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EXECUTIVE SUMMARY

The objective of this research effort is to compile, refine, and extend a general theory for
developing digital servo-tracking controllers which will achieve a high-level of servo-tracking
performance that is unmatched by currently available digital servo-design methods. This general
theory applies to multiple-input/multiple-output linear time-invariant systems subjected to plant
parameter-perturbations and complex, multi-variable, time-varying servo-commands and distur-
bances. Obstacles to achieving high-performance servo-tracking are identified and discussed,
along with key shortcomings inherent in conventional design methods. In addition, a collection of
example problems are worked in detail to illustrate the design techniques described and devel-
oped in this study. Simulation results are used to demonstrate the performance of the resulting

controllers.

The digital servo-controller theory presented in this report is ideal in the sense that
the design procedure encompasses a superset of desirable characteristics. That is, the design
procedure: (1) is purely linear algebraic in nature; (2) accommodates linear time-invariant sys-
tems subjected to generalized, multi-variable, independent disturbances having complex time
behavior; (3) produces a servo-controller that provides high-fidelity servo-tracking of general-
ized, multi-variable servo-commands having complex time-behavior; (4) is generalized to include
any order of system having Multiple Control-Inputs and Multiple Plant-Outputs (MIMO) sys-
tems; (5) provides performance robustness against uncertain variations in plant parameters; (6)
minimizes intersample misbehavior (ripple) to the highest degree possible utilizing a digital con-
troller; and, (7) controls the motions of the servo state-vector to a subspace making those
motions invisible in the tracking-error.
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1. INTRODUCTION TO THE SERVO-TRACKING PROBLEM IN CONTROL
ENGINEERING

This chapter provides an overview of the servo-tracking problem and discusses the difficulties
encountered in designing digital controllers to achieve high-performance servo-tracking.  The
shortcomings of conventional servo-controllers are also discussed.

1.1.  History and General Overview of the Servo-Tracking Problem

The term servo-tracking is used to describe a process in which one or more outputs of a
system tend to follow (or track) time-variations of certain inputs to the system. The alternative term
servomechanism originated [1], in 1934, from the words servant (or slave) and mechanism. Thus, the
term servomechanism, implied a slave-type mechanism. Today, this term refers to an important class of
feedback control systems that are widely used in industrial applications. Over the years, the word
servomechanism has been shortened to servo.

Instruments and machines that were designed to perform servo-tracking appeared in the
early 1880’s in connection with speed regulation requirements for steam engines. Speed governors that
performed set-point regulation in the face of uncertain “loads” are a specific type of servomechanism that
appeared during that time. Later in the 1930°s and 1940’s, servomechanisms became essential
components in electro-mechanical systems associated with airplane autopilots, anti-aircraft fire directors,
and bomb sights, to name a few examples.

In general, an industrial servo performs the task of controlling some physical quantity y(¢)
by comparing its actual value y(f) at time  with a desired, or commanded, value y(?) at time  and using
the real-time difference (or servo-tracking error) £,(1)=y.(1)— y(¢) to control y(f) into agreement with

y«{?) (i.e., control £,(1)—>0). The basic idea of servo-tracking is illustrated in Figure 1.1. The primary

control task is to achieve closed-loop stability for the (possibly unstable) system and to simultaneously,
quickly achieve y(r)— y.(¢) and maintain y(t)= y,(t) thereafter. The servo-tracking controller design
problem in control engineering is to create a controlling device and associated control algorithm that will
achieve accurate servo-tracking of all expected “commands” Y(#), while simultaneously satisfying
additional performance criteria that may be specified, in the face of a wide variety of uncertain
disturbances and initial conditions.
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Figure 1.1 Servo-Tracking Behavior: y(r) Must Quickly Become Equal-to and Thereafter Accurately
Track y(2).

The physical quantity being controlled by a servo-tracking controller may be position,
velocity, chemical composition, temperature, light intensity, or any other measurable and controllable
entity [2]. Also, the servo-controller may take on many forms. For instance, a person reaching to pick up
a moving object can be viewed as a biological, servo-controlled system. In that case the tracking-error,
continually sensed by the eyes, is the difference between the position y(?) of the object and that of the
hand y(#). In fact, the pointing of the eyes themselves is another example of a biological servo-system, as
are the automatic iris-adjustments within each eye.

1.2.  Difficulties in Achieving High-Performance Servo-Tracking

As discussed in the previous section, in addition to achieving closed-loop stability, the
purpose of a servo-controller is to reduce to zero the difference between the plant output and the
command input. However, simply achieving a zero tracking-error eventually is not sufficient, in general.
High-performance servo-tracking requires essentially zero tracking-error while simultaneously achieving
and maintaining some minimum quality of performance for the closed-loop system. The performance
specifications typically involve rise-time, settling-time, and/or overshoot of the variable N being
controlled, or the gain and phase margins of the closed-loop system. Several difficulties can arise when
attempting to achieve high-performance servo-tracking. Primarily, these difficulties can be attributed to
the inherent uncertainty about the servo-commands and disturbance inputs.




1.2.1. The Nature of Uncertain Servo-Commands Y«(?) in Control Problems

In industrial applications, the servo-command Y{?) is not necessarily a single
scalar input and not limited to simple, stepwise-constants, ramps, or acceleration-type commands.
Rather, the y(f) may be a “vector,” or set, of independent inputs and may vary with time in complex,
unpredictable ways. Practical servo-commands are almost always uncertain in the sense that their tifne-
behavior is not precisely known a priori, and is only revealed or available for measurement in an on-line,
real-time fashion. A typical time-plot of such a servo-command input is shown in Figure 1.2 where it can
be seen that the rate of change of the servo-command may vary unexpectedly with time. Those changes
in the motion of y(f) cannot be predicted and corrections for them must be made by the servo-controller
in a real-time manner, based on measurements of the command and plant response up to that particular
point-in-time.
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Figure 1.2 Typical Time-Plot of a Servo-Command Input y(2).

1.2.2. The Nature of Uncertain Disturbances in Control Problems

In control engineering, disturbances are defined technically as uncontrollable
inputs that affect system behavior. The uncertainty associated with disturbances js similar to that
associated with servo-commands in that disturbances can vary with time in uncertain and complex ways.
However, unlike servo-commands, disturbances are usually not directly measurable. Disturbances can
occur both internal and external to the controlled system. External disturbances arise from effects
external to the plant, such as system loads, environmental winds, temperature changes, and precipitation.
Internal disturbances arise from effects associated with the physical or dynamic characteristics of the
plant, such as friction, time-delays, dc biases, and uncertain parameter-perturbations.

Parameter-perturbation “disturbances” are of particular importance because they
occur in many types of servo-tracking problems and arise when the values of the plant’s parameters vary




in relation to their nominal or assumed values due, for instance, to fluctuations in subsystem component
outputs or modeling errors. Conventional servo-controllers are tuned to the assumed nominal plant-
parameter values during the design process. If those parameter values are inaccurate, or change during
normal operation in some unpredictable manner, an inappropriate servo-control action may resuit.

1.3.  Summary of Conventional Approaches to the Design of Servo-Tracking Controllers
for Linear Time-Invariant Systems

The servo-tracking design problem came to the forefront in the 1930°s. From that time
through the late 1950’s, a general theory of control was developed and is known today as classical
control theory. That theory is still used in many control design problems, especially for linear systems
with a single control-input and a single plant-output. The so-called modern control theory, developed
since the late 1950’s, is suitable for both single control-input, single plant-output systems, as well as
more complicated systems such as those having multiple control-inputs and multiple plant-outputs. It has
been asserted [5] that the advances achieved in space exploration during the past 35 years were possible
only because of the advent of modern control theory.

1.3.1. Classical Approaches to the Design of Servo-Tracking Controllers for Linear
Time-Invariant Systems

Early approaches to designing servo-tracking controllers were based on the
solution of differential equations by classical means. This type of analysis can be tedious for anything
other than relatively simple systems. The Laplace transform (transforms time functions into functions of
a complex variable s [31]) was a primary tool in those early approaches.

A typical servo-control system as configured in classical control theory is
illustrated in Figure 1.3, where P(s) is the scalar, transfer function of the plant to be controlled, w(t) is a
scalar, external disturbance, and u(7) is-the scalar, servo-control input to the plant. The classical servo-
controller design problem is to determine the transfer function G(s) (compensator) that will achieve and
maintain closed-loop stability, a zero tracking-error and, in addition, cause the closed-loop system to
exhibit certain desired characteristics. Those characteristics include design specifications such as
settling-time, rise-time, and percent overshoot, related to the step response of the system [3].
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Figure 1.3 Typical Servo-Control System Considered in Classical Control Engineering.

Some examples of classical methods for designing servo-tracking controllers G(s)
are the methods of steady-state errors, the Nyquist Stability Theorem [24], the root locus method of
Evans [30], and the frequency domain methods of Bode [26]. The design and analysis of servo-tracking
controllers G (s) using classical control engineering methods are described in [5]-[23].

1.3.2. Modern Approaches to the Design of Servo-Tracking Controllers for Linear
Time-Invariant Systems

Modern control theory can be applied to complex, time-varying systems having
multiple control-inputs and/or multiple plant-outputs, as well as simpler single input/single-output
systems. The tools of modern control theory are developed primarily in the time domain. Modern
control theory, sometimes referred to as State-space control theory, characterizes systems by a collection
of n physical quantities {x;, x,, - X} called state-variables which enable a nM-order differential equation
model of a system to be converted into a set of » first-order differential equations called state-equations.
Those state-equations govern the time-evolution x{1) of the n state-variables associated with the dynamic
behavior of the plant. Those first-order equations can, in the case of linear plants, be expressed in vector-
matrix notation to simplify the mathematical calculations. When a physical system has been modeled by
a set of mathematical equations, the subsequent method of analysis and servo-controller design is
independent of the nature of the physical system. The required servo-controller action u(?) is determined
by a “control-law” or “algorithm” that uses the measured, or estimated, state-variables from the plant and
the measured servo-commands (and may also use estimates of the “states” of the servo-commands and
the disturbances [32]-[40]).

Pole placement (the designation of closed-loop poles), observer theory (“state-
estimation theory”), and optimal control methods (all based on state-space theory and linear-algebra
techniques) are used extensively in the application of modern control engineering to the design and
analysis of linear servo-tracking control systems. Servo-tracking design methodologies that make use of
those methods are described in [20-21 ,32-39,42,44,47-56]




1.4.  The Concept of Digital Control in the Design of Servo-Tracking Controllers for
Linear Time-Invariant Systems

The increasing reliance on microprocessors in industrial servo-tracking control system
implementations has made it necessary to develop controller design methods that result in servo-
controller algorithms which can be realized in digital computer environments. Digital control is a way of
computing and applying control actions that uses digital data sampling and data processing techniques to
update, or determine new values for, the control u(?) at sequential, discrete points in time, ¢ =1¢, + k7, k =
0, 1, 2, ..., where £, is the initial time and the positive constant T (typically referred to as the sample-
period) is determined in part by the digital hardware’s computing speed and in part by the availability of
the sampled data. Because those algorithms are realized by digital processors, the resulting servo-
controller is often referred to as a “digital” servo-controller. Since the digital servo-controller is
implemented on a microprocessor, digital computer, or similar type of data processing circuitry, a non-
zero time-interval is required in order to format the raw measurement data and perform the computations
necessary to fully execute the servo-tracking controller algorithm. Therefore, the resulting real-time
digital-control decisions are generated at discrete-values in time 7 = L+ kT, k=0,1, 2, ..., hereafter
called “discrete-time” where the control “decision” made at time ¢=¢,+kT is not updated again until the
“next” value of discrete-time ¢ = 1,+(k+1)T. According to the scientific definition [32] of discrete-time
control, during the interval of time between successive discrete times (tHkT, t,+(k+1)T), k=0, 1, 2, ...,
the digital controller applies (possibly time-varying) control-actions to the plant in an open-loop manner,
with no knowledge of, or reaction to, uncertain time-variations in servo-commands y«9), disturbances
w(?), etc., that may occur during the time-interval (“intersample-interval”) ¢, + kT <t <t, + (k + )T .

Discretization is the process of representing a given plant mathematical model, originally
developed in the form of a set of differential equations, by an equivalent set of difference equations,
assuming the discrete-time control #(kT) will vary in a pre-specified manner across each sample-interval
[33]. Modern day methods of designing digital servo-tracking controllers involve discretizing the
continuous-time state-space model of the plant and then performing a digital controller design using the
tools of modern discrete-time control theory. The vector/matrix methods of modern linear control theory
lend themselves very well to computer computation. It is this characteristic that has allowed modern
control theory to solve many complex servo-tracking problems that could not otherwise be solved by
classical control theory. Discussions of digital servo-tracking controller design using modern control
engineering techniques are found in [3,20-21,33,47,52,56,58].

1.5.  Shortcomings of Contemporary Methods for Designing Servo-Tracking Controllers
for Linear Time-Invariant Systems [59]

A review of contemporary servo-tracking controller design methods, for the purposes of
identifying their shortcomings, was performed as a part of this research effort. The findings of that
review were presented in [59]. Many of those same shortcomings were identified in two independent
studies reported in two more recent papers [60,61]. These various shortcomings are discussed in this
section as part of the motivation for this research effort.



1.5.1. The Restriction to Step + Ramp + Acceleration-Type Representations of
Servo-Command Time-Behavior

Classical and modern servo-tracking control methods consistently rely on “step”,
“steptramp,” and “step+ramp-+acceleration” type characterizations of the anticipated servo-command
inputs. Many servo-commands are members of that class of commands. However, some types of servo-
commands, such as weighted linear combinations of (known) exponentials or sinusoids, cannot be
accurately characterized in this way. For example, a servo-command having the form

Y.(t) = ce™ cos(fr), where o and 8 are known constants and ¢ is some unknown constant, is not

accurately represented by any of the type characterizations mentioned above. Consistently classifying
servo-commands by those types has resulted in a controller design guideline that characterizes servo
systems as “Type 17, “Type 2”, and “Type 3”. The resulting overall closed-loop systems are such that
Type 1 systems perform well for step-type servo-commands. Similarly, Type 2 and Type 3 systems
perform well for step+ramp and step+ramp+acceleration-type servo-commands, respectively. Such
systems are considered essential to achieving good servo-tracking performance. Indeed, when a servo-
command belongs to the particular class of step, or ramp, or acceleration type commands, good servo-
tracking performance may be obtained. However, when the time-behavior of the servo-command does
not conform to this class of variations, and the controller algorithm is designed as a Type 1, 2, or 3
system, performance limitations will result. Examples of classical and modern servo-tracking controller
design methods that rely on this type command characterization are found in [20,21,46-48]. Servo-
tracking controller design methods which accommodate a more general class of servo-commands are
discussed in [37,38,40,44].

1.5.2. Zero-Order-Hold versus Discrete-Continuous Control

Digital controllers are characterized by an alternating closed-loop/open-loop
behavior; closed-loop at the discrete-times t=t, + kT and open-loop over the intersample intervals
kT<t<(k+1)T; k=0, 1, 2, .... This mode of behavior makes the performance of digitally controlled
systems more sensitive to the uncertainties (uncertain commands, disturbances, noisy measurements, etc.)
associated with the servo-tracking problem. Recall from Subsection 1.4 that a digital servo-controller
updates the control decisions only at the discrete times t = ¢, + kT, k = 0,1, 2, ..., withno knowledge of,
or reaction to, “events” that may occur during the intersample interval ¢, + kT <t <t, + (k + DT. This
situation has resulted in the commonly held assumption, among digital control designers, that the
appropriate control input that should be applied to the plant between consecutive discrete points-in-time
(t, + kT, 1, + (k+1)T) is a constant value u(t) = constant = u(kT) that is computed at the beginning =1,
+ kT of each sample-interval [58]. This traditional choice of constant digital control-action is commonly
known as “zero-order-hold” (z.0.h.) type control. A graphical representation of a typical z.0.h. type
digital control-action is shown in Figure 1.4.
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Figure 1.4 Illustration of Zero-Order-Hold (z.0.h.) Control-Action.

Digital servo-controllers that allow for the possibility of a time-varying control
action across each sample-interval have been described in the literature [46,58,62-68]. The modes of
time-variation (or holding actions) considered in those references are commonly referred to as first-
order, second-order, and exponential hold. Such classical control schemes smooth out the otherwise
rough stair-step waveform of a z.0.h. control-action (as shown in Figure 1.4) but can not intelligently
choose smart control-variations that serve to maintain the servo-tracking error near zero between the
sample times, £, + kT <t <t,+ (k+1)T. In fact, those holding actions can lead to an undesirable “build-
up” of the servo-tracking error during the discrete time-interval between the sample times. This build-up
of servo-tracking error is known as intersample misbehavior and is a common obstacle to achieving high-
performance servo-tracking using conventional digital control methods.

Intersample misbehavior (ripple) in digital servo-controlled systems can be caused
by: (i) time-variations of the servo-commands; (ii) time-variations of the disturbances; and (iii) open-
loop instability of the plant. Most digital control texts define ripple as the build-up of error between the
sampling instants when the error at the sampling instants is zero (“deadbeat”). In Figure 1.5, a plant
output y(r) which, at t=kT, k=3, 4,5, ..., appears to be accurately tracking a constant servo-
command y(#) is shown. The plant output achieves deadbeat response because the tracking-error is zero
at the sample times 1 =kT', k=3, 4, 5, .... However, in reality, y(?) is drifting with respect to y,(¢) and
is, in fact, doing a poor job of tracking the constant servo-command. This drifting of tracking error
between the discrete sample-times can be very difficult to reduce with the traditional-type intersample
holding-actions described in this Section. However, a recently introduced technique for digital-control,
called “discrete-continuous” control [38] leads to a more intelligent choice of intersample control-
variations and thereby can reduce this mode of intersample misbehavior. The technique in [38] has been



incorporated into the new digital-servo controller design procedure developed in this report and will be
described in detail in Chapter 3.
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Figure 1.5 Illustration of Intersample Misbehavior of Output Response (7).

1.5.3. Failure to Exploit Available Real-Time Information

Contemporary and classical design methodologies for servo-controller algorithms
are based on closed-loop stability and steady-state tracking-error considerations as ¢—» oo (or as
kT—> o). This type of “steady-state error” design procedure does not address the important task of
minimizing the instantaneous real-time tracking-error g(#), based on the real-time behavior of the servo-
commands y(7) [59]. Additional useful dynamic information about the disturbances and plant model is
encoded in the plant output measurements N?). That information can be decoded and utilized in real-time
by properly processing the plant output measurements y(f). Similarly, useful information concerning the
dynamic nature of the uncertain servo-commands is encoded in the real-time measurements of the servo-
commands y.(#). Classical and modern servo-controller design methods, such as those described in
[8,17,20,21,46,47,58], do not attempt to exploit this useful encoded information. Modern servo-
controller design techniques such as those presented in [32-40] do recognize and exploit this useful real-
time information.




1.5.4. Sensitivity to Parameter Perturbations

Conventional (classical and modern) servo-tracking design techniques do not
incorporate explicit means for accommodating the almost certain event that at least one of the actual
plant-parameter values will fail to match the value used during the design process. As discussed in
Subsection 1.2.2, such parameter mismatches tend to cause an inappropriate feedback control-action to
occur, which can result in loss of tracking quality and even cause a loss of closed-loop stability.

The degree to which a servo-tracking controller maintains performance
specifications in the face of off-nominal values of plant parameters can be viewed as a measure of the
robustness quality of that servo-tracking controller. Today’s modern tracking-systems impose close-
tolerance, high-performance demands on such things as settling-time, peak-errors and disturbance
rejection. A tracking system whose stability is sensitive to certain parameter values will not consistently
meet those demands. Therefore it is important that the closed-loop performance specifications, in
addition to closed-loop stability, be maintained in the face of unmeasurable changes in plant-parameter
values [59]. Servo-tracking controller design methods that achieve a degree of robustness to parameter
variations are presented in [34,35,39]; however those techniques assume zero, constant, or stepwise-
constant servo-commands and do not include complex, time-varying commands as discussed in
Subsection 1.5.1. The servo-design methodology developed in this report will achieve robustness to
plant parameter-variations and can be applied to systems that must track high-order, time-varying, servo-

commands.

1.5.5. Systematic Design Procedures

Many of the servo-tracking controller theories and design procedures published in
the professional journals are burdened by complexity. Classical design methods were often graphical and
difficult to utilize when higher-order, multiple-input, multiple-output (MIMO) systems were considered.
On the other hand, some modern design methods, such as pole-placement and observer theory, rely
primarily on state-space and linear algebra techniques to reduce the complexity of the design somewhat.
In fact, single and multiple control-input/plant-output time-invariant (and also time-varying) systems are
handled with ease by the same methodology in modern control, whereas classical control methods are
primarily suitable only for time-invariant systems (of the single control-input, single plant-output type).
In addition the vector/matrix mathematical representations of modern control allow for relatively easy
implementation of the servo-controller algorithm on a digital processor. Methods that utilize a simple
algebraic pole-placement and observer theory approach to designing servo-tracking controllers are
detailed in [37,38,40].

1.6. Goals of This Research Effort

The primary goal of this research effort is to develop a new, linear-algebraic procedure for
designing high-performance digital servo-tracking controllers for linear, time-invariant MIMO systems.
Digital servo-controllers designed by this procedure should be capable of reducing the effects of the
shortcomings discussed in Section 1.5. A design methodology for partially achieving this goal for
continuous-time (analog) controllers was presented in [35]. However, a general MIMO digital servo-
control theory for linear plants, which overcomes the shortcomings identified in this Chapter and in [59-
61], has apparently not been published in the literature. To accomplish the primary goal of this research
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effort, several existing servo-controller results will be modified and incorporated into the new digital
servo-controller design procedure. Those existing results are: (i) a linear-algebraic continuous-time
servo-control method [37,70], which will be adapted to discrete-time; (ii) a recently developed discrete-
continuous control result [38] that accommodates intersample ripple; and (iii) a linear adaptive control
technique [34] that accommodates parameter-perturbations. The servo-controller design procedure
presented in this report incorporates several additional features that enable the resulting digital servo-
controllers to achieve a level of servo-tracking performance that is not obtainable by contemporary
methods. A collection of worked examples, with simulations results, will be presented to illustrate the
design procedure and level of servo-tracking performance that can be obtained by the new digital servo-
tracking controller design method developed here.
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2. THEORY AND DESIGN PROCEDURE FOR A NEW DIGITAL SERVO-
TRACKING CONTROLLER FOR LINEAR DYNAMICAL SYSTEMS

2.1. Overview of Chapter 2

This research effort is concerned with the development of a new digital control design
methodology, based on linear-algebraic methods, for the MIMO servo-tracking problem with an n™-order
linear plant and uncertain servo-commands and disturbances. As mentioned in Chapter 1, a linear-
algebra type analog (continuous-time) control design methodology for high-performance servo-tracking
in continuous-time was presented in [37,70]. In this Chapter a digital servo-tracking control design
methodology is developed which parallels the continuous-time methodology in [37,70], with several
improvements. That methodology subdivides the servo-tracking problem into intermediate subproblems
that can be solved by simple linear-algebra techniques. This technique is unique in that no linear-
algebra-based digital servo-tracking design-methodology currently exists that achieves a high-level of
servo-tracking performance while overcoming the obstacles inherent in conventional servo-tracking

design methods (as detailed in Chapter 1).

2.2. Mathematical Model of a Generic MIMO Linear Dynamical Plant

The specific class of plants considered in this research is the set of finite-dimensional, real-
valued, MIMO, time-invariant linear dynamical plants. This class of plants can be represented by a
linear-differential state-equation and an output equation of the general form

x(t)= Ax(t) + Bu(t) + Fw(t)

y(#)=Cx(t) ’ @D
where

x(1) =  n-dimensional plant state-vector,

u(t) = r-dimensional plant control input-vector,

w(?) =  p-dimensional vector representing the (assumed independent)

multi-dimensional external disturbances,

1) = m-dimensional plant output-vector,

A = n X n real-valued matrix (assumed known and constant for now,
but will be considered subject to uncertain perturbations A4 in
Section 3.2),

B = nxrreal-valued, constant, known matrix,

C = m X n real-valued, constant, known matrix (assumed to have

maximal rank »), and

F = nXx preal-valued, constant, known matrix.
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A block diagram representation of the class of plants in (2.1) is shown in Figure 2.1.

wi(?) LAL (1) = (11(0), y3(0), ., ym(©))

u(t) = (1), ux?), ..., us(t))
W(t) ‘ w(t) = (wi(t), wa(D), ..., wp(£))

wp(1) M | x(1) = (x1(8), x2(0), ..., xn(2))

u(1) EE:W(/"(’) j x(?) >By(=t)
/

Figure 2.1 Block Diagram Model of the Class of Continuous-Time Plants Considered in This Study.

In order to design an effective servo-tracking controller for the class of plants in 2.1), it is
generally necessary that the control input u(f) be able to “steer” or control the plant state x(#), without
restriction, throughout state-space. For this reason, it is assumed that the plant in (2.1) is completely
controllable, in the sense of Kalman. That is, for any pair of states (x,, x7) there exists a control action
u(f), ty <t <T <o, which can control the plant state x(7) from the state x,, at the initial time t,, to the

state x(T) = xr at some finite time 7> ¢,

2.3. Information Aspects of the Servo-Tracking Problem

The typical MIMO servo-tracking control problem consists of the design of a controller that
will make each of the plant outputs y(#) quickly coincide with and thereafter accurately track any
admissible servo-command y.(f), i=0, 1, 2, ..., m, in the face of arbitrary plant initial-conditions x(z,) and
uncertain, unmeasurable plant disturbances w(?) of a specified class. To accomplish this feat, the servo-
tracking controller processes real-time information, as provided to it, in a two-input/one-output data-
processing operation (algorithm) as shown in F igure 2.2. Here, the real-time inputs to the algorithm are
the m-dimensional vector of plant-output measurements y = (»>¥25**,¥,,) and the m-dimensional

vector of (assumed independent) servo-command measurements y. =(y,¥ey, ", ¥,m) - In general, the
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set of output measurements y(¢) does not necessarily comprise the set of measurements to be servo-
controlled. However, in this report, to avoid unnecessary complexity, it is assumed that the set of output
measurements }(¢) do in fact comprise the set of measurements we desire to control. The real-time output
of the algorithm is the r-dimensional vector of servo-tracking control signals u = (#,u,,---,u,) which
drive the various control actuators (final control elements) that alter the plant-state motion x(¢). The
quality of tracking performance achieved by a servo-tracking controller is directly related to how well the
controller extracts and processes the useful information encoded into Y(?) and y(2) to produce the control
actuation signal u(z).

Real-Time Servo-Command

Measurement Vector y(f)
!,I Real-Time Servo-Tracking

’ Servo -Tracking Control Signal u(f
Control Algorithm 7

\

Real-Time Plant-Output K4
Measurement Vector y(f)

F

Figure 2.2 Typical Servo-Tracking Controller Viewed as a Two-Input/One-Output Algorithm.

Throughout this study it will be assumed, for simplicity, that the control actuators are “ideal”
in the sense that they exactly replicate the associated control signal u(#) with no time-lag, ringing,
overshoot, and other imperfections often associated with specific actuator hardware. This assumption
enables us to focus attention on the scientific issue of maximizing servo-tracking performance, with
respect to the servo-tracking algorithm design, without involving the various imperfections of
application-specific actuator hardware. Of course, in real applications, an appropriate dynamic model of
the actuator imperfections would be incorporated with the plant model to allow the control algorithm
design to account for those actuator imperfections.

As stated in Chapter 1, the main tasks of the servo-tracking controller are to achieve closed-
loop stability for the (possibly unstable) plant and to quickly achieve and maintain accurate servo-
tracking y;(f)~ y;(¢). The performance of a servo-tracking controller is usually characterized in terms
of the time-variations in the tracking-error vector £(f) defined as the instantaneous difference between
the desired response (= the vector servo-command y.(7)) and the actual response (= the vector plant
output (7)), which was written (in Section 1.1)as

8(t) = ye(t) - y(t) . .2)
Thus, the task of the servo-tracking controller is to regulate the tracking-error in (2.2) to zero, within a

specified settling-time, and thereafter keep g(9) sufficiently close to zero in the face of any admissible
(anticipated) behavior of Yc(f) and/or w(?).
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2.4. Assumptions Concerning the Availability of Measurements of the Plant Output y(¢) and
the Servo-Command y ()

The digital servo-controller design procedure developed in this study assumes that only real-
time discrete-time measurements of the plant-output vector M) and servo-command vector y(f) are
available as inputs to the servo-controller. Those discrete-time measurements are obtained from a
discrete-time sensor that periodically samples the vectors MN?) and y(7) and then communicates those
values to the digital servo-controller. The analog-to-digital converter (the sample/hold device) associated
with that discrete-time sensor has a value of “hold time” T that can be chosen by the designer. Therefore,
it is assumed that the inputs to the control algorithm are the discrete-time data for the plant-output vector
W(kT) and the servo-command vector y(kT) and the output of the servo-control algorithm is the control

vector u(kT).

2.5. Representation of Uncertainty in the Servo-Tracking Problem

Some examples of the sources of uncertainty that can arise in practical servo-tracking control
systems are uncertain loading effects on the plant, dc bias effects, modeling errors, uncertain variations in
servo-commands, sensor noise, etc. The time-domain behavior of such uncertain “inputs” can be
classified into two broad categories: 1) noise-type behavior; and 2) waveform-structured behavior.

Noise-type inputs are characterized by random, erratic time-behavior exhibiting relatively
high-frequency components. The uncertain time-behavior of such inputs is best described by “long-term
average” statistical properties such as mean, covariance, power spectral density, etc., based on the input’s
averaged behavior over a relatively long time-interval. Examples of such noise-type inputs are fluid
turbulence, radio static, and sensor noise.

A large class of industrial control problems involve uncertain inputs which do not behave like
noise-type inputs. In particular, they are not random and erratic in time, but rather their time-behavior

has some degree of regularity or “structure,” at least over short windows-of-time {Ati }IN . This type of

time-behavior is referred to as waveform-structured behavior [40]. A typical time-plot of a generic
uncertain input S(f) having waveform structure is shown in Figure 2.3. Inputs of this type can be
considered analytical over each interval At, with uncertain “jumps” in the value, derivatives, etc., of s(,
occurring only at the edges of the time-intervals At Some examples of waveform-structured uncertain
inputs are dynamic loading effects, dc bias effects, and uncertain servo-commands.
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s(t)

Figure 2.3 Time-Plot of an Uncertain Input s(f) Having Waveform Structure.

25.1. A Linear Waveform Model and Linear State Model for an Uncertain
Waveform-Structured Input s(7)

The class of practical uncertain inputs (i.e., disturbances, servo-commands) addressed
in this research are assumed to have waveform structure in the sense Jjust defined and the uncertain time-
behavior of those inputs is assumed to be modeled in the “linear waveform model” [40] format

S(t)=c /iy () + co f, (O++c, £, (), (23)

where the set of functions {f;(¢)}¢ (hereafter called the “basis set” [40] for s(z)) are chosen by the
designer to mirror the collection of independent waveform patterns that can be exhibited by s(?) over
short time-windows Ar,. The weighting coefficients c,, i = 1, 2,.., g, in (2.3) are completely unknown,
uncontrollable, and unpredictable “stepwise-constants” that may “jump”in value at the edges of the time-
windows At; as shown in Figure 2.4. In some cases, S(¥) is not directly measurable and must be estimated
from the plant output y(z). In those cases, the servo-tracking controller will be unable to estimate S(?) and
adapt to rapidly changing c; values, if the time-interval At; between successive jumps in the c; is too small
Therefore it is necessary to assume that the Jumping of the ¢;’s in (2.3) occur only occasionally such that,
on average, the minimum spacing At,,, between successive jumps is somewhat larger than the digital
servo-controller sampling-period T. More generally (2.3) may be used to represent an m-vector S(® of
uncertain inputs of the form

si(t)
S2(t)

si=| |, (24)

Sm(?)

where each scalar input S(#), i =1, 2, ..., m, has an associated linear waveform-model of the form (2.3).
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|
c(?)

<—Af

L

Figure 2.4 Uncertain Stepwise-Constant Time-Behavior of the c(f)’s in (2.3).

The first step in accessing the useful information embedded in an uncertain,
waveform-structured input S(f) is to identify an appropriate set of basis functions {/:(®)}] that can
model the time-behavior of S{7) across each of the intervals {Af;}. Those basis functions can be
determined by analyzing historical data or dynamic characteristics of the process that creates the input
S{?) or through visual observation or computer analysis of S(f) recordings. For mathematical
convenience, it is further assumed that each Ji(?) satisfies some linear homogeneous differential equation
B; with constant coefficients (this constant coefficient assumption can be relaxed to known, time-varying
coefficients, as shown in [40]). The assumption that each f(7) satisfies some linear differential equation
is rather commonly satisfied in realistic, practical problems. The governing differential equation S; may
differ in order and/or coefficient values for each J{?). Those differential equations for each J{®) can be
combined to form a single linear homogeneous differential equation § which can be written as (assuming
m=1;ie.,S,=5)

d*s(t) d”'s(r) d?2s(r) ds(t) _
oy +a, = ta,, = ++a, = +a,5(1)=0, 2.5)

where the @;, i=1, 2, ..., p, are known (knowable) constants that depend only on the known basis
functions f(?); i.e., the &; do not depend on the “values” of the totally unknown ¢;’s in (2.3).

In order to mathematically account for the uncertain Jjumping of the weighting
coefficients c; at the edges of the time-windows At;, an impulsive-type forcing function aX?) can be added
to the right-side of the differential equation model (2.5). This forcing function ax(f) consists of impulses,
doublets, etc. with completely unknown intensities and unknown arrival-times. With the addition of such
a symbolic forcing term a(?), (2.5) becomes

d’s(r) d*'s(r) d*s(t) ds(r)
=7 +a, 7= +a”']—dtT+m+a2 p +as(t) = (). (2.6)
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The uncertain, stepwise-constant behavior of the ¢,’s in (2.3) can now be imagined as the result of the
action of aXt) on the solutions S(f) of (2.6).

To utilize (2.6) in developing a control algorithm, it is convenient to express the
uncertain input model (2.6) in a state-variable format. For this purpose, write S(?) in the form

s(t)=tq@®) , 2.7

where
l= (1,0,"',0)
q=(91:92>",9,) °

and where the g; are referred to as “state-variables” for the uncertain input S(?). The vector q(1) is called
a state vector for the uncertain input because at each # it embodies the “current” information needed to

predict the behavior of S(#) over the time-interval Af,, One of the many possible choices for the ¢,’s in

@-n
(2.7) is the phase variable choice. That is, g,(¢) = gZT'ISQ’ i=1,2, .., p. Selecting the g,’s in that
(A

way and using (2.7) allows (2.6) to be rewritten equivalently as the following set of first-order, coupled
linear differential equations, having uncertain Dirac impulse sequences x(f) as inputs (the latter inputs
represent the equivalent effect of the impulsive forcing term aX?) in (2.6))

Gi0=9, (D +x,(1);  q,()=5s(r)

4, () =q:() +x,(1); q,(1) =5(t)
: , (2.8)

(-1
9,()=-a19,(t) - a,q, )—-—a,q,)+ k(1) q,(0)= %;Q

where the x(7), i=1,2, ..., p, denote sparse-in-time sequences of unknown impulses.

Expressions (2.7) and (2.8) can be expressed equivalently in the compact vector-

matrix format,
S()=1tq(1) 2.9)
4(1) = Myq(2) + x(t) ’ |
where
[0 1 0 0 ]
0 0 1 0
0 0 0 1
—_al _az —03 e _apJ

In the general case where m>1, and each S{?) has a linear waveform model as in (2.3), the
corresponding linear state model is
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S(#) = Lq() 2.10)
g()= Mg(t) +x (1)’ '

where

s(H) = m-dimensional uncertain vector input (given in (2.4)) which may
or may not be accessible for direct on-line measurement,

q(t)= d-dimensional “state” vector of the uncertain input S(),
L = m x d constant, real-valued matrix,
M = d x d constant, real-valued matrix, and

d-dimensional vector of time-sparse sequences of unknown
impulses having completely unknown intensities and arrival-
times.

x(t)

Expression (2.10) constitutes the generic continuous-time state-model for the uncertain servo-commands
Y«?) and disturbances w(?) considered in this report.

25.2. AnExample

As an example of describing, and obtaining a state model for, an uncertain waveform-
structured input, consider the case of an uncertain scalar input S(#) composed of a random-like, weighted
linear combination of step, ramp, and exponential modes of time-behavior. Such an input can be
represented as

S(t)=c\l+cyt +ce™™. 2.11)
Comparing (2.11) with (2.3), the basis functions for S(#) in (2.11) are clearly

AH)=1;

hH)=t;

Jf3(t)=e™ ,where o is assumed known.

A simple method for obtaining the differential equation for s(7) over the intervals {At;} is to take the
Laplace transform of (2.1 1), assuming cy, c,, c; are constant, to obtain

s(s)=SL1 8, G =(c3 +¢,)s’ +(c,a+c2)s+c2a= P(s)
s 5 s+a sz(s+a) 0(s)

(2.12)

19




Following the technique used in [40], imagine that S(¢) is the output of a fictitious linear-dynamical
system subject to initial conditions s(0), $(0),5(0), which give rise to the term P(s) in (2.12). This
imaginary linear-dynamical system has the transfer function

G(s)= 525 where O(s)=s’ +as. (2.13)

The input S(£) can now be imagined as satisfying an impulsive forced third-order differential equation of
the form

3 2
d sgt) +al sz(t) = o(), 2.19)
dt dt
where (t) is an uncertain, impulsive-type external forcing function that mathematically accounts for

the sparse-in-time jumping of the c; coefficients in (2.1 1). To determine an appropriate state-variable
model representing the dynamics of (2.11), the third-order differential equation in (2.14) is rewritten
equivalently as the following set of first-order, coupled differential equations having uncertain Dirac
impulse sequences as inputs (as described above 2.8))

Gi(1)=q,(1) +x,(1); g,(1)=s(?)
(D=9;()+x,(1);  g,(1)=5(2) , (2.15)
43()=—ag; (1) +x;(t); q,(t)=5(t)

where the x(t), x,(t), and x,(¢) are unknown, time-sparse sequences of impulses that represent the
equivalent action of &(?) in (2.14). For convenience, (2.15) can be expressed in the compact vector-

matrix format

s(=(1 0 0)g(r); q=(q1, 92 q3)
01 0

an={0 0 1 lg)+x@) , (2.16)
0 0 -

which is equivalent to the general continuous-time state-model in (2.10).

2.6. A Discrete-Time Model for the Generic Linear Dynamical Plant in (2.1)

This research effort is concerned with the digital control of continuous-time physical systems
with physical inputs {u(f), w(f)} and outputs y(7) that are continuous-time variables. In contrast, the
inputs {y(kT), y(kT)} and outputs u(kT) of the digital servo-controller are discrete-time variables
(variables that are measured or changed only at the discrete times ¢ = 1,+kT, k = 0, 1, 2, ...). In order to
effectively design a digital servo-controller (control algorithm for generating u(kT)) for the general class
of plants under consideration, the basic continuous-time plant-model in (2.1) must be converted to an
equivalent discrete-time model. This discrete-time model is a conventional difference equation which
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describes how the values of x(#) and y(¢) evolve for the discrete times t=¢ +kT, k=0, 1, 2, .... The

following development of a discrete-time model for the plant in (2.1) closely follows that presented in
[33]. Recall that the general solution of the continuous-time differential equation in (2.1) can be written
as |

x()=B(1,1,)x(1,) + L ‘@1, 7)Bu()dr + L ‘@1, 1) Fw()dr, ' 2.17)

where ®(1,1,) is the state transition matrix for 4 in (2.1) and is uniquely defined by the matric differential
equation

M: Aq)(t,to) s
dr

with the special initial condition
o(t,,t,)=1,
where listhe nx n identity matrix.

Now, recalling that T is a fixed positive constant, set t—)(to +T ), and then set

1, (t,+kT), in (2.17). As is typical in conventional digital control problems, it is assumed that the
control action u(r) in (2.17) is of the “zero-order-hold” (z.o.h.) type; ie., u(f) remains constant
(u(f) = u(kT) = a constant ) over each sample period, t, +kI'<t<t, +(k+1)T. This fact allows (2.17)

to be written as the following discrete-time state-model (difference equation model) [33]:
x((k+1)T)= Zx(kT)+§u(kT)+ Y((k+DT), (2.18)
where kT is hereafter used as shorthand notation for t,+kT, and

A=O((k+DT,kT)

= eAT

A is assumed constant,

~

(k+1)T
B= I &((k+1)T,7)Bdr
kTT ; B is assumed constant,
_ A(T-7)
= J‘o e dzB

(k+)T
V(k+1)T) = jk T+ ®((k +1)T, 7) Fw(t)dr
r ; F is assumed constant.
= jo eI Fw(z + kT)dr

The discrete-time plant-output relationship corresponding to (2.1 8)is
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W(kT) = Cx(kT). (2.19)

Note that (2.18) relates the “next” value x((k+1)T) of x to the current value x(kT) of x at the
time ¢ = k7. However, the evaluation of ¥((k+1)T) in (2.18) requires knowledge of w(7) over the entire
interval KT<7<(k+1)T. In general, at the time 7 = kT it is impossible to accurately and consistently
predict the time-behavior of the uncertain, unmeasurable disturbances w(t) over the remainder of that

sampling-interval. Therefore to make (2.18) practically useful, it is necessary to further investigate and
approximate the term v((k+1)T). It will now be shown that the term V((k+1)T) in (2.18) can be

simplified by introducing a waveform-model for the time-variations of the uncertain, unmeasurable
disturbances w(7).

Disturbances were defined in Subsection 1.2.2 as uncontrollable inputs which act on a
dynamical system. Unlike the servo-commands, disturbances are usually not directly measurable. For
this research, the disturbances w(f) are assumed to have waveform structure and to have a linear state-

model (2.10) of the form

t)= Hz(¢
1.4’( )= Hz(t) , 2.20)
z(t)= Dz(t)+ o(t)
as developed in Section 2.5 and where

w(?) = p-dimensional vector of independent disturbances (defined in (2.1)),
that are not accessible for direct on-line measurement,

2(9) = p-dimensional state-vector for the disturbance w(1),

H = p X preal-valued, constant matrix,

D = pxp real-valued, constant matrix, and

o) = a p-vector of sparse sequences oyf) of unknown impulses having

completely unknown intensities and arrival-times.

Expression (2.20) represents the general continuous-time state-model for the uncertain,
unmeasurable disturbances considered in this study. Proceeding as in [33], the state model in (2.20) can
now be used to simplify the term ¥((k + 1)T) in (2.18). For this purpose one replaces 7by ¢ in (2.20),

and substitutes the result into ¥((k + DT) in (2.18) to obtain
T
V(k+1D)T) = jo e 9 FHz (1 + kT)dr . (221)

Using (2.20) and methods similar to that used to obtain x() in (2.17), the general solution of
2(7) in (2.21) can be written as
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A7) =Dp( kD)D) + [ @y (z,90(SdE, (222)

where @), represents the state transition matrix for matrix D in (2.20). Substituting (2.22) into (2.21) and
simplifying terms yields the following result [33] (recall that D is a constant matrix)

V(k+1)T)= FHz(kT)+7 (kT), (2.23)
where

FH= IOTeA‘T")FHeD dr ,
and

~ T A(T-v) * D(r-§)

7 (kT) = jo e T FH joe o(&+ kT)dédr .
Consolidating (2.18), (2.19), and (2.23) yields the “exact” discrete-time plant-model

x((k+1)T)= Zx(kT)+ Eu(lcT)+FHz(kT)+7(kT) (2.24)
y=Cx(kT)
which is mathematically equivalent to (2.18), under the assumption (2.20).

A discrete-time model for the time evolution of 2(kT) can be developed by letting
Tt + (k + l)T in (2.22) and recalling that (&+1)T denotes #,+(k+1)T to obtain

2((k+1)T) = Dz(kT) + G(kT), (2.25)

where

DT

W]
0
o

D is assumed constant,

and
G(kT) = joreD(T‘f)a(§+ kT)dE.

Expressions (2.24) and (2.25) can now be combined to form the “exact” composite discrete-
time model
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x«k+nr>)_ i ’ FI [@) (5) (ﬂkr))
(z((k+1)T) "[0 5J 20 o) G

kT
WD) =(C | O)Cng)))

(2.26)

The quantities 7 (kT) and G(kT) in (2.26) are an accumulation, from T to (k+1)T, of the

effects of the completely unknown, unpredictable, and unmeasurable sparse impulses o(#) associated with
the disturbance model (2.20) and which arrive during the “intersample interval” kT <t < (k + I)T

between successive sampling instants [33]. Since the arrival-times and intensities of the of) impulses
are assumed to be completely unknown, there is no rational, scientific way to predict the values of
7(kT) and G(kT). Disregarding the 7(kT) and G (kT) terms will necessarily introduce errors, that
accumulate only from AT to (k+1)7, in the predicted values of x((k+1)T) and z((k+1)T) as determined by
(2.26). To avoid those errors being too significant, it is necessary to invoke the assumption (from
Section 2.5) that the o(r) impulses (denoted as k(#) in Section 2.5) occur only occasionally (sparse-in-
time), with minimum spacing at Az,;, between successive impulses being somewhat larger than the
sampling-period T [33]. That assumption results in the o(kT) and y(kT) terms remaining “quiet”
during most intersample intervals. Consequently, the o(kT) and 7(kT) terms are disregarded

throughout the design process.

2.7. Introduction of a Discrete-Time Evolution Equation for the Servo-Tracking Error

As previously stated, a digital servo-tracking controller #(kT) must achieve closed-loop
stability for the (possibly unstable) plant, and simultaneously quickly achieve and maintain accurate
servo-tracking. The “tracking-error” in (2.2) is the single most important entity for measuring servo-
tracking controller performance. In terms of discrete-time, # = k7, that tracking-error is written as

&,(kT)= y,(kT)— y(kT). (2.27)

The term g(kT) will be hereafter referred to as the discrete-time servo-tracking error. Thus, the task of
the digital servo-tracking controller is to regulate the tracking-error in (2.27) to zero with a prescribed
settling-time and thereafter maintain &(kT) acceptably near zero in the face of all anticipated
uncertainties. That is, the digital controller must achieve

£,(kT)—>0 ; k=0,1,2,.., (2.28)
in a sufficiently small amount of time, and maintain "ay (kT)" ~ 0 thereafter.
It was shown in [37] that a fundamental necessary condition (called the “trackability

condition”) for achievement of theoretically exact MIMO servo-tracking, y(t)=y_(¢),V 1, is that the

vector servo-command input y(¢) consistently lie in the column range-space of the plant output matrix C
in (2.1). This fundamental necessary condition can be expressed as
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v.(2) e‘.R[C] Vot R[e] = column range-space of [e], (2.29)

or equivalently,
rank[C | y, (t)]s rank[C] V¢. (2.30)

We hereafter assume that (2.29) and (2.30) are satisfied for the y.(f) being considered. It is remarked that
if (2.29) and (2.30) are not satisfied the command Y«?) is “improper” for the plant in (2.1), in the sense
that, even under ideal conditions, it is physically and mathematically impossible for the plant output y(7)
to consistently equal y(¢), for all 7.

To proceed with the development of the new digital servo-controller design methodology, it is
first necessary to develop a state-model representation of the time-behavior of the uncertain servo-
commands y(f). The elements y.(f) of the servo-command vector ¥.(?) are assumed to be uncertain time-
varying inputs which have “waveform structure” and have a corresponding linear state-model of the form

y.(t) = Ge(t) (231)
é(t) = Ec(t)+ u(t) '

as discussed in Section 2.5 and where

2 0) = m-vector of independent servo-commands (defined in Section 2.3)
accessible for measurement only in discrete real-time,

c(t) =  v-dimensional state-vector for the servo-command y{o),

G =  mXvconstant, real-valued matrix,

E =  VXvconstant, real-valued matrix, and

1703} = av-vector of sparse-in-time sequences of unknown, unmeasurable
impulses u{(f) having completely unknown intensities and arrival-
times.

Expression (2.31) constitutes the generic continuous-time state-model for the uncertain servo-commands
to be considered in this report.

Substituting (2.31) into (2.29) yields the expression
Ge(t) eR[C] V. (2.32)

Recall from Section 2.5 and (2.31) that the “state” c(?) of the servo-command is a completely arbitrary v-
vector; therefore the necessary and sufficient condition for achieving exact servo-tracking (&,(1)=0 for

some x(?)) is equivalent to requiring that [37],
R[G]c R[C], (2.33)

in the state-model (2.31).
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Satisfaction of condition (2.33) implies that it is possible to express each column of the
matrix G as some linear combination of the columns of C. That is,

G=C6 R (2.34)

for some (possibly nonunique) matrix 6. The factorization in (2.34) assures that at each 7 it is
mathematically possible to have

&,()=y.(1)-Cx()=0, (2.35)

for some x(f). However, it is further necessary to invoke the complete controllability condition to assure
that the required x(7) in (2.35) can be attained by an admissible control input «(?), in general.

To develop the discrete-time evolution equation for g(kT) in (2.27), it is necessary to convert
the continuous-time servo-command model in (2.31) to an equivalent discrete-time model. A discrete-
time model for the time-evolution of the servo-command state c(kT) can be developed by a method
similar to that used in Section 2.6 to obtain (2.25). In that way, the final form of the discrete-time state
model for the uncertain servo-command, having dynamics modeled by (2.31), is

yc(kT)=Gc(kT) . {C=(Cl,02,"',c‘,) (2 36)
c((k+1)T)= Ec(kT)+ f(kT) H=, e p,) '
where
E=eT
and

D = [ "7z + kD

The quantity #(kT) in (2.36) is a v-vector of completely unknown, unpredictable, and

unmeasurable “residual-effects” caused by the arrival of uncertain /) impulses (2.31) during the
interval between the sampling instants &7 <t <(k+1)T. Since the arrival-times and intensities of the

/A?) impulses are completely unknown, there is no rational, scientific way to predict the value of H(kT).
Therefore for the reasons discussed below (2.26), and as advocated in [33], the H(kT) term will be
ignored throughout the design process.

Substituting (2.19), (2.36), and (2.34) into (2.27) yields

&,(kT) = Ge(kT) - Cx(kT)

= C(Oc(kT) - x(kT)) (2.37)

where c(kT) is the state of the servo-command Y(t) at the discrete time ¢ = kT, k =0,1,2,..,as
indicated in (2.36).
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In [37], Johnson developed a novel method for studying and controlling the time-evolution of
the servo-tracking error ¢, by introducing what he called the “servo-state” vector e,(?) associated with the
servo-tracking problem. For purposes of the present study the servo-state vector e, introduced in [37]is
expressed (in discrete-time) as '

A
e, (kT) = Oc(kT) — x(kT). (2.38)

Thus, e(kT) is an n-dimensional vector representing the difference between the n-vector 6c(kT) and the
plant state x(k7). Using (2.38) to express the servo-tracking error &(k7) in (2.37) turns out to be a key
idea in the development of an all-algebraic servo-tracking design technique. In particular, using (2.38),
expression (2.37) can be written as

£,(kT) = Ce (KT). (2.39)

It is clear from (2.39) that the servo-tracking error will be zero at each of the sample times ¢ =
kT, k=0, 1, 2, ..., if, and only if, the motions of the vector es(kT) remain confined to the null-space of
C. The discrete-time servo-tracking control task can now be viewed (ideally) as the design of an
algorithm for the digital control u(kT) such that the servo-state vector e(kT) rapidly approaches, and
thereafter stays within, the nullspace of C, or equivalently, Ce, (kT)— 0. Therefore, the digital servo-
controller design task is reduced to a discrete-time linear subspace stabilization problem for the servo-
state vector e(kT). The linear subspace stabilization problem, introduced in [76], is a generalization of
the conventional null-point stabilization problem where the null-point is generalized to an (n-m)-
dimensional null-space.

The discrete-time evolution equation for e«(kT) is determined by forward shifting (2.3 8) once
as follows:

e (k+D)T)=Oc((k +1)T) - x((k + 1)T). (2.40)
Substituting (2.24) and (2.36) into (2.40) yields
e ((k+1)T) = BEC(KT) + BE(KT) - Ax(kT) - Bu(kT) - F~Hz(kT) -7 (kT), (2.41)

and incorporating (2.38) into (2.41) yields

e ((k +1)T) = Ae,, (k1) - Bu(kT) + (6F - A6)e(kT) - FH (k)
+ 6 (kT - 7 (kT)

(2.42)

For reasons discussed below (2.26) and (2.36), the terms  Z(kT) and 7 (kT) in (2.42) have
been disregarded. Ignoring those terms allows one to re-write (2.42) in the truncated form

eu((k+ 1)T) = de, (k1) - BukT) + (6 £ - A6)o(kT) - FHkT), @2.43)

where the notation e, indicates that the effect of the terms zZ(kT) and 7 (kT) have been ignored.
Accordingly, (2.39) is re-written as
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Z,(kT) = Ce,, (kT). (2.44)

2.8. Information Aspects of the &, (kT) Subspace Stabilization Problem

With respect to (2.43) and (2.44) the task of the digital servo-tracking controller is (ideally) to
quickly regulate the servo-state vector &,(kT) in (2.43) to the null-space of the matrix C (e.g.,

e (kT )—)N[C], where, hereafter, N[O] indicates the null-space of [0]) and maintain e (k7) eN[C]

thereafter. However, the structure of the matrices 4, B, C, FH ,and E might not permit e  (kT) to
be made invariant with respect to the entire N[C] for arbitrary disturbances w(f) and servo-commands
Y{#). Consequently, in the most general case, the servo-control designer must strive to control &, (kT)
to some subspace S, ;N[C] , V=0, 1, 2, ..., n—m, where V indicates the dimension of the subspace S.

That is, one should seek a matrix C and design u(k7) to achieve

2, (kT)> S, =N[E]g>¢[c]; k=0,1,2,.. , (2.45)

where C isan (n—- V) x n partitioned matrix of the form
C= [Q] , (2.46)

and where P is any (n-m-V) x n matrix such that

rank[Cl=n-v, (since it is assumed that rank[C] = m, it follows that
rank[Pl=n-m-v)

and
N[f] cNC].

The columns of C so defined form a basis for the “orthogonal complement” of Sy. To study the
dynamics of e (kT) relative to Sy it suffices to study Ce (KT) (compare to (2.45)). Therefore, it is
desirable to find the subspace S, cN[C] of largest dimension Vv (largest “landing zone” for e, (kT))
such that €, (kT) can be stabilized to and thereafter remain within the subspace Sy as illustrated in

Figure 2.5. This latter problem can be stated in terms of the subspace stability concepts introduced in
[74] and used in [37]. That is, u(kT) should be designed such that some linear subspace

S, = N[f ] cNC] is converted into a uniformly asymptotically-stable invariant-subspace for the closed-

loop system (2.43) and such that the motions of e, (kT), within the subspace Sy, remain bounded for all

bounded servo-command state motions c(kT) and disturbance state motions z(kT). The choice of P in
(2.46) will be explained later in Subsection 2.11.7.
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subspace Sve X [C]

Figure 2.5 Stabilization of 2 to Some Linear Subspace S, c NC].

Certain technical conditions must be met in order for there to exist a u(k7) that can make
€ (kT) quickly and accurately approach a given subspace S, g?{C] and become invariant to Sy in the

face of arbitrary, uncertain behaviors of c(kT) and z(kT). These conditions govern the design of the
digital servo-tracking controller u(kT) and will be discussed individually as their need arises in the design
procedure developed in the following sections.

2.9. Decomposition of the Digital Servo-Tracking Control-Effort

To develop a digital control law (algorithm for generating u(kT)), the standard control-effort
decomposition as used in DAC theory [40,71,72] will be invoked. This technique consists of splitting the
total (vector) control-effort u(kT) into a sum of individual (vector) terms as follows:

u(kT) =u, (kT) + u, (kT), (2.47)
where each term in (2.47) is assigned a specific task.

Collectively, the control terms in (2.47) are responsible for achieving closed-loop stability,
and regulating &_(kT) to a subspace S, gN[C] , thereby controlling the servo-tracking error g(k7) to
zero. The control term u_ (kT) is responsible for counteracting the effects of the disturbances w(f) and
the “disturbance-like” effects of the servo-commands y.(¢) on the servo-tracking error in (2.44). The term
u,(kT) is responsible for stabilizing the servo-state vector €, (kT) to a designated subspace S, ¢ N[C] .
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while achieving an acceptable closed-loop settling-time for the servo-tracking error &, assuming u,,(kT)
is performing its task. Substituting (2.47) into (2.43), and re-grouping terms, yields

e, ((k +1)T) = 4¢, (kT) - Bu,(kT) + ((05 — AG)c(kT) - F;Iz(kT) ~ Bu,, (kT)) . (2.48)

From consideration of (2.48) and (2.45) it is clear that the individual tasks of Uy and u, can be
expressed mathematically as two conditions which must be satisfied simultaneously. The condition

associated with u  (kT) is
5[(01? -4 B)c(kT) ~ F~Hz(kT) - Bu,, (m] =0; VY c(kT) and z(kT), (2.49)

which can be written as
=l ~ ~ =~ ec(kT)) ~
_ - Ak B = . 5
C {[GE A6 l FHJ(z(kT)] Bu,, (kT)} 0 (2.50)

Since y/(f) and w(f) almost always originate from completely different (and uncorrelated) sources, in
general, the necessary and sufficient condition for existence of a us(kT) satisfying (2.50), for all c(kT)

and z(kT), is

rank[é 6 —-CA6 l CFH l EE] = rank[EE] , (2.51)
which is equivalent to the two simultaneous conditions

rank[c_* 6E -CA6 | 61?] = rank[c“*ﬁ], (2.52)
and

rank[c‘* FH l a‘a‘J = rank[EE] . (2.53)

The decomposition in (2.52) and (2.53) suggests that the control term u,. in (2.48) can be
further split into two terms as follows

Uee (KT) = u (KT) + u (kT), - (259)
allowing (2.47) to be rewritten as

u(kT) = u (kT) + u, (kT) + u,(kT) . (2.55)
In (2.55), uy(kT) is responsible for counteracting the “disturbance-like” effects of the servo-commands

Y(#) and u(kT) is responsible for counteracting the effects of the disturbances w(?) as they appear in
(2.48). Mathematically, the tasks of uy(kT) and u(kT) are to achieve the identities
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E[fyz(m + Bu, (kT)JE 0; Vz(kT),  k=0,1,2,.. (2.56)

and
E[(BE ~ A6)e(kT) - Eus(kT)] =0; Vc(kT), k=0,1,2,.. . (2.57)

The necessary and sufficient conditions for existence of a u,(kT) satisfying (2.57) and a u(k7) satisfying
(2.56) for all c(kT) and z(kT) are given in (2.52) and (2.53), respectively.

The task of u,(kT) is to ensure that all solutions &, (kT) of
&y ((k + )T) = 42,,(KT) - Bu, (KT), (2.58)

are asymptotically-stable to a designated subspace S, c NC].

It is remarked that, in special cases, it may be possible to satisfy (2.49) even though (2.51) or
(2.52) and (2.53) fail to be satisfied. For instance, under the very special case where it naturally turns out

that C| (6E - 4 Ac(kT) - FH z(kT)] =0, it suffices to choose u,.(kT) =0 in (2.49), in which case 2.51)
is not necessary. However, such special cases are highly unlikely in practice.

In the next section, the design procedure for #(k7) will be developed for the “ideal case” in
which the availability of accurate “sampled” on-line, real-time measurements of the states x(kT), z(kT),
and c(kT) are assumed. In practice, this is not a realistic assumption, because the disturbances w(r) are
completely unmeasurable and moreover the states 2(kT) and c(kT) are related to unmeasurable physical
attributes of the usually uncorrelated disturbance and servo-command functions, respectively. Therefore,
a physically-realizable approximation of the “ideal solution” will be presented in Subsections 2.13.2 and
2.13.3 at the completion of the idealized design procedure for u(kT).

2.10. Conditions for Complete Cancellation of Disturbance-Like Terms in the Servo-Tracking
Error Discrete-Time Evolution Equation

To accomplish the goal of making €, (kT) in (2.48) remain invariant with respect to some
subspace S|, gN[C] , it is necessary that the digital-control terms u(kT) and uy(kT) in (2.54) be designed

such that the disturbance-like terms in (2.48) have no affect on the behavior of the tracking-error g(kT).
However, recall that the behavior of the external disturbance w(¢) and the servo-command yAt) is
uncertain and time-varying. The disturbance w(?) acts continuously on the plant (and consequently on the
tracking-error) and the servo-command Y1) continuously affects the servo-tracking error (refer to (2.1)
and (2.2)). In addition, recall that the conventional digital-controller maintains a constant control-action
between consecutive sampling times (KT, (k+1)T). Also recall that the servo-state vector e in (2.42) is
subjected to the totally unknown, sparse-in-time random-like impulses o(t)and A1) (disregarded for

design purposes, but present in application) inherent in the time-behavior of the external disturbance w(f)
and servo-command y(7), respectively, and that those impulses cause the 7(kT) and fi(kT) terms in
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(2.42) to impose a limit on the degree of “disturbance” cancellation that can be obtained. This makes it
technically impossible for the stepwise-constant digital control-action u(kT) to completely cancel the
effects of a non-constant disturbance w(f) and/or a non-constant servo-command y«(¥) on the continuous-
time behavior of g(), for all time AT <t<(k+1)T. Therefore, the prudent alternative introduced in

discrete-time DAC theory [33] is to define “complete disturbance-cancellation in discrete-time” as
(ideally) total cancellation of the effects of the disturbance-related terms (GE -4 0)c(kT) — FH z(kT)

on the motion of g(7), as they appear at the isolated sample-times ¢ =7, k = 0, 1, 2, ... . Thus,
following this line of reasoning, the task is to design the control terms u.(k7) and u(kT) in (2.54) to
achieve complete disturbance-cancellation of w(f) and the disturbance-like effects caused by y(?) as they

affect the behavior of the servo-tracking error in (2.44).

It is clear from (2.43) and (2.44) that complete disturbance-cancellation on the servo-tracking
error Ey (kT) can be achieved at each sample time t = kT, k=0, 1, 2, ..., if, and only if, all motions of

€,(kT), that can be affected by the disturbance w(s) and the disturbance-like effects of the servo-
command y(?), are confined to the subspace S, =N[E]QN[C]. For convenience, the term C is carried

symbolically throughout the computations in this section. A procedure for choosing Sv, computing C
and designing u. and u; for that particular C is presented in the next section. Recall from below 2.57)
that the control terms u(k7) and u,(kT) satisfying (2.56) and (2.57) exist if, and only if conditions (2.53)
and (2.52) are satisfied. Those expressions imply that

c{’g‘f; + I':H:, =0, (2.59)
and

6[9]5‘-20—1”;&]:0 (2.60)
for some r x p matrix fc ,some rX v matrix I .» and the chosen C .

If the conditions (2.59) and (2.60) are achieved, the control terms u,(kT) and u,(kT) (satisfying
(2.56) and (2.57)) may be chosen ideally as

u, (kT) =T z(kT), (2.61)
and |

u, (kT) =T c(kT). (2.62)
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2.11. Design of u(kT) to Stabilize the Servo-State €s(kT) to a Subspace S, gN[C] While
Achieving an Acceptable Closed-Loop Settling-Time

The structure of the idealized servo-tracking control terms u(kT) and u(kT) was given in
(2.61) and (2.62). The structure of the idealized servo-tracking control term u,(kT) in (2.47) will be
postulated in the linear state-feedback form:

u,(KT)=-K 2, (kT)
(2.63)

=—K,, (Bc(kT) - x(kT))

where K » 1S an r X n constant gain-matrix that is to be designed to achieve Ce_ (kT)— 0, where
[%(T)| must remain bounded for all bounded servo-command and disturbance state motions (c(k7) and
z(kT)). A procedure for designing such a X p consists of first substituting (2.61), (2.62), and (2.63) into
(2.55) and then into (2.43) to obtain

g, (k+)T)= (Z +BK, )ESS(kT) - §z(kT) + ye(kT), (2.64)

where, by design, the terms B = EI:C +FH and ,%= QE - 46- BT s must satisfy (2.59) and (2.60) for
the chosen C , and consequently have no effect on the time-evolution of the servo-tracking error g(r) at
each discrete sample-time ¢ = kT, k=0,1,2, ...

-Recall that the servo-tracking task is to quickly control the servo-state vector e, in(2.64)toa
subspace S, =NC] having largest dimension v (e.g., €,(kT)> S, =N[5]QN[C] ), and keep it there
for each subsequent time 7= kT, k= 0,1,2,---. Several different approaches to the design of the gain
matrices K s F,,and T s in (2.64) can be considered that will accomplish this task. For example, if the

null-point stabilization condition €, (kT)—> 0c S, is achievable, X should be designed to place the

P

eigenvalues of (Z +BK p) at sufficiently-damped locations inside the unit circle and fc and ﬁ in (2.59)
and (2.60) should be designed to achieve [Ei‘c + fHJE 0 and [95—2 e—Ei] =0. This null-point

stabilization approach for designing the matrices K s I~"0, and fs regulates &, (kT) to the null state
e, =0, which is a “point” that always lies in the null-space of the matrix C (and also C) (e.g.,
OeN[E]gN[C]) and hence is more restrictive than regulating 2, (kT)— S, = 5] of largest

dimension. A procedure for performing the more general subspace stabilization task will be presented in
the next section.
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2.11.1. Transforming the Servo-State Vector Stabilization Problem to a New
Coordinate System

A general mathematical theory for the stabilization of continuous-time linear
dynamical systems to arbitrary linear subspaces was developed in [76). That theory was applied in [37]
to asymptotically control the continuous-time servo-state vector z,(t) to N[C], and in [70], to some

subspace S, N[C]. In this section the results and techniques in [37,70,76] will be adapted to our
digital servo-control problem of designing X, fc ,and T, in (2.64) so that some subspace S, cN[C]
will become an asymptotically-stable invariant-subspace for all solutions z,,(kT)of (2.64). The T . and
r . and the collection of all K, which allow all solutions of (2.64) to be stabilized to, and become
invariant for, some S, N[C] can be determined by the following method.

Recall from (2.1) that C is an m x n matrix which is assumed to have maximal rank
m. Therefore, it is always possible to select an »n x (n-m) matrix M having maximal rank (n-m) that
satisfiess CM= 0. Furthermore, the columns of M will form a basis for N[C]. Consequently, any vector

in ¥JC] can be written as a unique linear combination of the column vectors of M.

Let R be any (n-m) x v matrix such that V<(n-m) and rank[R] = v. Then the
product MR will be an 7 x v matrix (rank[MR] = v) having column vectors which necessarily span some
subspace S, cN[C]. That is,

S, =2R[Aﬂ€]=N[E]gN[C]; v=0,1,2, .., n-m. (2.65)

By varying the choices of the elements of R, and also varying the number v of
columns of R, one can isolate and designate any subspace S, eN[C], [37]. A systematic procedure for
identifying every subspace S, eN[C], v=0, 1, 2, ..., n—m, will be presented in Subsection 2.11.7.
Hereafter, the chosen subspace Sy will be generically defined as that subspace which is generated by the
columns of MR and denoted by S, = R[MR]. It follows from (2.65) that CMR =0, which is written

equivalently as (incorporating (2.46))

- C CM 0
CMR= [;}\m = ,:ﬁ}R = ,:ITA}]R =0. (2.66)

The choice_s of the elements of R in (2.65) will determine the choice of P in (2.46) and consequently the
choice of C in (2.46).

Assume that C has been so chosen and, proceeding as in [76], consider the invertible
linear transformation

s =[C*| MR)&s, (2.67)
where C* is the right inverse of C , defined as

Cc*= ET(EET)'I (such that CC* =1). (2.68)
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The inverse transformation associated with (2.67)is [76]

é‘s = ( éﬂ) . {(Tg)—#:,gss N : (2.69)

where (MR)" is the left inverse of (MR) given by (MR has maximal rank V)

(MR)* =(MR)" MR)™ (MR)"  (such that (Me)” MR=1). (2.70)

2.11.2. The Discrete-Time Evolution Equation for &, (kT)

It follows from (2.69) that the condition s €S, =N[C*‘];N[C] is realized if, and

only if £, =Ce, =0. Therefore, in order to stabilize €, (kT) to a subspace Sy we must regulate
S (KT)—> 0 and ideally maintain £, (kT)=0 for all subsequent ¢ = kT, k=0, 1, 2, .... To do this
requires examination of the evolution equation governing £ (kT), which is computed from (2.69) as
follows

C L
Ss((k+DT) = [(_m)—#]ess((k +1T). 2.71)

Substituting (2.64) into (2.71) yields

C |~ zz.
Su((k+ D)= [ R J(A +BK )z, (kT) + [

( A;)# }[féc(m—ﬁz(kn], 2.72)

where 7=6E - 46- BT, and B= BT, + FH. Substituting (2.67) into (2.72), and rearranging terms,
results in the vector-matrix difference equation

(fm ((k + l)n)

_|_C@A+BR,)C* | C(d+ BE)MR ¢, (mJ
éssZ ((k + I)T)

'[(MR)“(Z +BK,)C* | (MR)* (4 + EE,,)MJ(ém (KT)

. 2.73)
L CF | -TB (c(kT))
(MR)* ¥ | - (MR)" B |\2(kT)
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2.11.3. Conditions for Regulating &_(kT) > S,

In order to stabilize &, (kT) to zero, and consequently regulate &, (kT) to the
subspace S, =N[C], matrices K s Iy ,and T » must exist such that the following conditions are met for

the chosen C (refer to (2.73)):

a) C(4+BK,)MR=0; (2.74)
b) Cz=0 (same as (2.60)),

or equivalently,

R[71=NC];
c) CB=0 (same as (2.59)),

or equivalently,

RBICNCT] ;
and

d) all solutions E s1(KT) of the reduced system

S

Ea((k+DT)=C(4+ BR )T*E, (kT) , (2.75)

must be asymptotically stable to the null-point Eﬂ, (kT)=0.

Conditions a), b), and c) are the necessary and sufficient conditions to make the subspace Sy invariant to
&1 (KT) with respect to all initial values of £, €S, and all uncertain and unpredictable time-behavior

of the disturbance and servo-command states, z(kT) and c(kT), respectively. Expression (2.75) in
condition d) is the homogeneous difference equation for &ss1» and, together with conditions a), b), and c),

condition d) is necessary and sufficient for $s1(kT) =0 to be an asymptotically-stable solution of (2.73).
Condition a) in (2.74) can be stated equivalently as [76]:
i) (4+BK,)MR= MR= (2.76)
for some matrix = ; or
ii) C(4+BK,)=QC, (2.77)

for some Q.
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If conditions a), b), and c) are satisfied, then (2.76) and (2.77) can be used to write (2.73) in the
simplified form

( Eun(k+ l)T)J ) Q _ Jo ( £ (kT))
£k +1)T)) | (MR)'(4+ BR,)C* | E\£,GT)
(2.78)

0 | o0 J(c(kT))
+ = Z)—
(MR)'% | (MR) B \ (kT
In view of (2.78), the problem of stabilizing &, —> S, =N[E]=‘R[Aﬂ€] can be

restated as finding the matrices I~“s and T . such that conditions b) and c) are satisfied and finding the set
K of all matrices K » Which satisfy (2.74) for the chosen C and, when that set is found, determine

which, if any, K, K exist such that condition d) is satisfied

2.11.4. Identification of the Set X of all Stabilizing Gain-Matrices &,

Proceeding as in [76], the existence of a K p satisfying (2.74), and subsequently the
set K ofall such K p» can be determined by first noticing that (2.74) can be written as

~CAMR=CBA, where A= K,MR. (2.79)
Then, the necessary and sufficient condition for existence of a A satisfying (2.79) is that

R[CAMR)c R[CB], (2.80)
or equivalently,

rank[EE | EZMe] = rank[CB]. (2.81)

Note that (2.80) further restricts the choice of R, (originally defined in the text above
(2.72)) and consequently the choice of C. It follows that there exists a matrix X p» Satisfying

A=K »MR and (2.74), if, and only if (2.80) (equivalently (2.81)) is satisfied. In that case, the non-
unique solutions to (2.79) can be obtained by using the well-known expression for the general solution
h=P*c+ (I - P*P)g (g is an arbitrary vector) of the linear algebraic equation Ph=c when ¢ eR[P].

That is, the set of solutions to (2.79) consists of the A defined by
A=—(CB)*TAMR +[1 - (CB)* CB)Z, (2.82)

where
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Z isan arbitrary r X (n-m) constant matrix to be determined,
I is the identity matrix, and

(Eﬁ)+ indicates the Moore-Penrose pseudo inverse [75] of CB .

Following the development in [76], the set K of all X , satisfying (2.74) can be
computed directly from (2.79) and (2.82) by again using the results in [75] (since rank[MR]= v,
(MR)+ = (Aﬂ{)# , Where (Aﬂiy is the Moore-Penrose pseudo inverse of MR).

ﬁ={1’2,, | R, =—(CB)* CAMR(MR)" +[1-(CB)* CBIZ(MR)* + ’L‘E}, (2.83)

where I is an 7 x (n-V) constant matrix to be determined. To verify (2.83), substitute the K » in (2.83)
into A=K »MR from (2.79) and use the relationships in (2.66) and (2.70) to obtain the relationship

A=K, MR
= —(CB)CAMR(MR)" MR + [I -(cB) GE]Z(MR)" MR+ LCMR ,

= (CB)' TAMR + [1 ~(cB)’ 65]7

which is the same as (2.82).

2.11.5. Identification of all I?p eK that Satisfy Condition d) Associated With (2.75)

Now that the set K of all K p satisfying (2.74) has been found, it remains to identify

the subset consisting of those I?p eX which also satisfy condition d) associated with (2.75). For this

purpose substitute (2.83) into (2.73), and use the relationships in (2.66), (2.68), and (2.70) to obtain the
vector-matrix difference equation

(:m «k+1m) { 4+B1I 0 ( £ (m)
S ((k+DT)) | (MR)*(4+BLC)C* | 4, + B,Z \ &, (kT)
, (2.84)

i | -a‘&'ﬁ' c(m)
(MR)* ¥ | - (MR)* B |\2(KT)

where
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4, =CAC?,
4, =(MR)*(4 - B(CB)*'CTA)MR,
B =CB,
and
B, =(MR)* B[1-(CB)* CB].

The conditions a), b), c), and d) above (2.75), necessary and sufficient for e_ (kT) to
be asymptotically stabilized to S, = %[ MR| for some R (some C ), can now be restated equivalently as
(refer to (2.84))

a) R[CAMRIC R[CB] (from (2.80));

b") there exists a fs such that (2.60) is satisfied. The necessary and

sufficient condition for existence of a I~'s satisfying (2.60) is given
in (2.52);

¢') there exists a T . such that (2.59) is satisfied. The necessary and
sufficient condition for existence of a I~“c satisfying (2.59) is
given in (2.53);

and

d’) there exists an r x (n-v) constant matrix L such that solutions to
the following homogeneous difference equation are uniformly and
asymptotically stable to the null-point Ea(kT)=0:

S+ 1)) =[4, + BI £ 7). (2.85)

If condition a’) (expression (2.80)) is met then K » may be chosen such that (2.74) is
achieved. The set K of all X p satisfying (2.74) is given in (2.83). If conditions b’) and c’) are met then
a IN“S and T ¢ » may be chosen to satisfy (2.60) and (2.59), respectively. Finally, (2.85) in condition d)is
the homogeneous difference equation for £, with K » from (2.83) substituted into (2.75). In view of

conditions a’), b’), and ¢'), condition d’) is necessary and sufficient for £ (kT)=0 to be an
asymptotically-stable solution of (2.84).

The standard procedure called pole placement [3,20,21,46,47,77] can be used to
obtain the null-point stabilization requirement in condition d'). In that way, L is selected such that the

eigenvalues of [ZI +§,Z] are at sufficiently-damped locations inside the unit circle. Due to the

39




nonsingularity of the linear transformation in (2.67) the eigenvalues of [21 + E,Z] (together with those of

[Zz + Ez’z“] in (2.84)) are also eigenvalues of [Z + Ei&p] in (2.64).

The existence of a suitable L that will stabilize & (KT) to zero is determined by
examining the controllability matrix corresponding to the homogeneous system in (2.85). If the
controllability matrix has maximum rank,

rank[E, | 4,8, | 428, | - | Z,(’""")E]:n—v i (2.86)

then, and only then, there exists a constant feedback matrix L such that the eigenvalues of [Z, +l~3IZ]

can be arbitrarily assigned [46] subject to conjugacy of complex eigenvalues. If the rank condition in
(2.86) is not satisfied, there may still exist a suitable L that will stabilize ¢ (kT) > 0. In particular, if
the rank of (2.86) is less than maximum then the system defined by (2.85) can be separated into

corresponding completely controllable and totally uncontrollable subsystems [78]. A suitable L will
then exist if and only if all the natural eigenvalues associated with the totally uncontrollable subsystem

are inside the unit circle ( ll,.l <1). This necessary and sufficient condition for the existence of L in a

system that is not completely controllable can be stated for the discrete-time case by adapting a
continuous-time result in [76,78] to obtain the following.

Let R be any (#-V) x (n-v-p) matrix such that the columns of R form a basis for the
null-space of the (n-v) x r(n-v) matrix:

[~1 , 2151 l 21251 ' ' Zl(n—v_l)gl]' (2-87)

Then a matrix L satisfying condition d') associated with (2.85) exists if, and only if; all roots A; of the
polynomial det(AI-(R'R)"'RT4R)=0 satisfy |Al<1, i =1, 2, .., n-v-p (all eigenvalues of

(HTR)'IRT;IIR are located inside the unit circle). Here, the matrix (R TR)"RTZIR characterizes
the dynamics of the totally uncontrollable subsystem of the system in (2.85).

2.11.6. Conditions for Maintaining Bounded Motions of €, (kT) Within Sy

Conditions (2.80), (2.53), and (2.52) are the necessary and sufficient conditions for
the existence of K p» L., and T that, for a given R, will stabilize e,(kT) to the subspace

S, =R MR]= N[f ] =¥ C]. However, it remains to determine the equations and conditions necessary to

satisfactorily maintain bounded motions of &, (kT) within the subspace Sv. The differential equation
describing the continuous-time evolution of the motions €,(1) €S, was derived in [76]. Assuming the

conditions in a"), b'), ¢'), and d’) above (2.85) are met, the discrete-time counterpart of that evolution
equation is obtained from ((2.84) as (recall that condition d’) associated with (2.85) controls & (kT) to

zero)
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- ~ s s ~ (c(k
bR+ DD =[ 4, + BZ]E,, (k1) + B, u kg) : (2.88)

where 22 and Ez are defined in (2.84),
~ # 2 <
B, =(MR) [1 | —B:’,

c(kT )) is assumed to be uniformly bounded for all
z(kT),

and the norm of the uncertain vector (
k=0,1,2, ...

The r x (n-m) matrix Z in (2.88) should be chosen as any matrix for which all
solutions to (2.88) remain bounded [14]. Thatis, forall k=0, 1, 2, ...,

Essz (fCT)" < M, < (for some positive M;).

This latter condition will in turn assure that |e (&T)| remains bounded as k—>w . A necessary and
sufficient condition for the existence of an appropriate Z such that all solutions &0 (KT) of (2.88)

remain bounded is similar to that given for the existence of a suitable I in (2.85). That is, if the
controllability matrix corresponding to the homogeneous portion of the system in (2.88) has maximum

rank,

rank[Ez , 2252 I Zzzﬁz l l Zz(v—‘)ﬁz]'—'V, (2.89)

then, and only then, there exists a constant feedback matrix Z such that the eigenvalues of [Zz + Ezf

can be arbitrarily assigned [46) subject to conjugacy of complex eigenvalues. If the rank condition in
(2.89) is not satisfied, there may still exist an appropriate Z such that all solutions &eo (KT) to (2.88)

remain bounded. In particular, if the rank of (2.97) is less than maximum then the system defined by
(2.88) can be decomposed into corresponding completely controllable and totally uncontrollable

subsystems as explained in [78]. An appropriate Z can be found if, and only if all of the eigenvalues
associated with the totally uncontroliable subsystem of (2.88) are inside the unit circle (|2.,.| <l1) A

method for determining and representing the completely controllable and totally uncontrollable
subsystems associated with (2.88) was given in [76,78]. Using that method, one can let P be any
V x (V - q) matrix such that the columns of P form a basis for the null-space of

(B | 48, | B3, | | 45, (2.90)

Then a matrix Z such that all solutions of (2.88) become bounded exists if, and only if, all roots 4, of the
polynomial det(Al - (P"P)"'P"4,P)=0 satisfy Al<1, i=1,2, .., (v-g), ll eigenvalues of

(P"P)"'PT4,P are located inside the unit circle). Here, the matrix (P"P)™'P”Z,P characterizes the
dynamics of the totally uncontrollable subsystem of the system in (2.88).
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Notice that if [CB| has maximal rank r, then B, =(Aﬂe)“§[1—(6§)+6§]=0

(refer to (2.84)), and the solution to (2.88) then becomes completely independent of the matrix Z [76].
That is, (2.88) becomes

- ~— ~ (c(kT
Ss2 (K +1D)T) = 4,5, (kT)+ 33(277’;) : (2.91)

In this special case, the motions of Zﬂz (kT) in (2.91) will depend on the initial condition &_,(¢,), the

matrix 22 , and the behavior of the servo-command and disturbance states, c(kT) and z(kT), respectively.

2.11.7. Systematic Procedure for Identifying the Candidate Subspaces S, < ¥C]

Recall from the text above (2.65) that the n x (n-m) maximal rank matrix M and the
(n-m) x v matrix R are required to satisfy

CM=0, (the columns of M form a basis for N[C]) : (2.92)

rank[M]=n-m, (2.93)
and

rank[R]=V<n-m. (2.94)

Depending on the choice of R, the columns of the matrix product MR form a basis for
some V-dimensional (v =0, 1, 2, ..., n-m) subspace S, =N[5 ] =®[MR]=NC]. The procedure given in
this section allows one to systematically represent all R that can be used in conjunction with MR to
generate all v-dimensional subspaces S, = %[ MR]. The procedure for identifying candidate R matrices
and using those matrices to perform the subspace stabilization technique is as follows. The control
designer begins with an R of largest dimension (v = n-m) such that S, = R[ MR] =N[C] , forms a P, and
subsequently a matrix C, according to (2.46) and (2.66) (C =C when v = n-m), and then tests R for

satisfaction of the four conditions above (2.85) and the one condition associated with (2.88). If those five
conditions are met, then the specific V = n-m dimensional subspace S,.» is “suitable” in the sense that

there then exists three matrices K - fc, and IN“s, which may be chosen such that the closed-loop motions
of &,(kT) in (2.64) are asymptotically stabilized to S, =S, =¥C] and the subspace S,., becomes

invariant with respect to the closed-loop motions of €, (kT). If not all of the five referenced conditions

are met, the associated S,,.,, is not suitable, and the designer must then proceed to the next step which is to
test all R having dimension V = n-m-1, and so on, until the subspace S = Sy of largest dimension is found
that is “suitable.”

To illustrate how one can represent all R of a given dimension v, let @ = PM in (2.66)
and let f= (3, f,, ..., B..m) be any general solution vector for the homogeneous system
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a Q, e @y (n-m) B 0

PMB=af=| ' e e | A0 o)

Cin-m)1  Cn-mv)2 """ Cpemvy(n-m) \NBrom 0

having (n-m-v) equations and (n-m) unknowns £, i=1, 2, ..., n—m, and where O has maximal rank
n - m - V. From examination of (2.66) (PMR = 0) and (2.95) (PMp = 0), it is clear that S ‘.R[R]. Now

define ¥ as the subspace spanned by the set of all 3 satisfying (2.95) for a particular matrix O.. Then let
(n—-m)!
Vi(ln—m-v)!
vectors 7y, 7y, ..., v (r; € the set of all f satisfying (2.95)) will form a basis for a subspace W if every
solution vector /€W can be expressed uniquely as a linear combination of 71, 72, ...y v . The number v

R, =[rl [y |- |"v]’ v=0,1,2,...,n-m, j=1,2, ..., where the nonzero solution

—m)!
of the basis vectors 7; is equal to the dimension of the subspace W. The number ;'(ﬂi);& is the
nm—-—m- :

number of unique V-combinations of an (n - m)-set [81], or equivalently, the number of basis sets
required to represent all v-dimensional subspaces of an ( - m) dimension space, in general.

The linearly independent solution vectors 7y, r,, .- *'v_ of Ry; can be obtained by the

method described in [82]. In that way, assume that the matrix O, in (2.95) has been reduced to echelon
form, that is, each leading non-zero entry is to the right of the leading non-zero entry in the preceding
row. Since any matrix can be put into an echelon form, there is no loss of generality in this assumption.
Clearly, there are more unknowns than there are equations to solve: (n—m)>(n-m—-v) (if v=0, then

the solution to (2.95) is trivial). Therefore, there are v variables in each solution vector »; which can be
defined arbitrarily. Now let 15 Iy, ..., 1y be the B solution vectors obtained by setting one of the free

variables equal to one and the remaining free variables equal to zero. Then the v-dimensional subspace
W will have basis vectors ry, 7y, ..., »v. Now recall the (n-m) x V matrix R from Subsection 2.11.1
defined as any matrix such that V<(n-m) and rank[R] = v. Then R may be further specified as

consisting of the set of column vectors 7y, r,, e Pv. That is,
R=[r |r, |- |n]. (2.96)

The columns of R constructed in this manner form a basis for the V-dimensional
subspace W (i.e., W =§R[R]) corresponding to a particular matrix O in (2.95). For every such v-

dimensional subspace W (or any possible matrix having rank » - m - V), a matrix R of column basis
vectors r,, i=1, 2, ..., V, can be formulated by the method above. The resulting R will have v?
elements (each 7; vector has Vv free variables and there are V such vectors) which can be selected as 0 or
1, and V(n-m-v) elements (represented by the notation rwhs h=1,2, .,V(n-m— v)) that are uniquely
determined by the individual elements of the matrix O=PM in (2.95). Since each basis vector r; has
(n—m)!
Vi(n—-m-v)!
all possible subspaces # of dimension V contained in an (n-m)-dimensional space, in general. In light of
this, define R, v=0, 1, 2, ..., n—m, as the set of all R which can be used, in general, to generate the
Vv-dimensional subspaces of an (#7-m)-dimension space. Each R eR, will have v? elements, defined as 0

dimension n-m, there are then possible combinations of free variables associated with
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or 1, and V(n-m-V) elements represented by the undetermined variables ry. The set R, will contain
(n—m)! . , (n—m)!
_ =Rvj, j=1, 2, ..., ——=>t—
Vi(n—m—v) matrices R=Ry, j Vi(n—m-v)!
r;, corresponding to the different combinations of free variables. Now define the set R, consisting of all
sets R,. The set R will then contain all general forms of the column basis vectors that generate any V-

dimensional, v=0, 1, 2, ..., n—m, subspace W=92[R] contained in an (n-m)-dimension space, in

each consisting of v column basis vectors

general.

Now recall from Subsection 2.11.1 that the subspace S, cN[C] is generated by the
columns of MR (where S, = SR[MR] , rank[MR] = v, and M is a maximum rank matrix consisting of
column basis vectors that generate the entire N[C], i.e., CM = 0). Therefore, as each set R, is
identified, beginning with R, _, , every R= R, €R, R, beginning with K ,_,,, can be systematically
tested for suitability using the technique described in Subsections 2.11.1 through 2.11.6. There are v(n-
m-V) elements in each R which may remain undetermined until conditions a’), b'), ¢’), and d') above
(2.85) are established. At that point a value, or range of values, may be determined for each rv; such that
those conditions are still met. The column vectors in R can be defined as any set of linearly independent
vectors containing acceptable values of ry,, as determined by applying the subspace stabilization

technique described in Subsections 2.11.1 through 2.11.6. The columns of R will form a basis for a V-
dimensional subspace W and the columns of the matrix product MR will form a basis for the v-

dimensional subspace S, = N[5 ] = ER[ Aﬂi]g N[C] to which e (kT") will be stabilized.

2.11.8. An Example

A specific example will assist in clarifying the method described above for
identifying the matrices R and subsequently forming a basis for all v-dimensional subspaces
S, =ER[MR] in the (n-m)-dimensional space N[C]. Note that it is not necessary to enumerate all of the

sets R, before performing the subspace stabilization procedure. In practice, the control designer would
first obtain the set R,_,, and then test each R, ; €R,_, in the subspace stabilization procedure. If all
of those R,_, . matrices are unsuitable, the designer then obtains the set R,_,_, and repeats the
procedure. Enumeration of all R, is given here for illustration purposes only. For this example,
suppose that the dimension of N[C] is 3. Thatis, #—m=3. Then the sets R,, v=0,1,2, ..., n—-m
will be:

R, ={0}={Ry,} (the null-point), (2.97)
SRRt 1
R, =qn|s| 1|, n ={Rna Ry, R13}a (2.98)

1 ha/ \n;
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Ry=q| 1 0|m m|| 0 1|t={Ry, Ry, Ry} , (2.99)
0 1)L0 1)\n n

00
1 0 ={R3,} (2.100)
01

(column basis vectors for the entire (n-m)-dimensional N[C], hence C =C),

and
K={RK,.K,RK,,R,}. (2.101)

(n—m)!
Vi(n—m-v)!
(2.100) is used to denote each R eR, eR. The R, in (2.97) is used when trying to stabilize g, (kT) to
the null-point (C -has rank n) as described in Section 2.11. R; in (2.100) is used when trying to
stabilize &, (kT) to the entire N[C}(C =C). Since there are no ry elements to be determined in R, this
case, and that of Ry, is relatively straight forward.

The notation Ry, v=0,1,2,..,n-m, j=1,2, ..., in (2.97)-

Any one of the set of column vectors in K, in (2.98) can be used to designate a line (a
1-dimensional subspace) in a 3-dimensional space. For instance, the basis vector

"

=0
R=R,=|r,|, with {'“
] n2 =0

designates the line along ¢ lying on the ey; -axis as illustrated in F igure 2.1.
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1/c

€ss3

Figure 2.6 Illustration of Two Lines 4, 6 (1-Dimensional Subspace) in 3-Space.

Likewise, the vector Ry, in (2.98)

r]] 1
. n=<
R=R12 = 1 s WIth N
rl2 =0
na

designates a line along ¢ in the e, - ey, plane having slope c, as illustrated in Figure 2.1. The
alternative basis vector R;; in (2.98) can also be used to represent the same line along ¢, in the ey, - e,
plane having slope c:

1

n=c
= = ; n
R=R;;=|n,|, with {

r, =0
57)

Any one of the basis vectors in R, in (2.98) can be used to represent any line in 3-space having non-zero

€ssi, €52, and eg; components (except for the point (0,0,0)). Similar logic can be applied to each
R,; €R, in(2.99). For instance, the column basis vectors

1 0 0
R=Ryy =|r, r,|, with {rﬂ B ,
0 1 r22 = 0
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will designate a plane (a 2-dimensional subspace) in a 3-dimensional space, namely the e,,; - e,;; plane as
illustrated in Figure 2.2.

ﬁ €ss2

€ssl = €ss3 plane

""""""""" — Css]

€ss3

i
!
[}
1
[}
!
I
i

Figure 2.7 Illustration of a Plane (a 2-Dimensional Subspace) in 3-Space.

Beginning with the formulation of the set R; in (2.101), the control designer chooses
R=R,, for the largest subspace W; associated with (2.100), determines M from (2.92) and (2.93), and
forms the matrix product MR (a basis for the 3-dimensional subspace S; =N{C]). The matrix C is then
formed according to (2.46) and (2.66), and the four conditions above (2.85) and the one condition
associated with (2.88) are verified. If those five conditions are met, S; is considered suitable and u(k7),
uy(kT), and u,(kT) are chosen according to (2.61), (2.62), and (2.63). If those five conditions are not met,
the designer must form the set R, in (2.99) and repeat the process with Ry, Ry, and Ry, and so on until a
suitable subspace S, = ‘.R[JWZ] having largest dimension Vv is found. A detailed block flow diagram is

shown in Figure 2.3 to illustrate the design of a digital servo-tracking controller using the subspace
stabilization process presented in this Chapter.

Clearly, the number of elements of Ry, in R increases with the dimension of the
subspaces S, cN[C]. Therefore, this technique will become labor-intensive for subspaces Sy with
relatively large dimension. The number of elements N in the set R can be calculated exactly using the
binomial expansion theorem in [81], that is
< (n - M)' =

N= —_— -
Vi (n-m—-v)!

(2.102)
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Therefore, a null-space N[C] of dimension n—m=5 would have N = 2°> =32 candidate Ry, matrices to
evaluate (including the special cases of R = 0 (the null-point) and R = I, a basis for X[C]). Note that

the matrix C, and the values of » and m were not needed in representing the set of all R, rather the
difference n-m (the dimension of N[C]) is the only property of C utilized.
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Given: A B,C,D.E F G H

achieve y(fj=y{f)

Choose according to (2.34)

Compute A, B, E, FH according to (2.18), (2.23), and (2.36)
Choose M according to (2.92) and (2.93)

Choose v=n-nt j= 1

=

Form the set Rv according to the procedure in
subsection 2.11.7

=

Choose R=RycRv
Form MR
Choose C according to (2.46) and (2.66)

Condition
@), page 62
satisfied?

Choose T, according to (2.60)
Form u:(kT) according to (2.62)

It is Impossible to

Choose [ according to (2.59)
Form udkT) according to (2.61)

Select Z by the method in subsection 2.11.6
Form Ky according to (2.83)

Form udkT) according to (2.63)

Form u(kT) according to (2.55)

No v=y-1
[l do)
lYos
All Subspaces Exhausted
No Solution Exists
Recheck condition (2.33)

Figure 2.8 Block Flow Diagram for the New Digital Servo-Controller Design Procedure.

49




2.12. Summary of the New Digital Servo-Controller Design Procedure for the Ideal Case

If the plant, disturbance, and servo-command states { x(kT),z(kT),c(kT)} are available for
accurate, real-time measurement (the ideal case), then the digital servo-controller chosen as in (2.61),
(2.62), and (2.63) can be implemented directly as

u(kT) =T 2(kT)+T,c(kT) - K ,(8c(KT) - x(kT)), (2.103)

where T,, T, and X , are selected to satisfy the four conditions above (2.85) and the one condition

associated with (2.88).

2.13. Practical Realization of the Discrete-Time Servo-Controller

The digital servo-controller design methodology developed in the previous sections of this
chapter is an extended state-feedback design technique. To implement such a state-feedback controller
design, the states x(k7) and z(kT) of the composite system and the servo-command state c(kT) must be
measurable or estimatable in real-time. The idealized control law in (2.103) uses the real-time value of
the disturbance state z(k7), the plant state x(k7), and the servo-command state c(kT). In practical
applications, it is rarely possible to measure those three states. Recall that, for this research, it is
assumed that the current “sampled” value of the plant output vector WKT) and the current “sampled”
value of the servo-command vector y.(kT) are the only quantities available for direct measurement.
Consequently, discrete-time state estimation algorithms (observers) must be designed to estimate the
value of the plant, disturbance, and servo-command states in real-time.

In order to design the composite state-observer and the observer for the servo-command state
c(kT), the composite system and the servo-command model must be completely observable. That is,
every element of each state x(k7) and z(kT) must affect one or more of the plant outputs and every
command state c(kT) must affect one or more of the servo-commands. In that case, an observer can be
designed in either a full-order or reduced-order form. A full-order observer reconstructs (estimates), for
example, all elements of each of the states x(k7) and 2(kT) of the composite system. Thus, if the
composite system is (n + p)®-order, then a full-order observer will also be (7 + p)®-order. A reduced-
order observer reconstructs, for example, only the state elements of (x, z) that are not directly measurable
through the y(f) measurements. An obvious advantage of using a reduced-order observer is that it has
lower dimension than a full-order observer.

Two observers will be needed for implementing the digital servo-tracking controller
developed in this chapter. The first will be chosen to be a discrete-time full-order observer using
“sampled” measurements of the plant output MkT) and the control input u(kT) to obtain the real-time
state estimates X(kT), Z(kT), %((k+1)T), and 2((k+1T) of x(kT), z(kT), x((k+1)T) and z((k+1)T),
respectively. The second observer will be chosen as a discrete-time reduced-order observer and will use
the “sampled” measurements of the servo-commands Y{KT) to obtain the discrete-time estimates ¢(kT)
of the servo-command states c(kT). The use of those discrete-time state-estimators will result in a
physically-realizable digital servo-tracking control law having the form (refer to (2.55), (2.60), (2.61),
and (2.63))
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u(kT) =T, 5(kT) + T.&(kT) - K ,(8E(KT) - 2(kT)). (2.104)

2.13.1. Development of Discrete-Time Composite Models of the Plant, Servo-Command,
and Disturbance System

The discrete-time composite plant/disturbance model was given in (2.26). However,
for reasons identified in Section 2.6 the terms 7(kT) and &(kT) in (2.26) have been disregarded.
Ignoring those terms results in the following truncated composite plant/disturbance model which will be
used in the discrete-time full-order observer design

(x((k+1)T))_ 1l Fr (x(kT))
2(k+DTY | o | D Nz(kT)

x(kT ))
z(kT)

B
*(6)“"‘”

(2.105)

Y(kT)=(C | 0)(

The discrete-time state-model for the servo-command in (2.36) will be used in the discrete-time reduced-
order observer design. For reasons discussed in Section 2.7, the u(kT) term in (2.36) is ignored,
resulting in the following truncated servo-command model which will be used in the discrete-time
reduced-order observer design

Yo (kT) = Ge(kT)

g (2.106)
c((k + )T) = E(kT)c(kT)

2.13.2. The Design of a Discrete-Time Full-Order State-Observer for the Composite
System in (2.105)

In principle, accurate real-time estimates X(kT) and Z(kT) of the plant states x(kT)
and the disturbance states z(kT) can be obtained from “sampled” on-line measurements of WkT) and
u(kT) using conventional observer theories. In [33], a discrete-time DAC composite observer theory is
developed which achieves this estimation by extending modern control observer/estimation theory. A
unique feature of the DAC observer theory in [33] is the incorporation of the disturbance model (2.25)
into the observer dynamics. This is accomplished using the (n#+p)-dimensional composite
plant/disturbance model in (2.105). The resulting discrete-time full-order observer for (2.105) has the
form [33]

f«k+1m)= b , FH (f(kn) (gJ K, (W)J-
(2((k+1)T) [0 5} o) TN+ %, (€10 30, "D | 2.107)
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where u(kT) is given in (2.103) and 1?0 = [%J is the observer gain-matrix to be designed.
2

The time-evolution of the estimation error & where ¢ is defined by

oo| EGD) g(f(kn)_(xmn] 2.108)
&, (kT) | \Z(kT)) \z(kT))’

for the discrete-time full-order observer (2.107) is determined by forward shifting (2.108). The result is

(b‘x ((k+ 1)7)) _ (f((k + 1)77) _ (x((k + l)T))
& (k+0T)) \2(k+DD)) \z((k+DT)

_|d+&,c|FH (s,(kn)
K,C | D [\&(D)

The observer “gain matrix” I?o should be designed so that the observer error

(2.109)

(fx(kT )

(kT)) always converges to zero promptly, from any initial condition. This can be achieved if, and
6‘2

only if, the states x(kT) and z(kT) of (2.105) are completely observable, that is, if, and only if
rnklC] | 7€) | 275 |- 1 7] [=n+e.

where

and
Co=(C|0).

Note that the choice of control sample-period T affects the outcome of the complete observability rank
condition. If that rank condition is achieved, standard pole placement techniques [3,20,21,46,47,77] can

be used to determine an appropriate I?,,. In that way, I?o is selected such that the eigenvalues of the
matrix (refer to (2.109))

A+K,C|FH , 2.110)
K,Cc | D |
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are at sufficiently-damped locations inside the unit circle ( |4] <1) of the complex-plane. Designing Ea
to achieve this latter condition will assure that the estimated values X(kT) and Z(kT) of the plant and

disturbance states quickly and accurately track the corresponding actual plant and disturbance states
x(kT) and z(kT), respectively.

A detailed block diagram of the discrete-time full-order observer in (2.107) is slllown
in Figure 2.4. The “unit delayor” shown in Figure 2.4 is a one-step delay commonly denoted by E™ and

defined such that E™'x(kT) = x((k - 1)T).

A A
u(kT) — N X((k+1)T) e x(kT)
7 B | + Delayor

+ —
y(kT) | A+Ko1C
= A Kot

~

FH [T

RozC

- Uy R— 2(kT)
A Koz | Delayor [A ————>>

+
5 El

+

Figure 2.9 A Discrete-Time Full-Order Observer for Generating Real-Time Estimates of the Plant State
x(kT) and Disturbance State z(kT).

2.13.3. The Design of a Discrete-Time Reduced-Order State-Observer for Estimating
the Servo-Command State c(k7)

In this section, a discrete-time reduced-order observer design is presented that will
generate servo-command state estimates ¢(kT) from the “sampled” real-time servo-command
measurements y(k7). An effective “recipe” for designing a discrete-time reduced-order state-observer

was developed in [33]. That “recipe” will be used here, with slight modifications to specifically address
state estimation for the servo-commands.

The truncated discrete-time state-model in (2.106) for the servo-command is used

here in the construction of the discrete-time reduced-order observer. Since the Ya's, i=1,2, .., m, are
assumed to be linear independent servo-commands, the matrix G will have rank m.
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The following is a summary of the “recipe” presented in [33] for construction of a
discrete-time reduced-order observer for the servo-command state c(kT):

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

define T3, as any v x (v-m) maximal rank matrix such that

GT]2= 0.

(The R[T},] of the T, which meets this condition will necessarily form
a basis for N[G]);

a) define the (v-m) x v matrix
— -1
5, = (73712) Tg ’

and
b) define the m x v matrix
¢*=(66")"6;
a) construct the (v-m) x (v-m) matrix
D= 7—12 ~7;2 s
and
b) construct the m x (v-m) matrix
#=GE T3
construct the error-dynamics evolution equation

&, (k+D)T)=[D+L %]z, (kT), (2.111)

where Z is an (v-m) x m arbitrary observer design matrix to be
determined;

design Z in (2.111) such that &, (kT)— 0 rapidly,

(This can be achieved if, and only if, the servo-command state c(kT) is
completely observable, that is, if, and only if

rank[GT | E7GT | 767 | . | ET“"GT]=v.
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(2.113) is shown in Figure 2.5.

Step 6.

In that case, standard pole placement techniques can be used to place the
poles of [D+Z#] at sufficiently damped locations inside the unit

circle);

construct the “filter” part of the reduced-order observer

Sk+DT)=(D+ZB)ERT) +[(T,, + ZGYEGY ) - @+ B ]y (AT);  (2.112)

and

Step 7.

construct the “assembly-equation” portion of the observer
SKTY= Lo 6T + G - T, 2]y k), @.113)

where

¢(kT) represents the estimate of the servo-command state vector c(kT),
and

€ is an auxiliary vector defined in step 6 above.

A detailed block diagram of the discrete-time reduced-order observer in (2.1 12) and

Unit
Delayor

| EKT) 4~ CkT)
> T2 |

| D+X#

Ye(KT)

W

(T1z+2G)(EG*)-(D+22)s

=

G*LTix

Figure 2.10 A Reduced-Order Discrete-Time Observer for Generating Real-Time Estimates of the Servo-

Command State c(k7).
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3. ADD-ON ENHANCEMENTS TO THE NEW DIGITAL SERVO-TRACKING
CONTROLLER

3.1. Modification of the Digital Servo-Controller Design Procedure to Reduce Intersample
Misbehavior

The digital servo-controller terms (u.(kT), u(kT), u,(kT)) developed in Sections 2.10 through
2.11 utilize a stepwise-constant zero-order-hold (z.0.h.) type of control action. This means that the
control decision which is made at each sample time ¢=k7T, k=0, 1, 2, ..., determines a value for u(kT)
that remains constant until the beginning of the next sample time. With the exception of the special cases
where w(#) and y(f) are constants or stepwise-constants, this particular implementation of the digital
servo-tracking controller, as developed in Sections 2.10 through 2.11, does not smooth out the stair-step
behavior of the control input #(kT) and thus cannot reduce the intersample misbehavior in y(¢) that occurs

between the sample times.

As discussed in Subsection 1.5.2, intersample misbehavior, or “ripple,” is the build-up of
error between the desired response (servo-command vector y.(#)) and the actual response (plant output
vector (7)) that occurs between the sample times kT < ¢ < (k+1)T . This error build-up can arise due to
intersample time-variations of the uncertain servo-commands and the disturbances or can be due to open-
loop instability of the plant. Conventional digital-controllers use holding circuits (first-order hold,
second-order hold, exponential hold, etc.) as a means of smoothing out the control input signal before it
is applied to the plant as a means of reducing intersample misbehavior of N#). However, those
conventional holding circuits do not attempt to intelligently select the control-action for the next sample-
period based on the intersample waveform behaviors that w(z) and Y{t) are anticipated to exhibit.
Consequently, those conventional attempts fall short when the plant is subjected to uncertain, time-
varying external disturbances, or is required to track uncertain, time-varying servo-commands [38]. In
those cases, it is possible to select a smarter holding-strategy that will significantly improve the
intersample tracking accuracy of the overall closed-loop system.

In [38], a technique was introduced for computing and implementing an intelligent holding-
strategy for discrete-time controlled plants subjected to uncertain, unmeasurable, time-varying
disturbances and uncertain, time-varying servo-commands. The technique in [38] achieves a level of
robustness to disturbances and a degree of intersample servo-tracking accuracy that is unobtainable by
conventional discrete-time control design methods. Specifically, that method provides the capability of
intelligently selecting, at each ¢ = k7, a time-varying intersample control-action u(f), kT <t<(k +1)T,
based on the intersample waveform behaviors that both the servo-command Y«#) and disturbance w(r) are
predicted to exhibit, as determined by current estimates 2(kT) and &(kT) of the disturbance state z(kT)
and the servo-command state c(kT) at the sample time 1 =kT, k=0, 1, 2, ... . It will now be shown how
the intelligent holding-strategy developed in [38] can be incorporated into the new digital servo-
controller design technique developed in this report.

3.1.1. Reconsideration of the Servo-Tracking Error Equation

The result in [38] will be incorporated into the new digital servo-controller design
technique in this report with the exception that the #,(kT) control term in (2.63) will remain as it was
derived in Chapter 2. The servo-controller design method in [38] is based on the idea of regulating e(?)
to zero between consecutive samples; however that condition is unnecessarily restrictive in the design of
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up(kT). Tt is only necessary to design u,(k7) to regulate e,(f) to some subspace S, =NC]. Therefore,

the u,(kT) control term developed in Chapter 2 does not need to be modified when adapting (2.103) to
utilize the intersample holding strategy in [38].

The u.(kT) and uy(kT) control terms in (2.61) and (2.62) must be modified in order to
adapt the intersample holding strategy developed in [38). To accomplish this modification, it is first
necessary to reconsider the servo-tracking error g(?) in (2.2). Substituting (2.1), (2.31), and (2.34) into
(2.2) yields

£,M)=y. @) -y@)
=Ge(t) - Cx(1) . 3.1
=C(&(n) - x(?))

And now introduce the continuous-time servo-state vector ess(?) (continuous-time counterpart to (2.38)),
defined in [37] as

A
e (1)=6c(t) - x(2), 3.2)
such that (3.1) can be re-written as
£,(1)=Ce(t). 3.3)

The continuous-time equation for the servo-state vector e.(?) is of interest because the
objective of the intersample holding-strategy is to minimize the continuous-time intersample build-up of
tracking error g(7) that occurs between the sample times. Doing so requires examination of the
continuous-time dynamics of e,(?). Differentiating (3.2) and substituting in (2.1), (2.20), (2.31), and
(2.34), yields the following differential equation for the dynamics of the servo-state vector s

e (1) =6¢(r) — x(1)
= 0&(t) - (Ax(t) + Bu(t) + Fw(1)) . (G4)

= O Ec(r) + H()) = (Ax(t) + Bu(t) + FHz(1))
Incorporating (3.2) and rearranging terms in (3.4) yields

é5s (1) = de, (1)~ Bu(t) + (0 E - AB)e(t) - FHz(2) + 6u(r). (3.5)

The terms (6E — A0)c(t) - FHz(t) + 6u(t) in (3.5) are disturbance-like effects

caused by the external disturbance w(f) and the uncertainties of the servo-command y(f). The particular
term Gu(t) is a consequence of the sparse sequences of totally unknown, random impulses () inherent

in the servo-command modeled in (2.31). For reasons discussed in Section 2.7, the () (and hence the
6u(?) term) is hereafter ignored and (3.4) is rewritten as
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€55 (1) = Ae,(t) - Bu(t) + (0 E - Ab)c(r) - FHz(1) . (3.6)

Certain technical conditions must be met in order to cancel the disturbance-like
effects of the uncertain motions c(f) and z(f) on the servo-state vector es(#) in (3.6) and consequently on
the servo-tracking error &(f) during the intersample interval. Those conditions govern the design of the
improved intersample holding-action for the digital servo-tracking control terms u, and u, and will be

discussed as needed in the design procedure.

3.1.2. Decomposition of the Servo-Tracking Control Effort

In order to develop an enhanced digital servo-control law (algorithm for generating)

u(kT) that uses an intelligent holding-strategy to achieve high-performance intersample servo-tracking, a
control-effort decomposition similar to the control-effort decomposition in Section 2.9 will be used. This

technique consists of splitting the total (vector) control-effort u into a sum of two individual (vector)
terms as follows

u()=u, () +u,(kT), B.7)

where the notation u(-) is temporarily being used to indicate that the control effort may consist of both
discrete and continuous terms, and where

use(-) is designed to accomplish reduction of intersample error build-
up due to the effects of the disturbance w(f) and the disturbance-
like effects of the servo-command y(¢), and

u(kT) is designed by the technique in Section 2.11 and will stabilize
ex(kT) to some subspace S, gN[C] while achieving an
acceptable closed-loop settling-time for the servo-tracking error
&, assuming u.(-) is performing its tasks.

The final form of the u(-) in (3.7) will meet the strict definition of a discrete-time
controller in the sense that the control action u(-) is updated only at the discrete times f= kT ,
k=0,1, 2, ..., based on real-time measurements (or estimates) of the plant, disturbance, and servo-

command states {x(kT), z(kT), c(kT)} available at the beginning ¢ =kT of each sample-period. As
discussed in Subsection 1.5, the discrete-time servo-control algorithm is realized by digital processors
and the resulting servo-controller is referred to as a digital servo-controller. Following a line of
development similar to that in Section 2.9, substitute (3.7) into (3.6) and group terms to yield the result

5 (1) = Aey (1) = Bu, () + ((0F ~ 46)c(r) - FHz(r) ~ Bu, (). (3.8)

The disturbance-cancellation condition governing the ideal design of the control term
us() in (3.8) is the condition for total cancellation of the disturbance-like terms (6E — 46)c(r) - FHz(r)

in (3.8) over each interval AT <t < (k+1)T. Mathematically speaking, u,(-) must satisfy

(6E ~ 46)c(r) - FHz(t) - Bu, (1) = 0; VAT <t<(k+1)Tand v c(t) and z(¢) ,(3.9)
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which can be written as
[0E - 46 | —FH][EU—))-BuSC(t)EO. (3.10)
z(1)

Since y.(f) and w(?) originate from completely different (and uncorrelated) sources, in general, the
necessary and sufficient condition for existence of a u, (t) satisfying (3.10), for all c(¢) and (), is

rank[eE—AalFmB]:rank[B], (3.11)
which is equivalent to the two simultaneous conditions

rank[ FH | B]= rank[B], (3.12)
and

rank[0E — A6 | B]=rank[B]. (3.13)
That is, %[ FH]c B[ B] and R[0 £ - 46]< R[B].

Proceeding as in Section 2.9, the decomposition in (3.12) and (3.13) suggests that the
control term ;. in (3.7) can be further split into two terms as follows

Use () =u, () +u, () s
so that (3.7) is rewritten as

u() =, () +u,() + u, (kT). (3.14)

In (3.14), u.(?) is responsible for reducing the intersample build-up of error due to the effects of the
disturbance w(#) and u (-) is responsible for reducing the intersample build-up of error due to the
disturbance-like effects of the servo-command Y«#). Mathematically, the tasks of #,(-) and u () are,
ideally, to achieve the identities

FHz(t)+ Bu, (t)=0; VkT<t<(k+1T and V z(1), (3.15)
and
(OE ~ A6)c(t) - Bu,(t)=0; VkT<t<(k+1)T and V(). (3.16)

As discussed in Section 2.9, there is a technical possibility that the vectors ¢(f) and
2() could be such that (9E - A6)c(r) - FHz(1)=0. In that fortuitous case the value u_(t)=0 can be

chosen in (3.9) and thus (3.11) is then not necessary. This singular condition is highly unlikely in
practical applications and is not addressed further in this report.
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The design of the control terms u/(-) and u(-) will be accomplished by first
developing the continuous-time cancellation conditions and corresponding continuous-time controller
terms u,(f) and u(#), and then discretizing those terms into their digital counterparts u.(kT) and u,(kT),

respectively.

3.1.3. Conditions for Complete Cancellation of Disturbance-Like Terms on the Servo-
State Vector e

The control terms u. and u; satisfying (3.15) and (3.16) exist if, and only if (3.12) and
(3.13) are satisfied. Those expressions imply that

FH+BI' =0, 3.17)

and

(GE—AB)—BI‘S=0, (3.18)
for some r x p matrix I', and some » x v matrix T, .

Assuming the necessary and sufficient conditions in (3.17) and (3.18) are met, the

continuous-time control terms u.(f) and u(f) satisfying (3.15) and (3.16), respectively, may be chosen
(ideally), during the intersample interval k7T <t < (k+1T,as

u (1) =T,z(r), (3.19)
and

u (t)=T.c(t) . (3.20)

As discussed in Section 2.13, it is assumed that the digital control decisions at time
t=kT must be based on measurements, or estimates, of the states z(?) and c(?) available at each of the
times t=kT, k=0, 1,2, .... Therefore, the predicted or forecasted behaviors of z(f) and c(t) across
each intersample interval must be represented in terms of 2(kT) and c(kT). Proceeding as in [38], that
relationship is found in the general solution to (2.20) and (2.31) evaluated at each ¢ over the interval from
kT'to t = (k+1)T. In particular,

2(1)= P (RTY + 1, (1) ; kT<t<(k+DT, (3.21)
and

c(t) =" kT 41, (1) ; kKT<t<(k+DT, (3.22)

where

r{?) is a residual-effect given by 7.(r) = L e?"e(1)dr,
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and
ro(f) is a residual-effect given by r,() = LeE =0 (v)dr.

The residual terms r(f) and r(¢) are an accumulation, from ¢ =kT to t, of the effects of unknown,
unpredictable, sparse impulses o(f) and sf) respectively (refer to (2.20) and (2.31)). For reasons
discussed in Chapter 2, the o(r) and 4f) impulses, and consequently the »(f) and r(¢) terms, are
disregarded during the digital-control design process. Substituting (3.21) and (3.22) into (3.19) and
(3.20), and disregarding the residual terms, results in the final (idealized) form of the u(#) and uy(f) terms
of the enhanced digital servo-tracking controller

u, (1) =T,e?"*Dz(kT) , (3.23)
and

u (1) = T,e"ekT) . (3.24)

The control terms u(f) and u(f) in (3.23) and (3.24) generate a continuous-time,

open-loop control-action where the entire intersample variations of u(f) and u/(7) over each sample
interval are determined at the beginning, ¢ = kT, of each of the intervals AT <f < (k +1)T. Because those

control decisions are updated only at the discrete times ¢ = kT,k=0,1,2, .., u and u, are, by definition,
discrete-time controllers. Since those control terms are both discrete and time-varying they are more
appropriately represented by the notation u(t;kT) and u(t;kT), such that (3.23) and (3.24) are rewritten as

u (6 kT) =T e” "Dz (kTy; kT<t<(k+1)T, (3.25)
and
u (t;kT) =T "D (kT kKT<t<(k+1T. (3.26)

The type of control action represented by (3.25) and (3.26) will hereafter be referred to as
“digital/continuous” (D/C) control.

The ideal choice for u(;kT) and u(t:;kT) in (3.25) and (3.26) assumes one can
directly measure the states z(k7) and ¢(kT) in an on-line fashion. In reality, those states are typically not
accessible for direct measurement, therefore the solution in (3.25) and (3.26) is not physically-realizable.
Consequently, accurate estimates of the states 2(kT) and c(kT) must be generated from the real-time
“sampled” measurements of y(k7) and Y{kT). A procedure for generating such estimates #(k7T) and

¢(kT) and composing the physically-realizable solutions
u (;kT) =T ™ D3kT), (3.27)

and

u (A7) =T, " D(kT) (3.28)
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will be presented in Subsection 3.3.3.

3.1.4. Final Form of the Digital/Continuous Servo-Controller for the Ideal Case

If the plant, disturbance, and servo-command states {x(kT), z(kT), c(kT)} are
available for direct and accurate measurement (the ideal case), then the digital servo-controller chosen as
in (3.25), (3.26), and (2.63) can be expressed as

u(t;kT) =u, (t,kT) + u (t,kT) + u,(kT)
R (3.29)

=T,e®™* D z2(kT) + T e 5*De(kT) - K,(6c(kT) - x(kT))

where the gain matrices I', and T, are selected to satisfy (3.17) and (3.18) and the gain-matrix K p 18

selected as described in Section 2.11 with B =0 and Z =0 throughout the design. Selecting the gain-
matrices in this way will stabilize e.(?) to S, =N[5];N[C] while achieving an acceptable closed-loop

settling-time for E, =Y. —y.

3.2. Enhancement of the Digital Servo-Controller Design to Provide Robustness to Plant
Parameter-Perturbations

Up to this point, the development of the new digital servo-tracking controller in this report
has been carried out under the assumption that the designer has knowledge of the exact values of the
plant parameters (the elements of the 4, B, C, and F matrices in (2.1)). However, in real-world control
problems, knowing the exact values of all those parameters is rarely possible. Uncertain deviations from
the nominal design values of the plant parameters is often caused by modeling errors or variations in
component hardware characteristics. Whatever the cause, such parameter “perturbations” can
significantly reduce the level of closed-loop tracking-performance obtained by a controller that is tuned
for nominal parameter values. Consequently, the degree to which a servo-tracking controller-algorithm
can resist tracking-performance degradation, and “accommodate” uncertain parameter perturbations, is a
measure of the robustness level of the servo-tracking controller. To address parameter uncertainty and
achieve robust control, a portion of the linear adaptive control method developed in [34,35,39] will be
incorporated into the proposed digital servo-design methodology. For this study, only perturbations
(denoted by A4) in the nominal value of the 4 matrix in (2.1) are considered. Methods for modeling and
accommodating AB, AC, and AF perturbations are discussed in [34,35,39].

3.2.1. Incorporation of the Plant-Parameter Perturbations A4 into the Servo-State €55
Dynamics

In order to investigate the effects of plant-parameter perturbations Ad, it is necessary

to look again at the general class of plants in (2.1) and define precisely where the perturbations A4 arise
in the general model of the plant. The plant model as given in (2.1) is
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#(1) = Ax(t)+ Bu(t) + Fw(t)

, 3.30
(1) =Cx(t) (39

where all components of (3.30) are defined as they were in (2.1) and, in addition, the array of elements a;
in the plant’s 4 matrix are assumed subject to uncertain perturbations A4 as follows

A=A, + A, (3.31)
where
Ay = an n X n known, constant, real-valued matrix representing the
nominal 4 matrix, and
Ad = an n X n matrix consisting of uncertain and unmeasurable

stepwise-constant (or slowly-varying) parameter-perturbations
Sa’j’i=13 2, ey N, j=1, 2, ey N

Substituting (3.31) into (3.30) yields

2(£) = Ayx(t)+ Bu(t)+ Fw(t) + Adx(r)

3.32)
(1) =Cx(1)
Substituting (3.32) and (3.2) into the differential equation in (3.4) for the servo-state vector es(?) yields

e, (1) =6¢c(r) - x(2)
= O(Ec(t) + H(2)) — (Ayx(t) + Bu(t) + Fw(t) + Adx(1)) . (3.33)

= Aye, (1)~ Bu(t)+ (6E — A, 0)c(r) - FHz(t) — Adx(t) + Qu(r)
For reasons identified below (2.36), the £41) term in (3.33) is ignored and (3.33) is rewritten as

éi(t) = Aye, (1) = Bu(t) + (O E - AB)c(t) - FHz(r) - Adx(r) . (3.34)

3.2.2. Introduction of an Ideal Model for the Servo-Tracking Error &0

Following the line of development in [34,35,39], the ideal behavior of (3.34) is
assumed to be modeled by the “ideal model”

e.SJ (t) = Amess (t)
&,()=Ce, (f) ’ (3.35)

where 4,, is a customer or designer-specified “ideal” » x n matrix. In some applications, the matrix A,,
may be specified in terms of “ideal” or “desired” eigenvalues of 4,, [39]. In that case, the term P,(A) will
hereafter denote the characteristic polynomial of 4,,, where
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P,(A=2"+BA + - + A+ S, (3.36)

and where the §; in (3.36) are known coefficients corresponding to the specified ideal eigenvalues of A,.
The extended task of the enhanced digital servo-tracking controller is to make (3.34) behave like (3.35)
in the face of all anticipated uncertainties and initial conditions.

3.2.3. Introduction of the D/C Control Term u, to Accommodate Plant Parameter-
Perturbations A4

Adapting the technique in [34,35,39] for accommodating the A4-effects in (3.34)
requires that a control term u, be added to the digital servo-tracking controller expression in (3.14) and
that the u,(kT) control term in (2.63) be redesigned. Thus, (3.14) will be rewritten as

u()=u)+u()+ u (kD) +ul) (3.37)
where
u(-) = u/t;kT) as developed in Subsection 3.1.3,

u(-) = u(t;kT) as developed in Subsection 3.1.3, with 4 replaced by Ay from (3.31)
throughout the design process,

u,(kT) is designed to stabilize e, (kT) to S, =x~¢[5]gz~¢[c] while achieving the
specified “ideal model” characteristics in (3.35) for the closed-loop dynamics
of the servo-tracking error g,

u,(-) is designed to accomplish reduction of intersample error build-up due to the
disturbance-like effects caused by the uncertain plant-parameter variations A4.

Substituting (3.37) into (3.34) and grouping terms yields

¢, (1) = Aye, (1)~ Bu, () + ((BE — AB)c(t) - Bus(-)) ~ (FHz(1) + Bu, (")

(3.38
- (AAX(t) + Bua ()) )

Assuming (3.15) and (3.16) are achieved, it remains to design u,(-) to cancel the disturbance-like term
AAdx(?) in (3.38). Mathematically speaking, u,(-) must satisfy

— (A4x(t) + Bu, (1)) =0. (3.39)
The necessary and sufficient condition for existence of a u, satisfying (3.39) is that

Adx()cR[B]; V1.

in which case
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Adx(t)= By (1), (3.40)
for some ¥(#), and thus, theoretically, u,(?) can be chosen as
u, () =-y(t). (341

There is no way to predict or directly measure the Ad-effects as reflected in the AAx(f) term in (3.40).
Therefore, the u,(7) as chosen in (3.41) is not physically-realizable. Following the line of development in
[34,35,39], the design of a physically-realizable control term u,(-) that satisfies (3.39) is expedited by
using a novel dynamical model of the time-evolution of the parameter-perturbation term A4x(?) as it
appears in (3.34). That model is developed in the following Section.

3.24. A Dynamic Model for the Time-Evolution of the Plant Parameter-Perturbation
Term AAx(r)

Recall from (3.31) that A4 is a completely unknown and unmeasurable 7 X n matrix
of stepwise-constant perturbations Sa,.j , Written as
ba;; ba; - bay,

- da,, day, - da,,

A4 R (3.42)

6anl 8anZ 8ann
where some 8a; may be known, a priori, to be zero. As explained in [34,35,39), real-time identification
of the perturbations 8a; in (3.42) require complex identification techniques that result in complicated,
non-linear data-processing algorithms associated with the control decision process. The unique approach
in [34,35,39] to designing a control law for U, is to view the product (A4)x(?) in (3.34) as an uncertain
time-varying parameter disturbance-vector W.(?) (an uncertain time-varying input as discussed in Section
2.5), written as

wal (’)

waZ (t )

W, ()= =-(Ad)x(1), (3.43)

Wan (1),

and then to recognize that Ww(f) has a knowable waveform-structure which allows one to estimate the
vector w,(?) in real-time using a disturbance state-observer similar to that used for estimating the external
disturbance state z(kT) in Chapter 2.

Let w,(r) represent the observer-generated estimate of W,(?) obtained from such an
observer. It was shown in [39] that, if ||A4|| and/or llwa(2)-w, () || are sufficiently small, the closed-loop

time variations of the independent elements w,(7) in (3.43) are closely modeled by the known differential
equation
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n n-1
Dwa®) o &7 Wa® g ) | g m0ii=1,2,.0n  (44)
d" dr™! dt

where the £’s shown in (3.36) are precisely the same f’s that appear in (3.44).

Using the technique for representing waveform-structured input behavior, as
described in Section 2.5, expression (3.44) can be utilized to develop a model for the dynamic behavior
of the uncertain disturbance-term w,(f) in (3.43). The result is the following n®-order, vector-matrix

state-model for w(?)

— (AA?x(t) =w,(t)=H,z,(t) ’ (3.45)
2,()=D,z, (1) + 0,(t)

where z,(?) represents the “state” of the parameter disturbance-vector w,(¢) and the elements of the vector
o,(t) are unknown, sparse sequences of impulses that are the source of the uncertain, occasional “jumps”
that may occur in (A4)x(7). If the perturbation matrix A4 is completely arbitrary, then the H, and D,
matrices in (3.45) are specified by the following block diagonal matrices:

H, = diag(h,, hs, ..., h,) ; ) (3.46)
and

D, = diag(D,, D,, ..., D,); (3.47)
where

H, isan nxn? matrix,

D, isan r’ x n’ matrix,

h,=(1,0,...,0) ; an n-dimensional row vector,
and
[ 0 1 0 0 ]
0 0 1 0
D,=| : N an nxn matrix.
0 0 0o - 1
-5 -8 -8 - -5

If the perturbation matrix A4 is not completely arbitrary (if certain components of A4 are known to
always be zero), then the vector A, will only appear in the rows of H, corresponding to the non-zero rows
of A4. Similarly, D, only appears in the corresponding positions in D,. This will reduce the dimension
of the matrices H, and D,, and consequently reduce the number of perturbation-related state-variables

z,, that require estimation [34].
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3.2.5. Design of the u,(t;kT) Control Term to Completely Cancel the Parameter-
Perturbation Vector Adx(?)

The model in (3.45) can be used as a close approximation of the AAx(¢) effects as they
appear in (3.38). Incorporating the w,(f) model in (3.45) into the cancellation condition in (3.39) yields
the requirement on u,(¢) as

(H,2,(t) - Bu, (1)) =0. (3.48)

Since the state z,() in (3.48) is completely arbitrary, the necessary and sufficient condition for existence
of a u, satisfying (3.48) for all z(¢) is

rank[Bl H, ] = rank[B] , (3.49)
or equivalently,

R[H,|c R[B].

If (3.49) is satisfied, then it is possible to obtain a (possibly nonunique) matrix I,
such that

H,-BI, =0, (3.50)
in which case the control term u,(f) in (3.48) can be chosen to have the ideal structure

w)=Ta) (3.51)

during the interval kT <t<(k+1)T . Recall, however, that the digital control decisions at time ¢ = kT'
must be based on measurements, or estimates, of the state z4(1) available at the beginning of each sample-
interval ¢ = kT, k=0, 1, 2, ... . Therefore, the predicted or forecasted behavior of z,(t) across each
intersample interval must be determined in terms of z/(kT). This relationship is found in the general
solution to (3.45) evaluated at each ¢ over the interval from AT 'to f= (k+1)T

2,(8) =P g (kT +r1,(1) ; kKT<t<(k+DT, (3.52)
where 7,(?) is a post-sample residual-effect given by r,(¢) = Leb"("’) o,(7)dr.

The r,(f) term is a consequence of the totally unknown, unmeasurable, sparse
impulses o,(f) in (3.45) that may arrive after ¢ = kT, and which are the cause of the uncertain, intersample
“jumps” that may occur in the parameter disturbance vector (ADx(?). For reasons discussed below
(3.22), the effects of the o,(f) impulses cannot be predicted or accounted for and consequently the r,(7)
term in (3.52) is ignored. Substituting (3.52) into (3.51), ignoring the residual term, and using the
notation u,(t;kT) to denote “digital/continuous™ (D/C) control, results in the following final (idealized)
form of the u, term of the digital servo-tracking controller

u, (t;kT)=T,e%*D; (kT). (3.53)
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3.2.6. Design of the u,(kT) Control Term to Achieve the Ideal Model Characteristics
in (3.35) '

The u,(kT) control term in (2.63) must be redesigned in order to accommodate the
AA-effects. To accomplish this, K » in (2.64) is designed to achieve the ideal model characteristics in

(3.35). The control designer must choose I?p according to the subspace stabilization technique
presented in Subsection 2.11.1, with 4 replaced by Ay and A4 replaced by 4 v =e*" throughout the
design process, and with the restriction that the eigenvalues of (Z, + B, Z) and (Zz +B,Z ) in (2.84)

(which are also the eigenvalues of (Z v +BK p) ) are selected to match the eigenvalues of 4, =e“ for

Ap, defined in (3.35). Thatis, L and Z are chosen to satisfy

det[,u_[zl‘fgl |~ 0 ﬂ:det[,u—zm], (3.54)
0 |4

where Zl , E, , Zz , and §2 are defined in (2.84). The (ideal) digital-control term u,(kT) is then chosen

as

up(kn = _]?pess(kzv) ) (3.55)
=-K, (6ckT) - x(kT))

3.3. Summary of the Enhanced Digital Servo-Controller for the Ideal Case

If the plant, disturbance, servo-command, and parameter disturbance states
{x(kT), z(kT), c(kT), z,(kT) } are available for direct, real-time measurement (the ideal case), then the

enhanced digital servo-controller can be implemented ideally as
u(t;kT) = u, (t;kT) + u (t;kT) + u,(KT) +u, (t;kT) , (3.56)

where the terms u(t;kT) and u(f;kT) are given in (3.25) and (3.26), u(1;k7) is given in (3.53) when
A4#0 and u,(t,kT)=0 when A4 = 0, and u,(kT) is designed as in Subsection 3.2.6 when the term

u,(t;kT) is included, or as in Section 2.11 when u,(t,kT)=0

3.3.1. Practical Realization of the Enhanced Digital Servo-Controller

Two state-observers were designed in Chapter 2. The same discrete-time reduced-
order state-observer described in Subsection 2.13.3 is used here to estimate C(kT) of the servo-command

state c(kT). Estimates X(kT), Z2(kT), and Z,(kT) of the plant state x(kT), disturbance state z(kT), and
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the parameter-perturbation state z,(k7), respectively, will be obtained from a modified form of the
discrete-time full-order state-observer in (2.107). This modified state-observer, called a “hybrid
composite state-observer” [33], differs from the discrete-time full-order state-observer described in
Subsection 2.13.2 in that the hybrid full-order state-observer uses a D/C control input u(#,kT) as opposed
to the stepwise-constant z.0.h.-type of control input u(kT) used by the discrete-time full-order observer.
The particular hybrid composite state-observer to be presented in Subsection 3.3.3 is based on the ideas

. in [33].

3.3.2. A Discrete-Time Composite Model of the Plant, Disturbance, and Parameter-
Perturbation Dynamics

In order to design the hybrid full-order state-observer, a composite system must be
obtained. Substituting (3.43) into (3.32) yields

(t) = Ay x(t) + Bu(t) + Fw(t) — w, (t). (3.57)

A discrete-time model for (3.57) can be determined by the same procedure used in Section 2.6 to obtain
(2.18). In that way, the following difference equation is obtained (assuming u(f) = u(kT) = constant):

x(k + DT = Ay x(kT) + Bu(kT) + FH 2(kT) + 7 (kT) - v, ((k+1)T), (3.58)

~

where B , FH »and " are as derived in (2.18) and (2.23) (with 4 replaced by 4,), 4 v =e®" and
V. (k+DT= f e Ty (r+kT)dr. (3.59)

Note that ¥,((k+1)T) is similar to the 7 ((k+1)T)-term in (2.18). The term
V,((k+1T) requires knowledge of w,(7) (actually (A4)x(7)) over the entire sampling-interval
kT<7<(k+1)T. In general, at the time ¢ = kT it is impossible to accurately and consistently predict the

time-behavior of the uncertain, unmeasurable quantity (A4)x(7) over the remainder of that sampling-
interval. Therefore to make (3.58) practically useful, it is necessary to further investigate and
approximate the term ¥, ((k +1)T) in (3.59). The ¥,((k +1)T) term can be simplified by incorporating

the waveform-model in (3.45) for the time variations of —(AD)x(t)=w, (7). Substituting 7 for ¢ in
(3.45) and substituting the result into (3.59) yields
. ((k+1)T= f e TIH 7 (r+kT)dz . (3.60)

- Using (3.45) and methods similar to those used to obtain z(7) in (2.22), the general
solution of z,(7) is written as

2,() = ®p, (1,T)2, (D) + [ @, (2,00, (5)de, (3.61)
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where @p, represents the state-transition matrix for matrix D, in (3.45). Substituting (3.61) into (3.60)
and simplifying terms yields

V,(k+1)T = H,z,(kKT) + 7, (kT), (3.62)
where

H, = fe“”(r")HaeD‘"dr,

a

and
7.(kT) = fef*"-f)H,, [e> 90, &+ knagir.

Consolidating (3.58) and (3.62) yields the “exact” discrete-time plant-model

x((k + 1)T) = A, x(kT) + Bu(kT) + FNHz(kT)— H,z,(kT)+ 7(kT) - 7,(kT), (3.63)
y=Cx(kT)

which is mathematically equivalent to (3.58) under the model assumption in (3.45) and under the
assumption that %(z) = u(kT) = constant .

A discrete-time model for the time-evolution of z,(kT) can be developed by letting
7> (,+(k+1)T) in (3.61) and recalling from the comments below (2.18) that (k+1)T denotes

t,+(k+1)T to obtain
z2,((k+1)T) = D,z,(kT) + &, (kT), (3.64)

where

D,=¢e" D, is assumed constant,

and
T
G,(kT) = L ePDg (£+ kT)dE .

Expressions (2.25), (3.63), and (3.64) can now be combined to form the composite
discrete-time model
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x((k+DT)) |4y | FH |- H, | x(kT) 7 (kT) - 7, (KT)

B
2k+D) [=| 0 | D | 0 |27 |[+] 0|ukn)+|  5GkT)
z(*+0T)) |0 | 0 | B, \zGn) (0 &, (kT)
(3.65)
x(kT)
Y(kT)=(C | 0| 0) 2(kT)
z,(kT)

However, the model in (3.65) is obtained under the assumption that the control-action
remains constant between the sample times (u(z) = u(kT) = constant) and therefore is not an accurate
model when a D/C control-action is used. In that case, (3.65) must be modified to include the time-
varying portion of the D/C servo-control in (3.56). Across each of the sampling intervals, the control-
action governed by (3.56) can be divided into a discrete-time part u,(kT), that consists of a stepwise-
constant zero-order-hold type control-action, and a continuous “time-varying interpolating” [33] part

u(-). Thus, u(7) can be written as

w(r)=u,(kT) +u,(7); kT<7t<(k+1T, (3.66)
where u,(kT) is constant in value between consecutive sample times and

u,(7) = u, (7;kT) + u (7;kT) + u (7;kT) (3.67)
is the portion of u(#;kT) in (3.56) that is allowed to vary with time across each intersample interval.

The time-varying nature of u(7) changes the structure of the discrete-time model in
(3.65). In order to modify (3.65) to accurately reflect the time-varying nature of the D/C servo-control in
(3.56), it is necessary to return to the general solution of (3.57)

x((k + 1)T)) = e x(kT) + f e Bu(z)dr + ¥((k + 1)T) - V,((k+DT), (3.68)
and incorporate (2.23), (3.62), and (3.66) to obtain

x((k +1D)T)) = 4, x(kT) + f e (7= B[up(kT) +u, (r)]dz' + sz(kn

(3.69)
+7(KT) - H,z,(kT) - 7, (kT)
Since u,(kT) is constant, it can be factored out of the integral in (3.69), resulting in
xX((k+DT)) = Ay x(kT)+ Bu, (kT) + y(u, ) + FH z(kT)+ 7 (kT) (3.70)

- H,z,(kT)~7,(kT)

where
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W)= f T By (D)dr .

Using (3.69), the composite discrete-time model from (3.65) is rewritten to accurately
reflect the time-varying nature of the digital servo-controller in (3.56)

ForAA=0:
x((k+1)T))_ ilrm (x(kr)) (é) i+ (£ (mr))
(z((k+1)T) _[0 | 5} zy) |\ 0) ¥ T )+ &(kT)
. (3.71)
_ x(kT))
HED=(C| O)(z(kT)
and
For A4 #0:
X(k+)T)) | Ay | FH | -8, [ k1)) (B w(u,)
Zk+DT) [=| 0 | D | 0 | z(kT) |+| 0 |u,(kD)+| 0
z,((k+)T) | 0| 0 | D, \z,,kT)) |0 0
Y (KT)—-7,(kT)
+ o(kT) . (3.72)
5, (T)
x(kT)
WKT)=(C | 0 | 0)| z(AT)
z,(kT)

The quantities y(kT), 7,(kT), o(kT), and &,(kT) in (3.71) and (3.72) are
completely unknown, unpredictable, and unmeasurable “residual-effects” [33,34]. The ¥ (kT) and
G(kT) are consequences of the sparse, uncertain o(f) impulses associated with the external disturbance
model for w(?) in (2.20) and the 7,(kT) and &,(kT) are consequences of the uncertain o,(t) impulses
associated the parameter perturbation model in (3.45), each of which arrive in a random, time-sparse
manner during the intervals between each of the sampling instants k7'<¢ < (k +1)T. The () impulses
are similar to the unpredictable and uncontrollable off) impulses discussed in Section 2.6. For the

reasons stated below (2.26), the o) (and also the oy (#) term), and consequently the
7 (kT), 7,(kT), G(kT), and &, (kT) terms as well, will be ignored. Thus (3.71) and (3.72) are rewritten

in the truncated form
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For AA=0:
x((k+17T) l FH (x(kf)) ( J w(u,)
(z((k + 1)T)J [ J 2(kT) 0 U, (KT) +( ) (3.73)

YD) =(C | 0)(;‘%})

and
For A4 #0:
*(k+ DD | Ay | FH |- 8, | ) (B w(u,)
Z((k+DT) |=| 0 | D | 0 | z(kT) |+ 0 u,(kT)+| 0
2, ((k +1)T) 0|0 | D, \z,(k1D) |0 0
. (3.74)
x(kT)
Y(KT)=(C | 0] 0) z(kT)
z, (kT)

3.3.3. The Design of Hybrld Full-Order State-Observers for the Composite Systems
in (3.73) and (3.74)
The hybrid full-order state-observer for the composite system in (3.73) is obtained by

adding the control-related term (ﬂ(:—’)) in (3.73) to the discrete-time full-order observer equations in

(2.107) as follows:

2(kT) P 0
(3.75)

02

=~ | K : . L
where K, = [_I%J i1s precisely the same observer gain-matrix designed in Subsection 2.13.2

02
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The hybrid full-order state-observer for the composite system in (3.74) is obtained by
incorporating the composite model from (3.74) into the discrete-time full-order observer equations in

y(u,)
(2.107) and adding the control-related term | 0 | in (3.74) as follows:
0
M(k+DT)) |4y |FH |-, [ (k1)) (B w(y,)
2(k+DT)[=| 0 | D | 0 | 2,1 |+ 0 (u,(kT)+| 0
z,((k+1)T) 00| D, \z2,k1)) |0 0
, (3.76)
Ky ] #(D)
+| Ky [(C |0 0) 2(kT) |- y(kT)
0| z,(kT)
Ky
where K, =| K, | is an observer gain-matrix to be designed.
Ky

The general evolution equation for the error dynamics of the hybrid full-order state-
observer in (3.76) is obtained in the same manner as (2.109), using the composite system from (3.74).
The result is as follows:

&((k+DT)) (#(k+1DT) ( x((k+1)T)
&((k+ D7) | =| 2(k+DT) | -] z((k +1)T)
&, (k+DT)) Z,(k+1D)) \z,((k+DT)

(3.77)
Ay + K, C | FH |- H, [ £, (kT)
=| _K,C 0 | & (D)

~

KosC 0| D, &, (kT)

o))

As discussed in Subsection 2.13.2, it is desirable to design X, so that the observer

& (kT)
error | &,(kT)
&, (kT)

and z,(kT) are completely observable, that is, if, and only if

approaches zero promptly. This can be achieved if, and only if, the states x(kT), z(kT),
rank’:CoT | a7cr | acr|..| gr C(,T]=n+p+n2
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where

ZN FTH _Na
4= 0| D | o |,
0 0 | D,
and
Co=(C0]0).

In that case, standard pole placement techniques are used to determine an appropriate I?o . In that way,
1?0 is designed such that the eigenvalues A; of the block-matrix (see (3.77))

~

Ay +K,C | FH |- H,
K,,C 0 | D,

are at sufficiently-damped locations inside the unit circle (4] <1) of the complex plane. Designing K,
to achieve this latter condition will assure that the estimated values X(kT), 2(kT), and Z,(kT) of the
plant, external disturbance, and parameter-perturbation states, respectively, quickly converge to and

accurately track the corresponding actual plant state x(kT), disturbance state z(kT), and parameter-
perturbation state z,(kT).

A detailed block diagram of the hybrid full-order observers in (3.75) and (3.76) is
shown in Figure 3.1. This hybrid full-order observer replaces (2.107) as presented in Subsection 2.13.2,
when the add-on enhancements in Chapter 3 are incorporated into the new digital servo-controller. The
dashed lines in Figure 3.1 are the components of the hybrid full-order observer in (3.76) that differ from
the discrete-time full-order state-observer shown in F igure 2.8.
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Figure 3.1 A Hybrid Full-Order Observer for Generating Real-Time Estimates of the Plant State x(kT),
Disturbance State z(kT), and Parameter-Perturbation State z,(k7).

Incorporation of the discrete-time reduced-order state-observer (from Subsection 2.13.3) and
the hybrid full-order state-observer in (3.75) for A4 = 0 or in (3.76) for A4 = 0 will result in a physically-
realizable implementation of the digital servo-control law in (3.56) having the form

u(t; kT) =T e *D2(kT) + T,e*DE(T) - K, (04(KT) - £(KT))

+T,eP0"z (kT)

. (3.79)

3.4. Improved Tracking Performance through Multirate Sampling

Up to this point in the design of the digital servo-tracking controller, the periodic samplers of
the system output data y(r) and command input data Yt) have been assumed to operate in a fully
synchronized manner with the same sampling-period T (sampling-rate 1/7). In conventional digital-
control this is called a single-rate system. Although single-rate systems comprise the vast majority of
implemented digital control systems, there also exist practical, digitally-controlled systems which utilize
two or more synchronized samplers operating at different sampling-rates. Such systems are referred to as
multirate digital control systems.
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Practical applications where a multirate digital-control system is used can be found in aircraft
flight-control systems where the flight-control data-link computer typically operates at a rate different
from the rate of the radar antenna [80]. Multirate sampling is sometimes introduced deliberately into the
controller in order to improve system performance. A digital controller operating at a higher rate than
the basic sampling-rate for the system measurements is an example of this sort of situation [79]. It was
shown in [58] that properly designed, multirate digital controllers can achieve higher performance than
those using single-rate sampling.

In principle, the new digital servo-tracking controller as developed in Chapters 2 and 3 can
utilize different sampling-rates to achieve a level of servo-tracking performance that cannot be matched
using a single-rate servo-controller. There are many different ways of implementing the digital servo-
tracking controller in (3.79) as a multirate servo-controller. For example, each of the control terms in
(3.79) could be implemented at a different sample-rate determined by individual design specifications, or
by analysis of the problem requirements.

A particular multirate implementation technique that has been used in many practical
applications is the technique involving two distinct and synchronized sample-periods, T, and 7,,
associated with the two distinct vector-inputs, y. and y, to the digital servo-tracking controller u(#;kT).
The first sample-period T is associated with the real-time measurements, or processing, of the servo-
command vector y(f). Updates of the servo-command data are assumed to be available every t = kT,
k=0, 1, 2, ... . The second sample-period T, is associated with the measurements, or processing, of the

plant-output vector y(#). The sample periods 7, and T, are synchronized and assumed to have the integer-
multiple relationship

T, =1, (3.80)

where 77 is a positive integer. This particular multirate system is illustrated in Figure 3.2.

w(f)

F

ye(t) Muttirate Digital (KT, kT ) .

c y Servo-Tracking JU(LKkTy kT x(t x(t
_‘/: Controller & > B | © { ® C 44
Te Corresponding >
State-Estimators
AN / Ty
A

Figure 3.2 Configuration of a Two-Rate Type of Multirate Digital Servo-Tracking Controller.
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In the implementation of (3.79) as a two-rate type of multirate digital servo-controller, the
control terms associated with the plant run at the sample-rate I/T, and the control terms primarily
associated with the servo-command y(r) operate at the different sample-rate 1/ I.=1/(nT,) For
example, the control terms % and u, in (3.56) would typically run at a higher sample-rate 1/7,, in order to
better respond to changes in the external disturbance w(z) and parameter perturbations A4. On the other

hand, the control terms u;, and u, in (3.56) would typically not require processing at that same rate and
could be implemented to run at the slower rate 1/7,. In that case, the physically-realizable digital servo-

tracking controller from (3.79) would have the form
WGETRT,)) = u (KT + u (4 KT,) + u,(kI;) +u,(t;kT,)

= (pn . . (3.81
=T,e” ™ M3(kT,) + T,e5e(4T,) - R, (9E(RT,) - £(kT,)) (3:31)

+T,e™ "™z 1)

For this example, the hybrid full-order state-observer in (3.76) would be implemented using
sample-period 7, while the discrete-time reduced-order state-observer in (2.1 13) would be implemented
using sample-period 7,. Those state-observer designs will yield the state estimates X(kT,), 2(KT,),

z, (AT,), and ¢(kT,). If any of the digital-control terms involve intersample, time-varying components,
the w(u,) term in the hybrid full-order state-observer design must be computed as (refer to (3.70))

k+D)T, .
w(u,)= f e EDLD By (N (3.82)

Y

Notice that the control term u,(kT,) = -K » (6’6(k7;) — x(kT, )) in (3.81) requires estimates

X(kT,) of the plant state x(7) at each of the times 7 = kT, k=0, 1, 2, .... However, those state estimates

are generated for the sample-period 7;, by virtue of the hybrid full-order state-observer running at sample-
rate 1/T,. Also, recall that it is assumed in this Section that the samplers are synchronized and the
sample-periods have the integer-multiple relationship given in (3.80). Then the necessary estimate
%(kT,) may be obtained by passing J?(IcTy) through a zero-order-hold device having a hold time of T..

The digital servo-tracking control law in (3.56) can be modified to take full benefit of the use
of multiple sample-rates. For example, the particular multirate servo-controller in (3.81) can be altered
such that an inherently unstable, or highly-oscillatory, plant (4, matrix having poles in the right-half
complex plane or on, or near, the imaginary axis) would be controlled and stabilized at the higher
sample-rate 1/7,. In that way an additional control term, postulated in continuous-time as
u, (t)=K,x(t), should be designed such that the continuous-time homogeneous equation

x(t)=(Ay + BK,)x(t), (3.83)
has certain specified eigenvalues. For that purpose, K,, should be selected such that
det[ Al - (4, + BK,, )= 2, (4), (3.84)

where P,,(A) is given in (3.36) and the matrix An in (3.35) is replaced by the composite matrix Ay+BK,,
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A,=A4y +BK, . (3.85)

The discrete-time counterpart to the design of K,, in (3.83) is to choose K, to obtain

det[,u —(4, + B, )] = det[,u - Z,,], (3.86)
where,

ZN = el ,

B= LTy eA”(T’_f)de',

Zm =™l ; for 4,, defined in (3.85),
and select

u, (kT,)=K,x(kT,). (3.87)

Assuming the ideal choice for u, (kT,) in (3.87) is implemented, the control terms ult:;kT.)
in (3.26) and u,(kT.) in (3.55) would be designed using the new 4 matrix. That is, the term Ay (or 4)
would be replaced by 4y +BK, (or 4 + BK ) and Ay (or 4) would be replaced by the matrix

(Ay+BK,)T, (4 +BK,)T,

exponential e (or e ) throughout the design of u,(#;k7,) in Subsection 3.1.3 and u,(kT;)
in Subsection 3.2.6 (for A4 # 0) or Section 2.11 (for A4 = 0). In that wa , the improved ideal multirate
servo-controller equation in (3.81) becomes

U KT, KT ) = u  (6KT, ) + u, (5KT,) + i, (KT, ) + u, (KT, + u,_ (AT, )

=T W2(kT,) + T,eE (kT (3.88)

— K, (0c(KT,) - x(KT,)) + T ™55, (KT,)+ K, x(kT,)

Estimates 2(kT,), *(kT)), 2,(kT,), and &(kT,) are obtained from a discrete-time reduced-

order and hybrid full-order state-observer as described in Subsections 2.13.3 and 3.3.3, respectively.

Incorporation of those state-observers will result in a physically-realizable, multirate servo-tracking
control algorithm.
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4. SOME ILLUSTRATIVE EXAMPLES AND SIMULATION RESULTS

4.1. Description of the Examples to be Considered

In this chapter the new digital servo-tracking controller design procedure, developed in
Chapters 2 and 3, is applied to several specific examples to illustrate the effectiveness of the design
process and the closed-loop performance. In particular, the following examples and subcases are

considered:

Example 1)

Example 2)

Example 3)

Example 4)

An unstable second-order plant with a stepwise-constant disturbance w(¢) and a stepwise-
constant servo-command y(f). A digital servo-tracking controller u(k7) is designed by the
subspace stabilization method presented in Chapter 2. Simulation results are presented to
illustrate the servo-tracking performance.

A third-order plant with a stepwise-constant disturbance w(f) and a stepwise-constant
servo-command y.(f). A digital servo-tracking controller u(kT) is designed by the subspace
stabilization method presented in Chapter 2. Simulations results are given to illustrate the
servo-tracking performance and to show the motions of the servo-state vector e, (kT)

within the N[é] ;

A stable first-order plant with a step+ramp disturbance w(?) and a step servo-command
y{®). A digital servo-tracking controller is designed and simulation results are given for the
following four subcases:

Subcase 1) a plant with known, constant parameters controlled by a digital servo-
controller #(k7) using conventional stepwise-constant (z.0.h.) control-action
(from Chapter 2);

Subcase 2) a plant with known, constant parameters controlled by a digital servo-
controller (£;kT) using one form of digital-continuous control-action (from
Chapter 3);

Subcase 3) a plant with constant, uncertain parameters controlled by a digital servo-
controller u(t;kT) using digital-continuous control-action (from Chapter 3).
This is compared with the results for the same plant and uncertain parameters
using stepwise-constant (z.0.h.) control-action u(kT); and

Subcase 4) a plant with constant, uncertain parameters controlled by a multirate servo-
controller u(#;kT.;kT,) using digital-continuous control-action (from Chapter
3);

An unstable first-order plant with a step+ramp disturbance w(t) and a constant+exponential
servo-command yc(t). A single-rate u(tkT) (Subcase 4a) and multirate u(t;kTc;kTy)
(Subcase 4b) servo-controller utilizing digital-continuous control-action (from Chapter 3) is
designed and simulation results are given for the case of known, constant plant parameters
and the case of constant, uncertain plant parameters; and
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Example 5) An unstable second-order plant with a (steptramp) x exponential disturbance w(t) and a
stepwise-constant servo-command yc(t). A single-rate u(t;kT) (Subcase 5a) and multirate
u(t;kTe;kTy) (Subcase 5b) servo-controller utilizing digital-continuous control-action (from
Chapter 3) is designed and simulation results are given for fixed plant parameters and for
constant, uncertain plant parameters.

4.2. Example 1: Digital Servo-Tracking Control Design Utilizing a Stepwise-Constant
(z.0.h.) Control-Action u(kT) for the Case of a Second-Order Plant and Stepwise-
Constant Servo-Command y(7) Subjected to a Stepwise-Constant Disturbance w(r)

The purpose of Example 1 is to illustrate the digital servo-tracking controller design
techniques presented in Chapter 2. This example is worked for the case of a digital servo-controller
using stepwise-constant (z.0.h.) control-action (k7). Simulation results are provided for the example

plant.

4.2.1. Plant, Disturbance, and Servo-Command Models for Example 1

The plant for Example 1 is modeled by the following second-order differential
equation:

Y@ =u(t)+w(r). “.1)
The disturbance w(?) is an uncertain, unmeasurable stepwise-constant disturbance represented by
w(t) =c, 4.2)

where ¢; may “jump” in value from time-to-time. The interval between successive jumps in ¢; is
assumed to be somewhat larger than the sampling-period T

The state model for the plant in (4.1) is easily determined by choosing x (0 =y(1),
and x, = y(t) as follows:

x(1) = Ax(t) + Bu(t) + Fw(t)

()= Cx(t) ’

A=[g (])],B=m, F=((1)J, C=(1, 0).

A similar state model is developed for the disturbance w(?) in (4.2), using the
techniques described in Section 2.5, by noting that, between jumps in c,, the disturbance w(?) is governed
by the linear homogeneous differential equation

" (43)

where

w(1)=0. (4.4)
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Using the methods described in Section 2.5, the state model for w(?) is obtained as

w(t) = Hz(t) “5)
3(t)=Dz(t)+o(t) ’ )

where

and

o(?) are uncertain, sparse sequences of impulses that “cause” the occasional “jumps”
in the disturbance w(f).

Using the technique described in Section 2.6, discrete-time models are obtained for
the plant and the disturbance. Those models are (the sample-period T is held as a variable throughout the

computations):

Plant:
x((k + )T) = Ax(kT) + Bu(kT) + FH2(kT) + 7 (kT) 4.6)
Y(kT) = Cx(kT)

where
G (1T

0 1|
TZ
Fe [etpae ] 7 |
T
TZ
I;H= fe’“T")FHeD’dr= 2,
T
C=(1, 0),

7 (kT)= fe'”"’FH [ Do H)agdr ;

and
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Disturbance:

w(kT) = Hz(kT)

~ R 4.7
2((k+1)T)= Dz(kT)+ o (kT)
where
H=1,
D=ePT = =1,

5(kT) = fe”"-ﬂa(.§+ kT)dE .

The servo-command y(7) is assumed to be an unknown stepwise-constant command
represented by

y.(O=¢, , 4.8)
where ¢| may occasionally jump in value at unknown times.

The linear homogeneous differential equation governing the motions of y.(?) in (4.8)
between jumps in ¢, is

Je()=0. 4.9)

A state model for the servo-command y(f) is obtained using (4.9) and the method
outlined in Section 2.5. That state model is obtained as

Y.(1)=Gc(t)

¢(t)=Ec(t)+pt) °’ (4.10)
where
G=1,
E=0,
and

#(t) are unknown, sparse sequences of impulses that “cause” the sparse uncertain “jumps” in the servo-
command y(?).

Using the technique described in Section 2.6, a discrete-time model is obtained for
the servo-command. In that way, this model is written as

Y. (kT)=Ge(kT)

c((k+1)T)= Ec(kT)+ Ji(kT) ’ (4.11)
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where

and
T
B(D)= [ "D u(¢ + kD¢ .

For reasons discussed in Chapter 2, the unknown, unpredictable terms ¥(kT),
G(kT), and Z(kT) in (4.6), (4.7), and (4.11) are disregarded throughout the design process.

4.2.2. The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for
Example 1

The objective is to design a digital servo-tracking controller for the plant in (4.1) such
that the tracking-error, defined by

£,()=y.()-y(1), (4.12)
goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is

that the vector servo-command input y(f) must consistently lie in the column range-space of the plant-
output matrix C in (4.3) for all ¢. In the present example, satisfaction of this condition requires that (from

(2.33))
R[G]c R[C] : (4.13)
If (4.13) is satisfied, then it is possible to express G as some linear combination of the columns of C.

That is, G = Cé for some possibly nonunique 6. Substituting C and G from (4.3) and (4.10) into G = C8
yields

1=(1, 0)6. (4.14)

Expression (4.14) is satisfied for the following 6:

€=((1)) ' 4.15)

The discrete-time models for the plant (4.6), disturbance (4.7), servo-command
(4.11), and the @ determined in (4.15) will now be used to design a digital servo-tracking controller using
the design techniques presented in Chapter 2 of this report.
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4.2.3. The Necessary and Sufficient Conditions for Stabilizing e (kT) to S, for
Example 1

The control task is to design a discrete-time control algorithm for #(kT) such that the
servo-state vector eq(k7) defined in (2.38) becomes stable to and invariant for a subspace

Sy =N[6 ] gN[C], for some C in (2.46), having largest dimension v, v=0, 1, ..., n—m. To perform
this task, begin by choosing V=n-m=2~-1=1 (the dimension of N[C] is 1). The n x (n-m) maximal
rank matrix M is chosen such that (same as (2.92))

CM=(1, 0)M=0,

where M is selected as

M:@. (4.16)

Next, form the set R,,_,, according to the procedure given in Subsection 2.11.7. For Example 1, that set

1S
R, ., =R, ={l}={R,}. 4.17)

n—m

Since the R,,_,, contains only one element, we choose R = R,,, form the matrix product

()

and choose C according to (2.46) and (2.66), in which case,
C=Cc=(1, 0). (4.18)

Now the necessary and sufficient conditions for €,(kT) to be asymptotically stabilized to

S, =N[6]=N[c] forthe 4, B, FH, E, O MR and € in (4.6), (4.11), (4.15), (4.16), (4.17), and

(4.18) are as follows (refer to the conditions on page 62)

condition a': R[CAMR]c R[CB]; (from (2.80)),
or equivalently,
rank|C | CAMR|= rank[‘c‘ﬁ]; (from (2.81)),

where
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rank[éif l E'ZMR] = rankl:zi , TJ =1,
2
and
rank[fl?] = rankIjT;J =1.

Clearly, condition a’ is met;

condition b’ there exists a fs such that (2.60) is satisfied. The necessary and sufficient condition

for the existence ofa T’ s satisfying (2.60) is (same as (2.52))
rank[COE - TA0 | CB|= rank[EE],

where

rank[COE - C 46 | 5§]=rank[0

2
T_J=1,
2

and rank[fﬁ] =1 was determined in condition a’ above. Clearly, condition b’ is met

and T’ s is chosen to satisfy (same as (2.60))
~ o~ e T2 o
qBE—Ae—Brs]b?rs:o. (4.19)
A T, that satisfies (4.19) for Example 1 is

T, =o0. (4.20)
The digital control term u,(kT) in (2.62) can thus be chosen ideally as

u,(kT) =T, c(kT)

0wk’ (4.21)

condition ¢’: there exists a I . such that (2.59) is satisfied. The necessary and sufficient condition
for existence of a ' . satisfying (2.59) is (same as (2.53))

rank[ﬁ F | Eﬁ] = rank[CB],

where
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~ 2 2
rank[’c‘ FH | 6§J - rank!:%— Z{J -1,

and rank[fl?] =1 was determined in condition a’. Clearly condition ¢’ is met and T".

is chosen to satisfy (same as (2.59))

N 2 2
C[Eﬁ + FHJ = T—rc +L oo (4.22)
2 2
A T, that satisfies (4.22) for Example 1 is

L =-1. (4.23)

The digital control term u.(k7) in (2.61) can thus be chosen ideally as

u. (kD) =T (k) (424)
=-1z(kT)
condition d': there exists an » x (n - V) constant L such that solutions Ea(KT) to (2.85) are

uniformly and asymptotically stable to the null-point & ,(kT)=0. The characteristic
polynomial of the system in (2.85) is

~ o T2
det(lI-(Al +BIL))=,1—7L -1, (4.25)

where 4, and B, are defined in (2.84). One choice for I that will achieve |2| <lin
(4.25)is

- =2
I-=. (4.26)

4.24. The Necessary and Sufficient Conditions for Maintaining Bounded Motions of
€. (kT) within S,

Conditions a', b/, ¢/, and d' in the previous Subsection have been met. It remains to
test the condition necessary to satisfactorily maintain bounded motions of €, (kT) within the subspace

S, = N{f = C] . As discussed in Subsection 2.11.6, there must exist an r x (n - m) gain term Z such that

all solutions &, (kT) to (2.88) remain bounded. The characteristic polynomial of the system in (2.88) is

det(/?.l (4, + EZZ)) =A+1, 4.27)
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where 4, =-1 and B, =0 (refer to (2.84)). Clearly, (4.27) is independent of Z and the choice of Z is
arbitrary, assuming the eigenvalue A of Zz is such that lﬂl <1. From (4.27) we have A =-1, therefore

this condition is not satisfied.

4.2.5. The Necessary and Sufficient Conditions and the Digital Servo-Controller
Design for Stabilizing e (kT) to the Nullpoint

In the previous Subsection, the necessary and sufficient condition for maintaining
bounded motions of &, (k7T) within a subspace S, failed to be satisfied. We then proceed to test
subspace Sy where V=n-m-1=2-1-1=0. The subspace S is the “improper” subspace known as
the nullpoint. For the special case of nullpoint stabilization, C =1 (where Iisthe nxn (n= 2) identity
matrix) and the design of #(k7) in (2.55) proceeds as follows.

The necessary and sufficient conditions for existence of the control terms u.(k7)
satisfying (2.56) and u,(kT) satisfying (2.57) is given in (2.53) and (2.52), respectively. Satisfaction of
those conditions is shown as follows (where C =1 ):

for ukT): rank[E i | C‘EJ = rank[b'ﬁ] : (same as (2.53)), (4.28)
where
T | 12
rank[EfH | 6§]=rank 2|2 |,
T | T
and
b
mk[5§]= rank| 2 |=1;
T
for u(kT): rank[5 QE-CAe I 55] = rank[fﬁ]; (same as (2.52)), (4.29)
where
2
rank|CO E - T4 | CB|=rank| | 2 |=1,
o T
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and rank[E"E] is given below (4.28).

The rank conditions in (4.28) and (4.29) are met and T . and r s are designed to satisfy (2.59) and (2.60),

respectively. That is,

. T2 T2
for T.: 5(§fc+F~H)= 2 [+ 2 |=0;
. T T
T2
for T ; 5(495-29-1?1):- 2 IF =0.
T

The T, and T, that satisfy (4.30) and (4.31) are
T =-1,
and
T =o0.
The ideal digital-control terms u(kT) and u(kT) in (2.61) and (2.62) can thus be written as

u (kT) =T z(kT)
=—1z(kT)’

and

u,(kT) =T c(kT)
=0c(kT)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

The u,(kT) control term is postulated as in (2.63), where the gain-matrix X p is

- designed to place the eigenvalues of (4+BK ») in (2.64) at sufficiently damped locations inside the unit

circle l/l,.l <1. For the present example, the gain-matrix I?p is designed such that all eigenvalues of

. (4+BK ») in (2.64) are at zero. The design of 1?p is shown as follows:

. 2 e T
det(,u-(A+BK,,))=,1 -2+ K TR A 1=K, +1R,, |

=0
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The appropriate choice of K , for achieving 4, = 0 (deadbeat response) in (4.36) is to choose K » as

K,= (‘;'21‘ ;—;-) (4.37)

such that the ideal choice for #,(k7) in (2.63) becomes

up(kT) = _ers.v(kT)

1 3
=(F’ Ef)esr(kT)
(4.38)
1 3
=(;2_, ﬁ)(oc(kr)-x(kr))
1

3
= T( y.(kT)— y(kT))-Exz(kT)

4.2.6. Practical Realization of the Digital Servo-Tracking Controller for Example 1

The ideal digital servo-tracking control law designed using the methods described in
Sections 2.9 through 2.11 for Example 1 described by the plant, disturbance, and servo-command in
(4.1), (4.2), and (4.8), is as follows

W(kT) = u (kT)+u,(KT) + u, (KT), (4.39)

where u(kT), u(kT), and u,(kT) are given in (4.34), (4.35), and (4.38), respectively.

The digital servo-tracking controller in (4.39) is designed for the ideal case where
exact measurements of x(kT), z(kT), and c(kT) are assumed available. For this example, y(f) is a
stepwise-constant which is directly measurable at each of the times 7 = kT, k=0,1,2, ... Thus,
estimates of c(kT) are not needed ( y(kT) = c(kT) ). On the other hand, the state vectors z(kT) and x(kT)
(with the exception x,(kT)=y(kT)) are not available for measurement and must be estimated.
Estimates Z(kT) and £(kT) of z(kT) and x(kT), respectively, can be generated by a discrete-time full-
order state-observer as described in Subsection 2.13.2. The general form for the discrete-time full-order
state-observer is (same as (2.107))

(i((k+l)T))_ 1l Fr (f(kT))
#k+0D) "o 1 B \ean)

= K, |. . . . ~ T o~
where K =[—°—’—:, is an observer gain-matrix to be designed, and 4, FH, B, C, and D are defined in

Blirys[ B c o 201
[Oju(kT)+[Eon[(C [ 0) 3 y(kT) |, (4.40)

~

02

(4.6) and (4.7).

The general discrete-time evolution equation for the error dynamics of the discrete-
time full-order state-observer is (same as (2.109))
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(sx((k+ I)T)) _ (J?((k+ I)T)) (x((k+1)T)J
& ((k+D)T)) ~\&((k+1)T)) "\ z(k+DT)

_|4+K,c | FH (Sx(kT))
]?ozc D \&(AT)

It is desirable to design X, so that the observer error (

(4.41)

SX

Ez(kTD always converges to

zero promptly, from any initial condition. Pole placement techniques can be used to determine an
appropriate 1?0 - The characteristic polynomial of the observer error in (4.41) is

-
o
_ 2
detl —|A+KaC | FHI| 4ol 0 | T
K,C | D
0 0 1
i 1

~ ~ ~ T? o
=2 (K +3)2 +(21<0, ~T Ky, - Ko, +3),1 (4.42)
~ ~ T? -

For the present example, I?o is designed such that the roots of the characteristic polynomial in (4.42) are
at 4, = 0 (deadbeat response). A I?o that achieves deadbeat observer response is:

(4.43)

The discrete-time full-order state-observer for X(kT) and Z(kT) is then obtained by substituting values
from (4.6) and (4.7) into (4.40). The result is

o T_2
- *((k+1)T) 2 2(kT) 2
LG+DD[=| 0 1 T 5G|+ T u(k7)+(1?0)(£(k7)-y(k7)), (4.44)
Z((k+1T) z, (kT),
0 0 1 | 0

91



where y(kT) and u(kT) in (4.44) are the inputs and £(kT), 2(kT), £((k +1)T), and 2((k +1)T) are the

outputs of the discrete-time full-order state-observer, and K, is given in (4.43).

4.2.7. Simulation Results for Example 1

Incorporation of the discrete-time full-order state-observer equations in (4.44) into
(4.39) results in the following physically-realizable digital servo-tracking control law for Example 1:

u(kT) =u,(KT) + u,(kT) + u,(kT)

A 1 3 . (4.45)
= 5T+ — (. (K1)~ YD) ~ 5 5, (KT)

Simulations results were obtained for the unstable, second-order plant (4.1), stepwise-
constant disturbance (4.2), and stepwise-constant servo-command (4.8), compensated by the digital
servo-controller in (4.45) using a control sample-period of T=0.1. The simulation results shown in
Figure 4.1 illustrate the plant output y(#), the disturbance w(¢), and the servo-command y.(z) for Example
1. The simulation plot in Figure 4.2 shows the servo-tracking error £,(t)=y.(t)— y(t) for Example 1.

The large “jumps” in the servo-tracking error &(f) (lgy (t)l >1) are caused by the unexpected jumps in the

servo-command y.(f). The small fluctuations in g(f) are caused by the uncertain jumping of the
disturbance w(#). In both cases, the servo-controller in (4.45) compensates for the sudden changes in y(7)
and w(¢) and controls the tracking-error £,(t) > 0 within a finite amount of time (“settling-time™).
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Figure 4.1 Illustration of the Plant Output y(z), Disturbance w(f), and Servo-Command y(t) for
Example 1.

0 5 10

Figure 4.2 Illustration of the Servo-Tracking Error (8 =y(0) - »(p) for Example 1.
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4.3. Example 2: Digital Servo-Tracking Control Design Utilizing a Stepwise Constant
Control-Action u(kT) for the Case of a Third-Order Plant and Stepwise-Constant Servo-
Command y(f) Subjected to a Stepwise-Constant Disturbance w(f)

The purpose of Example 2 is to illustrate the subspace stabilization procedure presented in
Chapter 2. This example is worked for the case of a digital servo-controller using stepwise-constant
(z.0.h.) control-action #(kT). Simulation results are provided for the example plant.

4.3.1. Plant, Disturbance, and Servo-Command Models for Example 2

The plant for Example 2 is modeled by the following third order differential
equation’:

V()= (1) = 059(t)— y(t)+ iy (£) — i, (1) + 05, (1) + u, (£) + w(2) . (4.46)

The disturbance w(f) is an uncertain, unmeasurable stepwise-constant disturbance represented by (4.2)
and having continuous-time and discrete-time state models given in (4.5) and (4.7), respectively.

The state model for the plant is easily determined by choosing x,(2)=y(1),
x, =y(t),and x; = j(¢) as follows:

(1) = Ax(t) + Bu(t) + Fw(t) (4.47)
y(t)=Cx(1) ’ '
where
0 1 0 10 0
4=/0 0 1|,B=|0 0|, F=|o0], C=(, o, 0).
-1 =05 1 0 1 1

Using the technique described in Section 2.6, a discrete-time model is obtained for
the plant. Assuming a control sample-period of T = 0.1, this model is:

x((k + 1)T) = Ax(kT) + Bu(kT) + FH z(kT) + 7T, (4.48)
Y(KT) = Cx(kT)

where

09998  0.0999  0.0052
A=e4T=-00052 09972 01051 ,
~01051 -00577 11023
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01000 00002
B= f e TDBdr = _00002 00052 |,
~00052 01051

N 0.0002
FH= f e FHeP dr = 0.0052 |,
01051

c=(1, 0, 0),

and
7(kT) = f AT ppy f P (&) dsdr .

The servo-command y(¢) is assumed to be an unknown stepwise-constant command
represented by (4.8) and having continuous-time and discrete-time state models given in (4.10) and
(4.11), respectively.

4.3.2. The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for
Example 2

The objective is to design a digital servo-tracking controller for the plant in (4.46)
such that the tracking-error, defined by

£,(0)=y.()- 1), (4.49)

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is
that the vector servo-command input y,(f) must consistently lie in the column range-space of the plant-
output matrix C in (4.47) for all #. In the present example, satisfaction of this condition requires that
(from (2.33))

R[G]|c R[] : (4.50)

If (4.50) is satisfied, then there exists a (possibly nonunique) matrix 6 such that G = C4, Substituting C
and G from (4.47) and (4.10) into G = C@ yields

1=(1, 0, 0)6. 4.51)

Expression (4.51) is satisfied for some 6. In particular,
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(4.52)

The discrete-time models for the plant (4.48), disturbance (4.7), servo-command
(4.11), and the & determined in (4.52) will now be used to design a digital servo-tracking controller using
the design techniques presented in Chapter 2 of this report.

4.3.3. The Necessary and Sufficient Conditions for Stabilizing e_(kT) to S, for
Example 2

The control task is to design a discrete-time control algorithm for u(kT) such that the
servo-state vector e (k7) defined in (2.38) becomes stable to and invariant for a subspace

Sy =N[5 ] c N[C] (for some choice of C in (2.46)) having largest dimension v, v=0, 1, ..., n—m. To
perform this task, begin by choosing V=n—-m=3-1=2 (the dimension of NC] is 2). The maximal
rank matrix M is chosen such that (same as (2.92))

CM=(1, 0, 0O)M=0,

where M is selected as

(4.53)

=)

0
M=1
0

Next, form the set R,,_,, according to the procedure given in Subsection 2.11.7. For Example 2, that set

R, , = {((1) ?]} ={Ry}. (4.54)

Since the R, _,, contains only one matrix, we choose R = R;,, form the matrix product

18

00
MR=|1 0f,
0 1

and choose C according to (2.46) and (2.66), in which case,

C=C=(1, 0, 0). | (4.55)
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Now the necessary and sufficient conditions for e, (kT) to be asymptotically stabilized to

S, =k{6]=x[c] forthe 4, B, FH, E, 6, M,R and T in (4.48), (4.11), (4.52), (4.53), (4.54), and

(4.55) are as follows (refer to the conditions on page 62)

] condition a': R[CAMR]c R[CB] (from (2.80)),
or equivalently,

) rank[C5 | CAMR|= rank[CB]; (from (2.81)),
where

rank[Z:‘E | EZMR] =rank[0.1, 0.0002 | 0.1, 0.0052]=1,
and

rank[EE] =rank[01, 0.0002]=1.
Clearly, condition a’ is met;

condition b': there exists a ﬁ such that (2.60) is satisfied. The necessary and sufficient condition
for the existence of a fs satisfying (2.60) is (same as (2.52))

nmk[EaE -C40 | 6§] = rank[éﬁ],
where
rank|CO £ - T4 6 | CB] = rank[0.0002 | 01, 0.0002] =1,

and rank[c_’}?] =1 was determined in condition a’. Clearly, condition b’ is met and T° R

is chosen to satisfy (same as (2.60))

'c‘[eE ~-46- Eﬁ] =0.0002 - 001, - 0.0002T, =0. (4.56)

A T, that satisfies (4.56) for Example 2 is
- _ (0 ,
I, =(J . 4.57)

The digital control term uy(kT) in (2.62) can thus be chosen ideally as
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u (kT) =T c(kT)

0
-(DJeun (4.58)
0
= (J Y. (kT)
condition ¢': there exists a fc such that (2.59) is satisfied. The necessary and sufficient condition

for existence of a ' . satisfying (2.59) is (same as (2.53))
rank[é'— FH , 5§:l= rank[gﬁ] ,
where

rank{(? FH l EEJ = rank[0.0002 | 0., 0.0002]=1,

and rank[(7§] =1 was determined in condition a’. Clearly condition ¢’ is met and T

is chosen to satisfy (same as (2.59))

C [Eﬁ + F}{J =001T,; +0.0002T, +0.0002=0. (4.59)
AT . that satisfies (4.59) for Example 2 is

~ (0

r.= ( 1) X (4.60)

The digital control term u(kT) in (2.61) can thus be chosen ideally as

u (kT) =T _z(kT)

0 ; 4.61
=( Jz(m o
condition d': there exists an » x (n - V) constant matrix L = [?J such that solutions &, (kT) to
2
(2.85) are uniformly and asymptotically stable to the null-point £ (kT)=0. The
characteristic polynomial of the system in (2.85)is
det(,u -(4, + B, Z)) =A-01Z, - 0.0002L, - 09998, (4.62)
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where 4; and B, are defined in (2.84). One choice for I that will achieve ,/l,- ,<I
in (4.62) is

- [-10
L=[ ) ] (4.63)

4.3.4. The Necessary and Sufficient Conditions for Maintaining Bounded Motions of
€, (kT) within S, for Example 2

Conditions a', b’, ¢’, and d' in the previous Subsection have been met. It remains to
test the condition necessary to satisfactorily maintain bounded motions of €, (kT) within the subspace

Sy =N[5 = ] As discussed in Subsection 2.11.6, there must exist an r X (n - m) matrix

~

Zy Zy
polynomial of the system in (2.88) is

V4 =[§” Z”:, such that all solutions £,,(k7) to (2.88) remain bounded. The characteristic

det(/u -(4, + B}Z‘)) =2+ (0.0002 Z), 000522, - 01051Z,, - 2.1)4
N N N (4.64)
+ (0.1 0512y, - 000532, - 00002 Z,, + 1.1053)

where Zz and Ez are defined in (2.84). One choice for 7 that will achieve |/‘Li|<1 in (4.64) is

~ 0 0
z=[ ° _“]. (4.65)

4.3.5. Calculation of the Gain-Matrix & p and the Idealized Digital Control Term
uy(KT) for Example 2

The gain-matrix ]?p can be computed from (2.83) by incorporating

A, B, MR C,I, and 7 from (4.48), (4.53), (4.54), (4.55), (4.63), and (4.65) to obtain the gain-
matrix

K, =—~(CB)*CAMR(MR)" +]1 - (CB)*'CRIZ(MR)* + IT
(4.66)
=10 -09991 -00329
"L 0 -00017 —110001

Substituting (4.66) into (2.62) yields the idealized form of the control term u,(kT)

>
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up (kT) = _I?pgss (kD
(4.67)

e

10 09991 0.0329
10 00017 110001

4.3.6. Practical Realization of the Digital Servo-Tracking Controller for Example 2

The ideal digital servo-tracking control law designed using the methods described in
Sections 2.9 through 2.11 for Example 2 described by (4.46), (4.2), and (4.8), is as follows

W(KT) = u,(KT)+ u,(KT)+u, (KT), (4.68)

where u(kT), uy(kT), and u,(kT) are given in (4.61), (4.58), and (4.67), respectively.

The digital servo-tracking controller in (4.68) is designed for the ideal case where
exact measurements of x(kT), z(kT), and c(kT) are available. For this example, y.(7) is a stepwise-
constant which is directly measurable at each of the times 7 = kT, k = 0, 1, 2, ..., thus, estimates of c(kT)
are not needed ( y.(kT) = c(kT) ). On the other hand, the state vectors 2(kT) and x(kT) (with the exception
x(kT) = y(kT) ) are not available for measurement and must be estimated in order for the digital servo-
controller to be physically realizable. Estimates Z(kT) and #(kT) of z(kT) and x(kT), respectively, are
generated by a discrete-time full-order state-observer as described in Subsection 2.13.2. For purposes of
illustration and to reduce the computational complexity, a discrete-time full-order observer is not
computed for the present example.

4.3.7. Simulation Results for Example 2

Simulations results were obtained for the third-order plant (4.46), stepwise-constant
disturbance (4.2), and stepwise-constant servo-command (4.8), compensated by the digital servo-
controller in (4.68) using control sample-period 7=0.1. The simulation results shown in Figure 4.3
illustrate the plant output y(¢), the disturbance w(?), and the servo-command y.(7) for Example 2. The
simulation plot in Figure 4.2 shows the servo-tracking error £,()=y.(£)-y(¢t) for Example 2. The
servo command y.(f) “jumps” at the times #= 0.5, 1.4, 5.6, and 8.1. At each of those Jjumps, the tracking
error £, (1) =y (¢) - y(¢) also jumps, equivalent to the total Jjump in the servo-command.

The plot in Figure 4.5 illustrates the motions of es2(f) and e,3(7) projected onto N[C]

(the ey, —e; plane). Examination of the plot in Figure 4.5 reveals jumps in es2(f) and eg3(?)
corresponding to the times of the servo-command “jumps” (t=0.5, 1.4, 5.6, and 8.1). When the tracking-
error £,(7) =0, the servo-state e, ; ~0 and ess2(f) is increasing at a very slow rate. The 3-dimensional

view of the motions of the servo-state vector e5(?) are shown in Figure 4.6. As long as the motions of
es(f) remain in the N[C] (the shaded area in Figure 4.6), the tracking error &(9) will be zero.
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Figure 4.3 Illustration of the Plant Output y(f), Disturbance w(f), and Servo-Command yt) for
Example 2.
6 Control Sample-Period: T= 0.1
S E— R —
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-2 !
0 5 10

Figure 4.4 Illustration of the Servo-Tracking Error (1) = y{t) - (¢) for Example 2.
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Figure 4.6 3-Dimensional View of the Servo-State ess(#) Motions for Example 2.
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Recall from Subsection 4.3.6 that, in order to reduce the computational complexity,
no observer was designed for the present example and exact measurements of the plant state x(k7) and
disturbance state z(kT) were assumed available. The disturbance accommodating control term u(kT) in
(4.61) was designed to completely cancel the effects of the disturbance w(?) on the servo-tracking error
&(kT) at each of the times t=kT, k=0, 1, 2, ... , assuming exact measurements of z(k7). Consequently,
no disturbance effects due to w(r) are present in the simulation plots shown in Figure 4.3 through Figure
4.5.

In order to show the effects of the disturbance w(z) and the difference that the control
term u.(kT) has on the present example, simulation results were obtained for the example plant (4.46),
disturbance (4.2), and servo-command (4.8), compensated by the digital servo-controller in (4.68) with
u(kT) = 0 and using control sample-period T'=0.1. The simulation results shown in F igure 4.7 illustrate
the plant output y(7), the disturbance w(z), and the servo-command ye(#) for Example 2 with u(kT) = 0.
The simulation plot in Figure 4.8 shows the servo-tracking error £,,(t)= y,(¢)— () for Example 2 with

u(kT)=0. Notice that Figure 4.7 appears identical to Figure 4.3 and Figure 4.8 appears identical to
Figure 4.2, even though the disturbance-related control term u(kT) = 0 and the disturbance w(?) = 0 in
Figure 4.7 and Figure 4.8. Due to the nature of the plant dynamics in (4.46), the motions of the
disturbance are primarily confined to &[C] and have virtually no effect on the plant output y(f) and

consequently, no noticeable effect on the servo-tracking error g(7) (i.e., no w(f) disturbance effects
appear in Figure 4.7 or Figure 4.8). Recall from (2.43) that the disturbance-effects of w(r) on the servo-

state vector e, (kT") are represented by the term FH z(kT ) and that the servo-tracking error £,(kT) and
the servo-state vector &, (kT) are related by &,(kT)=Ce,(kT) (same as (2.44)). Then the total effect

of the disturbance w(f) on the servo-tracking error £,(kT) is determined by the matrix product

_ 0.0002
CFHz(kT)=(1, 0, 0) 00052 |z(kT)
01051

= 0.0002 z(kT)

where C and FH are given in (4.48). Clearly the effect of the disturbance on the servo-tracking error is
negligible.

The plot in Figure 4.9 illustrates the motions of ess2(f) and e,3(7) projected onto R[C]
(the e,, ~e; plane) for the case of u(kT)=0 in (4.68). Examination of the plot shown in F igure 4.9

reveals sudden jumps in e,(7) and es3(f) corresponding to the times of the servo-command “jumps”
(t=0.5, 1.4, 5.6, and 8.1) and the times of the disturbance “jumps” (¢ = 0.5, 3.2,3.9,5.8, and 7.9). From

examination of (2.43), the matrix FH in (4.48), and the plot shown in F igure 4.9, it is clear that the
majority of the disturbance-effects due to w(?) are on the servo-state e,s().
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Figure 4.7 Illustration of the Plant Output y(¢), Disturbance w(f), and Servo-Command y«?) for Example
2 with u(kT) = 0.

6 Control Sample-Period: 7= 0.1
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Figure 4.8 Illustration of the Servo-Tracking Error g(f) = y«f) - y(¢) for Example 2 with u(kT) = 0.
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Figure 4.9 Illustration of the Motions of e;2(f) and e, s(f) Projected Onto N[C] for Example 2 with
u (k)= 0.

To further illustrate the variety of motions that can occur in the NC] (the e, —e,;

plane), different values for I in (4.62) and Z in (4.64) were chosen to achieve a different set of
eigenvalues for the homogeneous closed-loop system (the homogeneous portion of (2.64))

2. ((k+1)T)= [Z +BK, ]ass(m . (4.69)

Choosing the gain-matrix L as in (4.63) again and the 7 gain-matrix

s [7 1
Z= :
[-7 -zo]

in (4.64) results in the K » 8ain-matrix
K, =—(CB)*CAMR(MR)* +[1 - (CB)*CBIZ(MR)* + IT
(4.70)

_[-10 -09872 -00175
10 -70137 —200017

The control term u,(k7) in (4.67) is thus rewritten as
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u,(kT)=-K e, (kT)

10 09872 00175 ) 4.71)
o e (AT)
0 70137 200017
and the digital servo-tracking control law u(kT) in (4.68) is rewritten as
u(kT) = u, (kT) + u (kT) + u,(kT), 4.72)

where u(kT), u(kT), and u,(kT) are given in (4.58), (4.61), and (4.71).
The factored éharacteristic polynomial of the closed-loop system in (4.69) using the

K, computed in (4.70) is

det(,u -(4+ BK,)) = (4 + 0.0001)(A + 09987)(4 - 0.9605) .

~

A third choice for the gain-matrices Z and Z is as follows. Choosing the gain-
matrix

in (4.62) and the gain-matrix

~ [0 3
Z= :
[-33 -5]

in (4.64) results in the X » gain-matrix

K, =—(CB)*CAMR(MR)* +[1-(CB)*CBIZ(MR)* + ICT
4.73)

_[-8 -09428 -00431
| 8 -330016 -50052

The control term u,(kT) in (4.67) is thus rewritten as

u,(kT) =~K e, (kT)
N 8 09428 004314
-8 33.0016 5.0052

(4.74)

2

Jesx (kT)

and the digital servo-tracking control law u(kT) in (4.68) is rewritten as

u(kT) = u (KT) + u (kT) + u,(kT), 4.75)
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where u,(kT), u(kT), and u,(kT) are given in (4.58), (4.61), and (4.74).

The factored characteristic polynomial of the closed-loop system in (4.69) using the
K , computed in (4.73) is '

det(41- (A+BR, )) = (2= 02012)(4 - 07017 + 05131i)(4 - 07017 - 051311),

where i=+-1.

Simulation results showing the plant output y(f), disturbance w(s), and servo-
command y.(?) are illustrated in Figure 4.10 (for u(kT) in (4.72)) and Figure 4.14 (for u(kT) in (4.75)).
The simulation results in Figure 4.11 (for #(kT) in (4.72)) and F igure 4.15 (for u(kT) in (4.75)) illustrate
the servo-tracking error £,(1)=y.(t)—y(t). The motions of the servo-states e;2(?) and e,q(f) projected

onto NC] (the e,,, —e,,; plane) are illustrated in the simulation plots in F igure 4.12 (for u(kT) in (4.72))

and Figure 4.16 (for u(kT) in (4.75)). The e, - e, plane results shown in Figure 4.12 and Figure 4.16
are clearly labeled to illustrate the periods of time when y.(f) is constant. The simulation plot in Figure
4.12, for example, shows slowly decaying oscillations of the servo-state motions, even though the
tracking error g(f) is zero during those times. At each time the servo-command y{#) “jumps” (at the
times £=0.5, 1.4, 5.6, and 8.1), a different set of oscillations is invoked. In contrast, the servo-state

motions shown in Figure 4.16 spiral toward the origin (e, =e,; =0) when y.(?) is constant and jump
away from the origin whenever the command y(f) jumps in value. The 3-dimensional view of the
motions of the servo-state vector e,(r) are shown in Figure 4.13 (for u(kT) in (4.72)) and F igure 4.17 (for
u(kT) in (4.75)). As long as the motions of e,(f) remain in the N[C] (the shaded area in Figure 4.13 and
Figure 4.17), the tracking error &(#) will be zero.
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Figure 4.10 Illustration of the Plant Output y(#), Disturbance w(¢#), and Servo-Command yd{®) for
Example 2 using u(k7) in (4.72).
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Figure 4.11 [Illustration of the Servo-Tracking Error (1) = y(¢) - N1) for Example 2 using u(k7) in
4.72).
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Figure 4.12 Illustration of the Motions of e(#) and e,;(f) Projected Onto N[C] for Example 2 using
u(kT) in (4.72).
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Figure 4.13 3-Dimensional View of the Servo-State e,(f) Motions for Example 2 with Discrete-Time
Closed-Loop Poles at 1= -0.0001, -0.9987, -0.9605.
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Figure 4.14 Illustration of the Plant Output y(r), Disturbance w(f), and Servo-Command y.(z) for
Example 2 using u(k7) in (4.75).
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Figure 4.15 Illustration of the Servo-Tracking Error &(1) = y(#) - y(t) for Example 2 Using u(kT)
in (4.75).
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Figure 4.16 Illustration of the Motions of e,,(f) and es3(?) Projected Onto N[C] for Example 2 Using
u(kT) in (4.75).
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Figure 4.17 3-Dimensional View of the Servo-State es(f) Motions for Example 2 with Discrete-Time
Closed-Loop Poles at A =0.2012, 0.7017 + 0.5131;
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44. Example 3: A First-Order Plant and Step Servo-Command y.(7) Subjected to a
Step+Ramp Disturbance w(f) and Parameter-Perturbation Aa

The purpose of Example 3 is to illustrate and compare each of the digital servo-controller
design techniques presented in Chapters 2 and 3. This example is worked for the case of a digital servo-
controller using stepwise-constant (z.0.h.) control-action u(k7) and then worked for a digital servo-
controller using D/C control-action u(#;kT). Simulation results are provided for the example plant with
both perturbed (Aa # 0) and unperturbed (Aa = 0) plant parameters, and using both single-rate and
multirate digital servo-controllers.

4.4.1. Plant, Disturbance, and Servo-Command Models for Example 3
The plant for Example 3 is modeled by the following first-order differential equation:
y(t)=ay(t)+u(t)+w(t). (4.76)
The disturbance w(?) is an uncertain, unmeasurable constant-plus-ramp disturbance represented by
w(t) = ¢ +eat, “4.77)

where ¢, and ¢, are unknown stepwise-constants which may “jump” in value from time-to-time. The
interval between successive jumps in ¢; and c, is assumed to be somewhat larger than the sampling-

period T.

The state model for the plant is easily determined by choosing x() =(f) as follows:

x(t) = ax(t) + bu(t) + fw(t)
W)= cx(1) ’ *.78)
where b=1,

f=1

c=1,
and the a parameter is left undetermined until specified in Subsection 4.4.3.2.

A similar state model is developed for the disturbance w(?) in (4.77), using the
techniques described in Section 2.5, by noting that, between jumps in the c;, the disturbance w(?) is
governed by the linear homogeneous differential equation

w(t)=0. 4.79)
Using the methods described in Section 2.5, the state model for w(?) is obtained as

w(t) = Ha(t)

2(t)=Dz(t)+o(r) ’ (4.80)
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where

oo
D= :
0 0

o(t) are uncertain, sparse sequences of impulses that “cause” the occasional “jumps”
in the disturbance w(r). '

and

Using the technique described in Section 2.6, discrete-time models are obtained for
the plant and the disturbance. Those models are (the sample-period T is held as a variable throughout the
computations):

Plant:

x((k + 1)T) = Ax(kT) + Bu(kT) + FH z(kT) + 7 (kT) 4.81)
Y(KT) = Cx(kT)

where

FH = f "7 fHeP dr =

TZ
(T, -—) ; ifa=0

C=1,

FaD)= [0 11 [ Do gyagar
and

Disturbance:
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w(kT) = Hz(kT)

- (4.82)
2((k +1)T) = Dz(kT)+ G(kT)

where

H=(1, 0),

~ 1 T
D=e" = ,

G(kT) = fe""‘@a(§+ kT)dE .

It is hereafter assumed that a = 0 throughout the design procedure in the four subcases of Example 3.

The servo-command y.(#) for this example is assumed to be an unknown stepwise-
constant command represented by (4.8) and having continuous-time and discrete-time state models as
determined in (4.10) and (4.11), respectively.

4.4.2. The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for
Example 3

The objective is to design a digital servo-tracking controller for the plant in (4.76)
such that the tracking-error, defined by

£,()=y, ()= y(1), (4.83)

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is
that the vector servo-command input y.(f) must consistently lie in the column range-space of the plant-
output matrix C in (4.81) for all ¢. In the present example, satisfaction of this condition requires that

(from (2.33))
®[G]< %[c]. (4.84)

If (4.84) is satisfied, then it is possible to express G as some linear combination of the columns of C.
That is, G = C@ for some possibly nonunique 6. Substituting C and G from (4.81) and (4.11) into G =
C@ yields

1=16. (4.85)

Clearly, (4.85) is satisfied for some 6 namely

6=1. (4.86)
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The control task is to design a discrete-time control algorithm for u(kT) such that the
servo-state vector e(k7) in (2.38) becomes stable to and invariant for a subspace S, =N[5 ] cNC] for

some choice of C in (2.46). Since C=1in (4.81), we have the special case of stabilizing e,(kT) to the
nullpoint. The single choice for C in (2.46)isthen C =C=1.

The discrete-time models for the plant (4.81), disturbance (4.82), and servo-command
(4.11) and the 6 determined in (4.86), will now be used in a series of four subcases of Example 3 in
which digital servo-tracking controllers will be designed using the techniques presented in Chapters 2
and 3 of this report.

4.4.3. Subcase 3a: Digital Servo-Tracking Control Design Utilizing Stepwise-Constant
(z.0.h.) Control-Action u(kT) for the Case of a First-Order Plant and a Step
Servo-Command y(7) Subjected to a Step+Ramp Disturbance w(?)

In this Subsection a digital servo-tracking controller u(kT) is designed for Example 3
using the conventional zero-order-hold type control-action design technique presented in Sections 2.9
through 2.11. The necessary and sufficient conditions for existence, and the subsequent design, of the
digital control terms u(kT), u,(kT), and uy(kT) in (2.55) are as follows.

The necessary and sufficient conditions for existence of the control terms u.(kT)
satisfying (2.56) and u,(kT) satisfying (2.57) are given in (2.53) and (2.52), respectively. Satisfaction of
those conditions is shown as follows (assuming a=0 for Example 3):

for u(kT): rank[é FH | EE] = rank[EE] ; (same as (2.53)), (4.87)
where
- al al aT
mk[éFH | 5§]=rank’:e 1 ‘f‘l ¢ “1]=1,
a a a
and
— eaT - 1
rank[CB] = rank =1;
a
for u(kT): rank[6 6E-Cio | 61?] = rank[éﬁ] ; (same as (2.52)), (4.38)

where

rank[fﬁf ~C46 | 65] = rank[l -e”
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and rank[fﬁ] is given below (4.87).

Clearly the rank conditions in (4.87) and (4.88) are met and T . and r s are designed to satisfy (2.59) and
(2.60), respectively. That is,

~ —f e - aT_ - . aT_l eaT__T_l
for T : C(BI‘C + FH) = (( ¢ l)(rd, F,)+ ( E -, - =0; (4.89)
a a a
- —r e~ —— ar -1)~
for T': C(&E—A&—‘BI}):l—e"T—(e — T, =0. (4.90)

The T, and T, that satisfy (4.89) and (4.90) are

aT
I =(—1, %”TLI)) (4.91)
ae -
and
A (4.92)

s

The ideal digital-control terms u(k7) and u,(kT) in (2.61) and (2.62) can thus be written as

u, (kT) =T z(kT)

T+1-e7 , (4.93)
=—z,(kT)+ f’;(e”—_el)- z,(kT)
and
u (kT) =T ,c(kT)
=-ac(kT) . (4.94)

=-ay (kT)

The uy(kT) control term is postulated as in (2.63), where the gain-matrix K p 1S
designed by the technique of pole placement to place the eigenvalue A of (Z +BK p) in (2.64) at a

sufficiently-damped location inside the unit circle ('ll < 1) . For subcase 3a,

a

det{A1-(4+ BR, ))= 2~ - ()R, =0, (4.95)

and the appropriate choice for achieving A = 0 (deadbeat response) in (4.95) is to choose K p S
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K, =-2¢ (4.96)

such that the ideal choice for u,(kT) in (2.63) becomes

u,(kT)=-K e, (kT)
- ae;r 3 kT

“ ;'e( ) : (4.97)
=2 (6c(kT) - x(kT))

=4 (y,(kT) - y(kT))

The ideal digital servo-tracking control law designed using the methods described in
Sections 2.9 through 2.11 for Subcase 3a described by (4.76), (4.77), and (4.8), is as follows

(kT) = u,(KT)+ u,(KT) + u,(KT), (4.98)

where u(KT), u,(kT), and u,(kT) are given in (4.93), (4.94), and (4.97), respectively.

4.4.3.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 3a

The digital servo-tracking controller in (4.98) is designed for the ideal case
where exact measurements of x(k7), 2(kT), and c(kT) are assumed available. For this example,
HkD)=x(kT) in (4.81) and yJ(¥) is a stepwise-constant which, along with )(7), is directly measurable at
each of the times ¢t = AT, k = 0, 1, 2, ... . Thus, estimates of c(k7) and x(kT) are not needed
(c(KT) = y(kT), x(kT) =y(kT)). On the other hand, the disturbance state z(kT) is not available for
measurement and must be estimated. Estimates (kT) of 2(kT) can be generated by a discrete-time full-

order state-observer as described in Subsection 2.13.2. The general form for the discrete-time full-order
state-observer is (same as (2.107))

(i((k+l)T)) _| 4| FH (ﬁ(kT))+
k+DT)) | o | b N2GT)

=~ K, |. . ) ) ~ T ~
where K| =,:—~ﬂ:, 1s an observer gain-matrix to be designed, and 4, FH, B, C, and D are defined in
02

(4.81) and (4.82).

Blerys[Ea o 201
(OJu(kT)+[EOZJ[(C | 0) 30T y(kT) |, (4.99)

The general discrete-time evolution equation for the error dynamics of the
discrete-time full-order state-observer is (same as (2.109))
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(Sx ((k + I)T)) _ (f((k + l)T)) _ (x((k + I)DJ

& ((k+DD))  a((k+DD)) \z((k+ D))
(4.100)
- Z+I?OIC ;H (gx(kT))
o R £, (kT)
It is desirable to design K, so that the observer error =.(kT) always

converges to zero promptly, from any initial condition. Pole placement techniques can be used to
determine an appropriate X,. In that way, the gain-matrix K, is designed to place the roots of the

polynomial

-

1o g 1€ 1+aT—e |
- — 8y 2
~ ~ ~ a a
det[}tl - [A + K C Ff’ﬂ =detl - Ky, A-1 -T
K, C D - ]?02“ 0 A-1

=4 -(1?01 +e + 2),12 . (4.101)

1-e” - l+al -e¥ -
K021 +—2——K022J/1

+ (21?0, +2e +1+

5 1-eT 1+aTe™ - e
a 1 a2 2

at sufficiently-damped locations inside the unit circle. A 1?0 that achieves deadbeat observer response
(4:=0in (4.101)) is (assuming a # 0):

- (2 +e” )
I?o - l:ﬁ:’ = | 2aT-14¢T (1-3a7) . az0. (4.102)

()
) )

The discrete-time full-order state-observer for X(kT) and Z(kT) is then obtained by substituting values
from (4.81) and (4.82) into (4.99). The result is
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F(k+D1)) |7 e” -] eaT_lz"aT £(kT) (E]

a a
ak+DD|=[ 0 1 T HUT) [+ 0 |ukD)
Hk+DT)) |0 0 1 2,(kT) 0

. (4.103)
+(Ko)(3(kT) - y(kT))

where y(kT) and u(kT) in (4.103) are the inputs and £(kT )s 2(kT), %((k+1)T), and 2((k +1)T) are the
outputs of the discrete-time full-order state-observer, and K, is given in (4.102).

4.4.3.2. Simulation Results for Subcase 3a

Incorporation of the discrete-time full-order state-observer equations in
(4.103) into (4.98) results in the following physically-realizable digital servo-tracking control law for
Subcase 3a. :

u(kT) = u, (kT) + u (kT) + u,(kT)
. (4.104)

al +1-e ae’
————2%,(kT) - ay (kT) +
e D~ )+ 2

=~2,(kT) + (v.(kD) - y(kT))

Simulations results were obtained for Subcase 3a, where the plant’s a term in
(4.76) and control sample-period T were chosen as

a=-3 (an inherently stable plant);

and

The sample-period T= 1 was chosen so that the intersample behavior of the plant output y(f) could be
easily viewed.

The simulation results in Figure 4.18 illustrate the plant output w(f), the
disturbance w(#), and the servo-command y{?) for Subcase 3a. Notice the intersample misbehavior
(ripple) during the periods #=4 to t = 6 and the periods =9 to 7= 15. This misbehavior is the result of
the ramp-type time-varying nature of the disturbance w(f) and the stepwise-constant (z.0.h.) nature of
u(kT). The simulation results in Figure 4.19 show the digital control-effort u(kT) and the servo-tracking
error £,(¢)=y.(t)- y(¢) for Subcase 3a. The stepwise constant control-action (zero-order-hold type)

can not eliminate the intersample misbehavior of the plant output 3(f) when the disturbance w(t) is not a
constant. Consequently, zero tracking-error cannot be achieved between the sample times.
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Figure 4.18 Illustration of the Plant Output y(z), Disturbance w(¢), and Servo-Command v for
Subcase 3a.
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Figure 4.19 Illustration of the Digital Control-Action u(kT) and Tracking-Error g(f) = y(?) - y(¢) for
Subcase 3a.
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4.4.4. Subcase 3b: Digital Servo-Tracking Control Design Utilizing D/C Control-
Action u(t;kT) for the Case of a First-Order Plant and a Step Servo-Command
Ye(?) Subjected to a Step+Ramp Disturbance w()

In this Subsection the digital servo-tracking controller in (4.98) of Subcase 3a is
modified to utilize the D/C intersample holding-action, as described in Section 3.1. In that way, the
control terms u(kT) in (4.93) and u/(k7) in (4.94) are modified to provide intersample accommodation
for the effects of the disturbance w(#) and the disturbance-like effects of the servo-command y{o).

The necessary and sufficient conditions for existence of the control terms u(t;kT)
satisfying (3.15) and uy(t;kT) satisfying (3.16) are given in (3.12) and (3.13), respectively. Satisfaction of
those conditions is shown as follows:
for u(t;kT): rank[FH | B]= rank[B];  (same as (3.12)), (4.105)

where

rank[FH | B]=rank[1,0 | 1]=1,

and
rank[ B] = rank(1]=1;
for uy(t;kT): rank[6 E-40 | B]= rank[B] (same as (3.12)), (4.106)
where

rank[6 E-46 | B]=rank|[-a | 1]
and rank{ B] is given below (4.105).

Clearly the rank conditions in (4.105) and (4.106) are met and I, and T, are designed to satisfy (3.17)
and (3.18), respectively. That is,

forT,: FH+BI’C=(1,0)+(I"c,,l“cz)=0; (4.107)
for I,: (6E-A46)- BT, =—a-T, =0. (4.108)
The I, and T that satisfy (4.107) and (4.108) are

L, =(-1 0), (4.109)
and

I =-a. (4.110)
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The ideal continuous-time control terms .(f) and u(f) in (3.19) and (3.20) can thus be chosen ideally as

u (1) =Tz(?)
, 4.111
2 (1) (4.111)
and
uy(t) =Te(?) 4.112)
= —ac(f) ' '

Recall, however, that it is assumed that the digital control decisions at time 7 = kT
must be based on measurements, or estimates, of the states z(#) and c(f) available at each of the times
t=kT, k=0, 1, 2, .... Therefore, the projected or forecasted behaviors of z(¢) and c(?) across each

intersample interval must be represented in terms of 2(kT) and c(kT). This relationship is found in the
general solution to (4.80) and (4.10) evaluated at each ¢ over the interval from kT to 7= (k+DT. In

particular,

Disturbance state-vector:

2(t) = e® M z(kT) +r.(2)

; 4.113)
N 1 t—kT T .
=lo 1 z(kT)+r,(2)
and
Servo-command state-vector:
c() =" e(kT) + r,(1)
s 4.114)
=c(kT)+r.(2)
where
r(?) is a residual-effect given by r.(¢) = [ e’ o(r)dr,
T
and

ri(?) is a residual-effect given by 7,(r) = Le“’ Du(r)dr.

As discussed below (3.22) in Subsection 3.1.3, the r{#) and r(7) terms are excluded from the design
process.
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Substituting (4.113) and (4.114) into (4.111) and (4.112), and disregarding the
residual terms, results in the final (idealized) form of the , and u; digital-continuous (D/C) control terms
of the digital servo-tracking controller

u,(t;kT) =T eP"~*Dz(kT)

(-1, 0)[(1) ( ‘1"T )]z(m , @.115)

=-2,(kT) - (t — kT)z, (kT)
and

u (t;kT) =T, eE " D e(kT)
= —ac(kT) . (4.116)

=-ay(kT)
The (ideal) digital servo-tracking control law for Subcase 3b is as follows:
WERT) =u (t,kT) + u, (t,kT) + u,(kT), “4.117)

where u(t;kT), u(t;kT) and uy(kT) are given by (4.115), (4.116), and (4.97).

4.4.4.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 3b

The digital servo-tracking controller in (4.117) is designed for the ideal case
where exact measurements of x(k7), 2(kT), and c(kT) are assumed available. For Example 3, the single
state c¢(kT) of the step servo-command and the plant state x(kT) = y(kT) (refer to (4.81)) can be directly

measured on-line. However, the disturbance state-vector z(kT) must be estimated by a composite
discrete-time full-order state-observer.

The discrete-time full-order state-observer designed in Subsection 4.4.3.1
must be modified to include the time-varying portions of the D/C motions of the servo-controller in
(4.117). In that way, (4.117) is rewritten equivalently as (refer to (3.66))

wt;kT) =u, (kT) + u,(t); kT<t<(k+DT, (4.118)

where u,(kT) in (4.97) is the portion of u(#;kT) in (4.1 18) which is held constant between sample times,
and

u,(8) = u (& kT) +u, (KT) ; kT <t <(k+1)T,
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is the portion of u(#;kT) that varies with time between each successive sample-time.

The time-varying nature of u(r) changes the calculation of the discrete-time

full-order state-observer designed in Subsection 4.4.3.1 where the control action was held constant
between the sample times. The hybrid full-order state-observer described in Subsection 3.3.3 must be

used instead so that accurate estimates Z(kT) of z(kT) may be obtained. The resulting hybrid state-
observer has the form (same as (3.75))

R((k+DT)) z, FH (@J (’5) (w(u,))
(z‘((k+1)T))-L 5J sy o) * D+

gﬂ J?(kT)) _
|20 -ven]

where 4, FH, B, C, and D are defined in (4.81) and (4.82), I?o =[§~—°—‘] is the same observer gain-

02

(4.119)

matrix obtained in (4.102), and w(u,) is determined to be (refer to (3.70), incorporate (4.115) and
(4.116), and recall from Subsection 4.4.1 that a # 0 is assumed)

w(u,)= feA(T")Bu,(r)dr

- f e*T)(2,(KT) + 72, (KT) + a y, (kT))dz . (4.120)

_par _par
=)+ L Gy o (1) h

The term y(u,) becomes physically-realizable when Z)(kT) and Z,(kT) (generated by (4.119)) is
substituted in for z;(k7) and z,(kT) in (4.120).

The evolution equation for the hybrid full-order state-observer for Subcase 3b
can now be written as (substitute (4.81) and (4.82) into (4.119))

sk |e () £t ()

LWk+DD)|=| 0 1 T D) [+ 0 |u, (kD)
LWk+DT)) |0 0 1 2, (kT), 0
, (4.121)
w(u,) _
+ 0 +(Ko)(£(kT)— Y(KT))
0
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where u,(kT), w(u,), and K, are given in (4.97), (4.120), and (4.102), respectively, and y(kT), w(y),
and u,(kT) are the inputs and £(kT), Z(kT), %((k +1)T), and 2((k +1)T) are the outputs of the hybrid
full-order state-observer.

4.4.4.2. Simulation Results for Subcase 3b

Incorporation of the hybrid full-order state-observer equations in (4.121) into
u(t;kT) in (4.117) results in the physically-realizable digital servo-tracking control law for Subcase 3b

u(kT) = u, (6 KT) + u, (1 KT) + u, (kT)
. (4.122)

a

T
=~4,(KT) - (1 - kT)z,(kT) - ay, (KT) + e%‘ﬁ_—l(yc (kT) - y(kT))

Simulation results were obtained for Subcase 3b, where the plant’s a
parameter in (4.76) and control sample-period T were chosen as (same parameters as in Subcase 3a)

a=-3,
and
T=1.

The simulation results shown in Figure 4.18 illustrate the plant output y(?),
the step+ramp-type disturbance w(z), and the step servo-command y(f) for Subcase 3b. Similar to the
results in Subcase 3a (Figures 4.18 and 4.19) the tracking error g(7) (shown in Figure 4.21 for Subcase
3b) is zero at each of the sample instants ¢ = kT = 4,5,6,9,10,11, 12, 13, 14, and 15. In addition, notice
that, in the plot of y(¢) in Figure 4.18, the intersample misbehavior during the periods =4 to =6 and
the periods =9 to =15 has been completely eliminated by the digital servo-controller u(t;kT) in
(4.122) (compare the simulation plots in Figure 4.18 to those in Figure 4.18). The digital-continuous
(D/C) control-action u(t;kT) illustrated in Figure 4.21 is smoother than the zero-order-hold (stepwise-
constant) type control-action shown in Figure 4.19. It is that type of continuous action between the

sample-times that smooths out the control-action and regulates the tracking-error g(f) to zero during
those intersample intervals.
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Figure 4.20 Iilustration of the Plant Output (), Disturbance w(?), and Servo-Command y(f) for
Subcase 3b.

Control Sample-Period: T = 4
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Figure 4.21 Tllustration of the D/C Control-Action of u(t;kT) and Tracking-Error @)=y (1)~ y@) for
Subcase 3b.
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4.45. Subcase 3c: Digital Servo-Tracking Control Design Utilizing D/C Control-
Action u(t;kT) for the Case of a First-Order Plant and a Step Servo-Command
Y?) Subjected to Parameter-Perturbation Az and a Step+Ramp Disturbance

w(t)

In this Subsection the digital servo-tracking control-algorithm in (4.117) is modified
to provide robustness to uncertain variations in the value of the plant’s a parameter in (4.76). The
additional control term u,(f;kT) and the modified term uy(kT) that provide this robustness are designed
using the method developed in Section 3.2. Expression (4.78) is rewritten to reflect the uncertain
parameter-perturbation as follows:

(1) =(a, +Aa)x(t)+ bu(t)+ fu(t) _ (4.123)
y()=cx(1)

Recall from Subsection 3.2.1 that Aa represents deviations to the nominal value of g (a =a, + Aa) .

The ideal model behavior for this example is assumed to be

€y =aye(t). (4.124)
The characteristic polynomial P,(1) of the system in (4.124) is

P,(A)=A-a, : (4.125)

where a,, represents the “desired” root of Pn(Z) and is left undetermined until specified in Subsection
4452,

The approach used in [34,35,39] to designing the control term u, is to model the
product -—(Aa)x(t) as an uncertain time-varying parameter-disturbance vector w,(t) as given in (3.43).

The term w,(?) is closely approximated by the known differential equation in (3.44) having coefficient g
corresponding to the a,, coefficient in (4.125).

Following the method described in Subsection 3.2.4, the dynamic behavior of the
parameter disturbance term (Aa)x(?) is expressed by the state model (refer to (3 A45))

—(Ba)x(t)=w,(t)= H,z,(t)

2,()=D,z,(t) + o, (1) (4.126)

The procedure for determining H, and D, was presented in Subsection 3.2.4. For this particular example
H,=1, (4.127)
and

D,=a, . (4.128)
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The term oi(¢) in (4.126) represents a sparse sequence of impulses that are the source of the uncertain
intersample “jumps” that may occasionally occur in the disturbance vector (Aa)x(?).

The necessary and sufficient condition for existence of the control term w,(t;k7)
satisfying (3.48) is (same as (3.49))

rank[B | H, |=rank[B], (4.129)

where

rank[B | H,]=rank[1 | 1]=1,

and
rank| B] = rank{1] = 1.

Clearly the rank condition in (4.129) is met. Then there exists a I', such that (same as (3.50))
H,-BI,=1-T,=0. (4.130)

The T, that satisfies (4.130) is

r,=1, (4.131)

a

and the control term u,(f) in (3.51) can thus be ideally chosen as

u,(t)=T,z,
e : (4.132)

during the intervals k7 <t <(k+1)T . Recall, however, that the digital control decisions at time 7 = kT
must be based on measurements, or estimates, of the states z,(f) available at the beginning of each sample
interval t=kT, k=0, 1, 2, ... . Therefore, the predicted or forecasted behavior of z,(f) across each
intersample interval must be determined in terms of z(k7). This relationship is found in the general
solution to (4.126) evaluated at each ¢ over the interval from kT'to ¢ = (k+DT

z,(t)=e% "z (kT) +1,(1)
(4.133)

=Dz (kT +r,(1)

where 7,(?) is a residual-effect given by 7, (f) = _[TeD"("') o,(r)dr.

As discussed in Subsection 3.2.5, the r,(¢) term is disregarded throughout the design
process. Substituting (4.133) into (4.132), and ignoring the residual term, results in the final (idealized)
form of the u,(¢;kT) control term

128



u, (1;kT) =T ez _(kT)

_ gnsein (4.134)

The u,(kT) control term in (4.97) must be redesigned to accommodate the Aa-effects.
In that case, the gain-matrix I?p is designed to achieve null-point stabilization and the ideal model

characteristics in (4.124) and (4.125). Thatis, X , is designed to achieve

~

- ;L—(ZN +§1?,,)=/1-A,,,, (4.135)
where
ZN = e""T, ZM = ea,,T’

and B is given in (4.81) (with a replaced by a,). In that way, (4.135) becomes (assuming a, #0)

a,T ~

n

and K » in (4.136) is computed to be

K =M . (4.137)

P ea,,T _ 1
Given (4.137), the control term up(kT) in (4.97) can thus be chosen ideally as

u,(kT)=-K ,e  (kT)

-a, (ea,,T _ea,,T)

= e (kD) . (4.138)
-a, ( T _ ea,,T)
= (kD)= x(kT))

The ideal digital servo-tracking control law for Subcase 3¢ can now be written as
(combining (4.115), (4.116), (4.138), and (4.134) and replacing a by a, in (4.116) and recalling the
assumption that a, #0)

u(t; KT) = u, (5KT) + u, (1 KT) + u, (kT) + u, (1;kT), (4.139)
where
U (6 kT) =~z (kT) ~ (¢ - kT)z, (kT),
u,(1:kT) = ~a,c(kT),
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a,T _ _a,T
(1) = -2 (5, (k1) - x(41)),

ea,,T

and

u, (6 kT) = ez _(KT).

4.4.5.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 3¢

The digital servo-control law in (4.139) assumes the availability of the real-
time values of the external disturbance state z(kT), the plant state x(kT), the servo-command state c(k7),
and the related parameter-perturbation state z,(k7). The single servo-command state c(kT) and the single
plant state x(k7) are obtained directly from on-line measurements of YAkT) and y(kT). Estimates 2(kT)

and Z,(kT) of z(kT) and z,(kT), respectively, can be generated by a hybrid full-order state-observer
similar to that developed for Subcase 3b in Subsection 4.4.4.1.

In order to design the hybrid full-order state-observer, the control law in
(4.139) must be divided into a discrete part u,(kT) and a continuous time-varying part , written as

u(tKT) = u, (KT) +u, (t) ; KT <t<(k+DT , (4.140)

where u,(kT) in (4.138) is the portion of u(t;kT) in (4.140) that is held constant between sample times,
and

u (1) =u (KT) +u,(RT) + u, (5KT) 5 kT <1< (k+D)T, (4.141)

is the portion of u(#;kT) in (4.140) that varies with time across each successive sample-time. The
resulting hybrid full-order state-observer has the form (same as (3.76))

~

X(k+DT)) |4, | FH | - H, | 3(7) B w(u,)
2(k+DT) |=| 0 | D 0| 2(KT) | +| O fu,(kT)+| 0
2(k+DTY |0 | 0 Nz, ) o 0
, (4.142)
Ky £(kT)
+| Ky [ (C]00) 24T) | - ykT)
K3 2,(kT)

where 4, B, FH, and D are given in (4.81) (with a replaced by a,), (4.82), and (4.135) and
(assuming a, #0)
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and K, =| Ky, | is an observer gain-matrix to be designed.
EOB

The general discrete-time evolution equation for the error dynamics of the
hybrid full-order state-observer is (same as (B.77)

£ ((k+1)T) ( Hk+DT)) ([ x((k+1DT)
& ((k+1)T) (=| 2((k+1)T) |~| z((k+1)T)
&, ((k+DT)) \Z,(k+1)T)) \z,((k+1T)
(4.143)
4, +Rc|Fr|-a &, (KT)
=| K, | D] o |&aD)
knc | o | B, |¢, G1)
£, (kT)
It is desirable to design 1?0 so that the observer error | £,(kT) | goes to zero
£, (kT)

promptly. Pole placement is used to determine a suitable IZ'O, where the roots of the characteristic
polynomial

A+R,C|FH |- H,
detf I-| KpC | D | 0 ||=P(A)u- (4.144)
KsC | 0 | D,
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are such that the observer estimated value of the plant state £(kT), disturbance state (kT), and
parameter-perturbation state Z,(kT), quickly and accurately track the actual corresponding plant,

disturbance, and parameter-perturbation states x(k7), z(kT), and z,(kT), respectively. This means that the
roots A; of P(A)asirea are placed at sufficiently-damped locations inside the unit circle (JA]<1) A

good choice for P(A)gesired, Which achieves deadbeat response, is

P(A) gesireg = 4" - (4.145)

The corresponding observer gain-matrix 1?0 in (4.144) that achieves (4.145) is (assuming a, # 0 and

a,#0)
[ ~2(1+e%7) 7
1? 2an T(l - 3ea,,T + 2e2a,,T) _ (ea,,T _ 1)2
]?01 T(ea,,T _ 1)4
Ky= 2" = a, : (4.146)
KOZZ T(ea,,T _ 1)2
203 e3a,,,T
L T(1-e")? J

4.4.5.2. Simulation Results for Subcase 3¢

Incorporation of the hybrid full-order state-observer in (4.142) into (4.139)
results in a physically-realizable digital servo-control law for Subcase 3¢ having the form

u(t;KT) =T e DH(RT)+ T+, (kT)- K , (v, (KT) - y(kT))

+T,e%* Dz (kT)
. (4.147)

=~3,(kT)—(t - kT)2,(kT)-a,y (kT)

a, (ea,,,T _ ea,,i")

(. (kT) = Y(KT)) + €Dz _(kT)

8

To fully comprehend the level of robustness that is provided by the control
term u,(£;kT) in (4.134), it is necessary to first view the effects of a parameter-perturbation Aa on the
example plant utilizing a digital servo-controller which does not compensate for a change in parameter
value. To show this, a 50% parameter-perturbation (Aa =15 in (4.123)) and the digital servo-controller
in (4.104) from Subcase 3a (Subsection 4.4.3) is used. The control sample-period is chosen as 7'=0.2
and the nominal plant-parameter value a, is chosen as a,=-3.

The simulation results shown in F igure 4.22 illustrate the plant output (1),
the step+ramp-type disturbance w(f), and the step servo-command y(f). The digital servo-controller
u(kT) in (4.104) for this plant assumes a nominal value of a, = -3, but in fact, the actual value of this
parameter is
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a=a,+Aa=-3+15
=-15

The simulation results in Figure 4.23 illustrate the control-effort #(kT) and the servo-tracking error
£,(1)=y.(t)— y(t) for the plant and digital servo-controller in Subcase 3a subjected to parameter-

perturbation Aa = 1.5. The digital controller is exerting considerable effort, early on, in an attempt to
control the plant output y(¢) into agreement with the servo-command y(f). This additional control-effort
can be attributed to the inappropriate control-action that is generated due to the digital servo-controller
being tuned to an incorrect parameter value (a, = -3).
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Figure 4.22 Illustration of the Plant Output y(¢), Disturbance w(f), and Servo-Command y«{?t) for the
Example Plant Subjected to a 50% Parameter-Perturbation Aa (a, = -3, Aa = 1.5) and Using
the Digital Servo-Controller u(kT) Derived in Subcase 3a.
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Figure 4.23 Illustration of the Digital Control-Action u(kT) (from Subcase 3a) and Tracking-Error
£,(1)=y.(t) - y(t) for the Example Plant Subjected to a 50% Parameter-Perturbation Aa

(@, =-3,Aa=1.5).

134



Simulation results for Subcase 3c were obtained for the example plant,
disturbance, and servo-command represented by (4.123), (4.77), and (4.8), where the plant’s a,
parameter, parameter-perturbation Aa, ideal model parameter a,, and control sample-period T were

chosen as
a,=-3, Aa=1.5,
a, =-3, T=02.

The simulation results shown in Figure 4.24 illustrate the plant output y(z),
the disturbance w(¢), and servo-command y.(r). The digital control terms uy(kT) and u(t;kT) in (4.139)
are tuned to the nominal a, parameter value, however, this parameter is experiencing a perturbation Aa of
50% (a=a, + Aa=-3+15). The control term u,(#;kT) in (4.134) provides robustness to those Aa-
effects. The benefits of the u,(£;kT) control term can be seen by comparing the simulation plots in Figure
4.24 with those in Figure 4.22.

The simulation results in Figure 4.25 show the digital control-effort u(t;kT)
from (4.147) and the servo-tracking error &)=y, (t)—y(t) for Subcase 3c. This digital servo-
controller is providing intersample accommodation of the external disturbance w(f) and parameter-
perturbation vector Aax(f). The intelligent D/C holding-action reduces ripple and provides robustness to
fluctuations, or uncertainties, in plant parameter values (compare the simulation plots in Figure 4.24 with
those in Figure 4.22 and the simulation plots in Figure 4.25 with those in F igure 4.23).
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Figure 4.24 [lllustration of the Plant Output y(#), Disturbance w(f), and Servo-Command y(¢) for the
Example Plant Subjected to a 50% Parameter-Perturbation Aa (a, = -3, Aa = 1.5) and Using
the Digital Servo-Controller #(z;kT) Derived in Subcase 3c.
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Figure 4.25 Illustration of the D/C Control-Action u(t;kT) (from Subcase 3c) and Tracking-Error
£,(t) =y (t)— y(t) for the Example Plant Subjected to a 50% Parameter-Perturbation Aa

(@, =-3,Aa=1.5).
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4.4.6.  Subcase 3d: Digital Servo-Tracking Control Design Utilizing Multirate
Sampling and D/C Control-Action u(t;kT.;kT,) for the Case of a First-Order
Plant and a Step Servo-Command y.(f), Subjected to Parameter-Perturbation Aa
and a Step+Ramp Disturbance w(f)

The digital servo-tracking controller in (4.139) designed in Subcase 3c can be
modified to use multiple sampling rates to achieve a level of servo-tracking performance that cannot be
matched using a single-rate servo-controller. One method of implementing (4.139) as a multirate servo-
controller is to let the controller terms associated with the plant, u(z;kT) and u,(t;kT), operate at sample-
. rate 1/7,, and let the controller term associated with the servo-command, uy(t;kT), operate at sample-rate
I/T. (note that u,(kT) = 0 in Subcase 3¢ since @, =a,,). In that way, the ideal digital servo-controller in
(4.139) is rewritten as (assuming a # 0)

u(t; kT KT,) = u (4 KT)) + u (GKT,) + u, (KT,) + u, (KT)) (4.148)
where
u (;kT,)) =z, (KT, ) - (t - kT,))z, (kT,),
u, (6 T,) = ~a, (KT, )
=-a,y.(kT,)’
u (KT) = - ("eT, ‘_elT 0. (kD) -5(T)) =0 foray=ay ,
and

u,(tkT,) = e""'('-”’)za (kT,).

4.4.6.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 3d

. The digital servo-controller in (4.148) is realized by substituting 7, for T in
the hybrid full-order state-observer in (4.142) for Subcase 3¢ and by using direct measurements of the

servo-command y(f). Incorporating (4.142) into (4.148) yields the physically-realizable digital servo-
controller

u(t; KT KT,) = ~5 (T,)) = (¢ — KT, )2, (KT, ) - @, y, (KT, ) + "3 (kT) . (4.149)
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4.4.6.2. Simulation Results for Subcase 3d

Simulation results were obtained for Subcase 3d, where the plant’s nominal
a, parameter, parameter-perturbation Aa in (4.123), ideal parameter a,, in (4.124), and control sample-
periods T and T, were selected as

a,=-3,

and
T.=0.5.

The simulation results shown in Figure 4.26 illustrate the plant output y(f),
the step+ramp-type disturbance w(r), and the step servo-command y.(f) for Subcase 3d. The multirate
D/C servo-control action u(;kT,;kT;) and the servo-tracking error &,(t)=y.(t)— y(t) for Subcase 3d are

shown in Figure 4.27. A 50% decrease in the sample-period (from 7= 0.2 in Subcase 3c to 7,=0.1) for
the %, and u, control terms has allowed a 250% increase in the sample-period T, (from 7=02 in
Subcase 3¢ to 7. =0.5) in the control term u/(t;kT,) (associated with the servo-command y{1)). The
overall tracking and system performance has improved over that obtained in Subcase 3¢c. A comparison
of the simulation plots in Figure 4.26 to those in Figure 4.24 and the simulation plots in Figure 4.27 to
those in Figure 4.25 shows less ringing and a faster settling-time in the plant output )(7) and a sizeable
reduction in the servo-tracking error £,(t)=y.(t)-y(t). This increased performance can be attributed

to the intelligent use of multiple sampling-rates. A particular application of this dual-rate system is the
case in which the plant output y(r) is available for measurement at each of the times =T "
k=0, 1, 2, ..., while the servo-command y.({) is available less frequently, at each of the times ¢ = kT,

k=0, 1, 2, ... (recall that T, and T, are related by (3.80)).
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Figure 4.26 Illustration of the Plant Output y(7), Disturbance w(?), and Servo-Command y/(t) for the
Example Plant Subjected to a 50% Parameter-Perturbation Aa (a, = -3, Aa = 1.5) and Using

the Multirate Digital Controller u(t;kT,;kT,) from Subcase 3d.
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Figure 4.27 Illustration of the Multirate D/C Control-Action u(t;kT;kT.) (Controller from Subcase 3¢,
using Multirate from Subcase 3d) and Tracking-Error &,()=y.(t) - y(t) for the Example

Plant Subjected to a 50% Parameter-Perturbation Aa (@, =-3,Aa=1.5).



4.5. Example 4: An Unstable First-Order Plant and Step+Exponential Servo-Command y(?)
Subjected to a Step+Ramp Disturbance w(7) and Parameter-Perturbation Aa

The purpose of Example 4 is to illustrate that

i)  due to the decomposition of the digital control-effort, only the control term u(#;kT) in
(4.116) from Subcase 3b that is affected by the change in servo-command model need

to be designed;

it)  control terms designed previously in Example 3 are valid for a stable, as well as an
unstable plant;

iii) the hybrid full-order state-observer in (4.142) from Subcase 3c need not be re-
designed,

iv) a control term u, (k7) can be added to the digital servo-controller algorithm in

(4.148) to take maximum benefit of multiple sample-rates;

v)  intersample misbehavior can be eliminated in the case of non-conventional servo-
commands (not a Type 1, 2, or 3 command); and

vi) a reduced-order state-observer may be used to estimate the servo-command state

c(kT).

4.5.1. Plant, Disturbance, Parameter-Perturbation, and Servo-Command Models for
Example 4

Example 4 will use the same first-order plant in (4.76), step+ramp disturbance w(?) in
(4.77), and parameter-perturbation vector Aax(#) model in (4.126) as was used in Example 3, with the
exception that the plant has a pole in the right-half plane (a, =1 in (4.123), an inherently unstable plant).
The servo-command y.(f) is assumed to be an unknown stepwise-constant-plus-exponential (hereafter
called step+exponential) command represented by

y(@)=c +ce™™ (4.150)

where ¢, and ¢, may occasionally jump in value at unknown times, and a. is a known quantity given
later in Subsection 4.5.3.2.

The linear homogeneous differential equation governing the motions of y(?) in
(4.150) between jumps in the ¢, is

V() +ay (t)=0. (4.151)

A state model for the servo-command y.(¢) is obtained using (4.151) and the method
outlined in Section 2.5. That state model is
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Y(t) = Ge(r) 4.152)
¢(t) = Ec(t)+ u(t) '

where

and

A(t) are unknown, sparse sequences of impulses that “cause” the uncertain “jumps” in the servo-
command y(?).

Using the technique described in Section 2.6, a discrete-time model is obtained for
the servo-command. In that way, this model is written as

Y (kT)= Ge(kT)

- N , (4.153)
c((k+1D)T)= Ec(kT)+ u(kT)
where
G=(1, 0),
Fl 1-e
a if a0
10 e’
E = eET =< .
[1 T £ 20
0 1 noes
and

BT = [ €70 (g kT

It is hereafter assumed that @ # 0 throughout Example 4. For reasons discussed in Chapter 2, the term
H(KT) in (4.153) is disregarded throughout the design process.
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4.5.2. The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for
Example 4

The objective is to design a digital servo-tracking controller for the given plant such
that the tracking-error, defined by

£,(D=y.()-y1), (4.154)

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first
shown in [37], the necessary and sufficient condition for achieving theoretically exact servo-tracking is
that the vector servo-command input y(#) must consistently lie in the column range-space of the plant-
output matrix C in (4.81) for all z. In the present example, satisfaction of this condition requires that

(from (2.33))

R[G]c R[C] : (4.155)

If (4.155) is satisfied, then it is possible to express G as some linear combination of
the columns of C. That is, G = C@ for some (possibly nonunique) 6. Substituting C and G from (4.81)
and (4.152) into G = C8Oyields

(L 09=1(6 8). (4.156)

Clearly, (4.156) is satisfied for some ; namely
6=(1, 0). (4.157)

The control task is to design a discrete-time control algorithm for u(kT) such that the
servo-state vector e.(kT) in (3.38) becomes stable to and invariant for a subspace Sy =N[5 ] c N[C] for

some C in (2.46). As discussed below (4.86), C =C=1 in (2.45) and we have the special case of
stabilizing e,(kT) to the nullpoint.

The discrete-time models for the plant (4.81), disturbance (4.82), and servo-command
(4.153), and the & determined in (4.157), will now be used in two subcases which utilize the D/C servo-
tracking controller design techniques presented in Chapter 3 of this report.

4.5.3. Subcase 4a: Digital Servo-Tracking Control Design Utilizing D/C Control-
Action u(;kT) for the Case of anm Unstable First-Order Plant and
Step+Exponential Servo-Command y.(7), and Subjected to a Step+Ramp
Disturbance w(f) and Parameter-Perturbation Aa

In this Subsection, a digital servo-controller is designed using the D/C servo-
controller design techniques presented in Sections 3.1 through 3.3. The ideal form of the digital servo-
tracking control law for Subcase 4a is written as

u(t; k) =u (kT + u (8 kT) + u,(kT) +u,(t;kT), (4.158)
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where u(£;kT), u(kT), and u(t;kT) are the same as those designed in Subcases 3b and 3c and given in
(4.115), (4.138), and (4.134), respectively. Only the control term uy(t;kT) in (4.116) needs to be
redesigned such that intersample accommodation is provided for the disturbance-like effects of the

step+exponential servo-command y(7) in (4.150).

The necessary and sufficient condition for existence of the control term u(t;kT)
satisfying (3.16) is (same as (3.13))

rank[6 E - 46 | B]=rank[B], (4.159)
where

rank[0E — 46 | B]=rank[-a,,1 | 1]=1,
and

rank| B] = rank[1]=1.
Clearly the rank condition in (4.159) is met and I, is designed such that (same as (3.18))

(HE—AH)—BI“S=(—a,,,1)—(1“s1,1“,2)=0. (4.160)
The T, that will satisfy (4.160) is

T, =(—a,,, 1). (4.161)
The ideal continuous-time control term u(?) in (3.20) can thus be ideally chosen as

u (1) =Tc(t) 4.162)
=-a,c(t) + ¢, (1) .

Recall, however, that the digital control decisions at time 7= kT must be based on
measurements, or estimates, of the state c(f) available at each of the times t=kT, k=0,1,2,---.

Therefore, the projected or forecasted behavior of c(t) across each intersample interval must be
represented in terms of c¢(kT). This relationship is found in the general solution to (4.152) evaluated at
each  over the interval from AT'to = (k + T (assuming @ #0)

() =" ek +r,(1)

, (4.163)
1= g=a(t=kT)
=" T kD

0 e ol-iD)

where
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ri(t) is a residual-effect given by r,(¢)= _[TeE(""T ) i(7)dr .

As discussed in Subsection 3.1.3, the 7(#) term is excluded from the design process.

Substituting (4.163) into (4.162), and ignoring the residual term, results in the final
(idealized) form of the u; control term

u (t;kT) =T e e(kT)

. : l_e-a(l-kT)
=(-a,, 1) = &  [c(kT) : 4.164)
0 e—a(t—kT) )

(k) (4 o)
=—ancl(kT)+(e (a, +a) a”]cz(kT)
a

The final form of the (ideal) digital-continuous servo-controller equation for Subcase
4a is given in (4.158) where u (t;kT), u(t;kT), u,(kT), and ut;kT) are given in (4.115), (4.164), (4.138),
and (4.134), respectively.

4.5.3.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 4a

The digital control law in (4.158) assumes availability of the real-time value
of the external disturbance state z(kT), the plant state x(k7), the servo-command state c(kT), and the
related parameter-perturbation state z,(k7). Estimates of the plant state x(k7), disturbance state z(kT), and
the parameter-perturbation state z,(k7), are generated by the hybrid full-order state-observer in (4.142)
developed for Subcase 3¢ with #(#;kT) from (4.158) used for the digital servo-controller. Estimates of the
servo-command state c(kT) are generated by a discrete-time reduced-order state-observer as described in
Subsection 2.13.3. The states ¢;(k7) and x;(kT) can be obtained directly from measurements of y.(kT)
and y(kT), respectively (refer to (4.153) and (4.81)).

In order to compute y(u,) for (4.158), the control task u(t;kT) in (4.158)

must be divided into a discrete part u,(k7) and a continuous time-varying part %, In that way, (4.158) is
rewritten as

w(t;kT) =u, (kT) +u, (1) ; kT<t<(k+DT, (4.165)

where u,(kT) in (4.138) is the portion of u(#;kT) that is held constant between sample times, and
u () =u (;kT) + u (t;kT) + u, (t;kT) , (4.166)

is the portion of u(#;k7) that varies with time between each successive sample-time.
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The u(?) in (4.166) changes the value of w(u,) determined in Subcase 3¢ in
(4.142). The new value of w(u,) is computed as

w(u,)= f e Tpy (2)d7

_@T+1-e") s (e “’a"T)z D) , (4.167)
03 2 (a" _ a,,,) a
e’ —e™ el 1-e%T
+ ( )02 1)+ a" z,(kT) + (1 - e""T)yc (KT) + (—-2—)c2 (kT)

n

where a, #a,, a,#0, and a=0. To physically realize y(u,)in (4.167), the estimates z,(kT),
2,(kT), and Z,(kT) are used from the hybrid full-order state-observer and the estimate ¢,(kT) must be
obtained.

A discrete-time reduced-order state-observer design is used to generate the
state estimate ¢(kT') based solely on the sampled real-time measurement of Y«kT). The “recipe” for this

design was developed in [33] and is described in Subsection 2.13.3 . The discrete-time reduced-order
state-observer design proceeds as follows (assuming @ #0):

Step 1. define Ty, as any v x (v-m) maximal rank matrix such that
GT;,=0

The R[T;,] of a Ty, which meets this condition will necessarily form a basis
for the NG]. For this example,

and T, can be selected as

0
7}2=(J;

Step 2. a) define the (v-m) x v matrix

T, =(125,) 1

=[(o, 1)@]1(0, ),

-0 1)
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and

b) define the m x v matrix G as

-1

G* =(GGT) G

=(L 0)

Step 3. a) construct the (v-m) x (v-m) matrix
D= Tiz EE 2
1- e-aT

0
= (o 1) 1 o ( J ,

0 4 1

= e—aT
and

b) construct the m x (v-m) matrix

-al
1 l-e 0
=(1, 0) a ;
0 e M
1-e
T a
Step 4. construct the error-dynamics discrete-time evolution equation

&, (k+DT)=[D+3&]¢, (kT)

=[e'”r+2( l‘z_ﬂ)}ey, (KT)

Step 5. design X such that & 5, (KT)—> 0 rapidly,
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For this example, the poles of [D+ Zﬂf] in Step 4 are placed at zero (1 = 0).
In that way,

}L—[D+2ﬂf]=2.—[e"’r+Z(1_Z_ﬂ)]=0,

and X is chosen as

ae—aT
z = -aT ’
e ™ -1
Step 6. construct the “filter” part of the discrete-time reduced-order

state-observer

Sk + DT) = (D + ZR)E(KT)
+ [(Tl2 +IG)EG" )~ (D + Eﬂ)E]yc(kT)

; (4.168)
e"”(l +(a - l)e'“’)
=05(kT) + 7] Y (kT)
e —
and
Step 7. construct the “assembly-equation” portion of the discrete-time
reduced-order state-observer

8(KT) = T, 6KT) +[G* - T, 3y, (4kT)

(4.169)

0 1
=(J§(kT)+ a |y (kT)

1-e~%

4.5.3.2. Simulation Results for Subcase 4a
Incorporation of the hybrid full-order in (4.142) with w(u,) from (4.167) and

discrete-time reduced-order in (4.169) state-observers will result in a physically-realizable digital servo-
control law having the form

u(t;kT) =T e® D 2(kT)+ T P *D(kT) - K, (v .(kT)- y(kT))

. (4.170)
+T,eP Dz (kT)

where I, T,, K »» La are given in Equations (4.109), (4.161), (4.137), and (4.131), respectively.
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Simulation results were obtained for two different sample-periods
(T=0.1, 0.2) and for the case of no parameter-perturbation (Aa = 0) and +/-100% parameter-perturbation
(Aa = il) . In the simulations for Subcase 4a, the nominal value of the plant’s a, parameter in (4.123),

ideal model parameter a, in (4.124), and exponential decay & on the servo-command y.(?) in (4.150) were
chosen as

a,=1; | (an inherently unstable plant),
a,=-3,

and
a=1

The plant output (), the step+ramp disturbance w(z), and the
step+exponential servo-command y.(f) for the simulation using a control sample-period of T=0.2 is
illustrated in Figure 4.28 and Figure 4.30. The illustration in Figure 4.28 represents the nominal case of
no parameter-perturbation (Aa=0). The illustration in Figure 4.30 represents the case of parameter-
perturbation Aa=-1 and Aa=1 overlayed on top of the nominal case (shown in Figure 4.28). The
simulation results in Figure 4.29 and Figure 4.31 show the corresponding servo-tracking error &(z) for
Subcase 4a.

The plots in Figure 4.32 and Figure 4.34 show the plant output )(¢), the
steptramp disturbance w(?), and the step+exponential servo-command Y«#) for a simulation using a
control sample-period of T=0.1. The simulation results in Figure 4.32 illustrate the case of no
parameter-perturbation (Aa = 0). The simulation results in F igure 4.34 illustrate the case of parameter-
perturbation Ag=-1 and Aa=1 overlayed on top of the nominal case (shown in Figure 4.32). The
simulation plots in Figure 4.33 and Figure 4.35 show the corre ponding servo-tracking error g(#) for
Subcase 4a. :

As expected, the settling-time and servo-tracking error decreases as the
sample-period is reduced (from =02 to T=0.1). The digital servo-controller and the hybrid and
discrete-time reduced-order state-observers did not need to be recomputed for the different sample-
periods because the sample-period T was carried throughout the calculations as a variable. The
decomposition of the total control-effort greatly reduces the complexity of the design, allowing for this
type of symbolic computation on relatively simple systems. Also note that the control term u,(k7) in
(4.158) did not have to be recomputed from (4.138), even though the value of the plant’s a, term changed
from stable (a,, = -3) to unstable (a,, = l). This example illustrates that the same digital servo-controller
equation can be used for both stable and unstable plants, providing the plant-parameter values are carried
symbolically throughout the calculations. The control terms u{t:k7) and u(t;k7) in (4.158) were reused
from Subcase 3¢ (4.139) since the general form of the disturbance w(f) and the characteristics of the
parameter-perturbation vector Aax(¢) are the same in Example 4 as they were in Example 3.
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Control Sample-Period: T =0.2
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Figure 4.28 Illustration of the Plant Output (), Disturbance w(f), and Servo-Command y{) for

Subcase 4a With an Unstable Plant,

3 Contro! Sampie-Period: T= 0.2

a,=1, Aa= 0, and Control Sample-Period T'= 0.2.
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Figure 4.29 Illustration of the Servo-Tracking Error

&(?) for Subcase 4a With an Unstable Plant, a,= 1,

Aa =0, and Control Sample-Period T'= 0.2.
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Contro! Sample-Period: 7=0.2
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Figure 4.30 Illustration of the Plant Output y(¢), Disturbance w(f), and Servo-Command y.(f) for
Subcase 4a With an Unstable Plant, a, = 1, Control Sample-Period T=0.2, and Aa=-1
and 1, Overlayed on Nominal Case of Aa =0.

3 Contro! Sample-Period: T=0.2 Et)=y(t)-y(f)
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Figure 4.31 Illustration of the Servo-Tracking Error (1) for Subcase 4a With an Unstable Plant, a, = 1,
Control Sample-Period 7= 0.2, and Aa=-1and 1, Overlayed on Nominal Case of Aa=0.

150



Control Sample-Period: T=0.1
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Figure 4.32 Illustration of the Plant Output y(7), Disturbance w(f), and Servo-Command y{t) for
Subcase 4a With an Unstable Plant, a,= 1, Control Sample-Period T=0.1, and Aa=0
(compare to Figure 4.28).
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Figure 4.33 Illustration of the Servo-Tracking Error g(f) for Subcase 4a With an Unstable Plant, a, =1,
Control Sample-Period T=0.1, and Aa=0 (compare to Figure 4.29).
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Control Sample-Period: T=0.1
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Figure 4.34 TIllustration of the Plant Output y(f), Disturbance w(?), and Servo-Command y.(¢) for Subcase
4a With an Unstable Plant, a,= 1, Control Sample-Period 7=0.1, and Aa=-1 and 1,
Overlayed on Nominal Case of Aa =0 (compare to Figure 4.30).

Contro! Sample-Period: T=0.1
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Figure 4.35 Illustration of the Servo-Tracking Error g(f) for Subcase 4a With an Unstable Plant, a, =1,
Control Sample-Period 7= 0.1, and Ag=-1 and 1, Overlayed on Nominal Case of Aa=0
(compare to Figure 4.31).
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4.54. Subcase 4b: Digital Servo-Tracking Control Design Utilizing Multirate
Sampling and D/C Control-Action u(#;kT.;kT,) for the Case of an Unstable First-
Order Plant and Step+Exponential Servo-Command Ye(f), and Subjected to a
Step+Ramp Disturbance w(f) and Parameter-Perturbation Aa

The digital servo-tracking controller in (4.158) designed in Subcase 4a can be
modified to use different sampling-rates to achieve a level of servo-tracking performance that cannot be
matched using a single-rate servo-controller. The digital servo-tracking controller u(£:kT) in (4.158) from
Subcase 4a is implemented in this Subsection such that the control terms u(r;kT) and u(t;kT) run at
sample-rate 1/7, and the control terms u«(#;kT) and u,(kT) run at sample-rate 1/7, . It is assumed that
measurements of the plant output )(r) are available every t=kT, and measurements of the servo-

command y,(#) are available every ¢ = k7, and the sample-periods T, and T, are related by (3.80). In that
way, the ideal digital-continuous digital servo-controller equation in (4.158) is rewritten as (assuming
a#0 anda,=1)

u(t; KT KT,) = u, (6KT,) + u, (5 KT,) + u, (KT,) + u, (1 kT, ), 4.171)

where

u,(t;kT,) = ~2,(T,) - (¢ - kT, )z, (KT, ),

~a(t-kT) _
us<r;k7;)=-anyc(k71>+(e (@, +a) ”")cz(krc),
a
a, ea,,T_ea,,T

A (T AR ]

and

u, (5KT,) =)z (kT).
The digital servo-tracking control law in (4.158) can be modified to take full benefit
of the use of multiple sample-rates. For example, the particular multirate implementation in (4.171) can

be altered such that an inherently unstable, or highly-oscillatory, plant (a,=1 for Example 4) is controlled
and stabilized at the higher sample-rate U/T,. In that way an additional control term, postulated in

continuous-time as u, (1)=K,x(t), is designed such that the continuous-time homogeneous equation
(refer to (3.83))

x(t)=(a, +bK, )x(?) , 4.172)
has certain specified eigenvalues. For that purpose, K,, is selected such that
det[il ~(a, +bK, )] =P, (1) (4.173)

where P,(1) is given in (4.125) and the term a,, in (4.124) is replaced by the composite term a, +bK, ,
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a,=a,+bk,. 4.174)
The discrete-time counterpart to the design of X,, in (4.172) is to choose K, to obtain
det A1-(dy + BK,)] = de 21~ 4], (4.175)

where 4 y and B are defined in (4.135) (with T replaced by 7,) and Zm =e™" for a,, defined in
4.174).

~

For this example, K, is designed to satisfy

a,T, -1
PRGN Al - SR 4.176)

a,

Solving for I?,,, in (4.176) yields the result (@, =1 and a, #a,,)

K, ; 4.177)
e —1
The (ideal) control term u, (kT,) in (3.87) can thus be chosen as

u, (kT,)=K,x(kT,)

(4.178)
a, (e”"'T; —e™h )
Y x(kT,)
e’ —

Assuming the ideal choice for u, (k7)) in (4.178) is implemented, the control terms
ul(t:kT;) and u,(kT,) in (4.171) would be designed using the “new” a, parameter. That is, the term a,

would be replaced by a, + bI?m and @, would be replaced by the exponential e **%=)T. throughout the

design of u,(#;kT.) and u,(kT,) in Subsections 4.5.3 and 4.4.5. In that way, the improved ideal multirate
servo-controller equation becomes (a # 0)

u(t; kT, kT,) = u (t;kT,) + u (t;KT,) + u,(kI.) +u,(t; kT,) + u, (kT,). (4.179)
where

L +bK, +a)—a,, -bK,,

a

N —a(1-kT) ( a
u(6kT,) = (a, +bK,, )y, (T,)+ & (kT,),
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(an + bf,,,)(e"ﬂc _e(a,,+b2m)7~t)

e(a,,-rb[?,,,)?; _

u, (KT, ) = - (ve(T,)- y(4T,)), where (a, +bK,)=0,

and u.(t;kT,) and u,(t;kT,) are given in (4.171) and u, (kT,) is given in (4.178).

4.5.4.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 4b

The digital servo-controller in (4.179) is realized by utilizing the discrete-

time reduced-order state-observer in (4.169) obtained in Subcase 4a (with T replaced by T.), by
substituting T, for T in the hybrid full-order state-observer in (4.142) computed for Subcase 3¢, and by

modifying the term y(x,) in (4.167) in the following way.

Divide the control task in (4.179) into a discrete part uy(kT) and a continuous
time-varying part u(f)

UKL KT ) = uy (RT) +u,(); kT <t<(k+1)T, (4.180)

where

Uy (KT RT,) = u, (KT,) +u,_(KT,),

and

u, (t)=uc(t;k7})+ us(t;ch)+ua(t;kTy).

The u((?) in (4.180) changes the value of ¥(w,) in (4.167). The new value of
v(u,) is computed as

k+)T, _
V/(u, ) = [T y ea,, ((k+l)7:y T)bu, (T)dT
Y

(a,T, +1- e ) (e""T’ - e“"T’) o
= z e/ .
= 2{#1, (a,,-am) z,(kT,) ; (4.181)
(a +bK + a)(ea"r’ ¢ @ UBHD) _ pmalkeT~kT,) ) T
n m 1~
+ kT
a(a, +a) e C)+( . ]21 (*T,)

. (i—i’_) A (1-e )(a +K,,)

a, a,a

c,(kT})

wherea,=1, a, #a,, =0, and a#-a,.
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To physically realize y(u,), the estimates z,(kT), 2, (KT,) and Z,(KT,) are used from the hybrid full-
order state-observer (4.142) and the estimate ¢,(kT.) is obtained from the output of the discrete-time
reduced-order state-observer (4.169).

4.5.4.2. Simulation Results for Subcase 4b

Simulation results were obtained for Subcase 4b using the plant, disturbance,
and servo-command, given in (4.76), (4.77), and (4.150) where the value of the plant’s a, parameter,
parameter-perturbation Ag in (4.123), ideal model parameter a,, in (4.124), exponential decay a on the
servo-command y.(?) in (4.150), and control sample-periods 7, and 7, were chosen as

a,=1

a, =-3,

a=1,

and

T,=001, T =1 Aa=0

| Sample-Period T,=005, TC=O.2f " Aa=-3,-1,0,1,3

Control Sample-Period: T, =001, T.=02 or the cases Aa=-3,-10,1,3

7,=001, T,=01 Aa=-3,-1,0,1,3

The simulation results in Figure 4.36, Figure 4.38, Figure 4.40, and Figure
4.42 illustrate the plant output y(f), the steptramp disturbance w(r), and the step+exponential servo-
command y(#) and the simulation plots in Figure 4.37, Figure 4.39, Figure 4.41, and Figure 4.43 show
the servo-tracking error &,(t)=y.(¢)- y(¢) for Subcase 4b. In particular, the simulation plots in Figure

4.36 and Figure 4.37 are for the nominal case (Aa =0). This subcase is provided to illustrate the added
benefits that can be obtained by incorporating the additional control term u, (kT,) in (4.178). In that

way, the simulation result shown in Figure 4.36 graphs the plant outputs and the result shown in Figure
4.37 graphs the servo-tracking errors for the case of the servo-controllers u(;kT,;kT,), as given in (4.171)
(Whereu, (KT,)=0), and u(t;kT};kT,), as given in (4.179). The improvement provided by the control

term u, (kT,) can be seen by examining the performance between the sample times k7T, and (k+1)T,,
where T.=1. For the most part, the tracking error is smaller for the case when the control term
u, (kT,) is included. The simulations results shown in Figure 4.38 through Figure 4.43 utilize the
multirate control law in (4.179) where u, (k7)) is included. The simulation plots in Figure 4.38 through

Figure 4.43 illustrate the performance of the plant in Subcase 4b for a variety of parameter-perturbations
Aa, including perturbations as large as +/- 300% of the a, parameter. A variety of sample periods are
used to illustrate the level of performance that can be achieved by combining the sample rates in different
ways. The performance of the multirate servo-controller in (4.179) (Figure 4.38 through Figure 4.43) can
be compared to the performance of the single-rate servo-controller in (4.170) used in Subcase 4a (see
Figure 4.28 through Figure 4.35).
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Control Sample-Periods: Ty=0.01, Tc=1

Figure 4.36 Illustration of the Plant Output y(f), Disturbance w(f), and Servo-Command y«(t) for
Subcase 4b:  An Unstable Plant (g, = 1) With Known Parameters (Aa=0) and
Compensated by a Multirate Controller Using Sample Periods 7,=0.01 and T,= 1, With
and Without the u, (kT,) Control Term Included.

3 Control Sample-Periods: Ty= 0.01, Te= 1 Ey{f)=yc(t)-y(t)
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Figure 437 Tllustration of the Servo-Tracking Error &(#) for Subcase 4b With An Unstable Plant
(a,=1) With Known Parameters (Aa=0) and Compensated by a Multirate Controlier

Using Sample Periods 7,=0.01 and T,= 1, With and Without the u, (kT,) Control Term
Included.
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Control Sample-Periods: Ty=0.05, Tc=0.2

~=ceceqrhenceqend

N

.............................

mepememana

[P, )

1
1
]
’
]
1
)
)
1
1
]
1
L)
S
]
L]
L]
)
1
L}

beedececaatan
Fecquecacagen

o
(4) ]
e
o

Figure 4.38 Illustration of the Plant Output (), Disturbance w(¢), and Servo-Command y«(t) for
Subcase 4b With An Unstable Plant (a, = 1) Subjected to Parameter-Perturbations
Aa=-3,-1,0,1,and 3, and Compensated by a Multirate Controller Using Sample Periods

7T,=005 and T,=02.
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Figure 439 Illustration of the Servo-Tracking Error &(1) for Subcase 4b With An Unstable Plant
(a,=1) Subjected to Parameter-Perturbations Ag = -3,-1,0,1,and 3, and Compensated

by a Multirate Controller Using Sample Periods 7,=005 and T,=02.
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Control Sample-Periods: Ty=0.01, Te=0.2
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Figure 4.40 Illustration of the Plant Output )(#), Disturbance w(f), and Servo-Command y«(t) for
Subcase 4b With An Unstable Plant (a,= 1) Subjected to Parameter-Perturbations
Aa=-3,-1,0,1,and 3, and Compensated by a Multirate Controller Using Sample Periods

T,=001 and T, =02.

Control Sample-Periods: 7y= 0.01, Te= 0.2
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Figure 4.41 Illustration of the Servo-Tracking Error g(f) for Subcase 4b With An Unstable Plant
(a»=1) Subjected to Parameter-Perturbations Aa=-3,~1,0,1,and 3, and Compensated

by a Multirate Controller Using Sample Periods T,=0.01 and T,=0.2.
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Control Sample-Periods: Ty= 0.01, Tc= 0.1
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Figure 4.42 Illustration of the Plant Output y(7), Disturbance w(), and Servo-Command y.(¢) for
Subcase 4b With An Unstable Plant (a,=1) Subjected to Parameter-Perturbations
Aa=-3,-1,0,1,and 3, and Compensated by a Multirate Controller Using Sample Periods

7,=001 and T, =01.
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Control Sample-Periods: Ty= 0.01, Te= 0.1
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Figure 4.43 Illustration of the Servo-Tracking Error &(r) for Subcase 4b With An Unstable Plant
(@, = 1) Subjected to Parameter-Perturbations Aa =-3,-1,0, l,and 3, and Compensated

by a Multirate Controller Using Sample Periods 7,=0.01 and 7.=0.1.
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4.6. Example 5: An Unstable Second-Order Plant and Stepwise-Constant Servo-Command
Yc(f), and Subjected to a (Step+Ramp)xDecaying-Exponential Disturbance w(f) and
Parameter-Perturbations A4

This numerical example illustrates an unstable second-order plant that is required to track a
servo-command y.(f) composed of stepwise-constants. The disturbance w(?) is composed of a stepwise-
constant decaying-exponential and a ramp multiplied by a decaying exponential. The plant’s 4 matrix is
perturbed. A physically-realizable digital servo-controller u(£;kT) having D/C holding-action is designed
for Example 5, and simulation results are presented using both single-rate and multirate digital servo-

controllers.

4.6.1. State Models for the Plant, Disturbance, Parameter-Perturbation, and Servo-
Command for Example 5

The plant for this example is modeled by the following second-order differential
equation:

V() =(2+ Aay )p(t) +(=1+ Aay) y(£) + u(t) + w(t) . (4.182)
The disturbance w(?) is known to have the following form:

w(t)=(c, +cyt)e™, (4.183)

where ¢, and ¢, are unknown stepwise-constants which may “jump” in value from time-to-time, and a is
a known quantity. The interval between successive Jjumps in ¢; and ¢; is assumed to be somewhat larger
than the sampling-period 7.

The state model for the plant is easily determined by choosing x;(f) = y(f) and
x,(8) = y(t) as follows:

()= Ayx(t) + Bu(t) + Fw(t) + Adx(r)
¥(t) =Cx(t)

0 1
Ay = ,
Sk

AA=[A(; Agz], C=(1 0).

. A similar state model is developed for the disturbance w(f) in (4.183), using the
techniques described in Section 2.5 by noting that between jumps in the c, the disturbance w(?) is
governed by the linear homogeneous differential equation

, (4.184)

where
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W(t)+ 2a0m(t) + a*w(t) = 0. (4.185)

Using the methods described in Section 2.5 the state model for the disturbance w(#) in (4.185) is obtained
as

wlt) = Hz(1) , (4.186)
z(t)= Dz(t)+ o(t)
where
H=(1, -0),
Do 0 1
-a? -2a)
and
o(t) are uncertain, sparse impulses that “cause” the occasional “jumps” in the
disturbance w(z).

The parameter disturbance-effects A4x(?) in (4.184) are modeled as described in Subsection 3.2.4 as
w, (1) =—(A4)x(?). (4.187)

As shown in [39], w,() is closely approximated by the known differential equation model (in (3.44))
where the coefficients £; in (3.44) are obtained from the characteristic polynomial in (3.36) for the
“ideal” closed-loop dynamics of the servo-state vector e,(f) in (3.35). The ideal model in (3.35) is
chosen for Example 5 as

€ (1) = 4,e. (1)

To 1 : (4.188)
_[—36 —12]6“(0

The desired characteristic equation in (3.36) is computed from (4.188) as

P,(A)=det(Al - 4,))
=A* +124+36 . (4.189)
=(A+6)?

Proceeding as in Subsection 3.2.4, the dynamic behavior of the parameter disturbance
term (A4)x(?) is expressed by the state model (same as (3 A45))

- (M)X(t) =W, (t) = Haza (t)

2,()=D,z,(t)+ o,(t) ’ (4.190)

where the procedure for determining H, and D, is given in Subsection 3.2.4. For this particular example

162



and

- 0 1
D, = :
[—36 —12]

(4.191)

(4.192)

N The term o,(f) in (4.190) represents sporadic, sparse-in-time impulses that are the source of the uncertain
intersample “jumps™ that may occasionally occur in the disturbance vector (AD)x(r). As discussed below

(3.72), the o(#) term is disregarded throughout the design process.

Using the techniques described in Section 2.6 and Subsection 3.3.2, discrete-time
models can be obtained for the plant, disturbance, and parameter-disturbance vector. Those models are

Plant:

x((k + DT) = Ay x(KT) + Bu, (KT) + y(u,) + FH 2(kT)
~H,2,(kT) + 7 (kT) - 7,
Y(kT) = Cx(kT)

where

T oM = e'(1-1) T
YOO T st Jaen)

T
B= f e"~<T">Bdr=(1+e (Z_l)),
Te

fhll /hl?.]

F~H = feA”(T")FHeD ‘dr= [
Jhy Sy,

where

(¢ (@ +1)al + 3a + 1)+eT((T- 3a + 1)+2Ta2)

(1+ a)3
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(4.193)

ifa=-1

ifa=-1




and

+ e"’T

)T(a+1)- 2" -e")

e
Jhyy =
r,
6

T

-e" (20 + 2’ T(1+ @) +e" (TGa +1+2a°)+2a?)

ifa=-1

.
’

(1+a)

ifa=-1

if @ #-1

Jhy =

and

(1+a)’

ifa=-1

ifa=-1

(1+a)

b

Z—— 1+ ifa=-1
2

H = fe””(r"’)H eD"’dz'=[.I:"“
a a h

(e —e"J1-a(1+ T + T(e” - a?e™")
iy =

where
;all =
}2112 =
;021 =—€
and
;;a22 =—e
C=(1 0),

S0

alZ]
b
22

hk‘l

a2l

~7(012247 +0.0554) + e” (026537 - 0.0554),
67 (0.0204T +0.0058) + e” (0.0204T — 0.0058),

~7(0.7347T +02099) + €7 (026537 +0.2099),

~7(01224T +0.0146)+ €7 (0.0204T + 0.0146) ,

7(kT) = f TR [ o+ kndgdr,

7.G0)= [ e, [e2C05, (4 kTl ;
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and

Disturbance:

w(kT) = Hz(kT)

- N , (4.194)
z((k+1)T)= Dz(kT)+ &(kT)
where
H=(1, 0),
Foeor_|€ U+al) T
| - e (1-aT)|
and
G(kT) = f ePT-9 (£ + KT)dE;
Parameter-perturbation vector:
~ A0 =w, (KT) = H,z, (kT) , (4.195)
2,((k+ D)= D,z,(kT) + &, (kT)
where
H - (o 0)
"1 o)
B <ol = e (1+67) Te 5T
‘ -36Te™" e T(1-6T)|
and

T
G,(kT)= [e>TDg, (£ + kT)dg

0

It is hereafter assumed that a # 1 throughout Example 5.

The servo-command y(f) is assumed to be an unknown stepwise-constant command

as given in (4.8). The continuous and discrete-time models for this command were obtained in (4.10) and
(4.11) in Example 1.
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4.6.2. The Necessary and Sufficient Condition for Achieving Exact Servo-Tracking for
Example 5

The objective is to design a digital servo-tracking controller for the plant in (4.182)
such that the tracking-error, defined by

&,()=y.(1)-y(1), (4.196)

goes to zero in the face of arbitrary plant initial conditions and unmeasurable plant disturbances. As first
shown in [37], the necessary and sufficient conditions for achieving theoretically exact servo-tracking is
that the servo-command input y(f) must consistently lie in the column range-space of the plant-output
matrix C in (4.184) for all . In the present problem, satisfaction of this condition requires that (from

(2.33))
R[G]<c R[] : (4.197)

If (4.197) is satisfied, then it is possible to express G as some linear combination of the columns of C.
That is, G = C8 for some possibly nonunique 6. Substituting G and C from (4.10) and (4.184) into G =

C@Oyields
61)
I=(1 0 . 4.198
@ oy @19%)
One choice for @satisfying (4.198) is

1
6= (o) _ (4.199)

The control task is to design u(#;kT) such that the servo-state vector e,,(?) defined by
(3.2) is controlled to N[C] . For the present example, we have chosen to stabilize e,(7) to the nullpoint.

In this special case, C =1 in (2.46), where I is the n x n (n = 2) identity matrix.
The plant, disturbance, and servo-command in (4.182), (4.183), and (4.8),
respectively, the @ determined in (4.199), and the ideal model in (4.188) will now be used in two

subcases of Example 5 using the digital servo-control techniques presented in Chapters 2 and 3 of this
report.

4.6.3. Subcase 5a: Digital Servo-Tracking Control Design Utilizing D/C Control-
Action u(t;kT) for the Case of an Unstable Second-Order Plant and Stepwise-
Constant Servo-Command y.(?), and Subjected to a (Step+Ramp)*Decaying-
Exponential Disturbance w(f) and Parameter-Perturbations A4

The ideal digital servo-tracking control law for Subcase 5 is written as

u(t; kT) = u (t;kT) + u (t;kT) + u,(KT) +u,(t;kT), (4.200)
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The D/C control terms u/(t;kT), and u(t;kT), and u,(t;kT) are designed to provide intersample
accommodation of the effects of the external disturbance and disturbance-like effects of the servo-
command and parameter-perturbations. The control term u,(kT) is designed to regulate the servo-state
vector e(?) to the nullpoint.

4.6.3.1. The Design of the Control Terms ut;kT), ut;kT), and u,(t;kT) to
Provide Intersample Accommodation of the Effects of the Disturbance
w(?), Servo-Command y.(f), and Parameter-Perturbations AA.

The necessary and sufficient conditions for existence of the control terms

u{t;kT) satisfying (3.15), u(1;kT) satisfying (3.16), and u(t;kT) satisfying (3.48) are given in (3.12),
(3.13), and (3.49), respectively. Satisfaction of those conditions is shown as follows:

for u(t;k7): rank[ FH | B]= rank[B];  (same as (3.12)), (4.201)

where

0 0]0
rank[FHlB]=rank[1 0’1]=1,

and
0
rank[B] = rank[ J= 1;
1
for u(t;kT): rank[6E — 46 | B]= rank[ B]; (same as (3.13)), (4.202)
where

rank[§ E — 46 | B]= rank{o , 0]: 1,
11
and rank]B] is given below (4.201);

for u(t;kT): rank[H, | B]= rank[B];  (same as (3.49)), (4.203)

where

rank[H, |B]=rank[0 O’OJ=1,
1 0}1

and rank[B] is given below (4.201).

Clearly the rank conditions in (4.201), (4.202), and (4.203) are met and there exists gain matrices r,,r,,
I, such that
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00 0 0
: FH+ Bl = + =0; (4.204)
for T, : + BT, [I 0] I:rd rcz:,
0 0
for T,: ¢9E—A¢9—BPS=(J—(1_)=O; (4.205)
00 0 0
: H -BI = - =0; (4.206)
for T BT, [l 0] [r,,, rﬂ]

A suitable choice for I', I',, and I, satisfying (4.204), (4.205), and (4.206) is

I.=(-1 0), (4.207)

I.=1, (4.208)
and

r,=(, 0). (4.209)

The continuous-time control terms u(z), us(1), and u,(f) in (3.19), (3.20), and (3.51) can thus be chosen
(ideally) as

u (t)=T_z(t) (4.210)
=-z,(¥) ’

u,(£)=T,e(t) o
=c(t) ’ : ’

and

u,(1)=T,z,()

A (4.212)
T “al

during the interval AT <t<(k+1)T . Recall, again, that the digital controller is only allowed to use

measurements, or estimates, of the states z(#), c(¢) and z{t) attimes t=kT, k=0,1,2,... Therefore, the
projected or forecasted behaviors of z(z), (1), and z,(f) across each intersample interval must be
represented in terms of z(kT), c(kT), and z,(kT), respectively. This relationship is found in the general
solution to (4.186), (4.10), and (4.190) evaluated at each ¢ over the interval from kT to r = kDT In
particular,

Disturbance state-vector:
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2(t) = e D (KT) +r,(1)

; (4.213)
_|e A+ at-kD) (1= kT)e D {RT) + 7, (1)
—a?(1 —kD)e D gD (| _ gt — kT))
Servo-command state-vector:
() ="M e(kT)+r (1)
; (4.214)
=c(kT)+r/(t)
Parameter-disturbance vector:
z,(8)= ™"z, (kT) +1,(1)
; (4.215)
-6(1-kT)) _ _ -6(1~kT)
_|e (1+6(t-kT)) (t kaT)e 2, (KT)+7, (1)
—36(t ~ kT)e 54 =801 _ 6(s— kT))
where
r{?) is a residual-effect given by r.(¢) = LeD(’ a(r)dr,
r{?) is a residual-effect given by r,(7) = LeE = i(r)dr,
and

ro(?) is a residual-effect given by r,(f) = [TeD"("')aa(r)dr .

As discussed below (3.22) and (3.52), the r(r), r(?), and r,(f) terms are
excluded from the design process. Substituting (4.213), (4.214), and (4.215), into (4.210), (4.211), and
(4.212), respectively, and disregarding the residual terms, yields the final (idealized) form of the u,, u,,
and u, control terms

u (kT = I‘ceD("kT)z(kT)

(4.216)

D a(t - k) (- kT)e kD
=(-1 0)° (
( [ —az(t-kT)e‘”(""T) e—a(l—kT)(l - a(t - kT)) (kT),

=~e (1t a(t — kT))z, (kT - (1 - kT)e U=z, (kT)
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u (;kT) =T, eE D (kT
“217)

b4

=c(kT)
=y (kT)

and

u,(t;kT) =T ,e>*z (kT

e 6(t-kT)) (¢ - kD)e D
=(1 o){ 36— kD)D) o g iy P (kT). (4.218)

= "D 1+ 6(t = KTz, (KT) + (t - kT)e™ "z ,, (kT)

4.6.3.2. The Design of the Control Term u,(kT) for Subcase 5a

The structure of the idealized servo-tracking control term u,(kT) is postulated
as in (2.63). The method for designing u,(kT) was presented in Subsection 3.2.6 where K » in (2.63) is

designed to achieve the ideal model characteristics in (4.188). In that way, the matrix K » is chosen to

obtain the following

de{21- (4, + BK, )] =det(1-4,)
=22 -2e 47T | (4.219)
= (2, _ e—6T)2

where ZN and B are defined in (4.193) and Z,,, =e™" for A, in (4.188). In that way, (4.219) becomes

2+ ((eT(l ~T)-1)K,, e (IK , + 2)),1
, (4.220)

+el(1+T-€" )]Zp, + eT(TI'Ep2 +el)=A2 —2¢76T ) 4 127
and the matrix K » satisfying (4.220) is selected as
K, =(R.. K,), (4.221)

where
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- T 6T+
e"—e'”—2(e —e7)

rl (l—eT)2

and

(e" -2¢7 + 2e’")(T+ D+e T (1-T)-2e +¢T

R =
2 - T(eT - 1)?

p

The control term u,(kT) postulated in (2.63) can thus be chosen (ideally) as

u,(kT)=~K e, (KT)

=K, (8c(kT) - x(kT)
(4.222)

eZT __e-'IZT _2(eT _e—GT)

=- (. (kT) - x,(kT))

=<

(e" —2¢7 +2e'6T)(T+ D+e T (1=-T)-2e" +¢7

—T(e" -1)?

x, (kT)

-+

The (ideal) digital servo-tracking control law in (4.200) for Subcase 5a can
now be written as

Wtk =u (t:kT) + u (t;kT) + u o (KT) +u, (t;kT), (4.223)

where u(t:kT), ut;kT), u,(kT), and u(t:kT) are given in (4.216), (4.217), (4.222), and (4.218),
respectively.

4.6.3.3. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 5a

Estimates of the single servo-command state c(kT) can be obtained directly
from on-line measurements of y (k7). Estimates of the plant state x(kT), disturbance state z(kT), and the
parameter-perturbation state z,(k7) are generated from a hybrid full-order observer similar to that
developed for Subcase 3c. The plant state x)(kT) can be obtained directly from on-line measurements of
WkT) (refer to (4.193)). The hybrid full-order observer developed in this Subsection uses measurements
of the plant output 3(kT) to obtain the real-time state estimates X(kT), 2(kT), ,(kT), #(k+1)T),

Z(k+DT). and 2,((k+1)T) of x(KT), 2(KT), z/(kT), x((k+1)T), 2((k+1)T), and z((k+1)T).
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In order to design the hybrid full-order state-observer, a composite system
must be obtained. As in Subcase 3c, the control task must be divided into a discrete part u,(k7) and a
continuous time-varying part u(¢), such that (4.223) is rewritten as

ut;kT) =u, (kT) +u,(1); kT <t<(k+DT, (4.229)
where u,(kT) is the portion of u(#;kT) in (4.224) that is held constant between sample times, and

u()=u (t;kT) +u (t;kT) + u, (t;kT) , (4.225)
is the portion of u(#;kT) in (4.224) that varies with time between each successive sample-time.

Recall the discrete-time composite plant/disturbance model from (3.72),
x((k+)T)) |4y | FH|-H, | xkT)) (B w(u,)
Ak+DT) |=| 0 | D | 0 | z(kT) |+] 0 |u,(k1)+| 0
z,(k+DD)) [ 0 | 0 | D, \z,(kT)) (0 0

» (4.226)
y (kT) - y,(kT)
+ o (kT)
&, (kT)

where 4y, B, FH, H,, D, D,, 7(kT), 7,(kT), G(T), and &,(kT) are given in (4.193), (4.194),
and (4.195) and w(u,) is computed as (assuming a # —1)

2
where
— e (aT(1+ @) +1+3a) " -1~
v e (alT(+a)+1+ a)—e (3T(1+3a+2(l )-1 3a)zl(kT)
(l+a)
_paT T —e7 -
p2 @Y - U+ 0)-D)
(1+a)
+(e7" (00554 + 012247) + €7 (026537 - 00554) ., (kT) ’
+(e77 (000583 +002047) + €7 (002047 - 0.00583))z,, (KT)
+(1+eT(T—1))yc(kT)
and
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e+ T(+a) - Qa1+ D+ TU+30)
(I+a)’ 1

L Td+a)ae™ -e")+ (a- e —e") 2, (kT)
(+a)

+ (eT(o.0379 +02099) — ¢77 (0.73477 = 02099))4,l (kT)
+ (e T(0.0204T + 0.0146) + ¢ 7 (0.1225T + 0.0146))4,2 (kT)

+Te"y, (kT)

v, =

The hybrid full-order state-observer equations are given in (3.76) as

~

Ak+DT)) |4y | FH |- H, | k1)) (B w(y,)
k+DT)|={ 0 | D| 0 | 247 |+ 0 |u,(kD)+| 0
Z((k+DD)) | 0 | 0 | D, \z kD)) (o 0
, (4.228)
By ] Gy
+| Ky [(C 0] 0) 2(AT) |- p(kT)
03J_ Ea(kT')
where 4,, B, FH, C, H,, D, D,,and y(u,) are given in (4.193), (4.194), (4.195), and (4.227) and
where K, = Ky, | is an observer gain-matrix to be determined.
1?03

The general discrete-time evolution equations for the error dynamics of the
hybrid full-order observer are given in (3.77) as

g(k+DT)| (E(k+DT)) ( x((k+1)T)
&((k+DT) | =| 2(k+1)T) | -| 2((k+DT)
&, (k+1)T)) \z,(k+DTY \z,((k+DT)
(4.229)
A, +K,C|FH |- 7, &, (kT)
K,C | D] o |ean)
Ky C 0 | D, \&, (kT)
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£, (T)
As before, it is desirable to design EO so that the observer error | &,(kT ) | goes to zero promptly. Pole
., (kT)

placement is used to determine an appropriate 1?0 » where the roots of the characteristic polynomial
A+K,C|FH|-H,

dett AI-| K,C | D
ExC |0

!

= P(’q’)dc‘tired . (4'230)

Sl o

are such that the observer estimated value of the plant state £(kT), disturbance state 2(kT), and
parameter-perturbation state Z,(kT), quickly and accurately track the actual corresponding plant,

disturbance, and parameter-perturbation states x(kT), z(kT), and z,(k7). This means that the roots of
P(A)desirea in (4.230) can placed at sufficiently-damped locations inside the unit circle (14| <1). Forthe

present example, P(A)gesired i chosen as
P(A) gesived = A5 (4.231)

For Subcase 5a, there are six observer gain values that must be obtained.
Computation of those observer gains is greatly simplified by selecting the sample-period T and the decay-
rate o on the exponential portion of the disturbance. For the present example, 7=0.1 and o=1.

Substituting those values and (4.231) into (4.230) and solving for 1?0 yields

(&, ] [ -51176 ]

R, | | -663346
. K, 236918
Kor=ot,a=0=| " |= . (4.232)

K, | | -479238605
R | | 5097822
| Ky, | | -24369102]

4.6.3.4. Simulation Results for Subcase 5a

Incorporation of the hybrid full-order observer in (4.228) and substituting
(4.216), (4.217), (4.218), and (4.222) into (4.200) will result in the physically-realizable digital servo-
control law for Subcase 5a
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u(t; kI) =u, (t; kT) + u (t;kT) + u,(kT) +u, (t;kT)
=—e (14 a(t - kT))3,(kT) - (¢ - kT)e "3, (kT)

Y —e™T)
2
(1=7)

(e" —2¢7 + 2e°")(T+ D+e T (1-T)=2¢™T +¢”
- T(e" -1)?

+o(kT) =&

(v.(kT) - y(kT)) : (4.233)

X, (kT)

+

+e D (14 6(¢ - KT))Z,, (KT) + (¢ - KT)e ™03, (kT)

Simulations results were obtained for the unstable, second-order plant,
(step+ramp) x exponential disturbance, and stepwise-constant servo-command given in (4.182), (4.183),
and (4.8). As stated above (4.232), the control sample-period for Subcase 5a is T=0.1 and the
exponential decay on the disturbance is a = 1.

The simulation results shown in Figure 4.44 and Figure 4.46 illustrate the
plant output y(#), the disturbance w(¢), and the servo-command Y{#). The simulation results in Figure
4.44 illustrate the case of no parameter-perturbations (Aa; = Aa, = 0). The simulation results in Figure
4.46 illustrate the case of parameter-perturbations Aa= (Aay,Aa,)=(04,-038), and (04, 0.8),
overlayed on the nominal case of Aa=(0,0). The simulation results in Figure 4.45 (for the case
Aa=(0,0)) and Figure 4.47 show the corresponding servo-tracking error &,()=y.(t)-y(t) for

Subcase 5a.

Notice the oscillations in the plant output y(r) shown in Figure 4.46 for the
case of Aa=(04,-08). Those oscillations (due primarily to the uncertainty of parameters in the 4
matrix in (4.184)), are growing, thus preventing the plant output y(f) from achieving and maintaining a
zero tracking-error. As will be seen in the next example, those oscillations can be eliminated by
implementing certain control terms at a higher sample-rate.
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Control Sample-Period: 7=0.1

O 4o 1]

vt

00
Af‘1=oo]

10

o
O F---

Figure 4.44 Illustration of the Plant Output (), Disturbance w(t), and Servo-Command y.(f) for
Subcase Sa With an Unstable Plant, No Parameter-Perturbations and Control Sample-

Period T=0.1.

Controt Sample-Period: 7=0.1

Figure 4.45 Illustration of the Tracking-Error g(r) for Subcase 5a With an Unstable Plant, No Parameter-
Perturbations and Control Sample-Period 7= 0.1.
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Control Sample-Period: T=0.1

(0.0
(0.4,-0.8)
§-0.4,0.8)

6 s
alyo .
, .
0

IR T E e

Figure 4.46 Illustration of the Plant Output y(¢), Disturbance w(f), and Servo-Command y(t) for
Subcase 5a With an Unstable Second-Order Plant, Control Sample-Period 7= 0.1, and

Parameter-Perturbations (Aa = (Aay,Aa,) = (0.4, -0.8), and (-0.4, 0.8)) Overlayed on
Nominal Case of Ag, =Aa, =0.

Control Sample-Period: T= 0.1

(0,0)
&A1) for Aa= { (0.4,-0.8)

0 5 10

Figure 4.47 Illustration of the Tracking-Error g(t) for Subcase 5a With an Unstable Second-Order Plant,
Control Sample-Period T=01, and Parameter-Perturbations
(Aa =(Aa,,Aq,)=(04, - 08), and (-04,08)) Overlayed on Nominal Case of

Aa; =Aa, =0.
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4.6.4. SubcaseSb: Digital Servo-Tracking Control Design Utilizing Multirate
Sampling and D/C Control-Action u(t;kT.;kT,) for the Case of an Unstable
Second-Order Plant and Stepwise-Constant Servo-Command y.(?), and
Subjected to a (Step+Ramp)xDecaying Exponential Disturbance w(f) and
Parameter-Perturbations A4

The digital servo-tracking control algorithm in (4.233), designed in Subcase 5a, can
utilize multiple sampling-periods to achieve a level of high-performance servo-tracking that cannot be
matched by a single-rate controller. In this Subsection, the digital servo-tracking controller from
Subcase 5a is implemented such that the control terms associated with the plant, u (t;kT) and u.(t;kT),
operate at one sample-period T, and the control terms associated with the servo-command, u,(#;kT) and
uy(kT), operate at another sample-period T . In that way, the ideal digital servo-controller in (4.233)

becomes

u(t; KT kT,)) = u (GKT,)) + u (G RT,) + u, (KT,) + u, (KT, (4.234)
where
u(GKT,) = =" (1 + a(t - KT, )2, (AT, )~ (1 — kT, )3, (KT,),

u (4 kT,) = c(kT;) = y (KT.),
2T _e—127; _2(e7;

=0

(e”= —2¢% +2e'6T‘)(TC +D+eP(1-T)-2e"% 4ok

~T(e* - 1)

e
u, (kT,) === ¢ )(yc(kYL)—y(ch))

%, (KT,)

+

and
u, (k)= e (14-6(1 kT, NEn (KT, )+ (1= KT, )e™ 3 (kT,).

The design of the digital servo-tracking controller can be modified to take additional
benefit of the use of multiple sample-rates. For example, the particular multirate implementation
discussed above can be altered such that the inherently unstable plant (4y matrix in (4.184) having poles
in the right-half plane) can be brought under control at the higher sample-rate 1/7,. In that way an
additional control term, postulated in continuous-time as u, (t)=K,x(t), is designed such that the

homogeneous equation
i(t)=(A4y +BK,)x(t) (4.235)

has certain specified eigenvalues. Following the method described in Section 3.4, K, should be selected
such that
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det[AI - (4, + BK,, )]=P,(4) (4.236)
where P,(A) is given in (4.189).

The discrete-time counterpart to the design of X, in (4.236) is to choose I?,,, to obtain

det[,u - (4, + 3%, )] = det[a1- 4,

=22 g4 (4.237)

=(A-e"h)?
where 4 v,and B are given in (4.193) (with T replaced by 7)) and Zm =e™" for Anin (4.188).

For the present example, ]z',,, is designed to achieve (incorporating the values of A4 N
and B into (4.237))

P ((eT’ A-1,)- 1)K,y ~ 5 (T,&,, + 2)),1

(4.238)
+e(1+ T, - e” K, +e” (T},Em2 +e™)y= A2 —2e7 T} 4 ¢
A K, satisfying (4.238) is
Ky =(Rus i), | (4.239)
where
~ 2 _ i 2™ ~ &)
Kml = (1 T )2 s
—e ¥
and
_ (e"’ ~2¢% +2¢™0 )(Ty +D+e B (A-T) =2 4o
K. =
m2 _ T;(eTy _ 1)2
The idealized control term u, (kT,) is thus chosen (ideally) as (same as 3.87)
u, (KT,)= K, x(kT,), (4.240)

where Em is given in (4.239).
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Assuming the ideal choice for u, (kT,) in (4.240) is implemented, the control terms
u(t;kT.) and u,(kT,) in (4.234) would be re-computed using the “new” 4 matrix. That is, the term Ay

would be replaced by 4, +BK, and 4, would be replaced by the matrix exponential PR

throughout the design of u,(#;k7.) and u,(kT.) in Subsections 4.6.3.1 and 4.6.3.2. In order to simplify the
calculations for u,(kT.) and u, (KT,), it is hereafter assumed that the sample-period T, =0.04 and the

multirate digital servo-controller will be obtained for the cases T, = 0.08,0.1,0.2,and 0.8. In that way,
the multirate servo-controller equation in (4.234) is recomputed as

(t; KT, RT,) = u, (KT, ) + 0, (5 KT,) + w, (KT, ) + (5 KT, )+, (RT,),  (4.241)

where u(1;kT,) and u,(t;kT,) are given in (4.234), and

us(t;kI.) =27335y,(kT.),

0.0214(y, (KT, ) - y(KT,)) + 0.0026%,(KT,) for T, =08
— 09122y, (KT,) - Y(kT,)) - 03185%,(kT,) for T, =02
up(k1:)= ~29306(y,(kT,) - Y(KT,)) - 0.8594%,(kT,) for T, =01 ’
—3.6533(y,(kT,) - Y(KT,)) - 10465%,(kT,) for T, =0.08

and

u, (kT,)=-263354y(kT,) ~ 116911%, (KT,) .

Estimates 2Z(kT)), X(kT,), and 2,(kT)), are obtained from the hybrid full-order

observer described in the following Subsection.

4.6.4.1. Practical Realization of the Digital Servo-Tracking Controller for
Subcase 5b

The digital servo-controller in (4.241) can be realized by substituting 7, for T
in the hybrid full-order observer in (4.228) and the w(u,) in (4.227) computed for Subcase 5a, re-

calculating the observer gain-matrix K, in (4.232) for the appropriate value of T, and by replacing
u,(kT) in (4.228) with u,(kT,) +u, (kT,) in (4.241) (with T, replaced by T, in u,(kT;)). The necessary
estimate %(k7,) is then obtained by passing f(k]}) through a zero-order-hold device having a hold time
of T..

The observer gain-matrix K, in (4.232) in Subcase 5a was computed for a

sample period of 7=0.1 and @ =1. In this example, a sample period of T, =0.04 was chosen. The
observer gain-matrix for the sample-period T, = 0.04 was computed and is given as

180



[y, ] - 55765
K - 192.0704
Kyr=0sa=1= 1302‘ _| 1015031367 . (4.242)
K| |-523,0293915
Ky | | 1060339770
| K, | | —447,9322637 |

4.6.4.2. Simulation Results for Subcase 5b

Simulation results were obtained for the example plant, disturbance, and
servo-command, given in (4.182), (4.183), and (4.8), where the parameter-perturbation Aa and control
sample-periods T, T, and T, are given by

Control Sample-Periods:

(T,=004, T, =08 [ Aa=(0,0),(0.4,-038),(~04,08), (0.8,~18)
T, =004, T, =01 Aa =(0,0),(0.4,-0.8),(~04,0.8),(0.8,~18)

1T, =004, 7. =02, T, =08 for the cases{ Aa = (0,0),(20,16),(—18,~13),(~27,19) . (4.243)
T, =004, T, =008 Aa =(0,0),(0.4,-0.8),(-0.4,08), (0.8,~18)

[ 7,=004, T, =008 | Az =(0,0),(~14,-12),(09,1.6),(~32,0.2)

The sample-period T, = 0.8 is used in one of the simulations to illustrate that
more than two different sample rates may be employed. In that case, the u, control term in (4.241) is
implemented using sample-period 7,. No recalculations are necessary to incorporate the sample-period
T..

The simulation results in Figure 4.48 and Figure 4.50 illustrate the plant
output y(7), the disturbance w(¢), and the servo-command y«®), and the simulation results in Figure 4.49
and Figure 4.51 show the corresponding servo-tracking error &,(1)=y.(t)-y(t) for the case of
T,=004, T, =08 (Figure 4.48 and Figure 4.49 only), T = 0.1 (Figure 4.49 and Figure 4.50 only) and

parameter-perturbations Aa = (0,0),(0.4,-0.8), (-04,0.8), and (0.8,~1.8). Although the tracking is slower

in Figure 4.48 compared to Figure 4.50 (tracking done at 7, = 0.8 versus T, = 0.1), the response is much
smoother than that obtained in Figure 4.50. In fact, the effects of the parameter-perturbations
Aa =(0,0),(0.4,-0.8),(-0.4,0.8), and (0.8,-18) are virtually undetectable in the simulation plots in Figure

4.48 and Figure 4.49, but become quite noticeable in the plots in Figure 4.50 and Figure 4.51. Why does
the case of T, =0.04 and T, =038 appear to be more robust than the faster sample-rate case of T, =004

and T, =01? Recall the assumption in (3.80) that the samplers of the system are synchronized, integer
multiples. That is,

I =nT

c y?
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where 7 is some positive integer. And remember that the control term u, (kT,) actually changes the

value of the plant’s Ay matrix, thus requiring the control terms running at the sample-rate 1/7. to be
recomputed to reflect this change in parameter. If the different sample-rates are not synchronized,
integer multiples, the terms running at the lower sample-rate 1/7, will compute the new value of Ay
incorrectly and respond with an inappropriate control-action. The sample-periods T,=0.04 and T, =0.

(see Figure 4.50 and Figure 4.51) are not related by an integer, or equivalently,

?
01=7004 = n=integer,

and consequently do not meet the assumptions for implementing the digital servo-tracking controller as a
multirate controller when the control term u, (kT,) is included. If the u, (kT,) control term is
excluded, and u(#;kT) is implemented as in (4.234), the integer-multiple restriction no longer applies.
However, in that case, the response for this particular example will suffer severely (become unstable) due
to the natural instability of the plant.

The simulation results in Figure 4.52, Figure 4.54, and F igure 4.56 illustrate
the plant output y(#), the disturbance w(f), and the servo-command y.(f), and the simulation results in
Figure 4.53, Figure 4.55, and Figure 4.57 show the corresponding  servo-tracking error
£,(8)=y.(t)- y(¢) for a variety of sample-periods and parameter-perturbations for Subcase 5b. Those
simulation plots illustrate the performance of the example problem for a variety of parameter-
perturbations, including perturbations on the order of +/-2000% of the nominal value of the a,; parameter
(a,; =~1) and as large as 95% of the nominal value of the ay; parameter (a,, =2). The perturbations

and sample-periods are given in the figure headings and in (4.243).

182



6 Control Sample-Periods: Ty = 0.04, Tc = 0.8

]
P p\wm a3}

.........................

L ye(t)

[ ]
Ad= Aay Aaz]

Aa= (0,0),(0.4,-0.8), :
(-0.4,0.8),(0.8,-1.8) !

10

o
4]

Figure 4.48 Illustration of the Plant Output )(¢), Disturbance w(f), and Servo-Command y(b) for
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations
Aa =(0,0),(04,-0.8),(-0.4,0.8), and (08,-18), and Compensated by a Multirate D/C

Controller Using Sample-Periods T,=0.04 and T,=0.8.

Control Sample-Periods: Ty = 0.04, Tc = 0.8

T — T —
2 B Wy
Ac=(0,0),(0.4,-0.8), !
2 :
I 3 ST S
4 Af=_ :(:. .12.] ............. .
sl
0 | 5 10

Figure 4.49 Illustration of the Tracking Error g(t) for Subcase 5b With An Unstable Second-Order Plant
Subjected to Parameter-Perturbations Aa =(0,0),(04,-0.3),(—-04,0.8), and (08,-1.8), and

Compensated by a Multirate D/C Controller Using Sample-Periods T y =004 and T, =08.
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6 Control Sample-Periods: Ty= 0.04, Tc = 0.1

e

~— y(f) for
Aa= (0,0),(0.4,-0.8),

(-0.4,0.8),(0.8,-1.8)

10

Figure 4.50 [Illustration of the Plant Output y(f), Disturbance w(?), and Servo-Command y(¢) for
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations
Aa =(0,0),(0.4,-0.8),(—0.4,0.8), and (0.8,~1.8), and Compensated by a Multirate D/C

Controller Using Sample-Periods 7,=0.04 and 7,=0.1.

Control Sample-Periods: 7y = 0.04, Tc = 0.1

4t -—swtr T
Aa= (0,0),(0.4,-0.8),
-0.4,0.8),(0.8,-1.8

2 ________ (-0.4,0.8 ),(0.8,-1.8 A

0
B2 g TR
B B

a4 =[ Aa Aaz]

B o T T

Figure 4.51 Illustration of the Tracking Error &(1) for Subcase 5b With An Unstable P
Parameter-Perturbations Ag = (0,0),(0.4,-0.8),

lant Subjected to

(-04,08), and (0.8,-18) and Compensated

by a Multirate D/C Controller Using Sample-Periods T, =0.04 and T, =01.
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Control Sample-Periods: Ty=0.04, Tc= 0.2, and Ts= 0.8

6 H

40 R A
2 b

0

0 o
A4 =[ Aa Aaz]

Aa= (0,0),(20,1.6),
(-18,-1.3),(-27,1.9)

10

Figure 4.52 Illustration of the Plant Output y(¢), Disturbance w(¢), and Servo-Command y«(t) for
Subcase 5Sb With An Unstable Second-Order Plant Subjected to Parameter-Perturbations
Aa =(0,0),(20,1.6),(-18,~1.3), and (-27,19), and Compensated by a Multirate D/C

Controller Using Sample-Periods T y=004,7 =02,and T, =08.

o
18]

Control Sample-Periods: Ty= 0.04, Tc = 0.2,and Ts=0.8

R
2 e -
Aa= (0,0),(20,1.6),
0—l--.> (-18.-1.3),(-27.1.9)
I
01
4 Axv= .1 2]
0 0
6 A =] A, Aaz]
0

Figure 4.53 Illustration of the Tracking Error g(f) for Subcase 5b With An Unstable Second-Order Plant
Subjected to Parameter-Perturbations Ag= (0,0),(20,1.6),(~18,~1.3), and (-27,19), and

Compensated by a Multirate D/C Controlier Using Sample-Periods T y =004, T =02,
and 7, = 08.
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6 Control Sample-Periods: Ty= 0.04, Tc = 0.08

Loy ]

~-—— y(f) for
Aa= (0,0),(0.4,-0.8),
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Figure 4.54 Illustration of the Plant Output y(f), Disturbance w(z), and Servo-Command yA1) for
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations
Aa =(0,0),(0.4,-0.8),(-0.4,0.8), and (0.8,~18) and Compensated by a Multirate D/C

Controller Using Sample-Periods 7,=0.04 and T,=0.08 .

Control Sample-Periods: Ty = 0.04, Tc =.D.08
N S ———
2 S A b e cccacmcpame———n——ccmeed

Aa= (0,0),(0.4,-0.8),
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Figure 4.55 Illustration of the Tracking Error g(f) for Subcase 5b With An Unstable Second-Order Plant
Subjected to Parameter-Perturbations Ag= (0,0),(04,-0.8),(—04,0.8), and (0.8,~1.8) and

Compensated by a  Multirate D/C  Controller Using  Sample-Periods
7,=004 and T, = 0.08.
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6 Control Sample-Periods: Ty = 0.04, Tc = 0.08
T
, o 1
4. vt Do/ il
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Figure 4.56 Illustration of the Plant Output N2), Disturbance w(z), and Servo-Command y(f) for
Subcase 5b With An Unstable Second-Order Plant Subjected to Parameter-Perturbations
Aa =(0,0),(-14,-12),(09,1.6), and (-32,0.2) and Compensated by a Multirate D/C

Controller Using Sample-Periods 7,=0.04 and T,=0.08.

Control Sample-Periods: 7y= 0.04, Tc = 0.08

........................

N L
2 S PP .
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(0.9,-1.2),(-3.2,0.2) |

0 T .
01 )

Av=} 2] !

B .=
00 :

A4 =[ Aay Aaz] .

S }
0 5

10

Figure 4.57 Tllustration of the Tracking Error &(?) for Subcase 5b With An Unstable Second-Order Plant
Subjected to Parameter-Perturbations Ag = (0,0),(-14,-1.2),(09,1.6), and (-32,0.2) and

Compensated by a

Multirate

T, =004 and T, = 0.08.

187

D/C  Controller ~ Using Sample-Periods




5. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

5.1. Introduction

This report presents and illustrates (through examples) a new and general theory for
developing high-performance digital servo-tracking controllers for linear, time-invariant, MIMO systems.
Conclusions of this research and recommendations for further work are presented in this chapter.

5.2. Conclusions

The most significant contribution of this work is the development of a new, general linear-
algebraic theory for developing digital servo-tracking controllers which will achieve high-performance
servo-tracking that is unmatched by currently available digital servo-design methods. Some of the key
shortcomings of conventional digital servo-controllers are: 1) failure to exploit useful dynamic
information encoded in the uncertain servo-commands, disturbances, and plant states; 2) assume Type 1,
2, and 3 commands; 3) lack of intelligent control-actions between sample times; and, 4) sensitivity of
tracking performance to plant parameter-perturbations.

In addition, the technique presented in this paper overcomes common obstacles that are
encountered when attempting to achieve high-performance servo-tracking using digital controllers. Some
of those obstacles are: 1) the complex time-behavior of the uncertain multivariable servo-commands and
disturbances; 2) performance degradation due to uncertain variations in plant parameters; and, 3)
intersample misbehavior due to the time-varying nature of the servo-commands and disturbances and also
due to the open-loop instability of the plant.

The digital servo-controller theory presented in this report is ideal in the sense that the design
procedure encompasses a superset of desirable characteristics. That is, the design procedure:

1) is purely linear-algebraic in nature so that there are no matric Riccati equations or
other complex equations that require evaluation;

2) accommodates linear time-invariant systems subjected to generalized, multi-
variable, independent disturbances having complex time-behavior;

3) produces a servo-controller that provides high-fidelity servo-tracking of
generalized, multi-variable servo-commands having complex time-behavior;

4) is generalized to include any order of system having multiple-inputs and multiple-
outputs (MIMO systems);

5) provides performance robustness against uncertain variations in plant-parameter
values A4;

6) minimizes intersample misbehavior (ripple) to the highest degree possible utilizing
a digital controller; and,
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7) regulates and maintains the motions of the servo-state vector e, to a subspace Sy of
the null-space of the output matrix (e (KT)—> S, <N[C]).

The primary control task of the digital servo-controller, developed by the techniques
presented in this report, is to achieve and maintain closed-loop stability for the plant while
simultaneously regulating the servo-tracking error g(f) to zero and achieving certain desired
performance-criteria, such as closed-loop settling-time. The methods of DAC theory [40,71,72] are used
throughout this report to model the motions of the uncertain servo-commands, disturbances, and
parameter-perturbations; to determine cancellation conditions of disturbance effects; and to decompose
the total (vector) control-effort into a sum of individual (vector) control terms, each with a unique control
task. The decomposition of the servo-control effort, and the subsequent decomposition of the servo-
problem into logical subproblems, simplifies the design procedure significantly.

The servo-controller design technique presented in this report uses state-estimators (state-
observers) to physically realize the digital servo-control algorithm. A discrete-time, reduced-order
observer is used to estimate the servo-command state ¢(kT)and a composite discrete-time full-order or
hybrid composite full-order observer is used to estimate the plant state x(k7), disturbance state z(kT), and
parameter-perturbation state z,(kT).

In Chapter 2, a method is presented for stabilizing the discrete-time servo-state vector e (kT)
to a subspace S, =N[C] of largest dimension, and consequently regulating the servo-tracking £(7) to

zero at each of the sample times, 7 = kT, k = 0, 1,2, ... Asillustrated in Example 1 in Chapter 4, it may
be difficult, or even impossible, to stabilize the servo-state vector e(k7) to the entire N[C]. However,

there may exist some subspace Sy N[C], that es(kT) may be controlled to and held, and this may be the

more desirable, or the only solution for asymptotically stabilizing the tracking-error. A method exists for
accomplishing this subspace stabilization task in continuous-time [76]. This report work adapted the
method in [76] to the discrete-time case and developed a procedure for formulating all possible candidate

subspaces S, QN[C]. Example 2 in Chapter 4 illustrates the case of stabilizing e, (kT)— N[C]. The

subspace stabilization approach in Chapter 2 utilizes a stepwise-constant control-action (a z.o.h. type
action) to regulate the tracking-error £(¢) to zero at each of the sample times, t=kT, k=0, 1,2, .... That
approach is all that is necessary in the case of zero, constant, or stepwise-constant disturbances or servo-
commands.

Complex, time-varying commands and disturbances require a holding strategy that is smarter
than the traditional zero-order, second-order, and exponential hold methods used by conventional digital
control algorithms. The time-varying nature of the commands and the disturbances, along with the open-
loop instability of the plant, result in misbehavior of the plant output between the sample times, kT < ¢ <
(k+1)T. Consequently, even though a zero tracking-error is obtained at each of the sample times, the
plant output 3(¢) will deviate from the servo-command y(f) between those times. This intersample
misbehavior was illustrated in Subcase 3a in Chapter 4. A method for intelligently selecting the control
action for the next sample-period was presented in Chapter 3. This method uses the intersample
waveform behaviors that both the servo-command and the external disturbance are projected to exhibit to
reduce intersample misbehavior to a degree not previously obtained by conventional techniques. Subcase
3b in Chapter 4 illustrates the performance improvements that are attained by incorporating the
intelligent holding-strategy into the digital servo-controller design method.

Robustness to uncertain changes in the plant’s parameter values is a necessary quality of a
high-performance digital servo-tracking controller. A method was presented for modeling those
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parameter variations and thus designing a control term u,(z;kT) to accommodate their effects. The
particular design method given incorporates an intelligent intersample holding-strategy to counteract the
effects of those unknown parameter-perturbations between the sample times. Examples using this
enhancement are given throughout Chapter 4. In particular, Subcase 3c compares a system compensated

with and without the robustness control term u,(z;kT).

The digital servo-controller designed by the techniques presented in this paper may be
implemented using a single sample-period or using multiple sample-periods. There are many different
ways of implementing the digital servo-tracking control algorithm using multiple sample-periods.
Multirate sampling could arise from the physical characteristics of the system, or may be introduced
deliberately into the servo-controller. A particular implementation was considered for this research that
has practical application. It involves two distinct and synchronized sample-periods associated with the
two distinct vector-inputs to the digital servo-controller ((kT) and y.(kT)). One sample-period is
associated with the availability of measurements, or processing, of the plant output y(f), while the second
sample-period is associated with the availability of measurements, or processing, of the servo-command
y«?). In the multirate case, an unstable or highly oscillatory plant may be brought under control by
incorporating an additional control term u, (kT) into the digital servo-controller that runs at the faster

sample-rate. When the u, (kT) term is used, the control terms running at the slower rate may need to be

recomputed to reflect the plant’s new 4 matrix. Simulation results are given in Subcase 4b in Chapter 4
for a plant compensated by a digital servo-controller with and without the additional u, (kT) control

term. Also, Subcase 5b in Chapter 4 includes simulation results illustrating performance degradation for
the case of sample periods that do not satisfy the integer multiple relationship in (3.80).

5.3. Recommendations for Further Work

Several areas for further study in the field of digital servo-tracking control theory have been
uncovered during the course of this research. In particular, the suggested areas for further study are
described briefly in the listing below:

1)  The focus of this work is on output servo-tracking. That is, the problem of the plant
output y(7) tracking a given servo-command y(f). The general theory presented here
should be extended to cover the case of plant state servo-tracking. That is,
x(t)—>x,(¢) in a sufficiently small amount of time (where x(#) represent time-
varying commands that the plant states are required to follow). In that way,
disturbance cancellation and accommodation of plant parameter-perturbations as they
affect individual plant states would also require further analysis;

2) Another subject area for further research involves expanding the digital servo-
controller theory developed in this report to linear time-invariant systems having the
dynamical model

x(t) = Ax(t) + Bu(t)+ Fw(t)
Y(t)=Cx(t)+ Eu(t)+ Gw(t)

b
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3)

4)

3)

6)

7

8)

A high-performance digital servo-control theory that addresses time-varying
parameters is an area requiring additional research. Initially, the time-varying system
represented by

x(£) = A(t)x(t) + B(t)u(t) + F(t)w(t)
w(t)=C(t)x(t)

2

might be considered, and then expanded to achieve a general theory for time-varying
systems of the form

#(£) = A()x(6)+ B(yu(t) + F(t)w(r)
Y1) = COX(t) + E(t)u(t) + G(t)w(t)

Variations in the plant’s 4 matrix have been considered in this work, however, the
general theory begs for inclusion of the case addressing variations in the nominal
values of the B, C, and F matrices. A linear digital control method does exist [34, 35,
39] which accommodates variations in those parameters; however, some investigation
will be required to determine if and how this technique can be applied for the case of
time-varying servo-commands;

The multirate solution given in this paper assumes that all sample-periods are integer
multiples of one another. As was seen in Subcase 5b in Chapter 4, a non-integer
multiple relationship causes degradation in the tracking performance. The control
terms operating at the slower sample-rate rely on this integer multiple relationship for
their computations.  Further investigation is required to determine how their
computation should be altered to include any relationship of control sample-periods;

Another area involving multiple sample-rates, related to the recommendation given
above, is the case involving samplers that drift slightly from their nominal rate. The
method presented in this report assumes the samplers are synchronized and remain
synchronized for all time. In practical hardware implementation, the samplers may be
subjected to temperature variations, or other disrupting effects, and may tend to drift
slightly, leading to a possible decline in tracking performance;

Again in the area of multiple sample-rates, is the dilemma of selecting the best
combination of sample rates to achieve the desired performance, while staying within
certain design boundaries. Some sample-rates may be determined or constrained by
the physical characteristics of the system or the hardware on which the controller is
implemented. Issues such as availability of data, computing power of the hardware,
or time-sensitive deadlines impose limits on the sample-rates that may be used. In
addition, a new digital servo-controller must be computed for each change in sample-
rates, unless the sample-period is carried as a variable throughout the computations.
This becomes quite cumbersome for anything other than very low-order systems.
Therefore, a technique for arriving at the optimal combination of sample-rates, given
the constraints and design criteria of the system, is an area that would require
extensive effort, but with high pay-off:

The digital servo-tracking controller design method developed in this report assumes
satisfaction of a complete-cancellation condition for the effects of the external
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9)

10)

disturbances and disturbance-like effects caused by the servo-commands and
parameter perturbations on the servo-tracking error g(#). If those conditions are not
met, then the corresponding control term cannot be designed. The theory of DAC
[40,71,72] includes methods of disturbance-minimization and disturbance-utilization.
Those DAC methods could be incorporated into the general theory presented in this

paper;

A method was presented in Subsection 2.11.7 for formulating all possible subspaces
S, N[C]. Those subspaces are systematically tested for suitability using the linear
subspace stabilization technique presented in Chapter 2. Additional research is
needed to fully evaluate the possibilities that exist for this method. Upon testing a
general representation for v-dimensional subspaces, the designer can then discern a
range of acceptable subspaces for regulating e, (k7). A computer program that
automates the procedures in Section 2.11 for enumerating subspaces, performing the
subspace testing, and determining appropriate ranges of subspaces, will help to ease
the burden on the control system designer; and

The application of the digital servo-tracking control theory to realistic problems is
desirable in order to further ascertain the benefits of this technique versus
conventional methods. In particular, this theory could be applied to the missile
guidance problem of tracking a maneuvering target while subjected to a wide variety
of atmospheric disturbances, noisy measurements, and parameter uncertainties.
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LIST OF SYMBOLS
Definition
Plant coefficient matrix; dimension » x ».
Ideal model coefficient matrix; dimension » x .
Nominal value of the plant coefficient matrix; dimension 7 x n.

Discrete-time counterpart to 4; dimension 7 x n.

Discrete-time counterpart to 4,,; dimension nx n.

Discrete-time counterpart to Ay; dimension n x n.
Term representing the quantity CAC*.

Term representing the quantity (MR)* (Z - §(5§)+ EZ) MR.

Decay value on exponential; e.g. ¢™® .

Constant matrix of coefficients in the set of homogeneous equations 08 = 0 where O =
M. '

Plant control distribution matrix; dimension 7 x 7.

Discrete-time counterpart to B; dimension 7 x r-.

Term used to represent the quantity Efc +FH .

Term representing the quantity C3 .
Term representing the quantity ( MR)* E(I - (55)* Eﬁ) .

Servo-command state-vector; dimension v x 1.

Composite state-reconstructor estimate of servo-command state-vector c.
Set of unknown constants that may “jump” in value from time-to-time.
Plant output coefficient matrix; dimension m x n.

Auxilliary vector using in calculations for a reduced-order observer.
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LIST OF SYMBOLS (Cont.)

Symbol  Definition

Ess Linear transformation state of &, .
D Disturbance coefficient matrix; dimension p x p.
D Discrete-time counterpart to D; dimension p x p.
D, Parameter-perturbation vector coefficient matrix; dimension n® x n? or less.
b, Discrete-time counterpart to D,; dimension same as that of D,,.
D Term used to denote the quantity T,ET,, .
da;; The (i) element of the matrix A4.
AA Matrix of plant parameter-perturbations; dimension n x n.
A Term used to represent the quantity K »MR.
E Servo-command coefficient matrix; dimension v x v.
E Discrete-time counterpart to E; dimension v x v.
E! One-step delay defined such that E™'x(kT) = x((k - 1)T)
e, Servo- state vector.
e, e, with residual-effects ignored.
& Full-order observer error between estimate and actual value of the plant state x;
& =X-x.
5 Servo-tracking error.
£, & with residual-effects ignored.
& Full-order observer error between estimate and actual value of the disturbance state z;
=2~z
g, Full-order observer error between estimate and actual value of the parameter-perturbation
statez,; &, =2,-z,.
Sy Natural basis function, the set of which mirror the waveform pattern of an uncertain

waveform-structured input.
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LIST OF SYMBOLS (Cont.)
Definition
Disturbance input matrix; dimension 7 x p.

Discrete-time counterpart to FH, dimension n x p.

Output matrix in dynamic model of servo-commands; dimension m x v.
Transfer function of uncertain waveform-structured signal.

Completely unknown, unpredicatable, and unmeasurable “residual-effect” caused by the
o(t) impulses.

Completely unknown, unpredicatable, and unmeasurable “residual-effect” caused by the
o,(?) impulses.

Gain matrix associated with the digital-continuous control term u,(r;kT); dimension 7 x n’

or less.

Gain matrix associated with the digital-continuous control term u(£;kT); dimension 7 x p.
Gain matrix associated with the digital-continuous control term u,(t;k7); dimension r x v.
Gain matrix associated with the digital control term u(kT); dimension r x p.

Gain matrix associated with the digital control term u/(k7T); dimension r x v.

Output matrix in dynamic model of external disturbances; dimension p x p.

Output matrix in dynamic model of parameter-perturbation vector; dimension n x n%.

Discrete-time counterpart to H,.

Term used to denote the quantity GE 1;,.
Indicates discrete times; k=0, 1, 2, ... with constant spacing 7.
Forward discrete time-shift of kT,

Sparse sequences of impulses associated with the dynamical process model of the
uncertain waveform-structured input.

Gain matrix used in feedback stabilization of plant, e.g. u, = K, x ; dimension r x n.
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~1

N 1

=]

~

t

m;

M,

R3]

N[e]

Gain matrix used in feedback stabilization of servo-state error e, e.g. u, =—K,e,;

dimension » x n.

Discrete-time counterpart to K,,; dimension r x n.

Discrete-time counterpart to K,; dimension r x n.

Gain matrix used in feedback stabilization of discrete-time full-order observer tracking-
error.

The set of all X, satisfying certain criteria.

Output matrix in dynamic model of uncertain waveform-structured signal; dimension m x
d.

Gain matrix chosen to stabilize the system &, ((k+1)T)= [Z, + EIZ]Q’H, (kT).

A solution to a characteristic equation; e.g., a solution to p(A)gesirea= 0.

Column vector of the matrix M in definition (2).

(1) Uncertain waveform-structured signal coefficient matrix; dimension d x d.
(2) Maximal rank matrix satisfying CA/=0; dimension 7 x (n-m).

Some positive constant <co .

Sparse sequence of impulses associated with the servo-command y(f) dynamical process
model.

Completely unknown, unpredictable, and unmeasurable “residual-effect” caused by the
A7) impulses.

Denotes the nullspace of the matrix contained in the brackets.
Any matrix whose columns form a basis for the nulispace of

[§t | Zlgl | le§1 I | Zl(n_v-l)gl]-

Impulsive forcing function in the differential equation describing waveform-structured
inputs.

Matrix satisfying C| (Z +BK p) =QC.
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Pu(2)
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Op(t,15)
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P

w(u)
q()
Os)
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ri

Fuh

LIST OF SYMBOLS (Cont.)
Definition

Numerator of the Laplace transformation of the waveform structured input differential
equation.

Characteristic polynomial of the ideal model for the servo-state vector e,.

Desired characteristic polynomial for full-order observer error dynamics.

Plant state transition matrix (Z =d(1,t,)).
Disturbance state transition matrix (D = ® p(6:8,)).
Parameter-perturbation vector state transition matrix (5, =@, (1,1,)).

Any matrix whose columns form a basis for the nullspace of
[Ez I 2Jz§2 I 22252 l I Z2(9-1)'372]-

Discrete representation of the time-varying portion of u(#,kT).

State vector for the uncertain waveform-structured input 5(t); dimension d x 1.

Denominator of the Laplace transformation of the waveform-structured signal differential
equation.

Residual-effect driven by o,

Residual-effect driven by o

Residual-effect driven by .

(1) Row vector of the matrix R.

(2) Solution vectors to 0.5 =0.

Individual elements of ; as defined in (2).

Any (n-m) x v matrix such that v < (n-m) and rank[R] = v,
ThesetofallRv,v=1,2,.., (n-m-1).

The set of all R that form a basis for a particular subspace having dimension v.

Denotes the column range-space of the matrix contained within the brackets.

Arbitrary subspace contained within the nulispace of the matrix C.
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S

QN

Cq

A

U

Vector of uncertain inputs having waveform structure; dimension mx 1.

Sparse sequence of impulses associated with the external disturbance w(f) dynamical
process model.

Completely unknown, unpredicatable, and unmeasurable “residual-effect” caused by the
o(f) impulses.

Sparse sequence of impulses associated with the parameter-perturbation vector z(f)
dynamical process model.

Completely unknown, unpredicatable, and unmeasurable “residual-effect” caused by the
o,(f) impulses.

Gain matrix used in feedback stabilization of discrete-time reduced-order observer
tracking-error.

Indicates continuous time.
An inital time, often assumed to be 0.
A fixed constant sampling-period.

Control sample-period associated with measurements, or processing, of the servo-
command y..

Control sample-period associated with measurements, or processing, of the plant output y.
Any matrix satisfying GT},=0.

Term used to denote the quantity (7}, T; 2) " Ths" .

A possibly nonunique matrix satisfying G = C8.
Composite control vector in plant equations; dimension 7 x 1.

The control part of u associated with cancelling the effects of the parameter-perturbations
AA.

The control part of a multirate u associated with stabilizing and achieving certain desired
characteristics for the plant.

The control part of u associated with canceling the effects of the external disturbance

w(?).
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Us

U
wr(kT)
Wk+1T

B, ((e+D)T

Wa

£
o

Xo

Xr

D >

{1}

Ye

Ny

Zq
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The control part of u associated with stabilizing and achieving certain desired
characteristics for the servo-tracking error.

The control part of u associated with canceling the disturbance-like effects of the servo-
command y(?).

Portion of u(#;kT) that is time-varying between sample times.
Poriton of u(#;kT) that is held constant between sample times.
A term requiring knowledge of the motions of the disturbance over a future sampling

interval; ¥((k+1)T'= f AT Fy(r)dr.

A term requiring knowledge of the motions of the parameter-perturbation vector over a
future sampling interval; v,((k+1)T'= fe"”(r")wa(r)dz'.

External disturbance input vector; dimension p x 1.

Parameter-perturbation state-vector; dimension n x 1.

Observer-generated estimate of w,.

Initial value for the plant state-vector; dimension »nx 1.

Desired or final value for the plant state-vector; dimension nx 1.

Plant state-vector; dimension nx 1.

State-reconstructor estimate of plant state-vector x.

Term used to represent the quantity G& — 46— Ef‘x .
Matrix satisfying (Z +BK p)MR = MRE.

Plant output-vector; dimension m x 1.

Output servo-command vector; dimension m x 1.

External disturbance state-vector; dimension pxl.

Composite state-reconstructor estimate of external disturbance state-vector z.

Parameter-perturbation disturbance state-vector; dimension #°x 1 or less.
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Composite state-reconstructor estimate of parameter-perturbation state-vector z,.

Gain matrix chosen to stabilize the system £, ((k + 1)T) = [Zz + 1}’22]5”2 (kT).

Denotes matrix inverse of matrix in brackets.

Denotes matrix multiplied by itself & times.

Denotes matrix transpose of matrix in brackets.

Denotes Moore-Penrose pseudo-inverse of matrix in brackets.

Denotes matrix left or right generalized inverse of matrix in brackets; left defined by
([*][*]y"[*]" and right defined by [¢]"([][*]")".
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