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Abstract 

Near and Far-Field Acoustic Scattering through and from Two Dimensional 

Fluid-Fluid Rough Interfaces 

Recent experimental results [F. E Boyle and N. P. Chotiros, J. Acoust Soc. Am. 91, 

2615-2619,1992; N. P. Chotiros, J. Acoust Soc. Am. 97, 199-214, 1995] reveal acoustic 

penetration from water into sandy sediments at grazing angles below the compressional 

critical angle in relation to the mean surface. These authors interpret their results to 

indicate the excitation of a Biot slow wave in the sediment. Another explanation is 

considered here. Modeling the ocean as a homogenous fluid and the sediment as a lossy 

homogenous fluid, computer simulations of these experiments based on analytical 

derivations in this work show that roughness of the water-sediment interface causes 

propagation of acoustical energy from water into the sediment at grazing angles below 

the compressional critical grazing angle; these simulations indicate that the experimental 

results can be explained in terms of diffraction of an ordinary longitudinal wave. These 

simulations use an analytical expression for the time-dependent mean square incoherent 

field scattered through (and from) a rough 2-D fluid-fluid interface that is derived in terms 

of the bistatic scattering cross section per unit area per unit solid area (differential cross 

section) of the rough interface. First-order perturbation theory is used to derive an 

expression for the differential cross section. The coherent field is calculated using the 

flat-surface result (zero-order perturbation theory) and compared to the coherent 

component of the second-order perturbation theory result. Effects of sound-speed 

gradients on the field scattered from the rough water-sediment interface are also shown 

using the first-order perturbation derivations. 
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CHAPTER 1 

Introduction 

1.1 Purpose 

A current area of considerable interest in ocean acoustics is the penetration 

of acoustical energy from a source in water into the seafloor (Williams, 

Satkowiak, and Bugler, 1989; Chotiros, 1995). Recent experimental results 

(Boyle and Chotiros, 1992; Chotiros, 1995) reveal acoustic penetration from 

water into sandy sediments at grazing angles below the compressional critical 

angle in relation to the mean surface. In addition, energy appears to propagate 

in the sediment at speeds slower than the compressional wave speed, in a 

direction concurring with Snell's law. These authors interpret their results to 

indicate the excitation of a Biot slow wave in the sediment. 

A primary goal of this work is to demonstrate that their experimental results 

can be explained in terms of diffraction of an ordinary longitudinal wave, rather 

than refraction of a slow wave. The effect of roughness on penetration of the 

seafloor is demonstrated by developing a rough surface scattering model that 

provides a solution to scattering into the rough seafloor. In order to provide a 

tractable model, simplifying assumptions about the ocean and seafloor are made, 

and an approach for solving the corresponding time-dependent rough surface 

scattering problem is taken that leads to simple analytical results. The ocean 

acoustic model used and the methods of solution are discussed in the following 

sections. Although the main problem is acoustic scattering through the rough 

fluid-fluid interface for an incident field in the water, analytical results derived in 

this work also include scattering from the rough fluid-fluid interface. Furthermore, 

these analytical results are general, and can be applied to other rough surface 

scattering problems. 



1.2 Ocean acoustic model 

The propagation of sound in the ocean is very complicated (see for example, 

Urick, 1975; Brekhovskikh and Lysanov, 1991; Burdic, 1991). Sound speed is 

not constant, but varies as a function of temperature, salinity, and depth. In 

addition, acoustical energy propagating in the ocean is attenuated by absorption 

and by scattering due to inhomogeneities in the water. However, for the 

examples considered here, the propagation distances in the water are short 

enough so that the sound speed does not vary appreciably. Furthermore, at the 

frequencies of interest (300 Hz - 60 kHz) attenuation of acoustical energy over 

these short distances is also negligible. For this reason, the water is modeled as 

a lossless homogenous fluid. 

The ocean seafloor is in general an inhomogeneous porous, viscoelastic 

medium, possibly supporting the propagation of Biot slow waves (Biot, 1956a, 

1956b; Biot, 1962a, 1962b) and transverse, or shear, waves (e.g., Brekhovskikh 

and Lysanov, 1991) in addition to longitudinal, or compressional, waves. The 

seafloor has a roughness spectrum approximating that of a power law (Fox and 

Hayes, 1985; Goff and Jordan, 1989; Briggs, 1989). Acoustical energy incident 

on the seafloor will be scattered from this rough interface back into the water, 

and through this rough interface into the sediment. 

The main purpose of this work is to show the effect of roughness in the 

seafloor on scattering into the sediment. Although volume inhomogeneities in 

the sediment can be a significant source of scattering (Ivakin and Lysanov, 1981; 

Jackson, Winebrenner, and Ishimaru, 1986; Jackson and Briggs, 1992), volume 

scattering is beyond the scope of this work. However, the effect of vertical 

stratification of the sediment below the rough interface on the scattered field is 

discussed. Boyle and Chotiros (1992) and Chotiros (1995) neglect the effects of 

roughness in their interpretation of sediment penetration experiments, and 

suggest that penetration of acoustical energy into a sandy sediment at shallow 



grazing angles (below the compressional critical angle) can be explained by Biot 

wave propagation — provided nonstandard Biot parameters are used (Chotiros, 

1995). We show that their experimental results can be reproduced in a computer 

simulation that models the sandy sediment as a fluid and the interface between 

the water and the sediment as randomly rough. Ivakin and Jackson (in 

preparation) show that for the case of sandy sediments, the component of energy 

propagating as shear waves is small, and can therefore be neglected. 

Attenuation of acoustical energy is not negligible in the sediment for even very 

short distances, and the sediment is therefore modeled as a lossy fluid. 

Since it is not feasible to obtain an exact analytical description of even a 

relatively small portion of the seafloor, a probabilistic analysis is most practical. 

A statistical quantity of particular interest to rough surface scattering is the 

bistatic scattering cross section per unit area per unit solid angle (Ishimaru, 

1978b). For convenience, this quantity will be referred to as the differential cross 

section. It is useful to represent solutions for scattered acoustical energy in 

terms of differential cross section. However, exact analytical expressions for the 

differential cross section are not available. 

1.3 Rough interface scattering solution techniques 

Determining the field scattered from or through (penetrating) a rough 

interface given an arbitrary incident field is a problem with applications in several 

research areas, in addition to ocean acoustics (e.g., remote sensing, solid state 

physics, astronomy, optics). In the area of ocean acoustics, rough surface 

scattering is viewed as a contributor to propagation loss for sound propagating in 

shallow water (e.g., Kuperman and Ingenito, 1977) and a source of interfering 

reverberation in active sonar systems. In the acoustic detection of subsurface 

scatterers, the rough seafloor can be considered a source of interfering 

reverberation and signal loss (Nagy and Rose, 1993), and in medical imaging 

applications, rough interfaces in intervening tissue layers often lead to distorted 



images (Berkhoff, Thijssen, and van den Berg, 1996). Although the rough 

interface scattering problem has been of interest for several decades, there is no 

exact solution method for the statistical problem. 

Solutions of the rough interface scattering problem are obtained by means of 

either numerical or approximate analytical methods. Although numerical methods 

can result in accurate calculations for the scattered field, statistical results require 

a numerically intensive "Monte Carlo" approach. In addition, numerical methods 

are very computer intensive for the three dimensional problem (Tsang, Chan, 

and Pak, 1993, 1994; Pak etal., 1995). 

A classical analytical technique applied to acoustic scattering by 

Brekhovskikh (1952) and by Eckart (1953) is the Kirchhoff approximation, or 

tangent plane approximation. Although this approximation has a useful region of 

validity for Dirichlet boundary conditions (Thorsos, 1988a, 1988b, 1990; Thorsos 

and Jackson, 1989, 1991; Ishimaru and Chen, 1990), it is not as suitable for 

obtaining statistics of the scattered field for more general seafloor boundary 

conditions, such as fluid-fluid, where the reflection coefficient is a function of 

angle. However, as shown by Thorsos (1996b), the Kirchhoff approximation can 

be very accurate for scattering through a rough fluid-fluid interface near the 

Snell's law direction. 

More recent approximate methods include the phase perturbation method 

(Winebrenner, 1985; Winebrenner and Ishimaru, 1985a, 1985b), the small slope 

approximation (Voronovich, 1985), and the operator expansion method (Milder, 

1991). A summary of all of these approximate methods is given in Kaczkowski 

(1994). See also Thorsos and Broschat (1995) for a description of the small 

slope method. Although the phase perturbation method can provide an accurate 

approximation to the scattered field for Dirichlet and Neumann surfaces 

(Broschat et al., 1987; Broschat, Thorsos, and Ishimaru, 1989), it does not 

readily provide tractable solutions for the fluid-fluid seafloor scattering problem. 



The operator expansion method is accurate in several scattering regimes for 

Dirichlet surfaces (Kaczkowski, 1994; Kaczkowski and Thorsos, 1994), but has 

not been developed for other boundary conditions and does not allow for formal 

averaging. A Monte Carlo approach is therefore required for obtaining field 

statistics. The small slope approximation can yield statistical solutions to the 

scattering problem with a fluid-solid boundary condition (Yang and Broschat, 

1994), using a separate supporting analytical technique in a region of known 

validity. The analytical technique commonly used with the small slope 

approximation is perturbation theory (Rayleigh, 1945). 

Perturbation theory, first used by Rice (1951) for randomly rough surfaces, is 

a straightforward technique for obtaining solutions to the scattering problem with 

complicated boundary conditions (Kuo, 1964; Dacol and Berman, 1988; 

Winebrenner, Farmer, and Joughin, 1995; Ivakin, 1994). The Rayleigh-Rice 

method (Rice, 1951) is a classical perturbative approach that uses the Rayleigh 

hypothesis as a starting point. In this approach, the incident and scattered fields 

are each expressed in terms of a Weyl, or a plane wave, representation. The 

Rayleigh hypothesis assumes that the scattered field can be represented 

everywhere in terms of a superposition of plane waves traveling away from the 

surface. Although this assumption is generally not valid close to the surface, 

Jackson, Winebrenner, and Ishimaru (1988) have established that the Rayleigh- 

Rice method and another more rigorous form of perturbation theory based on the 

extinction theorem (Nieto-Vesperinas and Garcia, 1981) yield identical solutions 

for the special case of a Dirichlet boundary condition through at least fifth order. 

They conjecture that the two perturbation methods yield identical results for all 

orders and all boundary conditions, and that the Rayleigh hypothesis is irrelevant 

to perturbation theory. 

The conditions for validity of the perturbation solution depend on the root 

mean square (RMS) height h of the rough surface as well as the wave number 



k\ of the incident wave. It is generally accepted that for values of k\h much 

smaller than one, a first-order perturbation solution will usually, but not always, 

represent the scattered field with sufficient accuracy (Thorsos and Jackson, 

1989). For this reason, first-order perturbation theory is widely used for low 

frequency scattering from rough surfaces. Kuo (1964) has presented an 

expression for the differential cross section of a randomly rough interface 

separating two fluids based on first-order Rayleigh-Rice perturbation theory. This 

result has been frequently used to model the seafloor (Crowther, 1983; Jackson, 

Winebrenner, and Ishimaru, 1986; Stanic et a/., 1988, 1989; Mourad and 

Jackson, 1989, 1993; Jackson and Briggs, 1992). Dacol and Berman (1988), 

Kuperman and Schmidt (1986), Liu, Schmidt, and Kuperman (1993), and Essen 

(1994) have applied perturbation theory to a rough shear-supporting sea-floor. 

Comparisons of first-order perturbation approximations with exact numerical 

results for the 2-D problem (1-D surface) have been made by Chen and Fung 

(1988) and Thorsos and Jackson (1989) for surfaces with a Gaussian roughness 

spectrum. These comparisons indicate that perturbation theory can be valid for 

values of kxh as high as 025. Thorsos (1990) shows by comparisons with exact 

integral equation results for scattering from a 1-D rough fluid-fluid interface, that 

first-order perturbation theory accurately determines the differential cross section 

for scattering from a "Pierson-Moskowitz" roughness spectrum with k\h = 0.45. 

Using a truncated power-law roughness spectrum and sound-speed profile 

appropriate to the examples in this dissertation, Thorsos (1996a) shows by 

comparisons with exact integral equation results for scattering through a 1-D 

rough fluid-fluid interface, that first-order perturbation theory accurately 

determines the differential cross section over a wide range of scattering angles 

with k\h = 2. For scattering from a 1-D rough fluid-fluid interface, Thorsos shows 

that perturbation theory is valid for k\h= 035.   Since a goal of this work is to 
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provide a tractable analytical model for seafloor scattering that is particularly 

accurate for scattering through a rough interface, perturbation theory is used. 

1.4 Overview 

Representing the ocean as a homogenous fluid, and the sediment as a lossy 

homogenous fluid separated by a rough interface, an analytical model based on 

perturbation theory is used to create computer simulations of the penetration 

experiments conducted by Boyle and Chotiros (1992) and Chotiros (1995) — 

even though these authors suggest that their results can be explained in terms of 

slow wave propagation in sediment that is a Biot medium. The general formalism 

for scattering of a pulse through a rough interface as well as from a rough 

interface is derived in chapter 2 of this dissertation. First-order fluid-fluid 

perturbation theory results used to approximate the rough interface scattering 

problem in the simulations are derived in chapter 3. In chapter 4, the results of 

the corresponding simulations of the experiments are given and compared with 

the experimental results of Boyle and Chotiros (1992) and Chotiros (1995). The 

simulations use the first-order perturbation model developed in chapters 2 and 3 

to calculate the incoherent scattered intensity at a receiver in the sediment, and 

use the flat surface, zero-order field to calculate the coherent intensity. Using the 

zero-order field to represent the coherent intensity is valid for small amounts of 

surface roughness; however, the surface roughness used in the ocean 

experiment simulations is k\h = \. The second-order component of the coherent 

intensity is derived in chapter 5, and compared with the zero-order component of 

the coherent intensity for the sediment roughness parameters used in the ocean 

experiment simulation. 

The simulation model also neglects gradients in sound speed in the 

sediment. In the approach taken in chapter 5, the medium below the interface is 

constrained to be a fluid only down to the lowest point of the rough interface. 

Below this point, the sediment can be an arbitrary vertically stratified medium, 



characterized by its flat surface reflection coefficient. An application of the 

derivations in this chapter shows the effect of an upward refracting sound-speed 

gradient on the field scattered back into the water. This result is further 

generalized in chapter 6, where the sediment parameters below the lowest point 

on the rough interface are taken to be random. Although results showing the 

effect of gradients on scattering through a rough interface are not presented in 

chapter 6, this case can also be examined using the analytical approach in this 

chapter and chapter 5. Overviews of chapters 2 through 6 are presented in 

sections 1.4.1 through 1.4.5. 

1.4.1 Time-dependent mean square scattered field 

The total propagation time from source to receiver can be experimentally 

determined when the source signal is a pulse. For a known propagation path 

and known propagation speed, the distance of an object can be determined from 

the propagation time of a scattered pulse. Likewise, if the propagation speed is 

unknown, but the propagation path and locations of the source and receiver are 

known, the propagation speed can be determined from the pulse propagation 

time. In Boyle and Chotiros (1992), the propagation speed in the sediment is 

inferred from the arrival of signal energy. The main purpose of chapter 2 is to 

derive a near-field expression for the time-dependent mean square scattered 

field (average of square of field magnitude) due to a narrowband point source, 

including dispersion due to scattering and frequency dependence of wave speed. 

These results (Moe and Jackson 1996a, 1996b) are applied to the simulation of 

tank experiments (Boyle and Chotiros, 1992) and ocean experiments (Chotiros, 

1995); the results of these simulations are discussed in chapter 4. 

The time-dependent mean square scattered field can be expressed in terms 

of a two-dimensional integral over the two-frequency mutual coherence function, 

r((0!,co2) (see Ishimaru, 1978a, or Ishimaru etal., 1994a). Scattering of a pulse 



from the ocean surface is addressed in Ziomek (1982a, 1982b), where r(co1,co2) 

is presented in terms of a Kirchhoff representation. Ishimaru et al. (1994a) derive 

an analytical expression for r^.o^) for scattering from rough surfaces based 

on the Kirchhoff approximation, and Ishimaru et al. (1994b) use a second-order 

Kirchhoff approximation with shadowing corrections (Ishimaru and Chen, 1990, 

1991) to obtain an analytical expression for I^CDJ.G^) tnat includes 

backscattering enhancement effects. In chapter 2, we obtain a general 

expression for r(o31,co2) appropriate for rough interface scattering for a 

narrowband incident plane wave that does not depend on a particular scattering 

approximation. 

In order to obtain simple analytic expressions for the time-dependent mean 

square scattered field, Ishimaru et al. (1994a, 1994b) assume the scattering 

channel is a WSSUS (wide-sense stationary uncorrelated scattering) channel 

(Ishimaru, 1978a) — the two-frequency mutual coherence function, I^CDJ.G^) is 

only dependent on the frequency difference, CD^O^-Cö], and not on 

(coj +co2)/2. Because of frequency dependent attenuation in the sediment, we 

do not assume that r(co1,co2) is only dependent on a>d. However, in chapter 2, 

we assume that the incoherent T-matrix correlation function varies slowly over 

the source frequency range, and expand phase terms in a power series in 

frequency. Both the incoherent T-matrix correlation function approximation and 

the power series expansion require that the source signal be narrowband. This 

approach is used to derive a general analytical expression for the time- 

dependent mean square incoherent field scattered from and through a 2-D fluid- 

fluid rough interface due to a narrowband incident plane wave which is 

expressed in terms of the second moment of the T-matrix. At distances 

sufficiently far from the rough interface to neglect the evanescent waves, this 

expression for the time-dependent mean square incoherent field is given in terms 

of the differential cross section of the rough interface.  This derivation leads to 
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the usual sonar equation in the limit as the narrowband signal approaches the 

CW (continuous wave) case. For the special case of a CW incident plane wave, 

this result becomes essentially exact for distances greater than about a 

wavelength from the interface. This result is surprising because the differential 

cross section is defined as a far-field entity (Ishimaru, 1978b; Winebrenner and 

Ishimaru, 1986). The expression for the time-dependent mean square 

incoherent field due to an incident plane wave is used to obtain the expression 

for the scattered field due to a narrowband point source heuristically. A simple 

analytical expression is obtained for the case of a Gaussian shaped source 

pulse, also in terms of the differential cross section. 

First-order perturbation calculations (first-order perturbation results are 

derived in chapter 3) for the case of a baseband Gaussian shaped source pulse 

illustrate narrowband pulse dispersion effects of the incoherent field due to 

forward scattering into a lossy sediment. For the case of incidence below the 

critical grazing angle, first-order perturbation computations also show that the 

incoherent field scattered through a rough surface can be much greater than the 

zero-order field transmitted below the corresponding flat surface depending on 

loss and receiver depth. These computations for the mean square incoherent 

field penetrating the rough interface are compared to the flat-surface result, for 

both plane wave and point sources. 

1.4.2 First-order perturbation theory 

Derivations for the first-order perturbation expressions used for the numerical 

computations in chapter 2 and in the computer simulations (chapter 4) are 

presented in chapter 3. Rayleigh-Rice perturbation theory is derived in chapter 3 

for the simple case of a rough interface separating two homogenous fluids. The 

water above the rough interface is modeled as a homogenous lossless fluid, and 

the sediment below the interface is modeled as a homogenous lossy fluid. The 

results of chapter 3 are equivalent to those published by Kuo (1964) and Mourad 
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and Jackson (1989), except that the field scattered into the second medium is 

also considered here. Although these results are derived for the two 

homogenous fluid case, this form of the first-order scattered field solution is 

shown to be more general in chapter 5. First-order perturbation theory solutions 

for this case are also used in the simulations of sediment penetration 

experiments in chapter 4. As in Moe and Jackson (1994c), a truncated or filtered 

power law is used for the roughness spectrum. This filter is shown to be 

equivalent to subtracting a moving average (Papoulis, 1984) from a 2-D surface 

with power-law roughness spectrum. 

1.4.3 Computer simulations of recent experiments 

A recent tank experiment (Boyle and Chotiros, 1992) and a recent ocean 

experiment (Chotiros, 1995) reveal acoustic penetration from water into sandy 

sediments at grazing angles below the compressional critical angle in relation to 

the mean surface. In their tank experiment (Boyle and Chotiros, 1992), a 

receiver buried in sand measures the intensity of a signal transmitted in water 

above the sand. The propagation time of the transmitted pulse is the same as 

that of slow refracted wave. Since only a single receiver is used in Boyle and 

Chotiros' tank experiments, no information about direction of the propagating 

energy in the sediment is available. In an attempt to determine both direction 

and speed of the energy propagating in the sediment, a buried array of receivers 

was used in an ocean experiment (Chotiros, 1995) that measures the intensity at 

an array of receivers in the sediment due to an acoustical source in the water. 

They use a simple algorithm to determine the speed and direction of the intensity 

front propagating in the sediment. The results of their experiments seem to 

suggest propagation of energy at speeds slower than the compressional speed 

of the sediment, in a direction concurring with Snell's law. 

Assuming a small amount of roughness at the water-sediment interface, and 

using the 3-D scattering model developed in chapter 2 with the first-order 
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perturbation theory results for 2-D fluid-fluid rough interfaces derived in 

chapter 3, we reproduce the results of the tank experiments, indicating that the 

acoustic penetration of the surface may be due to scattering (diffraction) from low 

levels of roughness (Moe et al., 1995) rather than slow-wave refraction. 

Assuming roughness parameters appropriate to the ocean experiment reported 

by Chotiros (1995), our goal is to reproduce his results with the model developed 

in this dissertation. An explanation by Thorsos (1995) of how diffraction can 

mimic a slow wave is given in chapter 4, along with discussions of simulation 

results (Moe et al., 1995). Some of the results presented in this chapter have 

been presented in Moe etal. (1995) and again in Jackson etal. (1996). 

1.4.4 Perturbation theory results for a fluid-fluid rough interface including 

gradients 

Moe and Jackson (1994a) follow the approach used by Winebrenner, 

Farmer, and Joughin (1995) in their treatment of electromagnetic scattering from 

rough dielectric surfaces, and constrain the sediment below the rough interface, 

down to the lowest point on the interface, to be a fluid. However, the medium 

below the lowest point on the interface is only constrained to be vertically 

stratified (e.g., sound speed can vary with depth, but not horizontal position) and 

is represented by its reflection coefficient. The derivation in chapter 5 takes this 

approach, allowing the sediment below the lowest point on the surface to be 

viscoelastic, or porous, supporting shear or Biot slow waves as well as gradients 

in physical properties. A first-order solution for scattering from a rough interface 

is also given in Ivakin (1994). Multiple layered rough interfaces in layered 

sediments are also considered in his presentation. 

First-order perturbation theory is valid for obtaining the incoherent field 

scattered into the sediment for the roughness parameters used in the simulations 

(Thorsos, 1996a), but generally, there is a need for higher order results to test 

validity and to correct lower orders. Also, sediments tend to be stratified, so the 
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assumption of spatial homogeneity of the second medium is sometimes 

questionable. Using Rayleigh-Rice perturbation theory, Nth-order recursion 

equations are derived in chapter 5 that provide a starting point for evaluating the 

Nth-order scattered field in terms of lower orders. The validity of using the zero- 

order result to represent the coherent intensity is shown in chapter 5, where an 

expression for the second-order coherent field is derived. 

1.4.5 Formal average with random sediment parameters 

In the simulation discussed in chapter 4, the sediment is taken to be a 

homogenous fluid. The perturbation derivations in chapter 5 allow for the effects 

of sound-speed gradients on the field scattered through and from the rough 

water-sediment interface. Strong gradients and discontinuities in density and 

sound speed on scales of several cm are often observed in shallow water 

environments (Briggs, Richardson, and Young, 1985; Richardson, 1986; Stanic 

etal., 1988, 1989; Jackson and Briggs, 1992; Lyons, Anderson, and Dwan, 1994; 

Jackson et a/., 1996), and gradients on scales of hundreds of meters are 

observed in deep ocean environments (Hamilton, 1979, 1980). Although the 

approach taken in chapter 5 includes the effects of layering and gradients in 

seafloor parameters below the rough interface, it does not allow for the inherent 

randomness of these parameters, which will sometimes "wash out" rapid angular 

variations in scattering caused by constructive and destructive interference. 

Perfect vertical stratification leads to interference effects which may not always 

appear. By allowing stratification parameters to be random, these interference 

effects can be averaged to reveal more robust features of the differential cross 

section. Note that this approach does not model volume scattering, since there 

is no horizontal dependence of sediment properties. 

In chapter 6, the first-order expression for the differential cross section 

derived in chapters 2 and 5 is generalized to account for randomness in the 

medium below the lowest point on the rough interface by expressing the 
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differential cross section in terms of moments of the stochastic flat surface 

reflection coefficient. Upward refraction or reflection due to large sound-speed 

gradients in the sediment results in increased scattering strength over the non- 

gradient case. This scattering gain occurs for various sediment types over a 

wide range of bistatic angles, but has a relative maximum when the incident and 

scattered grazing angles are equal (backscattering enhancement). 

Backscattering enhancement is observed and predicted in scattering from rough 

interfaces (e.g., Maradudin and Mendez, 1993; Ishimaru et a/., 1994b), but it is 

not manifest in first-order perturbation theory calculations that involve only 

scattering from a single rough interface with no additional specular or refracted 

path. Hanson and Zavorotny (1995) show that backscattering enhancement is 

apparent using first-order perturbation theory in a two-scale model for 

electromagnetic scattering from a rough ocean surface. In Hanson and 

Zavorotny, the energy path consists of a single scattering event and specular 

reflection; in the sound-speed gradient problem addressed in chapter 6, the 

energy path consists of a single scattering event and refraction. 



CHAPTER 2 

Near field scattering through and from a 2-D fluid-fluid rough 

interface 

2.1 Introduction to chapter 2 

In this chapter, a general analytical expression for the time-dependent mean 

square scattered field (average of square of incoherent field magnitude) due to 

an incident narrowband plane wave is derived and expressed in terms of the 

second order T-matrix statistics, as well as in terms of the bistatic scattering 

cross section per unit area per unit solid angle (differential cross section) of the 

rough interface. This novel approach yields an analytical expression that is not 

dependent on a particular scattering solution technique. In addition, the effect of 

loss in the medium below the interface is included in the result. Even though the 

differential cross section is typically considered a far-field entity (Ishimaru, 

1978a), the form of this result in terms of the differential cross section is valid for 

distances on the order of a wavelength from the interface. This rigorously 

derived result is used to derive the scattered field due to a narrowband point 

source heuristically. This derivation leads to the usual sonar equation in the limit 

as the narrowband signal approaches the CW (continuous wave) case. The 

results of this chapter, along with the two-fluid perturbation theory results of 

chapter 3, are used in the simulation of sediment penetration experiments (Boyle 

and Chotiros, 1992; Chotiros, 1995), discussed in chapter 4. The results of this 

chapter are also presented in Moe and Jackson (1996a, 1996b). 

Figure 2.1 shows a 2-D slice of the 3-D ocean model. A time-dependent 

incident field in a homogenous fluid (water) above a rough water-sediment 

interface results in energy scattered from the interface back into the water and 
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through the rough interface into the sediment. The sediment is represented by a 

homogenous lossy fluid. The effect of depth-dependent sediment parameters on 

the time-dependent scattered field is not considered in this formalism. However, 

in the general perturbation theory derivation in chapter 5, as well as in the 

formally averaged sediment parameters derivation in chapter 6, the effect of 

sound-speed gradients on the intensity scattered back into the water for the CW 

case is discussed. General background for the scattering problem is given in the 

next section. 

The solution for a time-dependent scattered field requires obtaining the 

solution for the two-frequency mutual coherence function, rfcDj,^) (Ishimaru, 

1978a). A general expression for rfooj,^) for an incident plane wave is derived 

by assuming the T-matrix correlation function is a slowly varying function of 

frequency. Dispersion effects due to frequency-dependent phase speed are 

treated by expanding phase terms in a power series about the center frequency. 

The validity of this expansion and the frequency-independence assumption both 

depend on the source signal bandwidth. The validity of the frequency- 

independence assumption for the T-matrix correlation function is shown in 

chapter 3 to also depend on the distance from the interface. Using this 

approximate expression for r(G)i,cü2), we obtain a near-field expression for the 

time-dependent mean square incoherent field (average of incoherent field 

magnitude squared) for narrowband source signals in terms of the second 

moment of the T-matrix. Neglecting the evanescent field components in this 

result, we obtain a useful expression for the time-dependent mean square 

incoherent field in terms of the differential cross section. This result is 

remarkable in that a near field result is obtained in terms of what is generally 

considered to be a far field quantity. First-order perturbation results (derived in 

the following chapter) depict the contribution of the evanescent component to the 

incoherent scattered field for a CW plane wave source. The resulting profiles of 
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mean square incoherent field versus depth are compared with the flat-surface 

case, also illustrating the effect of roughness on the field penetrating a fluid-fluid 

interface. 

Using the narrowband time-dependent mean square incoherent field result 

for an incident plane wave, we heuristically obtain an analytical expression for 

the time-dependent mean square incoherent field due to a point source. First- 

order perturbation results illustrate dispersion of a pulse with Gaussian envelope 

due to forward scattering into a lossy sediment. These computations are carried 

out using a low-frequency cutoff for the bottom relief spectrum, and are 

compared to the flat-surface case. 

2.2 Scattering problem background 

The general scattering geometry is shown in Fig. 2.1. An arbitrary pressure 

field, \|/;(r), is incident on a 2-D rough interface separating the homogenous 

lossless fluid in medium 1 (water) from the lossy fluid in medium 2 (sediment). 

The zero-mean rough interface is defined by 

z = hf(R), (2.1) 

where R is the transverse component of the three-dimensional position vector r, 

and h is the root mean square (RMS) height of the rough interface. The total 

field, \|/i(r), above the rough interface is a sum of an arbitrary incident field, 

\|f,-(r), and the resulting scattered pressure field, \|/y (r): 

¥i(r) = ¥;(r) + V|//(r). (2.2) 

The boundary conditions on the interface consist of the continuity of pressure, 

Vi(r)|z=/(R) = V|/2(r)U/(R), (2-3) 

and the continuity of normal velocity, 
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^«■^iMUR)=£*-v*<rWv <2-4) 

where \j/2 is the pressure field in the sediment, h is the unit vector normal to the 

interface, pi is the density of the water, and p2 is the density of the sediment The 

scattered field, \|/y(r), in the region above the highest point on the interface and 

the incident field are expressed in terms of the following (Weyl) plane wave 

expansions (Devaney and Sherman, 1973): 

V/ (r) = J A^CK^A ^V'KR (2.5) 

and 

Vi(r) = J Ä^K)e-<*>WK)V'K-R, (2.6) 

where K is the two-dimensional transverse wave vector with magnitude K,k\ is 

the wave number in the medium above the interface, and 

$1(K) = ^l-K2/k?. <2J) 

The square root in Eq. (2.7) is chosen so that ß} is either positive or positive 

imaginary. For the CW (continuous wave) case, a factor of e"/öW is suppressed, 

but in general the above equations are the Fourier transforms of the time domain 

field, 

Vl(r) = Vl(r,(D) = jAv1(r,Oeto. (2-8) 

The field below the rough interface is expressed as a plane wave expansion of 

waves traveling in the negative z direction, 

V2(r) = y2_(r) a JJ2^^2_(K)e-^ß2(K)2e«R?      z < Q_ (2.9) 

where 

ß2(K) = Vl-*2/*22 (2-1°) 
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and 

k2J
l + id> (2.11) 

is the complex wave number in the lossy medium below the interface with 

frequency-independent loss parameter, 5. The speed ratio, v, is the ratio of the 

sound speed in the sediment, c2, to the sound speed in the water, q. Although 

the definition of k2 in Eq. (2.11) violates causality (Aki and Richards, 1980; 

Wingham, 1985), we show these noncausal effects are negligible and consistent 

with the approximations made in deriving the analytical result. The square root in 

Eq. (2.10) is chosen such that ß2 is in the first quadrant of the complex plane. 

The field scattered back into medium 1 can be expressed in terms of the incident 

field and the T-matrix, T\\. 

*¥f(K) = jd2K'Tn{K,K')Vi(K'). (2.12) 

Likewise, the downward component of the scattered field penetrating below the 

interface is expressed in terms of the r-matrix, T\2'- 

V2_(K) = jd2K'Tl2{K,K')Vi(K'). (2.13) 

The scattered field for the case of an incident plane wave is found by substituting 

^•(K) = 5(K-Ki) (2.14) 

into Eq. (2.12) and the result into Eq. (2.5), yielding 

\Vf(r) = jd2KTn(K,Kiy
kMK)zeiKR. (2.15) 

The scattered field penetrating the interface for the incident plane wave case is 

found in the same way from Eqs. (2.9), (2.13), and (2.14): 

y2_(r) = ld2KTl2{K,Kiy
ik2h{K)zeiKR. (2.16) 
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For convenience, let \|/(r) represent both \\if(r) and y2-(r)- Define 

\j/(r)s\|/(r)-(\|f(r)>, (2-17) 

where (y(r)) is the mean of the field averaged over the ensemble of rough 

interfaces. Similarly, define 

f(K,Kl-) = r(K,KI-)-(r(K,K,-)> (2-18) 

to be the incoherent r-matrix. Using the above definitions, \j/(r) is expressed as 

ür(r) = J d2Kf (K.KfJe-^^e**. (2-19) 

2.3 General result for incident plane wave 

The purpose of this section is to derive an expression for the time-dependent 

mean square incoherent field at the receiver position, r, due to a narrowband 

plane wave source. Although the following derivation considers the more general 

case of scattering through a rough interface, it also applies to scattering from a 

rough interface. 

2.3.1 Time domain received signal 

A narrowband source signal, s{t), with units of pressure and with Fourier 

transform 

S(<*)=]dts(t)ci(»t (2-20) 
—oo 

can be represented as 

^) = Re{«(r)e-^f}, (2-2D 
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where u(t) is the corresponding complex baseband input signal with Fourier 

transform £/(©), and G)C is the carrier frequency, or center frequency of the pulse 

(see, for example, Ishimaru, 1978a; Proakis, 1989). An incident plane wave 

pulse with direction denoted by the transverse unit vector, 6c,-, and incident 

grazing angle, 6,, is expressed in terms of its 2-D Fourier transform as 

¥f (K,a>) = S(co)5(K - K,-)e,"(BZ* sin9'/ci,     0) > 0, (2.22) 

where 

K^-cose,«,- (2.23) 

is the incident transverse wave vector, and zs is taken to be an arbitrary source 

height. Using Eqs. (2.9), (2.13), (2.17), (2.18), (2.20), (2.21), and (2.22) and 

chapter 5 of Ishimaru (1978a), we express the incoherent field \\rbb (r,t) at a 

position r = (R,z) below the interface as 

Vbb (r,0 = ^ JWt/KfeK + «c)e"i(°'', (2-24) 

where 

^12(co' + Q)c) = J^{f12(K,K„a)' + (Oc)e
l'sineÄ(co'+COc^i 

xe-ncß2 (K,co'+03c )z(co'+coc )/q eiKR 
(2.25) 

is the Fourier transfer of the impulse response of the incoherent field, generally 

known as the transfer function. The complex wave number ratio is given by 

K^2A = (l±i5) (2.26) 

and 
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CO  +00, uL1u^cos0A (227) 

We have explicitly shown the dependence of ß2(K) on frequency and K. 

2.3.2 Time-dependent mean square incoherent field 

The time-dependent mean square incoherent field at position r can be 

expressed as (Ishimaru 1978a, chapter 4) 

I2(r,t) = (hb(r,tf)- (Z28) 

Combining Eqs. (2.24) and (2.28) yields Ishimaru's (1978a) Eq. (5-17): 

h(rJ) = (U_ J J Jcö'{*ö''{tfK)tfV) e"to'r e*0"' 
xr(co' + coc,co" + coc)}, (2.29) 

where 

r(co' + coc,co" + coc) = (^12(ö)' + coc)^1*2(co" + (öc)) (2.30) 

is defined by Ishimaru (1978a) as the two-frequency mutual coherence function. 

Using the expression for #12 in Eq. (2.25), Eq. (2.30) is equivalent to 

r(co, + coc,co'/ + coc) 

= j^V'J^V(7i2(K',K;,(o' + coc)7i*2(K'',Kr,co'' + Q)c)) 
vJK'R-iK'Risin9Äco'/q  -isin0,-z,©"/q 

-/Kß2(K',co'+(Dc)z(co'+coc)/cle/(Kß2(K",(o"+(oc))%(co"+coc)/c11 ^ ^ 31 j 
xe 

where the transverse wave vectors for the incident field at the angular 

frequencies co" and co' are 
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CO^.+Cö"        ft  A ,    „.     COr+0)' 
K//= -c ■ - cose .&. and   Kj =   c '" cos 6 ,■&,-. (2.32) 

q q 

Define £12(K
/,K",K-,Kf,©c+©\(Dc+©'') (see, for example, Zipfel and DeSanto, 

1972; Voronovich, 1995) such that 

(f12(K',K;,a)' + o)c)f1*2(K",K;>" + a)c)) 

= ^12(K',K",K;,K<>C + co',coc + 0)")5(K" - K' + K< - Kf). (2.33) 

We refer to en as the incoherent T-matrix correlation function. In the above 

expression, the subscript is used to represent scattering into the sediment and 

the dependence of 7j2 on CD is included in the argument. Substituting Eq. (2.33) 

and 

KJ'-Kj = ^-^cos 6,0c; = K^ (2.34) 
c\ 

into Eq. (2.31), and changing the integration variable K' to 

K = K' + Kj/2, (2.35) 

yields 

r(ü)' + Cöc,Cö" + (öc) 

= J d2K {^12(K - Kj/2,K + Kd/2,KIK^G)C + co',0)c + co") 
x e-iKrf Re/ sin 8,-z, eo'/q e-i sin 0,-z, co'Vq 

-iidfo{K-Kd/2,a>c+<o')za>'/cl xe 
xe/(Kß2(K-Kd/2,0)c+co"))%(a3c+co")/c11 (2 

Equation (2.36) is now evaluated by making a few approximations. We assume 

Cxl is a slowly varying function of frequency, and for the case of a narrowband 

source signal, 
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en(K-Kd/2,K + Kd/2,K'i,K?,(öc+G)",G)c+<i)') 

= #2(K,K,KI-,KI-,G>c,a>c) 
EE<?12(K,K;,COC), (2.37) 

where the relation (Thorsos and Jackson, 1989; Berman, 1992) 

^12(K,Ki,coc)5(K-K'0-(7i2(K,K/,o)c)7i*2(K'',KJ,coc)) (2.38) 

is a special case of Eq. (2.33), and K, is evaluated at the center frequency: 

K^^kosG,«,. (2.39) 
c\ 

It is easy to show using first-order perturbation theory (see chapter 3) that 

the approximation in Eq. (2.37) is valid for £ + |K^|/2 < k{, or 

ÜTotj-Tt/jcose./q, (2-40) 

where 2nfd = |co" - co'| can be taken to be the source signal bandwidth. For larger 

K, the phase of the quantity on the left side of Eq. (2.37) cannot be considered 

independent of frequency. The first-order T-matrix representing scattering from 

the water into the sediment, Tl2, is derived in chapter 3 and given in Eqs. (3.41) 

and (3.45), and the first-order approximation of the incoherent T-matrix 

correlation function is given in Eq. (3.50). 

Define the vertical component of the wave vector in medium 2 as 

^{K^+Cö^^+a'^^ + ^yc^^iK-Kd^^ + co'). (2.41) 

Analytical expressions for dispersion in a waveguide can be found by expanding 

the propagation constant of the time-dependent field in a power series (for 

example, see Ishimaru, 1991, chap. 4). Similarly, with reference to Eq. (2.36), 

(co,/c1)Kß2 is expanded in a power series in co' and CD". For the case of a 

narrowband signal, 
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Bo {K, coc + co', coc + co") = fyc (K) + r% <*>' + T% ®" 

+- 
2 
 4-co z + 2-—-^: co co + -—-4 co z 

3co" 9co9co' 3co' 
(2.42) 

where the derivatives are evaluated at co'= co"= 0, and 

B2C(ff) = K*iß2(K,fl>c), (2-43) 

where the wave number, kx, in the above equation and all following equations is 

evaluated at the center frequency (fy = coc/q). Solving for the derivatives in Eq. 

(2.42) (see Appendix A), combining like powers of co' and co" in Eq. (2.36), and 

substituting the result into Eq. (2.29) yields 

W.JAW^^W 
x-i- f*o"C/>")e'to"<'-"-'2» eto"V/4 

x—fjco' £/(©') e 
OTT J 2% 

,^-ia'(t-tl-t2)e-(o'(»"-Pe-m'2P/4 
(2.44) 

where 

tx = Lcos6j +— sinG/ +z—■ : LRe 
c\k\ c\ Kß2(K,coc) 

(2.45) 

and 

h = _    -Z*/Cl 

ß2(K,coc)' 
(2.46) 

The physical significance of these parameters will be discussed later.  Note that 

t\ is real and tj is complex. The complex coefficient, 

P = {(2^/4^ • Kcoc cose,-/c? - (AT/q)2) - üm^B^X^Ö/M)2, 

-/Imfl/^^-Kcose^/qfJz 
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and the real coefficient, 

P = Im{(a; • Kcose^/^KVAi3 " «i • KcosG^c?)) - cos2 e./^cfe«.)}*, (2.48) 

can represent the contribution to pulse dispersion of the frequency-dependent 

phase term. This result is simplified by setting 

2itJ 

x-i- f Jco'f/(co')e-if0'ie-to'co"?e-/f0'2/>/4. (2-49) 

The above definition leads to a simple expression for the time-dependent mean 

square incoherent field in medium 2: 

,!(,,,),|Afc(K,Ki,»1)I
!'lfc(*ilt».)l'/(,-„). (2.50) 

In addition to being a function of the complex argument, t, g(t) is a function of 

K, the incident field direction, and fluid-sediment parameters. Note that 

U-h + h (Z51> 

is also a complex function of K.  For an arbitrarily small pulse bandwidth (CW), 

P, P, Im(f2) are arbitrarily small, and g(t)->u(t). 

The definition of K in Eq. (2.25) violates causality (see Aki and Richards, 

1980, chap 5, and Wingham, 1985). When a corrected version of Eq. (8) from 

Wingham (1985) is used, causality will not be violated if 

K-28ln|(coc + co')/coc|/(7w) is substituted for K in (A2). Using this substitution, 

and following the derivation in Appendix A, results in causal versions of the 

parameters P,P-,t\, and t2. Since 5«1 for ocean sediment, the difference 

between the causal representation of P,f-,t\, and t2 and Eqs. (2.45) - (2.48) is 

negligible. 
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While Eq. (2.50) involves an integral over the transverse wave vector, it can 

be converted to an integral over the scattering interface through the change of 

variable, 

R' = R-vr^K/^. (2.52) 

As shown in Fig. 2.2, R' is the location of a small scattering patch on the 

interface, and rd = \rd\ is the distance from this patch to the field point, r. 

rJ = >-Rf +z2. (2.53) 

We constrain K to the range K<kx/v in Eq. (2.52), that is, we neglect 

evanescent waves. This constraint is justified later when the contribution of 

evanescent waves on the mean square scattered incoherent field is illustrated 

using first-order perturbation computations for an incident plane wave. This 

constraint is also consistent with the frequency-independence assumption of the 

r-matrix correlation function. This assumption is invalid for arbitrarily large 

integration variable K in Eq. (2.50) (see Eq. 2.40). The Jacobian follows from 

Eq. (2.52). 

,2      2 . _2       .. .. ,_2 
(2.54) 

where xd and yd are the transverse coordinates of rd. The geometric 

significance of these definitions is apparent when one assumes that the loss 

parameter is small (6 «1). Then 

■*K\ *? 2 ,    2 
yd+z Wd _   *?    _2 

dR') "V2!* *dyd 
2 ,    2 xd+z 

—    2 4 ** 

k1K$2(K,G>c) = ^{Kklf-K2 

= fa sin62/v)(l + i8/sin2 62). (2-55) 

where 

sin92 = Vl-*2v2A2 = \z\/rd (2.56) 
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is the sine of the scattered grazing angle defined in Fig. 2.2. When terms of 

second order and higher in the loss parameter are dropped, the significance of tx 

and t2 becomes apparent, as 

tx = R' • a,- cosGi/q + zs sinG./q (2.57) 

is the time required for the incident plane wave front with direction 

(dfCosBj-.sine,-) to travel from the source reference point, (0,0,zs), to the 

scattering patch, (R',0), and 

Hh) = rd/c2 (2-58) 

is the time required for a spherical wave scattered from the patch at (R',0) to 

travel through the sediment to the field point (R,z), z<0. According to Eq. 

(2.55), the absorption exponent in medium 2 is given by 

Im(^Kß2(Ä:,a)c))|z| = ^N/sin62 = lm{k2)rd. (2.59) 

Substituting Eqs. (2.54) and (2.59) into Eq. (2.50) results in 

/2(r.0-JrfV4L^lft2(KfKI-,(Dc)e-
2fa^V(r-rrf). (2.60) 

qi2(&.&,>^2sin2(e2)^2(K,Kt.,a)c), (2.61) 

Substituting the following quantities, 

,in ' 

v: 

a = K/K,ar\dai=Ki/Ki (2.62) 

into Eq. (2.60) yields 

/2(r,0^^V^^e-2Im^)lr-r'lg2(r-^). (2.63) 
r-r' 
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The interpretation of a12 as a differential cross section will be justified later in this 

section. Since K = kl(R-R')/(vrd), t\, t2, g, and therefore P and P are 

functions of |R-R'|. Note that the CW result follows from Eq. (2.63) by simply 

setting g(t-td) = l. For this case of an arbitrarily narrowband source signal, the 

result in Eq. (2.50) for the mean square incoherent field is exact, and Eq. (2.63) 

approaches the exact result at distances at least a few wavelengths from the 

interface, where the evanescent waves contribute very little to the mean square 

incoherent field. 

Although the mean square incoherent field scattered into the water, I\(r,t), is 

similarly derived, the corresponding expression for I\(r,t) is most easily obtained 

as a special case of Eq. (2.63) by substituting medium 1 parameters for medium 

2 parameters. For example, k\ is substituted for k2, ßj for Kß2, etc. For this 

special case, Eq. (2.63) simplifies to 

/l(r,(),jAaiMlft2|(/.((i) (2.64) 
|r - r | 

where from Eq. (2.61) 

a11(a,d2) = /:1
2sin2(e2)|^11(K,KJ-,coc)|2. (2.65) 

In this case, 92 is also the scattered field grazing angle measured from the mean 

horizontal plane, \z\/rd =sin(e2). Again, the quantity C\\ is found from the relation 

(Eq. 2.38) 

^1i(K,Kl-,o)c)8(K-K'') = {f11(K,KI-,a)c)^1(K
w,KI-,a>c)). (2.66) 

There is no loss in this case: P= 0, and therefore, 

— f «to'l/M^V*0'2*»/4 2, (2.67) 
271 J *fi(0 = 
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Pn ^(2/B?lc){acKcosQiCos<b/cl -{K/Cl)
2}, (2.68) 

and 

2k(Ä>*ißi(A:,a>c). (2.69) 

Note that td is still given by Eq. (2.51), but the propagation time from the surface 

patch to the receiver/observation point above the interface is a real quantity. 

t2 = nf
ICl   ,. (2-70) 

As given in Voronovich (1994), the quantity a11(a,6tI-) in Eq. (2.65) is actually the 

differential cross section defined in Ishimaru (1978b). 

°"(^)-l4^F- (2J1) 

where \j/; is a plane-wave field incident on a surface patch of area M, and a,- is 

the unit vector in the direction of propagation of the incident field; \j)y is the 

scattered coherent field at a long distance |r-rf from the interface, in the 

direction denoted by the unit vector, a. Similarly, o12 is the differential cross 

section relating the mean square incident field to the mean square scattered 

incoherent field in medium 2 (the sediment), defined as 

,_ v     |r-rf (fe-l  /   2Im(*2)|r-r'| n 7ox 
qi2(ct,at-)='        '   \    2 'e     K2n     ', (2-72) 

AA       |v.| 

where \j/2_ is the incoherent field at the receiver in the sediment, a distance 

|r-r'| from the surface patch, and the unit vector a represents the transverse 

direction of the scattered field in the lower medium. The result given in Eq. (2.63) 

(or Eq. 2.64) is remarkable, as the differential cross section is a far-field entity. 

Close inspection of Eq. (2.63) shows that it is the sonar equation when u{t) is 
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substituted for g(t), in which the mean square scattered incoherent field is 

obtained by integrating the differential cross section over the interface with 

appropriate attenuation due to spreading and sediment loss. Equations (2.38) 

and (2.61) are a convenient way to find G\2 in theoretical developments; Eqs. 

(2.65) and (2.66) are a convenient way to find cu. 

2.3.3 Dispersion of a Gaussian input pulse 

Two types of pulse dispersion occur in this problem. One type is simply due 

to scattering and is treated by the integral in Eq. (2.63) over the scattering 

surface. The other type of dispersion is due to the frequency dependence of the 

propagation constant and is embodied in Eq. (2.49). This subsection focuses on 

the latter form of dispersion. Consider the case of a pulse with a peak pressure, 

Ppeak' and Gaussian envelope, 

.      u{t) = ppeak e-'Vf (2.73) 

Its Fourier transform is given by 

UW = Ppeakts^e-tW/4. (2-74) 

The parameter ts is chosen to vary the width of this input pulse, and therefore the 

pulse bandwidth and energy. Substituting Eq. (2.74) into Eq. (2.49) (see 

Appendix B) and integrating over co' and co" yields 

qq 
(2.75) 

- -     - r— q-q- 

where 

q'^Jtf^iP, (2-76) 

q'mtf-iP", (2-77) 
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and 

P" = P*-i(2P/qf, (2.78) 

Substituting Eqs. (2.76) and (2.77) into Eq. (2.75), and simplifying, yields an 

expression equivalent to Eq. (2.75): 

0 9 
8 W = /?peak ^exp 

tj-iP* -(2Pf 

-2 Re 

2 T.* tf-lp 
{(*-*?}' 

-(2py 
(2.79) 

As mentioned, Re(td) = Re(t2) + tl represents the propagation delay of the pulse. 

The imaginary part of t2 is a result of modeling the sediment as lossy. Since 

higher frequency signals are attenuated more than lower frequency signals, the 

lower frequency components of a narrowband signal will be less attenuated than 

the center frequency. The imaginary component of t2, along with P, and the 

imaginary component of P compensate for typically excessive loss in the CW 

loss term — the exponential term in Eq. (2.50) or Eq. (2.63). In addition, P is a 

frequency dispersion term that results in pulse broadening of the signal below the 

rough interface. Note that for the zero loss case, the parameter P = 0. The 

effect of loss and the parameters P and P is seen in Fig. 2.3 for g2{t-td) from 

Eq. (2.79) evaluated at 

82{t-td)    D/, = S2H2*).     t2i=Im(td) = Im(t2) 
t=Ke.{td) 

(2.80) 

and plotted as a function of scattered grazing angle. In Fig. 2.3, the pulse length 

parameter, ts, is equal to two periods of the center, or carrier, frequency for both 

cases shown. When the loss and dispersion are small, |g(-*2i)| approaches 

K(0) = 1. The smaller the scattered grazing angle, the greater the dispersion, and 

the smaller one would expect the pulse peak amplitude. However, the loss of the 

CW signal represented by the term e"
2Im^2^r"r'' is greater than the loss of the 
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narrowband signal, and the propagation distance becomes large for small 

scattered grazing angles (z is fixed). Even though there is dispersion, the loss 

for the narrowband case is significantly less than the CW case, and |g('-f2i)|> 1 • 

In the case of Fig. 2.3, with depth of 0.3 m, \g{-t2i)\ is greater than one for very 

small grazing angles since the propagation distance becomes very large. An 

example with zero loss always has P"= P* and t2{ = 0, and it is always true that 

|g(0)|<l- 

2.4 Applications and calculations 

Although the theoretical results in this dissertation are general and include 

scattering back into the water, the examples deal with scattering through a rough 

fluid-fluid interface (z< 0). Both plane-wave and point sources are considered, 

and the mean square scattered incoherent field is computed for both the flat 

surface case and the rough surface case. 

In the examples of the following section, the mean square scattered field in 

medium 2 is divided into coherent and incoherent parts. The incoherent 

component is treated using first-order perturbation theory, and the coherent 

component is treated in zeroth order — the flat surface solution is used. There is 

a slight inconsistency in this approach, in that the mean square incoherent field is 

proportional to the second power of kxh, while the square of the coherent field 

magnitude is only computed to an accuracy of zeroth order. As Rice (1951) has 

shown, the square of the coherent field magnitude to second order in k\h is 

obtained by subtracting the power carried by the mean square incoherent field. 

For small kxh, this correction is necessarily slight. In chapter 5, the second-order 

perturbation scattered field and second-order coherent field are derived. 
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2.4.1 Continuous plane wave source 

The contribution of the evanescent waves to the field scattering through a 

rough interface is shown in the following CW incident plane wave examples. In 

Fig. 2.4a, the first-order field penetrating through a rough interface, with 

roughness spectrum given in Eq. (3.66) and k{h = 0.2545, is calculated using Eqs. 

(3.70) in Eq. (2.50) and setting g(t-td) = IP&. The solid line in the plot 

represents the first-order result including evanescent waves, and the dashed line 

is the first-order result excluding evanescent waves, which is the result in Eq. 

(2.63). Since the grazing angle in this example is below critical, the zero-order 

field (dotted line) is evanescent. Near the interface, the mean square incoherent 

field decays with increasing depth at a rate comparable to the square of the 

magnitude of the zero-order field, but decays at a rate dictated by the sediment 

loss farther from the interface. Including the evanescent waves (K> fcj/v) does 

not make a significant difference at a distance greater than about a wavelength 

(7.5 cm) below the interface. The sediment parameters used in the plot in Fig. 

2.4b are the same as Fig. 2.4a, except the roughness parameters are chosen 

such that ^ = 1.0. Perturbation theory is shown valid for ^ = 1 by Thorsos 

(1996a) for scattering through a rough interface with truncated power-law 

roughness spectrum. In this case, including the evanescent waves of the integral 

(K>k1/v) does not make a significant difference at a distance greater than about 

12cm below the interface. 

These examples show that including the evanescent waves in the calculation 

of the first-order mean square incoherent field is only necessary close to the 

interface, and the contribution of evanescent waves to the mean square 

incoherent field is dependent on the interface roughness. It is important to note 

that in the region below the interface where the incoherent evanescent 

contribution is significant, the zero-order coherent contribution to the mean 

square field is typically much greater. 
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2.4.2 Mean square incoherent field due to a point source 

Starting with the plane wave result in Eq. (2.63) and expressing the 2-D 

integral in terms of a summation over the interface yields 

/2(r,()£iAZf%5)/(,.rin-r2„)e-2ImfeH. , (2.81) 
n r2n 

where 

r2n=\r-4 (2-82) 

is the distance from surface patch n at position x'n of size M to the observed 

field point, r, and 

**•&%■ (2-83) 

The propagation time from this surface patch to the receiver, Re(r2n), is also 

given by 

Mhn) = r2n/c2. (2.84) 

As the area of each surface patch, AA, approaches zero, the summation in Eq. 

(2.81) approaches the exact integral in Eq. (2.63). 

An expression for the first-order mean square field below the interface due to 

a point source follows heuristically from Eq. (2.81). Here, the surface patch (area 

AA) is chosen sufficiently small in relation to the distance, rln, from the point 

source to surface patch n, to ensure that the field incident on the interface is a 

plane wave. However, the size of this patch cannot be chosen arbitrarily small, 

and the distance between the source and interface is therefore constrained to be 

greater than some minimum value. Limitations of this approximation remain an 

issue. The scattered or penetrating mean square incoherent field is given by 
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/2(r,0sAA2—H-2 
LrQgl(t-tdn)t 

2'2" , (2.85) 
n rlnr2n 

where 

ry.     =  '1 2- 
m      Iß'      R 

(2.86) 

R5 is the transverse coordinate vector of the source, g(t) is the pressure at 1 m 

from the source, and rQ = 1 m. The total propagation time is given by the real part 

of 

td„ = rjiL+t2n, (2-87) 
c\ 

with 

rln=^\K-Rs\2+zl (2.88) 

When the approximation g(t) = u{t) is made, Eq. (2.85) is in the form of a 

convolution with reduced computation time. 

Using the expression for the first-order differential cross section given in Eq. 

(3.77), the approximate mean square incoherent field pulse in lossy sediment 

below a rough interface due to a Gaussian narrowband point source above the 

interface is found for two cases. In Fig. 2.5a, the time-dependent mean square 

incoherent field at a position below a rough interface in a lossy medium due to a 

point source is found using Eq. (2.79) for g2(t) in Eq. (2.85), and is compared to 

the result obtained setting P and f> to zero — g(t) = u(t). Although the resulting 

pulse shapes are close in magnitude, as well as peak arrival time, using g(t) 

does result in an incoherent pulse that has a smaller peak magnitude. In this 

example, the parameter ts in Eq. (2.73) is equal to two cycles of the center 

frequency of fc = 20 kHz. This frequency results in kxh = 0.25, which is within the 

region of accuracy for first-order perturbation theory (Thorsos and Jackson, 



37 

1989; Thorsos, 1990; Thorsos, 1996a). In Fig. 2.5b, the point source is farther 

from the interface, but the incident angle is the same. The incident grazing angle 

is defined here to be the angle between the mean surface and the line containing 

the source and receiver points. 

2.4.3 Zero-order calculations 

Setting 

vp2_(K) = T(K)^(K) (2.89) 

and 

vj/.(K) =     irou     c-/K-R,c^ßi(K)z, (2.90) 
1 27Efc|ß1(K) 

in Eq. (2.9) results in an expression for the field penetrating a flat fluid-fluid 

interface due to a point source at (Rs,zs) with unit pressure magnitude at lm 

from the source. The quantity U has unit magnitude and dimensions of pressure 

x time. The resulting integral simplifies to 

V2_(r)=/J^M!Äe^ißi(K)-^ß2(K))7oWi (291) 

where J0 is the Bessel function of order zero. For comparison purposes, the 

square of the time-dependent zero-order, or flat-surface coherent field 

magnitude, 

2 

Kr.t): 
0      *lßl(K) 

(2.92) 

is plotted in Fig. 2.6a along with the time-dependent first-order mean square 

incoherent field using the same parameters as in Fig 2.5a. In this example, the 

incident field is below the critical angle. Although the zero-order component can 
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be approximated from Eq. (2.91) using the method of stationary phase to solve 

the resulting integral (see for example Brekhovskikh, 1980; Ishimaru, 1991) when 

the incident field is above the critical angle, a numerical method is more suitable 

when the incident grazing angle is close to critical (Westwood, 1989). Figure 2.6a 

shows an "exact" solution of the square of the flat-surface transmitted coherent 

field magnitude, along with the first-order mean square incoherent field from Fig. 

2.5a. For this example, the zero-order coherent pulse arrives earlier and with 

greater magnitude than the first-order incoherent pulse. In Fig. 2.6b, the source 

is moved farther from the surface than the previous two examples. Even though 

the sediment parameters, receiver point, and incident angle (the angle between 

the mean surface and the line containing the source and receiver points) are 

unchanged from Fig. 2.6a, the incoherent first-order pulse is greater in magnitude 

than the zero-order pulse. As the source is moved further from the surface, the 

stationary phase path for the zero-order pulse is longer, and the zero-order pulse 

amplitude is more attenuated in the lossy sediment. Since Fig. 2.4 is a plane 

wave CW version of this same example, one would expect that the first-order 

mean square incoherent field would be greater than the zero-order field squared 

for the source point far from the rough interface. 

2.5 Summary 

A general analytic expression for the time-dependent narrowband mean 

square incoherent field scattered from and through a fluid-fluid rough interface is 

expressed in terms of the second moment of the T-matrix, and in terms of the 

differential cross section. This result is valid for narrowband source signals when 

the T-matrix correlation function is a slowly varying function of frequency over the 

source signal frequencies. Using the exact CW incident plane wave result, along 

with first-order perturbation theory, and sediment parameters characteristic of a 

sandy seafloor, we show that the evanescent component of the scattered 
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incoherent field in the sediment becomes insignificant about a wavelength from 

the surface, depending on the surface roughness. These examples show that 

the expression in terms of the differential cross section is valid except within one 

or two (depending on the roughness spectrum) wavelengths of the surface. This 

result is surprising since the differential cross section is a far field entity. 

The above formalism applied to the scattering through a rough surface 

shows the effect of roughness on penetration through a surface. When the 

grazing angle of a plane wave incident field is below the critical angle in relation 

to the mean surface, the zero-order component of the transmitted field is 

evanescent, and does not penetrate deeply into the seafloor. Higher order 

components contain downward traveling waves, which can increase the depth of 

penetration of sound relative to the flat-surface case (Moe and Jackson, 1994b; 

Moeefa/., 1995). 
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\|(.= incident field 

Medium 1 

\|/f= scattered field 

z=hf(R) 

f^= scattered field 

Figure 2.1 : Scattering problem geometry for rough interface separating a 

lossless fluid in medium 1 (z > A/(R)) from a lossy fluid in medium 2 (z < hf(R)). 

This diagram can be viewed as a slice through a two-dimensional surface. 
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iz 

Scattering Patch 

Figure 2.2 : Diagram describing transverse position variables. 
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2.0 

CM 
S    1.5-, 
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depth = 0.2 m 
depth = 0.3 m 

30 60 90 

scattered grazing angle (degrees) 

Figure 2.3 : Illustration of effect of dispersion on peak mean square incoherent 

field. Peak of g2(t), normalized with respect to max(«2(/)) as a function of 

grazing angle. 5 = 0.0163,/ = 20kHz, q = 1500m s, v = 1.13, ts=100\is. 
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Figure 2.4a : First-order and zero-order field strength as a function of depth. 

Field strength is given in dB with respect to incident pressure. Solid line 

includes evanescent component in first-order calculation, dashed line does not 

include evanescent component in first-order calculation. Incident angle is 20°. 

Critical angle is 27.75°, / = 20kHz, a = 0.1m, y=3, w2=2xl0_5m, p = 2, 

5 = 0.019, q = 1500 m/s, v = 1.13, kxh = 0.254. 
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Figure 2.4b : First-order and zero-order field strength as a function of depth. 

Field strength is given in dB with respect to incident pressure. Solid line 

includes evanescent component in first-order calculation, dashed line does not 

include evanescent component in first-order calculation. Incident angle is 20°. 

Critical angle is 27.75°, / = 20kHz, a=0.5m, y=3, w2 =6.2xl(T5m, p = 1.96, 

8 = 0.0163, cx = 1500 m/s, v = 1.126, kxh = 1.00. 
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First-order mean square incoherent field 

-4 x10 

CM 
CO 
Q. 

1 - 
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z = -0.2 m 

z = 0.528 m s 
R = 2m 

arrival time (ms) 

Figure 2.5a : Time-dependent mean square incoherent field at depth 0.2 m below 

the mean interface. Point source height above interface is 0.528 m; transverse 

distance between source and receiver: 2m. Source frequency = 20kHz, 

ts = \00ys. Solid line uses Eq. 2.85; dotted line is obtained from setting 

g(t) = u(t). Same sediment parameters and incident angle as Fig. 2.4a. 
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First-order mean square incoherent field 
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Figure 2.5b : Time-dependent mean square incoherent field at depth 0.2m below 

the mean interface. Point source height above interface is 5.5 m; transverse 

distance between source and receiver: 2m. Source frequency = 20kHz, 

/ = 100^. Solid line uses Eq. 2.85; dotted line is obtained from setting 

g(t) = u(t). Same sediment parameters and incident angle as Figs. 2.4a, 2.5a. 
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First-order mean square incoherent field and 
square of zero-order coherent field magnitude 

x10" 

6- 

2- 

zero-order 
first-order 

z = -0.2m 

z = 0.528 m s 
R = 2m 

2 

arrival time (ms) 

Figure 2.6a : Square of zero-order coherent field magnitude shown with dotted 

line, first-order mean square incoherent field shown with solid line. All 

parameters identical to Fig. 2.5a. 
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First-order mean square incoherent field and 
square of zero-order coherent field magnitude 
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Figure 2.6b : Square of zero-order coherent field magnitude shown with dotted 

line, first-order mean square incoherent field shown with solid line. All 

parameters identical to Fig. 2.5b. 



CHAPTER 3 

First-order perturbation solution for rough fluid-fluid interface 

3.1 Introduction to chapter 3 

In the numerical computations in chapter 2, and in the simulation in chapter 

4, the water above the seafloor is modeled as a homogenous fluid, and the 

sediment is modeled as a lossy homogenous fluid. The rough interface between 

the water and sediment is modeled as a 2-D random process with a truncated 

power-law roughness spectrum. The first-order fluid-fluid perturbation results 

used in chapters 2 and 4 are derived in this chapter. The power-law filter used in 

chapters 2 and 4 is also discussed in this chapter. 

Perturbation derivations are also given in chapter 5. However, the 

derivations in chapter 5 allow the sediment bulk properties below the lowest point 

on the interface to be arbitrarily stratified, and the approach allows evaluation of 

higher orders. The goal of this chapter is to obtain the zero-order coherent field 

and the first-order incoherent field for the fluid-fluid rough interface problem with 

homogenous half spaces. In addition to derivation of an expression for the field 

scattered back into the water as in Kuo (1964) and Mourad and Jackson (1989), 

a solution for the field scattered into the sediment is also derived. Although the 

results in this chapter are derived for the two homogenous fluid case, the form of 

the first-order scattered field solution derived in this chapter is shown to be more 

general in chapter 5. 

3.2 Scattering problem description 

A 2-D slice of the 3-D scattering problem is shown in Fig. 2.1. An arbitrary 

pressure field, \|/,(r), is incident on a 2-D rough interface, z = hf(R), separating 
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the homogenous lossless fluid in medium 1 (water) from a homogenous lossy 

fluid in medium 2 (sediment), resulting in the pressure field, \|//(r), scattered 

back into the water and the pressure field, \|/2-(r), scattered into the sediment. 

The mean of /(R) is taken to be zero for convenience and without loss of 

generality. Substituting the plane wave representations (Devaney and Sherman, 

1973) for the field above the interface (Eqs. 2.5 and 2.6) and the field below the 

interface (Eq. 2.9) into the equation for the continuity of pressure (Eq. 2.3) yields 

= Jj2CT2_(K)e-iK*^(K)/(R)e«.R_ (3.1} 

Substituting the plane wave representations for incident and scattered fields into 

the equation for continuity of normal velocity (Eq. 2.4) yields 

i-Jj^^1ß1(K)[-T,(K)e-^ß^W(R)
+^/(K)e^ß^W(R)]e*R 

A f ÄK • V(^(R))f'Pi(K)e-^(K)V(R)+ ^(KJe^»^' 
PlJ L 

= -i-fÄ^2ß2(K)^2_(K)e-^^(W(R)eiK.R 
P2J 

_J_ fÄK. v(^(R))^2_(K)e-^ß2(K)¥(R)e*.R 
P2J (3.2) 

e 

"   iK-R e 

where the unit vector normal to the interface in Eq. (2.4) is given by 

£-VA/(R) 
n = 

|£-W(R)|' 

and V represents the gradient over the transverse coordinates. 

(3.3) 

V/AÄ. (3.4) 
dx       dy 
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Since 8«1, the expressions in Eqs. 3.1 and 3.2 are valid (Landau and Lifshits, 

1987). 

The plane wave representation for the field scattered from the interface, 

given in Eq. (2.5), represents the scattered field above the highest point of the 

interface. Likewise, the plane wave representation for the field scattered through 

the interface, given in Eq. (2.9), represents the scattered field below the lowest 

point of the interface. Using Eqs. (2.5) and (2.9) to represent the field on the 

interface, z = hf(R), in Eqs. (3.1) and (3.2) invokes the Rayleigh hypothesis (e.g., 

Jackson, Winebrenner, and Ishimaru, 1988). 

The goal of this chapter is to find the scattered field in terms of the incident 

field. Since 

Vf(K) = jd2K'Tn{K,K')%{K'), (3.5) 

and 

*F2_(K) = jÄT12(K,K')^(K'), (3.6) 

the scattering problem is solved when the T-matrices Tn and Tn are found from 

Eqs (3.1) and (3.2). 

3.3   First-order and zero-order perturbation theory solution for scattered 

field 

The perturbation theory approach assumes that the product of the wave 

number in the water and the RMS surface height, k{h, is small. The fields and 

r-matrices are expanded in a power series in k\h, and the problem is solved one 

order at a time. In this chapter, we are only interested in the first-order solution 

used in chapters 2 and 4, and therefore keep only the zero-order terms and the 

first-order terms of the scattered fields, 
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¥(K) = ¥(0)(K) + (^^(1)(K), (3.7) 

and the zero-order and first-order T-matrix components, 

T(K,Ki) = r(0)(K,K,-) + (ifciÄ)r(1)(K,Kl-). (3-8) 

Likewise, exponential terms In Eqs. (3.1) and (3.2) are also expanded in the first 

two terms of a power series, 

eÄißi(K)¥(R)sl + ttlßl(K)V(R). (3.9) 

The Fourier transform of /(R) is given by 

F(K) = -lTfj2i?/(R)e-/KR. (3-10) 
(2rc)2J 

Therefore /(R) and V/(R) can be expressed as 

/(R) = JÄ'F(K')erR, (3-11) 

V/(R) = JÄ'/K'FCKOe*'11. (3-12) 

Using Eqs. (3.9) and (3.11) in Eq. (3.1) yields an approximate expression for the 

continuity of pressure boundary condition appropriate for first-order and zero- 

order fields: 

|A[4';(K) + 4'/(K)]ei'K-R 

+Jj2iT/(fc1/z)ß1(K)[T/(K)(-l) + ^/(K)]Jj2rF(K')eI'(K+K')R 

= jÄ4V(K)eiKR-jJ2/nt^ (3-13) 

Multiplying both sides of the above expression by e"'K R, and integrating this 

equation over R by means of the operator jd2R, yields 
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J A[^(K) + ^(K)]8(K - K") 
+jd2Ki(klh%(K)[-^i(K) + ^f(K)]jd2K,F(K')b{K + K'-K") 

= JÄ¥2_(K)5(K-K") 
-JAi(K*iÄ)ß2(K)*2-(K)Jd2rF(K/)5(K + K/-k"), (314) 

where 8(K) is the 2-D Dirac delta function. Integrating the above expression 

over K and over K' results in the following simplified expression for the 

continuity of pressure boundary condition appropriate for first-order and zero- 

order fields: 

^•(K'O + ^K") 
+]d2Ki(k1h%(K)[-%(K) + Vf(JK)]F(K" - K) 

= ^2-(K")-JA/(KfciÄ)ß2(K)^2-(K)F(K"-K) 

Following the above procedure, we now use Eqs. (3.9), (3.11), and (3.12) in Eq. 

(3.2) and obtain an approximate expression for the continuity of pressure 

boundary condition appropriate for first-order and zero-order fields: 

J Aß!(K)[-^(K) + ^(Kjje** 
+ijd2K(k1h)$2(Kp'i(K) + ¥/(K)]J d2K' F(K')e'(K+K')R 

-i\ Ä^/i^-CK) + ^/(K)]} d2K' ^^F(K V(K+K')R 

h 
= -- f^2^Kß2(K)^2-(K)e'KR 

PJ 

J d2K (fci%2ß2 (K)^2- (K) J d2K' F(K') e'
(K+K')R 

-i J Ä^A^CK)/ d2K' ^F(K')e'(K+K')R. 
P *i 

P 
i 

+— 
P 

Multiplying both sides of the above expression by e ,K"'R and integrating this 

equation over jd2R yields 
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(3.17) 

JÄßj (K)[-¥,(K) + Vf(K)]d(K" - K) 
+/JÄ (fc!ft)ß?(K)[^(K) + ¥/(K)]J A'F(K')5(K + K' - K") 

-ij A (M)[^-(K) + ^(K)] j A' ^F(K')5(K + K' - K") 

= -- f AKß2(K)T2_(K)5(K"-K) 

+ifÄ(/t1%
2ß^(K)T2_(K)fÄ'F(K')5(K + K'-K") 

p j 

-i[A(Ä(K)[Ä'^F(K')5(K + K'-K''). 
PJ ■ *i 

Integrating the above expression over K and K' results in the following 

simplified expression for the continuity of normal velocity boundary condition, 

appropriate for first-order and zero-order fields: 

+i\ d2K (^)ß? (K)[¥i (K) + Vf (K)]F(K" - K) 

-ij A (MjfrCK) + Vf(K)]K<K"2   
K)F(K" - K) 

l 

= -iKß2(K")vF2-(K") 
P 
JA(fc!%^(K)¥2_(K)F(K"-K) 
P 

/ +— 
P 

-i J A (M)y2-(K)K' (K2" K) *•(&" - K) 
PJ    w y *f 

3.3.1 Zero-order field (flat surface reflected and transmitted field) 

Substituting ^(K) for ¥2_(K) and ¥J0)(K) for ^(K) into Eqs (3.15) and 

(3.18), and keeping only zero-order terms, yields the zero-order equations for 

continuity of pressure and continuity of normal velocity: 
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^•(K
/,
) + 

X
F}

0)
(K") = ^

)
(K") (3.19) 

^•(K") - ^0)(K") = ^I^^AK") . (3.20) 
PPl(K ) 

Solving Eqs. (3.19) and (3.20) for vg} and ¥J0) yields 

^(K) = r(K)^-(K) (3.21) 

and 

^(K) = T(K)^(K), (3.22) 

where 

l-Kß2(K)/pßl(K) (323) 
1   ;    l + Kß2(K)/pß1(K) 

is the flat surface reflection coefficient, and 

T(K) = l + r(K) = -  (3.24) 1W l   }    l + Kß2(K)/pß1(K) 

is the flat surface transmission coefficient. The zero-order field is therefore the 

field transmitted and reflected from the flat zero-mean surface. Comparing Eqs. 

(3.21) and (3.22) with Eqs. (3.5) and (3.6) shows that the reflection coefficient 

can be expressed in terms of the zero-order r-matrix, Ijy', 

r(K) = r1
(
1
0)(K',K)8(K'-K), (3.25) 

and the transmission coefficient can be expressed in terms of the zero-order 

r-matrix, T$, 

T(K) = 7i(
2

0)(K',K)5(K' - K). (3.26) 
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3.3.2 First-order scattered field 

Substituting Eq. (3.7) into Eqs (3.15) and (3.18), and keeping only first-order 

terms (terms with a k\h factor), yields the first-order equations for continuity of 

pressure, 

^(K") + JAifrCld-^K) + 4>j0)(K) F(K"-K) 

= ^(K") - jd2KiK$2(K)v(°J(K)F(K" - K), 

and continuity of normal velocity, 

pßi(K")   (i)    „ 
Kß2(K")   / 
+^-^lAßi(K)h(K)+XF/0)(K) 

Kß2(K  )J L 
F(K"-K) 

ip 

Kß2(K' 
-(Ah(K) + #(K) K-(K"-K) F(K"-K) 

«l 

= -T^(K") 

 f AK^(K)^
0)

(K)F(K" - K) 
Kß2(K")J H2        2 

i        r ,9„^(0)^K-(K"-K) 

+- 

Kß2(K") 
jd2K^°J(Ky F(K"-K). 

Kl 

(3.27) 

(3.28) 

3.3.2.1 First-order field scattered from interface back into water 

Equations (3.27) and (3.28) are added together to eliminate v£?; Eqs 

(o) ,(o) (3.21), (3.22), and (3.24) are used to express ^ ' and VfJ in terms of ¥,-. 



57 

vr(i)(K4i+Ä^ 7 
ip 

Kß2(K") 

Kß2(K") 

I Äß2 (K)^(K)(1 + r(K))F(K" - K) 

*p K-(K"-K) 

'+- 

Kß2(K") 
/ 

Kß2(K") 
/ 

Kß2(K") 

F(K"-K) ■Jrf2Ä"^(K)(i+r(K)) 

JÄK2ßi(K)^-(K)(l + r(K))F(K" - K) 

JÄ^(K)(l + r(K)) 

(3.29) 

K-(K"-K) 
F(K"-K) 

'ÄißjCK^CKXl - r(K))F(K" - K). 
Äncß2(K)^(K)(l + T(K))F(K" - K). 

Noting Eq. (3.5), and multiplying the above equation by Kß2(K")/p, we obtain an 

equivalent expression in terms of the first-order T-matrix: 

ßl(K") 
pßiCK'Oj111        M n      P 

-/(l + r(K))fß2(K)-i-K2ßi(K)+Kß2(K//)Kß2(K) 
I P P 

+i(i+r(K)) 
K-(K"-K)(.    1N 

1-- 
v    Py 

►F(K"-K). 

For convenience, define H\\ such that 

r/J^K^K) = Hi !(K",K)F(K" - K). 

Substituting 

(3.30) 

(3.31) 

K-(K"-K)_K-K" 
y—l + ßf(K), (3.32) 

ß2(K)-(Kß2(K))2=^—^^ ■ = 1-K' (3.33) 
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into Eq. (3.30), and using Eq. (3.31), yields 

P,(K-{l + ^k1(K-.K).i(l-IXK))^&0Q 
PPllK    )) P V 

,(l + r(K)/Kß2(K>ß2(K) + 1_l + l(l_K2) 
V \ P P    PV        ; 

+/(i+r(K)) 
K K ■*\ 

h    ) 

(3.34) 

With the use of Eq. (3.24), the left side of Eq. (3.34) is expressed in terms of one 

plus the reflection coefficient: 

Hn{K»,K) = -(i+r(K"))(i - r(K))^|® 

(i + r(K-))(i + r(K))rKß2(K>ß2(K) n   i ( 1/   ^ 
tfi(K") P P    Pl ' *'ßl(K") 

(i + r(K-))(i+r(K)) 
2/ßi(K") VP     J 

K K' 
fcr ; 

(3.35) 

The first factor on the right side of the above equation and the first two factors in 

the second term are converted from one plus the reflection coefficient to one 

minus the reflection coefficient through the following equality, obtained from Eq. 

(3.23): 

l + r(K) pßi(K) 
i-r(K)   Kß2(K)' 

The expression for Hu follows from Eq. (3.35): 

Hl l(K"'K)=^ir) {a(K'',K)(1+r(K'/))(1+r(K)) 

+KK",K)(i-r(K"))(i-r(K))}, 

(3.36) 

(3.37) 
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where 

a(K",K) = l- — + 
P IP   ) 

K"  K 
±^± (3.38) 

and 

&(K",K) = ß1(K")ßi(K)(p-l). (3.39) 

The first-order incoherent field is given by k\h multiplied by the 2-D inverse 

Fourier transform of Eq. (3.5), where 1$ is given by Eq. (3.31) and Hn is given 

by Eq. (3.37). 

3.3.2.2 First-order field scattered into sediment 

The field scattered into the sediment follows from rearranging the terms in 

Eq. (3.27), and expressing the reflected and transmitted fields in terms of the 

incident field by using Eqs. (3.21) and (3.22), 

4f_}(K") = ^}1}(K") - jd2Ki^{K)(l - T(K))F(K" - K) 

+J Äncß2(K)(l + T(K))F(K" - K). (3.40) 

As in Eq. (3.31), define Hn in terms of the first-order T-matrix, 1$, and 2-D 

Fourier transform of the interface profile function F, 

T${K",K) = tf12(K",K)F(K"-K), (3.41) 

where 

flg(K",K) = //ff (K",K) - ißiCKXl - r(K)) + ncß2(K)(l + r(K)) (3.42) 

follows from Eqs. (3.40) and (3.41). Substituting Eq. (3.37) for Hu into the 

above equation yields 
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^)(K"'K) = ^ßiir) {a(K''K)(l+r(K"))(1+r(K)) 
+KK",K)(i-r(K"))(i-r(K))} 
-ißi (K)(l - r(K)) + ncß2(K)(l + r(K)). (3.43) 

The following identity is shown by using Eq. (3.36): 

2/ß1(K")[-;ßi(K)(i - r(K))+/Kß2(K)(i+r(K))] 
+KK",K)(i-r(K"))(i-r(K)) 
= -ß2 (K)ß, (K")(p -1)(1 - r(K))(l + r(K")). (3.44) 

Substituting Eq. (3.44) into Eq. (3.43) yields 

#12(K",K) = -^r[a(K",K)(l + r(K)) - b(K",K)(l - r(K))], (3.45) 

where 7 is the flat surface transmission coefficient given in Eq. (3.24). The first- 

order approximation to the r-matrix for forward scattering into the sediment is 

obtained from Eqs. (3.6), (3.41), and (3.45). 

3.4 Time-dependent mean square incoherent field approximation 

Since the first-order T-matrices are proportional to the 2-D Fourier transform 

of the zero-mean interface, their expected value over the rough interface 

ensemble is zero. In addition, the zero-order component of each r-matrix is only 

dependent on the zeroth moment of the rough interface ensemble. Therefore 

f12(K,K,>(*1Ä)^)(K,K|.) = (M)ffl2(K,KI.)F(K-KI.) (3.46) 

and 

ThfrK,.) = (^^(K, K,-) = (^»„(K.K.O^K - Kf) (3.47) 

are the first-order approximations for the incoherent T-matrices given in Eq. 

(2.18). Using the first-order approximation to the r-matrix in Eq. (3.41), 
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(^(^(K'.KJ.CDO^^.Kr.coj)) 

= (^)2H12(^K;,a)1K2(K'',Kr,co2)(F1(K'-K;)F1(K''-K;0) (3.48) 

is the first-order approximation to the incoherent T-matrix correlation function, 

given in Eq. (2.33), for forward scattering through a fluid-fluid interface. The 

dependence on angular frequency is shown explicitly in the T-matrix and H\2- 

Using the identity 

h2(F(K"-Ki)F{K'-Ki)) = W(K'-Ki)S{K"-K') (3.49) 

together with Eq. (2.33) and Eq. (3.48) yields 

£12(K',K",K;,Kf,coc +CD',G>C +co") 

= itfH12(^K;,coc+coOH;2(K^Kr,Q)c+co'')w(K-(K< + K;V2),        (3.50) 

where Wis the roughness spectrum. For the case of a wide sense stationary 

process (WSS), 

W(K) = —U- [d2RC(R)e~iKR, (3.51) 

where 

C(R^) = (/(R + Rj)/(R)> (3-52) 

is the surface autocorrelation function. For this special case, the identity in Eq. 

(3.49) is simply derived by making the substitutions 

R,, = R! - R2, Ra = (R! + R2)/2 (3.53) 

in 

(F(K1)F(K2)) = -^JJ2/?1J^2(/(R1)/(R2))/
K2R2+Kl-Rl) (3.54) 

(2ic) 
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and using Eqs. (3.51) and (3.52). 

3.4.1 Seafloor roughness spectrum 

The two dimensional Gaussian random process /(R) describing the seafloor 

surface is assumed to be an isotropic power-law (Fox and Hayes, 1985; Goff, 

and Jordan, 1989; Briggs, 1989) with a roughness spectrum 

W(K) = ^.. (3-55) 

In the notation of Mourad and Jackson (1989, 1993), the spectral strength and 

spectral exponent are represented by the parameters w2 and y, respectively. For 

2<Y<4, this surface random process is an example of a fractal (Mandelbrot, 

1983), and the perturbation theory requirement that kxh be small is not satisfied. 

In fact, the RMS height is infinite, and the random process is not WSS. However, 

since this random process is stationary in increments, Eq. (3.49) is valid 

(Ishimaru, 1978b), and the large scale roughness can be removed by a filtering 

operation (Jackson, Winebrenner, Ishimaru, 1986). 

The power-law spectrum is an estimate of the roughness spectrum over all 

spatial frequencies. The seafloor roughness spectrum on scales over one meter 

is poorly known, and therefore assuming a roughness spectrum that is a power- 

law over all spatial frequencies (Eq. 3.55) may not be valid. Large scale 

components of the roughness spectrum are set by the spatial scale of the 

experiment. In the case of a tank experiment, moderate to large scale roughness 

will not be present. Removal of the large scale roughness in Eq. (3.55) is 

therefore appropriate. 

Let /(R) be the surface with the power-law roughness spectrum given in Eq. 

(3.55), with 2-D Fourier transform, F(K). A filtered surface, /(R), is obtained by 

subtracting a moving average (Papoulis, 1984) of /(R) from itself: 
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27t     a 

/(R) = /(R)—\ U'frf/r/(R-R'). (3.56) 
™   0     o 

Equation (3.56) can be expressed as a 2-D convolution of /(R) with a filter s(R), 

/(R)=    *    j/(R-R>(R'), (3-57) 
(2K)

1
 
J 

or 

./(R) = /(R)®j(R), (3.58) 

where s(R) is of the form 

s(R) = (27c)26(R)-m(R), (3.59) 

and 

mi(R) = (2rt)2H£(*M (3.60) 
na 

is a moving average filter. The circ function is defined as (Goodman, 1968) 

circ(/?) = P      U
R'\ (3.61) 

[0   otherwise 

Filtering the original power-law random process with roughness spectrum given 

in Eq. (3.57) with the filter s(R) corresponds to subtracting from each point on the 

random surface, /(R), an average of the surface over a radius a about each 

point. The filter's Fourier transform follows from Eq. (3.59), 

S(K) = 1-M(K) (3.62) 

where 

A/(K) = 2£rt*2>. (3.63) 
Ka 



64 

The resulting roughness spectrum obtained by filtering the surface with the 

power-law roughness spectrum given in Eq. (3.55) using the filter in Eqs. (3.62) 

and (3.63) results in the 2-D surface random process given by 

W(K) = ^.f1_M^)f (3.64) 
Ky V Ka    ) 

Instead of subtracting a uniformly averaged area around each surface point 

from the surface, subtracting a Gaussian weighted average around each surface 

point from the surface results in a roughness spectrum without the Bessel 

function oscillations. In this case 

m2(R) = (27t)2e     .—    , (3-65) 

and the filtered, or truncated, roughness spectrum is given by 

W(K) = -p-(l-e-<A:fl)2/2)2, (3-66) 

with RMS height (see Appendix C) 

h= L]w(K)KdK = j2KW2f2~
2 H2-y/2)[22-?/2 -1]. (3.67) 

Here, r refers to the gamma function — not the reflection coefficient, and not the 

two-frequency mutual coherence function. 

The roughness spectrum given in Eq. (3.66) is the roughness spectrum used 

in this dissertation. The choice of the filter parameter, a, is discussed for each 

numerical calculation. The larger this parameter is, the closer the filtered 

roughness spectrum is to the original power-law (Eq. 3.55). Subtracting a 

moving average of the power-law random process from itself results in removal 

of low frequency components of the original power-law roughness spectrum. 
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Plots of this roughness spectrum as a function of K for two different values of the 

filter parameter, a, are given in Fig. (3.1). 

3.4.2 Incoherent r-matrix correlation function approximation in Eq. (2.37) 

In order to evaluate the approximation in Eq. (2.37) using first-order 

perturbation theory, K-K^/2 is substituted for K', and K + K^/2 is substituted 

for K" in Eq. (3.50) 

^12(K-Krf/2,K + Kd/2,K;,K;>c+(D/,Q)c+ö)'/) 

= k?H12{K-Kd/2,Kl,<oc +(o')H*2(K + Kd/2,Kf,(Oc +co") 

xW(K-(K'i+Kf)/2), (3.68) 

where Kd is given in Eq. (2.34) and is repeated here for convenience. 

 \? "     \r > 

. // coc+co .     coc + co 
-COSÖ/d; COS0 j&j 

CD"-CO ■cose/d/, (3.69) 

where 6,- is the incident grazing angle and a,- is the unit transverse direction 

vector of the incident field. From Eq. (2.37), &n in Eq. (3.68) is approximated by 

^12(K-K<//2,K + K<//2,K;,Kf,(Dc+(D/,a)c + Q)'') 

S<?12(K,K;,COC) 

= *2|tf12(K,K;,coc)|V(K-K;), (3.70) 

where 

Kf = (a>c/c1 JcosGfa,-. (3.71) 
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The roughness spectrum, w(K-(K't + Kf}/2), is not a function of 

CD^ = CO"-(ö/. 

For a narrowband signal, it is a slowly varying function of 

©'+to" 
(üa=(üc+—-—, 

(3.72) 

(3.73) 

except for K= kh However, scattered energy with K>k2 is evanescent. From 

inspection of Eqs. (3.38), (3.39), and (3.45), the quantity 

Hl2{K-Kd/2,Kl<oc + (o')Hl2{K + Kdfi>K>c+«>") depends on aa only in the 

last term of Eq. (3.38). In addition, the dependency on co^ is primarily in the 

factor 7/ß outside the square brackets in Eq. (3.45). 

7(K + K„/2) 2p  (374) 

ft(K + Krf/2)    Kß2(K + KJ/2) + pß1(K + Kd/2) 

Although the magnitude of Eq. (3.68) varies slowly with frequency, the phase 

becomes very dependent on a)d when either |K + K^/2| or |K-Kd/2| is greater 

than both K^ and kx. For a narrowband signal, this situation occurs for 

evanescent scattered waves and possibly scattered waves at shallow grazing 

angles. However, as shown in chapter 2, including the evanescent scattered 

field is only necessary within a wavelength or two of the interface, depending on 

the roughness. 

Figure 3.2a is a plot of the magnitude of Eq. (3.68) (excluding the roughness 

spectrum, W) and Fig. 3.2b is a plot of its phase as a function of K = |K| and 

fd=aW(2;u). (3-75) 

The roughness spectrum is not included in these plots, because it is not a 

function of fd. The direction of K is the same as the incident transverse wave 

vector in this example.   The center frequency is 20 kHz, and the sediment 
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parameters are the same as Fig 2.4b. Figure 3.2a shows that the magnitude 

becomes slightly dependent on id only for shallow grazing angles. Figure 3.2b 

shows that the phase of Eq. (3.68) becomes dependent on large fd only for the 

evanescent scattered field and for scattering at shallow grazing angles — even 

for a relatively wideband signal. The simplifying approximation for 0 in Eq. 

(2.37) is valid for all values of K, except those values corresponding to 

evanescent waves and those corresponding to scattering at small grazing 

angles. Because of loss in the sediment, energy scattered at these small grazing 

angles is insignificant compared to energy scattered at larger grazing angles. 

Therefore, Eq. (3.68) can be considered to be independent of fy. 

3.4.3 First-order time-dependent mean square incoherent field 

Substituting ^12(K,Kt,coc) in Eq. (3.70) into Eq. (2.50) yields the first-order 

expression for the time-dependent mean square incoherent field scattered 

through a rough fluid-fluid interface due to an incident plane wave: 

/2(r,OSJÄifc1
2|Ä12(K,K1,a)c)|2W(K-K0e"'ta^(^»V(r-rrf).   (3.76) 

The differential cross section from first-order perturbation theory is found by 

substituting Eq. (3.70) into Eq. (2.61). 

^in2' 
v2 o12(a,al-)s^

Sin2(Q2)|gi2(K,Kl-,(Dc)|2iy(K-Kl-). (3.77) 

Although the differential cross section in this approximation is actually second 

order in kxh (Thorsos and Jackson, 1989), we refer to it as the first-order 

differential cross section, and will refer to the corresponding mean square 

incoherent field in Eq. (3.76) (fyfat)) as the first-order mean square incoherent 

field. Another first-order expression for 72(r,f) for an incident plane wave that 

neglects evanescent waves is obtained using Eq. (3.77) in Eq. (2.63). The effect 
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of neglecting evanescent waves is discussed in chapter 2. The first-order 

differential cross section is also substituted into Eq. (2.85) to obtain the first-order 

expression for hifS) due to an incident field from a point source. This resulting 

expression is used in the simulations of experiments that are discussed in 

chapter 4. 

3.5 Summary 

First-order perturbation solutions of the scattered field from and through a 

rough interface between two homogenous fluids are derived in this chapter. 

These results are used to show the validity of approximating the incoherent 

r-matrix correlation function as only dependent on the center frequency of a 

narrowband source signal (Eq. 2.37). The results derived in this chapter are 

primarily used in chapters 2 and 4. The Gaussian weighted filtered power law 

(Eq. 3.66) is used for all numerical computations in this dissertation. The filter 

parameter, a, is chosen to create a spectrum appropriate for each particular 

example. For example, in the simulation of scattering into the sediment in a tank, 

discussed in chapter 4, a small value is used for this filter parameter. In ocean 

experiments, the value of this parameter is considerably larger. 
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Figure 3.1 : Filtered power-law example with w2 = 6.2 x 10    , y = 3.0 
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Figure 3.2a : Magnitude of Eq. (3.68), incoherent /"-matrix correlation function (divided 

by the roughness spectrum), incident angle = 20°, fc = 20kHz, p = 1.9608, 8 = 0.0163, 

v= 1.12565, q =1536 m/s. 
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Figure 3.2b : Phase of Eq. (3.68), incoherent T-matrix correlation function (divided by 

the roughness spectrum), same parameters as Figure 3.2a. 



CHAPTER 4 

The effect of roughness on acoustic penetration of the seafloor as 

given by a fluid-fluid perturbation model and comparison with recent 

sediment penetration experiments 

4.1 Introduction to chapter 4 

Simulation results of a sediment penetration tank experiment by Boyle and 

Chotiros (1992) and an ocean penetration experiment by Chotiros (1995) are 

presented in this chapter. For the incoherent intensity calculations, the first-order 

perturbation theory results derived in chapter 3 are used in Eq. (2.85); the 

incoherent intensity in the sediment is obtained by dividing Eq. (2.85) by the 

characteristic impedance of the sediment (p2c2). In the ocean experiment 

simulation, the time domain zero-order coherent intensity is calculated using Eq. 

(2.92) (divided by p2c2). Note that the incoherent intensity calculated using first- 

order perturbation theory is proportional to the second power of kxh, and the 

coherent intensity is computed to an accuracy of only zero order. The 

contribution of the second-order coherent intensity contribution is derived and 

demonstrated in chapter 5. The effect of sound speed gradients in the vertical 

direction on the field scattered back into the water is considered in chapters 5 

and 6. Although the influence of sound speed gradients on the field scattered 

through the interface is beyond the scope of this dissertation, possible effects are 

mentioned in chapter 6. 

4.2 Background 

Figure 4.1 depicts the scattering model derived in chapter 2. The source 

pulse originates at a point in the water (medium 1) and propagates to the «th 
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surface patch, its mean square incoherent field magnitude is multiplied by the 

differential cross section of the patch, and then it propagates to the receiver in 

the sediment (medium 2). In addition to spherical spreading from the source to 

the patch, and from the patch to the receiver, there is a sediment loss term. The 

contributions of all patches are summed up and divided by the characteristic 

impedance of the sediment, yielding the total incoherent intensity below the 

rough interface. Figure 4.1 includes the term g(t) derived in chapter 2. We 

argue later that the baseband source signal, u(t), can be substituted for g(t) for 

both simulations. Substituting u{t) for g(t) in Eq. (2.85) yields*^- 

/2(r,0 = AA2>o2—Kfj—l\u(t-tdn)\ e       K2'^ , (4.1) 
n rlnr2n 

where t^ is the sum of the propagation time from the source to the «th patch 

and the propagation time from the «th patch to the receiver. Note that the 

incoherent intensity is given by h^r^l{92ci)^ where P2C2 's tne characteristic 

impedance of medium 2. The first-order perturbation expression for scattering 

into the sediment, a„, is derived in chapter 3 and given in Eq. (3.77). The exact 

expression for the time domain coherent intensity is given by Eq. (2.92) divided 

by the characteristic impedance of medium 2 (also see Fig. 4.1). Since we use 

the zero-order field to represent the coherent field, the transmission coefficient, 7 

is substituted for £12 in this figure — which then becomes Eq. (2.92). Following 

the definition of the coherent reflection coefficient in Thorsos (1990), £12 is 

defined in chapter 5 to be the coherent transmission coefficient. The power 

spectrum used for both simulations is that of a filtered power law (Eq. 3.66). 
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4.3 Tank experiment Simulation 

This simulation determines the incoherent field scattered into the sand, 

assuming a small amount of roughness at the interface. A diagram of the tank 

experiment is shown in Fig 4.2. 

4.3.1 Simulation parameters 

A source in water just under one half meter above sand transmits a signal 

with Gaussian envelope and 60 kHz carrier frequency. The baseband source 

signal used in the simulation is 

2/2 

u{t) = constant x e~r 'ts , (4-2) 

with rs = 3a3jxs. This signal approximates the time resolution achieved in the 

tank experiment. The water sound speed, q = 1489m/s, and signal center 

frequency of 60 kHz correspond to a wavelength of A,= 2.5cm in the water. In 

order to agree with the experiment described in Boyle and Chotiros (1992), the 

value for constant is chosen such that the field lm from the source is 191 uPa. 

The sound speed in sand is given by Boyle and Chotiros (1992) to be 

c2 = 1675m/s. The loss parameter in the sand is not given, and is assumed to be 

a value appropriate for sand, 8 = 0.015, or 0.49dB/m/kHz. No roughness 

parameters for the experiment characterizing the rough interface for the sand are 

given. We assume only a small amount of roughness, and set the filter 

parameter in Eq. (3.66) to a = 0.01m. The spectral exponent and spectral 

strength in Eq. (3.66) are chosen to be y = 3 and w2 =2.17xl0"5, respectively, 

resulting in an RMS height (Eq. 3.67) of h = lmm and kxh=025. This roughness 

spectrum is well within the range of validity for first-order perturbation theory for 

scattering through a rough interface (Thorsos, 1996a).  Of the three roughness 
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parameters (a,y,w2), y = 3 was chosen arbitrarily, but it is consistent with 

observed seafloor roughness spectra. Values for w2 and a in Eq. (3.66) are 

chosen to provide only a small amount of roughness while yielding scattering 

intensities close to those obtained by Boyle and Chotiros. The roughness 

spectrum is shown in Fig. 4.3. 

4.3.2 Simulation results 

As mentioned, the baseband source signal u{t) is substituted for g(t) in Eq. 

(2.85) for the simulations (Eq. 4.1). The justification for using this simpler model 

in the tank experiment simulation is shown in Figs 4.4a and 4.4b, where the time- 

dependent mean square incoherent fields using u(t) and g(t) are compared for 

two receiver depths, with 2 m transverse distance between source and receiver. 

At the lower depth, the two cases are almost indistinguishable; at the depth of 

0.08cm, the differences become more noticeable, but are still negligible. 

The incoherent intensity (first-order) as a function of time and horizontal 

distance between source and receiver is shown in Figs 4.5a, 4.5b, and 4.5c for 

receiver depths of 0.05 m, 0,33 m, and 0.614 m. Since the baseband source 

signal is Gaussian, the arrival time is the peak of the intensity pulse. The source 

level is given by Boyle and Chotiros (1992) to be at 191 dB referenced toluPa at 

1 m (in the sediment).  Figures 4.4a and 4.4b are vertical slices of Figs 4.5a and 

4.5b, respectively (in Pa2 instead of dB). The simulation results have been 

presented in Figs. 4.5a, 4.5b, and 4.5c for the purpose of direct comparison with 

Figs. 5, 6, and 7 of Boyle and Chotiros (1992). By choosing the appropriate 

roughness parameters, these simulations match measured intensity space - time 

behavior as presented by Boyle and Chotiros (1992), not only in terms of pulse 

arrival times, but also in terms of the resulting field strength. Although the 

simulation only contains the incoherent intensity, the coherent contribution, 

dominates only for incident grazing angles above critical.  The curve plotted in 
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Fig 4.5 is the propagation time for the pulse, assuming the existence of a 

1200m/s refracted "slow wave." The arrival time of the incoherent intensity pulse 

coincides with this curve. This agreement occurs for all three depths, as well as 

over a wide range of incident angles. This model does not allow for slow wave 

propagation, and the "apparent slow wave" propagation can be accounted for by 

considering the diffraction path for the signal. A result due to Thorsos (1995) 

showing the relationship between an apparent slow wave and downward 

diffracted energy is presented in the next section. 

4.4 How roughness can mimic a slow refracted wave 

The purpose of this section is to determine the apparent slow wave speed for 

energy diffracted in a given direction. This derivation follows Thorsos (1995), 

and allows for the diffracted energy in the sediment to be in directions ranging 

from straight down to the compressional refracted direction (determined by 

Snell's law). Figure 4.6 shows a plane wave pulse propagating with a sound 

speed C[ and at a sub-critical grazing angle 6^ incident on a water sediment 

interface. Two rays strike the interface; the second intersects the interface at a 

distance d from the first, and at a time x later than the first. Both rays are 

scattered by the rough interface, and propagate into the sediment at a grazing 

angle 92 and at a sediment sound speed c2. The path AB, at a grazing angle 

e2 = e2-e', (4-3) 

represents the apparent slow wave refracted direction corresponding to the slow 

wave speed c2. All points perpendicular to this path are therefore taken to have 

the same total propagation time. From Fig. 4.6, 

cose,=^- (4-4) 
a 

and 
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c2T 
cos02=^. (4.5) 

d 

Solving Eqs. (4.4) and (4.5) for T, and equating, results in Snell's law for the 

apparent refracted slow wave direction: 

COS0! _ cos62 /4 gN 

c\ C2 

Using Eq. (4.3) and 

ci = c2 cosG' (4.7) 

in Eq. (4.6), and solving for 9', yields 

0' = tan"1 
f. \ I 

/sin92 — COS01 -COS 02 
Vci ) 

(4.8) 

The apparent refracted grazing angle, 02, follows from the above result and Eq. 

(4.3). The apparent slow wave refracted speed is given by Eq. (4.7). 

For the same sound speed ratio used in the simulation, Fig. 4.7 shows the 

dependence of the apparent slow wave velocity on the scattered grazing angle, 

02. Figure 4.7 indicates that the apparent slow wave propagation speed of 

1200m/s in the tank experiment simulations (see Fig. 4.5) corresponds to an 

"average" scattered grazing angle of about 80°. Because of loss in the sediment, 

the average diffraction path is at large grazing angles in a downward direction, as 

other directions suffer larger absorption loss. 

Taking the scattered grazing angle to be 90° (straight down), we plot the 

effect of sediment sound speed and incident grazing angle on the apparent slow 

wave speed and apparent refracted angle in Fig. 4.8a and Fig. 4.8b, respectively. 

For this case, 02 =90°, the apparent refracted speed is equivalents expressed 

as 
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c2 =   . C\ (4.9) 
^1 +(c2/Clf cos2 Q{ 

It is evident from this example that the apparent refracted slow wave speed and 

the apparent refracted grazing angle do not depend strongly on the sediment 

sound speed, even for these extreme sediment compressional sound speed 

examples. Although the apparent slow wave speed increases with increasing 

incident grazing angle, it is relatively constant for incidence below critical grazing. 

Below critical grazing is the region of interest, since the refracted component 

dominates above this angle. 

Consequently, roughness can mimic a slow refracted wave (= 1200m/s), 

even though the acoustic sound speed is considerably larger (1675m/s in this 

example). This tank experiment simulation shows that the effects of roughness 

must be considered in interpretation of penetration experiments. 

4.5 Ocean experiment simulation 

The tank experiment determines the arrival time of the pulse, but not the 

direction that the wave propagates. In considering the propagation of the 

penetrating acoustic field, an ocean experiment using a buried array of receivers 

(Panama City experiment, Chotiros, 1991, 1995) measures the direction and 

speed of the intensity front. The results of computer simulations of this 

experiment using Eq. (4.1) for the incoherent intensity and Eq. (2.92) for the 

coherent intensity are presented in this section. 

4.5.1 Experiment simulation layout 

The receiver locations used in the ocean simulation are taken from Fig. 3.3.1 

of Chotiros (1991). This array layout is also shown in Fig. 3.4 of Chotiros (1995). 

As in their analysis of the experimental data, the receiver shown on the y axis 
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and the receiver farthest out on the x axis (see Fig 3.3.1 of Chotiros, 1991) are 

not used in the simulation. The layout used in the simulation is shown in Fig. 4.9. 

The source is at a height of 4m above the sediment, positioned along the x axis 

at several different distances from the array corresponding to incident angles with 

respect to the array center of 07 = 79°, 40°, 24.9°, 12.7°, and 9.7°. 

As in Chotiros (1995), the center frequency for the ocean experiment 

simulations is 20 kHz. The water sound speed, sediment sound speed, and 

sediment loss parameter are given by Chotiros (1995) to be q = 1536m/s, 

c2= 1729m/s, and 8 = 0.0163 (.514dB/m/kHz), respectively, resulting in a critical 

incident grazing angle of 0,- = 27.3°. The spectral strength and spectral exponent 

are consistent with Stanic ef al. (1988), which are from measurements in the 

vicinity of the experiment (w2 = 6.2xl0~5m and y = 3). The filter truncation 

parameter (Eq. 3.66), a = 05m, is chosen to be consistent with the scale of the 

experiment, resulting in k\h= 0.98 from Eq. (3.67). Note that the transverse 

distance between all receivers is within 2a = lm. Thorsos (1996a) shows that 

perturbation theory is valid for scattering through the water-sediment interface 

with k\h as high as 2.0. 

4.5.2 First-order intensity model 

As in the tank simulation, the baseband source signal u(t) is also substituted 

for g(t) in Eq. (2.85) for the ocean simulations. The baseband source signal is 

taken to be 

u(t) = e-^fK (4.10) 

with ts = lOOfisec. This pulse width is comparable to that achieved in the actual 

experiment. As mentioned later, the signal at each receiver is normalized such 

that the signal peak is the inverse of the number of array elements. Therefore, 
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the magnitude of the source signal is irrelevant to the simulation. The 

justification for using this simpler model (Eq. 4.1) for the incoherent intensity is 

shown in Figs 4.10a and 4.10b, where the mean square incoherent field on the 

most shallow receiver (0.05 m depth) is plotted using both the expression in Eq. 

(2.85) and Eq. (4.1), that is, u(t) is substituted for g(t) in Eq. (2.85). Although the 

mean square incoherent field magnitude using the simplification g(t) = u(t) is 22% 

greater than the result obtained from Eq. (2.85) at a depth of 5cm, and 17% 

greater than the result obtained from Eq. (2.85) at a depth of 18cm, the arrival 

times are not affected by the approximation, g(t) = u(t). Furthermore, the error in 

incoherent intensity resulting from this simplification does not affect the results 

presented in this chapter. 

4.5.3 Coherent intensity model 

Analytical approximations for the integral in Eq. (2.91) can be found (for 

example, Brekhovskikh, 1980; Ishimaru, 1991). When the incident field is above 

critical, steepest descent solutions agree closely with the exact numerical 

solution. Furthermore, for narrowband signals, the received zero-order signal 

amplitude is determined by the magnitude of the Green's function evaluated at 

the pulse center frequency. Therefore, the time domain zero-order received 

pulse can be determined by evaluating the steepest descent solution at the pulse 

center frequency. Although the approximate steepest descent analytical 

solutions agree with the numerical solution of Eq. (2.91) very closely for 

incidence above the critical angle, the solution near critical can differ significantly 

(Westwood, 1989). In addition, the Green's function is very frequency dependent 

when the incident field is at or below the critical angle. For this reason, the zero- 

order transfer function or Green's function is found by evaluating Eq. (2.91) 

numerically for a discrete range of angular frequencies, co. In order to obtain the 

zero-order output pulse at a receiver, the discrete Fourier transform of the source 
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signal in Eq. (3.21) is multiplied by the corresponding Green's function, and the 

result is transformed back to the time domain. The resulting exact zero-order 

time-dependent field magnitude is squared and added to the time-dependent 

first-order mean square incoherent field. The simpler steepest descent solutions 

have been used for comparison purposes. 

Although the zero-order field will be seen to be somewhat greater than the 

actual coherent signal (Rice, 1951; Thorsos, 1990) for the values of kxh used in 

these simulations, Chotiros' intensity velocity algorithm is affected only if 

coherent and incoherent intensities are close in magnitude. As shown in chapter 

5, using only the zero-order field to represent the coherent intensity results in 

coherent intensity calculations about 10% greater than calculations using both the 

zero-order and second-order contribution. Including the second-order component 

of the coherent intensity would not produce noticeably different simulation 

results. 

4.5.4 Algorithm for estimating intensity front velocity 

Since the receiver locations in Chotiros' ocean penetration experiment are 

not known precisely enough to use a coherent spatial spectral estimation 

technique, Chotiros (1995) proposed and used the following intensity speed and 

direction finding algorithm. This velocity finding algorithm assumes a direction 

and speed for a plane front of propagating energy, determines the corresponding 

delays for each receiver with respect to a reference receiver, and then adds 

normalized and delayed versions of all receiver intensities. If the position of the 

wth receiver is denoted by rm and the reference receiver by rb the relative signal 

delay at the /wth receiver with respect to the reference receiver is given by 

Atm=k2-rm/c'2 (4.11) 
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for a plane wave traveling in a direction k2 and speed c2. For a given speed and 

propagation direction, the normalized received signals are delayed by Eq. (4.11), 

and then summed. The resulting magnitude is plotted as a function of grazing 

angle (depression angle) and wave speed values. A peak in the resulting plot 

occurs when the assumed direction and speed coincide with the actual intensity 

front. As can be deduced from section 4.4, this type of incoherent processing 

cannot unambiguously resolve wave velocity. In addition, the intensity front 

measurement will be off if the flat surface coherent component of the signal 

dominates at the reference receiver but incoherent diffracted energy dominates 

at the other receivers. 

In order to determine the direction of the intensity front, an array is generally 

required to span 3-D space (see Appendix D). However, the direction of the 

intensity front is assumed to have no y component, and the receivers are 

therefore only required to span the xz plane. 

4.5.5 Results 

Speed-angle distributions for the five source locations for e, = 79°,40°, 

24.9°, 127°, and 9.7° are shown in Figs. 4.11a, 4.11b, 4.11c, 4.11d, and 4.11e, 

respectively. Chotiros (1991) states that the receiver at z = -0.05m is usually 

taken to be the reference receiver. These plots are therefore obtained using the 

receiver at z = -0.05 m for the reference. Figures 4.11a and 4.11b correspond to 

incidence above the critical grazing angle, and show energy propagating 

approximately at the sediment sound speed and at angles given approximately 

by Snell's Law. The curve in the figures obeys Snell's Law. Since the incident 

grazing angle is above critical in Figs. 4.11a and 4.11b, almost all of the energy 

penetrating into the sediment is due to the zero-order refracted energy. The 

coherent intensity due to the flat surface solution is also greater than the 
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incoherent intensity in Fig. 4.11c, but the first-order incoherent intensity is of 

comparable magnitude. At sub-critical angles (Figs 4.11d, 4.11e), the energy 

appears to be propagating at about 1400m/s, at angles that also agree with 

Snell's Law for this apparent slow wave speed. This model does not include 

slow wave propagation; this apparent slow wave propagation is explained by 

diffractive scattering. Equation (4.6) shows that the diffracted intensity front will 

always appear to obey Snell's Law. 

Although Chotiros reports apparent slow wave propagation at speeds 

between 1100m/s and about 1350m/s (see Fig. 6, Chotiros, 1995), we observe 

an apparent slow wave speed of 1400m/s in Figs 4.11c, 4.11d, and 4.11e. 

However, different choices of roughness spectrum will result in different apparent 

slow wave speeds. Although the roughness spectrum used in the simulation is 

suitable for the ocean experiment location, burying receivers into the sediment 

will likely alter the roughness spectrum at the interface above the receiver. 

Therefore, it is possible that the roughness spectrum used in the simulation is not 

an accurate representation of the seafloor at the experiment site. The effect of 

decreasing the roughness by changing the filter parameter in Eq. 3.66 is shown 

in section 4.5.7. In the next section, another factor that can affect the apparent 

slow wave speed is discussed. 

4.5.6 Significance of reference receiver choice 

The apparent slow wave speed as determined by Chotiros1 sound speed and 

direction finding algorithm can be affected by reference receiver choice. 

Refraction is dominant when the incident angle is above critical, and diffraction 

can be dominant at subcritical incidence, depending on the receiver depth and 

incident grazing angle. Since the refracted path is much shorter for the receivers 

closest to the interface, the refracted coherent intensity will sometimes dominate 

over the incoherent intensity only at shallow receivers.   In fact, the zero-order 
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field is negligible for the transverse distance of 19.19m between source and 

receiver (incident grazing = 12.7°) at all receiver depths except for the depth of 

0.05 m — the reference receiver. Figures 4.12a, and 4.12b show the mean 

square incoherent field and square of coherent field magnitude (1 Pa at 1 m from 

source in water) for all receivers in the simulation as a function of time for the 

12.7° incidence grazing example. For all receivers except the reference receiver, 

the mean square incoherent field is much greater than the square of the coherent 

field magnitude; at the reference receiver, the coherent field is much greater than 

the incoherent field. Since the refracted path is the fastest, the peak in the 

incoherent intensity pulse will always arrive after the zero-order component of the 

coherent pulse. As a result, the relative time delay is greater than would be the 

case if another receiver were chosen as the reference receiver and the receiver 

signal at z = -0.05m not included in the intensity velocity algorithm. The apparent 

slow wave speed using this reference receiver is therefore slightly slower than 

the apparent slow wave speed using any other receiver. For both incidence at 

12.7° and 9.7°, the first-order incoherent intensity is less than the zero-order 

coherent intensity for the receiver at depth 0.05 m; for all other receivers, the 

opposite is true. The outputs for 12.7° incidence and 9.7° incidence are plotted in 

Figs. 4.13a and 4.13b using the receiver at z=-0.18m as the reference receiver 

and removing the receiver at z = -0.05m. These simulation results show slightly 

faster apparent slow wave propagation (1500m/s) than the results in Figs. 4.11d 

and 4.11e. Note that this speed is significantly smaller than the sediment sound 

speed of 1729 m/s. 

Note that if the apparent slow wave in the experiments is also due to 

diffraction, then using any other receiver as the reference than the one at 

z = -0.05m in the experiment would also result in observation of an apparent slow 

wave that is faster than would otherwise be observed. It is important to note that 

the slower the observed apparent slow wave, the greater is this discrepancy. 
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4.5.7 Effect of the filter parameter 

The purpose of this section is to show the effect of the filter parameter a (see 

Eq. 3.66) on the apparent slow wave speed using Chotiros' speed and direction 

finding algorithm. In Figs 4.11 and 4.13, the filter parameter a = 05 m, resulting 

in  k\h = 05m, was chosen.    Figures 4.14a and 4.14b show speed-angle 

distributions for the two source locations corresponding to 6,- = 12.7° and 9.7°, 

respectively, for a filter parameter value of a = 2.0 m — k\h = 1.96. As shown by 

Thorsos (1996a), perturbation theory is valid for this case. As in Fig. 4.13, the 

receiver at the depth of 0.18 m is used as the reference receiver, and the receiver 

at a depth of 0.05m is discarded. The differences between Figs. 4.14a and 4.13a 

and Figs. 4.14b and 4.13b are negligible. Increasing the filter parameter beyond 

a = 05 m to a value more than twice as large as the scale of the receiving array 

has negligible effect on the speed-angle distribution output. 

Figs. 4.15a and 4.15b use a filter parameter a = 0.02 m, resulting in an 

apparent slow wave speed of about 1200 m/s — the same as the tank experiment 

simulation results. Since Chotiros' sound speed and direction finding algorithm 

measures the propagation of the intensity front, it does not determine the actual 

direction of propagation. The reason that this algorithm yields a direction and 

speed corresponding to an apparent refracted slow wave follows from the 

discussion in section 4.4 (Thorsos, 1995). 

4.6 Summary 

By modeling sand as a fluid, and including a small amount of roughness 

hrms = \, the tank simulation results match the acoustical penetration 

experimental results obtained by Boyle and Chotiros (1992), both in magnitude 

and in arrival time of the intensity pulse. The simulation results of this tank 

experiment show that roughness must be included in a sediment penetration 
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model, and that even a small amount of roughness can account for energy 

penetrating the interface measured in their experiments. 

Although the measured results in the ocean array experiments (Chotiros, 

1995) yield an apparent slow wave that is between 50m/s and 300m/s slower 

than the results obtained from the simulation, the assumed roughness spectrum 

may not be an appropriate representation of the experimental site after the 

receivers were buried. However, the results of this chapter show that diffraction 

results in apparent slow wave propagation that appears to obey Snell's Law. 
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Intensity time series simulation 
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Figure 4.1 : Scattering model diagram. 



Geometry of Boyle and Chotiros' tank experiment 

Source (displaced horizontally) 

Figure 4.2 : Tank experiment simulation diagram. 
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Figure 4.3  :  Roughness spectrum  used  in tank simulation,   a = 0.01m,  y = 3.0, 

-5 w2 - 2.17 x 10    m, h = 1 mm 
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Figure 4.4a : Time-dependent mean square incoherent field determined in tank 

experiment simulation; solid line uses Eq. (2.85), dotted line uses Eq. (4.1). 

Roughness parameters are given in Fig. 4.3, frequency = 60kHz, p = 2.0, 5 = 0.015, 

v= 1.125, ci= 1489m/s, ts = 33.33us. Source height = 0.49m, receiver depth 

= 0.08 m, transverse distance between source, receiver = 2 m. 
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Figure 4.4b : Time-dependent mean square incoherent field determined in tank 

experiment simulation; solid line uses Eq. (2.85), dotted line uses Eq. (4.1). Receiver 

depth = 0.33 m, otherwise same parameters as Fig. 4.4a. 
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Figure 4.5a : First-order incoherent intensity as a function of time and transverse 

distance between source and receiver. Arrival time is at pulse peak; black curve 

corresponds to 1200 m/s arrival time of apparent slow wave. Same parameters as Figs 

4.3, and 4.4 - frequency - 60 kHz, p = 2.0, 5 = 0.015, v = 1.125, c1= 1489 m/s, 

ts = 33.33 us. Source height = 0.49 m, receiver depth = 0.08 m. 
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Figure 4.5b : First-order incoherent intensity as a function of time and transverse 

distance between source and receiver. Receiver depth = 0.33 m, otherwise same 

parameters as Fig, 4.5a. 
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Receiver Depth = 0,614 m 
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Figure 4.5c : First-order incoherent intensity as a function of time and transverse 

distance between source and receiver. Receiver depth = 0.614m, otherwise same 

parameters as Fig'. 4.5a. 
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Figure 4.6 : Intensity front diagram; 92 represents direction of average diffracted 

energy propagation, Q'2 represents direction of apparent slow wave. 
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Figure 4.7 : Dependence of the apparent slow wave velocity on scattered grazing angle 

for incident grazing angle, 0, = 10°. 
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Figure 4.8a : Dependence of the apparent slow wave velocity on incident grazing angle 

assuming average scattered field is straight down. 
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Figure 4.8b : Dependence of the apparent refracted grazing angle on incident grazing 

angle assuming average scattered field is straight down. 
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Figure 4.9 : Ocean experiment simulation layout. 
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First-order mean square incoherent 
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Figure 4.10a : Time-dependent mean square incoherent pressure in ocean experiment 

simulation for receiver depth = 0.05 m. Solid line uses Eq. (2.85), dotted line uses Eq. 

(4.1). Transverse distance between source and receiver = 19.19m, a- 0.5m, y = 3.0, 

M>2=6.2xl0"5m,/? = 1.2cm, frequency = 20kHz, p = 1.9608, 8 = 0.0163, v= 1.1257, 

q = 1536m/s, /s = 100(is. 
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Figure 4.10b : Time-dependent mean square incoherent pressure in ocean experiment 

simulation for receiver depth = 0.18 m, otherwise same parameters as Fig. 4.10a. 
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Figure 4.11a : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Velocity distribution for 9;- =79° (0.43 m 

transverse distance between source and reference receiver), same parameters as Fig. 

4.10. White curve corresponds to energy propagating at speeds and directions 

coinciding with Snell's law. 
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Figure 4.11b : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Velocity distribution for 9/ =40° (4.91m 

transverse distance between source and reference receiver), otherwise same 

parameters as Fig. 4.11a. White curve corresponds to energy propagating at speeds 

and directions coinciding with Snell's law. 
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Figure 4.11c : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Velocity distribution for 0; =24.9° (9.22m 

transverse distance between source and reference receiver), otherwise same 

parameters as Fig. 4.11a. White curve corresponds to energy propagating at speeds 

and directions coinciding with Snell's law. 
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Figure 4.11d : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995).   Velocity distribution for 0,- =12.7° (19.19 

transverse   distance   between   source   and   reference   receiver),   otherwise   same 

parameters as Fig. 4.1'1a. White curve corresponds to energy propagating at speeds 

and directions coinciding with Snell's law. 
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Figure 4.11 e : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Velocity distribution for 9,- =9.7° (25.83m 

transverse distance between source and reference receiver), otherwise same 

parameters as Fig. 4.11a. White curve corresponds to energy propagating at speeds 

and directions coinciding with Snell's law. 
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x10 5 Mean square incoherent first-order field 
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Figure 4.12a : Time dependent mean square incoherent pressure in ocean simulation 

at each receiver for the 12.7° incidence grazing (Fig. 4.11d example). 
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Figure 4.12b : Square of coherent pressure magnitude at each receiver in ocean 

simulation for the  2.7° incidence grazing (Fig. 4.11e example). 
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Figure 4.13a : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.11d except 

receiver at z = -0.05m is removed, and receiver at 0.18 m depth (see Fig. 4.9) is used 

as reference receiver. 
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Figure 4.13b : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.11e except 

receiver at z = -0.05m is removed, and receiver at 0.18 m depth (see Fig. 4.9) is used 

as reference receiver. 
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Figure 4.14a : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.13a except 

roughness spectrum filter parameter a - 2.0 m, rather than a - 0.5 m. 
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Figure 4.14b : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.13b except 

roughness spectrum filter parameter a - 2.0 m, rather than a - 0.5 m. 
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Figure 4.15a : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.13a except 

roughness spectrum filter parameter a = 0.02 m, rather than a = 0.5 m. 
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Figure 4.15b : Normalized output intensity of ocean simulation using intensity velocity 

finding algorithm given in Chotiros (1995). Same parameters as Fig 4.13b except 

roughness spectrum filter parameter a = 0.02 m, rather than a - 0.5 m. 



CHAPTER 5 

Perturbation derivation including the effect of gradients 

5.1 Introduction to chapter 5 

Solution to the first-order scattered field from and through a rough interface 

separating two homogenous fluids is derived in chapter 3. The simulations of the 

tank and ocean experiments in chapter 4 use first-order perturbation theory to 

calculate the incoherent scattered intensity, and the flat-surface (zero-order) 

results are used to calculate the coherent intensity. Although first-order 

perturbation theory results allow solution for the incoherent intensity proportional 

to the second power of kxh, the zero-order solution results in computation of the 

coherent intensity only to (kxhf.   In order to calculate the coherent intensity 

component proportional to {kxh) , the second-order scattered field is required. 

The second-order field and second-order coherent field are calculated in this 

chapter, and compared with the zero-order component of the coherent field. 

Since the sediment in both the tank and ocean experiment simulations is 

modeled as a homogenous fluid, the effect of sound-speed gradients on the 

scattered field is not included. In this chapter, the sound-speed gradients are 

included in the model. Moe and Jackson (1994a) take an approach suggested 

by Winebrenner etal. (1995) that allows for layering below the rough interface. 

Although the medium just below the rough interface is constrained to be a 

homogenous lossy fluid, the medium below the lowest point on the interface is 

constrained only to be vertically stratified (see Fig. 5.1), and its complexity is 

contained in the reflection coefficient for the corresponding flat-surface problem. 

This approach is used to derive recursion equations that allow for calculation of 

the Nth-order scattered field. The zero-order field and first-order scattered field 
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are derived and compared with the results in chapter 3. The second-order field is 

derived in order to obtain an expression for the second-order component of the 

coherent field. The second-order coherent field is compared to the flat surface 

transmitted field. The effect of including sound-speed gradients as well as a 

shear supporting medium is also discussed. 

5.2 Scattering problem 

The seafloor is represented as a two dimensional random rough fluid-fluid 

interface. The geometry of the scattering problem is shown in Fig. 5.1. A 

pressure field, \|/,(r), is incident on a 2-D rough interface separating the 

homogenous lossless fluid in medium 1 (water) from a homogenous lossy fluid in 

medium 2 (sediment). Unlike the problem in chapter 3, the region below the 

lowest point on the rough interface (z=-d) is arbitrary. As in chapter 3, the total 

field above the highest point of the rough interface in medium 1 is a sum of an 

arbitrary incident field, \|/f(r), and the resulting scattered pressure field, y/(r), 

and is expressed as 

Vl(r) = JA[^(K)e-^(K)z+^/(K)e/^(K)z]efKR. (5.1) 

A factor of e~m is suppressed. Because of the flat interface between medium 2 

and medium 3, the field in medium 2, \|/2, is expressed as a sum of plane waves 

traveling in the positive z direction, as well as a sum of a plane waves traveling 

in the negative z direction: 

V2(r) = JÄ[^2_(K)e-^ß2(K)z+^2+(K)e^ß2(K)z]e*R, (5.2) 

Note that in the absence of upward refracted or reflected energy, ¥2+ = °- Tne 

derivation proceeds similarly to the derivation in chapter 3. In Eq. (5.1), *Fy is 

unknown; in Eq. (5.2), both ¥2- 
and ^2+ are unknown.  Three equations are 
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required to solve for these three unknowns. Two of the boundary conditions are 

the continuity of pressure on the interface, given in Eq. (2.2), and the continuity 

of normal velocity on the interface, given in Eq. (2.4). These boundary conditions 

are used in the scattered field derivation for the fluid-fluid model in chapter 3. An 

additional equation is supplied by a technique originated by Winebrenner et al. 

(1995) in their treatment of electromagnetic scattering from rough dielectric 

surfaces. This third equation uses the general boundary condition that relates 

^2+ to ^2- at z =-d in terms of the reflection coefficient r23 at z = -d for a wave 

incident from medium 2 to medium 3 (Bucker, 1970): 

r23(K) = VF2+(K)e-2^2ß2(K)J (5 3) 

*2-(K) 

This equation is key to Winebrenner's approach. All of the complexity of medium 

3 is contained in r23. Note that media 2 and 3 can both be lossy, with a complex 

wave number, but the sediment in region 3 is not constrained to be a fluid, e.g., it 

could be viscoelastic or porous. Furthermore, arbitrary gradients in density and 

wave number are allowed in medium 3 provided variations are only in z. 

The goal of this chapter is to find the scattered field in terms of the incident 

field. Since 

^(K) = j d2K'Tu{K,K')%{K') (5.4) 

and 

¥2_(K) = JÄT12(K,K')^(K') (5.5) 

(Eq. 3.5 and Eq. 3.6), the scattering problem is solved when the T-matrices Tn, 

and Tu are found. Perturbation theory solves this problem by expanding the 

fields and each r-matrix in terms of a power series representation, 
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¥(K)=£^VB>(K) (5.6) 
/=0 

r(K,Kf)=£^rW(K,K,), (5-7) 
z=o 

and solving one order at a time. Both the factorial and the factor (kxh)n do not 

need to be displayed, but this representation emphasizes that the perturbation 

expansion can be viewed as a power series expansion. 

5.3 Derivation of Nth-order recursion relation 

Although only the zero, first, and second-order fields are derived in this 

chapter, the results of this section can be used as a starting point to derive 

higher-order results. An immediate application of higher-order results would be 

to use the second-order field component as a correction to the first-order 

coherent field. Higher-order results serve as both a correction and measure of 

accuracy of lower-order results. 

5.3.1 Background 

Define the Fourier transform of the «th power of the surface, 

F„(K)H-LfÄf(R)e-iK-R, (5-8) 
(2%)2J 

so that F„(K) is obtained from a convolution of F„_i(K) with F(K), 

Fn(K) = Fn_l(K)®F(K). (5-9) 

Also, 

F0(K)^5(K), (5-10) 

and 
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Fl(K)sF(K),                                                                                           (5.11) 

is the Fourier transform of the surface profile function. Taking the gradient (Eq. 

3.4) of 

/n+1(R) = jÄF„+1(K)eiK'R                                                                        (5.12) 

and then dividing by n+l yields 

vr+i(R)= t (d2KKFn+i(K)eiK.R                           (513) 

n + l        n + lJ 

The following identity, 

/"(R)V/(R) = -i-fAKFn+1(K)e'KR,                                                      (5.14) 
n + \J 

follows from Eq. (5.13) and 

V/"+1(R)=(H + 1)/"(R)V/(R).                                                                     (5.15) 

5.3.2 Continuity of pressure 

Invoking the Rayleigh hypothesis, we use Eqs. (5.1) and (5.2) in Eq. (2.3) to 

obtain the equation of continuity of pressure: 

J d2Kh(K)e-ik^(KW™+ y/(K)e'WW(R)' e 

= JÄ ¥2   (K)c-ihfo(KW(*)+ ,j,2+(K)ei*2ß2(K)A/(R)" JKR 
e                           (5.16) 

Expanding the exponential terms in a power series, 

e,*lPl(W(R) = y(/Pl(K)/(R))" fo*)" ,                                                     (5.17) 
n=0                                n- 

and using Eqs. (5.3), (5.12), and (5.13) yields 
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JA 2(ißi(K))B^[^(K)(-l)B +^/(K)]|Ä' Fn(KV'(K+K'>R 

«=o "• 
= JA X(/ß2(K))n^^^2_(K){[(-l)" + r23e''2^ß2(K)^ 

n=0 

xJj2rFn(K')e/(K+K')R}. (5.18) 

After using the operator Tf Ae /K"'R, the above expression is integrated 
(2TC)2 J 

over R, and over K, to obtain 

JA it/ßiCK^M^^CKX-ir +^(K)]Fn(K"-K) 
«=o 

= JAX(/ß2(K))"^y2_(K)[(^^ (519) 
n=0 

Expanding fields in Eq. (5.19) in a power series (Eq. 5.6) yields 

JA 2(ißi(K))BM^.(K)(-irF„(K"-K) 

+JÄ i (iPl(K)rM^£^^(K)Fm(K''-K) 
m=0 m.     .   . 

= f^X»2(Kf 
m=0 

ml   -0   n 

(k2h)m 

mi 

x £(^*)!.^/_)(K)((-i)'» + r23e
J'2^(K)^ 

z=o   /! 
Fm(K"-K) 

(5.20) 

Combining powers of i^A results in the following expression for the continuity of 

pressure on the interface: 
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^
)
(K")(Y" + 1) 

= jd2K(-lf(ifo(K))NFN(JL"-Kß'i(K) 

+JÄ S (%)(iVl(K))mFm(K>'-K)¥f
N-»)(K) 

"JA X f^(/Kß2(K)rFffi(K"-K)[Y + (-ir]^-'n)(K) 
m=l 

+^}(K"), 

where 

Y = r23(K)e'2^2(KM. 

(5.21) 

(5.22) 

5.3.3 Continuity of normal velocity 

An expression for the equation for continuity of normal velocity on the 

interface is obtained by substituting Eq. (3.3), 

z-W(R) 
n = 

\z-Vhf(R)\ 

into Eq. (2.4), 

i-n-V¥i(r) = -n-Vx|/2(r)| 
Pi P2 

yielding an expression for the continuity of normal velocity, 

1    -    V7 —nv\)/i 
Pi 

1      1 

:=/(R)    PlN(R)[dz 
-V\|/rW(R) 

W(R) 

(5.23) 

(5.24) 

(5.25) 

Using Eqs. (5.1) and (5.2) in Eq. (5.25) results in the following expression: 
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Pi 

ft!ß,(K)A/(R) iKR 
j d2K ^1ß1(K)[-4'f(K)e-i'Ä:ißl(K)/l/(R)+ Vf(K)t 

P2J L J 

- J- f Ä K • V(hf(R))h2 (K)e"^(K)V(R)+ ^2+(K)e^ß2(K)¥(R)|e«K-R f 

P2J L J 
(5.26) 

which becomes 

1   f An a ^V/'ß nr\-em\\n^}f.\ 

PlJ n=0 "' 

jKR 

1  f ,2 » (*!*)" -- f d2K K • V(/z/(R)) Y (/ß!(K)/(R))n^12. ^.(K)(-l)w + Vf(K) 
PlJ nto "!    L 

JKR 

1   f,2.,ß   ^^/..o  ^^n(k2h)n 

P2 
JA *2ß2(K) £(/ß2(K)/(R))" ^[-^-(KX-D" + ^2+(K) 

n=0 "• 

zKR 

1   fA wi(*2*T -—jd2K K • V(/z/(R)) X(iß2(K)/(R))B i-^L[l*/2-(K)(-l)n + *2+(K) 
JKR 

«=0 

(5.27) 

with the use of Eqs. (5.6) and (5.17).  Using Eqs. (5.3), (5.12), and (5.14) in the 

above expression yields 
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■1 f Ä kfaCK) X(ißi(K))B ö--(-i)^,.(K) + ^(K) 
PlJ „=0 "! 

xJÄ'Fn(K')e'(K+K')R 

Pi.J       „to. n!   L J 

x_L_fj2rK-K/Fn+1(K
/)e'(K+K')R 

(5.28) 

x» MB 
= ± fÄfc2ß2(K)X0ß2(K))n^f-^2_(K) -(-1)" +r23e

f 

P2J „=0 "! L 

xJA'Fn(K')e'(K+K')R 

;2^2ß2(K)rf 

-L fÄ^T (/ß2(K))"fe^^2_(K)f(-l)w +r23e
i2^2(KM 

P2J „to "! L P2J 

X_L_ fd
2K'K• K'Fn+1(K')e/(K+K')R 

n + lJ 

Equation (5.28) is integrated over R using jJrf2/?e iK"'R. and over K   The 

substitution in Eq. (5.22) is made, yielding the equivalent expression, 

Pi 
|j^it1ß1(K)X0-ßi(K))n^[-(-l)n4'l(K) + ^/(K)]F„(K''-K) (5.29) 

„=o "• 

-i|A/,£(Ip,(K))»M"' 
ft* „=o "• 

^•(K)(-l)w+y/(K)]K"(K"i 
K)Fw+l(K"-K) 

n + \ 

= ±\d2K *2ß2(K) £(*ß2(K))n M^2_(K)[-(-l)n + Y]Fn(K" - K) 
"2 „=o 

y W -i-\d2Kh £(iß2(K))" ^y2_(K)[(-l)'
1 + y]K-(K-K)Fw+i(K„ _ K) 

i K • (K" — K) 

P2J „to 

Dividing the above expression by kh multiplying by pj, and expanding in a power 

series — Eq. (5.6) — yields 
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n=0 "• 

-'JA£(*.(K»)"|S n=0 K"TV- 

^-l)»¥.(K) + X^F<f>(K) 
/=0 

Fn(K"-K) 

x ^•(KK-lf + i^-^CK) 
/=0 

K-(K"-K) 
Fn+1(K"-K) 

= IjÄKß2(K)f;(/ß2(K)rM^ 
P «=0 

X £Miy(0(K) 
/=0 
/ 

p 

-(-l)n+YJFn(K"-K) 

n+l 

JA£(,-p2(K)r^l£^-r«(K, 
„=0 iw + ij. z=0   i. 

x[(-Dn + y]- 
K-(K"-K) 

iot/ 
Fn+1(K"-K). 

(5.30) 

Separating terms, renumbering indices (setting n = l+m), and equating like 

powers of k^h yields 
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-JA ^(K)(-1)N^))N ^(K)FN^ - K) 
N    t-n /T^\m 

+J Aßl(K) X (fA(K)) MN-m\K)Fm(K"-K) J ^mUN-my.   J 

+i A (-yw'tFj)^ - K) 
AH ßl(K)*f 

_f A y (fßi(K))   y(^-m)(K) K• (K" -K) _ 

= 1 f ÄKß2(K) f (^*(K))" v£-m\K)[-(-Dm +yk(K--K) 

_I f A X °'t'(K))! ^g-m)(K)[-(-Dw + Y]
K R

(K
17,f} ^n(K- -K). 

Corresponding to the definition in Eq. (5.22), define 

y" = r23(K")e/2^2(K">/. 

The following definitions, 

(ifr(K))" 
^_ vi  ^     ~   '" 

ifo(K)F(K"-K) 

A(K",K) = 

(ißl(K))' 
2! 

■F2(K"-K) 

(fßl(K)f 
A/! 

F^(K"-K) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 
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B+(K",K) = 

ncß2(K)F(K"-K) 

(»Kß2(K)r 
2! 

F2(K"-K) 

(iKß2(K)) 
W 

AH 
fy(K"-K) 

B_(K",K) = 

-/Kß2(K)F(K"-K) 

HKß2(K))2 

2! 

(-/Kß2(K))Af 

Art 
fy(K"-K) 

(5.35) 

(5.36) 

Y}(K) = 
(JV-1)!   (tf-2)!  '**     / 

(5.37) 

and 

Yl_(K): 
Y(JV-i)   xjf^-Z) 

(//-!)!   (A/-2)! 
* (0) 

result in more concise forms of Eq. (5.21), 

^(K")        „     ,^(K") 
.„   =(?+1)   ^ 

+JA[YB^(K",K)+BL(K",K)]Y2_(K) 
A/! 

'ÄH^A^K^K^CK) 
'd2KA\K",K)Yf(J!L), 

(5.38) 

(5.39) 

and Eq. (5.31), 
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ßl(K") 

K• (K"-K)(_l)NAN(K« K)Y.(K) -H(JV-1)JÄ- 

-JA 
ßiW 

-JAß1(K)Ar(K",K)Y/(K) 

-jÄKß2(K)[^(K",K)-BL(K",K)]Y2_(K) 

+l(Y--l)Kß2(K-)   ^    j 

K-(K"-K) ■if A 
pJ Kß2(K)^2 

^(K",K)-BL(K",K)Y2_(K) 

(5.40) 

Adding Eq. (5.39) multiplied by (Y"-l)Kß2(K"), and Eq. (5.40) multiplied by 

p(y" + l), eliminates 4^ and results in an expression for the Nth-order 

scattered field: 
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f ^    [P(Y"+i)ßi (K") - (Y" - l)Kß2 (K")] 
= p(y'; + l)fAß1(K)(-l),VAJV(K",K)T;(K) 

-p(y" + 1)J A ßj(K) Af (K",K) Y/(K) 

-u(N- l)p(y" +1) \d2K K'(K""2
K) (-1)NAN(K",K)%(K) PW       n ßi(K)fcf 

+p(Y" +1)U2K K"(K//"K)Af(K-,K)Y/(K) 

+(Y" + l)JÄKß2(K)[yB^(K",K)-BL(K",K)]Y2_(K) 

-ir+i)\d 
,2   K-(K"-K) 
-K YBUK",K) - BL(K",K)]Y2_(K) 

Kß2(K)^2 

+(y"-l)Kß2(K")J^2^(-l)7VAw(K",K)^(K) 

+(y" - l)Kß2(K")| d2K Af (K",K) YjrCK) 
-(Y"-l)Kß2(K")JA[YB;(K",K) + BL(K",K)]Y2_(K). 

Define 

pßi(in 
*        Kß2(K") 

/
I+Y""|   i+r(K") 
l-Y' i-r(K") 

(5.41) 

(5.42) 

where r in second equality in Eq. (5.42) is the total reflection coefficient of the 

corresponding flat surface problem at the zero-mean rough interface, obtained 

from the well known reflection coefficient expression (see for example Sec. 3.3 of 

Brekhovskikh and Lysanov). 

r19(K) + r2,(K)e'2^(K)^ 
r( ) = i+r12(K)r23(K)e'2^W 

(5.43) 

where 

Tl2(K): 
pßi(K)-Kß2(K) 
pß1(K) + Kß2(K) 

(5.44) 
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is the reflection coefficient corresponding to a flat surface fluid-fluid interface 

between medium 1 and medium 2 in the limit as the width of medium 2, d, 

becomes arbitrarily large, or medium 3 parameters are identical to medium 2 

parameters. The term F^ is a general reflection coefficient corresponding to the 

medium 2 - medium 3 flat interface. Although medium 2 is constrained to be a 

fluid, medium 3 is only constrained to vary in the z direction. Dividing Eq. (5.41) 

by (y"-l)Kß2 and using Eq. (5.42) yields 

^(K") 

N\ 

= \d2K 

+\d2K 

+\d2K 

+jd2K 

Vfr(K)   t    5"K-(K"-K) 
_ßi(K")     fconftoK)*?] 

\N 

■1 + 
^ßi(K) 
ßl(K") 

^"Kß2(K)    ^-y-K) 

5"K-(K"-K) 
ß!(K")ßi(K)fc2 

pft(K")     pß1(K")Kß2(K)fc1
2J 

yB^(K",K) + BL(K",K)|Y2_(K) 

(-iyvA^(K",K)^(K) 

A'(K",K)Y/(K) 

YB^(K",K)-BL(K",K) 

(5.45) 

Y2_(K) 

Dividing the above expression by kh multiplying by pj, substituting Eq (5.33) 

through Eq. (5.38) into the above expression, using the binomial coefficient 

notation, 

'Aft 
m 

N\ 
(N-m)\m\' 

and collecting terms in the same power in k\h yields 

(5.46) 
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^f\K'%" + \} = \d2K 
5"ß!(K)    l    ^K-(K"-K) 
ßl(K") ß!(K")ßi(K)^ 

\N x (-\f(i^(K)fFN(K"-K)^(K) 

+jd2K 

N 

$»h(K)    u ^K-(K--K) 
ßl(K") ft(K")P!(K)*?J 

,(W-m), x 2   £ 0'ßl(K)rFm(K"-K)^-m'(K) 
IB=1 

^"Kß2(K)       £"K-(K"-K) 
+ fÄ 

J pß^K")     pß1(K")Kß2(K)Ä:fJ 

xl(Ä(>Kß2(K)rFw(K"-K)[y-(-l) 

TV 

I 
m=l 

+J A I   m to2(K))mFm(K--K)[Y + (-ir^rm;(K) 

^-»)(K) 

,{N-m), 

(5.47) 

Apply Eq. (5.42) to Eq. (5.47), 
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^(K") 

+JÄ 

i+r(K") ßi(K)   i-r(K")   I+HK") K-(K"-K) 
ßl(K") ß^K'OßiCK)^ 

\N (/ß1(K)fF^(K"-K)^(K) 

l + r(K") ßj(K)     1-T(K") { l + r(K")   K-(K"-K) 
ßl(K") ßiCmßiCK)^ 

x X (Ä)/ßi(K)rFm(K"- K)*f -»>(K) 
m=l 

+ fÄri + r(K") Kß2(K)    l + HK")     K-(K"-K) 

N 
pßl(K") pß1(K")Kß2(K)^ 

m=\ 
* X   £ (/Kß2(K))mFm(K" - K) Y - (-l)m vp(^-«)(K) 

•TV 

m=l 

ArV-nm 
m (ncß2(K))mFm(K" - K)[y + (-l)m]^-w)(K) 

Equation (5.48) can be further simplified by using the identities 

K-(K"-K)    K K' 

k? 
-l+ßl(K) 

and 

(ßl(K))2-(Kß2(K))2=^#-%^ = 1-K^ 

(5.48) 

(5.49) 

(5.50) 

to give 
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x(-l)N{ifr(K))NFN(K"-K)Vi(K) 

1 

-^ + l-ß1(K'0ß1(K)^|3 
(i+r(K")) 

l 
+-jÄ(1+r(K»))ßi(K„)P|(K) 

x I (jj)ft(K)fFm(K"-K)>pf -™)(K) 
/n=l 

4j^(i+r(K"))^       l 

KK
"    1    B fK^B (K^-nK,,)) 

-_-l-ßl(K )ßl(K)(l + r(K//)) 

pß^K'OKßzCK) 
A? 

2    K K' 

m=\ 
xx äH®)^^-^-^" 

^ j 

^-™)(K) 

+1 Jd2JST(l-r(K"))I (^)(/Kß2(K))mFm(K"-K)[Y + (-l)w]^-m)(K) 

(5.51) 

The Nth-order fields scattered away from the interface and through the interface 

are found from the recursion equations, Eq. (5.21) and Eq. (5.51). Each order 

field is found in terms of all lower-order fields. Although reciprocity is not obvious 

in Eqs. (5.21) and (5.51), nevertheless, it should be possible to show they are 

reciprocal when each order is calculated. 

5.4 Zero-order 

The flat surface reflected field follows from Eq. (5.51) by setting N = 0. 

X 

ßjonßiCK) 

(i-r(K"))' 
^+l-^K',MK\i+nK^ 

*F|
0)
(K") = JÄ8(K" - K)r(K")*F,-(K) 

(5.52) 

(5.53) 

or 
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¥}0)(K) = r(K)^(K). (5.54) 

This result is the same as the zero-order result obtained in chapter 3, except that 

the reflection coefficient in this result, given by Eq. (5.43), includes medium 3 in 

the partial reflection coefficient, r23, at the flat interface between medium 2 and 

medium 3. The zero-order T-matrix, 1$\ is the flat surface reflection coefficient 

multiplied by a delta function; 

r1
(
1
0)(K",K) = r(K)5(K"-K), (5.55) 

where r is given in Eq. (5.43), representing the total reflection coefficient at z = 0 

when the rough interface is replaced by its mean. The zero-order field 

transmitted through the interface follows from Eq. (5.21) by setting Jv~ = 0, 

^(K'XY" +1) = J Ä5(K" - K)^(K) + ¥p(K") (5.56) 

or 

^°)(K) = T(K)YI-(K), (5-57) 

where 

T(K)=1 + r^ (5-58) 
v   '      1 + Y 

is the flat surface transmission coefficient. Note that this transmission coefficient 

relates the down-going transmitted field in medium 2 to the incident field. For the 

case of two homogenous fluids — medium 2 parameters are equal to medium 3 

parameters, or d-> °°, then y = 0, and 

T(K) = l + r(K), (5-59) 

which agrees with Eq. (3.24). 
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5.5 First-order 

The first-order incoherent field scattered back into medium 1 and the 

downward traveling field scattered into medium 2 are derived in this section and 

compared with the first-order fluid-fluid results of chapter 3. 

5.5.1 Derivation of T-matrix 

For the first-order field, set TV = 1 in Eq. (5.51): 

2J ßjCK") 
(l + r(K")) 41* ßl(K") 

^f-1 + WK")WK,M 
K-K"   ,   „ _n       (\-TWj) f-l-ß^^CK) j + r^  F(K"-K)^(K) 

F(K"-K)XFI(K) 

M< 

/ro   1   (l + r(K")) 
+^ pß!(K")Kß2(K) 

2   K-K" 

+- f d2K{l - r(K"))Kß2(K)F(K" - K)[y - 1]^_}(K) 

K$2(K)F(K"-K)[y + l]¥[0](K) 

(o), 

(5.60) 

The first-order T-matrix then follows from Eq. (5.4),   the zero-order quantities 

given in Eqs. (5.54) and (5.57), and from the above equation: 
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rff(K",K) 

n(i+r(K")) K K' 
2    ßi(K") 

Ur(K)(l + r(K")) 

l + fr(K")fr(K) 
(l-T(K")) 

+ 

2        ßi(K") 

1 1   i(l + T(K")) 
2 p ß1(K")Kß2(K) 

££l-l-ft(K")&(K) 

2    K-K" 

(i + r(K")) 
(i-r(K")) 
(i+r(K")) 

F(K"-K) 

F(K"-K) 

(5.61) 

+-(i - r(K"))/Kß2(K)F(K" - K)^m(i+r(K)). 

Kß2(K)F(K"-K)(l + r(K)) 

2 ^   ■   * [Y + 1] 

By applying the second equality in Eq. (5.42), the above equation simplifies to 

7i(1
1)(K",K) = H11(K",K)F(K"-K), (5.62) 

where 

Hn(K",K) =       *      lfr(l" r(K"))(l - TVS)) + a(l + r(K"))(l + r(K))},     (5.63) 

a = l + 
P 

2/ßi(K") 

K2    (\    ^K"-K 

P     , 
(5.64) 

«l 

and 

(5.65) fc = ß1(K")ßi(K)(p-l). 

Reciprocity is manifest here. Also note that this result is identical to the fluid- 

fluid first-order result in chapter 3. In this result, the complexity of medium 3 is 

included in the reflection coefficient given in Eq. (5.43). Although it appears as 

though Eq. (5.63) follows from the two-homogenous fluid result in Eq. (3.37), one 

would not typically be able to generalize the two fluid result to Eq. (5.63) simply 

by substituting the general expression for the reflection coefficient given in Eq. 

(5.43) for the two-fluid reflection coefficient given in Eq. (3.23). Using Eq. (3.36) 
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in Eq. (3.35) to eliminate the Kß2 was necessary to obtain the expression 

identical to Eq. (5.63). If this substitution were not made, then the first-order 

results in chapter 3 would not generalize to the results in this chapter — simply 

by using the general reflection coefficient given in Eq. (5.43). 

The first-order field scattered through the surface is found by setting N = 1 in 

Eq. (5.21): 

^(K'-XY" +1) = -J Aißi (K)F(K" - K)¥f(K) 
+Jj2/aß1(K)F(K"-K)¥J0)(K) 

-J Äncß2(K)F(K" - K)[y - lfF^K) 

1 (5.66) 

Using the zero-order results in Eqs. (5.54), (5.57), (5.58), and (5.62) in the above 

equation results in the following expression for the first-order field scattering 

through the rough interface: 

^1{K"){Y' +1) = JÄ/ß!(K)F(K" - K)T(K)Yi(K) 
-jd2Ki^(K)F(K" - K)^-(K) 

+J Ä/pßj (K)F(K" - K)(l - r(K))^(K) 

J (5.67) 

The first-order r-matrix T$ follows from the above equation and Eq. (5.5): 

r1
(
2

1)(K",K)(y" +1) = i(p - l)ß!(K)(l - T(K))F(K" - K) 
+#U(K",K)F(K"-K). (5.68) 

Similar to Eq. (5.62), define 

rW(K",K) = H12(K",K)F(K" - K). (5.69) 
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If we use the representation for the transmission coefficient in Eq. (5.58), and the 

definitions of a, and b in Eqs. (5.64) and (5.65), Hn follows from Eq. (5.68) and 

its definition in Eq. (5.69): 

Hl2(K"'K) = ^^W1 + r(K))_Kl"r(K))}- (5J0) 

This result is a generalization of the result in Eq. (3.45), where the transmission 

coefficient relates the downward traveling field below the zero-mean rough 

surface to the incident field on the rough surface. For scattering back into 

medium 1, the complexity of medium 3 is contained in the reflection coefficient; 

for scattering through the sediment, the complexity of medium 3 is contained in 

both the transmission and reflection coefficients. 

5.5.2 The effect of shear waves on the differential cross section 

As a check of the formalism developed in this chapter, we reproduce a result 

from Essen (1994) that includes shear supporting sediment below a rough fluid- 

fluid interface. This particular example is an appropriate check, because the 

medium immediately below the rough surface is a fluid and Essen uses 

perturbation theory to calculate the differential cross section. 

The differential cross section obtained from first-order perturbation theory for 

scattering back into the water (medium 1) follows from Eq. (3.77) by replacing 

Hn from Eq. (5.70) with Hu from Eq. (5.63) and setting the speed ratio, v, to 

one. 

o11(a/,d/) = Ä:1
4sin2(e2)|//11(K/,K/)|V(K/-KJ). (5.71) 

Here, 02 is the scattered grazing angle measured from the mean surface, and 

Kf and K; are the transverse components of the scattered field and incident 
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field wave vectors,  respectively.    This example is concerned with the 

backscattering strength, I01og(on), where Kf = -K,. 

In Eq. (5.63), the complexity of medium 3 is characterized by the flat surface 

reflection coefficient, r. Eq. (5.43) is used to find the reflection coefficient from 

the partial reflection coefficients, Tn and r23. The partial reflection coefficient 

T12 is the fluid-fluid reflection coefficient at the interface between medium 2 and 

medium 3 (z = 0). The partial reflection coefficient r23 is the fluid-solid reflection 

coefficient at the interface between medium 2 and medium 3 at z = -d. When 

medium 3 is shear supporting, but gradient free, the partial reflection coefficient 

r23 is given by (Brekhovskikh, 1980; Brekhovskikh and Lysanov, 1991) 

T73=?mZlLi (5.72) 
Zin+Z2 

where 

Zin = ZM cos2(2y3) + Z3t sin2(2Y3), (5-73) 

Z2=-£2-, (5.74) 
Kß2 

Z-10   —• £3_, (5.75) 

and 

*-3r (576) 

The parameter K/ is the ratio of the compressional wave number of medium 3 to 

kx, and the parameter K, is the ratio of the shear wave number of medium 3 to 

kx. The complex angle y3 is determined from 
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cos(Y3) = ß3,(K), <5-77) 

where 

hl,3t=^-K2/(hHtf. (5-78) 

In Fig. 5.2, the parameters given in Fig. 5c of Essen (1994) are used to plot the 

backscattered field strength, 101og10(ou(Kf ,Kf)), K/ = -K,-,   as a function of 

grazing angle. In this example, medium 2 consists of a very fine sand and has 

thickness d = X. The wave number and density ratios are taken to be 

K = 1/(1.12-0.004/) and p =1.85. The sedimentary rock in medium 3 supports 

both shear and compressional waves with wave number ratios 

Kt = 1/(2.3 - 0.004/) and K, = 1/(1.3-0.11/). The ratio of the density in the 

sedimentary rock (medium 3) to that of the fluid in medium 2 is equal to 2.5. This 

example also uses the power-law roughness spectrum given in Eq. (3.55) or Eq. 

(3.66) with a = °o. Using a finite value for the filter parameter, a, would only 

affect the result at larger grazing angles than those plotted. Since y = 4.0, the 

backscattering strength does not depend on frequency. The spectral strength is 

given to be w2 =0.04/(2rc). This result is identical to the result obtained by 

Essen. 

5.5.3 The effect of sound-speed gradient on incoherent backscattered field 

In order to illustrate that gradients in sound speed can have a significant 

effect on the intensity scattered back into the water, the backscattered field 

strength, \Q\ogm(an{Kf ,K^, Kf =-K/, is computed as a function of grazing 

angle for a sediment with a sound-speed gradient in medium 3, and is contrasted 

with the no sound-speed gradient case — all medium parameters in medium 3 

are identical to those of medium 2. In this example, we have followed Mourad 

and Jackson (1993) in assuming that the square of the wave number in the 
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medium below the rough seafloor decreases linearly with depth. The choice of 

linear decrease in squared wave number with depth, 

kl(Q = (l-aQky, (5.79) 

where 

C, = -(z + d) (5.80) 

yields the well known solution for the field in medium 3 proportional to the Airy 

function, A/(x), and solution for the reflection coefficient in terms of Airy functions 

(Brekhovskikh, 1980): 

ik^{K)HAi(t,)-Ai\t,) 
231   ;    ik2$2(K)HAi(t0) + Ai'(t0) 

with 

H = [kla)XI\ (5-82) 

t0=H2{K2-kl\ (5.83) 

and 

x = H2aycl + H2{K2-kl). (5.84) 

The parameter a is expressed in terms of the sound-speed gradient, g, the 

sound-speed ratio, v, and the sound velocity in medium 1, q: 

fl = 2g/(vci), (5-85) 

where 

dc(Q 
8 = 

dt, 
(5.86) 

The parameter g is taken to be the sound-speed gradient at the interface 

between medium 2 and medium 3. An example that shows the effect of a sound- 
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speed gradient on scattering back into the water is given below. In this example, 

medium 2 is taken to be arbitrarily thin; the reflection coefficient r can be found 

from substituting Eq. (5.81) into Eq. (5.43), and setting d = 0. 

= ifrfrropgAiQbJ-Ai'Ob) (5 87) 
ik^i^pHAi^ + Anto)' 

Since the medium above z = -d must be medium 2, z = -d must be at or below 

the lowest point on the rough interface. However the sound-speed gradient is 

small enough in this example that setting d = 0 results in a negligible difference 

in scattering strength. Since the backscattered field strength is plotted only to a 

grazing angle of 70°, values of the filter parameter a>15m in the power-law 

roughness spectrum given in Eq. (3.66) result in the same scattered field 

strength. 

Figure (5.3) compares computations of seafloor backscattered field strength 

made with and without a sound-speed gradient for a frequency of 300Hz and a 

water sound speed of 1545 m_1, with parameters appropriate to a soft silty or 

clayey bottom   (p21 =1.548,  v2i=056, and 8 = 0.1445 xlO-3) and an upward 

refracting sound-speed gradient at the interface of 1.3 s-1. This example shows 

that the sound-speed gradient can cause an appreciable change in the seafloor 

scattering strength. The gradient in this example is high enough, and the loss is 

low enough, so that much of the energy that is transmitted through the interface 

is refracted upward to the interface to strike it again, resulting in constructive or 

destructive interference. The significance of this interference is discussed further 

in chapter 6. While this example illustrates the effect of large-scale gradients on 

low frequency scattering, very steep gradients on centimeter scales can result 

from biological reworking of sediments (Richardson, 1986) and may influence 

high frequency scattering. Gradients in porosity are equivalent to gradients in 

density (Hamilton, 1974), which can have strong effects on the reflection 

coefficient (Rutherford and Hawker, 1978; Holthusen and Vidmar, 1982). 
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Since the sound-speed profile at the experimental site is not known, the 

effect of gradients in sound speed on the incoherent and coherent intensity 

scattered through a rough interface is not included in the model used in the 

simulations (chapter 4). 

5.6 Second-order field 

For the ocean experiment simulation (Chotiros, 1995) we use a zero-order 

approximation in the coherent intensity calculation. There is a slight 

inconsistency in this approach, in that the incoherent intensity is proportional to 

the second power of kxh, while the coherent intensity is only computed to an 

accuracy of kxh to the zeroth power. The second-order field is found in the next 

section. Using this result, we obtain an expression for the second-order coherent 

field. 

5.6.1 Derivation of T-matrix 

The procedure for finding the second-order field is similar to finding the first- 

order field. However, both first-order and zero-order results are required in order 

to obtain the second-order field. Setting N=2 in Eq. (5.51), substituting K' for K 

in the F, terms, and using Eqs. (5.54), (5.57), (5.58), and (5.69) and 

F2(K" - K) = JÄ'F(K" - K')F(K' - K) (5.88) 

from Eq. (5.9) yields 
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2^2)(K") = J d2K' J d2KF(K" - K')F(K' - K)^-(K) 

x< (i + r(K")) 
ßl(K) 
ßl(K") 

+(l + r(K"))^^- 
ßl(K") 

kf (i + r(K"))_ 

,(i-r(K-)) 

H 
r(K) 

(l-y)Kß2(K) 
+(i+r(K"))(i+r(K))(i+Y)pßi(KW) 

-(i-r(K"))(i + r(K))(Kß2(K))2} 

+2/ j Ä' J ÄF(K" - K')F(K' - K)¥f(K) 

x Hn(K',K)(l + r(K"))     * 

2    K K' 
Cl      J 

ßl(K") 
5j*l -1 - Pl(K")fo(KoG-^a 

ci (i + r(K")) 

+ff12(K',K)(l + r(K"))(l + y')i p^ 

-H12(K',K)(1 - r(K"))Kß2(K')(l - y')}. 

2    K'-K" 

(5.89) 

Define GU(K",K',K), such that 

^2)(K") = JÄ'JÄF(K"-K')F(K'-K)^(K)G11(K",K',K). (5.90) 

With much work and use of the second identity in Eq. (5.42), the above 

expression is equivalent to 
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G„(K",K',K) 

-fr2"1) 

JHU(K',K) 

(l + r(K"))(i - r(K))|^- - (l - r(K"))(i + r(K» (5.91) 

+ 
ßl(K") 

K' K" 

V   *i 
-1 (i+r(K">) - ß!(K")ßi(K')(i - r(K")) 

+///12(K',K)(l + r(K")) (1±Y1 
ßl(K") 

X 
K2     IK'-K' 

-pft(K")ft(K') 
/x(i-r(K"))i-r(KQ 

p   p   itf           (i+r(K"))i+r(K')_ 

In order to find the second-order field scattering through the interface, set N = 2 

in Eq. (5.21). 

\2 yi2)(K")(l + Y") = -JA (ß1(K))2F2(K" - K)^-(K) 
+jd2K 2ißi (K)F(K" - K)^1}(K) 

-JÄ(ß1(K))2F2(K"-K)^0)(K) 

-J ÄKß2(K)F(K" - K)[l - YH^K) 

-J A(Kß2(K))2F2(K" - K)[l + YH_
}
(K) 

(5.92) 

+J 
+ l 

The expressions 

^)(K) = fA'ff11(K,K')F(K-K')^(K') (5.93) 

and 

YlVCK) = JA'tf12(K,K')F(K - K')^(K') (5.94) 

are obtained by combining Eqs. (5.4), (5.62) and Eqs. (5.5), (5.69). Combining 

Eqs. (5.57) and (5.58) yields 
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y(0)(K) = !+T(K) )_ (595) 

(I+Y) 

Using Eqs (5.88), (5.93), (5.94), and (5.95) in Eq. (5.92) yields 

4>i2)(K")(l + Y") 

= jd2KJd2K'F(K" - K')F(K' - K)^-(K) 

x{-ß2(K)(l + r(K)) + (Kß2(K))2(l + r(K)) + 2iHx iCK'.KJßiCK') 

+2iff12(K',K)Kß2(K')(l- Y') + Gn(K",K',K)}. 

Using the following definition for G12(K",K',K), 

¥i2)(K") = J A J A'F(K" - K')F(K' - K)^(K')G12(K",K',K), (5.97) 

in Eq. (5.96) yields 

G12(K",K',K)(l + Y") = {-ß2(K)(l + r(K)) + (icß2(K))2(l + T(K)) 
+2*7/11(K',K)ß1(K') 
+2/H12(K',K)Kß2(K')(l-Y') + Gii(K",K',K)} 

By noting the following identities, 

(ßl(K))2-(Kß2(K)f=^-^ = l-K2, (5.99) 

Eq. (5.98) simplifies to 

(1 + Y")G12(K",K',K) = (K2
 - l)(l + r(K)) + 2///! 1(K',K)ß1(K') 

+2iff12(K',K)Kß2(K'Xl - Y') + Gn(K",K',K).        (5>100) 
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5.6.2 Second-order coherent field 

In order to check the zero-order approximation for the coherent intensity, the 

goal in this section is to find the coherent component of the second-order T- 

matrix, M2)(K",K)V If we allow G to represent both Gn in Eq. (5.91) and Q2 

in Eq. (5.98), it can be expressed as the sum: 

G(r,K',K)sGfl(r,K) + Gj(r)K',K). (5.101) 

The r-matrix is found from Eq. (5.90) or Eq. (5.97): 

r(2)(K",K) = J Ä'F(K" - K')F(K' - K)Ga(K",K) 
+| d2K'F{K" - K')F(K' - K)Gb (K", K', K). (5.102) 

Substituting 

/i(R) = /(R) (5-103) 

and 

/2(R) = /(R)eiK'R (5-104) 

into the identity 

-^\d2RMR)f2(R)c-iKR=jd2K'Fl(K-K')F2(K') (5.105) 

yields 

-L- fd2Rf2(R)e-i{K"-K}R = (A'F(K"-K')F(K'-K). (5.106) 

Note that / is a WSS process with unit variance. Therefore, taking the expected 

value of Eq. (5.106) over the ensemble of interfaces results in the following 

identity: 
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8(K" - K) = (JÄ'F^K" - K')F2(K' - K)}. (5.107) 

Consequently, the expected value of the first term on the right side of (5.81) 

results in the following expression for the coherent second-order T-matrix: 

(J A'F(K" - K')F(K' - K))Gfl(K",K) = 5(K" - K)Ga(K,K). (5.108) 

Define Int2 to be the second term on the right side of Eq. (102). 

Int2 = \d2K'F{K" - K')F(K' - K)Gb{K",K',K). (5.109) 

Substituting 

F(K) = -^(A/(R)e-,M (5.110) 

for both F(K"-K') and F(K'-K) in Eq. (5.109), and taking the expected value, 

yields 

(Int2) = JÄ'Gfc(K",K',K){j d2R e-'"(K'-K)-R 

x- 

where 

C(R'-R)^2(/(R')/(R)) (5-112) 

is the surface autocorrelation function. By noting 

1     \d2R' e-'(K"-K')R' c(R, _ R) = e-i(K"-K0-R 

(2*)2j 

= e-«(K"-K')R w(p,_K,yh2 {5n3) 

and 
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1 „ \d2R e-«(K'-K>Re-i(K"-K')-R Wfo" _ R,\ = g/K _ K") W(K" - K'),    (5.114) 
(2n)  J 

Eq. (5.111) simplifies to 

(Int2) = 6(K-K")JÄ,Gfc(K",K/,K)W(K"-K')A2. (5.115) 

By using Eqs. (5.107) and (5.115), the expected value of Eq. (5.102) simplifies to 

V(2)(K",K)} 

= 8(K"-K){Ga(K,K) + JA'Gi,(K,K',K)W(K-K/)A2}. (5.116) 

By making an approximation suggested by Thorsos and Jackson (private 

communication), Eq. (5.116) is approximately 

(r(2\K",KJj = 8(K" -K){Ga(K,K) + Gb(K,K,K)jd2K' W{K - K')/h2} 
= 8(K"-K){Ga(K,K) + Gfc(K,K,K)}. (5.117) 

To second-order, the expected value of the r-matrix is given by 

(r(K",K)> = (r(°)(K",K)} + |(M)2(r(2)(K",K)). (5.118) 

The intensity reflection or transmission coefficient, £7, (Thorsos, 1990) follows 

from Eq. (5.118). 

Kj = |*(K)|2 = |^o(K)|2 + {hhf Re{^(K)*2(K)}, (5.119) 

where 

*(K) = *o(K) + ^)2*2(K), (5-12°) 

(7(K",K)) = 5(K"-K)^(K), (5.121) 

and (see also Berman, 1992) 
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M2)(K",K)) = 5(K" - K)£2(K). (5.122) 

For the case of scattering from an interface, substitute the flat-surface reflection 

coefficient r(K) for *0(
K) and »n(K) for *(K); for the case of scattering 

through an interface, substitute the flat surface transmission coefficient 7(K) for 

^0(K),and^12(K)for^(K). 

For scattering from the interface,  Eq. (5.91) along with the definition in Eq. 

(5.101) yields 

-ft2-1) 
(i+r(K"))(i - r(K))|^- - (l - r(K"))(i+r(K» (5.123) 

and 

Gllb(K- '^ >K)~ 
_afn(K',K) 

ßl(K") 

'( K' K' 

v  H 
-l (i+r(K")) - ß1(K")ß1(K/)(i - r(K")) 

+tff12(K/
tK)l1+V 12 ßi(K") 

x 
fK2    1K'-K"^ 

P     P    k 
(i + r(K")) - pß^K'OßiCK'Xi - r(K")) 

i   ) 

'\\ fi-r(KQ 
i+r(K') (5.124) 

Likewise, for scattering through the interface, using Eq. (5.100) and the definition 

in Eq. (5.101) yields 

G12jK^K) = ^(K2-l)(l + r(K)) + r^-GllG(K'',K) (5.125) 

and 
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Gm(K",K',K)(l + y") 

= UHX! (K'.K)fc(K') + 2i//12(K',K)Kß2(K')(l - y') « 126) 
+Gm(K",K',K). < •      ' 

5.6.3 Second-order coherent field calculations for incident plane wave 

In Eq. (5.119), *7 consists of the zero-order term and the second-order term; 

the first-order T-matrix is zero mean. In order to compare the second-order term 

to that of the zero-order term, the second term on the right side of Eq. (5.119) 

divided by the first term on the right side the equation is plotted in Fig. 5.4 as a 

function of the RMS (root mean square) surface height. The grazing angle is 20° 

in Fig. 5.4a, and it is 40° in Fig. 5.4b. The solid curve results from using Eq. 

(5.116), the dashed curve is due to Eq. (5.117). 

5.6.4 Modification of coherent field calculation 

Taking the expected value of both sides of Eq. (5.5) and using Eq. (5.121) yields 

(¥2_(K)) = *12(KWK).. (5.127) 

For the case in which medium 3 parameters are identical to medium 2 

parameters, 

y2_(r) = }A>F2.(K)e-^'(K)VK'R (5.128) 

Taking the expected value of the above equation and using Eq. (5.127) results in 

an expression for the coherent field penetrating the rough interface. 

(¥2_(r)> = J J2^^12(K)^(K)e-^ßl(K)ze'KR. (5.129) 

Likewise, the coherent field scattered from the interface is given by 

(¥/(r)) = JÄ^1(Km(K)ell'P>(K)V'KR. (5.130) 
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Note that %l2(K)in Eq. (5.129) is a coherent transmission coefficient, but ^n(K) 

in Eq. (5.130) is a coherent reflection coefficient. Referring to Eq. (2.91), the 

exact expression for the zero-order field is easily modified by substituting %n(K) 

for the transmission coefficient. 

(V2-(')> = ijdK r°K*l2{K) e^ißi(K)-^2ß2(K)) JQ{KR) (g 131) 

The square of the time-dependent coherent field magnitude scattered through 

the rough interface due to an incident point source with baseband source signal 

U(oo) is therefore 

2 

hc(r,t) = J Jco£/(co)e-'cor jdK r0^2(K) e»Mßi(K)-^ß2(K)) JQ{KR) 

*lßl(K) 
(5.132) 

5.7 Summary 

Nth-order perturbation recursion equations are derived in this chapter that 

allow for simple computation of the first and second-order fields for scattering 

through and from a fluid-fluid rough interface. An expression for the second- 

order coherent field is derived that illustrates when it is necessary to include the 

second-order field in the coherent intensity calculations for scattering through 

rough interfaces. In the ocean experiment simulations, k\h = \, and including 

the second-order component reduces the coherent field calculated with the zero- 

order result by almost ten percent. Since the peak incoherent intensity and 

coherent intensity typically differ by over an order of magnitude for all incident 

angles, and at all receivers, the difference in the calculated coherent field by 

excluding the second-order correction does not affect the intensity velocity 

algorithm output. 
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The results in this chapter are general in that the medium below the lowest 

point on the rough interface is allowed to be vertically stratified, viscoelastic, or 

porous, and is contained in the reflection coefficient of the corresponding flat 

surface problem. For the case of increasing sound speed with depth, these 

results show that an interference effect can occur when enough energy is 

redirected back toward the interface. Since the sediment parameters such as 

sound speed, sound-speed gradient, and density are not everywhere constant, 

the effect of treating the sediment parameters as random is discussed in the next 

chapter. 
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VJ/1: incident field 

£3 

Medium 1 

Medium 3 

\\)f : scattered field 

z = hf(R) 

 -————w*^" Z__ z--d 

Figure 5.1 : Definition of the scattering problem for an arbitrary two-dimensional rough 

interface. Medium 1 (z > hf(R)) and medium 2 (-d < z < hf(R)) are homogenous 

fluids; the medium parameters can be a function of z for (z < -d). This diagram can be 

viewed as a slice through a two-dimensional interface. 
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0      10     20     30    40     50     60     70 

grazing angle (degrees) 

Figure 5.2 : Medium 2 is very fine sand with d = X,K = 1/(1.12-z 0.004), and p = 1.85. 

Medium 3 is sedimentary rock with K( = 1/(2.3-/• 0.004), Kt =1/(1.3-i-0.11), and 

p3/pl=2.5. ' Surface: w2 = 0.04/(2TC), y = 4.0. The solid curve uses these 

parameters. For the dashed curve, Kr = 1/1.13. For the dotted curve, there is no 

layering, i.e., d—>«>. 
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Figure 5.3 : Bottom backscattering strength with and without a sound-speed gradient 

for soft, silty, or clayey bottom: y = 3.25, w2 = 1636 x 10-4 m3/4, frequency = 300kHz, 

p = 1.548, 5 = 1.445 xlO-4, v=0.96,c1 = 1545m/s, gradient = 1.3 s_1. 
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Figure 5.4a : Ratio of second-order coherent term to zero-order term, 

(^)2Re{^o(K)^2(K)}/|^0(K)|2 with frequency = 20 kHz, p = 2.0, 5 = 0.0163, 

y = 3.0, w2 =6.2xl0"5m, v=1.13, q = 1536 m/s, and incident grazing angle, 

6, =20°. 
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Coherent intensity ratio 

k,,h 

Figure   5.4b        Ratio   of   second-order   coherent   term   to   zero-order   term: 

(^Ä)2Re{^o(K)^2(K)}/|^o(K)|2 with 6,- =40°, otherwise same parameters as Fig. 

5.4a (frequency = 20kHz, p = 2.0, 6 = 0.0163, y = 3.0, w2 =6.2 xlO-5 m, v=1.13, 

C\ =1536 m/s). 



CHAPTER 6 

First-order perturbation solution for scattering from a rough seafloor 

including the effects of random subsurface stratification 

6.1 Introduction to chapter 6 

The example in Fig. 5.3 shows that upward refraction due to a sound-speed 

gradient in the sediment results in constructive and destructive interference in the 

field scattered back into the water. This example assumes the sound-speed 

gradient and other seafloor parameters are not random. Since seafloor 

parameters such as sound-speed gradient and density actually vary with 

position, a more suitable model may be one that takes into account the inherent 

randomness of the seafloor parameters. In the last chapter, a first-order 

expression for the scattering cross section per unit area per unit solid angle 

(differential cross section) is derived that includes the complexity of the medium 

below the lowest point on the rough interface (medium 3) in the flat surface 

reflection coefficient. In this chapter, the reflection coefficient, r23, is modeled as 

a random variable. The expected value of the differential cross section over the 

random sediment parameters is then expressed analytically in terms of reflection 

coefficient moments. Analytical expressions for the reflection coefficient 

moments are found using ray theory. These analytical results are compared with 

modeling the sound-speed gradient as a random variable with Gaussian 

probability distribution (Moe and Jackson, 1994b), where the expected value of 

the differential cross section is calculated by means of a numerical integration. 
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6.2 Averaged scattering strength with random sound-speed gradient 

The first-order perturbation solution for the differential cross section for 

scattering from the rough interface can be found by combining Eqs. (5.71) and 

(5.63). 

4 "\~J    ~~l> „ (6.1) °-ii(<V^) = Tw(K/-K<) 
xUi+T(Kf ))(i+r{Kt))+b{\ - T(Kf ))(i - r(Kf)f, 

where 

-}    (\     \ 

P 

and 

(K/,K,) = l-^ + (l-,)^ (6.2) 
k 

b(Kf,Kt) = frCKf )ßi(K/)(p -1) (6.3) 

are given by Eqs. (5.64) and (5.65). The vectors Kf and K, are the transverse 

components of the scattered field and incident field wave vectors, respectively. 

The mean (flat) surface reflection coefficient, r, is written explicitly in terms of the 

reflection coefficients r12 and r23 in Eq. (5.43), where r12 represents the mean 

surface reflection coefficient at z = 0 as J->°° and r23 is the reflection 

coefficient corresponding to the interface between medium 2 and medium 3 

(z = -d). All of the complexity of the lower medium is contained in r23. As 

shown in Fig. 5.3, the lower medium, characterized in Eq. (5.43) by r23, can 

have a notable effect on the scattered field strength if it redirects a significant 

amount of the downward propagating energy in the sediment back up towards 

the rough interface. Two first-order effects as depicted in Fig. 6.1 can result in 

scattering energy away from the interface, resulting in destructive or constructive 

interference. 
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Since sediment parameters are typically not constant, the interference 

effects in Fig. 5.3 may not actually be observable. By treating the gradient as a 

random variable, the expression for the differential cross section given in Eq. 

(6.1), weighted by a Gaussian probability distribution for the sound-speed 

gradient (linear increase in squared wave number with depth) with variance 

/|g-(g)|2\ = 0.1sec_2 and mean (g) = 1.3sec-1, is numerically integrated.   The 

resulting averaged backscattering strength is plotted in Fig. 6.2 as a function of 

grazing angle and compared with the backscattered field strength due only to the 

rough seafloor surface with no gradient, r23 = 0. In this example, a sound-speed 

gradient in the sediment results in a substantial increase in the average 

backscattered field strength. This scattering gain occurs at all grazing angles, 

but is greater at smaller grazing angles. Large grazing angles result in long 

refracted paths in the lossy sediment, and therefore contribute less to this gain 

than small grazing angles with shorter paths. 

Using the same parameters as in the above example, we plot the bistatic 

scattering strength in Fig. 6.3 as a function of scattered grazing angle for an 

incident grazing angle 8,- = 15°. The scattered direction in all plots is chosen 

such that the incident transverse wave vector, K,-, and the scattered transverse 

wave vector, Ky , are in the same line, and the scattered grazing angle, 9y, is 

measured from the horizontal in the backward direction. In this case, 

backscattering (Kf=-Kt) corresponds to an angle of fy =15°.  Scattering gain 

due to the upwardly refracting sediment occurs in all scattered directions, 

including the backscattered direction, where a local scattering gain maximum, or 

backscattering enhancement, is apparent. The reason for this backscattered 

peak, as illustrated in Fig. 6.4, is that the coherent sum of the two paths 

corresponding to the incident and scattered direction occurs only in the 

backscattered direction, because only in this direction are the paths ABCD and 
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D'CBÄ of equal length. This effect is illustrated for similar scattering problems 

by Lang and Khadr (1992) in their analysis of remote sensing of a vegetation 

canopy over a flat ground, and in Hanson and Zavorotny (1995) in their analysis 

of backscattering from an ocean-like surface. The width of the peak depends on 

the sound-speed gradient variance, (\g-(g)f).   The larger the sound-speed 

gradient variance, the narrower this peak. Another oscillation that depends on 

the sound-speed gradient can be observed just below a scattered grazing angle 

of 10°. At these angles, the oscillations in the scattering strength are not quite as 

rapid as those at larger grazing angles, and the variance chosen for the gradient 

is not sufficient to completely wash out the dependency of scattering strength on 

scattered grazing angle. 

6.3 Formally averaged differential cross section with random sediment 

parameters 

Rather than using numerical integration as in the last example, using a 

general approach to this problem leads to a formally averaged analytic 

expression for the differential cross section per unit area that includes the 

randomness of seafloor parameters below /(R), in addition to the randomness of 

the interface. All of the complexity of the lower medium in Eq. (6.1) is contained 

in the reflection coefficient, T. Consequently, the inherent randomness of the 

sediment is equivalent^ represented in the random reflection coefficient, r. This 

point of view implies that the expression in Eq. (6.1) is actually a conditional 

expected value over the rough interface given deterministic sediment parameters 

below the interface, or a deterministic reflection coefficient, and the goal is to find 

the expected value of Eq. (6.1) over the random fluctuations in the seafloor 

parameters below z = /(R), 
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ön^^wiKf-KA^+Tf^+r^+bli-Tf^i-ri) (6.4) 

The approach is to express Eq. (6.4) in terms of moments of the flat surface 

reflection coefficients. The notation Tf = T(Kf) and r,- = T(Kt) is used for the 

reflection coefficient in Eq. (6.1). Expanding the square in Eq. (6.4) yields 

Ö!! = ^ w(Kf - Kf)[(|*(i+rf)(i+r$y b2l^(i - ry)(i - r,)f) 

+2^Re(.(i+r/)(i+r,)(i - r;)(i - r;))] (6 5) 

For monostatic scattering, the random variables ry and r, are equal 

(Ky = -K/), and Eq. (6.5) becomes 

ön^^-WiKf-Ki) 

x{|a|2[l + 4(|r|2} + (|r|4) + 2Re(r2) + 4Re(r) + 4Re(r|r|2)] 

+b2[l + 4(|r|2) + (|r|4) + 2Re(r2} - 4Re(r) - 4Re(r|r|2)] 

+fr Re(a)[2 - g(|r|2) + 2(|r|4) + 4Re(r2^ 

+8^Im(fl)[lm(r|r|2) - im(r)]}. 
(6.6) 

Small changes in medium parameters result in rapid changes in phase of the 

reflection coefficient. The reflection coefficients, ry and r;, are therefore 

assumed to be independent random variables for bistatic scattering. However, 

for scattering in directions close to the backscattered direction, the reflection 

coefficients corresponding to the incident and scattered directions are neither 

equal or independent (see Fig. 6.3). For independent reflection coefficients, Eq. 

(6.5) becomes 
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cn=^-W(Kf-Ki) 

x||flf ![l + 2Re(r/) + (r/) [l + 2Re<Ii> + {|ri|2) 

+b2~ i-2Re(r/)+(r/
2) l^Re^-f^f) 

+2bRe{a) \^ff)l^n2))-MTf)Mri)_ 
-4M m(fl) im(n)(i-(r/2) ]M^H)) } (6.7) 

In order to find expressions for the moments (r), (r2), (|rf), (r|r|2), and (|r|4), 

an equivalent form of Eq. (5.43) is used to express the reflection coefficient, r, in 

terms of the partial reflection coefficients r12, and r23 as a geometric sum, 

r=r12+(i - rf2)r23 J*** £(-r12r23 .***<)" 
n=0 

(6.8) 

Small variations in medium parameters result in small deviations of the 

magnitude of the reflection coefficient r23 from its mean, but result in large 

fluctuations of its phase. The partial reflection coefficient r23 is assumed to have 

the form 

T23(K)c2ik^d =r\(K)c^, (6.9) 

where c> is a uniformly distributed random variable between 0 and 2TC, and 

r|2(K) is approximated as the mean square reflection coefficient (|r23(K)| V 

With much work, Eqs. (6.8) and (6.9) yield 

<r) = r12, (6.10) 

(r2) = r1
2

2, (6.11) 
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|rf Hri2r + 1-I?2 
T 

i-FdY 
(6.12) 

(r|r|2) = r12|r12r+2r12 i-n 12 
■n 

i        i2    9 i-|r12|ri2 

-ri*2(i-ri
2

2) 

(|r|4) = |r12r+4|r12f 

i-if2 

1-4 

Tl 

(i-|r12|
2,2)2 ' 

T 
2^2 

+ i-n 12 rf 
I + F12I   Tl 

(1-F12IV 

I-F12I  *1 
|2_2 

-4 Re ri2
9fi-r12 12 

V 
i-ri2

2 
Tl 

2^2 
1-Fl2   Tl 

(6.13) 

(6.14) 

The derivations for Eqs. (6.12), (6.13), and (6.14) are given in Appendix E; Eqs. 

(6.10) and (6.11) follow immediately from Eqs. (6.8) and (6.9). 

6.4 Effect of sound-speed gradient 

The above formalism is now applied to the case of a linear decrease in 

squared wave number with depth introduced earlier (Figs. 5.3, 6.2, and 6.3). In 

order to use the differential cross section expressions in Eqs. (6.6) and (6.7), the 

value for T|2(K) = /|r23(K;)|2)  (^=0) is computed and used in Eqs. (6.10) 

through (6.14). These equations are then substituted in Eq. (6.6) to obtain the 

monostatic differential cross section, or in Eq. (6.7) to obtain the bistatic 

differential cross section for scattered directions not close to the backscattered 

and specular directions. Rather than use Eq. (5.81) to determine r|2(K) exactly, 

a computationally efficient, yet accurate, ray theory expression (Appendix F) is 

used to obtain the following analytical expression for /|r23(K:)| 



- sin3 (62) + 2 cos2 (02) sin(92) (|r23(K)|2) = Ti2(K) = expl-— 

where 82 is the grazing angle just below the mean surface, 

Y\ 
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(6.15) 

COS(0^ = ^- (616) 
Re(fc2) 

The gain parameter, q, is the sound-speed gradient, g = dc/dz evaluated at 

z = 0, divided by the product of the frequency, /, and the loss parameter, 8: 

„ = J_ = M. (6.17) 

This parameter will be shown to determine the average gain of the scattered field 

strength due to gradients and discontinuities below the rough water-sediment 

interface as compared to the scattered field strength due solely to the rough 

water-sediment interface. For example, a small value of q due to a relatively 

large loss at a high frequency will result in the attenuation of much of the signal 

energy before it strikes the rough interface again from below, resulting in little 

scattering gain over the homogenous fluid-fluid case. Also, a small sound-speed 

gradient results in large path lengths, and attenuation of much of the signal 

energy before it strikes the rough interface for the second time. When q is small, 

only the sediment properties at the water-sediment interface are of importance in 

the scattered field strength calculation . 

An expression for r|2(K) for the linear increase in sound speed with depth 

case is also derived in Appendix F. 
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6.4.1 Effect of sound-speed gradient on backscattered field strength 

As a check of the analytical results, the backscattering strength using Eq. 

(6.6) is plotted in Fig. 6.5 along with the numerically obtained result from Fig. 6.2, 

and the bistatic scattering strength obtained from Eq. (6.7) is plotted in Fig. 6.6. 

It is evident that the scattered field strength obtained by numerically averaging 

the expression in Eq. (6.1) over a Gaussian probability distribution function for 

the gradient is indistinguishable from the result due to the formally averaged 

differential cross section in the backscattered direction and for bistatic scattering 

at least a few degrees from the backscattered direction. In this example, the 

gradient gain parameter has the relatively large value q = 30. Equation (6.6) is 

used to find the point on the plot corresponding to backscattering. 

When K/=-KI-, then r(K/) = r(KI-)f resulting in a peak in the 

backscattered direction. Depending on the value of the sound-speed gradient 

variance in the numerical calculation, the reflection coefficients T(Kf) and r(K,-) 

are correlated when Kf is close to Kb and therefore the bistatic scattered field 

strength is dependent on the gradient variance in the region close to the 

backscattered direction. However, even for a small variances in seafloor 

parameters, this region is very small. 

The moments obtained in Eqs. (6.10) through (6.14) using the representation 

for the random reflection coefficient in Eq. (6.9) also agree very closely with the 

corresponding reflection coefficient moments obtained numerically with a 

Gaussian probability distribution function for the sound-speed gradient. 

Figure 6.7a illustrates the dependency of the scattering gain, 

lOlog^ön/on), (Ki = -Kf), where on is given by Eq. (5.71), on the mean 

density ratio and mean sound-speed ratio for q = 30. This value for q is the 

same as that of Figs. 6.2, 6.3, 6.5, and 6.6. Fig. 6.7b.is an identical plot, but with 

a lower gain parameter, # = 10, resulting in correspondingly lower values for the 
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scattering gain. For a density ratio close unity, the scattering gain can be very 

large. However, the density ratio must always be greater than one for the 

seafloor. 

The dependence of the scattering gain on q and grazing angle is shown in 

Fig. 6.7c. As can be seen in Fig. 6.3 and Fig. 6.7c, the scattering gain is strongly 

dependent on the grazing angle. A low grazing angle results in a significantly 

higher scattering gain because the resulting ray path length in the lower sediment 

is much shorter and therefore attenuated much less than the large grazing angle 
case. The dependency of the scattering gain on q is greater for larger grazing 

angles. 

6.4.2 Bistatic scattering and backscattering enhancement 

Figures 6.8a, 6.8b, 6.8c, and 6.8d use Eqs. (6.6) and (6.7) to show 

backscattering enhancement corresponding to the same sediment parameters in 

Figs. 6.7a, 6.7b, 6.7c, and 6.7d. Note that these results do not depend on 

interface roughness. Since the two first-order paths through the sediment add 

coherently only for monostatic scattering (see Fig. 6.4), the field strength 

scattered back in the direction of the transmitter is greater than the field strength 

scattered in other nearby directions. As is clear from Fig 6.8c, the dependency of 

backscattering enhancement on q is negligible. 

6.5 Conclusion 

A formally averaged expression for the scattered field that includes the 

random stratification below the rough seafloor surface as well as the randomness 

of the rough seafloor is derived in this chapter. Although this formalism can be 

applied to a rough interface above any arbitrary vertically stratified sediment, ray 

theory is put to use to obtain formally averaged closed form analytical 

expressions for the special case of linear decrease of squared wave number with 

depth sound-speed gradient.  This result shows that the scattering gain due to 
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upward refracting sound-speed gradients is determined by the quantity 

q = g/(fö), the sediment parameters (speed ratio, and density ratio), and also the 

incident angle. 

Gradients and layering below the seafloor can strongly affect the scattering 

from the interface if a significant amount of the energy that penetrates the 

interface is redirected back up towards the interface. The effect of gradients in 

sound-speed on scattering can be significant even for incident energy at large 

grazing angles (for situations with large q — large gradient, low frequency, low 

loss), but the effect of gradients on the scattered field strength is most significant 

at small grazing angles. Backscattering enhancement is also shown to occur in 

sediments that exhibit a relatively large scattering gain. By using numerical 

solutions for the flat surface reflection coefficient, the monostatic and bistatic 

differential cross sections of a rough interface above an arbitrarily complicated 

vertically stratified sediment that includes the randomness of the sediment 

parameters below the interface, in addition to the randomness of the interface, 

can be solved using the formalism in this chapter. 

The results of this chapter can also be used to obtain expressions for the 

field scattered through the rough interface when the sound speed is depth 

dependent. These results could then be incorporated in the model used in the 

ocean experiment simulation discussed in chapter 4. Except for downward 

propagating energy, sound-speed gradients would increase the path length of 

energy scattering into the sediment. Consequently, sound-speed gradients 

would seem to favor downward propagating energy, resulting in a slower 

apparent slow wave propagation than that predicted by the model used in 

chapter 4. The effect of sound-speed gradients on the scattered field through the 

interface is, however, beyond the scope of this dissertation, and a subject for 

future investigation. 



169 

Constructive or destructive interference 
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Figure 6.1  : Two first-order effects that can result in destructive or constructive 

interference. 
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Figure 6.2 : Averaged backscattering strength.    Linear decrease in squared wave 

number with depth sound-speed gradient,   g, with Gaussian  probability function 

((g) = 1.3 s"1, l\g\2 - (g)) = 0.1 s"2). All other parameters same as Fig. 5.3. 
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Figure 6.3 : Numerically averaged bistatic scattering strength; same parameters as Fig. 

6.2 and Fig. 5.3. 
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Backscatterlng enhancement 
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Figure 6.4 : Backscattering enhancement. If paths ABCD and D'CBA' are equal 

(A = A' and D = D'), then backscattering enhancement due to the sound-speed 

gradient occurs. 
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approximation. Same parameters as Fig. 6.3. 
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Figure 6.7a : Dependency of scattering gain, 101og10(ö/o), [K,- =-K^j, on the mean 

-l 
density ratio and mean sound speed ratio for q = 30 (frequency = 1 kHz, g = 30 s   , 

8 = 0.001, incident angle = 45°) 
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Figure 6.7c : The dependence of the scattering gain on  q  and grazing angle: 

frequency = 1 kHz, 6 = 0.001, v = i, q =1500 m/s, p = 1.5. 
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parameters as Fig. 6.7a (q = 30). 



179 

Backscattering Enhancement (dB), q = 10 

0.90 1.00 1.10 1.20 1.30 

speed ratio 

Figure 6.8b : Backscattering enhancement as a function of p and v using same 

parameters as Fig. 6.7b (q = 10). 
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Figure 6.8c : Backscattering enhancement as a function of grazing angle and q; 

p = 1.5, f = 1 kHz, 8 = 0.001, v = 1.0, q = 1500m/s. 



CHAPTER 7 

Dissertation Summary and Proposed Future Work 

7.1 Introduction to chapter 7 

By means of analytical models for seafloor scattering derived in this 

dissertation, roughness is shown to be an important mechanism for penetration 

of acoustical energy into the sediment at subcritical grazing angles. 

Experimental results (Boyle and Chotiros, 1992; Chotiros, 1995) showing 

acoustic penetration from water into sandy sediments at grazing angles below 

the compressional critical angle in relation to the mean surface are explained in 

terms of diffraction of an ordinary longitudinal wave, rather than refraction of a 

slow wave. 

Since the transmitted signal in the experiments is a pulse, formalism for 

scattering of a pulse through a rough interface as well as from a rough interface 

is derived in terms of the scattering cross section per unit area per unit solid 

angle (differential cross section). This analytical result for the time-dependent 

scattered field intensity is used to show that the CW approximation is appropriate 

for simulations of both experiments. First-order perturbation theory is used to 

obtain an approximate expression for the differential cross section. Since using 

the zero-order field to represent the coherent intensity is only valid for small 

amounts of interface roughness, the second-order component of the coherent 

field intensity is derived, and compared with the zero-order component of the 

coherent intensity for the sediment roughness parameters used in the ocean 

experiment simulation. These analytical results justify using the flat surface field 

to represent the coherent component of the field. Although the main problem is 

acoustic scattering through the water-sediment interface for an incident field in 
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the Water, analytical results derived in this work also include scattering from the 

interface. Furthermore, these analytical results are general, and can be applied 

to other rough interface scattering problems. 

Gradients in sediment sound speed are also allowed in the perturbation 

results. A novel approach for finding the differential cross section, given 

vertically stratified random sediment parameters, yields analytical results that 

show the average effect of sound speed gradients in the sediment on the field 

scattered back into the water. Although gradients in sound speed may affect the 

apparent slow wave speed, this effect is not calculated in this dissertation. 

However, the formalism in this dissertation can be generalized to include the 

effect of sound-speed gradients on the field penetrating the surface. 

7.2 Time dependent scattered intensity — chapter 2 

An original expression for the two-frequency mutual coherence function for 

scattering from and through a 2-D fluid-fluid rough interface due to a narrowband 

incident plane wave is derived and expressed in terms of the second moment of 

the r-matrix, resulting in a general analytical expression for the time dependent 

incoherent intensity due to a narrowband incident plane wave. 

Two approximations are made to the two-frequency mutual coherence 

function when obtaining the results of chapter 2. 

• The r-matrix correlation function is assumed to vary slowly over the source 

frequency range. This assumption is shown to be valid in chapter 3 for a 

narrowband source signal. 

• The phase terms are expanded in a power series in frequency. 

An equivalent expression, omitting evanescent waves, is obtained in terms of the 

differential cross section. It has been demonstrated that the evanescent 

component of the scattered incoherent field is insignificant compared to the 
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propagating component of the incoherent field for distances as small as one or 

two wavelengths from the interface, depending on the surface roughness 

spectrum. In the limit as the narrowband signal approaches the CW (continuous 

wave) case, the result in terms of the r-matrix correlation function is exact, and 

the result in terms of the differential cross section approaches the exact solution 

for distances sufficiently far from the interface. This result is interesting, because 

the differential cross section is defined as a far-field entity. 

This expression for the incoherent time dependent scattered field intensity in 

terms of the differential cross section is used to heuristically obtain the 

corresponding expression for the scattered field due to a narrowband point 

source. A simple analytical expression is obtained for the case of a Gaussian 

shaped source pulse, also in terms of the differential cross section. The 

analytical results and calculations in this chapter show that the sonar equation is 

appropriate for the simulations of the experiments. 

7.3 First-order perturbation theory — chapter 3 

Derivations for the first-order perturbation expressions used for the numerical 

computations in chapter 2 and in the computer simulations (chapter 4) for 

scattering both from and through a rough fluid-fluid interface separating two 

homogenous fluids are presented in chapter 3. These first-order perturbation 

theory results are also used to show that the T-matrix correlation function varies 

sufficiently slowly over the source frequency range so that its dependence on 

frequency can be ignored in the time dependent scattered field derivation. 

7.4 Computer simulations of recent experiments — chapter 4 

The results of computer simulations of recent experiments, presented in 

chapter 4, show the effect of roughness on acoustic penetration of the seafloor 
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and are compared with recent sediment penetration experiments. These results 

show that the incoherent intensity scattered through the rough seafloor can 

mimic a slow refracted wave. 

By assuming a small amount of roughness at the water-sediment interface, 

and using the 3-D scattering model developed in chapter 2 and the first-order 

perturbation theory results for 2-D fluid-fluid interfaces derived in chapter 3, it is 

possible to reproduce the results of the tank experiments of Boyle and Chotiros 

(1992), both in magnitude and arrival time of the incoherent intensity pulse 

(apparent slow wave). These results indicate that the acoustic penetration of the 

surface may be due to scattering (diffraction) from low levels of roughness rather 

than slow-wave refraction. 

Simulations of the ocean sediment penetration experiments (Chotiros, 1995) 

are presented and compared with Chotiros' experimental results. Assuming 

roughness parameters appropriate to the experiment location and using the 

intensity propagation speed and direction finding algorithm used by Chotiros, 

these simulations also show propagation of energy at speeds slower than the 

compressional speed of the sediment, in a direction concurring with Snell's law. 

Although the simulations yield an apparent slow wave that is between 50m/s and 

300 m/s faster than the results presented by Chotiros, the apparent slow wave 

speed is dependent on the roughness spectrum. Because of the potential for 

disturbance of the sediment above the receivers, the roughness spectrum 

measured in the area of the experiment is not the same as that of the actual 

roughness spectrum at the experiment site. 

7.5 Perturbation theory results for a fluid-fluid interface including 

gradients — chapter 5 

Using Rayleigh-Rice perturbation theory, Nth order recursion equations are 

derived in chapter 5 that provide a starting point for evaluating the Nth order 
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scattered field in terms of lower orders. The sediment below the lowest point on 

the interface can be viscoelastic, or porous, supporting shear or Biot slow waves 

as well as gradients in physical properties (e.g., sound speed can vary with 

depth), and is represented by the corresponding flat surface reflection coefficient. 

For the case of increasing sound speed with depth, these results (first-order) 

show that constructive and destructive interference in the field strength can occur 

for scattering back into the water when a significant amount of energy is 

redirected back toward the surface. 

An expression for the second-order coherent field is derived from the Nth 

order recursion equations that illustrates the necessity of including the second- 

order component in the coherent intensity calculations for k\h>\. 

7.6 Formal average of sediment parameters — chapter 6 

Since the sediment parameters such as sound speed, sound speed gradient, 

and density generally show variability in lateral direction, the effect of treating the 

sediment parameters as random is shown in chapter 6. The first-order 

expression for the differential cross section derived in chapters 2 and 5 is 

generalized to account for randomness in the medium below the lowest point on 

the rough interface by expressing the differential cross section in terms of 

moments of the stochastic flat surface reflection coefficient. This approach 

results in a formally averaged expression for the scattered field that includes the 

random stratification in the sediment, in addition to the randomness of the rough 

water-sediment interface. 

Although this formalism can be applied to a rough surface above any 

arbitrary vertically stratified sediment, ray theory is used to obtain formally 

averaged closed form analytical expressions for a few special cases that include 

sound speed gradients. This result shows that the scattering gain due to upward 

refracting sound speed gradients is determined by the quantity q = g/{fi), the 
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sediment parameters (speed ratio and density ratio), and also the incident angle. 

Upward refraction or reflection due to large sound speed gradients in the 

sediment results in increased scattering strength over the non-gradient case. 

Backscattering enhancement is demonstrated in this first-order result, since the 

scattering gain has a relative maximum when the incident and scattered grazing 

angles are equal. 

Summary and ideas for future work 

The tank and ocean experiment simulation results presented in this 

experiment show that surface roughness is a mechanism for subcritical 

penetration of sediment. Although the issue of the dominant mechanism for 

subcritical penetration of the seafloor can only be resolved by experiment, further 

improvements on the scattering model can be made. For example, the effect of 

sound speed gradients on the scattered field through the interface is a subject for 

future investigation. The results of chapters 5 and 6 can be used to obtain 

analytical expressions for the field scattered through the rough interface when 

the sound speed is depth dependent. These results could then be incorporated 

in the model used in the ocean experiment simulation. 

The Nth order recursion equations provide a starting point to solve higher 

orders. Solving for the third-order scattered field would provide a means of 

obtaining the differential cross section to (kxhf. This result could then be used to 

determine the accuracy of the first-order results for scattering through and from 

2-D surfaces. 

The results in chapter 5 provide a straightforward approach for obtaining the 

first-order scattered field from multiple rough interfaces in terms of partial 

reflection coefficients. The effect of multiple rough interfaces could then be 

compared with the results of chapter 6. 
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APPENDIX A 

Derivation of narrowband dispersion coefficients 

Equations (2.38) - (2.41) (expressions for th t2, P, and Q) are derived in this 

section. For convenience, define 

coj = coc + co' 
Cü"=CöC+Cü". 

From Eqs. (2.10), (2.36), and (A1), 

g2(g,m;,(Da = (a);M)Kß2(|K-K<f/2|,CD;) 

=    K 
CO 

lciy 
-ü:2+K-Kd-i-Kd-KJ 

Substituting Eq. (2.34) for Kd in the above expression yields 

B2(K,<a't,(0?)=    K 
A„^2 

CO 

cl J 
-jr + # 

^ 
cos8,cos())- 

cl   > 

COSB,^ 

2   , 

Equation (2.42) is included below for convenience: 

ß2(^,coc + co',a)c+co") = ß2C(^) + ^«/ + ^c 

 £co   +2-—■— 
3co" 3co9a)' 

.a^ + L^-co^ 
a co' 

The derivatives in (A4) are found from (A3), 

f^2_ = _J_ 
9co;    2^ 

2K
2

CO;    arK —^ - cos6,+2 
c\ 

A co"-co 'cosBj- 
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(A1) 

(A2) 

.   (A3) 

(A4) 

(A5) 

and 
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V'-coA 

— cos 6,-2 
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Note that 
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Using (A5) and (A7), 
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Evaluating the derivatives at co'= co"= 0 or 

co; = co, = coc 

yields 

B2C(K) ss B2(K,G)C + CO',COc +0)")|co,=0)„=0 = Kfclcß2(tf,COc), 
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Substituting (A12) - (A17) into (A4) yields an approximate expression for B2. 
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Subtracting Eq. (A18) from the conjugate of (A19) yields an approximation for 
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Combining the co' terms in (A20), 
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leads to Eq. (2.45). 

Starting with the co'2 terms in (A22), define 

P = 2 
1   f2K2coc    arK \2 
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Equation (2.47) is obtained by rearranging terms in (A24), and Eq. (2.48) is 

obtained from the cross term, a>"co'. 
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APPENDIX B 

Dispersion of a Gaussian pulse 

2/2 

Beginning with the baseband source term in Eq. (2.73), «(f) = e"'/ts, and the 

definition of g2{t) in Eq. (2.42), Eq. (2.68) is derived. Using the well known 

identity 

l_le-x2/2a\i(üx=e-o2(ü2/2 (B1) 
/OTT   J OV2TC 

—oo 

in the second integral of Eq. (2.49) yields 

]dvV(a')e-i<t-iP°%-i(»'2p?4 = ke-(*-*<»"W , (B2) 
q. 

—oo 

where 

uM = k^-^"W (B3) 

and 

q = tf+iP. (B4) 

Using (B2), the expression for g2(t) becomes 

r
2(r) = fs.e-

r/*   Jjco"t/*(co")e    l        '« Vffl  ^/4, * 
4 

(B5) 

where 

P" = P*-i{2P/qf. (B6) 

Using the identify in (B1) to evaluate (B5) yields Eq. (2.75). 
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APPENDIX C 

RMS height: Subtracted Gaussian weighted moving average 

The RMS height of the surface is the surface correlation function evaluated at 

R = 0. 

h2=jd2KW(K). 

Substituting Eq. (3.66) for the roughness spectrum into (C1) yields 

(C1) 

h2=2nwjdKK 1-e' -K
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and 

I3 = jdKK i-ye-K2a2 
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1   1 I 
The integral I2 is solved first.  Using integration by parts (let  u = e~K a /2), this 

integral simplifies to 

,-eV/2.2-y      „2 ^2   2 
/2 = ° Z—J—rdKl?-\-Kal1. (C7) 

y-2 y-2Je 

Next, 73 from (C6) is evaluated using the solution for I2. Let b2 =2a2; then 

e-^'V-'_ArrfH3-v,v,2| (C8) 
y-2 y-2Je 

or 

e-e
2
a

2
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Therefore 
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e2-Y_   e-eV/2£2-Y     e-e^£2-y 
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+2^r^3-v*V/2 
y _ 2 Je 

The first three terms in (C10) sum to zero in the limit; the last two terms can be 

evaluated using the identity 

fcdKK^e-xV =_l_r(2_Y/2)> (C11) 

or equivalent^, 

r</rf-V-*V/2 =^ir(2-y/2). (C12) 

Using Eqs. (C11) and (C12) in (C10) and (C2) yields 
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,Y-2 tfjlwia*     r(2_Y/2)[22-y/2_1| 
y-2 L J 

The RMS surface height is therefore 

(C13) 

127tW2# 

Y-2 

y-2 
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APPENDIX D 

Number and placement of array elements 

Using the intensity front velocity algorithm (Chotiros, 1995), determine the 

number of receivers that are required to obtain a point solution in speed- 

depression angle space. 

Define the reference sensor r0 to be at the origin 

r0=0. (D1) 

The signal arrives at the y'th receiver located at r;- = (xj,yj,Zj) at time tj. 

_a"rj (D2) 

where a = axx + ayy + cczz is the unit magnitude direction vector of the plane 

wave, and c is the propagation speed. Equation (D2) for receivers r0,rl5...,r„ 

can be written as 

(D3) 

*1 yi Z\ ~h~ 
x2 yi Z2 ax 

ay 

_az. 

= c' 
h 

xn yn V \}n\ 

There are n + 1 receivers including the reference receiver r0. Note that all of the 

receiver locations r!,r2,...rn and the receiver times tht2,...tn are assumed to be 

known. The vector a and the propagation speed c' are unknown — three 

unknowns. In order to have a unique solution, the receiver position matrix r is 

required to have rank 3, requiring a minimum of three receivers (r^,^) that 

span 3-dimensional space. Including the reference receiver, a minimum of four 

receivers are required that are not in the same plane. 
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However, Chotiros' speed-depression angle solution space need only be a 

slice of the 3-D solution space since the plane wave direction has no y 

component (a.y =0). Therefore, the receiver matrix r is required only to have 

rank 2, spanning only the x,z plane. Including the reference receiver, a minimum 

of three receivers (n = 2) are required. 

The following example shows that a linear array results on a curve in the 

speed-depression angle solution space. Assume a four element linear array, 

such that 

ri=(0,0,zi) 
r2 = (0,0,z2) 
r3 = (0,0,Z3) 

The reference receiver is r0 = (0,0,0). Equation (D3) results in 

(D4) 

az =c -L = c — = c — 
Z\ Z2 Z3 

(D5) 

a. 1- -at 1- 
(   t f (D6) 

because of the assumption ay = 0.  A linear array therefore results in a curve 

(2-D solution) in speed-depression angle (velocity) solution space. 
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APPENDIX E 

Calculation of reflection coefficient moments 

The moments of the reflection coefficient (r) are obtained by multiplying Eq. 

(6.8) by the conjugate of itself. To simplify Eq. (6.8), let 

a = T12, (ED 

7 = 1-4, (E2) 

e = r23e
,'2**P2rf. (E3) 

so that 

r = a + YCl(-aC)n- 
n=0 

Taking the expected value of (E4) multiplied by its conjugate yields 

{|r|2)=(M2>+ M2SX(-««'Rtf + 2R- 
£=0m=0 n=0 

Noting that 

V(t*f)=Am 

and summing the geometric series results in 

,|2_2 

(rf)=K)+iS 

(E4) 

(E5) 

(E6) 

(E7) 

Equation (6.12) is obtained by substituting (E1) - (E3) into (E7). Multiply (E4) by 

(E5) and take the expected value to obtain the moment 
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^=0m=0n=0 
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Making of use (E6), 

oo      CO 
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^=0n=0 

2i_i2 X-1!    |2m 

or 

m=0 

2u.i2„4 (rir|2)=a(m2)-*^ 

+«M2M2    ' 
(i-MV) 

2J2' i-MV 

Substituting (E7) into (E10) yields 

.|2 
(r|rf) = a|a|2 + 2a|y|2     M    7 - OC*Y|Y|2 — 

(E8) 

(E9) 

(E10) 

(E11) 
(l-\a\Wy 

Using the relations in (E1)-(E3), the above equation is equivalent to Eq. (6.13). 

Taking the magnitude of (E4) to the fourth power gives an expression for the 

moment 
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oo      oo 
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e=om=o 
oo 

a*YCS(-aCr 
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Re 
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n=0 

2/IH2 a'TCK-aQ" + «Y*C l(-«T)" X SHOV?)" • 
n=0 n=0 (=0m=0 

We use (E7) for the first term on the right side and use the relation (E6) for the 

second, fourth, and sixth terms. The third term evaluates to zero, and the fifth 

term uses the identity 

N2\ 

Re 1HT 
n=0 ) 

iiKr (E13) 
n=0 

With much work, the fourth order moment of the reflection coefficient can be 

shown to be 

-1 ,,4   4    MV+1 <,r,>M^«,V^+MV^ 

^Re («YKH; 
(E14) 

(l-MV) 

Using the relations in (E1)-(E3), the above equation is equivalent to Eq. (6.14). 
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APPENDIX F 

Ray approximation calculation of reflection coefficient magnitude 

F.1 Linear decrease in squared wave number with depth 

The ray paths for propagation into the lower medium are parabolic. If the 

lower medium were lossless, then all of the energy propagating into the lower 

medium would be redirected upward, and the magnitude of the reflection 

coefficient, r23, would be unity. However, loss in the lower medium results in a 

magnitude squared reflection coefficient equal to the energy that reaches the 

surface. The square of the wave number in medium 3 is given by 

k3Q = k2{l-aQ, (F1) 

where k2 is the constant wave number in the arbitrarily thin layer below the mean 

surface, and the depth coordinate 

£ = -z (F2) 

increases with depth. By defining the sound-speed gradient as the change in 

sound speed with respect to depth at a point just below the mean surface, a can 

be expressed in terms of the sound-speed gradient g at £ =0, the speed ratio v, 

and the sound speed in medium 1, cx. 

a = ^-. (F3) 
vq 

Since energy propagating through the sediment will be attenuated by an amount 

determined by the line integral over the ray path, we can approximate the 

expected value of the magnitude squared of the partial reflection coefficient r23 

as 
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(|r23|
2) = exP 

C=zr 4 -2Im     J     kiJl-aZ,- . . 
£=0 sin(e(0) 

(F4) 

where the path of integration in over the ray path, 9(0 is the grazing angle of the 

ray as it propagates through the lower medium, and k2 is the wave number just 

below the surface (medium 2). In this example, the mean depth of medium 2, d2, 

is allowed to be arbitrarily small. The turning point of the ray, Zmax, is found from 

Snell's law noting that the grazing angle is zero at this point: 

cos(9) _ cos(92) (P5) 

c3(Q ci 

where 92 is the grazing angle of the field just below the mean surface, related to 

the incident field grazing angle 9lt and speed ratio v2i is by Snell's law 

cos(92) 
 = V21- 
cos(9i) 

Evaluating the integral in (F4) yields Eq. (6.15). 

(F6) 

F.2 Linear increase in sound speed velocity with depth 

The sound speed in medium 3 is set equal to the sound speed in medium 2 

at the medium 2 - medium 3 interface; it increases linearly with depth, and is 

given by 

c3(C)=(l+aC)c2. (F7) 

The lower medium reflection coefficient follows from the following line integral: 

f 
(|r23|2) = exP - -2 Im 

v 

S—Zmax       1 

h       J 
dt, 

ci0   l + aCsin(9(Q) 
(F8) 

By using Snell's law, the ray turning point, Zmax for this constant sound-speed 

gradient profile is easily shown to be 
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"max 
a 

 1_ 

cos(82) 
— 1 (F9) 

The parameter a can be expressed in terms of the sound-speed gradient and the 

medium 1 sound speed. 

a = 8 

^2\c\ 
(F10) 

Evaluating the integral in (F8) yields an expression similar to Eq. (6.15) for the 

magnitude squared reflection coefficient: 

(|r23|2} = exP 
f   8TC, fl + sm(e2)

AA 

 In  —LL 

\    q    \ cos(92) 
(F11) 

where 

is the sediment gain parameter. 

(F12) 

F.3 Linear increase in sound speed over discontinuous interface 

In the next case, the sediment sound speed is assumed to increase linearly 

down to a depth d3, where the sediment parameters are discontinuous. When 

the maximum depth of the ray in medium 3, Zmax, is less than the depth of the 

surface separating medium 3 and medium 4, the loss due to the path in the 

sediment above the discontinuous interface is given by (F8). However, when 

Zmax >d3, the ray intersects and reflects off of the medium 3 - medium 4 

interface, resulting in 

2     IT-    |2 
■n. =r34  exP 

1 ^ 1 
l + aCsin(e(0)j 

■rnax > d-i (F13) 
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The above equation is the same as (F8) except the upper limit of the integral is 

d3, rather than Zmax, and the magnitude of the partial reflection coefficient |r34| 

is included. Setting a = g/(v21q) and evaluating the above integral, we get 

T|  =exp 
_8rc   ri + sin(62)Y 

cos(62) 
Zmax ^ d3 

exp 
87£ 

<1 

( 
In 

l + sin(92) 

cos(62) 
-In 

1 + ^1-(1 + 0^2 f cos2 (62) 

(l + flj2)cos(02) 

'max > "3 • 

34| 
(F14) 
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