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Abstract 

MEMS (Micro-Electro-Mechanical Systems) micromirror devices can be used 

to control the phase of a propagating light wavefront, and in particular to correct 

aberrations that may be present in the wavefront, due to either atmospheric tur- 

bulence or any other type of fixed or time and space varying aberrations. In order 

to shorten the design cycle of MEMS micromirror devices, computer software is de- 

veloped to create, from MEMS micromirror device design data, a numerical model 

of the MEMS device. The model is then used to compute the far field diffraction 

pattern of a wavefront reflected from the device, and to predict the effectiveness 

with which it can be used to correct an aberrated wavefront. For validation, the 

computed far field diffraction pattern is compared to that measured using a real 

MEMS micromirror device, with a reasonable match between the two being found. 

The model is designed for maximum flexibility and can be easily adapted to new 

designs of MEMS micromirror devices. 

xiv 



Modeling and Simulation of Optical Characteristics 

of Microelectromechanical Mirror Arrays 

/.   Introduction 

This thesis describes the creation and use of a computer model to predict the 

optical performance of the MUMPS9 hexagonal micromirror array, AFIT's most 

recent design of a microelectromechanical deformable mirror (MEM-DM). Most of 

the effort involved writing software that creates the model based on a given set of 

data describing the device. The goal was to be able to easily model other devices as 

well, so that the performance of a proposed design can be predicted (and optimized) 

before fabricating it. The MUMPS9 model was then used to show that such a device 

is capable of correcting an aberrated wavefront, as physically demonstrated by Hick 

(15). The flexibility of the modeling software is demonstrated by creating a model of 

the next proposed design iteration, and showing that it should perform better than 

the MUMPS9 device. 

This chapter provides the background and theory for the thesis. The first sec- 

tion provides the overall background and statement of the problem. This is followed 

by three sections that cover the background in more detail: one describes atmospheric 

turbulence as it applies to the problem of image distortion; the next one covers the 

basic theory of adaptive optical (AO) systems, a technology used to overcome the 

effects of atmospheric turbulence; and the third describes the MUMPS9 device, the 

most recent evolution of a new type of deformable mirror, a key technology of AO 

systems. Finally, an overview of the remainder of the thesis is provided. 



1.1 Background and Problem Statement 

It is a well-known effect of atmospheric turbulence that light propagating 

through it becomes distorted. Because of this, the atmosphere places a limit on 

the resolution of optical imaging devices that is lower than would be theoretically- 

possible. One method of overcoming the effects of turbulence is to somehow measure 

the amount of distortion in the incoming wavefront, and then, in real time, to cor- 

rect for it. This is the premise of adaptive optics. One of the key ingredients of an 

AO system is an optical device that can be controlled precisely and quickly enough 

to correct an incoming wavefront. AFIT is developing such a device, an array of 

micromirrors fabricated using microelectromechanical systems (MEMS) technology. 

In order to shorten the design cycle of MEM-DMs, it is necessary to simulate 

the optical characteristics of these devices with a computer model. To be useful, the 

model must be flexible and easily adaptable to new designs. 

1.2 Atmospheric Turbulence and Image Distortion 

Turbulence was too dangerous to waste time on. It seemed almost un- 
knowable. There was a story about the quantum theorist Werner Heisen- 
berg, on his deathbed, declaring that he will have two questions for God: 
why relativity, and why turbulence. Heisenberg says, "I really think He 
may have an answer to the first question." (9) 

From the sun's heating rays to butterflies' fluttering wings, countless factors cause 

different parts of the atmosphere to have different temperatures, pressures and hu- 

midity. The atmosphere is constantly trying to equalize itself, but thanks to the 

nonlinear relationship between the aforementioned parameters, it does not do so in 

a very smooth manner. The result is what is called turbulence (9). Unfortunately, 

the varying qualities of the atmosphere also cause the index of refraction within 

the atmosphere to vary. This, in combination with larger scale winds and currents, 

causes the index of refraction experienced by an optical wavefront entering an imag- 

ing device to vary rapidly in both space and time across the aperture of the device. 



By the time light from a star or a satellite reaches a telescope on the earth's surface, 

what started as a nearly flat wavefront is seriously aberrated. This can be observed 

on any clear night as the twinkling of the stars. 

The spatial scale of the variation, r0, was defined by Fried as the "diameter of 

a collector for which distortion effects begin to seriously limit performance" (5), or 

more rigourously, to be "the largest aperture within which the total rms wavefront 

irregularity is less than one radian" (23). Thompson gives typical values for TQ of 5- 

15cm (23). Because of turbulence, many optical systems are unable to achieve their 

theoretical minimum angular resolution of \/D, where A is the wavelength of the 

incoming light and D is the aperture of the optical system. Instead, their resolution 

is limited to X/TQ (6). For a telescope with a diameter of 2m, the difference at 

A = 700nm can be as dramatic as that between a theoretical limit of 0.07"and a 

turbulence-induced limit of 1"{TQ = 15cm) (8). 

Atmospheric turbulence is of special concern to astronomers, who have over 

20km of atmosphere affecting their view. Newton suggested observing from "the tops 

of the highest Mountains" (18:111). Apparently, many astronomers have followed his 

advice, so that "Mount" is a common first name for observatories: Mount Palomar, 

Mount Wilson, Mount Haleakala, Pic du Midi, Cerro Tololo. Yet even at these high 

altitudes, turbulence still takes its toll. For the best mountaintops, Thompson claims 

ro ^ 20-30cm (23). The Hubble Space Telescope is evidence of how far (and to what 

expense) astronomers are willing to go to bypass the atmosphere. 

1.3   Adaptive Optics 

In 1953, before putting telescopes in space was technologically feasible, Bab- 

cock proposed making an optical system that could measure the amount of distortion 

caused by the atmosphere, and correct for it in real time (12). This is the premise of 

adaptive optics. Unfortunately, in 1953, such a system was not technologically fea- 

sible either. It was not until more than twenty five years later that the US Air Force 



created the first AO system, on top of Mount Haleakala, to take pictures of orbiting 

satellites. Currently, development of AO systems is occuring worldwide (13). 

A basic AO system is depicted in figure 1. A flat incoming wavefront propa- 

gates through the atmosphere, and its phase becomes distorted. It is this aberrated 

wavefront that goes through the telescope's optics. With a traditional nonadaptive 

system, the aberrated wavefront coming out the other end of the telescope is what 

would be observed, with the reduced resolution described above. With an adaptive 

system, the aberrated output of the telescope is first reflected on a flat mirror that 

tilts to eliminate the overall tilt in the wavefront, keeping the image in a constant 

location in the image plane. The wavefront is then reflected on a deformable mirror, 

which has been adjusted to correct the phase distortion. Next, a beamsplitter sends 

a portion of the corrected wavefront to a wavefront sensor, the output of which is 

used to calculate the corrective input that must be provided by the deformable mir- 

ror and tilt compensator. The portion of the corrected wavefront that does not go 

to the wavefront sensor is used to form the observed image. 

Another design criterion of note is related to the fact that since TQ defines 

the scale of the variations in the wavefront, it must also correspond to the scale 

of the corrections. To perform optimally, the aperture must be broken down into 

an array of ro-sized subapertures, and the phase in each one individually measured 

and corrected. This means that a 1.5m telescope, for example, will need over 200 

subapertures, each individually correctable more than 300 times every second (23). 

One of the key shortcomings that made AO impractical in the 1950's was the 

need for a wavefront-correcting device with the required resolution and speed. The 

fact that AO has been defined as "the technique of using deformable mirrors to com- 

pensate in real time for the atmosphere's ever-changing distortion of an image" (1) 

illustrates how deformable mirrors are the preferred device to correct the wavefront. 

However, other devices, such as crystals whose index of refraction can be made to 

vary with an electric field, have also been investigated (13). 
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Figure 1. Basic adaptive optical system. 



Most current AO systems use a deformable continuous membrane mirror (13), 

which is rather expensive to produce and maintain. A potentially much cheaper 

approach involves using an array of MEMS micromirrors constructed using the same 

fabrication techniques that semiconductor makers have been aggressively developing 

for decades. Such micromirror systems themselves have actually been under develop- 

ment for over ten years now also, with Texas Instruments nearing commercialization 

with a high definition (1280 x 1024 pixels, 60 frames/s) display system (16). How- 

ever, TFs "digital micromirror device" (DMD) acts as a light switch by deflecting a 

beam to turn given pixels on or off, rather than as a phase control device to modify 

a wavefront. 

1.4    Microelectromechanical Mirror Arrays 

Many different types of MEMS micromirrors have been constructed. Michal- 

icek (17) provides a complete overview of devices. Since the goal of this thesis is to 

model AFIT developed MEM-DMs, the following description will cover the current, 

most evolved device: the MUMPS9 hexagonal micromirror array produced by Com- 

tois (2) and shown in Figure 2. An individual micromirror, with the flexures visible, 

is shown in Figure 3. 

MUMPS (Multi-User MEMS Process) fabrication involves the now common- 

place method of depositing a layer of material on a silicon substrate, etching part 

of the design, depositing another layer, and so on. The materials used, the order of 

deposition, and the thickness are shown in Table 1 (2:2-30). 

The "Poly" layers are made of polycrystalline silicon, which provides both the 

circuitry and the mechanical properties of the device. The oxide layers are removed 

by an acid bath after all the layers have been deposited. This makes it possible to 

construct a polysilicon mirror held in place by polysilicon flexures over an empty 

space (where oxide has been removed), above an addressable electrode made with a 

lower layer of polysilicon. Creating a voltage potential between the mirror and the 
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Figure 2. MUMPS9 micromirror array. 



Figure 3. MUMPS9 micromirror showing flexures. 

electrode causes the mirror to be pulled downward, with the flexures providing the 

restoring, upward force. A very precise analysis of the electromechanical functioning 

of the device was performed by Michalicek (17). The final layer to be deposited is a 

thin layer of gold, used for its high reflectivity. 

For the purpose of modeling the optical performance of the device, both the 

physical dimensions and reflectivity of the various parts of the device must be known. 

Referring to Figure 3, the width of an individual mirror, corner-to-corner and in- 

cluding both the gold plated area and the small edge of exposed Poly2, is 100/xm. 

The aforementioned edge, as well as the flexures and the outside edge of exposed 

Poly2, are 2/xm wide. The gaps between the flexures and the edges are 3.1/mi wide. 

Finally, the width of the interval between micromirrors, including the exposed Poly2 

edges, is 10/im (2:A-28). 

In Figure 3, a narrow depression can be seen along each of the vertical inter- 

mirror areas. These depressions are where the Poly2 layer is anchored to the Polyl 

8 



layer, which is in turn anchored to the nitride layer. They are artifacts of the fabri- 

cation process: during fabrication, the Oxide2 layer was etched away here to allow 

the Poly2 layer to be deposited directly over the Polyl layer, causing the depression. 

There are also three small circular depressions that can be seen at the corners of 

the mirror where it is attached to the flexure arms. These are dimples that were 

deliberately put in to prevent the mirror from shorting out with its electrode should 

it be inadvertantly pulled down all the way. 

Finally, the reflectivities of the various materials, at the wavelength of a Helium- 

Neon (HeNe) laser (A = 632.8nm), are given in Table 2. 

1.5    Overview of the Thesis 

The thesis is organized into four chapters and three appendices. The first 

chapter introduced the reader to the problem and its background. The remaining 

chapters cover the development and application of the models, and the appendices 

describe the software used to actually produce them. 

The second chapter covers the mathematical methods used to create a model of 

the MUMPS9 hexagonal micromirror array, and the use of the model to predict the 

optical performance of that device. The third chapter describes the results obtained 

from modelling the correction of a spherically aberrated wavefront with a MUMPS9 

device and compares them to those obtained with a real device. Conclusions are 

drawn in the final chapter. 

The first two appendices provide a "User Manual" for the modelling software. 

Appendix A shows how to use the software to create a model, while Appendix B 

explains how to adapt the software to model a different MEMS design. Appendix C 

is a listing of all the source code. 



Order Material Thickness 
(/mi) 

Use 

7 Gold 0.5 reflective mirror coating 
6 Poly2 1.5 flexures, mirror, anchors 
5 Oxide 2 0.75 sacrificial layer 
4 Polyl 2.0 anchors 
3 Oxide 1 2.0 sacrificial layer 
2 PolyO 0.5 wires, electrodes 
1 Nitride 0.6 substrate 
0 Silicon 200 "bedrock" 

Table 1. MUMPS layers. 

Material Reflectivity 

Gold 0.9 
Poly2/1/0 0.35 

Nitride 0.4 

Table 2. MUMPS reflectivities at A = 632.8nm. 
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77.   Methodology 

2.1 Overview 

The process of modeling the optical characteristics of a MEM-DM involves the 

following steps: 

1. Create a sampled reflectivity function, Rm,n representing the device being mod- 

eled. Each sampled point has the complex value R = rel2^, where r represents 

the absolute reflectivity at that point and (j> is the phase advance, relative to a 

reference plane, caused by reflection at that point. 

2. Create a sampled wavefront function Wm<tl that has the same resolution and 

number of samples as Rm,n- 

3. Define the optical disturbance in the source plane: Um<n = Wm<n, x i?TO)n. 

4. Using Fourier optics theory, have the computer calculate the normalized far 

field diffraction intensity pattern IUjV. 

5. Determine the spatial sampling of the predicted pattern. 

The following sections describe in detail how each of the above steps was ac- 

complished while modelling the MUMPS9 hexagonal micromirror array. 

2.2 The reflectivity function Rm)n 

To take advantage of the symmetry in an array of micromirrors, the first step in 

creating the reflectivity function was to sample an individual micromirror. This func- 

tion was then repeated, or tiled, into a larger array of sampled points representing 

an array of micromirrors. Two real-valued functions were created: rm<n representing 

the absolute reflectivity of a sample point, and hmyn representing the height, above 

a reference plane, at each sample point on the MEMS device. To simulate deflection 

of individual micromirrors, the height function hm<a was adjusted. Finally, /iTO)7l and 

11 



Index Material Height 
(/im) 

Reflectivity 

1 Nitride 0 0.4 
2 Poly2 2.75 0.35 
3 Mirror 4.25 0.9 
4 Anchor 4.25 0.9 

Table 3. Area indices. 

rTO)7l were used to form the complex-valued Rm,n. One design goal of the model was 

to have a sample spacing less than half the width of the smallest feature, to satisfy 

the Nyquist criterion for a bandwidth limited function (3). The smallest features 

of the MUMPS9 device are the 2/xm wide flexure arms. However, since the arms 

are not lined up with the cartesian pixel grid, but are rotated a minimum of 7r/12 

radians, the maximum sample spacing that satisfies the Nyquist criterion is 1.04/im. 

Modelling the MUMPS9 device with 1024 x 1024 samples produced a A£ of 1.491/im. 

Reducing the sample spacing would have required using 2048x2048 samples, which 

was beyond the capabilities of readily available computers. Since the flexures are 

also the least reflective elements of the device, it was deemed an acceptable compro- 

mise to use the next smallest feature to set the Nyquist limit. The gaps between the 

flexure arms are 3.1/rni wide, which leads to a maximum acceptable sample spacing 

of 1.60/mi. This is satisfied by the 1024x1024 sample model. 

2.2.1 Representation of an individual micromirror. The individual mi- 

cromirror sample function was created using computer graphics techniques. The 

function was represented as an "image" (actually a two- dimensional array in a com- 

puter), with each picture element, or pixel, corresponding to one sample point. The 

image was defined as a set of four areas with common height and reflectivity, with 

each area being assigned an index according to table 3. Each of these areas was 

then broken down into a collection of closed, convex polygons. Each of these was in 

turn defined by its vertices, and one additional point inside the polygon. Finally, the 

12 



coordinates of all the points were converted from continuous coordinates, measured 

in fj,m, to pixel coordinates, by setting the size of the finished image to be 90x90 

pixels. Low-level graphics algorithms were used to draw the lines surrounding the 

polygons, and then to set each pixel within to the appropriate area index. 

2.2.1.1 Vertices. The first set of information to be defined were the 

coordinates of all sixty three vertices in the image. These were calculated using 

the geometric information shown in Figure 4, where the vertices for each of the two 

kinds of corners are represented by the white dots. The coordinates of these vertices 

were first calculated in axes convenient to each of the two kinds of corners. They 

were then rotated three times to make three sets of vertices representing each of the 

three corners of each kind. The orientation of the image has two reasons. First, it 

matches the orientation of the actual micromirrors relative to the drawing grid used 

during fabrication. This orientation ensures that none of the flexures are parallel to 

the drawing grid, and therefore they all end up the same width (2). Second, it is 

the most efficient way to pack a hexagon into a square. This orientation therefore 

provides the smallest sample spacing A£ for a given size image (measured by the 

number of pixels). 

2.2.1.2 Lines. Next came the simple but tedious process of defining 

the list of lines. For each line shown in Figure 5, an entry was made in the list, 

which referred to the list of vertices described above. A MUMPS9 micromirror 

image consists of one hundred eleven lines, each defined by the indices of its end 

points (in the list of vertices) and the index (from Table 3) of the area it borders. 

2.2.1.3 Seed points. The micromirror image is composed of fortynine 

polygons. For each of these, a seed point was used to define the interior of the 

polygon and used to fill it with the appropriate area index value.  The seed point 
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Figure 4. MUMPS9 geometry. 
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Figure 5. MUMPS9 individual micromirror line drawing. 
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Figure 6. MUMPS9 individual micromirror line drawing with seed points. 

coordinates were denned as the average of the coordinates of the polygon's vertices. 

Figure 6 shows the lines and seed points used to define the image of a micromirror. 

2.2.1.4 Converting to pixel coordinates. All calculations to this point 

were performed in continuous coordinates, in units of fxm. Actual drawing of the 

image required conversion to pixel coordinates. The conversion was accomplished 

by defining the extent of the image in both continuous and pixel coordinates. The 

physical extent of the micromirror, in both r\ and £, was found to be from —66.365^m 

to 66.365/im. The extent of the image in pixel coordinates was chosen to be 90x90 

pixels, because this was the largest size image for an individual mirror that could 

be tiled into a 127-mirror hexagonal array and still fit within an overall 1024x1024 
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Figure 7.    MUMPS9 indexed micromirror image. Brighter pixels represent a higher 
area index number. 

image. This resulted in a sample spacing of A£ = ——~J~x —' = 1.491/mi. This is 

less than 2/im, satisfying the Nyquist criterion of having at least two samples across 

the smallest structure (the flexure arms) (3). 

2.2.1.5   Drawing the image.     Using low-level drawing routines (pline .m 

and pf illl.m, see Appendix C), all the lines were drawn and all the polygons were 

"filled" with the index of the area that they were a part of, as defined in table 3. 

The result can be seen in Figure 7. 

2.2.2    Tiling micromirrors into an array.      Combining multiple copies of the 

individual micromirror image into an image of an array of micromirrors required two 
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steps: computing the locations of each of the mirrors, and copying the pixels of the 

micromirror image into the appropriate pixels of the array image. 

2.2.2.1 The array mirror locations. Symmetry greatly simplified the 

task of locating all 127 micromirrors. Since they are set in a regular hexagonal array, 

going from the center of one mirror to that of one of its neighbors can be described 

by one of only three vectors. These vectors all have the same length, equal to the 

intermirror spacing of 115/im, and their directions are also easily determined from 

the fact that they must be 2TT/3 apart, and the whole array is rotated TT/12. Since 

the array consists of six hexagonal rings around a central mirror, it is convenient to 

calculate the locations one ring at a time. Conveniently, the number of mirrors in 

each side of a hexagonal ring is equal to that ring's number, counting out from the 

central mirror. In other words, if the central mirror is defined to be the first "ring" 

(with 1 mirror to a side), then the nth ring will have n mirrors to a side. Starting by 

defining the location of the central mirror to be (0,0), the locations of all 127 mirrors 

were determined by adding the appropriate vector to the last calculated location. 

2.2.2.2 Converting to pixel coordinates. Since the spatial sampling 

A£ of the reflectivity function was already set by the choice of the size of the individ- 

ual micromirror image, the conversion to pixel coordinates could not be defined here 

by the edges of the image. Instead, the center pixel (513,513) was defined to rep- 

resent the physical location (0,0), and each pixel was defined to represent a sample 

point separated by A£ from its neighbors. 

2.2.2.3 Making the array. To make the image of the micromirror 

array, a blank (all pixels = 0) 1024x1024 pixel image was created. The image of 

the individual mirror was added to this array image at each of the mirror locations 

calculated previously, offset by 45 pixels to the left and 45 down, so that the centers 

of the mirrors fell on the calculated locations. 
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Figure 8. MUMPS9 micromirror array reflectivity image. 

2.2.3 hm<ll and rm>n. The array image described above has pixel values 

representing the areas defined in table 3. To get the array images representing the 

height and reflectivity of the sample points, each pixel value must be replaced by the 

appropriate height or reflectivity value as determined from table 3. The purpose of 

using this indexing method is to avoid duplication of effort. Creating the image of 

the individual micromirror and tiling it into an image of an array of micromirrors are 

time-consuming tasks that only need to be performed once with this method. The 

resulting sampled absolute reflectivity and height functions are shown in Figures 8 

and 9. 

2.2.4 Mirror curvature. Interferometric measurements show that the indi- 

vidual mirrors in the array are not flat. They are curved, with a total difference in 
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Figure 9. MUMPS9 micromirror array height image. 

height between the corners and the center of the mirror of about 440nm. Since this 

is a non-negligible fraction of a wavelength (632.8nm), it was incorporated into the 

model as a modification of the height image hm<a. The curvature was modeled as a 

purely parabolic profile, given by: 

8hmjn = OAA(pm>n/pof 

where pm<ri = J^ + rfc = A£-\/m2 + n2 is the distance of a point on the mirror 

from the center of the mirror, po is the distance from the center of the mirror to the 

corners (50^m), and 8h is the amount which must be subtracted from hm^n to impart 

the parabolic curving profile. To ensure that the correction 6h is applied only to the 

mirror surface, and not the flexures or anchors, it must be multiplied by a hexagonal 

mask function that is 1 for points on the mirror and 0 elsewhere. 

Applying the correction to the height function used a process similar to that 

used to create the height function in the first place. First, a 90 X 90 pixel sampled 

20 



0.8- 

fo.6- 
a> 
E p 
bo.4- 
E 

0.2- 

ssiüll 

o 
250 

200 •'«■life,: 250 
SP8"^       200 

150 

50 
pixels 

100 

pixels 

Figure 10. MUMPS9 micromirror curvature correction. 

version of Shmjn is created. The micromirror movable surface image described in the 

next section provided a hexagonal mask. The result is shown in Figure 10, where 

the height of a point represents the amount to be subtracted from the corresponding 

point of the height image. This image was then tiled in the same way as the mirror 

index image, as described previously. Subtracting these curvature correction images 

from the single mirror and mirror array height images produced the modified height 

images of Figure 11. 

2.2.5 Deflecting individual mirrors. Simulating the deflection of individual 

micromirrors is accomplished by making the appropriate adjustments to the height 

image hm,n. Usually, the amount of deflection for each mirror depends on that 

mirror's location, so a look-up table of these locations will be useful. Each mirror in 

the array image consists of many pixels, and each of these pixels must be adjusted 

the same way for a given mirror.   It will therefore be necessary to have a way of 
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Figure 11. MUMPS9 height images, with curved mirrors. 

determining not only whether a given pixel moves, but also which mirror it belongs 

to. This is the purpose of the look-up image. 

2.2.5.1 The look-up image. The look-up image is the same size as 

the array height image, but the pixel values have different meanings. A pixel value 

of 0 indicates that the corresponding pixel in the height image represents a sample 

point that does not move. A pixel value of k / 0 indicates that the corresponding 

height image pixel represents a point that does move, and that the point belongs 

to mirror k. This look-up image is constructed in a manner similar to the indexed 

array image. 

First, a 90x90 pixel Boolean (1: moves, 0: does not move) image of an indi- 

vidual movable surface is constructed. This is similar to the image of an individual 

micromirror, but much simpler. There are only six vertices in this image, and six 

lines. This image, as shown in Figure 12, represents the points on the physical de- 
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Figure 12. MUMPS9 micromirror movable surface image. 

vice that are either on the gold-plated mirror surface or the 2//m wide Poly2 edge 

surrounding it. 

This image is then tiled into an array image, with a slight difference when 

compared to the way the indexed image was constructed. Before being added to the 

array image, each individual movable surface image is multiplied by the index in the 

look-up table that corresponds to the mirror being added. 

2.2.5.2 Modifying the height image. Since the pixels in the look-up 

image correspond directly to those in the height image, simulating control inputs is 

relatively simple: 

1. Scan each pixel in the look-up image. 
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Figure 13. MUMPS9 micromirror array height image, single mirror deflected. 

2. For each pixel that has a nonzero value k, look up the location of the center of 

the fcth mirror in the look-up table. 

3. Calculate the amount of deflection required based on mirror location. 

4. Subtract the appropriate amount from the corresponding pixel in the height 

image. 

This method was used to deflect a single mirror (Figure 13), to add an overall tilt to 

the mirror array (Figure 14), and to "cup" the array with a parabolic profile (Figure 

15). 

2.2.6   R. m,n' Once the height image hm<a is adjusted to simulate any desired 

deflection of the micromirrors, it can be combined with the absolute reflectivity 
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Figure 14. MUMPS9 micromirror array height image, tilted profile. 

25 



200 400 600 
pixels 

800 1000 

Figure 15. MUMPS9 micromirror array height image, parabolic profile. 
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image rm<n to form the complex reflectivity image Rm<n.- Because the MEMS device 

operates by reflection, an incoming wavefront undergoes a round trip through the 

varying height across the device before leaving. Also, a positive height will cause the 

phase at that point to be advanced (positive phase) in relation to a plane at h = 0. 

The phase of Rm^n will therefore be equal to 27r(2/iTO)7l/A), leading to the following 

definition: 

Rm,n = rm}nexp(i4-Khmjn/X). 

2.3    The wavefront function Wm<a 

The next element of the model is the wavefront function Wmjn. This is a 

complex-valued function which can be considered an image of the wavefront. Only 

wavefronts of constant, unit intensity were modeled. Aberrations were modeled as a 

variation of the wavefront's phase across the image. 

2.3.1 Plane wave. A plane wave is very easy to model, since it has constant 

phase across a plane: 

W     =1 v'm,n — ■■■• 

2.3.2 Spherical wave. What is spherical is the location of a surface of 

constant phase, so it is easiest to define zm^n, the height of a spherical surface above 

a reference plane, then: 

Wm:n = exp{i2-KzmJ\). 

Obviously, z will depend only on the distance p of a pixel from the center of the 

image. 

For a point (p, z) on the sphere, R2 — p2 + (z — d + R)2, where R is the radius 

of curvature of the wavefront and d is the total phase difference at the center of 

the image. Solving for z and keeping only the physical solution, the above equation 

can be rewritten z = d — R + y/R2 — p2. The two variables which can be used to 
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characterize the spherical surface are d and R, and it will be useful to be able to use 

either one. Fortunately, they are related, and each can be calculated from the other, 

assuming that zero phase change occurs at the edge of the image. Setting z = 0 at 

p — pmax provides the following relationships: 

d = R-^R2-p2„ 

d2+-2 

max? 

R = max 

2d 

Given d and A£, then, the first step in creating an image of a spherical wave- 

front is to make a 1024x1024 pixel image. The pixel (513,513) is defined as the 

center pixel (p = 0). Since z is a function of p2, it is convenient to set each pixel to 

the value of p2 for that pixel, given by 

Pin = {(m - 513)2 + (n - 513)2) A£2. 

Pmax is then simply p\,\. This allows calculation of either 

d2 + Ph 
R = 

2d 

or 

d = R-^R2-pl1 

depending on whether the radius of curvature or the total central phase difference is 

specified. These are then used to calculate 

zm,n = d-R + <JR2 - p2
mn. 
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2-4    The source optical disturbance Um^n 

The optical disturbance in the source plane is the result of the incoming wave- 

front being reflected off the MEMS device. Mathematically, it is defined as 

U(t,Tl)=R{t,TJ)xW(t,Ti). 

This is the function whose Fourier transform will be calculated, in order to predict 

the far-field diffraction pattern. 

2.5    The diffraction intensity IUyV 

Fourier optics provides a convenient way to calculate the distribution of optical 

energy in an observation plane from the distribution in a source plane. For the sake 

of this discussion, the source plane will be defined by z — 0 in Cartesian coordinates, 

while the observation plane will be defined by some fixed z ^ 0. The coordinates of a 

point in the source plane will be written (£, 77), and those of a point in the observation 

plane will be (x, y), as shown in Figure 16. Only those results of Fourier optics that 

are required for the model are covered here. For a more detailed explanation, see 

Goodman (11). 

2.5.1 Scalar Diffraction Theory. Scalar diffraction theory has been found 

to accurately represent the effects of optical wavefront propagation when certain 

easily realized conditions are met. If the order of the size of the diffracting object is 

large compared to the wavelength A, and the observation of the diffraction pattern is 

carried out far from the object, then light can be treated as a complex scalar instead 

of as a vector field. Since complex numbers have both amplitude and phase, the wave- 

like nature of light is maintained by the new representation, and the math becomes 

simpler. The "optical disturbance" Ui(x,y) at the point (x, y, z) in the observation 

plane defined by z is simply the sum of the contributions from each point (£, 77, 0) in 
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Figure 16. Notation used to describe scalar diffraction. 

the source plane at z = 0, according to the Huygens-Fresnel principle (11): 

Ul(x,y) = - /     U0(t,rj) 
%A J—oo •/—oo 

(i) 

where k = 27r/A and roi represents the distance from the source point (£, t], 0) to the 

observation point (x,y, z). In other words, 

r$1 = *i + {x-t)2 + {y-rif (2) 

#.5.#    TTie Fresnel and Fraunhofer approximations. Equation 2 can be 

rewritten as 
(r-t\2     /„_«\2 

(3) r0i = z 
\ 

l+(tZÄ) +/»-•» 
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Taking a binomial expansion of equation 3 and keeping only quadratic and lower- 

order terms constitutes the Fresnel approximation: 

7*01 

2       ,    ,..       ...2' 

1 + 1     X-^)    +lfV~V 
2 V    z    )       2 V   z 

(4) 

This approximation will lead to results valid near the optical axis. Inserting equa- 

tion 4 into equation 1 and rearranging terms leads to the Fresnel formulation of 

diffraction: 

Vt(x, y) = 2gpW (.£ (*2 + V2)) x ' {«.(«. •>)«* ('I («" + "2)~ 
W£=x/\z,w,)=y/\z 

(5) 

where :F{«} is the Fourier transform (FT) operator. The optical disturbance in the 

observation plane is proportional to the FT of the optical disturbance in the source 

plane multiplied by a quadratic phase factor (11). 

Even though Fresnel diffraction is also called "near field" diffraction, equa- 

tion 5 is also valid in the far field. However, the quadratic phase factor compli- 

cates calculations, so a further simplification is usually made for the far field. If 

z > k(£2 + rf)maxl2, (the observation plane is far from the source plane), then the 

quadratic phase term inside the Fourier transform operator can be approximated by 

unity and removed from equation 5. This produces the Fraunhofer, or "far field" 

diffraction equation (11): 

Ui(x,y) = 6XP^Z)exp fiA (V + y2) j x F{U0{t,v)}l(=x/x,^=v/>« (6) 

The intensity of the light in the observation plane is given by I(x, y) = \U{x, y)\ , so 

the complex values outside the Fourier transform in equation 6 reduce to l/\2z2. 
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2.5.3 The Fourier transform. The Fourier transform, F(u>), of a function 

f(x) is defined by 
/oo 

f(x)exp(—i2irxu)dx. (7) 
-00 

In the case of a two dimensional function f(x,y), the definition is 

/OO       fOO 

/     f(x,y)exp(-z2Tr(xu)x + yu)y))dxdy. (8) 
-oo J—OO 

The FT of a function is also called the spectrum of the function. In fact, one of 

the more useful properties of the Fourier transform is to translate a function from the 

time domain to the frequency domain. If x is a spatial dimension and f(x) represents 

the spatial distribution of some property (like reflectivity), then u>x represents the 

spatial frequency associated with x, and F(OJX) relates the distribution of the same 

property described by f(x), but distributed in the frequency domain. 

2.5.4 The Discrete Fourier transform. In the case of a computer model, it 

is usually not possible to define f(x) as an analytic function of x. Instead, f(x) is 

sampled at discrete intervals Ax a finite number of times, N. The discrete Fourier 

transform (DFT) of a sampled function is defined by Gonzalez (10): 

1   JV-1 
Fu = T7 £ fnexp(-i2<jrun/N) (9) 

iV    71=0 

where if the samples fn are separated by the interval Aa; on the cc-axis, then the FJs 

correspond to frequency domain samples on the u;-axis separated by 

Aw = TF^- (10) NAx v    ' 

For the two-dimensional case, the appropriate equation is: 

1    ^^ ( (urn     vn\\ 
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One can see from equation 9 that for a one-dimensional array of N samples fn, 

N complex multiplications and iV complex additions are required to calculate each of 

the N samples Fu (10:119). This means that a total of iV3 calculations are required 

to compute an entire one-dimensional DFT, using equation 9. However, if N is an 

integer power of 2, there exist algorithms called fast Fourier transforms (FFTs) that 

take advantage of symmetry to make do with only N\og2N complex calculations 

(10:119) per sample Fu, for a total of iV2log2iV complex calculations for the entire 

transform. A two-dimensional DFT is typically implemented by computing the one- 

dimensional DFT of each row, followed by the one-dimensional DFT of each column 

of the result (10:94). If each of these two steps requires N3 calculations for each of 

the N rows or columns, then the total number of calculations required will be 

2xNxN* = 2N4, 

using equation 11. If, on the other hand, FFT algorithms are used, the number of 

required calculations drops to 

2 x N x N2log2N = 2N3log2N. 

2.5.5 The classical intensity I(x,y). The diffraction intensity pattern in 

the observation plane, I(x,y), is given by 

h{x,y) = \Ut(x,y)\2. 

This is implemented by computing the FFT of C/ra,TO, squaring the absolute value of 

the result, and normalizing it. 
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2.6   Spatial sampling of the diffraction pattern 

The source disturbance function Um,n is a sampled function, with sample points 

separated by A£ measured in yum. Its Fourier transform, as shown by equation 10, 

will have sample points separated by Aw measured in yum-1. Equation 6 shows how 

to calculate the spatial sampling Ax of the diffraction pattern: 

A:c = XzAu = 
iVA£ 

Since z is not necessarily known, the diffraction pattern can also be treated as an 

angular spectrum, with angular sampling Aa = \/NA£ measured in radians. In 

this case, the spatial sampling can be determined when a value is chosen for z by 

calculating Ax = zAa. 

2.7   Summary 

The MUMPS9 model was constructed in parts. First, both the height and 

reflectivity across an image of an individual micromirror were sampled. This sam- 

pled function was then tiled into an array of 127 identical micromirrors. Methods 

were developed to deflect the mirrors individually, to either introduce or correct an 

aberration in a reflected wavefront. Sampled representations of an incoming and a 

reflected wavefront were also formed. The application of an FFT algorithm to the 

sampled reflected wavefront ultimately produced a sampled, predicted diffraction 

pattern. 
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III.   Results 

This section discusses the results of a series of simulation runs. Because mi- 

cromirror arrays are proposed for use as a deformable mirror in an adaptive optics 

system, the main area of interest is to simulate the correction of an aberrated wave- 

front using a MUMPS9 device. First, to determine whether controlling the phase of 

a wavefront using a MUMPS9 device is feasible, correction of a spherically aberrated 

wavefront was simulated. The effect of the curvature of the individual micromirrors 

on the effectiveness of the device was studied. Next, for validation purposes, du- 

plication of measurements made in the laboratory with a physical MUMPS9 device 

was attempted. Finally, the use of a lenslet array to reduce diffraction effects is also 

simulated. 

3.1    Simulation of Correction of an Aberrated Wavefront 

To measure the effectiveness of using a MUMPS9 device to correct a fixed 

aberration, three runs are required. First, the pattern resulting from reflection of 

a plane wave by an undeflected MUMPS9 device must be simulated; this results in 

the theoretical ideal, the yardstick with which other runs will be measured. Next, 

the result of reflection of an aberrated wave by an undeflected MEMS must be 

calculated, to show the effect of introducing the aberration. Finally, reflection of 

an aberrated wave by a MEMS deflected appropriately to correct the aberration 

must be simulated. When compared with the first two runs, the final one will show 

how effective the device is at correcting aberrated wavefronts. These three runs 

require two versions of the complex reflectivity function (one undeflected, the other 

with corrective deflection) and two wavefront models (one planar, one aberrated). 

Simulation of the use of a MUMPS9 device to correct a spherical aberration was 

performed using the complex reflectivity function described in the previous chapter. 

The first run involved reflecting a plane wave on an undeflected MUMPS9 mirror 
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array with flat mirrors. The resulting normalized log diffraction pattern is shown 

in figure 17. In order to provide better visualisation of the effects of the aberration 

and the correction, all diffraction pattern images in this chapter were formed by 

converting each pixel of the predicted intensity pattern to its value in dB, normalized 

to the peak intensity value. The result was then thresholded at -60dB, renormalized 

to a scale of 1 to 256, and displayed as a grayscale image with 256 gray levels. 

So in all diffraction pattern images, a white pixel corresponds to a point in the 

pattern with an intensity 60dB or more below the peak intensity, while a black pixel 

represents the peak intensity that defines OdB, and intermediate gray levels vary 

linearly with the intensity expressed in dB. The effect of this was to enhance the off- 

axis details, while keeping the lower intensity features from washing out the patterns 

of interest. The aberrated and corrected runs were performed using a spherical 

aberration defined so that the total phase difference at the center of the array is 

2ir, and 0 at the corners (figure 18), using the wavelength of a HeNe laser (0.6328 

/xm). The predicted normalized log diffraction patterns for these simulations are 

shown in figures 19 and 20. The average radial distribution of energy in the central 

section of the diffraction patterns, normalized to the peak of the ideal conditions of 

the first run, is shown in figure 21. The peak intensity of the aberrated pattern is 

equal to 54.51% of that of the unaberrated pattern, which corresponds to a drop 

of -2.63dB in peak intensity. The corrected pattern brings this fraction back up to 

79.42% (-l.OOdB). When correcting a fixed spherical aberration with a MUMPS9 

device, the theoretical limit is a minimum loss of l.OOdB in peak intensity. From a 

qualitative point of view, the diffraction pattern for the aberrated, uncorrected run 

appears "blurry" when compared to that of the unaberrated run, while the output 

of the aberrated, corrected run looks more like the unaberrated output. 
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Figure 17.    Diffraction pattern for a plane wave reflected from an undeflected 
MUMPS9 array. 
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Figure 18. Spherical wavefront function. 
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Figure 19.    Diffraction pattern for a spherical wave reflected from an undeflected 
MUMPS9 array. 
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Figure 20.    Diffraction pattern for a spherical wave corrected by reflection from a 
MUMPS9 array. 
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Figure 21. Radial energy distribution for correction of a spherical aberration using 
a MUMPS9 array, normalized to the peak intensity of the unaberrated 
diffraction pattern. The peak of the uncorrected aberrated pattern is at 
-2.63dB; that of the corrected aberrated pattern is at -l.OOdB. 
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3.2 Effect of micromirror curvature 

As shown in Figure 11, the individual micromirrors are not actually as flat as 

they are designed to be. The effect of this curvature is to greatly reduce the peak 

intensity of the diffraction pattern, although correction of an aberrated wavefront is 

still possible. The same three simulation runs that were described in the previous 

section were performed for the curved mirror model. Figures 22, 23 and 24 show 

the resulting depicted diffraction patterns. Figure 25 is a comparison of the average 

radial distribution of energy in the central section of the diffraction patterns from 

the two unaberrated runs. With no aberrations present, the effect of the mirror 

curvature is to reduce the peak intensity to 2.86% of the flat mirror value, for a drop 

of -15.44dB. Introducing the spherical aberration causes a further -2.99dB drop, 

which the curved mirrors are only able to correct back up to a -1.37dB drop relative 

to the curved mirror/flat wavefront peak. This is depicted in the average radial 

energy distribution of the curved mirror results, Figure 26, where the OdB point is 

still defined as the peak intensity for the diffraction pattern from reflection of an 

unaberrated wavefront on an array of flat mirrors. 

3.3 Comparison of Simulation to Laboratory Results 

The laboratory setup used to measure the diffraction pattern from a MUMPS9 

device is shown in figure 27. The output beam of a HeNe laser is expanded, resulting 

in a coherent wavefront that is planar on the scale of the MUMPS9 device. A mirror 

and a beam splitter direct this plane wavefront through a lens pair that provides 

a magnification of ^ x from plane B to plane A. A diverging lens can be placed 

in the optical path just after the beam expander to introduce a known spherical 

aberration. After reflection by the MUMPS9 device, the beam goes back through 

the lens pair, this time with a magnification of 5.75 x. The net effect is that of 

reflecting the wavefront on a virtual MUMPS9 device that is 5.75 times the size of 

the actual device, and is located in plane B. The optical disturbance at plane B is 
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Figure 22.    Diffraction pattern for a plane wave reflected from an undeflected 
MUMPS9 array with curved mirrors. 
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Figure 23.    Diffraction pattern for a spherical wave reflected from an undeflected 
MUMPS9 array with curved mirrors. 

44 



w 
0 
0 

0 
■D 

-0.5 

-1.5 

Figure 24.    Diffraction pattern for a spherical wave corrected by reflection from a 
MUMPS9 array with curved mirrors. 
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Figure 25. Comparison of the radial energy distribution for reflection of an unaber- 
rated wavefront on a MUMPS9 device with flat and curved mirrors, nor- 
malized to the peak intensity of the flat mirror case. The peak intensity 
of the curved mirror case is at -15.44dB. 
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Radial energy distribution for correction of a spherical aberration using 
a MUMPS9 array with curved mirrors, normalized to the unaberrated, 
flat mirror case. As shown above, the peak intensity of the unaberrated, 
curved mirror case is at -15.44dB. The peak of the uncorrected aberrated 
curved mirror case is at -18.43dB, and that of the corrected aberrated 
curved mirror case is at -16.81dB. 
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Figure 27. Laboratory setup used to measure diffraction by a MUMPS9 device. 

then reproduced in plane C, using a lx lens pair. Plane C is also where the Fourier 

lens is placed, so the far field diffraction pattern of the virtual, enlarged MUMPS9 

device can be measured one focal length further (in the back focal plane), using 

a CCD. Also, due to limitations of the laboratory equipment, only 64 of the 127 

mirrors in the array could be controlled, so a circular iris diaphragm was used to 

restrict illumination to the central 61 mirrors. The normalized log diffraction pattern 

measured in the lab, for a plane wavefront, is shown in figure 28. 

Due to the lab setup, four changes to the basic model were required: 

• The effect of the circular iris diaphragm was accounted for by masking the 

reflectivity function, as depicted in figure 29. In reality, the aperture affects 

the wavefront function, not the reflectivity function. For the model, however, 

the two methods are equivalent. 
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• The 5.75 X magnification of the MEMS device had to be accounted for. This 

was done by multiplying the object sample spacing A£ by 5.75, and dividing 

the image sample spacing Aa; by the same amount. 

• Since a converging lens (/ = 62.9mm) was used to obtain the far field pattern, 

z — 62.9mm is the value to be used to calculate the sample spacing of the 

sampled diffraction pattern. 

• Finally, for the aberrated wavefront calculations, the curvature of the wavefront 

was given by its radius of curvature of 4.5m, so a new sampled wavefront 

function had to be created using that radius. 

The predicted normalized log diffraction pattern for the lab setup, with a plane 

wavefront, is shown in figure 30. On closer inspection (figure 31), it can be seen that 

the diffraction orders are spaced and oriented the same way for both the measured 

and predicted patterns. The patterns appear rotated 7r/12 radians with respect to 

each other because the MUMPS9 device in the lab was aligned vertically, while the 

model has the device oriented TT/12 radians from vertical, as described in the previous 

chapter. 

A comparison of the radial average distribution plots is also instructive (figure 

32). The diffraction orders are again shown to coincide for the measured and pre- 

dicted patterns. However, the measured pattern shows more energy in the higher 

orders than does the predicted pattern. This can be due to other aberrations, intro- 

duced by the optical components of the lab setup, that weren't accounted for, to the 

limited dynamic range of the CCD, and to background lighting that was not simu- 

lated. Also, the spatial sampling of the predicted diffraction pattern was 4.58 /urn, 

while that of the measured pattern was 15.6 //m, less than a third of the predicted 

pattern's. Another issue has to do with the effects of aberrations and their correc- 

tion. Introducing the aberration causes a -13.66dB drop in the peak intensity of the 

predicted pattern, but only a -7.96dB drop in the measured case. The predicted, 

corrected peak intensity is down -10.80dB from the unaberrated value, but only a 
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Figure 28. Normalized log diffraction pattern measured in laboratory. Because of 
the limited dynamic range of the CCD, this image had to be thresholded 
at -15dB, normalized to the peak intensity. Black pixels represent OdB; 
white ones -15dB or less. 

50 



-600 

-600      -400      -200 0 200        400        600 
micrometers 

Figure 29. Masked reflectivity function used to simulate the laboratory setup. 
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Figure 30. Normalized log diffraction pattern predicted for lab setup. 
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Figure 31. Close-up comparison of measured (top) and predicted (bottom) diffrac- 
tion patterns for lab setup. Note: the diffraction patterns are displayed 
here as positive images. 
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Figure 32. Normalized radial energy distribution for correction of a spherical aber- 
ration using a MUMPS9 array in the laboratory setup; comparison to 
measured distribution. 

-6.38dB drop was measured in the lab. In order to investigate this lack of agreement 

between the measured and predicted values, the predicted ratios were calculated 

for sixty different radii of curvature of the aberrated wavefront, evenly spaced from 

3.15m to 5.85m. The results (Figure 33) show a strong dependence of the corrected 

ratio on the amount of aberration. A small variation between the 4.5m value used 

to compute the predicted diffraction pattern and the actual amount of aberration 

would therefore be sufficient to explain the difference between the measured and 

predicted peak ratios. 
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Figure 33.    Peak intensity ratios as a function of radius of curvature of an incident 
spherically aberrated wavefront. 
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3.4    Lenslet Model 

It is apparent that even under ideal conditions, reflection from a MUMPS9 

device causes a significant amount of energy to go into sidelobes, instead of the 

central peak, where it is needed. This is an effect of diffraction caused by the gaps 

between the metallized surfaces of the MUMPS9 device. One method of eliminating 

this effect is to use an array of lenslets from a Hartmann wavefront sensor. These 

lenslets are square, 203^m to a side, with no empty space between them. The idea 

is to place this lenslet array one focal length above a micromirror array, which would 

be constructed with a mirror at the same location as each lenslet. Then the portion 

of wavefront passing through a given lenslet could be focused into a small spot on 

the underlying mirror, and on reflection would be recollimated by the same lenslet. 

Piston of the mirror could still be used to control the phase of that portion of the 

wavefront. 

An appropriate mirror array does not exist at this time, but can be modeled. 

The net effect of displacing a mirror behind a lenslet is to change the phase of the 

section of wavefront leaving the lenslet. Since the lenslets are contiguous, the system 

is therefore equivalent to an array square micromirrors of the same dimensions as 

the lenslets, with no empty space between them. A model of an 8 x 8 lenslet array 

is shown in figure 34. The top image shows the reflectivity function, while the 

lower image shows the height function for the array when deflected to correct for a 

spherical aberration. The empty space around the array is zero-padding to decrease 

the sample spacing of the predicted diffraction pattern. 

The diffraction pattern from reflection of a plane wave on the undeflected array 

is shown in figure 35. This is simply the pattern expected for a square aperture. 

Figure 36 shows the result of reflecting a spherical wavefront on the square aperture. 

The pattern is blurred, and the peak intensity is down to 17.34% (-7.61dB) of the 

peak for the plane wave's diffraction pattern. However, the corrected peak (figure 

37) is back up to 88.03% (-0.55dB) of the plane wave value, 0.45dB better than 
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was possible with the bare MUMPS9 device. In addition, the first sidelobe of the 

MUMPS9 plane wavefront diffraction pattern was -15dB below the peak value, while 

the first sidelobe of the plane wavefront diffraction pattern for the lenslet model 

(figure 38) is -18dB below the peak. The difference is more dramatic for higher 

order lobes, with the energy dropping more rapidly with distance from the optical 

axis for the lenslet model than for the bare MUMPS9 model. This shows that the 

lenslet array is a more efficient way of controlling the phase of a wavefront, since it 

puts more of the energy into the central peak, instead of spreading it around like the 

MUMPS9 device does. 
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Figure 34. Reflectivity and height images for the lenslet model. 
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Figure 35. Diffraction pattern for a plane wave, lenslet model. 
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Figure 36. Diffraction pattern for a spherical wave, lenslet model. 
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Figure 37. Diffraction pattern for a corrected spherical wave, lenslet model. 
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Figure 38.    Normalized radial energy distribution for correction of a spherical aber- 
ration using a lenslet/micromirror array. 
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IV.   Conclusion 

Atmospheric turbulence, resulting from daily heating and cooling, distorts the 

shape of a wavefront traveling through it. As a result, ground-based imaging systems 

often cannot achieve their maximum theoretical resolution. Adaptive optics combat 

this effect by using a deformable mirror (DM) to correct the aberrated phase of the 

wavefront. The current DM of choice is a continuous flexible membrane mirror with 

piezoelectric actuators, which is difficult to build and maintain. A proposed alterna- 

tive is an array of microelectromechanical deformable mirror (MEM-DM), consisting 

of an array of micromirrors built on a silicon chip, aranged to form a segmented DM. 

In order to shorten the design cycle of MEM-DMs, this thesis proposed a method of 

simulating their optical characteristics, given a physical description of the design to 

be modeled. 

The basic idea behind simulating diffraction by a MEM-DM was to create a 

sampled version of the optical field after reflection which takes into account the reflec- 

tivity and geometry of the device, as well as the aberration of the incoming wavefront, 

and have a computer produce its discrete Fourier transform, which represents the 

far-field diffraction pattern. Since an optical disturbance has both amplitude and 

phase, each sample point was complex-valued, with the absolute value representing 

the reflectivity of the device at that point, and the phase representing a combination 

of the phase of the aberration and the phase change induced by the variable height 

profile of the device. 

The simulation shows that MEM-DMs can be used to correct a wavefront for 

aberrations. For a spherical aberration with a total phase variation of 2x across the 

surface of the device, the peak intensity of the aberrated output can theoretically be 

corrected to within ldB of the peak intensity of the unaberrated output. Further- 

more, the simulation was able to predict the diffraction pattern that was obtained 

with a given laboratory setup. Correction of a spherically aberrated wavefront, using 
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an actual MEMS device, was also demonstrated by Hick (15). Both the simulation 

and laboratory results show that the current state of the art MEMS micromirror 

devices diffract a significant fraction of the incoming energy into sidelobes, reducing 

their efficiency as deformable mirrors. 

In order to be useful in shortening the design cycle for MEMS devices, the 

simulation was designed to be easily adaptable, so that it could be used to model 

different types of MEMS designs before they are even produced. A new design 

for MEMS deformable mirror device involves aligning the mirror segments with an 

array of lenslets, the idea being that the incoming wavefront will be focused onto 

the centers of the micromirrors by the lenslets, then recollimated as it leaves the 

system through the lenslet array. The main benefit would be to mostly bypass the 

diffraction effects of the underlying MEMS device. Such a system was modeled, 

and was found to be significantly more efficient than the current MEMS device in 

correcting an aberrated wavefront, with the peak intensity being returned to within 

0.55dB of its unaberrated value, and with much less energy being lost to sidelobes. 
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Appendix A.   Running the MEMS Optical Modeler 

A.l    Model Design 

A. 1.1 The modeling process. The modeling process involves the following 

steps: 

1. Create a sampled reflectivity function, R(£,r)) representing the device being 

modeled. Each sampled point will have the complex value R = re
j2'r(2'*M)) 

where r represents the absolute reflectivity at that point and h is the height of 

that point above a reference plane. 

2. Create a sampled wavefront function W(£, rj) that has the same resolution as 

R. 

3. Define the optical disturbance in the source plane: U(£, rj) = W(£, w) x R(£, rj). 

4. Have the computer calculate \T {U{£,, 77)}| and normalize it. This is the nor- 

malized far field diffraction intensity pattern. 

5. Use equations 10 and 6 to determine the scale of the predicted pattern. 

A. 1.2 Data structures. The software to create the MEMS optical model 

is based on Matlabtm, a commercial mathematics program. The basic data item in 

Matlab is the matrix, or two-dimensional array. This structure is, quite conveniently, 

also useful for representing digitized images, which are simply two-dimensional arrays 

of picture elements, or pixels. To avoid having three different words—matrix, array 

and image—tied up to describe the same thing, the following convention will apply 

in this appendix: 

"Matrix" is the term used in Matlab manuals to denote Matlab's basic data item. 

"Array" refers to an array of micromirrors. For example, the MUMPS9 device is 

an array of 127 micromirrors. 
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"Image" is what will be used to refer to any Matlab data item that contains a 

graphical representation of a MEMS device. For example, the reflectivity func- 

tion R(£, rj) of the device will be modeled as a "reflectivity image". Only square 

images will be used (same number of rows and columns). 

A.1.3 Data flow. Matlab allows user-defined scripts and functions, and 

the model will be implemented as a collection of these. The only file in the model 

that contains actual MEMS device data is called the device generating function, or 

genf unc. Of course, the actual file can have any legal file name. It is the only one 

that needs to be created or modified by the user to model a different MEMS device. 

The actual model is created using a collection of Matlab functions, which call on 

genf unc to provide data about the device being modeled. 

The ability to build the model one step at a time combined with the built-in 

flexibility of the genf unc should allow the user maximum opportunity to fine-tune 

the model as it is being built. Also, creating a computer image of a real device 

involves frequent changes of coordinate systems, from physical coordinates to pixel 

coordinates and back. The writer of the genf unc only needs to worry about the 

physical coordinates, as the other functions take care of doing all the transformations 

to pixel coordinates. Appendix B covers the finer points of creating a genf unc. 

A.2    Construction of model 

This and subsequent sections cover the steps used to create a MEMS optical 

model. For illustration, the result of executing each step with hex2, the genf unc for 

the MUMPS9 hexagonal array, will also be shown. 

A.2.1 Modeling an individual micromirror. To take advantage of the sym- 

metry in an array of micromirrors, the first step in creating the model is to make 

an image of an individual micromirror. When writing the genf unc, the individual 

mirror is first broken down into areas of common height and reflectivity (for exam- 
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pie, all the Poly2 surfaces). Each of these areas is assigned an index number and is 

then further broken down into a set of convex polygons. The polygons, in turn, are 

defined as a set of lines and one "seed" point that is inside the polygon. The seed 

points are used by a low-level fill routine that sets all pixels in the polygon to the 

appropriate index number. Next, each line is defined by its end points. Finally, the 

end points are defined simply by their coordinates. 

So to define the image of an individual micromirror, three data items are 

needed: 

• A list of points, (x,y), in real coordinates (as opposed to pixel coordinates), 

• A list of lines, (ptl,pt2, areajf), where ptl is the index, within the list of points, 

of the line's first end point, and area# is the index number of the area that 

the line borders, and 

• A list of seed points (x,y,area#). 

To actually draw the image, two more data items are required, to set the 

resolution of the image: the physical extent of the mirror, programmed into the 

genf unc, and the number of pixels desired in the image. The latter is entered by 

the user when calling mam2, the function that Makes A Mirror. 

The function mam2 takes two arguments: the desired size of the image len, 

and the name of the genf unc to use. Creating an image of an individual MUMPS9 

micromirror, with a resolution of 270 x 270 pixels, is accomplished with the following 

Matlab command: 

» mirror = mam2(270,'hex2'.spec); 

The last argument is the spec referred to in the previous section; it is not used by 

hex2 when making an image of an individual mirror, so it doesn't matter what value 

it is given. When mam2 is given the name hex2, it knows to make the following calls: 

• hex2(l,spec) returns the list of vertices in the image, 
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Figure 39. MUMPS9 micromirror indexed image. 

• hex2(2,spec) returns the list of lines, as described above, 

• hex2(3,spec) returns the list of seed points, and 

• hex2(4,spec) returns the physical extent of the image. 

The output of the above command is shown in figure 39. 

Actually, the image of an individual mirror needs to be 90 x 90 pixels to 

properly fill up a 1024 x 1024 pixel image when tiled into an array, but that would 

be too small for the filling routine, pf illl to fill in all the polygons (the lines would 

be too close together for pf illl to work properly), so the image was generated at 

three times the required size, then downsampled with the command 

» mirror = mirror(l:3:270,1:3:270); 
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A.2.2 Tiling micromirrors into an array. The next step is to tile the image 

of the mirror into an array. For this, some additional information is required. First, 

the desired size of the final image must be given by the user. This will be the size of 

the final sampled complex reflectivity function, of which the FFT will be computed. 

Since FFT algorithms are most efficient when the number of samples is a power of 2, 

the size of the array image is restricted to be a power of 2, and the actual argument 

passed is the power desired. Also required are the locations of the central points of 

each mirror in the array; these are obtained from the genfunc. To create a 1024 x 

1024 pixel image of a MUMPS9 array, the Matlab command is 

» marray = mama2(10,  mirror,'genfunc',6); 

The output of the above command is shown in figure 40. 

To make figure 40, mama2 made the following calls: 

• hex2(7,6) returns the list of physical coordinates of the centers of the mirrors, 

with the second argument specifying that there will be 6 hexagonal rings of 

micromirrors around the central mirror, 

• hex2(4,spec) returns the physical extent of the image of an individual mirror. 

mama2 uses this to determine the resolution of the image, and to convert the 

phsyical coordinates of the mirrors to pixel coordinates. 

It should be noted that the resolution of the image is determined by the number 

of pixels in the image of the individual mirror. If the power argument to mama2 is too 

small, or the size of the mirror image is too big, then the mirror array will overflow 

past the edge of the array image. Trial and error is required to determine the proper 

image sizes to make the array fill the image without overflowing. 

Another item of interest is that since the spacing of the mirrors in the array 

image is determined by the genfunc, it is a good idea to make the outer edge of 

the image of the individual mirror slightly larger than reality, so that neighboring 
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Figure 40. MUMPS9 micromirror array indexed image. 
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mirror images will overlap slightly in the tiled array image. This prevents blank 

pixels occurring between mirrors in the array image. The function mama2 is written 

to correct for overlapping mirrors, as long as the part of the image that overlaps has 

the highest area#. In hex2, for example, the metallized band between each mirror 

is 10 individual mirror is drawn with a 6 ^m wide border of metallized area, instead 

of 5 fxm. 

A.2.3 Creating height and reflectivity images. So far we have created only 

indexed images. The values of the pixels in figures 7 and 40 represent only which 

surface that pixel belongs to. What is needed are images of the reflectivities and 

heights. Fortunately, genf unc provides the information needed to cross-reference an 

area# to either a reflectivity or a height. The functions that pull the information 

out and apply it to the image are mhm2 for height and mrm2 for reflectivity. The 

Matlab command 

>> hiray = mhm2(marray,'hex2J,spec); 

produces the image in figure 41, and the Matlab command 

>> refray = mrm2(marray,'hex2'.spec); 

produces the image in figure 42. 

A.3   Application of control inputs 

The next step in the development of the MEMS model is to simulate control 

inputs that cause the individual mirrors to move downward. A set of control routines 

was created to do this. 

A.3.1 Control routines. These are independent of the genf unc, because 

they are intended to work on images of arrays that have already been constructed. 

More specifically, they operate on the height image created in the previous section 

using mhm2. 
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Figure 41. MUMPS9 micromirror array height image. 
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Figure 42. MUMPS9 micromirror array reflectivity image. 
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Figure 43. MUMPS9 micromirror array height image, parabolic profile. 

Their basic method of operation is to scan over each pixel in a look-up image 

(described below), to find the pixels that need to be modified. When such a pixel is 

found, the routine goes to a look-up table (also below) to determine the location of 

the center of the mirror to which the pixel belongs. This is what is used to calculate 

the amount of deflection of that pixel, since all pixels on any given mirror must move 

in unison. The required deflection is then modified by the value in a responsiveness 

image (below). If the resulting deflection is more than one wavelength, then it is 

adjusted again, so that it lies between 0 and 1 wavelength. As an example, the result 

of "cupping" a MUMPS9 array to give it a parabolic profile is shown in figure 43. 

The command used to generate the image was 

» pararay = parabolize2(l,0.6328,hiray.conray,respray,table); 
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Figure 44. MUMPS9 micromirror control surface image. 

A.3.2 Control surfaces. When subjected to a control input voltage, one 

part of a micromirror is deflected, while the rest stays put. In order for the control 

functions to know which pixels move and which don't, it is necessary to make an 

image of the portion of the array that can move. Just like for the array image, this 

is done by making an image of the control surface of an individual mirror and then 

tiling it. The function macs2 makes an image of the control surface of an individual 

micromirror. The image is constructed in the same way as the image of an individual 

mirror. However, there are no area#s. Instead, the pixels are assigned 0 where they 

don't move, and 1 where they do. The control surface for a MUMPS9 micromirror 

is shown in figure 44. The movable portion corresponds to the metallized portion 

and the Poly2 edge of the mirror. 
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Figure 45. MUMPS9 micromirror control surface array image. 

A.3.3 The look-up image. Things become even more interesting when it 

comes to tiling the images of control surfaces. The routine to use is macsa2, and it 

produces an image of the array of control surfaces. The image is indexed with each 

mirror getting a unique index number. This is the array that the control functions 

scan to find pixels to move. Pixels that have a value of 0 represent points that do 

not move. Pixels that do move will have a value equal to the index number of the 

mirror to which they belong. The control function then takes this value, and goes 

to the look-up table to find the location of the center of the mirror, and uses this 

to compute the amount of deflection. The look-up image for a MUMPS9 array is 

shown in figure 45. 
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A.3.4 The look-up table. The function malut2 returns the look-up table 

used by the control functions. It takes the same arguments as mama2. The table 

cross- references the index numbers in the look-up image with the locations of the 

centers of the mirrors. 

A.3.5 The responsiveness image. This is a semi-implemented feature of the 

modeler. Since the flexures are attached to a moving mirror at one end, and a fixed 

frame at the other, it is obvious that the height of a pixel on a flexure would move 

by an amount that depends not only on the amount of input voltage, but also on its 

location along the flexure. The responsiveness image is intended to allow this to be 

modeled. The value of a pixel would indicate the extent of the effect of the control 

input on its height. The pixels of the mirror would have value 1; pixels that do not 

move at all would have value 0; and pixels on the flexures would have intermediate 

values depending on their location. Once the total amount of deflection required 

for a given mirror is known, the height of each pixel is decreased by that amount 

multiplied by its responsiveness value. 

Unfortunately, this feature turned out to be rather complicated to implement. 

Given the small size and low reflectivity of the flexures, it was determined that the 

impact of not modeling the bending of the flexures would be small. However, the use 

of a responsiveness image is implemented in the control functions, so it is necessary 

to make a "dummy" responsiveness image by tiling the individual control surface 

image with mama2. This makes the mirrors and the Poly2 edges undergo the entire 

deflection, while everything else, including the flexures, stays put. 

A.4    Calculation of diffraction patterns 

A.4-1 Modeling a wavefront. The wavefront that is to be reflected from 

the MEMS device is much easier to model. The only requirement is that it have 

the same resolution and size as the device image.   For a plane wave, the value of 
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each pixel would be 1, so the Matlab function ones can be used. Tilted or spherical 

wavefronts, on the other hand, involve a phase that varies across the image. The 

commands 

» wave = masw(deflection,deltax,power) 

and 

» wave = maswr(radius,deltax,power) 

are used to create an image of a spherical wavefront, depending on whether the 

curvature of the wavefront is defined by the total deflection at the center of the 

image (masw) or by its radius (maswr). 

A.4-2 Computing the far-field pattern. The Matlab command to calculate 

a diffraction pattern is 

» diff = diffract(wavefront,wavelength,refray,hiray); 

This takes the reflectivity and height images, combines them into a complex reflec- 

tivity image and multiplies the result with the wavefront image. The result is a 

sampled representaion of the source optical disturbance U(£,rj). It then performs 

a two-dimensional FFT to predict the far-field diffraction pattern. The intensity of 

the diffraction pattern is given by 

» diffint = abs(diff).~2 

The diffraction intensity pattern for an undeflected MUMPS9 array is shown in figure 

46. 

A.4-3 Computing the scale. All the figures so far have been displayed with 

the axes labeled in pixel coordinates. It is more instructive to label the axes with 

their physical values, so the function getaxes was created to do this. It returns two 

one-dimensional data arrays. The first one contains the values corresponding to the 
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Figure 46. Simulated normalized log far-field diffraction intensity pattern for a 
plane wave reflected from an undeflected MUMPS9 micromirror array. 
The pattern is displayed as a negative image, thresholded at -90dB from 
the peak intensity. 
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physical location of each row or column in the device images (£ or rj), and is in the 

same units that are used in the genfunc to describe the device. For example, hex2 

describes everythying in /im. The second array returned by getaxes contains the 

associated spatial frequency values (u!^u>v) for the diffraction pattern. These are in 

inverse units of length, and must be multiplied by Xz to get units of length, or by A 

to obtain the angular spectrum. The command to obtain these is 

»   [xi,omega]  = getaxes(power,genfunc,spec,table); 

where power and spec should have the same values that were passed to mama2 to 

create the array image (eg. power = 10 and spec = 6). 

A.4-4 Displaying images. Matlab has an extensive assortment of display 

functions, each with many options. For this modeling package, two additional display 

functions were created that use all the appropriate built-in functions and options to 

correctly display two-dimensional device images. The first, show(image), displays 

image as a normalized, 256 level gray scale, 1:1 aspect ratio image with the axes 

labeled in pixel coordinates. The second, show2(x,y,image), does the same thing 

with x and y as the axis labels. All of the images shown so far have been created 

with show. 
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Appendix B.   Making a device function 

The heart of the MEMS Optical Modeler is the "device function", a Matlab .m- 

file that contains all the information necessary for the other functions of the model 

to create the images described in Appendix A. While basic knowledge of Matlab is 

necessary in order to use the modeling functions, the device function was designed 

to be relatively easy to create. The device function is the single file that needs to 

be rewritten or modified in order to create a model of a new device. Also, since 

the function can be given any legal file name (as long as it has the .m extension), 

there is no limit to the number of different devices that can be modeled. Two device 

functions are included with this thesis: 

hex2.m is used to model a MUMPS9 hexagonal micromirror array, and 

lens2.m is used to model a cartesian lenslet array aligned with an equally spaced 

array of micromirrors. 

In this appendix, any references to the above functions indicate a reference to that 

specific function/model, while the term "genfunc .m" will be used to refer to a generic 

device function. 

B.l    The Arguments 

The device function is called by the other modeling functions with the com- 

mand 

>> genfunc(rqst,spec); 

This section discusses the significance of the two arguments. 

B.l.l rqst: The Request. This argument simply tells the genfunc which 

data item is being requested, in accordance with Table 4.   The genfunc should 
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rqst Requested Data 

1 Micromirror Vertices 
2 Micromirror Lines 
3 Micromirror Seed Points 
4 Physical Extent of Micromirror Image 
5 Reflectivity Table 
6 Height Table 
7 Array Lattice Points 
8 Control Surface Vertices 
9 Control Surface Lines 

10 Control Surface Seed Points 

Table 4. rqst Cross-reference table. 

therefore be written to return the appropriate data item, based on the value passed 

to it in the rqst argument. 

B.1.2 spec: The Specifier. This argument is designed to provide additional 

flexibility to the modeler. The genfunc does not have to be written to take advantage 

of it. When using a genfunc that does not use the spec argument, however, it must 

still accept a second argument, since the other modeling functions will always call 

it with two arguments. It that case, it is simply irrelevant what the value of that 

argument is. 

When the spec argument is used, its significance can be whatever the writer 

of the genfunc wants it to be, as long as it is associated with the value of the rqst 

argument that it accompanies. For illustration, both hex2.m and lens2.m use the 

spec argument in conjunction with the request for the coordinates of the array lattice 

points (the coordinates of the centers of the mirrors in the array), which corresponds 

to rqst = 7. 
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In the case of hex2.m, it was useful (for debugging purposes) to create hexag- 

onal arrays with different numbers of mirrors, so spec is used to define the number 

of hexagonal rings. The command 

» hex2(7,l); 

returns the coordinates of the centers of seven micromirrors: the central one and 

the six that are immediately adjacent to it. Since the entire array has six hexagonal 

rings of micromirrors, to construct it the above command needs to be issued with 

the second argument set to 6. 

The lenslet array, on the other hand, is cartesian, so it is best described by the 

number of rows and columns of lenslets. Since the lenslet model is purely theoretical 

for now, it is useful to be able to specify the number of rows and columns desired 

at the time the model is built, without having to rewrite a new genfunc just to 

change those two parameters. For this reason, lens2.m was written so that when 

the command 

» lens2(7,spec); 

is given, lens2.m expects the spec variable to be a two-component array [m n] 

where m and n are the numbers of rows and columns desired. 

The above are the only uses of the spec variable implemented in hex2.m and 

lens2.m, but others are possible. For example, the genfunc can be written to take 

wavelength into account. Since the reflectivity (rqst = 5) of a material varies with 

wavelength, the genfunc can be written so that the data returned by 

» genfunc(5,lambda); 

depends on the value of lambda. 
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B.2    The Output 

There are ten data items that the genf unc needs to be able to produce on 

demand. To ease the creation of a device function for a new device, the model is 

designed so that the genf unc only needs to return data that is expressed in physical 

values, using units of length, for example. The conversion to pixel coordinates is 

done by other parts of the model and is, for the most part, transparent to the user. 

Also, since the genf unc is defined as a Matlab function, it is written as a series of 

Matlab commands. This means that while it can be written with all the data simply 

typed in the appropriate format, it can also contain formulas that calculate the data 

on the fly. The latter method was used heavily in writing hex2 .m, to take advantage 

of the symmetries of the MUMPS9 hexagonal array. 

B.2.1 Preliminary Considerations. The model of the device is created, 

ultimately, by low-level graphics functions that set pixels to given values, draw lines, 

etc. The device itself must be broken down into elements that can be drawn using 

these functions. First, areas of common height and reflectivity are defined, and 

assigned consecutive integer index numbers. For example, the exposed polysilicon 

surfaces of the MUMPS9 device are all assigned an index number of 2 in the function 

hex2 .m. The area that borders the micromirror image, and that will end up adjacent 

to the same area of neighboring micromirrors when the tiled image is formed, must 

have the highest index number. Next, each of these areas is further broken down 

into a collection of convex polygons, defined by the lines that border them, and by 

a "seed point" that is any point inside it. The lines themselves are defined by their 

endpoints. Finally, the endpoints are defined by their x and y coordinates. Drawing 

the device consists of drawing all the lines, and then filling the resulting polygons 

with the appropriate values using the seed points. This process is discussed in more 

detail in Chapter 1. 
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B.2.2 Micromirror Vertices (rqst = l). If the genfunc is asked for the 

coordinates of the vertices of an image of an individual mirror, it must return these 

in a N x 2 array, where each row contains the x and y coordinates of one of the 

N vertices. The "orientation" of the array is critical; if it is defined as a 2 x N 

array, the model will not work. It is usually easiest to form this output in steps. 

For example, both hex2.m and lens2.m define two one-dimensional arrays x and y 

containing the x and y coordinates, and then combine them with the command 

» reply =  [x',yJ]; 

where the prime operator transposes the x and y arrays into column vectors, and 

reply is the variable that is returned by the genf unc. 

B.2.3 Micromirror Lines (rqst = 2). The result of requesting this data 

from the device function should be a M x 3 array, where each row is a three-element 

vector [ptl ,pt2,area] that defines one of the M lines in the image of an individual 

mirror of the array. In this notation, ptl and pt2 are the indices, in the array of 

point coordinates described above, of the line's endpoints; and area is the index of 

the area of common height and reflectivity that the line borders. When the line in 

question is shared by two polygons of different areas, the value of area can be set 

to either one. 

B.2.4 Micromirror Seed Points (rqst = 3). For each polygon in the image 

that results from drawing the lines of the last paragraph, a seed point needs to be 

defined. When asked for the seed points, the genfunc needs to return a P x 3 

array, where P is the number of seed points. Each row is a three-element vector 

[x.y.area] that defines a seed point, and the index of the area it belongs to. 

B.2.5   Physical Extent of Micromirror Image (rqst = 4j.        The result of 

requesting this data item from the genfunc is a four-element vector: 

[left,top,right,bottom] 
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that contains the coordinates of the corners of the image of an individual micromirror. 

These should simply be the minimum and maximum values of the x and y coordinates 

of the vertices. 

B.2.6 Reflectivity Table (rqst = 5). This is a one-dimensional array that 

contains the reflectivities, ordered by area index number, of the different areas of 

common height and reflectivity defined above. The reflectivities, defined as the 

reflected energy divided by the incident energy, should be between 0 (all the energy 

is absorbed) and 1 (all the energy is reflected). 

B.2.7 Height Table (rqst = 6). This is the same as above, except that 

the values returned are the heights of the different areas, expressed in the same units 

of length as the coordinates of the vertices. 

B.2.8 Array Lattice Points (rqst = 7). When asked for the coordinates 

of the centers of the mirrors in the array, the device function should return a Q 

x 2 array, where each row is a two-element vector [x,y] containing the x and y 

coordinates of the center of a micromirror within the array. It is critical that the 

same unit of length be used for these coordinates as was used for the coordinates of 

the vertices of an individual mirror. These are used along with the definition of the 

extent of the image (rqst = 4) to convert these coordinates to the pixel coordinates 

that are used to do the tiling. 

B.2.9 Control Surface Vertices (rqst = 8). The image of the movable 

surface is constructed in the same way as the image of an individual micromirror. 

This data item is formatted the same way as the one described for rqst = 1. 

B.2.10 Control Surface Lines (rqst = 9). This is similar to the array 

of line definitions returned for rqst = 2. An important difference is that each line 

of the movable surface image does not need an area index number associated with 
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it. The movable surface has only two areas, one that moves in response to a control 

input, and one that doesn't. The difference between the two is defined by the control 

surface seed points. The output resulting from this request should therefore be a R 

x 2 array defining the R lines in the image of an individual movable surface. 

B.2.11 Control Surface Seed Points (rqst = 10j. The response to this 

request should be a S x 2 array containing the coordinates of the seed points defining 

the polygons that belong to the movable surface area in the movable surface image. 

Like the definitions of the lines (rqst = 9), area index numbers are not necessary 

with this data item. 
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Appendix C.   Matlab code listings 

C.l    Device functions 

C.l.l    hex2.m. 

function reply = hex2(rqst,spec) 

% HEX2 - This function is a genfunc for version 2 of the Peter Roberts 
%  Micromirror Modeler. It provides the data for the modeler to create an 
%  image of the MUMPS7 hexagonal micromirror array. 

% define some constants to make code more readable 
Rvert = 1; 
Lines = 2; 
Rseed = 3; 
Rlims = 4; 
Reflect = 5; 
Heights = 6; 
Rlats = 7; 

RCvert = 8; 
CLines = 9; 
RCseed = 10; 

% define layer indices: 
ring = 4; 
gold = 3; 
poly2 = 2; 

nitride = 1; 

% if rvert, rseed, rlims, revert or rcseed was requested 
if (rqst==Rvert)I(rqst==Rseed)I(rqst==Rlims)I(rqst==RCvert)I(rqst==RCseed) 

% define vertices in real world coordinates: [x,y] 
%  first, compute the coordinates, on axis, of the simple branch: 
xx(l) = 50-2/sin(pi/3); 
xx(2) = 50; 

xx(3) = xx(2)+3.1/sin(pi/3); 
xx(4) = xx(3)+2/sin(pi/3); 
xx(5) = xx(4)+3.1/sin(pi/3); 
xx(6) = xx(5)+2/sin(pi/3); 
xx(7) = (xx(6)+6/sin(pi/3)); 
7.  now make three rotated copies to generate the actual branches: 

yy(D = 0 
yy(2) = 0 
yy(3) = 0 
yy(4) = 0 
yy(5) = 0 
yy(6) = 0 

yy(7) = 0 
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for i=l:7 
[x(i),y(i)]      = rot(xx(i),yy(i),pi/4); 
[x(i+21),y(i+21)] = rot(xx(i) ,yy(i) ,H*pi/12); 
[x(i+42),y(i+42)] = rot(xx(i),yy(i),19*pi/12); 

end 
°/,  next, compute the on axis coordinates of the complex branch: 
xx(15) = xx(l) 
xx(16) = xx(4) 
xx(17) = xx(5) 
xx(18) = xx(6) 
xx(19) = xx(7) 

yy(15) = 0; 
yy(i6) = 0; 
yy(l7) = 0; 
yy(i8) = 0; 
yy(i9) = 0; 

xx( 8) = xx(17)-13*cos(pi/3);  yy( 8) = yy(17)-13*sin(pi/3); 
xx( 9) = xx(8)-3.1*cos(pi/6);  yy( 9) = yy(8)+3.1*sin(pi/6); 
xx(10) = xx(17)-ll*cos(pi/3); yy(10) = yy(17)-ll*sin(pi/3); 
xx(ll) = xx(10)-5.1*cos(pi/6); yy(ll) = yy(10)+5.1*sin(pi/6); 
xx(13) = xx(2)-4*cos(pi/3);   yy(13) = yy(2)-4*sin(pi/3); 
xx(12) = xx(13)+3.1*cos(pi/6); yy(12) = yy(13)-3.1*sin(pi/6); 
xx(14) = xx(16)-4*cos(pi/3);  yy(14) = yy(16)-4*sin(pi/3); 
xx(20) = xx(13); yy(20) = -yy(13); 
xx(21) = xx(12); yy(21) = -yy(12); 
%  and make three rotated copies of it: 

for i=8:21 
[x(i),y(i)]      = rot(xx(i),yy(i),7*pi/12); 
[x(i+21),y(i+21)] = rot(xx(i),yy(i),15*pi/12); 
[x(i+42),y(i+42)] = rot(xx(i),yy(i),23*pi/12); 

end 
%  next, define some additional points required to generate an image of the 
%  control surface 
[x(64),y(64)] = rot(xx(2),yy(2),7*pi/12) ; 
[x(65),y(65)] = rot(xx(2),yy(2),15*pi/12); 
Cx(66),y(66)] = rot(xx(2),yy(2),23*pi/12); 
% now define the output 
if rqst == Rvert % rvert 
reply = [x(l:63)',y(l:63)>]; 

elseif rqst == Rseed % rseed 
% define seed points in real world coords: [x,y,color] 
reply = [[(x( l)+x(36))/2,(y( l)+y(36))/2,gold],   % the mirror 

[(x( l)+x(13))/2,(y( l)+y(13))/2,poly2],  %  1st arm 
[(x( 3)+x( 9))/2,(y( 3)+y( 9))/2,poly2], 
[(x( 9)+x(10))/2,(y( 9)+y(10))/2,poly2], 
[(x( 5)+x(18))/2,(y( 5)+y(18))/2,poly2], 

[(x(15)+x(16))/2,(y(15)+y(16))/2,poly2], 

89 



x(15)+x(23)) /2,(: 
x(21)+x(25)) /2,(: 
x(17)+x(27)) /2,(: 
x(22)+x(34)] /2,(: 

x(24)+x(30)) /2,(: 
x(30)+x(31)] /2,(: 

x(26)+x(39)] /2,0 
x(36)+x(37): /2,0 
x(36)+x(44): /2,0 
x(42)+x(46): /2.0 
x(38)+x(48): /2,0 
x(43)+x(55): >/2,( 
x(45)+x(51); >/2,( 
x(51)+x(52): )/2,( 
x(47)+x(60): )/2,( 
x(57)+x(58): >/2,( 
x(57)+x(  2) )/2,( 
x(63)+x( 4) )/2,( 
x(59)+x(  6) )/2,( 
x(  3)+x(13) )/2,( 
x(10)+x(12)' )/2,( 
x(10)+x(16)' )/2,( 
x( 5)+x( 9) )/2,( 
x(17)+x(24) )/2,( 
x(21)+x(23) )/2,( 
x(24)+x(34) >/2,( 
x(31)+x(33) )/2,( 
.x(31)+x(37) )/2,( 
;x(26)+x(30) )/2,( 
:x(38)+x(45) )/2,( 
:x(42)+x(44) )/2,( 
:x(45)+x(55) )/2,( 
:x(52)+x(54) )/2,( 
;x(52)+x(58) )/2,( 
:x(47)+x(51) )/2,( 
:x(59)+x( 3) )/2,( 
:x(63)+x(  2) )/2,( 
;x( 7)+x(18) )/2,( 
;x(19)+x(27) )/2,( 
:x(28)+x(39) )/2,( 
;x(40)+x(48) )/2,( 
;x(49)+x(60) )/2,( 

,(y(15)+y(23) 
,(y(21)+y(25) 
,(y(17)+y(27) 

,(y(22)+y(34) 

,(y(24)+y(30) 
,(y(30)+y(31) 

,(y(26)+y(39) 
,(y(36)+y(37) 

,(y(36)+y(44) 
,(y(42)+y(46) 
,(y(38)+y(48) 
,(y(43)+y(55) 
,(y(45)+y(51) 
,(y(51)+y(52) 

,(y(47)+y(60) 
,(y(57)+y(58) 
,(y(57)+y( 2) 
,(y(63)+y( 4) 
,(y(59)+y( 6) 
,(y( 3)+y(13) 
,(y(10)+y(12) 
,(y(10)+y(16) 

,(y( 5)+y( 9) 
,(y(17)+y(24) 
,(y(21)+y(23) 
,(y(24)+y(34) 

,(y(31)+y(33) 
,(y(31)+y(37) 
,(y(26)+y(30) 

,(y(38)+y(45) 
,(y(42)+y(44) 
,(y(45)+y(55) 
,(y(52)+y(54) 
,(y(52)+y(58) 
,(y(47)+y(51) 
,(y(59)+y( 3) 
,(y(63)+y( 2) 
,(y( 7)+y(18) 
,(y(19)+y(27) 
,(y(28)+y(39) 
,(y(40)+y(48) 
,(y(49)+y(60) 

)/2,poly2], 
)/2,poly2], 
)/2,poly2], 

)/2,poly2], 

)/2,poly2], 
)/2,poly2], 

)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 

)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,poly2], 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 

)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 

)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,nitride] 
)/2,ring], 
)/2,ring], 
)/2,ring], 
)/2,ring], 
)/2,ring], 

% 2nd arm 

% 3rd arm 

% nitride gaps 

7. ring 
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[(x(61)+x( 6))/2,(y(61)+y( 6))/2,ring]]; 

elseif rqst == Rlims 
m = max([max(x),max(y)]); 

reply = [-m,m,m,-m]; 
elseif rqst == RCvert 

reply = [[x( 2),y( 2)], 
[x(64),y(64)], 
[x(23),y(23)], 

[x(65),y(65)], 
[x(44),y(44)], 
[x(66),y(66)]]; 

elseif rqst == RCseed 
reply = [0,0]; 

end 

% rlims 

% revert 

'/,  rcseed 

% if lines was requested 
elseif rqst == Lines 
% define array of line references: 
%  element format: [index of point 1, index of point 2, color] 

% first the mirror itself = [[ 1, 15,gold], 
[15, 22,gold], 
[22, 36,gold], 
[36, 43,gold], 
[43, 57,gold], 
[57, l.gold], 
[ 1, 2,poly2], 
[ 2, 13,poly2], 
[13, 15,poly2], 
[ 3, ll,poly2], 
[11, 9   ,poly2], 
[ 9, 4,poly2], 
[ 4, 3,poly2], 
[U, 10,poly2], 
[10, 8,poly2], 
[ 5, 8,poly2], 
[10, 17,poly2], 
[17, 18,poly2], 
[18, 6,ring], 
[ 6, 5,poly2], 
[ 8, 9,poly2], 
[13, 12,poly2], 
[12, 14,poly2], 

% then the first flexor arm 
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[14 
[16 
[21 
[20 
[20 
[23 
[21 
[24 
[25 
[17 
[26 
[27 
[23 
[34 
[24 
[32 
[30 
[32 
[31 
[26 
[31 
[38 
[39 
[29 
[34 
[33 
[35 
[37 
[42 
[41 
[41 
[44 
[42 
[45 
[46 
[38 
[47 
[48 
[44 
[55 
[45 
[53 

,16,poly2] 
,21,poly2] 
,20,poly2] 
,15,poly2] 
,23,poly2] 
,22,poly2] 
,24,poly2] 
,25,poly2] 
,16,poly2] 
,26,poly2] 
,27,poly2] 
,18,ring], 
,34,poly2] 
,36,poly2] 
,32,poly2] 
,30,poly2] 
,25,poly2] 
,31,poly2] 
,29,poly2] 
,29,poly2] 
,38,poly2] 
,39,poly2] 
,27,ring], 
,30,poly2] 
,33,poly2] 
,35,poly2] 
,37,poly2] 
,42,poly2] 
,41,poly2] 
,36,poly2] 
,44,poly2] 
,43,poly2] 
,45,poly2] 
,46,poly2] 
,37,poly2] 
,47,poly2] 
,48,poly2] 
,39,ring], 
,55,poly2] 
,57,poly2] 
,53,poly2] 
,51,poly2] 

% and the second flexor arm 

% and the third flexor arm 
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[51 
[53; 

[52, 
[47, 

[52, 
[59, 

[60 

[50 
[55 
[54 
[56 
[58 
[63 
[62 

[62. 
[63 
[ 4, 
[59 
[ 2 
[11 
[10, 
[16, 
[25, 
[23, 
[32, 
[31 
[37, 
[46, 
[44, 
[53, 

[52. 
[58 

[ 4 
[ 6 
[ 6. 
[ 7 
[19 
[19 
[28 
[28 
[40 
[40 

46, 
52, 
50, 
50, 
59, 

60, 

48, 

51, 
54, 
56, 
58, 
63, 
62, 
57, 

2, 
3, 

58, 

5, 
3, 

12, 
14, 
17, 
26, 
24, 
33, 
35, 
38, 
47, 
45, 
54, 
56, 
59, 

5, 
60, 

7, 
19, 
18, 
28, 
27, 
40, 
39, 
49, 

poly2], 
poly2], 
poly2], 
poly2], 
poly2], 
poly2], 

ring], 
poly2], 

poly2], 
poly2], 
poly2], 

Poly2], 
poly2], 
poly2], 
poly2], 
poly2], 
poly2], 
poly2], 

nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 
nitride] 

nitride] 
nitride] 
ring], 

ring], 
ring], 
ring], 
ring], 
ring], 
ring], 
ring], 
ring], 

% and the nitride gaps 

% and finally the intermirror ring 
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[49,48, ring], 

[49,61, ring], 

[61,60, ring], 
[61, 7,ring]]; 

% if clines was requested 

elseif rqst == CLines 

'/, define array of line references: 
%  element format: [index of point 1, index of point 2] 

reply = [[1,2], 

[2,3], 
[3,4], 
[4,5], 
[5,6], 
[6,1]]; 

% if the layer reflectivities were requested 
elseif rqst == Reflect 

reply = [0.4,     % nitride 
0.35,    % poly2 

0.9,     I  gold 
0.9];    % ring 

% if the layer heights were requested 
elseif rqst == Heights 

reply = [0,      % nitride 

2.75,    %  poly2 
2.75+1.5, % gold 
2.75+1.5];% ring 

% if the array lattice points were requested 
elseif rqst == Rlats 

numrings = spec; 

% define lattice points in real world coordinates: [x,y] 
b = 100/sqrt(4+l/cos(pi/6)); 
width = 2*(b+3.1+2+3.1+5); 

deltal = width*sin(pi/12); % define displacement values 

delta2 = width*cos(pi/12); 
delta3 = width*cos(pi/4); 
n=l; 

rlatx(n) = 0; rlaty(n) =0;        '/„  central mirror 

94 



for i=l:numrings 

n=n+l; 
rlatx(n) = rlatx(l) + i*deltal; 
rlaty(n) = rlaty(l) + i*delta2; 

for j=l:i 
n=n+l; 
rlatx(n 
rlaty(n 

end 
for j=l:i 

n=n+l; 
rlatx(n 
rlaty(n 

end 

for j=l:i 
n=n+l; 
rlatx(n 
rlaty(n 

end 

for j=l:i 
n=n+l; 
rlatx(n 

rlaty(n 
end 
for j=l:i 

n=n+l; 
rlatx(n 
rlaty(n 

end 
for j=l:i-l 

n=n+l; 
rlatx(n 
rlaty(n 

end 
end 
reply = [rlatx' ^laty'] ; 

end 

= rlatx(n-1) + delta3; 
= rlaty(n-l) - delta3; 

= rlatx(n-l) - deltal; 
= rlaty(n-l) - delta2; 

= rlatx(n-l) - delta2; 
= rlaty(n-l) - deltal; 

= rlatx(n-l) - delta3; 
= rlaty(n-l) + delta3; 

= rlatx(n-l) + deltal; 
= rlaty(n-l) + delta2; 

= rlatx(n-l) + delta2; 
= rlaty(n-l) + deltal; 

% 1st mirror of 1st side 

% rest of 1st side 

% 2nd side 

% 3rd side 

% 4th side 

% 5th side 

% 6th side 
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C.1.2   lens2.m. 

function reply = lens2(rqst,spec) 

*/, LENS2 - This function is a genfunc for version 2 of the Peter Roberts 

%  Micromirror Modeler. It provides the data for the modeler to create an 
'/,  image of an orthogonal lenslet array like the ones used with Hartman 

%  wavefront sensors. 

% define some constants to make code more readable 

Rvert = 1; 
Lines = 2; 
Rseed = 3; 
Rlims = 4; 
Reflect = 5; 
Heights = 6; 
Rlats = 7; 
RCvert = 8; 
CLines = 9; 
RCseed = 10; 

% define layer indices: 
lens = 1; 

% if rvert, rseed, rlims, revert or rcseed was requested 
if (rqst==Rvert)I(rqst==Rseed)I(rqst==Rlims)I(rqst==RCvert)I(rqst==RCseed) 

% define vertices in real world coordinates: [x,y] 
%  first, compute the coordinates, on axis, of the simple branch: 

x(l) = -0.5; y(l) = -0.5 
x(2) = -0.5; y(2) = 0.5 
x(3) = 0.5; y(3) = 0.5 
x(4) = 0.5; y(4) = -0.5 
% now define the output 
if rqst == Rvert % rvert 

reply = [x(l:4)',y(l:4)']; 
elseif rqst == Rseed % rseed 

reply = [0,0,lens]; 
elseif rqst == Rlims % rlims 

reply = [-0.5,0.5,0.5,-0.5]; 
elseif rqst == RCvert 7. revert 
reply = [x(l:4)',y(l:4)']; 

elseif rqst == RCseed % rcseed 
reply = [0,0]; 
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end 

% if lines was requested 

elseif rqst == Lines 
% define array of line references: 
°/.  element format: [index of point 1, index of point 2, color] 

reply = [[1,2,lens], 
[2,3,lens], 

[3,4,lens], 
[4,1,lens]]; 

% if clines was requested 
elseif rqst == CLines 
% define array of line references: 
%  element format: [index of point 1, index of point 2] 

reply = [[1,2], 
[2,3], 
[3,4], 

[4,1]]; 

% if the layer reflectivities were requested 

elseif rqst == Reflect 

reply = [0.9]; 

7, if the layer heights were requested 
elseif rqst == Heights 

reply = [0]; 

% if the array lattice points were requested 
elseif rqst == Rlats 

numrows = spec(l); 
numcols = spec(2); 
% define lattice points in real world coordinates: [x,y] 

n = 1; 
for i = 1:numrows 

for j = 1:numcols 
rlatx(n) = i-((numrows+l)/2); 
rlaty(n) = j-((numcols+l)/2); 

n = n+1; 
end 

end 
reply = [rlatx1,rlaty'] ; 
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end 

98 



C.2   Model generating functions 

C.2.1    getaxes.m. 

function [xaxis,uaxis] = getaxes(power,genfunc,spec,table); 

% GETAXES - This function returns the real and far field axes of the device 
% described by 'genfunc'. 
% usage: [xaxis.uaxis] = getaxes(power,'genfunc',spec,table); 
°/0 'power5 defines the number of pixels in the model. This should be the same 
% value that was passed to mama2 to make the array. 
% 'genfunc' is a function that defines certain characteristics of the 
% device, genfunc should be written so that genfunc(7,spec) returns a 2xn 
% array containing the real world coordinates of the lattice points in the 
% array of micromirrors. 
% 'spec' is an additional argument of genfunc. Here it is 
% used to specify the size of the array, and should be the same value that 
% was given to mama2 to generate the array. 
% 'table' is a 2xn array containing the pixel coordinates of the n 
% micromirrors in the array. 

% initialize constants: 
Rlats = 7; 
n = 2"power; 

rtable = eval([genfunc '(' int2str(Rlats) ',spec)']); 
rx = rtable(:,1); 
mx = table(:,1); 
rxmin = min(rx) 
rxmax = max(rx) 
mxmin = min(mx) 
mxmax = max(mx) 
tx = l:n; 
ax = (rxmax-rxmin)/(mxmax-mxmin); 
bx = rxmax-ax*mxmax; 
xaxis = ax*tx+bx; 
deltax = xaxis(2)-xaxis(l); 
deltau = l/(deltax*n); 
uaxis = -n*deltau/2:deltau:(n/2-l)*deltau; 
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C.2.2   macs2.m. 

function out = macs2(len,genfunc,spec) 

% MACS2 - Make A Control Surface, version 2 
% Constructs an image of the movable surface for an individual 
7. micromirror. 
% Usage: mircon = macsden,'genfunc',spec) 
% The size of the array that will hold the image will be len x len. This 
% should be the same len as used to generate the image of the micromirror 
% with mam2. 
% 'genfunc' is another function that defines the type of micromirror to be 
% constructed. It should be written so that: 
% - genfunc(4,spec) returns a four element vector containing the limits, 
% in real world coordinates, of the image: 
% [left,top,right,bottom] 
% - genfunc(8,spec) returns a 2-by-n array containing the real world 
% coordinates of all n vertices in the image of the movable surface: 
7. [[xl,yl], 
7. [x2,y2], 

it  » 

7. [xn,yn]] 
7. - genfunc(9,spec) returns a 2-by-m array that defines all m lines in 
7. the image: 
% [[startpt,endpt], 
7.  ] 
% Here 'startpt' and 'endpt' are the indices of the x-coordinates of 
7. the points being referred to in the array returned by 
% genfunc(8,spec). The lines should be defined such that they form all 
'/, convex polygons. 
% - genfunc(10,spec) returns a 2-by-k array that defines all k seed points 
7, needed to fill the polygons in the image: 
7. [[xl.yl], 
7,  , 
7. [xk,yk]] 
7. 'spec' is not used in any of these components of genfunc. However, 
7o genfunc is used by three other functions (mam, mama, and macma) to 
7. generate other components of the micromirror array model, and the spec 
7. input is used by some of these. For details, type 'help <function>' at 
7o the MATLAB prompt. 

7. define some constants to make the code more readable 
Rlims = 4; 
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RCvert = 8; 

CLines = 9; 
RCseed = 10; 

% initialize the image array: 
mircon = zeros(len); 

7. get the real world coordinates of the vertices: 
revert = eval([genfunc '(' int2str(RCvert) ','   int2str(spec) ')']); 

7. get the array of line references: 
clines = eval([genfunc '(' int2str(CLines) ',' int2str(spec) ')']); 

7, get the real world coordinates of the seed points: 
rcseed = eval([genfunc '('   int2str(RCseed) ',' int2str(spec) ;)']); 

%  set up the limits for the array dimensions: 
7o  matrix limits: 
mlims = [1,len,len,1] ; 
7o  get the real world limits: 
rlims = eval([genfunc '(' int2str(Rlims) ',' int2str(spec) ')']); 

%  convert revert (real world coords) to mcvert (pixel coords): 
mcvert = revert; 
n = size(revert,1); 
for i=l:n 

[mcvert(i),mcvert(n+i)] = r2m(rcvert(i),revert(n+i),rlims,mlims); 
end 

7o convert rcseed to meseed: 

meseed = rcseed; 
n = size(rcseed,l); 

for i=l:n 
[mcseed(i),mcseed(n+i)] = r2m(rcseed(i),rcseed(n+i),rlims,mlims); 

end 

7o draw all the lines: 
n = size(clines,1); 

disp(n) 
m = size(mcvert,1); 
for i=l:n 

pointl = clines(i); 
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point2 = clines(n+i); 
xl = mcvert(point1); 
yl = mcvert(m+pointl); 

x2 = mcvert(point2); 
y2 = mcvert(m+point2); 
mircon = pline(xl,yl,x2,y2,l,mircon); 

disp(n-i) 

end 

% do the fills: 
n = size(mcseed,l); 

for i=l:n 
x = mcseed(i); 
y = mcseed(n+i); 
mircon = pfilll(x,y,l,mircon,n-i); 

% mircon = setpix(x,y,l,mircon); 
end 

% all done! 
out = mircon; 
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C.2.3    macsa2.m. 

function out = macsa2(power,element.genfunc,spec) 

% MACSA2 - Make A Control Surface Array, version 2 
% Constructs an image of an array of movable micromirror surfaces. 
7, Usage: conray = macsas(power,element, 'genfunc',spec) 
7. The size of the array that will hold the image will be 2~power x 2"power 
% and should be the same as the size of the array containing the image of 
% the mirror array. 
% 'element' contains an image of an individual micromirror control surface. 
7, 'genfunc' is another function that defines the type of micromirror array 
% to be constructed. It can be the same genfunc used by mam to create an 
% individual micromirror, with the following definitions: 
% - genfunc(4,spec) returns a four element vector containing the limits, 
% in real world coordinates, of the image: 
% [left,top,right,bottom] 
% 'spec' is not used by this component of genfunc. 
% - genfunc(6,spec) returns a 2xn array containing the real world 
7. coordinates of the lattice points of the array: 
% [Cxl.yl], 
7. Ex2,y2], 
7.  , 
% [xn,yn]] 
7, macma will place a copy of 'element' at each of these lattice points, 
7, centered on the lattice points. Here, 'spec' is used to specify the 
% size, in elements, of the array, and should be the same as that used 
'/, to generate the image of the array with mama. For example, for a 
y, hexagonal array, 'spec' can be an integer denoting the number of 
7o rings to be inserted. For an orthogonal array, 'spec' could be a 
7c two-element vector specifying the number of rows and columns. 
7o For a definition of the other components of genfunc, type 'help mam', 
7o 'help macm' and 'help mama' from the MATLAB prompt. 
7o 'spec' is an additional variable for use by genfunc. 

7o define some constants to make the code more readable 
Rlims = 4; 
Mats = 7; 

7o initialize the image array: 
conray = zeros(2~power); 

7o get the real world coordinates of the lattice points 
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rlats = eval([genfunc '(' int2str(Rlats) '.spec)']); 

% set up the limits for the array dimensions: 

%  matrix limits: 
mlims = [l,2~power,2~power,l]; 
%  real world limits: 
erlims = eval([genfunc '(' int2str(Rlims) ',0)']); 

w = abs(erlims(3)-erlims(1)); 
pixsize = w/size(element,1); 
m = pixsize * 2"power / 2; 
rlims = [-m,m,m,-m]; 

% convert rvert (real world coords) to mvert (pixel coords): 

mlats = rlats; 
n = size(rlats,1); 
for i=l:n; 

[mlats(i),mlats(n+i)] = r2m(rlats(i),rlats(n+i),rlims,mlims); 

end 

% insert all the control surfaces: 

offset = size(element,l)/2; 
n = size(mlats,1); 

for i=l:n 
conray = insert(i*element,conray,mlats(i)-offset,mlats(n+i)-offset); 

disp(n-i) 
end 

out = conray; 
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C.2.4    malut2.m. 

function out = malut2(power,element,genfunc,spec) 

7. MALUT2 - Make A Look-Up Table, version 2 
%      Constructs a look-up table for controlling an array of micromirrors. 
% Usage: table = malut(power,element,'genfunc',spec) 
% The arguments to this function should be exactly the same as those given 
% mama to generate the micromirror array. The result will be a 2-by-n 
% matrix containing the pixel coordinates of the centers of each mirror in 
7, the array. This table can be used by other functions to modify the array 
7. to simulate the application of a control input. When an image of control 
'/, surfaces is generated by macma, each individual surface will contain the 
*/, value of the index of that surface's center point in the table generated 
% by malut. 

% define some constants to make the code more readable 
Rlims = 4; 
Rlats = 7; 

% get the real world coordinates of the lattice points 
rlats = eval([genfunc '(' int2str(Rlats) ',spec)']); 

% set up the limits for the array dimensions: 
7,  matrix limits: 
mlims = [l,2~power,2~power,l]; 
7o  real world limits: 
erlims = eval([genfunc '(' int2str(Rlims) ',0)']); 
w = abs(erlims(3)-erlims(1)); 
pixsize = w/size(element,l); 
m = pixsize * 2"power / 2; 
rlims = [-m,m,m,-m]; 

7o convert rvert (real world coords) to mvert (pixel coords): 
mlats = rlats; 
n = size(rlats,l); 
for i=l:n; 

[mlats(i),mlats(n+i)] = r2m(rlats(i),rlats(n+i),rlims,mlims); 
end 

'/,  all done! 
out = mlats; 
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C.2.5   mam2.m. 

function out = mam2(len,genfunc,spec) 

% MAM2 - Make A Mirror, version 2 
% Constructs an image of an individual micromirror. 
% Usage: mirror = mam2(len,'genfunc',spec) 
% The size of the array that will hold the image will be len x len. 
% 'genfunc' is another function that defines the type of micromirror to be 
% constructed. It should be written so that: 
% - genfunc(l,spec) returns a 2-by-n array containing the real world 
% coordinates of all vertices in the image: 
'/. [Cxl.yl], 
'/. [x2,y2], 
%  , 
% [xn, yn] ] 
% - genfunc(2,spec) returns a 3-by-m array that defines all the lines in 
% the image: 
% [[startpt,endpt,index], 
I  ] 
% Here 'startpt' and 'endpt' are the indices of the x-coordinates of the 
% points being referred to in the array returned by genfunc(l,spec). 
% The lines should be defined such that they form all convex polygons. 
% - genfunc(3,spec) returns a 3-by-k array that defines all the seed 
% points needed to fill the polygons in the image: 
% [[xl,yl,index], 

% [xk,yk,index]] 
% - genfunc(4,spec) returns a four element vector containing the limits, 
% in real world coordinates, of the image: 
% [left,top,right,bottom] 
% 'spec' is an additional argument to genfunc that depends on the 
% particular genfunc being used. 

% define some constants 
Rvert = 1; 
Lines = 2 
Rseed = 3 
Rlims = 4 

% initialize the image array: 
mirror = zeros(len); 
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% get the real world coordinates of the vertices: 
rvert = eval([genfunc '(' int2str(Rvert) V int2str(spec) ')']); 

'/, get the array of line references: 
lines = eval([genfunc '(' int2str(Lines) ',' int2str(spec) ')']); 

7. get the real world coordinates of the seed points: 

rseed = eval([genfunc '(' int2str(Rseed) ',' int2str(spec) ')']); 

7. set up the limits for the array dimensions: 

%  matrix limits: 
mlims = [l,len,len,l]; 
%  get the real world limits: 
rlims = eval([genfunc '(' int2str(Rlims) ',' int2str(spec) ')']); 

% convert rvert (real world coords) to mvert (pixel coords): 

mvert = rvert; 
n = size(rvert,1); 
for i=l:n 

[mvert(i),mvert(n+i)] = r2m(rvert(i),rvert(n+i),rlims,mlims); 

end 

% convert rseed to mseed: 
mseed = rseed; 
n = size(rseed,l); 
for i=l:n 

[mseed(i),mseed(n+i)] = r2m(rseed(i),rseed(n+i),rlims,mlims); 
end 

7. draw all the lines: 
n = size(lines,l); 
disp(n) 
m = size(mvert,1); 
for i=l:n 

pointl = lines(i); 
point2 = lines(n+i); 
color = lines(2*n+i); 
xl = mvert(pointl); 
yl = mvert(m+pointl); 
x2 = mvert(point2); 
y2 = mvert(m+point2); 
mirror = pline(xl,yl,x2,y2,color,mirror); 
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disp(n-i) 

end 

%  do the fills: 
n = size(mseed,l); 

for i=l:n 
x = mseed(i); 
y = mseed(n+i); 
color = mseed(2*n+i); 
mirror = pfilll(x,y,color,mirror,n-i); 

% mirror = setpix(x,y,color,mirror); 

end 

%  all done! 
out = mirror; 
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C.2.6   mama2.m. 

function out = mama2(power,element,genfunc,spec) 

% MAMA2 - Make A Mirror Array, version 2 
7, Constructs an image of an array of micromirrors. 
% Usage: marray = mamaCpower,element,'genfunc',spec) 
% The size of the array that will hold the image will be 2"power x 2~power. 
7, 'element' contains an image of an individual micromirror. 
% 'genfunc' is another function that defines the type of micromirror array 
% to be constructed. It can be the same genfunc used by mam to create an 
7. individual micromirror, with the following definitions: 
% - genfunc(4,spec) returns a four element vector containing the limits, 
% in real world coordinates, of the image: 
% [left,top,right,bottom] 
% 'spec' is not used by this component of genfunc 
% - genfunc(7,spec) returns a 2xn array containing the real world 
% coordinates of the lattice points of the array: 
1 [Exl.yl], 
7. Ex2,y2], 

7.  , 
7. [xn,yn]] 
% mama will place a copy of 'element' at each of these lattice points, 
7, centered on the lattice points. Here, 'spec' is used to specify the 
7o size, in elements, of the array. For example, for a hexagonal array, 
7o 'spec' can be an integer denoting the number of rings to be inserted. 
7. For an orthogonal array, 'spec' could be a two-element vector 
7o specifying the number of rows and columns. 
yo For a definition of the other components of genfunc, type 'help mam' 
7. from the MATLAB prompt. 
7o 'spec' is an additional variable for use by genfunc. 

7o define some constants to make the code more readable 
Rlims = 4; 
Rlats = 7; 

7o initialize the image array: 
marray = zeros(2~power); 

7o get the real world coordinates of the lattice points 
rlats = eval([genfunc '(' int2str(Rlats) '.spec)']); 

7. set up the limits for the array dimensions: 
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%  matrix limits: 
mlims = [l,2~power,2~power,l]; 

%  real world limits: 
erlims = eval([genfunc '(' int2str(Rlims) ',0)']); 

w = abs(erlims(3)-erlims(1)); 

pixsize = w/size(element,1); 

m = pixsize * 2*power / 2; 

rlims = [-m,m,m,-m]; 

% convert rvert (real world coords) to mvert (pixel coords): 

mlats = rlats; 
n = size(rlats,1); 
for i=l:n; 

[mlats(i),mlats(n+i)] = r2m(rlats(i),rlats(n+i),rlims,mlims); 

end 

% insert all the micromirrors: 
offset = size(element,l)/2; 
n = size(mlats,1); 

for i=l:n 
marray = insert(element,marray,mlats(i)-offset,mlats(n+i)-offset); 

disp(n-i) 

end 

% do some touching up 
border = max(max(element)); 
for i=l:2"power 

for j=l:2~power 
color = marray(i,j); 
if (color>border) 
marray(i,j) = border; 

end 
end 

end 

7, all done! 
out = marray; 
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C.2.7   mhm2.m. 

function hiray = mhm2(indexray,genfunc,spec); 

% MHM2 - Make Height Matrix, version 2 
% Constructs an image matrix of height values. 
'/, usage: hiray = mhm2(indexray,'genfunc',spec) 
% 'indexray' is an image matrix where each pixel contains an index showing 

% what layer of the MEMS device that pixel belongs to. 
% 'genfunc' is another function that defines the type of micromirror to be 
7, constructed. Presumably, it will also have been used to generate 

% 'indexray'. 
% It should be written so that: 
% - genfunc(6,spec) returns a ID array containing the height, in microns, 
% of the various layers of the device being modeled. The index of each 
% value within the array should match the indices contained in 
% 'indexray'. 'spec' can be used to specify an additional variable for 

% genfunc, if necessary. 

% define some constants to make the code more readable 

Heights = 6; 

% initialize the output 
hiray = indexray; 

% and do some replacing 
hite = eval([genfunc '(' int2str(Heights) ',' int2str(spec) ')']); 

n = length(hite); 
disp(n) 
for i=l:n 

hiray = replace(i,hite(i),hiray); 

disp(n-i) 
end 
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C.2.8   mrm2.m. 

function refray = mrm2 (indexray,genfunc,spec); 

% MRM2 - Make Reflectivity Matrix, version 2 
% Constructs an image matrix of reflectivity values. 
% usage: refray = mrm2(indexray,'genfunc',spec) 
% 'indexray' is an image matrix where each pixel contains an index showing 
% what layer of the MEMS device that pixel belongs to. 
% 'genfunc' is another function that defines the type of micromirror to be 
% constructed. Presumably, it will also have been used to generate 
7. 'indexray'. 
% It should be written so that: 
7, - genfunc(5,spec) returns a ID array containing the reflectivity values 
% of the various layers of the device being modeled. The index of each 
% value within the array should match the indices contained in 
7, 'indexray'. 'spec' can be used to specify an additional variable. For 
% example, if genfunc is written so that the reflectivity values are 
7. dependent on wavelength, 'spec' can be used to pass the wavelength. 

%  define some constants to make the code more readable 
Reflect = 5; 

'/,  initialize the output 
refray = indexray; 

7. and do some replacing 
ref = eval([genfunc '(' int2str(Reflect) ',' int2str(spec) ')']); 
n = length(ref); 
disp(n) 
for i=l:n 

refray = replace(i,ref(i),refray); 
disp(n-i) 

end 
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C.3   Model controlling functions 

C.S.I    abcorr.m. 

function out = abcorrCwavefront,wavelength,hiray,conray,respray,table) 

ABCORR - Deflects an array of micromirrors to compensate for an aberrated 

wavefront. 
usage: defmarray = abcorrCwavefront,wavelength,hiray,conray,respray,table) 
'wavefront' is a real nxn matrix that contains the phase of a wavefront. 
The magnitude of each pixel represents the distance by which the phase of 

the wavefront at that pixel is advanced with respect to a reference plane, 
'wavelength' is simply the wavelength of the incoming wavefront. 

'hiray' is the array containing the imae of the heights of the 
individual pizels in the micromirror array. 
'conray' is the array containing the image of the indexed control 
surfaces of the micromirror array. 
'respray' is the array contining an image of the response to control 
inputs for each pixel in the array. 
'table' is a n-by-2 lookup table containing the pixel coordinates of the 
n micromirrors in the array. 

out = hiray; 
n = size(hiray,1); 
for j=l:n 

for k=l:n 

if conrayCj,k) ~= 0 
x = table(conrayCj,k)); 
y = table (conrayCj ,k)+size(table,D); 
deflection = wavefront(x,y)/2; 
phi = angle(exp(i*2*pi*deflection/wavelength)); 
dz = wavelength*phi/C2*pi); 
if dz<0 

dz = dz + wavelength; 
end 
out(j,k) = hiray(j,k) - (dz*respray(j,k)); 

end 

end 
disp(n-j) 

end 
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C.3.2   parabolize2.m. 

function out = parabolize2(deflection,lambda,hiray,conray,respray,table) 

% PARAB0LIZE2 - Adds a parabolic correction to an array of micromirrors. 
% usage: defmarray = parabolize2(deflection,lambda,hiray,conray,respray,table) 
% 'deflection' is the total amount of deflection desired at the edges, in 

% wavelengths. 
% 'lambda' is the wavelength for which diffraction is to be modeled. It 

% must be in the same units as 'hiray'. 
% 'hiray' is the array containing the image of the heights of the 

% individual pixels in the micromirror array. 
% 'conray' is the array containing the image of the indexed control 

% surfaces of the micromirror array. 
'/, 'respray' is the array containing the image of the response to control 

% inputs for each pixel in the array. 
% 'table' is a n-by-2 lookup table containing the pixel coordinates of the 

% n micromirrors in the array. 

out = hiray; 
n = size(hiray,1); 
xray = table(:,1)-size(hiray,l)/2; 
yray = table(:,2)-size(hiray,2)/2; 
r2ray = (xray .* xray) + (yray .* yray); 
r2max = max(r2ray); 
phimax = 2*pi*deflection; 
for j=l:n 

for k=l:size(hiray,2) 

if conray(j,k) "= 0 
phi = phimax*(l-r2ray(conray(j,k))/r2max); 
phi = angle(exp(i*phi)); 
dz = lambda*phi/(2*pi); 
if dz<0 

dz = dz + lambda; 
end 
out(j,k) = hiray(j.k) - (dz*respray(j,k)); 

end 
end 
disp(n-j) 

end 
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C.3.3   piston2.m. 

function out = piston2(deflection,lambda,hiray,conray,respray,table) 

PIST0N2 - Deflects avery mirror in an array of micromirrors by the same 

amount. 
usage: defmarray = piston2(deflection,lambda,hiray,conray,respray,table) 

'deflection1 is the total amount of deflection desired, in wavelengths. 
'lambda' is the wavelength for which diffraction is to be modeled. It 

must be in the same units as 'hiray'. 
'hiray' is the array containing the image of the heights of the 

individual pixels in the micromirror array. 
'conray' is the array containing the image of the indexed control 

surfaces of the micromirror array. 
'respray' is the array containing the image of the response to control 

inputs for each pixel in the array. 
'table' is a n-by-2 lookup table containing the pixel coordinates of the 

n micromirrors in the array. 

out = hiray; 
n = size(hiray,1); 
phi = 2*pi*deflection; 
dz = lambda*phi/(2*pi); 

if dz<0 
dz = dz + lambda; 

end 
for j=l:n 

for k=l:n 
if conray(j,k) ~= 0 

out(j,k) = hiray(j,k) - (dz*respray(j,k)); 

end 
end 
disp(n-j) 

end 
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C.3.4   push2.m. 

function out = push2(deflection,lambda,hiray,conray,respray,table,index) 

% PUSH2 - Adds a phase component to an individual micromirror in an array 
°/0 to simulate a deflection of that micromirror. 
% usage: defmarray = push2(deflection,lambda,hiray,conray,respray,table,index) 
% 'deflection' is the total amount of deflection desired, in wavelengths. 
% 'lambda5 is the wavelength of the light for which the diffraction 
% pattern is to be calculated. 
% 'hiray' is the array containing the image of the heights of the 
% individual pixels in the micromirror array. 
% 'conray' is the array containing the image of the indexed control 
% surfaces of the micromirror array. 
% 'respray' is the array containing the image of the response to control 
% inputs for each pixel in the array. 
% 'table' is a 2-by-n lookup table containing the pixel coordinates of the 
% n micromirrors in the array. 
% 'index' is the index of the individual micromirror to be deflected. 

out = hiray; 
i = sqrt(-l); 
n = size(hiray,1); 
m = size(hiray,2); 
phi = angle(exp(i*2*pi*deflection)); 
dz = lambda*phi/(2*pi); 
if dz<0 

dz = dz + lambda; 
end 
for j=l:n 

for k=l:m 
if conray(j.k) == index 

out(j,k) = hiray(j,k) - (dz*respray(j,k)); 
end 

end 
disp(n-j) 

end 
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C.3.5   tilt2.m. 

function out = tilt2(deflection,lambda,hiray,conray,respray,table) 

% TILT2 - Adds a tilt correction to an array of micromirrors. 
% usage: tiltray = tilt2(deflection,lambda,hiray.conray,respray,table) 
% 'deflection' is the total amount of deflection desired at the edges, in 

% wavelengths. 
% 'lambda' is the wavelength for which diffraction is to be modeled. It 
% must be in the same units as 'hiray'. 
% 'hiray' is the array containing the image of the heights of the 

% individual pixels in the micromirror array. 
% 'conray' is the array containing the image of the indexed control 
% surfaces of the micromirror array. 
% 'respray' is the array containing the image of the response to control 

% inputs for each pixel in the array. 
% 'table' is a 2-by-n lookup table containing the pixel coordinates of the 

% n micromirrors in the array. 

out = hiray; 
n = size(hiray,1); 
xmin = min(table(:,1)); 
xmax = max(table(:,1)); 
phimax = 2*pi*deflection; 

for j=l:n 
for k=l:size(hiray,2) 

if conray(j,k) "= 0 
phi = phimax*(table(conray(j,k))-xmin)/(xmax-xmin); 

phi = angle(exp(i*phi)); 
dz = lambda*phi/(2*pi); 

if dz<0 
dz = dz + lambda; 

end 
out(j,k) = hiray(j,k) - (dz*respray(j,k)); 

end 
end 
disp(n-j) 

end 
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C4    Diffraction simulation functions 

C.4-1    diffract.m. 

function diff = diffract(wavefront,wavelength,refray,hiray); 

% DIFFRACT - This function computes the diffraction pattern caused by 
°/o  reflecting a given wavefront off a device with the given reflectivity 

%  and height patterns. 
7. usage: diff = diffract(wavefront,wavelength,refray,hiray); 
%  'wavefront' is a real nxn matrix that contains the phase of a wavefront. 
7.  The magnitude of each pixel represents the distance by which the phase of 
7.  the wavefront at that pixel is advanced with respect to a reference plane. 
%  'wavelength' is simply the wavelength of the incoming wavefront. 
%  'refray' is a real nxn matrix that contains the reflectivity image of the 

%  device being modeled. 
7.  'hiray' is a real nxn matrix that contains the height image of the device 

%  being modeled. 
7.  'diff is the resulting field strength of the far field diffraction 
%  pattern. Its magnitude squared is the intensity of the pattern. 
7, Note: All three matrix arguments must be the same size. Also, this routine 

7o  uses MATLAB's FFT function, which works best when n is an integer power 

7.  of 2. 

if (size(wavefront)==size(refray))&(size(wavefront)==size(hiray)) 

device = refray .* exp(i*2*pi*(2*hiray)/wavelength); 
diff = fftshift(fft2(fftshift(device .* exp(i*2*pi*wavefront/wavelength)))); 

else 
diff = 'DIFFRACT error: Matrix arguments must be the same size'; 

end 
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C.4-2    masw.m. 

function out = masw(deflection,deltax,power); 

7, MASW - Make A Spherical Wavefront 
% usage: wavefront = masw(deflection,deltax,power); 
7, 'wavefront' is a real nxn matrix that contains the phase of a wavefront. 
7o The magnitude of each pixel represents the amount, in the same units as 
7o deltax, by which the phase of the wavefront at that pixel is advanced with 
% respect to a reference plane. 
7. 'deflection' is the amount by which the phase at the center of the image 
7o will be advanced. The corners of the image will be used to define the 
7. phase reference plane. 
7o 'deltax' is the desired pixel size. This should be the same as that of the 
7. device image that the wavefront is intended to be bounced off of, and can 
7. be found using the getaxes function. 
7. 'power' defines the size of the output matrix: 2~power x 2~power. 

7o set up some constants 
n = 2"power; 
center = (n/2)+l; 

7. calculate r2 for each pixel 
for j=l:n 

for k=l:n 
r2(j,k) = ((j-center)~2 + (k-center)"2) * deltax"2; 

end 
disp(2*n-j) 

end 

7o calculate the deflection as a function of r2 
d = deflection; 
bigr = (d~2 + max(max(r2))) / (2*d) 
for j=l:n 

for k=l:n 
out(j,k) = d - bigr + sqrt(bigr~2-r2(j,k)); 

end 
disp(n-j) 

end 
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C-4-3    radavgp.m. 

function radval=radavgp(psfold) 

% FUNCTION RADAVG 
% Calculates the radial average of an input array and returns a vector 

%  with the radially averaged output. Only works on square arrays. 

I 
% obtained from Dr. Roggemann 
'/, slightly modified by Peter Roberts 

% 
'/, usage: radval=radavgp(psfold) 

if size(psfold,1)~=size(psfold,2) 
radval = 'Argument must be a square matrix.'; 

else 
imagesize = size(psfold,l); 
accu=zeros(l,(imagesize/2)+2); 
counter=zeros(l,(imagesize/2)+2); 

cen=(imagesize/2)+l; 
for r=l:imagesize, 

for c=l:imagesize, 

dx=c-cen; 
dy=r-cen; 
rad=sqrt(dx~2+dy~2); 
q=round(rad)+l; 
if q<=cen+l, 
accu(q)=accu(q)+psfold(r,c); 
counter(q)=counter(q)+1; 

end; 
end; 

end; 
end; 

radval=accu./counter; 
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C.4-4    show.m. 

function show(data) 
% SHOW(data) displays a grayscale image of the input array 'data' 

ddata = 255*(data/max(max(data))); 

image(ddata); 
colormap(gray(256)); 

axis('image'); 
axis('xy'); 
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C.4-5   show2.m. 

function show2(x,y,data) 
% SH0W2(x,y,data) displays a grayscale image of the input array 'data' 

ddata = 255*(data/max(max(data))); 
image(x,y,ddata); 
colormap(gray(256)); 
axis('image'); 
axis('xy'); 
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C.4-6   showdif.m. 

function intensity = showdif(diff.wavelength,device.genfunc,spec,table); 

% SHOWDIF - This function displays the log of the intensity of a diffraction 
% pattern caused by reflecting a given wavefront off a device described by 
% 'genfunc'. 
% usage: intensity = showdif(diff,wavelength,device,'genfunc',spec,table); 
% 'diff is the field strength of the far field diffraction pattern. Its 
% magnitude squared is the intensity of the pattern, which will be 
% displayed in the bottom half of the figure. 
% 'wavelength' is simply the wavelength of the incoming wavefront. 
% 'device' is a real nxn matrix that contains an image of the device being 
% modeled. This image will be displayed in the top half of the figure. 
°/, 'genfunc' is a function that defines certain characteristics of the 
% device, showdif uses this to correctly display the axes in the figure. 
% genfunc should be written so that genfunc(7,spec) returns a 2xn array 
% containing the real world coordinates of the lattice points in the array 
% of micromirrors. 
'/. 'spec' is an additional argument of genfunc. Here it is 
% used to specify the size of the array, and should be the same value that 
% was given to mama2 to generate the array. 
°/, 'table' is a 2xn array containing the pixel coordinates of the n 
% micromirrors in the array. 

% initialize constants: 
Rlats = 7; 

% top half of the figure: 
subplot(211); 
rtable = eval([genfunc '(' int2str(Rlats) ',' int2str(spec) ')']); 
rx = rtable(:,1); ry = rtable(:,2); 
mx = table(:,1); my = table(:,2); 
rxmin = min(rx); rymin = min(ry); 
rxmax = max(rx); rymax = max(ry); 
mxmin = min(mx); mymin = min(my); 
mxmax = max(mx); mymax = max(my); 
tx = 1:size(device,l); 
bx = (rxmax-rxmin)/(mxmax-mxmin); 
ax = (rxmax-bx)/mxmax; 
x = ax*tx+bx; 
deltax = x(2)-x(l); 
ty = 1:size(device,2); 
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by = (rymax-rymin)/(mymax-mymin); 
ay = (rymax-by)/mymax; 
y = ay*ty+by; 
deltay = y(2)-y(l); 
show2(x,y,device); 

% bottom half of the figure: 

subplot(212); 
intensity = abs(diff)."2; 
deltau = l/(deltax*size(device,l)); 
u = -size(device,l)*deltau/2:deltau:(size(device,l)/2-l)*deltau; 
deltav = 1/(deltay*size(device,2)); 
v = -size(device,2)*deltav/2:deltav:(size(device,2)/2-l)*deltav; 

show2(u,v,log(intensity)); 

% done! 
subplot; 
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C.5   Low-level functions 

C.5.1    insert, m. 

function out = insert(inl,in2,x,y) 

'/„  INSERT(inl,in2,x,y) - Inserts the matrix 'inl' into the larger matrix 'in2'. 
% The (1,1) point of 'inl' gets mapped to (x,y) in 'in2' 

if (size(inl,l)>size(in2,D) I (size(inl,2)>size(in2,2)) 

out = 'Incompatible matrix sizes' 
else 

for i=l:min(size(inl,l),size(in2,l)-x) 
if (x+i-l)>=l 
for j=l:min(size(inl,2),size(in2,2)-y) 

if (y+j-l)>=l 
in2(x+i-l,y+j-l) = in2(x+i-l,y+j-l) + inl(i,j); 

end 
end 

end 
end 
out = in2; 

end 
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C.5.2   pfilllm. 

function out = pfilll(xin,yin,color,image,n) 

I  PFILLL(X,Y,COLOR,PICTURE,N) fills the area around (x,y) with 'color'. 

*/, WARNING: This works properly only with fully convex areas. 
% This is a special version of pfill for use with mahm2 only. 

% temporarily add a one pixel border 

image = [99*ones(size(image,l),1),image,99*ones(size(image,l),1)]; 
image = [99*ones(size(image,2),1).image',99*ones(size(image,2),1)]'; 

window = image; 
x = round(xin+1); 

y = round(yin+1); 
oldcolor = window(x,y); 
while image(x+l,y) == oldcolor, 

x = x+1; 
end 
notdone = 1; 
while notdone, 

if image(x,y+l) == oldcolor, 
while image(x,y+l) == oldcolor, 

y = y+i; 
end 
while image(x+1,y) == oldcolor, 

x = x+1; 
end 

elseif image(x-l,y) == oldcolor, 
x = x-1; 

else notdone = 0; 
end 

end 

notdone = 1; 
while notdone, 

if image(x+1,y) == oldcolor, 

notdone = 0; 
if image(x,y-l) == oldcolor, 
nextx = x; 
nexty = y-1; 
notdone = 1; 

end 
while image(x+1,y) == oldcolor, 

% x and y are the current coords 

% find the right end of the current 

% row 

% find the top left pixel in the fill 

% area 

% start setting pixels 
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window = setpix(x,y,color,window); 

if image(x,y-l) == oldcolor, 

nextx = x; 
nexty = y-1; 
notdone = 1; 

end 

x = x+1; 
end 
if image(x,y-1) == oldcolor, 

nextx = x; 
nexty = y-1; 
notdone = 1; 

end 
window = setpix(x,y,color,window); 

elseif image(x,y-1) == oldcolor, 
window = setpix(x,y,color,window); 

nextx = x; 
nexty = y-1; 
notdone = 1; 

else 
window = setpix(x,y,color,window); 

notdone = 0; 

end 
if notdone, 

x = nextx; 
y = nexty; 

disp([n y]) 
while image(x-l,y) == oldcolor, 

x = x-1; 
end 

end 
end 
out = window(2:size(window,l)-l,2:size(window,2)-l); 

% fill the current line 

% while looking to see if the next 
%  line needs to be filled 

% if another line is needed 

% find its leftmost point 
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C.5.3   pline.m. 

function out = pline(xl,yl,x2,y2,color,image) 

°/, PLINE(X1,Y1,X2,Y2,COLOR,IMAGE) draws a line from (xl,yl) to (x2,y2). 
%  Note: PLINE stands for Pete's LINE function. Matlab already has a function 

%  called line that does something else. 

[xmax,ymax] = size(image); 

image = setpix(xl.yl,color,image); 
image = setpix(x2,y2,color,image); 
if (xl==x2)&(xl>=l)&(xl<=xmax) 
for y=min(yl,y2):max(yl,y2), 

if (y>=l)&(y<=ymax) 
image = setpix(xl,y,color,image); 

end 
end 

elseif (yl==y2)&(yl>=l)&(yl<=ymax) 
for x=min(xl,x2):max(xl,x2), 

if (x>=l)&(x<=xmax) 
image = setpix(x,yl,color,image); 

end 
end 

elseif abs(y2-yl)<=abs(x2-xl) 

if xl<x2 
sx=xl; sy=yl; fx=x2; fy=y2; 

else 
sx=x2; sy=y2; fx=xl; fy=yl; 

end 
dy = (fy-sy)/(fx-sx); 

y = sy; 
for x=sx:fx, 

if (x>0)&(x<=xmax)&(y>0)&(y<=ymax) 
image = setpix(x,y,color,image); 

end 
y = sy+(x+l-sx)*dy; 

end 
else 

if yi<y2 
sx=xl; sy=yl; fx=x2; fy=y2; 

else 
sx=x2; sy=y2; fx=xl; fy=yl; 

end 

% if the line is in the x-direction: 
% define range to scan y 
% boundary check 
% set the next pixel 

% if the line is in the y-direction: 
% define range to scan x 

% boundary check 
% set the next pixel 

1  if the I slope I <= 1: 
% find the left most point 

% set the start and finish points 

% calculate the y increment 
% initialize y 
% define range to scan x 

% set the next pixel 

% compute the next y 

% if the I slope I > 1: 
% find the lower point 

% set the start and finish points 
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dx = (fx-sx)/(fy-sy); % calculate the x increment 

x = sx; % initialize x 
for y=sy:fy, % define range to scan y 

if (x>0)&(x<=xmax)&(y>0)&(y<=ymax) 
image = setpix(x,y,color,image);     % set the next pixel 

end 
x = sx+(y+l-sy)*dx; % compute the next x 

end 

end 
out = image; % all done! 
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C.5.4    r2m.m. 

function  [mx,my]  = r2m(rx,ry,rlims,mlims) 

% R2M - Converts the real world coordinates (rx,ry) to matrix coordinates 
%   (mx,my). 'rwlims' and 'mlims' contain the limits of the real world 
%   and matrix representations that are to be mapped to each other in 
%   a standard [left, top, right, bottom] format. 

ml = mlims(l); mt = mlims(2); mr = mlims(3); mb = mlims(4); 
rl = rlims(l); rt = rlims(2); rr = rlims(3); rb = rlims(4); 

my = (mr-ml)*(rx-rl)/(rr-rl) + ml; 
mx = (mt-mb)*(ry-rb)/(rt-rb) + mb; 
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C.5.5    replace.m. 

function out = replace(old,  new,   in); 

'/, usage:  out = replace (old, new, in) 

out = in; 
for i=l:size(in,l) 

for j=l:size(in,2) 
if in(i,j)==old 

out(i,j)=new; 

end 
end 

end 
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C.5.6   rot.m. 

function [xout.yout] = rot(x,y,alpha) 

% ROT - Rotates the point (x,y) by alpha radians about the origin. 

%   Usage: [xout.yout] = rot(x,y,alpha) 

xout = x*cos(alpha) - y*sin(alpha); 
yout = x*sin(alpha) + y*cos(alpha); 
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C.5.7   setpix.m. 

function out = setpix(x,y,color,image) 

I  SETPIX(X,Y,COLOR,IMAGE) sets in(x,y) to 'color' 

[xmax,ymax] = s ize(image); 
if (x>=l)&(x<=xmax)&(y>=l)&(y<=ymax) 

image(x,y) = color; 
end 
out = image; 
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