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19.   ABSTRACT (Cont.) 

The digital servo-controller theory presented in this report is ideal in the sense that the 
design procedure encompasses a superset of desirable characteristics. That is, the design 
procedure: (1) is purely linear algebraic in nature; (2) accommodates linear time-invariant 
systems subjected to generalized, multi-variable, independent disturbances having complex 
time behavior; (3) produces a servo-controller that provides high-fidelity servo-tracking of 
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ized to include any order of system having Multiple Control-Inputs and Multiple Plant-Outputs 
(MIMO) systems; (5) provides performance robustness against uncertain variations in plant 
parameters; (6) minimizes intersample misbehavior (ripple) to the highest degree possible 
utilizing a digital controller; and, (7) controls the motions of the servo state-vector to a sub- 
space making those motions invisible in the tracking-error. 



EXECUTIVE SUMMARY 

The objective of this research effort is to compile, refine, and extend a general theory for 
developing digital servo-tracking controllers which will achieve a high-level of servo-tracking 
performance that is unmatched by currently available digital servo-design methods. This general 
theory applies to multiple-input/multiple-output linear time-invariant systems subjected to plant 
parameter-perturbations and complex, multi-variable, time-varying servo-commands and distur- 
bances. Obstacles to achieving high-performance servo-tracking are identified and discussed, 
along with key shortcomings inherent in conventional design methods. In addition, a collection of 
example problems are worked in detail to illustrate the design techniques described and devel- 
oped in this study. Simulation results are used to demonstrate the performance of the resulting 
controllers. 

The digital servo-controller theory presented in this report is ideal in the sense that 
the design procedure encompasses a superset of desirable characteristics. That is, the design 
procedure: (1) is purely linear algebraic in nature; (2) accommodates linear time-invariant sys- 
tems subjected to generalized, multi-variable, independent disturbances having complex time 
behavior; (3) produces a servo-controller that provides high-fidelity servo-tracking of general- 
ized, multi-variable servo-commands having complex time-behavior; (4) is generalized to include 
any order of system having Multiple Control-Inputs and Multiple Plant-Outputs (MIMO) sys- 
tems; (5) provides performance robustness against uncertain variations in plant parameters- (6) 
minimizes mtersample misbehavior (ripple) to the highest degree possible utilizing a digita'l con- 
troller; and, (7) controls the motions of the servo state-vector to a subspace making those 
motions invisible in the tracking-error. 
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1.      INTRODUCTION TO THE SERVO-TRACKING PROBLEM IN CONTROL 
ENGINEERING 

This chapter provides an overview of the servo-tracking problem and discusses the difficulties 
encountered in designing digital controllers to achieve high-performance servo-tracking. The 
shortcomings of conventional servo-controllers are also discussed. 

1.1.      History and General Overview of the Servo-Tracking Problem 

The term servo-tracking is used to describe a process in which one or more outputs of a 
system tend to follow (or track) time-variations of certain inputs to the system. The alternative term 
servomechanism originated [1], in 1934, from the words servant (or slave) and mechanism. Thus, the 
term servomechanism, implied a slave-type mechanism. Today, this term refers to an important class of 
feedback control systems that are widely used in industrial applications. Over the years, the word 
servomechanism has been shortened to servo. 

Instruments and machines that were designed to perform servo-tracking appeared in the 
early 1880's in connection with speed regulation requirements for steam engines. Speed governors that 
performed set-point regulation in the face of uncertain "loads" are a specific type of servomechanism that 
appeared during that time. Later in the 1930's and 1940's, servomechanisms became essential 
components in electro-mechanical systems associated with airplane autopilots, anti-aircraft fire directors, 
and bomb sights, to name a few examples. 

In general, an industrial servo performs the task of controlling some physical quantity y(f) 
by comparing its actual value y{t) at time / with a desired, or commanded, value y#) at time / and using 
the real-time difference (or servo-tracking error) ey(t) = yc(t)-y(t) to control XO into agreement with 

yc(t) (i.e., control ey(t)-+0). The basic idea of servo-tracking is illustrated in Figure 1.1. The primary 

control task is to achieve closed-loop stability for the (possibly unstable) system and to simultaneously 
quickly achieve y(/)-> yc(0 and maintain y(t)*yc(t) thereafter. The servo-tracking controller design* 
problem m control engineering is to create a controlling device and associated control algorithm that will 
achieve accurate servo-tracking of all expected "commands" yc(t), while simultaneously satisfying 
additional performance criteria that may be specified, in the face of a wide variety of uncertain 
disturbances and initial conditions. ui^ciutui 
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Figure 1.1 Servo-Tracking Behavior: XO Must Quickly Become Equal-to and Thereafter Accurately 
Tracks). 

The physical quantity being controlled by a servo-tracking controller may be position 
velocity, chemical composition, temperature, light intensity, or any other measurable and controllable 
entity [2]. Also, the servo-controller may take on many forms. For instance, a person reaching to pick up 
a movmg object can be viewed as a biological, servo-controlled system. In that case the tracking-error 
continually sensed by the eyes, is the difference between the position y<£t) of the object and that of the 
handX')- In fact, the pointing of the eyes themselves is another example of a biological servo-system as 
are the automatic iris-adjustments within each eye. ' 

1.2. Difficulties in Achieving High-Performance Servo-Tracking 

As discussed in the previous section, in addition to achieving closed-loop stability the 
purpose of a servo-controller is to reduce to zero the difference between the plant output and the 
command input. However, simply achieving a zero tracking-error eventually is not sufficient, in general 
High-performance servo-tracking requires essentially zero tracking-error while simultaneously achieving 
and maintaining some minimum quality of performance for the closed-loop system. The performance 
specifications typ.cally involve rise-time, settling-time, and/or overshoot of the variable y(t) being 
controlled, or the gam and phase margins of the closed-loop system. Several difficulties can arise when 
attempting to achieve high-performance servo-tracking. Primarily, these difficulties can be attributed to 
the inherent uncertainty about the servo-commands and disturbance inputs. 



1.2.1. The Nature of Uncertain Servo-Commands yc(t) in Control Problems 

,     . m mdustrial applications, the servo-command y^t) is not necessarily a single 
scalar input and not limited to simple, stepwise-constants, ramps, or acceleration-type commands 
Rather, the y&) may be a "vector," or set, of independent inputs and may vary with time in complex 
unpredictable ways. Practical servo-commands are almost always uncertain in the sense that their time- 
behavior is not precisely known a priori, and is only revealed or available for measurement in an on-line, 
real-time fashion. A typical time-plot of such a servo-command input is shown in Figure 1.2 where it can 
be seen that the rate of change of the servo-command may vary unexpectedly with time. Those changes 
in the motion of y^t) cannot be predicted and corrections for them must be made by the servo-controller 
in a real-time manner, based on measurements of the command and plant response up to that particular 
point-in-time. 

Servo- 
Command yc(t) 

Figure 1.2 Typical Time-Plot of a Servo-Command Input y^t). 

1.2.2.   The Nature of Uncertain Disturbances in Control Problems 

■     ♦   A *   « *" COntrol en8ineerin& disturbances are defined technically as uncontrollable 
inputs that affect system behavior. The uncertainty associated with disturbances " ZüTtoS 
associated with servo-commands in that disturbances can vary with time in uncerta n and Zplexwat 

otrm C T°rmmandS' disturbanc<* «re usually not directly measurable. bS^TS,' 
extent ;;a and,eXternal t0 ^ contro»ed system. External disturbances ari 1 Z 
external to the plant, such as system loads, environmental winds, temperature changes and SS 
Internal disturbances arise from effects associated with the physical or dyiuBnSdSuSS of the 
Plant, such as friction, time-delays, dc biases, and uncertain pa^ameter-perturbaTons 

nnn    ■ «. Parameter-perturbation "disturbances" are of particular importance because th™ 
occur m many types of servo-tracking problems and arise when the values of the phnTpalete" ^ 



in relation to their nominal or assumed values due, for instance, to fluctuations in subsystem component 
outputs or modelmg errors. Conventional servo-controllers are tuned to the assumed nominal plant- 
parameter values during the design process. If those parameter values are inaccurate, or change during 
normal operation in some unpredictable manner, an inappropriate servo-control action may result. 

13.      Summary of Conventional Approaches to the Design of Servo-Tracking Controllers 
for Linear Time-Invariant Systems 

The servo-tracking design problem came to the forefront in the 1930's. From that time 
through the late 1950's, a general theory of control was developed and is known today as classical 
control theory. That theory is still used in many control design problems, especially for linear systems 
with a smgle control-input and a single plant-output. The so-called modern control theory developed 
since the late 1950's, is suitable for both single control-input, single plant-output systems, as well as 
more complicated systems such as those having multiple control-inputs and multiple plant-outputs It has 
been asserted [5] that the advances achieved in space exploration during the past 35 years were possible 
only because of the advent of modern control theory. 

13.1.    Classical Approaches to the Design of Servo-Tracking Controllers for Linear 
Time-Invariant Systems 

i ♦• rj-er ■ ,Early aPProaches t0 designing servo-tracking controllers were based on the 
solution of differential equations by classical means. This type of analysis can be tedious for anything 
other than relatively simple systems. The Laplace transform (transforms time functions into functions of 
a complex variable s [31]) was a primary tool in those early approaches. 

•ii   - . ,1 ■   „■        , t t?TiCal serv°-contro1 system as configured in classical control theory is 
llustrated m Figure 13, where P(s) is the scalar, transfer function of the plant to be controlled, KO is a 

scalar external disturbance, and «(/) is the scalar, servo-control input to the plant.  The classical servo- 

Znie"fST.P !mu-rt0 detemine *•tnm8fer ft,nCti0n G^ Compensator) that will achieve and 
exhThTt of. i°OP TbLhty' 3 Zer° tncküW«OT «*, in addition, cause the closed-loop system to 
setinitirnTrl  t <*an,Ctento u

Those characteristics include design specifications such a^ 
settling-tune, rise-time, and percent overshoot, related to the step response of the system [3]. 



Figure 1.3 Typical Servo-Control System Considered in Classical Control Engineering. 

Some examples of classical methods for designing servo-tracking controllers Gc(s) 
are the methods of steady-state errors, the Nyquist Stability Theorem [24], the root locus method of 
Evans [30], and the frequency domain methods of Bode [26]. The design and analysis of servo-tracking 
controllers G^s) using classical control engineering methods are described in [5]-[23]. 

13.2.   Modern Approaches to the Design of Servo-Tracking Controllers for Linear 
Time-Invariant Systems 

Modern control theory can be applied to complex, time-varying systems having 
multiple control-inputs and/or multiple plant-outputs, as well as simpler single input/single-output 
systems The tools of modern control theory are developed primarily in the time domain. Modern 
control theory, sometimes referred to as state-space control theory, characterizes systems by a collection 
of »physical quantities {*,, x2,..., xn} called state-variables which enable a »%rder differential equation 
model of a system to be converted into a set of« first-order differential equations called state-equations 
Those state-equations govern the time-evolution *,{,) of the n state-variables associated with the dynamic 
behav,or of the plant. Those first-order equations can, in the case of linear plants, be expressed in vector- 
matrix notation to simplify the mathematical calculations. When a physical system has been modeled by 
a set of mathematical equations, the subsequent method of analysis and servo-controller design is 
independent of the nature of the physical system. The required servo-controller action u(t) is determined 
by a controWaw» or "algorithm" that uses the measured, or estimated, state-variables from the plant and 

tt d^Xnce^T-M        (3nd ^ alS° USC 6StimateS °f tHe "StatCS" °f ^ Serv°-commands «* 

♦• *• u „s P°le PIacement (the designation of closed-loop poles), observer theory f'state- 
estimation theory») and optimal control methods (all based on state-space theory and HnelalX 
techniques) are used extensively in the application of modern control engineering to the Zfaand 
analysis of linear servo-tracking control systems. Servo-tracking design methodologlthanSs of 
those methods are described in [20-21,32-39,42,44,47-56] 



1.4.      The Concept of Digital Control in the Design of Servo-Tracking Controllers for 
Linear Time-Invariant Systems 

The increasing reliance on microprocessors in industrial servo-tracking control system 
implementations has made it necessary to develop controller design methods that result in servo- 
controller algorithms which can be realized in digital computer environments. Digital control is a way of 
computing and applying control actions that uses digital data sampling and data processing techniques to 
update, or determine new values for, the control u(t) at sequential, discrete points in time, t = t0 + kT,k = 
0, 1,2, ..., where t0 is the initial time and the positive constant T (typically referred to as the sample- 
period) is determined in part by the digital hardware's computing speed and in part by the availability of 
the sampled data.   Because those algorithms are realized by digital processors, the resulting servo- 
controller is often referred to as a "digital" servo-controller.    Since the digital servo-controller is 
implemented on a microprocessor, digital computer, or similar type of data processing circuitry, a non- 
zero time-interval is required in order to format the raw measurement data and perform the computations 
necessary to fully execute the servo-tracking controller algorithm.   Therefore, the resulting real-time 
digital-control decisions are generated at discrete-values in time  / = /„ + kT, k = 0, 1, 2, ..., hereafter 
called "discrete-time" where the control "decision" made at time / = t0+kT is not updated again until the 
"next" value of discrete-time t = t0+{k+\)T. According to the scientific definition [32] of discrete-time 
control, during the interval of time between successive discrete times (t0+kT, t0+(k+l)T), k = 0, 1, 2, ..., 
the digital controller applies (possibly time-varying) control-actions to the plant in an open-loop manner, 
with no knowledge of, or reaction to, uncertain time-variations in servo-commands yc(t), disturbances 
w(t), etc., that may occur during the time-interval ("intersample-interval") t0 + kT < t < t0 + (k + 1)7. 

Discretization is the process of representing a given plant mathematical model, originally 
developed in the form of a set of differential equations, by an equivalent set of difference equations 
assuming the discrete-time control u(kT) will vary in a pre-specified manner across each sample-interval 
[33]. Modern day methods of designing digital servo-tracking controllers involve discretizing the 
continuous-time state-space model of the plant and then performing a digital controller design using the 
tools ofmodern discrete-time control theory. The vector/matrix methods of modern linear control theory 
lend themselves very well to computer computation. It is this characteristic that has allowed modern 
control theory to solve many complex servo-tracking problems that could not otherwise be solved by 
classical control theory. Discussions of digital servo-tracking controller design using modern control 
engineering techniques are found in [3,20-21,33,47,52,56,58]. 

1.5. Shortcomings of Contemporary Methods for Designing Servo-Tracking Controllers 
for Linear Time-Invariant Systems [59] 

■A ♦•* ■ t 
A TieW °f contemP°raO' servo-tracking controller design methods, for the purposes of 

identifying their shortcomings, was performed as a part of this research effort. The findings of that 
review were presented in [59]. Many of those same shortcomings were identified in two independent 
studies reported in two more recent papers [60,61]. These various shortcomings are discussed in this 
section as part of the motivation for this research effort. 



1.5.1.   The Restriction to Step + Ramp + Acceleration-Type Representations of 
Servo-Command Time-Behavior 

Classical and modern servo-tracking control methods consistently rely on "step", 
"step+ramp," and "step+ramp+acceleration" type characterizations of the anticipated servo-command 
inputs. Many servo-commands are members ofthat class of commands. However, some types of servo- 
commands, such as weighted linear combinations of (known) exponentials or sinusoids, cannot be 
accurately   characterized   in   this   way.      For   example,   a   servo-command   having' the   form 

yc(t) = ce~ca cos(/?0, where a and ß are known constants and c is some unknown constant, is not 

accurately represented by any of the type characterizations mentioned above.  Consistently classifying 
servo-commands by those types has resulted in a controller design guideline that characterizes servo 
systems as "Type 1", "Type 2", and "Type 3". The resulting overall closed-loop systems are such that 
Type 1 systems perform well for step-type servo-commands.   Similarly, Type 2 and Type 3 systems 
perform well for step+ramp and step+ramp+acceleration-type servo-commands, respectively.    Such 
systems are considered essential to achieving good servo-tracking performance.  Indeed, when a servo- 
command belongs to the particular class of step, or ramp, or acceleration type commands, good servo- 
tracking performance may be obtained.  However, when the time-behavior of the servo-command does 
not conform to this class of variations, and the controller algorithm is designed as a Type 1, 2, or 3 
system, performance limitations will result. Examples of classical and modern servo-tracking controller 
design methods that rely on this type command characterization are found in [20,21,46-48].   Servo- 
tracking controller design methods which accommodate a more general class of servo-commands are 
discussed in [37,38,40,44]. 

1.5.2.   Zero-Order-Hold versus Discrete-Continuous Control 

,  ,    . DiSital controllers are characterized by an alternating closed-loop/open-loop 
behavior; closed-loop at the discrete-times t = tQ + kT and open-loop over the intersample intervals 

kT<t<(k + l)T; k = 0, 1, 2, .... This mode of behavior makes the performance of digitally controlled 
systems more sensitive to the uncertainties (uncertain commands, disturbances, noisy measurements etc ) 
associated with the servo-tracking problem. Recall from Subsection 1.4 that a digital servo-controller 
updates the control decisions only at the discrete times t = tB + kT, k = 0, 1, 2, ..., with no knowledge of, 
or reaction to, "events" that may occur during the intersample interval t0+kT<t<t + (k +1)7 This 

situation has resulted in the commonly held assumption, among digkal control designers, that the 

^TT+T^?* ** Sh°Uld be appHed t0 the plant between consecutive discrete points-in-time 
{t0 + kl, t0 + (k+l)T) is a constant value u(t) = constant = u(kT) that is computed at the beginning t = t 

V^T^^TT^ F81' JhiS traditi0nal Ch°ice °f C°nStant diSital control-action is commonly° 
known as zero-order-hold" (z.o.h.) type control. A graphical representation of a typical z.o.h. type 
digital control-action is shown in Figure 1.4. yv 
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Figure 1.4 Illustration of Zero-Order-Hold (z.o.h.) Control-Action. 

Digital servo-controllers that allow for the possibility of a time-varying control 
action across each sample-interval have been described in the literature [46,58,62-68] The modes of 
time-variation (or holding actions) considered in those references are commonly referred to as first- 
order second-order, and exponential hold. Such classical control schemes smooth out the otherwise 
rough stair-step waveform of a z.o.h. control-action (as shown in Figure 1.4) but can not intelligently 
choose smart control-variations that serve to maintain the servo-tracking error near zero between the 
sample times, t0 + kT<t<t0 + {k+\)T. In fact, those holding actions can lead to an undesirabie^build- 
up of the servo-tracking error during the discrete time-interval between the sample times. This build-up 
of servo-tracking error is known as intersample misbehavior and is a common obstacle to achieving high- 
performance servo-tracking using conventional digital control methods. 

by: (i)time-variations of the servo-commands; (ii) time-variations of the disturbances; and (iii) open- 
loop instability of the plant. Most digital control texts define ripple as the build-up of error between the 
sampling instants when the error at the sampling instants is zero ("deadbeat"). In Figure 1 5 a olant 
output m which, at t = kT, k = 3, 4, 5, ..., appears to be accurately tracking a^onstan't se'rt 
command y (t) is shown The plant output achieves deadbeat response because the tracking-error is zero 
at the sample times t = kT, k = 3, 4, 5, .... However, in reality, m is drifting with respect Zy"t)Z 
is in fact doing a poor job of tracking the constant servo-command. This drifting of tracking error 
between the discrete sample-times can be very difficult to reduce with the traditional-type interLpte 
ho ding-actions described m this Section. However, a recently introduced technique fo75igital-coX 
called discrete-continuous" control [38] leads to a more intelligent choice of intersample cZTol 
variations and thereby can reduce this mode of intersample misbehavior. The technique nTsS] has ten 



incorporated into the new digital-servo controller design procedure developed in this report and will be 
described in detail in Chapter 3. 

yc(t) 

Figure 1.5 Illustration of Intersample Misbehavior of Output Response y{t). 

1.5.3.   Failure to Exploit Available Real-Time Information 

««. h,c«i .     A 1
ContemP°™}' and classical design methodologies for servo-controller algorithms 

EL??? °" cl°sed-'°°P ^Uity and steady-state tracking-error considerations as ,-> ocf (or as 
*r-> oo). This type of steady-state error" design procedure does not address the important task of 

ZZTvmlSHS? r^-time tracking-error ^), based on the real-time behavior of the servo- 
~ y£> 59]- Addltl^l useful dynamic information about the disturbances and plant model is 

encoded m the plant output measurements *0. That information can be decoded and utilizedTn r™ time 

tZZirC7rthe Plant °UtPUt measurementsX/). Similarly, useful information concemfngSe 
Im:d"TL °f cLlTnHSerVr0mmandS fS enC°ded ln *° rea,-time «ments of the s!Z 

H^214^47 5* T T*™ se™»ntroller design methods, such as those described in 
[8,17,20,21,46,47,58], do not attempt to exploit this useful encoded information     Modern servo 

XSÄ    ques such as *"■presented in ^ *recognize -d ex'loit ^ «slS- 



1.5.4.    Sensitivity to Parameter Perturbations 

Conventional (classical and modern) servo-tracking design techniques do not 
incorporate explicit means for accommodating the almost certain event that at least one of the actual 
plant-parameter values will fail to match the value used during the design process. As discussed in 
Subsection 1.2.2, such parameter mismatches tend to cause an inappropriate feedback control-action to 
occur, which can result in loss of tracking quality and even cause a loss of closed-loop stability. 

The degree to which a servo-tracking controller maintains performance 
specifications in the face of off-nominal values of plant parameters can be viewed as a measure of the 
robustness quality of that servo-tracking controller. Today's modern tracking-systems impose close- 
tolerance, high-performance demands on such things as settling-time, peak-errors and disturbance 
rejection. A tracking system whose stability is sensitive to certain parameter values will not consistently 
meet those demands. Therefore it is important that the closed-loop performance specifications, in 
addition to closed-loop stability, be maintained in the face of unmeasurable changes in plant-parameter 
values [59]. Servo-tracking controller design methods that achieve a degree of robustness to parameter 
variations are presented in [34,35,39]; however those techniques assume zero, constant, or stepwise- 
constant servo-commands and do not include complex, time-varying commands as discussed in 
Subsection 1.5.1. The servo-design methodology developed in this report will achieve robustness to 
plant parameter-variations and can be applied to systems that must track high-order, time-varying, servo- 
commands. 

1.5.5.    Systematic Design Procedures 

Many of the servo-tracking controller theories and design procedures published in 
the professional journals are burdened by complexity. Classical design methods were often graphical and 
difficult to utilize when higher-order, multiple-input, multiple-output (MIMO) systems were considered. 
On the other hand, some modern design methods, such as pole-placement and observer theory, rely 
primarily on state-space and linear algebra techniques to reduce the complexity of the design somewhat. 
In fact, single and multiple control-input/plant-output time-invariant (and also time-varying) systems are 
handled with ease by the same methodology in modern control, whereas classical control methods are 
primarily suitable only for time-invariant systems (of the single control-input, single plant-output type) 
In addition the vector/matrix mathematical representations of modern control allow for relatively easy 
implementation of the servo-controller algorithm on a digital processor. Methods that utilize a simple 
algebraic pole-placement and observer theory approach to designing servo-tracking controllers are 
detailed m [37,38,40]. 

1.6.      Goals of This Research Effort 

The primary goal of this research effort is to develop a new, linear-algebraic procedure for 
designing high-performance digital servo-tracking controllers for linear, time-invariant MIMO systems 
Digital servo-controllers designed by this procedure should be capable of reducing the effects of the 
shortcomings discussed in Section 1.5. A design methodology for partially achieving this goal for 
continuous-time (analog) controllers was presented in [35]. However, a general MIMO digital servo- 
control theory for linear plants, which overcomes the shortcomings identified in this Chapter and in [59- 
61], has apparently not been published in the literature. To accomplish the primary goal of this research 
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effort, several existing servo-controller results will be modified and incorporated into the new digital 
servo-controller design procedure. Those existing results are: (i) a linear-algebraic continuous-time 
servo-control method [37,70], which will be adapted to discrete-time; (ii) a recently developed discrete- 
continuous control result [38] that accommodates intersample ripple; and (iii) a linear adaptive control 
technique [34] that accommodates parameter-perturbations. The servo-controller design procedure 
presented in this report incorporates several additional features that enable the resulting digital servo- 
controllers to achieve a level of servo-tracking performance that is not obtainable by contemporary 
methods. A collection of worked examples, with simulations results, will be presented to illustrate the 
design procedure and level of servo-tracking performance that can be obtained by the new digital servo- 
tracking controller design method developed here. 

11 



2.    THEORY   AND   DESIGN   PROCEDURE   FOR   A   NEW   DIGITAL   SERVO- 
TRACKING CONTROLLER FOR LINEAR DYNAMICAL SYSTEMS 

2.1.    Overview of Chapter 2 

This research effort is concerned with the development of a new digital control design 
methodology, based on linear-algebraic methods, for the MMO servo-tracking problem with an «"'-order 
linear plant and uncertain servo-commands and disturbances. As mentioned in Chapter 1, a linear- 
algebra type analog (continuous-time) control design methodology for high-performance servo-tracking 
in continuous-time was presented in [37,70]. In this Chapter a digital servo-tracking control design 
methodology is developed which parallels the continuous-time methodology in [37,70], with several 
improvements. That methodology subdivides the servo-tracking problem into intermediate subproblems 
that can be solved by simple linear-algebra techniques. This technique is unique in that no linear- 
algebra-based digital servo-tracking design-methodology currently exists that achieves a high-level of 
servo-tracking performance while overcoming the obstacles inherent in conventional servo-tracking 
design methods (as detailed in Chapter 1). 

2.2.    Mathematical Model of a Generic MEMO Linear Dynamical Plant 

The specific class of plants considered in this research is the set of finite-dimensional, real- 
valued, MIMO, time-invariant linear dynamical plants. This class of plants can be represented by a 
linear-differential state-equation and an output equation of the general form 

x(t) = Ax(t) + Bu(t) + Fw(t) 

y(t)=Cx(t) ' (21) 

where 

*(0 -     «-dimensional plant state-vector, 

"(0 =     /•-dimensional plant control input-vector, 

-    /^-dimensional vector representing the (assumed independent) 
multi-dimensional external disturbances, 

y(f) =     w-dimensional plant output-vector, 

A =     nxn real-valued matrix (assumed known and constant for now, 
but will be considered subject to uncertain perturbations M in 
Section 3.2), 

B =     « x r real-valued, constant, known matrix, 

C =     m x n real-valued, constant, known matrix (assumed to have 
maximal rank m), and 

F =     nxp real-valued, constant, known matrix. 
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A block diagram representation of the class of plants in (2.1) is shown in Figure 2.1. 

wi(t) *Ak y(t) = (yi(t),y2(t),...,ym(t)) 

U(t) = ( «,(0, U2(t), ..., Ur(t)) 

W(t) = ( Wl(t), W2(t), ..., WP(t)) 

X(t) = (Xl(t), X2(t), ...,*„(/)) 

Figure 2.1 Block Diagram Model of the Class of Continuous-Time Plants Considered in This Study. 

In order to design an effective servo-tracking controller for the class of plants in (2 1) it is 
generally necessary that the control input u(t) be able to "steer" or control the plant state x(t) without 
restriction, throughout state-space. For this reason, it is assumed that the plant in (2.1) is completely 
controllable, ,n the sense of Kaiman. That is, for any pair of states (x0, xT) there exists a control action 
u(t), t0Zt£T<co, which can control the plant state x(t) from the state x0, at the initial time tB, to the 
state x(T) = xT at some finite time T> t0. 

2.3.    Information Aspects of the Servo-Tracking Problem 

The typical MMO servo-tracking control problem consists of the design of a controller that 
will make each of the plant outputs y,{t) quickly coincide with and thereafter accurately track any 
admissible servo-command yc(t), / = 0, 1,2,..., m, in the face of arbitrary plant initial-conditions x(t0) and 
uncertain, unmeasurable plant disturbances w(t) of a specified class. To accomplish this feat, the servo- 
tracking controller processes real-time information, as provided to it, in a two-input/one-output data- 
processing operation (algorithm) as shown in Figure 2.2. Here, the real-time inputs to the algorithm are 
the «-dimensional vector of plant-output measurements v = (v„v2,-, vm) and the «-dimensional 

vector of (assumed independent) servo-command measurements yc =(vcl,vc2,-,vcJ .   In general, the 
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set of output measurements y{t) does not necessarily comprise the set of measurements to be servo- 
controlled. However, m this report, to avoid unnecessary complexity, it is assumed that the set of output 
measurements y(t) do in fact comprise the set of measurements we desire to control. The real-time output 
of the algorithm is the /--dimensional vector of servo-tracking control signals u = (ui,u2,--,ur) which 
drive the various control actuators (final control elements) that alter the plant-state motion x(f) The 
quality of tracking performance achieved by a servo-tracking controller is directly related to how well the 
controller extracts and processes the useful information encoded into j>c(/) and><0 to produce the control 
actuation cionnl ii(t\ r actuation signal u(t). 

Real-Time Servo-Command 
Measurement Vector >*#) 

~\ I Real-Time Servo-Tracking 

Real-Time Rant-Output 
Measurement Vector y(f) 

Setvo-Tracking | °****i« 
Control Algorithm $ 

Figure 2.2 Typical Servo-Tracking Controller Viewed as a Two-Input/One-Output Algorithm. 

in the sen J^T' ** T^ ^ b\assumed' for simPlici^ that the control actuators are "ideal" 
m the sense that they exactly replicate the associated control signal u,{t) with no time-las rinsing 
overshoot, and other imperfections often associated with specific Stuatoriardw^e ^£ZS 
enables us to focus attention on the scientific issue of maximizing servo-tracking perfollce S 
respect to the servo-tracking algorithm design, without involvmg the various mTpeTtions of 
aPPl-f on-specific actuator hardware. Of course, in real applications,^ appropS d^ami model of 
the actuator imperfecüons would be incorporated with the plant model to allow the cc^ro" aZwthn! 
design to account for those actuator imperfections. algorithm 

looo stahilit Tt in,Cha?fr h ^^ *** °fthe ^^cking controller are to achieve closed- 

ZlTvZZ m (P
T°!Sy

rf
UnStab,e) P,lant ^ t0 qUickly aChi6Ve «« maintain -curate   e"l tracking ,,(,) * yd(t). The performance of a servo-tracking controller is usually characterized in terms 

of the time-variations in the tracking-error vector s^t) defined as the instantaneous difference between 

outnnZt TT (= ^ VeCt°r servo-comma"d *«) and the actual response Se^ctorX output XO), which was written (in Section 1.1) as P 

£y(t) = yc{t)-y(t). 
(z.z) 

Thus, the task of the servo-tracking controller is to regulate the trackine-errnr in n r> *n 
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2.4.    Assumptions Concerning the Availability of Measurements of the Plant Output y(t) and 
the Servo-Command yc(t) 

The digital servo-controller design procedure developed in this study assumes that only real- 
time discrete-time measurements of the plant-output vector y(t) and servo-command vector yc(t) are 
available as inputs to the servo-controller. Those discrete-time measurements are obtained from a 
discrete-time sensor that periodically samples the vectors y(t) and yc(t) and then communicates those 
values to the digital servo-controller. The analog-to-digital converter (the sample/hold device) associated 
with that discrete-time sensor has a value of "hold time" Tthat can be chosen by the designer. Therefore, 
it is assumed that the inputs to the control algorithm are the discrete-time data for the plant-output vector 
y(kT) and the servo-command vector yjkl) and the output of the servo-control algorithm is the control 
vector u{kT). 

2.5.    Representation of Uncertainty in the Servo-Tracking Problem 

Some examples of the sources of uncertainty that can arise in practical servo-tracking control 
systems are uncertain loading effects on the plant, dc bias effects, modeling errors, uncertain variations in 
servo-commands, sensor noise, etc. The time-domain behavior of such uncertain "inputs" can be 
classified into two broad categories: Dnoise-tvpe behavior; and 2) waveform-stnictnreH behavior. 

Noise-type inputs are characterized by random, erratic time-behavior exhibiting relatively 
high-frequency components. The uncertain time-behavior of such inputs is best described by "long-term 
average" statistical properties such as mean, covariance, power spectral density, etc., based on the input's 
averaged behavior over a relatively long time-interval. Examples of such noise-type inputs are fluid 
turbulence, radio static, and sensor noise. 

A large class of industrial control problems involve uncertain inputs which do not behave like 
noise-type inputs. In particular, they are not random and erratic in time, but rather their time-behavior 

has some degree of regularity or "structure," at least over short windows-of-time {A/,}" . This type of 

time-behavior is referred to as waveform-structured behavior [40]. A typical time-plot of a generic 
uncertain mpu s(l) having waveform structure is shown in Figure 2.3. Inputs of this type can be 
considered analytical over each interval M with uncertain "jumps" in the value, derivatives etc of S(t) 
occurring only at the edges of the time-intervals At, Some examples of waveform-structured uncertain 
inputs are dynamic loading effects, dc bias effects, and uncertain servo-commands 
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Figure 2.3 Time-Plot of an Uncertain Input S(/) Having Waveform Structure. 

2.5.1.   A  Linear  Waveform  Model  and  Linear  State  Model   for  an   Uncertain 
Waveform-Structured Input S(/) 

The class of practical uncertain inputs (i.e., disturbances, servo-commands) addressed 
m this research are assumed to have waveform structure in the sense just defined and the uncertain time- 
behavior of those inputs is assumed to be modeled in the "linear waveform model" [40] format 

S(0 = C,/, (/) + C2f2 (/)+• • -+C-/- (/), (2.3) 

where the set of functions {/,(/)}« (hereafter called the "basis set" [40] for s(/)) are chosen by the 
designer to mirror the collection of independent waveform patterns that can be exhibited by S(/) over 
short time-windows Aft, The weighting coefficients ch i = 1, 2,..., q, in (2.3) are completely unknown, 
uncontrollable, and unpredictable "stepwise-constants" that may "jump"in value at the edges of the time- 
windows Aft as shown in Figure 2.4. In some cases, s(l) is not directly measurable and must be estimated 
rrom the plant output X')- In those cases, the servo-tracking controller will be unable to estimate S(/) and 
adapt to rapidly changing c, values, if the time-interval Aft between successive jumps in the c, is too small 
Therefore it is necessary to assume that the jumping of the c,'s in (2.3) occur only occasionally such that, 
on average, the minimum spacing Atmin between successive jumps is somewhat larger than the digital 
servo-controller sampling-period T. More generally (2.3) may be used to represent an m-vector sf?) of 
uncertain inputs of the form 

S(/) = (2.4) 

Sm(t)J 

where each scalar input s,<0, / = 1, 2,..., m, has an associated linear waveform-model of the form (2.3). 
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Figure 2.4 Uncertain Stepwise-Constant Time-Behavior of the c,</)'s in (2.3). 

The first step in accessing the useful information embedded in an uncertain, 
waveform-structured input s,(t) is to identify an appropriate set of basis functions {/,(/)}« that cari 

model the time-behavior of s,</) across each of the intervals {A/,}. Those basis functions can be 
determined by analyzing historical data or dynamic characteristics of the process that creates the input 
s,<0 or through visual observation or computer analysis of s,</) recordings. For mathematical 
convenience, ,t is further assumed that each/<0 satisfies some linear homogeneous differential equation 
.0, with constant coefficients (this constant coefficient assumption can be relaxed to known, time-varying 
coefficients, as shown in [40]). The assumption that each/(/) satisfies some linear differential equation 
is rather commonly satisfied in realistic, practical problems. The governing differential equation J, may 
differ in order and/or coefficient values for each/{,). Those differential equations for each/*,) can be 
combined to form a single linear homogeneous differential equation £ which can be written as (assuming 
m = l;i.e., s, = s) & 

*%» + a 
dP"s^ ■ -    '""'SO 

dt> dt^1 + a P-\ 
dt"-2 

■+---+CC- 
dt 

+ or,S(0 = 0, (2.5) 

where thea, ,'-1,2,      p, are known (knowable) constants that depend only on the known basis 
runctions/(0; i.e., the or, do not depend on the "values" of the totally unknown c;'s in (2.3). 

«- ■   . 1° order to mathematically account for the uncertain jumping of the weighting 

tof 7T T™T«    the !ime-windows A'» «» impulsive-type forcing function «0 can befdded 
to the right-side of the differential equation model (2.5). This forcing function «0) consists of impulses 
doublets etc. with completely unknown intensities and unknown arrival-times. With the addln of uch 
a symbolic forcing term atf), (2.5) becomes 

^m + a  d^Sjt) , T     d^s(t) 
dt' dt"-1 + a 

p-\ 
dt"-1 -+---+CC- 

ds(t) 

dt 
+ a,s(/) = a)(t). (2.6) 
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The uncertain, stepwise-constant behavior of the c,'s in (2.3) can now be imagined as the result of the 
action of a(f) on the solutions S(/) of (2.6). 

To utilize (2.6) in developing a control algorithm, it is convenient to express the 
uncertain input model (2.6) in a state-variable format. For this purpose, write s(t) in the form 

S(t) = lq(t)    , (2.7) 

where 

« = (1,0, —,0) 

and where the q, are referred to as "state-variables" for the uncertain input S(t). The vector q(t) is called 
a state vector for the uncertain input because at each / it embodies the "current" information needed to 
predict the behavior of s(/) over the time-interval A/,. One of the many possible choices for the q,'& in 

(2.7) is the phase variable choice. That is, q,{t) = dS (._^ , / = 1, 2, ..., p.  Selecting the q?s in that 

way and using (2.7) allows (2.6) to be rewritten equivalently as the following set of first-order, coupled 
linear differential equations, having uncertain Dirac impulse sequences K{t) as inputs (the latter inputs 
represent the equivalent effect of the impulsive forcing term a(t) in (2.6)) 

?i(0 = *2(0 + *i(0;     ?,(>) = s(0 

&(0=?3(0+*2(0;    q2it) = s{t) 

qp(t) = -axqx (/) - a2q2 {t)--apqp{t) + *,(/);      qp(t) = ^^ 

,    (2.8) 

where the K(t), i - 1,2,..., p, denote sparse-in-time sequences of unknown impulses. 

Expressions (2.7) and (2.8) can be expressed equivalently in the compact vector- 
matrix format, 

s(t) = lq(t) 

q(t) = M0q(t) + K(t) (2.9) 

where 

M0 = 

0 
0 

1 

0 

- a,    -a-, 

0 
1 

0 

-a3 

0 

0 

1 

-ar 

In the general case where  m>l, and each s,(0 has a linear waveform model as in (2 3)   the 
corresponding linear state model is K    }' 
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S(t) = Lg(t) 

g(t) = Mg(t) + ic(t)' (2-10) 

where 

S(/) = m-dimensional uncertain vector input (given in (2.4)) which may 
or may not be accessible for direct on-line measurement, 

q(t) = d-dimensional "state" vector of the uncertain input S(/), 

L m x d constant, real-valued matrix, 

M   = d x d constant, real-valued matrix, and 

Kit) = d-dimensional vector of time-sparse sequences of unknown 
impulses having completely unknown intensities and arrival- 
times. 

Expression (2.10) constitutes the generic continuous-time state-model for the uncertain servo-commands 
yc{t) and disturbances w(t) considered in this report. 

2.5.2.   An Example 

As an example of describing, and obtaining a state model for, an uncertain waveform- 

l^rrnmZ
UtCOnS1f  I *' ^ °f "!UnCertain SCalar inpUt SW comP°sed of a random-like, weighted 

represented as ^ eXp°nential modes of ^-behavior.    Such an input caTbe 

S(t) = Cll + c2t + c3e-". (2n) 

Comparing (2.11) with (2.3), the basis functions for s(t) in (2.11) are clearly 

75(0 = 1; 

f2(0 = t; 

f3(t) = e~a,where a is assumed known. 

fXple™?d f°lr^T^ *" differential ea-uation ^ S(0 over the intervals {At,} is to take the 
Laplace transform of (2.11), assuming cu c2, c3 are constant, to obtain 

S(*) = £L + £L + _£3_=(
C

3 +c,y +(cxa + c2)s + c2a_P{s) 

s    s2    s + a s2(s + a) g£)    " (2"12> 
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Following the technique used in [40], imagine that S(/) is the output of a fictitious linear-dynamical 
system subject to initial conditions s(0), s(0), S(0), which give rise to the term P(s) in (2.12). This 
imaginary linear-dynamical system has the transfer function 

G(s) = 
1 

Q(s) 
where Q(s) = s3 + as2 

(2.13) 

The input S(/) can now be imagined as satisfying an impulsive forced third-order differential equation of 
the form 

d3s(t)      d2s(t)      ,. 
■ + a ^- = (o{t), 

dt> dt< (2.14) 

where <o(t) is an uncertain, impulsive-type external forcing function that mathematically accounts for 

the sparse-in-time jumping of the c, coefficients in (2.11). To determine an appropriate state-variable 
model representing the dynamics of (2.11), the third-order differential equation in (2.14) is rewritten 
equivalently as the following set of first-order, coupled differential equations having uncertain Dirac 
impulse sequences as inputs (as described above (2.8)) 

0i(O = 02 (/) + *,(/);        0,(0 = 5(0 

02 (0=03 (0+*2(0;      02(O=s(O 

03 (O = -Q03 (0+*3(0;   03(O=s(O 

(2.15) 

where the tcx(t), K2(t), and tc2(t) are unknown, time-sparse sequences of impulses that represent the 
equivalent action of a,(t) in (2.14). For convenience, (2.15) can be expressed in the compact vector- 
matrix format 

S(0 = (1   0   0)g(t); 0 = (01, 02, 03) 

0(0 = 

"0 1 0 " 
0 0 1 
0 0 -a 

q(t) + K(t) (2.16) 

which is equivalent to the general continuous-time state-model in (2.10). 

2.6. A Discrete-Time Model for the Generic Linear Dynamical Plant in (2.1) 

This research effort is concerned with the digital control of continuous-time physical systems 
with physical inputs {«(0, w«> and outputs y® that are continuous-time variables. In contra Ae 
inputs (K^O yAm and outputs u(kT) of the digital servo-controller are discrete^ime vSabt 
(variables that are measured or changed only at the discrete times / = t0+kT, k = 0 1 2 ) In order to 
effectively design a digital servo-controller (control algorithm for generating u(kT)) for'the general class 
of plants under consideration the basic continuous-time plant-model in (2 1) mu t be converted tol 
eqmvalent discrete-time model.   This discrete-time model is a conventional difference equation 22 
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describes how the values of *(/) and v(/) evolve for the discrete times t = t0 + kT, k = 0 1 2 The 

following development of a discrete-time model for the plant in (2.1) closely follows that 'presented in 
L33J. Recall that the general solution of the continuous-time differential equation in (2.1) can be written 
as 

x(t) = 0(t,t0)x(t0)+j'Q>(t,T)Bu(r)dT+\'a>(t,T)Fw(T)dT, (2.17) 

where Q>(t,t0) is the state transition matrix for ,4 in (2.1) and is uniquely defined by the matric differential 
equation 

with the special initial condition 

where I is the nxn identity matrix. 

Now,  recalling that  T is a fixed  positive  constant,  set   t-*(t0 + T),  and  then  set 

t0 -> (t0 + kT), in (2.17). As is typical in conventional digital control problems, it is assumed that the 
control action u(t) in (2.17) is of the «zero-order-hold» (z.o.h.) type; i.e., «(,) remains constant 
(«(/)- u(kT) = a constant) over each sample period, t0+kT<t<t0+(k + \)T. This fact allows (2.17) 
to be written as the following discrete-time state-model (difference equation model) [33]: 

x((k + l)T) = Ax(kT)+Bu(kT)+v((k + 1)D, (218) 

where AT is hereafter used as shorthand notation for t0+kT, and 

A = Q>((k + l)T,kT) 

= eAT A is assumed constant, 

B=jkr       ®((k + l)T,T)BdT 

FT   .,_  , 5 B is assumed o 
= I  eA(T-T)drB Jo 

V ((k + 1)D = £*+I)r ®((k + 1)7, T)Fw(T)dT 

rT '>F is assumed constant. 
= \oe

A(T-T)Fw(T + kT)dr 

The discrete-time plant-output relationship corresponding to (2.18) is 
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y(kT) = Cx(kT). (219) 

Note that (2.18) relates the "next" value x((k+l)T) of x to the current value x(kT) of JC at the 
time / = kT. However, the evaluation of v((Jc + l)T) in (2.18) requires knowledge of W(T) over the entire 

interval kT < T < (k + \)T. In general, at the time / = kT it is impossible to accurately and consistently 
predict the time-behavior of the uncertain, unmeasurable disturbances w(t) over the remainder of that 
sampling-interval. Therefore to make (2.18) practically useful, it is necessary to further investigate and 
approximate the term v((k + l)T). It will now be shown that the term v((k + l)T) in (2.18) can be 

simplified by introducing a waveform-model for the time-variations of the uncertain, unmeasurable 
disturbances w(z). 

Disturbances were defined in Subsection 1.2.2 as uncontrollable inputs which act on a 
dynamical system. Unlike the servo-commands, disturbances are usually not directly measurable. For 
this research, the disturbances w(t) are assumed to have waveform structure and to have a linear state- 
model (2.10) of the form 

w(t)=Hz{t) 

z(t) = Dz(t) + a(t)   ' (2-2°) 

as developed in Section 2.5 and where 

w(t)       =   /^-dimensional vector of independent disturbances (defined in (2.1)), 
that are not accessible for direct on-line measurement, 

z{f)        =    p-dimensional state-vector for the disturbance w(t), 

H =   p x p real-valued, constant matrix, 

D =   P x p real-valued, constant matrix, and 

a(t)       =   a p-vector of sparse sequences a(i) of unknown impulses having 
completely unknown intensities and arrival-times. 

Expression (2.20) represents the general continuous-time state-model for the uncertain 
unmeasurable disturbances considered in this study. Proceeding as in [33], the state model in (2 20) can' 
now be used to simplify the term v((* + l)7) in (2.18). For this purpose one replaces rby t in (2.20), 
and substitutes the result into v((k + \)T) in (2.18) to obtain 

v((* + l)D= foe
A^FHz(T + kT)dT. (221) 

«* ■  n .1?
ing

k
(2-2°? and meth°dS Similar t0 that used t0 obtain *0 in (2-17), the general solution of z{ T) in (2.21) can be written as 
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z(r) = ®D(T,kT)z(kT) + fkT<t>D(T,£>a(Z)d£, (2 22) 

where OD represents the state transition matrix for matrix D in (2.20). Substituting (2 22) into (2 21) and 
simplifying terms yields the following result [33] (recall that D is a constant matrix) 

where 

v ((k + l)T) = FHz(kT) + r(kT), (2 23) 

FH= \TeA(T-r)FHeDTdT , 
Jo ' 

and 

f (kT) = foe
A^FHfQe

D^a(t+ kT)d&r. 

Consolidating (2.18), (2.19), and (2.23) yields the "exact" discrete-time plant-model 

*((* + l)T) = Ax(kT) + Bu{kT) + FHz(kT)+y(kT) 
y = Cx(kT) ' <2-24> 

which is mathematically equivalent to (2.18), under the assumption (2.20). 

A discrete-time model for the time evolution of z(kT) can be developed by letting 
T-> t0 + [k + \)T in (2.22) and recalling that (k+ l)Tdenotes /0+(*+l)rto obtain 

z((k + 1)D = Dz(kT) + a(kT), (2 

where 

and 

D = eDT 
D is assumed constant, 

time model 

5(kT)=joe
D(T-^+kDdt. 

Expressions (2.24) and (2.25) can now be combined to form the «exact» composite discrete- 
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x((k + l)T) 

y(kT) = (C\0) 

A FH (x(kTf 
Iz(kT)) 

u(kT)+ (r(*T)) 
lZ(kT)J 0 b 

x(kTJ 

Kz(kT)J 

(2.26) 

The quantities y(kT) and B(kT) in (2.26) are an accumulation, from kT to (k+l)T, of the 

effects of the completely unknown, unpredictable, and unmeasurable sparse impulses a(t) associated with 
the disturbance model (2.20) and which arrive during the "intersample interval" kT < t < (k + \)T 

between successive sampling instants [33].  Since the arrival-times and intensities of the a(t) impulses 
are assumed to be completely unknown, there is no rational, scientific way to predict the values of 
y(kT) and a(kT). Disregarding the y{kT) and a(kT) terms will necessarily introduce errors, that 

accumulate only from *rto {k+\)T, in the predicted values of x((k+\)T) and z((k+l)T) as determined by 
(2.26).   To avoid those errors being too significant, it is necessary to invoke the assumption (from 
Section 2.5) that the a(t) impulses (denoted as *(/) in Section 2.5) occur only occasionally (sparse-in- 
time), with minimum spacing at At^ between successive impulses being somewhat larger than the 
sampling-period T [33].   That assumption results in the a(kT) and y(kT) terms remaining "quiet" 

during most intersample intervals.    Consequently, the  a(kT)  and  y(kT)  terms are disregarded 
throughout the design process. 

2.7.    Introduction of a Discrete-Time Evolution Equation for the Servo-Tracking Error 

♦ ur. * As Previously stated, a digital servo-tracking controller u(kT) must achieve closed-loop 
stability for the (possibly unstable) plant, and simultaneously quickly achieve and maintain accurate 
servo-tracking The "tracking-error" in (2.2) is the single most important entity for measuring servo- 
tracking controller performance. In terms of discrete-time, / = kT, that tracking-error is written as 

£y(kT) = yc(kT)-y(kT). (2.27) 

The term stfl) will be hereafter referred to as the discrete-time servo-tracking error. Thus the task of 
the digital servo-tracking controller is to regulate the tracking-error in (2.27) to zero with a prescribed 
settl.ng-t.me and thereafter maintain s^kT) acceptably near zero in the face of all anticipated 
uncertainties. That is, the digital controller must achieve *n"cipaiea 

£JkT)-+0 k= 0,1,2, 
(2.28) 

in a sufficiently small amount of time, and maintain |^(*r)|« 0 thereafter. 

mnHY   "w ""Jp0™ h P7! ** a ^mental necessary condition (called the "trackability 
condition ) for achievement of theoretically exact MMO servo-tracking, y(t) - v (0 V /   is that the 

inoirZT' TtJc(/) COnsiste"t,y ,ie in the colu™ range-space of the pLnt'output matrix C 
m (2.1). This fundamental necessary condition can be expressed as 
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yc (0 G K[C]       V t; <R[«] = column range-space of [•], (2.29) 

or equivalently, 

rank[C|^(0] = rank[C]   Mt. (230) 

^hoTfte!*aSSUme **(129) and (230) are Satisfied for the y& bein8 considered. It is remarked that 
it (2.29) and (2.30) are not satisfied the command y&) is "improper" for the plant in (2.1) in the sense 
that, even under ideal conditions, it is physically and mathematically impossible for the plant output vfrt 
to consistently equal yj(t), for all t. 

To proceed with the development of the new digital servo-controller design methodology it is 
first necessary to develop a state-model representation of the time-behavior of the uncertain servo- 
commands^)- The elements^/) of the servo-command vector^/) are assumed to be uncertain time- 
varying inputs which have "waveform structure" and have a corresponding linear state-model of the form 

yc(t) = Gc(t) 

c(t) = Ec(t) + M(t)   ' (2.31) 

as discussed in Section 2.5 and where 

y&)       =     m-vector of independent servo-commands (defined in Section 2.3) 
accessible for measurement only in discrete real-time, 

c(t)       =     v-dimensional state-vector for the servo-command yc(t), 

G =     m x v constant, real-valued matrix, 

E =     v x v constant, real-valued matrix, and 

m       =     a v-vector of sparse-in-time sequences of unknown, unmeasurable 
impulses M,{t) having completely unknown intensities and arrival- 
times 

fZT^Hl'Z^ 6eneriC "—»*» «"""*' f" «" —<* -vo-co^ands 

Substituting (2.31) into (2.29) yields the expression 

GC(0GSR[C]   Vf. 
(2.32) 

fror- 'T ?6Ctir 2-5 and (2-31) **the "State" C(0 °f the «"CHanm»«! is . completely arbitrary v- 
vector, therefore the necessary and sufficient condition for achieving exact servo-tracking (sT^Tfor 
some x(t)) is equivalent to requiring that [37], y 

J       l  J (2.33) 

in the state-model (2.31). 
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Satisfaction of condition (2.33) implies that it is possible to express each column of the 
matrix G as some linear combination of the columns of C. That is, 

G = C0       , (234) 

for some (possibly nonunique) matrix 0.    The factorization in (2.34) assures that at each t it is 
mathematically possible to have 

ey(t) = yc(t)-Cx(t) = 0, (2.35) 

for some x(t). However, it is further necessary to invoke the complete controllability condition to assure 
that the required x(t) in (2.35) can be attained by an admissible control input u(t), in general. 

To develop the discrete-time evolution equation for s^kT) in (2.27), it is necessary to convert 
the continuous-time servo-command model in (2.31) to an equivalent discrete-time model. A discrete- 
time model for the time-evolution of the servo-command state c(kT) can be developed by a method 
similar to that used in Section 2.6 to obtain (2.25). In that way, the final form of the discrete-time state 
model for the uncertain servo-command, having dynamics modeled by (2.31), is 

yc(kT) = Gc(kT) \c = (cl,c2,.:,cv) 

c((k + l)T) = Ec(kT)+M(kT) '' {// = (//,, M2, -,Mv)    ' (236) 

where 

and 

E = e ET 

ji(kT)= ( 
Jo 

eE{T-$M(Z+kT)dZ. 

The quantity Ji(kT) in (2.36) is a v-vector of completely unknown, unpredictable, and 
unmeasurable "residual-effects" caused by the arrival of uncertain /</) impulses (2 31) during the 
interval between the sampling instants kT < t < (k + \)T. Since the arrival-times and intensities of the 

/</) impulses are completely unknown, there is no rational, scientific way to predict the value of Jt(kT). 

Therefore for the reasons discussed below (2.26), and as advocated in [33], the £(kT) term will be 
ignored throughout the design process. 

Substituting (2.19), (2.36), and (2.34) into (2.27) yields 

sy (kT) = Gc(kT) - Cx(kT) 

= C(0c(kT)-x(kT)) ' (2-37) 

where c(kT) is the state of the servo-command yc(t) at the discrete time t = kT k = Q  \  2 a<! 
indicated in (2.36). ' '   '   ' "' ' 
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In [37], Johnson developed a novel method for studying and controlling the time-evolution of 
the servo-tracking error Sy by introducing what he called the "servo-state" vector ess(t) associated with the 
servo-tracking problem. For purposes of the present study the servo-state vector ess introduced in [37] is 
expressed (in discrete-time) as 

A 
ess(kT) = Oc(kT)-x(kT). (2.38) 

Thus, ess(kT) is an «-dimensional vector representing the difference between the n-vector fc(kT) and the 
plant state x(kT). Using (2.38) to express the servo-tracking error s^kT) in (2.37) turns out to be a key 
idea in the development of an all-algebraic servo-tracking design technique. In particular, using (2.38), 
expression (2.37) can be written as 

£y(kT) = CeJkT). (239) 

It is clear from (2.39) that the servo-tracking error will be zero at each of the sample times t = 
kT, k = 0, 1, 2, ..., if, and only if, the motions of the vector ess(kT) remain confined to the null-space of 
C. The discrete-time servo-tracking control task can now be viewed (ideally) as the design of an 
algorithm for the digital control u(kT) such that the servo-state vector e^kT) rapidly approaches and 
thereafter stays within, the nullspace of C, or equivalently, Ce^kT)^ 0. Therefore, the digital servo- 
controller design task is reduced to a discrete-time linear subspace stabilization problem for the servo- 
state vector ess(kT). The linear subspace stabilization problem, introduced in [76], is a generalization of 
the conventional null-point stabilization problem where the null-point is generalized to an (n-mh 
dimensional null-space. 

The discrete-time evolution equation for ess(kT) is determined by forward shifting (2.38) once 
as follows: 

ess ((k + l)T) = 0c((k +1)7) - x((k + \)T). (2 40) 

Substituting (2.24) and (2.36) into (2.40) yields 

e,,{(k + l)T) = 0Ec(kT) + 0ji(kT)-Ax(kT)-Bu(kT)-FHz(kT)-r(kT), (2.41) 

and incorporating (2.38) into (2.41) yields 

^ ((k + 1)T) = Aess {kT) - Bu(kT) + (OE - A0)c{kT) - FHz(kT) 

+ 0M(kT)-r(kT) ' (2A2) 

For reasons discussed below (2.26) and (2.36), the terms  Ji{kT) and y (kT) in (2 42) have 
been disregarded. Ignoring those terms allows one to re-write (2.42) in the truncated form 

eSs{(k + l)r) = ^(*D - Bu(kT) + {6E- A6)c(kT) - FHz(kT), (2.43) 

where the notation em indicates that the effect of the terms RkT) and y(kT) have been ignored 
Accordingly, (2.39) is re-written as S 

27 



sy(kT) = Cess(kT). (2.44) 

2.8.    Information Aspects of the ea(kT) Subspace Stabilization Problem 

With respect to (2.43) and (2.44) the task of the digital servo-tracking controller is (ideally) to 
quickly regulate the servo-state vector ess(kT) in (2.43) to the null-space of the matrix C (e.g., 

e„(kT)->rfC], where, hereafter, N[V] indicates the null-space of [•]) and maintain e^kT) eN[C] 

thereafter. However, the structure of the matrices A , B, C, FH, and E might not permit ess(kT) to 

be made invariant with respect to the entire N[C] for arbitrary disturbances w(t) and servo-commands 

y<£t). Consequently, in the most general case, the servo-control designer must strive to control ess(kT) 

to some subspace 5vcN[C], v = 0, 1, 2, ..., n-m, where V indicates the dimension of the subspace S. 

That is, one should seek a matrix C and design u(kT) to achieve 

U*r)->Sv=Np]cN[C]; k= 0,1,2,...    , (2.45) 

where C is an (77 - v) x n partitioned matrix of the form 

C = (2.46) 

and where P is any («-/w-v)x« matrix such that 

rank[C] = «-v,        (since it is assumed that rank[C] = m, it follows that 
rank[P] = n-m-v) 

and 

N[C]CK[C]. 

The columns of C so defined form a basis for the "orthogonal complement" of Sv. To study the 
dynamics of eJkT) relative to Sv it suffices to study Cess(kT) (compare to (2.45)). Therefore, it is 

desirable to find the subspace Sv £*[C] of largest dimension V (largest "landing zone" for ess(kT)) 

such that ess(kT) can be stabilized to and thereafter remain within the subspace Sv as illustrated in 
Figure 2.5. This latter problem can be stated in terms of the subspace stability concepts introduced in 
[74] and used in [37]. That is, u(kT) should be designed such that some linear subspace 
Sv =V[C]^V[C] is converted into a uniformly asymptotically-stable invariant-subspace for the closed- 

loop system (2.43) and such that the motions of e„(kT), within the subspace Sv, remain bounded for all 
bounded servo-command state motions c(kT) and disturbance state motions z(kT). The choice of P in 
(2.46) will be explained later in Subsection 2.11.7. 
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subspace SvcK[C] 

Figure 2.5 Stabilization of e„ to Some Linear Subspace Sv cN[C] 

- tm T"1 !eChniCal COnditions must be met in order for there to exist a u(kT) that can make 
e^kT) qu.ckly and accurately approach a given subspace Sv ^C] and become invariant to Sv in the 

face of arbitrary uncertain behaviors of c(kT) and z(kT). These conditions govern the design of the 
digital servo-trackmg controller u(kT) and will be discussed individually as their need arisesTZ dLim 
procedure developed in the following sections. «r neea arises in töe design 

2.9. Decomposition of the Digital Servo-Tracking Control-Effort 

To develop a digital control law (algorithm for generating u(kT)) the standard mntrni PfP™+ 
decomposition as used in DAC theory [40,71,72] will be invoked. This £^^£S£S£ 
total (vector) control-effort u(kT) into a sum of individual (vector) terms as follows P       8 

(2.47) 
u(kT) = usc(kT) + up(kT), 

where each term in (2.47) is assigned a specific task. 

Collectively, the control terms in (2.47) are responsible for achieving closed-loop stabilitv 
and regulating ^kT) to a subspace Sv ^C], thereby controlling the servo-Lking eZ Ä 

zero. The control term usc(kT) is responsible for counteracting the effects of the disturbances w(t) and 
the "disturbance-like" effects of the servo-commands *(,) on the servo-tracking error iT^MT^ 
up(kT) ,s responsible for stabilizing the servo-state vector eAkT) to a designated subspace 5  ci£f 
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while achieving an acceptable closed-loop settling-time for the servo-tracking error By, assuming u  (kT) 
is performing its task. Substituting (2.47) into (2.43), and re-grouping terms, yields 

esM + \)T) = Ae^(kT)-Bup(kT) + \(eE-Ae)c(kT)-FHz(kT)-Busc(kT)\.        (2.48) 

From consideration of (2.48) and (2.45) it is clear that the individual tasks of usc and up can be 
expressed mathematically as two conditions which must be satisfied simultaneously. The condition 
associated with usc(kT) is 

C [0E - AO)c(kT)- FHz(kT) - Busc(kT)] = 0;       V c(kT) andz(kT), (2.49) 

which can be written as 

6E-A6 
~ ~\f~rvr\\ 

-FH 
c(kT) 

\z(kT)J 
-Busc(kT)l = 0 (2.50) 

in Since jc(/) and w(t) almost always originate from completely different (and uncorrelated) sources, ... 
general, the necessary and sufficient condition for existence of a usc(kT) satisfying (2.50), for all c(kT) 
and z(kT), is 

rank COE-CAG \CFH\CB = rank [CB], (2.51) 

which is equivalent to the two simultaneous conditions 

rankfc6E-CA6 \ US] = rankfcß], (2.52) 

and 

rank CFH   CB = rank m (2.53) 

The decomposition in (2.52) and (2.53) suggests that the control term usc in (2.48) can be 
further split mto two terms as follows ' 

(2.54) usc(kT) = us(kT) + uc(kT), 

allowing (2.47) to be rewritten as 

u(kT) = us(kr) + uc(kT) + up(kT). (255) 

S' Uf^is resP°nsjble /or counteracting the "disturbance-like" effects of the servo-commands 
nLTtf^ 1- re,f °+

n
v
s,b,e

1
for «™teracting the effects of the disturbances W(t) as they appear in 

(2.48). Mathematically, the tasks of u&T) and uc(kT) are to achieve the identities 
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clfHz(kT) + Buc(kT)Uo; Vz(AT), k = 0, 1,2,..., (2.56) 

and 

c[{OE-Ae)c{kT)-Bus{kT)^0;  Vc(kT), £=0,1,2,...    . (2.57) 

The necessary and sufficient conditions for existence of a u^kT) satisfying (2.57) and a uc(kT) satisfying 
(2.56) for all c(kl) and z(kT) are given in (2.52) and (2.53), respectively. 

The task of up(kT) is to ensure that all solutions ess(kT) of 

ess((k + l)T) = Aess(kT)-Bup(kT), (2.5S) 

are asymptotically-stable to a designated subspace Sv crfc]. 

It is remarked that, in special cases, it may be possible to satisfy (2.49) even though (2.51) or 
(2.52) and (2.53) fail to be satisfied. For instance, under the very special case where it naturally turns out 

that C {BE - A0)c(kT) - FHz(kT) = 0, it suffices to choose usc(kT) = 0 in (2.49), in which case (2.51) 

is not necessary. However, such special cases are highly unlikely in practice. 

In the next section, the design procedure for u(kT) will be developed for the "ideal case" in 
which the availability of accurate "sampled" on-line, real-time measurements of the states x(kT), z(kT), 
and c(kT) are assumed. In practice, this is not a realistic assumption, because the disturbances w(t) are 
completely unmeasurable and moreover the states z{kT) and c(kT) are related to unmeasurable physical 
attributes of the usually uncorrelated disturbance and servo-command functions, respectively Therefore 
a physically-realizable approximation of the "ideal solution" will be presented in Subsections 2.13.2 and 
2.13.3 at the completion of the idealized design procedure for «(AT). 

2.10. Conditions for Complete Cancellation of Disturbance-Like Terms in the Servo-Trackine 
Error Discrete-Time Evolution Equation 

To accomplish the goal of making e^kT) in (2.48) remain invariant with respect to some 

subspace Sv cK[C], it is necessary that the digital-control terms uc(kT) and us(kT) in (2.54) be designed 

such that the disturbance-like terms in (2.48) have no affect on the behavior of the tracking-error elkTS 
However, recall that the behavior of the external disturbance w(t) and the servo-command vX) is 
uncertain and time-varying. The disturbance w(t) acts continuously on the plant (and consequently on the 
^3? TA serv°;c°mmand^) continuously affects the servo-tracking error (refer to (2.1) 
and (2.2)). In addition, recall that the conventional digital-controller maintains a constant control-action 
between consecutive sampling times (kT, (*H)7). Also recall that the servo-state vector ess in (2 42) is 
subjected to the totally unknown, sparse-in-time random-like impulses o(/)and *t) (disregarded for 
design purposes, but present in application) inherent in the time-behavior of the external disturbance w(t) 
and servo-command yc(t), respectively, and that those impulses cause the y{kT) and  ftkT) terms in 
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(2.42) to impose a limit on the degree of "disturbance" cancellation that can be obtained. This makes it 
technically impossible for the stepwise-constant digital control-action u(kT) to completely cancel the 
effects of a non-constant disturbance w(t) and/or a non-constant servo-command^) on the continuous- 
time behavior of sjt), for all time kT < t < (k + l)T. Therefore, the prudent alternative introduced in 

discrete-time DAC theory [33] is to define "complete disturbance-cancellation in discrete-time" as 

(ideally) total cancellation of the effects of the disturbance-related terms {0E -AO\c(kT)- FHz(kT) 

on the motion of s^t), as they appear at the isolated sample-times t = kT, k = 0, 1, 2, ... . Thus, 
following this line of reasoning, the task is to design the control terms u^kT) and us(kT) in (2.54) to 
achieve complete disturbance-cancellation of w(t) and the disturbance-like effects caused by yc(t) as they 
affect the behavior of the servo-tracking error in (2.44). 

It is clear from (2.43) and (2.44) that complete disturbance-cancellation on the servo-tracking 
error sy{kT) can be achieved at each sample time / = kT, k = 0, 1, 2,..., if, and only if, all motions of 

ess{kT), that can be affected by the disturbance w{t) and the disturbance-like effects of the servo- 

command >>c(0, are confined to the subspace Sv =^CJ^V[C]. For convenience, the term C is carried 

symbolically throughout the computations m this section. A procedure for choosing Sv, computing C 
and designing uc and us for that particular C is presented in the next section. Recall from below (2.57) 
that the control terms uc(kT) and us(kT) satisfying (2.56) and (2.57) exist if, and only if conditions (2.53) 
and (2.52) are satisfied. Those expressions imply that 

BTr + FH = ° • (2.59) 

and 

C[0E-A0-BTS] = O (260) 

for some rxp matrix fc, some r x v matrix f„ and the chosen C . 

If the conditions (2.59) and (2.60) are achieved, the control terms uc(kT) and us(kT) (satisfying 
(2.56) and (2.57)) may be chosen ideally as 

uc(kT) = TcZ(kT), (261) 

and 

us(kT) = Tsc(kT). (262) 
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2.11. Design of u(kT) to Stabilize the Servo-State eJkT) to a Subspace 5vcN[C] While 
Achieving an Acceptable Closed-Loop Settling-Time 

A I*16 StrUCtUre of the idealized servo-tracking control terms uc(kl) and «,(£7) was given in 
(2.61) and (2.62). The structure of the idealized servo-tracking control term up(kT) in (2 47) will be 
postulated in the linear state-feedback form: 

up{kT) = -KpeB{kT) 

(2.63) 
= -Kp{&c{kT)-x{kT)) 

where Kp is an r x n constant gain-matrix that is to be designed to achieve Cess(kT)^0, where 

\\x(kT)\\ must remain bounded for all bounded servo-command and disturbance state motions (c(kT) and 

z(kT)). A procedure for designing such a Kp consists of first substituting (2.61), (2.62), and (2.63) into 
(2.55) and then into (2.43) to obtain 

?ss((k + m = (A + Mp)ess(kT)-Bz(kT)+%c(kT), (2.64) 

where, by design, the terms B = Brc+flf and }; = 0E-A0-BTs must satisfy (2.59) and (2.60) for 

the chosen C , and consequently have no effect on the time-evolution of the servo-tracking error sJt) at 
each discrete sample-time t = kT, k = 0, 1, 2, ... . M } 

Recall that the servo-tracking task is to quickly control the servo-state vector ess in (2.64) to a 

subspace Sv c^fc] having largest dimension v (e.g., ess(kT)^Sv =tfc]czV{C]), and keep it there 

for each subsequent time t = kT, * = 0,1,2,-. Several different approaches to the design of the gain 
matrices Kp,Tc, and T, in (2.64) can be considered that will accomplish this task. For example, if the 

null-point stabilization condition e„(*T)->0<=$v is achievable, K, should be designed to place the 

eigenvalues of (A + BK,) at sufficiently-damped locations inside the unit circle and fe and f, in (2.59) 

and (2.60) should be designed to achieve BT + FH :0 and \0E-A0-Brs] = O. This null-point 

stabilization approach for designing the matrices Kp, fc, and f, regulates ess(kT) to the null state 

e. =0 which is a "point" that always lies in the null-space of the matrix C (and also C ) (e.g., 

0eK[c]cN[C])  and hence  is more restrictive than  regulating   ess(kT)-^Sv =xfcl   of largest 

t"Tsnectf0n
rOCedUre f°r Perf0nning *• m0re gCneraI SUbSpaCC Stabi,ization ^ wUI ^ Presented in 
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2.11.1. Transforming   the   Servo-State   Vector   Stabilization   Problem   to   a   New 
Coordinate System 

A general mathematical theory for the stabilization of continuous-time linear 
dynamical systems to arbitrary linear subspaces was developed in [76]. That theory was applied in [37] 
to asymptotically control the continuous-time servo-state vector ess(t) to N[C], and in [70], to some 

subspace Sv cN[C]. In this section the results and techniques in [37,70,76] will be adapted to our 

digital servo-control problem of designing Kp, fc, and fs in (2.64) so that some subspace Sv cK[C] 

will become an asymptotically-stable invariant-subspace for all solutions ess(kT) of (2.64). The fc and 

Ts and the collection of all Kp which allow all solutions of (2.64) to be stabilized to, and become 

invariant for, some Sv c X[C] can be determined by the following method. 

Recall from (2.1) that C is an m x n matrix which is assumed to have maximal rank 
m. Therefore, it is always possible to select an n x (n-m) matrix M having maximal rank (n-m) that 
satisfies CM = 0. Furthermore, the columns of M will form a basis for N[C]. Consequently, any vector 

in K[C] can be written as a unique linear combination of the column vectors of M. 

Let R be any (n-m) x v matrix such that v <, (n - m) and rank[/?] = v. Then the 
product MR will be an n x v matrix (rank[A/K] = v) having column vectors which necessarily span some 
subspace Sv cN[C]. That is, 

Sv=tt[M?] = Np]cN[C]; v = 0, 1, 2, ..., n-m. (2.65) 

By varying the choices of the elements of R, and also varying the number v of 
columns of R, one can isolate and designate any subspace 5V eX[C], [37]. A systematic procedure for 

identifying every subspace Sv eX[C], v = 0, 1, 2, ..., n-m, will be presented in Subsection 2.11.7. 
Hereafter, the chosen subspace S* will be generically defined as that subspace which is generated by the 
columns of MR and denoted by Sv = 9i[MR]. It follows from (2.65) that CMR = 0, which is written 
equivalently as (incorporating (2.46)) 

CMR= - 
~c~ 
p 

MR = 
'CM' 

PM 
R = 

' 0 ' 

PM 
R = 0. (2.66) 

The choices of the elements of R in (2.65) will determine the choice of P in (2.46) and consequently the 
choice of C in (2.46). 

Assume that C has been so chosen and, proceeding as in [76], consider the invertible 
linear transformation 

ess = [C«\MR}$s, (26?) 

where C* is the right inverse of C , defined as 

C* = CT(CCT)~l   (such that CC* = I). (2 68) 
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The inverse transformation associated with (2.67) is [76] 

£ = 
§is2 (MR)* 

ess, 

where (MR)* is the left inverse of (MR) given by (MR has maximal rank V) 

(MR)*=((MR)TMR)-1 (MR)T       (suchthat (MR)*MR = l). 

(2.69) 

(2.70) 

2.11.2. The Discrete-Time Evolution Equation for ^(kT) 

It follows from (2.69) that the condition e«e£v =Np]cN[C] is realized if, and 
only if £.1 =Cess = 0. Therefore, in order to stabilize ess(kT) to a subspace Sv we must regulate 

£ssi(kT)^>0 and ideally maintain £,,(AT)«0 for all subsequent / = kT, k = 0, 1, 2, .... To do this 

requires examination of the evolution equation governing £„(kT), which is computed from (2.69) as 
follows 

Substituting (2.64) into (2.71) yields 

&,((* +1)7) = 

*„((* +1)7). (2.71) 

(A + BKp)ess(kT) + 
(MR)* 

Xc(kT)-Bz(kT) (2.72) 

where z = £-A0-2rg and B = BTc+fH.  Substituting (2.67) into (2.72), and rearranging terms, 
results in the vector-matrix difference equation 

4,((* + l)7) 
&2((* + l)7V 

C(3 + Ä£ )C* 

(MRY(A + BKp)C* 

c| -CJ? 

C(A + BKp)MR 

# r? |_(W* -(MR)#B 

(MR)*(A + BKP)MR 

c(kT) 

z(kT) 

ZsAkT) 

u„2(*n 
(2.73) 
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2.113. Conditions for Regulating ea(kT) -» Sv 

In order to stabilize %ssX(kT) to zero, and consequently regulate e^kT) to the 

subspace Sv = N[C], matrices Kp, Tc, and Fs must exist such that the following conditions are met for 

the chosen C (refer to (2.73)): 

a) C(A + BKp)MR = 0; (2.74) 

b) Cz = 0 (same as (2.60)), 

or equivalently, 

*[|]<=N[C]; 

c) CB = 0 (same as (2.59)), 

or equivalently, 

SR[l]cN[C]    ; 

and 

d) all solutions gal (kT) of the reduced system 

L((k + l)T) = C(A + BKp)C#lsl(kT) , (2.75) 

must be asymptotically stable to the null-point 4, (kT) = 0. 

Conditions a), b), and c) are the necessary and sufficient conditions to make the subspace Sv invariant to 
#„, (kT) with respect to all initial values of £i2 eSv and all uncertain and unpredictable time-behavior 
of the disturbance and servo-command states, z(kT) and c(kT), respectively. Expression (2.75) in 
condition d) is the homogeneous difference equation for £„,, and, together with conditions a), b), and c), 

condition d) is necessary and sufficient for #„,(*T) = 0 to be an asymptotically-stable solution of (2.73). 

Condition a) in (2.74) can be stated equivalently as [76]: 

i) (A + BKp)MR = MRE , (2.76) 

for some matrix S; or 

ii) C(A + BKp) = QC, (277) 

for some Q. 
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If conditions a), b), and c) are satisfied, then (2.76) and (2.77) can be used to write (2 73) in the 
simplified form 

'£,,((* + l)7V 
■ £»2((* + l)n 

fi 

{MR)\A + BKB)Ck 

OVe     /«.^^ ^i(*y) 

(2.78) 

(M?) j | -(M?)#£ 

fc(kT} 

\z{kT)) 

In view of (2.78), the problem of stabilizing ess -+SV = N[c] = 5R[M?] can be 

restated as finding the matrices f , and f c such that conditions b) and c) are satisfied and finding the set 

K of all matrices Kp which satisfy (2.74) for the chosen C and, when that set is found, determine 

which, if any, Kp GK exist such that condition d) is satisfied 

2.11.4. Identification of the Set K of all Stabilizing Gain-Matrices A? 

Proceeding as in [76], the existence of a Kp satisfying (2.74), and subsequently the 

set K of all such Kp, can be determined by first noticing that (2.74) can be written as 

-CAMR = CBÄ,    where A = KpMR. 

Then, the necessary and sufficient condition for existence of a Ä satisfying (2.79) is that 

M[CAMR]^Vl[CB], 

or equivalently, 

rank[cß | CAMR] = rank[C5]. 

(2.79) 

(2.80) 

(2.81) 

N°te ** (2,80) fÜrther -StriCtS ** Ch0ice of R' (orig^lly defined in the text above 
(2.72)) and consequently the choice of C.    It follows that there exists a matrix Kp, satisfying 

A = KpMR and (2.74), if, and only if (2.80) (equivalently (2.81)) is satisfied. In that case, the non- 

unique solutions to (2.79) can be obtained by using the well-known expression for the general solution 

h-P c + (I -P+P)g{g is an arbitrary vector) ofthe linear algebraic equation Ph = c when ce9t[/»l. 

That is, the set of solutions to (2.79) consists ofthe A defined by 

A = -(CB)+ CAMR + [I - (CB)+ CB]Z, 
(2.82) 

where 
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Z is an arbitrary r x {n-m) constant matrix to be determined, 

I is the identity matrix, and 

(CB)+ indicates the Moore-Penrose pseudo inverse [75] of CB . 

Following the development in [76], the set K of all Kp satisfying (2.74) can be 

computed directly from (2.79) and (2.82) by again using the results in [75] (since rank[MR]= v, 
(M?)  = (MR) , where (Aß?)+ is the Moore-Penrose pseudo inverse of MR). 

H = {KP\KP= -(CByCAMR(MRf + [I - (CB)+ CB]Z(MR)* + Zc} ,       (2.83) 

where L is an r x (w-v) constant matrix to be determined. To verify (2.83), substitute the K   in (2.83) 

into A = KpMR from (2.79) and use the relationships in (2.66) and (2.70) to obtain the relationship 

A = KpMR 

= -(CB)jCAMR(MR)#MR + fl -(c£)+ CB Z(MR)*MR + LCMR 

= -(CByCAMR+ I-(CBYCS 

which is the same as (2.82). 

2.11.5. Identification of all ^,eK that Satisfy Condition d) Associated With (2.75) 

Now that the set K of all Kp satisfying (2.74) has been found, it remains to identify 

the subset consisting of those ^,eK which §Jso satisfy condition d) associated with (2.75).  For this 

purpose substitute (2.83) into (2.73), and use the relationships in (2.66), (2.68), and (2.70) to obtain the 
vector-matrix difference equation 

where 

£,,((* +1)7) 

&2«*+i)n 

Ai+ByL 0 
(MR)\A + BLC)C* 2, +B2Z 

rlAkT)^ 
ZssiikT)) 

CZ 

(MRfz 

-CB 

-(MR)«B 

'c(kT) 

(2.84) 
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A{=CAC\ 

A2 = (MR)\A - B(CB)+ CA)MR, 

BX=CB.. 

and 

B2=(MR)*B[I-(CB)+CB]. 

The conditions a), b), c), and d) above (2.75), necessary and sufficient for e^kT) to 

be asymptotically stabilized to Sv = W[im] for some R (some C ), can now be restated equivalency as 
(refer to (2.84)) 

a')    M[CAMR]cM[CB] (from(2.80)); 

b')   there exists a fs such that (2.60) is satisfied. The necessary and 

sufficient condition for existence of a f, satisfying (2.60) is given 
in (2.52); 

c')   there exists a fc such that (2.59) is satisfied. The necessary and 

sufficient condition for existence of a fc  satisfying (2.59) is 
given in (2.53); 

and 

d') there exists an r x (n-v) constant matrix L such that solutions to 
the following homogeneous difference equation are uniformly and 
asymptotically stable to the null-point ^ssl(kT) = 0: 

^,((*+i)r)=p, +£1z]^1(*7'). (2 85) 

If condition a') (expression (2.80)) is met then Kp may be chosen such that (2.74) is 

achieved. The set K of all Kp satisfying (2.74) is given in (2.83). If conditions V) and c') are met then 

a r, and Tc, may be chosen to satisfy (2.60) and (2.59), respectively. Finally, (2.85) in condition d') is 

the homogeneous difference equation for 4, with Kp from (2.83) substituted into (2.75). In view of 

condrtions a'), b'), and c'), condition d') is necessary and sufficient for £ JkT) = 0 to be an 
asymptotically-stable solution of (2.84). 

nht • „ „ • The utandard Pr0CedUre C3lled P°le Placement [3,20,21,46,47,77] can be used to 
obtain the null-point stabi ization requirement in condition d'). In that way, L is selected such that the 

eigenvalues of [A+BlL] are at sufficiently-damped locations inside the unit circle.    Due to the 
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nonsingularity of the linear transformation in (2.67) the eigenvalues of \2{ + BXL\ (together with those of 

p2 + 52Z] in (2.84)) are also eigenvalues of \2 + BKp] in (2.64). 

The existence of a suitable L that will stabilize ^ssl(kT) to zero is determined by 
examining the controllability matrix corresponding to the homogeneous system in (2.85). If the 
controllability matrix has maximum rank, 

rank^ | A,BX \ A?BX \ - \ A^B^ = n- V      , (2.86) 

then, and only then, there exists a constant feedback matrix L such that the eigenvalues of \A\ +BJL\ 

can be arbitrarily assigned [46] subject to conjugacy of complex eigenvalues. If the rank condition in 

(2.86) is not satisfied, there may still exist a suitable L that will stabilize 4, (kT) -+ 0. In particular, if 

the rank of (2.86) is less than maximum then the system defined by (2.85) can be separated into 

corresponding completely controllable and totally uncontrollable subsystems [78]. A suitable L will 
then exist if and only if all the natural eigenvalues associated with the totally uncontrollable subsystem 

are inside the unit circle ( |A,| < 1 ). This necessary and sufficient condition for the existence of L in a 

system that is not completely controllable can be stated for the discrete-time case by adapting a 
continuous-time result in [76,78] to obtain the following. 

Let R be any (n-v) X (n-v-p) matrix such that the columns of R form a basis for the 
null-space of the (n-v) x r(n-v) matrix: 

[£, \A& \A?BX \-\2^Bl]. (2.87) 

Then a matrix L satisfying condition d') associated with (2.85) exists if, and only if, all roots A, of the 

polynomial   det(lI-(R7-R)-1Rr2IR) = 0  satisfy  |A,|<1, / =  1, 2, ..., n-v-p (all eigenvalues of 

(RrR)"1Rr2,R are located inside the unit circle).    Here, the matrix (R'Rr'R^R characterizes 
the dynamics of the totally uncontrollable subsystem of the system in (2.85). 

2.11.6. Conditions for Maintaining Bounded Motions of ea(kT) Within Sw 

Conditions (2.80), (2.53), and (2.52) are the necessary and sufficient conditions for 
the existence of Kp, fc, and f, that, for a given R, will stabilize ess(kT) to the subspace 

Sv = K[MR] = Np] c N[C]. However, it remains to determine the equations and conditions necessary to 

satisfactorily maintain bounded motions of ess(kT) within the subspace &,. The differential equation 

describing the continuous-time evolution of the motions e„{t) eSv was derived in [76]. Assuming the 

conditions in a'), b'), C), and d') above (2.85) are met, the discrete-time counterpart ofthat evolution 
equation is obtained from ((2.84) as (recall that condition d') associated with (2.85) controls £ (kT) to 
zero) "' 
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Li ((* + VT) = [22 + B2Z]£SS2 (kT) + B3 
~ fc(kTJ 

where A2 and B2 are defined in (2.84), 

£3=(^)#[ll-i], 

and the norm of the uncertain vector 

k = 0, 1,2,.... 

c{kTf 
z(kT)J 

z(kT), 
(2.88) 

is assumed to be uniformly bounded for all 

The  r x (n-m)  matrix Z in (2.88) should be chosen as any matrix for which all 
solutions to (2.88) remain bounded [14]. That is, for all k = 0, 1, 2, ..., 

I<üss2 (^ ^ Af, < oo (for some positive Mi). 

This latter condition will in turn assure that ||eK(*7/)| remains bounded as k-> oo . A necessary and 

sufficient condition for the existence of an appropriate Z such that all solutions ^2(kT) of (2.88) 

remain bounded is similar to that given for the existence of a suitable L in (2 85) That is if the 
controllability matrix corresponding to the homogeneous portion of the system in (2.88) has maximum 
rank, 

rankli?. A2B2 A\B2 At1} *2] = v, (2.89) 

then, and only then, there exists a constant feedback matrix Z such that the eigenvalues of [22 + B2z] 

can be arbitrarily assigned [46] subject to conjugacy of complex eigenvalues. If the rank condition in 
(2.89) is not satisfied, there may still exist an appropriate Z such that all solutions # 2{kT) to (2 88) 
remain bounded^ In particular, if the rank of (2.97) is less than maximum then the system defined by 
(2.88) can be decomposed into corresponding completely controllable and totally uncontrollable 
subsystems as explained in [78]. An appropriate Z can be found if, and only if all of the eigenvalues 
associated with the totally uncontrollable subsystem of (2.88) are inside the unit circle (|A,|< 1 ). A 

method for determining and representing the completely controllable and totally uncontrollable 
subsystems associated with (2.88) was given in [76,78]. Using that method, one can let P be any 
v x (v - q) matrix such that the columns of P form a basis for the null-space of 

[B2 I A2B2 A\B2 Ar%}. (2.90) 

Then a matrix Z such that all solutions of (2.88) become bounded exists if, and only if, all roots Xt of the 
poIynom,al^det(AI-(P^P)->P^2P) = 0   satisfy  W<1, / - l, 2, ..., (v-,), (a„ eigenvalues of 

(PrP)-'P^2P are located inside the unit circle).   Here, the matrix (PrP)"'P^2P characterizes the 
dynamics of the totally uncontrollable subsystem of the system in (2.88). 
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Notice that if [C5] has maximal rank r, then B2 = (MR)*B\I-(CB)
+
CB] = 0 

(refer to (2.84)), and the solution to (2.88) then becomes completely independent of the matrix Z [76]. 
That is, (2.88) becomes 

&2((k + l)T) = A2ls2(kT) + B3\j0^. (2.91) 

In this special case, the motions of ~%ss2(kT) in (2.91) will depend on the initial condition ^ss2(t0), the 

matrix A2, and the behavior of the servo-command and disturbance states, c(kT) and z(kT), respectively. 

2.11.7. Systematic Procedure for Identifying the Candidate Subspaces Sv cN[C] 

Recall from the text above (2.65) that the n x (n-m) maximal rank matrix M and the 
(n-m) x V matrix R are required to satisfy 

CM = 0, (the columns of Mform a basis for N[C]) (2.92) 

rank[M] = n-m, (2.93) 

and 

rank[i?] =\<n-m. (2.94) 

Depending on the choice of/?, the columns of the matrix product MR form a basis for 
some v-dimensional (v = 0, 1, 2,..., n-m) subspace Sv =K[c] = 5R[Aff?]cN[C]. The procedure given in 

this section allows one to systematically represent all R that can be used in conjunction with MR to 
generate all v-dimensional subspaces Sv = M[MR]. The procedure for identifying candidate R matrices 
and using those matrices to perform the subspace stabilization technique is as follows. The control 
designer begins with an R of largest dimension (v = n-m) such that Sv = <R[M?] = N[C], forms a P, and 

subsequently a matrix C, according to (2.46) and (2.66) (C = C when v = n-m), and then tests R for 
satisfaction of the four conditions above (2.85) and the one condition associated with (2.88). If those five 
conditions are met, then the specific v = n-m dimensional subspace Sn.m is "suitable" in the sense that 

there then exists three matrices Kp,Tc, and f„ which may be chosen such that the closed-loop motions 

of ess(kT) in (2.64) are asymptotically stabilized to Sv =Sn_m =K[C] and the subspace S„.m becomes 

invariant with respect to the closed-loop motions of ess(kT). If not all of the five referenced conditions 
are met, the associated S„.m is not suitable, and the designer must then proceed to the next step which is to 
test all R having dimension v = n-m-1, and so on, until the subspace S = Sv of largest dimension is found 
that is "suitable." 

To illustrate how one can represent all R of a given dimension v, let Ct= PM in (2.66) 
and let /?= (ß,, ß2,..., ß„.m) be any general solution vector for the homogeneous system 
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PMß=aß= 

a 1,1 a 1,2 

a 2,1 a 2,1 

a(n-m-v),l      a(n-m-v),2 a, 

a2,(n-m) 

(n-m-w),(n-m) 

f  ß" 
ß2 

■ßn-n 

0 
(2.95) 

having (n-m-v) equations and (n-m) unknowns ß, i = 1, 2, ..., n - m, and where a has maximal rank 

n-m-v. From examination of (2.66) (PMR = 0) and (2.95) (PMß = 0), it is clear that ^c m[R]. Now 

define JT as the subspace spanned by the set of all ß satisfying (2.95) for a particular matrix a. Then let 

Rvj =h I r2 I •• I rv], v = 0, 1, 2, ..., n-m, j = \, 2, ...,      y1-™)-— where the nonzero solution 

vectors rx, r2,..., rv (r, € the set of all ß satisfying (2.95)) will form a basis for a subspace W if every 
solution vector ß e W can be expressed uniquely as a linear combination of /-,, r2,..., rv . The number v 

of the basis vectors r, is equal to the dimension of the subspace W. The number —(n~mV-— Js the 
v!(«-/w-v)! 

number of unique v-combinations of an (n - w)-set [81], or equivalently, the number of basis sets 
required to represent all v-dimensional subspaces of an («- m) dimension space, in general. 

The linearly independent solution vectors ru r2,..., rv of RVJ can be obtained by the 

method described in [82]. In that way, assume that the matrix a in (2.95) has been reduced to echelon 
form, that is, each leading non-zero entry is to the right of the leading non-zero entry in the preceding 
row. Since any matrix can be put into an echelon form, there is no loss of generality in this assumption. 
Clearly, there are more unknowns than there are equations to solve: (n-m)>(n-m-v) (if v = 0, then 
the solution to (2.95) is trivial). Therefore, there are V variables in each solution vector r, which can be 
defined arbitrarily. Now let rx, r2, ..., rv be the ß solution vectors obtained by setting one of the free 
variables equal to one and the remaining free variables equal to zero. Then the v-dimensional subspace 
fFwill have basis vectors r,, r2, ..., rv. Now recall the (n-m) x V matrix R from Subsection 2 111 
defined as any matrix such that v <:(«-/*) and rank[tf] = v. Then R may be further specified as 
consisting of the set of column vectors ru r2,..., rv. That is, 

* = [r,|r2|...|rv]. (2.96) 

The columns of R constructed in this manner form a basis for the v-dimensional 

subspace W (i.e., W = M[R]) corresponding to a particular matrix a in (2.95). For every such v- 

dimensional subspace W (or any possible matrix a having rank n - m - v), a matrix R of column basis 
vectors r„ i = l, 2, ..., v, can be formulated by the method above. The resulting R will have v2 

elements (each r, vector has v free variables and there are v such vectors) which can be selected as 0 or 
1, and V(IMW-V) elements (represented by the notation rvh ,h = l,2, ...,v{n-m- v)) that are uniquely 

determined by the individual elements of the matrix a=PM m (2.95).   Since each basis vector r, has 
(n-m)\ dimension n-m, there are then possible combinations of free variables associated with v!(ra-w-v)! 

all possible subspaces W of dimension v contained in an («-^-dimensional space, in general In light of 
this, define Rv, v - 0, 1, 2, ...,„- m, as the set of all R which can be used, in general, to generate the 

V-dimensional subspaces of an («-^-dimension space. Each R eRv will have v2 elements, defined as 0 
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or 1, and V(H-TM-V) elements represented by the undetermined variables ry.   The set Rv will contain 

v!(n-7M-v)!  matnces R=R
VJ> j = h 2, ..., -———-^—, each consisting ofv column basis vectors 

rh corresponding to the different combinations of free variables. Now define the set R, consisting of all 
sets Rv. The set R will then contain all general forms of the column basis vectors that generate any v- 

dimensional, v = 0, 1, 2, ..., n-m, subspace fF=9?[.K] contained in an (w-/w)-dimension space, in 
general. 

Now recall from Subsection 2.11.1 that the subspace Sv cX[C] is generated by the 

columns of MR (where Sv = m[MR], rankfAfl?] = v, and Mis a maximum rank matrix consisting of 

column basis vectors that generate the entire N[C], i.e., CM = 0). Therefore, as each set Rv is 

identified, beginning with R„_m, every R = R^eRv eR , beginning with R(„_m)], can be systematically 

tested for suitability using the technique described in Subsections 2.11.1 through 2.11.6. There are v(«- 
m-V) elements in each R which may remain undetermined until conditions a'), b'), c'), and d') above 
(2.85) are established. At that point a value, or range of values, may be determined for each rvh such that 
those conditions are still met. The column vectors in R can be defined as any set of linearly independent 
vectors containing acceptable values of rVA, as determined by applying the subspace stabilization 
technique described in Subsections 2.11.1 through 2.11.6. The columns ofR will form a basis for a v- 
dimensional subspace W andjhe columns of the matrix product MR will form a basis for the v- 

dimensional subspace Sv = N[c] = <R[Aff?]cN[q to which e„(kT) will be stabilized. 

2.11.8. An Example 

A specific example will assist in clarifying the method described above for 
identifying the matrices R and subsequently forming a basis for all V-dimensional subspaces 
Sv = W[MR] in the (w-Tw)-dimensional space N[C]. Note that it is not necessary to enumerate all of the 

sets Rv before performing the subspace stabilization procedure. In practice, the control designer would 

first obtain the set R„_m and then test each R„_mJ GRn_m in the subspace stabilization procedure. If all 

of those R„_mJ matrices are unsuitable, the designer then obtains the set R„_m_, and repeats the 

procedure. Enumeration of aH Rv is given here for illustration purposes only. For this example, 

suppose that the dimension of N[C] is 3. That is, n-m = 3. Then the sets Rv, v=0, 1, 2, ..., n-m 
will be: 

Ro = {0} = {Rfn}      (the null-point), (2.97) 

R1 = 

f/„ ^ 

U 

(r \ Ml 

1 

\rnJ 

fY\-\ 

\ruJ 
- \R\v Rn,Rn), (2.98) 
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R2=<! 

r21    rjjUl      0 V 1      0^ 
1      0 

lo    1 
r21      r22 O      1 

V>21      r2l) 

-{R2i, R22, R2i}   > (2.99) 

7i 0 °)1 
3 = 0 l 0 u 0 J 

W (2.100) 

and 

(column basis vectors for the entire (n-m)-dimensional K[C], hence C =C), 

R = {R0.R,,Il2,R3}. (2.101) 

The notation RVJ,  v = 0, 1, 2, ..., n-m,  j = l,2, (n-m)\ 
in (2.97)- 

v!(n-w-v)! 
(2.100) is used to denote each R eRv €R. The R0 in (2.97) is used when trying to stabilize ess(kT) to 

the null-point (C has rank «) as described in Section 2.11. R3 in (2.100) is used when trying to 

stabilize e„(kT) to the entire X[C](C=C). Since there are no ru elements to be determined in R3, this 
case, and that of Rg, is relatively straight forward. 

Any one of the set of column vectors in R, in (2.98) can be used to designate a line (a 
1-dimensional subspace) in a 3-dimensional space. For instance, the basis vector 

R = RU = 

r,..\ 
'12 with ki=o 

1/12=0 

designates the line along lx lying on the ess3 -axis as illustrated in Figure 2.1. 
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ess3 

k ess2 

essi 

Figure 2.6 Illustration of Two Lines eu l2 (1-Dimensional Subspace) in 3-Space. 

Likewise, the vector Ru in (2.98) 

R = Rn = 
(r \ I Ml 

1 \r„ = I 
with   f11 

IM2=0 

designates a line along t2 in the essl - ess2 plane having slope c, as illustrated in Figure 2.1. The 
alternative basis vector Rn in (2.98) can also be used to represent the same line along t2 in the ess, - ess2 
plane having slope c: 

R = Rn = 

\ruJ 

,  with   f»~c 

1M2=0 

Any one of the basis vectors in R, in (2.98) can be used to represent any line in 3-space having non-zero 
eSsi, ess2, and ess3 components (except for the point (0,0,0)). Similar logic can be applied to each 
RVJ GR2 in (2.99). For instance, the column basis vectors 

R — i?22 = 

1      0 

'21      r22 

o    \) 
with [r2I=0 

k2=0 
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will designate a plane (a 2-dimensional subspace) in a 3-dimensional space, namely the essl - ess3 plane as 
illustrated in Figure 2.2. 

essi - essi plane 

essi 

Figure 2.7 Illustration of a Plane (a 2-Dimensional Subspace) in 3-Space. 

Beginning with the formulation of the set R3 in (2.101), the control designer chooses 
R-R31 for the largest subspace W3 associated with (2.100), determines M from (2.92) and (2.93), and 

forms the matrix product MR (a basis for the 3-dimensional subspace S3 = K[C]). The matrix C is then 
formed according to (2.46) and (2.66), and the four conditions above (2.85) and the one condition 
associated with (2.88) are verified. If those five conditions are met, S3 is considered suitable and uMcT) 
u,(kT), and up(kT) are chosen according to (2.61), (2.62), and (2.63). If those five conditions are not met! 
the designer must form the set R2 in (2.99) and repeat the process with R2U R22, and R23, and so on until a 
suitable subspace Sv = 9?[ jHR] having largest dimension v is found. A detailed block flow diagram is 

shown in Figure 2.3 to illustrate the design of a digital servo-tracking controller using the subspace 
stabilization process presented in this Chapter. 

Clearly, the number of elements of RVJ in R increases with the dimension of the 
subspaces Sv cN[C]. Therefore, this technique will become labor-intensive for subspaces Sv with 
relatively large dimension. The number of elements N in the set R can be calculated exactly using the 
binomial expansion theorem in [81 ], that is 

N 
^v!(« 

(n-m)\ 
•w-V)! 

=2" (2.102) 
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Therefore, a null-space K[C] of dimension n-m = 5 would have N = 25=32 candidate i?v, matrices to 
evaluate (including the special cases of R = 0 (the null-point) and R = I„.m, a basis for N[C]). Note that 
the matrix C, and the values of n and m were not needed in representing the set of all R, rather the 
difference    n-m    (the    dimension    of    X[C])    is    the    only    property    of    C    utilized. 
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Overt A S, C, D, E,F,G,H 

N°      It is Impossible to 
"" achieve y(f)=y4f) 

Choose ^according to (2.34) 
Compute ÄB,E,FH according to (2.18), (2.23), and (2.36) 
Choose M according to (2.92) and (2.93) 
Choose v=n-m;y=1 

©—Q 
Form the set R» according to the procedure 
subsection 2.11.7 

lure in    I 

©—Ö 
Choose /^R„cHv 
Form MR 
Choose C according to (2.46) and (2.66) 

Chooseri according 
Form u>{l<T) according 

to (2.60) I 
9 to (262) I 

Choose Tcaccording to (2.59) 
Form uJkT) according to (261) 

GotoQ 

*-GotoQ 

Select Z by the method in subsection 2.11.6 
Form /^according to (2.83) 
Form üp(/fT) according to (2.63) 
Form u[KT) according to (255) 

All Subspaces Exhausted 
No Solution Exists 
Recheck condition (233) 

Figure 2.8 Block Flow Diagram for the New Digital Servo-Controller Design Procedure. 
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2.12. Summary of the New Digital Servo-Controller Design Procedure for the Ideal Case 

If the plant, disturbance, and servo-command states {x(kT),z(kT),c(kT)} are available for 
accurate, real-time measurement (the ideal case), then the digital servo-controller chosen as in (2.61), 
(2.62), and (2.63) can be implemented directly as 

2tkT) = rcz(kT) + rsc(kT)-Kp(6c(kT)-x(kT)), (2.103) 

where Tc, Ts, and Kp are selected to satisfy the four conditions above (2.85) and the one condition 

associated with (2.88). 

2.13. Practical Realization of the Discrete-Time Servo-Controller 

The digital servo-controller design methodology developed in the previous sections of this 
chapter is an extended state-feedback design technique. To implement such a state-feedback controller 
design, the states x(kT) and z(kT) of the composite system and the servo-command state c(kT) must be 
measurable or estimatable in real-time. The idealized control law in (2.103) uses the real-time value of 
the disturbance state z(kl), the plant state x(kT), and the servo-command state c(kT). In practical 
applications, it is rarely possible to measure those three states. Recall that, for this research, it is 
assumed that the current "sampled" value of the plant output vector y(kT) and the current "sampled" 
value of the servo-command vector yJJcT) are the only quantities available for direct measurement. 
Consequently, discrete-time state estimation algorithms (observers) must be designed to estimate the 
value of the plant, disturbance, and servo-command states in real-time. 

In order to design the composite state-observer and the observer for the servo-command state 
c(kT), the composite system and the servo-command model must be completely observable. That is, 
every element of each state x(kT) and z(kT) must affect one or more of the plant outputs and every' 
command state c(kT) must affect one or more of the servo-commands. In that case, an observer can be 
designed in either a full-order or reduced-order form. A full-order observer reconstructs (estimates) for 
example, all elements of each of the states x(kT) and z(kT) of the composite system. Thus, if the 
composite system is (n + pf-order, then a full-order observer will also be (» + pf-order. A reduced- 
order observer reconstructs, for example, only the state elements of (x, z) that are not directly measurable 
through the y(t) measurements. An obvious advantage of using a reduced-order observer is that it has 
lower dimension than a full-order observer. 

Two observers will be needed for implementing the digital servo-tracking controller 
developed m this chapter. The first will be chosen to be a discrete-time full-order observer using 
"sampled" measurements of the plant output y(kT) and the control input u(kT) to obtain the real-time 
state estimates x(kT), 2(kT), x((k + l)T), and z{{k + \)T) of x(kT), z(kT), x((k+l)T) and z((*+l)7), 

respectively. The second observer will be chosen as a discrete-time reduced-order observer and will use 
the "sampled" measurements of the servo-commands yc(kT) to obtain the discrete-time estimates c(kT) 

of the servo-command states c{kT). The use of those discrete-time state-estimators will result in a 
physically-realizable digital servo-tracking control law having the form (refer to (2.55), (2.60), (2 61) 

50 



iKkT) = Tcz(kT) + Tsc{kT) - KJ0c(kT) - x(kT)). (2.104) 

2.13.1. Development of Discrete-Time Composite Models of the Plant, Servo-Command, 
and Disturbance System 

The discrete-time composite plant/disturbance model was given in (2.26). However, 
for reasons identified in Section 2.6 the terms y(kT) and cr(kT) in (2.26) have been disregarded! 
Ignoring those terms results in the following truncated composite plant/disturbance model which will be 
used in the discrete-time full-order observer design 

x((k + l)Tj 

z((k + l)n 
A FH 

Iz(kT)) + 
,0, 0 b 
-u(kT) 

y(kT) = (C\0) 
'x(kT)) 

(2.105) 

z(kT)J 

The discrete-time state-model for the servo-command in (2.36) will be used in the discrete-time reduced- 
order observer design. For reasons discussed in Section 2.7, the /l(kT) term in (2.36) is ignored, 

resulting in the following truncated servo-command model which will be used in the discrete-time 
reduced-order observer design 

yc(kT) = Gc(kT) 

c((k + l)T) = E(kT)c(kT) (2.106) 

2.13.2. The Design of a Discrete-Time Full-Order State-Observer for the Composite 
System in (2.105) 

In principle, accurate real-time estimates x(kT) and z(kT) of the plant states x(kT) 
and the disturbance states z{kT) can be obtained from "sampled» on-line measurements of y(kT) and 
u(kT) using conventional observer theories. In [33], a discrete-time DAC composite observer Aeory is 
developed which.achieves this estimation by extending modern control observer/estimation theory A 
unique feature of the DAC observer theory in [33] is the incorporation of the disturbance model 72 25) 
into   the   observer  dynamics.      This   is   accomplished   using  the   (n+p)-dimensional   composite 

ta m m°del " (2'105)"  The reSU,ting diSCrete-time m-°^T 0^erVer f- (" 105)Se 

x((k + l)TJ 

A(k+i)n 
FH 

D 

fz. x{kT) 
+ 1 

,0, 
u(kT) + 

Kn 

K, 02. 

x(kTj 
-F1 Hc\°)7~-ym 

Kz(kT). 
(2.107) 
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where u(kT) is given in (2.103) and KQ = 
K, 01 

.-^02 

is the observer gain-matrix to be designed. 

The time-evolution of the estimation error e, where sis defined by 

s = sx(kT) 

e,m. 
tfx(kT))    (x(kT) 

z(kT)J    Kz(kT) 
(2.108) 

for the discrete-time full-order observer (2.107) is determined by forward shifting (2.108). The result is 

£x((k + l)TJ]    (x((k + l)T))   (x((k + l)T) 

£2((k + l)T)J    Vz((k + l)T)J    Kz((k + l)T). 

£,{kT). 

(2.109) 

A + KmC FH 
f 

K02C D \ 

ex(kTJ 

The observer "gain matrix" K0  should be designed so that the observer error 

always converges to zero promptly, from any initial condition.  This can be achieved if, and 
£2(kT)J 

only if, the states x(kT) and z(kT) of (2.105) are completely observable, that is, if, and only if 

where 

rank CT 1 *-o   1 
JTC1 Aa *--o 

r 1 AT1CT 1. 1 n0   *-0    1 
1 ~r+p-l   _■ 

" 1 A0          '-'0 

An ~ A FH 
5 -"o 

0 D 

■n + p, 

and 

C0=(C|0). 

Note that the choice of control sample-period T affects the outcome of the complete observability rank 
condition. If that rank condition is achieved, standard pole placement techniques [3,20,21,46,47,77] can 
be used to determine an appropriate KB. In that way, K0 is selected such that the eigenvalues of the 
matrix (refer to (2.109)) 

A + K0iC 

K02C 

FH 

D 
(2.110) 
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are at sufficiently-damped locations inside the unit circle ( |A,| < 1 ) of the complex-plane. Designing K0 

to achieve this latter condition will assure that the estimated values x(kT) and z(kT) of the plant and 

disturbance states quickly and accurately track the corresponding actual plant and disturbance states 
x(kT) and z(kT), respectively. 

A detailed block diagram of the discrete-time full-order observer in (2.107) is shown 
in Figure 2.4. The "unit delayor" shown in Figure 2.4 is a one-step delay commonly denoted by E"1 and 
defined such that E^xikT) = x((k - 1)7). 

u(kT) 

B 

y(kJ) 

Koi 

^ K02 

x((/c+1)7) 

z((k+1)T) 

Unit 
Delayor 

/\+KoiC 

FH     "I 

K02C 

x(kT) 

k\ 

Unit 
^    Delayor   — 

D      - 

\_      z(kT) 

Figure 2.9 A Discrete-Time Full-Order Observer for Generating Real-Time Estimates of the Plant State 
x(kT) and Disturbance State z(JcT). 

2.13.3. The Design of a Discrete-Time Reduced-Order State-Observer for Estimating 
the Servo-Command State c(kT) 

In this section, a discrete-time reduced-order observer design is presented that will 
generate servo-command state estimates c{kT) from the «sampled" real-time servo-command 

measurements j^7) An effective «recipe" for designing a discrete-time reduced-order state-observer 
was developed m [33]. That "recipe" will be used here, with slight modifications to specifically addZ 
state estimation for the servo-commands. y duuress 

.   +, The f-fcated discrete-time state-model in (2.106) for the servo-command is used 
here m the construction of the discrete-time reduced-order observer.  Since them's / = 12       w are 
assumed to be linear independent servo-commands, the matrix G will have rank m     ' "" 
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The following is a summary of the "recipe" presented in [33] for construction of a 
discrete-time reduced-order observer for the servo-command state c(kT): 

Step 1. define Tn as any v x (v-m) maximal rank matrix such that 

GT12 = 0. 

(The 5R[r12] of the Tn which meets this condition will necessarily form 

a basis for NTG] ); 

Step 2. a) define the (v-m) x v matrix 

Tn={TnrTnf
lT1

T
2, 

and 

b) define the wxvmatrix 

G*=(GGT)~lG; 

Step 3. a) construct the (v-m) x (v-m) matrix 

V=fnETn, 

and 

b) construct the m x (v-m) matrix 

*= GETn; 

Step 4. construct the error-dynamics evolution equation 

£yc((k + l)T) = [V+^'»]Eyc(kT), (2.ill) 

where S is an    (v-m) x m    arbitrary observer design matrix to be 
determined; 

Step 5. design 2 in (2.111) such that eVt (kT) -> 0 rapidly, 

(This can be achieved if, and only if, the servo-command state c(kT) is 
completely observable, that is, if, and only if 

ranldV | ETGT \ ETlGT \ - \ Er"G7 
= v. 
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In that case, standard pole placement techniques can be used to place the 
poles of [Z>+E#] at sufficiently damped locations inside the unit 
circle); 

StepJL        construct the "filter" part of the reduced-order observer 

m + W) = {V+^)^kT) + [(fu^GYEG^)-{V+^^Y]ycikTy,        (2.112) 

and 

Step_7. construct the "assembly-equation" portion of the observer 

W) = Tn%kT) + [G#T -Tl2z\yc(kT), (2.113) 

where 

c(kT) represents the estimate of the servo-command state vector c(kT), 
and 

\ is an auxiliary vector defined in step 6 above. 

ninv   .        . A detailed block diagram of the discrete-time reduced-order observer in (2.112) and 
(2.113) is shown in Figure 2.5. 

yo{kT) 

V+3& 

*  (7i2+SG)(£G*>(p+l»g 

G*T-T,2L 

Figure "0 ÄÄOT"M1" °bserver *" Ge"era"ng Rea'"Time Es,iraa,es of ,he w 
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3.   ADD-ON   ENHANCEMENTS   TO   THE   NEW   DIGITAL   SERVO-TRACKING 
CONTROLLER 

3.1.    Modification of the Digital Servo-Controller Design Procedure to Reduce Intersample 
Misbehavior 

The digital servo-controller terms (u£kT), uJikT), up(kT)) developed in Sections 2.10 through 
2.11 utilize a stepwise-constant zero-order-hold (z.o.h.) type of control action. This means that the 
control decision which is made at each sample time / = kT, k = 0,1,2,..., determines a value for u(kT) 
that remains constant until the beginning of the next sample time. With the exception of the special cases 
where w(t) and yc(t) are constants or stepwise-constants, this particular implementation of the digital 
servo-tracking controller, as developed in Sections 2.10 through 2.11, does not smooth out the stair-step 
behavior of the control input u(kT) and thus cannot reduce the intersample misbehavior in y(t) that occurs 
between the sample times. 

As discussed in Subsection 1.5.2, intersample misbehavior, or "ripple," is the build-up of 
error between the desired response (servo-command vector >>c(/)) and the actual response (plant output 
vector y(t)) that occurs between the sample times kT<t< (k+l)T. This error build-up can arise due to 
intersample time-variations of the uncertain servo-commands and the disturbances or can be due to open- 
loop instability of the plant. Conventional digital-controllers use holding circuits (first-order hold, 
second-order hold, exponential hold, etc.) as a means of smoothing out the control input signal before it 
is applied to the plant as a means of reducing intersample misbehavior of y(t). However, those 
conventional holding circuits do not attempt to intelligently select the control-action for the next sample- 
period based on the intersample waveform behaviors that w(t) and y£t) are anticipated to exhibit. 
Consequently, those conventional attempts fall short when the plant is subjected to uncertain, time- 
varying external disturbances, or is required to track uncertain, time-varying servo-commands [38]. In 
those cases, it is possible to select a smarter holding-strategy that will significantly improve the 
intersample tracking accuracy of the overall closed-loop system. 

In [38], a technique was introduced for computing and implementing an intelligent holding- 
strategy for discrete-time controlled plants subjected to uncertain, unmeasurable, time-varying 
disturbances and uncertain, time-varying servo-commands. The technique in [38] achieves a level of 
robustness to disturbances and a degree of intersample servo-tracking accuracy that is unobtainable by 
conventional discrete-time control design methods. Specifically, that method provides the capability of 
intelligently selecting, at each t = kT, a time-varying intersample control-action «(/), kT<t<(k + \)T, 

based on the intersample waveform behaviors that both the servo-command^/) and disturbance w{i) are 
predicted to exhibit, as determined by current estimates z(kT) and c(kT) of the disturbance state z(kT) 
and the servo-command state c(kT) at the sample time t = kT, k=0, 1,2,.... It will now be shown how 
the intelligent holding-strategy developed in [38] can be incorporated into the new digital servo- 
controller design technique developed in this report. 

3.1.1.   Reconsideration of the Servo-Tracking Error Equation 

The result in [38] will be incorporated into the new digital servo-controller design 
technique in this report with the exception that the up(kT) control term in (2.63) will remain as it was 
derived in Chapter 2. The servo-controller design method in [38] is based on the idea of regulating e (t) 
to zero between consecutive samples; however that condition is unnecessarily restrictive in the design of 
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Up{kT). It is only necessary to design up(kT) to regulate ejf) to some subspace Sv Q*[C]. Therefore, 

the up(kT) control term developed in Chapter 2 does not need to be modified when adapting (2.103) to 
utilize the intersample holding strategy in [38]. 

The uJJcT) and us(kT) control terms in (2.61) and (2.62) must be modified in order to 
adapt the intersample holding strategy developed in [38]. To accomplish this modification, it is first 
necessary to reconsider the servo-tracking error sjtj) in (2.2). Substituting (2.1), (2.31), and (2.34) into 
(2.2) yields 

£y{t) = yc{t)-y{t) 

= Gc(t)-Cx(t) . (31) 

= C(6c(t)-x{t)) 

And now introduce the continuous-time servo-state vector ejt) (continuous-time counterpart to (2 38)) 
defined in [37] as 

A 
ess{t) = ec{t)-x(t), (32) 

such that (3.1) can be re-written as 

sy(t) = Cess(t). (33) 

. The continuous-time equation for the servo-state vector ejfi is of interest because the 
objective of the intersample holding-strategy is to minimize the continuous-time intersample build-up of 
tracking error eft) that occurs between the sample times. Doing so requires examination of the 
continuous-time dynamics of ess{t). Differentiating (3.2) and substituting in (2.1), (2 20) (2 31) and 
(2.34), yields the following differential equation for the dynamics of the servo-state vector e'ss: 

e»(0 = *c(0-*(0 

= Oc(.t)-(Ax(t) + Bu(t) + Fw(t)) . (34) 

= d(Ec(t) + //(/)) - (Ax(t) + Bu(t) + FHz{t)) 

Incorporating (3.2) and rearranging terms in (3.4) yields 

ess(t) = Ae^t) - Bu(t) + (0E - A6)c(t) - FHz(t) + 0M(t). (3.5) 

The terms {0E - AG)c(t) - FHz(t) + 0M(t) in (3.5) are disturbance-like effects 

caused by the external disturbance w(t) and the uncertainties of the servo-command^/). The particular 
term 0M(t) ,s a consequence of the sparse sequences of totally unknown, random impulses ftt) inherent 

m the servo-command modeled in (2.31). For reasons discussed in Section 2.7, the *t) (and hence the 
Ofi(t) term) is hereafter ignored and (3.4) is rewritten as 
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ess(t) = Ae„{t) - Bu(t) + (OE - A6)c{t) - FHz(t) . (3.6) 

Certain technical conditions must be met in order to cancel the disturbance-like 
effects of the uncertain motions c(t) and z(t) on the servo-state vector e„(0 in (3.6) and consequently on 
the servo-tracking error e^t) during the intersample interval. Those conditions govern the design of the 
improved intersample holding-action for the digital servo-tracking control terms uc and us and will be 
discussed as needed in the design procedure. 

3.1.2.   Decomposition of the Servo-Tracking Control Effort 

In order to develop an enhanced digital servo-control law (algorithm for generating) 
u(kT) that uses an intelligent holding-strategy to achieve high-performance intersample servo-tracking, a 
control-effort decomposition similar to the control-effort decomposition in Section 2.9 will be used. This 
technique consists of splitting the total (vector) control-effort u into a sum of two individual (vector) 
terms as follows 

«OMO + KpW, (3.7) 

where the notation «(•) is temporarily being used to indicate that the control effort may consist of both 
discrete and continuous terms, and where 

usc(-) is designed to accomplish reduction of intersample error build- 
up due to the effects of the disturbance w(t) and the disturbance- 
like effects of the servo-command jc(/), and 

Up(kT) is designed by the technique in Section 2.11 and will stabilize 
ess(kT)  to  some  subspace   Sv cNJC]   while  achieving  an 

acceptable closed-loop settling-time for the servo-tracking error 
By, assuming ««.(•) is performing its tasks. 

The final form of the «(•) in (3.7) will meet the strict definition of a discrete-time 
controller in the sense that the control action «(•) is updated onjy at the discrete times t = kT 
k-0, 1, 2, ..., based on real-time measurements (or estimates) of the plant, disturbance, and servo- 
command states {x(kT), z(kT), c{kT)} available at the beginning t = kT of each sample-period As 
discussed in Subsection 1.5, the discrete-time servo-control algorithm is realized by digital processors 
and the resulting servo-controller is referred to as a digital servo-controller. Following a line of 
development similar to that in Section 2.9, substitute (3.7) into (3.6) and group terms to yield the result 

e„ (t) = Ae„ (0 - Bup (•) + ((OE - A 0)c{t) - FHz(t) - Busc (•)). (3.8) 

The disturbance-cancellation condition governing the ideal design of the control term 
««(•) in (3.8) is the condition for total cancellation of the disturbance-like terms (0E - A0)c(t) - FHz(t) 

in (3.8) over each interval kT< t <(k + \)T. Mathematically speaking, ««(•) must satisfy 

(OE - A0)c(t)- FHz{t)-Busc{t) = 0;    \/kT<t<(k + l)rand V c(t) andz(t),(3.9) 
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which can be written as 

[0E-A0\-FH}{?^-Busc(t) = O. (3.iO) 

Since y/f) and w(t) originate from completely different (and uncorrelated) sources, in general  the 
necessary and sufficient condition for existence of a usc(t) satisfying (3.10), for all c(t) and z(t), is 

raak[0E-A0\FH\B] = rank[B], (311) 

which is equivalent to the two simultaneous conditions 

nmk[FH \ B] = rank[5], « j 2) 

and 

nmk[0E-A0\B] = rank[B]. (3 13) 

That is, W[FH]c9i[B] and W[0E - A0]cW[B]. 

Proceeding as in Section 2.9, the decomposition in (3.12) and (3.13) suggests that the 
control term «„in (3.7) can be further split into two terms as follows 

«*(•) = «„(•) + «,(■), 

so that (3.7) is rewritten as 

u(-) = uc(-) + us(-) + up(kT). (314) 

In (3.14), «c(.) is responsible for reducing the intersample build-up of error due to the effects of the 
disturbance W(t) and „,(.)  is responsible for reducing the intersample build-up of error due to the 
disturbance-hke effects of the servo-command^/).  Mathematically, the tasks of „ (•) and u M are 
ideally, to achieve the identities 

FHz(t) + Buc(t) = 0; VkT<t<(k + 1)7 and Vz(/), (3.15) 

and 

(0E-A0)c(t)-Bus(t) = O; VkT<t<(k +1)7 and Vc(/). (3.16) 

rfrt cnn,W H        h ^ WaT^i* SeCti°n Z9' ^^ fa * techmCal P°Ssibility ** the vectors c« and 
*) could be such that (*S-^0-/**(/). 0. In that fortuitous case the value M  (0 = 0 can be 

nS" I" (3r9)rd thU,S(311) iS ^ n0t neCeSSa^   This *■*** condition is highly unlikelv in practical applications and is not addressed further in this report. unlikely m 
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The design of the control terms we(-) and us(-) will be accomplished by first 
developing the continuous-time cancellation conditions and corresponding continuous-time controller 
terms uc(t) and us{t), and then discretizing those terms into their digital counterparts uc(kT) and us(kT), 
respectively. 

3.13.    Conditions for Complete Cancellation of Disturbance-Like Terms on the Servo- 
State Vector g„ 

The control terms uc and us satisfying (3.15) and (3.16) exist if, and only if (3.12) and 
(3.13) are satisfied. Those expressions imply that 

FH+BTc=0, (3.17) 

and 

(0E-A0)-BTS=O, (3.18) 

for some rxp matrix T  and some r x v matrix T . 

Assuming the necessary and sufficient conditions in (3.17) and (3.18) are met, the 
continuous-time control terms wc(f) and ujt) satisfying (3.15) and (3.16), respectively, may be chosen 
(ideally), during the intersample interval kT< t < (k + \)T, as 

"c(0 = r>(0, (3.19) 

and 

us(t) = Tsc(t) ■ (3.20) 

As discussed in Section 2.13, it is assumed that the digital control decisions at time 
t = kT must be based on measurements, or estimates, of the states z(t) and c{t) available at each of the 
times t = kT, k = 0, 1, 2, ... . Therefore, the predicted or forecasted behaviors of z(t) and c(t) across 
each intersample interval must be represented in terms of z{kT) and c(kT). Proceeding as in [38] that 
relationship is found in the general solution to (2.20) and (2.31) evaluated at each / over the interval from 
kTto t = (k+l)T. In particular, 

and 

where 

z{i) = eD('-kT^z(kT) + rc(t); kT<t<(k + l)T, 

c(t) = eE(-kT^c{kT) + rs(t); kT<t<(k +1)7, 

rc(t) is a residual-effect given by rc(t) = f eD('~T)a(T)dr, 
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and 

rs(t) is a residual-effect given by rs(t) =. f eE{'~T]>(r)rfr. 

The residual terms rc(t) and rjf) are an accumulation, from t = kT to /, of the effects of unknown, 
unpredictable, sparse impulses o(0 and /</) respectively (refer to (2.20) and (2.31)). For reasons 
discussed in Chapter 2, the o(/) and /</) impulses, and consequently the r£i) and rs(t) terms, are 
disregarded during the digital-control design process. Substituting (3.21) and (3.22) into (3.19) and 
(3.20), and disregarding the residual terms, results in the final (idealized) form of the wc(/) and us(t) terms 
of the enhanced digital servo-tracking controller 

uc(t) = rce
D^z(kT)        , (3.23) 

and 

us(t) = rse
E«-kT>c(kr). (324) 

The control terms uc(i) and us(t) in (3.23) and (3.24) generate a continuous-time 
open-loop control-action where the entire intersample variations of uc{i) and H,(>) over each sample 
interval are determined at the beginning, t = kT, of each of the intervals kT<: t < (k + \)T. Because those 
control decisions are updated only at the discrete times / = kT, k = 0, 1, 2,..., us and uc are, by definition 
discrete-time controllers. Since those control terms are both discrete and time-varying they are more 
appropriately represented by the notation uc(t;kT) and us{t;kT), such that (3.23) and (3.24) are rewritten as 

uc(t;kT) = rce
D^k%(kT); kT<t<(k + l)T, (3.25) 

and 

us{t;kT) = Tse^-^c{kT); kT<t<{k + \)T. (3.26) 

5£-tT ?f COn»l^f0n refreSented by (3-25) and (3-26> wiI1 hereafter be referred to as digital/continuous" (D/C) control. 

The ideal choice for utfJO) and us(t;kT) in (3.25) and (3.26) assumes one can 
directly measure the states z{kT) and c(kT) in an on-line fashion. In reality, those states are typically not 
accessible for direct measurement, therefore the solution in (3.25) and (3.26) is not physically-realizable 
Consequently, accurate estimates of the states 2(kT) and c(kT) must be generated from the real-time 
sampled measurements of y(kT) and yc{kT). A procedure for generating such estimates z(kT) and 

c(kT) and composing the physically-realizable solutions 

uc{t;kT) = Tce
D^z(kT), (3 2?) 

and 

uAf,kr) = rse
E^k^c(kT), 

(3.28) 
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will be presented in Subsection 3.3.3. 

3.1.4.   Final Form of the Digital/Continuous Servo-Controller for the Ideal Case 

If the plant, disturbance, and servo-command states {x(kT), z(kT), c[kT)} are 
available for direct and accurate measurement (the ideal case), then the digital servo-controller chosen as 
in (3.25), (3.26), and (2.63) can be expressed as 

u(t; kT) = uc (/, kT) + us (/, kT) + up (kT) 

(3.29) 
= Tce

D^z{kT) + Tse
E^c{kT) - Kp (0c(kT) - x(kT)) 

where the gain matrices Tc and Ts are selected to satisfy (3.17) and (3.18) and the gain-matrix K is 

selected as described in Section 2.11 with 5 = 0 and j = 0 throughout the design. Selecting the gain- 
matrices in this way will stabilize ejt) to Sv =X[C]cN[C] while achieving an acceptable closed-loop 
settling-time for ey = yc - y. 

3.2.    Enhancement of the Digital Servo-Controller Design to Provide Robustness to Plant 
Parameter-Perturbations 

Up to this point, the development of the new digital servo-tracking controller in this report 
has been carried out under the assumption that the designer has knowledge of the exact values of the 
plan parameters (the elements of the A, B, C, and F matrices in (2.1)). However, in real-world control 
problems, knowing the exact values of all those parameters is rarely possible. Uncertain deviations from 
the nominal design values of the plant parameters is often caused by modeling errors or variations in 
component hardware  characteristics.     Whatever the  cause,  such parameter «perturbations"  can 
significantly reduce the level of closed-loop tracking-performance obtained by a controller that is tuned 
for nomjnaj parameter values. Consequently, the degree to which a servo-tracking controller-algorithm 
can resist tocking-performance degradation, and "accommodate" uncertain parameter perturbations is a 
measure of the robustness level of the servo-tracking controller.  To address parameter uncertainty and 
achieve robust control, a portion of the linear adaptive control method developed in [34 35 391 will be 
incorporated into the proposed digital servo-design methodology.   For this study, onty p^attons 
(denoted by AA) ir.the nominal value of the A matrix in (2.1) are considered. Methods for modeling and 
accommodating AB, AC, and AF perturbations are discussed in [34,35,39]. 

3.2.1.   Incorporation of the Plant-Parameter Perturbations AA into the Servo-State e 
Dynamics " 

In order to investigate the effects of plant-parameter perturbations A^, it is necessarv 
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x(t) = Ax(t) + Bu(t) + Fw(t) 

y(t) = Cx(t) ' (3-3°) 

where all components of (3.30) are defined as they were in (2.1) and, in addition, the array of elements av 

in the plant's A matrix are assumed subject to uncertain perturbations M as follows 

A = AN+AA, (3.3i) 

where 

AN   = 

M  = 

an n x n known, constant, real-valued matrix representing the 
nominal A matrix, and 

an n x n matrix consisting of uncertain and unmeasurable 
stepwise-constant (or slowly-varying) parameter-perturbations 
&tyi = l, 2, .... H;    y = l, 2, ...,«. 

Substituting (3.31) into (3.30) yields 

i(0 = ANx(t) + Bu(t) + Fw(t) + AAx(t) 

y(t) = Cx(t) ■ (3-32) 

Substituting (3.32) and (3.2) into the differential equation in (3.4) for the servo-state vector ess(t) yields 

ess(t) = 0c(t)-x(t) 

= 0(Ec(t) + p(t))-(ANx(t) + Bu(t) + Fw(t) + AAx(t)) (3.33) 

= ANess(t) - Bu(t) + (0E - AN6)c{t) - FHz{t) - AAx(t) + 6M(t) 

For reasons identified below (2.36), the /</) term in (3.33) is ignored and (3.33) is rewritten as 

e„(0 = ANess(t) - Bu{t) + {OE - A9)c{t) - FHz(t) - AAx(t) . (3.34) 

3.2.2.    Introduction of an Ideal Model for the Servo-Tracking Error Sy{t) 

A. u       J
Il0l,1?Wi?8 the Hne °f devel°Pment '" [34,35,39], the ideal behavior of (3 34) is 

assumed to be modeled by the "ideal model" K      ' 

ess(t) = Amess(t) 

sy(t) = Cess(t)   ' (3.35) 

where Am is «»customer or designer-specified "ideal" nxn matrix. In some applications the matrix .4 

S-ft TMI" TS °f "ideal" °r "deSlred" eigenValues of *- W- In that "ase, the t^7ma will hereafter denote the characteristic polynomial of Am, where ' 
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Pm(Ä) = An +ßnÄ
n-1 + - + ß2Ä + ß, (3.36) 

and where the ßt in (3.36) are known coefficients corresponding to the specified ideal eigenvalues of Am. 
The extended task of the enhanced digital servo-tracking controller is to make (3.34) behave like (3.35) 
in the face of all anticipated uncertainties and initial conditions. 

3.2.3.   Introduction of the D/C Control Term ua to Accommodate Plant Parameter- 
Perturbations A4 

Adapting the technique in [34,35,39] for accommodating the A4-effects in (3.34) 
requires that a control term ua be added to the digital servo-tracking controller expression in (3.14) and 
that the up(kT) control term in (2.63) be redesigned. Thus, (3.14) will be rewritten as 

«(•) = "<(•) + «,(•) + up(kT) + u£)      , (3.37) 

where 

wc(0 = u<lt;kT) as developed in Subsection 3.1.3, 

"*(•) = Us(t;kT) as developed in Subsection 3.1.3, with A replaced by AN from (3.31) 
throughout the design process, 

up(kT) is designed to stabilize ess(kT) to  Sv =v[c]cV[C]  while achieving the 

specified "ideal model" characteristics in (3.35) for the closed-loop dynamics 
of the servo-tracking error Sy, 

uJs) is designed to accomplish reduction of intersample error build-up due to the 
disturbance-like effects caused by the uncertain plant-parameter variations AA. 

Substituting (3.37) into (3.34) and grouping terms yields 

e„{t) = ANess(t) - Bup(-) + ((0E - A9)c{t) - Bus(-)) - (FHz(t) + Buc()) 

-(AAx(t) + Bua(-)) (3-38) 

Assuming (3.15) and (3.16) are achieved, it remains to design wa() to cancel the disturbance-like term 
AAx(t) in (3.38). Mathematically speaking, «„(■) must satisfy 

-(AAx(t) + Bua(t)) = 0. (339) 

The necessary and sufficient condition for existence of a ua satisfying (3.39) is that 

AAx(t)Qm[B];       V/. 

in which case 
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AAx(t) = Br(t), 

for some j{t), and thus, theoretically, ua(t) can be chosen as 

««(0 = -r(0- 

(3.40) 

(3.41) 

There is no way to predict or directly measure the A^-effects as reflected in the AAx(t) term in (3.40). 
Therefore, the u£) as chosen in (3.41) is not physically-realizable. Following the line of development in 
[34,35,39], the design of a physically-realizable control term «„(•) that satisfies (3.39) is expedited by 
using a novel dynamical model of the time-evolution of the parameter-perturbation term AAx(t) as it 
appears in (3.34). That model is developed in the following Section. 

3.2.4. A Dynamic Model for the Time-Evolution of the Plant Parameter-Perturbation 
Term AAx(t) 

Recall from (3.31) that M is a completely unknown and unmeasurable nxn matrix 
of stepwise-constant perturbations 8a y, written as 

AA = 

8an    han 

5a7,    8a 
5a In 

'21 22 8a In 

\P°n\ 6a, «2 ••   6a. 

(3.42) 

where some 6a, may be known, a priori, to be zero. As explained in [34,35,39], real-time identification 
of the perturbations 8a, m (3.42) require complex identification techniques that result in complicated 
n°n^T,ow"TCeSSmg alg°rithmS aSSOdated With *" COntrol decision Process- The unique approach 
in [34,35,39] to designing a control law for ua is to view the product (AA)x(t) in (3 34) as an uncertain 
time-varying parameter disturbance-vector w^t) (an uncertain time-varying input as discussed in Section 
ä.JJ, wriixcn as 

"„(') = 
W«2(0 

^(0- 

= -(AA)x(t). (3.43) 

and then to recognize that w^t) has a knowable waveform-structure which allows one to estimate the 

SS2 ZÄSSÄ^ state-obse™ simiIar t0 *-used for estimating -^1 
Let wa(t) represent the observer-generated estimate of w£) obtained from such an 

observer. It was shown in [39] that, if M and/or |K(,)-wa(,) |, are sufficiently small, the closed-loon 

eqmuaZat,0nS indePendem e,ementS W°,{t) ln (343) m d0Sely modeled *the known^Sd 
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^(0,^^(0, + ß2 ^kW + ßlWai(0 = 0;/= 1,2,..., n,       (3.44) 
Ä"        '"     rf/"'1 "     dt 

where the /?;'s shown in (3.36) are precisely the same /?,'s that appear in (3.44). 

Using the technique for representing waveform-structured input behavior, as 
described in Section 2.5, expression (3.44) can be utilized to develop a model for the dynamic behavior 
of the uncertain disturbance-term wj(t) in (3.43). The result is the following /Aorder, vector-matrix 
state-model for wj(t) 

-(AA)x(t) = wa(t) = Haza(t) 

za(t) = Daza(t) + <Ja(t) 
(3-45) 

where zjtf) represents the "state" of the parameter disturbance-vector wJit) and the elements of the vector 
a^f) are unknown, sparse sequences of impulses that are the source of the uncertain, occasional "jumps" 
that may occur in (AA)x(t). If the perturbation matrix M is completely arbitrary, then the Ha and Da 

matrices in (3.45) are specified by the following block diagonal matrices: 

and 

where 

Ha = dmg(h0,h0, ...,h0) 

Da = diag(D0,D0,...,D0); 

(3.46) 

(3.47) 

H0 is an nxn2 matrix, 

Da is an ri x»2 matrix, 

Ao = (l,0,... ,0) 3 an «-dimensional row vector, 

and 

' 0 1 0 ...      o 
0 0 1 ...      o 

D0 = • ■ 
;                      an nxn matrix 

0 0 0 ...      i 

.-A -Ä -Ä - -A. 

If the perturbation matrix AA is not completely arbitrary (if certain components of AA are known to 
always be zero), then the vector h0 will only appear in the rows of Ha corresponding to the non-zero rows 
of AA. Similarly, D0 only appears in the corresponding positions in Da. This will reduce the dimension 
of the matrices Ha and Da, and consequently reduce the number of perturbation-related state-variables 
zBi that require estimation [34]. 
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3.2.5.   Design of the ua(t;kT) Control Term to Completely Cancel the Parameter- 
Perturbation Vector AAx(t) 

The model in (3.45) can be used as a close approximation of the AAx(t) effects as they 
appear in (3.38). Incorporating the w/t) model in (3.45) into the cancellation condition in (3.39) yields 
the requirement on uj^f) as 

(Haza(t)-Bua(t)) = 0. (3.48) 

Since the state zJJ) in (3.48) is completely arbitrary, the necessary and sufficient condition for existence 
of a ua satisfying (3.48) for all zjf) is 

rank[B\Ha] = rank[B], Q49) 

or equivalently, 

<R[#0]c:5R[Z?]. 

If (3.49) is satisfied, then it is possible to obtain a (possibly nonunique) matrix Ta 
such that 

Ha-BTa=0, (350) 

in which case the control term uj(t) in (3.48) can be chosen to have the ideal structure 

wo(0 = rozo(/) , (351) 

during the interval kT <L t < (k + 1)7 . Recall, however, that the digital control decisions at time / = kT 

must be based on measurements, or estimates, of the state zjj) available at the beginning of each sample- 
interval t - kT, k = 0, 1, 2, ... . Therefore, the predicted or forecasted behavior of za(t) across each 
intersample interval must be determined in terms of za(kT). This relationship is found in the general 
solution to (3.45) evaluated at each t over the interval from kTXo t = (k+\)T 

za(0 = eD'(,-kT)za(kD + ra(t) ; kT£t<(k + l)T, (3.52) 

where r0(f) is a post-sample residual-effect given by ra(t)= ( eDA''T)aa(r)dT. 

The ra(t) term is a consequence of the totally unknown, unmeasurable, sparse 
unpulses aa(t) m (3.45) that may arrive after t = kT, and which are the cause of the uncertain, intersample 
jumps   that may occur in the parameter disturbance vector (AA)x(t).   For reasons discussed below 

(3.22), the effects of the <ra(0 impulses cannot be predicted or accounted for and consequently the ra(t) 
term in (3.52) is ignored.   Substituting (3.52) into (3.51), ignoring the residual term, and using me 

?n°rn°fntha('; P t0 d/"ot«"digital/contin^^" (D/C) control, results in the following final (ideaLd) 
torm of the ua term of the digital servo-tracking controller 

ua(t;kT) = rae
DA'-^za(kT). (3 53) 
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3.2.6.   Design of the up(kT) Control Term to Achieve the Ideal Model Characteristics 
in (3.35) 

The up(kT) control term in (2.63) must be redesigned in order to accommodate the 

A/4-effects.  To accomplish this, Kp in (2.64) is designed to achieve the ideal model characteristics in 

(3.35).    The control designer must choose  Kp  according to the subspace stabilization technique 

presented in Subsection 2.11.1, with A replaced by AN and A replaced by AN =eA"T throughout the 

design process, and with the restriction that the eigenvalues of (2X +Bxl\ and (22 + B2Z) in (2.84) 

(which are also the eigenvalues of [2N + BKp\ ) are selected to match the eigenvalues of Am=eA"T for 

Am defined in (3.35). That is, L and Z are chosen to satisfy 

det XL- 
AX+BXL 0 

0 A2 + B2Z 
= det[U-Am], (3.54) 

where Ax, Bx, A2, and B2 are defined in (2.84). The (ideal) digital-control term up(kT) is then chosen 
as 

up{kT) = -Kpess{kT) 

= -Kp(0c(kT)-x(kT)) 
(3.55) 

33.    Summary of the Enhanced Digital Servo-Controller for the Ideal Case 

If the plant, disturbance, servo-command, and parameter disturbance states 
{x(kT), z{kT), c(kT), za(kT)} are available for direct, real-time measurement (the ideal case), then the 
enhanced digital servo-controller can be implemented ideally as 

«('; kT) = uc (t; kT) + us (/; kT) + up (kT) + ua (t; kT)   , (3.56) 

where the terms u£;kT) and uA.t;kT) are given in (3.25) and (3.26), uJit;kT) is given in (3.53) when 
&A*0 and ua{t,kT) = 0 when AA = 0, and up(kT) is designed as in Subsection 3.2.6 when the term 
uAt;kT) is included, or as in Section 2.11 when ua (t, kT) = 0 

3.3.1.   Practical Realization of the Enhanced Digital Servo-Controller 

Two state-observers were designed in Chapter 2. The same discrete-time reduced- 
order state-observer described in Subsection 2.13.3 is used here to estimate c(kT) of the servo-command 

state c(kT). Estimates x(kT), z(kT), and za(kT) of the plant state x(kT), disturbance state z(kT), and 
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the parameter-perturbation state za(kT), respectively, will be obtained from a modified form of the 
discrete-time full-order state-observer in (2.107). This modified state-observer, called a "hybrid 
composite state-observer" [33], differs from the discrete-time full-order state-observer described in 
Subsection 2.13.2 in that the hybrid full-order state-observer uses a D/C control input u(t;kl) as opposed 
to the stepwise-constant z.o.h.-type of control input u(kT) used by the discrete-time full-order observer. 
The particular hybrid composite state-observer to be presented in Subsection 3.3.3 is based on the ideas 
in [33]. 

332.   A Discrete-Time Composite Model of the Plant, Disturbance, and Parameter- 
Perturbation Dynamics 

In order to design the hybrid full-order state-observer, a composite system must be 
obtained. Substituting (3.43) into (3.32) yields 

x(t) = ANx(t) + Bu(t) + Fw(t) - wa (t). (3.57) 

A discrete-time model for (3.57) can be determined by the same procedure used in Section 2.6 to obtain 
(2.18). In that way, the following difference equation is obtained (assuming u(t) = u(kT) = constant): 

x((k + l)T) = ANx{kT) + Bu(kT) + FHz(kT) + y(kT) - va ((k + l)T), (3.58) 

where B , FH, and f are as derived in (2.18) and (2.23) (with .4 replaced by AN), AN = eA»T, and 

vfl((* + \)T = £eA»<T-T>wa(T + kT)dr. (3 59) 

Note that va((k + l)T) is similar to the v ((* + 1)D-term in (2.18). The term 

v((k + l)T) requires knowledge of w^r) (actually (AA)X(T)) over the entire sampling-interval 
kT£ T£(k + l)T.Jn general, at the time / = *rit is impossible to accurately and consistently predict the 

!Zlf atLr "V* TCertf"' "nmeasurable <*uanti<y (A^Wr) over the remainder of that sampling- 
interval. Therefore to make (3.58) practically useful, it is necessary to further investigate and 
approximate the term v.((* + l)T) in (3.59). The V.((k f 1)7) term can be simplified by incorporating 

the waveform-model in (3.45) for the time variations of -(AA)x(r) = Wa(r). Substituting rfor / in 
(3.45) and substituting the result into (3.59) yields 

v.((* + l)r= [e^^Haza(r + kT)dT. (36Q) 

solution ofzM is w^ttenas4^ "* """* *** * *°" "" * ^ ^ fa ^ *» ^neral 

*.(r) = *i*(r,tfX(«)+ l^iT^cr^dt, (361) 
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where O^, represents the state-transition matrix for matrix Da in (3.45).  Substituting (3.61) into (3.60) 
and simplifying terms yields 

va((k + l)T = Haza(kT) + ya(kT), (3.62) 

where 

Ha = £eA"lT-T)Hae
IkndT, 

and 

ya(kT) = jVr-T>tfa [eD°^aa(£+kT)d&T. 

Consolidating (3.58) and (3.62) yields the "exact" discrete-time plant-model 

*((* +1)7) = ANx(kT) + Bu(kT) + FHz(kT)- Haza(kT) + y{kT) - ya(kT),    (3.63) 
y = Cx(kT) 

which is mathematically equivalent to (3.58) under the model assumption in (3.45) and under the 
assumption that «(/) = u(kT) = constant. 

A discrete-time model for the time-evolution of zJikT) can be developed by letting 
T^(Jo+{k + \)T) in (3.61) and recalling from the comments below (2.18) that (k+l)T denotes 
t0+(k+l)T to obtain 

Za({k + \)T) = Daza(kT) + öa{kT), (3.64) 

where 

•D0 = e        ; Dais assumed constant, 

and 

afa(kT)= £eD°^aa(t+kT)dt. 

Expressions (2.25), (3.63), and (3.64) can now be combined to form the composite 
discrete-time model 

70 



x((k + \)T) 

z((k + l)T) 

{za((k + l)T)J 

y(kT) = (C \0\0) 

AN FH ~Ha 

0 D 0 

0 0 »a 

(x(kT)^ 

+ 0 

.0, 

u(kT) + 

\ 

z{kT) 

W&T)) 

r(kT)-ya(k1j 

a(kT) 

SaikT)      ) 

x(kT) 
.(3.65) 

z{kT) 

\za(kn 

However, the model in (3.65) is obtained under the assumption that the control-action 
remains constant between the sample times (u(t) = u(kT) = constant) and therefore is not an accurate 
model when a D/C control-action is used. In that case, (3.65) must be modified to include the time- 
varying portion of the D/C servo-control in (3.56). Across each of the sampling intervals, the control- 
action governed by (3.56) can be divided into a discrete-time part up(kT), that consists of a stepwise- 
constant zero-order-hold type control-action, and a continuous "time-varying interpolating" [33] part 
u,(-). Thus, U(T) can be written as 

(3.66) u(r) = up(kT) + ut(T); kT<r<(k + l)T, 

where up(kT) is constant in value between consecutive sample times and 

",(r) = ua(r,kT) + uc(r,kT) + us(r,kT) (3.67) 

is the portion of u(t;kl) in (3.56) that is allowed to vary with time across each intersample interval. 

fi c^ T J 
The time-varying nature of "<(*) changes the structure of the discrete-time model in 

(3.65). In order to modify (3.65) to accurately reflect the time-varying nature of the D/C servo-control in 
(3.56), it is necessary to return to the general solution of (3.57) 

x((k + l)T)) = eA»Tx(kT) + [eA»^Bu{T)dT + v ((* + 1)7) - va ((* + \)T),    (3.68) 

and incorporate (2.23), (3.62), and (3.66) to obtain 

x((k + l)r» = ANx(kT) + leA"V-*fyp (kT> + u, (r)]rfr + FHz(kT) 

+ r(kT)-Haza(kT)-ra(kT) 

Since up(kT) is constant, it can be factored out of the integral in (3.69), resulting in 

(3.69) 

x((k +1)7-)) = ANx{kT) + Bup{kT) + ¥(ut)+FHz{kT)+y(kT) 

~Haza(kT)-ya(kT) 
(3.70) 

where 
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ys(u,)= (eA"(T-T)But{r)dt 

Using (3.69), the composite discrete-time model from (3.65) is rewritten to accurately 
reflect the time-varying nature of the digital servo-controller in (3.56) 

For AA = 0: 

x((k + l)T)) 

z((k + l)T) 
A FH 

0 b 
x(kT) 

z(kT) 

y(kT) = {C\0) 
x(kT) 

U(*r) 

+ (l)Up(kT)+(!^)Jzm 
[OJ pK    '   \   0   )   {a(kT). 

(3.71) 

and 

For A/4 *0: 

x((k + l)T) 

z((k + l)T) 

{za((k + l)T)J 

AN 
FH -Ha 

0 D 0 

0 0 »a 

(z< 

x(kT) >    (fr 

z(kT) 

Ua(kT)J v°y 

up{kT) + 
K",)l 

o ; 

y(kT)-ya(kT) 

a{kT) 

<ra(kT) 
(3.72) 

M^) = (C|0|0) 

x(kT)) 

z(kT) 

ua(m 
The quantities y(kT), ya(kT), a(kT), and 5a{kT) in (3.71) and (3.72) are 

completely unknown, unpredictable, and unmeasurable "residual-effects" [33,34]. The y(kT) and 

5{kT) are consequences of the sparse, uncertain a(t) impulses associated with the external disturbance 

model for w(t) in (2.20) and the ya(kT) and 5a(kT) are consequences of the uncertain a^t) impulses 
associated the parameter perturbation model in (3.45), each of which arrive in a random, time-sparse 
manner during the intervals between each of the sampling instants kT < t < (k + \)T. The aa(f) impulses 
are similar to the unpredictable and uncontrollable a(t) impulses discussed in Section 2.6. For the 
reasons jstated below (2.26), the o(t) (and also the (ra(t) term), and consequently the 
Y(kT), ya{kT), 5{kT), and aa{kT) terms as well, will be ignored. Thus (3.71) and (3.72) are rewritten 
in the truncated form 
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For AA = 0: 

r*((*+1)7^1 

K*({k + \)T)) 
AN FH (x{kT)\ + (B\ 

[z(kT)J    [oj L° b _ 

«.(Ärr) + V(M,) 
(3.73) 

and 

ForA/J*Q: 

JK*7>(C|0) 
x(kT) 

x((k + l)D 

z((k + l)T) 

Vza((k+ l)D. 

*N FH ~Ha 

0 D 0 
0 0 4 

Jc(/fc7/) 

z(kT) 

Vza{kT)) 

ffr 

K*J 

|V(»,)) 
uJkT) + 

V   u   y 

M*T) = (C|0|0) 

'JCCAT^ 

z(AT) 

Ufl(*7V 

(3.74) 

3.3.3.   The Design of Hybrid Full-Order State-Observers for the Composite Systems 
in (3.73) and (3.74) 

The hybrid full-order state-observer for the composite system in (3.73) is obtained by 

—— I in (3.73) to the discrete-time full-order observer equations in adding the control-related term ' ^"'' 

(2.107) as follows: 

(£((k + \)ff) A FH 
\z(kT)J    { {z((k + \)T)j 0 b 

Kn 

K, 02 
(clo)[fg)-^' 

(3.75) 

where K0 = 
K, 01 

L-^02 J 
is precisely the same observer gain-matrix designed in Subsection 2.13.2. 
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The hybrid full-order state-observer for the composite system in (3.74) is obtained by 
incorporating the composite model from (3.74) into the discrete-time full-order observer equations in 

(2.107) and adding the control-related term in (3.74) as follows: 

0   ) 

(x((k + i)r)^ 
= 

AN FH ~Ha fx(kT)^ 
+ 0 up(kT) + 

(V(",V) 
z{{k + \)T) 0 D 0 z(kT) 

{za(kT)) 
0 

Kza{{k + \)T)) 0 0 A, 
- 

-^01 

^02 

•^03 

(C | 0 | 0) 

(x(kT)y 

z(kT) 

<2AkT)) 

-y(kT) 

(3.76) 

where K0 = 
M>1 

K, 02 

K, 03 

is an observer gain-matrix to be designed. 

The general evolution equation for the error dynamics of the hybrid full-order state- 
observer in (3.76) is obtained in the same manner as (2.109), using the composite system from (3 74) 
The result is as follows: ' 

f ex((k + l)T) \ 

£z((k + l)T) 

f £ 

K*:a((k + l)T)J 

x((k + l)T)) 

z((k + l)T) 

(x((k + l)T)) 

za((k + l)T)J 
z((k + l)T) 

,za((k + l)n 

AN + K-O\C FH -Ha {ex{kT)\ 
K02C D 0 £2{kT) 
KmC 0 A, 

(3.77) 

error 
6x(XT) 

As discussed in Subsection 2.13.2, it is desirable to design K0 so that the observer 

sz(kT) approaches zero promptly. This can be achieved if, and only if, the states x(kT) z(kT) 
^(kD) v   A  i   /. 

and Za(kT) are completely observable, that is, if, and only if 

rank Q>  I A) C0 I A   C0 
'■»j. rpn+p+n 

■n+p+n 
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where 

A> = 
AN FH -Ha 

0 D 0 

0 0 4 

and 

Co=(C|0|0). 

In that case, standard pole placement techniques are used to determine an appropriate K0 . In that way, 

K0 is designed such that the eigenvalues Xt of the block-matrix (see (3.77)) 

AN+K01C FH -Ha 

K02C D 0 
KmC 0 Da 

(3.78) 

are at sufficiently-damped locations inside the unit circle ( |A,| < 1) of the complex plane. Designing K0 

to achieve this latter condition will assure that the estimated values x(kT), z(kT), and za(kT) of the 
plant, external disturbance, and parameter-perturbation states, respectively, quickly converge to and 
accurately track the corresponding actual plant state x(kT), disturbance state z(kT), and parameter- 
perturbation state Za(kT). 

A detailed block diagram of the hybrid full-order observers in (3 75) and (3 76) is 
shown in Figure 3.1. This hybrid full-order observer replaces (2.107) as presented in Subsection 2 13 2 
when the add-on enhancements in Chapter 3 are incorporated into the new digital servo-controller   The 
dashed lines in Figure 3.1 are the components of the hybrid full-order observer in (3.76) that differ from 
the discrete-time full-order state-observer shown in Figure 2.8. 
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Figure 3.1  A Hybrid Full-Order Observer for Generating Real-Time Estimates of the Plant State x(kT), 
Disturbance State z{kT), and Parameter-Perturbation State za(kT). 

Incorporation of the discrete-time reduced-order state-observer (from Subsection 2.13.3) and 
the hybrid full-order state-observer in (3.75) for M = 0 or in (3.76) for AA * 0 will result in a physically- 
realizable implementation of the digital servo-control law in (3.56) having the form 

u{t;kT) = Tce
D^z{kT) + Tse

E^kT^c(kT) - Kp(0c(kT) - x{kTJ) 

+ YaeD^za{kT) 
(3.79) 

3.4.    Improved Tracking Performance through Multirate Sampling 

Up to this point in the design of the digital servo-tracking controller, the periodic samplers of 
the system output data y(t) and command input data yc(t) have been assumed to operate in a fully 
synchronized manner with the same sampling-period T (sampling-rate 1/7). In conventional digital- 
control this is called a single-rate system. Although single-rate systems comprise the vast majority of 
implemented digital control systems, there also exist practical, digitally-controlled systems which utilize 
two or more synchronized samplers operating at different sampling-rates. Such systems are referred to as 
multirate digital control systems. 
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Practical applications where a multirate digital-control system is used can be found in aircraft 
flight-control systems where the flight-control data-link computer typically operates at a rate different 
from the rate of the radar antenna [80]. Multirate sampling is sometimes introduced deliberately into the 
controller in order to improve system performance. A digital controller operating at a higher rate than 
the basic sampling-rate for the system measurements is an example of this sort of situation [79]. It was 
shown in [58] that properly designed, multirate digital controllers can achieve higher performance than 
those using single-rate sampling. 

In principle, the new digital servo-tracking controller as developed in Chapters 2 and 3 can 
utilize different sampling-rates to achieve a level of servo-tracking performance that cannot be matched 
using a single-rate servo-controller. There are many different ways of implementing the digital servo- 
tracking controller in (3.79) as a multirate servo-controller. For example, each of the control terms in 
(3.79) could be implemented at a different sample-rate determined by individual design specifications, or 
by analysis of the problem requirements. 

A particular multirate implementation technique that has been used in many practical 
applications is the technique involving two distinct and synchronized sample-periods, Tc and Ty, 
associated with the two distinct vector-inputs, yc and y, to the digital servo-tracking controller u(t;kT). 
The first sample-period Tc is associated with the real-time measurements, or processing, of the servo- 
command vector y^t). Updates of the servo-command data are assumed to be available every t = kTc, 
k = 0, 1, 2, ... . The second sample-period Tj, is associated with the measurements, or processing, of the 
plant-output vector X0- The sample periods Tc and Ty are synchronized and assumed to have the integer- 
multiple relationship 

Tc = r,Ty 

where 7 is a positive integer. This particular multirate system is illustrated in Figure 3.2. 

w(t) 

(3.80) 

yc(t)    S- 
Multirate Digital 
Servo-Tracking 

Controller & 
Corresponding 

State-Estimators 

u(t;kTy;kTc), 
B o^ x(Q J y(t) 

Figure 3.2 Configuration of a Two-Rate Type of Multirate Digital Servo-Tracking Controller. 
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In the implementation of (3.79) as a two-rate type of multirate digital servo-controller, the 
control terms associated with the plant run at the sample-rate \ITy and the control terms primarily 
associated with the servo-command yc(t) operate at the different sample-rate 1/TC=1/(TJT) For 

example, the control terms uc and ua in (3.56) would typically run at a higher sample-rate \ITy in order to 
better respond to changes in the external disturbance w[t) and parameter perturbations AA. On the other 
hand, the control terms us and up in (3.56) would typically not require processing at that same rate and 
could be implemented to run at the slower rate \ITC. In that case, the physically-realizable digital servo- 
tracking controller from (3.79) would have the form 

u(t;kT;kTy) = uc(t;kTy) + us(t;kTc) + up(kTc) + ua(t;kTy) 

ri iK,-try)SfkT .    r   E(t-kT)UlrT, _ * (az(]rT s _ c,,rr a •   (3.81) >z(kTy) + Tse
E^c{kTc) - Kp(0c(kTc)- x(kTc)) 

+ 1>z>„(,-*7;,)f 

For this example, the hybrid full-order state-observer in (3.76) would be implemented using 
sample-period Ty while the discrete-time reduced-order state-observer in (2.113) would be implemented 
using sample-period Tc. Those state-observer designs will yield the state estimates x(kT ), z{kT ), 

za(kTy), and c(kTc). If any of the digital-control terms involve intersample, time-varying components, 

the y/(ut) term in the hybrid full-order state-observer design must be computed as (refer to (3.70)) 

Hut)=^e^^But{r)dr. (3.82) 

Notice that the control term up(kTc) = -Kp(0c(kTc)-x(kTc)) in (3.81) requires estimates 

x(kTc) of the plant state *(0 at each of the times t = kTc, k = 0,l, 2, .... However, those state estimates 
are generated for the sample-period Ty by virtue of the hybrid full-order state-observer running at sample- 
rate VTy. Also, recall that it is assumed in this Section that the samplers are synchronized and the 
sample-periods have the integer-multiple relationship given in (3.80). Then the necessary estimate 
x(kTc) may be obtained by passing x(kTy) through a zero-order-hold device having a hold time of Tc. 

The digital servo-tracking control law in (3.56) can be modified to take full benefit of the use 
of multiple sample-rates. For example, the particular multirate servo-controller in (3.81) can be altered 
such that an inherently unstable, or highly-oscillatory, plant (AN matrix having poles in the right-half 
complex plane or on, or near, the imaginary axis) would be controlled and stabilized at the higher 
sample-rate l/Ty. In that way an additional control term, postulated in continuous-time as 
uam (0 - Kmx(t), should be designed such that the continuous-time homogeneous equation 

m = (AN+BKm)x(t), (383) 

has certain specified eigenvalues. For that purpose, Km should be selected such that 

det[AI- (AN+BKm)]=Pm(A), (384) 

where Pm(X) is given in (3.36) and the matrix^ in (3.35) is replaced by the composite matrix A^BKm, 
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Am ~ 4N + BKm. (3.85) 

The discrete-time counterpart to the design of Km in (3.83) is to choose Km to obtain 

det[AI-(^ +$Kmj\ = det[M-Am], (3M) 

where, 

A„=eA"T>, 

B=['eA»(T>-T)BdT, 

Am = eA"T>; for A, defined in (3.85), 

and select 

uam(kTy) = Kmx(kTy). (387) 

Assuming the ideal choice for u^ (kTy) in (3.87) is implemented, the control terms us(t;kTc) 

in (3.26) and up(kTc) in (3.55) would be designed using the new A matrix. That is, the term AN (or A) 
would be replaced by AN + BKm (or A + BKm) and AN (or A) would be replaced by the matrix 

exponential e^**-* (or JA ^^ ) throughout the design of u&;kTc) in Subsection 3.1.3 and up(kTc) 
m Subsection 3.2.6 (for M * 0) or Section 2.11 (for AA = 0). In that way, the improved ideal muhirate 
servo-controller equation in (3.81) becomes 

i/(r;^;Arc) = wc(?;^) + Mi(/;^c) + Mp(^) + Ma(/.^) + u^(yt^) 

= rce
D('-kV2(kTy) + rse^'-^c(kTc) " (3-88> 

- *p(0c(*rc) - X(kTc)) + i>ß«"-^fl(*7;) + j^) 

Estimates f(^), *(«;), f0(^), and c(^c) are obtained from a discrete-time reduced- 
order and hybrid foil-order state-observer as described in Subsections 2.13.3 and 3.3 3 respectively 

Ä££ State-0bSe™S Wi" reSU,t ^ 3 P^^-Hzable, multirate se^Sg" 
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4.    SOME ILLUSTRATIVE EXAMPLES AND SIMULATION RESULTS 

4.1.    Description of the Examples to be Considered 

In this chapter the new digital servo-tracking controller design procedure, developed in 
Chapters 2 and 3, is applied to several specific examples to illustrate the effectiveness of the design 
process and the closed-loop performance. In particular, the following examples and subcases are 
considered: 

Example 1) An unstable second-order plant with a stepwise-constant disturbance w(t) and a stepwise- 
constant servo-command y^t). A digital servo-tracking controller u(kT) is designed by the 
subspace stabilization method presented in Chapter 2. Simulation results are presented to 
illustrate the servo-tracking performance. 

Example 2) A third-order plant with a stepwise-constant disturbance w(t) and a stepwise-constant 
servo-command yc(t). A digital servo-tracking controller u(kT) is designed by the subspace 
stabilization method presented in Chapter 2. Simulations results are given to illustrate the 
servo-tracking performance and to show the motions of the servo-state vector ess(kT) 
within the N[C] ; 

Example 3) A statte first-order plant with a step+ramp disturbance w(t) and a step servo-command 
y^t). A digital servo-tracking controller is designed and simulation results are given for the 
following four subcases: 

Subcase 1) a plant with known, constant parameters controlled by a digital servo- 
controller u(kT) using conventional stepwise-constant (z.o.h.) control-action 
(from Chapter 2); 

Subcase 2) a plant with known, constant parameters controlled by a digital servo- 
controller u(t;kT) using one form of digital-continuous control-action (from 
Chapter 3); 

Subcase 3) a plant with constant, uncertain parameters controlled by a digital servo- 
controller u{t;kT) using digital-continuous control-action (from Chapter 3). 
This is compared with the results for the same plant and uncertain parameters 
using stepwise-constant (z.o.h.) control-action u(kT); and 

Subcase 4) a plant with constant, uncertain parameters controlled by a multirate servo- 
controller u(t;kTc;kTy) using digital-continuous control-action (from Chapter 

Example 4) An unstable first-order plant with a step+ramp disturbance w(t) and a constant+exponential 
servo-command yc(t). A single-rate u(t;kT) (Subcase 4a) and multirate u(t;kTckTy) 
(Subcase 4b) servo-controller utilizing digital-continuous control-action (from Chapter 3) is 
designed and simulation results are given for the case of known, constant plant parameters 
and the case of constant, uncertain plant parameters; and 
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Example 5) An unstable second-order plant with a (step+ramp) x exponential disturbance w(t) and a 
stepwise-constant servo-command yc(t). A single-rate u(t;kT) (Subcase 5a) and multirate 
u(t;kTc;kTy) (Subcase 5b) servo-controller utilizing digital-continuous control-action (from 
Chapter 3) is designed and simulation results are given for fixed plant parameters and for 
constant, uncertain plant parameters. 

4.2. Example 1: Digital Servo-Tracking Control Design Utilizing a Stepwise-Constant 
(z.o.h.) Control-Action «(AT) for the Case of a Second-Order Plant and Stepwise- 
Constant Servo-Command jc(0 Subjected to a Stepwise-Constant Disturbance w(t) 

The purpose of Example 1 is to illustrate the digital servo-tracking controller design 
techniques presented in Chapter 2. This example is worked for the case of a digital servo-controller 
using stepwise-constant (z.o.h.) control-action u(kT). Simulation results are provided for the example 
plant. 

4.2.1.   Plant, Disturbance, and Servo-Command Models for Example 1 

The plant for Example 1 is modeled by the following second-order differential 
equation: 

Kt) = u(t) + w(t). (41) 

The disturbance w(t) is an uncertain, unmeasurable stepwise-constant disturbance represented by 

Mt) = ch (42) 

where c, may "jump" in value from time-to-time.   The interval between successive jumps in c, is 
assumed to be somewhat larger than the sampling-period T. 

The state model for the plant in (4.1) is easily determined by choosing xl(t) = y(t), 
and x2 = y(t) as follows: 

x(t) = Ax{t) + BvHt) + Fw(t) 

y(t) = Cx(t) ' (4.3) 

where 

"0   1" 
, B = 

"0" 

[o oj 1 A-: :.*«:.     F^ C=(I,  0,). 

* u ■ J -,_ i\simi,ar state model is developed for the disturbance *</) in (4.2) using the 
techniques descnbed m Section 2.5, by noting that, between jumps in c„ the disturbance W) s governed 
by the linear homogeneous differential equation S 

•^O- (4.4) 
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Using the methods described in Section 2.5, the state model for w(t) is obtained as 

w(t) = Hz(t) 

z(t) = Dz(t)+<j(t)   ' 
(4.5) 

where 

D = 0, 

and 

cr(t) are uncertain, sparse sequences of impulses that "cause" the occasional "jumps" 
in the disturbance w(f). 

Using the technique described in Section 2.6, discrete-time models are obtained for 
the plant and the disturbance. Those models are (the sample-period T is held as a variable throughout the 
computations): 

Plant: 

*((* + l)T) = Ax(kT) + Bu(kT) + FHz(kT) + y(kT) 
y(kT) = Cx(kT) 

where 

(4.6) 

A = eAT = 
1    T 

0    1 

B = [eA{T-T) 
Bdr = 2 

T 

and 

FH=^eA{T-r)FHeDzdr = 2 

T 

C = {\,   0), 

y(kT)= leA^FH[eD^a(Z)d&T; 
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represented by 

Disturbance: 

w(kT) = Hz(kT) 

z((k + \)T) = Dz(kT) + Z(kT)   ' (4-7) 

where 

H = \, 

D = eDT = e0T = l, 

a(kT) = |reD(r-«o-(^+ kT)d$. 

The servo-command yjj) is assumed to be an unknown stepwise-constant command 

where c, may occasionally jump in value at unknown times. 

The linear homogeneous differential equation governing the motions of yj{t) in (4.8) 
between jumps in c, is 

*c(') = 0. (49) 

A state model for the servo-command y^t) is obtained using (4.9) and the method 
outlined m Section 2.5. That state model is obtained as 

yc(t) = Gc(t) 

c(t) = Ec(t) + M{t)   ' (4-10) 

where 

G=\, 

E=0, 

and 

MO are unknown, sparse sequences of impulses that "cause" the sparse uncertain "jumps" in the servo- 
command^/). 

Using the technique described in Section 2.6, a discrete-time model is obtained for 
the servo-command. In that way, this model is written as 

yc(kT) = Gc(kT) 

c((k + l)T) = Ec(kT) + Ji(kT) ' (4-11) 

83 



and 

where 

G=l, 

E = eET=e0T=\, 

M(kT) = |V(r-V# + kT)d£. 

For reasons discussed in Chapter 2, the unknown, unpredictable terms  y(JcT), 
er(kT), and JKjcT) in (4.6), (4.7), and (4.11) are disregarded throughout the design process. 

4.2.2.   The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for 
Example 1 

The objective is to design a digital servo-tracking controller for the plant in (4.1) such 
that the tracking-error, defined by 

ey(0 = yc(0-AO, (4.12) 

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first 
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is 
that the vector servo-command input ^c(/) must consistently lie in the column range-space of the plant- 
output matrix C in (4.3) for all /. In the present example, satisfaction of this condition requires that (from 
(2.33)) 

9J[G]c5R[C] . (4.13) 

If (4.13) is satisfied, then it is possible to express G as some linear combination of the columns of C. 
That is, G = C0 for some possibly nonunique 0. Substituting C and G from (4.3) and (4.10) into G = C0 
yields 

1 = (1,   0)0. (414) 

Expression (4.14) is satisfied for the following 0: 

'0 
e = {o) ■ (4-15) 

The discrete-time models for the plant (4.6), disturbance (4.7), servo-command 
(4.11), and the 0determined in (4.15) will now be used to design a digital servo-tracking controller using 
the design techniques presented in Chapter 2 of this report. 
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4.2.3.   The Necessary and Sufficient Conditions for Stabilizing  ea{kT)  to S* for 
Example 1 

The control task is to design a discrete-time control algorithm for u(kT) such that the 
servo-state vector ess(kT) defined in (2.38) becomes stable to and invariant for a subspace 

Sv =NJC]cN[C], for some C in (2.46), having largest dimension v, v = 0, 1, ..., n-m. To perform 

this task, begin by choosing v = n - m = 2 -1 = 1 (the dimension of N[C] is 1). The n x {n-m) maximal 
rank matrix Mis chosen such that (same as (2.92)) 

CM = (\,   0)M = 0, 

where M is selected as 

M = {lj- (4-16) 

Next, form the set R„_m according to the procedure given in Subsection 2.11.7. For Example 1, that set 
is 

R„-M=R, ={!} = {*.,}• (4.17) 

Since the R„_m contains only one element, we choose R = RU, form the matrix product 

and choose C according to (2.46) and (2.66), in which case, 

C = C = (l,  o). (418) 

Now  the   necessary  and   sufficient  conditions   for   ess(kT)   to   be   asymptotically   stabilized   to 

S, =N[C] = N[C] for the A, B, FH, E, 6, M, R, and C  in (4.6), (4.11), (4.15), (4.16), (4.17), and 

(4.18) are as follows (refer to the conditions on page 62) 

condition a': K[CAMR] c 5R[ÖB]; (from (2.80)), 

or equivalently, 

rank[C5 | UAMR] = rank[c£];       (from (2.81)), 

where 
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rank[CB | CAMR) = nmk = 1. 

and 

rank F*l- rank = 1. 

Clearly, condition a' is met; 

condition b': there exists a f, such that (2.60) is satisfied. The necessary and sufficient condition 

for the existence of a f s satisfying (2.60) is (same as (2.52)) 

rank^C 0E-CA0 | c£] = rank[c£], 

where 

rank[cBE - CA0 \ cS] = rank 0 = 1, 

and rank[ci?j = 1 was determined in condition a' above. Clearly, condition b' is met 

and Ts is chosen to satisfy (same as (2.60)) 

C[0E-A0-Bfs] = -—Ts=0. 

A f, that satisfies (4.19) for Example 1 is 

f,=o. 

The digital control term us(kT) in (2.62) can thus be chosen ideally as 

us(kT) = fsc(kT) 
= 0c(kT) ' 

(4.19) 

(4.20) 

(4.21) 

condition c':        jhere exists a f e such that (2.59) is satisfied. The necessary and sufficient condition 
for existence of a fc satisfying (2.59) is (same as (2.53)) 

rank CFH   CB = rank [CB], 

where 
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rank CFH CB = rank 
2 TK 

and rankjci?] = 1 was determined in condition a'. Clearly condition c' is met and Fc 

is chosen to satisfy (same as (2.59)) 

condition d' 

(4.25) is 

BTC + FH 
rp2 rp2 

= — f,+ — = 0. (4.22) 

A rc that satisfies (4.22) for Example 1 is 

fc=-l. 

The digital control term uc(kT) in (2.61) can thus be chosen ideally as 

uc(kT) = fcz(kT) . 
= -lz(kT)' 

(4.23) 

(4.24) 

there exists an r x (n - v) constant L such that solutions ^sl(kT) to (2.85) are 
uniformly and asymptotically stable to the null-point £„, (kT) = 0. The characteristic 
polynomial of the system in (2.85) is 

detfAI-a, +BlL)) = A-L-L -1, (4.25) 

where Ax and Bx are defined in (2.84). One choice for L that will achieve \A\ < 1 in 

L=ZI 
(4.26) 

4.2.4.   The Necessary and Sufficient Conditions for Maintaining Bounded Motions of 
en(kT) withinS, 

Conditions a', b', c', and d' in the previous Subsection have been met. It remains to 
test the ^condition necessary to satisfactorily maintain bounded motions of ess(kT) within the subspace 

5, = N[C = C]. As discussed in Subsection 2.11.6, there must exist an r x (« - m) gain term Z such that 

all solutions £s2 (kT) to (2.88) remain bounded. The characteristic polynomial of the system in (2.88) is 

det(AI-(;42+£2Z)) = ;i + l, (4.27) 
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where 2, = -1 and B2 = 0 (refer to (2.84)). Clearly, (4.27) is independent of Z and the choice of Z is 

arbitrary, assuming the eigenvalue A of A2 is such that \A\ < 1. From (4.27) we have A = -1, therefore 

this condition is not satisfied. 

4.2.5.    The Necessary and  Sufficient Conditions and  the Digital Servo-Controller 
Design for Stabilizing e^kT) to the Nullpoint 

In the previous Subsection, the necessary and sufficient condition for maintaining 
bounded motions of ess(kT) within a subspace Si failed to be satisfied. We then proceed to test 

subspace Sv where V = w-/w-l = 2-l-l = 0. The subspace S0 is the "improper" subspace known as 
the nullpoint. For the special case of nullpoint stabilization, C = I (where I is the n x n (» = 2) identity 
matrix) and the design of u(kT) in (2.55) proceeds as follows. 

The necessary and sufficient conditions for existence of the control terms uc(kT) 
satisfying (2.56) and us(kT) satisfying (2.57)Js given in (2.53) and (2.52), respectively. Satisfaction of 
those conditions is shown as follows (where C = I): 

for uJikT): rank CFH   CB = rank [CSJ: (same as (2.53)), (4.28) 

where 

rank 

V T2- 

CFH CB = rank 2 2 
i_                                    _| T T 

=1, 

and 

for us(kT): 

rank [c/?] = rank 2 

T 
= 1: 

rank[c 6E - CA 9 \ CB\ = rank[c£]; (same as (2.52)), 

where 

(4-29) 

rank[c<9£ - CAB \ CB] = rank 

T2~\ 
0 

2 

0 T 
= 1, 
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and rank[C2?] is given below (4.28). 

The rank conditions in (4.28) and (4.29) are met and f c and Ts are designed to satisfy (2.59) and (2.60), 
respectively. That is, 

for r C(BTC + FH\ = Tf + T 
T T 

= 0; (4.30) 

forf,: C(0E-A0-Srt) = - 2 

T 
r =o. (4.31) 

The f c and f, that satisfy (4.30) and (4.31) are 

rc=-i, 

and 

(4.32) 

T =0. 

The ideal digital-control terms u^kT) and u/kT) in (2.61) and (2.62) can thus be written 

uc(kT) = Tcz(kT) 
= -lz(kT)' 

and 

as 

(4.33) 

(4.34) 

us{kT) = fsc{kT) 
= 0c(kT) (4.35) 

The up(kT) control term is postulated as in (2.63), where the gain-matrix Kp is 

designed to place the eigenvalues of (Ä + BKp) in (2.64) at sufficiently damped locations inside the unit 

circle j^|<l. For the present example, the gain-matrix Kp is designed such that all eigenvalues of 

(A + BKp) in (2.64) are at zero. The design of Kp is shown as follows: 

det(Al-(A + BKpj} = A2- 

= 0 

2 + TKp]+TKp2 
^      (      T2 

/ + [!—*„+** (4.36) 
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The appropriate choice of K   for achieving kt = 0 (deadbeat response) in (4.36) is to choose K   as 

K
P    [T2>   2TJ> (4.37) 

such that the ideal choice for up(kT) in (2.63) becomes 

up(kT) = -Kpess(kT) 

i — M(kT)-x(kTJ) 
(4.38) 

IT. 

= ±(yc(kT)-y(kT))-±x2(kT) 

4.2.6.   Practical Realization of the Digital Servo-Tracking Controller for Example 1 

The ideal digital servo-tracking control law designed using the methods described in 
Sections 2.9 through 2.11 for Example 1 described by the plant, disturbance, and servo-command in 
(4.1), (4.2), and (4.8), is as follows 

u(kT) = uc(kT) + us(kT)+ up{kT), 

where u^kT), u^kT), and up(kT) are given in (4.34), (4.35), and (4.38), respectively. 

(4.39) 

The digital servo-tracking controller in (4.39) is designed for the ideal case where 
exact measurements of x(kT), z(kT), and c(kT) are assumed available. For this example, yc(t) is a 
stepwise-constant which is directly measurable at each of the times t = kT, k = 0, 1,2, ... . Thus, 
estimates of c(kT) are not needed ( y^kT) = c(kT) ). On the other hand, the state vectors z(kT) and x(kT) 
(with the exception xl (kT) = y(kT)) are not available for measurement and must be estimated. 
Estimates z(kT) and x(kT) of z(kT) and x(kT), respectively, can be generated by a discrete-time full- 
order state-observer as described in Subsection 2.13.2. The general form for the discrete-time full-order 
state-observer is (same as (2.107)) 

(5-, 

u«*+i)n 
A FH fx(kTJ\ 

[z(kT)J + 
,0, 

u(kT) + 
0 b ÄH x(kT} 

\MkTl 
-y(kT) (4.40) 

where K0 = 
K, 01 

K, 02. 
is an observer gain-matrix to be designed, and A, FH, B, C, and D are defined in 

(4.6) and (4.7). 

The general discrete-time evolution equation for the error dynamics of the discrete- 
time full-order state-observer is (same as (2.109)) 
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'*,((*+IF)' 
.sM+vn 

f$l xi(k + l)T))   (x((k + l)TJ 

\z((k + l)T)J   {z((k + l)T)J 

A + Kn,C or 
KmC L02 

FH 

D 

sx{kT-j 

s2(kTl 

(4.41) 

~ (s (kT^i) 
It is desirable to design K0 so that the observer error   ——-   always converges to 

\£z(kl)) 

zero promptly, from any initial condition.   Pole placement techniques can be used to determine an 
appropriate K0. The characteristic polynomial of the observer error in (4.41) is 

det XL- A + K0lC 

KmC ^02* 

FH 

D 

1      T 

= det 0       1 

0      0 

= A3- -(K01+3 

T 

1 

2K01 -TK02) ——K02 +3U 

Ko\-TK02i +—K022 +1 

(4.42) 

For the present example, K0 is designed such that the roots of the characteristic polynomial in (4.42) are 

at A, = 0 (deadbeat response). A K0 that achieves deadbeat observer response is: 

K0 = 
Kt 01 

K, 02 

f \ 
-3 

27" 

T2) 

(4.43) 

The discrete-time full-order state-observer for x{kT) and z(kT) is then obtained by substituting values 
from (4.6) and (4.7) into (4.40). The result is 

m+i)T)j 

i 

0 

0       0 

2 

1       T 

1 

fT2\ 

x(kT) \ 

ZxikT) 

K.z2(kT)) 

2 

T 

0 
V     J 

u(kD + (K0p(kT)-y(kr)), (4.44) 
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where y(kT) and u(kT) in (4.44) are the inputs and x(kT), z(kT), x((k +1)7), and z((k + l)T) are the 

outputs of the discrete-time full-order state-observer, and K0 is given in (4.43). 

4.2.7.   Simulation Results for Example 1 

Incorporation of the discrete-time full-order state-observer equations in (4.44) into 
(4.39) results in the following physically-realizable digital servo-tracking control law for Example 1: 

u(kT) = uc (kT) + us (kT) + up (kT) 

1 1 (4 45) 
= -2(<kT) + ±:(yc(kT)-y{kT))-^x2(kT) 

Simulations results were obtained for the unstable, second-order plant (4.1), stepwise- 
constant disturbance (4.2), and stepwise-constant servo-command (4.8), compensated by the digital 
servo-controller in (4.45) using a control sample-period of T= 0.1. The simulation results shown in 
Figure 4.1 illustrate the plant output y(t), the disturbance w(t), and the servo-command yc(t) for Example 
1. The simulation plot in Figure 4.2 shows the servo-tracking error ey(t) = yc(t)-y(t) for Example 1. 

The large "jumps" in the servo-tracking error e^t) (\ey(t)\ > 1) are caused by the unexpected jumps in the 

servo-command y£t). The small fluctuations in e^t) are caused by the uncertain jumping of the 
disturbance w(i). In both cases, the servo-controller in (4.45) compensates for the sudden changes in yc(t) 
and w(t) and controls the tracking-error sy(t) -> 0 within a finite amount of time ("settling-time"). 
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Figure 4.1    Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(i) for 
Example 1. 

Control Sanrfe-Feriod: T= n 1 

0 5 10 
Figure4.2 Illustration of the Servo-Tracking Error s^t) = yc(t). y(t) for Example 1. 
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4.3. Example 2: Digital Servo-Tracking Control Design Utilizing a Stepwise Constant 
Control-Action u(kT) for the Case of a Third-Order Plant and Stepwise-Constant Servo- 
Command jc(Y) Subjected to a Stepwise-Constant Disturbance w(t) 

The purpose of Example 2 is to illustrate the subspace stabilization procedure presented in 
Chapter 2. This example is worked for the case of a digital servo-controller using stepwise-constant 
(z.o.h.) control-action u(kT). Simulation results are provided for the example plant. 

equation : 

43.1.   Plant, Disturbance, and Servo-Command Models for Example 2 

The plant for Example 2 is modeled by the following third order differential 

y{t) = m~ 0-5j(0 - y(t) + w, (/) - «, (/) + 0.5M, (/) + u2 (t) + w(t), (4.46) 

The disturbance w(t) is an uncertain, unmeasurable stepwise-constant disturbance represented by (4.2) 
and having continuous-time and discrete-time state models given in (4.5) and (4.7), respectively. 

The state model for the plant is easily determined by choosing  xl(t) = y(t), 
x2 = y(0 > and x3 = y(t) as follows: 

x(t) = Ax(t) + Bu(t) + Fw(t) 

y(t) = Cx(t) (4.47) 

where 

A = 

0 1      0" "l   0" (°) 
0 0      1 ,B = 0   0 ,      F = 0 

-1 -0.5    1 0   1 uJ 
C = (l,   0,   0). 

Using the technique described in Section 2.6, a discrete-time model is obtained for 
the plant. Assuming a control sample-period of T= 0.1, this model is: 

x((k +1)7/) = Ax{kT) + Bu(kT) + FHz(kT) + y(kT) 

y(kT) = Cx(kT) 
(4.48) 

where 

■ eAT = 

0.9998 0.0999 0.0052 

-0.0052 0.9972 0.1051 

-0.1051   -0.0577     1.1023 
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B=^eA{T-T)Bdr: 

0.1000 0.0002 

-0.0002 0.0052 

-0.0052     0.1051 

FH •{>*"■ 
)FHeDrdt = 

0.0002 

0.0052 

0.1051 

C = (l,   0,   0), 

and 

r(kT)= [eA(T-*FH[eD^cx{S)dEflT. 

The servo-command yc(t) is assumed to be an unknown stepwise-constant command 
represented by (4.8) and having continuous-time and discrete-time state models given in (4.10) and 
(4.11), respectively. 

43.2.   The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for 
Example 2 

The objective is to design a digital servo-tracking controller for the plant in (4 46) 
such that the tracking-error, defined by 

£y(0 = yc(t)-y(t), (4.49) 

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first 
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is 
that the vector servo-command input yc(t) must consistently lie in the column range-space of the plant- 
output matrix C in (4.47) for all /. In the present example, satisfaction of this condition requires that 
(from (2.33)) 

9?[G]c9?[C] (4.50) 

If (4.50) is satisfied, then there exists a (possibly nonunique) matrix 0 such that G = CO  Substituting C 
and G from (4.47) and (4.10) into G = C0 yields 

1 = (1,   0,   0)0. 

Expression (4.51) is satisfied for some 0. In particular, 

(4.51) 
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0 = o 
.0, 

(4.52) 

The discrete-time models for the plant (4.48), disturbance (4.7), servo-command 
(4.11), and the 6 determined in (4.52) will now be used to design a digital servo-tracking controller using 
the design techniques presented in Chapter 2 of this report. 

4.3.3.   The Necessary and Sufficient Conditions for Stabilizing  en{kT)  to Sv for 
Example 2 

The control task is to design a discrete-time control algorithm for u(kT) such that the 
servo-state vector ess(kT) defined in (2.38) becomes stable to and invariant for a subspace 

Sv =N[c]cN[C] (for some choice of C in (2.46)) having largest dimension v, v = 0, 1, ..., n - m. To 

perform this task, begin by choosing v = «-/w = 3-l = 2 (the dimension of N[C] is 2).  The maximal 
rank matrix Mis chosen such that (same as (2.92)) 

CM = (\,   0,   Q)M=Q, 

where M is selected as 

M = 

(0   Ö\ 

1    0 

.0   V 
(4.53) 

Next, form the set R„_m according to the procedure given in Subsection 2.11.7. For Example 2, that set 
is 

R„_„ = 
1   Ö 

o  V = W (4.54) 

Since the R„_m contains only one matrix, we choose R = R2l, form the matrix product 

MR = 

(0 °) 
1 0 u V 

and choose C according to (2.46) and (2.66), in which case, 

C=C = (1,   0,   0). (4.55) 
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Now the  necessary  and  sufficient  conditions  for   ess(kT)   to  be  asymptotically  stabilized  to 

S2 =Np] = N[C] for the A, B, FH, E, 6, M, R, and C in (4.48), (4.11), (4.52), (4.53), (4.54), and 
(4.55) are as follows (refer to the conditions on page 62) 

condition a': M[CAMR] c 9?[Cfi] (from (2.80)), 

or equivalently, 

rankföß | CAMR] = rank[c£]; (from (2.81)), 

where 

rankfCß | CAMRJ = rank[0.1, 0.0002 | 0.1, 0.0052] = 1, 

and 

rankjcfi] = rank[0.1,   0.0002] = 1. 

Clearly, condition a' is met; 

COnditi°" b': there exists a T* such&* (2-60) is satisfied. The necessary and sufficient condition 
for the existence of a fs satisfying (2.60) is (same as (2.52)) 

rank[C0E - CAB \ US] = rankfcß], 

where 

rank[cOE-CAO \ CBJ = rank[0.0002 | 0.1, 0.0002] = 1, 

and rank[C5] = 1 was determined in condition a'. Clearly, condition b' is met and f 
is chosen to satisfy (same as (2.60)) 

c[eM -A0-3r,]=0.0002 -o.oif,, -o.ooo2fi2 =0. 

A f , that satisfies (4.56) for Example 2 is 

(4.56) 

r = 
v (4.57) 

The digital control term us{kT) in (2.62) can thus be chosen ideally as 
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us(kT) = rsc(kT) 

c(kT)   ; 

yc(kr) 

(4.58) 

condition cf: there exists a fc such that (2.59) is satisfied. The necessary and sufficient condition 

for existence of a fc satisfying (2.59) is (same as (2.53)) 

rank CFH   CB = rank [CB], 

where 

rank CFH   CB = rank[0.0002 | 0.1, 0.0002] = 1; 

and rank[Ci?] = 1 was determined in condition a'. Clearly condition c' is met and fc 

is chosen to satisfy (same as (2.59)) 

BTr + FH = 0.01 rel + 0.0002 fc2 + 0.0002 = 0 (4.59) 

A rc that satisfies (4.59) for Example 2 is 

0 r = (4.60) 

The digital control term u^kT) in (2.61) can thus be chosen ideally as 

uc(kT) = Tcz{kT) 

0N 

z(kT) (4.61) 

condition d': there exists an r x (n - v) constant matrix L = 
L-^2J 

such that solutions £„, (kT) to 

(2.85) are uniformly and asymptotically stable to the null-point ^(kT) = 0.   The 
characteristic polynomial of the system in (2.85) is 

det(/ll-(Ax +BlL)) = A-Oil, -0.0002Z2 -0.9998, (4.62) 
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in (4.62) is 
where Ax and Bx are defined in (2.84). One choice for L that will achieve \Ät\ < 1 

L = 
-i. 

0 (4.63) 

4.3.4.   The Necessary and Sufficient Conditions for Maintaining Bounded Motions of 
ea (kT) within 5", for Example 2 

♦   ♦ +u        j- •      Conditions a'' b'' c'' md d'in the Previous Subsection have been met. It remains to 
test the condition necessary to satisfactorily maintain bounded motions of ess(kT) within the subspace 

SV=N[C=C].    AS discussed in Subsection 2.11.6, there must exist an r x (n - m) matrix 

^11      Z]2 z = 
.^21      -^22. 

such that all solutions   ^2(kT)  to (2.88) remain bounded.    The characteristic 

polynomial of the system in (2.88) is 

det(^I-a2 + B2Z)) = A2 +(0.0002Z12 -0.0052Z21 -0.1051Z22 -2.l)^ 

+ (o.l051Z22 -0.0053 Z21 -0.0002Z12 + 1.1053)    ' 

where A2 and B2 are defined in (2.84). One choice for Z that will achieve |l,|<l i„ (4.64) is 

(4.64) 

Z = 
0       0 
0     -11 (4.65) 

4.3.5.   Calculation of the Gain-Matrix Kp and the Idealized Digital Control Term 
up(kT) for Example 2 

The    gain-matrix    Kp    can    be    computed    from    (2.83)    by    incorporating 

A^M, R, C, L, and Z from (4.48), (4.53), (4.54), (4.55), (4.63), and (4.65) to obtain the gain- 

Kp = -(Cäy CAMR(MR)* + [I - (CB)+CB]Z(MR)* + LC 

-10   -0.9991    -0.0329 

0     -0.0017   -11.0001 

Substituting (4.66) into (2.62) yields the idealized form of the 

(4.66) 

control term up(kT), 
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u(kT) = -Kpess{kT) 

10   0.9991    0.0329 

0    0.0017   11.0001 

(4.67) 

4.3.6.   Practical Realization of the Digital Servo-Tracking Controller for Example 2 

The ideal digital servo-tracking control law designed using the methods described in 
Sections 2.9 through 2.11 for Example 2 described by (4.46), (4.2), and (4.8), is as follows 

itkT) = uc(kT)+us(kT) + up(kT), (4.68) 

where u£kT), us(kT), and up(kT) are given in (4.61), (4.58), and (4.67), respectively. 

The digital servo-tracking controller in (4.68) is designed for the ideal case where 
exact measurements of x(kT), z(kT), and c(kT) are available. For this example, yc(t) is a stepwise- 
constant which ]s directly measurable at each of the times / = kT, k = 0, 1, 2,..., thus, estimates of c(kT) 
are not needed ( yc(kT) = c(kT)). On the other hand, the state vectors z{kT) and x(kT) (with the exception 
xx (kT) = y(kT)) are not available for measurement and must be estimated in order for the digital servo- 

controller to be physically realizable. Estimates z(kT) and x(kT) of z(kT) and x(kT), respectively, are 
generated by a discrete-time full-order state-observer as described in Subsection 2.13.2. For purposes of 
illustration and to reduce the computational complexity, a discrete-time full-order observer is not 
computed for the present example. 

43.7.   Simulation Results for Example 2 

Simulations results were obtained for the third-order plant (4.46), stepwise-constant 
disturbance (4.2), and stepwise-constant servo-command (4.8), compensated by the digital servo- 
controller in (4.68) using control sample-period T=0.1. The simulation results shown in Figure 4 3 
illustrate the plant output y{t), the disturbance w(t), and the servo-command yc(t) for Example 2 The 
simulation plot in Figure 4.2 shows the servo-tracking error sy(t) = yc(t)-y(t) for Example 2. The 

servo command ^0 "jumps" at the times t= 0.5, 1.4, 5.6, and 8.1. At each of those jumps, the tracking 
error sy (t) = yc(t)- y(t) also jumps, equivalent to the total jump in the servo-command. 

The plot in Figure 4.5 illustrates the motions of ess2(t) and ess3(t) projected onto X[c] 

(the ess2 -ess3 plane). Examination of the plot in Figure 4.5 reveals jumps in ess2(t) and es*(t) 

corresponding to the times of the servo-command "jumps" (/ = 0.5, 1.4, 5.6, and 8.1). When the tracking- 
error ey(t) = 0, the servo-state ess3 * 0 and ess2(t) is increasing at a very slow rate. The 3-dimensional 

view of the motions of the servo-state vector ess(t) are shown in Figure 4.6. As long as the motions of 
e,v(/) remain in the K[q (the shaded area in Figure 4.6), the tracking error t^t) will be zero. 
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Figure 4.3    Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command vc(/) for 
Example 2. -^   y 
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Figure 4.4 Illustration of the Servo-Tracking Error e^t) =yc(t)-y(t) for Example 2. 
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I Control Sample-Period: 7= 0.1 
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Figure 4.5 Illustration of the Motions of ess2(t) and ess3(t) Projected Onto N[C] for Example 2. 
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Figure 4.6 3-Dimensional View of the Servo-State ess(t) Motions for Example 2. 
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Recall from Subsection 4.3.6 that, in order to reduce the computational complexity, 
no observer was designed for the present example and exact measurements of the plant state x(kT) and 
disturbance state z(kT) were assumed available. The disturbance accommodating control term uc(kT) in 
(4.61) was designed to completely cancel the effects of the disturbance w{t) on the servo-tracking error 
Sy(kT) at each of the times t = kT, k = 0, 1, 2, ..., assuming exact measurements of z(kT). Consequently, 
no disturbance effects due to w(t) are present in the simulation plots shown in Figure 4.3 through Figure 

In order to show the effects of the disturbance w(t) and the difference that the control 
term u£kT) has on the present example, simulation results were obtained for the example plant (4.46), 
disturbance (4.2), and servo-command (4.8), compensated by the digital servo-controller in (4.68) with 
ulkT) = 0 and using control sample-period 7= 0.1. The simulation results shown in Figure 4.7 illustrate 
the plant output y(t), the disturbance w(t), and the servo-command y,{i) for Example 2 with uc(kT) = 0. 
The simulation plot in Figure 4.8 shows the servo-tracking error £y(t) = yc(t)-y(t) for Example 2 with 

uc(kT) = 0.  Notice that Figure 4.7 appears identical to Figure 4.3 and Figure 4.8 appears identical to 
Figure 4.2, even though the disturbance-related control term uc(kT) = 0 and the disturbance w(t) * 0 in 
Figure 4.7 and Figure 4.8.   Due to the nature of the plant dynamics in (4.46), the motions of the 
disturbance are primarily confined to N[C] and have virtually no effect on the plant output y(t) and 

consequently, no noticeable effect on the servo-tracking error etf) (i.e., no w(t) disturbance effects 
appear in Figure 4.7 or Figure 4.8). Recall from (2.43) that the disturbance-effects of w(t) on the servo- 

state vector eu(kT) are represented by the term FHz(kT) and that the servo-tracking error sy(kT) and 

the servo-state vector ess(kT) are related by Zy(kT) = Cess(kT) (same as (2.44)). Then the total effect 

of the disturbance w(t) on the servo-tracking error £y(kT) is determined by the matrix product 

CFHz(kT) = (l,   0, 0) 

0.0002 

0.0052 

0.1051 

z(kT) 

= 0.0002 z(kT) 

ntgügible1110 FH ^ 8iVen fn (4'48)" Clearly thC effeCt °f the disturbance on *e servo-tracking error is 

The plot in Figure 4.9 illustrates the motions of ess2(t) and essi(t) projected onto N[C] 

(the ess2 - eo3 plane) for the case of u^kl) = 0 in (4.68). Examination of the plot shown in Figure 4 9 

reveals sudd enJumps, ta, ^].and e,3(/) corresponding to the times of the servo-command "jumps" 
V - 0.5, 1.4, 5.6, and 8.1) and the times of the disturbance "jumps" (/ = 0.5, 3.2, 3.9, 5.8, and 7.9). From 

examination of (2.43), the matrix FH in (4.48), and the plot shown in Figure 4.9, it is clear that the 
majority of the disturbance-effects due to w(t) are on the servo-state ess3{t). 
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Figure 4.7 Illustration of the Plant Output ></), Disturbance w(t), and Servo-Command yj{f) for Example 
2 with uc(kT) = 0. 
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Figure 4.8 Illustration of the Servo-Tracking Error s^t) =yjt) -y(t) for Example 2 with uc(kT) = 0. 
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Control Sample-Period: 7= 0.1 

Figure 4.9   Illustration of the Motions of ess2(t) and essi(t) Projected Onto N[C] for Example 2 with 
uJ(kT) = 0. 

To further illustrate the variety of motions that can occur in the Nfc] (the ess2 - ess3 

plane), different values for L in (4.62) and Z in (4.64) were chosen to achieve a different set of 
eigenvalues for the homogeneous closed-loop system (the homogeneous portion of (2.64)) 

A(k + l)T) = [A + BKp]ess(kT). 

Choosing the gain-matrix L as in (4.63) again and the Z gain-matrix 

Z = 
7        1 

-7   -20 

in (4.64) results in the K   gain-matrix 

Kp = -{CB)+ CAMR{MR)« + [I - (CB)+ CB]Z(MR)* + LC 

-10   -0.9872    -0.0175 

0     -7.0137   -20.0017 

The control term up(kT) in (4.67) is thus rewritten as 

(4.69) 

(4.70) 
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up(kT) = -Kpess(kT) 

"10 0.9872 0.0175 

0 7.0137 20.0017 
e„m 

(4.71) 

and the digital servo-tracking control law u(kT) in (4.68) is rewritten as 

u(kT) = us (kT) + uc (kT) + up (kT), 

where u£kT), uj(kT), and up(kT) are given in (4.58), (4.61), and (4.71). 

(4.72) 

The factored characteristic polynomial of the closed-loop system in (4.69) using the 
K  computed in (4.70) is 

matrix 

det(XL - (A + BKpj} = (A + 0.0001)(A + 0.9987)(/l - 0.9605). 

A third choice for the gain-matrices L and Z is as follows.   Choosing the gain- 

L = 
-8 

8 
> 

in (4.62) and the gain-matrix 

Z = 
" 0 

-33 

3" 

-5_ 

in (4.64) results in the K  gain-matrix 

Kp = -(CB)+ CAMR(MKf + [I - (CB)+ CB]Z{MR)# + LC 

-8    -0.9428    -0.0431 
8    -33.0016   -5.0052 

(4.73) 

The control term up(kT) in (4.67) is thus rewritten as 

up(kT) = -Kpess(kT) 

8  0.9428 0.04314 

-8 33.0016 5.0052 
*s,m (4.74) 

and the digital servo-tracking control law u(kT) in (4.68) is rewritten as 

u{kT) = us {kT) + uc(kT) + up (kT), (4.75) 
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where us(kT), uc(kT), and up(kT) are given in (4.58), (4.61), and (4.74). 

The factored characteristic polynomial of the closed-loop system in (4.69) using the 
Kp computed in (4.73) is 

det(^I - (A+BKp)j = (A- 0.2012)(A - 0.7017 + 0.5131/)(A - 0.7017 - 0.5131/), 

where i'=V-l. 

Simulation results showing the plant output y{f), disturbance w(t), and servo- 
command y£t) are illustrated in Figure 4.10 (for u(kT) in (4.72)) and Figure 4.14 (for u(kT) in (4.75)). 
The simulation results in Figure 4.11 (for u{kT) in (4.72)) and Figure 4.15 (for u(kT) in (4.75)) illustrate 
the servo-tracking error ey (t) = yc (/) - y(t). The motions of the servo-states ess2(t) and ess3(t) projected 

onto N[C] (the ess2 - essi plane) are illustrated in the simulation plots in Figure 4.12 (for u(kT) in (4.72)) 

and Figure 4.16 (for u(kT) in (4.75)). The ess2 - ess3 plane results shown in Figure 4.12 and Figure 4.16 
are clearly labeled to illustrate the periods of time when yc(t) is constant. The simulation plot in Figure 
4.12, for example, shows slowly decaying oscillations of the servo-state motions, even though the 
tracking error s^t) is zero during those times. At each time the servo-command y&) "jumps" (at the 
times / = 0.5, 1.4, 5.6, and 8.1), a different set of oscillations is invoked. In contrast, the servo-state 
motions shown in Figure 4.16 spiral toward the origin (ess2 = essi =0) when yc(t) is constant and jump 

away from the origin whenever the command y#) jumps in value. The 3-dimensional view of the 
motions of the servo-state vector ess(t) are shown in Figure 4.13 (for u(kT) in (4.72)) and Figure 4.17 (for 
u(kT) in (4.75)). As long as the motions of es£t) remain in the K[q (the shaded area in Figure 4.13 and 
Figure 4.17), the tracking error e^t) will be zero. 
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Figure 4.10   Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yj[t) for 
Example 2 using u(kT) in (4.72). 
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Figure 4.11   Illustration of the Servo-Tracking Error s^t) = yc(t) - y{t) for Example 2 using K(*7) in 
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Control Sample-Period: 7= 0.1 

0.01       0.02       0.03 

Figure 4.12  Illustration of the Motions of ess2(t) and ess,(t) Projected Onto K[C] for Example 2 using 
u(kT) in (4.72). 

ess\(t) 

Figure 4.13  3-Dirnensional View of the Servo-State ejf) Motions for Example 2 with Discrete-Time 
Closed-Loop Poles at Ä = -0.0001, -0.9987, -0.9605. 
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Figure 4.14   Illustration of the Plant Output y(t), Disturbance w(i), and Servo-Command yj{t) for 
Example 2 using u(kT) in (4.75). 
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Figure 4.15   Illustration of the Servo-Tracking Error eft) = yc(i) - y(t) for Example 2 Using w(Jt7) 
in (4.75). 
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Control Sample-Period: T= 0.1 
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Figure 4.16 Illustration of the Motions of ess2(t) and ess3(t) Projected Onto N[C] for Example 2 Using 
u(kT) in (4.75). 
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Figure 4.17  3-Dimensional View of the Servo-State ejf) Motions for Example 2 with Discrete-Time 
Closed-Loop Poles at A = 0.2012, 0.7017 ± 0.5131/ 
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4.4.    Example 3:    A First-Order Plant and Step Servo-Command yc(t) Subjected to a 
Step+Ramp Disturbance w(t) and Parameter-Perturbation Aa 

The purpose of Example 3 is to illustrate and compare each of the digital servo-controller 
design techniques presented in Chapters 2 and 3. This example is worked for the case of a digital servo- 
controller using stepwise-constant (z.o.h.) control-action u(kT) and then worked for a digital servo- 
controller using D/C control-action u(t;kT). Simulation results are provided for the example plant with 
both perturbed (Aa * 0) and unperturbed (Aa = 0) plant parameters, and using both single-rate and 
multirate digital servo-controllers. 

4.4.1.   Plant, Disturbance, and Servo-Command Models for Example 3 

The plant for Example 3 is modeled by the following first-order differential equation: 

y(t) = ay(t)+u(t)+w(t). (4.76) 

The disturbance w(t) is an uncertain, unmeasurable constant-plus-ramp disturbance represented by 

w(t) = d+c2t, (4.77) 

where cx and c2 are unknown stepwise-constants which may "jump" in value from time-to-time. The 
interval between successive jumps in cx and c2 is assumed to be somewhat larger than the sampling- 
period T. 

The state model for the plant is easily determined by choosing x(t) =y(t) as follows: 

x(t) = ax(t) + bu(t) + jw(t) 

y(t) = cx(t) ' (4-78) 

where b=\, 

c=\, 

and the a parameter is left undetermined until specified in Subsection 4.4.3.2. 

A similar state model is developed for the disturbance w(t) in (4.77) using the 
techniques described in Section 2.5, by noting that, between jumps in the c„ the disturbance w(t) is 
governed by the linear homogeneous differential equation 

*(0 = o. (479) 

Using the methods described in Section 2.5, the state model for w(t) is obtained as 

w(t) = Hz(t) 

z(t) = Dz(t) + a(t)   ' (4-80) 
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where 

H = {\,   0), 

D = 
0    f 
0   0 

and 

o{t) are uncertain, sparse sequences of impulses that "cause" the occasional "jumps" 
in the disturbance w{t). 

Using the technique described in Section 2.6, discrete-time models are obtained for 
the plant and the disturbance. Those models are (the sample-period T is held as a variable throughout the 
computations): 

Plant: 

x((k + \)T) = Ax(kT) + Bu(kT) + FHz(kT) + y{kT) 

y(kT) = Cx(kT) 
(4.81) 

where 

A = eAT=eaT, 

B=[e«T-%dr = 

ear-\ 
ifa*0 

T    ;     if a = 0 

and 

FH = [e"^JH< reD*dr=\ 

(e°T-\     e°T-aT-\\ 
 ,    5  ;   ifa*o 

K    a a2        ' 

''• T' ■ 

C=l, 

Disturbance: 

ifa = 0 
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w(kT) = Hz(kT) 

z((k + l)T) = DzikT)+a(kT)   ' 

H = {\,   0), 

D = eDT = 
"1   f 

0    1 9 

(4.82) 

Z(kT) = ^eD(T-^cr^+ kT)d%. 

It is hereafter assumed that a * 0 throughout the design procedure in the four subcases of Example 3. 

The servo-command yjf) for this example is assumed to be an unknown stepwise- 
constant command represented by (4.8) and having continuous-time and discrete-time state models as 
determined in (4.10) and (4.11), respectively. 

4.4.2.   The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for 
Example 3 

The objective is to design a digital servo-tracking controller for the plant in (4.76) 
such that the tracking-error, defined by 

£y(t) = ye(*)-y(t), (4.83) 

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first 
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is 
that the vector servo-command input y<{t) must consistently lie in the column range-space of the plant- 
output matrix C in (4.81) for all /. In the present example, satisfaction of this condition requires that 
(from (2.33)) 

5R[G]ctt[C]. (484) 

If (4.84) is satisfied, then it is possible to express G as some linear combination of the columns of C. 
That is, G = C6 for some possibly nonunique 6. Substituting C and G from (4.81) and (4 11) into G = 
CO yields 

1=10- (4.85) 

Clearly, (4.85) is satisfied for some 0; namely 

0=1. (4.86) 
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The control task is to design a discrete-time control algorithm for u(kT) such that the 
servo-state vector ess(kT) in (2.38) becomes stable to and invariant for a subspace Sv =^U]^i{C] for 

some choice of C in (2.46). Since C = 1 in (4.81), we have the special case of stabilizing ess(kT) to the 
nullpoint. The single choice for C in (2.46) is then C = C = 1. 

The discrete-time models for the plant (4.81), disturbance (4.82), and servo-command 
(4.11) and the 6 determined in (4.86), will now be used in a series of four subcases of Example 3 in 
which digital servo-tracking controllers will be designed using the techniques presented in Chapters 2 
and 3 of this report. 

4.4.3. Subcase 3a: Digital Servo-Tracking Control Design Utilizing Stepwise-Constant 
(z.o.h.) Control-Action u(kT) for the Case of a First-Order Plant and a Step 
Servo-Command >>,.(/) Subjected to a Step+Ramp Disturbance w(t) 

In this Subsection a digital servo-tracking controller u(kT) is designed for Example 3 
using the conventional zero-order-hold type control-action design technique presented in Sections 2.9 
through 2.11. The necessary and sufficient conditions for existence, and the subsequent design of the 
digital control terms uc(kT), us(kT), and up(kT) in (2.55) are as follows. 

The necessary and sufficient conditions for existence of the control terms u (kT) 
satisfying (2.56) and us{kT) satisfying (2.57) are given in (2.53) and (2.52), respectively. Satisfaction of 
those conditions is shown as follows (assuming a*Q for Example 3): 

for u^kT): rank CFHICB = rank [Ci\; (same as (2.53)), (4.87) 

where 

rank CFH\CB = rank 
eaT -1   eaT-T-\ e°T-\ 

= 1, 

and 

ic*\- rank CB= rank e°T-l 
= 1: 

forus(kT): rmk[c0E-CA0 \ cS] = rank[c5j; (sameas(2.52)), (4.88) 

where 

rank[cBE - CAO \ CS] = rank l-e aT eaT -1 
= 1, 
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and rankFcß] is given below (4.87). 

Clearly the rank conditions in (4.87) and (4.88) are met and fc and fs are designed to satisfy (2.59) and 
(2.60), respectively. That is, 

forr. 

fbrl\ 

C\BT„ + FH\ = 
^    ^eaT-l),x IVF- f-H~ eaT -1     eaT-T-\ 

a        J 
= 0; 

C(0E - AO-BT,) = l-eaT- [ if—1 jf, = 0. 

The Tc and Ts that satisfy (4.89) and (4.90) are 

rc= -i, 
aT+\-eaT 

a(eaT -\) 

and 

Ys=-a. 

The ideal digital-control terms u^kT) and u£kT) in (2.61) and (2.62) can thus be written as 

uc{hT) = fcz(kT) 

a(eal -1) 

and 

us(kT) = Tsc(kT) 

= -ac(kT) 

= -ayc(kT) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

The Up(kT) control term is postulated as in (2.63), where the gain-matrix £ is 

designed by the technique of pole placement to place the eigenvalue k of (2 + BK ) in (2.64) at a 

sufficiently-damped location inside the unit circle (|A| < l) . For subcase 3a, 

det(^I -(A + BKp)) = A-e« -[^Kp = 0, (4.95) 

and the appropriate choice for achieving A = 0 (deadbeat response) in (4.95) is to choose K   as 
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K  = ae aT 

"    \-eaT (4.96) 

such that the ideal choice for up(kT) in (2.63) becomes 

up(kT) = -KpeJkT) 

= -*£-l{8c(kT)-x(kT)) 

= ^(yc(kT)-y(kT)) 

(4.97) 

The ideal digital servo-tracking control law designed using the methods described in 
Sections 2.9 through 2.11 for Subcase 3a described by (4.76), (4.77), and (4.8), is as follows 

u(kT) = uc(kT)+ us(kT)+ up(kT), 

where uJkT), us(kT), and up(kT) are given in (4.93), (4.94), and (4.97), respectively. 

(4.98) 

4.43.1. Practical Realization  of the Digital  Servo-Tracking  Controller for 
Subcase 3a 

The digital servo-tracking controller in (4.98) is designed for the ideal case 
where exact measurements of x(kT), z(kT), and c(kT) are assumed available. For this example, 
y(kT)-x(kT) in (4.81) and y£) is a stepwise-constant which, along withjK'X k directly measurable at 
each of the times r = kT, * - 0, 1, 2, ... . Thus, estimates of c(kT) and x(kT) are not needed 
(c(kT)=yXkT), x(kT)=y(kT)). On the other hand, the disturbance state z(kT) is not available for 
measurement and must be estimated. Estimates z (kT) of z(kT) can be generated by a discrete-time full- 
order state-observer as described in Subsection 2.13.2. The general form for the discrete-time full-order 
state-observer is (same as (2.107)) 

H(k + l)T) 

z((k + l)T). 
A FH 
0 b 

'x(kTJ)   (B 
+ - U(*ry {oj u(kT)+ 

Kn f& 

K, 

x(kT) 
91 (c|o)S£r'-**n 

02. wn (4.99) 

where K0 = 
K, 01 

K, 02. 
is an observer gain-matrix to be designed, and A, FH, B, C, and D are defined in 

(4.81) and (4.82). 

The general discrete-time evolution equation for the error dynamics of the 
discrete-time full-order state-observer is (same as (2.109)) 
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£x((k + l)T) x((k + \)TJ)    (x((k + l)TJ 

sz((k + l)T)J    Vz((k + l)T)J    U((* + 1)7V 

(4.100) 

A + Kn,C or 
KmC L02 

FH 

D Mm 

~ (e (kTi\ 
It is desirable to design K0 so that the observer error    ——-    always 

\£z(kT)) 
converges to zero promptly, from any initial condition.   Pole placement techniques can be used to 

determine an appropriate KQ.  In that way, the gain-matrix K0 is designed to place the roots of the 
polynomial 

det XL- A + K0lC 

K02C 

FH 

D 
= det 

A-eal -K, T>      1-C 
aT 1+aT-e aT 

-K, 02, 

a 

-K, 02„ 0 

a 
-T 

Ä-1 

= A3 
(*o, + e°' +2W 

+ \2Km+2eaJ +1 + l-e"  ~ 

*o,+ 

a ^02,  + 

l + aT-eaT 

a 
^022   U 

l-e 

a 

aT 

■■^02,  + 

1   i   „T~aT      „aT \ 1 + aTe    - e    p aT 
 -2 

K022 +e 
a J 

(4.101) 

at sufficiently-damped locations inside the unit circle. A K0 that achieves deadbeat observer response 
(Ai = 0 in (4.101)) is (assuming a * 0): 

*o = 
K, 01 

K, 02 

2aT-\+eaT (l-3aT) 

a 

T\\-eaT\ 

a*0. (4.102) 

The discrete-time full-order state-observer for x(kT) and z(kT) is then obtained by substituting values 
from (4.81) and (4.82) into (4.99). The result is 
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^x((k + l)T)^ 

z,((k + \)T) 

z2((k + l)n 

e°T 

0 

0 

„or 

a 
1 

eaT-\-aT 
a 
T zx(kT) + 0 

{z2(kT)J 0 
^       J 

u(kT) 

(K„){x(kr)-y(kT)) 
(4.103) 

where y(kT) and u(kT) in (4.103) are the inputs and x(kT), z(kT), x((k +1)7), and z((k + l)T) are the 

outputs of the discrete-time full-order state-observer, and KQ is given in (4.102). 

4.43.2. Simulation Results for Subcase 3a 

in Incorporation of the discrete-time full-order state-observer equations ,„ 
(4.103) into (4.98) results in the following physically-realizable digital servo-tracking control law for 
Subcase 3 a. 

u(kT) = uc (kT) + us (kT) + u. (kT) 

-aT 
= -i, (kT) + ~~-z2 {kT) - ayc(kT) + -^—^(kT) - y(kT)) 

(4.104) 

,, -„    J , Simulations results were obtained for Subcase 3a, where the plant's a term 
(4.76) and control sample-period Twere chosen as 

m 

and 

a = -3 

T=l. 

(an inherently stable plant); 

eiily^e3wer
ri0d ^ * *" **""* S° ** ** intersamPle behavior of ^ P^ output y(t) could be 

,. .   . ,.      A  u   
The Emulation results in Figure 4.18 illustrate the plant output y(t), the 

distu bance w(t)  and the servo-command yc(t) for Subcase 3a.   Notice the intersample misbehavbr 
npp e) during the periods , = 4 to , = 6 and the periods , - 9 to / - 15. This misbehavior s SetsuTof 

the ramp-type time-varying nature of the disturbance W(t) and the stepwise-constant (z.o.h.) nature of 

2£V£ TSTrT?" ? f*™,4-19^the di^ -ntrol-effort «(kT) and tne servo-tracking 
error £y(t)-yc(t)-y(t) for Subcase 3a.   The stepwise constant control-action (zero-order-hold type) 

can not eliminate the intersample misbehavior of the plant output X» when the disturbance w(t) is not a 
constant. Consequently, zero tracking-error cannot be achieved between the sample timeT 
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Control Sample-Period: 7=1 

Figure 4.18   Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for 
Subcase 3a. 

Control Sample-Period: 7= 1 

12 

10 
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4 

"(W)       j                           j     r-Tu(kT) 

i           rT 

...Art— 1 «w            i 

V^dlP 
10 15 

Figure 4.19   Illustration of the Digital Control-Action K(*7) and Tracking-Error s^i) = yc(t) - ytf) for 
Subcase 3a. 
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4.4.4. Subcase 3b: Digital Servo-Tracking Control Design Utilizing D/C Control- 
Action u(t;kT) for the Case of a First-Order Plant and a Step Servo-Command 
yc(t) Subjected to a Step+Ramp Disturbance w(t) 

In this Subsection the digital servo-tracking controller in (4.98) of Subcase 3a is 
modified to utilize the D/C intersample holding-action, as described in Section 3.1. In that way, the 
control terms u^kT) in (4.93) and us(kT) in (4.94) are modified to provide intersample accommodation 
for the effects of the disturbance w(t) and the disturbance-like effects of the servo-command y<{t). 

The necessary and sufficient conditions for existence of the control terms uc(t;kT) 
satisfying (3.15) and u&kT) satisfying (3.16) are given in (3.12) and (3.13), respectively. Satisfaction of 
those conditions is shown as follows: 

for uJj;kT): rank[FH \ B] = rank[5];     (same as (3.12)), (4.105) 

where 

rank[FH \ B] = rank[l, 0 | l] = 1, 

and 

rank[Jß] = rank[l] = l; 

for uAt;kT): nmk[OE-AO \ B] = rank[B] (same as (3.12)), (4.106) 

where 

rank[0E-A0\B] = rank[-a\l] 

and rank[5] is given below (4.105). 

Clearly the rank conditions in (4.105) and (4.106) are met and Tc and Ts are designed to satisfy (3.17) 
and (3.18), respectively. That is, 

forrc: ^+*re=(i,o)+(rcl,rc2)=o; (4107) 

forr;: (^-^-z^^-r^o. (4108) 

The rc and Ts that satisfy (4.107) and (4.108) are 

rc=(-l>   0), (4109) 

and 

T =-c 
(4.110) 
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The ideal continuous-time control terms uc(i) and us(t) in (3.19) and (3.20) can thus be chosen ideally as 

wc(0 = r>(0 
= -z,(0 ' «■'»> 

and 

"•(', = r-l • (4.112) = -ac(t) ' 

Recall, however, that it is assumed that the digital control decisions at time t = kT 
must be based on measurements, or estimates, of the states z{t) and c(t) available at each of the times 
t = kT, k = 0, 1, 2, .... Therefore, the projected or forecasted behaviors of z(t) and c(t) across each 
intersample interval must be represented in terms of z(kT) and c(kT). This relationship is found in the 
general solution to (4.80) and (4.10) evaluated at each t over the interval from kT to t = (k + \)T. In 
particular, 

Disturbance state-vector: 

z(t) = eD('-kT)
Z(kT)+rc(t) 

(4.113) 
1   t-kT 
0       1 

z(kT)+rc{t) 

and 

Servo-command state-vector: 

c(t) = eE('-kT)c(kT) + rs(t) 

= c(kT) + rs(t) 
(4.114) 

where 

rc(/) is a residual-effect given by rc(t)= ( eD('~T]'<r(r)rfr, 

and 

rs(t) is a residual-effect given by rs(t) = ( eE('~r)fi{r)dT. 

As discussed below (3.22) in Subsection 3.1.3, the rc(t) and rs(t) terms are excluded from the design 
process. ^ 
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Substituting (4.113) and (4.114) into (4.111) and (4.112), and disregarding the 
residual terms, results in the final (idealized) form of the uc and u, digital-continuous (D/C) control terms 
of the digital servo-tracking controller 

uc{t;kT) = Tce
D^z(kT) 

=(-i. o) 
1   (t-ktj 
0       1 

z(kT)        , (4.115) 

= -Zl(kT)-(t-kT)z2(kT) 

and 

us{t;kT) = Tse
E(t-kT^c{kT) 

= -ac(kT) (4116) 

= -ayc(kT) 

The (ideal) digital servo-tracking control law for Subcase 3b is as follows: 

u(t;kT) = uc(t,kT) + us(t,kT) + up(kr), (4<117) 

where u&kT), us(t;kT) and up(kT) are given by (4.115), (4.116), and (4.97). 

4.4.4.1. Practical Realization  of the Digital  Servo-Tracking  Controller for 
Subcase 3b 

case 
e 

, . The diSital servo-tracking controller in (4.117) is designed for the ideal cas 
^rr^TTmentS °fx(kT)'f^ «* ««> « «d available. For^xample 3, 2 singe 
state c{kT) of the step servo-command and the plant state x(kT) = y(kT) (refer to (4.81)) can be directfy 

measured on-line. However the disturbance state-vector Z(kT) must be estimated by a composite 
discrete-time full-order state-observer. p   ue 

_,.,  , The discrete-time full-order state-observer designed in Subsection 44 3 1 
mus be modified to include the time-varying portions of the D/C motionf of the Lto c^oller in 
(4.117). In that way, (4.117) is rewritten equivalently as (refer to (3.66)) «mroiier m 

u(t;kT) = up(kT) + ut(t);     kT<t<(k + l)T, (4.118) 

where up(kT) in (4.97) is the portion of «fctf) in (4.118) which is held constant between sample times, 

ul(t) = uc(t;kT) + us(t;kT);kT<t<(k + l)T, 
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is the portion of u(j;kT) that varies with time between each successive sample-time. 

The time-varying nature of u,(t) changes the calculation of the discrete-time 
full-order state-observer designed in Subsection 4.4.3.1 where the control action was held constant 
between the sample times. The hybrid full-order state-observer described in Subsection 3.3.3 must be 
used instead so that accurate estimates z(kT) of z(kT) may be obtained. The resulting hybrid state- 
observer has the form (same as (3.75)) 

'*((* +i)r? 
£((A + l)n 

A FH 

0 D 

mi 
z(kn 

( 

+ Kn 

j)—(^ 
x(kTJ 

^02. 
r1 l(c\ojl2£-X*T) z(kT)J 

(4.119) 

where A, FH, B, C, and D are defined in (4.81) and (4.82), K0 = K, 01 

K, 02 

is the same observer gain- 

matrix obtained in (4.102), and y/(u,) is determined to be (refer to (3.70), incorporate (4.115) and 
(4.116), and recall from Subsection 4.4.1 that a * 0 is assumed) 

K»/)=j[< ,A(T-t) Bu,(r)dT 

= -{e°{T~r)^ m + Tzi (kT>+ aydkT))dt (4.120) 

l-e 
-Zl(kT)+

aT+l
a2 

e°Tz2(kT) + (\-e°T)yc(kT) 

The term i//(ut) becomes physically-realizable when z^kT) and z2(kT) (generated by (4.119)) i 
substituted in for zx{kT) and z2(kT) in (4.120). 

is 

The evolution equation for the hybrid full-order state-observer for Subcase 3b 
can now be written as (substitute (4.81) and (4.82) into (4.119)) 

(x((k + l)T)^ 

Zi((k + 1)T) = 
{z2((k + l)T)) 

„aT m 
0 1 

0 0 

eaT -aT-l 

0 

0 
<         J 

a2 

T 

1 

x(kJ) i 

z,{kT) 

J2(kT), 
+ up{kT) 

V(«,)' 
0 

0   j 

(K0p(kT)-y(kT)) 

(4.121) 
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where up(kT), y/(u,), and K0 are given in (4.97), (4.120), and (4.102), respectively, andy{kT), y/(ut), 

and up(kT) are the inputs and x(kT), z(kT), x((k + l)T), and z((k + l)T) are the outputs of the hybrid 
full-order state-observer. 

4.4.4.2. Simulation Results for Subcase 3b 

Incorporation of the hybrid full-order state-observer equations in (4.121) into 
u(t;kT) in (4.117) results in the physically-realizable digital servo-tracking control law for Subcase 3b 

u(kT) = uc (t; kT) + us (/; kT) + up (kT) 

.  (4.122) 

= -z,{kT)-{t-kT)z2{kT)-ayc{kT) + ^-(yc{kT)-y{kT)) 

Simulation results were obtained for Subcase 3b, where the plant's a 
parameter in (4.76) and control sample-period T were chosen as (same parameters as in Subcase 3a) 

a = -3, 

and 

T=l. 

The simulation results shown in Figure 4.18 illustrate the plant output y{t) 
the step+ramp-type disturbance w(t), and the step servo-command y^t) for Subcase 3b. Similar to the 
results in Subcase 3a (Figures 4.18 and 4.19) the tracking error e^t) (shown in Figure 4.21 for Subcase 
3b) 1S zero at each of the sample instants t = kT= 4, 5, 6, 9,10, 11,12, 13, 14, and 15. In addition, notice 
that, in the pkrtofjKO m Figure 4.18, the intersample misbehavior during the periods t = 4 to t = 6 and 
the periods t-9 to t= 15 has been completely eliminated by the digital servo-controller u(t;kT) in 
(4.122) (compare the simulation plots in Figure 4.18 to those in Figure 4.18). The digital-continuous 
(D/C) control-action u(t;kT) illustrated in Figure 4.21 is smoother than the zero-order-hold (stepwise- 
constant) type control-action shown in Figure 4.19. It is that type of continuous action between the 
sample-times that smooths out the control-action and regulates the tracking-error eJt) to zero during 
those intersample intervals. 
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Figure 4.20   Illustration of the Plant Output y(t), Disturbance w{t), and Servo-Command y#) for 
Subcase 3 b. 
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Figure4.21 Illustration of the D/C Control-Action of u{t;kT) and Tracking-Error sy{t) = yc{t)-y{t) for 
Subcase 3b. 
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4.4.5. Subcase 3c: Digital Servo-Tracking Control Design Utilizing D/C Control- 
Action u(t-,kT) for the Case of a First-Order Plant and a Step Servo-Command 
yc(t) Subjected to Parameter-Perturbation Aa and a Step+Ramp Disturbance 

In this Subsection the digital servo-tracking control-algorithm in (4.117) is modified 
to provide robustness to uncertain variations in the value of the plant's a parameter in (4.76). The 
additional control term ua(t;kT) and the modified term u^kT) that provide this robustness are designed 
using the method developed in Section 3.2. Expression (4.78) is rewritten to reflect the uncertain 
parameter-perturbation as follows: 

x(t) = (a„ + Aa)x(t) + bu(t)+Jw(t) 

*)-«<«) ' (4-I23) 

Recall from Subsection 3.2.1 that Aa represents deviations to the nominal value of a (a = an + Aa). 

The ideal model behavior for this example is assumed to be 

«ss=omea(t). (4.124) 

The characteristic polynomial Pm(X) of the system in (4.124) is 

PmW = A-am (4.125) 

where am represents the "desired" root of Pm(X) and is left undetermined until specified in Subsection 
4.4.5.2. 

The approach used in [34,35,39] to designing the control term ua is to model the 
product -(Aa)x(t) as an uncertain time-varying parameter-disturbance vector wj^t) as given in (3.43). 

The term w#) is closely approximated by the known differential equation in (3.44) having coefficient ß 
corresponding to the am coefficient in (4.125). 

Following the method described in Subsection 3.2.4, the dynamic behavior of the 
parameter disturbance term (Aa)x(0 is expressed by the state model (refer to (3.45)) 

-(Aa)x(t) = wa(t) = Haza(t) 

*,(t) = Daza(t) + <ra(t) ■ (4-126) 

The procedure for determining Ha and Da was presented in Subsection 3.2.4. For this particular example 

H°=l' (4.127) 

and 

L>a=a'"- (4.128) 
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The term crjt) in (4.126) represents a sparse sequence of impulses that are the source of the uncertain 
intersample "jumps" that may occasionally occur in the disturbance vector (Aa)x(t). 

The necessary and sufficient condition for existence of the control term uJj;kT) 
satisfying (3.48) is (same as (3.49)) 

rank[5 \ Ha] = rank[#], (4.129) 

where 

and 

rank[5|Jffa] = rank[l |l] = l, 

rank[Jß] = rank[l] = l. 

Clearly the rank condition in (4.129) is met. Then there exists a Ta such that (same as (3.50)) 

Ha-BTa=\-ra=0. (4.130) 

The Ta that satisfies (4.130) is 

rfl = l , (4.131) 

and the control term uj{t) in (3.51) can thus be ideally chosen as 

"a(0 = Taza 

-*.(/) ' (4"132) 

during the intervals kT < t < (k + \)T . Recall, however, that the digital control decisions at time / = kT 
must be based on measurements, or estimates, of the states zjit) available at the beginning of each sample 
interval t = kT, k = 0, 1, 2, ... . Therefore, the predicted or forecasted behavior of zj(t) across each 
intersample interval must be determined in terms of z^kT). This relationship is found in the general 
solution to (4.126) evaluated at each t over the interval from kT to t = (k + \)T 

za(t) = eD°('-kT)za(kT) + ra(t) 

(4.133) 
= e°»('-kT\(kT) + ra(t) 

where ro(0 is a residual-effect given by ra(t) = ( eD-l'~T)cra(T)dT. 

As discussed in Subsection 3.2.5, the rjit) term is disregarded throughout the design 
process. Substituting (4.133) into (4.132), and ignoring the residual term, results in the final (idealized) 
form of the uJJ;kT) control term 
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ua{t;kT) = Tae°^-kT^a{kT) 

The Uf(kT) control term in (4.97) must be redesigned to accommodate the Aa-effects. 
In that case, the gain-matrix Kp is designed to achieve null-point stabilization and the ideal model 

characteristics in (4.124) and (4.125). That is, Kp is designed to achieve 

A-(AN+BKp) = A-Am, (4.235) 

where 

AN=e°-T, AM=ea«T, 

and B is given in (4.81) (with a replaced by a„). In that way, (4.135) becomes (assuming a„ * 0 ) 

^aJ-{^f]Kp=Ä~e^, (4.J36) 

and Kp in (4.136) is computed to be 

_an{e°»T-e°A 
K

P jTZi  • (4.137) 

Given (4.137), the control term Up(kT) in (4.97) can thus be chosen ideally as 

up(kT) = -KpeB(kT) 

_-a„(ea-T -ea"T) 
~       ~^JZ\ ess(kT) . (4.138) 

-an(e°~T-e°A 
= Ur-1        <<yc(kT)-x(kT)) 

i u- ■ ,*. ThC ideal digital swvo-tracking control law for Subcase 3c can now be written as 
(combining (4.115), (4.116), (4.138), and (4.134) and replacing a by a„ in (4.116) and recalling the 
assumption that a„ * 0 ) 

u(t; kT) = uc (t; kT) + us (t; kT) + up (kT) + ua (t; kT), (4. j 39) 

where 

uc (t; kT) = -z, (kT) - (t - kT)z2 (kT), 

us(t;kT) = -a„c(kT), 
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uÄkT) = - 
a„(ea"' -ea"') 

,°«T . 
(yc(kT)-x(kT)), 

and 

ua(t;kT) = ea^-kT\(kT). 

4.4.5.1. Practical Realization  of the Digital  Servo-Tracking  Controller for 
Subcase 3c 

The digital servo-control law in (4.139) assumes the availability of the real- 
time values of the external disturbance state z(kT), the plant state x{kT), the servo-command state c(kT), 
and the related parameter-perturbation state za(kT). The single servo-command state c{kT) and the single 
plant state x(kT) are obtained directly from on-line measurements of y<(kT) and y{kT). Estimates z(kT) 

and za(kT) of z(kT) and z<£kT), respectively, can be generated by a hybrid full-order state-observer 
similar to that developed for Subcase 3b in Subsection 4.4.4.1. 

In order to design the hybrid full-order state-observer, the control law in 
(4.139) must be divided into a discrete part u^kT) and a continuous time-varying part u„ written as 

u(t;kT) = up(kT) + ul(t); kT<t<(k + l)T , (4.140) 

where up(kT) in (4.138) is the portion of u(t;kT) in (4.140) that is held constant between sample times 
and ' 

ut(t) = uc(t;kT) + us(t;kT) + ua(t;kT) ;        kT<t<{k + \)T, (4.141) 

is the portion of u(t;kT) in (4.140) that varies with time across each successive sample-time.   The 
resulting hybrid full-order state-observer has the form (same as (3.76)) 

( x((k + l)T)^ AN FH -Ha fx(kT)^ 
+ 0 

,0, 

up(kT) + 
(Win,)) 

0 

I  o j 
m+i)T) 0 D 0 z(kT) 

{za((k + l)T)j 0 0 A, k(*nJ 

■^01 

-^02 

-K°3. 

(C | 0 | 0) 

(x(kT^ 

-y(kT) z(kT) 

U(*nJ 

(4.142) 

where AN, B, FH, and D are given in (4.81) (with a replaced by a„), (4.82), and (4.135) and 
(assuming a„ * 0 ) 

D =eD°T=e°*>T. 
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Ha = [eA^^Hae^dr 

= ^e<T^e°**dT = . 

e     — e 
ifam*an 

TeaJ        ifam=a„ 

ys(u,)=^ea"{T-%ut(T)dT 

_(aJ+\-ea-T) 
\e" )z2{kT) + Tea-Tza(kT) + L-^LZl(kT) + (l -ea-T)yc(kT) 

an Ct„ V I 

and Kn = 

K, 01 

Kt 02 

K, 03 

is an observer gain-matrix to be designed. 

The general discrete-time evolution equation for the error dynamics of the 
hybrid full-order state-observer is (same as (3.77)) 

ex((k + l)T) ̂     rx((k + l)T))    fx((k + l)T)^ 

u«*+i)n 
2((k + l)T) 

Kza((k + l)TV 

z((k + l)T) 

Kza((k + 1)T)J 

■^N + K0]C FH -Ha 
K02C D 0 
K03C 0 A, 

£x(kT) 

s2(kT) 

U.W, 

(4.143) 

It is desirable to design K0 so that the observer error 
(ex(*T)) 

e2{kT) 

WW)) 
goes to zero 

promptly.   Pole placement is used to determine a suitable K0, where the roots of the characteristic 
polynomial 

det XI- 
A + K0]C FH ~S°] 

K02C D 0 
K03C 0 Da 

= P(X) desired ' (4.144) 
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are such that the observer estimated value of the plant state x(kT), disturbance state z(kT), and 

parameter-perturbation state za(kT), quickly and accurately track the actual corresponding plant, 
disturbance, and parameter-perturbation states x(kT), z(kT), and zJ{kT), respectively. This means that the 
roots Aj of P(X)desired are placed at sufficiently-damped locations inside the unit circle ( |A/1 < 1 ). A 
good choice for /"(^desired, which achieves deadbeat response, is 

"PW desired ~ ^ (4.145) 

The corresponding observer gain-matrix K0 in (4.144) that achieves (4.145) is (assuming a„ *0 and 

*o = 

K, 01 

K, 021 

K, 022 

K, 03 

2a T(l- 
-2(l + ea"T) 

-3eaJ +2e2aJ)- (e""T- -I)2 

. 

T(eaJ -1)4 

. 

T(eaJ -1)2 

T(l-e"-T)2 

(4.146) 

(4.147) 

4.4.5.2. Simulation Results for Subcase 3c 

Incorporation of the hybrid full-order state-observer in (4.142) into (4.139) 
results in a physically-realizable digital servo-control law for Subcase 3c having the form 

+ rae
D*-kT>za(kT) 

a (ea-T-e""T) 

To fully comprehend the level of robustness that is provided by the control 
term u<£t;kT) in (4.134), it is necessary to first view the effects of a parameter-perturbation Aa on the 
example plant utilizing a digital servo-controller which does not compensate for a change in parameter 
value. To show this, a 50% parameter-perturbation ( Aa = 1.5 in (4.123)) and the digital servo-controller 
in (4.104) from Subcase 3a (Subsection 4.4.3) is used. The control sample-period is chosen as T = 02 
and the nominal plant-parameter value a„ is chosen as an = -3. 

The simulation results shown in Figure 4.22 illustrate the plant output y(t) 
,I^teP+/f!!,P;?Te disturbance w&> and the steP servo-command y#).   The digital servo-controller 

«(AT) in (4.104) for this plant assumes a nominal value of a„ = -3, but in fact, the actual value of this 
parameter is 
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a = a„ + Aa = -3 + 1.5 
= -1.5 

The simulation results in Figure 4.23 illustrate the control-effort u(kT) and the servo-tracking error 
£

y(
t) = yc(

t)-y(t) for the plant and digital servo-controller in Subcase 3a subjected to parameter- 

perturbation Aa = 1.5. The digital controller is exerting considerable effort, early on, in an attempt to 
control the plant output y(t) into agreement with the servo-command yc(t). This additional control-effort 
can be attributed to the inappropriate control-action that is generated due to the digital servo-controller 
being tuned to an incorrect parameter value (a„ = -3). 
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Control Sample-Period: 7 = 0.2 

Figure 4.22 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for the 
Example Plant Subjected to a 50% Parameter-Perturbation Ao (a„ = -3,Aa= 1.5) and Using 
the Digital Servo-Controller u(kT) Derived in Subcase 3a. 
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Figure 4.23 Illustration of the Digital Control-Action u(kT) (from Subcase 3a) and Tracking-Error 
M') = yd*) ~ y(0 for the Example Plant Subjected to a 50% Parameter-Perturbation Ha 
(a„ = -3,Aa=1.5). 

134 



Simulation results for Subcase 3c were obtained for the example plant, 
disturbance, and servo-command represented by (4.123), (4.77), and (4.8), where the plant's a„ 
parameter, parameter-perturbation Aa, ideal model parameter am, and control sample-period T were 
chosen as 

a„ = -3,       Aa=1.5, 

am = -3, 7=0.2. 

The simulation results shown in Figure 4.24 illustrate the plant output y(t), 
the disturbance w(t), and servo-command yJif). The digital control terms up(kT) and us(t;kT) in (4.139) 
are tuned to the nominal a„ parameter value, however, this parameter is experiencing a perturbation Aa of 
50% (a = a„ +Aa = -3 + L5).   The control term uJj;kT) in (4.134) provides robustness to those Aa- 

effects. The benefits of the ufökT) control term can be seen by comparing the simulation plots in Figure 
4.24 with those in Figure 4.22. 

The simulation results in Figure 4.25 show the digital control-effort u(t;kT) 
from (4.147) and the servo-tracking error ey(t) = yc{t)-y(t) for Subcase 3c. This digital servo- 

controller is providing intersample accommodation of the external disturbance w(t) and parameter- 
perturbation vector Aaxit). The intelligent D/C holding-action reduces ripple and provides robustness to 
fluctuations, or uncertainties, in plant parameter values (compare the simulation plots in Figure 4.24 with 
those in Figure 4.22 and the simulation plots in Figure 4.25 with those in Figure 4.23). 
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Control Sample-Period: 7= 0.2 

Figure 4.24 Illustration of the Plant Output y(t), Disturbance w{f), and Servo-Command yc(f) for the 
Example Plant Subjected to a 50% Parameter-Perturbation ha (a„ = -3,Aa= 1.5) and Using 
the Digital Servo-Controller u(t;kT) Derived in Subcase 3c. 

Control Sample-Period: 7= 0.2 

Figure 4.25 Illustration of the D/C Control-Action u(t;kT) (from Subcase 3c) and Tracking-Error 
£

y (0 = yc (0 - y(t) for the Example Plant Subjected to a 50% Parameter-Perturbation Aa 
(a„ = -3,Aa=1.5). 
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4.4.6. Subcase 3d: Digital Servo-Tracking Control Design Utilizing Multirate 
Sampling and D/C Control-Action u(t;kTc;kTy) for the Case of a First-Order 
Plant and a Step Servo-Command^), Subjected to Parameter-Perturbation Aa 
and a Step+Ramp Disturbance w{t) 

The digital servo-tracking controller in (4.139) designed in Subcase 3c can be 
modified to use multiple sampling rates to achieve a level of servo-tracking performance that cannot be 
matched using a single-rate servo-controller. One method of implementing (4.139) as a multirate servo- 
controller is to let the controller terms associated with the plant, uJ{t;kT) and u^t;kT), operate at sample- 
rate l/Ty and let the controller term associated with the servo-command, u£t;kT), operate at sample-rate 
l/Tc (note that up{kT) = 0 in Subcase 3c since a„ = am). In that way, the ideal digital servo-controller in 
(4.139) is rewritten as (assuming a * 0) 

where 

u{t;kTc;kTy) = uc(t;kTy) + us(t;kTc) + up(kTc) + ua(t;kTy), (4.148) 

ue {t; kTy ) = -2, (kT )-(t- kTy )z2 (kTv), 

us(t;kTc) = -a„c(kTc) 

= -anyc(kTc)' 

up(kTc) = -a»(^ fJc>(ye(KTe)-x(kTc)) = 0 foran = am , 

and 

ua(t;kTy) = ea"'{'-kT>)za(kTy). 

4.4.6.1. Practical Realization  of the Digital  Servo-Tracking  Controller  for 
Subcase 3d 

The digital servo-controller in (4.148) is realized by substituting Tv for T in 
the hybrid full-order state-observer in (4.142) for Subcase 3c and by using direct measurements of the 
servo-command yc(t). Incorporating (4.142) into (4.148) yields the physically-realizable digital servo- 
controller b 

^;^;^) = -f1(^)-(/-^)f2(^)-a^c(^j + ^('-^)fo(yt7;).   (414Q) 
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4.4.6.2. Simulation Results for Subcase 3d 

Simulation results were obtained for Subcase 3d, where the plant's nominal 
a„ parameter, parameter-perturbation Aa in (4.123), ideal parameter am in (4.124), and control sample- 
periods 7 and Ty were selected as 

an = -3, 

Aa=1.5, 

am = -3, 

7, = 0.1, 

and 

rc=o.5. 

The simulation results shown in Figure 4.26 illustrate the plant output y(t), 
the step+ramp-type disturbance w(t), and the step servo-command y^t) for Subcase 3d.  The multirate 
D/C servo-control action u(t;kTy;kTc) and the servo-tracking error ey(t) = yc(t)-y(t) for Subcase 3d are 

shown in Figure 4.27. A 50% decrease in the sample-period (from T= 0.2 in Subcase 3c to Ty = 0.1) for 
the uc and ua control terms has allowed a 250% increase in the sample-period Tc (from T = 02 in 
Subcase 3c to Tc = 0.5) in the control term u£t;kTc) (associated with the servo-command y<{i)).   The 
overall tracking and system performance has improved over that obtained in Subcase 3c. A comparison 
of the simulation plots in Figure 4.26 to those in Figure 4.24 and the simulation plots in Figure 4.27 to 
those in Figure 4.25 shows less ringing and a faster settling-time in the plant output XO and a sizeable 
reduction in the servo-tracking error ey(ß) = ye(ß)-y{t). This increased performance can be attributed 

to the intelligent use of multiple sampling-rates. A particular application of this dual-rate system is the 
case in which the plant output y(t) is available for measurement at each of the times    t = kT„ 
k = 0, 1, 2, ..., while the servo-command^) is available less frequently, at each of the times t = kTc, 
k = 0, 1, 2, ... (recall that Tc and Ty are related by (3.80)). 
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Control Sample-Periods: T,= 0.1 and Tc = 0.5 

Figure 4.26 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for the 
Example Plant Subjected to a 50% Parameter-Perturbation ha (a„ = -3, Aa = 1.5) and Using 
the Multirate Digital Controller u(t;kTy;kTc) from Subcase 3d. 
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Figure 4.27 Illustration of the Multirate D/C Control-Action u(.t;kTy;kTc) (Controller from Subcase 3c 
using Multirate from Subcase 3d) and Tracking-Error sy(t) = yc(t) -y(t) for the Example 

Plant Subjected to a 50% Parameter-Perturbation Aa (a„ = -3, Aa = 1.5). 
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4.5.    Example 4: An Unstable First-Order Plant and Step+Exponential Servo-Command yc(t) 
Subjected to a Step+Ramp Disturbance w(t) and Parameter-Perturbation Aa 

The purpose of Example 4 is to illustrate that 

i) due to the decomposition of the digital control-effort, only the control term u£t;kT) in 
(4.116) from Subcase 3b that is affected by the change in servo-command model need 
to be designed; 

ii) control terms designed previously in Example 3 are valid for a stable, as well as an 
unstable plant; 

iii) the hybrid full-order state-observer in (4.142) from Subcase 3 c need not be re- 
designed; 

iv) a control term uam(kT) can be added to the digital servo-controller algorithm in 

(4.148) to take maximum benefit of multiple sample-rates; 

v) intersample misbehavior can be eliminated in the case of non-conventional servo- 
commands (not a Type 1, 2, or 3 command); and 

vi) a reduced-order state-observer may be used to estimate the servo-command state 
cikT). 

4.5.1.   Plant, Disturbance, Parameter-Perturbation, and Servo-Command Models for 
Example 4 

Example 4 will use the same first-order plant in (4.76), step+ramp disturbance w(t) in 
(4.77), and parameter-perturbation vector Aax(t) model in (4.126) as was used in Example 3, with the 
exception that the plant has a pole in the right-half plane (a„ = 1 in (4.123), an inherently unstable plant). 

The servo-command yc(f) is assumed to be an unknown stepwise-constant-plus-exponential (hereafter 
called step+exponential) command represented by 

yc(t) = c1+c2e-"    , (4.150) 

where c, and c2 may occasionally jump in value at unknown times, and a is a known quantity given 
later in Subsection 4.5.3.2. 

The linear homogeneous differential equation governing the motions of y<{f) in 
(4.150) between jumps in the ct is 

yc(t) + cyc(t) = 0. (4.151) 

A state model for the servo-commander) is obtained using (4.151) and the method 
outlined in Section 2.5. That state model is 
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yc(t) = Gc(t) 

c(t) = Ec(t) + M(t) 
(4.152) 

where 

G = (\,   0), 

E = 
0     1 

0   -a 

and 

//(/) are unknown, sparse sequences of impulses that "cause" the uncertain "jumps" in the servo- 
command yjit). 

Using the technique described in Section 2.6, a discrete-time model is obtained for 
the servo-command. In that way, this model is written as 

where 

yc(kT) = Gc(kT) 

c((k + l)T) = Ec(kT)+Ji(kT) 

G = {\,   0), 

(4.153) 

E = etJ = 

l-e -ctr 

a 
,-ctr 

1   T 

0    1 

if   a*0 

if   a = 0 

and 

//(*7>jV<r-*V(<f+*7V#. 

It is hereafter assumed that a * 0 throughout Example 4. For reasons discussed in Chapter 2, the term 
ß{kT) in (4.153) is disregarded throughout the design process. 
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4.5.2.    The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for 
Example 4 

The objective is to design a digital servo-tracking controller for the given plant such 
that the tracking-error, defined by 

£y(0 = yAt)-y(t), (4.154) 

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first 
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is 
that the vector servo-command input yc{t) must consistently lie in the column range-space of the plant- 
output matrix C in (4.81) for all t. In the present example, satisfaction of this condition requires that 
(from (2.33)) 

5R[G]c9i[C] . (4.155) 

If (4.155) is satisfied, then it is possible to express G as some linear combination of 
the columns of C. That is, G = CO for some (possibly nonunique) 6. Substituting C and G from (4.81) 
and (4.152) into G = C0yields 

(1,   0)=1(4    62). (4.156) 

Clearly, (4.156) ]s satisfied for some 6; namely 

0 = 0'   °)- (4.157) 

The control task is to design a discrete-time control algorithm for u(kT) such that the 
servo-state vector ess(kT) in (3.38) becomes stable to and invariant for a subspace Sv =Nfc|cN[C] for 

some C  in (2.46).   As discussed below (4.86), C = C = 1 in (2.45) and we have the special case of 
stabilizing ess(kT) to the nullpoint. 

The discrete-time models for the plant (4.81), disturbance (4.82), and servo-command 
(4.153), and the 9 determined in (4.157), will now be used in two subcases which utilize the D/C servo- 
tracking controller design techniques presented in Chapter 3 of this report. 

4.5.3. Subcase 4a: Digital Servo-Tracking Control Design Utilizing D/C Control- 
Action u(t;kT) for the Case of an Unstable First-Order Plant and 
Step+Exponential Servo-Command yc(t), and Subjected to a Step+Ramp 
Disturbance w(t) and Parameter-Perturbation Aa 

In this Subsection, a digital servo-controller is designed using the D/C servo- 
controller design techniques presented in Sections 3.1 through 3.3. The ideal form of the digital servo- 
tracking control law for Subcase 4a is written as 

«(/; kT) = uc (/; kT) + us (t; kT) + up (kT) + ua (/; kT), (4.158) 
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where u<£t;kT), up(kT), and u^tfiT) are the same as those designed in Subcases 3b and 3c and given in 
(4.115), (4.138), and (4.134), respectively. Only the control term us(t;kT) in (4.116) needs to be 
redesigned such that intersample accommodation is provided for the disturbance-like effects of the 
step+exponential servo-command^/) in (4.150). 

The necessary and sufficient condition for existence of the control term u&kT) 
satisfying (3.16) is (same as (3.13)) 

where 

and 

rank[0E-A0\B] = Tank[B], 

nmk[0E-A0 | B] = rank[-a„, 1 | l] = l, 

(4.159) 

rank[5] = rank[l] = l. 

Clearly the rank condition in (4.159) is met and Ts is designed such that (same as (3.18)) 

(OE-A0)-BTs=(-a„,\)-(rsl,Ts2) = O. 

The rvthat will satisfy (4.160) is 

r>(-a„,  1). 

The ideal continuous-time control term ujj) in (3.20) can thus be ideally chosen as 

«,(0 = 1X0 

= -a„c,(0 + c2(0 

(4.160) 

(4.161) 

(4.162) 

Recall, however, that the digital control decisions at time t = kT must be based on 
measurements, or estimates, of the state c(t) available at each of the times t = kT, k = 0,1,2,-. 

Therefore, the projected or forecasted behavior of c(t) across each intersample interval must be 
represented in terms of c(kT). This relationship is found in the general solution to (4.152) evaluated at 
each / over the interval from kT to t = (k + \)T (assuming a * 0 ) 

c{t) = eE(-kT^c{kT) + rs(<t) 

(4.163) 

a 
-a(t-kT) 

c(kT) + rs(t) 

where 
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rs(t) is a residual-effect given by rc{t) = f eE('~kT)
H(T)CIT . 

As discussed in Subsection 3.1.3, the rs(t) term is excluded from the design process. 

Substituting (4.163) into (4.162), and ignoring the residual term, results in the final 
(idealized) form of the us control term 

us(t,kT) = Tse
E('-k7">c(kT) 

=(-«.. 0 
\-e -a(t-kT) 

a 
-a(t-kT) 

c(kT) (4.164) 

= -ancx{kT) + 
(e-°^(an+a)-an) 

a 
c2(kT) 

The final form of the (ideal) digital-continuous servo-controller equation for Subcase 
4a is given in (4.158) where u^t;kT), u&kT), up(kT), and u^t;kT) are given in (4.115), (4.164), (4.138), 
and (4.134), respectively. 

4.53.1. Practical Realization of the Digital  Servo-Tracking  Controller for 
Subcase 4a 

The digital control law in (4.158) assumes availability of the real-time value 
of the external disturbance state z(kT), the plant state x(kT), the servo-command state c{kT), and the 
related parameter-perturbation state z£kT). Estimates of the plant state x(kT), disturbance state z(kT), and 
the parameter-perturbation state zJJcT), are generated by the hybrid full-order state-observer in (4.142) 
developed for Subcase 3c with u(t;kT) from (4.158) used for the digital servo-controller. Estimates of the 
servo-command state c(kT) are generated by a discrete-time reduced-order state-observer as described in 
Subsection 2.13.3. The states cx(kT) and xx{kT) can be obtained directly from measurements of vc(&7) 
zndy(kT), respectively (refer to (4.153) and (4.81)). 

In order to compute y/(ut) for (4.158), the control task u(t;kT) in (4.158) 
must be divided into a discrete part up(kT) and a continuous time-varying part u,. In that way, (4.158) is 
rewritten as 

u(t;kT) = up(kT) + ut(t); kT<t<(k + l)T, (4.165) 

where up(kT) in (4.138) is the portion of u(t;kT) that is held constant between sample times, and 

ut(t) = uc{t;kT) + us{t;kT) + ua(t;kT) , (4.i66) 

is the portion ofu(t;kT) that varies with time between each successive sample-time. 
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The ut(f) in (4.166) changes the value of y/(u,) determined in Subcase 3c in 
(4.142). The new value of y/(ut) is computed as 

y/(u,)= £ea"(T-r)bu,(T)dz 

J-z2(kT) + ±- Ma{kT) 
{a»-am) a„ 

(4.167) 

(e°'T-e-aT)              ,_eaj                                         (\-ea-T\ 
+ \ ^C2(^r) + l-^-r1(^r) + (l-e

fl»rk(^ + A L c2(kT) 

where an *am, a„ *0, and a*0. To physically realize y(ut)m (4.167), the estimates f,(*T), 
z2(kT), and za(kT) are used from the hybrid full-order state-observer and the estimate c2(kT) must be 
obtained. 

A discrete-time reduced-order state-observer design is used to generate the 
state estimate c(kT) based solely on the sampled real-time measurement of yc(kT). The "recipe" for this 
design was developed in [33] and is described in Subsection 2.13.3 . The discrete-time reduced-order 
state-observer design proceeds as follows (assuming a * 0 ): 

Step_j_. define Tn as any v x (v-m) maximal rank matrix such that 

GT12 = 0 

The 9l[Tl2] of a Tl2 which meets this condition will necessarily form a basis 
for the X[G]. For this example, 

GT12=(l,   0) 
fr  \ 

M2, 
TnJ , 

= T, 12, 

and Ti2 can be selected as 

Tn = 
V 

Step 2.        a) define the (V-OT) x v matrix 

(o. ^ 

= (°. 1) 

-1 

(o,  1), 
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Step 3. 

and 

b) define the m x v matrix (f as 

G*=(GGT)~1G 

'1 
(i.  »I (1,   0); 

-0. o) 

a) construct the (v-m) x (v-m) matrix 

V = TnETu 

= (0   1) 
l-e -aT 

a 
„-aT 

= e -aT 

and 

b) construct the m x (v-m) matrix 

W = GEZ 12 

=0* o) 
l-e -aT 

0      e 
a 
-aT 

Step 4. 

l-e ■aT 

a 

construct the error-dynamics discrete-time evolution equation 

eyc((k + l)T) = [D + V»]eyc{kT) 

e-°r + I 'l-e-"^ 
\     a    J 

SyiKT) 

Step 5. design E such that syc (kT) -> 0 rapidly, 
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For this example, the poles of [V + 2#] in Step 4 are placed at zero (A = 0). 
In that way, 

A-[V + I#] = A- e-aT + X 
(l-e-«r\ 

\    a    ) 
= 0, 

and 2 is chosen as 

2 = 
052 

-aT 

e~aT-\ 

Step 6. construct the "filter" part of the discrete-time reduced-order 
state-observer 

£((* + l)r) = (Z> + 230#(*r) 

+ [(7j2 + 2G)(£G#r) - (Z> + 2»)lk (*T) 

r.-f 
(4.168) 

=0£(*r)+ 
e-^(i+(a_1)e-^y 

e-^-l 
^W 

and 

StepJL        construct the "assembly-equation" portion of the discrete-time 
reduced-order state-observer 

%kT) = Tnm)+[G*T-Tnz]yc(kT) 

J#(^)+ 
(4.169) 

yc(kT) 
\\-e-<*rJ 

4.5.3.2. Simulation Results for Subcase 4a 

Incorporation of the hybrid full-order in (4.142) with y/(ut) from (4.167) and 
discrete-time reduced-order in (4.169) state-observers will result in a physically-realizable digital servo- 
control law having the form 

u(t;kT) = Tce
D^z(kT)+Tse

E^c(kT)- Kp(yc(kT)- y(kT)) 
+ YaeoA-^a(kT) ■ (4.170) 

where Tc, Ts, Kp, Ta are given in Equations (4.109), (4.161), (4.137), and (4.131), respectively. 
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Simulation results were obtained for two different sample-periods 
(T= 0.1, 0.2) and for the case of no parameter-perturbation (Ao = 0) and +/-100% parameter-perturbation 
(Ao = ±1). In the simulations for Subcase 4a, the nominal value of the plant's a„ parameter in (4.123), 

ideal model parameter am in (4.124), and exponential decay a on the servo-command y^t) in (4.150) were 
chosen as 

a„ = 1; (an inherently unstable plant), 

<*m = -3, 

and 

a = \. 

The plant output y(t), the step+ramp disturbance w(t), and the 
step+exponential servo-command yJif) for the simulation using a control sample-period of T= 0.2 is 
illustrated in Figure 4.28 and Figure 4.30. The illustration in Figure 4.28 represents the nominal case of 
no parameter-perturbation (Aa = 0). The illustration in Figure 4.30 represents the case of parameter- 
perturbation Aa = -1 and Aa= 1 overlayed on top of the nominal case (shown in Figure 4.28). The 
simulation results in Figure 4.29 and Figure 4.31 show the corresponding servo-tracking error &(t) for 
Subcase 4a. 

The plots in Figure 4.32 and Figure 4.34 show the plant output y(f), the 
step+ramp disturbance w(t), and the step+exponential servo-command yjj) for a simulation using a 
control sample-period of 7=0.1. The simulation results in Figure 4.32 illustrate the case of no 
parameter-perturbation (Aa = 0). The simulation results in Figure 4.34 illustrate the case of parameter- 
perturbation Aa = -1 and Aa= 1 overlayed on top of the nominal case (shown in Figure 4.32). The 
simulation plots in Figure 4.33 and Figure 4.35 show the corresponding servo-tracking error ejt) for 
Subcase 4a. ^ 

As expected, the settling-time and servo-tracking error decreases as the 
sample-period is reduced (from T=0.2 to T=0.l). The digital servo-controller and the hybrid and 
discrete-time reduced-order state-observers did not need to be recomputed for the different sample- 
periods because the sample-period T was carried throughout the calculations as a variable The 
decomposition of the total control-effort greatly reduces the complexity of the design, allowing for this 
type of symbolic computation on relatively simple systems. Also note that the control term uJkT) in 
(4.158) did not have to be recomputed from (4.138), even though the value of the plant's an term changed 
from stable (a„ = -3) to unstable (an = l). This example illustrates that the same digital servo-controller 
equation can be used for both stable and unstable plants, providing the plant-parameter values are carried 
symbolically throughout the calculations. The control terms u&kT) and uJi&T) in (4.158) were reused 
from Subcase 3c (4.139) since the general form of the disturbance w(f) and the characteristics of the 
parameter-perturbation vector Aax(t) are the same in Example 4 as they were in Example 3 
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Control Sample-Period: T=0.2 

Figure 4.28    Illustration of the Plant Output y(t), Disturbance w{t), and Servo-Command y#) for 
Subcase 4a With an Unstable Plant, a„ = 1, Aa = 0, and Control Sample-Period T= 0.2. 

ä    Control Sample-Period: T=0.2 

2 

-1 

eAt)=y4t)-y(f) 
■> 

On= 1 

Aa = 0 

u 5 10 

Figure 4.29 Illustration of the Servo-Tracking Error s^t) for Subcase 4a With an Unstable Plant a = 1 
Aa = 0, and Control Sample-Period T= 0.2. '   " 
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Control Sample-Period: 7=0.2 

Figure 4.30 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command y<{t) for 
Subcase 4a With an Unstable Plant, a„ = 1, Control Sample-Period T= 0.2, and Aa = -1 
and 1, Overlayed on Nominal Case of Aa =0. 

Control Sample-Period: T=0.2 *K0=y<K0-y(f) 

Figure 4.31 Illustration of the Servo-Tracking Error e^i) for Subcase 4a With an Unstable Plant, a„ = 1, 
Control Sample-Period T= 0.2, and Aa = -1 and 1, Overlayed on Nominal Case of Aa = 0.' 
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Control Sample-Period: 7=0.1 

Figure 4.32 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yj{f) for 
Subcase 4a With an Unstable Plant, a„ = 1, Control Sample-Period T= 0.1, and Aa = 0 
(compare to Figure 4.28). 

Control Sample-Period: T=0,1 

1 

0 

■1 

-2 

a»= 1 

Aa = 0 

L p- 

«(O^y.CO-ytO—i 

tL £^ 

0 10 
Figure 4.33 Illustration of the Servo-Tracking Error s^t) for Subcase 4a With an Unstable Plant, a„ = 1 

Control Sample-Period 7=0.1, and Aa = 0 (compare to Figure 4.29). 
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Control Sample-Period: 7=0.1 

Figure 4.34 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command^) for Subcase 
4a With an Unstable Plant, a„=l, Control Sample-Period r=0.1, and Ao = -l and 1, 
Overlayed on Nominal Case of Aa =0 (compare to Figure 4.30). 

Control Sample-Period: 7=0.1 

Figure 4.35 Illustration of the Servo-Tracking Error e^t) for Subcase 4a With an Unstable Plant, a„ = 1, 
Control Sample-Period 7= 0.1, and Aa = -1 and 1, Overlayed on Nominal Case of Aa = 0 
(compare to Figure 4.31). 
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4.5.4. Subcase 4b: Digital Servo-Tracking Control Design Utilizing Multirate 
Sampling and D/C Control-Action u(t;kTc;kTy) for the Case of an Unstable First- 
Order Plant and Step+Exponential Servo-Command yc(t), and Subjected to a 
Step+Ramp Disturbance w(t) and Parameter-Perturbation Aa 

The digital servo-tracking controller in (4.158) designed in Subcase 4a can be 
modified to use different sampling-rates to achieve a level of servo-tracking performance that cannot be 
matched using a single-rate servo-controller. The digital servo-tracking controller u(t;kJ) in (4.158) from 
Subcase 4a is implemented in this Subsection such that the control terms uJ(j;kT) and u^t;kT) run at 
sample-rate \ITy and the control terms u£t\kT) and up(kT) run at sample-rate l/Tc . It is assumed that 
measurements of the plant output y(t) are available every t = kTy and measurements of the servo- 

command^) are available every / = kTc and the sample-periods Tc and Ty are related by (3.80). In that 
way, the ideal digital-continuous digital servo-controller equation in (4.158) is rewritten as (assuming 
ar*0 ando„ = 1) 

where 

u(t;kTc;kTy) = uc(t;kTy) + us(t;kTc) + up(kTc) + ua(t;kTy), (4.171) 

ue (t; kTy) = -r, (kTy ) - (/ - kTy )z2 (kTy), 

us(r,kTc) = -anyc(kTc) + 
a 

\c2(kTc), 

a (eaJ -pa"T\ 
"P(^C) = -  

n\aJ_\    \yAkTc)-y(kTc)), 

and 

ua(r,kTy) = ea"{,-kT>)Za(kTy). 

The diSital servo-tracking control law in (4.158) can be modified to take full benefit 
of the use of multiple sample-rates. For example, the particular multirate implementation in (4 171) can 
be altered such that an inherently unstable, or highly-oscillatory, plant (a„=\ for Example 4) is controlled 
and stabilized at the higher sample-rate 1/7;. In that way an additional control term, postulated in 
continuous-time as u^(t) = Kmx(t), is designed such that the continuous-time homogeneous equation 
(refer to (3.83)) 

x{t) = (an+bKm)x(t) , (41?2) 

has certain specified eigenvalues. For that purpose, Km is selected such that 

det[M-(an+bKm)] = Pm(A) (4173) 

where Pm(\) is given in (4.125) and the term am in (4.124) is replaced by the composite term a„ + bKm, 
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<*m=a»+bKm. (4.174) 

The discrete-time counterpart to the design of Km in (4.172) is to choose Km to obtain 

det[AI - (AN + BKm )] = det[AI - Am\, (4.175) 

where AN and B are defined in (4.135) (with T replaced by Ty) and Am =ea"Ty for am defined in 
(4.174). 

For this example, Km is designed to satisfy 

A-e   y - ajy    e"*T>-l 

a„ 
Km=A-eaJ>, (4.176) 

Solving for Km in (4.176) yields the result (a„ = 1 and a„ * am ) 

K„ = 
_a„(e^-e^) 

e°"T*-l 

The (ideal) control term uQm (kTy ) in (3.87) can thus be chosen as 

(4.177) 

uam{kTy) = Kmx{kTy) 

a(ea"T>-e°"TA 

eaJ> -1 

(4.178) 

Assuming the ideal choice for uQm (kTy) in (4.178) is implemented, the control terms 
u£t;kTc) and up(kTc) in (4.171) would be designed using the "new" a„ parameter. That is, the term a„ 

would be replaced by a„ + bKm and an would be replaced by the exponential e(a°+bR")T° throughout the 
design of us(t;kTc) and up(kTc) in Subsections 4.5.3 and 4.4.5. In that way, the improved ideal multirate 
servo-controller equation becomes ( a * 0 ) 

u(t;kTy;kTc) = uc(t;kTy) + us(t;kTc) + up(kTc) + ua(t;kTy) + ua (kTy) . (4.179) 

where 

us(t,kTc) = -(an+bKm)yc(kTc) + 
(e-°^{an+bKm+a)-a„-bKm) 

a 
c2(kTc).. 
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(an+bKm)(e^-e^T< 
U»(kT<)=: eK^.)r._1 Hyc(kTc)-y(kTc)),   where   (an+bKm)*0, 

and u&kTy) and ua{t;kTy) are given in (4.171) and uQm (kTy) is given in (4.178). 

4.5.4.1. Practical Realization of the Digital  Servo-Tracking Controller for 
Subcase 4b 

The digital servo-controller in (4.179) is realized by utilizing the discrete- 
time reduced-order state-observer in (4.169) obtained in Subcase 4a (with T replaced by Tc), by 
substituting Ty for T in the hybrid full-order state-observer in (4.142) computed for Subcase 3c, and by 
modifying the term y/(u,) in (4.167) in the following way. 

time-varying part w,(f) 

where 

and 

Divide the control task in (4.179) into a discrete part uk7(kT) and a continuous 

u(t;kTc;kTy) = ukr(kTc) + u,(t);       kT<:t<(k + l)T, (4.180) 

ukT(kTc;kTy) = up(kTc) + uam (kTy), 

ul(0 = uc(f,kTy) + us(t;kTc) + ua(t;kTy). 

The «,(/) in (4.180) changes the value of y/{ut) in (4.167). The new value of 
y(u,) is computed as 

(anTy+l-e""T>) (e*r'-e*M 

= 3 ZAkTy)+    (^)    ^ 1 «■!«> 
(a„ +bKm + a){eaJ>e-"^-^ -ß-««*+')V«;)j 

+ «jjä) ~C^) + 

+
 ^—L{°n ^Km)yc(kTc) + \ A_! mJ_cAkTc) 

fl-e"^ 

\      an       ) 
^l(«l) 

wherea„=\, an*am, a*0,and a*-a„. 
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To physically realize y/(u,), the estimates zx(kTy), z2(kTy) and za(kTy) are used from the hybrid full- 

order state-observer (4.142) and the estimate c2(kTc) is obtained from the output of the discrete-time 
reduced-order state-observer (4.169). 

4.5.4.2. Simulation Results for Subcase 4b 

Simulation results were obtained for Subcase 4b using the plant, disturbance, 
and servo-command, given in (4.76), (4.77), and (4.150) where the value of the plant's a„ parameter, 
parameter-perturbation Aa in (4.123), ideal model parameter am in (4.124), exponential decay a on the 
servo-command yc[t) in (4.150), and control sample-periods Tc and Ty were chosen as 

an=\ 

am ~ -3, 

a = l, 

and 

Control Sample-Period: 

Ty =0.01, Tc=\ 

Ty =0.05, Tc=02 

Ty=0.0l, Tc=02 

Ty =0.01, rc=o.i 

for the cases 

Aa = 0 

Aa = -3,-l, 0,1,3 

Aa = -3,-l,0,l,3 

Aa = -3,-l,0,l,3 

The simulation results in Figure 4.36, Figure 4.38, Figure 4.40, and Figure 
4.42 illustrate the plant output y(t), the step+ramp disturbance w(t), and the step+exponential servo- 
command y^t) and the simulation plots in Figure 4.37, Figure 4.39, Figure 4.41, and Figure 4.43 show 
the servo-tracking error sy(t) = yc{t)-y(t) for Subcase 4b. In particular, the simulation plots in Figure 

4.36 and Figure 4.37 are for the nominal case (Aa = 0). This subcase is provided to illustrate the added 

benefits that can be obtained by incorporating the additional control term u(kT) in (4.178). In that 

way, the simulation result shown in Figure 4.36 graphs the plant outputs and the result shown in Figure 
4.37 graphs the servo-tracking errors for the case of the servo-controllers u(t;kTy;kTc\ as given in (4.171) 
(where «^ (£7;) = 0), and u(t;kTy;kTc), as given in (4.179). The improvement provided by the control 

term uüm(kTy) can be seen by examining the performance between the sample times kTc and (k+\)Tc, 

where Tc= 1. For the most part, the tracking error is smaller for the case when the control term 
uaSkTy) is included. The simulations results shown in Figure 4.38 through Figure 4.43 utilize the 

multirate control law in (4.179) where uam(kTy) is included. The simulation plots in Figure 4.38 through 

Figure 4.43 illustrate the performance of the plant in Subcase 4b for a variety of parameter-perturbations 
Aa, including perturbations as large as +/- 300% of the a„ parameter. A variety of sample periods are 
used to illustrate the level of performance that can be achieved by combining the sample rates in different 
ways. The performance of the multirate servo-controller in (4.179) (Figure 4.38 through Figure 4 43) can 
be compared to the performance of the single-rate servo-controller in (4.170) used in Subcase 4a (see 
Figure 4.28 through Figure 4.35). v 
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Control Sample-Periods: Ty= 0.01, Tc = 1 

2 

1 

0 

-1 

-2 

,                                1  

Aa=0                              .                    V 

fl-=1                               \               / 
.^«.=.-3 .j ./____ 

\        j    w(t) 

J*W^_ 1 pz+SL. 
[1                      1 

..\f. XyAo: 
>W                      j           Mt) \   1'      j*f* 

VT J /' 
U- - UUUUMUMemlf.14) ; XML --V4* - -!•  
1                                      ;     with uam{kT,) 

0 5 10 

Figure 4.36   Illustration of the Plant Output X'), Disturbance w(t), and Servo-Command j^f) for 
Subcase 4b:    An Unstable Plant (a„ =  1) With Known Parameters   (Aa = 0)   and 

Compensated by a Multirate Controller Using Sample Periods 7; = 0.01 and rc=l,With 
and Without the uüm(kTy) Control Term Included. 

Control Sample-Periods: Ty= 0.01, Tc = 1 £K0=yK0-y(f) 

Figure 4.37 Illustration of the Servo-Tracking Error e^t) for Subcase 4b With An Unstable Plant 
(a„- 1) With Known Parameters (Aa = 0) and Compensated by a Multirate Controller 

Using Sample Periods 7^ = 0.01 and Tc= 1, With and Without the uam(kTy) Control Term 
Included. 
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Control Sample-Periods: Ty = 0.05, 7c = 0.2 

!                      /v                !     a» = 1 

y(0 for                         ;                 ~7  \w(t)    [    a"= "3 
Aa=-3. -1.0. 1.3 —7 i             /        \        i 

■v^-p-—-7-—- 

^.   yc(f)   r   ^4^L_    yc(0 
i| u* / ; 

x»»w/  i yT^O 

/! 

;         r         

3 

2 

1 

0 

-1 

-2 

0 5 10 

Figure 4.38 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yj(f) for 
Subcase 4b With An Unstable Plant (a„ = 1) Subjected to Parameter-Perturbations 
Aa = -3, -1,0,1, and 3, and Compensated by a Multirate Controller Using Sample Periods 
T =0.05 and  71=0.2. 

Control Sample-Periods: 7>= 0.05, Tc ■ 0.2 

Figure 4.39 Illustration of the Servo-Tracking Error e£t) for Subcase 4b With An Unstable Plant 
(a„-l) Subjected to Parameter-Perturbations Aa =-3,-1,0,1, and 3, and Compensated 
by a Multirate Controller Using Sample Periods T = 0.05 and Tc = 0.2 
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Control Sample-Periods: Ty= 0.01, 7c = 0.2 

Figure 4.40 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for 
Subcase 4b With An Unstable Plant (a„=l) Subjected to Parameter-Perturbations 
to = ~3'_ !> °> I and 3, and Compensated by a Multirate Controller Using Sample Periods 
7; =0.01 and T, =02 

Control Sample-Periods: T,= 0.01, Tc = 0.2 

2 

1 

0 

a*= 1 
1                ————__ 1                                | 

Ü K-A-^J_ 

lj 

efl)ssy.(i)-y(f) 
Aa= -3, -1, 0, 

for   ' 
: 

2 

1.3 • 

0 10 

Figure 4.41 Illustration of the Servo-Tracking Error sfif) for Subcase 4b With An Unstable Plant 
(an- 1) Subjected to Parameter-Perturbations Aa = -3, -1,0,1, and 3, and Compensated 
by a Multirate Controller Using Sample Periods Ty = 0.01 and Tc = 0.2. 
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Control Sample-Periods: Ty= 0.01, Tc= 0.1 

Figure 4.42 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command y£t) for 
Subcase 4b With An Unstable Plant (a„=l) Subjected to Parameter-Perturbations 
Aa = -3, -1,0,1, and 3, and Compensated by a Multirate Controller Using Sample Periods 
7=0.01  and 7=0.1. 

Control Sample-Periods: Ty= 0.01, Tc= 0.1 

07=-3" 

-1 

-2 

i 1 

£y(t)=yc(t)-y(t) for 

Aa=-3,-1, 0, 1,3 

0 5 10 

Figure 4.43 Illustration of the Servo-Tracking Error e^t) for Subcase 4b With An Unstable Plant 
(a„=l) Subjected to Parameter-Perturbations Ao =-3,-1,0,1, and 3, and Compensated 
by a Multirate Controller Using Sample Periods Ty = 0.01 and Tc = 0.1. 
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4.6. Example 5: An Unstable Second-Order Plant and Stepwise-Constant Servo-Command 
yc(t), and Subjected to a (Step+Ramp)xDecaying-Exponential Disturbance w(t) and 
Parameter-Perturbations A4 

This numerical example illustrates an unstable second-order plant that is required to track a 
servo-command ^c(0 composed of stepwise-constants. The disturbance w(t) is composed of a stepwise- 
constant decaying-exponential and a ramp multiplied by a decaying exponential. The plant's A matrix is 
perturbed. A physically-realizable digital servo-controller u(t;kT) having D/C holding-action is designed 
for Example 5, and simulation results are presented using both single-rate and multirate digital servo- 
controllers. 

4.6.1.   State Models for the Plant, Disturbance, Parameter-Perturbation, and Servo- 
Command for Example 5 

The plant for this example is modeled by the following second-order differential 

(4.182) 

equation: 

y(t) = (2 + Aa2 )y(t) + (-1 + Aa,) y(t)+u(t) + w(t). 

The disturbance w(t) is known to have the following form: 

w(t) = (cl+c2t)e-a', (4.183) 

where c, and c2 are unknown stepwise-constants which may "jump" in value from time-to-time, and a is 
a known quantity. The interval between successive jumps in c, and c2 is assumed to be somewhat larger 
than the sampling-period T. 

The state model for the plant is easily determined by choosing   xx(t) = y(i)   and 
*2(0 = Kt) as follows: 

x(t) = ANx(t) + Bu(t) + Fw(t) + AAx(t) 

y(t) = Cx(t) (4.184) 

where 

AN = 
"0     1" 

-1   2_ 
9 

AA = 
" 0 

Aa,    A 

0 " 

a2„ 

B = 
V 

F = 

C = (l   0). 

+   u •        ,      -A Similar State model is devel°Ped for the disturbance w(t) in (4.183)  usins the 

*,qu;s
Kr;d in Section 2-5 by noting **between JumPs in the c ** LJ^ 4"" governed by the linear homogeneous differential equation 
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w(t) + 2aw(t) + a2w(t) = 0. (4.185) 

Using the methods described in Section 2.5 the state model for the disturbance w(t) in (4.185) is obtained 
as 

where 

w(t) = Hz(t) 

z(t) = Dz(t)+cr(t)   ' 

H = {\,   0), 

(4.186) 

D = 
-a1   -2a 

and 

a(t) are uncertain, sparse impulses that "cause" the occasional "jumps" in the 
disturbance w(t). 

The parameter disturbance-effects AAx(t) in (4.184) are modeled as described in Subsection 3.2.4 as 

wa(t) = -(AA)x(t). (4.187) 

As shown in [39], w^t) is closely approximated by the known differential equation model (in (3.44)) 
where the coefficients /?, in (3.44) are obtained from the characteristic polynomial in (3.36) for the 
"ideal" closed-loop dynamics of the servo-state vector ejfi in (3.35). The ideal model in (3.35) is 
chosen for Example 5 as 

ess(t) = Amess(t) 

0        1 

-36   -12 ««(0 
(4.188) 

The desired characteristic equation in (3.36) is computed from (4.188) as 

Pm(A) = det(Al-Am) 

= A2+12A + 36 

= (A + 6)2 
(4.189) 

Proceeding as in Subsection 3.2.4, the dynamic behavior of the parameter disturbance 
term (AA)x(t) is expressed by the state model (same as (3.45)) 

-(AA)x(t) = wa(t) = Haza(t) 
(4.190) 

where the procedure for determining Ha and Da is given in Subsection 3.2.4. For this particular example 
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and 

|"0   o~] 
Hü = 

1    0 (4.191) 

D = 
0        1 

-36   -12 (4.192) 

The term ajf) in (4.190) represents sporadic, sparse-in-time impulses that are the source of the uncertain 
intersample "jumps" that may occasionally occur in the disturbance vector (AA)x(t). As discussed below 
(3.72), the ajf) term is disregarded throughout the design process. 

Using the techniques described in Section 2.6 and Subsection 3.3.2, discrete-time 
models can be obtained for the plant, disturbance, and parameter-disturbance vector. Those models are 

Plant: 

x((k +1)7) = ANx(kT) + Bup{kT) + y/(ut) + FHz(kT) 

-Haza{kT) + y{kT)-ya 

y(kT) = Cx(kT) 

where 

(4.193) 

AN=eA»T = 

= feA»(r-T 

eT(l-T)      Te7 

_ -Te'      e'{\ + T) 

B Bdr = 
rl + eT(T-l) 

I      TeT      , 

FH = (eA»(T-T )FHeDrdr = 
AI    flhi 

where 

Ai = 

e-^ftq + \)aT + 3a + l) + eT{(T - l)(3a + 1) + 2Ta2) 

(1 + af 

T2   T(,    T 
2 € I     3 

if a*-\ 

ifa = -l 
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A2 = 

\eT + e-aT)T(a + l)-2(eT-e-aT) 

(l + a)3 if a*-l 

ifa = -l 

Ai = 

and 

A2 = 

-«7V~    2   ,   _2 - e~m (2a' + gT(l + g)) + e' (T(3a + l + 2a2) + 2a2) 

o+«r 
-7*2 ^\ 

re
rh-— 

6y 

ifor*-l 

ifa = -l 

(e-tf-er)(l-fl(l + r))+r(er-fl2^) 

(Uaf 

M'-f 

if a*-l 

ifa = -l 

Ha = ^e^T-^Hae
D-rdT = ~"n    ~"12 

LÄa2I      Äa22j 

where 

*«n = e"67'(0.1224r+0.0554) + er(026537'-0.0554), 

Ä„i2 = e~*r(0.0204r + 0.0058)+er(0.0204r-0.0058), 

hi\ = -e~*T(fi.TWlT+02099)+eT(02653T + 02099), 

and 

£fl22=-e"6r(0.1224r+0.0146)+er(0.02047: + 0.0146), 

C = (l   0), 

r(kT)= [e^-^FH^e^criZ+k^d&T, 

and 

fa(AT> = [eA»<T-*Ha [eD-^aa{4+kT)d^T ; 
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Disturbance: 

w(kT) = Hz(kT) 

z((k + l)T) = Dz(kT)+Z(kT)   '                                                           (4-194) 

- where 

H = {\,   0), 

D = eDT = 
~e-aT(\ + aT)       Te~aT 

-a2Te-aT     e-aT{\-aT)A 
? 

and 

a{kT)=[eD(T-®cj{4+kT)dZ; 

and 

Parameter-perturbation vector: 

- AAx(t) = wa (kT) = Haza (kT) 

^a((k + l)T) = Daza(kT) + aa(kT)        '                                                (4'195) 

where 

*-e :)• 
Da=eD-T = ~e*T{\ + 6T)        Te-*T 

_-36Te-6T     e~6T(l-6T) 
> 

and 

- 

T 

aa (kT) = jeD^T^aa {£ + kT)d£, 
0 

It is hereafter assumed that a * 1 throughout Example 5. 

as siven in a xs  T^T0"00"^ ^ is.assumed to be an unknown stepwise-constant command 
(4 fl) in Exa^n je?                   ^ dlscrete-time mod^ for this command were obtained in (4.10) and 
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4.6.2.    The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for 
Example 5 

The objective is to design a digital servo-tracking controller for the plant in (4.182) 
such that the tracking-error, defined by 

e,{t) = ye(t)-y(t), (4.196) 

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first 
shown in [37], the necessary and sufficient conditions for achieving theoretically exact servo-tracking is 
that the servo-command input y<fj:) must consistently lie in the column range-space of the plant-output 
matrix C in (4.184) for all t. In the present problem, satisfaction of this condition requires that (from 
(2.33)) 

<R[G]C9?[C] (4.197) 

If (4.197) is satisfied, then it is possible to express G as some linear combination of the columns of C. 
That is, G = Co for some possibly nonunique 0. Substituting G and C from (4.10) and (4.184) into G = 
Ctfyields 

1 = 0   °)Q). (4.198) 

One choice for 6 satisfying (4.198) is 

* = (J- (4.199) 

The control task is to design u(t;kT) such that the servo-state vector ess(t) defined by 
(3.2) is controlled to NJC]. For the present example, we have chosen to stabilize e^t) to the nullpoint. 

In this special case, C = I in (2.46), where I is the n x n (n = 2) identity matrix. 

The plant, disturbance, and servo-command in (4.182), (4.183), and (4.8), 
respectively, the 0 determined in (4.199), and the ideal model in (4.188) will now be used in two 
subcases of Example 5 using the digital servo-control techniques presented in Chapters 2 and 3 of this 
report. 

4.6.3. Subcase 5a: Digital Servo-Tracking Control Design Utilizing D/C Control- 
Action u(t;kT) for the Case of an Unstable Second-Order Plant and Stepwise- 
Constant Servo-Command yc(t), and Subjected to a (Step+Ramp)*Decaying- 
Exponential Disturbance w(t) and Parameter-Perturbations A4 

The ideal digital servo-tracking control law for Subcase 5 is written as 

u(t; kT) = uc (/; kT) + us (/; kT) + up (kT) + ua (/; kT), (4.200) 
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The D/C control terms uc{t;kT), and us{t;kT), and ua(t;kT) are designed to provide intersample 
accommodation of the effects of the external disturbance and disturbance-like effects of the servo- 
command and parameter-perturbations. The control term up(kT) is designed to regulate the servo-state 
vector ejt) to the nullpoint. 

4.6.3.1. The Design of the Control Terms uc(t;kT), us(t;kT), and ua(t;kl) to 
Provide Intersample Accommodation of the Effects of the Disturbance 
w(t), Servo-Command >>«.(/), and Parameter-Perturbations AA. 

The necessary and sufficient conditions for existence of the control terms 
ult;kT) satisfying (3.15), us(t;kT) satisfying (3.16), and ua(t;kT) satisfying (3.48) are given in (3.12), 
(3.13), and (3.49), respectively. Satisfaction of those conditions is shown as follows: 

for u&kT): rank[FH | B] = rank[£];     (same as (3.12)), 

where 

(4.201) 

rahk[FH\B] = rank 
0 0 
1 0 

0] 
1, 

and 

for us(t;kT): 

rank[5] = rank = 1 

rank[0E-A0 | B] = vmk[B]; (sameas(3.13)), 

where 

(4.202) 

for ua(t;kT): 

= 1, rank[0£-,40|£] = rank 

and rank[5] is given below (4.201); 

mklHa I B] = rank[5];      (same as (3.49)), 

where 

(4.203) 

rank[#fl | B] = rank 0 0 
1 0 = 1, 

and rank[5] is given below (4.201). 

Clearly the rank conditions in (4.201), (4.202), and (4.203) are met and there 
Tfl suchthat exists gain matrices Tc, rs, 

167 



for r. 

for r • 

forr ■ 

FH+BT = 
0 0 

1 0 

0       0 
= 0; 

6E-A6-BT= f0> 
= 0; 

ro o" r n n 1 
Ha -BTa = _ 

I oj k> Ta2l 
= 0; 

(4.204) 

(4.205) 

(4.206) 

A suitable choice for Tc, Ts, and Ta satisfying (4.204), (4.205), and (4.206) is 

rc=(-i,  0), 

r, = i, 

and 

r„=(i, o). 

(4.207) 

(4.208) 

(4.209) 

The continuous-time control terms uc(t), us(t), and uj[t) in (3.19), (3.20), and (3.51) can thus be chosen 
(ideally) as 

(4.210) 

(4-211) 

and 

ua(t)=raza(t) 
(4.212) 

during the interval kT<t<(k + l)T . Recall, again, that the digital controller is only allowed to use 
measurements, or estimates, of the states z(t), c(t) and ztf) at times / = kT, k = 0, 1, 2,. Therefore the 
projected or forecasted behaviors of z(t), c(t), and z£) across each intersample interval must be 
represented in terms; of z(kT)c(kT), and za(kT), respectively. This relationship is found in the general 
solution to (4.186), (4.10), and (4.190) evaluated at each / over the interval from kT to t = (k+l)T In 
particular, v      ' 

Disturbance state-vector: 

«c(0 = = rcz(o 

",(>) = = Tsc(t) 

--c(t) 

«„(>) = 
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z(t) = eD{-kT)z(kT) + rc(t) 

e-a(,-kT)(1 + a(/ _ kT)) (/> _ kT)e-a(,-kT) 

-a2(t- kT)e-a('-kT)     e-a(,-kT) (\-a(t- kT)) 

Servo-command state-vector: 

c(t) = eE«-kT)c(kT)+rs(t) 

= c(kT) + rs(t) 

Parameter-disturbance vector: 

za(t) = eD'('-kT)za(kT) + ra(t) 

z(kT) + rc(t) 

,-6(l-kT), >(l + 6(t-kT))       (t-kT)e-6«-kT) 

- 36(t - *7>-6"-*r>     e^-kT\\ - 6(/ - kT)) 
za(kT) + ra(t) 

where 

rc(t) is a residual-effect given by rc(t) = ( eD(t~r) a(r)dr, 

rlt) is a residual-effect given by rs{t) = ( eE°~T)n(x)dx, 

and 

;  (4.213) 

(4.214) 

(4.215) 

rjj) is a residual-effect given by ra(t) = ( eD°('~T) aa(r)dT. 

»   i A A A.     *   .,   ■      AS discussed below <3-22) »d (3-52), the rc(/), rs(t), and /•„(/) terms are 
excluded from die design process.  Substituting (4.213), (4.214), and (4.215), into (4.210), (4.211) and 
(4.212), respectively, and disregarding the residual terms, yields the final (idealized) form of the u   u 
and ua control terms "   " 

uc(t;kT) = Tce
D(-k^z(kT) 

= ("!>   0) 
-a(t-kT) e-°v-K1 > (1 + a(t ~ kT))        (t - kT)e-a(-kT)     ' 

L - cc1 (t - aye-«-"*     e^'^ (!-«(,- kT)) 

= -e-a{'-kT) (1 + a(t - kT))z, (kT) - (t - kT)e-«-kT^2 (kT) 

z(kT), (4.216) 
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and 

= c(kT) 

= yc(kT) 

ua{t;kT) = Tae
D-('-kT)za(kT) 

(4.217) 

-0 °) 
e-6(,-kT) (] + 6(/ _ kT)) (/ _ kT)e-6(t-kT) 

I - 36(/ - A7>-6('-tr>     e-6{'-kT) (1 - 6(f - *7)) 
zfl(AT).      (4.218) 

= e-oo-W (i + 6(/ - kT))zal (kT) + (t- kT)e-6(,-kT)za2 (kT) 

4.6J.2. The Design of the Control Term up(kT) for Subcase 5a 

The structure of the idealized servo-tracking control term up(kT) is postulated 
as in (2.63). The method for designing up(kT) was presented in Subsection 3.2.6 where K   in (2.63) is 

designed to achieve the ideal model characteristics in (4.188). In that way, the matrix £   is chosen to 

obtain the following 

det^I-^+^^detfAI-^) 

= A2-2e-6TA + e-l2T 

= (A-e~6T)2 

(4.219) 

where AN and B are defined in (4.193) and Am =e^T for Am in (4.188). In that way, (4.219) becomes 

A2 +({eT(l-T)-l)Kpl-eT(TKp2+2))A 

(4.220) 
-TV,   .   r      j^       .   J,rir       .   ,7-x       ,2_-„-6T , ^    -12T + e'(l + T-eJ )Kpl + eT(TKp2 +eT) = A2- 2e~6TA + e 

and the matrix K   satisfying (4.220) is selected as 

Kp-[Kpi>   KP2)> (4.221) 

where 
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*,! = 
e2T_e-nr_2(eT_e-6T) 

and 

_    _[e2T -2eT + 2e-6TyT+l) + e-nr(l-D-2e-5T + e5 

K"2= -T(eT-l)2 

The control term up(kT) postulated in (2.63) can thus be chosen (ideally) as 

up{kT) = -Kpess(kT) 

= -KJ0c(kT)-x(kT)) 

27" _ e~12T _2(   T _    -67\ 
(4.222) 

(>-T 

(e2T-2eT+2e-6TyT+\) + e-UT(l-D-2e-5T + 

-T{eT-\) 

eT 

T      ,->2 X2(kT) 

now be written as 
The (ideal) digital servo-tracking control law in (4.200) for Subcase 5a can 

u(t; kT) = uc (t; kT) + us (t; kT) + up (kT) + ua (t; kT), (4.223) 

where uc(t;kT), u&kT), up(kT), and u£;kT) are given in (4.216), (4.217), (4.222), and (4 218) 
respectively. 

4.6.3.3. Practical Realization  of the Digital  Servo-Tracking  Controller for 
Subcase 5a 

Estimates of the single servo-command state c(kT) can be obtained directly 
from on-lme measurements of yc(kT). Estimates of the plant state x(kT), disturbance state z(kT) and the 
parameter-perturbation state zJkT) are generated from a hybrid full-order observer similar' to that 

TJ^Tr f°r l"^3^ JhC Plant State X,(kT) Can be obtained directly from on-line measurements of 
X*7) (refer to (4.193)). The hybrid full-order observer developed in this Subsection uses measurements 
of the plant output y(kT) to obtain the real-time state estimates x(kT), z(kT), za(kT), x((k + l)T) 
z((k + l)T),and za((k + \)T) of x(kT), z(kT), za(kT), x((k+l)T), z((k+l)T), and za((k+l)T) ' 
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In order to design the hybrid full-order state-observer, a composite system 
must be obtained. As in Subcase 3c, the control task must be divided into a discrete part up(kT) and a 
continuous time-varying part «,(•), such that (4.223) is rewritten as 

u(t;kT) = up(kT) + ut(t); kT<t<(k + l)T, (4.224) 

where Up(kT) is the portion of u(t;kT) in (4.224) that is held constant between sample times, and 

ul(t) = uc(t;kT) + us(t;kT) + u0(t;kT) , (4.225) 

is the portion of u(t;kT) in (4.224) that varies with time between each successive sample-time. 

Recall the discrete-time composite plant/disturbance model from (3.72), 

(*((* +1)7)1 
z((k + l)T) 

U,((* + 1)7)J 
= 

AN 
FH ~Ha fx(kT)^ 

z(kT) 

Ua(*7)J 
+ 
'i 

0 

,0, 

up(kT) + 0 

I   0   J 
0 D 0 
0 0 »a 

fr(kr)-ra(kTj\ 
,  (4.226) 

a(kT) 

<r„W) 

where AN, B, FH, Ha, D, Da, y(kT), fa(kT), a(kT), and 5a(kT) are given in (4.193), (4.194), 
and (4.195) and ys(u,) is computed as (assuming a * -\) 

where 

and 

</(«,)= [eA»^But(T)dT = (V'i) 

-aT 

V\ 
_-g-m(a7(l + q) + l + 3a:)-gr(7(l + 3g + 2g2)-l-3g) 

d + a)3 
zx(kT) 

,-aT, -e-a'(T(] + a) + 2)-eT(T(l + a)-2) 

(T^5 Z2 m 

+ (<T6r (0.0554 + 0.12247) + er(026537- 0.0554)k, (kT) 

+ {e~6T (0.00583 + 0.02047) + er (0.02047 - 0.00583)k2 (kT) 

+ (l + eT(T-l))yc(kT) 

(4.227) 
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¥2 -
ae•     V + ni + a)-eT(2a2(l + T) + T(l + 3a)_ 

0 + a)3 Zl 

, T(l + aXae-aT -eT) + (a-l)(e-"T -eT) + z (icT) 
(l + ay 

+ (er(0.0379 + 02099) - e"6r (0.73477- 02099)]zol (kT) 

+ (er(0.0204r+ 0.0146) + e-6T(0.\225T + 0M46J\za2(kT) 

+ TeTyc(kT) 

The hybrid full-order state-observer equations are given in (3.76) as 

f c H(k + l)T) 

H(k + l)T) 
za((k + im 

AN FH ~Ha ( x(kT)\ 

z(kT) 

Iza(kT)) 
0 D 0 

0 0 A, 

fp 

K*J 

fV(M,^ 
u.(kT) + 

-^01 

^02 

-^03 

(C | 0 | 0) 

fx(*T)> 
-y(kT) z(kT) 

,  (4.228) 

where AN, B, FH, C, Ha, D, Da, and y/(ut) are given in (4.193), (4.194), (4.195), and (4.227) and 

where K0 = 
K, 01 

K, 02 

K, 03 

is an observer gain-matrix to be determined. 

,   .  .. , „ The 8eneral discrete-time evolution equations for the error dynamics of the 
hybrid full-order observer are given in (3.77) as 

'*,((* +1)7^    r~ 

£,((k + l)T) 

.*«.«*+on 

x((k + l)T) 

m+vT) 
Vza((k + 1)T)J 

x((k + l)T)) 
z((k + l)T) 

^za((k + l)T)J 

•4v + Ko\C FH ~Ha (ex{kT)\ 
K02C D 0 s2(kT) 

W(kT)J KmC 0 A, 

(4.229) 
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rsx(kT)^ 

goes to zero promptly. Pole As before, it is desirable to design KQ so that the observer error   sz(kT) 

placement is used to determine an appropriate K0, where the roots of the characteristic polynomial 

det XI- 

A + KQXC FH 
~R°\ 

KQ2C D 0 

KQ3C 0 Da 

= PW, desired ' (4.230) 

are such that the observer estimated value of the plant state x(kT), disturbance state z(kT), and 

parameter-perturbation state za(kT), quickly and accurately track the actual corresponding plant, 

disturbance, and parameter-perturbation states x(kT), z(kT), and zJ^kT). This means that the roots of 
P{X)desired in (4.230) can placed at sufficiently-damped locations inside the unit circle (\ty < 1). For the 
present example, P^Wed is chosen as 

PW, desired = A6 
(4.231) 

For Subcase 5a, there are six observer gain values that must be obtained. 
Computation of those observer gains is greatly simplified by selecting the sample-period T and the decay- 
rate a on the exponential portion of the disturbance. For the present example, T= 0.1 and a = 1. 
Substituting those values and (4.231) into (4.230) and solving for K0 yields 

K0(T= O.l.a = 1) = 

K, on 
K, 012 

K, 021 

K, 022 

M)31 

-5.1176 

-66.3346 

23.6918 

-4792.8605 

509.7822 

(4.232) 

[£032J   [-2436.9102J 

4.6.3.4. Simulation Results for Subcase 5a 

Incorporation of the hybrid full-order observer in (4.228) and substituting 
(4.216), (4.217), (4.218), and (4.222) into (4.200) will result in the physically-realizable digital servo- 
control law for Subcase 5a 
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u{t; kT) = uc {t; kT) + us {t; kT) + u. {kT) + ua {t; kT) 

= -e -a(t-kT) 
(1 + a{t - kT))z, {kT) -{t- kT)e-a('-kT)z2 {kT) 

IT _p-\2T _r)(0T _0-(>T\ 

+ c{kT)-e-  *' )(yc{kT)-y{kT)) . (4.233) 

(e2T -2eT +2e-6T){T+l) + e-12T{l-T)-2e-5T +eT 

+ L = ; X2 {kT) 
-T{eT -l)2 2      ' 

+ e-
6«-kT) (1 + 6{t - kT))zal {kT) + {t- kT)e-6i'-kT)za2 {kT) 

Simulations results were obtained for the unstable, second-order plant, 
(step+ramp) x exponential disturbance, and stepwise-constant servo-command given in (4.182), (4.183), 
and (4.8). As stated above (4.232), the control sample-period for Subcase 5a is T=0.l and the 
exponential decay on the disturbance is a = 1. 

The simulation results shown in Figure 4.44 and Figure 4.46 illustrate the 
plant output y{f), the disturbance w{t), and the servo-command yc{t). The simulation results in Figure 
4.44 illustrate the case of no parameter-perturbations (Aai = Aa2 = 0). The simulation results in Figure 
4.46 illustrate the case of parameter-perturbations Aa = (Aa,,Aa2) = (0.4,-0.8),and(-0.4,0.8), 
overlayed on the nominal case of Aa = (0,0). The simulation results in Figure 4.45 (for the case 
Aa = (0,0)) and Figure 4.47 show the corresponding servo-tracking error ey{t) = yc{t)-y{t) for 
Subcase 5a. 

Notice the oscillations in the plant output y{t) shown in Figure 4.46 for the 
case of Aa = (0.4, - 0.8). Those oscillations (due primarily to the uncertainty of parameters in the A 
matrix in (4.184)), are growing, thus preventing the plant output y{t) from achieving and maintaining a 
zero tracking-error. As will be seen in the next example, those oscillations can be eliminated by 
implementing certain control terms at a higher sample-rate. 
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Figure 4.44 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for 
Subcase 5a With an Unstable Plant, No Parameter-Perturbations and Control Sample- 
Period 7=0.1. 

Control Sample-Period: T=0.1 

Figure 4.45 Illustration of the Tracking-Error e^t) for Subcase 5a With an Unstable Plant, No Parameter- 
Perturbations and Control Sample-Period 7= 0.1. 
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Control Sample-Period: 7=0.1 

Figure 4.46 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command y^t) for 
Subcase 5a With an Unstable Second-Order Plant, Control Sample-Period 7"= 0.1, and 
Parameter-Perturbations ( Aa = ( Aa,, Aa2) = (0.4, - 0.8), and (-0.4,0.8)) Overlayed 
Nominal Case of Aa, = Aa2 = 0. 

on 

Control Sample-Period: T=0.1 

Figure 4.47 Illusion of the Trackmg-Error tfi) for Subcase 5a With an Unstable Second-Order Plant 

SH     A     A    w?:! r = 01' and Parameter-Perturbations 
(Aa = (Aa„Aa2) = (0.4,-0.8),and(-0.4,0.8))     Overlayed     on     Nominal     Case     of 
Aa, = Aa2 = 0. 
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4.6.4. Subcase 5b: Digital Servo-Tracking Control Design Utilizing Multirate 
Sampling and D/C Control-Action u(t;kTc;kTy) for the Case of an Unstable 
Second-Order Plant and Stepwise-Constant Servo-Command yc(i), and 
Subjected to a (Step+Ramp)xDecaying Exponential Disturbance w(t) and 
Parameter-Perturbations AA 

The digital servo-tracking control algorithm in (4.233), designed in Subcase 5a, can 
utilize multiple sampling-periods to achieve a level of high-performance servo-tracking that cannot be 
matched by a single-rate controller. In this Subsection, the digital servo-tracking controller from 
Subcase 5a is implemented such that the control terms associated with the plant, u£t;kT) and ua(t,kT), 
operate at one sample-period Ty and the control terms associated with the servo-command, us(t;kT) and 
«p(£7), operate at another sample-period Tc . In that way, the ideal digital servo-controller in (4.233) 
becomes 

where 

u(t; kTc ;kTy) = uc (t; kTy ) + us (/; kTc) + up (kTc) + ua (/; kTy ), (4.234) 

^^7, ) =-e-"('-*r'\l + a(/- *7, ))f, (^ 

us(f,kTc) = c(kTc) = yc(kTc), 

IT _    -127; _2(   T  _e-6Tc, 

up(kTc) = -e-  2(e
2 \ye{*Te)-Wc)) 

[e2T<- 2eT< + 2e-^ )(7C + 1) + e~nT< (1 - Tc ) - 2e~5T< + e 

-Tc(eT<-l)2 ~*l(kTc) 

and 

it(«^)=e^^)G+6(/-i^))frf(^)+(/-«;)e-a('^>i-2(ikr,). 

The design of the digital servo-tracking controller can be modified to take additional 
benefit of the use of multiple sample-rates. For example, the particular multirate implementation 
discussed above can be altered such that the inherently unstable plant (AN matrix in (4.184) having poles 
in the right-half plane) can be brought under control at the higher sample-rate 1/7,. In that way an 
additional control term, postulated in continuous-time as uam(t) = Kmx(t), is designed such that the 
homogeneous equation 

x(t) = (AN+BKm)x(t) , (4235) 

has certain specified eigenvalues. Following the method described in Section 3.4, Km should be selected 
such that 
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det[AI - (AN + BKm )] = Pm (A) (4.236) 

where PJX) is given in (4.189). 

The discrete-time counterpart to the design of Km in (4.236) is to choose Km to obtain 

det[AI - [AN + BKm)] = detf/ll - Am] 

= A2-2e-6T>Z + e-12T> , (4.237) 

= {X-e~6T>f 

where AN, and B are given in (4.193) (with 7/replaced by Ty) and Am = eAJ> for A, in (4.188). 

For the present example, Km is designed to achieve (incorporating the values of AN 

and B into (4.237)) 

A2 +((eT>(l-Ty)-i)Kml -e
T>{TyKm2 +2))A 

(4.238) 

'+eT>Q + T,-eT>)Kia+eT>(TyKlia+eT>) = #-2e-6T>A + e-*T> 

A Km satisfying (4.238) is 

Km = \KM,   Km2j, (4.239) 

where 

£   _e2T>~e-^-2(eT^-e-6Tn 

(l-eT>f 

and 

Äm2 ~ ,  
-Ty(eT>-l)2 

The idealized control term «._(«-,) is thus chosen (ideally) as (same as 3.87) 

«aJkTy) = Kmx(kTy), 

where Km is given in (4.239). 

(4.240) 
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Assuming the ideal choice for uBm (kTy) in (4.240) is implemented, the control terms 

us(t;kTc) and up(kTc) in (4.234) would be re-computed using the "new" A matrix. That is, the term AN 

would be replaced by AN + BKm and AN would be replaced by the matrix exponential e
iA"+Bg-)ry 

throughout the design of u£tJTe) and up(kTc) in Subsections 4.6.3.1 and 4.6.3.2. In order to simplify the 
calculations for up(kTc) and u0m (kTy), it is hereafter assumed that the sample-period T = 0.04 and the 

multirate digital servo-controller will be obtained for the cases Tc = 0.08,0.1,0.2, and 0.8. In that way, 
the multirate servo-controller equation in (4.234) is recomputed as 

u{t;kTy;kTc) = uc{t;kTy) + us(t;kTc) + up(kTc) + ua(t;kTy) + uüm (kTy), (4.241) 

where uc(t;kTy) and uJj;kTy) are given in (4.234), and 

us(t;kTc) = 27335yc(kTc), 

"P(kTc) = \ 

' 0.02U(yc(kTc)-y(kTc)) + 0.0026x2(kTc) for Tc=0.S 

-0.9l22(yc(kTc)-y(kTc))-03\S5x2(kTc) for Tc=02 

-29306(yc(kTc)-y(kTc))-0.S594x2(kTc) for Tc=01 

- 3.6533( yc (kTc) - y(kTc)) - 1.0465ic2 (kTc) for Tc = 0.08 

and 

uam (kTy ) = -263354y(kTy ) -11.691 lx2 (kTy ). 

Estimates z(kTy), x(kTy), and za(kTy), are obtained from the hybrid full-order 
observer described in the following Subsection. 

4.6.4.1. Practical Realization  of the Digital  Servo-Tracking  Controller for 
Subcase 5b 

The digital servo-controller in (4.241) can be realized by substituting Ty for T 
in the hybrid full-order observer in (4.228) and the i(,(ut) in (4.227) computed for Subcase 5a, re- 

calculating the observer gain-matrix £0 in (4.232) for the appropriate value of Ty, and by replacing 

Up{kT) in (4.228) with up(kTy) + uaJkTy) in (4.241) (with Tc replaced by Ty in up(kTc)). The necessary 

estimate x(kTc) is then obtained by passing x(kTy) through a zero-order-hold device having a hold time 
ofrc. 

The observer gain-matrix £0 in (4.232) in Subcase 5a was computed for a 
sample period of T= 0.1 and a = 1. In this example, a sample period of Ty = 0.04 was chosen The 
observer gain-matrix for the sample-period Ty = 0.04 was computed and is given as 
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K0 (T = 0.4, a = 1) = 

K, on 
K, 012 
K, 021 
A; 022 
K, 031 
A 032 

|"  -5.5765 

-192.0704 

101,503.1367 

-523,0293915 

106,033.9770 

-447,9322637] 

(4.242) 

4.6.4.2. Simulation Results for Subcase 5b 

Simulation results were obtained for the example plant, disturbance, and 
servo-command, given in (4.182), (4.183), and (4.8), where the parameter-perturbation Aa and control 
sample-periods Tc, Ty, and 7; are given by 

Control Sample-Periods: 

T;=O.O4, rc=o.8 
Ty= 0.04, rc=o.i 

Ty = 0.04, Tc = 02, Ts = 0.8 for the cases-! 
7; =0.04, rc=o.o8 

r,=o.o4, rc = o.o8 

Aa = (0,0), (0.4,-0.8), (-0.4,0.8), (0.8,-1.8) 

Aa = (0,0), (0.4,-0.8), (-0.4,0.8), (0.8,-1.8) 
Aa = (0,0), (20,1.6), (-18,-13), (-27,15)   . 

Aa = (0,0), (0.4,-0.8), (-0.4,0.8), (0.8,-1.8) 

Aa = (0,0), (-1.4,-12), (0.9,1.6), (-32,0.2) 

(4.243) 

The sample-period 7; = 0.8 is used in one of the simulations to illustrate that 
more than two different sample rates may be employed. In that case, the us control term in (4 241) is 
implemented using sample-period Ts. No recalculations are necessary to incorporate the sample-period 

The simulation results in Figure 4.48 and Figure 4.50 illustrate the plant 
output X0, the disturbance w(t), and the servo-command y^t), and the simulation results in Figure 4 49 
and Figure 4.51 show the corresponding servo-tracking error sy{t) = ye{t)-y{t) for the case of 

Ty = 0.04, Tc = 0.8 (Figure 4.48 and Figure 4.49 only), Tc = 0.1 (Figure 4.49 and Figure 4.50 only) and 

parameter-perturbations Aa = (0,0),(0.4,-0.8), (-0.4,0.8), and (0.8,-1.8). Although the tracking is slower 
m Figure 4.48 compared to Figure 4.50 (tracking done at Tc = 0.8 versus Tc = 0.1), the response is much 

?°°^eL^ ** °btamed in Figure 45°-    k fact> the effects of *e parameter-perturbations 
Aa = (0,0),(0.4,-0.8),(-0.4,0.8), and (0.8,-1.8) are virtually undatable in the simulation plotsTn F^e 
4^48 and Figure 4.49, but become quite noticeable in the plots in Figure 4.50 and Figure 4.51   Why does 
the case of Ty = 0.04 and Tc = 0.8 appear to be more robust than the faster sample-rate case of T = 0.04 

and Tc = 0.1 ? Recall the assumption in (3.80) that the samplers of the system are synchronized," integer 
multiples. That is, 6 

Tc = rjT, 
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where TJ is some positive integer. And remember that the control term ua (kT ) actually changes the 

value of the plant's AN matrix, thus requiring the control terms running at the sample-rate \ITC to be 
recomputed to reflect this change in parameter. If the different sample-rates are not synchronized, 
integer multiples, the terms running at the lower sample-rate \ITC will compute the new value of A'N 

incorrectly and respond with an inappropriate control-action. The sample-periods T = 0.04 and T = 0.1 

(see Figure 4.50 and Figure 4.51) are not related by an integer, or equivalently, 

? 
0.1=7/0.04   =>   77 * integer, 

and consequently do not meet the assumptions for implementing the digital servo-tracking controller as a 
multirate controller when the control term u0m{kTy) is included. If the uaßTy) control term is 

excluded, and u(t;kT) is implemented as in (4.234), the integer-multiple restriction no longer applies. 
However, in that case, the response for this particular example will suffer severely (become unstable) due 
to the natural instability of the plant. 

The simulation results in Figure 4.52, Figure 4.54, and Figure 4.56 illustrate 
the plant output y(t), the disturbance w(t), and the servo-command yc(t), and the simulation results in 
Figure 4.53, Figure 4.55, and Figure 4.57 show the corresponding servo-tracking error 
*>(*) = ye(0 ~ y(0 for a variety of sample-periods and parameter-perturbations for Subcase 5b. Those 

simulation plots illustrate the performance of the example problem for a variety of parameter- 
perturbations, including perturbations on the order of +/-2000% of the nominal value of the anl parameter 
(a„, =-1) and as large as 95% of the nominal value of the a„2 parameter (a„2 =2). The perturbations 
and sample-periods are given in the figure headings and in (4.243). 
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Figure 4.48 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command y^t) for 
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations 
Aor = (0,0), (0.4,-0.8), (-0.4,0.8), and (0.8,-1.8), and Compensated by a Multirate D/C 
Controller Using Sample-Periods 7^ = 0.04 and rc = 0.8. 

Control Sample-Periods: Ty= 0.04 Te = 0.8 

4 
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Figure 4.49 Illustration of the Tracking Error «#) for Subcase 5b With An Unstable Second-Order Plant 
Subjected to Parameter-Perturbations A« = (0,0), (0.4,-0.8), (-0.4,0.8), and (0.8,-1.8) and 
Compensated by a Multirate D/C Controller Using Sample-Periods T =004 and  T =08 
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Control Sample-Periods: Ty = 0.04, Tc= 0,1 

y(f) for 
Aa= (0,0),(0.4,-0.8), 

(-0.4,0.8),(0.8,-1.8) 
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0 5 10 

Figure 4.50 Illustration of the Plant Output y(t), Disturbance w(t\ and Servo-Command yc(t) for 
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations 
A« = (0,0),(0.4,-0.8),(-0.4,0.8), and (0.8,-1.8), and Compensated by a Multirate D/C 
Controller Using Sample-Periods 7, = 0.04 and 7C = 0.1. 
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Control Sample-Periods: 7>= 0.04, Tc = 0.1 
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Figure 4.51 Illustration of the Tracking Error stf) for Subcase 5b With An Unstable Plant Subjected to 
Parameter-Perturbations Aa = (0,0),(0.4 -0.8),(-0.4,0.8), and (0.8,-1.8) and Compensated 
by a Multirate D/C Controller Using Sample-Periods T = 0.04 and  T = 0.1 
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Figure 4.52 Illustration of the Plant Output y(i), Disturbance w(t), and Servo-Command yc(t) for 
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations 
Aa = (0,0), (20,1.6), (-18 -1.3), and (-27,1.9), and Compensated by a Multirate D/C 
Controller Using Sample-Periods  Ty = 0.04, Tc = 0.2, and T = 0.8. 

Control Sample-Periods: T, = 0.04, Tc = 0.2, and 7s = 0.8 
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Figure 4.53 niustration of the Tracking Error *fl for Subcase 5b With An Unstable Second-Order Plant 
Subjected   to   Parameter-Perturbations   Aa = (0,0),(20,1.6),(-18,-1.3),and(-27,19)    and 
Compensated by a Multirate D/C Controller Using Sample-Periods   T = 004    T '= 02 
and T = 0.8. * '    c      '  ' 
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Figure 4.54 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yJ(J) for 
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations 
Aa = (0,0), (0.4-0.8), (-0.4,0.8), and (0.8,-1.8) and Compensated by a Multirate D/C 
Controller Using Sample-Periods Ty = 0.04 and Tc = 0.08 . 
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Figure 4.55 Illustration of the Tracking Error s^f) for Subcase 5b With An Unstable Second-Order Plant 
Subjected to Parameter-Perturbations Aa = (0,0), (0.4,-0.8), (-0.4,0.8), and (0.8,-1.8) and 
Compensated by a Multirate D/C Controller Using Sample-Periods 
T =0.04 and 7= 0.08. 
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Figure 4.56 Illustration of the Plant Output y(t), Disturbance w(t), and Servo-Command yc(t) for 

Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations 
Aa = (0,0), (-1.4-1.2), (0.9,1.6), and (-3.2,0.2) and Compensated by a Multirate D/C 
Controller Using Sample-Periods Ty = 0.04 and Tc = 0.08 . 

Control Sample-Periods: 7V=0 04 7c = = 0.08 
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Figure 4.57 Illustration of the Tracking Error e^t) for Subcase 5b With An Unstable Second-Order Plant 
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Compensated by a Multirate D/C Controller Using Sample-Periods 
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5.    CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

5.1.    Introduction 

This report presents and illustrates (through examples) a new and general theory for 
developing high-performance digital servo-tracking controllers for linear, time-invariant, MIMO systems. 
Conclusions of this research and recommendations for further work are presented in this chapter. 

5.2.    Conclusions 

The most significant contribution of this work is the development of a new, general linear- 
algebraic theory for developing digital servo-tracking controllers which will achieve high-performance 
servo-tracking that is unmatched by currently available digital servo-design methods. Some of the key 
shortcomings of conventional digital servo-controllers are: 1) failure to exploit useful dynamic 
information encoded in the uncertain servo-commands, disturbances, and plant states; 2) assume Type 1, 
2, and 3 commands; 3) lack of intelligent control-actions between sample times; and, 4) sensitivity of 
tracking performance to plant parameter-perturbations. 

In addition, the technique presented in this paper overcomes common obstacles that are 
encountered when attempting to achieve high-performance servo-tracking using digital controllers. Some 
of those obstacles are: 1) the complex time-behavior of the uncertain multivariable servo-commands and 
disturbances; 2) performance degradation due to uncertain variations in plant parameters; and, 3) 
intersample misbehavior due to the time-varying nature of the servo-commands and disturbances and also 
due to the open-loop instability of the plant. 

The digital servo-controller theory presented in this report is ideal in the sense that the design 
procedure encompasses a superset of desirable characteristics. That is, the design procedure: 

1) is purely linear-algebraic in nature so that there are no matric Riccati equations or 
other complex equations that require evaluation; 

2) accommodates linear time-invariant systems subjected to generalized, multi- 
variable, independent disturbances having complex time-behavior; 

3) produces   a   servo-controller   that   provides   high-fidelity   servo-tracking   of 
generalized, multi-variable servo-commands having complex time-behavior; 

4) is generalized to include any order of system having multiple-inputs and multiple- 
outputs (MIMO systems); 

5) provides performance robustness against uncertain variations in plant-parameter 
values AA; 

6) minimizes intersample misbehavior (ripple) to the highest degree possible utilizing 
a digital controller; and, 
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7)   regulates and maintains the motions of the servo-state vector ea to a subspace Sv of 
the null-space of the output matrix (ess(kT) -> Sv c K[C]). 

The primary control task of the digital servo-controller, developed by the techniques 
presented in this report, is to achieve and maintain closed-loop stability for the plant while 
simultaneously regulating the servo-tracking error s^t) to zero and achieving certain desired 
performance-criteria, such as closed-loop settling-time. The methods of DAC theory [40 71 721 are used 
throughout this report to model the motions of the uncertain servo-commands, disturbances and 
parameter-perturbations; to determine cancellation conditions of disturbance effects; and to decompose 
the total (vector) control-effort into a sum of individual (vector) control terms, each with a unique control 
task The decomposition of the servo-control effort, and the subsequent decomposition of the servo- 
problem into logical subproblems, simplifies the design procedure significantly. 

The servo-controller design technique presented in this report uses state-estimators (state- 
observers) to physically realize the digital servo-control algorithm. A discrete-time, reduced-order 
observer is used to estimate the servo-command state c(kT)and a composite discrete-time full-order or 
hybrid composite full-order observer is used to estimate the plant state x(kl), disturbance state z(kT) and 
parameter-perturbation state z^kT). y   J' 

In Chapter 2, a method is presented for stabilizing the discrete-time servo-state vector ejtf) 
to a subspace Sv cN[C] of largest dimension, and consequently regulating the servo-tracking etf) to 

zero at each of the sample times, / = kT, k = 0, 1, 2,.... As illustrated in Example 1 in Chapter 4, it may 
be difficult, or even impossible, to stabilize the servo-state vector ess(kT) to the entire K[C] HoweveT 

there may exist some subspace S, cK[C], that ess(kT) may be controlled to and held, and this may be the' 
more desirable, or the only solution for asymptotically stabilizing the tracking-error. A method exists for 
accomplishing this subspace stabilization task in continuous-time [76]. This report work adap^eJ Z 
method m [76] to the discrete-time case and developed a procedure for formulating^, pZbleSSÄ 
subspaces Sv c X[Cj. Example 2 in Chapter 4 illustrates the case of stabilizing e (kT) -> X[C] The 

subspace stabilization approach in Chapter 2 utilizes a stepwise-constant control-Iction (a zoh type 
action) to regulate the tracking-error s^t) to zero at each of the sample times, t = kT,k=0 12 Tta 

coZCnd:S ,S neCeSSa,T "thC CaS£ °f Zer°' C°nStant' °r ^wise-constant disturbaÜ or se™ 

th*n th. t. Smplf' time-^in8 c°mmands and disturbances require a holding strategy that is smarter 
c^T f   T   Zr~°rder' Second-order> «* e*P°nential hold methods used by conventional S 
control algorithms. The time-varying nature of the commands and the disturbances alonew^ h the onen 
oop instability of the plant, result in misbehavior of the plant output teJTLi^ta^^ 

ill? t^ t Tn?'/Ven th°Ugh 3 Zer° tracki"g-^or is obtained^* of the sampTe times the 
plant output X» will deviate from the servo-command yc(t) between those times iX h£S™E 
misbehavior was illustrated in Subcase 3a in Chapter 4   A methnd fhTintS^   T    . ^^P1« 
action for the next sample-period was v^^^'c^^^^^^^^0"1^ 
waveform behaviors that both the servo-commandtnd^etrnal dis"     an" p^ iSS educe ,„ ersampie      behavi        a degree ^ ^ ^.^ ^ ^ ° e^lb t 

189 



parameter variations and thus designing a control term ua(t;kT) to accommodate their effects. The 
particular design method given incorporates an intelligent intersample holding-strategy to counteract the 
effects of those unknown parameter-perturbations between the sample times. Examples using this 
enhancement are given throughout Chapter 4. In particular, Subcase 3c compares a system compensated 
with and without the robustness control term ua(t;kT). 

The digital servo-controller designed by the techniques presented in this paper may be 
implemented using a single sample-period or using multiple sample-periods. There are many different 
ways of implementing the digital servo-tracking control algorithm using multiple sample-periods. 
Multirate sampling could arise from the physical characteristics of the system, or may be introduced 
deliberately into the servo-controller. A particular implementation was considered for this research that 
has practical application. It involves two distinct and synchronized sample-periods associated with the 
two distinct vector-inputs to the digital servo-controller (y(kT) and yc(kT)). One sample-period is 
associated with the availability of measurements, or processing, of the plant output y(t), while the second 
sample-period is associated with the availability of measurements, or processing, of the servo-command 
yjf). In the multirate case, an unstable or highly oscillatory plant may be brought under control by 
incorporating an additional control term uüm (kT) into the digital servo-controller that runs at the faster 

sample-rate. When the uBm (kT) term is used, the control terms running at the slower rate may need to be 

recomputed to reflect the plant's new A matrix. Simulation results are given in Subcase 4b in Chapter 4 
for a plant compensated by a digital servo-controller with and without the additional ua (kT) control 

term. Also, Subcase 5b in Chapter 4 includes simulation results illustrating performance degradation for 
the case of sample periods that do not satisfy the integer multiple relationship in (3.80). 

53.    Recommendations for Further Work 

Several areas for further study in the field of digital servo-tracking control theory have been 
uncovered during the course of this research. In particular, the suggested areas for further study are 
described briefly in the listing below: 

1) The focus of this work is on output servo-tracking. That is, the problem of the plant 
output X0 tracking a given servo-command yc(t). The general theory presented here 
should be extended to cover the case of plant state servo-tracking. That is, 
x(t) -*xc(t) in a sufficiently small amount of time (where xc(t) represent time- 
varying commands that the plant states are required to follow). In that way, 
disturbance cancellation and accommodation of plant parameter-perturbations as they 
affect individual plant states would also require further analysis; 

2) Another subject area for further research involves expanding the digital servo- 
controller theory developed in this report to linear time-invariant systems having the 
dynamical model 

x(t) = Ax(t) + Bu(t) + Fw(t) 

y(t) = Cx(t) + Eu(t) + Gw(t)     ' 
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3) A high-performance digital servo-control theory that addresses time-varying 
parameters is an area requiring additional research. Initially, the time-varying system 
represented by 

x(t) = A(t)x(t) + B(t)u(t) + F(t)w(t) 

y(t) = C(t)x(t) 

might be considered, and then expanded to achieve a general theory for time-varying 
systems of the form 

x{t) = A(t)x(t)+B(t)u(t) + F(t)w(t) 

y(t) = C{t)x{t) + E(t)u(t) + G(t)w(t) ; 

4) Variations in the plant's A matrix have been considered in this work, however, the 
general theory begs for inclusion of the case addressing variations in the nominal 
values of the B, C, and F matrices. A linear digital control method does exist [34, 35, 
39] which accommodates variations in those parameters; however, some investigation 
will be required to determine if and how this technique can be applied for the case of 
time-varying servo-commands; 

5) The multirate solution given in this paper assumes that all sample-periods are integer 
multiples of one another. As was seen in Subcase 5b in Chapter 4, a non-integer 
multiple relationship causes degradation in the tracking performance. The control 
terms operating at the slower sample-rate rely on this integer multiple relationship for 
their computations. Further investigation is required to determine how their 
computation should be altered to include any relationship of control sample-periods; 

6) Another area involving multiple sample-rates, related to the recommendation given 
above, is the case involving samplers that drift slightly from their nominal rate The 
method presented in this report assumes the samplers are synchronized and remain 
synchronized for all time. In practical hardware implementation, the samplers may be 
subjected to temperature variations, or other disrupting effects, and may tend to drift 
slightly, leading to a possible decline in tracking performance; 

7) Again in the area of multiple sample-rates, is the dilemma of selecting the best 
combination of sample rates to achieve the desired performance, while staying within 
certain design boundaries. Some sample-rates may be determined or constrained by 
the physical characteristics of the system or the hardware on which the controller is 
implemented. Issues such as availability of data, computing power of the hardware 
or time-sensitive deadlines impose limits on the sample-rates that may be used Iri 
addition a new digital servo-controller must be computed for each change in sample- 
rates, unless the sample-period is carried as a variable throughout the computations 
This becomes quite cumbersome for anything other than very low-order systems' 
Therefore, a technique for arriving at the optimal combination of sample-rates given 
the constraints and design criteria of the system, is an area that would require 
extensive effort, but with high pay-off; 

8)    The digital servo-tracking controller design method developed in this report assumes 
satisfaction of a complete-cancellation condition for the effects of the external 
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disturbances and disturbance-like effects caused by the servo-commands and 
parameter perturbations on the servo-tracking error s^t). If those conditions are not 
met, then the corresponding control term cannot be designed. The theory of DAC 
[40,71,72] includes methods of disturbance-minimization and disturbance-utilization. 
Those DAC methods could be incorporated into the general theory presented in this 
paper; 

9) A method was presented in Subsection 2.11.7 for formulating all possible subspaces 
Sv cX[C]. Those subspaces are systematically tested for suitability using the linear 
subspace stabilization technique presented in Chapter 2. Additional research is 
needed to fully evaluate the possibilities that exist for this method. Upon testing a 
general representation for V-dimensional subspaces, the designer can then discern a 
range of acceptable subspaces for regulating eJJiT). A computer program that 
automates the procedures in Section 2.11 for enumerating subspaces, performing the 
subspace testing, and determining appropriate ranges of subspaces, will help to ease 
the burden on the control system designer; and 

10) The application of the digital servo-tracking control theory to realistic problems is 
desirable in order to further ascertain the benefits of this technique versus 
conventional methods. In particular, this theory could be applied to the missile 
guidance problem of tracking a maneuvering target while subjected to a wide variety 
of atmospheric disturbances, noisy measurements, and parameter uncertainties. 
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LIST OF SYMBOLS 

Symbol       Definition 

A Plant coefficient matrix; dimension nxn. 

Am Ideal model coefficient matrix; dimension nxn. 

AK Nominal value of the plant coefficient matrix; dimension nxn. 

2 Discrete-time counterpart to A; dimension nxn. 

Am Discrete-time counterpart to Am; dimension nxn. 

AN Discrete-time counterpart to A^; dimension nxn. 

Ai Term representing the quantity CAC*. 

A2 Term representing the quantity (MR)"(l - B(CBYCA] MR. 

a Decay value on exponential; e.g. e~" . 

a Constant matrix of coefficients in the set of homogeneous equations aß = 0 where a 
pM. 

B Plant control distribution matrix; dimension nxr. 

B Discrete-time counterpart to B; dimension nxr. 

B Term used to represent the quantity BTC + FH. 

Bi Term representing the quantity CB . 

B2 Term representing the quantity ( MR)* B\l - (cSY ÜB] . 

c Servo-command state-vector; dimension v x 1. 

c Composite state-reconstructor estimate of servo-command state-vector c. 

cj Set of unknown constants that may "jump" in value from time-to-time. 

C Plant output coefficient matrix; dimension mxn. 

\ Auxilliary vector using in calculations for a reduced-order observer. 
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LIST OF SYMBOLS (Cont.) 

Symbol Definition 

4fi Linear transformation state of ess. 

D Disturbance coefficient matrix; dimension p x p. 

D Discrete-time counterpart to D; dimension p x p. 

D„ Parameter-perturbation vector coefficient matrix; dimension n2 x n2 or less. 

Da Discrete-time counterpart to Da; dimension same as that of Da. 

V Term used to denote the quantity Tl2ETn . 

day The (y) element of the matrix AA. 

LA Matrix of plant parameter-perturbations; dimension man. 

A Term used to represent the quantity Kp MR. 

E Servo-command coefficient matrix; dimension v x v. 

E Discrete-time counterpart to E; dimension vxv. 

E'1 One-step delay defined such that E~lx(kT) = x((k - l)f) 

ess Servo- state vector. 

e„ ess with residual-effects ignored. 

Sx Full-order observer error between estimate and actual value of the plant state x; 
ex=x-x. 

£y Servo-tracking error. 

£y Sy with residual-effects ignored. 

s. Full-order observer error between estimate and actual value of the disturbance state z; 
s2 = z-z. 

Sz Full-order observer error between estimate and actual value of the parameter-perturbation 
state za\ sZa =za-za. 

fi(t) Natural basis function, the set of which mirror the waveform pattern of an uncertain 
waveform-structured input. 
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LIST OF SYMBOLS (Cont.) 

Symbol Definition 

F Disturbance input matrix; dimension n xp. 

FH 
Discrete-time counterpart to FH; dimension nxp. 

G Output matrix in dynamic model of servo-commands; dimension mxv. 

G{s) Transfer function of uncertain waveform-structured signal. 

r(kT) Completely unknown, unpredicatable, and unmeasurable "residual-effect" caused by the 
a(t) impulses. 

YaikT) Completely unknown, unpredicatable, and unmeasurable "residual-effect" caused by the 
<70(f) impulses. 

r* Gain matrix associated with the digital-continuous control term uJfckT); dimension rxn2 

or less. 

rc Gain matrix associated with the digital-continuous control term uj(t,kT); dimension rxp. 

r, Gain matrix associated with the digital-continuous control term u^t;kT); dimension r x v. 

fc Gain matrix associated with the digital control term uJ^kT); dimension rxp. 

r, Gain matrix associated with the digital control term u£kT); dimension r x v. 

H Output matrix in dynamic model of external disturbances; dimension pxp. 

Ha Output matrix in dynamic model of parameter-perturbation vector; dimension n x n2. 

Ha 
Discrete-time counterpart to Ha. 

If Term used to denote the quantity GETn . 

kT Indicates discrete times; k= 0, 1, 2,... with constant spacing T. 

(k+l)T Forward discrete time-shift of kT. 

K(/) Sparse sequences of impulses associated with the dynamical process model of the 
uncertain waveform-structured input. 

Km Gain matrix used in feedback stabilization of plant, e.g. uQm = Kmx; dimension rxn. 
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LIST OF SYMBOLS (Cont.) 

Symbol        Definition 

Kp Gain matrix used in feedback stabilization of servo-state error e„, e.g. «  = -K.e^; 

dimension rxn. 

P Discrete-time counterpart to Km; dimension rxn. 

j? Discrete-time counterpart to K„; dimension rxn. 

KQ Gain matrix used in feedback stabilization of discrete-time full-order observer tracking- 
error. 

j£ The set of all j£ satisfying certain criteria. 

L Output matrix in dynamic model of uncertain waveform-structured signal; dimension m x 
d. 

L Gain matrix chosen to stabilize the system &,,((£ + 1)T) = \AX + BXL l^,, (kT). 

X, A solution to a characteristic equation; e.g., a solution top{X)desind~ 0. 

in* Column vector of the matrix M in definition (2). 

M (1) Uncertain waveform-structured signal coefficient matrix; dimension d x d. 

(2) Maximal rank matrix satisfying CM=0; dimension n x (n-m). 

Mi Some positive constant < oo . 

fi Sparse sequence of impulses associated with the servo-command yj(t) dynamical process 
model. 

£ Completely unknown, unpredictable, and unmeasurable "residual-effect" caused by the 
/4t) impulses. 

X [•] Denotes the nullspace of the matrix contained in the brackets. 

R Any     matrix     whose     columns     form     a     basis     for     the     nullspace     of 

© Impulsive forcing function in the differential equation describing waveform-structured 
inputs. 

Q. Matrix satisfying c(2 + BKp\ = Q.C 
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LIST OF SYMBOLS (Cont.) 

Symbol       Definition 

P(s) Numerator of the Laplace transformation of the waveform structured input differential 
equation. 

Pm(\) Characteristic polynomial of the ideal model for the servo-state vector ea. 

P(X)d*md Desired characteristic polynomial for full-order observer error dynamics. 

0(/, /0) Plant state transition matrix ( A = <P(t, t0 ) ). 

«Dofr'o) Disturbance state transition matrix (D = QD(t,t0)). 

®D. (Vo) Parameter-perturbation vector state transition matrix ( Da = OD {t,t0) ). 

P Any     matrix     whose     columns     form     a     basis     for     the     nullspace     of 

[B2\Ä2B2\Aß2\-\Atl%]. 

y<«,) Discrete representation of the time-varying portion of u(t,kl). 

qif) State vector for the uncertain waveform-structured input 5(t); dimension d x 1. 

Q(s) Denominator of the Laplace transformation of the waveform-structured signal differential 
equation. 

ra Residual-effect driven by <ja. 

rc Residual-effect driven by a. 

rs Residual-effect driven by //. 

r< (1) Row vector of the matrix R. 

(2) Solution vectors to a^=0. 

rvh Individual elements of r, as defined in (2). 

R Any (n-m) x v matrix such that V£(n-m)and rank[Ä] = v. 

R The set of all Rv, V = 1,2,..., (n-m-l). 

Rv The set of all R that form a basis for a particular subspace having dimension v. 

<${[•] Denotes the column range-space of the matrix contained within the brackets. 

Sv Arbitrary subspace contained within the nullspace of the matrix C. 
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LIST OF SYMBOLS (Cont.) 

Symbol       Definition 

S Vector of uncertain inputs having waveform structure; dimension m x 1 . 

a Sparse sequence of impulses associated with the external disturbance w(t) dynamical 
process model. 

of Completely unknown, unpredicatable, and unmeasurable "residual-effect" caused by the 
o(f) impulses. 

aa Sparse sequence of impulses associated with the parameter-perturbation vector zjlf) 
dynamical process model. 

aa Completely unknown, unpredicatable, and unmeasurable "residual-effect" caused by the 
aa{f) impulses. 

£ Gain matrix used in feedback stabilization of discrete-time reduced-order observer 
tracking-error. 

/ Indicates continuous time. 

t0 An inital time, often assumed to be 0. 

T A fixed constant sampling-period. 

Tc Control sample-period associated with measurements, or processing, of the servo- 
command yc. 

Ty Control sample-period associated with measurements, or processing, of the plant output y. 

T\2 Any matrix satisfying GTn=0. 

fn Term used to denote the quantity {TuTn)'lTn. 

6 A possibly nonunique matrix satisfying G = C6. 

u Composite control vector in plant equations; dimension r x 1. 

ua The control part of u associated with cancelling the effects of the parameter-perturbations 
AA. 

uam 
Tne control part of a multirate u associated with stabilizing and achieving certain desired 
characteristics for the plant. 

uc The control part of u associated with canceling the effects of the external disturbance 
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LIST OF SYMBOLS (Cont.) 

Symbol        Definition 

Up The control  part of u associated with  stabilizing and  achieving certain  desired 
characteristics for the servo-tracking error. 

us The control part of u associated with canceling the disturbance-like effects of the servo- 
command^/). 

ut Portion of u(t;kT) that is time-varying between sample times. 

Uki(kT) Poriton of u(t;kT) that is held constant between sample times. 

v((k+iyr     A term requiring knowledge of the motions of the disturbance over a future sampling 

interval; vX(*+l)7= jVr^fit(z->/r. 

va((k+T)T    A term requiring knowledge of the motions of the parameter-perturbation vector over a 

future sampling interval; va((k+l)T= [ eiWr~'Va(r)rfr. 

w External disturbance input vector; dimension p x 1. 

wa Parameter-perturbation state-vector; dimension «xl. 

wa Observer-generated estimate of wa. 

x0 Initial value for the plant state-vector; dimension nxl. 

XT Desired or final value for the plant state-vector; dimension nxl. 

x Plant state-vector; dimension nxl. 

x State-reconstructor estimate of plant state-vector x. 

X Term used to represent the quantity 6E-A6-BTS. 

E Matrix satisfying (2 + BKp) MR = MRE. 

v Plant output-vector; dimension m x 1. 

)>c Output servo-command vector; dimension mxl. 

z External disturbance state-vector; dimension p x 1. 

f Composite state-reconstructor estimate of external disturbance state-vector z. 

za Parameter-perturbation disturbance state-vector; dimension n2 x 1 or less. 
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LIST OF SYMBOLS (Cont.) 

Symbol Definition 

za Composite state-reconstructor estimate of parameter-perturbation state-vector za. 

2 Gain matrix chosen to stabilize the system £„2 ((k + l)T) = \A2 + 2?2Z j^ (kT) . 

[•]"' Denotes matrix inverse of matrix in brackets. 

[•]* Denotes matrix multiplied by itself k times. 

[•]T Denotes matrix transpose of matrix in brackets. 

[•]+ Denotes Moore-Penrose pseudo-inverse of matrix in brackets. 

[•]* Denotes matrix left or right generalized inverse of matrix in brackets; left defined by 

([•fMXW and nghtdefined by WT([«][«]T)' T\-l 
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