
NASA 
Contractor Report 4757 

Army Research Laboratory 
Technical Report ARL-CR-312 

Local Synthesis and Tooth Contact Analysis 
of Face-Milled, Unif orm Tooth Height 
Spiral Bevel Gears 

F.L. Litvin and A.G. Wang 

GRANT NAG3-1607 
OCTOBER 1996 

19961129 021 

*>*tt 
*«to 4^3> 

National Aeronautics and 
Space Administration 

•appro»«! fcTp^JTr;— A 

U.S. ARMY 

RESEARCH LABORATORY 



REPORT DOCUMENTATION* PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructiions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Washington Headquarters Services, Directorate for information operations and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the office of management 
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

6/30/91 

3. REPORT TYPE AND DATES COVERED 

Interim 

4. TITLE AND SUBTITLE 

Aluminum 3004 

6. AUTHOR(S) 

P. K. Chaudhury and V. January 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

National Center for Excellence in Metalworking Technology 
Operated by Concurrent Technologies Corporation 
1450 Scalp Avenue, Johnstown, PA 15904 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 

Naval Industrial Resources Activity 
Building 10 
700 Robbins Avenue, Pittsburgh, PA 19111-5078 

11. SUPPLEMENTARY NOTES 

5. FUNDING NUMBERS 

N00140-92-C-BC49 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

M0535 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

•Liarited DiatrfesfeB WBTRIBüTIOMr 8TATEMEM1 C: Distribution tmt^-,«^* *   «« « L^ 

A&mcses ami the* contractors «Zn„ !l aUthorl2eä t0 US- <**«« 
*«W«rt» tor this document ahmWr^S^OUOOt  '0 3 DEC 

12b. DISTRIBUTION CODE 

1996 Othi» 

13. ABSTRACT (Maximun 200 words) 

True stress - true strain curves are presented for Aluminum 3004 at temperatures from 482 F to 900 F, and strain rates from 0.05 tol5.0 /s. 

14. SUBJECT TERMS 

Atlas of Formability, forming, Cast Aluminum 3004, compression 

17. SECURITY CLASSIFICATION 

OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

19 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Unclassified 

NSN 7540-01-280-5500 Standard Form 298 Rev. 3/96 
Prescribed by ANSI St. 239-18 880922 
299-102 



NASA Army Research Laboratory 
Contractor Report 4757 Technical Report ARL-CR-312 

Local Synthesis and Tooth Contact Analysis 
of Face-Milled, Uniform Tooth Height 
Spiral Bevel Gears 

F.L. Litvin and A.G. Wang 
University of Illinois at Chicago 
Chicago, Illinois 

Prepared for 
Vehicle Propulsion Directorate 
U.S. Army Research Laboratory 
and 
Lewis Research Center 
under Grant NAG3-1607 

National Aeronautics and 
Space Administration 

Office of Management 

Scientific and Technical 
Information Program 

1996 



LOCAL SYNTHESIS AND TOOTH CONTACT 
ANALYSIS OF FACE-MILLED, UNIFORM TOOTH 

HEIGHT SPIRAL BEVEL GEARS 

by 

F. L. Litvin1 and A. G. Wang2 

Department of Mechanical Engineering 

University of Illinois at Chicago 

Chicago, IL 

ABSTRACT 

Face-milled spiral bevel gears with uniform tooth height are considered. An approach 

is proposed for the design of low-noise and localized bearing contact of such gears. The 

approach is based on the mismatch of contacting surfaces and permits two types of bearing 

contact either directed longitudinally or across the surface to be obtained. Conditions to 

avoid undercutting were determined. A Tooth Contact Analysis (TCA) was developed. This 

analysis was used to determine the influence of misalignment on meshing and contact of the 

spiral bevel gears. A numerical example that illustrates the theory developed is provided. 
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NOMENCLATURE 

ocg Blade angle of gear head cutter (fig. 4)(Table 2) 

«P Profile angle of pinion head cutter (figs. 7, 18)(Table 3) 

7i,72 Angles of pinion and gear pitch cone, respectively (figs. 6, 11, 12)(Table 
1) 

7 Shaft angle (Table 1) 

Vi Tangent to the path of contact on the pinion surface (Table 3) 

8p Surface parameter of the pinion head cutter 

Qg Surface parameter of the gear head cutter 

^P Surface parameter of the pinion head cutter (figs. 7, 18) 

°i2 Angle formed between principal direction ef and es (fig. 10) 

<t>i {i = 1,2)    Angle of rotation of the pinion (i = 1) or gear (i = 2) in the process of 

meshing (figs. 11, 13, 14, 15) 

fai (« = 1,2)  Angle of rotation of the cradle in the process for generation of the pinion 

(* = 1) or gear (i = 2) (fig. 5) 

r/fi (i = 1,2)    Angle of rotation of the pinion (i = 1) or gear (£ = 2) in the process 

for generation (figs. 6, 8) 

ut (i = 1,2)    Angular velocity of the pinion (*' = 1) or gear (» = 2) (in meshing and 

generation) 

uCi (t = 1,2)  Angular velocity of the cradle for the generation of the pinion (z = 1) 

or gear (i = 2) 

E," (» = 1,2)   Pinion (i = 1) or gear (i = 2) tooth surface (fig. 17) 

St, (i = 1,2)  Pinion (t = 1) or gear (t = 2) generating surface (figs. 1, 2, 3, 16) 

AAP, AAg     Pinion and gear axial displacements, respectively (figs.  11, 13)(Table 

4) 
AE, A7 Errors the offset and shaft angle, respectively (figs. 12, 13)(Table 4) 



Afa{<f>i) Function of transmission errors (figs. 14, 15) 

e/, efc, es, e,    Unit vectors of principal directions of pinion and gear tooth surface, 

respectively (fig. 10) 

hi Dedendum height of the pinion 

kf, h, Jb., Jb,    Principal curvatures of the pinion and gear tooth surfaces, respectively 

T ■ • Matrix of orientation transformation from system St to system Sj (3X3) 

m'2l Derivative of <£2(<£i) (Table 3) 

M Mean contact point (figs. 1, 2, 3, 7, 9)(Table 3) 

Mji Matrix of coordinate transformation from system 5,- to system Sj (4X4) 

nfc., N*. Unit normal and normal to the generating surface Et- represented in 

coordinate system Sk 

Ni (» = 1,2)   Number of teeth of pinion (t = 1) and gear (i = 2) (Table 1) 

qi (i = 1,2)     Installment angle for the head cutter of the pinion (t = 1) and gear 

(t = 2) (fig. 5)(Tables 2, 3) 

Rx Radius of the generating surface of revolution for the pinion (figs. 3, 7, 

16, 18)(Table 3) 

R    R Radius of the head-cutter at mean point for the pinion and gear (figs. 

1,2, 3,4, 7, 16, 18)(Tables 2, 3) 

r. Position vector in system Si (i = 1,2, h, ti,t2) 

Sri {i = 1,2)  Radial setting of the head cutter of the pinion (x = 1) and gear (i = 2) 

(fig. 5)(Tables 2, 3) 

5t. Coordinate system 

v&) (i = 1,2) Velocity of contact point in its motion over surface Et. 

vW) Relative velocity at contact point (i, j = 1,2, cx, c2, h, t2) 

VW, VW Components of the velocity of the contact point in its motion over Si 

VI 



1    Introduction 

Two models for spiral bevel gears with uniform tooth height were proposed by Litvin et al. 

[1]. The generation of tooth surfaces of such gears is based on application: (i) of two cones 

that are in tangency along their common generatrix (model 1), and (ii) a cone and a surface 

of revolution that are in tangency along a common circle (model 2). The pinion and the 

gear are face-milled by head-cutters whose blades by rotation form the generating surfaces. 

The generating surfaces provide conjugate pinion-gear tooth surfaces with a localized 

bearing contact that is formed by a set of instantaneous contact ellipses. The path of 

contact is directed across the surfaces in model 1 (fig. 1), and in the longitudinal direction 

in model 2 (fig. 2). The transmission errors are zero but only for aligned gear drives. 

It is well known that misalignment of a gear drive causes a shift of the bearing contact 

and transmission errors. The transmission errors are one of the main sources of vibration. 

Therefore, the direct application of the models discussed above for generating surfaces is 

undesirable. 

It was discovered that misalignment of a gear drive causes an almost linear but discon- 

tinuous transmission function. However, such functions can be absorbed by a predesigned 

parabolic function of transmission errors. The interaction of the parabolic function and a 

linear function results a parabolic function with the same parabola coefficient [2]. Based on 

this consideration, it becomes necessary to modify the process discussed above for generation 

to obtain a predesigned parabolic function of transmission errors. It was proposed in the 

work [3] to obtain the desired parabolic function of transmission errors by executing proper 

nonlinear relations between the motions of the cradle and the gear (or the pinion) being 

generated. This approach requires the application of the CNC machines. 

The purpose of this report is to propose modifications of generating surfaces that will 

obtain: (i) a localized bearing contact that may be directed in the longitudinal direction 

or across the surface, and (ii) a predesigned parabolic function.  These goals, that will be 



proven later, are obtained by the proper mismatch of the ideal generating surfaces shown in 

figs. 1 and 2. The mismatch of surfaces is achieved by application of modified generating 

surfaces shown in fig. 3. The modified generating surfaces are in point contact instead of 

tangency along a line that the ideal generating surfaces have. The desired parabolic function 

of transmission errors, the orientation of the path of contact, and the magnitude of the major 

axis of the contact ellipses are obtained by the proper determination of the curvature and 

the mean radius of the surface of revolution of the generating tool. 

Design of drives with a small number of pinion teeth may be accompanied with pinion 

undercutting. Using the approach proposed in [7, 8, 9], it becomes possible to avoid under- 

cutting of spiral bevel pinions. The meshing and contact of the tooth surfaces was simulated 

by the TCA (Tooth Contact Analysis) computer program developed by the authors. 

The contents of the report cover the following topics: 

(1) Method for generation of conjugate pinion-gear tooth surfaces. 

(2) Derivation of gear and pinion tooth surfaces. 

(3) Local synthesis as the tool for the directed mismatch of contacting surfaces. 

(4) Simulation of meshing and contact of misaligned drives. 

(5) Avoidance of pinion undercutting. 

Numerical examples for the illustration of the proposed approach are considered. 



2    Method for Generation of Conjugated Pinion-Gear 
Tooth Surfaces 

Gear Generation: 

The head-cutter for gear generation is provided with inner and outer straight-line blades 

(fig. 4), that form two cones while the blades are rotated about the Zt2-a.xis of the head 

cutter. These cones will generate the convex and concave sides of the gear profile, respectively 

[12]. 

We apply coordinate systems SC2, S2, Sm that are rigidly connected to the cradle of 

the generating machine, the gear and the cutting machine, respectively (figs. 5 and 6). The 

cradle with coordinate system SC2 performs rotation about the Zm-axis, and Vc2 is the current 

angle of rotation of the cradle (We take i = 2 in the designations of fig. 5). Coordinate 

system Sh is rigidly connected to the gear head-cutter that is mounted on the cradle. The 

installment of the head-cutter is determined with angle q2 and Sr2 = \0C2Ot2 (fig. 5(b)). 

The gear in the process for generation performs rotation about the Zt-axis of the auxiliary 

fixed coordinate system Sb that is rigidly connected to the Sm coordinate system (fig. 6). 

The installment of Sb with respect to Sm is determined with angle 72, where 72 is the angle 

of the gear pitch cone. The current angle of gear rotation is V>2 (fig- 6). Angles xßC2 and ^2 

are related as 

— =— = sin 72 (1) 

The observation of this equation guaranties that the Xm-axis is the instantaneous axis 

of rotation of the gear in its relative motion with respect to the cradle. 

Pinion Generation: 

The head-cutters for pinion generation are provided with separate blades that will gen- 

erate the convex and concave sides of the pinion profile, respectively (fig. 7). The pinion 

generating tool is installed on the cradle similarly to the installment of the gear generating 

cone (We take * = 1 in the designations of fig.  5).  An auxiliary fixed coordinate system 



Sa is rigidly connected to the Sm coordinate system (fig. 8). An imaginary process for the 

pinion generation for the purpose of simplification of the TCA program is considered. The 

installment of coordinate system Sa with respect to Sm is determined in the real process of 

cutting by the angle 7l that is measured clockwise, opposite to the direction shown in fig. 

8. The pinion performs rotation about the Za-axis and ^ is the current angle of rotation. 

The angles of rotation of the pinion and the cradle are related as 

^ = ^ = sin7i (2) 

Axis Xm in accordance to equation (2) is the instantaneous axis of rotation of the pinion 

in its relative motion with respect to the cradle. 



3    Derivation of Gear Tooth Surface 

Equations of Gear Generating Surface 

We consider that the gear head-cutter surface is represented in St2 (fig.  4) by vector 

function rt2(sg,8g) 

*t2(sg,9g) = 
(Rg — sg sin ag) cos 9g 

(Rg — sg sin ag) sin 0g (3) 

where sg and 9g are the surface coordinates; ag is the blade angle; Rg is the radius of the 

head-cutter at the mean point. Equations (3) may also represent the convex side of the 

generating cone considering that ag is negative. 

Coordinate system St2 is rigidly connected to coordinate system SC2, and the unit normal 

to the gear generating surface is represented by the equations 

N 
|N 

N, C2 
C2l 

drt2     drt, —   x —! 

d6a      dsa 

Equations (3) and (4) yield 

nC2(05) = 
cos ag cos Bg 

cos a.g sin 6g 
sina0 

(4) 

(5) 

Equations of the Family of Generating Surfaces in S2 

A family of tool surfaces is generated in gear coordinate system S2 while the cradle and 

the mounted tool and the gear perform the rotational motions that are shown in figs. 5 and 

6. The family of surfaces is represented in S2 by the matrix equation 

(6) 

The product of matrices M2t2 is based on the coordinate transformations from St2 to S2 

(figs. 5 and 6), where ^2 and ipC2 are related by equation (1) and 

cos ^2     sin ^2   0   0 

r2(s5,0a, ife)   = M2b(ip2)MbmMmC2(ißC2)MC2t2rt2(sg,6g) 
= M2<2(^2)rt2(s«,,0s) 

M2t = 
— sin^2   cos V>2   0   0 

0 0       10 
0 0       0   1 

(7) 



Mbm = 

•IVlmcj  — 

sin 72 

0 
cos 72 

0 

COS %1>C2 

sin T/>C2 

0 
0 

0 — cos 72 
1 0 
0     sin 72 
0        0 

— sin V'cz 
cos 0C2 

0 
0 

0 
0 
0 
1 

0 
0 
1 
0 

0 
0 
0 
1 

MC2t2 = 

0 
1 
0 
0 

ST2 COS
 92 

ST2 sin q2 

0 
1 

Equation of Meshing 

We derive the equation of meshing between the generating surface and gear as 

nC2-v£2) = f(sg,9gM=0 

C2 

v(c22) = w(c22) x rc2 = {JcT) _ wg)) x Fc2 

where 
L=2 = MC2t2ri2 

—sg sin ag cos 8g + B\ 
—Sg sin ag sin 8g + B2 

sg cos ag 

Using the designations 

0 
0 

ui sin 7i 

— Lc2mLmi,L(,2 

0 
0 

UJ2 

-N1/N2cos^2costßC2 

N1/N2cos'y2smtßC2 

0 

(8) 

(9) 

(10) 

(11) 

representing the vectors in SC2 ■ 

where v<C22) is the relative velocity that is represented in the coordinate system SC2. Here, 

(12) 

(13) 

(14) 

Bi   =   Rg cos 0g + ST2 COS q2 1 /^\ 
B2   =   Rg sin 6g + 5r2 sin q2  J 

and considering that NJN2 = sin 7l/sin 72 and |u;x| = 1, we obtain from equation(12) that 

,(e»2) _ 
C2 

sg cos 72 sin 0C2 cos agNi /N2 

sg cos 72 cos ipC2 cos a3 N\ /N2 

Nr /N2 cos 72(sg sin a«, sin(0s + M~ Bisin &a _ B* cos ^<*) - 

(16) 

6 



The equation of meshing (11) is represented as 

, (Q   ,/,   A _ sin Qj(^i sin ^2 + B2 cos ^C2) bg\ugiWc2) — T-fn—;—;—x  (17) 
sin(05 + ^C2) 

v    ' 

Equations of Gear Tooth Surface 

Equations (6) and (17) represent the gear tooth surface by three related parameters. 

Taking into account that these equations are linear with respect to sg, we may eliminate sg 

and represent the gear tooth surface by two independent parameters, 9g and ^2, as 

r2   = r2(03,^2) (18) 



4    Derivation of Pinion Tooth Surface 

Equations of Pinion Generating Surface 

The derivations are similar to those that have been described in section 3. The generating 

surface of revolution is represented in Stl (fig. 7) as 

r*i(V0p) = 

[Rp — i?i(cosap - cos(o!p + Ap))]cos0p 

[Rp — Ri (cos ap - cos(ap + Xp))] sin0p 

—Ri(sinap — sm(ap + Ap)) 
(19) 

where Ap and 6V are the generating surface coordinates; ap is the profile angle at point M; Rp 

is the radius of the head-cutter at mean point; Ri is the radius of the surface of revolution. 

Equations (19) can also represent the concave side of the generating surface of revolution if 

we substitute ap as 180° — ap. 

Coordinate system Sh is rigidly connected to coordinate system SCl, and the unit normal 

to the pinion generating surface is represented by the equations 

nci(Ap,0pJ ~ ij\j   i ' iNci "' dOp      d\p 
(20) 

Equations (19) and (20) yield 

nCl (Ap, Op) = 
cos0pcos(ap + Ap) 
sin op cos (Op + Ap) 

sin(ap + Ap) 
(21) 

Equations of the Family of Generating Surface 

The family of generating surfaces is represented in Si by the matrix equation 

n(Ap,0p,V>i)   = Mio(V>i)MomMmci(^Cl)MCltlrtl(Ap,0p) 
= Mitl(V>i)rtl(Ap,0p) 

(22) 

The product of matrices Mitl is based on the coordinate transformations from Stl to 5X 

(figs. 5 and 8), where ^ and V>Cl are related by equation (2). Here, 

M1O = 

cos V'i — sin V>i 0   0 
shn/'i     cos V'I 0   0 

0 0 10 
0 0 0   1 

(23) 

8 



M     = ■"•"•am — 

■"■"■mci  — 

— sin 7i 0   — cos 71 0 
0 10 0 

COS71 0   — sin7x 0 
0 0        0 1 

cosV'ci -sin^d   0 0 
sin V'd cos xj)Cl     0 0 

(24) 

0 
0 

0 
0 

1   0 
0   1 

MCltl = 

1 0   0 Sr\ cos <7i 
0 10 Sri sin qi 
0 0   1 0 
0 0   0 1 

(25) 

(26) 

Equation of Meshing 

We derive the equation of meshing between the generating surface and pinion as 

nCl-v^1) = /(Ap,^,V'1) = 0 (27) 

where v^lX) is the relative velocity in the coordinate system SCl. The vectors are represented 

in SCl ■ Here, 

v(c>l) = „(pxl) x rci = (wg.) _ wg)} x pW (2g) 

where 
lCj = MCltlrtl 

Ri COS(QP + Ap) cos 8P + Bi 
Ri COS(QP + Ap) sin 0P + B2 

-Ri(smap - sin(ap + Ap)) 

(29) 

MCl) U

C! ■«£>) = 
0 
0 

ui sin 7i 
*-'cim*-'ma*-'al 

0 
0 

Wi COS 7! cos ^Cl 

—a»! cos 7! sin ^>Cl 

0 
(30) 

Using the designations 

Bi   =   Rp cos op + Sri cos <ji — i?x cos ap cos 0P 1 
B2   =   Rp sin op + Sri sin qx — Ri cos ap sin 0P   J 

(31) 

and considering that |wi| = 1, we obtain from equation(28) that 

,(eil) - 
ci 

i?i (sin ap — sin(ap + Ap)) cos ji sin r/;Cl 

jRi(sin ap — sin(ap + Ap)) cos jx cos ipCl 

cos 7i (Ä! cos(ap + Ap) sin(0p + rj;Cl) + f?i sin ^Cl + B2 cos ^c,) 
(32) 

9 



The equation of meshing (27) is represented as 

-.Risinc-p—K.F , T^ 
tan(ap + Apj-   ^^   +ftoog^ 

-Äi sin ap sin(flp + ipCi) (33) 

Equations of Pinion Tooth Surface 

Equations (22) and (33) represent the pinion tooth surface by three related parame- 

ters. After elimination of parameter Ap we may represent the pinion tooth surface by two 

independent parameters, 9P and fa. 

n   = rl(9p,fa) (34) 

10 



5    Local Synthesis 

The ideas of local synthesis are based on the following considerations [2]: 

(1) The pinion and gear tooth surfaces are in tangency at the mean contact point M that 

is in the middle of the contacting surface. 

(2) The gear ratio is equal to the theoretical one. 

(3) We have to provide in the neighborhood of M the following transmission function 

(%• 9) 

M<f>i) = ^i " \rn'21<fi (35) 

where \m'21 is the parabola parameter of the predesigned parabolic function of transmission 

errors 

A&(&) = -\m'21<t>\ (36) 

(4) In addition it is necessary to provide the desired direction of the contact path. 

All these goals can be achieved by the proper mismatch of the contacting surfaces of the 

pinion-gear tooth surfaces. The solution to this problem requires directions of the contacting 

surfaces. However, since the equations of the pinion and gear tooth surfaces are represented 

in a complex form, we will represent the principal curvatures and directions of the generated 

surfaces in terms of the principal curvatures and directions of the generating surfaces (the 

head-cutter surfaces) and the parameters of motion. The procedure of the local synthesis is 

as follows: 

Step 1: We consider as given the surface of the head-cutter that generates the gear 

tooth surface. The head-cutter surface is a cone and is in line contact with the surface of the 

gear. One of such contact lines passes through the mean point M of tangency of the pinion 

and the gear tooth surfaces. Considering the surface of the gear head-cutter as known, we 

determine at point M the principal curvatures and directions of the gear head-cutter. 

11 



The principal directions of the generating cone 

J*2)   _    fchiHEh.    =   r_sinÖ„    c( 

are 

drt2 

dd9 

J<2)       _       ^T 
■/ 

deg 

drt2 
11 dSg OSg 

The principal curvatures of the generating cone 

=  [-sin 6g    cos9g   0]T 

=   [-sinascos0fl     -sina3sin03    cosaa]r 

(37) 

are 

jfc(/2)   =   - cos ag/(Rg - sg sin ag) 
' (38) 

4t2)   =   0 
Step 2: Our next goal is to determine at M the principal curvature ks and kq and the 

principal directions of the gear tooth surface S2. We apply for this purpose the equations that 

have been proposed in [2] and represent the direct relations between the principal curvatures 

and directions for two surfaces being in line contact. 

Surface Et2 and S2 are in line contact when cone E«2 generate the gear tooth surface £2. 

The principal curvatures of the gear ks and kq can be obtained from the equations 

tan 2<7fl   = -2613623  -■'■■->" *•-•—7—.  

h   - h       —       ~26l3623 Ki     Ks' ~    633sin2<xfl 

K + k, = tya+ #> + &+& 

where 

613   =   -kf\f2) + {n^ef]] 

623 = -*iW} + M^eM 

(39) 

-w n re 1. »«■ 

633   =   _*}*>(„$**>)» - 4t2)(4<22))2 + [nw<«»aM*a>] - n.[(«(*»> x vt
(2)) - M2> x v£2>)] 

v 

The principal directions on the gear tooth surface are represented by unit 

e„ where 
cos Og     sin Gg 

— sin crg   cos ag p(*2) 
L eh 

(40) 

vectors es and 

(41) 

12 



Step 3: We now consider that the gear and pinion tooth surfaces, E2 and £1, are in 

tangency at M. As a reminder, the mismatched gear and pinion tooth surfaces are in point 

contact at every instant. 

Unit vectors es and e9 represent the known directions of the principal directions on 

surface E2. The principal curvatures ks and kq on the gear principal directions are known. 

Our goal is to determine angle ai2 that is formed by vectors ej and es (fig. 10) and the 

principal curvatures kf and kh of the pinion tooth surface at point M. Unit vectors e/ and 

e^ represent the sought-for principal directions on the pinion tooth surface Ei. 

Step 4:  The three unknowns:  kf, kh and <T\2 can be determined using the approach 

developed in [2].   We use for this purpose the following system of three linear equations. 

Three linear equations that related the velocity v£x) of the contact point over surface Ei are 

derived in reference [2] as: 
a\\v^ + a12vW = a13 

a««*1) + a22v^) = a23 (42) 
a^v^ + a23v\V = a33 

The augmented matrix formed by the coefficients an, ai2 and a;3 is a symmetric one [2]. 

Here, v^ and t;'1' are the components of the velocity of the contact point that moves in 

the process of meshing over the pinion tooth surfaces Ex. Coefficients an, a,-2 and a,-3 are 

represented in terms of ks, kq, kf, kh, <?\2 and the parameters of motion. 

Step 5: Equation system (42) represents a system of three linear equations in two 

unknowns: v^ and v^\ Surface Ex and E2 are in point contact, the path of contact has 

a definite direction, and the solution of equation system (42) with respect to v^ and v^ 

must be unique. Therefore, the rank of the augmented matrix formed by an, a,-2 and a,-3 is 

equal to two. This yields that 

—   aii<z22a33 + ai2a23a!3 + ai3ai2a23 — a22al3 — a^a^ — 0330^2 

=   F(kf, kh, ks, kg, cr12, m'21) = 0 

(43) 

13 

an ai2 «13 

Ö12 a22 «23 

Ö13 <*23 «33 



Here, 
an   =     ks — kf cos V12 - kh sin <T12 

a12   =    0.5(A;y-fcA)sin2cri2 
a13   =   -ksvM + [nu^)es] 
a22   =     kq-kfsm2(T12-khCOS2al2 (44) 

a23   =   -M12) + [™{U)e*\ 
«33   =   fcs(^

12))2 + M<412))2 " M12M*2)] 
-n-[(u^ x vi2)) - (w<2> x vg>)] + m'21(n x k2) • rm 

a12 = afl - ap is the angle between the principal directions of this two contacting surface, 

m'21 is the derivative of <h{<h) at the contact point. Coefficient c33 contains the derivative 

m'21 = ^rfaiM) (45) 

where 
d<j>2 

m21 = Wi 
(46) 

From equation (43), we get 

9 y 
—gl2fl23Ql3 — 013^12023 + 0122^13 + Qlla23 (47) 

fl33 —  " ~ 2 " 
Olla22 — °12 

Substituting equation (47) into equation (44), we can obtain the derivative 

,       a33 - kM{vj12))2 ~ M*412))2 + M12M12>] + n-K^ x vg>) - M2> x vg>)]     (4g) 
m'21 ~ (n x k2) • rm 

The parabola coefficient of the parabolic function (36) is m'21/2. 

The other relation between the coefficients aiu ai2 and ai3 may be determined considering 

that 

tan,, = % W 

where m is the assigned direction at M of the tangent to the path of contact on the pinion 

surface Si. 

Using the relations discussed above between the coefficients of linear equation [2], we are 

able to determine the sought-for pinion principal curvatures kf, kh and orientation angle <r12. 
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Step 6: We consider now that for surface Ex the followings are known: (i) the principal 

directions determined by unit vectors ef and e& (ii) the principal curvatures kf and kh, 

and (iii) angle a12 formed by unit vectors ef and es (fig. 10). Our goal is to determine 

the principal curvatures and directions of the pinion head-cutter generating surface that 

is designed as the surface of revolution (fig. 3). The pinion head-cutter surface and the 

pinion tooth surface are in line contact at every instant. Using the direct relations between 

the principal curvatures and directions for two surfaces being in line contact [2], we may 

determine the principal curvatures and principal directions of the pinion head-cutter. Then, 

the desired mismatch of the surfaces of the gear and the pinion will be provided by the 

generation of the gear and the pinion by the designed head-cutters. 

Using the approach discussed above, we obtain the following equations 

tan 2c7p    = 

kf   = 

2&13&23 
6-_6-_(^,_utl))^ 

-2613623 

633 sin 2<7p (50) 

033 

where 

V13   =   -Jfc(*i)t,(*iD + [na,(*ii)e(*i)] 

V23   =   -*<«x>t,<«ii> + [nuAUeW] 

&33     =     -kW(v^))* - fc(*0(^.D)2 + [llw(*il)v(lil)] _ n.[{uM X vg>) - (WW X v£})] 
(51) 

The principal directions on the pinion and the pinion head-cutter are related as follows 

(52) 
cos <jp     sin <jp 

— sin (Tp   cos ap efr) 
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where the principal directions of the generating surface of revolution are 

-(*i)   = 
drtl 

de* 

drtl. 

d6T 

drt 

d\r 

=   [-sin öp    cos op    0]T 

=   [— sin(ap + Ap) cos 6P ■ sin(ap + Ap) sin 6P    cos(ap + Ap)]r 

(53) 

The principal curvatures of the generating surface of revolution are 

Jfe(*i)   =   -cos(ap + Ap)/(i?p + i?i(cos(ap + Ap)-cosap)) 

M*>)    =    -I/ft 

(54) 

Equations (53) and (54) permit the representation of the principal curvatures and direc- 

tions on the pinion head-cutter surface in terms of Rx and Rp. We remind that equations 

(48) and (49) contain parameters i?x and Rp (figs. 2). Considering as given m'21 and ifr, we 

can determine from equation (48) and (49) Ri and Rp. 

Step 7: At this step we know the principal curvatures and directions on the pinion and 

the gear, and the principal curvatures and directions on the pinion and gear head-cutters. 

The obtained mismatch of pinion and gear tooth surfaces will provide in the neighborhood of 

the mean contact point the desired parabolic function of transmission errors and the direction 

of the contact path. The principal curvatures and directions obtained on the pinion and 

gear head-cutters will provide the required mismatch of the pinion and gear tooth surface. 

Our next goal is to determine the dimensions of the instantaneous contact ellipse and its 

orientation, considering as given the elastic approach of the contacting surfaces.The solution 

is based on the following procedure [2]. 

The major axis and minor axis of the contact ellipse can be determined as 

2a = 2 i 2b = 2 
\ 

(55) 

where 8 is the elastic approach obtained from experimental data; A and B are determined 
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by 
A   =    1M)-kg)-(gl-2g1g2cos2a12 + g&] 
B   =   \[k£)-kW + (gt-2g1g2cos2a12 + g&) W 

and 

41}  =  h + h        42)  =  *, + *, (57) 
gi    =   kf-kh 92    =   ks - kg ^    ' 

The orientation of the contact ellipse in the tangent plane is determined by 

™e9~ Si ~ 92 COS (7i2 cos 2a = — j- (58) 
\9\ ~ 20152 cos 2CT12 + gl)* 

Directions for the Computational Procedure of Local Synthesis 

Step 1: The parameters of the gear head-cutter and its installment are considered as 

known (see, for instance, Table 2). 

Step 2: The mean contact point is considered as known as well (It is determined by the 

application of the TCA program that provides the tangency of contacting surfaces at the 

mean contact point). 

Step 3: Using equations (39) and (41), we determine at the mean contact point the 

principal curvatures (ks, kq) and the principal directions represented by unit vectors ea and 

e9 (fig. 10). 

Step 4: We use the values Rx and Rp (fig. 3) as the first guess for the pinion head 

cutter. Then, we determine at the mean contact point the principal curvatures k^h\ k^\ 

and principal directions represented by e^1), e^1) applying for this purpose equation (53) 

and (54). 

Step 5: We compute the principal curvatures kj, kh of the pinion tooth surface and 

principal directions represented by unit vectors e/ and e^ applying for this purpose equations 

(50) and (52). 

Step 6: Choosing m'21 and 77! and then applying equations (48) and (49), we determine 

the final values of Rt and Rp. The process of computation is an iterative one and requires 

for the solution a first guess of parameters i?x and Rp. 
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6    Tooth Contact Analysis 

The purpose of TCA is to determine the influence of misalignment on the shift of the bearing 

contact and the transmission errors. This goal is to be obtained by simulation of meshing 

and contact of the pinion and gear tooth surfaces of a misaligned gear drive. 

We consider that the pinion and gear tooth surfaces are analytically represented in co- 

ordinate systems Si and S2 (see sections 3 and 4, respectively). The meshing of pinion and 

gear tooth surfaces is considered in fixed coordinate system Sh (figs. 11 and 12). Auxiliary 

fixed coordinate system Sa and Se are applied to describe the installment of the pinion with 

respect to Sh (fig- 11). The pinion alignment error AAP is the pinion axial displacement. The 

misaligned pinion in the process of meshing with the gear performs rotation about Ze-&xis. 

The current angle of rotation of the pinion is designated by fa (fig. 11). 

Auxiliary coordinate systems Sb, Sc and Sd are applied to describe the installment of 

misaligned gear with respect to Sh- The errors of alignment are: the change A7 of the shaft 

angle (fig. 12), the offset AE and the gear axial displacement AAg (fig. 13). The misaligned 

gear performs rotation about the Zj-axis, and fa is the current angle of the gear rotation. 

A TCA computer program was developed to simulate the meshing of pinion-gear tooth 

surfaces of the misaligned gear drive. The development of the TCA program is based on the 

following ideas: 

Step 1: We consider that the pinion and gear tooth surfaces and the surface unit normals 

are represented in coordinate system S\ and S2 by vector functions 

r^^andr^,^) (59) 

n^^andn^,^) (6°) 

where (0p,V>i) an(i (ögifo) are the surface parameters. 

Step 2: We represent now the pinion-gear tooth surfaces and their surface unit normals 

in coordinate system Sh, and take into account that the surfaces are in continuous tangency. 
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Then we obtain the following equations 

ri1)(öP,V'i^i)-rt2V3,02^2) = O 

ni1 VP, 1>u<k) ~ 42)(05,02, <h) = 0 

where 

ri2)(ö„ 02,^2) = Mfc2(&)r2(0„V>2) 

ni2)(ö5,V'2,«^2) = LA2(^)n2(^,02) 

MÄ1(^i) = 

cos^x     sin^>i    0      0 
— sin^j   cos^x   0      0 

0 0 1    AAr 
0 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

Mh2(</>2) = MkbMb2 
— sinA7   0   — C0SA7 0 

0         1         0 AE 
C0SA7     0   -sinA7 0 

0         0         0 1 

0       0 

cos (f>2   — sin fa   0      0 
sin<£2     cos^2     0      0 

0 0 1   AA 
(68) 

0 0       0     1 

Equations (61) and (62) represent the conditions that the contacting surfaces at the point 

of tangency have a common position vector and a common surface unit normal. Equations 

(61) and (62) yield a system of five independent scalar equations of the following structure 

/i(0p,0i,&,0„02,&) = O       fitC1       (i = l..5) (69) 

As a reminder, vector equation (62) yields only two independent scalar equations, and 

not three, since |n^| = |n[2)| = 1. 

Step 3: System (69) of five nonlinear equations contains six unknowns, but one of the 

unknowns, say &, may be considered as the input parameter. Our goal is the numerical 

solution of nonlinear equations (69) by functions 
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The sought-for numerical solution is an iterative process that requires on each iteration 

the observation of the following conditions [2, 4, 5, 11]: 

(i) There is a set of parameters (the first guess) 

p(9^Mo\^A"\40)A0)) (71) 

that satisfies the equation system (69). 

(ii) The Jacobian taken at P differs from zero. Thus, we have 

D{fi,f2j3,h,fs)    i Q (72) 

Then, as it follows from the Theorem of Implicit Function System Existence, equation 

system (69) can be solved in the neighborhood of P by functions (70). 

Using the obtained solution, we can determine the path of contact on the pinion-gear 

tooth surface, and the transmission errors caused by misalignment. The path of contact on 

surface £,• (i = 1,2) is determined by the expressions 

T2{9aM,      WO'      Wl) (74) 

The transmission errors are determined by the equation 

Ah = fc(fc) - J-/1 (75) 

The dimensions and orientation of the instantaneous contact ellipse at the contact point 

may be determined considering that the principal curvatures and directions of the contacting 

surfaces, and the elastic approach of the surface [2] are known (see step 7 in section 5). 
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7    Avoidance of Pinion Undercutting 

In most cases undercutting can be avoided, if the appearance of singular points on the 

generated surface is avoided. Singularities on the surface occur when the normal to the 

surface becomes equal to zero. To avoid undercutting of the pinion by the generating tool, 

the approach developed in [7, 8, 9] is applied: 

Step 1: Consider that the surface of the generating tool is represented as 

r<i — rti(^P>0p) 

The equation of meshing is represented as 

/1(AP,ÖP,01) = O 

Step 2: It is proven in [7, 8, 9] that singular points occur if 

v(*>) + v^1) = 0 

(76) 

(77) 

(78) 

where vj'1) is the velocity of the contact point in its motion over the tool surface, and v^1*) 

is the relative velocity. This yields that a matrix 

A = 

drtl    drtl 

dXp    ddp 
—v (ill) 

d\v    dOv      d^i dt 

(79) 

has the rank r = 2 and therefore three determinants A,- (i = 1,2,3) of the third order must 

be equal to zero. Then we obtain that 

^(Ap, ePM = A2
X + A2

2 + Al = 0 (80) 

Equations (77) and (80) permit the function \P(0P) to be determined for the limiting 

line on the tool surface. Then, we are able to determine the limiting line on the generating 

surface by the equation 

rtl=rtl(0p,Ap(0p)) (81) 
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Fig. 14 shows the limiting line on the pinion tool surface. 

Step 3: Using coordinate transformation, we may determine the line of singular points 

on the pinion tooth surface, (fig. 15) 

Step 4: To avoid undercutting, we have to limit the dimension of the dedendum of the 

pinion tooth. 

Fig. 16 shows the axial section of the pinion head-cutter. Parameter h represents the 

distance of a point of the axial section from the reference circle determined as 

Jf?i sin ap - R\ sin(ap + Ap) = h (82) 

To verify that undercutting has been avoided the following inequality must be observed 

Äi[sinap - sin(ap + AP(0P))] > hd (83) 

where hd is the dedendum height of the pinion, and AP(0P) represents the function that 

corresponds to the points of the limiting line. 

The design of spiral bevel gears is based on application of special tooth element propor- 

tions for the avoidance of undercutting: small pinion dedendums and long pinion addendums. 
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8    Numerical Example 

As a numerical example the blank data is given in Table 1. 

The gear head-cutter is a cone (figs. 2, 3 and 4), the cutter radius is designated by Rg 

(fig. 1), the radial setting of the head-cutter is 0C2Ot2 (fig. 5(b)), and the installment angle 

is q2 (fig. 5). The data for the gear head-cutter that generates the gear concave side are 

presented in Table 2. 

The parameters of the pinion head-cutter were determined by application of the method 

of the local synthesis (section 5). The data for the pinion head-cutter that generates the 

pinion convex side are represented in Table 3. We considered in the numerical examples 

the meshing of the gear tooth concave side with the pinion tooth convex side. Case 1 

corresponds to the orientation of the bearing contact across the surface, case 2 corresponds 

to the orientation of the bearing contact in the longitudinal direction. 

The application of TCA for the simulation of meshing and contact permits the deter- 

mination of misalignment effects on the transmission errors and the shift of the bearing 

contact. It has been shown that in the case of application of ideal generating surfaces (with- 

out mismatch, figs. 1 and 2) the errors of misalignment cause indeed discontinuous almost 

linear transmission errors as shown in fig. 17 for shaft angle error A7. Similar functions of 

transmission errors are caused by errors AAP, AAg and AE. Table 4 shows the maximum 

transmission errors caused by misalignment. 

The results of TCA for the properly mismatched generating surfaces (see section 5) con- 

firmed that a predesigned parabolic function indeed absorbs the transmission errors caused 

by misalignment, and the resulting function of transmission is a parabolic one (fig. 18). The 

absorption of linear function of transmission errors is carried out as well in other cases of 

misalignment: AAP, AAg and AE. The bearing contact of the drive is stable, and its shift 

is permissible (fig. 19). Model 2 of the gear drive (with longitudinal direction of the bearing 

contact) is preferable due to the lower level of transmission errors caused by misalignment. 
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9     Conclusion 

From the conducted study the following general conclusions can be drawn: 

(1) An approach has been developed for the synthesis of spiral bevel gears that provides 

(i) localized bearing contact, and (ii) low level of transmission errors of a parabolic type. 

The developed approach permits two possible directions of the bearing contact: across the 

tooth surface or in the longitudinal direction. 

(2) A Tooth Contact Analysis (TCA) computer program for the investigation of the 

influence of misalignment on the shift of the bearing contact was developed. 

(3) A low level of transmission errors, the parabolic type of the function of transmission 

errors, and the localization of the bearing contact are achieved by the proper mismatch of 

contacting surfaces. 

(4) The influence of the following errors of alignment was investigated: (i) for axial 

displacement of the pinion, (ii) axial displacement of the gear, (iii) offset, and (iv) change 

of the shaft angle. These types of misalignment were proven to cause discontinuous almost 

linear functions of transmission errors, but they are absorbed by the predesigned parabolic 

function of transmission errors. 

(5) Conditions of nonundercutting of the pinion were determined. 

The results of this investigation show that a predesigned parabolic function can indeed 

absorb the linear functions of transmission errors caused by misalignment. The design of 

gears with a longitudinal bearing contact (in comparison with the bearing contact across the 

surface) is preferable since a lower level of transmission errors can be obtained. 
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10    Manual for Computer Program 

Program Names and Purpose of the Programs 

There are three programs 

1. Program for Local Synthesis: Localsyn.for 

2. Program for TCA: Tca.for 

3. Program for Undercutting: Undercut.for 

These programs are directed at the synthesis of the spiral bevel gear with uniform tooth 

height by using mismatched generating surfaces. The programs cover the local synthesis, 

tooth contact analysis and nonundercutting conditions. Using the programs, one can obtain 

the tooth surfaces, the contact lines on the tooth surface, the contact path on the tooth 

surface, the transmission errors and the bearing contact caused by misalignment of the gear 

drive, and the limiting lines on the generating tool surface and the pinion tooth surface. 

Environment for Running the Programs 

These programs were developed by application on an IBM PC and can be run using the 

software "Power Fortran". 

An application of the subroutine HYBRD1 [11] for solving a system of nonlinear equations 

and several other subroutines that was called by HYBRD1 are required and included. 

Input Data 

1. Blank data 

TNI—Pinion number of teeth 

TN2—Gear number of teeth 

TW—Face width of gear (mm) 
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GAMA—Shaft angle (degree) 

Betal—Pinion spiral angle (degree) 

Beta2—Gear spiral angle (degree) 

EllipseDelta—Elastic approach (mm) 

2. Gear cutter specification 

RU2—Gear nominal cutter radius (mm) 

PW2—Point width of gear cutter (mm) 

AFA-g—Blade angle of gear cutter (degree) 

Rg—Cutter radius (mm) 

3. Gear machine-tool settings 

GAMA2—Gear machine pitch angle (degree) 

Sr2—Radial setting (mm) 

q2—Installment angle (degree) 

4. Pinion machine-tool settings 

GAMA1—Pinion machine pitch angle (degree) 

Sri—Radial setting (mm) 

ql—Installment angle (degree) 

5. Pinion cutter specification 
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Rp—Cutter radius (mm) 

Rl— Radius of surface of revolution(mm) 

AFA-p—Profile angle of gear cutter (degree) 

6. Misalignments 

H—Axial displacement of the pinion (mm) 

Q—Axial displacement of the gear (mm) 

V—Offset displacement (mm) 

Delta—Change of shaft angle (arc min.) 

7. Local synthesis 

Etal— Tangent to the contact path on pinion surface at the mean contact point(degree) 

plantm21— Coefficient of the parabolic function 

Output data files 

File philphi2.kl: Transmission errors A(f>2 

File sgthetag.kl: Contact line on gear generating surface 

File spthetap.kl: Contact line on pinion generating surface 

File contactp.kl: Contact path on pinion tooth surface 

File contactg.kl: Contact path on gear tooth surface 

File ellipse.kl: Bearing contact on the pinion surface 

File undercut, kl: The limiting line on pinion tooth surface (for avoidance of undercutting) 

Procedure of using the programs 

Step 1: Run program Tca.for for the condition of no misalignment by supplying the first 
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guess of Rl and Rp. 

Step 2:   In the output file contactg.M we will get from the first line the x, y and z 

coordinates of the first contact point. 

Step 3: Run program Localsyn.forior the desired plantm21 and etal. Then we can get 

Rl and Rp. 

Step 4: Check if Rl and Rp at Step 1 and Step 4 are the same or not. If both are the 

same then go to Step 6. 

Step 5: Use the new values that we got from Step 4, recalculate the first contact point 

by running program Tea.for, and go to Step 3. 

Step 6: Run program Tca.for with misalignment to obtain the transmission errors in the 

output file philphi2.A;i. 

Step 7: Run the program Undercut.for to check up the undercutting in the output file 

underp.&i. 
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Table 1: Blank Data 

Pinion Gear 

Ni,N2, Number of teeth 11 41 

7, Shaft angle 90° 
Mean spiral angle 35° 35° 

Hand of spiral RH LH 

Whole depth (mm) 6.5 6.5 

Tooth module (mm) 4.33 
Face width (mm) 27.25 27.25 

7!, 72, Pitch angles 151' 74°59' 

Table 2: Parameters and Installment of Gear Head-Cutter on gear concave side 

ag, Blade angle 
R    Cutter radius at mean point (mm) 
Sr2, Radial setting (mm) 
qr2, Installment angle 

20° 
78.52 
70.53 
-6214' 

Table 3: Parameters and Installment of the Pinion Head-Cutter on pinion convex side 

ap, Profile angle 
INPUT 

rju Tangent direction of the contact path 
m;

21, Derivative of <ft2(<fti)  
AJ>2=0-5m21(7r/Ni)2, Theoretical Max. (") 

OUTPUT 
M, Mean contact point in Sm (mm) 
Rp, Cutter radius at mean point (mm) 
Ru Radius of the surface of revolution (mm) 

Sri (mm) 
(ft, Installment angle 

Case 1 
20° 

171° 
-1.3e-3 
-10.94 

(79.88,0.39,0.17) 
78.0 
235.0 

Case 2 
20° 

70.30 
-61°51' 

Length of major axis of contact ellipse (mm) | 12.54 

92° 
-1.2e-3 
-10.09 

(77.83,1.64, 0.72) 
64.7 
765.0 
65.38 
-51*24' 
4.5 
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Table 4: Maximum Transmission Errors for Generating Surfaces with Mismatch 

A<f>2 in arc sec. 

Case 1 Case 2 
AAP = 0.1mm 8.8 16.2 
AAg = 0.1mm 11.5 12.5 
AE = 0.1mm 11 15 
A7 = 3' 10.7 13.5 
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Contact Path 

Fig. 1: Generating cones 

Contact Path 

Fig. 2: Generating cone and generating surface of revolution 

32 



Fig. 3: Mismatched generating surfaces 

Generating 
cones 

Cutter blade 

Fig. 4: Cones for gear generation 
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ZnuZcj 

(a) (b) 

Fig. 5: Coordinate systems Sc and Sm 

YmJv m>   b 

Gear pitch cone 

b'Z2 

Fig. 6: Coordinate systems Sm, Sb and 52 
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(b) 

M 

"''''''' f 

R 

\ 
\ 

Fig.   7:   (a)Convex (Inside blade) and (b)concave (outside blade) sides of the generating 
blades and generating surfaces of revolution 
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Fig. 8: Coordinate systems S"™, Sa and S% 

(a) (b) 

<Pz Ideal transmission function 

UPz 

Fig.   9: Transmission function and predesigned parabolic function of transmission errors, 
«^-pinion rotation angle; ^2-gear rotation angle; A<^2-transmission error 
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M 

Fig. 10: Unit vectors of principal directions of surfaces S2 and Ei 

r^;   z»,ze'zi 

(a) (b) 

Fig. 11: Simulation of pinion misalignment AAP 
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Oc'Mh 

(a) (b) 

Fig. 12: Simulation of gear misalignment A7 

d '   c ' h 

Zd'Ze'Z2 

(a) (b  ) 

Fig. 13: Simulation of gear misalignment AE and AAg 
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Reference circle 

limiting line 

Fig.  14: Limiting line on generating surface of revolution 
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(a) 

Addendum 

Dedendum 

Limiting linp 

Toe side 

Pinion tooth surface E l 

(b) 

Limiting line 

Dedendum 

Fig. 15: Limiting line on pinion tooth surface 
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Reference circle 

Fig. 16: For the derivation of the limiting value of the dedendum 
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VI 
o 
ha 

3 
<, 2 

<N 
1 

< 0 
-1 
-2 

-3 
-4 

I I 

-50 -40 -30 -20-10   0    10   20   30   40   50 
* ! (Deg) 

Fig. 17:   Transmission errors for a misaligned gear drive with ideal surfaces:  A7 = 3 arc 
min. 
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Fig. 18: Transmission errors for a misaligned gear drive with mismatched gear tooth surfaces: 
A7 = 3 arc min. 

Fig. 19: Longitudinal bearing contact for a misaligned gear drive (A7 = 3 arc min.) 
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