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Chapter 1 

Introduction 

Model Based Predictive Control (see reviews of [12], [26]) owes its popularity to its 

simple strategy (the minimization of the predicted tracking errors and control activity) and 

the fact that it can handle system constraints (eg. [46], [52]). Early work ([31], [9], [29], 

[6], [7]) lacked a general stability theory, but more recent algorithms ([18], [8], [19], 

[27], [44]) provide the missing guarantees of stability and can be extended to handle 

system constraints ([33], [53], [23]). 

The basis of predictive control is to predict future tracking errors through some 

output horizon, ny, as a function of nu non-zero future input increments (and past data) 

and then to minimize a cost involving the two-norm of these predicted errors and input 

increments. The first optimum input increment is implemented, and then the entire 

procedure is repeated at the next time instant with new plant data; this procedure is also 

termed receding horizon control. Unfortunately, as originally formulated, this technique 

can only be guaranteed to give stable results for special cases. To remedy this, several 

strategies which adopt the basic idea of Generalized Predictive Control (GPC) [7] have 

been proposed. Constrained Receding Horizon Predictive Control (CRHPC) [8] adds 

further terminal constraints, as does a similar algorithm proposed in [27].    Stable 



Generalized Predictive Control (SGPC) [19], on the other hand, forms a stabilizing loop 

around the system before applying GPC to a closed loop configuration which gives finite 

length sequences (FLSs). By using FLSs, the minimization of the error norm gives a 

monotonically decreasing cost which guarantees stability and asymptotic tracking. 

These properties carry over to the case of predictive control with constraints so 

long as the implied optimization problem (a quadratic programming problem in Quadratic 

Programming Generalized Predictive Control, QPGPC, see Ref. [46], or a mixed weights 

least squares, MWLS, problem in Constrained Stable Generalized Predictive Control, 

CSGPC, see Ref. [33]) is feasible. This is a strong assumption because it requires "short 

term" feasibility (STF) which means feasibility over the finite horizons. The fact that a 

system output can eventually reach a target value without violating any constraints (long 

term feasibility, or LTF) does not imply it can do so in ny steps and with only nu non- 

zero input increments (STF). What is worse, in some cases, both QPGPC and CSGPC, 

like other constrained predictive control algorithms, can, in fact, destabilize what was 

originally a LTF problem; by requiring the predicted output to reach its target within ny 

steps, it may be necessary to drive the controls and/or their increments at their limits. 

If, however, a system is unstable and/or non-minimum phase, these earlier control moves 

may require future stabilizing control moves which will not be available within the 

existing constraints; this will lead to instability. 

1.1 Thesis overview 

Chapter 2 presents a brief review of SGPC and CSGPC, the framework under which this 

research is carried out. 



The problem of feasibility is investigated in Chapter 3, and necessary and 

sufficient conditions for stability are developed. These conditions are at first a posteriori 

conditions in that they are based on past data; as such, they are only useful for analysis 

and do not lend themselves to the purposes of control. We, therefore, consider the 

problem of propagating the stability conditions forward in time and thus propose a 

procedure for the derivation of a priori stability conditions which, for systems with only 

one unstable pole, provide explicit conditions for retaining LTF. Obviously, any control 

strategy which ignores these conditions and violates them will be unstable. Later, we 

will demonstrate the use of these explicit a priori conditions in the presence of 

disturbances. Chapter 3 then goes on to develop general stability conditions for systems 

with any number of unstable poles; the result relies on the use of linear programming, 

but, for a given number of degrees of freedom, provides conditions which are both 

necessary and sufficient for stability. 

The results of Chapter 3 provide conditions on the current input which guarantee 

stability, but they do not, in themselves, lead to an algorithm which yields an optimum 

choice for that input. In Chapter 4, we consider an alternative procedure for dealing with 

short term infeasibility (STIF) by focusing on CSGPC and proposing modifications which 

maintain stability when, due to set-point changes, CSGPC encounters STIF. The problem 

of STIF has been addressed previously ([2], [14]) by fixing the closed-loop controller and 

using non-linear prefiltering to condition the set-point change such that STF is retained. 

This approach is computationally simple, but optimizes tracking of the conditioned, rather 

than actual, set-point and hence is suboptimal. 

CSGPC normally has guaranteed stability and asymptotic tracking; however, no 

such guarantees can be given in the case of STIF. Because this infeasibility is caused by 



the requirement that the output should reach its target value within ny steps, this 

requirement must be relaxed. However, the stability proof of SGPC and CSGPC depends 

on the property implied by the use of FLSs that the output settles after ny steps. Thus, 

an obvious strategy to follow is to: (i) retain this last property, but (ii) allow the value 

to which the output settles at to become a degree of freedom. This is first implemented 

by changing the objective appropriately so as to minimize the deviation of the steady-state 

value of the output from its target value. The modified algorithm is activated only when 

CSGPC is STIF, and guarantees recovery of STF; this, together with the properties of 

CSGPC, guarantee stability and asymptotic tracking. While this approach has the 

advantage of simplicity, the modified algorithm does not place any penalty on the norm 

of the vector of predicted errors during the feasibility recovery stage, and this may 

degrade transient performance. We, therefore, propose two additional modifications to 

CSGPC which share in common with the previous modification the property that they are 

guaranteed to recover STF, but also retain in the objective a component which penalizes 

deviation of the predicted output values from actual set-point values. 

Recent work by Zheng and Morari [53] and Allwright [1] minimize the infinity- 

norm of the predicted errors rather than the two-norm, as CSGPC does. Stability is 

guaranteed without recourse to terminal constraints, and therefore without the need for 

a STF assumption, however, the results are restricted to open-loop stable systems. 

Within the context of SGPC, this work can be extended to unstable systems. The 

performance of such systems, though, is often not as good as CSGPC, as all effort is 

spent minimizing just the largest error, and this is often the first one. The system is 

driven very hard and the responses can be oscillatory. We, therefore, propose a 

procedure for dealing with STIF in which the objective is usually the standard CSGPC 



two-norm minimization, but when STIF is encountered, the set-point is allowed to 

become a degree of freedom, just as in the other modifications, and the objective is 

shifted to the minimization of the infinity-norm of the predicted errors until STF is 

regained. Thus, by mixing objectives, the superior performance of CSGPC is retained 

when possible, but stability and asymptotic tracking are guaranteed with only the 

assumption of LTF. The final modification is similar, but retains a two-norm cost when 

CSGPC is STIF and guarantees an asymptotic return to STF by requiring that the 

deviation of the predicted steady-state value of the output from the set-point get smaller 

at each subsequent time step. 

In Chapter 5, we look specifically at the necessity of the terminal constraints. 

Forcing the predicted trajectories of both output errors and control increments to be finite 

length sequences (FLS) provides a convenient way to guarantee the stability of predictive 

control strategies, but it has been recognised that for the purposes of stability one actually 

only needs to force the output errors to be stable ([30], [54]), thereby turning the 

predicted output error trajectory into an infinite length sequence (ILS). Here, we show 

that it is also the case that one only needs to force the input increments to be stable, with 

the effect of getting a predicted input increment trajectory which is ILS; we propose 

algorithms which implement these changes in philosophy and derive two procedures for 

calculating an infinite horizon cost involving the sum of the square of the ILS errors and 

input increments. 

Of course, for systems subject to physical constraints, ILS trajectories lead to a 

practical difficulty; the physical constraints must be invoked over an infinite horizon. 

This problem is overcome through the use of suitable input/output horizon bounds. A 

set of such bounds with respect to output constraints have been proposed elsewhere ([30], 



[54]). Here, we are concerned with input constraints only, but we explore the use of ILS 

predictions for both inputs and outputs; therefore, we require bounding results on inputs 

rather than outputs. We develop simple input bounding techniques which provide an 

efficient means of invoking the constraints over a infinite horizon by enforcing them over 

a finite horizon. 

Earlier work considers the disturbance-free case. The final results of this thesis, 

presented in Chapter 6, deal with the inherent clash between disturbances and constraints. 

We first consider how the effects of disturbances can be propagated forward in time. We 

then show that the stability results of Chapter 3 carry over to the more general case of 

systems which are subject to disturbances. Under some assumption of norm- 

boundedness, we derive the necessary and sufficient a posteriori stability conditions in 

the presence of disturbances. As in Chapter 3, we then push these conditions one step 

into the future and show how they can be used to avoid instability. 

While this gives explicit stability conditions, it is restricted to systems with at 

most one unstable pole, and does not lead to suitable algorithms, because it applies to 

infinite horizons and only gives a bound on the current input. We, therefore, develop 

necessary and sufficient limits on the size of the future inputs required to reject all 

possible (norm-bounded) future disturbances and then modify the constraint limits of 

CSGPC so as to reserve this necessary control authority and thus derive an algorithm 

with guaranteed stability and asymptotic tracking for systems subject to disturbances. 

The application of all results are illustrated by numerical examples. Chapter 7 

summarizes these results and then discusses some of the open problems in the areas 

addressed by this thesis. 



Chapter 2 

The CSGPC Framework 

In this chapter, the framework which forms the starting point of this research is briefly 

reviewed. Section 2.1 introduces Stable Generalized Predictive Control (SGPC), a 

guaranteed stable method of predicting and minimizing the two-norm of the future errors 

and input increments up to a receding horizon, for systems not subject to input 

constraints. SGPC is conceptualized by first placing a stabilizing loop around the plant 

so that the transfer functions from commanding input c to system input u and from 

commanding input to system output y are z-transforms of finite length sequences (FLSs). 

This provides a very simple formulation for the FLS (and therefore stable) output/input 

predictions in terms of the available degrees of freedom (DOF) which, in fact, are the 

future values of c. Armed with these predictions, the implementation of SGPC is a 

simple matter of minimising, with respect to the DOF, a two-norm cost of the predicted 

future errors and input increments, implementing the first optimum input increment, and 

then repeating the optimization at the next time step with new plant data. It is well 

known that LQ control gives stable results when it employs an infinite horizon. This is 

because the performance index can be shown, in the absence of set-point changes, to be 

a stable Lyapunov function. SGPC effectively deploys the same stability mechanism, and 



thus a key element in the design strategy is the use of an infinite costing horizon. This 

is easily done with the FLS predictions described above. When the system inputs are 

unconstrained, SGPC can be expressed as a fixed term controller; Section 2.2 derives this 

optimal controller and shows that degrees of freedom are available which can be used to 

improve properties such as stability robustness and noise handling without affecting 

performance. Section 2.3 then adds input constraints, detailing how these constraints are 

written in terms of the available DOF and providing a mixed weight least squares 

(MWLS) iteration to minimize the future predicted errors and input increments subject 

to the input constraints. The resulting algorithm, Constrained Stable Generalized 

Predictive Control (CSGPC), is otherwise the same as SGPC and maintains its guarantee 

of stability so long as the now constrained optimisation remains feasible. 

2.1 The SGPC strategy 

Let the system model be given in terms of the delay operator, z\ as: 

Giz) z-1W = z~1(b°+bfi~1+b**+m+b+z^) (2.1) 
a(z)        1 +axz ~x +a2z "2+••■ +anz '"" 

where a(z) and b(z) are coprime and more delays can be incorporated by setting £,=0 for 

i=0,l,2,...,k.   Form the stabilising feedback loop of Figure 2.1 such that the system 

output y, input increment Aw, input u, and commanding input c are related as: 

yt=z-lb{z)ct;      Au=a(z)ct;      Au=A(z)ut;    a(z)=a(z)A(z);    A(z)=l-z"1       <2-2) 

From Figure 2.1, the closed-loop transfer functions from ct to yt and from ct to ut are 

easily derived and are given as: 



y,=- 
z-'Hz) 

:c<; « =■ 

flfe) (2.3) 
«(z)M#(z)+z-^(z)iV*(z)"" '   *(z)M\z)+z-lb{z)N\z)' 

Thus, the controller numerator and denominator polynomials, Af (z) and A/*(z), for which 

eqns. (2.2)a,b hold true, are defined by the Bezout identity [19]: 

a{z)M\z) + Z-xb(z)N»(z) = 1 (2>4) 

Next define the Toeplitz convolution matrix, Cp, and the Hankel matrix, Hp, 

associated with the polynomial p(z)=p0+plz'1 +-+pnz'"p to be: 

C
P = 

Po 0 ... 

Px Po 

P», Pn-l 

0 Pn, Pn.-l 

0 Pn. 

...   o 

...   o 

i    0 

i    0 

Po   0 

Pi  Po 

fP i eJ;   Hr 

Pl Pi •  p», 

Pi  Ps   ■ ■   P,     0 

Pn, o •     0 

0   0   •     0 

(2.5) 

where the dimensions of Cp, Hp and of the partition matrices 1^, 9^ of Cp will vary for 

the different choices of p(z) and horizons, as will be obvious from the context; in the 

sequel the vector 0p will represent the sum of all the column vectors in Qp. Further, 

define the elements of the vectors of future and past outputs/input increments and future 

inputs/commanding inputs to be: 

y= 

"y*+i" ' yt~ Aut ~
AU

,-I~ " u, ' ' c,' 

yt+i 
; y= 

<— 
y,-i ; Au = 

A"f+i ; A«= 
A",-2 

; «= 
U>+1 ; e= 

-* 

c,+x 

Jt+n y,-n. _A",+n-i_ AU'-\ _",+„-!_ Ct+n-l 

(2.6) 

where n will be determined as needed. 

Then, to derive the closed-loop output/input prediction equations for the stabilizing 

loop of Figure 2.1, we first write the relation of the current and past outputs to the 

current and past input increments in difference equation form: 



<x(z)yl+1 =b(z)Aut * ao^+a^^"-*«^.^^^^*^^.^-*^^^ (2.7) 

Incrementing the subscripts on the outputs and input increments in eqn. (2.7)b by 

l,2,...,n-l yields n equations: 

<*0y1+l +OCJ+-        +*n^y,_n-=b0Aut +&1AK,_1+~ +bHtAu,^ 

<xiyt+i+<x0yt<2       +<*2yt
+-+<*n^yt-n*    ^AU+^AU^    +*2A«M+-+\A«^i+1 

a    v +-+(x v =    b Aw„     .+-+bnAur.„ , (2.8) 

which are written in matrix prediction equation form as: 

Cj+Hj=CbAu+HbAu (2.9) 

Applying the same process to the relation of the current and past input increments to the 

command signal and the current and past outputs gives: 

M\z) Aut =ct -z -W(z)y,+1      *      CM,Au +HM,Au = c-Cz.lN,y -Hz^y (2.10) 

Premultiplying eqn. (2.9) by CM, and eqn. (2.10)b by Ca, and utilizing the commutative 

property of convolution matrix multiplication, we get: 

C Cwy +CM,Hj =CbCM,Au + CM,HbAu 
- - - - \Z.ll) 

CaCM.Au + CHM,Au = Cac-Cz.N,Cj-CHz.lN,y 

then, substituting eqn. (2.10)b (solved for CM,Au) into (2.11)aandeqn. (2.9) (solved for 

Cj) into (2.11)b, after some rearrangement, gives: 

(Z.1Z) 

Au={CaC* + CbCz->N)Au = Cac -L3y -L4Au; Y^H^C^V* 

where the first equalities above are a direct consequence of bezout identity (2.4), in that 
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The SGPC strategy is to choose c(z) such that the predicted y reaches the set-point 

r and Aw reaches zero in a finite number of steps. In particular, it is intended that 

yt+i=r, i>ny and AK,+M=0, i>nu; ny and nu are referred to as output and input horizons. 

This strategy is implemented by selecting c(z) =ct+ct+lz
_1 +••• +ct+n xz ~n'+i +cxz ""'/(l ~z_1), 

where ca)=rlb(X); nc therefore denotes the number of control degrees of freedom and is 

referred to as the command horizon. Thus, the predicted y, A«, u, c reach their steady- 

state values in ny, nu, nu-\, nc steps, and hence we need only concern ourselves with 

predicted values up to the appropriate horizons, therefore n in the prediction vectors of 

eqns. (2.6)a,c,e,f is assumed to be ny, nu, nu, nc. Eqns. (2.12) can then be rewritten as: 

y^c+O^+y,;       *u=Tj:+9acm+*uj,        u=Tac+0aCoo+uf (2.13) 
--» _ -.- _^ -.-. _ 

where, as mentioned above, the scalar cx is the desired steady-state value for the 

commanding input c of the system of Figure 2.1 and is chosen to remove steady-state 

offsets in the output predictions. Yb is nyxnc; Ta, Ta are nuxnc; and the vectors yf, Auf, 
—» —» 

and uf depend on past data (and account for non-zero initial conditions), are known, and 

are given as: 

yf=-Lxy-L2±u;      Auf=-L^-LAAu;      M/=-CA
1
(L3V+L4AM)+^_11       (2.14) 

Eqn. (2.13)c is derived with the help of eqn. (2.2)c, which can be written in prediction 

equation form as: 

u=CA
_1
(AB -Hjt^C^Au +KM1 (2.15) 

CA
4 is a lower triangular matrix of ones and 1 is a vector of ones. 

The SGPC optimization is then defined through the minimisation of a standard 
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GPC cost: 

n„-i 

J = E(^r^)2+>£>"<2
+, = \\r-y\\l+\\\Au\\22 = [c-c/52[c-cJ+7 (2-16) 

1=1 (=0 

where, for the last equality, we have substituted for v, Au from eqns. (2.13)a,b; 

r=[rt+vrt+2,...,rt+n,...,rt+n]
TE'iftn> is the vector of future set-points, with nr the reference 

horizon and rt+n referred to in the text as r; and the matrix S*, the optimum vector of 

future command inputs co, and the optimum cost y are given as: 

S> =TT
bTb+\TT

aTa; co = S-2[YT
b(r-yf9bca)-\Y

T
a(Auf+eacJ\- 

(2.17) 

7 = \\r-yf-ebc J2 +x I Auf+eac J|2 -1 Sco 12 

As there are no constraints, / is minimized by c=co and the optimum current control 
—» 

increment, Au„ is computed as the first element of A« of eqn. (2.13)b and implemented; 

this procedure is then repeated at the next sampling instant. 

This strategy mirrors that of GPC with one important difference: in GPC the free 

variable Aw is related to y through the infinite impulse response of G(z), whereas here 

the free variable c is related to y and Au through the finite length sequences of eqns. 

(2.2)a,b. Therefore, if ny>nb+nc and nu>na+nc+l, then the cost / is equivalent to an 

infinite horizon cost: 

J = E(rl+i-yJ2+^Au^ = £KryJ2+vbA^        (2'18) 
i=l i=0 1=1 1=0 

and it is shown below that this cost decreases monotonically over time and thus 

constitutes a stable Lyapunov function, guaranteeing the stability of SGPC; hereafter, we 

assume that ny>nb+nc and nu > na+nc +1. 
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Theorem 2.1 [19] SGPC is stable and gives asymptotic tracking. 

Proof: Assume, without loss of generality, that the reference is fixed at r. Let the 

optimum sequence of future input increments Aul+i at sample t (ie. the elements of A« 

of eqn. (2.13)b calculated with the optimum vector of future command inputs c0) give 

a cost Jt. Move forward to sample instant t+1, and let Jt+1]t be the cost of using the 

same sequence of input increments (bar the first which is now in the past), then we have: 

7     =T-(r   -v   )2-\Au2 (2.19) 

Clearly, the optimum Jt+1 is always such that Jt+1<Jt+ll,<Jt (the first inequality is due 

to the extra degree of freedom at t+l). Equality can persist if, and only if, r=y and 

A«=0; thus, the cost / is a stable Lyapunov function, and SGPC is stable and gives 

asymptotic tracking. □ 

Remark 2.1 In the paragraph prior to Theorem 2.1 and throughout this thesis, we 

employ a slight abuse of terminology. We shall use the term, finite length sequence 

(FLS), to imply, not only sequences which are finite in length, but also those which settle 

at some steady-state value within finite time (eg. the predicted values of y, which are 

forced to settle at r after ny steps). Later, we shall use the term, infinite length sequence 

(ILS), to imply sequences which reach a given value only asymptotically. 

2.2 Robustness analysis and optimization for SGPC 

When not subject to input constraints, the cost / has the explicit optimum solution c0 of 

eqn. (2.17)b. Thus, SGPC can be implemented with a fixed-term feedback controller; 

the derivation is as follows. 
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Substituting eqns. (2.14)a,b and coo=[Or l/b(l)]r, where 0 is a vector of zeros, 

into eqn. (2.17)b and then pre-multiplying by et, the first standard basis vector, gives: 

ct=Prr+Pyy
+PuAu 

pr = ei
TS-2TT

b-[0T efS-HrX+WldJ/bd)] (2.20) 

Py=e?S-2(TT
bLs\YT

aL2) 

pu=ei
TS-HTT

bL2+\TX) 

Let the coefficients of the anti-causal polynomial (ie. with positive powers of z), 

pr(z), and the causal polynomials, py(z) and pu(z), be the elements of the vectors, pr, py, 

and pu; then we may write: 

ct =pr(z)rt+l +py(z)yt 
+Pu(z)Aut_1 =pr(z)rt+l +Py(z)yt +z~1pu(z)Aut (2.21) 

Substitution of this into eqn. (2.10)a gives: 

M\z) Aut =pr(z)rt+1 +py(z)yt +z -lpu(z) Aut -N'(z)yt (2.22) 

Dk(z)Aut=pr(z)rt^ -Nk(z)yt;     Dk{z)=M\z) -z-'pJLz),    Nk(z)=N«(z) -py(z) 

Then SGPC can be implemented with a fixed term controller as shown in Figure 2.2. 

Thus, the closed-loop transfer functions from r to y and from r to u are given as: 

y® = *-lb®P&.    u®m*Md.   Pc(z),aiz)mDk(z)+z-^z)Nk(z)        (2-23) 
riz)        Pc(z) r{z)      pc{z) 

Now, the controller numerator and denominator polynomials, A(z)Dk(z) and Nk(z), appear 

only in the closed-loop pole polynomial, pc(z), thus, any controller numerator and 

denominator polynomials, say A(z)D(z) and N(z), which satisfy diophantine equation 

(2.23)c, will be optimal with respect to the cost /. The entire class of such controllers 

is given as [19]: 

D(z)=Dk(z) -z-lb(z)Q(z);        N(z)=Nk(z) +a(z)Q(z) (2-24) 

where Q(z) is an arbitrary stable transfer function. 

The appropriate transfer function for analysing both additive model uncertainty 
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and the effects of feedback noise on the plant input is: 

K(z)S(z) -    N(z)    a®A®D® - a®1*® - °fe)^fe) +<x(z)Q(z))     (225) 

A(z)D(z)       pc(z) pe(z) pc(z) 

where S(z) is the sensitivity transfer function. Thus, the problem is decoupled such that 

the degrees of freedom available in Q(z) can be deployed to improve robustness and/or 

noise handling properties without affecting optimality with respect to / (ie. performance). 

Consider, for instance, robustness. If the size of the additive model uncertainty 

is bounded by the modulus of a stable function, W(z), then the necessary and sufficient 

condition for robust stability is: 

\\W(z)K(z)S(z)\\X<U z=eJe,   O<0<7T (2.26) 

Combining this with eqn. (2.25) implies that the optimal Q(z), with respect to stability 

robustness, is given as the solution to the following standard Hx optimization problem: 

min iTW-iyaOöl.;     T^^f^,   T^^^Mt (2.27) 
QtiO PC{Z) PcW 

The solution to this problem is well documented, and we note that if Q(z) is restricted to 

finite length polynomials of degree nQ, then the optimal choice of such a Q(z) can be 

determined using Lawson's weighted least squares algorithm [19]. 

2.3 Introducing constraints into SGPC 

In most practical applications there are constraints on the values the system inputs are 

allowed to take; in this section we describe how these constraints are included in SGPC. 

For brevity, we consider only input rate and absolute constraints of the form: 
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|A«.+.|<Ä 
—Au 
R - 

-lu-Ul 
<1;     1- ERn"    (2.28) 

On account of the FLS relationship of eqn. (2.2)b, the form of c(z), and the condition 

that nu>na+nc+l, the predicted inputs reach their steady-state values in nu steps; hence, 

constraints (2.28)a need only be invoked over the input horizon nu and are automatically 

satisfied for i>nu.  Using eqns. (2.13)b,c, we may rewrite constraints (2.28)b as: 

Mc-v(0|L<l; R a 

-r. u a 
v(t) = 

i 
-±Auf 'he' 

R "" 

he 
V ' " 

(2.29) 

where v is time dependent even if the constraints are time independent. Next, define the 

"feasible region", Fn [v(t)], as the subspace of all nc-dimensional vectors c which satisfy 

constraint (2.29)a. If Fn [v(f)] is non-empty/empty for all nc then the problem is said 

to be "long term" feasible/infeasible (LTF/LTIF); the terms "short term" 

feasible/infeasible (STF/STIF) will be used when Fn [v(t)] is non-empty/empty for the 

particular chosen value of nc. An LTIF problem cannot be controlled; thus, we will 

always assume LTF. 

In the case of STIF, c should be chosen to minimize the worst case constraint 

violation, ie minimize ||^c-v(01 „; this can be accomplished with Lawson's weighted 

least squares algorithm [22]. However, when ||,4c-v(01 „ can be made less than 1, the 

strategy for choosing c should be dominated by the minimization of the cost of eqn. 

(2.16). These two aims are combined in the mixed weight least squares (MWLS) 

iteration defined by: 
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MWLS: 

Step 0:  Initialize, i=0, \\f0)=l, W-0)=IrJrA,where rA is the row dimension of A. 

Step 1:  Increment i by 1 and minimize with respect to c the cost: 

MWLS 

[w(0]l/2€®    2 

e®=S[c-c0\;       e®=Ac-v(t) (2.30) 

[^(i)]1/2«(0 

Step 2:  If the change in cost is less than a preset threshold quit, otherwise update the 

weights according to the equations below and go to Step 1: 

wm)=      w&      • w(«) = W<f>Ji\eV (2.31) 

MWLS has some desirable properties [33]: under short term feasibility (STF) it can only 

converge to the constrained optimum, c*; in the case of STIF it converges to the solution 
—» 

that minimizes the maximum constraint violation.   The latter constitutes an important 

feature: it prescribes one way of handling STIF.   This strategy may not always be the 

best; however, by minimizing the predicted maximum (and possibly future) constraint 

violation, the algorithm allows for the possibility of avoiding violations altogether. 

The following algorithm implements CSGPC: 

Algorithm 2.1   (CSGPC) 

Step 1: Calculate the vector of future command inputs which minimizes the two-norm 

of the predicted errors and weighted control increments without violating the 

constraints, namely, minc Jt={ \\ e \\2
2 s.t.  \Ac-v(f) \\«, < 1, cx =r/b(l)}. 

Step 2:  Calculate and implement the first control increment using eqn. (2.13)b. 

Step 3:  Increment t by one and return to Step 1. 
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CSGPC, like SGPC, has an attendant stability theory which is established by proving that 

the relevant cost is a monotonically decreasing function of time [33]. For CSGPC 

however, this requires the assumption that the problem remains STF as stated in the 

theorem below: 

Theorem 2.2 [33] Let a linear system with transfer function G{z)=zxb{z)la{z) be subject 

to input constraints which, at time t and for horizon nc, are given as |4c-v(f) || „ < 1; 

and let Fn[v(i)] denote the implied feasible region for c. Then if Fn[v(t)] is non-empty 

for all t, CSGPC will cause y to follow asymptotically any set-point change. 

Proof: Assuming feasibility of the now constrained optimization, the arguments used in 

the proof of Theorem 2.1 still hold. □ 

The feasibility assumption of Theorem 2.2 involves short term feasibility (STF), and thus 

the assumption is a strong condition. The purpose of this work is to find ways to ensure 

its satisfaction and to make it as weak as possible; in next chapter we first derive tests 

for feasibility and then conditions which must be satisfied to ensure feasibility and thus 

stability for all future times. Chapter 4 then deals with large set-point changes as a cause 

of STIF, Chapter 5 with making the STF assumption as weak as possible, and Chapter 

6 with disturbances as a cause of STIF. 
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Figure 2.1 The stabilizing feedback loop 

t+l 
)   PrM 

fr* 

Figure 2.2  Optimized SGPC feedback loop 
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Chapter 3 

Feasibility and Stability for Constrained 
Control 

The feasibility assumption of Theorem 2.2 is strong because it implies "short term" 

feasibility (STF), namely the feasibility of making the output reach the desired set-point 

in a finite number of steps without violating the constraints. The fact that a system 

output can eventually reach a target value without violating constraints (long term 

feasibility, or LTF) does not imply it can do so in ny steps and with only nc command 

input changes (STF). CSGPC, like other constrained predictive control algorithms, can, 

in fact, destabilize what was originally an LTF problem; by requiring the predicted output 

to reach its target within ny steps (a terminal constraint), it may be necessary to drive the 

controls and/or their increments at their limits. If, however, a system is unstable and/or 

non-minimum phase, these earlier control moves may require future stabilizing control 

moves which will not be available within the existing input constraints; this will lead to 

instability. 

As only the first input, u„ is actually implemented, when dealing with open-loop 

unstable systems which are subject to input constraints, one must ask what restrictions 

should be placed on this input to ensure a continued guarantee of stability and feasibility. 
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In Section 3.1, explicit stability conditions are developed for systems with one or two real 

unstable poles; the conditions are first imposed on past data {aposteriori conditions), and 

then on ut itself (apriori conditions). In Section 3.2, we show that linear programming 

can be used to provide a priori stability results for systems with any number of (real 

and/or complex) unstable poles. We concentrate on finding conditions which are both 

necessary and sufficient to ensure stability and thus regain some of the degrees of 

freedom given up by algorithms like those in ([33], [30], [54], [18]) which enforce overly 

stringent terminal constraints on the predicted outputs/inputs; relaxing these constraints 

implies that feasibility can be retained with shorter command horizons which afford 

significant reductions in the computational load. A numerical example is given which 

shows that these stability conditions can be used in a supervisory role with algorithms 

which have no guarantee of stability. 

3.1 Systems with one or two real poles 

In this section we develop necessary and sufficient conditions under which 

instability can be avoided. Section 3.1.1 sets up the conditions which are needed to 

determine feasibility and stability. Then, section 3.1.2 gives the necessary and sufficient 

conditions for a posteriori stability; these conditions are a posteriori in that they are 

imposed on past data. If a posteriori conditions are violated, instability will be the result, 

but this only provides a useful test for when things are about to go wrong. In Section 

3.1.3, we consider the problem of propagating these stability conditions forward in time 

and thus propose a procedure for the derivation of a priori conditions which ensure the 

continuing existence of a stabilizing solution.  Obviously, any algorithm which ignores 
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these conditions and violates them will be unstable.  In chapter 6, we will demonstrate 

the use of these a priori conditions in the presence of disturbances. 

3.1.1 Setting up the conditions for feasibility with stability 

We first develop the mathematical tools needed, then state the conditions for feasibility 

and stability. 

3.1.1.1 Mathematical preliminaries 

Consider the lower triangular nuxnu toeplitz convolution matrix formed of the 

coefficients of a(z), Ca, as defined in eqn. (2.5).  Then we have the following result: 

Lemma 3.1 Let <r, be the singular values of Ca and let a1 > o2 > ••• > an. Then if 

a(z) = l-pzl with  | p | > 1 and q=l/p: 

(Ipl-D^o^o^-^c^dpl+l);     and    on<\q\n^ (3-D 

Proof: Condition (3.1)a follows from an application of Gershgoreen's theorem to the 

matrix CjCa which has a tridiagonal form with nu-\ diagonal elements equal top2+1 and 

one diagonal element equal to 1, whereas all the non-zero off diagonal elements are equal 

to p. To complete the proof, post-multiply Ca by the vector [qn"~\qn"~2,..., l]r to get the 

first standard vector multiplied by q""'1. Then invoking a norm inequality we get 

on (1 -q2n")l{\ -q2) <qn"~l, which leads to condition (3. l)b. □ 

We can then show that the output principle direction associated with on (and hence the 

input direction associated with the singular value of Ca
l which is "blowing up") has an 
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easily determined form: 

Theorem 3.1 With the definitions of Lemma 3.1 let kt be the principal input directions 

of qT=[l,q,q2,...,q""'1], and kn be the direction associated with the non-zero singular 

value of qT. Then writing any w in Rn- as w=Ku, for K=[kvk2,...,kn], 

a=[ava2,...,an]
T, we have 

ICVI^-J-lall,   for   «„=0;    ||C>|2> |«. | \Pr*   for   <^0(3.2) 
\p\-l 

Proof: Let [Jt„<7,jJ denote the output principal directions, singular values, and input 

principal directions of Ca. Then by Lemma 3.1, it is easy to show that 

Q
T

/\\Q
T

\\2
=
K 

=xn > so tnat ** can always be chosen such that £,=*,. Then given that 

[y,-,l/a,,xj denotes the singular value/vector triple for Ca\ it follows that 

«C>«2= \\t ^la)y^=t («,V (3'3) 

The result follows by invoking Lemma 3.1 for an =0 and an9
i0. □ 

The condition for keeping Ca'
lw finite, then, is that w must be orthogonal to q .  Next, 

we expand the development to consider systems with more than one unstable pole. 

Lemma 3.2    Let ai(z) = l-piz\ with a corresponding convolution matrix Cai, for 

i = l,2,...,II and let a(z)=ai(z)x... xan(z).  Then Ca, the convolution matrix for a(z), is 

the product of the Cai taken in any order. 

Proof:  This is straightforward and, for brevity, will be omitted. □ 
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Theorem 3.2 Let the roots of a(z) be/?,-, let \pt\ > 1 for i=l,2,...,m and let the mxnu 

matrix Q have as its i* row the vector q?=[\,qt,qff...,q*' J, where tf,=l/p,. 

Furthermore, denote by fc, the input principal directions of Q arranged so that the k{ for 

i=nu-m+l,nu-m+2,...,nu correspond to the non-zero singular values of Q. Then, 

expressing any vector w in Rn- as w=Ka+K'a' where K=[kvk2,...,kn_J is the kernel 

of Q and £/=[fc„ -m+1,fc„ -»♦2>-»*J is the row sPace> we have' fory'=l,...,m, that 

n -m 

lOl^nCrir)!«!» a'=0;   |c>|2 ^n «vo   (3.4) 

Proof: Let m=2 so that Q=CalCa2, let Ku K2 be matrix representations of the kernel 

of the rows of Q, qj, q2
T, defined in a manner analogous to K, and let Cal"

1H'=v. Then 

a' =0, together with the fact that the last row of Cal
A is p""'1 [l,qvqf,...,q"°!], imply that 

the last element of v is zero, so that w=Calv gives a matrix representation of the 

convolution implied by w(z)=(l-p1Z
l)v(z). But, with a'=0, Qw=0, which implies that 

w(p1)=w(p2)=0, so w(z)=(l-plz
1)(l-p2z

1)<t>(z), where <Hz) is of order nu-m-2, and thus 

v(z)=(l-p2z~1)<l>(z) or v(p2)=0; hence q2
Tv=0, or V=Ä2JS for some non-zero vector ß. 

Then, by Theorem 3.1, we have 

HO«  <  |0|/<b2|-l);      |v|=|C>|  <  \\y\\/(\Pl\-l)        0.5) 
where 7 is the projection of w onto the kernel of q/. However w=Ka=Kly and v=K2ß, 

so that ||-y|| = \\a\\ and \\ß\\ = \\v\\ which combine with conditions (3.5)a,b to give 

condition (3.4)a for w=2; these arguments apply for a general m. Conversely, if at least 

one  of the  elements  of a',   say  the /\   is  non-zero  then,   by  Theorem  3.1, 

ic^l^ofo"--1). □ 
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3.1.1.2 Necessary and sufficient conditions for feasibility and stability 

In the absence of constraints, SGPC has guaranteed stability because u is chosen 

so that the predicted y reaches its set-point within a finite number of steps; this implicitly 

involves the "pseudo" cancellation of all the poles of a(z) [34]. However, when u is 

constrained and we encounter short term infeasibility, this property is lost, and u does 

not "cancel" the unstable poles of a(z); then not only will the predicted y not reach its 

steady-state value, but the control system will go unstable. Below we state the necessary 

and sufficient conditions which avoid this situation. 

Remark 3.1 By pseudo cancellation, we imply that the future values of u are chosen 

such that, taken in combination with the effects of past values of inputs and outputs, the 

effects of the roots of the denominator polynomial are "cancelled". Thus, we refer only 

to "cancellation" in a closed-loop feedback sense, like that of Figure 2.1, and do not refer 

to a direct controller-plant cancellation which, for unstable cancellations, has inherent 

internal stability problems. Hereafter, we shall continue to refer to this differentiation 

by using the word pseudo or placing the word, cancel, in quotes. 

As was done in Section 2.1 to generate the future values of y and A« from eqn. 

(2.7)a, the future values of y and « can be generated by simulating a(z)yt+1=b(z)ut 

forward in time to get: 

C
ay = cbu-H

ay
+Hbu'>      or      y = c~aXw,   where   w = Cbu-Hay+Hbu    (3.6) 

Note now, that due to the FLSs used in CSGPC, short term feasibility implies LTF, 

namely if ||/lc-v(01 „ < 1 for some finite nc, then this inequality will also hold true as nc 
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tends to infinity. Thus, determining necessary and sufficient conditions for feasibility 

(with stability) is equivalent to looking for the necessary and sufficient conditions under 

which, for nu-*oo, there exists a w such that v of eqn. (3.6)b is bounded and such that 

the vector of future H'S defined by eqn. (3.6)c satisfies the input constraints. 

Theorem 3.3 Let u be subject to constraints (2.28), let the polesp, of a(z) be such that 

\pj\ > 1 fory'=l,2,...,m and let the matrix Q be defined as per Theorem 3.2.  Then 

at time t, the problem is feasible if, and only if, for /y-*o°, there exists a u such that 

Qu=bu       and        ||CM
M-M°|| X<1; where 

where Db(p) is a diagonal matrix with the Ith diagonal element equal to b(p,) i=l,2,...,m, 

b(p,) is the polynomial b(z) evaluated at /?,, ex is the first column of In and CA is as 

defined in eqn. (2.5)a for A(z) = l-z'1. 

Proof: Eqns. (3.7)a,c require w to be orthogonal to Q, where, from the definition of Cb 

and with Q, Cb of infinite dimension, we have QCb=Db(p)Q. Satisfaction of this equality 

constraint, by Theorem 3.2, ensures that v of eqn. (3.6)b will be bounded; (3.7)b in 

conjunction with eqns. (3.7)d,e is a representation of constraints (2.28). D 

The results above appear to be of limited practical use because of the requirement that 

nH-*oo. However, given stability, the future values of u will settle at some constant value 

ux after say nu-\ time instants. In the light of this remark, Theorem 3.3 may be restated 

as follows. 
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Theorem 3.4 Let u be subject to the constraints of Theorem 3.3.  Then the necessary 

and sufficient condition for feasibility (and stability) is that for some nu>na there exists 

a u satisfying conditions (3.7), providing that the /* element of the last column of Q is 

replaced by q"" l(l~q) for z'=l,2,...,m. 

Proof:  Let all the future values of u from the (nu-\f time instant onwards be «„, then 

E */-Vi = E «rv»+ j^u* (3-8) 
;=1 .7=1 x y> 

and thus conditions (3.7) may be restated for nu finite, so long as the last column of Q 

is replaced by the vector having as its /*element the ratio q"" 1(1 -q). Conditions (3.7) 

will then be a sufficient condition for feasibility, since it will guarantee the existence of 

a particular u which both satisfies the constraints and results in a stable v. However, 

since nu is allowed to be as large as needs be, the condition is also necessary. D 

All conditions above involve linear equality and inequality constraints and thus in general 

provide no explicit results: (i) to test feasibility given past data (a posteriori feasibility); 

and (ii) given feasibility at t, to derive conditions on u, that preserve feasibility and thus 

stability (a priori stability). A posteriori feasibility is dealt with in the next section; a 

priori stability will then be addressed in section 3.1.3. 

3.1.2 Necessary and sufficient conditions for a posteriori feasibility 

We first state a general test for feasibility and then develop explicit necessary and 

sufficient conditions for a posteriori feasibility with stability. Finally, we present two 

numerical examples which illustrate the results. 
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3.1.2.1 The feasibility conditions and the algorithm for testing feasibility 

Theorem 3.4 implies that the problem of investigating feasibility boils down to 

that of finding whether an nu exists for which conditions (3.7) have a solution u. This 

can be tested easily, as stated below. 

Theorem 3.5 Let K be a matrix representation of the kernel of Q, then there exists a 

vector u which satisfies conditions (3.7) if, and only if, 
—* 

inf [M'a-p'l^ < 1;      where      M'=CUK;   v' = u°-CuQT(QQT)lbu (3.9) 

Proof: Eqn. (3.7)a is satisfied for u=Koc+QT(QQT)'1bu, with a any vector of conformal 

dimension, which allows (3.7)b to be written as | CKa-v' |«, < 1; hence a necessary and 

sufficient condition for feasibility is that the infimal value of this norm over all a be less 

than or equal to 1. D 

Remark 3.2 Infimization can be performed using Lawson's algorithm, thus for any nu 

it is easy to check CSGPC feasibility at any particular t. Also, nu need not be taken too 

large because the ** column of Q decays to zero with increasing i, and the n^ element 

of «, due to the input constraints, will be finite.  Thus, providing that nu is taken to be 
—» 

large enough so as to make the ntt
& column of Q sufficiently small (say 10"6), the 

introduction of further degrees of freedom, through an increased nu, will not affect 

(significantly) the solution of Qu=bu and thus cannot affect feasibility. 
—» 

3.1.2.2 Explicit conditions for a posteriori feasibility 

Theorem 3.5 provides a procedure for investigating a posteriori feasibility. One 
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can also use Theorem 3.4 to determine a priori feasibility and stability: solve eqn. (3.7)a 

for u„ then, still using past data, determine the range of values of ut for which feasibility 

is preserved. However, in general the necessary and sufficient conditions are not explicit 

and thus would require the use of linear programming. It is the purpose of this section 

to show that in some cases the conditions are explicit and easy to derive. 

Lemma 3.3 Let a(z) have only one unstable pole, let that pole be at/? and let q=llp. 

Then eqns. (3.7)a,c can be rewritten as: 

qTAu=bAu;     b6M = {l-q)qT(Fj-Hhu)/b(p)-u,-S   where   A»=CAii-«,_,«,     (3.10) 

Proof:  Using eqns. (3.10)c and (3.7)a,c we may write: 

qTAu=qT{CAu-ut_lel)={l-q)qTu-ut_lq
Tel={\-q)qT(Hay-Hbu)lb{p)-ul_l   (3.11) 

-» -» -» *-       «- 

where we note that qTCA=(l-q)qT.  Combining this with eqn. (3.11) yields the resultD 

Lemma 3.4   Let the unstable pole of Lemma 3.3 be positive, and let the system be 

subject to input constraints (2.28).    Furthermore, let mv and mL denote the largest 

integers such that utA +muR<U0+Uand ulA-mLR> U0-U. Then the max/min values that 

the left hand side of (3.10)a can assume over all feasible vectors of future values of u are 

given as: 

Ju = rem[U0W-ut_vR] 
r/)+l      = ff "p + a

mvy . U+U-u, .-y„ 
LüA«Jmax I-a m      =        " t-1     IU 

R 
(3.12) 

yL= rem[ut_rU0+UJl\ 

L R 

where rem[a,b] is the remainder after all multiples of b have been removed from a. 
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Proof: All the elements of qT are positive, hence the larger the Aw's, the larger the LHS 

of (3.10)a.  But the Aw's are limited by R and by 

«,♦* = «M 
+A«,+ A«;+1 +■•• +Aul+k <U0 + U (3.13) 

But the elements of qT decay geometrically, hence the value of the LHS of (3.10)a is 

maximized when AuI+i causes ut+k to reach (and maintain) its max value in minimum time 

(mv+l steps).  Thus, the maximizing vector of Aw's is 

A« = [R,R,...,R,yu,0,0,...Y (3.14) 

where the number of repeated values of R is mv. Substitution of this into (3.10)a yields 

(3.12)a. Eqn. (3.12)b can be obtained using similar arguments; the only difference is 

that the Aw's must be such that u reaches is lowest permissible value of U0-U in minimum 

time, namely in mL+\ time steps. The corresponding vector of control increments will 

have the form 

A« = [-R, -/?,..., -R, -7L,0,0,...f (3.15) 

D 

Lemma 3.5 Let the unstable pole of Lemma 3.3 be negative and let the system be 

subject to input constraints (2.28). Then max/min values that the LHS of (3.10)a 

assumes over all feasible vectors of future w's are: 

MM = -^^ " ut_-      a^mmlu^R, U0+ü\;   ßL=m^[av-R, U.-ü] 1 +y (3.16) 

Mrnm = -T^ " u,-v      <xL = max[ut_rR, U0-U\;   j8l, = minK+Ä, U0+U] 

Proof:  This is similar to the proof above, except that the signs of the elements of qT 

alternate, so the elements of the maximizing/minimizing vectors must alternate between 

their max and min allowable values which are defined by av and ßL, or ßv and aL.   D 
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Using the same arguments, these results can be extended to show that the maximum and 

minimum values the left hand side of eqn. (3.7)a can assume over all feasible values of 

u are given as: 

LKW
    l-q    (1-qf      l-<7 

IK\ 

Mmin = 

l-q2 

<*L+<lPu 

l-q2 

(3.17) 

Theorem 3.6 Let a(z) have only one unstable pole, say at p, and let the system be 

subject to input constraints (2.28). Then the necessary and sufficient stability condition 

at t in terms of the bAu of eqn. (3.10)b or bu of eqn. (3.7)c is: 

b .   < b < b where 

for^>0:        ^[^U;     *max = [*+] 
for/><0:        b^-ibX^    bmax=[b-] 

(3.18) 

Proof: For each of the two cases considered, b^, b^ give the max/min values that the 

LHS of (3.10)a can assume over all feasible future control moves. Thus, if b lies in the 

interval lA^^wl there will exist at least one solution (or a whole family of solutions if 

(3.18)a holds with strict inequality) which is both feasible and does not violate the 

stability condition of Theorem 3.3. Conversely, by Lemmata 3.4 and 3.5 there will not 

exist feasible solutions which satisfy eqn. (3.10)a if b lies outside the interval 

\b    b   1 Q 

Now when the condition of Theorem 3.6 is met with strict equality, the only 

feasible/stable vector of future input increments will be as proposed in the proof of 

Lemma 3.4 (for/?>0) or Lemma 3.5 (for/?<0); the former gives u a steady-state value 
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equal to one of the absolute constraints and the latter oscillates between oc and ß, never 

reaching a steady-state. While both cases are BIBO stable, they obviously are not 

desirable and do not conform to the definition of long term feasibility (LTF) as given at 

the beginning of the chapter. The following corollary fixes this problem by utilizing 

future input vectors which reach a desired steady-state value of u«,. 

Corollary 3.1 Let a(z) have only one unstable pole, say at p, and let the system be 

subject to input constraints (2.28). Then the necessary and sufficient condition for LTF 

at t in terms of the bm of eqn. (3.10)b or bu of eqn. (3.7)c is: 

£mi„ < b < bmax where min max 

(3 19) 
for/>>0:        b^\b\^    bm3X=[bX^ 

Proof: This is similar to the proof of Theorem 3.6 except that now we must show that 

satisfying the condition with strict inequality allows for solutions in which the future 

values of u reach the desired steady-state. Consider, for example, the following vector 

of future input increments which causes u to reach U0+U in min time, maintain this 

value, and then, at the max possible rate, reach and maintain «„ after nu steps: 

A« = [R,R,...,R,7u,0,0,...,0, -R, -R,..., -R, -yx,0,0,...Y (3.20) 

which, for positive/?, makes the value of the LHS of (3.10)a, 

qTAu=±^LlR+qm»yu-qn- 
l-q 

1 -nm' 
—JL-R+q "yo 

l-q 

yu=rem[U0+U-ut_vR]; yx =rem[U0+U-Ua>,R] 
_ U.+U-u^-y^ _U0+U-ux-yx 

mTt    — , »'»„ 

(3.21) 

u R ' °° R 

This differs from [&A„+]max by a factor which is multiplied by qn"'m" where nu can be 
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chosen arbitrarily large so as to make this factor arbitrarily small, thus making the value 

of the LHS of (3.10)a arbitrarily close to [&A„+]max. Similarly, it can be shown that there 

exist vectors which give u a desired steady-state value and make the LHS of eqn. (3.10)a 

or eqn. (3.7)a arbitrarily close to any of the limits of the interval [b^b^. □ 

These same ideas carry over to the case where a(z) has two unstable real poles, for which 

the matrix Q of eqn. (3.10) will have two row vectors, q\, qT
2, and the right hand side 

of (3.10) will be a two dimensional vector, say bAu=[bub2]T. However, applying 

Theorem 3.6 to qlAu=bx and q2Au=b2 independently will only generate necessary 

conditions; below we state conditions which are both necessary and sufficient. 

Theorem 3.7 Let a(z) have 2 unstable real poles at/?!, p2. Then the matrix Q of (3.10)a 

will have 2 rows, q\, qT
2, for qx = \lpx and q2=l/p2. Let [^]maxand [^L^be as per 

Theorem 3.6, and let Aut be the vector of future control increments for which qT
1Aul 

attains its max value of [6i]max.  Then the necessary and sufficient LTF conditions are: 

Pihn < bx < [*iL*;     ^A^-maxte/x} < b2 < g/A^-min^x} (3.22) 

where the vector JC is constrained to satisfy the condition: 

9'x = [bj^-b, (3-23> 

Proof:  By Corollary 3.1, condition (3.22)a guarantees that a Aa exists which satisfies 
—» 

qjrAu=bl and leaves u at the desired steady-state value. The totality of such vectors can 

be written as A«=A«J-JC, where x must satisfy eqn. (3.23). Such A« will make&Aw 

equal to q2
TAu1-q2

Tx, which is maximized and minimized by the interval defined in 

condition (3.22)b.   Clearly then, the equation QAu=b^u will admit a feasible solution 
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(with u going to the desired steady-state value) if, and only if, both conditions (3.22)a 

and (3.22)b are satisfied. □ 

In order to invoke Theorem 3.7, one needs to determine the maximizing/minimizing 

vectors x, but this is straightforward when/?!, andp2are real and share the same sign. 

Then it can be shown that the x that maximizes qT
2x is the vector causing the vector of 

future w's corresponding to Au=Aut-x, to move toward U0-Ufor as long as possible (as 

dictated by eqn. (3.23) and Ug-U), and then, at the maximum possible rate, reach U0+U. 

The detailed proof for the structure of x is simple but long and will be omitted. Here we 

simply make two obvious remarks: (a) since the starting point, ut, is common to both «i 

and u, and since the ultimate value of U0+U is also common to both, the sum of the 

elements of the vector x must be zero; (b) because the elements of qT
2 decay as a 

geometric series, the vector which maximizes q7^ must have as large a front end as eqn. 

(3.23) and the absolute and rate constraints will permit. A similar procedure can be used 

to determine the minimizing JC. 

The case of two real unstable poles of different sign, or the case of two complex 

conjugate unstable poles is considerably more complicated and will not be given here. 

In cases like this as well as for the general case of any number of unstable poles, one 

must revert to Theorem 3.5 for a necessary and sufficient test of feasibility. 

3.1.2.3 Illustrative examples 

Here, we illustrate the instability of constrained predictive control algorithms 

when they encounter short term infeasibility with an open-loop unstable system.   The 
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algorithm we use for this is CSGPC, but the property is true for all. 

Example 3.1 Let the system with a(z) = 1-2.2zl+0.09z2+0.252z3, b(z)=2+0A5zl+z2 

be subject to the input constraints with Uo=0, U=25, R=0.04; a(z) has only one unstable 

pole (at 2.1), so stability can be tested with the explicit conditions of Theorem 3.6. 

Assume the system is at rest, A-=0 for t< 1 and r= 1 for t> 1. Of course, u=0 for t< 1, 

and at t=2 mv=mL=U/R=625; mu=mL because the absolute limits are symmetric about 

M!=0. Since R is small, mv and mL will remain very large for all values of t during the 

simulation, and so qm" and q™1 will be insignificantly small, (because #=1/2.1). Then, 

from eqn. (3.12), we have: 

b    =[*C]    =—=0.0764;    and    ft    =[^] .=-_?_ = -0.0764    (3.24) max     L"AMJmax       i _ ' min     L   ""-"min i __ 

The necessary and sufficient stability condition, therefore, is that for ?=2,3,...,9 the bAu 

of eqn. (3.10)b must lie between -0.0764 and 0.0764. Upon application of CSGPC, the 

optimal value of Au2, as seen from Figure 3.1c, is 0.04, but for this the corresponding 

value of bAu, as shown in Figure 3. Id, is -0.084. Thus, the first control move 

recommended by CSGPC results in instability, so that at t=3 there will not exist aA« 
—» 

for which conditions (2.28)b and (3.7)a,b can be satisfied simultaneously. However, the 

input constraints are hard, so eqn. (2.28)b will be satisfied; as a consequence, condition 

(3.7)a will be violated and the feedback system will go unstable. This is illustrated in 

Figure 3.1a which shows the response of the output. Infeasibility means lack of 

feasibility over an infinite horizon which also implies short term infeasibility; as a result 

the infimal value of |/4c-v(?) ||«, will be greater than 1. Furthermore, due to instability 

this infimal value diverges (Figure 3.1b).  If the unstable pole were at 2 instead of 2.1 
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the feasibility interval would become [-0.084,0.084] and so CSGPC would operate at the 

limit of BIBO stability as shown in Figure 3.2. 

Example 3.2 In the example above, short term infeasibility caused CSGPC to choose 

control moves which render the problem unstable. This need not always be the case, 

especially if the short term infeasibility concerns future constraint violations. Through 

the use of the MWLS cost, CSGPC will choose c so as to minimize the worst case 

constraint violations, and if these violations are in the future, then CSGPC will be able 

to reduce this violation further at the next step. By the time we come to implement the 

offending value of c, infeasibility may have disappeared altogether. 

The system to be considered has a transfer function with ß(z) = l-1.3z"1+0.144z"3, 

b(z)=2+0.45z"1+z"2 and has only one unstable pole (at 1.2). The system input is subject 

to constraints defined by Uo=0, U=0.05 and #=0.2. The values of b^ and 6max are 

calculated to be -0.3 and 0.3 respectively, and the corresponding value of bu is plotted 

in Figure 3.3d; clearly, CSGPC satisfies the necessary and sufficient stability condition, 

despite the fact that it runs up against short term infeasibility as demonstrated by 

Figure 3.3b. CSGPC manages to recover short term feasibility a few time steps later; 

as a result the algorithm gives a stable and satisfactory output response (Figure 3.3a). 

Because these results imply a test which is a posteriori, they really only serve to show 

how close a system is coming to risking instability, or show why instability occurred. 

These conditions must be propagated into the future to provide a useful limit on the 

choice of future control moves; this is done below. 
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3.1.3 A priori conditions for the existence of a stabilizing solution 

In this section, we present the necessary and sufficient a priori conditions for which a 

stabilizing solution will continue to exist. The conditions of the previous section can be 

propagated into the future for systems with absolute and rate input constraints, but the 

result, though straightforward, is quite cumbersome. For clarity of presentation, we 

consider systems subject only to absolute or rate input constraints, in which case the 

bounds on the left hand sides of eqns. (3.7) or (3.10), b^ and Z?max, are time invariant. 

Lemma 3.6 Let a(z) have only one unstable pole atp=l/q, and let the system be subject 

only to absolute input constraint (2.28)a. Then, the bounds on the LHS of eqn. (3.7) are: 

rai    = 'A + -JL-- [b]   = A - _^_       0.25) L^W      x_q      x_\qy L »J-      \-q       \-\q\ 

Proof: Without rate constraints, 7?=oo, so, for/>>l, yv=U0+U-ut.l, yL=utA-U0+U, 

and mv=mL=Q. Therefore, from eqns. (3.17)a,b, [V"L«=(0,+ u)/(l-0) and 

[bu
+^=(U0-U)l{\-q). Forp<-\, aü=ßü=U0+üw)AoiL=ßL=U0-ü. Therefore, from 

eqns. (3.17)c,d, [K^=UJ(\-q) + UI{l+q) and VK^=UJ(\-q)-UI{\+q). U 

Lemma 3.7 Let a(z) have only one unstable pole atp=l/q, and let the system be subject 

only to rate input constraint (2.28)b.  The bounds on the LHS of eqn. (3.10) are: 

\b 1      =      R    • \b ]■   =     ~R (3-26) 

Proof: Without absolute constraints, U=<*>, so, for/?> 1, mu=mL= oo, and therefore, 

from eqn. (3.12), [bm
+]m!lx=R/(l-q) and [^+]min=-Ä/(l-?). For p<-l, otv=utA+R, 

ccL=utA-R, and ßv=ßL=utA.    Therefore, from eqn. (3.16),  [b^'^^R/il+q) and 

[*«U=-Ä/(1+«). D 
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These time invariant bounds make the projection of the a posteriori conditions of the 

previous section into the future trivial. An input which violates the resulting a priori 

bounds will lead to instability. 

Theorem 3.8 Let a(z) have only one unstable pole at p=l/q, and let the system be 

subject only to input absolute constraint (2.28)a. Then, at time t, a stabilizing solution 

will be guaranteed to exist at the next time instant (ie. the problem will be LTF) if, and 

only if, ut is chosen such that: 

h-*vo_ \q\u<u<b.^o+MR (3.27) 

Proof:  Extracting w, from eqn. (3.7)a (written for one unstable pole) gives: 

ut = bu - qqTu (3.28) 

The result follows from application of the time invariant bounds of Lemma 3.6 and from 

arguments given in the proofs of Theorem 3.6 and Corollary 3.1. □ 

Theorem 3.9 Let a(z) have only one unstable pole at p=\lq, and let the system be 

subject only to input rate constraint (2.28)b. Then, at time t, LTF will be maintained at 

the following time instant if, and only if, Aw, is chosen such that: 

^-Jll*<.B,<^JijA (3.29, 

Proof:  Extracting mt from eqn. (3.10)a gives: 

A«, = bAu - qqTAu (3.30) 

The result follows from application of the time invariant bounds of Lemma 3.7 and from 

arguments given in the proofs of Theorem 3.6 and Corollary 3.1. □ 

38 



The conditions given above provide limits which the current input must not violate; this 

will be illustrated by example in Chapter 6 after the inclusion of disturbances. 

3.2 Stability conditions for the general case 

Corollary 3.1 and Theorems 3.7-9 provide explicit conditions for LTF for systems with 

only one or two real unstable poles; for the general case, Theorem 3.3 gives necessary 

and sufficient stability conditions, but assumes that nu is arbitrarily large. As per Remark 

3.1, in practice nu is taken to be finite, and this leads to the implementation of Theorem 

3.4. From a computational viewpoint, it is desirable/essential to keep nu small, which 

leads to sufficient only results; this is because u is a finite length sequence (FLS). The 

future u FLS of Section 3.1 must: (i) cancel the unstable effects of the open-loop 

polynomial (as per constraint (3.7)a); and (ii) respect the input constraints (2.28). In 

practice these requirements may necessitate the use of a large number of degrees of 

freedom (ie. a large nu). That the future u prediction is a FLS implies that it has no 

poles, which means all system zeros, b(z) (poles in the inverse plant), must have been 

"cancelled". The previous section showed that the effect of qT is to "cancel" the unstable 

poles of a(z); this is the right idea, but can of course be done more directly. To remedy 

these problems, here we develop stability and asymptotic tracking conditions which do 

not depend on the use of FLSs. The key lies in "cancelling" only those roots which must 

be "cancelled" (ie. those outside the unit circle), both in the output predictions and in the 

input predictions; the result is predictions which are infinite length sequences (ILS). As 

in the previous section, we will require not only BIBO stability, but also asymptotic 

tracking in the predictions. 
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3.2.1 Stability conditions using ILS inputs 

Eqn. (2.9) can be written in a z-transform equivalent form as: 

amd-HiWüV®       or       y(z)-mA;^z) 0.31) 
a (z)a (z) 

where the coefficients of the powers of z"1 in y(z), Au(z), p(z) are the elements of Aw, 

y, and vp=HbAu-Hj, taken in order; a{z) and a+(z)=A(z)a+(z) are the factors of a(z), 

with order na- and na*+\, whose roots lie inside and outside (or on) the unit circle, 

respectively. It is apparent that the necessary and sufficient condition for the stability of 

the predicted output, y, is that the numerator of eqn. (3.31)b contain as a factor (and thus 

cancel) the unstable system poles, namely that: 

b(z)Au(z)+p(z)=«(z)Mz)       or       Autt^flt^ (3'32) 

b\z)b\z) 

where <£(z) is the z-transform of a convergent sequence {0OA,02>---} and b(z), b+(z) are 

defined in a manner analogous to a(z), a+(z). It follows that the predicted trajectories 

of control increments, A«, will be stable if, and only if, the numerator of eqn. (3.32)b 

contains the "unstable" system zeros: 

otXz)4>(z)-p(z)=b\z)m       or       ot\z)4>(z)-b+(z)4<{z)=p{z) (3'33) 

where \}/(z) is a polynomial with a convergent sequence of coefficients.   Eqn. (3.33)b 

constitutes an equality constraint which must be satisfied by the otherwise arbitrary 4>(z) 

and \(/(z); a particular minimal order solution is given by the vector of coefficients, 

[*£#]= fo0.*i.~,*v K tv™>+n)T of thez-transforms, 0p(z),^(z), ^=max[«^nj-l, 

n,=n+: y       a 

[r.- -r^ 
(3.34) 

where   Ya+,   Yb+ are matrices containing the first n^+l,  n^+l  columns of the 
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{n^+n^+ljx {n^+n^+2} convolution matrices Ca,, Cb,; the degree of p(z) is na; and 

0 is a vector of zeros of conformal dimension. With a+(z) and b+(z) coprime, the 

particular solution is: 

*. =pv -r»-r 0 
= 

p p 

P     P 
V 
0 

= 

A 
(3.35) 

where PlA denote partitions of the inverse in (3.35) of dimensions conformal to <j>p, \pp, 

Vp, 0.  Taking z-transforms, it is easy to show that the general solution to (3.33)b is: 

4>(z) =b\z)c(z)+<t>p(z);        m =a\z)c(z)^p{z) (3-36) 

where c(z) is a polynomial with a convergent sequence of coefficients and contains the 

available degrees of freedom. Inserting (3.36)a, (3.36)b into (3.32)a, (3.33)a and then into 

(3.31)b,(3.32)b gives: 

/s   b\z)c{z)+4>p{z) a\z)c{z)+^iz) 
Au(z) = - p (3.37) 

a-(z) bXz) 

It then follows that for asymptotic tracking the coefficients c, must have a limit, say c0 

c.-^limll-z-'lyfr)-^ 
00   b\\) ZM b\V) 

(3.38) 

where we note that the sequence <j>p is of finite length, n0+l, and thus has zero steady- 

state value. 

For practical implementation, the number of degrees of freedom used for 

optimization has to be finite (and preferably small); thus, as was done with the sequence 

of future inputs in Section 3.1, here we require c(z) to be a FLS and to reach its steady- 

state value within nc+1 steps; nc shall be termed the command horizon. We emphasize 

that, despite the FLS nature of c, in general, the sequence of future control increments 

will be ILS (as implied by eqn. (3.37)b), and thus it will avoid the conflict that may exist 

between FLSs and input constraints. Other predictive control formulations (eg [30], [54], 
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[18], [24]) use inputs or input increments as degrees of freedom and thus implicitly 

constrain them to be FLS; here we impose no such restriction. 

With c(z)=c0 +clz'
1 + -+cn_lz'"c+1 +cKz'"c/(l-Z_1), eqns. (3.37) can be written as: 

» = rflV6- c + 0a7ft- cM + T1/Ab.P2vp + »Ml 

(3.39) 

where the f* column of the V matrices contains the impulse response of the indicated 

transfer function multiplied by z'i+l, and the 0 vectors contain the step response of the 

indicated transfer function multiplied by z'n'. Eqn. (3.39)c is derived from i) eqn. 

(3.39)b, ii) u=C^Au +«M1, and iii) a+(z)=a+(z)/A(z). Q"1 is a square lower triangular 

matrix of l's, whereas the elements of the vector 1 are all 1. 

To get the a priori stability condition, we need to determine the allowable interval 

for ut, the first element of u in prediction eqn. (3.39)c, such that eqns. (3.39)b,c satisfy 
—» 

input constraints (2.28). Thus, we must minimize/maximize over  c the first element of 
—» 

eqn. (3.39)c, w,=ex
r«, subject to (2.28). Note that the part of u=efu which is not a 

function of c is constant and will be ignored in the cost (but not the constraints) of the 

optimization: 

min   ±e? Talb. c s.t.   ' 
uL<u<uv 

—» 
rL<Au<rv 

(3.40) 

where the dependence of u, A« on c is as defined in eqns. (3.39)b,c. By eqn. (3.39)c, 

the solutions of optimization (3.40), c^, cBda, give vectors, amax, u^, the first elements 

of which define the allowable interval for ut as: 
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[«Od.   ^    "<   ^    Wmax Where »,=«1 « ^3-41^ 

Theorem 3.10 The necessary and sufficient a priori stability condition is that ut must lie 

in the interval defined by eqn. (3.41) where [wj^ and [wj^ are the minimum and 

maximum values of u„ as computed by optimization (3.40). 

Proof: By derivation, the totality of stable input vectors u which give stable output 

vectors must be of the form of eqn. (3.39c); since we are dealing with hard constraints, 

failure to meet (3.40b) implies violation of (3.39) and will lead to instability. 

Constraints (3.40b) are linear, so the set of c that satisfy (3.40b) is convex and 

the vector c^c^+eic^-CnJ will also satisfy (3.40b) for 0<e<l. However, as e 

varies continuously from 0 to 1, u=e[u also varies continuously between [wj^ and 

["Jmax- Tnus> to every value in this interval there will correspond at least one c such that 

the vector u satisfies constraints (3.40b) and, by definition, gives stable inputs/outputs; 

namely, providing that stability interval (3.41) is satisfied, there exists at least one 

stabilizing, feasible u. D 

Remark 3.3 Strictly speaking the necessity of Theorem 3.10 holds for the case when the 

command horizon nc is taken to be arbitrarily large, thus at first sight, this result appears 

to be of limited practical use. However, in practice nc must be taken to be finite (and 

preferably small), and this will limit the stability interval; the condition of Theorem 3.10 

is then necessary and sufficient for a given command horizon nc. Thus, if optimization 

(3.40) is infeasible for a given nc, then there does not exist a stabilizing control trajectory 

of the form of (3.39) and nc must be increased; this is in contrast to the previous section, 
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where infeasibility need not be intrinsically due to the use of a short horizon, but rather 

could be attributed to the FLS property which is arbitrarily imposed on u. 

The ILS nature of the predicted u used in this section implies (at first sight) that 

constraint violations need to be checked over an infinite horizon (regardless of the length 

of the command horizon). However, because the transfer function from the command 

input, c, to the system input, u, is stable, bounding techniques like those given in [30], 

[54], [41] can be employed by which constraint satisfaction over some finite input 

horizon implies satisfaction over the infinite horizon.  This will be shown in Chapter 5. 

3.2.2 Illustrative example 

An obvious use of these stability results is in a supervisory capacity when using control 

strategies which either do not have a stability guarantee altogether or lose the guarantee 

temporarily due to short term infeasibility (STIF) (eg. due to large set-point changes). 

When the controller asks for inputs inside the stability interval, no remedial action is 

required, but if the input is outside the interval, the input could be clipped or control of 

the system could be switched to a known stable controller. 

It is pointed out that all terminally constrained predictive algorithms require short 

term feasibility (STF) and thus lack stability guarantees for horizons which are too short 

to avoid STIF. In practice, short horizons are essential in that they imply short 

computing times; for systems with relatively fast dynamics, the luxury of large 

optimizations may not be possible. Here we show how the stability conditions are used 

to guarantee the stable operation of predictive algorithms when horizons are too short to 

ensure STF (at all times). The predictive algorithm we use is CSGPC. In common with 

44 



terminally constrained predictive algorithms, the optimizations of Theorem 3.10 (required 

to find the stability interval) also requires feasibility, but through the use of ILS's in 

place of FLS's, it is doing only what is necessary and thus will usually be feasible with 

much shorter horizons. 

This is demonstrated in the example where the CSGPC optimization becomes 

STIF due to a large set-point change.   When CSGPC is STIF, one needs a logical 

procedure for choosing ut within the a priori stability interval of eqn. (3.41).  One such 

strategy is to choose ut within the limits such that the maximum future constraint 

violations predicted by CSGPC are minimized.   Since CSGPC uses predicted input 

sequences which are FLSs, it is easy to formulate this minimization as a linear program 

(LP); in this we can introduce weighting, w,, WjA>Wj, to place more emphasis on the 

early predicted constraint violations: 

min max[w/^0-^-«,+p,w/M,+y.-^0-^,w/-/?-A«^,w/A^+r/?)]; 0<j<nu 
(3.42) 

s.t.    yt+ny+i+1=r,   Aul+n+i=0;   V z>0;      [",]min<«,<[«,]„,« 

The rationale (of minimizing worst case predicted constraint violations) is as follows: of 

all the predicted M'S, only u, is actually implemented, therefore the choice of ut (within 

the a priori stability interval) can be governed by minimizing future predicted constraint 

violations and thus maximizing the possibility of a return to STF at the next time instant. 

Algorithm 3.1 At each time t: 

Step 1 Test the CSGPC optimization for STF 

Step 2 If STF, apply CSGPC; implement u„ increment t, and return to step 1 

Step 3 If STIF, calculate the stability interval for ut from optimization (3.40) ([ut]min, 

["Jmax) and implement the value of ut which optimizes eqn. (3.42); increment t and return 
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to step 1 

CSGPC requires, at most, two optimizations: an LP to find a feasible initial 

solution (which, at the same time, tests for STF) and a quadratic program (QP) to 

minimize the predicted cost function. Algorithm 3.1 (when CSGPC is STIF) requires up 

to four LP's: LP1 to test CSGPC for STF, LP2,3 to determine the upper and lower 

limits on ut, and LP4 to minimize the future predicted CSGPC constraint violations. 

Ignoring the difference in computing times of QP's versus LP's (which would amplify 

our point), we will show that, through the use of smaller optimizations, Algorithm 3.1 

will be significantly faster than CSGPC, when the latter is implemented with horizons 

long enough to ensure STF at all times. We will compare the theoretical maximum 

number of iterations, the size of the optimizations, and the maximum computation time 

spent doing optimizations at any given time step. The optimization routines used will be 

LP and QP from Matlab's Optimization Toolbox, which employ Bland's anti-cycling rule. 

As a consequence, the theoretical maximum number of iterations is bounded by the 

number of different subsets of constraints with k elements, where k varies from zero to 

the number of DOF; in practice, computation time tends to vary with the size of the 

optimization [3]. This size is ncXm, the product of the number of DOF and the total 

number of constraints. 

Example 3.3 Let the system transfer function g(z) =z'1b(z)/a(z) be defined by 

a(z) =(l -0.6z -»Xl -2z -»Xl +3z ^(l -4z"! +2.25z "2) (3.43) 
b(z) =(l -0.2z "»Xl -0.8z -!Xl -0.& ~l +0.25z "2) 

let the constraints be Uo=0, U=60, R=IQ, assume zero initial conditions, and apply a 
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unit step set-point. Figure 3.4 shows the results for CSGPC with nu=U and ny=l2 (8 

DOF); with fewer DOF, CSGPC runs into STIF and goes unstable. In this figure and 

the following, the left plot depicts output responses (in solid lines), and set-point 

trajectories (dashed lines), whereas the right plot depicts control (solid lines) and control 

increment (dash-dotted lines, scaled by a factor of 6) trajectories. For CSGPC with 8 

DOF, the LP and QP sizes are 9x54 and 8x54, totalling 918; the theoretical maximum 

number of iterations are 1.97X1015 and 4.29X1013. The longest computation time 

required by the optimizations at any sampling time was 1.15 seconds. Figure 3.5 shows 

the results for Algorithm 3.1 with nc=2. With this command horizon, LP1 and LP4 are 

3x30 and LP2,3 are 2x116, totalling 644 (vs. 918 for CSGPC); also the theoretical 

maximum number of iterations are much more reasonable: 25261 (for LP1,4) and 13457 

(for LP2,3). The longest computation time required at any sampling instant was 0.88 

seconds; an improvement of almost 25%. It is interesting to note that despite the very 

small number of DOF used by Algorithm 3.1 (2 vs. 8 used by CSGPC), the results of 

Figure 3.5 are of comparable quality (by way of maximum overshoot, speed of response, 

level of control activity, etc) to those of Figure 3.4. 

3.3 Chapter summary 

The results of this chapter enable the determination of necessary and sufficient a priori 

stability conditions and incorporate conditions for asymptotic tracking. Two practical 

schemes are considered, one which gives explicit stability conditions for systems with one 

unstable pole and the other which gives stability conditions for the general case through 

the use of linear programs. By allowing the predicted u to be an ILS, the latter leads to 
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an optimization problem which remains feasible for smaller horizons, thereby enabling 

a significant reduction in computational load, while retaining the guarantee of stability; 

this point is clearly illustrated by means of the final numerical example. 

In the next chapter, we take an alternate approach to the problem of short term 

feasibility. Chapter 4 offers several modifications to CSGPC which serve to avoid STIF 

during set-point changes and therefore, to avoid instability. 
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Figure 3.4 Example 3.3 - CSGPC with eight degrees of freedom 
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Figure 3.5  Example 3.3 - Algorithm 3.1 with two degrees of freedom 
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Chapter 4 

Modifications to Constrained Stable 
Generalized Predictive Control 

Theorem 2.2 states that if CSGPC is feasible for a finite ny (ie. short term feasible, or 

STF), then the algorithm will lead to asymptotic stability. However, nothing can be said 

about the stability of CSGPC in the case of short term infeasibility (STIF). As was seen 

in Example 3.2, by minimizing the worst case future constraint violation, CSGPC can 

overcome STIF and give stability and asymptotic tracking. This property is extremely 

useful, but cannot be guaranteed in general. A common cause of STIF is large set-point 

changes; in this chapter, we propose three different modifications to CSGPC which all 

retain feasibility during large set-point changes and thus lead to stability. 

STIF is caused by the requirement that the predicted output should reach its new 

target value within ny steps (a terminal constraint), so this requirement must be relaxed. 

However, the stability proof of SGPC and CSGPC depends on the property implied by 

the use of FIR's that the predicted output settles after ny steps. Thus, an obvious strategy 

to follow is to: (i) retain this last property, but (ii) allow the value to which the predicted 

output settles at to be equal to some slack variable, sx, which will be a degree of 

freedom (DOF). The value to which the predicted output settles is determined by c«,, the 
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far future command inputs; making c, a DOF is the subject of section 4.1. Obviously, 

something must be done to ensure that the output goes to its target value; this is where 

the modifications differ. The first modification, described in Section 4.2, ensures that 

the output goes to its target value by augmenting the MWLS problem appropriately to 

include a penalty on the deviation of $„ from this target value. The modified algorithm 

is activated only when CSGPC is STIF, and guarantees recovery of short term feasibility 

(STF); this together with the properties of CSGPC guarantee stability and asymptotic 

tracking. Unfortunately, during the feasibility recovery stage, the modified algorithm 

does not place any penalty on the norm of the vector of predicted errors, and this may 

degrade transient performance. The other modifications, which are introduced below, 

improve on the first in that they do retain performance in the cost. 

Recent work by Zheng and Morari [53] and Allwright [1] minimize the infinity- 

norm of the predicted errors rather than the two-norm as CSGPC does. Stability is 

guaranteed without recourse to terminal constraints, and therefore without the need for 

a STF assumption, however, the results are restricted to open-loop stable systems. 

Within the context of SGPC this work can be extended to unstable systems. The 

performance of such systems, though, is often not as good as CSGPC, as all effort is 

spent minimizing just the largest error, and this is often the first one. The system is 

driven very hard and the responses can be oscillatory. We, therefore, propose a 

procedure for dealing with STIF in which the objective is usually the standard CSGPC 

two-norm minimization, but when STIF is encountered, the value of the steady-state 

predicted output is allowed to become a DOF and the objective is shifted to the 

minimization of the infinity-norm of the predicted errors until STF is regained. Thus, 

by mixing objectives, the superior performance of CSGPC is retained when possible, but 
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stability and asymptotic tracking are guaranteed with only the assumption of long term 

feasibility (LTF). Section 4.3 develops an extension of the MWLS algorithm which 

performs the constrained optimization of an infinity-norm of the predicted errors and 

subsequently embeds this extension into the CSGPC framework. Finally, an algorithm 

which mixes these two objectives, Mixed-Objective CSGPC, is presented and illustrated 

by numerical example in section 4.4. 

In Section 4.5 we propose a modification to CSGPC which shares in common with 

that of Section 4.2 the property that it is guaranteed to recover STF, but also includes in 

the objective a component which penalizes deviation of the predicted output values from 

desired set-point values; we will call this Modified Constrained Stable Generalized 

Predictive Control (MCSGPC). Unlike Mixed-Objective CSGPC, the performance cost 

is always a two-norm of the predicted errors, but when CSGPC is STIF, return to STF 

(and thus stability) is guaranteed by the added constraint that sm move closer to the 

desired value at each successive time instant. 

4.1 Adding an additional degree of freedom to CSGPC 

STIF arises during set-point changes because of the implicit requirement that y should 

reach the new set-point in ny steps and with only nc "free" command inputs. All far 

future command inputs are chosen to be c„=r/b(l), where the reference signal, r(t), is 

assumed, without loss of generality, to be a step of size r. Thus, the only way to 

overcome STIF is to relax this end-point constraint for the predicted output. A simple 

way to achieve this, while preserving the FLS attributes of CSGPC (which are used in 

the proof of stability), is to include c«, as a degree of freedom, such that the predicted 
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output settles at some slack variable, s00=b(l)c<X) rather than r.   To achieve this, eqn. 

(2.13) is modified to get: 

v = rt*c* + y/, A« = r>* + Au,; u = T* c* + u^ 

c* = 

(4.1) 

;    r; = [r„ »j;   r; = [ra, ea\   r; = [r„, •.] 

Input constraints inequality (2.29) can then be rewritten as: 

M^-v*(oL=lk*IL^i;     A* = 
R a 

IT* u a 
v*(t) = 

-Uuf 
(4.2) 

On the basis of (4.1) and (4.2), the CSGPC problem can be restated with respect to the 

augmented vector of future c's, c* , and these modifications can be deployed either all 

the time, or at all time instants when the original CSGPC algorithm runs into STIF. 

The problem is that while c«, is a DOF, the predicted steady-state error is non- 

zero and thus the finite horizon cost is no longer equal to an infinite horizon cost, and 

therefore can no longer be shown to be a stable Lyapunov function. Alternative methods 

of guaranteeing stability must be used; three different methodologies are given below. 

4.2 A stable constrained predictive control algorithm 

While cM is a DOF, the predicted output will settle at some value, sm =b(l)c<X). Clearly, 

one needs to penalize the deviation of s«, from its desired value of r. The following 

algorithm applies CSGPC as described in Algorithm 2.1, but if at any time instant, 

IMc"K0|L can not be made less than one, MWLS is reapplied with the following 

modifications: 
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e«'+1)=S* c ♦<*♦!> 

KD 

.    e*™=A*c*(f*1)-v*(?);      S* = 0T
n  b(l) (4.3) 

During the period of STIF, the monotonicity of return to STF is guaranteed by replacing 

the part of the cost that relates to performance, S[c -cj, with a penalty on the deviation 

of sM from its desired value. Thus, while s«, is allowed to vary so as to make feasible 

solutions possible, MWLS will converge to the value closest to r which does not cause 

any constraint violations. The subsequent values of sx will be shown to monotonically 

converge toward r until the problem is once again STF. 

Algorithm 4.1 At each time instant t 

Step 1:  Apply CSGPC (Algorithm 2.1).   If \\Ac-v(i) \\ m < 1, increment t by one and 

return to Step 1; otherwise proceed to Step 2. 

Step 2:  Use MWLS (Section 2.3) with the modifications of eqn. (4.3), let MWLS 

converge to the optimal c*, and implement the implied first future value of u. 

Increment t, go to Step 1. 

Theorem 4.1 Under the assumption that the set-point changes do not cause the control 

problem to become infeasible (LTIF), Algorithm 4.1 has guaranteed stability and will 

cause the output y to reach asymptotically its target value. 

Proof: If the problem is STF for all t, Step 2 will never be entered, so that Algorithm 

4.1 will operate exactly as CSGPC, Algorithm 2.1, and so, by Theorem 2.2, we have 

stability and asymptotic tracking. 

Now let us assume that at some t, CSGPC is STIF and Algorithm 4.1 enters Step 
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2. Clearly, the implied optimization problem is always feasible because cM is now a 

degree of freedom and can be chosen so as to require as little movement in the «'s, and 

Aw's as is necessary; hence, MWLS will converge to the solution which minimizes the 

distance of s«, from r, and satisfies inequality (4.2). The implied cost of Step 2 has 

exactly the same form as that of eqn. (2.30), and so, like the original cost, it will be 

monotonically decreasing; the arguments which prove this assertion are identical to those 

used for the original CSGPC algorithm (Theorem 2.2). Hence, Step 2 will cause sx to 

assume its target value of r and will do so in the minimum number of time instants. 

Now, for cx=r/b(l), we have: 

\\A'c'-v*(t)\\a = \\Ac-v(t)h (4-4) 

and so one time instant before cx is made equal to r/b(l), the CSGPC problem will 

become STF. This is so because, if Step 2 were applied one more time, it would give 

a vector c* whose last element would be rlb{\) and for which the quantity of eqn. (4.4) 

would be less than or equal to 1; hence, at that time instant it would be known that for 

cx-r/b(r) there exists a vector c which satisfies inequality (2.29). In conclusion, Step 

2 will always recover STF, and hence, the overall algorithm will be stable and will cause 

y to asymptotically track its target. □ 

Example 4.1 In Example 3.1, we saw that at t=2 CSGPC, Algorithm 2.1 encountered 

STIF. Repeated application of the algorithm, as expected, led to instability. This 

problem is overcome entirely by the application of Algorithm 4.1 which, at t=2, invokes 

Step 2 and, therefore, results in a Au2 which is less than the maximum allowable size of 

0.04 (see Figure 4. lc). This reduction of Au2 in turn results in a bAu of smaller absolute 
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value (see Figure 4. Id) which lies within the interval of -0.0764 and 0.0764. From 

Figure 4.1c, it can be seen that all the w's used by the algorithm stay far from the 

absolute constraints and hence /% and mL will be large and b^Jb^ will stay at 

-0.0764/0.0764 throughout the application of the algorithm. Then, from Figure 4.1b it 

is seen that the algorithm is feasible throughout, and recovers STF for CSGPC at t=25 

(see Fig. 4. Id).  The output response (Figure 4.1a) can be seen to be good. 

4.3 C-CSGPC 

If sx is allowed to vary from r so \Ac-v($)1| „ can be made less than one, then, as the 

predicted steady-state error is not zero, the finite horizon cost is no longer equal to the 

infinite horizon cost and thus the monotonicity proof for stability breaks down. If, 

however, the objective is shifted from minimizing the two-norm of the predicted errors 

to minimizing the infinity-norm, then monotonicity can be retained. In section 4.3.1, we 

define a CSGPC algorithm which has c„, as a degree of freedom and minimizes the 

infinity-norm of the predicted errors; we will call this I „CSGPC.   Then, in section 

4.3.2, we modify MWLS to minimize an infinity-norm cost in the presence of 

constraints; the resulting algorithm shall be referred to as C-MWLS. Finally, in section 

4.3.3, we give the stability properties of C-CSGPC. 

4.3.1 The overall strategy of t „-CSGPC 

In I „,-CSGPC we make two changes to CSGPC. First, to overcome the problem of short 

term infeasibility, cw is allowed to vary; this was done in section 4.1. Then, to ensure 
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that monotonicity of cost is retained, the objective is changed to the minimization of the 

infinity-norm of the predicted errors. The vector of predicted output errors, e, is 

represented as: 

e„ „ =ET(y-r)=Hc> -/;        E=[en,...,en];      H=ETV;-,     f=ET(r-yf)     (4.5) 

where e{ is the t standard basis vector in 9t\ Because v settles after nc+nb steps, we 

shall assume that, for C-CSGPC, ny=nc+nb+l. The choice of nu the initial output 

horizon, determines the first predicted error to be included in the cost, /. Normally, nx 

can be set to one, and all future errors up to ny, the output horizon, will be included in 

e. When b(z) exhibits non-minimum phase characteristics, though, nx must be chosen 

greater than one so that some of the initial (non-minimum phase transient) errors are 

ignored; the quantitative treatment of this problem will be presented in section 4.3.3. 

The following algorithm is used to implement C-CSGPC: 

Algorithm 4.2  (t«,-CSGPC)  At each time instant t 

Step 1: Calculate the vector of future command inputs which minimizes the infinity- 

norm of the predicted errors without violating the constraints, namely, 

minc./f=|^„JLs.t.  M'c'-v'(0L<l. 

Step 2:    Calculate and implement the first control increment using eqn. (4.1)b. 

Step 3:    Increment t by one and return to Step 1. 

For convenience, the * superscript will be suppressed in sections 4.3.2 and 4.3.3, as this 

is the form (with c«, a DOF) assumed throughout the development of C-CSGPC. 
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4.3.2 The i „-MWLS algorithm and its properties 

The constrained minimization of an C-norm for the purpose of predictive control has 

been implemented in the literature with linear programming theory. Here, as an 

alternative, and to demonstrate the versatility of MWLS, we recast MWLS to achieve an 

infinity-norm objective rather than its original two-norm objective. In this section we 

derive the properties of ^-MWLS. 

Let the C-MWLS cost be: 

Jm 
i-MWLS 1*1*7»,, •* * nVny 

where the weights are updated at each iteration as per: 

w('+1>   = * r A        yw© • w(i+l). =  » f A (4.7) 

To gain an intuitive feel for the algorithm, it is useful to sum over; the weight updates 

of eqns. (4.7): 

n 1 n m 

Yw^l\. =  -  Yw®tt; EW(,+1), = 1 (4.8) 

where the summation of the numerator of each equation in (4.7) is equal to, and therefore 

cancels, the one-norm in the respective denominator. The partition of the cost which 

contains e is associated with performance, while the partition containing e is associated 

with constraint violations. At each iteration, the total weight, W, placed on the constraint 

partition is normalized to one, and the total weight, w, placed on the performance 

partition is adjusted by a measure of the size of the constraint violations. When 

constraints are violated, \\e\\M is greater than one, thus, less weight is placed on 

performance which forces the algorithm to emphasise the constraint violations; but when 

59 



all constraints are met with strict inequality, the weights on performance are increased, 

shifting the emphasis away from constraints. Within each partition, though, the largest 

elements are always emphasized. The following definitions will be used in the derivation 

of the properties of ^„,-MWLS: 

c* = lim c®   (if it exists) 
~* j-*0o    -* 

c" = unconstrained lv optimum:   minHef^ ^^ 
-» c 

c*  =     constrained im optimum:   min || e \\ m s.t.  fel^l 

Lemma 4.1    The C-MWLS feasibility region, Fn, is always non-empty for the 

disturbance free case (Fn ^{0}). 

Proof: C-MWLS has cm as a degree of freedom, therefore, at start up, doing nothing 

is always a feasible solution, and thus, it can be argued recursively that the control 

trajectory calculated at the previous time instant will remain feasible in a disturbance free 

environment. ^ 

Theorem 4.2    £W-MWLS cannot converge to a point outside the feasibility region 

(c'eFB<). 

Proof:       Assume   that   C-MWLS   converges   to    c*£Fn,   then    \ek\>l   for 

kEIQI0={l,2,...,m}, where m is the total number of constraints.    Let / be the 

complement of / with respect to I0. Then, in the limit, l^,(oo)=0 for jEl, because Wtt
(0 

for kEI are increasing (relative to the others) with i, but, by eqn. (4.8)b, they all sum 

to one.  Hence, because E7Wtt
(0=l, 
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This, with eqn. (4.8)a, shows that the sum of the performance weights will decrease with 

i, and in the limit, Ew*(oo)=0.  Therefore, the C-MWLS cost will become: 

lim /,%„, = |[W<TVf2 (4.11) 
i-»e» 

whose solution is feasible since, by Lemma 4.1, Fn^{0}.    This contradicts the 

assumption that c*fcFn, and thus completes the proof. □ 

Corollary 4.1     If  c°EFn,  then  c°=c*   and C-MWLS can only converge to 

c* (c*=c*). 

Proof: c" minimizes |e|oo, and since CEFn, the corresponding e is such that 

||e| M< 1; therefore, c'=c*. Assume that t„-MWLS converges to c**c*, but by 

Theorem 4.2, c'6FB and so \ek\ =1 for £G7 and |ey| <1 for jEI, where, as before, 

/ is a subset of 70 and / is its compliment.  Then, if 7^{0}, T^,(oo)=0 for jEI, and 

IwML = E W('V K°J = E W('V H = E w0)** = x       (4'12) 

Therefore, by eqn. (4.8)a, the sum of the performance weights will be constant, 

Sw/+1)=EwA
(0=7.  The individual weights will then be updated as per: 

Wd+D   = 
w a? A y. (4.13) 

*      lk'V'1, 

and so by Lawson [22], c*=c*, which contradicts our earlier assumption that C*J*C* . 

If /={0}, | W®«® 11 < 1, and the sum of the performance weights will increase 

with /.  This has the effect of shifting all of the emphasis to performance as none of the 

constraints are active, and hence, we once again contradict our earlier assumption that 
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c*^c*. Note that the growth of the performance weights does not constitute a 

numerical problem, because the algorithm can be stopped after c* converges and before 

the performance weights get too large. Alternatively, the sum of the performance and 

constraint weights can be normalized to one after the update of eqn. (4.7); then, if 

/={0}, all the constraint weights would tend to zero. □ 

Theorem 4.3 C-MWLS can only converge to c * (c*=c*). 

Proof: By corollary 4.1, this is true for c°EFn, so here, let c°£Fn/ Assume that 

C-MWLS converges to c*^c *. By Theorem 4.2, c*EFn, and so the polyhedroid 

defined by |e|00= constant which passes through c* must either intersect Fn, or be 

tangential to it (for example, see Figure 4.2). Of these, the former cannot be true, 

because any point inside the intersection of the polyhedroid and Fn will result in a 

smaller cost for f^-MWLS. Hence, C-MWLS will not converge to c* unless the 

polyhedroid through c* is tangent to Fn. This can only happen at c*=c *. If the 

tangency is a point, then the solution is unique; however, if the tangency is a common 

edge (line, plane, or hyper-plane), then the solution is non-unique because any point 

along the common edge tangency will produce the same optimum cost. This is discussed 

in Remark 4.2. □ 

Remark 4.1 In some cases, the solution to minc /,= || e \\«, s.t. | e \\«, < 1 is not unique. 

When this occurs in C-MWLS, there will be less than nc active (non-zero) weights which 

are associated with linearly independent rows of H or A. This will cause the matrix 

[IfwA ATWA]T to be rank deficient, and means that not all degrees of freedom are used 

to minimize the („,-MWLS cost. This non-uniqueness can be visualized by considering 
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the tangency mentioned in the proof of Theorem 4.3, which, in this case, will be a 

common edge (for example, see Figure 4.3). In practice, it is sufficient to stop the 

algorithm prior to the rank deficiency occurring, but an alternative solution would be to 

allow C-MWLS to run only until the active set is identified and constrain c to lie in it. 

The remaining degrees of freedom could then be used to minimize the next largest error. 

Remark 4.2 Unlike LP, C-MWLS does not need a feasible starting point. 

Additionally, for many problems, an exact solution is not necessary. In this case, 

i „-MWLS can provide a close solution very quickly. A reasonable termination criterion 

for C-MWLS is whether or not the cost changes are smaller than a small threshold 

value, e. By choosing e to be relatively large, say 0.01, t «,-MWLS will terminate in just 

a few iterations, thus providing a very quick estimate of the optimum solution. In 

applications where computation time during the sampling interval is at a premium, using 

C-MWLS with a termination criterion which incorporates a large e may provide a much 

better option than waiting for LP to find a feasible starting point (a separate LP), and 

then converge to the exact solution.  This is illustrated below. 

The following example concerns the feasibility region and convergence properties of 

C-MWLS. 

Example 4.2 Let the system of Example 3.1 be subject to input absolute and rate 

constraints (2.28) for which Uo=0, U=\, and R=0.l. Apply C-CSGPC, using 

Algorithm 4.2. Figure 4.4 through Figure 4.7 show the feasibility region (solid lines) 

and contours of equal ||e|| „ (dashed lines) at four time instants with n=\ so thatc* 
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has two elements; c° is indicated by a 'o', and c* by a V- In all instances, it is 

obvious that I«,-MWLS has converged to the optimum, per Theorem 4.2 (c*=c *). At 

t=6, the progression of e (labelled ep_i), w, e, and W through 50 iterations is shown in 

Figure 4.8, and their final values after 100 iterations are: 

e =    [-0.8653   -0.7385 -0.6495 -0.6013] 

w =   [8.5776    0 0 0] 

e =    [0.6737    -1 -1 0.2132   0.1215   0.0674   -0.0326 -0.1326 -0.1113 -0.0992] 

W=   [0 0.6875    0.3125 0 0 0 0 0 0 0] 

Note that the non-zero weights correspond to the largest s/s and to active constraints. 

In this case, one performance weight and (as is evident in Figure 4.4) two constraints 

weights are active. 

At t=9 (Figure 4.5), the final errors and weights are: 

£ =     [-0.1620   0.0312   0.1234   0.1620] 

w =   [98.7436 0 0 17.8883] 

e =    [-0.8243   -1 -0.5758 0.2234   0.0974   -0.1635 -0.2635 -0.3211 -0.2987   -0.2890] 

W=   [0 1 0 0 0 0 0 0 0 0] 

This time, two performance weights and (from Figure 4.5) one constraint weight are 

active. 

At f =11 (Figure 4.6), only the first performance weight and the first constraint 

weight are active as indicated below: 
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s =     [0.0412    0.0269   -0.0224 -0.0398] 

w =    [121.31    0 0 0.0006] 

e =    [-1 0.9649   0.4421   -0.1203 -0.0437 -0.3631 -0.2666 -0.2224 -0.2344 -0.2388] 

W=   [1 0 0 0 0 0 0 0 0 0] 

The corresponding rows of H and A are [1 0], and, therefore, not linearly independent; 

this is a case of a non-unique solution. 

Finally, at t= 14 (Figure 4.7), the unconstrained optimum is feasible, and as stated 

in Corollary 4.1, c°=c*=c *.  The final errors and weights are: 

E = [-0.0040 0.0040   0.0040   -0.0040] 

w =    1.0e+024* [0.6080 0.0715    1.1839   0.8822] 

e =     [-0.5883   -0.2036 0.2380   0.0019   -0.0204 -0.2493  -0.2696 -0.2458 -0.2457 -0.2477] 

W=   [1 0 0 0 0 0 0 0 0 0] 

Note that no constraints are active, and all degrees of freedom are used to minimize the 

performance cost. The performance weights have grown large, but this did not adversely 

affect the algorithm and could have been averted by appropriate normalization. 

To illustrate the time savings possible with I «,-MWLS, the minimization in Step 

I of Algorithm 4.2 was run with C-MWLS (using the termination criterion mentioned 

in Remark 4.2, ie:  setting e=0.01) and with LP.  The former never needed more than 

II iterations, taking a maximum of 0.11 seconds; LP required a maximum of 0.33 

seconds. The use of a "relatively large" value for the threshold e results in a slight 

degradation in performance (the C-MWLS cost is about 1% larger than the LP cost), 
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but this is a small price to pay when considering the very significant reduction in 

computation time (threefold). 

4.3.3 The stability of C-CSGPC 

Once the optimum vector of future reference values, c *, has been calculated by 

I „-MWLS, the procedure for computing and implementing the first optimum control 

increment is exactly the same as that used in CSGPC [33]. The arguments for the 

stability of I «,-CSGPC are also similar, as presented here. 

Lemma 4.2 Let a linear system with transfer function G{z) =z1b(z)/a(z) be subject to 

input constraints which, at time t and for reference horizon nc and input horizon 

nu>na+nc+l, are given as \\Ac-v(t) | w < 1. Furthermore, let the t„-CSGPC objective 

be min, J = \\ e \\ m s.t. \Ac-v($) \x < 1, then for 1 <«j<ny, Jt is non-increasing for 

all t and C-CSGPC is BIBO stable. 

Proof: First, we note that |e \\ x = \e„;001«,, because, by the property of FIR's and 

the choice of ny>nb+nc+l, the predicted output will reach steady-state at the ny^ step. 

At each new time instant, t+l, the control trajectory implied by the previous optimum 

is feasible and can be used to give a cost, Jt+l, which will be less than or equal to the 

optimum cost J* at t. Then, the optimum at t+1, Jt+l*, will be less than or equal to Jt+1, 

and hence, less than or equal to /,*. □ 

Lemma 4.3  For nx=ny, C-CSGPC is stable and gives asymptotic tracking. 

Proof: The objective is now equivalent to that of Step 2 in Algorithm 4.1, which is used 
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when CSGPC encounters STIF. □ 

Lemma 4.4   If I „-CSGPC is at rest, uss is on the interior of the absolute constraint 

limits, and yss*r, then there exists an nx such that  |e     \at can be reduced without 

violating the constraints. 

Proof: The elements of this steady-state error vector will be EX =e2 =■■■ =sn^ = sss =r-yss * 0. 

Furthermore,  ||Acm-v(f) | ^ must be strictly less than one because the rates are inactive 

and the problem is long term feasible (LTF). Therefore, there exists a positive number 

e such that  \\A(css+Öc)-v(f) \\ a < 1 for all be which satisfy || be \\ „ <e.   Now then, we 

need to show that there exists a be which satisfies: 

II H(css^c)-f\\ „ = 1 Hbe+(Hess-f) ILHI HSc+eJ |.< | Hcss-f\\ .= | e„ |     (4.14) 
-» -» -» 

and Ibe\\ „<e.   This can be done easily by choosing nx>nb such that Hl=b{l)l and 

setting 5c=-sign{£(l)}el so that: 

\\mc+essl\a>=Ess-\b{\)\e<\Ess\     and     | 5c |. =€ (4.15) 

Eqn. (4.15)a will be true, because one would always choose e <e„/1 b{\) |; bc=-essllb{\) 

will makey^=r. D 

Theorem 4.4 There exists an nx such that: 

min |ffx-lL < 1 (4-16) 
X 

Furthermore, if a system is at rest, uss is on the interior of the absolute constraint limits, 

and y„*r, then I«,-CSGPC will remain at rest at the wrong steady-state value if, and 

only if, «! is chosen such that condition (4.16) is not satisfied. 

Proof:  That such an nt exists is proved by choosing rii>nh which makes the LHS of 
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condition (4.16) equal to zero. Now, || HJC-1 | „ < 1 is equivalent to condition (4.14) with 

ess normalized to 1, so if nx is chosen such that condition (4.16) is not satisfied, no 

control trajectory will exist which produces a lower cost than that of remaining at rest 

(6c=0), but if condition (4.16) is satisfied, then such a trajectory does exist and can be 

made small enough to keep \\A(c+bc)-v(t) \\ x < 1. The arguments for this are similar 

to those given in the proof of Lemma 4.4. ^„-CSGPC will choose the optimum cost, so 

in the first instance, y will remain at rest at the wrong steady-state value, and in the 

second, it will move towards the desired set-point. D 

Remark 4.3 Note, in Lemma 4.3 {nx=nj), that only the last error, sn, is minimized. 

But, to maintain as much of the transient behaviour in the objective as is possible, we 

want nx as small as possible. Condition (4.16) can be used to determine the smallest 

valid nx. By starting with nx = l, condition (4.16) can be tested (off line, with a linear 

program or Lawson's algorithm) and nx can then be incremented until the condition is 

satisfied.  Hereafter, we define nx to be the smallest nx which satisfies condition (4.16). 

Remark 4.4 Theorem 4.4 states that if nx is chosen less than nx, then f^-CSGPC will 

not track a reference; this would normally be associated with non-minimum phase 

attributes. Because of the SGPC stabilizing loop and by eqn. (2.13)a, this behaviour is 

determined solely by the system's numerator polynomial, b(z). If b(z) is such that the 

output must initially go further from the desired steady-state value before it can go closer 

(ie. non-minimum phase behaviour), then the first error(s) will always be greater than 

they would be if the system just stayed at rest. Thus, since t„-CSGPC minimizes the 

maximum error, this initial error(s) must be excluded, or the "optimum" cost will be that 
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which requires the system to stay at steady-state. 

As stated in Remark 4.2, the solution to mh\ /,= || e ||„ s.t. || e |[«, < 1} can be non- 

unique; therefore, the possibility of an undamped oscillating cost exists. To account for 

this, Theorem 4.5 is written with an assumption of uniqueness, but then the assumption 

is removed in Corollary 4.2 by modifying the cost objective to emphasize later errors 

more than earlier ones. 

Theorem 4.5 Let the control trajectory which optimizes the cost of Lemma 4.2 be 

unique, then, for n^n*, f^-CSGPC is stable and gives asymptotic tracking. 

Proof: If yss=r, then we are tracking the reference, so lety^^r. Now, by Lemma 4.2, 

Jt+*<J*; ifJt+* has not stabilized at a constant non-zero value then the cost is decreasing 

as desired, so assume it has stabilized (ie. Jt+*=J* for all i). Uniqueness then implies 

that the control and output trajectories are frozen, and we have steady-state after i=nc+nb 

steps. But, by Lemma 4.4, this cost can always be reduced, which contradicts the 

assumption of a stabilized non-zero cost. Therefore, the cost will be reduced to zero and 

f^-CSGPC will asymptotically track the reference. □ 

Corollary 4.2 Let the C-CSGPC objective be mine Jt=lSeHvM \\x s.t. | e | x < 1, where 

the elements of S are chosen such that Sjj>Sä for j>i and 5^=0 fovj&i. Then, for 

«,>«!*, f^-CSGPC is stable and gives asymptotic tracking. 

Proof: If we use the same control trajectory at r+1 as we used at t, then each s, is 

multiplied by an "earlier" (ie. smaller) Su, so Jt+1<J*. This will always be true unless 

the biggest e, at t is the last one (in such a case, the biggest at the next instant will also 
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be equal to Snnen). But then the extra degree of freedom which is available at the next 

time instant will be used to decrease Jl+1. This can always be done without causing any 

of the "earlier" S^e/s to become dominant as they are all strictly less than Snnen . 

Therefore, /, is a monotonically decreasing function of time. D 

Remark 4.5 S can also be used to increase the speed of convergence by increasing the 

emphasis on steady-state errors; in the limit one gets that part of Algorithm 4.1, which 

is used when CSGPC encounters STIF. 

f^-CSGPC gives stability by minimizing the maximum predicted error, as do the works 

of Zheng and Morari [53] and Allwright [1], but by first applying the SGPC stabilizing 

loop, i„-CSGPC can also handle open-loop unstable systems. Unfortunately, min-max 

controllers often give undesirable performance because the maximum error is often the 

first (transient) one. This causes the system to be driven very hard and can lead to 

under-damped oscillatory response. CSGPC, on the other hand, minimizes the two-norm 

of the predicted errors, and therefore offers excellent performance, but cannot handle 

STIF. Thus, in the next section, we propose an algorithm which mixes these two 

objectives. 

4.4 Mixed-Objective CSGPC 

Mixed-Objective CSGPC offers a compromise between CSGPC and £ „-CSGPC. When 

STF, the preferred two-norm objective of CSGPC will be used, but when CSGPC is 

STIF, cx will be made a DOF and the objective will be changed to the infinity-norm 
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objective of C-CSGPC until STF is regained for CSGPC. 

Consider the following algorithm, which we shall term Mixed-Objective CSGPC. 

Algorithm 4.3 (Mixed-Objective CSGPC)  At each time instant t 

Step 1:   Test for short term feasibility, namely, that minc \Ac-v(t) \\ „ < 1; this can be 

done with either Lawson's algorithm or linear programming.   If short term 

feasible, proceed to Step 2; otherwise, go to Step 3. 

Step 2:    Apply CSGPC as described in Algorithm 2.1, namely, mine /,= |c I2 s-t- 

Mc-v(f) II oo^ 1, cm=r/b(i); increment t and return to Step 1. 
—► 

Step 3:    Apply C-CSGPC as described in Algorithm 4.2, namely, minc. /,= | Se     \\ „ 

s.t.  1.4 *c* -v *(t) I w < 1 with «!>«!*; increment t and return to Step 1. 

Theorem 4.6 Mixed-Objective CSGPC has guaranteed stability and will cause the output 

y to reach asymptotically its target value. 

Proof: If the problem is STF for all t, the modified algorithm will operate as CSGPC 

Algorithm 2.1, and so by Theorem 2.2, we have stability and asymptotic tracking. If, 

however, due to a set-point change, CSGPC is STIF, I „-CSGPC will be applied. Now, 

by Lemma 4.1, it is known that this optimization problem will always be feasible, and 

furthermore, by Theorem 4.4, we have that the C-CSGPC cost is a monotonically 

decreasing function of time. Hence the output will be driven towards its target value, r. 

At some time instant before the output reaches r, CSGPC will regain STF and the 

algorithm will revert to CSGPC. Namely, by the results of section 4.3.3, we know that 

C-CSGPC will always recover STF for CSGPC, and hence, Mixed-Objective CSGPC 

will be stable and will cause the output to asymptotically track its target value. D 
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Now we give two numerical examples to illustrate the results of this and the previous 

section. In the first example, we show how C-CSGPC, using Algorithm 4.2, and 

Mixed-Objective CSGPC, using Algorithm 4.3, actually maintain stability. This example 

also serves to illustrate the sometimes oscillatory response of I „-CSGPC and the great 

improvement achieved by Mixed-Objective CSGPC. 

Example 4.3 Let the system of Example 3.1 be subject to constraints (2.28) for which 

Uo=0, U=25, and R=0.04. Setting nc=3, the two algorithms are applied to control the 

system. Both C-CSGPC (Figure 4.9) and Mixed-Objective CSGPC (Figure 4.10) 

maintain stability and set-point tracking. Notice, though, that £ „-CSGPC gives an 

oscillatory response, taking 23 time steps to settle; this is because it always uses the 

infinity-norm objective. Mixed-Objective CSGPC, on the other hand, regained STF for 

CSGPC and reverted to the two-norm objective after only four time steps; the response 

is, therefore, very good. 

As mentioned in section 4.3.3, infinity-norm controllers minimize the maximum predicted 

error, so for systems which exhibit non-minimum phase behaviour some of the initial 

errors must be ignored. We are concerned with the non-minimum phase behaviour of 

the closed-loop system, and as noted in Remark 4.4, this is determined solely by the 

open-loop system's numerator polynomial, b(z). The last example illustrates this point. 

Example 4.4 Let the system with transfer function g(z)=z'1b(z)/a(z), such that: 

72 



a(z) = l-3.8z-1+3.87z-2-0.27z-3-0.54z"4 (4 17) 

b(z) = 1-1.13Z1 -5.003z"2+6.6378z"3 

be subject to input absolute and rate constraints (2.28) for which Uo=0, U=0.l, and 

R=0.05. This system is particularly difficult to control as it has a near pole-zero 

cancellation outside the unit circle; a(z) has a root at 1.5, and b(z) has roots at 1.55 and 

-3.0.  For nc=3 and nx = \, the H matrix is: 

H=     l o o 0 

0.95 1 0 0 

-5.375 0.95 1 0 

2.325 -5.375 0.95 1 

0 2.325 -5.375 1.95 

0 0 2.325 -3.425 

0 0 0 -1.1 

Now, for «!<2, min, \\Hx-l \\ „ = 1, and in fact the minimizing vector is x=0; clearly, 

condition (4.16) is violated, and f^-CSGPC never moves from an initial rest condition. 

But for «!=3, min, | Hx-1|| „=0.0546, and the minimizing x is -[0.4717, 0.7037, 

0.8124, 0.8594]7"; condition (4.16) is satisfied, and ^-CSGPC tracks the reference as 

desired (Figure 4.11). For completeness, Figure 4.12 shows the response of Mixed- 

Objective CSGPC; in this case, the improvement is only minor. 

These examples demonstrate the ability of £ „-CSGPC and Mixed-Objective CSGPC to 

handle open-loop unstable and non-minimum phase systems. Mixed-Objective CSGPC 

produces superior performance by retaining the two-norm objective whenever possible, 

but falling back to an infinity-norm objective when STIF is encountered. 
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4.5 Modified CSGPC 

Here we propose an improved modification to CSGPC which retains the part of the cost 

that relates to performance as a two-norm; this provides for a more optimal choice of 

control moves during the return to short term feasibility. This modification always leads 

to stability and takes y to its set-point by requiring the deviation of s» from r to decrease 

at each successive time instant while STF is being regained. 

4.5.1 The MCSGPC algorithm 

The strategy of setting 500=*(l)c00 as close as possible to r when CSGPC is STIF 

(Algorithm 4.1) makes good sense in that it drives the problem as close to CSGPC 

feasibility as is possible, thereby hastening the return of CSGPC to STF (we will call this 

value of 5«,, which is closest to r and which does not violate the constraints, sj). 

However when CSGPC is STIF, Algorithm 4.1 pays no attention to transient performance 

in that Step 2 ignores the cost J of eqn. (2.16). To overcome this problem, one should 

be looking for ways of retaining the minimization of J while at the same time 

guaranteeing the convergence of CSGPC to STF, namely guaranteeing that sx converges 

to r. This can be achieved by adding the extra constraint that the current value of sx 

should be closer to r than is sx
M, which is the value of sm used at the previous step: 

|5„-r|£p|5*-r|        P^P<1;    P°=^r (4'18) 

where the lower bound on p is p° rather than zero to ensure that this new constraint is 

always feasible; it must be remembered that s^0 is the closest that we can get to r and 

this will be required when p=p° for which (4.18)a can only hold with equality.   Thus 
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constraint (4.18) would provide the guarantee of convergence of CSGPC to STF that we 

are looking for. However p° would vary from sampling instant to sampling instant, 

thereby possibly necessitating a change in the value of p at each sampling instant. A 

convenient (equivalent) alternative which avoids this problem is stated below; we will 

term this a slack variable end-point constraint. 

Lemma 4.5 Given that at time t the vector of future values of c is such that no input 

constraint is violated, then at t+1 the constraint 

K-5:|<;p|5*-^l    o<p<i <4-19) 

will be compatible with constraints (2.29). 

Proof: If the control law implied by the vector of future values of c of the lemma is not 

changed at t+1, then the input constraints will again not be violated; thus sj" represents 

a feasible choice for sx. On the other hand, by definition sx° gives an alternative feasible 

choice for sm. Given the convex nature of the input constraints any choice of s^ between 

sj*1 and sM° will be consistent with the input constraints. This is exactly the range of 

choices allowed by constraint (4.19) as p tends to 1. O 

The important point about condition (4.19) is that the larger p is chosen to be, the less 

stringent the requirement on 5«, becomes and thus the more design freedom is released 

for other control purposes; this is in direct contrast to what is done in Algorithm 4.1 

which corresponds to what would happen if p were chosen to be arbitrarily small. The 

design freedom which is made available by choosing p greater than zero can be deployed 

in the optimization of the tracking of the desired set-point r through the minimization of 

the cost / of eqn. (2.16). 
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To implement this modification using MWLS, input constraints inequality (4.2) 

is augmented to include this new constraint: 

M*c'-v'(oL=|ki^i;   ^ = 

IT* 
R a 

Ar* u a 

b{\) 
/   old    „ 0\ 

V(t) = 

/   old       0\ 
P(5oo     Sco) 

and MWLS is then applied with the following modifications: 

e'<H)=S'|C»(M).c   »I e-w=A*c'(i+1)-v*{t) 

5*2=r;rr;+xr:rr:;       c/ -s^[Y;\r-y)-\v: AM/]; 

(4.20) 

(4.21) 

Algorithm 4.4  (MCSGPC)  At each time instant t 

Step 1:   minc. | r-s^ | subject to constraints (2.29) and let the minimizing value of sK 

be J»" (use MWLS as per Algorithm 4.1 or a linear program). 

Step 2:  If sx°=r, CSGPC is STF; apply CSGPC (Algorithm 2.1) and go to step 4. 

Step 3:  For iBV, CSGPC is STIF; use MWLS (Section 2.3) with the modifications 

of eqn. (4.21). 

Step 4:  Implement the first element of u, increment t, and go to step 1. 

Remark 4.6 If CSGPC remains STF then Step 3 of MCSGPC will never be entered into 

and thus MCSGPC will reduce to CSGPC. 

76 



4.5.2 Convergence and stability of MCSGPC 

In this section we prove that MCSGPC is stable and has guaranteed asymptotic set-point 

tracking. 

Lemma 4.6 Given STF at start up, MCSGPC will remain STF at all subsequent times 

irrespective of the size of future set-point changes. 

Proof: At all times that CSGPC is STF, MCSGPC will behave like CSGPC and will 

therefore retain STF. At times when a set-point change causes CSGPC to be STIF, 

MCSGPC reverts to Step 3 which, by the assumption of initial feasibility and Lemma 

4.5, will be feasible and will remain so. D 

Henceforth, it will be assumed that MCSGPC is feasible at start up and therefore at all 

subsequent times. 

Lemma 4.7 At every time instant, s«,0 will satisfy the condition: 

K-r\<Ku-r\ (4-22> 

that is, sx° will be at least as close to r as was s^. 

Proof: Due to MCSGPC feasibility, it is known that sj** was achievable at the previous 

time instant and therefore is reachable now, hence sw°, which by definition represents the 

closest achievable value to r, must be at least as near to r as is sx
M. □ 

Theorem 4.7 MCSGPC has guaranteed stability and asymptotic set-point tracking. 

Proof: At any time step when sM°=r, MCSGPC will revert to CSGPC (as per Step 2) 

and will thus be stable and track r asymptotically.   So it remains to consider the case 
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when CSGPC is STIF, namely sj^r.  From Lemma 4.7, we distinguish two cases: 

(i) \s^-r\ < {s^-rl:  By constraint (4.19), the convexity of input constraints, and the 

definition of s«,0, we can show 

\sZ-r\Z\S„-r\<\s?-r\ (4-23) 

which states that s«, (and s«,0) is converging to r, thereby returning the problem to the 

case where CSGPC is STF. 

(ii) \s°x-r\ = \sf-r\: This implies that sj and sx
old are equidistant from r. But the 

interval between sx° and s„old cannot contain r because, by convexity, then r would be 

achievable thereby implying s00°=r, this corresponds to the case when CSGPC is STF 

which has been examined earlier in the proof and is excluded here. Hence s<x
oU=sJ,7^r 

and by (4.19) sx itself must equal sj and therefore sx
old. This situation however can not 

persist for more than na+nc steps, because by then the system will have reached steady- 

state which implies that we could no longer be on the boundaries of any of the input 

constraints and sj could be brought closer to r, which brings us back to case (i). 

Thus, if at any time step CSGPC is STIF, it cannot remain in case (ii) but will 

always return to case (i) and converge to the case where CSGPC is STF, which, as 

stated, implies stability and asymptotic tracking. □ 

Remark 4.7 Implicit in the proofs of this section is the assumption that the set-point has 

been chosen sensibly, ie. such that uss=a{Y)rlb{\) satisfies absolute constraint (2.28)b. 

It is easy to show, though, that should the set-point be chosen so that a(l)r/b(l) is outside 

the constraint interval, then MCSGPC will cause sx (and thus the output) to settle at a 

value dictated by whichever absolute constraint boundary a(l)r/b(l) exceeds. 
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Remark 4.8 By Theorem 4.7, we have that MCSGPC will converge to where CSGPC 

is STF for all values of p, 0<p< 1; the particular choice of p can be used to strike the 

desired balance between speed of return of CSGPC to STF and the emphasis on transient 

tracking performance. The smaller p, the faster convergence of CSGPC to STF will be, 

but the less attention will be paid to performance; in the limit (for p arbitrarily small) 

MCSGPC reduces to Algorithm 4.1. Also, a low value of p minimizes the difference in 

the objectives of Steps 2 and 3 of MCSGPC. However, if one wishes to maintain the 

emphasis on cost optimization throughout, then one might wish to invoke Step 3 at all 

times (whether CSGPC is STF or not) and assign to p a value close to 1. 

In summary, the algorithm presented in this section has two significant contributions to 

make: (i) it is guaranteed to retain STF; and (ii) it optimizes a two-norm of actual 

predicted tracking errors. Of course, in common with normal practice (and in agreement 

with common sense), STF must be assumed at start up, but in contrast to earlier work, 

no further feasibility assumptions are required. 

4.5.3 Illustrative examples 

In this section we give two numerical examples. The first illustrates the efficacy of 

MCSGPC (Algorithm 4.4) in dealing with set-point changes which are large enough to 

destabilize CSGPC and draws comparisons between the performance of MCSGPC and 

that of Algorithm 4.1. MCSGPC outperforms Algorithm 4.1; this is expected since 

MCSGPC, unlike Algorithm 4.1, uses the slack variable only to condition the end-point 

constraint, but deploys the actual set-point in the cost. The approach of making sM a 

DOF and using a slack variable end-point constraint can also be used in the context of 
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algorithms with infinite output-constraint horizons such as that given in [30] (which we 

will term RM) to significant advantage as illustrated in the second example. In particular 

the example shows that freeing sM and applying a slack variable end-point constraint 

overcomes the infeasibility and resulting instability problems of RM, and indeed leads to 

a good output response. 

Example 4.5 Just as did Algorithm 4.1 in Example 4.1, MCSGPC, Algorithm 4.4, 

maintains stability and set-point tracking (Figure 4.13), but when compared by total cost, 

runtime 

1=0 

Algorithm 4.1 has a cost of 1.19, while the cost for MCSGPC is only 0.68. This is 

because Algorithm 4.1 neglects performance while CSGPC is STIF so as to drive sx to 

r as quickly as possible; the performance is thus sub-optimal. MCSGPC, on the other 

hand, is guaranteed to retain STF and to converge to where CSGPC is STF at a rate 

dictated by the choice of p; all remaining freedom is then used to optimize performance. 

Hence, by moving sx more judiciously (slowly) than Algorithm 4.1, it has improved 

performance. It is interesting to note that MWLS, with the modifications of eqn. (4.21), 

converged with much fewer iterations than it did with the modifications of eqn. (4.3); this 

appears to be a typical trait. 

Example 4.6 Let the numerator and denominator polynomials be given by: 

ö(Z) = 1-1.3Z-
1
+0Z-

2
+0.144Z-

3
;        ö(z)=2+0.45z-1+z"2 (4'25) 

which has an unstable pole at 1.2.   Furthermore, let the input constraints be Uo=0, 

U=0.05 and R=0.0l, and let the control parameters be nc=3, X=l, nr=6, and p=0.99. 
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All algorithms are started with zero initial conditions and zero set-point; at t= 16, the set- 

point is changed to one. The simulation results for this example are given in Figure 4.14 

which depicts the output, slack variable (s»), input, and incremental input. 

MCSGPC (dashed-dotted lines) once again can be seen to perform well, whereas 

RM (dashed lines) runs into instability problems. As explained earlier, the slack variable 

end-point constraint gives guaranteed stability and can be applied in the context of 

algorithms with infinite output horizons such as RM. This indeed can be seen to be the 

case from the solid line plots of Figure 4.14 which represent the results of RM with a 

slack variable end-point constraint. Our approach not only overcomes instability but also 

produces good transient and steady-state responses. 

4.6 Chapter summary 

A major problem in control engineering is guaranteeing stability in the presence of 

system input constraints. Predictive control provides a natural framework for handling 

constraints and recently has been adapted to give a guarantee of stability. However, all 

stability results are dependent on a feasibility assumption. In this chapter, we presented 

three modifications which guarantee the retention of feasibility (and stability) for any set- 

point change. The first modification has the advantage of simplicity, but ignores transient 

errors. The final two modifications, unlike other approaches which use set-point 

conditioning ([2], [14]), retain the actual set-point in the cost and therefore are able to 

retain optimality of tracking; in both Mixed-Objective CSGPC and MCSGPC, the slack- 

variable conditions the end-point constraint only. 
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Figure 4.4 Feasibility Region (t=6) Figure 4.5 Feasibility Region (t=9) 

Figure 4.6  Feasibility Region (t= 11) Figure 4.7 Feasibility Region (t= 14) 

Figure 4.8 Example 4.2 - C-MWLS through 50 iterations (t=6) 

83 



Output and Ref. 

0 20 40 

Input Rate 
0.05 

-0.05 

IIAc-vH 

Figure 4.9 Example 4.3 - C-CSGPC response 

Output and Ref. 

0.5 0.5 

0.05 

20 40 

Input Rate 

0 
0 

-0.05 
20 40 

0.1 

0.05 

0 

-0.05 

-0.1 
0 

IIAc-vH 

20 40 

Figure 4.10 Example 4.3 - Mixed-Objective CSGPC response 

84 



Output and Ref. llAc-vll 

0.5 

0.05 

-0.05 

Figure 4.11  Example 4.4 - C-CSGPC response 

Output and Ref. 

20 40 

Input Rate 

20 40 

HÄc-vll 

1 .^____._ 

0.5 

n 
°0 20            40 

Input Rate 

0.05 

0 

-0.05 

M jfV 
0 20            40 

Figure 4.12 Example 4.4 - Mixed-Objective CSGPC response 

85 



Output and Ref. 

1 

0.5 

0 
( 

i  / 
i / 
i / 
i / 
i / 
i / 

/ 

/l 
/i 

/1 

D            20 40 

0.5 

0 
0 

Input Rate 
0.05 

-0.05 
20 40 

0.1 

0.05 

0 

-0.05 

-0.1 
0 

Figure 4.13  Example 4.5 - MCSGPC response 

iAc-v|| 

20 40 

b Du 

20 40 

Output and Ref. 

1 

0.5 

0 

s inf 

0        10       20       30 

Input 

0        10       20       30 

Input Rate 

0.05 

0 

-0.05 

A 
■ 

/  \ /     \ 
/\ \ 
/   \x 

0\ 
■ 

\> \^ 
\ 

D        10 20 30 

0.01 

0.005 

0 

-0.005 

-0.01 i     V-AM 

0        10       20       30 

Figure 4.14 Example 4.6 - MCSGPC and RM response 

86 



Chapter 5 

Cautious Stable Predictive Control 

The stability result of SGPC may be viewed as having been obtained through the 

imposition of terminal constraints. The stabilizing loop of Figure 2.1, in conjunction 

withbezout identity (2.4), implicitly imposes dead-beat terminal constraints, namely that 

the predicted tracking errors should all be zero beyond a given output horizon and that 

the control moves themselves should become zero beyond a given input horizon. These 

terminal constraints may come into conflict with limits on system inputs (dictated by 

physical constraints); such a conflict, which we have termed STIF, may lead to 

instability. One possible remedy is to use longer horizons, but this results in a significant 

increase in the computation of constrained optima. An alternative is offered by set-point 

conditioning ([2], [14]), but inherent in this approach is a sacrifice of optimality in 

tracking in favour of retaining feasibility and hence guaranteeing stability. MCSGPC 

provides an alternative which does not sacrifice optimality, because it retains the actual 

set-point in the objective while basing the steady-state value of the output's end-point 

constraint on a slack variable; after imposition of the slack variable end-point constraint, 

the effect it to replace the terminal equality constraint with a terminal inequality 

constraint.  In this chapter, we use a different approach to infeasibility: earlier terminal 
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constraints guarantee stability but actually use a sub-class of all stable input/output 

predictions, so here we employ constraints which are both necessary and sufficient for 

stability and thus, for a given number of degrees of freedom, maximize the control 

authority which is available for improving performance while respecting input constraints. 

The class of input/output predictions which are necessary and sufficient for stability will 

be those of Section 3.2.1. 

A convenient way to guarantee the stability of predictive control strategies is to 

force the predicted trajectories of both output error and control increments to be finite 

length sequences (FLS). This can be effected by a process of "cancellation" of all the 

poles of the plant and its inverse, ie a pseudo cancellation (as per Remark 3.1) of all the 

poles and zeros. It has been recognised that for the purposes of stability one actually 

need only "cancel" the unstable poles ([30], [54]), thereby yielding predicted output error 

trajectories which are infinite length sequences (ILS). In Section 5.1, we show that it is 

also the case that one needs only "cancel" the nonminimum phase zeros with the effect 

of getting predicted control increment trajectories which are ILS; we also propose simple 

algorithms which implement these two changes in philosophy, but retain a finite length 

cost. In Section 5.2, an infinite horizon cost which is the sum of the square of the ILS 

errors and input increments is used, and two procedures are proposed for calculating this 

infinite length sum. Then, in Section 5.3, these results are applied to the problem of 

controlling plasma vertical position in the Compass-D tokamak test device. The resulting 

controller is compared to one produced with standard Hm design techniques. This 

application has been reported elsewhere ([47], [48]) and is briefly summarized here to 

demonstrate the applicability of the results of Sections 5.1 and 5.2. 

For systems subject to physical constraints, ILS trajectories lead to a practical 
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difficulty; the physical constraints must be invoked over an infinite horizon. This 

problem can be overcome through the use of suitable input/output horizon bounds. A set 

of such bounds with respect to output constraints have been proposed elsewhere ([30], 

[54]). Here, we are concerned with input constraints only, but we explore the use of ILS 

predictions for both inputs and outputs; therefore, we require bounding results on inputs 

rather than outputs. In Section 5.4, we develop simple input bounding techniques which 

provide an efficient means of invoking the constraints over a infinite horizon by enforcing 

them over a finite horizon. Thus, we are able to use our necessary and sufficient 

terminal constraints to advantage by allowing for: i) the use of short command horizons; 

and/or ii) the release of control authority for better transient performance. We also 

consider the use of terminal inequality constraints similar those introduced in the previous 

chapter for MCSGPC and thus remove restrictions on the size of set-point changes. The 

efficacy/superiority of the resulting algorithm is illustrated by means of a numerical 

example. 

5.1 Cautious Stable Control 

The guarantee of stability afforded by SGPC (and other stable predictive algorithms) is 

based on the fact that, under the implied end-point constraints, the GPC type of 

performance index minimized by the algorithm forms a stable Lyapunov function. 

However, the end-point constraints in question, though sufficient for the proof of 

stability, are unnecessarily stringent and are responsible for the highly tuned nature of 

the resulting controllers. Highly tuned controllers may be desirable in some cases, but 

could lead to feasibility and stability problems in the case of plants subject to input 
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constraints. In Section 5.1.1, we relax the SGPC requirement by defining terminal 

constraints which are both necessary and sufficient for the guarantee of stability. The 

implication of this development is that rather than insist that both the predicted inputs and 

outputs should reach their required steady-state values within the given (finite) 

input/output horizons, now they are constrained to do so only in an asymptotic sense. 

As a consequence, the resulting controllers are less highly tuned than those given by 

SGPC and therefore possess improved robustness properties and are more suitable for use 

in the control of systems which are subject to physical constraints. 

Using the SGPC framework, in Section 5.1.2, we introduce further predictive 

control algorithms with guaranteed stability: cautious mean-level (CaML), and cautious 

stable predictive control (CaSC). These algorithms progressively relax the stringent 

end-point constraints deployed in SGPC: in particular, CaML does away with the 

requirement that the predicted output should reach its desired value within the given 

output horizon, and CaSC further removes the requirement that the predicted control 

increment should be zero beyond the given control horizon. In fact, CaSC is based on 

conditions which, given a fixed number of degrees of freedom, are both necessary and 

sufficient for the guarantee of stability, and so any further relaxation of the SGPC 

constraints is not possible without increasing the number of control degrees of freedom. 

Concomitant with the constraint relaxation is a reduction in the level of control activity 

and the derivation of less highly tuned and more robust predictive controllers; the 

robustness properties of CaSC will be investigated in Section 5.1.3. The efficacy of the 

new algorithms, their superiority in dealing with physical constraints, and their improved 

robustness properties are illustrated by means of design studies in Section 5.1.4. 
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5.1.1 Stability through terminal constraints 

The important elements in "Lyapunov" stability arguments (eg. Theorem 2.1) for any 

stable predictive control algorithm are i) that the proposed cost is finite over an infinite 

horizon and ii) that the optimal control law used at t can always be used again at t+l. 

With these two elements, it is easy to show that the cost is a monotonically decreasing 

function of time, namely, that it constitutes a stable Lyapunov function. In the absence 

of input constraints, ii) is always possible; systems subject to input constraints will be the 

topic of Section 5.4. To achieve i), the predictions which go into the cost must either 

be of finite duration (a FLS), or must asymptotically approach zero (an ILS); this is 

achieved (either explicitly or implicitly) through the use of terminal constraints. In 

SGPC, the stabilizing loop forces the output errors and input increments to be FLS's and 

thus implicitly imposes the terminal constraints that the predicted output error should be 

zero after ny steps and that the predicted input increment should be zero after nu steps: 

V^=0' v/>/V    AM-=0' v'-n« (5,1) 

These same constraints are imposed explicitly in [8] and [27] through the use of equality 

constraints; the advantage of SGPC is an explicit expression for the degrees of freedom 

(DOF) remaining after imposition of the terminal constraints. Other work recognized that 

these constraints are overly restrictive, in that the output errors need only approach zero 

asymptotically [30]; by requiring that the unstable modes be zero after the output horizon 

and utilizing a finite number of control changes, the algorithm of Rawlings and Muske 

(which we will term RM) explicitly imposes these terminal constraints: 

V^B°' /"*oo;    A"-=0' v/-n« (5,2) 

Thus, the output errors form an ILS, but the input increments are still a FLS. These 

constraints are also restrictive in that the predicted control increments need only approach 
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zero asymptotically; thus, the least restrictive set of terminal constraints which allows a 

Lyapunov stability proof utilize ILS for both the output errors and the input increments: 

r,+n,-y,+i=0> f-*00;    A",+,.=°. I-*» (5.3) 

The prediction equations of Section 3.2.1, which were derived as necessary and sufficient 

conditions for stable predictions, implicitly impose these terminal constraints and thus 

utilize the necessary and sufficient conditions for imposition of the Lyapunov stability 

arguments. An implementable algorithm (at least when physical constraints are 

considered) requires a finite number of DOF over which to optimize; because the DOF 

remaining after imposition of constraints (5.3) are expressed explicitly in Section 3.2.1 

as the current and future values of c, these future values can be taken to be a FLS and 

thus can be used for optimization rather than the ILS of future control increments. First, 

we repeat the derivation of the class of stable prediction equations, but in a more 

convenient form involving the future errors, e=r-y. 

Let Ar=[rt+v(rl+2-rt+l), (r,+2-rm),..., (r^-r^f be the vector of future set-point 

increments, where nr is the reference horizon and r is assumed to be constant thereafter. 

Furthermore, let Ar(z) be a polynomial whose coefficients are the elements of Ar, such 

that r(z)=Ar(z)/A(z). Then, the z-transform of the future errors is obtained by 

subtracting y(z) (eqn. (3.31)b) from r(z); with a common denominator, we have: 

e(z) =r(z) -y(z) - a(z)Ar(z) ~b^Au^ ~P® = *® -*®to® ■    q(z)=a(z)Ar(z)-p(z)   (5.4) 
a'(z)a\z) a'(z)a(z) 

Then, the necessary and sufficient condition for the stability of the predicted error, e, is 

that the numerator of eqn. (5.4)a contains as a factor the unstable system poles: 

q(z)-b(z)Au(z)=aXz)Hz)        or        Au{z) = -a+{z)f®~^z) (5-5) 
b'(z)b (z) 

where 4>(z) is the z-transform of a convergent sequence {c^,,^,^,...}. It follows that the 
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predicted trajectories of control increments, Aw, will be stable if, and only if, the 

numerator of eqn. (5.5)b contains the "unstable" system zeros: 

a+(z)Hz)-q(z)=b+(z)^(z)       or       aW(z)-*+(zW(z)=$(z) (5'6) 

where \{/(z) is a polynomial with a convergent sequence of coefficients. Diophantine eqn. 

(5.6)b has the same LHS as eqn. (3.33), but a different RHS, implying a different 

particular solution. Thus, with n0=max[nfe.-l,«a-+«r-2], n^=na., a minimal solution of 

diophantine eqn. (5.6)b is: 

■f- -M" 0 = 
p p 1 1    1 3 

P     P 1 2    L 4 
0 = 

>1~ (5.7) 

where PlA are as defined for eqn. (3.35)b, and the elements of vq are the coefficients of 

qiz); from eqns. (5.4)b and (3.31)c, vq is given as: 

vq =rflAr +ffj -ff6AM = [Ta OJr+Hj -HbAu (5.8) 

Then, the general solution to (5.6)b is: 

<Kz) =b+(z)c(z)^p(z); Hz) =ot+{z)c(z)^p(z) <5-9) 

where c(z) is a polynomial with a sequence of coefficients which converges to zero; it 

contains all the available degrees of freedom.  Inserting (5.9)a,(5.9)b into (5.5)a,(5.6)a 

and then into (5.4)a,(5.5)b gives: 

a\z)c(z)+^p(z) bXz)c(z)^p(z) 

a (z) 
Au(z) = -- (5.10) 

b-(z) 

Theorem 5.1 The entire class of stable error/output prediction equations for the plant, 

z'1b(z)/a(z), is given by eqns. (5.10); furthermore, these equations represent the class of 

predictions which satisfy terminal constraints (5.3). 

Proof:  This is true by derivation. D 
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5.1.2 Simple CaSC and CaML algorithm 

A convenient way to prove stability is to define a suitable cost which uses (FLS) 

predictions; the conditions of Section 5.1.1 take us part of the way towards FLS because 

of the implicit pseudo cancellation of a+(z) (in eqn. (5.4)a) and b+(z) (in eqn. (5.5)b). 

It remains therefore to: (i) "cancel" a(z) (in eqn. (5.10)a) and b'(z) (in eqn. (5.10)b); (ii) 

invoke an appropriate terminal constraint; and (iii) define a cost which can be shown to 

be monotonically decreasing. Now (i) implies the definition of new prediction variables 

e=a'(z)et, Au=b'(z)Aut; (ii) implies that future values of e must be zero after some 

output horizon ny, and that the future values of Aü must be zero after some input horizon 

nu; (iii) implies that / must be based on e and Aü rather than e and Au. Collecting these 

observations together, we therefore write: 

B.-l 

-1+1 , e(z) = HSl+^'+1;      AÜ(z)=Y,Aüt^-' 
■=1 '■* (5.11) 

n n -\ 

1=1 1=0 
WE^A^= l*n+x|A*l; 

e and Aü are vectors of the coefficients of e(z), Au(z). Implicitly, we have invoked the 

following terminal constraints: 

etH=0,   Vi>ny;      Au1+i=0,   v/>n„ (5.12) 

Because a(z) and b'(z) are stable, these terminal constraints can be seen to imply those 

of (5.3), but they also imply a finite number of degrees of freedom; this is precisely what 

is needed for an implementable constrained optimization. 

For terminal constraints (5.12) to be satisfied, the coefficients of the numerators 

of eqns. (5.10) must be FLS, and the degree of these polynomials must be ny-\ and nu-\. 

So choosing c(z) =c0 +c1 z'1 + - +cn _x z ~n'+l, we can write the vector forms of the prediction 

equations as: 
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e = Ylla.(Ybx + Pxvq); 8 = Th.c + P,vq + Ha.e 
- - - (5.13) 

A« = -IVOVc + P2vq); AÜ = -Tax - P2vq + //»A« 

where, as before, the f* column of the V matrices contains the impulse response of the 

indicated transfer function multiplied by zi+l. Eqns. (5.13)a,c are prediction equation 

forms of eqns. (5.10), and eqns. (5.13)b,d are derived from e=a'(z)et,Au=b'(z)Aut 

which imply the prediction relationships: e=Ca-e+Ha.e; Au=Cb-Au+Hb.Au. Terminal 

constraints (5.12) are satisfied with prediction equations (5.13)b,d where ny and nu are 

related to the command and/or reference horizons, nc, nr, by ny=max[nc+nb>, nr+na.-l], 

and nu=max[nc+naM, nb.]. 

Remark 5.1 In the strictest sense, necessary and sufficient conditions for stable 

predictions would necessitate that nc-»oo, or to put it another way, while terminal 

constraints (5.12) imply those of (5.3), terminal constraints (5.3) imply those of (5.12) 

only for nc infinite. This is impractical, and indeed, for reducing computational 

complexity, nc should be chosen to be small. In the rest of the chapter, the term, 

necessary and sufficient, will include the assumption that the number of degrees of 

freedom over which the performance can be optimized is finite and equal to nc. 

Prediction equations (5.13)b,d imply that the cost J^^ of (5.11) is quadratic in the 

vector of future c's and hence (in the absence of physical system constraints) can be 

minimized explicitly. The optimal vector of c's, through eqn. (5.13)c, defines the 

optimal vector of future control increments, the first of which is implemented. This 

defines the prediction and optimization cycle of CaSC which is repeated at each time 

instant. Because e, Ail are FLS, J^c'is of the same form as / in SGPC, thus it is easy 
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to show that JCaSC is a stable Lyapunov function and therefore that CaSC has guaranteed 

stability and asymptotic tracking. 

CaSC uses necessary and sufficient conditions for stable predictions and hence has more 

control authority available for handling constraints and performance than SGPC. 

However, it results in ILS for both output and input predictions; therefore ensuring that 

input constraints are met may necessitate the use of long constraint horizons, thereby 

increasing significantly the computation burden. In cases like this, it may be 

advantageous to sacrifice some of the extra degrees of freedom generated by CaSC in 

order to obtain FLS for the input predictions; this is accomplished by utilizing terminal 

constraints (5.2). 

These are obtained by reassigning b+(z)=b(z) and b'(z) = l in the development of 

Section 5.1.1, so that the predicted errors form an ILS and the predicted input increments 

form a FLS. Obviously, Aü(z)=Au(z), and thus the cost (which is again a stable 

Lyapunov function) is: 

WE(?,.,-y,.,)2^EA«« - IIn\l*II*>III <5-14) 

i=i ;=o - - 

We note that the earlier algorithm (Mean Level Predictive Control) presented in 

[36] is a special case of that presented here, derived for X=oo. CaML also bears a 

similarity to RM and the algorithm of [43], in that they all cancel the unstable poles in 

the output predictions; however the indices of performance are different. 

Remark 5.2 It can be shown that the effect of weighting the predicted errors by a{z) 

(and the predicted input increments by b'(z) for CaSC) is to cause a'(z) (and b\z) for 
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CaSC) to be a factor of the closed-loop pole polynomial, pc(z). If any of the roots of 

these polynomials are slow, the effect may be undesirable. This problem is easily 

remedied by redefining a+(z) and/or b+(z) to include the relevant slow roots, eg. all roots 

with modulus greater than or equal to p (p< 1). Such a modification would ensure that 

slow roots would be excluded from the closed-loop dynamics, and in the limit (for p=0), 

would yield SGPC. 

5.1.3 Robustness analysis and optimization for CaSC 

The robustness analysis for CaSC follows along the same lines as the analysis for SGPC 

in Section 2.2.  Introducing prediction eqns. (5.13)c,d into J^^ gives: 

_» *_-» <_-» «--» <- 

^^r^+xr^r^y+c^r^^v^^.^+xr^^v^^-Aii))^ (5-15) 

which is minimized with respect to c by: 

c^-cr^r^-Hxr^r^o-Ur^^v^^.^+xr^^v^-^-A«))        (5.16) 

Using the definition of vq in eqn. (5.8), the first optimal element, c„ is given as: 

Ct = -Prar-Prcr-Pyy
+PuAU 

Pm=PT(TlA+M**WWa  U; Prc=Pr^Ha- (5.17) 

Ptt=PTVlPfib+\TTAP2Hb-Hb))        p b "' 

and, from eqn. (5.13)c, the first optimal input increment, Au„ is: 

Aur-ct-ei
TP2([Ta Oay+Hj-HhAu) (5.18) 

Next, we define the vectors: 
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#*=[!   (Pu-eiTP2Hb)V,      Nk=et
TP2Ha-Py;     Pr:=Pra-e1

TP2[Ya 6a]    (5-19) 

Let the coefficients of the polynomials, Dk(z), Nk(z), be the elements of the vectors, Dk, 

Nk; and let the coefficients of the bi-causal polynomial, pr(z), be the elements of the 

vectors, pTC and pra', suchthat, if Pra=\pral,Pra2,~;Pran} and Prc=\prcl,Prc2,-,Prcn), then: 

Pr{z) =prcni ""■- + - +prc2z "2 +prclz -1 +pral +pra2z
x + - +Pranz

n>~1 (5.20) 

Combining   eqns.   (5.17)a   and   (5.18)   and   the   preceding   definitions,   we   get 

Dk(z)Aut=pr(z)rt+l-Nk(z)y, which is the same as eqn. (2.22)b, and so CaSC can be 

implemented with the feedback configuration of Figure 2.2. Thus, as with SGPC, there 

is an entire class of optimal controllers,  defined by D(z)=Dk(z)-z'1b(z)Q(z) and 

N(z)=Nk(z)+ct(z)Q(z), where Q(z) is an arbitrary stable polynomial, which can be used 

to improve properties such as robustness and/or noise handling without affecting 

performance. The arguments and procedures are identical to those given in Section 2.2. 

5.1.4 Simulation results and comparisons 

The motivation behind the proposed stable predictive control algorithms is the use of less 

conservative (and for CaSC, necessary and sufficient) conditions for the stability of 

input/output predictions. The resulting classes of predictions are less restrictive and 

therefore wider than that of SGPC, and thus provide the means of avoiding overactive 

input/output responses. This point will be illustrated here by means of numerical 

examples which study the closed-loop responses to step changes in the set-point r as 

produced by each of the three algorithms, SGPC, CaML, and CaSC. For completeness, 

we also give the corresponding simulation plots for GPC. As expected, it will be seen 

that SGPC drives the system hard and hence uses highly active inputs; this is because the 
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transferences from c to u and c to y are FLSs. For CaML, only the transfer function 

from c to u is a FLS, so the inputs are less active. The transferences in CaSC are all 

ILSs, and hence it results in low input activity while demonstrating reasonable 

performance. GPC, because it uses finite input horizons, but no end-point constraints, 

typically falls between CaML and CaSC, though of course, it has no stability guarantee. 

The examples provide a comparison of the robustness properties of SGPC, CaML, 

GPC, and CaSC and demonstrate the superiority of CaSC, both for Q(z)=0 and for the 

respective choices of optimal fourth order Q(z). In addition, the second example is used 

to illustrate the benefits of redefining a+(z) and b+(z) to include stable, but "slow" 

poles/zeros, as per Remark 5.2. 

Example 5.1 Let the model be given by ö(Z) = 1-1.6Z"
1
+0.13Z"

2
+0.21Z"

3
 and 

b{z) = 1-2.7z_1 +1 Az'2, which has an unstable pole at z=1.4 and a non-minimum phase 

zero at z=2. Furthermore, let the control parameters be: X=l, nr=3, and nc=2 for 

SGPC, CaML, and CaSC; and nu=2 and ny=6 for GPC. In this example and the 

following, SGPC results will be indicated with dotted lines, CaML with dashed lines, 

GPC with dash-dotted lines, and CaSC with solid lines. The output/input responses are 

shown in Figure 5.1a,b and illustrate the expected characteristic: SGPC is the most 

highly tuned and has very active input/output responses; CaSC is the least active and 

gives good performance (in fact, it settles as quickly as SGPC). 

The nominal (Q(z)=0) robustness indicator (for W(z) = l), given by the modulus 

of the transfer function K(z)S(z) of eqn. (2.25), is plotted in Figure 5. lc as a function of 

vT, where z=e?aT, 0<WT<TT. The expected ordering is demonstrated with CaSC being 

the most robust and SGPC the least. The robustness plots for the optimal 4th order Q(z) 
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are given in Figure 5. Id. Clearly, Q(z) improves the robustness properties of all four 

algorithms, but as expected, does not alter their ranking. 

Example 5.2 Let the model be given by fl(z) = l-lz1+0.01z"2+0.12r3 and 

b(z) = l-2Az1+0.Sz2, which has a non-minimum phase zero at z=2 and no unstable 

poles; however, it has a slow pole at z=0.8. Furthermore, let the control parameters be: 

\=1, „r=i, and n=2 for SGPC, CaML, and CaSC; and nu=2 and ny=6 for GPC. In 

this case, CaML and CaSC are so highly de-tuned that the output responses (Figure 5.2) 

are unsatisfactory. The reason for the slow responses can be traced to the open-loop pole 

at z=0.8, which automatically appears as a closed-loop pole. However, as mentioned 

in Remark 5.2, a+(z) can be redefined to include all roots on or outside an circle centred 

at the origin and of radius p; for the current example, a judicious choice for p is 0.75. 

The resulting responses (Figure 5.3a,b) are now satisfactory. Once again, CaSC results 

in input/output trajectories which are significantly less active than those of the other 

algorithms: i) the non-minimum phase behaviour during the immediate transients is less 

than half as pronounced for CaSC than it is for SGPC; ii) the maximum control 

amplitude for CaSC is 0.35, as compared to 0.55 for SGPC. 

The robustness plots for ß(z)=0 and for the optimal 4th order Q(z) are given in 

Figure 5.3c,d and illustrate the expected ranking of the four algorithms: CaSC is the 

most robust and SGPC is the least. 
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5.2 Infinite Horizon Stable Predictive Control 

The algorithms of the previous section use necessary and sufficient conditions for stable 

predictions, but the proposed costs penalise filtered rather than actual error/input 

increment predictions so as to convert infinite horizons into finite horizons; hence, while 

the algorithms are simple to implement, this simplicity could come at the expense of slow 

closed-loop poles (as per Remark 5.2). While this expense can be avoided by including 

the slow roots of a(z), b(z) in a+{z), b+(z) and thus moving toward SGPC, here we 

explore an alternative which penalizes the actual ILS error/input increment predictions. 

Control laws have been implemented which use ILS outputs with FLS inputs [30], 

but in this section, we use ILS input and outputs and consider two methods of 

implementing the implied control law. The first method is largely an extension of the 

ideas presented in [30], and the second is an alternative which avoids the need for the 

solution of a Lyapunov equation and thus, for high order models, can be more efficient. 

The results of the section are illustrated by means of numerical examples which highlight 

the advantages of the proposed control algorithm. 

5.2.1 Nominal stable control law 

The Infinite Horizon Stable Predictive Control (IHSPC) cost is given as: 

Jcasd (rtH-yJ2^t A<4 = II r-y \\+\«A« | \ (5-21) 
,=1 1=0 -   - 

Stability is guaranteed by virtue of the infinite horizon deployed in performance index 

(5.21) which allows standard Lyapunov arguments to be used. Introducing prediction 

eqns. (5.13)a,c into J^c gives: 
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/^=(r».c+^v/rfÄT1Ä.(r,.c+p1vf)+x(ro.c+p2vf)
ITjJ-r1A.(ra.c+p2vf)   (5^ 

-(T^c+P1vf)
rB.(r^c+P1v^X(ra.c+P2v3rBt(ro.c+P2vf) 

which is minimized with respect to c by: 
—» 

<o=-(r^aiv +xr^ro.)-1(r^.Jp1 +x^pa) vf (5 23) 

As usual, only the first element of A« (Aw,) is implemented and the computation is 

repeated at the next sampling instant.    A«, can be defined through eqn. (5.18). 

It is clear, however, that there are implementation difficulties associated with the 

control law given in eqn. (5.23), in that the matrices involved in the formation of Ba, Bb 

are infinite dimensional, and so the control law, as presented, cannot be computed. 

Fortunately, these infinite dimensional matrices appear as quadratic products so that Ba, 

Bb are finite dimensional; here, we develop convenient and computationally efficient 

means of computing Ba, Bb. 

It is well known that it is possible to compute the sum of squares of infinite but 

stable sequence through the use of appropriate Lyapunov equations. This idea was 

deployed in [30] to minimise a GPC cost where only the output horizon was infinite; the 

input horizon was taken to be finite. Here we removed this limitation by deriving 

necessary and sufficient conditions (rather than just sufficient conditions) for stable (and 

infinitely long) input and output prediction pairs while keeping the number of degrees of 

freedom finite. Earlier work identified the future control increments as the degrees of 

freedom and therefore precluded the (practical) use of infinite input horizons. In the 

following sections, we show that Lyapunov techniques can be deployed to compute and 

minimise the cost /Q,SC of eqn. (5.22) despite the use of infinite output and input 

horizons. We also show that this can be achieved without the use of Lyapunov equations 
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and indeed leads to an implementation which can be more efficient. 

5.2.2 IHSPC using a Lyapunov equation 

The key, in this approach, is to find a means of summing the squares of a stable sequence 

derived from a transfer function g(z) =n(z)/d(z). This involves expressing the infinite sum 

in terms of the first nn+1 coefficients only. Thus assume that g(z)=E(=0
oo&z~', then using 

d(z)g(z)=n(z), the following recursive relationship holds for all g{, i>nn: 

ft 

ft+i 

Si +B,-1 

=-&&< 

Si-nd 

Si-nt*l 

Si-, 

(5.24) 

where HA is the hankel matrix, HH with the order of its columns reversed. Hence, it can 

be seen that with M=Cd H., 

I>2= 
1=0 

Eft2 
i=0 

+Lft_-n+l  Sn-nsl   '"  ft)" 
Snn-nd+2 

ft, 

;       S^iM^M1    (5,25) 

i=0 

It is easy to show that S satisfies the Lyapunov equation, S=I+MTSM and hence the 

infinite sum of eqn. (5.25) can be easily evaluated. Thus, if the coefficients of g(z) are 

given as the elements of the infinite length vector, vg=Tvdvn (where the elements of v„ 

are the coefficients of n(z)), we may write eqn. (5.25) in matrix form as: 

(5.26) =v;r(;jr(/>„+v;r^5r^v„ 
= vr/r(l)rr(D+r(2>JW2)\ 

Vn \l lid l 1W + 1 \ld dl l/d)v„ 

=v„rr[wr1/rfvn=v„r5dvn 

where vg
(1) contains the first nn-nd+l elements of vg, and vg

(2) contains the next n 
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elements, and thus r1/d
(1), T1/rf

(2) contain the first nn-nd+l, next nd rows of Tlld; we note 

that if nd>nn, then Td
a) would be empty and Td

(2) can simply be augmented on top by 

rij-n^l rows of zeros. 

These results can be used to evaluate Ba, Bb of eqn. (5.23) simply by taking the 

polynomials n{z), d(z) to be the numerator and denominator polynomials of eqn. (5.10)a 

first and then eqn. (5.10)b second. Note that the order of the numerators, denominators 

of eqns. (5.10)a,b are max[ny+nc-l, nr+na.-l\, na., and na,+nc, nb. respectively. So, 

defining I^a., T®a-, T®., T^b. as appropriate partitions of the first 

max[nb.+nc, nr+na.-l], nc+na.+l rows of the Toeplitz matrices ri/fl-, Tm. of eqns. 

(5.13)a,c and Ma, Mb from Ma=C'a
lHa-, Mb=Cb-Hb. and solving for Sa, Sb from 

Sa=I+Ma
TSJMa, Sb=I+Mb

TSJ£b, we may write Ba, Bb as: 

R _-n(i)rr(i)   ,r(2)rcr(2) . D _r(i)rr(i) +VWv r(2) (5.27) 

5.2.3 IHSPC without using a Lyapunov equation 

The previous section shows that Ba, Bb can be calculated indirectly through the solution 

of a Lyapunov equation, however, it is easy to identify the coefficients of these quadratic 

matrices directly. 

Lemma 5.1 Let d(z) be a polynomial with all its roots inside the unit circle.  Then the 

ij element, i>j (the argument for i<j is identical) of the matrix Ty/T^, is given by the 

coefficient of t'} in the Laurent series expansion about z=0 of /(z) = l/d*(z)d(z), where 

the * superscript changes negative powers of z to positive (causal to anti-causal). 

Proof:   The f1 column of Tlld contains the coefficients of a Taylor series expansion in 
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terms of z"1 of z'j+1/d(z). This is exactly equivalent to the coefficients of a Taylor series 

expansion in terms of z of iAld*{z).  Let these expansions be: 

m-i*f-<  i^-tif' (5-28) 
d(z)   ft d (z)   ,o 

Hence/(z)=(E,.=0^-)(i:,.=0^), or: 

JW'itftZ';     with    frf-rESjgj-i (5,29) 

The proof is completed by noting that the i* row of Tvf is given by [0,... ,0,g0,gu...] and 

the7th column of T1/d is given by [0,...,0,go,gu...]T, so that the ij element of Tv/rud is 

given by gogi-]+gigH+x + --- which is identical to the definition of fH given in eqn. 

(5.29). a 

Remark 5.3 ft=f4, so if Yvd has m+1 columns, then there are only m+1 distinct values 

of ft in the matrix rV/TV. Therefore, the computation of this matrix reduces to the 

computation of the first m+1 coefficients of the Laurent series expansion of/(z). 

We now propose a numerically efficient means of computing the first m+1 coefficients 

of the Laurent expansion of/(z): 

Equating the coefficients in i, (0<i<m ) of l/d(z) to those of f(z)d*(z) gives the 

following independent set of m+1 linear equations: 
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dn  a-,   —   d 

0   dn ••■ d   , 

0     0-0 

0 

0 

...   o  - 

...   o - 

d.   0 - 

Jm 

A 

/o 

/i 

= [^1^^^ (5.30) 

The coefficients of f(z) can then be computed from: 

[A2\A,+A3]   —   = 
/o 

"0" 

  = 0 

./. 
1 

(5.31) 

where Ax is Ax with the column order reversed; eqn. (5.31) is clearly trivial to solve. It 

is noted that the minimum number of coefficients that can be computed is nd+l. 

Theorem 5.2  The elements of the matrices Ba and Bb can be computed by setting d(z) 

equal to a'(z) and b'(z) in the formulation of eqn. (5.31). 

Proof:  This is an obvious consequence of Lemma 5.1, the development which follows 

the lemma, and the definitions of Ba and Bb as given in eqns. (5.23)b,c. 

This section and the previous provide two ways to compute Ba, Bb; a comparison of their 

relative merit follows. 

The Lyapunov approach defines Ba, Bb from eqns. (5.27), requiring: i) 

computation of Ma, Mb (approx. na-, nb- multiplications); ii) computation of Sa, Sb which 

involves the solution of (n2
a-+na)ll, (nb-+nb.)/2 linear equations; iii) computation of 

C-, rä-,  C-, rS-  (approx.  na.(nbt+nc-l), nb.{na.+n)  multiplications); and iv) 
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computation of Bu B2 (approx.   2n\-, 2nb- multiplications). 

The approach of Theorem 5.2, on the other hand, requires the solution of mb+l, 

ma+\ linear equations of the form (5.31) where mb=max[nc+nb.-l,nr+na--2,na-] and 

d(z)=a(z), and ma=max[nc+na.,n6-] and d(z)=b'(z). 

It is clear that, depending on the various magnitudes of na., nb-, na,, nb,, nc, 

either method of computation can be more efficient.   In particular, if nc is small, but 

na., nb- are large, then one would favour the approach of Theorem 5.2, as the solution 

of fewer linear equations is required. 

5.2.4 Simulation examples 

In this section we demonstrate the efficacy of the IHSPC algorithm by comparing it with: 

(i) The original GPC algorithm as presented in [7], and (ii) RM, the algorithm of [30], 

each with the same number of degrees of freedom. The algorithms will be compared by 

way of simulation plots (the plots for IHSPC in solid line, RM in dashed line and GPC 

in dash-dotted lines) and the measure of performance: 

runtime 

/_- £ «'*W <5-32) 
1=0 

Example 5.3 Let the system model be defined by a{z) = l-2.5zl+z2 and b(z) = l-0Jz1, 

which has an unstable pole at z=2; and let the control parameters be nc=l, and X=0.1. 

The output/input plots are given in Figure 5.4 and the measures of runtime performance 

are given in Table 1; both illustrate the improvements gained by IHSPC. 
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GPC RM fflSPC 

0.3092 0.3043 0.2875 

Table 5.1:  Runtime costs for Example 5.3 

Example 5.4 For this example, let a(z) = 1-5.5z1+S.54z2-3.2zs+0.24z-4 and 

b(z) = l+0Az1-3Az2+lAz3, which has unstable poles at z=2,3 and a non-minimum 

phase zero at z=-2; and let n=\, and X=l. The output/input plots are given in 

Figure 5.5 and the runtime performance is presented in Table 2. Again, the improvement 

is clear, and in fact, GPC is unstable. 

GPC RM fflSPC 

00 9.5993 7.8363 

Table 5.2:  Runtime costs for Example 5.4 

It is noted that better results for GPC can be obtained for different combinations 

of control and output horizons. However, for this example (for X=0.1): i) GPC cannot 

stabilize the model for a control horizon of one and two; and ii) for a control horizon of 

three, too small an output horizon gave instability and too large an output horizon gave 

numerical problems (as the model is open-loop unstable). Reasonable, though inferior, 

results could be obtained for a limited range of output horizons around 15. By contrast, 

both RM and IHSPC have guaranteed stability and, moreover, gave good performance 

for any control horizon. 
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Thus far, this chapter makes two main contributions. First, it presents an efficient means 

of classifying pairs of stable input/error predictions in a manner which makes transparent 

the remaining degrees of freedom, and second, it proposes a framework for the use of 

these predictions in an infinite horizon stable predictive control law. The conditions used 

to classify the predictions are both necessary and sufficient for stability, whereas earlier 

work used sufficient conditions only. In particular, here we allow the input trajectories 

to be infinite sequences, whereas other work in this area forces the input trajectory to 

have a finite (and usually small) number of changes. The use of necessary conditions has 

two obvious benefits: i) it releases as many degrees of freedom as possible for meeting 

performance criteria; and ii) it is more likely to be feasible when subject to system input 

constraints for small numbers of degrees of freedom. Clearly, this latter point can be 

used to significant computational advantage and/or makes a feasibility assumption easier 

to meet. 

Finally, it was noted that most authors use a Lyapunov equation to calculate 

performance indices with ILS outputs, but FLS inputs. Here, we have extended the 

approach to performance indices with ILS outputs and inputs, and we propose an 

alternative approach which is particularly suitable for the types of problems arising in 

infinite horizon GPC and, in most cases, will be computationally more efficient. 

5.3 Application summary - tokamak plasma control 

The results of the previous sections have been applied to the problem of controlling the 

vertical position of plasma in the Compass-D tokamak. This application has been 

reported elsewhere ([47], [48]), and is briefly summarized in this thesis to provide a real 
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world example of the application of these results; all the other examples in this thesis are 

purpose built simulations to illustrate specific results. 

Tokamaks are torus-shaped plasma containment devices which could form the 

basis for the nuclear fusion power plants of the future; they use magnetic fields to confine 

a plasma of ionized hydrogen atoms while it is heated to (hopefully) fusion temperatures. 

The Compass-D tokamak is a medium-sized test device which is used to study the 

instabilities and to establish the control techniques necessary for larger tokamak devices 

like the currently existing JET (Joint European Torus) and the future ITER (International 

Thermonuclear Experimental Reactor). ITER is in the design stage and plasma control 

is an area of great importance and some concern. 

At desired operating points, the plasma vertical position is unstable and is 

currently controlled in the Compass-D tokamak with an analogue P+D control scheme. 

This scheme uses plasma velocity sensors located both inside and outside the vacuum 

vessel, but in larger devices, like ITER, the environment inside the vacuum vessel will 

be hostile to internal sensors. The P+D controller cannot stabilize the vertical position 

without these internal sensors, and thus a controller which uses only external sensors is 

required. Additionally, in all previous experiments, the vertical position control signals 

were dominated by a 600 Hz component due to interference from actuators used in other 

control loops, so another requirement of any new controller is that it reject this 

interference. The model of the plasma vertical position is obtained from experimental 

data which is inherently noisy and which reveals different open-loop growth rates at 

different operating points, and thus a further requirement is that the controller be robust 

to model uncertainty. 

The plasma position response, as measured by the external sensors, was identified 
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from experimental data using a least squares fit and the SGPC model, G(z)=z~1b(z)/a(z) 

(including actuator and plant), for the desired operating point was found to be [47]: 

ö(Z)=1-2.4519Z-
1
+1.5786Z"

2
+0.1848Z-

3-0.3678z-4+0.0832z"5-0.0272z"6       (5.33) 
b(z)= IO-3 (0.2239z-2+0.5921z-3+0.3646z"4+0.0403z-5) 

which has an unstable pole at z= 1.1099, a slow pole at z=0.9940, and a non-minimum 

phase zero at z=-1.7917. Two controllers were designed; the first using standard ffM 

design methodology with the controller, K(z), in the forward loop and negative unity 

feedback, and the second was IHSPC. The Hm controller was designed so that the 

modulus of the frequency response of the sensitivity transfer function, 

S(z) = l/(l+G(z)K(z)), was kept small at lower frequencies to ensure small position errors 

(performance), the modulus of the frequency response of K(z)S(z) was kept small at 600 

Hz to ensure rejection of the known interference (noise rejection), and the modulus of the 

frequency response of the closed-loop transfer function, T(z)=G(z)K(z)S(z), was kept 

small at higher frequencies to ensure good stability robustness margins (robustness to 

multiplicative model uncertainty). 

The IHSPC controller was designed in two stages. The first stage optimized 

performance using the results of Section 5.2 with the model modified to place a 600 Hz 

notch filter,/(z)=/„(z)//rf(z), in the plant to reject the known interference; thus, the model 

was defined from b'(z)=fn(z)b(z) and a'(z)=/d(z)fl(z), but of course the cost was chosen 

to penalize actual plant input increments. a+(z) and b+(z) were defined to include all 

roots on or outside a circle of radius p=0.9 and the other parameters were chosen to be 

n=50 and X= 1000. The closed-loop pole polynomial, pc(z), was established from eqn. 

(2.23)c with Dk(z) and Nk(z) determined from the explicit solution to the optimum IHSPC 

cost using results analogous to those of Section 5.1.3. 
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The second design stage optimized robustness and noise handling properties as per 

Section 5.1.3. The plasma vertical position of the Compass-D operates at a constant set- 

point with an adjustable reference; thus, zero steady-state error is not a design 

requirement. Therefore, IHSPC's explicit integrator was removed from the controller 

denominator polynomial; so that optimum performance was unaffected, the controller 

denominator and numerator polynomials, D(z) and N(z), were chosen to satisfy 

pc(z)=a(z)D(z)+z1b(z)N(z). With particular solutions, Dp(z) and Np(z), the appropriate 

class of controller polynomials was defined as D(z)=Dp(z)-z1b(z)Q(z) and N(z)=Np(z) + 

a(z)Q(z), where Q(z) is an arbitrary polynomial. Q(z) was chosen to optimize noise 

rejection and robustness to additive model uncertainty by using the procedures given in 

Section 2.2; large penalties were placed at 600 Hz to preserve the effect of the notch 

filter and at the approximate gain cross-over frequency to ensure a large stability margin. 

By way of comparison of the resulting Hx and IHSPC controllers for the nominal 

plant, we provide the simulations of Figure 5.6-Figure 5.8. The modulus of the 

frequency response of K(z)S(z) is plotted in Figure 5.6, and a Nyquist diagram of the 

loop gain, L(z)=G(z)K(z), is shown in Figure 5.7; in both figures, the ff„ controller is 

indicated by solid lines, the IHSPC controller (with Q(z)=0) is indicated with dashed 

lines, and the optimum IHSPC controller is indicated with dotted lines. The Hx and 

optimum IHSPC controllers obviously have very similar loop gain properties. The step 

responses of these two controllers are shown in Figure 5.8; we note, however, that good 

step response properties were not design objectives. The Hx responses are more 

oscillatory than those of IHSPC, have significantly larger overshoots, and the input 

response is significantly more active. 

Because  IHSPC has  decoupled the design process,   it achieves  optimum 
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performance in a two-norm sense, and then, without affecting this optimality, it uses 

remaining degrees of freedom to optimize robustness and noise rejection properties. 

Thus, IHSPC provides obvious advantages in combining two- and infinity-norm 

specifications in such a way that both are optimal; we note, though, that the performance 

parameters (p, nc, and X) must be chosen carefully to ensure that the remaining degrees 

of freedom are adequate to meet other requirements like robustness and noise rejection. 

The Hx methodology seems to allows for a more direct trade-off between performance 

and robustness, but this, of course, still depends on judicious choice of weights, and the 

performance measure is the infinity-norm. 

Both controllers were implemented on the Compass-D with a digital signal 

processor (DSP), and as the reference signal was constant, they produced similar results. 

Both controllers successfully stabilized the plasma vertical position using only external 

sensors and rejected the 600 Hz noise, meeting all design objectives. Further details of 

these results are reported in [47] and [48]. 

5.4 Constrained Cautious Stable Predictive Control 

Thus far, we have concentrated on the cost portion of Cautious Stable Predictive Control; 

now we turn to the problem of enforcing input constraints over infinite input horizons. 

5.4.1 Constraint checking with infinite input horizons 

We return to the output/input (rather than error/input) form of ILS prediction equations 

(3.39) of Section 3.2.1, which as z-transforms, can be written as: 
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*Z)ÄZ)+|ä„+JU(Z) 
a (z)        A(z)a (z)      a (z) 

*"(z) *~(z) *"fc) 

ö"(z) A(z)Z> (z)       A(z)Z> (z) p       A(z) 

5.4.1.1 Definition of problem 

Most practical control systems are subject to (hard) input constraints such as: 

-R=Au<AutH<A~ü=R; U0-U=u<u[+i<ü = U0+U />0 (5-35> 

where it is assumed (as is reasonable) that the steady-state input/control increment 

required to maintain the set-point are on the interior of the constraint intervals, namely 

that they are at least a distance e (for e arbitrarily small) inside the above limits: 

u + e<u  =^-r<ü-e;       Aw+e<0<A«-e (5.36) 
"   b(l) — 

and for convenience (only) we have assumed that the input limits are time invariant. The 

input constraints above may come into conflict with the use of terminal constraints, and 

we have termed this condition short term infeasibility (STIF). By contrast, the 

compatibility of terminal constraints with input constraints is referred to as short term 

feasibility (STF). 

CaSC does not take constraints (5.35) into consideration, and hence the optimal 

predicted values for u and/or A« may lie outside the limits of (5.35); this will lead to 

sub-optimality and may even result in instability. Thus, it is important to incorporate 

constraints (5.35) into the optimization problem; earlier work (eg [26], [46], [33]) 

achieves this through the use of quadratic programming. Work to date has restricted 

attention to finite length sequences for the future A«'s; this is a consequence of the fact 
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that terminal constraint (5.12)b has been invoked on Aw rather than on Aw. Terminal 

constraints of this sort are convenient in establishing stability, which depends on a 

guarantee of feasibility, ie a guarantee that the terminal constraints can be met within the 

input constraints. However, such terminal constraints are only sufficient for the stability 

of predicted trajectories and thus may result in an unnecessary restriction of the degrees 

of design freedom. This could have a significant effect on performance; furthermore, on 

account of the feasibility requirement it may necessitate the use of longer control horizons 

with a concomitant significant increase in the quadratic programming computational load. 

Here our concern is use the maximum degrees of design freedom possible and this 

implies the need for conditions such as those developed in the previous section which are 

both necessary and sufficient. The difficulty with these, however, is that they result in 

future control trajectories which form infinite length sequences; at first sight this requires 

that constraint satisfaction be tested over an infinite horizon. To overcome this, problem 

here we develop some efficient (albeit loose) bounding results which enable the definition 

of a finite horizon, ncon, referred to as the constraints horizon, which has the property that 

constraint satisfaction over ncm implies actual constraint satisfaction over an infinite 

horizon. It is noted that the reconciliation of finite with infinite constraint horizons has 

been addressed elsewhere ([30], [54]), but in a different context (related to output 

constraints) using different (state-space) bounding techniques. The techniques developed 

here address a new problem, namely the maximization of available control freedom with 

the view to satisfying the feasibility requirement as well as improving performance and/or 

reducing the computational burden. 
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5.4.1.2 Bounding conditions 

We wish to invoke terminal constraints (5.12) without violating physical limits 

(5.35), and as remarked above the difficulty here is that future control trajectories are 

ILS's. So now we seek to determine a finite (and preferably small) value for ncon such 

that constraint satisfaction for all future times is guaranteed by constraint satisfaction up 

to ncon. An obvious way to achieve this is to: (i) consider a particular future time instant 

t+i; (ii) derive bounds on the maximum and minimum values of the predicted w's and 

Aw's beyond this time instant t+i, namely bounds for future values at all times t+j,j>i; 

and (iii) increase i until the bounds of (ii) are within the physical limits of (5.35). 

Remark 5.4 The bounds used in the determination of ncon need not be "tight", in that 

"loose" bounds would merely result in a conservative choice for ncon. The result of this 

is that (5.35) will be checked at more time instants than necessary. This will not have 

a significant effect on computations because the extra checks will correspond to constraint 

inequalities which, by definition, will be inactive: if future w's and Aw's are within 

"loose" bounds, which themselves are within the limits of (5.35), then clearly such «'s 

and Aw's will satisfy (5.35) a fortiori. For this reason, the emphasis in what follows will 

be on ease of presentation/computation rather than obtaining the tightest bounds possible. 

Along the same lines, we shall refrain from defining different values for ncon for each of 

conditions (5.35)a,b. 

From prediction eqns. (3.39)b,c, it is apparent that the future predicted values of w and 

Aw depend on future values of c which, as yet, are unknown. In determining bounds on 

« and Aw, therefore, we must first stipulate bounds on c. 
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Lemma 5.2 Input constraints (5.35) will be violated if any of the future c's lie outside 

the respective interval defined below: 

c.=mm 

c =max 

c.<ci<ci      i=0,...,nc-l 

£(max [Sfiü, SyM-SijSj),    E(max [Vtjü, V.u\-V^ 

E(min [Sfii, SyM-SijS),   X(min [VJÜ, V^-Vp) 

(5.37) 

vth where Sy and Vtj denote the if elements of matrices S and V, whereas sJt v, denote the/ 

element of vectors s, v; S and Fare defined as the inverses of block matrices formed out 

of the first nc rows of Ta.lb-, and Ta.lb-, respectively and s, v are the vectors formed out 

of the first nc elements of Ym.P^p, and ri/A6-P2/?+wMl. 

Proof: With the definitions of 5, V, s and v, the first nc scalar equations implied by eqn. 

(3.39)b,c can be rearranged to give 

c=V 
t+n-l 

-v c=S 
A«. 

A"f+„-i 

(5.38) 

where use has been made of the fact that, due to the presence of z'n'in the second term 

of eqns. (5.34)b,c, the first nc elements of 0aVb-Cx, 6aVbcx are zero. Thus, ct is given 

as (i) the sum (over;) of terms SyAUf+j-SySj, and (ii) the sum (over./) of terms V^u,+rV9Vj. 

The proof is completed by invoking the limits of (5.35) on Aut+j and ut+j; (i) and (ii) 

imply different intervals for c„ and since both must hold true, the intersection of the two 

is used to define the bounds of (5.37). □ 

In order to derive bounds on the predicted Aut+j for j>i, consider the first term of the 

RHS of (5.34)b which is of the form h(z)f(z), with h(z)=a+(z)/b-(z) and f(z)=c(z). The 
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other two terms have the same form and the overall result can be assembled by a process 

of linear superposition; the only difference is that/(z) for the second and third term are 

known, whereas f(z) for the first term is unknown, but bounded. The lemmata below 

deal with these two different cases separately. 

Lemma 5.3 Let g(z)=h(z)f(z) where h(z) is an asymptotically stable transfer function 

with impulse response %,hu---} and f(z) is a polynomial in zl of degree nf whose 

coefficients f{ are known. Then bounds on each (and all subsequent) element of the 

impulse response of g(z) are given by 

G<g,<U,   (j>i) 
H^mmh,   (l>f)   {539) 

H.=max ht   (l>i) 

G=imh\HJk, BJk 

ü,.= £maxfe. fk, VJt 

Proof:   This follows from the definition of g(z) according to which gt is given as the 

appropriate sum of products A,-./t. D 

Lemma 5.4 Let g(z)=h(z)f(z) where h(z) is an asymptotically stable transfer function 

with impulse response {h0,hu...}, and/(z) is a polynomial in z'1 of degree nf whose 

coefficients ft are unknown, but bounded by f.^f^, and let the bounds,//., and Bt 

be as defined in eqn. (5.39). Then bounds on each (and all subsequent) element of the 

impulse response of g(z) are given by: 

G<g.<U.   (/>0 
G=hnir{HJk, V^, Hjk, TJJk]        ^ 

ü,.= !max[//_£, H„4 Hjk, BJk] 

Proof:   This is the same as for Lemma 5.3, except that, when dealing with the products 
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htJk, we now have to consider intervals for both the coefficients of h(z) and/(z).      D 

Remark 5.5 The bounding results above afford a significant online computational 

advantage because bounds, H,, and H. are time-invariant and thus can be calculated off 

line and saved in a look-up table. Therefore the bounds which apply over an infinite 

horizon are calculated by summing a finite (and indeed small) number of maxima/minima 

over two or four scalars. 

As mentioned previously, the predicted AM'S and w's of eqn. (5.34)b,c can be viewed as 

the sum of products, h(z)f(z), all of which can be bounded (as per Lemmata 5.3, 5.4) and 

then combined by linear superposition. To that end, we now define bounds for each part 

of eqns. (5.34)b,c, except for the last part of eqn. (5.34)c whose upper and lower bounds 

are obviously equal to ulA: 

Hz): 
*+(z) 
b-(z) 

z'"<a+(z) 
b-(z) 

1 
b-(z) 

a\z) 
b-(z) 

zn<a\z) 

Mz)b'(z) 

1 
Mz)b-(z) 

f(z): c(z) Cx *,(z) c(z) {•oo %(z) 

Lemma: 5.4 5.3 5.3 5.4 5.3 5.3 

Bounds: 3.3 <?>3 3'3 3'3 3'3 3'3 
Table 5.3 Definition s of bounds 

It is then a simple matter to give bounds on the future elements of Aw and u as: 

(?+(?+(P<Au<T;]+T?.+T?.    a+G5+G6+u<u<lPi^i+Tfi+ul_1   (j>i)    (5-41) 

Theorem 5.3   Let nrm be the smallest value of / for which the derived bounds are 
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"inside" the limits of input constraints (5.35), ie: 

G1 +(? +(? >Au G4 +G5 +G* +ut>u 
_»c«,     ~~n

am     ~"c*, "c- ««. "™. (5.42) 

U1 +ü2 +Ö3 <A« Ü* +(? +G* +ut<u 
ncm "cm "or "a* "cm "am '    * 

Then if prediction eqns. (5.34)b,c are made to satisfy constraints (5.35) at t+i, for 

i<ncon, they will satisfy these constraints for all future times. 

Proof: This follows from Lemmata 5.2-4 and the bound definitions of Table 5.3.    D 

Corollary 5.1 A finite ncon can always be found which satisfies Theorem 5.3. 

Proof: Consider the bounds &, ~Gk for £=1-3 associated with Aw„ and apply the final 

value theorem to the corresponding h(z) of Table 5.3 to deduce that, as ?-*<», the 

elements ht of the impulse response of h(z) go to zero. As a consequence, the bounds 

H., H. (defined in eqn. (5.39)) will also converge to zero, and hence, so will the bounds 

on A«, of (5.41)a because of their definition as given in eqns. (5.39) or (5.40). Now, 

from (5.36)b, we know that Aw, ~Kü are at least a distance e away from 0; hence, for any 

e (no matter how small), ncon can be chosen large enough so that the moduli of the bounds 

on AUj of conditions (5.41)a are less than e: therefore conditions (5.42)a,c will hold true. 

To complete the proof we need to show that (5.42)b,d hold true, and this can be 

established by similar arguments, except that now, by (5.36)a, we need to show that the 

bounds on u of (5.41)b converge to uss. This follows from: 

(i) application of the final value theorem to (5.34)c according to which 

Woo=lim (l-z-Ow^O+.^l^+Ml+H^ (5.43) 
00   z-i b-{\)      b-(l)    rl 

(ii) application of the final value theorem to the bounds on u of (5.41)b which are the 

sum of the products h(z)f(z) of the last three columns of Table 5.3 and utA, according to 
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which: 

lim/G* +G* +<? W . = limfe* +Ü* +^ )+«,., 

=lim (1-z"1) 
z-l b-(z)       A(z)b-(z) °°  A(z)*-(z) 

+Uii (5.44) 

D 

Algorithm 5.1 (Computation of ncon) 

Step 1: Set i=nu. 

Step 2: Compute GJ, üj, k=l-6. 

Step 3: Check the conditions of Theorem 5.3.  If true, set ncon=i and stop; otherwise, 

set i=i+l and goto step 2. 

5.4.2 The constrained CaSC algorithm 

Here we present the Constrained Cautious Stable Control (CCaSC) algorithm and prove 

its stability property. For ease of presentation we consider first the simpler case where 

set-point changes are assumed not to lead to infeasibility. We then deal with the general 

case where the feasibility assumption is removed by a suitable change of terminal 

constraints; this change is identical to the modification of MCSGPC in that y is allowed 

to converge to some slack variable, sx, and s«, is then made subject to a slack variable 

end-point constraint. 

5.4.2.1 The case of feasible set-point changes 

Earlier work ([33], [53], [23], [30], [54]) has combined sufficient (but not 
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necessary) terminal constraints with input constraints to give stable predictive control 

algorithms. Here we do the same with respect to terminal constraints which are both 

sufficient and necessary. 

Algorithm 5.2 

Step 1: Invoke Algorithm 5.1 to compute ncon. 

Step 2: Minimize over c the cost .7^ of eqn. (5.11)c subject to input constraints (5.35) 

for i<ncon. 

Step 3: Implement the first element of the corresponding vector of future «'s given in 

eqn. (3.39)c; increment t and goto step 1. 

Theorem 5.4 Assume that, at startup and at times of set-point changes, terminal and 

input constraints are consistent. Then the CCaSC algorithm is stabilizing and gives 

asymptotic tracking. 

Proof: By the assumption, we have STF at startup, and Theorem 5.3 and Corollary 5.1 

ensure that STF is also guaranteed at the next instant, because at least one feasible future 

control trajectory exists, namely that employed at the previous time instant. This 

argument can be propagated until ts, the time of the next set-point change, but the 

assumption ensures STF at ts, and thus the argument above can be extended for all times. 

The rest of the proof relies on showing that the cost function JCaSC is a stable 

Lyapunov function. This is so because, at any time t, the terminal constraints ensure that 

the predictions for both et+n +i, Aät+n +. are zero for *>0; thus, the optimal J^ at t gives 

an upper bound on the value of J^sc at f+1, and the cost cannot stay at this upper bound 

for more than a finite number of steps (namely the maximum of ny and nu), unless of 
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course the cost is zero. Thus, e-*0, and Aü-M); since e(z)=e(z)/a~(z) and 

Au{z)=Aü{z)lb'(z), where both a{z) and b'(z) are stable, the same asymptotic property 

will apply with respect to e and Au. □ 

5.4.2.2 The general case 

The CaSC terminal output constraint, (5.12)a, can be rewritten as: 

y   =f    =a'(l)r V i>n (5.45) 

Viewed this way, y must reach, within ny steps, its demanded target ft+n =a "(1) rt+n. On 

account of this implicit requirement, large set-point changes may necessitate the use of 

control moves which exceed the limits defined by the input constraints and thus may lead 

to infeasibility (STIF). As with MCSGPC, an obvious way to avoid this difficulty is to 

allow y to settle at sm, a degree of freedom, but to constrain sx to converge to rf+n. We 

implement this, as before, with the slack variable end-point constraint: 

\s„-sZ\£w\s?-sZ\        0<W<1 <5-46) 

where sK
old is the optimal value of sx computed at the previous time instant, and s«," is 

the value of sx closest to rl+n which does not violate the input constraints; as seen later, 

the computation of s«," simply involves a linear program. 

This modification can be easily introduced into Algorithm 5.1 by including 

coa=a(\)sJb+{\) of prediction eqns. (5.34) as an extra degree of freedom along with 

those contained in c(z). However, the calculation of ncon has to be modified accordingly 

to accommodate the fact that cK is unknown. This is easy to do providing that cK is 

bounded, say by c , cm, because then Algorithm 5.1 can be invoked exactly as given 

in Section 5.4.1.2, but with the bounds of Gk, ~G\ for k=2 and k=4 computed as 
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dictated by Lemma 5.4 rather than Lemma 5.3. By (5.46), sM must lie in the interval 

defined by sj** and s^" and therefore will also lie (a fortiori) in the interval defined by 

sx
M and r. The latter is more conservative than the former, but is preferred because, 

strictly speaking, the computation of s„° requires prior knowledge of ncon. This 

simplification may result in larger than necessary values for ncon, but as per Remark 5.4, 

this is a matter of no computational significance. Thus, the bounds on c„ to be used in 

Lemma 5.4 will be taken to be: 

c =min Ml)  out   a'(l)r 

MD MD 
c  =max V(l)  out   a'(l)r 

MD        MD 
(5.47) 

Remark 5.6 At first sight, it may appear that an unknown c«, would affect Lemma 5.2 

(and hence, Lemma 5.4 also) since the vectors v and s, of eqn. (5.38) themselves would 

be unknown. This is not true, because as pointed out in the proof of Lemma 5.2, cM 

makes no contribution to the first nc elements of the prediction vectors in (5.34). 

Equally, the use of a value for cx which is not equal a(l)r/b+(l) does not affect 

adversely the proof of Corollary 5.1: conditions (5.42)a,c are unaffected, because the 

steady-state value of the bounds on A« of condition (5.41)a do not depend on cM, 

whereas, following the procedure given in the proof of the corollary and by (5.47), it is 

easy to show that the steady-state value of the bounds on u of condition (5.41)b will be: 

«äs?+m+utl      and      ^r+M± (5.48) 
*(i)      Ml) *(!)   Ml) 

Clearly, both these values are within the physical limits of (5.35)a by an amount at least 

as large as the e of eqn. (5.36). 
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Algorithm 5.3 (CCaSC) 

Step 1: Compute ncon as per Algorithm 5.1, except that the bounds G*, U* for £=2,4 

now should be evaluated using Lemma 5.4 (invoking the limits on c„ of eqn. 

(5.47)) instead of Lemma 5.3. 

Step 2: mincc   | r -s J subject to constraints (5.35) for i<ncon, and let the minimizing 

solution to this linear program for sm be sx°. 

Step 3: Minimize over c and cx    the cost J^ of eqn. (5.11)c subject to input 

constraints (5.35) for i<ncon and to constraint (5.46). 

Step 4: Implement the first element of the corresponding vector of future w's given in 

eqn. (3.39)c; increment t and goto step 1. 

Theorem 5.5 Given feasibility at startup, CCaSC has guaranteed stability and asymptotic 

tracking. 

Proof: Assume feasibility at a time M, so that, at t, 5M
oW defines a feasible choice for 

sx. On the other hand, sj is also feasible, since it is defined to be the value of 5B 

which is as close to r as is possible without violating the input constraints. Therefore, 

constraint (5.46) can be met and so replacing equality terminal constraint (5.12)a with 

inequality terminal constraint (5.46) guarantees that feasibility at t-l implies feasibility 

at t for any set-point change. This argument propagates all the way back to startup 

which, by the assumption of the theorem, respects feasibility; thus, feasibility is 

guaranteed for all time. 

The consequence of inequality constraint (5.46) is that, if C^^/ for all future 

times, then sm will converge asymptotically to r; therefore, by Theorem 5.4, we have 

stability and asymptotic tracking. This arguments holds even if 500°=500
oW, so long as this 
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is not true for all future times; a case that can only arise if s«, s„old and s„° all "stagnate" 

at some value other than r. This of course cannot happen, because after ncon steps, the 

input constraints would hold with strict inequality, and so the linear program of step 2 

of the algorithm would use the available control authority to move s»" closer to r.    D 

5.4.3 Illustrative examples and comparisons 

Earlier constrained predictive algorithms with guaranteed stability are based on conditions 

which are only sufficient for the stability of the prediction equations. The algorithms 

presented in this chapter are based on conditions which are both necessary and sufficient 

and therefore release as much control authority as is possible. The extra control authority 

thus generated can be deployed (i) in the further reduction of the cost / and hence 

improving performance, and/or (ii) in the reduction of the command horizon nc (without 

violating feasibility) with a significant concomitant reduction in the computational burden 

involved in the application of constrained optimization routines such as quadratic 

programming. In this section, we illustrate these points by means of a numerical example 

which, by way of introduction to Chapter 6, shows how CCaSC compares with CSGPC, 

RM, and GPC in the presence of input constraints and disturbances. 

Example 5.5 For this example, we use the model and control parameters of Example 

5.1, but now assume that the inputs are subject to input constraints (5.35) with R=0A5, 

Uo=0, and C/=1.5. We further assume that at ?=3, a persistent (step) disturbance equal 

to 1/15 is encountered at the output of the plant. Figure 5.9 shows the output, input, and 

input increment responses for the four algorithms. CSGPC results are indicated with 

dotted lines, RM with dashed lines, GPC with dash-dotted lines, and CCaSC with solid 
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lines. CCaSC rejects the disturbance successfully, whereas the other algorithms all 

become unstable. 

Thus, we note that CCaSC, as it uses necessary and sufficient conditions for stable 

predictions, is better able to cope with input constraints than either CSGPC or RM, 

which use sufficient only conditions. Furthermore, it also improves upon GPC, because 

GPC does not have a stability guarantee either in the unconstrained or constrained case. 

5.5 Chapter summary 

Terminal constraints which allowed the predicted output error to be an infinite length 

sequence have been explored before, but infinite length sequences for the control 

increments have not previously been considered. Clearly, this is impractical in the case 

where control increments are defined to be the degrees of freedom, and poses difficulties 

with respect to the enforcement of input constraints over an infinite horizon. In this 

chapter, we have overcome both of these problems by an appropriate characterization of 

the conditions which are both necessary and sufficient for the stability of predictions and 

by the introduction of appropriate bounds (which are easy to compute) on the predicted 

input and control increments. We have thus reserved the maximum possible control 

authority for the purpose of reducing computational complexity (through the use of 

smaller command horizons) and/or improving performance. 
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Figure 5.1 Example 5.1 - Response and robustness for SGPC, CaML, GPC, and CaSC 
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Figure 5.7 Tokamak Application - Nyquist comparison 
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Chapter 6 

Stability Results for Systems Subject to 
Disturbances 

Disturbances are omnipresent and, for systems subject to input constraints, can drive 

control algorithms into infeasibility and instability. This problem has attracted little 

research effort, despite its significant practical importance. Previous chapters consider 

the disturbance-free case; the final purpose of this thesis is to address the issue of 

constrained predictive control in the more realistic setting of systems which are subject 

to bounded disturbances. In Section 6.1, we consider a description of how past and 

future disturbances enter into the system prediction equations; then, in Section 6.2, we 

show that the explicit stability results of Section 3.1 carry over to the more general case 

of systems which are subject to disturbances. 

While the work of Section 6.2 gives explicit stability conditions, it is restricted 

to systems with at most one unstable pole, and does not lead to suitable algorithms 

because it applies to infinite horizons only. In Section 6.3, we develop necessary and 

sufficient limits on the size of inputs required to reject all possible disturbances and then 

modify the constraint limits of MCSGPC to derive an algorithm with guaranteed stability 

and asymptotic tracking.   The application of all results in the chapter are illustrated by 
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means of numerical examples. 

6.1 Disturbances: the stabilizing loop and the prediction 
equations 

Most systems are subject to disturbances and a usual model for accounting for these is: 

where the expected value of £, is taken to be zero. T(z) is a polynomial in z which for 

clarity here will be taken to be 1; the T(z)^ 1 case is straightforward, but leads to more 

cumbersome prediction equations. Often the assumption is also made that £, is white 

noise, but this implies that £ is a random walk; in many practical situations it is more 

realistic to assume that £ is bounded, and accordingly, here we shall assume that £ 

satisfies an inequality of the form: 

|£|<4;     d>0      Vt (6.2) 

If large disturbances are rare, it may be judicious to choose d, smaller so as to account 

for the more typical disturbances only. For ease of presentation and without loss of 

generality, we shall assume the disturbance bound dt is time-invariant and equal to d. 

In the absence of constraints, the introduction of disturbances does not affect the 

stability properties of GPC or SGPC, though it may be advisable to use some filtering 

to improve performance ([7], [19]). However, disturbances in the presence of constraints 

can have disastrous effects if explicit account is not taken of them during the constrained 

optimization stage. Uncatered for disturbances can lead to infeasibility and, in the case 

of open loop unstable systems, are likely to lead to instability. 
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6.1.1 Deadbeat disturbance rejection 

The proof of CSGPC stability depends on the assumption that the predicted output 

reaches its steady-state within a finite horizon. This is also true with disturbances and 

implies that the control law must reject finite duration disturbances within finite time. 

Let £(z) be the z-transform of such a future disturbance, let Au(z), y(z) be the 

z-transforms of the future (predicted) signals for Aw and y, and as with SGPC, let 

c(z)=ct+ct+1z'1+-+ct+n_lz~n'+i+cxz~"'Kl-Z-1). Then, fromeqn. (2.13)witheqn. (6.1), we 

may write: 

y(z) =y (1)(z) +y (2)(z);     Au(z) =Au «(z) + Au (2)(z); 
)>(1)(z)=&(z)c(z)+y/z);    Au^\z)=a(z)c(z)+Au/_z); (6#3) 

y{2\z)=- ,_b(z)Auv\z)+m 
a{z) 

where Au(z) has been decomposed into the sum of A«(1)(z) and Aw(2)(z); the former takes 

account of everything but future disturbances, whereas the latter is the part of the control 

law that is available for rejecting £(z). Accordingly, it is obvious that y(1)(z), Aw(1)(z) are 

the z-transforms of the predicted y and Au signals defined in eqn. (2.13); in particular 

eqns. (6.3)c,d are the z-transform equivalents of eqns. (2.13)a,b.   Eqn. (6.3)e follows 

directly from eqn. (6.1) for zero initial conditions; the actual initial conditions have been 

incorporated in (6.3)c,d.  Rewriting (6.3)e, we have: 

a(z)y (2)(z) +b(z)( -Au <2>(z)) =£(z) (6'4) 

Now the stabilizing loop of Figure 2.1 results in the FLS type of relationships of eqns. 

(2.2)a,b and (6.3)c,d, and hence, yw Aum settle within finite time (ny and nurespectively). 

Clearly if y, Au themselves are to reach a steady-state within the set finite horizons, 

y(2)(z), A«(2)(z) must be polynomials in z"1 for all £.  From eqn. (6.4), this will only hold 

true for all £(z) if: 
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y<-2Kz)=M(zMz);    A«<2>(z)=-rW(z)£(z);    ci(z)M(z)n-lb(z)N(z)=l      (6-5) 

Eqn. (6.5)c is the same bezout identity as eqn. (2.4) and so shares the same family of 

solutions; however, since the solutions are not unique, M(z), N(z) and Af (z), N*(z) can 

be chosen to be different. 

6.1.2 The prediction equations 

Eqns. (6.5)a,b, with the definition of f (eqn. (6.1)b), imply the z-transform and 

prediction equations: 

v<2>(z)=M(z)(A(z)r(z)-r,);    AM<2>(z)=-z-W(z)(A(z)r(z)-rJ; 
yMc^r-^r,]; A^M-C^f+v^r,] 

where vM, vzHAr are column vectors of dimension ny, nu and comprise the coefficients of 

M(z), z^Niz); elements of these vectors that come after the last coefficient of Af(z) or 

z'lN(z) are zero. Eqns. (6.6)c,d combine with the prediction equations for ym andAw(1) 

of eqn. (2.13) to give: 

Au =Aum +A«(2);     Aw(1) =Tac +0cM +AM/;     A«<2) =[ -Cz -1ANf+Vwrj (6.7) 

In the above, we have assumed that the current value of the disturbance, £, is unknown; 

hence, it has been included in yi2), Aw(2), and «(2). Given a record of past inputs and 

outputs, the value of £ can be calculated and therefore can be considered as known; 

correspondingly, eqn. (6.7) can be rewritten: 
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-.-.-► -► - _ .» -» 

A« =AH<
1

> +AH<
2

>;     AU™ =Tac +Oaca +Auf+vt+Ntt;     A«® =[ -C^f]        (6.8) 
-»-»-»-♦-• _, -* -* 

«=«»+«»;        «»-r/^.+B/Q-^^   «(2)=[-cz.wr] 

Of these two sets of prediction equations, (6.8) is most likely to be used in practice, but 

for completeness (eg. to allow for transient behaviour where disturbance information may 

be poor), here we shall consider both the cases of £ unknown and known. 

Given that the future (and possibly the current) disturbance values of £ are 

unknown and zero-mean, it is tempting to ignore j(2), AM
(2)

 , and u(1). This is common 

practice in predictive control schemes such as GPC (and SGPC) and leads to optimal 

results. In the presence of constraints, however, such a policy could be catastrophic: to 

optimize performance, constrained predictive control algorithms tend to drive the controls 

close to the constraint limits; hence current and future disturbance sequences can drive 

the controls outside the constraints, thereby rendering the problem infeasible and leading 

to instability. 

6.2 Explicit stability conditions with disturbances 

Here we build on the results of Section 3.1 by showing that for some cases, explicit 

results are available which provide necessary and sufficient stability conditions in the 

presence of bounded constraints. In section 6.2.1, under an assumption of norm- 

boundedness, we derive the a posteriori necessary and sufficient stability conditions in 

the presence of disturbances; and finally, in section 6.2.2, we push these conditions one 

step into the future and show how they can be used to avoid instability. 
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6.2.1 A posteriori conditions for stability with disturbances 

This section presents the explicit a posteriori conditions needed to guarantee the existence 

of a stabilizing solution for a plant subject to input absolute and rate constraints (2.28) 

in the presence of additive output disturbances. We first state the general result and then 

focus on systems with just one unstable pole. 

Theorem 6.1 Let a(z), pt, <7„ and Q be defined per Theorem 3.2. Also, let the plant 

output be subject to the disturbance of Section 6.1. Then at time t, the problem is 

feasible (and CSGPC is stable) if, and only if, for nu-^oo, there exists a constrained u 

which satisfies: 

Qu + D^Qt = bu; where bu = D^QiHj - Hbu)        (6.9) 
-» -» «- «- 

where Db(p) is as defined for Theorem 3.3. 

Proof: Multiplying eqn. (6.1) times a{z) and simulating forward in time, we may write: 

y = Ca\Cbu - Hay + Hbu + ß = C?w (6.10) 

This implies, by the proof of Theorem 3.2, that for y to remain bounded, w must be 

orthogonal to the rows of Q, or: 

Qu = D^QiHj - Hbu - fl (6.11) 

Rearrangement of eqn. (6.11) completes the proof. □ 

Considering the special case of plants with only one unstable pole leads to the 

following lemma and theorem: 
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Lemma 6.1 Let a(z) have only one unstable pole atp=l/q, and let the disturbance, f, 

of Section 6.1, be bounded such that | ff | < d for all t. Then the effect of the disturbance 

on eqn. (6.9) is bounded such that: 

~d < JL-ör < d (6-12) 
(l-\q\)\b(p)\ £KP) - (l-\q\)\b(p)\ 

Proof: The vector of future f's which maximizes ßf is of the form (for p>\) 

[d,d,d,...] or (for p<-l) [d,-d,d,...], which, when premultiplied with Q, yields 

d/(l-|<7|). All other disturbances will have effects inside the limits of inequality 

(6.12). Ü 

Theorem 6.2 Let a(z) have only one unstable pole atp = l/q. Also, let the system be 

subject to input absolute and rate constraints (2.28) and the disturbance, £", of Section 

6.1, bounded such that | £| <d for all t. Then at time t, the necessary and sufficient 

condition for the guaranteed existence of a stabilizing solution (LTF) is: 

[b] . + -  < b   < [b]    - -  (6.13) lJmin   (l-\q\)\b(p)\ u       LKW
   (l-\q\)\b(p)\ 

where [6Jmax and [&Jmin are given in eqn. (3.17). 

Proof: Eqn. (6.13) guarantees the existence of a stabilizing solution in the presence of 

the worst case disturbance of Lemma 6.1. If bu lies in the interval above, there will 

always exist a u which satisfies eqn. (6.9) (implying stability) and goes to the desired 

steady-state value without violating the constraints. If it does not lie in the interval, there 

is at least one vector of future f's for which no stabilizing solution exists. D 

Corollary 6.1  Eqn. (6.9) can be rewritten as: 
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QAu +DA(p)D^Q$=bAu      where     bAu =DA<p)D^Q(Hay -Hbu) -«M1 (6.14) 

and the interval of eqn. (6.13) will then be: 

\b 1    *      (i~q)d       < bA   < \b 1    - (l~q)d  (6-15) L"A"-U   (i-|^|)|W|      "*     L-J-   (l-kl)IWI 

with [&Jmax and [^J^ as given in eqn. (3.12) or (3.16). 

Proof:   Eqn. (2.15) can be written as Au=CAu-u[_1e1 where ex is the first standard 

vector.  Premultiplying this equation with Q and substituting eqn. (6.11) into the result 

gives: 

QAu = D^DAip)Q(Hay - Hbu - 0 ~ «,-,* <6'16> 

where we note that QC=DmQ and Qex=\. Rearrangement of eqn. (6.16) gives eqn. 

(6.14).  Eqn. (6.15) follows from the arguments given in the proof of Theorem 6.2. D 

Example 6.1 Let the system of Example 3.2 be subject to input absolute and rate 

constraints (2.28) for which Uo=0, 17=0.1, and R=0.2. In Figure 6.1, the system is 

subject to a step disturbance bounded by d=0.1 at t=20. Figure 6. Id shows [£„]max and 

[fcJmin (dashed line), the interval of Theorem 6.3 (dotted line), and bu (solid line). bu 

stays inside the interval and the system remains stable. In Figure 6.2, the size of the step 

disturbance is increased to ^=0.14. Figure 6.2d shows that bu comes right to the edge 

of the interval, which is seen in Figure 6.2a to have greatly affected the performance of 

the system. In Figure 6.3, the disturbance is increased slightly (rf=0.141), causing bu 

to go outside the interval and the system to go unstable. 
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6.2.2 A priori conditions for stability with disturbances 

Paralleling the development of Section 3.1.3, here we present bounds on the current 

control move by propagating the a posteriori condition one step into the future, thus 

preserving the existence of a stabilizing solution at the next time instant. We will also 

show how these bounds indicate an effective limit on the size of disturbances hitting a 

system, or show when actuators may be inadequate for a given system and disturbance 

level. 

Theorem 6.3 Let a(z) have only one unstable pole atp=l/q. Also, let the system be 

subject only to input absolute constraint (2.28)a and the bounded disturbance, f, of 

Theorem 6.2. Then, at time t, a stabilizing solution will be guaranteed to exist at the 

next time instant (ie. the problem will be LTF) if, and only if, ut is chosen such that: 

_9Uo_\q\U+ d ,, _«U.+ \q\U_ d (6.17) 

•    \-q    \-\q\     (l~\q\)\b(p)\        '      '    \-q    \-\q\    (HtfDIWI 

Proof:  Extracting ut from eqn. (6.9) (written for just one unstable pole) gives: 

ut=bu-qqTu     -rfLfl't (6-18) 
-,*i     b(p)    -. 

The result follows from application of lemmata 3.6 and 6.1. If u, lies in interval (6.17), 

then at the next time instant there will always exist a u which satisfies eqn. (6.9) 

(implying stability) without violating the constraints. If it does not lie in the interval, 

there is at least one vector of future f's for which no stabilizing solution will exist.  D 

Theorem 6.4 Let a(z) have only one unstable pole atp=l/q. Also, let the system be 

subject only to input rate constraint (2.28)b and the bounded disturbance, f, of Theorem 

6.2.  Then, at time t, a stabilizing solution will be guaranteed to exist at the next time 
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instant if, and only if, Aw, is chosen such that: 

_ \q\R +       (l-q)d      sKUsh   + |g|*_       (X-q)d (6.i9) 

°A" TM\   <\-\q\)\m\      '    Au i-kl   (i-kl)IWI 
Proof:  Extracting AM, from eqn. (6.14) (written for just one unstable pole) gives: 

Aw, =bAu-qqTAu     - tlqT$ (6.20) 

The result then follows from the same arguments given in the proof of Theorem 6.3, 

except one uses Lemma 3.7 rather than Lemma 3.6. O 

Example 6.2 Here, we again use the system and input constraint limits of Example 6.1, 

but note that R is equal to the width of the absolute constraint interval and thus, 

satisfaction of absolute constraints implies satisfaction of rate constraints; therefore the 

system can be considered to be subject to absolute constraints only. If the system 

encounters a step disturbance of magnitude 0.13 at t=S, then CSGPC will be unstable. 

This example shows why and shows how the instability might be avoided. Figure 6.4c 

shows the control inputs and constraints as before, but adds interval (6.17) (dotted lines) 

for d=0.U. At t=S, w, exceeds this interval and CSGPC then encounters a disturbance 

which it cannot stabilize. For Figure 6.5, CSGPC is given the added hard constraint that 

it must not exceed interval (6.17). At f=8, w, is "clipped" to stay within the interval 

(Figure 6.5c), and the system not only avoids instability, but maintains excellent 

performance when it encounters the disturbance. 

An analysis of these bounds in the presence of a disturbance which reaches a steady-state 

value indicates certain limits on either the maximum size of disturbances hitting the 

system, or the minimum constraints that can be placed on the control inputs or their 
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increments. Before presenting this result, we give two lemmata; the first examines the 

structure of qTHa, q
THb and the second defines steady-state values which are the result of 

the straight forward application of algebra and thus are presented without proof: 

Lemma 6.2 Let P{.} be the operator which maps the vector of coefficients/ to f(z), then 

P\qTm = -pM~M (6.21) 
r    »      r \-pz-

x 

Proof:  Applying the definitions of qT and Hf to the P operator yields: 

P{qTHf] =P- [l   q q*  ...  qn>-1] 

fxh   ■ -4 
ft - J "/ >      = 

A 

{fr+f2Q
+-+fnff'V 

+(f2
+-+fnfr2)^ 

%Z-^ 

Then, multiplying and dividing by -p gives: 

P{qTHf) = -p 

\-(f1q+f2<l2+~+fn<ln'y 

-(f2q
+~+fn<lnfl)z~x 

-fn?z 
-(n.-l) 

and dividing and multiplying by 1-pz1 gives: 

P{q'Hf} - -P 
\-pz~ 

-(fS+f2Q2+-+fnf') 
nrh , -i +(fSf2q+---+fn<lf)z 

-V2q
+~+fn(ln')z-1 

(6.22) 

(6.23) 

(6.24) 

and finally, substituting f0-f(p) = -(f1q
+f2q

2+-+fnq
n/) and cancelling like terms gives: 
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P{q*H} = ^P-(f0-f(p)+flZ-+...+fz^ = -pf&M (6-25) 
1 l-pz ' l-pz 

which completes the proof. D 

Remark 6.1 q is the vector of coefficients of l/(l-qzl) truncated after nu terms, and by 

[19], qTHf=Fl{[(P{q})* [zf(z)l ].}, where (.)* converts negative powers of z to positive 

and [.]. extracts only the causal terms. f(p) can then be seen as a factor associated with 

the truncation of anti-causal terms. 

Lemma 6.3 Let a(z) have only one unstable pole atp=l/q, and let the system be subject 

to the bounded disturbance, f, of Theorem 6.2, which reaches a steady-state value of £ss. 

If the system reaches steady-state at the desired value, rss, then we have: 

v   = r ■ u   = a^r   - _L_f • A«    = 0 

b  = 7(Dr +   AD  r. *    = J^ 

where 

*(l) "      *(l)*(p) * a""      W 

7fe) - p{ß/y=-^=~pa ~®> ^-f1 
1
      J    l-pz-1 1-q (6.27) 

^■f{gHj--P^-y>]; |8(1)-W-W 
1      '        l-pz 1-# 

Corollary 6.2 Let a(z) have only one unstable pole at/?=l/#, and let the system be 

subject only to input absolute constraint (2.28)a and the bounded disturbance, f, of 

Theorem 6.2 which reaches a steady-state value of f„= ±d. Then a necessary condition 

for the guaranteed existence of a stabilizing solution which tracks the commanded 

reference, rss, is: 
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a(l), 
Kl) 

U. <±±-U 
i-|«l 

(1-<?)K1) ± (i-|gl)[Ki)-gW3 

Proof:  Rewrite interval (6.17) as: 

u. - b„ + 
vu0 

\-q 

\q\(l-\q\W)b(p) 

<\q\U_ d 

i-kl    (i-kl)IWI 

(6.28) 

(6.29) 

Subtract eqn. (6.26)d from eqn. (6.26)b to get: 

M   "-     ö(i)    "   *(i)W  M 
(6.30) 

then substitute eqns. (6.27)b & d to get: 

u   - b    =   
"-      (l-q) 

qb(p)-b(l)      _ qa{\) 
*ss  ' 

(6.31) 
b(p)b(l)  'ss      b(l) 

Finally, substitute this result into interval (6.29) and set L=±rf- A reference set-point 

which violates this inequality will have a steady-state input control, uss, which lies outside 

interval (6.17).   If the control is allowed to reach this value, then there is at least one 

vector of future f's for which no stabilizing solution will exist. If u, is constrained to lie 

inside interval (6.17), then the system will have a steady-state offset. D 

Remark 6.2 Corollary 6.2 provides a hard limit on the size of reference inputs in the 

presence of bounded disturbances. Larger disturbances will either further limit reference 

inputs, or require wider constraints. 

Corollary 6.3 Let a(z) have only one unstable pole at p=l/q, and let the system be 

subject only to input rate constraint (2.28)b and the bounded disturbance, f, of Theorem 

6.3 which reaches a steady-state value of £ss=-d. Then a necessary condition for the 

guaranteed existence of a stabilizing solution is: 
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i <        \4b(p)\ (6.32) 
R        (l-\q\)+(l-q) 

Proof:  Rewrite interval (6.19) as: 

ku  - b     < ML -        <^)tf (6.33) 

then substitute eqns. (6.26)c & e and £,=-</. If the ratio of the disturbance bound to the 

rate constraint bound violates this inequality, then interval (6.19) will not include zero. 

If the control increment is allowed to settle at zero, then there is at least one vector of 

future fs for which no stabilizing solution will exist. If Aw, is constrained to lie inside 

interval (6.19), then the system will never reach steady-state. □ 

Remark 6.3 Corollary 6.3 provides a hard relationship between the bounds on 

disturbances and input rate constraints. Larger disturbances will require wider 

constraints. 

Corollaries 6.2 and 6.3 address only steady-state conditions and are therefore necessary, 

but not sufficient for stability and asymptotic tracking. Transient conditions and non 

steady-state disturbances are not addressed. 

Necessary and sufficient conditions for guaranteed stability in the presence of 

disturbances have been given, but are limited to the case of plants with at most one 

unstable pole and are based on infinite horizon conditions and thus do not lead to a 

predictive algorithm that retains asymptotic tracking in the presence of disturbances. 

Instead, in the following section, we remedy this by focusing attention on MCSGPC. We 

develop necessary and sufficient feasibility conditions and use these to develop a 

non-conservative extension to MCSGPC which copes with disturbances and has 
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guaranteed stability and asymptotic tracking. 

6.3 Adding disturbance borders to MCSGPC 

MCSGPC, as defined in Algorithm 4.4, is sensitive to disturbances; this can lead to 

infeasibility and instability. The purpose of this section is to take systematic account of 

disturbances, derive feasibility conditions, and extend MCSGPC so that it retains its 

stability and asymptotic tracking properties in the presence of bounded disturbances. The 

basic idea is to determine and reserve the minimum control authority required to reject 

all possible future disturbances. The implementation of this idea is effected by imposing 

input constraints which are tighter than those dictated by physical limits; the difference 

between the physical limits and imposed input constraints represents the control authority 

that needs to be reserved to maintain the feasibility of the constrained optimization 

problem and hence to guarantee the stability of the relevant predictive control algorithm. 

Given a set of initial conditions and input constraints, the prediction equations of 

Section 6.1 are used to develop bounds on allowable future and current inputs such that 

the system can still be stabilised in the event of worst case future disturbance signals. 

Some freedom does exist in the determination of these bounds, and in the final 

subsection, this freedom is used to give less restrictive bounds on the inputs. 

6.3.1 Necessary and sufficient MCSGPC feasibility conditions 

To guarantee stability for systems subject to bounded disturbances, two sets of conditions 

must be derived and enforced: i) conditions under which stable input/output predictions 

do not violate constraints given any possible future disturbance sequence (we will term 
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these a posteriori conditions) and ii) conditions under which, given the effects of the 

disturbance that hits the system at the current time instant, the chosen prediction sequence 

will again be feasible at the following time instant (a priori conditions). 

6.3.1.1 A posteriori conditions 

Eqns. (6.7) and (6.8) contain terms which are unknown and cannot be explicitly 

accounted for; hence during optimization, one is effectively choosing Aw(1), «(1), not A«, 

u. However, if Aw(1), «(1) are chosen subject to input absolute and rate constraints 

(2.28), then optimization can cause their elements to assume values close or equal to the 

constraint limits so that, for certain disturbance sequences, the actual predicted values of 

Aa, U will violate the constraints. This would lead to infeasibility, causing v not to 

behave as expected, and would thus invalidate the proofs of stability and asymptotic 

tracking. To prevent this, it is clear that the elements of AK
(1)
, u(l) must be subjected 

to tighter constraints: 

\Au^\^R-Rf -RUR*<Au"      <*!-** (6.34) 
\&-u.\*u-u! M,2""'n"    *    -ui+v*f-u.i*ui-v 

where R* and U-, the elements of the vectors, R* and if, depend on eqns. (6.7)f,i or 

(6.8)f,i and thus on the values of unknown disturbances; henceforth, R* and if, the 

vectors of the amounts by which the actual constraints are tightened, will be called 

"borders". Clearly for guaranteed feasibility, the borders must allow for all possible 

unknown disturbances; this involves the determination of the worst case disturbance 

signal. 

Theorem 6.5 {Aposteriori feasibility conditions) For a given N(z)=N0+N1z
1 + ...+N^'k 
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satisfying bezout identity (6.5)c, MCSGPC will give feasible AM and u over all possible 

unknown disturbances if A«(1) and «(1) of eqns. (6.7) (for £ unknown) or (6.8) (for £ 

known) are chosen to satisfy eqn. (6.34) for: 

i??=0, R?=d(\Ni_1\+\Ni_2-NiJ+\Ni_3-NiJ+... + \N0\), 
ft unknown: ^ ^^(,^^,...^1+K._2|+K._3|+... + |^o|), 

(6.35) 

t known-     Äf-0,   Jtf^|^-^|+|^-^|+... + |M) B        (6.36) 
rtknown.     ^   f/f^(|^2|+|^3|+... + |A,o|)) '^-* 

Furthermore, for the given N(z), eqns. (6.35),(6.36) define the smallest borders for which 

feasibility can be guaranteed. 

Proof:   Eqn. (6.35) gives least upper bounds on the size of the elements of A«(2),«(2) 

of eqn. (6.7): 

-R'^v^iC^l^A^^-C^^v^^v^iC^] 

<d[vz^NiCz-lAN 

-U*=d CA v     • C 

Q V
z->;v: S"'A? 

rt=-fr" 
—» 

1=17 

(6.37) 

Where [.]+ implies a matrix of absolute values. They are obtained for disturbance 

sequences whose instantaneous values are ±d, the sign being chosen so as to match that 

of the corresponding coefficients of: Cz-iAN and vz-,N for AM
(2)

; and Cz-W and C4~ v^N for 

um. The first term of the expression for Uf in eqn. (6.35)b appears because CA
_1 is a 

lower triangular matrix of l's.  Eqn. (6.36) is obtained in a similar manner. D 

As a consequence of Theorem 6.5, a necessary condition for the stability of MCSGPC 

in the presence of disturbances, is that constraints (2.28) be replaced by (6.34) with the 

elements of R* and if as given by eqns. (6.35) or (6.36).   Clearly, the cost to be 
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optimized must be based on the expected disturbance, and as £ is zero mean, the expected 

value of j(2), A«(2) will be 0 and thus we still use prediction eqns. (2.13)a,b or (4.1)a,b 

rather than (6.7)a,d or (6.8)a,d for the calculation of /. Hence, for the time being 

MCSGPC shall be modified by replacing constraints (2.28) with (6.34)-(6.36), but in all 

other respects will be the same as Algorithm 4.4. 

In the discussion below, which concerns the derivation of a priori conditions, we need 

to consider the implications of current choices of c on feasibility at the next time instant; 

in this context, the following corollary and definitions prove useful. 

Corollary 6.4 The elements of the vector R* of Theorem 6.5, taken in order, form a 

monotonically increasing sequence. The same applies to the elements of if. 

Proof: From the application of the triangle inequality we have that 

\Ni.2-NiA| + \NiA|-\Ni_21 is positive; however this quantity is equal to Ri+*-Rf, which 

establishes the monotonically increasing nature of the elements of R* for the case of 

unknown/unmeasurable disturbances. The proof for known disturbances is the same, as 

is the proof for the elements of If. □ 

Definition 6.1: Let Aum(t) and A«(1)(/+l) denote the vector Aw(1) computed at t, and 

at t+l, and let Au(l)(t+l\t) denote Aw(1) at t+l, given the information known at t and 

given the predicted control law computed at t; thus if the input horizon for Aum(i) were 

increased by 1, then A«(1)(?+l \t) (with the original horizon) would comprise all, but the 
—► 

first element.  The corresponding definitions will apply to «(1). 
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6.3.1.2 A priori conditions 

The conditions of Theorem 6.5 are necessary for guaranteeing MCSGPC stability; 

they ensure that predicted inputs will not violate the actual constraints for all possible 

future disturbances. However, they are in fact a posteriori conditions in that they 

stipulate constraints on A«(1), «(1) given past records; depending on earlier control moves 

and current disturbances, it may or may not be possible to satisfy these constraints at the 

next instant. Another way of viewing the problem is this: in the absence of disturbances, 

STF at t guarantees STF at t+1 (and any subsequent time). Indeed (for no set-point 

change), all one has to do is continue using the future inputs computed at t; by Definition 

6.1, this would be accomplished by selecting ua)(t+l)=ua)(t+l\i). However, with 

disturbances, this will not be enough because at t+1, £ and ff+J come into play, and as 

a result, a vector, say/B(f„fr+1), will be added onto um(t+l) which is not accounted for 

by um(t+l\t); a similar vector will effect the future control increments.  The limits of 
—» 

(6.34)-(6.36) will be reapplied at f+1 and will have effectively shifted one step in time; 

given the monotonically increasing nature of the elements of F? and if (Corollary 6.4), 

this time shift will make more control authority available to Au[1)(t+1) and w,(1)(? +1) than 

was available to Aui+l
a\f) and ui+l

a\t). However this may not be enough to prevent 

STIF at t+1 if/(rf,r«+i) exceeds the size of the increase in control authority. For 

example, compare the authority available to Aw2
(1)(r) and A«x

(1)(r+1), the second element 

of K
(1)

(0 and the first element of «(1)(r+l); the upper bounds for these control increments 

are given by R-R2
#, and R-R/, respectively and thus indicate an increase in authority of 

R2-R* due to the shift in the upper bounds and also an equal amount due to the shift in 

the lower bounds. The argument here is that if the modulus of the first element of 

/*«(&&+I) 
is greater than R2-R* then, depending on the signs of f„ £+1 and how close 
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A«i(1)(f+1 \t) is to its limit of R-R2* or -R+R2\ MCSGPC may become infeasible at f+1 

even though it was feasible at t. To prevent such a problem from occurring, one needs 

a priori feasibility conditions which not only ensure that predicted inputs will not violate 

the actual constraints for all possible future disturbances, but also ensure that MCSGPC 

(with the borders) will remain STF at the next instant. To that end, we: i) derive 

expressions for/4„ and/B; ii) give the relationship between Aum(t+l), ua)(t+l) and 

Au(1)(t+l\t), u(l)(t+\\t); iii) redefine borders which are at least as large as those of 

Theorem 6.5, but also, at the next sampling instant, release enough incremental control 

authority to cater for the worst case/A„ and/B; and iv) use these new borders to state a 

priori feasibility conditions. 

Lemma 6.4 Let [c,,cl+v..., c,+n _v c.,cM, ...]be the optimal sequence of c values computed 

at t, and let the same values (except for the first) be used again at the next sampling 

instant. Then the difference that £+1 and, if unknown, £ cause in Aum(t+1) and 

um(t+l) is: 

rt unknown:    fJ^U^^rO^    /u(r„U=-^v#,trO      (6*38) 

rt known:      fJ&J—v^; /.(U = -v*ki <6'39) 

Proof: We require a comparison between the vectors Au(l)(t+l) and u{l)(t+i) and the 

vectors Au(\t+l\t) and u(l\t+\\t). Advancing (6.7) and (6.8) forward by one step, it 

is easy to see that Au{l\t+\\f) and u(l\t+\\t) have the same form as Au{1)(t+l) and 

«(1)(r+l) for £, f,+i=0. However, non-zero £ and £+1 change this, since the first 

element of y at t+\ is yt+l. In particular, the first element of y(2) at t from eqn. (6.7)c 

is given by M0(£+1-£), and this term appears in y,+1 and therefore will also appear in 
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Au(l)(t+l) and ua)(t+l) (through v) as: 

y   .       fAui^U-^iKi^-O^N^rO (640) 
rt unknown:  /^^^»-^V^^-r^-C^^-f.) 

fJttJ<VM-(P&MX.i<vl*N-*N)t,+r-vw?,+i (6.41) 
ft known.  ^(^^^^(^^-(p^^^f^^C^^^-v^r^^-C^v^.r-v^., 

where (P3)! is the first column vector of P3; use has been made of the fact that M0=1 and 

that (P3)i=vN. The z"1 in vt+N has the effect of shifting the elements of vN down by one 

place, thus vz_iV-viV=-vA2V; the effect of Q"1 on the other hand is to cancel the "A" from 

the subscript of v^, hence establishing the last equality in eqn. (6.41)b. Ü 

Lemma 6.5 The vectors Aum(t+1) and w(1)(/+l) can be written as 

Ad»<f+D=*PKt+i\t)iTa 0„W4„;       «(1)(r+i)=«(1)(^i|/)+[rö $Jp+fu     (6.42) 
-» -► -» -» 

where x is an arbitrary vector of conformal dimensions. 

Proof: By Lemma 6.3, eqn. (6.42) holds true for x=0 if the predicted control law 

computed at t were to be continued at t+1. However at t+1, one is at liberty to change 

the current and future values of c, namely one can change the vector [cT cjr, say by 
—* 

a vector x. The effect of JC on Aum and «(1), as dictated by eqns. (6.7),(6.8), is that 

given by the 2nd term on the RHS of eqns. (6.42)a,b. □ 

Lemma 6.6 For a given N(z) (satisfying (6.5)c), let R*, U* be defined as 

rt unknown:   R?=0, R*=R?.l+2d\Ni_2\;   U*=0, Uf=Uf.l+2d\N0+...+Ni_2\ (6-43> 

ft known: jtf-0, Rf^-MN^-N^; U?=0, U?=U?-i+d\N„\ z=2,...,n„ (6.44) 

then such Rf and Uf are greater than or equal to the corresponding borders of Theorem 

6.5, and the differences, Rf-Rj and Uf-U^, define least upper bounds for the moduli 
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of the (/-I)* element of the corresponding/^ and/„ over all possible £ and £+1. 

Proof: The borders of eqn. (6.44) and (6.36) are precisely the same, whereas those of 

(6.43) are greater than or equal to those (6.35); this follows from a straightforward 

application of the triangle inequality. Finally the differences Rf-Rj and Uf-Uj define 

least upper bounds on the size of the elements of/Au and/u because the largest values that 

| £+1-£| and | £+11 can assume are 2d and d. D 

Henceforth, we shall use the borders of eqns. (6.43),(6.44) in place of those of 

(6.35),(6.36), and by MCSGPC, we shall refer to the following algorithm: 

Algorithm 6.1 (MCSGPC with disturbances) 

This is identical to Algorithm 4.4 with constraints (2.28) replaced by (6.34) with Rf and 

Uf as given in eqns. (6.43) or (6.44). 

Theorem 6.6 (A priori feasibility conditions) Given STF at t, MCSGPC will be STF at 

t+i for all i> 1 and will give feasible AM and u over all possible unknown disturbances. 

Furthermore, for a given N(z) (satisfying (6.5)c), the borders of Lemma 6.5 define the 

smallest borders for which continued STF can be guaranteed for all allowable future 

disturbances. 

Proof: First we prove sufficiency, namely that the borders of Algorithm 6.1 guarantee 

that if MCSGPC is STF at t, it will be STF at t+1 and hence at all subsequent times and 

will give feasible A« and «. Next we establish necessity, by showing that STF cannot 

be guaranteed for smaller borders. 

153 



(Sufficiency) The assumption of STF at t implies that Aum(t), u(l)(t) which satisfy 

constraints (6.34)c,d with R*, V as per Lemma 6.5 exist and therefore that MCSGPC 

will choose such vectors. By Lemma 6.5, we also have that the borders of Algorithm 

6.1 are greater than or equal to those of eqns. (6.35),(6.36) and hence by Theorem 6.5, 

Au(t), u(t) will be feasible over all possible unknown disturbances. Furthermore, 

satisfaction of the constraint on Aum(t) ((6.34)c) implies that: 

-R1+R*+(ER*-R") = -Rl+ER* < AtP\t+l\f)<R\-ER*=Rl-R*-(ER*-R*)     (6.45) 

where E is a matrix such that ER* is the vector comprising the 2nd, 3Id,...,nB
th,»„dl 

elements of R*.  Hence, from eqn. (6.42) for x=0, we have: 

-Rl+R'-if^-iER'-R*)} < AM^f+l) <Rl-R*+{f^-(ER*-R*)}       (6.46) 

However, by definition, (Etf-R^^R^-R? for i=l,...,nu-l and 0 for i=nu, so by 

Lemma 6.5, the elements of the vector inside the curly brackets are non-positive; hence 

(forx=0) Au(l\t+1) satisfies constraints (6.34)c and MCSGPC is STF at t+l. Clearly, 

this argument carries over to t+2, t+3, etc, and similar arguments apply to «(1). 

(Necessity) The proof given above concerns sufficiency only because the extra 

degrees of freedom available at t+l, encapsulated in the vector x, have not been 

deployed; x has been taken to be zero. Now we show that it is not possible to use x to 

counteract the effects of/A„ and/„ with the view to enabling the use of smaller borders. 

First note that for the case of £ known, the new borders (eqn. (6.44)) coincide with those 

of eqn. (6.36) in Theorem 6.5, and hence it is clear that smaller borders would lead to 

MCSGPC solutions which do not satisfy the a posteriori conditions; thus the borders of 

eqn. (6.44) cannot be made smaller. For the case of £ unknown, /A„ and/„ are unknown 
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at t, and their effects on A«(1)(?+l) and um(t+l), which define the borders at t, cannot 

be decreased by the deployment of a non-zero x at t+1. □ 

6.3.2 Stability properties of MCSGPC with disturbances 

Here, we first give conditions on d (or R and U) which are necessary for the 

implementation of MCSGPC and then show that the algorithm: i) is guaranteed stable 

and ii) gives asymptotic tracking for disturbances which reach a steady-state value. 

Corollary 6.5 For a given N(z) (as defined by eqn. (6.5)c), STF can be achieved, and 

asymptotic tracking can be guaranteed, only if 

,     R                               U             \.U-\$f-U0\] 
£ unknown:   ^<min{ ,  j-i-* j    (6.47) 

2VNil 2l\iNj\    2I|^|+|?^I 
<     j=\ i     j< 

R u [U-\^.r-U0\] 
t, known:   d<min{-—,—, ; = r, —--p—r,     „ , ,T

fc.(1), ^ ._, }    (6.48) 
l^0l

+l^-iv0h....H-^l   JIW     Z\Nt\+\j;Nt\ 
i i i 

Proof: The denominators of the first two terms of the RHS of (6.47),(6.48) are equal to 

the last elements of JR* and If, which are the largest. Hence, the implied inequalities 

ensure that the bounds of Algorithm 6.1 (inequality (6.34), with the borders of eqns. 

(6.43) or (6.44)) are non-overlapping. Clearly, if this were not so, STF would not be 

possible. The inequalities implied by the third term of the RHS of (6.47) and (6.48) are 

a consequence of eqns. (6.7)g-i and (6.8)g-i, and ensure that the desired steady-state 

value for u, a{i)rlb{\), cannot become infeasible in the presence of disturbances; 

violation of this condition would contradict asymptotic tracking. Ü 
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An interesting corollary to this result is that rather than assess stability given R, 

U and d, one can use information on the size of disturbances and likely set-point changes 

to determine the minimum values of R and U for which stability can be guaranteed. 

Clearly, this has implication in the selection of actuators and can be used to financial 

advantage. 

Lemma 6.7 Assume STF at some t (eg t=0), then Algorithm 6.1 gives bounded input 

bounded output (BIBO) stability for all disturbances satisfying condition (6.2). 

Proof: The prediction equation for the actual y(z) comprises the known ym(z) and 

unknown y(2)(z). It is easy to see from eqn. (6.7)c that as f is bounded, y(2)(z) will be 

bounded. y(l)(z) can be computed from the transfer function model which implies that 

a(z)ym(z)+p2(z)=Hz)Auw(z)+pl(z) where px(z) and/?2(z) account for initial conditions. 

Rearranging this equation and writing the corresponding prediction equations, we get: 

a(z)yw(z)=b(z)Au^(zyp1(z)-p2(z)    =>     CjV=CbAu<l)+PrPv 

Pl-HbAu;  p2=Hj;    ^(zHUV^.O.-.O]/*,;  p2(z)=[l,z-\...,z-n,0,...,0]p2 

The proof is now by contradiction. Clearly, given the SGPC strategy and the assumption 

of STF at start up (which by Theorem 6.6 implies STF at all times), the predicted yw(z) 

reaches a fixed value, H^c«,, in ny steps. Therefore, solving eqn. (6.49)a for ym(z), we 

conclude that b(z)Aum(z)+p1(z)-p2(z) has a(z) as a factor. Assume that y is going 

unbounded; then, as Ha has full column rank, p2(z) goes unbounded. On the other hand, 

constraints (2.28) imply that Au is bounded and therefore p2(z) will dominate over 

b(z)Au(1)(z)+p1(z). This in turn implies that/?2(z) itself has a(z) as a factor; but sincep2(z) 

and a(z) have the same degree, p2(z) must equal ixa(z), with ^ an arbitrary scalar. 
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Rewriting this in matrix form gives Hj=fi[ao,av...,an,0,...,0]T- H* has full column 

rank, hence the solution for y (if it exists) is unique. Furthermore, it is easy to see that 

this unique solution is given by y=-/j,[l,..., If. By the assumption of unboundedness, \K 

must be unbounded and therefore />2(1) must be unbounded. However, by applying the 

final value theorem to (6.49)a, we have that the steady-state value of y(1)(z), 0(1)0^, 

equals [biVAu^iV+pW^lWail), which is finite. As fc(l)Aw(1)(l), />,(1), and a(\) 

are known to be finite, p2{\) must be finite. This establishes the contradiction, sov 

cannot go unbounded. The proof is completed by noting that y contains the actual values 

of the output. D 

Lemma 6.8 Assume STF at some t (eg t=0), then providing the disturbance preaches 

a steady-state value, Algorithm 6.1 will have guaranteed asymptotic tracking. 

Proof: From Theorem 6.6, STF at t implies STF for all future time. Hence if preaches 

steady-state, then MCSGPC will force cM to converge to r/b(l), thereby making CSGPC 

feasible and therefore causing Algorithm 6.1 to revert to CSGPC. Finally, the integral 

action of CSGPC will ensure that the output converges to the correct value. D 

Theorem 6.7:   Assume STF at some t (eg t=0), then Algorithm 6.1 is stable and, 

provided f reaches a steady-state value, will have guaranteed asymptotic tracking. 

Proof:  This is a natural consequence of Lemmata 6.6 and 6.7. □ 

In concluding this section, we point out that the borders of Theorems 6.5-7 are 

proportional to d, so that choosing d large would limit the control authority available for 

the optimization of performance. On the other hand choosing d small might not account 
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for all possible disturbances and would increase the likelihood of instability; the "optimal" 

choice for d is a matter of engineering judgement. 

6.3.3 Utilizing available degrees of freedom 

The previous development still has some freedom of choice; the first is in N(z), and the 

second is in x. 

6.3.3.1 Optimization of the borders 

The solutions M*(z), A?(z) of bezout identity (2.4) do not appear in eqn. (2.2) and 

so, in the absence of disturbances, do not effect the prediction equations and thus do not 

effect MCSGPC. Similarly, the solutions M(z), N(z) of eqn. (6.5)c are not unique and 

also do not effect ym, A«(1) (but do effect j(2), Aw(2)), and hence the question arises as 

to whether the freedom in the choice of M and N can be used to advantage. The answer 

to this is contained in constraints (6.34), according to which the future control moves are 

seen to be restricted by the vectors Ä* and If. To optimize performance, one needs to 

maximize the intervals of (6.34); this implies that one needs to make the elements of JR* 

and If as small as possible. In this section, we explore this issue and suggest algorithms 

for the optimal choice of M and N. The reader is reminded that although the solutions 

M(z), N(z) of eqn. (6.5)c and the solutions Af (z), lf(z) of eqn. (2.4) belong to the same 

family (they satisfy the same identity), as explained earlier, they can be chosen to be 

different; thus the degrees of freedom in M(z), N(z) and those in Af(z), N*(z) can be 

deployed for different purposes. 

6.3.3.1.1 The degrees of freedom and the cost. The totality of solutions to eqn. 

(6.5)c is given as N(z)=X(z)+a(z)Q(z), and M(z) = Y(z)-z1b(z)Q(z), where Q denotes a 
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polynomial, and Xand Fare the minimal order solutions for Nand M.  Thus we have: 

#,=(«& +«,-10,+... +«oß,)+*,;     Mr■\KxQ*J*i-&+-• • +*oO«-i)+Yi    (6'50) 

where the subscript / is used to denote coefficients of the f* power of z1.  Clearly, the 

g,'s denote the available degrees of freedom which can be used to minimize the elements 

of It and If.   Now, from eqns. (6.43),(6.44), it should be apparent that the optimal 

choice of Q is different for the minimization It than it is for if, and indeed is different 

for the minimization of the different elements of It or If.    Thus, the general 

optimization problem can be posed as: 

n^Ii JQ '■>       JQ~ 

WRR* 

WVU* 
(6.51) 

where WR, Wv are two diagonal matrices of weights intended to adjust the emphasis 

between the different elements of It and If. For example, for a problem with stringent 

rate constraints, WR could be chosen to be larger than Wv. For most practical 

applications, given the monotonically increasing nature of the elements of both Ä* and 

If, a simple and sensible strategy would be to place a penalty on the largest (the last) 

element only of It and if for which the cost assumes the form: 

ft unknown:      7Q'=| [wR(|iV0| +... + |JVt|), w„(|iV0|+... + |iV0+...+iVJt|)]L (6*52) 

ft known: JQ'*\ [wR(\N0\ +\NrN0\ +... + I -Nk\), wv(\N0\ +... + |^l)]L      (6'53) 

Without loss of generality, we present the minimization of JQ' for £ known only. 

6.3.3.1.2 Rate constraints or absolute constraints only. Consider rate or 

absolute limits only, say rate limits only. Then wR in eqn. (6.53) can be taken to be 1 

and wv=0; and so, using eqn. (6.50)a, JQ' can be written as the 1-norm of a linear 
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functional of v0, the vector of coefficients of Q: 

JQ' = \\FvQ+h\\x;     F^-a,^-«,^,^,^];     hrXt_rXt_2    (6.54) 

where Ff denotes the /""row vector of F; no coefficient can have a negative index, and 

all coefficients with indices which exceed the order of a(z) or X(z) are zero.   This 

problem can be solved using linear programming (see, for example [11]); here, we 

develop briefly a particular implementation of the procedure for the minimization of JQ'. 

First, note that, since the degree of N(z) is always greater than the degree of Q(z), F will 

have more rows than columns, so we can write: 

Fv +h-w   «  FiW*i   „     VVOT*!) (6.55) 
tvQ+n-w   «♦  F2vQ+h2=w2   

n  A'w=b'; A'=[Ff-1   -I\, b'-A'h 

where the subscripts 1 and 2 indicate a partition of eqn. (6.55)a into the first nQ+\ 

equations and the remainder, with nQ+\ being the dimension of vQ; Fx is a square lower 

triangular matrix with l's along its diagonal and is invertible. Now, define a non- 

negative vector z (as shown below) which is twice as long as w and is such that the top 

half equals w with all negative elements replaced by zero and the bottom half equals -w 

with all (originally) positive elements replaced by zero.  Then solve A'w=b' to get: 

w=Pz; P=[Ik+2   -/w];       z=zp+Kv>0 (6.56) 

where zP denotes a particular solution of A'?z=V (z^could be taken to be the vector of 

positive and negative parts of h, s.t. PZp=h), and K is a matrix representation of the 

kernel of A'P. 

Theorem 6.8: The optimal solution, v\ of the linear programming problem: 

min/rv,   s.t. -Kv<zp where    fT=lTK (6.57) 
V 

yields the vector vß* which minimizes the cost JQ' of eqn. (6.53) for wR=l, wv=0 as: 
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Vß =F1-
1(wl* -Ä,); V=/\z*;        z*=V*v* (6-58) 

Proof:  Since z comprises the positive and minus the negative parts of the elements of 

w=FvQ+h, the sum of the absolute value of the elements of w can be written as the sum 

of the elements of z: 

JQ' = Ikli = l7z = lrz/lr^ = l\+fTv (6'59) 

The minimization of JQ' requires the minimization of/v (lTZp is constant), as per the cost 

part of (6.57). By definition, z must be non-negative (eqn. (6.56)c); this is the constraint 

part of (6.57). □ 

The manner of solution presented in Theorem 6.8 is chosen for clarity; modifications to 

this can lead to more efficient implementations, but Theorem 6.8 is easy to implement 

and involves a small computational burden, especially for low order Q(z). We also note 

that the treatment of the case of input absolute constraints only is similar. Finally we 

remark that in some cases there are well defined limits on the optimal value of JQ'; the 

result below, considers two cases. 

Corollary 6.6 For a(z) stable, the optimal value of the cost of (6.53) over all stable Q 

is 1/16(1)| for wR=0, wv=\, and 0 for wR=l, wv=0. In general, these values are not 

attainable for a(z) unstable. 

Proof:  We consider the two cases separately: 

Case 1: wR=0. wv=l. From the definitions of a(z), b(z), and bezout identity (6.5)c for 

z= 1, we have N(l) = l/b(l). Combining this with the triangle inequality we deduce that: 
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V\b(l)\=\N(l)\=\I,Ni\<ll\Ni\=\\vN\\l (6.60) 
i i 

Thus, 11/Z?(1) | is a lower bound on the cost of eqn. (6.53) for wR=0, wv=l. Next we 

show that for a(z) stable this bound can be attained, ie. that there exists a stable Q for 

which Nt share the same sign for all i. Let q(z)=a(z)Q(z), assume that b(\)>0, and 

consider the conditions implied by A^>0; these, given that N(Z)=X(Z)+OL(Z)Q(Z) = 

X(z)+A(z)q(z), can be written as: 

-X0<q0;    -Xl+q0<qi; ... -Xk+qk_<qk;     qkH<qkH+l   for   *=0,1,... (6.61) 

The implied Q(z)=q(z)/a(z) must be stable, and so #, must tend to zero as j tends to 

infinity.  This, together with the last inequality of (6.61), imply qk+i=0 for i=l,2,..., 

hence (6.61) reduces to: 

-X0<q0; -X^q0<qi; - -Xk_2+qk_3<qk_2; -Xk^qk_2<qk_,<Xk {&62) 
qk+i=0 for 1=0,1,... 

On account of the assumption that b(l) >0, this set of conditions admits at least one 

solution, given by ^,.i=-X,M+^-.2 for i=0,l,...,k and ^+,=0 for /=0,1,... The same 

proof holds for b(l)<0, only now, the direction of all the inequalities must be reversed. 

The same arguments apply when a(z) is unstable, but now q(z) must cancel the 

unstable poles of a(z), thus implying some equality constraints which, in general, will not 

be consistent with (6.62). 

Case 2: wR=l.wv=0. As with the previous case, we have that N^Xi+qrq^, and clearly 

the first k of these can be set equal to e; the last coefficient will be constrained by the 

condition N{\) = \lb{\) and will be given as Nk+1 = l/b(l)-ke. Thus for e=l/[(k+1)*(1)], 

all the coefficients of N(z) will be equal to e, so that JQ' will reduce toJQ'=\N0\ + \Nk+1\ 

=2e=2/[(k+l)b(l)]. This value of the cost can be made to be arbitrarily small as k 

becomes arbitrarily large.  Such arguments cannot be used for the case of a{z) unstable, 
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because once again, the coefficients of q(z) will have to satisfy an additional set of 

equality constraints that ensure the cancellation of the unstable poles of a(z). □ 

6.3.3.1.3 Rate and absolute constraints.   In the presence of both types of 

constraints, the cost JQ' (for £ known) may be written as: 

■v- II#VH. 
Next, by defining 

Gi
r=wJ([a,_1-aJ_2,...,a0,0,...,0] 

'Hi
T=wl^al_val_v...tao,0t...i0] 

F=[GT  Hi}7;      h=[f   of 

we can reiterate eqns. (6.55) and (6.56) and state the following result. 

(6.63) 

(6.64) 

Theorem 6.9: The optimal solution, [vT, p*f, of the linear programming problem: 

min/7 

V,P 

s.t. 

P'K   -1 

-P'K  -1 

-K     0 

r -i      \-p'z» v p 

<    P\ 
p\ z (6.65) 

rio - o i],    F= 

yields the vector vß* which minimizes the cost JQ' of eqn. (6.53) as: 

1-1,0-0,1 -1,0-0 
0-0,1-1,0-0,1-1 

v^F^iwC-hJ; Wi^z*;       z*=zp+Kv' (6.66) 

Proof: With the definitions above, it is easy to show that the cost JQ' is given as: 

^'=I^IL=l^+^v|L <6-67) 
If the value of this oo-norm were p, then both elements of P'(Zp+Kv) should lie in [-p,p]: 

-pl<P'zp+P'Kv<pl (6-68) 

This, together with eqn. (6.56)c, leads to the constraint part of (6.65).   Our aim is to 

minimize the JQ' of eqn. (6.67), which has been assumed to be equal to p; the cost part 
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of (6.65), for the particular choice off, calls for the minimization of this value p.   D 

Theorems 6.8, 6.9 address the problem of minimizing the cost of eqn. (6.53), but can 

be extended easily to handle the general cost of eqn. (6.51); the procedure is exactly the 

same, but the expressions for the various matrices and vectors become more complicated. 

Example 6.3 Consider a model for which the numerator and denominator polynomials 

are given as: 

ö(z)=l-2.2z-1+0.09z-2+0.252z'3;    ^)=2+0.45z-1+z"2 (6,69) 

and let nc=3, R=0.05, Uo=0, 17=0.3, d=0.001, nQ=\, wR=2, wv=i (for £ unknown) 

and wR= 1, wv=2 (for £ known). Then the minimal order solution of the bezout identity 

of eqn. (6.5)c, X(z), and the optimal choice for Q(z) (as per Theorem 6.9) are: 

Z(z)=1.4409-1.219U-1-0.0625z-2+0.1306z-3;     o^(z) = -0.4986-0.3763z_1   (6-7°) 

For this example and the particular choice of weights, wR and wv, the optimal solution 

for Q is the same for both £ known and unknown. The benefit derived from this optimal 

choice of Q(z) is illustrated in Figure 6.6 (for £ unknown) and Figure 6.7 (for £ known) 

which depict the actual constraints, as defined by R, U0 and U (solid lines), and the a 

priori constraints, for Q(z)=0 (dash-dotted lines) and ß^(z) (dashed lines); in both 

figures, the left plot concerns rate limits, whereas the right plot deals with absolute input 

constraints. For increased detail, the right plots show the upper bounds only; the lower 

bounds are symmetrical about U0=0.  Clearly, Qopt(z) has increased the interval within 

which the vector of future control moves must lie, thus allowing MCSGPC more freedom 

to improve performance; this is illustrated in the design study of Section 6.3.4. 
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6.3.3.2 Deploying the a priori degrees of freedom 

MCSGPC, as per Algorithm 6.1, constrains the current value of c, c, (the first 

element of c), as well as all the future values of c, ct+i for i= 1,2,... ,nc-\ (all remaining 

elements of c), according to the a priori conditions (and hence the a posteriori conditions 

also) of Theorem 6.6. This is convenient in that it keeps the complexity of the relevant 

optimization problem to a minimum. However, cl+i can actually be changed at the next 

sampling instant, ie. at t+1, and this extra freedom can be deployed to lessen the 

feasibility burden on c,+l at the current time, t. Of course this deployment refers to i >0 

only, because ct will be chosen and implemented now; no further corrective action will 

be available in the future with respect to this value of c. These ideas can be made 

concrete with reference to eqn. (6.42) of Lemma 6.4 according to which we may write: 

c(t+l\t) 

cjt) 

(6.71) 
+ JC 

where the definitions of c(.) are analogous to those given in Definition 6.1; in particular 

the leading elements of c(t+l\t) are given by the 2nd, 3rd,..., »* elements of c(t) and the 

last element is cK{f). The argument made is that the vectors Aum(t+1) and um(t+l) of 

eqn. (6.42) depend on x, and so the extra freedom available in x can be used to relax the 

feasibility constraints imposed on c(t).    In this context, the feasibility requirement 
—» 

becomes that: (i) Au(l)(t), u(l\t) lie between actual constraints (2.28); (ii) A«(f+1), 
-► -» -» 

u(t+l) also lie between the actual constraints; (iii) requirement (ii) can be satisfied at the 

next time instant (and hence at all subsequent times). Requirement (ii) implies that 

Au(1)(t+1) and um(t+l) should be subject to the appropriate a posteriori feasibility 

conditions; requirement (iii), in conjunction with (ii), implies that Aa(1)(?+1) anda(1)(?+l) 
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should be subject to the appropriate a priori conditions; whereas condition (i) has the 

effect of replacing the bordered inequality (6.34) by the wider constraints of inequality 

(2.28). In other words, the burden of future feasibility is, in effect, passed from ct+i, 

i>0 onto x through Aa(1)(r+1) and um(t+l). On the surface, it appears that c{t) is only 

subject to the constraints implied by the actual limits and therefore takes no account of 

disturbances. This is exactly what one should expect with respect to cl+i i>0, because 

by eqn. (6.71), x can alter these values of c; but one may feel concern with respect to 

c„ because x cannot alter its effects. However, Aum(t+l \t), um(t+l\t) depend on ct, 

and thus the a priori constraints imposed on A«(1)(?+l), u(l\t+\) constrain, indirectly, 

the values that c, is allowed to assume. Thus the first appearance, that c(t) is subject to 

the actual constraints only, is not correct; indeed what is happening is that c(t) is subject 

to constraints which are tighter than those implied by the actual limits, but looser than 

those implied by the bordered constraints of Theorem 6.6. One can therefore expect 

improved performance; the price to be paid for this is increased computational 

complexity:  MWLS now involves x as well as c(i). 

It was stated that, for Au(t+l), u(t+l) to lie within the actual constraints and for 

this to be possible at the next time instant, Aum(t+l) and u(l\t+\) should be subject to 

the appropriate a priori conditions. The result below implements this new requirement. 

Lemma 6.9 At time t, the guarantee of i) STF at f+1, ii) its maintenance at all 

subsequent time instants, and iii) feasibility of Au(t+l), u(t+l) is ensured if a vector x 

can be found such that: 
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-Rq+R#<Aum(t+l\t)+\Ta   0jx        <Rq-R* 
—» 

-Uq+U*<   um(t+l\t)+[Ta   ea^-U0q<Uq-U 
(6.72) 

where: 

rt unknown:   R? =2d\N0\, R? =R*.X +2d\N^\; 

Uf=2d\N0\, Uf^+ldlN^+N^     f>l (6>73) 

ft known:      *N*|JV0|, Rt*=Rl.1+d\Nl_1-N.<\; 

U?=d\N0\, D*=üÜW|tfM| 

Furthermore, eqns. (6.73) define the smallest borders for which STF at t+l, t+2,... can 

be guaranteed. 

Proof: This parallels that given for Theorem 6.6, except that now eqns. (6.7) and (6.8) 

must run one step forward in time, and the vectors Aa(1) and um must be replaced by Au(l)(t+l) 

and um(t+l) (eqn. (6.42)). Clearly, the terms fAu and /„ are unknown and must be 

removed from A«(1)(?+l) and u(l)(t+l) and included in A«(2) and «(2) (and thus included 

in the borders).  The remainder of the proof is identical to that of Theorem 6.6.       D 

Algorithm 6.2 (MCSGPC with disturbances) 

This is identical to Algorithm 4.4 with the added constraint of (6.72),(6.73). 

As noted above, this algorithm removes the borders of Algorithm 6.1 (thus returning to 

the original MCSGPC constraints), but indirectly inserts an additional constraint on ct via 

(6.72). 

Theorem 6.10 Algorithm 6.2 is guaranteed to remain stable in the presence of the 

disturbances of eqn. (6.1) and condition (6.2). Furthermore, if the disturbance, £, 

reaches a steady-state, then Algorithm 6.2 has guaranteed asymptotic tracking. 
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Proof: This runs along lines similar to the arguments given for Theorem 6.7 (Lemmata 

6.6 and 6.7), except that now, STF and disturbance handling are ensured by Lemma 6.8, 

instead of Theorem 6.6. D 

6.3.4 Design study 

In this section, we describe a design study which illustrates the stability properties of 

Algorithms 6.1 and 6.2 as well as demonstrates how optimizing Q(z) and deploying the 

vector x (of Algorithm 6.2) leads to better performance. The a(z), b(z) polynomials, as 

well as the constraint limits to be used, are the same as those given in Example 6.3. The 

choices for the parameters nc and X are 3 and 1 respectively, whereas the disturbance, 

f„ consists of a negative impulse of 0.007 applied at t=A followed by a positive impulse 

of 0.014 applied at t=5 and results in the £ signal shown in the left plots of Figure 6.8- 

Figure 6.12 (scaled by a factor of 20). The simulation results for MCSGPC are shown 

in Figure 6.8 and can be seen to be unstable. In this figure and throughout this study, 

the left plot will depict output responses (solid lines), set-point trajectories (dashed lines) 

and disturbance signals (dash-dotted lines, scaled by 20), whereas the right plot will 

depict the input trajectories (solid lines) and the trajectory of the control increments 

(dash-dotted lines, scaled by a factor of 6). The instability of Figure 6.8 is easy to 

explain: at the time when the disturbance is applied, MCSGPC is driving hard against 

the rate limits and so no control action is available for handling the disturbance. As a 

consequence, the problem becomes STIF, and this in turn results in instability. 

In contrast to this, Algorithm 6.1 reserves just enough control action so as to 

handle the worst case disturbance sequences and hence can cope well with the situation 

described above.  This is illustrated in Figure 6.9 (for £ unknown) and Figure 6.10 (for 
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£ known); the responses of both figures are good, but those of Figure 6.10 are of course 

better, since the algorithm makes use of knowledge of £. 

These plots are for Q(z)=0, and further improvements in the response can be 

brought about through the use of the optimal Q(z) of eqn. (6.70)b; these simulation 

results are shown in Figure 6.11 and Figure 6.12 and can be seen to be better (faster) 

than those presented in Figure 6.9 and Figure 6.10. Further evidence of this 

improvement is presented in Table 6.1, which records the values assumed by the cost: 

runtime 

Jtolar E (rt+rytJ
2+MAuf (6-74) 

where r, denotes the set-point sequence defined by r,=0 for /=1,2,...,7, and r,=l for 

i>l. Table 6.1 also compares the performance of Algorithm 6.2, for which the results 

are similar to those of Figure 6.9-Figure 6.12 and, therefore, are not shown. 

£ unknown £ known 

Algorithm 6.1 ö=o 1.0084 0.8002 

Q=QoP, 0.7100 0.7279 

Algorithm 6.2 ß=o 0.9857 0.7744 

Q=Qm 
0.6768 0.6554 

Table 6.1: Comparison of costs using Algorithms 6.1 and 6.2 with Q=0 and Q=Q, opt 

Clearly, utilizing the degrees of freedom available in Q brings about a very significant 

reduction (about 30% for £ unknown and about 9% for £ known) in the cost of eqn. 

(6.74); the deployment of the degrees of freedom in the vector x of Algorithm 6.2 brings 

about an additional, but smaller, improvement (about 5% for £ unknown and about 10% 

for £ known). 

In conclusion, therefore, both Algorithms 6.1 and 6.2 produce results which 

169 



illustrate the stability and asymptotic tracking properties of Theorems 6.7 and 6.10. 

Furthermore, the algorithms produce some very good responses which are further 

improved through the use of QopI. Finally, Algorithm 6.1, though marginally 

outperformed by Algorithm 6.2, is numerically simple and, therefore, is the more 

attractive alternative. 

6.4 Chapter summary 

Disturbances are omnipresent and, for systems subject to constraints, must not be 

neglected. In this chapter, we have defined the inputs which are necessary to reject 

future bounded disturbances, and then used this knowledge to: i) develop explicit apriori 

stability conditions for systems with just one unstable pole, and ii) derive and deploy 

borders in MCSGPC which reserve enough control authority to reject these disturbances 

and yet release enough incremental control authority to ensure that the effects of the 

current disturbance do not make the problem infeasible at the following time instant. 
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Figure 6.3 Example 6.1 - Response with disturbance - d=0.141 
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Figure 6.4 Example 6.2 - Response with disturbance - without respecting interval (6.17) 

Figure 6.5 Example 6.2 - Response with disturbance - respecting interval (6.17) 
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Chapter 7 

Conclusion 

Here, we summarize the important results of this thesis and then briefly discuss some of 

the remaining open problems. 

7.1 Thesis summary 

The problem of feasibility was investigated in Chapter 3, and necessary and sufficient 

conditions for stability were developed. We derived a priori stability conditions which, 

for systems with only one unstable pole, provided explicit conditions for retaining long 

term feasibility (LTF). Obviously, any control strategy which ignores these conditions 

and violates them will be unstable. Later (in Chapter 6), we also showed that these 

results carry over to the more general case of systems which are subject to disturbances 

and showed how they could be used to avoid instability. We then (in Chapter 3) 

developed general stability conditions for systems with any number of unstable poles; the 

result relies on the use of linear programming, but, for a given number of degrees of 

freedom, it provides conditions which are both necessary and sufficient for stability. 

The results of Chapter 3 provided conditions on the current input which guarantee 
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stability, but they did not, in themselves, lead to an algorithm which yields an optimum 

choice for that input. In Chapter 4, we considered an alternative procedure for dealing 

with short term infeasibility (STIF) by focusing on CSGPC and proposing modifications 

which maintain stability when, due to set-point changes, CSGPC encounters STIF. This 

was first implemented by simply minimizing the deviation of the predicted steady-state 

value of the output (the slack variable, s„) from its target value; while this approach has 

the advantage of simplicity, it ignores transient errors. For Mixed-Objective CSGPC, 

we shifted the objective to the minimization of the infinity-norm of the predicted errors. 

The final modification in Chapter 4, MCSGPC, was similar, but retained a two-norm cost 

and guaranteed an asymptotic return to short term feasibility (STF) by adding a slack 

variable end-point constraint. The modified algorithms are activated only when CSGPC 

is STIF, and guarantee recovery of STF; this, together with the properties of CSGPC, 

were shown to guarantee stability and asymptotic tracking. 

In Chapter 5, we looked specifically at the necessity of previously proposed 

terminal constraints. While it had been recognised that, for the purposes of stability, one 

actually only needs to force the output errors to be stable, thereby turning the predicted 

output error trajectories into infinite length sequences (ILS), we showed that it was also 

the case that one need only force the input increments to be stable, with the effect of 

getting predicted input increment trajectories which are ILS; we proposed CaSC, CaML, 

and IHSPC which implement these changes in philosophy and derived two procedures for 

calculating the infinite horizon cost involving the sum of the square of the ILS errors and 

input increments. Then, through the use of suitable input horizon bounds, we developed 

simple, but efficient means of invoking input constraints over a infinite horizon by 

enforcing them over a finite horizon and subsequently implemented these constraint 
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horizons in CCaSC. 

The final results of this thesis, presented in Chapter 6, dealt with the inherent 

clash between disturbances and constraints. We first considered how the effects of 

disturbances could be propagated forward in time and then derived necessary and 

sufficient limits on the size of the future inputs which are required to reject all possible 

(norm-bounded) future disturbances. We modified the constraint limits of CSGPC 

accordingly, so as to reserve the necessary control authority to reject these disturbance 

effects and to ensure that the problem would continue to be feasible at all subsequent time 

steps, and thus we developed an algorithm with guaranteed stability and asymptotic 

tracking for systems subject to disturbances. 

7.2 Open problems 

This thesis has dealt exclusively with single input, single output systems, but the results 

presented here can easily be extended to multivariable systems. Additionally, no results 

were presented on the effects of model uncertainty for the control of systems which are 

subject to physical constraints; guaranteeing stability under these conditions will prove 

to be a difficult task. Other areas, for which extension of these results has yet to be 

addressed, include constrained control of time varying systems, non-linear systems, and 

continuous time systems. 
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