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ABSTRACT 

This research examined various approaches to the reparable item problem 

and demonstrated significant shortcomings in those approaches which hamper 

their effectiveness. The METRIC-based approaches had problems handling the 

variability of empirical data and state dependent behavior. Queueing 

approaches ran into significant state space problems when they attempted to 

solve realistically sized problems or address complex issues. 

We develop a new paradigm for the reparable item problem which abandons 

stock levels as decision variables in favor of depot allocations of repair funding. 

It also assumes that the depot repair process is not constrained by the 

availability of unserviceable assets or by workshop capacity. 

We use this new paradigm to propose an open queueing network 

representation of the repair process. This generates an item availability 

probability distribution function, thus opening up a broad range of different 

objective functions. We demonstrate a set of specific techniques for creating 

these representations from empirical data with a U. S. Air Force data set. In a 

comparison of the fitting and forecasting performance of our model out 

performed a METRIC based model 38 out of 40 comparisons. 



Based upon the queueing network representations generated in this 

demonstration, we developed a global marginal allocation model to determine 

the best allocation of the depot's repair funding between competing bases and 

competing items at each of the bases. 

VI 
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CHAPTER 1 
INTRODUCTION 

THE REPARABLE ITEM PROBLEM 

The reparable item class of inventory problems is a very specialized area 

of inventory policy with very narrowly defined, but very critical real-world 

applications. As the name implies, its defining characteristic is the fact that 

items are repaired and returned to the inventory. Most literature on inventory 

models tends to focus on "consumables." During use, consumables lose all their 

original utility. This happens in some cases, such as wooden pencils, light 

bulbs, and bombs, because the item is destroyed in the process of being used. 

In other instances, such as recapping a worn tire, diagnosing and repairing a 

faulty circuit card, and replacing the battery on a cheap watch, the item may not 

actually be destroyed during use, but repair is so costly relative to the 

replacement cost that repair is not economically viable. Because they are 

consumed during use, once consumables are used to satisfy a demand, they 

leave the inventory system and are no longer considered in the problem. 

In addition to items which are literally consumable, consumable inventory 
models also apply to a large number of items which are "functionally 



consumable" in that they leave the inventory system under consideration once 

they satisfy an exogenous demand. For example, an automobile manufacturer 

assembles components, like engines, transmissions, and body parts, which are 

anything but "consumable." However, because the individual parts no longer 

have any bearing on the automobile manufacturer's inventory system once they 

are installed on an automobile, the manufacturer's inventory models can safely 

treat them as consumables. 

In some inventory applications, however, it is economically feasible to 

repair the item, and the inventory system being modeled encompasses both the 

demand and repair segments of the process. For such items which are neither 

consumable nor functionally consumable, the consumable models fail in certain 

key respects. The key feature of the reparable item problem which consumable 

models do not address is the return flow of parts from the repair functions. 

Because of this cyclical flow of parts, the reparable item problem environment is 

often referred to as a "repair cycle." 

There have been some efforts to incorporate this repair cycle aspect into 

the classic reorder point methods. Allen and D'Esopo (1968) developed a total 

cost function for reparable items predicated upon Poisson demand and being 

able to decompose the demand into its reparable and condemned components. 

The condemned portion of the decomposed demand stream represents the 

requirements for the item. Simon and D'Esopo (1971) further refined the 

expected backorder portion of this total cost function. However, even using this 



type of total cost function, the conventional inventory models do not completely 

account for the cyclical nature of the repair cycle. 

A closely related type of problems is the machine repair problem. As long 

as the reparable items are at a single location, the machine repair type problem 

is appropriate. Another defining characteristic of the reparable item problem, 

however, is that it is multi-echelon. Although the machine repair problem 

focuses on the repair cycle aspect of the reparable item problem, unless the 

methodology also considers the multi-echelon facet, it too is an inadequate 

representation. Muckstadt and Thomas (1980) specifically addressed the 

question of whether or not a multi-echelon technique was required. Using an 

actual "industrial inventory system" they used the multi-echelon model to 

achieve a target level of "expected emergency backorders." They then used the 

single-echelon models to achieve the same level of support and compared the 

inventory costs of the two alternatives. Based upon the cost differentials, they 

concluded that for the specific situation they evaluated, the multi-echelon model 

was clearly superior. Hausman and Eskip (1994) extended Muckstadt and 

Thomas' research by improving upon the single-echelon model and looking at a 

larger range of fill rate levels. Their single-echelon model compared more 

favorably with the multi-echelon model in the higher fill rate range. Even so, 

they were only within 3-5 percent of the multi-echelon solutions. 

Some additional features which are typical of many reparable item 

applications and which motivate the development of repair cycle models are long 



lead-times for the component parts and high cost of down time for the end item. 

The implication of the long lead-time characteristic is that in the short term, the 

number of components is fixed, with the only source of supply being the internal 

repair capability. The high cost of down time is not a characteristic which by 

itself disqualifies the consumable models. However, when coupled with the fact 

that the consumable models do not adequately handle the other characteristics 

of the reparable item problem, it provides significant incentive for developing 

specialized reparable item models to address the reparable item problem. 

These traits of an environment in which a reparable inventory model is 

necessary typically restrict their applicability to large organizations where 

inventory is maintained for internal use and repair capability is intrinsic to the 

organization. The military environment, specifically the Air Force, is the most 

commonly cited application for the reparable item inventory model, but some 

other types of organizations which could potentially use reparable item models 

include utility companies, airlines, and railroads. 

The Air Force Repair Cycle 

As is the case with much of the earlier research on the reparable item 

problem, this effort will focus on the U. S. Air Force's repair cycle. The following 

sections describe the environmental context of the reparable item problem with 

particular emphasis on the Air Force's repair cycle environment and the system 

it uses for making inventory-related management decisions regarding these 

items. Because of the wide variation in actual practice from one aircraft to 



another, from component to component, and from base to base, this outline 

attempts to focus on the most likely repair cycle scenarios, noting prominent 

exceptions where applicable. Its purpose is not to provide a precise system 

description, but rather to provide a real world context for the repair cycle 

problem. Where appropriate specific comments about modeling a particular 

facet of the repair cycle are also included. For the interested reader, Silver, et al 

(1993) contains a more detailed process description of the Air Force's repair 

cycle. 

Indenture Relationships 

Just as the MRP literature deals with bills of material and the way in which 

component parts are built up into end items, a hierarchy of component parts 

features prominently in many versions of the reparable item problems. However, 

unlike the MRP system which assembles and forgets, the reparable item 

problem continues to cycle these component parts through the repair cycle 

where they have a direct bearing on the performance measures of the system. 

In the Air Force context, this hierarchy of parts is referred to as "indenture 

relationships." At the top of the hierarchy is the end item-the aircraft. Each 

aircraft, however is made up of multiple levels of component parts which make 

up the individual systems and sub-systems. At the highest level of indenture, an 

aircraft is viewed in terms of its component "systems." Examples of the various 

systems would be communications, navigation, and weapons control. These 



systems are, however, composed of "line-replaceable units" (LRUs). LRUs are 

self contained units which the crew chiefs, who are tasked with direct 

maintenance of the aircraft, can remove and replace. The term "line-replaceable" 

refers to the flight line where the maintenance action takes place. Some Air 

Force examples of LRUs include a radio transmitter unit, a cockpit airspeed 

indicator, and an inertial navigation unit. On newer aircraft, which were 

designed for rapid maintenance action, many of the LRUs are literally "black 

boxes" which have built in handles, slide in and out of easily accessible slots, 

and have a single plug-in connection with the aircraft. 

At the next level of indenture are the component parts which make up the 

LRUs. In the case of the "black box" LRUs, they typically consist of a casing with 

a series of slots and circuit cards or other electrical components which go into 

those slots, much like the system unit of a personal computer. Repairing one of 

these LRUs often consists of a technician removing and replacing one of the 

component parts. Because these repairs take place in a specialized repair 

shop, instead of on the flight line, those component parts of the LRU which are 

themselves reparable are called "shop replaceable units" (SRUs). In some 

instances, the failure of the LRU is caused by a consumable part. Component 

parts of the LRU which are not reparable are referred to as "bits and pieces." 

Because they are managed with an economic order quantity (EOQ) inventory 

system, these bits and pieces are not given individualized consideration in 

reparable item problems. 



Failure Process 

The Air Force's repair cycle environment for any given part is multi- 

echelon, consisting of three levels, the flight line, the base's repair shop, and the 

depot. In a typical sequence of events at the base level, the pilot returns from a 

mission and reports a problem with one of the systems on his/her aircraft. The 

crew chiefs and other flight line technicians diagnose the failure and isolate a 

specific LRU they suspect of causing the problem. They then order a 

replacement LRU from base supply's stock, remove and replace the failed LRU, 

and send it to the specialized shop for diagnosis. 

This process of LRU failure at the bases, and its underlying failure rate, is 

a key component of all reparable item models, and one of the most troublesome. 

Some models use a deterministic average number of failures per flying hour. 

Others model the failure with constant rate stochastic distributions (exponential, 

compound exponential, and negative binomial are the most common 

distributions). Still others incorporate state-dependent rates conditioned upon 

the number of operating aircraft or use time-dependent rates corresponding to 

the various stages of a likely conflict scenario. Later sections will describe in 

greater detail the ways in which the various reparable item models address the 

failure process. In spite of the vast resources dedicated to the problem, this 

failure process defies definition. 
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Repair Routing 

Depending upon a variety of factors, the failed LRU is routed for repair at 

either the depot or the base. The rate at which LRUs are repaired at the base 

level or the "percent base repair" (PBR) is a key factor in multi-echelon 

reparable item models. Reparable item models simplify the routing process, 

usually choosing a fixed PBR which may vary from base to base. In practice, the 

PBR is dependent upon such factors as cause of the failure, availability of 

diagnostic and testing equipment and technical data, level of expertise in the 

base's repair shop, availability of SRUs, and repair shop workload for that LRU 

and other LRUs which require the same equipment. 

Base Repair Process 

The base process of actually repairing the LRU is, like the earlier stages, 

a complex and highly variable process. The factors cited in the previous 

paragraph which influence PBR also impact the time it takes to repair the LRU. 

The time an LRU spends in the base repair shop can be divided into three major 

categories: actual repair, awaiting maintenance (AWM), and awaiting parts 

(AWP). The actual repair time is the most consistent time in the process. Since 

LRUs are repaired on automated test equipment using pre-programmed test 

routines, there is very little opportunity for variability other than in the time 

required to actually remove and replace faulty components. 



The times in the AWM and AWP portions, however, depend upon 

numerous   factors which introduce large amounts of variation. Models which 

incorporate an indenture feature can reflect the AWP time, but the AWM time, 

which is largely dependent upon local conditions and management decisions, is 

difficult to model. The composite time that results from the base repair process 

is highly variable and thus proves difficult to accurately model. The Air Force 

term for this segment is "base repair cycle time" (BRCT). Repaired LRUs are 

returned to base supply, where they are stocked to meet future demand by the 

crew chiefs on the flight line. 

Transportation of Unserviceables 

Those LRUs which are routed to the depot for repair go through a 

transportation process which includes base processing time to prepare the LRU 

for shipment, transportation time, and depot in-processing time upon receipt. 

For many LRUs, the significance of this stage of the process is mitigated by the 

fact that the depot already has numerous unserviceable LRUs sitting on the 

shelf awaiting repair. Except for critical items, induction into depot repair 

depends primarily upon repair funding, not the availability of the unserviceable 

LRUs. 
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Depot Repair Process 

Much like the base repair process, the depot's repair cycle times are 

highly variable, depending upon numerous factors. The automated test 

equipment and technicians at the depots are very flexible resources, able to 

repair a large number of different types of LRUs with similar functions. Because 

of this flexibility, the largest determinant of the rate at which a depot produces a 

given LRU is the competition from other similar LRUs for those scarce repair 

resources. The Air Force terminology for this segment of the repair cycle is 

"depot repair cycle time" (DRCT). LRUs which are repaired in the depot's 

maintenance function are either stocked at the depot to meet future base 

demand or used to fill open backorders from the bases. 

Serviceable Shipments 

When a serviceable LRU is sent to a base, either in response to a 

requisition or to fill an open backorder, it encounters processing time at the 

depot and transit time between the depot and the base. The time from when a 

base places an order for an LRU until the base receives that item out of depot 

stock, "order and shipping time" (O&ST), is a key component in the Air Force's 

current requirements system. As was the case in the other repair cycle 

segments, the O&ST segment is highly variable. Although most of the variation 

in this segment is introduced by the differences in shipping times between 
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bases, but the different priorities assigned the requisitions also introduce some 

of the variability. 

The SRU Repair Cycle 

The repair cycle process for SRUs is virtually the same as for LRUs 

except for the fact that demand for SRUs is generated from the repair shops, 

either at the base or at the depot, instead of from the flight line maintenance 

organizations. In practice, there is less attention focused on the SRUs, so there 

is less management intervention in the SRU repair process. As such, the SRU 

repair cycle times are often less variable than the LRU repair cycle times. 

COMPUTING REQUIREMENTS 

The Air Force expends considerable resources in its ongoing efforts to 

gather and process data in order to solve the reparable item problem of how 

many of each item to repair or buy and where to stock these items. At the core 

of this process is the Recoverable Consumption Item Requirements System 

(D041). Feeding this system are a variety of systems at the individual bases and 

depots which engage in data reporting, data consolidation, and data processing. 

Silver, et al (1991) described these individual systems, their inputs to the 

requirements computation process, and the impact this data has on the Air 

Force's reparable item budget using an extensive collection of empirical data 

bases from the various data systems. 
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Every Air Force base reports any transactions involving reparable items 

to the depot systems on a daily basis as they occur. Systems at the depots 

convert these reports into the base-level rates, balances, and pipeline times. 

The D041 consolidates the inputs from all the depots to solve its reparable item 

problem. 

The D041 begins solving its reparable item problem by forecasting 

demand for the individual items. This forecast is simply the historical failure rate 

multiplied by the projected usage. Usage for most items is measured in flying 

hours, but a small number of items use other measures such as number of 

missions or number of shots fired. By factoring in desired and actual stock 

levels at the bases as well as the historical PBR at the individual bases, the 

D041 computes the demand that the depot will see from the bases. 

In addition to the base-level LRU demand, the depots have some LRU 

demand from aircraft overhaul functions located at each of the depots. For 

SRUs, the depots see additional demand as a result of failed SRUs from the 

depot repair process. The D041 uses the base and depot-level demand rates 

coupled with historical depot repair times to compute quarter by quarter repair 

and procurement requirements for each item. For the interest reader, Silver, et 

al (1992) contains a more detailed explanation of the D041's requirements 

computations. 
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DISSERTATION OVERVIEW 

In Chapter 2, we review the relevant literature on the reparable item 

problem as well as the closely related machine repair problem and multi-echelon 

inventory problem literature. Within the reparable item literature, our review 

breaks out the METRIC-based literature and the queueing literature. The focus 

is on the assumptions, benefits, and limitations associated with the various 

approaches. 

Chapter 3 highlights the problems with both the METRIC-based and 

queueing approaches to the reparable item problem. While the METRIC-based 

approaches are very sophisticated and have enjoyed widespread application, 

they are limited in their ability to model the extreme variability inherent in the 

reparable item processes. The queueing models are readily able to handle the 

process variability, but are hampered by severe state space problems when they 

try to address any problem even approaching a realistic size. This chapter also 

introduces a new paradigm which reduces the reparable item problem to a 

decision by the depot on the allocation of repair funding and develops the 

assumptions necessary to support this new paradigm. 

In Chapter 4, we develop the basic concept of using an open queueing 

network to represent the reparable item problem. We describe the theories 

behind open queueing networks and how they can apply to the availability 

distributions of the individual items. Using the availability distributions for the 

individual items, we then show how we can derive end item availability. 
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In Chapter 5, we demonstrate the process of fitting an empirical 

availability distribution with an open queueing network representation. We 

compare the fitting and forecasting ability of the open queuing network 

representations with those predicted by METRIC-based models and show the 

clear superiority of the our open queueing network approach. 

Chapter 6 demonstrates how the open queueing network representations 

derived in Chapter 5 can be incorporated into a marginal allocation routine to 

determine how the depot can best allocate its limited repair funding to maximize 

a given objective function. 

Chapter 7 summarizes the results of this research and proposes 

opportunities for further research into using open queueing networks to 

represent reparable item systems. 



CHAPTER 2 
LITERATURE REVIEW 

INTRODUCTION 

The reparable item problem is a narrowly defined area of research which 

simultaneously addresses some of the key issues from both the machine repair 

problem as well as the multi-echelon inventory problem. The following figure 

illustrates the domain of the reparable item problem. 

Multi- 
Machine /Reparable] Echelon 
Repair     I     Item     I inventory] 

Figure 2-1: Reparable Item Problem Domain 
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Because the reparable item problem research is so closely related to both 

the machine repair problem research and the multi-echelon inventory problem 

research, this literature review will begin by surveying some of the key relevant 

research in these areas to lay a foundation for the reparable item problem 

research. This related research is often valuable in that it addresses specific 

aspects or key characteristics of the reparable item problem and suggests 

possible approaches to those issues. These efforts, however, fall short of 

simultaneously addressing the key issues of the reparable item problem. The 

reparable item problem research is a specific subset of both problem types in 

that it addresses aspects of both the machine repair and multi-echelon inventory 

problems in a unified fashion. 

This chapter begins by reviewing the some of the key research in the 

machine repair problem and the multi-echelon inventory problem areas which 

have applicability to the reparable item problem. We will then look specifically 

at the reparable item problem research. Our review of the reparable item 

problem begins with the Multi-Echelon Technique for Recoverable Item Control 

(METRIC) model and its related extensions. We then briefly cover some 

simulation approaches to the reparable item problem. Finally, we examine 

queueing representations of the reparable item problem. The figure below 

outlines the various approaches to the reparable item problem and their 

evolution. 
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ME' RIC 

Mod-METRIC 
I 

Vari-METRIC 

Dyna-METRIC 

Reparable Item 
Problems 

Queuing 

Continuous 
Time Markov 
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Queueing 
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Open     Closed 

Based 
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Based 

Figure 2-2: Reparable Item Problem Research 

MACHINE REPAIR PROBLEMS 

The machine repair problem concerns itself with the issues surrounding 

reparable items. Some typical issues include the optimal number of repairmen 

or repair channels. From an inventory standpoint, the machine repair problem 

can address the best stock levels for each of the component parts in a multi- 

indenture environment. The problem becomes a reparable item problem when 

these issues are addressed for a multi-echelon system. 
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Gross, Miller, and Soland (1983) used a closed queueing network and 

implicit enumeration techniques to determine the optimal allocation of both 

spares and repair channels in a steady state, single-echelon, reparable 

environment. Balana, Gross, and Soland (1989) extended this work to a 

transient environment. The closed queueing network consists of an operating 

node with working machines and spares and a repair node with a given number 

of repair channels. By constructing the infinitesimal generator for the network 

and using standard Markov chain procedures to solve for the transient 

probabilities, they were then able to use these probabilities to evaluate possible 

solutions using performance measures such as availability and expected 

backorders. These solutions formed the basis of their implicit enumeration 

optimizing routine which sought to minimize the cost of spares and repair 

channels while meeting minimum performance criteria. Their implicit 

enumeration technique used upper and lower bounds in conjunction with a 

binary search routine to significantly reduce the computational requirements of 

their approach over the explicit technique. 

Ebeling (1991) examined the trade-off between stock levels and repair 

channels in a single-echelon multiple indenture environment. Since the number 

of repair channels is not an issue when using the METRIC-based assumption of 

uncapacitated repair, he used a queueing representation as the core of his 

analysis. Based upon the steady state probability formulations for an M/M/K 

queue with a fixed number of units derived in Gross and Harris (1974), he was 
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able to compute the ready rate for individual components given a stock level and 

number of servers. Using this ready rate, he first computed the maximum 

availability at each feasible budget level for the individual components, then 

allocated the available budget to stock levels and repair channels for the various 

components with a dynamic programming formulation. 

Dhakar, Schmidt, and Miller (1994) described an application of the 

machine repair problem for determining repair policy for steel and rubber rolls in 

a paper mill. These parts are characterized by their high cost, low demand, and 

their criticality to the operation. Using costs for ordering, holding, downtime, and 

expedited or emergency repair, they determined the optimal inventory thresholds 

for expediting existing repair orders or for submitting an emergency repair order. 

They used a detailed simulation of the paper mill's operations in conjunction with 

a direct search routine. 

MULTI-ECHELON INVENTORY PROBLEMS 

The multi-echelon inventory research revolves around the hierarchical 

relationship between demand generating "branches" and the "trunk" which 

supplies them. Clark and Scarf (1960) produced one of the earliest multi- 

echelon inventory efforts. Their research developed multi-echelon solutions 

from the existing single-level solution procedures and demonstrated the 

effectiveness of their techniques for a variety of supplier-installation hierarchical 

structures. Clark (1972) performed a comprehensive review of the multi-echelon 
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literature through 1971. The framework he used for his review categorized the 

research by six "dichotomies" based upon the problem characteristic: 

deterministic vs. stochastic, single-product vs. multi-product, stationary vs. 

nonstationary, continuous review vs. periodic review, consumable product vs 

reparable product, and backlog vs. no backlog. Although the reparable item 

problem is specifically addressed in his framework definition, he covers it only in 

a general overview and in one reference to METRIC. One area in which 

METRIC-based models have been criticized is their inability to adequately model 

the variability of the demand process. Because modeling this variability is the 

focus of our research, this review pays particular attention to the multi-echelon 

inventory problems which specifically address the variability issue. 

Svornos (1986) uses a decomposition approach to the multi-echelon 

inventory problem in which he addresses the specific distribution of stochastic 

lead-times. He uses a decomposition approach to derive the steady state 

distributions using single-echelon techniques for each of the individual locations 

which make up the multi-echelon structure. Performance at the lower echelon 

locations is, however, dependent upon the performance at the upper echelon 

locations. His specific focus was the distribution of the lead-time delay between 

echelons. 

Svornos and Zipkin (1988) also take a decomposition approach to the 

multi-echelon inventory problem focusing on lead-time delay. They, however, 

further refine a technique for computing the lead-time which models both the 
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mean and the variance of the demand during lead-time at both the depot and the 

bases. 

Zipkin (1988) describes a technique for modeling the demand and lead- 

time processes in inventory systems as phase-type distributions. The most 

important conclusion from this research is that the distribution of lead-time 

demand is also phase-type, and that it has the same number of phases as the 

lead-time distribution. This phase-type parallel of Palm's theorem has the same 

potential for computational efficient solutions as Palm's theorem, but with the 

significantly enhanced flexibility of the phase-type distribution. Svornos and 

Zipkin (1991) apply the phase-type models to a multi-echelon inventory system 

and demonstrate the benefits of the more flexible phase-type distributions in 

capturing the variability of the transportation process. 

METRIC-BASED MODELS 

Introduction 

The literature on reparable item inventory problems has been dominated 

by the Multi-Echelon Technique for Recoverable Item Control (METRIC) class of 

models. This is due, in large part, to the fact that the Air Force has actually 

applied the METRIC models to manage its reparable inventory. A number of 

authors associated with either the Air Force or contractors such as the RAND 

corporation and the Logistics Management Institute have been able to chronicle 

the various improvements on the original model. Demmy and Presutti (1981) is 
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a thorough survey of the METRIC-based models within their Air Force repair 

cycle context with a particular emphasis on the theoretical development of the 

METRIC-based methodology. Their review is also noteworthy for its explanation 

of the ways in which METRIC-based models are actually applied in the Air 

Force's planning, budgeting, initial provisioning, replenishment, and distribution 

processes. The following sections describe the early roots of the METRIC 

models, review the enhancements to METRIC over the years, and introduce 

some of the queueing representations of the repair cycle. 

METRICS (S-1.S) Roots 

The most common approach to the reparable item problem has been the 

METRIC- based models. These models have their roots in the (S-1 ,S) class of 

stockage policy models. Because of their typically high value and low demand, 

most inventory systems try to avoid stocking large quantities of reparable items. 

Sherbrooke (1992) observes that this result follows from the Wilson EOQ 

formula. A small value for demand in the numerator and a large value for cost in 

the denominator drives the optimal ordering quantity toward one. When Q=1, 

the resulting inventory policy is (S-1 ,S). This policy is a key assumption in 

reparable item problems. 

One of the (S-1 ,S) roots of the METRIC models was Scarf's extension in 

Arrow, Karlin and Scarf (1958) of Palm's theorem to the (S-1,S) inventory 

system. Scarf equated the expected number of busy servers from Palm's 
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theorem with the number of demands during lead-time in the (S-1 ,S) stockage 

policy setting. To get the expected number of backorders, he used Formula 2-1. 

^(u-s)P(u\X,t) (2-1) 
s 

Where u is the index of the summation (starting with s, the number of 
units stocked) 

The probability term represents the Poisson probability of observing u 
demands given the arrival rate (k) and lead-time (t) associated with the 
stockage situation. 

Feeney and Sherbrooke (1966) extended Scarf's work by showing that 

the Poisson arrival assumption required by Palm's theorem could be relaxed 

using a compound Poisson arrival process instead. This gave a more realistic 

arrival stream than did the simple Poisson process. The only thing this changed 

in Scarf's formula for expected backorders was the probability term which 

changed from the simple Poisson probability to the compound Poisson 

probability. 

These early roots of the METRIC models in Palm's theorem highlight two 

of their important assumptions/limitations. (1) Since Palm's theorem requires an 

M/G/oo queue, the Marcovian arrival rate is a constant, not dependent upon the 

number of parts currently in repair. Sherbrooke (1992) suggests that in the 

context of the Air Force application, this assumption is not a significant limitation. 

When aircraft break, the flying load is usually distributed to the remaining 
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serviceable aircraft.   (2) Palm's theorem also assumes an infinite number of 

servers, and thus no waiting for repair. Gross (1982) performed queueing 

analysis on both the M/M/°° queue assumed by METRIC-based models and the 

M/M/c queue which models constrained repair. For the M/M/c queues he had to 

use numerical solution techniques. Based upon his comparison of system 

performance measures such as fill rate and expected backorder level, he 

concluded, "The general direction of the errors may not be surprising, but the 

actual magnitude might be. Certainly, one should give careful thought prior to 

employing the ample service assumption."    Proponents of the METRIC models, 

such as Sherbrooke (1992), however, minimize this limitation by suggesting that 

the priority system used by the depots is able, in practice, to expedite critical 

items, and that METRIC models using the standard repair rate actually produce 

conservative aircraft availability results. 

METRIC 

Sherbrooke (1968) reported RAND's efforts to incorporate this 

computation of expected backorders for a single-level (S-1 ,S) inventory system 

into a multi-echelon model. The key to this multi-echelon approach was using 

the stockage policy decisions at the next higher echelon (the depot in the Air 

Force application METRIC was designed to model) to compute the lead-time that 

METRIC uses at the lower level (the individual bases in the Air Force system). 
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Formula 2-2 below illustrates how the depot policy is used to determine base- 

level backorders: 

Lead-time = (PBR x BRCT) + ((1 -PBR) x (OST + Depot Delay))      (2-2) 

PBR=Percent Base Repair 

BRCT=Base Repair Cycle Time 

OST=Order and Shipping Time (from the depot) 

Depot delay was computed using Little's (1961) Law shown below in Formula 

2-3 below. 

L=MV (2-3) 

Where: L=length of the queue 
W=wait time in the queue). 

The L for use in this formula was computed using Scarf's expected 

number of backorders formula. The X was computed by superimposing the base 

demand rates on the depots using Formula 2-4: 

lVh,Jl-pBR^ (2-4) 

This multi-echelon formulation enabled METRIC to model the tradeoff 

between the value of having stock at the base level vs the benefit (via reduced 
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lead-time) of holding stock at the depot level. METRIC embedded this 

computation of expected backorders for individual items, into an optimizing 

routine in which the stock levels for the individual items at the depot and the 

bases were the decision variables and the total expected number of backorders 

was the objective function. 

Mod-METRIC 

One concern the Air Force had with METRIC was the fact that its 

objective function of minimizing total backorders gave equal weight to all 

reparable items. In actuality, the availability of the larger components (LRUs) 

was more important than the smaller component parts (SRUs) that go into them. 

One complicating factor was the fact that the availability of the LRUs is 

dependent upon the availability of the SRUs. RAND extended the basic 

METRIC model by modifying the base repair cycle time (BRCT) term in the lead- 

time equation to include a separate lead-time term for component parts. 

When the SRUs required to repair the LRUs are available, BRCT is 

simply the time it takes the shop to repair the LRU (which is no change from the 

original METRIC model). The component SRUs have their own lead-times from 

the depot. When an SRU's demand during this lead-time exceeds its base 

stock, the time it takes the shop to return a serviceable LRU to the inventory 

must also include component lead-time. MOD-METRIC was further able to 

model the fact that the depot's SRU stock levels determine the lead-time for 
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SRUs at the base level. MOD-METRIC combined the base's SRU stock levels, 

the demand rate for the SRUs, and the SRU lead-times (which are in turn a 

function of depot stock levels for the SRU) to determine the likelihood of delays 

in the LRU repair process and, by extension, the BRCT. 

By explicitly addressing the indenture relationships between end items 

and their components, MOD-METRIC's objective function more accurately 

reflected the Air Force's goal of minimizing end item backorders as opposed to 

minimizing all backorders. However, when the indenture relationships were 

added, the effect of changes in the individual decision variables became 

inseparable. This occurred because the value of a given SRU, as it relates to 

reducing end item backorders, is related to the stock of other SRUs. Silver 

(1972) addressed this by marginal allocation starting with no LRUs and adding 

them incrementally, using the remainder of the funding for SRUs. Muckstadt 

(1973) proposed a similar marginal allocation solution beginning with all the 

funding dedicated to LRUs and incrementally adding SRUs. Muckstadt (1978) 

later proposed using Fox and Landi's (1970) Lagrangian multiplier approach to 

achieve separability. 

Vari-METRIC 

METRIC and MOD METRIC both used Feeney and Sherbrooke's 

compound Poisson distribution for demand. However, the variance to mean 

ratio (VTMR) presupposed by the compound Poisson distribution did not 
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sufficiently replicate the variability found in the empirical data. In an empirical 

study of over 23,000 Air Force reparable items, Stevens and Hill (1973) showed 

that the VTMR increases as the mean increases, but at a decreasing rate. They 

derived Formula 2-5 below in their research. 

VTMR = 1.13 x (mean)34 (2-5) 

Stevens and Hill's VTMR formula is still used by the Air Force's requirements 

computation system. Sherbrooke (1984) extended Stevens and Hill's research 

on VTMR by showing that computing a VTMR based upon the mean is also 

inadequate. He found that demand was not independent from quarter to quarter 

and accordingly proposed a VTMR computation which took into account the 

number of quarters for which the VTMR is being computed. 

Graves (1985) suggested that this understates the variability of demand, 

thus underestimating the number of backorders. He proposed using a negative 

binomial distribution to achieve more realistic variability. Sherbrooke (1986) 

supported this proposal and pointed out that the assumption of a compound 

Poisson had resulted in the allocation of too many LRUs. 

Dvna-METRIC 

The distinguishing features of the Dyna-METRIC models is their ability to 

handle non-stationary demand and repair processes and to compute transitory 

probabilities as opposed to steady state probabilities. In the Air Force setting, 



29 

one of the most important applications of Dyna-METRIC is for war time 

scenarios in which the day-to-day demands as well as the system's repair 

capabilities are constantly changing. Because of the short time frames involved 

in wartime scenarios, the system never has a chance to reach equilibrium, and 

transient behavior is the key to evaluating a given logistics support system's 

performance. 

Dyna-METRIC's time-dependent demand rates are an important part of 

modeling the war time scenario since varying sortie rates and mission types 

during the progression of the conflict produce highly variable failure rates for the 

various weapon systems involved. For example, the long-range attacks against 

the enemy's command and control structure initiated during the opening stage of 

a conflict would produce one set of failure rates for the weapon systems involved 

in that mission. The transition to close air support of ground forces during their 

advance, however, would produce a dramatically different set of failure rates for 

the weapon systems used in that phase of the conflict. The time-dependent 

repair rates also add valuable realism to the model. This feature can accurately 

reflect the fact that the military's industrial complex and its associated private 

sector contractors take some time to gear up to the expanded requirements. 

Dyna-METRIC's ability to model the transient behavior of the logistics 

support system allows decision makers to see the evolving status of the logistics 

support system, particularly in the first days of any conflict scenario. Since the 

system would not reach steady state for a long time, the steady state behavior of 
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the system is meaningless because the critical stage would be long past by the 

time the system ever reached steady state. 

Hillestad and Carrillo (1980) and Hillestad (1982) outline the 

mathematical underpinnings of Dyna-METRIC. The basic building blocks of 

Dyna-METRIC are time-dependent distributions for demand rate (d(i)) and 

repair time (F(i,t)) instead of the stationary distributions originally used by 

METRIC. Dyna-METRIC's modeling hinges on a dynamic version of Palm's 

theorem which computes the number of units in repair at any given time (m(t)) 

using Formula 2-6. 

m(t) = jd(x)F(r,t)dx (2-6) 

Carrillo (1989) details this adaptation of Palm's theorem to the dynamic 

environment. Dyna-METRIC applies variations of this basic formula to compute 

demands on base and depot repair capabilities. As in the earlier METRIC 

models, base stock levels determine backorders while depot stock levels as well 

as the base and depot repair rates influence the duration of those backorders. 

Pyles (1984) and Isaacson, Boren, Tsai, and Pyles (1988) describe Dyna- 

METRIC's implementation for the Air Force. In particular, they detail the user 

interfaces with the model. For the interested reader, Carrillo (1991) is a 

comprehensive review of the efforts to extend Palm's theorem to handle dynamic 

demand and repair rates. 
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Lateral Transshipment 

The basic METRIC-based reparable item models use a strict arborescent 

resupply structure where a base can only be resupplied from levels above it in 

the hierarchical structure. In actual Air Force operations, however, bases will 

often use other bases at the same level in the hierarchical structure as a source 

of supply, especially when the backorder is causing a not fully mission capable 

condition. While this reduces backorder time, it results in additional 

transportation and ordering costs and reduces capability at the supplying base. 

Cohen, Kleindorfer, and Lee (1986) developed a lateral resupply 

approach for use in the multi-echelon inventory problem. This approach made 

use of "pooling groups" or specifically defined groups of users which share 

assets laterally and are characterized by "sharing rates" which describe the 

degree to which the individual users share with each other. Using expected 

costs and expected response times as their objective, they constructed a branch 

and bound routine which aggregated demand into a single pseudo-location to 

get a lower bound, then used a linear transportation problem to solve for an 

actual upper bound. Cohen, Kamesam, Kleindorfer, Lee, and Tekerian (1990) 

report how they were able to apply these lateral resupply techniques in IBM's 

service logistics system. 

Lee (1987) proposed a model specifically aimed at the reparable item 

environment based upon lateral transshipments between the bases in the 

"pooling groups" from the earlier research. He used a two-step optimization 
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process which found the optimal levels for base stock for each level of depot 

stock, then used a dynamic optimization to determine the best level for depot 

stock. 

Axsater (1990) observed that Lee's model did not account for bases with 

dissimilar demand patterns and that it also did not perform very well when the 

percentage of demands satisfied through lateral support was very high. His 

extension of Lee's research focused on modeling a state-dependent demand 

rate which is a function of on-hand balance in order to more accurately model 

the demand process. His technique revolves around iteratively computing the 

probabilities a demand is met from: base stock, lateral resupply, and 

backordered at the depot. Using upper and lower bounds on these percentages, 

Axsater shows that his iterative routine converges very rapidly, usually within 

five iterations. 

Dada (1992) approaches the lateral resupply issue from a Markov chain 

perspective. He acknowledges that any exact Markov chain representation is 

"computationally intractable" for realistically sized problems because of the 

immense state space. However, by aggregating the individual locations into a 

single pseudo-warehouse and assuming independent processes for demand and 

delay, a finite state Markov chain model is computationally feasible. Using the 

steady state characteristics of the resulting Markov chain and the constraints of 

the underlying system, he disaggregates from the approximation using a 

minimization problem to compute the lower bound on performance measures 
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such as fill rate and a maximization problem to get the upper bound. He 

demonstrated his technique by comparing it's results with the exact solutions of 

a variety of small scale problems for which the exact solutions were 

computationally feasible. 

Simulation-Based Extensions 

In spite of the progress METRIC-based models have made in achieving 

more and more realistic failure representations, RAND has begun development 

of Dyna-METRIC 5, a multi-echelon inventory model for reparable items in 

which, Monte Carlo sampling has replaced the analytic computation of 

probabilities based on extensions of Palm's theorem. Isaacson and Boren 

(1988) indicate that one of the primary reason for abandoning the earlier 

versions is that they, "did not accurately represent the uncertainty in demand 

and repair, especially the queuing caused by repair constraints." Buyukkurt and 

Parlar (1993) also used the simulation approach to model the repair cycle in 

their research to evaluate alternative distribution policies. They cited the fact 

that METRICS infinite source and unlimited repair capability assumptions do not 

produce state-dependent failure and repair rates as their rationale for resorting 

to simulation. 
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QUEUEING APPROACHES 

METRIC-based models have been widely criticized for their simplifying 

assumptions of an infinite source and infinite repair. The assumption of an 

infinite source ignores the possibility of the failure rate decreasing as the 

number of units which are already unserviceable increases. The infinite repair 

assumption ignores any possible queueing for limited repair resources. Using 

queueing terminology, the model which results from these two assumptions is an 

M/G/oo queue. By their very nature, queuing models are not hampered by the 

assumptions of a failure rate which is independent of the state of the system and 

infinite servers required by the METRIC-based models. As a result, queueing 

models have greater flexibility in modeling the failure and repair processes. 

They also offer greater latitude in being able to model other decision variables 

like the number of servers at various stages in the repair cycle. For the reader 

who is not familiar with queueing theory and techniques, Appendix A explains 

some of the key conceptual foundations for the queueing approaches we will be 

reviewing. 

Continuous Time Markov Chain Representation 

The most basic queueing approach to the reparable item problem is an 

exact representation of the system using a continuous time Markov chain 

(CTMC). The key to a CTMC approach is developing an appropriate state 

definition paradigm then completely and accurately defining the transitions 
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between those states. Once this is accomplished, the infinitesimal generator of 

the CTMC, can be used to compute both the non-stationary and steady state 

probabilities of each of the states. Because it explicitly models the transition 

rates between each pair of feasible states and computes individual probability 

distributions for each of the states, the CTMC approach to queueing is very 

precise and very flexible. 

In their research, Gross, Kioussis, and Miller (1987) apply the CTMC 

approach to the reparable item problem. They begin by showing how the CTMC 

approach can be used to explicitly model the transitions between all the feasible 

states in an entire reparable item system. Although this exact method can very 

faithfully model the real world, they point out that it quickly runs into size 

problems with the required state space necessary to represent all the feasible 

states. 

These state space size problems are the motivation for their "network 

decomposition approach." By assuming independence between bases, they 

model the multi-echelon reparable item inventory system problem by 

"decomposing" the larger network into separate "local" models for each base and 

for the depot. The appeal of using these local models is that each one has a 

considerably reduced state space requirement compared with the CTMC 

representation of the entire system. 

Their decomposition approach begins by solving the local depot model for 

its steady state probability distribution. In order to link the depot-level and base- 
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level local models, their approach uses a set of performance indicators which 

define the support the base-level receives from the depot as a function of the 

state of the base-level system. They compute these state-dependent 

performance indicators using the steady state solution to the depot-level 

problem. They then use the depot's performance indicators for each base to 

build that base's CTMC infinitesimal generator, from which they can compute the 

base-level steady state probability distribution. Using the base's steady state 

probability distribution, they compute a different set of state-dependent 

performance indicators which defines the base's demands upon the depot. 

Using these performance indicators from all of the bases, they are able to build a 

new CTMC infinitesimal generator for the depot. This iterative process 

continues until convergence is achieved. 

The significant reduction in the state space they achieved with the smaller 

local models enabled them to more efficiently solve the larger problem. Their 

model produced separate steady state probability vectors for each of the bases 

and the depot. From the steady state probability vectors for the individual 

bases, they were able to derive key local performance indicators. By assuming 

independence between the bases, they were also able to derive aggregated 

performance indicators for the larger system. 
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Network of Queues Representation 

Although the continuous time Markov chain representation, or a 

decomposition of the complete chain, offers the most precise representation of 

the reparable item problem, the network of queues approach, because of the 

product form solutions associated with it, has a distinct advantage in 

computational efficiency while, in many cases, being able to retain a large 

degree of flexibility in representation. 

One of the drawbacks of the network of queues approach is that it cannot 

model state-dependent routing. In a multi-echelon reparable item system with 

multiple bases, the routing of repaired units from the depot depends upon the 

number of backorders at the individual bases. The network of queues approach 

cannot accommodate this state-dependent routing because the product form 

solutions described by Jackson (1957) for open networks and Gordon and 

Newell (1967) for closed networks require fixed routing probabilities between 

nodes. 

Another reality of reparable item problems which is not readily 

accommodated by the network of queues approach is the fact that each base 

has its own requisitioning objective which limits the number of units in the base 

subsystem. This "blocking" in the individual queues at the base level is not only 

dependent upon the base's requisitioning objective, but also the number of units 

in the other nodes at that base. While approximation methods which allow the 

network of queues approach to deal with blocking at a single node have been 
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proposed, blocking of a subsystem, such as the network of queues 

representation of a base, which consists of multiple nodes is significantly more 

complex. The ramifications of these drawbacks need to be evaluated in the 

context of the intended application to determine if the computational efficiency of 

the network of queues approach is acceptable for the specific application. 

Mirasol (1964) was one of the earliest attempts to represent the reparable 

inventory system using the network of queues methodology. Using a closed 

queueing network representation, he researched the system performance 

tradeoffs associated with allocating resources to the various stages in the repair 

cycle process. His model incorporated the effect on system performance of the 

multiple indenture relationships between an end item and its component parts all 

the way down the product structure to the consumable components. 

Mirasol's representation is based upon an end item with multiple 

indentured components within the context of a single echelon repair and 

inventory system. Mirasol formulated his model of this reparable inventory 

system as a closed queuing network with five nodes. These five nodes 

represent stages which incorporate the various activities in the repair process. 

In the first stage, serviceable assemblies (or LRUs using the Air Force 

convention) fail while installed on end items during their operation. The second 

stage represents transit time to the repair facility. 

The third stage is a series of parallel paths corresponding to each of the 

components (SRUs in the Air Force convention) which make up the failed LRU. 
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Each of these paths model the waiting time for their respective component. If 

the failed SRU is available in stock, then this stage is bypassed entirely. Mirasol 

assumes independence between the probability an individual component caused 

the end item's failure and the probability of that component's being unavailable. 

This allows him to use the product of these two probabilities as the probability of 

entering a given path. 

This third stage is the key to Mirasol's model since sequential solutions of 

the sub-models for each of the component parts determine the probability of 

unavailability, and by extension the probability of being able to bypass the third 

stage as well as the waiting time in the individual paths. In these sub-models, 

the first stage represents serviceable stock of the SRU, thus the probability of an 

SRU's unavailability is the probability of an empty first stage in that particular 

sub-model. By extension, the complementary probability is the probability that 

this stage will be bypassed for that particular SRU. The duration of a 

component's awaiting parts path is the inverse of the conditional output rate from 

the final stage of the component's sub-model given that its first stage is empty. 

The fourth stage models the repair time which consists of time awaiting 

maintenance, diagnosis, removal of the failed component, and replacement of 

the serviceable component. The fifth stage corresponds to the transit time of the 

serviceable assembly back to the inventory location. The states in Mirasol's 

model are defined by the number of items in each of the stages. Since Mirasol 

models these stages as a closed Jackson network, he is able to use balancing 
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equations and the resulting product form solutions to derive the steady state 

probabilities for the individual states. 

Ahmed, Gross, and Miller (1992) use a network of queues representation 

in conjunction with METRIC to capitalize on the computational efficiency of the 

METRIC-based models and the precision of the queueing approach. They point 

out that infinite source, infinite repair channel models (which they designate as 

o%°) are inherently more efficient than the more precise finite source, finite 

channel models (designated as f/f). The METRIC-based models are classic 

examples of oo/°° models. The computational efficiency of the °%° models make 

them a natural choice of the decision maker as long as their simplifying 

assumptions do not significantly detract from their accuracy. 

The authors propose using a single comparison between the f/f and oo/oo 

models to establish how closely the °%° model follows the f/f model, then use 

this difference to adjust the results of the more computationally efficient °%° 

model to estimate the performance of the f/f model. Once calibrated, the °°/°° 

model can be used repeatedly to model the ///system based upon the original 

comparison. Although Ahmed, Gross, and Miller do not address any differences 

in performance between the °%° and ///models based upon actual data, their 

research is important in that it explores one possible way to work around the 

simplifying assumptions of the METRIC-based models. 
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CONCLUSIONS 

From this review of the reparable item problem literature, it appears that 

the state of the art is at a crossroads. On one hand are the METRIC-based 

models with their long history of application in the Air Force reparable item 

system. This history of application is, however, tempered by the limitations 

imposed by the simplifying assumptions inherent in the entire approach. On the 

other hand are the queueing models. Although they are a relatively new 

approach to the reparable item problem, they show great promise in being able 

to more accurately and flexibly model reparable item systems. This potential is, 

however, qualified by the technical problems with state space requirements. In 

the next chapter, we will expand upon the difficulties with both of these 

approaches to the problem and introduce a new queueing paradigm. 



CHAPTER 3 
CHANGING REPARABLE ITEM 

PARADIGMS 

PROBLEMS WITH TRADITIONAL APPROACHES 

Decision Variables and Objective Functions 

These traditional representations of the reparable item problem approach 

the reparable item problem from a perspective which misinterprets the essence 

of the problem's real world applications. The foundational shortcomings of these 

models are most obvious in their definition of the problem, specifically in the 

decision variables and objective functions these models use. 

In the case of the METRIC-based models, the number of units of each 

item that are to be stocked at each of the bases and at the depot are the 

decision variables. The objective of these METRIC-based models then is to 

minimize the expected number of backorders as a function of these decision 

variables subject to a limited budget for buying those parts. 

In the queueing literature, Mirasol's (1964) decision variables are the 

stock levels for the various items and the number of repair servers. He 
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introduces an objective function called "strategic unavailability" which is the 

product of the unavailability rate and the mean duration of that unavailability. 

His model attempts to minimize strategic unavailability by allocating a limited 

budget between additional stock levels for each of the individual items and 

additional repair servers for those items. Mirasol suggests that the decision 

variables can be extended to include other system characteristics such as 

transportation capability, thus modeling a more complete set of tradeoffs in the 

repair cycle process. 

Gross, Kioussis, and Miller (1987) define the cases they use to 

demonstrate their decomposition approach with a variety of system 

characteristics which, in an optimizing routine, could be used as decision 

variables. Because of the flexibility of the queueing approach, stock levels, the 

number of servers, failure rates, and repair rates at the individual bases and the 

depot could all be considered as decision variables. Since the focus of their 

research was demonstrating the accuracy of their decomposition approach, 

Gross, Kioussis, and Miller did not specifically address objective functions. They 

did, however, point out that the values for a wide variety of performance 

measures can be derived from their approach's steady state probability 

distributions: 

... we can compute various means and other moments and also 
probabilities such as the probability that all bases have the desired 
number of operational units (system availability) or individual bases have 
the desired number of operational units (base availability). (Gross, 
Kioussis, Miller, 1987) 
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From the standpoint of decision variables and objective functions the 

perspectives behind these earlier approaches are somewhat detached from the 

realities of actual reparable item problems. 

All the earlier approaches use the stock levels at individual locations as 

decision variables. The METRIC-based models rely exclusively upon these 

levels as their decision variables. Although the queueing approaches include 

other decision variables, stock levels are featured prominently. 

In reality, stock levels are meaningless unless there are assets available 

to fill those stock levels. However, one common feature of real world reparable 

item applications is long procurement lead times. Since the number of assets in 

the system is fixed over any planning horizon shorter than the procurement lead- 

time, this means that in practice, stock level decision variables are inappropriate 

for any application with a planning horizon shorter than the procurement lead- 

time. This effectively eliminates many, if not most, potential reparable item 

problem applications. For example, in the Air Force context, the lead-time for 

reparable items consists of both administrative and procurement lead-time 

segments. Administrative lead-time is the time it takes the Air Force to award a 

contract to meet a given requirement. Procurement lead-time is the time it takes 

the source of supply to provide the contracted items. In the case of large orders 

with multiple deliveries, procurement lead-time is computed using the first 

significant delivery quantity. This practice keeps procurement lead-time and the 
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resulting computed requirements from being inflated. Figure 3-1 below shows 

the reported historical values (in months) for administrative lead-time at one of 

the Air Force's depots. 
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a Administrative Leadtime is the time it takes to award a procurement contract from 
the time a requirement is identified 

b The Administrative Leadtime used in the Air Force's requirements computation 
process is rounded to the nearest month 

Figure 3-1: Administrative Leadtime3 

Out of 2,399 different items at this depot which used historical data to 

compute the administrative lead-times, 1,265 (52%) had lead-times of nine 

months or longer, and that's just the administrative component of lead-time, 

before procurement actually begins. 

Figure 3-2 on the next page shows the corresponding values for 

procurement lead-time at the same depot. 
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a Procuremnet leadtime is the time it takes the source of supply to provide the items 
after the contract is awarded 

b The procurement leadtime used by the Air Force's requirements computation 
process is rounded to the nearest month. It is computed using the first significant 
delivery quantity. 

Figure 3-2: Procurement Lead-time3 

There were 3,022 items at this depot which used historical data to 

compute the procurement lead-times. Of these, 1,702 (56%) had lead-times 

greater than a year. There was even a group of 487 (16%) whose lead-times 

exceeded two years. Given the large number of items with long lead-times, the 

use of stock levels as a decision variable in the Air Force reparable item context 

appears to be of limited relevance. 

From an objective function perspective, the METRIC-based objective of 

minimizing expected backorders and other such average values for performance 
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indicators have dominated the literature. Queueing models, however, have 

significant potential in their ability to generate probability distributions instead of 

a single value for the average of some performance indicator. It should be 

intuitively obvious that a probability distribution contains more information than a 

single average value. In actual reparable item environments, decision makers 

are more interested in the probability of an event than in some average value. 

For example, in the context of the reparable item problem, a decision 

maker is more interested in the probability of having the desired number of end 

items serviceable than in the average availability. The following charts illustrate 

four cases all with a mean of five. If the decision maker is interested in having at 

least seven end items available, the probability of this happening ranges from 0 

(in Figure 3-3) to 40 percent (in Figure 3-4) depending upon the selected 

distribution. 
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Figure 3-3: Sample unimodal distribution 
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Although average values, such as the METRIC-based expected number 

of backorders, enjoy widespread real world usage, using probability distributions 

instead of average values would open the door for objective functions with much 

greater practical relevance to reparable item decision makers. 

Fitting Real World Failure Distributions 

Another problem with these traditional approaches to the reparable item 

problem is the way in which they represent the failure processes of the individual 

components. The queueing models proposed by Mirasol (1964) and Gross, 

Kioussis, and Miller (1987) both use exponential failure rates. The METRIC- 

based models have represented the failure process with more complex failure 

distributions such as compound Poisson (METRIC and MOD-METRIC), negative 

binomial (Vari-METRIC), and even time-dependent rates (Dyna-METRIC). 

In spite of the progress METRIC-based models have made in achieving 

more and more realistic failure representations, RAND has begun development 

of Dyna-METRIC 5, a multi-echelon inventory model for reparable items in 

which, Monte Carlo sampling has replaced the analytic computation of 

probabilities based on extensions of Palm's theorem. Isaacson and Boren 

(1988) indicate that one of the primary reason for abandoning the earlier 

versions is that they, "did not accurately represent the uncertainty in demand 

and repair, especially the queuing caused by repair constraints." 
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In his analysis of the variability of demand, Sherbrooke (1984) evaluated 

the worldwide demands for a sample of 1,030 Air Force reparable items over a 

period of four years and another sample of 810 items over a period of two and a 

half years. Based upon the demand patterns he observed in this empirical data, 

he concluded, 

. .. neither the gamma-Poisson models or compound Poisson models are 
in agreement with the data. While negative binomial state probabilities 
are still a useful representation of demand during a period of time, a 
better model of how demands occur in time is needed. 

In a RAND study which analyzed actual component failure data for the 

F-15, F-16, and C-5, Crawford (1988) also found that the variability of demand 

was a problem. He concluded,". . . logistics models that assume constant 

means and Poisson arrival processes do a poor job of modeling real-world 

demands for real-world airplane parts." For a selected group of "problem items" 

for the F-15, he showed that only 25 percent of the part-base combinations had 

variance to mean ratios (VTMRs) of less than two. By contrast, 20 percent had 

VTMRs in excess of eight. He illustrated the impact of VTMR using a Dyna- 

METRIC run for a squadron of 24 aircraft in a typical wartime scenario. With a 

VTMR of 1, the expected number of not fully mission capable (NFMC) aircraft by 

day 30 would be 5. However, increasing the VTMR to 2 resulted in a 

corresponding increase in the NFMC rate to approximately 9. When the VTMR 

is 5, the expected number of NFMC aircraft increases to 16 out of a squadron of 

24. 
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State Space Size Problems 

One of the key obstacles to applying the CTMC approach to the reparable 

item process is the size of the states space. The CTMC approach can make 

reparable item models much more representative of reality by adding such 

features as state-dependent failure rates and multiple capacitated repair servers 

instead of the infinite calling population and infinite repair server features which 

are commonly cited as limitations of the METRIC-based models. This reality, 

however, brings with it large state spaces. 

When the individual states in a CTMC are composites of a number of 

indicators throughout the system being modeled, the number of states can grow 

rapidly. For example, one way to define the states in a multi-echelon reparable 

item system with a single depot is the number of serviceable units, the number of 

units in repair, and the number of backorders with the depot at each of the bases 

and the number of units which are serviceable and in repair at the depot. 

The number of feasible states in this representation is constrained by the 

fact that Air Force reparable item stockage policy limits the number of units 

(serviceable or in repair) and backorders at the base level to an established 

"requisitioning objective." The number of feasible states is further restricted by 

the limited number of units in the entire system. Because of these restrictions, 

one of the base-level components of the state definition is redundant as is one of 

the depot-level components. In light of these constraints, the number of states 
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required for this representation is the product of the number of feasible states at 

each of the individual bases plus the requisitioning objective at the depot. 

Given the standard reparable item problem limitation on the number of 

units at a given base, computing the number of feasible states at a given base is 

analogous to an indistinguishable balls in urns (non-negative solutions) problem 

where the number of state definition components at the base-level corresponds 

to the number of urns (even though one is redundant, all three are used for this 

computation), and the requisitioning objective corresponds to the number of 

balls. The number of feasible states is given by Formula 3-1. 

{n + r-1)l (3-1) 
(r-l)!n! 

Where: n is the base's requisitioning objective 
r is the number of variables in the state description 

(3 in this case) 

Given the state space requirement for this type of queueing 

representation, it becomes apparent that the number of states would be 

prohibitive for any realistically sized problem. A numerical example will illustrate 

the state space difficulties with real world problems. A relatively small base may 

have 12 assigned aircraft of a given type (larger bases have 48 or even 72 

assigned aircraft of a single type). If we assume a requisitioning objective of just 

5 units more than the number of assigned aircraft, the number of feasible states 

at that single base is a very manageable 171. Taking into account more than 
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one base and the depot's stock level, the number of required states is given by 

Formula 3-2. 

Number of states = ROD + HVBaJROn +1) (3-2) 

The number of states increases dramatically when more bases are added 

to the model. Assuming a requisitioning objective of 5 at the depot, the following 

table illustrates the state space problem as identical bases are added to the 

problem: 

Table 3-1: Queueing Model State Space Requirements 

Number of Bases3 
Number of 

Required States'3 

1 176 
2 29,246 
3 5,000,216 
4 855,036,086 

a Assumes identical bases where n=17 (12 assigned aircraft + authorized stock of 5) 

b Number of base states computed from Formula 3-1, total required states computed 
from Formula 3-2 

While the growth in the number of states is rapid, the growth in the size of 

the infinitesimal generator is even more rapid because of its matrix format. With 

just four such bases, the CTMC infinitesimal generator representing the problem 

17 would have more than 7x10   cells 
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These prohibitive state space requirements associated with using a single 

CTMC infinitesimal generator to model the entire system provided the motivation 

for the Gross, Kioussis, and Miller (1987) decomposition approach discussed 

earlier. Since the individual bases are treated separately in their model, the 

number of required states for each of the base models is given by the number of 

non-negative solutions to the ball and urn problem described earlier.   Table 3-2 

below outlines some numerical examples of the required state size for the 

decomposed local base models. 

Table 3-2: Decomposed Base-Level State Space Requirements 

Number of 
Assigned Aircraft3 

Number of 
Required States'1 

12 171 
24 465 
48 1485 
72 3081 

a The value of n used in Formula 3-1 is the number of assigned aircraft + an assumed 
authorized stock of 5 

b Computed using Formula 3-1 with n based upon the number of assigned aircraft and 
the value of r fixed at 3 

Even using the decomposition approach proposed by Gross, Kioussis, 

and Miller, the local base models would require a large number of states and 

entail computations and manipulations with very large matrices. For example, 

the case shown in Table 3-2 in which 3081 feasible states are needed to 
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represent a base with 72 assigned aircraft would require a 3081 x 3081 matrix, 

or 9,492,561 individual cells. 

The local model of the depot employed by Gross, Kioussis, and Miller is 

also hampered by its state space requirements and the corresponding size of 

the matrix which must be manipulated. The state definition for their local depot 

model separately reflects the number of backorders owed to each base as well 

as the number of serviceable units at the depot, and the number of units in depot 

repair. Because it is assumed that the depot will release any serviceable stock 

before allowing base backorders and because one of the components of the 

depot's state description is redundant, the number of required states is given by 

Formula 3-3. 

R°o+T\VBaJ
ROn+V (3-3) 

Where RO is the requisitioning objective for the depot 
or a given base depending upon the subscript. 

As the number of bases and the number of units allowed at each base 

increases, the state space grows rapidly. The numerical examples in the Table 

3-3 show the state space requirements for the local depot model given various 

combinations of requisitioning objectives and the number of bases in the 

problem. All cases assume an authorized base stock level of 5 and a depot 

requisitioning objective of 5. 
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Table 3-3: Decomposed Depot-Level State Space Requirements3 

Number 
of Bases 12 planes 24 planes 48 planes 72 planes 

l 23 35 59 84 
2 329 905 2,921 6,246 
3 5,837 27,005 157,469 493,044 
4 104,981 810,005 8,503,061 38,950,086 
5 1,889,573 24,300,005 459,165,029 3,077,056,404 

. 
125 > ioibb >   101M >   10^ > io'J6 

a Computed using Formula 3-3, where ROn = number of assigned aircraft + authorized 
stock of 5 and ROD = 5 

These numbers are just the state space requirements. Recall that the CTMC 

approach uses n x n matrices, where n is the number of required states, so the 

matrix size would be even more prohibitive. 

Gross, Gu, and Soland (1993) explored a series of alternative methods 

for solving the large CTMCs generated by the reparable item problem. Their 

research found that a two-phase iterative procedure was the best of their 

alternative methods. However, even using this technique, solving two and three- 

base problems with one million states took 4 and 5 hours. Based upon these 

running times, they acknowledge that approximation or simulation techniques 

might be more appropriate for realistically sized problem. 
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A NEW REPARABLE ITEM PARADIGM 

Introduction 

When examined in the context of realistic applications, the traditional 

approaches to the reparable item problem exhibit some fundamental 

shortcomings. Although METRIC-based models are actually in use in the Air 

Force's reparable item program, the focus implied by their decision variables 

limits their relevance, and their specialized structure limits their flexibility to 

change this focus. The METRIC-based models also suffer from their limited 

capabilities in modeling the highly variable component failure process. 

The queueing models have not developed the same degree of 

sophistication as the METRIC-based models, but the queueing techniques have 

demonstrated the flexibility to handle a wider variety of decision variables and 

model more complex failure processes than the METRIC-based approaches. 

The current queueing approaches to the reparable item problem, however, have 

state space problems when they are faced with realistically sized problems. 

This research addresses the reparable item problem from an entirely 

different perspective than the existing literature. The approach predicated upon 

this new perspective is able to avoid these shortcomings of the earlier 

approaches. This new perspective stems from two basic questions, "What types 

of answers do the decision makers in actual reparable item systems really 

need?" and "What are the real world constraints these decision makers deal with 

on a daily basis?" 
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The remainder of this chapter will explain the alternative perspective of 

the reparable item problem upon which this research is predicated, contrasting it 

with the traditional perspectives and their shortcomings discussed earlier. In the 

process, it develops and justifies a series of assumptions which form the 

foundation of this new perspective. 

Repair Allocation as the Decision Variables 

One of the key shortcomings of the traditional models of the reparable 

item problem demonstrated earlier is their use of the stock levels at the 

individual locations as key decision variables, or in the case of the METRIC- 

based models, the only decision variables. The new perspective taken in this 

research hinges on a new set of decision variables to replace the traditional 

stock level decision variables. 

Our selection of decision variables stems from the basic question, "What 

decisions do real world reparable item managers make on a recurring basis?" 

Because of the typically low condemnation rates for reparable items, their 

significant ordering costs, and their relatively small repair costs, real world 

decision makers don't make stock level procurement decisions on a regular 

basis. Even when decision makers take procurement action, the long lead-time 

delays described earlier postpone the impact of the new stock levels into the 

long-term planning horizon. Using the Air Force repair cycle as an example, 

only one requirements computation a year includes procurement decisions, and 
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even then, in FY 96, out of 18,099 "active" items, there was procurement action 

on only 4,424 (24%) of these items. 

Unlike procurement action, repair action is a recurring task for repair 

cycle decision makers. Since reparable items are, by definition, constantly being 

repaired, decision makers are repeatedly faced with the decision of how many of 

which item to repair for which location. In contrast to the single procurement 

computation each year, the Air Force performs four requirements computations a 

year to determine repair requirements. Because of the contrast in relevance 

between procurement and repair decisions, the new perspective focuses on 

repair allocation to each of the different part-location combinations as a decision 

variable alternative to the stock level decision variables used in earlier research. 

ASSUMPTIONS 

In order to evaluate the effect of these repair allocations, we must be able 

to translate them into end item availability. We will develop the methodology for 

doing this in the subsequent chapters. For the time being, however, it is 

sufficient to view the translation as a complex process dependent upon the 

interaction of a wide variety of factors throughout the repair cycle. There are, 

however, two key simplifying assumptions which form the basis for our technique 

for converting the repair allocation variables into end item availability at the 

individual locations without the intervening complexities of the global repair cycle 

entering into the equation. 
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Ample Supply of Unserviceable Parts 

The first assumption is that an ample supply of unserviceable items exists 

at the centralized repair facility. This allows us to truncate the repair cycle at the 

point where the individual locations return a failed item to the central repair 

facility for repair and ignore the complexities of retrograde traffic and "starved" 

repair servers. Since this research specifically targets the Air Force's reparable 

item problem, we use the characteristics and practices associated with the Air 

Force's reparable item program to justify this simplifying assumption. 

Because of fleet downsizing and reduced flying hour funding, many line 

items in the Air Force reparable inventory have enough unserviceables available 

on the depot shelf to guarantee that routine base retrograde will be sufficient to 

ensure that the depot repair process is never starved. In these cases, this 

assumption is clearly justified. Since Air Force reparable policy requires the 

bases to return an unserviceable when they establish a backorder, it follows that 

the flow of unserviceables back to the depot should always be comparable to the 

flow of backorders, and by extension should be comparable to the repair 

requirement. As a result, most Air Force line items should fit into this category. 

There will, however, always be some outlier cases in which the 

unserviceables are not readily available. In these cases, the Air Force 

intensively manages the retrograde process to keep depot repair from being 

constrained by carcass shortages. Two of the specific tools they use are the 

reparable item movement control system (RIMCS) and the "express table." 
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RIMCS codes are assigned to each stock number by the depot repair 

function to tell bases what priority the retrograde shipments should have. Those 

items for which unserviceables are in short supply at the depot receive priority 

processing and premium transportation from the bases. Certain unserviceables 

will even be shipped Federal Express to ensure rapid retrograde to the repair 

facility. On the depot end of the retrograde shipment, depot processing can be 

expedited using the "express table" concept under which a specialized 

processing line bypasses ordinary in-checking procedures and moves critical 

unserviceables directly from the freight receiving function to the repair 

technician. 

The end result of all this specialized management of unserviceables is the 

fact that even when an ample supply of unserviceables does not exist, the depot 

repair process is rarely without a sufficient stock of unserviceables to support 

the required output rate, and the ample unserviceables assumption holds true. 

Table 3-4, adapted from data supplied by the Logistics Management 

Institute, illustrates this assumption. 
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Table 3-4: Air Force Supply of Unserviceables 

Months of 
Supply3 

Number 
of NSNs 

Percentage 
of NSNs" 

0 475 10.0 
1 60 1.3 
2 97 2.0 
3 75 1.6 
4 95 2.0 
5 66 1.4 
6 96 2.0 
7 46 1.0 
8 83 1.7 
9 60 1.3 
10 58 1.2 
11 40 0.8 
12 206 4.3 

13-24 583 12.3 
25-36 380 8.0 
>36 2336 49.1 

a Months of supply was computed by dividing the unserviceable depot inventory by the 
monthly demand rate for the item. Months of supply was rounded to the nearest 
number. 

b This is the percentage of all 4,756 USAF reparable items with base-level retrograde 
shipments to the depot falling into a given category. 

These 4,756 items represent all Air Force reparable items with base-level 

retrograde shipments to the depot. Months of supply was computed by dividing 

the unserviceable depot inventory by the monthly demand rate for the item. 

To put this into perspective, Silver, et al (1991) analyzed a complete year 

of unserviceable shipments, consisting of over 500,000 transactions, and found 

that the average shipment time was only 14.4 days. Given the RIMCS 

procedures for rapid retrograde handling, improvements in the retrograde 
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process since that time, and the fact that the data was only available in one 

month segments preventing us from identifying those units in the one month 

category which actually beat the shipping time, it would be a very conservative 

estimate to say that the supply of unserviceables was only insufficient to cover 

depot repair requirements for unserviceables during the retrograde shipment 

time in 11.3 percent of the cases. 

Simplified Repair Capacity Constraints 

The first assumption tells us that centralized repair is not constrained by 

the availability of unserviceable assets. The second assumption is that a 

component's repair capacity at the centralized location is not constrained by 

personnel, equipment, or other such limitations, rather, it is constrained only by 

total available repair funding. This further simplifies the problem's capacity 

constraints from a joint function of funding and physical capacity to a simple total 

repair budget constraint. 

The assumption that capacity is only constrained by available funding is 

similar to the infinite server assumption behind the METRIC-based models. 

Sherbrooke (1992) and other proponents of the METRIC-based models defend 

this assumption based upon management intervention in the repair process 

which ensures that needed items are expedited. In the specific context of the Air 

Force's depot repair process, this assumption is also supported by the fact that 

there are numerous civilian contractors and other Department of Defense depots 
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with the capability to repair these items. For many reparable items, civilian 

contractors, other Air Force depots, and even Army, Navy or Marine Corps 

depots already actively bid against the primary Air Force depot for the workload. 

It should be noted that the repair cost function may not be linear because 

of the increased marginal cost of buying repair capacity from the next lowest 

bidder when the lowest bidder runs out of repair capacity. The non-linear nature 

of the cost function does not, however, detract from the fact that, in the Air Force 

reparable item context, repair funding is the only true constraint on the repair 

rate for a given item. 

The New Reparable Item Problem 

Based upon these assumptions, the depot can be envisioned as providing 

parts for the individual bases at some rate which is constrained only by the 

available repair budget. In keeping with this paradigm, the performance 

indicators for the individual bases are a function of the quantity of the different 

types of items the depot-level chooses to repair for each of the bases. 

Accordingly, the reparable item problem reduces to determining the optimum 

rates at which the depot should repair the various parts for each of the bases 

while staying within the budget limitation. 



CHAPTER 4 
MODELING THE BASE-LEVEL 

REPAIR CYCLE WITH 
OPEN QUEUEING NETWORKS 

INTRODUCTION 

In the previous chapter, we developed the basic outline of our new 

paradigm for modeling the reparable item problem. At the core of this new 

perspective is the conclusion that base-level performance is a direct function of 

the repair allocation decision variables and that the reparable item problem can 

be reduced to deciding the repair rate for each LRU-base combination. Given 

this redefinition of the reparable item problem, our objective is to allocate depot 

repair in such a way as to get the best global performance possible from a 

limited depot repair budget. 

Before we attempt to optimize global performance, however, we must 

develop the basic building blocks that make up the global model. The reparable 

item problem has a well defined hierarchical structure. The "best global 
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performance possible" we're trying to achieve from our given repair budget is 

actually a composite of the performance levels at the individual bases. This 

base-level performance, which in the Air Force context is usually measured in 

terms of aircraft availability, is in turn a function of the availability of the 

individual subsystems. Continuing down the hierarchical structure, subsystem 

availability is dependent upon the availability of its component LRUs, the SRUs 

which make up the LRUs, and the consumable bits and pieces which go into the 

SRUs. For the sake of simplicity, in this research, we will address availability 

measures beginning at the LRU level in the hierarchy. Thus, the basic building 

blocks of our model are the representations of each of the LRUs at the individual 

bases. 

The remainder of this chapter develops the specifics of the open 

queueing network models we use in this research to represent the individual 

LRUs. We begin by outlining the basic open queueing network representation of 

an LRU at the base level, then describe how more complex LRU repair cycle 

representations give this approach great flexibility in modeling the base-level 

repair cycle process and the resulting LRU availability distributions. In addition 

to the flexibility inherent in this approach, we also point out its computational 

efficiency. We then provide a numerical example to demonstrate the general 

modeling methodology. Finally, we explain our aggregation technique for 

deriving the end item availability distribution for an individual base given the 
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component LRU availability distributions and illustrate using a simplified 

numerical example. 

NETWORK REPRESENTA TION 
OF LRU AVAILABILITY 

An open queueing network is essentially a set of nodes representing 

individual queues with constant Poisson arrival rates from outside the network 

and fixed routing percentages between the nodes within the network. In order to 

represent the base-level repair cycle for an individual LRU with an open 

queueing network, our basic task is defining a network which accurately reflects 

the availability distribution of the LRU as a function of the depot repair rate. The 

following sections describe the open queueing representation in general terms. 

The next chapter will explore the techniques for actually fitting empirical 

availability data. 

Basic LRU Model 

The following illustration depicts the most basic open queueing network 

representation of the base repair cycle. 
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Figure 4-1: Base Repair Cycle Network Representation 

It should be noted that this network representation is not an attempt to 

directly model the base-level process. Although there is no literal queueing of 

LRUs at the in-use node, we introduce pseudo servers and pseudo queues as 

an artificial device in order to replicate the base-level availability distribution for 

each LRU. In this pseudo network, the depot repair production rate is reflected 

as the external arrival rate (ke*) to the base's in-use node. This node represents 

those LRUs which are either installed on aircraft or are in stock awaiting 

installation. The "service rate" at the in-use node (u.i) is the base's failure rate 

for the LRU being modeled. This rate represents a composite failure rate for all 

of that particular type of LRU at the base. 

Leaving the in-use node are two paths. With probability p, corresponding 

to the percent base repair (PBR), the path branches to a base repair node. The 

rate along this path is the arrival rate at the repair node. This rate can be 
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computed by recursively using the traffic equations for the network. With 

probability (1-p), the path leaves the open network, representing an 

unserviceable return to the depot. Because of the assumption of ample 

unserviceables at the depot, this path is of no further concern in our problem. 

The service rate at the base repair node (\L2) is the base's repair rate for that 

particular LRU. As with the in-use node, this service rate represents a 

composite rate for the combined efforts of all "servers" who repair that particular 

LRU. The base repair node has 100% routing back to the in-use node of the 

model. 

Jackson (1957) demonstrated that for an open queueing network, the 

steady state distributions for the queue lengths at the individual nodes behave 

as if the nodes were independent, in spite of the fact that their queue lengths are 

obviously not independent. This characteristic of the open queueing network 

leads to the expression in Formula 4-1 for the steady state queue length 

distribution at any given node: 

7t(n) = (1-p)pn (4-1) 

Where a node's traffic intensity (p) = the node's arrival rate (k) I the 
node's service rate (|LI). 

Because the limiting queue length distributions for the individual nodes 

follow this computationally simple equation and behave independently, key 

performance indicators for each of the nodes can be efficiently computed, 
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independent of what is happening at the other nodes in the network. From the 

reparable item problem perspective, the distribution of particular interest is the 

steady state queue length for the in-use node. In the repair cycle context, this is 

the distribution for the number of serviceable LRUs. These serviceable LRUs 

translate into aircraft availability in the depot-level marginal allocation routine. 

Since this representation produces a probability distribution, not just an average 

number, the process is not only computationally efficient, but also gives this 

approach great flexibility in the types of objective functions it can support in the 

depot-level marginal allocation routine. 

Modeling a Complex Failure Process 

One of the key hindrances to using queueing representations of the 

reparable item process is the state space size problem discussed earlier. 

However, because the individual nodes behave independently, there is no need 

to enumerate the possible states of the entire network, or even "decomposed" 

segments of the network. This characteristic of the open Jackson network 

means that the approach taken by this research is not affected by the large state 

space requirements which render earlier queueing approaches computationally 

intractable for realistically sized problems. A byproduct of this freedom from 

state space limitations is added flexibility in using more complex models of the 

base repair cycle process which can more accurately replicate the complex 

failure rates observed in practice. 
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By representing the in-use and serviceable LRUs as an single node, the 

simple example of the base repair cycle in the previous section lumps all these 

LRUs together and implies that the failure rate for the composite group behaves 

as if it were an M/M/1 queue. As discussed in the previous chapter, this is an 

obvious over-simplification of reality. To lay the foundation for modeling more 

complex, and thus more realistic, failure processes, we will start with the end 

product the base-level repair cycle model produces for use in the depot-level 

marginal allocation routine and work our way back to the base-level repair cycle 

representation. 

This end product is the steady state probability distribution for the number 

of serviceable LRUs. For example, in the case of the earlier simple exponential 

failure rate illustration, this LRU availability distribution is a geometric 

distribution defined by Formula 4-2. 

rc(n) = (1-p)pn (4-2) 

Our objective in creating a network to model more complex failure patterns is to 

make this LRU availability distribution replicate, within acceptable limits, the real 

world availability which results from varying levels of depot repair. Since the 

depot-level model only uses the end product of the base-level network-the LRU 

availability distribution-it is not necessary to replicate the actual failure process, 
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it is only necessary to model the failure process in such a way as to make this 

distribution fit the empirical availability data. 

The only criteria Jackson (1957) required in order for a network to have 

the characteristics described earlier were: Poisson arrival rates from outside the 

network to any nodes with external arrivals, exponential service rates at each of 

the nodes, and fixed probabilistic routing between the network's various nodes 

and departure from the network. These criteria give us great flexibility in 

creating a base-level network which produces an acceptable LRU availability 

distribution. 

By increasing the number of in-use nodes, arranging the nodes in parallel 

or in series, and adjusting the routing percentages and service rates, it is 

possible to manipulate the resulting LRU availability distribution (which for the 

multiple in-use node network is simply the convolution of all the individual in-use 

nodes) to fit the required distribution. The next chapter discusses the specific 

techniques for using these network features to fit an actual availability 

distribution. The following figures illustrate some of the different types of 

configurations which could be used. 
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Figure 4-2: Three In-Use Nodes in Parallel 

.©/©/:©/©/©, 
Figure 4-3: Series of Four In-Use Nodes 

Figure 4-4: Two Parallel Series of In-Use Nodes 
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Solving for the Availability Distribution 

We will use the following example with two in-use nodes in parallel to 

demonstrate the methodology for deriving the LRU availability distribution from 

any given queueing network representation of the base-level repair cycle 

process. 

1-PBR2 

Figure 4-5: Base Repair Cycle Open Queueing Network 

The first step in the process is to derive the traffic equations for each of 

the nodes based upon the specific structure of the network. The general form of 

the traffic equation for any node i is given by Formula 4-3. 
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^   = ^ External + Sv„«/,v(./) X J Pß ^'^ 

Where:        h is the composite arrival rate at node I 
External is the arrival rate at node i from outside the network 
Pji is the fixed routing probability of going from node j to 
node i 

The traffic equations for the sample network are: 

Ai = Aext + X4 (4-4) 

X2 = a x X,i (4-5) 

X3 = ß x h (4-6) 

X4 = (PBR2 x X2) + (PBR3 x X3) (4-7) 

The next step is to solve for the composite arrival rates at each of the 

nodes. For example, in our sample network, the traffic equations express X2 and 

^3 in terms of X-i. We can, in turn use these equations to express XA in terms of 

h. 

XA = (PBR2 x a x XJ + (PBR3 x ß x X,) (4-8) 
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Substituting this expression for X4 into the first traffic equation we can solve for 

Xi as a function of A,ext, a, ß, PBR2, PBR3 which are defined in another part of 

the problem: 

I ii£s  (4-9) 
(l-((PBR2*a)+(PBR3*$))) 

Once actual values of A«*t, a, ß, PBR2, PBR3, \i2, and |i3 are supplied, we 

can solve for the remaining h's. Using the (Vs in the equation p=A/(i, we can 

also compute all the corresponding pi's. 

In the next step, we use these pi's in the equation for steady state queue 

length probabilities: 

P{xi=n} = (1-pi)pi
n (4-10) 

to derive the availability distributions for each of the nodes. Using Formula 

4-10, even very large values of n have a probability of occurring. However, for 

the reparable item problem, we are only interested in availability probabilities for 

those values of n less than or equal to the number of available end items, since 

any available units above and beyond those in service on end items simply go 

into stock and therefore have no effect on end item availability. Accordingly, in 

the Air Force context, the LRU availability distributions are truncated at the 
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base's number of primary assigned aircraft (PAA), and the probabilities 

associated with the remaining values of n are lumped into that final entry. 

As a numerical example, let A,ext = 4, a = 0.7, ß = 0.3, PBR2 = 0.6, 

PBR3 = 0.5, (i2 = 8, (i3 = 6, \JU = 7, and PAA = 4. Using these values in the 

equations derived earlier, the computed values for p2 and p3 are .8140 and .4651 

respectively. The resulting probability distributions for each of these nodes 

(truncated at the PAA of 4) are: 

7C2 = [.1860 .1514 .1233 .1003 .4389] 

7C3 = [.5349 .2488 .1157 .0538 .0468] 

Since LRU availability is the convolution of the probability distributions at all the 

in-use nodes, the steady state availability distribution for the LRU represented 

by these nodes (also truncated at the PAA of 4) is: 

TtTotai = [ -0995 .1273 .1251   .1119 .5362] 

This open queueing network modeling technique for individual LRUs implements 

our new paradigm for the reparable item problem in that it directly converts the 

depot repair rate into LRU availability. 
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DERIVING END ITEM A VAILABILITY 

In order to derive end item availability from the availability distributions for 

the individual LRUs, we must model the associated indenture relationships. 

Much as the bill of materials (BOM) defines the hierarchical relationships 

between the component parts and the final product in the MRP problem, there 

are specifically defined hierarchical relationships between the component LRUs 

and the end item. However, unlike the MRP problem, in which requirements for 

the component parts are derived from demand for the final product, our 

reparable item problem works in the opposite direction, deriving end item 

availability through the hierarchical structure from the availability of the 

component LRUs. In order to take full advantage of this hierarchical 

relationship, we will introduce an assumption of "complete cannibalization." 

Complete Cannibalization Assumption 

Our basic approach for calculating the end item availability distribution 

from the component LRU availability distributions relies upon an assumption of 

"complete cannibalization." Complete cannibalization refers to the maintenance 

practice of pooling serviceable components from all end items under repair in 

order to produce the maximum number of serviceable end items possible. For 

example, if a maintenance organization had five end items, each of which was 

unserviceable because of a different component part, practicing complete 
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cannibalization means they would take serviceable components from one of the 

unserviceable end items to repair the other four unserviceable end items. 

The degree of cannibalization actually observed in the Air Force repair 

cycle process is not 100%, but it is very high. Some items with seals or 

specialized bonding to the end item are not cannibalized. However, since most 

reparable items on newer weapon systems have been specifically designed for 

easy removal and repair, the practice of cannibalization is almost 100%. 

Although complete cannibalization is an obvious simplification, in most cases it 

is a reasonable one. Without the complete cannibalization assumption, the 

model would have to associate individual failures with specific aircraft. Although 

this could be done by stipulating that each failure of an LRU which cannot be 

cannibalized would reduce the upper bound on the number of available aircraft 

by one, this complication will not be addressed any further in our research. 

Weakest Link Availability 

Assuming complete cannibalization, the number of serviceable end items 

is constrained by the smallest number of serviceable units of any of its 

component LRUs. As discussed earlier, if the number of serviceable units for 

each of the component LRUs exceeds the number of assigned aircraft, 

availability cannot exceed 100%. The following simplified examples based upon 

an aircraft consisting of just five LRUs illustrates the calculation of the number of 

available aircraft: 
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Table 4-1: Aircraft Availability Examples 

LRU 
#1 

LRU 
#2 

LRU 
#3 

LRU 
#4 

LRU 
#5 PAA 

Number 
Available 

2 2 1 4 2 3 1a 

3 3 4 3 4 2 2b 

a In this case, the number available is constrained by LRU #3 
b In this case, the number available is constrained by the PAA 

We can extend this "weakest link" approach to aircraft availability to the 

process of computing a base's end item availability distribution from the 

availability distributions for its component LRUs. In order to do this, it is 

necessary to deal with cumulative distribution functions (c.d.f.) as opposed to 

simple probability distribution functions. We will denote the c.d.f. with F(x), 

which is defined as P{X < x}. Because we are specifically interested in the 

likelihood of availability exceeding a given level, we will use the compliment of 

the c.d.f., or 1-F(x). 

In computing this compliment of the c.d.f. for an end item at a given base, 

we must systematically determine the "weakest link" among the end item's 

component LRUs. We start the process with a 1 x (PAA+1) vector for each LRU. 

The entries in these vectors represent the probability of observing n serviceable 

LRUs for n = 0, 1, ... PAA. We must first convert each of these probability 

distributions into their corresponding compliment of the c.d.f. The individual 

entries in this complimentary distribution vector represent P{x>n} for n = 0, 1, 
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...(PAA-1). Note that the entry for PAA is redundant since its probability is 0. In 

the applied context, this vector displays the probabilities that more than n end 

items will be available. Table 4-2 illustrates the steps in this process starting 

with a probability distribution f(x) for an LRU at a base with a PAA of 4: 

Table 4-2: Availability Distribution Examples 

n 0 1 2 3 4 

f(x) .1 .2 .3 .2 .2 P{x = n} 

F(x) .1 .3 .6 .8 1.0 P{x < n} 

1-F(x) .9 .7 .4 .2 0 P{x > n} 

In order to compute the base's end item compliment of the c.d.f., visualize 

arranging all the individual LRU vectors in a (# of LRUs) by (PAA) matrix. Each 

entry in the system availability vector is simply the minimum value from its 

corresponding column in this composite matrix. Table 4-3 demonstrates this 

process using the compliment of the c.d.f. for five LRUs at a base with four 

assigned aircraft. 

Table 4-3: Base Availability Example 

n 0 1 2 3 
LRU#1 .9 .7 QA) .2 
LRU #2 .8 Cs> ci) .2 
LRU #3 .9 .8 .7 .6 
LRU #4 © (J&> .5 ■■4L 
LRU #5 .8 .7 .5 CjJ 

Base Avail .7 .6 .4 .1 
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Summary 

We have shown how starting with an open network representation of each 

of the individual LRUs at a given base we can, using the hierarchical 

relationship between the end item and its component parts, derive the base end 

item availability distribution. The base availability distributions for each of the 

individual bases will eventually be embedded in the global model where they will 

be used to compute the value of the objective function, and by extension give 

the global model a basis for determining the best allocation of limited repair 

funding. 



CHAPTER 5 
FITTING NETWORK PARAMETERS 

USING EMPIRICAL DATA 

INTRODUCTION 

In the previous chapter, we developed the open queueing network 

paradigm from a conceptual standpoint. In this chapter, we will demonstrate 

how this base-level modeling process might be implemented using empirical 

data. The starting point of the process is the construction of the empirical 

availability distributions. For the purpose of this demonstration, we will be using 

Air Force supply data. We will begin by describing the Air Force data we used 

to construct our availability distributions. Since the Air Force does not currently 

track LRU availability, we had to build a simulation to convert the data which is 

currently collected into the availability distributions required for our research. 

We will describe how our simulation model derives an availability distribution 

from the existing data. We will then describe how we generated network 

parameters to represent the base-level repair cycle in order to fit the empirical 

availability distributions from the simulation model. Finally, we will demonstrate 
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our technique with an actual Air Force data set and compare the results with the 

theoretical availability distribution METRIC would produce using Palm's theorem. 

CONSTRUCTING EMPIRICAL 
A VAILABILITY DISTRIBUTIONS 

Before we can begin the process of constructing an appropriate 

representation of the base repair cycle, we need to have some information on 

the system we're trying to model. Since current approaches focus on stock 

levels and demand distributions, the existing data is expressed in these terms. 

The Air Force also maintains detailed transaction histories at the individual 

bases. In order to perform our availability based analysis, we had to translate 

these data records and supply transactions into an LRU availability distribution. 

We did this in a two-step process. In the first step, we isolate those transactions 

which affect the serviceable balance for the item from a much larger set of all 

supply transactions. The second step is to process these relevant transaction 

through a availability simulation which models the daily availability level. The 

collection of these daily availability levels over an 18-month period yields the 

LRU empirical availability distributions we will use to fit and test our network 

representation. 
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Data Collection 

The Air Force Supply Data Bank collects various types of data on the 

base-level repair cycle process. Twice a year, the bases capture a snap shot of 

the state of the process at a specific point in time. Three types of these semi- 

annual records are of particular interest to this research. An LRU's "item" record 

captures indicative data on the LRU as well as the number of LRUs in stock. 

"Detail" records come in a variety of formats. Readiness Spares Package (RSP) 

detail records reflect the number of units authorized in support of war readiness 

as well as the number of serviceable units currently stocked in the package. 

Backorder detail records show any "holes" in aircraft for the LRU. The "Repair 

Cycle" record collects historical performance measures for the repair cycle such 

as the percentage of LRUs which can be repaired at the base and the length of 

time it takes the base to repair the LRU. The "Routing Identifier" record contains 

data elements such as the order and shipping time for a given source of supply 

or depot. 

In addition to the semi-annual snap shot, each base also records every 

supply action involving reparable items. Each of the transactions in this data 

base have a similar structure. Some of the key data elements contained in this 

structure are described below. The "transaction identifier code" (TRIC) is a 

three-position field which identifies the type of transaction which is reflected by 

the particular record. Some of the key transactions we will use in this research 

are the issue (ISU or MSI), turn-in (TIN), due-out release (DOR), shipment 
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(SHP), and receipt (REC). The TRIC on a transaction record is modified by a 

variety of other data elements such as "type transaction phrase code" (TTPC) 

which more specifically identifies what is happening with that transaction, 

"supply action taken code" and "maintenance action taken code" which describe 

what action the supply or maintenance activity performed on the unit and 

whether or not they were able to repair the unit, "supply condition code" which 

tells whether the asset is serviceable or unserviceable, and "activity code" which 

defines the type of organization originating the action. 

The program we used to collect the relevant transactions selected and 

excluded transactions based upon these data elements. It used TRIC to select 

only those transactions which could possibly affect the serviceable balance. 

Even within a given TRIC, only certain transactions were applicable to our 

analysis. For example, the ISU TRIC is used to reflect supply issues to 

maintenance, which we want to include in our analysis, as well as internal supply 

transfers, which do not affect availability. Our data collection program used the 

activity code data element to distinguish between these internal transfers and 

actual issues to maintenance. For TIN transactions, however, the program had 

to use the supply action taken code to distinguish between these internal 

transfers and actual maintenance actions. 

Even isolating the appropriate supply action is not enough since a single 

supply action often produces multiple transactions. In the case of an issue from 

supply to maintenance, the computer produces two ISU transactions one to 
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change the computer records to reflect the new serviceable balance and one to 

create a memo that maintenance owes supply a part. For the purpose of our 

data collection, we are only interested in the ISU transaction changing the 

serviceable balance. Our program used the TTPC data element to isolate the 

appropriate ISU transaction. 

For some transaction types, the program had to differentiate based upon 

the supply condition code. For instance, there are SHP transactions for both 

serviceable and unserviceable assets. Our program eliminated the 

unserviceable transactions since the simulation decreases the serviceable 

balance when the asset is issued from supply, thus including unserviceable 

shipments would double count that decrease in serviceable balance. For the 

same reason, the data collection program only captured serviceable turn-ins. 

Availability Simulation 

The simulation begins with the records contained in the semi-annual snap 

shot and constructs the number of LRUs available at that specific point in time 

by adding the number of LRUs in stock from the item record, the number of RSP 

assets from the RSP detail records, and the number installed on aircraft from the 

base's PAA less any "holes" reflected on the backorder detail records. From this 

starting point, the simulation processes the transactions gathered in the previous 

step chronologically, incrementing or decrementing the physical inventory 

balance as appropriate for each individual transaction. At the end of a day's 
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transactions, the LRU availability distribution is adjusted to reflect an occurrence 

of that day's ending balance. The simulation proceeds through the transaction 

data set, recording the resulting end-of-day inventory balances for each day. 

The FORTRAN code for this simulation is contained in Appendix B. 

For the purpose of this analysis, we divided the 18 months of transactions 

into two 9-month segments. We used the availability distribution from the first 

segment to fit a distribution and the second distribution to test that fit both 

against the actual second period observations and the availability predictions 

based upon METRIC. Appendix C contains the availability distributions for the 

20 individual items selected for this analysis as produced by our availability 

simulation. Subsequent sections will discuss the comparisons we performed 

using these distributions in greater detail. 

FITTING A NETWORK REPRESENTATION 

Given this empirical availability distribution, we developed a program to fit 

an appropriate network representation. This fitting process was greatly 

simplified by two key characteristics of our network representation. Firstly, since 

we are only interested in each node's contribution to the total availability 

distribution, it does not matter how a particular node fits into the in-use portion of 

the network. Secondly, since we are using the queueing network as an artificial 

construct to generate a desired probability distribution, the service rates at the 

individual nodes are not constrained in any way. Given this flexibility, there are 



89 

any number of equivalent ways of building a network of queues to generate a 

given number of nodes with specific traffic densities. For example, by arranging 

the nodes in series and not allowing any departures from the system until after 

the last node, we can achieve the required density at a given node simply by 

setting its service rate according to Formula 5-1 below: 

[iNodei = (^External / PBR) / Desired Traffic Density at Node I (5-1) 

The task of fitting a distribution thus reduces to selecting a collection of traffic 

densities which appropriately fits the empirical data. From this set of densities, 

we can build any number of equivalent networks, each of which produces the 

same densities at the individual nodes, and as a result, the same total 

availability distribution. 

In order to simplify the process, we limited the number of possible nodes 

to four and the possible traffic densities to increments of 0.1 ranging from 0.1 to 

0.9. This enabled us to use explicit enumeration to select our network 

parameters. We compared the alternative sets of parameters using the 

Kolmogorov-Smirnov (K-S) statistic. The K-S test statistic compares two 

cumulative distribution functions (CDFs), and is defined as the largest difference 

between the two distributions at any point along the x axis. For the interested 

reader, Pfaffenberger and Patterson (1977) and Netter, Wasserman, and 



90 

Whitmore (1993) contain more detailed descriptions of the K-S goodness-of-fit 

test. 

TESTING THE FIT 

We used the first 9 months of our data set as the fit period to determine 

the parameters of our network representation. The remaining 9 months served 

as our holdout sample for testing purposes. We compared the availability 

distribution forecasted by our network representation with the actual availability 

distribution from this 9 month holdout sample.  In addition to comparing the 

network representation availability distribution with the actual availability 

distribution, we also compared it with a theoretical METRIC-based availability 

distribution. 

In their application of Palm's theorem to the reparable item problem, the 

METRIC-based models assume that the number of demands during lead-time 

follows a Poisson distribution with a mean of At, where A is the demand rate and 

t is the repair cycle lead-time. Based upon these assumptions of the METRIC- 

based models, we derived a theoretical LRU availability distribution to compare 

with the actual availability distribution from the 9-month fit period data as well as 

the holdout data set. 

In order to generate the METRIC-based availability distribution, we 

needed two parameters, the demand rate (A) and the lead-time (t). For our 
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METRIC model's demand rate, we used the demand rate from the item record 

captured at the beginning of the period. In order to compute the lead-time, we 

used METRICS definition of lead-time shown below in Formula 5-2. 

Lead-time = (PBR x BRCT) + (1 -PBR) x (O&ST + depot delay)        (5-2) 

We captured the various components of Formula 5-2 for each stock 

number from the following sources. The base repair cycle record (one of the 

records contained in the semi-annual snap shot) contains PBR as well as the 

number of serviceable turn-ins and the cumulative number of repair days from 

which we can compute the Base Repair Cycle Time (BRCT). We extracted 

Order and Shipping Time (O&ST) from the base's routing identifier records 

(another type of record contained in the semi-annual snap shot). For depot 

delay time, we used the 16.6 day standard developed in Silver, et al (1991). 

Using Palm's theorem, we computed the METRIC-based availability distribution 

by working backward from the stock level, computing the probability from a 

Poisson distribution with mean of A,t (which we defined earlier) of observing the 

number of demands required to achieve the specified availability level. The 

parameters we used to generate the METRIC-based availability distributions are 

shown in Appendix D. 
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Results 

We performed the K-S goodness-of-fit test for both the network model and 

METRIC-based model on the 9-month fitting sample as well as the 9-month 

holdout sample. The following table summarizes the results of these 

comparisons between the availability distributions from the actual data, our 

network representation, and the METRIC-based model. 

Stock Number 
Network 

Fit 
METRIC 

Fit 
Network 
Forecast 

METRIC 
Forecast 

1560-01-152-6387JH .0625 .2301 .0545 .5410 

1630-00-758-3758 .1691 .6553 .1080 .4389 

1650-00-757-3862 .1891 .7940 .2521 .4579 

1650-00-930-3160 .1002 .5737 .3770 .6132 

1660-00-573-6482 .1045 .5205 .2230 .5691 

1680-00-852-0803 .1024 .7538 .2170 .6663 

2840-00-066-9925RV .2851 .4160 .3050 .7245 

2925-00-939-1473RV .0518 .3903 .1992 .3903 

2995-00-759-9072 .0967 .4845 .4813 .5958 

4510-00-740-1074 JH .1564 .3675 .2362 .6741 

4810-00-573-6461TP .1503 .2888 .1720 .4685 

5998-00-064-8059NT .0877 .2107 .1224 .3592 

5999-00-067-3622NT .1542 .7004 .2955 .9304 

5999-00-121-4721 JH .2183 .6565 .5043 .8321 

6105-00-960-9879 .0162 .1859 .4859 .5182 

6130-00-967-2610NT .0816 .0758 .1675 .1994 
6605-00-955-3029JH .0302 .2091 .2219 .2958 

6610-00-051-0989 .1293 .6292 .2584 .6366 
6610-00-056-7150 .4082 .4509 .5517 .4435 
6615-01-018-1635 .1429 .8257 .2822 .8445 

Table 5-1: Network vs. METRIC vs. Empirical 

Although there was a wide range of performance levels for the network 

representations in terms of the K-S test statistic, the network representations 
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consistently out-performed the METRIC-based model. In only 2 of the 40 

comparisons between the two models was the METRIC-based model able to out 

perform the network representations. 



CHAPTER 6 
ALLOCATING REPAIR FUNDING 

INTRODUCTION 

In Chapter 4, we developed the concept of using an open queueing 

network representation to model an item's availability distribution as a function of 

the level of depot repair allocation for that part. Then in Chapter 5, we used an 

empirical data set to demonstrate the actual technique of fitting a network 

representation to an empirical availability distribution. In this chapter, we will 

expand upon this item by item representation by incorporating the individual 

representations into a marginal allocation routine which allocates available 

repair funding between the possible individual LRU-base combinations. We will 

begin by describing the marginal allocation technique and applying it to our 

queueing network approach to the reparable item problem. We will specifically 

discuss the marginal allocation technique's objective function, constraints, and 

actual operation in the context of our reparable item problem. Finally, we will 

demonstrate the marginal allocation approach using the open queueing network 

representations of empirical data derived in Chapter 5. 
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THE MARGINAL ALLOCATION TECHNIQUE 

The basic concept behind marginal allocation is to incrementally allocate 

resources where they will generate the largest marginal benefit, or greatest 

improvement in the objective function per unit of resource expended. Marginal 

allocation is a widely used technique in the reparable item literature, Silver 

(1972) and Muckstadt (1973) use marginal allocation to achieve seperability 

between LRUs and SRUs in their versions of Mod-METRIC in determining stock 

levels. Miller (1968, 1974) uses it to allocate newly repaired items at the depot 

in the context of his Transportation Time Look Ahead technique. This research 

extends the marginal allocation technique to the question of which items the 

depot should repair for which bases in order to get the "most bang for the buck" 

out of a constrained repair budget. 

The key to adapting the marginal allocation technique to our new 

paradigm of the reparable item problem is the way in which we have reduced the 

problem to determining the rate at which the depot provides parts for the 

individual bases as constrained by the available repair budget. In the context of 

a marginal allocation routine, the allocation being determined is the number of 

each item the depot should repair for each of the bases, the objective function is 

derived from the availability distributions for the individual items, and the key 

constraint is the depot's repair budget. Figure 6-1 shows, at a macro level, how 

we have adapted the marginal allocation technique to make this repair rate 

determination. 
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FIGURE 6-1: Reparable Item Problem Flow Chart 

Objective Function 

At the core of marginal allocation is the objective function. An objective 

function enables marginal allocation routines to compare the value of alternative 

allocations. Using the objective function, a marginal allocation routine compares 
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the current value of the objective function with its value when each of the 

possible allocations is incrementally increased while the other possible 

allocations are held constant. This difference between the before and after 

objective function values is the incremental value of allocating resources to that 

particular alternative. Since a single allocation to the different alternatives often 

require varying amounts of a resource, marginal allocation routines express the 

incremental value as a function of a single unit of the resource. For example, in 

the repair context, the repair cost varies from item to item, but the incremental 

value of each potential allocation can still be expressed as the improvement in 

the objective function per $1,000 in repair spending. The marginal allocation 

routine makes the best allocation based upon this incremental value, then, 

because the incremental value of a given allocation usually changes after an 

allocation has been made, recomputes the incremental value of each alternative 

allocation and repeats the allocation process. 

As discussed in the previous chapter, an objective function based upon a 

probability distribution is much more meaningful than one based upon a simple 

average. In the reparable item problem literature expected end item availability 

is a widely used performance measure. Using the queueing network approach, 

we can produce a probability distribution version of end item availability which 

measures the probability that end item availability will exceed a given level. We 

will use this type of objective function in some of the marginal allocation 

demonstrations at the end of this chapter. 
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Since our model produces probability distributions all the way down to the 

individual item level, there is much more information that would be available in 

formulating objective functions uniquely tailored for specific users. For example, 

in actual Air Force applications, this basic objective function should probably be 

modified to account for the fact that, in the global mission perspective, all bases 

are not created equal. The critical nature of some bases' missions makes their 

availability rates more important than other bases with the same aircraft. The 

objective function could, however, accommodate this reality by weighting the 

probability of a given level of availability to reflect a base's importance to the 

mission. For example, a base with a front line readiness mission might receive a 

weight of 1.5, while a base with a reserve mission might have a weight of 1.0, 

and a training base may only be weighted at .5. Thus, a one percent increase in 

the probability of achieving a given level of readiness at a front line base would 

have three times the value in the objective function as that same one percent 

increase at a training base. Another possible objective function which we will 

demonstrate at the end of this chapter is based upon the probability that an 

item's stock of wartime spares, or Readiness Spares Package (RSP), meets or 

exceeds a given percentage of the required level. 

Given an objective function and the queueing network representations of 

the individual item, we can develop a module for our marginal allocation routine 

which computes the value of the objective function from the repair rates for the 

individual items. To compute the incremental value of any proposed allocation, 
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we simply subtract the value returned by this module using the repair rates 

before the allocation from the value returned by this module based upon the 

repair rates after the allocation. 

Constraints 

Another key to the marginal allocation technique are the constraints on 

the problem. Implicit in the need for a marginal allocation program is the fact 

that resources are limited. Thus, the most obvious constraint on possible 

solutions is that the allocations of resources not exceed this resource limitation. 

This constraint is typically used as the stopping point for the marginal allocation 

routine. In the context of our proposed reparable item problem paradigm, the 

limiting resource is repair funding. The repair funding constraint can be as 

simple as subtracting a fixed repair cost from the total repair budget whenever 

the model makes a repair allocation, stopping the routine when there is not 

enough repair funding to make another allocation. It can, however, take a more 

complex form such as allowing a step function in the repair cost at certain levels 

of production. 

In addition to the basic resource constraint, marginal allocation routines 

can incorporate a variety of other constraints at any number of points in the 

process. Some other types of possible constraints include a minimum 

acceptable objective function value at all locations or maintaining objective 

function value parity between locations within a given range. It should be noted 
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that the objective functions referenced in these additional constraints need not 

be the same as the objective function used to determine the allocation of 

resources. They can be any function of the availability distributions for the 

individual items, or for that matter, a function of any available data elements. 

For example, in the demonstrations at the end of this chapter, we use a minimum 

acceptable probability of .75 that each item has no backorders to initialize the 

marginal allocation routine even though we use other objective functions to 

make the additional allocations. As an example of constraints within the 

allocation routine itself, some of our demonstrations incorporate a parity check 

before each allocation which will preempt an allocation if the value of some 

objective function for the receiving base exceeds that of the other base by some 

threshold. This type of flexibility in constructing constraints makes the marginal 

allocation technique a powerful management tool. 

In addition to the obvious benefits to applicability, using a constraint or 

constraints to set the initial conditions for the marginal allocation routine can 

reduce computational requirements and in the case of queueing networks, 

ensure the marginal allocation routine is operating in the representation's 

feasible range. The closer the starting conditions are to the final solution, the 

fewer iterations the marginal allocation routine must go through. For this reason, 

it is obviously beneficial to initialize the beginning repair rates in a reasonable 

range. With networks of queues, there is always a danger of unrealistic 

conditions causing abnormal results. In the case of our reparable item 
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representations, the queueing parameters are derived from the system's 

behavior within a specific range of traffic intensities. If the initial depot repair 

rates produce uncharacteristically low traffic intensities, the low intensity 

behavior of the queues may differ dramatically from their behavior under realistic 

intensities. 

MARGINAL ALLOCATION DEMONSTRATION 

Using the 20 items from Chapter 5, we constructed a two-location 

marginal allocation model with 10 items at each location. In order to 

demonstrate the impact of varying objective functions and constraints, we ran 

four variations of this routine. We initiated two of the models with a requirement 

that all items have a minimum probability of .75 of having no backorders. We 

initiated the other two models by requiring that all items have a minimum 

probability of .50 of having 50 percent or more of their RSP requirement on 

hand. In two of the variations, the objective function was the minimum 

probability across all items of having three or more items in stock. In the other 

two variations, the objective function was the minimum probability across all 

items of having 50 percent or more of the RSP requirement on hand. For each 

of the two objective functions, we constructed a model which had a constraint 

which preempted allocation if the value of the objective function at one base 

exceeded the objective function value at the other by more than a 0.1 threshold. 
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The MATLAB code for the marginal allocation routine with the fixed level 

objective function and the preemptive parity check is contained in Appendix E. 

Table 6-1 lists the data elements used by the marginal allocation routines and 

the sources of the data. The data set itself is provided in Appendix F. 

Table 6-1: Marginal Allocation Routine Data Elements 

Data Element Source 
Traffic intensity at the 
four network nodes 

Generated by the empirical data fitting routine 
performed in Chapter 5 

Calibration Repair Rate Collected from the transaction data analyzed in 
Chapter 5 

Number of leading 
calibration zeros 

The number of leading zeros in the empirical 
distribution between the first non-zero entry for the 
specific item and the smallest non-zero availability 
level observed across all items 

Repair cost A data element on the semi-annual item record 

RSP Requirement A data element on the semi-annual RSP detail records 

Repair Budget Computed by multiplying the actual receipts for each 
item during the second nine months of transactions by 
its respective repair cost 

Demonstration Results 

The final allocations produced by each of the models are shown in Table 

6-2. The actual allocation sequence for each of the models is given in 

Appendix G. 
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Table 6-2: Allocation Results by Model 

ltem# 
(Base) 

Level 
Objective 
w/o Parity 

Level 
Objective 
w/ Parity 

RSP 
Objective 
w/o Parity 

RSP 
Objective 
w/ Parity 

KD 12 14 10 10 

2(1) 6 7 4 4 

3(1) 1 1 8 8 

4(1) 10 12 20 21 

5(1) 9 10 9 9 

6(1) 11 12 11 12 

7(1) 8 9 5 5 

8(1) 11 12 11 11 

9(1) 16 18 16 16 

10(1) 1 1 1 1 

11(2) 10 9 6 6 
12(2) 13 13 10 10 
13(2) 13 12 11 11 

14(2) 11 7 10 11 
15(2) 8 8 7 7 
16(2) 14 12 8 8 
17(2) 12 11 9 9 
18(2) 12 11 9 9 
19(2) 20 20 20 20 
20(2) 20 18 27 19 

It was interesting to note that the effect of the parity constraint was much 

more pronounced for the allocations produced using the level-based objective 

function than it was for those using the objective function based upon RSP 

requirements. The step-by-step allocation results illustrated the impact upon 

computational requirements of the constraint used to initialize model conditions. 

The level-based constraint did not allocate as many assets in the initial pass. As 
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a result, the level-based models required almost three times as many iterations 

as did those based upon RSP requirements (59 iterations without parity and 58 

iterations with parity compared with 19 iterations without parity and 20 with 

parity). 



CHAPTER 7 
CONCLUSIONS/ 

RECOMMENDATIONS 

CONCLUSIONS 

This research examined the various approaches to the reparable item 

problem reported in the literature and demonstrated shortcomings in those 

approaches which hamper their effectiveness in real world applications. We saw 

that the METRIC-based approaches, in spite of their sophistication and years of 

actual large scale applications, are ill-equipped to handle the variability of 

empirical data and cannot address state-dependent behavior in a system. The 

newer queueing approaches successfully model state-dependent behavior, and 

by extension the variability of the empirical data, but run into state space 

problems when they attempt to solve realistically sized problems or address 

complex issues such as indenture relationships. 

In a departure from these existing approaches, we developed and justified 

a new paradigm for the reparable item problem. Because the actual number of 

on-hand assets typically bears little resemblance to the authorized stock levels, 
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which the traditional methods use as their decision variables, we abandoned 

stock levels as decision variables in favor of depot allocations of repair funding. 

In another departure from convention, we justified two key assumptions about 

the depot repair process-it is not constrained by the availability of unserviceable 

assets and it is not constrained by workshop capacity. 

Based upon our new paradigm, we proposed and developed a new 

approach to the reparable item problem which uses open queueing networks to 

model the repair process. Taking advantage of the computational efficiency of 

the open queueing network representation and the detailed data available from 

our representations, we replaced the simplistic expected number of backorders 

performance measure used by the METRIC-based models with the more 

information-laden item availability probability distribution function. We showed 

how this improved performance measure opens up a broad range of different 

objective functions which give real world managers much greater flexibility in 

tailoring the reparable item problem to their actual requirements. 

Empirical Results 

We demonstrated our new paradigm and its resulting open queueing 

network approach to the reparable item problem, using a U. S. Air Force data 

set. From this data set, we extracted 18 months of transactions for a sample of 

20 reparable items and the corresponding indicative data for those items. We 

first had to produce a simulation routine to convert the available data elements 
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into the availability distribution format upon which our paradigm is predicated. 

We then developed the specific procedures and programs to determine the best 

queueing representations for the empirical availability distributions. In order to 

compare the performance of our model with METRIC, we also had to develop a 

program to convert the indicative data for an item into a METRIC-based 

theoretical availability distribution. 

When we compared the performance of our queueing network models, 

both in fitting and forecasting the empirical data, with the performance of a 

METRIC-based model, our models out-performed the METRIC-based models in 

38 out of 40 comparisons. As would be expected from METRICS implicit 

assumption that the source of supply will attempt to stock up to the authorized 

stock levels, the METRIC-based models generally performed best when the 

availability distributions were skewed toward full stock and performed worse 

when the availability distributions deviated away from full stock. The queueing 

models, on the other hand, performed more consistently across the spectrum of 

availability distributions. 

Based upon the queueing network representations generated for the 

sample items in our data fitting demonstration, we developed a global marginal 

allocation model to illustrate the marginal allocation of the depot's repair funding 

between competing bases and competing items at each of the bases. We 

developed and coded a basic marginal allocation routine for these items. We 

then produced two versions of the model based on different objective functions 
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to demonstrated the flexibility inherent in the marginal allocation technique. We 

then modified these two models to include initialization constraints. These 

initializing conditions reduced the computational requirements from 218 

iterations to 59 iterations for one model (a 73 percent reduction) and from 212 

iterations to 20 iterations for the other model (a 91 percent reduction). We also 

modified the two basic models to demonstrate the use of constraint functions 

within the body of the marginal allocation process. 

These results illustrate the promise of our new paradigm and the 

associated open queueing approach to the reparable item problem. They show 

the practical application potential associated with this perspective of the 

reparable item problem. 

RECOMMEND A TIONS 

This research demonstrated at a basic level the principles of our new 

paradigm and illustrated some of its potential. However, in order to exploit this 

potential, there is much that needs to be done in terms of future research. 

Future Research on Fitting Empirical Data 

In our demonstration of fitting empirical data, we used an inefficient 

explicit enumeration search procedure to determine the best fit for a given 

empirical data set. Because of the computational limitations imposed by our 
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search routine, we artificially limited the range of network structures we and 

traffic intensities we considered. One avenue of future research would be to 

develop a more efficient search routine which could reduce the computational 

requirements for fitting a given empirical data set. 

There are a variety of extensions which could flow from this more efficient 

search routine. One such extension would be to expand the range of network 

structures and traffic intensities considered in the fitting process. By examining 

networks with more than four nodes and traffic intensities in increments smaller 

than 0.1, future researchers would be able to achieve better fitting performance 

from their network representations.   A more efficient fitting routine would also 

enable future researchers to more fully explore the relationship between the 

improvement in the fit performance of the network representations and their 

predictive value. In our analysis, we found that increasing the number of nodes 

improved the fit performance, but that it did not necessarily improve the 

predictive value of the network representation in all cases. 

Future research along this avenue could examine the correlation between 

improvement in forecasting performance and the characteristics of the empirical 

distribution being fitted or even the characteristics of the items which the 

empirical distribution represent. Researchers could classify empirical 

distributions by their shape or other such characteristics, then evaluate within 

each class the benefit, in terms of predictive value, of having a greater range of 

possible network representations available to the fitting routine. This type of 
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analysis would be able to produce more accurate network representations from 

the forecasting perspective, which is the most important perspective in the 

application context. 

Future research could also examine the multi-period prediction 

performance of the queueing network and ways to adapt the network 

representation to accommodate available data from period to period. We limited 

our demonstration to a single fit period and a single prediction period. Multi- 

period research, however, could analyze the benefits over time of a broader 

range of alternative network representations in the fitting stage. This extension 

to our research would also be able to explore fitting procedures using more than 

one fitting period. While our demonstration fit an empirical distribution by simply 

minimizing the value of the K-S test statistic, research into a multi-period fitting 

routine could develop and test a variety of other objective functions which it 

would attempt to minimize. Using time series forecasting as a model, some 

possible candidates would be the MAD or MSE measures using the K-S test 

statistic as the error value. Another component of this multi-period research 

extension would be exploring ways in which to make the network definition 

process adaptive over time. Once again relying on time series forecasting as a 

model, future researchers could compare the forecasting performance of 

network representation versions of the naive, simple moving average, and 

exponential smoothing models. A naive network representation model might 

simply use a fixed number of nodes and select the service rates for those nodes 
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which best fits the last period's empirical data to forecast for the next period. 

A network representation version of exponential smoothing might also use a 

fixed number of nodes, but adjust the service rates at each of the network 

representation's in-use nodes by the dampened differences between the current 

service rates and the best fit service rates. Part of the multi-period fitting routine 

might be a comparison between different versions of these models with different 

numbers of nodes. 

Yet another extension in the multi-period area would be proactive 

forecasting using additional information. For example, the Air Force's D041 

requirements computation process relies upon forecasted flying hours to 

determine requirements. Since flying hours per period have an impact upon 

failure rates per period, future multi-period research could attempt to incorporate 

forecasted flying hours into the construction of the queueing network 

representations. This future research would have to be application specific, 

focusing on how the objective function for the specific application is affected by a 

variety of factors other than the time series of availability distributions. The 

research would also have to develop and test specific techniques for 

incorporating these forward looking indicators into the construction of the 

network representations. 
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Future Research on Marginal Allocation Techniques 

Our approach's use of availability distributions as opposed to the 

traditional expected number of backorders opens up a wide variety of 

alternatives for the real world manager who would actually apply our techniques. 

Our demonstration only gave a glimpse of the flexibility our approach offers. 

Since objective functions and constraints are, by their very nature, 

application specific, future research into the marginal allocation process would 

have an applied focus. Some possible avenues include developing appropriate 

objective functions for a specific application. Future researchers could also 

explore, within a specific application context, the impact of initializing constraints 

upon computational requirements. They could further customize a specific 

application with internal constraints. 

Promise of the New Paradigm 

This research represents a revolutionary departure from the established 

traditions of the reparable item problem. By abandoning the conventions of the 

existing literature and replacing them with a new paradigm which promises to 

deliver greater flexibility and applicability, this research opens a new frontier on 

the reparable item problem. Future researchers have much to gain by exploring 

our new paradigm. 



APPENDIX A 
FOUNDATIONS OF QUEUEING 

INTRODUCTION 

In its broadest sense, queueing applications revolve around the 

phenomenon of lines or queues. Whether it's the line at the grocery store (for 

which it is axiomatic that I will always end up in the longest one), a backlog of 

parts at a machine in a job shop, data packets awaiting transmittal in a 

communications network, or any of a vast number of other types of queues, 

there are some basic principles which can be used to analyze the performance 

of these systems. These fundamentals of queueing theory form the foundation 

for our analysis of the reparable item problem. The following sections describe 

some the key principles we will use in our research. 

Notation 

Before delving into the actual principles of queueing theory, the basic 

notation used to describe a queue is an instructive introduction of some of the 

queueing issues we will be exploring. Three of the key features of a queue are 
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the distributions of its interarrival and service times and the number of service 

channels. These three features make up the basic notation for describing a 

queue illustrated below: 

Arrival Process / Service Process / Number of Service Channels 

For example, "M/M/1" describes a queue with exponential interarrival and 

service times and a single service queue. Queueing literature also refers to 

exponential processes as "Markovian," hence the "M" in the notation. 

Two other process distributions which commonly show up in the literature 

are the general (G) distribution and the phase-type (PH). A general distribution 

in the queue description is typically used to indicate that the conclusions are can 

be generalized to the point where they depend only upon the distribution's mean 

and not the other specific characteristics of the distribution. The use of an 

M/G/oo queue in the derivation of Palm's theorem is a classic example of using 

the general distribution to emphasize the broad applicability of the results. The 

phase-type distribution denotes a queue with a specialized structure, the 

properties of which can be exploited in a variety of ways. We will describe the 

phase-type distribution in greater detail in a later section. In addition to this basic 

queue description notation, terms can be included which define the number of 

items in the total system, describe the queueing discipline, and other system 
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characteristics. For the purpose of this research, however, we will not make use 

of the more complex notations. 

MARKOV CHAINS 

The behavior of queues can be addressed from a purely mathematical, 

formula-based standpoint as Gross and Harris (1974) have done in their 

queueing text. Another approach, however, is to approach queueing theory 

using the Markov chain embedded in the queue to analyze its behavior as Neuts 

(1981, 1989) and Kao (1997) have done. The embedded Markov chain for a 

queue with n possible states represents that queue as an n x n matrix. In the 

case of discrete time Markov chains, this matrix reflects the transition 

probabilities between state pairs with the row index defining the "from" state and 

the column index defining the "to" state. For continuous time Markov chains 

(CTMC), the cells contain transition rates instead of one step transition 

probabilities. In the context of the reparable item, which typically assumes a 

continuous review inventory policy, the CTMC is more appropriate than the 

discrete time version, so we will concentrate on the CTMC. 

Because it can explicitly model the transition rates between each pair of 

feasible states, the CTMC is a very flexible modeling tool. By appropriately 

defining the states, a CTMC approach can be used to model many different 

types of queues or systems of queues. For example, to model a simple 
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reparable item problem we could use a composite state definition which includes 

the number of items installed or in serviceable stock at the base, the number of 

items in repair at the base, and the number of items backordered with the depot. 

This example also illustrates one of the key limitations of the CTMC approach- 

state space size. Since the CTMC not only explicitly enumerates all possible 

states, but creates an n x n matrix, the state space size is computationally 

prohibitive for large problems and complex state definitions. When 

computationally feasible, however, the CTMC's versatility makes it a valuable 

approach to modeling stochastic processes. 

The matrix containing the transition rates is called an infinitesimal 

generator of the CTMC and typically designated as "Q." Once generated, it can 

be used to compute the steady state probabilities of each of the states as well as 

their transient probabilities at any given point in time. Kao (1997) shows that by 

simply replacing the first column of Q with ones and inverting the resulting 

matrix, the first row of the inverted matrix yields the steady state probabilities of 

each of the possible states. For the time dependent case, he demonstrates that 

the probability vector at time t given a specific beginning state is simply the 

corresponding row of the matrix eQt. The fact that the steady state and transient 

probabilities, and by extension a wide variety of performance indicators, are so 

readily available via simple matrix operations, makes the CTMC approach a 

powerful modeling tool. 
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NETWORK OF QUEUES 

A queueing network is, in the most general case, any series of queues 

which feed one another. A specific subset of queueing networks which has been 

the focus of much research are those networks in which the individual queues 

exhibit Markovian behavior (Poisson arrival rates and exponential service times) 

and departure routing is probabilistic and state independent. This specific 

subset of queueing networks has some special characteristics which can be 

exploited to overcome the state space problem with CTMCs discussed earlier. 

We will expand upon these characteristics in the next sections. 

A key way of categorizing networks of queues is "open" vs. "closed." In 

an open queueing network arrivals from outside the network and departures from 

the network are permitted, while in a closed network, the only arrivals are the 

departures from other queues in the network, and no departures from the 

network are allowed. A key result of these definitions is the fact that the number 

of units in a closed network is fixed, while the number in an open network is 

unconstrained. 

Open Queueing Networks 

In his seminal research into the behavior of the individual queues 

imbedded in an open network of Markovian queues, Jackson (1957, 1963) 

observed that these individual queues appear to behave independently allowing 

their marginal distributions to have "product forms." Product form means that the 
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limiting probability for a given vector n, which denotes the number of units in 

each of the queues in the network, is given by Formula A-1. 

P(n) = nVi(l-p)pf (A-1) 

Hence we apply the term product form. The pi's in the formula are the traffic 

intensities at each of the nodes in the network, and are computed by dividing a 

node's arrival rate {X{) by its service rate (|ij). For any given node, h is the sum 

of the arrival rates from the other nodes and any external arrivals. By 

capitalizing on the Markovian characteristics of the individual queues, it is 

possible to solve for the individual h 's given the external arrival rate(s) and the 

departure routing probabilities for each of the nodes. 

Closed Queueinq Networks 

Gordon and Newell (1967) extended Jackson's work by showing that 

closed queueing networks also could have product form solutions. Computing 

the product form solution of the closed queueing network is complicated by two 

key differences between open and closed networks. The first complication is the 

absence of outside input to provide a beginning point for computing the arrival 

rates at the individual nodes. Without any external arrivals, the set of balance 

equations which define the closed system is the summation of internal 
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transitions at each of the nodes in the system. Formula A-2 below applies to 

each of the nodes in the system: 

Where \ is the arrival rate into node j and Py is the 
probability of a departure from node i being routed to node j. 

There is not, however, a unique solution to this set of balance equations. 

Because of the constraint on the total number of units in the system, this set of 

balance equations contains a redundant equation and there is no unique 

solution to the set of balance equations. This redundant equation allows any 

given \ to be set to an arbitrary number > 0. As a result of such a substitution, 

there is a unique solution for the remaining X's. 

The marginal probabilities at each of the nodes in the open network are 

predicated upon the fact that there is no constraint on the number of units in the 

system. For the closed network, this condition is not valid, so the methodology 

for determining the product form solution for the closed queueing network must 

account for the fact that some states which would be possible in an open 

queueing network are no longer feasible. The product form solution for the 

closed network adjusts for this fact by "normalizing" the results from an open 

network product form solution. The closed network methodology begins by 

solving for the joint probability associated with each feasible state using the 

open network product form, denoted by %(n). Each of these joint probabilities is 



120 

then normalized into its closed network probability, denoted by 7tN(n) where N is 

the limit on the number of units in the system, by dividing it by the sum of the 

joint probabilities for all the feasible states as shown in Formula A-3. 

7tN(n) = 7t(n) / En 6 feasible states   7t(n) (A-3) 

Conclusion 

Whether representing a Markov chain or an open or closed network, 

these steady state probability vectors represent a valuable collection of 

information for the analyst. This is one of the reasons the queueing approaches 

to inventory management have seen a growing degree of attention. 



APPENDIX B 
AVAILABILITY DISTRIBUTION 

SIMULATION 

This Simulation transforms the transaction history for a given item into an 

availability distribution. 

C  This program builds the serviceable balance distribution 
C  for an individual NSN from that NSN's transaction file 

C  Define Variables 

CHARACTER NSN*15, TRIC*3, TTPC*2, TYEAR*3 
INTEGER QTY, TDAY, TDATE 
INTEGER DISTRIB(IOO) 

C  Open files 

open(1,file='/home/bsilver/files/nsn7757.tran') 
open(2,file='/home/bsilver/files/nsn7757.dist') 

C  Initialize serviceable balance current date, backfill to 
begining date 

servbal=50 
READ(1,10,end=99)NSN,TRIC,TTPC,QTY,TYEAR,TDATE 
if(tyear.eq."093")tday=tdate-284 
if(tyear.eq."094")tday=tdate+82 
if(tyear.eq."095")tday=tdate+447 

distrib(50)=tday-l 
5   currdate=tday 
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do 15, j=l,3000 
if(tday.eq.currdate)then 

if(tric.eq.'ISU')servbal=servbal-qty 
if(trie.eq.'MSI')servbal=servbal-qty 
if(tric.eq.'DOR')servbal=servbal-qty 
if(tric.eq.'SHP')servbal=servbal-qty 
if(trie.eq.'TIN')then 
oldbal=servbal 
servbal=servbal+qty 
print*,'increase TIN',oldbal,servbal 

end if 
if(trie.eq.'REC')then 

oldbal=servbal 
servbal=servbal+qty 
print*,'increase REC',oldbal,servbal 

end if 
READ(1,10,end=99)NSN,TRIC,TTPC,QTY,TYEAR,TDATE 
if(tyear.eq."093")tday=tdate-2 84 
if(tyear.eq."094")tday=tdate+82 
if(tyear.eq."095")tday=tdate+447 

else 
distrib(servbal)=distrib(servbal)+1 
currdate=currdate+l 

end if 

15 continue 

99 do 35, j=l,100 
WRITE(2,20)distrib(j) 

3 5 continue 

10 F0RMAT(A15,A3,A2,I6,A3,I3) 
2 0 FORMAT(16) 

end 



APPENDIX C 
AVAILABILITY DISTRIBUTIONS 

The following empirical availability distributions were derived from 

transaction histories at a single Air Force base over an 18-month period using 

an availability simulation described in Chapter 5. The top series represents the 

first 9 months and the bottom series the second 9 months. Leading zeros have 

been truncated except where necessary to match the starting points in both 

distributions. The final entry in each series represents full stock. 

1560-01-152-6387JH 2 44 66 39 116 

2 5 22 39 199 

1630-00-758-3758 30 26 147 39 25 

51 71 7 63 74 

1650-00-757-3862 0 0 0 4 29 0 53 36 
22 61 21 5 7 22 7 

2 18 30 5 0 19 12 20 
14 2 10 34 25 45 30 

1650-00-930-3160 0 0 3 13 10 12 34 47 
6 2 4 4 35 7 13 24 
0 11 12 11 11 8 

7 41 43 4 34 3 4 14 
12 3 2 2 0 7 16 11 
29 17 4 0 6 5 

1660-00-573-6482 0 65 34 35 10 7 3 113 

3 10 101 34 9 5 75 29 
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1680-00-852-0803 30 
17 

41 
43 

76 0 14 46 0 

78 51 7 42 0 4 7 
66 11 

2840-00-066-9925RV 29 17 207 14 

21 219 26 0 

2925-00-939-1473RV 17 14 33 35 0 14 154 

21 75 10 0 2 5 154 

2995-00-759-9072 0 62 40 84 26 16 39 

1 30 3 12 6 1 214 

4510-00-740-1074JH 54 
96 

10 
21 

22 
33 

14 5 2 10 

0 8 29 26 25 3 17 
26 116 0 

4810-00-573-6461TP 22 36 134 18 57 

17 91 132 20 6 

5998-00-064-8059NT 30 4 89 14 130 

17 35 17 0 198 

5999-00-067-3622NT 3 27 6 12 25 43 33 
58 12 43 5 

3 119 7 48 29 34 13 
12 1 0 0 

5999-00-121-4721JH 17 
11 

27 
60 

0 
0 

6 7 48 91 

18 58 32 49 40 30 7 
14 12 6 

6105-00-960-9879 6 20 10 231 

2 59 163 42 

6130-00-967-2610NT 20 21 89 137 

3 80 14 170 

6605-00-955-3029JH 47 39 42 139 

27 7 4 229 

6610-00-051-0989 36 
53 

44 
44 

11 
16 

0 51 12 0 

1 82 32 19 0 15 29 
31 7 51 
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6610-00-056-7150 

6615-01-018-1635 

0 
7 

41 
3 

7 
11 

16 20 53 0 0 

10 
52 

17 
36 

8 
22 

12 61 27 13 8 

3 
6 

12 
6 

0 
33 

12 
28 

22 
29 

23 
5 

51 
37 

0 

11 
82 

25 
0 

68 
14 

0 
5 

2 
5 

2 
10 

5 
4 

11 



APPENDIX D 
METRIC-BASED MODEL 

PARAMETERS 

Stock Number Dmd PBR BRCT O&ST 
1560-01-152-6387JH 35 .50 13.4 7 
1630-00-758-3758 7 0 0 7 
1650-00-757-3862 30 .42 7.6 7 
1650-00-930-3160 107 .41 7 7 
1660-00-573-6482 11 .23 1 7 
1680-00-852-0803 8 0 0 10 
2840-00-066-9925RV 12 0 0 7 
2925-00-939-1473RV 28 .07 1 7 
2995-00-759-9072 28 .13 1.3 7 
4510-00-740-1074 JH 56 .98 10.5 7 
4810-00-573-6461 TR 35 .88 14.8 7 
5998-00-064-8059NT 15 0 0 7 
5999-00-067-3622NT 15 0 0 7 
5999-00-121-4721 JH 16 .05 1 7 
6105-00-960-9879 7 .30 3 11 
6130-00-967-261ONT 14 .06 1 7 
6605-00-955-3029 JH 9 0 0 7 
6610-00-051-0989 11 .07 1 7 
6610-00-056-7150 48 .34 1.2 7 
6615-01-018-1635 66 .97 2.3 7 
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APPENDIX E 
MARGINAL ALLOCATION 

ROUTINE 

This marginal allocation routine initializes its allocation levels using the 

constraint that each NSN must have a probability of no backorders greater than 

or equal to .75. It uses the probability of two or more items in stock as its 

objective function and features a preemptive parity check with a threshold of 0.1 

The variations on this routine are described in greater detail in Chapter 6. 

function [out]=margin 

load nsntbl; 

% Structure of nsntbl: 
%(l-4) 
% (5) 
% (6) 
% (7) 
% (8) 
% (9) 
% (10) 
% (11) 

original traffic intensity at nodes 1-4 
original repair rate 
number of leading calibration zeros 
repair cost 
RSP authorization 
current allocation (start w/ all 0's) 
current availability value 
marginal utility to objective function 

% Initialize allocation levels to meet minimum objective of 
% P(availability >= 1) >= .75 for all NSNs 
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for i=l:20 
while nsntbld, 10) < .50 

nsntbl(i,9)=nsntbl(i,9)+1; 
distrib=[zeros(1,nsntbl(i,6)),build( ... 

[nsntbld, 1:5) , nsntbl (i, 9) ] ) ] ; 
nsntbld, 10) =1-(sum(distrib (1:4) ) ) ; 

end 
end 

budget=556000-(nsntbl(:,9)'*nsntbl(:,7)); 

% begin allocation process 

allocate=[]; 

% Base A Selection Process 

obj fun=min(nsntbl(1:10,10)); 
maxutil=0; 

for i=l:10 
distrib=[zeros(1,nsntbl(i,6)),build( ... 

[nsntbld, 1:5) , nsntbl (i, 9)+1] ) ] ; 
newprob=l-(sum(distrib(1:4))); 
newavail=nsntbl(1:10,10); 
newavail(i)=newprob; 
nsntbl(i,11)=(min(newavail)-objfun)/nsntbl(i,7); 
if nsntbld, 11) > maxutil 
maxutil=nsntbl(i,11); 
bestnsn=i; 

end 
end 
basea=[maxutil,bestnsn]; 
paritya=min(newavail); 

% Base B Selection Process 

objfun=min(nsntbl(11:20,10)); 
maxutil=0; 

for i=ll:20 
distrib=[zeros(1,nsntbl(i,6)),build( ... 

[nsntbld, 1:5) , nsntbl (i, 9)+1] ) ] ; 
newprob=l-(sum(distrib(1:4))); 
newavail=nsntbl(11:20,10) ; 
newavai1(i-10)=newprob; 
nsntbl(i,11)=(min(newavail)-objfun)/nsntbl(i,7); 
if nsntbl(i,11) > maxutil 
maxutil=nsntbl(i,11); 
bestnsn=i 

end 
end 
baseb=[maxutil,bestnsn]; 
parityb=min(newavail); 
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% Continuing Allocation Routine 

while budget >= max(nsntbl(:,7)) 
pardiff=paritya-parityb; 
parity=0; 
if (paritya-parityb) > .1 
parity=l; 

end 
if (parityb-paritya) > .1 
parity=2; 

end 

if (basea(l) >= baseb(l) & parity==0) | parity==2 
allocate=[allocate;basea(2),basea(l)*1000, ... 

baseb(l)*1000,pardiff,nsntbl(basea(2),9)] 

% Update # allocated and availability 

nsntbl(basea(2),9)=nsntbl(basea(2),9)+l; 
distrib=[zeros(l,nsntbl(basea(2),6)),build( ... 

[nsntbl(basea(2),1:5),nsntbl(basea(2),9)])] 
nsntbl(basea(2),10)=l-sum(distrib(1:4)); 
budget=budget-nsntbl(basea(2), 7) ; 

% Select next Base A candidate 

obj fun=min(nsntbl(1:10,10)); 
maxutil=0; 

for i=l:10 
distrib=[zeros(1,nsntbl(i,6)),build( ... 

[nsntbl(i,1:5),nsntbl(i,9)+1])]; 
newprob=l-(sum(distrib(1:4))); 
newavail=nsntbl(1:10,10); 
newavail(i)=newprob; 
nsntbl(i,11) = (min(newavail)-obj fun)/nsntbl(i,7) ; 
if nsntbl(i,11) > maxutil 
maxutil=nsntbl(i,11); 
bestnsn=i; 

end 
end 
basea=[maxutil,bestnsn]; 
paritya=min(newavail); 

end 
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if (baseb(l) > basea(l) & parity==0) | parity==l 
allocate=[allocate;baseb(2),basea(l)*1000, ... 

baseb(l)*1000,pardiff,nsntbl(baseb(2),9)] 
nsntbl(baseb(2),9)=nsntbl(baseb(2),9)+l; 
distrib=[zeros(1,nsntbl(baseb(2),6)),build( ... 

[nsntbl(baseb(2),1:5),nsntbl(baseb(2),9)])] 
nsntbl(baseb(2),10)=l-sum(distrib(1:4)); 
budget=budget-nsntbl(baseb(2), 7) ; 

% Select next Base B candidate 

obj fun=min(nsntbl(11:20,10)) ; 
maxutil=0; 

for i=ll:20 
distrib=[zeros(1,nsntbl(i,6)),build( ... 

[nsntbl(i,1:5),nsntbl(i,9)+1])]; 
newprob=l-(sum(distrib(1:4) ) ) ; 
newavail=nsntbl(11:2 0,10); 
newavail(i-10)=newprob; 
nsntbl(i,11)=min(newavail)-objfun; 
if nsntbl(i,11) > maxutil 
maxutil=nsntbl(i,11); 
bestnsn=i; 

end 
end 
baseb= [maxutil,bestnsn] ,- 
parityb=min(newavail); 

end 
end 

% Terminal allocation of remaining budget 

while budget > 0 
best=0; 
for i=l:20 

if nsntbl(i,11) > best 
if nsntbl(i,7) <= budget 
best=nsntbl(i,11); 
bestnsn=i; 

end 
end 

end 
nsntbl(bestnsn,9)=nsntbl(bestnsn,9)+1; 
budget=budget-nsntbl(bestnsn,7); 

end 

save nsntbl 
save allocate 

out=nsntbl(:,9); 



APPENDIX F 
MARGINAL ALLOCATION 
ITEM INDICATIVE DATA 

The following table shows the indicative data on the item used in the 

marginal allocation routine. Chapter 6 describes the source and usage. 

Item# 
Node 

1 
Node 

2 
Node 

3 
Node 

4 
Initial 
Rate 

Lead 
Zeros 

Repair 
Cost 

RSP 
Level 

1 3 5 5 6 10 0 4896 2 
2 3 4 4 4 4 1 1336 2 
3 3 7 7 8 14 4 2277 8 
4 4 8 7 8 22 3 6750 12 
5 1 1 6 8 8 0 864 5 
6 1 1 5 7 9 1 1371 5 
7 2 3 3 5 5 1 3945 2 
8 1 1 1 9 11 1 931 4 
9 4 4 5 5 12 0 1922 3 
10 1 1 7 8 7 4 4897 6 
11 3 3 4 5 5 1 7667 2 
12 4 6 2 6 8 1 3394 3 
13 4 6 6 7 9 0 4982 6 
14 5 5 6 7 8 3 4961 10 
15 2 3 5 9 7 0 1450 2 
16 3 4 5 6 8 1 677 2 
17 1 1 7 4 8 1 642 2 
18 3 3 3 8 9 2 2621 4 
19 1 1 1 8 16 0 416 5 
20 4 6 7 8 16 0 854 14 
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APPENDIX G 
STEP-BY-STEP ALLOCATION 

The following series show the step-by-step repair allocations for each of 

the four marginal allocation routines demonstrated in Chapter 6. 

Level-Based Objective 
Function without 
Parity Constraint 

Item # New Balance 

15 7 
13 9 
19 18 
20 14 
11 7 
16 9 
18 8 
14 4 
12 9 
17 10 
20 15 
19 19 
13 10 
16 10 
18 9 
11 8 
20 16 
14 5 
12 10 
15 8 
17 11 
16 11 
18 10 
20 17 
13 11 
19 20 
14 6 
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Level-Based Objective 
Function without 
Paritv Constraint 
(Continued] 

Item # New Balance 
12 11 
11 9 
20 18 
16 12 
14 7 
18 11 
13 12 
12 12 
17 12 
20 19 
14 8 
11 10 
16 12 
14 9 
13 13 
12 13 
20 20 
18 12 
14 10 
16 14 
14 11 
6 10 
4 7 
9 15 
8 10 
1 12 
5 9 
2 6 
4 8 
7 8 
9 16 
6 11 
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Level-Based Objective 
Function with 
Parity Constraint 

Item # New Balance 
15 7 
13 9 
19 18 
20 14 
11 7 
16 9 
18 8 
14 4 
12 9 
17 10 
6 10 
4 7 
9 15 
20 15 
19 18 
8 11 
1 12 
13 10 
5 9 
2 6 
16 10 
18 9 
4 8 
11 8 
7 8 
20 16 
14 5 
12 10 
9 16 
6 11 
15 8 
4 9 
17 11 
1 13 
16 11 
18 10 
20 17 
13 11 
9 17 
4 10 
19 20 
14 6 
12 11 
8 12 
11 9 
2 7 
4 11 
7 9 
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Level-Based Objective 
Function with 
Parity Constraint 
(Continued) 

Item # New Balance 

20 18 
16 12 
6 12 
9 18 
14 7 
1 14 
18 11 
5 10 
4 12 
13 12 

RSP-Based Objective 
Function without 

Parity Constraint 

Item # New Balance 
9 16 
3 8 
18 7 
11 5 
20 19 
12 9 
15 7 
17 8 
14 9 
16 7 
13 11 
18 8 
19 20 
11 6 
17 9 
12 10 
16 8 
18 9 
4 21 
6 12 



136 

RSP-Based Objective 
Function with 
Paritv Constraint 

Item # New Balance 
9 16 
3 8 
18 7 
11 5 
20 19 
12 9 
15 7 
17 8 
14 9 
16 7 
13 11 
18 8 
19 20 
11 6 
17 9 
12 10 
16 8 
18 9 
14 10 
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