymptotal cost when many bytes are

copied at a time. The actual values of as, bs, and cs are calculated using Hooke's

73

CPU as bs cs R2
Max relative

error (%)
90th percentile

relative error (%)
Alpha 0.579 1.44 0.067 0.961 2.48 0.98
HyperSPARC 1.58 1.32 0.066 0.989 9.15 1.23
PA-RISC 1.46 1.11 0.083 0.991 5.04 2.28

TABLE 4.2. Parameters for (f)(n) = as/(nbs) + cs for three machines and the
resulting R2, MAX and 90th percentile error values relative to actual machine runs.

algorithm1, a minimization routine effective for non-linear data. The value of bs is

greater than one because, as n is larger than a word, memcpy becomes more efficient.

Further efficiencies can be gained with prefetching caches as n gets larger.

The function </)(n) built from these points accurately approximates <f> (n),

as shown in Figure 4.2, where the actual HyperSPARC data and the approximation

using <f>(n) are shown. Resulting values for as,bs, and cs along with relative error

information for all three CPUs is shown in Table 4.2. The maximum error occurs

on the steep portion of the curve when n < 64. This error can be reduced by

including points from more experiments using small n values, but we want to limit

the number of runs needed to create our model. Note that the low as value for the

Alpha reflects a low overhead, including address calculation, for each copy. The high

bs value (the exponent in the denominator) for the Alpha reflects a <f> (n) function

that flattens more quickly than that of the HyperSPARC, while the lower bs value

of the PA-RISC machine implies that <f> (n) approaches the asymptotal cost at

a much higher value of n. Finally, the PA-RISC has a high cs value, indicating a

lower memory bandwidth than either of the other two machines.

1Available via netlib at URL http://www.netlib.org/index.html

74

Copy Time
ins/MB

0.18

0.16

0.14

0.12

0.1

0.08

0.06

\ -«

0 200 400 600 800 1000 1200

Bytes Moved per Copy

FIGURE 4.2. Packet-building copy time when P = 8 is shown for HyperSPARC
(0 in the graph) as the number of bytes moved during each copy operation varies.
Our model of the same data, <^(n, 8), is generated using only data from the three
runs pointed at by the arrows. The Max Error of the curve fit is 9.15%, with 90%
Error of l.S 'o.

75

4.4. Scaling the Basic Model to Larger Systems

As packets are built for more processors, the effective copy bandwidth re-

mains heavily dependent on n, as described in the previous section. However, as

more packets are built, a CPU implementation feature, namely Translation Looka-

side Buffer (TLB) design, comes into play. The TLB holds Page Table Entries

(PTEs) for recently-accessed pages in memory. A TLB miss typically requires at

least one memory access. When multi-level page tables are employed, retrieving

the desired page table entry may require several memory accesses. If packets are

larger than the page size, and if the number of packets being built is greater than

the TLB size, PTEs for some packets are removed from the TLB to make room for

the other packets' PTEs. The removed PTEs must be read from memory, perhaps

cache, when the corresponding packets are accessed again. Our studies have shown

that 5 auxiliary TLB entries are needed to point to data aside from the packets

themselves. These data include the source array, the stack, packet pointers, text

and library code. Hence, although a TLB may contain a total of T = 32 entries, we

say it has an effective size, denoted TE, of 27.

A TLB is typically implemented with either a Least Recently Used (LRU),

Pseudo-LRU, or random replacement policy. Assume LRU or Pseudo-LRU is used,

and that packets receive data in round-robin order (we address more complicated

orderings in Section 4.4.2). When P > TE, each packet will have its page table

entry removed from the TLB before the packet is accessed again. The result is

an abrupt increase in the packet-building cost when P moves from TE to TE + 1.

The impact of TLB misses on performance is significant. Figure 4.3(a) shows that

packet-building time for the PA-RISC nearly doubles as P exceeds 115, the effective

size of its Pseudo-LRU TLB, when n = 8. The Alpha employs an LRU TLB with

76

Tß = 27. If a random removal policy is used, the copy time slowly increases as P

increases above TE until the probability that a packet's entry is in the TLB when

needed is essentially zero. Figure 4.3(b) shows this trend for the HyperSPARC as

P increases.

4.4.1. Calculating TLB Miss Costs

4.4.I.I. TLBs using LRU and Psuedo-LRU Replacement

We now calculate the modeled cost T(n, P) of the TLB misses. When a TLB

miss occurs, PTEs must be accessed. PTEs can be cached like other data. As P

increases and more PTEs are needed, more of these PTEs and packets compete for

space in the cache, and more collisions occur. Therefore, we need to model the initial

increase in cost as P steps above TE as well as any increase in cost occurring as P

continues to increase beyond this value. We run two benchmarks, both with n = 8.

The first is with P = TE + 1 (giving </>(8,TE + 1)), and the second is with P = 256

(</>(8,256)). The first of these establishes the initial jump in cost when TLB misses

start occurring, and the second lets us determine any further incremental cost in

TLB costs as P increases beyond TE + 1. The PA-RISC TLB miss cost remains

relatively constant as P increases. On the Alpha, which has an 8 KB, direct-mapped,

LI cache, page table entries needed during a TLB miss get crowded out of the LI

cache as P increases. We assume this increase in cost is linear. We determine both

effects, the abrupt TLB miss cost when P increases above TE, and the slight increase

as P increases further as a difference based on three benchmark runs with n = 8,

whenP = 8,rE + l, and 256.

77

250

400
n = ey

500

200

Processors

(a)

400
n = ey

500

250
200

150
, 100
50 Processors

(b)

FIGURE 4.3. Impact of TLB misses on packet-building performance, (a) The
PA-RISC uses an LRU replacement policy with Tg = 115. When P rises above
this value, a dramatic increase in cost results, especially when n is small, (b) The
HyperSPARC uses a random replacement policy with TE = 59. When P rises above
this value, the copy cost slowly increases as the probability of a TLB miss for each
packet's page increases. Again, the impact is most noticeable when n is small.

78

T(n,P) = {
I ^(8,TB+l)+(^(8,256)-0(8,Ti5+l))1^i^]_-0(8,8).) , P > TE

0, otherwise.

The 8/rc multiplier adjusts for the reduced number of TLB misses per MB copied

as n increases. The remaining terms define the TLB cost model as a linear function

generated from the two benchmark runs (/>(8, TE + 1) and <^(8,256).

4.4.I.2. TLBs using Random Replacement

For a TLB using random replacement, the increase in copy time is more

gradual as P increases. Note from Figure 4.3(b) that the increase starts even before

P reaches TE- This is due to the fact that compulsory TLB misses at the start of

packet-building may force replacement of PTEs pointing to active packets' pages,

even if stale PTEs reside in the TLB. We do not model the slight slope when P <TE-

Instead, as with the LRU model, we model the less subtle change that occurs when

P exceeds TE. We assume that, when P = TE, the probability that a given packet's

page table entry is in the TLB (its hit ratio) is 1.

The steady-state probability h(P) of a TLB hit occurring is defined by a

recurrence:

r_l\(i-MW-i)
HP) = {-J^) ■ (4-3)

The intuition for this formula is provided by a "packet-centric" view. A packet's

TLB entry has a (T — 1)/T chance of staying in the TLB when a miss occurs. The

exponent is the number of expected misses between subsequent times a packet is

accessed: the number of other packets times the steady-state miss rate (1 — h(P)).

Although this formula ignores the higher rate of pre-steady-state misses, it gives a

remarkably accurate prediction of TLB miss costs.

79

This recurrence can be reduced to a function of W(h(P)), where

W(h(P))ewMp» = h(P), which can be solved numerically [35]. We use Maple

to repeatedly solve the recurrence to generate a table of (P, h(P)) values to be ref-

erenced by the model. Finally, we use Maple to calculate ^(256). Because we use

</>(8,256) to determine the cost of TLB misses, division by (1 — A(256)) provides

the proper scaling of probabilities to TLB miss cost. As with the LRU formula, we

must also adjust the impact of the TLB cost based on n. The results presented here

are found when n = 8, where the cost of TLB misses per bytes moved is great; the

impact of TLB misses is inversely proportional to n.

T(n,P)={

\ 8W;256)-^(8 8))(1 _ kp))f p>Ti

nil — /i(256)J

0, otherwise.

After adding this value to <^(n), we have an accurate model of the packet-building

cost in s/MB for the HyperSPARC. To evaluate the model, we compare it to actual

runs with n = 8, where TLB misses dominate, and accuracy is critical. The com-

parison is shown in Figure 4.4. The model has a R2 value of 0.996, the maxmum

error of the fit is 3.0%, and the 90th percentile error is 2.5%.

4.4.2. Impact of k on TLB Misses

In the previous section we noted that when k < P, the number of processors

for which packets are built is k. The results presented there used P to represent the

effective number of processors, or min(Ä;, P) when k < P. From the KYY algorithm

on page 68, when k > P, the P packets are accessed in round-robin order until k of

them have been accessed. The minimum number of times all P packets are accessed

during these k accesses is [k/P\, and we call this the number of full iterations

80

en

.S
0)

&, o
U

0.14
50 100 150 200 250 300

Number of Processors

FIGURE 4.4. Comparison of our model (dashed lines) for a random TLB with
actual results from a HyperSPARC (solid lines). The model curve is built from
the steady-state probability plus benchmark runs when P = 8 and P = 256. The
HyperSPARC curve shows the copy cost calculated from actual runs and includes
95% confidence intervals.

81

through the P packets. The remaining accesses, k mod P, of them, occur in a single

partial iteration.

When k > P and P > TE, the partial iteration through the packets can

change the impact of TLB misses described in the earlier model. The impact on

TLBs with random replacement is minimal, so we do not vary the model presented

in the previous section. The results are shown in Table 4.3.

4.4.2.I. Large k with True LRU Replacement

We now assume the TLB implements true LRU replacement. The partial

iteration accesses k mod P packets. If (k mod P) < TE, PTES for these packets

remain in the TLB and result in TLB hits during the first full iteration. When the

last P — TE packets are accessed during the first full iteration, the first packets'

TLB entries are removed and must be reloaded for the next iteration, whether it is

full or partial. Because the TLB hits occur only during the first full iteration, the

biggest impact occurs when [k/P\ is 1 and k mod P is large, because nearly half

of the memory accesses can result in TLB hits. If many full iterations take place,

the number of TLB hits is small relative to the number of misses. We model this

behavior as follows:

k~^kfodP^t(n, P), 0 < k mod P<TE

fk(n,P) = l A

T(n,P), otherwise.

Table 4.3 shows this model's approximation of the Alpha's performance when k =

64 = 2T and P ranges from 32 to 64 with n = 8. These experimental values are

used because they show a range in which the TLB effects have the greatest impact,

when the number of full iterations is one.

82

J^.J^.2.2. Large k with Pseudo-LRU Replacement

Unfortunately, packet-building performance with CPUs using common

pseudo-LRU implementations depends on which TLB entries are used. A typical

implementation [87] marks a TLB entry as VALID when it is accessed. When a TLB

miss occurs, the page table entry from that memory access is added to the TLB;

the entry it replaces is the lowest-numbered entry marked INVALID. If no entries

are marked INVALID, all unlocked entries are reset to INVALID and the lowest-

numbered entry marked INVALID (at this point, entry 0 unless it has been locked

by the operating system) is replaced. We model the PA-RISC TLB performance in

this manner [43].

Figure 4.5 shows how the PA-RISC TLB's state changes during a KYY re-

distribution with k = 240 and P = 128. Assuming that the 0th packet is put into

TLB entry 0 at the start of packet-building2, the first 115 packets cause misses and

take up all of the available TLB entries. When a new packet is accessed, space must

be made in the TLB for its PTE. All entries are currently VALID, so they are sub-

sequently marked INVALID—the result is that the new PTE goes into TLB entry

0. PTEs for subsequent packets follow, and at the conclusion of adding data to 128

different packets, the TLB looks as shown in Figure 4.5(a). The partial loop builds

only 112 packets starting at packet 0, whose PTE is not in the TLB. Hence, 112

misses occur, and the TLB state after this partial loop is shown in Figure 4.5(b). We

now begin a full loop adding data to all 128 packets. Entries for packets 0 through

111 are in the TLB, so they are marked VALID (c). After packets 112-114 are ac-

cessed, all entries are VALID, so since there is nowhere to place packet 115, all TLB

2This may vary depending on the current state of a program starting a redistribution.
However, the programmer has no control over the TLB.

83

TLB VALID Bit l 0

Packet # 115 - 127 13-114

(a)

TLB VALID Bit l 0 0

Packet # 102-111 0-101

(b)

TLB VALID Bit i 0 1

Packet # 102-111 0-101

(c)

TLB VALID Bit 1 1

Packet # 102-114 0-101

(d)

TLB VALID Bit 0 0

Packet # 102-114 0-101

(e)

TLB VALID Bit l 0

Packet # 115-127 0-101

(f)

FIGURE 4.5. Sequence of TLB states for a pseudo-LRU TLB as packets are built
when P = 128 and k = 240.

entries are marked INVALID (e), leading to PTEs for packets 115-127 being added

to the TLB starting at entry 0. From this point on, PTEs for packets 102-114 trade

with PTEs for packets 115-127 in the first 13 positions of the TLB, never forcing

removal of entries 0-101.

Theorem 4.2 Assuming the first packet's PTE goes into TLB position 0, and that

subsequent packets' PTEs follow in sequence, with

84

1. P > TE

2. k mod P <= TE

3. k <= 2P

the PTEs for packets 0 through 2TE — P — I are not removed from the TLB after

the first partial iteration (i.e., after k packets have been accessed) during the packet-

building phase of a KYY redistribution if and only if k > 2TE.

Proof. The conditions in Theorem 4.2 guarantee that there is one full iter-

ation and one partial iteration per k packet accesses. After the first full iteration,

TLB entries 0 through P — TE — \ are VALID with data for packets 2TE — P through

P — 1 (in the manner of Figure 4.5(a)). In the subsequent partial iteration, packet O's

PTE goes into TLB entry P — TE, and subsequent packets' PTEs follow in sequence.

We consider two cases:

i) k < 2TE (only if case). In this case, the number of packets accessed in the

partial iteration, k — P, does not require more TLB entries than those marked

INVALID during the wraparound in the middle of the previous (full) iteration.

Hence, the next iteration (another full iteration) will fill the remaining 2TE — k

INVALID TLB entries. At this point, all entries are VALID, so all are marked

INVALID and TLB entries are filled starting at 0. In this full iteration, P —

2TE + k packets remain to fill TLB entries from 0, thus forcing removal of

packet 0 at position P — TE.

ii) k > 2TE (if case). The number of packets accessed in the partial iteration,

k — P, is greater than the number of INVALID TLB entries. Once these are

filled, all TLB entries are marked INVALID, and k — 2TE packets' PTEs are

85

inserted starting at TLB entry 0. Note that packet 0 at TLB entry P — TE

is not removed here because k < TE- During subsequent full iterations, the

following occurs in order:

(a) PTEs for packets 0 through 2TE - P - 1 at TLB entries P - TE - 1

through TE — 1 are used and marked VALID.

(b) PTEs for packets 2Tg — P through k — P — 1 are reused at TLB entries

0 through k-2TE-l and marked VALID.

(c) INVALID PTEs from Jb - 2TE through P - TE - 1 in the TLB are loaded

with PTEs for packets k — P through TE — 1 and marked VALID, at

which point all PTEs are VALID.

(d) The next packet accessed requires a new PTE, so all PTEs are marked

INVALID. Entries for packets TE through P — 1 fill TLB entries 0 through

P — TE — 1. The TLB entry containing packet 0 is not removed. Sub-

sequent alternation between partial and full iterations result in identical

behavior—the partial iteration results in k — 2Tg TLB misses starting at

0, and the full iteration uses these entries before generating misses. The

misses do not overwrite packet 0's TLB entry, because it is marked VALID

at the start of an iteration and the Pseudo-LRU algorithm overwrites a

newly INVALID TLB entry 0 before writing over a newly INVALID entry

elsewhere in the TLB. M

Theorem 4.2 applies to those redistributions with small k values. Its basic

ideas can be expanded to generate an algorithmic model for k >— 2P, in which

many of the subtractions must be replaced by the mod operator. We present here

only the model for TLB miss costs for a Pseudo-LRU TLB with k < 2P, noting

that the steady-state fraction of TLB misses per k accesses is 2(P — TE)-

86

a

o
U

PA-RISC

MODEL

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
120 140 160 180 200 220 240

Number of Processors

FIGURE 4.6. Impact of k on packet-building time as P changes. Our model is
compared to actual results for the PA-RISC, which has an effective TLB size (TE)
of 115. k is 240, and n = 8. The maximum relative error of the model is 5.9%, while
the 90th percentile relative error is 4.2%. 95% confidence intervals for actual data
are shown.

fk{n,P)
f(n, P)(2(P - TE)/k), TE + P mod TE >= P

T(n,P), otherwise.

Figure 4.6 shows this model's approximation of the PA-RISC performance when

k = 240 = 2T and P ranges from 124 to 240 with n = ky = 8. These values are

used because they show a range in which [k/P\ is 1 and k mod P varies, where the

TLB effects have the greatest impact. Table 4.3 summarizes the comparisons of our

model to actual runs on all three machines with three different TLB replacement

policies.

87

CPU k First P Last P Step R2 Max Error 90% Error

Alpha 64 36 64 1 85.9 4.7 1.8
HyperSPARC 128 56 128 4 91.8 5.9 5.8
PA-RISC 240 124 240 4 96.8 5.7 4.2

TABLE 4.3. Parameters and results for experiments determining impact when
P > TE and k mod P / 0. For each CPU the range and stepsize of P values
is given along with k.

4.4.3. Impact of Page Size

Assume packets are laid out end-to-end in memory. As the number of packets

increases, or as L decreases, the size of individual packets decreases. The separation

between the packets may be less than the page size ^. In this case, one TLB entry

may point to more than one packet, resulting in fewer TLB misses during the packet-

building phase. Our model does not incorporate this refinement, because we assume

moderate-sized machines (hence few packets) and large arrays are used.

Another unmodeled impact of small page size appears when systems have

LRU or Pseudo-LRU TLBs and small page sizes. The PA-RISC, with a 4096 byte

page size, is an example of such a system. As n increases, the proportion of memcpy

operations that move data to two different pages also increases. When a copy moves

data to two pages, the copy uses up two TLB entries. Assume all packets get the

same amount of data during each iteration (i.e, k < P). At the start of the iteration

in which two pages are accessed for each packet, the LRU nature of the TLB implies

that TE — P entries are stale. The first TE - P packets will hit their current TLB

entries and replace stale entries. The next packet will hit its current TLB entry and

erase the entry for the next packet. The remaining packets will encounter two TLB

misses each. During the next iteration, when each packet again accesses a single

page, all packets will encounter a TLB miss. The total number of hits during these

two iterations is TE — P + 1. Clearly, the number of hits is minimized when P nears

TE- On the PA-RISC, the deviation from our model when P = 112 (recall that

TE = 115) is greater than 10% when 112 < n < 188. Figure 4.3(a) shows that the

increase in cost due to TLB misses moves from TE + 1 to a smaller P value as n

increases.

4.5. Other Redistributions

The previous discussion focused on the KYY redistribution. We have shown

that, using only four or five sample runs and TLB parameters, we can generate an

accurate model for the KYY redistribution under a variety of conditions. In this

section, we show that a single additional run is needed to transfer our KYY model

to each of several other redistributions. The redistributions we include in our model

here are Cyclic(a;) to Cyclic(A;x), denoted XKX, Block to Cyclic, denoted BCY, and

the more general Cyclic(x) to Cyclic(?/), denoted GEN. The additional run used to

transfer the model is performed with P < TE to avoid TLB effects. The number of

bytes moved in a single copy, n, is 8. At this point, the differences in time taken

for the repeated calculations are most apparent, and the resulting model is more

accurate. For a given redistribution TZ, the difference in time between this sample

run for 7L and the one for KYY is denoted A^Yy

We assume, with the exception of the GEN redistribution, that the TLB

costs that arise as P increases are independent of the computation performed in the

loop. Hence we can use the same TLB costs for XKX and BCY that we used for

KYY, with one of two XKX options using the TLB model for k > P described in

Section 4.4.2. We simply need to generate the approximation fin- We do this by

89

noting that the difference in costs between two redistributions lies in the overhead,

not in copy costs. The overhead per byte copied diminishes as n increases, so we

adjust for the overhead difference as follows:

t>n(n,P) = <f>(n) + SARYY

n

In the paragraphs to follow, we briefly describe each of the redistributions

and their performance. The results of our model relative to actual machine runs are

shown in Table 4.4. The comparisons between our model and actual runs are divided

into two parts. The first comparison is for 8 < n < 128, the steep part of the curve

where differences between the model and empirical runs are most pronounced. The

second is for the entire range of our experiments, 8 < n < 1024, which includes the

more easily-modeled steady-state behavior. We separate out the first comparison to

give a 90th percentile error value not watered down by many of the easily-modeled

points.

The XKX redistribution is performed using two different algorithms depend-

ing on the relationship between k and P. The first algorithm, denoted XKX-1, con-

sists of nested loops like the KYY redistribution. XKX-1 must use the TLB model

described in Section 4.4.2, since its loop structure is identical to that of KYY. Each

iteration requires an addition and a mod operation, performed using a conditional,

to select the destination processor. The second algorithm, XKX-2, consists of a

single loop in which the expensive mod operation is replaced by two conditional

subtractions and two additions per iteration. For the XKX redistributions, n = ex.

The BCY redistribution is performed using a single loop containing an incre-

ment and test to select the destination processor. It should run slightly faster than

the KYY algorithm for the same value of n.

90

The GEN, or Cyclic(x) to Cyclic(y) algorithm requires several division oper-

ations in the form presented in [90]. The formula for the destination processor for

the ith. data element on a processor p is given by

(((i mod x) + (P(i/x) + p)x) /y) mod P

The inner mod and division operations can be replaced using more efficient addi-

tions, subtractions and tests, with two divisions remaining. The best known general

redistribution algorithms also require two divisions [10]. These operations make

GEN much more expensive than the previously discussed redistributions. In addi-

tion to being expensive operations, they must be performed once per element, since

n = e with this redistribution. Another difference between GEN and the other re-

distributions is that we do not account for TLB misses. That is, T(n,P) = 0. We

can do this because the TLB misses are overlapped with the expensive division and

mod operations, and hence they do not add to the cost of the redistribution. The

PA-RISC and HyperSPARC have consistent cost in s/MB regardless of P. Figure

4.7 points out an interesting characteristic of the Alpha system while showing that

TLB misses do not play a role in the GEN redistribution. The Alpha's integer di-

vision routine (implemented in software) checks the divisor for a power of two. If

a power of two is found, an inexpensive shift is performed in place of the division.

This optimization has a significant impact on the redistribution cost when P is a

power of two. Our model takes this optimization into account by performing an ex-

tra run when P is one away from a power of two, calculating the number of division

operations performed, and generating the cost per division.

Finally, the Cyclic to Block redistribution differs from those above in that

it moves only large, contiguous chunks of data at a time. These can be sent from

in-place in the local array; packets are not built. Unpacking is performed after the

91

n = e = 8

250

400 500

200

Processors

FIGURE 4.7. The GEN (Cyclic(x) to Cyclic(y)) redistribution performed on the
Alpha. Two features of the graph should be noted. First, when P is a power of 2, the
division operation is replaced by a more efficient shift, and a significant performance
gain results. Second, no TLB miss effects appear; the curve remains flat, the power
of 2 values of P aside, as P increases.

92

Redist Architecture

8 < n < 128 8 < n < 1024

R2
Max

Error (%)
90th %-ile
Error (%) R2

Max
Error (%)

90th %-ile
Error (%)

KYY
Alpha 0.989 6.6 3.1 0.981 6.6 1.7
HyperSPARC 0.994 12.2 4.2 0.994 12.2 2.8
PA-RISC 0.997 11.7 4.0 0.995 12.3 3.2

BCY
Alpha 0.980 9.3 3.5 0.969 9.3 1.7
HyperSPARC 0.993 11.8 5.1 0.992 11.8 3.1
PA-RISC 0.998 11.4 3.9 0.995 12.5 3.2

XKX-1
Alpha 0.977 9.8 4.8 0.973 9.8 1.8
HyperSPARC 0.994 14.4 4.4 0.994 14.4 2.7
PA-RISC 0.997 13.6 3.9 0.995 13.6 3.0

XKX-2
Alpha 0.979 12.4 5.0 0.970 12.4 2.5
HyperSPARC 0.993 11.0 5.1 0.992 11.0 3.3
PA-RISC 0.995 13.1 5.7 0.993 13.1 4.0

GEN
Alpha 0.997 8.4 4.5 0.981 9.8 6.9
HyperSPARC 0.994 13.0 4.7 0.992 13.0 5.1
PA-RISC 1.000 4.8 2.5 0.998 7.7 6.4

TABLE 4.4. The accuracy of our model is shown for all redistributions for two con-
figurations. In all cases, both P varies from 8 to 264 by 8. In the first configuration,
n varies from 8 to 128 by 8. This region is where the data changes most drastically
with n. For the second configuration, n varies from 8 to 1024 by 8.

exchange of messages. We describe the cost of unpacking data in the next part of

this chapter.

4.6. Packet-Building Summary

We have identified and accurately modeled the factors affecting the cost of

packet-building for redistributions. The steps taken to build the model include

1. Determine (f>(n), the model for copy time as the number of bytes per copy

changes. This can be done once per redistribution or, as we did here, doing

93

it once and extrapolating to other redistributions using a single run for each

new redistribution.

2. Determine TLB miss cost 7~(n, P) when k < P, based on either LRU/Pseudo-

LRU or random TLB replacement schemes.

3. Determine TLB miss cost for all k values, 7fc(n, P), again depending on TLB

replacement scheme.

With these in hand, we have a complete model of the packet-building costs

for a redistribution:

Ttn(n,P) = i(n)+tk(n,P). (4.4)

In the next sections we build, in a significantly different manner, a model for the

unpacking of data.

4.7. Introduction to Unpacking of Received Messages

Once all packets have been built, the compute nodes perform an all-to-all

personalized communication to deliver packets to their destination nodes. It is

beyond the scope of this chapter to model the details of this communication, which

varies from machine to machine. We focus in subsequent sections on the time needed

to unpack received packets into their proper layout in memory.

The algorithms in [90] [91] contain two methods for unpacking data. The first

is denoted synchronous. With the synchronous approach, each processor receives all

incoming messages before unpacking the data. The local array is then built in the

following manner:

94

1. For i = 0 To Size(LocalArray)
2. Calculate source processor of LocalArrayfi]
3. Copy data from source processor's packet to LocalArrayfi]

Note that the size of elements copied depends on the redistribution per-

formed. This operation is the dual of the packet-building operation described earlier;

here data are copied from packets to the local array. Otherwise, this routine uses

memory, cache and the TLB in the same fashion as the packet building described

in Sections 4.3 through 4.6. Therefore, the model developed earlier can be used to

model synchronous unpacking as well.

A second method for the unpacking operation uses an asynchronous ap-

proach, in which packets are unpacked as soon as they are received:

1. For i = 1 TO number of packets to receive
2. Receive packet from some processor
3. Calculate Location in LocalArray of first element in packet
4. Place subsequent elements in packet in LocalArray with stride S

Note that only one address calculation is required per packet, so expensive

division and mod operations are not repeated during the strided copy.

Although special instances of some redistributions rule out use of the asyn-

chronous approach, it can be used in many cases, and it is typically faster than the

synchronous approach [90] [91]. When available, it is the method of choice for re-

ceiving and unpacking data. Our analysis of these steps focuses on the asynchronous

approach. This analysis here can also be applied to packet-building schemes relying

on strided copies of data.

95

LocalArray

One Block

1 st Packet Unpacked 2nd Packet Unpacked

FIGURE 4.8. Example of efficient cache usage during unpacking of data. Memory
blocks are brought into cache during the unpacking of the first packet. Elements
from the next packet map to array locations sharing the same blocks, already in
cache.

4.8. Model Elements

When performing the packet-building operation, the programmer controls

the memory locations of the packets. Hence, cache collisions can be minimized;

the current block for each packet remains in the cache from one use to the next.

With the unpacking operation, cache efficiency is dependent on both the data and

the order in which packets are processed. Cache efficiency impacts performance the

most when small elements are copied. In the worst case, a block of LocalArray

will be loaded into the cache j times, if n is b/j. In the best case, each block is

loaded into cache only once. Figure 4.8 shows how properly ordering the packets for

processing can ensure that cache blocks are reused.

Unfortunately, while the programmer may be able to control the order in

which packets are processed, efficient cache use cannot be guaranteed. The stride

of the data, over which the programmer has no control, may cause cache collisions.

Figure 4.9 shows how the array blocks of later elements in a packet may collide with

Stride 6

Local Array
Cache Blocks

Cache

96

0 1 2 3 4 5

1 1 '

0,4 3 2 1,5

FIGURE 4.9. Example of redistribution-dependent cache collisions caused during
unpacking of a single packet. The stride of the packet data maps later elements'
array blocks to the same cache location as earlier elements' blocks. As subsequent
packets are processed, the CPU is forced to reload the cache blocks used by the
early elements, 0 and 1, since their blocks were forced from the cache when elements
4 and 5 were copied.

array blocks of earlier elements from the same packet. When this happens, array

blocks to which the first elements of neighboring packets map are not in cache, and

every array block must be reloaded into cache each time it is referenced.

Because the roles of TLB and cache misses in unpacking data are different

than in packing data, we must build the model v, for the total unpacking time, in

a different way. Here we briefly outline the steps taken in the following sections to

build this model.

1. Determine the cost 9 of a TLB miss in the context of unpacking.

2. Determine the cost K of a cache miss in the context of unpacking.

3. Determine the cache-efficient copying rate u#(n) in s/MB for unpacking data.

Given these three values, we use a combination of analytical models and algorithmic

techniques to determine the total cost of unpacking data for a given redistribution.

97

4.8.1. Isolating Cache and TLB Miss Costs

In this section we build the foundations for our strided unpack model. The

model, while resulting in graphs similar in shape to the (n, P) graphs for packetizing,

must be built in a different fashion. We assume P is the number of compute nodes

from which packets are received, and hence may be smaller than the total number

of compute nodes. The stride with which elements received from another node are

placed in LocalArray is implicitly nP. Since we expect to be redistributing large

arrays, our benchmarks build local arrays of size at least ^Tß to include TLB effects.

All of our experiments use a local array size of 1 MB.

4.8.1.1. Modeling TLB Effects

The TLB effect which occurs during packet-building and described in the

first part of this chapter results from the simultaneous building of P packets. In

the asynchronous receive, only one packet is processed at a time. However, striding

through the local array once requires accessing

ip *^\ ZmfL^ otherwise

different pages. The multiplier on the second of these terms reflects the frequency

with which multiple pages are accessed during a single copy. This multiplier is at

least 1, and it increases with n. If the number of TLB misses when unpacking data

from a single packet is greater than TE, then repeated TLB misses will occur. For

CPUs with LRU or pseudo-LRU TLB replacement policies, each new local array

page access results in a TLB miss. For CPUs with a random TLB replacement

policy, the miss ratio increases with the number of pages in the local array. We

98

assume the local array is large enough that the miss ratio is essentially 1. For

example, with the page size of 4096 bytes and a 1 MB file, 256 pages are accessed;

in this case the miss ratio, from our earlier model, is (1 - /J(256)) = 0.981.

When nP is less than the page size $, every page in the local array is

accessed3 for each packet. Hence, the TLB cost in this case is (LPO)/^, where

9 is the cost for a single TLB miss in the context of the unpacking operation. As

nP increases beyond \P, a page may occasionally be skipped. In these cases, we

model the TLB cost as (LP9)/(nP). Finally, if nP increases so that L/(nP) < T%,

the TLB cost is L/ty, assuming packets are received so that neighboring elements

are copied from subsequent packets. If this condition is not met, we use the previ-

ous formula. Note that it is possible to receive packets so that some packets are

neighbors and others are not. It is beyond the scope of this chapter to model this

behavior. We can summarize the time for the total TLB miss cost for the unpacking

operation as follows:

T= I

$) nP <= W

LB
n

rn + ii n mod ty * < nP < ±-

L otherwise

(4.5)

For our model, we must empirically determine the cost of a single TLB

miss, 6, as well as the cost of a cache miss, AC, in the context of the unpacking

operation. We can determine the TLB miss cost without interference from cache

misses by running benchmarks when n = 32, the cache block size b of all the machines

used in this study. With n — 32, each block is loaded into the cache exactly

3We ignore the case where the starting page or ending page, both of which may be only
a fraction of a page size, are not accessed once per packet.

99

once, assuming alignment of the local array to a block boundary4, and efficiency is

optimal. Therefore, we can benchmark v(32,pi) and v(32,p2), the actual run times

for unpacking when n = 32 with both px and p2 processors, calculate the number

of page references for each, and determine the cost of each TLB miss. We choose

pi = 8 as the foundation for our model, but p2 must be selected carefully.

Although any p2 such that p2 ^ 8 and p2 < (£)/(\?n) will let us calculate

the cost of each TLB miss, careful selection of p2 allows us to calculate the cost

of each cache miss as well as the TLB miss cost. By benchmarking i>(8,8) with a

sufficiently large L, we are guaranteed to have a cache miss on every access of the

local array when using a power-of-two-sized cache. We want p2 such that v(p2,8)

has no (L2) cache collisions. As we discuss later, such a value is dependent on the

array size. For a 1 MB local array, v(8,124) results in no cache collisions on any

of our three machines and has the same TLB cost as v(32,124). Although several

choices for P result in no collisions, we want a high value just below 128. The long

distance between data points ensures greater accuracy of our model, and keeping

the value less than 128 ensures a straight-line model of TLB effects when \& = 4096

and n = 32 (parameters for both the PA-RISC and hyperSPARC machines). That

is, we needn't use more than one formula in Equation 4.5. We can extrapolate the

cache-efficient time

vE(S, 8) = v(8,124) - u(32,124) + u(32, 8) (4.6)

and use it to calculate the cost of a cache miss in the context of the strided unpacking:

u(8,8)-CB(8,8)

((6 - 8)/6)(1048576/8)
(4.7)

iWe force this alignment.

100

CPU aG ba CG K e
Alpha 0.072 0.711 0.0662 0.96 /is 0.061 us
HyperSPARC 3.04 1.674 0.0661 0.76 us 0.50 us
PA-RISC 2.51 1.379 0.0837 0.61 fis 1.3 /us

TABLE 4.5. Parameters for the cache-efficient curve fit and the cost of an L2 cache
miss and a TLB miss for each CPU.

The numerator is the time difference between a cache-inefficient unpack and a cache-

efficient one. The denominator gives the number of excess misses caused by the

cache-inefficiency. As described in the next section, one cache miss per block is

compulsory.

Next the curve-fitting technique used for packet-building is also used to gen-

erate a baseline cache-efficient s/MB curve for unpacking:

uE{n) = —— + cG

We want this rate to be independent of TLB effects, so we adjust the three

points uB(8,8),u(32,8), and u(1024,8) by subtracting (8)(1048576)#/# before us-

ing Hooke's algorithm to generate a baseline cache-efficient s/MB curve. Table 4.5

shows the curve fit parameters and miss times for the Alpha, HyperSPARC, and

PA-RISC processors. These differ significantly from the values in Table 4.2 due to

the absence of even compulsory TLB misses in their formulation.

4-8.1.2. Modeling Cache-Inefficient Unpacking

Cache-inefficient unpacking can occur due to self-interference, when a

packet's later elements collide with its earlier elements in the local array, and due to

101

poor ordering of packets, when local array blocks brought into cache by one packet

are not utilized by a neighboring packet before being bumped from the cache.

Theorem 4.3 When cache-inefficient gathering occurs, the number of cache block

misses exceeds the optimal number in a sequence of LCM(n, b)/b cache-aligned array

blocks by

LCM(n, b)/n - 1, n mod b^O

0, n mod 6 = 0

where LCM is the least common multiple function.

Proof. The second case is trivial; each block is accessed the minimum number of

times, once. For the first case see Figure 4.10. The LCM condition ensures that

only the leftmost write is aligned on the left with a block. Each subsequent write

(LCM(n, b)/n — 1 of them) is not aligned with a block; at least one other write

accesses its first block further to the left. Therefore, assuming the leftmost write to

each block is compulsory, the writes accessing the same block further to the right

are in excess of the optimal number. ■

From Theorem 4.3, the total number of excess cache misses during cache-

inefficient unpacking in which n mod b ^ 0 is

L /LCMM) \

LCM(n,6) V n) ' { }

Figure 4.11(a), actual results from the PA-RISC, along with our model in Figure

4.11(b), illustrates the way cache misses drastically change the underlying smooth

copy model. The other two architectures show similar characteristics, but their

lower TLB costs result in a smaller cost increase as P increases. Analysis of our

cache-inefficient model is shown in Table 4.6. We induced cache inefficiency in the

actual runs by processing packets from processors in an order that guaranteed that

102

n = 12 Cache Block Size = 32

(a)

Compulsory Cache Misses Excess Cache Misses

(b)

= 56 Cache Block Size = 32

FIGURE 4.10. Determining the number of excess cache block accesses. (a)
n = 12,6 = 32, and the number of excess misses is LCM(12,32) /12 — 1 = 7.
(b) n = 56, b = 32, and the number of excess misses is LCM(56,32) /56 — 1 = 3.

103

CPU R2
Max

Error (%)
90%

Error (%)

Alpha 0.98 14.0 8.1
HyperSPARC 0.99 10.2 5.0
PA-RISC 0.99 9.8 6.1

TABLE 4.6. Results of our model of cache-inefficient unpacking compared to actual
runs on three machines.

blocks loaded into cache were removed before reuse. This approach also ensures that

TLB PTEs are not reused, and increases in TLB costs were also modeled.

4-8.1.3. Modeling Cache-Efficient Unpacking

As illustrated in Figure 4.9, the stride dictated by the data can often force

poor cache use, so that cache misses occur on every local array access. However,

sometimes the data are more cooperative, and no cache collisions occur. This is

more likely with a large cache size C. Another possibility is that some fraction of

local array accesses result in cache misses. In this section we present the results of

our model with cache-efficient unpacking and discuss the methods used to determine

the cost when a fraction of accesses cause collisions.

Figure 4.12 shows the widely varying unpacking times on all three machines

when n = 8 and L = 1 MB as P varies from 4 to 264 in increments of 4. The

cache-efficient and cache-inefficient models derived earlier are shown bounding the

times. The figure supports the intuitive notion that a larger cache minimizes cache

interference. The PA-RISC's smaller cache forces many more cache-inefficient un-

packing sequences than the HyperSPARC or the Alpha. Note that, although it has

the same size L2 cache as the Alpha, the HyperSPARC has more values between the

104

n = 8

Unpack Time in Sec

200
250

Processors

Unpack Time in Sec

(a)

250
200

Processors

(b)

FIGURE 4.11. Cache-inefficient unpacking of 1 MB using the PA-RISC, (a) shows
the actual machine runs, while (b) shows our model. The stair-step effect is caused
by changes in cache efficiency as n changes. The steep increase in cost as P increases
is due to repeated TLB misses. The abrupt reduction in slope along a fixed n value
as P increases is due to a TLB miss cost decrease. The TLB miss cost decreases as
the stride increases beyond the page size of 4092, and this occurs at a lower value
of P as n increases. All values have a coefficient of variation less than 0.05.

105

CPU R2
Max

Error (%)
90%

Error (%)

Alpha -0.44 5.5 3.1
HyperSPARC 0.70 3.7 2.5
PA-RISC 0.87 3.7 2.7

TABLE 4.7. Results of our model of cache-efficient unpacking compared to actual
runs on three machines when n = 8. Only those P values which guarantee no L2
cache collisions are used in this analysis. The R2 value for the Alpha represents the
fact that our model is no better model than the mean. This is expected, because
the Alpha cache-efficient curve is flat. Similarly, the other R? values are relatively
low, an expected phenomenon when modeling a nearly flat straight line.

bounding lines; this is due to cache block prefetching done by the HyperSPARC,

which increases the number of cache collisions in some cases. Table 4.7 quantifies the

accuracy of the cache-efficient model for the cache-efficient unpacking when n = 8,

where the model's accuracy is most severely tested. The R2 value for the Alpha rep-

resents the fact that our model is no better model than the mean. This is expected,

because the Alpha cache-efficient curve is flat. Similarly, the other R2 values are

relatively low, an expected phenomenon when modeling a nearly horizontal straight

line with slope less than 0.0003.

The points residing between the cache-efficient and cache-inefficient curves

experience varying numbers of cache misses. We do not know of a closed form

expression to describe the self-interference caused by the strided accesses to the local

array. We instead present a brief discussion and example to outline an algorithmic

approach to modeling this behavior.

106

6

100 150 200 250 300
Processors

0 50 100 150 200 250 300
Processors

(a) (b)

E
P

0.38 11111

0.36

0.34
.•»■•"'"

0.32 .-'-"' °

0.3

0.28

0.26

0.24 ' ...-'"'
0.22 '

0 50 100 150 200 250 3C
Processors

(c)

FIGURE 4.12. Unpacking time when n — 8 and L =1 MB as P varies from 4 to 264
in increments of 4. Bounding each plot are the cache-efficient and cache-inefficient
model derived earlier in the chapter, (a) The Alpha, which has a minimal TLB miss
cost and, hence, a relatively flat curve, (b) The HyperSPARC. (c) The PA-RISC,
with the highest TLB miss cost and greatest slope.

107

Definition 4.1 A potential collision occurs when placing elements into the local

array with stride S and at least one byte of a copied element is within (b—1) mod C

bytes of an element placed earlier in the same strided copy. ■

Definition 4.2 The target element in a potential collision is the one placed in the

local array earlier. ■

Definition 4.3 The colliding element in a potential collision is the one placed in

the local array later. ■

Theorem 4.4 When placing elements into the local array with stride S ^> b and

S > n, the target element of the first potential collision is r]o, the first element placed

during the strided copy.

Proof. Any potential collision, with colliding element r]j and target element

7/j, occurs when —b mod C < (j — i)S mod C < n + b mod C. This is independent

of j and i, so the earliest potential collision has i = 0. ■

Theorem 4.4 tells us that we can work from the first element to find

the first potential collision. This collision occurs when JS, J > 0, is

near a multiple of C. We look for potential collisions using the follow-

ing algorithm, which is limited to the special case where n = 8 and b =

32. The algorithm assumes the first element is aligned with its cache block:

1. For i = 1 TO [L/C\
2. lef tapproach = [(iC)/S\ S
3. leftdistance = iC-leftapproach
4. rightapproach = S— leftdistance
5. If leftdistance < 32
6. Potential Collision on left-hand-side
7. If rightapproach < 32
8. Potential Collision on right-hand-side

108

Note that if lef tdistance= 0, the collision is a direct hit, and every potential

collision is, in fact, a collision. We follow a more interesting example using the Alpha,

which has a cache of 256 KB. For this example, P = 26 and n = 8, so S = 208.

As shown in Figure 4.13(a), when i = 3, STSIS1 mod 262144 results in a potential

collision, with right appro ach= 16. Figure 4.13(b) depicts the four possible ways

these elements can be targeted to the same or neighboring cache blocks. Note that

collisions occur in only half the configurations, when the first element falls in one of

the first two of locations in the cache block. Figure 4.13(c) shows how four segments,

each of size C, of the local array map to the cache. The elements copied into SEG2

and SEG3 map to unused cache blocks; no collisions occur until data are copied into

SEG4, whose elements map to (potentially) the same cache blocks as those in SEGl.

Since the collisions come 3/4 of the way through the local array, only the first 1/4

of the array, SEGl, experiences collisions with elements from the last 1/4, SEG4.

Processing of the next packet, assuming it starts at the position after the packet

shown, will have to reload blocks for SEGl. When SEG4 is reached, those blocks

must be reloaded. Blocks in SEG2 and SEG3, making up 1/2 of the array, remain

in cache throughout, so 1/2 of the time 1/2 of the accesses result in cache misses.

Therefore, 1/4 of the copies, 32768 in all, result in excess cache misses. On the

Alpha, the cache miss cost is 0.96 /xs, so we add 0.031 to the modeled cache-efficient

value of 0.0828 to give 0.1138, which is within 4% of the empirical value of 0.1186.

Although this example is specific and relies on favorable alignment of data

within cache blocks, it presents a framework in which a more general model could be

built. The details of such a model, which must take into account multiple collisions,

cache prefetching effects and all possible n and S values, are beyond the scope of

this chapter.

109

Local
Array

0 12 3

(3781 * 26)

98306 131071

L c _n <:

Cache
Blocks

(a)

li

in IV

(b)

Local
Array

SEGl SEG2 SEG3 SEG4

Cache

(c)

FIGURE 4.13. (a) Collision resulting when the 3,781st element is copied into the
local array. This element maps to the same cache block that the first element copied
used, (b) Four possible ways the potential collision can map to the cache, depending
on the position within the cache block of the first element copied. Only (i) and (ii)
result in collisions, (c) As the local array is filled with stride S, four logical sweeps
of the cache take place, since the array is four times the size of the cache. Collisions
are avoided during the first three sweeps because of the stride. The last sweep, when
SEG4 is filled, results in potential collisions with blocks used by SEGl.

110

4.9. Discussion

The results presented in this chapter provide many insights into the costs

of a redistribution. The dominant factor for both packing and unpacking data is

the granularity of data copied— the more data copied at a time, the lower the cost

per byte. TLB costs come into play for the packing step only when the number of

packets approaches the number of TLB entries, and the impact is significant only

for fine-grained copies. The careful programmer can avoid cache collisions when

packing data. Hence, the model for the packing step is relatively simple, and we

can use a fixed rate in s/MB for our model.

The unpacking step is more complicated. TLB effects come into play for non-

trivial-sized arrays regardless of the number of packets, and they are dependent on

the array size and stride of received elements. Cache effects are difficult to model,

and they too are dependent on the array size. Unpacking is modeled, therefore,

using a fixed copy rate in s/MB plus TLB and cache costs. Both cache and TLB

effects have the greatest impact when the copy granularity is small.

Our results show that, even for a GEN redistribution, the copy overhead per

byte quickly drops to near the optimal machine value as the granularity increases.

Therefore, performing a general Cyclic(a;) to Cyclic(?/) redistribution as the com-

position of a Cyclic(a;) to Cyclic(LCM(:r, y)) (XKX) redistribution followed by a

Cyclic(LCM(a;,y)) to Cyclic(j/) (KYY) redistribution is cost-effective only when n

is small. Figure 4.14, in which the cost of a general redistribution performed in

one expensive phase is compared to the cost of the redistribution performed as the

composition of two simpler redistributions, demonstrates this fact. The results are

modeled on the Meiko CS-2, which achieves 20 MB/s message bandwidth during

the complete exchange of data, and whose HyperSPARC processor's packet-building

Ill

c o o
00

E

e o
3

T3

o

0.8

0.6

0.4

0.2

20 40 60 80 100 120
Element Size in Bytes

FIGURE 4.14. The cost of a general redistribution performed in one expensive
phase is compared to the cost of the redistribution performed as the composition
of two simpler redistributions. The constant line represents the composition of
two simpler redistributions whose packing and unpacking steps are achieved at the
maximum memory bandwidth and, hence, take constant time regardless of element
size. The curve which decreases as the element size increases is the cost for a general,
one-phase redistribution. The data are modeled using Meiko CS-2 characteristerics.

112

characteristics have been examined in detail in this chapter. Each processor has

a local array of 1 MB, and we assume the number of processors is small enough

that TLB effects do not come into play. In the figure, the cost of the one-phase

redistribution decreases as the element size increases. Recall that, for the simpler

redistributions composing the two-phase redistribution, several elements are copied

to and from packets together. The exact number varies from redistribution to re-

distribution. In Figure 4.14, we assume elements are moved in large units, so the

HyperSPARC steady-state copy rate of 0.066 MB/s is achieved. Since data must

be packed twice and unpacked twice for the two-phase redistribution, the packet-

building cost is 0.264 seconds. The message-passing costs for two complete exchanges

add 0.1 seconds to the time for the two-phase redistribution. Despite the optimistic

assumptions for the two-phase redistribution, it outperforms the general, one-phase

redistribution only when the element size is less than about 36 bytes.

The results from our strided unpacking model, namely that the redistribu-

tion performed—not the programmer—dictates cache efficiency, has implications for

the packet-building phase of the redistribution. That is, redistribution schemes that

propose to build packets by striding through a local array cannot count on the most

efficient use of the cache. Therefore, while such schemes may require less compu-

tation [78] than the more straightforward algorithms employed here, the advantage

may be lost due to poor use of cache.

4.10. Conclusions and Future Work

This work has shown that the cost of a redistribution is dependent on many

CPU implementation features as well as the redistribution performed—its data gran-

ularity, synchronicity, and computation overhead. Because they can greatly impact

113

the redistribution time, these CPU features, including TLB size, TLB replacement

algorithm, cache size, and cache block size must be taken into account when re-

distribution schemes are developed. Furthermore, if the programmer cannot avoid

inefficient use of cache when using a given scheme, benchmarks must be performed

in both cache-inefficient and cache-efficient configurations, and the frequency with

which both occur should be analyzed.

114

5. ENHANCING DISK-DIRECTED I/O FOR FINE-GRAINED
REDISTRIBUTION OF FILE DATA

5.1. Introduction

In contrast to early parallel computers, many current multicomputers provide

users with reasonable disk bandwidth by striping data across several I/O nodes, each

of which may operate a high-speed disk array. Unfortunately, high disk bandwidth

is necessary, but not sufficient, to support common parallel file operations. The

operating system must translate available disk bandwidth into user bandwidth, but

in many sytems the user sees only a fraction of the peak bandwidth available. One

reason for this situation is that the distribution of parallel data among the processors

is often different than the layout of data in the file. For example, if P processors use

a Cyclic data distribution and array data are laid out in the file in Block fashion,

each processor must perform a fine-grained file operation to read or write every Pth

element in the file. These fine-grained operations significantly reduce the effective

file system bandwidth.

More recent approaches to redistributing file data rely on the notion of col-

lective I/O operations, which require that all compute nodes synchronize before the

file system is contacted. The file operation to take place, typically a transfer of a

logically contiguous file segment, is then viewed from a global point of view rather

than from the local view of the individual processors accessing their own portions

of the file segment. A file-system-independent approach to collective I/O is the

Two-Phase Access Strategy [8, 27], in which file data are accessed using the disk

distribution. Ideally, the disk distribution is independent of the configuration of the

115

compute nodes. Therefore, the typical disk distribution is Block rather than Cyclic.

When the Two-Phase Access Strategy is used, the compute nodes redistribute the

data from the compute node distribution (e.g., Cyclic) to the disk distribution be-

fore a write, or they redistribute data from the disk distribution to the compute

node distribution after a read. These redistributions ensure that for both reads and

writes, each compute node accesses a large, logically contiguous portion of the file.

Kotz has proposed Disk-Directed I/O (DDIO) [52], a unique approach to

parallel file systems relying on collective operations. The central idea behind DDIO

is that the I/O nodes, given the extra information provided by a collective interface,

can direct the distribution of data from I/O nodes to compute nodes when reading,

or vice versa when writing. When DDIO is used, each I/O node first sorts the

disk blocks to be accessed during the course of the entire collective operation1.

Sorting is done by location on disk, not logical location in the file. The sorting

step significantly reduces the total disk access time. Because the blocks are not

necessarily accessed in logical file order, the I/O nodes must direct the movement

of data to and from the compute nodes. DDIO relies on a double-buffering scheme,

with each buffer consisting of a disk block. While one block is read from or written

to disk, each I/O node computes the destination or source processor and address for

each record in the just-read (when reading) or next-to-be-written (when writing)

block. The processors and addresses vary depending on the distribution of data

among the compute nodes. Data are striped across the I/O nodes in canonical row-

major (i.e., with a one-dimensional Block distribution or two-dimensional Block-

None distribution) order. Low-latency memput and memget operations are used by

the I/O nodes to direct movement of data between compute nodes and I/O nodes.

throughout this paper, as in [52], we assume a block (alternatively, stripe) size of 8 KB.

116

As shown in [52], Disk-Directed I/O provides high user bandwidth due to

the overlapping of disk operations and communication. We say the double-buffering

scheme achieves optimal overlap when the message-passing required for one block

of data takes less time than the overlapping disk operation for the second block of

data. In other words, the redistribution of data adds no time to the required disk

operations, except the transfer of the first (when writing) or last (when reading)

block, which is not masked by a disk operation. When large records are read or

written, or when many small logically contiguous records are distributed to the

same compute node, few memput or memget operations are needed to move the 8 KB

of data in a block, and DDIO achieves optimal overlap.

In other cases, Disk-Directed I/O performance is not optimal, achieving only

a fraction of the bandwidth provided by the disk system (but far outperforming non-

collective approaches) when 1) the record size is small; 2) the distribution of data on

the compute nodes requires that no two records which are logically contiguous in the

file reside on the same compute node; and 3) disk bandwidth is high, due either to the

use of multiple disks, or to a layout of data on disk (e.g., contiguous) supporting fast

access. A compute-node distribution meeting conditions (1) and (2) requires a fine-

grained redistribution. Distributions forcing condition (2) include the Cyclic one-

dimensional distribution and the Block-Cyclic and Cyclic-Cyclic two-dimensional

distributions. These Cyclic distributions efficiently support adaptive and irregular

data-parallel computations, and traces of production parallel file operations show

that such distributions are used frequently and make up a substantial percentage of

file accesses [56, 77].

In this chapter we analyze DDIO's less than optimal performance for fine-

grained file distributions. We examine alternative approaches to the message-

passing-oriented DDIO. One set of alternatives is based on building packets of data

117

Parameter Meaning

P Number of compute nodes
I Number of I/O nodes
B I/O node block size in bytes
M Number of disk blocks combined in messages for MB-DDIO
Dl Time to seek, rotate, and transfer first block

DB Time to read a single disk block afler head positioned
A Message startup latency

ß Time per byte to send data over the network

ßx Time per byte on loaded network (for complete exchange)
N Number of array elements to read/write
e Size of array elements in bytes

^mb\^vt Tlv) Time per byte to unpack MB-DDIO data on compute nodes.
The number of bytes moved at a time is ev ;
nv, the amount of data unpacked after a message-passing
step by a compute node, is used in the next chapter to
determine if the cost of repeated TLB misses is added

*Bc(e'P) Time per byte to build P packets e bytes at a time
including cache and TLB effects
(BC = Block-to-Cyclic)

&() Time per byte for an I/O node to build packets e
bytes at a time

TABLE 5.1. Parameters used in our model.

to reduce message-passing overhead. Another alternative examined is Two-Phase

Disk-Directed I/O, which combines DDIO with the Two-Phase Access Strategy [8,

27]. We provide models for the effective bandwidths of DDIO, DDIO using packets,

and Two-Phase DDIO. We validate the models on a real parallel computer and use

them to compare different approaches with different machine configurations. Table

5.1 shows parameters of our models, which are described in detail in Section 5.4.1.

118

Two <Jf"\
Buffers!^

Compute Nodes

D D D

i/o
Node

D

FIGURE 5.1. Disk-Directed read of data distributed in Cyclic fashion on the com-
pute nodes. The I/O node calculates the destination processor and address for each
record in the block just read from disk. Each record is transmitted to the destina-
tion compute node which writes the data at the location specified by the I/O node.
The transmission of data overlaps the reading of data into the second buffer. The
roles of the buffers are reversed while the next disk block is read.

5.2. Disk-Directed I/O with the Cyclic Distribution

In this section we analyze DDIO's performance when redistributing data to

or from a Cyclic compute-node distribution with a record size of 8 bytes. The

Two-Dimensional Block-Cyclic and Cyclic-Cyclic distributions have more expensive

destination-address computations than the Cyclic distribution, so their performance

using DDIO is slightly worse than Cyclic's [52]. As shown in Figure 5.1, records

from the file for a Cyclic compute node distribution are assigned to compute nodes

in round-robin fashion. Using DDIO for a read, each element is transmitted indi-

vidually to its destination. For a write, each I/O node requests from the desired

compute node the single record needed at that time. We first examine data laid out

on disk in a random layout, in which DDIO achieves optimal overlap [52].

119

5.2.1. Random Disk Layout

In the original DDIO paper [52], results with both random and contiguous

layouts of data on disk are shown. With a random layout of blocks2 sorted by

starting sector number, the validated simulation of the HP 97560 disk drive [57]

used in [52] requires a mean access time of 18.8 ms with a standard deviation of 4.5

ms. With these parameters, one can ensure optimal overlap 99% of the time when

the time needed to perform all memput or memget operations for a block is less than

8.3 ms. Using DDIO, this requires that address calculation and message-passing

overhead for 8-byte records be less than 8.1 //s per record. Although the simulated

machine used in [52] meets this requirement [53], many existing parallel machines

do not have such low message-passing latency.

One obvious way to avoid the high cost of 1024 messages per block is to build

packets of data (i.e., packetize data) containing all records bound to or from each

compute node in a given block. This approach is essentially a scatter/gather, which

Kotz mentions as a way to achieve higher bandwidth on fine-grained redistributions

[52]. For a read, one packet for each compute node is built on each of the I/O nodes,

which send one message to each processor per block. For a write, each I/O node

requests from each compute node only the data the I/O node needs in the next block

it writes; the I/O nodes unpack each compute node's data in a strided fashion to

form the disk block to be written. We call this approach the packet-based variation

of DDIO and denote it PB-DDIO.

The cost for both building and unpacking packets was studied in great detail

in Chapter 4. It was shown there that, as the number of packets built increases

2We assume the 16 individual 512-byte sectors making up a block are contiguous on the
disk.

120

beyond the number of Translation Lookaside Buffer (TLB) entries, assuming packets

at least a page in size, all TLB entries are exhausted, and each packet access requires

an expensive memory access to reload the TLB with the correct page table entry.

In this scenario, the TLB miss costs become significant. When unpacking, the TLB

miss costs increase as the local array size increases. Since the data in packets on I/O

nodes totals 8 KB, and a few TLB entries can point to all packets, no TLB effects

occur at the I/O nodes for either packing or unpacking data. We have found that

the average time for the HyperSPARC processor of the Meiko CS-2 to build packets

for 8 KB of data for a Cyclic compute node distribution is 1.20 ms. When this

time is used in conjunction with the 99% optimal overlap time from the previous

paragraph (8.3 ms), the overhead for each message can be up to 7.1/P ms in order to

maintain the desired overlap with disk operations. On a 128-processor machine the

per-processor overhead is 55 /is; for 16 processors it is 444 [is. These numbers allow

machines with higher message-passing latency than that modeled in [52] to achieve

optimal overlap using PB-DDIO when data have a random layout on disk. However,

while PB-DDIO is a big improvement over DDIO for fine-grained redistributions,

this approach has its limitations, as we see when we examine higher-performance

disk systems.

5.2.2. Contiguous Disk Layout and High-Bandwidth Disk Systems

Typical general-purpose computers store many small, temporary files on disk.

Eventually the disk becomes fragmented, and blocks of a file may be scattered

randomly across the disk. We anticipate that a parallel file system relying on DDIO

will avoid much of this fragmentation and support contiguous layout of data, not

necessarily of an entire file, but at least of the portion accessed during a single file

121

operation. Note that administrative files, programs, and other small files whose

modification often leads to fragmentation are typically accessed from a separate file

server and not the parallel file system. Their layout does not impact the parallel

file system. DDIO's collective nature plays a big part in ensuring contiguous layout;

rather than allocating a single disk block at a time, an I/O node using DDIO

allocates in advance disk blocks needed for an entire collective operation. Therefore,

it is essential that the file system using DDIO be optimized for transfers of contiguous

data.

When transferring data to or from contiguous blocks, optimal overlap of

message-passing operations with disk operations for fine-grained redistributions is

not possible [52]. The HP 97560, modeled in the original DDIO paper [52], spins

at 4002 RPM and has 72 512-byte sectors per track; a read or write of 16 sectors

(one 8K block) takes 3.3 ms on this disk. The original DDIO scheme, required to

send 1024 messages (double that for writes) per disk block for a Cyclic distribution

of 8-byte records, takes approximately 6.5 ms in the message-passing phase for a

block. The result is that the message-passing, not disk speed, is the bottleneck,

and effective bandwidth is approximately half what the disks themselves provide.

The imbalance is worse when we examine more recent disk technology. Today, disk

speeds of 7200 RPM are common, while the density of data in sectors per block is

rising to twice that of the HP 97560 and beyond [82]. The time needed to transfer

a block to or from a state-of-the-art disk, assuming a contiguous data layout, is

decreasing to close to 0.8 ms—giving a bandwidth of nearly 10 MB/s from a single

disk. Several disks used together, perhaps in a RAID configuration, can provide this

bandwidth and greater, even without the optimistic assumption of contiguous data

layout [11].

122

Recall that on the Meiko CS-2, a representative time for packetizing a block

of 8-byte elements is 1.20 ms; the corresponding time for unpacking received data for

a write is 1.18 ms. These times are for memory operations only and do not include

message passing, so the time needed to build or unpack packets of 8-byte records

for one block actually exceeds the high-performance disk system transfer time of

0.8 ms before we consider the added cost of sending messages. Hence putting data

from a block into packets and sending only one message per block to each compute

node, namely PB-DDIO, does not provide a good balance between disk operations

and message-passing for fine-grained redistributions when a high-bandwidth disk

system is used. The time for packing and unpacking 4-byte records is considerably

worse. Therefore, building packets is only a partial solution that does not guaran-

tee balanced performance when a high-bandwidth disk system or single disk with

contiguous file layout is used.

5.3. Alternatives to Simple Packet Building

In this section we propose two alternatives to PB-DDIO. The first scheme,

like PB-DDIO, relies on the I/O nodes to pack or unpack data bound to or from

compute nodes. This new scheme reduces the number of messages sent, and hence

the impact of message latency, by putting data from M. disk blocks into pack-

ets transmitted between compute nodes and I/O nodes. This approach, denoted

MB-DDIO for "Multiple Block" DDIO, provides higher effective bandwidth than

PB-DDIO, but it has two drawbacks. The first drawback is that MB-DDIO requires

more memory on the I/O nodes than PB-DDIO or DDIO. This is not a major con-

cern, because memory requirements go from about 32 KB for PB-DDIO to, perhaps,

256 KB for MB-DDIO, both modest amounts. A more significant disadvantage of

123

MB-DDIO is that the compute nodes must process data sent to or received from

I/O nodes. Because of the fixed stripe size for the file, data from consecutive blocks

on the same I/O node do not reside in contiguous compute node memory—compute

nodes must unpack received data and pack data transmitted to I/O nodes. The ideal

number of disk blocks to process for each message exchange varies from machine to

machine. For our experiments, we combine 16 8 KB blocks to give a total of 128

KB transferred during each message-passing phase of the redistribution. The 128

KB value was chosen to avoid cache and TLB effects that might arise with a larger

transfer size.

Another approach combines the efficient Block file transfers of DDIO with

the Two-Phase Access Strategy [8] [27], giving an entirely different approach to

optimizing fine-grained file redistributions. The Two-Phase Access Strategy used

without DDIO suffers from the fact that the I/O nodes must react to uncoordi-

nated, potentially ill-timed, individual block requests from compute nodes. When

we add the optimizations of DDIO to the Two-Phase Access Strategy, I/O nodes

can minimize disk access times by taking into account the entire collective opera-

tion being performed. In the hybrid strategy, denoted 2P-DDIO, which combines

DDIO with the Two-Phase Access Strategy, data are transferred between disk and

the compute nodes in the disk distribution (Block for one-dimensional arrays and

Block-None for two-dimensional) and redistributed to the desired distribution by

the compute nodes. When reading, the compute nodes perform a redistribution

among themselves after receiving the data from I/O nodes. When writing, the data

are redistributed among compute nodes before the I/O nodes begin the file write.

With 2P-DDI0, file access is fast, and compute nodes perform no unpacking of data

received from I/O nodes.

124

While the file operations of 2P-DDIO are fast, the redistribution phase is

not performed in conjunction with the file operations. Hence, unlike with PB-

DDIO and MB-DDIO, the redistribution in 2P-DDI0 is not overlapped with disk

operations3. 2P-DDIO requires more memory, on compute nodes rather than I/O

nodes, than DDIO or PB-DDIO. It also rules out fully asynchronous I/O, since the

compute nodes must participate in the redistribution prior to a write or after a

read. On the positive side, 2P-DDIO requires much less work of the I/O nodes and

maintains a clear division of work between I/O nodes and compute nodes. It utilizes

compute nodes, which typically outnumber I/O nodes, for packet-building. Finally,

its performance improves as disk speeds improve, a certainty for the foreseeable

future. Kotz [52] concludes that the Two-Phase Access Strategy should be slower

than DDIO, but that conclusion is based on the assumption that the Two-Phase

Access Strategy is used with a traditional parallel file system, with its inherent

prefetching mistakes and non-optimized disk accesses. When the Two-Phase Access

Strategy is combined with DDIO's optimizations, the result can speed fine-grained

file redistributions.

5.4. Building and Validating Models

5.4.1. Analytic Models for Four Disk-Directed File Redistribution Schemes

In this section we validate analytic models for the performance of DDIO,

PB-DDIO, MB-DDIO, and 2P-DDIO. We model only reading here. The conclu-

3We do not take into account overlapping of packet-building for redistribution on com-
pute nodes with disk operations. However, an aggressive implementation of read could
perform packet-building by compute nodes upon receipt of the first blocks of data, thereby
achieving some overlap and higher effective bandwidth than that shown in Section 5.5.

125

sions drawn from the experiments with these models can be qualitatively applied

to writing as well, but simple analytical models cannot accurately describe for a

variety of machines the overlapping of data requests and replies needed for writing.

Our goal here is to establish the merits of MB-DDIO and 2P-DDI0; the simple,

easily validated models for reading allow us to do that. Consistent with a high-

performance file system or contiguous data layout with an element size of 8 bytes,

the models for DDIO, PB-DDIO, and MB-DDIO assume the processing require-

ments for a block of data are greater than DB , the time needed to access a block of

disk data assuming a contiguous layout. To simplify the models presented here, we

define Bio, the maximum number of file blocks at any I/O node, to be

"Wei
B B io =

where N is the number of elements in the global array, e is the array element size,

B is the file system block size, and / is the number of I/O nodes.

We model DDIO's performance, assuming message-passing dominates disk

read time, when reading from a file with a contiguous layout as

TDDIO = D\ + Bio(
B_

e
A + 5&), (5.1)

where the first term represents the time needed to access the first disk block, and

the remaining time is the number of blocks per I/O node times the message-passing

costs per block. A represents the message latency, while ß is the inverse of network

bandwidth, namely the time per byte for sending messages. Note that each message

transmitted is smaller than B, but since the messages are serialized by the sender4,

the total amount of data sent for a block is B.

4We assume single-port communication.

126

For PB-DDIO, we assume packet building for a block dominates the actual

disk block access time (recall that a node of the Meiko CS-2 takes 1.20 ms to

packetize 8 KB of data, which is read from a state-of-the-art disk in just 0.8 ms).

Hence, reading using PB-DDIO is modeled as

TPB = D!+ BI0{rB
u

c{e)B + PX + Bß) (5.2)

After the first block is read, packets are built and transmitted for every block.

The MB-DDIO model is similar to that for PB-DDIO, with the exception

that the number of messages sent is reduced, and the extra cost of unpacking at

the compute nodes is included. During a read operation, M disk blocks are read

and packetized before messages are sent from the I/O nodes, so the number of times

messages are sent is \Bio/M~\. The unpacking, denoted by vmb([B/P\, A4I\B/P~\),

incurs relatively little overhead except when P gets large and the amount of data

bound for a compute node in a block is small. Moreover, only the unpacking of

the last blocks received does not overlap I/O node disk and packing operations; the

number of blocks received in the last group is

Cmb = {BIO + M-l)%M + l, (5.3)

in which the modulo (%) function adjusts for the case when the I/O nodes do not

pack MB bytes for the last message. Therefore, for reading, our model of MB-DDIO

time is

Tmb = D,+ BIOB(JtB
u

c(e) + ß) +
B IO

M
P\ + vmb([B/P\, MI \B/P])ICr,

B

P

(5.4)

We model the time a 2P-DDIO read takes as

T2P = Dr + DB(BIO -l) + \ + Bß + 7TBC(e,P)
Ne

P
+ P\ + ßx

Ne'
(5.5)

127

The first two terms represent disk read time, and the next two represent moving

the last block of data read (which does not overlap any disk operations) from the

I/O nodes to the compute nodes. The remaining costs are for building packets and

exchanging data among compute nodes. Note that the TT (e, P) term, because it

reflects the redistribution of an entire array, is impacted by Translation Lookaside

Buffer (TLB) effects as P increases.

5.4.2. Validating the Models

In this section we empirically validate the models for DDIO, PB-DDIO, MB-

DDIO, and 2P-DDI0 presented in the previous section using experiments on a Meiko

CS-2 multicomputer. The CS-2 at Oregon State University consists of 16 nodes

connected by a 40 MB/s bidirectional, fat-tree, indirect network. Each node has a

communication coprocessor facilitating low latency user-accessible communication.

Although each node of the CS-2 has a local disk, we do not have control of the disks

at the level required for DDIO. This does not affect our models, though, because

our assumption is that message-passing time combined with packet building and

unpacking time exceeds the disk block access time. Hence, these times form the

critical path in the execution of DDIO, PB-DDIO, and MB-DDIO.

The data for our DDIO, PB-DDIO, and MB-DDIO validation runs is shown

in Table 5.2. Each block of the table includes three values. The top value is the

actual run on the CS-2 in milliseconds, the middle value is the modeled value in

ms, and the bottom value, in boldface, is the relative error of the model. The

actual runs, with the exception of the DDIO results on 50 MB files, consist of the

average of 10 runs. The maximum coefficient of variation (i.e., the ratio of standard

deviation to mean) among the values is 0.022. Because of their excessive duration,

128

DDIO times for 50 MB files are the average of two runs. The DDIO read model

slightly underestimates the actual read time. This is not surprising, since our model

does not account for the excess loading on each node and the network caused by

the overwhelming number of fine-grained messages. However, because DDIO is not

competitive with the other schemes presented here, the slightly optimistic nature of

our DDIO model has no qualitative impact on our results.

The results in Table 5.2 show that our models are accurate for small values

of P. As shown in Chapter 4, increasing P has no impact on packet building or

unpacking times when TLB misses do not occur—the case in I/O node packetizing.

Therefore, ^Bc{e) does not vary with P. Neither does the message-passing model

for reading (i.e., transmitting a block of data from I/O nodes to compute nodes

in time PA + Bß) lose accuracy as P increases. Hence, our models scale to larger

values of P.

For 2P-DDIO, we simply validate the data redistribution portion of the

model. The remainder of the model, with the exception of the transmission of data

not overlapped with disk operations, consists of disk parameters, which are mod-

eled independently of the redistribution. The results of our redistribution model are

shown in Table 5.3. As P increases, both the reading and writing models take into

account TLB effects, so the packet building and unpacking components maintain

their accuracy. On recent scalable parallel computers, the bisection bandwidth in-

creases with P, so the message-passing performance predicted by our model (only

50% of peak bandwidth) for the complete exchange should be maintainable for larger

systems.

129

p
Array
Size I

DDIO
Read

PB-DDIO
Read

MB-DDIO
Read

12

10MB

4
6221

5720
8.1

517

517
0.0

482

458
5.0

2
12230

11427

6.6

1022

1032

1.0

935

912

2.5

50MB

4
31195
28547
8.5

2593

2580
0.5

2367

2277
3.8

2
61588
57082

7.3

5125
5159
0.7

4657
4548
2.3

8

10MB

4
6242

5720
8.4

498

495
0.6

482

459
4.8

2
12239
11427
6.6

975
989
1.4

932

910
2.4

50MB

4
31371
28547
9.0

2492
2471
0.8

2361
2271
3.8

2
58873
57082
3.0

4896
4941
0.9

4641

4535
2.3

Observed (ms)
Predicted (ms)
Error (%)

TABLE 5.2. Comparison of our analytic model with actual run times for file redis-
tribution schemes on a Meiko CS-2. The compute node distribution is Cyclic, and
array elements are 8 bytes. Each block of the table includes three values. The top
value is the actual run on the CS-2 in milliseconds, the middle value is the modeled
value in ms, and the bottom value, in boldface, is the relative error of the model.
The actual runs, with the exception of the DDIO results on 50 MB files, consist
of the average of 10 runs. The maximum coefficient of variation (i.e., the ratio of
standard deviation to mean) among the values is 0.022. Because of their excessive
duration, DDIO times for 50 MB files are the average of two runs.

130

Data
Redistribution

10 MB 50 MB
P -> 16 12 8 16 12 8

139 189 268 690 947 1334
BC 138 184 277 691 922 1383

0.5 2.4 3.2 0.2 2.6 3.7

Observed (ms)
Predicted (ms)
Error (%)

TABLE 5.3. Comparison of our analytic model with actual run times for Block to
Cyclic (BC—used for reads) redistributions on a Meiko CS-2. The compute node
distribution is Cyclic, and array elements are 8 bytes. Each block of the table
includes three values. The top value is the average time for 10 runs on the CS-2 in
milliseconds, the middle value is the modeled value in ms, and the bottom value,
in boldface, is the relative error of the model. The largest coefficient of variation
among the actual runs is 0.006.

5.5. Performance Comparison of the Disk-Directed I/O Redistribution
Schemes

5.5.1. 8-Byte Record Size

For our comparison of 2P-DDIO, MB-DDIO, PB-DDIO and DDIO, we use

two different machines for our models. Their parameters are shown in Table 5.4.

The first, dubbed "DDIO machine" is similar to the one simulated in [52]. This

machine has low message-passing latency and a high-bandwidth network in which

we assume half its peak bandwidth is utilized when performing an all-to-all commu-

nication. The second machine is the Meiko CS-2. Because packing and unpacking

are not discussed in [52], our model of the DDIO machine uses the Meiko's values

for 7rj&(e), 7TBC(e,P), and vmb([B/P\,MI\B/P]). For reference, the 7rBC(e,P)

value's behavior is dictated by the Meiko CS-2's HyperSPARC processor, whose

TLB has 64 entries and uses random replacement.

131

DDIO Machine

A 2 (xs

ß 0.001667 /xs/byte

ßx 0.003333 //s/byte

Meiko CS-2

A 17 fis

ß 0.025 /is/byte

ßx 0.052 /xs/byte

Shared Parameters

7rRP(e,P),P<64 0.159029 ^zs/byte

*Bn(8»64) 0.1769 ^s/byte
7TRp(8,128) 0.2593 fis/bjte

*Rn(8,256) 0.2803 jus/byte
vmb(32,MI\B/P]) 0.1357 //s/byte
vmb(6A,MI\B/P]) 0.0982 /xs/byte
vmb(l28,MI\B/P]) 0.0816 ^s/byte
vmb(256, MI \B/P]) 0.0744 /is/byte
vmb(512, MI\B/P]) 0.0712 ^s/byte
vmb(m±,Mi\B/p]) 0.0698 jus/byte

A 13 ms

£B 0.844 ms
5 8192 bytes
e 8 bytes
iV 6553600

TABLE 5.4. Machine parameters used to generate the data in this section.

At the I/O nodes, we assume the disk spins at 7200 RPM, has 172 sectors

(21.5 8K blocks) per track, and 10 tracks per cylinder. The average block read time,

including skews, of a contiguous file is 0.833 ms, resulting in a bandwidth of 9.26

MB/s. These numbers represent a state-of-the-art disk drive as of early 1996 [82].

132

t/5

s
PQ

>

O

1024.00
512.00
256.00
128.00
64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50

1 1 1 1 1 1

.A"' ^^**^^

"'** J&"'' -+""""
Js." ^**"*\-' --•" - "'" Js***'-'' -+"* —

&'' ^<<>--+''
$^'" *'

....x

- X'""

...X"

~ x

1 1 1 1 1 1

8 16 32 64 128 256
Compute Nodes

P/I = 4

P

Key Method 8 16 32 64 128 256

A OPT 18.4 36.7 72.7 142.7 275.1 513.5

0 2P-DDIO 12.2 24.3 48.4 92.9 160.9 295.5

D MB-DDIO 11.0 21.9 43.2 84.2 160.1 288.7

+ PB-DDIO 10.1 18.6 32.0 50.0 69.7 86.7

X DDIO 0.9 1.8 3.5 7.0 14.0 27.8

FIGURE 5.2. Modeled bandwidth using Meiko parameters reading a 50 MB file to
a Cyclic distribution of 8-byte records with a P/I ratio of 4.

133

t/2

pq

3
• i—i

PQ
CD
>

■a o

512.00
256.00
128.00
64.00
32.00
16.00
8.00
4.00
2.00
1.00
0.50
0.25

I I I I I r

A' ~^ .0

&-'''^^^ ■■&' - ^~" *^^ -*" -

-
•'''^s^"^ -'"* -4---"""

»-•*" ^s^**"^ -S" -■*"""
- •*"*" /ie^^^ *'" -+""* ~

t*'*'^*^ .-'*",+-*■*"* ..-'■"'

?'-'-';:" """
 x

- _....*•

 X

x

1 1 1 1 1 1

8 16 32 64 128 256
Compute Nodes

P/I = 8

P

Key Method 8 16 32 64 128 256

A OPT 9.2 18.4 36.7 72.7 142.7 275.1

0 2P-DDIO 7.4 14.7 29.3 57.1 104.3 197.2

D MB-DDIO 5.5 11.0 21.7 42.3 80.6 147.0

+ PB-DDIO 5.1 9.3 16.0 25.0 34.9 43.4

X DDIO 0.4 0.9 1.8 3.5 7.0 14.0

FIGURE 5.3. Modeled bandwidth using Meiko parameters reading a 50 MB file to
a Cyclic distribution of 8-byte records with a P/I ratio of 8.

134

Ü3

I
• 1—1

>
• l-H
-4—> o
&

1024.00

512.00

256.00

128.00

64.00

32.00

16.00

8.00

4.00

1 1 1 1 1 1

A

-H

A' .■■'s<2-
*'' ,'' yv' X

^•"' J7J ^^>"

Ä** ''J^^ - ,.'-' rJ>>^ x""

&' SS*"*

"'" *s*£'" ■•''*

te' J^^"
s' **S$r -^

ir y
- X'"

1 1 1 1 1 1

8 16 32 64 128 256
Compute Nodes

P/I = 4

P

Key Method 8 16 32 64 128 256

A OPT 18.4 36.7 72.7 142.7 275.1 513.5

0 2P-DDI0 13.2 26.4 52.5 100.5 173.1 322.2

D MB-DDIO 12.8 25.6 51.0 101.3 200.7 393.1

+ PB-DDIO 12.7 25.0 48.8 92.8 169.3 287.8

X DDIO 7.5 15.0 29.9 59.3 116.8 226.7

FIGURE 5.4. Modeled bandwidth using the DDIO machine parameters (low la-
tency, high bandwidth) reading a 50 MB file to a Cyclic distribution of 8-byte
records with aP/I ratio of 4.

135

GO

m

T3

9

>

o

512.00

256.00

128.00

64.00

32.00

16.00

8.00

4.00

2.00

-

1 1 1 1 1 1

*•'" s<^ ,+

■''''>&r '-'' •■"x

''\s^*r'' •••"'"
A' ^s^\-"' *''' .-■■■''

X/^:'''^X

''A«/^>':> ••"""
*'' sS^ '•'-"" ■•**•

S/^-tF''
A-'/'v-**' •••''

,•'' s*?.;-' .X"
.'•V^»**

-•'* >/ V**
J*f' J^ ,*■

£■*" ^

"
X""

1 1 1 1 1 1

8 16 32 64 128 256
Compute Nodes

P// = 8

P

Key Method 8 16 32 64 128 256

A OPT 9.2 18.4 36.7 72.7 142.7 275.1

0 2P-DDI0 7.7 15.4 30.7 59.9 109.3 208.7

D MB-DDIO 6.4 12.8 25.6 50.9 100.9 198.5

+ PB-DDIO 6.3 12.5 24.4 46.4 84.8 144.3

X DDIO 3.8 7.5 15.0 29.9 59.3 116.8

FIGURE 5.5. Modeled bandwidth using the DDIO machine parameters (low la-
tency, high bandwidth) reading a 50 MB file to a Cyclic distribution of 8-byte
records with aP/I ratio of 8.

136

The central comparison we make is between PB-DDIO, MB-DDIO, and 2P-

DDIO, although we also show the modeled results for DDIO. We use the formulas

above to compare these schemes when reading a 50 MB file of 8-byte records with

a Block distribution on disk and a compute-node distribution of Cyclic. We assume

the file is divided into separate contiguous chunks of 512 KB each, hence the average

transfer time for each block using 2P-DDIO is slightly higher (with a value of 0.844

ms/block) than the maximum speed of 0.833 ms/block. Although this access time

represents a single disk with contiguous data layout, it could just as well be a

multi-disk RAID attached to each I/O node and delivering data at an effective 9.26

MB/s regardless of data layout. This figure does not directly impact MB-DDIO,

PB-DDIO, or DDIO as long as the time taken for each of these to process a block

is greater than the disk block access time. The bandwidth figure directly impacts

2P-DDIO's performance, since 2P-DDIO, as modeled, does not overlap unpacking

of data with disk operations.

Several parameters affect the relative performance of these schemes. An im-

portant factor is the number of I/O nodes relative to the number of compute nodes.

Reducing the number of I/O nodes negatively impacts all of the schemes due to less

parallelism in the I/O system. Because, in the modeled environment, packetizing is

more expensive than disk access, reducing the number of I/O nodes adversely im-

pacts MB-DDIO and PB-DDIO more than 2P-DDIO. On parallel computers in use

today, the ratio of compute nodes to I/O nodes is typically in the range of 3 to 16.

We display our results using P/I ratios of 4 and 8. File size is 50 MB, which is large

enough to ensure that I/O nodes on large systems have more than a trivial amount

of data. Each of Figures 5.2 through 5.5 shows five logarithmic bandwidth graphs

sharing a specific P/I ratio. Each graph includes a reference curve representing

the optimal disk bandwidth, denoted OPT, for which optimal overlap is achieved.

137

Shown with each graph is the same data in tabular form. We now examine the data

in detail.

Modeling the Meiko CS-2 reading a 50 MB file on a system with a P/I ratio

of 4, as in Figure 5.2, 2P-DDIO outperforms MB-DDIO by 10% and PB-DDIO

by 20% for small machine configurations. As P increases, 2P-DDIO becomes less

efficient due to TLB misses when building many packets. PB-DDIO performance

drops off even more noticeably as P increases, because P messages must be sent for

each file block. The combining of messages for MB-DDIO allows its per-I/O-node

performance to remain constant as P and I increase. When P/I increases to 8,

as in Figure 5.3, 2P-DDIO achieves bandwidth 34% higher than MB-DDIO due to

the much higher computing power available for packetizing on the compute nodes

relative to the I/O nodes. 2P-DDIO bandwidth exceeds that of PB-DDIO by 45%

for small P values, and the difference is much greater as P increases.

Message latency plays a big role in the relative performance of these schemes.

Figures 5.4 and 5.5 are based on the DDIO machine, which has much lower latency

than the Meiko. Here, the difference in performance between 2P-DDIO, PB-DDIO,

and MB-DDIO is negligible when P/I is 4, with MB-DDIO outperforming 2P-DDIO

as P increases due to the impact of TLB effects on 2P-DDIO. PB-DDIO performance

does not tail off as significantly as for the Meiko, since message latency is so low on

the DDIO machine. When P/I increases to 8, 2P-DDIO achieves a 20% speedup,

decreasing slightly as P increases, over MB-DDIO and PB-DDIO.

5.5.2. Impact of Increasing Record Size

So far, we have examined different approaches for fine-grained redistribution

of data with a specific record size of 8 bytes. Since 8 bytes is the size of a typical

138

e *&(*) Kr.^P)
8 0.1469 0.1590

16 0.0747 0.0905

24 0.0631 0.0812

32 0.0574 0.0749

40 0.0541 0.0732

48 0.0516 0.0706

56 0.0505 0.0699

64 0.0485 0.0677

TABLE 5.5. Packet-building costs in ^s/byte on I/O nodes and compute
nodes as e increases. For the fixed value of P = 32 in this section,
vmb([B/P\,MI\B/P]) = 0.07438.

PQ

PQ

>

O

10 20 30 40 50 60
Record Size

FIGURE 5.6. Bandwidth of 2P-DDIO (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution. The Meiko CS-2, with
P = 32 and / = 4, is the modeled machine. Each I/O node's disk system provides
data at 9.26 MB/s. The array record or element size, e, varies from 8 to 64.

139

double-precision floating point value, scientific applications frequently deal with 8-

byte records. However, array elements may be larger, or a distribution like Cyclic(2),

in which array elements are distributed to compute nodes two at a time, may be

used. In this section we examine the impact on 2P-DDI0, PB-DDIO, and MB-

DDIO of increasing the record size. To reduce the amount of data presented, we

limit our experiments here to a system with 32 compute nodes and 4 1/0 nodes.

The resulting P/I ratio, still optimistic relative to the I/O balance found on many

parallel machines, favors 2P-DDI0 when e = 8. In the experiments, a 50 MB file is

read to a Cyclic distribution. Unless otherwise stated, the disk bandwidth is 9.26

MB/s, the bandwidth delivered by a state-of-the-art disk using contiguous layout.

The models presented in Section 5.4.1 are used here, but they must be used in

conjunction with the disk parameters used in Section 5.5. That is, when packetizing

costs for PB-DDIO and MB-DDIO are less than disk block access times, packetizing

must wait on disk accesses.

As shown in Table 5.5, packing costs decrease substantially as e increases.

As noted above, this cost decrease leads to a condition in which packetizing time for

a block of data moves below the disk block access time. Further increases of e allow

both packetizing and message-passing to overlap disk operations. When this occurs,

2P-DDIO cannot compete with PB-DDIO and MB-DDIO. Factors other than e also

come into play, as we see in Figures 5.6 through 5.8.

Figure 5.6 shows the modeled times for the Meiko CS-2. MB-DDIO outper-

forms 2P-DDIO when e > 16. The plateau on the MB-DDIO curve implies that it

reaches its maximum performance when e > 16. This is close to optimal overlap,

because the disk controller continues to read ahead [57] while MB-DDIO's intermit-

tent message-passing takes place. The quick processing of prefetched blocks allows

the packetizing to catch up to the disk by the time the next messages are required.

140

t/3

S3

T3

PQ

>

o

to
PQ

10 20 30 40 50 60
Record Size

FIGURE 5.7. Bandwidth of 2P-DDI0 (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution. The low-latency DDIO
machine, with P = 32 and I = 4, is the modeled machine. Each I/O node's disk
system provides data at 9.26 MB/s. The array record or element size, e, varies from
8 to 64.

PB-DDIO, with its high message-passing costs, cannot hide both packetizing and

message-passing behind disk operations.

In Figure 5.7 the low-latency, high-bandwidth DDIO machine is modeled. We

see that, because of their low message-passing costs, both PB-DDIO and MB-DDIO

move to their optimal values when e > 16. 2P-DDIO benefits only slightly from the

lower latency. Note that, with e = 24 and a block size of 8192 bytes, 342 messages

are sent when DDIO is used. With this low-latency machine, these messages can be

overlapped with disk operations, and DDIO achieves optimal overlap.

141

PQ

• i—i

C
a

PQ

>

o

60

50

40

30

20

10

0

1 1 I 1 i

" <*/
...a

...Q-""

_..B"" _
pr''

-

■ i 1 i i

10 20 30 40 50 60
Record Size

FIGURE 5.8. Bandwidth of 2P-DDI0 (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution. The Meiko CS-2, with
P = 32 and I = 4, is the modeled machine. Each I/O node's disk system provides
data at 18.52 MB/s. The array record or element size, e, varies from 8 to 64.

10 MB 50 MB
IP-» 12 8 12 8
4 8.3 10.8 8.6 11.3
2 7.0 7.8 7.1 7.9

TABLE 5.6. Sustained disk bandwidth in MB/s, per I/O node, needed for 2P-DDIO
to match MB-DDIO performance. These data verify that, for 2P-DDIO to be com-
petitive, required disk bandwidth diminishes as P/I increases.

142

To determine the impact of disk bandwidth, we compare these file redis-

tribution schemes using the Meiko CS-2 machine parameters, but assuming disk

bandwidth twice that of our previous models—18.52 MB/s. The results are shown

in Figure 5.8. Although sustaining this bandwidth may be difficult today, disk

speeds are increasing quickly, and arrays of disks have the potential to deliver much

higher data rates. With this high-performance disk system, the results are not sur-

prising. The I/O nodes packetize data for PB-DDIO and MB-DDIO at the same

rate as before, but the time taken for disk accesses shrinks, resulting in less overlap

of packetizing with disk operations. The higher disk performance provides an overall

bandwidth improvement for 2P-DDIO. Analyzing bandwidth needs differently, we

can use the actual validation runs on the Meiko CS-2 (shown in Tables 5.2 and 5.3)

to calculate the minimum sustained disk bandwidth needed at each I/O node for

2P-DDI0 to match MB-DDIO performance. The results are shown in Table 5.6. As

required bandwidth decreases, 2P-DDI0 becomes the fastest choice for more config-

urations. Higher required disk bandwidths favor MB-DDIO. Note the dependence

of the required bandwidth on P/I.

Finally, Figure 5.9 shows the results when the packetizing speed (in MB/s)

increases by 50%. As packetizing cost decreases, PB-DDIO and MB-DDIO over-

lap their packetizing operations on I/O nodes with disk operations, moving these

schemes toward optimal overlap. The packetizing speed increase improves 2P-

DDIO's performance as well, but the large number of compute nodes among which

data are divided relative to the number of I/O nodes makes the impact less signif-

icant than at the I/O nodes. Note that this modification to machine parameters,

namely increasing the packet-building speed, closes the gap between 2P-DDIO and

MB-DDIO much faster than decreasing communication cost (see Figure 5.5). How-

143

<Z5

25

§

>

O

w

40

35

30

25

20

15

10

5

0

1 1

B -Q S

1

 B

1

 B B B

~ -

-Ef'

.—-H
/-—

- ■/ -

 x
 X

 x-
 x

 x

~ x
 x

~

x
1 1 1 1 1

10 20 30 40 50 60
Record Size

FIGURE 5.9. Bandwidth of 2P-DDI0 (0), MB-DDIO (D), PB-DDIO (+), and
DDIO (x) while reading a file to a Cyclic distribution. A modified Meiko CS-2 with
packetizing performance 50% faster than the current CS-2 processors is modeled.
P = 32 and I = A. Each I/O node's disk system provides data at 9.26 MB/s. The
array record or element size, e, varies from 8 to 64.

144

Parameter

P/I

• Disk System
Bandwidth

• Message-Passing
Latency

• Packetizing
Speed

• Array Element
or Record Size

• P

Impact

The more processors that can be used for packetizing,
the most expensive part of a redistribution, the better.
Hence, 2P-DDI0 has better performance relative to PB-
DDIO and MB-DDIO as P/I increases.

As disk bandwidth increases, PB-DDIO and MB-DDIO
packetizing operations take the same time. The file access
component of 2P-DDI0 shrinks, resulting in better time
for 2P-DDIO relative to PB-DDIO and MB-DDIO.

Low latency helps MB-DDIO, and, to a greater extent,
DDIO and PB-DDIO; latency differences have minimal
impact on 2P-DDIO.

Higher speed for building and unpacking packets helps
PB-DDIO and MB-DDIO more than 2P-DDIO, since
they must perform packetizing with fewer processors than
2P-DDIO uses. A high enough packetizing speed gives
PB-DDIO and MB-DDIO optimal overlap with disk op-
erations, in which case 2P-DDIO cannot compete. DDIO
is not impacted by changes in packetizing speed.

As the record size increases, the packetizing speed in-
creases, so the impact is the same as increasing the pack-
etizing speed described above.

As P increases, TLB miss costs increase for 2P-DDIO;
message-passing costs increase for PB-DDIO, somewhat
less for MB-DDIO. DDIO is not impacted.

TABLE 5.7. Summary of factors affecting schemes for fine-grained redistribution
of file data.

ever, all of these machine characteristics have a significant impact on which file

redistribution method is fastest.

145

5.6. Conclusions

We have presented and validated models for Disk-Directed I/O (DDIO) and

Packet-Based DDIO. To overcome the shortcomings of these schemes for fine-grained

redistribution of file data, we have proposed a packet-based scheme which further

reduces the number of messages sent during the redistribution, and Two-Phase

DDIO, an approach combining the strengths of both DDIO and the Two-Phase

Access Strategy. In all the configurations presented here, 2P-DDI0 provided the

highest bandwidth when reading 8-byte records to compute nodes desiring a Cyclic

data distribution. However, 2P-DDIO, in many modeled configurations, loses its

edge to MB-DDIO as the record size increases. Our model for 2P-DDI0 does not

include aggressive overlap of compute-node packing of data with I/O node disk

reads, so higher performance than that shown here can realistically be achieved

using 2P-DDI0.

Many factors influence the performance of fine-grained file redistributions.

These factors, along with their impacts on the redistribution schemes examined in

this chapter, are summarized in Table 5.7. File system designers can use the results

here in conjunction with their machine parameters to determine which of these

schemes should be incorporated into their file system utilizing Disk-Directed I/O.

Of course, considerations such as system complexity and ease of integration into a

complete prefetching and write-buffering strategy may also dictate which schemes

are implemented. Ideally, the programmer ignores implementation details while the

system chooses the best method for the requested redistribution. Outside of the file

system, parallel programmers who can optimize their programs more aggressively

than a generic file system can might choose to use the Two-Phase Access Strategy

for fine-grained redistributions, if the underlying disk-directed system eschews im-

146

plementation of 2P-DDI0. Because of the nature of actions taken on the I/O nodes,

PB-DDIO and MB-DDIO must be built into the file system and cannot be easily

replaced by a user optimization.

147

6. COLLECTIVE PREFETCH WITH REDISTRIBUTION FOR
DISK-DIRECTED I/O

6.1. Introduction

In the last chapter we explored various ways to speed up fine-grained redistri-

butions of file data on top of a Disk-Directed I/O (DDIO) foundation. Another tool

the file system can use to speed up file accesses is prefetching. Prefetching is per-

formed by existing file systems like the Paragon's PFS [45], in which each I/O node

performs a one-block read-ahead operation after a requested read. Because read

requests come asynchronously and unordered from compute nodes, these prefetched

blocks are often removed from the prefetch buffer before they are accessed, and the

cost of the prefetch is wasted. The prefetches are not technically mistakes; they

are simply ill-timed. However, the cost of such a prefetch is the same as that of a

mistaken prefetch.

As Kotz says of DDIO [52], "Prefetching ... make[s] no mistakes." This state-

ment is true only because DDIO does not perform prefetching. So, while DDIO does

not suffer from prefetching mistakes, neither does it improve performance through

successful prefetching. This is a significant weakness, because a file system that

works as closely with compute nodes as does DDIO should be able to optimize

structured reads with prefetching.

The mechanism through which DDIO gains file access knowledge, namely

collective operations, can also be used to guide prefetching. We propose the notion

of collective prefetching, in which the file system is not misled by seemingly ran-

dom fine-grained block-at-a-time file requests, but instead takes the global view of

148

Disk-Directed I/O. With this view, the pattern of previous collective operations or

run-time hints [75] [85] can guide the file system to aggressively prefetch for sub-

sequent operations. Large-scale, aggressive prefetching should be effective for most

scientific applications, which tend to access data in a regular, sequential fashion,

redistributions notwithstanding [22, 36, 56, 63, 64, 77]. Because most file opera-

tions for data-parallel applications, when viewed collectively, access a contiguous

segment of a file, collective prefetching schemes can utilize a global "one segment

read-ahead" policy rather than a local one block read-ahead. Such a prefetching

policy, combined with applications using regular file accesses, can greatly increase

the effective file system bandwidth. However, prefetching alone does not address

the common situation in which the compute node distribution differs from the I/O

node distribution. When MB-DDIO is used for the redistribution of file data, for

example, simply prefetching disk data may provide no speedup for a read requiring a

fine-grained redistribution. When a read request asks for the prefetched data, every

prefetched block must be put into packets, an expensive operation. As shown in

the previous chapter, the cost of packet-building is higher than disk access costs for

high-bandwidth disk systems. Hence, pre-reading disk data is not enough—the file

system must prepare the data for its ultimate distribution as a part of the prefetch

operation.

In this chapter we analyze several approaches to prefetching array data with

redistribution. We model two costs for each approach. The first cost is the time

spent reorganizing data during the prefetch phase of the read. This cost determines

how many blocks are prefetched in a given amount of time. The second cost is the

time taken to get the data properly organized on the compute nodes. This cost

depends on what, if any, reorganization of prefetched data is performed by the I/O

nodes. For the prefetching schemes presented here, these two costs are inversely

149

related; a scheme with a high prefetching cost has a low post-request reorganization

cost. These costs are modeled for both fine-grained and large-grained redistribu-

tions in conjunction with MB-DDIO. Our results show (1) by overlapping I/O node

packet-building with disk reads, significant gains in bandwidth can be achieved over

collective prefetching alone; and (2) rarely is it worthwhile to reorganize data on

I/O nodes to reduce the unpacking costs on compute nodes.

This chapter begins by developing models for calculating the amount of data

prefetched and the time to fulfill a request using several prefetching schemes. These

schemes are then compared using stochastic workloads modeling somewhat balanced

computation and I/O requirements. We then compare the schemes under optimal

conditions to determine the maximum benefit derived from each prefetching scheme.

Table 6.1 lists the parameters used in our models.

6.2. Prefetching and Redistribution Approaches

6.2.1. Preliminaries

We assume here the redistribution algorithm in use is the MB-DDIO scheme

presented in the previous chapter. Recall that processors using MB-DDIO combine

data from several disk blocks in their messages, thereby reducing the impact of

message latency relative to PB-DDIO. The MB-DDIO model in the previous chapter

was for fine-grained file redistributions. For our discussion here, we define a fine-

grained redistribution as one for which packet-building for a disk block takes longer

than reading or writing a block. As in the last chapter, we assume a contiguous file

layout and fast block access times. While the focus of the previous chapter is fine-

grained file redistributions, the analysis here includes large-grained redistributions.

We loosely define large-grained redistributions as those in which data from M. disk

150

Parameter Meaning

P Number of compute nodes
I Number of I/O nodes

Ps Maximum number of compute nodes to which an
I/O node sends data

B I/O node block size in bytes
B Number of disk blocks prefetched

Bio Maximum number of blocks on one I/O node

cmb(ß) Number of blocks sent in the last message of MB-DDIO
when each I/O node hold B blocks

M Number of disk blocks combined in messages for MB-DDIO

Di Time to seek, rotate, and transfer first block

DB Time to read a single disk block after head positioned
X Message startup latency

ß Time per byte to send data over the network

ßx Time per byte on loaded network (for complete exchange)

N Number of array elements to read/write
e Size of array elements in bytes
Cy Number of bytes in a disk block bound for

contiguous memory on one compute node
nv Total number of bytes unpacked by one node

^mb\^vi <<"u) Time per byte to unpack packets where nv bytes
are unpacked e„ bytes at a time

^mb{ev,nv) Time per byte to unpack packets on I/O nodes where
nv bytes are unpacked ev bytes at a time

^BC(e,P) Time per byte to build P packets e bytes at a time

including cache and TLB effects
(BC = Block-to-Cyclic)

*B0c(e) Time per byte for an I/O node to build packets e
bytes at a time

TABLE 6.1. Parameters used in our model.

151

blocks can be put into packets and transmitted in less time than A4 disk block reads.

For our large-grained redistribution experiments, an element or record size e of 256

is used.

We briefly review the MB-DDIO model here. First, the number of blocks

sent in the last message to the compute nodes from I/O nodes is

Cmb(B) = {B + M - 1) mod M + 1.

With the fine-grained assumptions made in the previous chapter, we could assume

that each disk block processed by an I/O node contained data bound for each

compute node. This assumption does not hold as e increases. For a given read

operation, the maximum number of compute nodes to which any I/O node sends

data, Psi depends on p, the number of nodes with which data are exchanged, and

/, the number of blocks processed:

e

Similarly, the grain size of data unpacked at each compute node, ev, depends on

how much data each block holds for a given compute node. For a fine-grained

redistribution, the fewest bytes one compute node receives from a block is \B / P\.

For a large-grained redistribution, not counting some splitting of records across

blocks, a block contains e bytes per compute node. Hence,

Ps(p, 0 = min(p,)•

e,, = max
B
PI ,6y

Given these parameters, we recall the fine-grained MB-DDIO read model:

Til(B) = D1 + BB(tj°c(e) + ß) + JA ps(P, M)X+
(6.1)

ICmb{B)\f\vmb(ev,IM\B/P]).

The large-grained model is dominated by disk read time and includes the time taken

to buffer and send the last blocks of data to the compute nodes. Besides disk time,

152

the major factor in this model is the time taken for the compute nodes to unpack

their data, with the most data per compute node being I£mt>(B)\B/P~\ bytes.

T%b(B) = A + (B - 1)DB + tB°c{z)B + \Ps(P,Cmb(B)) + BCmb(B)ß+

ICmb{B)\§]vmb(ev,IM\B/P]).

In the context of our experiments involving prefetching with redistribution,

we assume each compute node prefetches the same number of blocks, Bpre. When

a request for prefetched data arrives, packet-building for the current block is com-

pleted, and all prefetched data packets are transmitted to the proper compute nodes.

The models shown for the completion time of the read, Tfuifm, do not include the

"cleanup" time for prefetched blocks currently being processed. However, the exper-

iments presented in Sections 6.3 and 6.4 do include this delay before the MB-DDIO

process is started on remaining (non-prefetched) data.

After the prefetched data are sent to the compute nodes, the MB-DDIO file

redistribution scheme is performed on the remaining data. The completion time

depends on the MB-DDIO completion time as well as the unpacking done by the

compute nodes. If few blocks are prefetched, the compute nodes can unpack the

prefetched blocks while the I/O nodes are building packets for the unprefetched

data. In this case, unpacking on compute nodes overlaps packet-building on I/O

nodes, and the completion time is simply the completion time of the MB-DDIO

scheme. If many blocks are prefetched, the unpacking costs on the compute nodes

may dominate. Hence, we model the time taken once MB-DDIO starts as the later of

the MB-DDIO completion time and the time the compute nodes take to complete

unpacking of all data they receive. The model of this completion time for both

fine-grained and large-grained redistributions is

153

Tv = max(I [f] (Bprevmb(ev,IBpre\B/P]) + (BIO - Bpre)vmb{ev,IM \B/P])),

(6.3)

where Tm\, is either Tj^ or T^b, as appropriate. Note that the unpacking cost is

potentially different for the two types of unpacking done on compute nodes. The

amount of prefetched data could be large enough to cause TLB miss effects to occur

during unpacking. The data unpacked as part of the MB-DDIO redistribution is

free of TLB effects due to the limited amount of data sent at a time.

We now use the building blocks described above to model three different

prefetch schemes, two of which combine redistribution with prefetching.

6.2.2. Disk Prefetch Only

Prefetching disk data without processing it for redistribution, denoted here

as DISK-PRE, has a prefetch cost based only on disk bandwidth, which is

Tpre = D1 + (Bpre - \)DB (6.4)

The time seen by the application after the data are requested depends on the granu-

larity of the redistribution. A fine-grained redistribution requires expensive packet-

building that renders the prefetch useless, since the packet-building time for a disk

block is larger than the block read time. For a large-grained redistribution, the

prefetched data can be packetized by the I/O nodes and unpacked by the com-

pute nodes at approximately the full memory copy bandwidth. The packing for

prefetched data assumes a large prefetch buffer, in which TLB effects come into

play, so we model it Je, P) as described in Chapter 4. The unpacking done by the

compute nodes and the resulting value of Tv were described in Section 6.2.1. The

154

amount of time taken after data are requested but before MB-DDIO commences

consists of packet-building and message-passing for prefetched data.

Tfuifui = BBpre{nBC{e, P) + ß) + \PS{P, Bpre) + Tv (6.5)

Note that this model and the underlying approach are applicable only to large-

grained redistributions. It suffers from the fact that I/O node packet-building is not

overlapped with disk operations. However, this approach saves the I/O nodes from

CPU-intensive packet-building until data are actually requested and may be useful

if prefetching is speculative or not well-informed.

6.2.3. Prefetching with Packet Building

While disk prefetching alone may provide a mild boost in effective bandwidth

for large-grained redistributions, I/O nodes should be able to further speed the

redistribution by overlapping packet-building with disk reads during prefetching.

This approach, which we denote PB-PRE, can potentially help both fine-grained

and large-grained redistributions. In building our models for this scheme, we note

that building packets for a block of data for large-grained redistributions is faster

than reading the associated disk block, so the redistribution cost includes the disk

read time plus the time to packetize the last block of data:

Tpre = Dx + {Bpre - 1)DB + BiBC(e, P). (6.6)

Since the prefetch buffer may be large, we assume cache and TLB miss costs in

it (e,P) are consistent with those described in Chapter 4; these costs are more

expensive than those for canonical MB-DDIO, which accesses the same memory lo-

cations repeatedly. For fine-grained redistributions, the packetizing costs dominate,

and the prefetching cost is

155

T^^Di+BpreBlt^P) (6.7)

For either coarse- or fine-grained redistributions, the time to complete the redistri-

bution after the data are requested is

1'fulfill = BBpreß + Ps(P, Bpre)\ + T„, (6.8)

where the MB-DDIO routine starts after the prefetched blocks are sent to the com-

pute nodes.

6.2.4. Eliminating Unpacking Costs

While the above scheme overlaps packet-building with reading of prefetched

data, the striped nature of the data requires that the packet from an I/O node

to a compute node contains data not residing in contiguous memory locations on

the compute node. Hence, compute nodes must unpack the data received. It may

be desirable to eliminate this unpacking step at the compute nodes. The way we

eliminate unpacking is by collecting all data bound for a compute node on a single

I/O node acting as the compute node's representative. Each I/O node holds data

bound for as many as \P/T] compute nodes.

To collect data, the I/O nodes overlap prefetching of disk data with packet-

building and exchange data among themselves every A4 blocks, ensuring that each

I/O node has all prefetched data bound for compute nodes it represents. We denote

this scheme PBX-PRE. The per-block prefetching cost of PBX-PRE is higher than

that for PB-PRE due to communication among I/O nodes; hence the number of

blocks prefetched in a given time is less than the number when simply building

packets. The gain of PBX-PRE may be found at the end of the redistribution,

when the compute nodes need not process the prefetched data sent to them. Because

156

the I/O nodes must pack and unpack data to collect it into contiguous chunks for

represented compute nodes, we assume even a large-grained redistribution for a

block takes longer than a disk block read, so both fine-grained and large-grained

redistributions share the same model for the time taken to prefetch Bpre blocks with

this scheme:

Tpre = D,+ BBpre{i^c{e) + ßx) + [^j Ps(I,M)X + BBprevmb (ev,IM |"|~|)

(6.9)

Because I/O nodes collect data into ordered packets for each compute node as part

of prefetching, compute nodes need not unpack received prefetch data. Hence, the

cost to the requesting program for this scheme is

T fulfill X + BßBpre + Tmb{BIO-Bpre), (6.10)

where Tmb is either fine-grained or large-grained, as necessary.

6.3. Performance Comparisons

6.3.1. Machine and Workload Models

In this section we compare the performance of the prefetching schemes de-

scribed in Section 6.2. Our models rely heavily on the validated parameters of the

Meiko CS-2 shown in Table 6.2. The baseline configuration uses 32 compute nodes

and 4 I/O nodes. We modify some of these values in later experiments to determine

the robustness of our results. The experiments determine the effective program-level

bandwidth, that is, the rate seen by the requesting program, measured from the re-

quest time until the time the request is satisfied. Each I/O node has a prefetch buffer

for performing large-scale, collective prefetching. This buffer limits the amount of

157

data prefetched, regardless of the time available for prefetching. In our experiments,

we vary the prefetch buffer size on each I/O node from 512 KB to 8 MB.

In our comparison of prefetching strategies, the compute-node workload cho-

sen plays an important role. As done in [54] and [55], we model the workload using an

exponential distribution in which average computation time is equal to the average

file access time, hence the program is neither I/O bound nor compute bound. With

less computation, minimal prefetching may be performed, while more computation

allows more prefetching until the I/O node prefetch buffers become full. Further

increases in computation time, while supporting maximal prefetch, reduce the rel-

ative impact of prefetching on the entire computation-I/O sequence. We assume a

contiguous file layout with approximate disk bandwidth of 10 MB/s, giving a mean

for the exponential distribution of ./Ve/(104857607) seconds. Each result presented

in our experiments is the average resulting from 1000 runs using computation time

(and therefore prefetch time) generated from this exponential distribution.

6.3.2. Analysis of Results

Our first experiments compare the effective bandwidth for the DISK-PRE,

PB-PRE, and PBX-PRE schemes for both fine-grained and large-grained file redis-

tributions with 50 MB arrays. These results are also compared to the bandwidth

when no prefetching (NO-PRE) is performed. Figure 6.1 shows the results with a

fine-grained (e = 8) redistribution. Recall that, with a fine-grained redistribution,

DISK-PRE is no better than NO-PRE. The PB-PRE scheme provides higher band-

width than PBX-PRE, showing that the extra work of exchanging prefetched data

to simplify unpacking for compute nodes results in too few blocks being prefetched.

The PB-PRE scheme manages 27% and 52% speedups over NO-PRE using I/O

158

A 17 fis

ß 0.025 //s/byte
ßz 0.052 /is/byte
7rRr(8,P),P<64 0.159029 /is/byte
7TRr(256,P),P<64 0.063832 /is/byte
*nr(8,256) 0.2803 /is/byte
7TRC(256,256) 0.06762 /is/byte

^°c(8) 0.1474 yus/byte
*i&(256) 0.04402 /is/byte
Vrnb\€-V) T^v) 4.094/(eJ/864) + 0.0687^/byte
^mb{ev,nv) 4.094/(ei-864) + 0.0503//s/byte
Dl 13 ms
DB 0.844 ms
B 8192 bytes

TABLE 6.2. Machine parameters used to generate the data in this section.

node buffer sizes of 4 MB and 8 MB, respectively. The results for a large-grained

(e = 256) redistribution of a 50 MB file are shown in Figure 6.2. The relative

bandwidth gains as the I/O node buffer size increases are similar to those for the

fine-grained redistribution.

With a smaller file, the results are similar. Figures 6.3 and 6.4 show the

performance of fine-grained and large-grained redistributions respectively reading

a 10 MB file. In both cases the PBX-PRE falls short of the simpler PB-PRE

prefetching scheme. The differences in bandwidth seen in Figure 6.4 are magnified

by the short read time for the 10 MB file. Obviously, if most or all of a file is

prefetched, as is the case in some runs here, the resulting bandwidth is very high.

From the results presented so far, we can conclude that PB-PRE with

prefetching can significantly increase the effective file system bandwidth, while PBX-

PRE incurs too much communication overhead during prefetching to compete with

PB-PRE. In the next section we vary our experimental parameters across several

159

64.00

PQ

J3

•I—I

PQ

>
o

32.00

16.00

,.-■''' -5

.--ED'"' ...---*;..". *
,.,,,,-^-*-"

 -—-B """'"
I
> ♦ ♦ ♦

512 1024 2048 4096
Buffer Size (KB)

8192

50MB file, P = 32,I = 4, e = 8

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 21.6 21.6 21.6 21.6 21.6

+ DISK-PRE 21.6 21.6 21.6 21.6 21.6

D PB-PRE 22.3 23.1 24.6 27.5 32.9

X PBX-PRE 22.3 23.0 24.3 26.6 29.5

FIGURE 6.1. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained redistribution of
a 50 MB file.

160

64.00

PQ

• 1—I

P3

>
o

So

48.00

32.00
512 1024 2048 4096

Buffer Size (KB)
8192

50MB file, P = 32, i" = 4, e = 256

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 36.6 36.6 36.6 36.6 36.6

+ DISK-PRE 37.3 37.5 37.9 38.5 39.7

D PB-PRE 38.2 39.4 41.8 46.8 57.5

X PBX-PRE 38.0 39.1 41.3 45.7 53.5

FIGURE 6.2. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a large-grained redistribution
of a 50 MB file.

161

64.00

PQ

•i—i

PQ

>
-i-H

O
,0)
SO

32.00

16.00

i

"
 §

-
 1-

..-or'
-••■"' x

f:::-

i

512 1024 2048 4096
Buffer Size (KB)

8192

10MB file, P = 32,1 = 4, e = 8

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 21.5 21.5 21.5 21.5 21.5

+ DISK-PRE 21.5 21.5 21.5 21.5 21.5

D PB-PRE 25.2 28.6 34.5 36.1 36.1

X PBX-PRE 24.7 27.1 29.7 30.3 30.3

FIGURE 6.3. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained redistribution of
a 10 MB file.

162

128.00

PQ

I
•i—i

PQ

>
o

64.00

32.00
512 1024 2048 4096

Buffer Size (KB)
8192

10MB file, P = 32,1 = 4, e = 256

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 34.8 34.8 34.8 34.8 34.8

+ DISK-PRE 42.6 43.6 45.2 44.4 44.4

D PB-PRE 49.3 57.6 76.6 81.9 81.9

X PBX-PRE 41.6 46.5 54.8 57.9 57.9

FIGURE 6.4. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a large-grained redistribution
of a 10 MB file.

163

orthogonal dimensions to see if this conclusion is valid in a broad set of circum-

stances.

6.3.3. Determining Robustness of Results

In the last chapter, we found that varying the communication overhead im-

pacts the relative performance of file redistribution approaches. Clearly, a high

message-passing overhead slows the PBX-PRE scheme. We perform here a compar-

ison while modeling a low-latency machine like the DDIO machine (2 //s message

latency, 600 MB/s bandwidth) described in the last chapter. With 8-byte elements,

the result is qualitatively the same: PB-PRE outperforms PBX-PRE. Figure 6.5

shows a slightly different outcome when e = 256. With a large I/O node buffer (8

MB) and enough time to utilize it, PBX-PRE achieves bandwidth slightly above

that of PB-PRE alone. The width of the confidence intervals in Figure 6.5, though,

shows that the difference is statistically insignificant.

In the next experiments we combine two more configuration alternatives.

First, we increase P and increase the file size to ensure that each I/O node contains

a non-trivial amount of data. Second, we decrease P/I. This should negatively

impact PB-PRE, since a P/I ratio closer to one means each compute node must

unpack more data, reducing the chance that unpacking is overlapped with packing

on I/O nodes. Despite this apparent disadvantage, Figures 6.6 and 6.7, in which

P = 256 and I = 128, show that PB-PRE continues to outperform PBX-PRE.

Interesting results are shown in Figure 6.7, which contains the large-grained re-

distribution results. There, the DISK-PRE bandwidth drops below the NO-PRE

bandwidth. This is because MB-DDIO used by NO-PRE overlaps unpacking by

compute nodes with packing and message-sending by I/O nodes. When most or

164

128.00

PQ

I
T3

PQ

>
o

64.00

32.00

1 1 1 —

,,-ar'J

i i i

512 1024 2048 4096
Buffer Size (KB)

8192

50MB file, P = 32,1 = 4, e = 256

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 36.7 36.7 36.7 36.7 36.7

+ DISK-PRE 37.6 38.1 39.1 41.1 44.6

D PB-PRE 38.5 40.0 43.3 50.6 68.6

X PBX-PRE 38.5 40.0 43.3 50.6 68.8

FIGURE 6.5. Effective bandwidths for varying prefetch buffer sizes using DDIO
machine (low latency, high bandwidth) parameters and random computation time
for a large-grained redistribution of a 50 MB file.

165

I
PQ

>
O

1024.00

£ 768.00 -

512.00
512 1024 2048 4096 8192

Buffer Size (KB)

500MB file, P = 256,I = 128, e = 8

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 589.8 589.8 589.8 589.8 589.8

+ DISK-PRE 589.8 589.8 589.8 589.8 589.8

D PB-PRE 646.0 694.5 761.8 779.1 779.1

X PBX-PRE 646.4 689.6 741.7 773.8 773.8

FIGURE 6.6. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time for a fine-grained redistribution of
a 500 MB file.

all of the data are prefetched on I/O nodes, the DISK-PRE scheme requires that

data be packetized on I/O nodes with no overlapping unpacking on compute nodes.

Prefetched data are then unpacked on compute nodes, now with little or no overlap

with I/O node functions. Further, the low P/I ratio means that the unbuffering is

not divided among enough compute nodes to make its cost insignificant relative to

the I/O node buffering cost.

166

«

•i—i

T3

PQ

>
ü

2048.00

5 1536.00

1024.00
512 1024 2048 4096 8192

Buffer Size (KB)

500MB file, P = 256,1 = 128, e = 256

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 1134.4 1134.4 1134.4 1134.4 1134.4

+ DISK-PRE 1230.4 1243.0 1264.2 1112.5 1112.5

D PB-PRE 1345.8 1475.1 1751.1 1796.2 1796.2

X PBX-PRE 1269.6 1357.6 1491.6 1616.4 1616.4

FIGURE 6.7. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and random computation time when P/I = 2 for a large-grained
redistribution of a 500 MB file.

167

In closing this section we conclude that, with the modeled workload, the PB-

PRE scheme for prefetching and redistributing data is the desired choice. Across a

variety of machine configurations, it outperforms all other schemes. The complexity

of the PBX-PRE scheme is not justified. The simple PB-PRE scheme, in addition,

outperformed the NO-PRE and DISK-PRE schemes for all machine configurations,

buffer sizes, and grain sizes simulated.

6.4. Full Buffers for Optimal Prefetch

The previous experiments used an exponential workload distribution to com-

pare the various prefetch schemes under "average" conditions. In this section we

explore the best cases for the PB-PRE and PBX-PRE schemes — those in which

computation allows enough time for the entire prefetch buffer to be filled for both

schemes. In this case, because of its lower compute node unbuffering cost, the PBX-

PRE scheme should outperform simple PB-PRE. Here we investigate the differences

between the schemes under these optimistic conditions.

The first comparison we perform assumes that the entire file is prefetched.

This is the most optimistic scenario, in which the difference in cost between PB-PRE

and PBX-PRE will be most noticeable. Figure 6.8 shows the difference in bandwidth

for a fine-grained redistribution when the file size is equal to i", in this case 4, times

the prefetch buffer size. The fine-grained redistribution emphasizes the bandwidth

difference between the PB-PRE and PBX-PRE schemes. The effective bandwidth

difference is quite large, but this is due to the fact that the minimal amount of

time taken for both operations magnifies the relative differences. The absolute

times are shown in the second table below the figure, and we see the differences,

in absolute terms, are quite small. The difference between PB-PRE and PBX-PRE

168

PQ

■i—I

PQ

>

512.00

256.00

128.00

■B 64.00 o

32.00

 * * (-

1 G -B- -B- E

>_ $ ♦ ♦ '

512 1024 2048 4096 8192
Buffer Size (KB)

File size is Ix Buffer Size, P = 32,1 = 8, e = 8

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 42.1 42.6 42.9 43.1 43.1

+ DISK-PRE 42.1 42.6 42.9 43.1 43.1

D PB-PRE 170.9 172.0 173.0 173.5 173.8

X PBX-PRE 256.2 278.6 291.3 298.1 301.6

Actual times in ms

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 9.5 18.8 37.3 74.3 148.4

+ DISK-PRE 9.5 18.8 37.3 74.3 148.4

D PB-PRE 2.3 4.7 9.2 18.4 36.8

X PBX-PRE 1.6 2.9 5.5 10.7 21.2

FIGURE 6.8. Effective bandwidths for varying prefetch buffer sizes using
Meiko CS-2 parameters and assuming the entire file is read with fine-grained
packet-building into the prefetch buffers before being requested.

169

256.00

PQ

■i—i

PQ

O

128.00

64.00

, -»— • ♦ '

512 1024 2048 4096 8192
Buffer Size (KB)

File size is Buffer Size x32, P = 32,1 = 16, e = 8

Prefetch Buffer Size

Key Method 512KB 1MB 2MB 4MB 8MB

0 NO-PRE 84.2 85.3 85.8 86.1 86.3

+ DISK-PRE 84.2 85.3 85.8 86.1 86.3

D PB-PRE 144.0 147.6 149.5 150.4 150.9

X PBX-PRE 144.7 148.0 149.7 150.5 150.9

FIGURE 6.9. Effective bandwidths for varying prefetch buffer sizes using Meiko
CS-2 parameters and assuming half the file is read with fine-grained packet-building
into the prefetch buffers before being requested.

is smaller as the e increases and as the P/I ratio increases, because both of these

changes decrease the time for unpacking performed at each compute node. Both

of these schemes significantly outperform the NO-PRE and DISK-PRE schemes in

this comparison.

A less optimistic comparison assumes that, though the prefetch buffers are

filled, only a fraction of the file is actually prefetched. In Figure 6.9, we assume

170

half the file is held in the prefetch buffers when requested. The configuration shown

performs a fine-grained redistribution on a system with a P/I ratio of two; recall

that a lower ratio favors PBX-PRE. Even with this unrealistically low ratio and op-

timistically high percentage of the file prefetched, the simple PB-PRE scheme keeps

pace with PBX-PRE. Note the significant gains in bandwidth for these schemes,

nearly 70%, over the DISK-PRE scheme's bandwidth.

6.5. Conclusions

We have shown that, by adding collective prefetching to a file system like

Disk-Directed I/O which supports collective operations, prefetching mistakes made

by block-at-a-time file systems can be avoided. Simple prefetching of disk data

provides little performance enhancement if the data must be redistributed en route

to the compute nodes. When packet building is overlapped with disk reads of

prefetched data for both fine-grained and large-grained redistributions, significant

performance gains can be achieved. These gains depend directly on (1) the space

available for prefetch buffers on I/O nodes, (2) the workload, which dictates the

time available for prefetching, and (3) the predictability of read operations, which

tends to be high for scientific applications. Our studies showed that doing extra

work during the prefetching phase to eliminate unpacking of prefetched data by

compute nodes rarely keeps up with the simpler I/O node packet-building scheme;

it surpasses the simpler scheme even less often. The simpler PB-PRE scheme offers

consistently high bandwidth and reduces the workload of the I/O nodes. This should

be the choice of file system designers implementing collective prefetching.

171

7. CONCLUSIONS

7.1. Contributions and Significance

This research has addressed shortcomings of existing parallel I/O facilities

at two levels—the language level and the file system level. At the parallel language

level, we are the first to craft a flexible I/O interface matching the underlying ab-

straction of the language. At the same time, our implementation illustrates how such

an interface can achieve high performance for common operations and good perfor-

mance for more general operations. Three key principles have been illuminated by

the implementation. First, virtual processor file operations, typically fine-grained

by themselves, must be combined whenever possible into efficient large-scale file

system calls. Second, machine-independent modes can support both high perfor-

mance and generality while remaining relatively invisible to the user. Finally, the

most commonly encountered file operations are performed using high-performance

modes.

In our C* file system implementation, the high-performance modes have been

crafted so they can take advantage of collective file operations and related optimiza-

tions. One of the most frequently needed optimizations is for redistribution of file

data, with fine-grained redistributions being especially costly. Our results show that

the cost of these redistributions can be reduced significantly by using collective oper-

ations and combining the Two-Phase Access Strategy with Disk-Directed I/O. This

research has also identified the key parameters affecting both this hybrid scheme

and those relying on packet building for redistribution by I/O nodes. These pa-

rameters include the array element size, ratio of compute nodes to I/O nodes, disk

172

system bandwidth, message-passing bandwidth, and processors' packetizing speed.

Our validated model using these parameters allows file system designers and users

to decide which approach to file redistribution best suits their needs.

An optimization found in many file systems is prefetching. This research has

defined collective prefetching, which takes into account the global view of collective

file operations when prefetching. Collective prefetching has two advantages over the

shortsighted one-block read-ahead approach found in many parallel systems. Col-

lective prefetching supports aggressive read-ahead of data in advance of bursty read

requests, and it does not get confused by individual requests for data. For collective

prefetching implementations, this research has shown that simple packet building

used in conjunction with prefetching effectively increases the bandwidth seen by the

user, but a more complicated strategy entailing communication between I/O nodes

rarely outperforms the simpler scheme. As more and more file systems rely on

collective operations, collective prefetching will supercede block-based prefetching

schemes.

In supporting the models used in this research, a detailed model of redis-

tribution costs has been developed. In particular, the model focuses on the most

expensive part of the redistribution, packet-building and unpacking costs. The im-

pacts of relevant architectural features such as translation lookaside buffer size and

replacement policy, cache size, and compute node count are described qualitatively

and mathematically. The model is accurate for a wide variety of redistributions

and validated on three different architectures. It provides a solid foundation upon

which other models, namely those for I/O node redistribution of data, can be built.

This model also has more far-reaching significance in the parallel computing com-

munity at large, where redistributions play an important role in optimizing different

algorithmic steps in parallel programs.

173

7.2. Future Directions

While our Stream* implementation has validated the notion of user-

transparent, machine-independent modes, more tuning of the system can be done,

especially for reading while in Independent Buffering mode. Reading in Independent

Buffering mode can be especially inefficient when data must be redistributed, so file

system techniques optimizing these inherently non-collective, fine-grained operations

must be found.

Parallel languages other than C* and with paradigms other than data par-

allelism must be studied. We hope to generalize and update the design principles

we found for C* for a broader domain of languages. These languages should be

studied to find ways parallel I/O operations can be seamlessly included into the

programming paradigm with support for high performance. For some languages we

may have to conclude that parallel I/O does not make sense within the language.

The ultimate goal is to ensure that language and environment designers consider

parallel I/O as a major factor in the system design rather than as an afterthought.

Our file system models form a strong theoretical foundation for the types of

optimizations which should be used in conjunction with Disk-Directed I/O. Further

research combining an actual Disk-Directed file system with a production workload,

preferably on a real parallel computer, will provide an ideal testbed for validating

or suggesting modifications to these models. More research can also be done in

applying these and related techniques to non-scientific (e.g., database) workloads.

In the context of array redistributions, this research has shown where sig-

nificant redistribution costs come from (e.g., cache misses and TLB misses). With

this understanding, cache- and TLB-efficient redistribution schemes, perhaps some

requiring little auxiliary memory, should be buildable. Further, an objective study

174

which tests many redistribution schemes under both favorable and unfavorable cache

and TLB conditions should be done to point out when each scheme is superior.

175

BIBLIOGRAPHY

[1] M. Arunachalam, A. Choudhary, and B. Rullman. Implementation and evalu-
ation of prefetching in the Intel Paragon parallel file system. In Proceedings of
the Tenth International Parallel Processing Symposium, April 1996.

[2] R. K. Asbury and D. S. Scott. FORTRAN I/O on the iPSC/2: Is there read
after write? In Fourth Conference on Hypercube Concurrent Computers and
Applications, pages 129-132, 1989.

[3] M. J. Bach. The Design of the Unix Operating System. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1986.

[4] S. Batra, P. J. Hatcher, and R. Russell. The design and implementation of
data-parallel files. In Workshop on Modeling and Specification of I/O, 1995.
Publication via http://www.cs.duke.edu/~dev/msio95.

[5] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz. Jovian: A frame-
work for optimizing parallel I/O. In Proceedings of the 1994 Scalable Parallel
Libraries Conference, pages 10-20. IEEE Computer Society Press, October
1994.

[6] M. L. Best, A. Greenberg, C. Stanfill, and L. W. Tucker. CMMD I/O: A par-
allel Unix I/O. In Proceedings of the Seventh International Parallel Processing
Symposium, pages 489-495, 1993.

[7] R. Bordawekar, A. Choudhary, and J. M. D. Rosario. An experimental per-
formance evaluation of Touchstone Delta Concurrent File System. In Interna-
tional Conference on Super computing, pages 367-376, 1993.

[8] R. Bordawekar, J. M. del Rosario, and A. Choudhary. Design and evaluation
of primitives for parallel I/O. In Proceedings of Supercomputing '93, pages
452-461, 1993.

[9] P. Brezany, M. Gernt, P. Mehotra, and H. Zima. Concurrent file operations in
a High Performance FORTRAN. In Proceedings of Supercomputing '92, pages
230-237, 1992.

[10] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng.
Generating local addresses and communication sets for data-parallel programs.
In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages 149-158, May 1993.

176

[11] P. Chen and E. K. Lee. Striping in a RAID level 5 disk array. In Proceedings
of the 1995 ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, pages 136-145, May 1995.

[12] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy,
T. Singh, and R. Thakur. PASSION: parallel and scalable software for input-
output. Technical Report SCCS-636, ECE Dept., NPAC and CASE Center,
Syracuse University, September 1994.

[13] P. F. Corbett, S. J. Baylor, and D. G. Feitelson. Overview of the Vesta parallel
file system. In IPPS '93 Workshop on Input/Output in Parallel Computer Syst
ems, pages 1-16, 1993. Also published in Computer Architecture News 21(5),
December 1993, pages 7-14.

[14] P. F. Corbett and D. G. Feitelson. Design and implementation of the Vesta par-
allel file system. In Proceedings of the Scalable High-Performance Computing
Conference, pages 63-70, 1994.

[15] P. F. Corbett, D. G. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost,
M. Snir, B. Traversat, and P. Wong. Overview of the MPI-IO parallel I/O
interface. In IPPS '95 Workshop on Input/Output in Parallel and Distributed
Systems, pages 1-15, April 1995.

[16] P. F. Corbett, D. G. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg,
B. Nitzberg, B. Traversat, and P. Wong. MPI-IO: A parallel file I/O interface
for MPI, November 1994. Version 0.3.

[17] P. F. Corbett, D. G. Feitelson, J.-P. Prost, and S. J. Baylor. Parallel access
to files in the Vesta file system. In Proceedings of Supercomputing '93, pages
472-481, 1993.

[18] T. H. Cormen. Fast permuting on disk arrays. Journal of Parallel and Dis-
tributed Computing, 17(1—2):41—57, January and February 1993.

[19] T. H. Cormen and L. F. Wisniewski. Asymptotically tight bounds for perform-
ing BMMC permutations on parallel disk systems. In Proceedings of the Fifth
Symposium on Parallel Algorithms and Architectures, pages 130-139, June
1993.

[20] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/output char-
acteristics of scalable parallel applications. In Proceedings of Supercomputing
'95, December 1995.

177

[21] T. W. Crockett. File concepts for parallel I/O. In Proceedings of Supercomput-
ing '89, pages 574-579, 1989.

[22] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural require-
ments of parallel scientific applications with explicit communication. In Pro-
ceedings of the 20th Annual International Symposium on Computer Architec-
ture, pages 2-13, 1993.

[23] E. DeBenedictis and J. M. del Rosario. nCUBE parallel I/O software. In
Eleventh Annual IEEE International Phoenix Conference on Computers and
Communications (IPCCC), pages 0117-0124, April 1992.

[24] E. DeBenedictis and P. Madams. nCUBE's parallel I/O with Unix capability.
In Sixth Annual Distributed-Memory Computer Conference, pages 270-277,
1991.

[25] E. P. DeBenedictis and J. M. del Rosario. Modular scalable I/O. Journal of
Parallel and Distributed Computing, 17(1—2):122—128, January and February
1993.

[26] E. DeLano, W. Walker, J. Yetter, and M. Forsyth. A high speed superscalar
PA-RISC processor. In Proceedings of the COMPCON Spring 1992, Digest of
Papers, pages 116-121, Feb 1992.

[27] J. M. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In IPPS '93 Workshop on In-
put/Output in Parallel Computer Systems, pages 56-70, 1993. Also published
in Computer Architecture News 21(5), December 1993, pages 31-38.

[28] J. M. del Rosario, M. Harry, and A. Choudhary. The design of VIP-FS: A
virtual, parallel file system for high performance parallel and distributed com-
puting. Technical Report SCCS-628, NPAC, Syracuse, NY 13244, May 1994.

[29] P. Dibble, M. Scott, and C. Ellis. Bridge: A high-performance file system for
parallel processors. In Proceedings of the Eighth International Conference on
Distributed Computer Systems, pages 154-161, June 1988.

[30] Digital Equipment Corporation. Alpha AXP workstation
and server specification summary, Oct 1993. URL: ftp://ftp.digital.com
/pub/Digital/info/misc/axp-ws-summary.ps.

178

[31] S. A. Fineberg. Implementing the NHT-1 application I/O benchmark. In
IPPS '93 Workshop on Input/Output in Parallel Computer Systems, pages
37-55, 1993. Also published in Computer Architecture News 21(5), December
1993, pages 23-30.

[32] R. J. Flynn and H. Hadimioglu. A distributed hypercube file system. In Third
Conference on Hypercube Concurrent Computers and Applications, pages
1375-1381, 1988.

[33] C. S. Freedman, J. Burger, and D. J. Dewitt. SPIFFI — a scalable parallel file
system for the Intel Paragon. Submitted to IEEE TPDS, 1994.

[34] J. C. French, T. W. Pratt, and M. Das. Performance measurement of the
Concurrent File System of the Intel iPSC/2 hypercube. Journal of Parallel
and Distributed Computing, 17(1—2):115—121, January and February 1993.

[35] F. N. Fritsch, R. E. Schäfer, and W. P. Crowley. Solution of the transcendental
equation wew = x. Communications of the ACM, 16(2):123-124, Feb 1973.

[36] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In
Proceedings of Supercomputing '93, pages 462-471, 1993.

[37] G. A. Gibson, R. H. Patterson, and M. Satyanarayanan. Disk reads with
DRAM latency. In Third Workshop on Workstation Operating Systems, pages
126-131, 1992.

[38] G. A. Gibson, D. Stodolsky, P. W. Chang, W. V. Courtwright II, C. G.
Demetriou, E. Ginting, M. Holland, Q. Ma, L. Neal, R. H. Patterson, J. Su,
R. Youssef, and J. Zelenka. The Scotch parallel storage systems. In Proceed-
ings of 40th IEEE Computer Society International Conference (COMPCON
95), pages 403-410, San Francisco, Spring 1995.

[39] S. Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C.-H. Huang, and P. Sa-
dayappan. On the generation of efficient data communications for distributed-
memory machines. In Proceedings of the International Computing Symposium,
pages 1:504-513, 1992.

[40] P. J. Hatcher. Elemental functions. Technical Report X3J11.1/92-076, Numer-
ical C Extensions Group (ANSI X3J11.1), 1992.

[41] P. J. Hatcher. Extending C* for data-parallel I/O. Technical Report TR 94-16,
University of New Hampshire Department of Computer Science, 1994.

179

[42] P. J. Hatcher and M. J. Quinn. Data-Parallel Programming on MIMD Com-
puters. The MIT Press, Cambridge, Massachusetts, 1991.

[43] Hewlett Packard Corporation. PA-RISC 1.1 architecture and instruction set
reference manual, Feb 1994. Hewlett-Packard part no. 09740-90039. URL:
http://wwwl.hp.com:80/cgi-bin/wmSendDat a/nsa/acd.ps.Z.

[44] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blumenthal. PPFS:
A high performance portable parallel file system. Technical Report UIUCDCS-
R-95-1903, University of Illinois at Urbana Champaign, January 1995.

[45] Intel. Paragon OSF/1 User's Guide, 1993.

[46] S. Johnsson and C.-T. Ho. The complexity of reshaping arrays on boolean
cubes. In Proceedings of the Fifth Distributed Memory Computing Conference,
pages 1:370-377, 1990.

[47] E. T. Kalns and L. M. Ni. DaRel: A portable data redistribution library
for distributed-memory machines. In Proceedings of the 1994 Scalable Parallel
Libraries Conference II, Oct 1994.

[48] E. T. Kalns and L. M. Ni. Processor mapping techniques toward efficient data
redistribution. In Proceedings of the Eighth International Parallel Processing
Symposium, pages 469-476, Apr 1994.

[49] S. Kaushik, C.-H. Huang, R. W. Johnson, and P. Sadayappan. An approach
to communication-efficient data redistribution. In Proceedings of the 8th ACM
International Conference on Super computing, pages 364-373, July 1994.

[50] S. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan. Multi-phase
array redistribution: Modeling and evaluation. In Proceedings of the 9th In-
ternational Parallel Processing Symposium, pages 441-445, April 1995.

[51] D. Kotz. Multiprocessor file system interfaces. In Proceedings of the Second In-
ternational Conference on Parallel and Distributed Information Systems, pages
194-201, 1993.

[52] D. Kotz. Disk-directed I/O for MIMD multiprocessors. Technical Report PCS-
TR94-226, Dartmouth College Department of Computer Science, July 1994.

[53] D. Kotz. Personal communication, April 1995.

180

[54] D. Kotz and C. S. Ellis. Prefetching in file systems for MIMD multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 1(2):218—230, April
1990.

[55] D. Kotz and C. S. Ellis. Practical prefetching techniques for multiprocessor file
systems. Journal of Distributed and Parallel Databases, 1(1):33-51, January
1993.

[56] D. Kotz and N. Nieuwejaar. Dynamic file-access characteristics of a production
parallel scientific workload. In Proceedings of Supercomputing '94, pages 640-
649, November 1994.

[57] D. Kotz, S. B. Toh, and S. Radhakrishnan. A detailed simulation model of
the hp 97560 disk drive. Technical Report PCS-TR94-220, Dartmouth College
Department of Computer Science, July 1994.

[58] 0. Krieger. HFS: A flexible file system for shared-memory multiprocessors.
PhD thesis, University of Toronto, October 1994.

[59] K. Kunchithapadam and B. P. Miller. Optimizing array distributions in data-
parallel programs. In Proceedings of the Seventh International Workshop on
Languages and Compilers for Parallel Computing, pages 470-484, August 1995.

[60] A. J. Lapadula, K. P. Herold, and P. J. Hatcher. A retargetable C* compiler
and run-time library for mesh-connected MIMD computers. Technical Report
TR 92-15, University of New Hampshire Department of Computer Science,
1992.

[61] J. S. Lee, S. Ranka, and R. V. Shankar. Communication-efficient and memory-
bounded external redistribution. Technical report, Computer Science Depart-
ment, Syracuse University, February 1995.

[62] S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E. D. Milne, and
R. Wheeler, sfs: A parallel file system for the CM-5. In Proceedings of the
1993 Summer USENIX Conference, pages 291-305, 1993.

[63] E. L. Miller and R. H. Katz. Input/output behavior of supercomputing appli-
cations. In Proceedings of Supercomputing '91, pages 567-576, 1991.

[64] J. A. Moore. Parallel I/O requirements of four oceanography applications.
Technical Report 95-80-1, Oregon State University Department of Computer
Science, 1995.

181

[65] J. A. Moore, P. J. Hatcher, and M. J. Quinn. Stream*: Fast, flexible data-
parallel I/O. In Parallel Computing '95, September 1995.

[66] J. A. Moore and M. J. Quinn. Analysis and modeling of array redistributions.
Technical Report 96-80-1, Oregon State University Department of Computer
Science, 1996.

[67] S. A. Moyer and V. S. Sunderam. PIOUS: a scalable parallel I/O system
for distributed computing environments. In Proceedings of the Scalable High-
Performance Computing Conference, pages 71-78, 1994.

[68] J. R. Nickolls. The MasPar scalable Unix I/O system. In Proceedings of the
Eighth International Parallel Processing Symposium, pages 390-395, 1994.

[69] N. Nieuwejaar and D. Kotz. A multiprocessor extension to the conventional
file system interface. Technical Report PCS-TR94-230, Dept. of Computer
Science, Dartmouth College, September 1994.

[70] B. Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical
Report RND-92-020, NAS Systems Division, NASA Ames, December 1992.

[71] B. K. Pasquale and G. C. Polyzos. A static analysis of I/O characteristics of
scientific applications in a production workload. In Proceedings of Supercom-
puting '93, pages 388-396, November 1993.

[72] B. K. Pasquale and G. C. Polyzos. Dynamic I/O characterization of I/O inten-
sive scientific applications. In Proceedings of Supercomputing '94, pages 660-
669, November 1994.

[73] R. H. Patterson and G. A. Gibson. Exposing I/O concurrency with informed
prefetching. In Proceedings of the Third International Conference on Parallel
and Distributed Information Systems, pages 7-16, September 1994.

[74] R. H. Patterson, G. A. Gibson, and M. Satyanarayanan. Informed prefetch-
ing: Converting high throughput to low latency. In Proceedings of the 1993
DAGS/PC Symposium, pages 41-55, Hanover, NH, June 1993. Dartmouth
Institute for Advanced Graduate Studies.

[75] R. H. Patterson, G. A. Gibson, and M. Satyanarayanan. A status report on
research in transparent informed prefetching. ACM Operating Systems Review,
27(2):21-34, April 1993.

182

[76] P. Pierce. A concurrent file system for a highly parallel mass storage system.
In Fourth Conference on Hypercube Concurrent Computers and Applications,
pages 155-160, 1989.

[77] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Character-
izing parallel file-access patterns on a large-scale multiprocessor. In Proceed-
ings of the Ninth International Parallel Processing Symposium, pages 165-172,
April 1995.

[78] S. Ramaswamy and P. Banerjee. Automatic generation of efficient array re-
distribution routines for distributed memory multicomputers. In Proceedings
of the Fifth Symposium on the Frontiers of Massively Parallel Computation,
pages 342-349, February 1995.

[79] A. L. N. Reddy and P. Banerjee. A study of I/O behavior of Perfect bench-
marks on a multiprocessor. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 312-321, 1990.

[80] D. A. Reed, C. Catlett, A. Choudhary, D. Kotz, and M. Snir. Parallel I/O:
Getting ready for prime time. IEEE Computer Society Technical Committee on
Computer Architecture Newsletter, Winter 1994-95, pages 45-55, 1994. Edited
transcript of panel discussion at the 1994 International Conference on Parallel
Processing, August 1994.

[81] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17-28, March 1994.

[82] Seagate Technology. Seagate storage products: Barracuda 41p family, January
1996. Available at URL http://www.seagate.com.

[83] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective I/O in Panda. In Proceedings of Supercomputing '95, De-
cember 1995.

[84] K. E. Seamons and M. Winslett. An efficient abstract interface for multidi-
mensional array I/O. In Proceedings of Supercomputing '94, pages 650-659,
November 1994.

[85] T. P. Singh and A. Choudhary. ADOPT: A Dynamic scheme for Optimal
PrefeTching in parallel file systems. Technical Report SCCS-627, Northeast
Parallel Architectures Center, Syracuse University, 1994.

183

[86] A. J. Smith. Disk cache — miss ratio analysis and design considerations. ACM
Transactions on Computer Systems, 3(3):161—203, 1985.

[87] Sun Microsystems. UltraSPARC programmer reference manual, 1995.

[88] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PAS-
SION runtime library for parallel I/O. In Proceedings of the Scalable Parallel
Libraries Conference, pages 119-128, October 1994.

[89] R. Thakur and A. Choudhary. All-to-all communication on meshes with worm-
hole routing. In Proceedings of the 8th International Parallel Processing Sym-
posium, pages 561-565, April 1994.

[90] R. Thakur and A. Choudhary. Efficient algorithms for array redistribution.
Technical Report SCCS-601, Northeast Parallel Architectures Center, Syra-
cuse University, June 1994.

[91] R. Thakur, A. Choudhary, and G. Fox. Runtime array redistribution in HPF
programs. In Proceedings of Scalable High-Performance Computing Confer-
ence, pages 309-316, 1994.

[92] Thinking Machines Corporation. C* Programming Guide, June 1991.

[93] Thinking Machines Corporation. Connection Machine I/O System Program-
ming Guide, October 1991.

[94] Thinking Machines Corporation. CM-5 I/O System Programming Guide,
September 1993.

[95] D. E. Vengroff. A transparent parallel I/O environment. In Proceedings of the
1994 DAGS/PC Symposium, pages 117-134, Hanover, NH, July 1994. Dart-
mouth Institute for Advanced Graduate Studies.

[96] J. S. Vitter and P. Krishnan. Optimal prefetching via data compression. In
Foundations of Computer Science, pages 121-130, 1991.

[97] A. Wakatani and M. Wolfe. A new approach to array redistribution: Strip min-
ing redistribution. In Parallel Architectures and Languages Europe (PARLE
94), July 1994.

[98] A. Wakatani and M. Wolfe. Optimization of array redistribution for distributed
memory multicomputers. Parallel Computing, 21, 1995.

184

[99] L. F. Wisniewski. Structured permuting in place on parallel disk systems. In
Proceedings of the Fourth IOPADS Workshop on I/O in Parallel and Dis-
tributed Systems, May 1996.

[100] A. Witkowski, K. Chandrakumar, and G. Macchio. Concurrent I/O system for
the hypercube multiprocessor. In Third Conference on Hypercube Concurrent
Computers and Applications, pages 1398-1407, 1988.

