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Abstract 

As an adjunct to the Navy's surveillance 
program for guidance assessment, the FBM 
Guidance Branch is considering a test program 
in which operational Trident II guidance system 
fleet assets would be "flown" on a centrifuge. 
This paper outlines an approach to the analysis 
of the guidance data.   A test for tactical 
representativeness is described, as well as an 
approach to the optimal combination of 
centrifuge data with test flight data, provided 
that the test for tactical representativeness is 
passed. The approach relies on a mathematical 
error model structure that relates fundamental 
level errors (accelerometer and gyro biases, etc.) 
to instrumented measurements of position 
and/or velocity along the guidance system's 
trajectory. With multiple tests this structure 
allows maximum likelihood estimation 
techniques to be applied to estimate the mean 
and variance of the fundamental guidance 
errors. The inverse of the Fisher information 
matrix associated with the estimate defines the 
uncertainty in the estimate and allows a 
quantitative test of the centrifuge-based estimate 
against a similar flight-based estimate. If the 
test is passed, the information-weighted average 
of the two estimates yields the optimal estimate. 

Background 

Estimates of the reliability and accuracy of 
the Trident II guidance system have always been 
based on flight test data to the exclusion of 
factory or lab tests, arguing that flight tests are 
tactically representative in virtually every 
respect as far as guidance is concerned, while 
factory and lab tests may not be. As the number 
of operational weapon system flight tests flown 
each year has diminished the Navy is 

considering modifications of the surveillance 
program in which additional non-destructive 
tests would be used to improve early detection of 
degradation in the performance, reliability, and 
functionality of the system from year to year, so 
that remedial action can be taken in a timely 
manner. Early detection with sufficient lead 
time is required to repair or replace defective 
components to prevent systematic degradation. 
Upon completion of testing, these assets will be 
returned to the fleet. For the assessment of 
changes in performance, a prime candidate is a 
test in which an operating Trident II guidance 
inertial measurement unit (IMU) and electronics 
assembly (EA) would be "flown" in a controlled 
environment, e.g., on a centrifuge. This paper 
presents a methodology by which the centrifuge 
data can be tested for tactical representativeness 
(comparing to flight test data) and, if deemed 
representative, combined with data from the 
relatively few test flights per year to provide an 
optimal estimate of guidance accuracy. While 
reliability and functionality will be measured 
and tracked with a centrifuge, this paper 
specifically does not address these aspects of the 
surveillance program. 

Typically, flight test data is used in a 
"shoot and score" approach to estimate the 
accuracy of a system. This is a straightforward 
approach that requires little processing to 
provide the desired estimate — usually a 
computation of the sample mean and variance of 
impact misses. If the Navy had taken this 
approach to flight-based evaluation of Trident II 
accuracy, it would be nearly impossible to 
compare or incorporate centrifuge data with 
flight test data in any quantifiable way. The 
centrifuge data does not, and cannot, provide 
any "impact miss" to compare with the impact 
misses of the flight tests. Fortunately, however, 
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the Navy has adopted a much more sophisticated 
approach to the estimation of system accuracy, 
based, not on impact miss data alone, but on 
data from a fully instrumented system that 
allows one to estimate the statistical parameters 
of the fundamental error sources (e.g., 
accelerometer and gyro biases, etc.) that cause 
the inaccuracy. It is this same approach, which, 
when applied to centrifuge data, allows the 
quantifiable statistical comparison of centrifuge 
and flight data and permits the optimal 
combining of centrifuge and flight data.   The 
next section provides an overview of the 
methodology the Navy uses on Trident II test 
flights and shows how it can be applied equally 
well to the processing of centrifuge test data. 

Methodology 

Given that a Trident II missile is to be 
flight-tested, it would seem remiss not to take 
the opportunity to gather much more 
information than the simple impact miss, by 
providing instrumentation yielding insight into 
how the different subsystems perform during the 
various phases of flight. This additional data, 
when properly processed, will provide much 
better estimates of missile performance than the 
"shoot and score" approach, both in terms of 
understanding, and in terms of the tightness of 
the confidence bounds associated with the 
estimate. From the inception of the Trident II 
flight test program the Navy has planned for this 
enhanced data gathering and processing so that 
the instrumentation is an integral part of the 
tactical system design. Thus, the 
instrumentation does not affect the tactical 
representativeness of the test and all 
instrumented data is representative of a tactical 
system. 

For assessment of guidance accuracy the 
instrumentation is a GPS-based missile tracking 
system called SATRACKII that provides 
precise measurements of position and velocity 
along the trajectory. Missile telemetry provides 
the guidance system's estimate of position and 
velocity which is differenced with the 
SATRACK estimate to provide an estimate of 
the guidance system error. (In actuality, it is the 
difference in range and range rate to the various 
satellites that are the measured quantities.) 
Multiple measurements of the error in the 
guidance system's computation of position and 

velocity do not readily translate into estimates of 
the bias in an accelerometer or gyro, so how 
does the SATRACK data enable one to estimate 
fundamental level errors (e.g., accelerometer 
and gyro biases, etc.)? 

The key to the Navy's approach to Trident 
II accuracy evaluation lies in the reliahce on a 
weapon system error model structure that relates 
the observed errors at various times along the 
trajectory to the fundamental level errors that 
are assumed to be the cause of the position and 
velocity errors. This error model structure takes 
the form of a first order linear system of 
differential equations obtained by first order 
perturbation of the guidance navigation 
equations and by basic physics which describes 
how the various fundamental level errors affect 
acceleration and platform orientation. In fact, 
letting^ be the 9-vector of position, velocity, 
and platform orientation errors at time t relative 
to some inertial reference frame, and y(t) be the 
vector of accelerometer, gyro, and clock errors at 
time t, the model structure takes the form of a 
first order matrix differential equation 

(1) m = o 
with initial conditions given by 

x(t ) = x - initial condition errors, 

y(.(0) 
= yo

= accelerometer, gyro, and clock errors. 

The accelerometer, gyro, and clock errors^ can 
be modeled as constants (y(t) = 0) since the 

Trident II Mk-6 guidance system inertial 
components are very stable and the boost phase 
time of flight is relatively short. F(t) and G(t) 
are functions of time only through their 
dependence on the specific force (or thrust) 
vector and on the missile's position (necessary 
for the evaluation of gravity and its gradient) at 
time t, both of which are very much trajectory 
dependent. The differential equation can 
therefore be solved if we have a 3-degree-of- 
freedom missile trajectory simulation to provide 
a specific force and position history, or if we 
have telemetry from an actual test flight to 
provide the same quantities. (If the guidance 
system were a strapdown system, a 6-degree-of- 
freedom simulator would be necessary to provide 
the orientation and angular rates that are not 



required for an inertially stable platform.) The 
solution x(t) will clearly be a function of the 
trajectory as well as of the initial errors x0,y0. 

It can therefore be written as x(t;x0,y0). The 

partial derivative of this function with respect to 
x0 yields the sensitivity coefficient of the 

position, velocity, and orientation at time t to the 
initial condition position, velocity, and 
orientation errors (usually called, simply, the 
initial condition errors). Similarly the partial 
derivative of this function with respect to 
y0 (equal to y since y - 0) yields the 

sensitivity coefficient of the position, velocity, 
and orientation error at time t to the 
fundamental level guidance errors y. In 
particular, when t is the time of impact, the 
matrix of partial derivatives with respect to 
x0,y0 (orpartials for short) yields the 

sensitivity of impact miss to the initial condition 
and fundamental level guidance errors. These 
partials can be computed for any trajectory for 
which we have either telemetry or a 3-degree-of- 
freedom simulation, in other words for any 
trajectory within the operational envelope of the 
missile, whether or not such a trajectory has 
ever been flown in the test program. 

Estimation of Errors on A Single Test 

Since these partials matrices can be 
computed for any time t along the trajectory, the 
SATRACK determined position and velocity 
error at time t becomes a measurement of a 
linear combination (determined by the partials 
matrix at time t) of initial condition errors 
x0and fundamental level guidance errors y. 

Given a sufficient number of these 
measurements and sufficient variation in the 
partials, the system of linear equations 

Z = H 
y 

+ v, v~N(0,R), 

z 
1 

,H = 

h 
i 

, v = 

V 
1 

z h V 
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can be solved for x0,y. Here z, is the 

SATRACK measurement at time t., h is the 
7     , 

partial matrix at time ti, v. is the measurement 

noise at ti (i=l,..., N), and R is the variance of 

the large vector v formed by stacking up the 
individual noise vectors V..   Note that 

V ~ N(0,R) is meant to indicate that vis a 

normal (Gaussian) random vector with mean 
zero and variance R.   How well the system can 
be solved for x0,y (the observability of x0,y) 

is clearly a function of the trajectory. For 
example, if a trajectory is flown in such a way 
that a certain accelerometer feels little or no 
specific force, then the scale factor error ofthat 
accelerometer will not be observable - the 
partial with respect to that accelerometer scale 
factor error will be virtually zero for all t. The 
Fisher information on x0,y is the matrix 

/ = H'R- lH 

and it determines the observability of x0,y in 

that its inverse provides the variance of the error 
in the maximum likelihood estimate of x0, y 

from the data equation 

Z = H + v,v~N(0,R). 

Note that the Fisher information matrix 
may not be invertible (if x0, y is not fully 

observable), in which case a generalized inverse 
is used and is only applicable as a variance 
matrix when multiplied left and right by a linear 
combination of errors that is observable (see 
sections 4a.4 and 4a.7 of Rao ' ). For example, 
if, for some matrix L, the linear combination 

y 
is observable, then 

LFL' = L(H'R-iH)-L' 
is the variance of the maximum likelihood 

estimate of L 
y 

, even though the Fisher 

information is not invertible. Here 

I~ = (H'R' lH)~ denotes an arbitrary 

generalized inverse of /. 



In practice the Fisher information for the 
estimate of the initial condition and guidance 
errors can be obtained from a Kaiman 
filter/smoother run with this error model and 
these S ATRACK measurements. It is not the 
usual Bayesian final variance of the estimation 
error produced by a filter/smoother, but can be 
computed from that variance and the prior 
variance. The Fisher information is 
independent of any prior information used to 
initiate the filter/smoother while the 
filter/smoother's final variance is not. Similarly 
the maximum likelihood estimate of 
x0, y (which can also be computed from 

filter/smoother outputs) is independent of the 
filter/smoother prior while the filter/smoother 
estimate is not. 

Cumulative Estimation 

All of the above estimation theory applies 
to the estimation of initial condition and 
guidance errors realized on a single flight. 
However, given multiple flights, each with its 
data equation as above, one can apply a similar 
maximum likelihood estimation procedure to 
estimate, not errors themselves, but rather the 
mean and variance that characterize the errors 
across all the test flights in the sample. In this 
cumulative case the data fed to the estimation 
algorithm is mathematically equivalent to the 
stacked set of data equations from each test in 
the sample and the errors x0,y are now 

assumed to be samples from a normal 
distribution with unknown mean ß and variance 

£ to be estimated. Again, associated with the 
maximum likelihood estimate of the mean 
vector and variance matrix of the initial 
condition and guidance errors x0,y, is the 

Fisher information matrix for the mean and 
variance of x0,y (rather than for the errors 

X0,y themselves as in the previous subsection). 

If the variance is known and only the mean 
ß is estimated then die error in the maximum 

likelihood estimate of the mean is distributed 

N(0,I~') where / is the Fisher information 
f e 

on ju. Thus, the Fisher information completely 

characterizes the distribution of the error in the 
estimate just as it does in the per-test case. 

However, when the mean and variance are both 
estimated, the error in the maximum likelihood 
estimate of the mean ju and variance Z is no 

longer Gaussian as it was for the estimate of 
XQ, y, or of ju alone, so that a mean and 

variance no longer completely characterize the 
distribution. However, it can be shown that 
asymptotically the Fisher information serves the 
same role for cumulative estimation of the mean 
and variance as it does for the per-test 
estimation of x0,y. That is, asymptotically, 

the maximum likelihood estimation error is 
distributed normally with zero mean, and 
variance equal to the inverse of the Fisher 
information matrix (see Chapter 5 [especially 
pages 363-370] of Rao ' and Theorem 2 of 
Hoadley2). The natural question that arises at 
this point is, "How large does the sample have to 
be before the asymptotic distribution is 
reasonably accurate?" This will be addressed in 
the next subsection after it has been shown how 
to propagate estimates and uncertainties of 
fundamental level errors into the impact domain 
to obtain an estimate of weapon system accuracy 
(e.g., CEP, Circle of Equal Probability). 

Propagation of Fundamental Level Errors and 
Uncertainties into The Impact Domain 

The primary reason for doing cumulative 
performance estimation is to provide an estimate 
of the weapon system accuracy, and hopefully, 
also, a quantified uncertainty in that estimate 
(an estimate with no confidence bounds is not 
very useful). The cumulative estimation 
described above does not directly provide an 
estimate of the mean and variance of impact 
miss as the "shoot and score" approach does. 
However, what this approach can do that "shoot 
and score" cannot do is to provide an estimate of 
accuracy for arbitrary trajectories including 
untested trajectories. "Shoot and score" can 
only provide estimates of accuracy for the 
trajectories within the test sample. The 
cumulative estimation described above relies 
heavily on the model structure to estimate the 
mean and variance of the errors in the structure. 
In the same way it relies on the model structure 
to generate estimates of the mean and variance 
of impact misses (and hence weapon system 
accuracy) for any given trajectory. 



As has been shown earlier, given either 
appropriate telemetry from an actual test flight 
or a 3-degree-of-freedom simulation for an 
untested trajectory, one can use the model 
structure of the differential equation (1) to 
compute partial matrices, or sensitivity 
coefficients, of the position and velocity error at 
any time along the trajectory to the initial 
condition and fundamental level guidance 
errors. In particular a partials matrix to impact 
can be computed, call it A . Then multiplying 
this matrix times the estimated mean vector 
ju yields the impact mean Aju for this trajectory. 
Similarly the variance of impact errors is 
obtained from the estimated variance matrix 

Sas ASA'.  The variance of the error in the 
estimates A/}, ASA' can be obtained by 
propagating the inverse of the Fisher 
information on ju and S into the impact domain 
in a similar way, the inverse of the Fisher on the 

mean being propagated as A I~ 'A', but the 
p 

Fisher on the variance requiring some additional 
computation (involving the tensor product of the 
partials matrix) to take it to the impact domain. 
Ultimately, modest computations allow one to 
predict weapon system accuracy for an arbitrary 
trajectory and, also, allow one to quantify the 
uncertainty in the prediction by propagating the 
inverse of the Fisher information into the impact 
domain. 

At this point we return to the question 
raised at the end of the last subsection as to 
when the asymptotic normal distribution of the 
estimation errors begins to be reasonably 
accurate, i.e., how large does the sample have to 
be for the asymptotic distribution to produce 
reasonable confidence bounds? It should be 
evident from the earlier discussion of the Fisher 
information and observability that the sample 
size alone is not sufficient to answer the 
question. Observability is equally important. If, 
in N tests none of the trajectories excites a 
particular error, then there can be no inference 
as to the mean and variance of that error, no 
matter how large N may be. A more likely 
situation is that only one or two tests among the 
total of N excite the particular error so that, 
although the sample size of the program is N, 
the effective sample size for the particular error 
is only one or two yielding poor estimation 

capability for its mean and variance. 
Fortunately, all this is captured in the Fisher 
information matrix for ju and S just as it was 

for the per-test estimation of x0,y. 

Thus it is likely that for specific error 
states or linear combinations of error states in 
the model structure the estimation error will be 
large. However, our real interest lies in the 
knowledge of how accurate the weapon system 
is, i.e., in how all the fundamental level errors 
manifest themselves at impact. But those 
fundamental level errors (or, more precisely, 
linear combinations of fundamental level errors) 
that have a significant impact effect must also 
have a significant impact sensitivity associated 
with them and therefore are likely to be those 
that are readily observable. The linear 
combinations of states whose mean and variance 
are poorly observable are likely to be precisely 
those combinations of states that are of little 
interest and have little effect on system 
accuracy. As a result, one might expect that, 
although the mean and variance of individual 
error states at the fundamental level might not 
be very estimable, the mean and variance 
propagated to impact might be quite estimable 
(the information on a large number of states 
compressed to only two states, downrange and 
crossrange miss). 

Indeed, experience with the Trident II test 
program and with Monte Carlo simulations has 
shown that, for the Trident II error model, as 
few as ten or twelve tests are sufficient for the 
asymptotically normal distribution to yield 
reasonably accurate 90% confidence bounds for 
accuracy at impact, provided the trajectory along 
which the errors are propagated to impact does 
not differ dramatically from those in the test 
sample. However, the beauty of the Fisher 
information is that, even when propagating the 
estimates on a trajectory so different from those 
in the test sample that it excites linear 
combinations of errors never excited before (and 
hence not observable in the test program), the 
propagated inverse Fisher information matrices 
will alert the analyst by providing very large 
uncertainties. 

This has actually happened in the Trident 
II program. After twelve tests of medium to 
long range trajectories, an estimate of the mean 



and variance of initial condition and guidance 
errors was formed that was able to provide good 
predictions for any trajectory similar to those in 
the test sample of twelve, and even for typical 
short range flights. However, it was desired to 
predict the performance for an upcoming test 
flight that was to be both short and very low loft. 
When this trajectory was used to propagate the 
fundamental level means, variances and 
uncertainties to the impact domain, the resulting 
uncertainty was huge. It turned out that for very 
low loft, short range trajectories, the severe 
energy wasting that is required excited the 
difference of two particular g-sensitive gyro 
errors while, for the medium to long range 
trajectories in the test sample (where little 
wasting was required), only the sum had been 
excited. Thus only the sum was estimable from 
the test sample, and trying to predict for a 
trajectory that excited the difference could only 
lead to great uncertainty. Without the Fisher- 
based uncertainties that warned the analyst of 
the situation, the estimate might have been 
accepted as reasonable. 

MID RANGE 

That this approach to accuracy estimation 
actually works can be seen from Figure 1. Here 
estimates of the mean and variance of 
fundamental level errors have been obtained 
from a Trident II test program and then 
propagated to impact on a number of different 
trajectories to predict what the expected mean 
and variance of the impact errors should be for 
that set of flights. The sample mean and 
variance of the observed impact errors have then 
been computed to show how well the estimated 
model was able to predict actual performance. 
This has been done for two sets of trajectories, a 
medium range grouping and a short range 
grouping. The predicted one-sigma ellipses 
centered at the predicted means are plotted with 
the heavy lines and the realized sample one- 
sigma ellipses centered at the realized sample 
means are plotted with the light lines. 
Agreement of observed performance with 
predicted performance is quite good. In 
particular, note that the estimated model is able 
to predict the left bias for the medium range 
grouping and the right bias for the short range 
grouping. 

SHORT RANGE 

Model Prediction 

Realized Sample Statistics 

J 

Figure 1. Predicted Versus Realized Sample Statistics for Medium And Short Range Groupings 
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Centrifuge Data Processing 

Now consider a centrifuge test. The 
centrifuge will be instrumented to provide very 
precise measurements of position at various 
points along its arc. The very same telemetry 
used in the flight tests provides the 
corresponding guidance system position which 
will be differenced with the instrumented 
measure of position to provide a measure of the 
guidance system error at multiple times along its 
"trajectory." Just as for flight tests, these 
measurements can only be related to the 
underlying fundamental guidance errors via a 
model structure as in equation (1). However, 
because the centrifuge tests are expected to last 
longer than the guidance portion of the flight 
tests, and because the centrifuge environment is 
so different from that of a flight test, an 
expanded, high fidelity, error model will be 
necessary. In particular, the longer test times 
will necessitate adding time-varying guidance 
errors such as Markovs, random walks, etc. (i.e., 
driven by process noise). However, the 
expanded model will still contain the test flight 
model states as a submodel so that estimates of 
means and variances of states obtained from test 
flights can be compared with comparable 
estimates from centrifuge tests. 

The processing of centrifuge data should 
therefore be virtually identical to the processing 
of test flight data, the difference being that the 
position and specific force history that drives the 
differential equation specifying the model 
structure in equation (1) is dramatically 
different. The fact that the specific force, when 
viewed from the inertially stable platform of the 
guidance system (on which the gyros and 
accelerometers are mounted), rotates through a 
full 360 degrees, repeatedly, greatly improves 
the observability of the fundamental level errors 
when compared to a test flight where specific 
force is in a relatively constant direction. In 
particular, because the specific force as observed 
from the stable platform is constantly changing 
direction, the kind of unobservability cited in 
the previous section where only the sum of two 
g-sensitive errors could be observed, but not the 
difference, would not happen on a centrifuge 
test. 

The data from a sufficient number of 
independent guidance systems tested on the 

centrifuge can be processed (like flight tests) to 
provide a maximum likelihood estimate of the 
mean and variance of the fundamental level 
errors corresponding to those in the flight test 
model, as well as estimates of the process noise 
and time constants of any Markovian error states 
in the expanded centrifuge model (although 
more complex estimation algorithms are 
required to provide estimates of process noise 
and time constants). Associated with these 
estimates will be the inverse Fisher information 
matrix to quantify their uncertainty. 

Test For Tactical Representativeness 

The centrifuge environment, being so 
different from the tactical flight environment, 
leads one to wonder if the centrifuge data is 
truly representative of what might actually occur 
in flight. Because of the approach the Navy has 
taken to cumulative estimation of Trident II 
accuracy, this question can be quantitatively 
addressed by comparing estimates from flight 
data with comparable estimates from centrifuge 
data. 

Let 6F denote the parameters (means and 

variances) estimated in the flight test model and 
let 6S denote the supplemental parameters 

necessary to complete the expanded centrifuge 
model, so that the centrifuge parameters 9C are 

0c = (OF A)-   Let 

P. (Cent)-- 
PBF(Cent)     P0Fßs(Cent) 

Pes,eF{Cent)     P6s(Cent) 

equal the inverse of the Fisher information from 
the centrifuge estimation and let Pe (Fit) be 

the inverse of the Fisher information from the 
flight test estimation. Similarly, let 

ec(Cent) = 0F(Cent),es(Cent)) 
be the estimate from the centrifuge data, and let 

Op (Fit) be the estimate from the flight data. 

Then the centrifuge data can be tested for 
tactical representativeness by comparing its 
estimate of 6F with the flight-based estimate of 

the same parameters. The error in the estimate 
of 6F(Cent) is asymptotically distributed 

N(0, Pg (Cent)) , the error in the estimate of 



0F{Flt) is distributed N(0, P0p (Fit)), and 

tlie two estimation errors are statistically 
independent since they arise from completely 
independent tests. Thus a natural statistical test 
comparing the two estimates is to form the 
statistic 
x = 
[6F(Cent) - eF (Fll)Y [ P,f (Cent) + P,r (F/r)]" H (Cent) - 6F (Fit)) 

which should be distributed Chi-squared on p 
degrees of freedom, where p is the number of 
parameters in 6F. Thus one can use a Chi- 

squared table to test for the likelihood of the 
observed difference in the estimates under the 
hypothesis that the underlying guidance errors 
are indeed from the same population. If the test 
indicates that the observed difference is very 
unlikely then one should begin to doubt the 
hypothesis, i.e., one should doubt that centrifuge 
data is tactically representative. 

Incorporation of Centrifuge with Flight Data 

If the above test indicates that the 
centrifuge data can be considered tactically 
representative, then one would like to use it to 
augment the relatively few flight tests that occur 
each year. If the error model for the centrifuge 
data were identical to the error model for the 
flight data one could simply include the 
centrifuge data with the flight data in the 
maximum likelihood processor to get the 
optimal estimate combining both sources of 
data. However, the centrifuge error model will 
be an expanded model and therefore it would 
not be optimal to process the centrifuge data 
along with the flight data assuming a flight test 
model that would not be able to accommodate 
some of the error mechanisms that are expected 
in centrifuge data. These additional error 
mechanisms might get aliased into the 
parameters of the flight error model that are 
needed to represent tactical performance. 
Another possibility would be to use the 
centrifuge error model to process the combined 
centrifuge and flight data, in which case, 
presumably, all the errors would be properly 
modeled. The difficulty with this approach is 
that the majority of flight data has already been 
processed with the flight test error model, and it 
is an expensive prospect to go back and 
reprocess all the old flight data with a new error 
model. 

However, as in the previous section, the 
centrifuge estimate has as a subset, parameters 
that are common to the flight test model, the 
parameters 9F, and, associated with this, the 

variance of the estimation error given by 
Pg (Cent) . Similarly the flight-based 

estimate of 9F has associated with it the 

variance of its estimation error Pe (Fit) . 

Since these estimation errors are statistically 
independent, an optimal estimate of 0F can be 

formed by the information-weighted average of 
the two estimates: 

ep(ppt) = [P,;'(C«IO + p;r\F!i)r' x 

{lP,r (Cent)]-' 0F(Cent) + [P„r {Fit)}'19F{Flt)) 

and the new variance of the estimation error by 

P,, (Opt) = [P6; (Cent) + Pg; (Flt)r. 

Conclusion 

The Navy's decision to instrument Trident 
II missiles and process the resulting test flight 
data in such a way as to estimate the mean and 
variance of fundamental level errors may make 
it possible to augment flight data with centrifuge 
data, if the centrifuge data is tactically 
representative. To do so requires processing the 
centrifuge data in the same manner as for flight 
test data to obtain a centrifuge-based estimate 
for comparison with the comparable flight-based 
estimate. 
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Purpose 

♦ As adjunct of Navy's surveillance program 
for guidance assessment, FBM Guidance 
Branch is considering a test program to 
"fly" complete Trident II guidance systems 
on a centrifuge. 

♦ Is centrifuge test data tactically 
representative for accuracy? 

♦ If so, how to combine with flight data? 
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Estimates of the reliability and accuracy of the Trident II 
guidance system have always been based on flight test data, to the exclusion of 
factory or lab tests, arguing that flight tests are tactically representative as far 
as guidance is concerned, while factory and lab tests may not be. However, as 
the number of flight tests flown each year has diminished, the Navy Fleet 
Ballistic Missile Guidance Branch is considering modifications to the 
surveillance program in which additional non-destructive testing would be 
used to improve early detection of degradation in performance, reliability, and 
functionality. For the assessment of performance, a prime candidate is a test 
program in which operational Trident II guidance systems and associated 
electronics assemblies would be removed from the fleet, "flown" on a 
centrifuge, and returned to the fleet. This presentation addresses centrifuge 
testing only as it applies to the assessment of the accuracy of the Trident II 
guidance system. It does not address the reliability or functionality aspects of 
centrifuge testing. 

Two natural questions arise. First, "How representative of 
tactical conditions are the centrifuge test results?", and second, "If centrifuge 
testing is tactically representative, how can it be incorporated with the small 
number of flight tests to provide an optimal estimate of guidance 
performance?" 
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Centrifuge Vs. Flight Data 

♦ Typical assessment of accuracy from flight 
data via "shoot and score" (sample mean 
and variance of impact miss). 

♦ Centrifuge provides no miss data. 

♦ How can such very different data be 
quantitatively compared or combined? 

10/11/96 

The typical assessment of accuracy from flight test data is via 
"shoot and score", i.e., the sample mean and variance of impact miss data is 
computed, from which a CEP (Circle of Equal Probability) can be calculated. 
If the Navy had taken such an approach to accuracy assessment of the Trident 
II system, it would be impossible to quantitatively compare centrifuge and 
flight data since centrifuge testing provides no impact miss data. Fortunately 
the Navy has taken a much more sophisticated approach to the assessment of 
accuracy from flight data, and, as will be seen in the remainder of the 
presentation, it is this approach which allows a quantitative comparison, and, 
ultimately, combining of the two data sources to form an optimal estimate of 
accuracy. The key to the approach is to instrument the various subsystems 
sufficiently to allow the estimation of the fundamental level error sources 
(accelerometer and gyro biases, etc.) that cause the inaccuracy. 



Flight Test Setup 

GPS 

RIMU S or ENTB ^!£*tf?S& 
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The Navy's approach to accuracy evaluation is founded on the 
instrumentation of various phases and subsystems. From the inception of the 
Trident II flight test program the Navy has planned for this enhanced data 
gathering and processing so that the instrumentation is an integral part of the 
tactical system design, and the instrumented data is therefore typical of a 
tactical system. For the assessment of guidance accuracy, the instrumentation 
is a GPS-based missile tracking system called SATRACKII that provides 
precise measurements of the range and range rate to the various satellites in 
view. 



Flight Data for Guidance 
Evaluation 

♦ Telemetry provides IMU's position and 
velocity from which compute range and 
range rate to satellites. 

♦ SATRACK tracking system provides 
measured range and range rate. 

♦ Difference provides measured IMU error 
(equivalent to position and velocity error). 
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Telemetry provides the guidance system (or EVIU - Inertial 
Measurement Unit) computed position and velocity, from which the range and 
range rate to the various satellites can be calculated. Differencing with the 
S ATRACK provided measure of range and range rate provides a measure of 
the error in the IMU's computation of position and velocity. 

But multiple measurements of errors in the IMU's position and 
velocity do not readily translate into estimates of accelerometer and gyro 
biases, etc.. How does the SATRACK data enable one to estimate these 
fundamental level errors? 



Accuracy Evaluation: Flights 

♦ Approach relies on a mathematical error 
model structure relating fundamental level 
errors (accelerometer and gyro biases, etc ) 
to measured errors (position and velocity). 
- Takes form of 1st order matrix differential 

equation obtained by 1st order perturbation of 

z—^™^^™!^ basic Phvsics 
;;;* ~Fx * Oyy .v(0) = x, (IC errors} 

y - Q, y{0) = yt (Guidance errors) 

10/11/96 

,k .    i.     L  The approach relies on a mathematical error model structure 
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Accuracy Evaluation: Flights 

♦ Solution a function of position and specific 
force along the trajectory through F and G 
- Provides sensitivity of errors in position and 

velocity to IC and guidance errors at any point 
along trajectory (e.g., impact). 

♦ Stacking sensitivity matrices at SATRACK 
measurementjjmesleads,to data equation 

;z = # 
\yl 

+ v,i-~XiQ.K)\ 
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Because the solution depends on the initial value, the partial 
derivative of the solution with respect to the initial values (for the IC an d 
guidance errors) can be computed. These partial derivatives provide the 
sensitivity of the position, velocity, and orientation errors to the IC and 
guidance errors at any point along the trajectory. Because the solution is itself 
dependent on the trajectory (through the functions F and G) the sensitivity 
coefficients will also be trajectory dependent. For example an accelerometer 
bias will have a much greater impact effect on a trajectory with a long time of 
flight than on one with a short time of flight. 

If the sensitivity matrices are computed at every SATRACK 
measurement time, the effect of the IC and guidance errors on each 
measurement can be computed. Stacking the measurements and the associated 
sensitivity matrices leads to the data equation, where Z is the stacked 
measurements, H the stacked sensitivity matrices, and v the measurement noise 
assumed to be normally distributed (Gaussian) with zero mean and variance R 
Given a sufficient number of measurements and sufficient variation in the 
sensitivity coefficients, the system of linear equations can be solved for the IC 
and guidance errors. 



Accuracy Evaluation: Flights 

♦ System of linear equations provides ML 
estimate of IC and guidance errors realized 
on particular flight. 

♦ Stacking data equations for all tests in 
sample allows ML estimation of mean and 
variance of IC and guidance errors that 
characterize errors across all tests. 
- Inverse Fisher information matrix P provides 

quantified uncertainty in estimate 
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The data equation can be solved for the maximum likelihood 
(ML) estimate of the IC and guidance errors that were realized on the 
particular flight. The uncertainty in the estimate is provided by the inverse of 
the so-called Fisher information matrix which captures the "observability" of 
the errors. For example, a scale factor error on the y-accelerometer is 
unobservable if the trajectory is such that no thrust (specific force) occurs 
along the y-axis. 

By stacking all the data equations across each of the flight tests 
in the test program one can in a similar manner estimate, not a particular 
realization of an error on a given flight, but rather the mean and variance that 
characterize the errors across all the flights in the test program. A maximum 
likelihood estimator is used and, once again, associated with the estimate is the 
Fisher information matrix whose inverse provides the uncertainty in the 
estimate (more precisely, the variance of the estimation error). Given a 
sufficient number of flights, the error in the maximum likelihood estimate of 
the mean and variance is distributed N(0,P) where P is the inverse of the Fisher 
information. Thus, not only can the mean and variance of fundamental level 
guidance errors be estimated, but the quality of the estimate can also be 
provided. An estimate without some indication of its quality is not worth 
much. 



Accuracy Evaluation: Flights 

♦ Accuracy (CEP) for any given trajectory 
can be obtained by using the impact 
sensitivity matrix to propagate estimated 
mean and variance of fundamental errors to 
impact. 

- Propagated inverse Fisher matrix yields 
uncertainty in accuracy estimate. 
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e*u JeCt °f the t6St flights 1S t0 Provide a« estimate of the 
accuracy of the system. But estimates of the mean and variance of 
fundamental level errors do not provide an estimate of accuracy. Just as the 
error model structure was necessary to estimate fundamental level erro" it is 

tluZZTmT: 6StirteS °f ** mCan and VarianCe of fundami level errors into a pred.ct.on of accuracy. The model structure allows the 
computation of sensitivity coefficients at any point along the trajectory in 

particular, at impact. The impact sensitivity matrices can then be apphed"to the 
meanmd vananceoffimdameiltaI ,eve,^ tQ ß J?™™* 

and variance at impact from which a CEP can be calculated. TI sensmX 
matrices can also be used to propagate the inverse Fisher matrices to impact to 
provide a quantified uncertainty in the accuracy estimate. Note that Z 

tnTeerre oTfUr7 C3n bC ?°ne CVen f°r Unt6Sted traJ'ectories Provided a 

in W«*•        1 Sh°?ld bC ?°ted that When Pr°Pa8ated to impact all the 
«formation gathered from the SATRACK data over all the trajectories in the 

owLTofdo0   PSCd t0 °;Iy fiVe P"ameterS'the mem «* variance aid covanance of downrange and crossrange errors, so that the asymptotic 
normality of the estimation errors applies at impact for relatively few flights - 
as few as a dozen m the Trident II experience wmgnts 



Example: Predicted Vs. Realized 
Sample Statistics 

MID RANGE SHORT RANGE 

Model Prediction 

Rained Simple SUtitfici 
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mm;,    ..     To sh°w that this approach to accuracy evaluation really works 
consider this figure. Here data from a number of missile flights has been 
processed to estimate the mean and variance of the fundamental level guidance 
and IC errors  These est.mates have then been propagated to impact on a 

re";tr mtshon range trajectones ™ *e«**** ^L tor each. From the resulting impact means and variances (of downrange and 
crossrange miss) one can predict the sample mean and variance for Sights 
nthe mid range grouping, and also for the flights in the short range grouping 

(The uncertainty in the prediction can also be computed.) One cm then 
compute the actual sample mean and variance of the realized impact misses 
and compare to the prediction. The figure indicates that the agreemenT 

dT!2T^  PrtCt:d SaTle StatlStiCS iS quite *°0d  fc «"*»** the data derived model was able to predict the left bias for the mid range grouoine 
and the right bias for the short range grouping. grouping 

annnwh t„     ^ ^ 1°™^ ** Centrifu&to ^ how it is that this 
approach to accuracy evaluation ,s able to allow the comparison and ultimate 
combining of flight and centrifuge data 
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Centrifuge 
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The centrifuge has an arm 35 feet in radius, but the IMU is 
mounted 32 feet from the center. Thus, since centripetal acceleration is given 
by radius times angular rate (in Radians) squared, 1 radian/sec yields one g of 
acceleration, 2 radians/sec yields 4 g's, and pi radians/sec yields about 10 g's 
Since one full circle is 2 pi radians, this centrifuge is capable of generating 10 
gs of acceleration with only one revolution every two seconds. This picture is 
of the centrifuge as it was this spring. It is now being refurbished and 
instrumentation is being mounted on the walls to precisely measure position 
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Centrifuge Test Setup 

SiWRAL FEFT !£*™*„ 
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/ 
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MOUNTING 
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This figure shows a schematic of the brackets mounted on the 
wall supporting the proximity sensors that are able to measure position to 
within 20 thousandths of an inch 
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Centrifuge Data 

♦ Telemetry provides IMU's computed 
position. 

♦ Instrumentation along wall provides 
measured position. 

♦ Difference provides measure of IMU 
position error at multiple points along 
IMU's arc. 
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Just as SATRACK provides the position and velocity errors for 
the IMU in flight, the instrumentation along the wall provides precise 
measurement of the EVIU's position which can be differenced with the IMU's 
computed value to provide a measure of its error. This is done at multiple 
points along the arc of the EMU just as SATRACK measurements are made at 
multiple points along the trajectory of the EMU. 
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Accuracy Evaluation: Centrifuge 

♦ Apply exactly the same process to 
centrifuge data as for flight data. 
- Estimate fundamental guidance errors and 

obtain inverse Fisher to quantify uncertainty. 

♦ Difference lies in radically different 
"trajectory" driving differential equation. 
- Rotating specific force vector provides better 

observability than flight test where specific 
force changes direction only slowly. 
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The exact same process that was applied to flight data can now 
be applied to centrifuge data to estimate the fundamental level guidance errors 
form the sequence of measured position errors as the centrifuge increases and 
then decreases speed, in other words, as the g's rise and fall. Once again the 
inverse of the Fisher information matrix associated with the maximum 
likelihood estimation process provides the uncertainty in the estimate. Recall 
that the ability to estimate fundamental level errors is a result of the error 
model structure defined bv the differential equation given earliftrwhir.fi i« 
driven by the position and specific force history of the MU's trajectory. To 
the estimation process, the only difference between a centrifuge test and a 
flight test lies in the radically different "trajectory" that drives the error 
structure differential equation. For a centrifuge the IMU's position follows a 
32 foot circle and the specific force appears to rotate relative to the inertially 
stable platform at about 180 degrees/second at 10 g's. Contrast this with a test 
flight where the position follows a more or less elliptical path downrange and 
the specific force changes direction only slowly, at least until after third stage 
burnout when the magnitude of the specific force is negligible. 

The fact that the specific force is constantly changing direction 
significantly improves the observability of the fundamental level errors 
compared to a flight test. It allows much better discrimination of the 
acceleration sensitive accelerometer and gyro errors from one another. 
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Comparison of Centrifuge And 
Flight Estimates 

♦ Is centrifuge data tactically representative? 
- Want to compare with flight data since it is 

tactically representative. 

♦ Now have common ground on which to 
perform statistical test. 

- Chi-square test on independent estimates: 

\Z=&-t>][P, +KT$-fy\ 
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Although the unusual "trajectory" followed by an IMU on a 
centrifuge allows for better estimation of fundamental level errors, it also leads 
one to wonder if the errors realized on a centrifuge test are really typical of 
what would be realized on a flight. Given a sufficient number of centrifuge 
tests we might be able to estimate the mean and variance of the fundamental 
level errors realized in the centrifuge test program very well, but the estimates 
may not be typical of what would be realized tactically. Since flight test data 
is tactically representative for guidance, we can test the centrifuge estimates 
for tactical representativeness by comparing with the comparable estimates 
from flight data, and we now have a common ground on which to make the 
comparison, since both test programs provide estimates of the mean and 
variance of fundamental level errors, theta sub F for flight and theta sub C for 
centrifuge, together with a quantified uncertainty in that estimate, what I've 
denoted P sub F for flight and P sub C for centrifuge. Then, because the 
estimation errors asymptotically have a normal distribution with zero mean and 
variance P sub F or C, one can test to see if the flight and centrifuge estimates 
characterize the same distribution by comparing the indicated statistic Chi 
against a Chi-squared table where the degrees of freedom is the number of 
parameters estimated. If the realized value of Chi is very unlikely then it is 
unlikely that centrifuge data is typical of flight data. By propagating both 
estimates and inverse Fishers to impact on a common trajectory, this test can 
also be applied where the asymptotic normality of the estimation error is more 
likely to be valid and where the real interest in the estimates lies - namely at 
impact. 
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Optimal Combining of Estimates 

♦ If test for tactical representativeness is 
passed, would like to combine centrifuge 
and flight data to form best estimate. 

♦ Information-weighted average (via Fisher 
information from each data source) of 
estimated mean and variance of 
fundamental level errors. 

\0^[p: + p:Y\p;0r + p:e^ 
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If the test for tactical representativeness is passed, either at the 
fundamental level or at impact for a representative class of trajectories, one 
would then like to utilize the centrifuge data to improve the estimate of 
accuracy obtained from the limited flight test program. Because the estimation 
process provides a quantified uncertainty in each estimate, namely the inverse 
of the Fisher information, one can optimally combine the two estimates by 
computing the information-weighted average as shown. The uncertainty in the 
combined estimate is given by the first term in brackets on the right side of the 
equality sign, that is, by the inverse of the sum of the information from each 
test program. Once again, this combining can be done at the fundamental 
level, or at impact after propagating both estimates (and inverse Fishers) to 
impact on a common trajectory. Of course, once one has an optimal estimate 
of the mean and variance at impact for any trajectory, the CEP and its 
uncertainty can also be computed via standard formulas. 
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Conclusion 

♦ Navy's decision to instrument Trident II 
missiles, and process resulting data so as to 
estimate mean and variance of fundamental 
errors, makes possible comparison and 
combining of centrifuge and flight data. 

♦ Contrast with situation if Navy had only 
resorted to "shoot and score" for Trident II 
performance evaluation. 
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In conclusion I'd like to emphasize that the testing of guidance 
centrifuge data for tactical representativeness and its combining with flight 
data to form an optimal estimate would simply be impossible if it were not for 
the approach the Navy has taken to the estimation of accuracy from the 
inception of the flight test program. The very approach taken for the flight test 
program can be taken over in total to the centrifuge test program, and by so 
doing provides a common ground on which the estimates from the two test 
programs can be compared and, if deemed comparable, combined to form an 
optimal estimate of guidance accuracy, pooling both sets of information. If the 
Navy had taken the usual "shoot and score" approach to accuracy evaluation 
from its flight test program, there would be no quantifiable way to compare or 
combine the results of the two test programs. 

17 
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