
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

/&s& <^&ss^y-&e-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

flyrfestuf JwJ^/^<4j

PERFORMING ORGANIZATION
REPORT NUMBER

MSßZ-
SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STEET, BLDG 125
WRIGHT-PATTERSON AFB OH 45433-7765

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Wf/sf/!?,

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

/03
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

WTC QUALITY INSPECTED

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR -
TA -
WU -

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

* U.S.GPO: 1993-0-336-043

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."
See authorities.
See Handbook NHB 2200.2.
Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA-
NTIS -

Leave blank.
Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

This thesis, titled "Generalized Predictive Control in the Presence of Constraints," is
submitted to the Department of Engineering Science, Oxford University, in partial
fulfilment of the requirements for the degree of Doctor of Philosophy.

Jesse Ross Gossner
Merton College
Trinity, 1996

Abstract
Several predictive control strategies which handle physical system constraints have

been proposed in the literature. The difficulty with these approaches is that, in an
attempt to optimize output tracking over a finite horizon and guarantee stability, they
define an optimization problem which can be infeasible; in the case of systems with poles
and/or zeros outside the unit circle, this can lead to instability. In this thesis we develop
stability conditions which ensure the continuing existence of a stabilizing solution and
propose improved algorithms which overcome finite horizon infeasibility and give
stability and asymptotic tracking.

Previous strategies require an assumption concerning the feasibility of making the
output reach its set-point within a finite horizon. Here, we propose two algorithms which
overcome these difficulties; the first does so by mixing two- and infinity-norm objectives
and the second retains only a two-norm objective, but introduces an additional constraint
to ensure stability.

We then examine the necessity of the strategy of requiring the predicted errors and
input increments to reach zero within some finite horizon and show that, for a guarantee
of stability, one needs only require these predictions to be stable. We propose algorithms
which implement these relaxed restrictions and thus yield optimizations which, for a
given number of degrees of freedom, utilize the entire class of stabilizing solutions rather
than the sub-class of finite length sequences.

Previous work does not consider the case of systems subject to physical constraints
and disturbances. To guarantee feasibility, any input/output predictions must take into
account the effects of disturbances. The final purpose of this thesis is to derive stability
conditions for systems subject to disturbances, and then to develop algorithms which
reserve enough control authority to reject the effects of bounded disturbances and thus
retain the guarantee of stability.

19961212 027 in

Generalized Predictive Control
in the Presence of Constraints

by

Jesse Ross Gossner

Merton College

Department of Engineering Science
Oxford University

5 June, 1996

Gloria in excelsis Deo

u

This thesis, titled "Generalized Predictive Control in the Presence of Constraints," is
submitted to the Department of Engineering Science, Oxford University, in partial
fulfilment of the requirements for the degree of Doctor of Philosophy.

Jesse Ross Gossner
Merton College
Trinity, 1996

Abstract
Several predictive control strategies which handle physical system constraints have

been proposed in the literature. The difficulty with these approaches is that, in an
attempt to optimize output tracking over a finite horizon and guarantee stability, they
define an optimization problem which can be infeasible; in the case of systems with poles
and/or zeros outside the unit circle, this can lead to instability. In this thesis we develop
stability conditions which ensure the continuing existence of a stabilizing solution and
propose improved algorithms which overcome finite horizon infeasibility and give
stability and asymptotic tracking.

Previous strategies require an assumption concerning the feasibility of making the
output reach its set-point within a finite horizon. Here, we propose two algorithms which
overcome these difficulties; the first does so by mixing two- and infinity-norm objectives
and the second retains only a two-norm objective, but introduces an additional constraint
to ensure stability.

We then examine the necessity of the strategy of requiring the predicted errors and
input increments to reach zero within some finite horizon and show that, for a guarantee
of stability, one needs only require these predictions to be stable. We propose algorithms
which implement these relaxed restrictions and thus yield optimizations which, for a
given number of degrees of freedom, utilize the entire class of stabilizing solutions rather
than the sub-class of finite length sequences.

Previous work does not consider the case of systems subject to physical constraints
and disturbances. To guarantee feasibility, any input/output predictions must take into
account the effects of disturbances. The final purpose of this thesis is to derive stability
conditions for systems subject to disturbances, and then to develop algorithms which
reserve enough control authority to reject the effects of bounded disturbances and thus
retain the guarantee of stability.

in

Acknowledgements
The author is grateful for the guidance, instruction, and support of his supervisor,

Dr. B. Kouvaritakis, and their collaborator, Dr. J.A. Rossiter. The author also wishes
to thank Merton College for administrative support, the U.S. Air Force Institute of
Technology for financial and administrative support and the U.S. Air Force Academy,
Department of Astronautics for sponsorship. Most importantly, the author offers his
thanks and love to his wife, Susan; without her understanding, support, and assistance,
this thesis would not exist.

IV

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures ix

List of Symbols xii

1 Introduction 1

1.1 Thesis overview 2

2 The CSGPC Framework 7

2.1 The SGPC strategy 8

2.2 Robustness analysis and optimization for SGPC 13

2.3 Introducing constraints into SGPC 15

3 Feasibility and Stability for Constrained Control 20

3.1 Systems with one or two real poles 21

3.1.1 Setting up the conditions for feasibility with stability 22

3.1.2 Necessary and sufficient conditions for a posteriori

feasibility 27

3.1.3 A priori conditions for the existence of a stabilizing

solution 37

3.2 Stability conditions for the general case 39

3.2.1 Stability conditions using ILS inputs 40

3.2.2 Illustrative example 44

3.3 Chapter summary 47

4 Modifications to Constrained Stable Generalized Predictive Control 51

4.1 Adding an additional degree of freedom to CSGPC 53

4.2 A stable constrained predictive control algorithm 54

4.3 C-CSGPC 57

4.3.1 The overall strategy of C-CSGPC 57

4.3.2 The C-MWLS algorithm and its properties 59

4.3.3 The stability of C-CSGPC 66

4.4 Mixed-Objective CSGPC 70

4.5 Modified CSGPC 74

4.5.1 The MCSGPC algorithm 74

4.5.2 Convergence and stability of MCSGPC 77

4.5.3 Illustrative examples 79

4.6 Chapter summary 81

5 Cautious Stable Predictive Control 87

5.1 Cautious Stable Control 89

5.1.1 Stability through terminal constraints 91

5.1.2 Simple CaSC and CaML algorithm 94

5.1.3 Robustness analysis and optimization for CaSC 97

5.1.4 Simulation results and comparisons 98

VI

5.2 Infinite Horizon Stable Predictive Control 101

5.2.1 Nominal stable control law 101

5.2.2 IHSPC using a Lyapunov equation 103

5.2.3 IHSPC without using a Lyapunov equation 104

5.2.4 Simulation examples 107

5.3 Application summary - tokamak plasma control 109

5.4 Constrained Cautious Stable Predictive Control 113

5.4.1 Constraint checking with infinite input horizons 113

5.4.2 The constrained CaSC algorithm 121

5.4.3 Illustrative examples and comparisons 126

5.5 Chapter summary 127

6 Stability Results for Systems Subject to Disturbances 132

6.1 Disturbances: the stabilizing loop and the prediction equations 133

6.1.1 Deadbeat disturbance rejection 134

6.1.2 The prediction equations 135

6.2 Explicit stability conditions with disturbances 136

6.2.1 A posteriori conditions for stability with disturbances 137

6.2.2 A priori conditions for stability with disturbances 140

6.3 Adding disturbance borders to MCSGPC 146

6.3.1 Necessary and sufficient MCSGPC feasibility conditions . . 146

6.3.2 Stability properties of MCSGPC with disturbances 155

6.3.3 Utilizing available degrees of freedom 158

6.3.4 Design study 168

6.4 Chapter summary 170

vii

7 Conclusion 176

7.1 Thesis summary 176

7.2 Open problems 178

Bibliography 179

Vlll

List of Figures

Figure 2.1 The stabilizing feedback loop 19

Figure 2.2 Optimized SGPC feedback loop 19

Figure 3.1 Example 3.1 - CSGPC with short term infeasibility - unstable 49

Figure 3.2 Example 3.1 - CSGPC with short term infeasibility - limit of

stability 49

Figure 3.3 Example 3.2 - CSGPC with short term infeasibility - stable 50

Figure 3.4 Example 3.3 - CSGPC with eight degrees of freedom 50

Figure 3.5 Example 3.3 - Algorithm 3.1 with two degrees of freedom 50

Figure 4.1 Example 4.1 - Algorithm 4.1 response 82

Figure 4.2 A contradictory Solution 82

Figure 4.3 A Non-unique Solution 82

Figure 4.4 Feasibility Region (t=6) 83

Figure 4.5 Feasibility Region (t=9) 83

Figure 4.6 Feasibility Region (t=ll) 83

Figure 4.7 Feasibility Region (t=14) 83

Figure 4.8 Example 4.2 - C-MWLS through 50 iterations (t=6) 83

Figure 4.9 Example 4.3 - I „-CSGPC response 84

IX

Figure 4.10 Example 4.3 - Mixed-Objective CSGPC response 84

Figure 4.11 Example 4.4 - C-CSGPC response 85

Figure 4.12 Example 4.4 - Mixed-Objective CSGPC response 85

Figure 4.13 Example 4.5 - MCSGPC response 86

Figure 4.14 Example 4.6 - MCSGPC and RM response 86

Figure 5.1 Example 5.1 - Response and robustness for SGPC, CaML, GPC,

and CaSC 128

Figure 5.2 Example 5.2 - Output responses (p = l) 128

Figure 5.3 Example 5.2 - i/o response and robustness comparison (p== 0.75) .. 129

Figure 5.4 Example 5.3 - Comparison of GPC, RM, and IHSPC 129

Figure 5.5 Example 5.4 - Comparison of GPC, RM, and IHSPC 129

Figure 5.6 Tokamak Application - Modulus comparison of K(z)S(z) 130

Figure 5.7 Tokamak Application - Nyquist comparison 130

Figure 5.8 Tokamak Application - Simulated step response comparison 131

Figure 5.9 Example 5.5 - Comparison with constraints and disturbance 131

Figure 6.1 Example 6.1 - Response with disturbance - d=0.1 171

Figure 6.2 Example 6.1 - Response with disturbance - d=0A4 171

Figure 6.3 Example 6.1 - Response with disturbance - d=0.14l 172

Figure 6.4 Example 6.2 - Response with disturbance - without respecting

interval (6.17) 173

Figure 6.5 Example 6.2 - Response with disturbance - respecting interval

(6.17) 173

Figure 6.6 Example 6.3 - Borders for £ unknown 174

Figure 6.7 Example 6.3 - Borders for £ known 174

x

Figure 6.8 Design Study - MCSGPC with no borders 174

Figure 6.9 Design Study - Bordered MCSGPC (£ unknown, ß=0) 175

Figure 6.10 Design Study - Bordered MCSGPC (£ known, ß=0) 175

Figure 6.11 Design Study - Bordered MCSGPC (£ unknown, Qop) 175

Figure 6.12 Design Study - Bordered MCSGPC (£ known, Q^ 175

XI

List of Symbols

Acronym Description

GPC Generalized Predictive Control

SGPC Stable Generalized Predictive Control

CSGPC Constrained Stable Generalized Predictive Control

MWLS Mixed Weights Least Squares

MCSGPC Modified Constrained Stable Generalized Predictive Control

CaSC Cautious Stable Control

CaML Cautious Mean Level Stable Control

IHSPC Infinite Horizon Stable Predictive Control

CCaSC Constrained Cautious Stable Control

LP/QP Linear/quadratic program(ming)

FLS/ILS Finite/infinite length sequence

STF/STIF Short term feasibility/infeasibility

LTF/LTIF Long term feasibility/infeasibility

LHS/RHS Left/right hand side

DOF Degree(s) of freedom

Xll

Symbol Description

a(z) Open-loop system denominator polynomial

na Order of a(z)

b(z) Open-loop system numerator polynomial

nb Order of b(z)

ny Output horizon

y{z)ly Polynomial/vector whose coefficients/elements are the future values of the

output: yt+i, 0<i<ny

y Vector whose elements are the past values of the output: yH-, 0<i<na

nu Input horizon

Au(z)/Au Polynomial/vector whose coefficients/elements are the current and future

values of the input increment: Aut+i, 0<i<nu

A« Vector whose elements are the past values of the output: Awf_„ 0<i<nb

nc Command horizon

c(z)lc Polynomial/vector whose coefficients/elements are future values of the

command input (DOF available for optimization)

cx Steady-state value of command input (DOF) polynomial, ct+i, for i>nc

nr Reference horizon

nx Initial output horizon

1 Vector of ones: 1 = [1... l]r

0 Vector of zeros: 0=[0...0]r

e{ Vector with the Ith element equal to 1 and all other elements zero: eg.

^[lO.-.O]7"

xm

Symbol Description

e„

H„

u0

u

R

A

v(t)

F_

Toeplitz convolution matrix of p(z): C =

Po 0 0

Po 0

PnB Po 0

0 K ... Po

First n columns of C„

Remaining columns of Cp: Cp = [Tp Qp]

Column sum of Qp: 6P = Qp 1

Pi

0

0

K 0

0 0.

Hankel matrix of p(z): H =

Centre of input absolute constraint limit

Radius of input absolute constraint limit

Input rate constraint limit

"Free" part of normalized constraint inequality

Fixed part of normalized constraint inequality

Constraint feasibility region with nc dimensions

xiv

Chapter 1

Introduction

Model Based Predictive Control (see reviews of [12], [26]) owes its popularity to its

simple strategy (the minimization of the predicted tracking errors and control activity) and

the fact that it can handle system constraints (eg. [46], [52]). Early work ([31], [9], [29],

[6], [7]) lacked a general stability theory, but more recent algorithms ([18], [8], [19],

[27], [44]) provide the missing guarantees of stability and can be extended to handle

system constraints ([33], [53], [23]).

The basis of predictive control is to predict future tracking errors through some

output horizon, ny, as a function of nu non-zero future input increments (and past data)

and then to minimize a cost involving the two-norm of these predicted errors and input

increments. The first optimum input increment is implemented, and then the entire

procedure is repeated at the next time instant with new plant data; this procedure is also

termed receding horizon control. Unfortunately, as originally formulated, this technique

can only be guaranteed to give stable results for special cases. To remedy this, several

strategies which adopt the basic idea of Generalized Predictive Control (GPC) [7] have

been proposed. Constrained Receding Horizon Predictive Control (CRHPC) [8] adds

further terminal constraints, as does a similar algorithm proposed in [27]. Stable

Generalized Predictive Control (SGPC) [19], on the other hand, forms a stabilizing loop

around the system before applying GPC to a closed loop configuration which gives finite

length sequences (FLSs). By using FLSs, the minimization of the error norm gives a

monotonically decreasing cost which guarantees stability and asymptotic tracking.

These properties carry over to the case of predictive control with constraints so

long as the implied optimization problem (a quadratic programming problem in Quadratic

Programming Generalized Predictive Control, QPGPC, see Ref. [46], or a mixed weights

least squares, MWLS, problem in Constrained Stable Generalized Predictive Control,

CSGPC, see Ref. [33]) is feasible. This is a strong assumption because it requires "short

term" feasibility (STF) which means feasibility over the finite horizons. The fact that a

system output can eventually reach a target value without violating any constraints (long

term feasibility, or LTF) does not imply it can do so in ny steps and with only nu non-

zero input increments (STF). What is worse, in some cases, both QPGPC and CSGPC,

like other constrained predictive control algorithms, can, in fact, destabilize what was

originally a LTF problem; by requiring the predicted output to reach its target within ny

steps, it may be necessary to drive the controls and/or their increments at their limits.

If, however, a system is unstable and/or non-minimum phase, these earlier control moves

may require future stabilizing control moves which will not be available within the

existing constraints; this will lead to instability.

1.1 Thesis overview

Chapter 2 presents a brief review of SGPC and CSGPC, the framework under which this

research is carried out.

The problem of feasibility is investigated in Chapter 3, and necessary and

sufficient conditions for stability are developed. These conditions are at first a posteriori

conditions in that they are based on past data; as such, they are only useful for analysis

and do not lend themselves to the purposes of control. We, therefore, consider the

problem of propagating the stability conditions forward in time and thus propose a

procedure for the derivation of a priori stability conditions which, for systems with only

one unstable pole, provide explicit conditions for retaining LTF. Obviously, any control

strategy which ignores these conditions and violates them will be unstable. Later, we

will demonstrate the use of these explicit a priori conditions in the presence of

disturbances. Chapter 3 then goes on to develop general stability conditions for systems

with any number of unstable poles; the result relies on the use of linear programming,

but, for a given number of degrees of freedom, provides conditions which are both

necessary and sufficient for stability.

The results of Chapter 3 provide conditions on the current input which guarantee

stability, but they do not, in themselves, lead to an algorithm which yields an optimum

choice for that input. In Chapter 4, we consider an alternative procedure for dealing with

short term infeasibility (STIF) by focusing on CSGPC and proposing modifications which

maintain stability when, due to set-point changes, CSGPC encounters STIF. The problem

of STIF has been addressed previously ([2], [14]) by fixing the closed-loop controller and

using non-linear prefiltering to condition the set-point change such that STF is retained.

This approach is computationally simple, but optimizes tracking of the conditioned, rather

than actual, set-point and hence is suboptimal.

CSGPC normally has guaranteed stability and asymptotic tracking; however, no

such guarantees can be given in the case of STIF. Because this infeasibility is caused by

the requirement that the output should reach its target value within ny steps, this

requirement must be relaxed. However, the stability proof of SGPC and CSGPC depends

on the property implied by the use of FLSs that the output settles after ny steps. Thus,

an obvious strategy to follow is to: (i) retain this last property, but (ii) allow the value

to which the output settles at to become a degree of freedom. This is first implemented

by changing the objective appropriately so as to minimize the deviation of the steady-state

value of the output from its target value. The modified algorithm is activated only when

CSGPC is STIF, and guarantees recovery of STF; this, together with the properties of

CSGPC, guarantee stability and asymptotic tracking. While this approach has the

advantage of simplicity, the modified algorithm does not place any penalty on the norm

of the vector of predicted errors during the feasibility recovery stage, and this may

degrade transient performance. We, therefore, propose two additional modifications to

CSGPC which share in common with the previous modification the property that they are

guaranteed to recover STF, but also retain in the objective a component which penalizes

deviation of the predicted output values from actual set-point values.

Recent work by Zheng and Morari [53] and Allwright [1] minimize the infinity-

norm of the predicted errors rather than the two-norm, as CSGPC does. Stability is

guaranteed without recourse to terminal constraints, and therefore without the need for

a STF assumption, however, the results are restricted to open-loop stable systems.

Within the context of SGPC, this work can be extended to unstable systems. The

performance of such systems, though, is often not as good as CSGPC, as all effort is

spent minimizing just the largest error, and this is often the first one. The system is

driven very hard and the responses can be oscillatory. We, therefore, propose a

procedure for dealing with STIF in which the objective is usually the standard CSGPC

two-norm minimization, but when STIF is encountered, the set-point is allowed to

become a degree of freedom, just as in the other modifications, and the objective is

shifted to the minimization of the infinity-norm of the predicted errors until STF is

regained. Thus, by mixing objectives, the superior performance of CSGPC is retained

when possible, but stability and asymptotic tracking are guaranteed with only the

assumption of LTF. The final modification is similar, but retains a two-norm cost when

CSGPC is STIF and guarantees an asymptotic return to STF by requiring that the

deviation of the predicted steady-state value of the output from the set-point get smaller

at each subsequent time step.

In Chapter 5, we look specifically at the necessity of the terminal constraints.

Forcing the predicted trajectories of both output errors and control increments to be finite

length sequences (FLS) provides a convenient way to guarantee the stability of predictive

control strategies, but it has been recognised that for the purposes of stability one actually

only needs to force the output errors to be stable ([30], [54]), thereby turning the

predicted output error trajectory into an infinite length sequence (ILS). Here, we show

that it is also the case that one only needs to force the input increments to be stable, with

the effect of getting a predicted input increment trajectory which is ILS; we propose

algorithms which implement these changes in philosophy and derive two procedures for

calculating an infinite horizon cost involving the sum of the square of the ILS errors and

input increments.

Of course, for systems subject to physical constraints, ILS trajectories lead to a

practical difficulty; the physical constraints must be invoked over an infinite horizon.

This problem is overcome through the use of suitable input/output horizon bounds. A

set of such bounds with respect to output constraints have been proposed elsewhere ([30],

[54]). Here, we are concerned with input constraints only, but we explore the use of ILS

predictions for both inputs and outputs; therefore, we require bounding results on inputs

rather than outputs. We develop simple input bounding techniques which provide an

efficient means of invoking the constraints over a infinite horizon by enforcing them over

a finite horizon.

Earlier work considers the disturbance-free case. The final results of this thesis,

presented in Chapter 6, deal with the inherent clash between disturbances and constraints.

We first consider how the effects of disturbances can be propagated forward in time. We

then show that the stability results of Chapter 3 carry over to the more general case of

systems which are subject to disturbances. Under some assumption of norm-

boundedness, we derive the necessary and sufficient a posteriori stability conditions in

the presence of disturbances. As in Chapter 3, we then push these conditions one step

into the future and show how they can be used to avoid instability.

While this gives explicit stability conditions, it is restricted to systems with at

most one unstable pole, and does not lead to suitable algorithms, because it applies to

infinite horizons and only gives a bound on the current input. We, therefore, develop

necessary and sufficient limits on the size of the future inputs required to reject all

possible (norm-bounded) future disturbances and then modify the constraint limits of

CSGPC so as to reserve this necessary control authority and thus derive an algorithm

with guaranteed stability and asymptotic tracking for systems subject to disturbances.

The application of all results are illustrated by numerical examples. Chapter 7

summarizes these results and then discusses some of the open problems in the areas

addressed by this thesis.

Chapter 2

The CSGPC Framework

In this chapter, the framework which forms the starting point of this research is briefly

reviewed. Section 2.1 introduces Stable Generalized Predictive Control (SGPC), a

guaranteed stable method of predicting and minimizing the two-norm of the future errors

and input increments up to a receding horizon, for systems not subject to input

constraints. SGPC is conceptualized by first placing a stabilizing loop around the plant

so that the transfer functions from commanding input c to system input u and from

commanding input to system output y are z-transforms of finite length sequences (FLSs).

This provides a very simple formulation for the FLS (and therefore stable) output/input

predictions in terms of the available degrees of freedom (DOF) which, in fact, are the

future values of c. Armed with these predictions, the implementation of SGPC is a

simple matter of minimising, with respect to the DOF, a two-norm cost of the predicted

future errors and input increments, implementing the first optimum input increment, and

then repeating the optimization at the next time step with new plant data. It is well

known that LQ control gives stable results when it employs an infinite horizon. This is

because the performance index can be shown, in the absence of set-point changes, to be

a stable Lyapunov function. SGPC effectively deploys the same stability mechanism, and

thus a key element in the design strategy is the use of an infinite costing horizon. This

is easily done with the FLS predictions described above. When the system inputs are

unconstrained, SGPC can be expressed as a fixed term controller; Section 2.2 derives this

optimal controller and shows that degrees of freedom are available which can be used to

improve properties such as stability robustness and noise handling without affecting

performance. Section 2.3 then adds input constraints, detailing how these constraints are

written in terms of the available DOF and providing a mixed weight least squares

(MWLS) iteration to minimize the future predicted errors and input increments subject

to the input constraints. The resulting algorithm, Constrained Stable Generalized

Predictive Control (CSGPC), is otherwise the same as SGPC and maintains its guarantee

of stability so long as the now constrained optimisation remains feasible.

2.1 The SGPC strategy

Let the system model be given in terms of the delay operator, z\ as:

Giz) z-1W = z~1(b°+bfi~1+b**+m+b+z^) (2.1)
a(z) 1 +axz ~x +a2z "2+••■ +anz '""

where a(z) and b(z) are coprime and more delays can be incorporated by setting £,=0 for

i=0,l,2,...,k. Form the stabilising feedback loop of Figure 2.1 such that the system

output y, input increment Aw, input u, and commanding input c are related as:

yt=z-lb{z)ct; Au=a(z)ct; Au=A(z)ut; a(z)=a(z)A(z); A(z)=l-z"1 <2-2)

From Figure 2.1, the closed-loop transfer functions from ct to yt and from ct to ut are

easily derived and are given as:

y,=-
z-'Hz)

:c<; « =■

flfe) (2.3)
«(z)M#(z)+z-^(z)iV*(z)"" ' *(z)M\z)+z-lb{z)N\z)'

Thus, the controller numerator and denominator polynomials, Af (z) and A/*(z), for which

eqns. (2.2)a,b hold true, are defined by the Bezout identity [19]:

a{z)M\z) + Z-xb(z)N»(z) = 1 (2>4)

Next define the Toeplitz convolution matrix, Cp, and the Hankel matrix, Hp,

associated with the polynomial p(z)=p0+plz'1 +-+pnz'"p to be:

C
P =

Po 0 ...

Px Po

P», Pn-l

0 Pn, Pn.-l

0 Pn.

... o

... o

i 0

i 0

Po 0

Pi Po

fP i eJ; Hr

Pl Pi • p»,

Pi Ps ■ ■ P, 0

Pn, o • 0

0 0 • 0

(2.5)

where the dimensions of Cp, Hp and of the partition matrices 1^, 9^ of Cp will vary for

the different choices of p(z) and horizons, as will be obvious from the context; in the

sequel the vector 0p will represent the sum of all the column vectors in Qp. Further,

define the elements of the vectors of future and past outputs/input increments and future

inputs/commanding inputs to be:

y=

"y*+i" ' yt~ Aut ~
AU

,-I~ " u, ' ' c,'

yt+i
; y=

<—
y,-i ; Au =

A"f+i ; A«=
A",-2

; «=
U>+1 ; e=

-*

c,+x

Jt+n y,-n. _A",+n-i_ AU'-\ _",+„-!_ Ct+n-l

(2.6)

where n will be determined as needed.

Then, to derive the closed-loop output/input prediction equations for the stabilizing

loop of Figure 2.1, we first write the relation of the current and past outputs to the

current and past input increments in difference equation form:

<x(z)yl+1 =b(z)Aut * ao^+a^^"-*«^.^^^^*^^.^-*^^^ (2.7)

Incrementing the subscripts on the outputs and input increments in eqn. (2.7)b by

l,2,...,n-l yields n equations:

<*0y1+l +OCJ+- +*n^y,_n-=b0Aut +&1AK,_1+~ +bHtAu,^

<xiyt+i+<x0yt<2 +<*2yt
+-+<*n^yt-n* ^AU+^AU^ +*2A«M+-+\A«^i+1

a v +-+(x v = b Aw„ .+-+bnAur.„ , (2.8)

which are written in matrix prediction equation form as:

Cj+Hj=CbAu+HbAu (2.9)

Applying the same process to the relation of the current and past input increments to the

command signal and the current and past outputs gives:

M\z) Aut =ct -z -W(z)y,+1 * CM,Au +HM,Au = c-Cz.lN,y -Hz^y (2.10)

Premultiplying eqn. (2.9) by CM, and eqn. (2.10)b by Ca, and utilizing the commutative

property of convolution matrix multiplication, we get:

C Cwy +CM,Hj =CbCM,Au + CM,HbAu
- - - - \Z.ll)

CaCM.Au + CHM,Au = Cac-Cz.N,Cj-CHz.lN,y

then, substituting eqn. (2.10)b (solved for CM,Au) into (2.11)aandeqn. (2.9) (solved for

Cj) into (2.11)b, after some rearrangement, gives:

(Z.1Z)

Au={CaC* + CbCz->N)Au = Cac -L3y -L4Au; Y^H^C^V*

where the first equalities above are a direct consequence of bezout identity (2.4), in that

10

The SGPC strategy is to choose c(z) such that the predicted y reaches the set-point

r and Aw reaches zero in a finite number of steps. In particular, it is intended that

yt+i=r, i>ny and AK,+M=0, i>nu; ny and nu are referred to as output and input horizons.

This strategy is implemented by selecting c(z) =ct+ct+lz
_1 +••• +ct+n xz ~n'+i +cxz ""'/(l ~z_1),

where ca)=rlb(X); nc therefore denotes the number of control degrees of freedom and is

referred to as the command horizon. Thus, the predicted y, A«, u, c reach their steady-

state values in ny, nu, nu-\, nc steps, and hence we need only concern ourselves with

predicted values up to the appropriate horizons, therefore n in the prediction vectors of

eqns. (2.6)a,c,e,f is assumed to be ny, nu, nu, nc. Eqns. (2.12) can then be rewritten as:

y^c+O^+y,; *u=Tj:+9acm+*uj, u=Tac+0aCoo+uf (2.13)
--» _ -.- _^ -.-. _

where, as mentioned above, the scalar cx is the desired steady-state value for the

commanding input c of the system of Figure 2.1 and is chosen to remove steady-state

offsets in the output predictions. Yb is nyxnc; Ta, Ta are nuxnc; and the vectors yf, Auf,
—» —»

and uf depend on past data (and account for non-zero initial conditions), are known, and

are given as:

yf=-Lxy-L2±u; Auf=-L^-LAAu; M/=-CA
1
(L3V+L4AM)+^_11 (2.14)

Eqn. (2.13)c is derived with the help of eqn. (2.2)c, which can be written in prediction

equation form as:

u=CA
_1
(AB -Hjt^C^Au +KM1 (2.15)

CA
4 is a lower triangular matrix of ones and 1 is a vector of ones.

The SGPC optimization is then defined through the minimisation of a standard

11

GPC cost:

n„-i

J = E(^r^)2+>£>"<2
+, = \\r-y\\l+\\\Au\\22 = [c-c/52[c-cJ+7 (2-16)

1=1 (=0

where, for the last equality, we have substituted for v, Au from eqns. (2.13)a,b;

r=[rt+vrt+2,...,rt+n,...,rt+n]
TE'iftn> is the vector of future set-points, with nr the reference

horizon and rt+n referred to in the text as r; and the matrix S*, the optimum vector of

future command inputs co, and the optimum cost y are given as:

S> =TT
bTb+\TT

aTa; co = S-2[YT
b(r-yf9bca)-\Y

T
a(Auf+eacJ\-

(2.17)

7 = \\r-yf-ebc J2 +x I Auf+eac J|2 -1 Sco 12

As there are no constraints, / is minimized by c=co and the optimum current control
—»

increment, Au„ is computed as the first element of A« of eqn. (2.13)b and implemented;

this procedure is then repeated at the next sampling instant.

This strategy mirrors that of GPC with one important difference: in GPC the free

variable Aw is related to y through the infinite impulse response of G(z), whereas here

the free variable c is related to y and Au through the finite length sequences of eqns.

(2.2)a,b. Therefore, if ny>nb+nc and nu>na+nc+l, then the cost / is equivalent to an

infinite horizon cost:

J = E(rl+i-yJ2+^Au^ = £KryJ2+vbA^ (2'18)
i=l i=0 1=1 1=0

and it is shown below that this cost decreases monotonically over time and thus

constitutes a stable Lyapunov function, guaranteeing the stability of SGPC; hereafter, we

assume that ny>nb+nc and nu > na+nc +1.

12

Theorem 2.1 [19] SGPC is stable and gives asymptotic tracking.

Proof: Assume, without loss of generality, that the reference is fixed at r. Let the

optimum sequence of future input increments Aul+i at sample t (ie. the elements of A«

of eqn. (2.13)b calculated with the optimum vector of future command inputs c0) give

a cost Jt. Move forward to sample instant t+1, and let Jt+1]t be the cost of using the

same sequence of input increments (bar the first which is now in the past), then we have:

7 =T-(r -v)2-\Au2 (2.19)

Clearly, the optimum Jt+1 is always such that Jt+1<Jt+ll,<Jt (the first inequality is due

to the extra degree of freedom at t+l). Equality can persist if, and only if, r=y and

A«=0; thus, the cost / is a stable Lyapunov function, and SGPC is stable and gives

asymptotic tracking. □

Remark 2.1 In the paragraph prior to Theorem 2.1 and throughout this thesis, we

employ a slight abuse of terminology. We shall use the term, finite length sequence

(FLS), to imply, not only sequences which are finite in length, but also those which settle

at some steady-state value within finite time (eg. the predicted values of y, which are

forced to settle at r after ny steps). Later, we shall use the term, infinite length sequence

(ILS), to imply sequences which reach a given value only asymptotically.

2.2 Robustness analysis and optimization for SGPC

When not subject to input constraints, the cost / has the explicit optimum solution c0 of

eqn. (2.17)b. Thus, SGPC can be implemented with a fixed-term feedback controller;

the derivation is as follows.

13

Substituting eqns. (2.14)a,b and coo=[Or l/b(l)]r, where 0 is a vector of zeros,

into eqn. (2.17)b and then pre-multiplying by et, the first standard basis vector, gives:

ct=Prr+Pyy
+PuAu

pr = ei
TS-2TT

b-[0T efS-HrX+WldJ/bd)] (2.20)

Py=e?S-2(TT
bLs\YT

aL2)

pu=ei
TS-HTT

bL2+\TX)

Let the coefficients of the anti-causal polynomial (ie. with positive powers of z),

pr(z), and the causal polynomials, py(z) and pu(z), be the elements of the vectors, pr, py,

and pu; then we may write:

ct =pr(z)rt+l +py(z)yt
+Pu(z)Aut_1 =pr(z)rt+l +Py(z)yt +z~1pu(z)Aut (2.21)

Substitution of this into eqn. (2.10)a gives:

M\z) Aut =pr(z)rt+1 +py(z)yt +z -lpu(z) Aut -N'(z)yt (2.22)

Dk(z)Aut=pr(z)rt^ -Nk(z)yt; Dk{z)=M\z) -z-'pJLz), Nk(z)=N«(z) -py(z)

Then SGPC can be implemented with a fixed term controller as shown in Figure 2.2.

Thus, the closed-loop transfer functions from r to y and from r to u are given as:

y® = *-lb®P&. u®m*Md. Pc(z),aiz)mDk(z)+z-^z)Nk(z) (2-23)
riz) Pc(z) r{z) pc{z)

Now, the controller numerator and denominator polynomials, A(z)Dk(z) and Nk(z), appear

only in the closed-loop pole polynomial, pc(z), thus, any controller numerator and

denominator polynomials, say A(z)D(z) and N(z), which satisfy diophantine equation

(2.23)c, will be optimal with respect to the cost /. The entire class of such controllers

is given as [19]:

D(z)=Dk(z) -z-lb(z)Q(z); N(z)=Nk(z) +a(z)Q(z) (2-24)

where Q(z) is an arbitrary stable transfer function.

The appropriate transfer function for analysing both additive model uncertainty

14

and the effects of feedback noise on the plant input is:

K(z)S(z) - N(z) a®A®D® - a®1*® - °fe)^fe) +<x(z)Q(z)) (225)

A(z)D(z) pc(z) pe(z) pc(z)

where S(z) is the sensitivity transfer function. Thus, the problem is decoupled such that

the degrees of freedom available in Q(z) can be deployed to improve robustness and/or

noise handling properties without affecting optimality with respect to / (ie. performance).

Consider, for instance, robustness. If the size of the additive model uncertainty

is bounded by the modulus of a stable function, W(z), then the necessary and sufficient

condition for robust stability is:

\\W(z)K(z)S(z)\\X<U z=eJe, O<0<7T (2.26)

Combining this with eqn. (2.25) implies that the optimal Q(z), with respect to stability

robustness, is given as the solution to the following standard Hx optimization problem:

min iTW-iyaOöl.; T^^f^, T^^^Mt (2.27)
QtiO PC{Z) PcW

The solution to this problem is well documented, and we note that if Q(z) is restricted to

finite length polynomials of degree nQ, then the optimal choice of such a Q(z) can be

determined using Lawson's weighted least squares algorithm [19].

2.3 Introducing constraints into SGPC

In most practical applications there are constraints on the values the system inputs are

allowed to take; in this section we describe how these constraints are included in SGPC.

For brevity, we consider only input rate and absolute constraints of the form:

15

|A«.+.|<Ä
—Au
R -

-lu-Ul
<1; 1- ERn" (2.28)

On account of the FLS relationship of eqn. (2.2)b, the form of c(z), and the condition

that nu>na+nc+l, the predicted inputs reach their steady-state values in nu steps; hence,

constraints (2.28)a need only be invoked over the input horizon nu and are automatically

satisfied for i>nu. Using eqns. (2.13)b,c, we may rewrite constraints (2.28)b as:

Mc-v(0|L<l; R a

-r. u a
v(t) =

i
-±Auf 'he'

R ""

he
V ' "

(2.29)

where v is time dependent even if the constraints are time independent. Next, define the

"feasible region", Fn [v(t)], as the subspace of all nc-dimensional vectors c which satisfy

constraint (2.29)a. If Fn [v(f)] is non-empty/empty for all nc then the problem is said

to be "long term" feasible/infeasible (LTF/LTIF); the terms "short term"

feasible/infeasible (STF/STIF) will be used when Fn [v(t)] is non-empty/empty for the

particular chosen value of nc. An LTIF problem cannot be controlled; thus, we will

always assume LTF.

In the case of STIF, c should be chosen to minimize the worst case constraint

violation, ie minimize ||^c-v(01 „; this can be accomplished with Lawson's weighted

least squares algorithm [22]. However, when ||,4c-v(01 „ can be made less than 1, the

strategy for choosing c should be dominated by the minimization of the cost of eqn.

(2.16). These two aims are combined in the mixed weight least squares (MWLS)

iteration defined by:

16

MWLS:

Step 0: Initialize, i=0, \\f0)=l, W-0)=IrJrA,where rA is the row dimension of A.

Step 1: Increment i by 1 and minimize with respect to c the cost:

MWLS

[w(0]l/2€® 2

e®=S[c-c0\; e®=Ac-v(t) (2.30)

[^(i)]1/2«(0

Step 2: If the change in cost is less than a preset threshold quit, otherwise update the

weights according to the equations below and go to Step 1:

wm)= w& • w(«) = W<f>Ji\eV (2.31)

MWLS has some desirable properties [33]: under short term feasibility (STF) it can only

converge to the constrained optimum, c*; in the case of STIF it converges to the solution
—»

that minimizes the maximum constraint violation. The latter constitutes an important

feature: it prescribes one way of handling STIF. This strategy may not always be the

best; however, by minimizing the predicted maximum (and possibly future) constraint

violation, the algorithm allows for the possibility of avoiding violations altogether.

The following algorithm implements CSGPC:

Algorithm 2.1 (CSGPC)

Step 1: Calculate the vector of future command inputs which minimizes the two-norm

of the predicted errors and weighted control increments without violating the

constraints, namely, minc Jt={ \\ e \\2
2 s.t. \Ac-v(f) \\«, < 1, cx =r/b(l)}.

Step 2: Calculate and implement the first control increment using eqn. (2.13)b.

Step 3: Increment t by one and return to Step 1.

17

CSGPC, like SGPC, has an attendant stability theory which is established by proving that

the relevant cost is a monotonically decreasing function of time [33]. For CSGPC

however, this requires the assumption that the problem remains STF as stated in the

theorem below:

Theorem 2.2 [33] Let a linear system with transfer function G{z)=zxb{z)la{z) be subject

to input constraints which, at time t and for horizon nc, are given as |4c-v(f) || „ < 1;

and let Fn[v(i)] denote the implied feasible region for c. Then if Fn[v(t)] is non-empty

for all t, CSGPC will cause y to follow asymptotically any set-point change.

Proof: Assuming feasibility of the now constrained optimization, the arguments used in

the proof of Theorem 2.1 still hold. □

The feasibility assumption of Theorem 2.2 involves short term feasibility (STF), and thus

the assumption is a strong condition. The purpose of this work is to find ways to ensure

its satisfaction and to make it as weak as possible; in next chapter we first derive tests

for feasibility and then conditions which must be satisfied to ensure feasibility and thus

stability for all future times. Chapter 4 then deals with large set-point changes as a cause

of STIF, Chapter 5 with making the STF assumption as weak as possible, and Chapter

6 with disturbances as a cause of STIF.

18

Figure 2.1 The stabilizing feedback loop

t+l
) PrM

fr*

Figure 2.2 Optimized SGPC feedback loop

19

Chapter 3

Feasibility and Stability for Constrained
Control

The feasibility assumption of Theorem 2.2 is strong because it implies "short term"

feasibility (STF), namely the feasibility of making the output reach the desired set-point

in a finite number of steps without violating the constraints. The fact that a system

output can eventually reach a target value without violating constraints (long term

feasibility, or LTF) does not imply it can do so in ny steps and with only nc command

input changes (STF). CSGPC, like other constrained predictive control algorithms, can,

in fact, destabilize what was originally an LTF problem; by requiring the predicted output

to reach its target within ny steps (a terminal constraint), it may be necessary to drive the

controls and/or their increments at their limits. If, however, a system is unstable and/or

non-minimum phase, these earlier control moves may require future stabilizing control

moves which will not be available within the existing input constraints; this will lead to

instability.

As only the first input, u„ is actually implemented, when dealing with open-loop

unstable systems which are subject to input constraints, one must ask what restrictions

should be placed on this input to ensure a continued guarantee of stability and feasibility.

20

In Section 3.1, explicit stability conditions are developed for systems with one or two real

unstable poles; the conditions are first imposed on past data {aposteriori conditions), and

then on ut itself (apriori conditions). In Section 3.2, we show that linear programming

can be used to provide a priori stability results for systems with any number of (real

and/or complex) unstable poles. We concentrate on finding conditions which are both

necessary and sufficient to ensure stability and thus regain some of the degrees of

freedom given up by algorithms like those in ([33], [30], [54], [18]) which enforce overly

stringent terminal constraints on the predicted outputs/inputs; relaxing these constraints

implies that feasibility can be retained with shorter command horizons which afford

significant reductions in the computational load. A numerical example is given which

shows that these stability conditions can be used in a supervisory role with algorithms

which have no guarantee of stability.

3.1 Systems with one or two real poles

In this section we develop necessary and sufficient conditions under which

instability can be avoided. Section 3.1.1 sets up the conditions which are needed to

determine feasibility and stability. Then, section 3.1.2 gives the necessary and sufficient

conditions for a posteriori stability; these conditions are a posteriori in that they are

imposed on past data. If a posteriori conditions are violated, instability will be the result,

but this only provides a useful test for when things are about to go wrong. In Section

3.1.3, we consider the problem of propagating these stability conditions forward in time

and thus propose a procedure for the derivation of a priori conditions which ensure the

continuing existence of a stabilizing solution. Obviously, any algorithm which ignores

21

these conditions and violates them will be unstable. In chapter 6, we will demonstrate

the use of these a priori conditions in the presence of disturbances.

3.1.1 Setting up the conditions for feasibility with stability

We first develop the mathematical tools needed, then state the conditions for feasibility

and stability.

3.1.1.1 Mathematical preliminaries

Consider the lower triangular nuxnu toeplitz convolution matrix formed of the

coefficients of a(z), Ca, as defined in eqn. (2.5). Then we have the following result:

Lemma 3.1 Let <r, be the singular values of Ca and let a1 > o2 > ••• > an. Then if

a(z) = l-pzl with | p | > 1 and q=l/p:

(Ipl-D^o^o^-^c^dpl+l); and on<\q\n^ (3-D

Proof: Condition (3.1)a follows from an application of Gershgoreen's theorem to the

matrix CjCa which has a tridiagonal form with nu-\ diagonal elements equal top2+1 and

one diagonal element equal to 1, whereas all the non-zero off diagonal elements are equal

to p. To complete the proof, post-multiply Ca by the vector [qn"~\qn"~2,..., l]r to get the

first standard vector multiplied by q""'1. Then invoking a norm inequality we get

on (1 -q2n")l{\ -q2) <qn"~l, which leads to condition (3. l)b. □

We can then show that the output principle direction associated with on (and hence the

input direction associated with the singular value of Ca
l which is "blowing up") has an

22

easily determined form:

Theorem 3.1 With the definitions of Lemma 3.1 let kt be the principal input directions

of qT=[l,q,q2,...,q""'1], and kn be the direction associated with the non-zero singular

value of qT. Then writing any w in Rn- as w=Ku, for K=[kvk2,...,kn],

a=[ava2,...,an]
T, we have

ICVI^-J-lall, for «„=0; ||C>|2> |«. | \Pr* for <^0(3.2)
\p\-l

Proof: Let [Jt„<7,jJ denote the output principal directions, singular values, and input

principal directions of Ca. Then by Lemma 3.1, it is easy to show that

Q
T

/\\Q
T

\\2
=
K

=xn > so tnat ** can always be chosen such that £,=*,. Then given that

[y,-,l/a,,xj denotes the singular value/vector triple for Ca\ it follows that

«C>«2= \\t ^la)y^=t («,V (3'3)

The result follows by invoking Lemma 3.1 for an =0 and an9
i0. □

The condition for keeping Ca'
lw finite, then, is that w must be orthogonal to q . Next,

we expand the development to consider systems with more than one unstable pole.

Lemma 3.2 Let ai(z) = l-piz\ with a corresponding convolution matrix Cai, for

i = l,2,...,II and let a(z)=ai(z)x... xan(z). Then Ca, the convolution matrix for a(z), is

the product of the Cai taken in any order.

Proof: This is straightforward and, for brevity, will be omitted. □

23

Theorem 3.2 Let the roots of a(z) be/?,-, let \pt\ > 1 for i=l,2,...,m and let the mxnu

matrix Q have as its i* row the vector q?=[\,qt,qff...,q*' J, where tf,=l/p,.

Furthermore, denote by fc, the input principal directions of Q arranged so that the k{ for

i=nu-m+l,nu-m+2,...,nu correspond to the non-zero singular values of Q. Then,

expressing any vector w in Rn- as w=Ka+K'a' where K=[kvk2,...,kn_J is the kernel

of Q and £/=[fc„ -m+1,fc„ -»♦2>-»*J is the row sPace> we have' fory'=l,...,m, that

n -m

lOl^nCrir)!«!» a'=0; |c>|2 ^n «vo (3.4)

Proof: Let m=2 so that Q=CalCa2, let Ku K2 be matrix representations of the kernel

of the rows of Q, qj, q2
T, defined in a manner analogous to K, and let Cal"

1H'=v. Then

a' =0, together with the fact that the last row of Cal
A is p""'1 [l,qvqf,...,q"°!], imply that

the last element of v is zero, so that w=Calv gives a matrix representation of the

convolution implied by w(z)=(l-p1Z
l)v(z). But, with a'=0, Qw=0, which implies that

w(p1)=w(p2)=0, so w(z)=(l-plz
1)(l-p2z

1)<t>(z), where <Hz) is of order nu-m-2, and thus

v(z)=(l-p2z~1)<l>(z) or v(p2)=0; hence q2
Tv=0, or V=Ä2JS for some non-zero vector ß.

Then, by Theorem 3.1, we have

HO« < |0|/<b2|-l); |v|=|C>| < \\y\\/(\Pl\-l) 0.5)
where 7 is the projection of w onto the kernel of q/. However w=Ka=Kly and v=K2ß,

so that ||-y|| = \\a\\ and \\ß\\ = \\v\\ which combine with conditions (3.5)a,b to give

condition (3.4)a for w=2; these arguments apply for a general m. Conversely, if at least

one of the elements of a', say the /\ is non-zero then, by Theorem 3.1,

ic^l^ofo"--1). □

24

3.1.1.2 Necessary and sufficient conditions for feasibility and stability

In the absence of constraints, SGPC has guaranteed stability because u is chosen

so that the predicted y reaches its set-point within a finite number of steps; this implicitly

involves the "pseudo" cancellation of all the poles of a(z) [34]. However, when u is

constrained and we encounter short term infeasibility, this property is lost, and u does

not "cancel" the unstable poles of a(z); then not only will the predicted y not reach its

steady-state value, but the control system will go unstable. Below we state the necessary

and sufficient conditions which avoid this situation.

Remark 3.1 By pseudo cancellation, we imply that the future values of u are chosen

such that, taken in combination with the effects of past values of inputs and outputs, the

effects of the roots of the denominator polynomial are "cancelled". Thus, we refer only

to "cancellation" in a closed-loop feedback sense, like that of Figure 2.1, and do not refer

to a direct controller-plant cancellation which, for unstable cancellations, has inherent

internal stability problems. Hereafter, we shall continue to refer to this differentiation

by using the word pseudo or placing the word, cancel, in quotes.

As was done in Section 2.1 to generate the future values of y and A« from eqn.

(2.7)a, the future values of y and « can be generated by simulating a(z)yt+1=b(z)ut

forward in time to get:

C
ay = cbu-H

ay
+Hbu'> or y = c~aXw, where w = Cbu-Hay+Hbu (3.6)

Note now, that due to the FLSs used in CSGPC, short term feasibility implies LTF,

namely if ||/lc-v(01 „ < 1 for some finite nc, then this inequality will also hold true as nc

25

tends to infinity. Thus, determining necessary and sufficient conditions for feasibility

(with stability) is equivalent to looking for the necessary and sufficient conditions under

which, for nu-*oo, there exists a w such that v of eqn. (3.6)b is bounded and such that

the vector of future H'S defined by eqn. (3.6)c satisfies the input constraints.

Theorem 3.3 Let u be subject to constraints (2.28), let the polesp, of a(z) be such that

\pj\ > 1 fory'=l,2,...,m and let the matrix Q be defined as per Theorem 3.2. Then

at time t, the problem is feasible if, and only if, for /y-*o°, there exists a u such that

Qu=bu and ||CM
M-M°|| X<1; where

where Db(p) is a diagonal matrix with the Ith diagonal element equal to b(p,) i=l,2,...,m,

b(p,) is the polynomial b(z) evaluated at /?,, ex is the first column of In and CA is as

defined in eqn. (2.5)a for A(z) = l-z'1.

Proof: Eqns. (3.7)a,c require w to be orthogonal to Q, where, from the definition of Cb

and with Q, Cb of infinite dimension, we have QCb=Db(p)Q. Satisfaction of this equality

constraint, by Theorem 3.2, ensures that v of eqn. (3.6)b will be bounded; (3.7)b in

conjunction with eqns. (3.7)d,e is a representation of constraints (2.28). D

The results above appear to be of limited practical use because of the requirement that

nH-*oo. However, given stability, the future values of u will settle at some constant value

ux after say nu-\ time instants. In the light of this remark, Theorem 3.3 may be restated

as follows.

26

Theorem 3.4 Let u be subject to the constraints of Theorem 3.3. Then the necessary

and sufficient condition for feasibility (and stability) is that for some nu>na there exists

a u satisfying conditions (3.7), providing that the /* element of the last column of Q is

replaced by q"" l(l~q) for z'=l,2,...,m.

Proof: Let all the future values of u from the (nu-\f time instant onwards be «„, then

E */-Vi = E «rv»+ j^u* (3-8)
;=1 .7=1 x y>

and thus conditions (3.7) may be restated for nu finite, so long as the last column of Q

is replaced by the vector having as its /*element the ratio q"" 1(1 -q). Conditions (3.7)

will then be a sufficient condition for feasibility, since it will guarantee the existence of

a particular u which both satisfies the constraints and results in a stable v. However,

since nu is allowed to be as large as needs be, the condition is also necessary. D

All conditions above involve linear equality and inequality constraints and thus in general

provide no explicit results: (i) to test feasibility given past data (a posteriori feasibility);

and (ii) given feasibility at t, to derive conditions on u, that preserve feasibility and thus

stability (a priori stability). A posteriori feasibility is dealt with in the next section; a

priori stability will then be addressed in section 3.1.3.

3.1.2 Necessary and sufficient conditions for a posteriori feasibility

We first state a general test for feasibility and then develop explicit necessary and

sufficient conditions for a posteriori feasibility with stability. Finally, we present two

numerical examples which illustrate the results.

27

3.1.2.1 The feasibility conditions and the algorithm for testing feasibility

Theorem 3.4 implies that the problem of investigating feasibility boils down to

that of finding whether an nu exists for which conditions (3.7) have a solution u. This

can be tested easily, as stated below.

Theorem 3.5 Let K be a matrix representation of the kernel of Q, then there exists a

vector u which satisfies conditions (3.7) if, and only if,
—*

inf [M'a-p'l^ < 1; where M'=CUK; v' = u°-CuQT(QQT)lbu (3.9)

Proof: Eqn. (3.7)a is satisfied for u=Koc+QT(QQT)'1bu, with a any vector of conformal

dimension, which allows (3.7)b to be written as | CKa-v' |«, < 1; hence a necessary and

sufficient condition for feasibility is that the infimal value of this norm over all a be less

than or equal to 1. D

Remark 3.2 Infimization can be performed using Lawson's algorithm, thus for any nu

it is easy to check CSGPC feasibility at any particular t. Also, nu need not be taken too

large because the ** column of Q decays to zero with increasing i, and the n^ element

of «, due to the input constraints, will be finite. Thus, providing that nu is taken to be
—»

large enough so as to make the ntt
& column of Q sufficiently small (say 10"6), the

introduction of further degrees of freedom, through an increased nu, will not affect

(significantly) the solution of Qu=bu and thus cannot affect feasibility.
—»

3.1.2.2 Explicit conditions for a posteriori feasibility

Theorem 3.5 provides a procedure for investigating a posteriori feasibility. One

28

can also use Theorem 3.4 to determine a priori feasibility and stability: solve eqn. (3.7)a

for u„ then, still using past data, determine the range of values of ut for which feasibility

is preserved. However, in general the necessary and sufficient conditions are not explicit

and thus would require the use of linear programming. It is the purpose of this section

to show that in some cases the conditions are explicit and easy to derive.

Lemma 3.3 Let a(z) have only one unstable pole, let that pole be at/? and let q=llp.

Then eqns. (3.7)a,c can be rewritten as:

qTAu=bAu; b6M = {l-q)qT(Fj-Hhu)/b(p)-u,-S where A»=CAii-«,_,«, (3.10)

Proof: Using eqns. (3.10)c and (3.7)a,c we may write:

qTAu=qT{CAu-ut_lel)={l-q)qTu-ut_lq
Tel={\-q)qT(Hay-Hbu)lb{p)-ul_l (3.11)

-» -» -» *- «-

where we note that qTCA=(l-q)qT. Combining this with eqn. (3.11) yields the resultD

Lemma 3.4 Let the unstable pole of Lemma 3.3 be positive, and let the system be

subject to input constraints (2.28). Furthermore, let mv and mL denote the largest

integers such that utA +muR<U0+Uand ulA-mLR> U0-U. Then the max/min values that

the left hand side of (3.10)a can assume over all feasible vectors of future values of u are

given as:

Ju = rem[U0W-ut_vR]
r/)+l = ff "p + a

mvy . U+U-u, .-y„
LüA«Jmax I-a m = " t-1 IU

R
(3.12)

yL= rem[ut_rU0+UJl\

L R

where rem[a,b] is the remainder after all multiples of b have been removed from a.

29

Proof: All the elements of qT are positive, hence the larger the Aw's, the larger the LHS

of (3.10)a. But the Aw's are limited by R and by

«,♦* = «M
+A«,+ A«;+1 +■•• +Aul+k <U0 + U (3.13)

But the elements of qT decay geometrically, hence the value of the LHS of (3.10)a is

maximized when AuI+i causes ut+k to reach (and maintain) its max value in minimum time

(mv+l steps). Thus, the maximizing vector of Aw's is

A« = [R,R,...,R,yu,0,0,...Y (3.14)

where the number of repeated values of R is mv. Substitution of this into (3.10)a yields

(3.12)a. Eqn. (3.12)b can be obtained using similar arguments; the only difference is

that the Aw's must be such that u reaches is lowest permissible value of U0-U in minimum

time, namely in mL+\ time steps. The corresponding vector of control increments will

have the form

A« = [-R, -/?,..., -R, -7L,0,0,...f (3.15)

D

Lemma 3.5 Let the unstable pole of Lemma 3.3 be negative and let the system be

subject to input constraints (2.28). Then max/min values that the LHS of (3.10)a

assumes over all feasible vectors of future w's are:

MM = -^^ " ut_- a^mmlu^R, U0+ü\; ßL=m^[av-R, U.-ü] 1 +y (3.16)

Mrnm = -T^ " u,-v <xL = max[ut_rR, U0-U\; j8l, = minK+Ä, U0+U]

Proof: This is similar to the proof above, except that the signs of the elements of qT

alternate, so the elements of the maximizing/minimizing vectors must alternate between

their max and min allowable values which are defined by av and ßL, or ßv and aL. D

30

Using the same arguments, these results can be extended to show that the maximum and

minimum values the left hand side of eqn. (3.7)a can assume over all feasible values of

u are given as:

LKW
 l-q (1-qf l-<7

IK\

Mmin =

l-q2

<*L+<lPu

l-q2

(3.17)

Theorem 3.6 Let a(z) have only one unstable pole, say at p, and let the system be

subject to input constraints (2.28). Then the necessary and sufficient stability condition

at t in terms of the bAu of eqn. (3.10)b or bu of eqn. (3.7)c is:

b . < b < b where

for^>0: ^[^U; *max = [*+]
for/><0: b^-ibX^ bmax=[b-]

(3.18)

Proof: For each of the two cases considered, b^, b^ give the max/min values that the

LHS of (3.10)a can assume over all feasible future control moves. Thus, if b lies in the

interval lA^^wl there will exist at least one solution (or a whole family of solutions if

(3.18)a holds with strict inequality) which is both feasible and does not violate the

stability condition of Theorem 3.3. Conversely, by Lemmata 3.4 and 3.5 there will not

exist feasible solutions which satisfy eqn. (3.10)a if b lies outside the interval

\b b 1 Q

Now when the condition of Theorem 3.6 is met with strict equality, the only

feasible/stable vector of future input increments will be as proposed in the proof of

Lemma 3.4 (for/?>0) or Lemma 3.5 (for/?<0); the former gives u a steady-state value

31

equal to one of the absolute constraints and the latter oscillates between oc and ß, never

reaching a steady-state. While both cases are BIBO stable, they obviously are not

desirable and do not conform to the definition of long term feasibility (LTF) as given at

the beginning of the chapter. The following corollary fixes this problem by utilizing

future input vectors which reach a desired steady-state value of u«,.

Corollary 3.1 Let a(z) have only one unstable pole, say at p, and let the system be

subject to input constraints (2.28). Then the necessary and sufficient condition for LTF

at t in terms of the bm of eqn. (3.10)b or bu of eqn. (3.7)c is:

£mi„ < b < bmax where min max

(3 19)
for/>>0: b^\b\^ bm3X=[bX^

Proof: This is similar to the proof of Theorem 3.6 except that now we must show that

satisfying the condition with strict inequality allows for solutions in which the future

values of u reach the desired steady-state. Consider, for example, the following vector

of future input increments which causes u to reach U0+U in min time, maintain this

value, and then, at the max possible rate, reach and maintain «„ after nu steps:

A« = [R,R,...,R,7u,0,0,...,0, -R, -R,..., -R, -yx,0,0,...Y (3.20)

which, for positive/?, makes the value of the LHS of (3.10)a,

qTAu=±^LlR+qm»yu-qn-
l-q

1 -nm'
—JL-R+q "yo

l-q

yu=rem[U0+U-ut_vR]; yx =rem[U0+U-Ua>,R]
_ U.+U-u^-y^ _U0+U-ux-yx

mTt — , »'»„

(3.21)

u R ' °° R

This differs from [&A„+]max by a factor which is multiplied by qn"'m" where nu can be

32

chosen arbitrarily large so as to make this factor arbitrarily small, thus making the value

of the LHS of (3.10)a arbitrarily close to [&A„+]max. Similarly, it can be shown that there

exist vectors which give u a desired steady-state value and make the LHS of eqn. (3.10)a

or eqn. (3.7)a arbitrarily close to any of the limits of the interval [b^b^. □

These same ideas carry over to the case where a(z) has two unstable real poles, for which

the matrix Q of eqn. (3.10) will have two row vectors, q\, qT
2, and the right hand side

of (3.10) will be a two dimensional vector, say bAu=[bub2]T. However, applying

Theorem 3.6 to qlAu=bx and q2Au=b2 independently will only generate necessary

conditions; below we state conditions which are both necessary and sufficient.

Theorem 3.7 Let a(z) have 2 unstable real poles at/?!, p2. Then the matrix Q of (3.10)a

will have 2 rows, q\, qT
2, for qx = \lpx and q2=l/p2. Let [^]maxand [^L^be as per

Theorem 3.6, and let Aut be the vector of future control increments for which qT
1Aul

attains its max value of [6i]max. Then the necessary and sufficient LTF conditions are:

Pihn < bx < [*iL*; ^A^-maxte/x} < b2 < g/A^-min^x} (3.22)

where the vector JC is constrained to satisfy the condition:

9'x = [bj^-b, (3-23>

Proof: By Corollary 3.1, condition (3.22)a guarantees that a Aa exists which satisfies
—»

qjrAu=bl and leaves u at the desired steady-state value. The totality of such vectors can

be written as A«=A«J-JC, where x must satisfy eqn. (3.23). Such A« will make&Aw

equal to q2
TAu1-q2

Tx, which is maximized and minimized by the interval defined in

condition (3.22)b. Clearly then, the equation QAu=b^u will admit a feasible solution

33

(with u going to the desired steady-state value) if, and only if, both conditions (3.22)a

and (3.22)b are satisfied. □

In order to invoke Theorem 3.7, one needs to determine the maximizing/minimizing

vectors x, but this is straightforward when/?!, andp2are real and share the same sign.

Then it can be shown that the x that maximizes qT
2x is the vector causing the vector of

future w's corresponding to Au=Aut-x, to move toward U0-Ufor as long as possible (as

dictated by eqn. (3.23) and Ug-U), and then, at the maximum possible rate, reach U0+U.

The detailed proof for the structure of x is simple but long and will be omitted. Here we

simply make two obvious remarks: (a) since the starting point, ut, is common to both «i

and u, and since the ultimate value of U0+U is also common to both, the sum of the

elements of the vector x must be zero; (b) because the elements of qT
2 decay as a

geometric series, the vector which maximizes q7^ must have as large a front end as eqn.

(3.23) and the absolute and rate constraints will permit. A similar procedure can be used

to determine the minimizing JC.

The case of two real unstable poles of different sign, or the case of two complex

conjugate unstable poles is considerably more complicated and will not be given here.

In cases like this as well as for the general case of any number of unstable poles, one

must revert to Theorem 3.5 for a necessary and sufficient test of feasibility.

3.1.2.3 Illustrative examples

Here, we illustrate the instability of constrained predictive control algorithms

when they encounter short term infeasibility with an open-loop unstable system. The

34

algorithm we use for this is CSGPC, but the property is true for all.

Example 3.1 Let the system with a(z) = 1-2.2zl+0.09z2+0.252z3, b(z)=2+0A5zl+z2

be subject to the input constraints with Uo=0, U=25, R=0.04; a(z) has only one unstable

pole (at 2.1), so stability can be tested with the explicit conditions of Theorem 3.6.

Assume the system is at rest, A-=0 for t< 1 and r= 1 for t> 1. Of course, u=0 for t< 1,

and at t=2 mv=mL=U/R=625; mu=mL because the absolute limits are symmetric about

M!=0. Since R is small, mv and mL will remain very large for all values of t during the

simulation, and so qm" and q™1 will be insignificantly small, (because #=1/2.1). Then,

from eqn. (3.12), we have:

b =[*C] =—=0.0764; and ft =[^] .=-_?_ = -0.0764 (3.24) max L"AMJmax i _ ' min L ""-"min i __

The necessary and sufficient stability condition, therefore, is that for ?=2,3,...,9 the bAu

of eqn. (3.10)b must lie between -0.0764 and 0.0764. Upon application of CSGPC, the

optimal value of Au2, as seen from Figure 3.1c, is 0.04, but for this the corresponding

value of bAu, as shown in Figure 3. Id, is -0.084. Thus, the first control move

recommended by CSGPC results in instability, so that at t=3 there will not exist aA«
—»

for which conditions (2.28)b and (3.7)a,b can be satisfied simultaneously. However, the

input constraints are hard, so eqn. (2.28)b will be satisfied; as a consequence, condition

(3.7)a will be violated and the feedback system will go unstable. This is illustrated in

Figure 3.1a which shows the response of the output. Infeasibility means lack of

feasibility over an infinite horizon which also implies short term infeasibility; as a result

the infimal value of |/4c-v(?) ||«, will be greater than 1. Furthermore, due to instability

this infimal value diverges (Figure 3.1b). If the unstable pole were at 2 instead of 2.1

35

the feasibility interval would become [-0.084,0.084] and so CSGPC would operate at the

limit of BIBO stability as shown in Figure 3.2.

Example 3.2 In the example above, short term infeasibility caused CSGPC to choose

control moves which render the problem unstable. This need not always be the case,

especially if the short term infeasibility concerns future constraint violations. Through

the use of the MWLS cost, CSGPC will choose c so as to minimize the worst case

constraint violations, and if these violations are in the future, then CSGPC will be able

to reduce this violation further at the next step. By the time we come to implement the

offending value of c, infeasibility may have disappeared altogether.

The system to be considered has a transfer function with ß(z) = l-1.3z"1+0.144z"3,

b(z)=2+0.45z"1+z"2 and has only one unstable pole (at 1.2). The system input is subject

to constraints defined by Uo=0, U=0.05 and #=0.2. The values of b^ and 6max are

calculated to be -0.3 and 0.3 respectively, and the corresponding value of bu is plotted

in Figure 3.3d; clearly, CSGPC satisfies the necessary and sufficient stability condition,

despite the fact that it runs up against short term infeasibility as demonstrated by

Figure 3.3b. CSGPC manages to recover short term feasibility a few time steps later;

as a result the algorithm gives a stable and satisfactory output response (Figure 3.3a).

Because these results imply a test which is a posteriori, they really only serve to show

how close a system is coming to risking instability, or show why instability occurred.

These conditions must be propagated into the future to provide a useful limit on the

choice of future control moves; this is done below.

36

3.1.3 A priori conditions for the existence of a stabilizing solution

In this section, we present the necessary and sufficient a priori conditions for which a

stabilizing solution will continue to exist. The conditions of the previous section can be

propagated into the future for systems with absolute and rate input constraints, but the

result, though straightforward, is quite cumbersome. For clarity of presentation, we

consider systems subject only to absolute or rate input constraints, in which case the

bounds on the left hand sides of eqns. (3.7) or (3.10), b^ and Z?max, are time invariant.

Lemma 3.6 Let a(z) have only one unstable pole atp=l/q, and let the system be subject

only to absolute input constraint (2.28)a. Then, the bounds on the LHS of eqn. (3.7) are:

rai = 'A + -JL-- [b] = A - _^_ 0.25) L^W x_q x_\qy L »J- \-q \-\q\

Proof: Without rate constraints, 7?=oo, so, for/>>l, yv=U0+U-ut.l, yL=utA-U0+U,

and mv=mL=Q. Therefore, from eqns. (3.17)a,b, [V"L«=(0,+ u)/(l-0) and

[bu
+^=(U0-U)l{\-q). Forp<-\, aü=ßü=U0+üw)AoiL=ßL=U0-ü. Therefore, from

eqns. (3.17)c,d, [K^=UJ(\-q) + UI{l+q) and VK^=UJ(\-q)-UI{\+q). U

Lemma 3.7 Let a(z) have only one unstable pole atp=l/q, and let the system be subject

only to rate input constraint (2.28)b. The bounds on the LHS of eqn. (3.10) are:

\b 1 = R • \b]■ = ~R (3-26)

Proof: Without absolute constraints, U=<*>, so, for/?> 1, mu=mL= oo, and therefore,

from eqn. (3.12), [bm
+]m!lx=R/(l-q) and [^+]min=-Ä/(l-?). For p<-l, otv=utA+R,

ccL=utA-R, and ßv=ßL=utA. Therefore, from eqn. (3.16), [b^'^^R/il+q) and

[*«U=-Ä/(1+«). D

37

These time invariant bounds make the projection of the a posteriori conditions of the

previous section into the future trivial. An input which violates the resulting a priori

bounds will lead to instability.

Theorem 3.8 Let a(z) have only one unstable pole at p=l/q, and let the system be

subject only to input absolute constraint (2.28)a. Then, at time t, a stabilizing solution

will be guaranteed to exist at the next time instant (ie. the problem will be LTF) if, and

only if, ut is chosen such that:

h-*vo_ \q\u<u<b.^o+MR (3.27)

Proof: Extracting w, from eqn. (3.7)a (written for one unstable pole) gives:

ut = bu - qqTu (3.28)

The result follows from application of the time invariant bounds of Lemma 3.6 and from

arguments given in the proofs of Theorem 3.6 and Corollary 3.1. □

Theorem 3.9 Let a(z) have only one unstable pole at p=\lq, and let the system be

subject only to input rate constraint (2.28)b. Then, at time t, LTF will be maintained at

the following time instant if, and only if, Aw, is chosen such that:

^-Jll*<.B,<^JijA (3.29,

Proof: Extracting mt from eqn. (3.10)a gives:

A«, = bAu - qqTAu (3.30)

The result follows from application of the time invariant bounds of Lemma 3.7 and from

arguments given in the proofs of Theorem 3.6 and Corollary 3.1. □

38

The conditions given above provide limits which the current input must not violate; this

will be illustrated by example in Chapter 6 after the inclusion of disturbances.

3.2 Stability conditions for the general case

Corollary 3.1 and Theorems 3.7-9 provide explicit conditions for LTF for systems with

only one or two real unstable poles; for the general case, Theorem 3.3 gives necessary

and sufficient stability conditions, but assumes that nu is arbitrarily large. As per Remark

3.1, in practice nu is taken to be finite, and this leads to the implementation of Theorem

3.4. From a computational viewpoint, it is desirable/essential to keep nu small, which

leads to sufficient only results; this is because u is a finite length sequence (FLS). The

future u FLS of Section 3.1 must: (i) cancel the unstable effects of the open-loop

polynomial (as per constraint (3.7)a); and (ii) respect the input constraints (2.28). In

practice these requirements may necessitate the use of a large number of degrees of

freedom (ie. a large nu). That the future u prediction is a FLS implies that it has no

poles, which means all system zeros, b(z) (poles in the inverse plant), must have been

"cancelled". The previous section showed that the effect of qT is to "cancel" the unstable

poles of a(z); this is the right idea, but can of course be done more directly. To remedy

these problems, here we develop stability and asymptotic tracking conditions which do

not depend on the use of FLSs. The key lies in "cancelling" only those roots which must

be "cancelled" (ie. those outside the unit circle), both in the output predictions and in the

input predictions; the result is predictions which are infinite length sequences (ILS). As

in the previous section, we will require not only BIBO stability, but also asymptotic

tracking in the predictions.

39

3.2.1 Stability conditions using ILS inputs

Eqn. (2.9) can be written in a z-transform equivalent form as:

amd-HiWüV® or y(z)-mA;^z) 0.31)
a (z)a (z)

where the coefficients of the powers of z"1 in y(z), Au(z), p(z) are the elements of Aw,

y, and vp=HbAu-Hj, taken in order; a{z) and a+(z)=A(z)a+(z) are the factors of a(z),

with order na- and na*+\, whose roots lie inside and outside (or on) the unit circle,

respectively. It is apparent that the necessary and sufficient condition for the stability of

the predicted output, y, is that the numerator of eqn. (3.31)b contain as a factor (and thus

cancel) the unstable system poles, namely that:

b(z)Au(z)+p(z)=«(z)Mz) or Autt^flt^ (3'32)

b\z)b\z)

where <£(z) is the z-transform of a convergent sequence {0OA,02>---} and b(z), b+(z) are

defined in a manner analogous to a(z), a+(z). It follows that the predicted trajectories

of control increments, A«, will be stable if, and only if, the numerator of eqn. (3.32)b

contains the "unstable" system zeros:

otXz)4>(z)-p(z)=b\z)m or ot\z)4>(z)-b+(z)4<{z)=p{z) (3'33)

where \}/(z) is a polynomial with a convergent sequence of coefficients. Eqn. (3.33)b

constitutes an equality constraint which must be satisfied by the otherwise arbitrary 4>(z)

and \(/(z); a particular minimal order solution is given by the vector of coefficients,

[*£#]= fo0.*i.~,*v K tv™>+n)T of thez-transforms, 0p(z),^(z), ^=max[«^nj-l,

n,=n+: y a

[r.- -r^
(3.34)

where Ya+, Yb+ are matrices containing the first n^+l, n^+l columns of the

40

{n^+n^+ljx {n^+n^+2} convolution matrices Ca,, Cb,; the degree of p(z) is na; and

0 is a vector of zeros of conformal dimension. With a+(z) and b+(z) coprime, the

particular solution is:

*. =pv -r»-r 0
=

p p

P P
V
0

=

A
(3.35)

where PlA denote partitions of the inverse in (3.35) of dimensions conformal to <j>p, \pp,

Vp, 0. Taking z-transforms, it is easy to show that the general solution to (3.33)b is:

4>(z) =b\z)c(z)+<t>p(z); m =a\z)c(z)^p{z) (3-36)

where c(z) is a polynomial with a convergent sequence of coefficients and contains the

available degrees of freedom. Inserting (3.36)a, (3.36)b into (3.32)a, (3.33)a and then into

(3.31)b,(3.32)b gives:

/s b\z)c{z)+4>p{z) a\z)c{z)+^iz)
Au(z) = - p (3.37)

a-(z) bXz)

It then follows that for asymptotic tracking the coefficients c, must have a limit, say c0

c.-^limll-z-'lyfr)-^
00 b\\) ZM b\V)

(3.38)

where we note that the sequence <j>p is of finite length, n0+l, and thus has zero steady-

state value.

For practical implementation, the number of degrees of freedom used for

optimization has to be finite (and preferably small); thus, as was done with the sequence

of future inputs in Section 3.1, here we require c(z) to be a FLS and to reach its steady-

state value within nc+1 steps; nc shall be termed the command horizon. We emphasize

that, despite the FLS nature of c, in general, the sequence of future control increments

will be ILS (as implied by eqn. (3.37)b), and thus it will avoid the conflict that may exist

between FLSs and input constraints. Other predictive control formulations (eg [30], [54],

41

[18], [24]) use inputs or input increments as degrees of freedom and thus implicitly

constrain them to be FLS; here we impose no such restriction.

With c(z)=c0 +clz'
1 + -+cn_lz'"c+1 +cKz'"c/(l-Z_1), eqns. (3.37) can be written as:

» = rflV6- c + 0a7ft- cM + T1/Ab.P2vp + »Ml

(3.39)

where the f* column of the V matrices contains the impulse response of the indicated

transfer function multiplied by z'i+l, and the 0 vectors contain the step response of the

indicated transfer function multiplied by z'n'. Eqn. (3.39)c is derived from i) eqn.

(3.39)b, ii) u=C^Au +«M1, and iii) a+(z)=a+(z)/A(z). Q"1 is a square lower triangular

matrix of l's, whereas the elements of the vector 1 are all 1.

To get the a priori stability condition, we need to determine the allowable interval

for ut, the first element of u in prediction eqn. (3.39)c, such that eqns. (3.39)b,c satisfy
—»

input constraints (2.28). Thus, we must minimize/maximize over c the first element of
—»

eqn. (3.39)c, w,=ex
r«, subject to (2.28). Note that the part of u=efu which is not a

function of c is constant and will be ignored in the cost (but not the constraints) of the

optimization:

min ±e? Talb. c s.t. '
uL<u<uv

—»
rL<Au<rv

(3.40)

where the dependence of u, A« on c is as defined in eqns. (3.39)b,c. By eqn. (3.39)c,

the solutions of optimization (3.40), c^, cBda, give vectors, amax, u^, the first elements

of which define the allowable interval for ut as:

42

[«Od. ^ "< ^ Wmax Where »,=«1 « ^3-41^

Theorem 3.10 The necessary and sufficient a priori stability condition is that ut must lie

in the interval defined by eqn. (3.41) where [wj^ and [wj^ are the minimum and

maximum values of u„ as computed by optimization (3.40).

Proof: By derivation, the totality of stable input vectors u which give stable output

vectors must be of the form of eqn. (3.39c); since we are dealing with hard constraints,

failure to meet (3.40b) implies violation of (3.39) and will lead to instability.

Constraints (3.40b) are linear, so the set of c that satisfy (3.40b) is convex and

the vector c^c^+eic^-CnJ will also satisfy (3.40b) for 0<e<l. However, as e

varies continuously from 0 to 1, u=e[u also varies continuously between [wj^ and

["Jmax- Tnus> to every value in this interval there will correspond at least one c such that

the vector u satisfies constraints (3.40b) and, by definition, gives stable inputs/outputs;

namely, providing that stability interval (3.41) is satisfied, there exists at least one

stabilizing, feasible u. D

Remark 3.3 Strictly speaking the necessity of Theorem 3.10 holds for the case when the

command horizon nc is taken to be arbitrarily large, thus at first sight, this result appears

to be of limited practical use. However, in practice nc must be taken to be finite (and

preferably small), and this will limit the stability interval; the condition of Theorem 3.10

is then necessary and sufficient for a given command horizon nc. Thus, if optimization

(3.40) is infeasible for a given nc, then there does not exist a stabilizing control trajectory

of the form of (3.39) and nc must be increased; this is in contrast to the previous section,

43

where infeasibility need not be intrinsically due to the use of a short horizon, but rather

could be attributed to the FLS property which is arbitrarily imposed on u.

The ILS nature of the predicted u used in this section implies (at first sight) that

constraint violations need to be checked over an infinite horizon (regardless of the length

of the command horizon). However, because the transfer function from the command

input, c, to the system input, u, is stable, bounding techniques like those given in [30],

[54], [41] can be employed by which constraint satisfaction over some finite input

horizon implies satisfaction over the infinite horizon. This will be shown in Chapter 5.

3.2.2 Illustrative example

An obvious use of these stability results is in a supervisory capacity when using control

strategies which either do not have a stability guarantee altogether or lose the guarantee

temporarily due to short term infeasibility (STIF) (eg. due to large set-point changes).

When the controller asks for inputs inside the stability interval, no remedial action is

required, but if the input is outside the interval, the input could be clipped or control of

the system could be switched to a known stable controller.

It is pointed out that all terminally constrained predictive algorithms require short

term feasibility (STF) and thus lack stability guarantees for horizons which are too short

to avoid STIF. In practice, short horizons are essential in that they imply short

computing times; for systems with relatively fast dynamics, the luxury of large

optimizations may not be possible. Here we show how the stability conditions are used

to guarantee the stable operation of predictive algorithms when horizons are too short to

ensure STF (at all times). The predictive algorithm we use is CSGPC. In common with

44

terminally constrained predictive algorithms, the optimizations of Theorem 3.10 (required

to find the stability interval) also requires feasibility, but through the use of ILS's in

place of FLS's, it is doing only what is necessary and thus will usually be feasible with

much shorter horizons.

This is demonstrated in the example where the CSGPC optimization becomes

STIF due to a large set-point change. When CSGPC is STIF, one needs a logical

procedure for choosing ut within the a priori stability interval of eqn. (3.41). One such

strategy is to choose ut within the limits such that the maximum future constraint

violations predicted by CSGPC are minimized. Since CSGPC uses predicted input

sequences which are FLSs, it is easy to formulate this minimization as a linear program

(LP); in this we can introduce weighting, w,, WjA>Wj, to place more emphasis on the

early predicted constraint violations:

min max[w/^0-^-«,+p,w/M,+y.-^0-^,w/-/?-A«^,w/A^+r/?)]; 0<j<nu
(3.42)

s.t. yt+ny+i+1=r, Aul+n+i=0; V z>0; [",]min<«,<[«,]„,«

The rationale (of minimizing worst case predicted constraint violations) is as follows: of

all the predicted M'S, only u, is actually implemented, therefore the choice of ut (within

the a priori stability interval) can be governed by minimizing future predicted constraint

violations and thus maximizing the possibility of a return to STF at the next time instant.

Algorithm 3.1 At each time t:

Step 1 Test the CSGPC optimization for STF

Step 2 If STF, apply CSGPC; implement u„ increment t, and return to step 1

Step 3 If STIF, calculate the stability interval for ut from optimization (3.40) ([ut]min,

["Jmax) and implement the value of ut which optimizes eqn. (3.42); increment t and return

45

to step 1

CSGPC requires, at most, two optimizations: an LP to find a feasible initial

solution (which, at the same time, tests for STF) and a quadratic program (QP) to

minimize the predicted cost function. Algorithm 3.1 (when CSGPC is STIF) requires up

to four LP's: LP1 to test CSGPC for STF, LP2,3 to determine the upper and lower

limits on ut, and LP4 to minimize the future predicted CSGPC constraint violations.

Ignoring the difference in computing times of QP's versus LP's (which would amplify

our point), we will show that, through the use of smaller optimizations, Algorithm 3.1

will be significantly faster than CSGPC, when the latter is implemented with horizons

long enough to ensure STF at all times. We will compare the theoretical maximum

number of iterations, the size of the optimizations, and the maximum computation time

spent doing optimizations at any given time step. The optimization routines used will be

LP and QP from Matlab's Optimization Toolbox, which employ Bland's anti-cycling rule.

As a consequence, the theoretical maximum number of iterations is bounded by the

number of different subsets of constraints with k elements, where k varies from zero to

the number of DOF; in practice, computation time tends to vary with the size of the

optimization [3]. This size is ncXm, the product of the number of DOF and the total

number of constraints.

Example 3.3 Let the system transfer function g(z) =z'1b(z)/a(z) be defined by

a(z) =(l -0.6z -»Xl -2z -»Xl +3z ^(l -4z"! +2.25z "2) (3.43)
b(z) =(l -0.2z "»Xl -0.8z -!Xl -0.& ~l +0.25z "2)

let the constraints be Uo=0, U=60, R=IQ, assume zero initial conditions, and apply a

46

unit step set-point. Figure 3.4 shows the results for CSGPC with nu=U and ny=l2 (8

DOF); with fewer DOF, CSGPC runs into STIF and goes unstable. In this figure and

the following, the left plot depicts output responses (in solid lines), and set-point

trajectories (dashed lines), whereas the right plot depicts control (solid lines) and control

increment (dash-dotted lines, scaled by a factor of 6) trajectories. For CSGPC with 8

DOF, the LP and QP sizes are 9x54 and 8x54, totalling 918; the theoretical maximum

number of iterations are 1.97X1015 and 4.29X1013. The longest computation time

required by the optimizations at any sampling time was 1.15 seconds. Figure 3.5 shows

the results for Algorithm 3.1 with nc=2. With this command horizon, LP1 and LP4 are

3x30 and LP2,3 are 2x116, totalling 644 (vs. 918 for CSGPC); also the theoretical

maximum number of iterations are much more reasonable: 25261 (for LP1,4) and 13457

(for LP2,3). The longest computation time required at any sampling instant was 0.88

seconds; an improvement of almost 25%. It is interesting to note that despite the very

small number of DOF used by Algorithm 3.1 (2 vs. 8 used by CSGPC), the results of

Figure 3.5 are of comparable quality (by way of maximum overshoot, speed of response,

level of control activity, etc) to those of Figure 3.4.

3.3 Chapter summary

The results of this chapter enable the determination of necessary and sufficient a priori

stability conditions and incorporate conditions for asymptotic tracking. Two practical

schemes are considered, one which gives explicit stability conditions for systems with one

unstable pole and the other which gives stability conditions for the general case through

the use of linear programs. By allowing the predicted u to be an ILS, the latter leads to

47

an optimization problem which remains feasible for smaller horizons, thereby enabling

a significant reduction in computational load, while retaining the guarantee of stability;

this point is clearly illustrated by means of the final numerical example.

In the next chapter, we take an alternate approach to the problem of short term

feasibility. Chapter 4 offers several modifications to CSGPC which serve to avoid STIF

during set-point changes and therefore, to avoid instability.

48

10
Output and Ref.

10

0.05

20 40

Input Rate

HÄo-vll

-0.05
20 40

Figure 3.1 Example 3.1 - CSGPC with short term infeasibility - unstable

Output and Ref.
10

0.05

20 40

Input Rate

-0.05
20 40

Figure 3.2 Example 3.1 - CSGPC with short term infeasibility - limit of stability

49

Output and Ref.

0.05

-0.05

MAc-vlI
^ c

1 \ \

0.5

n

•

Figure 3.3 Example 3.2 - CSGPC with short term infeasibility - stable

Output, and Reference Input and input Rate

1

40

20

I

i ' >
J /
| /

0

-20

\r\ i\.'v

0.5 - \ ■ M\ r
°0

\
-40

-60 0

i Xi
■■ ■' V v '

20 40 20 40

Figure 3.4 Example 3.3 - CSGPC with eight degrees of freedom

Output, and Reference Input and Input Rate

1

40

20

1

•

I /
J /

0

-20

A ■ ■ ;''x

0.5 - | ■ ^ i\ \ 1/ -

°0

|
-40

-60 0

i \U -
i /

20 40 20 40

Figure 3.5 Example 3.3 - Algorithm 3.1 with two degrees of freedom

50

Chapter 4

Modifications to Constrained Stable
Generalized Predictive Control

Theorem 2.2 states that if CSGPC is feasible for a finite ny (ie. short term feasible, or

STF), then the algorithm will lead to asymptotic stability. However, nothing can be said

about the stability of CSGPC in the case of short term infeasibility (STIF). As was seen

in Example 3.2, by minimizing the worst case future constraint violation, CSGPC can

overcome STIF and give stability and asymptotic tracking. This property is extremely

useful, but cannot be guaranteed in general. A common cause of STIF is large set-point

changes; in this chapter, we propose three different modifications to CSGPC which all

retain feasibility during large set-point changes and thus lead to stability.

STIF is caused by the requirement that the predicted output should reach its new

target value within ny steps (a terminal constraint), so this requirement must be relaxed.

However, the stability proof of SGPC and CSGPC depends on the property implied by

the use of FIR's that the predicted output settles after ny steps. Thus, an obvious strategy

to follow is to: (i) retain this last property, but (ii) allow the value to which the predicted

output settles at to be equal to some slack variable, sx, which will be a degree of

freedom (DOF). The value to which the predicted output settles is determined by c«,, the

51

far future command inputs; making c, a DOF is the subject of section 4.1. Obviously,

something must be done to ensure that the output goes to its target value; this is where

the modifications differ. The first modification, described in Section 4.2, ensures that

the output goes to its target value by augmenting the MWLS problem appropriately to

include a penalty on the deviation of $„ from this target value. The modified algorithm

is activated only when CSGPC is STIF, and guarantees recovery of short term feasibility

(STF); this together with the properties of CSGPC guarantee stability and asymptotic

tracking. Unfortunately, during the feasibility recovery stage, the modified algorithm

does not place any penalty on the norm of the vector of predicted errors, and this may

degrade transient performance. The other modifications, which are introduced below,

improve on the first in that they do retain performance in the cost.

Recent work by Zheng and Morari [53] and Allwright [1] minimize the infinity-

norm of the predicted errors rather than the two-norm as CSGPC does. Stability is

guaranteed without recourse to terminal constraints, and therefore without the need for

a STF assumption, however, the results are restricted to open-loop stable systems.

Within the context of SGPC this work can be extended to unstable systems. The

performance of such systems, though, is often not as good as CSGPC, as all effort is

spent minimizing just the largest error, and this is often the first one. The system is

driven very hard and the responses can be oscillatory. We, therefore, propose a

procedure for dealing with STIF in which the objective is usually the standard CSGPC

two-norm minimization, but when STIF is encountered, the value of the steady-state

predicted output is allowed to become a DOF and the objective is shifted to the

minimization of the infinity-norm of the predicted errors until STF is regained. Thus,

by mixing objectives, the superior performance of CSGPC is retained when possible, but

52

stability and asymptotic tracking are guaranteed with only the assumption of long term

feasibility (LTF). Section 4.3 develops an extension of the MWLS algorithm which

performs the constrained optimization of an infinity-norm of the predicted errors and

subsequently embeds this extension into the CSGPC framework. Finally, an algorithm

which mixes these two objectives, Mixed-Objective CSGPC, is presented and illustrated

by numerical example in section 4.4.

In Section 4.5 we propose a modification to CSGPC which shares in common with

that of Section 4.2 the property that it is guaranteed to recover STF, but also includes in

the objective a component which penalizes deviation of the predicted output values from

desired set-point values; we will call this Modified Constrained Stable Generalized

Predictive Control (MCSGPC). Unlike Mixed-Objective CSGPC, the performance cost

is always a two-norm of the predicted errors, but when CSGPC is STIF, return to STF

(and thus stability) is guaranteed by the added constraint that sm move closer to the

desired value at each successive time instant.

4.1 Adding an additional degree of freedom to CSGPC

STIF arises during set-point changes because of the implicit requirement that y should

reach the new set-point in ny steps and with only nc "free" command inputs. All far

future command inputs are chosen to be c„=r/b(l), where the reference signal, r(t), is

assumed, without loss of generality, to be a step of size r. Thus, the only way to

overcome STIF is to relax this end-point constraint for the predicted output. A simple

way to achieve this, while preserving the FLS attributes of CSGPC (which are used in

the proof of stability), is to include c«, as a degree of freedom, such that the predicted

53

output settles at some slack variable, s00=b(l)c<X) rather than r. To achieve this, eqn.

(2.13) is modified to get:

v = rt*c* + y/, A« = r>* + Au,; u = T* c* + u^

c* =

(4.1)

; r; = [r„ »j; r; = [ra, ea\ r; = [r„, •.]

Input constraints inequality (2.29) can then be rewritten as:

M^-v*(oL=lk*IL^i; A* =
R a

IT* u a
v*(t) =

-Uuf
(4.2)

On the basis of (4.1) and (4.2), the CSGPC problem can be restated with respect to the

augmented vector of future c's, c* , and these modifications can be deployed either all

the time, or at all time instants when the original CSGPC algorithm runs into STIF.

The problem is that while c«, is a DOF, the predicted steady-state error is non-

zero and thus the finite horizon cost is no longer equal to an infinite horizon cost, and

therefore can no longer be shown to be a stable Lyapunov function. Alternative methods

of guaranteeing stability must be used; three different methodologies are given below.

4.2 A stable constrained predictive control algorithm

While cM is a DOF, the predicted output will settle at some value, sm =b(l)c<X). Clearly,

one needs to penalize the deviation of s«, from its desired value of r. The following

algorithm applies CSGPC as described in Algorithm 2.1, but if at any time instant,

IMc"K0|L can not be made less than one, MWLS is reapplied with the following

modifications:

54

e«'+1)=S* c ♦<*♦!>

KD

. e*™=A*c*(f*1)-v*(?); S* = 0T
n b(l) (4.3)

During the period of STIF, the monotonicity of return to STF is guaranteed by replacing

the part of the cost that relates to performance, S[c -cj, with a penalty on the deviation

of sM from its desired value. Thus, while s«, is allowed to vary so as to make feasible

solutions possible, MWLS will converge to the value closest to r which does not cause

any constraint violations. The subsequent values of sx will be shown to monotonically

converge toward r until the problem is once again STF.

Algorithm 4.1 At each time instant t

Step 1: Apply CSGPC (Algorithm 2.1). If \\Ac-v(i) \\ m < 1, increment t by one and

return to Step 1; otherwise proceed to Step 2.

Step 2: Use MWLS (Section 2.3) with the modifications of eqn. (4.3), let MWLS

converge to the optimal c*, and implement the implied first future value of u.

Increment t, go to Step 1.

Theorem 4.1 Under the assumption that the set-point changes do not cause the control

problem to become infeasible (LTIF), Algorithm 4.1 has guaranteed stability and will

cause the output y to reach asymptotically its target value.

Proof: If the problem is STF for all t, Step 2 will never be entered, so that Algorithm

4.1 will operate exactly as CSGPC, Algorithm 2.1, and so, by Theorem 2.2, we have

stability and asymptotic tracking.

Now let us assume that at some t, CSGPC is STIF and Algorithm 4.1 enters Step

55

2. Clearly, the implied optimization problem is always feasible because cM is now a

degree of freedom and can be chosen so as to require as little movement in the «'s, and

Aw's as is necessary; hence, MWLS will converge to the solution which minimizes the

distance of s«, from r, and satisfies inequality (4.2). The implied cost of Step 2 has

exactly the same form as that of eqn. (2.30), and so, like the original cost, it will be

monotonically decreasing; the arguments which prove this assertion are identical to those

used for the original CSGPC algorithm (Theorem 2.2). Hence, Step 2 will cause sx to

assume its target value of r and will do so in the minimum number of time instants.

Now, for cx=r/b(l), we have:

\\A'c'-v*(t)\\a = \\Ac-v(t)h (4-4)

and so one time instant before cx is made equal to r/b(l), the CSGPC problem will

become STF. This is so because, if Step 2 were applied one more time, it would give

a vector c* whose last element would be rlb{\) and for which the quantity of eqn. (4.4)

would be less than or equal to 1; hence, at that time instant it would be known that for

cx-r/b(r) there exists a vector c which satisfies inequality (2.29). In conclusion, Step

2 will always recover STF, and hence, the overall algorithm will be stable and will cause

y to asymptotically track its target. □

Example 4.1 In Example 3.1, we saw that at t=2 CSGPC, Algorithm 2.1 encountered

STIF. Repeated application of the algorithm, as expected, led to instability. This

problem is overcome entirely by the application of Algorithm 4.1 which, at t=2, invokes

Step 2 and, therefore, results in a Au2 which is less than the maximum allowable size of

0.04 (see Figure 4. lc). This reduction of Au2 in turn results in a bAu of smaller absolute

56

value (see Figure 4. Id) which lies within the interval of -0.0764 and 0.0764. From

Figure 4.1c, it can be seen that all the w's used by the algorithm stay far from the

absolute constraints and hence /% and mL will be large and b^Jb^ will stay at

-0.0764/0.0764 throughout the application of the algorithm. Then, from Figure 4.1b it

is seen that the algorithm is feasible throughout, and recovers STF for CSGPC at t=25

(see Fig. 4. Id). The output response (Figure 4.1a) can be seen to be good.

4.3 C-CSGPC

If sx is allowed to vary from r so \Ac-v($)1| „ can be made less than one, then, as the

predicted steady-state error is not zero, the finite horizon cost is no longer equal to the

infinite horizon cost and thus the monotonicity proof for stability breaks down. If,

however, the objective is shifted from minimizing the two-norm of the predicted errors

to minimizing the infinity-norm, then monotonicity can be retained. In section 4.3.1, we

define a CSGPC algorithm which has c„, as a degree of freedom and minimizes the

infinity-norm of the predicted errors; we will call this I „CSGPC. Then, in section

4.3.2, we modify MWLS to minimize an infinity-norm cost in the presence of

constraints; the resulting algorithm shall be referred to as C-MWLS. Finally, in section

4.3.3, we give the stability properties of C-CSGPC.

4.3.1 The overall strategy of t „-CSGPC

In I „,-CSGPC we make two changes to CSGPC. First, to overcome the problem of short

term infeasibility, cw is allowed to vary; this was done in section 4.1. Then, to ensure

57

that monotonicity of cost is retained, the objective is changed to the minimization of the

infinity-norm of the predicted errors. The vector of predicted output errors, e, is

represented as:

e„ „ =ET(y-r)=Hc> -/; E=[en,...,en]; H=ETV;-, f=ET(r-yf) (4.5)

where e{ is the t standard basis vector in 9t\ Because v settles after nc+nb steps, we

shall assume that, for C-CSGPC, ny=nc+nb+l. The choice of nu the initial output

horizon, determines the first predicted error to be included in the cost, /. Normally, nx

can be set to one, and all future errors up to ny, the output horizon, will be included in

e. When b(z) exhibits non-minimum phase characteristics, though, nx must be chosen

greater than one so that some of the initial (non-minimum phase transient) errors are

ignored; the quantitative treatment of this problem will be presented in section 4.3.3.

The following algorithm is used to implement C-CSGPC:

Algorithm 4.2 (t«,-CSGPC) At each time instant t

Step 1: Calculate the vector of future command inputs which minimizes the infinity-

norm of the predicted errors without violating the constraints, namely,

minc./f=|^„JLs.t. M'c'-v'(0L<l.

Step 2: Calculate and implement the first control increment using eqn. (4.1)b.

Step 3: Increment t by one and return to Step 1.

For convenience, the * superscript will be suppressed in sections 4.3.2 and 4.3.3, as this

is the form (with c«, a DOF) assumed throughout the development of C-CSGPC.

58

4.3.2 The i „-MWLS algorithm and its properties

The constrained minimization of an C-norm for the purpose of predictive control has

been implemented in the literature with linear programming theory. Here, as an

alternative, and to demonstrate the versatility of MWLS, we recast MWLS to achieve an

infinity-norm objective rather than its original two-norm objective. In this section we

derive the properties of ^-MWLS.

Let the C-MWLS cost be:

Jm
i-MWLS 1*1*7»,, •* * nVny

where the weights are updated at each iteration as per:

w('+1> = * r A yw© • w(i+l). = » f A (4.7)

To gain an intuitive feel for the algorithm, it is useful to sum over; the weight updates

of eqns. (4.7):

n 1 n m

Yw^l\. = - Yw®tt; EW(,+1), = 1 (4.8)

where the summation of the numerator of each equation in (4.7) is equal to, and therefore

cancels, the one-norm in the respective denominator. The partition of the cost which

contains e is associated with performance, while the partition containing e is associated

with constraint violations. At each iteration, the total weight, W, placed on the constraint

partition is normalized to one, and the total weight, w, placed on the performance

partition is adjusted by a measure of the size of the constraint violations. When

constraints are violated, \\e\\M is greater than one, thus, less weight is placed on

performance which forces the algorithm to emphasise the constraint violations; but when

59

all constraints are met with strict inequality, the weights on performance are increased,

shifting the emphasis away from constraints. Within each partition, though, the largest

elements are always emphasized. The following definitions will be used in the derivation

of the properties of ^„,-MWLS:

c* = lim c® (if it exists)
~* j-*0o -*

c" = unconstrained lv optimum: minHef^ ^^
-» c

c* = constrained im optimum: min || e \\ m s.t. fel^l

Lemma 4.1 The C-MWLS feasibility region, Fn, is always non-empty for the

disturbance free case (Fn ^{0}).

Proof: C-MWLS has cm as a degree of freedom, therefore, at start up, doing nothing

is always a feasible solution, and thus, it can be argued recursively that the control

trajectory calculated at the previous time instant will remain feasible in a disturbance free

environment. ^

Theorem 4.2 £W-MWLS cannot converge to a point outside the feasibility region

(c'eFB<).

Proof: Assume that C-MWLS converges to c*£Fn, then \ek\>l for

kEIQI0={l,2,...,m}, where m is the total number of constraints. Let / be the

complement of / with respect to I0. Then, in the limit, l^,(oo)=0 for jEl, because Wtt
(0

for kEI are increasing (relative to the others) with i, but, by eqn. (4.8)b, they all sum

to one. Hence, because E7Wtt
(0=l,

60

This, with eqn. (4.8)a, shows that the sum of the performance weights will decrease with

i, and in the limit, Ew*(oo)=0. Therefore, the C-MWLS cost will become:

lim /,%„, = |[W<TVf2 (4.11)
i-»e»

whose solution is feasible since, by Lemma 4.1, Fn^{0}. This contradicts the

assumption that c*fcFn, and thus completes the proof. □

Corollary 4.1 If c°EFn, then c°=c* and C-MWLS can only converge to

c* (c*=c*).

Proof: c" minimizes |e|oo, and since CEFn, the corresponding e is such that

||e| M< 1; therefore, c'=c*. Assume that t„-MWLS converges to c**c*, but by

Theorem 4.2, c'6FB and so \ek\ =1 for £G7 and |ey| <1 for jEI, where, as before,

/ is a subset of 70 and / is its compliment. Then, if 7^{0}, T^,(oo)=0 for jEI, and

IwML = E W('V K°J = E W('V H = E w0)** = x (4'12)

Therefore, by eqn. (4.8)a, the sum of the performance weights will be constant,

Sw/+1)=EwA
(0=7. The individual weights will then be updated as per:

Wd+D =
w a? A y. (4.13)

* lk'V'1,

and so by Lawson [22], c*=c*, which contradicts our earlier assumption that C*J*C* .

If /={0}, | W®«® 11 < 1, and the sum of the performance weights will increase

with /. This has the effect of shifting all of the emphasis to performance as none of the

constraints are active, and hence, we once again contradict our earlier assumption that

61

c*^c*. Note that the growth of the performance weights does not constitute a

numerical problem, because the algorithm can be stopped after c* converges and before

the performance weights get too large. Alternatively, the sum of the performance and

constraint weights can be normalized to one after the update of eqn. (4.7); then, if

/={0}, all the constraint weights would tend to zero. □

Theorem 4.3 C-MWLS can only converge to c * (c*=c*).

Proof: By corollary 4.1, this is true for c°EFn, so here, let c°£Fn/ Assume that

C-MWLS converges to c*^c *. By Theorem 4.2, c*EFn, and so the polyhedroid

defined by |e|00= constant which passes through c* must either intersect Fn, or be

tangential to it (for example, see Figure 4.2). Of these, the former cannot be true,

because any point inside the intersection of the polyhedroid and Fn will result in a

smaller cost for f^-MWLS. Hence, C-MWLS will not converge to c* unless the

polyhedroid through c* is tangent to Fn. This can only happen at c*=c *. If the

tangency is a point, then the solution is unique; however, if the tangency is a common

edge (line, plane, or hyper-plane), then the solution is non-unique because any point

along the common edge tangency will produce the same optimum cost. This is discussed

in Remark 4.2. □

Remark 4.1 In some cases, the solution to minc /,= || e \\«, s.t. | e \\«, < 1 is not unique.

When this occurs in C-MWLS, there will be less than nc active (non-zero) weights which

are associated with linearly independent rows of H or A. This will cause the matrix

[IfwA ATWA]T to be rank deficient, and means that not all degrees of freedom are used

to minimize the („,-MWLS cost. This non-uniqueness can be visualized by considering

62

the tangency mentioned in the proof of Theorem 4.3, which, in this case, will be a

common edge (for example, see Figure 4.3). In practice, it is sufficient to stop the

algorithm prior to the rank deficiency occurring, but an alternative solution would be to

allow C-MWLS to run only until the active set is identified and constrain c to lie in it.

The remaining degrees of freedom could then be used to minimize the next largest error.

Remark 4.2 Unlike LP, C-MWLS does not need a feasible starting point.

Additionally, for many problems, an exact solution is not necessary. In this case,

i „-MWLS can provide a close solution very quickly. A reasonable termination criterion

for C-MWLS is whether or not the cost changes are smaller than a small threshold

value, e. By choosing e to be relatively large, say 0.01, t «,-MWLS will terminate in just

a few iterations, thus providing a very quick estimate of the optimum solution. In

applications where computation time during the sampling interval is at a premium, using

C-MWLS with a termination criterion which incorporates a large e may provide a much

better option than waiting for LP to find a feasible starting point (a separate LP), and

then converge to the exact solution. This is illustrated below.

The following example concerns the feasibility region and convergence properties of

C-MWLS.

Example 4.2 Let the system of Example 3.1 be subject to input absolute and rate

constraints (2.28) for which Uo=0, U=\, and R=0.l. Apply C-CSGPC, using

Algorithm 4.2. Figure 4.4 through Figure 4.7 show the feasibility region (solid lines)

and contours of equal ||e|| „ (dashed lines) at four time instants with n=\ so thatc*

63

has two elements; c° is indicated by a 'o', and c* by a V- In all instances, it is

obvious that I«,-MWLS has converged to the optimum, per Theorem 4.2 (c*=c *). At

t=6, the progression of e (labelled ep_i), w, e, and W through 50 iterations is shown in

Figure 4.8, and their final values after 100 iterations are:

e = [-0.8653 -0.7385 -0.6495 -0.6013]

w = [8.5776 0 0 0]

e = [0.6737 -1 -1 0.2132 0.1215 0.0674 -0.0326 -0.1326 -0.1113 -0.0992]

W= [0 0.6875 0.3125 0 0 0 0 0 0 0]

Note that the non-zero weights correspond to the largest s/s and to active constraints.

In this case, one performance weight and (as is evident in Figure 4.4) two constraints

weights are active.

At t=9 (Figure 4.5), the final errors and weights are:

£ = [-0.1620 0.0312 0.1234 0.1620]

w = [98.7436 0 0 17.8883]

e = [-0.8243 -1 -0.5758 0.2234 0.0974 -0.1635 -0.2635 -0.3211 -0.2987 -0.2890]

W= [0 1 0 0 0 0 0 0 0 0]

This time, two performance weights and (from Figure 4.5) one constraint weight are

active.

At f =11 (Figure 4.6), only the first performance weight and the first constraint

weight are active as indicated below:

64

s = [0.0412 0.0269 -0.0224 -0.0398]

w = [121.31 0 0 0.0006]

e = [-1 0.9649 0.4421 -0.1203 -0.0437 -0.3631 -0.2666 -0.2224 -0.2344 -0.2388]

W= [1 0 0 0 0 0 0 0 0 0]

The corresponding rows of H and A are [1 0], and, therefore, not linearly independent;

this is a case of a non-unique solution.

Finally, at t= 14 (Figure 4.7), the unconstrained optimum is feasible, and as stated

in Corollary 4.1, c°=c*=c *. The final errors and weights are:

E = [-0.0040 0.0040 0.0040 -0.0040]

w = 1.0e+024* [0.6080 0.0715 1.1839 0.8822]

e = [-0.5883 -0.2036 0.2380 0.0019 -0.0204 -0.2493 -0.2696 -0.2458 -0.2457 -0.2477]

W= [1 0 0 0 0 0 0 0 0 0]

Note that no constraints are active, and all degrees of freedom are used to minimize the

performance cost. The performance weights have grown large, but this did not adversely

affect the algorithm and could have been averted by appropriate normalization.

To illustrate the time savings possible with I «,-MWLS, the minimization in Step

I of Algorithm 4.2 was run with C-MWLS (using the termination criterion mentioned

in Remark 4.2, ie: setting e=0.01) and with LP. The former never needed more than

II iterations, taking a maximum of 0.11 seconds; LP required a maximum of 0.33

seconds. The use of a "relatively large" value for the threshold e results in a slight

degradation in performance (the C-MWLS cost is about 1% larger than the LP cost),

65

but this is a small price to pay when considering the very significant reduction in

computation time (threefold).

4.3.3 The stability of C-CSGPC

Once the optimum vector of future reference values, c *, has been calculated by

I „-MWLS, the procedure for computing and implementing the first optimum control

increment is exactly the same as that used in CSGPC [33]. The arguments for the

stability of I «,-CSGPC are also similar, as presented here.

Lemma 4.2 Let a linear system with transfer function G{z) =z1b(z)/a(z) be subject to

input constraints which, at time t and for reference horizon nc and input horizon

nu>na+nc+l, are given as \\Ac-v(t) | w < 1. Furthermore, let the t„-CSGPC objective

be min, J = \\ e \\ m s.t. \Ac-v($) \x < 1, then for 1 <«j<ny, Jt is non-increasing for

all t and C-CSGPC is BIBO stable.

Proof: First, we note that |e \\ x = \e„;001«,, because, by the property of FIR's and

the choice of ny>nb+nc+l, the predicted output will reach steady-state at the ny^ step.

At each new time instant, t+l, the control trajectory implied by the previous optimum

is feasible and can be used to give a cost, Jt+l, which will be less than or equal to the

optimum cost J* at t. Then, the optimum at t+1, Jt+l*, will be less than or equal to Jt+1,

and hence, less than or equal to /,*. □

Lemma 4.3 For nx=ny, C-CSGPC is stable and gives asymptotic tracking.

Proof: The objective is now equivalent to that of Step 2 in Algorithm 4.1, which is used

66

when CSGPC encounters STIF. □

Lemma 4.4 If I „-CSGPC is at rest, uss is on the interior of the absolute constraint

limits, and yss*r, then there exists an nx such that |e \at can be reduced without

violating the constraints.

Proof: The elements of this steady-state error vector will be EX =e2 =■■■ =sn^ = sss =r-yss * 0.

Furthermore, ||Acm-v(f) | ^ must be strictly less than one because the rates are inactive

and the problem is long term feasible (LTF). Therefore, there exists a positive number

e such that \\A(css+Öc)-v(f) \\ a < 1 for all be which satisfy || be \\ „ <e. Now then, we

need to show that there exists a be which satisfies:

II H(css^c)-f\\ „ = 1 Hbe+(Hess-f) ILHI HSc+eJ |.< | Hcss-f\\ .= | e„ | (4.14)
-» -» -»

and Ibe\\ „<e. This can be done easily by choosing nx>nb such that Hl=b{l)l and

setting 5c=-sign{£(l)}el so that:

\\mc+essl\a>=Ess-\b{\)\e<\Ess\ and | 5c |. =€ (4.15)

Eqn. (4.15)a will be true, because one would always choose e <e„/1 b{\) |; bc=-essllb{\)

will makey^=r. D

Theorem 4.4 There exists an nx such that:

min |ffx-lL < 1 (4-16)
X

Furthermore, if a system is at rest, uss is on the interior of the absolute constraint limits,

and y„*r, then I«,-CSGPC will remain at rest at the wrong steady-state value if, and

only if, «! is chosen such that condition (4.16) is not satisfied.

Proof: That such an nt exists is proved by choosing rii>nh which makes the LHS of

67

condition (4.16) equal to zero. Now, || HJC-1 | „ < 1 is equivalent to condition (4.14) with

ess normalized to 1, so if nx is chosen such that condition (4.16) is not satisfied, no

control trajectory will exist which produces a lower cost than that of remaining at rest

(6c=0), but if condition (4.16) is satisfied, then such a trajectory does exist and can be

made small enough to keep \\A(c+bc)-v(t) \\ x < 1. The arguments for this are similar

to those given in the proof of Lemma 4.4. ^„-CSGPC will choose the optimum cost, so

in the first instance, y will remain at rest at the wrong steady-state value, and in the

second, it will move towards the desired set-point. D

Remark 4.3 Note, in Lemma 4.3 {nx=nj), that only the last error, sn, is minimized.

But, to maintain as much of the transient behaviour in the objective as is possible, we

want nx as small as possible. Condition (4.16) can be used to determine the smallest

valid nx. By starting with nx = l, condition (4.16) can be tested (off line, with a linear

program or Lawson's algorithm) and nx can then be incremented until the condition is

satisfied. Hereafter, we define nx to be the smallest nx which satisfies condition (4.16).

Remark 4.4 Theorem 4.4 states that if nx is chosen less than nx, then f^-CSGPC will

not track a reference; this would normally be associated with non-minimum phase

attributes. Because of the SGPC stabilizing loop and by eqn. (2.13)a, this behaviour is

determined solely by the system's numerator polynomial, b(z). If b(z) is such that the

output must initially go further from the desired steady-state value before it can go closer

(ie. non-minimum phase behaviour), then the first error(s) will always be greater than

they would be if the system just stayed at rest. Thus, since t„-CSGPC minimizes the

maximum error, this initial error(s) must be excluded, or the "optimum" cost will be that

68

which requires the system to stay at steady-state.

As stated in Remark 4.2, the solution to mh\ /,= || e ||„ s.t. || e |[«, < 1} can be non-

unique; therefore, the possibility of an undamped oscillating cost exists. To account for

this, Theorem 4.5 is written with an assumption of uniqueness, but then the assumption

is removed in Corollary 4.2 by modifying the cost objective to emphasize later errors

more than earlier ones.

Theorem 4.5 Let the control trajectory which optimizes the cost of Lemma 4.2 be

unique, then, for n^n*, f^-CSGPC is stable and gives asymptotic tracking.

Proof: If yss=r, then we are tracking the reference, so lety^^r. Now, by Lemma 4.2,

Jt+*<J*; ifJt+* has not stabilized at a constant non-zero value then the cost is decreasing

as desired, so assume it has stabilized (ie. Jt+*=J* for all i). Uniqueness then implies

that the control and output trajectories are frozen, and we have steady-state after i=nc+nb

steps. But, by Lemma 4.4, this cost can always be reduced, which contradicts the

assumption of a stabilized non-zero cost. Therefore, the cost will be reduced to zero and

f^-CSGPC will asymptotically track the reference. □

Corollary 4.2 Let the C-CSGPC objective be mine Jt=lSeHvM \\x s.t. | e | x < 1, where

the elements of S are chosen such that Sjj>Sä for j>i and 5^=0 fovj&i. Then, for

«,>«!*, f^-CSGPC is stable and gives asymptotic tracking.

Proof: If we use the same control trajectory at r+1 as we used at t, then each s, is

multiplied by an "earlier" (ie. smaller) Su, so Jt+1<J*. This will always be true unless

the biggest e, at t is the last one (in such a case, the biggest at the next instant will also

69

be equal to Snnen). But then the extra degree of freedom which is available at the next

time instant will be used to decrease Jl+1. This can always be done without causing any

of the "earlier" S^e/s to become dominant as they are all strictly less than Snnen .

Therefore, /, is a monotonically decreasing function of time. D

Remark 4.5 S can also be used to increase the speed of convergence by increasing the

emphasis on steady-state errors; in the limit one gets that part of Algorithm 4.1, which

is used when CSGPC encounters STIF.

f^-CSGPC gives stability by minimizing the maximum predicted error, as do the works

of Zheng and Morari [53] and Allwright [1], but by first applying the SGPC stabilizing

loop, i„-CSGPC can also handle open-loop unstable systems. Unfortunately, min-max

controllers often give undesirable performance because the maximum error is often the

first (transient) one. This causes the system to be driven very hard and can lead to

under-damped oscillatory response. CSGPC, on the other hand, minimizes the two-norm

of the predicted errors, and therefore offers excellent performance, but cannot handle

STIF. Thus, in the next section, we propose an algorithm which mixes these two

objectives.

4.4 Mixed-Objective CSGPC

Mixed-Objective CSGPC offers a compromise between CSGPC and £ „-CSGPC. When

STF, the preferred two-norm objective of CSGPC will be used, but when CSGPC is

STIF, cx will be made a DOF and the objective will be changed to the infinity-norm

70

objective of C-CSGPC until STF is regained for CSGPC.

Consider the following algorithm, which we shall term Mixed-Objective CSGPC.

Algorithm 4.3 (Mixed-Objective CSGPC) At each time instant t

Step 1: Test for short term feasibility, namely, that minc \Ac-v(t) \\ „ < 1; this can be

done with either Lawson's algorithm or linear programming. If short term

feasible, proceed to Step 2; otherwise, go to Step 3.

Step 2: Apply CSGPC as described in Algorithm 2.1, namely, mine /,= |c I2 s-t-

Mc-v(f) II oo^ 1, cm=r/b(i); increment t and return to Step 1.
—►

Step 3: Apply C-CSGPC as described in Algorithm 4.2, namely, minc. /,= | Se \\ „

s.t. 1.4 *c* -v *(t) I w < 1 with «!>«!*; increment t and return to Step 1.

Theorem 4.6 Mixed-Objective CSGPC has guaranteed stability and will cause the output

y to reach asymptotically its target value.

Proof: If the problem is STF for all t, the modified algorithm will operate as CSGPC

Algorithm 2.1, and so by Theorem 2.2, we have stability and asymptotic tracking. If,

however, due to a set-point change, CSGPC is STIF, I „-CSGPC will be applied. Now,

by Lemma 4.1, it is known that this optimization problem will always be feasible, and

furthermore, by Theorem 4.4, we have that the C-CSGPC cost is a monotonically

decreasing function of time. Hence the output will be driven towards its target value, r.

At some time instant before the output reaches r, CSGPC will regain STF and the

algorithm will revert to CSGPC. Namely, by the results of section 4.3.3, we know that

C-CSGPC will always recover STF for CSGPC, and hence, Mixed-Objective CSGPC

will be stable and will cause the output to asymptotically track its target value. D

71

Now we give two numerical examples to illustrate the results of this and the previous

section. In the first example, we show how C-CSGPC, using Algorithm 4.2, and

Mixed-Objective CSGPC, using Algorithm 4.3, actually maintain stability. This example

also serves to illustrate the sometimes oscillatory response of I „-CSGPC and the great

improvement achieved by Mixed-Objective CSGPC.

Example 4.3 Let the system of Example 3.1 be subject to constraints (2.28) for which

Uo=0, U=25, and R=0.04. Setting nc=3, the two algorithms are applied to control the

system. Both C-CSGPC (Figure 4.9) and Mixed-Objective CSGPC (Figure 4.10)

maintain stability and set-point tracking. Notice, though, that £ „-CSGPC gives an

oscillatory response, taking 23 time steps to settle; this is because it always uses the

infinity-norm objective. Mixed-Objective CSGPC, on the other hand, regained STF for

CSGPC and reverted to the two-norm objective after only four time steps; the response

is, therefore, very good.

As mentioned in section 4.3.3, infinity-norm controllers minimize the maximum predicted

error, so for systems which exhibit non-minimum phase behaviour some of the initial

errors must be ignored. We are concerned with the non-minimum phase behaviour of

the closed-loop system, and as noted in Remark 4.4, this is determined solely by the

open-loop system's numerator polynomial, b(z). The last example illustrates this point.

Example 4.4 Let the system with transfer function g(z)=z'1b(z)/a(z), such that:

72

a(z) = l-3.8z-1+3.87z-2-0.27z-3-0.54z"4 (4 17)

b(z) = 1-1.13Z1 -5.003z"2+6.6378z"3

be subject to input absolute and rate constraints (2.28) for which Uo=0, U=0.l, and

R=0.05. This system is particularly difficult to control as it has a near pole-zero

cancellation outside the unit circle; a(z) has a root at 1.5, and b(z) has roots at 1.55 and

-3.0. For nc=3 and nx = \, the H matrix is:

H= l o o 0

0.95 1 0 0

-5.375 0.95 1 0

2.325 -5.375 0.95 1

0 2.325 -5.375 1.95

0 0 2.325 -3.425

0 0 0 -1.1

Now, for «!<2, min, \\Hx-l \\ „ = 1, and in fact the minimizing vector is x=0; clearly,

condition (4.16) is violated, and f^-CSGPC never moves from an initial rest condition.

But for «!=3, min, | Hx-1|| „=0.0546, and the minimizing x is -[0.4717, 0.7037,

0.8124, 0.8594]7"; condition (4.16) is satisfied, and ^-CSGPC tracks the reference as

desired (Figure 4.11). For completeness, Figure 4.12 shows the response of Mixed-

Objective CSGPC; in this case, the improvement is only minor.

These examples demonstrate the ability of £ „-CSGPC and Mixed-Objective CSGPC to

handle open-loop unstable and non-minimum phase systems. Mixed-Objective CSGPC

produces superior performance by retaining the two-norm objective whenever possible,

but falling back to an infinity-norm objective when STIF is encountered.

73

4.5 Modified CSGPC

Here we propose an improved modification to CSGPC which retains the part of the cost

that relates to performance as a two-norm; this provides for a more optimal choice of

control moves during the return to short term feasibility. This modification always leads

to stability and takes y to its set-point by requiring the deviation of s» from r to decrease

at each successive time instant while STF is being regained.

4.5.1 The MCSGPC algorithm

The strategy of setting 500=*(l)c00 as close as possible to r when CSGPC is STIF

(Algorithm 4.1) makes good sense in that it drives the problem as close to CSGPC

feasibility as is possible, thereby hastening the return of CSGPC to STF (we will call this

value of 5«,, which is closest to r and which does not violate the constraints, sj).

However when CSGPC is STIF, Algorithm 4.1 pays no attention to transient performance

in that Step 2 ignores the cost J of eqn. (2.16). To overcome this problem, one should

be looking for ways of retaining the minimization of J while at the same time

guaranteeing the convergence of CSGPC to STF, namely guaranteeing that sx converges

to r. This can be achieved by adding the extra constraint that the current value of sx

should be closer to r than is sx
M, which is the value of sm used at the previous step:

|5„-r|£p|5*-r| P^P<1; P°=^r (4'18)

where the lower bound on p is p° rather than zero to ensure that this new constraint is

always feasible; it must be remembered that s^0 is the closest that we can get to r and

this will be required when p=p° for which (4.18)a can only hold with equality. Thus

74

constraint (4.18) would provide the guarantee of convergence of CSGPC to STF that we

are looking for. However p° would vary from sampling instant to sampling instant,

thereby possibly necessitating a change in the value of p at each sampling instant. A

convenient (equivalent) alternative which avoids this problem is stated below; we will

term this a slack variable end-point constraint.

Lemma 4.5 Given that at time t the vector of future values of c is such that no input

constraint is violated, then at t+1 the constraint

K-5:|<;p|5*-^l o<p<i <4-19)

will be compatible with constraints (2.29).

Proof: If the control law implied by the vector of future values of c of the lemma is not

changed at t+1, then the input constraints will again not be violated; thus sj" represents

a feasible choice for sx. On the other hand, by definition sx° gives an alternative feasible

choice for sm. Given the convex nature of the input constraints any choice of s^ between

sj*1 and sM° will be consistent with the input constraints. This is exactly the range of

choices allowed by constraint (4.19) as p tends to 1. O

The important point about condition (4.19) is that the larger p is chosen to be, the less

stringent the requirement on 5«, becomes and thus the more design freedom is released

for other control purposes; this is in direct contrast to what is done in Algorithm 4.1

which corresponds to what would happen if p were chosen to be arbitrarily small. The

design freedom which is made available by choosing p greater than zero can be deployed

in the optimization of the tracking of the desired set-point r through the minimization of

the cost / of eqn. (2.16).

75

To implement this modification using MWLS, input constraints inequality (4.2)

is augmented to include this new constraint:

M*c'-v'(oL=|ki^i; ^ =

IT*
R a

Ar* u a

b{\)
/ old „ 0\

V(t) =

/ old 0\
P(5oo Sco)

and MWLS is then applied with the following modifications:

e'<H)=S'|C»(M).c »I e-w=A*c'(i+1)-v*{t)

5*2=r;rr;+xr:rr:; c/ -s^[Y;\r-y)-\v: AM/];

(4.20)

(4.21)

Algorithm 4.4 (MCSGPC) At each time instant t

Step 1: minc. | r-s^ | subject to constraints (2.29) and let the minimizing value of sK

be J»" (use MWLS as per Algorithm 4.1 or a linear program).

Step 2: If sx°=r, CSGPC is STF; apply CSGPC (Algorithm 2.1) and go to step 4.

Step 3: For iBV, CSGPC is STIF; use MWLS (Section 2.3) with the modifications

of eqn. (4.21).

Step 4: Implement the first element of u, increment t, and go to step 1.

Remark 4.6 If CSGPC remains STF then Step 3 of MCSGPC will never be entered into

and thus MCSGPC will reduce to CSGPC.

76

4.5.2 Convergence and stability of MCSGPC

In this section we prove that MCSGPC is stable and has guaranteed asymptotic set-point

tracking.

Lemma 4.6 Given STF at start up, MCSGPC will remain STF at all subsequent times

irrespective of the size of future set-point changes.

Proof: At all times that CSGPC is STF, MCSGPC will behave like CSGPC and will

therefore retain STF. At times when a set-point change causes CSGPC to be STIF,

MCSGPC reverts to Step 3 which, by the assumption of initial feasibility and Lemma

4.5, will be feasible and will remain so. D

Henceforth, it will be assumed that MCSGPC is feasible at start up and therefore at all

subsequent times.

Lemma 4.7 At every time instant, s«,0 will satisfy the condition:

K-r\<Ku-r\ (4-22>

that is, sx° will be at least as close to r as was s^.

Proof: Due to MCSGPC feasibility, it is known that sj** was achievable at the previous

time instant and therefore is reachable now, hence sw°, which by definition represents the

closest achievable value to r, must be at least as near to r as is sx
M. □

Theorem 4.7 MCSGPC has guaranteed stability and asymptotic set-point tracking.

Proof: At any time step when sM°=r, MCSGPC will revert to CSGPC (as per Step 2)

and will thus be stable and track r asymptotically. So it remains to consider the case

77

when CSGPC is STIF, namely sj^r. From Lemma 4.7, we distinguish two cases:

(i) \s^-r\ < {s^-rl: By constraint (4.19), the convexity of input constraints, and the

definition of s«,0, we can show

\sZ-r\Z\S„-r\<\s?-r\ (4-23)

which states that s«, (and s«,0) is converging to r, thereby returning the problem to the

case where CSGPC is STF.

(ii) \s°x-r\ = \sf-r\: This implies that sj and sx
old are equidistant from r. But the

interval between sx° and s„old cannot contain r because, by convexity, then r would be

achievable thereby implying s00°=r, this corresponds to the case when CSGPC is STF

which has been examined earlier in the proof and is excluded here. Hence s<x
oU=sJ,7^r

and by (4.19) sx itself must equal sj and therefore sx
old. This situation however can not

persist for more than na+nc steps, because by then the system will have reached steady-

state which implies that we could no longer be on the boundaries of any of the input

constraints and sj could be brought closer to r, which brings us back to case (i).

Thus, if at any time step CSGPC is STIF, it cannot remain in case (ii) but will

always return to case (i) and converge to the case where CSGPC is STF, which, as

stated, implies stability and asymptotic tracking. □

Remark 4.7 Implicit in the proofs of this section is the assumption that the set-point has

been chosen sensibly, ie. such that uss=a{Y)rlb{\) satisfies absolute constraint (2.28)b.

It is easy to show, though, that should the set-point be chosen so that a(l)r/b(l) is outside

the constraint interval, then MCSGPC will cause sx (and thus the output) to settle at a

value dictated by whichever absolute constraint boundary a(l)r/b(l) exceeds.

78

Remark 4.8 By Theorem 4.7, we have that MCSGPC will converge to where CSGPC

is STF for all values of p, 0<p< 1; the particular choice of p can be used to strike the

desired balance between speed of return of CSGPC to STF and the emphasis on transient

tracking performance. The smaller p, the faster convergence of CSGPC to STF will be,

but the less attention will be paid to performance; in the limit (for p arbitrarily small)

MCSGPC reduces to Algorithm 4.1. Also, a low value of p minimizes the difference in

the objectives of Steps 2 and 3 of MCSGPC. However, if one wishes to maintain the

emphasis on cost optimization throughout, then one might wish to invoke Step 3 at all

times (whether CSGPC is STF or not) and assign to p a value close to 1.

In summary, the algorithm presented in this section has two significant contributions to

make: (i) it is guaranteed to retain STF; and (ii) it optimizes a two-norm of actual

predicted tracking errors. Of course, in common with normal practice (and in agreement

with common sense), STF must be assumed at start up, but in contrast to earlier work,

no further feasibility assumptions are required.

4.5.3 Illustrative examples

In this section we give two numerical examples. The first illustrates the efficacy of

MCSGPC (Algorithm 4.4) in dealing with set-point changes which are large enough to

destabilize CSGPC and draws comparisons between the performance of MCSGPC and

that of Algorithm 4.1. MCSGPC outperforms Algorithm 4.1; this is expected since

MCSGPC, unlike Algorithm 4.1, uses the slack variable only to condition the end-point

constraint, but deploys the actual set-point in the cost. The approach of making sM a

DOF and using a slack variable end-point constraint can also be used in the context of

79

algorithms with infinite output-constraint horizons such as that given in [30] (which we

will term RM) to significant advantage as illustrated in the second example. In particular

the example shows that freeing sM and applying a slack variable end-point constraint

overcomes the infeasibility and resulting instability problems of RM, and indeed leads to

a good output response.

Example 4.5 Just as did Algorithm 4.1 in Example 4.1, MCSGPC, Algorithm 4.4,

maintains stability and set-point tracking (Figure 4.13), but when compared by total cost,

runtime

1=0

Algorithm 4.1 has a cost of 1.19, while the cost for MCSGPC is only 0.68. This is

because Algorithm 4.1 neglects performance while CSGPC is STIF so as to drive sx to

r as quickly as possible; the performance is thus sub-optimal. MCSGPC, on the other

hand, is guaranteed to retain STF and to converge to where CSGPC is STF at a rate

dictated by the choice of p; all remaining freedom is then used to optimize performance.

Hence, by moving sx more judiciously (slowly) than Algorithm 4.1, it has improved

performance. It is interesting to note that MWLS, with the modifications of eqn. (4.21),

converged with much fewer iterations than it did with the modifications of eqn. (4.3); this

appears to be a typical trait.

Example 4.6 Let the numerator and denominator polynomials be given by:

ö(Z) = 1-1.3Z-
1
+0Z-

2
+0.144Z-

3
; ö(z)=2+0.45z-1+z"2 (4'25)

which has an unstable pole at 1.2. Furthermore, let the input constraints be Uo=0,

U=0.05 and R=0.0l, and let the control parameters be nc=3, X=l, nr=6, and p=0.99.

80

All algorithms are started with zero initial conditions and zero set-point; at t= 16, the set-

point is changed to one. The simulation results for this example are given in Figure 4.14

which depicts the output, slack variable (s»), input, and incremental input.

MCSGPC (dashed-dotted lines) once again can be seen to perform well, whereas

RM (dashed lines) runs into instability problems. As explained earlier, the slack variable

end-point constraint gives guaranteed stability and can be applied in the context of

algorithms with infinite output horizons such as RM. This indeed can be seen to be the

case from the solid line plots of Figure 4.14 which represent the results of RM with a

slack variable end-point constraint. Our approach not only overcomes instability but also

produces good transient and steady-state responses.

4.6 Chapter summary

A major problem in control engineering is guaranteeing stability in the presence of

system input constraints. Predictive control provides a natural framework for handling

constraints and recently has been adapted to give a guarantee of stability. However, all

stability results are dependent on a feasibility assumption. In this chapter, we presented

three modifications which guarantee the retention of feasibility (and stability) for any set-

point change. The first modification has the advantage of simplicity, but ignores transient

errors. The final two modifications, unlike other approaches which use set-point

conditioning ([2], [14]), retain the actual set-point in the cost and therefore are able to

retain optimality of tracking; in both Mixed-Objective CSGPC and MCSGPC, the slack-

variable conditions the end-point constraint only.

81

0.05

-0.05

Output and Ref.

20 40

Input Rate

20 40

0.5

0
0

0.1

0.05

0

-0.05

-0.1

Figure 4.1 Example 4.1 - Algorithm 4.1 response

HAo-vll

20 40

b Du

20 40

Figure 4.2 A contradictory Solution Figure 4.3 A Non-unique Solution

82

Figure 4.4 Feasibility Region (t=6) Figure 4.5 Feasibility Region (t=9)

Figure 4.6 Feasibility Region (t= 11) Figure 4.7 Feasibility Region (t= 14)

Figure 4.8 Example 4.2 - C-MWLS through 50 iterations (t=6)

83

Output and Ref.

0 20 40

Input Rate
0.05

-0.05

IIAc-vH

Figure 4.9 Example 4.3 - C-CSGPC response

Output and Ref.

0.5 0.5

0.05

20 40

Input Rate

0
0

-0.05
20 40

0.1

0.05

0

-0.05

-0.1
0

IIAc-vH

20 40

Figure 4.10 Example 4.3 - Mixed-Objective CSGPC response

84

Output and Ref. llAc-vll

0.5

0.05

-0.05

Figure 4.11 Example 4.4 - C-CSGPC response

Output and Ref.

20 40

Input Rate

20 40

HÄc-vll

1 .^____._

0.5

n
°0 20 40

Input Rate

0.05

0

-0.05

M jfV
0 20 40

Figure 4.12 Example 4.4 - Mixed-Objective CSGPC response

85

Output and Ref.

1

0.5

0
(

i /
i /
i /
i /
i /
i /

/

/l
/i

/1

D 20 40

0.5

0
0

Input Rate
0.05

-0.05
20 40

0.1

0.05

0

-0.05

-0.1
0

Figure 4.13 Example 4.5 - MCSGPC response

iAc-v||

20 40

b Du

20 40

Output and Ref.

1

0.5

0

s inf

0 10 20 30

Input

0 10 20 30

Input Rate

0.05

0

-0.05

A
■

/ \ / \
/\ \
/ \x

0\
■

\> \^
\

D 10 20 30

0.01

0.005

0

-0.005

-0.01 i V-AM

0 10 20 30

Figure 4.14 Example 4.6 - MCSGPC and RM response

86

Chapter 5

Cautious Stable Predictive Control

The stability result of SGPC may be viewed as having been obtained through the

imposition of terminal constraints. The stabilizing loop of Figure 2.1, in conjunction

withbezout identity (2.4), implicitly imposes dead-beat terminal constraints, namely that

the predicted tracking errors should all be zero beyond a given output horizon and that

the control moves themselves should become zero beyond a given input horizon. These

terminal constraints may come into conflict with limits on system inputs (dictated by

physical constraints); such a conflict, which we have termed STIF, may lead to

instability. One possible remedy is to use longer horizons, but this results in a significant

increase in the computation of constrained optima. An alternative is offered by set-point

conditioning ([2], [14]), but inherent in this approach is a sacrifice of optimality in

tracking in favour of retaining feasibility and hence guaranteeing stability. MCSGPC

provides an alternative which does not sacrifice optimality, because it retains the actual

set-point in the objective while basing the steady-state value of the output's end-point

constraint on a slack variable; after imposition of the slack variable end-point constraint,

the effect it to replace the terminal equality constraint with a terminal inequality

constraint. In this chapter, we use a different approach to infeasibility: earlier terminal

87

constraints guarantee stability but actually use a sub-class of all stable input/output

predictions, so here we employ constraints which are both necessary and sufficient for

stability and thus, for a given number of degrees of freedom, maximize the control

authority which is available for improving performance while respecting input constraints.

The class of input/output predictions which are necessary and sufficient for stability will

be those of Section 3.2.1.

A convenient way to guarantee the stability of predictive control strategies is to

force the predicted trajectories of both output error and control increments to be finite

length sequences (FLS). This can be effected by a process of "cancellation" of all the

poles of the plant and its inverse, ie a pseudo cancellation (as per Remark 3.1) of all the

poles and zeros. It has been recognised that for the purposes of stability one actually

need only "cancel" the unstable poles ([30], [54]), thereby yielding predicted output error

trajectories which are infinite length sequences (ILS). In Section 5.1, we show that it is

also the case that one needs only "cancel" the nonminimum phase zeros with the effect

of getting predicted control increment trajectories which are ILS; we also propose simple

algorithms which implement these two changes in philosophy, but retain a finite length

cost. In Section 5.2, an infinite horizon cost which is the sum of the square of the ILS

errors and input increments is used, and two procedures are proposed for calculating this

infinite length sum. Then, in Section 5.3, these results are applied to the problem of

controlling plasma vertical position in the Compass-D tokamak test device. The resulting

controller is compared to one produced with standard Hm design techniques. This

application has been reported elsewhere ([47], [48]) and is briefly summarized here to

demonstrate the applicability of the results of Sections 5.1 and 5.2.

For systems subject to physical constraints, ILS trajectories lead to a practical

88

difficulty; the physical constraints must be invoked over an infinite horizon. This

problem can be overcome through the use of suitable input/output horizon bounds. A set

of such bounds with respect to output constraints have been proposed elsewhere ([30],

[54]). Here, we are concerned with input constraints only, but we explore the use of ILS

predictions for both inputs and outputs; therefore, we require bounding results on inputs

rather than outputs. In Section 5.4, we develop simple input bounding techniques which

provide an efficient means of invoking the constraints over a infinite horizon by enforcing

them over a finite horizon. Thus, we are able to use our necessary and sufficient

terminal constraints to advantage by allowing for: i) the use of short command horizons;

and/or ii) the release of control authority for better transient performance. We also

consider the use of terminal inequality constraints similar those introduced in the previous

chapter for MCSGPC and thus remove restrictions on the size of set-point changes. The

efficacy/superiority of the resulting algorithm is illustrated by means of a numerical

example.

5.1 Cautious Stable Control

The guarantee of stability afforded by SGPC (and other stable predictive algorithms) is

based on the fact that, under the implied end-point constraints, the GPC type of

performance index minimized by the algorithm forms a stable Lyapunov function.

However, the end-point constraints in question, though sufficient for the proof of

stability, are unnecessarily stringent and are responsible for the highly tuned nature of

the resulting controllers. Highly tuned controllers may be desirable in some cases, but

could lead to feasibility and stability problems in the case of plants subject to input

89

constraints. In Section 5.1.1, we relax the SGPC requirement by defining terminal

constraints which are both necessary and sufficient for the guarantee of stability. The

implication of this development is that rather than insist that both the predicted inputs and

outputs should reach their required steady-state values within the given (finite)

input/output horizons, now they are constrained to do so only in an asymptotic sense.

As a consequence, the resulting controllers are less highly tuned than those given by

SGPC and therefore possess improved robustness properties and are more suitable for use

in the control of systems which are subject to physical constraints.

Using the SGPC framework, in Section 5.1.2, we introduce further predictive

control algorithms with guaranteed stability: cautious mean-level (CaML), and cautious

stable predictive control (CaSC). These algorithms progressively relax the stringent

end-point constraints deployed in SGPC: in particular, CaML does away with the

requirement that the predicted output should reach its desired value within the given

output horizon, and CaSC further removes the requirement that the predicted control

increment should be zero beyond the given control horizon. In fact, CaSC is based on

conditions which, given a fixed number of degrees of freedom, are both necessary and

sufficient for the guarantee of stability, and so any further relaxation of the SGPC

constraints is not possible without increasing the number of control degrees of freedom.

Concomitant with the constraint relaxation is a reduction in the level of control activity

and the derivation of less highly tuned and more robust predictive controllers; the

robustness properties of CaSC will be investigated in Section 5.1.3. The efficacy of the

new algorithms, their superiority in dealing with physical constraints, and their improved

robustness properties are illustrated by means of design studies in Section 5.1.4.

90

5.1.1 Stability through terminal constraints

The important elements in "Lyapunov" stability arguments (eg. Theorem 2.1) for any

stable predictive control algorithm are i) that the proposed cost is finite over an infinite

horizon and ii) that the optimal control law used at t can always be used again at t+l.

With these two elements, it is easy to show that the cost is a monotonically decreasing

function of time, namely, that it constitutes a stable Lyapunov function. In the absence

of input constraints, ii) is always possible; systems subject to input constraints will be the

topic of Section 5.4. To achieve i), the predictions which go into the cost must either

be of finite duration (a FLS), or must asymptotically approach zero (an ILS); this is

achieved (either explicitly or implicitly) through the use of terminal constraints. In

SGPC, the stabilizing loop forces the output errors and input increments to be FLS's and

thus implicitly imposes the terminal constraints that the predicted output error should be

zero after ny steps and that the predicted input increment should be zero after nu steps:

V^=0' v/>/V AM-=0' v'-n« (5,1)

These same constraints are imposed explicitly in [8] and [27] through the use of equality

constraints; the advantage of SGPC is an explicit expression for the degrees of freedom

(DOF) remaining after imposition of the terminal constraints. Other work recognized that

these constraints are overly restrictive, in that the output errors need only approach zero

asymptotically [30]; by requiring that the unstable modes be zero after the output horizon

and utilizing a finite number of control changes, the algorithm of Rawlings and Muske

(which we will term RM) explicitly imposes these terminal constraints:

V^B°' /"*oo; A"-=0' v/-n« (5,2)

Thus, the output errors form an ILS, but the input increments are still a FLS. These

constraints are also restrictive in that the predicted control increments need only approach

91

zero asymptotically; thus, the least restrictive set of terminal constraints which allows a

Lyapunov stability proof utilize ILS for both the output errors and the input increments:

r,+n,-y,+i=0> f-*00; A",+,.=°. I-*» (5.3)

The prediction equations of Section 3.2.1, which were derived as necessary and sufficient

conditions for stable predictions, implicitly impose these terminal constraints and thus

utilize the necessary and sufficient conditions for imposition of the Lyapunov stability

arguments. An implementable algorithm (at least when physical constraints are

considered) requires a finite number of DOF over which to optimize; because the DOF

remaining after imposition of constraints (5.3) are expressed explicitly in Section 3.2.1

as the current and future values of c, these future values can be taken to be a FLS and

thus can be used for optimization rather than the ILS of future control increments. First,

we repeat the derivation of the class of stable prediction equations, but in a more

convenient form involving the future errors, e=r-y.

Let Ar=[rt+v(rl+2-rt+l), (r,+2-rm),..., (r^-r^f be the vector of future set-point

increments, where nr is the reference horizon and r is assumed to be constant thereafter.

Furthermore, let Ar(z) be a polynomial whose coefficients are the elements of Ar, such

that r(z)=Ar(z)/A(z). Then, the z-transform of the future errors is obtained by

subtracting y(z) (eqn. (3.31)b) from r(z); with a common denominator, we have:

e(z) =r(z) -y(z) - a(z)Ar(z) ~b^Au^ ~P® = *® -*®to® ■ q(z)=a(z)Ar(z)-p(z) (5.4)
a'(z)a\z) a'(z)a(z)

Then, the necessary and sufficient condition for the stability of the predicted error, e, is

that the numerator of eqn. (5.4)a contains as a factor the unstable system poles:

q(z)-b(z)Au(z)=aXz)Hz) or Au{z) = -a+{z)f®~^z) (5-5)
b'(z)b (z)

where 4>(z) is the z-transform of a convergent sequence {c^,,^,^,...}. It follows that the

92

predicted trajectories of control increments, Aw, will be stable if, and only if, the

numerator of eqn. (5.5)b contains the "unstable" system zeros:

a+(z)Hz)-q(z)=b+(z)^(z) or aW(z)-*+(zW(z)=$(z) (5'6)

where \{/(z) is a polynomial with a convergent sequence of coefficients. Diophantine eqn.

(5.6)b has the same LHS as eqn. (3.33), but a different RHS, implying a different

particular solution. Thus, with n0=max[nfe.-l,«a-+«r-2], n^=na., a minimal solution of

diophantine eqn. (5.6)b is:

■f- -M" 0 =
p p 1 1 1 3

P P 1 2 L 4
0 =

>1~ (5.7)

where PlA are as defined for eqn. (3.35)b, and the elements of vq are the coefficients of

qiz); from eqns. (5.4)b and (3.31)c, vq is given as:

vq =rflAr +ffj -ff6AM = [Ta OJr+Hj -HbAu (5.8)

Then, the general solution to (5.6)b is:

<Kz) =b+(z)c(z)^p(z); Hz) =ot+{z)c(z)^p(z) <5-9)

where c(z) is a polynomial with a sequence of coefficients which converges to zero; it

contains all the available degrees of freedom. Inserting (5.9)a,(5.9)b into (5.5)a,(5.6)a

and then into (5.4)a,(5.5)b gives:

a\z)c(z)+^p(z) bXz)c(z)^p(z)

a (z)
Au(z) = -- (5.10)

b-(z)

Theorem 5.1 The entire class of stable error/output prediction equations for the plant,

z'1b(z)/a(z), is given by eqns. (5.10); furthermore, these equations represent the class of

predictions which satisfy terminal constraints (5.3).

Proof: This is true by derivation. D

93

5.1.2 Simple CaSC and CaML algorithm

A convenient way to prove stability is to define a suitable cost which uses (FLS)

predictions; the conditions of Section 5.1.1 take us part of the way towards FLS because

of the implicit pseudo cancellation of a+(z) (in eqn. (5.4)a) and b+(z) (in eqn. (5.5)b).

It remains therefore to: (i) "cancel" a(z) (in eqn. (5.10)a) and b'(z) (in eqn. (5.10)b); (ii)

invoke an appropriate terminal constraint; and (iii) define a cost which can be shown to

be monotonically decreasing. Now (i) implies the definition of new prediction variables

e=a'(z)et, Au=b'(z)Aut; (ii) implies that future values of e must be zero after some

output horizon ny, and that the future values of Aü must be zero after some input horizon

nu; (iii) implies that / must be based on e and Aü rather than e and Au. Collecting these

observations together, we therefore write:

B.-l

-1+1 , e(z) = HSl+^'+1; AÜ(z)=Y,Aüt^-'
■=1 '■* (5.11)

n n -\

1=1 1=0
WE^A^= l*n+x|A*l;

e and Aü are vectors of the coefficients of e(z), Au(z). Implicitly, we have invoked the

following terminal constraints:

etH=0, Vi>ny; Au1+i=0, v/>n„ (5.12)

Because a(z) and b'(z) are stable, these terminal constraints can be seen to imply those

of (5.3), but they also imply a finite number of degrees of freedom; this is precisely what

is needed for an implementable constrained optimization.

For terminal constraints (5.12) to be satisfied, the coefficients of the numerators

of eqns. (5.10) must be FLS, and the degree of these polynomials must be ny-\ and nu-\.

So choosing c(z) =c0 +c1 z'1 + - +cn _x z ~n'+l, we can write the vector forms of the prediction

equations as:

94

e = Ylla.(Ybx + Pxvq); 8 = Th.c + P,vq + Ha.e
- - - (5.13)

A« = -IVOVc + P2vq); AÜ = -Tax - P2vq + //»A«

where, as before, the f* column of the V matrices contains the impulse response of the

indicated transfer function multiplied by zi+l. Eqns. (5.13)a,c are prediction equation

forms of eqns. (5.10), and eqns. (5.13)b,d are derived from e=a'(z)et,Au=b'(z)Aut

which imply the prediction relationships: e=Ca-e+Ha.e; Au=Cb-Au+Hb.Au. Terminal

constraints (5.12) are satisfied with prediction equations (5.13)b,d where ny and nu are

related to the command and/or reference horizons, nc, nr, by ny=max[nc+nb>, nr+na.-l],

and nu=max[nc+naM, nb.].

Remark 5.1 In the strictest sense, necessary and sufficient conditions for stable

predictions would necessitate that nc-»oo, or to put it another way, while terminal

constraints (5.12) imply those of (5.3), terminal constraints (5.3) imply those of (5.12)

only for nc infinite. This is impractical, and indeed, for reducing computational

complexity, nc should be chosen to be small. In the rest of the chapter, the term,

necessary and sufficient, will include the assumption that the number of degrees of

freedom over which the performance can be optimized is finite and equal to nc.

Prediction equations (5.13)b,d imply that the cost J^^ of (5.11) is quadratic in the

vector of future c's and hence (in the absence of physical system constraints) can be

minimized explicitly. The optimal vector of c's, through eqn. (5.13)c, defines the

optimal vector of future control increments, the first of which is implemented. This

defines the prediction and optimization cycle of CaSC which is repeated at each time

instant. Because e, Ail are FLS, J^c'is of the same form as / in SGPC, thus it is easy

95

to show that JCaSC is a stable Lyapunov function and therefore that CaSC has guaranteed

stability and asymptotic tracking.

CaSC uses necessary and sufficient conditions for stable predictions and hence has more

control authority available for handling constraints and performance than SGPC.

However, it results in ILS for both output and input predictions; therefore ensuring that

input constraints are met may necessitate the use of long constraint horizons, thereby

increasing significantly the computation burden. In cases like this, it may be

advantageous to sacrifice some of the extra degrees of freedom generated by CaSC in

order to obtain FLS for the input predictions; this is accomplished by utilizing terminal

constraints (5.2).

These are obtained by reassigning b+(z)=b(z) and b'(z) = l in the development of

Section 5.1.1, so that the predicted errors form an ILS and the predicted input increments

form a FLS. Obviously, Aü(z)=Au(z), and thus the cost (which is again a stable

Lyapunov function) is:

WE(?,.,-y,.,)2^EA«« - IIn\l*II*>III <5-14)

i=i ;=o - -

We note that the earlier algorithm (Mean Level Predictive Control) presented in

[36] is a special case of that presented here, derived for X=oo. CaML also bears a

similarity to RM and the algorithm of [43], in that they all cancel the unstable poles in

the output predictions; however the indices of performance are different.

Remark 5.2 It can be shown that the effect of weighting the predicted errors by a{z)

(and the predicted input increments by b'(z) for CaSC) is to cause a'(z) (and b\z) for

96

CaSC) to be a factor of the closed-loop pole polynomial, pc(z). If any of the roots of

these polynomials are slow, the effect may be undesirable. This problem is easily

remedied by redefining a+(z) and/or b+(z) to include the relevant slow roots, eg. all roots

with modulus greater than or equal to p (p< 1). Such a modification would ensure that

slow roots would be excluded from the closed-loop dynamics, and in the limit (for p=0),

would yield SGPC.

5.1.3 Robustness analysis and optimization for CaSC

The robustness analysis for CaSC follows along the same lines as the analysis for SGPC

in Section 2.2. Introducing prediction eqns. (5.13)c,d into J^^ gives:

» *-» <_-» «--» <-

^^r^+xr^r^y+c^r^^v^^.^+xr^^v^^-Aii))^ (5-15)

which is minimized with respect to c by:

c^-cr^r^-Hxr^r^o-Ur^^v^^.^+xr^^v^-^-A«)) (5.16)

Using the definition of vq in eqn. (5.8), the first optimal element, c„ is given as:

Ct = -Prar-Prcr-Pyy
+PuAU

Pm=PT(TlA+M**WWa U; Prc=Pr^Ha- (5.17)

Ptt=PTVlPfib+\TTAP2Hb-Hb)) p b "'

and, from eqn. (5.13)c, the first optimal input increment, Au„ is:

Aur-ct-ei
TP2([Ta Oay+Hj-HhAu) (5.18)

Next, we define the vectors:

97

#*=[! (Pu-eiTP2Hb)V, Nk=et
TP2Ha-Py; Pr:=Pra-e1

TP2[Ya 6a] (5-19)

Let the coefficients of the polynomials, Dk(z), Nk(z), be the elements of the vectors, Dk,

Nk; and let the coefficients of the bi-causal polynomial, pr(z), be the elements of the

vectors, pTC and pra', suchthat, if Pra=\pral,Pra2,~;Pran} and Prc=\prcl,Prc2,-,Prcn), then:

Pr{z) =prcni ""■- + - +prc2z "2 +prclz -1 +pral +pra2z
x + - +Pranz

n>~1 (5.20)

Combining eqns. (5.17)a and (5.18) and the preceding definitions, we get

Dk(z)Aut=pr(z)rt+l-Nk(z)y, which is the same as eqn. (2.22)b, and so CaSC can be

implemented with the feedback configuration of Figure 2.2. Thus, as with SGPC, there

is an entire class of optimal controllers, defined by D(z)=Dk(z)-z'1b(z)Q(z) and

N(z)=Nk(z)+ct(z)Q(z), where Q(z) is an arbitrary stable polynomial, which can be used

to improve properties such as robustness and/or noise handling without affecting

performance. The arguments and procedures are identical to those given in Section 2.2.

5.1.4 Simulation results and comparisons

The motivation behind the proposed stable predictive control algorithms is the use of less

conservative (and for CaSC, necessary and sufficient) conditions for the stability of

input/output predictions. The resulting classes of predictions are less restrictive and

therefore wider than that of SGPC, and thus provide the means of avoiding overactive

input/output responses. This point will be illustrated here by means of numerical

examples which study the closed-loop responses to step changes in the set-point r as

produced by each of the three algorithms, SGPC, CaML, and CaSC. For completeness,

we also give the corresponding simulation plots for GPC. As expected, it will be seen

that SGPC drives the system hard and hence uses highly active inputs; this is because the

98

transferences from c to u and c to y are FLSs. For CaML, only the transfer function

from c to u is a FLS, so the inputs are less active. The transferences in CaSC are all

ILSs, and hence it results in low input activity while demonstrating reasonable

performance. GPC, because it uses finite input horizons, but no end-point constraints,

typically falls between CaML and CaSC, though of course, it has no stability guarantee.

The examples provide a comparison of the robustness properties of SGPC, CaML,

GPC, and CaSC and demonstrate the superiority of CaSC, both for Q(z)=0 and for the

respective choices of optimal fourth order Q(z). In addition, the second example is used

to illustrate the benefits of redefining a+(z) and b+(z) to include stable, but "slow"

poles/zeros, as per Remark 5.2.

Example 5.1 Let the model be given by ö(Z) = 1-1.6Z"
1
+0.13Z"

2
+0.21Z"

3
 and

b{z) = 1-2.7z_1 +1 Az'2, which has an unstable pole at z=1.4 and a non-minimum phase

zero at z=2. Furthermore, let the control parameters be: X=l, nr=3, and nc=2 for

SGPC, CaML, and CaSC; and nu=2 and ny=6 for GPC. In this example and the

following, SGPC results will be indicated with dotted lines, CaML with dashed lines,

GPC with dash-dotted lines, and CaSC with solid lines. The output/input responses are

shown in Figure 5.1a,b and illustrate the expected characteristic: SGPC is the most

highly tuned and has very active input/output responses; CaSC is the least active and

gives good performance (in fact, it settles as quickly as SGPC).

The nominal (Q(z)=0) robustness indicator (for W(z) = l), given by the modulus

of the transfer function K(z)S(z) of eqn. (2.25), is plotted in Figure 5. lc as a function of

vT, where z=e?aT, 0<WT<TT. The expected ordering is demonstrated with CaSC being

the most robust and SGPC the least. The robustness plots for the optimal 4th order Q(z)

99

are given in Figure 5. Id. Clearly, Q(z) improves the robustness properties of all four

algorithms, but as expected, does not alter their ranking.

Example 5.2 Let the model be given by fl(z) = l-lz1+0.01z"2+0.12r3 and

b(z) = l-2Az1+0.Sz2, which has a non-minimum phase zero at z=2 and no unstable

poles; however, it has a slow pole at z=0.8. Furthermore, let the control parameters be:

\=1, „r=i, and n=2 for SGPC, CaML, and CaSC; and nu=2 and ny=6 for GPC. In

this case, CaML and CaSC are so highly de-tuned that the output responses (Figure 5.2)

are unsatisfactory. The reason for the slow responses can be traced to the open-loop pole

at z=0.8, which automatically appears as a closed-loop pole. However, as mentioned

in Remark 5.2, a+(z) can be redefined to include all roots on or outside an circle centred

at the origin and of radius p; for the current example, a judicious choice for p is 0.75.

The resulting responses (Figure 5.3a,b) are now satisfactory. Once again, CaSC results

in input/output trajectories which are significantly less active than those of the other

algorithms: i) the non-minimum phase behaviour during the immediate transients is less

than half as pronounced for CaSC than it is for SGPC; ii) the maximum control

amplitude for CaSC is 0.35, as compared to 0.55 for SGPC.

The robustness plots for ß(z)=0 and for the optimal 4th order Q(z) are given in

Figure 5.3c,d and illustrate the expected ranking of the four algorithms: CaSC is the

most robust and SGPC is the least.

100

5.2 Infinite Horizon Stable Predictive Control

The algorithms of the previous section use necessary and sufficient conditions for stable

predictions, but the proposed costs penalise filtered rather than actual error/input

increment predictions so as to convert infinite horizons into finite horizons; hence, while

the algorithms are simple to implement, this simplicity could come at the expense of slow

closed-loop poles (as per Remark 5.2). While this expense can be avoided by including

the slow roots of a(z), b(z) in a+{z), b+(z) and thus moving toward SGPC, here we

explore an alternative which penalizes the actual ILS error/input increment predictions.

Control laws have been implemented which use ILS outputs with FLS inputs [30],

but in this section, we use ILS input and outputs and consider two methods of

implementing the implied control law. The first method is largely an extension of the

ideas presented in [30], and the second is an alternative which avoids the need for the

solution of a Lyapunov equation and thus, for high order models, can be more efficient.

The results of the section are illustrated by means of numerical examples which highlight

the advantages of the proposed control algorithm.

5.2.1 Nominal stable control law

The Infinite Horizon Stable Predictive Control (IHSPC) cost is given as:

Jcasd (rtH-yJ2^t A<4 = II r-y \\+\«A« | \ (5-21)
,=1 1=0 - -

Stability is guaranteed by virtue of the infinite horizon deployed in performance index

(5.21) which allows standard Lyapunov arguments to be used. Introducing prediction

eqns. (5.13)a,c into J^c gives:

101

/^=(r».c+^v/rfÄT1Ä.(r,.c+p1vf)+x(ro.c+p2vf)
ITjJ-r1A.(ra.c+p2vf) (5^

-(T^c+P1vf)
rB.(r^c+P1v^X(ra.c+P2v3rBt(ro.c+P2vf)

which is minimized with respect to c by:
—»

<o=-(r^aiv +xr^ro.)-1(r^.Jp1 +x^pa) vf (5 23)

As usual, only the first element of A« (Aw,) is implemented and the computation is

repeated at the next sampling instant. A«, can be defined through eqn. (5.18).

It is clear, however, that there are implementation difficulties associated with the

control law given in eqn. (5.23), in that the matrices involved in the formation of Ba, Bb

are infinite dimensional, and so the control law, as presented, cannot be computed.

Fortunately, these infinite dimensional matrices appear as quadratic products so that Ba,

Bb are finite dimensional; here, we develop convenient and computationally efficient

means of computing Ba, Bb.

It is well known that it is possible to compute the sum of squares of infinite but

stable sequence through the use of appropriate Lyapunov equations. This idea was

deployed in [30] to minimise a GPC cost where only the output horizon was infinite; the

input horizon was taken to be finite. Here we removed this limitation by deriving

necessary and sufficient conditions (rather than just sufficient conditions) for stable (and

infinitely long) input and output prediction pairs while keeping the number of degrees of

freedom finite. Earlier work identified the future control increments as the degrees of

freedom and therefore precluded the (practical) use of infinite input horizons. In the

following sections, we show that Lyapunov techniques can be deployed to compute and

minimise the cost /Q,SC of eqn. (5.22) despite the use of infinite output and input

horizons. We also show that this can be achieved without the use of Lyapunov equations

102

and indeed leads to an implementation which can be more efficient.

5.2.2 IHSPC using a Lyapunov equation

The key, in this approach, is to find a means of summing the squares of a stable sequence

derived from a transfer function g(z) =n(z)/d(z). This involves expressing the infinite sum

in terms of the first nn+1 coefficients only. Thus assume that g(z)=E(=0
oo&z~', then using

d(z)g(z)=n(z), the following recursive relationship holds for all g{, i>nn:

ft

ft+i

Si +B,-1

=-&&<

Si-nd

Si-nt*l

Si-,

(5.24)

where HA is the hankel matrix, HH with the order of its columns reversed. Hence, it can

be seen that with M=Cd H.,

I>2=
1=0

Eft2
i=0

+Lft_-n+l Sn-nsl '" ft)"
Snn-nd+2

ft,

; S^iM^M1 (5,25)

i=0

It is easy to show that S satisfies the Lyapunov equation, S=I+MTSM and hence the

infinite sum of eqn. (5.25) can be easily evaluated. Thus, if the coefficients of g(z) are

given as the elements of the infinite length vector, vg=Tvdvn (where the elements of v„

are the coefficients of n(z)), we may write eqn. (5.25) in matrix form as:

(5.26) =v;r(;jr(/>„+v;r^5r^v„
= vr/r(l)rr(D+r(2>JW2)\

Vn \l lid l 1W + 1 \ld dl l/d)v„

=v„rr[wr1/rfvn=v„r5dvn

where vg
(1) contains the first nn-nd+l elements of vg, and vg

(2) contains the next n

103

elements, and thus r1/d
(1), T1/rf

(2) contain the first nn-nd+l, next nd rows of Tlld; we note

that if nd>nn, then Td
a) would be empty and Td

(2) can simply be augmented on top by

rij-n^l rows of zeros.

These results can be used to evaluate Ba, Bb of eqn. (5.23) simply by taking the

polynomials n{z), d(z) to be the numerator and denominator polynomials of eqn. (5.10)a

first and then eqn. (5.10)b second. Note that the order of the numerators, denominators

of eqns. (5.10)a,b are max[ny+nc-l, nr+na.-l\, na., and na,+nc, nb. respectively. So,

defining I^a., T®a-, T®., T^b. as appropriate partitions of the first

max[nb.+nc, nr+na.-l], nc+na.+l rows of the Toeplitz matrices ri/fl-, Tm. of eqns.

(5.13)a,c and Ma, Mb from Ma=C'a
lHa-, Mb=Cb-Hb. and solving for Sa, Sb from

Sa=I+Ma
TSJMa, Sb=I+Mb

TSJ£b, we may write Ba, Bb as:

R _-n(i)rr(i) ,r(2)rcr(2) . D _r(i)rr(i) +VWv r(2) (5.27)

5.2.3 IHSPC without using a Lyapunov equation

The previous section shows that Ba, Bb can be calculated indirectly through the solution

of a Lyapunov equation, however, it is easy to identify the coefficients of these quadratic

matrices directly.

Lemma 5.1 Let d(z) be a polynomial with all its roots inside the unit circle. Then the

ij element, i>j (the argument for i<j is identical) of the matrix Ty/T^, is given by the

coefficient of t'} in the Laurent series expansion about z=0 of /(z) = l/d*(z)d(z), where

the * superscript changes negative powers of z to positive (causal to anti-causal).

Proof: The f1 column of Tlld contains the coefficients of a Taylor series expansion in

104

terms of z"1 of z'j+1/d(z). This is exactly equivalent to the coefficients of a Taylor series

expansion in terms of z of iAld*{z). Let these expansions be:

m-i*f-< i^-tif' (5-28)
d(z) ft d (z) ,o

Hence/(z)=(E,.=0^-)(i:,.=0^), or:

JW'itftZ'; with frf-rESjgj-i (5,29)

The proof is completed by noting that the i* row of Tvf is given by [0,... ,0,g0,gu...] and

the7th column of T1/d is given by [0,...,0,go,gu...]T, so that the ij element of Tv/rud is

given by gogi-]+gigH+x + --- which is identical to the definition of fH given in eqn.

(5.29). a

Remark 5.3 ft=f4, so if Yvd has m+1 columns, then there are only m+1 distinct values

of ft in the matrix rV/TV. Therefore, the computation of this matrix reduces to the

computation of the first m+1 coefficients of the Laurent series expansion of/(z).

We now propose a numerically efficient means of computing the first m+1 coefficients

of the Laurent expansion of/(z):

Equating the coefficients in i, (0<i<m) of l/d(z) to those of f(z)d*(z) gives the

following independent set of m+1 linear equations:

105

dn a-, — d

0 dn ••■ d ,

0 0-0

0

0

... o -

... o -

d. 0 -

Jm

A

/o

/i

= [^1^^^ (5.30)

The coefficients of f(z) can then be computed from:

[A2\A,+A3] — =
/o

"0"

 = 0

./.
1

(5.31)

where Ax is Ax with the column order reversed; eqn. (5.31) is clearly trivial to solve. It

is noted that the minimum number of coefficients that can be computed is nd+l.

Theorem 5.2 The elements of the matrices Ba and Bb can be computed by setting d(z)

equal to a'(z) and b'(z) in the formulation of eqn. (5.31).

Proof: This is an obvious consequence of Lemma 5.1, the development which follows

the lemma, and the definitions of Ba and Bb as given in eqns. (5.23)b,c.

This section and the previous provide two ways to compute Ba, Bb; a comparison of their

relative merit follows.

The Lyapunov approach defines Ba, Bb from eqns. (5.27), requiring: i)

computation of Ma, Mb (approx. na-, nb- multiplications); ii) computation of Sa, Sb which

involves the solution of (n2
a-+na)ll, (nb-+nb.)/2 linear equations; iii) computation of

C-, rä-, C-, rS- (approx. na.(nbt+nc-l), nb.{na.+n) multiplications); and iv)

106

computation of Bu B2 (approx. 2n\-, 2nb- multiplications).

The approach of Theorem 5.2, on the other hand, requires the solution of mb+l,

ma+\ linear equations of the form (5.31) where mb=max[nc+nb.-l,nr+na--2,na-] and

d(z)=a(z), and ma=max[nc+na.,n6-] and d(z)=b'(z).

It is clear that, depending on the various magnitudes of na., nb-, na,, nb,, nc,

either method of computation can be more efficient. In particular, if nc is small, but

na., nb- are large, then one would favour the approach of Theorem 5.2, as the solution

of fewer linear equations is required.

5.2.4 Simulation examples

In this section we demonstrate the efficacy of the IHSPC algorithm by comparing it with:

(i) The original GPC algorithm as presented in [7], and (ii) RM, the algorithm of [30],

each with the same number of degrees of freedom. The algorithms will be compared by

way of simulation plots (the plots for IHSPC in solid line, RM in dashed line and GPC

in dash-dotted lines) and the measure of performance:

runtime

/_- £ «'*W <5-32)
1=0

Example 5.3 Let the system model be defined by a{z) = l-2.5zl+z2 and b(z) = l-0Jz1,

which has an unstable pole at z=2; and let the control parameters be nc=l, and X=0.1.

The output/input plots are given in Figure 5.4 and the measures of runtime performance

are given in Table 1; both illustrate the improvements gained by IHSPC.

107

GPC RM fflSPC

0.3092 0.3043 0.2875

Table 5.1: Runtime costs for Example 5.3

Example 5.4 For this example, let a(z) = 1-5.5z1+S.54z2-3.2zs+0.24z-4 and

b(z) = l+0Az1-3Az2+lAz3, which has unstable poles at z=2,3 and a non-minimum

phase zero at z=-2; and let n=\, and X=l. The output/input plots are given in

Figure 5.5 and the runtime performance is presented in Table 2. Again, the improvement

is clear, and in fact, GPC is unstable.

GPC RM fflSPC

00 9.5993 7.8363

Table 5.2: Runtime costs for Example 5.4

It is noted that better results for GPC can be obtained for different combinations

of control and output horizons. However, for this example (for X=0.1): i) GPC cannot

stabilize the model for a control horizon of one and two; and ii) for a control horizon of

three, too small an output horizon gave instability and too large an output horizon gave

numerical problems (as the model is open-loop unstable). Reasonable, though inferior,

results could be obtained for a limited range of output horizons around 15. By contrast,

both RM and IHSPC have guaranteed stability and, moreover, gave good performance

for any control horizon.

108

Thus far, this chapter makes two main contributions. First, it presents an efficient means

of classifying pairs of stable input/error predictions in a manner which makes transparent

the remaining degrees of freedom, and second, it proposes a framework for the use of

these predictions in an infinite horizon stable predictive control law. The conditions used

to classify the predictions are both necessary and sufficient for stability, whereas earlier

work used sufficient conditions only. In particular, here we allow the input trajectories

to be infinite sequences, whereas other work in this area forces the input trajectory to

have a finite (and usually small) number of changes. The use of necessary conditions has

two obvious benefits: i) it releases as many degrees of freedom as possible for meeting

performance criteria; and ii) it is more likely to be feasible when subject to system input

constraints for small numbers of degrees of freedom. Clearly, this latter point can be

used to significant computational advantage and/or makes a feasibility assumption easier

to meet.

Finally, it was noted that most authors use a Lyapunov equation to calculate

performance indices with ILS outputs, but FLS inputs. Here, we have extended the

approach to performance indices with ILS outputs and inputs, and we propose an

alternative approach which is particularly suitable for the types of problems arising in

infinite horizon GPC and, in most cases, will be computationally more efficient.

5.3 Application summary - tokamak plasma control

The results of the previous sections have been applied to the problem of controlling the

vertical position of plasma in the Compass-D tokamak. This application has been

reported elsewhere ([47], [48]), and is briefly summarized in this thesis to provide a real

109

world example of the application of these results; all the other examples in this thesis are

purpose built simulations to illustrate specific results.

Tokamaks are torus-shaped plasma containment devices which could form the

basis for the nuclear fusion power plants of the future; they use magnetic fields to confine

a plasma of ionized hydrogen atoms while it is heated to (hopefully) fusion temperatures.

The Compass-D tokamak is a medium-sized test device which is used to study the

instabilities and to establish the control techniques necessary for larger tokamak devices

like the currently existing JET (Joint European Torus) and the future ITER (International

Thermonuclear Experimental Reactor). ITER is in the design stage and plasma control

is an area of great importance and some concern.

At desired operating points, the plasma vertical position is unstable and is

currently controlled in the Compass-D tokamak with an analogue P+D control scheme.

This scheme uses plasma velocity sensors located both inside and outside the vacuum

vessel, but in larger devices, like ITER, the environment inside the vacuum vessel will

be hostile to internal sensors. The P+D controller cannot stabilize the vertical position

without these internal sensors, and thus a controller which uses only external sensors is

required. Additionally, in all previous experiments, the vertical position control signals

were dominated by a 600 Hz component due to interference from actuators used in other

control loops, so another requirement of any new controller is that it reject this

interference. The model of the plasma vertical position is obtained from experimental

data which is inherently noisy and which reveals different open-loop growth rates at

different operating points, and thus a further requirement is that the controller be robust

to model uncertainty.

The plasma position response, as measured by the external sensors, was identified

110

from experimental data using a least squares fit and the SGPC model, G(z)=z~1b(z)/a(z)

(including actuator and plant), for the desired operating point was found to be [47]:

ö(Z)=1-2.4519Z-
1
+1.5786Z"

2
+0.1848Z-

3-0.3678z-4+0.0832z"5-0.0272z"6 (5.33)
b(z)= IO-3 (0.2239z-2+0.5921z-3+0.3646z"4+0.0403z-5)

which has an unstable pole at z= 1.1099, a slow pole at z=0.9940, and a non-minimum

phase zero at z=-1.7917. Two controllers were designed; the first using standard ffM

design methodology with the controller, K(z), in the forward loop and negative unity

feedback, and the second was IHSPC. The Hm controller was designed so that the

modulus of the frequency response of the sensitivity transfer function,

S(z) = l/(l+G(z)K(z)), was kept small at lower frequencies to ensure small position errors

(performance), the modulus of the frequency response of K(z)S(z) was kept small at 600

Hz to ensure rejection of the known interference (noise rejection), and the modulus of the

frequency response of the closed-loop transfer function, T(z)=G(z)K(z)S(z), was kept

small at higher frequencies to ensure good stability robustness margins (robustness to

multiplicative model uncertainty).

The IHSPC controller was designed in two stages. The first stage optimized

performance using the results of Section 5.2 with the model modified to place a 600 Hz

notch filter,/(z)=/„(z)//rf(z), in the plant to reject the known interference; thus, the model

was defined from b'(z)=fn(z)b(z) and a'(z)=/d(z)fl(z), but of course the cost was chosen

to penalize actual plant input increments. a+(z) and b+(z) were defined to include all

roots on or outside a circle of radius p=0.9 and the other parameters were chosen to be

n=50 and X= 1000. The closed-loop pole polynomial, pc(z), was established from eqn.

(2.23)c with Dk(z) and Nk(z) determined from the explicit solution to the optimum IHSPC

cost using results analogous to those of Section 5.1.3.

Ill

The second design stage optimized robustness and noise handling properties as per

Section 5.1.3. The plasma vertical position of the Compass-D operates at a constant set-

point with an adjustable reference; thus, zero steady-state error is not a design

requirement. Therefore, IHSPC's explicit integrator was removed from the controller

denominator polynomial; so that optimum performance was unaffected, the controller

denominator and numerator polynomials, D(z) and N(z), were chosen to satisfy

pc(z)=a(z)D(z)+z1b(z)N(z). With particular solutions, Dp(z) and Np(z), the appropriate

class of controller polynomials was defined as D(z)=Dp(z)-z1b(z)Q(z) and N(z)=Np(z) +

a(z)Q(z), where Q(z) is an arbitrary polynomial. Q(z) was chosen to optimize noise

rejection and robustness to additive model uncertainty by using the procedures given in

Section 2.2; large penalties were placed at 600 Hz to preserve the effect of the notch

filter and at the approximate gain cross-over frequency to ensure a large stability margin.

By way of comparison of the resulting Hx and IHSPC controllers for the nominal

plant, we provide the simulations of Figure 5.6-Figure 5.8. The modulus of the

frequency response of K(z)S(z) is plotted in Figure 5.6, and a Nyquist diagram of the

loop gain, L(z)=G(z)K(z), is shown in Figure 5.7; in both figures, the ff„ controller is

indicated by solid lines, the IHSPC controller (with Q(z)=0) is indicated with dashed

lines, and the optimum IHSPC controller is indicated with dotted lines. The Hx and

optimum IHSPC controllers obviously have very similar loop gain properties. The step

responses of these two controllers are shown in Figure 5.8; we note, however, that good

step response properties were not design objectives. The Hx responses are more

oscillatory than those of IHSPC, have significantly larger overshoots, and the input

response is significantly more active.

Because IHSPC has decoupled the design process, it achieves optimum

112

performance in a two-norm sense, and then, without affecting this optimality, it uses

remaining degrees of freedom to optimize robustness and noise rejection properties.

Thus, IHSPC provides obvious advantages in combining two- and infinity-norm

specifications in such a way that both are optimal; we note, though, that the performance

parameters (p, nc, and X) must be chosen carefully to ensure that the remaining degrees

of freedom are adequate to meet other requirements like robustness and noise rejection.

The Hx methodology seems to allows for a more direct trade-off between performance

and robustness, but this, of course, still depends on judicious choice of weights, and the

performance measure is the infinity-norm.

Both controllers were implemented on the Compass-D with a digital signal

processor (DSP), and as the reference signal was constant, they produced similar results.

Both controllers successfully stabilized the plasma vertical position using only external

sensors and rejected the 600 Hz noise, meeting all design objectives. Further details of

these results are reported in [47] and [48].

5.4 Constrained Cautious Stable Predictive Control

Thus far, we have concentrated on the cost portion of Cautious Stable Predictive Control;

now we turn to the problem of enforcing input constraints over infinite input horizons.

5.4.1 Constraint checking with infinite input horizons

We return to the output/input (rather than error/input) form of ILS prediction equations

(3.39) of Section 3.2.1, which as z-transforms, can be written as:

113

*Z)ÄZ)+|ä„+JU(Z)
a (z) A(z)a (z) a (z)

*"(z) *~(z) *"fc)

ö"(z) A(z)Z> (z) A(z)Z> (z) p A(z)

5.4.1.1 Definition of problem

Most practical control systems are subject to (hard) input constraints such as:

-R=Au<AutH<A~ü=R; U0-U=u<u[+i<ü = U0+U />0 (5-35>

where it is assumed (as is reasonable) that the steady-state input/control increment

required to maintain the set-point are on the interior of the constraint intervals, namely

that they are at least a distance e (for e arbitrarily small) inside the above limits:

u + e<u =^-r<ü-e; Aw+e<0<A«-e (5.36)
" b(l) —

and for convenience (only) we have assumed that the input limits are time invariant. The

input constraints above may come into conflict with the use of terminal constraints, and

we have termed this condition short term infeasibility (STIF). By contrast, the

compatibility of terminal constraints with input constraints is referred to as short term

feasibility (STF).

CaSC does not take constraints (5.35) into consideration, and hence the optimal

predicted values for u and/or A« may lie outside the limits of (5.35); this will lead to

sub-optimality and may even result in instability. Thus, it is important to incorporate

constraints (5.35) into the optimization problem; earlier work (eg [26], [46], [33])

achieves this through the use of quadratic programming. Work to date has restricted

attention to finite length sequences for the future A«'s; this is a consequence of the fact

114

that terminal constraint (5.12)b has been invoked on Aw rather than on Aw. Terminal

constraints of this sort are convenient in establishing stability, which depends on a

guarantee of feasibility, ie a guarantee that the terminal constraints can be met within the

input constraints. However, such terminal constraints are only sufficient for the stability

of predicted trajectories and thus may result in an unnecessary restriction of the degrees

of design freedom. This could have a significant effect on performance; furthermore, on

account of the feasibility requirement it may necessitate the use of longer control horizons

with a concomitant significant increase in the quadratic programming computational load.

Here our concern is use the maximum degrees of design freedom possible and this

implies the need for conditions such as those developed in the previous section which are

both necessary and sufficient. The difficulty with these, however, is that they result in

future control trajectories which form infinite length sequences; at first sight this requires

that constraint satisfaction be tested over an infinite horizon. To overcome this, problem

here we develop some efficient (albeit loose) bounding results which enable the definition

of a finite horizon, ncon, referred to as the constraints horizon, which has the property that

constraint satisfaction over ncm implies actual constraint satisfaction over an infinite

horizon. It is noted that the reconciliation of finite with infinite constraint horizons has

been addressed elsewhere ([30], [54]), but in a different context (related to output

constraints) using different (state-space) bounding techniques. The techniques developed

here address a new problem, namely the maximization of available control freedom with

the view to satisfying the feasibility requirement as well as improving performance and/or

reducing the computational burden.

115

5.4.1.2 Bounding conditions

We wish to invoke terminal constraints (5.12) without violating physical limits

(5.35), and as remarked above the difficulty here is that future control trajectories are

ILS's. So now we seek to determine a finite (and preferably small) value for ncon such

that constraint satisfaction for all future times is guaranteed by constraint satisfaction up

to ncon. An obvious way to achieve this is to: (i) consider a particular future time instant

t+i; (ii) derive bounds on the maximum and minimum values of the predicted w's and

Aw's beyond this time instant t+i, namely bounds for future values at all times t+j,j>i;

and (iii) increase i until the bounds of (ii) are within the physical limits of (5.35).

Remark 5.4 The bounds used in the determination of ncon need not be "tight", in that

"loose" bounds would merely result in a conservative choice for ncon. The result of this

is that (5.35) will be checked at more time instants than necessary. This will not have

a significant effect on computations because the extra checks will correspond to constraint

inequalities which, by definition, will be inactive: if future w's and Aw's are within

"loose" bounds, which themselves are within the limits of (5.35), then clearly such «'s

and Aw's will satisfy (5.35) a fortiori. For this reason, the emphasis in what follows will

be on ease of presentation/computation rather than obtaining the tightest bounds possible.

Along the same lines, we shall refrain from defining different values for ncon for each of

conditions (5.35)a,b.

From prediction eqns. (3.39)b,c, it is apparent that the future predicted values of w and

Aw depend on future values of c which, as yet, are unknown. In determining bounds on

« and Aw, therefore, we must first stipulate bounds on c.

116

Lemma 5.2 Input constraints (5.35) will be violated if any of the future c's lie outside

the respective interval defined below:

c.=mm

c =max

c.<ci<ci i=0,...,nc-l

£(max [Sfiü, SyM-SijSj), E(max [Vtjü, V.u\-V^

E(min [Sfii, SyM-SijS), X(min [VJÜ, V^-Vp)

(5.37)

vth where Sy and Vtj denote the if elements of matrices S and V, whereas sJt v, denote the/

element of vectors s, v; S and Fare defined as the inverses of block matrices formed out

of the first nc rows of Ta.lb-, and Ta.lb-, respectively and s, v are the vectors formed out

of the first nc elements of Ym.P^p, and ri/A6-P2/?+wMl.

Proof: With the definitions of 5, V, s and v, the first nc scalar equations implied by eqn.

(3.39)b,c can be rearranged to give

c=V
t+n-l

-v c=S
A«.

A"f+„-i

(5.38)

where use has been made of the fact that, due to the presence of z'n'in the second term

of eqns. (5.34)b,c, the first nc elements of 0aVb-Cx, 6aVbcx are zero. Thus, ct is given

as (i) the sum (over;) of terms SyAUf+j-SySj, and (ii) the sum (over./) of terms V^u,+rV9Vj.

The proof is completed by invoking the limits of (5.35) on Aut+j and ut+j; (i) and (ii)

imply different intervals for c„ and since both must hold true, the intersection of the two

is used to define the bounds of (5.37). □

In order to derive bounds on the predicted Aut+j for j>i, consider the first term of the

RHS of (5.34)b which is of the form h(z)f(z), with h(z)=a+(z)/b-(z) and f(z)=c(z). The

117

other two terms have the same form and the overall result can be assembled by a process

of linear superposition; the only difference is that/(z) for the second and third term are

known, whereas f(z) for the first term is unknown, but bounded. The lemmata below

deal with these two different cases separately.

Lemma 5.3 Let g(z)=h(z)f(z) where h(z) is an asymptotically stable transfer function

with impulse response %,hu---} and f(z) is a polynomial in zl of degree nf whose

coefficients f{ are known. Then bounds on each (and all subsequent) element of the

impulse response of g(z) are given by

G<g,<U, (j>i)
H^mmh, (l>f) {539)

H.=max ht (l>i)

G=imh\HJk, BJk

ü,.= £maxfe. fk, VJt

Proof: This follows from the definition of g(z) according to which gt is given as the

appropriate sum of products A,-./t. D

Lemma 5.4 Let g(z)=h(z)f(z) where h(z) is an asymptotically stable transfer function

with impulse response {h0,hu...}, and/(z) is a polynomial in z'1 of degree nf whose

coefficients ft are unknown, but bounded by f.^f^, and let the bounds,//., and Bt

be as defined in eqn. (5.39). Then bounds on each (and all subsequent) element of the

impulse response of g(z) are given by:

G<g.<U. (/>0
G=hnir{HJk, V^, Hjk, TJJk] ^

ü,.= !max[//_£, H„4 Hjk, BJk]

Proof: This is the same as for Lemma 5.3, except that, when dealing with the products

118

htJk, we now have to consider intervals for both the coefficients of h(z) and/(z). D

Remark 5.5 The bounding results above afford a significant online computational

advantage because bounds, H,, and H. are time-invariant and thus can be calculated off

line and saved in a look-up table. Therefore the bounds which apply over an infinite

horizon are calculated by summing a finite (and indeed small) number of maxima/minima

over two or four scalars.

As mentioned previously, the predicted AM'S and w's of eqn. (5.34)b,c can be viewed as

the sum of products, h(z)f(z), all of which can be bounded (as per Lemmata 5.3, 5.4) and

then combined by linear superposition. To that end, we now define bounds for each part

of eqns. (5.34)b,c, except for the last part of eqn. (5.34)c whose upper and lower bounds

are obviously equal to ulA:

Hz):
*+(z)
b-(z)

z'"<a+(z)
b-(z)

1
b-(z)

a\z)
b-(z)

zn<a\z)

Mz)b'(z)

1
Mz)b-(z)

f(z): c(z) Cx *,(z) c(z) {•oo %(z)

Lemma: 5.4 5.3 5.3 5.4 5.3 5.3

Bounds: 3.3 <?>3 3'3 3'3 3'3 3'3
Table 5.3 Definition s of bounds

It is then a simple matter to give bounds on the future elements of Aw and u as:

(?+(?+(P<Au<T;]+T?.+T?. a+G5+G6+u<u<lPi^i+Tfi+ul_1 (j>i) (5-41)

Theorem 5.3 Let nrm be the smallest value of / for which the derived bounds are

119

"inside" the limits of input constraints (5.35), ie:

G1 +(? +(? >Au G4 +G5 +G* +ut>u
_»c«, ~~n

am ~"c*, "c- ««. "™. (5.42)

U1 +ü2 +Ö3 <A« Ü* +(? +G* +ut<u
ncm "cm "or "a* "cm "am ' *

Then if prediction eqns. (5.34)b,c are made to satisfy constraints (5.35) at t+i, for

i<ncon, they will satisfy these constraints for all future times.

Proof: This follows from Lemmata 5.2-4 and the bound definitions of Table 5.3. D

Corollary 5.1 A finite ncon can always be found which satisfies Theorem 5.3.

Proof: Consider the bounds &, ~Gk for £=1-3 associated with Aw„ and apply the final

value theorem to the corresponding h(z) of Table 5.3 to deduce that, as ?-*<», the

elements ht of the impulse response of h(z) go to zero. As a consequence, the bounds

H., H. (defined in eqn. (5.39)) will also converge to zero, and hence, so will the bounds

on A«, of (5.41)a because of their definition as given in eqns. (5.39) or (5.40). Now,

from (5.36)b, we know that Aw, ~Kü are at least a distance e away from 0; hence, for any

e (no matter how small), ncon can be chosen large enough so that the moduli of the bounds

on AUj of conditions (5.41)a are less than e: therefore conditions (5.42)a,c will hold true.

To complete the proof we need to show that (5.42)b,d hold true, and this can be

established by similar arguments, except that now, by (5.36)a, we need to show that the

bounds on u of (5.41)b converge to uss. This follows from:

(i) application of the final value theorem to (5.34)c according to which

Woo=lim (l-z-Ow^O+.^l^+Ml+H^ (5.43)
00 z-i b-{\) b-(l) rl

(ii) application of the final value theorem to the bounds on u of (5.41)b which are the

sum of the products h(z)f(z) of the last three columns of Table 5.3 and utA, according to

120

which:

lim/G* +G* +<? W . = limfe* +Ü* +^)+«,.,

=lim (1-z"1)
z-l b-(z) A(z)b-(z) °° A(z)*-(z)

+Uii (5.44)

D

Algorithm 5.1 (Computation of ncon)

Step 1: Set i=nu.

Step 2: Compute GJ, üj, k=l-6.

Step 3: Check the conditions of Theorem 5.3. If true, set ncon=i and stop; otherwise,

set i=i+l and goto step 2.

5.4.2 The constrained CaSC algorithm

Here we present the Constrained Cautious Stable Control (CCaSC) algorithm and prove

its stability property. For ease of presentation we consider first the simpler case where

set-point changes are assumed not to lead to infeasibility. We then deal with the general

case where the feasibility assumption is removed by a suitable change of terminal

constraints; this change is identical to the modification of MCSGPC in that y is allowed

to converge to some slack variable, sx, and s«, is then made subject to a slack variable

end-point constraint.

5.4.2.1 The case of feasible set-point changes

Earlier work ([33], [53], [23], [30], [54]) has combined sufficient (but not

121

necessary) terminal constraints with input constraints to give stable predictive control

algorithms. Here we do the same with respect to terminal constraints which are both

sufficient and necessary.

Algorithm 5.2

Step 1: Invoke Algorithm 5.1 to compute ncon.

Step 2: Minimize over c the cost .7^ of eqn. (5.11)c subject to input constraints (5.35)

for i<ncon.

Step 3: Implement the first element of the corresponding vector of future «'s given in

eqn. (3.39)c; increment t and goto step 1.

Theorem 5.4 Assume that, at startup and at times of set-point changes, terminal and

input constraints are consistent. Then the CCaSC algorithm is stabilizing and gives

asymptotic tracking.

Proof: By the assumption, we have STF at startup, and Theorem 5.3 and Corollary 5.1

ensure that STF is also guaranteed at the next instant, because at least one feasible future

control trajectory exists, namely that employed at the previous time instant. This

argument can be propagated until ts, the time of the next set-point change, but the

assumption ensures STF at ts, and thus the argument above can be extended for all times.

The rest of the proof relies on showing that the cost function JCaSC is a stable

Lyapunov function. This is so because, at any time t, the terminal constraints ensure that

the predictions for both et+n +i, Aät+n +. are zero for *>0; thus, the optimal J^ at t gives

an upper bound on the value of J^sc at f+1, and the cost cannot stay at this upper bound

for more than a finite number of steps (namely the maximum of ny and nu), unless of

122

course the cost is zero. Thus, e-*0, and Aü-M); since e(z)=e(z)/a~(z) and

Au{z)=Aü{z)lb'(z), where both a{z) and b'(z) are stable, the same asymptotic property

will apply with respect to e and Au. □

5.4.2.2 The general case

The CaSC terminal output constraint, (5.12)a, can be rewritten as:

y =f =a'(l)r V i>n (5.45)

Viewed this way, y must reach, within ny steps, its demanded target ft+n =a "(1) rt+n. On

account of this implicit requirement, large set-point changes may necessitate the use of

control moves which exceed the limits defined by the input constraints and thus may lead

to infeasibility (STIF). As with MCSGPC, an obvious way to avoid this difficulty is to

allow y to settle at sm, a degree of freedom, but to constrain sx to converge to rf+n. We

implement this, as before, with the slack variable end-point constraint:

\s„-sZ\£w\s?-sZ\ 0<W<1 <5-46)

where sK
old is the optimal value of sx computed at the previous time instant, and s«," is

the value of sx closest to rl+n which does not violate the input constraints; as seen later,

the computation of s«," simply involves a linear program.

This modification can be easily introduced into Algorithm 5.1 by including

coa=a(\)sJb+{\) of prediction eqns. (5.34) as an extra degree of freedom along with

those contained in c(z). However, the calculation of ncon has to be modified accordingly

to accommodate the fact that cK is unknown. This is easy to do providing that cK is

bounded, say by c , cm, because then Algorithm 5.1 can be invoked exactly as given

in Section 5.4.1.2, but with the bounds of Gk, ~G\ for k=2 and k=4 computed as

123

dictated by Lemma 5.4 rather than Lemma 5.3. By (5.46), sM must lie in the interval

defined by sj** and s^" and therefore will also lie (a fortiori) in the interval defined by

sx
M and r. The latter is more conservative than the former, but is preferred because,

strictly speaking, the computation of s„° requires prior knowledge of ncon. This

simplification may result in larger than necessary values for ncon, but as per Remark 5.4,

this is a matter of no computational significance. Thus, the bounds on c„ to be used in

Lemma 5.4 will be taken to be:

c =min Ml) out a'(l)r

MD MD
c =max V(l) out a'(l)r

MD MD
(5.47)

Remark 5.6 At first sight, it may appear that an unknown c«, would affect Lemma 5.2

(and hence, Lemma 5.4 also) since the vectors v and s, of eqn. (5.38) themselves would

be unknown. This is not true, because as pointed out in the proof of Lemma 5.2, cM

makes no contribution to the first nc elements of the prediction vectors in (5.34).

Equally, the use of a value for cx which is not equal a(l)r/b+(l) does not affect

adversely the proof of Corollary 5.1: conditions (5.42)a,c are unaffected, because the

steady-state value of the bounds on A« of condition (5.41)a do not depend on cM,

whereas, following the procedure given in the proof of the corollary and by (5.47), it is

easy to show that the steady-state value of the bounds on u of condition (5.41)b will be:

«äs?+m+utl and ^r+M± (5.48)
*(i) Ml) *(!) Ml)

Clearly, both these values are within the physical limits of (5.35)a by an amount at least

as large as the e of eqn. (5.36).

124

Algorithm 5.3 (CCaSC)

Step 1: Compute ncon as per Algorithm 5.1, except that the bounds G*, U* for £=2,4

now should be evaluated using Lemma 5.4 (invoking the limits on c„ of eqn.

(5.47)) instead of Lemma 5.3.

Step 2: mincc | r -s J subject to constraints (5.35) for i<ncon, and let the minimizing

solution to this linear program for sm be sx°.

Step 3: Minimize over c and cx the cost J^ of eqn. (5.11)c subject to input

constraints (5.35) for i<ncon and to constraint (5.46).

Step 4: Implement the first element of the corresponding vector of future w's given in

eqn. (3.39)c; increment t and goto step 1.

Theorem 5.5 Given feasibility at startup, CCaSC has guaranteed stability and asymptotic

tracking.

Proof: Assume feasibility at a time M, so that, at t, 5M
oW defines a feasible choice for

sx. On the other hand, sj is also feasible, since it is defined to be the value of 5B

which is as close to r as is possible without violating the input constraints. Therefore,

constraint (5.46) can be met and so replacing equality terminal constraint (5.12)a with

inequality terminal constraint (5.46) guarantees that feasibility at t-l implies feasibility

at t for any set-point change. This argument propagates all the way back to startup

which, by the assumption of the theorem, respects feasibility; thus, feasibility is

guaranteed for all time.

The consequence of inequality constraint (5.46) is that, if C^^/ for all future

times, then sm will converge asymptotically to r; therefore, by Theorem 5.4, we have

stability and asymptotic tracking. This arguments holds even if 500°=500
oW, so long as this

125

is not true for all future times; a case that can only arise if s«, s„old and s„° all "stagnate"

at some value other than r. This of course cannot happen, because after ncon steps, the

input constraints would hold with strict inequality, and so the linear program of step 2

of the algorithm would use the available control authority to move s»" closer to r. D

5.4.3 Illustrative examples and comparisons

Earlier constrained predictive algorithms with guaranteed stability are based on conditions

which are only sufficient for the stability of the prediction equations. The algorithms

presented in this chapter are based on conditions which are both necessary and sufficient

and therefore release as much control authority as is possible. The extra control authority

thus generated can be deployed (i) in the further reduction of the cost / and hence

improving performance, and/or (ii) in the reduction of the command horizon nc (without

violating feasibility) with a significant concomitant reduction in the computational burden

involved in the application of constrained optimization routines such as quadratic

programming. In this section, we illustrate these points by means of a numerical example

which, by way of introduction to Chapter 6, shows how CCaSC compares with CSGPC,

RM, and GPC in the presence of input constraints and disturbances.

Example 5.5 For this example, we use the model and control parameters of Example

5.1, but now assume that the inputs are subject to input constraints (5.35) with R=0A5,

Uo=0, and C/=1.5. We further assume that at ?=3, a persistent (step) disturbance equal

to 1/15 is encountered at the output of the plant. Figure 5.9 shows the output, input, and

input increment responses for the four algorithms. CSGPC results are indicated with

dotted lines, RM with dashed lines, GPC with dash-dotted lines, and CCaSC with solid

126

lines. CCaSC rejects the disturbance successfully, whereas the other algorithms all

become unstable.

Thus, we note that CCaSC, as it uses necessary and sufficient conditions for stable

predictions, is better able to cope with input constraints than either CSGPC or RM,

which use sufficient only conditions. Furthermore, it also improves upon GPC, because

GPC does not have a stability guarantee either in the unconstrained or constrained case.

5.5 Chapter summary

Terminal constraints which allowed the predicted output error to be an infinite length

sequence have been explored before, but infinite length sequences for the control

increments have not previously been considered. Clearly, this is impractical in the case

where control increments are defined to be the degrees of freedom, and poses difficulties

with respect to the enforcement of input constraints over an infinite horizon. In this

chapter, we have overcome both of these problems by an appropriate characterization of

the conditions which are both necessary and sufficient for the stability of predictions and

by the introduction of appropriate bounds (which are easy to compute) on the predicted

input and control increments. We have thus reserved the maximum possible control

authority for the purpose of reducing computational complexity (through the use of

smaller command horizons) and/or improving performance.

127

Output responses Input responses

1.5

1

0.5

0

-0.5

-1
0 5 10 15 20

Nominal Robustness

10 15 20

Robustness with Q

2 3
Frequency wT

2 3
Frequency wT

Figure 5.1 Example 5.1 - Response and robustness for SGPC, CaML, GPC, and CaSC

Output responses

10 15 20 25
Sampling instants

Figure 5.2 Example 5.2 - Output responses (p = l)

128

Output responses

10 15 20

Nominal Robustness

,

.-' .'/ / .'/^" ' —-_____^
/ ■'//

fJy
y

■

Frequency wT

Input responses

0 5 10 15 20

Robustness with Q

2 3
Frequency wT

Figure 5.3 Example 5.2 - i/o response and robustness comparison (p=0.75)

Output responses

-

I if
IV -

- I -

Input responses

-
A

"

- \ "

-

^-_

Figure 5.4 Example 5.3 - Comparison of GPC, RM, and IHSPC

Output responses Input responses /
1 /'

0.8 \ / /^ - 2 .'
0 6 \ 1 S

\ 1 /
" 1.5 "

04 \ 1 /
\ 1 /

" 1 "

A
,-■'

0.2 \ '-■ 1 / 0.5 _ * *"
/ -'' >/ _.'

"~V V ""-■ 0 _ ^-—/ V -"
-0.2 \ / _ ^/^--~ V\ \\ V \ -0.4 \\
-0.6

-1 " \ \
\ ^^^^

X
^ -.

■1 0 5 10 VJ5 "2 0

Figure 5.5 Example 5.4 - Comparison of GPC, RM, and IHSPC

129

50

40
j^

■<~—^ -

/ ^ ̂
n ^'

30

/ / i
7
:

S 20 / / I

/ /
(0 / /
3 / /

■g 10
o
2

/ / I / / / / / /
0 -

-10

-20 -

-30 - 0

0 , 1 ,2 ,3 4

10 10 10 10
frequency (Hertz)

10

Figure 5.6 Tokamak Application - Modulus comparison of K(z)S(z)

Figure 5.7 Tokamak Application - Nyquist comparison

130

Hjnf Output H_inf Input
2.5

100

50

0 100 200 300 400

CaSC Output

-50
0 100 200 300 400

CaSC Input

100 200 300 400 0 100 200 300 400

Figure 5.8 Tokamak Application - Simulated step response comparison

/ Output responses Input responses

30 10 20 30

30

Figure 5.9 Example 5.5 - Comparison with constraints and disturbance

131

Chapter 6

Stability Results for Systems Subject to
Disturbances

Disturbances are omnipresent and, for systems subject to input constraints, can drive

control algorithms into infeasibility and instability. This problem has attracted little

research effort, despite its significant practical importance. Previous chapters consider

the disturbance-free case; the final purpose of this thesis is to address the issue of

constrained predictive control in the more realistic setting of systems which are subject

to bounded disturbances. In Section 6.1, we consider a description of how past and

future disturbances enter into the system prediction equations; then, in Section 6.2, we

show that the explicit stability results of Section 3.1 carry over to the more general case

of systems which are subject to disturbances.

While the work of Section 6.2 gives explicit stability conditions, it is restricted

to systems with at most one unstable pole, and does not lead to suitable algorithms

because it applies to infinite horizons only. In Section 6.3, we develop necessary and

sufficient limits on the size of inputs required to reject all possible disturbances and then

modify the constraint limits of MCSGPC to derive an algorithm with guaranteed stability

and asymptotic tracking. The application of all results in the chapter are illustrated by

132

means of numerical examples.

6.1 Disturbances: the stabilizing loop and the prediction
equations

Most systems are subject to disturbances and a usual model for accounting for these is:

where the expected value of £, is taken to be zero. T(z) is a polynomial in z which for

clarity here will be taken to be 1; the T(z)^ 1 case is straightforward, but leads to more

cumbersome prediction equations. Often the assumption is also made that £, is white

noise, but this implies that £ is a random walk; in many practical situations it is more

realistic to assume that £ is bounded, and accordingly, here we shall assume that £

satisfies an inequality of the form:

|£|<4; d>0 Vt (6.2)

If large disturbances are rare, it may be judicious to choose d, smaller so as to account

for the more typical disturbances only. For ease of presentation and without loss of

generality, we shall assume the disturbance bound dt is time-invariant and equal to d.

In the absence of constraints, the introduction of disturbances does not affect the

stability properties of GPC or SGPC, though it may be advisable to use some filtering

to improve performance ([7], [19]). However, disturbances in the presence of constraints

can have disastrous effects if explicit account is not taken of them during the constrained

optimization stage. Uncatered for disturbances can lead to infeasibility and, in the case

of open loop unstable systems, are likely to lead to instability.

133

6.1.1 Deadbeat disturbance rejection

The proof of CSGPC stability depends on the assumption that the predicted output

reaches its steady-state within a finite horizon. This is also true with disturbances and

implies that the control law must reject finite duration disturbances within finite time.

Let £(z) be the z-transform of such a future disturbance, let Au(z), y(z) be the

z-transforms of the future (predicted) signals for Aw and y, and as with SGPC, let

c(z)=ct+ct+1z'1+-+ct+n_lz~n'+i+cxz~"'Kl-Z-1). Then, fromeqn. (2.13)witheqn. (6.1), we

may write:

y(z) =y (1)(z) +y (2)(z); Au(z) =Au «(z) + Au (2)(z);
)>(1)(z)=&(z)c(z)+y/z); Au^\z)=a(z)c(z)+Au/_z); (6#3)

y{2\z)=- ,_b(z)Auv\z)+m
a{z)

where Au(z) has been decomposed into the sum of A«(1)(z) and Aw(2)(z); the former takes

account of everything but future disturbances, whereas the latter is the part of the control

law that is available for rejecting £(z). Accordingly, it is obvious that y(1)(z), Aw(1)(z) are

the z-transforms of the predicted y and Au signals defined in eqn. (2.13); in particular

eqns. (6.3)c,d are the z-transform equivalents of eqns. (2.13)a,b. Eqn. (6.3)e follows

directly from eqn. (6.1) for zero initial conditions; the actual initial conditions have been

incorporated in (6.3)c,d. Rewriting (6.3)e, we have:

a(z)y (2)(z) +b(z)(-Au <2>(z)) =£(z) (6'4)

Now the stabilizing loop of Figure 2.1 results in the FLS type of relationships of eqns.

(2.2)a,b and (6.3)c,d, and hence, yw Aum settle within finite time (ny and nurespectively).

Clearly if y, Au themselves are to reach a steady-state within the set finite horizons,

y(2)(z), A«(2)(z) must be polynomials in z"1 for all £. From eqn. (6.4), this will only hold

true for all £(z) if:

134

y<-2Kz)=M(zMz); A«<2>(z)=-rW(z)£(z); ci(z)M(z)n-lb(z)N(z)=l (6-5)

Eqn. (6.5)c is the same bezout identity as eqn. (2.4) and so shares the same family of

solutions; however, since the solutions are not unique, M(z), N(z) and Af (z), N*(z) can

be chosen to be different.

6.1.2 The prediction equations

Eqns. (6.5)a,b, with the definition of f (eqn. (6.1)b), imply the z-transform and

prediction equations:

v<2>(z)=M(z)(A(z)r(z)-r,); AM<2>(z)=-z-W(z)(A(z)r(z)-rJ;
yMc^r-^r,]; A^M-C^f+v^r,]

where vM, vzHAr are column vectors of dimension ny, nu and comprise the coefficients of

M(z), z^Niz); elements of these vectors that come after the last coefficient of Af(z) or

z'lN(z) are zero. Eqns. (6.6)c,d combine with the prediction equations for ym andAw(1)

of eqn. (2.13) to give:

Au =Aum +A«(2); Aw(1) =Tac +0cM +AM/; A«<2) =[-Cz -1ANf+Vwrj (6.7)

In the above, we have assumed that the current value of the disturbance, £, is unknown;

hence, it has been included in yi2), Aw(2), and «(2). Given a record of past inputs and

outputs, the value of £ can be calculated and therefore can be considered as known;

correspondingly, eqn. (6.7) can be rewritten:

135

-.-.-► -► - _ .» -»

A« =AH<
1

> +AH<
2

>; AU™ =Tac +Oaca +Auf+vt+Ntt; A«® =[-C^f] (6.8)
-»-»-»-♦-• _, -* -*

«=«»+«»; «»-r/^.+B/Q-^^ «(2)=[-cz.wr]

Of these two sets of prediction equations, (6.8) is most likely to be used in practice, but

for completeness (eg. to allow for transient behaviour where disturbance information may

be poor), here we shall consider both the cases of £ unknown and known.

Given that the future (and possibly the current) disturbance values of £ are

unknown and zero-mean, it is tempting to ignore j(2), AM
(2)

 , and u(1). This is common

practice in predictive control schemes such as GPC (and SGPC) and leads to optimal

results. In the presence of constraints, however, such a policy could be catastrophic: to

optimize performance, constrained predictive control algorithms tend to drive the controls

close to the constraint limits; hence current and future disturbance sequences can drive

the controls outside the constraints, thereby rendering the problem infeasible and leading

to instability.

6.2 Explicit stability conditions with disturbances

Here we build on the results of Section 3.1 by showing that for some cases, explicit

results are available which provide necessary and sufficient stability conditions in the

presence of bounded constraints. In section 6.2.1, under an assumption of norm-

boundedness, we derive the a posteriori necessary and sufficient stability conditions in

the presence of disturbances; and finally, in section 6.2.2, we push these conditions one

step into the future and show how they can be used to avoid instability.

136

6.2.1 A posteriori conditions for stability with disturbances

This section presents the explicit a posteriori conditions needed to guarantee the existence

of a stabilizing solution for a plant subject to input absolute and rate constraints (2.28)

in the presence of additive output disturbances. We first state the general result and then

focus on systems with just one unstable pole.

Theorem 6.1 Let a(z), pt, <7„ and Q be defined per Theorem 3.2. Also, let the plant

output be subject to the disturbance of Section 6.1. Then at time t, the problem is

feasible (and CSGPC is stable) if, and only if, for nu-^oo, there exists a constrained u

which satisfies:

Qu + D^Qt = bu; where bu = D^QiHj - Hbu) (6.9)
-» -» «- «-

where Db(p) is as defined for Theorem 3.3.

Proof: Multiplying eqn. (6.1) times a{z) and simulating forward in time, we may write:

y = Ca\Cbu - Hay + Hbu + ß = C?w (6.10)

This implies, by the proof of Theorem 3.2, that for y to remain bounded, w must be

orthogonal to the rows of Q, or:

Qu = D^QiHj - Hbu - fl (6.11)

Rearrangement of eqn. (6.11) completes the proof. □

Considering the special case of plants with only one unstable pole leads to the

following lemma and theorem:

137

Lemma 6.1 Let a(z) have only one unstable pole atp=l/q, and let the disturbance, f,

of Section 6.1, be bounded such that | ff | < d for all t. Then the effect of the disturbance

on eqn. (6.9) is bounded such that:

~d < JL-ör < d (6-12)
(l-\q\)\b(p)\ £KP) - (l-\q\)\b(p)\

Proof: The vector of future f's which maximizes ßf is of the form (for p>\)

[d,d,d,...] or (for p<-l) [d,-d,d,...], which, when premultiplied with Q, yields

d/(l-|<7|). All other disturbances will have effects inside the limits of inequality

(6.12). Ü

Theorem 6.2 Let a(z) have only one unstable pole atp = l/q. Also, let the system be

subject to input absolute and rate constraints (2.28) and the disturbance, £", of Section

6.1, bounded such that | £| <d for all t. Then at time t, the necessary and sufficient

condition for the guaranteed existence of a stabilizing solution (LTF) is:

[b] . + - < b < [b] - - (6.13) lJmin (l-\q\)\b(p)\ u LKW
 (l-\q\)\b(p)\

where [6Jmax and [&Jmin are given in eqn. (3.17).

Proof: Eqn. (6.13) guarantees the existence of a stabilizing solution in the presence of

the worst case disturbance of Lemma 6.1. If bu lies in the interval above, there will

always exist a u which satisfies eqn. (6.9) (implying stability) and goes to the desired

steady-state value without violating the constraints. If it does not lie in the interval, there

is at least one vector of future f's for which no stabilizing solution exists. D

Corollary 6.1 Eqn. (6.9) can be rewritten as:

138

QAu +DA(p)D^Q$=bAu where bAu =DA<p)D^Q(Hay -Hbu) -«M1 (6.14)

and the interval of eqn. (6.13) will then be:

\b 1 * (i~q)d < bA < \b 1 - (l~q)d (6-15) L"A"-U (i-|^|)|W| "* L-J- (l-kl)IWI

with [&Jmax and [^J^ as given in eqn. (3.12) or (3.16).

Proof: Eqn. (2.15) can be written as Au=CAu-u[_1e1 where ex is the first standard

vector. Premultiplying this equation with Q and substituting eqn. (6.11) into the result

gives:

QAu = D^DAip)Q(Hay - Hbu - 0 ~ «,-,* <6'16>

where we note that QC=DmQ and Qex=\. Rearrangement of eqn. (6.16) gives eqn.

(6.14). Eqn. (6.15) follows from the arguments given in the proof of Theorem 6.2. D

Example 6.1 Let the system of Example 3.2 be subject to input absolute and rate

constraints (2.28) for which Uo=0, 17=0.1, and R=0.2. In Figure 6.1, the system is

subject to a step disturbance bounded by d=0.1 at t=20. Figure 6. Id shows [£„]max and

[fcJmin (dashed line), the interval of Theorem 6.3 (dotted line), and bu (solid line). bu

stays inside the interval and the system remains stable. In Figure 6.2, the size of the step

disturbance is increased to ^=0.14. Figure 6.2d shows that bu comes right to the edge

of the interval, which is seen in Figure 6.2a to have greatly affected the performance of

the system. In Figure 6.3, the disturbance is increased slightly (rf=0.141), causing bu

to go outside the interval and the system to go unstable.

139

6.2.2 A priori conditions for stability with disturbances

Paralleling the development of Section 3.1.3, here we present bounds on the current

control move by propagating the a posteriori condition one step into the future, thus

preserving the existence of a stabilizing solution at the next time instant. We will also

show how these bounds indicate an effective limit on the size of disturbances hitting a

system, or show when actuators may be inadequate for a given system and disturbance

level.

Theorem 6.3 Let a(z) have only one unstable pole atp=l/q. Also, let the system be

subject only to input absolute constraint (2.28)a and the bounded disturbance, f, of

Theorem 6.2. Then, at time t, a stabilizing solution will be guaranteed to exist at the

next time instant (ie. the problem will be LTF) if, and only if, ut is chosen such that:

9Uo\q\U+ d ,, _«U.+ \q\U_ d (6.17)

• \-q \-\q\ (l~\q\)\b(p)\ ' ' \-q \-\q\ (HtfDIWI

Proof: Extracting ut from eqn. (6.9) (written for just one unstable pole) gives:

ut=bu-qqTu -rfLfl't (6-18)
-,*i b(p) -.

The result follows from application of lemmata 3.6 and 6.1. If u, lies in interval (6.17),

then at the next time instant there will always exist a u which satisfies eqn. (6.9)

(implying stability) without violating the constraints. If it does not lie in the interval,

there is at least one vector of future f's for which no stabilizing solution will exist. D

Theorem 6.4 Let a(z) have only one unstable pole atp=l/q. Also, let the system be

subject only to input rate constraint (2.28)b and the bounded disturbance, f, of Theorem

6.2. Then, at time t, a stabilizing solution will be guaranteed to exist at the next time

140

instant if, and only if, Aw, is chosen such that:

_ \q\R + (l-q)d sKUsh + |g|*_ (X-q)d (6.i9)

°A" TM\ <\-\q\)\m\ ' Au i-kl (i-kl)IWI
Proof: Extracting AM, from eqn. (6.14) (written for just one unstable pole) gives:

Aw, =bAu-qqTAu - tlqT$ (6.20)

The result then follows from the same arguments given in the proof of Theorem 6.3,

except one uses Lemma 3.7 rather than Lemma 3.6. O

Example 6.2 Here, we again use the system and input constraint limits of Example 6.1,

but note that R is equal to the width of the absolute constraint interval and thus,

satisfaction of absolute constraints implies satisfaction of rate constraints; therefore the

system can be considered to be subject to absolute constraints only. If the system

encounters a step disturbance of magnitude 0.13 at t=S, then CSGPC will be unstable.

This example shows why and shows how the instability might be avoided. Figure 6.4c

shows the control inputs and constraints as before, but adds interval (6.17) (dotted lines)

for d=0.U. At t=S, w, exceeds this interval and CSGPC then encounters a disturbance

which it cannot stabilize. For Figure 6.5, CSGPC is given the added hard constraint that

it must not exceed interval (6.17). At f=8, w, is "clipped" to stay within the interval

(Figure 6.5c), and the system not only avoids instability, but maintains excellent

performance when it encounters the disturbance.

An analysis of these bounds in the presence of a disturbance which reaches a steady-state

value indicates certain limits on either the maximum size of disturbances hitting the

system, or the minimum constraints that can be placed on the control inputs or their

141

increments. Before presenting this result, we give two lemmata; the first examines the

structure of qTHa, q
THb and the second defines steady-state values which are the result of

the straight forward application of algebra and thus are presented without proof:

Lemma 6.2 Let P{.} be the operator which maps the vector of coefficients/ to f(z), then

P\qTm = -pM~M (6.21)
r » r \-pz-

x

Proof: Applying the definitions of qT and Hf to the P operator yields:

P{qTHf] =P- [l q q* ... qn>-1]

fxh ■ -4
ft - J "/ > =

A

{fr+f2Q
+-+fnff'V

+(f2
+-+fnfr2)^

%Z-^

Then, multiplying and dividing by -p gives:

P{qTHf) = -p

\-(f1q+f2<l2+~+fn<ln'y

-(f2q
+~+fn<lnfl)z~x

-fn?z
-(n.-l)

and dividing and multiplying by 1-pz1 gives:

P{q'Hf} - -P
\-pz~

-(fS+f2Q2+-+fnf')
nrh , -i +(fSf2q+---+fn<lf)z

-V2q
+~+fn(ln')z-1

(6.22)

(6.23)

(6.24)

and finally, substituting f0-f(p) = -(f1q
+f2q

2+-+fnq
n/) and cancelling like terms gives:

142

P{q*H} = ^P-(f0-f(p)+flZ-+...+fz^ = -pf&M (6-25)
1 l-pz ' l-pz

which completes the proof. D

Remark 6.1 q is the vector of coefficients of l/(l-qzl) truncated after nu terms, and by

[19], qTHf=Fl{[(P{q})* [zf(z)l].}, where (.)* converts negative powers of z to positive

and [.]. extracts only the causal terms. f(p) can then be seen as a factor associated with

the truncation of anti-causal terms.

Lemma 6.3 Let a(z) have only one unstable pole atp=l/q, and let the system be subject

to the bounded disturbance, f, of Theorem 6.2, which reaches a steady-state value of £ss.

If the system reaches steady-state at the desired value, rss, then we have:

v = r ■ u = a^r - _L_f • A« = 0

b = 7(Dr + AD r. * = J^

where

*(l) " *(l)*(p) * a"" W

7fe) - p{ß/y=-^=~pa ~®> ^-f1
1
 J l-pz-1 1-q (6.27)

^■f{gHj--P^-y>]; |8(1)-W-W
1 ' l-pz 1-#

Corollary 6.2 Let a(z) have only one unstable pole at/?=l/#, and let the system be

subject only to input absolute constraint (2.28)a and the bounded disturbance, f, of

Theorem 6.2 which reaches a steady-state value of f„= ±d. Then a necessary condition

for the guaranteed existence of a stabilizing solution which tracks the commanded

reference, rss, is:

143

a(l),
Kl)

U. <±±-U
i-|«l

(1-<?)K1) ± (i-|gl)[Ki)-gW3

Proof: Rewrite interval (6.17) as:

u. - b„ +
vu0

\-q

\q\(l-\q\W)b(p)

<\q\U_ d

i-kl (i-kl)IWI

(6.28)

(6.29)

Subtract eqn. (6.26)d from eqn. (6.26)b to get:

M "- ö(i) " *(i)W M
(6.30)

then substitute eqns. (6.27)b & d to get:

u - b =
"- (l-q)

qb(p)-b(l) _ qa{\)
*ss '

(6.31)
b(p)b(l) 'ss b(l)

Finally, substitute this result into interval (6.29) and set L=±rf- A reference set-point

which violates this inequality will have a steady-state input control, uss, which lies outside

interval (6.17). If the control is allowed to reach this value, then there is at least one

vector of future f's for which no stabilizing solution will exist. If u, is constrained to lie

inside interval (6.17), then the system will have a steady-state offset. D

Remark 6.2 Corollary 6.2 provides a hard limit on the size of reference inputs in the

presence of bounded disturbances. Larger disturbances will either further limit reference

inputs, or require wider constraints.

Corollary 6.3 Let a(z) have only one unstable pole at p=l/q, and let the system be

subject only to input rate constraint (2.28)b and the bounded disturbance, f, of Theorem

6.3 which reaches a steady-state value of £ss=-d. Then a necessary condition for the

guaranteed existence of a stabilizing solution is:

144

i < \4b(p)\ (6.32)
R (l-\q\)+(l-q)

Proof: Rewrite interval (6.19) as:

ku - b < ML - <^)tf (6.33)

then substitute eqns. (6.26)c & e and £,=-</. If the ratio of the disturbance bound to the

rate constraint bound violates this inequality, then interval (6.19) will not include zero.

If the control increment is allowed to settle at zero, then there is at least one vector of

future fs for which no stabilizing solution will exist. If Aw, is constrained to lie inside

interval (6.19), then the system will never reach steady-state. □

Remark 6.3 Corollary 6.3 provides a hard relationship between the bounds on

disturbances and input rate constraints. Larger disturbances will require wider

constraints.

Corollaries 6.2 and 6.3 address only steady-state conditions and are therefore necessary,

but not sufficient for stability and asymptotic tracking. Transient conditions and non

steady-state disturbances are not addressed.

Necessary and sufficient conditions for guaranteed stability in the presence of

disturbances have been given, but are limited to the case of plants with at most one

unstable pole and are based on infinite horizon conditions and thus do not lead to a

predictive algorithm that retains asymptotic tracking in the presence of disturbances.

Instead, in the following section, we remedy this by focusing attention on MCSGPC. We

develop necessary and sufficient feasibility conditions and use these to develop a

non-conservative extension to MCSGPC which copes with disturbances and has

145

guaranteed stability and asymptotic tracking.

6.3 Adding disturbance borders to MCSGPC

MCSGPC, as defined in Algorithm 4.4, is sensitive to disturbances; this can lead to

infeasibility and instability. The purpose of this section is to take systematic account of

disturbances, derive feasibility conditions, and extend MCSGPC so that it retains its

stability and asymptotic tracking properties in the presence of bounded disturbances. The

basic idea is to determine and reserve the minimum control authority required to reject

all possible future disturbances. The implementation of this idea is effected by imposing

input constraints which are tighter than those dictated by physical limits; the difference

between the physical limits and imposed input constraints represents the control authority

that needs to be reserved to maintain the feasibility of the constrained optimization

problem and hence to guarantee the stability of the relevant predictive control algorithm.

Given a set of initial conditions and input constraints, the prediction equations of

Section 6.1 are used to develop bounds on allowable future and current inputs such that

the system can still be stabilised in the event of worst case future disturbance signals.

Some freedom does exist in the determination of these bounds, and in the final

subsection, this freedom is used to give less restrictive bounds on the inputs.

6.3.1 Necessary and sufficient MCSGPC feasibility conditions

To guarantee stability for systems subject to bounded disturbances, two sets of conditions

must be derived and enforced: i) conditions under which stable input/output predictions

do not violate constraints given any possible future disturbance sequence (we will term

146

these a posteriori conditions) and ii) conditions under which, given the effects of the

disturbance that hits the system at the current time instant, the chosen prediction sequence

will again be feasible at the following time instant (a priori conditions).

6.3.1.1 A posteriori conditions

Eqns. (6.7) and (6.8) contain terms which are unknown and cannot be explicitly

accounted for; hence during optimization, one is effectively choosing Aw(1), «(1), not A«,

u. However, if Aw(1), «(1) are chosen subject to input absolute and rate constraints

(2.28), then optimization can cause their elements to assume values close or equal to the

constraint limits so that, for certain disturbance sequences, the actual predicted values of

Aa, U will violate the constraints. This would lead to infeasibility, causing v not to

behave as expected, and would thus invalidate the proofs of stability and asymptotic

tracking. To prevent this, it is clear that the elements of AK
(1)
, u(l) must be subjected

to tighter constraints:

\Au^\^R-Rf -RUR*<Au" <*!-** (6.34)
\&-u.*u-u! M,2""'n" * -ui+v*f-u.i*ui-v

where R* and U-, the elements of the vectors, R* and if, depend on eqns. (6.7)f,i or

(6.8)f,i and thus on the values of unknown disturbances; henceforth, R* and if, the

vectors of the amounts by which the actual constraints are tightened, will be called

"borders". Clearly for guaranteed feasibility, the borders must allow for all possible

unknown disturbances; this involves the determination of the worst case disturbance

signal.

Theorem 6.5 {Aposteriori feasibility conditions) For a given N(z)=N0+N1z
1 + ...+N^'k

147

satisfying bezout identity (6.5)c, MCSGPC will give feasible AM and u over all possible

unknown disturbances if A«(1) and «(1) of eqns. (6.7) (for £ unknown) or (6.8) (for £

known) are chosen to satisfy eqn. (6.34) for:

i??=0, R?=d(\Ni_1\+\Ni_2-NiJ+\Ni_3-NiJ+... + \N0\),
ft unknown: ^ ^^(,^^,...^1+K._2|+K._3|+... + |^o|),

(6.35)

t known- Äf-0, Jtf^|^-^|+|^-^|+... + |M) B (6.36)
rtknown. ^ f/f^(|^2|+|^3|+... + |A,o|)) '^-*

Furthermore, for the given N(z), eqns. (6.35),(6.36) define the smallest borders for which

feasibility can be guaranteed.

Proof: Eqn. (6.35) gives least upper bounds on the size of the elements of A«(2),«(2)

of eqn. (6.7):

-R'^v^iC^l^A^^-C^^v^^v^iC^]

<d[vz^NiCz-lAN

-U*=d CA v • C

Q V
z->;v: S"'A?

rt=-fr"
—»

1=17

(6.37)

Where [.]+ implies a matrix of absolute values. They are obtained for disturbance

sequences whose instantaneous values are ±d, the sign being chosen so as to match that

of the corresponding coefficients of: Cz-iAN and vz-,N for AM
(2)

; and Cz-W and C4~ v^N for

um. The first term of the expression for Uf in eqn. (6.35)b appears because CA
_1 is a

lower triangular matrix of l's. Eqn. (6.36) is obtained in a similar manner. D

As a consequence of Theorem 6.5, a necessary condition for the stability of MCSGPC

in the presence of disturbances, is that constraints (2.28) be replaced by (6.34) with the

elements of R* and if as given by eqns. (6.35) or (6.36). Clearly, the cost to be

148

optimized must be based on the expected disturbance, and as £ is zero mean, the expected

value of j(2), A«(2) will be 0 and thus we still use prediction eqns. (2.13)a,b or (4.1)a,b

rather than (6.7)a,d or (6.8)a,d for the calculation of /. Hence, for the time being

MCSGPC shall be modified by replacing constraints (2.28) with (6.34)-(6.36), but in all

other respects will be the same as Algorithm 4.4.

In the discussion below, which concerns the derivation of a priori conditions, we need

to consider the implications of current choices of c on feasibility at the next time instant;

in this context, the following corollary and definitions prove useful.

Corollary 6.4 The elements of the vector R* of Theorem 6.5, taken in order, form a

monotonically increasing sequence. The same applies to the elements of if.

Proof: From the application of the triangle inequality we have that

\Ni.2-NiA| + \NiA|-\Ni_21 is positive; however this quantity is equal to Ri+*-Rf, which

establishes the monotonically increasing nature of the elements of R* for the case of

unknown/unmeasurable disturbances. The proof for known disturbances is the same, as

is the proof for the elements of If. □

Definition 6.1: Let Aum(t) and A«(1)(/+l) denote the vector Aw(1) computed at t, and

at t+l, and let Au(l)(t+l\t) denote Aw(1) at t+l, given the information known at t and

given the predicted control law computed at t; thus if the input horizon for Aum(i) were

increased by 1, then A«(1)(?+l \t) (with the original horizon) would comprise all, but the
—►

first element. The corresponding definitions will apply to «(1).

149

6.3.1.2 A priori conditions

The conditions of Theorem 6.5 are necessary for guaranteeing MCSGPC stability;

they ensure that predicted inputs will not violate the actual constraints for all possible

future disturbances. However, they are in fact a posteriori conditions in that they

stipulate constraints on A«(1), «(1) given past records; depending on earlier control moves

and current disturbances, it may or may not be possible to satisfy these constraints at the

next instant. Another way of viewing the problem is this: in the absence of disturbances,

STF at t guarantees STF at t+1 (and any subsequent time). Indeed (for no set-point

change), all one has to do is continue using the future inputs computed at t; by Definition

6.1, this would be accomplished by selecting ua)(t+l)=ua)(t+l\i). However, with

disturbances, this will not be enough because at t+1, £ and ff+J come into play, and as

a result, a vector, say/B(f„fr+1), will be added onto um(t+l) which is not accounted for

by um(t+l\t); a similar vector will effect the future control increments. The limits of
—»

(6.34)-(6.36) will be reapplied at f+1 and will have effectively shifted one step in time;

given the monotonically increasing nature of the elements of F? and if (Corollary 6.4),

this time shift will make more control authority available to Au[1)(t+1) and w,(1)(? +1) than

was available to Aui+l
a\f) and ui+l

a\t). However this may not be enough to prevent

STIF at t+1 if/(rf,r«+i) exceeds the size of the increase in control authority. For

example, compare the authority available to Aw2
(1)(r) and A«x

(1)(r+1), the second element

of K
(1)

(0 and the first element of «(1)(r+l); the upper bounds for these control increments

are given by R-R2
#, and R-R/, respectively and thus indicate an increase in authority of

R2-R* due to the shift in the upper bounds and also an equal amount due to the shift in

the lower bounds. The argument here is that if the modulus of the first element of

/*«(&&+I)
is greater than R2-R* then, depending on the signs of f„ £+1 and how close

150

A«i(1)(f+1 \t) is to its limit of R-R2* or -R+R2\ MCSGPC may become infeasible at f+1

even though it was feasible at t. To prevent such a problem from occurring, one needs

a priori feasibility conditions which not only ensure that predicted inputs will not violate

the actual constraints for all possible future disturbances, but also ensure that MCSGPC

(with the borders) will remain STF at the next instant. To that end, we: i) derive

expressions for/4„ and/B; ii) give the relationship between Aum(t+l), ua)(t+l) and

Au(1)(t+l\t), u(l)(t+\\t); iii) redefine borders which are at least as large as those of

Theorem 6.5, but also, at the next sampling instant, release enough incremental control

authority to cater for the worst case/A„ and/B; and iv) use these new borders to state a

priori feasibility conditions.

Lemma 6.4 Let [c,,cl+v..., c,+n _v c.,cM, ...]be the optimal sequence of c values computed

at t, and let the same values (except for the first) be used again at the next sampling

instant. Then the difference that £+1 and, if unknown, £ cause in Aum(t+1) and

um(t+l) is:

rt unknown: fJ^U^^rO^ /u(r„U=-^v#,trO (6*38)

rt known: fJ&J—v^; /.(U = -v*ki <6'39)

Proof: We require a comparison between the vectors Au(l)(t+l) and u{l)(t+i) and the

vectors Au(\t+l\t) and u(l\t+\\t). Advancing (6.7) and (6.8) forward by one step, it

is easy to see that Au{l\t+\\f) and u(l\t+\\t) have the same form as Au{1)(t+l) and

«(1)(r+l) for £, f,+i=0. However, non-zero £ and £+1 change this, since the first

element of y at t+\ is yt+l. In particular, the first element of y(2) at t from eqn. (6.7)c

is given by M0(£+1-£), and this term appears in y,+1 and therefore will also appear in

151

Au(l)(t+l) and ua)(t+l) (through v) as:

y . fAui^U-^iKi^-O^N^rO (640)
rt unknown: /^^^»-^V^^-r^-C^^-f.)

fJttJ<VM-(P&MX.i<vl*N-*N)t,+r-vw?,+i (6.41)
ft known. ^(^^^^(^^-(p^^^f^^C^^^-v^r^^-C^v^.r-v^.,

where (P3)! is the first column vector of P3; use has been made of the fact that M0=1 and

that (P3)i=vN. The z"1 in vt+N has the effect of shifting the elements of vN down by one

place, thus vz_iV-viV=-vA2V; the effect of Q"1 on the other hand is to cancel the "A" from

the subscript of v^, hence establishing the last equality in eqn. (6.41)b. Ü

Lemma 6.5 The vectors Aum(t+1) and w(1)(/+l) can be written as

Ad»<f+D=*PKt+i\t)iTa 0„W4„; «(1)(r+i)=«(1)(^i|/)+[rö $Jp+fu (6.42)
-» -► -» -»

where x is an arbitrary vector of conformal dimensions.

Proof: By Lemma 6.3, eqn. (6.42) holds true for x=0 if the predicted control law

computed at t were to be continued at t+1. However at t+1, one is at liberty to change

the current and future values of c, namely one can change the vector [cT cjr, say by
—*

a vector x. The effect of JC on Aum and «(1), as dictated by eqns. (6.7),(6.8), is that

given by the 2nd term on the RHS of eqns. (6.42)a,b. □

Lemma 6.6 For a given N(z) (satisfying (6.5)c), let R*, U* be defined as

rt unknown: R?=0, R*=R?.l+2d\Ni_2\; U*=0, Uf=Uf.l+2d\N0+...+Ni_2\ (6-43>

ft known: jtf-0, Rf^-MN^-N^; U?=0, U?=U?-i+d\N„\ z=2,...,n„ (6.44)

then such Rf and Uf are greater than or equal to the corresponding borders of Theorem

6.5, and the differences, Rf-Rj and Uf-U^, define least upper bounds for the moduli

152

of the (/-I)* element of the corresponding/^ and/„ over all possible £ and £+1.

Proof: The borders of eqn. (6.44) and (6.36) are precisely the same, whereas those of

(6.43) are greater than or equal to those (6.35); this follows from a straightforward

application of the triangle inequality. Finally the differences Rf-Rj and Uf-Uj define

least upper bounds on the size of the elements of/Au and/u because the largest values that

| £+1-£| and | £+11 can assume are 2d and d. D

Henceforth, we shall use the borders of eqns. (6.43),(6.44) in place of those of

(6.35),(6.36), and by MCSGPC, we shall refer to the following algorithm:

Algorithm 6.1 (MCSGPC with disturbances)

This is identical to Algorithm 4.4 with constraints (2.28) replaced by (6.34) with Rf and

Uf as given in eqns. (6.43) or (6.44).

Theorem 6.6 (A priori feasibility conditions) Given STF at t, MCSGPC will be STF at

t+i for all i> 1 and will give feasible AM and u over all possible unknown disturbances.

Furthermore, for a given N(z) (satisfying (6.5)c), the borders of Lemma 6.5 define the

smallest borders for which continued STF can be guaranteed for all allowable future

disturbances.

Proof: First we prove sufficiency, namely that the borders of Algorithm 6.1 guarantee

that if MCSGPC is STF at t, it will be STF at t+1 and hence at all subsequent times and

will give feasible A« and «. Next we establish necessity, by showing that STF cannot

be guaranteed for smaller borders.

153

(Sufficiency) The assumption of STF at t implies that Aum(t), u(l)(t) which satisfy

constraints (6.34)c,d with R*, V as per Lemma 6.5 exist and therefore that MCSGPC

will choose such vectors. By Lemma 6.5, we also have that the borders of Algorithm

6.1 are greater than or equal to those of eqns. (6.35),(6.36) and hence by Theorem 6.5,

Au(t), u(t) will be feasible over all possible unknown disturbances. Furthermore,

satisfaction of the constraint on Aum(t) ((6.34)c) implies that:

-R1+R*+(ER*-R") = -Rl+ER* < AtP\t+l\f)<R\-ER*=Rl-R*-(ER*-R*) (6.45)

where E is a matrix such that ER* is the vector comprising the 2nd, 3Id,...,nB
th,»„dl

elements of R*. Hence, from eqn. (6.42) for x=0, we have:

-Rl+R'-if^-iER'-R*)} < AM^f+l) <Rl-R*+{f^-(ER*-R*)} (6.46)

However, by definition, (Etf-R^^R^-R? for i=l,...,nu-l and 0 for i=nu, so by

Lemma 6.5, the elements of the vector inside the curly brackets are non-positive; hence

(forx=0) Au(l\t+1) satisfies constraints (6.34)c and MCSGPC is STF at t+l. Clearly,

this argument carries over to t+2, t+3, etc, and similar arguments apply to «(1).

(Necessity) The proof given above concerns sufficiency only because the extra

degrees of freedom available at t+l, encapsulated in the vector x, have not been

deployed; x has been taken to be zero. Now we show that it is not possible to use x to

counteract the effects of/A„ and/„ with the view to enabling the use of smaller borders.

First note that for the case of £ known, the new borders (eqn. (6.44)) coincide with those

of eqn. (6.36) in Theorem 6.5, and hence it is clear that smaller borders would lead to

MCSGPC solutions which do not satisfy the a posteriori conditions; thus the borders of

eqn. (6.44) cannot be made smaller. For the case of £ unknown, /A„ and/„ are unknown

154

at t, and their effects on A«(1)(?+l) and um(t+l), which define the borders at t, cannot

be decreased by the deployment of a non-zero x at t+1. □

6.3.2 Stability properties of MCSGPC with disturbances

Here, we first give conditions on d (or R and U) which are necessary for the

implementation of MCSGPC and then show that the algorithm: i) is guaranteed stable

and ii) gives asymptotic tracking for disturbances which reach a steady-state value.

Corollary 6.5 For a given N(z) (as defined by eqn. (6.5)c), STF can be achieved, and

asymptotic tracking can be guaranteed, only if

, R U \.U-\$f-U0\]
£ unknown: ^<min{ , j-i-* j (6.47)

2VNil 2l\iNj\ 2I|^|+|?^I
< j=\ i j<

R u [U-\^.r-U0\]
t, known: d<min{-—,—, ; = r, —--p—r, „ , ,T

fc.(1), ^ ._, } (6.48)
l^0l

+l^-iv0h....H-^l JIW Z\Nt\+\j;Nt\
i i i

Proof: The denominators of the first two terms of the RHS of (6.47),(6.48) are equal to

the last elements of JR* and If, which are the largest. Hence, the implied inequalities

ensure that the bounds of Algorithm 6.1 (inequality (6.34), with the borders of eqns.

(6.43) or (6.44)) are non-overlapping. Clearly, if this were not so, STF would not be

possible. The inequalities implied by the third term of the RHS of (6.47) and (6.48) are

a consequence of eqns. (6.7)g-i and (6.8)g-i, and ensure that the desired steady-state

value for u, a{i)rlb{\), cannot become infeasible in the presence of disturbances;

violation of this condition would contradict asymptotic tracking. Ü

155

An interesting corollary to this result is that rather than assess stability given R,

U and d, one can use information on the size of disturbances and likely set-point changes

to determine the minimum values of R and U for which stability can be guaranteed.

Clearly, this has implication in the selection of actuators and can be used to financial

advantage.

Lemma 6.7 Assume STF at some t (eg t=0), then Algorithm 6.1 gives bounded input

bounded output (BIBO) stability for all disturbances satisfying condition (6.2).

Proof: The prediction equation for the actual y(z) comprises the known ym(z) and

unknown y(2)(z). It is easy to see from eqn. (6.7)c that as f is bounded, y(2)(z) will be

bounded. y(l)(z) can be computed from the transfer function model which implies that

a(z)ym(z)+p2(z)=Hz)Auw(z)+pl(z) where px(z) and/?2(z) account for initial conditions.

Rearranging this equation and writing the corresponding prediction equations, we get:

a(z)yw(z)=b(z)Au^(zyp1(z)-p2(z) => CjV=CbAu<l)+PrPv

Pl-HbAu; p2=Hj; ^(zHUV^.O.-.O]/*,; p2(z)=[l,z-\...,z-n,0,...,0]p2

The proof is now by contradiction. Clearly, given the SGPC strategy and the assumption

of STF at start up (which by Theorem 6.6 implies STF at all times), the predicted yw(z)

reaches a fixed value, H^c«,, in ny steps. Therefore, solving eqn. (6.49)a for ym(z), we

conclude that b(z)Aum(z)+p1(z)-p2(z) has a(z) as a factor. Assume that y is going

unbounded; then, as Ha has full column rank, p2(z) goes unbounded. On the other hand,

constraints (2.28) imply that Au is bounded and therefore p2(z) will dominate over

b(z)Au(1)(z)+p1(z). This in turn implies that/?2(z) itself has a(z) as a factor; but sincep2(z)

and a(z) have the same degree, p2(z) must equal ixa(z), with ^ an arbitrary scalar.

156

Rewriting this in matrix form gives Hj=fi[ao,av...,an,0,...,0]T- H* has full column

rank, hence the solution for y (if it exists) is unique. Furthermore, it is easy to see that

this unique solution is given by y=-/j,[l,..., If. By the assumption of unboundedness, \K

must be unbounded and therefore />2(1) must be unbounded. However, by applying the

final value theorem to (6.49)a, we have that the steady-state value of y(1)(z), 0(1)0^,

equals [biVAu^iV+pW^lWail), which is finite. As fc(l)Aw(1)(l), />,(1), and a(\)

are known to be finite, p2{\) must be finite. This establishes the contradiction, sov

cannot go unbounded. The proof is completed by noting that y contains the actual values

of the output. D

Lemma 6.8 Assume STF at some t (eg t=0), then providing the disturbance preaches

a steady-state value, Algorithm 6.1 will have guaranteed asymptotic tracking.

Proof: From Theorem 6.6, STF at t implies STF for all future time. Hence if preaches

steady-state, then MCSGPC will force cM to converge to r/b(l), thereby making CSGPC

feasible and therefore causing Algorithm 6.1 to revert to CSGPC. Finally, the integral

action of CSGPC will ensure that the output converges to the correct value. D

Theorem 6.7: Assume STF at some t (eg t=0), then Algorithm 6.1 is stable and,

provided f reaches a steady-state value, will have guaranteed asymptotic tracking.

Proof: This is a natural consequence of Lemmata 6.6 and 6.7. □

In concluding this section, we point out that the borders of Theorems 6.5-7 are

proportional to d, so that choosing d large would limit the control authority available for

the optimization of performance. On the other hand choosing d small might not account

157

for all possible disturbances and would increase the likelihood of instability; the "optimal"

choice for d is a matter of engineering judgement.

6.3.3 Utilizing available degrees of freedom

The previous development still has some freedom of choice; the first is in N(z), and the

second is in x.

6.3.3.1 Optimization of the borders

The solutions M*(z), A?(z) of bezout identity (2.4) do not appear in eqn. (2.2) and

so, in the absence of disturbances, do not effect the prediction equations and thus do not

effect MCSGPC. Similarly, the solutions M(z), N(z) of eqn. (6.5)c are not unique and

also do not effect ym, A«(1) (but do effect j(2), Aw(2)), and hence the question arises as

to whether the freedom in the choice of M and N can be used to advantage. The answer

to this is contained in constraints (6.34), according to which the future control moves are

seen to be restricted by the vectors Ä* and If. To optimize performance, one needs to

maximize the intervals of (6.34); this implies that one needs to make the elements of JR*

and If as small as possible. In this section, we explore this issue and suggest algorithms

for the optimal choice of M and N. The reader is reminded that although the solutions

M(z), N(z) of eqn. (6.5)c and the solutions Af (z), lf(z) of eqn. (2.4) belong to the same

family (they satisfy the same identity), as explained earlier, they can be chosen to be

different; thus the degrees of freedom in M(z), N(z) and those in Af(z), N*(z) can be

deployed for different purposes.

6.3.3.1.1 The degrees of freedom and the cost. The totality of solutions to eqn.

(6.5)c is given as N(z)=X(z)+a(z)Q(z), and M(z) = Y(z)-z1b(z)Q(z), where Q denotes a

158

polynomial, and Xand Fare the minimal order solutions for Nand M. Thus we have:

#,=(«& +«,-10,+... +«oß,)+*,; Mr■\KxQ*J*i-&+-• • +*oO«-i)+Yi (6'50)

where the subscript / is used to denote coefficients of the f* power of z1. Clearly, the

g,'s denote the available degrees of freedom which can be used to minimize the elements

of It and If. Now, from eqns. (6.43),(6.44), it should be apparent that the optimal

choice of Q is different for the minimization It than it is for if, and indeed is different

for the minimization of the different elements of It or If. Thus, the general

optimization problem can be posed as:

n^Ii JQ '■> JQ~

WRR*

WVU*
(6.51)

where WR, Wv are two diagonal matrices of weights intended to adjust the emphasis

between the different elements of It and If. For example, for a problem with stringent

rate constraints, WR could be chosen to be larger than Wv. For most practical

applications, given the monotonically increasing nature of the elements of both Ä* and

If, a simple and sensible strategy would be to place a penalty on the largest (the last)

element only of It and if for which the cost assumes the form:

ft unknown: 7Q'=| [wR(|iV0| +... + |JVt|), w„(|iV0|+... + |iV0+...+iVJt|)]L (6*52)

ft known: JQ'*\ [wR(\N0\ +\NrN0\ +... + I -Nk\), wv(\N0\ +... + |^l)]L (6'53)

Without loss of generality, we present the minimization of JQ' for £ known only.

6.3.3.1.2 Rate constraints or absolute constraints only. Consider rate or

absolute limits only, say rate limits only. Then wR in eqn. (6.53) can be taken to be 1

and wv=0; and so, using eqn. (6.50)a, JQ' can be written as the 1-norm of a linear

159

functional of v0, the vector of coefficients of Q:

JQ' = \\FvQ+h\\x; F^-a,^-«,^,^,^]; hrXt_rXt_2 (6.54)

where Ff denotes the /""row vector of F; no coefficient can have a negative index, and

all coefficients with indices which exceed the order of a(z) or X(z) are zero. This

problem can be solved using linear programming (see, for example [11]); here, we

develop briefly a particular implementation of the procedure for the minimization of JQ'.

First, note that, since the degree of N(z) is always greater than the degree of Q(z), F will

have more rows than columns, so we can write:

Fv +h-w « FiW*i „ VVOT*!) (6.55)
tvQ+n-w «♦ F2vQ+h2=w2

n A'w=b'; A'=[Ff-1 -I\, b'-A'h

where the subscripts 1 and 2 indicate a partition of eqn. (6.55)a into the first nQ+\

equations and the remainder, with nQ+\ being the dimension of vQ; Fx is a square lower

triangular matrix with l's along its diagonal and is invertible. Now, define a non-

negative vector z (as shown below) which is twice as long as w and is such that the top

half equals w with all negative elements replaced by zero and the bottom half equals -w

with all (originally) positive elements replaced by zero. Then solve A'w=b' to get:

w=Pz; P=[Ik+2 -/w]; z=zp+Kv>0 (6.56)

where zP denotes a particular solution of A'?z=V (z^could be taken to be the vector of

positive and negative parts of h, s.t. PZp=h), and K is a matrix representation of the

kernel of A'P.

Theorem 6.8: The optimal solution, v\ of the linear programming problem:

min/rv, s.t. -Kv<zp where fT=lTK (6.57)
V

yields the vector vß* which minimizes the cost JQ' of eqn. (6.53) for wR=l, wv=0 as:

160

Vß =F1-
1(wl* -Ä,); V=/\z*; z*=V*v* (6-58)

Proof: Since z comprises the positive and minus the negative parts of the elements of

w=FvQ+h, the sum of the absolute value of the elements of w can be written as the sum

of the elements of z:

JQ' = Ikli = l7z = lrz/lr^ = l\+fTv (6'59)

The minimization of JQ' requires the minimization of/v (lTZp is constant), as per the cost

part of (6.57). By definition, z must be non-negative (eqn. (6.56)c); this is the constraint

part of (6.57). □

The manner of solution presented in Theorem 6.8 is chosen for clarity; modifications to

this can lead to more efficient implementations, but Theorem 6.8 is easy to implement

and involves a small computational burden, especially for low order Q(z). We also note

that the treatment of the case of input absolute constraints only is similar. Finally we

remark that in some cases there are well defined limits on the optimal value of JQ'; the

result below, considers two cases.

Corollary 6.6 For a(z) stable, the optimal value of the cost of (6.53) over all stable Q

is 1/16(1)| for wR=0, wv=\, and 0 for wR=l, wv=0. In general, these values are not

attainable for a(z) unstable.

Proof: We consider the two cases separately:

Case 1: wR=0. wv=l. From the definitions of a(z), b(z), and bezout identity (6.5)c for

z= 1, we have N(l) = l/b(l). Combining this with the triangle inequality we deduce that:

161

V\b(l)\=\N(l)\=\I,Ni\<ll\Ni\=\\vN\\l (6.60)
i i

Thus, 11/Z?(1) | is a lower bound on the cost of eqn. (6.53) for wR=0, wv=l. Next we

show that for a(z) stable this bound can be attained, ie. that there exists a stable Q for

which Nt share the same sign for all i. Let q(z)=a(z)Q(z), assume that b(\)>0, and

consider the conditions implied by A^>0; these, given that N(Z)=X(Z)+OL(Z)Q(Z) =

X(z)+A(z)q(z), can be written as:

-X0<q0; -Xl+q0<qi; ... -Xk+qk_<qk; qkH<qkH+l for *=0,1,... (6.61)

The implied Q(z)=q(z)/a(z) must be stable, and so #, must tend to zero as j tends to

infinity. This, together with the last inequality of (6.61), imply qk+i=0 for i=l,2,...,

hence (6.61) reduces to:

-X0<q0; -X^q0<qi; - -Xk_2+qk_3<qk_2; -Xk^qk_2<qk_,<Xk {&62)
qk+i=0 for 1=0,1,...

On account of the assumption that b(l) >0, this set of conditions admits at least one

solution, given by ^,.i=-X,M+^-.2 for i=0,l,...,k and ^+,=0 for /=0,1,... The same

proof holds for b(l)<0, only now, the direction of all the inequalities must be reversed.

The same arguments apply when a(z) is unstable, but now q(z) must cancel the

unstable poles of a(z), thus implying some equality constraints which, in general, will not

be consistent with (6.62).

Case 2: wR=l.wv=0. As with the previous case, we have that N^Xi+qrq^, and clearly

the first k of these can be set equal to e; the last coefficient will be constrained by the

condition N{\) = \lb{\) and will be given as Nk+1 = l/b(l)-ke. Thus for e=l/[(k+1)*(1)],

all the coefficients of N(z) will be equal to e, so that JQ' will reduce toJQ'=\N0\ + \Nk+1\

=2e=2/[(k+l)b(l)]. This value of the cost can be made to be arbitrarily small as k

becomes arbitrarily large. Such arguments cannot be used for the case of a{z) unstable,

162

because once again, the coefficients of q(z) will have to satisfy an additional set of

equality constraints that ensure the cancellation of the unstable poles of a(z). □

6.3.3.1.3 Rate and absolute constraints. In the presence of both types of

constraints, the cost JQ' (for £ known) may be written as:

■v- II#VH.
Next, by defining

Gi
r=wJ([a,_1-aJ_2,...,a0,0,...,0]

'Hi
T=wl^al_val_v...tao,0t...i0]

F=[GT Hi}7; h=[f of

we can reiterate eqns. (6.55) and (6.56) and state the following result.

(6.63)

(6.64)

Theorem 6.9: The optimal solution, [vT, p*f, of the linear programming problem:

min/7

V,P

s.t.

P'K -1

-P'K -1

-K 0

r -i \-p'z» v p

< P\
p\ z (6.65)

rio - o i], F=

yields the vector vß* which minimizes the cost JQ' of eqn. (6.53) as:

1-1,0-0,1 -1,0-0
0-0,1-1,0-0,1-1

v^F^iwC-hJ; Wi^z*; z*=zp+Kv' (6.66)

Proof: With the definitions above, it is easy to show that the cost JQ' is given as:

^'=I^IL=l^+^v|L <6-67)
If the value of this oo-norm were p, then both elements of P'(Zp+Kv) should lie in [-p,p]:

-pl<P'zp+P'Kv<pl (6-68)

This, together with eqn. (6.56)c, leads to the constraint part of (6.65). Our aim is to

minimize the JQ' of eqn. (6.67), which has been assumed to be equal to p; the cost part

163

of (6.65), for the particular choice off, calls for the minimization of this value p. D

Theorems 6.8, 6.9 address the problem of minimizing the cost of eqn. (6.53), but can

be extended easily to handle the general cost of eqn. (6.51); the procedure is exactly the

same, but the expressions for the various matrices and vectors become more complicated.

Example 6.3 Consider a model for which the numerator and denominator polynomials

are given as:

ö(z)=l-2.2z-1+0.09z-2+0.252z'3; ^)=2+0.45z-1+z"2 (6,69)

and let nc=3, R=0.05, Uo=0, 17=0.3, d=0.001, nQ=\, wR=2, wv=i (for £ unknown)

and wR= 1, wv=2 (for £ known). Then the minimal order solution of the bezout identity

of eqn. (6.5)c, X(z), and the optimal choice for Q(z) (as per Theorem 6.9) are:

Z(z)=1.4409-1.219U-1-0.0625z-2+0.1306z-3; o^(z) = -0.4986-0.3763z_1 (6-7°)

For this example and the particular choice of weights, wR and wv, the optimal solution

for Q is the same for both £ known and unknown. The benefit derived from this optimal

choice of Q(z) is illustrated in Figure 6.6 (for £ unknown) and Figure 6.7 (for £ known)

which depict the actual constraints, as defined by R, U0 and U (solid lines), and the a

priori constraints, for Q(z)=0 (dash-dotted lines) and ß^(z) (dashed lines); in both

figures, the left plot concerns rate limits, whereas the right plot deals with absolute input

constraints. For increased detail, the right plots show the upper bounds only; the lower

bounds are symmetrical about U0=0. Clearly, Qopt(z) has increased the interval within

which the vector of future control moves must lie, thus allowing MCSGPC more freedom

to improve performance; this is illustrated in the design study of Section 6.3.4.

164

6.3.3.2 Deploying the a priori degrees of freedom

MCSGPC, as per Algorithm 6.1, constrains the current value of c, c, (the first

element of c), as well as all the future values of c, ct+i for i= 1,2,... ,nc-\ (all remaining

elements of c), according to the a priori conditions (and hence the a posteriori conditions

also) of Theorem 6.6. This is convenient in that it keeps the complexity of the relevant

optimization problem to a minimum. However, cl+i can actually be changed at the next

sampling instant, ie. at t+1, and this extra freedom can be deployed to lessen the

feasibility burden on c,+l at the current time, t. Of course this deployment refers to i >0

only, because ct will be chosen and implemented now; no further corrective action will

be available in the future with respect to this value of c. These ideas can be made

concrete with reference to eqn. (6.42) of Lemma 6.4 according to which we may write:

c(t+l\t)

cjt)

(6.71)
+ JC

where the definitions of c(.) are analogous to those given in Definition 6.1; in particular

the leading elements of c(t+l\t) are given by the 2nd, 3rd,..., »* elements of c(t) and the

last element is cK{f). The argument made is that the vectors Aum(t+1) and um(t+l) of

eqn. (6.42) depend on x, and so the extra freedom available in x can be used to relax the

feasibility constraints imposed on c(t). In this context, the feasibility requirement
—»

becomes that: (i) Au(l)(t), u(l\t) lie between actual constraints (2.28); (ii) A«(f+1),
-► -» -»

u(t+l) also lie between the actual constraints; (iii) requirement (ii) can be satisfied at the

next time instant (and hence at all subsequent times). Requirement (ii) implies that

Au(1)(t+1) and um(t+l) should be subject to the appropriate a posteriori feasibility

conditions; requirement (iii), in conjunction with (ii), implies that Aa(1)(?+1) anda(1)(?+l)

165

should be subject to the appropriate a priori conditions; whereas condition (i) has the

effect of replacing the bordered inequality (6.34) by the wider constraints of inequality

(2.28). In other words, the burden of future feasibility is, in effect, passed from ct+i,

i>0 onto x through Aa(1)(r+1) and um(t+l). On the surface, it appears that c{t) is only

subject to the constraints implied by the actual limits and therefore takes no account of

disturbances. This is exactly what one should expect with respect to cl+i i>0, because

by eqn. (6.71), x can alter these values of c; but one may feel concern with respect to

c„ because x cannot alter its effects. However, Aum(t+l \t), um(t+l\t) depend on ct,

and thus the a priori constraints imposed on A«(1)(?+l), u(l\t+\) constrain, indirectly,

the values that c, is allowed to assume. Thus the first appearance, that c(t) is subject to

the actual constraints only, is not correct; indeed what is happening is that c(t) is subject

to constraints which are tighter than those implied by the actual limits, but looser than

those implied by the bordered constraints of Theorem 6.6. One can therefore expect

improved performance; the price to be paid for this is increased computational

complexity: MWLS now involves x as well as c(i).

It was stated that, for Au(t+l), u(t+l) to lie within the actual constraints and for

this to be possible at the next time instant, Aum(t+l) and u(l\t+\) should be subject to

the appropriate a priori conditions. The result below implements this new requirement.

Lemma 6.9 At time t, the guarantee of i) STF at f+1, ii) its maintenance at all

subsequent time instants, and iii) feasibility of Au(t+l), u(t+l) is ensured if a vector x

can be found such that:

166

-Rq+R#<Aum(t+l\t)+\Ta 0jx <Rq-R*
—»

-Uq+U*< um(t+l\t)+[Ta ea^-U0q<Uq-U
(6.72)

where:

rt unknown: R? =2d\N0\, R? =R*.X +2d\N^\;

Uf=2d\N0\, Uf^+ldlN^+N^ f>l (6>73)

ft known: *N*|JV0|, Rt*=Rl.1+d\Nl_1-N.<\;

U?=d\N0\, D*=üÜW|tfM|

Furthermore, eqns. (6.73) define the smallest borders for which STF at t+l, t+2,... can

be guaranteed.

Proof: This parallels that given for Theorem 6.6, except that now eqns. (6.7) and (6.8)

must run one step forward in time, and the vectors Aa(1) and um must be replaced by Au(l)(t+l)

and um(t+l) (eqn. (6.42)). Clearly, the terms fAu and /„ are unknown and must be

removed from A«(1)(?+l) and u(l)(t+l) and included in A«(2) and «(2) (and thus included

in the borders). The remainder of the proof is identical to that of Theorem 6.6. D

Algorithm 6.2 (MCSGPC with disturbances)

This is identical to Algorithm 4.4 with the added constraint of (6.72),(6.73).

As noted above, this algorithm removes the borders of Algorithm 6.1 (thus returning to

the original MCSGPC constraints), but indirectly inserts an additional constraint on ct via

(6.72).

Theorem 6.10 Algorithm 6.2 is guaranteed to remain stable in the presence of the

disturbances of eqn. (6.1) and condition (6.2). Furthermore, if the disturbance, £,

reaches a steady-state, then Algorithm 6.2 has guaranteed asymptotic tracking.

167

Proof: This runs along lines similar to the arguments given for Theorem 6.7 (Lemmata

6.6 and 6.7), except that now, STF and disturbance handling are ensured by Lemma 6.8,

instead of Theorem 6.6. D

6.3.4 Design study

In this section, we describe a design study which illustrates the stability properties of

Algorithms 6.1 and 6.2 as well as demonstrates how optimizing Q(z) and deploying the

vector x (of Algorithm 6.2) leads to better performance. The a(z), b(z) polynomials, as

well as the constraint limits to be used, are the same as those given in Example 6.3. The

choices for the parameters nc and X are 3 and 1 respectively, whereas the disturbance,

f„ consists of a negative impulse of 0.007 applied at t=A followed by a positive impulse

of 0.014 applied at t=5 and results in the £ signal shown in the left plots of Figure 6.8-

Figure 6.12 (scaled by a factor of 20). The simulation results for MCSGPC are shown

in Figure 6.8 and can be seen to be unstable. In this figure and throughout this study,

the left plot will depict output responses (solid lines), set-point trajectories (dashed lines)

and disturbance signals (dash-dotted lines, scaled by 20), whereas the right plot will

depict the input trajectories (solid lines) and the trajectory of the control increments

(dash-dotted lines, scaled by a factor of 6). The instability of Figure 6.8 is easy to

explain: at the time when the disturbance is applied, MCSGPC is driving hard against

the rate limits and so no control action is available for handling the disturbance. As a

consequence, the problem becomes STIF, and this in turn results in instability.

In contrast to this, Algorithm 6.1 reserves just enough control action so as to

handle the worst case disturbance sequences and hence can cope well with the situation

described above. This is illustrated in Figure 6.9 (for £ unknown) and Figure 6.10 (for

168

£ known); the responses of both figures are good, but those of Figure 6.10 are of course

better, since the algorithm makes use of knowledge of £.

These plots are for Q(z)=0, and further improvements in the response can be

brought about through the use of the optimal Q(z) of eqn. (6.70)b; these simulation

results are shown in Figure 6.11 and Figure 6.12 and can be seen to be better (faster)

than those presented in Figure 6.9 and Figure 6.10. Further evidence of this

improvement is presented in Table 6.1, which records the values assumed by the cost:

runtime

Jtolar E (rt+rytJ
2+MAuf (6-74)

where r, denotes the set-point sequence defined by r,=0 for /=1,2,...,7, and r,=l for

i>l. Table 6.1 also compares the performance of Algorithm 6.2, for which the results

are similar to those of Figure 6.9-Figure 6.12 and, therefore, are not shown.

£ unknown £ known

Algorithm 6.1 ö=o 1.0084 0.8002

Q=QoP, 0.7100 0.7279

Algorithm 6.2 ß=o 0.9857 0.7744

Q=Qm
0.6768 0.6554

Table 6.1: Comparison of costs using Algorithms 6.1 and 6.2 with Q=0 and Q=Q, opt

Clearly, utilizing the degrees of freedom available in Q brings about a very significant

reduction (about 30% for £ unknown and about 9% for £ known) in the cost of eqn.

(6.74); the deployment of the degrees of freedom in the vector x of Algorithm 6.2 brings

about an additional, but smaller, improvement (about 5% for £ unknown and about 10%

for £ known).

In conclusion, therefore, both Algorithms 6.1 and 6.2 produce results which

169

illustrate the stability and asymptotic tracking properties of Theorems 6.7 and 6.10.

Furthermore, the algorithms produce some very good responses which are further

improved through the use of QopI. Finally, Algorithm 6.1, though marginally

outperformed by Algorithm 6.2, is numerically simple and, therefore, is the more

attractive alternative.

6.4 Chapter summary

Disturbances are omnipresent and, for systems subject to constraints, must not be

neglected. In this chapter, we have defined the inputs which are necessary to reject

future bounded disturbances, and then used this knowledge to: i) develop explicit apriori

stability conditions for systems with just one unstable pole, and ii) derive and deploy

borders in MCSGPC which reserve enough control authority to reject these disturbances

and yet release enough incremental control authority to ensure that the effects of the

current disturbance do not make the problem infeasible at the following time instant.

170

Output and Ref. llAc-vll
1.5

0.5

20 40 60

Input

Ij L

0 20 40 60

bu

0.5

-0.5

20 40 60 0 20 40 60

Figure 6.1 Example 6.1 - Response with disturbance - d=0.l

Output and Ref. IIAc-v||
1.5

0 20 40 60

Input

0
0 20 40 60

bu

0.5

-0.5

20 40 60 0 20 40 60

Figure 6.2 Example 6.1 - Response with disturbance - d=0.H

111

Output and Ref. IIAc-v|

20 40 60

Input

40 60

Figure 6.3 Example 6.1 - Response with disturbance - d=0.141

172

Figure 6.4 Example 6.2 - Response with disturbance - without respecting interval (6.17)

Figure 6.5 Example 6.2 - Response with disturbance - respecting interval (6.17)

173

0.06

0.04

0.02

-0.02

-0.04

-0.06

0

Rate Limits
0.31

0.3

0.29

0.23

0.27

0.26

0.25

Upper Abs. Limits

-
\\ - \\ \ \ \ \ \ \ ~~\

\ """■---.

\ \ -■-.

N _

"*"--.
-

- -

^' "

2 4 6 2 4 6

Figure 6.6 Example 6.3 - Borders for £ unknown

0.06

0.04

0.02

-0.02

-0.04

-0.06

0

Rate Limits
0.31

0.3

0.29

0.28

0.27

0.26

0.25

Upper Abs. Limits

- "^r^- __
"^ -

-
/' .—'

2 4 6 2 4 6

Figure 6.7 Example 6.3 - Borders for £ known

Output, Dist.. and Ref. Input and Input Rate

1.8 .
0.3

1.6 I ,
1.4 - 0.2 .]i "
1.2 I 0.1 - ; ; / \

1

0.8 f 0
M. I \

0.6 I -0.1 - ■ \

0.4 \ -0.2 '.
0.2

0

1 J
-0.3 -—"^ ._/_J

"•' 0 20 40 0 20 40

Figure 6.8 Design Study - MCSGPC with no borders

174

Output, and Reference Input and Input Rate

1
0.3

02 0.8

I /
1 /
1 /

-

0.6

1 /
1 / 0.1 -^

0.4

1/
0

•'\
>

0.2

0

-02 0

^T

/ 1
/ 1

-01

.0.2

-0.3

^ .^x--^ J
; '

10 20 30 40 ~0A 0 10 20

Figure 6.9 Design Study - Bordered MCSGPC (£ unknown, 0=0)

Output, and Reference Input and Input Rate

Figure 6.10 Design Study - Bordered MCSGPC (f, known, ß=0)

Output, end Reference

Figure 6.11 Design Study - Bordered MCSGPC (£ unknown, QopI)

Output, and Reference Input and Input Rate

20 30

Figure 6.12 Design Study - Bordered MCSGPC (£ known, ß0/)t)

175

Chapter 7

Conclusion

Here, we summarize the important results of this thesis and then briefly discuss some of

the remaining open problems.

7.1 Thesis summary

The problem of feasibility was investigated in Chapter 3, and necessary and sufficient

conditions for stability were developed. We derived a priori stability conditions which,

for systems with only one unstable pole, provided explicit conditions for retaining long

term feasibility (LTF). Obviously, any control strategy which ignores these conditions

and violates them will be unstable. Later (in Chapter 6), we also showed that these

results carry over to the more general case of systems which are subject to disturbances

and showed how they could be used to avoid instability. We then (in Chapter 3)

developed general stability conditions for systems with any number of unstable poles; the

result relies on the use of linear programming, but, for a given number of degrees of

freedom, it provides conditions which are both necessary and sufficient for stability.

The results of Chapter 3 provided conditions on the current input which guarantee

176

stability, but they did not, in themselves, lead to an algorithm which yields an optimum

choice for that input. In Chapter 4, we considered an alternative procedure for dealing

with short term infeasibility (STIF) by focusing on CSGPC and proposing modifications

which maintain stability when, due to set-point changes, CSGPC encounters STIF. This

was first implemented by simply minimizing the deviation of the predicted steady-state

value of the output (the slack variable, s„) from its target value; while this approach has

the advantage of simplicity, it ignores transient errors. For Mixed-Objective CSGPC,

we shifted the objective to the minimization of the infinity-norm of the predicted errors.

The final modification in Chapter 4, MCSGPC, was similar, but retained a two-norm cost

and guaranteed an asymptotic return to short term feasibility (STF) by adding a slack

variable end-point constraint. The modified algorithms are activated only when CSGPC

is STIF, and guarantee recovery of STF; this, together with the properties of CSGPC,

were shown to guarantee stability and asymptotic tracking.

In Chapter 5, we looked specifically at the necessity of previously proposed

terminal constraints. While it had been recognised that, for the purposes of stability, one

actually only needs to force the output errors to be stable, thereby turning the predicted

output error trajectories into infinite length sequences (ILS), we showed that it was also

the case that one need only force the input increments to be stable, with the effect of

getting predicted input increment trajectories which are ILS; we proposed CaSC, CaML,

and IHSPC which implement these changes in philosophy and derived two procedures for

calculating the infinite horizon cost involving the sum of the square of the ILS errors and

input increments. Then, through the use of suitable input horizon bounds, we developed

simple, but efficient means of invoking input constraints over a infinite horizon by

enforcing them over a finite horizon and subsequently implemented these constraint

177

horizons in CCaSC.

The final results of this thesis, presented in Chapter 6, dealt with the inherent

clash between disturbances and constraints. We first considered how the effects of

disturbances could be propagated forward in time and then derived necessary and

sufficient limits on the size of the future inputs which are required to reject all possible

(norm-bounded) future disturbances. We modified the constraint limits of CSGPC

accordingly, so as to reserve the necessary control authority to reject these disturbance

effects and to ensure that the problem would continue to be feasible at all subsequent time

steps, and thus we developed an algorithm with guaranteed stability and asymptotic

tracking for systems subject to disturbances.

7.2 Open problems

This thesis has dealt exclusively with single input, single output systems, but the results

presented here can easily be extended to multivariable systems. Additionally, no results

were presented on the effects of model uncertainty for the control of systems which are

subject to physical constraints; guaranteeing stability under these conditions will prove

to be a difficult task. Other areas, for which extension of these results has yet to be

addressed, include constrained control of time varying systems, non-linear systems, and

continuous time systems.

178

Bibliography

[I] J.C. Allwright (1993). "On mini-max model-based predictive control." in Advances
in Model Based Predictive Control, D.W. Clarke (ed.), Oxford Science
Publications.

[2] A. Bemporad and E. Mosca (1994). "Constraint fulfilment in feedback control via
predictive reference management." Proc. 3rd IEEE CCA, Glasgow, 1909-1914.

[3] M. J. Best and K. Ritter (1985). Linear programming: active set analysis and
computer programs, Prentice-Hall, 246.

[4] E.F. Camacho (1993). "Constrained generalized predictive control." IEEE Trans,
on Automatic Control, 38, 327-332.

[5] D.W. Clarke and P. Gawthrop (1975). "Self-tuning control." Proc. IEE, Pt. D,
122, 929-934.

[6] D.W. Clarke and P. Gawthrop (1979). "Self-tuning controller." Proc. IEE, Pt. D,
126, 633-640.

[7] D.W. Clarke, C. Mohtadi, and P.S. Tuffs (1987). "Generalized predictive control."
Pts. 1 and 2. Automatica, 23, 137-160.

[8] D.W. Clarke, and R. Scattolini (1991). "Constrained receding horizon predictive
control." Proc. IEE, Pt. D, 138, 347-354.

[9] C.R. Cutler and B.L. Ramaker (1980). "Dynamic matrix control - a computer
control algorithm." Proc. JACC, San Francisco.

[10] H. Demircioglu and D.W. Clarke (1993). "Generalised predictive control with
end-point state weighting." Proc. IEE, Pt. D, 140, 275-282.

[II] R. Fletcher (1987). Practical methods of optimization. John Wiley.

179

[12] C.E. Garcia, D.M. Prett, and M. Morari (1989). "Model predictive control: theory
and practice, a survey." Automatica, 25, 335-348.

[13] E.G. Gilbert and K.T. Tan (1991). "Linear systems with state and control
constraints: the theory and application of maximal output admissible sets." IEEE
Trans, on Automatic Control, 36, 1008-1020.

[14] E.G. Gilbert, I. Kolmanovsky, and K.T. Tan (1994). "Nonlinear control of
discrete-time linear systems with state and control constraints: a reference
governor with global convergence properties." Proc. 33rd CDC, Florida, 144-
149.

[15] J.R. Gossner, B.Kouvaritakis and J.A. Rossiter (1995). "Cautious stable predictive
control: a guaranteed stable predictive control algorithm with low input activity
and good robustness." Proc. 3rd IEEE Mediterranean symposium on new
directions in control and automation, Cyprus, 2, 243-250, and to appear, Intl.
Journal on Control.

[16] K.N. Hrissagis, O.D. Crisalle, and M. Sznaier (1995). "Robust predictive control
design with guaranteed nominal performance." Proc. ACC.

[17] T. Jolly and J. Bentsman (1993). "Generalized predictive control algorithms with
guaranteed frozen-time stability and bounded tracking error." Proc. ACC,
California, 384-388.

[18] S.S. Keerthi and E.G. Gilbert (1988). "Optimal infinite-horizon feedback laws for
a general class of constrained discrete-time systems: stability and moving-horizon
approximations." Journal of Optimization Theory and Applications, 57, 265-293.

[19] B. Kouvaritakis, J.A. Rossiter, and A.O.T. Chang (1992). "Stable generalized
predictive control." Proc. IEE, Pt-D, 139, 349-362.

[20] B. Kouvaritakis, J.R. Gossner, and J.A. Rossiter (1996). "A priori stability
conditions for an arbitrary number of unstable poles." Proc. 13th World
Congress, Intl. Federation of Automatic Control, IFAC '96, San Francisco, and
to appear, Automatica.

[21] W.H. Kwon and A.E. Pearson (1977). "A modified quadratic cost problem and
feedback stabilization of a linear system." IEEE Trans, on Automatic Control,
22, 838-842.

[22] C.L. Lawson and R.J. Hanson (1974). Solving least squares problems. Prentice
Hall.

[23] D.Q. Mayne, and E. Polak (1993). "Optimizationbased design and control," Proc.
IFAC World Congress, 3, 129-138.

180

[24] H. Michalska and D.Q. Mayne (1993). "Robust receding horizon control of
constrained nonlinear systems." IEEE Trans, on Automatic Control, 38, 1623-
1633.

[25] C. Mohtadi (1986). "Advanced self-tuning algorithms." D. Phil. Thesis, Oxford
University.

[26] M. Morari (1994). "Model predictive control: Multivariable control technique
choice of the 1990's," in Advances in Model Based Predictive Control, D.W.
Clarke (ed.), 22-37. Oxford University Press, Oxford.

[27] E. Mosca and J. Zhang (1992). "Stable redesign of predictive control." Automatica,
28, 1229-1233.

[28] G.D. Nicolao, L. Magni, and R. Scattolini (1994). "On robustness properties of
constrainedreceding-horizoncontrollers." Proc. 33rdCDC, Florida, 3023-3024.

[29] D.M. Prett and R.D. Gillette (1979). "Optimization and multivariable control of a
catalytic cracking unit." Proc. JACC, San Francisco.

[30] J.B. Rawlings and K.R. Muske (1993). "The stability of constrained receding
horizon control." IEEE Trans, on Automatic Control, 38, 1512-1516.

[31] J.A. Richalet, A. Rault, J.L. Testud, and J. Papon (1978). "Model predictive
heuristic control: applications to a industrial process." Automatica, 14, 413-428.

[32] B.D. Robinson and D.W. Clarke (1991). "Robustness effects of a prefilter in
generalised predictive control." Proc. IEE, Pt. D, 138, 2-8.

[33] J.A. Rossiter and B. Kouvaritakis (1993). "Constrained stable generalized predictive
control." Proc. IEE, Pt-D, 140, 243-254.

[34] J.A. Rossiter and B. Kouvaritakis (1994). "Robustness and efficiency of generalized
predictive control algorithms with guaranteed stability." Proc. IEE Conference,
CONTROL 94, Warwick, 1017-1022.

[35] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1994). "Constrained stable
generalized predictive control: stability results and the case of disturbances."
Oxford University Tech. Report, OUEL 2018/94.

[36] J.A. Rossiter (1994). "GPC controllers with guaranteed stability and mean-level
control of unstable plant." Proc. 33rd CDC, Florida, 3579-3580.

[37] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1995). "Feasibility and stability
results for constrained stable generalized predictive control." Automatica, 31,
863-877.

181

[38] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1995). "Mixed objective
constrained stable generalized predictive control." IEE Proc. - Control Theory
Applications, 142, 286-294.

[39] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1995) "Stable generalized
predictive control in the presence of constraints and bounded disturbances."
Proc. 3rd European Control Conference, ECC '95, Rome, 3241-3246.

[40] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1995). "Guaranteeing feasibility
in constrained stable generalized predictive control." Oxford University Tech.
Report, OUEL 2061/95, and to appear, IEE Proc. - Control Theory Applications.

[41] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1995). "Constrained cautious
stable predictive control." Oxford University Tech. Report, OUEL 2066/95.

[42] J.A. Rossiter, B. Kouvaritakis, and J.R. Gossner (1996). "Infinite horizon
generalized predictive control." To appear, IEEE Trans, on Automatic Control.

[43] P. Scokaert (1994). "Constrained predictive control." D.Phil, thesis, Department
of Engineering Science, Oxford University.

[44] M. Sznaier and M.J. Damborg (1990). "Heuristically enhanced feedback control of
constrained discrete-time linear systems." Automatica, 26, 521-532.

[45] M. Sznaier and M.J. Damborg (1993). "Heuristically enhanced feedback control of
constrained systems: The minimum time case." Automatica, 29, 439-444.

[46] T.T.C. Tsang and D.W. Clarke (1988). "Generalized predictive control with
constraints." Proc. IEE, Pt-D, 135, 451-460.

[47] P. Vyas (1996). "Plasma vertical position control in the Compass-D tokamak."
D.Phil, thesis, Department of Engineering Science, Oxford University.

[48] P. Vyas, J.R. Gossner, and B. Kouvaritakis (1996). "Application of cautious stable
predictive control to vertical positioning in Compass-D tokamak." Oxford
University Tech. Report, OUEL 2092/96.

[49] T-W. Yoon and D.W. Clarke (1995). "Observer design in receding horizon
predictive control." Intl. Journal on Control, 61, 171-191.

[50] P.C. Young, M. A. Behzadi, C.L. Wang, and A. Chotai (1987). "Direct digital and
adaptive control by input output state variable feedback," Intl. Journal on
Control, 46, 1861-1881.

[51] E. Zafiriou (1990). "Robust model predictive control of processes with hard
constraints." Comp. Chem. Eng., 14, 359-371.

182

[52] E. Zafiriou and H.-W. Chiou (1993). "Output constraint softening for SISO model
predictive control." Proc. ACC, San Francisco, 372-376.

[53] Z.Q. Zheng and M. Morari (1993). "Robust stability of constrained model
predictive control." Proc. ACC, San Francisco, 379-383.

[54] A. Zheng and M. Morari (1994). "Stability of model predictive control with soft
constraints," Proc. 33rd CDC, Florida, 1018-1023.

183

