
NAWCWPNSTP8318 

A Real-Space, Modal-Expansion Method 
With the R-Matrix Propagator To Calculate 

Grating Diffraction 

by 
J. Merle Elson 

and 
P. Tran 

Research and Technology Division 

SEPTEMBER 1996 

NAVAL AIR WARFARE CENTER WEAPONS DIVISION 
CHINA  LAKE,   CA  93555-6100 

CVJ 
Approved for public release; distribution is unlimited. 

^noflDanrr ̂
SPBGSBS 4 



Naval Air Warfare Center Weapons Division 

FOREWORD 

This work was supported in part by a grant of High Performance Computing Center, 
time from the DOD U.S. Army Corps of Engineers Waterways Experiment Station (Cray 
Research C-916 and Y-MP). The authors were supported by Navy In-House Laboratory 
Independent Research funds. 

This report is a working document subject to change and was reviewed for technical 
accuracy by Brett Borden. 

Approved by Under authority of 
R. L. Derr, Head J. V. Chenevey 
Research and Technology Division Capt., U.S. Navy 
5 September 1996 Commander 

Released for publication by 
S.HAALAND 
Director for Research and Engineering 

NAWCWPNS Technical Publication 8318 

Published by Technical Information Division 
Collation  Cover, 9 leaves 
First printing 45 copies 



REPORT  DOCUMENTATION  PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA 22202^302,andtotheOfficeofManagementandBudget,PaperworkRedudionProjed(07M-0188),Washington,DC 20503. 

1. AGENCY USE ONLY      (Leave blank) 2. REPORT DATE 

September 1996 
3. REPORT TYPE AND DATES COVERED 

Interim report - October 1995-September 1996 
4. TITLE AND SUBTITLE 

A Real-Space, Modal-Expansion Method With The R-Matrix Propagator 
To Calculate Grating Diffraction 

5. FUNDING NUMBERS 

N0001496WX20167 

6. AUTHOR(S) 

J. Merle Elson and P. Tran 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 

Naval Air Warfare Center Weapons Division 
China Lake, CA 93555-6100 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NAWCWPNS TP 8318 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 

Office of Naval Research 
ONR 354-Dr. Ronald Kostoff 
Ballston Tower One 
800 N. Quincy St. 
Arlington, VA 22217-5660 

10.    SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12A.  DISTRIBUTION/AVAILABILITY STATEMENT 

A Statement; Distribution Unlimited 

12B. DISTRIBUTION CODE 

13. ABSTRACT     (Maximum 200 words) 

(U) Recently the R-matrix propagation algorithm has been used in conjunction with a £-space modal- 
expansion to calculate diffraction from gratings [J. M. Elson and P. Tran, /. Opt. Soc. Am. A, Vol. 12]. The 
R-matrix eliminates numerical instability associated with deep gratings. We introduce here a real-space version 
of the modal-expansion method. A detailed numerical study of the convergence versus number of diffracted 

orders is given. For wavelength X, we consider sinusoidal gratings having height h = 1.7A, and 17X where 

both have period d = l.Tk. We consider absorbing metallic and nonabsorbing dielectric gratings. Results are 
compared with those of other authors and with our previous results. 

14. SUBJECT TERMS 

Electromagnetic theory 
Grafting diffraction 
R-Matrix 

15. NUMBER OF PAGES 

16 

16. PRICE CODE 

17.     SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.    SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20.  LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



UNCLASSIFIED  
SECURITY CLASSIFICATION OF TÜIS PAGE" (Whan Data änteiad) 

Standard Foim 298 Back (Rev. 2-89) 
SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



NAWCWPNS TP 8318 

INTRODUCTION 

The R-matrix propagation technique has recently been introduced by several authors 
(References 1 through 6) as a means of removing the numerical instability encountered in 
calculating diffraction from deep gratings (depth h > wavelength X). The method was first 
described in the field of chemical physics (Reference 7). The idea is to find a quantity 
called R that describes the relationship between some field quantity and its derivative. 
When the field has exponential behavior, exp(ocz), the quantity R will be proportional to az 
and will not suffer from exponential instability. Applying this idea to such a relationship in 
the theory of grating diffraction, the method seeks a matrix that relates the electric field on 
both sides of a layer to the magnetic field on both sides. This method on the R-matrix 
method is unlike the T-matrix propagation method that seeks a matrix relating the electric 
and magnetic field on one side of a layer to the electric and magnetic field on the other side 
of a layer. 

In References 1 and 2, diffraction calculations were performed for nonabsorbing 
dielectric and absorbing metallic sinusoidal gratings with period d = 1JX and heights 

h = 0.17, 1.7, 17, and 170A, for both transverse-electric (TE) and transverse-magnetic 
(TM) polarization. The results were compared with other methods where applicable. The 
performance of the R-matrix method was good in all cases except for TM polarization and 
metallic gratings with h > 17A,. These cases suffered from poor convergence where the 
diffraction efficiency fluctuated with the number of orders kept in the expansion. 

In Reference 1, the R-matrix method was used in conjunction with a multilayer-modal 
expansion to calculate the diffraction efficiency. The grating is subdivided into many 
sublayers such that within each sublayer, the permittivity can be approximated as constant 
across the sublayer. In the dimensions parallel to the boundaries of a sublayer, the 
permittivity and the fields are expanded in a Fourier series. Within each sublayer, the 
Fourier components of the permittivity are known, and the Fourier components of the field 
are determined from a set of linear equations. 

In this work, we do not expand the permittivity and fields in each sublayer into Fourier 
components. Instead, we will solve for the fields in real space. The motivation for this 
approach is to try to circumvent the slow convergence of a Fourier expansion when there 
are one or more sharp discontinuities in the quantity being expanded. These discontinuities 
include the field across a boundary or the sharp jump in the dielectric permittivity. It is not 
clear to the authors why metallic permittivities and TM polarization appear to present the 
greatest problem in this regard. Nevertheless, this problem has motivated taking the 
present real space approach where series representation of discontinuities in permittivity is 
not an issue. 
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The method described here is similar to that described in References 3 and 4 where the 
authors mainly looked at transmission and band structure of a bulk photonic crystal and 
dispersion of surface modes propagating along the surface of a truncated photonic crystal. 
These calculations were for nonabsorbing dielectric materials. In this paper, we will focus 
on the gratings considered in References 1 and 2. The next section briefly describes the 
method used in this work. Additional details can be found in References 1, 3, and 4. 
Numerical results along with convergence data are presented. 

METHOD OF CALCULATION 

In Figure 1, a sinusoidal profile with nomenclature is shown. We assume the grating 
profile is infinitely periodic in the x direction, uniform in the y direction, and with peak- 
to-valley height h = z2 - zx in the z direction. The grating is illuminated by a plane wave 
of wavelength A with wave vector in the (x,z) plane. There are three general regions of 
interest: the homogeneous superstrate, the homogeneous substrate, and the finite thickness 
region in between containing the grating profile. The superstrate has permittivity einc and 
contains the incident and reflected fields. The substrate has permittivity esub and contains 
the transmitted field. The profile region in between is described by a spatially variable 
permittivity £(r) where r = (x,z) and z1<z<z2. 

In Figure 1, a sinusoidal profile is subdivided into nz layers each having uniform 
thickness Az = h/nz. Even though the grating profile region is generally divided into 
sublayers, the number nz of sublayers can range from 1 to much greater than 1. For a 
given height h, the number nz obviously relates to thickness Az, and the main criterion for 

Az is the requirement that the permittivity within each sublayer can be treated as 
independent of z. For example, a rectangular profile need not be subdivided (nz=l) 
regardless of height h. However, for a sinusoidal profile, it is normally necessary to 
subdivide into nz»l layers to achieve a reasonably accurate profile shape and sublayers 
which are approximately independent of z. Even though we assume each sublayer has 
constant thickness Az, this assumption is not necessary. 
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Superstrate 

x 
Substrate 

FIGURE 1. Schematic of Sinusoidal Profile Versus One Period Showing x- 
Coordinate Discretization and Sublayer Divisions. In this example, the dots indicate 
discretization of the ^-dimension over one period d into nx = 29 points. The number 
of divisions of grating height h is nz = 10, as shown by the horizontal solid lines. 
The area under the sine curve contains substrate material. Each dot lying under the 
sine curve represents an jc-point where the permittivity is that of the substrate. 
Likewise, each dot above the sine curve is an jc-point with superstrate permittivity. 
Each adjacent pair of horizontal solid lines represents a sublayer, and the dotted line 
in between also denotes the center-z coordinate zc for that sublayer. 

We wish to solve the two Maxwell's equations VxE(r) = ;(ö)/c)H(r) and 
VxH(r) = -i'(ö)/c)£(r)E(r) within a given sublayer. To do this, we write the x- 
dependence of these two equations as a centered finite-difference approximation. The x- 
coordinate is discretized over period d into nx points each uniformly separated by 
Ax = d/nz. For a layer bounded from z -> z + Az, we eliminate the z-component of the 
electric and magnetic fields and obtain four equations relating the x and y field 
components: 

^^ = ^-Hy(x,z) 
c    y dz 

+- 
ic     JHy(x + Ax,z)-Hy(x,z)    Hy(x-Ax,z)-Hy(x,zy 

co(Axy e(x + Ax/2,zc) e(x-Ax/2,zc) 
(la) 
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dEy(x,z) ^    ico 

dz c 
Hx(x,z) (lb) 

dHx(x,z)       ico 

dz 
 e(x,zc)Ey(x,z) 

ic 

co(Axy 
- [2Ey (x,z)- Ey (x + Ax, z) - Ey (x - Ax, z)\ (lc) 

—y        = — e(x, zc )EX (x, z) 
dz c 

(Id) 

In Equations la and lc, the finite-difference centered derivative approximations on the 
right-hand sides are accurate to 0(Ax2). As shown in the Appendix, we have also 
considered approximations, which are accurate to 0(Ax4) (shown in the Appendix). We 
have evaluated the permittivity e at z = zc, which represents the center z-coordinate of the 

sublayer. Since the sublayer is bounded from z to z+Az, it follows that zc = z + Az/2. 
Because of this, these coupled differential equations have coefficients which are 
independent of z for a given sublayer. When all nx discrete x-coordinates (denoted by X) 
are included, the coupled set of differential equations in Equation 1 may be written in 
matrix form as 

d_ 
Bz 

(Ex{X,z)\ 

Ey(X,z) 

Hx{X,z) 

Hy(X,z) 

= M(X,zc) 

(Ex(X,z)^ 

Ey{X,z) 

Hx(X,z) 

yHy(X,z) 

(2) 

Since M is independent of z within the sublayer, the modal solution is straightforward by 
diagonalization of M and, in the original basis set, this solution has the form 

(Ex(X,z)) ( 9   ~\ ^12 ('s     \ 

Ey(X,z) 

Hx{X,z) = 
^21 exp^z)^ + ^22 

expO^zX^ -l— + 
$2N 

,^(X,z)J 1,^1/ \yNij ^jy/V, 

exp(Awz)CN     (3a) 
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where N = 4nx. The column vectors on the right-hand side are eigenvectors of the matrix 
M(X,zc), and the kp j = 1, 2,---,N are the associated eigenvalues. The Cj are constants. 
Equation 3a may be compactly written in matrix form as 

(Ex(X,z)' 

Ey(X,z) 

Hx(X,z) 

Hy(X,z) 

S(X,zc)exp(Az)C (3b) 

J 

The S(X,zc) is a square matrix having columns which are the eigenvectors of M(X,zc). 

The exp(Az) is a diagonal matrix of exponential terms with A representing the set of 
eigenvalues associated with M(X,zc), and C is a column vector of constants C-. 

In constructing the matrix M, field terms in Equations la and lc with extreme x-values 
(x± Ax)? which fall outside the dimension of one period are "wrapped around" by using 
the Floquet relationship. Because the only part of Equation 1 that depends on the grating 
profile is the permittivity £(r), the task of describing various profile shapes is 
straightforward, and typically only minor changes to computer algorithms are required. 

From Equation 3b, we may form a relationship which is the essence of the R-matrix 
algorithm 

f   Ex{X,z)   ^ 

Ey(X,z) 

Ex(X,z + Az) 

KEy(X,z + Az) 

= r(Az) 

Hx(X,z)   ' 

Hy(X,z) 

Hx(X,z + Az) 

KHy(X,z + Az) 

(4) 

This is accomplished by combining Equation 3b evaluated at z-values of z (as shown) and 
z + Azto eliminate C and rearranging the result to have the form given in Equation 4. This 
matrix equation defines the sublayer r-matrix and is basic to the R-matrix algorithm. The r- 
matrix must be calculated for each sublayer. We compare the r-matrix definition to the 
corresponding definition for a sublayer t-matrix which we write as 

(Ex(X,z)' 

Ey(X,z) 

Hx(X,z) 

Hy(X,z) 

= t(Az) 

fEx(X,z + Az)^ 

Ey(X,z + Az) 

Hx(X,z + Az) 

HJX,z + Az) v  r 

(5) 
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The elements of the t-matrix contain terms which behave exponentially as exp(±ocAz) 

where a is complex, and Az is the thickness of the sublayer.   When the real part of the 

product ocAz is large, numerical problems with exponential overflow and underflow will 

likely occur. Even if the real part of aAz is small for any sublayer, propagation through 
many sublayers by means of products of t-matrices will cause the exponential behavior to 
accumulate with the number of sublayers, which will eventually lead to numerical 
instability.  On the other hand, the elements of the r-matrix have a linear dependence on 
±ccAz, and this behavior, which is a vast improvement over exponential, will be much 
more numerically tractable for propagation through many sublayers. 

Returning to Equation 4, note that if Az is the full thickness h of the profile region (for 
example, a rectangular profile), then no further propagation through the profile region is 
necessary because the fields have been related by r(Az) across h = z2 ~zv For more 
general profile shapes, more sublayers are needed.  Then it is necessary to relate the field 
solutions obtained in each sublayer of thickness Az that subdivides h-z2-zx. To this 
end, we also assume that a relation analogous to Equation 4 exists that covers the entire 
grating height h = zx - z2 • We express this relationship as 

(Ex(X,z^ 

Ey(X,Zl) 

Ex(X,z2) 

yEy(X,z2) 

(RnCzz-z,)   Rn(z2-z^ 

^21 (z2 ~ z\)     ^22 (z2 ~ zl) 

(Hx(X,z^ 

Hy(X,Zl) 

Hx(X,z2) 

Hy(X,z2) 

(6) 

where the global R-matrix, R(z2 -Zj), is written in a sectored form. The matrices Rn, 
R12, R21, and R22 are computed by means of a recursive algorithm, and further details are 
given in References 1 through 3. To initialize the recursion relations, we see from 
Equations 4 and 6 that we may set z2=zl+Azi, and therefore R(Azj) = r(Azx). With this 
initialization, successive applications of the recursive algorithm yields R(Azi+Az2), 
R(Azj +Az2 +Az3), ••', R(Azj +Az2 +Az3 +--- + Az„z) where Azx + Az2 + Az3 +••• +Az„z 

= z2~Z\ and the Azj can be different. 

Given the R-matrix and a few more intermediate steps, we can arrive at the final 
relationship from this calculation the relative amount of energy diffracted into the substrate 
and superstate. To do this, we convert the fields to £-space by applying a Fourier 
transform matrix to Equation 6. This step is advantageous because in &-space we can relate 
the electric and magnetic fields in the homogeneous substrate and superstate (which will be 
important later in Equation 9). Another advantage is that grating diffraction is conveniently 
expressed in £-space. The Fourier transform matrix F(K,X) is discretized consistent with 
the r-space digitization earlier and for electric fields we have 
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F(K,X) 
Ey(X,Zl) 

Ex{X,z2) 

Ey(X,z2) 

(Ex(K,z^ 

Ey(K,Zl) 

Ex(K,z2) 

Ey(K,z2) 

(7) 

and similarly for the magnetic field. The vector K denotes the set of wave vectors in 
fc-space, and the number of jc-points nx is identical to the number of diffracted orders in the 
set K. We apply this F matrix to Equation 6, which yields 

(Ex(K,Zl^ 

Ey(K,Zl) 

Ex(K,z2) 

KEy(K,z2) 

= R(z2-zl) 

[Hx(K,Zl^ 
Hy(K,Zl) 

Hx(K,z2) 

Hy(K,z2) 

(8) 

where R = FRF-1. Since the zx and z2 are the substrate and superstate boundaries, 
respectively, we can use the boundary conditions to relate the substrate and superstate 
fields. From Equation 8, we find 

Ex'(K,Zl) 

Ey'(K,Zl) 

Ex
r(K,z2) + Ex

inc(Kinc,z2) 

KEy
r(K,z2) + Ey

inc(Kinc,z2) 

= R(Z2-Z!) 

Hx'(K,Zl) 

Hy'(K,z,) 

H/(K,z2) + Hx
inc(Kinc,z2) 

KHy
r(K,z2) + Hy

inc(Kinc,z2) 

(9) 

where Kmc is the in-surface incident beam wave vector. The incident beam electric and 
magnetic fields are described by  Einc ={Ex

inc,Ey
inc) and  ET =(Hx

inc,Hy
inc).    The 

superstate and substrate media contain the reflected and transmitted fields, denoted by r 
and t, respectively. At this point, a relation between the electric and magnetic fields can be 
easily obtained, and the calculation proceeds exactly as described previously (Reference 1, 
Equations 12 through 16). 

NUMERICAL RESULTS 

The numercial results of this paper are an extension of Reference 1. This is because the 
numerical results of this work are also based on the same grating design parameters 
considered in References 1 and 2 but using a real-space modal expansion method. We will 
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compare some results of the present work with previous results by Li2 and the authors' 
£-space approach. Figures 2 through 7 show our r-space convergence data for TM and TE 
polarization (electric field parallel and perpendicular to the plane of incidence) for three 
different gratings. The figures show relative intensity versus number of diffracted orders. 
The number of orders is equivalent to the number of discretized ^-points nx, which we 
choose to be an odd number, and the relative intensity refers to the ratio of diffracted power 
to incident power. For all the cases considered, the number of sublayers nz is 50, and the 
incident angle is 30 degrees. 

In Figures 2 and 3, convergence data is shown for three reflected orders of an 
absorbing metallic grating esub = (-48.91, 4.2) with height h = l.Tk and period d = 1.7A, 
(h/d=l). The data in Figures 2 (TM polarization) and 3 (TE polarization) indicate excellent 
convergence versus number of orders for this grating.   For the same grating and TM 
polarization, Li2 (Reference 2) reported that his method has poor convergence, because the 
results keep fluctuating with the number of orders. In Table 1, we compare the average 
value of the last five r-space data points shown in Figures 2 and 3 with previous results 
given in References 1 and 2. The agreement for TE polarization is very good. The 
agreement for TM polarization is poor, but that is to be expected, because the previous 
results have difficulty with convergence. For h/d = 1, the present results compare well 
with the integral method and the method of fictitious sources (Reference 8), which gives 
TM-polarized reflection diffraction eeficiencies for the -2, -1, and 0 order as 0.197, 0.086, 
and 0595, respectively. 

0.7 

0.6- 

% 0.5^ 

f0.4^ 

> 0.3 
00 
0 0.2^ 

0.1 

0 

0 order 

p-polarization 

■1 order 
0 50       100     150     200     250     300 

Number of Orders 

FIGURE 2.   Relative TM-Polarized Diffraction Intensity of the Reflecting 
0,-1, and -2 Orders Versus Number of Orders.   The grating profile is 
sinusoidal, and the grating material is an absorbing metal with permittivity 
(-48.91, 4.2).   The grating height is h = \.ll, period d = \.lX, angle of 
incidence 30 degrees, and the number of profile sublayers nz = 50. 
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0.7 

0.6^ 

-|0.5 

I 0.4 
> 0.3^ 

"co 
0 0.2^ 

0.1-3 

o 

s-polarization 

-2 order 

■1 order 

0 order 

0 50       100      150     200     250     300 
Number of Orders 

FIGURE 3. Relative TE-Polarized Diffraction Intensity of the 
Reflecting 0,-1, and -2 Orders Versus Number of Orders. This case 
is identical to Figure 2 except the incident beam is TE polarized. 

TABLE 1. Reflection Diffraction Efficiencies Absorbing Metallic Sinusoidal Grating. 
h/d=\ h/d = 10 

Order 
5-point 
r-space 
average 

Our 
previous 
fc-space 

Li's 
5-point 
r-space 
average 

Our 
previous 
fc-space 

Li's 

TE 
polarization 

-2 0.4122 0.4152 0.4135 0.1914 0.1885 0.1993 
-1 0.3348 0.3338 0.3353 0.1365 0.1353 0.1372 
0 0.2039 0.2010 0.2018 0.3093 0.3086 0.3010 

TM 
polarization 

-2 0.1560 0.0274 0.1264 0.2834 0.0160 0.0494 
-1 0.0705 0.0664 0.0603 0.0462 0.0078 0.3307 
0 0.5993 0.2146 0.6609 0.1451 0.0315 0.1618 

In Figures 4 and 5, we consider the same absorbing metallic grating except that the 
height is 10 times greater. The grating height h is now 17 A. (h/d = 10) while the 
permittivity £mb and period d remain unchanged. Convergence data for the three reflected 
orders are shown in Figures 4 (TM polarization) and 5 (TE polarization). Both cases 
exhibit a "slow" damped oscillatory convergence. Note that solid and dotted curves are 
shown for each order. The solid curves are obtained from Equation 1, as shown, with the 
finite-difference approximation accurate to <9(Ax2).  The dotted curves are obtained from 
Equation 1 with a finite-difference approximation accurate to 0(Ax4), as shown in the 
Appendix. The two methods show nearly identical results at larger order.  This eliminates 
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the possibility of the finite-difference approximation being the cause of the slow 
convergence. At this point, we do not know the cause of the slow convergence. In the 
h/d =10 column, Table 1 again compares the result with previous results from References 
1 and 2. The agreement is excellent for TE polarization. For TM polarization, the previous 
results are not reliable as discussed in the last paragraph. There is no other exact result that 
can be used to check for this deep a grating. 

• p- -polarization 

^0.3^ • •            I\ -2 order 
CO            - 
£= 
CD 

.4—1 

£0.2H */     ■      F 
CD 
> 
CO 

A   0 order 

DC 0.1- 

. *  A         3 ^^rlorder 

0^ ■ ■*■!■■ I I I I I •, i . i. 1111. i, 111.1111.11111 

0 100 200 300 400 500 600 700 800 
Number of Orders 

FIGURE 4.    Relative TM-Polarized Diffraction Intensity of the 
Reflecting 0,-1, and -2 Orders Versus Number of Orders. The 
grating profile is sinusoidal,  and the grating  material  is  an 
absorbing metal with permittivity (-48.91, 4.2). The grating 
height is h = \lX, period d = 1.7A, angle of incidence 30 degrees, 
and the number of profile sublayers nz = 50. This case is identical 
to Figure 2 except the grating height is 10 times larger. The solid 
and dotted lines, which are superimposed for the larger number of 
orders, are for finite-difference approximations accurate to 0(Ax2) 
and <9(Ax4), respectively. 

10 
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0.4 

^0.3T 
CO 
cz 
CD 

1 0.2^1 
.> 
J3 
cr 0.1 

0 

1 order 

s-polarization 

0 100 200 300 400 500 600 700 800 
Number of Orders 

FIGURE 5.    Relative TE-Polarized Diffraction Intensity of the 
Reflecting 0,-1, and -2 Orders Versus Number of Orders.   This 
case is identical to Figure 4 except the incident beam is TE polarized. 

For the deep grating considered in Figures 4 and 5, the convergence is much better if 
we change the permittivity from esub = (-48.91,4.2) to esub = (2.25,0) to represent a 
nonabsorbing dielectric. This grating is also discussed in References 1 and 2. For this 
case, Figures 6 and 7 show that the convergence is very good, in marked contrast to the 
metallic case. For this dielectric grating, Table 2 compares the results with those of 
References 1 and 2, and the agreement is excellent all around. 

11 
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0.6 

0.5 

"1 0.4^ 
CD 

-0.3 
CD ^mXJ 

JS0.2 
CD 

DC 
0.H 

0 

0 order 

p-polarization 

-1 order 

-2 order 

0       50     100    150   200   250 
Number of Orders 

300   350 

FIGURE 6.    Relative TM-Polarized Diffraction Intensity for the 
Transmitting 0,-1, and -2 Orders Versus Number of Orders. The 
grating profile is sinusoidal and the material is a nonabsorbing 
dielectric with permittivity (2.25,0). The grating height is h = 17Ä, 
period d = 1.7A, angle of incidence is 30 degrees, and the number 
of profile sublayers nz = 50 This case is identical to Figure 4 except 
the substrate material is a dielectric, and the orders are transmitting. 

0.6 

0.5 

£0.4 
CD 

^o.sq 
CD 
.> 
3Ü0.2 
CD rr 

O.H 

0 

2 order 

•1 order 

s-polarization 

0 order 

i   i   i   i   i   i   i 

0      50 100   150   200   250   300   350 
Number of Orders 

FIGURE 7.    Relative TE-Polarized Diffraction Intensity for the 
Transmitting 0,-1, and -2 Orders Versus Number of Orders.  This 
case is identical to Figure 6 except the incident beam is TE polarized. 

12 
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TABLE 2. Transmission Diffraction Efficiencies 
Nonabsorbing Dielectric Sinusoidal Grating. 

h/d= 10 

Order 
5 point 
r-space 
average 

Our 
previous 
fc-space 

Li's 

TE 
polarization 

-2 0.4940 0.4924 0.4974 
-1 0.4109 0.4113 0.4111 
0 0.6846C-1) 0.6982C-1) 0.6750(-l) 

TM 
polarization 

-2 0.1867 0.1905 0.1869 
-1 0.2744 0.2812 0.2757 
0 0.5283 0.5185 0.5261 

In conclusion, we described a real-space modal expansion R-matrix method, and we 
investigated the convergence versus number of diffracted orders. The method was still 
stable and works well for both TM and TE polarization with fast convergence for absorbing 
metal gratings with h = 1.7A, (h/d =1).  For the same absorbing metallic grating 10 times 

deeper (h = 17X), the method still stable for both TM and TE polarization, but the 
convergence appears to be quite slow with a damped oscillatory behavior. However, when 
the grating material is replaced by a dielectric, the convergence becomes quite rapid. We 
hope that future studies can identify the cause of slow convergence for the deep metallic 
grating. 
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Appendix 

In deriving Equation 1, finite-difference approximations of the x-derivatives were 
made. Consider the right-hand side of Equation la where the centered-derivative 
approximation 

d_ 
dx 

(\dHy\       l    \HJx + Ax,z)-HJx,z)    HJx-Ax,z)-H(x,z) 

y£  dx j (Axy e(x + Ax/2,zc) 
r 'v |    yv 

e(x-Ax/2,zc) 
(A-l) 

has been used which is accurate to 0(Ax ).   This expression is obtained by writing the 
formulas 

F(x + Ax/2)«F(x) + —F'(x) + -(—) F"(x) + - 
2 2 V 2 ) 6 (fJVw (A-2) 

Ax 1/^AxV lfAxV 
F(x - Ax 12) - F{x) - — Ff(x) + - —   F"(x) - - —   F'"(x) 

2 2\ 2 ) 6^2 ) 
(A-3) 

and solving for F'(x) yields 

„„ .    F(x + Ax/2)-F(x-Ax/2)    F"'(x) 1 .  2 F (x) ~ — -^--Ax 
Ax 3     8 

(A-4) 

This expression is clearly accurate to order <9(Ax2). In Equation A-4 we may replace Ax 
by 3Ax which yields 

„„ N    F(x + 3Ax / 2) - F{x - 3Ax / 2)    F"'(x) 9 .  2 F\x) ~ — —— -^J— Ax1 

3Ax 3     8 
(A-5) 

We may now combine Equations A-4 and A-5 such that the 0(Ax ) term vanishes and this 
yields an expression for F'(x), which is accurate to order 0(Ax4).   This 0(Ax4) formula 
may be applied twice to evaluate the left-hand side of Equation A-l.    First we let 
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F(x) = Hy(x) and this yields an expression F{(x)~dHyldx. Applying the formula a 
second time with F(x) = (l/£)F{(x) yields a fourth-order accurate finite-difference result 
F{(x) = [(1 / £)F{(x)]'«(d I dx)[(l I e)(dHy I dx)] for the left-hand side of Equation A-1.  An 
analogous procedure can be applied to the right-hand side of Equation lc. We have used 
both the second and fourth order formulas in our numerical calculations. Unfortunately, 
however, no significant improvement in convergence was seen for the deep grating 
calculations considered here. 
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