
Advanced Technology Workshop 1996
EUROPE

July 8-10,1996, INSAT, Toulouse, France

PREPRINTS

&&&£'$WWi~> /' vut yV-

19961121 199

'V?JN5A
Intitut National des Sciences Appliquees

Complexe Scientifique de Rangueil
31077 Toulouse Cedex, Toulouse, France

Department of Electrical Engineering & Computer Science
Phone: +33 61 55 98 13, Fax: +33 61 55 98 00

mail: lesia@dge.insa-tlse.fr

DTIG QUALITY mSPSiGTiäi) l

DISCLAIM» NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0138

Public reporting burden for this collection of informaiion is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and lo the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

26 July 1996

3. REPORT TYPE AND DATES COVERED

Conference Proceedings, 8-10 July 1996

4. TITLE AND SUBTITLE

Advanced Technology Workshop 1996 (ATW96) EUROPE

5. FUNDING NUMBERS

CSP-96-1016or
F6170896W0099

6. AUTHOR(S)

Prof Gilles Motet

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institut National des Sciences Appliquees (INSA)
Complexe Scientifique de Rangueil
31077 Toulouse Cedex, France

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO AE 09499-0200

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CSP-96-1016

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Conference Proceedings from the Advanced Technology Workshop 1996 (ATW;96) Europe held in Toulouse, France on 8-10 July 1996.

14. SUBJECT TERMS 15. NUMBER OF PAGES

212
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Foim 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Advanced Technology Workshop 1996
EUROPE

July 8-10,1996, INSAT, Toulouse, France

PREPRINTS

* ,„„,.„...

Intitut National des Sciences Appliquees
Complexe Scientifique de Rangueil

31077 Toulouse Cedex, Toulouse, France
Department of Electrical Engineering & Computer Science

Phone: +33 61 55 98 13, Fax: +33 61 55 98 00
mail: lesia@dge.insa-tlse.fr

DTIC qUALETS li'iS'^--

Contents

Technical Sessions:

1. Design and Test I
Chair : A. Rucinski, Univ. of New Hampshire, USA

2. Design and Test II
Chair: P. Sanchez, University of Cantabria, Spain

3. Spatial Applications
Chair: P. David, Matra Marconi Space, France

4. Dependability
Chair: R. Straitt, US Air Force, USA

5. Collaborative Engineering
Chair: B. Rucinska, University of New Hampshire, USA

We wish to thank
the US Air Force European Office of Aerospace Research and Development,
the INS AT Institute,
la Region Midi Pyrenees,
la Mairie de Toulouse,

for their contribution to ATW'96 EUROPE.

Technical Session 1

Design and Test I

Chair : A. Rucinski, Univ. of New Hampshire, USA

The Joint Systems/Software Engineering Environment (JOSEE) Concept at Lockheed
Martin Aeronautical Systems,
D. Boutin, Lockheed Martin Aeronautical Systems, USA
Current Modelling in VITAL,
J-L. Barreda, P. Sanchez, University of Cantabria, Santander, Spain
EDgAR: A Platform for Hardware/Software Codesign,
A.J. Esteves, J. M. Fernandes, A.J. Proenca, Univ. Do Minho, Braga, Portugal
Hierarchical Multi-view Modelling Concept for Discrete Event System Simulation,
A. Aiello, J-F. Santucci, P. Bisgambiglia, M. Delhom, SDEM-CNRS, University of Corte,
France

The Joint Systems/Software Engineering Environment (JOSEE)
Concept at Lockheed Martin Aeronautical Systems

Daniel R. Boutin
Software Engineering Process Department

Lockheed Martin Aeronautical Systems, Dept. 73-F9/Zone 0685
86 South Cobb Drive, Marietta, GA 30063-0685, USA

Phone: (404) 494-9634, Fax (404) 494-1661, e-mail dboutin@mantis.mar.lmco.com

Abstract Overview
We can define Systems/Software Engineering Environments (S/SEEs) as being "A set of software-

based tools that aid in providing total integrated lifecycle support for systems and software

development, augment all test activities and aid in the management of projects and programs." In
other words, an integrated series of software programs that provide partial or total automation of the

activities within system and software lifecycles.

Ideally, a S/SEE would be convenient to use, support customization of data and integrated toolsets,
have an open architecture, support the selected software development process methodologies,
encompass the entire database while providing tool interfacing and evolution and support standards

which enable portability and interoperability.

S/SEEs, though a "hot topic", are a fairly new idea in software development. Until recently, when

computer-aided software development was thought of, one would think of individual Computer

Aided Software Engineering (CASE) development tools. One tool, one lifecycle phase. Only since
the late-1980's has the idea of a fully integrated S/SEE been discussed or proposed-by vendors and

users alike.

Lockheed Martin Aeronautical Systems (LMAS) S/SEE: JOSEE

At Lockheed Martin Aeronautical Systems (LMAS), we have evolved our software development
process from the primitive end of the software development lifecycle-no tool automation, to the

more sophisticated individual CASE tools, both upper-CASE and lower-CASE, and onward to

partially integrated S/SEEs.

LMAS has developed a concept, the Joint S/SEE, or JOSEE, that is a process-centered automated

workflow environment which combines the framework technologies and components from several
CASE tool and S/SEE technology vendors. The "J" in the acronym "JOSEE" stands for both the
"joint" cooperation and integration of S/SEE vendors and CASE tool vendors into a common
technology based framework, and for the "joint" cooperation between several different Lockheed

Martin companies which support the concept of a common, open, integrated, heterogeneous S/SEE.

The following paragraphs discuss the requirements, vision, capabilities, management and process-
methods-tools integration of the JOSEE.

The JOSEE vision includes providing an affordable, consistent, real-time view of the software

development process. This ensures that the software manager and project manager perform pro-
active rather than re-active software management. The process instantiation and sophisticated

metrics provisions and integrated software management capabilities make the JOSEE solution

attractive to managers and developers alike at LMAS.

The JOSEE goal is to reduce the cost of software by providing automated means to perform

previously manual activities, and to provide management with a sophisticated method of tracking

software project status.

The JOSEE Common Framework

The JOSEE is based upon open industry standards and technologies. The JOSEE framework

consists of the Digital Equipment Corporation COHESION product front-end and desktop. This

S/SEE framework product supports the Common Object Request Broker Architecture (CORBA)

framework technology and also provides support for the Open Software Foundation (OSF)

Distributed Computing Environment (DCE) middleware. These technologies provide a means for

support of distributed tooling, licensing and databases and support for client/server technologies

providing access to over 21 platforms.

JOSEE: Joint LMAS/LTAS S/SEE

Capability
Requirements Analysis Capability
Analysis & Design Capability
Code Development Capability (& Target Req.'s)
Configuration ManagementCapability
Metrics Capability
Project Management Capability
Presentation Style
Test ExecutionCapability
Desktop PublishingCapability
Database Management System
Methodologies Support
PC Office Capability
X-EmulationCapability
Interface Design Capability
Platform Support
Systems Anafysis/Modelling

TaiWaM^ TntPffrütpH rnmpnnpnt Options
RTM
Rational ROSE, Cadre Objecteam
Rational APEX
Life*CYCLE
Amadeus
Autoplan II
Motif
Rational TestMate, MercuryWinRunner
Interleaf V6.0

ADARTS, CoRE, Shlaer-Mellor, Unified Method
Microsoft Office
Hummingbird eXceed
IDT
Sun, HP, Digital Alpha, SG, PCs, IBM
Objectory, DOORS \J

Figure 1 - The JOSEE Solution

The COHESION desktop is a Motif-compliant desktop which provides a common "look and feel"
for the desktop across all platforms for which it can be displayed.
Figure 1 shows the capabilities and their associated solution sets for the JOSEE.

LMAS JOSEE: Automated Process Support

The JOSEE utilizes Computer Resources International's (CRI) Life*FLOW workflow automation
tool to instantiate the LMAS Standard Software Process (SSP) in an automated fashion which is
invisible to the user/developer. The LMAS SSP is based upon ISO 12207 and incorporates
attributes from ISO 9000-3, DO/178-B and the Software Engineering Institute's (SEI) Capability
Maturity Model (CMM). The Life*FLOW instantiation provides integrated tooling automation for
all areas of the software development effort. Examples include automated peer review notification
and automated metrics collection.

The JOSEE SSP is modeled using the IDEFO notation and tool suite. The COHESION desktop
allows for browsing of this model using the Netscape Navigator Version 2.0. The IDEFO models
are linked to the actual Life*FLOW instantiated process using the Netscape Navigator and JAVA
technologies. From within COHESION a user may browse the SSP on the JOSEE home page and
link up with more sophisticated on-line help and process assets. As an example, a user may wish to
view the requirements management process in IDEFO, then drill down to the Life*FLOW
instantiation inside the JOSEE workflow automation tool, view some data using the Requirements
Traceability Matrix (RTM) tool, and finally "hot-link" to the LMAS SEPD home page which
contains the on-line policies/procedures and "how-to" guidebooks for requirements management.
In summary, with a few mouse clicks, a user can get on-line tools help, process help and LMAS
policies and procedures and view assets without ever having to leave his/her personal computer or
workstation.

Acquisition
Process

Supply Process

Development
Process

IDEFO Modeling

Software
Project Control Panel

Life*FLOW Instantiation

Oracle S/SEE Repository

Figure 2 - The Process Modeling/Instantiation Relationship

Figure 2 shows the relationship between the JOSEE process modeling capabilities and the process
instantiation inside the JOSEE and its subsequent display on the Software Project Control Panel
(SPCP), which is described in the following paragraphs.

Lockheed Martin

Action fdit filock ßeld Becord fluery Window Help

Figure 3 - The Software Project Control Panel

LMAS JOSEE: Integrated Software Management

The LMAS JOSEE includes an integrated software management system designed around the
Software Project Control Panel (SPCP), as shown in Figure 3. The SPCP provides a graphical user
interface (GUI) view into the current state of the software development project. The view of the
SPCP provided to the user is linked to the Life*FLOW defined user role, such as developer,
manager, quality assurance (QA) or vice president of engineering. The SPCP is flexible enough to
be customized by each user, or according to a project defined ruleset. The SPCP GUI provides a
palette of gauges which are "point and click" accessible for each user to customize his/her own
SPCP for their desired personal view. Each gauge represents a process or product metric inside an
LMAS developed metrics repository. This metrics repository provides an open application
programming interface (API) to enable other third party CASE tools to insert data for display onto
an appropriate gauge on the SPCP. As an example, the Requirements Traceability Matrix (RTM)
Tool from GEC-Marconi can provide requirements database information the LMAS metrics
repository via a SQL-Net interface between the RTM Oracle database and the LMAS Oracle
metrics repository.

Vice President
Engineering

ra
:|Wl.

C-5 Director
Engineering

■pptt^nQ

fäfe-iH*
F-22 Director
Engineering

Us&
stow

Software Engineering
Process Group

Mi
C-130J Director

Engineering

1#
UK RMPA Director

Engineering

IB-.--—1
-^M^rjyij

Softw /are Developer Software Developer

1
im:—t5r

Wkm-
Software Developer 1

Figure 4

LMAS JOSEE: An Integrated Program Support Environment

The LMAS JOSEE provides an integrated approach to a S/SEE. It utilizes the "best of the industry"
for the four major components in the S/SEE: (1) Desktop Presentation Integration, (2) Process
Integration, (3) Database Integration, and (4) Messaging Integration. The desktop and messaging
integration are provided by the Digital Equipment Corporation COHESION product. The process
integration and the database integration are provided by the CRI Life*FLOW and Life*CYCLE
tools. LMAS has provided its own custom capabilities to tie these two product suites together into a
process-centered, automation-based management tool by including the metrics Oracle based metrics
repository which provides the capability to link the databases of the various tools for metrics
presentation on the SPCP.

Conclusion

The JOSEE solution provides a "state of the art" implementation of "state of the practice" tooling
and S/SEE framework technologies. Figure 5 shows the evolution of the S/SEE industry and the
future of the JOSEE concept and vision. The ultimate goal remains creating an integrated
development environment for hardware and software technologies, such as VHDL and Ada.

Integration
Future JAST S/SEE: Hardware-Software Co-Design

Single Object Repositories
POSIX Compliant O/S

CASE/CAD/CAM/VHDL
Integration' Sim-in-a-Box"

Loose Horizontal Lifecycle Integration
ASD/SEE Product Line F-22
ATIS-Software Backplane F-16
Minimal Process Integration

LMASC JOSEE: \J
COHESION Team/SEE
CRI Software Backplane

Process-Methods-Tools Integration
Repositories
Messaging Integration
Data Integration
Presentation Integration
Heterogeneous Environments
CASE Standards Support

Early 1980s Mid-1980s Late 1980s Early 1990s 1995 2000+
Time

Figure 5 - The Evolution of LMAS Environment

C-130J S/SEE
Marietta, GA

F-22 S/SEE
Fort Worth, TX

Interleaf V5.3.1
Obiectbroker/DCE
ASD/SEE V3.0

Interleaf VS.3.1
Teamwork VS.0.2
Amadeus V2.3
RTM
IDT+

F-16 S/SEE
Fort Worth, TX sun

Sparc/20
CRI Software Backplane V1.0

Alpha
3000/600

OHESIONworX V2.1
Team/SEE V2.0

Rational
DEC FUSE
Target Exts.
LmTLINK
Jfe'FLOW
.ife'CYCLE

-, nterleaf V6.0

Team/SEE V2.0
Interleaf V6.0
Amadeus V2.3
StP/OMTV1.2/V1.1

HP
9000/755

COHESIONworX V2.1
Team/SEE V1.1
Framemaker
Autoplan II
ObleitTeam V6.0
Rational

Figure 6

CURRENT MODELING IN VITAL
J.L. Barreda and P. Sanchez

Microelectronics Group. TEISA. ETSIIyT
University of Cantabria. Santander. Spain

Ph: 34-42-201548 Fax: 34-42-201873
e-mail: sanchez.@teisa.unic.an.es

Abstract

The recently approved VITAL [7] standard will permit many of the drawbacks
presented by the use of VHDL at gate level to be overcome. It does not, however, address
one of the basic problems at gate level: current modeling.

The main purpose of the present work is to propose a current modeling for VHDL
gate-level descriptions which are VITAL compliant. This technique will be applied to
different areas, such as low power design, BIST scheduling and fault simulation, for
current fault modeling and for power estimation and average/peak current determination
with a maximum variation of 10% with respect to the data obtained by SPICE LEVEL
3[1]. Logically, the new types, signals and subprograms used in current modeling do not
verify the modeling rules of the recently approved VITAL standard, constituting a
proposal for a possible extension in the future.

The order of contents of this paper will be as follows. In the next section the concepts
necessary for transitory current modeling will be introduced. Then, an example of the
application of this technique will be presented. The final section will present the
conclusions of the article.

1.- Current modeling

With the aim of developing current models for VITAL cells some non-VITAL standard
types and subprograms have been introduced.

piece-wise linear
current waveform

break points

v>—
Figure 1

In order to be able to define a current modeling in VITAL, it is necessary to model the
current flowing from the circuit to the sensor or power supply in a continuous form,

considering all behavior to be transitory. This is not possible using an event-driven
simulator. For this reason, the current waveform has been modeled by means of a piece-
wise linear current waveform (figure 1), in a similar way to [1][2][3]. This enables results
to be obtained which are in disagreement with, at most, 10% of those obtained with
SPICE [1]. The basic idea is that the current waveforms for any change in the inputs of
the VITAL cell are modeled by the foundry as a set of time-current pairs (figure 2).

I INI

Hi
INPUT

III
time

OUTPUT

time

«; »1 «2 /jw
t3 t4 t5 t6

Input change => current waveform = (((U„),(t„i,),(t.yi2)<

time

■■,(tfA)}
i = current
t = Time

Figure 2

The VHDL simulator must be able to add up all of these piece-wise linear current
waveforms to obtain the total current waveform. The new approach introduced in this
paper is that the VHDL simulator does not work with current values, but rather with the
points at which the slope of the waveform varies (break points). In this way, the total
waveform can be calculated with great speed and accuracy (Figure 3).

CELL1 driving
current value

time

CELL2 driving
current value

time

effective
current value

time

»'« - /I\V5*^
t3 t4 t5 t6 t7 t8 t9

Figure 3

In our approach, the list of pairs presented previously is transformed into a set of linear
equations as follows :

Input change => Current = P, * T + C,
P, * T + C,

Where:

P *T + CN

T = Continuos Time

t(1 < T < t,
t, < T < L,

i„.i < T < K

The current is modeled in VHDL hy means of resolved signals of record type
(Dcurrent) in which one field models the parameter P (slope) and the other the parameter
C (initial point) of the linear equation.

type current is record
P : REAL;
C : REAL;

end record;

type CurrentArray is array(NATURAL nuige <>) of current;
function DynamicPowerSourcet A : CurrentArray) return current;
subtype Dcurrent is DynamicPowerSource cunent;

Thus, the calculation of the total current is defined as the sum of the currents of each
cell. These are modeled by means of equations of the following equation type, in which
(P, C) vary as discrete events.

Celli_current = P;* Time + C(

Hence, the total current is calculated by means of the following expression :

Total_current = X Cell^current = (X P,) * Time + (X Q)

This equation is implemented in the resolution function of the Dcurrent type. Thus, this
will be the type of signal used to model the power source.

function DynaniicPowerSourcet A : CurrentArray) return current is
variable result : current := (0.0 0.0);
begin

IF(A'LENGTH=l)THENi elum(A(A'LOW)); ELSE
for i in A'RANGE loop

result.P := = result. P + A(i).P:
result.C : = result. C + A(i).C:

end loop;
END IF;

return result;
end;

The advantage of this type is that it allows the current waveform to be modeled with
relative accuracy. From the point of view of VITAL, a new port (of the Dcurrent type) is
introduced in the cells which models the dynamic current consumption of the cell. Also, a
generic port is added, enabling the {time-P-C} sets to be specified by means of the
VitalCurrentTableType type. Every row of this table is associated to the transaction
modeled in the same row of a VitalStateTableType constant. These tables are processed
inside the cell by means of a VitalDynamicCurrent subprogram. The types necessary for
the simulation and the VitalDynamicCurrent subprogram are shown below:

type VitalCurrent is record
Point: current;
T : TIME;

end record;
type VitalCurrentTableType is array(NATI IRAL range <>,NATURAL range <>) of VitalCurrent;
procedure VitalDynamicCurrent (constant CurrentTable : in VitalCurrentTableType;

constant StateTable : in VitalStateTableType;
signal Datain : in std_logic_vector:
signal Result : out current) is

constant InputSize : INTEGER:= Dataln'LENGTH:
variable DatalnAlias: std_logic_vector(0 lo InputSize -1):
variable StateTableAlias : VitalStateTableType«) TO (StateTable'LENGTH(l)-l),

0 TO (StateTable'LENGTH(2)-D) := StateTable;
variable CurrentTableAlias: VitalCurrentTableType«) TO (CuiTentTable'LENGTH(l)-l),

0 TO (CurrentTable'LENGTH(2)-l)) := CurrentTable;
type EventCurrentTableType is array (Natural range <>) of VitalCurrent;
variable EventCurrentTable : EventCurrentTableTypet OTO (StateTable'LENGTH(l)-l));
variable maxEventlndex : Natural := 0:
variable nextEventlndex : Natural := 0;
variable Index: INTEGER;
variable currentTime : TIME;
variable nextTime : TIME := TIMETIIGH;
variable nextEvent: TIME;
variable PrevTime: TIME;
variable temp : current;
variable PrevDataln : Std_logic_vector«) to DataIn'LENGTH-l):= (others=>'X');

begin

infinite: LOOP -- Infinite loop
if(maxEventIndex /= nextEventlndex) then

wait on Datain for nextEvent:
else

wait on Datain;
end if;
DatalnAlias- To_X() 1 (Datain):
currentTime := now;
if(DataInAlias/=PrevDatain) then

if(NextEvent /= TIME'HIGH and nextEventlndex < maxEventlndex) then
if(nextTime > currentTime) then

NextEvent := nextTime - currentTime;
else

assert false

report "Time computation error in VitalDynamicGurrent":
end if;

end if:
asseiK StateTable'LENGTH(l)^un^uTable'LFNGTH(1))

report "Incorrect current table";
coljoop: FOR i IN StateTableAlias'RANGE(l) LOOP

-- Check each input element of the entry
rowjoop: FOR j IN 0 TO InpulSize LOOP

IF (j = inputSize) THEN — This entry matches
nex(EventIndex:=0;
maxEventlndex :=();
nexfTime:=currenfTime;
PrevTime:= 0 ns;
currentjoop: for k in 0 to (CurrentTable'LENGTH(2)-l) LOOP

EventCunenfTable(maxEventIndex).point.A :=
CurrentTableAlias(i,k).point.A:

EventCurrentTable(maxEventIndex).point.B :=
CurrentTableAlias(i,k).point.B -

(CurrentTableAlias(i,k).point.A
*(TimeToReal(currentTime)+TimeToReal(PrevTime)));

EventCurrentTable(maxEventIndex)T := CunentTable(i,k).T;
maxEventlndex := maxEventlndex +1:
if(CurrentTable(i,k)T = TIME'HIGH) then

exit currentjoop;
else

PrevTime:= Ourren(TableAlias(i,k).T + PrevTime;
end if:

end loop currentjoop:
exit coljoop;

end if;
exit rowjoop when not

StateTableMatch(PrevDataIn(j)J)aiaInAlias(j), StateTableAlias(ij));
end LOOP rowjoop;

end LOOP coljoop;
PrevDataln := DatalnAlias;

end if;
if(nexfTime=currentTime and maxEventlndex > nextEventlndex) then -- update events

temp.A :=EventCunenfTable(nextEventIndex).point.A;
temp.B := EventCurrentTable(nextEventlndex).point.B;
if(EventCuiTentTable(nextEventIndex).T = TIME'HIGH) then

nextTime := TIME'HIGH;
nextEvent:= TIME'HIGH;

else
nextTime := EventCurrenlTable(nextEventIndex).T + cunentTime;
nextEvent:=: Event(TinentTable(iiextEventIndex)T;

end if;
nextEventlndex := NextEventlndex +1:
Result <= temp:

end if;
end LOOP ;

end;

2.- Example of current modeling

As an example of current modeling, the model of current How at a two-input AND gate
is proposed. For this, it will he necessary to define a set of parameters Q (slope i),P,
(initial point I) and f (time between two changes of the current flow). These parameters
are defined by the VitalCurrenfTableType type generic port. Each row is associated to a
transition of the VitalTruthTableType type generic port. In this way, when an input of the
AND gate changes from '()' to T (symbol 7"), the output being '()', the form of the
current will be given by the following pairs:

[(),() A],[5()()ps, 10 mA], [1000 ps, -1mA], [1200 ps, 0 A]

entity and2 is
generic(InpufTransition : VitalStateTableType(0 to 3, 0 to 2):=((V. '1', '0'),

(T. V, '0'),
('B'. 'B', V),
('B', 'B'. T));

-1
-2
-3
-4

Cui-rentWavelbrm : VitaICunentTableType(0 to 3, 0 to 3):=(
(((2.0e7,0.0), 500 ps), ((-2.2e7,10.0e-3), 500 ps), ((5.0efi,-I.Oe-3), 200 ps), ((0.0,20.0e-9),
TME'HICiH)), -1
(((2.0e7,0.0), 500 ps), ((-2.2e7,10.0e-3), 500 ps). ((5.0e6,-1.0e-3), 200 ps), ((0.0,20.0e-9),
TIME'HIGH)), "2
(((1.0e6,0.0), 1 as), ((0.0,1.0e-3),TIME'HIGH),((0.0,0.0),0 ns),((0.0,0.0),0 ns)), -3
(((1.0e6,0.0), 1 ns), ((0.0,1.0e-3),TIME'HIGH),((0.0,0.0),0 ns),((0.0,0.0),0 ns))) --4

);
port(InAJnb : in Stdjogic;

Y : InOut Stdjogic;
vdd: Out Dcunent := (0.0,0.0));

end; _^^^_^^__^^_^^___

3.- Conclusions

In this paper a current model has been presented for VHDL structural descriptions
which follow the rules laid down by the VITAL standard. For this, it has been necessary
to define types and subprograms which model the current How in the cell. These elements
have not been introduced in the VITAL standard.

On the other hand, the simulator results seem to show little discrepancy compared to
those obtained with electrical simulators like SPICE[1]. This permits the current modeling
and the application of IDDQ[4] and IDDT[5] to test circuits (main application of the
proposed techniques). As a consequence of the application of the models presented here
to fault simulation, better results have been achieved than those obtained by some non-
VHDL commercial logic simulators [6], since:

1.- It enables the separate parts of the circuit under test to be modeled, since as
many Dcurrent type signal can be used as there are separate power-supply parts
of the circuit.

2.- It enables the maximum value of the static and dynamic current in the fault
free circuit to be estimated, thus facilitating the design of the current sensor. In

fact, the sensor could be incorporated as a Vital Level 0 cell in the system
description.

3.- The current modeling is too] independent because the current behavior is
defined in the VITAL library. Thus, the modeling is very flexible and portable.

At the moment effort is being made in two lines of development. On one hand, to
improve the modeling in the case where a signal changes while the port is still affected by
a previous change, and on the other hand, to study the propagation of 'X'-values through
the circuit.

4.- References

[1] Rouatbi, B. Haroun, A. Al-khalili. "Power Estimation for Sub-Micron CMOS
VLSI circuits". ICCAD'92. 1992.

[2] H. Kriplani, F. Najm and I. Hajj. "Maximum current estimation in CMOS
circuits". 29th Design Automation Conference. 1992.

[3] T. Krodel. "PowerPlay-Fast Dynamic Power Estimation Based on Logic
Simulation". ICCD'91. 1991.

[4] R. Aitken. "A Comparation of Defect Models for Fault Location with Iddq
Measurements". ITC'93. 1993.

[5] J. Arguelles et al. "Iddt Testing of Continuous-Time Filters". VLST'95. 1995.
[6] SystemHilo 4.5. Release Notes. VEDA Design Automation. December 1994.
[7] Standard VITAL ASIC Modeling Specification. IEEE 1076.4. July 1995.

EDgAR: A PLATFORM FOR
HARDWARE/SOFTWARE CODESIGN

Antonio Esteves, Joäo M. Fernandes, Alberto Proenga
Dep. Informdtica, Universidade do Minho

4709 Braga codex, Portugal
Email: { esteves, miguel, aproenca} @di. uminho.pt

Abstract

Codesign is a unified methodology to develop complex systems with hardware and
software components. EDgAR, a platform for hardware/software codesign is de-
scribed, which is intended to prototype complex digital systems. It employs pro-
grammable logic devices (MACHs and FPGAs) and a transputer-based parallel ar-
chitecture. This platform and its associated methodology reduce the systems pro-
duction cost, decreasing the time for the design and the test of the prototypes. The
EDgAR supporting tools are introduced, which were conceived to specify systems
at an high-level of abstraction, with a standard language and to allow a high de-
gree of automation on the synthesis process. This platform was used to emulate an
integrated circuit for image processing purposes.

Keywords: codesign, rapid system prototyping, FPLDs, transputer.

1 Introduction

All the platforms used in codesign are not universal, in the sense that not all the
systems can be implemented in a straightforward way. Additionally, those platforms
are generally too expensive, since they have a large number of hardware resources.
If these resources are not completely used for a significant number of systems, the
ratio performance/cost is extremely low.

The EDgAR (Emulador Digital Altamente Reprogramvel) platform was designed
to achieve a high performance/cost ratio and to implement complex systems with
critical time constraints, used in real-time applications (especially computer vision
systems). However, the platform design was not significantly constrained by the
particular aspects of these systems.

EDgAR is a FPGA-based platform that includes a transputer that can be linked to
a parallel architecture. With the EDgAR platform, prototypes of complex digital
systems can be obtained in a short period of time.

The recent development on the area of re-programmable components (FPLDs - Field
Programmable Logic Devices) made them attractive to fast and efficiently create
prototypes, because their complexity can achieve tens of thousands of equivalent
logic gates, and the manufactures provide electronic CAD tools to support those
components. Since the time of design and the production cost were reduced, and
the FPLDs need no longer to be removed for programming, they can be used with
success in codesign platforms.

The transputer is a microprocessor with communication and processing power and
a simple interface. It allows the scale of parallelism, due to its capacity to be
interconnected with other identical microprocessors.

Codesign is closely related to the design of systems with unreachable performance
in software implementations, and systems with higher complexity than those imple-
mented in hardware (ASICs) [1, 2].

This article is organised as follows. In section 2, the architecture of the EDgAR
platform is described. The synthesis of digital systems with EDgAR is analysed in
section 3, with comments to the different phases of the process: the system specifi-
cation, the hardware/software partitioning, the allocation of platform resources to
partitions, and the validation of the prototype obtained. In section 4 the emulation
of a VLSI circuit, the GLiTCH, on EDgAR is presented.

2 The architecture of the EDgAR platform

The structure of the EDgAR platform (figure 1) is supported by two major blocks:

i) a digital information processing unit (UPDI), that implements a parallel com-
putation node, with communication and scalar processing power, and where
the digital signals processing speed is not crucial;

ii) a programmable logic unit (ULP), containing a great amount of reconfigurable
resources and whose operation speed is close to that of the circuits with fast
technologies available on the market, allowing better performances than those
obtained with traditional simulators.

To carry out the UPDI, the transputer (a microprocessor with communication and
processing power) was selected. It allows the scale of parallelism, due to its capacity
to be interconnected with other identical microprocessors, building up a network

with a variable topology. This processor is also responsible for the interface with
the prototype development system and for the initial configuration of the ULP com-
ponents [3]. On the debugging phase, the user's interface with the platform was
developed on a unit containing several TRAMs (TRAnsputer Modules) installed on
a PC and using a C compiler. The connection between the unit of TRAMs and
EDgAR is done by one (or more) transputer link(s), which are asynchronous. The
tools available to work with the TRAMs allow to monitor the transputers of the
TRAMs and EDgAR, to compile the programs and to load them to the transputers.

I-C

c

V

links[4]

Processing
Unit

{with T425)

add[32]

data[32]

/rd /wr

C=

■> /cs

V) i/o[22]

/rd

MACH#0

data[8] ßl

add[2]
/wr

T~~K

$

MACH #3

S
/cs

i/o[22]

data[8] £
add[2]

/rd /wr fc

C=

data[32]

DRAM (4 x 1Mbyte)

add[22] /cs

Address
Decoder

LCA#0

data[32]

add[4]

/cs

i/o[100][/L

/rd /wr

LCA#3

v dataf32]

_N, add[4]

/cs

i/o[29]

/rd /wr

>=>

tf>

V!

i>

Figure 1: The architecture of the EDgAR platform.

The ULP provides a large quantity of resources, without significantly compromising
the speed of the systems being implemented. The ULP structure is based on two
types of PLDs: one appropriated to implement circuits containing logic at two levels
(MACHs - Macro Array CMOS High-density), while the other owning a structure
organised like a matrix, suitable to implement circuits containing multi-level logic
(FPGAs - Field Programmable Gate Arrays).

The present EDgAR platform version (figure 1) is implemented with a T425 trans-
puter (a T805 could also be used), 4 Mbytes of DRAM, 4 MACHs and 4 FPGAs.
The MACHs belong to the 2x0 AMD family, containing 44 pins, 64 macrocells and
32 I/O cells. The FPGAs are Xilinx LCAs that belong to the 3090A family: two

FPGAs have 84 pins and the others have 175 pins. All FPGAs have 320 macrocells
and 139 I/O cells.

All components are connected to common buses, using different addresses for the
transputer internal and external memories, and for each of the FPGAs and MACHs.
To emulate distinct digital systems on the platform, and to keep the possibility of
reconfiguration by software, each MACH is connected to the buses by 2 address
lines and 8 data lines, while each LCA uses 4 lines to connect to the address bus
and 32 lines to the data bus. The remaining I/O pins of the MACHs and LCAs are
available in connectors, allowing to emulate systems with different number of I/O
signals and different size of hardware components. To scale the processing power,
the transputer communication lines (links) are available outside the board. To scale
the hardware resources, the VME connector can be used to link the FPGAs on
EDgAR with other platforms that also have a VME bus.

3 Digital systems synthesis with EDgAR

The development process with the present platform runs through several phases,
from the specification to the implementation, going through the simulation and test
(figure 2). Next, it is explained how these phases are being incorporated on the
development environment that will support EDgAR.

3.1 Specification

On the codesign context, the selection of a high-level environment for system spec-
ification is being considered, which will be the basis of the specification model to
be followed. The hypothesis under consideration include an FSM-based representa-
tion, the OCCAM language, a representation using Petri Nets (PNs) or the VHDL
language. A high level formal representation is used to prove the specification cor-
rectness and to guarantee that this correctness is preserved in the next design phases.

The modelling of systems with FSMs has two disadvantages: (i) as a high-level
notation, FSMs are not so abstract as desired, and (ii) FSMs are not appropriate to
represent systems with high algorithmic complexity [4].

The OCCAM language presents the advantages of being simple, suitable for real-time
representation, having potential for parallelism, a well defined semantics (based on
CSP [5]) and the adequacy to represent components to be implemented on the
transputer [1]. OCCAM is not a good solution, because it is not a widely used
language (this is reflected in the reduced number of available synthesis tools) and
it has a strong binding to the transputer processors' family, which means that it is
not an implementation independent language.

High Level Specification

/ s
)

Simulation

Partitioning

S/W
Module

S/W
Module

Conversion to C *n

C files

Compilation

Executable
files

H/W
Module

H/W
Module

H/W allocation

Information for
partitions interface

Conversion

Connectors
configuration

PALASM
files

Netlist
files

Compilation XACT
tool

LCA
configuration

files

Evaluation

Figure 2: Methodology used for system development on the EDgAR platform.

PNs are a mathematical formalism used to model systems that include concurrent
activities and its graphical representation can be used to animate the modelled sys-
tems. The formalism associated with PNs allows the systems validation in relation
to a set of properties: determinism, deadlock freedom, conflict freedom, liveness and
boundedness [6].

VHDL is a standard hardware description language used to design digital systems,
allowing the model to be clearly specified, simulated and synthesised. The speci-
fications of the systems designed with VHDL can be hierarchically structured and
properly represented [7].

The joining between VHDL and PNs is considered to be an acceptable solution. This
was studied and applied with success in the specification of parallel controllers [8].
An identical evaluation is being carried out on the EDgAR platform, to implement
systems that are more complex than those already tested.

The specification model is influenced by the fact that the EDgAR platform imple-
ments systems asynchronously, since a completely synchronous specification model
is less suitable to represent the aspects related to implementations in hardware and
software, which are asynchronous by nature. Although an independent implemen-
tation specification is a goal, this is not commonly achieved.

3.2 Hardware/Software Partitioning

The hardware/software partitioning, considered to be the most complex phase on the
codesign context, is a hard task to be fully accomplished by an automatic process.
Usually the partitioning algorithm is fed with inputs (supplied by the designer) to
assist the process. The partitioning task comprises the phases of assignment and
scheduling, although some approaches use assignment only [9, 10].

The partitioning applied in EDgAR is behavioural, since it is done on the system
specification. The behavioural partitioning has several advantages over the struc-
tural partitioning, but the most relevant is the fact that the impact of changes on
the system's specification is smaller on the first one [11].

The approach used for partitioning belongs to the software-oriented solutions. This
means that the starting point is a complete software implementation, and after parts
of the system are moved to hardware based on time criteria.

The software and hardware partitions are intended to have different granularities:
task level on software partitions and block level on hardware partitions. Hardware
partitions are implemented with the ULP in EDgAR and the software partitions
with the UPDI. Among the hardware partitions, those implemented with MACHs
must be distinguished from those implemented with FPGAs.

The partitioning comprises the isolation of the parts with critical time constraints,
which will result on hardware partitions; the remaining parts may result on software
partitions. The definition and implementation of the communication strategies and
interface between partitions is an important aspect to be considered on the partition-
ing phase. On EDgAR, the interface between two software partitions is implemented
with memory positions and transputer channels. Virtual channels are used if the
partitions are on the same processor, while physical channels are used if the par-
titions are on different processors. The interface between two hardware partitions
uses registers and connectors, and the interface between a hardware and a software
partition is implemented with the resources used in the two previously mentioned

types of interface.

3.3 Synthesis of Components

The synthesis of components is divided in three main parts: the synthesis of software
partitions (left block of figure 2), the synthesis of hardware partitions (central block)
and the synthesis of the interface between partitions (right block). Each part can
be seen as an allocation of resources that results on a configuration.

The allocation of UPDI resources to software partitions is accomplished in two
phases. In the first, the high-level specification of these partitions is converted
into modules on an intermediate language (C). This task requires the existence
of a converter to C language, and the generated C modules are compiled to the
transputer machine code.

The allocation of ULP resources to hardware partitions results in allocating to these
partitions resources available in two types of PLDs: MACHs and FPGAs. The
decision about which type of PLD to allocate to each module is based on the need
of storage elements and the existence of critical time constraints. Partitions that
need a number of storage elements higher than a critical value are allocated to
FPGAs, while partitions that require a response faster than a critical value are
allocated to MACHs. If both conditions arise in the same partition and it can not
be partitioned again, several components are allocated to this partition.

To configure the MACH devices, the compilation and the later mapping of their
resources are completed with the agreement of the hardware allocation. The result
is a JEDEC file for each allocated device. The hardware allocated to the FPGAs
determines their configuration. The first step to obtain this configuration is to
create an intermediate format file (netlist) that will be used as input to the Xilinx
Automatic CAE Tools (XACT). These tools generate the binary configuration file
for each allocated FPGA, defining the device operation, but before they map, place,
and route the specification.

When the system is powered on, the transputers download the configuration files

to the FPGAs and establish their operation. Among the available ways to send the
configuration file to the FPGA, the peripheral mode was selected, which sends the
configuration on a byte basis. After the start-up, the FPGA can be reprogrammed
without a physical reset of the system.

3.4 Components Verification

XACT allows for two types of simulation, in order to verify the parts of the system
implemented with FPGAs: functional and timing simulations. The functional simu-
lation detects logical errors, while the time simulation tests the functionality under
different conditions, like a higher temperature, a lower power or a slower process.

The obtained prototype can be validated at a higher level of abstraction in a process
called co-simulation. The co-simulation is a time consuming task that demands a
huge computation power. For these reasons, it was intended to use a simulation
model adapted to parallel architectures [12]. This advantage results because the co-
simulation process runs on part of the same architecture that is used to implement
the simulated prototypes.

4 The emulation of a VLSI circuit with EDgAR

The emulation of the GLiTCH chip [13], an associative processor array designed for
a VLSI circuit to apply on image processing, was used as a case study, to validate
the physical structure of the EDgAR platform and to explore the capabilities of the
platform for codesign (figure 3).

The GLiTCH is structured on 5 blocks: an array of 64 1-bit processing elements
(PEs), each one with 68 bits of associative memory (CAM), a pattern router (PBL),
a video shift register (VSR) with 64x8 bits, and an instruction decoder [14].

The specification of this case study was not carried out at an high-level of abstrac-
tion: the modules to be implemented with the hardware components (MACHs and
FPGAs) were specified using VIEWlogic schematics, while those to be implemented
in software (transputer) were specified in C. To specify PLDs, using the ViewPLD
tool from VIEWlogic, the JEDEC format and, textual descriptions in ABEL or
VHDL could also be used.

Although manually done, the partitioning process used the performance of the sys-
tem as the main criterium for partition definition, but it also used the particular
characteristics of each block. Using a large granularity (block level), two candi-
dates emerged to be implemented in hardware: the CAM and the VSR. Since the
VSR operates in two directions (columns rotation and rows shift), one of these op-
erations would have a low performance if implemented in software. This leads to

implementing the VSR in hardware. As a first approach, the CAM did not result
on a hardware partition, due to its large dimensions (64x68 bits), but the software
implementation did not significantly degrade the overall performance of the system.
Further hardware partitions were not created as the PBL and the PEs are strongly
tied to the CAM. Since the CAM resulted on a software partition, these two blocks
are implemented in software too, reducing the communication cost between two
partitions.

GLiTCH Hardware Component Hardware/Software Interface

W—i/\i 1

32

(row)

VSR

(1/2 column)

(1/2 column)

LCA#0

i£

C

(row)

1 f HT
/wr /rd /csO I

Video In

i£

Control

Video Out
I L, i

Connector

Register

Register

'V K

Register

^

LCA#1

IX
TTi f r
 I /wr /rd /csl

X#

Data Bus

Transputer

Microcode to
be executed
on GLiTCH

X
Address Bus

Link GLiTCH Software Components

(PEs, CAM, PBL and Instruction decoder)

Figure 3: Hardware/software implementation of the GLiTCH on the EDgAR plat-
form.

The VSR is a bi-dimensional shift register organised as a matrix. The GLiTCH uses
an 8-bit video bus and includes 64 PEs, resulting on a VSR with 64x8 bits. The VSR
functionality is represented by the operations performed on the data it stores. These
operations are called SHIFT and SWAP, and correspond to row shift and column
rotation, respectively. The SHIFT operation is regulated by the frequency of an
external clock. This operation registers the 8 bits of the video input on VSR's row
63, it shifts all rows one position down, and row 0 is sent to the video output. The
SWAP operation handles 64-bit columns, but the present implementation of this
operation is done in two steps, because the data bus that connects the LCAs with
the transputer is 32-bit wide. The SWAP operation reads column 0 to the data bus

(parallel read), it registers the content of data bus on column 7, and it simultaneously
rotates all the columns one position to the right (parallel write/column rotate). The
SWAP operation is used to implement some GLiTCH instructions: rotateJmage,
extract .image and all others that use IMAGE as a parameter.

The hardware components of the GLiTCH emulator (VSR) was implemented in
a 175-pin LCA. Two issues made the VSR implementation difficult: (i) the large
percentage of the available storage elements allocated to the VSR (8*64=512), and
(ii) the constraints imposed by the fixed position, on the PCB, of some signals (data,
address and control). These two aspects result in problems: incomplete automatic
routing of the LCA, long accumulated delays and fan-out problems. Some of these
problems should be reduced, or even eliminated, if the VSR is implemented with 2
LCAs. However, this option would increase the cost associated with communication
between the two VSR halves, and the chosen approach has the advantage of testing
the utilisation of the LCAs on the limits (more than 80% of logic used).

To implement the software components of the GLiTCH emulator (PEs, CAM, PBL
and instructions decoder blocks), the starting point was their functionality. The
functionality of these blocks was described in ANSI C, but the emulator has some
minor aspects especially developed for transputers [15]. The software components,
running on a single transputer, fully implement the GLiTCH microinstructions, ex-
cept those microinstructions using the VSR. If better performance is required, the
parallel architecture connected to the platform should be used. Each microinstruc-
tion has one sub-operation executed by the PBL and one sub-operation executed by
the PEs. The PBL sub-operation is executed before the PEs sub-operation (except
in microinstructions that write to the CAM).

The interface between the hardware and the software components was implemented
with 3 types of EDgAR resources: an 175-pin LCA, the data/address buses and the
connectors. The FPGA is used to implement the VSR SHIFT operation, which is not
synchronised by the same clock as the other GLiTCH components. The connectors
establish the communication between the FPGA used in interface and the FPGA
that implements the hardware partition.

The input to the GLiTCH emulator is the microcode of the several microinstructions
to execute. For better interface with user, an assembler was developed.

5 Conclusions and future work

The GLiTCH emulation led to the conclusion that the performance of the imple-
mented systems strongly depends on the ULP resources allocated. The performance
also depends on the hardware/software partitioning procedure. It is not expected
that the level of abstraction used to specify the systems will significantly influence
the final performance. The case study also demonstrates that EDgAR implements

10

complex systems without scaling the platform, using connections to other platforms
or computing nodes. The platform architecture was simplified because the trans-
puter requires a simple interface and it supports the debugging of the architecture
where it is included.

With the emulation of the GLiTCH processor using hardware and software com-
ponents, significant improvements were obtained on the execution time of the in-
structions that use the VSR. Since the design time was not increased in the same
proportion, it is demonstrated that the platform can be used successfully for hard-
ware/software codesign.

The case study results in a hardware implementation without using any MACH,
because the MACHs are devoted to implement fast combinational logic blocks, which
are not present in the VSR. The validation of the MACHs was verified through other
smaller sized systems.

When identical modules were implemented with both types of FPLDs, the delays
achieved with FPGAs were bigger than the delays obtained with MACHs. This
guarantees that, when both types of FPLDs are included on the platform, better
performance is possible, since each device type is adequate to implement distinct
parts of the system. This idea is represented by the two criteria used on the hardware
partitions generation.

After the promising results obtained with EDgAR, the future work will be directed
towards the integration on a more ambitious platform, which will include copies of an
updated version of EDgAR, a microprogrammable unit based on a 16-bit sequencer
and the MIMD transputer-based architecture. The VHDL language will be used
as the unified specification notation, to improve the communication between the
different phases of the codesign process: hardware/software partitioning, parallel
co-simulation and synthesis.

While several tools for automatic synthesis are available, there is much work to be
done for automatic partitioning and co-simulation. Future work includes: (i) the
definition of a more complete partitioning strategy that automatically generates rep-
resentations of the modules being implemented in FPLDs, the microprogrammable
unit or the different transputer of the parallel architecture, and (ii) the development
of a co-simulator that runs on the parallel architecture, whose main goal is to speed
up the simulation, a generally time-consuming process.

References

[1] Mike Spivey and Ian Page. How to Design Hardware with Handel, Oxford University
Computing Laboratory, December 1993.

[2] Rajesh K. Gupta and Giovanni De Micheli. System-level Synthesis using Re-
programmable Components. In Proceedings of the European Conference on Design

11

Automation, pages 2-7, Brussels, Belgium, February 1992.

[3] Antonio Joaquim Esteves. Rapid Prototyping of Digital Systems. Technical report,
Dep. Informätica, Universidade do Minho, Braga, Portugal, July 1994.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. A Formal Specification Model for Hardware/Software Codesign. Technical
report ERL-93-48, University of California - Berkeley, June 1993.

[5] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,

1985.

[6] Manuel Silva and Robert Valette. Petri Nets and Flexible Manufacturing. In
G. Rozenberg, editor, Advances in Petri Nets 89, volume 424 of Lecture Notes in
Computer Science, pages 376-417. Springer-Verlag, Berlin, Germany, 1990.

[7] Douglas L. Perry. VHDL. McGraw-Hill, 1991.

[8] Joäo Miguel Fernandes. Petri Nets and VHDL on the Specification of Parallel Con-
trollers. Master's thesis, Dep. Informätica, Universidade do Minho, Braga, Portugal,
July 1994.

[9] Rolf Ernst, Jörg Henkel, and Thomas Benner. Hardware-Software Cosynthesis for
Microcontrollers. IEEE Design & Test of Computers, December 1993.

[10] Asawaree Kalavade and Edward Lee. A Global Criticality/Local Phase Driven Algo-
rithm for the Hardware/Software Partitioning Problem. In Proceedings of the 3rd
International Workshop on Hardware/Software Codesign, pages 42-48, Grenoble,
France. IEEE Computer Society Press, September 1994.

[11] Frank Vahid. A Survey of Behavioral-Level Partitioning Systems. Technical report
91-71, Dept. of Information and Computer Science, University of California, Irvine,
October 1991.

[12] W. Billowitch. Simulation Models for Support Hardware/Software Integration. Com-
puter Design, 1988.

[13] Henrique D. Santos, Jose C. Ramalho, Joäo M. Fernandes, and Alberto J. Proenca.
A heterogeneous computer vision architecture: implementation issues. Computing
System in Enginneering, 6(4/5):401-8, 1995.

[14] A. W. G. Duller, R. H. Storer, A. R. Thomson, E. L. Dagless, M. R. Pout, and A. P.
Marriot. Design of an Associative Processor Array. IEE Proceedings, 136, 1989.

[15] Antonio Esteves. Emulation of an Associative Processor Array with EDgaR Platform.
Technical report UMDITR9602, Dep. Informätica, Universidade do Minho, Braga,
Portugal, May 1996.

12

HIERARCHICAL MULTI-VIEWS MODELING
CONCEPTS FOR DISCRETE EVENT SYSTEMS

SIMULATION*

AIELLO Antoine, SANTUCCI Jean-Francois, BISGAMBIGLIA
Paul, DELHOM Marielle

SDEM - URA CNRS 2053 University of Corsica
Quartier Grossetti B.P. 52

20250 CORTI (france)
e-mail: {aiello,santucci,bisgambi,delhomJ@ univ-corse.fr

In this article, we describe a Hierarchical Multi-Views Modeling Concepts for
Discrete Event Systems Simulation. We give the basic concepts needed for the definition
of the formal model allowing discrete events simulation of complex systems[l].

Keywords :
Object Oriented Modeling; Discrete Event Simulation; abstraction, time,

description hierarchies.

Introduction :
This paper deals with basic concepts for modeling and simulation of complex

systems. Four main features are needed to reach this goal:
• definition of different levels of abstraction - allowing to take into account the
complexity of a system in a gradual way,
• definition of different levels of temporal granularity [2] - allowing to take into
account only the pertinente informations at a given temporal level,
• definition of different views of a system - allowing to consider a system
according to a structural or a behavioral view,
• definition of a generic simulation approach allowing to :

• process the simulation of systems whatever the consideral view, level of
abstraction or level of granularity,
• simule different kinds of systems.

In order to define such an environment, we propose an original approach based on
the simulation concepts introduced by B.P. ZEIGLER [3,4,5,6,7,8,9] and the modeling
aspects developed in [10,11]. This approach has been used in order to study the behavior
of complex systems such as a cachment basin [12]. We are currently applying the
concepts introduced in this article for the design of embedded systems involving
hardware and software components.

In the first section, basic modeling concepts are presented. The second section is
devoted to the description of the hierarchical multi-views modeling scheme. In the last
part, we briefly present an object oriented simulation architecture.

* this work is supported by the EEC : HCM BELSIGN Network Contract n° CHRX-CT 94-0459

1-Basic Modeling notions :
The modeling relation (see Fig. 1) allows to give simplified representation of

system ; the model is thus an image of the system. The model allows to study and
anticipate the reactions of the system.

Modelisation Relation

Fig. 1 : Modelisation relation

Four main concepts are used in our approach :
• multi-view notion - a system is represented by a set of distinct views
corresponding to its differents aspects,
• abstraction hierarchy - a system can be described using different levels of details
called abstraction levels,
• time hierarchy - a system can be considered under several temporal detail levels
called "granularity levels",
• description hierarchy - a system can be described by a set of sub-systems at
different description levels but at the same abstraction.

In order to take into account the different aspects of a model (structural, behavioral,
time...), we propose two representations :

• the global representation : composed by all the desciptions of the model (the
different views and the different levels of hierarchy). This hierarchical approach is
made by different levels :

- the abstraction levels
- the time levels
- the description levels

• the modeling space : is another expressive representation which consists in
pointing out three dimentions :

- the views
- the abstraction levels
- the time levels

All the points of this space represent the model for :
- a given view
- a given abstraction level
- a given time level

2-Modeling :
This section deals with our modeling approach. Sub-section 2.1 give the informal

modeling scheme. Sub-section 2.2 give the formal definition of the basic features of our
approach.

2.1-Informal Model :
We present how the system is represented in the three-dimension space

(abstraction levels, time levels, views)[12]. We'll describe a set of functions which
allows the translation between the different representations of the model.

2.1.1-The Structural View :
The Structural View is composed by different abstraction levels which can be

described under different time levels. A Structural View represents a potential structure
of the system. It's an interconnexion of nodes. The nodes receive and send information
by means of its input and output ports.

2.1.2-The Behavioral View :
The Behavioral view doesn't represent a structure of the system but only its

behavior. We have different levels of description. The behavior is expressed by means
of a graph structure. In order to represent the behavior of one component, we use the
"desc" function which provides the set of components which will allows to describe the
behavior (description hierarchy). It is important to point out that a Structural View and a
Behavioral View expressed by graph structure involve different concepts. The
specification of the interconnexion of basic components represents the definition of a
Coupled Model and the specification of a basic component represents the definition of
an Atomic Model. A Coupled Model can be used like a basic component in a larger
coupled model. Atomic and Coupled models have been defined in [6]. We present in the
following a brief description of these models :

• A Coupled Model contains the following information :
- the inputs
- the outputs
- the names of the model components
- the external input coupling
- the external output coupling
- the internal coupling
- the priority list

. An Atomic Model provides a local description of a system's dynamic :

M = < X, S, Y, 8int, öext, 1, ta >
X : set of external input events
S : set of sequential states
Y : set of external output events
8int : internal transition function

5ext ; external transition function
1 : output function
ta : time advance function

2.1.3-Translation functions :
A set of functions have been defined in order to allow the translation of

information between different levels and views :
• the trans function allows to transmit informations between two
abstraction levels.
• the comp function can be used for two kinds of operations :

- to decompose a model at a given abstraction level into a set of sub-
models at another abstraction level.

• the conv function allows the transfer of information between the time
levels.
• the desc function provides the set of components which compose a given
model.

2.2-Formal Modeling Scheme :
We give in this sub-section a formal expression of the basic features of our

modeling scheme. Let us call MG the general model of a given system. MQ is composed
by the set of models M describing the system according to behavioral and structural views
(Mc and Ms).
Chv and Synth are two classes of functions allowing the translation of information
between different views.
MG = { M, NivA, NivG, Chv, Synth }

M = McuMs

with Mc = behavioral model

and Ms = structural model

NivA = Set of abstraction level

MvG = Set of granularity level

Chv = map (NivA ,NivG,Ns)^(NivA, NivG, NivD, Nc)

{nivl
a,niv™,nlJ h-> (niv^niv^niv^n'j

Synth = map (MvA,NivG,NivD,P(NC)) -> (MvA,MvG,P(NS))

(niVa,niVg ,nivq
d,
qeYm) ^ (nWa,niv™,eTm)

with el eP(Nc)

and el eP(Ns)

P(NC) : set of the parts of A^c

P(NS) : set of the parts ofNs

2.2.1-Formal Structural Model :
We give in this part a formal expression of the structural modeling scheme.

Ms={ Ns,Cs,Ps,Ts
P,V,(p,x,y,Transp,CompN,Convp }

Ns = Set of the nodes of the structural model

Cs = Set of the node connexions of the structural model

Ps = Set of the ports of the structural model (Ps = PS
E u Ps

s)

Ts
p = Set of the port types of the structural model

y/ = map Ps —> Ns

<p = map Ns -» P(PS)

/ih> p

Z = mapCs^(P/,P(P/))

CH->(p1,p2)

7 = map Ps -> r/

with pePs = Ps
Ev Ps

s

t e{in,out}

if y{t) = in then peP, £
S

7Va>«P = map (NivA,NivG,P(Ps)) -»(NivA,NivG,P(Ps))

(niVa, niVg , p\„) H> (mv^,mv™, p£)

Com/fy = map (NivA,NivG,Ns) -> (NivA,NivG,P(Ns))

{niVa, niv™, nl
m) h-> (mv^, TMV™,^)

with ^ e P(yvs)

ConvP = map (NivA,NivG,P(Ps)) -» (NivA,NivG,P(Ps))

{niVa,niv™ , pj„) i-> (niv'a,mv£,pj,)

2.2.2-Formal Behavioral Model :
In this part we give a formal description of the behavioral modeling scheme. This

description involves the definition of two sets of attributes : AMC and AMA (respectively
the set of attributes of a Coupled Model and AMA the set of attributes of an Atomic
Model).
Mc={ NC,PC,AMC,AMA,NivD,TransP,ConvP,DescMC,DescMA }

Nc = Set of the nodes of the behavioral model

Pc = Set of the ports of the structural model

AMC = {1,0, C, COE, CIE, CI, LP }

/ = Set of the input ports of the coupled models and / c P{PC)

0= Set of the output ports of the coupled models and Oc P(PC)

C = Set of the componants of the coupled models and C a P(NC)

COE = Set of the externe output couplings of the coupled models

CIE = Set of the external input couplings of the coupled models

CI = Set of the internal couplings of the coupled models

LP = Set of the priority lists of the coupled models

AMA = {X,Y, S, Aext, A int, A, TA }

X = Set of the input ports of the atomic models

Y = Set of the output ports of the atomic models

S = Set of the states of the atomic models

Aext = Set of the external transition functions of the atomic models

A int = Set of the internal transition functions of the atomic models

A = Set of the output functions of the atomic models

TA = Set of the time - advanced functions of the atomic models

NivD = Set of the description levels of the behavioral model

Transp = map (NivA,NivG,NivD,P(Pc)) -> (NivA,NivG,NivD,P(Pc))

(niv^niv^niv^p'j h-> (nivJ
a,niv™,nivqqpJJ

Convp = map (NivA,NivG,NivD,P(Pc)) -> (NivA,NivG,NivD,P(Pc))

(niVa,niv™,nivq
d,
qlJm) H» (mv>/v>n&W

DescMC=map (NivA, NivG, NivD, MC) -» (NivA, NivG, NivD, AMC)

(niv'a, niv™,nivq
d
qmc'm) h-»

(niVa,
nlVg 5nlvd'mclm'mc°m>mcCm'mcCOem,>mcClenV>mcClm'>mcVm'

DescMA = map (NivA,NivG,NivD,MA) -» (NivA,NivG,NivD,AMA)

(niv'a,niVg,nivq
d
qma'm) h^

(tiiv' mvm nivq V V V q8ext' q8'm\i qÄ' qtd) \ru va, ruvg , ruvd,maA.m,maym,ma &m,ma ucA.im,ma u mim,ma '^m,ma t"m j

3-Current and Future Work :
Our current work concerns the different aspects of the simulation and the

implementation. Indeed, the simulation is divided in two parts :
• the structural part
• the behavioral part

We present the implementation of the simulation, and how the Object Oriented
Programing's concepts [14,15]are used in order to obtain an evolutive, modulare and
hierarchical simulator. The architecture of the behavioral part of our environment is
represented in Fig. 2 :

Root
Coordinators

MODELING SIMULATION

Fig. 2 : Architecture of the behavioral part

We are currently developing the specifications of the general environment, with
emphasis on the structural part of the simulation and the integration of the already
implemented part. This environment will be used for the design and the validation of an
embedded system in the framework of an international project [16]. This system will be a
test bed for conducting trade-off studies between technologies, fault tolerence and testing
in space. The designed system should be able to provide data which characterize patterns
of test defects occurring in space.

References :
[1] Y.C. Ho, "Dynamics of discrete event systems", Proceeding of the IEEE, Special
issue on dynamics of discrete event systems, Vol.77, N°l, 1989, pp. 3-6.
[2] J. Euzenat, "Granularite dans les representations spatio-temporelles", INRIA, rapport
de recherche n°2242, Avril 94.
[3] B.P. Zeigler, Theory of Modelling and Simulation, Wiley, New-York, 1976.
[4] B.P. Zeigler, Multifacetted Modelling and Discrete Event Simulation, Academic
Press, 1984.
[5] B.P. Zeigler, "DEVS Representation of Dynamical Systems : Event-Based Intelligent
Control", Proceeding of the IEEE, Special issue on dynamics of discrete event systems,
Vol.77, N°l, 1989, pp. 72-80.
[6] B.P. Zeigler, Object-Oriented Simulation with Hierarchical, Modular Models,
Intelligent Agents and Endomorphic Systems. Academic Press, 1990.
[7] T I Ören and B.P. Zeigler "Concepts for Advanced Simulation Methodologies",
Simulation J., Vol. 32, N°3, 1979, pp. 69-82.

[8] T.G. Kim and B.P. Zeigler, "The DEVS - Scheme Simulation and Modelling
Environnement ", Knowledge Based Simulation : Methodologies and Applications,
Springer Verlag, New York, 1990, pp. 20-35.
[9] T.G Kim and S.B. Park, "The DEVS formalism : Hierarchical Modular Systems
Specification in C++", Proceeding of the 1992 European Simulation Multiconference
organized by the SCS, Modelling and Simulation, York, United Kingdom, 1992, pp.
152-156.
[10] C. Oussalah, "Modeles hierarchises/multi-vues pour le support de raisonnement
dans les domaines techniques", Doc. Universite Aix-Marseille III, 1988.
[11] W. Delaney and E. Vaccari, Dynamic Model and Discrete Event Simulation, Marcel
Dekker, NY, 1989.
[12] M. Delhom, P. Bisgambiglia, J.F. Santucci, A. Aiello, "Modeling and Simulation
of Discrete Event Systems : the study of the hydrologic behavior of a catchement
basin",2nd IEEE International Conference on Systems, Man and Cybernetics, October
95, Vancouver, p.4190-4195. 22-25 October 95.
[13] A. Aiello, J.F. Santucci, P. Bisgambiglia, M. Delhom, "A hierarchical Multi-Views
Modeling and Simulation Environment for Discrets Event Systems", 3rc* BELSIGN
Workshop Preceding, 11-12 April 96, Purticciu, Corsica, France.
[14] B. Stroustrup, "Le langage C++", InterEditions, 1989.
[15] B. Meyer, Object Oriented Software Construction, Prentice Hall, 1988.
[16] A.Rucinski, S.K. Tewksbury, B Dziurla-Rucinska, R. Harisson, P. Bisgambiglia,
J. F. Santucci, IEEE 2nd Workshop on "Hierarchical Test Generation", Sept 95, p 40-
41.

Technical Session 2

Design and Test II

Chair: P. Sanchez, University of Cantabria, Spain

A Formal System for Correct Hardware Design,
M. Allemand, S. Coupet-Grimal, J-L. Paillet, LIM, Univ. of Provence, France
Integration of behavioral testability metrics in high level synthesis,
K.01coz, J.F. Tirado, University Complutense, Madrid, Spain
J.F. Santucci, University of Corte, France
Evaluation of an Integrated High-Level Synthesis Method,
P. Arato, I. Jankovits, Z. Sugar, Sz. Szigeti, Technical University, Budapest, Hungary
Combinatorial Criteria Over Graphs of Specification to Decide Synthesis by Sequential
Circuits,
Y.P. Tison, P. Simonnet, CMCS, University of Corte, France

A FORMAL SYSTEM FOR CORRECT HARDWARE DESIGN

Michel Allemand, Solange Coupet-Grimal and Jean-Luc Paillet

Laboratoire d'Informatique de Marseille - URA CNRS 1787
39, rue F. Joliot-Curie 13453 Marseille France
e-mail:{amichel,solange, jluc}@gyptis.univ-mrs.fr

Abstract

We present a formal system interpreted in a functional algebra. Well-formed expres-
sions depict circuit architectures and their interpretations correspond to the associated
behaviours. We also describe our approach for interfacing it with proof assistants (Coq
and LP) in view of formal verification and synthesis. Then, we briefly comment our expe-
riences in the field of formal proof.

Keywords : Formal verification, formal system, theorem provers

Introduction

VLSI chips reliability is a critical question within the more general framework of the production
of automated systems. Moreover, the manufacturing process cost makes it essential to detect
design errors before the physical realization. Correctness verification is usually done by simula-
tion. However exhaustive simulations required for zero defect design are untractable in case of
large devices. Thus, the present trends are to use formal methods for mathematical validation
of circuits.

Formal verification of digital circuits requires to abstract devices into mathematical objects,
to carry out algebraic transformations on them, and finally to prove properties. The work
presented in this paper is part of a more general study concerning a CAD verification oriented
system for synchronous circuits (FORMATH: Fc-Rmal Modelling And THeorem provers), which
satisfies these requirements.

Roughly speaking, it is composed of three parts:
• a formal system, called the P-calculus, which is the core of FORMATH.

• theorem provers, presently Coq and the Larch Prover (LP), and the interface between the
formal system and the provers.

• user interfaces, for inputting specifications and descriptions of circuits: either by directly
entering P-calculus expressions, or by translating current HDL (such as VHDL) descriptions
into P-calculus.

Our purpose in this article is to develop the two first points above. The P-calculus is not a
simple stream based functional HDL, but it is an actual formal system which allows algebraic
transformations. Stream based functional modelling of hardware has been widely used and
many functional HDL haven been already defined such as LCF-LSM [12], LUSTRE[14], muFP [22],
HML [18] • ■ • (see also [15, 17] • ■ •). These languages allow to describe and to simulate circuits,
and sometimes to synthesize FSM, but they do not permit to directly process automated formal
transformations.

In [19] a functional algebra was introduced which was named P-Calculus for the first time
by Bronstein in [6]. We modify this initial algebra and enrich it with new operators. In addition
we couple it with a formal system involving a typed formal language and a rewriting system
which has been proven to be complete [2, 3]. The resulting new P-Calculus thus establishes a
clear distinction between structures (described in a modular and hierarchical way by expressions
of the formal system) and behaviours (functions of the algebra), both being linked by means

1

of an interpretation function. Moreover, the rewrite rules correspond to semantics preserving
transformations that are mechanically performed independently of the theorem prover to be
used. Among other advantages, these preliminary transformations permit to detect early some
kinds of errors and to simplify the proof process to come. Moreover, due to the readibility of
the syntax, expressing specifications, transformations and refinements is straightforward.

The complexity of the mathematical demonstrations and of circuits makes it crucial to
have proof processes validated by proof-assistants. Several demonstration tools are already
well known and used in the community of the formal hardware verification. We can cite, for
example: Nqthm [5], HOL [13], Nuprl [7], ... At present, we experiment with two provers LP
[10] and Coq [9], which have very different features and thus are complementary in resolving
the problems raised by such or such devices. An interface is devoted to the translation of
the P-calculus expressions into the provers syntax. This interface also allows to carry out
proof pre-processing independently of the provers. After doing some transformations such as
normalizations, after detecting errors and possibly reducing the complexity of the problem to
be resolved, the interface provides uniform expressions that are translated in a precise prover
syntax.

The first section presents the main features of the P-calculus : the formal system with its
language, its interpretation in the functional algebra, and a decomposition result obtained by
rewrite-rules. Then we give in a second part a brief description of Coq and LP as well as the
essential aspects of the interface between the P-calculus and these provers. This section ends
by a short discussion about the experience we got from various examples that we have handled.
More details about the proofs can be found in [2, 1, 8].

1 The P—calculus

1.1 The functional algebra

Let us start by giving some basic definitions. We first introduce the notion of temporal se-
quences that models signals and of sequential functions that are functions on these sequences.
We shall deal only with sequential circuits synchronized by one clock whose cycles are formally
represented by the naturals. Thus a signal lina circuit will be a sequence (x(t))t£iN, so called
a temporal sequence, whose set of values is a basic type (such as, in practice, booleans, natu-
rals ■ • •). The sequence x = (x(t))t£Pf represents the history of the wire x. In the following,
the word sequence will mean temporal sequence and ST will denote the set of all the temporal
sequences of type T.

The behaviour of a circuit can be modelled by a function, called a sequential function, which
associates a sequence vector (the output vector) with a sequence vector (the input vector).

i, j, x, y are boolean sequences. The be-
haviour of this half-adder is a sequential func-
tion:

hjidd : SIB x SIB —> SJB X SJB

(i,j) H-> h.add(i, j) = {x, y)

x y
The basic combinational components (without temporal dependency) are concrete realiza-

tions of arithmetical and boolean functions. From these functions, defined on the basic types,

sequential functions can be defined on the sequences. For example, and induces the sequential
function and : SB X SJB —> SJB defined by

and(i,j) = (and(i(t)J(t)))telN

Thus, the function h.add, which models the behaviour of a half-adder can be expressed iii
different ways. Starting from the expression of h.add on the input (i,j) at time t:

luadd{i,j)(t) = {xor(i(t),j{t)),and{i{t),j{t)))

its abstraction is: h_add(i,j) = (xor(i,j), and(i,j)) that we write, in a more concise way
hjadd = [xor, and] — [xor, and]

A sequential function F, which is obtained in such a way from a function / (one writes F = /)
is called a projective function. Note that not all the sequential functions are projective. More
precisely the following result is proved in [2],

Proposition 1.1 A sequential function F is projective if and only if, for all sequence vectors
X and Y

Vt,t' £JV X{t)=Y{t')=*F(X){t) = F{Y)(t')

I
A B

o

D

D = BoA

02 01

Figure 1: Composition and construction

D = [B, A]

The composition of sequential functions expresses the connection in series of two modules
(fig. 1 on the left) and the construction represents the composition in parallel of two modules
with the same inputs (fig. 1 on the right). Finally, the selection operators Se/,- (i G N") denote
the ith projections.

Example:
B A Ri The behaviour of the adder on the left can be expressed by the

equation:

ADD(Ri, A, B) = {Seh{h.add{RitSell{hMdd{A, B))),
ör{Sel2{h-add(Ri, Seh{h.add(A, B)))),

Seli(h.add{A, B)))

or, in a pure functional way without variables (close to that in
W):

ADD = [Sell o h.addo[Selu Selx o h.addo[Selu Sel3]],
oro[Sel2 o h.addo[Selu Seh o h.add o [Selx, 5e/3]],

Seh, Seh o h„addo[Seh, Sel3]]]

Figure 2: An adder

It is easy to prove that the class of the projective sequential functions is stable for the
composition and the construction, and that it contains all selectors.

3

When extending our purpose to the sequential circuits, it becomes necessary to take into
account temporal constraints, and to include a new operator: the past operatorV. This operator
is denned on every sequence x by:

VieJV V(x)(t + 1) = x{t).

and in fact, it models a register:

REG
-r-

Px

The definition of V is extended to sequence vectors by:

T{xir--,xn) = {V{x1),---,V{xn))

Note that V{x) has an undefined value for t = 0. This corresponds to the fact that the
initial value of a register is not part of the circuit architecture.

The past operator V is obviously not projective. A useful property of the past operator V
is that it commutes with any projective sequential function. That formally expresses classical

retiming.

Example:

The output O is defined by

O = V(rrmx(c,
Xl_,
V(mux(c,

5 X2,
V{müz(c,X3,SI))))))

where mux(x,y, z) = if x then y else z

Figure 3: A serial shift register with parallel inputs

1.2 The formal system
We define a typed language in which the well-formed formulae will describe circuit architecture.
Then each expression is interpreted by a function that represents the semantics (the behaviour)
of the circuit.

We first introduce the simple P-calculus, in which circuits without loop will be described.
Then we enrich it with a recursion operator for handling general devices.

1.2.1 Simple P-calcuhis

Syntax

The set of object types is defined as the least set which contains types of sequences on basic
types and which is closed for the cartesian product.
In addition, from any two object types T\ and T2 and by means of the constructor "-»", new

types T\ —> T-2 can be defined. They are called functional types.

Vocabulary

• With each functional type T we associate:

— a set VT of functional variables of type T (which will be interpreted as projective
sequential functions)

— a set CT of functional constants of type T (interpreted as sequential function corre-
sponding to constant functions)

• with each object type T0 is associated a family (P")n>o of type T0 —> T0 (Pn will represent
the nth power of V)

• for all m > 1, for all object types Ti, • ■ •, Tm and for all i £ {1, • • •, m} an element Si of
type T\ x ■ • • x Tm —>• Ti is given (in the interpretation it will be the i' projection).

The vocabulary consists of all the elements defined above and of four additional symbols 0
(later interpreted as the functional composition), "," (coma), "[" and "]" (which will be used
for representing the construction operator).

Expressions
The expressions of the simple P-calculus (P-expressions) are defined as follows.
Let T,T',T" be three object types:

• for all c £ CT^T' < £ is an P-expression of type T —> T'

• for all m > 1, for all object types T\, ■ ■ ■, Tm and for all i £ {1, • ■ •, m}, Si is a P-expression
of type TiX---x,Tm->Ti

• if e is a P-expression of type T -> T", if Pn is of type V ->■ T and if / £ VT>-*T" then
Pn © e is a P-expression of type T -+T' and / 0 e is a P-expression of type T —>■ T"

• If ei and e-i are P-expressions of type T —> T' and T' —> T"' respectively, then e2 0 ei is
a P-expression of type T —> T"

• Let 7\, ■ • ■, Tn be object types, if ei, • ■ ■, e„ are P-expressions of type T —>■ Ti, • • ■, T —> T„
respectively, then [ei, • ■ ■, cn] is a P-expression of type T —¥ Ty x • • ■ x Tn

Nothing else is a P-expression.

Example:
Let us consider the shift register with parallel loading described in figure 3. Let us take
(XI, X2, X3, SI, c) as input vector and let MUX be a functional variable of type SJB X SIB X

<SJB —> SIB- The structure of the circuit is modelled by the following P-expression:

eshift_reg = Pl&MUXQ [S5,
SI,

PlQMUX0[Sz,
So,
PlQMUXQ[S6,

Sz,
SA]]]

Interpretation

The interpretation of the P-expressions depends on an arbitrary interpretation of the func-
tional variables and of the functional constants. Let / be an application which:

• with each functional variable / £ VT-^T' associates a projective sequential function

• with each functional constant c £ CT-+T' associates the sequential function corresponding
to a constant function 1(c) : T —¥ T'.

This application / extends to all the P-expressions in the following way.

Let e, ei, ■ ■ ■, en be P-expressions, let / be a functional variable:

. I(Si) = Seli,

• I{PnQe) =-pnoI(e),

. /(/Oe) = /(/)°/(e),

. /([ei---e„]) = [/(ei),---, I(en)]

• I(ei 0e2) = I{ei) o I(e2)

It is easily verified that the types of the expressions insure the consistency of the compositions
and the constructions.

Example:
On the device in figure 3, the output O is described by the equation:

O = V(m^(c,Xl,V{niüx(c,X2,V(rhlIx{c,X3,SI))))))

= I(eshift.reg){Xl,X2,X3,SI,c)

In fact, the interpretation I defines the semantics of the P-expressions and thus the func-
tional behaviour of the circuits. Therefore two expressions can be said to be equivalent when
the associated circuits have the same behaviour, that is when the expressions have the same
interpretation.

Characterizing temporal and combinational parts

Let us present this notion on the example of the shift register in figure 3. As V commutes
with any projective sequential function we transform the equation defining the output O in the
following way:

O = V(müx[c,Xl,V{rmnB(c,X2,müx{V{c),V{X3),V{SI))))))

= V{rm^{c,Xl,müx{V{c),P{X2),rnüx(V2{c),V2{XS),V2(SI)))))

= rnmF(V(c),V(Xl),mix{V2{c),V2(X2),7mix(V3(c),V3{X3)1V
3{SI))))

The last expression corresponds to the normal form of the expression of 0.

Let us set:

P(Xl) = VI ; P2{X2) = V2 ; P3(X3) = V3 ; P3{SI) = V4 (1)

P(c) = V5 ; P2(c) = V6 ; P3{c) = VI

6

The equation becomes:

O = müä?(^5, Vl,rnüx(V6, V2,rnüx{V7, VA, VA)))

This last expression of 0 represents the combinational part of the circuit. On the other hand,
all the temporal features are expressed by the equalities 1.

Such a decomposition can be viewed as the construction of the equivalent circuit in figure 4.

Figure 4: Shift register - Temporal and combinational parts

Formally, this decomposition method corresponds to a rewrite system on the P-expressions
the completeness of which has been proven in [2]. This rewrite system automatically generates
the normal form of an expression. This is of interest, among other things, for syntactically
characterizing certain classes of circuits and for simplifying proof processes.

This transformation must not be confused with the classical decomposition method illus-
trated by the figure 5.

X3 X2
1

XI

SI
L M

U
X

1

L M
U
X

1

L M
U
X

1

— p - L L

Figure 5: Shift register - Classical decomposition

1.2.2 Recursive P-calculus

In order to take into account structural loops, a recursion operator must be added to the
P-calculus. Indeed, behaviours of circuits with loops cannot be defined algebraically. They are
sequential functions obtained as the least fixed point, if any, of an equation. Our approach,
close to [16] is explained in details in [2].

A. A

D

Figure 6:

In such a way, we can model a module all outputs of which are connected to inputs (see fig-

ure 6).
It can be shown that all other forms of recursions in circuit structures boil down to this

particular case. Thus we only consider circuits D depicted in figure 6. Let n and m be the
sizesnb of the vectors / and J. The informal idea is to describe the behaviour of the circuit D
by a sequential function, still called D such that:

D(I)=A(I,D(I))

These considerations justify the following definition.

Definition. Let A : Sn+m -> Sm be a sequential function. We define the sequential function
REC(A) : Sn -> Sm as the least solution (the less defined solution), if any, of the equation:

R.EC{A) = Ao[l\Sn, REC{A)}

We have proved that in case of well synchronized circuits in which every loop contains at
least one register, and for each set of registers initial values, the equation has one and only one
solution.

Thus, we are led to introduce an additional symbol R, in the simple P-calculus, which will
be interpreted by the recursive operator REC.

Expressions of the recursive P-calculus
The expressions of the recursive P-calculus are defined as follows.

• Every expression of the simple P-calculus is an expression of the recursive P-calculus and
its type is unchanged.

• Let e be an expression of the simple P-calculus of type Ti x T-> -» T-j. Then R(e) is an
expression of the recursive P-calculus of type T\ —)• To

Finally, it remains to extend the definition of the interpretation / to these new expressions.

Interpretation
Let e, ei, • • ■, en be expressions of recursive P-calculus, let / be a functional variable then:

. I(Si) = Seli,

. I{PnQe) =VnoI(e),

. I(f Q e) = 1(f) o 1(e),

• /([ei---en]) = [/(ci),---, /(en)]

• I(ei 0e2) = I(ei) o I(e2)

Let e be an expression of the simple P-calculus.

. I(R(e)) = REC(I(e))

CarOnNS (S2) CarOnEW (S11

^HMUXI orange orange

~i_i go] go] i_C~
»!w« [MUX}-—' T-»JMUX| "»[««

EQl I f— L—t 1
UX

REG LEW REG LNS

LEW (S4) LNS (S3)

Figure 7: Road intersection with a traffic light and its implementation

Example:
Let us consider the traffic light controller (figure 7) proposed in [23]. The device detects by

means of sensors (CarOnNS,CarOnEW) the presence of cars waiting on a North-South road
(NS) and on an East-West road (EW). According to the french protocol and depending on the
color of the lights, it makes the expected changes.

This circuit is described by the following P-expression where the inputs are two boolean
signals (representing the sensors) and the outputs are the light colors.

TRLIGHT =
R([P © MUX 0 [EQC 0 [S3, orange],

red,
MUX 0 [EQC © [Sit orange],

green,
MUX © [AND © [Si, EQC © [S3, green]], orange, S3]]],

P © MUX © [EQC © [S4 , orange],
red,
MUX © [EQC © [S3, orange],

green,

MUX 0 [AND © [EQC © [54, green], S2], orange, Si]]]])

2 Use of Theorem provers

2.1 Formath interface between the P-calculus and the provers

A P-calculus architectural description of a circuit consists of two parts:

• a P-calculus expression which describes the structure of the circuit,

• an interpretation of the functional variables occurring in the expression.

This amounts to consider the functional variables as black boxes only described by their be-
haviour. The user is given a lexicon of functional variable identifiers with predefined semantics.
In each prover these identifiers will be the name of functions implementing the interpretation
of the variables.

Moreover, starting from a P-calculus description, if the expression is of the form R(A),
FORMATH interface first generates the normal form (according to the transformations of the
formal system) of the expression A. On the example of the traffic light controller, it results in:

TRÜGET =
R([MUX © [EQC 0 [P © Sa.ororuye],

red,
MUX © [£QC © [P © 54, orange],

green,
MUX 0 L4ND © [P © Si, £QC © [P © 53, green]],

orcmr/e,
P ©&]]],

iWI7X © [EQC © [P 0 54, orange],
red,
MUX © [£<2C © [P 0 53, öräöffe],

green,
MUX Q [AND Q [EQC 0[PQ Si,green-], PQS2],

orange,

Then the following points are automatically performed:

• A precedence graph is built. It describes the dependencies between signal values in the
circuit at the same step of time.

• By means of a topological sort of this graph, the fact that each structural loop in the
circuit includes at least one register is checked.

• In this case, recursive equations describing the outputs, are generated. Providing that
initial values are given, these equations will be translated into recursive definitions in the
syntax of the suitable prover.

Example:
Let us consider the informal example of a circuit whith input / = [I\, I2] and output O =
[Oi,02,03], described by means of the recursive equation

0 = F(I,0)

where F=[Fx,F2,F3].
Assume that this equation is normalized (according to the transformations) in a system of the
form:

Ox = F[(P(01),P
2(01),P(02),03)

02 = F^Oi.P^), P(03),P4(03)) (2)

03 = ^(P3(03))

where no P occurs in F-.

By introducing the time variable t, the following system is automatically produced:

Oi(t + 2) = Fl(01(t + l),01{t),02(t + l),03(t + 2))

02(t + A) = F^(01(t+4),02(t + 3),03(t + 3),03(t)) (3)

03(t + Z) = Fj(O3(0)

Moreover the initial values are required:

Oi(0) = U(lp0) 02(1) = f(2,l) O3(0) = 1/(3|o)
Ol(l) = 1/(1,1) 02(2) = W(2)2) 03(1) = V(3,l)
O2(0) = 1/(2,0) 02(3) = 1/(2,3) 03(2) = 1/(3,2)

10

-03

Figure 8: precedence graph of F

Starting from the system 3 the precedence graph (figure 8) expressing that 02 depends on 0\
and 0\ depends on O3 at the same step of time, is mechanically built.

Then, a topological sort is performed in order to verify that the device is correctly synchro-
nized (i.e. that the gragh is acyclic) and in order to produce a computation linear ordering of
the outputs.

On our running example, it produces the following equations:

TRLIGHT\{BS\, BS2){t + 1) =
mux{eqc(TRLIGHTl(BSl, BS2)(t), orange),

red,
mux{eqc{TRLIGHT2{BSl, BS2){t), orange),

green,
mux{andb{BSl{t), eqc(TRLIGHTl(BSl, BS2)(t), green)),

orange,
TRLIGHT\(BSl, BS2)(t))))

TRLIGHT2(BS1, BS2){t + 1) =
mux(eqc{TRLIGHT2(BSl, BS2)(t), orange),

red,
mux(eqc(TRLIGHTl{BS\, BS2)(t), orange),

green,
mux{andb(BS2(t),eqc(TRLIGHT2{BSl,BS2)(t), green)),

orange,
TRLIGHT2(BSl, BS2)(t))))

Here, eqc is an identifier interpreted by the equality on the set of colors.

Then it demands two initial values (one for each output) resulting in a primitive recursive
definition.

2.2 The Larch Prover
The LP proof assistant is a rewrite rule based tool which works on a subset of typed first-order
logic with equality. The basis for proofs in LP is a logical system called a "theory". Theories
can be defined by means of sorts, variables, operators and properties on these operators. Sorts
are sets of values. The properties on the basic objects are axiomatized by: equations which are
automatically oriented into rewrite rules, operators theories (commutative or associative and
commutative), deduction rules which are the basis for generating new equations from existing
ones, induction rules defining a sort in terms of bottom and constructor functions.

A conjecture in LP is either a deduction rule or an induction rule or an equation of the
form "A == B". Proving a conjecture consists in either rewriting it into true or proving some
subconjectures the verification of which is sufficient to validate the initial one. Thus LP provides
two inference mechanisms: backward and forward inference. The former produces consequences
from a logical system; the latter yields a set of subgoals to be proved in order to validate a
conjecture.

11

LP has not been widely experimented in the field of formal proof of hardware. The most
significant previous studies include: the proof of circuits specified by means of synchronized
transitions [11] and the proof of a simplified ALU by validation of some transformations [21].
These approaches are based on proof by cases and critical pairs computation but don't involve
the LP proof by induction mechanism.

2.2.1 Implementing the P-calculus into LP

To each basic type in the P-calculus corresponds in LP the declaration of two sorts, one for the
type and another one for the temporal sequences of this type.

Example:
For the color type, we declare the sorts color and sequences of color:
declare sort Color, Color_seq

The value of a sequence at time t is defined by means of an overloaded operator dot "."
with the signature:
declare operator . : T_seq, Natural -> T

Thus, the sequences being considered as objects instead of functions, second order equations
can be expressed although LP only supports first order. A wire of a circuit is implemented by
a constant of a sequence sort. Sequence vectors are implemented by their components.

Example:
The wires CarOnNS, CarOnEW, LEW a.nd LNS of the traffic light controller are implemented
by:

declare operators CarOnNS, CarOnEW : -> Bool_seq
declare operators LEW, LNS : -> Color_seq

A functional variable F of type ST1 X • • • X STH —> ST, which is interpreted by a sequential
function / = 1(F) is implemented by the equation:
(F(X1, • • •, Xn)).t == f(Xl.t, •••, Xn.t) where the Xi are sequence variables.

Example:
The identifier AND will be associated with the following declarations:

declare operators AND : Bool_seq, Bool_seq -> Bool_seq
declare variables X, Y : Bool_seq
assert AND(X,Y).t == (X.t) & (Y.t)

We need to make the distinction between the general description of the module ADD and
the description of a particular instance of this module.

The construction of a t-uple of modules is simply described by the implementation of each
modules. In the same way, the description of the composition of two modules is done by the
implementation of the instance of each module where the outputs of one of them are the inputs
of the other one.

Example:
The adder in figure 9 is described by the following declarations:

declare operaror XOR, AND, OR, HADD1, HADD2 : Bool.seq, Bool_seq -> Bool_seq
declare operator ADD1, ADD2 : Bool_seq, Bool.seq, Bool_seq -> Bool_seq
declare var S1,S2,S3 : Bool_seq
assert

HADD1(S1,S2) == X0R(S1,S2)

12

HADD2(S1,S2) == AND(S1,S2)
ADD1(S1,S2,S3) == HADD1(S1,HADD1(S2,S3))

ADD2(S1,S2,S3) == 0R(HADD2(S1,HADD1(S2,S3)),HADD2(S2,S3))

declare operator A,B,Ri,S,Ro : -> Bool_seq

assert
S == ADDl(Ri,A,B)
Ro == ADD2(Ri,A,B)

ADD = [Si 0 HADD 0 [Si,
S1QHADDQ[S2,S3]},

ORO[S2QHADDo[Si,
Si© HADD® [S2,

S3]],
S2QHADDQ[S2,S3]]]

and

HADD = [XORQ[Si,S2],
AN DO [Si, S-,]]

Figure 9: The adder

In case of circuits with loops the recursive definitions are generated by the interface (see 2.1)

Example: This is the description of the first output of the traffic light controller:

declare op
TRLIGHT1, TRLIGHT2 : Bool_seq, Bool_seq -> Color.seq

CarOnNS, CarOnEW : -> Bool_seq
LEW, LNS : -> Color.seq

declare variables BS1, BS2 : Bool_seq
TRLIGHT1(BS1,BS2).(t+1) ==

HUX(EQ(TRLIGHT1(BS1,BS2).t, orange.s.t),

red_s.t,
MUX(EQ(TRLIGHT2(BS1,BS2).t, orange.s.t),

green.s.t,
HUX(ET(BSl.t, Eq(TRLIGHTl(BSl,BS2).t, green_s.t)),

orange.s.t,
TRLIGHTKBS1.BS2) .t)))

TRLIGHT2(BSl,BS2).(t+l) ==
HUX(EQ(TRLIGHT2(BS1,BS2).t, orange.s.t),

red_s.t,
MUX(EQ(TRLIGHT1(BS1,BS2).t, orange.s.t),

green.s.t,
MUX(ET(BS2, EQ(TRLIGHT2(BSl,BS2).t, green.s.t)),

orange.s.t,
TRLIGHT2(BS1,BS2).t)))

TRLIGHTKBS1.BS2) .0 == green
TRLIGHT2(BS1,BS2).0 == red

assert
LNS == TRLIGHT1(CarOnEW, CarOnNS)
LEW == TRLIGHT2(CarOnEW, CarOnNS)

13

2.3 The Coq proof assistant

2.3.1 A higher order typed A-Calculus

The Coq system is based on the calculus of inductive constructions [9]. This is a higher typed
A-Calculus in which definitions of mathematical objects can be given and proofs of propositions
on these objects can be performed. Both objects and propositions are terms of the Lamba-
Calculus.
Moreover, there are two kinds of types: the propositions are of sort Prop and the sets are of
sort Set.

These are the building rules for the terms:

• identifiers refer to defined constants or to variables declared in a part called context

• (A B) denotes the application of functional object A to B

• [x : A]B abstracts the variable x ot type A in term B in order to construct a functional
object, that is generally written Ax € A.B in litterature

• (x : A) B as a term of type Set corresponds to a product TT B of a familly of sets B

indexed on A. As a term of type Prop, it corresponds to Va; £ A B. If x does not occur
in B, A —)■ B is a short notation which represents either the set of all the functions from
A to B or a logical implication.

2.3.2 Induction principles

A typical example of inductive definition in Coq is:

Inductive Set not = 0 : not \ S : nat —> not

which defines the set of naturals as the smallest set containing 0 and its successors. Referring
to this definition, the system provides two elimination principles:

• The non dependant elimination principle. A function / : nat —> C is defined, according
to a primitive recursive scheme, by means of a given element x of C and a function
H : nat —> C —> C. f verifies:

(/0) = x

Vn G nat (f{Sn)) = {H n (/ n))

Remark: In Coq / is written: [n:nat] (<C> Match n with x H)

• The dependant elimination principle which corresponds to the well known recurrence
principle. Let C : nat —>• Prop be a predicate. To find a proof / of Vn € N C(n), that is
to obtain a term / : (n : nat)(C n), it is sufficient to build two terms:

x : (C 0)

H :(n: nat)(C n) -»■ (C(S n))

14

Enumerated types can be given by means of non-recursive inductive definitions. For example
the type bool of booleans is defined by

Inductive Set bool= true:bool | false:bool

and the type color of the light colors is defined by

Inductive Set color = red:color | orange:color | green:color.

In these cases the elimination principles correspond to definitions or proofs by cases. For
example, the and connector on booleans is defined by:

Definition andb = [bl,b2:bool](<bool> Match bl with
b2 (* return b2 if bl is true *)
false). (* return false if bl is false *)

and the equality on the set of colors is given by:

Definition eqc:color->color->bool= [cl,c2:color]
(<bool>Match cl with

(*red*)(<bool> Hatch c2 with true false false)
(♦orange*)(<bool> Hatch c2 with false true false)
(»green*)(<bool> Match c2 with false false true)).

2.3.3 Extracting programs

In this system, proving a proposition P, amounts to construct a term of type P. Therefore, a
proof is a A-term and thus a program. One of the salient feature of Coq is the possibility of
extracting an algorithm from a proof [20]. For example, an algorithm computing the natural
D can be extacted from a proof of the proposition:

3D/(D | a) A (D | b) A (Vd, (d | a) A (d | b) -»• d < D).

which specifies the GCD.
Some parts of the proof term can be considered as logical comments, the other parts being

purely computational. Adequate declarations permit to make a synctatical distinction between
logical and computational parts. The extraction mechanism consists in keeping only the com-
putational parts, resulting in the algorithm correct by construction.

2.3.4 Implementation of the P-calculus into Coq

We take advantage of the higher order and define a generic sequence type, the parameter of
which is a basic type.

Definition Seq =[T:Set] nat->T.
Thus (Seq bool) is a type of boolean sequences.
The sequential function AND is expressed by:

Definition AND = [Bl, B2:(Seq bool)][t:nat] (andb (Bl t) (B2 t)).

In this way, we can describe the half-adder and the adder in figure 2 by:

Definition Half _Adder=[I, J: (Seq bool)] (PairUOR I J) (AND I J)).
Definition Adder =[Ri,A,B: (Seq bool)]

(Pair
(SI (Half.Adder Ri (SI (Half.Adder A B))))
(OR

(S2 (Half.Adder Ri (SI (Half.Adder A B))))
(S2 (Half.Adder A B)))) .

15

As we did with LP, the implementation of the traffic light controller uses the outputs gen-
erated by the interface between the P-calculus and the provers. The circuit is described by the
following declarations.

Definition Mux: = [b:bool] [x,y:color] (<color>Hatch b with (*true*) x (*false*) y).
Definition Output: nat->color*color= [t:nat]
(<color*color> Hatch t with

(*0*) (Pair red green)
(*(Sp)*) [p:nat][Previous.Output:color*color] (Pair

(Mux (eqc (si Previous.Output) orange)
red
(Mux (eqc (s2 Previous_Output) orange)

green
(Mux (andb (eqc (si Previous_Output) green) (CarNS p))

orange
(si Previous_Output)))

(Mux (eqc (s2 Previous.Output) orange)
red
(Mux (eqc (si Previous_Output) orange)

green
(Mux (andb (eqc (s2 Previous_Output) green) (CarNS p))

orange
(s2 Previous_Qutput)))))).

Definition LEW:(Seq color)=[t:nat] (si (Output t)).
Definition LNS:(Seq color)=[t:nat] (s2 (Output t)).

2.4 General ideas on the verification part

Our purpose in this section is not to compare, as it is usually done in case of fully automated
provers, proof CPU times. This does not make sense in this context, since proof process times
are insignificant and moreover they are negligible with respect to the time required from the
user for establishing mathematical strategies. In addition, a proof in Coq is a Lambda-term
which is constructed step by step by means of tactics. At the end of the process, this term is
saved and thus it is available, if needed, without demanding the proof to be run again.

We handled several examples of synchronous sequential circuits in both provers, investi-
gating their potentials and taking advantage of their particular features in order to get proof
processes as general, as easy to drive, as neat, and as understandable as possible. Among the
devices we studied, three of them seem particularly relevant in support of our first conclusions.

In the case of control dominated circuits such as the traffic light controller presented in this
paper, the superiority of LP is undeniable. This is due to the fact that in the Coq underlying
intuitionnist logic, a proposition is not interpreted by a boolean value (as in the classical model
theory). Proving a proposition does not consists in showing that the semantics value of the
proposition is true: a proposition is a type and proving it amounts to finding out a lambda
term inhabiting this type. Therefore, boolean operators must be defined by the user and the
proof requires user intervention whereas in LP, as the boolean calculus is built-in, the proof is
almost automatic.

We also verified a multiplier by iterated additions given in [12]. In this case, the proofs are
almost similar although Coq requires more expertise from the user. However, we can take ad-
vantage of Coq higher order for proving universal theorems that can be applied for any proof by

16

invariant, as it is the case in this example. This leads to more general and more complete proofs.

The third significant circuit we studied implements the well known algorithm of the so
called egyptian multiplication. As in the case of the previous multiplier, the proof is classically
performed in LP by finding out an invariant and by proving it. We chose a radically different
approach with Coq, since we synthesized the circuit starting from its specification. One of the
main points of the synthesis process relies on an extraction of the algorithm from a proof, as
indicated in the presentation of Coq given in the previous paragraph. Among others advantages
of this method, no invariant needs finding out.

Conclusion

In this paper we focused on the theoretical part of FoRMATH. This verification CAD system relies
on the P-calculus, a formal system interpreted in a functional algebra. Well-formed expressions
depict circuit architectures and their interpretations correspond to the associated behaviours.
The P-calculus has been completely described and grounded. Moreover, an interface with
proof tools has been denned. It essentially compiles the P-expressions, detecting loops without
registers, if any (in case of sequential circuits which are not well-synchronized) and removing
all occurrences of the past operator P. The output is a set of equations depending on the time
and it is straightforwardly translated into primitive recursive definitions in the syntax of such
or such prover, provided a set of initial register values is given.

The main advantage of the P-calculus is that it provides an uniform framework for for-
mally describing and specifying circuits, and for performing behaviour preserving algebraic
transformations on them. Thus, it is a convenient tool in the perspective of the "design for
verifiability" which aims at integrating verifications at each step of a design process, going from
abstract specifications up to concrete implementations.

In addition of our current work in the field of the verification (including investigations on
proof and synthesis strategies with respect of several theorem provers and of different kinds of
circuits), our projects concerning the P-calculus are to develop a bi-directional translator be-
tween the P-calculus and VHDL to be integrated in an user interface. Due to VHDL widespread
use in the international community, this point cannot be evaded and demands a specific inves-
tigation related to VHDL denotational semantics.

References
[1] M. Allemand. Formal verification of characteristic properties of circuits with the larch prover.

In R. Kumar and T. Kropf, editors, Theorem Prover in Circuit Design: Theory, Practice and
Experience, Bad Herrenalb, Germany, Sept. 1994. FZI-Publication.

[2] M. Allemand. Modelisation formelle et preuve de circuits avec LP. PhD thesis, Universite de
Provence, July 1995.

[3] M. Allemand, S. Coupet-Grimal, and J.-L. Paillet. A functional algebra for circuit modelling and
its implementation in LP. Research Report 1995.099, LIM, Mar. 1995.

[4] J. Backus. Can programming be liberated from the von neumann style? a functional style and its
algebra of programs. Communications of the A.CM., 21(8):613 - 641, Aug. 1978.

[5] R. S. Boyer and J. S. Moore. A computational logic. ACM Monograph Series. Academic Press
Inc., 1979.

[6] A. Bronstein and C. Talcott. Formal verification of synchronous circuits based on String-Functional
Semantics: The seven Paillet circuits in Boyer-Moore. In Workshop on automatic verification
methods for finite state systems, Grenoble, June 1989.

17

[7] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper, D. Howe, T. Klmoblock,
N. Mendler, P. Panangaden, J. Sasaki, and S. Smith. Implementing Mathematics with Nuprl Proof
Development System. Prentice Hall, 1986.

[8] S. Coupet-Grimal and L. Jakubiec. Verification formelle de circuits avec COQ. In Journees du
GDR Programmation, Sept. 1994.

[9] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and
B. Werner. The Coq Proof assistant User's Guide - version 5.8. Technical Report 154, INRIA,
Inria-Rocquencourt - CNRS - ENS Lyon, May 1993.

[10] S. J. Garland and J. V. Guttag. A guide to LP, the Larch Prover. Report 82, DEC Systems
Research Center, Palo Alto, CA, Dec. 1991.

[11] S. J. Garland, J. V. Guttag, and J. A. Staunstrup. Verification of VLSI circuits using LP. In The
Fusion of Hardivare Design and Verification, pages 329-345, Glasgow, July 4-6 1988. IFIP WG
10.2, North Holland.

[12] M. Gordon. LCF-LSM. Technical Report 41, University of Cambridge, 1984.

[13] M. Gordon. HOL: A proof generating system for higher-order logic. In G. Birtwistle and P. Subrah-
manyam, editors, VLSI Specification, Verification and Synthesis, pages 73-128. Kluwer Academic
Publishers, 1988.

[14] N. Halbwachs, A. Lonchampt, and D. Pilaud. Describing and designing circuits by means of
synchronous declarative language. In D. Borrione, editor, IFIP WG 10.2 Workshop From HDL
descriptions de guaranted correct circuit designs. North-Holland, 1987.

[15] S. Johnson. Synthesis of Digital Designs from Recursive Equations. The MIT Press, Cambridge,
1984.

[16] G. Kahn. The semantics of a simple language for parallel programming. In IFIP Congress,
Information processing 74- North-Holland, 1974.

[17] J. T. O'Donnell. Hardware description with recursion equations. In M. Barbacci and C. J. Koomen,
editors, Computer Hardware Description Languages and their applications, Amsterdam, Apr. 1987.
North Holland.

[18] J. O'Leary, M. Linderman, M. Leeser, and M. Aagard. HML: a hardware description language
based on standard ML. Technical Report EE-CEG-92-7, Cornell School of Electrical Engineering,
Oct. 1993.

[19] J.-l. Paillet. A functional model for descriptions and specifications of digital devices. In D. Borrione,
editor, IFIP WG 10.2 Workshop From HDL descriptions de guaranted correct circuit designs.
North-Holland, 1987.

[20] C. Paulin-Mohring. Extraction de programmes dans Coq. PhD thesis, Universite Paris 7, 1989.

[21] J. B. Saxe, S. J. Garland, J. V. Guttag, and J. J. Horning. Using transformations and verification
in circuit design. Formal Methods in System Design, 3(3): 181 -209, Dec. 1993. Also published as
DEC Systems Research Center Report 78 (1991).

[22] M. Sheeran. mufp, a language for VLSI design. In ACM Symposium on Lisp and functional
programming, pages 104 -112, Austin, Texas, 1984.

[23] J. A. Staunstrup, S. J. Garland, and J. V. Guttag. Mechanized verification of circuit descriptions
using the Larch Prover. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Theorem Provers
in Circuit Design: Theory, Practice, and Experience, pages 277-299, Nijmegen, The Netherlands,
June 1992. IFIP TC10/WG10.2, North-Holland, IFIP Transactions A-10.

18

INTEGRATION OF BEHAVIORAL TESTABILITY
METRICS IN HIGH LEVEL SYNTHESIS *

K. Olcozf J.F. SantucciJ J.F. Tiradof
katzalinicfyiia. ucm. es santucci@vniv-corse.fr ptirado@dia. ucm. es

"\Depto. de hiformäticay Automätica, Univ. Complutense. 28040 Madrid (Spain)

%Faadte des Sciences et Techniques, Univ. of Corsica. Quartier Grosse tti, BP 52,
20250 Corte (France)

Abstract
Testability is an important aspect of digital systems usually addressed after the design
phase. In this paper we propose to take into account testability constraints at the
beginning of this phase. We therefore propose a novel approach for performing high
level synthesis according to area and testability constraints. Behavioral testability metrics
are defined and used during data path allocation.
Furthermore, we will point out how testability and area considerations are merged in a
high level synthesis system to obtain a global exploration scheme of the design space.
Keywords: high level synthesis, behavioral testability, synthesis for testability, data path
allocation.

1. Introduction
This paper deals with a novel approach for the high level synthesis of digital systems
according to area and testability constraints.
Testing is one of the most important aspects when producing digital devices. In order to
take into account testability features in a high-level synthesis process, we include
Behavioral Testability Metrics [1][2] in a high level synthesis system called FIDIAS [3].
Testability considerations in FIDIAS are inserted during data path allocation, so metrics
have to be defined from data available at that moment of the design cycle, namely: the
scheduled control-data flow graph, SDFG, and the partial design, PD (part of the data
path already allocated).
For every allocation there are usually several options, marked by their increments on area
and testability. Testability metrics are used with area estimations to select options with
better testability area relationship. Rules for selection of allocation alternatives that
increase testability are developed based on the metrics, to fasten the search in the design
space.
Finally, a meta-rule is provided to combine area saving rules with rules for controllability
and observability increasing. It must select which kind of rules (based on area or
testability considerations) is used in the first place. It is founded on the initial value of the
testability-area priority given by the user. This initial value can be modified by the design
expert if either the testability or the area constraint are not satisfied. As a consequence,
design exploration is flexible and can obtain designs with different testability-area
tradeoffs.
The paper is organized as follows. In the first part, testability metrics are presented. The
second part gives a brief overview of allocation in the FIDIAS system; area-test tradeoffs
* This research was partly sponsored by the HCM CHRX-CT94-0459 project of the EC

and by the CICYT TIC 94/0725-C03-02 project of the Spanish Government.

made during design space search are introduced in this part also. In the third part we
"resent rules for°testability maximization. First, the scheme ^ controllab^ ad
observability merging is detailed and then, the different rules are explained with the help

of some examples.

2. Computation of testability metrics
Three testability metrics are defined, listed in growing complexity order. dista"ce-base^
functional and reconvergence-divergence. We propose several ways to define behavioral
testability metrics to compensate the fact that they are not total y accurate^ The
computation of totally accurate metrics is known to be an NP-complete problem that

would request too much computational effort.
In order to calculate these three different metrics, we have defined two graph models

representing the SDFG and the PD.
Next, the models are defined in sub-sections 2.1 and 2.2 and then, computation of the

metrics is outlined in sub-sections 2.3, 2.4 and 2.5.

The behavbr to be allocated is shown as a control-data flow graph, made up by nodes
and variables representing both control and data dependencies. Every node in the graph
has been scheduled in one control step. From the testability metric point of view,
components of the SDFG are divided into four classes:
• operational node (OPN): it represents a function performed on the input vanable(s),
• assignment node (ASN): it is a data transfer,
■ divergence: a divergence point is a variable used as input of several nodes and a
divergence node is either the output of a variable in a loop or the input of a variable in a

conditional branch, .,, • „
• reconvergence node: it is the input of a variable in a loop or the output of a variable in a

conditional branch.
OPN node v1 v2

ASN node v1

>—< (+

vS1"'

r ■>

v2

! Divergence

div. point ; div. node: Loop Out, ■&

v1
Branch In 4- T

Reconvergence node: Loop In, T

Branch Out ¥

Functional unit

Reg1 Reg2

Reg3

Divergence point

Reconvergence element: Multiplexer

Reg1

Reg1 Reg2

FU1(in1)

Figure 2: DP model. Figure 1: SDFG model --0- . , ,
In figure 1, a representative of each class of element is displayed with its data (solid) and

control (dashed lines) inputs and outputs.

2.2. Model of data path , ,
Since the partial design is the portion of the data path that has been allocated tothe
moment, testability of the partial design has to be based on a mode of the data path. It is
a set of connected hardware elements taken from a library of modules.

Regarding testability computation, they are classified as follows (see figure 2):
• functional unit (FU): element performing an operation,
■ register: storage element. They can be further separated according to their test abilities
(test generators, compactors, both or none),
■ divergence point: it represents a connection feeding several inputs,
• reconvergence element: a multiplexer.

2.3. Distance-based metric
Testability of an element is defined in terms of its controllability and observability, that
are computed as the closeness to controllable and observable elements respectively.
So, controllability is the maximum closeness from any input element and observability the
maximum closeness to any output element. They are measured in number of nodes and
hardware elements for the SDFG and PD.
The closeness between to elements E\ and Eo is derived from:

Distance(Ei,E2)
Closeness(Ei, E2) = 1 :

1 + Max. distance
where Distance(Ei,E2) is the minimum number of elements traversed to reach E2 from
E\ and Max. distance is the maximum distance along the DFG or DP.
The maximum distance has been defined for the DFG as the number of control steps
minus one. This definition is based on the hypothesis that there is a path connecting an
element in the first control step to one in the last control step and that such a path has a
node in each control step. It is a reasonable choice because it is easy to compute and
quite accurate since most schedules are minimal or nearly minimal (high level synthesis
tools rarely increase the number of control steps and, when doing so, they only add 1 or
2 to the former time).

The maximum distance in the data path is
computed alike: a non cyclic path from an
element used in the first control step and
another used in the last one is assumed and no
wait control steps are allowed in it.
But, this time the number of hardware elements
traversed in a control step is variable from 1
(only a register) to 4 (a multiplexer at the input
of a FU, the FU, a multiplexer at the input of a
register and the register). Since the complete
data path is not known until the end of the

figure 3: EcuDif. On the left, distances' allocation P^ess the number of elements that
from input elements are shown. On the make uP,each Path cannot be known. So an

. Ui ,. , m . additional assumption is needed: the maximum right, distances to output elements. f N . , v c , ± . 0 (4) is used as number of elements in one
control step. Then, the maximum distance is computed as four times the number of
control steps minus one.
Distance computation for every element is done by the algorithms shown in figures 4
(distance to an output element needed for observability computation) and 5 (distance
from an input element required to obtain controllability). An example of testability

computation for a DFG commonly used in high level synthesis (the differential equation
solver in [4]) is displayed in figure 3.
dist(Out) = 0;
From control step N to 1

dist-inJ(OPN) = dist-out(OPN) +1 VJ
dist-in(ASN) = dist-out(ASN) +1
dist-in(div. point) = min {dist-ouÜ(div. point)}
dist-in(div. node) = min {dist-ouU(div. node)) +1 _L
dist-inJ(rec. node) = dist-out(rec. node) +1 VJ

Check, on loops

Figure 4: Distance to Out computation.

dist(In) = 0;
From control step 1 to N

dist-out(OPN) = max {dist-inJ(OPN)} +1
dist-out (ASN) = dist-in(ASN) +1
dist-outJ(div. point) = dist-in(div. point) VJ
dist-ouU(div. node) = dist-in(div. node) +1 VJ

dist-out(rec. node) = min {dist-inJ(rec. node)} +1 X
Check on loops

Figure 5: Distance from In computation.
1 Control lines are fully controllable.

2.4. Functional metric
Testability is no longer dependent on the number of elements but on their operation.
Since functional metrics only take into account the functionality of elements traversed,
testability is modified only for operational elements (OPN nodes or functional units).
Thus, the controllability of the output of an element is the same as the one of the input
except for operational elements. For them, the controllability is computed as the product
of the controllability of the input by the control transfer factor of the operator (CTF). It
represents the fraction of data that can be reached at the output for that operation
(cardinal of the operator's image set divided by all possible values).
Observability of input k is computed quite alike, save that not only the observability of
the output is included but also the controllability of input l*k.
obs(Out)= 1;
From control step N to 1

obs-inJ(OPN) = ohs-out(OPN) * OTF(operator)
*min {co-inK(OPN)} VJ

obs-in(div.) = max {obs-outJ(div. point)}
obs-in(rest) = obs-out

OFT(operator) = fraction of non dominant values in
domain set of the operator. *

the

co(In)= 1;
From control step 1 to N

co-out(OPN) = min{co-inJ(OPN)}*CTF(operator)
co-out(rec. node) = max {co-inJ(rec. node)}
co-out(rest) = co-in

CTF(operator) = fraction of all binary configurations in
the image set of the operator. *

Figure 6: Observability computation.

Obs.

OTF(or) = 0.5

OTF(+) = 1

Co.

CTF(') = 0.35
CTF(+) = 1

obs = 0.18

Dbs = 0.5

obs = 1

(•
» ..co= 1

(♦*

x
\-r\ ,V'"

co = 1

Figure 7: Controllability comp. (F).
* They are computed by simulation.

Algorithms for observability and controllability
computation are shown in figures 6 and 7
respectively. Their application to a high level
synthesis example (the Facet DFG in [5]) can be
seen in figure 8.

V

V->-"«
and I

I- co = 0.35

Figure 8: Facet DFG

co(ln)= 1;
From control step 1 to N

co-out(OPN) = min {co-inJ(OPN)}
* CTF(operator) * CD(C)PNnode)

co-out(rest) = like functional metric
CD(OPNnode) = fraction of output values reachable in
spite of data dep. between inputs.

Figure 9: Controllability computation (R-D).

2.5. Reconvergence-divergence metric
Finally, reconvergence-divergence metrics take into account the effect that data
dependencies, due to divergences that later reconvert, have on the controllability of
different inputs of an operational element. Then, with this more precise controllability

figure (see figures 9 and 10 for details),
controllability of the output of an operational
element and observability of every input are
computed as for the functional metrics.
Due to its big complexity, this metric is only
applied to the SDFG. The reason is that
testability of the SDFG is computed only once
(before allocation) while testability of the PD
must be estimated every time an allocation
choice is taken.

Non dependent input«
r CD = 1

Non dependent inputs
(shared in different control steps)

CD = 1

Figure 10: Facet DFG

3. Search guiding in allocation
Allocation in FIDIAS uses a branch and bound algorithm that allows exploration of
different designs for the same behavior. The sequence in which these designs are found
determines the search time. In order to reduce exploration time some heuristics are
defined. Their goal is that the best data paths in terms of testability and area are obtained
as soon as possible. The method we have defined sorts out the list of alternatives for
each allocation (that is, the list of functional units for an operational node and the list of
registers for storage of results) using the heuristics. The result is that alternatives with
better testability and area are the first elements to be tried in.
Good designs correspond to designs having big testability and small area. They are
reached when allocation decisions produce testability increments (gain) that are worth
their counterpart area increment (cost).
For any allocation alternative, area increment is computed using the estimation explained
in [6]. The testability increment caused by each alternative is obtained as follows: first,
controllability increment for all the inputs and observability increment for the output are
computed according to the metrics above introduced, and then, the maximum among the
increments is selected as testability increment.
When design search is over, one data path is selected as best due to its area and test
figures. Users should be allowed to establish the area-test priority for their designs. The
best design according to the user criterion is the one with area-testability ratio that suits
the user given priority. Thus, to obtain that design as quickly as possible, the order in
which alternatives are explored should also be determined by the area-test priority (ß). It
represents the degree of test importance, so, when it takes a value close to 0, area is
much more important than test, while figures close to 1 lead to test-driven searches.
To sum up, search time is saved if designs explored have good test-area relationship, so
allocation decisions need to have good gain-cost ratio. Further, selection of the best
design depends on the user criterion, and so does search guiding.

3.1. Global exploration scheme
Search guiding is performed by application of area and test rules, that sort out the list of
available elements according to minimum cost and maximum gain respectively.
Testability increment rules and the area saving rule have to be merged in a unique
exploration heuristic. So, a meta-rule is needed to decide between area saving and
testability increasing. This meta-rule fixes the search order, so that it determines how the
design space is searched.

The underlying idea is that cost (area) is spent if the gain (testability inc.) is worth it. The
gain is worth if it is bigger than the opposite of the area-test priority so that the more
important the area, the larger the gain required to spend it.
Let ß be the area-test priority, and ATe[0,l] the testability increment (either in
controllability or observability). If testability increment is bigger than 1 - ß, test rules are
applied first. Else, area rule is applied first. So, if ß is close to 0, the area rule would be
applied in the first place unless testability increment was close to 1. On the other hand,
bigger values of ß cause selection of testability rules for smaller gains.
As a result of this scheme, the search should be speeded up because the searching
criterion matches the quality criterion. Besides, design space exploration is flexible and
can vary according to the user preferences. Finally, if the constraints are not met for a
given value of the user criterion, the design expert can change that value to search for a
valid design. This capability allows smart search of a wider design space.

4. Testability increasing rules
They order allocation choices according to the testability increment implied. These rules
are also twofold: controllability and observability rules. Controllability rules order the list
of alternatives (functional units or registers) according to the controllability increment
that would be caused by selection of the alternative. Observability rules work in the same
way with regard to observability increment.
Controllability and observability rules have to be merged, that is, for a given allocation,
the order in which both testability rules are tried in must be established. The merging
scheme is to apply the rule that leads to maximum increment. If they produce the same
gain, the controllability rule is preferred because observability depends on controllability
and not the other way around.

4.1. Controllability rules
They are aimed at sorting out the list of available elements (FU or registers) according to
their controllability increments. There are some different rules depending on the
controllability of the connection's source(s): a controllable source improves the
controllability of the element chosen as destination. So, the less controllable the
destination element, the larger the controllability increment. An example is shown in
figure 11, where a register must be selected to store data from an input port.
On the other hand, if the source of data is not controllable, connecting it to an element
will not improve the controllability of the source element. But, choosing a controllable

element will improve the controllability of the
variable. If this variable is later used as input, it
will be more controllable and some controllability
increment will be achieved. In figure 12 the source
element is a non controllable FU output. If a
controllable register is connected to it, the result
generated by the FU becomes controllable.
To specify more precisely the rules, lets assume

Figure 11: elements involved in reg. that an element is controllable if its controllability
selection for the output of IN. is bigger than ß. Thus, the controllability value

T
] co(iN-out)=i Aco: reg

i co(reg1) = 0.95

yöbs(reg)

Aco = 0.05

required for an element to be controllable is proportional to the test importance.
If the source of data is controllable, the following rule is applied: controllability
increment for each alternative is computed. If no controllability increment is big enough,
it means that controllability of the source is wasted (all available elements are already
controllable). So, creation of a new element is considered based on area increment,
number of elements in the partial design and estimated minimum number of elements in
the complete data path and on the impact of creating a controllable element (it is,
whether or not the element will be further used).
Else, elements are selected to maximize controllability increment. Elements producing
the same increment are sorted out following the observability rule.
Rule for register selection is introduced as example in figure 13, where out means the
output of the source element.

co(fu-out) = o.25 A30: var

Tv T

Co(reg2) = 0.5, \ co(reg3) = 0 i_

Aco = 0.25 / Aco = 0.25

co(v) = 0.95 co(v) = 0.5 co(v) = 0.25

If co(out) > P
for all available registers (regl)

Acol = co(out) - co (regl)

if (Acol ■:■ ß, VI) & (newreg = TRUE)
create new register

else
select reg for maximum Aco
if several, apply observability rule

if there are no free register, create new

, . . . Figure 13: controllability rule for register
Figure 12. elements involved ,n reg.ster selection when the source is controliabie.
selection for the output or FU.

Next, situation shown in figure 11 is used to illustrate the rule. Let ß = 0.4 (area is a little
more important than test), the order registers are tried in according to the controllability
rule is: first, register 2, then register 1 and the third choice is creating a new register.
If ß = 0.6, the first choice would be creating a new register (Aco = 1) and only after,
registers 2 and finally 1 would be tried in.

4.2. Observability rules
Their difference from controllability rules comes from the fact that observability is
transmitted from the last to the first control steps, that is, opposite to allocation flow.
This means that when an allocation has to be made, the controllability of the source
element is known (paths from input ports to that element have already been allocated).
On the contrary, observability of the destination element is only determined when a path
to an output element is created, usually in the last control steps. Thus, not only
observability of the output is considered but also observability of the variable in the
SDFG (if it is big, a path to an output port will be created in the following control steps).
So, according to the observability of the output variable (in the SDFG) there are different
rules: if the variable is observable, it will improve the observability of the element chosen
as destination. In such cases, the less observable the destination, the bigger the gain, as
displayed in figure 14 for FU selection.
On the other hand, a non observable variable does not necessarily imply that the source
of the connection is not observable. So, two more rules are needed for the two remaining
possibilities. If both the source of the connection and the variable are not observable, an
observable destination is searched to improve their observability (see figure 15).

M ADbs: fu

y obs(fu2-out) = 0.75

Aobs = 0.25

u Tobs(vao = o.25 Aobs: var + regs

obs(var) = 0.75 obs(var) = 0.5

obs(fu-out) = 0

Aobs = 0.25

obs(var) = 0.25

Figure 14: elements involved in FU Figure 15: elements involved in FU
selection when the variable is observable, selection for a non observable node.
Finally, if the variable is not observable but the source is, no observability gain is got by
selection of an observable destination, so the less observable ones are chosen.
The rule applied for observable variable is: observability increment is computed. If no
increment is big enough and trying to avoid observability waste, creation of a new
element is considered. Else, the list of elements is arranged to maximize observability
increment. Equal increments are sorted out by using the controllability rule.
Application of this rule to figure 14, results in selection of FU 1 in the first place.

5. Conclusions and future work
An scheme for the automatic synthesis of data paths has been outlined. It is based on
testability metrics that are defined in a consistent way on the circuit's structure (data
path) and behaviour (SDFG), so that testability of the unallocated part of the circuit is
obtained from the second.
Integration of these metrics in the allocation step of a high level synthesis tool has also
been proposed, in such a way that it drives exploration of the design space. Area and test
guiding make exploration shorter and adaptable to different user priorities.

References
[1] J.F. Santucci, G. Dray, N. Giambiasi, M. Boumedine, "Methodology to reduce

computational cost of behavioral test pattern generation using testability measures",
29th IEEE/ACM Design Automation Conference, 1992, pp.267-272.

[2] J.F. Santucci, G. Dray, M. Boumedine, N. Giambiasi, "Methods to Measure and to
Enhance the Testability of Behavioral Descriptions of Digital Circuits", 1st IEEE
Asian Test Symposium, 1992, pp.118-123.

[3] J. Septien, D. Mozos, J.F. Tirado, R. Hermida, M. Fernandez, H. Mecha "FIDIAS:
An integral approach to high-level synthesis", IEE Proc. on Circuits, Devices and
Systems, vol. 142, no. 4, pp. 227-235, August 1995.

[4] P.G. Paulin, J.P. Knight, E.F. Girczyc, "HAL: A Multi-Paradigm Approach to
Automatic Data Path Synthesis", Proc. of the Design Automation Conference, 1986,
pp. 263-270.

[5] Ch. Tseng, D. P. Siewiorek "Automated Synthesis of Data Paths in Digital Systems"
IEEE Trans on CAD, vol. CAD-5, no. 3, pp. 379-395, July 1986.

[6] H. Mecha, M. Fernandez, J.F. Tirado, J. Septien, D. Mozos, K. Olcoz "A Method for
Area Estimation of Data-Paths in High Level Synthesis", IEEE Trans on CAD, vol.
15, no. 2, February 1996.

EVALUATION OF AN INTEGRATED HIGH-LEVEL

SYNTHESIS METHOD

Prof. P. Aratö, I. Jankovits, Z. Sugar, Sz. Szigeti

Technical University of Budapest,
Department of Process Control

Abstract

Benchmarking in High-Level Synthesis is one of the most critical points nowadays.
Since several synthesis and data path allocation methods are published, the comparison
between these methods is highly important. The goal of this paper is to summarise the basic
steps of the HLS design flow trough the PIPE synthesis tool integrated into the Cadence
environment, which has been developed at the Department of Process Control, arid to
describe some of the-most popular HLS benchmarks. This paper also presents the basic
definitions of the DFGs elements (functional elements, data connections), which are used as
the description of the task. These definitions are indispensable for the correct comparison.

Key words:
High-Level Synthesis, Cadence, benchmarks

Glossary

Data path - A directed graph representation of data transitions in a problem. Graph nodes
are operations, edges are data connections and dependencies.

Execution time - Time needed by an (elementary) operational unit to calculate its output
value from its inputs. Denoted by t(i), where i is the number of the operation.

Latency - Time difference between a set of data entering the data path and the output
values belonging to that set of input data becoming available on the outputs. (L)

Loop or Recursive loop - A section in a data path executed in an iterative way such that
every iteration requires the result of the previous iteration (as initial value) and data from
the data path. As the time between successive iterations of the loop may not be smaller than
the total of all execution units in the loop (Lr), the loop takes data from the outside at most
with the frequency equal to 1/Lp

Pipelined execution - Feeding a system with a restart time less than total latency is
available in some units. Any such unit is executing in an overlapped, pipelined way.

Restart time - The period time of new data input to the system. (R)

Time steps or Time cycles - The time unit in time calculations, often expressed without
dimension, i.e. "a time of 3 [time cycles]".

Functional Element (e(i) or Fej):
1. e(i) is started only after having finished every e(j), for which

e(j)—>e(i) (where e(j) is the predecessor of e(i)) holds.
2. e(i) requires all its input data during the whole duration time t(i)
3. e(i) may change its output during the whole duration time t(i)
4. e(i) holds its actual output stable until its next start.

1. Introduction

The last few years the High-Level Synthesis has become a very popular research
field where several methods were published [1,3,4,6-8,11,13,14]. The common goal of
these methods is to find an efficient structure at the RTL level from a behavioral -mostly
VHDL or VHDL-like- description with an acceptable computation time. Since the substeps
of the HLS are NP-hard problems the question of the processing time is always solved by
introducing restrictions which results in near-optimal solutions. The data-flow graph (DFG)
synthesis has two basic tasks. First, the scheduling whose goal is to place the functional
elements to the control step where the concurency is minimal. Second, the allocation that
aims to minimise the number of the needed functional units (adder, multiplier, devider,
ALUs or processors). A well-known strategy, and maybe the one that is referred most of the
time is the force-directed scheduling [8] which proposes to reach the most efficient
structure by balancing the mobilities in the DFG. Another approach to synthetise DFGs are
the ELP methods. Generally these methods can handle only single cycle operations [4], but
there are some known expansion for multi-cycle operations too [17]. The only thing that all
of the mentioned methods accept is that all the problems that can arise during the HLS
design flow are solved inside of the DFG. Opposed to this very important point, there are
some published CDFG (control data-flow graph) oriented methods where external elements
-or signals- are admissible [10,14]. These methods usually lead to a heuristic direction, and
this strongly makes the comparison to the optimal solution more difficult (since the
optimal solution is unknown).

Another feature of the HLS is the overlapped execution called pipelineing. The goal
of the DFG pipelineing is to increase the throughput of the system (reduce the restarting
period), while the number of resources is still held on the minimal value. To compare the
results of the HLS tools which can handle pipeline restarting period is much more difficult
than in the case of non-pipelined ones. Even the basic definitions can be very different in
different articles. Some researchers use the notion of'pipeline stages' [8,10], while others
use 'restarting period' [1-3,9-12], in some articles the 'latency' is the period time of new data
input to the system, but somewhere else it is called 'restart time'. However, the fundamental
problem is in the physical domain of the design. In contrast to the 'old axiom' stating that
during the HLS we don't deal with the physical constraints, some of the physical parameters
still have to be defined before the design-flow starts. The execution times have to be
defined (they are inputs in every methods), and for the comparable results the rate of the
speed must be defined too. That is the point where the number of the various views is
nearly equal to the number of the articles if these problems are discussed at all. Pipelineing
raises some special questions too:
• What to do with recursion? [9]
• How is it possible to handle the conditional branches? [10,11]
The answers have been worked out usually independently without specifying the scheduling
or the allocation algorithms, but some approaches [10] use the 'single cycle functional
elements' restriction again.

Since so many researchers work in so many ways, in order to solve the questions of
HLS it is highly important to find a common base and a common language where a
comparison can be made between the different results. In this paper, a technique for DFG

synthesis will be presented, also some benchmarks will be shown that might be suitable for
testing different HLS tools.

2. PIPE

The PIPE is an educational software tool that has been developed at the Technical
University of Budapest, Department of Process Control. The input of the program is an
HDL specification of the design and the output is a trade-off between the restarting period
and the needed area (the number of the processors) with fixed maximal latency, hi the first
step the HDL is translated into an inner structure. The translator contains a schemantical
checking function. The minimum of the latency is calculated in this step. The ' Variation '
generates all the possible placements for the synchronisation buffers, and pushes it towards
to the allocation one by one. The allocation is done for each structure, and the decision
about the optimum is just made when all results are known.
• Scheduling

This algorithm is executed when the difference between the latency minimum and
the given latency allows the buffer insertion discussed in [12] . The scheduler schedules
the structure for the given restarting period and calculates the synchronisation parameters.
While a buffer is cheaper than an other copy from a functional elements, this scheduler
algorithm guaranties the cheapest structure which is restartable with the given restarting
period.

for i (every elements)
if t(i)>=R-l then c=[t(i)+2/R] ;

multiply c times ;
insert a buffer to every input of every copy ;

else for j (every next elements in data connection)
if t(i)+t(f)>=R-l then insert a buffer between e(i) and e(j)
nextj

ife(i) receptor then SYNC [12]
next i

• Variations
The Variations generates all the possible placement of the buffers was inserted to

solve the synchronisation problem. This means that all the functional units have mobility
in the DFG go through all the time steps between there ASAP and ALAP position. The
best arrangement will result the cheapest final structure after the allocation. If the im path
needed to be delayed by inserting p(i) buffers and the path contains n(i) elements, then the
number of the possible variations is:
w(i)=(p(i)+n(i))!/(p(i)!*n(i)!)
The number of the variations for the whole graph is:
W=n w(i)

for i (every path which needed to be delayed)
for j (every placement between ASAP and ALAP)
generate a new variation
nextj

next i

• Allocation
The allocation algorithm follows the method which was detailed in [1,12]. In this

step the program selects the functions which can be slipped into one processor and solves
the allocation problem for each group. During the allocation three tasks are executed:

Concurency examination: in this step the allocation checks all functional elements if
they are concurrent or not.
Generating the maximal compatibility groups
Coverage: here the allocation chooses the cheapest set of groups from the maximal
compatibility groups.

• Analysis of Conditional Branches
If the DFG contains conditional branches (if-then-else statement), the allocation

should be modified. The difference between a condition-detector element and a general
element is that just one of the following transfer sequences executes depending on the
condition value. Since two parallel branches have EXOR like execution the concurency
examination must be changed. The new formula is [11]:

K = [(cU)*k„U) + h)-(c(i)*ks(i) + s)]* R
b{i)-b{j)-q(j) ^K<b(i)-b(j) + q(i)

where, b(i), b(j) : the first start time of e(i) and e(j)
c(i), c(j) : the copied number of e(i) and e(j)
kh(i), ks(i) : a integer values
R : the restarting period
q(i)> q(j) : me transfer score of e(i) and e(j)
more detailed definitions in [1].

In case of alternative branches, the K=0 solution doesn't mean concurency for the
functional element pairs.

• Pipelineing in multi-user sequential recursive loops
Recursive loops are considered to be unavailable to overlapped execution during the

scheduling phase of ASIC design. This is caused by the special nature of recursive
execution: an iterative algorithm may not be fed the next data before the final result of the
previous iteration is ready. In contrast with this fact there are numerous papers [6,8] which
use pipelined recursive loops as benchmarks. The most popular one is the differential
equation solver [8]. The mathematical definition (1) of this problem shows clearly the
recursive nature.

xl=x+dx; yl=y+dy; ul=u-3xudx-3ydx (1)

In [8] Paulin schedules the DFG (see in 3.4) for overlapped execution without dealing
with the recursion.

There are some notable exceptions, however, to the general case. In a special type of
problems, recursive solutions are needed to calculate values of identical functions for
different processes. From [9], it is known that by using multiple-process recursive loops, it
is possible for separate processes to share the same resources in such a way that the
recursive core in process is realised only once. It means that the total loop sequence will be
divided into smaller parts where each part can work parallel on a task and the parts rolling
through the loop without breaking the rule of the recursion (pipelined recursive loop). Also
from [9] can be read out the conditions when it is worth using this method:

R "-1 — « (2)
Lr n

The right side of (2) shows that the more the restarting period is decreased against the
latency, the more efficient structure will be achieved and from the left side it can be seen
that as more and more data is introduced to the structure, the result can be more and more
efficient.

3. Tool integration into commercial frameworks

State-of-the-art CAD systems should provide more and more aid for the electronic
designers. This means that a good design system should support consistent descriptions in
all design description domains (system specification, behavioral, structural and physical
levels) and integrated tools for the simulations and for the verifications. It is also required to
automate the design steps as much as possible to reduce the needed development time and
hence the cost of engineering.

Modern CAD systems can accomplish these tasks with providing consistent
database management and access, powerful communication protocol for the different kind
of tools and user friendly, uniform graphics environment for the user. This complex system
is called framework. In most cases it may be extended by programming in a vendor
dependent language. Nowadays the simulation procedure is one of the most critical points
of the design process. Of course all description domains have to be simulated with the same
simulator, if possible. In this case the electronic designer can apply the same test vectors (or
with minor modifications) which increases the reliability of simulation and simultaneously
reduces the required development time. The framework should provide the back annotation
feature to improve the accuracy of the descriptions at the higher abstraction levels. Finally,
CAD systems should support the available ASIC technologies (FPGA, VLSI and MCM).

When a new design methodology has been developed, it is recommended to connect
to an existing framework environment, unless we wish to create a completely new CAD
system. Since in most cases the new tool covers just a few design steps thus probably the
extension is the better choice and it requires less effort.

A special type of the extensions is the interfacing. In this case the new CAD tool is
not a part of the framework environment, just a standalone application that has a well-
defined interface. This interface is usually a standard hardware description language
(VHDL or Verilog), a netlist format (EDEF) or physical description file (for VLSI layouts
CTF, GSDII, etc.) depending on the abstraction level. Interfacing has several disadvantages.

First of all, it does not provide a uniform database management and access. Because of the
required data conversion some information may have been lost. Implementation of the
simulation method was discussed earlier with the forward and back annotations is also not
easy. Because of these reasons, interfacing as an extension method is recommended in the
case of small applications that realise a small number of design steps and where these
constraints do not cause flexibility loss.
The real integration of a CAD tool does not have these disadvantages but requires much
more programming effort from the CAD engineers because of the complexity of the
commercial framework products.

3.1 High-Level Synthesis Tool Integration to the Design Framework II

One of the most popular frameworks is the Design Framework II®[18] of the
Cadence OPUS that is extensible with C or SKILL[19] programming languages. A new
high-level synthesis tool has been developed and integrated into this framework. This
program provides a user-friendly environment for editing, simulating and synthetising the
data-flow graph, as illustrated in Fig. 1. The synthesis procedures cover the algorithms
discussed in this paper. The created data-flow graph may be a part of a larger design, its
inputs and outputs may be connected to other schematics and HDL descriptions.

3«G "

cumtiiBrtgi* 'yuMMf :<;&K*.M< ((•<* s,*.»»u . Italy

B

* •••
A.

A
3
,/
.'_

V
&

*P

S*<l

KUSH- ■znuittuatT'.:) ■ u ■"■;.-:.;.':: '.,':'.-...'.' '.$.■..■.:

Fig. 1. Data-flow graph editor

The design flow of high-level synthesis is shown in Fig. 2. The synthesis procedure
starts with the data-flow graph that may be entered by using the graphics editor or
may be derived from a VHDL description via a VHDL to DFG compiler. This VHDL
interface may be useful because the well-known benchmarks are written in VHDL.
The graph is stored on the disks in the standard CDBA format (Cadence Database)
and a completely new view type is associated with it (dfg). The view of the VHDL
description is derived from the vhdl view type. This description may be simulated by
the LeapFrog® simulator. The nodes of the data-flow graph are described in three
different views. The node view contains the symbol and I/O information and is

derived from symbol view type. The functional view describes the behaviour of the
operation and it is written in Verilog language.[20]

VHDL description

luapfrog wäll

Data-flow Graph

#:. *9

HLS constraints

VHDL to
DFG

■"dig

Allocation

Module Generator

«üir^g»

^ArtOB-XL.benieveli^

Processor
Generator

L €P^-XL(RTIev%#

^nodeprop ';

: DFG Editor

-12_
HDL synthetiser &

optimiser

■ jesäsgps" '' """-"A^r
I (^. *rlo9-XMgatiMg||

Place & Route

Other RT and gate level
" descriptions

Other schematics

Cell Library (ES2, AMS, MSU)

Layout
(CIF, GSDII, etc.)

Fig.2. Design flow of HLS tool in the Design Framework II

Finally, the nodeprop view defines the properties associated with the processor. This
information is stored as a set of SKILL statements. The predefined operators are collected
in the library DfgLib. The user may extend this library by creating the listed views.

After defining the HLS constraints and selecting the type of the scheduling by the
user, the synthesis procedures may be started in the given order. If required, the optimiser
creates the optimised data-flow graph with the view dfg.opt. The scheduler and the allocator
can create a cost per performance curve to aid the designer in selecting the run
configuration with the most optimal trade-off. immediately after the scheduling the data-
flow graph may be simulated standalone or with the other part of the design by the Verilog-
XL® simulator. As a final step of synthesis, the module generator creates the controlled
data-flow graph (with the view of cdfg) and the Verilog RT level description of processors
and control logic. The module generator provides additional constraints for RTL
synthesiser, based on the original user parameters and the internal structure of the data-flow
graph. The next design step is the technology mapping for the available technologies (gate
arrays, VLSI, MCM). Using the final verification tools the exact delay times may be
extracted from the layout for simulation and back annotation purpose.

4. Benchmarks

This section contains four very popular benchmarks with their DFGs, VHDL
behavioral description and the results that were genereted by the PIPE synthesis tool. In the
case of Differential Equation Solver, the results were produced in a halfautomatic way
(PIPE cannot handle recursive loops at this momement). The execution times are used in
this section (in clock cycles):

t(*)=8 t(+)=4 t(buff.)=l

4.1 FIR filter

The FIR filter is one of the most popular benchmark that was published in numerous
HLS reports [6,7,9,12,15] . On this example it can be seen that how important is the
definition of the task. At this moment we don't know a exact method which could transform
an 'optimal' DFG from a higher level description (equation, C function ...), since we don't
even know what optimal means in the case of a DFG. Comparing the structure a; and c; it is
noticeable that the mobilties in the case of structure a; are more than in the case of structure
c;, while the latency is less in the structure c; (L(c)=5; L(a)=9). The structure b; is a
recursive application. From chapter 2.5 (equation 2) it is clear that there is no worth
pipelining in this case.

a; b;

The VHDL behavioral description of structure c is:

PACKAGE Global IS
TYPE Vektor IS ARRAY (NATURAL RANGE o) OF INTEGER;
FUNCTION"+" (L,R : Vektor) RETURN Vektor;

END Global;

PACKAGE BODY Global IS

FUNCTION "+" (L,R : Vektor) RETURN Vektor is
VARIABLE result: Vektor(L'Range);
begin

for i in L'Range loop
result(i) := L(i) + R(i);

end loop;
return result;

end;

END Global;

USE work.Global.ALL;

ENTITY Fir_szuro IS
PORT (x: IN Vektor; y: OUT INTEGER);
END Fir_szuro;

ARCHITECTURE vis OF Firszuro IS
SIGNAL a,b : Vektor(l TO 8);
SIGNAL c : Vektor(l TO 4);
SIGNAL d : Vektor(l TO 2);
CONSTANT w: Vektor(l TO 8) := (others => 1);

BEGIN
PROCESS (x)

VARIABLE i,j,k: INTEGER;
BEGIN

FOR i IN 1 TO 8 LOOP
a(i) <= x(i-l) + x(i) AFTER 4 ns;
b(i) <= a(i) * w(i) AFTER 8 ns;

IF (i MOD 2) = 0 THEN

10

j:=i/2;
c(j)<= b(i-l) + b(i) AFTER 4 ns;

END IF;
IF (i MOD 4) = 0 THEN
k := i/4;
d(k)<= c(i/2-l) + c(i/2) AFTER 4 ns;

END IF;
END LOOP;

END PROCESS;
y<=d(l) + d(2) AFTER 4 ns;

END vis;

The PIPE results:

R: 7 9 11 13 15 30

a;
* 16 8 8 8 6 8
+ 14 14 14 12 10 8
bu 83 52 52 40 29 0

c;
* 16 16 8 8 8 8
+ 15 15 14 14 14 8
bu 44 22 16 0 0 0

4.2 Expansion of 3*3 Determinant

The VHDL behavioral description:

USE work.Global.ALL;

ENTITY graph IS
GENERIC (mt:time:=8 ns; at:time:=4 ns; st:time:=4 ns);
PORT(all,al2,al3,a21,a22,a23,a31,a32,a33:inReal;

11

kimrout Real);
END graph;

ARCHITECTURE Viselk OF graph IS
SIGNAL ml, m2 ,m3, m4, m5, m6, ml, m8, m9, mlO: Real;
SIGNAL ml 1, ml2, al, a2, a3, a4: Real;

BEGIN
ml <=all*a22 After mt;
m2 <= al2*a23 After mt;
m3<=al3*a21 After mt;
m4 <= al l*a23 After mt;
m5 <= al2*a21 After mt;
m6 <= al3*a22 After mt;
m7 <= ml*a33 After mt;
m8<=m2*a31 After mt;
m9<=m3*a32 After mt;
ml0<=m4*a32 After mt;
mll<=m5*a33 After mt;
ml2<=m6*a31 After mt;

al <= m7+m8 After at;
a2 <= mlO+ml 1 After at;
a3 <= al+m9 After at;
a4<=a2+ml2 After at;

kim <= a3-a4 After st;
END Viselk;

R: 14 16 18 20 22
AI 17 17 17 17 17
bu 68 68 56 56 56

4.3 Differential Equation Solver

The description of the DES is a small fixed-point calculation loop. The algorithm
tries to numerically solve the equation:

y" + 3xy' + 3y = 0

Here, u is assumed to represent dy/dx or y'. dx is approximated as xl - x. Similarly, dy = yl
- y and du = ul - u. The value 'a' provides the number of times the numerical loop is
executed, ul, xl and yl represent the new values of u, x and y. Thus, xl = x + dx, yl = udx
+ y, ul = u - 3xudx - 3ydx. The behavior executes by loading the initial values of x, y, u,
dx, and a.

12

\ (*; © <&) X

*

y

T

The VHDL behavioral description of the DES:

USE work.Global.all;

entity diffeq is
port (Xinport: in integer;

Xoutport: out integer;
DXport: in integer;
Aport: in integer;
Yinport: in integer;
Youtport: out integer;
Uinport: in integer;
Uoutport: out integer);

end diffeq;

architecture diffeq of diffeq is

begin

PI : process (Aport, DXport, Xinport, Yinport, Uinport)

variable x_var,y_var,u_var, a_var, dxvar: integer ;
variable xl, yl, tl,t2,t3,t4,t5,t6: integer ;

begin

x_var := Xinport; avar := Aport; dxvar := DXport; y_var := Yinport; uvar := Uinport;

while (xvar < avar) loop

tl = u var * dx var;

t2 = 3 * xvar;

t3 = 3 * y_var;

t4 = tl *t2;

t5 = dx var * t3;

t6 = uvar -14;

uvar :=t6 -t5;
yl := uvar * dxvar

y_j rar :=y_var + yl;

13

x_var := xvar + dx_var;

end loop;

Xoutport <= xvar;
Youtport <= yvar;
Uoutport <= u_var;

end process PI;

end diffeq;

The PIPE results (the graph was tuned with opened loop, and the number of the buffers in
the feedback-path was calculated manualy):

R: 7 9 11 13 15 30
AI 14 13 9 7 8 6
bu 125 92 51 41 35 3

5. Summary

A HLS method and the steps of a evaluation method were described. In this paper
four popular benchmarks was shown that could be suitable to compare different HLS tools.
The DES can be usefull for the application can handle recursions. The published solutions
were generated by the PIPE design tool. The PIPE can schedule and allocate structures wich
do not contain conditional branches (to test this part benchmarks can be found in [10]).
Another important property of the PIPE is that it can allocate just the same type of
processors (the functions in the behavioral level and the processors in the RTL level are the
same). It is also very important to give the exact definition of the functional element (timing
constraints, if it contain storage element or not, ... see in Glossary) to have correct
comparison.

6. Acknowledgements

This work was supported in part by the European Office of Aerospace Research and
Development, Contract No. 170895W0281, in part by COPERNICUS, Contract No. CP-
940453 and in part by OTKA , Contract No. T 017236.

14

References

1] Peter Aratö, Andrzej Rucinski, Robert Davis, Roy Torbert, Istvän Beres A High-
Level Datapath Synthesis Method for Pipelined Structures, Microelectronics
Journal 25,1994

2] Peter Aratö A Data-flow Model and Method for Optimizing the Pipeline
Restarting Period, Proc. of The Eighth Symposium on Microcomputer and
Microprocessor Applications, 1994

3] Time Scaled High-Level Synthesis for Pipelined Data-flow Structures, Peter
Arato, Andrzej Rucinski, Istvan Jankovits, Proceedings of ATW'94

4] Cheng-Tsung Hwang, Jiahn-Hurng Lee, Yu-Chin Hsu: A Formal Approach to the
Scheduling Problem in High Level Synthesis, IEEE Transactions on Computer-
Aided Design, Vol. 10. No. 4. April !991

5] High-Level VLSI Synthesis, Edited by Raul Camposano & Wayne Wolf Kulwer
Academic Publisher 1991

6] Scheduling and Assignment in High Level Synthesis, Wolfgang Rosenstiel,
Heinrich Kramer*

7] PISYN- High-Level Synthesis of Application Specific Pipelined Hardware, Albert
E. Casavant, Ki Soo Hwang, Kristen N. McNall*

8] Force-directed Scheduling for the Behavioral Synthesis of ASIC's, Pierre G.
Paulin, John P. Knight, IEEE Transactions on Computer-Aided Design, 1989/6

9] Istvan Jankovits, Tamäs Visegrädi: Pipelined execution in multi-user sequential
recursive loops, Periodica Politechnika, Accepted

10] Ivan P. Radivojevic, Forrest Brewer: Analysis of Conditional Resource Sharing
using a Guard-based Control Representation,Computer Hardware and Design,
October 1994

11] Istvän Beres: Ph.D. theses, TUB
12] Istvän Jankovits: A Scheduling and Allocation Method Based on a Time-Scaled

Algorithm, Proc. of The Eighth Symposium on Microcomputer and
Microprocessor Applications, 1994

13] Gabor Paller: Rafael: an Intelligent, Multi-Target Signal-Flow Compiler, Ph.D.
theses, TUB

14] Ivan P. Radivojevic, Forrest Brewer: Symbolic Scheduling Techniques, Computer
Hardware and Design, 1994

15] Alice C. Parker, Kayhan Kücükcakar, Shiv Prakash, Jen-Pin Weng: Unified
System Construction*

16] R. Camposano, R. A. Bergamaschi, C. E. Haynes, M. Payer, S. M. Wu: The IBM
High-Level Synthesis System*

17] Yu-Chin Hsu, Youn-Long Lin: High-Level Synthesis in the Theda System*
18] Design Framework II Reference Manual 4.3, March 1994.
19] SKILL Language Reference Manual 4.3, March 1994.
20] Verilog-XL Reference Manual 2.0, March 1994.

* High-Level VLSI Synthesis, Edited by Raul Camposano & Wayne Wolf, Kulwer
Academic Publisher 1991

15

COMBINATORIAL CRITERIA OVER GRAPHS
OF SPECIFICATION TO DECIDE SYNTHESIS

BY SEQUENTIAL CIRCUITS

Yves Pierre TISON, Pierre SIMONNET

Centre de Mathematiques et de Calcul Scientifique
Universite de Corse, B.P. 52, 20250 CORTE FRANCE

{tison, simonnetj@lotus.univ-corse.fr

April 15, 1996

Abstract: Here we present some algorithms which decide, for a given functional
specification, whether the function is continuous and whether the function is sequen-
tial. When the specification is synchronous (i.e the graph of the function is realized
by a synchronous automata) then these two notions coincide with asynchronous
sequential functions with bounded delay. We give an example where Biichi's syn-
thesis by a synchronous sequential function is not possible, but synthesis by an
asynchronous sequential function with bounded delay is possible. When the speci-
fication is asynchronous, we present an example of a continuous but not sequential
function, and we give a sufficient criterion to prove that a function is not sequential.

Key-words: Automata on infinite words, Synthesis, Reactive systems, Continuity.

1 Introduction

Links between finite automata and sequential circuits are well known. Two aspects
are interesting in sequential circuits: the verification of a specification and the syn-
thesis of a specification. The importance given to them was one of the reasons which
motivated people to study automata over o;-words [8].

In 1962 Büchi proved the decidability of SIS, the monadic theory of one successor
[3]. Btichi's proof shows that a SIS specification can be seen as an automaton over
u;-words. Therefore the verification of a SIS specification of a sequential circuit
reduces to testing the inclusion between languages recognized by automata over
o>-words, which is a decidable property.

In the 80's, for non-terminating reactive finite state programs this result was ex-
tended to several temporal logic system in place of SIS. Now these verification
procedures are implemented. For example, the synchronous programming language
Esterel has a module Tempest which verifies the temporal logic property of programs.
See [9] for an overview of program verification (model checking).

In 1969 Büchi and Landweber, in the context of finite state games, showed that
the synthesis problem for a SIS specification is decidable [4]. In the positive case,
the algorithm provides a deterministic finite automaton which outputs letters and
realizes the specification given. There are cases where the synthesis is not possi-

1

ble with such an automaton, but is possible by a deterministic finite automaton
which outputs words instead of letters. This is our starting point of investigation.
Our specifications will be graphs of functions, whether defined in SIS (synchronous
specification), or defined by non-deterministic automata which output words (asyn-
chronous specification).

In the synchronous case the synthesis by a finite state device will be possible if and
only if the function is continuous. In this case, a deterministic automaton which
outputs words with bounded delay between the input and the output realizes the
specification. We present a combinatorial test over the graph of the function which
decides the continuity of the function.

In the asynchronous case, we give examples of continuous functions which can not
be synthetized by a finite state device. We present a combinatorial test over the
graph of the specification which implies the non-realizability by a finite state device.
Our criterion is an extension to infinite word transducers of Choffrut's criterion. We
do not yet know if this criterion is necessary. The continuous functions given by
asynchronous specifications are recursive functions. Our example of a continuous
function which can not be synthetized by a finite state device can be implemented
with a stack.

In the second section, we state some well-known definitions that we will need: Btichi
automata, Muller automata, SIS theory, transducers and Büchi Landweber theorem.
We need also elements of topology because, in our case, a function is continuous if
and only if its graph is closed. Moreover, the natural classification of automata
over w-words is done using topological methods. In the third section, we study the
synchronous case and we present our criterion for continuous functions. In the fourth
section we treat the asynchronous case and we give our sufficient criterion.

2 Definitions

We present here some definitions we will use later.

2.1 Infinite words

Concerning the sets: V(Q) denotes the power set of a set Q. The set of integers is
denoted by N.

Let X be a finite alphabet. An infinite word over X, called a w-word, can be seen as
a mapping a : N -> X. So a w-word a is a sequence a = a(0)a(l)a(2)... a(n)...
where a(n) denotes the nth letter of a and a[n] denotes the finite left factor of length
n of a. We will define |u| to mean the length of the finite word u, so \a[n]\ = n.

Over X, the set of finite words is denoted by X* and the set of infinite words is
denoted by Xw. The empty word is noted e.

We will often employ examples concerning characteristic functions of subsets of N.
A characteristic function of a set can be seen as an w-word, with the least terms

at the beginning of the word. For example a = 10111001000... represents the set
{0, 2, 3, 4, 7}, a = 0W is the emptyset 0 and a = lw is N in its entirity.

2.2 Topology

Let be X a finite alphabet. In Xw we will consider the natural product topology.
This topology is also defined by the distance d

d:IuxIMR+ and
, , _ f 0 if a = ß;
1 'PJ_1 £ with n = mm{k/a(k)^ß(k)}.

With this topology Xw is a compact metric space.

We define here the first level of the Borel hierarchy in Xw. We use the logicians
notation as in Moschovakis's book. The exponent equal to zero corresponds to the
first order quantifications. The suffix gives the number of quantifier alternation. E
denotes the "3" quantification. II denotes the "V" quantification.

n° is the class of closed sets;
£° is the class of open sets;
II2 is the class of denumerable intersections of open sets.
E° is the class of denumerable unions of closed sets;

Theorem 2.1. Let be X" and Yw two metrisable compacts, and let be G the graph
of the function f : X" -)• Y", then

f is continuous -<=> G is closed.

Definition 2.2. A function / : Xu —> Yw is continuous in x0 if

Vn > 0,3m > 0/ \/x({x0[m] = x[m]) =» (f(x0)[n] = f(x)[n])Y

Theorem 2.3. The set of the continuous points of a function is a 11° set.

2.3 Büchi automata

Here we review the Büchi automata which correspond to usual finite automata
applied to infinite words.

Definition 2.4. A Büchi automaton A = (X, Q, I, S, F) consists of a finite alphabet
X, a finite set Q of states, a set of initial states JCQ,a set of final states F C Q
and a next state function

S:QxX ^ V(Q) and S(p, x) = {q e Q/ q E 6{p, x)}.

A Büchi automaton A is deterministic if the set of initial states is reduced to only
one element q0 and if for each letter and each state there is only one transition

f / = {?o};
I Vx <= X,Vp e Q, Card(g e Q/ q = 6(p,x)) = 1.

The run of a Büchi automaton A with an w-word a - a(0)a(l)a(2)... a(n)...
gives an infinite sequence of states c(a) = <?o9i92 ■ ■ ■ Qn • ■ ■ with

ql+l e 6{qi,a{i)).

We define the set of states which appear infinitely often in c(a) by

Inf (c(a)) = {p e Ql Card(z/ q{ = p) = +00}.

Definition 2.5. Let a Büchi automaton A = (X, Q, I, S, F). An w-word a G X" is
accepted by .A if there is a run c(a) such that Inf(c(a)) contains at least one final
state. The w-language recognized by A, that is the set of w-words accepted by A, is

LW{A) = {a e X"/ 3c(a),Inf(c(a)) n F ? 0}.

Example 2.1. Let the Büchi automaton A = (X,QJ,S,F) (fig.l) where A" =
{0,1}, Q = {g0,9i}, / = {90}, F = {g0}- This automaton recognizes the set contain-
ing the word a = 0W. This word is the characteristic function of the empty set over
N. It is a II? set.

Figure 1:

Example 2.2. Let the Büchi automaton A = (X,Q,I,S,F) (fig.2) where X =
{0,1}, Q = {g0, Qi}, I = {9o}, F = {qi}. This automaton recognizes the set of words
which have at least one 1. This set is also the set of characteristic functions of
non-empty subsets of N. It is a S? set.

Figure 2:

Example 2.3. Let the Büchi automaton A = {X,Q,I,5,F) (fig.3) where X =
{0,1},Q = {QO,QI},I = {QO},F = {qi}. This automaton recognizes the set of words
which have a infinite number of Is. This set is the set of characteristic functions of
infinite subsets of N. It is a II" set.

Example 2.4. Let the Büchi automaton A = (X, Q, 1,6, F) (fig.4) where X =
{0,1}, Q = {9o,9i,92,93,94},/ = {90,92},^ = {90,9s}- This automaton recognizes
the set of words which have a finite number of Is. This set is the set of characteristic
functions of finite subsets of N. It is a S° set.

Figure 3:

Figure 4:

Definition 2.6. A Büchi automaton A = (X, Q, I, S, F) is unambiguous if for each
o>-word a of LU(A), there is only one sequence c(a) which makes a accepted

Va G L„(A), Card(c(o;)/ Inf(c(a)) n F # 0) = 1.

Example 2.5. Let the Büchi automaton A = (X,Q,I,6,F) (fig.5) where X =
{0,1}, Q = {g0, <7i> Q2,Q3},I = {go}, F = {gi}. This automaton recognizes the words
beginning by 0 with at least one 1. It is ambiguous because the words whose first
two letters are 01 give two different runs.

Figure 5:

Example 2.6. Let the Büchi automaton A = (X,Q,I,8,F) (fig.6) where X =
{0,1}, Q = {qo,qi,q2},I = {?o},F = {qi}. This automaton recognizes the words
containing a finite non-zero number of Is. This is a non deterministic but unam-
biguous Büchi automaton.

2.4 Müller automata

We introduce here the Müller automata.

Figure 6:

Definition 2.7. A deterministic Müller automaton A = (X,Q,qQ,5,F) consists of
a finite alphabet X, a finite set Q of states, an initial state q0 e Q, a set of subsets
of final states T C V(Q) and a next state function

8 : Q x X -> Q and
£(p, x) = g.

By induction we extend this transition function over words of X* setting

S : Q x X* ->• Q and

f 5(p,e) =P;
\ 5(p, iix) = (5((5(p, u), x) for «er,iel

A deterministic Müller automaton has only one transition for each letter and for
each state

Vx e X,Vp <= Q, Card(V 8{p,x) = g) = 1.

Definition 2.8. Let a deterministic Müller automaton A = {X,Q,q0,S,T). An
o>-word a e Iu is accepted by A if there is a run c(a) such that the set of states
appearing infinitely often is exactly one of the sets describe in T. The w-language
recognized by A, that is the set of w-words accepted by A, is

LW(A) = {ae X"l 3c(a), Inf(c(a)) G T}.

Example 2.7. Let a deterministic Müller automaton A — {X, Q, q0, 6, T) (fig.7)
where X = {0,1}, Q = {q0, ?i}, ^ = {{tfo, ?i}, {tfi}}- This Müller automaton recog-
nizes the words with a infinite number of Is.

Figure 7:

Theorem 2.9. Let be A C Xw. The following conditions are equivalent:

i) A is recognized by a non deterministic Büchi automaton;

li) A is recognized by a deterministic Müller automaton.

6

Remark 2.10. It is easy to see that the family of sets recognized by deterministic
Müller automata is a boolean algebra. Also, the family of sets recognized by non
deterministic Biichi automata is closed under projection.

Definition 2.11. We call Auto the class of sets recognized by automata.

Lemma 2.12. If the language recognized by an automaton A is not empty then this
language contains at least one infinitely periodic word

(L(A) # 0) => (BU E L(A),3u,v <= X\3q 6 Qf a = uvw,q e 6(q0,u),q <=

S(q,v))

Lemma 2.13. The emptiness problem for automata is decidable.

To say whether a language L(A) is empty or not is decidable. It suffices to test if
L(A) contains at least one infinitely periodic-type w-word. The construction of one
successful word a will be given in finite time.

Corollary 2.14. The inclusion problem between sets recognized by Biichi automaton
is decidable.

2.5 Landweber characterization

Let A = {X, Q, 1,5, F) be a deterministic automaton. One can define other accep-
tance conditions. Let c € Q10 be a run of A.

c is an accepting run if 3i c(i) G F (Ej — condition)]
c is an accepting run if Vi c(i) 6 F (11° — condition);
c is an accepting run if 3j Vz > j c(i) e F (E° — condition);
c is an accepting run if Vj 3i > j c(i) G F (11° — condition).

U^(Auto) is the class of sets recognized by deterministic automata with a Ilj —
condition.
Tii(Auto) is the class of sets recognized by deterministic automata with a Ej —
condition.
li^Auto) is the class of sets recognized by deterministic automata with a nP> —
condition.
T,9,(Auto) is the class of sets recognized by deterministic automata with a E° —
condition.

Remark 2.15. We have the following inclusions:
U\{Auto) C n°;
T,\{Auto) C £?;
n°2(Auto) c n°;

E°2(Auto) C S§.

Remark 2.16. Ul(Auto) is the class of sets recognized by deterministic Büchi au-
tomata.

7

Theorem 2.17. (Landweber)
i) U°1nAuto = U°1(Auto);

ii) ,E0
1nAuto = E0

1(Auto);
in) 11° n Auto = 119, (Auto);
iv) S° n Auto = E°, (Auto).

This theorem says for example that if a set L is recognized by a non-deterministic
Büchi automaton and L is a 11° set then we can construct a deterministic Biichi
automaton which recognizes L.

Remark 2.18. Landweber gives an algorithm to decide which is the class of a set
recognized by a Müller automaton.

2.6 SIS theory

Büchi used sequential automata to prove decidability of the monadic second-order
theory of natural numbers with the successor relation which is called, for short, the
second-order theory of one successor, or SIS. The variables of SIS range over sets of
natural numbers. SIS atomic formulas have a form A C B or Succ(A, B). The latter
means that there is a natural number n with A — {n}, B = {n + 1}. Other SIS
formulas are built from SIS atomic formulas using conjunction, disjunction, negation
and the existential quantifier. Every set A of natural numbers can be identified with
its characteristic function, i.e. A(n) = 1 if n e A, and A(n) = 0 otherwise. For any
natural number m, let Em be the direct product of m copies of the set {0,1}.

Theorem 2.19. For every SIS formula <fi with m variables there is a Biichi Em-
automaton A such that for all sets Au... ,Am of natural numbers, (p(Ax,... , Am)
holds iff A accepts the T,m-sequence

Al(0),... ,Am(0),Al(l),... ,Am(l),A1(2),... ,Am{2). [3]

The desired automaton A is constructed by induction on <f>. The atomic case and
the cases of conjunction, disjunction and the existentials quantifiers are easy. To
handle the negation it suffices to use the equivalence between non-deterministic
Büchi automata and deterministic Müller automata (remark 2.10).

It is easy to see that sets recognized by automata are defined by SIS formulas.

The one-element set {x} is given by the automaton A = (X, Q, q0, S, F) (fig.8) where
X = {0,1},Q = {q0,quq2},F = {qi}.

Figure 8:

The successor Succ(x,y) meaning "x is the successor of y" is given by the au-
tomaton with two input tapes A = {X,Q,q0,6,F) (fig.9) where X = {0,1}2,Q =
{qo,QuQ2,q3},F = {q2}-

Figure 9:

The inclusion A C B is given by the automaton with two input tapes A
(A, Q, q0, 5, F) (fig.10) where A = {0, l}2, Q = {q0, qi},F = {q0}.

Figure 10:

2.7 Transducers and functions realized by automata

Definition 2.20. A morphism ip is a function from X* into Y* such that
<f(e) = e and (p(uv) = ip(u)ip(v).

It suffices to define ip on letters of X. If Va G X if (a) / e then we can extend ip into
a function <p : X" -)• Y".

Definition 2.21. A sequential transducer T = {X,Y,Q,q0,S,a) is a deterministic
automaton with an output function. It consists of a finite input alphabet X, a finite
output alphabet Y, a finite set of states Q, an initial state q0, a next state function
5 and an output function a

5:QxX-+Q,a:QxX^Y*.

We extend the next state and the output functions over words of A* by
6 : Q x X* -^ Q with S(q, e) = e and 5(q, ux) = S(5(q, u), x), u G X*, x G A;
a : Q x A* ->• F* with a(<?, e) = g and <r(g, ux) = cr(<?, u)a(5(q, u),x).

A sequential transducer defines a function / : A* —>• F* with f(u) = <r(qQ, u).

We call a transition p —> q a sequence of states PP1P2 ■ ■ ■ pnQ given by the run of a
word u G A* from the state p. A loop will be a transition with q = p so p-%p.

If there is no loop p —^ p with an output word equal to e, we can extend / over
w-words / : Xu ->■ Fw with

f{a) = a(q0, a) = lim (a(q0, a[n])).
r» —±rvi n^-oo

If there is a loop p-^p with an output word equal to e, f will be a partial function
f ■ xu ->• Y" whose domain is recognized by deterministic Müller automata.

Definition 2.22. A function / : X" ->• Y" is sequential if it is realized by a se-

quential transducer.

Remark 2.23. Any morphism is a sequential function.

Example 2.8. Let / be the multiplication by 2 of an integer / : N ->■ N and
f(x) = 2x. An integer is defined as a singleton over N. Then its characteristic
function is an w-word containing only one 1. Let g : {0,1}N -> {0,1}N be a function
which doubles every 0 before the first 1. If we reduce its domain to the words
containing at most one 1 we obtain the multiplication function / in binary code and
#(0n10w) = O^IO^. This function g is realized by the sequential transducer (fig.ll).

Figure 11:

Definition 2.24. A 1-sequential transducer T is a sequential transducer with the
output function reduced to

a :QxX ^Y.

Remark 2.25. The function g presented in (fig.ll) can not be realized by a 1-
sequential transducer. This can be proved using the pumping lemma. An another
way to see it is that its graph can not be defined in SIS because if we add the
function f(x) = 2x to the language of SIS the theory becomes undecidable [23].

Definition 2.26. A sequential transducer has a bounded delay iff the length differ-
ence between the input and the output labels of every loop is 0.

Example 2.9. The sequential transducer (fig.12) has a bounded delay.

b/a () b/b
a/ba

Figure 12:

10

Definition 2.27. A Büchi transducer T = (X,Y,Q,I,E,F) consists of a finite
input alphabet X, a finite output alphabet Y, a finite set of states Q, a set of
initial states / C Q, a set of final states F C Q, a finite set of transitions E C
QxX xY* xQ.

Remark 2.28. If we forget the output we have a non-deterministic Biichi automa-
ton.

Definition 2.29. To normalize a Biichi transducer consists in reducing the set of
initial states to an initial state qQ, retaining from the set of states Q which are
accessible from q0, retaining the states from which an o>-word can be recognized.

From now on we will consider only the normalized transducers.

Definition 2.30. An unambiguous Biichi transducer T is a Biichi transducer such
that for each w-word of Dom{T) there is only one acceptant calculus.

Remark 2.31. With a normalized unambiguous Biichi transducer, Vp, q e Q,Vu G
X* there exists at most one transition p—±q.

So with the output of any transition we can define the output function a : Q x X x
Q —>■ y*. If the transition p-^-q exists then a(p, u, q) is equal to the concatenation
of each output present in the transition. If a transition p —% q does not exist we
have cr(p,u,q) = 0.

If there exists no loop p-^+p such that o{p,u,p) = e then the transducer defines
a partial function / : Dom(T) —> Y". If a G Dom(T) there is a unique accepting
run c(a) = g0<?i<72 • • • • The output of a, /(a) = a(q0, a(0),qi)a(qi, a(l), q2) ■ ■ ■, is
the concatenation of the outputs of the transitions. If there exists a loop such that
a(p,u,p) = e some infinite words are transformed into finite words. To eliminate
these words we reduce the input domain to another one still recognized by Büchi
automata.

Example 2.10. The Biichi transducer of (fig. 13) is unambiguous.

Figure 13:

Definition 2.32. A 1-unambiguous Biichi transducer T is an unambiguous Biichi
with the output function reduced to

a:QxXxQ->Y.

11

2.8 Büchi Landweber theorem

Definition 2.33. An infinite game with two players I and II consists of two finite
alphabets X and Y, a subset S C (X x Y)w. I plays letters from X, II plays letters
from Y. Player / constructs an infinite word a. Player II constructs an infinite
word ß. Player 77 wins if (a, ß) G S.

A strategy for player J is a function / : Y* ->■ X. A strategy for player II is a
function g : X+ -> Y (X+ = X* - {s}).

A strategy is winning for I if Vß(f(ß),ß) i S. A strategy is winning for II if
Va(a, g(a)) € S.

Theorem 2.34. If S C (X x Y)n is recognized by a Müller automaton then one
of the players has a winning strategy given by a 1-sequential function (for I it is a
Moore automaton). There is an algorithm which given S decides which player has
a winning strategy and constructs for this player a 1-sequential function which is a

winning strategy.

See [23] for a proof. In particular if II has a winning strategy then he has a 1-
sequential winning strategy. The theorem solves the synthesis problem for SIS
specification. It is equivalent to the decidability of the emptiness problem for in-
finite tree automata, which is used to prove the decidability of S2S, the monadic
theory of the binary tree (two successors). S2S is a powerful tool to prove decidabil-
ity results and is usually used in the theory of concurrence to express properties of
programs. The satisfiability problem for several modal logic like computation tree
logic or branching time logic can be translated into a S2S formula (see [2]). Landwe-
ber's characterizations and decidability results can be proved easily by the previous
theorem.

3 Synchronous functions

Proposition 3.1. (Arnold) For each Müller automata we can construct an unam-
biguous Büchi automata which recognizes the same language.

Corollary 3.2. Let be a function f : Xu -» Yw. The following properties are
equivalent:

i) f has a graph defined in SIS;
ii) f is realized by an unambiguous Büchi 1-transducer.

Remark 3.3. The unambiguous Büchi 1-transducers realize the synchronous func-
tions.

Remark 3.4. For a SIS specification, to be a function can be expressed by a SIS
formula so it is a decidable property.

Proposition 3.5. Let be f a function whose graph is defined by a SIS formula, f
is continuous iff f is realized by a sequential transducer with bounded delay.

12

Remark 3.6. If / is continuous its graph is closed so it is a Hl(Auto) and we use
a determinisation over the input to prove the result. This fact has been mentioned
by [23] and [14]. In the opposite sens this is a particular case of a result of Frougny
and Sakarovitch [11].

Example 3.1. A continuous function / is defined by the unambiguous Btichi 1-
transducer (fig. 14). The sequential transducer with bounded delay (fig.12) realizes

Figure 14:

Remark 3.7. This function can not be realized by a 1-sequential transducer. This
can be proved using the Btichi Landweber theorem on determination of finite state
games - player I has a 1-sequential winning strategy so player II does not have
a strategy. This is an example where Btichi says there is not synthesis for the
specification. But in fact we can synthesize the specification by a sequential circuit
which outputs words. We think it will be interesting to find real examples of this
kind for applications in non-terminating reactive finite state programs.

Proposition 3.8. Let be f a function whose graph is defined by a SIS formula. The
set of points of continuity of f is a Ul(Auto).

Proof: It is easy to see that the set of points of discontinuity of / is defined by a
SIS formula so by theo. 2.19 it is in Auto, by theorem 2.17 and theorem 2.3 it is
W,{Auto). D

This proposition could be used if we are interested in the synthesis over a given
domain.

Theorem 3.9. Let be f a function realized by an unambiguous Biichi 1-transducer
T (fig 15). f is not a continuous function iff there exists a pair of states (91,92) and
a pair of words (u, v) such that

i) the loop 9i —> q\ does not meet a final state;
the loop 92 —> 92 meets a final state;

it) a(q0,u,qi) = ui;
a(q0,u,q2) = u2; (1)
v{qi,v,qi) =vx;
o-(q2,v,q2) = v2; and
Ui y£ u2 orvi ^ v2.

13

Figure 15:

Proof: Let there be a pair of states qu q2 and a pair of words u, v such that condition
(1) holds. Let the sequence of words be (uvnwtu). We have

f(uvnwr) = UxvTwitf and lim uvnwf = uv",

lim u^w-ft = ui<, but /(w") = u2v% ^ u^.
n—>oo

/ can not be continuous because the limit of the image of the sequence is not equal
to the image of the limit of the sequence.

On the opposite sens the proof uses the characterization of Landweber on Müller
automata to prove the assertion. n

Lemma 3.10. Let T be an unambiguous Büchi 1-transducer realizing a function f.
For a pair of states (qu q2), if there exists a pair of words (u, v) such that (1) holds
then there exists a pair (u,v) with \uv\< 2n2 such that (1) holds.

Corollary 3.11. Let f be a function realized by an unambiguous Büchi 1-
transducer. It is decidable whether f is not continuous.

Remark 3.12. We have noted that for SIS specification to be a closed set is de-
cidable (remark 2.18), and for SIS functional specification to be continuous can
be expressed by a SIS formula. This gives two other ways to prove the corollary.
But we prefer a combinatorial criterion which is visual. Our algorithm to prove
non-continuity has a TVP-complexity.

4 Asynchronous functions

If there exists no transition p-^qwe denote the output by a(p, u, q) = 0.

Definition 4.1. Let be T = (X, Y, Q, q0, E, F) an unambiguous Büchi transducer.
Two states quq2 G Q (fig-16) are twinned iff Vu, v G X* the following condition
holds

a(q0,u,qi) =«i^0
a (an, u, q2) = u2 7^ 0 I _i _i /9\
<r{quv,qi) =vi ^0 '
ö"(<72, v, q2) =v2^0

14

Figure 16:

Definition 4.2. Let T — (X,Y,Q,q0,E,F) be an unambiguous Büchi transducer.
T has the twinning property if any two states are twinned.

Remark 4.3. This property of transducers has been used to characterize the sub-
sequential functions as a class of rational functions over finite words [7], [2].

Proposition 4.4. LetuyU2V\V2 £ Y* [7]. Then

UiViU^1 = U2V2U21

iff one the following conditions is verified

i) Vl = v2= £;
ii) vi 7^ e 7^ v2) and there exists e € Y* such that either

ii.a) u2 = U\e and ev2 = v\e;
ii.b) U\ = u2e and ev\ = v2e.

Lemma 4.5. Let be T an unambiguous Büchi transducer. For a pair of states
(#i>92) if there exists a pair of words (u,v) such that (2) does not hold then there
exists a pair (u,v) with \uv\< 2n2 such that (2) does not hold [7].

Corollary 4.6. Let be T an unambiguous Büchi transducer. It is decidable whether
or not T has the twinning property [7].

Example 4.1. The unambiguous Büchi transducer T (fig-17) which realizes the
function / : Xw —> Xw has the twinning property

f(aw) = a(ca)w = (ac)w;
f(an+1bXu) = a(ca)nbX", n > 0;
f(an+1cXw) = {ac)n+lcXu, n > 0;
fibX") = bX";
f{cX») = cXw .

Theorem 4.7. Let be f a sequential function. For each unambiguous Büchi trans-
ducer T realizing f, T has the twinning property.

Example 4.2. Let be a function / : Xu -» 7" realized by the unambiguous Büchi
transducer T (fig. 18). / is continuous but / is not sequential.

f(a") = {aay = a"-
f{anbXul) = a2nbX", n > 0;
f(ancXu) = ancXw, n > 0 .

15

a/a
b/b
c/c

This function / is continuous. Let be the alphabets A = {a,b,c,x,y,z,t},
B = {a,b,c}, C = {a,b,c,aa}. Let us consider the set K C Aw recognized by
the automaton (fig. 19). Let G be the graph defined by the unambiguous Büchi

Figure 19:

transducer T. K is a H\{Auto) so it is a compact set. Let us consider the following
bimorphism (</?, ip) defined by:

16

(p(a) = a; ift(a) = a;
<p(b) = b- i>{b) = b-
f{c) = c; ip{c) = c;
(f(x) = a; ip{x) = aa;
ip(y) = a; ip(y) = a;
tp(z) = a; ip(z) = aa;
ip(t) = a; ip(t) = a.

We have (ip,^)(K) = G(f). (ip,ip) is continuous so (tp,ip)(K) is compact and / is
continuous since G(f) is closed.

However / is not a sequential function because T does not have the twinning prop-
erty:

U\ = aa

v =aa so («i«i«i ^u2v2u2).

u2 = a

Example 4.3. The unambiguous Büchi transducer T (fig-17) has the twinning
property. The function realized by T is also realized by the sequential transducer
V (fig.20).

C—"N ^a

a/ca I] b/b
b/b \ 1 c/c

c7cc~ -*®

Figure 20:

Proposition 4.8. Let there be a function f : X" —> Yw realized by a unambiguous
Büchi 1-transducer T. We have

f is not continuous => T does not have the twin property.

The continuous criteria (1) and the twinning criteria (2) are similar. For synchronous
functions, (2) is a necessary and sufficient criteria to have sequentiality. For asyn-
chronous functions we would extend this result to obtain the decidability of sequen-
tiality (for rational functions on finite words this is a decidable property) [2].

Example 4.4. The unambiguous Büchi transducer T (fig.21) realizes the following
function /:

0W if a = 0" .
if a contains at least one 1. /(«) = { I

Obviously, this function / is not continuous and the transducer T does not have the
twinning property.

17

Figure 21:

5 Conclusion

Our continuous function example (fig.18) is a real algorithm. It can be implemented
with a stack. While we see a we write a and store a in a stack. When we see c we
write c and after we just rewrite the input. But if we see b then while the stack is
not empty we write the top of the stack and pop, then when the stack is empty we
write b and after we just rewrite the input.

Continuous functions defined by unambiguous Büchi transducer are recursive func-
tions. There are closed links with the synchronous decision diagram of Vuillemin
[24]. As it was remarked by Klauss Winkelmann our continuous function example
(fig.18) is an online function (Va,/3 d(/(a),/(/?)) < d(a,ß)). We hope our work
will be used in the context of non-terminating reactive programs.

To finish, we note that the example (fig.18) proves that we can not extend the
Büchi and Landweber theorem on finite state games (they said that if a player has
a strategy then he has a 1-sequential strategy) to w-rational relations of [11]. If we
take for specification the graph of S C (X x Y)w, the player II has a unique winning
strategy which is not a sequential function.

References

[1] ARNOLD A., 1983, Rational languages are unambiguous, Theor. Comp. Sei. 26
pp. 221-223.

[2] BERSTEL J., 1979, Transductions and Context-Free Languages, Stuttgart, Teub-
ner.

[3] BÜCHI J.R., 1962, On a decision method in restricted second order arithmetic,
in Proc. Int. Congr. Logic, Method, and Philos. of Science (E. Nagel et
al., eds.), Stanford Univ. Press, Stanford, pp. 1-11.

[4] BÜCHI J.R., LANDWEBER L.H., 1969, Solving sequential conditions by finite-
state strategies, Trans. Amer. Math. Soc. 138, pp. 295-311.

[5] BURCH J.R., CLARKE E.M., McMILLAN K.L., DILL D.L, HWANG L.J.,
1992, Symbolic model checking: 1020 states and beyond, Informations and
Computation 98(2), pp. 142-170.

[6] BÜTTNER W., WINKELMANN K., 1995, Equation solving over 2-adic integers
and applications to the specification, verification and synthesis of finite state
machines, to be published.

18

7] CHOFFRUT O, 1977, Une caracterisation des fonctions sequentielles et des
fonctions sous-sequentielles en tant que relations rationnelles, Theoretical
Computer Science 5, pp. 325-338.

8] CHURCH A., 1963, Logic, arithmetic and automata, Proc. Intern. Congr. Math.
1962, Almquist and Wiksells, Uppsala, pp. 21-35.

9] CLARKE E., GRUMBERG O., LONG D., 1994, Verification tools for finite-
state concurrent systems, A Decade of Concurrency (J.W. de Bakker et al.,
eds), Lecture Notes in Computer Science 803, Springer-Verlag, Berlin, pp.
124-175.

10] EILENBERG S., 1974, Automata, Languages and Machines, vol A, Academic
Press, New York.

11] FROUGNY C, SAKAROVITCH J., 1990, Rational relations with bounded de-
lay, Rapport d'activite Laboratoire Informatique Theorique et Programma-
tion 90.83, Institut Blaise Pascal.

12] GINSBURG S., ROSE G.F., 1966, A Characterization of machine mappings,
Canadian Journal of Mathematics 18, pp. 381-388.

13] LANDWEBER L.H., 1969, Decision problems for u-automata, Math. Syst.
Theory 3, pp. 376-384.

14] LATTEUX M., TIMMERMAN E., 1990, Rational to-transauctions, Laboratoire
d'Informatique fundamentale de Lille, Publication n IT 176 90.

15] McNAUGHTON R., 1966, Testing and generating infinite sequences by a finite
automaton, Inform, and Control 9, pp. 521-530.

16] MOSCHOVAKIS Y.N., 1980, Descriptive set theory, North-Holland.
17] NIVAT M., PERRIN D., 1984, Automata on infinite words, Ecole de Printemps

LNCS 192.
18] NÖKEL K., WINKELMANN K., 1995, Controller synthesis and verification:

a case study, C. Lewerentz, Th. Linder, Formal Development of Reactive
Systems, Case Study Production Cell, Springer Lecture Notes in Computer
Science, 891, Berlin, Heidelberg.

19] PERRIN D., PIN J.E., 1993, Mots infinis, Laboratoire Informatique Theorique
et Programmation, LITP 93.40.

20] STAIGER L., 1987, Sequential mappings of co-languages, Math. Syst. Theory
3, pp. 376-384.

21] THOMAS W., 1990, Automata on infinite objects, Handbook of Theoretical
Computer Science, Vol B, North-Holland, Amsterdam.

22] THOMAS W., 1994, On the synthesis of strategies in infinite games, Institut
für Informatik und Praktische Matematik, Christian-Albrechts-Universität
Kiel.

23] TRAKHTENBROT B.A., BARZDIN Y.M., 1973, Finite automata, North-
Holland, Amsterdam.

24] VUILLEMIN J., 1994, On circuits and numbers, IEEE Trans, on Computers
43:8:868-27,79.

25] WAGNER K., 1979, On co-regular sets, Information and control 43, pp. 123-177.

19

Technical Session 3

Dependability

Chair: R. Straitt, US Air Force, USA

Automatic Generation and Optimization of Markov Matrices,
A. Cabarbaye, Centre National d'Etudes Spatiales, France
Fault Modelling in Space-Borne Reconfigurable Microelectronic Systems,
A. Rucinski, N. Valverde, University of New Hamphire, USA
C. Baron, LESIA-INSAT, Toulouse, France
P. Bisgambiglia, D. Federici, J.F. Santucci, University of Corte, France
Prevention of Replication Induced Failures in the Context of Integrated Modular Avionics,
P.D.V. van der Stok, P.T.A. Thijssen, Eindhoven Univ. of Techn., Netherlands
Petri Net Modelling and Behavioral Fault-Modelling Scheme for VHDL Description,
D. Federici, J-F. Santucci, P. Bisgambiglia, University of Corte, France

AUTOMATIC GENERATION AND OPTIMISATION OF
MARKOV MATRICES

Andre CABARBAYE - ^NES 18, avenue EdouardBelin 31055 Toulouse France
Tel. 61 28 27 41- Fax. 61 28 22 31
Email Andre. Cabarbaye@cst. cnes.fr

keywords : Markov - Reliability - Availability - Optimisation

Abstract

This paper presents computer processing methods which automatically generate the
Markov matrix of a system from logical expressions, to make easier the reliability and
availability evaluations.
These methods can take into account any relationships between transition rate values and
configurations of the states of the system (cold redundancies, conditional maintenance..).
Moreover, they allow the dimension of the matrix to be optimised by grouping the
equivalent states.

Resume

Afin de faciliter les evaluations de fiabilite/disponibilite, cette communication presente
une methode de generation automatique de la matrice de Markov d'un Systeme dont le
fonctionnement est defini ä partir d'expressions logiques.
Cette methode permet de traiter d'eventuelles relations de dependance (redundance
froide, maintenance conditionnelle...), et limite la taille de la matrice obtenue en
regroupant les etats equivalents du Systeme.

Introduction

Markov processes can be used to model the behaviour of many systems and to calculate
reliability/availability much more precisely than through simulations (Monte-Carlo).
However, this type of model requires a complex construction for more than around ten
states, and this cannot be done manually.
Moreover, the number of states increases exponentially with the number of elements in
the system (2n for n elements with two states : correct operation and failure), often
making calculations very difficult and limiting the size of the systems studied.

The aim of this article is to present computer processing methods which automatically
generate the Markov matrix of a system, using logical expressions which characterise its
operation, and which allow the dimension of the matrix to be optimised by grouping
some of the states together.

1- Logic analyser based on the principle of insertion

The Markov matrix of a system of n elements can be constructed in a simple way using
insertion. The combinations of the states "correct operation" (a) and "failure" (na) of the
various elements (a, b, c.) are arranged as follows:

c b a
c b na
c nb a
c nb na

nc b a
nc b na
nc nb a
nc nb na

- ^a *b *C

Ha - ^ *c
nb - Xa Xc

Mb na - *c
MC - ^a *b

MC na - Xb
nc nb - ^a

nc nb na -

3 element matrix

Coefficients X\; represent the transition rates from line states i (left) to column states j
(top).
Transition rates XSL and ua are respectively the failure and repair rates of element a.

The states for which the system is available can be simply defined using a logical
expression relating the various elements.
Any relationships linking certain transition rate values to configurations of the states of the
system can also be expressed in this way.
This type of relationship is used for example for conditional maintenance or for cold
redundancies (k* = A710 for an element which is switched off).
The approach is illustrated in the following example:

a b

c

Cold

Available states: (a and b) or c

Dependency relationships : a and b => X,C*

MAT :
c b a 1
c b na 2
c nb a 3
c nb na 4

nc b a 5
nc b na 6
nc nb a 7
nc nb na 8

i 2 3 4 5 6 7 8
- ^ k> Xc*
na - >* Xc
nb - ^a ^c

nb na - ^c
nc - *a ^b

nc na - Xb
Mc nb - ^a

nc nb na -

STATES : I 1 1 1 1

This method for automatically generating the Markov matrix is currently included in the
Supercab1 software, which is used at CNES for some assessments.
The states for which the system is available are defined by a logical expression of the form
n(axb+n(c+exnf)) using the logical operators OR (+), AND (x), and NOT (n), where letters
a, b, c, e, and f represent the elements of the system.
Dependency relationships can be written using similar expressions.

XI

Produced by Microcab, 113 rue du Chateau Paris 75014, France.

The software tool uses insertion to construct the system matrix. Dependent links are taken
into account by modifying the transition rate values using the corresponding logical
expressions.
The user need not built the matrix itself, which means that it is relatively easy to determine
the availability of a complex system. This is illustrated in the following example:

a
Cold

c d e

b
Cold

Loss of C or D -> use A

Loss of E or (D and A) -> use B

Availability

1 p^
0,9995 -

0,999 -
0,9985

C D O c CD
CD CD

o
CD

hours

Logical expressions
Available states

hr"1
cxdxe+axe+cxb

Xa. 7,00E-O5

Xa* 7,00E-06 cxd
na 9,OOE-03

Xb 8,00E-05

Xb* 8,00E-O6 ex(d+a)
Hb 7,OOE-03
Xc 4.50E-05
HC 8,00E-03

Xd 7,50E-O5
Hd 6,00E-02
Xe 9,00E-04

ae 9,50E-O3

In spite of the attractiveness of this processing method, one major disadvantage is that the
dimension of the matrix generated (2n) can rapidly restrict its use.
A method for grouping states which minimises this problem is therefore presented below.

2 - Grouping states

Many groups of states are possible within a system as long as not all of the elements are
considered to be individually repairable.
Indeed, the configuration of the system often results in some states being equivalent. If
there are symmetries in the system architecture, the number of equivalent states can be
significantly increased.

The following example illustrates how states can be grouped together:

c

a b

a'
Cold

b'
Cold

c'
Cold

Hypotheses:

a and a' identical elements

b and b' identical elements

c and c' identical resources

The number of elements used simultaneously
is minimised

Losing resource c (power supply of a and b) has the same effect on the system as losing
both a and b.
Using equivalences of this type and the set of symmetries which may be observed in the
architecture allow the 64 (2) states of the system to be grouped into 6 distinct states.

The reduced Markov matrix then becomes:

1 2 3 4 5 6
- ^a+^a* ?.b+X.b* 0 kc+kc* 0
0 - 0 Xb A.b*+^c* Xa+Xc
0 0 - Xa Xa*+Xc* Xb+Xc
0 0 0 - 0 ta+Xb+2Xc
0 0 0 0 - Xa+Xb+Xc
0 0 0 0 0 0

No failure: 1
Loss of a or a': 2
Loss of b or b': 3

Loss of a and b' or a' and b : 4
Loss of all redundancies : 5

Loss of the system : 6

Repair rates for entire blocks can then be introduced into the reduced matrix (e.g.: repair
rate of block abc).

In many cases, this method for grouping states prevents the number of combinations of
states from becoming too large. However, it requires an in-depth and often tedious
analysis of how the system operates, and can lead to errors such as incorrect grouping
(state 4 often forgotten in the above example).
Because of this, a way of making the analysis automatic was developed.

3 - Automatic method for grouping states

A method for grouping states was designed and a model developed. First, both the
logical expressions defining the system's available states and any dependency
relationships, are decomposed into simple elements. Then the states which result in
identical logical states for each of these simple elements are grouped together.

The following example illustrates the approach:

a b

c
Cold

States axb c Grouped states
cb a
cb na
cnb a
cnb na
neb a
ncbna
ncnb a

nc nb na

1
0
0
0
1
0
0
0

1
1
1
1
0
0
0
0

->cb a
1
1 -> c nb na
1
->ncba
1
1 —> nc nb na
1

Available states: axb+c
Dependency relationships : Xc if axb

Two simple and distinct elements axb and c are obtained by decomposing the logical
expressions. 1 represents the state "correct operation", 0 represents "failure".
For identification purposes, each group of states takes the name of the state of the group
which contains the most failed elements (c b na, c nb a, c nb na —> c nb na).

This method of preliminary grouping is very effective for many real situations.

The examples analysed above give the following results:

a
Cold

f
Cold

cxdxe+axe+cxb

cxd => Xa*

ex(a+d) => Xb*

Grouped states
a b c d e: 1

na b c d e 2
a nb c d e: 3
a b c nd e: 4

na nb c d e: 5
a nb nc nd e: 6
na b c nd ne: 7

na nb nc nd ne: 8

1 2 3 4 5 6 7 8
- Xa* Xb* Xd

- Xb* Xd+Xe Xc

"
Xa* Xd+Xc

Xb*+Xc Xa+Xe
Xe

Xc+Xd+Xe
Xa+Xe
Xb+Xc

The dimension of the resulting matrix is 8 instead of 32 (25).

c

a -
b

d
Cold

e
Cold

f
Cold

axbxc+dxfxbxc+axcxexf+dxexf

axbxc=>X.d* nbxdxexf => A.a*

axbxc => Xe* naxdxexf => A.b*

axbxc => Xf*
naxdxexf+nbxdxexf => Xc*

Grouped states

a b c d e f :
na b c d e f :
anb c d e f :
a b c nd e f :
a b c dne f :

na b c dne f :
anb c nd e f :

nanbi ic d e f :
a b c nd ne nf :

10

nanbncndnenf :10

/.a Xb Xd* XQ*

Xe

Xa

Xc
Jlb*+Xc*

Xd
Xb

Xf*

Xa*+Xc*
Xe*+Xf*
U*+Xf*

The dimension of the resulting matrix is 10 instead of 64 (26).

Xd+Xf
Xe+Xf
la+Xc
Xb+?x

Xb+Xc+Xd+Xf
Xa+Xc+Xe+Xf

Xd+X&^-Xf
Xa+X.b+Xc

Conclusion

Assessing reliability/availability can enable both the system architecture (redundancies,
cross-strapping, reconfiguration procedure, etc.) and maintenance policies (spare parts
batch, preventive maintenance, availability of technical staff, etc.) to be optimised.
As a result, the global cost of a product can often be significantly reduced. However this
assessment is sometimes difficult to carry out, particularly for non-specialist designers.

The work described here helps solve this problem by providing users with tools which
only require knowledge of the logical operation of the system concerned.
Moreover, the suggested method for grouping states should allow Markov techniques to
be extended to complex systems with many interdependent elements.

Further research could improve this method in order to identify and exploit symmetries in
the architecture. Indeed, for most applications, the system contains identical elements
which can lead to further grouping of states.

References:

1. A. Pages & M. Gondran, Fiabilite des systemes, Edition Eyrolles, Paris 1980.
2. A. Villemeur, Sürete de fonctionnement des systemes industriels, Edition Eyrolles,
Paris 1987.
3. E. Lourme, Moderation d'un systeme par matrice de Markov, Sup Aero Toulouse
1995.
4. J. Devooght & B. Tombuyses, Aggregation methods for reliability and availability
calculations, Elsevier Science Limited, Oxford UK, 1996.

FAULT MODELING
IN SPACE-BORNE RECONFIGURABLE

MICROELECTRONIC SYSTEMS

Andrzej Rucinski*, Norbert Valverde*, Claude Baron**,
Paul Bisgambiglia***, Dominique Federici***, Jean-Francois Santucci***

* University of New Hampshire, U.S.A.
**INSAT/DGE/GERII, Toulouse, France
*** University of Corsica, France

Abstract

With diminishing budgets of space agencies around the World, it becomes critical to search
for lower cost solutions to keep exploration programs alive. One of the cost contributing
factors is the common use of rad-hard electronic devices for space applications. This paper
questions this requirement by proposing an alternative which employs highly adaptable
microelectronic architecture potentially absorbing the impact of space born defects. The
FPGA soft programmable device under study is driven by a rad hard 80186 microprocessor.
The proposed experiment, called TRIAD, enables the validation of different fault models in
space borne systems, with the expectation of behavioral fault models being most attractive.

Keywords : Space Applications, VHDL Modules, Fault Tolerance Devices, Reconfigurable
Architecture.

1 Introduction

Emerging paradigms of Reconfigurable Systems [1], [2] which include RAMs, FPGAs [3],
PCMCIA cards, and hard disks (well established technologies) on one hand and
Microarchitectures (an emerging low end category of microelectronic systems) on the other,
require addressing the dependability issue in a novel, coherent, and integrated fashion. The
testing issue addressed in this paper is considered in the context of applying reconfigurable
systems in space which poses two additional challenges:
• The first one is the problem of determining fault models in space-borne systems.

Today's radiation-hardened solutions, typically used in space applications, lag far behind
the capabilities of mainstream microelectronic systems [4]. Shrinking federal budgets
may further widen this gap, and even eliminate the rad-hard market. To expand the
number of options for space-borne applications, this paper introduces a concept enabling
semiconductor engineers to study rad-hardness alternatives using an approach based on a
TRIAD: highly dependable systems, evolving technologies, and advanced packaging.
The focus is on Behavioral Faults [5], [6] used as metrics to characterize the

technology-dependability impact. Better understanding of physical defects manifested at
a lower than the system level may ease the need for radiation hard solution in space by
employing massive redundant options in reconfigurable systems.

• The second issue is connected with the development of small, light, and even
nanosatellite technologies [7] in both scientific and commercial missions. Rad hard
technology is generally expensive, but especially unacceptable in a COTS oriented small
satellite technology. Rad hard approach is by definition counterproductive since it uses
"frozen" architectural and systems developments. In addition, radiation effects are
typically considered at the system level (e.g. the maximal radiation dosage is
proportional to the Mean Time To Failure (MTTF) which implies a system level
reliability model [8]. This model does not take into account the logical and functional
structure of a microelectronic device). Thus, new models at a lower level of abstraction
need to be derived.

The TRIAD experiment can be conducted either on Earth or in Space, or both, with the
following trade-offs in mind:
• An Earth experiment is very expensive with a single test typically free of charge. In

Space the cost can be very reasonable since it is sufficient to conduct TRIAD as a
secondary space experiment with a low priority communication requirements

• Artificial radiation environment created in a laboratory may not be sufficiently accurate
to conduct this experiment

In the next section, we present the TRIAD architecture and the scenario of Fault Model
Validation. In the section three, VHDL description of devices under test (a non-redundant
register and a triple redundant register with voter).

2 The TRIAD architecture

The TRIAD architecture is a test bed for conducting trade-off studies between
technologies, fault-tolerance, and testing in space:
. Architecture: Figure 1 represents a block-level diagram of the architecture system
concept. The upper part of the design, an FPGA-based bus interface and 80186-based rad-
hard controller, is implemented in technologies with high survivability in space. The lower
part corresponds to the Unit Under Test (UUT), with uncertain space survivability. UUT
represents a volume in three dimensional space determined by testability, technology, and
fault tolerance selected for the experiment.
. Dynamically Reconfigurable UUT: An attractive solution for UUT appears is a
dynamically reconfigurable architecture [1], [2]. In this case, a system using preprogrammed
information about its desired configuration respond to outside environment by generating
the "best" architecture. A good example is a soft-reconfigurable FPGA arrangement when a
silicon device can change its configuration [9]. A merge of the concept and technology has
lead to "reconfigurable computing" [10] as well as to "morphological" systems [11]. Test
and diagnosis in FPGAs using this approach is described in [12] where physical defects are

diagnosed through a variety of logical architectures reconfigured for easy testing. We are
proposing a similar, but modified approach since neither the adequate architecture nor the
optimal fault model suitable for space borne system is determined so far. Thus,
reconfiguration enables us to use a microelectronic system which gradually achieves desired
optimum through its flexible architecture.

*£
Architectural Domain

Testability
X&

Architectural Domain

Testability

AMERICAN MODULE FRENCH MODULE

Figure 1. The TRIAD Concept

. The Scenario of Fault Model Validation: The flow diagram for the TRIAD experiment is
depicted concisely in Figure 2. Each level of consideration reflects the flexibility and
expandability of the approach. For example, the technology level assumes a repetitive
TRIAD experiment for a variety of technologies. There is at least a pair of identical
microprocessor based systems: one aboard the satellite (the SPACE copy) and another on
Earth (the EARTH copy). Only the EARTH version is equipped with a simulation/synthesis
CAD package. For a given technology and a given level of abstraction the corresponding
fault model and the logical architecture described in VHDL is considered. The VHDL model
is synthesized and the target physical configuration is uplinked to the satellite. As a result,
both systems are reconfigured the same way, followed by simultaneous testing of both
copies with the EARTH copy treated as a golden unit. The discrepancy in the system
recognitions leads to fault detection followed by a diagnosis phase. A non-empty fault map
employs a reconfiguration scheme accomplished again by the two versions with a proper
synthesis and upload. The procedure is repeated until a reconfiguration scheme absorbs the
effect of a fault resulting in the validation of the fault model. Exceptions, i.e. when
absorption is impossible, are handled either by a different reconfiguration or a different fault
model [13].

TECHNOLOGY

Logical versus Physical Approach: Two approaches are considered: the logical approach
when a physical location of logic under study is
not relevant and the physical approach in an
opposite case. After detecting a defect, the
logical approach gradually increases the
granulity of logic until the effect of defect is
masked off resulting in the fault model
validation. Multiple and single defects are
handled likewise. After diagnosing a defect, the
physical approach eliminates a block which

THE contains the defect and resynthesizes the
SUP structure. Multiple defects may be difficult to
ON handle in the physical approach. However, this

approach suggests a new diagnostic method of
"roving diagnosis" which seeks for
malfunctioning blocks one at a time. A question
can be raised whether elimination of or at least
reduced diagnosis is feasible by using "reverse
engineering" [14] or signature based
information. For example, XILINX FPGA have
some readback capabilities useful in this case.
Additional Assumptions: The initial architecture
is assumed to have structure VI (developed on
Earth and uplinked after synthesis to a satellite)

which results in physical structure PI. The assumed fault model is based on [6] and testing is
performed at the VHDL level (test vectors and test procedures are also developed on Earth
and uplinked to the satellite) followed by testing in space. Both detection and diagnosis is
performed at the VHDL level. Reconfiguration forced by malfunction is again performed on
Earth and the results of synthesis (VHDL model V2 and physical structure P2 respectively)
are uplinked and the process is repeated. Note, that it is assumed that V2 > VI (meaning
that a new fault tolerant configuration may absorb the effect of a fault detected in VI) as
well as that P2 > PI (a new more powerful configuration should result in a more robust,
area demanding physical structure which eliminate the effect of a failure present in PI). It is
envisioned that VI structure contains a number of basic modules in VHDL which will
"cover" the whole silicon area provided by a FPGA chip. It is also envisioned that V2
structure generates the maximum capacity physical implementation of modules after
synthesis which a FPGA device can accommodate.

FAULT MODEL
VALIDATED

Figure 2, The TRIAD Experiment

3 Implementation Examples

It is assumed that a microprocessor based system is based on the Intel 80186 rad-hard
device with a configuration analogous in one being developed for the CATSAT project.
UUT are soft programmable FPGA devices programmed using logic synthesis approach.
The two VHDL modules (non-redundant and TMR based) of the device under study are as
follows:

-- Filename : examplel.vhd
- Title : Register_ex
- Library : synth
-- Purpose : Behavior description of a register_ex which is used for a
-- reconfigurable system concept devoted for space applications
- 10
-- PORT<name> <mode><type> <purpose>

DI :IN vlbit_ld(l TO 8); data in
STRB .IN vlbit; transfertcontrol
DS1 :IN vlbit; enable control
NDS2 :IN vlbit; enable control
DO : OUT vlvlbit_ld(l TO 8) data out

Entity register_ex IS
PORT (DI : IN vlbit_ld(l TO 8) ;

STRB, DS1, NDS2 : IN vlbit;
DO : OUT vlbit_ld(l TO 8)

);
END register_ex;

ARCHITECTURE behavior OF register_ex IS
SIGNAL reg : vlbitj d(1 TO 8);
SIGNAL enbld : vlbit;

BEGIN- behavior
strobe: PROCESS (STRB)

BEGIN-- strobe
IF (STRB=T) THEN

reg <= DI;
END IF;

END PROCESS strobe;

enable: PROCESS (DS1,NDS2)

BEGIN- enable
enbld <= DS1 AND NOT(NDS2);

END PROCESS enable;

output: PROCESS (reg,enbld)

BEGIN-- output
IF (enbld=T) THEN

DO <= reg;
ELSE
DO<=X"ll";

END IF;
END PROCESS output;

END behavior; --of register_ex

Figure 3. The FPGA Device Behavior

File name : triple.vhdl
Title : triple redundant register with voter
Library : synth
Purpose : example for reconfigurable FPGA for space application
10

— PORT <name> <mode> <type> <purpose>
— DI :IN vlbit_ld(lT0 8);datain
— STRB : IN vlbit; transfert control
— DS1 : IN vlbit; enable control
— NDS2 : IN vlbit; enable control
— DO : OUT vlvlbit_ld(l TO 8) data out

—

ENTITY triple IS
PORT(

DI : IN vlbit_ ld(l TO 8) ;
STRB, DS1,NDS2:1N vlbit;
DO : OUT vlbit_ld(l TO 8)

);
END triple;

ARCHITECTURE behv OF triple IS
COMPONENT register_ex
PORT(

DI : IN vlbit_ld(l TO 8) ;
STRB, DS1,NDS2: IN vlbit;
DO : OUT vlbit_ld(l TO 8)

);
END COMPONENT;

COMPONENT voter
PORT(

DOl : IN vlbit_ld(l TO 8);
D02 :INvlbit_ld(lT0 8);
D03 :INvlbit_ld(lT0 8);
DO : OUT vlbit_ld(l TO 8)

);
END COMPONENT;

signal declaration

SIGNAL DOl
SIGNAL D02
SIGNAL D03

vlbit_ld(l TO 8);
vlbit_ld(l TO 8);
vlbit_ld(l TO 8);

BEGIN-- behv
clOO: register_ex PORT MAP (

DI => DI,
STRB => STRB,
DS1 =>DS1,
NDS2 => NDS2,
DO =>D01
);

c200: registerex PORT MAP (
DI => DI,
STRB => STRB,
DS1 =>DS1,
NDS2 => NDS2,
DO => D02
);

c300: registerex PORT MAP (
DI => DI,
STRB => STRB,
DS1 =>DS1,
NDS2 =>NDS2,
DO => D03
);

c400: voter PORT MAP (
DOl =>D01,
D02 => D02,
D03 => D03,
DO => DO
);

ENDbehv; - of triple

4 Current and future work

Our current work deals with several aspects :
i The design of the devices under test using logic synthesis approach.
ii Behavioural fault modeling and fault simulation.
iii Implementation of the scenario of fault model validation.

We envision launching the TRIAD experiment aboard a satellite as part of a future
international micro satellite designed and built by international teams of students.

References

[l]A.Rucinski and J.L.Pokoski, "Polystructural, Reconfigurable, and Fault-Tolerant
Computers", The IEEE 6th Int. Conf. on Distributed Computing Systems, Cambridge,
Massachusetts, May 1986.
[2] J.P. Gray and T. A. Kean, "Configurable Hardware: A New Paradigm for Computation",
Proc. Advanced Research in VLSI, ed. C.L. Seitz, March 1989.
[3] http://www.xilinx.com/programs/reconfig.htm
[4]A. McAuliffe, "Staying Alive: Rad-Hard ICs Continue to Populate Satellites",
Military&Aerospace Electronics, vol. 7, No. 3, March 1996.

[5] J.F. Santucci, G. Dray, N. Giambiasi, M. Boumedine, "Methodology to Reduce
Computational Cost of Behavioral Test Pattern Generation using Testability Measures,"
29th IEEE/ACM Design Automation Conference, 1992.
[6] J.F. Santucci, AL. Courbis, and N. Giambiasi, "Behavioral Testing of Digital Circuits,"
Journal of Microelectronic Systems Integration, March 1993.
[7] K. Levenson and K. Reister, "A High Capability, Low Cost University Satellite for
Astrophysical Research," 8th Annual AIAA/USU Conference on Small Satellites, Logan LIT,
August/September 1994.
[8] K. LaBel, "Radiation Effects and Analysis Home Page", WEB Site,
http ://flick. gsfc. nasa. gov/radhome. htm/
[9] The Programmable Logic Data Book., Xilinx, Inc., 1993.
[10] R.T. Maniwa, "Reconfigurability: logical computing", Integrated System Design, June
1995.
[11] Tien-Hsin Chao, "Dynamically reconfigurable optical morphological processor", NASA
Tech Briefs, vol. 20, No. 2, February 1996.
[12] Ch. Stroud et al., "Built-in self-test of logic blocks in FPGAs", submitted to the 14th
IEEE VTSI Test Symposium, Princeton, NJ, April/May 1996.
[13] J.A. Clark and D.K. Pradhan, "Fault injection: a method for validating computer-system
dependability", Computer, June 1995.
[14] C. Baron and J.C. Geoffrey, "Synthesis of Identification Methods: Application to
Performance Testing," Journal of Microelectronic Systems Integration, December 1994.

Prevention of Replication Induced Failures in the Context

of Integrated Modular Avionics *

P.D.V. van der Si ok P.T.A Thijssen
Eindhoven University of Technology Philips Consumer Electronics B.V.
Department- of Conrpu.tiiuj Science Interactive media Systems

P.O. Box 513 ' P.O. Box 80002
5600 MB Eindhoven 5600 .IB Eindhoven

Net h erlan ds Ne t h c rla n ds
E.Mail: wsslok'Ü-irin.lttc.nl E-Mail: thijssep@im.s-tc.ce.philips.nl

June I. 1996

Abstract

The motivation for Integrated Modular Avionics (IMA) is presented.
The required high availability and improved maintenance efficiency dictate
requirements on (.lie consistency of data used by replicated software com-
ponents. It is shown that a reliable multicast facility is needed to fulfill the
consistency requirement.

Propagation of failures should be prevented. An additional consistency
requirement states that software components should consider the same re-
sources as failed at the same time. It is shown how a membership algorithm
can satisfy this requirement. The time bounds on communication and fail-
ure detection propagation are calculated.

keywords: distributed systems, failure isolation, embedded systems,
software architecture

1 Introduction

An avionic application is a good example of an embedded system. Two parts can
be discerned the system under control (the airplane) and the controlling system
(the set of interconnected processors with software). The state of the controlled
system is determined by the state of the controlling system and vice versa. These
systems are notoriously complex to build because the system's response not only
depends on the invoked function and its input parameters but. also on the con-
trolling system's state and its history. It is clear that rigid guidelines are needed

*Work financed by Brite-Euram project. Imnges'2000

to design such systems especially when (he failing of the system has important

consequences in financial or social terms.
This is especially true tor Avionics concerned with the control of the airplane

during its flight from its point of departure until its destination. Failures of the
controlling system can lead to loss of money, loss of aircraft or parts of it and loss

of life.
During the flight of an aircraft, different phases can he discerned like: taxiing,

takeoff, landing I, landing 2, level flight,.. During flight phases, components
have criticality levels that describe the seriousness of the consequences of their
failure. A level is associated with its maximal probability of failure during one
hour of flight. Five different criticality levels are discerned (with associated Failure

probability): Catastrophic (1(T!1). Hazardous (1.CT7), Major (10-5), Minor (1(T3)
and No cffect(-). It is clear that the more probable failure of a component with a

low criticality level should in no way jeopardize the correct execution of the other
components. Therefore, avionic systems were constructed such that components

of a given criticality level were supported by dedicated hardware with no electrical
or electronic connections between components of different criticality level.

The controlling system not only needs to meet the very demanding reliability

arid functional specifications, also the purchasing and maintenance costs should
be as low as possible. An important contribution to the maintenance costs is
caused by the large number of types of equipment. A large and expensive stock
of any type of equipment must- be provided by an aircraft operator to keep the

number of flight delays within acceptable limits.
The driving force behind the introduction of Integrated Modular Avionics

(IMA) is (1) lower maintenance cost. (2) higher availability and reliability, and
(3) the need for more sophisticated and fuel saving control of equipment.

Ad 1) IMA provides a set of electrical, electronic, mechanical and software
standards in which manufacturers can produce a standard set of modules with
different software functionalities that can be used for a wide range of aircraft
types from different manufacturers. The aim is to provide a stock of standard
hardware modules with a. reduced set of types that can be configured to the
required functionality. Such a stock composed of a limited number of module types
leads to reduced maintenance costs. The application of omboard surveillance and
tests reduces the number of replacements of correctly functioning modules.

Ad 2) IMA provides a set of interconnected processors that can be configured

to execute a number of required functions. Functions can be replicated over
different processors to meet the specified availability and reliability criteria. The
number of possible configurations that is larger for IMA than for non-IMA systems
allows the meeting of reliability and availability requirements with a degraded
system for lower costs than is possible with the non-IMA systems.

Ad 3) The modular composition of an IMA system makes it amenable to
extensions and growth. The growing need for computing power to fly an aircraft
with lower costs within ever smaller operational margins makes it attractive to
have systems that can be upgraded during the lifetime of the aircraft without

major modifications to all not directly implicated components. The IMA concept

provides such a framework.
The communication needs between (lie IMA modules and the possibilities to

reconfigure the IMA system necessitate the introduction of hardware and software
components that are shared by functions of different criticality level. This is the
most important difference from a reliability point of view of the IMA system with
respect to the more traditional systems. The sharing of hardware components has
an impact on the reliability calculation of the total controlling system. Software
dependencies should not enhance those dependencies and care should be taken that
no hidden dependencies are introduced. The prevention of hidden dependencies
associated with replication and a shared communication medium are the subject

of this paper.
Some IMA concepts and communication standards are introduced in section

2. A software architecture that supports failure separation is proposed in section
3. It is shown how the introduction of a membership algorithm [II] prevents the
introduction of hidden dependencies in section 4.

2 Integrated Modular Avionics

In Fig. 1, the shaded area represents the controlling system (IMA Host Sys-
tem). The devices, resources and actuators are part of the controlled system (the
aircraft). An IMA Host System is composed of a number of Remote Data Concen-
trators (RDC) and cabinets interconnected by an airplane bus [2]. The currently
proposed airplane bus standard is AR1NC629 [1] described in section 2.1. A cab-
inet houses Line Replaceable Modules (LR.M) electrically interconnected by the
cabinet ba.ckplane. The mechanical and electrical standard is described in section
2.2 according to ARINC document [3]. Standard LRM's are core modules and
gateway modules. Core modules contain a. processor. Processors placed in differ-
ent cabinets communicate over the airplane bus via the gateways. For reliability
reasons gateways are replicated. Processors have local clocks which are assumed
to be synchronized. For a. processor p a clock function Cp(t) is defined that returns
the value of the local clock at physical lime /.. For any two correct processors p
and q and given constant e\ it is assumed that | CP(t) — Cq(t) |< e. Assuming that
in short intervals clocks can bo approximated with: dCp(t)/dt sa 1, the following

relation holds: CP(tx) = f',(/2) =H U - h |< f.
A core module executes partitions that execute in isolation from other parti-

tions on the same core module. Private memory is accessible to only one partition

and shared, memory is accessible to all partitions of a core module.
The avionic application is subdivided in avionic functions. An avionic function

acts on the equipment of the aircraft based on sensor input from the aircraft
environment to orient the aircraft in space and time in accordance with the aircraft
wanted behaviour. Examples of avionic functions are yaw-damping, auto-pilot,
lift augmentation and others. An avionic function is implemented with an avionic
system that represents the hardware configuration needed by the avionic function

3

Remote devices Remote devices

IMA compatible

sensor Remote devices

Fismre I: IMA with its environment

to meet (lie functional and availability requirements of the avionic function. An
avionic system is a subset of the IMA Host System. Avionic systems may contain

the same equipment e.g. (lie airplane bus.
An avionic function is realized by writing a software module that can be in-

stantiated as one or more collaborating partitions. Several software modules can
be written to satisfy the avionic function specification. These modules can use
different avionic resources to meet the avionic function specifications. Due to high
reliability, availability and hours of working after first failure, catastrophic avionic
functions need to be replicated over more than one cabinet. Replication is handled
in two ways: (1) installing verxioiix or (2) installing replicas. Two partitions are
called versions iff they realize the same avionic function but with different soft-
ware modules. Two partitions are called replicas iff they realize the same avionic
function with the same software modulo. An avionic functions that is distributed
over a set of core modules is realized by one partition per core module.

2.1 ARINC629

The AR INC spocilicat ion (i2^) [l] defines n digital coin mi mica t ions system in which
terminals (RDC ami cabinets) may transmit and receive digital data, using a

standard protocol communicated over elect rically conducting or fiber optic media..
The ability to transmit, both periodic and aperiodic data in a bidirectional way
is basic to the design, Pach terminal is programmed to send data, during globally
defined intervals. Two protocols, the Basic Protocol (BP) and the Combined
mode Protocol (CP). support point-to-point and broadcast protocols.

Basic Protocol Three intervals are defined by the protocol:

• Transmit Interval (Tl). common to all terminals.

• Sync Cap (SC), a quiet interval common to all terminals,

• Terminal Cap (TC). a quiet interval unique to each terminal.

Each individual terminal starts TI when it starts transmitting during an in-
terval smaller than TI. A terminal may start transmitting when an interval TI
has elapsed, no terminal has sent data during interval SG and during its personal
interval TG no data, is sent. The periodicity of the bus is determined by the load
and the definition of the three intervals. All terminals are synchronized with each
other via interval SC. Terminals do not interfere with each other due to two mech-
anisms dependent on the mode. In the aperiodic mode. a. terminal starts when
SG ha.s elapsed. Because SC is attributed uniquely, only one terminal will start
sending at a. given time. In the periodic mode, a terminal cannot start sending
before Tl has elapsed and Tl is chosen longer than the total expected transmission
times of all terminals within a given period: TI > MPT. Minimum Frame Time
(MFT) is defined as the sum of the bus occupation intervals of the terminals.

Correct functioning of protocols is guaranteed by timers. Timers are never
completely synchronized. In the periodic mode this lias as consequence that the
order of sending within a. given period is not always the same.

Dependent, on the load and the definition of Tl, all terminals either execute
the periodic or the aperiodic protocol. Protocols cannot be combined.

An example of a periodic I iming diagram is shown in Pig. 2.

Combined Mode Protocol The* CP protocol uses the same three intervals de-
fined above. Additionally three levels are defined in which periodic and aperiodic
messages can be combined within one period:

• level I: periodic messages

• level 2: infrequent high priority messages (short duration)

• level '.\: low priority aperiodic messages

Mil-' I,' I I

M|-T= Minimum Fi:mk-Timi-

Mil- = Minor Frank-

Tl = Tran.smil Ink-iral

SO =Sym-lironi/alioii(",a|i

TG = Tci-n>iii:il C;:,p

Tl > MFT

Figure 2: Possible liming diagram for ARINC 629 protocol

During a- period a terminal may send only one level! and level 2 message.
Level 3 messages can have an unspecified duration and as many as needed can be
sent. The duration of level 1.2 and :i.messages within one period is bounded.

2.2 ARINC659

A replicated bus based on the AH IN('.'()">!) standard [3] provides the communication
between LRM's in a cabinet. Transmissions and reception to and from the bus
are table driven. The (aides of all LRM's in one cabinet need to be the same
for consistency reasons. Bus time is divided in a series of windows, each window
containing a single message. Data is transferred according to a predetermined

transfer schedule. Tables define the length of each window and the transmitter(s)
and receiver(s) within this window. Transfer is guaranteed under several failure
conditions. The bus transfer schedule is organized in cyclic, loops of constant
length set by the sum of the individual window lengths. A possible table setting

for a given LR.M is shown in big. •'!.
Each window has either an unique transmitter or a limited set of candidate

transmitters obeying the Master/Shadow protocol. When the master starts send-
ing at the allocated time, no other shadow transmitter transmits. If the master
and some shadows fail, the first correct scheduled shadow transmits a message,

all later scheduled shadows do not transmit.
Windows are organized in cyclic frames. More than one frame, possibly cor-

responding with different flight phases, is programmed. Special control messages
are foreseen to change- from a given frame to another one in a controlled manner

Module A

Table

Command

Sequence

Memory

Commands

Tx ex

Rx (3

Skip N

RxS
Free M

Rx (3

—#-
Bus activity

Module A skips

this window

but other

modules use it

Unallocated

bus time

increasinu time

Figure Possible table organization for AH INC 659 protocol

for all LHM's in cabin

3 IMA Software Architecture

An avionic function needs two types of material resources: (1) control resources:
control system hardware needed for its execution (shaded area in Fig. 1) and (2)
avionic resources: actuators and sensors that are needed by the avionic functions

to establish the position and movement of the aircraft (Non shaded area in Fig.
1). The results produced by a partition can serve as input to another partition.
When functions are replicated over versions or replicas, the results of correct
partitions should be identical or within a. given range. When results of resources or
partitions are wrong, it is important to defect this and ascertain its cause for later
maintenance. When the failures of resources or partitions are detected, a partition
can decide to ignore the associated results. When a partition ignores a result, the
other partitions using the same results should equally ignore them to arrive at
the same results. Consequently, it is important to establish the set of correct and
incorrect results in a. consistent manner. Consistent means that the related results
of collaborating partitions are based on the same input-. Two example show how
inconsistent input can load to wrong results and hidden dependencies.

Example 1: Suppose a function is realized with three replicas that, exchange
their results and vote on the out conn1. When all three replicas are correct, they
should arrive at the same result and when a. replica, receives two differing results
it can conclude that the results that deviates from its own result is sent by a.
failing replica.. However, such a situation can also occur when inconsistent results
are received by the replicas. When inconsistent results are received, either an
incorrect detection of a failing replica is made, or the detection of failing replicas

is never clone. D

Example 2: Suppose a function is realized with two versions that use some
similar and some different resources. F.ach one verifies the correctness of the input,
calculates results and compares with the results of the other. Suppose the input of
the common resource is dilferenl. 'The versions may produce inconsistent results

that lead to the suppression of the whole function or may start- wrong actions if

one of the other unique input results is un-detectably wrong. □

A requirement on the communication between resources and partitions and

between partitions can be formulated:

Requirement 1 All replicas or n rsions collaboraling on some related results
should read the same result coming from a particular resource or partition

Below the failure hypotheses on the IMA hardware components are enumer-

ated. A soft-ware architecture is proposed that satisfies the above requirement 1

and does not introduce other failure1 dependencies apart from the ones cited below.

3.1 Failure hypotheses

During operation of the aircraft, hardware may fail. A core module has a fail-stop
behaviour: its behaviour satisfies its specification until a given moment after which
the core module does not perform any observable action. When a core module
fails, all the partitions executing on the core module are assumed to fail. When
all processors connected to a resource fail, the connected resource is assumed to
fail. When the local clock of a core module fails, the core module fails. When the
power to a cabinet, all gateways or the backplane bus of a cabinet fail, the cabinet

is assumed to fail. When a cabinet fails, all resources connected to this cabinet
and all core modules of this cabinet fail. When the airplane bus fails, the complete
a.vionic system is assumed to fail. A partition lias fail-stop behaviour. When a
partition fails, no oilier components of the IMA system are assumed to be affected.
When the private memory of a partition fails, the partition fails. Shared memory
can be divided in components with independent fail characteristics. When a part
of a shared memory component fails, the whole shared memory component is
assumed to fail. When all shared memory components of a core module fail, the

core module is assumed to (ail.
The hardware failure probabilities must be calculated such that they are infe-

rior to the reliability requirements of the functions they support.

3.2 Communication structure

Two communication models are generally applied: (1) partition (consumer) in-
terrogates a result- producing partition or resource (producer) to return a result
or (2) the producer sends at- well established moment results to the known con-
sumers. The above requirement 1 prohibits most- communication models. Under

8

model 1 several, possibly differing, results are produced by the producer. Es-

pecially when the producer can fail, SOUK
1
 consumers receive a result and others

none. For a large number of avionic functions, producers know their consumers.
It is therefore preferable that producers send the same result to all consumers.
When a, producer sends a result to each individual consumer, the failing of the
producer can lead to the unwanted situation that some consumers ha.ve received
the result and others not. The best known solution is to use a reliable multicast
protocol in which the producer sends one result once and the protocol guarantees
that cither all correct consumers receive the result or none does [5, 7]. Results are
sent to processors where they are stored in shared memory at the disposal of the
interested partitions. Examples of real-time system where this basic asynchronous

approach is followed are: [8, I, ID. 9]
This design satis lies the requirement I. all producers semi one result to all

processors; related correct partitions will read the same results as long as their
reading moment is correctly synchronized with the acceptance moment. By cal-
culating the maximum transmission time and waiting an appropriate time with
respect to the sending time, such a. synchronization is achieved. When one par-
tition of a processor fails, the results remain available in the shared memory and
other partitions (in the same processor) are not affected by such a failure. When
the communication fails, all involved partitions will fail as mentioned above, and
when the shared memory fails, no results are available and the processor with all
its partitions fails.

When producers fail not by stopping but by producing incorrect results, their
results should no be accepted, failures can be detectable on several levels.

1. The resource failure can be detectable at the resource itself by introducing
redundancy checks at the source.

2. A software layer on top of the physical resource can check the correctness
of the produced results.

3. A test, program can asynchronously with the control programs access re-
sources and check their correct functioning.

4. A partition can conclude that a result is incorrect by comparing the result
with results from functionally equivalent producers.

5. Core modules can detect thai a core module or transmission channel fails.

In cases 1 and 2, the correctness of a result can be determined before the result
is multicast, to its consumers. By adding I he status of the resource to the produced
result, all partitions take the same decision on the refusal or acceptance of the
requested results. However in cases .'5-5. a distribution of failure information that
is synchronous with the result distribution is much harder to realize. An example
will show this.

Example 3: Suppose a result is sent at time /., and received and stored on all

processor memories at I inn-/,.. A pari il ion p will read these results at- time tp > /.,..
Suppose a failure is defected in the result producing resource and is communicated
to all processors at'time //• > /,.. It is easy to see that the partitions cannot read
the result at the same time /,, and that for some partitions p : /,, < // and lor other
partitions p : /,, > If. thus violating the consistency requirement unless special

measures are taken. Ll

The membership service can help to solve this problem. The realization of the

membership service [Oi] extended to hierarchical communication structures [11]

and adapted to avionics [12] is described below.

4 Membership

A consistent distribution of failure information is formulated in the following re-

quirement:

Requirement 2 All replicas or version* collaboraliny on some related results
have the same opinion on the correctness of a particular resource or partition

By considering the set of correct resources and partitions, the above require-
ment can be reformulated as the the membership requirement by asking that every
partition has the same view on the members of the set of correct partitions and
resources. The normal design approach is to assure that a processor has a view
on the membership set and all correct partitions executing on this processor share
the same view. The moments that a view of a given processor changes is defined
with respect to the local time of the processor. A membership algorithm realizes
this common view on the membership set. The requirements on the membership

service are:

Requirement 3 Membership

• At identical local clock limes. Hie membership view of any two correct pro-

cessors is identical.

• Resources and partitions that art detected to fail by a processor p at local
time I are removed from tin nu nibership, set within a bounded period. J, at

local times I + ./

• Correct resources and partitions are not removed from the membership set

The storage of a new result in shared memory depends on the presence of the
producer in the membership set. Assume a constant /\' such that a sent result

arrives at the destination processor p at a local time /,, < /., -f A'. When a result
-sent at local time /.,- arrives In a processor at local time /, the result is stored
in the shared memory of the receiving processor at local time /,. = ts + K if the

10

producer of the result is a IIIOIIIIHT of the itieuil)ershi|) set at local time t.r. The
realization of (lie membership algorithm ami the calculation of constants /\' and

J is the subject of the next subsection.

4.1 Membership realization

Tt is assumed that during any moment any two correct processors can communicate
with each other. 'This assumption is justified by the failure hypothesis that the
failure of the communication network implies the failure of the complete IMA

system. It is assumed that the failure detection of resources does not detect
failures for correct resources. Problem is to determine that no correct cabinets
or processors with their connected resources are removed from the membership
set. As long as there are correct processors, the membership algorithm needs to
satisfy requirements. Therefore, centralized solutions are excluded. Replication

of the membership slate over all correct core modules is a consequence. When a

partition, core- module or cabinet fails, the membership state remains updated in
all surviving core modules.

The membership algorithm consists of a <l< /< cliou part and a distribution part.
The failures of processors and partitions are detected by having each processor
send message to ascertain its correct ness. The messages contain information about
failed resources and partitions to distribute the failure information. Partitions
that detect the failures of other partitions or resources communicate this to the
membership service that is responsible for the timely distribution. The moment
that failure information is communicated to the membership service, is defined as

the failure detection time.

Design Partitions are responsible lor monitoring the resources. Every cabinet
is responsible for monitoring the stale of the partitions and core modules. The
membership algorithm is periodically executed. Pour phases are discerned: a
gathering pha.se, a collect ion phase, a distribut ion phase and an information phase.

In the CiulhcriiHj phase-, partitions actively inform the membership service
of resource failures and partition crashes by invoking functions that store this
information in the shared memory (not the membership state) of the core module

hosting the delecting partition.
In the Co/l<clion phase-, the core modules communicate the failure information

at a prearranged local time to all other core1 modules in (.ho same cabinet via the
cabinet bus. When no failure information is present, the core module sends an
empty message. The failure of a core1 module- to send a. message is interpreted

by the other core1 modules as a con- modulo failure. To assure tha.t all correct
core modules within the cabinet tveeivo the same- message or none, a reliable
multicast is needed as alre-acly mentioned above1 for the transmission of results by
producers. When a core- module doe-s not send, the core- module ha.s crashed, its
shared memory has crashed, or its local clock ha.s crashed. This is in accordance
with the hardware- failure hypot he-sis.

II

In the Dislrihttlimi phase, all cabinets disl i~iI>111e t he cabinet "s failure informa-
tion t.o all other cabinets via I In- airplane I HIS. When no failure inlormalion is

present., the cabinet sends an empty message. The Leader/Shadow mechanism
is used to communicate I he failure information. All correct core modules in a
given cabinet have the same failure information, consequently, the leader and
shadows will send the- same inlormalion lo other cabinets. All core modules of
the destination cabinet receive the message. When a cabinet does not send, either
all its gateway modules, its power-supply, its backplane bus or the leader and all
shadows have failed. This is in accordance with the hardware failure hypothesis.

In the In formal ion phase, all correct core modules install the new member-
ship state at the same local clock limes. All correct core modules ha.ve received

the same failure information. All correct core modules had the same member-
ship state. Consequently, after I In- information phase all core modules ha.ve the
same membership stale. When the membership stale changes, all correct modules

change state at the same local clock lime.

Performance To satisfy the real-time criteria, a well defined time bound be-

tween message transmission and message reception must be assured. The Airplane
bus gives such a bound only for periodic messages. Consequently, every cabinet

transmits its view periodically every ~ time units.
From the communication descriptions it can be concluded that the commu-

nication within a cabinet is strictly synchronized, but communication between
cabinets is sensitive lo clock drifts. The timing of the message transmission be-
tween cabinets drifts with respect lo the cabinet backplane bus schedules. This

a.dversclv affects the transmission delav.

Plivsical

Cabinet i:

CuhiiK'l d

>U ^1

-e >•

2f

Figure 1: Communication delay lor membership

A timing diagram is shown in big. 1. The period of the airplane data bus TT

is smaller than the period TCC of the backplane bus of any given cabinet c. Every

12

leader/shadow transmits t he cabinet informal ion >',. = \iTc/ir} limes. Suppose a,
core module in cabinet c delects a failure at local time /),,. During llie collection

phase, this core moduli- transmits the failure on the cabinet, data bus at local
time Cc. The collection phase starts after the detection phase with a maximum
delay given by: DC + TV > Cc > /),.. At. local lime l'c. determined by the timing of
the airplane bus. the results are transmitted to the receiving cabinets. Neglecting
the transmission delay, the message arrives at cabinets c and d at global time T,

that is the same for both cabinets as they are connected by the same airplane
bus. Although, transmission occurs at the same physical time,the local clocks Tc

and T(i differ by a value» c: | 7',. - T.j |< c. The periodicity of the airplane bus
introduces a maximum delay of x: '/',. - ~ < Cc < Tc. A message sent at local
time Tc is received at times Lc and /../ by core modules in cabinets c and d with

the restraint (.r = c or .r = d) : 7',. < /..,. < 7'r + TT. When both cabinets follow
the same frame organization, the values of /,,. and ./.,/ are identical but have a
spacing of approximately c time units. The acceptance of the message by a core
module in cabinet d is done at lime .1/ such that V.r : Aj > Lx. This leads to:
Td + TT < Ad < Td + 2 • -. According to the membership requirements, the values
Ac and /l(/ are identical but occur at dilfereut physical times placed within an
interval of approximately c. Impressed in local times the difference between Dc

and Ad is given by:

TT - t- < .4,/ - Dc < 3 • TT + ((1)

Assuming that clocks drift lit lie with respect to the physical clock in interval

e, The following constraints are true:

| /)- Dc |< f | A -Ac |< c

The total physical time is given by:

*■-(■< A - I) < 3(TT + f) (2)

5 Conclusions

Avionic functions are realized with an IMA architecture. The strict hardware
separation of functions of dilfereut criticality levels is no longer an interesting
option. Resources are shared and especially the communication media between
different core modules must be shared. Important is the prevention of failure
propagation between components with a low criticality level to a high criticality
level. It is argued that partitions (versions or replicas) that collaborate to pro-
duce the same results need the same input data. A communication structure is
defined that satisfies this requirement and depends on the availability of a reliable

multicast facility with bounded transmission times. It is shown that the hardware
determined failure hypotheses arc» not extended by this structure.

13

The introduction of failures ami I he requirement that collaborating partitions
consider the same- resources as failed at I IK

1
 same moment can be realized with a

membership algorithm. An outline of the algorithm is presented and it is shown
how the failure hypotheses art' maintained. Results arc only possible if bounded
transmission times are possible. The required bounds arc- presented as function

of the IMA communication media characteristics.

6 Acknowledgements

We are grateful to Paul Weir from British Aerospace and Rene Meunier from

Aerospatiale for many stimulating and helpful discussions.

References

[1] Committee Arinc 629. AR INC report 629. Multi-Transmitter Data Bus.

Technical Report Specification 629. Airlines Electronic Engineering Commit-

tee, March 1990.

[2] Committee- Arinc 651. ARINC report 651, draft 9. Technical Report 91-
207/SAI-135. Airlines Electronic Engineering Committee, September 1991.

[3] Committee Arinc 659. ARINC report 659. draft T Technical Report 92-

259/SAI-177, Airlines Electronic Engineering Committee, October 1992.

[4] M. Boasson. Control systems software. IEEE Transactions on Automatic

Control. 38(7): 109 1- 1 100, 1993.

[5] F. Oristian. Atomic Broadcast: Erom simple message Diffusion to Byzantine
Agreement. In Proceed iny.s I-ilk Inlernalional Symposium on Fault-Tolerant.

Computing pages 200 206. Ann Arbor.MI, June 1985.

[6] F. Crisfian. Agreeing on who is present and who is absent in asynchronous
distributed system. In Proa edinys ISt/i International Symposium on Fault-

Tolerant Compuliny. pages 206 21 I, Tokyo, Japan, June 1988.

[7] F. Cristian. Synchronous Atomic Broadcast for Redundant Broadcast Chan-

nels. Journal of Real-Time Systems. 2:195-212, 1990.

[8] T Kuo and A.K. Mok. Application Semantics and Concurrency Control of
Real-Time- Data-Intensive Applications. In Proceedings of 13th Real-Ti

Systems Symposium, pages 35 15. Phoenix, december 1992. IEEE.

me

[9] R. Meunier. Airbus architect ures. private communication.

[10] K. Ramamritham. Real-Time Databases. Distributed and Parallel Databases,

1993(1):199-226. 1993.

II

[11] P.D.Y. van CUM- Slok. M.M.M.l'.J. Clarssrti. and 1). Alstein. A hierarchical
membership protocol for synchronous «.list ributed systems. In Proc. of the 1st

Eroptttn DfjH mliihli ('ouipuluiti ('onfi n nci. pages ö!)7- Gib. Springer Verlag,
odober 19!) I.

[12] P. Weir and P.D.Y. van der Slok. Task 2: Requirements on Cabinet mon-
itoring aspects in [MA context. Technical Report S1)F/'^07/A/10S/2308,

Brite-F.uram. Mav PMH.

PETRI NET MODELING AND BEHAVIORAL FAULT
MODELING SCHEME FOR VHDL DESCRIPTIONS 1

Federici Dominique, Santucci Jean-Francois, Bisgambiglia Paul
Universite de Corse
Quartier Grossetti

BP52
20250 Corte

France
email: {federici,santucci,bisgambi}@univ-corse.fr

Abstract
This paper deals with the modeling of VHDL behavioral descriptions and the

development of an efficient behavioral fault modeling scheme. A set of behavioral test
pattern generation methods have been proposed in the recent past. One constraint
having to be pointing out is the fact that circuits under test (CUT) are expressed using
a high level behavioral VHDL description. We propose to define a behavioral fault
simulation method own to (i) a behavioral modeling of CUT using Petri Nets and (ii)
an efficient behavioral fault modeling scheme. In this paper, the emphasis is put on the
modeling aspects.

Keywords : Behavioral Descriptions, Behavioral Fault Modeling, Petri Nets, Fault
Simulation

1 Introduction
In the recent past a set of Behavioral Test Pattern Generation methods have been

proposed in several international conferences [1, 2, 3, 4, 5, 6, 7, 8]. Motivated by this
fact we are interested in defining an efficient behavioral fault simulation methodology.
One important constraint within which we have to work is the fact that circuits under
test (C.U.T.) are described using a high-level behavioral description. The previous
work has focused on the A.T.P.G. method and not on the fault modeling and
simulation tasks.

Our goal in this article is to present an efficient modeling and fault modeling
scheme for behavioral descriptions.

The first part of the presentation is devoted to general definitions of modeling
and fault modeling. The second part will deal with behavioral modeling of VHDL
descriptions. The definition of an exhaustive behavioral fault modeling scheme is given
in the third part. Future work concerning behavioral fault simulation is briefly
introduced in the last section.

2 General definitions
The modeling of a circuit can be done according to two points of view : a

structural view and a behavioral one. We focus on discrete models. The use of a
discrete model to solve a given problem refers to a set of discrete variables called State
Variables which define the State Space of the model. The behavior associated with the
model is necessarily expressed through the alteration of the variable values.

this work is supported by the EEC : HCM network BELSIGN- contract N° CHRX-CT 94-0459

In case of a behavioral view, the circuit is seen as a black box defining its output
values according to input values by the use of algorithms, true tables, state tables or
boolean equations.

Behavioral models can have two main representations :
. alphanumeric representations : they are textual representations involving
objects such as variables, operators and control constructs.
. graph representations : they are based on transformation graphs, Petri
Nets, etc... . These representations offer a structure, i.e. an interconnexion
of basic elements for which a behavior is predefined out of context. We
have to point out that this structure is not a potential structure but some
elements can have a physical interpretation.

Whatever the general principle on which the Test Pattern Generation (T.P.G.) or
Fault Simulation (F.S.) methods are based, structural or behavioral models of the circuit
under test are considered as the reference or faultless model.

Given a description (structural or behavioral view) of a circuit, the T.P.G. or
F.S. method has to operate on the information available by the description. In both
cases fault models are needed in order to represent physical failures efficiently.

Before dealing in detail with behavioral fault modeling, we propose some
definitions of a fault, a fault model, an error and a defect in order to guide the reader
towards behavioral fault modeling.

A fault can be defined both on a structural and a behavioral model. In the case
of the use of a discrete event model, a fault hypothesis is :

. either an hypothesis of a wrong item behavior belonging to the model, but
considered out of context.

. or an hypothesis of modification of the initial global description by adding,
suppressing or combining basic items, without modifying the predefined behavior of
these items.

A fault model is the list of the selected fault hypothesis, i.e. the fault hypothesis
taken into account for T.P.G. or F.S. There are several interests in using a fault model.
The main one is to reduce all possible combinations of T.P. sequences at the input of
the circuit under test. The definition of fault hypothesis allows the definition of fault
classes, the reduction of the list of selected faults. Furthermore, a fault simulator can be
used to determine all the faults set off by a given test pattern. Lastly, an hypothesis may
be used to make a correlation between a fault and a physical defect which is useful for
fault localization.

It should be pointed out that the modification of the global description of the
model may lead to take into account a much too large number of possible
combinations. In a similar way, the overly complex faults concerning the modification
of a basic items behavior may also not be taken into account.

Whatever the given abstraction level, an error is the manifestation of a fault
expressed as a difference between the state of the fault free model and the faulty model
at a given time. If it is not posssible to obtain a difference between the two models, the
fault is said to be redundant.

A defect refers to a physical anomaly of the actual circuit. It should be pointed
out that a fault may or may not have a direct mapping with a physical defect.

3 Behavioral Modeling

In order to facilitate definition of formal methods based on graph structures, we
have been interested in a first step to study an efficient graph modeling of behavioral
descriptions. Behavioral descriptions are given using the VHDL language. In a first
sub-section we highlight the main features of VHDL behavioral descriptions. We
describe in a second sub-section how these features have been represented by an
efficient graph modeling scheme.

3.1 Main features of VHDL Behavioral Descriptions

Four kinds of objects are involved in VHDL behavioral descriptions :
. Constants which have a predefined and unchangeable value.
. Variables which can be modified by an assignement statement.
. Signals which are the specificity of VHDL.
. Processes which are the fundamental objects manipulated by VHDL.

Variables are local to processes that is to say they can be read or affected only in
the process where they are declared.

Signals are global to the overall description that is to say that they may be
common to several processes.

A behavioral description leans on the description of a set of processes where
each process is defined using a procedural description.

The key statement of a process is the WAIT statement,
syntax : WAIT {ON signal-list} {UNTIL boolean-condition}

This statement allows to suspend a process execution, that will restart when the
next condition will be true : an event occurs on one of the signals specified in the
signaljist and the evaluation result of the boolean_condition is true.

The simulation of a VHDL description is composed of two steps : an
initialization phase and an execution phase.

The initialization phase consists in determining the initial value of each signal
according to the following rules :

. the initial value is given explicitly during the signal declaration.

. the initial value is given implicitly. This value is defined like being the first of
the signal definition domain.

With these initial values, each process of the description is executed without
looking at the conditions associated with Wait statements.

The execution phase is performed by scanning of the sensitive signals and is
driven by the events.

This modeling scheme will be described in sub-section 2.2 using the behavioral
description given in Figure 1.

Entity Register IS
Port (DI: IN vlbit_ld(l TO 8);

STRB, DS1, NDS2 : IN vlbit;
DO : OUT vlbit_ld(l TO 8));

END Register

Architecture behavior of Register IS
SIGNAL reg : vlbi_ld(l TO 8);
SIGNAL enbld : vlbit;
BEGIN

strobe: PROCESS (STRB)
begin
If (STRB =1) then reg <= DI;
End If;
END PROCESS Strobe;

enable : PROCESS (DS1.NDS2)
beign
enlbd <= DS1 AND NOT (NDS2);
END PROCESS;

output: PROCESS (reg,enbld)
Begin
If (enbld=l) then DO<=reg
Else DO <= 11111111;
end If
END PROCESS;

END Behavior
Figure 1 : VHDL behavioral description

3.2 Behavioral Modeling

This sub-section aims at describing the model used to highlight the main
features of VHDL behavioral descriptions. In order to facilitate definition of formal
methods based on graph structures for behavioral fault simulation, we have been
interested in the development of two models :

. the input/output model allowing to represent existing links between signals involved
in different processes of a description [9]. This model has been defined in [9] in order
to perform Test Pattern Generation.

. the activation model pointing out the the execution of the processes involved in a
VHDL description. This model is based on a model developed in [9]. However we have
improved this previous model by defining a new modeling scheme involving pure Petri
Nets. The use of Petri Nets will be useful when a behavioral fault simulation algorithm
will be defined.

The VHDL behavioral description activation model is given in Figure 2. We
have to mention that the activation model is made up of the following elements : a data
model, a control model and their explicit interactions.

The Data Model represents the objects (variables and signals) and the handled
operations involved in the description. It is composed of a graph involving two types of
nodes : data nodes and operation nodes.

Let us point out that the data nodes have not been represented on the Figure 2.
Operation nodes are of two types :

. assignment nodes which represent the assignment of an object by an
algebraic or boolean operation.

. decision nodes which represent an algebraic or boolean test the result of
which is taken into account in a branch in the Control Model.

The Control Model represents the sequencing of the operations involved in the
description. It is based on a Petri Net modeling.

The interaction between the Control Model and the Data Model is achieved by
associating an operation node to a place. Two links are involved between the place and
the operation node : an activation link of the operation node and an end report link.

The dynamical aspect of the interaction of the two models is supported by
tokens. When a token arrives in a place, the associated operation is performed. In case
of a decision node, the result associated with the end report link is used in order to
select the next transition to fire. In Figure 4, we give the Petri Net associated with the
description given in Figure 1.

Scanning Q Scanning

Cstr=l / \ Cstr=0 Cena=l / \ Cena=0

fejsTRB="i" i n^—»

fc|REG<=DI | End of
cycle

|ENBLD<=DSland(NDS2) | (\f

ENBLB=

|DO<=REG|^ZZ»<S Qg:fe.pO<="llllllll"|

Figure 2 : Activation Model

4 Behavioral Fault Modeling

A fault modeling scheme based on the definition presented in section 2 allows
to derive a set of fault hypotheses on the previously described model.

Fault hypotheses are defined according to the elements involved in the model of
the circuit under test.

A General Fault Model (G.F.M.) can be generated using the two rules presented
in section 1. This fault Model involves all possible fault hypotheses defined on the
basic modeling element and with modification of the model structure.

Because of the too large number of faults involved in this model we may have
to reduce it.

In order to have a behavioral fault model for which some measures of
confidence are provided, we may select from among the G.F.M. some fault hypotheses
according to the fault model proposed in [10].

The selected fault hypotheses may be classified as follows:

1. Stuck-at fault on an element of the data model:
. The value attribute of a data node is stuck-at VI or V2 where VI and V2
express the lower and upper extremes of the domain definition of the
represented signal or variable.
. The output of an operation node may fail such that it permanently returns
VI or V2, where VI and V2 express the lower and upper extremes of the
range of the operation.

2. Stuck-at fault of an element of the control model:
. a control transition is always selected whatever the resulting value set up
on the end report link may be
. a process is never active
. a process is always active

3. Stuck-at fault of an element of the interaction of the control and data models :
. when a token arrives in a place, the corresponding operation is not
performed. This means that the activation link is stuck-at 0.

Depending on the results given by these fault hypotheses in terms of gate-level
fault coverage, this fault model can obviously be extended. However, having translated
the behavioral fault model proposed in [10] by a set of fault hypotheses on the basic
elements of the activation model defined in section 2, the quality of the test vectors
generated for the previous fault model can be evaluated by the results presented in [10].

5 Current and Future work

Our current work deals with behavioral fault simulation [11]. Fault simulation is
known to be an important step in the testing of digital systems. It is usually used to
evaluate the fault coverage of each test vector generated by an Automatic Test Pattern
Generation program. Traditional fault simulation algorithm [12, 13, 14]] are not able to
deal with behavioral descriptions and behavioral fault hypotheses. We are interested in
defining new algorithms allowing to perform fault simulation on VHDL behavioral
descriptions.

Given a test sequence, a VHDL description, a set of behavioral fault hypotheses,
our goal is to deduce the list of behavioral fault hypothesis detected by the given test
sequence.

The first approach we have investigated is to define an algorithm based on the
deductive fault simulation [12].

This approach consists in propagating a fault list through the basic elements of
the activation model. Given a test sequence, this propagation is made until that we meet
a primary output is reached. To evolve this method, we consider the activation model
as an interconnexion of four kinds of basic elements shown in figure 3.

Li

Lol

expression (Vl,...,Vn) | Q ^1|V1-expression (Vl,-,Vn)

Figure 3a: Selection

Lo

Figure 3b: Assignment

0 0 0
Lil Li2 Li3

Lol Lo2 Lo3

o o o
Figure 3c: Parallelism

Lo

Figure 3d: Junction

Figure 3 : Basic elements involved in the activation model

We have defined how lists of detected faults Loi can be computed according to:
- each kind of basic elements.
- Lii, lists of detected faults already computed.
- a given test pattern.

Our current work is to define algorithms allowing to propagate a fault list
through each basic element.

Our future work will investigate the definition of a method based on a
concurrent fault simulation[14].
References

[1] D.S. Barcaly, J.R. Armstrong, "A chip-level Test Generation Algorithm", 23th
IEEE/ACM Design Automation Conf. 1986, pp.257-261.

[2] U.H. Levendel, P.R. Menon, "Test Generation algorithms for computer
hardware description languages", IEEE Transactions on Computers, Vol.C-31,
pp.577-588, 1982

[3] M.D. Oneill, D.D. Jani, C.H. Cho, J.R. Armstrong, "BTG : a Behavioral Test
Generator", 9th Computer Hardware Description Languages and thier
Application, IFIP, pp.347-361, 1990.

[4] F.E. Norrod, "An automatic test generation algorithm for hardware description
language", 26th Design Automation Conference, pp.76-85, July 1989.

[5] H.D. Hummer, H. Veit, H. Toepfer, "Functional Tests for hardware derived
from VHDL description", CHDL 91, pp. 433-445, 1991.

[6] A.L. Courbis, J.F. Santucci, N. Giambiasi, "Automatic Test Pattern Generation
for Digital Circuits", 1st Asian Symposium, Hiroshima, pp. 112-118, 1992.

[7] J.F. Santucci, A.L. Courbis, N. Giambiasi, "Behavioral Testing of digital
Circuits", Journal of MicroelectronicSystmes Integration, Vol.1, N°l„ March
1993, pp.55-78.

[8] B. Straube, M. Gulbins, E. Fordran, "An approach to Hierarchical test
Generation at Algorithmic Level", IEEE Workshop on hierarchical test
Generation , Blackburg, Virginia, USA, 8-11 august 93.

[9] V. Pia, J.F. Santucci, N. Giambiasi, "On the modeling and Testing of VHDL
Behavioral Descriptions of Sequential Circuits, 3rd IEEE Euro-Dac/Euro-
VHDL, Hamburg, September 93, pp.440-445.

[10] S. Ghosh, T.J. Chakraborty, "On behavior fault modeling for digital designs",
Journal of Electronic Testing : Theory and Applications, Vol. 2, pp. 135-151,
1991.

[11] D. Federici, J.F. Santucci, P. Bisgambiglia, "Behavioral Fault Modeling and
Simulation", 3rd BELSIGN Workshop Proceedings, 11-12 April 96, Porticcio,
France.

[12] D.B. Armstrong, "A Deductive Method for Simulating Fault in Logic Circuits",
IEEE Trans, on Computers, Vol C-21, N°5, May 1972, pp. 464-471.

[13] P. Goel, P.R. Moorby, "fault Simulation Techniques for VLSI Circuits", VLSI
Design, July 1984, pp.22-26.

[14] E.G. Ulrich, T.Baker, "The Concurrent Simulation of Nearly Identical Digital
Networks", Proc. 10th Design Automation Workshop, IEEE and ACM, New
York, June 1973, pp. 145-150.

Technical Session 4

Spatial Applications

Chair: P. David, Matra Marconi Space, France

CATSAT's SoftX-Ray Detection System: An Innovative and Cost Effective Approach,
S.P. Lynch, Institute For the Study of Earth, Oceans & Space, New Hampshire, USA
Petri Nets for a Space Operational System Availability Study,
M. Saleman, CNES ,
J-F. Ereau, LAAS-CNRS, France
Results of Low-Cost Propulsion System Research for Small Satellite Application,
J.J. Sellers, T.J. Laurence, USAF, Centre for Satellite Eng. Research, Univ. of Surrey, UK
M. Paul, Surrey Satellite Technology Limited, Guildford, UK
Multiple Technology Choice for a Mixed Analog-Digital Space Radio-Astronomy
Spectrometer,
J.L. Noullet, LAAS-CNRS Toulouse, France
L. Ravera, A. Ferreira, LESIA-INSAT Toulouse, France
D. Lagrange, M. Giard, CESR-CNRS Toulouse, France
M. Torres, IRAM-CNRS Grenoble, France

CATSAT's Soft X-Ray Detection System:
An Innovative and Cost Effective Approach

Steve P. Lynch1

Small Satellite Laboratory
Institute for the Study of Earth, Oceans & Space

University of New Hampshire
Durham, NH 03824, USA

ABSTRACT
This paper describes an innovative and cost effective approach to detecting low

energy x-ray emissions from gamma-ray bursts. This data will assist scientists in solving
the important problem of locating the source of these bursts. The approach makes the low
energy measurements using an array of avalanche photodiodes (APDs). APDs are a
proven, inexpensive technology that will enable the system to be flown aboard a small
satellite, CATSAT.

1. INTRODUCTION
The Cooperative Astrophysics and Technology Satellite (CATSAT) is a combined

effort between three universities to study the origin of cosmic gamma ray bursts.
Astrophysicists have speculated for years as to how far away the bursts occur, but to date
no common theory is agreed upon. In a unique approach to solving this problem
CATSAT will measure low energy x-rays, known as "Soft X-Rays," emitted from the
bursts using an array of APDs, and use this data to calculate how far away the bursts
occurred. The APDs' relative noncomplexity and low cost enables such an important
scientific contribution to be made using a small satellite mission.

Figure 1 CATSAT Small Satellite Supported by a grant from NASA's
Student Explorer Demonstration Initiative,
(STEDI) CATSAT is representative of the
emerging field of "small satellites." [USR,
94] Small satellites are typically less than
600 kg in mass, fly in a low earth orbit (550
km) and have a design time of two years.
Economic constraint is the driving force
behind the development of small satellites,
as larger missions become increasingly
complex and expensive. Student
involvement in the design and
manufacturing processes is an integral part
of the STEDI program and students from
all three universities are playing an active

Graduate Research Assistant, Department of Electrical Engineering,UNH

role as CATSÄT's design engineers. CATS AT is currently scheduled to be launched in
July of 1998.

This paper focuses on the Soft X-Ray (SXR) detection system for CATSAT,
which includes the APDs and their associated analog and digital circuitry. The SXR
system is contrasted with conventional low energy x-ray detection systems, which would
not be feasible for a small satellite mission due to their cost and complexity.

2. CATSAT ORGANIZATION
The CATSAT team is comprised of three universities, the University of New

Hampshire (UNH), Weber State University (WSU) in Utah and Leicester University (LU)
in England. At UNH, the mission leader, the Institute for the Study of Earth, Oceans and
Space (EOS) is collaborating with the Electrical and Computer Engineering Department
(ECE). This team will design the spacecraft's scientific instrumentation and electronics.
Much of the design work is being carried out by undergraduate and graduate students as
per STEDI guidelines. The instrument design group at UNH is working closely with
Leicester University in England, where the housing for the SXR detectors will be built and
tested.

The Center for Aerospace Technology (CAST) at Weber State University in Utah,
is responsible for the design and fabrication of the spacecraft frame. WSU is also
responsible for spacecraft attitude determination and control.

3. SOFT X-RAY DETECTION SYSTEM
3.1 Scientific Basis

Gamma-ray bursts (GRBs) were first detected in the early seventies. Vela
satellites accidentally discovered them as they were monitoring Soviet compliance with the
Nuclear Test Ban treaty. [KLE, 73] Since that time astrophysicists have been unable to
satisfactorily explain both the nature and the origin of GRBs. Current theories vary
widely, from local origins to galactic and even extragalactic origins. It is generally
accepted that the bursts are caused by extremely energetic events which may be some of
the most spectacular in nature. Studies have been unsuccessful in trying to correlate the
-400 bursts reported per year with events at different wavelengths or other astronomical
objects. It was hoped that counterparts to the GRBs would provide clues as to their
origin using searches at radio, infra-red, optical and x-ray wavelengths. [OWE, 94]

CATSAT's innovative, multi-observational approach will give scientists the first
measurements of the distance to gamma-ray bursts, solving the most important problem in
GRB studies. The key to these distance measurements lies in the SXR system's ability to
measure low energy x-ray data.

3.2 SXR Module
The SXR module is located on the top of the satellite where it obtains a field of

view of approximately 2% steradians. It is divided into 7 independent panels, each one
containing 16 APDs, providing a total of 112 APDs. The module housing is designed to
radiate heat and maintain the temperature of the APDs at -40 C, ±5 degrees. Protective

doors cover the module during launch and are opened once the satellite has maintained a
stable orbit.

The instrument electronics for each of the 7 panels amplifies the APD signals,
digitizes the data and temporarily stores it in memory. The data is systematically retrieved
from the panel memory by the instrument CPU, stored in the main memory and
downloaded to earth every twelve hours. The in-flight calibration (IFC) circuitry for each
panel will maintain the APDs at stable operating conditions.

3.3 Avalanche Photodiodes (APDs)
The APD is ideal for low energy x-ray detection in a small spacecraft. It is a

compact, low power device and has excellent energy resolution. In-flight calibration
circuitry will individually gain adjust each APD. This stabilizes the operating
characteristics of all the APDs in a panel for example, and ensures that the spectra
collected with that panel will appear as though it was taken with one large device.

The APD used aboard CATS AT is a silicon device with a thickness of about 2 mm
and a detector top surface area of 1.69 cm2. The APD cutaway view, shown in Figure 2,
displays the p diffusion region on top, the multiplication region in the middle and the n
diffusion region on the bottom. The diagram depicts the operation of the APD, whereby a
charged particle strikes the p-region causing an avalanche process that produces a current
pulse at the output.

Figure 2 Avalanche Photodiode 4. ECONOMIC CONSTRAINTS
P STEDI funding provides a total of 4
Shv million dollars to the CATSAT project for

^|) design and fabrication of the entire spacecraft
3*4, ;•■.. ;•■., ~\. and its payload. This is modest in comparison

p-region

VV^Vx \ \ j t0 tne cost of many modern spacecraft, which
can be 100 times more expensive and even

n-region | then are not guaranteed to be successful. The
cost of launching "traditional" satellites can

_ES^assa ' also be enormous. NASA and other
~ governmental agencies across the world realize

==r -1500 V char9f this and recent years have seen a concerted
preamp effort to promote small satellite design as a

valuable alternative to large missions. In fact,
it is a specific goal of the STEDI program, which was initiated by NASA and the
Universities Space Research Association, to "demonstrate that small, relatively low-cost,
and rapidly developed space missions can both enrich education and produce significant
science." [USR, 94]

It is with respect to these economic constraints that a tremendous advantage of the
SXR system can be seen; its total cost is a fraction ofthat of conventional methods of low
energy x-ray detection. Without this new application of APDs in the SXR system it is
doubtful that CATSAT would be able to complete its mission given the limited budget.
Because of the relatively low cost of the APDs (approximately $1,000 each) the complete
array for the SXR system can be built for just over $100K. The electronics, which

includes low noise "hybrid" devices, is estimated to cost between $50K and $60K, and the
housing can be built for under $10K. This allows the complete system to be built for
around $200K.

Table 1 below shows a comparison of the estimated cost of the SXR system
compared to other methods that could be used. Note that the estimates are based on a
system that would have a comparable field of view to the SXR system.

System Cost ($)
Soft X-Ray System 200K
Low Energy Photon
Spectrometers [ORT, 95]

5M

Charge Coupled Device IM

Table 1 Cost Comparisons 5. SYSTEM COMPLEXITY
System complexity is an important

factor in a small satellite mission. The two year
design and construction period along with the
limited payload capabilities of a small spacecraft
would make it difficult to use the conventional
methods mentioned in Table 1. Low energy

photon spectrometers for example, operate at extremely low temperatures, requiring the
storage of liquid nitrogen onboard the spacecraft. The surface area of the detectors is also
very small, approximately 10 mm square, which would require the use of a large number
of them to obtain a sufficient field of view. Charge Coupled Devices (CCDs) are also
impractical as they have a "dead time" that would severely hinder the ability of the
instrument to record bursts.

While the SXR system does require precise control of the APDs, it is still less
complicated in comparison to the above methods. The system incorporates passive
environmental control and also has built in redundancy due to the large number of
detectors.

6. CONCLUSION
This paper has described an innovative approach to solving a problem that has long

been debated by the astrophysics community: the origin of gamma-ray bursts.
Furthermore, the SXR detection system demonstrates that spacecraft technology can be
developed at low cost and in a short time frame. The CATSAT mission has found a new
use for an existing technology, and incorporated it in a small satellite program for a
fraction of the cost of conventional systems.

The relative noncomplexity of the SXR system has allowed undergraduate and
graduate engineering students to work on a real-life design effort and gain valuable
experience. If successful, CATSAT will be a powerful incentive for "smaller, faster and
cheaper" missions that can provide important contributions to the scientific community.

7. ACKNOWLEDGEMENTS
The author would like to thank the CATSAT project for graduate funding. In

addition, Dr. Ron Clark, Dr. Andrzej Rucinski, Dr. David Forrest, Dr. Tom Vestrand, Ken
Levenson and Glenn Forrest are thanked for their help and mentoring throughout the
course of this work.

8. REFERENCES

[FAR, 91] Farrell, R., Vanderpuye, K., Entine, G. and Squillante, M.R. High
Resolution, Low Energy Avalanche Photodiode X-Ray Detectors. IEEE Transactions on
Nuclear Science, Vol. 38, No. 2, April 1991. 144-147.

[KLE, 73] Klebasadel, R.W., Strong, LB. & Olsen, R.A., Observations of Gamma-
Ray Bursts of Cosmic Origin. "The Astrophysical Journal," 1973, 182, L85.

[KNO, 89] Knoll, Glenn F. Radiation Detection and Measurement. John Wiley &
Sons, New York: 1989.

[ORT, 95] EG&G Ortec, Modular Pulse-Processing Electronics & Semiconductor
Radiation Detectors. Product Catalog, 1995. USA, Nov. 1994

[OWE, 94] Owens, A., Schaefer, B. and Sembay, S. Deriving Gamma-Ray Burster
Distances from Soft X-Ray Measurements. "The Astrophysical Journal," In-Press, 1995.

[USR,94] "STEDI - World Class Orbital Science by Students," USRA
QUARTERLYi Special Edition, December, 1994

PETRI NETS FOR A SPACE OPERATIONAL

SYSTEM AVAILABILITY STUDY

Malecka Saleman ♦ CNES -18, avenue EdouardBelin 31055 - Toulouse
email: saleman@cst.cnes.fr ♦

Jean-Francois Ereau ♦ CNES & LAAS-CNRS Toulouse ♦

KeyWords: Petri Nets, Availability study, Simulation, System optimization.

ABSTRACT

This paper presents an availability study of a space operational system called TPFO
(Topex Poseidon Follow On) using Petri nets for both modeling and evaluation aspects.
The aim of this study was to examine mission/system trades that might be possible in
view of TPFO missions with the intent of achieving minimum program cost. Thus, the
study have to take into account several aspects of the program, as mission time, number
of satellites, satellite reliability and lifetime, satellite production and storage policies,
launch reliability and availability, relaunch policy, etc... and to identify options for
achieving availability objectives with minimum total cost. We illustrate in this paper Petri
net's ability to deal with such system from both modeling and evaluation view points.
The results obtained by this method provide interesting outputs for the project. This is
shown through the interpretation of typical results.

1. INTRODUCTION

Today space projects are far from their initial experimental feature and in many
application areas, such as communication, localization or observation, these systems have
to deal with operational constraints and minimum program cost.

Among the various system analyses performed during the early design phases of
projects, availability analysis provides important results for system dimensioning.
Actually, they help to select maintenance strategies and associated resources, to satisfy
availability objectives with minimum or reduced global cost.

Considering, the modelisation view points of such systems availability are confronted
with several constraints like sequential processes as satellites productions, parallel
processes as satellite productions and launch requests, synchronized processes as launch
campaign needed a satellite and a launcher available. In addition, different time
characteristics have to be taken into account: deterministic ones like satellite production
time or satellite lifetime, and stochastic ones like satellite time to failure.

Petri nets are well adapted to support a structured approach because they are based on
a system view under the form of a set of sequential processes or active objects which are
interacting. This is the reason they offer an easy understanding of the system behavior

' which can improve the dialog between the analyst and the project team. In addition, the
Stochastic and Time Petri Net (STPN) (Ref. 1), which is an extended model of
Generalized Stochastic Petri Net (GSPN) (Ref. 2), is able to deal with arbitrary time
distribution like exponential, deterministic or uniform. Hence, performance parameters,
like availability, in the transient and stationary periods can be estimated by the simulation
of the nets.

The aim of this paper is twofold; through an example of a satellite system, we illustrate
Petri Net ability for modeling and evaluation of such systems, and thanks to
interpretation of typical results, we stress how such availability studies can be useful for
project management.

Section 2 presents the system example to be studied. Input parameters over which
sensitivity analysis can be performed are defined.

Section 3 presents the Petri Net models built to represent this system. We focus here on
the description of the logical behavior of the system, hence the time parameter is not
explicitly taken into account.

Section 4 justifies the choice of the time extension of the Petri Net used: the Stochastic
and Time Petri Nets. We present the principle of the net simulation and, for a specific
value of the defined input parameters, we provide and comment on typical results.

Section 5 emphasizes the usefulness of such a flexible approach from both the analyst
and the project manager view points.

2. SYSTEM DESCRIPTION
The system is described by its input parameters and its logistic support policy.

2.1 Input parameters

The system studied is composed by (see figure 1):

• the space segment, and
• the ground logistic support segment, i.e. all the resources needed to set up and

maintain the space segment

The space segment is based on a Low Earth Orbit (LEO) satellite

The ground logistic support includes the following resources:

• a satellite production line,
• the possibility of a stock capacity

• a launching area

Launch and Production
Requests

SPACE SEGMENT

Launch Indications

A

Production line Stock capacity Launching area

LOGISTIC SUPPORT SEGMENT : ground resources

Figure 1. System components

Table 1 provides the stochastic and time input parameters for with both space and
logistic support segments.

The failure rates for nominal satellite is supposed to be constant, so satellite reliability is
exponentially distributed.

The values of these input parameters come from historical technical characteristics of
space vehicles, launchers, and production systems.

Parameter Comments

SPACE SEGMENT

Äfsal,) Satellite failure rate

Tukfsai) Time to satellite end of life

'A,,,, Time injection and test a satellite

P injection Probability of injection success

LOGISTIC SUPPORT SEGMENT

TvnJsal) Time to produce a satellite

'I\ini,i(launch) Time to have a launcher available

' j.iDiruiyn Time of the launch campaign

PlMuich Probability of launch success

Table 1. Time and stochastic input parameters

2.2 Initialization and Maintenance policy

Initially, a satellite is produced and a launcher is ordered. As soon as a launcher and a
satellite are available and the campaign is done, the satellite is launched.

If the launch fails or the injection is not successful, a request of a satellite and 1
launcher is made and a new launch is programmed as soon as possible.

If the launch and the injection are successful, the satellite is operational on orbit until
his failure or end of his lifetime. Before the end of life of the operational satellite in orbit,
a satellite production and a launcher request are programmed to have them available to
replace it with no interruption of the mission.

If the satellite fails before the programmed date to ordered it, a satellite production and
a launcher request are ordered to replace the failed satellite as soon as possible.

This maintenance policy assumes that satellite and launcher productions are not
planified but driven by the space segment needs.

In case of possibility of satellite stocking, a satellite production is ordered as soon as
the previous satellite is launched.

3. MODEL SPECIFICATION
This section describes the models designed for the above presented system. The time

parameter is not taken into account here, we only stress the logical behavior.

As we showed in section 2, the system could be split into two parts: the space segment
and the ground logistic support segment. The global Petri net of figure 3 follows this
decomposition.

The sub-model describing the behavior of the space segment. The associated models is
presented in sections 3.2.

The ground logistic support sub-model describes the management of the production
and launch campaign processes. They are executed in sequence.

Communication between these two sub-models is based on place sharing. Production
requests, if marked, allows the start of the production of a satellite and, concurrently,
the order of a launcher. Launch requests, if marked and if a satellite and a launcher are
available, allows the launch of a satellite. If this launch fails {Failure transition), a
production is automatically ordered and another launch request is sent.

If launch succeeds, a token is put in Launch indication which indicates that a satellite
is available on orbit. This communication is shown in figure 2.

Satellite Production Requests

£ o
k KSSOURCE

1' R O C ESS

"C

Satellite Launch Requests o
o

SPACE
SEGMENT

~J
Satellite Launch Indications

Figure 2. Communication between space segment and ground resources

o
:P R O D U C TION .

REQ U ESTS

LA UNC H
REQ UESTS

LAUNCH
CAM P A 10 N

5F a ilu r

 H

3
Success

G round L ugistic S up port

<t>
sate llite
in orb ite

LA UNC H
IND 1CA TIONS o

Space Segment: in orbit life

Figure 3. Global model

Production and launch processes are only represented here as transitions (Production
Process and Launch Campaign transitions), but, they could be complex processes.

Initially no satellite has been produced, launched, or deployed so the initial marking is
such that a satellite production and a launcher are required.

4. MODEL EVALUATION

4.1 The choice of Stochastic and Time Petri Net simulation
Ordinary Petri nets are an asynchronous model into which time is not explicitly

incorporated. A transition fires from the moment it has been validated, but no hypothesis
has been made as to the firing time. These models cannot be used for quantitative
analyses, and it is thus necessary to describe a way in which time may be precisely
represented.

Several temporal extensions of the basic model have been developed, associating time
with the net places, arcs or transitions. A highly general extension was proposed in
(Ref. 3), based on the association of time intervals with transitions. An interval is
referenced in relation to a transition validation date, and characterizes the set of possible
dates for firing this transition. The Petri net can thus be seen as a set of temporal
constraints, coordinated by the net structure, and conditioning the net change over
time.However, this concept of time intervals, as associated with transitions, is not
sufficient. It is advisable, in fact, to specify the probability of the transition firing within a
given temporal window. To this end, distribution functions are associated with these time
intervals, thus characterizing the random variable for "transition firing time". This is the
principle on which Stochastic Timed Petri Net (Ref. 2) is based.

In the case where the time interval is [0, oo[and the only possible distribution
associated with a transition is the exponential distribution, the model in question is that
of Markovian Stochastic Petri Nets (Ref. 4). The change of net marking over time is thus

characterized by a Markov process. Finally, if we allow, in addition, immediate Dirac
functions, the model obtained is that of GSPN (Ref. 1) which thus allows for
synchronizations to be made.

While evaluation methods based on graph generation, like Markov graph (Ref. 1), or
probabilized state graph (Ref. 2) are effective because they are formal and analytic, in
our specific case, Markov graphs don't enable the inclusion of all types of temporization,
while probabilized state graphs supplies only the mean values without their associated
standard deviations, which is a significant restriction.

Thus the Monte-Carlo simulation of STPN is used to provide results in both the
transient and stationary periods. The simulation is based on multiple random evolution of
nets conditioned by the time intervals and associated distribution functions over a given
observation period.

The results of the various simulations are averaged and it thus becomes possible to
obtain the mean period of sojourn time in the various markings, the average number of
transition firings, etc.

It is then easy to deduce the dependability magnitudes in which we are interested.

The simulation tool used for such system evaluations is MISS-RdP (Interactive
Modeling and System Simulation using Petri Nets) (Ref. 5) which has been developed by
IXI corp. in a partnership which includes academic research (CNRS-LAAS), industrial
companies (aeronautics, space and nuclear companies) and the French Space Agency
(CNES). It supports STPN model simulation and provides results in standard
spreadsheet formats. The collaboration still goes on and a new version for colored STPN
is developed and is in evolution to integrate partners needs.

4.2 Simulation parameters

The space system have been modeled by Petri nets in a symbolic way. Hence, a very
wide sensitivity analysis over input parameters is allowed without designing new models.
We do not proceed it, but illustrate over examples the results we can expect and how
they are interesting to analyze and set up the system.

4.3 Results

In order to identify that might achieve the mission availability objectives under the
program cost constraints, the study should provide for the entire mission :

• The instantaneous availability during mission time

• The mean availability over the mission time

• The satellite reliability and lifetime

• The satellite production and stock policy

• The satellite cumulated storage time

• The number of satellites launched

• The number of unsuccessful launches

•

Most of those outputs are used to evaluate the total cost of recurrent program.

Other interesting outputs for the project are provided as the mean number of satellites
which could reach half of the lifetime or the lifetime,....

INSTANTANEOUS AVAILABILITY FOR SCENARIO 1

.»as 2^1 t

0.3 —

0,2

■case 1 : sat (0,5 - 5 ans); launched 0,75 - 18 mois)

case 2 : sal (0,3 - 5 ans); launched 0,6 -18 muis)

;. case 3 : sat (0,8-7 ans); launcher(0,9 -18 mois)
: case i 1 = cas i with scenario 1 (sat. production on failure, no stocks)

10 12 14 16 18 20

Mission time in years

Figure 4. Space segment instantaneous availability

Figure 4 displays the space segment availability for a nominal mission..

The calculus of confidence interval comes from direct application of central limit
theorem to the random availability variable (Ref. 6). Figure 6 shows, for 10 000
simulations, the confidence curves between which 95 % of experimental values of
nominal mission availability should be located. The availability results are accurate
enough to allow correct interpretations.

U..1

u.:

piwrTitfrn-TMji..,iii'.it^j

12 14 16 IS

Mission time in years
20

Figure 5. Confidence curves of nominal mission availability at 95%

In order to evaluate the mission needs, it is interesting to display, at a specific mission
date, the number of satellites and launchers required and the associated probabilities.

Figures 6 displays the number of satellites ordered at 14 yeans and the associated
probabilities. For example, there is a probability of about 0,8 that 5 satellites or less, and
a probability of 0,37 that 5 satellites exactly, have been launched during the first mission
time: [0, 14 years].

DISTRIBUTION OF THE NUMBER OF SATELLITES LAUNCHED
AT 14 YEARS (CASE 1 1)

•» 5

Number of satellites lau

Figure 6. Number of satellites ordered at 14 years and associated probabilities

These are important inputs for costs & risks analysis which underline the necessity to
predict launches and satellites failures. Moreover it helps to predict and plan the
productions.

Costs evaluations are not presented here but the estimations were done in each case
studied. The part of each partner of the program (launcher, satellite designer,..) and the
total cost were evaluated to compare the different options

5. CONCLUSION
This paper has presented the approach for availability evaluation of space systems

developed in the French Space Agency. It has been led in other various cases to analyze
commercial or scientific space projects like BIMILSAT (communication) TAOS
STARSYS (localization).

From the analyst's view point, Petri net modeling and simulation of such systems, while
it requires a non negligible effort of learning and training, allows us to surmount the
limitations of traditional approaches. The easy to understand graphical representation of
Petri nets improves the dialog between project protagonists who can share the same
system view in an unambiguous way. Moreover, Petri net modeling is flexible enough to
allow wide sensitivity analyses without designing each time new models.

Results of such studies overcome the simple verification of availability objectives.
Actually, they help to define optimal deployment and maintenance strategies. Then,
guidelines can be provided to project management in order to plan satellite production,
negotiate with launcher companies, and estimate global costs.

REFERENCES

1. M. Ajmone Marsan, G. Balbo and G. Conte, "A class of Generalized Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor Systems", ACM Trans, on
Computer Systems, 2/2, 1984 May, P 93-122.

2. Y. Atamna, G. Juanole, " Dealing with Arbitrary Time Distribution with the
Stochastic Timed Petri Net Model, Applications to Queuing Systems", International
Workshop on Petri Nets and Performance Models, Melbourne, Australia, 1991
December.

3. 1. A. Merlin and D. J. Farber, "Recoverability of Communication Protocols -
Implications of a Theorical Study", IEEE Trans, on Comm., COM-24 (9), 1976
September, P 1036-1043.

4. G. Florin, S. Natkin, "Evaluation des Performances d'un Protocole de
Communication ä l'aide des Reseaux de Petri et des Processus Stochastiques", Joumees
AFCETMulti-Ordinateurs, multiprocesseurs en temps reel, CNRS, Paris, 1978 Mai.

5. IXI, MISS-RdP version 4.0, Manuel de l'utilisateur 1994.
6. F. Moyse, " Precision des resultats de simulation du logiciel MISS-RdP", Rapport de

stage de DEA de Mathematiqties Appliquees, Ecole Nationale Superieure de
l'Aeronautique et de l'Espace & Universite Paul Sabatier, 1995 September.

RESULTS OF LOW-COST PROPULSION SYSTEM RESEARCH FOR SMALL
SATELLITE APPLICATION

SELLERS, Jerry Jon, LAWRENCE, Timothy J.

United States Air Force

CSER, University of Surrey, Guildford, GU2 5XH, UK

Phone: (44) 1483 300 800x3411, FAX (44) 1483 259 503

email: t. lawrence@ee. surrey, ac. uk

PAUL, Malcolm

Surrey Satellite Technology Ltd

Guildford, UK

ABSTRACT—The paper summarizes on-going research into low-cost propulsion
system options for small satellite attitude and orbit control. Research into the
primary cost drivers for propulsion systems is discussed along with implications
for practical, cost-effective designs. Results of hybrid rocket experiments are
highlighted. Applications for this technology on future low-cost missions is
examined. Other technology options are also reviewed including cold-gas
thrusters, resistojets and low-thrust bi-propellant engines. The propulsion system
for the forthcoming UoSAT-12 minisatellite system is described in detail along
with on-orbit capability and operational modes. Future propulsion research work
is summarized.

1. INTRODUCTION

The current catch-phrase of the aerospace industry—"faster, better, cheaper"—represents political
and economic necessity as much as good engineering practice. While industry as a whole struggles
to fully define this "new" strategy in the wake of the post-cold war draw down, the University of
Surrey and its commercial arm Surrey Satellite Technology Ltd. (SSTL), as well as others in the so-
called "amateur" satellite community, have been quietly implementing this philosophy all along.
Since 1981, University of Surrey satellites (UoSATs) have shown that small, reliable satellites can
be built and operated at costs far less than one would find in the mainstream aerospace industry.
The basic UoSAT design, evolved over more than ten missions, has proven itself as a reliable cost-
effective platform for quick access to low Earth orbit. So far, all UoSAT spacecraft have been in the
microsatellite range (~ 50 kg), designed to operate in the relatively benign environment of low-
Earth orbit (LEO). As of this writing, the SSTL/UoSAT team have logged nearly 50 orbit-years of
operational experience.

The success of small satellite missions depends on low-cost launch opportunities. So far, the
majority of UoSAT missions have been on Ariane launchers attached to the Ariane Structure for
Secondary Payloads (ASAP) ring and deployed into LEO. However, a review of Ariane launch
manifests into the foreseeable future at the outset of our research revealed the majority of
opportunities for secondary payloads would be into geosynchronous transfer orbit (GTO). This is a
highly elliptical orbit 200 x 36,000 km altitude with an inclination of 7°. GTO offers a variety of
mission opportunities. OSCAR Phase-3 missions, for example, have used GTO as starting point for
Molniya communications missions. Other mission opportunities that could exploit low-cost
launches into GTO include:

• Small geosynchronous (GEO) communications—Currently, developing countries must
lease transponders on large, expensive commercial satellites. The possibility exists for them
to purchase their own small, dedicated satellite at a competitive price.

• Meteorological monitoring—Microsatellites have demonstrated their utility for localised
weather monitoring from LEO. Small satellites beginning in GTO could be used as low-cost
weather monitoring platforms with the higher altitude providing more global access.
• Geomagnetic data collection—Because spacecraft in GTO travel though the entire depth of
the Van Allen radiation belts twice daily, they offer a unique vantage point from which to
monitor important phenomena in the space environment such as solar wind and magnetic field
interactions, galactic cosmic rays and solar flares.
• Ground-based astronomy calibration—Ground-based optical astronomy is handicapped by
the dynamic nature of Earth's atmosphere which attenuates faint signals. A satellite in very
high Earth orbit with a low-power laser of known wavelength could provide the feedback
necessary to perform real-time calibration and correction of these signals, greatly enhancing
their resolution.
• Lunar and planetary exploration—From GTO, the total velocity change (AV) necessary to
go to lunar orbit, Earth approaching asteroids or even other planets is roughly equivalent to
that needed to go into GEO. Spacecraft such as the U.S. Clemetine mission have
demonstrated how very good planetary science can be conducted from small, relatively low-
cost (~$70M) platforms. The opportunity exists to use GTO as a springboard to explore the
solar system with even smaller, and far cheaper (~$10M) satellites.

In addition to these missions specifically related to GTO, other exciting opportunities are emerging
for LEO small satellites:

• Micro-LEO constellations—Constellations of two or more store-and-forward
communication satellites to support world-wide paging, data collection from geographically
remote scientific or industrial facilities, disaster relief and other services.
• "Personal" Remote Sensing—Developing countries currently depend on large, expensive
remote sensing platforms such as SPOT or LANDSAT. A dedicated small satellite with
nearly the same resolution that also offers on-demand coverage and the ability for the user to
exercise far greater control over imaging times, targets, lighting and area re-visits appears
feasible at a competitive cost.
• SAR missions—Synthetic aperture radar (SAR) offers the ability to pierce through cloud
cover to collect images day or night. So far, this technology has been limited to very large,
expensive platforms, however, it now appears feasible to deploy a limited but useful SAR
capability on a small LEO satellite.
• Equatorial belt missions—All of the LEO missions listed above would provide global
coverage from a polar orbit. However, developing counties, especially in the Pacific Rim
such as Indonesia, Malaysia, Singapore and the Philippines are increasingly interested in
dedicated regional coverage. This could best be provided by satellites operating in very low
inclination orbits.

Unfortunately, until recently UoSAT spacecraft (as well as similar satellites built by other
Universities and companies) lacked one critical system that would allow them to exploit fully the
mission opportunities outlined above: a propulsion system. Propulsion systems are a common
feature on virtually all larger satellites. However, until now there has been no need for very small,
low-cost satellites to have these potentially costly systems. As secondary payloads, they were
deployed into stable, useful orbits and natural orbit perturbations (drag, J2, etc.) were acceptable
within the context of the relatively modest mission objectives. Over the years, these pioneering
small satellite missions have proven that effective communication, remote sensing and space
science can be done from a cost-effective platform. As these missions have evolved, various
technical challenges in on-board data handling, low-power communication, autonomous operations
and low-cost engineering have been met and solved. Now, as mission planners look beyond passive

missions in LEO to the bold, new missions described above, all of which require active orbit and
attitude control, a new challenge is faced—cost-effective propulsion.

Propulsion systems are needed to perform a variety of tasks essential to active missions in LEO and
beyond. These include:

• Orbit Manoeuvring—the ability to move from an initial parking orbit to an escape
trajectory or insert into a final mission orbit, e.g. changing from GTO to GEO.
• Orbit Maintenance—the ability to maintain a specific orbit against drag and other
perturbations, or phase the orbit to maintain proper angular separation of a constellation.
• Attitude Control—The ability to rotate the spacecraft to reorient sensors or dump
momentum, especially beyond LEO where magnetorquing and gravity gradient stabilisation
are not viable options.

Obviously, all these capabilities can be found in off-the-shelf systems used throughout the
aerospace community. However, current off-the-shelf technology may not be appropriate for cost-
effective applications within the context of small satellite missions. Furthermore, the cost of these
systems, when procured using standard aerospace practices can be prohibitive. Thus, small satellite
mission planners face a dilemma—future missions demand a propulsion capability but the cost of
this single system may be prohibitive, keeping the entire mission grounded.

The objective of the research described in this paper is to investigate cost-effective propulsion
system options for small satellite application. The following discussion will address a new
paradigm developed for understanding propulsion system costs and an innovative technique for
parametrically combining the various dimensions of this paradigm to quantify a figure of merit for
specific system options and mission scenarios. This technique provides a useful tool for mission
and research planning as well as total quality management. From this discussion, hybrid rockets
and water resistojets emerge as promising technology options in need of further research. Research
programs investigating these technologies at the University of Surrey will be described along with
preliminary results. Finally, the near term application for this propulsion research will be addressed
by describing the system to be deployed on the forthcoming UoSAT-12 minisatellite mission.

2. DISCUSSION

2.1 Cost Paradigm

At the outset of the research into the cost issues of propulsion systems, it immediately became
obvious that the broader issues of spacecraft hardware costs in general must first be addressed
before propulsion system costs specifically could be fully understood. By first isolating and
explaining the fundamental cost drivers of these traditionally expensive components, a credible
strategy could be formulated for reducing the costs of propulsion hardware specifically. To that end,
specific spacecraft hardware cost drivers which occur during each phase of a mission were
identified. These mission phases are:

1. Mission Definition
2. Mission Design
3. Hardware Acquisition

The purpose was to provide a useful context for understanding the process of selecting and flying
space hardware in general which could then be applied to propulsion systems. The results of this
effort are published in a dedicated chapter of Reducing Space Mission Costs edited by Dr. Jim
Wertz [Wertz 96].

From this research, a new paradigm for understanding total propulsion system cost emerged.
Traditionally, the approach taken to describe propulsion cost has been to isolate a single descriptive
parameter of the technology, one that determines what was perceived to be the most important
premium on a satellite—mass. The propellant mass used by a given system is determined by its

specific impulse, Isp. Specific impulse is similar in concept to the "miles per gallon" rating used to
compare automobile fuel efficiency. However, while mass is certainly one important descriptive
dimension of system cost it is not the only one. In fact, the evidence presented from [Dean 91]
clearly indicates that by focusing solely on mass, true cost reduction may not be achieved. It is even
possible that the overall cost is increased due to the increased system complexity needed to achieve
the higher mass efficiency.

If mass is not the only dimension, what else is there to consider? The most obvious that springs to
mind is the bottom line price paid for the hardware. In some situations, price can be the most
important dimension, especially for low-budget missions such as those flown by small, University-
sponsored satellites. For these missions, if the price exceeds a certain threshold limit, the mission
simply will not get off the ground.

But focusing too closely price alone may cause you to miss more important issues. For example, a
given system option may appear to be a bargain in terms of dollars, but ensuing logistics or
operating costs may far exceed other, seemingly more expensive options. Therefore, as part of the
research, we set out to define all the dimensions that encompass total propulsion system cost. In
addition to mass and price, there are three other aspects of performance to consider: volume, Total
elapse thrust time (to complete all AV), and power consumed. Finally, there are other less obvious
opportunity costs to consider as well. Collectively, these as referred to as mission costs as they
depend on the technology used and the mission environment. These are: technical risk, safety,
logistics and integration. Thus, the nine dimensional cost paradigm includes:

1. Propellant mass
2. Propellant volume
3. Total elapsed thrust time (to complete desired AV)
4. Power required
5. System price
6. Technical risk (to the program)
7. Safety (to deal with inherent personal risk)
8. Integration
9. Logistics

Figure 1 illustrates how each phase of a mission drives the specific cost dimensions. Using this new
paradigm, the real cost of system options could then be assessed. This will be addressed in the next
section.

2.2 Assessing System Options

Armed with a new paradigm for understanding propulsion system costs, all realistic near-term
options for small satellite applications were considered. These options are listed in Table 1 along
with important performance parameters.

The chemical systems identified included traditional solid and liquid systems as well as hybrid. For
electric systems, the study showed that resistojets and pulsed plasma thrusters (PPT) look the most
promising for small satellites due to their low power requirement (50 - 500 W continuous power).
Ion systems have been designed for low power (-440 W), but are very expensive (-1.5 million for
each thruster). Microwave thrusters can also function at low power, but still are in the theoretical
stage. The other systems, have too high of a power requirement for the UoSAT platform. It was
decided due to the anticipated simple integration requirement for a water resistojet, that it would be
worth pursuing (water can go anywhere in the world !). PPT's are being studied at NASA Lewis
and the USAF Phillips Laboratory (with Olin as the contractor) and will be attractive as soon as a
more advanced systems are flown [Myers 94].

-I Mission Definition Phase

Launch & Space
Environment

Performance
Costs

Political
Environment

Logistics
Costs

Safety
Costs

Technical
Risk

System
Price

Mission Design Phase

Performance
Requirements
with Margins

Quality
Level

Technology

Performance
Costs

System
Price

System
Architecture

System
Configuration &

Complexity

Safety
Costs

Logistics
Costs

Technical
Risk

Integration
Cost

Hardware Acquisition Phase I

Hardware
Source

Procurement
Process

Performance
Costs

Space
Qualification
Requirements

System
Price

I
Technical

Risk
Integration

Cost

Figure 1: Relationship between mission phase and cost drivers for propulsion systems.

In addition to understanding performance costs, the price and mission costs for each option were
also characterised. System prices were determined by designing representative system architectures
for each option and then pricing individual components based on information gained from the
UoSAT-12 system design project (described later in the this paper). Mission costs for each option
were evaluated based on a thorough understanding of each technology applying engineering
judgement. Table 2 lists the relative mission costs for each option. These and all dimensions were
scaled 0-100 (with 0 being lowest cost and 100 highest) to allow for parametric combination.

System Isp (sec) Oxidiser/
Propellant

specific
gravity

Fuel
specific
gravity

O/F Density
Isp

Thrust
(N)

Power
(W)

Bi-Propellant 290 1.447 0.8788 1.65 337.33 20 2
Hydrazine mono-propellant 225 1.008 226.80 20 1
Hybrid 295 1.36 0.93 8 381.60 500 1
Cold-gas 65 0.23 14.95 0.1 .5
H20 Resistojet 185 1.0 185.00 0.3 500
Solid (STAR 17-A) 286.7 1.661 476.21 16000 0
Hydrazine Resistojet 304 1.008 306.43 0.33 500
PPT 1500 2.16 3240.00 7.0 x 10-4 20
HTP mono-propellant 150 1.36 204.00 1 1

technologies analysed.

Option Safety Cost
Factor

Technical
Risk Factor

Integration
Factor

Logistics
Factor

Bi-Propellant 100 50 80 100
Hydrazine mono-propellant 90 40 70 90
Hybrid 50 100 100 60
Cold-gas 10 10 10 20
H20 Resistojet 10 80 20 20
Solid 20 30 100 80
Hydrazine Resistojet 90 40 40 90
PPT 10 80 80 10
HTP mono-propellant 50 80 70 60

Table 2: Relative mission costs for propulsion system options.

The approach taken to parametrically combine all cost dimensions into a single figure of merit is
illustrated in Figure 2. A mission scenario was first defined which determined the mission
environment and the total AV required. The mission environment determines the weighting applied
to each dimension. For example, an experimental mission sponsored by a University will place a
higher premium on price than mass while a commercial organisation may take the opposite
approach. Each dimension was weighted from 8 - 0 with 8 being the most important and 0 meaning
no importance (e.g. a given mission may place no weight to the total time needed to complete a
manoeuvre). The mission AV was used to determine the performance, price and mission costs for
each option. All parameters were then combined using the following relationship:

Total _ Cost = A • Pr op_ Mass + B ■ Pr op_ Vol + C- Time + D ■ Power +

E ■ Logistics + F ■ Integrat + G ■ Safety_ Cost + H ■ Tech_ Risk +1 • Sys_ Pr ice

where

(2.1)

A-I- Weightings on each dimension

To illustrate the utility of this method, it was applied to four different mission scenarios.

• Traditional commercial mission—200 m/s AV station keeping. Performance costs
dominate. (Solid option not considered)
• Non-traditional, SSTL-type commercial mission—200 m/s AV station keeping. System
price dominates. (Solid option not considered)
• Experimental mission—Low AV (20 m/s). System price dominates.
• High risk Lunar orbit mission—High AV (1600 m/s). Initial geosynchronous transfer orbit
puts a premium on time due to total radiation dose effects. (Cold-gas and PPT options not
considered)

The weightings applied to each dimension for each scenario is shown in Table 3. Results are shown
in Table 4 and Table 5. Total propellant mass for each option and mission is shown along with the
total estimated system price and the normalised total cost computed from the cost figure of merit.

It is important to emphasise that the results presented above are not intended to be the final word.
The purpose in developing this process was to produce results from which to start discussion, not
iron-clad answers intended to end all debate. For example, different schools of thought may take
exception with the exact qualitative values assigned to certain technology options or the weightings
applied to various dimensions for a given mission scenario. The results may differ depending on the
actual assumptions made, although, the process used remains the same. Therefore, the more general
conclusions about the utility of the process itself are the most important to consider.

Dimensional
Weightings

Figure 2: Basic approach for applying the total cost figure of merit.
Rank

(weighting
)

Traditional
Commercial

Mission

Non-
traditional

Commercial
Mission

Experimental
Mission

Lunar Orbit
Mission

8 Mass Price Price Time
7 Volume Integration Integration Price
6 Technical Risk Safety Logistics Safety
5 Integration Logistics Safety Logistics
4 Logistics Technical Risk Power Integration
3 Safety Mass Volume Technical Risk
2 Price Volume Technical Risk Volume
1 Power Power Mass Mass
0 Time Time Time Power

Table 3: Weightings applied to cost dimensions for various mission scenarios.

To begin with, this unique method for comparing system options provides a versatile tool for
mission planners that allows them to quickly quantify and compare all available technologies and
assess their relative total mission costs. Thus, for the first time, complex system information can be
easily quantified. Low-cost satellite engineering at the University of Surrey and elsewhere has
epitomised the virtue of applying appropriate technology to a given problem. The appropriateness of
a technology is judged by taking a wider view that encompasses more than simply price or
performance. Until now, engineers typically relied on completely subjective engineering judgement
or "gut feeling" in order take into account such indirect cost factors as integration and safety. The
total cost figure of merit process now provides a quantifiable means of making those important
engineering decisions.

Mission System Propellant
Mass (kg)

System
Price ($)

Cost Figure
of Merit

Traditional
Commercial

PPT 3.37 $500,000 47.4

Hydrazine Resistojet 16.22 $229,942 74.3

H2O Resistojet 26.09 $119,604 77.7

Hybrid 16.69 $171,701 84.3

Bi-Propellant 16.97 $176,987 84.9

Hydrazine mono-
propellant

21.66 $132,724 88.8

HTP mono-propellant 31.77 $122,724 100.0

Hydrazine Resistojet 1.67 $217,160 3.2

Non-Traditional
Commercial

H2O Resistojet 26.09 $119,604 56.2

PPT 3.37 $500,000 76.1

HTP mono-propellant 31.77 $122,724 86.3

Hydrazine Resistojet 16.22 $229,942 90.0

Hybrid 16.69 $171,701 91.7

Hydrazine mono-
propellant

21.66 $132,724 92.0

Bi-Propellant 16.97 $176,987 100.0
Table 4: Summary of cost analysis results for traditional vs. non-traditional commercial mission

scenarios.

Mission System Propellant
Mass (kg)

System
Price ($)

Cost Figure
of Merit

Experimental Cold-gas 7.72 $77,594 30.9
H2O Resistojet 2.82 $94,040 46.7
HTP mono-propellant 3.37 $97,160 65.4

PPT 0.34 $200,000 67.4
Hydrazine mono-
propellant

2.26 $107,160 79.5

Hybrid 1.72 $171,701 89.2
Hydrazine Resistojet 1.67 $217,160 97.9
Bi-Propellant 1.75 $176,987 100.0

Lunar orbit Hybrid 106.18 $248,393 49.0
HTP mono-propellant 165.72 $237,762 59.1
Hydrazine mono-
propellant

128.90 $260,544 59.8

Bi-Propellant 107.54 $279,243 64.0
Solid (2 x STAR 17-A) 108.46 $1,420,000 68.5
H2O Resistojet 148.98 $272,988 69.6
Hydrazine Resistojet 103.80 $332,198 100.0

Table 5: Summary of Total System Cost analysis results for an experimental mission and a Lunar
orbit mission.

Furthermore, because the process results in a quantifiable parameter, it can serve as a useful total
quality planning tool. By quantifying the starting point for various options, this technique can
provide important indications of where best to invest in improvement and enables any incremental
improvements to be measured. In this way, the controversial results reported above may help to
spark debate and force a re-examination of research priorities for small satellite propulsion. For
example, in deciding where best to invest money in a PPT development program, this process (as
evidenced by the results above) would indicate that more effort should be aimed at lowering the

price and integration complexity of the thruster rather than on increasing its delivered Isp. In doing
this, it would clearly offer a better overall cost-effective solutions to competing options.

The most immediate application for this method as a research planning tool is at the University of
Surrey. These results indicate that three propulsion technologies offer real benefit for future
mission scenarios:

• Hybrid rockets—for future high AV options such as the Lunar mission (with the HTP
mono-propellant system as a necessary bi-product of such research).
• H2O resistojet—for commercial applications for the minisatellite bus for station keeping
requirements in LEO or GEO.
• Cold-gas—for near-term experimental missions to develop basic orbit control techniques.

These research areas will be addressed in the following sections.

2.3 Hybrid Rocket Research

Based on the analysis presented in the last section, hybrid rockets emerged as a promising
technology in need of further research. Hybrid rockets offer an inherently safe option that use a
liquid oxidiser and a solid fuel. In operation, they cannot explode. The following subsections
describes the research. Additional background on the program can be found in [Sellers 94b]
[Sellers 95a].

2.3.1 Research Objectives

Beginning in April 1994, supported by UoSAT/SSTL, we undertook this ambitious hybrid rocket
research programme. The goals of the program were established as follows:

1. Proof-of-concept—demonstrate the accessibility of hybrid rocket technology for continued
research, development and exploitation for low-cost satellite upper stages. In the process,
identify and solve the critical engineering problems of the technology.

2. Performance characterisation—recognising that the actual performance of a given hybrid
propellant combination depends on empirical data, establish through experimental
investigation, the regression rate characteristics for a proto-type motor and use this data as
a basis for preliminary upper stage design calculations.

3. Total cost assessment—based on the experience gained through hands-on hybrid rocket
work, fully assess the system price and mission costs for future hybrid upper stage
applications.

With these objectives in mind, a proto-type hybrid motor was designed, built and tested using 85%
high test hydrogen peroxide oxidiser (HTP) and polythene fuel.

2.3.2 Results & Conclusions

The primary objectives of the hybrid research program have already been met. To begin with, the
concept has been proven. Hybrids represent a readily assessable technology allowing full-scale
research and development in a budget-constrained, University environment. The program
demonstrated rapid results (first successful test less than 7 months from project go-ahead) with
minimum cost (< $20,000) and addressed and solved a number of fundamental engineering
problems, most notably catalyst pack technology. 55 catalyst pack tests were completed using 8
different catalyst types. 9 successful hybrid tests were completed.

Experimental results allowed the complete characterisation of hybrid performance. The proto-type
hybrid motor was used to fully assess the PE/HTP combination and publish the first-ever regression
rate relationship applied specifically to small satellite upper stages. This data is shown in Figure 3.
Using this data, a hybrid upper stage design process was developed and a preliminary design for
minisatellite motor was completed. Performance parameters for this motor are shown in Table 6.

Experimental Regression Rate Data with Derived Regression
Rate Equation

rdot = 0.0205C?5869 S/
0.6 .

A
0.5 .

\^y
0.4

V

03

. Expimental Data ;

■ Derived Equation

100 150 200 250 300 350

Total Mass Flux, G (kg/m2sec)

400

Figure 3: Regression rate data for 85% HTP/PE hybrid combination.

Parameter Value

Initial port radius (m) 0.008

Initial L/D 25

Ave. Isp (sec)* 299.6

Ave. O/F 8.4

Total propellant mass (kg) 16.5
Fuel mass (kg) 1.8

Oxidiser flow rate (kg/s) 0.123

HTP volume (litre) 10.8
Ave. Thrust (N) 404

Thrust time (sec) 120
Total impulse (Ns) 48,480

Throat diameter (m) 0.0062

Expansion Ratio 150:1
Nozzle length (m) 0.268

Motor length (m)** 0.25
Table 6: Results of spacecraft hybrid motor design exercise. Performance is assumed to be 95%.

Port geometry is assumed to be "double-D."

Finally, the total cost of hybrids with respect to the cost paradigm were assessed. The performance
costs for 200 m/s AV motor were defined above. Development price for the motor described earlier
were estimated to be -$100,000 with total system cost $170,000.

Obviously, the first flight of any new propulsion technology caries technical risk to the mission.
Fortunately, the inherent nature of hybrids makes the chance of a catastrophic failure extremely low.
Once hybrid technology has overcome the stigma of being untried in space, these inherent features
would make its overall technical risk roughly equivalent to mono-propellant technology.

The combined thermal control and ADCS aspects of hybrid motor integration costs would be
roughly the same as those discussed for solid motors. In addition, hybrids have a significant overall
integration advantage over solids in that the motor can be fully integrated within the spacecraft prior
to shipment. Launch site preparation would require only the loading of oxidiser. Figure 4 gives a
cut-away view of the hybrid motor described earlier installed in the minisatellite structure. The
mechanical integration complexity for a hybrid would be similar to a mono-propellant system in
terms of overall requirements for support systems (tanks, valves, etc.).

10

Figure 4: Cut-away diagram showing possible configuration of a hybrid motor and support tanks
within the minisatellite structure.

Safety issues associated with small satellite applications for hybrids arise from two sources:

• Storage and handling of high pressure gas
• Storage and handling of HTP

The first safety issue is not unique to hybrids and must be addressed as part of cold-gas or other
liquid propellant options (bi-propellant, mono-propellant or resistojet). As discussed in Chapter 4,
procedures and regulations governing high pressure gasses are well established. References such as
[MS 1522 A] specify design criteria for tanks and lines to ensure safe operation.

The second issue is the most important to address. A fair assessment of the safety aspects of HTP
must be done in context with other propellant options such as hydrazine, MMH or MON. Both
[CPIA 84] and [HPHB 67] provide extensive background on HTP safety requirements.

While HTP can cause skin irritation, [HPHB 67] classifies it as non-toxic in sharp contrast to other
liquid propellants. This greatly alleviates demands on the necessary safety infrastructure as
"respiratory protection is ordinarily not required" [CPIA 84] in sharp contrast to hypergolics which,
as Chapter 4 describes, require the use of full SCAPE suits. For HTP handling, much less
expensive and complex vinyl-coated trousers, coats and hoods with Plexiglas face protection are
sufficient. Ordinary rubber gloves (purchased from TESCO) offer adequate protection for
equipment handling.

The biggest potential impact of safety considerations on mission costs relates to logistics. HTP
must either be delivered to the launch site by the supplier (e.g. Air Liquide) or directly to the
satellite manufacturer for shipment as part of the overall launch campaign. According to [CPIA
84], HTP is authorised for transport aboard military aircraft when packaged in accordance with
DOT regulations which defines it as an oxidiser under UN2015. Unfortunately, it cannot be carried
on commercial aircraft in any quantity. However, discussions with supplier Air Liquide [Tremblot
96] indicates that the rules governing HTP ground transport are the same that apply to 70%
hydrogen peroxide which is used world-wide in the pulp and paper industry. Therefore, ground
transportation of even very large quantities virtually any where in the world would be relatively
easy to arrange given sufficient delivery notice.

2.4 Water Resistojet Research

This section will describe the water resistojet research at the University of Surrey. Background on
the technology will first be discussed. Research objectives will then be reviewed followed by a
discussion of preliminary results.

11

2.4.1 Background

A resistojet can be classified as an electrothermal thruster in that electrical energy is used to directly
heat a working fluid. The resulting hot gas is then expanded through a converging-diverging nozzle
to achieve high exhaust velocities. As with chemical rockets (which produce heat stored in
chemical bonds), the same concerns exist for the relative energy in kinetic vs internal energy, as
well as for the loss of energy due to heat transfer and radiation. The primary difference is that for
resistojets, the electrically heated channel wall has a higher temperature than the flow. Thus, the
performance is limited by the channel wall temperature. However, the advantage of a resistojets is
that any working fluid can be used as a propellant. Figure 8 shows the specific impulse, Isp, and
density specific impulse for various working fluids for a gas chamber temperature, Tc, of 1000 K.

Isp and Density Isp for Various Working Fluids at
Tc = 1000 K

N20

Water |^SS
Nitrogen ^^^^^™

Hydrogen

Helium

Ammonia

I Density Isp j

■ Isp

100 200 300 400 500 600

Figure 5: Comparisons of specific impulse (Isp) and density specific impulse for various resistojet
propellant options.

The advantage of using water as the working fluid was illustrated in the analysis presented above.
Not only does it offer high density and low mass in terms of performance costs, but its inherently
safe nature make potential technology development costs low as well.

2.4.2 Research Objectives

Beginning in November, supported by UoSAT/SSTL, we started a development effort studying
electric propulsion options for small satellites. Based upon the results discussed above, and a
preliminary feasibility study, water resistojets looked very attractive for stationkeeping missions.
The goals of the programme were established as follows:

1) Proof-of-concept—Demonstrate the accessibility of water resistojet technology for
continued research, development and exploitation for low-cost satellite stationkeeping
missions. In the process, identify and solve the critical engineering problems of the
technology. This goal was broken down into the following tasks:

• Design a proof-of-concept thruster (called the Mark-T)
• Establish test infrastructure.
• Investigate heat transfer trade-offs

2) Performance characterisation—Unlike performance for chemical rockets which can be
readily predicted from combustion thermochemistry, the theoretical performance of a
water resistojet must rely on less analytical approximations of heat transfer efficiency.
This can become a complicated problem as the heat-transfer correlations for the various
transitions of water-steam boiling and two-phase flow are difficult to model-
thermodynamic properties are very dependent on the steam/liquid mixture. The high
temperatures and low thrust for electrothermal thrusters has traditionally led to a
requirement for highly sophisticated (and very expensive) thrust stands to get accurate
performance characterisation. One of the primary reseasrch goals during this phase will

12

be to develop an analytic technique to acuately model resistojet performance based upon
thermodynamic heat transfer efficiencies. These predictions will be compared to
experimental results. Once a credible analytic approach is established, the thruster will
then be tested on a state-of-the- art thrust stand to further validate the technique. It is
envisioned that such an analytic performance prediction technique will enhance the state
of the art for these types of thrusters by eventually reducing or eliminating the need for
complex and expensive thrust measurement equipment. The end result will be a low-cost
approach to electrothermal rocket testing. This objective will also consist of three tasks:

• Based on experience gained during Phase-1, design a more efficient
experimental thruster (called the Mark-II)

• Define performance prediction trade-offs and heat transfer correlations
• Collect experimental data over a wide range of operating regimes
• Address satellite integration and operations issues

3) On-Orbit Demonstration—The final goal of this research will be an on-orbit
demonstration of the technology. This will represent a true "first" as no water resistojet
has ever been tested in space. This experiment will be conducted on the UoSAT-12
mission (described below). Care must be taken to ensure the experimental thruster firings
are compatible with the spacecraft's duty cycle. Simulation of the operations concept
will be incorporated early on in the research programme to insure the optimum solution is
obtained. The duty cycle will be optimised for the UoSAT-12 mission but will be
designed to demonstrate the operational flexibility of the technology to meet the
requirements for future station keeping missions. A proto-flight thruster (called the
Mark-Ill) based on the following performance parameters is envisioned for UoSAT-12:

• Thrust = 0.05 - 0.5 N
• Specific impulse = 180 - 220 sec
• Power =100-560 W
• Duration = > 250 minutes total operation.

2.4.3 Program Status

The program is currently in the Proof-of-Concept Phase. The Mark-I thruster has been designed
and fabricated. For the Mark-I design, it was understood that there were many ways the thrust
chamber could be configured to give efficient heat transfer to the propellant (a tube wrapped in a
electric coil, directly exposing the propellant to an electric coil, a heater surrounded by sintered
material or a heater surrounded by a packed bed of heat transfer material). Such designs are
discussed in [Morren 88] and [Morren 93 a]. We decided to pursue the packed bed approach as it
provides high surface area and therefore the potential for high heat transfer. An additional
advantage of a packed bed is the relatively high pressure drop created which allows for very long
propellant stay time, further increasing heat transfer efficiency. Predicted results for various heat
transfer material is shown in Figure 6.

The Mark-I thrust chamber is 30 cm by 120 cm with a 10 by 110 cm commercial cartridge heater
installed in the centre. Around the heater, the chamber is packed with a heat transfer material
(leading candidates are stainless steel, boron carbide, and silicon carbide) in the form of pellets
varying from 300 - 700 urn in diameter. Water flow rate varies from 0.05 to .1 g/sec at an inlet
pressure of 10 bar. As it enters the chamber, the water passes through a 2 mm sintered disk which
keeps the heat transfer material from interacting with the injector and also provides a pressure drop
to decouple the inlet pressure from the chamber pressure (otherwise flow oscillations can regulate
the inlet flow). The water then flows across the bed, is heated, and passed out through the .5 mm
throat diameter nozzle as super-heated steam. The instrumentation in the thrust chamber consists of
two pressure gauges and 12 thermocouples. A cut-away drawing of the thrust chamber is shown in
Figure 7.

13

Predicted Performance for 10 Minute start-up
for Water using Various Heat Transfer Material

(Power = 500W)

1000 . >'
2" 800 -

/> a 600 . Vs^
E ~^zs a>
1-

400

200 I

0

^*^^
. Sintered Alumina i

.B4C

.SS
o o o o
T- CM

o
o

o
o

o
o
m

o
o
co

Time (sec)

Figure 6: Predicted performance for water resistojet with various be materials (SS = stainless steel,
B4C = boron carbide)

Figure 7: Cut-away diagram of experimental water resistojet.

Preliminary tests using stainless steel as the heat transfer material have been conducted for up to 6
hours of thruster operation expanding to atmosphere. As the program is still in the proof-of-concept
phase, actual thruster performance data has not yet been produced. However, the test infrastructure
has been validated and the Mark-I design has proved useful for understanding heat transfer trade-
offs. Initial results indicate reliable heat transfer within the bed with temperatures >600 K
achievable, which is consistent with earlier results [Morren 88]. The Mark-II thruster is currently
being designed for full-scale performance characterisation beginning in July 1996. We are looking
at techniques for improving heat transfer efficiency (e.g. insulation, pre-heaters, greater stay time,
etc.). This program is on a fast-track to produce a proto-flight thruster for UoSAT-12 by December
1996.

2.5 Uosat-12 System

Concurrent with this research, engineers at SSTL/UoSAT were designing a flexible, multi-mission
minisatellite to position themselves to exploit the emerging opportunities discussed above. With an
approximate mass of 250 kg, the minisatellite structural design builds on the modular approach used
in the UoSAT microsatellites in a way that allows maximum re-use of subsystems between the two
platforms. The minisatellite structure starts with a honeycomb attach frame on which three stacks
of module boxes are arranged in a triangle. Solar panels of the same width as those used on the
microsatellites are arranged around the sides to get a total of nine sides. By extending the height of

14

the panels, an equipment or payload bay is formed at the top of the module box stack. A diagram of
the minisatellite is shown in Figure 8. As this is written, the first flight of this new satellite bus,
dubbed UoSAT-12, is in critical design for a launch in Mid-1997.

The technical objectives for the minisatellite mission strike a compromise between all the features a
flexible minisatellite bus would have and what can be achieved within the available budget and time
scale. The following technical objectives have been defined for the UoSAT-12 mission:

• Demonstrate a commercially viable minisatellite bus with industry-standard support
systems

• 28 VDC power bus
• 1 MBPS S-band down-link

• Demonstrate that enhanced core microsatellite technologies can be used in a minisatellite:
• Intel 386-based on board computers (OBC)
• Low-rate VHF/UHF data links
• Distributed TT&C via control area network (CAN)

• Demonstrate major new subsystems:
• Enhanced attitude determination and control capability
• Propulsion system capability with orbit maintenance and attitude control

• Enhance existing UoSAT payloads using resources of the minisatellite to provide
operational demonstration of:

• High-resolution (<30 m) multi-spectral visible imaging
• Store-and-forward communications to small terminals

Figure 8: Diagram of University of Surrey Minisatellite (dimensions in mm).

Figure 9 shows the schematic of the propulsion system layout for UoSAT-12. Note as this is an
experimental mission designed to gain experience in propulsion system integration and operations,
the most cost-effective option (as indicated earlier) was a cold-gas system. A separate water
resistojet experiment is also planned. Table 7 summarises the total performance available.

15

Nj Fill/Drain
Valve

Cold-Gas Thrusters
(8 x attitude control, 2
x orbit control)

Figure 9: Schematic of UoSAT-12 propulsion system.

Performance
Parameter

Value

Mass N2 7.1kg
Total Pulses 4.384x10^(0.1 sec

each)
Total Impulse (cold
gas)

4.389 x 10^ Nsec

Total Angular Impulse
(cold gas)

2.085 x 10* Nmsec

AV available (cold
gas)

17.8 m/s

Mass H2O 1.5 kg
Total Impulse
(resistojet)

l^xlO^Nsec

Table 7: Summary of performance parameters for UoSAT-12 propulsion system.

3. CONCLUSIONS

The most cost-effective propulsions system can only be found by weighing all options along the
nine dimensions of the total cost paradigm within the context of a given mission. For very low-
cost, logistically constrained missions, unconventional options such as hybrids and water resistojets
offer many unique advantages over current off-the shelf options. Future research will focus on
demonstrating these technologies in orbit.

16

4. REFERENCES
[CPIA 84]

[Dean 91]

[HPHB 67]

[Humble 95]

[Manzella 89]

[Moore 56]

[Morren 88]

[Morren 93 a]

[Morren 93b]

[Myers 94]

[MS 1522A]

[Sellers 94a]

[Sellers 95a]

[Sellers 95b]

[Tremblot 96]

[Werinimont 95]

[Wernimont 94]

[Wertz 96]

Chemical Propulsion Information Agency Publication 394, Vol. Ill, Hazards of
Chemical Rockets and Propellants, Johns Hopkins University, Applied Physics
Laboratory, Laurel, Maryland, September 1984.

Dean, E., Unal, R., "Designing for Cost," Transactions of the American Association
of Cost Engineers, pp. D.4.1 - D.4.6, Seattle, Washington, 23- 26 June, 1991.

Hydrogen Peroxide Handbook, Chemical and Material Sciences Department,
Research Division, Rocketdyne—a division of North American Aviation, Inc.,
Canoga Park, California, Technical Report AFRPL-TR-67-144, July 1967.

Humble, R., Henry, G.N., Larson, W.J., Space Propulsion Analysis and Design,
McGraw-Hill, Inc., College Custom Series, 1995.

Manzella, D.H., Carney, L.M., "Investigation of a Liquid-Fed Water Resistojet
Plume," NASA Technical Memorandum 102310, AIAA-89-2840, Prepared for the
25th Joint Propulsion Conference, Monterey, California, July 10-12, 1989.

Moore, G. E., Berman, K., "A Solid-Liquid Rocket Propellant System," Jet
Propulsion, November, 1956.

Morren, W.E., Stone, J.R., "Development of a Liquid-Fed Water Resistojet," AIAA-
88-3288, AIAA/ASME/SAE/ASEE 24* Joint Propulsion Conference, Boston,
Massachusetts, 11-13 July 1988.

Morren, W.E., "Gravity Sensitivity of a Resistojet Water Vaporiser," NASA
Technical Memorandum 106220, AIAA-93-2402, 29th Joint Propulsion Conference,
Monterey, California, June 28-30, 1993.

Morren, W.E., MacRae, G.S., "Preliminary Endurance Tests of Water Vaporizers for
Resistojet Applications," AIAA-93-2403, 29th Joint Propulsion Conference,
Monterey, California, June 28-30, 1993.

Myers, R.M., Oleson, S.R., "Small Satellite Propulsion Options," AIAA 94-2997,
30th Joint Propulsion Conference, Indianapolis, Indiana, June 27-29, 1994.

MIL-STD-1522A Standard General Requirements for Safe Design and Operation of
Pressurized Missile and Space Systems, United States Air Force, 28 May 1984.

Sellers, J.J., Astore, W.J., Crumpton, K.S., Elliot, C, Giffen, R.B., Larson, W.J. (ed),
Understanding Space: An Introduction to Astronautics, McGraw-Hill, New York,
N.Y., 1994.

Sellers, J.J., Meerman, M., Paul, M., Sweeting, M., "A Low-Cost Propulsion System
Option for Small Satellites," Journal of the British Interplanetary Society, Vol. 48.,
pp. 129-138, March, 1995.

Sellers, J.J., Paul, M., Meerman, M., Wood, R., "Investigation into Low-Cost
Propulsion System Options for Small Satellites" Presented at the 9th Annual
AIAA/USU Small Satellite Conference, Logan, Utah, September 1995.

Tremblot, A., Air Liquide, private communications, February/March 1996.

Wernimont, E.J., Heister, S.D., "Performance Characterisation of Hybrid Rockets
Using Hydrogen Peroxide Oxidiser," AIAA-95-3084, 3ist AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, San Diego, California, 10-12 July 1995.

Wernimont, E.J., Meyer, S.E., "Hydrogen Peroxide Hybrid Rocket Engine
Performance Investigation," AIAA 94-3147, 30th Joint Propulsion Conference,
Indianapolis, IN, June 1994.

Wertz, J. (editor), Reducing Space Mission Costs, Kluwer Publishing, to be
published 1996.

17

MULTIPLE TECHNOLOGY CHOICES FOR A MIXED
ANALOG-DIGITAL RADIO-ASTRONOMY SPECTROMETER

■***

J.L. Noullet*, L. Ravera**, A. Ferreira , D. Lagrange , M. Giard
M. Torres****

(*) Laboratoire d'Architecture et d'Analyse des Systemes (LAAS), Toulouse, France
(**) LESIA - Institut National des Sciences Appliquees (INSA), Toulouse, France
(***) Centre d'Etudes Spatiales des Rayonnements (CESR), Toulouse, France
(****) Institut de Recherche en Astronomie Millimetrique (IRAM), Saint Martin
d'Heres, France

Abstract

For analysing the sub-millimeter radiation received by a astronomy satellite, a hybrid
analog-digital spectrometer is planned. As a critical part of this instrument, a specific
digital signal processing chip set is proposed. A first strategy is based on a GaAs
MESFET chip expected to perform 52 giga-operations per second with a 400 MHz
clock frequency. While this strategy gave encouraging results and remains the main line
of the project, a second strategy based on parallelism on silicon only is under study,
and the opportunity of working simultaneously on two opposite approaches is discussed.

Keywords : mixed analog-digital, MESFET, digital signal processing, parallelism,
auto-correlator, space telescope, digital spectrometer.

IR signal
2 GHz bandwidth

IR space
telescope

Spectrum
8 Kbits/s

fig. 1 : Satellite bearing the spectrometer

1. The Instrument

The analysis of sub-millimeter radiation (0.1mm < X, < 1mm) coming from "cold
media" can help understanding the composition of interstellar clouds, observing
the generation of stars and planets and even detecting planets and their natural
satellites.
The frequency spectrum of this radiation carries information not only on the
physical and chemical composition of the objects, but also on the relative speed
of these objects (Doppler effect).
An example of project aimed at exploring this new domain is the FIRST satellite
(Far InfraRed and Sub-millimeter Space Telescope) that is to be launched by the
European Space Agency around year 2006. (figure 1)
In such a satellite, the raw data provided by the sub-millimeter receiver occupies
a wide bandwidth (for example 2 GHz) even when the meaningfull spectrum
information represents a only few kHz.
The reason of this bandwidth reduction is that the spectral values must be
integrated during at least some seconds to obtain something else than pure
random noise.
(Notice that the initial signal/noise ratio is one order of magnitude below unity)
It is absolutely necessary to perform this processing (analysis and integration) on
board of the satellite, in order to keep at a reasonable level the cost of
transmitting the data down to the Earth.
This implies that the instrument will have to comply with very severe constraints
of weight, power consumption and reliability.

2. The mixture of Analog and Digital

Pure analog solutions exist : for example the acousto-optical spectrometer [1].
It gives fine results, but has the following drawbacks :
- high sensitivity to environment (temperature, vibrations)
- lack of flexibility, specially in terms of spectral resolution,
- accuracy drift problems, like any analog processor.
A pure digital solution with the required bandwidth is not permitted by the
present state of the art.

The authors chose to develop an advanced hybrid analog-digital instrument, with
the following expected benefits [2] :
- some kind of robustness, easy "space qualification"
- possibility of improving the spectral resolution as it is needed
- stable accuracy

frequency

<

sub-
millimeter
receiver

analog
digital
GaAs

> 300 GHz 2 GHz 400 MHz

2 bits

digital
CMOS

software

25 MHz 0.2 Hz
word size

1 bit/chan 16 bits/chan
■>

Strategy # 1

frequency

<

sub-
millimeter
receiver

analog

> 300 GHz 2 GHz

digit.
ECL

digital
CMOS

400 MHz 100 MHz

2 bits 4 * 2 bits

Strategy # 2

software

0.2 Hz
word size

">
16 bits/chan

Signal Flow

fig. 2 : The signal flow in the two strategies

In the proposed approach, the initial bandwidth of some 2 GHz will be first cut
into slices by means of analog circuitry, each slice some 180 MHz being down-
converted and then sampled at 400MHz and digitized (this is the minimal
possible amount of analog processing) (figure 2).
Then the digital part of the instrument will compute the integrated autocorrelation
function of the signal, easier to compute than the actual spectrum and carrying
the same information at the same cost (the spectrum will be computed on Earth
by means of the Fourier transform).
One question is what resolution is needed for the analog to digital conversion.
Theoretical computation [3] showed that the value of two bits is suitable for the
project.
At first glance, one may be surprised reading that two bits only are used to
digitize a signal containing much more noise than information. To give a
simplified explanation, let us state that the statistical properties of the thermal
noise and of the quantification noise allow to reject them after processing
thousands of millions of samples, even if both noises are much greater than the
signal coming from the interstellar cold media.
In the other hand, only a few microvolts of deterministic noise injected in the
analog part may corrupt the measurements, this is why the analog part must be
well separated from the digital one.

3. The basic autocorrelator, or the strategy # 1

The discrete autocorrelation function of a digitized signal can be computed by
means of time delays and multiplications. A regular structure is constructed on
the basis of a folded delay line : fig. 3.
This structure can be described as a set of similar channels, each channel
computing one sample of the autocorrelation function. Channel N gives the
product of the signal with its image delayed by N times the sampling period,
while channel zero gives the square of the signal.
These products are then integrated by accumulators (one per channel, not
represented on fig. 3), and the contents of the accumulators is transmitted to the
user at the end of each integration period (a few seconds).
A large accumulation capacity is needed (e.g. 35 bits), since the integration
period (e.g. 5 seconds) is very long compared to the sampling period (2.5 ns).
In fact, only the most significant bits (e.g. 16 bits) of the accumulated value are
meaningful for the user, due to the domination of thermal noise in the incoming
signal.

Yout

D flip-flop

(X) Multiplier

fig. 3 : The single folded delay line architecture

Notice that in figure 3, the signal lines carry actually 2 bits of data, and each of
the square boxes representing the delay elements contains actually 2 flip-flops.

3.1. GaAs against silicon in strategy # 1

The power consumption is the most critical issue for this system, like for any
space equipment.
On the silicon side, the bipolar ECL logic could run at the desired speed, but
with a great power consumption and a poor area efficiency.

CMOS is not as fast, even if submicron CMOS circuits have been run at 200
MHz. The problem with ultra high speed CMOS is the power consumption,
partly because of the large voltage swing of the logic signals.
A good competitor is the GaAs MESFET technology with DCFL gates (Direct
Coupled FET logic). The DCFL gates have a simple architecture, built with
enhancement and depletion N-channel JFETs in a manner that recalls the early
NMOS logic, even if the electrical behaviour is quite different due to the direct
gate-to-source current [4].
The small logic voltage swing and the small supply voltage are the keys of a
good speed/power ratio [5].
DCFL is the most compact solution for digital GaAs, the integration density is
comparable with static sub-micron CMOS.
A high integration density is wanted not for cost reasons, but mainly because it
has an indirect influence on the total power consumption : a poor density would
lead to a greater number of interconnected chips, dissipating lots of power in I/O
buffers.
Let us remark that below some 60 MHz, CMOS consumes less power than
GaAs, and that the difference is very important at low frequencies.
In the autocorrelator, a significant part of the integration task can be performed
below 60 MHz. This is why the proposed architecture is composed of a GaAs
chip for shifting, multiplications and first stages of integration, down to a
bandwidth of 12.5 MHz, (sampling at 25 MHz) and a CMOS chip for the
remainder of the integration (figure 2, strategy # 1).

3.2 Mixing synchronous and asynchronous design

The desired integration duration requires an accumulator capacity of 35 bits for
each channel.
Considering that at the end of the integration period only the 16 most significant
bits will be transmitted to the end user, we note that the 19 less significant bits
of the accumulated result do not need to be available in parallel form.
Thus, a solution using an asynchronous cascade counter to perform the integration
would be minimal in terms of area and power, and would allow to defer to a
CMOS chip some three quarters of the integration task.
The complete solution is complicated by the fact that the actual output of each
mutiplier must be first accumulated synchronously, and it is the overflow of this
operation that will be chopped and directed to an asynchronous cascade counter
(5 stages down to 12.5 MHz bandwidth).
The outputs of the 64 channels of the GaAs chip have to be multiplexed by 4:1
for transmission to the CMOS chip using a reasonable number of I/O pads. This
synchronous multiplexing requires the overflows to be re-sampled at 25 MHz, the
multiplexed output occupying then a 50 MHz bandwidth.

The timing of these conversions between the synchronous and asynchronous
worlds had been very carefully checked, in order to avoid the production of
spikes (when chopping synchronous data to obtain an asynchronous clock) and
setup-hold timing violations or meta-stable states (when re-sampling the output of
an asynchronous counter).

3.3 Full custom against standard cells in strategy # 1

Only a full custom design could take advantage of the regular structure,
potentially allowing very short interconnections. A short interconnection length
allows to build gates with smaller devices than in the standard cell context,
leading to a power saving [6].
The design cost of a full custom layout of the autocorrelator is kept affordable
by the use of N similar instances of the "channel cell", with most of the wires
connected by abutment.
(N = 64 in the first prototype).
The gate metal is used for short wires inside the channel cell, reducing the
number of vias and allowing a much more dense layout than with standard cells.
It has been checked that the resistance of these wires (max. 150 Ohms) induces a
negligible delay (less than 5 ps).
A long shift register is the most sensitive circuit when considering the clock
skew hazard.
To minimize the clock skew, a low-impedance planar grid clock net was made,
driven by 16 buffers evenly spaced on the chip core. Such a precaution is
possible only in a full custom context.

4. The parallel approach, or the strategy # 2

The idea : dividing by a factor K the required processing speed, by handling the
signal through K parallel paths. It is commonly admitted that the price to pay in
this case will be an increase of the hardware complexity by a factor of K.
In this context, we considered the option of replacing the GaAs hardware by
standard CMOS, with a "parallelization factor" K between 4 and 8. (K is also
known as "Time Multiplex Factor".)
Before discussing the possible motivations that could lead to retain this option,
let us describe its implementation.

4.1 The high-speed frond-end

The front-end receives the high-speed data (nominally 400 Msamples/sec) and
produces a parallel flow K times slower, carrying the same information.

Figure 4 shows the
straightforward
architecture of this circuit,
where each square box
represents a couple of D-
type flip-flops handling 2
bits of data.
It also produces the "slow
clock" Sck by dividing by
K the frequency of the
original (fast) sampling
clock Fck.
This part has to be made
of high-speed technology,
like ECL or GaAs. It
represents a very small
amount of logic,
compared with the
complete correlator.
For this reason, standard
ECL parts can be
proposed in spite of their
power consumption, in the
other hand an ASIC is
not justified for such a
simple piece of logic.

4.2 The parallel correlator core

Fck

 \l ,

A,

>

A,
 \

>•

f- .

> >

A,
 \ t ,

> >

A,

, »Q^ w * p
%K

' PJL

Fig. 4 : Parallel solution front-end

The architecture of the parallel core if derived from the reference architecture,
which is the single folded-line system of figure 3, with the goal of
producing exactly the same results.
The single folded delay line is replaced by K parallel folded delay lines,
clocked by the "slow" clock Sck.
These delay lines operate synchronously, but carry images of the original
signal sampled at instants separated by the period of the fast clock Fck.
Each channel has to contain K multipliers, that will work in parallel to
perform the same amount of computation as a single mutiplier running K
times faster did in the reference architecture. Each of these K multipliers has
to process a pair of samples with the same time difference, characteristic of
a given channel, and these pairs are chosen in such a manner that the
products computed simultaneously are the same as those which are processed
in sequence by the single multiplier of the reference architecture.
The K products are added together to feed the integrator.

Figure 5 shows an example of interconnections between a channel and a slice of
the K folded delay lines, in the case K = 4.
Attention is called by the difficulty of representing such a network on a
schematic diagram. As soon as the number of represented channels exceeds 3,
the diagram becomes unreadable (let us recall that we propose a minimum of 64
channels per chip). The fact is that the structure is still very regular, but this
regularity would be manageable only on a N-dimensions schematic diagram !
The solution is to abandon the schematic diagram, and to take advantage of the
modern methods based on HDLs (Hardware Description Languages).
We proposed to generate the parallel core by "procedural instanciation", which
means that the structure is described by a construction algorithm rather than by a
2-dimension graphical view.
A benefit of this method is the "genericity", allowing to change the values of K
or the number of channels without having to rework the circuit by hand.

fig. 5 : one channel inside the parallel core (K=4)

4.3 Full custom against standard cells in strategy # 2

The main motivation for full-custom design in the case of the GaAs chip of
strategy # 1 was the regularity of the structure, easily translatable into regular
masks layout. In the case of strategy # 2, the network structure is very difficult
to implement by hand in form of a 2D geometry. Moreover, a full custom
implementation of the parallel core would lack flexibility, locking the project to
a specific value of K.
For these reasons, this time the full-custom approach loses.
The generic procedural generation fits better with the automatic "place-and-route"
software that works with a standard-cells library.
Our preliminary experiments showed that the state-of-the-art place-and-route
programs, based on a non-deterministic optimization algorithm (simulated annealing)
have no difficulty to produce very compact layouts.

5. Comparison between strategies

The study of strategy #2 (all-silicon) was motivated mainly by the temporary
difficulty to obtain GaAs prototypes and some pessimistic predictions about the
future of this technology. In fact the all-silicon approach offers the advantage of
making the project much more flexible in the terms of relations with manufacturers.
This flexibilty is enhanced by the use of procedural generation and automated
layout, allowing to change the foundry and to adapt the K factor to the available
performances without a lot of rework.

Another benefit of the all-silicon approach is a simplification of the instrument
architecture, because the boundary between the "fast" part (GaAs) and the "slow"
part (CMOS) of the correlator dissapears (see figure 2). In strategy #2, these two
parts are merged into one chip, and the complex multiplexing scheme used
between the fast chip and the slow chip no longer exists. One may object that a
new boundary appears between the front-end (ECL) and the correlator core, but
this boundary is much simpler to manage than the previous one.

The all-silicon approach has also three major drawbacks : the difficulty of
predicting the timing performances, the difficulty to predict the power consumption,
and the radiation sensitivity of CMOS. The first difficulty is related with the
random place-and-route, the second one is a characteristic of CMOS.

Let us recall that GaAs-MESFET is appreciated for space application, because its
power consumption is easy to predict, and it does not produce latch-up in
presence of radiations.

6. State of the project

Started earlier, the strategy #1 is more advanced. A first prototype of the chip
set has been designed, manufactured and tested [7], having shown the feasibility
of the instrument but leaving room for many improvements, and an improved
version of the GaAs chip is in the manufacturing process.

Fig. 6 is a photograph of the first GaAs chip (area 19.5 mm2) in its special
high-frequency ceramic package.

fig. 6 : The first GaAs correlator chip

In the other hand, the second strategy has not yet been implemented in silicon..
A generic procedural generation program has been developed, producing structural
netlists in Verilog format, that can be imported in the CAD framework used for
placing and routing the standard-cells. A high effort has been made for verifying
by simulation the generated circuits, by means of automatic comparison with the
outputs of the reference circuit.
But the speed performances evaluation and the power consumption estimation of
the parallel correlator are still to be done.

10

7. Conclusion

Two strategies are actually developed for the space spectrometer. The strategy #1
is presently prefered, mainly because it is the most advanced in terms of
schedule.
But such a long term project cannot rely only on a solution depending on a
unique manufacturer, a second source is mandatory ; and this second source is
based on strategy #2

Acknowledgements : The authors wish to acknowledge the outstanding contribution
of Jorge Sarmiento, from the University of Los Andes (Bogota), who inaugurated
the procedural generation.

References

[1] W. J. Wilson, "Radiometer Spectrometers for Space", in "Coherent Detection
at Millimeter Wavelength and Applications", pp 163-179, Nova Science
Publishers, New York, 1991.

[2] S. Weinreb, "Analog-Filter Digital-Correlator Hybrid Spectrometer", IEEE
Transactions on Instruments and Measurement, IM-34, N°4, pp 670-675,
December 1985.

[3] B. F. C. Cooper, "Correlators with Two-bit quantization", Australian Journal
of Physics, Vol 23, pp. 521-527, 1970.

[4] J.F. Lopez, V. de Armas, J.A. Montiel, "VLSI GaAs Experience Using H-
GaAs II Technology,", proc. 4th Eurochip Workshop, Toledo, October 1993.

[5] K. Eshraghian, R. Sarmiento, P.P. Carballo, A. Nunez, "Speed-Area-Power
Optimization for DCFL and SDCFL Class of Logic Using Ring Notation",
Microprocessing and Microprogramming, Vol 32, pp 75-82, 1991.

[6] R. Sarmiento, P.P. Carballo, A. Nunez, "High Speed Primitives for Hardware
Accelerators for DSP in GaAs Technology", IEE proceedings-G, Vol. 139,
N°2, April 1992.

[7] Noullet J.L., Giard M., Crete" E., Lagrange D., Mayvial J.Y., Torres M.,
Ferreira A., "Digital GaAs MESFET Chip for a Radio-Astronomy
Spectrometer", European Design and Test Conference EDTC95, Paris, March
1995. (This paper obtained the "Best Academic Asic Award" at EDTC95)

11

Technical Session 5

Collaborative Engineering

Chair: B. Rucinska, University of New Hampshire, USA

A Curriculum in Collaborative Engineering Applied to Small Satellite Technology,
A. Rucinski, D. Milani, D. Geary, University of New Hampshire, USA
Design and Realization of a Synchronous Cooperative Shared Electronic Board,
V. Baudin, M. Diaz, P. Owezarski, T. Villemur, LAAS-CNRS, France
Importance of Specification Means to Design Dependable Integrated Modular Avionics
Systems,
G. Motet, LESIA-INSAT, France
Industrial Cooperation: Definition, Interest and Dynamic Evolution,
M. Filippi, UFR Droit & Sciences Economiques, University of Corte, France

A Curriculum in Collaborative Engineering
Applied to Small Satellite Technology

Andrzej Rucinski, David Geary, Dino Milani
University of New Hampshire

Durham, New Hampshire 03824, USA

Abstract. Today's exploding complexity of knowledge and much higher requirements
imposed on graduates in engineering to become market competitive is substantially
changing educational landscape at universities worldwide. A vivid example of
encouragement in experimentation with engineering curricula in search for a new
equilibrium in educational standards are relaxed requirements from the Accreditation
Board for Engineering and Technology (ABET) programs in the United States. An
additional pressure for changes in education occurs due to the availability of the
Internet and WWW resulting in distant learning and virtual classroom paradigms. The
Collaborative Engineering experiment being developed at the University of New
Hampshire (UNH) challenges a traditional curriculum by emphasizing the need for
graduating managers with engineering background to become team players rather than
theoreticians and design individualists. The curriculum comprises educational,
commercial, and governmental objectives with fuzzy boundaries among them. At the
same time the extremely challenging tasks of practicing management team engineering
using advanced examples from science and technology are addressed in the curriculum.
The paper describes the fundamentals of the interdisciplinary curriculum in engineering
being implemented at the department of Electrical and Computer Engineering (ECE) in
collaboration with the Wittemore School for Business and Economics (WSBE)
and the Institute for Study of Earth, Ocean, and Space (EOS). The rationale behind this
curriculum is driven by real projects under study. The current project in collaborative
engineering is the development of a small scientific satellite called CATSAT
(Cooperative Astrophysics and Technology Satellite). The emphasis of the presentation
is on its generality and expandability due to a limited infrastructure required and tools
such as the Internet and WWW used in the program.

DTIC COULD NOT GET MISSING

PAGES FROM CONTRIBUTOR

DESIGN AND REALIZATION OF A SYNCHRONOUS
COOPERATIVE SHARED ELECTRONIC BOARD

Veronique BAUDIN*, Michel DIAZ*,
Philippe OWEZARSKI*, Thierry VILLEMUR**

*LAASduCNRS
7, Avenue du Colonel Roche

31077 TOULOUSE CEDEX. FRANCE

*IUT B de Toulouse II
I place G. Brassens, BP 73

31703 BLAGNAC CEDEX. FRANCE

e-mail: (baudin, diaz, owe, villemurj@laas.fr

Abstract

This paper first presents a generic service to manage cooperative groups of agents and
to manage dynamic formation of subgroups of agents inside cooperative groups. The
model used to represent relations between groups of agents is based on graphs. The struc-
ture of the cooperative groups changes dynamically in time according to the entries and
exits of the agents. The cooperative model has then been applied inside teleteaching
groups. To provide remote interactions between a student and a teacher, a shared electron-
ic board has been developed: it gives remote views of applications shared through the
board and offers remote control of these applications. Then, a future integration of the
shared electronic board is proposed inside a whole cooperative class of students.

Keywords

Computer Supported cooperative work, membership algorithms, teleteaching
environments, shared electronic board.

1 Introduction

The advanced technologies based on computers video processing are more and more
applied inside the Computer Aided Learning domain. The current commercial products
are based on multimedia CD-ROM to handle locally stored pictures. Such CD-ROM
based technologies do unfortunately not support the interactions and all the data exchang-
es that can happen inside a whole classroom: they have been first developed either to learn
alone in front of a computer or inside a classical classroom with the help of a teacher.

To realize distributed or virtual classrooms in which the students and the teacher are
not geographically located in the same place, several tools, supported by high speed mul-

through the network. Before being displayed, their contents is analysed an mixed as if
they were slides. The two drawings are then superimposed. There is however no remote
interaction allowed by the system: the teacher can not directly help the student and can
not modify his work.

The shared board presented in this paper is based on the exchange of videos that con-
tain the views of the shared applications with the possibility of remotely controlling them.

3 Group model for teleteaching

The model used was proposed by Diaz [DIAZ92]. Each agent has a set of data for
which it is the sole owner; no other agent can modify the data. When an agent modifies
its data, it sends the new value to the other agents that need this data to realize the coope-
rative work.

3.1 Dynamic cooperative groups

A cooperative group is composed of agents, organised to define the relations between
the members of the group. The structure of the cooperation is represented by a directed
graph, the cooperation graph, as shown in Figure 1. Vertices represent the agents, edges
represent the relations between them. Thus, an edge from agent "T" to "S" means that "T"
can read some or all of the values owned by "S", as shown in Figure 2. The approach re-
tained for cooperation is those of information sharing between agents [KAPL92]. Agent
"S" cooperates with agent "T" if it gives or shares some of its information with "T".

The cooperation graph defines a structural type, the conceptual structure of the coop-
eration. This structure can be described in terms of a compound activity, composed of the
types of the cooperating entities, the types of information they are allowed to read and the
types of information they allow other agents to read, together with a relation between the
involved cooperating entities.

Let us now consider how these activities are initiated. The trivial solution corresponds
with the case where cooperation is considered to begin when all entities are ready to start.
Of course, this view is too restrictive as cooperative work can be performed as soon as an
adequate and sound set of participants come into existence. This means that at a given in-
stant it is not necessary that all agents are present to start or conduct the cooperative work.
As a consequence, the conceptual model is extended to define which agents must cooper-
ate to execute the cooperative work.

Figure 3. Examples of two possible valid instantaneous
graphs coming from the cooperative group of Figure 1.

The application associated to the cooperative group has to define the subsets of agents
which have a meaning for the implementation of the cooperative work. In fact, if a picto-
rial representation is considered, these allowed subsets of agents form subgraphs of the
cooperation graphs. Among all subgraphs of the graph of cooperation, the application
chooses those that are semantically possible. The subgraphs retained by the application
are called valid instantaneous graphs. Figure 3 shows an example of two valid instantane-
ous graphs that could come from the cooperation graph of Figure 1.

3.2 Cooperation service and protocol description

The proposed service manages the dynamicity of the cooperative groups defined
[VILL95] and aims to pass from a valid configuration where agents are cooperating to an-
other one, in considering the requests of entry in cooperation and the requests to leave co-
operation coming from the agents. Let us consider a set of agents which are cooperating
and which constitute a valid instantaneous graph. Inside the cooperative group, other
agents may want to participate to the cooperative work and join those which are already
working. Also, agents which are cooperating, may want to leave the work and stop their
participation in the cooperation. Considering the requests to enter and the requests to
leave the cooperative work, the service tries to form a new valid instantaneous graph.

Several cases are possible to take the decision of changing the cooperation configura-
tion. The first one is to change each time when possible. The service which manages the
cooperation realizes the modification as soon as it is possible. The second one, which has
been selected here, considers the decision modification as a cooperative decision. As a
consequence, the opportunity of changing cooperation is proposed to the actual set of co-
operating agents. The cooperating agents vote to accept or to deny the configuration
change.

The service for changing the cooperation structure requires four different phases to
manage the interferences between data exchanges and the cooperation structure change.
When a cooperation change has been decided, the new cooperating agents must exchange
their own initial contexts in following the cooperation structure. The second phase is those
of the realization of the cooperative work where agent exchange data when they change
their values. The third one appears before terminating a cooperation, i.e. before changing
a cooperation structure: the data manipulated by the agents must reach a coherent state.
The last one corresponds to the restructuring of the cooperation

The proposed service has been formally described (Figure 4) using the formal descrip-
tion technique Estelle [ISO9074], [BUDK87]. An Estelle specification consists of a set of
modules, each's behaviour defined by a finite state automaton. To communicate and ex-
change information between the modules, bidirectional first-in-first-out queues are used.
The formal description architecture is based on the Open System Interconnection layer
model. Users, which represent the cooperative agents, are connected to modules which
provide the service to participate in a cooperative group. The execution of these modules
is the protocol which provides the service. The cooperation manager module supervises
the evolution in time of the cooperative group. All the protocol modules are connected to
another module which provides a multicast service. These specifications have been used
to simulate and test our service.

The Estelle code of the protocol modules and of the manager has been reused for an
implementation on top of a UNIX platform [VILL95]. Each Estelle module instance has
been included inside a UNIX process that have been distributed across an Ethernet net-
work. The UNIX distributed processes implement a generic cooperative group member-
ship service.

User User 2

Protocol

1

User 3

Protocol 2

Figure 4. The Estelle
specification architecture.

Dynamic membership
cooperation service

Protocol 3
Cooperation

Manager

Multicast communication service
(respects FIFO order between all connected pairs)

Legend:

1

rnnn

Channel for control information of cooperation.
Channel for data transmissions of cooperative work.
Channel interface between a user and the service.
Channel to receive requests to participate or leave the cooperation.
Channel to manage evolution of cooperation.
Service Access Point of the dynamic membership cooperation
service.

3.3 Modelling teleteaching groups

The generic previous cooperative model has been applied to model various teleteach-
ing configurations. Inside such groups, the teacher has a central position (Figure 1). The
students hear the teacher's speech and they see his documents required for the course
(slides, drawings, notes...). The cooperative graph for a course forms a star whose center
is the teacher agent, edges being directed into the central position of the star.

For global discussions between the whole class, each cooperative agent must see the
informations of all the members of the group. Such situations require fully connected co-
operative graphs.

In the case of practical work, the cooperative teleteaching group of Figure 1 can be re-
tained. Students have to make exercises in their own environments. They can not commu-
nicate between them to avoid copying. The teacher must have access to each student's
context to supervise, help or respond to their questions. The teacher's help can consist in

a simple teacher/student dialog but, can be composed of a direct remote modification of
the student's context made by the teacher and supported by tools as a shared electronic
board.

Inside a course, to describe more interactive situations, the teacher can take into ac-
count the students' feedback (concentration of the students or questions coming from
them). In this case, he must know and see the own informations of the students. This co-
operative group is depicted by Figure 1 too. When students ask questions, they can influ-
ence the teacher's context with his agreement in remotely pointing or clicking to the sub-
ject of their comments. For instance, if a student does not understand a particular point of
a drawing made by the teacher, he remotely points the unclear part of the drawing while
he asks his question. Such a functionality is taken into account inside shared electronic
board applications.

All the valid configurations of a course or a practical work contain the teacher. Some
variants can appear inside the choice of the valid configurations: a graph is valid when at
least the teacher and one student are present, or when at least the teacher and a fixed
number of students are here... The teacher alone accepts or denies the change of a current
valid configuration.

The interactive course configuration has been used to describe the functionalities of the
proposed synchronous cooperative shared electronic board.

4 Shared electronic board

4.1 Presentation

Work presented in this section describes a generic tool for remotely sharing various
multimedia applications. A majority of multimedia computer aided learning applications
include digitized video sequences to detail or to illustrate several important parts of a
course.

As an illustrative example, training pilots and maintenance staffs are made inside air-
craft industries in using a Computer Aided Learning System (CALS) that contains video
sequences. When a trainee presses a button inside the aircraft cockpit drawing, the system
displays other graphics to explain the functioning of an electrical, electronic or hydraulic
circuit, this functioning being strengthened by the display of a live video sequence. To
learn all the complex procedures required to maintain or pilot an aircraft, pilots and main-
tenance staffs use CALS and are supervised by an instructor. The trainees and the instruc-
tor directly dialog because they are located in the same classroom. Now, let's suppose that
all the members of the class are not located in the same place and are geographically dis-
tributed: to communicate and to exchange information between them, the group members
need workstations connected to a network. Moreover, the distributed information ex-
changes are only possible if tools that ensure remote dialogs (as visioconferences) and re-
mote interactions or control are available: a distributed electronic board is then useful to
share the access of applications owned by the instructor or the trainees.

The shared electronic board can be directly applied to the sharing of a CALS that runs
on the instructor's workstation. To emphasize the functionalities of the electronic board
(Figure 5), the following situation has been chosen:

- a) The instructor owns the CALS that runs locally on its workstation. Through
the electronic board, it broadcasts the current picture (that corresponds to the cur-
rent state of the application). Then, all the trainees show the picture of the in-
structor's CALS.

- b) During the course, a student asks for a question. When the instructor agrees,
a remote pointer controlled by the requested trainer appears inside the instruc-
tor's board. This pointer helps the trainee to explain and to show the unclear cur-
rent displayed parts of the CALS application. The instructor has given to the
trainee the pointing right on its electronic board.

- c) For more complete discussion or explanations, the instructor can give to the
requesting trainee the remote control right of all the applications viewed inside
the electronic board: in our example, the local instructor's CALS is then remote-
ly controlled by the trainee. This can be useful if the question concerns precise
points that require the CALS running. While the trainee asks his question, it con-
trols the CALS.

r > \ f ^

t
Pointer

CALS
view

)

t
Instructor

CALS

view
V y

Pointer
)

Trainee's board a) current case Instructor's board

r "N r \

t t
Trainee Pointer

CALS
view

i t
Pointer Instructor

CALS

1 pointer view
y

view Pointer
)

Trainee's board b) pointing right Instructor's board

r > r „ \

t
Trainee

CALS
view

t
Pointer view

CALS

1 pointer
y

to pilot CALS
)

Trainee's board b

Figure 5. Functions

) remote control right

ilities of the shared el

Instructor's board

ectronic board.

Each member of the group owns a board inside its local screen. A local board is com-
posed of a window that contains views of the shared applications. The board of the in-
structor and those of the trainees dialog between them to synchronize their local views of
the applications and to ensure the remote interactions between a trainee's board and the
instructor's board.

To share and show a view of an application, the instructor slides inside the electronic
board window the window application. Any application that the instructor owns can be
shared through the electronic board. A trainee sees a view of the shared application inside
its local board.

To obtain the pointing right, a trainee puts its pointer inside its local board. Then, once
the right has been given by the instructor, two independent pointers appear on the instruc-
tor's and trainees' boards, the first one belonging to the requested trainee, the second one
belonging to the instructor. Each member controls the position of its own pointer. The ap-
plications shared inside the board remain to the control of the instructor.

In the remote control case, only one pointer remains inside the boards. The instructor
gives the remote control right to one of its shared applications to a trainee. The authorized
trainee remotely controls with this unique pointer the chosen application. When the train-
ee has finished his speech, the instructor takes the application control again.

At a given instant, at most one person controls the shared applications: either the in-
structor or an authorized trainee.

4.2 Realization

The first implementation developed has been simplified and supports only interactions
between the instructor and a single trainee.

4.2.1 Platform description

The implementation platform, depicted on Figure 6, is composed of two Sun Sparcsta-
tions equipped with a Sun audio card and a Parallax video card. The audio card records
and plays back sounds in the PCM format. Pictures can be digitized from two different
video inputs, displayed, compressed and uncompressed in real time with the JPEG com-
pression algorithm by using the video card.

A 10 Mbps Ethernet local area networks is available inside this platform which pro-
vides sufficient throughput for this kind of application.

Trainee workstation

Figure 6. Development platform of the shared electronic board.

4.2.2 Electronic board characteristics

The first video input of the instructor's workstation is used by his shared electronic
board and pictures coming from this source are displayed in the background of the board,
the shared applications being displayed in the foreground. The background pictures, as the
shared applications, are displayed inside the trainee's board. This first video input is con-
nected to a table camera used to grab papers, slides, or any other object displayed to the
remote boards. With this additional functionality, the shared electronic board is well suit-
ed to display classical conferences supports to the trainees.

The second video input is not used by the electronic board application, and can serve
for other video applications as a visioconference (with the connection of a camera).

The information exchanges between two boards are mainly based on video transmis-
sions: all the contain of the instructor's board (background video and shared application
window) is grabbed, digitized and sent to the remote trainee's board. Only a view of the
running shared applications is sent to the trainee. This choice has been made for several
reasons:

- There is only a local copy of the running applications (that is easier to maintain
and to change than several distributed copies).

- Multimedia applications as Computer Aided Learning Systems require a lot of
disk space for storing the multimedia data. Distributing a copy of the application
to each trainee could not be conceivable. So, the application is only stored inside
the instructor's computer.

- The synchronisation problems between the application views sent are easier to
manage.

The main problem of sending videos is the rate required by the application. This prob-

10

lern is nevertheless limited with the use of compression technics that often efficiently de-
crease the amount of data to be transmitted. In the case of very low bandwidth networks,
the hypothesis of distributing the shared applications code has been considered and only
the events for the application running are exchanged. The copies of the shared application
must evolve synchronously and must all receive the same events in the same order. As a
consequence, these environments as SharedX [HPSH91] require complex algorithms to
rearrange all the receiving events before being executed by the copies of the applications.

The communications between the remote electronic boards are based on top of the
UDP/IP protocol that ensure the rate needed for video transmissions.

The application boards for the instructor and for the trainee have been developed using
the C language, and they use the Sun multithreading mechanism with lightweight proc-
esses to solve the synchronisation needs of the concurrent threads. Indeed, inside each
board, several data flows have to be synchronized (for instance the current position of the
pointers and the display of pictures) before being presented. Each board is composed of
1500 lines of C code and contains 2 threads for each mode, the first one for receiving the
data from the network, the other one for displaying synchronously the data.

Figure 7 gives the data flow between the instructor's board and the trainee's board. In
the three functioning mode, the image of the electronic board is always sent from the in-
structor to the trainee. When the pointing mode is activated, the trainee's pointer coordi-
nates are sent to the instructor's board. During the remote control mode activation, the
trainee's pointer coordinates and all the local events created inside the trainee's applica-
tion using the views of the application are sent to the instructor's board.

Remark: if the window of a shared application is not completely included inside the
instructor's board, only the included part is transmitted inside the video and received by
the trainee's board.

r
Application

view

r
Application

J \. J
Trainee's board

ele ctronic board irr

Instructor's

tage j

»board

i i
i i
. i

pointer coordinates
i i
i i

i
events

i

i

Figure 7. Data flow between a trainer and a trainee.

11

4.3 Future work: a cooperative shared electronic board

The next step of our work is to extend the electronic board to a whole class of trainees.
This requires to take into account the cooperative structure of the group and its possible
dynamicity. As a consequence, the general cooperative service and the extended shared
board have to be integrated. The proposed general architecture is depicted in Figure 8.

Architecture for a
group member

Central group
manager

Electronic
board

^-uups^i an v ^
user

r C ooperation
layer

~-N

Cooperation
protocol

Multicast communication services
Communication layer

Cooperative group
rules

Cooperation
Manager

Multicast service
Communication layer

Figure 8. Architecture of the cooperative electronic board.

The integration of the shared electronic board and the cooperation membership is done
at the application level defined on top of the cooperation layer. The cooperative users are
connected to the cooperative service. They request to enter or to quit the cooperative
group and they inform the electronic board module of the group structure modifications.
The cooperation protocol and the cooperation manager define the cooperative service and
they together manage all the modifications of the cooperation. The electronic board part
ensure all the functionalities of the cooperative board. The new electronic board modules
are now connected to a multicast service to communicate the board data to all the coope-
rative members. Moreover, the new electronic board of the instructor must take into ac-
count several requests that could come from the trainees.

12

5 Conclusion

This article has first presented a general model to represent cooperative services, then
has described a generic service that manages the dynamicity of these cooperative groups.
A shared electronic board application useful in a context of a teleteaching environment
has been presented followed by the proposition of a future integration of the membership
service and the board application.

The cooperative membership service has then been implanted using a centralized man-
ager. To improve the robustness of the protocol, current work aim to distribute the group
management responsibility in considering the cooperation manager as a special token that
circulates among the cooperative agents.

The point to point realization of the electronic board is now asymmetric: the function-
alities of the instructor are different of those of the trainees. A direct extension could be
to consider a symmetric board: the trainee can access to the instructor's context and, if
necessary, the instructor could access to a trainee's context in the case of practical works.
In the same way, inside the electronic board, the access to the diverse contexts of the train-
ees allow the instructor to supervise the whole group and to help some of them if neces-
sary.

At end, the electronic board has to be integrated inside a complete teleteaching envi-
ronment that contains a visioconference to support the informal dialogs between the mem-
bers of the group, the subjects of the discussion being shared using the electronic board.

References

[AGOS94] A. Agostini, G. de Michelis and K. Petruni. Keeping Workflow Models as
Simple as Possible. Workshop on Computer Supported Cooperative Work,
Petri Nets and related formalisms, Zaragoza, pages 11-29, June 1994.

[BENF93] S. Benford and J. Palme. A Standard for OSI Group Communication. Com-
puter Networks and ISDN systems, 25(1993):933-946. 1993.

[BONF89] A. Bonfiglio, G. Malatesta et F. Tisato. Conference Toolkit: A Framework
for Real-Time Conferencing. In Studies in Computer Supported Cooperati-
ve Work: Theory, Practice and Design, Eds. J. M. Bowers and S. D. Ben-
ford, Elsevier, 1991.

[BUDK87] S. Budkowski and P. Dembinski. An Introduction to Estelle: A specification
Language for Distributed Systems. Computer Networks and ISDN Systems,
14(1987):3-23. 1987.

[DIAZ92] M. Diaz. A logical model of cooperation. Proceedings of the IEEE. Third
Workshop on Future Trends of Distributed Computing Systems, pages 64-
70. April 1992.

13

[HEWI91] C. Hewitt and J. Inman. DAI Betwixt and Between: From "Intelligent
Agents" to Open System Science. IEEE Transactions on Systems, Man, and
Cybernetics, 21 (6): 1409-1419. November/December 1991.

[HPSH91] HPSharedX. Hewlett Packard. July 1991.

[ISHI91] H. Ishii et N. Miyake. Toward an Open Shared Workspace: Computer and
Video Fusion Approach of Teamworkstation. Communications of the ACM,
34(12):37-50, Decembre 1991.

[ISO9074] ISO/IEC ISO 9074: 1989 (E). Information processing systems. Open Sys-
tem Interconnection. Estelle: A formal description technique based on an
extended state transition model.

[KAPL92] S. M. Kaplan and A. M. Caroll. Supporting Collaborative Processes with
Conversation Builder. Computer Communications, 15(8):489-501, October
1992.

[KARS94] A. Karsenty. Le collecticiel: de 1' interaction homme-machine ä la commu-
nication homme-machine-homme. Technique et science informatiques,
13(1):105-127, 1994.

[OHM092] T. Ohmori, K. Maeno, S. Sakata, H. Fukuora et K. Watabe. Distributed Co-
operative Control for Sharing Applications Based on Multiparty and Multi-
media Desktop Conferencing System: MERMAID. Proceedings of the
IEEE: 12th International Conference on Distributed Computing Systems,
pages 538-546, Juin 1992.

[OWEZ95] P. Owezarski, V. Baudin, M. Diaz and J.F. Schmidt. Multimedia Teleteach-
ing: Introduction of Synchronization and Cooperation Mechanisms in dis-
tance learning. Proceedings of the World Conference on Educational Multi-
media and Hypermedia, pages 517-522, June 1995.

[VILL95] T. Villemur, M. Diaz and F. Vernadat. Validated Design of Dynamic Mem-
bership Services and Protocols for Cooperative Groups. Annales des Tele-
communications, 50(11-12):859-873, November/December 1995.

[WILS94] J.M. Wilson, D.N. Mosher. Interactive Multimedia Distance Learning (IM-
DL): The prototype of the Virtual Classroom. Proceedings of the World
Conference on Educational Multimedia and Hypermedia, pages 563-570,
june 1994.

14

IMPORTANCE OF SPECIFICATION MEANS TO
DESIGN INTEGRATED MODULAR AVIONICS SYSTEMS

G. Motet

GERII/LESIA, DGE/INSA,
Complexe Scientiflque de Rangueil, 31077 Toulouse cedex, France
Phone: +33 61 55 98 18, Fax: +33 61 55 98 00, E-mail: motet@dge.insa-tlse.fr

Abstract: Economical constraints such as maintenance cost reduction required the
introduction of a new architecture to design systems which will be embedded in the
future commercial aircrafts. This architecture called "Integrated Modular Avionics"
leads to a new approach of system design. In particular this architecture allows multiple
applications to be integrated on one framework. Moreover, as studied systems concern
the avionics domain, dependability must be considered as a major property of these
systems. During the European BRITE-EURAM project "IMAGES 2000", the main
European aircraft manufacturers and suppliers and some research laboratories worked
together to study the means and the process which must be used to design dependable
Integrated Modular Avionics systems. In this paper, we analyse the characteristics of the
Integrated Modular Avionics systems to highlight that the obtaining of dependable
systems will require a special effort on specification step from the part of the engineers
involved in the design of the systems embedded in the future planes.

Keywords: specification, dependability, avionics, embedded systems, Integrated
• 11. Modular Aviomcs.

1. Integrated Modular Avionics systems

In traditional architectures, the avionics functions are embedded in Line Replaceable
Units (LRUs). Each LRU is an item of equipment dedicated to only one avionics
function. It is designed completely (i.e., in particular, it needs its hardware resources)
and is completely removed in case of failure. With the Integrated Modular Avionics
(IMA) concept, a framework, specific to the avionics requirements, provides all the
resources (for processing, I/O, power supply, etc.) needed by the avionics applications.

11 would like to thank Rene Meunier who works at Aerospatiale, for his contribution to
this paper.
2 This paper stems from a part of INS A and Aerospatiale participation in the European
Brite-Euram project "Images 2000" sponsored by the European Union.

The second originality of the IMA concept concerns the implementation of the
framework. The cabinets composing the framework are divided into several types of
modules: power modules, core modules, I/O modules and a gateway module. The
cabinets communicate by using a multi-transmiters network (aircraft bus).

The ARINC 651 standard highlights these two aspects in the definition of the IMA
concept:

• firstly, it is modular: within cabinets, standardised modules provide all the required
resources and communicate through a standardised backplane bus. As these modules
are the basic components for maintenance, they are named Line Replaceable
Modules (LRMs);

• secondly, avionics are integrated: this means that each IMA platform receives several
numbers of avionics functions. Its resources are thus shared.

The Integrated Modular Avionics concept will allow:

• multiple avionics applications to be produced by different suppliers and integrated on
one platform;

• the modules to be designed independently to the functions.

There are economical interests:

• for the airliners: mainly the reduction of the maintenance costs because there are no
one different hardware by function but the functions share standardised IMA
platform including standardised modules;

• for aircraft manufacturers and equipment suppliers because it is not necessary to
design again the resources which are necessary to execute the functions.

2. Importance of specification step in IMA context

2.1 Introduction

In one sub-task of the "Images 2000" project, we studied at what moment in the
software system life cycle, faults are introduced. Moreover we tried to evaluate the rate
of the faults introduced at each step. This study was not specific to IMA systems but
concerns any software/hardware application. The goal of this study was to signal the
development steps on which efforts must be focused to avoid the presence of faults in
any software/hardware systems.

This study showed that numerous faults included in software do not come from
problems associated with design and programming phases but are due to a bad
expression of client's requirements as specifications. The rate of 30% of the faults is
provided by [7]. This rate value is also given by other authors [1]. These studies concern
general software/hardware systems, that is they are not specific to avionics area. In
reality this value is higher. Indeed, at each design step, the designer must express the
specifications of entities (components, functions, data, etc.) which will be designed in

the next step. The designer is therefore his or her own client [14]. Thus, he or she
introduces additional faults during design step which are however relative to
specification activity. For instance, [6] and [3] quoted that 25% of the faults occurring
during the design phase correspond to problems associated with the interfaces of
components used during this phase. Other pieces of information reinforce this opinion:
[17] specifies that 30% of the faults come from the fact that the limit values of data or
the states not frequently reached are badly taking into account by the designers. This
value is higher for systems for which interactions with hardware or software
components are numerous. For instance [15] presents a control software in which 56%
of the faults are coming from problems of interfacing with software components (36%)
or hardware components (20%). So, certain characteristics of the developed systems
may lead to the increasing of the number of the faults due to erroneous specifications.
Importance of component interactions is one of these characteristics which exists in
particular in IMA systems.

In the following sub-sections we will present five characteristics of the IMA systems
(multiple partners, multiple domains, multiple interactions, complexity of the
behaviours, maintenance) showing both the requirements and the difficulties to obtain
correct specifications. These characteristics therefore increase the risk of presence of
faults in specification documents. So this paper concludes that important effort will be
required on specification elaboration to obtain dependable IMA systems.

2.2 Multiple partners

The IMA concept requires multiple plane manufacturers and suppliers to work together
in order to design, produce and maintain hardware and software systems embedded in
planes. Such a cooperation previously existed between European manufacturers for
instance for the Airbus aircrafts. However it was not so strong because each of them had
to develop separate and (relatively) independent parts of the control system embedded in
the planes. Now, the IMA concept requires the sharing of common resources
provided by the framework, then it implies a strong integration of the developed
elements and therefore a strong inter-dependency between the partners. It is expressed in
[10] as follows: "Equipment suppliers are no longer delivering pieces of hardware and
software which operate as a complete unit. Mostly they supply software units which
need to be integrated with other units, probably by a third part, before being complete".
Such a sharing exist at applications levels (sharing of the platform) but also at module
levels (modules must cooperate) and at the level of the components of each module.

For instance firstly [11] defines the resources shared by a core module (processor,
memory, backplane bus, operating system, etc.). Consequently, the expression of the
precise specifications of the IMA components or modules is absolutely necessary
because persons of various companies will have to share IMA resources to develop their
parts of the global system elements.

Secondly, multiple partners have also to work together due to the modularity of the
framework structure. Indeed the framework is split into modules cooperating to provide
the global service offered by the framework.

The existence of multiple partners is also the cause of the first difficulty to obtain
specifications. On one hand each firm has one proper way and means to express its
specifications; this concerns the style of the specification. On the other hand numerous
pieces of information are considered as implicitly known (they belong to the culture, i.e.
the basic knowledge, of the company memberships); this concerns the contents of the
specifications.

To conclude this first aspect: on one hand, multiple partners have to work together to
design applications sharing common resources, so they require common specifications
of the framework; on the other hand, multiple partners have to work together to design
components cooperating to provide the services of the IMA framework, therefore they
also require common specifications, now for these components.

2.3 Multiple domains

Concerning the IMA framework design, an original structure was chosen. The cabinets
which compose the framework are split into modules cooperating to provide the global
framework services. The originality comes from the fact that these modules are not
associated with functional parts but resources. Then, the IMA framework cabinets
contains one or several of the following modules: power supply module, core module
which provide computation resources, I/O module for external communication needs
and gateway module for bus plane communication needs. The second characteristics of
IMA systems is thus the presence of several technological domains. Due to the required
cooperation of multiple partners, the designers must understand the concepts of these
domains, without being a specialist For instance the following four considered types of
modules concern four domains:

• Power Supply module requires knowledge in electricity and uses the associated
terminology;

• Core module deals with process management and so handles terms such as
"synchronisation", "scheduling", etc.;

• I/O module explanation assumes knowledge on OSI layer model;

• Gateway module treats of one more subject.

So the expression of the specifications of IMA modules is necessary to allow people
working in various domains to cooperate. However, a person working on one domain is
not able and does not have to know detailed information on the technology used in other
domains. However he or she has to possess a complete knowledge on the behaviour of
the other elements of an IMA platform, that is on their abstract specifications.

So, the presence of multiple domains at the same time:

• requires the existence of abstract specifications allowing concepts to be handled
without knowledge on their technological implementation;

• makes difficult the production of these specifications because it does not authorise
assumption of implicit knowledge as it is frequently assumed by the persons working
on the same domain.

2.4 Multiple interactions

Another characteristics of IMA architecture is the strong interactions between the
elements (modules or components) and also with the applications. All the IMAGES
2000 reports specify numerous relationships between these elements.

In the IMAGES 2000 project, the interactions are at first required by the definition of
the functions of the IMA elements: evident interactions exist between the I/O module
and the core processing modules because the I/O modules aim to interface physical
signals and logical events and data processed by other modules. The definition of the
Health Monitoring role gives another example of interaction requirements. "The Health
Monitor distributes information about the failures of the components to other
components (...) The Heath Monitor consists of a distribution and a membership part"
[9]. Numerous other interactions between elements may be signalled: intra cabinet
communication and inter cabinet communication, communication between the Health
Monitor and the Core module for reconfiguration or to communicate information about
the state, etc.

The interactions are also due to:

• the choice of a distributed implementation instead of a centralised one. An example
is the distribution of the error handling: the detection is done in various components
(processor, executive, application) but also provokes reactions in other parts (local
health monitoring, leader health monitoring). Another example concerns the core
module: for instance the synchronisation management may require communication
protocols between components;

• the implementation of fault tolerance mechanisms. For example, the replication of
elements requires the communication of information, for instance to compare the
data produced by several versions (N-versions technique). In particular to confine the
occurrence of the errors in order to master their effects, the system must be split
(concept of segregation). The interactions of the introduced parts must then be
specified. Another example is the health monitoring. In order to have the monitoring
of errors in one location, the occurred errors must be communicated to the health
monitor;

• the implementation of abstract services. This reason conducted for example to the
partitioning of the Core software and the introduction of the HIS (Hardware Interface
System) "which maps the logical requests made by the executive onto the particular

physical configuration of the core module" [9]. In the same way APEX interface was
introduced which creates a splitting into several elements and then interactions
between them (see ARINC 653). Another example is the "logical communication
object" [12] used to communicate between the Local Health Monitoring and the
Leader Health Monitoring and called "port" in the ARINC 653 document. Let us note
that definitions of abstract services allow also specifications which are independent
to implementation technology (hardware or software, centralised or distributed to be
defined as previously required.

On the opposite, the previous facilities make difficult the definition of specifications.
For instance, the abstract definition of the inter-partition communication hides the
means used to implement the real communication. For one way used to communicate,
the required time may be defined. However, this way could change dynamically: "for
example, two partitions may communicate over the intra-cabinet bus, or even over the
inter-cabinet bus, in one configuration, but may be reconfigured to communicate while
on the same core module. (...) The end result is that the transmit time of
communications might be widely varying in some situations, but the computer must
accommodate this" [11]. This last sentence implies that communication time must be
specified by an interval [Tmin, Tmax] and not by one value T.

The specification of the interactions between IMA elements composing the platform is
specially important and complex because the controls of interactions are not
conventional. For instance, there are not hierarchical relations between elements as it
exists for sequential systems (sub-program interaction model). Moreover due to the
segregation requirements (in particular the faults occurring in an element must have no
effect on the behaviour of another one), all the possible interactions must be mastered
(no hidden interactions).

Specifications of the available interactions between the IMA platform and the IMA
applications are also required. A reference manual defining the IMA platform
specifications must be written.

Numerous authors showed that the number of faults generally increases when the
number and the complexity of the interactions between components increase. These
faults may concern the interface [3] [6] or the behaviour, such as states not frequently
reached and therefore badly taking into account [17]. So, in order to obtain a dependable
IMA system, the interactions of the modules and between the platform and the
applications must be mandatory well specified.

2.5 Complexity of the behaviour

Another characteristics of the IMA system is the complexity of the behaviour of the
components. Indeed the numerous interactions induce numerous internal states and thus
numerous different cases of behaviour.

To reduce complexity of a system, the specification of its behaviour is frequently split.
For instance to define the Process Scheduler, the project [11] had proposed to split it
into several elements: process identification, semaphore management, event

management, buffer management, process queue management, time and scheduling
management. However each group of services cannot be specified independently in a
simple way because correlations between the groups exist. For instance when an event
occurs (event management service) to resume a waiting task, the queue management
module is called (the task goes from the queue of the waiting processes to the queue of
the ready processes). So the complexity of the behaviour of the numerous services of the
components cannot be handled, examining each service one by one, independently to
others.

Unfortunately, numerous studies showed that the increasing of an application
complexity implies the increasing of the number of faults [1], [2], [8], [16], particularly
due to erroneous specifications. So complexity is another reason needing to pay a
special attention to the specification. In practice, the behaviour of the framework as well
as the ones of the modules will be relatively simple to obtain the mastering of the IMA
systems.

2.6 Maintenance

Finally the IMA architecture aiming to facilitate the maintenance by changing elements,
the specifications of these elements are very important because they define the
interoperability of the elements and then their interchangeability. This aspect concerns
multiple technological means: mechanics, hardware connection, electrical compatibility,
hardware and software communication, operational means (hardware and software
operating system), etc.

In particular the definition of interchangeability criteria requires the specification of
numerous temporal information. For instance a study [10] dealt with time constraints for
temporal segregation. Let us signal that we highlighted in another project the difficulties
to specify this kind of temporal pieces of information [13].

Another aspect concerns the error handling. The IMA architecture requires the
communication of the detected errors to the health monitoring [12] for a maintenance
objective. Thus, the interchangeability criteria includes the specification of the errors
which may be transmitted. The definition of an exhaustive list of errors is not easy
because some of them depend on the design choices or the technological choices used to
implement the component.

To facilitate the maintenance, the specified elements must be generics as possible.
Moreover, the "good" level of standardisation must be chosen.

3. Conclusion

In this paper we did not describe any solution; we just highlighted problems. However,
the given information may be used to provide three pieces of advice.

First and foremost common means must be shared by aircraft system designers
intervening in the development of IMA systems to handle specifications. This is
necessary to take the five described characteristics into account. These means concern:

expression languages, tools (for checking the completeness, etc.) and methods (to
produce specification expressions).

The second advice concerns the common methodology used to specify IMA elements.
The designers of IMA elements must be warmed about the great risk of fault
introduction in the specifications due to the type of the system to be developed. To
highlight this warning, the giving of the values resulting from the references previously
quoted must be communicated to these designers. Thus the engineers will perceive the
necessity to use seriously the languages, tools and methods which will be proposed.

The work to be done to write the specifications may be long. This moment is often
perceived (for a part) as lost time which will provoke delays in the project schedule. In
fact it saves time. Indeed studies show that, if all the faults introduced in the
development of a software tool (what ever are their origins) multiply the costs by two,
the same studies also signal that the correction cost of a fault due to bad specification is
100 as many expensive than the cost of the studies of the specifications which would
allow the detections of the fault to be obtained [4] [5]. So, the use of the techniques
proposed to avoid faults in IMA components specifications will cost time and therefore
money but less than if they are not used.

The bad perception of the work to be done to obtain the specifications comes from the
fact that, at first, the managers often focus on the system disposal and after on its
quality. On the opposite, in Japan, the obtaining of a consensus between the client and
the designer is very important; then this phase may be long. [18] gives two examples of
two big software applications for which the specification expression and the preliminary
studies consume 60% (first example) and 70% (second example) of the time necessary
to obtain the software tools. He quotes that this long work then allows a very quick
design and programming. This short time is due to the fact that the designers were
impregnated with the client application domain.

So, the third advice to be included in the common methodology used to specify IMA
elements is the following one: the IMA project managers must be warmed about the
importance of the requirements specification phase. The use of means to obtain
dependable specifications costs money but saves more. To highlight this warning, the
giving of the values resulting from the references previously quoted must be
communicated to these managers.

Bibliography

[1] Albin J.-L., Ferreol R., «Collection and Analyze of Software measurements», (in french),
Technique et Science Informatique, vol. 1, no. 4, (1982), pp. 297-313

[2] Basili V.R., Boehm B.W., Clapp J.A., Gaumer D., Holden M., Salwen A.E., Summers J.K.,
«Use of Ada for FAA's Advanced Automation System», The Mitre Corporation Technical
Report MTR-87W77, (April 1987), pp. 87-120

[3] Bhandari I.S., Halliday M.J., Traver E., Brown D., Chaar J.K., Chillarege R., «A Case
Study of Software Process Improvement During Development», Transactions on Software
Engineering, vol. 19, no. 12, IEEE publisher, (1993), pp. 1157-1170

[4] Boehm B.W., «Verifying and Validating Software Requirements and Design
Specifications», IEEE Software, (January 1984), pp. 75-88

[5] Boehm B.W., «Introduction and Overview», in «Software Risk Management», B. W.
Boehm editor, IEEE Computer Society Press, (1989), pp. 1-16

[6] Chillarege R., Bhandari I.S., Chaar J.K., Halliday M.J., Moebus D.S., Ray B.K., Wong
M.Y., «Orthogonal Defect Classification. A Concept for In-Process Measurements»,
Transactions on Software Engineering, vol. 18, no. 11, IEEE publisher, (1992)

[7] Eckhardt D.E., Caglayan A.K., Knight J.C., Lee L.D., McAllister D.F., Vouk M.A., Kelly
J.P., «An Experimental Evaluation of Software Redundancy as a Strategy for Improving
Reliability», Transactions on Software Engineering, vol. 17,no. 7, IEEE publisher, (1991), pp.
692-702

[8] Glass R.L., «Persistent Software Errors», Transactions on Software Engineering, vol. SE-7,
no. 2, IEEE publisher, (1981), pp. 162-168

[9] Sub-Task 2.4, «Requirements on Cabinet Monitoring Aspects in IMA Context», Working
Report no BAe_001_WD_2.d of the IMAGES 2000 BRITE-EURAM Project, (January 1994)

[10] Sub-Task 5.3, «Guidelines for Segregation Mechanisms Implementation», Official Report
no SI_001_OD_5.c of the IMAGES 2000 BRITE-EURAM Project, (January 1995)

[11] Sub-Task 5.4, «Guidelines for Real-Time Implementation», Official Report no
SXT_005_OD_5.d of the IMAGES 2000 BRITE-EURAM Project, (February 1995)

[12] Sub-Task 5.6, «Guidelines for Health Monitoring Implementation», Official Report no
AS_007_OD_5.f of the IMAGES 2000 BRITE-EURAM Project, (July 1995)

[13] Motet G., Kubek J.-M.., «Dependability Problems of Ada Components Available via
Information Superhighways», Proceedings of the 13th Conference on Ada Technology, Valley
Forge, Pennsylvania, USA,Rosenberg & Risinger Publisher, (1995), pp. 8-18

[14] Motet G., Marpinard A., Geffroy J.-C, «Design of Dependable Ada Software», Prentice
Hall, (1996)

[15] Nakajo T., Kume H., «A Case History Analysis of Software Error Cause-Effect
Relationships», Transactions on Software Engineering, vol. 17, no. 8, IEEE publisher, (1993),
pp.830-838

[16] Schneidewind N.F., Hoffmann H.M., «An Experiment in Software Error Data Collection
and Analysis», Transactions on Software Engineering, vol. SE-5, no. 3, IEEE publisher, (1978)

[17] Sullivan M., Chillarege R., «Software Defects and their Impact on System Avaiblability. A
Study of Fiel Failures in Operating Systems», in the proceedings of the FTCS 21, (1991), pp. 2-

,9

[18] Tamai T., Itou A., «Requirements and Design Change in Large-Scale Software
Development: Analysis from the Viewpoint of Process Backtracking», in proceedings of the
15th International Conference on Software Engineering, IEEE Publisher, (1993), pp. 167-176

INDUSTRIAL COOPERATION :
DEFINITION, INTEREST AND DYNAMIC

EVOLUTION

FILIPPI Maryline
UFR Droit et Sciences Economiques, Universite de Corse

BP 52 20 250 CORTE
mfilippi@univ-corse.fr

Abstract : The aim of this communication is to explain cooperation agreement as a
specific mode of coordination and to study how this agreement relation is emboded into
organisational knowledge and competences. In a first part, we propose a definition of the
motivations for cooperation. The second part deals with cooperation. This last guides
responses to the unanticipated technological change using « trust ».

Keywords : industrial cooperation, technological changes, dynamic evolution of
cooperation

1 Introduction

By cooperation we mean any king of coordination as a objective choice from
agents, conscious to create an interelation.The aim of this communication is to explain
cooperation agreement as a specific mode of coordination and to study how this
agreement relation is emboded into organisational knowledge and competences. In a first
part, we propose a definition of the motivations for cooperation. The second part deals
with cooperation. This last guides responses to the unanticipated technological change
using «trust».

2 A definition of and motivations for cooperation

This part is dedicated to the identification and understanding of the specificity of
cooperation. Therefore, we have to explain the proper mecanisms of this type of
coordination. The analysis of various databases and works dedicated to this subject
already let us design, as we will explain it later on that whatever their forms (franshising,
joint venture), cooperations keep the identity of each one of the partners, on the contrary
of integration. They must be equitable to be stable in time, through the obtention of
mutual advantage which does not imply that cooperation involves partners of the same
weight. Those three criteria then allow to precisely specify the kind of cooperation and
to distinguish them from the other forms of interfirms relations.

The nature of industrial cooperation is linked to acknowledgement of concerted
sharing division of labor between the firms. Thus, by essence, this raises the question to
render itself dependent faced with an other firm, or even a competitor, which to be

justifiable requires a higher profit than the one procured by internalisation. Also, to
survive, cooperation must rely on equitable partition of the benefits. Comitment and
profit evaluation not only requires an efficient control and evaluation system but also the
development of one organisational equilibrium and a long term strategy. Consequently,
we can wonder what are the original motivations of the choice of cooperation. This
question joins the question of dynamic efficiency that must conciliate resources creation
and organisational flexibility.

2.1 Nature and Dilemma of cooperation

Throughout cooperation, firm seeks externalysing a part of its activities to
reduce the constraint caused by its productions and innovations (due to the presence of
set up costs). These last alleviate the flexibility and capability of reactions of the firm
faced with environmental changes.

2.1.1 Industrial Cooperation Nature : coordination of dissemblable activities
The question of activities coordonation using a strategy other than the one of

the market or internalisation, joins the question of the nature of industrial cooperation.
Promoved by firms, partenariatships are based on the notion of capability of one
organisation to mobilise its competencies in order to develop productive processes. This
notion of capabilities[19] allows to explain why the firm coordonites different activities.
The activities diversity used by firms leads them to select those that they pratice
according to the caracteristics of the required capabilities for their implementation. The
capabilities cover at the same time the formalised objective knowledge and experience,
fruit of learning. Thus RICHARDSON distinguishes the same activities from the one that
are complementary [20].

The same activities are those that use the same capabilities in term of knowledge
and experiencies for their realisation inside the firm. Complementary activities can
represent various phases of production processes and therefore they require to be
efficiently coordonated. « ...that activities are complementary when they represente
different phases of a process of production and requiere in some way or another to be
co-ordinated »[20]. This activities coordonation principle then leads to unite the same
and complementary activities into the firm, not similar but complementary activities being
coordonated by cooperation. Partnership corresponds to one work division between the
firms for which «the root of cooperation agreements seems to be, in fact, that partners
agree of obligation degree and devote to assurance degree for the respect of futur
behavior » [8]. Then, cooperation exists if two or more organisations agree on a ex-ante
production strategy. This allows then to coordonite their complementary but
dissemblable activities (quantitatively and qualitatively). The aspect of voluntary ex-ante
coordination is important in the way that it devotes conscious effort to reach together a
collectively fixed goal. But this choice is not riskless.

2.1.2 Dilemma
To cooperate is not an innocent behavior but it is based on a dilemma. The

adoption of one cooperation is a strategy that relies on delicate choice : to ally with a
rival or not implies to limit nature opportunities. The firm must manage activities by
specialisation, integration or diversification, keeping at the same time, an internal
organisational equilibrium, measured throughout flexibility. «In its largest meaning
flexibility translates the possibility for a manager to be able to consider at anytime once
again his choices in order to maintain the optimality of his decision [2]. Faced with an
organisational choice, where coordination can be carried out using alliance or
internalisation, this puts forward the question of loss or maintain of future possibilities, in
other words the question of choice between static or dynamic flexibility compared to the
environment of the firm. Thus, the static flexibility depends on the existence, at a given
time, of a set of more or less important number of opportunities. The aim of the firm is to
constitute an optimal range of products. The use of cooperation strategy, that joins the
choice of an external coordination of activities, can facilitate this goal by cost repartition
among partners. FORAY [8] points out that when coordination depends on interfirms
cooperation, it is then possible to allocate sunk cost amongst several organisations.
Cooperation allows then to release a double contraint:

- to decrease the sunk cost linked to the investisments,
- to develop the specificities (human resources) either by adaptation or by

integration of technology.
But the firm's behavior can have a static position by the answer aspect of the

firm's behavior. However the interest of the choice of cooperative strategies seems to be
more interesting for the implementation of an initiative behavior. Because environmental
firms changes, these last must try to anticipate changes in order to have a more efficient
capability of reaction. Thus, the dynamic of organisation relies on contradiction between
the integration necessity and resource association to give them specific (technology
creation condition) and the necessity to put them on the market (reversibility condition)
[8]. This compromise takes as much importance as the environment of the firm is
pertubed (strong uncertainty) under the effects of the technological development. The
choice to prefer an internal coordination to the external one then implies the question of
the dynamic efficiency.

2.2 Dynamic Efficiency question

Cooperation strategy'choice is for the firm a complex problem because it is
linked to the notion of dynamic efficiency in other words the capacity of the firms to
create new resources keeping environmental dynamic flexibility. In this case, cooperation
is a difficult but advantagous solution.

2.2.1 To create new resources
Cooperation choice is often viewed by the firms as a loss of freedom towards its

competitors. This is the raison why from an internal organisation's point of view the
capacity of the firm to create and develop new resources is linked to the notion of
competencies as firm'core business that enable it to preserve its comparative advantage.

Then, a first, extention carries out by the strategic management developed it-self with
WILLIAMSON'S works on internalisation linked to the notion of assets specificity in
order to over come its failures concerning the integration of innovation and technical
change. RUMELT [22]or example, defines the firm as a capabilitie or unique resources
serial, combined in order to accordate itself to the demand changes. But, other authors,
in an evolutionist trend using learning phenomena, explain dynamic efficiency using
learning processes. From that moment, organisation structuration is not longer the cost
minimisation but the possession by firm of specific competences and rules. « The
organisational firm's essence is linked to the basic competencies that it has in other
words a set of technological competences complementary assets, rules, that identify the
firm in a given activity » [10]. Then firm's core business is strategic core of the firm. This
is the raison why « a basic competence is a set of technical differentiated compentences,
complementary assets, and rules, that altogether form the basis of currential capabilities
of a firm in a particular activity.... Typically, such differencies have a major underlying
dimension that renders the imitation by the other difficult even impossible » [10]. These
authors defend the idea that a distinction between complementarity competences (that
may be externalised) and crucial competences (that firm's core business allows to
maintain a internal coherence of the organisation). The organisational goal is more,
today, to produce specificities than to develop products. But, the increasing uncertainty
makes difficult this goal realisation as the organisational learning, sources of
modifications of knowledge and rules can also be a destabilising tool for the
organisation. For COHENDET and LLERENA[2], «this is an implementation of
localised learning processes that constitute the most adequate organisational answer for
the viability of an organisation. If organisational learning is likely to explain the
difficulties of the activity coordination for internal organisation or alliances, it may be
significative of dynamic flexibility in order to answer to the question of efficiency.

2.2.2 To develop a dynamic flexibility
In order to keep its internal coherence, managing the organisational internal

coherence compromise, the firm develops cooperation strategies in order to find an
equilibrium between internal and external coordination of its activities. But, in this
context, it is not longer a static but a dynamic flexibility. This capability to continously
react in the time, to environmental variation will be implemented generated by the
external environment or by the capability to improve future choices. In the case,
organisational flexibility is dynamic because it develops knowledge accumulation
processes. According to FAVEREAU[6], it is this capacity of stimulation and orientation
of learning, capability that have or that can have organisation in order to maintain or to
increase the possibility to react at the change. To stress the importance of environmental
uncertainty is the same as to ask why complexity and irreversibility management are
objectives of the firm. Complexity and irreversibility are united by the introduction of
uncertainty in the analysis. According to AMIT and SCHOMAKER [1], managerial
decisions must take into account uncertainty (technological, competitor's behaviors and
customer's preferences), relational complexity (competitive interactions) and inter-
organisational conflicts. These three conditions leverage decision making of individuals
and their important choice. Irreversibility is one of the most important caracteristic of

decision making in a non probabilisable uncertainty and more generally speaking one
aspect of the phenomena linked to the devlopment of innovations. More precisely,
environment generates complexity and uncertainty due to three sources of possible non
probabilisable uncertainty : innovation, others agent's behavior and environment it-self
Cooperation, then is a form of organisation that allows partners to reduce those
disruptions. By its organisational mode, more flexible and independant of the major
organisation, it is an organisation form that manages interface with the environment. In
other words, it carries out a test (for new products, new technologies and new partners).
Cooperation agreements create compatibility area. Thus, they are particulary useful for
idiosyncratic resources merger with an important tacite constraint. Depending on
propriety of loose coupling, interdepedencies are strong inside the system and these are
weak inside intersystems. Consequently, this explains the cooperation caracteristics as an
organisational form allowing to the firm to develop new organisational forms with out
bringing disruptions inside them. Cooperation is partners association in a more flexible
setting that it is, for example, the one of the firm.

Thus, cooperation manages uncertainty and complexity keeping the own
identity of partners and allowing the assimilation innovations (product but also the most
organisational), once functioning rules are routinised. It then becomes obvious that
cooperation stake is the proces learning elaboration and the development of rules. As LE
BAS[13] says as the firm is a learning laboratory, cooperation agreement can be
considered as an experimentation field.

3 Cooperation Dynamic

Cooperation evolution puts foward two important points : organisational
learning and trust. The following hypothesis discussed is : organisation learning among
partners is an indispensable tool for a good evolution in the time of the cooperation
relation. It develops itself among voluntary agreements, that are contratualised or not. It
is a support of trust built during partership, because if learning exists during cooperation,
actors win mutual assurance by better mutual knowledge with exchange, using also rules
and mutual habits. From that point, we can consider it as an specific asset, in other words
as an output of relation. We propose to precise the notion of organisational learning
before linking it with the trust one.

3.1 Creation and Development of organisational learning

Learnings depend on a great part on the nature of accumulation knowledge and
the way knowledge is developed. « In these conditions, technology is not a public good,
but it implies specific knowledge, idiosyncratics, partly approppriable, that are
accumulated in the time throughout learning processes, specific too, whose the top
managers depend on the proper knowledge of firms and technologies already used ».
Then, we will precise knowledge caracteristics and their influences on organisation.
«Search activity, and much more again the one of development, leads to an

accumutation process by knowledge, learning and how-know that is not completly
formalised and come withing individual or collective pratices »[11]. Usually, we agree to
reconize the following technological innovation caracteristics: «Technological
innovation is process that lasts differently according to industries. Morever it is strongly
localised, tacit, path dependent and it has irreversible process caracteristics» [3],To
understand the stake that constitutes the organisational learning creation for the
cooperation choice viability supposes to reconize two caracteristics of knowledge : tacit
and cumulative aspects. Therefore, the tacit aspect of internal rules of a firm can be such
as a firm, trying to imitate its concurrent, will have the most important difficulties to do
it? if the firm has no access to those rules. From then, the organisational context is
fundamental. The boundary between explicit and tacit knowledges is given by the
practice and the strategies developed by the actors. So, the organisational change is
strongly linked to innovation. If for KANTER, innovation is a process allowing to find
new concrete solutions in the firm, MEZIAS and GLYNN [15] define innovation as a
discontinuous, non daily and significative organisational change. This is the reason why,
the implementation of new organisational structures must rely on confidence, reciprocity,
in other words it has to be coordinated by cooperation. The importance of interactions
between individuals plays a major part.

The tacit feature of knowledge puts forward the necessity of a stabilised frame
in order to favour the repeating and hereby the acquiring of codes to preserve the
knowledges but also the necessary components of their diffusion.

According to DOSI, TEECE and WINTER, « what has been learnt during a
period relies on what was learnt during past periods » [4]. The accumulation aspect of
learning is fundamental at the individual and organisational level to yield past
experiences. Therefore, there is learning when the technical change can be considered as
a result or a step in the following building process, that is to say a regulating process
improving the existing technical solutions at technology structure of unchanged basis »
[18]. However, the cumulative aspect outlines also the fact that : «the output of
researches is not only today a mere new technology but also the submition of
knowledges and this output constitutes the basis of new blocks to be used tomorrow »
[16]. Learning is irreversible and justifies the choice of cooperative strategies. LE BAS
and ZUSCOVITCH[23] define the path of learning depending on each firm, as the
combination of internal and external learning and the technological way as the
configuration of those paths. From then, the accumulative part of learning is to structure
the firm. Coming from its cumulative feature, a localised feature can be given to
knowledge. As a matter of fact, we know the importance of tacit and accumulation (and
its accumulation mode inside the organisation) when building a knowledge. The
importance of the organisational structure, of the information system and the way of
taking decision render the combining ressources mode as a major tool in the
development of specific knowledge. « The organisational choices are very localised and
path dependent, throughout the game of organisational learning effects that they imply
and by the specific investments, equipment or not that they mobilize ». This is the reason
why interaction between partners takes a unique feature.

This explains why the implementation of cooperations in the R-D field requires
a sharing and a stable organisation. As matter of fact, in the cooperation forms, the
elements that will lead to the identification of cooperation will be : confidence and
organisational learning as an output of this kind of relations.

3 .2 . About confidence

We can wonder what is the part played by confidence whose importance,
according to empirical surveys and theorical works, makes it as a key component of
cooperations and interindividual cooperations. Is this notion a necessary condition to
justify the choice of a cooperation strategy ? How can it influence partnership ?

The notion of confidence is ambiguous because as an immaterial good it relies
on the notion of reciprocity. If as LUNDVALL[14]says its material root is
interdependancy, it appears that the reciprocal aspect is present in the organisational
learning, developing itself inside the interaction. Therefore, in a first part we have to put
forward the confidence and learning links resulting from reciprocity and
interdependancies. We propose, in a second part to underline their role in the
cooperations. This allows to justify according to us the choice of a cooperation strategy.

3.2.1 Confidence as an active tool resulting from apprenticeship
In order to demonstrate how this specific asset is linked to learning, we must

remind ourselves that confidence is not material and has no constraints. Assimilated to an
implicit object non formalised between the actors, it is defined as the subjective attitude.
Its role is to increment the quality of technological creations localising at the same time
apprenticeship and the know-how. Its feature of specific good comes from the particular
relations between partners as a unique product of a relations requiring time. As a specific
asset, confidence minimises today and future transaction costs, but it especially has a
reciprocity feature between partners [17] interest that we called organisational learning.
However this last does not only imply a technical knowledge but also integrates a
common know-how knowledge. This combination of knowledge has a reciprocity
relation. Confidence, relying on reciprocity gives the opportunity to go on instead of the
hypothesis according to which cooperation can be seen as a specific organisation and
coordination mode. As a matter of fact, confidence behaves as a self-reinforcement of
the implementation of partnership. The interdependancy of the actors, building new
knowledge, generates at the same time knowledge and confidence. « Confidence is
essential. It is not surprising to see that it is the cooperation tool. We note two main
ways at the creation of cooperation : (1) to develop long-term relations, (2) to try to
modify the game, acting on four variables (rewarding of cooperation, opportunism gains,
punition and naive pay-off) keeping in mind the importance of the future » [9], What first
influences the choice of a cooperation strategy can be featured by reputation effects.
This last compensates an ex-ante confidence failure, even its non existence. If we add the
part of the learnings in the obtention of a dynamic organisational equilibrum, we can then
put forward the hypothesis that the confidence linked to learning is one of the stabilising
elements of the choice of cooperation as strategy. If confidence is a specific asset

resulting from the interaction between partners, the organisational learning allows to
reinfoce its development.

3.2.2 Trust and organisational learning as partnership bases
The tacit, irreversible and localised aspects of knowledge, allowing to

encompass the difficulties met during the memorazing and development of learning
processes reveal the importance of people's interactions. From then, coordination by
cooperation is a conceptual frame that allows to analyse the objectives of the
organisational learning, that is to say the developments of knowledge and confidence.

In this context, firms add various knowledge for the mergers. LORANGE and
ROOS make the hypothesis that a partnership has for objective to gather competences.
One of the goal is then to «learn from an other partner how to realise a complex
work »[21]. The key feature of success for a cooperation is in those conditions the
creation of the organisational learning. Therefore, cooperation is not a stage towards the
integration because actors make advantage of the fact to develop a distinct cooperation
of their own organisation. We propose in fact this causality to be inversed. The
affirmation of an identity is done throughout the time, although the subject (firm or
individual) changes. Moreover, if the identity is a social output, the cooperation claims
the identity of partners inside its interaction. It inforces their belonging and their roots in
the society. The functioning components of cooperation relies on the organisational
flexibility and on its ability to develop common knowledge. The organisational learning
of cooperation joins the building of habits and rules inside an organisation, thus the
ability to solve new problems produced by the instability of the environment and/or its
behaviors towards other agents. The organisational flexibility is the ability to adapt itself
to the unknown environment and the one to allow the organisation to maintain its
coherence. Organisations managed according to cooperation rules are dispositions faced
to the various unknown sources and complexity.

4 Conclusion

As it introduced, concerning its specificity, cooperation is based on confidence
rules, specific asset resulting from the interaction of partners and on the development of
organisational learning. Cooperation organisation is the product of actors' strategies in
order to create a basis for the development of knowledge and learning. But the bilateral
to multilateral field reinforces this conclusion in the way that the reciprocity system is
more needed in the pertubed and unknown environments.

References

[1] AMIT R. et SCHOMAKER P.J.H., Strategic assets and organizational rent,
Strategic management Journal, vol 14, 1993, 33-46.
[2] COHENDET P. et LLERENA P.(eds), Flexibility information et decision,
Economica, 1989.

[3] COHENDET P., HERAUD JA. et ZUSCOVITCH E., Apprentissage technologique,
reseaux economiques et appropriable des innovations, in FORAY D. et FREEMAN C.
(eds), 1992, op. cit,
[4] DOSI G., TEECE D. et WINTER S., Les frontieres des entreprises : vers une theorie
de la coherence de la grande entreprise, Revue dEconomie Industrielle, n°51, 1, 1990,
p. 246.
[5] ELIASSON G., The firm as a competen team, Journal of Economic Behavior and
Organization, 13, 1990, p. 276.
[6] FAVEREAU O., Organisation et Marche, Revue Francaise dEconomie, n°IV, 1
Hiver 1990, 65-148.
[7] FELIPPIM., Cooperation industrielle et svstemes productifs localises : une analyse en
terme de reseaux. These de Doctorat, Universite de Corse, juillet, 1995.
[8] FORAY D., Reperes pour une economie des organisations de Recherche-
Developpement, Revue dEconomie Politique, n°. 5, sept-oct 1991, 780-808.
[9] JARILLO J.C. et RICART J.E., Sustaining networks. Interfaces 17, spt-oct, 1987, p.
90.
[10] KTRAT T. et LE BAS C, La technologie comme actif, de la firme portefeuille ä la
firme organisation, Revue Francaise dEconomie, vol VIII, 1, 1993, p. 155.
[11] KTRAT T., Pourquoi une theorie evolutionniste du changement technologique ?,
Economie Appliquee, tome XLIV, n°3, 1991 p. 53.
[12] LANGLOIS R.N., Economic change and the boundaries of the firm, in Industrial
Dynamics, Technological organizational and structural changes in industries and firms, in
CARLSSON B. (ed), Kluwer Academic Publishers, 1989.
[13] LE BAS C, La firme et la nature de l'apprentissage, Economies et Societes, serie
W, n°l,1993, p. 20.
[14] LUNDVALD B-A (ed), National Systems of Innovation : towards a theory of
innovation and interactive learning, Pinter Publishers, 1992.
[15] MEZIAS S.J. et GLYNN M.A., The free faces of corporate renewal, institution,
revolution and evolution, Strategic Management Journal, vol 14,1993, p.78.
[16] NELSON R.R. et WINTER S., An evolutionary theory of economic change. The
Belknap press, 1982.
[17] OUCHJ W., Markets, bureaucraties and clans, Administrative Science Ouaterly, vol
25, march, 1980, 129-141.
[18] PAULRE Economie et Societe, serie dynamique technologie et organisation, W
n°l, 5/1993, p. 35
[19] PENROSE E., The Theory of the growth of the firm, 1959, Basil Blackwell,
Oxford.
[20] RICHARDSON G.B., The organization of industry, Economic Journal, septembrer
1972, 883-896.
[21] ROOS J., LORANGE P., Strategic alliances, formation implementation and
evolution, Blackwell, 1992.
[22] RUMELT R., Theory strategy and entrepreuneurship, in TEECE D. (ed), T_he
Competitive Challenge, 1987.

[23] ZUSCOVITCH E., LE BAS C, Apprentissage technologique et organisation : une
analyse des configurations micro-economiques, Economies et Societes, serie Dynamique
technologique et organisation, W, n°l, 1993.

10

