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Finite Difference Modelling of
Scattering by Objects in the Seabed

John A. Fawcett and Joris L.T. Grimbergen

Executive Summary:

A better understanding of the scattering of acoustic energy from elastic objects
on or under the seabed will lead to a significant improvement in our ability to
detect and classify minelike objects. Modelling of such scattering should include
the effects of the seabed itself since mines may be buried to some degree. The
Finite Difference method, described in this report, allows acoustic scattering
from mines in complex bathymetric conditions to be modelled. This gives
insight into the physical mechanisms and environmental parameters which are
important to the scattering of energy from mines and will act as a benchmark
for faster, but more approximate, models.

This report describes some of the theory and implementation issues concerned
with Finite Difference modelling. For an illustration of the value of this method,
the results of computations of scattering from buried and partially buried cylin-
ders for smooth and rough seabed conditions are presented. Numerical exam-
ples are also given, illustrating the accuracy of the method for problems, such
as scattering from aluminum cylinders, where analytic solutions are known. It
is clear many questions regarding the effects of burial and bathymetry on mine
scattering are answered by the FD model.
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Finite Difference Modelling of
Scattering by Objects in the Seabed

John A. Fawcett and Joris L.T. Grimbergen

Abstract: In this report we describe the theory and some implementation
issues of a finite difference code used at SACLANT Centre. In particular, we
consider the modelling of attenuation and the excitation of a remote incident
field by using Huygen's sources. A series of comparisons of finite difference
results with analytical results is performed. The report concludes with a series
of computations of scattering of a generalized plane wave from a buried cylinder
where the transmitted portion of the generalized plane wave is evanescent. An
example of time-reversed propagation of a scattered field is also given.

Keywords: Finite difference modelling, attenuation, Huygen's sources
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1
Introduction

Finite Difference (FD) modelling can compute the time-domain solution to complex
elastic scattering problems (for example, [1, 2, 3, 4] ). The FD solutions include
all angles of energy propagation - both forward and backward propagating energy.
The method is very general in terms of the environment and the scattering objects
and surfaces. There is no need to make assumptions about range-independence, the
shapes of objects, etc. The chief disadvantage of the method is that it becomes
computationally intensive for grid sizes which are more than 100 wavelengths in a
dimension (for three-dimensional modelling this problem is even more acute). Thus
for problems where the source of incident energy is distant from the scattering region
it is not possible to model the source region. In order to resolve this shortcoming, we
have implemented a technique for bringing remote incident fields into the numerical
grid. This means that in the case where a large portion of the waveguide is simple in
structure, we can model the propagation of the incident field up to the boundary of
the grid with a more efficient technique. Similarly, once the scattered field has been
computed by the FD method, it should be possible to extrapolate the scattered field
to remote receivers.

In the Spring of 1995, SACLANTCEN obtained the visco-elastic finite difference
code developed by J. Robertsson, J. Blanch, and W. Symes [5, 6]. This method in-
cludes additional variables and parameters which allow for the modelling of spatially-
varying compressional and shear attenuations. We shall refer to this code as the
RBS code for the remainder of this report. We implemented the basic code into a
MATLAB [7] package for FD modelling. This package provides subroutines for the
construction of the fields required by the FD code. This includes the construction
of stress and strain relaxation time grids for desired Q (the number of wavelengths
over which the amplitude decays by e-') grids for the compressional and shear
waves. It also includes a subroutine for the analytic computation of the generalized
plane-wave incident field along a boundary of the finite difference grid for a 2 half-
space environment. The incident field, in this case, consists of a coherent sum of
direct, reflected, and transmitted components. This field is used to excite sources
along this boundary in the FD computations, effectively bringing the incident field
into the grid. The FD code is fourth-order accurate spatially and uses a staggered
grid formulation [4]. It is second order in time. In many instances, 20 grid points
per wavelength give very good results with this code ( for a broadband source, this
corresponds to fewer points per wavelength for frequencies higher than the centre
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value).

Below, we will describe in more detail some of the features of the FD code; in
particular, we will describe some of the details of the attenuation modelling, the
boundary absorbing layer, and the incident field modelling. We will then present the
results from a sequence of benchmark computations which test the attenuation and
the elastic scattering capabilities of the code. In order to reduce computation time,
the numerical examples of this report were run using a FORTRAN implementation
of the code rather than the MATLAB package.
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2
Theory

In this section we describe some of the theoretical and implementation issues con-
nected with the visco-elastic finite difference modelling.

2.1 The basic model

The basic set of visco-elastic differential equations solved by the RBS code is

au- xi•xaz~x

at~kx 7a T 7O,o•= - TII ( Ovx + vz) - ±-z
at T- az ax r
-,_x z - 2/y---)a-x +rzz (1)

OvX _ ! ( + ao6 )
at p a x + z

Ovz 1 (7XZ + e7Zz'
at a ±Ox az

ar = r + ( - 1 + -av 2 L -/
at r7, 70 r6 T 'O Z O0z 7 z

arzzz) K ) v)
- - 1q + -a v 2 p L - 1

at r7 aT ax aZO 0 )
arxz 1 (rxz + Ip ( L-: - 1 v- + ±avz
at 7a7, az ax-

where a•ij denotes the components of the symmetric stress tensor, vi is the velocity
vector, it is the shear relaxation modulus, and y is the compressional relaxation
modulus, corresponding to A + 2/1 in the standard elastic problem. The variables
rij are memory variables [8] which are introduced for the visco-elastic modelling in
order to avoid the explicit computation of time-convolution terms. For the simple
attenuation model considered in this report, three memory variables are required.
Associated with the attenuation modelling are the parameters 7,, the compressional
strain relaxation time, 7T, the shear strain relaxation time, and T- the stress relax-
ation time which for our model is the same for compressional and shear waves. In
the limit of no attenuation, 7,P/7, and T:/ar become unity and rij becomes zero.
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The above equations then reduce to the standard equations of elasticity. In the
following subsection, we discuss in more detail the modelling of attenuation.

As with all FD codes the differential equations are discretized in both space and time
to yield a set of discrete equations. The RBS code uses a discretization of Eq.(1)
which is fourth order accurate in space and second order in time. In order to obtain
accurate answers using the FD code we find in practice that we require 10-20 spatial
grid points for the dominant wavelength of the problem. This criterion is dependent
upon the frequency bandwidth of the source; if, for example, there is significant
energy at frequencies twice the main frequency, these wavelengths must also be
accurately modelled. The required spatial discretization of a wavelength indicates
the problem which arises when dealing with low-velocity zones; the wavelengths are
small in these regions and hence these zones require a small spatial step. The code
of this report uses uniform spacing, so that, in fact, a small spacing must be used
for the entire grid in this case. These low velocity cases may arise when we wish to
model an object filled with air (cp ,t 340m/s) or when we wish to accurately model
the effects of shear. Shear velocities may often be only a few hundred m/s.

The RBS is an explicit FD code and hence the time step At must satisfy a constraint
of the form At < oAx/Cmax where Ax is the spatial step size if the solution is to
be stable with respect to time. This has two main implications for the modelling;
(1) if one decreases the spatial grid size, then it is necessary to decrease the time
step accordingly (2) a zone of high velocity will require small time steps and since
the time step is the same for the entire grid, this may force the time step to be
inordinately small in other regions of the grid. For the RBS code the maximum
value of a is approximately 0.606 [9].

2.2 Attenuation Modelling

We will give a brief outline of the theory of visco-elastic modelling to give an under-
standing of some of the parameters and implementation issues involved. Here, we
follow the notation of the appendix in [6]. The constitutive relation for a visco-elastic
medium can be modelled as being time-dependent,

oij = i * Ckki + 2k * cij (2)

where aij is the stress tensor of Eqs.(1), Eij is the strain tensor, A and M correspond
to the Lam6 constants A and p, and bij denotes the Kronecker delta. Equation (2)
can be rewritten in terms of compressional F and shear parameters M as

ajj = (t- 2 ) *Ekkij + 2M *e3 . (3)

The form of Eqs.(2) and (3) is similar to the standard constitutive relations except
that now the parameters A, F, and M are time-dependent and multiplications have
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become time-convolutions. A useful model for the time history of F and M is

r(t) = FR 1 - - __) -t/Tcre U(t) (4)

and
L

M(t)=MR 1- 1( - �) (e-t/) I U(t) (5)

where U(t) is Heaviside's function, -r, and r-,e are the compressional and shear strain
relaxation times for the V'th term in Eqs.(4-5), and 7-rý are the corresponding stress
relaxation times. Following [6] we have chosen the parameters rea to be the same for
both the compressional and shear functions and hence we do not use a superscript
for this parameter. In the frequency domain the complex compressional and shear
moduli are given by

F(w) F[d(u(t)r(t))] (6)

AI(W) = F[±(U(t)M(t))] (7)

where F denotes the Fourier Transform. In order to simplify our analysis we will
consider f = I in Eqs. (4-5) and will no longer use the subscript f in our notation. We
will consider only the compressional term f (w). The analysis of the shear function
proceeds along identical lines. Using Eq.(4) in Eq.(6) yields

1 + iwr,F(W) = 1 + iw7-" (8)

In terms of f((w) the quality factor Q can be written

) [F(W)] _ 1W+, 2 r7
Q[W(w)] - (i•- ) (9)

where R and Q denote the real and imaginary parts of a complex number respectively.
This factor is the number of wavelengths a harmonic plane-wave must propagate
before its amplitude has been decreased by a factor of exp(-7r). The phase velocity
c(w) for each Fourier component of the wavefield can also be computed from f (W)
and is given by

CM R { p ± [R + i 27-6] (10)

From Eq.(10) it can be seen that there is frequency dispersion in this visco-elastic
medium. In order to have a causal system it is, in fact, necessary to have some
frequency dispersion[10].

Introducing

-5- NT U(11)
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into Eq.(9), we can write

(12)Q-l~w) -1 + W27,2(l + 7_ý)" 1

For reasonable values of Q, 7- << 1 and hence

+w 70- (13)

In order to determine optimal values of r7 and 7, to approximate a constant Q over a
given frequency band, [6] gives a simple, but effective algorithm based upon Eq.(13).
Basically r7 controls the amplitude of Q-'(w) and r7 controls the frequency offset of
the curve. The parameter 7a is set to 1/( 2wf,) where f, is the centre frequency of the
frequency interval of interest and 7-, is determined by a simple linear optimization
algorithm.

The same type of algorithm can also be used in the case of more than one (i.e.,
f > 1 in Eq.(4)) attenuation mechanism: T-,, are set for specified frequencies over the
bandwidth and a value of 7-, is determined to yield a good approximation to constant
Q over the entire frequency band. By taking several attenuation mechanisms, it is
possible to obtain an excellent approximation to a constant Q. In the numerical code
of this report only one mechanism is used. Although this does not model a constant
Q over the entire band of interest, we will see in the numerical examples that, in
practice, it does a good job in modelling the attenuation and dispersion effects of
visco-elasticity.

In Fig. 1 we plot Eq.(9) as a function of frequency. We have determined the optimal
values of 7-, for the frequency interval [100,3000] Hz for constant Q values of 20
(which corresponds to 1.36 dB/A) and 50 (which corresponds to 0.54 dB/A). The Q
for the single mechanism model is approximately constant in the interval [750,3000]
Hz. For frequencies higher or lower than these values, the Q values produced by
the model are too high. If the frequency content of the source is concentrated in
the interval where the constant Q approximation is good, then we expect the single-
mechanism Q model to be effective.

In Fig. 2 we show the velocity/frequency curve computed from Eq.(10) for the com-
puted values of 7a and 7,, for the Q = 20 (solid) and Q = 50 (dashed) cases. The
phase velocity varies from about 1500 m/s at f=300 Hz to 1575 m/s at f=5000 Hz
for the Q = 20 case and the variation is almost linear between 500 and 1500 Hz.
The velocity variation is much less for the Q = 50 case; there is only a variation of
30 m/s over the entire frequency range.

Based on the theoretical analysis of Futterman [11] and the experimental work of
Wuenschel [12], the following Q/dispersion model for real visco-elastic materials has
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Figure 1: Computed Q as a function of frequency, approximating Q=20 (solid line),
Q=50 (dashed line)
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Figure 2: Computed phase velocity as a function of frequency for modelled Q=20
(solid line), Q=50 (dashed line)

7- NATO UNCLASSIFIED



SACLANTCEN SR-256 NATO UNCLASSIFIED

been suggested

c(W) co I - 1 in( IWo)2 - 11 (14)c~w =Co1 27-Qo

Q(w) = Q I - ln(W/Wo)2 11]. (15)Q(•v = 0 1 27•Qo

There are three parameters in Eqs. (14) and (15) to choose, namely wo, co and

1600

1575-

1550-

"61525-

1500-

1475-

1450
0 500 1000 1•00 2000 25'00 3ý00 3500 4000 4500 5o00

Frequency (Hz)

Figure 3: Computed phase velocity as a function of frequency for Q=20 using Eq. (10)
(solid line) and Eq. (14) (dashed line)

Qo. The parameter w0 is a frequency taken to be well below the frequency band
of interest, co is a velocity chosen to yield a desired phase velocity at a specific
frequency and Qo is some constant Q-value. In Figs. 3 and 4 we show the curves
computed from Eqs. (14) and (15) with the corresponding curves for Q(W) and c(w)
in Figs.1 and 2 for a value of Q = 20. We have used Qo = 20, wo = 0.1Hz, and co
is chosen such that c(200Hz)= 1485m/s in Eq. (14) and (15).

From Fig. 3 we can see that with the appropriate choice of parameters the curve com-
puted from Eq. (14) agrees well with the curve computed for the single-mechanism
model except at the low frequencies. The value of Q(w) computed from Eq. (15)
is essentially constant, with a value slightly less than 20, over the frequency range
shown.

We have analyzed the characteristics of the single-mechanism model in the frequency
domain. However, the Finite Difference code is implemented in the time domain.
From Eq. (3) this would seem to require the computation of time-convolution terms
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Figure 4: Computed Q as a function of frequency for Q=20 using Eq. (9) (solid line)
and Eq. (15) (dashed line)

at each spatial grid point. Fortunately, due to the form of F(t) and M(t) in Eqs. (4)
and (5) each of the convolution expressions for axx, ozz and ucx can be expressed
in terms of a time-dependent term and time-dependent variables rx, rzz and rx
respectively which satisfy straightforward differential equations. Thus, instead of ex-
plicitly computing time convolutions, the differential equations for the convolutions
are updated at the same time steps as the standard, elastic differential equations.
For the single-mechanism model, three extra differential equations are required (at
each spatial point).

In the MATLAB implementation of the code, a module has been written which
takes user-specified grids of Q-values and sound speeds and converts this into grids
of -, and 7- values. These grids are required by the FD code for the attenuation
modelling.

2.3 Boundary attenuation

In order to make the computational grid for the FD method finite, it is necessary
to impose some boundary conditions on the elastic field at finite values of x and z.
The true boundary conditions are that the scattered portions of the field should be
only outgoing and it is possible to simulate these boundary conditions with varying
degrees of accuracy [13]. The approach of the FD code of this report is to set the
elastic variables to zero at the edges of the grid. This causes a spurious reflection
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of energy incident on the sides of the grid. In order to eliminate this artificially
reflected energy, an attenuating layer is introduced to the grid, running parallel to
the sides of the grid. Two MATLAB modules have been written for the creation
of this attenuating layer. The first module follows the suggestion of [5] and allows
the user to define a very low Q value at the edge of the grid (e.g. Q = 2). A
smooth transition from the true Q-value in the interior of the grid to the low value
at the edge is used (typically, a transition over 20-40 grid points is used). Thus we
are applying the visco-elastic capabilities of the code to the problems of artificial
reflections from the grid boundaries. As was explained in the previous subsection
(see Fig.2) there is significant dispersion for low values of Q. In order to eliminate
reflections caused by the change of phase velocity due to changing Q, the compres-
sional and shear velocities defined on the grid are adjusted using Eq.(10) so that the
phase velocity at the dominant frequency of the problem is a constant with respect
to Q. Automatic velocity-tuning is a feature of the MATLAB module. A second

1.005

1 -

0.995"

• 0.99.

06

0.985-

0.98-

0.975-

0.97, , , , , ,
60 65 70 75 80 85 90 95 100

Grid point

Figure 5: Attenuating factor from Eq.(16) for a transition layer of 40 grid points
using p=2 (solid line) and p=O.4 (dashed line).

attenuation mechanism is implemented by multiplying the wavefield within the at-
tenuating layer solution by a constant ( at each time step. The constant C is equal
to one at the start of the attenuating layer (i.e., within the interior where the layer
starts and is tapered to a smaller value (e.g. ( mni = 0.97) at the edge of the grid.
The MATLAB module which was written for defining these layers, uses a tapering
function of the form

+ 10-NAT + UNS1,FN. (16)
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This type of approach, in conjunction with radiating boundary conditions was used
by Fricke[1]. In practice, when using Eq.(16), we used p=2 or p=0.4 and N= 20
or 40 points. In Fig.5 we show the attenuating function of Eq.(16) (with (min -

0.97) for N=40 and p=2 (solid line) and p=0.4 (dashed line). The two curves are
quite different in character. The p = 2 curve has its largest slope in the middle of
the transition zone whereas the p = 0.4 curve is gradually decaying for much of the
curve and then has a large (infinite at the end point) slope at the end. We found
that for modelling a point source the p = 0.4 curve worked well; however, in general,
one must often experiment with the absorbing boundary in order to ensure that the
FD solutions are sufficiently free of spurious boundary reflections.

For the FD code of this report, one can use either of the attenuating mechanisms
described above or both. For the computations of this report we used only the
second technique.

2.4 Specification of incident field

In our implementation of the FD code we use point excitations at grid points to
generate incident fields. We consider below some of the details of modelling a point
source which lies within the boundaries of the numerical grid. Second, we discuss
the generation of an incident field from a distant source by using an array of point
sources.

Interior point source

The basic equations of elastic propagation (ignoring any additional visco-elastic
terms) can be written as

1 (&Uxx + &7XZ) (17)

Vzt = -ao. + (18)

Ovx 1v z(6rZ,t (A + 2y)a, +x A+ V(0

0Zv: Ov x 1
axz~t P 0V O + 49x (21)

Let us consider, in an acoustic medium, a point source located at x x, (discrete
grid point i,) and z = z, (discrete grid point js) which emits a signal S(t). Since the
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medium is acoustic, the terms p and o,, can be set to zero in the above equations.
Also, aXX = aZZ = 0. Equation(20) can now be written as

ot = A + A-eZ + S(t)6(x - X8)6(z - z,). (22)

Differentiating Eq.(22) with respect to time and utilizing Eqs.(17) and (18) we obtain
02 1 /0 2a 02" + S(t)

-or= -A + ( - x8)b(Z - Z,) (23)

or

012
ot--- = c2V 20r + St(t)b(X _ X ,)b(z- _z,). (24)

In the discretized version of Eq.(20) the source term is implemented using the equa-
tion,

rxx(isjs) = XX(iS~js)+ S(t)(At) (25)

0'ZiSi)= rZiSS+S(t)(,At) (26)AxAzUzz(is,js) = zz(is,js) + S (At) 26

The normalization with respect to At is due to the time-discretization of Eqs.(19)
and (20); the spatial normalization is chosen so that the source appears as a spatial
delta-function with respect to discrete integration [14]. From Eq.(24) it can be seen,
that in order to compare the FD solutions with analytical solutions of the acoustic
wave equation, it is necessary to use the time-derivative of the source function S(t)
as the source function in the analytical solution.

An incident field from a distant source

Because it is necessary to use 10-20 grid points per wavelength in the FD mod-
elling, the FD grid corresponds to relatively small physical dimensions for higher
frequencies. However, for many problems of interest the source may be so far away
from the scattering object or surface, that it is not feasible to include the source
point within the computational grid. If the waveguide between the source and the
scattering region is sufficiently simple, it may be possible to analytically compute
the incident field at the edges of a numerical grid. From the integral relations of
the Gauss's divergence theorem [15] we can use these boundary values to excite the
FD code and propagate the incident field within the grid. This type of approach
has been used previously by authors in electromagnetic modelling (see for example,
[16] where an approach very similar to that considered in this report is used). We
now present some details of our particular implementation. We consider the case
of an acoustic waveguide between the source and scattering region. From Gauss's
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Divergence Theorem, we can express the acoustic pressure field at a single frequency
w as

p() (Gp, - GnIp)df (27)

where C is a bounding rectangle located within the computational grid, G is a waveg-
uide Green's function satisfying the Helmholtz equation

wO2

V 2 G + j2 G 6(x - x')b(z - z'), (28)

and n' denotes the normal derivative with respect to the coordinates of integration
along the boundary. We can interpret the integral of Eq.(27) as the pressure field
resulting from a distribution of monopole and dipole sources (Huygen's sources [17]).
If the source is distant from the scattering region, then the incident field will look
like an incident plane-wave (or as we will discuss a generalized plane-wave for a two
halfspace medium) in the water column and this plane-wave will have an associated
angle of incidence. We define the numerical grid so that one of its edges is normal
to the angle of incidence of the plane-wave (Fig. 6) and is internal to the absorbing
boundary layer of the grid. We consider Eq.(27) only along this line and ignore
the other boundaries' contributions to the incident field. There are different ways
of implementing Eq.(27). We can consider a line of appropriately weighted discrete
monopole point sources along the boundary. The FD solution for this array of
sources effectively performs the integration with respect to the Green's function (
a convolution in the time domain). Because of the symmetrical field produced by
these monopole sources, G•, is zero along the line and we only have the first term
in the integral of Eq.(27). Alternatively, we could simulate a series of dipole sources
by placing a sequence of (+) and (-) monopoles one grid point on either side of the
bounding edge. In this case only the second term of the integral is required. A
simpler method to implement a dipole is to add a spatial delta function (weighted
by the incident pressure field normalized by density) to the equation, Eq.(17), for
v,. For all these boundary implementations, the sources produce a field which
propagates outwards in both directions. Thus not only the incident field is produced,
but also, a field incident on the grid boundary. If, however, the attenuating layer
is working well, this field will not reenter the grid. If Eq.(27) is implemented using
both the monopoles and dipoles then we can produce only the incident field. The
approach implemented in the FD code was to excite the equation for v,(z) along
the line x = xi,, with P(xinc, z, t)/p(z).

At this point our discussion has been general in terms of form of the incident field;
however, we have numerically implemented the case where the incident pressure field
is a plane wave with an angle of incidence 0, in a two halfspace environment. Then
the incident field consists of the direct wavefield

pD (x,z,)= Real{j S(w)exp[iw(t - ( xlcos(Oi) - zsin(Oi))]dw}, (29)
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the reflected wavefield

pR(X, Z, t) =Real 0j S(w)R(0j, w)exp [iW(t - (icos(9j) + ±Zsin( Oj))]dw} (30)

and a transmitted field,

pT~ zt) Realj S(w)T(0j, w)exp [iW(t - (1-cos(Oe) - isin(ot))] dw}, (31)

where

R(9j, ) = cNsin(Oi) - Pi C2
f - C2 C0 (32)
1e2 2 C,"'

P2C2 sinl(Oi) + P1 C 2 
-ccs('

T (0j,w) =2P 2C2sin(9i) (33)
P2C2sin(9i) ±pi c 2

-cco
2 ()

and 8(w) is the Fourier Tranform of the source function. The factor 2~ -i

is imaginary for Oi less than the critical angle, in which case the reflection and
transmission coefficients are complex. This means that in the time domain the
reflected and transmitted pulses are combinations of the source pulse shape and its
Hilbert Transform [18].

Direction of distant source

ipotes Pi. 1 Ci

Figue 6:Scheaticd~a ram f orntaton o Fznte Tffernce ..... th.espet.t
a..d.sta..t..source.
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3
Numerical Examples

In this section we first show the numerical results obtained from the finite differ-
ence modelling of propagation and scattering problems, for which we can also com-
pute analytical solutions. In particular, we consider the propagation of an acoustic
wavefield from a point source in non-attenuating and attenuating media. We then
consider the propagation of a shear plane-wave in an attenuating medium. Finally,
for the benchmark cases, we consider the scattering of a compressional plane-wave
by solid, thick-shelled, and thin-shelled aluminum cylinders. The shelled cylinders
are filled with water. The analytical solutions in this case are computed by solving
in the frequency domain a sequence of elastic cylinder scattering problems and then
constructing the time-domain pulse by Fourier synthesis.

After these benchmark cases, we consider a buried solid aluminum cylinder and con-
sider a generalized (i.e., consisting of direct, reflected, and transmitted components)
plane-wave incident upon this object. We consider the cases of the direct wave in
the water column having pre-critical and post-critical angles of incidence. For the
case of an evanescent transmitted wave, we examine the effect of a rough interface.
Finally we use the FD method to compute the backscattered field from a cylinder
at an array of receivers in the water column and then time-reverse this field and use
it as the "incident" excitation field. The resulting backpropagated field in the water
column focuses at the sources of scattering.

The numerical code was run in Fortran on a DEC-3000 Alpha workstation. A
computation with a 440 x 440 grid and 12000 time steps required 128 minutes of
CPU time. In the following examples, the absolute levels of the computed pressure
fields have often been scaled for plotting purposes.

3.1 Computations in a homogeneous medium

First we consider a point source in a homogeneous acoustic space. We consider the
source function in Eq.(22) to be the time derivative of a Gaussian pulse, [1],

S(t) = -2a(t - ts)e-(tts) 2  (34)
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where

S= , (35)

-= -- (36)
WO

and wo0 is the central angular frequency which we take to be 1500 Hz. We take the
sound speed to be co = 1500 m/s. Thus the reference wavelength for this example
is Im. We do our computations with Ax = 0.05 m or A/20. From our previous
discussion of stability limits, we must use a time step At such that

Ax
At < .606 1-z-• 2 x 10- 5s. (37)

1500

We use At = lO-sec which is approximately half the stability limit. We consider a
numerical grid which is 300 x 300 in dimension. We use 40 points for the absorbing
boundary layer. We construct this absorbing layer using the second absorbing mech-
anism described in subsection 2.4. We found that using a fractional power p = 0.4
in Eq.(16) with C = 0.95 worked well. In Fig.7 below, we show the FD signal as a

200

150-

100-

50"

0-

S-50-
E

-100-

-150-

-200-

-250-

- 30 0 01

Time(ms)

Figure 7: Finite difference (solid line) and analytical (dashed line) pulse shapes for
receiver at 8.5 wavelengths from the source

solid line along with the analytical solution of Eq.(24) (dashed line) for a source at
(i,j) = (70,150) and a receiver at (i,j) = (240,150) (where (i,j) denote the discrete
indices for the (x, z) coordinates). The agreement is excellent between the computed
and analytical solutions with only small artifacts due to the boundaries in the tail
of the signal.

- 16- NATO UNCLASSIFIED



SACLANTCEN SR-256 NATO UNCLASSIFIED

We now consider the same geometry as above, but for a medium with Q = 20. In
Figure 8a we show the comparison between the FD computed pulse and an "an-
alytically" computed pulse. The analytical solution used Fourier synthesis and a
Q/dispersion relation of the form of Eqs.(14) and (15) with the parameters which
were used for the computation of the curve of Fig. 3. The agreement is excellent.
In Fig. 8b we show a comparison between the FD pulse and the analytical solution
if no frequency dispersion is used; i.e., we fixed the phase velocity at c = 1500 m/s
for all frequencies and simply added an imaginary part to the sound speed to pro-
duce the required attenuation. This procedure is the usual approach in frequency
domain modelling. The agreement between the two pulses is no longer so good. The
amplitudes of the two pulses are similar but the shape of the pulses are noticeably
different. We have used a large attenuating factor in this example; the differences
between the curves in Fig. 8b would be less for smaller attenuation. Finally in Fig. 8c
we show the analytical pulse computed for a Q=1000 (no attenuation). In this case
the pulse is too large in amplitude, illustrating the importance of attenuation in this
example.

100

fr no a(b)

- 7-NTCUCASFE

<E

o100 II -- II

0-]

Time(ms)

Figure 8: Finite difference (solid line) and analytical pulse shapes (dashed line) for
Q =20 for (a) analytical solution computed accounting for frequency dispersion (b)
attenuation model with a fixed phase velocity of 1500m/s (c) using Q=IO000

We now consider an example with a non-zero shear speed. In particular we excite
the equation for v, with an array of point sources along the line x = 70. This
arrangement should excite a shear plane-wave. However, due to the fact that there
is a finite, discrete aperture of sources the synthesis of the plane-wave is not exact
and other energy, some of it compressional in nature, is excited. We use an absorbing
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layer of 40 points in this case, with ( 0.96 and p = 2. To reduce the amount of
spurious energy produced by the edge effects of a finite aperture of sources, we weight
the source terms by a cosine taper away from the centre of the grid. The source
time history is the same as for the previous example. However, we now take the
compressional sound speed to be cp = 3000m/s and the shear speed c, = 1500m/s.
Because of the high compressional sound speed we use At = 10-5/2. We define the
Q factor for the compressional waves to be Qp = 1000 throughout the grid and the Q
factor for the shear waves Q, = 20. If the FD code is correctly modelling the elastic
and attenuation properties of the medium, the wave propagation for this example
should be well-modelled as a shear plane wave attenuated by a Q value of 20. In
Fig.9 we show the pulse (we plot v,) at the centre of the grid at x = 240 as computed
by the FD code (solid line) and analytically (dashed) for an attenuated shear plane
wave. The agreement between the two curves is good. There is a small amount of
spurious energy, some of which is compressional (note that any compressional energy
is much less attenuated than the true shear energy as we have used Qp = 1000 for
this example). It is interesting to note that for this example, the Green's function
which we use in the computation of the analytic solution is of the form

exp(iwlc1x - x51) (38)2iw/c (8

whereas in the point source example the Green's function was of the form

-Ho(w/c (x - x,) 2 + (z - z,) 2 ) (39)
4

3.2 Computations for an elastic cylinder surrounded by an homogeneous fluid

We now consider an aluminum cylinder of radius 1 m located in an homogeneous
compressional space with cp = 1500m/s and p = 1000kg/mr3. For the aluminum
cylinder we use the parameters cp = 6380m/s, c, = 3136m/s and p = 2172kg/m 3.
Because of the large velocities within the cylinder it is necessary to take small time
steps. We used Ax = 0.025m (or 40 points per wavelength) and At = 0.01/8ms in
our computations with a 400 x 400 grid. The cylinder is located at the centre of
the numerical grid. A normal-incidence plane-wave was excited by applying point
source functions to axx and a,, along the line x = 1.5m with the time-history of a
time-differentiated gaussian. In order to reduce edge effects we tapered the incident
plane-wave by a cosine-weighting for the first and last 100 points of the grid. Figure
10 shows a comparison of the FD time series with the time series computed using
Fourier synthesis and the harmonic Fourier-Bessel series for the scattered field from
an infinite elastic cylinder. The series were computed for receivers 3.5 m from the
centre of the cylinder at angles of 00, 900, 2700 and 1800 with respect to the cylinder
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Figure 9: Finite difference (solid line) and analytical pulse shapes (dashed line) for
a shear plane-wave with Q = 20

centre. From symmetry, the time series for 0 = 90' and 270' should be identical.
However, this is not true in practice due to the staggered grid formulation of the RBS
FD code. Although the FD solution is initially symmetrical, the symmetry of the
field is not sustained over time. The FD and analytical amplitudes of the incident
wave do not agree well for the receivers at 900 and 2700 because the tapering of
the plane-wave is significant at these locations. The scattered fields, however, are
caused by the scattering of the incident field at the cylinder and these amplitudes
are correctly modelled.

We now repeat the above numerical experiment with a shelled cylinder. We consider
an aluminum shell 0.5 m thick (or 20 grid points) with the interior of the cylinder
filled with water. The comparison with the analytic solution is shown in Fig. 11.
The agreement between the numerical and analytic solutions is good.

By varying the shell thickness, we found that good agreement between computed
and analytical results were obtained down to and including shell thicknesses of 3
grid points corresponding to a relative shell thickness of 7.5%; by decreasing the
spatial discretization size we should be able to decrease this ratio. The comparison
between the FD curves and the analytical curves are shown in Fig. 12. In Fig. 13
we show a snapshot of the pressure field for the thick shelled cylinder 4 ms into the
computation. The plane-wave can be seen passing by the exterior of the cylinder.
A faster wavefront has already passed through the cylinder and the backscattered
wavefront is visible at the front of the cylinder.
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Figure 10: Finite difference (solid line) and analytical time series (dashed line) for
receivers at (a) 0' (backscatter) (b) 900 (c) 270' and (d) 1800 (forward direction)
for an infinite elastic (aluminum) cylinder
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Figure 11: Finite difference (solid line) and analytical time series (dashed line) for
receivers at (a) 00 (backscatter) (b) 900 (c) 2700 and (d) 1800 (forward direction)
for thick-shelled (20 grid points) cylinder filled with water
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0.2- (a)

0-

-0.2-
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°I • (d)
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Time(ms)

Figure 12: Finite difference (solid line) and analytical time series (dashed line) for
receivers at (a) 00 (backscatter) (b) 90' (c) 2700 and (d) 1800 (forward direction)
for thin-shelled (3 grid points) cylinder filled with water

3.3 Scattering of a generalized plane-wave by a buried cylinder

We can simulate an incident acoustic or elastic wavefield by exciting monopole and
dipole sources along the boundaries of the grid. In these examples, we only use
dipole excitation. We excite the particle velocity v. by pznc/p(z). This means that
the correct field propagates into our grid, but also a mirror-image field propagates
to the left where it is attenuated by the absorbing layer of our grid. By exciting the
normal stress by pf,", it should be possible to eliminate the left-going field.

In the examples which follow, we will consider a fluid half-space with sound speed
1500 m/s and p = 1000kg/rn 3 overlying another fluid space with sound speed 1700
m/s and p = 1500kg/m 3. The critical angle for these parameters is 0, = 28.07'
(measured from the horizontal). We first consider the case of the angle of incidence
S= 30'. We consider our grid rotated so that the boundary of excitation is parallel
to the incident direct wave and as a result the fluid/fluid interface has a slope of 300.
The advantage of this approach is that one obtains a maximum aperture of sources,
using a single boundary, to simulate an incident field. The disadvantages are (1)
that the interface is sloping upwards to the right of the incident excitation line and
it is difficult to know how to model the bathymetry to the left of the incident line
in order to avoid diffraction effects at the intersection of the interface boundary and
the vertical array of excitation sources; (2) because the interface is sloping we are,
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Figure 13: Snapshot of pressure field at 4 ms for thick-shelled aluminum cylinder
filled with water
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in fact, approximating it with a staircase in the FD approximation and these small
stairsteps cause small diffractions. However, we find that despite these problems
the incoming incident field is well-behaved. In Fig. 14 we show the incident field
(i.e., p(z, t)/p(z)) which is used to excite v,. The vertical axis is depth and the
horizontal axis is time. The direct pulse appears vertically oriented. As can be seen
there is significant energy transmitted into the bottom. For the FD computations
of this set of examples, we used a 440 x 440 grid with 60 points in the absorbing
layer ((=in 0.96, p = 2). The equations for v. were excited at the line xi,, = 63.
In Fig. 15 we show a time snapshot of the pressure field after the plane wave in the
bottom has interacted with the buried aluminum cylinder. There is a substantial
reflected field from the cylinder. Only the field in the square region interior to the
absorbing boundary layers and the line of dipoles is shown.

2.5'_-

v• 0.0 .....
N

-2.5" ABOVE 0.82
......... 0.62 -0.82

.... . 0.42-0.62
.... ....... ...i 0.22-0.42

-5.0"_0.02.0.22

.. BELOW 0.02

0 1 2 3 4 5 6 7

Time(ms)

Figure 14: Incident plane-wave field (absolute value) used to excite vertical array of
dipole sources for 0 = 300.

Next, we consider the case for the angle of incidence of the direct plane-wave in
the water column being post-critical, 0 = 200. The incident field used to excite the
equation for vx is shown in Fig. 16.

In this case the transmitted field is evanescent and the reflected pulse is a temporal
combination of the direct pulse and its Hilbert Transform. There is a region of high
intensity near the interface where the incident and reflected waves interfere with
each other. In Figs. 17, 18, and 19 we show a single time snapshot for the wavefields
generated in the case of a buried solid aluminum cylinder, for a rough interface with
no cylindei, and the same rough interface with a buried cylinder. In Fig. 17 we see
that the incident field of Fig. 16 has propagated into the grid. The exponential tail
of the transmitted wave just touches the cylinder. There is a small amount of energy
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Figure 15: Time snapshot of pressure field (absolute value) resulting from interaction

of transmitted wave~field with cylinder
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Figure 16: Incident plane wave field (absolute value) used to excite vertical array of

dipole sources for 0 200.

-24- NATO UNCLASSIFIED



SACLANTCEN SR-256 NATO UNCLASSIFIED

....... 
1.05

-2 B 0 .65 -0.85
.] • 0 .45 -0.65

i 0.2 -4.4

-3 - . 0.05 -0.25" .... 
BELOW 0.05

Figure 17: Propagating plane-wave field (absolute value) with buried aluminum cylin-

der
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Figure 18: Propagating plane-wave field (absolute value) with rough interface
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Figure 19: Propagating plane-wave field (absolute value) with rough interface and

buried aluminum cylinder
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Figure 20: Time series at a receiver located 3.25 m above interface at incident array

when there is no cylinder in the bottom (solid line) and when there is a cylinder in
the bottom (dashed line)
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following the incident waveflield which was probably incorrectly created during the
generation of the incident wavefield from the dipoles. This can sometimes be an
annoyance when generating incident post-critical wavefields; it is not surprising that
the use of a discontinuous (because of the 1/p(z) normalization), analytic wavefield
to excite a discrete numerical grid may cause the excitation of a small amount of
spurious energy near the interface. It may be possible to reduce this problem by
smoothing the incident wavefield and/or the medium, but we did not do this for
these results.

The "rough" interface of Figs. 18 and 19 is generated from the equation

170 + (i- 63) tan(20°) + 10 sin(27r(i- 63) (40)40

Here j is the vertical index and i the horizontal index. There are 40 points per wave-
length used in this example so that the peak-to-peak roughness is 1/2 wavelength
and the wavelength of the roughness is one wavelength. The rough interface gen-
erates backscattered energy and also transmits energy into the bottom (Fig. 18).
This energy can significantly interact with the cylinder (Fig. 19) - however, the
differences between Figs. 18 and 19 in the water column are very slight. This is
emphasized in Fig. 20 where we show the received timeseries for a receiver 3.25 m
above the interface at the horizontal location of the array of Huygen's sources for the
case of no cylinder in the bottom (solid line) and a cylinder in the bottom (dashed
line). The two curves are almost indistinguishable. There is, however, a small but
noticeable difference between the two curves in the 6-8 ms interval. Another inter-
esting feature of these two curves is the the appearance of a definite frequency of
backscatter for this case. This is expected from a perturbation analysis of the rough
interface. Following the work of, for example, [19] we expect for our given roughness
wavelength that the maximum backscattered field should occur approximately when

21500 = 27rA(perturbation) (41)

In our case the perturbation has a wavelength of 1 m so that we find an optimal
frequency of approximately 750 Hz or a period of oscillation of 1.3 ms which agrees
well with the result of Fig. 20.

3.4 An example of time reversed propagation

As shown above it is straightforward to introduce an incident field into the grid
by using an array of monopoles and/or dipoles. Another interesting application of
this concept, is to time-reverse [20] the scattered field at the receiving array and
propagate it back into the medium. We would expect the field which has been
scattered from compact objects to focus back at those same objects.
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We consider the same cylinder and medium as the previous example but now the
cylinder is only partially buried. A time snapshot of the pressure field is shown in
Fig. 21 just after the incident field has encountered the cylinder. In Fig. 22 we

.... , . . . . . . ...... . , ...........

1 .:•n ABOVEl1o5

0.85~ 1 105
-2......0.65 - 0.85

S 0.25 -0.45
-3- : 0.05 - 0.25

-Lii BELOW 0.05

-3 -2 1 0

x(m)

Figure 21: Plane-wave field incident on partially buried aluminum cylinder

show the time-reversed pressure field recorded by 210 receivers. The first of these
receivers is located in the water just above the interface and the others are located
sequentially above it. Starting from the right hand side of the plot, the incident field
is evident, then backscatter from the rough interface, and then from 7.0 to 5.5 ms
an event associated with backscatter from the cylinder, and then finally backscatter
from the rough interface again. The field of Fig. 22 is then used to excite the array of
dipoles (just for the positions of the 210 receivers). We stop the time-reversed field
just prior to the time that the original incident field is present in the time series. In
this numerical experiment of time-reversed propagation, we suppose that we do not
know what created the scattered field. Hence although the cylinder was used in the
FD modelling to produce the scattered field of Fig. 22, it is not included in the model
for the backpropagation of this energy. Instead, only a two halfspace medium is used
in the modelling of the backpropagated scattered field. In Figs. 23 and 24 we show
2 time snapshots of the resulting field as it propagates back into the grid. Figure 23
shows the field scattered from the cylinder just starting to focus and Fig. 24 shows
the field close to the time of maximum focussing; the focus is along the side where
the original specular reflection occurred. For this example, our recording aperture
did not sufficiently surround the scatterer and the frequency of the source was not
high enough to obtain a good definition of the scattering object; nevertheless, the
backpropagated field did focus at the correct location, corresponding to the area of
specular reflection from the object.
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Figure 22: The time history of the time-reversed pressure field (absolute value) as
recorded along a vertical array of receivers located at the line of incidence
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Figure 23: Back-propagated field (absolute value) as scattered field is just starting to
focus; the cylinder is not used in the modelling
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Figure 24: Back-propagated field (absolute value) near the time of maximum focus-

ing; the cylinder is not used in the modelling
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4
Summary

We have described some of the theory underlying a visco-elastic Finite Difference
code (in particular, the RBS FD code). We compared the FD computations with a
suite of analytical cases for both homogeneous propagation and scattering and found
that the FD results were in good agreement with the analytical results. The attenu-
ation properties of the FD code are in good agreement with analytical computations
if one uses a realistic frequency dipersion relation in the analytical modelling. We did
computations of scattering from aluminum cylinders, which have a very high veloc-
ity/density contrast with the surrounding fluid and obtained good agreement with
analytical computations for the 4 quadrants of scattering, although the results were
best for the backscatter direction. We consider aluminum shells of varying thickness
and found that we obtained good results for shells only 3 grid points thick.

We then showed how we could introduce an incident field into the grid by exciting
an array of dipoles. We used this concept to introduce a generalized plane-wave,
corresponding to a two half-space medium into the grid. In particular we considered
an incident wave for which the wavefield in the bottom half-space was evanescent
and considered the scattering by a buried aluminum cylinder. We then repeated the
computations for a rough interface. For this particular example, the rough interface
introduced more energy into the bottom but the signal received in the water column
was dominated by the backscatter from the rough interface. Reflected energy from
the cylinder was just observable in the backscattered signal. Finally, we showed
that with the incident-field formulation of this code, one can easily back-propagate
scattered fields and focus this energy into areas of high reflectivity.
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